

DIREZIONE CENTRALE PROGRAMMAZIONE PROGETTAZIONE

PA 12/09

CORRIDOIO PLURIMODALE TIRRENICO - NORD EUROPA
ITINERARIO AGRIGENTO - CALTANISSETTA - A19
S.S. N° 640 "DI PORTO EMPEDOCLE"
AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001
Dal km 44+000 allo svincolo con l'A19

PROGETTO ESECUTIVO

Contraente Generale:

OPERE D'ARTE MINORI CAVALCAVIA

Cavalcavia alla progressiva 19+380 Relazione di Calcolo Impalcato

Codice Unico Progetto (CUP): F91B09000070001																							
Codice Elaborato:																							
PA	.12_09 -	- E	1	3	3	С	V	2	0	8	С	V	0	8	F	С	L	0	2	0	Α	Sc -	ala:
F						·			·								Ì						
Е																							
D																							
С																							
В																							
Α	Aprile 2011				EMIS	SSIO	NE					T. F	ASO	LO	F.	NIGR	ELLI		М.	LITI		Р	. PAGLINI
REV.	DATA				DESC	RIZIC	NE					RE	DAT	го	VE	RIFIC	ATO	/	APPR	:OVA	го	ΑU	TORIZZATO
Respons	esponsabile del proncedimento: Ing. MALIRIZIO ARAMINI																						

Il Consulente Specialista:

3TI ITALIA S.p.A.
DIRETTORE TECNICO
Ing. Stefano Luca Possati
Ordine degli Ingegneri
Provincia di Roma n. 20809

Il Coordinatore per la sicurezza in fase di progetto:

ORDINE
NGEGNERI
ROMA
NOMA

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 1 di 139

Nome file: CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

INDICE

RELAZIONE TECNICA	3
1 Generalità	3
2 Criteri di calcolo	4
2.1 Statica longitudinale	4
2.1.1 Larghezza collaborante della soletta	5
2.2 Statica trasversale	6
3 Riferimenti normativi	7
RELAZIONE SUI MATERIALI	8
1 Conglomerati cementizi	8
2 Acciaio ad aderenza migliorata	8
3 Acciaio da carpenteria	9
4 Controventi	9
5 Bulloni ad alta resistenza	9
5.1 Coppia di Serraggio dei Bulloni	10
6 Pioli con testa tipo "Nelson"	11
7 Saldature	11
CALCOLI STATICI	12
PARTE I - IMPALCATO	12
1 Analisi dei Carichi	12
2 Analisi strutturale	19
2.1 Criteri generali e modelli di calcolo	19
2.2 Sollecitazioni di progetto	20
3 Combinazioni di carico	35
3.1 Combinazioni per gli SLU	35
3.2 Combinazioni per SLE	38
3.3 Combinazioni per lo Stato Limite di Fatica	40
4 Verifiche delle travi principali	42
4.1 Verifiche di resistenza agli SLU	42
4.1.1 Risultati sintetici delle verifiche agli SLU	44
4.2 Verifiche "a respiro" delle anime (SLE)	48
4.3 Verifiche di resistenza per lo Stato Limite di Fatica	50

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 2 di 139

Nome file: CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

4.4 Verifica della connessione a pioli
4.5 Verifica delle saldature longitudinali
4.6 Verifica di stabilità delle piattabande delle travi principali
4.6.1 Caratteristiche geometriche del corrente inferiore compresso e dei telai trasversali64
4.6.2 Verifica di stabilità: zona in prossimità dell'appoggio su pila 1
4.7 Verifica dei telai traversali correnti (D2)67
4.7.1 Verifica del montante verticale
4.7.2 Verifica del traverso
4.8 Verifica del traverso di pila
5 Verifica della soletta in calcestruzzo armato
5.1 Verifiche delle predalles
5.1.1 Predalle L=10,00 m – Verifiche di resistenza
5.1.2 Predalle L=10,00 m – Verifica di deformabilità
5.2 Verifiche di resistenza e fessurazione della soletta in esercizio
5.2.1 Tratto impalcato con larghezza L=10,00 m
5.2.1.1 Sintesi dei risultati delle verifiche nelle zone correnti dell'impalcato91
5.2.1.2 Sintesi dei risultati delle verifiche nelle zone di testata dell'impalcato102
6 Controfreccia di montaggio
PARTE II - APPOGGI E GIUNTI115
7 Dimensionamento degli appoggi
7.1 Reazioni Verticali
7.2 Verifica allo SLC dei dispositivi d'isolamento
8 Giunti di dilatazione
APPENDICE 1 - SOLLECITAZIONI DI PROGETTO (CONDIZIONI ELEMENTARI)119
APPENDICE 2 - GEOMETRIA DELLE SEZIONI DI VERIFICA123
APPENDICE 3 MODELLI DI CALCOLO125

Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 3 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

RELAZIONE TECNICA

1 Generalità

Nel presente elaborato sono riportati i calcoli statici dell'opera CV 08, inserita nei lavori per l'ammodernamento e l'adeguamento alla cat. B del D.M. 5.11.2001 della S.S. 640 "di Porto Empedocle" nel tratto dal km 44+000 allo svincolo con l'A19.

L'impalcato continuo su 2 campate di luci 32,5 + 20,2 m (per lunghezza totale di 52,70 m) è costituito da due travi metalliche a doppio T posizionate ad interasse pari a 5,00 m, collegate da traversi in acciaio ad anima piena diposti a metà altezza delle travi con passo di circa 5 m.

Le caratteristiche geometriche della sezione corrente sono indicate in Errore. L'origine riferimento non è stata trovata.

L'impalcato ha una larghezza complessiva di 10,00 m così suddivisa:

- due corsie di marcia da 3,50 m che costituiscono la sede stradale;
- due cordoli da 1,50 m per l'alloggiamento delle barriere di sicurezza, e delle reti di protezione;

Le travi metalliche hanno altezza costante di 1,80 m.

La soletta in cemento armato, che presenta uno spessore totale di 31 cm, verrà gettata su "predalles" autoportanti aventi spessore di 6 cm.

La solidarizzazione della soletta alle travi sarà garantita tramite connettori a piolo tipo Nelson.

La pila, di altezza totale pari a 7.2 m è costituita da un fusto in cemento armato con sezione di forma allungata (a "setto") inscrivibile in un rettangolo con dimensioni in pianta di 6.40 m x 1.00 m. La fondazione della pila è rappresentata da una zattera avente dimensioni di 5.60 m × 9.40 m con uno spessore di 1.50 m, collegata ad 8 pali \emptyset 120.

Le spalle sono composte da pareti di altezza pari a 9,00 m (spalla 1) e 5,60 m (spalla 2) sormontate in entrambi casi da un paraghiaia con spessore di 60 cm ed altezza pari a circa 2,70 m. La fondazione delle spalle è costituita da 12 pali \emptyset 120 collegati ad una zattera con spessore pari a 1,50 m e dimensioni in pianta di 9,40 m × 13,00 m.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 4 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

2 Criteri di calcolo

2.1 Statica longitudinale

L'impalcato presenta lo schema statico di trave continua su 2 campate, con luci pari agli interassi fra le pile misurati sull'asse stradale.

L'analisi strutturale è condotta su una singola trave, sottoposta al peso proprio, sovraccarichi permanenti, carichi variabili, distorsioni, cedimenti ed all'aliquota dei carichi mobili che scaturisce dalla ripartizione trasversale dei carichi.

Nel dimensionamento dell'impalcato è stato inoltre imposto un abbassamento differenziale fra pila e spalle (distorsione) pari a 6 cm, al fine di evitare il sollevamento del tratto terminale della campata n. 2.

La trave continua è discretizzata in conci di sezione costante, in modo da tener conto delle variazioni geometriche della struttura reale e della fessurazione della soletta.

Nell'analisi strutturale si tiene conto delle fasi transitorie e di esercizio operando con i seguenti modelli:

Modello 1: ottenuto considerando le proprietà inerziali ideali della sezione composta con soletta collaborante omogeneizzata all'acciaio mediante coefficiente n= 6,12.

Il modello è utilizzato per la valutazione degli effetti indotti dalle azioni di breve durata.

Modello 2: ottenuto considerando le proprietà inerziali ideali della sezione mista con soletta collaborante omogeneizzata all'acciaio mediante coefficiente n = 16,07.

Il modello è utilizzato per la valutazione degli effetti indotti dalle azioni del ritiro.

Modello 3: ottenuto considerando le proprietà inerziali ideali della sezione mista con soletta collaborante omogeneizzata all'acciaio mediante coefficiente n = 16,82.

Il modello è utilizzato per la valutazione degli effetti indotti dalle azioni di lunga durata.

Modello 4: ottenuto considerando le proprietà inerziali delle sole travi metalliche ed utilizzato per la valutazione degli effetti indotti dal peso proprio dell'acciaio e della soletta.

Nei modelli 1, 2 e 3 si tiene conto della riduzione di rigidezza della sezione composta in prossimità dell'appoggio interno dovuta alla fessurazione della soletta, trascurando il contributo inerziale del calcestruzzo per un tratto di lunghezza pari al 15 % della somma delle luci delle due campate e tenendo comunque in conto del contributo inerziale delle armature presenti entro la larghezza collaborante (Figura 2.1).

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380
Relazione di Calcolo Impalcato

Pagina 5 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

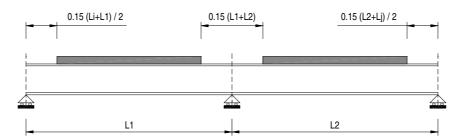


Figura 2.1 - Modellazione degli effetti dovuti alla fessurazione

Le verifiche di sicurezza sono state effettuate considerando le seguenti 5 sezioni tipo:

Sezione Tipo 1: proprietà inerziali ideali della sezione mista con calcestruzzo omogeneizzato all'acciaio con coefficiente di omogeneizzazione n = 6,12.

La sezione è utilizzata per le sollecitazioni prodotte dalle azioni di breve durata.

Sezione Tipo 2: proprietà inerziali ideali della sezione mista con calcestruzzo omogeneizzato all'acciaio con coefficiente di omogeneizzazione n = 16,07.

La sezione è utilizzata per le sollecitazioni prodotte dal ritiro.

Sezione Tipo 3: proprietà inerziali ideali della sezione mista con calcestruzzo omogeneizzato all'acciaio con coefficiente di omogeneizzazione n = 16,82.

La sezione è utilizzata per le sollecitazioni prodotte dalle azioni di lunga durata.

Sezione Tipo 4: proprietà inerziali della sezione costituita dalla membratura metallica e dalle barre di armatura con esclusione del calcestruzzo.

La sezione è utilizzata nelle regioni a momento flettente negativo.

Sezione Tipo 5: proprietà inerziali della sola membratura metallica soggetta alle sollecitazioni dovute al peso proprio dell'acciaio e della soletta di calcestruzzo.

2.1.1 Larghezza collaborante della soletta

La valutazione della larghezza collaborante della soletta, sia in fase di modellazione che in fase di verifica, è effettuata con riferimento alle indicazioni del punto 4.3.2.3 del DM 2008.

La larghezza collaborante b_{eff} si ottiene come somma delle due aliquote b_{e1} e b_{e2} ai due lati dell'asse della trave e della larghezza b_0 impegnata direttamente dai connettori:

$$b_{eff} = b_{e1} + b_{e2} + b_0$$

Nella formulazione precedente b_0 è la distanza tra gli assi dei connettori, mentre le le aliquote b_{e1} e b_{e2} che costituiscono il valore della larghezza collaborante da ciascun lato della sezione composta, si assumono pari a:

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

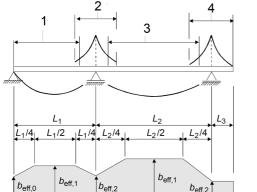
Opera: CV08 Cavalcavia alla progr. 19+380

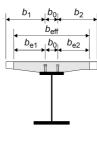
Relazione di Calcolo Impalcato

Pagina 6 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK


$$b_{ei} = \min \left[\frac{L_e}{8}; b_i - \frac{b_0}{2} \right].$$


Il valore di L_e nelle travi semplicemente appoggiate coincide con la luce della trave; nelle travi continue L_e è la distanza indicata in Figura 2.2.

Negli appoggi di estremità la determinazione della larghezza collaborante b_{eff} si ottiene con la formula:

$$b_{eff} = \beta_1 b_{e1} + \beta_2 b_{e2} + b_0$$

dove
$$\beta_i = \left(0.55 + 0.025 \frac{L_e}{b_{ei}}\right)$$
.

Legenda:

- 1 $L_{\rm e}$ = 0,85 $L_{\rm 1}$ for $b_{\rm eff,1}$
- 2 L_e = 0,25(L_1 + L_2) for $b_{eff,2}$
- 3 $L_{\rm e}$ = 0,70 $L_{\rm 2}$ for $b_{\rm eff.1}$
- 4 $L_{\rm e}$ = 2 $L_{\rm 3}$ for $b_{\rm eff,2}$

Figura 2.2 – Luci equivalenti (L_e) per il calcolo della larghezza efficace della soletta per travi continue

2.2 Statica trasversale

Il calcolo della soletta è stato effettuato mediante analisi agli elementi finiti. Per le caratteristiche delle sollecitazioni e i particolari delle verifiche effettuate sulla soletta si rimanda al paragrafo dedicato.

Il dimensionamento dei traversi di campata è stato effettuato a mezzo di schemi semplificati che consentono la valutazione della rigidezza necessaria a garantire la stabilità delle piattabande compresse delle travi principali, sia nelle fasi transitorie che in quelle di esercizio.

Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 7 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

3 Riferimenti normativi

Le analisi delle azioni e le verifiche di sicurezza sono state condotte facendo riferimento alle seguenti normative:

- D.M. 14/01/2008 "Norme Tecniche per le Costruzioni".
- *Circ. Min. Infrastrutture e Trasporti 02/02/2009, n. 617* "Istruzioni per l'applicazione delle «Norme tecniche per le costruzioni» di cui al decreto ministeriale 14 gennaio 2008".
- EN 1993-1-5:2006 Parte 1-5: Elementi strutturali a lastra.
- EN 1993-2:2006 Parte 2: Ponti di acciaio.
- EN 1994-2:2005 Parte 2: Regole generali e regole per i ponti.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 8 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

RELAZIONE SUI MATERIALI

1 Conglomerati cementizi

I conglomerati cementizi da porre in opera saranno composti da:

- aggregato (UNI ENV 12620 e UNI EN 13055-1);
- acqua (UNI EN 1008: 2003);
- cemento (UNI EN 197);
- additivi (UNI EN 934-2) superfluidificanti e ritardanti, se occorrenti per garantire le prestazioni del calcestruzzo in base al tempo di trasporto;

ed avranno le seguenti caratteristiche:

•	calcestruzzo per soletta e cordoli:	(classe C32/40)	$Rck \ge 40 \text{ MPa}$
•	calcestruzzo per predalle:	(classe C32/40)	$Rck \ge 40 \text{ MPa}$
•	calcestruzzo per elevazione pile e spalle:	(classe C25/30)	$Rck \ge 30 \text{ MPa}$
•	calcestruzzo per zattere pile e spalle:	(classe C25/30)	$Rck \ge 30 \text{ MPa}$
•	calcestruzzo per pali:	(classe C25/30)	$Rck \ge 30 \text{ MPa}$

Per le indicazioni su classi di esposizione, classi di consistenza e copriferri minimi da adottare per ogni elemento strutturale si rimanda alle tabelle riportate nelle tavole progettuali.

2 Acciaio ad aderenza migliorata

Le armature da porre in opera non dovranno presentare tracce di ossidazione, corrosione e di qualsiasi altra sostanza che possa ridurne l'aderenza al conglomerato; dovranno inoltre presentare sezione integra e priva di qualsiasi difetto.

Si utilizzeranno barre ad aderenza migliorata tipo B 450 C controllato in stabilimento conforme alle UNI EN ISO 15360-1:2004 (accertamento proprietà meccaniche), aventi le seguenti caratteristiche:

•	tensione caratteristica di snervamento	$f_{sk} \ge f_{y,nom} = 450 \text{ MPa}$
•	tensione caratteristica di rottura	$f_{tk} \geq f_{t,nom} \; 540 \; MPa$
•	allungamento percentuale	$A_{gt,k} \geq 7,5 \%$
•	modulo elastico	$E_s = 210.000 \text{ MPa}$

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 9 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

3 Acciaio da carpenteria

La carpenteria metallica sarà realizzata in acciaio con le seguenti specifiche:

• travi principali e traversi: tipo S355J0W+N - UNI EN 10025-5

L'acciaio deve essere conforme alle prescrizioni del D.M. 14.1.2008, dovendo presentare le seguenti caratteristiche:

• tensione di rottura a trazione $f_t \ge 510 \text{ MPa}$

• tensione di snervamento $f_v \ge 355 \text{ MPa}$

• allungamento (lamiere) $\varepsilon_t \ge 21\%$

• modulo elastico $E_a = 210.000 \text{ MPa}$

I traversi saranno uniti alle travi principali mediante giunzioni bullonate ad attrito.

La carpenteria metallica sarà rivestita con verniciatura protettiva.

4 Controventi

Le aste del controvento orizzontale ed i relativi elementi di collegamento saranno realizzati in acciaio tipo \$355J0W+N - UNI EN 10025-5, conforme alle prescrizioni del D.M. 14.1.2008, ovvero con le seguenti caratteristiche:

• tensione di rottura a trazione $f_t \ge 510 \text{ MPa}$

• tensione di snervamento $f_v \ge 355 \text{ MPa}$

• allungamento (lamiere) $\varepsilon_t \ge 21\%$

5 Bulloni ad alta resistenza

Le giunzioni bullonate saranno realizzate con bulloni ad alta resistenza per giunzioni ad attrito conformi alle specifiche contenute nel p.to 11.3.4.6.2 del D.M. 14.01.2008

• vite classe 10.9

• dado classe 10

• rosette classe C50

I bulloni dovranno essere montati con una rosetta sotto la testa della vite e una rosetta sotto il dado, inoltre dovranno essere contrassegnati con le indicazioni del produttore, la classe di resistenza e la

Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 10 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

marcatura C.E. I bulloni disposti verticalmente avranno la testa della vite rivolta verso l'alto e il dado verso il basso.

5.1 Coppia di Serraggio dei Bulloni

I bulloni ad alta resistenza della classe 10.9, precaricati con serraggio controllato, per giunzioni ad attrito devono essere conformi alla norma armonizzata UNI EN 13499-1 e recare la marchiatura CE. Al p.to 4.3 la norma armonizzata UNI EN 13499-1 prescrive che viti, dadi e rondelle siano forniti dal medesimo produttore.

La coppia di serraggio per i bulloni delle giunzioni ad attrito è quella indicata sulle targhette confezioni dei bulloni.

Nel caso che la coppia di serraggio non sia riportata sulle targhette delle confezioni, ma compaia il solo fattore k secondo la classe funzionale, la coppia di serraggio è pari a:

$$M = k \cdot d \cdot F_{p,C} = k \cdot d \cdot 0.7 \cdot A_{res} \cdot f_{tb}$$
 dove

- d è il diametro nominale della vite
- A_{res} è l'area resistente della vite
- f_{tb} è la resistenza a ultima a trazione del bullone

Nella tabella seguente, riportata dal p.to C4.2.8.1.1.1 delle Istruzioni per l'applicazione delle NTC 2008 (Circolare n. 617 del 2 febbraio 2009), sono contenuti i valori della coppia di serraggio al variare del valore di k per diversi diametri dei bulloni.

Tabella C4.2.XXI Coppie di serraggio per bulloni 10.9

	Viti 10.9 – Momento di serraggio M [N m]										
VITE	k=0.10	k=0.12	k=0.14	k=0.16	k=0.18	k=0.20	k=0.22	$F_{p,C}[kN]$	$A_{res} [mm^2]$		
M12	70.8	85.0	99.1	113	128	142	156	59.0	84.3		
M14	113	135	158	180	203	225	248	80.5	115		
M16	176	211	246	281	317	352	387	110	157		
M18	242	290	339	387	435	484	532	134	192		
M20	343	412	480	549	617	686	755	172	245		
M22	467	560	653	747	840	933	1027	212	303		
M24	593	712	830	949	1067	1186	1305	247	353		
M27	868	1041	1215	1388	1562	1735	1909	321	459		
M30	1178	1414	1649	1885	2121	2356	2592	393	561		
M36	2059	2471	2882	3294	3706	4118	4529	572	817		

Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380 Relazione di Calcolo Impalcato

Pagina 11 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

6 Pioli con testa tipo "Nelson"

I pioli devono essere conformi alle specifiche contenute nel p.to 11.3.4.7 del D.M. 14.01.2008. Resistenza a rottura dell'acciaio ft >= 470 MPa

7 Saldature

Le saldature dovranno essere realizzate secondo le indicazioni del D.M. 14.1.2008.

Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 12 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

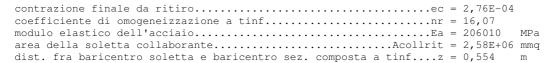
CALCOLI STATICI PARTE I - IMPALCATO

I calcoli sono condotti con riferimento ad uno schema statico di trave continua su 2 campate con luci di 32,50 + 20,20 m.

1 Analisi dei Carichi

Peso proprio della struttura (g1)

-	- Carpenteria Metallica (g1,1)		
	Travi principali= Carpenteria secondaria=		
_	- Soletta (g1,2)	7 , 50	kN/m


Carichi permanenti (g2)

Marciapiedi25 kN/mc x (1,50 x 0,16 + 1,50 x 0,16 mq) =	12,00	kN/m
Pavimentazione stradale20 kN/mc x 7,00 m x 0,15 m =	21,53	kN/m
Velette	3,10	kN/m
Canalette smaltimento acque	2,00	kN/m
Reti parasassi	2,00	kN/m
Sicurvia	2,00	kN/m
Carichi permanenti totali=	42,62	kN/m

Ritiro del calcestruzzo (£2)

Il ritiro del calcestruzzo è stato schematizzato attraverso le seguenti azioni statiche equivalenti:

avendo assunto:

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 13 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

Variazioni termiche (e3)

Gli effetti prodotti dalle variazioni termiche differenziali fra la soletta in calcestruzzo e le travi metalliche sono stati valutati con azioni statiche equivalenti concentrate alle estremità dell'impalcato. Sono state prese in esame le seguenti variazioni termiche:

Variazione termica differenziale positiva 10 °C

Forza assiale d'estremità...... $NcdT+ = Ea \times a \times +10 \times AcolldT / n0 = 12522 \quad kN$ Momento flettente d'estremità...... $McdT+ = NcdT+ \times z = -3281 \quad kNm$

Variazione termica differenziale negativa -10 °C

Forza assiale d'estremità..... $NcdT-=Ea \times a \times -10 \times AcolldT / n0 = -12522 kN$ Momento flettente d'estremità..... $McdT-=NcdT- \times z = 3281 kNm$

avendo assunto:

Distorsioni (El)

Dopo la realizzazione dell'impalcato si impone un abbassamento differenziale fra pila e spalle, pari a 6 cm, tenuto in conto nel dimensionamento dell'impalcato stesso. Questo al fine di impedire il sollevamento del tratto terminale della campata n. 2 del cavalcavia, ovvero l'insorgere di sollecitazioni normali di trazione negli isolatori elastomerici posizionati in corrispondenza della spalla 2.

Carichi mobili (q1)

La definizione delle corsie convenzionali secondo il D.M. 14 gennaio 2008 è fatta in base al prospetto seguente (Figura 1.1, Tabella 1.1):

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 14 di 139

Nome file:
CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

Figura 1.1 - Esempio di numerazione delle corsie

Larghezza di carreggiata "w"	Numero di corsie convenzionali	Larghezza di una corsia convenzionale [m]	Larghezza della zona rimanente [m]
w < 5,40 m	$n_l = 1$	3,00	(w-3,00)
5,4 ≤ w < 6,0 m	$n_l = 2$	w/2	0
6,0 m ≤ w	$n_l = Int(w/3)$	3,00	w - (3,00 x n _l)

Tabella 1.1- Numero e larghezza delle corsie

La disposizione e la numerazione delle corsie è tale da indurre le più sfavorevoli condizioni di progetto. La corsia che produce l'effetto più sfavorevole è numerata come corsia numero 1; la corsia che dà il successivo effetto più sfavorevole è numerata come corsia numero 2, ecc.

Per ciascuna singola verifica e per ciascuna corsia convenzionale, si applica lo **schema di carico 1**, costituito da carichi concentrati su due assi in tandem (Q_{ik}) , applicati su impronte di pneumatico di forma quadrata e lato 0,40 m, e da carichi uniformemente distribuiti (q_{ik}) , come mostrato in Figura 1.2. Tale schema è da assumere a riferimento sia per le verifiche globali sia per le verifiche locali, considerando un solo carico tandem per corsia disposto in asse alla corsia stessa. Il carico tandem, se presente, va considerato per intero.

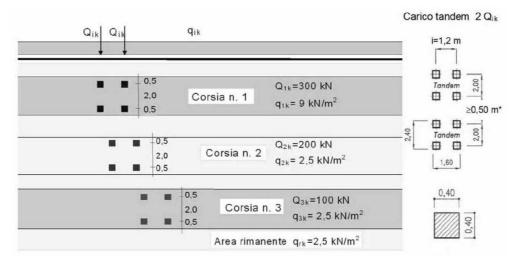
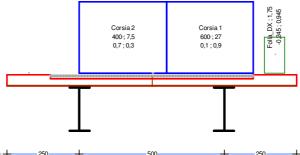


Figura 1.2 – Schema di carico 1 (dimensioni in [m])

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Opera: CV08 Cavalcavia alla progr. 19+380
Relazione di Calcolo Impalcato
Pagina 15 di 139
Nome file: CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK


Il numero delle colonne di carichi mobili da considerare nel calcolo dei ponti di 1^a Categoria è quello massimo compatibile con la larghezza della carreggiata, comprese le eventuali banchine di rispetto e per sosta di emergenza, tenuto conto che la larghezza di ingombro convenzionale è stabilita per ciascuna colonna in 3,00 m.


La disposizione dei carichi ed il numero delle colonne sulla carreggiata sono tali da determinare le condizioni più sfavorevoli di sollecitazione per la struttura, membratura o sezione considerata. Per i ponti di 1^a categoria si considerano, compatibilmente con le larghezze di carreggiata definite, le seguenti intensità dei carichi:

Posizione	Carico asse Qik [kN]	$q_{ik}[kN/m^2]$
Corsia Numero 1	300	9,00
Corsia Numero 2	200	2,50
Corsia Numero 3	100	2,50
Altre corsie	0,00	2,50

Tabella 1.2 – Intensità dei carichi Qik e qik per le diverse corsie

Per l'impalcato in esame si adotta, al fine di produrre le massime sollecitazioni sulla singola trave la condizione di carico di cui alla Figura 1.3.

 $Figura\ 1.3-Disposizione\ trasversale\ dei\ carichi\ mobili\ per\ il\ dimensionamento\ delle\ travi\ principali\ (SLU)$

Il carico sulla singola trave risulta:

- carico d'asse (Q)..... = 330,00 kN/asse
- carico uniforme (q) = 28,91 kN/m

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001
Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380
Relazione di Calcolo Impalcato
Pagina 16 di 139
Nome file:
CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

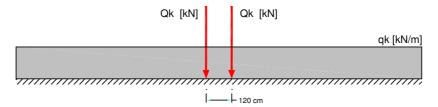


Figura 1.4 – Carico mobile agente sulla trave maggiormente sollecitata

Effetto dinamico dei carichi mobili (q2)

I carichi mobili definiti nel D.M. 14 gennaio 2008 includono gli effetti dinamici.

Azione del vento (q5)

L'azione del vento è definita attraverso due sistemi di forze che si considerano agenti contemporaneamente sull'impalcato:

- pressione orizzontale statica agente ortogonalmente all'asse longitudinale dell'impalcato sulla proiezione nel piano verticale delle superfici direttamente investite. Le superfici dei carichi transitanti sul ponte esposte al vento sono assimilate ad una parete rettangolare continua alta 3,0 m dal piano stradale;
- pressione verticale statica considerata agente verso il basso su tutta la larghezza dell'impalcato, con un'eccentricità convenzionale della risultante pari ad ¼ della larghezza dell'impalcato.

Tali azioni danno luogo a sollecitazioni torcenti che provocano una flessione differenziale delle due travi portanti.

CALCOLO AZIONE DEL VENTO SULL'IMPALCATO

Velocità di riferimento del vento	Vref	28	m/s
Pressione cinetica di riferimento	qref	490,0	N/mq
Categoria di esposizione		Ш	
	ZO	0,1	m
	zmin	5	m
	kr	0,2	
Altezza di calcolo dell'azione del vento	z	8,5	m
Coefficiente di topografia	Ct	1,00	
Coefficiente di esposizione	Ce(z)	2,033	
Coefficiente dinamico	Cd	1,00	
AZIONE VENTO ORIZZONTALE			
Coefficiente di forza/forma per l'impalcato per vento orizzontale			
Altezza trave	h_t	1,80	m
Spessore soletta	s_soletta	0,31	m

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08	Cavalcavia	alla	progr.	19+380

Relazione di Calcolo Impalcato

Pagina 17 di 139

8,97

kN/m

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

Spessore pavimentazione	s_pavim	0,15375	m
Spessore marciapierde	s_marc	0,20	m
Altezza barriera convenzionale ponte scarico	h_barriera	1,2	m
Larghezza impalcato	b	10	m
Interasse travi	i	5,00	m
Altezza / Area di riferimento ponte carico	Aref_pc	5,264	m
	b/dtot_pc	1,90	
Coefficiente di forza vento orizz a ponte carico	Cfx_PC	1,93	
Pressione del vento ORIZZONTALE ponte CARICO	px_pc	1,93	kN/mq
distanza fra CT sezione composta e soletta	d_ct	0,10	m
Carico distribuito VERTICALE sulla trave per vento a orizzontale	Q ₅ _pc	0,86	kN/m
AZIONE VENTO VERTICALE			
Coefficiente di forma direzione verticale	Cfz	0,90	
Pressione del vento VERTICALE	pz	0,90	kN/mq
Eccentricità rislutante azione vento verticale	е	2,50	m

Con riferimento allo schema mostrato in Figura 1.5 ed ai calcoli precedentemente riportati, l'azione del vento sulla trave maggiormente caricata risulta, nella condizione di "ponte carico":

$$q_5 = 0.86 + 8.97 = 9.83$$
 kN/m.

Carico distribuito VERTICALE sulla trave per vento verticale

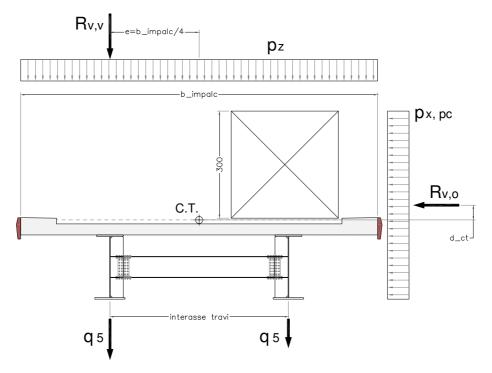


Figura 1.5 – Schema delle azioni indotte dal vento

Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 18 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

RIEPILOGO DEI CARICHI AGENTI SULLA TRAVE MAGGIORM	ENTE SOLLECITATA		
PESO DELLA SOLETTA IN CA [g _{1,2}]	=	38,75	kN/m
CARICHI PERMANENTI [g2]	=	21,31	kN/m
RITIRO DEL CALCESTRUZZO [e2]			
Forza assiale N	=	-4570 , 26	kN
Momento flettente M	=	2531 , 92	kNm
VARIAZIONE TERMICA NEGATIVA [e3]			
Forza assiale N	=	-6261 , 09	kN
Momento flettente M	=	1640,41	kNm
VARIAZIONE TERMICA POSITIVA [e3]			
Forza assiale N	=	6261,09	kN
Momento flettente M	=	-1640,41	kNm
AZIONE DEL VENTO [q5]	=	9,83	kN/m
CARICHI MOBILI			
Carico dovuto al sistema Tandem [Q]	=	660,00	kN
Carico uniforme [q]	=	28,91	kN/m

Tabella 1.3 – Riepilogo dei carichi di progetto (carichi mobili nella configurazione per lo SLU)

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 19 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

2 Analisi strutturale

2.1 Criteri generali e modelli di calcolo

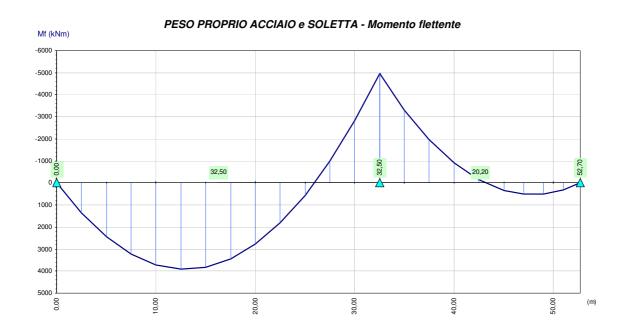
Il calcolo delle sollecitazioni è stato effettuato con riferimento alla trave maggiormente sollecitata soggetta ai carichi individuati al paragrafo precedente, su un modello agli elementi finiti di tipo "beam" ottenuto discretizzando la struttura in conci di caratteristiche geometriche ed inerziali costanti. Le analisi, di tipo elastico lineare, sono eseguite per le fasi costruttive (montaggio della carpenteria metallica e getto della soletta) e per le situazioni di esercizio della struttura (a breve termine e a lungo termine) esaminando le seguenti condizioni di carico:

- Peso proprio della carpenteria metallica e della soletta
- Carichi permanenti
- Ritiro
- Variazione termica differenziale (positiva e negativa)
- Carichi mobili
- Vento
- Distorsione

Ai fini delle verifiche di resistenza, per quanto riguarda la prima condizione di carico, la soletta è stata considerata realizzata in un unico getto. Con tale ipotesi si sovrastimano le tensioni sulle travi metalliche e quindi si perviene ad una verifica conservativa della sicurezza.

La larghezza collaborante della soletta per la definizione delle caratteristiche inerziali della sezione, sia per l'analisi strutturale che per la verifica, è stata valutata secondo le indicazioni della norma D.M. 14 gennaio 2008 - 4.3.2.3 come riportato al paragrafo 2.1.1.

Opera: CV08 Cavalcavia alla progr. 19+380


Relazione di Calcolo Impalcato

Pagina 20 di 139

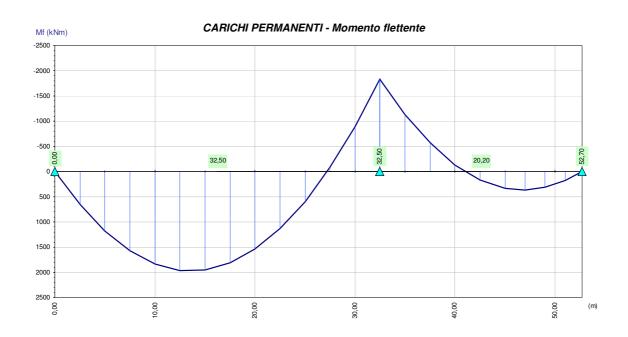
Nome file:
CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

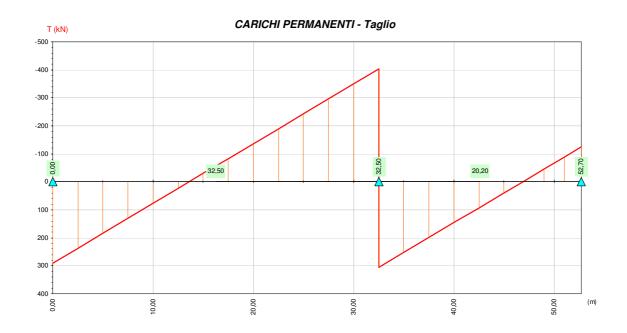
2.2 Sollecitazioni di progetto

Nei grafici delle pagine successive sono mostrati i diagrammi delle sollecitazioni per le varie condizioni elementari di carico.

Pagina 21 di 139

N G


Nome file:


CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

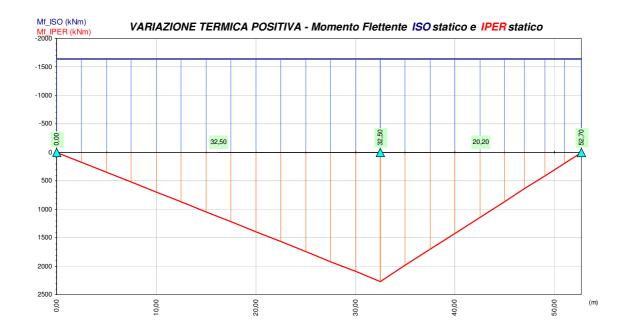
Opera: CV08 Cavalcavia alla progr. 19+380

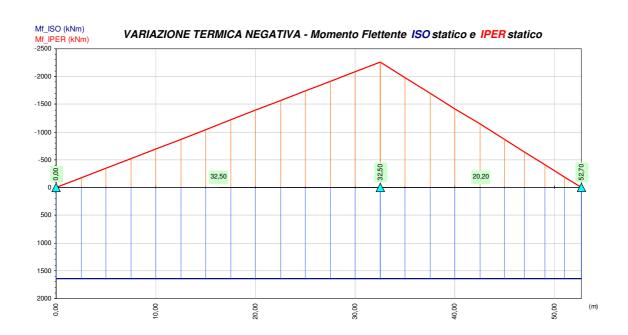
Relazione di Calcolo Impalcato

Progetto Esecutivo

MMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.20 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo


Opera: CV08 Cavalcavia alla progr. 19+380


Relazione di Calcolo Impalcato

Pagina 22 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 23 di 139

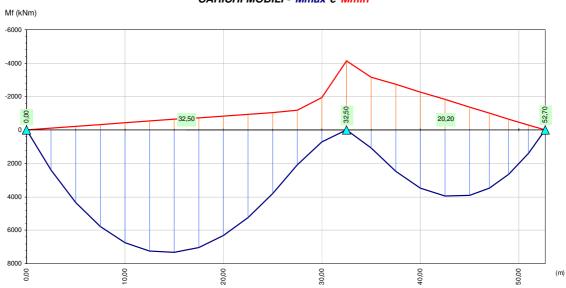
Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

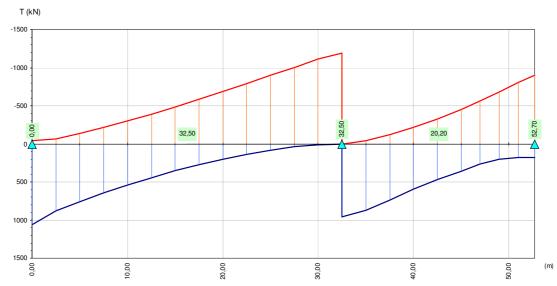
AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380


Relazione di Calcolo Impalcato

Pagina 24 di 139


Nome file:

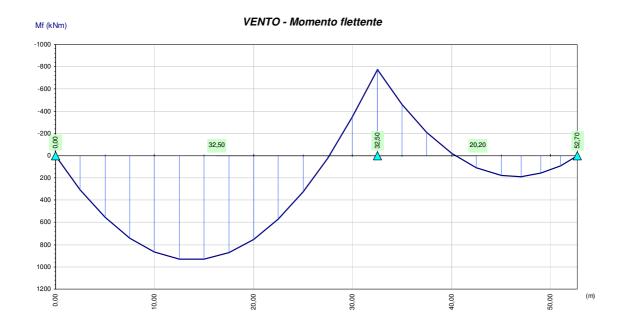
CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

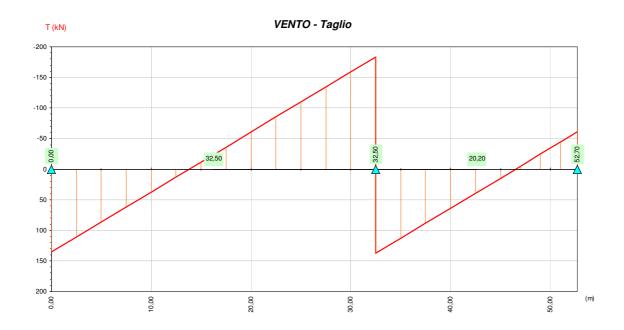
CARICHI MOBILI - Mmax e Mmin

CARICHI MOBILI - Tmax e Tmin

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo


Opera: CV08 Cavalcavia alla progr. 19+380


Relazione di Calcolo Impalcato

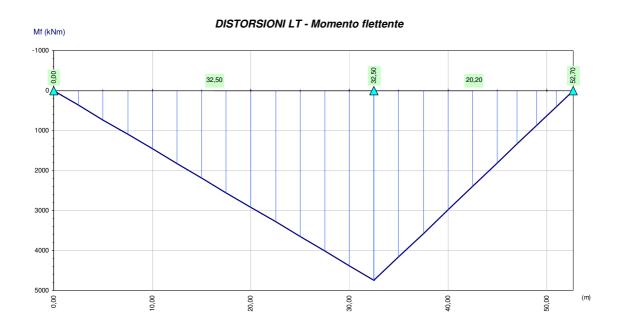
Pagina 25 di 139

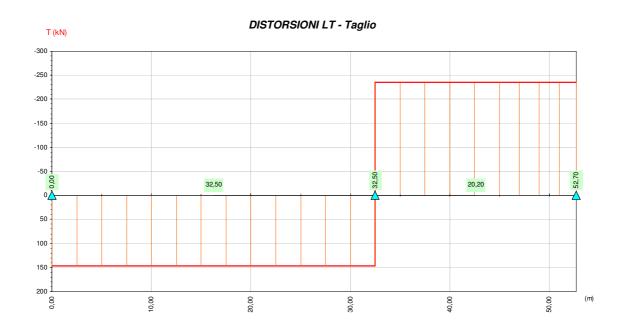
Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

Progetto Esecutivo

Relazione di Calcolo Impalcato


Pagina 26 di 139


Nome file:

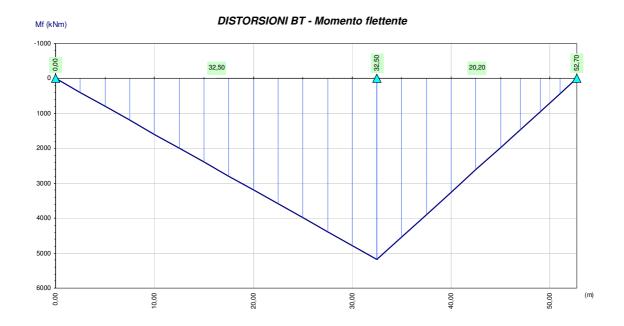
CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

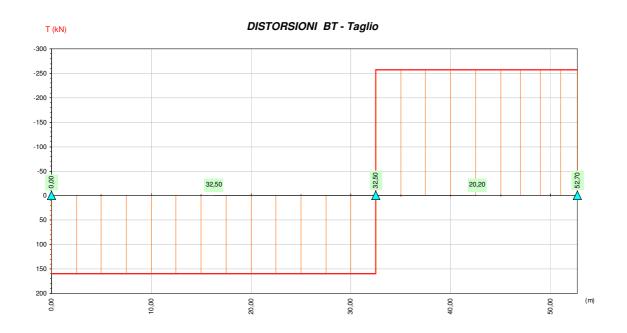
Opera: CV08 Cavalcavia alla progr. 19+380

Gli effetti della distorsione imposta sono valutati nelle due condizioni di lungo termine (LT) e breve termine (BT).

MMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.20 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo


Opera: CV08 Cavalcavia alla progr. 19+380


Relazione di Calcolo Impalcato

Pagina 27 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380
Relazione di Calcolo Impalcato
Pagina 28 di 139
Nome file: CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

Le sollecitazioni indotte dai carichi mobili usate per le verifiche degli SLE e derivanti dalla distribuzione delle colonne di carico di cui alla figura sono mostrate nei grafici delle pagine seguenti.

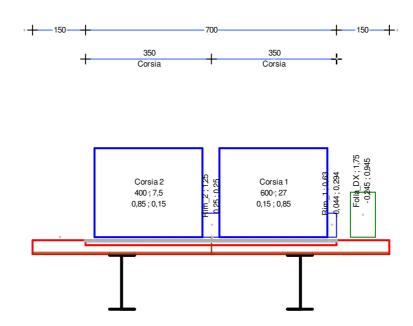
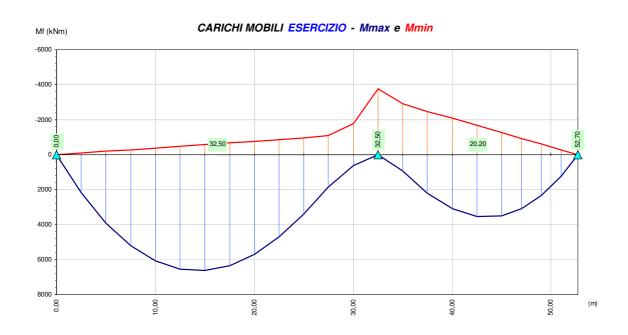



Figura 2.1 – Disposizione trasversale dei carichi mobili per il dimensionamento delle travi principali (SLE)

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

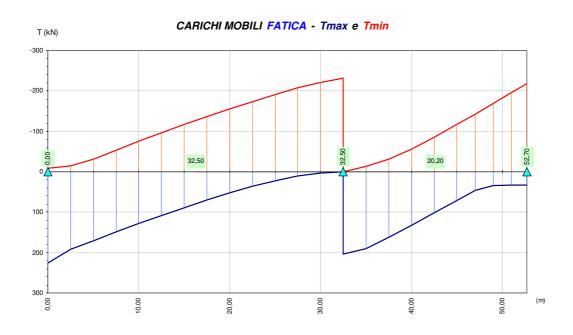
Pagina 29 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380
Relazione di Calcolo Impalcato
Pagina 30 di 139


Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

Le sollecitazioni indotte dai carichi mobili per le verifiche dello STATO LIMITE DI FATICA e sono mostrate nei grafici delle pagine seguenti. I diagrammi sono relativi ai treni di carico del modello **LM2**.

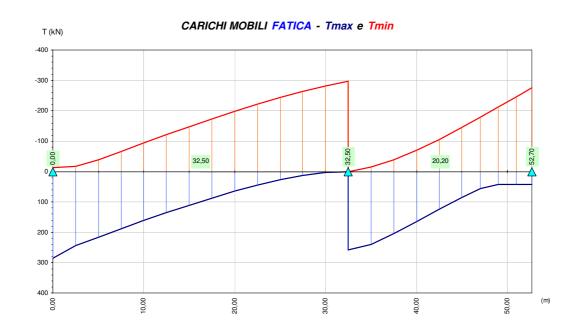
LM2-Veicolo 1

Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380


Relazione di Calcolo Impalcato


Pagina 31 di 139

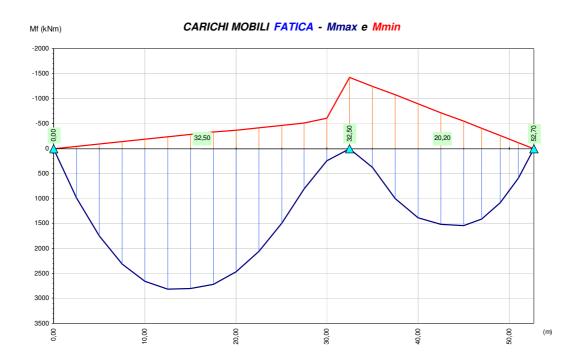
Nome file:

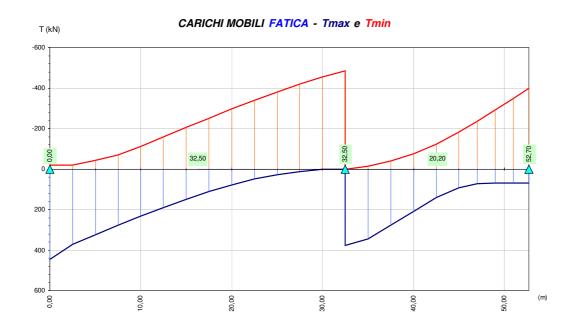
CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

LM2-Veicolo 2

Progetto Esecutivo

Relazione di Calcolo Impalcato


Pagina 32 di 139


Nome file:

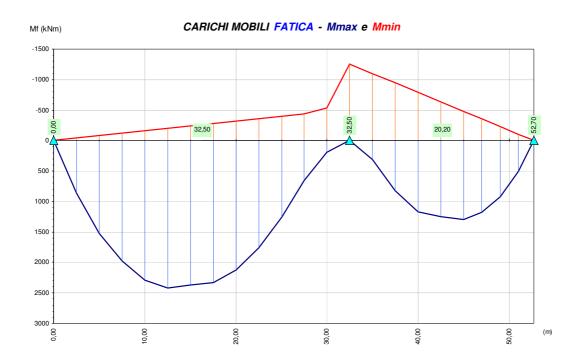
CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

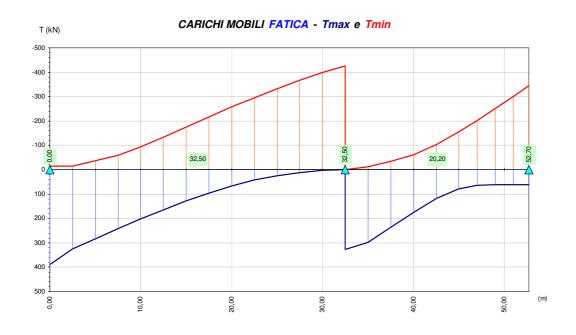
Opera: CV08 Cavalcavia alla progr. 19+380

LM2-Veicolo 3

Nome file:

Progetto Esecutivo


Opera: CV08 Cavalcavia alla progr. 19+380

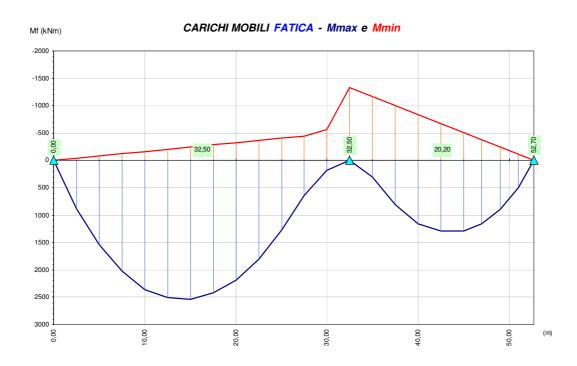

Relazione di Calcolo Impalcato

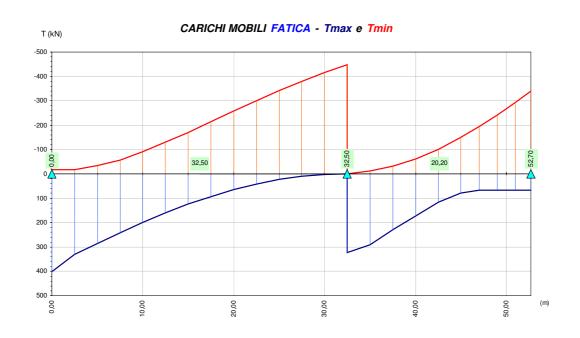
Pagina 33 di 139

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

LM-Veicolo 4

Progetto Esecutivo


Opera: CV08 Cavalcavia alla progr. 19+380 Relazione di Calcolo Impalcato


Pagina 34 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

LM2-Veicolo 5

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 35 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

3 Combinazioni di carico

3.1 Combinazioni per gli SLU

Le combinazioni di azioni per le verifiche agli stati limite ultimi, definite al punto 2.5.3 del D.M. 14 gennaio 2008, sono espresse complessivamente dalle seguenti relazioni:

$$\sum_{i>1} \gamma_{G,j} \cdot G_{k,j} + \gamma_P \cdot P + \gamma_{Q,1} \cdot Q_{k,1} + \sum_{i>1} \gamma_{Q,i} \cdot \psi_{0,i} \cdot Q_{k,i}$$

comb. fondamentale

$$E + \sum_{i>1} G_{k,j} + P + \sum_{i>1} \psi_{2,i} \cdot Q_{k,i}$$

comb. sismica

dove:

- G_k è il valore caratteristico delle azioni permanenti;
- E è l'azione del sisma per lo stato limite considerato;
- P è il valore caratteristico delle azioni di precompressione;
- Q_k è il valore caratteristico delle azioni variabili;
- γ_G , γ_P e γ_Q sono i coefficienti parziali delle azioni per gli SLU;
- ψ_0, ψ_2 sono i coefficienti di combinazione delle azioni variabili.

I valori dei coefficienti ψ_0 , γ_G , γ_P e γ_Q sono riportati in Tabella 3.1 e Tabella 3.3.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 36 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO
Carichi permanenti	favorevoli sfavorevoli	$\gamma_{\rm G1}$	0,90 1,10	1,00 1,35	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30
Carichi variabili da traffico	favorevoli sfavorevoli	γο	0,00 1,35	0,00 1,35	0,00 1,15
Carichi variabili	favorevoli sfavorevoli	γ _{Qi}	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecitazioni di progetto	favorevoli sfavorevoli	γ ε1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Variazioni termiche, Cedimenti vincolari	favorevoli sfavorevoli	$\gamma_{\epsilon 2}, \gamma_{\epsilon 3}, \gamma_{\epsilon 4}$	0,00 1,20	0,00 1,20	0,00 1,00

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.

Tabella 3.1. – Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

Per quanto riguarda i carichi mobili, la simultaneità dei sistemi di carico definiti nel DM 14 gennaio 2008 (modelli di carico 1, 2, 3, 4, 6 - forze orizzontali - carichi agenti su ponti pedonali), deve essere tenuta in conto considerando i "gruppi di carico" definiti nella tabella seguente. Ognuno dei "gruppi di carico", indipendente dagli altri, deve essere considerato come azione caratteristica per la combinazione con gli altri carichi agenti sul ponte.

