

Nuovo impianto per la produzione di energia da fonte eolica "Sa Corredda" nel comuni di Sassari e Porto Torres (SS)

# Analisi Costi Benefici

Rev. 0.0

Data: Gennaio 2021

WIND004.REL032

Committente:

Ecowind 3 S.r.l.

via Alessandro Manzoni n. 30 20121 MILANO (MI) C. F. e P. IVA: 11437650960 **PEC:** ecowind3srl@legalmail.it

Incaricato:

Queequeg Renewables, Itd

Unit 3.21, 1110 Great West Road TW80GP London (UK) Company number: 111780524 email: mail@quenter.co.uk

# **INDICE**

| INDICE                                                                                 |     |
|----------------------------------------------------------------------------------------|-----|
| 1. PREMESSA                                                                            | 4   |
| 2.OGGETTO E OBIETTIVI                                                                  |     |
| 3.L'ATTIVITÀ                                                                           |     |
| 3. I La metodologia di merimento                                                       | 4   |
| 3.2 Fasi di lavoro                                                                     | 5   |
|                                                                                        |     |
| 3.2.1 La definizione delle esternalità                                                 | 5   |
|                                                                                        | _   |
| 3.2.2 Esternalità: costi ambientali                                                    | 6   |
| 3.2.3 Esternalità - Costi non-ambientali:                                              | 6   |
|                                                                                        |     |
| 3.2.4 L'individuazione e la quantificazione delle esternalità negative                 | 7   |
|                                                                                        |     |
| 3.2.5 La stima delle possibili esternalità negative nella fase di cantiere             | 7   |
| 3.2.6 La stima delle possibili esternalità negative nella fase di esercizio            | 8   |
| 0.2.0 La sama delle possibili esternanta riegative riena rase di escrotzio             |     |
| 3.2.7 L'individuazione e la quantificazione delle esternalità positive                 | 9   |
|                                                                                        |     |
| 5 ANALISI REMUNERAZIONE VENDITA ENERGIA PER GLI IMPIANTI OGGE                          |     |
| 5.1 DM 4 Luglio 2019                                                                   |     |
| 5. 1 DW 4 Lugno 2019                                                                   | 10  |
| 5.1.1. Ambito di applicazione                                                          | 10  |
| •                                                                                      |     |
| 5.1.3. Modalità di accesso agli incentivi                                              |     |
| 5.1.4 Tariffe incentivanti                                                             | 4.2 |
| 5.1.4 Tariffe incentivanti                                                             | 13  |
| Analisi Finanziaria                                                                    | 16  |
| 6. ANALISI AMBIENTALE                                                                  |     |
| 6.1 Bilancio delle esternalità associate all'entrata in esercizio dell'impianto eolico | 25  |
|                                                                                        |     |
| 6.2 Analisi componenti ambientali                                                      | 26  |
| 6.2.1 Atmosfera                                                                        | 26  |
| U.Z. I Autiosieia                                                                      | 20  |
| 6.2.2 Fauna                                                                            | 27  |
|                                                                                        |     |
| 6.2.3 Suolo e sottosuolo                                                               | 28  |
| 6.2.4 Vegetazione e Flora                                                              | 20  |
| 0.2.4 vegetazione e riora                                                              | 29  |
| 6.2.5 Rumore e Vibrazione                                                              | 31  |
|                                                                                        | -   |
| 6.2.6 Paesaggio                                                                        | 32  |
| 7. ANALISI 00010 500104104                                                             |     |
| 7. ANALISI SOCIO-ECONOMICA                                                             |     |
| 8. CONCLUSIONI                                                                         | აე  |

#### 1. PREMESSA

Il presente studio riguarda il progetto definitivo per la realizzazione di una centrale per la produzione di energia elettrica da fonte rinnovabile eolica da immettere nella rete elettrica nazionale.

L'impianto eolico, denominato "Sa Corredda", nel territorio comunale di Sassari ed in parte (stazione elettrica di connessione) nel territorio comunale di Porto Torres, è costituito da 14 turbine eoliche tipo Siemens-Gamesa della potenza unitaria di 6,6 MW, per una potenza totale di 92,4 MW. L'impianto verrà allacciato alla Rete Elettrica Nazionale di Alta Tensione attraverso la stazione elettrica di proprietà di Terna S.p.A. ubicata nel Comune di Porto Torres.

Il presente documento riporta la descrizione delle attività proposte per la realizzazione dell'analisi costi-benefici relativa all'intervento sopra indicato.

#### 2.OGGETTO E OBIETTIVI

È oggetto dell'intervento la realizzazione di un parco eolico.

L'obiettivo è quello di misurare le esternalità positive e negative previste dall'investimento.

### 3.L'ATTIVITÀ

### 3.1 La metodologia di riferimento

L'analisi economico-sociale all'interno dello studio di fattibilità di un'opera pubblica o privata ha lo scopo di verificare il grado di utilità dell'opera per la collettività.

L'analisi economica si concentra sullo studio dei costi e dei benefici attesi interni ed esterni al progetto mediante l'impostazione teorica propria dell'analisi costi e benefici (Cost-Benefit Analysis)

L'Analisi Costi-Benefici (di seguito ACB) è la metodologia più diffusa al fine di razionalizzare i processi decisionali in tema di allocazione delle risorse, in sintesi permette di valutare se il progetto è economicamente conveniente e socialmente desiderabile, condizione che si verifica quando il totale dei benefici ad esso associati supera il totale dei costi:

$$(B-C)>0$$

È considerazione diffusa che, sebbene l'energia da fonte eolica e le altre energie rinnovabili presentino degli indubbi benefici ambientali al confronto con le altre fonti tradizionali di produzione di energia elettrica, tali benefici non si riflettano pienamente nel prezzo di mercato dell'energia elettrica. In realtà i notevoli miglioramenti tecnologici intercorsi negli ultimi anni sia a livello di prestazioni energetiche che di processi produttivi, hanno permesso il raggiungimento di un costo

dell'energia elettrica prodotta estremamente minore rispetto al recente passato, condizione che, di fatto, permette di annoverare tale tipologia di impianti tra quelle più efficienti dal punto di vista energetico.

Tale circostanza si riflette di conseguenza sul costo della bolletta elettrica.

L' ACB è un metodo sistematico per la valutazione dell'impatto globale dell'azione delle imprese, del settore pubblico, del settore no profit, ai fini di un'analisi di medio-lungo periodo degli effetti diretti, indiretti e collaterali. Lo studio considera l'istante iniziale (anno zero) coincidente con l'inizio del funzionamento dell'impianto ed una vita utile dell'impianto di 35 anni.

Il progetto sarà considerato "utile socialmente" quando il valore aggiunto prodotto (Va) sommato alle economie esterne prodotte (Ee) e al maggior benessere sociale (Bs) avrà un valore superiore ai costi di produzione del servizio (Cs) sommato alle diseconomie esterne (De) e al disagio sociale (Ds), in formula:

La corretta valutazione dei risultati di un progetto di investimento, realizzato in un'ottica collettivistica presuppone la considerazione di tutti gli effetti da esso prodotti quindi anche di quelli che, seppure di natura involontaria, ricadono su individui o imprese esterne rispetto alla sfera di interessi di chi realizza il progetto, si parla a questo proposito di esternalità, le quali possono essere positive o negative, facendo riferimento ai benefici o costi apportati verso l'esterno all'effettiva attività svolta.

#### 3.2 Fasi di lavoro

### 3.2.1 La definizione delle esternalità

La realizzazione di un progetto produce generalmente degli effetti economici esogeni al sistema dei prezzi che devono tuttavia essere considerati nell'analisi costi-benefici. Tali effetti, chiamati dalla letteratura economica esternalità, si manifestano quando le attività di un gruppo (sia di produttori sia di consumatori) influiscono sui livelli di produzione o di consumo di un altro gruppo senza che tale effetto sia valutato mediante i prezzi o compensato tramite trasferimenti.

Le esternalità possono essere sia positive, e in questo caso si parla di benefici esterni o economie, sia negative, ossia costi esterni o diseconomie.

Il concetto di esternalità discende dal presupposto economico secondo il quale ogni attività economica, sia essa condotta da individui o associazioni, che fa uso di risorse scarse, non possa essere di utilità se i conseguenti effetti si ripercuotono negativamente sul benessere di altri individui o gruppi di persone (Energy Information Administration, 1995).

Da tale presupposto discende la più generica definizione di esternalità: "costi e benefici che si generano allorquando un'attività sociale o economica condotta da un gruppo di persone ha un impatto su un altro gruppo e, allo stesso tempo, il primo gruppo non compensa pienamente i propri impatti" (Commissione Europea, 1994).

La Comunità Europea suggerisce la classificazione delle esternalità conseguenti alla produzione di energia elettrica, riconducendole a due principali categorie: ambientali e non ambientali.

### 3.2.2 Esternalità: costi ambientali

- Salute publica (incidenti, malattie)
- Sicurezza sul lavoro (incidenti, rumore, stress psicofisico)
- Disturbi (rumore, impatto visivo, odori)
- Occupazione
- Impatti ecologici (piogge acide, eutrofizzazione, qualità dei suoli)
- Cambiamenti climatici (aumento della temperatura, incremento del livello medio del mare, cambiamenti nel regime delle precipitazioni, aumento degli uragani)

# 3.2.3 Esternalità - Costi non-ambientali:

- Sussidi
- Costi per ricerca e sviluppo
- Affidabilità e sicurezza della fornitura
- Effetti sul prodotto interno lordo

A loro volta le esternalità ambientali possono essere classificate in locali, regionali o globali, queste ultime con particolare riferimento al problema dei cambiamenti climatici conseguenti alle emissioni di CO<sub>2</sub> riduzione dello strato di ozono a seguito dell'emissione di clorofluorocarburi o di esafluoruro di zolfo.

Le esternalità non-ambientali si riferiscono ai costi nascosti.

