

PA 12/09

CORRIDOIO PLURIMODALE TIRRENICO - NORD EUROPA
ITINERARIO AGRIGENTO - CALTANISSETTA - A19
S.S. N° 640 "DI PORTO EMPEDOCLE"
AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11,2001

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.200 Dal km 44+000 allo svincolo con l'A19

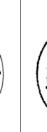
PROGETTO ESECUTIVO

Contraente Generale:

OPERE D'ARTE MAGGIORI VIADOTTI

Viadotto Giulfo Relazione di calcolo Pile

Codice Unico Progetto (CUP): F91B0900070001																						
Cod	Codice Elaborato:																					
PA	12_09 -	- E	1	4	4	V		2	0	1	V		0	1	С	С	L	0	0	4	В	Scala: -
F						'													•	'		
Е																						
D																						
С																						
В	Luglio 2011	Revisio	ne a	segu	ito d	inco	ntri c	on il	Com	mitte	ente	T. F	ASO	LO	F.	NIGF	RELLI		M.	. LITI		P. PAGLINI
Α	Aprile 2011				EM	ISSIC	DNE					T. F	ASO	LO	F.	NIGF	RELLI		M.	. LITI		P. PAGLINI
REV.	DATA				DES	CRIZI	ONE					RE	DAT	то	VE	RIFIC	CATO		APPF	ROVA ⁻	го	AUTOR I ZZATO
Respons	abile del pronced	dimento:	Ir	ıg. M	AUR	IZIO /	ARA	MINI														


Il Consulente Specialista:

3TI ITALIA S.p.A.
DIRETTORE TECNICO
Ing. Stefano Luca Possati
Ordine degli Ingegneri
Provincia di Roma n. 20809

Il Geologo:

Il Coordinatore per la sicurezza in fase di progetto:

Il Direttore dei lavori:

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: **Viadotto Giulfo**Relazione di Calcolo Pile

Pagina 1 di 156

Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

INDICE

1	GENERALITA	3
	1.1 Premessa	3
	1.2 CARATTERISTICHE GEOMETRICHE DEL VIADOTTO	
	1.3 NORMATIVA DI RIFERIMENTO	
	1.4 CARATTERISTICHE DEI MATERIALI	
_		
2	ANALISI GLOBALE DEL VIADOTTO	. 13
	2.1 DESCRIZIONE DEL MODELLO DI CALCOLO	13
	2.1.1 Calcolo della rigidezza effettiva delle pile	. 14
	2.2 ANALISI DEI CARICHI	15
	2.2.1 Peso Proprio (g1)	15
	2.2.2 Permanenti portati su impalcato (g2)	15
	2.2.3 Effetti del ritiro (e2)	
	2.2.4 Effetti della temperatura (e3)	
	2.2.5 Carichi mobili (q1)	
	2.2.6 Incremento dinamico dei carichi mobili (q2)	
	2.2.7 zione di frenatura/accelerazione (q3)	
	2.2.8 Forza centrifuga (q4)	
	2.2.9 Azione del vento (q5)	
	2.2.10 Azione sismica (q6)	
	2.2.11 Resistenza parassita dei vincoli (q7) 2.3 RIPOSTA SISMICA DEL VIADOTTO	
3	SOLLECITAZIONI NELLE PILE	. 24
	3.1 SOLLECITAZIONI NELLE CONDIZIONI DI CARICO ELEMENTARI	24
	3.1.1 Sollecitazioni nella sezione di base delle pile	
	3.1.2 Sollecitazioni nella sezione posta a 10.50 m dall'estradosso plinto	
	3.2 SOLLECITAZIONI NELLE COMBINAZIONI DI CARICO	
	3.2.1 Sollecitazioni nella sezione di base delle pile	32
	3.2.2 Sollecitazioni nella sezione posta a 10.50 m dall'estradosso plinto	. 36
4	VERIFICHE ALLO SLU E SLE DEL FUSTO PILE	40
ľ		
	4.1 VERIFICA PER TENSIONI NORMALI	
	4.1.1 Sezione di spiccato	
	4.1.1.1 Gruppo 1: pile P01, P02, P11 e P12	
	4.1.2 Sezione posta a 10.50 m dall'estradosso plinto	46
	4.2 VERIFICA PER TENSIONI TANGENZIALI	
	4.3 VERIFICA A FESSURAZIONE (SLE)	
_	· · · ·	
5	EFFETTI DEL SECONDO ORDINE	. 54
	5.1 METODO BASATO SULLA CURVATURA NOMINALE	
	5.1.1 Valutazione della snellezza	_
	5.1.2 Viscosità	
	5.1.3 Momenti flettenti	
	5.1.4 Curvatura	
	5.1.5 Flessione deviata	
	5.2 VERIFICA ALL'INSTABILITÀ	
	5.2.1 Momenti di calcolo al secondo ordine	
	5.2.2 Verifica di resistenza per l'instabilità	
6	VERIFICA DEL PULVINO	. 77
	6.1 VERIFICA BAGGIOLI	70
	U. I VENIFICA DAGGIULI	. 19