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

^{(3) 1,30} per instabilità in strutture con precompressione esterna

^{(4) 1,20} per effetti locali

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08	Cavalcavia	alla progr.	19+380

Relazione di Calcolo Impalcato

Pagina 37 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

		Carichi su marciapiedi e piste ciclabili				
	Carichi verticali			Carichi orizz	ontali	Carichi verticali
Gruppo di azioni	Modello principale (Schemi di carico 1, 2, 3, 4, 6)	Veicoli speciali	Folla (Schema di carico 5)	Frenatura q ₃	Forza centrifuga q ₄	Carico uniformemente. distribuito
1	Valore caratteristico					Schema di carico 5 con valore di combinazione 2,5 kN/m ²
2 a	Valore frequente			Valore caratteristico		
2 b	Valore frequente				Valore caratteristico	
3 (*)						Schema di carico 5 con valore caratteristico 5,0 kN/m ²
4 (**)			Schema di carico 5 con valore caratteristico 5,0 kN/m ²			Schema di carico 5 con valore caratteristico 5,0 kN/m ²
5 (***)	Da definirsi per il singolo progetto	Valore caratteristico o nominale				
(**) Ponti di ((**) Da cons (***) Da cons	I 3ª categoria siderare solo se richies siderare solo se si con	sto dal particola siderano veicoli	re progetto (ad es speciali	s. ponti in zona	urbana)	

Tabella 3.2 - Gruppi di carico da traffico per le combinazioni di carico

Azioni	Gruppo di azioni (Tabella 5.1.IV)	Coefficiente Ψ ₀ di combinazione	Coefficiente Ψ ₁ (valori frequenti)	Coefficiente Ψ2 (valori quasi permanenti)
	Schema 1 (Carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (Carichi distribuiti	0,40	0,40	0,0
	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
Azioni da traffico	Schema 2	0,0	0,75	0,0
(Tabella 5.1.IV)	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)		0,75	0,0
	5	0,0	0,0	0,0
	Vento a ponte scarico			
	SLU e SLE	0,6	0,2	0,0
$Vento q_5$	Esecuzione	0,8		0,0
	Vento a ponte carico	0,6		
M	SLU e SLE	0,0	0,0	0,0
Neve q_5	esecuzione	0,8	0,6	0,5
Temperatura	T _k	0,6	0,6	0,5

Tabella 3.3. - Coefficienti ψ_0 , ψ_1 , ψ_2 per le azioni variabili per ponti stradali e pedonali

Le combinazioni di carico adottate per le verifiche di resistenza agli SLU sono le seguenti:

$$ightharpoonup$$
 F_d = 1,35 · G_k + 1,20 · $ε_2$ + 1,0 · $ε_1$ + 1,35 · Q_k + 1,5 · 0,6 · Q_5 + 1,2 · 0,6 · $ε_3$ essendo:

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 38 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

- Gk pesi propri e carichi permanenti $(g_1 + g_2)$;
- Q_k carichi mobili;
- Q_5 azione compatibile del vento F_w^* ;
- ε_2 ritiro del calcestruzzo;
- ε₃ (-10 °C) variazione termica differenziale negativa;
- ε_1 effetti della distorsione a lungo termine.

$$Arr$$
 F_d = 1,35 · G_k + 1,0 · ε₁ + 1,35 · Q_k + 1,5 · 0,6 · Q₅ + 1,2 · 0,6 · ε₃

- ε_3 (+10 °C) variazione termica differenziale positiva;
- ε_1 effetti della distorsione a lungo termine.

$$F_d = 1,35 \cdot G_k + 1,20 \cdot \varepsilon_2 + 1,0 \cdot \varepsilon_1 + 1,35 \cdot Q_k + 1,5 \cdot 0,6 \cdot Q_5 + 1,2 \cdot 0,6 \cdot \varepsilon_3$$

essendo:

- ε₂ ritiro del calcestruzzo;
- ε_3 (-10 °C) variazione termica differenziale negativa;
- ε_1 effetti della distorsione a breve termine;

$$Arr$$
 F_d = 1,35 · G_k + 1,0 · ε₁ + 1,35 · Q_k + 1,5 · 0,6 · Q₅ + 1,2 · 0,6 · ε₃

- ε_3 (+10 °C) variazione termica differenziale positiva;
- ε_1 effetti della distorsione a breve termine.

3.2 Combinazioni per SLE

Per le travi principali dell'impalcato è stato considerato un solo stato limite d'esercizio, ovvero quello di "respiro delle anime". Le verifiche associate a tale stato limite sono state eseguite in riferimento alle combinazioni di carico **frequente** espresse complessivamente dalla seguente relazione:

$$\sum_{i>1} G_{k,j} + P + \psi_{1,1} \cdot Q_{k,1} + \sum_{i>1} \psi_{2,i} \cdot Q_{k,i}$$

dove:

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr.	19+380
------------------------------------	--------

Relazione di Calcolo Impalcato

Pagina 39 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

- G_k è il valore caratteristico delle azioni permanenti;
- P è il valore caratteristico delle azioni di precompressione;
- Q_k è il valore caratteristico delle azioni variabili;
- ψ_1, ψ_2 sono i coefficienti di combinazione delle azioni variabili riportati in Tabella 3.3.

Con riferimento alle condizioni di carico descritte al paragrafo 2.1 della presente sezione, risultano definite le seguenti combinazioni:

$$F_d = G_k + \varepsilon_2 + \varepsilon_1 + 0.75 \cdot Q_k + 0.6 \cdot \varepsilon_{3-1}$$

essendo:

- G_k pesi propri e carichi permanenti $(g_1 + g_2)$;
- Q_k carichi mobili $(q_1 + q_2)$;
- ε_2 ritiro del calcestruzzo;
- ε_{3} (-10 °C) variazione termica differenziale negativa;
- ε_1 effetti della distorsione a lungo termine;

$$F_d = G_k + \epsilon_1 + 0.75 \cdot Q_k + 0.6 \cdot \epsilon_{3+}$$

- ε_{3+} (+10 °C) variazione termica differenziale positiva
- ε_1 effetti della distorsione a lungo termine;

$$Arr$$
 F_d = G_k + ε₂ + ε₁ + 0,75 · Q_k + 0,6 · ε₃-

essendo:

- ε₂ ritiro del calcestruzzo;
- ε_{3} (-10 °C) variazione termica differenziale negativa;
- ε_1 effetti della distorsione a breve termine;

$$Arr$$
 F_d = G_k + ε₁ + 0.75 · Q_k + 0.6 · ε₃₊

- ε_{3+} (+10 °C) variazione termica differenziale positiva
- ε_1 effetti della distorsione a breve termine;

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 40 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

3.3 Combinazioni per lo Stato Limite di Fatica

Le verifiche associate a tale stato limite sono state eseguite in funzione delle combinazioni di carico espresse complessivamente dalla seguente relazione:

$$\sum_{i>1} G_{k,j} + P + Q_{k,1} + \sum_{i>1} \psi_{1,i} \cdot Q_{k,i}$$

dove:

- G_k è il valore caratteristico delle azioni permanenti;
- P è il valore caratteristico delle azioni di precompressione;
- Q_k è il valore caratteristico delle azioni variabili;
- ψ_1 è il coefficiente di combinazione delle azioni variabili riportato in Tabella 3.3.

Con riferimento alle condizioni di carico descritte al paragrafo 2.1 della presente sezione, risultano definite le seguenti combinazioni:

$$F_d = G_k + \varepsilon_2 + \varepsilon_1 + Q_k + 0.6 \cdot \varepsilon_{3-}$$

essendo

- G_k pesi propri e carichi permanenti $(g_1 + g_2)$;
- Q_k carichi mobili di fatica;
- ε_2 ritiro del calcestruzzo;
- ε_{3} (-10 °C) variazione termica differenziale negativa;
- ε_1 effetti della distorsione a breve termine;

$$ightharpoonup F_d = G_k + \varepsilon_4 + Q_k + 0.6 \cdot \varepsilon_{3+}$$

- ε_{3+} (+10 °C) variazione termica differenziale positiva.
- ε_1 effetti della distorsione a breve termine;

$$F_d = G_k + \varepsilon_2 + Q_k + 0.6 \cdot \varepsilon_{3}$$

- ε₂ ritiro del calcestruzzo;
- ε_{3} (-10 °C) variazione termica differenziale negativa;

$$ightharpoonup F_d = G_k + \varepsilon_2 + Q_k + 0.6 \cdot \varepsilon_{3+}$$

CORRIDOIO PLURIMODALE TIRRENICO-NORD EUROPA ITINERARIO AGRIGENTO -CALTANISSETTA-A19 S.S. N° 640 "DI PORTO EMPEDOCLE" AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 41 di 139

Nome file: CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

- (+10 °C) variazione termica differenziale positiva. ϵ_{3+}
- cedimento vincolare. ϵ_4

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 42 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

4 Verifiche delle travi principali

4.1 Verifiche di resistenza agli SLU

Le resistenze di progetto dei materiali costituenti la sezione del ponte sono:

• Acciaio da carpenteria \$355:

per elementi di spessore
$$t \le 40 \text{ mm}$$
...... $f_{vd} = f_{vk} / \gamma_a = 355 / 1,05 = 338,0$ MPa

per elementi di spessore t > 40 mm......
$$f_{vd} = f_{vk} / \gamma_a = 335 / 1,05 = 319,0$$
 MPa

• Calcestruzzo C32/40:

resistenza a compressione di progetto......
$$\alpha_{cc} \cdot f_{cd} = \alpha_{cc} \cdot f_{ck} / \gamma_{c} = 18,8$$
 MPa

con
$$\alpha_{cc} = 0.85$$
; $f_{ck} = 0.83 \cdot R_{ck}$; $\gamma_{c} = 1.5$

• Acciaio per armature B450C:

La sezione composta formata dalla trave metallica e dalla soletta collaborante in c.a. è verificata con l'ausilio di un codice di calcolo automatico sulle sezioni più significative dell'impalcato (si veda APPENDICE 2 - Geometria delle Sezioni di Verifica), facendo riferimento, per la parte metallica, a quanto indicato nella norma EN 1993-1-5:2006.

La resistenza di calcolo della sezione in acciaio nei confronti delle tensioni normali è funzione della classificazione della sezione trasversale. Nel caso in esame tale resistenza è valutata in campo elastico, tenendo conto degli effetti dell'instabilità locale, per le sezioni di classe 4.

La verifica è soddisfatta se risulta:

$$\eta_{1} = \frac{N_{Ed}^{s}}{f_{vk} \cdot A_{eff} / \gamma_{M0}} + \frac{M_{Ed}^{s} + N_{Ed}^{s} \cdot e_{N}}{f_{vk} \cdot W_{eff} / \gamma_{M0}} \le 1,0$$

con

- N_{Ed}^{s} e M_{Ed}^{s} sollecitazioni assiali e flessionali di progetto sulla sola parte metallica;
- $A_{e\!f\!f}$ e $W_{e\!f\!f}$ proprietà efficaci della sezione trasversale;

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 43 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

- e_N spostamento della posizione del baricentro;
- γ_{M0} coefficiente parziale di sicurezza, pari ad 1,05.

La sollecitazione tagliante è supposta agente solo sull'anima della trave metallica.

La resistenza di progetto a taglio è definita come somma di due contributi (anima $V_{bw,Rd}$, e piattabande $V_{bf,Rd}$):

$$V_{b,Rd} = V_{bw,Rd} + V_{bf,Rd} \le \frac{\eta \cdot f_{yk} \cdot h_w \cdot t}{\sqrt{3} \cdot \gamma_{M1}}$$

- dove:
- $\eta = 1,20$ per gradi di acciaio inferiori a \$460;
- h_w e t sono rispettivamente l'altezza e lo spessore dell'anima;
- γ_{M1} è il fattore parziale di sicurezza assunto pari a 1,05.

La verifica a taglio è posta in forma adimensionale come rapporto tra le azioni sollecitanti e la capacità resistente:

$$\eta_3 = \frac{V_{Ed}}{V_{b,Rd}} \le 1.0$$

dove V_{Ed} è la sollecitazione tagliante di progetto.

Per valori di $\overline{\eta_3}$ [E 4.1] inferiori a 0,5 non è necessario controllare l'interazione tra le sollecitazioni normali e tangenziali; per valori superiori si adotta la seguente espressione del dominio di resistenza:

$$\overline{\eta_1} + \left(1 - \frac{M_{f,Rd}}{M_{Pl,Rd}}\right) \cdot \left(2 \cdot \overline{\eta_3} - 1\right)^2 \le 1,0$$

in cui

- $M_{f,Rd}$ è il momento resistente di progetto delle sole flange efficaci;
- $M_{Pl,Rd}$ è la resistenza plastica della sezione trasversale composta dall'area effettiva delle flange e dall'intera anima senza tener conto della classe di quest'ultima.

Dal km 44+000 allo svincolo con l'A19

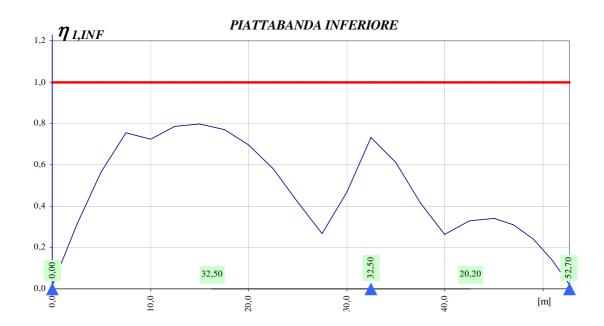
Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 44 di 139

Nome file:

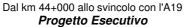

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

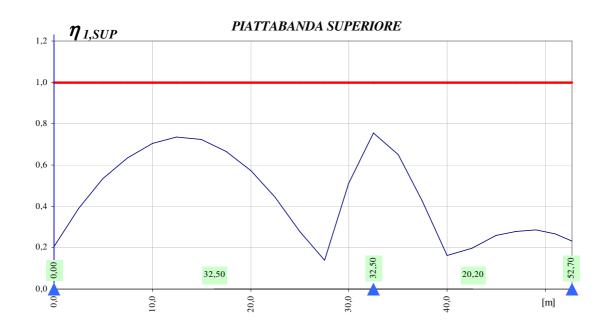
$$\bullet \quad \overline{\eta_1} = \frac{M_{Ed}}{M_{Pl,Rd}}$$

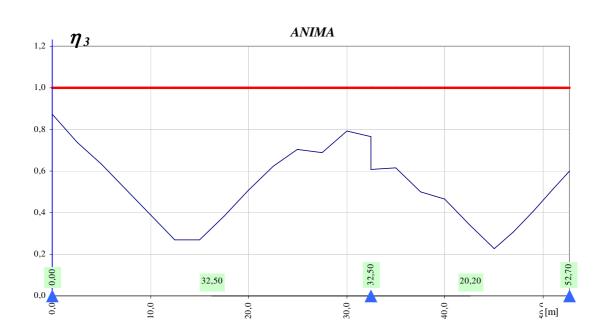
•
$$\overline{\eta}_1 = \frac{M_{Ed}}{M_{Pl,Rd}}$$
• $\overline{\eta}_3 = \frac{V_{Ed}}{V_{bw,Rd}}$ [E 4.1]

4.1.1 Risultati sintetici delle verifiche agli SLU

Nei grafici successivi sono riportati i diagrammi che sintetizzano le verifiche di resistenza allo SLU per la trave metallica, la soletta in calcestruzzo e le barre d'armatura.




Pagina 45 di 139

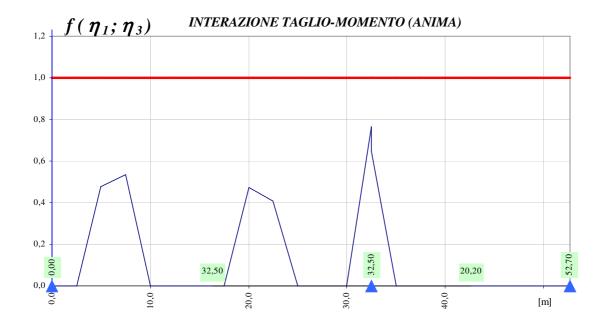

Nome file: CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo


Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

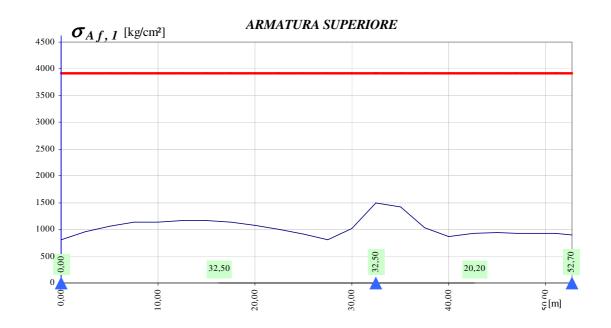
Pagina 46 di 139

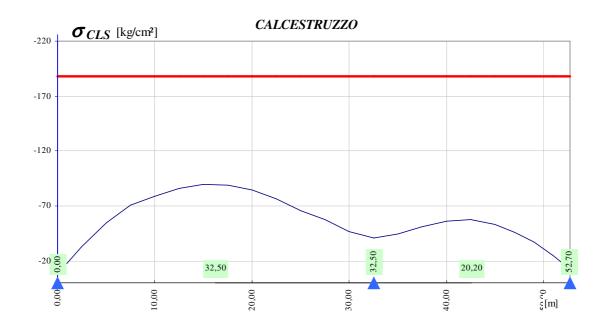
Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

CORRIDOIO PLURIMODALE TIRRENICO-NORD EUROPA ITINERARIO AGRIGENTO -CALTANISSETTA-A19 S.S. N° 640 "DI PORTO EMPEDOCLE" AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Pagina 47 di 139


Nome file:


CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Progetto Esecutivo

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 48 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

4.2 Verifiche "a respiro" delle anime (SLE)

Le verifiche a respiro sono condotte con riferimento alla norma EN 1993-2: 2006 relativa al progetto dei ponti in acciaio.

La snellezza dell'anima deve essere limitata per evitare fenomeni di "respiro" ovvero deformazioni laterali fuori dal piano che possono arrecare danneggiamenti per fatica, nella zona di collegamento fra anima e piattabande.

La verifica "a respiro" è soddisfatta se risulta:

$$\sqrt{\left(\frac{\sigma_{x,Ed,ser}}{k_{\sigma} \cdot \sigma_{E}}\right)^{2} + \left(\frac{1,1 \cdot \tau_{x,Ed,ser}}{k_{\tau} \cdot \sigma_{E}}\right)^{2}} \leq 1,1$$

dove:

- $\sigma_{x,Ed,ser}$ e $\tau_{x,Ed,ser}$ sono le tensioni calcolate per le combinazioni di carico frequente;
- k_{σ} e k_{τ} sono i coefficienti di imbozzamento in campo elastico;

•
$$\sigma_E = 190000 \cdot \left(\frac{t}{h}\right)^2$$
 [MPa];

• "b" è l'altezza del pannello d'anima.

Le verifiche, effettuate sulle sezioni dell'impalcato di cui all'APPENDICE 2-Geometria delle Sezioni di Verifica, conducono ai risultati mostrati nel grafico seguente:

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 49 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 50 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

4.3 Verifiche di resistenza per lo Stato Limite di Fatica

Le verifiche a fatica sono eseguite in conformità al D.M. 14/01/2008 (carichi di progetto e coefficienti di sicurezza), ed alle indicazioni riportate della Circ. Min. Infrastrutture e Trasporti 2 Febbraio 2009, n. 617, relative alle metodologie ed i particolari costruttivi (par. *C.4.2.4.1.4.*).

I ponti a sezione composta sono soggetti ad azioni dinamiche variabili nel tempo, e possono manifestare, in tempi più o meno lunghi, problemi legati alla fatica, con conseguente limitazione della funzionalità in esercizio e, nelle situazioni più critiche, il collasso della struttura.

L'esecuzione delle verifiche di resistenza a fatica dei componenti degli impalcati metallici o a sezione composta prevede l'individuazione dei dettagli maggiormente sensibili e la loro classificazione in base alle curve S-N, nonché alla scelta del relativo coefficiente parziale di sicurezza γ_{Mf} . Il coefficiente γ_{Mf} dipende sia dalla accessibilità per l'ispezione, sia dall'entità delle conseguenze delle crisi per fatica dell'elemento o della struttura. Si possono utilizzare due diversi approcci progettuali:

- criterio del danneggiamento accettabile per strutture poco sensibili alla rottura per fatica.
- criterio della vita utile a fatica per strutture sensibili alla rottura per fatica.

Criteri di valutazione	Conseguenze moderate (γ_{Mf})	Conseguenze significative (γ_{Mf})
Danneggiamento accettabile	1,00	1,15
Vita utile a fatica	1,15	1,35

Tabella 4.1 - Coefficienti parziali γ_{Mf}

La verifica a fatica può essere condotta controllando che i valori massimi dei delta di tensione sulla struttura siano inferiori ai limiti di fatica per i diversi dettagli costruttivi (verifica per "Vita Illimitata") oppure controllando che, per un definito numero di cicli di tensione, la struttura possa subire delta di tensione in grado di creare danneggiamento ma con effetto complessivo non significativo nella vita di progetto dell'opera (verifica a "Danneggiamento").

I modelli di carico da utilizzarsi per la verifica a fatica degli impalcati stradali sono:

• il modello di carico LM1 costituito da dallo schema di carico 1, ma con valori dei carichi concentrati ridotti del 30 % e carichi distribuiti ridotti del 70% (utilizzabile per verifiche a vita illimitata);

CORRIDOIO PLURIMODALE TIRRENICO-NORD EUROPA ITINERARIO AGRIGENTO -CALTANISSETTA-A19 S.S. N° 640 "DI PORTO EMPEDOCLE" AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Relazione di Calcolo Impalcato

Pagina 51 di 139

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

Opera: CV08 Cavalcavia alla progr. 19+380

Progetto Esecutivo

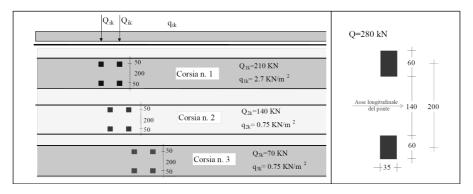


Figura 4.1 - Modello di carico a fatica LM1

• il modello di carico LM2 costituito da un set di veicoli con ingombro geometrico e peso definiti (utilizzabile per verifiche a vita illimitata);

SAGOMA del VEICOLO	Distanza tra gli assi (m)	Carico frequente per asse	Tipo di ruota (Tab. 5.1.IX)
	` ´	(kN)	
	4,5	90	A
	,	190	В
	4,20	80	A
	1,30	140	В
0 00	,	140	В
	3,20	90	A
	5,20	180	В
	1,30	120	С
0 0 0 0	1,30	120	C C
		120	C
	3,40	90	A
	6,00	190	В
	1,80	140	В
		140	В
	4,80	90	A
	3,60	180	В
	4,40	120	С
	1,30	110	С
		110	C

Figura 4.2 - Modello di carico a fatica LM2

• il modello di carico LM3, che si compone di un veicolo convenzionale dal peso complessivo di 480 kN (utilizzabile per verifiche a danneggiamento)

Pagina 52 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Dal km 44+000 allo svincolo con l'A19 **Progetto Esecutivo**

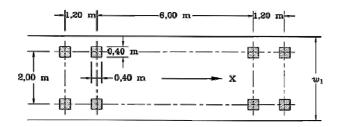


Figura 4.3 -. Modello di carico a fatica LM3 (4 assi da 120 kN)

• il modello di carico LM4 costituito da un set di veicoli con ingombro geometrico e peso definiti (utilizzabile per verifiche a danneggiamento)

				Сотр	osizione del tro	ıffico
Sagoma del veicolo	Tipo di pneumatico (Tab.5.1- IX)	Interassi [m]	Valori equivalenti dei carichi asse [kN]	Lunga percorrenza	Media percorrenza	Traffico locale
	A B	4,50	70 130	20,0	40,0	80,0
0 00	A B B	4,20 1,30	70 120 120	5,0	10,0	5,0
0-0-000	A B C C	3,20 5,20 1,30 1,30	70 150 90 90 90	50,0	30,0	5,0
0-0-00	A B B B	3,40 6,00 1,80	70 140 90 90	15,0	15,0	5,0
0 0 00	A B C C	4,80 3,60 4,40 1,30	70 130 90 80 80	10,0	5,0	5,0

Figura 4.4 -. Modello di carico a fatica LM4

Le <u>verifiche a fatica per vita illimitata</u> sono condotte, per dettagli caratterizzati da limite di fatica ad ampiezza costante, controllando che il massimo delta di tensione $\Delta \sigma_{max} = (\sigma_{max} - \sigma_{min})$ indotto nel dettaglio stesso dallo spettro di carico significativo risulti minore del limite di fatica del dettaglio stesso. Ai fini del calcolo del $\Delta \sigma_{max}$ si possono impiegare, in alternativa, i modelli di carico di fatica 1 e 2, disposti sul ponte nelle due configurazioni che determinano la tensione massima e minima, rispettivamente, nel dettaglio considerato.

$$\gamma_F \cdot \Delta \sigma_{\max} \leq \frac{\Delta \sigma_D}{\gamma_{Mf}}$$

Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 53 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

Le <u>verifiche a danneggiamento</u> consistono nel verificare che nel dettaglio considerato lo spettro di carico produca un danneggiamento $D \le 1$. Il danneggiamento $D \in V$ valutato mediante la legge di Palmgren-Miner, considerando la curva S-N caratteristica del dettaglio e la vita nominale dell'opera.

$$D = \sum_{i=1}^{p} D_i = \sum_{i=1}^{p} \frac{n_i}{N_i} \le 1$$

Tali verifiche sono condotte considerando lo spettro di tensione indotto nel dettaglio dal modello di fatica semplificato n. 3, o, in alternativa, dallo spettro di carico equivalente costituente il modello di fatica n. 4.

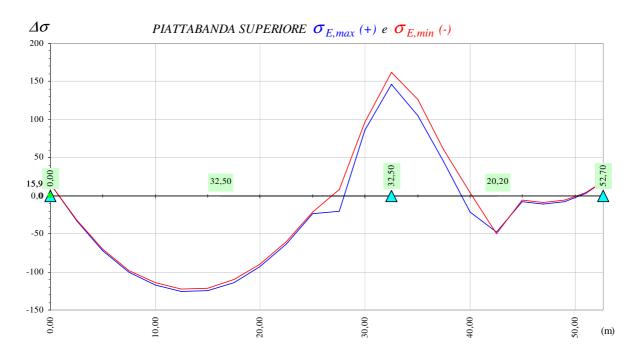
In alcuni casi è possibile ricondurre la verifica a danneggiamento alla determinazione del delta di tensione equivalente $\Delta \sigma_E$ mediante una serie di coefficienti λ , opportunamente calibrati, funzione della luce della campata, del volume di traffico atteso, della vita di progetto dell'opera e della simultaneità di più veicoli lenti nella carreggiata:

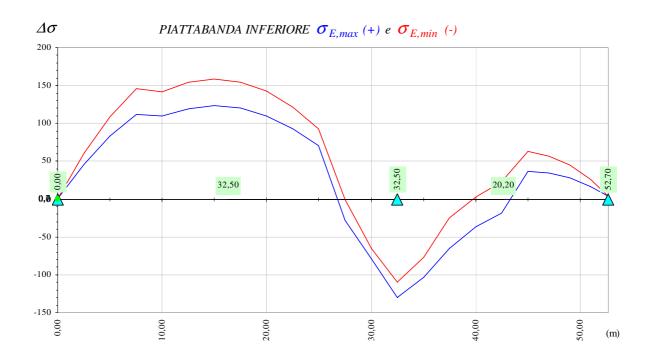
$$\Delta \sigma_{E} = \lambda_{1} \cdot \lambda_{2} \cdot \lambda_{3} \cdot \lambda_{4} \cdot \varphi_{fat} \cdot \left[\sigma_{FLM, \max} - \sigma_{FLM, \min}\right] = \lambda \cdot \varphi_{fat} \cdot \Delta \sigma_{\max}$$

con
$$\lambda_1 \cdot \lambda_2 \cdot \lambda_3 \cdot \lambda_4 \le \lambda_{\max}$$
.

Il coefficiente dinamico equivalente φ_{fat} per ponti stradali è assunto diverso dall'unità solo nelle prossimità dei giunti di dilatazione. In definitiva, si conduce la verifica a danneggiamento controllando che risulti

$$\gamma_F \cdot \Delta \sigma_E(\lambda) \leq \frac{\Delta \sigma_C}{\gamma_{Mf}}$$
.

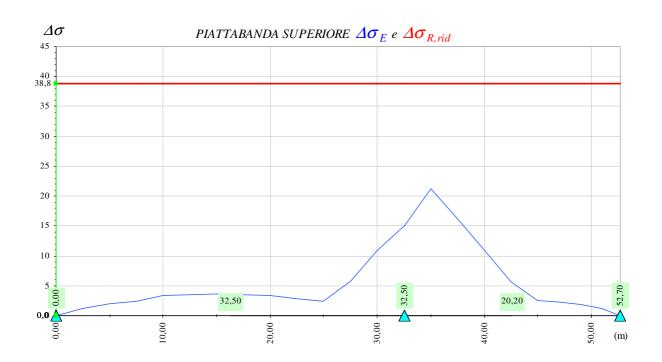

Le "Istruzioni per l'applicazione delle «Norme tecniche per le costruzioni» di cui al decreto ministeriale 14 gennaio 2008" definisce le diverse categorie di dettagli ed i valori caratteristici dei delta di tensione resistenti, determinati a $2 \cdot 10^6$ cicli. Le sezioni critiche maggiormente significative sono le giunzioni di testa saldate a completa penetrazione, gli impilaggi delle lamiere e le giunzioni saldate degli elementi secondari con le travi principali.

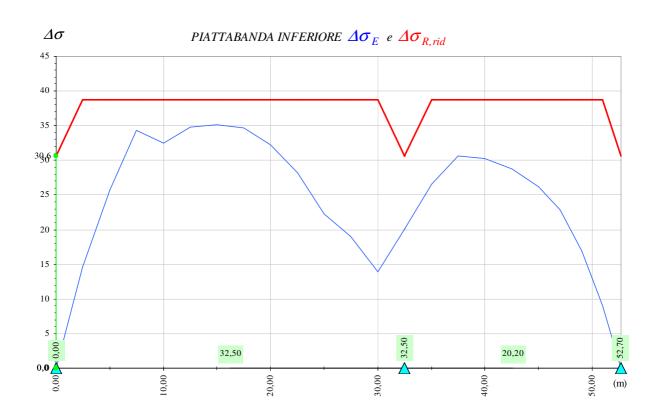

Nel caso in esame le verifiche sono condotte a vita illimitata secondo il "criterio della vita utile a fatica", con riferimento al modello di carico LM2

CORRIDOIO PLURIMODALE TIRRENICO-NORD EUROPA ITINERARIO AGRIGENTO -CALTANISSETTA-A19 S.S. N° 640 "DI PORTO EMPEDOCLE" AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19 **Progetto Esecutivo**

Opera: CV08 Cavalcavia alla progr. 19+380	
Relazione di Calcolo Impalcato	
Pagina 54 di 139	
Nome file: CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK	

Le verifiche, effettuate sulle sezioni dell'impalcato di cui all'APPENDICE 2-Geometria delle Sezioni di Verifica, conducono ai risultati mostrati nel grafico seguente:


CORRIDOIO PLURIMODALE TIRRENICO-NORD EUROPA ITINERARIO AGRIGENTO -CALTANISSETTA-A19 S.S. N° 640 "DI PORTO EMPEDOCLE" AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19


Opera: CV08 Cavalcavia alla progr. 19+380 Relazione di Calcolo Impalcato

Pagina 55 di 139

Nome file: CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 56 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

4.4 Verifica della connessione a pioli

La distribuzione dei pioli lungo lo sviluppo longitudinale dell'impalcato è fatta in base al minimo numero risultante dalla più restrittiva delle verifiche per le combinazioni di SLU per resistenza, SLU per Fatica e SLE.

Per la determinazione degli scorrimenti di progetto sono utilizzate le proprietà inerziali delle sezioni di riferimento a breve termine con la SEZIONE TIPO 1. Le sollecitazioni considerate sono quelle che agiscono sulla sezione composta una volta avvenuta la presa del calcestruzzo e la solidarizzazione con la trave metallica.

$$Arr$$
 F_d = 1,35 · G_k + 1,20 · ε₂ + 1,0 · ε₁ + 1,35 · Q_k + 1,5 · 0,6 · Q₅ + 1,2 · 0,6 · ε₃ essendo:

- Gk pesi propri e carichi permanenti $(g_1 + g_2)$;
- Q_k carichi mobili;
- Q_5 azione compatibile del vento F_w^* ;
- ε₂ ritiro del calcestruzzo;
- ε_3 (-10 °C) variazione termica differenziale negativa;
- ε_1 effetti della distorsione a breve termine;

$$Arr$$
 F_d = 1,35 · G_k + 1,0 · ε₁ + 1,35 · Q_k + 1,5 · 0,6 · Q₅ + 1,2 · 0,6 · ε₃

- ε_3 (+10 °C) variazione termica differenziale positiva;
- ε_1 effetti della distorsione a breve termine;

Le sollecitazioni di progetto per lo Stato Limite Esercizio sono determinate in funzione della combinazione di carico rara espressa dalla relazione $\sum_{i>1} G_{k,j} + P + Q_{k,1} + \sum_{i>1} \psi_{0,i} \cdot Q_{k,i}$ che da luogo a

$$F_d = G_k + \varepsilon_2 + \varepsilon_1 + Q_k + 0.6 \cdot \varepsilon_{3-1}$$

$$ightharpoonup F_d = G_k + \varepsilon_1 + Q_k + 0.6 \cdot \varepsilon_{3+}$$

La connessione è, inoltre, soggetta ad uno stato tensionale pluriassiale in quanto sollecitata sia dalle tensioni tangenziali che agiscono nel gambo del piolo, sia dalle tensioni normali che agiscono sulla

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 57 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

flangia metallica. Le verifiche nei confronti dello Stato Limite Ultimo di Fatica sono effettuate "a danneggiamento" controllando che sia:

- nelle zone in cui la piattabanda superiore risulta compressa:
 - $\gamma_{Ff} \cdot \Delta \tau_{E,2} \le \Delta \tau_C / \gamma_{Mf,s}$ (controllo sul delta di tensione tangenziale $\Delta \tau$)

dove:

- $\Delta \tau_{E2}$ è il delta di tensione equivalente sul piolo;
- $\Delta \tau_{c} = 90MPa$ è il valore di riferimento della resistenza a fatica;
- γ_{Ff} = 1 è il fattore di sicurezza parziale sui carichi;
- $\gamma_{Mf,s}$ = 1,15 fattore di sicurezza parziale per il materiale costituente il piolo
- nelle zone in cui la piattabanda superiore risulta tesa:
 - $\gamma_{Ff} \cdot \Delta \tau_{E,2} \le \Delta \tau_C / \gamma_{Mf,s}$ (controllo sul delta di tensione tangenziale $\Delta \tau$)
 - $-\frac{\gamma_{\mathit{Ff}} \cdot \Delta \sigma_{\mathit{E},2}}{\Delta \sigma_{\mathit{C}} \cdot \gamma_{\mathit{Mf}}} + \frac{\gamma_{\mathit{Ff}} \cdot \Delta \tau_{\mathit{E},2}}{\Delta \tau_{\mathit{C}} \cdot \gamma_{\mathit{Mf},s}} \leq 1,3 \text{ (controllo sull'interazione fra } \Delta \tau \in \Delta \sigma)$

Dove:

- $\Delta\sigma_{E.2}$ è il delta di tensione normale agente sulla piattabanda superiore;
- $\Delta\sigma_C$ valore di riferimento della resistenza a fatica che vale $\Delta\sigma_C$ = 80 MPa .

Il delta di tensione equivalente sul piolo è pari a:

$$\Delta \tau_{E,2} = \lambda_V \cdot \Delta \tau$$

dove λ_V è il fattore di danneggiamento equivalente per la .connessione a pioli e $\Delta \tau$ intervallo di tensioni tangenziali prodotte dal carico da fatica.

La resistenza del singolo piolo (P_{rd}) è determinata secondo le indicazioni al punto 4.3.4.3.1.2 del D.M. 14 gennaio 2008.

Nelle tabelle seguenti è riportata la sintesi dei risultati ottenuti per le sezioni di cui all'APPENDICE 2-Geometria delle Sezioni di Verifica.

CORRIDOIO PLURIMODALE TIRRENICO-NORD EUROPA ITINERARIO AGRIGENTO -CALTANISSETTA-A19 S.S. N° 640 "DI PORTO EMPEDOCLE" AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19 **Progetto Esecutivo**

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 58 di 139

Nome file: CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

+-	 	-+	 	

++ Sez.	+ Ascissa					pioli	Num. pioli x fila	 Td 	+ Combin.		Sd	+ Sr 	++ Condizione Dominante	Esito	SLU	U	SI	·Ε	S	TATO LIMI	 ITE DI FATI	ICA
Num.	[m]	Tipo	[mm]	[cm]	[cm]	MINIMO	EFFETT.	[kN]	N-	carico	[kN/m]	[kN/m]	 		Sd/Sr		Psd/Prd	<=Ks	DTaud		Interaz.	
1 1	0,00	1	22	21,0	20	2,04	3						Fatica	Verifica	0,65	1,00	0,46	0,75	53,18	78,26		1,3
2	2,50	1	22	21,0	20	1,73	3						Fatica	Verifica	0,55	1,00	0,39	0,75	45,07	78,26	0,576	1,3
3	5,00	1	22	21,0	20	1,63	1 3						Fatica	Verifica	0,48	1,00	0,34	0,75	42,60	78,26	0,544	1,3
4	7,50	1	22	21,0	20	1,55	3						Fatica	Verifica	0,40	1,00	0,29	0,75	40,40	78,26	0,516	1,3
5	10,00	2	22	21,0	20	1,51	3						Fatica	Verifica	0,32	1,00	0,23	0,75	39,45	78,26	0,504	1,3
6	12,50	2	22	21,0	20	1,54	3						Fatica	Verifica	0,25	1,00	0,18	0,75	40,05	78,26	0,512	1,3
7	15,00	2	22	21,0	20	1,56	3						Fatica	Verifica	0,22	1,00	0,19	0,75	40,78	78,26	0,521	1,3
8	17,50	2	22	21,0	20	1,60	3						Fatica	Verifica	0,29	1,00	0,23	0,75	41,64	78,26	0,532	1,3
9	20,00	2	22	21,0	20	1,64	3						Fatica	Verifica	0,36	1,00	0,28	0,75	42,72	78,26	0,546	1,3
10	22,50	2	22	21,0	20	1,69	3						Fatica	Verifica	0,43	1,00	0,33	0,75	44,17	78,26	0,564	1,3
11	25,00	2	22	21,0	20	1,77	3						Fatica	Verifica	0,50	1,00	0,38	0,75	46,24	78,26	0,591	1,3
12	27,50	3	22	21,0	20	1,91] 3						Fatica	Verifica	0,58	1,00	0,44	0,75	49,81	78,26	0,846	1,3
13	30,00	3	22	21,0	20	2,00	4						Fatica	Verifica	0,49	1,00	0,36	0,75	39,09	78,26	0,683	1,3
14	32,50	4	22	21,0	20	2,09	4	-2357] 3	V min	1241	2373	Resistenza	Verifica	0,52	1,00	0,39	0,75	40,37	78,26	0,769	1,3
15	32,50	4	22	21,0	20	1,77	4	1496	1	V max	788	2373	Esercizio	Verifica	0,42	1,00	0,33	0,75	31,90	78,26	0,661	1,3
16	35,00	3	22	21,0	20	1,70	4						Fatica	Verifica	0,38	1,00	0,31	0,75	31,35	78,26	0,758	1,3
17	37,50	3	22	21,0	20	1,56	3						Fatica	Verifica	0,43	1,00	0,35	0,75	37,57	78,26	0,855	1,3
18	40,00	5	22	21,0	20	1,38	1 3						Fatica	Verifica	0,34	1,00	0,29	0,75	32,68	78,26	0,811	1,3
19	42,50	5	22	21,0	20	1,17] 3						Fatica	Verifica	0,26	1,00	0,24	0,75	30,58	78,26	0,391	1,3
20	45,00	5	22	21,0	20	1,22	3						Fatica	Verifica	0,26	1,00	0,20	0,75	31,82	78,26	0,407	1,3
21	47,00	5	22	21,0	20	1,37	3						Fatica	Verifica	0,33	1,00	0,24	0,75	35,63	78,26	0,455	1,3
22	49,00	5	22	21,0	20	1,59	3						Fatica	Verifica	0,40	1,00	0,29	0,75	41,40	78,26	0,529	1,3
23	51,00	5	22	21,0	20	1,82	3						Fatica	Verifica	0,47	1,00	0,34	0,75	47,51	78,26	0,627	1,3
24	52,70	5	22	21,0	20	2,02	•						Fatica	Verifica	0,53	1,00	0,38	0,75	52,66	78,26	0,673	1,3

Dal km 44+000 allo svincolo con l'A19 **Progetto Esecutivo**

Opera: CV08 Cavalcavia alla progr. 19+380
Relazione di Calcolo Impalcato
Pagina 59 di 139
Nome file:
CV08-F-CL020 A.00 relazione di calcolo impalcato - OK

4.5 Verifica delle saldature longitudinali

I cordoni d'angolo delle saldature delle travi principali sono stati verificati mediante un codice di calcolo automatico allo SLU di resistenza e allo SLU di fatica. Nel caso più generale possono essere verificati:

- i cordoni di collegamento della flangia superiore (Fibra C) all'anima;
- i cordoni di saldatura dell'anima (Fibra X) nell'ipotesi che questa derivi dall'assemblaggio di due pannelli;
- i cordoni di collegamento della flangia inferiore (Fibra B) all'anima.

Per la resistenza è necessario che i valori della tensione di confronto a livello dei cordoni di saldatura soddisfino simultaneamente le seguenti condizioni (D. Min. 14/01/2008):

1.
$$\sqrt{\tau_{\parallel}^2 + n_{\perp}^2 + t_{\perp}^2} \le 0.85 f_{yk}$$
 per acciaio S355

2.
$$|n_{\perp}| + |t_{\perp}| \le 0.70 f_{vk}$$
 per acciaio S355

Nel calcolo della n_{\perp} per il cordone a livello della flangia superiore si tiene conto degli effetti locali deteminati dal peso della soletta, dai carico permanenti e dell'azione di una ruota del sistema Tandem (larghezza dell'impronta 40 cm) diffusa a 45° nello spessore della pavimentazione e della soletta.

Per quanto riguarda i fenomeni di fatica, è stata condotta una verifica a danneggiamento secondo il criterio della vita utile a fatica, ipotizzando conseguenze significative della rottura; ciò conduce ad un coefficiente parziale di sicurezza pari a $\gamma_{m,F}$ =1,35.

AZIONI PER EFFETTI LOCALI										
Saldatura su Fibra C										
Carico distribuito ⇒ soletta	Q_{C1}	38,75	kN/m							
Carico distribuito ⇒ permanenti	Q_{C2}	21,31	kN/m							
Carico distribuito ⇒ aggiuntivo	Q_{C3}	0	kN/m							
Carico concentrato ⇒ accidentale	P_{C1}	150	kN							
Lunghezza per distribuzione carico concentrato	L_{PC1}	132	cm							

Tabella 4.2 – Azioni locali per la verifica delle saldature

VERIFICA A FATICA SALDATURE								
Coeff. parziale di sicurezza per le azioni da fatica	γ _{Ff}	1						
Delta resistente per fatica per 2x10^6 cicli	$\Delta \tau_{R}$	80	N/mm ²					
Coefficiente parziale di sicurezza per $\Delta \tau_R$	$\gamma_{m,F}$	1,35						
Carico da fatica		LM2						

Tabella 4.3 – Parametri di resistenza delle saldature

Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 60 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

I risultati delle verifiche in corrispondenza delle sezioni di cui all'APPENDICE 2-Geometria delle Sezioni di Verifica sono sinteticamente raccolti nelle tabelle successive.

CORRIDOIO PLURIMODALE TIRRENICO-NORD EUROPA ITINERARIO AGRIGENTO -CALTANISSETTA-A19 S.S. N° 640 "DI PORTO EMPEDOCLE" AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19 **Progetto Esecutivo**

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 61 di 139

Nome file:
CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

							İ	FIB	RA B		İ	FIBF	RA C		İ	FIB	RA X		VEF	RIFICA DI E	RESISTEN			VERIFICA .	A FATICA	
Sez.				Condiz.		+ Esito della		Sezione		Scorr.	Condiz.		gola [mm]	Scorr.		Sezione		Scorr.	SIGMA I	DEALE su i	fibra:	SIGMA		TAU su f	ibra:	Dtaur
Num.		Tipo			[kN]	verifica	dominante	minima	effett.	[kN/m]	dominante	minima	effett.	[kN/m]	dominante	minima	effett.	[kN/m]	B I	C I	Χ	resist.	В І	C I	X	gm x gs
1 1	0,00	1 1				Verifica	Fatica	4,07	5,70			4,75	5,70				-		127,6	10101			19,4	22,6		
2	2,50	1				Verifica	Fatica	3,42	5,70	I	Fatica	4,01	5,70				-		106,1	110,8		< 248,5	16,2	19,0		< 27,1
3	5,00	1				Verifica	Fatica	3,20	5,70		Fatica	3,77	5,70				-		87,9	93,4		< 248,5	15,2	17,9		< 27,1
4	7,50	1				Verifica	Fatica	3,03	5,70	I	Fatica	3,58	5,70				-		70,2	76,7		< 248,5	14,4	17,0		< 27,1
5	10,00	2				Verifica	Fatica	3,20	5,70	I	Fatica	3,47	5,70				-		56,8	59,3		< 248,5	15,2	16,5		< 27,1
6	12,50	2				Verifica	Fatica	3,23	5,70	I	Fatica	3,50	5,70				-		39,0	44,3		< 248,5	15,4	16,7		< 27,1
7	15,00	2				Verifica	Fatica	3,30	5,70		Fatica	3,57	5,70				-		39,1	42,4		< 248,5	15,7	17,0		< 27,1
8	17,50	2				Verifica	Fatica	3,38	5,70	I	Fatica	3,66	5,70				-		56,9	57,4		< 248,5	16,1	17,4		< 27,1
9	20,00	2				Verifica	Fatica	3,48	5,70	I	Fatica	3,77	5,70				-		75,0	73,0		< 248,5	16,5	17,9		< 27,1
10	22,50	2				Verifica	Fatica	3,62	5,70	I	Fatica	3,92	5,70				-		93,2	88,9		< 248,5	17,2	18,6		< 27,1
11	25,00	2				Verifica	Fatica	3,81	5,70		Fatica	4,12	5,70				-		111,7	105,0		< 248,5	18,1	19,6		< 27,1
12	27,50	3				Verifica	Fatica	3,55	5,70		Fatica	4,47	5,70				-		115,2	127,6		< 248,5	16,9	21,3		< 27,1
13	30,00	3				Verifica	Fatica	3,79	5,70		Fatica	4,73	5,70				-		132,0	144,5		< 248,5	18,0	22,5		< 27,1
14	32,50	4				Verifica	Fatica	3,97	5,70		Fatica	4,98	5,70				-		146,6	160,7		< 248,5	18,9	23,7		< 27,1
15	32,50	4				Verifica	Fatica	3,09	5,70		Fatica	3,88	5,70				-		116,6	128,4		< 248,5	14,7	18,4		< 27,1
16	35,00	3				Verifica	Fatica	2,97	5,70		Fatica	3,71	5,70				-		101,6	112,1		< 248,5	14,1	17,7		< 27,1
17	37,50	3				Verifica	Fatica	2,60	5,70		Fatica	3,29	5,70				-		83,1	93,1		< 248,5	12,4	15,6		< 27,1
18	40,00	J 5 J				Verifica	Fatica	2,56	5,70		Fatica	2,87	5,70				-		72,0	71,3		< 248,5	12,2	13,6		< 27,1
19	42,50	J 5 J				Verifica	Fatica	2,41	5,70		Fatica	2,69	5,70				-		52,9	53,9		< 248,5	11,4	12,8		< 27,1
20	45,00	5				Verifica	Fatica	2,50	5,70	I	Fatica	2,80	5,70			I	-		34,8	39,8		< 248,5	11,9	13,3		< 27,1
21	47,00	J 5 J				Verifica	Fatica	2,80	5,70		Fatica	3,13	5,70				-		44,9	53,7		< 248,5	13,3	14,9		< 27,1
22	49,00	5				Verifica	Fatica	3,29	5,70		Fatica	3,66	5,70				-		61,4	68,4		< 248,5	15,7	17,4		< 27,1
23	51,00	5				Verifica	Fatica	3,85	5,70			4,24	5,70				-		78,5	83,6		1	18,3	20,2		< 27,1
24	52,70	5				Verifica	Fatica	4,34	5,70	I	Fatica	4,74	5,70			I	-		92,8	96,2		< 248,5	20,6	22,5		< 27,1

Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 62 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

4.6 Verifica di stabilità delle piattabande delle travi principali

In esercizio, il rischio di sbandamento è limitato alle piattabande inferiori compresse nelle zone di momento negativo in prossimità degli appoggi intermedi. La presenza della soletta, infatti, permette di trascurare la deformabilità globale della struttura. I telai trasversali, costituiti dai traversi, dai montanti e da un tratto collaborante di soletta, si oppongono allo sbandamento e rappresentano vincoli elastici discreti per l'ala inferiore della trave. La verifica di stabilità per la modalità laterotorsionale (LT) è condotta in accordo con le indicazioni delle Norme Europee UNI EN 1993-1-1:2005 e UNI EN 1993-2:2007 (riprese anche al punto 4.2.4.1.3.2 del nuovo DM 14/01/2008), determinando il momento resistente di progetto ridotto per instabilità

$$M_{b,Rd} = \frac{\chi_{LT} \cdot W_y \cdot f_{yk}}{\gamma_{M1}}$$
 (design buckling resistance moment).

con

- χ_{LT} coefficiente di riduzione per l'instabilità flesso-torsionale
- γ_{M1} coefficiente parziale di sicurezza allo Stato Limite Ultimo per instabilità pari a 1,1 per membrature di ponti stradali e ferroviari
- $-W_{v}$
- \circ $W_{pl,y}$ per sezioni trasversali di classe 1 o 2
- o $W_{el,y}$ per sezioni trasversali di classe 3
- o $W_{eff,y}$ per sezioni trasversali di classe 4;

 $(W_{pl,y}$ è il modulo di resistenza plastico della sezione - $W_{el,y}$ è il modulo di resistenza elastico - $W_{eff,y}$ è il modulo di resistenza efficace).

Il valore di χ_{LT} , per piattabande compresse di travi continue, è determinato secondo le indicazioni della norma UNI EN 1993-2 a partire dal calcolo di N_{cr} della piattabanda stessa elasticamente vincolata. Il coefficiente χ_{LT} vale

$$\frac{1}{\phi_{LT} + \left[\phi_{LT}^2 - \beta \overline{\lambda}_{LT}^2\right]^{0.5}} \le \begin{cases} 1\\ 1/\lambda_{LT}^2 \end{cases}$$

Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380
Relazione di Calcolo Impalcato
Pagina 63 di 139
Nome file: CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

con $\phi_{LT} = 0.5 \cdot \left[1 + \alpha_{LT} \left(\overline{\lambda}_{LT} - \overline{\lambda}_{LT,0}\right) + \beta \overline{\lambda}_{LT}^2\right]$ e, per sezioni laminate o sezioni saldate equivalenti, i valori consigliati dei parametri $\overline{\lambda}_{LT,0}$ e β valgono rispettivamente 0,2 e 1.

Le curve di stabilità da utilizzare sono funzione della snellezza della sezione (h/b) e sono scelte in base alla seguente tabella.

Sezione trasversale	Limiti	Curva di instabilità
Sezioni a I laminate	$h/b \le 2$	a
Sezioni a i ianniate	h/b > 2	b
Sezioni a I saldate	h/b ≤ 2	С
Sezioni a i saidate	h/b > 2	d

Tabella 4.4 - Curve di stabilità in funzione delle tipologie di sezione

Il coefficiente α_{LT} per la curva di stabilita utilizzata (d) è pari a 0,76. Secondo il punto 6.3.2.2 (4) di UNI EN 1993-1-1:2005, per valori della snellezza adimensionalizzata $\overline{\lambda}_{LT} \leq \overline{\lambda}_{LT,0}$ gli effetti dell'instabilità flesso-torsionale possono essere ignorati e si applicano solo verifiche di resistenza della sezione trasversale (la stabilità non pregiudica la resistenza e si usa il coefficiente parziale di sicurezza γ_{M0}).

Il valore della snellezza adimensionalizzata per la piattabanda compressa è determinato dalla seguente relazione

$$\overline{\lambda}_{LT} = \sqrt{\frac{A_{eff} f_{yk}}{N_{cr}}} = \sqrt{\frac{f_{yk}}{\sigma_{cr}}}$$

in cui, a favore di sicurezze, considerando un valore maggiorato dell'area di sezione compressa $A_{eff} = \left[A_{eff,f} + \frac{A_{eff,w}}{3}\right]$, in cui alla sezione efficace della piattabanda è aggiunto un terzo

della parte di anima. Questo contributo, infatti, aumenta il valore della sollecitazione nel corrente, senza che l'inerzia della piattabanda subisca variazioni significative. Il valore di N_{cr} è determinato mediante uno schema di asta su appoggi elastici discreti posti in corrispondenza dei telai trasversali. Il modello di trave su appoggi elastici è relativo all'intero sviluppo della piattabanda inferiore, sottoposta ad una sollecitazione assiale variabile secondo l'andamento delle sollecitazioni flettenti globali.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 64 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

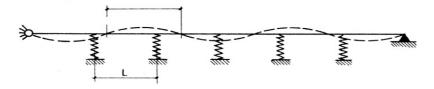


Figura 4.5- Schema di asta su appoggi elastici discreti

La rigidezza (k) della molla, valutata su un semplice schema a telaio (costituito dal traverso, dal montante e dalla soletta collaborante), è pari al minore dei due valori trovati per le modalità di sbandamento simmetrico ed antisimmetrico. Il valore della rigidezza elastica è variabile, ed è legato alla tipologia del telaio trasversale.

4.6.1 Caratteristiche geometriche del corrente inferiore compresso e dei telai trasversali

La piattabanda inferiore compressa presenta le seguenti larghezze e spessori, lungo il proprio sviluppo:

- 900X30 mm
- 900X35 mm
- 900X40 mm

La rigidezza dei vincoli elastici intermedi è funzione della tipologia del telaio trasversale e, per l'impalcato in questione, il valore (k) della costante elastica della molla assume i seguenti valori:

rigidezza telaio di appoggio (pila e spalla) = 67114 kN/m $K_{\text{tipo D1}}$

rigidezza telaio corrente $K_{\text{tipo D2}}$ = 109829 kN/m

CORRIDOIO PLURIMODALE TIRRENICO-NORD EUROPA ITINERARIO AGRIGENTO -CALTANISSETTA-A19 S.S. N° 640 "DI PORTO EMPEDOCLE" AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Relazione di Calcolo Impalcato

Pagina 65 di 139

Nome file:
CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

Opera: CV08 Cavalcavia alla progr. 19+380

Progetto Esecutivo

4.6.2 Verifica di stabilità: zona in prossimità dell'appoggio su pila 1

La deformata riportata nella seguente immagine è relativa alla prima configurazione critica, associata al valore della forza assiale critica N_{crit} di progetto (riportato in tabella seguente).

Figura 4.6 – Configurazione critica per l'appoggio analizzato

Pila	n =	1
Ascissa	X =	32,50 [m]
modulo elastico acciaio	E =	206000 [MPa]
altezza trave	h =	180,0 [cm]
area anima	$A_n =$	347,0 [cm ²]
area totale	A _a =	857,0 [cm ²]
posizione baricentro (G _a)	Y _a =	77,80 [cm]
Inerzia rispetto a Ga	l _a =	4723941 [cm ⁴]

Tensioni sulla trave metallica		
tensione limite acciaio piattabanda SUP.	$\sigma_y =$	355 [MPa]
tensione limite acciaio anima	$\sigma_y =$	355 [MPa]
tensione limite acciaio piattabanda INF.	$\sigma_y =$	355 [MPa]
tensione fibra D (superiore)	σ_{Ed} =	258,4 [MPa]
tensione fibra A (inferiore)	σ_{Ed} =	-246,6 [MPa]
asse neutro	$Y_0 =$	87,90 [cm]
tensione a livello baricentro Y _a	$\sigma_{sYa} =$	-28,3 [MPa]
forza assiale	$N_{Ed} =$	-2427 [kN]
momento flettente	$M_{Ed} =$	-13253 [kNm]

Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380
Relazione di Calcolo Impalcato
Pagina 66 di 139
Nome file: CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

Verifica di stabilità asta compressa		
area corrente inf. compresso	$A_{tot} =$	368,0 [cm ²]
tensione media piatt. Inferiore	$\sigma_{\rm m}$ =	-241,7 [MPa]
	$\alpha_{\text{ult,k}} =$	1,469
forza assiale critica	N _{cr} =	204154 [kN]
tensione critica	σ_{cr} =	5547,7 [MPa]
snellezza critica	λ_{cr} =	19
forza assiale snervamento	$N_y =$	13064,0 [kN]
snellezza adimensionale	$\lambda_{LT} =$	0,253
	λ _{LT0} =	0,2
	β =	1
	$\alpha_{LT} =$	0,76
	Φ_{LT} =	0,552
fattore di riduzione per LTB	$\chi_{LT} =$	0,959
coefficiente parziale	$\gamma_{M1} =$	1,10
coefficiente parziale	$\gamma_{M0} =$	1,05
tensione limite	$\sigma_{\lambda LT} =$	-309,5 [MPa]
$(\chi_{op} \times \alpha_{ult,k})/\gamma_{M1}$		1,280
verifica		OK

Gli effetti del secondo ordine e delle imperfezioni costruttive sui telai trasversali correnti può essere tenuto in conto applicando una forza laterale aggiuntiva pari a

$$F_{ED} = \frac{N_{ED}}{100} \qquad se \ l_k \le 1,2l$$

$$F_{ED} = \frac{l}{l_k} \frac{N_{ED}}{80} \frac{1}{1 - \frac{N_{ED}}{N_{cr}}} \qquad se \ l_k > 1,2l$$

con $l_k = \sqrt{\frac{EJ}{N_{crit}}}$ e *l* distanza tra gli appoggi elastici (nelle zone in prossimità dell'appoggio).