L'analisi e quantificazione dei costi esterni non è certamente un obiettivo semplice ed investe questioni di carattere scientifico (per capire la reale portata dell'impatto) ed economico (per monetizzare tale impatto).

è affetta da incertezze.

Quanto più è complessa la valutazione dei beni intangibili (per esempio il costo conseguente all'inserimento visivo di una turbina eolica o di un impianto fotovoltaico o, ancora, del danno futuro conseguente all'emissione in atmosfera di una tonnellata di CO<sub>2</sub>) tanto più la stima delle esternalità

### 3.2.4 L'individuazione e la quantificazione delle esternalità negative

In linea generale, da un punto di vista socio - economico, le esternalità negative più rilevanti legate alla realizzazione di un'opera analoga a quella in oggetto della presente fanno riferimento ai disagi che la fase di realizzazione delle opere procura a chi — cittadini, istituzioni, attività produttive — gravita nelle zone interessate dai lavori di costruzione dell'opera stessa. Si dovrà tenere conto anche delle esternalità negative legate alla fase di gestione del parco che riguarderanno sia gli aspetti visivi (paesaggistici), sia quelli naturalistici. Tali esternalità saranno ad ogni modo riscontrabili esclusivamente nel periodo di costruzione dell'impianto, andando praticamente a scomparire nella successiva fase di esercizio. Addirittura tali esternalità negative si trasformeranno in alcuni casi in positive: si pensi ad esempio alla realizzazione di nuove piste ed all'adeguamento delle vetuste, che comporteranno naturalmente il miglioramento degli accessi ai fondi e della percorribilità delle infrastrutture viarie.

### 3.2.5 La stima delle possibili esternalità negative nella fase di cantiere

Le esternalità negative che potrebbero avere un impatto significativo nel caso della realizzazione dell'opera considerata possono essere raggruppate in due categorie:

- aspetti insediativi e infrastrutturali;
- 2. aspetti di natura ambientale e paesaggistica.

Gli aspetti insediativi e infrastrutturali comprendono:

- le funzioni abitative. L'apertura dei cantieri può determinare impatti di varia natura sulle abitazioni che vengono direttamente o indirettamente coinvolte dai lavori.
- le funzioni produttive e di servizio. Analogamente alle funzioni abitative, l'apertura dei cantieri potrebbe determinare condizionamenti alle attività commerciali e professionali e sul funzionamento di alcuni servizi complessi interessate da attività di servizio all'intera cittadinanza.
- la mobilità. I lavori eseguiti nei cantieri possono avere ripercussioni sulle funzioni di mobilità in via sia transitoria sia permanente (ad esempio, alcuni collegamenti potrebbero essere inibiti temporaneamente o comportare la percorrenza di tragitti più lunghi). I costi sociali più significativi derivano dalle interferenze sul traffico veicolare, dall'apertura dei cantieri e dalle interferenze sul

traffico dovuto alla presenza in fase di realizzazione di automezzi per il trasporto dei materiali e delle strutture.

- le infrastrutture stradali. L'apertura dei cantieri e il completamento delle opere possono determinare una possibile interferenza con le infrastrutture stradali e provocare pertanto potenzialmente un deterioramento dell'efficienza del sistema stradale;
- le infrastrutture tecnologiche. In questo caso ci si riferisce alle interferenze che i cantieri possono provocare alle infrastrutture tecnologiche (soprattutto ai sotto servizi a rete) in termini delle possibili interruzioni parziali del servizio, che provocano evidentemente un danno alla collettività.

Il problema della minimizzazione di parte di queste esternalità negative soprattutto sul traffico e sulla mobilità derivanti dall'esecuzione dei lavori può essere affrontato e risolto in sede di progettazione sia mediante scelte progettuali adeguate sia tramite soluzioni flessibili da adottare durante la realizzazione delle opere che consentono il conseguimento di risparmi di tempo e di costi di realizzazione. In particolare, alcuni disagi sostenuti dalla collettività potranno essere mitigati grazie ad alcuni accorgimenti che sono stati predisposti e che sono qui brevemente riassunti:

- individuazione di momenti differenti per l'apertura dei cantieri;
- limitazione dell'estensione dei cantieri, con l'obbligo di mantenere almeno una carreggiata di scorrimento fruibile, al fine di evitare strozzature nelle principali direttrici stradali.

Gli aspetti ambientali delle esternalità negative comprendono:

- il consumo di suolo. L'apertura dei cantieri e le opere da realizzarsi possono determinare un consumo del suolo sia qualitativamente sia quantitativamente;
- il consumo di inerti. La realizzazione degli scavi può provocare un parziale consumo di inerti che possono essere pregiati come le "sabbie, ghiaie e lapidei di monte" o meno pregiati come le "terre";
- il contesto naturalistico. I lavori potrebbero causare un danno al sistema naturale, ossia alla flora
   e alla fauna di alcune zone interessate ai lavori nel caso in esame.

# 3.2.6 La stima delle possibili esternalità negative nella fase di esercizio

Le esternalità negative che potrebbero avere un impatto significativo durante la fase di esercizio dovrebbero essere ricondotte essenzialmente a quelle relative a:

- l'Impatto visivo. La "visibilità delle strutture" da grande distanza e la loro localizzazione.
- Il contesto naturalistico. L'effetto che il funzionamento del parco può avere sulla fauna ed in particolare sull'avifauna stanziale e migratoria.

# 3.2.7 L'individuazione e la quantificazione delle esternalità positive

Le esternalità positive generate dalla realizzazione dell'opera in oggetto possono essere suddivise in effetti misurabili mediante parametri di natura ambientale ed economica. I principali benefici del progetto che si possono ipotizzare sono:

### Fase di realizzazione:

- I benefici occupazionali;
- I benefici economici diretti e indiretti

#### Fase di esercizio:

- La riduzione della quantità di emissioni inquinanti;
- I benefici occupazionali ed economici.

La metodologia utilizzata per quantificare in termini monetari le economie sopraesposte fa riferimento alla definizione di un prezzo ombra per ciascuno dei parametri identificati e all'individuazione in termini fisici della variazione del parametro in esame prodotta dalla realizzazione del progetto rispetto alla situazione "in assenza" del progetto. Pertanto, per ognuna delle variabili considerate, sarà stimato il relativo valore atteso futuro sia nello scenario "in assenza di intervento" sia nello scenario con intervento". Successivamente, sarà calcolato il valore monetario di tale parametro, sulla base del prezzo individuato in entrambe le ipotesi; la differenza tra i due valori individuati rappresenta il beneficio generato dalla realizzazione del progetto riferito all'elemento considerato.

La fase di definizione delle esternalità è stata preceduta da una fase di analisi e raccolta di tutti i dati e le informazioni necessarie per una adeguata e corretta valutazione. Attraverso il Progetto Definitivo e le relazioni specialistiche facenti parte dello Studio di Impatto Ambientale e lo Studio stesso nonchè delle analisi paesaggistiche, con particolare riferimento allo studio della visibilità, sono state fornite informazioni dettagliate sulle caratteristiche dell'opera, sulle interazioni con le componenti ambientali e paesaggistiche, sul contesto, sul personale e sui mezzi impiegati in fase di cantiere e del personale impiegato in fase di esercizio.

# Calcolo del beneficio sociale netto

Sulla base della valutazione congiunta delle esternalità positive e negative generate dalla realizzazione del parco eolico è possibile calcolare il beneficio sociale netto.

Tale valutazione indica un saldo netto determinato dalla differenza tra i benefici e le esternalità

negative.

### **Output finali**

Report contenente:

- La quantificazione delle esternalità negative
- La quantificazione delle esternalità positive
- Il beneficio sociale netto

#### 5 ANALISI REMUNERAZIONE VENDITA ENERGIA PER GLI IMPIANTI OGGETTO DI STUDIO

La remunerazione economica del settore eolico è rappresentato dalla remunerazione da vendita dell'energia prodotta attraverso cessione alla rete dei kWh prodotti secondo quanto previsto dal DM 04/07/2019 in continuità con i precedenti Decreti Ministeriali D.M. 06/07/2012 e il D.M. 23/06/2016, da cui eredita parte della struttura (meccanismo gestito dal GSE).

# 5.1 DM 4 Luglio 2019

# 5.1.1. Ambito di applicazione

il D.M. 04/07/2019 ha il fine di promuovere, attraverso un sostegno economico, la diffusione di impianti di produzione di energia elettrica da fonti rinnovabili di piccola, media e grande taglia.

Gli impianti che possono beneficiare degli incentivi previsti dal Decreto sono quelli fotovoltaici di nuova costruzione, eolici on shore, idroelettrici e infine quelli a gas di depurazione.

Potranno presentare richiesta di accesso agli incentivi solo gli impianti risultati in posizione utile nelle graduatorie di una delle sette procedure concorsuali di Registro o Asta al ribasso sul valore dell'incentivo, redatte dal GSE sulla base di specifici criteri di priorità.

L'iscrizione ai Registri o alle Aste può essere effettuata per impianto singolo o per più impianti in forma aggregata, purché tutti di nuova costruzione.