Forze sugli elementi secono	dari		
Interasse appoggi elastici	1	450,0	cm
Lunghezza inflessione	l _k	847,3	cm
Forza trasversale sui telai correnti	F _{Ed}	92,7	kN

CORRIDOIO PLURIMODALE TIRRENICO-NORD EUROPA ITINERARIO AGRIGENTO -CALTANISSETTA-A19 S.S. N° 640 "DI PORTO EMPEDOCLE" AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380
Relazione di Calcolo Impalcato
Pagina 67 di 139

Nome file:
CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

4.7 Verifica dei telai traversali correnti (D2)

Il telaio trasversale corrente è costituito dai due montanti verticali E dalla trave di collegamento (traverso) con sezione doppio T (si veda la seguente figura).

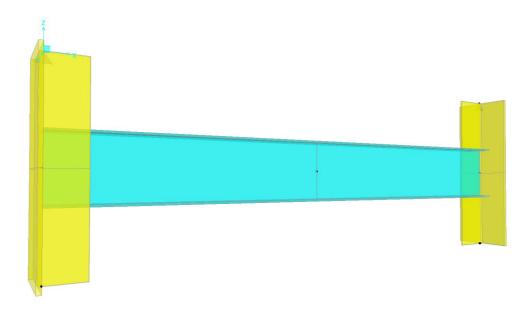


Figura 4.7 – Telaio trasversale corrente

Al telaio corrente è affidato il compito di impedire la stabilità delle piattabande compresse delle travi principali. Per tali motivi nel seguito si riportano le verifiche di resistenza degli elementi costituenti il traverso stesso, per la combinazione di carico che prevede l'azione instabilizzante della piattabanda e l'azione del vento. Il modello agli elementi finiti utilizzato considera le aste come elementi tipo "beam", con vincoli esterni a simulare le reali condizione di connessione. Alle singole aste è associato il relativo valore del coefficiente (b) in modo da stimare adeguatamente la lunghezza libera di inflessione nel piano del telaio stesso e fuori dal piano.

Le verifiche di resistenza, sotto lo stato di sollecitazione combinato di flessione, trazione/compressione e taglio, sono effettuate per tutte le sezioni del traverso, dei diagonali e dei montanti verticali. Le verifiche di resistenza nel caso di elementi compressi tengono conto degli effetti dovuti all'instabilità assiale secondo le indicazioni de DM 14.01.2008 al punto 4.2.4.1.3.3 per membrature inflesse e compresse.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 68 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

4.7.1 Verifica del montante verticale

Nel prospetto seguente si riportano le verifica nella sezione maggiormente sollecitata del montante verticale, per la combinazione di progetto.

Eurocode 3-2005 STEEL SECTION CHECK

Combo : COMB2 Units : KN, m, C

Frame : 5 X Mid : 0,000 Y Mid : 0,000 Z Mid : -1,350 Length : 0,900 Loc : 0,000	Desig Frame Sect	Class : Clas	umn ent Resisting ss 3 00 degrees co		ise from local	L 3
Area : 0,032 IMajor : 3,085E-04 IMinor : 0,001 Ixy : 0,000	SMino ZMajo	or: 9,166E-0 or: 0,003 or: 0,002 or: 0,004			AVM:	ajor: 0,007 inor: 0,022
STRESS CHECK FORCES	& MOMENTS					
Location	P	M33	M22	V2	V3	T
0,000	0,000	83,430	0,000	92,700	0,000	0,000
PMM DEMAND/CAPACITY	RATIO					
Governing	Total	P	MMajor	MMinor	Ratio	Status
Equation	Ratio	Ratio	Ratio	Ratio	Limit	Check
(6.2)	0,282	= 0,000	+ 0,282	+ 0,000	1,000	OK
AXIAL FORCE DESIGN						
	Ned	Nc,Rd	Nt,Rd	Nb33,Rd	Nb22,Rd	
	Force	Capacity	Capacity	Major	Minor	
Axial	0,000	8774,897	10751,429	8774,897	10262,727	
MOMENT DESIGN						
	Med	Mc,Rd	Mv,Rd	Mb,Rd		
	Moment	Capacity	Capacity	Capacity		
Major Moment	83,430	309,896	309,896	295,810		
Minor Moment	0,000	966,624	966,624			
	K	L	k	kzy	kyz	C1
	Factor	Factor	Factor	Factor	Factor	Factor
Major Moment	2,000	2,000	1,000	1,000		1,000
Minor Moment	0,100	2,000	1,000		1,000	
SHEAR DESIGN						
	Ved	Vc,Rd	Stress	Status	Ted	
	Force	Capacity	Ratio	Check	Torsion	
Major Shear	92,700	1402,783	0,066	OK	0,000	
Minor Shear	0,000	4212,057	0,000	OK	0,000	

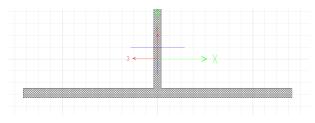


Figura 4.8 – Sezione del montante

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 69 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

4.7.2 Verifica del traverso

Eurocode 3-2005 STEEL SECTION CHECK

Nel prospetto seguente si riportano le verifica nella sezione maggiormente sollecitata del traverso, per la combinazione di progetto.

```
Combo : COMB1
Units : KN, m, C
Frame
                             Design Sect: traverso h=60
X Mid : 1,250
                             Design Type: Beam
                        Frame Type: Moment Resisting Frame
Sect Class: Class 3
Major Axis: 0.000 degrees country
Y Mid : 0,000
Z Mid : -0,900
                             Major Axis : 0,000 degrees counterclockwise from local 3
Length: 2,500
       : 0,000
                             RLLF
Loc
                                           : 1,000
                            SMajor : 0,003
Area
       : 0,016
                                                           rMajor : 0,247
                                                                                          AVMajor: 0,007
                             SMinor: 4,805E-04
ZMajor: 0,004
ZMinor: 7,404E-04
IMajor : 0,001
                                                            rMinor : 0,066
                                                                                          AVMinor: 0,009
IMinor : 7,208E-05
                                                           E : 210000000,00
Ixy
        : 0,000
                                                           Fv
                                                                    : 355000,000
STRESS CHECK FORCES & MOMENTS
                                                  M22
0,000
    Location
                                            M33
                                                                          V2
                          0,000
                                                                 -66,744
    0.000
                                     -166,860
                                                                                     0,000
                                                                                                   0.000
PMM DEMAND/CAPACITY RATIO
                           Total P MMajor Ratio Ratio 0,295 = 0,000 + 0,295
                                                                   MMinor
    Governing
                                                                                     Ratio
                                                                                                  Status
                                                                 Ratio
+ 0,000
    Equation
     (6.62)
                           0,295
                                                       0,295
                                                                                     1,000
                                       Nc,Rd Nc,...
Capacity Capacity
AXIAL FORCE DESIGN
                             Ned Nc,Rd
Force Capacity
                                                       Nt,Rd Nb33,Rd Nb22,Rd
                           Force
                                                                       Major
                                                                                     Minor
                                                                               4484,525
                                                                  5123,201
    Axial
                           0,000
MOMENT DESIGN
                             Med
                                         Mc,Rd
                                                        Mv,Rd
                                                                      Mb, Rd
                                   Capacic,
1129,226
162,470
                                                  Capacity
1129,226
162,470
                          Moment
                                                                   Capacity
    Major Moment
                       -166,860
                                                                   1077,898
    Minor Moment
                                     L K
Factor Factor
2,000 1,000
2,000 1,000
                               K
                                                                         kzy
                                                                                                        C1
                          Factor
                                                                    Factor
                                                                                  Factor
                                                                                                  Factor
    Major Moment
                            1,000
                                                                       1,000
                                                                                                    1,000
    Minor Moment
                           0,500
                                                                                     1,000
SHEAR DESIGN

        Vc,Rd
        Stress
        Status

        apacity
        Ratio
        Check

        386,939
        0,048
        OK

        600,546
        0,000
        OK

                             Ved
                                                                                       Ted
                                                                                 Torsion
                           Force
                                      Capacity
1386,939
                                                                     OK
                                                                                 0,000
                          66,744
    Major Shear
    Minor Shear
                           0,000
                                      1692,546
                                                        0,000
                                                                          OK
                                                                                      0,000
CONNECTION SHEAR FORCES FOR BEAMS
                                       VMajor
                          VMajor
                            Left
                                          Right
    Major (V2)
                          66,744
                                         66,744
```


Figura 4.9 – Sezione del traverso

CORRIDOIO PLURIMODALE TIRRENICO-NORD EUROPA ITINERARIO AGRIGENTO -CALTANISSETTA-A19 S.S. N° 640 "DI PORTO EMPEDOCLE" AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380 Relazione di Calcolo Impalcato

Pagina 70 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

4.8 Verifica del traverso di pila

Le verifiche di resistenza sono effettuate per il traverso ed il montante.

Le verifiche sono condotte nelle seguenti situazioni:

- condizione sismica;
- condizione di sollevamento dell'impalcato.

Nel primo caso le sollecitazioni di progetto sono quelle derivanti dall'azione sismica schematizzata da due forze Hs agenti a livello della soletta (vedere Figura 4.10), definite come le massime azioni orizzontali trasversali trasmesse dai dispositivi d'isolamento.

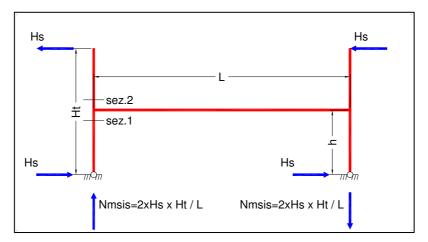


Figura 4.10 – Schematizzazione a telaio per il calcolo delle sollecitazioni sismiche sul traverso di pila

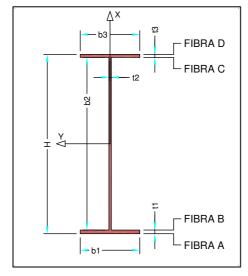


Figura 4.11 – Sezione del traverso

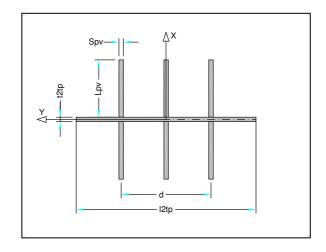


Figura 4.12 – Sezione del montante

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 71 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

RIFERIMENTO: TRAVERSO di PILA - SITUAZIONE SISMICA			
GEOMETRIA DEL TRAVERSO E TELAIO DI PILA			
Altezza del traverso	Н		[cm]
Larghezza della piattabanda superiore	b3		[cm]
Spessore piattabanda superiore	t3		[cm]
Altezza dell'anima	b2		[cm]
Spessore dell'anima	t2		[cm]
Larghezza della piattabanda inferiore	b1		[cm]
Spessore piattabanda inferiore	t1		[cm]
Area della sezione trasversale	A		[cmq]
Luce del traverso	L	500	[cm]
Altezza della trave principale	Ht	180	[cm]
Posizione asse traverso ripetto estremo inferiore trave	h	90,00	[Cm]
AZIONE VERTICALE SUI MONTANTI			
Reazione dell'appoggio per peso carpenteria metallica	Rcm	-27700	[daN]
Reazione dell'appoggio per peso della soletta	Rsol	-135200	[daN]
Reazione dell'appoggio per peso azioni permanenti	Rperm	-70800	[daN]
Azione verticale totale sul montante	Nmstat	-233700	[daN]
AZIONE SISMICA			
Rigidezza dell'isolatore	ke	3,28	[kN/mm]
Spostamento massimo dell'isolatore	d2_max	150	[mm]
Azione derivante dal singolo dispositivo	Hs	49200	[daN]
SOLLECITAZIONI SISMICHE SUL TRAVERSO			
Posizione sezione di verifica dall'asse della trave	X	0,0	[cm]
Momento flettente	Mtsis		[daNm]
Taglio	Ttsis	35424	[daN]
Forza assiale	Ntsis	0	[daN]
SOLLECITAZIONI SISMICHE SUL MONTANTE			
Distanza della sezione d'incastro da asse traverso	dinc	0,00	[cm]
Momento flettente [1]-[2] sezione 1	Mmsis1	-44280	[daNm]
Momento flettente [1]-[2] sezione 2	Mmsis2	44280	[daNm]
Taglio sezione 1	Tmsis1	-49200	
Taglio sezione 2	Tmsis2		[daN]
Forza assiale sezione 1	Nmsis1	-35424	[daN]
Forza assiale sezione 2	Nmsis2	0	[daN]
VERIFICA DI RESISTENZA DEL TRAVERSO			
CARATTERISTICHE D'INERZIA DEL TRAVERSO			
Posizione del baricentro (rispetto estremo inferiore)	X	40,00	[cm]
Momento centrale d'inerzia	Jx	294627	[cm^4]
Modulo di resistenza fibra D	WD	-7365,68	
Modulo di resistenza fibra C	WC	-7753,35	
Modulo di resistenza fibra B	WB		[cm^3]
Modulo di resistenza fibra A	WA	7365,68	[cm^3]
SOLLECITAZIONI DI PROGETTO		00560	F 1 2 2
Momento flettente	Mt		[daNm]
Taglio	Tt	35424,0	[daN]
Forza assiale	Nt	0,0	[daN]

Tensione normale su fibra A..... σA

-1202,33 [daN/cmq]

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 72 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

Tensione su fibra B	σВ	-1142,22	[daN/cmq]			
Tensione tangenziale su fibra B	τΒ	-332,93	[daN/cmq]			
Tensione su fibra C	σC	1142,22	[daN/cmq]			
Tensione tangenziale su fibra C	τC	-332,93	[daN/cmq]			
Tensione su fibra D	σD	1202,33	[daN/cmq]			
Tensione ideale su fibra A	σidA	1202,33	_	<	3381	[daN/cmq]
Tensione ideale su fibra B	σidB	1279,53	[daN/cmq]	<	3381	[daN/cmq]
Tensione ideale su fibra C	σidC	1279,53	[daN/cmq]	<	3381	[daN/cmq]
Tensione ideale su fibra D	σidD	1202,33	[daN/cmq]	<	3381	[daN/cmq]
VERIFICA DI RESISTENZA DEL MONTANTE						
Lunghezza piatti verticali	Lpv	40	[cm]			
Spessore piatti verticali	Spv	3,5	[cm]			
Distanza fra i piatti verticali esterni	d		[cm]			
Spessore dell'anima della trave principale	t2tp		[cm]			
Lunghezza collaborante dell'anima	12tp		[cm]			
Area della sezione traversale	Am	1060	[cmq]			
Momento centrale d'inerzia	Jx	482513,3	[cm^4]			
		3				
Posizione della sezione di verifica 1	x1	1	[cm]			
Modulo di resistenza della sezione 1	W1	482513,3	[cm^3]			
		3				
Momento statico per il calcolo delle tensioni tangenziali	Sx*1	-8820	[cm^3]			
Lunghezza della corda per il calcolo delle tens. tang	b1	10,5	[cm]			
Posizione della sezione di verifica 2	x2	-41	[cm]			
Modulo di resistenza della sezione 2	W2	11768,62	[cm^3]			
Momento statico per il calcolo delle tensioni tangenziali	Sx*2	0,00	[cm^3]			
Lunghezza della corda per il calcolo delle tens. tang	b2	10,5	[cm]			
SOLLECITAZIONI DI PROGETTO	SEZIONE:	[1]				
Momento flettente	Mm	-44280	[daNm]			
Taglio	Tm	-49200	[daN]			
Forza assiale	Nm	-269124	[daN]			
TENSIONI						
Tensione normale su sezione x1	σ1	-244,71	[daN/cmq]			
Tensione tangenziale su sezione x1	τ1	85,65	[daN/cmq]			
Tensione ideale su sezione x1	σid1	286,17	[daN/cmq]	<	3381	[daN/cmq]
Tensione normale su sezione x2	σ2	-630,15	[daN/cmq]			
Tensione tangenziale su sezione x2	τ2	0,00	[daN/cmq]			
Tensione ideale su sezione x2	σid2	630,15	[daN/cmq]	<	3381	[daN/cmq]

Nella condizione di sollevamento dell'impalcato le sollecitazioni sul traverso di pila sono determinate tramite un'analisi statica lineare eseguita su un modello agli elementi finiti in cui il telaio di pila è schematizzato con elementi di tipo "beam". Nella Figura 4.13 è riportata una vista del modello di calcolo utilizzato.

CORRIDOIO PLURIMODALE TIRRENICO-NORD EUROPA ITINERARIO AGRIGENTO -CALTANISSETTA-A19 S.S. N° 640 "DI PORTO EMPEDOCLE" AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19 **Progetto Esecutivo** Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Nome file:

Pagina 73 di 139

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

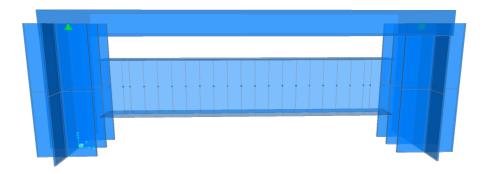


Figura 4.13 – Modello "beam" per il calcolo delle sollecitazioni dovute al sollevamento sul traverso di pila

Le verifiche di resistenza del traverso nella situazione di sollevamento sono riportate di seguito:

SEZIONE DI MEZZERIA

CARATTERISTICHE MECCANICHE	ACCIAIO								
Coeff. parziale acciaio	gM0 =	1,05							
Coeff. parziale acciaio	gM1 =	1,10							
Tens. snervamento anima	fyw =	3550	Kg/cm2						
Tens. Snerv. flangia sup.	fyfs =	3550	Kg/cm2						
Tens. Snerv. flangia inf.	fyfi =	3550							
TRAVE IN ACCIAIO									
Posiz. baricentro (Ga)	Ya =	39,8	cm						
Inerzia rispetto a Ga	Ia =	294266,8	cm4						
				-+					
SEZIONI TIPO				- 1					
Azione		Acciaio +							
		259							
Posiz. baricentro (G)	Yi.	40,00	cm	-1					
Inerzia rispetto a G	Ii.	294627	cm4	-					
Modulo p.to D	Wi,D	-7322	cm 3	-1					
Modulo p.to C	Wi,C	-7705	cm 3	-1					
Modulo p.to B	Wi,B	7783	cm 3	-1					
Modulo p.to A		7392							
CA	RICHI					Momento			
						M [kNm]			_
(1) Azione sollevamento	impalcato			I	-1409,0	-370,0	0,0	1,35	5
				-+-		+	+	-+	+
SOLLECIT		 				ENSIONI [daN			
++									
[kN] [kN									

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 74 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

| (1) | -1902,2 | -499,5 | 0,0 | -1422 | -1387 | -88 | -54 | 0 | 0 | 0 | 0 | VERIFICA DI RESISTENZA ALLO SLU 1422 daN/cm² < 3381 daN/cm² VERIFICA POSITIVA Tensione normale massima SEZIONE DI ESTREMITA' CARATTERISTICHE MECCANICHE ACCIAIO Coeff. parziale acciaio gM0 =1,05 Coeff. parziale acciaio gM1 = 1,10 Tens. snervamento anima fyw = 3550 Kg/cm2 Tens. Snerv. flangia sup. fyfs = 3550 Kg/cm2 Tens. Snerv. flangia inf. fyfi = 3550 Kg/cm2 TRAVE IN ACCIATO Inerzia rispetto a Ga Ia = 371448,0 cm4 SEZIONI TIPO | | 5 |
Azione | | Acciaio | | Area | Wi,D | | Modulo p.to D -9286 | cm³ | | Modulo p.to C | Wi,C | $-9775 \mid cm^3 \mid$ | Wi,B | 9775 | cm³ | | Modulo p.to B 9286 | cm³ | | Modulo p.to A | Wi,A | +----+ CARICHI | F. Ass. | Momento | Taglio | Coeff. | Sez. | | N [kN] | M [kNm] | V [kN] | combo | tipo | 2340,0 | 1,35 | | -1409,0 | -369,0 | (1) Azione sollevamento impalcato SOLLECITAZIONI | TENSIONI [daN/cm2] |N × Coeff. |M × Coeff. |V × Coeff. | Fibra | Fibra | Fibra | Fibra | Fibra | Arm. | Anima | | [kN] | [kNm] | [kN] | A | B | C | D | E | F | Af1 | BC | _____+____

VERIFICA DI RESISTENZA ALLO SLU

| (1) | -1902,2 | -498,2 | 3159,0 | -983 | -956 |

Tensione ideale su anima

2269 daN/cm² < 3381 daN/cm²

63 | 90 |

0 |

VERIFICA POSITIVA

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 75 di 139

CORRIDOIO PLURIMODALE TIRRENICO-NORD EUROPA ITINERARIO AGRIGENTO -CALTANISSETTA-A19 S.S. N° 640 "DI PORTO EMPEDOCLE" AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+38	0
--	---

Relazione di Calcolo Impalcato

Pagina 76 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

5 Verifica della soletta in calcestruzzo armato

5.1 Verifiche delle predalles

5.1.1 Predalle L=10,00 m - Verifiche di resistenza

Si riportano la verifiche della sezione dello sbalzo e della sezione di campata per le predalle dotate di tralicci HD 12/16/10, H = 20.5 cm.

Verifica predalle in fase di autoportanza: Campata

DATI GEOMETRICI

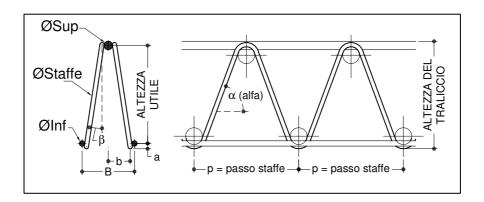
Interasse tra le travi i = 500	[cm]
Lunghezza dello sbalzo 1 = 250	[cm]
Largh. piattabanda superiore SX b3s = 65	[cm]
Largh. piattabanda superiore DX b3d = 65	[cm]
Lunghezza della zona di getto da	
filo piattabanda sullo sbalzo Lg = 90	[cm]
Lungh. di calcolo getto sbalzo Lcgs = 95	[cm]
Lunghezza di calcolo sbalzo Lcs = 222,5	[cm]
Luce netta predalle in campata Ln = 435	[cm]
Distanza fra la linea d'appoggio	
della predalle e filo piattabanda = 5	[cm]
Luce di calcolo campata Lc = 383,5	[cm]
Distanza di appoggio su piattabanda 7,5	[cm]

CARATTERISTICHE DEL TRALICCIO Tipo 11 Tipo 22

Altezza del traliccio Ht =	20,5	[cm]
Øsup =	16	[mm]
Øinf =	12	[mm]
Østaffe =	10	[mm]
n° tralicci/lastra =	5	
Parametro a =	4	[mm]
Altezza utile traliccio Hu =	18,7	[cm]
Angolo alfa α =	70	(°)
Angolo beta β =	9	(°)
Passo delle staffe p =	20	[cm]
Larghezza base traliccio B =	10	[cm]
Larghezza b =	3,3	[cm]

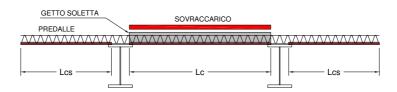
AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001
Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo


Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 77 di 139


Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

ANALISI DEI CARICHI

	Peso	Lp Carico	coeff tot parz
	[daN/m²]	[m] [daN/m] combo [daN/m]
Peso della soletta Wc	= 600 x	1,2 = 720	x 1,35 = 972
Peso della predalle Wp	= 144 x	1,2 = 173	x 1,35 = 234
Peso delle armature Wa	= 60 x	1,2 = 72	x 1,35 = 97
Sovrac. Personale e attrezzature Wacc	= 75 x	1,2 = 90	x = 1,5 = 135
		Carico	totale = 1438
	[daN/ml]	[m] [daN]	[daN]
Peso della veletta Wv	= 97,5 x	1,2 = 117	x 1,35 = 158

Il peso proprio della predalle e delle armature sono stati considerati distribuiti per l'intera lunghezza della predalle, compresi gli sbalzi, mentre il carico del getto fluido e i sovraccarichi dovuti a personale e attrezzature sono stati considerati distribuiti solamente nella campata centrale.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 78 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

Il momento flettente nella sezione di mezzeria della campata è pertanto pari al momento dovuto al carico totale, calcolato su uno schema a trave appoggiata, diminuito del contributo del momento negativo dei carichi agenti sugli sbalzi (peso proprio predalle + peso armature).

SOLLECITAZIONI

Momento flettente	M =	1824	[daNm]
Taglio	T =	2757	[daN]
Forza assiale	N =	9754	[daN]
Forza assiale sulle staffe	S =	1485	[daN]

VERIFICA A TRAZIONE CORRENTI INFERIORI

```
Armature in esercizio inferiori ...... = 5 \varnothing 20

Armature in esercizio inferiori ...... = 0 \varnothing 10

Area correnti inferiori ....... Asi = 27,01 \text{ [cm}^2\text{]}

Tensione armature ..... = 36,1 \text{ [N/mm}^2\text{]} < 391,3 \text{[N/mm}^2\text{]}
```

VERIFICA A COMPRESSIONE CORRENTI SUPERIORI

VERIFICA A COMPRESSIONE DELLE STAFFE

Legenda

- M = [(Carico tot \times Lc²) / 8] [(Wa + Wp) \times (Lcs)² / 2]
- $T = (Carico tot \times Lc) / 2$
- N = M / altezza utile del traliccio
- $-S = T/(2 \times sen(\alpha) \times cos(\beta))$, dove S è forza assiale su un braccio delle staffe dei tralicci posizionati sulla predalle

CORRIDOIO PLURIMODALE TIRRENICO-NORD EUROPA ITINERARIO AGRIGENTO -CALTANISSETTA-A19 S.S. N° 640 "DI PORTO EMPEDOCLE" AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08	Cavalcavia alla	progr. 19+380
-------------	-----------------	---------------

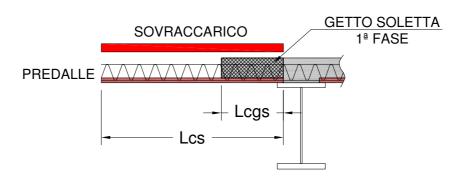
Relazione di Calcolo Impalcato

Pagina 79 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

- β il coefficiente che tiene conto delle condizioni di vincolo delle barre nella verifica di stabilità
- $-r = \emptyset / 4$ è il raggio d'inerzia delle armature compresse


Verifica predalle in fase di autoportanza: Mensola laterale

Il getto della soletta dell'impalcato verrà effettuato in due fasi distinte:

1a Fase: getto della zona centrale fra le travi principali e degli sbalzi per un tratto pari a 122,5 cm dall'asse della trave metallica;

2a Fase: completamento del getto degli sbalzi (da eseguirsi dopo che il calcestruzzo della 1a fase ha raggiunto la resistenza di 250 daN/cm²).

1^a Fase

DATI GEOMETRICI	
Lungheza dello sbalzo 1 = 250	0 [cm]
Larghezza piattabanda superiore b3 = 65	[cm]
Lunghezza predalle da filo	
piattabanda ad estremo sbalzo = 21	7,5[cm]
Distanza fra la linea d'appoggio	
della predalle e filo piattabanda = 5 [[cm]
Lunghezza di calcolo Sbalzo Lcs = 223	2,5[cm]
Lunghezza della zona di getto da	
filo piattabanda sullo sbalzo Lg = 90	[cm]
Lungh. di calcolo getto balzo Lcgs = 95	[cm]
CARATTERISTICHE DEL TRALICCIO	
Altezza del traliccio Ht = 20	,5[cm]
Øsup = 16	[mm]
Øinf = 12	[mm]
Østaffe = 10	[mm]
n° tralicci/lastra = 3	
Parametro a 4 [[mm]

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 80 di 139

Nome file: CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

Altezza utile traliccio Hu	=		18,7[cm]
Angolo alfa α	=		70 (°)
Angolo beta	=		9 (°)
Passo delle staffe p	=		20[cm]
Larghezza base traliccio B	=		10[cm]
Larghezza b	=		3,3[cm]
SOLLECITAZIONI			
Momento flettente M	=	-1944	[daNm]
Taglio T	=	2118	[daN]
Forza assiale N	=	10396	[daN]
Forza assiale sulle staffe S	=	1141	[daN]
VERIFICA A TRAZIONE CORRENTI SUPERIORI			
Area correnti inferiori Asi	=	6,03	[cm2]
Tensione armature	=	172,4	$[N/mm^2] < 391,3[N/mm^2]$
VERIFICA A COMPRESSIONE DELLE ARMATURE AGGIU	ľNI	IVE IN	FERIORI
Armature aggiuntive Øinf	=	20	[mm]
$\ensuremath{\text{n}^{\circ}}$ barre $\ensuremath{\text{n}}$	=	4	
Area armature aggiuntive Asi	=	12,57	$[cm^2]$
Coefficiente beta	=	1	
Luce L	=	50	[cm]
Lunghezza libera di inflessione LO	=	50	[cm]
Raggio d'inerza r	=	0,5	[cm]
Snellezza lambda	=	100	
Coefficiente	=	3,096	
Tensione armature	=	256,1	$[N/mm^2] < 391,3[N/mm^2]$
VERIFICA A COMPRESSIONE DELLE STAFFE			
Area di una staffa Asw	=	0,79	[cm²]
Coefficiente beta $\boldsymbol{\beta}$	=	0,9	
Lunghezza di una staffa Lsw	=	21,5	[cm]
Lunghezza libera di inflessione LO	=	19,4	[cm]
Raggio d'inerza r	=	0,25	[cm]
Snellezza lambda	=	78	
Coefficiente	=	2,179	
Tensione armature	=	104,9	$[N/mm^2] < 391,3[N/mm^2]$

Legenda

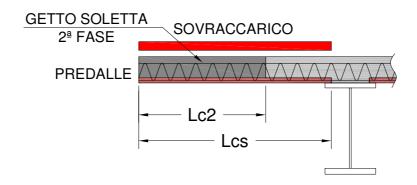
- M = Wc \times Lcgs² / 2 + (Wp + Wa + Wacc) \times Lcs² / 2 + Wv \times Lcs
- T = Wc \times Lcgs + (Wp + Wa + Wacc) \times Lcs + Wv

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001
Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08	Cavalcavia alla	progr.	19+380
-------------	-----------------	--------	--------

Relazione di Calcolo Impalcato


Pagina 81 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

- -N = M / altezza utile del traliccio
- $-S = T / (2 \times sen(\alpha) \times cos(\beta))$, dove S è forza assiale su un braccio delle staffe dei tralicci posizionati sulla predalle
- β il coefficiente che tiene conto delle condizioni di vincolo delle barre nella verifica di stabilità
- $-r = \emptyset / 4$ è il raggio d'inerzia delle armature compresse

2ª Fase

DATI GEOMETRIC	I		
Lunghezza di	calcolo	Lc2 =	127,5[cm]

SOLLECITAZIONI

Momento flettente	М	=	-1370	[daNm]
Taglio	Τ	=	1991	[daN]
Forza assiale	N	=	7326	[daN]
Forza assiale sulle staffe	S	=	1073	[daN]

VERIFICA A TRAZIONE CORRENTI SUPERIORI

Area correnti superiori	Asi =	6,03 [cm ²]
Tensione armature	=	121,5 [N/mm ²] < 391,3[N/mm ²]

VERIFICA A COMPRESSIONE DELLE STAFFE

Area di una staffa Asw	=	0,79	[Cm ²]
Coefficiente beta	=	0,9	
Lunghezza di una staffa Lsw	=	21,5	[cm]
Lunghezza libera di inflessione ${\tt L0}$	=	19,4	[cm]
Raggio d'inerza r	=	0,25	[cm]
Snellezza lamda	=	78	
Coefficiente	=	2,179	
Tensione armature	=	98,7	$[N/mm^2] < 391,3[N/mm^2]$

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 82 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

Legenda

- M = Carico totale \times Lc² / 2 + Wv \times Lc²
- $T = Carico totale \times Lc + Wv$
- N = M / altezza utile del traliccio
- S = T / $(2 \times \text{sen}(\alpha) \times \cos(\beta))$, dove S è forza assiale su un braccio delle staffe dei tralicci posizionati sulla predalle
- β il coefficiente che tiene conto delle condizioni di vincolo delle barre nella verifica di stabilità
- $-r = \emptyset / 4$ è il raggio d'inerzia delle armature compresse

Pagina 83 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

5.1.2 Predalle L=10,00 m - Verifica di deformabilità

Progetto Esecutivo

La verifica è condotta in conformità al punto C4.1.2.2.2 della Circolare n° 617/C.S.LL.PP secondo il quale la freccia puo calcolarsi secondo l'espressione:

$$f = \xi f_{fess} + (1 - \xi) f_{int}$$

dove:

- f_{fess} è la freccia calcolata in condizioni di sezione fessurata;
- f_{int} è la freccia calcolata in condizioni di sezione non fessurata;
- $\xi = 1 c\beta^2 con \beta = M_{cr} / M_{sd} [0 \le \beta \le 1];$
- M_{cr} è il momento di prima fessurazione.

			ERIFICA DELLA FRECCIA MASSIMA IN CAMPATA	V
d	n.Ø	Nun	1	
[cm]	nm]	[r		
26,8	16	5	Armature superiori traliccio =	
3,6	12	10	Armature inferiori traliccio =	
0	0	0	Armatura tipo 1 =	
	0	0	Armatura tipo 2 =	
	0	0	Armatura tipo 3 =	
2,8	5	8	Rete elettrosaldata =	
	cm]	6 [Spessore predalle in mezzeria =	

Calcolo dei momenti d'inerizia d	della sezio	ne omogen	eizzati a	ll'acciaio	
Momento d'inerzia J della sezione integra	3988,59	cm^4	EJ int.	8376,03	[kN x mq]
Momento d'inerzia J della sezione fessurata	1984,10	cm^4	EJ fess.	4166,60	$[kN \times mq]$
Elemento	J [cm^4]	A [cmq]	dint [cm]	dfess [cm]	pos. [cm]
Predalle	2160	720	-1 , 578	9,682	3
Armature superiori del traliccio	1,608	10,05	18,322	-10,218	22 , 9
Armature inferiori del traliccio	1,017	11,30	-0 , 978	9,082	3,6
Armatura aggiuntiva tipo 1	0	0	-4 , 578	12,682	0
Armatura aggiuntiva tipo 2	0	0	-4 , 578	12,682	0
Armatura aggiuntiva tipo 3	0	0	-4 , 578	12,682	0
Rete elettrosaldata	0,025	1,57	-1,778	9,882	2,8

Tabella 5.1 – Caratteristiche inerziali della predalle usate per il calcolo della freccia

Modulo elastico dell'acciaio [Es]	=	210000	[MPa]
Modulo elastico del calcestruzzo [Ecm 10gg]	=	31986	[MPa]
Coefficiente d'omogeneizzazione [n]	=	6,57	
Resistenza car. a trazione per flessione [fcfk]	=	2,60	[MPa]

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 84 di 139

Distanza fra correnti sup. e asse predalle [h] = 19,9 [cm]
Momento di prima fessurazione Mcr = 37,30 [kNm]
Coefficiente [c] = 1
Momento flettente di progetto [Msd max] = 19,39 [kNm]
Coefficiente [beta] = 1
Coefficiente [zeta] = 0
Deformazione massima = 0,00092 [cm] = Lc/1081
Deformazione limite = 0,355 [cm] = Lc/400
Esito verifica = POSITIVO

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Nome file:

Pagina 85 di 139

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

5.2 Verifiche di resistenza e fessurazione della soletta in esercizio

5.2.1 Tratto impalcato con larghezza L=10,00 m

Le verifiche di resistenza e fessurazione della soletta sono state condotte in base alle sollecitazioni determinate con un modello agli elementi finiti che la schematizza come un grigliato di aste con interasse 0,50 m appoggiato in corrispondenza delle travi principali.

I carichi di progetto considerati sono i seguenti:

•	peso proprio della soletta	$2500 \times 0.31 =$	775	daNm ⁻²
•	peso della pavimentazione stradale	$2000 \times 0,11 =$	220	$daNm^{-2}$
•	peso marciapiede e cordolo	$2500 \times 0,15 =$	400	$daNm^{-2}$
•	peso di ciascuna barriera tipo bordo ponte	=	100	$daNm^{-1}$
•	peso di ciascuna veletta	=	155	daNm ⁻¹

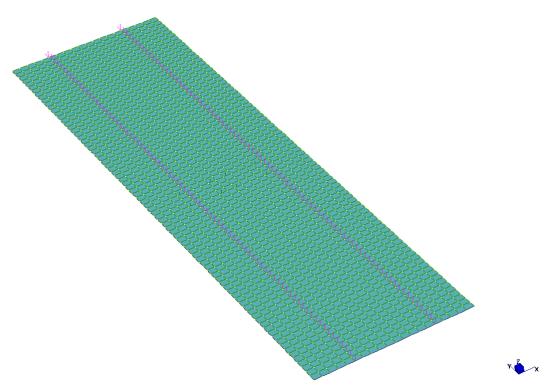


Figura 5.1 – Vista del modello agli elementi finiti

Opera: CV08 Cavalcavia alla progr. 19+380 Relazione di Calcolo Impalcato

Pagina 86 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

Progetto Esecutivo

Carichi mobili Q_{1k} e q_{1k} (schema di carico 1 di cui al paragrafo 5.1.3.3.5 delle NTC2008), disposti come da schemi successivi in modo da massimizzare le sollecitazioni.

Le sollecitazioni sono state determinate per le seguenti disposizioni longitudinali dei carichi tandem:

- carichi disposti nella generica sezione corrente dell'impalcato;
- carichi disposti in prossimità della testata dell'impalcato.

Per ognuna di tali disposizioni i carichi sono stati disposti trasversalmente sull'impalcato nelle configurazioni di carico così descritte:

- carico mobile sullo sbalzo (S) destro denominata configurazione S-DX1;
- carico mobile sullo sbalzo (S) sinistro denominata configurazione S-SX1;
- carico mobile in campata (C) denominate configurazione C1, C2, C3.

Le figure seguenti mostrano gli schemi delle configurazioni di carico sopra descritte.

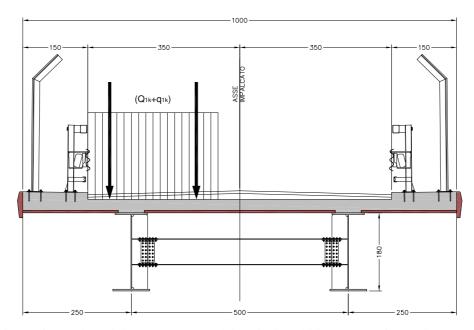


Figura 5.2 – Disposizione trasversale dei carichi mobili per la configurazione S-SX

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 87 di 139

Nome file:

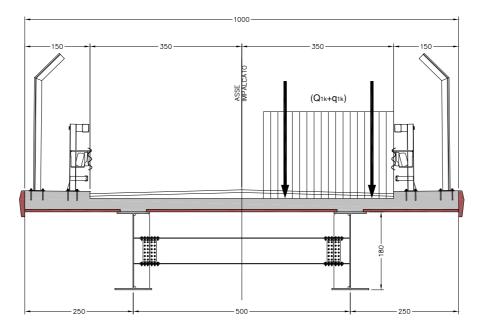


Figura 5.3 – Disposizione trasversale dei carichi mobili per la configurazione S-DX

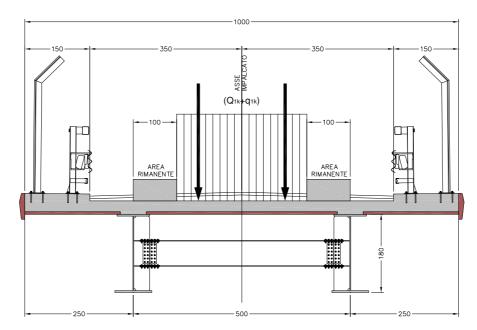


Figura 5.4 - Disposizione trasversale dei carichi mobili per la configurazione C1

CORRIDOIO PLURIMODALE TIRRENICO-NORD EUROPA ITINERARIO AGRIGENTO -CALTANISSETTA-A19 S.S. N° 640 "DI PORTO EMPEDOCLE" AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 88 di 139

Nome file:

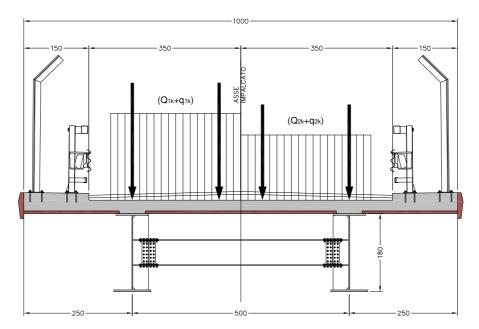


Figura 5.5 - Disposizione trasversale dei carichi mobili per la configurazione C2

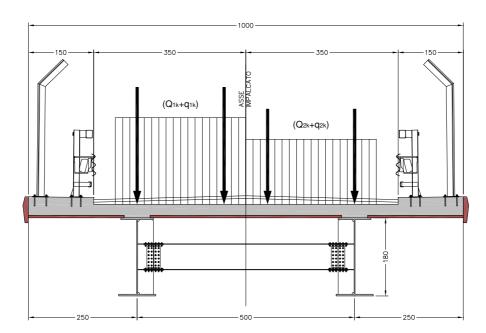


Figura 5.6 - Disposizione trasversale dei carichi mobili per le configurazioni C3

CORRIDOIO PLURIMODALE TIRRENICO-NORD EUROPA ITINERARIO AGRIGENTO -CALTANISSETTA-A19 S.S. N° 640 "DI PORTO EMPEDOCLE" AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 89 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

Per la realizzazione della soletta è previsto l'utilizzo di calcestruzzo classe Rck 40 MPa e acciaio tipo B450C.

Le sollecitazioni di progetto sono state ottenute combinando le condizioni elementari:

$$\underline{\text{SLU}}$$
 = 1,35 (g₁+ g₂) +1,35 q₁

- $\underline{\qquad \qquad \text{Combinazione RARA}}.... = g_1 + g_2 + q_1$
- _ Combinazione FREQUENTE = $g_1 + g_2 + 0.75 q_1$
- <u>Combinazione QUASI PERMANENTE</u> = g₁ + g₂

Le verifiche di resistenza e fessurazione sono state eseguite considerando le sollecitazioni derivanti dall'inviluppo di quelle ricavate per le varie configurazioni di carico mobile e per i carichi permanenti.

Le caratteristiche dei materiali e i parametri di calcolo usati nelle verifiche sono riassunti nella tabella successiva.

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 90 di 139

	ZO 		
Pogistonga gubiga garattoristiga a compressione	D ale	400	IdaN/ar-
Resistenza cubica caratteristica a compressione			[daN/cmq]
lungo termine	. alphacc	0,85	
Coefficiente parziale di sicurezza		1,5	
Resistenza di calcolo a compressione	. fcd	188,1	[daN/cmq]
Deformazione a snervamento	. epsc2	-0,002	
Deformazione a rottura	- L	-0,0035	
Resistenza cilindrica media a compressione			[daN/cmq
Resistenza media a trazione			[daN/cmq]
desistenza caratteristica a trazione			[daN/cmq]
desitenza media a trazione per flessione			[daN/cmq
Resistenza caratteristica a trazione per flessione		26,0 15	[daN/cmq]
Censione di snervamento	4	4500 1,15	[daN/cmq
odulo elastico dell'acciaio	. Es		
Modulo elastico dell'acciaio	. Es	2060000 0,01	[daN/cmq [daN/cmq
Modulo elastico dell'acciaio	Es epsyu metodo di	2060000 0,01 	SLU [daN/cmq
odulo elastico dell'acciaioeformazione a rottura TENSIONI DI RIFERIMENTO PER VERIFICHE IN ESERCIZIO assima tensione di compressione del cls in combinazione rara	Es epsyu metodo di oc oc	2060000 0,01 	SLU [daN/cmq [daN/cmq [daN/cmq
dodulo elastico dell'acciaioeformazione a rottura TENSIONI DI RIFERIMENTO PER VERIFICHE IN ESERCIZIO Massima tensione di compressione del cls in combinazione rara	Es epsyu metodo di oc oc	2060000 0,01 	SLU [daN/cmq [daN/cmq [daN/cmq
Iassima tensione di compressione del cls in combinazione rara	Es epsyu metodo di oc oc	2060000 0,01 	SLU [daN/cmq
TENSIONI DI RIFERIMENTO PER VERIFICHE IN ESERCIZIO Ilassima tensione di compressione del cls in combinazione rara	metodo di	2060000 0,01 verifica = 199,2 149,4 3600	[daN/cmq
Indulo elastico dell'acciaio	Es epsyu metodo di oc oc	2060000 0,01 verifica = 	SLU [daN/cmq [daN/cmq [daN/cmq
TENSIONI DI RIFERIMENTO PER VERIFICHE IN ESERCIZIO Massima tensione di compressione del cls in combinazione rara Massima tensione di compressione del cls in comb. quasi permanente Massima tensione di trazione nell'acciaio in combinazione rara LIMITI DI APERTURA DELLE FESSURE CONDIZIONI AMBIENTALI MOLTO AGGRESSIVE	metodo di oc oc oc ocs COMBINAZIONE DELLE AZIONI	2060000 0,01 verifica = 199,2 149,4 3600 wd: [mm]	SLU [daN/cmq [daN/cmq [daN/cmq
TENSIONI DI RIFERIMENTO PER VERIFICHE IN ESERCIZIO dassima tensione di compressione del cls in combinazione rara dassima tensione di compressione del cls in comb. quasi permanente dassima tensione di trazione nell'acciaio in combinazione rara LIMITI DI APERTURA DELLE FESSURE	Es epsyu metodo di σc σc σs COMBINAZIONE DELLE AZIONI frequente quasi perman	2060000 0,01 verifica = 199,2 149,4 3600 wd [mm] 0,4	SLU [daN/cmq [daN/cmq [daN/cmq
TENSIONI DI RIFERIMENTO PER VERIFICHE IN ESERCIZIO Massima tensione di compressione del cls in combinazione rara	metodo di oc oc os COMBINAZIONE DELLE AZIONI frequente quasi perman frequente	2060000 0,01 verifica = 199,2 149,4 3600 wd [mm] 0,4 0,3 0,3	SLU [daN/cmq [daN/cmq [daN/cmq
Asssima tensione di compressione del cls in combinazione rara Massima tensione di compressione del cls in comb. quasi permanente Massima tensione di trazione nell'acciaio in combinazione rara LIMITI DI APERTURA DELLE FESSURE CONDIZIONI AMBIENTALI ORDINARIE	Es epsyu metodo di σc σc σs COMBINAZIONE DELLE AZIONI frequente quasi perman	2060000 0,01 verifica = 199,2 149,4 3600 wd [mm] 0,4 0,3 0,3	SLU [daN/cmq [daN/cmq [daN/cmq

Opera: CV08 Cavalcavia alla progr. 19+380
Relazione di Calcolo Impalcato
Pagina 91 di 139
Nome file:
CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

5.2.1.1 Sintesi dei risultati delle verifiche nelle zone correnti dell'impalcato

Si riportano nel seguito, sotto forma di diagrammi ed in modo esteso per le sezioni più sollecitate, le verifiche di resistenza e fessurazione della soletta. I calcoli sono stati eseguiti con un programma su sezioni di larghezza 100 cm distanti fra loro 5 cm, in riferimento alla disposizione delle armature di cui alla Figura 5.8, tenendo conto a livello di ciascuna sezione dell'effettivo ancoraggio delle barre.