Il <u>D.M. 04/07/2019</u> suddivide gli impianti che possono accedere agli incentivi in **quattro gruppi** in base alla tipologia, alla fonte energetica rinnovabile e alla categoria di intervento:

- **Gruppo A:** comprende gli impianti:
  - eolici "on-shore" di nuova costruzione, integrale ricostruzione, riattivazione o potenziamento
  - o fotovoltaici di nuova costruzione

- Gruppo A-2: comprende gli impianti fotovoltaici di nuova costruzione, i cui moduli sono installati in sostituzione di coperture di edifici e fabbricati rurali su cui è operata la completa rimozione dell'eternit o dell'amianto
- **Gruppo B:** comprende gli impianti:
  - o idroelettrici di nuova costruzione, integrale ricostruzione (esclusi gli impianti su acquedotto), riattivazione o potenziamento
  - a gas residuati dei processi di depurazione di nuova costruzione, riattivazione o potenziamento
- Gruppo C: comprende gli impianti oggetto di rifacimento totale o parziale:
  - o eolici "on-shore"
  - o idroelettrici
  - o a gas residuati dei processi di depurazione

L'impianto in proposta ricade nel gruppo A

# 5.1.3. Modalità di accesso agli incentivi

Sono previste due diverse **modalità di accesso** agli incentivi a seconda della potenza dell'impianto e del gruppo di appartenenza:

# Iscrizione ai Registri

Gli impianti di **potenza superiore a 1 kW (20 kW per i fotovoltaici) e inferiore a 1 MW** che appartengono ai **Gruppi A, A-2, B e C** devono essere iscritti ai Registri, attraverso i quali è assegnato il contingente di potenza disponibile sulla base di specifici criteri di priorità

# • Partecipazione a Procedure d'Asta

Gli impianti di **potenza superiore o uguale a 1 MW** che appartengono ai **Gruppi A, B e C** devono partecipare alle Aste, attraverso le quali è assegnato il contingente di potenza disponibile, in funzione del maggior ribasso offerto sul livello incentivate e, a pari ribasso, applicando ulteriori criteri di priorità.

Sono previsti 7 bandi per la partecipazione ai Registri e/o alle Aste, con le seguenti tempistiche:

| Nr. Procedura | Data di apertura del bando | Data di chiusura del bando |
|---------------|----------------------------|----------------------------|
| 1             | 30 settembre 2019          | 30 ottobre 2019            |
| 2             | 31 gennaio 2020            | 1 marzo 2020               |
| 3             | 31 maggio 2020             | 30 giugno 2020             |
| 4             | 30 settembre 2020          | 30 ottobre 2020            |

| 5 | 31 gennaio 2021   | 2 marzo 2021    |
|---|-------------------|-----------------|
| 6 | 31 maggio 2021    | 30 giugno 2021  |
| 7 | 30 settembre 2021 | 30 ottobre 2021 |

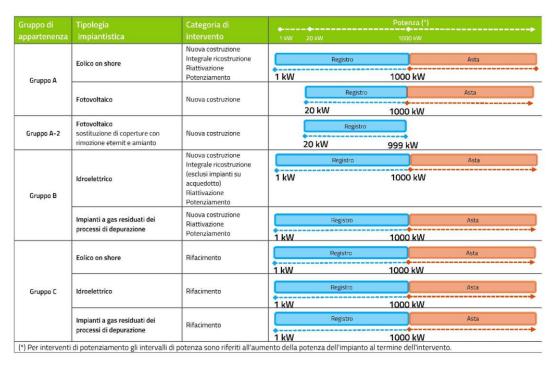



Tabella 1- modalità di accesso agli incentivi DM 04/07/2019

Gli incentivi sono riconosciuti all'energia elettrica prodotta netta immessa in rete dall'impianto, calcolata come minor valore tra la produzione netta (a sua volta pari alla produzione lorda ridotta dei consumi dei servizi ausiliari, delle perdite di linea e di trasformazione) e l'energia elettricaeffettivamente immessa in rete, misurata con il contatore di scambio.

# Il **D.M. 04/07/2019** prevede tre diverse definizioni di tariffa:

- la Tariffa di Riferimento è determinata, in funzione della fonte e tipologia dell'impianto e della potenza, applicando:
  - le tariffe e le eventuali riduzioni previste dal D.M. 23/6/2016, per gli impianti non fotovoltaici iscritti in posizione utile nei Registri, che entrano in esercizio entro un anno dall'entrata in vigore del <u>D.M. 04/07/2019</u> e che non hanno beneficiato di specifici criteri di priorità previsti da quest'ultimo
  - o le tariffe di cui all'Allegato 1 al D.M. 04/07/2019 per tutti gli altri impianti

- la **Tariffa Offerta** è calcolata applicando alla tariffa di riferimento le eventuali riduzioni richieste dal Soggetto Responsabile in fase di iscrizione ai Registri o alle Aste, al fine di beneficiare dei relativi criteri di priorità.
- la Tariffa Spettante è calcolata applicando alla tariffa offerta le ulteriori riduzioni previste dal <u>D.M. 04/07/2019</u> per gli impianti risultati in posizione utile nelle graduatorie dei Registri e delle Aste e successivamente ammessi agli incentivi.

Il Decreto prevede due distinti meccanismi incentivanti, individuati sulla base della potenza, della fonte rinnovabile e della tipologia dell'impianto:

- la Tariffa Onnicomprensiva (TO) costituita da una tariffa unica, corrispondente alla tariffa spettante, che remunera anche l'energia elettrica ritirata dal GSE;
- un **Incentivo (I)**, calcolato come differenza tra la tariffa spettante e il prezzo zonale orario dell'energia, poiché l'energia prodotta resta nella disponibilità dell'operatore.

Per gli impianti di potenza **fino a 250 kW** è possibile scegliere una delle due modalità, con la possibilità di passare da una modalità all'altra **non più di due volte** nel corso dell'intero periodo di incentivazione.

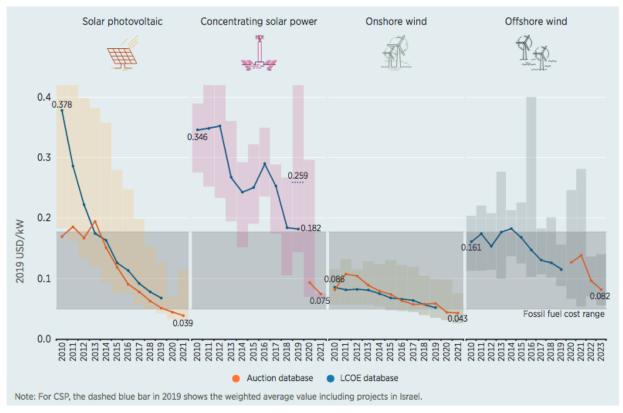
Gli impianti di potenza superiore a 250 kW possono invece accedere al solo Incentivo.

Tariffe Onnicomprensive e Incentivo sono erogati dal GSE a partire dalla data di **entrata in esercizio commerciale**, per un periodo specifico per ciascuna tipologia di impianto pari alla **vita utile** dell'impianto stesso. La data di entrata in esercizio commerciale può essere scelta dall'operatore, purché compresa nei **18 mesi** successivi all'entrata in esercizio dell'impianto.

Sono inoltre previsti due **premi**, rispettivamente per gli impianti fotovoltaici di cui al gruppo A-2, erogato su tutta l'energia prodotta e un premio per gli impianti di potenza fino a 100 kW su edifici, sulla quota di produzione netta consumata in sito.

#### 5.1.4 Tariffe incentivanti

Il DM 4 luglio 2019 individua, per ciascuna fonte, tipologia di impianto e classe di potenza, il valore delle tariffe di riferimento (Tr), e degli eventuali premi


|                                  |                        |                                                           |                                                                         |                                    |                             | PREM                                                             | I (Pr)                                                   |
|----------------------------------|------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------|-----------------------------|------------------------------------------------------------------|----------------------------------------------------------|
| Fonte<br>rinnovabile<br>Impianti | Gruppo di appartenenza | Tipologia                                                 | Potenza                                                                 | VITA<br>UTILE<br>degli<br>IMPIANTI | TARIFFA DI RIFERIMENTO (Tr) | Fotovoltaici<br>appartenenti<br>al Gruppo A-2<br>di P<1000<br>kW | Impianti su<br>edifici con<br>autoconsumo<br>di P≤100 kW |
|                                  |                        |                                                           |                                                                         |                                    |                             | art.7.10                                                         | art.7.12                                                 |
|                                  |                        |                                                           | kW                                                                      | anni                               | €/MWh                       | €/MWh                                                            | €/MWh                                                    |
|                                  | Saura A                |                                                           | 1 <p≤100< td=""><td>20</td><td>150</td><td></td><td>10</td></p≤100<>    | 20                                 | 150                         |                                                                  | 10                                                       |
| Eolici                           | Gruppo A<br>Gruppo C   | on-shore                                                  | 100 <p<1000< td=""><td>20</td><td>90</td><td></td><td></td></p<1000<>   | 20                                 | 90                          |                                                                  |                                                          |
|                                  | агарро с               |                                                           | P≥1000                                                                  | 20                                 | 70                          |                                                                  |                                                          |
|                                  |                        |                                                           | 20 <p≤100< td=""><td>20</td><td>105</td><td></td><td>10</td></p≤100<>   | 20                                 | 105                         |                                                                  | 10                                                       |
|                                  | Gruppo A               |                                                           | 100 <p<1000< td=""><td>20</td><td>90</td><td></td><td></td></p<1000<>   | 20                                 | 90                          |                                                                  |                                                          |
| Fotovoltaici                     | ptovoltaici            |                                                           | P≥1000                                                                  | 20                                 | 70                          |                                                                  |                                                          |
|                                  |                        | installati in sostituzione di coperture                   | 20 <p≤100< td=""><td>20</td><td>105</td><td>12</td><td>10</td></p≤100<> | 20                                 | 105                         | 12                                                               | 10                                                       |
|                                  | Gruppo A-2             | con completa rimozione eternit e<br>amianto               | 100 <p<1000< td=""><td>20</td><td>90</td><td>12</td><td></td></p<1000<> | 20                                 | 90                          | 12                                                               |                                                          |
|                                  |                        |                                                           | 1 <p≤400< td=""><td>20</td><td>155</td><td></td><td></td></p≤400<>      | 20                                 | 155                         |                                                                  |                                                          |
|                                  |                        | ad acqua fluente<br>(compresi gli impianti su acquedotto) | 400 <p<1000< td=""><td>25</td><td>110</td><td></td><td></td></p<1000<>  | 25                                 | 110                         |                                                                  |                                                          |
| Idroelettrici                    | Gruppo B               | (compress girimpianti su acquedotto)                      | P≥1000                                                                  | 30                                 | 80                          |                                                                  |                                                          |
|                                  | Gruppo C               | a bacino o a serbatoio                                    | 1 <p<1000< td=""><td>25</td><td>90</td><td></td><td></td></p<1000<>     | 25                                 | 90                          |                                                                  |                                                          |
|                                  |                        | a Dacillo o a Sel Datolo                                  | P≥1000                                                                  | 30                                 | 80                          |                                                                  |                                                          |
| Alimentati a gas                 |                        |                                                           | 1 <p≤100< td=""><td>20</td><td>110</td><td></td><td></td></p≤100<>      | 20                                 | 110                         |                                                                  |                                                          |
| residuati dai                    | Gruppo B               |                                                           | 100 <p<1000< td=""><td>20</td><td>100</td><td></td><td></td></p<1000<>  | 20                                 | 100                         |                                                                  |                                                          |
| processi di<br>depurazione       | Gruppo C               |                                                           | P≥1000                                                                  | 20                                 | 80                          |                                                                  |                                                          |

I valori della Tabella 1 sono ridotti (esclusi i premi), a decorrere dall'1 gennaio 2021, del 2% per gli impianti idroelettrici e a gas residuati dai processi di depurazione e del 5% per gli impianti eolici e fotovoltaici (DM2019, All.1 Tabella 1.1).

Tabella 2-Tariffe incentivanti di riferimento, vita utile e premi stabiliti dal DM 2019

L'impianto in proposta entrerà nel mercato libero, in modalità Grid parity. Per gli impianti eolici onshore secondo quanto riporta il rapporto IRENA¹ "Renewable Power Generation costs 2019" il LCOE (costo livellato dell'elettricità - Levelized cost of energy) nel 2021, con ogni probabilità scenderà a 0,043 \$/kWh, ossia il 18% in meno in confronto al valore medio LCOE dell'eolico onhore nel 2019

<sup>&</sup>lt;sup>1</sup>INTERNATIONAL RENEWABLES ENERGY AGENCY <a href="https://cdn.qualenergia.it/wp-content/uploads/2020/06/IRENA\_Power\_Generation\_Costs\_2019.pdf">https://cdn.qualenergia.it/wp-content/uploads/2020/06/IRENA\_Power\_Generation\_Costs\_2019.pdf</a>



Note: The thick lines are the global weighted average LCOE, or auction values, by year. The grey bands that vary by year are cost/price range for the 5th and 95th percentiles of projects.. For the LCOE data, the real WACC is 7.5% for OECD countries and China, and 10% for the rest of the world. The band that crosses the entire chart represents the fossil fuel-fired power generation cost range.

Tabella 3 - LCOE (costo livellato dell'elettricità) - Rapporto IRENA "Renewable Power Generation costs 2019"

Si ipotizza nel presente studio una vendita dell'Energia con contratto di PPA² pari a 52€/MWh.

<sup>&</sup>lt;sup>2</sup>acronimo di **Power Purchase Agreement**. Si tratta di contratti a lungo termine in cui un'azienda accetta di acquistare elettricità direttamente da un produttore di energia. Hanno durata superiore ai 10 anni e prevedono la vendita dell'elettricità a un prezzo fisso per kWh, offrendo pertanto una copertura contro eventuali fluttuazioni dei prezzi energetici.

# **Analisi Finanziaria**

### Valore Attuale Netto (VAN)

Da questa analisi è possibile, mediante cash flow (i flussi di cassa) dei costi-benefici, calcolare il Valore Attuale Netto (VAN) che calcola appunto il valore odierno di una serie di flussi di cassa generati in periodi futuri attraverso l'utilizzo di un tasso di sconto (o tasso di attualizzazione). Verrà considerato, tra più alternative, l'investimento con il VAN maggiore o comunque con VAN>0.

I costi e i benefici annui legati alle alternative progettuali vengono attualizzati attraverso le regole della matematica finanziaria all'anno di riferimento calcolandone il valore attuale attraverso il tasso di sconto:

$$VA_k = FC_k/(1+i)^k$$

Il "saggio di preferenze intertemporale" (o più semplicemente saggio di sconto) è indispensabile in quanto nell'Analisi Costi-Benefici si mettono a confronto costi e benefici che maturano in tempi diversi: esprime la condizione alle quali gli individui sono disposti a privarsi della disponibilità del denaro e di rinviarla nel futuro. Ai fini della presente analisi è stato utilizzato un saggio di attualizzazione al 7,7%³ ipotizzando una vita utile di 35 anni (34 anni di funzionamento e 1 anno di costruzione/smantellamento).

I costi sono dati da tutti gli esborsi richiesti per la connessione alla rete, costruzione, gestione, manutenzione ordinaria e straordinaria dell'impianto, studi ingegneria, dismissione impianto.

| Costi progetto e riepilogo economie e reddito | ) |            |
|-----------------------------------------------|---|------------|
| Costi iniziali                                |   |            |
| Studio di fattibilità                         | € | 20.000     |
| Sviluppo                                      | € | 250.000    |
| Ingegneria                                    | € | 1.404.000  |
| Sistema produzione energia                    |   |            |
| elettrica                                     | € | 84.047.056 |
| Bilancio sistema e varie                      | € | 4.830.944  |
| Totale costi iniziali                         | € | 90.552.000 |
| Costi annuali e pagamento debiti              |   |            |
| Gestione e manutenzione                       | € | 1.892.312  |
| Costo combustibile - caso proposto            | € | 0          |
| Pagamento debiti - 10 anni                    | € | 9.155.084  |
| Totale costi annui                            | € | 11.047.396 |

<sup>&</sup>lt;sup>3</sup>Seguendo la teoria del Capital Asset Pricing Model di William Sharpe, e sulle deduzioni delle implicazioni dei postulati di Modigliani-Miller sul costo del capitale, si assume come tasso di attualizzazione dei flussi di cassa il Costo Medio Ponderato del Capitale (in Inglese WACC o Weighted Average Cost of Capital) pari al 7,7%

# Tabella 4 - Riepilogo Costi, economie e redditi

I benefici sono legati alle tariffe incentivanti ed alla vendita dell'Energia Elettrica (nel caso in esame non abbiamo tariffe incentivanti e si ipotizza una tariffa di 52€/MWh). Dall'analisi del business plan, con l'utilizzo dei parametri delle tabelle precedenti e con i parametri finanziari di seguito riportati, ne deriva un VAN sempre positivo (Tabella 6).

Nella tabella che segue vengono riportati i parametri finanziari utilizzati nel presente studio. Si evidenzia che per il caso in studio si è deciso di ipotizzare un tasso di indebitamento dell'80% (20% coperto dal proponente).

| Parametri finanziari                    |        |            |
|-----------------------------------------|--------|------------|
| Generale                                |        |            |
| Tasso indicizzazione costo combustibile | %      |            |
| Tasso inflazione                        | %      | 1,2%       |
| Tasso di sconto                         | %      | 7,7%       |
| Vita progetto                           | anno   | 35         |
| Finanziamento                           |        |            |
| Incentivi e sovvenzioni                 | €      | 0          |
| Rapporto d'indebitamento                | %      | 80,0%      |
| Debiti                                  | €      | 72.441.600 |
| Capitale proprio investito              | €      | 18.110.400 |
| Tasso d'interesse debitorio             | %      | 4,50%      |
| Durata del debito                       | anno   | 10         |
| Pagamento debiti                        | €/anno | 9.155.084  |

Tabella 5 - Parametri finanziari

Per quanto riguarda I parametri fiscali sono stati utilizzati i seguenti parametri

| Analisi imposta sul reddito    |       | $\overline{\checkmark}$ |
|--------------------------------|-------|-------------------------|
| Tasso imposta sul reddito      | %     | 27,9%                   |
| Riportare la perdita?          |       | Sì                      |
| Metodo ammortamento            |       | Lineare                 |
|                                |       |                         |
| Tipo ammortamento fiscale      | %     | 9,0%                    |
|                                |       |                         |
| Periodo d'ammortamento         | anno  | 10                      |
| Esenzione fiscale disponibile? | sì/no | No                      |

| Fattibilità finanziaria                                |        |            |
|--------------------------------------------------------|--------|------------|
| TIR pre-tasse - capitale proprio                       |        |            |
| investito                                              | %      | 23,5%      |
| TIR ante-imposte - attività                            | %      | 7,2%       |
| TIR al netto imposte - capitale                        |        |            |
| proprio                                                | %      | 21,2%      |
| TIR al netto imposte - attività                        | %      | 5,4%       |
| Ritorno semplice dell'investimento                     | anno   | 7,3        |
| Ritorno del capitale investito                         | anno   | 5,7        |
| Valore attuale netto (VAN) Economie annuali sulla vita | €      | 46.412.535 |
| dell'impianto                                          | €/anno | 3.861.653  |
| Rapporto costi-benefici (C-B)                          |        | 3,56       |
| Recupero debiti                                        |        | 1,35       |
| Costi produzione energia                               | €/MWh  | 34,10      |
| Costo riduzione gas serra                              | €/tCO2 | (35)       |