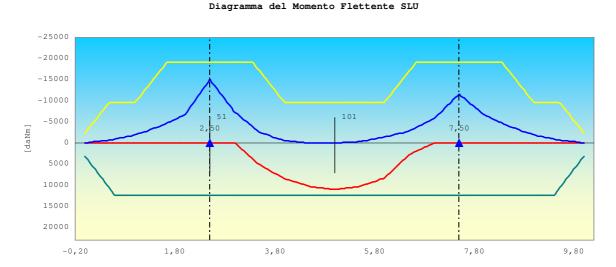


Figura 5.7 – Inviluppo delle sollecitazioni flettenti di progetto (SLU) e diagrammi dei momenti resistenti delle armature

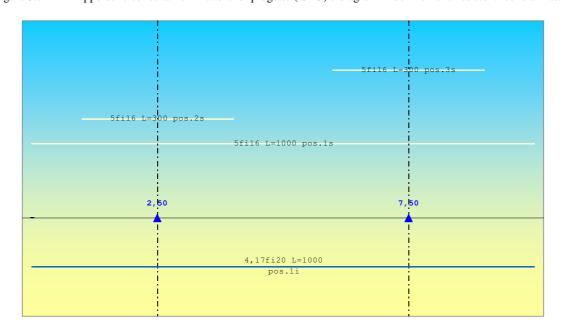


Figura 5.8 - Disposizione delle armature trasversali della soletta

Progetto Esecutivo

Relazione di Calcolo Impalcato

Pagina 92 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

Opera: CV08 Cavalcavia alla progr. 19+380

Verifica di resistenza SLU: coefficiente η = M/Mres

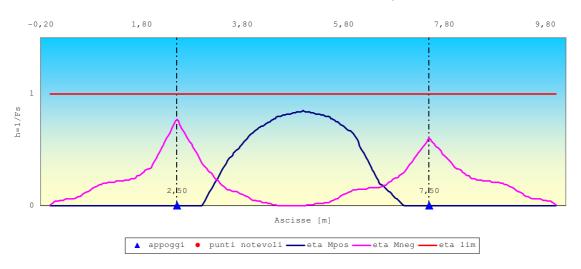
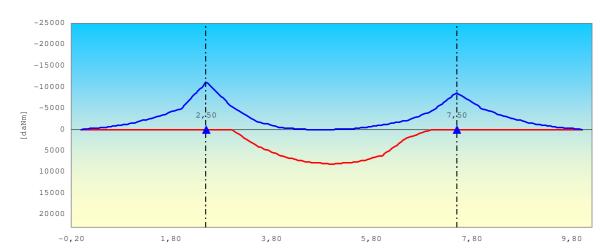
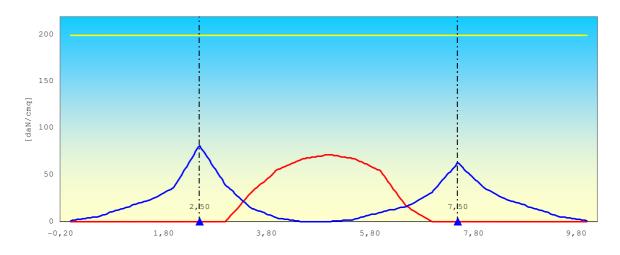




Diagramma del Momento Flettente nella combinazione rara

Tensioni nel calcestruzzo nella combinazione rara

Progetto Esecutivo

Pagina 93 di 139

Relazione di Calcolo Impalcato

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

Opera: CV08 Cavalcavia alla progr. 19+380

Tensioni nelle armature nella combinazione rara

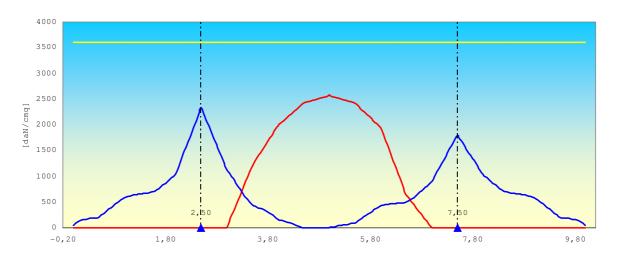
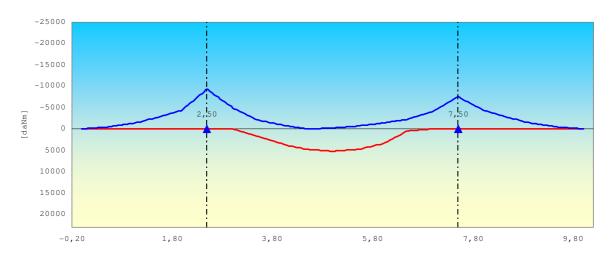
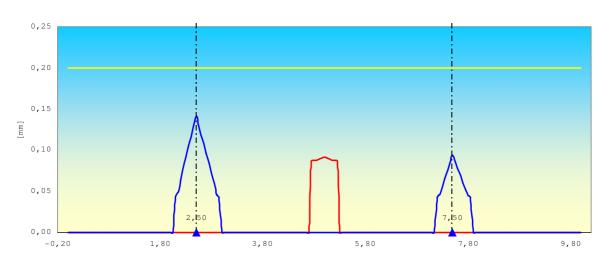
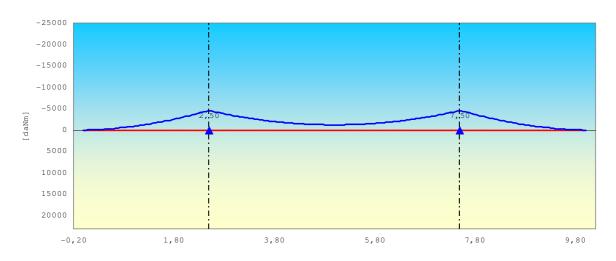
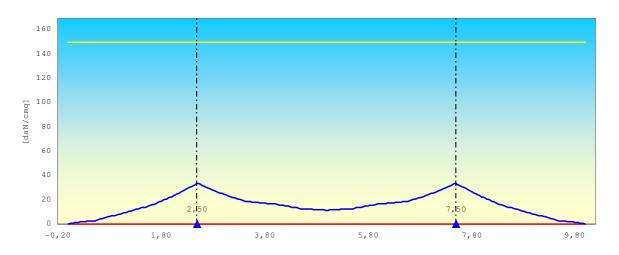




Diagramma del Momento Flettente nella combinazione frequente

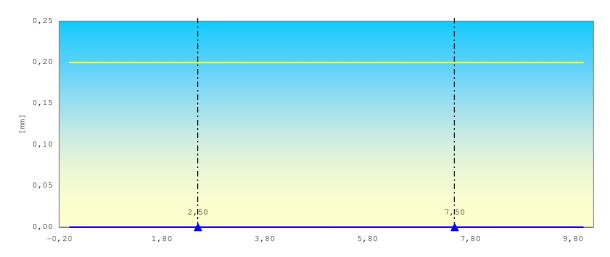
Apertura delle fessure nella combinazione frequente


Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato


Pagina 94 di 139

Nome file:


Diagramma del Momento Flettente nella combinazione quasi permanente

Tensioni nel calcestruzzo nella combinazione quasi permanente

Apertura delle fessure nella combinazione quasi permanente

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 95 di 139

Nome file:

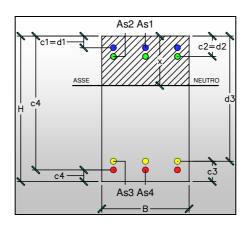


Figura 5.9 – Schema delle grandezze usate nelle verifiche delle sezioni

VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE:	SEZIONE 5	51 x= 2,5	00 m
Verifica per Momento Flettente Negativo: Combinazione di			
GEOMETRIA DELLA SEZIONE			
Larghezza della sezione	В	100,00	[cm]
Altezza della sezione	Н	31,00	[cm]
Area barre compresse strato esterno	As1	13,10	[cmq]
Area barre compresse strato interno	As2	0,00	[cmq]
Area barre tese strato interno	As3	0,00	[cmq]
Area barre tese strato esterno	As4	20,11	[cmq]
Copriferro di calcolo/distanza dal lembo compresso	c1=d1	4,00	[cm]
Copriferro di calcolo/distanza dal lembo compresso	c1=d2	7,00	[cm]
Copriferro di calcolo	с3	6,00	[cm]
Copriferro di calcolo	c4	4,00	[cm]
Distanza delle barre tese dal lembo compresso	d3	25,00	[cm]
Distanza delle barre tese dal lembo compresso	d4	27,00	[cm]
Area totale delle barre d'armature	Astot	33,21	[cmq]
SOLLECITAZIONI			
Momento flettente sollecitante	М	15012,31	[daNm]
MOMENTO RESISTENTE			
Momento flettente resistente	Mres	19432,83	[daNm]
COEFFICIENTE DI SICUREZZA			
CoefficienteE	ta=M/Mres	0,77	< 1

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 96 di 139

Nome file:

VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE:			
Verifica per Momento Flettente Negativo: Combinazione d:			+
GEOMETRIA DELLA SEZIONE			
Larghezza della sezione	В	100,00	[cm]
Altezza della sezione		31,00	[cm]
Area barre compresse strato esterno	As1	13,10	[cmq]
Area barre compresse strato interno	As2	0,00	[cmq]
Area barre tese strato interno	As3	0,00	[cmq]
Area barre tese strato esterno	As4	20,11	[cmq]
Copriferro di calcolo/distanza dal lembo compresso	c1=d1	4,00	[cm]
Copriferro di calcolo/distanza dal lembo compresso	c1=d2	7,00	[cm]
Copriferro di calcolo	с3	6,00	[cm]
Copriferro di calcolo	c4	4,00	[cm]
Distanza delle barre tese dal lembo compresso	d3	25,00	[cm]
Distanza delle barre tese dal lembo compresso	d4	27,00	[cm]
Area totale delle barre d'armature	Astot	33,21	[cmq]
Somma dei prodotti Asi x di	SAsi x di	595 , 26	[cm^3]
CARATTERISTICHE D'INERZIA			
Coefficiente di omogenizzazione			
Distanza dell'asse neutro dal lembo compresso	X	9,28	[cm]
Momento d'inerzia della sezione	Ji	126816,17	[cm^4]
SOLLECITAZIONI			
Momento flettente di progetto	М	11120,23	[daNm]
RISULTATI DEL CALCOLO			
Tensione di compressione sul calcestruzzo			[daN/cmq] < 199
Tensione massima di trazione sulle armature	SS	2330,67	[daN/cmq] < 3600

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 97 di 139

Nome file:

CALCOLO DELL'AMPIEZZA DI FESSURAZIONE:	SEZIONE	51 v= 2 50	n m
ifica per Momento Flettente Negativo: Combinazione di			
CARATTERISTICHE DEI MATERIALI			
sse del calcestruzzo	Rck	400,00	[daN/cmq]
istenza media a trazione	fctm	30,99	
istenza caratteristica a trazione		•	
	fctk	21,69	
istenza a trazione per flessione	fcfk	26,03	
lulo elastico dell'acciaio	Es	2060000,00	[daN/cmq]
CALCOLO DEL MOMENTO DI PRIMA FESSURAZIONE			
a omogenizzata della sezione	Ai	3598,09	[cmq]
tanza dell'asse neutro dal lembo compresso	X	15,84	[cm]
mento d'inerzia della sezione interamente reagente	Jr	313724,81	[cm^4]
za assiale di progetto	N	0,00	
		•	
mento di prima fessurazione (fcfk)	Mr	5385,48	
mento di prima fessurazione (fctm)	Mr	6411,28	[daNm]
AMPIEZZA DI FESSURAZIONE			
metro equivalente delle barre	Ø	16,00	[mm]
oprimento dell'armatura tesa	С	3,20	[cm]
ziatura orizzontale delle barre	So	10,00	[cm]
ziatura orizzontale di calcolo delle barre	Sod	10,00	
		•	[cm]
ziatura verticale delle barre	Sv	0,00	[cm]
ezza efficace	deff	7,58	[cm]
a efficace	Aceff	758,21	[cmq]
centuale geometrica d'armatura	?r	0,0265	[41]
ficiente d'aderenza fra cls e armature	k2	0,40	
Eiciente di forma del diagramma delle tensioni	k3	0,125	
anza media fra le fessure	srm	11,42	[cm]
nto flettente di progetto	M	9322,11	[daNm]
ione nell'acciaio dovuta a M in sezione fessurata	SS	1953,81	[daN/cmq]
		•	Laam/ Ciliq
iciente d'aderenza fra cls e armature	ß1	1,00	
iciente che caratterizza l'appl. del carico	ß2	0,50	
mazione unitaria media armature	esm	0,000724	
e medio di apertura delle fessure	wm	0,083	[mm]
re di calcolo di apertura delle fessure	wd	0,141	
VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE:			
ifica per Momento Flettente Negativo: Combinazione di			
GEOMETRIA DELLA SEZIONE ghezza della sezione	В	100,00	[cm]
zza della sezione	Н	•	
barre compresse strato esterno	As1	13,10	[cmq]
_			
parre compresse strato interno	As2	0,00	[cmq]
parre tese strato interno	As3	0,00	[cmq]
parre tese strato esterno	As4	20,11	[cmq]
erro di calcolo/distanza dal lembo compresso	c1=d1	4,00	[cm]
Terro di calcolo/distanza dal lembo compresso	c1=d2	7,00	[cm]
ferro di calcolo	с3	6,00	[cm]
ferro di calcolo	c4	4,00	[cm]
nza delle barre tese dal lembo compresso	d3	25,00	[cm]
za delle barre tese dal lembo compresso	d4	27,00	[cm]
otale delle barre d'armature	Astot	33,21	[cmq]
dei prodotti Asi x di		595 , 26	[cm^3]
-		•	-
CARATTERISTICHE D'INERZIA		4	
iciente di omogenizzazione	n	15,00	
anza dell'asse neutro dal lembo compresso	X	9,28	[cm]
nto d'inerzia della sezione	Ji	126816,17	[cm^4]
		-	-
SOLLECITAZIONI	-	4550 :=	F 1
ento flettente di progetto	М	4558 , 47	[daNm]
RISULTATI DEL CALCOLO			
		22 26	F 1 37/
one di compressione sul calcestruzzo	SC	33 , 36	[daN/cmq]

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 98 di 139

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 99 di 139

Nome file:

CALCOLO DELL'AMPIEZZA DI FESSURAZIONE:	SEZIONE 51	x= 2,50	0 m
Verifica per Momento Flettente Negativo: Combinazione di		i Permane	nte
CARATTERISTICHE DEI MATERIALI Classe del calcestruzzo. Resistenza media a trazione. Resistenza caratteristica a trazione. Resistenza a trazione per flessione. Modulo elastico dell'acciaio.	Rck fctm fctk fcfk Es 200	400,00 30,99 21,69 26,03	[daN/cmq] [daN/cmq] [daN/cmq] [daN/cmq] [daN/cmq]
CALCOLO DEL MOMENTO DI PRIMA FESSURAZIONE Area omogenizzata della sezione Distanza dell'asse neutro dal lembo compresso Momento d'inerzia della sezione interamente reagente Forza assiale di progetto Momento di prima fessurazione (fcfk) Momento di prima fessurazione (fctm)	Ai x Jr 3: N Mr Mr	3598,09 15,84 13724,81 0,00 5385,48 6411,28	[cmq] [cm] [cm^4] [daN] [daNm]
AMPIEZZA DI FESSURAZIONE Diametro equivalente delle barre. Ricoprimento dell'armatura tesa. Spaziatura orizzontale delle barre. Spaziatura orizzontale di calcolo delle barre. Spaziatura verticale delle barre. Altezza efficace. Area efficace. Percentuale geometrica d'armatura Coefficiente d'aderenza fra cls e armature.	Ø c So Sod Sv deff Aceff ?r k2	16,00 3,20 10,00 10,00 0,00 7,58 758,21 0,0265 0,40 0,125	[mm] [cm] [cm] [cm]
Coefficiente di forma del diagramma delle tensioni Distanza media fra le fessure Momento flettente di progetto Tensione nell'acciaio dovuta a M in sezione fessurata. Coefficiente d'aderenza fra cls e armature Coefficiente che caratterizza l'appl. del carico Deformazione unitaria media armature Valore medio di apertura delle fessure Valore di calcolo di apertura delle fessure	k3 srm M ss B1 B2 esm (wm	0,125 11,42 4558,47 955,40 1,00 0,50 0,000186 0,000 0,000	[cm] [daNm] [daN/cmq]

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 100 di 139

Nome file:

VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE:	SEZIONE	101 $x=5$,	
erifica per Momento Flettente Positivo: Combinazione d			+
GEOMETRIA DELLA SEZIONE			
arghezza della sezione	В	100,00	[cm]
ltezza della sezione		31,00	[cm]
rea barre compresse strato esterno	As1	10,05	[cmq]
rea barre compresse strato interno	As2	0,00	[cmq]
rea barre tese strato interno	As3	0,00	[cmq]
rea barre tese strato esterno	As4	13,10	[cmq]
opriferro di calcolo/distanza dal lembo compresso		•	[cm]
opriferro di calcolo/distanza dal lembo compresso		6,00	[cm]
opriferro di calcolo		7,00	[cm]
ppriferro di calcolo		•	[cm]
istanza delle barre tese dal lembo compresso			[cm]
istanza delle barre tese dal lembo compresso		•	[cm]
rea totale delle barre d'armature	Astot	23,15	[cmq]
SOLLECITAZIONI			
omento flettente sollecitante	М	11003,29	[daNm]
MOMENTO RESISTENTE			
omento flettente resistente	Mres	12950,39	[daNm]
COEFFICIENTE DI SICUREZZA			
oefficiente	Eta=M/Mres	0,85	< 1
			+
	SEZIONE	101 x= 5,	+
VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE:	SEZIONE	101 x= 5,	+
VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE: erifica per Momento Flettente Positivo: Combinazione d GEOMETRIA DELLA SEZIONE	SEZIONE i Carico Ra	101 x= 5,	+ 000 m +
VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE: erifica per Momento Flettente Positivo: Combinazione d GEOMETRIA DELLA SEZIONE arghezza della sezione	SEZIONE i Carico Rai	101 x= 5,	+ 000 m +
VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE: erifica per Momento Flettente Positivo: Combinazione d GEOMETRIA DELLA SEZIONE arghezza della sezione	SEZIONE i Carico Ras B H	101 x= 5, ra	[cm]
VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE: erifica per Momento Flettente Positivo: Combinazione d GEOMETRIA DELLA SEZIONE arghezza della sezione	SEZIONE i Carico Ras B H As1	101 x= 5, ra 100,00 31,00 10,05	[cm]
VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE: erifica per Momento Flettente Positivo: Combinazione d GEOMETRIA DELLA SEZIONE arghezza della sezione	SEZIONE i Carico Rai B H As1 As2	101 x= 5, ra 100,00 31,00 10,05 0,00	[cm] [cmq]
VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE: crifica per Momento Flettente Positivo: Combinazione d GEOMETRIA DELLA SEZIONE crighezza della sezione	SEZIONE i Carico Rai B H As1 As2 As3	101 x= 5, 100,00 31,00 10,05 0,00 0,00	[cm] [cm] [cmq]
VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE: crifica per Momento Flettente Positivo: Combinazione d GEOMETRIA DELLA SEZIONE crighezza della sezione	SEZIONE i Carico Rai B H As1 As2 As3 As4	101 x= 5, 100,00 31,00 10,05 0,00 0,00 13,10	[cm] [cmq] [cmq]
VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE: crifica per Momento Flettente Positivo: Combinazione d GEOMETRIA DELLA SEZIONE crighezza della sezione	SEZIONE i Carico Rai B H As1 As2 As3 As4 c1=d1	101 x= 5, 100,00 31,00 10,05 0,00 0,00 13,10	[cm] [cmq] [cmq] [cmq]
VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE: crifica per Momento Flettente Positivo: Combinazione d GEOMETRIA DELLA SEZIONE arghezza della sezione	SEZIONE Carico Rai B H As1 As2 As3 As4 c1=d1 c1=d2	101 x= 5, 100,00 31,00 10,05 0,00 0,00 13,10 4,00	[cm] [cmq] [cmq] [cmq] [cmq]
VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE: Prifica per Momento Flettente Positivo: Combinazione d GEOMETRIA DELLA SEZIONE Arghezza della sezione	SEZIONE i Carico Rai B H As1 As2 As3 As4 c1=d1 c1=d2 c3	101 x= 5, 100,00 31,00 10,05 0,00 0,00 13,10 4,00 6,00 7,00	[cm] [cm] [cm] [cm] [cm]
VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE: crifica per Momento Flettente Positivo: Combinazione d GEOMETRIA DELLA SEZIONE arghezza della sezione	SEZIONE i Carico Rai B H As1 As2 As3 As4 c1=d1 c1=d2 c3	101 x= 5, ra 100,00 31,00 10,05 0,00 0,00 13,10 4,00 6,00 7,00	[cm] [cmq] [cmq] [cm] [cm] [cm] [cm]
VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE: crifica per Momento Flettente Positivo: Combinazione d GEOMETRIA DELLA SEZIONE crighezza della sezione	SEZIONE Carico Rai B H As1 As2 As3 As4 c1=d1 c1=d2 c3 c4	101 x= 5, ra 100,00 31,00 10,05 0,00 0,00 13,10 4,00 6,00 7,00 4,00 24,00	[cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm]
VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE: crifica per Momento Flettente Positivo: Combinazione d GEOMETRIA DELLA SEZIONE crighezza della sezione	SEZIONE Carico Rai B H As1 As2 As3 As4 c1=d1 c1=d2 c3 c4 d3 d4	101 x= 5, 100,00 31,00 10,05 0,00 0,00 13,10 4,00 6,00 7,00 4,00 24,00 27,00	[cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm]
VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE: crifica per Momento Flettente Positivo: Combinazione d GEOMETRIA DELLA SEZIONE crighezza della sezione	SEZIONE Carico Rai B H As1 As2 As3 As4 c1=d1 c1=d2 c3 c4 d3 d4 Astot	101 x= 5, 100,00 31,00 10,05 0,00 0,00 13,10 4,00 6,00 7,00 4,00 24,00 27,00 23,15	[cm] [cmq] [cmq] [cmm] [cm] [cm] [cm] [cm] [cm] [cm] [c
VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE: erifica per Momento Flettente Positivo: Combinazione d GEOMETRIA DELLA SEZIONE arghezza della sezione	SEZIONE Carico Rai B H As1 As2 As3 As4 c1=d1 c1=d2 c3 c4 d3 d4 Astot	101 x= 5, 100,00 31,00 10,05 0,00 0,00 13,10 4,00 6,00 7,00 4,00 24,00 27,00	[cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm]
VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE: erifica per Momento Flettente Positivo: Combinazione d GEOMETRIA DELLA SEZIONE arghezza della sezione	SEZIONE Carico Rai B H As1 As2 As3 As4 c1=d1 c1=d2 c3 c4 d3 d4 Astot SAsi x di	101 x= 5,	[cm] [cmq] [cmq] [cmm] [cm] [cm] [cm] [cm] [cm] [cm] [c
VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE: erifica per Momento Flettente Positivo: Combinazione d GEOMETRIA DELLA SEZIONE arghezza della sezione	SEZIONE Carico Rai B H As1 As2 As3 As4 c1=d1 c1=d2 c3 c4 d3 d4 Astot SAsi x di	101 x= 5, 100,00 31,00 10,05 0,00 0,00 13,10 4,00 6,00 7,00 4,00 24,00 27,00 23,15 393,91	[cm] [cm] [cmq] [cmq] [cmq] [cmm] [cm] [cm] [cm] [cm] [cm] [cm] [c
VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE: crifica per Momento Flettente Positivo: Combinazione d GEOMETRIA DELLA SEZIONE crighezza della sezione	SEZIONE Carico Rai B H As1 As2 As3 As4 c1=d1 c1=d2 c3 c4 d3 d4 Astot SAsi x di	101 x= 5, ra 100,00 31,00 10,05 0,00 0,00 13,10 4,00 6,00 7,00 4,00 24,00 27,00 23,15 393,91 15,00 7,94	[cm] [cm] [cmq] [cmq] [cmq] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm
VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE: crifica per Momento Flettente Positivo: Combinazione d GEOMETRIA DELLA SEZIONE crighezza della sezione	SEZIONE Carico Rai B H As1 As2 As3 As4 c1=d1 c1=d2 c3 c4 d3 d4 Astot SAsi x di	101 x= 5, 100,00 31,00 10,05 0,00 0,00 13,10 4,00 6,00 7,00 4,00 24,00 27,00 23,15 393,91	[cm] [cm] [cmq] [cmq] [cmq] [cmm] [cm] [cm] [cm] [cm] [cm] [cm] [c
VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE: crifica per Momento Flettente Positivo: Combinazione d GEOMETRIA DELLA SEZIONE arghezza della sezione	SEZIONE Carico Rai B H As1 As2 As3 As4 c1=d1 c1=d2 c3 c4 d3 d4 Astot SAsi x di	101 x= 5, ra 100,00 31,00 10,05 0,00 0,00 13,10 4,00 6,00 7,00 4,00 24,00 27,00 23,15 393,91 15,00 7,94	[cm] [cm] [cmq] [cmq] [cmq] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm
VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE: erifica per Momento Flettente Positivo: Combinazione d GEOMETRIA DELLA SEZIONE arghezza della sezione	SEZIONE Carico Rai B H As1 As2 As3 As4 c1=d1 c1=d2 c3 c4 d3 d4 Astot SAsi x di	101 x= 5, ra 100,00 31,00 10,05 0,00 0,00 13,10 4,00 6,00 7,00 4,00 24,00 27,00 23,15 393,91 15,00 7,94	[cm] [cm] [cmq] [cmq] [cmq] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm
VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE: erifica per Momento Flettente Positivo: Combinazione d GEOMETRIA DELLA SEZIONE arghezza della sezione	SEZIONE I Carico Rai B H As1 As2 As3 As4 c1=d1 c1=d2 c3 c4 d3 d4 Astot SAsi x di	101 x= 5,	[cm] [cmq] [cmq] [cmq] [cmq] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm
VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE:	SEZIONE I Carico Rai B H As1 As2 As3 As4 c1=d1 c1=d2 c3 c4 d3 d4 Astot SAsi x di	101 x= 5,	[cm] [cmq] [cmq] [cmq] [cmq] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 101 di 139

Nome file:

+			
CALCOLO DELL'AMPIEZZA DI FESSURAZIONE:		101 x= 5,0	00 m
+			
CARATTERISTICHE DEI MATERIALI			
Classe del calcestruzzo	Rck	400,00	[daN/cmq]
Resistenza media a trazione	fctm		[daN/cmq]
Resistenza caratteristica a trazione	fctk		[daN/cmq]
Resistenza a trazione per flessione	fcfk		[daN/cmq]
Modulo elastico dell'acciaio		2060000,00	[daN/cmq]
CALCOLO DEL MOMENTO DI PRIMA FESSURAZIONE			
Area omogenizzata della sezione	Ai		[cmq]
Distanza dell'asse neutro dal lembo compresso	X		[cm]
Momento d'inerzia della sezione interamente reagente	Jr	294107 , 96	[cm^4]
Forza assiale di progetto	N		[daN]
Momento di prima fessurazione (fcfk)	Mr	•	[daNm]
Momento di prima fessurazione (fctm)	Mr	5938 , 57	[daNm]
AMPIEZZA DI FESSURAZIONE			
Diametro equivalente delle barre	Ø	20,00	[mm]
Ricoprimento dell'armatura tesa	C		[cm]
Spaziatura orizzontale delle barre	So	23,98	[cm]
Spaziatura orizzontale di calcolo delle barre	Sod	23,98	[cm]
Spaziatura verticale delle barre	Sv	0,00	[cm]
Altezza efficace	deff	7,67	[cm]
Area efficace	Aceff	767,38	[cmq]
Percentuale geometrica d'armatura	?r	0,0171	
Coefficiente d'aderenza fra cls e armature	k2	0,40	
Coefficiente di forma del diagramma delle tensioni	k3	0,125	
Distanza media fra le fessure	srm	16,65	[cm]
Momento flettente di progetto	M	5210,65	[daNm]
Tensione nell'acciaio dovuta a M in sezione fessurata	SS	1647,79	[daN/cmq]
Coefficiente d'aderenza fra cls e armature	ß1	1,00	
Coefficiente che caratterizza l'appl. del carico	ß2	0,50	
Deformazione unitaria media armature	esm	0,000320	
Valore medio di apertura delle fessure	wm	0,053	[mm]
Valore di calcolo di apertura delle fessure	wd	0,091	[mm] < 0, 2
VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE:		E 101 x= 5,	000 m
+			
GEOMETRIA DELLA SEZIONE			
Larghezza della sezione	В	100,00	[cm]
Altezza della sezione	Н	31,00	[cm]
Area barre compresse strato esterno	As1	10,05	[cmq]
Area barre compresse strato interno	As2	0,00	[cmq]
Area barre tese strato interno	As3	0,00	[cmq]
Area barre tese strato esterno	As4	13,10	[cmq]
Copriferro di calcolo/distanza dal lembo compresso	c1=d1	4,00	[cm]
Copriferro di calcolo/distanza dal lembo compresso	c1=d2	6,00	[cm]
Copriferro di calcolo	с3	7,00	[cm]
Copriferro di calcolo	c4	4,00	[cm]
Distanza delle barre tese dal lembo compresso	d3	24,00	[cm]
Distanza delle barre tese dal lembo compresso	d4	27,00	[cm]
Area totale delle barre d'armature	Astot	23,15	[cmq]
Somma dei prodotti Asi x di	SAsi x di	393,91	[cm^3]
CARATTERISTICHE D'INERZIA			
Coefficiente di omogenizzazione	n	15,00	
Distanza dell'asse neutro dal lembo compresso	X	7,94	[cm]
Momento d'inerzia della sezione	Ji	90411,65	[cm^4]
SOLLECITAZIONI			
Momento flettente di progetto	М	0,00	[daNm]
romenco riectence ar proyecto	IvI	0,00	[uaniii]

Opera: CV08 Cavalcavia alla progr. 19+380
Relazione di Calcolo Impalcato
Pagina 102 di 139
Nome file: CV08-F-CL020 A.00 relazione di calcolo impalcato - OK

Tensione di compressione sul calcestruzzo.....

0,00 [daN/cmq] < 149,4

sc

5.2.1.2 Sintesi dei risultati delle verifiche nelle zone di testata dell'impalcato

Si riportano nel seguito, sotto forma di diagrammi ed in modo esteso per le sezioni più sollecitate, le verifiche di resistenza e fessurazione della soletta. I calcoli sono stati eseguiti con un programma su sezioni di larghezza 100 cm distanti fra loro 5 cm, in riferimento alla disposizione delle armature di cui alla Figura 5.11, tenendo conto a livello di ciascuna sezione dell'effettivo ancoraggio delle barre.

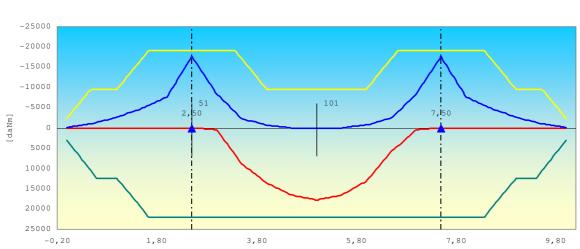


Diagramma del Momento Flettente SLU

Figura 5.10 - Inviluppo delle sollecitazioni flettenti di progetto (SLU) e diagrammi dei momenti resistenti delle armature

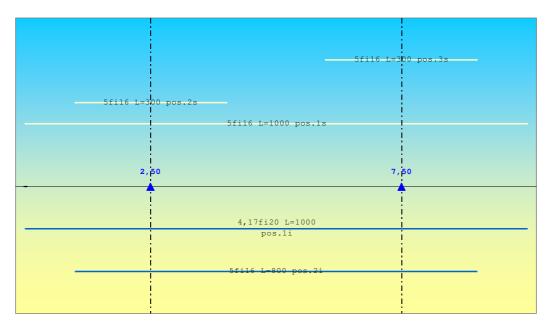


Figura 5.11 - Disposizione delle armature trasversali della soletta

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 103 di 139

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 104 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

Verifica di resistenza SLU: coefficiente η = M/Mres

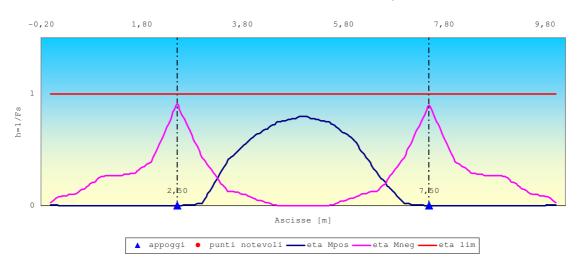
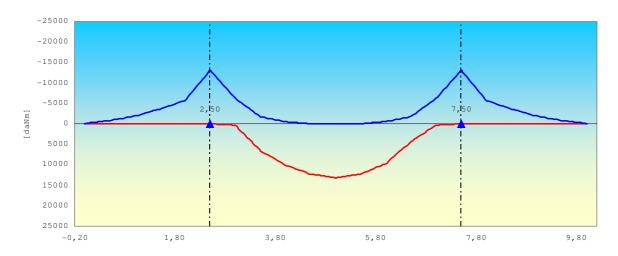
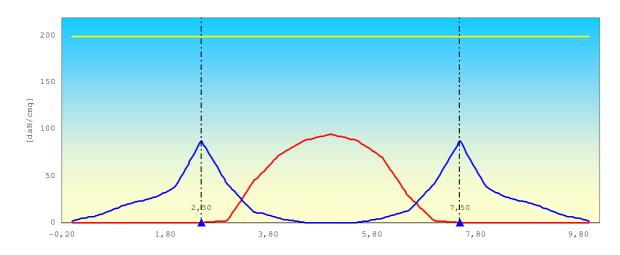




Diagramma del Momento Flettente nella combinazione rara

Tensioni nel calcestruzzo nella combinazione rara

CORRIDOIO PLURIMODALE TIRRENICO-NORD EUROPA ITINERARIO AGRIGENTO -CALTANISSETTA-A19 S.S. N° 640 "DI PORTO EMPEDOCLE" AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 105 di 139

Nome file:

Tensioni nelle armature nella combinazione rara

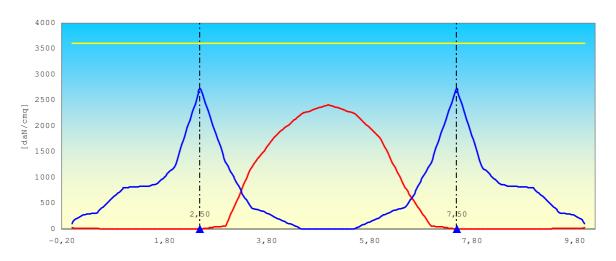
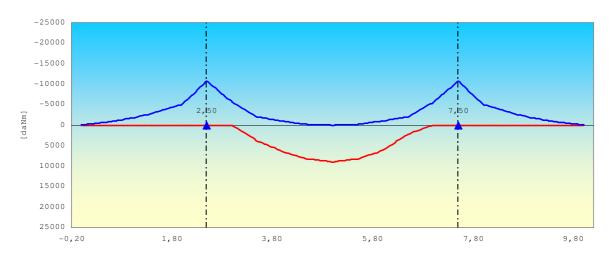
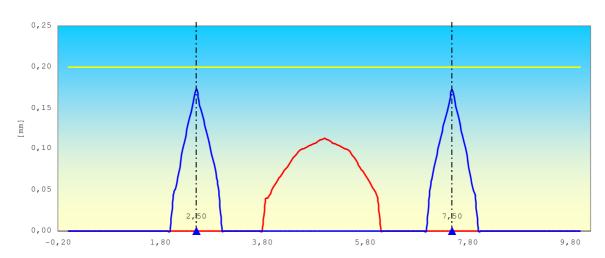
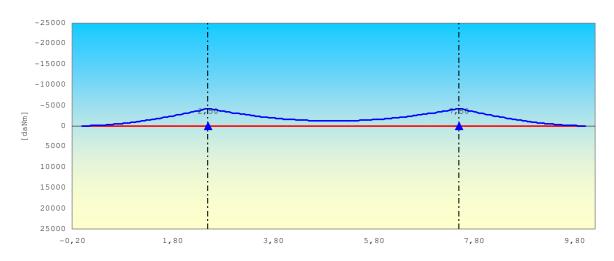
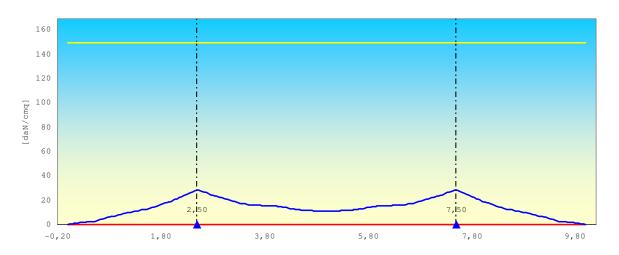




Diagramma del Momento Flettente nella combinazione frequente

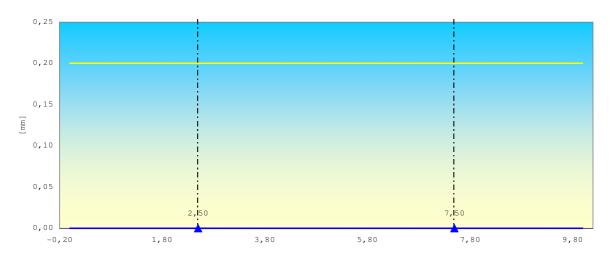
Apertura delle fessure nella combinazione frequente


Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato


Pagina 106 di 139

Nome file:


Diagramma del Momento Flettente nella combinazione quasi permanente

Tensioni nel calcestruzzo nella combinazione quasi permanente

Apertura delle fessure nella combinazione quasi permanente

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 107 di 139

Nome file:

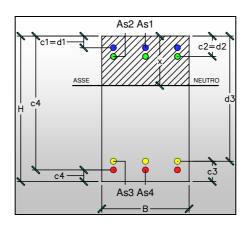


Figura 5.12 – Schema delle grandezze usate nelle verifiche delle sezioni

VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE:	SEZIONE	51 x= 2,5	00 m		
Verifica per Momento Flettente Negativo: Combinazione di Carico allo SLU					
GEOMETRIA DELLA SEZIONE					
Larghezza della sezione		23,15 0,00 0,00 20,11 4,00 7,00 6,00 4,00	[cm] [cmq] [cmq] [cmq] [cm] [cm] [cm] [cm] [cm] [cm]		
SOLLECITAZIONI	715000	43,20	[cmq]		
Momento flettente sollecitante MOMENTO RESISTENTE	М	17637,75	[daNm]		
Momento flettente resistente	Mres	19424,83	[daNm]		
COEFFICIENTE DI SICUREZZA					
CoefficienteE	ta=M/Mres	0,91	< 1		

CORRIDOIO PLURIMODALE TIRRENICO-NORD EUROPA ITINERARIO AGRIGENTO -CALTANISSETTA-A19 S.S. N° 640 "DI PORTO EMPEDOCLE" AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 108 di 139

Nome file:

VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE:			
Verifica per Momento Flettente Negativo: Combinazione di			+
GEOMETRIA DELLA SEZIONE			
Larghezza della sezione	В	100,00	[cm]
Altezza della sezione	Н	31,00	[cm]
Area barre compresse strato esterno	As1	23,15	[cmq]
Area barre compresse strato interno	As2	0,00	[cmq]
Area barre tese strato interno	As3	0,00	[cmq]
Area barre tese strato esterno	As4	20,11	[cmq]
Copriferro di calcolo/distanza dal lembo compresso	c1=d1	4,00	[cm]
Copriferro di calcolo/distanza dal lembo compresso	c2=d2	7,00	[cm]
Copriferro di calcolo	с3	6,00	[cm]
Copriferro di calcolo	c4	4,00	[cm]
Distanza delle barre tese dal lembo compresso	d3	25,00	[cm]
Distanza delle barre tese dal lembo compresso	d4	27,00	[cm]
Area totale delle barre d'armature	Astot	43,26	[cmq]
Somma dei prodotti Asi x di	SAsi x di	635,48	[cm^3]
CARATTERISTICHE D'INERZIA			
Coefficiente di omogenizzazione	n	15,00	
Distanza dell'asse neutro dal lembo compresso	X	8,77	[cm]
Momento d'inerzia della sezione	Ji	130614,78	[cm^4]
SOLLECITAZIONI			
Momento flettente di progetto	М	13065,00	[daNm]
RISULTATI DEL CALCOLO			
Tensione di compressione sul calcestruzzo	sc	87 , 70	[daN/cmq] < 199,
Tensione massima di trazione sulle armature	SS	2735,66	[daN/cmq] < 3600

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 109 di 139

Nome file:

CALCOLO DELL'AMPIEZZA DI FESSURAZIONE:	SEZIONE	51 x = 2,50	0 m
Verifica per Momento Flettente Negativo: Combinazione di			
CARATTERISTICHE DEI MATERIALI			
Classe del calcestruzzo	Rck	400,00	[daN/cmq]
Resistenza media a trazione	fctm	30,99	[daN/cmq]
Resistenza caratteristica a trazione	fctk	21,69	[daN/cmq]
Resistenza a trazione per flessione	fcfk	26,03	[daN/cmq]
Modulo elastico dell'acciaio		2060000,00	
CALCOLO DEL MOMENTO DI PRIMA FESSURAZIONE			
rea omogenizzata della sezione	Ai	3748,90	[cmq]
Distanza dell'asse neutro dal lembo compresso	Х	15,36	_
Momento d'inerzia della sezione interamente reagente	Jr		
orza assiale di progetto	N	•	
omento di prima fessurazione (fcfk)	Mr	5559,01	
omento di prima fessurazione (fctm)	Mr	6617,87	
AMPIEZZA DI FESSURAZIONE			
iametro equivalente delle barre	Ø	16,00	[mm]
cicoprimento dell'armatura tesa	C	3,20	
		•	
paziatura orizzontale delle barre	So	10,00	
paziatura orizzontale di calcolo delle barre	Sod	10,00	
paziatura verticale delle barre	Sv	0,00	
ltezza efficace	deff	7,82	[cm]
rea efficace	Aceff	782,01	[cmq]
ercentuale geometrica d'armatura	?r	0,0257	
oefficiente d'aderenza fra cls e armature	k2	0,40	
pefficiente di forma del diagramma delle tensioni	k3	0,125	
istanza media fra le fessure	srm	11,51	[cm]
omento flettente di progetto	M	10727,92	[daNm]
ensione nell'acciaio dovuta a M in sezione fessurata	SS	2246,30	[daN/cmq]
pefficiente d'aderenza fra cls e armature	ß1	1,00	
oefficiente che caratterizza l'appl. del carico	ß2	0,50	
eformazione unitaria media armature	esm	0,000883	
alore medio di apertura delle fessure	wm	0,102	[mm]
alore di calcolo di apertura delle fessure	wd	0,173	[mm] < 0, 2
VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE:	SEZIONE	= 51 x = 2,5	00 m
VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE:	SEZIONE	E 51 x= 2,5	00 m
VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE:	SEZIONE	E 51 x= 2,5	00 m
VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE:	SEZIONE	E 51 x= 2,5	00 m :nte
VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE:	SEZIONE Carico Qu	2 51 x= 2,5 	00 m :nte
VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE: erifica per Momento Flettente Negativo: Combinazione di GEOMETRIA DELLA SEZIONE arghezza della sezione	SEZIONE Carico Qu B	2 51 x= 2,5 nasi Permane 100,00 31,00	00 m
VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE: erifica per Momento Flettente Negativo: Combinazione di GEOMETRIA DELLA SEZIONE arghezza della sezione	SEZIONE Carico Qu B H	2 51 x= 2,5 nasi Permane	00 m nte [cm]
VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE: erifica per Momento Flettente Negativo: Combinazione di GEOMETRIA DELLA SEZIONE arghezza della sezione	SEZIONE Carico Qu B H As1	100,00 31,00 23,15	[cm] [cm]
VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE: erifica per Momento Flettente Negativo: Combinazione di GEOMETRIA DELLA SEZIONE arghezza della sezione	SEZIONE Carico Qu B H As1 As2	100,00 31,00 23,15 0,00	[cm] [cm] [cmq] [cmq] [cmq]
VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE: erifica per Momento Flettente Negativo: Combinazione di GEOMETRIA DELLA SEZIONE arghezza della sezione	SEZIONE Carico Qu B H As1 As2 As3	100,00 31,00 23,15 0,00 0,00 20,11	[cm] [cmq] [cmq] [cmq]
VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE: erifica per Momento Flettente Negativo: Combinazione di GEOMETRIA DELLA SEZIONE arghezza della sezione	SEZIONE Carico Qu B H As1 As2 As3 As4	100,00 31,00 23,15 0,00 0,00 20,11 4,00	[cm] [cmq] [cmq] [cmq] [cmq] [cmq]
VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE: crifica per Momento Flettente Negativo: Combinazione di GEOMETRIA DELLA SEZIONE arghezza della sezione	SEZIONE Carico Qu B H As1 As2 As3 As4 c1=d1	100,00 31,00 23,15 0,00 0,00 20,11 4,00 7,00	[cm] [cmq] [cmq] [cmq] [cmq] [cmq] [cmq] [cm]
VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE: crifica per Momento Flettente Negativo: Combinazione di GEOMETRIA DELLA SEZIONE arghezza della sezione	SEZIONE Carico Qu B H As1 As2 As3 As4 c1=d1 c2=d2 c3	100,00 31,00 23,15 0,00 20,11 4,00 7,00 6,00	[cm] [cmq] [cmq] [cmq] [cmq] [cmq] [cm] [cm] [cm]
VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE: crifica per Momento Flettente Negativo: Combinazione di GEOMETRIA DELLA SEZIONE arghezza della sezione	SEZIONE Carico Qu B H As1 As2 As3 As4 c1=d1 c2=d2 c3 c4	100,00 31,00 23,15 0,00 0,00 20,11 4,00 7,00 6,00 4,00	[cm] [cmq] [cmq] [cmq] [cmq] [cmm] [cm] [cm] [cm] [cm]
VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE: cerifica per Momento Flettente Negativo: Combinazione di GEOMETRIA DELLA SEZIONE arghezza della sezione	Carico Qu B H As1 As2 As3 As4 c1=d1 c2=d2 c3 c4 d3	100,00 31,00 23,15 0,00 20,11 4,00 7,00 6,00 4,00 25,00	[cm] [cmq] [cmq] [cmq] [cmq] [cmm] [cm] [cm] [cm] [cm] [cm] [cm] [c
VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE: crifica per Momento Flettente Negativo: Combinazione di GEOMETRIA DELLA SEZIONE drighezza della sezione	Carico Qu B H As1 As2 As3 As4 c1=d1 c2=d2 c3 c4 d3 d4	100,00 31,00 23,15 0,00 20,11 4,00 7,00 6,00 4,00 25,00 27,00	[cm] [cmq] [cmq] [cmq] [cmq] [cmm] [cm] [cm] [cm] [cm] [cm] [cm] [c
VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE: crifica per Momento Flettente Negativo: Combinazione di GEOMETRIA DELLA SEZIONE arghezza della sezione	SEZIONE Carico Qu B H As1 As2 As3 As4 c1=d1 c2=d2 c3 c4 d3 d4 Astot	100,00 31,00 23,15 0,00 0,00 20,11 4,00 7,00 6,00 4,00 25,00 27,00 43,26	[cm] [cmq] [cmq] [cmq] [cmq] [cmm] [cm] [cm] [cm] [cm] [cm] [cm] [c
VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE: Perifica per Momento Flettente Negativo: Combinazione di GEOMETRIA DELLA SEZIONE Arghezza della sezione	SEZIONE Carico Qu B H As1 As2 As3 As4 c1=d1 c2=d2 c3 c4 d3 d4 Astot	100,00 31,00 23,15 0,00 20,11 4,00 7,00 6,00 4,00 25,00 27,00	[cm] [cmq] [cmq] [cmq] [cmq] [cmm] [cm] [cm] [cm] [cm] [cm] [cm] [c
VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE: crifica per Momento Flettente Negativo: Combinazione di GEOMETRIA DELLA SEZIONE arghezza della sezione	SEZIONE Carico Qu B H As1 As2 As3 As4 c1=d1 c2=d2 c3 c4 d3 d4 Astot	100,00 31,00 23,15 0,00 0,00 20,11 4,00 7,00 6,00 4,00 25,00 27,00 43,26	[cm] [cmq] [cmq] [cmq] [cmq] [cmm] [cm] [cm] [cm] [cm] [cm] [cm] [c
VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE: cerifica per Momento Flettente Negativo: Combinazione di GEOMETRIA DELLA SEZIONE arghezza della sezione	SEZIONE Carico Qu B H As1 As2 As3 As4 c1=d1 c2=d2 c3 c4 d3 d4 Astot	100,00 31,00 23,15 0,00 0,00 20,11 4,00 7,00 6,00 4,00 25,00 27,00 43,26	[cm] [cmq] [cmq] [cmq] [cmq] [cmm] [cm] [cm] [cm] [cm] [cm] [cm] [c
VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE: erifica per Momento Flettente Negativo: Combinazione di GEOMETRIA DELLA SEZIONE arghezza della sezione	SEZIONE Carico Qu B H As1 As2 As3 As4 c1=d1 c2=d2 c3 c4 d3 d4 Astot SAsi x di	100,00 31,00 23,15 0,00 20,11 4,00 7,00 6,00 4,00 25,00 43,26 635,48	[cm] [cmq] [cmq] [cmq] [cmq] [cmm] [cm] [cm] [cm] [cm] [cm] [cm] [c
VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE: erifica per Momento Flettente Negativo: Combinazione di GEOMETRIA DELLA SEZIONE arghezza della sezione	SEZIONE Carico Qu B H As1 As2 As3 As4 c1=d1 c2=d2 c3 c4 d3 d4 Astot SAsi x di	100,00 31,00 23,15 0,00 0,00 20,11 4,00 7,00 6,00 4,00 25,00 27,00 43,26 635,48	[cm] [cmq] [cmq] [cmq] [cmm] [cmm] [cm] [cm] [cm] [cm] [cm] [
VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE: erifica per Momento Flettente Negativo: Combinazione di GEOMETRIA DELLA SEZIONE arghezza della sezione	SEZIONE Carico Qu B H As1 As2 As3 As4 c1=d1 c2=d2 c3 c4 d3 d4 Astot SAsi x di	100,00 31,00 23,15 0,00 20,11 4,00 7,00 6,00 4,00 25,00 27,00 43,26 635,48	[cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm]
VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE: Verifica per Momento Flettente Negativo: Combinazione di GEOMETRIA DELLA SEZIONE Larghezza della sezione	SEZIONE Carico Qu B H As1 As2 As3 As4 c1=d1 c2=d2 c3 c4 d3 d4 Astot SAsi x di	100,00 31,00 23,15 0,00 0,00 20,11 4,00 7,00 6,00 25,00 27,00 43,26 635,48	[cm] [cmq] [cmq] [cmq] [cmq] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm
VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE: erifica per Momento Flettente Negativo: Combinazione di GEOMETRIA DELLA SEZIONE arghezza della sezione	SEZIONE Carico Qu B H As1 As2 As3 As4 c1=d1 c2=d2 c3 c4 d3 d4 Astot SAsi x di	100,00 31,00 23,15 0,00 0,00 20,11 4,00 7,00 6,00 25,00 27,00 43,26 635,48	[cm] [cmq] [cmq] [cmq] [cmq] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm
VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE: erifica per Momento Flettente Negativo: Combinazione di GEOMETRIA DELLA SEZIONE arghezza della sezione. rea barre compresse strato esterno. rea barre compresse strato interno. rea barre tese strato interno. rea barre tese strato esterno. priferro di calcolo/distanza dal lembo compresso. priferro di calcolo/distanza dal lembo compresso. priferro di calcolo. priferro di calcolo. priferro di calcolo. priferro di calcolo. compriferro d	SEZIONE Carico Qu B H As1 As2 As3 As4 c1=d1 c2=d2 c3 c4 d3 d4 Astot SAsi x di n x Ji	100,00 31,00 23,15 0,00 0,00 20,11 4,00 7,00 6,00 4,00 25,00 27,00 43,26 635,48 15,00 8,77 130614,78	[cm] [cmq] [cmq] [cmq] [cmq] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 110 di 139

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 111 di 139

Nome file:

+			
Verifica per Momento Flettente Negativo: Combinazione di	ı Carıco Qu	asi Permane	nte
CARATTERISTICHE DEI MATERIALI			
Classe del calcestruzzo	Rck fctm fctk	400,00 30,99 21,69	[daN/cmq] [daN/cmq]
Resistenza a trazione per flessione	fcfk	26,03 2060000,00	[daN/cmq] [daN/cmq] [daN/cmq]
CALCOLO DEL MOMENTO DI PRIMA FESSURAZIONE			
Area omogenizzata della sezione	Ai	3748,90	[cmq]
Distanza dell'asse neutro dal lembo compresso	X	15,36	[cm]
Momento d'inerzia della sezione interamente reagente	Jr	334001,62	[cm^4]
Forza assiale di progetto	N	0,00	[daN]
Momento di prima fessurazione (fcfk)	Mr Mr	5559,01 6617,87	[daNm] [daNm]
	MI	0017,07	[daniii]
AMPIEZZA DI FESSURAZIONE			
Diametro equivalente delle barre	Ø	16,00	[mm]
Ricoprimento dell'armatura tesa	С	3,20	[cm]
Spaziatura orizzontale delle barre	So	10,00	[cm]
Spaziatura orizzontale di calcolo delle barre	Sod	10,00	[cm]
Spaziatura verticale delle barre	Sv	0,00	[cm]
Altezza efficace	deff	7,82	[cm]
Area efficace Percentuale geometrica d'armatura	Aceff ?r	782,01 0,0257	[cmq]
Coefficiente d'aderenza fra cls e armature	k2	0,40	
Coefficiente di forma del diagramma delle tensioni	k3	0,125	
Distanza media fra le fessure	srm	11,51	[cm]
Momento flettente di progetto	М	4263,84	[daNm]
Tensione nell'acciaio dovuta a M in sezione fessurata	ss	892,80	[daN/cmq]
Coefficiente d'aderenza fra cls e armature	ß1	1,00	
Coefficiente che caratterizza l'appl. del carico	ß2	0,50	
Deformazione unitaria media armature	esm	0,000173	
Valore medio di apertura delle fessure	wm	0,000	[mm]
Valore di calcolo di apertura delle fessure D'INERZIA	wd	0,000	[mm] < 0, 2
Coefficiente di omogenizzazione	n	15,00	
Distanza dell'asse neutro dal lembo compresso	X	6,60	[cm]
Momento d'inerzia della sezione	Ji	74685,84	[cm^4]
SOLLECITAZIONI			
Momento flettente di progetto	М	0,00	[daNm]
RISULTATI DEL CALCOLO			
Tensione di compressione sul calcestruzzo	sc	0,00	[daN/cmq] < 1
Tensione massima di trazione sulle armature	SS	0,00	[daN/cmq] < 3

CORRIDOIO PLURIMODALE TIRRENICO-NORD EUROPA ITINERARIO AGRIGENTO -CALTANISSETTA-A19 S.S. N° 640 "DI PORTO EMPEDOCLE" AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 112 di 139

Nome file:

VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE:	SEZIONE	101 x= 5,	000 m
Verifica per Momento Flettente Positivo: Combinazione di			+
GEOMETRIA DELLA SEZIONE			
Larghezza della sezione	H As1 As2 As3 As4 c1=d1 c2=d2 c3 c4 d3 d4	0,00 0,00 23,15 4,00 6,00 7,00 4,00 24,00 27,00	[cm] [cmq] [cmq] [cmq] [cm] [cm] [cm] [cm] [cm] [cm]
SOLLECITAZIONI			
Momento flettente sollecitante	М	17765,29	[daNm]
MOMENTO RESISTENTE			
Momento flettente resistente	Mres	22181,65	[daNm]
COEFFICIENTE DI SICUREZZA			
oefficienteE	Eta=M/Mres	0,80	< 1
VERIFICA A FLESSIONE PER SEZIONE RETTANGOLARE:			
	courtee na	ra	
GEOMETRIA DELLA SEZIONE	coarree na	ra	
GEOMETRIA DELLA SEZIONE Larghezza della sezione	B H As1 As2 As3 As4 c1=d1 c2=d2 c3 c4 d3 d4 Astot	100,00 31,00 10,05 0,00 0,00 23,15 4,00	[cm] [cmq] [cmq] [cm]
arghezza della sezione	B H As1 As2 As3 As4 c1=d1 c2=d2 c3 c4 d3 d4 Astot	100,00 31,00 10,05 0,00 0,00 23,15 4,00 6,00 7,00 4,00 24,00 27,00 33,21	[cm] [cmq] [cmq] [cmq] [cm] [cm] [cm] [cm] [cm] [cm]
darghezza della sezione	B H As1 As2 As3 As4 c1=d1 c2=d2 c3 c4 d3 d4 Astot	100,00 31,00 10,05 0,00 0,00 23,15 4,00 6,00 7,00 4,00 24,00 27,00 33,21 665,37	[cm] [cmq] [cmq] [cmq] [cm] [cm] [cm] [cm] [cm] [cm]
Arghezza della sezione	B H As1 As2 As3 As4 c1=d1 c2=d2 c3 c4 d3 d4 Astot SAsi x di	100,00 31,00 10,05 0,00 0,00 23,15 4,00 6,00 7,00 4,00 24,00 27,00 33,21 665,37	[cm] [cmq] [cmq] [cmq] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm
Carghezza della sezione	B H As1 As2 As3 As4 c1=d1 c2=d2 c3 c4 d3 d4 Astot SAsi x di	100,00 31,00 10,05 0,00 0,00 23,15 4,00 6,00 7,00 4,00 24,00 27,00 33,21 665,37	[cm] [cmq] [cmq] [cmq] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm
Arghezza della sezione	B H As1 As2 As3 As4 c1=d1 c2=d2 c3 c4 d3 d4 Astot SAsi x di	100,00 31,00 10,05 0,00 0,00 23,15 4,00 6,00 7,00 4,00 24,00 27,00 33,21 665,37	[cm] [cmq] [cmq] [cmq] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

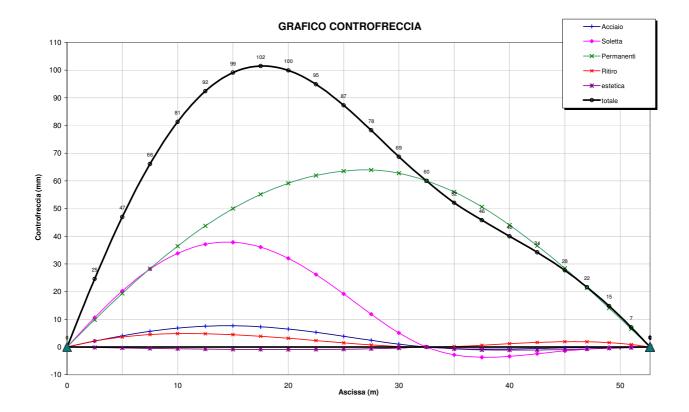
Relazione di Calcolo Impalcato

Pagina 113 di 139

Nome file:

400,00 30,99 21,69 26,03 060000,00 3598,11 16,13 312713,29 0,00 5473,59	[daN/cmq] [daN/cmq] [daN/cmq] [daN/cmq] [daN/cmq] [cmq] [cm] [cm] [daNm] [daNm] [daNm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [c
30,99 21,69 26,03 060000,00 3598,11 16,13 312713,29 0,00 5473,59 6516,18 17,82 3,11 10,91 0,00 7,44 743,60 0,0311 0,40 0,125 11,26 8989,96 1647,67 1,00 0,50	[daN/cmq] [daN/cmq] [daN/cmq] [daN/cmq] [daN/cmq] [cmq] [cm] [cm] [daNm] [daNm] [daNm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [c
30,99 21,69 26,03 060000,00 3598,11 16,13 312713,29 0,00 5473,59 6516,18 17,82 3,11 10,91 0,00 7,44 743,60 0,0311 0,40 0,125 11,26 8989,96 1647,67 1,00 0,50	[daN/cmq] [daN/cmq] [daN/cmq] [daN/cmq] [daN/cmq] [cmq] [cm] [cm] [daNm] [daNm] [daNm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [c
30,99 21,69 26,03 060000,00 3598,11 16,13 312713,29 0,00 5473,59 6516,18 17,82 3,11 10,91 0,00 7,44 743,60 0,0311 0,40 0,125 11,26 8989,96 1647,67 1,00 0,50	[daN/cmq] [daN/cmq] [daN/cmq] [daN/cmq] [daN/cmq] [cmq] [cm] [cm] [daNm] [daNm] [daNm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [c
21,69 26,03 060000,00 3598,11 16,13 312713,29 0,00 5473,59 6516,18 17,82 3,11 10,91 0,00 7,44 743,60 0,0311 0,40 0,125 11,26 8989,96 1647,67 1,00 0,50	[daN/cmq] [daN/cmq] [daN/cmq] [daN/cmq] [cmq] [cm] [cm, 4] [daNm] [daNm] [daNm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [c
26,03 060000,00 3598,11 16,13 312713,29 0,00 5473,59 6516,18 17,82 3,11 10,91 0,00 7,44 743,60 0,0311 0,40 0,125 11,26 8989,96 1647,67 1,00 0,50	[daN/cmq] [daN/cmq] [daN/cmq] [cmq] [cm] [cm,4] [daNm] [daNm] [daNm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [c
3598,11 16,13 312713,29 0,00 5473,59 6516,18 17,82 3,11 10,91 0,00 7,44 743,60 0,0311 0,40 0,125 11,26 8989,96 1647,67 1,00 0,50	[cmq] [cmq] [cm] [cm, 4] [daN] [daNm] [daNm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [c
16,13 312713,29 0,00 5473,59 6516,18 17,82 3,11 10,91 0,00 7,44 743,60 0,0311 0,40 0,125 11,26 8989,96 1647,67 1,00 0,50	[cm] [cm^4] [daN] [daNm] [daNm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [c
16,13 312713,29 0,00 5473,59 6516,18 17,82 3,11 10,91 0,00 7,44 743,60 0,0311 0,40 0,125 11,26 8989,96 1647,67 1,00 0,50	[cm] [cm^4] [daN] [daNm] [daNm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [c
312713,29 0,00 5473,59 6516,18 17,82 3,11 10,91 0,00 7,44 743,60 0,0311 0,40 0,125 11,26 8989,96 1647,67 1,00 0,50	[cm^4] [daN] [daNm] [daNm] [mm] [cm] [cm] [cm] [cm] [cm] [cm] [
0,00 5473,59 6516,18 17,82 3,11 10,91 0,00 7,44 743,60 0,0311 0,40 0,125 11,26 8989,96 1647,67 1,00 0,50	[daN] [daNm] [daNm] [mm] [cm] [cm] [cm] [cm] [cm] [cm] [
17,82 3,11 10,91 0,00 7,44 743,60 0,0311 0,40 0,125 11,26 8989,96 1647,67 1,00 0,50	[daNm] [daNm] [mm] [cm] [cm] [cm] [cm] [cm] [cmd]
17,82 3,11 10,91 0,00 7,44 743,60 0,0311 0,40 0,125 11,26 8989,96 1647,67 1,00 0,50	[daNm] [mm] [cm] [cm] [cm] [cm] [cm] [cmq]
17,82 3,11 10,91 0,00 7,44 743,60 0,0311 0,40 0,125 11,26 8989,96 1647,67 1,00 0,50	[mm] [cm] [cm] [cm] [cm] [cmq]
3,11 10,91 0,00 7,44 743,60 0,0311 0,40 0,125 11,26 8989,96 1647,67 1,00 0,50	[cm] [cm] [cm] [cm] [cm] [cm] [cmq]
3,11 10,91 0,00 7,44 743,60 0,0311 0,40 0,125 11,26 8989,96 1647,67 1,00 0,50	[cm] [cm] [cm] [cm] [cm] [cm] [cmq]
10,91 10,91 0,00 7,44 743,60 0,0311 0,40 0,125 11,26 8989,96 1647,67 1,00 0,50	[cm] [cm] [cm] [cm] [cmq] [cmq]
10,91 0,00 7,44 743,60 0,0311 0,40 0,125 11,26 8989,96 1647,67 1,00 0,50	[cm] [cm] [cm] [cmq] [cmq]
0,00 7,44 743,60 0,0311 0,40 0,125 11,26 8989,96 1647,67 1,00 0,50	[cm] [cm] [cmq] [cmq] [daNm] [daN/cmq]
7,44 743,60 0,0311 0,40 0,125 11,26 8989,96 1647,67 1,00 0,50	[cm] [cmq] [cm] [daNm] [daN/cmq]
743,60 0,0311 0,40 0,125 11,26 8989,96 1647,67 1,00 0,50	[cmq] [cm] [daNm] [daN/cmq]
0,0311 0,40 0,125 11,26 8989,96 1647,67 1,00 0,50	[cm] [daNm] [daN/cmq]
0,40 0,125 11,26 8989,96 1647,67 1,00 0,50	[cm] [daNm] [daN/cmq]
0,125 11,26 8989,96 1647,67 1,00 0,50	[cm] [daNm] [daN/cmq]
11,26 8989,96 1647,67 1,00 0,50	[cm] [daNm] [daN/cmq]
8989,96 1647,67 1,00 0,50	[daNm] [daN/cmq]
1647,67 1,00 0,50	[daN/cmq]
1,00 0,50	
0,50	
0,066	
0,113	[mm] < 0, 2
	+
101 x= 5	,000 m +
si Permane	ente
100,00	
31,00	
10,05	
0,00	-
23,15	-
4,00	[cm]
6,00	[cm]
7,00	[cm]
4,00	[cm]
24,00	[cm]
27,00	[cm]
33,21	[cmq]
665 , 37	[cm^3]
15,00	
10,00	[cm]
139134 , 54	[cm^4]
0,00	[daNm]
.,	
, , , ,	
13	31,00 10,05 0,00 0,00 23,15 4,00 6,00 7,00 4,00 24,00 27,00 33,21 665,37

Progetto Esecutivo


Opera: CV08 Cavalcavia alla progr. 19+380
Relazione di Calcolo Impalcato
Pagina 114 di 139
Nome file:
CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

6 Controfreccia di montaggio

Le travi principali saranno realizzate assegnando una controfreccia costruttiva di entità pari alla freccia dovuta ai carichi indotti dal peso proprio della carpenteria metallica, della soletta, dai carichi permanenti e dalle distorsioni imposte.

La valutazione degli abbassamenti sotto carico è stata condotta con gli stessi modelli usati per l'analisi delle sollecitazioni (vedi appendice "Modelli di calcolo dell'impalcato").

Nella Figura seguente sono riportati i vari contributi alla controfreccia ed il suo valore totale.

CORRIDOIO PLURIMODALE TIRRENICO-NORD EUROPA ITINERARIO AGRIGENTO -CALTANISSETTA-A19 S.S. N° 640 "DI PORTO EMPEDOCLE"

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 115 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

PARTE II - APPOGGI E GIUNTI

7 Dimensionamento degli appoggi

In corrispondenza delle sottostrutture S1, P1 e S2 vengono utilizzati dei dispositivi d'appoggio in elastomero armato ad alto smorzamento. Questi dispositivi sono formati da strati alternati di elastomero e acciaio uniti mediante vulcanizzazione.

I parametri di progetto caratterizzanti il singolo dispositivo di isolamento sono:

- K_e = rigidezza orizzontale equivalente del dispositivo d'isolamento in un singolo ciclo di carico;
- ξ_e = coefficiente di smorzamento viscoso equivalente del dispositivo d'isolamento in un singolo ciclo di carico :
- d_2 = massimo spostamento ammissibile di un dispositivo d'isolamento allo SLC.
- V = massimo carico verticale agente sul dispositivo d'isolamento in condizioni sismiche;
- F_{zd} = massimo carico verticale agente sul dispositivo d'isolamento allo SLU di esercizio.

Nel caso in esame gli isolatori elastomerici, del tipo SI-H 650/81, presentano le seguenti caratteristiche:

K _e [kN/mm]	ξ _e [%]	d ₂ [mm]	V [kN]	Fzd [kN]
5,74	10	150	7690	10830

7.1 Reazioni Verticali

Le reazioni verticali massime e minime per gli appoggi della trave destra e sinistra, sono determinate combinando i valori nominali di Tabella 7.1 e **Errore.** L'origine riferimento non è stata trovata. con le seguenti condizioni di carico:

$$F_d$$
 = 1,35 · G_k + 1,20 · ε₂ + 1,0 · ε₁ + 1,35 · Q_k + 1,5 · 0,6 · Q₅ + 1,2 · 0,6 · ε₃ essendo:

- Gk pesi propri e carichi permanenti $(g_1 + g_2)$;
- Q_k carichi mobili;
- Q_5 azione compatibile del vento F_w^* ;
- ε_2 ritiro del calcestruzzo;
- ε₃ (-10 °C) variazione termica differenziale negativa;

CORRIDOIO PLURIMODALE TIRRENICO-NORD EUROPA ITINERARIO AGRIGENTO -CALTANISSETTA-A19 S.S. N° 640 "DI PORTO EMPEDOCLE"

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08	Cavalcavia	alla	progr.	19+380

Relazione di Calcolo Impalcato

Pagina 116 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

• ε_1 effetti della distorsione a lungo termine.

$$Arr$$
 F_d = 1,35 · G_k + 1,0 · ε₁ + 1,35 · Q_k + 1,5 · 0,6 · Q₅ + 1,2 · 0,6 · ε₃

- ε_3 (+10 °C) variazione termica differenziale positiva;
- ε_1 effetti della distorsione a lungo termine.

$$ightharpoonup F_d = 1.35 \cdot G_k + 1.20 \cdot \varepsilon_2 + 1.0 \cdot \varepsilon_1 + 1.35 \cdot Q_k + 1.5 \cdot 0.6 \cdot Q_5 + 1.2 \cdot 0.6 \cdot \varepsilon_3$$

essendo:

- ε_2 ritiro del calcestruzzo;
- ε_3 (-10 °C) variazione termica differenziale negativa;
- ε_1 effetti della distorsione a breve termine;

$$Arr$$
 F_d = 1,35 · G_k + 1,0 · ε₁ + 1,35 · Q_k + 1,5 · 0,6 · Q₅ + 1,2 · 0,6 · ε₃

- ε_3 (+10 °C) variazione termica differenziale positiva;
- ε_1 effetti della distorsione a breve termine.

Nelle tabelle seguenti è riportato il dettaglio delle reazioni verticali nominali per ogni singolo appoggio relativo alla trave maggiormente sollecitata.

Trave maggiormente sollecitata

	Acciaio	Soletta	Permanenti	Vento	Ritiro	ΔT Pos	ΔT Neg	Distorsioni B.T.	Distorsioni L.T.	Mobili MAX
Spalla S1	98,64	502,78	289,97	135,88	-110,64	69,64	69,64	146,03	146,03	1060,91
Pila 1	277,21	1352,14	708,45	321,28	288,64	-181,69	-181,69	-380,98	-380,98	1616,51
Spalla S2	35,87	187,2	124,62	60,89	-178,01	112,05	112,05	234,95	234,95	904,38

Tabella 7.1: Reazioni (Rv) nominali agenti sugli appoggi della trave esterna.

In base alle combinazioni allo SLU riportate precedentemente, il carico verticale agente sul dispositivo d'isolamento maggiormente sollecitato è pari a:

3922kN (combinazione SLU di esercizio).

In base alle combinazioni allo SLU riportate precedentemente, il carico verticale agente sul dispositivo d'isolamento in fase sismica, risulta pari a: 2503,33kN

CORRIDOIO PLURIMODALE TIRRENICO-NORD EUROPA ITINERARIO AGRIGENTO -CALTANISSETTA-A19 S.S. N° 640 "DI PORTO EMPEDOCLE"

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 117 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

7.2 Verifica allo SLC dei dispositivi d'isolamento

I dispositivi del sistema d'isolamento debbono essere in grado di sostenere, senza rotture, gli spostamenti d₂ valutati per un terremoto avente probabilità di superamento pari a quella prevista per lo SLC.

Per tutti gli isolatori è verificato anche il soddisfacimento della condizione $V \ge 0$ (assenza di trazione), in condizioni sismiche.

La valutazione dei massimi spostamenti a cui sono sottoposti gli isolatori è condotta utilizzando la formula suggerita nel paragrafo 11.9.7 della circolare del 02/02/2009 n°617:

$$d_{E} = Max \left\{ \left[\left(d_{Ex} + d_{rftx} \right)^{2} + \left(0.3 d_{Ey} + d_{rfty} \right)^{2} \right]^{\frac{1}{2}}, \left[\left(0.3 d_{Ex} + d_{rftx} \right)^{2} + \left(d_{Ey} + d_{rfty}^{2} \right) \right]^{\frac{1}{2}} \right\}$$

con

- d_{Ex} , d_{Ey} = spostamenti relativi fra due facce (superiore e inferiore) degli isolatori, prodotti dall'azione sismica agente nelle direzioni X e Y;
- d_{rftx} , d_{rfty} = spostamenti relativi fra due facce (superiore e inferiore) degli isolatori, prodotti dalle azioni di ritiro, fluage e termiche (ridotte al 50%). Tali effetti vengono nel complesso tenuti in conto considerando una variazione termica uniforme agente sull'impalcato pari a \pm 50°C.

I calcoli degli spostamenti d_E e dei carichi massimi e minimi agenti sugli isolatori sono effettuati a partire dalle azioni nominali ricavate dal progetto dell'impalcato (reazioni verticali sugli appoggi) e dal modello agli elementi finiti dell'intero viadotto (azioni sismiche) considerando le combinazioni riportate precedentemente.

Nella tabella sottostante sono riportati i risultati relativi all'isolatore sottoposto alla situazione più gravosa.

d _E [mm]	V _{SISMA,MAX} [kN]	V _{SISMA,MIN} [kN]	V _{ESERCIZIO} [kN]
72,7	2503,33	2170,67	3922

CORRIDOIO PLURIMODALE TIRRENICO-NORD EUROPA ITINERARIO AGRIGENTO -CALTANISSETTA-A19 S.S. N° 640 "DI PORTO EMPEDOCLE" AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19 **Progetto Esecutivo**

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 118 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

8 Giunti di dilatazione

L'escursione longitudinale dei giunti di dilatazione in gomma armata è determinata considerando, a favore di sicurezza, il massimo spostamento ammissibile (d_2) dell'isolatore e una variazione termica di $\pm 40^{\circ}$ C sull'impalcato.

Con tale valore si intendono inglobati anche gli effetti del ritiro della soletta in calcestruzzo.

Le caratteristiche costruttive e geometriche dei giunti adottati sono riportate nelle tavole di progetto.

CORRIDOIO PLURIMODALE TIRRENICO-NORD EUROPA ITINERARIO AGRIGENTO -CALTANISSETTA-A19 S.S. N° 640 "DI PORTO EMPEDOCLE" AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380 Relazione di Calcolo Impalcato Pagina 119 di 139

Nome file:

CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

APPENDICE 1 - SOLLECITAZIONI DI PROGETTO (CONDIZIONI ELEMENTARI)

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 120 di 139

								1										stiche per l							1			
. Ascissa			laio + Sole			ichi Perma			Tmin	<u> </u>		Tmax			Mmin			Mmax			Nmin			Nmax			one del Ven	
[m]	Tipo	N [kN]	T [kN]	M [kNm]	N [kN]	T [kN]	M [kN]	N [kN]	T [kN]	M [kNm]	N [kN]	T [kN]	M [kNm]	N [kN]	T [kN]	M [kNn]	N [kN]		M [kNm]	N [kN]	T [kN]	M [kNm]	N [kN]	T [kN]	M [kNm]	N [kN]	T [kN]	M [kNm
0,00	1	 0	601	0	 0	290	0	1 0	-42	l 0 l	0	+ 1061	0	0	0	0	0	+	0	0	+ 0	0	0	0	0	0	136	
2,50	1	0	486	1360	0	237	658	0	-66	1188	0	882	2240	0	-42	-106	0	523	2407	0	0	0	0	0	0	0	111	30
5,00	1	0	371	2432	0	183	1183	0	-138	2607	0	759	3853	0	-42 I	-211	0	389	4328	0	0	0	0	0	0	0	87	5.5
7,50	1	0	256	3217	0	130	1575	0	-217	3810	0	645	4902	0	-42	-317	0	257	5767	0	0	0	0	0	0	0	62	7.
10,00	2	0	140	3713	0	77	1834	0	-301	4753	0	539	5451	0	-42	-423	0	125	6737	0	0	0	0	0	0	0	38	8
12,50	2	0	23	3916	0	24	1960	1 0		5395	0	441	5570	0	-42	-529 I	0	-5	7249	0	0	0	0	0	0	0	13	Š
15,00	2	0	-94	3828	0	-30	1952	0		5700	0	352	5323	0	-42	-634	0	-350	7322	0	0	0	0	0	0	0 [-12	9
17,50	2	0	-210	3448	0	-83	1811	0		5642	0	271	4781	0	-42	-740 I	0	-477	7019	0	0	0	0	0	0	0	-36	5
20,00	2	0	-327	2777	0	-136	1537	0		5199	0	200	4011	0	-42	-846	0	-602	6310	0	0	0	0	0	0	0 [-61	
22,50	1 2 1	0	-444	1813	0	-190	1130	0		4361	0	136	3080	0	-42	-951	0	-724	5222	0	0 1	0	0	0 1	0	0	-85	
25,00	1 2 1	0	-560	558	0	-243	590	0		3124	0	82	2066	0	-42	-1057	0	-842	3783	0	0 1	0	0	0 1	0	0	-110	3
27,50	1 3 1	0 1	-677	-989	0 1	-296	-84 -890	0		1503	0	39	1082	0		-1205	0		2076	0	0 1	0 1	0	0 1	0 1	0 1	-134	
30,00] 3]	0 1	- 793	-2827	0 1	-349	1 -1830	1 0	-1112	-406	0	10	311	0 1	-747	-1929	0	-705	712	0	0 1	0 1	0	0 1	0	0 1	-159	-3 -7
1 32,50	1 4 1	0 1	717	-4939 I	0 1	306	1 -1830	0	-1193	-2458	0	1 957	0 -2877	0 1	-991	-4125 -4125	0	1 0 1	0 1	0	0 1	0 1	0	0 1	0 1	0 1	-184	
35,00	1 3 1	0 1	111	221/1	0 1	1 252	1 -1132	1 0	-44	789	0	1 937	-739 I	0 1	330	2170	0	1 200 1	1061	0	0 1	0 1	0	0 1	0 1	0 1	112	_
37 50	1 3 1	0 1	482	-1963 I	0 1	199	1 -568	1 0		1830	0	733	723	0 1	179	-2725 I	0	1 287 1	2477	0	0 1	0 1	0	0 1	0 1	0 1	89	-2
40.00	1 5 1	0 1	365 1	-904	0 1	1 146	-136	1 0	-215	2752	0	597	1655	0 1	179	-2277 I	0	1 135 1	3478	0	0 1	0 1	0	0 1	0 1	0 1	64	-
1 42,50	5 1	0 1	250	-135 I	0 1	93	163	i 0		3362	0	467	2035	0 1	179	-1829	0	-23	3951	0	0 1	0	0	0 1	0	0 1	39	1
45,00	i 5 i	0 1	134	344	0 1	39	328	i o	-451	3504	Ō	355	2009	0 1	179	-1380 I	0	-381	3912	0	i ō i	ō i	Ö	0 1	0 1	o i	15	1
47,00	j 5 j	0 1	41	519	0 1	-3	364	i 0	-561	3228	0	261	I 1575 I	0 1	179	-1022	0	-511	3472	0	0 1	0 1	0	0 1	0	0	-5	1
49,00	5 1	0	-52	508	0	-46	315	0	-680	2535	0	199	413	0	179	-663	0	-643	2634	0	0	0	0	0	0	0	-25	1
L F1 00	J 5 J	0	-144	312	0	-88	181	0	-805	1368	0	180	-286	0	179 I	-305 I	0	-773	1387	0	0	0	0	0	0	0	-44	
51,00	1 5 1	0 1	-223 I	0	0	-125	0	0	-904	0	0	179	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-61	

		i	Ritiro:e	ffetti is	ostatici	Ritiro:	eff.iper	Var.Te	rm.Pos.:e	ff.iso	V.T.+ :	eff.iper	Var.Te	rm.Neg.:	eff.iso	V.T:	eff.iper	i								
Sez.		Sez.	Soletta	Strutt.	Composta	Strutt.	Composta	Soletta	Strutt.	Composta	Strutt.	Composta	Soletta	Strutt.	Composta	Strutt.	Composta		edimenti	i	Distorsion	ni e Pre		Altr	i Caric	hi
Num.	[m]	Tipo	N [kN]	N [kN]	M [kNm]	N [kN]	M [kNm]	N [kN]	N [kNm]	M [kNm]	N [kN]	M [kNm]	N [kN]	N [kN]	M [kNm]	N [kN]	M [kNm]	N [kN]	T [kN]	M [kNm]	N [kN]	T [kN]		N [kN]	T [kN]	M [kNm]
1 1	0,00	1 1	4570	-4570	2532	-111	0	-6261	6261	-1640	70	0	6261	-6261	1640	-70	0	0 1	146	0	0	160	0	0	146	0
2	2,50	1	4570	-4570	2532	-111	-277	-6261	6261	-1640	70	174	6261	-6261	1640	-70	-174	0 1	146	365	0	160	399	0	146	365
3	5,00	1	4570	-4570	2532	-111	-553	-6261	6261	-1640	70	348	6261	-6261	1640	I -70	-348	0	146	730	0	160	798	0	146	730
4	7,50	1	4570	I −4570	2532	-111	-830	-6261	6261	-1640	70	522	6261	-6261	1640	I -70	-522	0	146	1095	0	160	1197	0	146	1095
5	10,00	2	4570	-4570	2532	-111	-1106	-6261	6261	-1640	70	696	6261	-6261	1640	-70	-696	0	146	1460	0	160	1595	0	146	1460
6	12,50	2	4570	I −4570	2532	-111	-1383	-6261	6261	-1640	70	871	6261	-6261	1640	I -70	-871	0	146	1825	0	160	1994	0	146	1825
7	15,00	2	4570	I −4570	2532	-111	-1660	-6261	6261	-1640	70	1045	6261	-6261	1640	I -70	-1045	0	146	2190	0	160	2393	0	146	2190
8	17,50	2	4570	I -4570	2532	-111	-1936	-6261	6261	-1640	70	1219	6261	-6261	1640	-70	-1219	0	146	2556	0	160	2792	0	146	2556
9	20,00	2	4570	I -4570	2532	-111	-2213	-6261	6261	-1640	70	1393	6261	-6261	1640	-70	-1393	0 1	146	2921	0	160	3191	0	146	2921
10	22,50	2	4570	-4570	2532	-111	-2489	-6261	6261	-1640	70	1567	6261	-6261	1640	-70	-1567	0 1	146	3286	0	160	3590	0	146	3286
11	25,00	2	4570	-4570	2532	-111	-2766	-6261	6261	-1640	70	1741	6261	-6261	1640	-70	-1741	0 1	146	3651	0	160	3989	0	146	3651
12	27,50	3	4570	-4570	2532	-111	-3043	-6261	6261	-1640	70	1915	6261	-6261	1640	I -70	-1915	0 1	146	4016	0	160	4388	0	146	4016
13	30,00	3	4570	I -4570	2532	-111	-3319	-6261	6261	-1640	70	2089	6261	-6261	1640	-70	-2089	0 1	146	4381	0	160	4786	0	146	4381
14	32,50	4	4570	I -4570	2532	-111	-3596	-6261	6261	-1640	70	2263	6261	-6261	1640	-70	-2263	0 1	146	4746	0	160	5185	0	146	4746
15	32,50	4	4570	-4570	2532	178	-3596	-6261	6261	-1640	-112	2263	6261	-6261	1640	112	-2263	0 1	-235	4746	0	-257	5185	0	-235	4746
16	35,00	3	4570	-4570	2532	178	-3151	-6261	6261	-1640	-112	1983	6261	-6261	1640	112	-1983	0 1	-235	4159	0	-257	4544	0	-235	4159
17	37,50	3	4570	-4570	2532	178	-2706	-6261	6261	-1640	-112	1703	6261	-6261	1640	112	-1703	0 1	-235	3571	0	-257	3902	0	-235	3571
18	40,00	5	4570	-4570	2532	178	-2261	-6261	6261	-1640	-112	1423	6261	-6261	1640	112	-1423	0 1	-235	2984	0	-257	3260	0	-235	2984
19	42,50	5	4570	-4570	2532	178	-1816	-6261	6261	-1640	-112	1143	6261	-6261	1640	112	-1143	0 1	-235	2396	0	-257	2618	0	-235	2396
20	45,00	5	4570	-4570	2532	178	-1371	-6261	6261	-1640	-112	863	6261	-6261	1640	112	-863	0 1	-235	1809	0	-257	1977	0	-235	1809
21	47,00	5	4570	I -4570	2532	178	-1015	-6261	6261	-1640	-112	639	6261	-6261	1640	112	-639	0 1	-235	1339	0	-257	1463	0	-235	1339
22	49,00	5	4570	-4570	2532	178	-659	-6261	6261	-1640	-112	415	6261	-6261	1640	112	-415	0 1	-235	869	0	-257	950	0	-235	869
23	51,00	5	4570	-4570	2532	178	-303	-6261	6261	-1640	-112	190	6261	-6261	1640	112	-190	0 1	-235	399	0	-257	436	0	-235	399
24	52,70	5	4570	-4570	2532	178	0	-6261	6261	-1640	-112	0 1	6261	-6261	1640	112	0	0 1	-235	0	0	-257	0	0	-235	0

		i			Ca	arichi mob	ili + Effe	tto dinamio	co - Sollec	citazioni	caratterist	iche per	le verific	he agli SI	Œ					
	Ascissa	Sez.		Tmin	i		Tmax	i		Mmin	i		Mmax	i		Nmin		l	Nmax	
Num.		Tipo	N [kN]	T [kN]	M [kNm]	N [kN]	T [kN]	M [kNm]	N [kN]	T [kN]	M [kNn]	N [kN]	T [kN]	M [kNm]	N [kN]	T [kN]	M [kNm]	N [kN]	T [kN]	M [kNm]
1 1 1	0,00	1	0		. 0 1	0	957	0	0	0	0	0	. 0	0	0	0	0	0	I 0	1 0
2	2,50	1	0	-59	1031	0	794	2019	0	-38	-95	0	473	2172	0	0	0	0	0	1 0
3	5,00	1	0		2275	0	682		0	-38	-190	0		3905	0	0		0	1 0	1 0
4	7,50	1	0		3342	0	578	4396	0	-38	-285	0		5206	0	0	1 0	0	1 0	1 0
5	10,00	2	0		4188	0	481	4876	0	-38	-380	0		6084	0	0	1 0	0	1 0	1 0
6	12,50	2	0		4770	0	393	4967	0	-38	-475	0			0	0		0	0	0
7 1	15,00	2	0		5056	0	313	4733	0	-38	-570	0		6615	0	0	0	0	0	0
8	17,50	2	0		5016	0	240		0	-38	-666	0		6340	0	0		0	0	0
9 1	20,00	2	0		4630	0	176	3543	0	-38	-761	0		5697	0	0	0	. 0	0	1 0
10	22,50	2	0		3882	0	120	2710	0	-38	-856	0	-661	4709	0	0	0	0	0	1 0
11	25,00	2	0		2767	0	72		0	-38	-951	0		3400	0	0		0	0	1 0
12	27,50	3	0		1295	0	34	945	0	-133	-1087	0		1846	0	0	0	0	0	1 0
13	30,00	3	0		-451	0	9	271	0	-682	-1774	0	-631	624	0	0	0	0	0	1 0
14	32,50	4	0		-2344 0	0	0 862	0 -2705	0 1	-908 433	-3784 -3784	0	I 0	0 0	0	0) 0 I 0	I 0	1 0
1 16 1	35,00	9	0		I 687 I	0	1 783	-2705 -775	0 1	203	-3784 -2896	0		936	0 1	0	0	1 0	1 0	1 0
1 17 1	37,50	3 1	0		1602	l 0 I 0	I 658	545	0 1	163	-2483	0		2209	0 1	0	1 0	1 0	1 0	1 0
1 18 1	40 00 1	5 I	0		2419	0	I 536	1382	0 1	163	-2074	0		3108	0 1	0	1 0	1 0	1 0	1 0
1 19 1	42 50 1	5 1	0		2968	0	1 419	1725	0 1	163	-1666	Ö		3531	0	0	0	1 0	1 0	1 0
1 20 1	45,00	5 1	0		3103	. 0	319	1709	0 1	163	-1258	0		3496	0 1	0	1 0	1 0	1 0	1 0
21 1	47 00 1	5 1	0		2867	0	236	1335	0 1	163	-931	0		3101	0 1	0		1 0	1 0	1 0
22 1	49,00	5 I	0		1 2257 1	. 0	181	335	0 1	163	-604	0		2352	0 1	0		1 0	1 0	1 0
23 1	51,00	5 I	0		1220	. 0	164	-260	0 1	163	-278	0	-701	1238	0 1	0	1 0	1 0	1 0	0
24	52,70	5 I	0		0 1	. 0	163	0	0 1	0	0	0	1 0	0	0	0	i 0	i 0	i 0	i 0
		+				+								+			+	+		-+

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 121 di 139

		i				Carichi m	obili + E	ffetto dina	mico - Sol	lecitazio	ni caratter	_	r le veri	fiche a fat	ica: Model	lo LM2 - 1				
	Ascissa	Sez.		Tmin	i		Tmax	i		Mmin	i		Mmax	į		Nmin			Nmax	
Num.		Tipo	N [kN]	T [kN]	M [kNm]	N [kN]	T [kN]	M [kNm]	N [kN]	T [kN]	M [kNn]	N [kN]	T [kN]	M [kNm]	N [kN]	T [kN]	M [kNm]	N [kN]	T [kN]	M [kNm]
1	0,00	++- 1	0			0 1	225	1 0 1	0	0	++ 0	0	0	1 0	0	0	+	0	++ 0	0
2	2,50	1 1	0	-15	366	0	192	480	0	-9	-23	0	41	507	0	0	0 1	0	0 1	0
3	5,00	1	0	-32	688	0	170	851	0	-9	-46 I	0	19	905	0	0	0	0	0	0
4	7,50	1	0	-54	1038	0	149	1116	0	-9	-70	0	-2	1195	0	0	0	0	0	0
5	10,00	2	0	l –75	1283	0	128	1279	0	-9	-93	0	-23	1382	0	0	0	0	0	0
6	12,50	2	0	-97	1424	0	108	1347	0	-9	-116	0	-44	1471	0	0	0	0	0	0
7	15,00	2	0	-117	1468	0	88	1326	0	-9	-139	0	-36	1468	0	0	0	0	0	C
8	17,50	2	0	-137	1421	0	70	1223	0	-9	-162	0	-56	1421	0	0	0	0	0	C
9	20,00	2	0	-156	1291	0	52	1049	0	-9	-186	0	-75	1291	0	0	0	0	0	0
10	22,50	2	0	-174	1087	0	36	818	0	-9	-209	0	-94	1087	0	0	0	0	0	C
11	25,00	2	0	-191	819	0	22	550	0	-9	-232	0	-111	819	0	0	0	0	0	C
12	27,50	3	0	-207	501	0	11	296	0	-9	-255	0	-127	501	0	0	0	0	0	C
13	30,00	3	0	-221	168	0	3	93	0	-133	-293	0	-155	187	0	0	0	0	0	0
14	32,50	4	0	-232	-144	0	0	0	0	-159	-662	0	0	0	0	0	0	0	0	0
15 I	32,50	4	0	0	0	0	203	-236	0	33	-662	0	0	0	0	0	0	0	0	C
16	35,00	3	0	-13	236	0	190	208	0	33	-580	0	42	272	0	0	0	0	0	C
17	37,50	3	0			0	162		0	33	-498	0	15		0	0	0	0	0	0
18	40,00	5	0		726	0	132		0	33	-416	0	-14		0	0	0	0	0	0
19	42,50	5	0	-86	876	0	100	763	0	33	-334	0	-45	896	0	0	0	0	0 1	0
20	45,00	5	0	-117	898	0	71		0	33	-252	0	-36		0	0	0	0	0	0
21	47,00	5	0		811	0	46		0	33	-187	0	-62		0	0	0	0	0	0
22	49,00	5	0		624	0	33		0	33	-121	0	-88	624	0	0	0	0	0	0
23	51,00	5	0		332	0	33		0	33	-56	0	-115	332	0	0	0	0	0	0
24	52,70	J 5 I	0	-218	0	0	33	0	0	0	0	0	0	0	0	0	0	0	0	0

		. !						ffetto dina				-								
	Ascissa	Sez.		Tmin	i		Tmax	i		Mmin	i		Mmax		İ	Nmin	į		Nmax	
Num.		Tipo	N [kN]	T [kN]	M [kNm]	N [kN]	T [kN]	++ M [kNm]	N [kN]	T [kN]	M [kNn]	N [kN]	T [kN]	M [kNm]	N [kN]	T [kN]	M [kNm]	N [kN]	T [kN]	M [kNm]
1	0,00	1 1 1	0	-12	0 1	0	286	0 1	0	0	1 0 1	0	0	0	0 1	0	0	0	0	1 0
2	2,50	1	0	-17	399	0	244	609	0	-12	-30	0	110	644	0	0	0	0	0	1 0
3	5,00	1	0	-39	842	0	216	1078	0	-12	-60	0	82	1148	0	0	0	0	0	0
4	7,50	1	0	J -66	1273	0	188	1412	0	-12	-90	0	54	1514	0	0	0	0	0	1 0
5	10,00	2	0	-94	1594	0	162	1616	0	-12	-120	0	27	1747	0	0	0	0	0	1 0
6	12,50	2	0	-121	1783	0	136	1697	0	-12	-150	0	-76	1870	0	0	0	0	0	1 0
7	15,00	2	0	-148	1846	0	111	1664	0	-12	-180	0	-102	1887	0	0	0	0	0	1 0
8	17,50	2	0	-173	1792	0	87	1528	0	-12	-209	0	-36	1808	0	0	0	0	0	0
9	20,00	2	0	-198	1629	0	65	1302	0	-12	-239	0	-139	1629	0	0	0	0	0	1 0
10	22,50	2	0	-222	1370	0	1 45	1004	0	-12	-269	0	-162	1370	0	0	0	0	0	1 0
11	25,00	2	0	-244	1028	0	27	667	0	-12	-299	0	-184	1028	0	0	0	0	0	1 0
12	27,50	3	0	-264	620	0	13	347	0	-12	-329	0	-205	620	0	0	0	0	0	1 0
13	30,00	3	0	-282	187	0	1 3	102	0	-173	-376	0	-166	218	0	0	0	0	0	1 0
14	32,50	4	0	-297	-222	0	0	0	0	-210	-851	0	0	0	0	0	0	0	0	1 0
15	32,50	4	0		0	0	257	-314	0	42	-851	0	0	0	0	0	0	0	0	1 0
16	35,00	3	0		257	0	240	251	0	42	-746	0	110	330	0 1	0	0	0	0	1 0
17	37,50	3	0		575	0	204	637	0	42	-640	0	76	731	0 1	0	0	0	0	1 0
18	40,00	5	0		886	0	165	878	0	42	-535	0	38	1006	0 1	0	0	0	0	1 0
19	42,50	5	0		1084	0	124	943	0	42	-430	0	-72	1141	0 1	0	0	0	0	0
20	45,00	5	0		1121	0	86	857	0	42	-324	0	-9	1129	0 1	0	0	0	0	1 0
21	47,00	5	0		1016	0	56	291	0	42	-240	0	-119		0 1	0	0	0	0	1 0
22	49,00	5	0		784	0	42	-156	0	42	-156	0	-153	784	0 1	0	0	0	0	1 0
23	51,00	5	0		419	0	42	-72	0	42	-72	0	-187	419	0 1	0	0	0	0	0
24	52,70	5	0	-276	0	0	42	1 0 1	0	0	0 1	0	0	0	0 1	0	0	0	0	1 0

		i				Carichi r	nobili + E	ffetto dina	amico - Sol	lecitazio	ni caratter	istiche pe	er le veri	fiche a fat	ica: Mode	llo LM2 -	VEICOLO 3			
	Ascissa	Sez.		Tmin	i		Tmax	i		Mmin	i		Mmax			Nmin	i		Nmax	
Num.	[m]	Tipo	N [kN]	T [kN]	M [kNm]	N [kN]	T [kN]	M [kNm]	N [kN]	T [kN]	M [kNn]	N [kN]	T [kN]	M [kNm]	N [kN]	T [kN]	M [kNm]	N [kN]	T [kN]	M [kNm]
1	0,00	1 1	0	-19	0	0	445	0 1	0	0	0 1	0	0	0	0	0	0	0	I 0 I	0
2	2,50	1	0	-19	-46	0	372	931	0	-19	-46	0	270	991	0	0	0	0	0	0
3	5,00	1	0	-42	920	0	325	1623	0	-19	-93	0	222	1741	0	0	0	0	0	0
4	7,50	1	0	-71	1367	0	278	2088	0	-19	-139	0	97	2308	0	0	0	0	0	0
5 I	10,00	2	0	-111	1887	0	234	2337	0	-19	-186	0	51		0	0	0	0	0 1	0
6	12,50	2	0		2298	0	191	2384	0	-19	-232	0	-49	2819	0	0	0 1	0	0 1	0
7	15,00	2	0		2528	0	150	2251	0	-19	-278	0	I –93	2803	0	0	0 1	0	0 1	0
8	17,50	2	0		2540	0	112	1963	0	-19	-325	0	-68	2716	0	0	0 1	0	0 1	0
9	20,00	2	0		2351	0	78	1566	0	-19	-371	0	-190	2462	0	0	0 1	0	0 1	0
10	22,50	2	0		1977	0	50	1123	0	-19	-418	0	-233	2054	0	0	0 1	0	0 1	0
11	25,00	2	0	-381	1438	0	28	710	0	-19	-464	0	-273	1493	0	0	0 1	0	0 1	0
12	27,50	3 1	0		761	0	13	350	0	-19	-510	0	-310		0	0	0 1	0	0 1	0
13	30,00	3	0		-6	0	3	88	0	-296	-612	0	-216	244	0	0	0 1	0	0 1	0
14	32,50 32,50	4 1	0	-485	-794	0	0	0	0	-361	-1424	0	0	0	0	0	0 1	0	0 1	0
15	32,30	1 4 1	0	0 -13	0 223	0	378 345	-582 270	0	71 71	-1424 -1248	0	0 180	0 375) 0 I 0) 0 I 0	0 1	0	0 0	0
16	37,50	1 3 1	0	-13 -41	616	0	1 277	270 821	0 1	71	-1246 -1072	0	1118	1 1000	1 0	1 0	1 0 1	0	1 0 1	0
18	40,00	1 5 1	0			0	208	1088	0 1	71	-1072 I I -895 I	0	I 51	1 1387	1 0	1 0	1 0 1	0	1 01	0
10 I	42,50	1 5 1	0		1257	0		1000 I	0 1	71	-719 I	0	I -61	1522	1 0	1 0	1 0 1	0	1 0 1	0
20	45,00	1 5 1	0	I -182	1404	0	1 94	1 930 I	0 1	71	-719 I I -543 I	0	I -01	1541	1 0	1 0	1 0 1	0	1 0 1	0
21	47,00	. 51	0		1342	0	74		0 1	71	-402 I	0	-136		. 0	. 0	1 0 1	0	1 0 1	0
22	49.00	5 1	0		1077	0	71	-261	0 1	71	-261	0	-193	1 1082	. 0	. 0	0 1	0	1 0 1	0
23	51,00	5	Ö	-349	593	0	71	-120	0 1	71	-120	0	-298	593	0	0	0 1	0	0 1	0

Opera: CV08 Cavalcavia alla progr. 19+380

Relazione di Calcolo Impalcato

Pagina 122 di 139

Nome file: CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

		. !										-			tica: Model					
	Ascissa	Sez.		Tmin	i		Tmax			Mmin	i		Mmax		Ī	Nmin		l	Nmax	
Num.	[m]	Tipo	N [kN]	T [kN]	M [kNm]	N [kN]	T [kN]	M [kNm]	N [kN]	T [kN]	M [kNn]	N [kN]	T [kN]	M [kNm]	++ N [kN]	T [kN]	M [kNm]	N [kN]	T [kN]	M [kNm]
1	0,00	++- 1	0	-16	0	0	390	0	0	0	0	0	0	I 0	0	0	0	l 0	0	1 0
2	2,50	1	0	-16	-40	0	325	812	0	-16	-40	0	211	866	0	0	0	0	0	1 0
3	5,00	1	0	-37	793	0	283	1414	0	-16	-80	0	168	1518	0	0	0	0	0	1 0
4	7,50	1	0	-59	1132	0	242	1815	0	-16	-120	0	54	1975	0	0	0	0	0	1 0
5	10,00	2	0	-93	1587	0	202	2024	0	-16	-160	0	13	2293	0	0	0	0	0	1 0
6	12,50	2	0	-133	1952	0	165	2057	0	-16	-200	0	-27	2421	0	0	0	0	0	1 0
7	15,00	2	0	-176	2171	0	129	1932	0	-16	-240	0	-65	2374	0	0	0	0	0	1 0
8	17,50	2	0	-217	2195	0	96	1672	0	-16	-280	0	-85	2329	0	0	0	0	0	1 0
9	20,00	2	0	-258	2038	0	66	1324	0	-16	-319	0	-124	2122	0	0	0	0	0	1 0
10	22,50	2	0	-296	1716	0	42	945	0	-16	-359	0	-161	1759	0	0	0	0	0	1 0
11	25,00	2	0	-333	1245	0	24	606	0	-16	-399	0	-196	1259	0	0	1 0	0	0	1 0
12	27,50	3	0	-368	650	0	12	322	0	-16	-439	0	-229	658	0 1	0	0	0	0	1 0
13	30,00	3	0	-399	-26	0	3	93	0	-258	-537	0	-224	196	0	0	1 0	0	0	1 0
14	32,50	4	0	-427	-726	0	0	0	0	-323	-1255	0	0	0	0 1	0	0	0	0	
15	32,50	4 1	0	0	0	0	327	-506	0	62	-1255	0	0	0	0 1	0	0	0	0	1 1
16	35,00	3	0	-13	236	0	298	232	0	62	-1100	0	163	312	0 1	0	0	0	0	
17	37,50	3 1	0	-35	538	0	237	703	0	62	-945	0	133	824	0 1	0	0	0	0	0
18	40,00	5 1	0	-62	793	0	176	923	0	62	-789	0	13	1167	0 1	0	0	0	0	1 0
19	42,50	1 5 1	0 1	-104	1058	0 1	119	899	0	62	-634	0 1	-50	1248	0 1	0	0	0	0	
20	45,00	1 5 1	0	-155	1190	0	78	778	0	62	-479	0 1	-24	1297	0 1	0	0	0	0	
21	47,00	1 5 1	0	-201	1146	0 1	64	209	0	62	-354	0 1	-73	1183	0 1	0	0	0	0	
22	49,00	5 1	0	-250	925	0 1	62	-230	0	62	-230	0 1	-191	925	0 1	0	0	0	0	1 0
24	51,00 52,70	1 5 1	0 1	-301 -345	512	0	62 62	-106	0 1	62	-106	0 1	-242	512	1 0 1	0	1 0	0	1 0	1 0

		i				Carichi n	nobili + Et	ffetto dina	mico - Sol	lecitazio	ni caratter	istiche pe	er le veri	fiche a fa	tica: Model	lo LM2 -	VEICOLO 5			
	Ascissa	Sez.		Tmin		I	Tmax	i		Mmin	i		Mmax		i I	Nmin		l	Nmax	
Num.		Tipo	N [kN]	T [kN]	M [kNm]	N [kN]	T [kN]	M [kNm]	N [kN]	T [kN]	M [kNn]	N [kN]	T [kN]	M [kNm]	++ N [kN] +	T [kN]	M [kNm]	N [kN]	T [kN]	M [kNm]
1	0,00	1 1	0	-16	0	0	400	0	0	0	0	0	0	0	I 0 I	0	0	0	0	1 0
2	2,50	1	0	-16	-41	0	331	827	0	-16	-41	0	238	884	0	0	0	0	0	1 0
3	5,00	1	0	-34	738	0	286	1429	0	-16	-81	0	192	1540	0	0	0	0	0	1 0
4	7,50	1	0	-58	1114	0	242	1815	0	-16	-122	0	99	2027	0	0	0	0	0	1 0
5	10,00	2	0	-90	1533	0	200	2001	0	-16	-162	0	120	2365	0	0	0	0	0	1 0
6	12,50	2	0	-130	1909	0	160	2002	0	-16	-203	0	77	2507	0	0	0	0	0	1 0
7	15,00	2	0	-170	2097	0	124	1865	0	-16	-244	0	-57	2542	0	0	0	0	0	1 0
8	17,50	2	0	-213	2139	0	93	1624	0	-16	-284	0	-74	2420	0	0	0	0	0	1 0
9	20,00	2	0	-258	2015	0	64	1287	0	-16	-325	0	-233	2192	0	0	0	0	0	1 0
10	22,50	2	0	-300	1703	0	41	917	0	-16	-365	0	-274	1802	0	0	0	0	0	1 0
11	25,00	2	0	-341	1224	0	23	583	0	-16	-406	0	-312	1272	0	0	0	0	0	1 0
12	27,50	3	0	-380	599	0	11	303	0	-16	-446	0	-347	637	0	0	0	0	0	1 0
13	30,00	3	0	-416	-128	0	3	88	0	-270	-562	0	-147	177	0	0	0	0	0	1 0
14	32,50	4	0	-448	-904	0	0	0	0	-341	-1336	0	0	0	0	0	0	0	0	1 0
15 I	32,50	4	0	0	0	0	322	-525	0	66	-1336	0	0	0	0	0	0	0	0	1 0
16	35,00	3	0	-13	223	0	290	214	0	66	-1171	0	236	303	0	0	0	0	0	1 0
17 I	37,50	3	0	-33	504	0	230	682	0	66	-1006	0	104	806	0 1	0	0	0	0	1 0
18	40,00	5	0	-61	775	0	171	898	0	66	-840	0	118	1159	0	0	0	0	0	1 0
19	42,50	5	0	-100	1023	0	116	878	0	66	-675	0	19	1290	0	0	0	0	0	1 0
20	45,00	5	0	-151	1161	0	78	196	0	66	-509	0	-138	1286	0	0	0	0	0	1 0
21	47,00	5	0	-195	1110	0	66	-377	0	66	-377	0	-191	1157	0 1	0	0	0	0	1 0
22	49,00	5	0	-241	892	0	66	-245	0	66	-245	0	-151	894	0 1	0	0	0	0	1 0
23	51,00	5	0	-294	499	0	66	-112	0	66	-112	0	-247	499	0 1	0	0	0	0	1 0
24	52,70	5	0	-341	0	0	66	0	0	0	0	0	0	0	0	0	0	0	0	1 0

Progetto Esecutivo

Opera: CV08 Cavalcavia alla progr. 19+380
Relazione di Calcolo Impalcato
Pagina 123 di 139

Nome file:
CV08-F-CL020_A.00_relazione_di_calcolo_impalcato - OK

APPENDICE 2 - GEOMETRIA DELLE SEZIONI DI VERIFICA

APPENDICE 3 MODELLI DI CALCOLO

Generalità

Nella presente appendice si riportano per esteso i listati di input, in formato SAP 2000, per i modelli di calcolo utilizzati:

- *modello* 1: ottenuto considerando le proprietà inerziali delle sole travi metalliche ed utilizzato per la valutazione degli effetti indotti dal peso proprio della carpenteria metallica e della soletta;
- *modello* 2: ottenuto considerando le proprietà inerziali ideali della sezione composta con soletta collaborante omogeneizzata all'acciaio mediante coefficiente 6,12. Il modello è utilizzato per la valutazione degli effetti indotti dalle azioni di breve durata (azione del vento, carichi mobili, variazioni termiche);
- *modello* 3: ottenuto considerando le proprietà inerziali ideali della sezione mista con soletta collaborante omogeneizzata all'acciaio mediante coefficiente 15,96. Il modello è utilizzato per la valutazione degli effetti indotti dalle azioni di lunga durata (carichi permanenti).
- modello 4: ottenuto considerando le proprietà inerziali ideali della sezione mista con soletta collaborante omogeneizzata all'acciaio mediante coefficiente 16,69. Il modello è utilizzato per la valutazione degli effetti indotti dalle azioni di lunga durata (carichi da ritiro).

Nei modelli 2, 3 e 4 si tiene conto della riduzione di rigidezza della sezione composta in prossimità degli appoggi interni per la fessurazione della soletta, trascurando il contributo inerziale del calcestruzzo su un tratto di lunghezza pari al 15 % delle luci delle due campate adiacenti e mettendo comunque in conto il contributo inerziale delle armature presenti entro la larghezza collaborante.

Nei listati delle pagine successive, le tipologie di sezione utilizzate sono definite dalle seguenti sigle:

- ACC + CLS BT = sezione mista acciaio-calcestruzzo per azioni di breve termine;
- ACC + CLS LT = sezione mista acciaio-calcestruzzo per azioni di lungo termine;
- SOLO ACC = sezione con solo acciaio;
- ACC + ARM = sezione con acciaio ed armature metalliche (per le sezioni d'appoggio).