Tabella 6 - Riepilogo fattibilità finanziaria

| Elucco n             | nonetario annuo |                 |                 |
|----------------------|-----------------|-----------------|-----------------|
| Anno                 | Pre-tasse       | Post-tasse      | Cumulativa      |
| #                    | F1e-lasse €     | FUSI-lasse<br>€ | Cumulativo<br>€ |
| 0                    | -18.110.400     | -18.110.400     | -18.110.400     |
| 1                    | 3.246.501       | 3.246.501       | -14.863.899     |
| 2                    | 3.223.520       | 3.223.520       | -11.640.379     |
| 3                    | 3.200.264       | 3.200.264       | -8.440.114      |
| 4                    | 3.176.729       | 3.176.729       | -5.263.385      |
| 5                    | 3.152.912       | 3.152.912       | -2.110.473      |
|                      |                 |                 |                 |
| 6                    | 3.128.809       | 3.128.809       | 1.018.336       |
| 7                    | 3.104.416       | 3.104.416       | 4.122.752       |
| 8                    | 3.079.731       | 3.079.731       | 7.202.483       |
| 9                    | 3.054.749       | 2.409.882       | 9.612.364       |
| 10                   | 3.029.468       | -32.653         | 9.579.711       |
| 11                   | 12.158.968      | 8.766.616       | 18.346.326      |
| 12                   | 12.133.076      | 8.747.948       | 27.094.274      |
| 13                   | 12.106.874      | 8.729.056       | 35.823.330      |
| 14                   | 12.080.357      | 8.709.937       | 44.533.267      |
| 15                   | 12.053.522      | 8.690.589       | 53.223.856      |
| 16                   | 12.026.365      | 8.671.009       | 61.894.865      |
| 17                   | 11.998.882      | 8.651.194       | 70.546.059      |
| 18                   | 11.971.069      | 8.631.141       | 79.177.200      |
| 19                   | 11.942.923      | 8.610.847       | 87.788.047      |
| 20                   | 11.914.439      | 8.590.310       | 96.378.358      |
| 21                   | 11.885.613      | 8.569.527       | 104.947.884     |
| 22                   | 11.856.441      | 8.548.494       | 113.496.378     |
| 23                   | 11.826.919      | 8.527.208       | 122.023.587     |
| 24                   | 11.797.043      | 8.505.668       | 130.529.254     |
| 25                   | 11.766.808      | 8.483.868       | 139.013.123     |
| 26                   | 11.736.210      | 8.461.808       | 147.474.930     |
| 27                   | 11.705.246      | 8.439.482       | 155.914.412     |
| 28                   | 11.673.909      | 8.416.889       | 164.331.301     |
| 29                   | 11.642.197      | 8.394.024       | 172.725.325     |
| 30                   | 11.610.104      | 8.370.885       | 181.096.210     |
| 31                   | 11.577.626      | 8.347.468       | 189.443.678     |
| 32                   | 11.544.758      | 8.323.771       | 197.767.449     |
| 33                   | 11.511.496      | 8.299.789       | 206.067.238     |
| 33<br>34             | 11.477.835      | 8.275.519       | 214.342.757     |
| 3 <del>4</del><br>35 | 11.443.770      | 8.250.958       | 222.593.714     |
| 33                   | 11.443.770      | 0.230.930       | 222.083.114     |

Tabella 7 – flusso di cassa

Il flusso monetario si può rappresentare anche in forma cumulativa grafica, come rappresentato in figura, con evidenziato il punto di pareggio in termini di tempo.

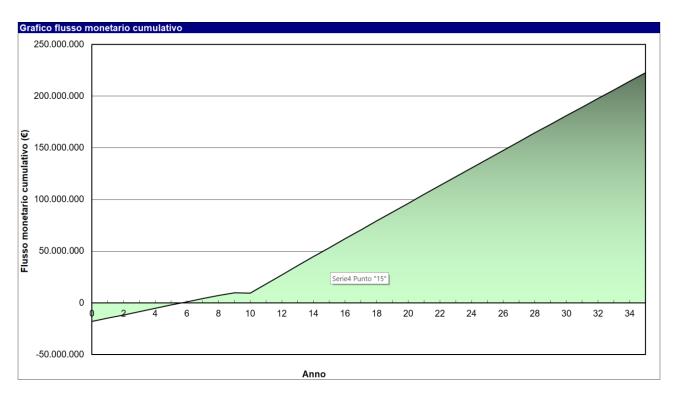



Figura 1 - Cash flow cumulativo

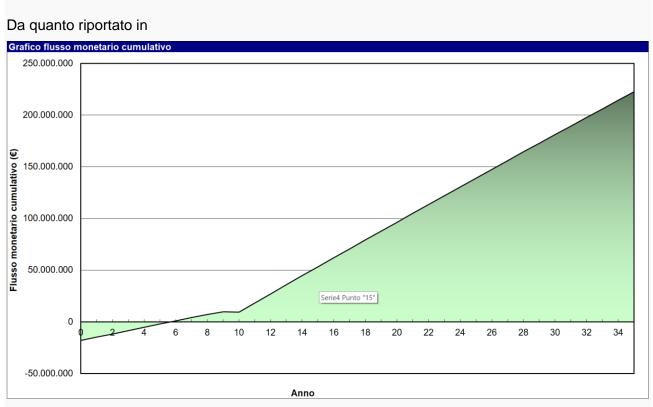



Figura 1 e dalla Tabella 6 si evince che la soluzione progettuale in proposta ha un VAN ampiamente positivo ed un tempo di ritorno in linea con le aspettative di questo genere di interventi.

# Analisi della sensitività ipotesi di progetto

Al fine di quantificare gli effetti sui risultati forniti dall'analisi dell'investimento, indotti da una modifica dei parametri con i quali sono calcolati gli indicatori di sostenibilità economica e finanziaria del progetto si è proceduto al calcolo di una **analisi della sensitività**. Essa viene effettuata alterando il peso di alcuni parametri ritenuti critici (il prezzo cessione energia elettrica, i costi iniziali e di manutenzione, il tasso debitorio, il rapporto di indebitamento ecc.) e osservando le conseguenze in termini di risultati finanziari ed economici. Stabilendo, pertanto, i margini di variabilità massima tollerati per gli indicatori economici e finanziari a fronte di una variazione percentuale prestabilita per ciascun parametro (20%), si desumono informazioni utili per valutarne l'incertezza, nonché la possibile perdita di sostenibilità dell'investimento.

Con riferimento al Tasso di Rendimento Interno **TIR** (saggio di attualizzazione che azzera il VAN) ad esempio, abbiamo il seguente risultato:

| ffettuare analisi su   | TIP al netto impo | ste - capitale proprio |            |                       |            |             |
|------------------------|-------------------|------------------------|------------|-----------------------|------------|-------------|
| amma sensitività 20%   |                   |                        |            |                       |            |             |
| imite                  | 10                | %                      |            |                       |            |             |
|                        |                   | •                      |            |                       |            |             |
|                        |                   |                        |            | Costi iniziali        |            | €           |
| rezzo cessione energia | elettrica         | 72.441.600             | 81.496.800 | 90.552.000            | 99.607.200 | 108.662.400 |
| €/MWh                  |                   | -20%                   | -10%       | 0%                    | 10%        | 20%         |
| 41,60                  | -20%              | 19,5%                  | 15,3%      | 12,5%                 | 10,4%      | 8,8%        |
| 46,80                  | -10%              | 26,2%                  | 20,5%      | 16,5%                 | 13,7%      | 11,6%       |
| 52,00                  | 0%                | 34,2%                  | 26,6%      | 21,2%                 | 17,5%      | 14,7%       |
| 57,20                  | 10%               | 43,1%                  | 33,7%      | 26,8%                 | 21,9%      | 18,3%       |
| 62,40                  | 20%               | 52,4%                  | 41,5%      | 33,2%                 | 27,0%      | 22,5%       |
|                        |                   |                        |            |                       |            |             |
|                        |                   |                        |            | estione e manutenzio  |            | €           |
| costi iniziali         |                   | 1.513.850              | 1.703.081  | 1.892.312             | 2.081.543  | 2.270.774   |
| €                      |                   | -20%                   | -10%       | 0%                    | 10%        | 20%         |
| 72.441.600             | -20%              | 36,6%                  | 35,4%      | 34,2%                 | 33,1%      | 31,9%       |
| 81.496.800             | -10%              | 28,4%                  | 27,5%      | 26,6%                 | 25,7%      | 24,8%       |
| 90.552.000             | 0%                | 22,7%                  | 22,0%      | 21,2%                 | 20,5%      | 19,8%       |
| 99.607.200             | 10%               | 18,7%                  | 18,1%      | 17,5%                 | 16,9%      | 16,3%       |
| 108.662.400            | 20%               | 15,7%                  | 15,2%      | 14,7%                 | 14,2%      | 13,8%       |
|                        |                   |                        |            |                       |            |             |
|                        |                   |                        |            | o cessione energia el |            | €/MWh       |
| Sestione e manutenzion | е                 | 41,60                  | 46,80      | 52,00                 | 57,20      | 62,40       |
| €                      |                   | -20%                   | -10%       | 0%                    | 10%        | 20%         |
| 1.513.850              | -20%              | 13,6%                  | 17,8%      | 22,7%                 | 28,5%      | 35,1%       |
| 1.703.081              | -10%              | 13,0%                  | 17,1%      | 22,0%                 | 27,7%      | 34,1%       |
| 1.892.312              | 0%                | 12,5%                  | 16,5%      | 21,2%                 | 26,8%      | 33,2%       |
| 2.081.543              | 10%               | 12,0%                  | 15,9%      | 20,5%                 | 26,0%      | 32,3%       |
| 2.270.774              | 20%               | 11,4%                  | 15,3%      | 19,8%                 | 25,2%      | 31,4%       |

Figura 2 – analisi sensitività del TIR

Dall'analisi della sensitività, fissando il valore del TIR limite pari al 10%, si vede come anche con variazioni del 20% dei parametri in gioco il valore minimo risulta garantito<sup>4</sup>. Medesimo risultato si ha analizzando il tempo di ritorno del capitale investito:

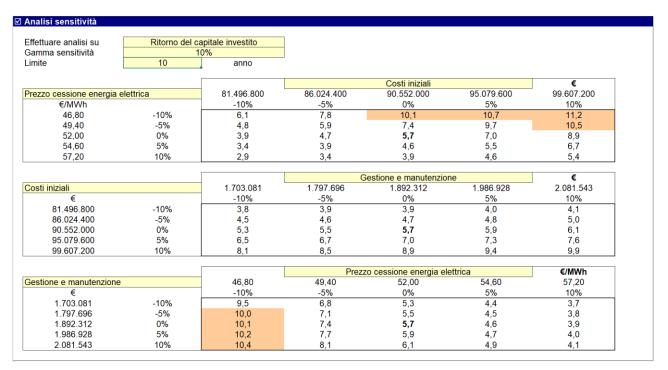
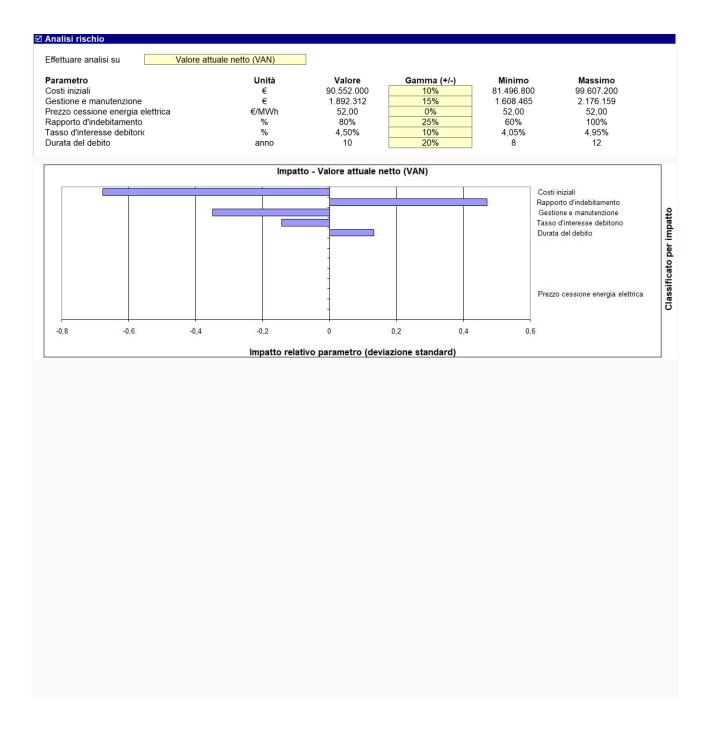



Figura 3 -analisi sensitività del tempo di ritorno del capitale investito

Questa è la situazione per il VAN, che risulta ampiamente positivo anche con forti variazioni dei parametri in gioco, a parte il caso estremamente improbabile di un aumento dei costi iniziali del 25% ed una contemporanea riduzione del 25% del prezzo di cessione dell'energia elettrica (che come detto rimane costante per tutta la durata del PPA):

Rev. 00 | WIND006.REL002 22

\_


<sup>&</sup>lt;sup>4</sup>Il caso segnato in rosso in cui sia ha una diminuzione del prezzo di cessione di Energia è impossibile in quanto per definizione nei contratti PPA tale valore di 52€/MWh rimane costante.

| Effettuare analisi su   | Valore attu | ale netto (VAN) |            |                       |             |             |
|-------------------------|-------------|-----------------|------------|-----------------------|-------------|-------------|
| Gamma sensitività       |             | 25%             |            |                       |             |             |
| Limite                  | 0           | . €             | '          |                       |             |             |
|                         |             |                 |            | Costi iniziali        |             | €           |
| Prezzo cessione energia | elettrica   | 67.914.000      | 79.233.000 | 90.552.000            | 101.871.000 | 113.190.000 |
| €/MWh                   |             | -25%            | -13%       | 0%                    | 13%         | 25%         |
| 39,00                   | -25%        | 29.837.030      | 21.525.241 | 13.003.817            | 4.319.406   | -4.519.073  |
| 45,50                   | -13%        | 46.181.597      | 38.136.607 | 29.866.521            | 21.439.897  | 12.862.261  |
| 52,00                   | 0%          | 62.294.372      | 54.444.526 | 46.412.535            | 38.205.884  | 29.831.989  |
| 58,50                   | 13%         | 78.248.979      | 70.564.276 | 62.707.455            | 54.686.024  | 46.509.460  |
| 65,00                   | 25%         | 94.102.112      | 86.545.605 | 78.834.179            | 70.970.383  | 62.959.514  |
|                         |             |                 | G          | estione e manutenzio  | 20          | €           |
| Costi iniziali          |             | 1,419,234       | 1.655.773  | 1.892.312             | 2.128.851   | 2.365.390   |
| €                       |             | -25%            | -13%       | 0%                    | 13%         | 25%         |
| 67.914.000              | -25%        | 67.152.319      | 64.723.668 | 62.294.372            | 59.865.076  | 57.435.779  |
| 79.233.000              | -13%        | 59.344.352      | 56.894.439 | 54.444.526            | 51.994.613  | 49.544.701  |
| 90.552.000              | 0%          | 51.356.380      | 48.884.457 | 46.412.535            | 43.940.612  | 41.446.076  |
| 101.871.000             | 13%         | 43.199.991      | 40.704.937 | 38.205.884            | 35.686.822  | 33.167.759  |
| 113.190.000             | 25%         | 34.887.488      | 32.368.425 | 29.831.989            | 27.288.255  | 24.744.521  |
|                         |             |                 | ///        | 20 20 10              | Zinjico.    |             |
|                         |             |                 |            | o cessione energia el |             | €/MWh       |
| Gestione e manutenzione | <b>;</b>    | 39,00           | 45,50      | 52,00                 | 58,50       | 65,00       |
| €                       |             | -25%            | -13%       | 0%                    | 13%         | 25%         |
| 1.419.234               | -25%        | 18.135.274      | 34.900.414 | 51.356.380            | 67.607.280  | 83.692.772  |
| 1.655.773               | -13%        | 15.572.694      | 32.385.584 | 48.884.457            | 65.157.368  | 81.263.476  |
| 1.892.312               | 0%          | 13.003.817      | 29.866.521 | 46.412.535            | 62.707.455  | 78.834.179  |
| 2.128.851               | 13%         | 10.433.499      | 27.347.458 | 43.940.612            | 60.257.542  | 76.404.883  |
| 2.365.390               | 25%         | 7.839.176       | 24.828.396 | 41.446.076            | 57.807.629  | 73.975.587  |

Figura 4 - analisi sensitività del VAN

# Analisi di probabilità del rischio progetto in proposta

L'analisi di sensitività non fornisce alcuna indicazione circa la probabilità che i parametri raggiungano tali soglie critiche, il che costituisce invece l'oggetto di valutazione dell'analisi di rischio. Una volta individuate le variabili critiche, per effettuare l'analisi del rischio occorre associare a ciascuna di essa una distribuzione di probabilità, definita in un preciso intervallo di valori nell'intorno della migliore stima, utilizzata nel caso base, per il calcolo degli indici di valutazione. Per quanto riguarda la distribuzione di probabilità, sono stati considerate curve gaussiane discrete derivanti da valori medi reperiti in rete. Stabilita la distribuzione di probabilità delle variabili critiche è possibile procedere al calcolo della distribuzione di probabilità del VAN del progetto. I risultati sono esposti in figura



### 6. ANALISI AMBIENTALE

Al fine della formazione del prezzo del chilowattora oltre considerare i costi suddetti (costi di investimento, gestione, spese assicurative, ecc..) si riportano in analisi anche i costi ambientali e sociali conseguenti dalla produzione di energia elettrica, tali costi sono definiti "esterni" in quanto gli stessi risultano pagati da terzi e dalle future generazioni.

A tale proposito si possono riportare alcune considerazioni sulle tecnologie in alternativa.

- In generale alla realizzazione di impianti da fonti rinnovabili sono associati dei dividendi multipli (coinvolgimento delle piccole imprese, sviluppo locale, esternalità ambientali positive, sicurezza delle fonti di approvvigionamento). Ricadute queste che si trasformano anche in opportunità occupazionali. Infatti gli investimenti per il loro sviluppo possono essere una reale occasione di crescita economica diffusa sul territorio e di presidio di comparti industriali ad alto tasso di crescita

e alto contenuto di innovazione.

- l'installazione di un impianto eolico può provocare anche esternalità negative, tra cui: la creazione di campi elettrici e magnetici e l'impatto paesaggistico (seppur limitato alle immediate vicinanze dell'area di impianto). Questi aspetti sono stati dettagliatamente analizzati in fase di progetto, e

minimizzati mediante uno attento studio del layout.

Inoltre la costruzione di un parco eolico provoca esternalità negative su alcune componenti della matrice ambientale. Gli impatti provocati sull'atmosfera, sulla situazione pedologica, geologica e geomorfologica, sull'idrologia, sulla vegetazione e sulla fauna della zona occupata dal parco eolico,

risultano essere ridotti.

6.1 Bilancio delle esternalità associate all'entrata in esercizio dell'impianto eolico

Le principali emissioni associate alla produzione di energia elettrica da fonti convenzionali sono associate all'anidride carbonica (CO<sub>2</sub>), al biossido di zolfo (SO<sub>2</sub>), agli ossidi di azoto (NO<sub>x</sub>) ed al pulviscolo atmosferico con diametro inferiore a 10 millesimi di millimetro (PM10) e sono da attribuirsi

al tipo di combustibile utilizzato.

Per fare un esempio concreto, si pensi che il consumo energetico, per la sola illuminazione

domestica in Italia, è pari a 7 miliardi di chilowattora all'anno.

Per produrre 1 miliardo di chilowattora utilizzando combustibili fossili come il gasolio si emettono nell'atmosfera oltre 800.000 tonnellate di CO<sub>2</sub>.

Ecco i valori specifici delle principali emissioni associate alla generazione elettrica da combustibili tradizionali:

CO<sub>2</sub> (anidride carbonica)<sup>5</sup>: 491 g/kWh;

SO<sub>2</sub> (anidride solforosa): 0,373 g/kWh;

<sup>5</sup>Fonte: Rapporto ISPRA 303/2018: Fattori di emissione atmosferica di gas a effetto serra nel settore elettrico nazionale e nei principali Paesi Europei.

# NO<sub>X</sub> (ossidi di azoto): 0,427 g/kWh

Tra questi gas, il più rilevante è proprio l'anidride carbonica o biossido di carbonio, il cui progressivo incremento potrebbe contribuire all'effetto serra e quindi causare drammatici cambiamenti climatici.