MODELLO 1

Frame=21

Frame=22

JointI=21

JointI=22

JointJ=22

JointJ=23

TsCurved=No

IsCurved=No

Modello con le proprietà geometriche della sola sezione in acciaio

```
; Cavalcavia CV 08
; DESCRIZIONE DEL MODELLO:
        "ACTIVE DEGREES OF FREEDOM"
                               RX=Yes RY=Yes RZ=Yes
   IIX=Yes
             UY=Yes
                      IIZ=Yes
TABLE: "PROGRAM CONTROL'
   ProgramName=SAP2000 Versior
D 2000" ColdCode=AISI-ASD96
                           Version=9.0.3
                                             CurrUnits="KN, m, C" SteelCode=AISC-ASD89 ConcCode="ACI 318-99" AlumCode="AA-
                                     StiffCase=None
TABLE: "ANALYSIS CASE DEFINITIONS"
   Case=Acciaio Type=LinStatic
Case=Soletta Type=LinStatic
                                     InitialCond=Zero
InitialCond=Zero
TABLE: "CASE - STATIC 1 - LOAD ASSIGNMENTS"

Case=Acciaio LoadType="Load case" Load

Case=Soletta LoadType="Load case" Load
                                           LoadName=Acciaio
LoadName=Soletta
                                                                  LoadSF=1
                                                                  LoadSF=1
TABLE:
        "LOAD CASE DEFINITIONS"
   LoadCase=Acciaio DesignType=DEAD
LoadCase=Soletta DesignType=DEAD
                                            SelfWtMult=0
                                          SelfWtMult=0
TABLE: "JOINT COORDINATES"
              CoordSys=GLOBAL
CoordSys=GLOBAL
   Joint=1
                                  CoordTvpe=Cartesian
                                                           XorR=0.00
                                                                        Y=0.00
                                                                                  Z=0.00
                                                                                            SpecialJt=No
                                  CoordType=Cartesian
                                                           XorR=0,00
                                                                        Y=2,50
                                                                                  Z=0,00
                                                                                             SpecialJt=No
                                                                                  Z=0,00
Z=0,00
   Joint=3
              CoordSvs=GLOBAL
                                  CoordType=Cartesian
                                                           XorR=0.00
                                                                        Y=5,00
                                                                                            SpecialJt=No
              CoordSys=GLOBAL
                                   CoordType=Cartesian
                                                           XorR=0,00
   Joint=5
              CoordSys=GLOBAL
                                  CoordType=Cartesian
                                                           XorR=0,00
                                                                        Y=10,00
                                                                                   Z=0,00
                                                                                             SpecialJt=No
                                                                                             SpecialJt=No
   Joint=6
              CoordSvs=GLOBAL
                                  CoordType=Cartesian
                                                           XorR=0,00
                                                                        Y=12,50
                                                                                    Z=0,00
   Joint=7
                                  CoordType=Cartesian
                                                                        Y=15,00
              CoordSys=GLOBAL
                                                           XorR=0,00
                                                                                   z=0,00
                                                                                              SpecialJt=No
   Joint=8
              CoordSys=GLOBAL
                                  CoordType=Cartesian
                                                           XorR=0,00
                                                                        Y=17.50
                                                                                    Z=0,00
                                                                                             SpecialJt=No
              CoordSys=GLOBAL
                                  CoordType=Cartesian
                                                                                             SpecialJt=No
   Joint=10
               CoordSys=GLOBAL
                                   CoordType=Cartesian
                                                            XorR=0,00
                                                                         Y = 22,50
                                                                                    Z=0,00
                                                                                               SpecialJt=No
                                                                                               SpecialJt=No
                                                                                    Z=0,00
Z=0,00
   Joint=11
               CoordSys=GLOBAL
                                    CoordType=Cartesian
                                                            XorR=0,00
   Joint=12
               CoordSys=GLOBAL
                                   CoordType=Cartesian
                                                                         Y=27,50
                                                            XorR=0,00
                                                                                               SpecialJt=No
               CoordSys=GLOBAL
CoordSys=GLOBAL
   Joint=13
                                   CoordType=Cartesian
                                                            XorR=0,00
                                                                         Y=30,00
                                                                                     Z=0.00
                                                                                               SpecialJt=No
   Joint=14
                                    CoordType=Cartesian
                                                            XorR=0,00
                                                                                     Z=0,00
                                                                                               SpecialJt=No
   Joint=15
               CoordSvs=GLOBAL
                                   CoordType=Cartesian
                                                            XorR=0.00
                                                                         Y = 35.00
                                                                                    Z=0.00
                                                                                               SpecialJt=No
                                                                                               SpecialJt=No
   Joint=16
               CoordSys=GLOBAL
                                   CoordType=Cartesian
                                                            XorR=0,00
                                                                         Y=37,50
                                                                                     Z=0,00
   Joint=17
               CoordSys=GLOBAL
                                   CoordType=Cartesian
                                                            XorR=0,00
                                                                         Y = 40,00
                                                                                    Z=0,00
                                                                                               SpecialJt=No
                                                                                               SpecialJt=No
   Joint=18
               CoordSys=GLOBAL
                                   CoordType=Cartesian
                                                            XorR=0,00
                                                                          Y=42,50
                                                                                     Z=0,00
                                   CoordType=Cartesian
                                                            XorR=0,00
               CoordSys=GLOBAL
                                                                         Y = 45,00
                                                                                    Z=0,00
                                                                                               SpecialJt=No
   Joint=19
   Joint=20
               CoordSys=GLOBAL
                                   CoordType=Cartesian
                                                            XorR=0,00
                                                                         Y = 47.00
                                                                                    Z=0,00
Z=0,00
                                                                                               SpecialJt=No
   Joint=21
               CoordSys=GLOBAL
                                   CoordType=Cartesian
                                                            XorR=0,00
                                                                         Y=49,00
                                                                                               SpecialJt=No
   Joint=22
               CoordSvs=GLOBAL
                                   CoordType=Cartesian
                                                            XorR=0.00
                                                                         Y = 51.00
                                                                                    z=0.00
                                                                                               SpecialJt=No
                                   CoordType=Cartesian
                                                            XorR=0,00
                                                                         Y=52,70
               CoordSys=GLOBAL
TABLE: "JOINT RESTRAINT ASSIGNMENTS"
                                            R1=No
                                                     R2=Yes
   Joint=1
              U1=Yes
                        U2=Yes
                                  U3=Yes
                                 113=No
   Joint=2
              II1=Yes
                        112=No
                                         R1=No R2=Yes
                                                             R3=Yes
   Joint=4
              U1=Yes
                        U2=No
                                 U3=No
                                          R1=No
                                                   R2=Yes
                                                             R3=Yes
   Joint=5
              U1=Yes
                        U2=No
                                 U3=No
                                          R1=No
                                                   R2=Yes
                                                             R3=Yes
              U1=Yes
   Joint=6
                        U2=No
                                 U3=No
                                          R1=No
                                                   R2=Yes
                                                             R3=Yes
   Joint = 7
              II1=Yes
                        112=No
                                 113=No
                                          R1=No
                                                   R2=Yes
                                                             R3=Yes
                        U2=No
                                                   R2=Yes
                                                             R3=Yes
   Joint=8
              U1=Yes
                                 U3=No
                                          R1=No
   Joint=9
              U1=Yes
                        U2=No
                                 U3=No
                                          R1=No
                                                   R2=Yes
                                                             R3=Yes
   Joint=10
   Joint=11
               U1=Yes
                         U2=No
                                  U3=No
                                           R1=No
                                                    R2=Yes
                                                              R3=Yes
                                  113=No
               U1=Yes
U1=Yes
   Joint=12
                         U2=No
                                           R1=No
                                                    R2=Yes
                                  U3=No
                         U2=No
   Joint=13
                                           R1=No
                                                    R2=Yes
                                                              R3=Yes
   Joint=14
               U1=Yes
                         U2=No
                                  U3=Yes
                                            R1=No
                                                     R2=Yes
                                                               R3=Yes
               U1=Yes
   Joint=15
   Joint=16
               U1=Yes
                         U2=No
                                  U3=No
                                           R1=No
                                                    R2=Yes
                                                              R3=Yes
   Joint=18
               U1=Yes
                         U2=No
                                  U3=No
                                           R1=No
                                                    R2=Yes
                                                              R3=Yes
   Joint=19
               II1=Yes
                         112=No
                                  U3=No
                                           R1=No
                                                    R2=Yes
                                                              R3=Yes
                                  U3=No
   Joint=20
               U1=Yes
                         U2=No
                                           R1=No
                                                    R2=Yes
                                                              R3=Yes
   Joint=21
               U1=Yes
                         U2=No
                                  U3=No
                                           R1=No
                                                    R2=Yes
                                                              R3=Yes
                                  U3=No
   Joint=23
               U1=Yes
                         U2=No
                                  U3=Yes
                                            R1=No
                                                     R2=Yes
                                                               R3=Yes
TABLE: "JOINT PATTERN DEFINITIONS
   Pattern=TEME
   Pattern=PRES
TABLE: "CONNECTIVITY -
                          JointJ=2
                                       IsCurved=No
   Frame=1
              JointI=1
   Frame=2
              JointI=2
                          JointJ=4
                                       IsCurved=No
   Frame=3
              JointI=3
   Frame=4
              JointI=4
                          .Toint.T=5
                                       TsCurved=No
              JointI=5
                          JointJ=6
   Frame=5
                                       IsCurved=No
   Frame=6
              JointI=6
                          JointJ=7
                                       IsCurved=No
                                       IsCurved=No
              JointI=8
   Frame=8
                          JointJ=9
                                       IsCurved=No
   Frame=9
              JointI=9
                          JointJ=10
                                       IsCurved=No
               JointI=10
   Frame=10
                            JointJ=11
                                          IsCurved=No
   Frame=11
               Joint T=11
                             JointJ=12
                                          IsCurved=No
                             JointJ=13
   Frame=12
               JointI=12
                                          IsCurved=No
   Frame=13
               Joint T=13
                             JointJ=14
                                          TsCurved=No
               JointI=14
   Frame=15
               JointI=15
                             JointJ=16
                                          IsCurved=No
   Frame=16
               JointI=16
                             JointJ=17
                                          IsCurved=No
               JointI=17
                             JointJ=18
   Frame=17
                                          IsCurved=No
   Frame=18
               Joint T=18
                             Joint J=19
                                          TsCurved=No
   Frame=20
               JointI=20
                             JointJ=21
                                          IsCurved=No
```

```
TABLE: "FRAME SECTION ASSIGNMENTS"
; Elenco ASTE (L = Lunghezza; ST = Sezione Tipo GEOMETRICA)
                                                                            ; L=2,50 - ST=1 (Solo Acc)
   Frame=1
               AutoSelect=N.A.
                                    AnalSect=4
                                                    MatProp=Default
                                                    MatProp=Default
                                                                             L=2,50 - ST=1
L=2,50 - ST=1
                                     AnalSect=4
                AutoSelect=N.A.
                                                                                               (Solo Acc)
   Frame=2
   Frame=3
               AutoSelect=N.A.
                                     AnalSect=4
                                                    MatProp=Default
                                                                                               (Solo Acc)
                                                    MatProp=Default
                                                                              L=2,50 - ST=2
    Frame=4
                AutoSelect=N.A.
                                     AnalSect=8
                                                                                               (Solo Acc
                                                                                      - ST=2
   Frame=5
               AutoSelect=N.A.
                                     AnalSect=8
                                                    MatProp=Default
                                                                              L=2.50
                                                                                               (Solo Acc)
   Frame=6
               AutoSelect=N A
                                     AnalSect=8
                                                    MatProp=Default
                                                                              L=2,50
                                                                                      - ST=2
                                                                                               (Solo Acc)
                                                    MatProp=Default
                                                                                      - ST=2
   Frame=
                AutoSelect=N.A.
                                     AnalSect=8
                                                                              L=2,50
                                                                                               (Solo
                                                                                                      Acc)
   Frame=8
               AutoSelect=N.A.
                                     AnalSect=8
                                                    MatProp=Default
                                                                              L=2.50 - ST=2
                                                                                               (Solo Acc)
                AutoSelect=N.A.
                                     AnalSect=8
                                                    MatProp=Default
                                                                                               (Solo Acc)
                                      AnalSect=8
                                                                                       - ST=2 (Solo Acc)
   Frame=10
                AutoSelect=N.A.
                                                     MatProp=Default
                                                                             : L=2.50
                                                                                L=2,50 - ST=3 (Solo Acc)
L=2,50 - ST=3 (Solo Acc)
   Frame=11
                AutoSelect=N.A.
                                      AnalSect=12
                                                      MatProp=Default
                                      AnalSect=12
                                                      MatProp=Default
   Frame=12
                AutoSelect=N.A.
   Frame=13
                AutoSelect=N.A.
                                      AnalSect=16
                                                      MatProp=Default
                                                                                L=2,50 - ST=4 (Solo Acc)
                                                                                L=2,50
                                                                                         - ST=4 (Solo Acc)
   Frame=14
                AutoSelect=N.A.
                                      AnalSect=16
                                                      MatProp=Default
                                                      MatProp=Default
MatProp=Default
   Frame=15
                AutoSelect=N.A.
                                      AnalSect=12
                                                                                L=2,50 - ST=3 (Solo Acc)
                AutoSelect=N.A.
                                      AnalSect=12
                                                                                                 (Solo
   Frame=17
                AutoSelect=N.A.
                                      AnalSect=20
                                                      MatProp=Default
                                                                                L=2,50
                                                                                           ST=5
                                                                                                 (Solo Acc)
                                                                                                 (Solo Acc)
                 AutoSelect=N.A.
                                      AnalSect=20
                                                      MatProp=Default
                                                                                L=2,50 - ST=5
    Frame=18
                                                                                L=2,00
                                                                                         - ST=5 (Solo Acc)
                AutoSelect=N.A.
                                      AnalSect=20
   Frame=19
                                                      MatProp=Default
                                                      MatProp=Default
MatProp=Default
   Frame=20
                AutoSelect=N.A.
                                      AnalSect=20
                                                                                L=2,00
                                                                                        - ST=5 (Solo Acc)
                AutoSelect=N.A.
                                                                                                 (Solo Acc)
   Frame=21
                                      AnalSect=20
                                                                                L=2,00
   Frame=22
                AutoSelect=N.A.
                                      AnalSect=20
                                                      MatProp=Default
                                                                              : L=1.70 - ST=5 (Solo Acc)
         "FRAME OUTPUT STATION ASSIGNMENTS
TABLE:
               StationType=MinNumSta
StationType=MinNumSta
   Frame=1
                                           MinNumSta=2
                                                            AddAtElmInt=No
                                                                                AddAt Pt Load=No
                                            MinNumSta=2
   Frame=2
                                                            AddAtElmInt=No
                                                                                AddAtPtLoad=No
   Frame=3
               StationType=MinNumSta
                                           MinNumSta=2
                                                            AddAtElmInt=No
                                                                                AddAtPtLoad=No
                StationType=MinNumSta
                                            MinNumSta=2
                                                            AddAtElmInt=No
                                                                                AddAtPtLoad=No
   Frame=
   Frame=5
               StationType=MinNumSta
                                            MinNumSta=2
                                                            AddAtElmInt=No
                                                                                AddAtPtLoad=No
                StationType=MinNumSta
                                                            AddAtElmInt=No
                                                                                 AddAtPtLoad=No
                                            MinNumSta=2
               StationType=MinNumSta
   Frame='
                                            MinNumSta=2
                                                            AddAtElmInt=No
                                                                                AddAtPtLoad=No
   Frame=8
               StationType=MinNumSta
                                            MinNumSta=2
                                                            AddAtElmInt=No
                                                                                AddAtPtLoad=No
   Frame=9
                StationType=MinNumSta
                                            MinNumSta=2
                                                            AddAtElmInt=No
                                                                                AddAtPtLoad=No
   Frame=10
                StationType=MinNumSta
                                             MinNumSta=2
                                                             AddAtElmInt=No
                                                                                 AddAt Pt Load=No
                 StationType=MinNumSta
                                                             AddAtElmInt=No
                                                                                 AddAtPtLoad=No
                                             MinNumSta=2
   Frame=12
                StationTvpe=MinNumSta
                                             MinNumSta=2
                                                             AddAtElmInt=No
                                                                                 AddAtPtLoad=No
   Frame=13
                StationType=MinNumSta
                                             MinNumSta=2
                                                             AddAtElmInt=No
                                                                                 AddAtPtLoad=No
                StationType=MinNumSta
                                                             AddAtElmInt=No
                                                                                  AddAtPtLoad=No
   Frame=14
                                             MinNumSta=2
                StationType=MinNumSta
StationType=MinNumSta
   Frame=15
                                             MinNumSta=2
                                                             AddAtElmInt=No
                                                                                 AddAt Pt Load=No
                                                                                  AddAtPtLoad=No
                                             MinNumSta=2
                                                              AddAtElmInt=No
   Frame=17
                StationTvpe=MinNumSta
                                             MinNumSta=2
                                                             AddAtElmInt=No
                                                                                 AddAtPtLoad=No
                 StationType=MinNumSta
                                             MinNumSta=2
                                                              AddAtElmInt=No
                                                                                  AddAtPtLoad=No
   Frame=19
                StationType=MinNumSta
                                             MinNumSta=2
                                                             AddAtElmInt=No
                                                                                 AddAtPtLoad=No
                                             MinNumSta=2
                StationType=MinNumSta
                                                             AddAtElmInt=No
                                                                                 AddAtPtLoad=No
   Frame=20
                StationType=MinNumSta
                                                                                 AddAtPtLoad=No
                                             MinNumSta=2
                                                             AddAtElmInt=No
   Frame=21
   Frame=22
                StationType=MinNumSta
                                             MinNumSta=2
                                                             AddAtElmInt=No
                                                                                 AddAtPtLoad=No
TABLE: "MATERIAL PROPERTIES 01 - GENERAL"
   Material=1FR
                                        DesignType=None
                                                               UnitMass=0
                                                                              UnitWeight=0
                                                                                                E=206000000
                                                                                                                        A=1,0E-05
                                                                                                                 U=0
                                                                                                                                       MDampRatio=0
                    Type=Isotropic
VDampMass=0
                VDampStiff=0
                                  HDampMass=0
                                                   HDampStiff=0
                                                                    Color=Black
                                                               UnitMass=0
   Material=2FR
                     Type=Isotropic
                                         DesignType=None
                                                                              UnitWeight=0
                                                                                                 E=206000000
                                                                                                                        A=1.0E-05
                                                                                                                                       MDampRatio=0
                                         DesignType=None UnitMass=U Uni
Mass=O HDampStiff=O Color=Black
DesignType=None UnitMass=O Uni
Mass=O HDampStiff=O Color=Black
                                  HDampMass=0
VDampMass=0
                VDampStiff=0
   mpMass=U vDampStIII=U HDam
Material=3FR Type=Isotropic
ampMass=0 VDampStiff=0 HDar
                                                                              UnitWeight=0
                                                                                                                        A=1,0E-05
                                                                                                 E=206000000
                                                                                                                 U=0
                                                                                                                                       MDampRatio=0
VDampMass=0
                                  HDampMass=0
                FR Type=Isotropic
VDampStiff=0 HDan
                                        DesignType=None Uni
Mass=0 HDampStiff=0
   Material=4FR
                                                              UnitMass=0
                                                                              UnitWeight=0
                                                                                                 E=206000000
                                                                                                                 \Pi = 0
                                                                                                                        A=1,0E-05
                                                                                                                                       MDampRatio=0
                                  opic besigniype=None UnitMass=0 Unit
HDampMass=0 HDampStiff=0 Color=Black
opic DesignType=None UnitMass=0 Uni
HDampMass=0 HDampStiff=0 Color=Black
VDampMass=0
                FR Type=Isotropic
VDampStiff=0 HDam
   Material=5FR
                                                                              UnitWeight=0
                                                                                                 E=206000000
                                                                                                                 U=0
                                                                                                                        A=1,0E-05
                                                                                                                                       MDampRatio=0
VDampMass=0
   Material=6FR
                                        DesignType=None
                                                              UnitMass=0
                                                                                                 E=206000000
                                                                                                                        A=1.0E-05
                    Type=Isotropic
                                                                              UnitWeight=0
                                                                                                                 U=0
                                                                                                                                       MDampRatio=0
                    Type=Isotropic DesignType=None UnitMass=0
mpStiff=0 HDampMass=0 HDampStiff=0 Color=:
Type=Isotropic DesignType=None UnitMass=0
mpStiff=0 HDampMass=0 HDampStiff=0 Color=:
Type=Isotropic DesignType=None UnitMass=0
                VDampStiff=0
                                                                    Color=Black
   Material=7FR
                                                                              UnitWeight=0
                                                                                                 E=206000000
                                                                                                                 U=0
                                                                                                                        A=1,0E-05
                                                                                                                                       MDampRatio=0
                                                                    Color=Black
VDampMass=0
                VDampStiff=0
   Material=8FR
                                                                              UnitWeight=0
                                                                                                 E=206000000
                                                                                                                 U=0
                                                                                                                        A=1,0E-05
                                                                                                                                       MDampRatio=0
                                                  HDampStiff=0
VDampMass=0
                VDampStiff=0
                                  HDampMass=0
                                                                    Color=Black
                                         DesignType=None Uni
Mass=0 HDampStiff=0
                                                              UnitMass=0 Uni
E=0 Color=Black
   Material=9FR
                     Type=Isotropic
                                                                              UnitWeight=0
                                                                                                E=206000000
                                                                                                                 U=0
                                                                                                                        A=1,0E-05
                                                                                                                                       MDampRatio=0
                                 opic Design IDampStili--
HDampMass=0 HDampStili--
DesignType=None
VDampMass=0
                VDampStiff=0
Material=10FR Type=Isotropic DesignType=None
MDampRatio=0 VDampMass=0 VDampStiff=0 HDampMass=0
                                                                    UnitMass=0
HDampStiff=0
                                                                                         UnitWeight=0
                                                                                                              E=206000000
                                                                                                                                          A=1,0E-05
                                                                                                                                 II = 0
                                                                                      Color=Black
                 R Type=Isotropic
VDampMass=0 VDampSt
   Material=11FR
                                              DesignType=None
                                                                       UnitMass=0
                                                                                         UnitWeight=0
                                                                                                              E=206000000
                                                                                                                                 II = 0
                                                                                                                                          A=1.0E-05
MDampRatio=0 VDa
Material=12FR
                                  VDampStiff=0
                                                    HDampMass=0
                                                                     HDampStiff=0
                                                                                      Color=Black
                        Type=Isotropic
                                               DesignType=None
                                                                                         UnitWeight=0
                                                                                                              E=206000000
                                                                                                                                 U=0
                                                                                                                                          A=1,0E-05
                                                                       UnitMass=0
                 VDampMass=0
                                  VDampStiff=0
MDampRatio=0 VDa
Material=13FR
                                                    HDampMass=0
                                                                     HDampStiff=0
                                                                                      Color=Black
                                                                                         UnitWeight=0
                                                                                                              E=206000000
                                                                                                                                 U=0
                                                                                                                                          A=1,0E-05
                        Type=Isotropic
                                               DesignType=None
                                                                       UnitMass=0
                                  VDampStiff=0
MDampRatio=0 VI
                 VDampMass=0
                                                                     HDampStiff=0
                                                    HDampMass=0
                                                                                      Color=Black
                      pMass=0 vvampos____
Type=Isotropic Des
pMass=0 VDampStiff=0
Type=Isotropic Des
pMass=0 VDampStiff=0
                                               DesignType=None
                                                                                         UnitWeight=0
                                                                                                              E=206000000
                                                                                                                                 TJ=0
                                                                                                                                          A=1,0E-05
                                                                       UnitMass=0
                 VDampMass=0
MDampRatio=0
                                                   HDampMass=0
                                                                     HDampStiff=0
                                                                                      Color=Black
   Material=15FR
                                               DesignType=None
                                                                                         UnitWeight=0
                                                                       UnitMass=0
                                                                                                              E=206000000
                                                                                                                                          A=1,0E-05
                 VDampMass=0
MDampRatio=0
                                                   HDampMass=0
                                                                     HDampStiff=0
                                                                                      Color=Black
   Material=16FR Type=:
ampRatio=0 VDampMass=0
                        Type=Isotropic De
Mass=0 VDampStiff=0
                                               DesignType=None
                                                                                         UnitWeight=0
                                                                                                              E=206000000
                                                                                                                                          A=1,0E-05
                                                                       UnitMass=0
                                                                                                                                 TJ=0
MDampRatio=0
                                                   HDampMass=0
                                                                    HDampStiff=0
                                                                                      Color=Black
   ampRatio=0 VDampMass=0 VDampOcill DesignType=None
ampRatio=0 VDampMass=0 VDampStiff=0 DesignType=None
                                                                       UnitMass=0
                                                                                         UnitWeight=0
                                                                                                              E=206000000
                                                                                                                                 TT=0
                                                                                                                                          A=1,0E-05
MDampRatio=0
                                                                     HDampStiff=0
                                                                                      Color=Black
   Material=18FR
                 FR Type=Isotropic
VDampMass=0 VDampSt
                                               DesignType=None
                                                                       UnitMass=0
                                                                                         UnitWeight=0
                                                                                                              E=206000000
                                                                                                                                 II = 0
                                                                                                                                          A=1.0E-05
                                  VDampStiff=0
                                                                     HDampStiff=0
                                                                                      Color=Black
                        Mass=0 VDampStiff=0
Type=Isotropic De
Mass=0 VDampStiff=0
   Material=19FR
                                               DesignTvpe=None
                                                                                         UnitWeight=0
                                                                       UnitMass=0
                                                                                                              E=206000000
                                                                                                                                 U=0
                                                                                                                                          A=1,0E-05
                 VDampMass=0
                                                        mpMass=0
MDampRatio=0
                                                    HDa
                                                                     HDampStiff=0
                                                                                      Color=Black
   Material=20FR
                                               DesignType=None
                                                                                                              E=206000000
                                                                                                                                          A=1,0E-05
                        Type=Isotropic
                                                                       UnitMass=0
                                                                                         UnitWeight=0
                                                                                      Color=Black
,40068 UnitWeight=23,56161
                VDampMass=0
                                  VDampStiff=0
                                                                     HDampStiff=0
MDampRatio=0
                                                   HDampMass=0
   Material=CONC
                        Type=Isotropic
                                 vDampMass=0 VDampStiff=0
sotropic DesignType=Steel
VDampMass=0 VDampStiff=^
                                             DesignType=Concrete
                                                                          UnitMass=2,40068
                                                                                    E=24821130
                                                                                                                                               U=0,2
                MDampRatio=0
A=0.0000099
                                                                    HDampMass=0
   Material=STEEL
                         Type=Isotropic
                                                                         UnitMass
                                                                                                                            E=199948000
                                                                                                                                               U=0,3
A=0,0000117 MDampRatio=0
                                                                    HDampMass=0
TABLE: "FRAME LOADS - DISTRIBUTED'
               LoadCase=Acciaio
0 FOverLA=-7,24
   Frame=1
                                      CoordSvs=Local
                                                         Type=Force
                                                                         Dir=2
                                                                                   DistType=RelDist
                                                                                                         RelDistA=0
                                                                                                                         RelDistB=1
                                                                                                                                         AbsDistA=0
AbsDistB=2,50
                                      FOverLB=-7,24
                                                                                   DistType=RelDist RelDistA=0
                                                                                                                         RelDistB=1
   Frame=2
               LoadCase=Acciaio
                                      CoordSvs=Local
                                                          Type=Force
                                                                         Dir=2
                                                                                                                                         AbsDistA=0
AbsDistB=2,50
                                      FOverLB=-7,24
                   FOverLA=-7,24
               LoadCase=Acciaio
                                                          Type=Force
                                                                         Dir=2
                                                                                   DistTvpe=RelDist
                                                                                                          RelDistA=0
                                                                                                                         RelDistB=1
                                      CoordSys=Local
                                                                                                                                         AbsDistA=0
   Frame=3
Frame=4 LoadCase=Acciaio
AbsDistB=2,50 FOverLA=-7,24
Frame=4 LoadCase=Acciaio
AbsDistB=2,50 FOverLA=-7,93
                                      FOverLB=-7,24
                                                          Type=Force Dir=2
                                                                                   DistType=RelDist
                                                                                                         RelDistA=0
                                                                                                                         RelDistB=1
                                                                                                                                         AbsDistA=0
                                      CoordSys=Local
                                      FOverLB=-7.93
```

	r=2 DistType	e=RelDist RelDistA	=0 RelDistB=1	AbsDistA=0
AbsDistB=2,50 FOverLA=-7,93 FOverLB=-7,93 Frame=6 LoadCase=Acciaio CoordSys=Local Type=Force Di	r=2 DistType	e=RelDist RelDistA:	=0 RelDistB=1	AbsDistA=0
AbsDistB=2,50 FOverLA=-7,93 FOverLB=-7,93 Frame=7 LoadCase=Acciaio CoordSys=Local Type=Force Di	r=2 DistType	e=RelDist RelDistA:	=0 RelDistB=1	AbsDistA=0
AbsDistB=2,50 FOverLA=-7,93 FOverLB=-7,93				
AbsDistB=2,50 FOverLA=-7,93 FOverLB=-7,93		e=RelDist RelDistA:		AbsDistA=0
Frame=9 LoadCase=Acciaio CoordSys=Local Type=Force Di AbsDistB=2,50 FOverLA=-7,93 FOverLB=-7,93	r=2 DistType	e=RelDist RelDistA:	=0 RelDistB=1	AbsDistA=0
Frame=10 LoadCase=Acciaio CoordSys=Local Type=Forc AbsDistA=0 AbsDistB=2,50 FOverLA=-7,93 FOverLB=-7,93	ce Dir=2	DistType=RelDist	RelDistA=0	RelDistB=1
Frame=11 LoadCase=Acciaio CoordSys=Local Type=Ford	ce Dir=2	DistType=RelDist	RelDistA=0	RelDistB=1
AbsDistA=0 AbsDistB=2,50 FOverLA=-7,86 FOverLB=-7,86 Frame=12 LoadCase=Acciaio CoordSys=Local Type=Forc	ce Dir=2	DistType=RelDist	RelDistA=0	RelDistB=1
AbsDistA=0 AbsDistB=2,50 FOverLA=-7,86 FOverLB=-7,86 Frame=13 LoadCase=Acciaio CoordSys=Local Type=Forc	ce Dir=2	DistType=RelDist	RelDistA=0	RelDistB=1
AbsDistA=0 AbsDistB=2,50 FOverLA=-8,73 FOverLB=-8,73 Frame=14 LoadCase=Acciaio CoordSys=Local Type=Forc		DistType=RelDist	RelDistA=0	RelDistB=1
AbsDistA=0 AbsDistB=2,50 FOverLA=-8,73 FOverLB=-8,73				
Frame=15 LoadCase=Acciaio CoordSys=Local Type=Ford AbsDistA=0 AbsDistB=2,50 FOverLA=-7,86 FOverLB=-7,86	ce Dir=2	DistType=RelDist	RelDistA=0	RelDistB=1
Frame=16 LoadCase=Acciaio CoordSys=Local Type=Forc AbsDistA=0 AbsDistB=2,50 FOVerLA=-7,86 FOVerLB=-7,86	ce Dir=2	DistType=RelDist	RelDistA=0	RelDistB=1
Frame=17 LoadCase=Acciaio CoordSys=Local Type=Ford	ce Dir=2	DistType=RelDist	RelDistA=0	RelDistB=1
AbsDistA=0 AbsDistB=2,50 FOverLA=-7,59 FOverLB=-7,59 Frame=18 LoadCase=Acciaio CoordSys=Local Type=Forc	ce Dir=2	DistType=RelDist	RelDistA=0	RelDistB=1
AbsDistA=0 AbsDistB=2,50 FOverLA=-7,59 FOverLB=-7,59 Frame=19 LoadCase=Acciaio CoordSys=Local Type=Forc	ce Dir=2	DistType=RelDist	RelDistA=0	RelDistB=1
AbsDistA=0 AbsDistB=2,00 FOverLA=-7,59 FOverLB=-7,59		DistType=RelDist		RelDistB=1
Frame=20 LoadCase=Acciaio CoordSys=Local Type=Ford AbsDistA=0 AbsDistB=2,00 FOverLA=-7,59 FOverLB=-7,59			RelDistA=0	
Frame=21 LoadCase=Acciaio CoordSys=Local Type=Forc AbsDistA=0 AbsDistB=2,00 FOverLA=-7,59 FOverLB=-7,59	ce Dir=2	DistType=RelDist	RelDistA=0	RelDistB=1
Frame=22 LoadCase=Acciaio CoordSys=Local Type=Forc AbsDistA=0 AbsDistB=1,70 FOverLA=-7,59 FOverLB=-7,59	ce Dir=2	DistType=RelDist	RelDistA=0	RelDistB=1
Frame=1 LoadCase=Soletta CoordSys=Local Type=Force Di	r=2 DistType	e=RelDist RelDistA	=0 RelDistB=1	AbsDistA=0
AbsDistB=2,50 FOverLA=-38,75 FOverLB=-38,75 Frame=2 LoadCase=Soletta CoordSys=Local Type=Force Di	r=2 DistType	e=RelDist RelDistA	=0 RelDistB=1	AbsDistA=0
AbsDistB=2,50 FOverLA=-38,75 FOverLB=-38,75 Frame=3 LoadCase=Soletta CoordSys=Local Type=Force Di	r=2 DistType	e=RelDist RelDistA:	=0 RelDistB=1	AbsDistA=0
AbsDistB=2,50 FOverLA=-38,75 FOverLB=-38,75		e=RelDist RelDistA:	=0 RelDistB=1	AbsDistA=0
AbsDistB=2,50 FOverLA=-38,75 FOverLB=-38,75				
Frame=5 LoadCase=Soletta CoordSys=Local Type=Force Di AbsDistB=2,50 FOverLA=-38,75 FOverLB=-38,75	r=2 DistType	e=RelDist RelDistA:	=0 RelDistB=1	AbsDistA=0
Frame=6 LoadCase=Soletta CoordSys=Local Type=Force Di AbsDistB=2,50 FOverLA=-38,75 FOverLB=-38,75	r=2 DistType	e=RelDist RelDistA:	=0 RelDistB=1	AbsDistA=0
	r=2 DistType	e=RelDist RelDistA	0 RelDistB=1	AbsDistA=0
Frame=8 LoadCase=Soletta CoordSys=Local Type=Force Di	r=2 DistType	e=RelDist RelDistA:	=0 RelDistB=1	AbsDistA=0
AbsDistB=2,50 FOverLA=-38,75 FOverLB=-38,75 Frame=9 LoadCase=Soletta CoordSys=Local Type=Force Di	r=2 DistType	e=RelDist RelDistA:	=0 RelDistB=1	AbsDistA=0
AbsDistB=2,50 FOverLA=-38,75 FOverLB=-38,75 Frame=10 LoadCase=Soletta CoordSys=Local Type=Forc	ce Dir=2	DistType=RelDist	RelDistA=0	RelDistB=1
AbsDistA=0 AbsDistB=2,50 FOverLA=-38,75 FOverLB=-38,75				
AbsDistA=0 AbsDistB=2,50 FOverLA=-38,75 FOverLB=-38,75		DistType=RelDist	RelDistA=0	RelDistB=1
Frame=12 LoadCase=Soletta CoordSys=Local Type=Ford AbsDistA=0 AbsDistB=2,50 FOverLA=-38,75 FOverLB=-38,75	ce Dir=2	DistType=RelDist	RelDistA=0	RelDistB=1
Frame=13 LoadCase=Soletta CoordSys=Local Type=Ford AbsDistA=0 AbsDistB=2,50 FOverLA=-38,75 FOverLB=-38,75	ce Dir=2	DistType=RelDist	RelDistA=0	RelDistB=1
Frame=14 LoadCase=Soletta CoordSys=Local Type=Ford	ce Dir=2	DistType=RelDist	RelDistA=0	RelDistB=1
AbsDistA=0 AbsDistB=2,50 FOverLA=-38,75 FOverLB=-38,75 Frame=15 LoadCase=Soletta CoordSys=Local Type=Forc	ce Dir=2	DistType=RelDist	RelDistA=0	RelDistB=1
AbsDistA=0 AbsDistB=2,50 FOverLA=-38,75 FOverLB=-38,75 Frame=16 LoadCase=Soletta CoordSys=Local Type=Forc	ce Dir=2	DistType=RelDist	RelDistA=0	RelDistB=1
AbsDistA=0 AbsDistB=2,50 FOverLA=-38,75 FOverLB=-38,75 Frame=17 LoadCase=Soletta CoordSys=Local Type=Forc	ce Dir=2	DistType=RelDist	RelDistA=0	RelDistB=1
AbsDistA=0 AbsDistB=2,50 FOverLA=-38,75 FOverLB=-38,75				
Frame=18 LoadCase=Soletta CoordSys=Local Type=Ford AbsDistA=0 AbsDistB=2,50 FOverLA=-38,75 FOverLB=-38,75	ce Dir=2	DistType=RelDist	RelDistA=0	RelDistB=1
Frame=19 LoadCase=Soletta CoordSys=Local Type=Ford AbsDistA=0 AbsDistB=2,00 FOverLA=-38,75 FOverLB=-38,75	ce Dir=2	DistType=RelDist	RelDistA=0	RelDistB=1
Frame=20 LoadCase=Soletta CoordSys=Local Type=Ford	ce Dir=2	DistType=RelDist	RelDistA=0	RelDistB=1
AbsDistA=0 AbsDistB=2,00 FOverLA=-38,75 FOverLB=-38,75 Frame=21 LoadCase=Soletta CoordSys=Local Type=Forc	ce Dir=2	DistType=RelDist	RelDistA=0	RelDistB=1
AbsDistA=0 AbsDistB=2,00 FOverLA=-38,75 FOverLB=-38,75 Frame=22 LoadCase=Soletta CoordSys=Local Type=Forc	ce Dir=2	DistType=RelDist	RelDistA=0	RelDistB=1
AbsDistA=0 AbsDistB=1,70 FOverLA=-38,75 FOverLB=-38,75				
TABLE. "EDAME LOADS _ TEMBEDATURE"				

TABLE: "FRAME LOADS - TEMPERATURE"

TABLE: "JOINT LOADS - GROUND DISPLACEMENT"

TABLE: "JOINT PATTERN DEFINITIONS"

Pattern = TEMP
Pattern = PRES

 Combo=Envelopes Steady=Envelopes SteadyOpt=Phases PSD=RMS Multistep=Envelopes

TABLE: "NAMED SETS - DATABASE TABLES 2 - SELECTIONS"

DBNamedSet=Acciaio SelectType=Table Selection="Element Forces - Frames"

DBNamedSet=Acciaio SelectType=AnalysCase Selection=Acciaio DBNamedSet=Soletta DBNamedSet=Soletta DBNamedSet=Soletta DBNamedSet=Acciaio SelectType=AnalysCase Selection=Soletta SelectType=AnalysCase Selection=Soletta SelectType=AnalysCase Selection=Acciaio DBNamedSet=Acciaio SelectType=AnalysCase Selection=Acciaio SelectType=AnalysCase Selection=Soletta SelectType=AnalysCase Selection=Soletta SelectType=AnalysCase Selection=Acciaio SelectType=AnalysCase Selection=Soletta SelectType=AnalysCase Selection=Soletta

END TABLE DATA

MODELLO 2

Modello con le proprietà geometriche della sezione mista per azioni di breve durata (BT) con soletta fessurata in appoggio

```
; Cavalcavia CV 08
; DESCRIZIONE DEL MODELLO:
TABLE: "ACTIVE DEGREES OF FREEDOM"
             UY=Yes
                       UZ=Yes
TABLE: "PROGRAM CONTROL"
                           Version=9.0.3
                                             CurrUnits="KN, m, C" SteelCode=AISC-ASD89 ConcCode="ACI 318-99"
                                                                                                                             AlumCode="AA-
   ProgramName=SAP2000
ASD 2000" ColdCode=AISI-ASD96
                                     StiffCase=None
TABLE: "ANALYSIS CASE DEFINITIONS"
   Case=Vento Type=LinStatic
Case=DTneg Type=LinStatic
                                     InitialCond=Zero
                                     InitialCond=Zero
                 Type=LinStatic
   Case=DTpos
                                     InitialCond=Zero
   Case=Mobili1
                    Type=LinMoving
                                      InitialCond=Zero
InitialCond=Zero
                  Type=LinMoving
Type=LinMoving
   Case=Mobili2
   Case=MobRim
                                     InitialCond=Zero
   Case=MobFolla
                     Type=LinMoving
                                       InitialCond=Zero
                      Type=LinMoving
   Case=Fatica2-2
                      Type=LinMoving
                                         InitialCond=Zero
   Case=Fatica2-3
                       Type=LinMoving
                                          InitialCond=Zero
                      Type=LinMoving
   Case=Fatica2-4
                                         InitialCond=Zero
                   Type=LinMoving
Type=LinMoving
   Case=Fatica2-5
                                         InitialCond=Zero
   Case=Fatica3
                                       InitialCond=Zero
TABLE: "CASE - STATIC 1 - LOAD ASSIGNMENTS"

Case=Vento LoadType="Load case" LoadN.

Case=DTneg LoadType="Load case" LoadN.

LoadType="Load case" LoadN.
                                           LoadName=Vento
                                           LoadName=DTneg
                                                               LoadSF=1
                                            LoadName=DTpos
TABLE: "LOAD CASE DEFINITIONS"
   LoadCase=Vento DesignType=DEAD
                                          SelfWtMult=0
   LoadCase=DTneg
LoadCase=DTpos
                                          SelfWtMult=0
                     DesignType=DEAD
   Joint=1
              CoordSys=GLOBAL
                                   CoordType=Cartesian
                                                           XorR=0,00
                                                                         Y=0,00
                                                                                   Z=0,00
                                                                                             SpecialJt=No
   Joint=2
               CoordSys=GLOBAL
                                   CoordType=Cartesian
                                                            XorR=0,00
                                                                                   Z=0,00
                                   CoordTvpe=Cartesian
                                                                                   Z=0.00
   Joint=3
              CoordSvs=GLOBAL
                                                           XorR=0.00
                                                                         Y=5.00
                                                                                             SpecialJt=No
                                                                                             SpecialJt=No
   Joint=4
              CoordSys=GLOBAL
                                   CoordType=Cartesian
                                                            XorR=0,00
                                                                         Y=7,50
                                                                                   Z=0,00
   Joint=5
              CoordSys=GLOBAL
                                   CoordType=Cartesian
                                                            XorR=0,00
                                                                         Y=10,00
                                                                                    Z=0,00
                                                                                               SpecialJt=No
                                                                                               SpecialJt=No
   Joint=6
              CoordSvs=GLOBAL
                                   CoordType=Cartesian
                                                            XorR=0.00
                                                                         Y=12.50
                                                                                    Z=0.00
                                   CoordType=Cartesian
              CoordSys=GLOBAL
   Joint=8
              CoordSvs=GLOBAL
                                   CoordType=Cartesian
                                                           XorR=0.00
                                                                         Y=17.50
                                                                                     Z=0.00
                                                                                               SpecialJt=No
                                                                                               SpecialJt=No
   Joint=9
              CoordSys=GLOBAL
                                   CoordType=Cartesian
                                                            XorR=0,00
                                                                         Y=20,00
                                   CoordType=Cartesian
   Joint=10
               CoordSys=GLOBAL
                                                            XorR=0,00
                                                                          Y=22,50
                                                                                     Z=0,00
                                                                                                SpecialJt=No
                                    CoordType=Cartesian
CoordType=Cartesian
   Joint=11
               CoordSys=GLOBAL
                                                             XorR=0,00
                                                                          Y=25,00
                                                                                      Z=0,00
                                                                                                SpecialJt=No
   Joint=12
                                                             XorR=0,00
               CoordSys=GLOBAL
                                                                                      Z=0,00
                                                                                                SpecialJt=No
   Joint=13
               CoordSys=GLOBAL
                                    CoordType=Cartesian
                                                             XorR=0,00
                                                                          Y = 30.00
                                                                                      Z=0,00
                                                                                                SpecialJt=No
                                    CoordType=Cartesian
   Joint=14
               CoordSys=GLOBAL
                                                             XorR=0,00
   Joint=15
               CoordSys=GLOBAL
                                    CoordType=Cartesian
                                                             XorR=0,00
                                                                          Y = 35,00
                                                                                      Z=0,00
                                                                                                SpecialJt=No
                                    CoordType=Cartesian
CoordType=Cartesian
   Joint=16
               CoordSys=GLOBAL
                                                             XorR=0,00
                                                                           Y=37,50
                                                                                      Z=0,00
   Joint=17
               CoordSys=GLOBAL
                                                             XorR=0,00
                                                                          Y = 40,00
                                                                                     Z=0,00
                                                                                                SpecialJt=No
   Joint=18
               CoordSys=GLOBAL
                                    CoordType=Cartesian
                                                             XorR=0,00
                                                                          Y = 42.50
                                                                                      7=0.00
                                                                                                SpecialJt=No
                                                                                      Z=0,00
                                                                                                SpecialJt=No
   Joint=19
               CoordSys=GLOBAL
                                    CoordType=Cartesian
                                                             XorR=0,00
                                                                           Y=45,00
                                   CoordType=Cartesian
CoordType=Cartesian
CoordType=Cartesian
   Joint=20
               CoordSvs=GLOBAL
                                                             XorR=0.00
                                                                          Y = 47.00
                                                                                     Z=0.00
                                                                                                SpecialJt=No
                                                                                     Z=0,00
Z=0,00
               CoordSys=GLOBAL
                                                                           Y=49,00
   Joint=22
               CoordSvs=GLOBAL
                                                             XorR=0.00
                                                                          Y=51.00
                                                                                                SpecialJt=No
                                                                          Y=52,70
                                                                                               SpecialJt=No
   Joint=23
               CoordSys=GLOBAL
                                   CoordType=Cartesian
                                                            XorR=0.00
TABLE: "JOINT RESTRAINT ASSIGNMENTS"
   Joint=2
              U1=Yes
                        U2=No
                                 U3=No
                                          R1=No R2=Yes
                                                             R3=Yes
                                  U3=No
                                           R1=No
   Joint=4
              U1=Yes
                        U2=No
                                  U3=No
                                           R1=No
                                                   R2=Yes
                                                              R3=Yes
                                          R1=No
R1=No
   Joint=5
              U1=Yes
                        U2=No
                                  U3=No
                                                   R2=Yes
                                                              R3=Yes
              U1=Yes
                                                              R3=Yes
   Joint=6
                        U2=No
                                  U3=No
                                                   R2=Yes
   Joint=7
              U1=Yes
                        U2=No
                                  U3=No
                                           R1=No
                                                   R2=Yes
                                                              R3=Yes
   Joint=8
   Joint=9
              U1=Yes
                        U2=No
                                 U3=No
                                          R1=No
                                                   R2=Yes
                                                              R3=Yes
               U1=Yes
U1=Yes
   Joint=10
                                   113=No
                                            R1=No
                                                     R2=Yes
   Joint=11
                         U2=No
                                   U3=No
                                           R1=No
                                                     R2=Yes
                                                               R3=Yes
   Joint=12
               II1=Yes
                         112=No
                                   113=No
                                            R1=No
                                                     R2=Yes
                                                               R3=Yes
   Joint=13
   Joint=14
               U1=Yes
                         U2=No
                                   U3=Yes
                                             R1=No
                                                     R2=Yes
                                                                R3=Yes
                                                     R2=Yes
   Joint=16
               U1=Yes
                         U2=No
                                   U3=No
                                           R1=No
                                                     R2=Yes
                                                               R3=Yes
   Joint=17
               U1=Yes
U1=Yes
                                   U3=No
U3=No
                                           R1=No
R1=No
   Joint=18
                          U2=No
                                                     R2=Yes
                                                               R3=Yes
   Joint=19
               U1=Yes
                         U2=No
                                   U3=No
                                            R1=No
                                                     R2=Yes
                                                               R3=Yes
   Joint=20
   Joint=21
               U1=Yes
                         U2=No
                                   U3=No
                                            R1=No
                                                     R2=Yes
                                                               R3=Yes
                                  U3=No
U3=Yes
   Joint=23
               U1=Yes
                         U2=No
                                             R1=No
                                                     R2=Yes
                                                               R3=Yes
TABLE: "JOINT PATTERN DEFINITIONS"
   Pattern=TEM
   Pattern=PRES
TABLE: "CONNECTIVITY -
                           FRAME!
   Frame=1
                           JointJ=2
                                       IsCurved=No
              JointI=1
   Frame=2
              JointI=2
                           JointJ=3
                                       IsCurved=No
                                       IsCurved=No
                           JointJ=4
   Frame=3
              JointI=3
   Frame=4
              Joint T=4
                           Joint J=5
                                       TsCurved=No
   Frame=6
              JointI=6
                           JointJ=7
                                       IsCurved=No
```

```
JointI=8
                            JointJ=9
    Frame=8
                                         IsCurved=No
                            JointJ=10
               JointI=9
                                          IsCurved=No
   Frame=9
   Frame=10
                Joint T=10
                              JointJ=11
                                             TsCurved=No
                 JointI=11
                               JointJ=12
                                             IsCurved=No
   Frame=11
   Frame=12
                JointI=12
                              JointJ=13
                                             IsCurved=No
                               JointJ=1
                                             IsCurved=No
                 JointI=13
   Frame=14
                JointI=14
                              JointJ=15
                                             IsCurved=No
   Frame=15
                JointI=15
                              Joint T=16
                                             IsCurved=No
                JointI=16
                               JointJ=17
                                             IsCurved=No
   Frame=16
   Frame=17
                JointI=17
                              JointJ=18
                                             IsCurved=No
                               JointJ=19
                                             IsCurved=No
   Frame=19
                JointI=19
                              JointJ=20
                                             IsCurved=No
   Frame=20
                JointI=20
                              JointJ=21
                                             IsCurved=No
                JointI=21
                              JointJ=22
                                             IsCurved=No
   Frame=21
                JointI=22
                              JointJ=23
                                             TsCurved=No
   Frame=22
TABLE: "FRAME SECTION ASSIGNMENTS!
; Elenco ASTE
                (L = Lunghezza; ST
                                       = Sezione Tipo GEOMETRICA)
                                                                            ; L=2,50 - ST=1 (Acc+Cls BT)
   Frame=1
               AutoSelect=N.A.
                                    AnalSect=1
                                                   MatProp=Default
                                    AnalSect=1
                                                                             L=2,50 - ST=1
L=2,50 - ST=1
                                                                                              (Acc+Cls BT)
               AutoSelect=N.A.
                                                    MatProp=Default
   Frame=2
                                                    MatProp=Default
                                                                                      - ST=1
               AutoSelect=N.A.
   Frame=3
                                    AnalSect=1
                                                    MatProp=Default
MatProp=Default
                                                                             L=2,50 - ST=2
L=2,50 - ST=2
   Frame=4
               AutoSelect=N A
                                    AnalSect=5
                                                                                               (Acc+Cls BT)
    Frame=5
               AutoSelect=N.A.
                                     AnalSect=5
                                                                                               (Acc+Cls BT)
   Frame=6
               AutoSelect=N.A.
                                    AnalSect=5
                                                    MatProp=Default
                                                                              L=2.50
                                                                                      - ST=2
                                                                                               (Acc+Cls BT)
                                                                                      - ST=2
- ST=2
                                                                              L=2,50
               AutoSelect=N.A
                                    AnalSect=5
                                                    MatProp=Default
                                                                                               (Acc+Cls BT
   Frame=8
               AutoSelect=N.A.
                                    AnalSect=5
                                                    MatProp=Default
                                                                              L=2,50
                                                                                              (Acc+Cls BT)
                                                    MatProp=Default
MatProp=Default
                                                                             L=2,50 - ST=2;
L=2,50 - ST=2
   Frame=0
               AutoSelect=N A
                                    AnalSect=5
                                                                                              (Acc+Cls BT)
                AutoSelect=N.A.
                                     AnalSect=5
                                                                             ; L=2,50 - ST=2 (Acc+Cls BT)
; L=2,50 - ST=3 (Acc+Cls BT)
   Frame=10
   Frame=11
                AutoSelect=N.A.
                                     AnalSect=9
                                                     MatProp=Default
                                                                              ; L=2,50 - ST=3 (Acc+Arm)
; L=2,50 - ST=4 (Acc+Arm)
                AutoSelect=N.A.
                                      AnalSect=11
                                                      MatProp=Default
   Frame=12
   Frame=13
                AutoSelect=N.A.
                                      AnalSect=15
                                                      MatProp=Default
                                      AnalSect=15
                                                      MatProp=Default
                AutoSelect=N.A.
                                                                                L=2,50 - ST=4 (Acc+Arm
                                                                               L=2,50 -
   Frame=15
                AutoSelect=N.A.
                                      AnalSect=11
                                                      MatProp=Default
                                                                                          ST=3
                                                                                                (Acc+Arm)
   Frame=16
                AutoSelect=N.A.
                                      AnalSect=9
                                                     MatProp=Default
                                                                               L=2,50 - ST=3 (Acc+Cls BT)
   Frame=1
                AutoSelect=N.A.
                                      AnalSect=17
                                                      MatProp=Default
                                                                              ; L=2,50
                                                                                           ST=5 (Acc+Cls BT)
                                                      MatProp=Default
MatProp=Default
   Frame=18
                AutoSelect=N A
                                      AnalSect=17
                                                                                L=2.50
                                                                                          ST=5 (Acc+Cls BT)
                                      AnalSect=17
                                                                                           ST=5
                AutoSelect=N.A.
   Frame=20
                AutoSelect=N.A.
                                     AnalSect=17
                                                      MatProp=Default
                                                                              L=2.00
                                                                                        - ST=5 (Acc+Cls BT)
                AutoSelect=N.A.
   Frame=21
                                      AnalSect=17
                                                      MatProp=Default
                                                                                L=2,00
                                                                                        - ST=5 (Acc+Cls BT
                                                      MatProp=Default
                                                                              ; L=1,70 - ST=5 (Acc+Cls BT)
   Frame=22
                AutoSelect=N.A.
                                     AnalSect=17
TABLE:
       "FRAME OUTPUT STATION ASSIGNMENTS"
                                                            AddAtElmInt=No
   Frame=1
               StationTvpe=MinNumSta
                                           MinNumSta=2
                                                                                AddAtPtLoad=No
   Frame=2
               StationType=MinNumSta
                                            MinNumSta=2
                                                            AddAtElmInt=No
                                                                                AddAtPtLoad=No
   Frame=3
               StationType=MinNumSta
                                           MinNumSta=2
                                                            AddAtElmInt=No
                                                                                AddAtPtLoad=No
                                           MinNumSta=2
               StationType=MinNumSta
                                                            AddAtElmInt=No
                                                                                AddAtPtLoad=No
   Frame=4
               StationType=MinNumSta
                                           MinNumSta=2
                                                            AddAtElmInt=No
                                                                                AddAtPtLoad=No
   Frame=5
   Frame=6
               StationType=MinNumSta
                                           MinNumSta=2
                                                            AddAtElmInt=No
                                                                                AddAtPtLoad=No
   Frame=
               StationType=MinNumSta
                                            MinNumSta=2
                                                            AddAtElmInt=No
   Frame=8
               StationType=MinNumSta
                                           MinNumSta=2
                                                            AddAtElmInt=No
                                                                                AddAtPtLoad=No
                                           MinNumSta=2
               StationType=MinNumSta
                                                            AddAtElmInt=No
                                                                                 AddAtPtLoad=No
    Frame=9
   Frame=10
                StationTvpe=MinNumSta
                                            MinNumSta=2
                                                             AddAtElmInt=No
                                                                                 AddAtPtLoad=No
   Frame=11
                StationType=MinNumSta
                                             MinNumSta=2
                                                             AddAtElmInt=No
                                                                                 AddAtPtLoad=No
   Frame=12
                StationType=MinNumSta
                                             MinNumSta=2
                                                             AddAtElmInt=No
                                                                                  AddAtPtLoad=No
   Frame=13
                StationType=MinNumSta
StationType=MinNumSta
                                             MinNumSta=2
                                                             AddAtElmInt=No
                                                                                 AddAtPtLoad=No
                                                             AddAtElmInt=No
                                                                                  AddAtPtLoad=No
                                             MinNumSta=2
   Frame=15
                StationTvpe=MinNumSta
                                             MinNumSta=2
                                                             AddAtElmInt=No
                                                                                 AddAtPtLoad=No
   Frame=16
                StationType=MinNumSta
                                             MinNumSta=2
                                                             AddAtElmInt=No
                                                                                 AddAt Pt Load=No
   Frame=17
                StationType=MinNumSta
                                                             AddAtElmInt=No
                                                                                  AddAtPtLoad=No
                                             MinNumSta=2
   Frame=18
                StationType=MinNumSta
                                             MinNumSta=2
                                                             AddAtElmInt=No
                                                                                 AddAtPtLoad=No
                StationType=MinNumSta
                                                                                 AddAtPtLoad=No
   Frame=19
                                             MinNumSta=2
                                                             AddAtElmInt=No
   Frame=20
                StationType=MinNumSta
                                             MinNumSta=2
                                                             AddAtElmInt=No
                                                                                 AddAt Pt Load=No
                 StationType=MinNumSta
    Frame=21
                                             MinNumSta=2
                                                             AddAtElmInt=No
                                                                                  AddAtPtLoad=No
   Frame=22
                StationType=MinNumSta
                                            MinNumSta=2
                                                             AddAtElmInt=No
                                                                                 AddAtPtLoad=No
TABLE: "MATERIAL PROPERTIES 01 - GENERAL'
                                                  ype=None UnitMass=0
   Material=1FR Type=Isotropic Design
ampMass=0 VDampStiff=0 HDampMass=0
                                         DesignType=None
                                                                              UnitWeight=0
                                                                                                E=206000000
                                                                                                                 U=0
                                                                                                                        A=1,0E-05
                                                                                                                                       MDampRatio=0
VDampMass=0
                                                                   Color=Black
                                         DesignType=None UnitMass=0 UnitMass=0 HDampStiff=0 Color=Black
   Material=2FR Type=Isotropic
ampMass=0 VDampStiff=0 HDar
                                                                              UnitWeight=0
                                                                                                E=206000000
                                                                                                                        A=1,0E-05
                                                                                                                                      MDampRatio=0
                                                                                                                 TT-0
                                  HDampMass=0
                VDampMass=0
                                        DesignType=None Un
Mass=0 HDampStiff=0
   Material=3FR
                                                              UnitMass=0
                                                                              UnitWeight=0
                                                                                                E=206000000
                                                                                                                 TT = 0
                                                                                                                        A=1.0E-05
                                                                                                                                      MDampRatio=0
                                                                    Color=Black
VDampMass=0
  ampMass=U vDampStIII=U NDam
Material=4FR Type=Isotropic
ampMass=0 VDampStiff=0 HDam
                                                             UnitMass=0
                                                                              UnitWeight=0
                                                                                                                 U=0
                                                                                                                        A=1.0E-05
                                                                                                E=206000000
                                                                                                                                      MDampRatio=0
                                                HDampStiff=0
                                                                    Color=Black
VDampMass=0
                                  HDampMass=0
   Material=5FR
                                         DesignType=None
                                                              UnitMass=0
                                                                              UnitWeight=0
                                                                                                E=206000000
                                                                                                                 U=0
                                                                                                                        A=1,0E-05
                    Type=Isotropic
                                                                                                                                      MDampRatio=0
                VDampStiff=0
                                  HDampMass=0
                                                  HDampStiff=0
                                                                    Color=Black
VDampMass=0
                                       pMass=0 HDampStiff=0 Color=
DesignType=None UnitMass=0
pMass=0 HDampStiff=0 Color=
DesignType=None UnitMass=0
pMass=0 HDampStiff=0 Color=
   Material=6FR
                    Type=Isotropic
                                                                                                E=206000000
                                                                                                                 U=0
                                                                                                                        A=1,0E-05
                                                                              UnitWeight=0
                                                                                                                                      MDampRatio=0
                                  HDampMass=0
                VDampStiff=0
                                                                    Color=Black
VDampMass=0
   Material=7FR
                                                                              UnitWeight=0
                    Type=Isotropic
                                                                                                E=206000000
                                                                                                                        A=1,0E-05
                                                                                                                                       MDampRatio=0
                                  HDampMass=0
                                                                    Color=Black
VDampMass=0
                VDampStiff=0
                                 nDampMass=0 HDampStiff=0
opic DesignType=None Un:
HDampMass=0 HDampStiff=0
opic DesignType=None Un:
HDampMass=0 HDampStiff=0
   Material=8FR Type=Isot
ampMass=0 VDampStiff=0
                     Type=Isotropic
                                                              UnitMass=0
                                                                              UnitWeight=0
                                                                                                E=206000000
                                                                                                                        A=1,0E-05
                                                                                                                                      MDampRatio=0
                                                                                                                 U=0
                                                                    Color=Black
VDampMass=0
   AmpMass=0 VDampstIII=0 HDam
Material=9FR Type=Isotropic
ampMass=0 VDampStiff=0 HDam
                                                              UnitMass=0
                                                                              UnitWeight=0
                                                                                                E=206000000
                                                                                                                 U=0
                                                                                                                        A=1.0E-05
                                                                                                                                      MDampRatio=0
VDampMass=0
                                                                    Color=Black
   Material=10FR
                 R Type=Isotropic
VDampMass=0 VDampSt
                                              DesignType=None
                                                                       UnitMass=0
                                                                                         UnitWeight=0
                                                                                                             E=206000000
                                                                                                                                II = 0
                                                                                                                                          A=1.0E-05
                                                    HDampMass=0
MDampRatio=0 VI
Material=11FR
                                  VDampStiff=0
                                                                    HDampStiff=0
                                                                                      Color=Black
                        Mass=0 VDampStiff=0

Mass=0 VDampStiff=0
                                              DesignType=None
                                                                       UnitMass=0
                                                                                         UnitWeight=0
                                                                                                             E=206000000
                                                                                                                                U=0
                                                                                                                                          A=1,0E-05
                 VDampMass=0
MDampRatio=0
                                                   HDampMass=0
                                                                    HDampStiff=0
                                                                                      Color=Black
   Material=12FR
                                                                                                             E=206000000
                                                                                                                                          A=1,0E-05
                       Type=Isotropic
                                               DesignType=None
                                                                       UnitMass=0
                                                                                         UnitWeight=0
                                                                                                                                U=0
                                                  HDampMass=0
                                                                    HDampStiff=0
MDampRatio=0
                VDampMass=0
                                 VDampStiff=0
                                                                                      Color=Black
                        #Ass=0 VDampvall DesignType=None
#Ass=0 VDampStiff=0 HDampMass=0
Type=Isotropic DesignType=None
#Mass=0 VDampStiff=0 HDampMass=0
DesignType=None
DesignType=None
   Material=13FR
                                                                       UnitMass=0
                                                                                         UnitWeight=0
                                                                                                             E=206000000
                                                                                                                                          A=1,0E-05
   #mpRatio=0 vpam.

Material=14FR Type=1

--+io=0 VDampMass=0

Type=1
MDampRatio=0
                                                                    HDampStiff=0
UnitMass=0
                                                                                      Color=Black
                                                                                         UnitWeight=0
                                                                                                             E=206000000
                                                                                                                                TJ=0
                                                                                                                                          A=1,0E-05
MDampRatio=0
                                                                    HDampStiff=0
                                                                                      Color=Black
   Material=15FR Type=Isotropic DompRatio=0 VDampMass=0 VDampStiff=0
                                                                       UnitMass=0
                                                                                         UnitWeight=0
                                                                                                             E=206000000
                                                                                                                                TJ=0
                                                                                                                                          A=1,0E-05
MDampRatio=0
                                                                    HDampStiff=0
                                                                                      Color=Black
                                                   HDampMass=0
   Material=16FR
                        Type=Isotropic Des
Mass=0 VDampStiff=0
                                              DesignType=None
                                                                       UnitMass=0
                                                                                         UnitWeight=0
                                                                                                             E=206000000
                                                                                                                                U=0
                                                                                                                                          A=1,0E-05
                 VDampMass=0
MDampRatio=0
                                                   HDampMass=0
                                                                    HDampStiff=0
                                                                                      Color=Black
   Material=17FR
                                                                                                             E=206000000
                                                                                                                                          A=1,0E-05
                        Type=Isotropic
                                              DesignType=None
                                                                       UnitMass=0
                                                                                         UnitWeight=0
                                                                                                                                U=0
MDampRatio=0 VI
Material=18FR
                 VDampMass=0
                                  VDampStiff=0
                                                                    HDampStiff=0
                        Mass=U VDamp1
Type=Isotropic De:
Mass=0 VDampStiff=0
                                               DesignType=None
                                                                                         UnitWeight=0
                                                                                                             E=206000000
                                                                                                                                          A=1,0E-05
                                                                                                                                II = 0
                                                                       UnitMass=0
                 VDampMass=0
MDampRatio=0
                                                   HDampMass=0
                                                                    {\tt HDampStiff=0}
                                                                                      Color=Black
                        Mass=U VDampS.

Type=Isotropic De
Mass=0 VDampStiff=0
   Material=19FR
                                               DesignType=None
                                                                       UnitMass=0
                                                                                         UnitWeight=0
                                                                                                             E=206000000
                                                                                                                                          A=1,0E-05
                FR Type=1
VDampMass=0
MDampRatio=0
                                                                    HDampStiff=0
                                                                                      Color=Black
                                                  HDampMass=0
```

JointI=7

Frame=7

JointJ=8

IsCurved=No

	FR Type=Is	otropic Desig	nType=None	UnitMass=	=0 UnitWeight=0	E=2060000	00 U=0	A=1,0E-05
Material=20 MDampRatio=0	VDampMass=0	VDampStiff=0 H	DampMass=0 F	DampStiff=	0 Color=Black			
Material=C0 A=0,0000099	NC Type=Iso MDampRatio=0		Type=Concrete ampStiff=0 F	UnitMas DampMass=0		Weight=23,56161 Color=Black	E=248211	30 U=0,2
Material=ST A=0,0000117	EEL Type=Is MDampRatio=0		gnType=Steel ampStiff=0 F	UnitMass IDampMass=0		ight=76,81954 Color=Black	E=1999480	00 U=0,
			ampociti-o i	iDamprid55-0	iibampociii-o (JOIOI-BIACK		
	LOADS - DISTR: LoadCase=Vento	IBUTED" CoordSys=Local	Type=Force	Dir=2	DistType=RelDist	RelDistA=0	RelDistB=1	AbsDistA=
AbsDistB=2,50 Frame=2 I	FOverLA=-9,83 LoadCase=Vento	3 FOverLB=-9,83 CoordSys=Local	Type=Force	Dir=2	DistType=RelDist	RelDistA=0	RelDistB=1	AbsDistA=
AbsDistB=2,50	FOverLA=-9,83	3 FOverLB=-9,83						
Frame=3 I AbsDistB=2,50	LoadCase=Vento FOverLA=-9,83	CoordSys=Local FOverLB=-9,83	Type=Force	Dir=2	DistType=RelDist	RelDistA=0	RelDistB=1	AbsDistA=
Frame=4 I	oadCase=Vento	CoordSys=Local	Type=Force	Dir=2	DistType=RelDist	RelDistA=0	RelDistB=1	AbsDistA=
	FOverLA=-9,83 LoadCase=Vento	CoordSys=Local	Type=Force	Dir=2	DistType=RelDist	RelDistA=0	RelDistB=1	AbsDistA=
AbsDistB=2,50 Frame=6 I	FOverLA=-9,83 LoadCase=Vento	3 FOverLB=-9,83 CoordSys=Local	Type=Force	Dir=2	DistType=RelDist	RelDistA=0	RelDistB=1	AbsDistA=
AbsDistB=2,50	FOVERLA=-9,83	3 FOverLB=-9,83		Diw-2		RelDistA=0	RelDistB=1	AbsDistA=
Frame=7 I AbsDistB=2,50	LoadCase=Vento FOverLA=-9,83	CoordSys=Local FOverLB=-9,83	Type=Force	Dir=2	DistType=RelDist	ReiDistA=0	KelDiscb=1	ADSDISCA-
Frame=8 I AbsDistB=2,50	LoadCase=Vento FOverLA=-9,83	CoordSys=Local FOverLB=-9,83	Type=Force	Dir=2	DistType=RelDist	RelDistA=0	RelDistB=1	AbsDistA=
Frame=9 I	oadCase=Vento	CoordSys=Local	Type=Force	Dir=2	DistType=RelDist	RelDistA=0	RelDistB=1	AbsDistA=
AbsDistB=2,50 Frame=10	FOverLA=-9,83 LoadCase=Vento			Dir=2	DistType=RelDist	RelDistA=0	RelDistB=1	AbsDistA=
AbsDistB=2,50 Frame=11	FOverLA=-9,83 LoadCase=Vento			Dir=2	DistType=RelDist	RelDistA=0	RelDistB=1	AbsDistA=
AbsDistB=2,50	FOverLA=-9,83	3 FOverLB=-9,83						
Frame=12 AbsDistB=2,50	LoadCase=Vento FOverLA=-9,83			Dir=2	DistType=RelDist	RelDistA=0	RelDistB=1	AbsDistA=
Frame=13	LoadCase=Vento	CoordSys=Local	Type=Force	Dir=2	DistType=RelDist	RelDistA=0	RelDistB=1	AbsDistA=
	FOverLA=-9,83 LoadCase=Vento	CoordSys=Local	Type=Force	Dir=2	DistType=RelDist	RelDistA=0	RelDistB=1	AbsDistA=
AbsDistB=2,50 Frame=15	FOverLA=-9,83 LoadCase=Vento			Dir=2	DistType=RelDist	RelDistA=0	RelDistB=1	AbsDistA=
AbsDistB=2,50	FOverLA=-9,83	3 FOverLB=-9,83						
Frame=16 AbsDistB=2,50	LoadCase=Vento FOverLA=-9,83			Dir=2	DistType=RelDist	RelDistA=0	RelDistB=1	AbsDistA=
Frame=17 AbsDistB=2,50	LoadCase=Vento FOverLA=-9,83			Dir=2	DistType=RelDist	RelDistA=0	RelDistB=1	AbsDistA=
Frame=18	LoadCase=Vento	CoordSys=Local	Type=Force	Dir=2	DistType=RelDist	RelDistA=0	RelDistB=1	AbsDistA=
AbsDistB=2,50 Frame=19	FOverLA=-9,83 LoadCase=Vento			Dir=2	DistType=RelDist	RelDistA=0	RelDistB=1	AbsDistA=
AbsDistB=2,00 Frame=20	FOverLA=-9,83 LoadCase=Vento			Dir=2	DistType=RelDist	RelDistA=0	RelDistB=1	AbsDistA=
AbsDistB=2,00	FOverLA=-9,83	3 FOverLB=-9,83						
Frame=21 AbsDistB=2,00	LoadCase=Vento FOverLA=-9,83			Dir=2	DistType=RelDist	RelDistA=0	RelDistB=1	AbsDistA=
- 00								- 1 - 1
AbsDistB=1,70 TABLE: "FRAME TABLE: "JOINT Joint=1 L Joint=23	LoadCase=Vento FOVerLA=-9,8: LOADS - TEMPEI LOADS - FORCE oadCase=DTneg LoadCase=DTneg	3 FOVERLB=-9,83 RATURE" CoordSys=GLOBAL CoordSys=GLOBAL	F1=0 F2=6 L F1=0 F2=	5261,09 F =-6261,09	DistType=RelDist 3=0 M1=-1640,41 F3=0 M1=1640,41	M2=0 M3=0 M2=0 M3=0 M2=0 M3=0	RelDistB=1	AbsDistA=
AbsDistB=1,70 TABLE: "FRAME TABLE: "JOINT Joint=1 L Joint=23 Joint=1 L Joint=23	FOVERLA=-9,8: LOADS - TEMPE! LOADS - FORCE oadCase=DTneg oadCase=DTpos LoadCase=DTpos	3 FOVERLB=-9,83 RATURE" CoordSys=GLOBAL	F1=0 F2=6 L F1=0 F2= F1=0 F2=-	261,09 F -6261,09	3=0 M1=-1640,41	M2=0 M3=0	RelDistB=1	ADSDISTA=
AbsDistB=1,70 TABLE: "FRAME TABLE: "JOINT Joint=1 L Joint=23 Joint=1 L Joint=23 TABLE: "JOINT TABLE: "JOINT Pattern = T	FOVERLA=-9,8: LOADS - TEMPEI LOADS - FORCE oadCase=DTneg loadCase=DTpos LoadCase=DTpos LOADS - GROUNI PATTERN DEFIN: EMP	RATURE" CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBA CoordSys=GLOBA D DISPLACEMENT"	F1=0 F2=6 L F1=0 F2= F1=0 F2=-	261,09 F -6261,09	3=0 M1=-1640,41 F3=0 M1=1640,41 F3=0 M1=1640,41	M2=0 M3=0 M2=0 M3=0 M2=0 M3=0	RelDistB=1	ADSDISTA=
AbsDistB=1,70 TABLE: "FRAME TABLE: "JOINT Joint=1 L Joint=23 Joint=1 L Joint=23 TABLE: "JOINT	FOVERLA=-9,8: LOADS - TEMPEI LOADS - FORCE oadCase=DTneg loadCase=DTpos LoadCase=DTpos LOADS - GROUNI PATTERN DEFIN: EMP	RATURE" CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBA CoordSys=GLOBA D DISPLACEMENT"	F1=0 F2=6 L F1=0 F2= F1=0 F2=-	261,09 F -6261,09	3=0 M1=-1640,41 F3=0 M1=1640,41 F3=0 M1=1640,41	M2=0 M3=0 M2=0 M3=0 M2=0 M3=0	RelDistB=1	ADSDISTA=
AbsDistB=1,70 TABLE: "FRAME TABLE: "JOINT Joint=1 L Joint=23 Joint=1 L Joint=23 TABLE: "JOINT TABLE: "JOINT Pattern = T Pattern = P	FOVERLA=-9,8: LOADS - TEMPEI LOADS - FORCE oadCase=DTneg loadCase=DTpos LoadCase=DTpos LOADS - GROUNI PATTERN DEFIN: EMP	RATURE" CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL TOORDSTANDARD DISPLACEMENT" ITIONS" A" me Frame=1 Wine Frame=2 Wine	F1=0 F2=6 L F1=0 F2= F1=0 F2= L F1=0 F2= dth=0 Offset	261,09 F =-6261,09 =6261,09 =6261,09	3=0 M1=-1640,41 F3=0 M1=1640,41 F3=0 M1=-1640,41 F3=0 M1=-1640,41	M2=0 M3=0 M2=0 M3=0 M2=0 M3=0	RelDistB=1	ADSD1STA=
AbsDistB=1,70 TABLE: "FRAME TABLE: "JOINT Joint=1 L Joint=23 Joint=1 L Joint=23 TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT Pattern = T Pattern = P TABLE: "LANE Lane=LANE1 Lane=LANE1 Lane=LANE1 Lane=LANE1 Lane=LANE1	FOVERLA=-9,8: LOADS - TEMPEI LOADS - FORCE oadCase=DTneg LoadCase=DTpos LoadCase=DTpos LOADS - GROUNI PATTERN DEFIN: EMP RES DEFINITION DAT: LaneFrom=Frai LaneFrom=Frai LaneFrom=Frai LaneFrom=Frai LaneFrom=Frai LaneFrom=Frai LaneFrom=Frai LaneFrom=Frai LaneFrom=Frai LaneFrom=Frai	RATURE" CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBA CoordSys=GLOBA D DISPLACEMENT" ITIONS" A" me Frame=1 Wi me Frame=2 Wi me Frame=3 Wi me Frame=4 Wi me Frame=4 Wi	#1=0 F2=6 L F1=0 F2= F1=0 F2=- L F1=0 F2= dth=0 Offset dth=0 Offset dth=0 Offset dth=0 Offset	261,09 F =6261,09 =6261,09 =6261,09 =6261,09 = LoadG =0 LoadG =0 LoadG	3=0 M1=-1640,41 F3=0 M1=1640,41 F3=0 M1=-1640,41 F3=0 M1=-1640,41 Group=Default Group=Default Group=Default Group=Default	M2=0 M3=0 M2=0 M3=0 M2=0 M3=0	RelDistB=1	ADSDISTA=
AbsDistB=1,70 TABLE: "FRAME TABLE: "JOINT Joint=1 L Joint=23 Joint=1 L Joint=23 TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT Pattern = T Pattern = P TABLE: "LANE Lane=LANE1 Lane=LANE1 Lane=LANE1 Lane=LANE1 Lane=LANE1	FOVERLA=-9,8: LOADS - TEMPEI LOADS - FORCE LOADS - FORCE LOADS - FORCE LOADS - FORCE LOADS - FORCE LOADS - GROUNI PATTERN DEFIN: EMP RES DEFINITION DATA LaneFrom=Frat LaneFr	RATURE" CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL ToordSys=GLOBAL CoordSys=GLOBAL Unit CoordSys=	F1=0 F2=6 L F1=0 F2= F1=0 F2= L F1=0 F2= dth=0 Offset dth=0 Offset dth=0 Offset	=0 LoadG =0 LoadG =0 LoadG =0 LoadG =0 LoadG =0 LoadG	3=0 M1=-1640,41 F3=0 M1=1640,41 F3=0 M1=-1640,41 F3=0 M1=-1640,41 Group=Default Group=Default Group=Default	M2=0 M3=0 M2=0 M3=0 M2=0 M3=0	RelDistB=1	ADSD1STA=
AbsDistB=1,70 TABLE: "FRAME TABLE: "JOINT Joint=1 L Joint=23 Joint=1 L Joint=23 TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "LANE LANE1 LANE1 LANE1LANE1 LANE1LANE1 LANE=LANE1 LANE1LANE1 LANE=LANE1 LANE=LANE1 LANE=LANE1 LANE=LANE1 LANE=LANE1 LANE=LANE1 LANE=LANE1 LANE=LANE1	FOVERLA=-9,8: LOADS - TEMPEI LOADS - FORCE oadCase=DTneg LoadCase=DTpos LoadCase=DTpos LoadCase=DTpos LOADS - GROUNI PATTERN DEFIN: EMP RES DEFINITION DAT: LaneFrom=Frat LaneFrom=F	RATURE" CoordSys=GLOBAL CoordSys=GLOBA CoordSys=GLOBA CoordSys=GLOBA D DISPLACEMENT" ITIONS" A" me Frame=1 Wi me Frame=2 Wi me Frame=3 Wi me Frame=3 Wi me Frame=4 Wi me Frame=5 Wi me Frame=6 Wi me Frame=6 Wi me Frame=7 Wi	# F1=0 F2=6 L F1=0 F2= F1=0 F2= L F1=0 F2= dth=0 Offset dth=0 Offset dth=0 Offset dth=0 offset dth=0 offset dth=0 offset dth=0 offset dth=0 offset	261,09 F -6261,09 -6261,	Group=Default Group=Default	M2=0 M3=0 M2=0 M3=0 M2=0 M3=0	RelDistB=1	ADSD1STA=
AbsDistB=1,70 TABLE: "FRAME TABLE: "JOINT Joint=1 L Joint=23 Joint=1 L Joint=23 TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "LANE Lane=LANE1	FOVERLA=-9,8: LOADS - TEMPEI LOADS - FORCE' oadCase=DTneg LoadCase=DTneg cadCase=DTpos LOADS - GROUNI PATTERN DEFIN: EMP RES DEFINITION DATA LaneFrom=Frat LaneFrom=F	RATURE" CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL D DISPLACEMENT" ITIONS" A" me Frame=1 Wi me Frame=2 Wi me Frame=3 Wi me Frame=5 Wi me Frame=6 Wi me Frame=6 Wi me Frame=7 Wi me Frame=8 Wi me Frame=8 Wi me Frame=8 Wi me Frame=8 Wi me Frame=9 Wi	dth=0 F2=6 L F1=0 F2= F1=0 F2= L F1=0 F2= dth=0 Offset dth=0 Offset dth=0 Offset dth=0 Offset dth=0 Offset dth=0 Offset dth=0 Offset dth=0 Offset dth=0 Offset	=0 LoadG =0 LoadG =0 LoadG =0 LoadG =0 LoadG =0 LoadG =0 LoadG =0 LoadG =0 LoadG =0 LoadG =0 LoadG	M1=-1640,41 F3=0 M1=-1640,41 F3=0 M1=-1640,41 F3=0 M1=-1640,41 M1=-1640,41 Group=Default	M2=0 M3=0 M2=0 M3=0 M2=0 M3=0	RelDistB=1	ADSD1STA=
AbsDistB=1,70 TABLE: "FRAME TABLE: "JOINT Joint=1 L Joint=23 Joint=1 L Joint=23 TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "LANE Lane=LANE1	FOVERLA=-9,8: LOADS - TEMPEI LOADS - FORCE' oadCase=DTneg LoadCase=DTpos LoadCa	RATURE" CoordSys=GLOBAL CoordSys=GLOBAC CoordSys=GLOBAC CoordSys=GLOBAC CoordSys=GLOBAC D DISPLACEMENT" ITIONS" A" me Frame=1 Wi me Frame=2 Wi me Frame=3 Wi me Frame=5 Wi me Frame=6 Wi me Frame=6 Wi me Frame=7 Wi me Frame=7 Wi me Frame=8 Wi me Frame=9 Wi me Frame=9 Wi me Frame=9 Wi me Frame=10 W	### F1=0 F2=6 L F1=0 F2= F1=0 F2= L F1=0 F2= dth=0 offset dth=0 off	261,09 F -6261,09 -62	Group=Default Group=Default	M2=0 M3=0 M2=0 M3=0 M2=0 M3=0	RelDistB=1	ADSD1STA=
AbsDistB=1,70 TABLE: "FRAME TABLE: "JOINT Joint=1 L Joint=23 Joint=1 L Joint=23 TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "LANE LANE-LANE1	FOVERLA=-9,8: LOADS - TEMPEI LOADS - FORCE' oadCase=DTneg LoadCase=DTneg cadCase=DTpos LoadCase=DTpos LoadCase=DTpos LoadCase=DTpos LoadCase=DTpos LoADS - GROUNI PATTERN DEFIN: EMP RES DEFINITION DAT: LaneFrom=Frai LaneFrom	RATURE" CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL DISPLACEMENT" ITIONS" A" me Frame=1 Wine Frame=2 Wine Frame=3 Wine Frame=5 Wine Frame=6 Wine Frame=6 Wine Frame=6 Wine Frame=7 Wine Frame=10 Wine Frame=11 Wine Frame=12 Wine F	dth=0 F2=6 L F1=0 F2= F1=0 F2= L F1=0 F2= dth=0 Offset dth=0 Offset dth=0 Offset dth=0 Offset dth=0 Offset dth=0 Offset dth=0 Offset dth=0 Offset dth=0 Offset dth=0 Offset dth=0 Offset dth=0 Offset dth=0 Offset dth=0 Offset dth=0 Offset dth=0 Offset dth=0 Offset	=0 LoadG =0 LoadG =0 LoadG =0 LoadG =0 LoadG =0 LoadG =0 LoadG =0 LoadG =0 LoadG =0 LoadG =0 LoadG =0 LoadG =0 LoadG =0 LoadG =0 LoadG =0 LoadG =0 LoadG	Group-Default Group-Default	M2=0 M3=0 M2=0 M3=0 M2=0 M3=0	RelDistB=1	ADSDISTA:
AbsDistB=1,70 TABLE: "FRAME TABLE: "JOINT Joint=1 L Joint=23 Joint=1 L Joint=23 TABLE: "JOINT Pattern = T Pattern = T Pattern = T Pattern = L Lane=LANE1	FOVERLA=-9,8: LOADS - TEMPEI LOADS - FORCE oadCase=DTneg cadCase=DTpos LoadCase=DTpos LoadCase=DTpos LoadCase=DTpos LoadCase=DTpos LoADS - GROUNI PATTERN DEFIN: EMP RES DEFINITION DAT: LaneFrom=Frat LaneFrom=Fr	RATURE" CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL TOORDS D DISPLACEMENT" ITIONS" A" me Frame=1 Wi me Frame=2 Wi me Frame=4 Wi me Frame=6 Wi me Frame=6 Wi me Frame=7 Wi me Frame=7 Wi me Frame=8 Wi me Frame=10 Wi me Frame=10 Wi me Frame=11 Wi	F1=0 F2=6 L F1=0 F2= F1=0 F2= L F1=0 F2= dth=0 offset	2261,09 F -6261,09 -6	3=0 M1=-1640,41 F3=0 M1=1640,41 F3=0 M1=-1640,41 F3=0 M1=	M2=0 M3=0 M2=0 M3=0 M2=0 M3=0	RelDistB=1	ADSD1STA=
AbsDistB=1,70 TABLE: "FRAME TABLE: "JOINT Joint=1 L Joint=23 Joint=1 L Joint=23 TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "LANE LANE-LANE1	FOVERLA=-9,8: LOADS - TEMPEI LOADS - FORCE' oadCase=DTneg LoadCase=DTneg cadCase=DTpos LoadCase=DTpos LoadCas	RATURE" CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL D DISPLACEMENT" ITIONS" A" me Frame=1 Wime Frame=2 Wime Frame=3 Wime Frame=6 Wime Frame=6 Wime Frame=6 Wime Frame=10 Wime Frame=11 Wime Frame=11 Wime Frame=11 Wime Frame=11 Wime Frame=11 Wime Frame=11 Wime Frame=11 Wime Frame=11 Wime Frame=11 Wime Frame=13 Wime Frame=13 Wime Frame=14 Wime Frame=14 Wime Frame=15 Wime Frame=15 Wime Frame=15 Wime Frame=15 Wime Frame=11 Wime Frame=1 W	dth=0 F2=6 L F1=0 F2= F1=0 F2= L F1=0 F2= L F1=0 F2= dth=0 Offset	=0 LoadG =1 LoadG =1	Group=Default Group=Default	M2=0 M3=0 M2=0 M3=0 M2=0 M3=0	RelDistB=1	ADSD1STA=
AbsDistB=1,70 TABLE: "FRAME TABLE: "JOINT Joint=1 L Joint=23 Joint=1 L Joint=23 TABLE: "JOINT Pattern = T Pattern = T Pattern = P TABLE: "LANE1 Lane=LANE1	FOVERLA=-9,8: LOADS - TEMPEI LOADS - FORCE oadCase=DTneg cadCase=DTpos LOADS - GROUNI PATTERN DEFIN: EMP RES DEFINITION DAT: LaneFrom=Frat	RATURE" CoordSys=GLOBAL Coord	F1=0 F2=6 L F1=0 F2= F1=0 F2= L F1=0 F2= L F1=0 F2= dth=0 offset	### LoadG ### LoadG	Group=Default Group=Default	M2=0 M3=0 M2=0 M3=0 M2=0 M3=0	RelDistB=1	ADSDISTA
AbsDistB=1,70 TABLE: "FRAME TABLE: "JOINT Joint=1 L Joint=23 Joint=1 L Joint=23 TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "LANE LANE-LANE1	FOVERLA=-9,8: LOADS - TEMPEI LOADS - FORCE' oadCase=DTneg LoadCase=DTneg cadCase=DTpos LoadCase=DTpos LoadCas	RATURE" CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL DISPLACEMENT" ITIONS" A" me Frame=1 Wine Frame=2 Wine Frame=3 Wine Frame=4 Wine Frame=6 Wine Frame=10 Wine Frame=11 W	dth=0 F2=6 F1=0 F2= F1=0 F2= F1=0 F2= L F1=0 F2= dth=0 Offset	## 261,09 F	Gange M1=-1640,41 F3=0 M1=1640,41 F3=0 M1=1640,41 F3=0 M1=-1640,41 F3=0 M1	M2=0 M3=0 M2=0 M3=0 M2=0 M3=0	RelDistB=1	ADSDISTA
AbsDistB=1,70 TABLE: "FRAME TABLE: "JOINT Joint=1 L Joint=23 Joint=1 L Joint=23 TABLE: "JOINT Pattern = T Pattern = T Pattern = T Pattern = T Pattern = T Lane=LANE1	FOVERLA=-9,8: LOADS - TEMPEI LOADS - FORCE oadCase=DTneg cadCase=DTpos LOADS - GROUNI PATTERN DEFIN: EMP RES DEFINITION DAT: LaneFrom=Frai	RATURE" CoordSys=GLOBAL CoordSys=GloBAL CoordSys=GloBAL CoordSys=GloBAL CoordSys=GloBAL CoordSys=GloBAL CoordSys=GloBAL CoordSys=GloBAL CoordSys=GloBAL CoordSys=GloBAL CoordSys=GloBAL CoordSys=GloBAL CoordSys=GloBAL Coord	F1=0 F2=6 L F1=0 F2= F1=0 F2= L F1=0 F2= L F1=0 F2= L F1=0 F2= dth=0 offset	### 100 F F F F F F F F F	Group=Default Group=Default	M2=0 M3=0 M2=0 M3=0 M2=0 M3=0	RelDistB=1	ADSDISTA
AbsDistB=1,70 TABLE: "FRAME TABLE: "JOINT Joint=1 L Joint=23 Joint=1 L Joint=23 TABLE: "JOINT Pattern = T Pattern = P TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT PATTERN LANE: JANE: Lane=LANE: L	FOVERLA=-9,8: LOADS - TEMPEI LOADS - FORCE' oadCase=DTneg LoadCase=DTneg cadCase=DTpos LoadCase=DTpos LoadCas	RATURE" CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL DISPLACEMENT" ITIONS" A" me Frame=1 Wine Frame=2 Wine Frame=3 Wine Frame=6 Wine Frame=11 Wine Frame=10 Wine Frame=20	F1=0 F2=6 L F1=0 F2= F1=0 F2=- L F1=0 F2=- L F1=0 F2=- dth=0 Offset dth=0 Offset dth=0 Offset dth=0 Offset dth=0 Offset dth=0 Offset dth=0 Offset idth=0 Offset	### LoadG. ### LoadG.	Group=Default Group=Default	M2=0 M3=0 M2=0 M3=0 M2=0 M3=0	RelDistB=1	ADSD1STA=
AbsDistB=1,70 TABLE: "FRAME TABLE: "JOINT Joint=1 L Joint=23 Joint=1 L Joint=23 Joint=23 TABLE: "JOINT Pattern = T Pattern = T Pattern = T Pattern = P TABLE: "LANE1 Lane=LANE1	FOVERLA=-9,8: LOADS - TEMPEI LOADS - FORCE' oadCase=DTneg LoadCase=DTneg cadCase=DTpos LoadCase=DTpos LaneFrom=Frat LaneF	RATURE" CoordSys=GLOBAL Coord	dth=0 F2=6 L F1=0 F2= F1=0 F2= F1=0 F2= L F1=0 F2= L F1=0 F2= L F1=0 F2= D1 F2=	### LoadG. ### LoadG.	Group=Default Group=Default	M2=0 M3=0 M2=0 M3=0 M2=0 M3=0	RelDistB=1	ADSD1STA=
AbsDistB=1,70 TABLE: "FRAME TABLE: "JOINT Joint=1 L Joint=23 Joint=1 L Joint=23 TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "LANE Lane=LANE1 Lane=	FOVERLA=-9,8: LOADS - TEMPEI LOADS - FORCE' oadCase=DTneg LoadCase=DTneg LoadCase=DTpos LOADS - GROUNI PATTERN DEFIN: EMP RES DEFINITION DAT: LaneFrom=Frat LaneFrom=	RATURE" CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL DISPLACEMENT" ITIONS" A" me Frame=1 Wine Frame=2 Wine Frame=3 Wine Frame=6 Wine Frame=7 Wine Frame=10 Wine Frame=11 Wine Frame=11 Wine Frame=11 Wine Frame=11 Wine Frame=11 Wine Frame=11 Wine Frame=11 Wine Frame=11 Wine Frame=13 Wine Frame=14 Wine Frame=15 Wine Frame=16 Wine Frame=16 Wine Frame=17 Wine Frame=17 Wine Frame=18 Wine Frame=19 Wine Frame=19 Wine Frame=20 Wine Frame=20 Wine Frame=20 Wine Frame=21 Wine Frame=21 Wine Frame=21 Wine Frame=21 Wine Frame=22 Wine Frame=22 Wine Frame=22 Wine Frame=22 Wine Frame=22 Wine Frame=22 Wine Frame=22 Wine Frame=22 Wine Frame=21 Wine Frame=22 Wine Frame=22 Wine Frame=22 Wine Frame=22 Wine Frame=22 Wine Frame=22 Wine Frame=22 Wine Frame=22 Wine Frame=22 Wine Frame=21 Wine Frame=21 Wine Frame=21 Wine Frame=22 Wine Frame=21 Wine Frame=21 Wine Frame=21 Wine Frame=22 Wine Frame=22 Wine Frame=22 Wine Frame=22 Wine Frame=22 Wine Frame=22 Wine Frame=22 Wine Frame=22 Wine Frame=22 Wine Frame=22 Wine Frame=22 Wine Frame=22 Wine Frame=24	F1=0 F2=6 L F1=0 F2= F1=0 F2=- L F1=0 F2=- L F1=0 F2=- L F1=0 F2=- dth=0 offset dth=0 offset dth=0 offset dth=0 offset dth=0 offset dth=0 offset idth=0 offset	2261,09 F -6261,09 -6	Group=Default Group=Default	M2=0 M3=0 M2=0 M3=0 M2=0 M3=0		
AbsDistB=1,70 TABLE: "FRAME TABLE: "JOINT Joint=1 L Joint=23 Joint=1 L Joint=23 TABLE: "JOINT Pattern = T Pattern = T Pattern = T Pattern = T Pattern = T Lane=LANE1	FOVERLA=-9,8: LOADS - TEMPEI LOADS - FORCE' oadCase=DTneg LoadCase=DTneg cadCase=DTnes LoadCase=DTnes LoadCas	RATURE" "CoordSys=GLOBAL CoordSys=GLOBAL DISPLACEMENT" ITIONS" A" me Frame=1 Wine Frame=2 Wine Frame=4 Wine Frame=6 Wine Frame=9 Wine Frame=11 Wine Frame=11 Wine Frame=11 Wine Frame=11 Wine Frame=15 Wine Frame=15 Wine Frame=16 Wine Frame=17 Wine Frame=17 Wine Frame=17 Wine Frame=17 Wine Frame=17 Wine Frame=19 Wine Frame=20 Wine Frame=20 Wine Frame=20 Wine Frame=21 Wine Frame=21 Wine Frame=21 Wine Frame=21 Wine Frame=21 Wine Frame=21 Wine Frame=20 Wine Frame=21 Wine Frame=21 Wine Frame=20 Wine Frame=21 Wine Frame=20 Wine Frame=21 Wine Frame=21 Wine Frame=21 Wine Frame=21 Wine Frame=21 Wine Frame=21 Wine Frame=21 Wine Frame=21 Wine Frame=21 Wine Frame=21 Wine Frame=21 Wine Frame=21 Wine Frame=20	TF1=0 F2=6 L F1=0 F2= F1=0 F2= F1=0 F2= L F1=0 F2= L F1=0 F2= L F1=0 F2= L F1=0 F2= L F1=0 F2= L F1=0 F2= L F1=0 F2= L F1=0 F2= L F1=0 F2= L F1=0 F2= L F1=0 F2= L F1=0 F3= L F1	## LoadG ##	Group=Default Group=Default	M2=0 M3=0 M2=0 M3=0 M2=0 M3=0 M2=0 M3=0	ne Point"	AxleMDbl=N
AbsDistB=1,70 TABLE: "FRAME TABLE: "JOINT Joint=1 L Joint=23 Joint=1 L Joint=23 TABLE: "JOINT Pattern = T Pattern = T Pattern = P TABLE: "LANE Lane=LANE1 TABLE: "VEHC VehName=Cor Axleother=0 VehName=Cor Axleother=0	FOVERLA=-9,8: LOADS - TEMPEI LOADS - FORCE' oadCase=DTneg LoadCase=DTneg LoadCase=DTnos LoadCase=DTnos LOADS - GROUNI PATTERN DEFIN: EMP RES DEFINITION DAT: LaneFrom=Frat LaneFrom	RATURE" CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL D DISPLACEMENT" ITIONS" A" me Frame=1 Wi me Frame=2 Wi me Frame=3 Wi me Frame=4 Wi me Frame=6 Wi me Frame=7 Wi me Frame=7 Wi me Frame=10 Wi me Frame=11 Wi me Frame=10 Wi me Frame=11 Wi me Frame=11 Wi me Frame=11 Wi me Frame=11 Wi me Frame=12 Wi me Frame=12 Wi me Frame=14 Wi me Frame=15 Wi me Frame=16 Wi me Frame=16 Wi me Frame=17 Wi me Frame=17 Wi me Frame=18 Wi me Frame=19 Wi me Frame=20 Wi me Frame=20 Wi me Frame=21 Wi me Frame=21 Wi me Frame=21 Wi me Frame=21 Wi me Frame=22 Wi me Frame=22 Wi me Frame=21 Wi me Frame=21 Wi me Frame=21 Wi me Frame=21 Wi me Frame=22 Wi me Frame=22 Wi me Frame=21 Wi me Frame=21 Wi me Frame=22 Wi me Frame=22 Wi me Frame=22 Wi me Frame=22 Wi me Frame=21 Wi me Frame=21 Wi me Frame=22 Wi me Frame=22 Wi me Frame=22 Wi me Frame=22 Wi me Frame=24 Wi me Frame=25 Wi me Frame=25 Wi me Frame=26 Wi me Frame=27 Wi me Frame=27 Wi me Frame=28 Wi me Frame=1 Wi me Frame=1 Wi me Frame=1 Wi me Frame=1 Wi me Frame=1 Wi me Frame=1 Wi me Frame=1 Wi me Frame=1 Wi me Frame=1 Wi me Frame=1 Wi me Frame=2 Wi me Frame=1 Wi me Frame=1 Wi me Frame=2 Wi me Frame=1 Wi me Frame=1 Wi me Frame=1 Wi me Frame=1 Wi me Frame=1 Wi me Frame=1 Wi me Frame=1 Wi me Frame=1 Wi me Frame=2 Wi me Frame=1 Wi me Frame=3 Wi me Frame=1 Wi me Frame=1 Wi me Frame=1 Wi me Frame=1 Wi me Frame=1 Wi me Frame=1 Wi me Frame=2 Wi me Frame=1 Wi me Frame=3 Wi me Frame=1 Wi me Frame=4 Wi me Frame=6 Wi me Frame=6 Wi me Frame=1	F1=0 F2=6 L F1=0 F2= F1=0 F2= F1=0 F2= L F1=0 F2= L F1=0 F2= dth=0 offset dth=0 off	2261,09 F =6261,09 =6	Group=Default Group=Default	M2=0 M3=0 M2=0 M3=0 M2=0 M3=0 M2=0 M3=0 AxleMType="O	ne Point" ne Point"	AxleMDbl=N
AbsDistB=1,70 TABLE: "FRAME TABLE: "JOINT Joint=1 L Joint=23 Joint=1 L Joint=23 TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "LANE LANE-LANE1 LANE-LANE1 LANE-LANE1 LANE-LANE1 LANE-LANE1 LANE-LANE1 LANE-LANE1 LANE-LANE1 LANE-LANE1 LANE-LANE1 LANE-LANE1 LANE-LANE1 LANE-LANE1 LANE-LANE1 LANE-LANE1 LANE-LANE1 LANE-LANE1 TABLE: "VENTAME LANE-LANE1 TABLE: "VENTAME TABLE	FOVERLA=-9,8: LOADS - TEMPEI LOADS - FORCE' oadCase=DTneg LoadCase=DTneg LoadCase=DTnos LoadCase=DTnos LOADS - GROUNI PATTERN DEFIN: EMP RES DEFINITION DAT: LaneFrom=Frat LaneFrom	RATURE" " CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL DISPLACEMENT" ITIONS" A" me Frame=1 Wi me Frame=2 Wi me Frame=3 Wi me Frame=6 Wi me Frame=6 Wi me Frame=10 W me Frame=11 W me Frame=11 W me Frame=11 W me Frame=12 W me Frame=12 W me Frame=12 W me Frame=12 W me Frame=15 W me Frame=15 W me Frame=15 W me Frame=1 W me Frame=1 W me Frame=1 W me Frame=1 W me Frame=1 W me Frame=1 W me Frame=2 W me Frame=2 W L VEHICLES 1 - GE THOMMEYES INTSI POINT" LengthE THOMMEYES INTSI POINT" LengthE THOMMEYES INTSI POINT" LengthE THOMMEYES INTSI POINT" LengthE THOMMEYES INTSI POINT" LengthE THOMMEYES INTSI POINT" LengthE THOMMEYES INTSI POINT" LengthE	F1=0 F2=6 L F1=0 F2= F1=0 F2= F1=0 F2= L F1=0 F2= L F1=0 F2= L F1=0 F2= L F1=0 F2= L F1=0 F2= L F1=0 F2= L F1=0 F2= L F1=0 F2= L F1=0 F2= L F1=0 F5= L F1=	### LoadG. ### LoadG.	Group=Default Group=Default	M2=0 M3=0 M2=0 M3=0 M2=0 M3=0 M2=0 M3=0	ne Point" ne Point"	AxleMDbl=N
AbsDistB=1,70 TABLE: "FRAME TABLE: "JOINT Joint=1 L Joint=23 Joint=1 L Joint=23 TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "LANE LANE-LANE1 LANE-LANE1 LANE-LANE1 LANE-LANE1 LANE-LANE1 LANE-LANE1 LANE-LANE1 LANE-LANE1 LANE-LANE1 LANE-LANE1 LANE-LANE1 LANE-LANE1 LANE-LANE1 LANE-LANE1 TABLE: "VEHIC VehName=Cor AxleOther=0 VehName=Cor AxleOther=0 VehName=Fol VehName=Fol	FOVERLA=-9,8: LOADS - TEMPEI LOADS - FORCE' oadCase=DTneg LoadCase=DTneg LoadCase=DTnos LOADS - GROUNI PATTERN DEFIN: EMP RES DEFINITION DAT: LaneFrom=Frat LaneFrom=F	RATURE" CoordSys=GLOBAL Coord	F1=0 F2=6 L F1=0 F2= F1=0 F2=- L F1=0 F2=- L F1=0 F2=- L F1=0 F2=- L F1=0 F2=- dth=0 offset dth=0 offset dth=0 offset dth=0 offset dth=0 offset dth=0 offset idth=0 offse	2261,09 F =6261,09 626	Group=Default Group=Default	M2=0 M3=0 M2=0 M3=0 M2=0 M3=0 M2=0 M3=0 AxleMType="O	ne Point" ne Point" ne Point"	AxleMDbl=N AxleMDbl=N
AbsDistB=1,70 TABLE: "FRAME TABLE: "JOINT Joint=1 L Joint=23 Joint=1 L Joint=23 TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "LANE LANE-LANE1 TABLE: "VEHIC VehName-Cor AxleOther=0 VehName=Cor AxleOther=0 VehName=FOr AxleOther=0 VehName=FOr AxleOther=0 VehName=FOr AxleOther=0 VehName=FOr AxleOther=0 VehName=EM2	FOVERLA=-9,8: LOADS - TEMPEI LOADS - TEMPEI LOADS - FORCE' oadCase=DTneg LoadCase=DTneg LoadCase=DTpos LaneFrom=Frai	RATURE" CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL DISPLACEMENT" ITIONS" A" me Frame=1 Wine Frame=2 Wine Frame=3 Wine Frame=4 Wine Frame=6 Wine Frame=11 Wine Frame=11 Wine Frame=11 Wine Frame=10 Wine Frame=11 Wine Frame=10 Wine Frame=12 Wine Frame=12 Wine Frame=12 Wine Frame=13 Wine Frame=13 Wine Frame=14 Wine Frame=15 Wine Frame=15 Wine Frame=16 Wine Frame=17 Wine Frame=18 Wine Frame=21 Wine Frame=22 Wine Frame=22 Wine Frame=21	### F1=0 F2=6 L F1=0 F2= F1=0 F2= F1=0 F2= L F1=0 F2= L F1=0 F2= #### G1=0 F2= ### G1=0 F3= ### G	### LoadG. ### LoadG.	Gange M1=-1640,41 F3=0 M1=1640,41 F3=0 M1=1640,41 F3=0 M1=-1640,41 F3=0 M1=-1640,41 M1=-16	M2=0 M3=0 M2=0 M2=0 M3=0 M2=0 M3=0 M3=0 M3=0 M3=0 M3=0 M3=0 M3=0 M3	ne Point" ne Point" ne Point"	AxleMDbl=N AxleMDbl=N AxleMDbl=N
AbsDistB=1,70 TABLE: "FRAME TABLE: "JOINT Joint=1 L Joint=23 Joint=1 L Joint=23 TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "LANE LANE-LANE1 TABLE: "VEHIC VehName-Cor AxleOther=0 VehName=Cor AxleOther=0 VehName=FOr AxleOther=0 VehName=FOr AxleOther=0 VehName=FOr AxleOther=0 VehName=FOr AxleOther=0 VehName=EM2	FOVERLA=-9,8: LOADS - TEMPEI LOADS - FORCE' oadCase=DTneg LoadCase=DTneg LoadCase=DTnes LoadCa	RATURE" CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL DISPLACEMENT" ITIONS" A" me Frame=1 Wi me Frame=2 Wi me Frame=3 Wi me Frame=3 Wi me Frame=6 Wi me Frame=7 Wi me Frame=7 Wi me Frame=11 Wi me Frame=10 Wi me Frame=10 Wi me Frame=11 Wi me Frame=11 Wi me Frame=11 Wi me Frame=11 Wi me Frame=12 Wi me Frame=13 Wi me Frame=14 Wi me Frame=15 Wi me Frame=16 Wi me Frame=17 Wi me Frame=17 Wi me Frame=18 Wi me Frame=19 Wi me Frame=19 Wi me Frame=20 Wi me Frame=21 Wi me Frame=3 Wi me Frame=4 Wi me Frame=1 Wi me Frame=3 Wi me Frame=2 Wi me Frame=1 Wi me	F1=0 F2=6 L F1=0 F2= F1=0 F2=- L F1=0 F2=- L F1=0 F2=- L F1=0 F2=- L F1=0 F2=- dth=0 Offset dth=0 Offset dth=0 Offset dth=0 Offset dth=0 Offset dth=0 Offset dth=0 Offset idth=0 Offset	### LoadG ####################################	Group=Default Gr	M2=0 M3=0 M2=0 M3=0 M2=0 M3=0 M2=0 M3=0 AxleMType="On AxleMType="On AxleMType="On AxleMType="On	ne Point" ne Point" ne Point" ne Point"	AxleMDbl=N AxleMDbl=N AxleMDbl=N AxleMDbl=N AxleMDbl=N
AbsDistB=1,70 TABLE: "FRAME TABLE: "JOINT Joint=1 L Joint=23 Joint=1 L Joint=23 TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "JOINT TABLE: "LANE LANE-LANE1 LANE-LANE1 LANE-LANE1 LANE-LANE1 LANE-LANE1 LANE-LANE1 LANE-LANE1 LANE-LANE1 LANE-LANE1 LANE-LANE1 LANE-LANE1 LANE-LANE1 LANE-LANE1 LANE-LANE1 LANE-LANE1 LANE-LANE1 LANE-LANE1 LANE-LANE1 TABLE: "VEHC VehName-LANE1 TABLE: "VEHC VehName-Cor AxleOther=0 VehName=Fol AxleOther=0 VehName=Fol AxleOther=0 VehName=Fol AxleOther=0 VehName=LME1 AxleOther=0 VehName=LME1 AxleOther=0 VehName=LME1 AxleOther=0 VehName=LME1 AxleOther=0 VehName=LME1 AxleOther=0 VehName=LME1 AxleOther=0 VehName=LME1 AxleOther=0 VehName=LME1	FOVERLA=-9,8: LOADS - TEMPEI LOADS - TEMPEI LOADS - FORCE' oadCase=DTneg LoadCase=DTneg LoadCase=DTpos LoadCase=DTpos LoadCase=DTpos LoadCase=DTpos LOADS - GROUNI PATTERN DEFIN: EMP RES DEFINITION DATA LaneFrom=Frat Lane	RATURE" CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL CoordSys=GLOBAL DISPLACEMENT" ITIONS" A" me Frame=1 Wi me Frame=2 Wi me Frame=3 Wi me Frame=4 Wi me Frame=6 Wi me Frame=11 Wi me Frame=11 Wi me Frame=10 Wi me Frame=10 Wi me Frame=10 Wi me Frame=11 Wi me Frame=11 Wi me Frame=12 Wi me Frame=12 Wi me Frame=12 Wi me Frame=13 Wi me Frame=13 Wi me Frame=13 Wi me Frame=10 Wi me Frame=11 Wi me Frame=11 Wi me Frame=12 Wi me Frame=12 Wi me Frame=13 Wi me Frame=14 Wi me Frame=15 Wi me Frame=16 Wi me Frame=17 Wi me Frame=18 Wi me Frame=19 Wi me Frame=21 Wi me Frame=21 Wi me Frame=19 Wi me Frame=19 Wi me Frame=19 Wi me Frame=21 Wi me Frame=21 Wi me Frame=21 Wi me Frame=21 Wi me Frame=21 Wi me Frame=2 Wi me Frame=1 Wi me Frame=1 Wi me Frame=1 Wi me Frame=1 Wi me Frame=1 Wi me Frame=2 Wi me Frame=1 Wi me Frame=1 Wi me Frame=2 Wi me Frame=1 Wi me Frame=2 Wi me Frame=1 Wi me Frame=1 Wi me Frame=1 Wi me Frame=1 Wi me Frame=1 Wi me Frame=1 Wi me Frame=1 Wi me Frame=1 Wi me Frame=2 Wi me Frame=3 Wi me Frame=3 Wi me Frame=3 Wi me Frame=4 Wi me Frame=4 Wi me Frame=4 Wi me Frame=5 Wi me Frame=6 Wi me Frame=6 Wi me Frame=1 W	F1=0 F2=6 L F1=0 F2= F1=0 F2= F1=0 F2= L F1=0 F2= L F1=0 F2= dth=0 offset dth=0 off	### LoadG. ### LoadG.	Group=Default Gr	M2=0 M3=0 M2=0 M3=0 M2=0 M3=0 M2=0 M3=0 AxleMType="On AxleMType="On AxleMType="On	ne Point" ne Point" ne Point" ne Point" ne Point"	AxleMDbl=N AxleMDbl=N AxleMDbl=N AxleMDbl=N AxleMDbl=N AxleMDbl=N

VehName=LM2-4	SupportMom=Yes	IntSupport:		rResp=Yes	Axle	Mom=0	AxleMType="One	Point" A	xleMDb
VehName=LM2-5	SupportMom=Yes	IntSupport:	ForStrado Yes Othe ForStrado	rResp=Yes	Axle	Mom=0	AxleMType="One	Point" A	xleMDb
VehName=LM3	SupportMom=Yes	IntSupport=Y		Resp=Yes	AxleM	fom=0	AxleMType="One	Point" A	xleMDb
TABLE: "VEHICLES (VehName=Corsia1 VehName=Corsia1	3 - GENERAL VEHICLES LoadType="Leading LoadType="Fixed	Load" Uni	ifLoad=27 U UnifLoad=27	nifType="Ze: UnifType=			eLoad=0 AxleTy AxleLoad=300	/pe="One Poin AxleType="(
MinDist=0,01 VehName=Corsia1	LoadType="Fixed	-	UnifLoad=27	UnifType=			AxleLoad=300	AxleType="(
MinDist=1,2 VehName=Corsia1	LoadType="Fixed		UnifLoad=27	UnifType			AxleLoad=0	AxleType="0	
MinDist=0,01 VehName=Corsia1	LoadType="Trailin	ıg Load" Ur	nifLoad=27	UnifType="Z	ero Wio	dth"			
VehName=Corsia2 VehName=Corsia2	LoadType="Leading LoadType="Fixed		ifLoad=7,5 JnifLoad=7,5	UnifType="Z UnifType=			leLoad=0 Axle7 AxleLoad=200	Type="One Poi AxleType="0	
MinDist=0,01 VehName=Corsia2 MinDist=1,2	LoadType="Fixed	Length" (JnifLoad=7,5	UnifType=	="Zero	Width"	AxleLoad=200	AxleType="0	One Po
VehName=Corsia2 MinDist=0,01	LoadType="Fixed	Length"	UnifLoad=7,5	UnifType	e="Zero	o Width"	AxleLoad=0	AxleType="0	One Po
VehName=Corsia2 VehName=AreeRim	LoadType="Trailin LoadType="Trailin		nifLoad=7,5 nifLoad=2,5	UnifType=" UnifType="					
VehName=LM2-1	LoadType="Trailing LoadType="Fixed I		fLoad=2,5 U JnifLoad=0	nifType="Ze: UnifType="			AxleLoad=90	AxleType="0	ne Po
MinDist=0,01 VehName=LM2-1	LoadType="Fixed L	ength" U	nifLoad=0	UnifType="	Zero W	/idth"	AxleLoad=190	AxleType="0	ne Po
MinDist=4,5 VehName=LM2-2 MinDist=0,01	LoadType="Fixed I	ength" (JnifLoad=0	UnifType='	"Zero 1	Width"	AxleLoad=80	AxleType="0	ne Po
VehName=LM2-2 MinDist=4,2	LoadType="Fixed L	ength" U	nifLoad=0	UnifType="	Zero W	/idth"	AxleLoad=140	AxleType="0	ne Po
VehName=LM2-2 MinDist=1,3	LoadType="Fixed L	ength" U	nifLoad=0	UnifType="	Zero W	/idth"	AxleLoad=140	AxleType="0	ne Po
VehName=LM2-3 MinDist=0,01	LoadType="Fixed I	Length" [JnifLoad=0	UnifType='	"Zero 1	Width"	AxleLoad=90	AxleType="0	ne Po
VehName=LM2-3 MinDist=3,2	LoadType="Fixed L		nifLoad=0	UnifType="			AxleLoad=180	AxleType="0	
VehName=LM2-3 MinDist=5,2	LoadType="Fixed L	-	nifLoad=0	UnifType="			AxleLoad=120	AxleType="0	
VehName=LM2-3 MinDist=1,3	LoadType="Fixed L		nifLoad=0	UnifType="			AxleLoad=120	AxleType="0	
VehName=LM2-3 MinDist=1,3 VehName=LM2-4	LoadType="Fixed L LoadType="Fixed I	-	nifLoad=0 JnifLoad=0	UnifType=" UnifType="			AxleLoad=120 AxleLoad=90	AxleType="0	
MinDist=0,01 VehName=LM2-4	LoadType="Fixed L	3	nifLoad=0	UnifType="			AxleLoad=190	AxleType="0	
MinDist=3,4 VehName=LM2-4	LoadType="Fixed L	_	nifLoad=0	UnifType="			AxleLoad=140	AxleType="0	
MinDist=6 VehName=LM2-4	LoadType="Fixed L	-	nifLoad=0	UnifType="			AxleLoad=140	AxleType="0	
MinDist=1,8 VehName=LM2-5	LoadType="Fixed I	Length" (JnifLoad=0	UnifType='	"Zero 1	Width"	AxleLoad=90	AxleType="0	ne Po
MinDist=0,01 VehName=LM2-5	LoadType="Fixed L	ength" U	nifLoad=0	UnifType="	Zero W	/idth"	AxleLoad=180	AxleType="0	ne Po
MinDist=4,8 VehName=LM2-5	LoadType="Fixed L	ength" U	nifLoad=0	UnifType="	Zero W	/idth"	AxleLoad=120	AxleType="0	ne Po
MinDist=3,6 VehName=LM2-5 MinDist=4,4	LoadType="Fixed L	ength" U	nifLoad=0	UnifType="	Zero W	/idth"	AxleLoad=110	AxleType="0	ne Po
VehName=LM2-5 MinDist=1,3	LoadType="Fixed L	ength" U	nifLoad=0	UnifType="	Zero W	/idth"	AxleLoad=110	AxleType="0	ne Po
VehName=LM3 MinDist=0,01	LoadType="Fixed Le	ngth" Un:	ifLoad=0	UnifType="Z	ero Wi	idth"	AxleLoad=120	AxleType="C	ne Po
VehName=LM3 MinDist=1,2	LoadType="Fixed Le	ngth" Un	ifLoad=0	UnifType="Z	ero Wi	idth"	AxleLoad=120	AxleType="C	ne Po
VehName=LM3 MinDist=6	LoadType="Fixed Le	ngth" Un	ifLoad=0	UnifType="Z	ero Wi	idth"	AxleLoad=120	AxleType="C	ne Po
VehName=LM3 MinDist=1,2	LoadType="Fixed Le	ngth" Un	ifLoad=0	UnifType="Z	ero Wi	idth"	AxleLoad=120	AxleType="C	ne Po
Vehclass=NTU1 Vehclass=NTU2 Vehclass=NTU5 Vehclass=NTU5 Vehclass=NTU6 Vehclass=NTU12 Vehclass=NTU14 Vehclass=NTU15 Vehclass=NTU15 Vehclass=NTU17	VehName=Corsia2 S VehName=AreeRim S VehName=Folla Sc VehName=LM2-1 Sc VehName=LM2-2 Sc VehName=LM2-3 Sc VehName=LM2-5 Sc VehName=LM2-5 Sc	caleFactor = 1 caleFactor = 1 caleFactor = 1	1						
TABLE: "CASE - MOY Case=Mobilil A	VING LOAD 1 - LANE A AssignNum=1 VehCla AssignNum=1 VehClas AssignNum=1 VehCl AssignNum=1 VehCl	SSIGNMENTS" SS=NTU1 So SS=NTU2 So SS=NTU5 Sca	caleFactor=1 caleFactor=1 aleFactor=1 ScaleFactor ScaleFactor ScaleFactor	MinLoade	=0 Ma 0 Maz d=0 M ded=0	axLoaded= axLoaded= xLoaded=0 MaxLoaded MaxLoad MaxLoad	0 =0 ed=0		