Nelle due ipotesi di progetto abbiamo i valori riportati in Tabella 9 espressi in tonnellate.

| Emiss      | Emissioni e Mancate emissioni inquinanti [ton] |               |                |  |  |  |  |
|------------|------------------------------------------------|---------------|----------------|--|--|--|--|
| Inquinante | emissione<br>specifica                         | Produzione    |                |  |  |  |  |
|            | [g/kWh]                                        | attesa [kWh]: | 275.319.000,00 |  |  |  |  |
| CO2        | 491                                            |               | 135.181,63     |  |  |  |  |
| SO2        | 0,373                                          |               | 102,69         |  |  |  |  |
| Nox        | 0,427                                          |               | 117,56         |  |  |  |  |

Tabella 8- Emissioni evitate

# 6.2 Analisi componenti ambientali

I costi ed i benefici scaturiscono dall'analisi svolta su ciascuna delle componenti e fattori ambientali per le quali si sia riscontrato un impatto, positivo o negativo, significativo o meno.

### 6.2.1 Atmosfera

Uno dei benefici maggiori è rappresentato dalle **mancate emissioni** rispetto ad altre fonti convenzionali. Abbiamo analizzato il valore economico del TEP risparmiato, nella quale TEP<sup>6</sup>=1000 Kg di petrolio 1000 Kg di petrolio 6,841<sup>7</sup> barili standard di petrolio.

<sup>&</sup>lt;sup>6</sup>TEP (una tonnellata di petrolio corrisponde a circa 6,841 barili), 1 MWh = 0,187 TEP.

<sup>&</sup>lt;sup>7</sup> Il peso specifico del petrolio può variare tra 0.87 e 0.97, in questo caso si è usato il valore 0.92.

Considerato il valore medio mensile del barile nell'ultimo quinquennio pari a 43,16 €8, avremo il seguente beneficio:

| Emissioni evitate Atmosfera |                                |           |                 |   |                |                  |
|-----------------------------|--------------------------------|-----------|-----------------|---|----------------|------------------|
|                             | Producibilità Elettrica attesa |           |                 |   | Costi/Benefici | VAN              |
|                             | kWh/anno                       | TEP       | Barili Petrolio |   | Costi/Benefici | VAN              |
|                             | 275.319.000,00                 | 51.484,65 | 352.206,51      | € | 12.769.035,74  | € 139.873.419,78 |

Tabella 9 - rapporto Costi/Benefici Emissioni evitate in atmosfera

### 6.2.2 Fauna

Gli impatti che un parco eolico può arrecare alla fauna possono essere di tipo diretto (collisione) o indiretto (disturbo e perdita di habitat). Di seguito si riporta la tabella di valutazione di impatto allegato allo SIA).





|                                                         |                | COMPONENTE FAUNISTICA |         |                   |          |                |          |            |
|---------------------------------------------------------|----------------|-----------------------|---------|-------------------|----------|----------------|----------|------------|
|                                                         | An             | fibi                  | Re      | Rettili Mammiferi |          | Uccelli        |          |            |
| TIPOLOGIA IMPATTO                                       | F.C.           | F.E.                  | F.C.    | F.E.              | F.C.     | F.E.           | F.C.     | F.E.       |
| Mortalità/Abbattimenti                                  | Molto<br>lieve | Assente               | Basso   | Assente           | Assente  | Moderato*      | Assente  | Moderato * |
| Allontanamento                                          | Assente        | Assente               | Basso   | Assente           | Moderato | Basso          | Moderato | Basso*     |
| Perdita habitat<br>riproduttivo e/o di<br>alimentazione | Molto<br>lieve | Molto<br>lieve        | Basso   | Molto<br>lieve    | Basso    | Molto<br>lieve | Basso    | Basso      |
| Frammentazione<br>dell'habitat                          | Assente        | Assente               | Assente | Assente           | Assente  | Assente        | Assente  | Assente    |
| Insularizzazione<br>dell'habitat                        | Assente        | Assente               | Assente | Assente           | Assente  | Assente        | Assente  | Assente    |
| Effetto barriera                                        | Assente        | Assente               | Assente | Assente           | Assente  | Assente        | Assente  | Assente    |
| Presenza di aree protette                               | Assente        | Assente               | Assente | Assente           | Assente  | Assente        | Assente  | Assente    |

Tabella 10- Valutazione degli impatti della componente faunistica sul progetto Pranu Nieddu

Ai fini della presente analisi si sono presi in considerazione dati cautelativi e generali derivati dalla letteratura poiché al momento non si possono fare considerazioni sulle diverse specie faunistiche, sui diversi impatti riferibili agli stessi e anche al differente valore economico che può essere attribuito attraverso l'utilizzo delle tabelle elaborate dal CESI Ricerche.

Sulla base di alcune pubblicazioni e riferimenti riscontrati su tale argomento, si stima pertanto che la mortalità per collisione possa ritenersi di circa n. 10 esemplari/aerogeneratore per anno per l'impianto eolico in proposta.

| Co        | Componente faunistica |                |                 |  |  |  |
|-----------|-----------------------|----------------|-----------------|--|--|--|
| Mortalità | €/specie              | Costi/Benefici | VAN             |  |  |  |
| 140,0     | 1000,0                | € 140.000,00   | -€ 1.533.575,37 |  |  |  |

Tabella 11 - rapporto Costi/Benefici componente faunistica

#### 6.2.3 Suolo e sottosuolo

La perdita economica connessa alla sottrazione di suolo per l'installazione dell'ipotesi di impianto può essere stimata facendo riferimento al valore agricolo del terreno per il tipo di colture praticate.

Questo costo è rappresentato dal valore economico potenziale dato dal terreno occupato per la realizzazione delle opere. A tal fine consideriamo un valore cautelativo di mercato pari a 10.000 €/ha. Considerate le seguenti voci:

| Occupazione Aree                                    |           |  |  |  |  |
|-----------------------------------------------------|-----------|--|--|--|--|
| Tipologia                                           | Ettari    |  |  |  |  |
| Piazzole definitive [ha]                            | 2,24      |  |  |  |  |
| Strade esistenti, nuova realizzazione e adeguamenti | 13,43     |  |  |  |  |
| Cabine elettriche                                   | 0,01      |  |  |  |  |
| Stazione Elettrica                                  | 0,30      |  |  |  |  |
| Piazzole temporanee di cantiere                     | 16,60     |  |  |  |  |
| Area sorvolo aereo                                  | 31,78     |  |  |  |  |
| cavidotti                                           | 2,32      |  |  |  |  |
| Buffer 500m attorno alle WTG                        | 1.016,00  |  |  |  |  |
| Aree di impatto visuale da forte a rilevante        | 16.460,00 |  |  |  |  |

Tabella 12 - Aree occupate

abbiamo pertanto in termini di VAN:

| ĺ | Suolo e sottosuolo |         |                |    |            |  |
|---|--------------------|---------|----------------|----|------------|--|
|   | Ettari             | €/ha    | Costi/Benefici |    | VAN        |  |
|   | 18,0               | 10000,0 | € 179.982,00   | -€ | 253.938,17 |  |

Tabella 13 - rapporto Costi/Benefici relativo alla sottrazione di suolo

# 6.2.4 Vegetazione e Flora

L'insieme delle risorse naturali presenti sul pianeta costituisce uno stock limitato a disposizione degli organismi che lo popolano.

La teoria economica opera una distinzione fondamentale fra risorse rinnovabili e risorse non rinnovabili.

Nel caso delle risorse rinnovabili il valore del bene ambientale si mantiene in equilibrio fra il tasso di ricostituzione e quello di prelievo, mentre nel caso delle risorse non rinnovabili, il valore del bene ambientale è in funzione della sola quantità disponibile, misurato in riferimento al prelievo lungo la scala temporale.

L'introduzione del concetto di ripristino appare legato, in tutto l'impianto normativo generato da due direttive europee (La Direttiva 92/43 CEE (Habitat) e la Direttiva 79/409/CEE), al concetto di danno ambientale, la cui insorgenza deriva dall'accertamento della riduzione della consistenza di habitats e specie rispetto a quanto rilevato in fase di istituzione dei siti.

Si pensi, a titolo di esempio, ai concetti di "paesaggio" o di "habitat", rispetto ai quali la componente vegetazionale costituisce un importante tassello; o, allo stesso modo, alla funzione protettiva che la stessa vegetazione esercita ai fini della protezione contro l'erosione, nonché al ruolo cruciale legato alla produzione di ossigeno e alla cattura della CO<sub>2</sub>. Esiste quindi una importante dimensione economica legata alle funzioni socio-ambientali dei sistemi vegetali, che sebbene spesso indirette non sono per questo di minore importanza. Una parte significativa di questa dimensione economica, per le finalità del presente studio, è computata attraverso la stima del danno monetario al paesaggio.

Il maggior impatto, stimato nella perdita di producibilità del terreno oltre i costi necessari per ripristinare la situazione ex ante (costi di ripristino) e copertura vegetale, si verificherà principalmente durante la fase di cantiere, con i tagli della vegetazione per l'allargamento delle strade esistenti (che risultano del tutto minimali come indicato nella relazione sulla flora), per la realizzazione delle opere elettriche previste in progetto.

Alla fine della quantificazione del costo sono stati considerati i parametri espressi in ettari nella tabella sotto riportata e viene preso come riferimento un tasso di assorbimento medio di CO₂ per ettaro di seminativo, ossia 3 tonnellate, successivamente tale quantitativo è stato moltiplicato per il valore medio della quotazione<sup>9</sup> 2020 della CO₂, pari a 23,21 €/tonnellata, in coerenza con la direttiva 2003/87/CE sull'Emission Trading Scheme.<sup>10</sup>

|        | Vegetazione e Flora |    |              |    |           |  |
|--------|---------------------|----|--------------|----|-----------|--|
| Ettari | CO2 assorbita       | Со | sti/Benefici |    | VAN       |  |
| 18,0   | 90,0                | €  | 2.088,69     | -€ | 22.879,75 |  |

Tabella 14 - Rapporto Costi/Benefici relativo alla componente Vegetazione e Flora

<sup>&</sup>lt;sup>9</sup>Media di tutto il 2020. Fonte: https://www.sendeco2.com/it/prezzi-co2

<sup>&</sup>lt;sup>10</sup>L'<u>European Union Emissions Trading Scheme</u> (EU ETS) è un sistema per lo scambio di quote di emissione di gas serra finalizzato alla riduzione delle emissioni di CO<sub>2</sub> nei settori energivori (elettricità, cemento, acciaio, alluminio, laterizi e ceramiche, vetro, chimica, aviazione, etc)

# 6.2.5 Rumore e Vibrazione

In fase di costruzione potrebbero arrecare disturbo i movimenti dei mezzi e dei macchinari utilizzati. Tale effetto risulta limitato in quanto distante dai luoghi più frequentati e si protrae per un periodo limitato.