ScaleFactor=1 MinLoaded=0 MaxLoaded=0 ScaleFactor=1 MinLoaded=0 MaxLoaded=0 ScaleFactor=1 MinLoaded=0 MaxLoaded=0

```
Case=Fatica3
                  AssignNum=1 Lane=LANE1
TABLE: "CASE - MOVING LOAD 3 - MULTILANE FACTORS"
   Case=Mobili1
                   NumberLanes=1
                                    ScaleFactor=1
   Case=Mobili2
                                     ScaleFactor=1
                   NumberLanes=1
   Case=MobRim
                  NumberLanes=1
                                   ScaleFactor=1
   Case=MobFolla
                    NumberLanes=1
                                      ScaleFactor=1
                     NumberLanes=1
   Case=Fatica2-1
                                       ScaleFactor=1
   Case=Fatica2-2
                     NumberLanes=1
                                       ScaleFactor=1
   Case=Fatica2-3
                     NumberLanes=1
                                       ScaleFactor=1
   Case=Fatica2-4
                     NumberLanes=1
                                       ScaleFactor=1
                     NumberLanes=1
   Case=Fatica3
                   NumberLanes=1
                                    ScaleFactor=1
TABLE: "BRIDGE RESPONSE"
                  Reactions=ALL
   Displs=ALL
                                     Frames=ALL
                                                     ShellRes=ALL
                                                                       ShellStr=ALL
                                                                                         PlnAsoStr=ALL
                                                                                                            SolidStr=ALL
                                                                                                                              LinkFD=ALL
DisplsC=No Read
DisplsC=No
             ReactionsC=No _
                     ReactionsC=No
                                      FramesC=Yes
                                                       ShellResC=No
                                                                         ShellStrC=No
                                                                                          PlnAsoStrC=No
                                                                                                            SolidStrC=No
                                                                                                                              LinkFDC=No
TABLE: "NAMED SETS - DATABASE TABLES 1 - GENERAL"

DBNamedSet=Vento SortOrder="Elem, Cases"
   DBNamedSet=Vento
                                                          Unformatted=No
                                                                                ModeStart=1
                                                                                                  ModeEnd=All
                                                                                                                    ModalHist=Envelopes
                        NLStatic=Envelopes
DirectHist=Envelopes
                          Steady=Envelopes
SortOrder="Elem,
      Combo=Envelopes
                                              SteadyOpt=Phases
                                                                 PSD=RMS
                                                                              Multistep=Envelopes
                                                                                                  ModeEnd=All
   DBNamedSet=DTneg
                                             Cases'
                                                          Unformatted=No
                                                                                ModeStart=1
                                                                                                                    ModalHist=Envelopes
                         NLStatic=Envelopes _
DirectHist=Envelopes
                                              SteadyOpt=Phases
                                                                   PSD=RMS
                                                                              Multistep=Envelopes
                          Steady=Envelopes
      Combo=Envelopes
   DBNamedSet=DTpos
                          SortOrder="Elem,
                                              Cases"
                                                          Unformatted=No
                                                                                ModeStart=1
                                                                                                  ModeEnd=All
                                                                                                                    ModalHist=Envelopes
                         NLStatic=Envelopes _
DirectHist=Envelopes
                                                                 PSD=RMS
      Combo=Envelopes
                          Steady=Envelopes
                                              SteadyOpt=Phases
                                                                              Multistep=Envelopes
   DBNamedSet=Mobili1
                             SortOrder="Elem,
                                               Cases"
                                                            Unformatted=No
                                                                                                  ModeEnd=All
                                                                                                                    ModalHist=Envelopes
                                                                                 ModeStart=1
                        NLStatic=Envelopes _
Steady=Envelopes SteadyOpt=Phases
SortOrder="Elem, Cases" Unfo
DirectHist=Envelopes
      Combo=Envelope
                                                                  PSD=RMS
                                                                              Multistep=Envelopes
   DBNamedSet=Mobili2
                                                                                                  ModeEnd=All
                                                                                                                    ModalHist=Envelopes
                                                            Unformatted=No
                                                                                 ModeStart=1
                         NLStatic=Envelopes _
DirectHist=Envelopes
      Combo=Envelopes
                          Steady=Envelopes
                                              SteadyOpt=Phases
                                                                              Multistep=Envelopes
   DBNamedSet=MobRim
                           SortOrder="Elem. Cases"
                                                           IInformatted=No
                                                                                ModeStart=1
                                                                                                  ModeEnd=All
                                                                                                                    ModalHist=Envelopes
DirectHist=Envelopes
                         NLStatic=Envelopes _
                          Steady=Envelopes SortOrder="Elem,
                                                                 PSD=RMS
                                                                              Multistep=Envelopes
      Combo=Envelopes
                                              SteadyOpt=Phases
                                                            Unformatted=No
   DBNamedSet=MobFolla
                        SortOrder- __ .

NLStatic=Envelopes _ SteadyOpt=Phases
                                                                                  ModeStart=1
                                                                                                   ModeEnd=All
                                                                                                                    ModalHist=Envelopes
DirectHist=Envelopes
                                                                              Multistep=Envelopes
                          Steady=Envelopes SteadyOpt
SortOrder="Elem, Cases"
      Combo=Envelopes
                                                                  PSD=RMS
   DBNamedSet=Fatica2
                                                             Unformatted=No
                                                                                  ModeStart=1
                                                                                                   ModeEnd=All
                                                                                                                    ModalHist=Envelopes
                        NLStatic=Envelopes _
DirectHist=Envelopes
       Combo=Envelopes
                          Steady=Envelopes SteadyOpe
SortOrder="Elem, Cases"
                                              SteadyOpt=Phases
                                                                              Multistep=Envelopes
                        ,
ModeEnd=All
   DBNamedSet=Fatica2-2
                                                                                                                    ModalHist=Envelopes
                                                             Unformatted=No
                                                                                  ModeStart=1
DirectHist=Envelopes
                                                                              Multistep=Envelopes
      Combo=Envelopes
   DBNamedSet=Fatica2-3
                        SortOrder="Elem, Cases"
                                                             Unformatted=No
                                                                                                   ModeEnd=All
                                                                                                                    ModalHist=Envelopes
                                                                                  ModeStart=1
DirectHist=Envelopes
                                                                 PSD=RMS
      Combo=Envelopes
                          Steady=Envelopes SteadyOpt
SortOrder="Elem, Cases"
                                                                              Multistep=Envelopes
   DBNamedSet=Fatica2-
                                                             Unformatted=No
                                                                                                   ModeEnd=All
                                                                                                                    ModalHist=Envelopes
                        NLStatic=Envelopes _
Steady=Envelopes SteadyOpt=Phases PSD=RMS
5 SortOrder="Elem, Cases" Unformatted=N
DirectHist=Envelopes
                                                                              Multistep=Envelopes
      Combo=Envelopes
   DBNamedSet=Fatica2-5
                                                             Unformatted=No
                                                                                                   ModeEnd=All
                                                                                                                    ModalHist=Envelopes
                                                                                  ModeStart=1
                        NLStatic=Envelopes _
Steady=Envelopes SteadyOpt=Phases PSD=RMS
SortOrder="Elem, Cases" Unformatted=No
DirectHist=Envelopes
      Combo=Envelopes
                                                                              Multistep=Envelopes
                        SortOrder= Elo...,
NLStatic=Envelopes _ SteadyOpt=Phases
   DBNamedSet=Fatica3
                                                                                                  ModeEnd=All
                                                                                                                    ModalHist=Envelopes
                                                                                ModeStart=1
DirectHist=Envelopes
                                                                              Multistep=Envelopes
      Combo=Envelopes
                        li1 SortOrder="Elem, Cases"
NLStatic=Envelopes _
   DBNamedSet=ReazMobili1
                                                              Unformatted=No
                                                                                  ModeStart=1
                                                                                                   ModeEnd=All
                                                                                                                    ModalHist=Envelopes
DirectHist=Envelopes
                                                                              Multistep=Envelopes
      Combo=Envelopes
                          Steady=Envelopes
                                              SteadyOpt=Phases
                                                                   PSD=RMS
   DBNamedSet=ReazMobili2
                                SortOrder="Elem, Cases"
                                                              Unformatted=No
                                                                                  ModeStart=1
                                                                                                   ModeEnd=All
                                                                                                                    ModalHist=Envelopes
                        li2 SortugeL
NLStatic=Envelopes _
'--Pnvelopes SteadyOpt=Phases
DirectHist=Envelopes
   Combo=Envelopes
DBNamedSet=ReazMobRim
                          Steady=Envelopes SteadyOpt:
n SortOrder="Elem, Cases"
                                                                   PSD=RMS
                                                                             Multistep=Envelopes
                        im SortOrde:- L...
NLStatic=Envelopes _ SteadyOpt=Phases
                                                             Unformatted=No
                                                                                                   ModeEnd=All
                                                                                                                    ModalHist=Envelopes
                                                                                  ModeStart=1
DirectHist=Envelopes
                          Steady=Envelopes SteadyOpt=P
                                                                 PSD=RMS
                                                                             Multistep=Envelopes
       Combo=Envelopes
                        Unformatted=No
   DBNamedSet=ReazMobFolla
                                                                                  ModeStart=1
                                                                                                   ModeEnd=All
                                                                                                                    ModalHist=Envelopes
DirectHist=Envelopes
                         Steady=Envelopes Stead
a2-1 SortOrder="Elem,
                                                                 PSD=RMS
                                                                              Multistep=Envelopes
      Combo=Envelopes
   DBNamedSet=RearFatica2-1
                        Da2-1 Softones NLStatic=Envelopes SteadyOpt=Phases
                                                    Cases"
                                                               Unformatted=No
                                                                                   ModeStart=1
                                                                                                   ModeEnd=All
                                                                                                                    ModalHist=Envelopes
DirectHist=Envelopes
                                                                  PSD=RMS
      Combo=Envelopes
                                                                             Multistep=Envelopes
                                 SortOrder="Elem, Cases"
   DBNamedSet=ReazFatica2-2
                                                               Unformatted=No
                                                                                   ModeStart=1
                                                                                                    ModeEnd=All
                                                                                                                    ModalHist=Envelopes
                                              SteadyOpt=Phases PSD=kmb .
                        NLStatic=Envelopes _
DirectHist=Envelopes
       Combo=Envelopes
                          Steady=Envelopes
                                                                              Multistep=Envelopes
                        ca2-3 Sortured:
NLStatic=Envelopes _ SteadyOpt=Phases
Capes" [
                                 SortOrder="Elem, Cases"
   {\tt DBNamedSet=ReazFatica2-3}
                                                                                                    ModeEnd=All
                                                                                   ModeStart=1
                                                                                                                    ModalHist=Envelopes
DirectHist=Envelopes
                          Steady=Envelopes SteadyOpt=Pha2-4 SortOrder="Elem, Cases"
                                                                              Multistep=Envelopes
      Combo=Envelopes
   DBNamedSet=ReazFatica2-4
                                                               Unformatted=No
                                                                                   ModeStart=1
                                                                                                   ModeEnd=All
                                                                                                                    ModalHist=Envelopes
DirectHist=Envelopes
                         NLStatic=Envelopes _
                                              SteadvOpt=Phases
                                                                  PSD=RMS
      Combo=Envelopes
                          Steady=Envelopes
                                                                             Multistep=Envelopes
                                 SortOrder="Elem, Cases"
   DBNamedSet=ReazFatica2-5
                                                               Unformatted=No
                                                                                                   ModeEnd=All
                                                                                                                    ModalHist=Envelopes
                        NLStatic=Envelopes _
DirectHist=Envelopes
                                              SteadyOpt=Phases PSD=RMS
                          Steady=Envelopes SteadyOpt=
a3 SortOrder="Elem, Cases"
                                                                             Multistep=Envelopes
      Combo=Envelopes
   DBNamedSet=ReazFatica
                                                              Unformatted=No
                                                                                                   ModeEnd=All
                                                                                                                    ModalHist=Envelopes
                        DirectHist=Envelopes
   Combo=Envelopes
DBNamedSet=TUTTO
                                             Cases'
                                                                                                  ModeEnd=All
                                                                                                                    ModalHist=Envelopes
                        NLStatic=Envelopes _
Steady=Envelopes SteadyOpt=Phases PSD=RMS Multistep=Envelopes
DirectHist=Envelopes
      Combo=Envelopes
TABLE: "NAMED SETS -
                        DATABASE TABLES 2 - SELECTIONS"
                        SelectType=Table Selection="Element Forces - Frames"
   DBNamedSet=Vento
   DBNamedSet=Vento
                        SelectType=LoadCase
                                               Selection=Vento
```

SelectType=AnalysCase DBNamedSet=Vento Selection=Vento SelectType=Table Selection="Element SelectType=LoadCase Selection=DTneg SelectType=AnalysCase Selection=DTneg DBNamedSet=DTneg Selection="Element Forces - Frames" DBNamedSet=DTneg DBNamedSet=DTneo Selection=DTneg SelectType=Table Se SelectType=LoadCase Selection="Element Forces - Frames" DBNamedSet=DTpos SelectType=LoadCase Selection=DTpos
SelectType=AnalysCase Selection DT
SelectType=Transport Transport Tran DBNamedSet=DTpos electType=Loadcase Selection=DTpos
SelectType=Table Selection="Blement Forces - Frames"
SelectType=AnalysCase Selection=Mobili1
i1 SelectType=Table Selection="Joint Reactions" DBNamedSet=DTpos DBNamedSet=Mobili1 DBNamedSet=Mobili1 DBNamedSet=ReazMobili1

```
DBNamedSet=ReazMobili1
                                                                             SelectType=AnalysCase
                                                                                                                                                      Selection=Mobili1
                                                                  SelectType=Table Selection="Element Forces - Fra
SelectType=AnalysCase Selection=Mobili2
i2 SelectType=Table Selection="Joint Reactions"
 DBNamedSet=Mobili2
DBNamedSet=Mobili2
                                                             li2 SelectType=Table Selection="Joint Reactions"
li2 SelectType=AnalysCase Selection=Mobili2
SelectType=Table Selection="Element Forces - Frames"
  DBNamedSet=ReazMobili2
  DBNamedSet=ReazMobili2
 DBNamedSet=MobRim
   DBNamedSet=MobRim
                                                               SelectType=AnalysCase Selection=MobRim
im SelectType=Table Selection="Joint Reactions"
DBNamedSet=ReazMobRim SelectType=Table Selection="Joint Reactions"
DBNamedSet=MobFolla SelectType=AnalysCase Selection=MobRim Both AmedSet=MobFolla SelectType=AnalysCase Selection=MobFolla DBNamedSet=ReazMobFolla SelectType=AnalysCase Selection=MobFolla DBNamedSet=ReazMobFolla SelectType=AnalysCase Selection=MobFolla DBNamedSet=Fatica2-1 SelectType=AnalysCase Selection=MobFolla DBNamedSet=Fatica2-1 SelectType=AnalysCase Selection=MobFolla DBNamedSet=Fatica2-1 SelectType=AnalysCase Selection=MobFolla SelectType=AnalysCase Selection=MobFolla DBNamedSet=Fatica2-1 SelectType=AnalysCase Selection=MobFolla DBNamedSet=ReazFatica2-1 SelectType=AnalysCase Selection=Fatica2-1 DBNamedSet=Fatica2-2 SelectType=AnalysCase Selection=Fatica2-1 DBNamedSet=Fatica2-2 SelectType=AnalysCase Selection=Fatica2-2 DBNamedSet=ReazFatica2-2 SelectType=AnalysCase Selection=Fatica2-2 DBNamedSet=ReazFatica2-2 SelectType=AnalysCase Selection=Fatica2-2 SelectType=AnalysCase SelectType=AnalysCase SelectType=AnalysCase SelectType=AnalysCase SelectType=AnalysCase SelectType=AnalysCase SelectType=AnalysCase SelectType=AnalysCase SelectType=AnalysCase SelectType=AnalysCase SelectType=AnalysCase SelectType=AnalysCase SelectT
  DBNamedSet=ReazMobRim
                                                                        -2 SelectType=AnalysCase Selection=Fatica2-2
SelectType=Table Selection="Element Forces - Frames"
SelectType=AnalysCase Selection=Fatica2-3
-3 SelectType=Table Selection="Joint Reactions"
  DBNamedSet=ReazFatica2-2
  DBNamedSet=Fatica2-3
  DBNamedSet=Fatica2-3
  DBNamedSet=ReazFatica2-
DBNamedSet=ReazFatica2-3 SelectType=Table Selection="Joint Reactions"

DBNamedSet=Fatica2-4 SelectType=Table Selection="Element Forces - Frames"

DBNamedSet=Fatica2-4 SelectType=Table Selection="Element Forces - Frames"

DBNamedSet=ReazFatica2-4 SelectType=AnalysCase Selection=Fatica2-4

DBNamedSet=ReazFatica2-4 SelectType=AnalysCase Selection=Tatica2-4

DBNamedSet=Fatica2-5 SelectType=Table Selection="Element Forces - Frames"

DBNamedSet=Fatica2-5 SelectType=Table Selection="Element Forces - Frames"

DBNamedSet=Fatica2-5 SelectType=Table Selection="Element Forces - Frames"
                                                                         SelectType=AnalysCase Selection=Fatica2-5
-5 SelectType=Table Selection="Joint Reactions"
  DBNamedSet=Fatica2-5
 DBNamedSet=ReazFatica2-5 SelectType=AnalysCase
DBNamedSet=ReazFatica2-5 SelectType=AnalysCase
DBNamedSet=ReazFatica2-5 SelectType=AnalysCase
DBNamedSet=Fatica3 SelectType=Table Select
                                                              ca2-5 SelectType=AnalysCase Selection=Fatica2-5
SelectType=Table Selection="Element Forces - Frames"
SelectType=AnalysCase Selection=Fatica3
ca3 SelectType=Table Selection="Joint Reactions"
  DBNamedSet=Fatica3
  DBNamedSet=ReazFatica3
                                                            cal SelectType=AnalysCase Selection=Fatica3
SelectType=Table Selection="Element Forces - Frames"
SelectType=AnalysCase Selection=Vento
  DBNamedSet=ReazFatica3
  DBNamedSet=TUTTO
 DBNamedSet=Vento
 DBNamedSet=DTneg
                                                           SelectType=AnalysCase
SelectType=AnalysCase
                                                                                                                                       Selection=DTneg
  DBNamedSet=DTpos
                                                                                                                                       Selection=DTpos
 DBNamedSet=Mobili1
                                                                  SelectType=AnalysCase
SelectType=AnalysCase
                                                                                                                                           Selection=Mobili1
  DBNamedSet=Mobili2
                                                                                                                                             Selection=Mobili2
 DBNamedSet=MobRim
                                                              SelectType=AnalysCase
                                                                                                                                          Selection=MobRim
 DBNamedSet=MobFolla
DBNamedSet=Fatica2-1
                                                                     SelectType=AnalysCase
                                                                                                                                               Selection=MobFolla
                                                                         SelectType=AnalysCase
                                                                                                                                                   Selection=Fatica2-1
 DBNamedSet=Fatica2-2
DBNamedSet=Fatica2-3
                                                                         SelectType=AnalysCase
                                                                                                                                                   Selection=Fatica2-2
                                                                         SelectType=AnalysCase
                                                                                                                                                    Selection=Fatica2-3
  DBNamedSet=Fatica2-4
                                                                         SelectType=AnalysCase
                                                                                                                                                   Selection=Fatica2-4
                                                                          SelectType=AnalysCase
                                                                                                                                                     Selection=Fatica2-5
                                                                 SelectType=AnalysCase
                                                                                                                                          Selection=Fatica3
 DBNamedSet=Fatica3
```

END TABLE DATA

MODELLI 3/4

Frame=20

JointI=20

JointJ=21

IsCurved=No

Modello con le proprietà geometriche della sezione mista per azioni di lunga durata (LT) con soletta fessurata in appoggio

```
: Cavalcavia CV 08
; DESCRIZIONE DEL MODELLO:
TABLE: "ACTIVE DEGREES OF FREEDOM"
   UX=Yes
            UY=Yes
                      UZ=Yes
                                RX=Yes RY=Yes RZ=Yes
TABLE: "PROGRAM CONTROL"
ProgramName=SAP2000 Version=9.0.3 CurrUni
ASD 2000" ColdCode=AISI-ASD96 StiffCase=None
                                             CurrUnits="KN, m, C" SteelCode=AISC-ASD89 ConcCode="ACI 318-99" AlumCode="AA-
TABLE: "ANALYSIS CASE DEFINITIONS"
   Case=Permanenti
                      Type=LinStatic
                                         InitialCond=Zero
   Case=Ritiro Type=LinStatic InitialCond=Zero
TABLE: "CASE - STATIC 1 - LOAD ASSIGNMENTS"
                 ti LoadType="Load case" LoadName=Per
LoadType="Load case" LoadName=Ritiro
   Case=Permanenti
                                                LoadName=Permanenti
                                                                         LoadSF=1
                                                               LoadSF=1
   Case=Ritiro
TABLE: "LOAD CASE DEFINITIONS"
    LoadCase=Permanenti
                           DesignType=DEAD
   LoadCase=Ritiro DesignType=DEAD
                                          SelfWtMult=0
       "JOINT COORDINATES"
                                                                                  Z=0,00
Z=0,00
   Joint=1
              CoordSvs=GLOBAL
                                  CoordType=Cartesian
                                                           XorR=0.00
                                                                        Y=0,00
                                                                                            SpecialJt=No
              CoordSys=GLOBAL
                                  CoordType=Cartesian
                                                           XorR=0,00
   Joint=3
              CoordSvs=GLOBAL
                                  CoordType=Cartesian
CoordType=Cartesian
                                                           XorR=0.00
                                                                        Y=5,00
Y=7,50
                                                                                  Z=0,00
Z=0,00
                                                                                            SpecialJt=No
                                                                                            SpecialJt=No
   Joint=4
              CoordSys=GLOBAL
                                                           XorR=0,00
                                  CoordType=Cartesian
                                                                        Y=10,00
   Joint=5
              CoordSys=GLOBAL
                                                           XorR=0,00
                                                                                   Z=0,00
                                                                                             SpecialJt=No
                                                                                             SpecialJt=No
              CoordSys=GLOBAL
CoordSys=GLOBAL
                                  CoordType=Cartesian
CoordType=Cartesian
                                                          XorR=0,00
XorR=0,00
                                                                        Y=12,50
Y=15,00
                                                                                   Z=0,00
Z=0,00
   Joint=6
   Joint=7
                                                                                             SpecialJt=No
   Joint=8
              CoordSvs=GLOBAL
                                  CoordType=Cartesian
CoordType=Cartesian
                                                           XorR=0.00
                                                                        Y=17.50
                                                                                   Z=0,00
                                                                                             SpecialJt=No
   Joint=9
Joint=10
              CoordSys=GLOBAL
                                                                                             SpecialJt=No
               CoordSys=GLOBAL
                                   CoordType=Cartesian
                                                           XorR=0,00
                                                                         Y=22,50
                                                                                    Z=0,00
                                                                                              SpecialJt=No
                                   CoordType=Cartesian
CoordType=Cartesian
                                                                                    z=0,00
   Joint=11
               CoordSys=GLOBAL
                                                            XorR=0,00
                                                                         Y=25,00
                                                                                              SpecialJt=No
   Joint=12
                                                            XorR=0,00
               CoordSvs=GLOBAL
                                                                                    Z=0,00
                                                                                              SpecialJt=No
   Joint=13
               CoordSys=GLOBAL
                                   CoordType=Cartesian
                                                            XorR=0,00
                                                                         Y = 30,00
                                                                                    Z=0,00
Z=0,00
                                                                                              SpecialJt=No
                                   CoordType=Cartesian
   Joint=14
               CoordSys=GLOBAL
                                                            XorR=0,00
                                                                                              SpecialJt=No
   Joint=15
               CoordSys=GLOBAL
                                   CoordType=Cartesian
                                                            XorR=0,00
                                                                         Y = 35,00
                                                                                    Z=0,00
                                                                                              SpecialJt=No
   Joint=16
                CoordSys=GLOBAL
                                   CoordType=Cartesian
CoordType=Cartesian
                                                            XorR=0,00
                                                            XorR=0,00
                                                                                    Z=0,00
   Joint=17
               CoordSvs=GLOBAL
                                                                         Y = 40,00
                                                                                              SpecialJt=No
   Joint=18
               CoordSys=GLOBAL
                                   CoordType=Cartesian
                                                            XorR=0,00
                                                                         Y=42,50
                                                                                    Z=0,00
                                                                                              SpecialJt=No
   Joint=19
               CoordSys=GLOBAL
                                   CoordType=Cartesian
                                                            XorR=0,00
                                                                         Y=45,00
                                                                                    Z=0,00
                                                                                              SpecialJt=No
               CoordSys=GLOBAL
CoordSys=GLOBAL
                                                                                    Z=0,00
Z=0,00
   Joint=20
                                   CoordType=Cartesian
                                                           XorR=0.00
                                                                         Y = 47.00
                                                                                              Special It=No
                                   CoordType=Cartesian
                                                                         Y=49,00
   Joint=22
               CoordSvs=GLOBAL
                                   CoordTvpe=Cartesian
                                                            XorR=0.00
                                                                         Y=51.00
                                                                                    Z=0.00
                                                                                              SpecialJt=No
   Joint=23
              CoordSys=GLOBAL
                                  CoordType=Cartesian
                                                                                              SpecialJt=No
TABLE: "JOINT RESTRAINT ASSIGNMENTS"
                        U2=Yes
                                            R1=No
   Joint=2
              U1=Yes
                        U2=No
                                 U3=No
                                         R1=No
                                                  R2=Yes
                                                             R3=Yes
   Joint=4
              U1=Yes
                        U2=No
                                 U3=No
                                          R1=No
                                                   R2=Yes
                                                             R3=Yes
   Joint=5
Joint=6
              U1=Yes
U1=Yes
                                 U3=No
                                          R1=No
R1=No
                                 U3=No
                        U2=No
                                                   R2=Yes
                                                             R3=Yes
   Joint=7
              U1=Yes
                        U2=No
                                 U3=No
                                          R1=No
                                                   R2=Yes
                                                             R3=Yes
   Joint=8
              U1=Yes
   Joint=9
              U1=Yes
                        U2=No
                                 U3=No
                                          R1=No
                                                   R2=Yes
                                                             R3=Yes
   Joint=11
               U1=Yes
                         U2=No
                                  U3=No
                                           R1=No
                                                    R2=Yes
                                                              R3=Yes
                         U2=No
U2=No
   Joint=12
               U1=Yes
                                  U3=No
                                           R1=No
                                                    R2=Yes
                                                              R3=Yes
               U1=Yes
                                  U3=No
                                                    R2=Yes
   Joint=13
   Joint=14
               U1=Yes
                         U2=No
                                  U3=Yes
                                            R1=No
                                                    R2=Yes
                                                               R3=Yes
   Joint=16
               U1=Yes
                         U2=No
                                  U3=No
                                           R1=No
                                                    R2=Yes
                                                              R3=Yes
   Joint=17
               U1=Yes
                         U2=No
                                  U3=No
                                           R1=No
                                                    R2=Yes
                                                              R3=Yes
               U1=Yes
                                  U3=No
   Joint=18
                         U2=No
                                           R1=No
                                                    R2=Yes
                                                              R3=Yes
   Joint=19
               U1=Yes
                         U2=No
                                  U3=No
                                           R1=No
                                                    R2=Yes
                                                              R3=Yes
               U1=Yes
                         U2=No
                                  U3=No
                                                    R2=Yes
   Joint=20
                                           R1=No
                                                              R3=Yes
   Joint=21
               U1=Yes
                         U2=No
                                  U3=No
                                           R1=No
                                                    R2=Yes
                                                              R3=Yes
                                  U3=No
   Joint=23
               U1=Yes
                         U2=No
                                  U3=Yes
                                            R1=No
                                                    R2=Yes
                                                              R3=Yes
TABLE: "JOINT PATTERN DEFINITIONS"
   Pattern=TEMP
Pattern=PRES
TABLE: "CONNECTIVITY - FRAME"
                          JointJ=2
   Frame=1
                                      IsCurved=No
              JointI=1
   Frame=2
              JointI=2
                          JointJ=3
                                      IsCurved=No
              JointI=3
                          JointJ=4
                                      IsCurved=No
   Frame=3
   Frame=4
              Joint T=4
                          JointJ=5
                                      IsCurved=No
   Frame=5
              JointI=5
                          JointJ=6
                                      IsCurved=No
   Frame=6
              JointI=6
                          JointJ=7
                                      IsCurved=No
              JointI=8
                          JointJ=9
                                      IsCurved=No
   Frame=8
              JointI=9
   Frame=9
                          JointJ=10
                                       IsCurved=No
                            JointJ=11
   Frame=10
               JointI=10
                                          IsCurved=No
   Frame=11
               Joint T=11
                            JointJ=12
                                          TsCurved=No
               JointI=12
   Frame=13
               JointI=13
                            JointJ=14
                                          IsCurved=No
   Frame=14
               JointI=14
                            JointJ=15
                                          IsCurved=No
   Frame=15
               JointI=15
                            JointJ=16
                                          IsCurved=No
   Frame=16
               Joint T=16
                            JointJ=17
                                          TsCurved=No
                                          IsCurved=No
   Frame=18
               JointI=18
                            JointJ=19
                                          IsCurved=No
```

```
TABLE: "FRAME SECTION ASSIGNMENTS"
; Elenco ASTE (L = Lunghezza; ST = Sezione
                                                               Tipo GEOMETRICA)
    Frame=1
                   AutoSelect=N.A.
                                             AnalSect=2
                                                                MatProp=Default
                                                                                              ; L=2,50 - ST=1 (Acc+Cls LT)
                   AutoSelect=N.A.
                                             AnalSect=2
                                                                MatProp=Default
                                                                                                L=2,50 - ST=1
L=2,50 - ST=1
                                                                                                                     (Acc+Cls LT)
    Frame=3
                   AutoSelect=N.A.
                                             AnalSect=2
                                                                MatProp=Default
    Frame=4
                   AutoSelect=N.A.
                                             AnalSect=6
                                                                MatProp=Default
                                                                                                L=2,50 - ST=2
                                                                                                                      (Acc+Cls LT)
                   AutoSelect=N.A.
                                                                MatProp=Default
                                                                                                 L=2,50
                                                                                                           - ST=2
    Frame=5
                                                                                                                      (Acc+Cls LT)
                                             AnalSect=6
    Frame=6
                   AutoSelect=N.A.
                                             AnalSect=6
                                                                MatProp=Default
                                                                                                L=2,50 - ST=2
                                                                                                                     (Acc+Cls LT)
                   AutoSelect=N.A.
                                                                MatProp=Default
                                                                                                L=2.50 - ST=2
    Frame=8
                   AutoSelect=N.A.
                                             AnalSect=6
                                                                MatProp=Default
                                                                                                                     (Acc+Cls LT)
                                                                MatProp=Default
MatProp=Default
    Frame=9
                   AutoSelect=N.A.
                                             AnalSect=6
                                                                                                L=2,50 - ST=2 (Acc+Cls LT)
                                                                                                            - ST=2 (Acc+Cls LT)
    Frame=10
                    AutoSelect=N.A.
                                              AnalSect=6
                                                                                               ; L=2,50
                                                                                                 ; L=2,50 - ST=3 (Acc+Cls LT)
    Frame=11
                    AutoSelect=N.A.
                                              AnalSect=10
                                                                   MatProp=Default
                                                                   MatProp=Default
                                                                                                 ; L=2,50 - ST=3 (Acc+Arm)
    Frame=12
                    AutoSelect=N.A.
                                              AnalSect=11
                                                                   MatProp=Default
MatProp=Default
    Frame=13
                    AutoSelect=N.A.
                                              AnalSect=15
                                                                                                   L=2,50 - ST=4 (Acc+Arm)
                    AutoSelect=N.A.
                                               AnalSect=15
     Frame=1
                                                                                                   L=2.50 - ST=3 (Acc+Arm)
    Frame=15
                    AutoSelect=N.A.
                                              AnalSect=11
                                                                   MatProp=Default
    Frame=16
                    AutoSelect=N.A.
                                               AnalSect=10
                                                                   MatProp=Default
                                                                                                   L=2,50 - ST=3 (Acc+Cls LT)
                                                                                                   L=2,50
                                                                                                              - ST=5 (Acc+Cls LT)
                    AutoSelect=N.A.
                                              AnalSect=18
                                                                   MatProp=Default
    Frame=17
                                                                   MatProp=Default
MatProp=Default
                                                                                                   L=2,50 - ST=5 (Acc+Cls LT)
L=2,00 - ST=5 (Acc+Cls LT)
    Frame=18
                    AutoSelect=N A
                                               AnalSect=18
     Frame=19
                    AutoSelect=N.A.
                                               AnalSect=18
    Frame=20
                    AutoSelect=N.A.
                                              AnalSect=18
                                                                   MatProp=Default
                                                                                                   L=2,00 - ST=5 (Acc+Cls LT)
                    AutoSelect=N.A.
                                                                                                 ; L=2,00 - ST=5 (Acc+Cls LT)
; L=1,70 - ST=5 (Acc+Cls LT)
                                                                   MatProp=Default
                                               AnalSect=18
                                              AnalSect=18
    Frame=22
                    AutoSelect=N.A.
                                                                   MatProp=Default
TABLE: "FRAME OUTPUT STATION ASSIGNMENTS"
    Frame=1
                   StationType=MinNumSta
                                                     MinNumSta=2
                                                                          AddAtElmInt=No
                                                                                                   AddAtPtLoad=No
    Frame=2
                   StationType=MinNumSta
                                                      MinNumSta=2
                                                                           AddAtElmInt=No
                                                                                                    AddAtPtLoad=No
    Frame=3
                   StationType=MinNumSta
                                                      MinNumSta=2
                                                                           AddAtElmInt=No
                                                                                                    AddAtPtLoad=No
                   StationType=MinNumSta
                                                      MinNumSta=2
                                                                           AddAtElmInt=No
                                                                                                    AddAtPtLoad=No
    Frame=4
                   StationType=MinNumSta
    Frame=5
                                                      MinNumSta=2
                                                                           AddAtElmInt=No
                                                                                                    AddAtPtLoad=No
    Frame=6
                   StationType=MinNumSta
                                                      MinNumSta=2
                                                                           AddAtElmInt=No
                                                                                                    AddAtPtLoad=No
    Frame=
                   StationType=MinNumSta
                                                      MinNumSta=2
                                                                           AddAtElmInt=No
                                                                                                    AddAtPtLoad=No
                   StationType=MinNumSta
StationType=MinNumSta
    Frame=8
                                                      MinNumSta=2
                                                                           AddAtElmInt=No
                                                                                                    AddAt Pt Load=No
                                                                           AddAtElmInt=No
                                                                                                    AddAtPtLoad=No
    Frame=9
                                                      MinNumSta=2
    Frame=10
                    StationTvpe=MinNumSta
                                                       MinNumSta=2
                                                                            AddAtElmInt=No
                                                                                                     AddAtPtLoad=No
    Frame=11
                    StationType=MinNumSta
                                                        MinNumSta=2
                                                                            AddAtElmInt=No
                                                                                                     AddAtPtLoad=No
                    StationType=MinNumSta
                                                                            AddAtElmInt=No
                                                                                                     AddAtPtLoad=No
    Frame=12
                                                        MinNumSta=2
                    StationType=MinNumSta
StationType=MinNumSta
    Frame=13
                                                        MinNumSta=2
                                                                            AddAtElmInt=No
                                                                                                     AddAt Pt Load=No
                                                                            AddAtElmInt=No
                                                                                                     AddAtPtLoad=No
    Frame=14
    Frame=15
                    StationTvpe=MinNumSta
                                                        MinNumSta=2
                                                                            AddAtElmInt=No
                                                                                                     AddAtPtLoad=No
    Frame=16
                    StationType=MinNumSta
                                                        MinNumSta=2
                                                                            AddAtElmInt=No
                                                                                                     AddAtPtLoad=No
    Frame=17
                    StationType=MinNumSta
                                                        MinNumSta=2
                                                                            AddAtElmInt=No
                                                                                                     AddAtPtLoad=No
                                                       MinNumSta=2
                    StationType=MinNumSta
                                                                            AddAtElmInt=No
                                                                                                     AddAtPtLoad=No
    Frame=18
                    StationType=MinNumSta
                                                                                                     AddAtPtLoad=No
                                                                            AddAtElmInt=No
    Frame=19
                                                        MinNumSta=2
    Frame=20
                    StationType=MinNumSta
                                                        MinNumSta=2
                                                                            AddAtElmInt=No
                                                                                                     AddAtPtLoad=No
    Frame=21
                    StationType=MinNumSta
                                                        MinNumSta=2
                                                                            AddAtElmInt=No
                                                                                                     AddAtPtLoad=No
    Frame=22
                    StationType=MinNumSta
                                                       MinNumSta=2
                                                                            AddAtElmInt=No
                                                                                                     AddAtPtLoad=No
TABLE: "MATERIAL PROPERTIES 01 - GENERAL"
    Material=1FR
                          Type=Isotropic
                                                   DesignType=None
                                                                              UnitMass=0
                                                                                                 UnitWeight=0
                                                                                                                       E=206000000
                                                                                                                                                     A=1,0E-05
                                                                                                                                                                       MDampRatio=0
                                                   Mass=0 HDampStiff=0 Color=
DesignType=None UnitMass=0
VDampMass=0
                   VDampStiff=0
                                         HDampMass=0
                                                                                    Color=Black
    Material=2FR Type=Isotropic
ampMass=0 VDampStiff=0 HDar
                                                                                                 UnitWeight=0
                                                                                                                                                     A=1,0E-05
                                                                                                                        E=206000000
                                                                                                                                            U=0
                                                                                                                                                                       MDampRatio=0
VDampMass=0
                                         HDampMass=0
                                                              HDampStiff=0 Color=Black
                   FR Type=Isotropic
VDampStiff=0 HDam
                                                  DesignType=None Uni
Mass=0 HDampStiff=0
    Material=3FR
                                                                            UnitMass=0
                                                                                                 UnitWeight=0
                                                                                                                        E=206000000
                                                                                                                                            U=0
                                                                                                                                                     A=1,0E-05
                                                                                                                                                                       MDampRatio=0
VDampMass=0
                                         HDampMass=0
                                                                                    Color=Black
                                         opic DesignType=None UnitMass=0 Uni
HDampMass=0 HDampStiff=0 Color=Black
                   FR Type=Isotropic
VDampStiff=0 HDam
    Material=4FR
                                                                                                 UnitWeight=0
                                                                                                                        E=206000000
                                                                                                                                            U=0
                                                                                                                                                     A=1,0E-05
                                                                                                                                                                       MDampRatio=0
VDampMass=0
                                                 DesignType=None Un
DMass=0 HDampStiff=0
    Material=5FR
                                                                             UnitMass=0
                                                                                                                        E=206000000
                                                                                                                                                     A=1.0E-05
                         Type=Isotropic
                                                                                                 UnitWeight=0
                                                                                                                                            U=0
                                                                                                                                                                       MDampRatio=0
                         Type=Isotropic DesignType=None UnitMass=0
mpStiff=0 HDampMass=0 HDampStiff=0 Color=:
Type=Isotropic DesignType=None UnitMass=0
mpStiff=0 HDampMass=0 HDampStiff=0 Color=:
Type=Isotropic DesignType=None UnitMass=0
                    VDampStiff=0
                                                                                     Color=Black
   Material=6FR
                                                                                                 UnitWeight=0
                                                                                                                        E=206000000
                                                                                                                                            U=0
                                                                                                                                                     A=1,0E-05
                                                                                                                                                                       MDampRatio=0
                                                                             E=0 Color=Black
UnitMass=0 Uni
VDampMass=0
                    VDampStiff=0
    Material=7FR
                                                                                                 UnitWeight=0
                                                                                                                        E=206000000
                                                                                                                                            U=0
                                                                                                                                                     A=1,0E-05
                                                                                                                                                                       MDampRatio=0
                                                              HDampStiff=0
VDampMass=0
                   VDampStiff=0
                                         HDampMass=0
                                                                                    Color=Black
                                                   DesignType=None Uni
Mass=0 HDampStiff=0
    Material=8FR
                          Type=Isotropic
                                                                              UnitMass=0
                                                                                                 UnitWeight=0
                                                                                                                        E=206000000
                                                                                                                                            U=0
                                                                                                                                                     A=1,0E-05
                                                                                                                                                                       MDampRatio=0
                                         HDampMass=0
                                                                                    Color=Black
VDampMass=0
                   VDampStiff=0
   mmpMass=0 vDampstiff=0 HDam
Material=9FR Type=Isotropic
ampMass=0 VDampStiff=0 HDam
                                         opic DesignType=None Un:
HDampMass=0 HDampStiff=0
                                                                             UnitMass=0
                                                                                                 UnitWeight=0
                                                                                                                       E=206000000
                                                                                                                                            U=0
                                                                                                                                                    A=1,0E-05
                                                                                                                                                                       MDampRatio=0
                                                                                    Color=Black
VDampMass=0
                                                         DesignType=None
=0 HDampMass=0
                     FR Type=Isotropic De
VDampMass=0 VDampStiff=0
    Material=10FR
                                                                                        UnitMass=0
                                                                                                              UnitWeight=0
                                                                                                                                        E=206000000
                                                                                                                                                                II = 0
                                                                                                                                                                           A=1,0E-05
MDampRatio=0 VDa
Material=11FR
                                                                                     HDampStiff=0
                                                                                                           Color=Black
                             Type=Isotropic Des

DMass=0 VDampStiff=0
                                                         DesignType=None
                                                                                                              UnitWeight=0
                                                                                                                                        E=206000000
                                                                                                                                                                           A=1.0E-05
                                                                                       UnitMass=0
                                                                                                                                                                U=0
                     VDampMass=0
                                                               HDampMass=0
MDampRatio=0
                                                                                     HDampStiff=0
                                                                                                           Color=Black
    Material=12FR
                                                                                                              UnitWeight=0
                                                                                                                                        E=206000000
                                                                                                                                                                           A=1,0E-05
                             Type=Isotropic
                                                          DesignType=None
                                                                                        UnitMass=0
                                                                                                                                                                U=0
                                          VDampStiff=0
MDampRatio=0 VI
Material=13FR
                     VDampMass=0
                                                                HDampMass=0
                                                                                     HDampStiff=0
                                                                                                           Color=Black
                            pMass=U VDampStiff=0

pMass=0 VDampStiff=0

Type=Isotropic Des
pMass=0 VDampStiff=0

pMass=0 VDampStiff=0
                                                          DesignType=None
                                                                                                               UnitWeight=0
                                                                                                                                        E=206000000
                                                                                                                                                               IJ=0
                                                                                                                                                                           A=1,0E-05
                                                                                        UnitMass=0
                     VDampMass=0
MDampRatio=0
                                                               HDampMass=0
                                                                                     HDampStiff=0
                                                                                                           Color=Black
    Material=14FR
                                                          DesignType=None
                                                                                                               UnitWeight=0
                                                                                        UnitMass=0
                                                                                                                                        E=206000000
                                                                                                                                                                            A=1,0E-05
                    VDampMass=0
MDampRatio=0
                                                               HDampMass=0
                                                                                     HDampStiff=0
                                                                                                           Color=Black
                              Type=Isotropic De
Mass=0 VDampStiff=0
    Material=15FR
                                                          DesignType=None
                                                                                        UnitMass=0
                                                                                                               UnitWeight=0
                                                                                                                                        E=206000000
                                                                                                                                                                            A=1,0E-05
                                                                                                                                                                U=0
                     VDampMass=0
MDampRatio=0
                                                               HDampMass=0
                                                                                     HDampStiff=0
                                                                                                           Color=Black
MDampRatio=U VDampMass=U VDampStiff=U HDampMass=U Material=16FR Type=Isotropic DesignType=None MDampRatio=U VDampMass=U VDampStiff=U HDampMass=U VDampStiff=U HDampMass=U VDampMass=U VDampMass=U HDampMass=U HDam
                                                                                        UnitMass=0
                                                                                                              UnitWeight=0
                                                                                                                                        E=206000000
                                                                                                                                                                TT=0
                                                                                                                                                                            A=1,0E-05
                                                                                     HDampStiff=0
                                                                                                           Color=Black
    Material=17FR
                     R Type=Isotropic
VDampMass=0 VDampSt
                                                          DesignType=None
                                                                                        UnitMass=0
                                                                                                              UnitWeight=0
                                                                                                                                        E=206000000
                                                                                                                                                                II = 0
                                                                                                                                                                            A=1.0E-05
                                          VDampStiff=0
                                                                                                           Color=Black
MDampRatio=0
                                                                HDampMass=0
                                                                                     HDampStiff=0
   Material=18FR
                     FR Type=Isotropic De
VDampMass=0 VDampStiff=0
                                                          DesignType=None
                                                                                        UnitMass=0
                                                                                                              UnitWeight=0
                                                                                                                                        E=206000000
                                                                                                                                                               U=0
                                                                                                                                                                           A=1,0E-05
MDampRatio=0
                                                                HDampMass=0
                                                                                     HDampStiff=0
                                                                                                           Color=Black
    Material=19FR
                                                                                                                                        E=206000000
                                                                                                                                                                U=0
                                                                                                                                                                           A=1,0E-05
                             Type=Isotropic
                                                          DesignType=None
                                                                                        UnitMass=0
                                                                                                              UnitWeight=0
MDampRatio=0 VI
Material=20FR
                                                               HDampMass=0
                                                                                     HDampStiff=0
                    VDampMass=0
                                         VDampStiff=0
                                                                                                           Color=Black
                             Mass=0 VDampSt:
Type=Isotropic De:
Mass=0 VDampStiff=0
Type=Isotropic Des:
Ratio=0 VDampMass=0
                                                          DesignType=None
                                                                                        UnitMass=0
                                                                                                              UnitWeight=0
                                                                                                                                        E=206000000
                                                                                                                                                                U=0
                                                                                                                                                                            A=1,0E-05
                     VDampMass=0
                                                                                     HDampStiff=0
                                                                                                           Color=Black
MDampRatio=0
                                                        f=0 HDampMass=0
DesignType=Concrete
    Material=CONC
                                                                                                                          UnitWeight=23,56161
                                                                                                         2,40068
                                                                                                                                                            E=24821130
                                                                                                                                                                                 U=0,2
                   MDampRatio=0
                                                                                                         HDampStiff=0
A=0,0000099
                                                                                    HDampMass=0
                                                             VDampStiff=0
                                                                                                                              Color=Black
Material=STEEL
A=0,0000117 MDar
                   TEEL Type=Isotropic DesignType=Stee1
MDampRatio=0 VDampMass=0 VDampStiff=0
                                                                                          UnitMass=7,8271 UnitWeight=76,81954
mpMass=0 HDampStiff=0 Color=Black
                                                                                                                                                          E=199948000
                                                                                                                                                                                 U=0,3
                                                                                    HDampMass=0
TABLE: "FRAME LOADS - DISTRIBUTED"
   Frame=1
                     LoadCase=Permanenti
                                                        CoordSys=Local
                                                                                   Type=Force
                                                                                                        Dir=2
                                                                                                                      DistTvpe=RelDist
                                                                                                                                                    RelDistA=0
                                                                                                                                                                          RelDistB=1
AbsDistA=0
                   AbsDistB=2,50
                                          FOverLA=-21,31
                                                                   FOverLB=-21,31
                                                       CoordSys=Local
                                                                                   Type=Force
                                                                                                        Dir=2
                                                                                                                      DistTvpe=RelDist
                                                                                                                                                    RelDistA=0
                                                                                                                                                                          RelDistB=1
    Frame=2
                     LoadCase=Permanenti
                   AbsDistB=2,50 FOverLA=-21,31 FOverLB=
LoadCase=Permanenti CoordSys=Local
AbsDistB=2,50 FOverLA=-21,31 FOverLB=
                                                                  FOverLB=-21,31
AbsDistA=0
                                                                  S=Local Type=Force FOverLB=-21,31
                                                                                                        Dir=2
                                                                                                                      DistType=RelDist
                                                                                                                                                    RelDistA=0
                                                                                                                                                                          RelDistB=1
   Frame=3
AbsDistA=0
```

```
LoadCase=Permanenti
                                       CoordSys=Local
                                                                                    DistType=RelDist
                                                                                                         RelDistA=0
                                                                                                                         RelDistB=1
  Frame=4
                                                           Type=Force
                                                                          Dir=2
AbsDistA=0
             AbsDistB=2,50 FOver
LoadCase=Permanenti
                              FOverLA=-21,31
                                               FOverLB=-21,
                                       CoordSys=Local
                                                           Type=Force
                                                                         Dir=2
                                                                                    DistType=RelDist
                                                                                                         RelDistA=0
                                                                                                                         RelDistB=1
   Frame=5
                                               FOverLB=-21.31
AbsDistA=0
             AbsDistB=2,50 FOverLA=-21,31
                                       CoordSys=Local
                                                           Type=Force
               LoadCase=Permanenti
                                                                                    DistType=RelDist
                                                                                                         RelDistA=0
                                                                                                                         RelDistB=1
   Frame=6
                                               FOverLB=-21,31
AbsDistA=0
             AbsDistB=2,50
                             FOverLA=-21,31
               LoadCase=Permanenti
                                       CoordSys=Local
                                                                                    DistType=RelDist
                                                                                                         RelDistA=0
                                                                                                                         RelDistB=1
                                                           Type=Force
                                                                          Dir=2
                              FOverLA=-21,31
                                               FOverLB=-21,31
AbsDistA=0
             AbsDistB=2.50
  Frame=8
               LoadCase=Permanenti
                                       CoordSys=Local
                                                           Type=Force
                                                                         Dir=2
                                                                                    DistType=RelDist
                                                                                                         RelDistA=0
                                                                                                                         RelDistB=1
                                               FOverLB=-21,31
             AbsDistB=2,50
                              FOverLA=-21,31
AbsDistA=0
                                               s=Local Type=Force
FOverLB=-21,31
  Frame=9
               LoadCase=Permanenti
                                       CoordSys=Local
                                                                         Dir=2
                                                                                    DistType=RelDist
                                                                                                         RelDistA=0
                                                                                                                         RelDistB=1
             AbsDistB=2,50
                              FOverLA=-21,31
                                        CoordSys=Local
  Frame=10
               LoadCase=Permanenti
                                                           Type=Force
                                                                          Dir=2
                                                                                    DistTvpe=RelDist
                                                                                                         RelDistA=0
                                                                                                                         RelDistB=1
                             FOverLA=-21,31
                                               FOverLB=-21,31
AbsDistA=0
             AbsDistB=2,50
  Frame=11
                                        CoordSys=Local
                                                           Type=Force
                                                                          Dir=2
                                                                                    DistType=RelDist
                                                                                                          RelDistA=0
                                                                                                                         RelDistB=1
               LoadCase=Permanenti
AbsDistA=0
             AbsDistB=2,50
                             FOverLA=-21,31
                                               FOverLB=-21.31
   Frame=12
                LoadCase=Permanenti
                                        CoordSys=Local
                                                                          Dir=2
                                                                                    DistType=RelDist
                                                                                                         RelDistA=0
                                                                                                                         RelDistB=1
                                                           Type=Force
                                               FOverLB=-21,31
             AbsDistB=2,50
                             FOverLA=-21.31
AbsDistA=0
                                        CoordSys=Local
   Frame=13
                LoadCase=Permanenti
                                                            Type=Force
                                                                                    DistType=RelDist
                                                                                                          RelDistA=0
                                                                                                                         RelDistB=1
                                                                          Dir=2
                                              FOverLB=-21,31
AbsDistA=0
             AbsDistB=2,50 FOverLA=-21,31
             LoadCase=Permanenti
AbsDistB=2,50 FOver1
                             nanenti CoordSys=Local Typ
FOverLA=-21,31 FOverLB=-21,31
   Frame=14
                                                                          Dir=2
                                                                                    DistType=RelDist
                                                                                                          RelDistA=0
                                                                                                                         RelDistB=1
                                                            Type=Force
AbsDistA=0
                                               ys=Local Type=Force FOverLB=-21,31
                                        CoordSys=Local
  Frame=15
               LoadCase=Permanenti
                                                                          Dir=2
                                                                                    DistType=RelDist
                                                                                                          RelDistA=0
                                                                                                                         RelDistB=1
                              FOverLA=-21,31
AbsDistA=0
             AbsDistB=2,50
                                               ys=Local Type=Force
FOverLB=-21,31
                                        CoordSys=Local
                                                                                    DistType=RelDist
                                                                                                                         RelDistB=1
  Frame=16
               LoadCase=Permanenti
                                                                          Dir=2
                                                                                                         RelDistA=0
AbsDistA=0
             AbsDistB=2,50
                              FOverLA=-21,31
  Frame=17
                                        CoordSys=Local
                                                                                                                         RelDistB=1
               LoadCase=Permanenti
                                                           Type=Force
                                                                          Dir=2
                                                                                    DistType=RelDist
                                                                                                         RelDistA=0
                             FOverLA=-21,31
                                               FOverLB=-21,31
AbsDistA=0
             AbsDistB=2,50
                                        CoordSys=Local
                                                            Type=Force
   Frame=18
                LoadCase=Permanenti
                                                                          Dir=2
                                                                                    DistType=RelDist
                                                                                                          RelDistA=0
                                                                                                                         RelDistB=1
             AbsDistB=2.50 FOverLA=-21.31
                                               FOverLB=-21,31
AbsDistA=0
   Frame=19
                                        CoordSys=Local
                LoadCase=Permanenti
                                                           Type=Force
                                                                          Dir=2
                                                                                    DistType=RelDist
                                                                                                          RelDistA=0
                                                                                                                         RelDistB=1
                             FOverLA=-21,31
                                               FOverLB=-21,31
AbsDistA=0
             AbsDistB=2,00
                             nanenti CoordSys=Local
FOverLA=-21,31 FOverLB
                LoadCase=Perm
                                                                          Dir=2
                                                                                    DistType=RelDist
                                                                                                          RelDistA=0
                                                                                                                         RelDistB=1
                                               FOverLB=-21,31
AbsDistA=0
             AbsDistB=2,00
                                               ys=Local Type=Force
FOverLB=-21,31
  Frame=21
               LoadCase=Permanenti
                                        CoordSys=Local
                                                                          Dir=2
                                                                                    DistType=RelDist
                                                                                                          RelDistA=0
                                                                                                                         RelDistB=1
             AbsDistB=2,00
                              FOverLA=-21,31
AbsDistA=0
                                               ys=Local Type=Force
FOverLB=-21,31
                                        CoordSys=Local
  Frame=22
               LoadCase=Permanenti
                                                                          Dir=2
                                                                                    DistTvpe=RelDist
                                                                                                         RelDistA=0
                                                                                                                         RelDistB=1
AbsDistA=0 AbsDistB=1,70 FOverLA=-21,31
```

TABLE: "FRAME LOADS - TEMPERATURE"

TABLE: "JOINT LOADS - FORCE"

Joints LoadCase=Ritiro CoordSys=GLOBAL F1=0 F2=4570,26 F3=0 M1=-2531,92 M2=0 Joint=23 LoadCase=Ritiro CoordSys=GLOBAL F1=0 F2=-4570,26 F3=0 M1=2531,92 M2=0 M3 = 0

TABLE: "JOINT LOADS - GROUND DISPLACEMENT"

TABLE: "JOINT PATTERN DEFINITIONS"

Pattern = TEMP Pattern = PRES

Combo=Envelopes

TABLE: "NAMED SETS - DATABASE TABLES 1 - GENERAL" SortOrder="Elem, Cases" Unformatted=No ModeStart=1 ModeEnd=All ModalHist=Envelopes ModeEnd=All ModalHist=Envelopes NLStatic=Envelopes _ PSD=RMS Steady=Envelopes Combo=Envelopes SteadyOpt=Phases Multistep=Envelopes SortOrder="Elem, Cases" Unformatted=No ModeStart=1 M
NLStatic=Envelopes _
Steady=Envelopes SteadyOpt=Phases PSD=RMS Multistep=Envelopes DBNamedSet=TUTTO
DirectHist=Envelopes ModeEnd=All ModalHist=Envelopes

TABLE: "NAMED SETS - DATABASE TABLES 2 - SELECTIONS"

DBNamedSet=Permanenti DBNamedSet=Permanenti SelectType=Table Selection="Element Forc SelectType=LoadCase Selection=Permanenti Selection="Element Forces - Frames" DBNamedSet=Permanenti SelectType=AnalysCase Selection=Permanenti Selection="Element Forces - Frames DBNamedSet=Ritiro SelectType=Table SelectType=LoadCase Selection=Ritiro
SelectType=AnalysCase Selection=Ritir DBNamedSet=Ritiro DBNamedSet=Ritiro Selection=Ritiro Selection="Element Forces - Frames" DBNamedSet=TUTTO SelectType=Table

ti SelectType=AnalysCase Selection=Per SelectType=AnalysCase Selection=Ritiro Selection=Permanenti DBNamedSet=Permanenti

DBNamedSet=Ritiro

END TABLE DATA