In fase di funzionamento il rumore che produce un parco eolico viene generato dal movimento meccanico, prodotto dall'eventuale moltiplicatore di giri del generatore e dall'interazione del vento con le pale. Si tratta di un rumore molto lieve e naturale anche per la fauna locale.

La monetizzazione dei danni ambientali è caratterizzata da una notevole difficoltà di misurazione. Poiché l'impatto negativo deriva dalla mancata possibilità di realizzare delle costruzioni nelle aree limitrofe al parco, per il calcolo consideriamo la mancata possibilità di edificare nell'intorno di un buffer di 500 m dall'impianto. In quest'area, pari a circa 1016 ha, attualmente sono presenti 248 particelle catastali e 9 unità edilizie con varie destinazioni d'uso, prevalentemente edifici ad utilizzo rurale (per un totale di 761 mq)

Compatibilmente con le misure urbanistiche in vigore, ipotizzando in via cautelativa la possibilità di edificare una superficie pari a quella attualmente presente (raddoppio della superficie attuale uniformemente distribuita nei 35 anni), ed un costo medio delle case per l'ambito rurale di 1.000€/m², ne consegue quanto riportato in tabella:

| Rumore e Vibrazioni |                       |        |          |        |    |            |
|---------------------|-----------------------|--------|----------|--------|----|------------|
| Ettari              | Sup. Edificabile/anno | €/m2   | Costi/Be | nefici |    | VAN        |
| 1016,3              | 21,7                  | 1000,0 | € 21.    | 742,86 | -€ | 238.173,64 |

Tabella 15-Rapporto Costi/Benefici relativo alle componenti Rumore e vibrazioni

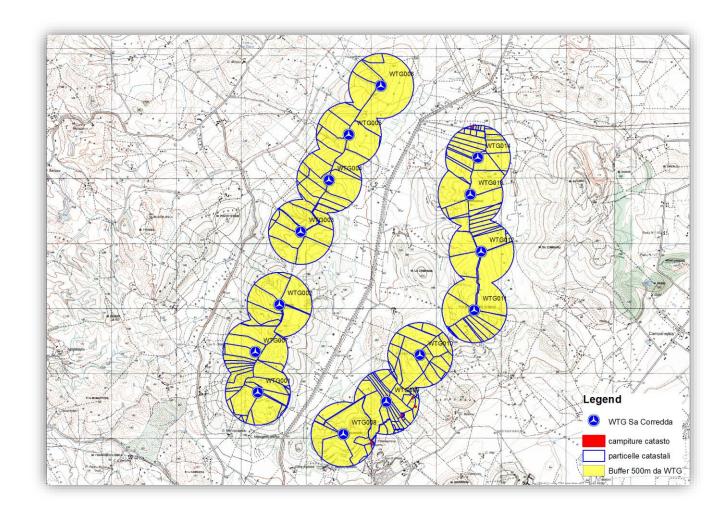



Figura 5- Aree comprese nel buffer di 500m dall'impianto (Ipotesi di progetto)

# 6.2.6 Paesaggio

Il paesaggio è un sistema complesso, che assomma aspetti produttivi, culturali e ambientali. Esso costituisce un elemento fondamentale di interconnessione fra l'attività umana e il sistema ambientale, in cui la capacità dell'uomo di influire sul territorio si esplica con modalità diverse, che possono variare in relazione alle diverse situazioni ambientali e alle diverse tecniche produttive, ma che comunque si basano sulla necessità di trovare un equilibrio con le condizioni dell'ambiente in cui si opera.

Con il termine paesaggio si designa una determinata parte di territorio caratterizzata da una profonda interrelazione fra fattori naturali e antropici. Il paesaggio, deve dunque essere letto come l'unione inscindibile di molteplici aspetti naturali, antropico-culturali e percettivi.

Il paesaggio non è un bene di mercato, per tale motivo è necessario estrapolare informazioni indirette dai comportamenti reali, per questo è necessario valutare mediante l'osservazione della "preferenza" e quindi la disponibilità dei consumatori a pagare (WTP – Wellingness to Pay) o

accettare (WTA - Wellingness to Accept) per ottenere un beneficio, evitare un danno o accettare di sopportare un determinato intervento. Questo approccio dovrebbe consentire la definizione di valori compensativi per quanto riguarda tipi di impatto che sfuggono ad una quantificazione diretta.

La disponibilità a pagare degli individui è stimabile impostando un'analisi statistica campionaria, nella quale la disponibilità a pagare della collettività è rilevata direttamente attraverso la somministrazione di questionari ad hoc.

Uno degli studi più importanti per la stima monetaria dell'impatto di questo progetto sul paesaggio è stato promosso dalla Commissione Europea, che indica che la WTP nella UE ha un valore medio nel 2009 pari a 149 €/ha/anno, mentre per l'Italia abbiamo 263 €/ha/anno<sup>11</sup>.

Il paesaggio è in continua evoluzione e un parco eolico, come tutte le opere antropiche, comporta delle trasformazioni del paesaggio, per tale motivo è doveroso affrontare tale impatto in termini di costo per la collettività. La giurisprudenza afferma che "il danno paesaggistico derivante è determinato principalmente dai costi di demolizione, recupero ambientale dei luoghi.."

Nel presente studio, abbiamo considerato un'area cautelativa pari a circa 16.460 ha, come somma delle aree per le quali dallo studio paesaggistico delle ZVI è emerso un impatto da forte a rilevante. Abbiamo pertanto:

| Paesaggio |                 |                |                  |  |
|-----------|-----------------|----------------|------------------|--|
| Ettari    | WTP [€/ha/anno] | Costi/Benefici | VAN              |  |
| 16460,0   | 263,0           | € 4.328.980,00 | -€ 47.420.122,33 |  |

Tabella 16 - Rapporto Costi/Benefici componente Paesaggio

Dalla somma dell'analisi ambientale abbiamo pertanto il seguente riepilogo:

<sup>&</sup>lt;sup>11</sup>European Commission, Joint Research Centre, Institute for Prospective Technological Studies, The Value of EU Agricultural Landscape, 2011; <a href="http://ipts.jrc.ec.europa.eu/publications/pub.cfm?id=4500">http://ipts.jrc.ec.europa.eu/publications/pub.cfm?id=4500</a>

| Mancate Emissioni      | €  | 139.873.419,78 |
|------------------------|----|----------------|
| Fauna                  | -€ | 1.533.575,37   |
| Suolo e sottosuolo     | -€ | 253.938,17     |
| Vegetazione e flora    | -€ | 22.879,75      |
| Rumore e Vibrazioni    | -€ | 238.173,64     |
| Paesaggio              | -€ | 47.420.122,33  |
| VAN ANALISI AMBIENTALE | €  | 90.404.730,51  |

Tabella 17– Rapporto Costi/Benefici per anno - analisi Ambientale

Dalla tabella appena riportata si evince che il VAN risulta ampiamente positivo.

### 7. ANALISI SOCIO-ECONOMICA

La realizzazione del progetto in proposta creerà indotto locale che porterà benefici nei confronti della comunità che ospita l'impianto.

L'indotto generato dalla realizzazione di impianti da fonti rinnovabili potrà infatti favorire una crescita occupazionale nella zona (si vedano i dati riportati nelle tabelle 18 e 19), creando nuovi posti di lavoro, sia in sede di costruzione che di gestione dell'impianto, associandola con una corretta gestione ambientale. Potranno inoltre favorire programmi di sviluppo locale delle Amministrazioni Comunali contribuendo ad evitare il degrado e lo spopolamento cittadino.

A tutto ciò si aggiunge che gli impianti sostenuti da fonti rinnovabili costituiscono un importante contributo per il raggiungimento di obiettivi nazionali, comunitari e internazionali in materia ambientale e soprattutto di sostenibilità energetica e favoriscono l'utilizzo di risorse del territorio, dando impulso allo sviluppo economico locale.

|                                     | VA | LORE ANNUO | VAN             |
|-------------------------------------|----|------------|-----------------|
| Ricadute occupazionali in fase di   |    |            |                 |
| cantiere                            |    |            | € 18.497.158,77 |
| Ricadute occupazionali in esercizio | €  | 819.000,00 | € 8.823.513,52  |
| Affitto Terreni                     | €  | 280.000,00 | € 3.016.585,82  |
| Misure di compensazione verso il    |    |            |                 |
| Comune                              | €  | 905.520,00 | € 9.755.638,54  |
| Totale Analisi socio Economica      |    |            | € 40.092.896,66 |

Tabella 18-ricadute economiche per anno

# 8. CONCLUSIONI

Riepilogando tutte le analisi svolte finora, abbiamo la seguente tabella riepilogativa:

|                               | progetto eolico<br>proposto (92,4 MW |                |  |
|-------------------------------|--------------------------------------|----------------|--|
| VAN - analisi finanziaria     | €                                    | 46.412.535,00  |  |
| VAN - analisi ambientale      | €                                    | 90.404.730,51  |  |
| VAN - analisi socio-economica | €                                    | 40.092.896,66  |  |
| totale                        | €                                    | 176.910.162,16 |  |

Tabella 19 - riepilogo VAN

Quindi, a valle di quanto appena riportato, possiamo concludere che il progetto è in grado di restituire importanti ritorni sia in termini economici che ambientali.