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

12

Opera: **Viadotto Giulfo**Relazione di Calcolo Pile

Pagina 2 di 156

Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

9.1 ANALISI DEI CARICHI E COMBINAZIONI DI CARICO 122 9.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI 123 9.3 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI 125 9.4 VERIFICHE A FESSURAZIONE 126 10 ANALSI DEL PLINTO DI FONDAZIONE TIPO C – 6 PALI 132 10.1 ANALISI DEI CARICHI E COMBINAZIONI DI CARICO 134 10.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI 135 10.3 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI 137 10.4 VERIFICHE A FESSURAZIONE 138 11 ANALSI DEL PLINTO DI FONDAZIONE TIPO D – 5 PALI 144	7	ANALSI DELLE PALIFICATE	81
7.3 AZIONI SUI PALL. 86 7.4 VERIFICHE STRUTTURALI DEI PALI (SLU). 93 7.4.1 Verifica dei pali allo SLU per tensioni normali. 94 7.5 Verifica dei pali a taglio. 95 7.5.1 Combinazioni di carico SLE. 96 7.5.2 Azioni sui pali nelle combinazioni di carico. 97 7.5.2 Azioni sui pali nelle combinazioni di carico. 97 7.5.2 Azioni sui pali nelle combinazioni di carico. 97 7.5.2 Azioni sui pali nelle combinazioni di carico. 98 7.5.3.1 Verifica allo stato limite di fessurazione combinazioni Frequenti. 98 7.5.3.2 Verifica al oli stato limite di fessurazione combinazioni Quasi Permanente. 99 7.5.4 Verifica delle tensioni di esercizio. 99 7.6.1 Verifica ca carico limite verticale. 101 7.6.1.1 Parametri geotecnici. 101 7.6.1.1 Parametri geotecnici. 101 7.6.1.2 Criterio di carico limite verticale. 101 7.6.1.3 Criterio di carico limite verticale. 101	7.1	AZIONI NELLE CONDIZIONI ELEMENTARI DI CARICO	81
7.4. VERIFICHE STRUTTURALI DEI PALI (SLU)	7.2	2 AZIONI NELLE COMBINAZIONI DI CARICO	85
7.4.1 Verifica dei pali allo SLU per tensioni normali .94 7.4.2 Verifica dei pali a taglio .95 7.5 Versilica dei pali al daglio .96 7.5.1 Combinazioni di carico SLE .96 7.5.2 Azioni sul pali nelle combinazioni di carico .97 7.5.3 Verifica al ostato limite di fessurazione combinazioni Frequenti .98 7.5.3.1 Verifica delle tensioni di esercizio .98 7.6 Verifica delle tensioni di esercizio .99 7.6 Verifica delle tensioni di esercizio .99 7.6.1 Verifica delle tensioni di esercizio .90 7.6.1 Prametri geotecnici .101 7.6.1 Prametri geotecnici .101 7.6.1 Prametri geotecnici .101 7.6.1 Prametri geotecnici	7.3		
7.4.2 Verifica dei pali a taglio. 95 7.5 VERIFICHE DEI PALI AGLI SLE. 96 7.5.1 Combinazioni di carico SLE. 96 7.5.2 Azioni sui pali nelle combinazioni di carico. 97 7.5.3 Verifica allo stato limite di fessurazione combinazioni Prequenti. 98 7.5.3.1 Verifica allo stato limite di fessurazione combinazioni Quasi Permanente. 98 7.5.3.2 Verifica allo stato limite di fessurazione combinazioni Quasi Permanente. 99 7.6.4 Verifica allo stato limite di fessurazione combinazioni Quasi Permanente. 99 7.6.1 Verifica a carico limite verticale. 101 7.6.1 Verifica a carico limite verticale. 101 7.6.1.1 Parametri geotecnici. 101 7.6.1.2 Criterio di calcolo del carico limite verticale. 101 7.6.1.3 Criterio di verifica. 104 7.6.1.4 Risultati. 106 7.6.1.5 Riferimenti bibliografici. 107 7.6.2.1 Verifica in condizioni non drenate. 107 7.6.2.2 Verifica in condizioni non drenate. 107 7.6.2.1 Verifica in condizioni non dren			
7.5 VERIFICHE DEI PÄLI AGLI SÄLE. 96 7.5.1 Combinazioni di carico SLE. 96 7.5.2 Azioni sui pali nelle combinazioni di carico. 97 7.5.3 Verifica a fessurazione. 98 7.5.3.1 Verifica allo stato limite di fessurazione combinazioni Prequenti. 98 7.5.3.2 Verifica dello stato limite di fessurazione combinazioni Quasi Permanente 99 7.6 Verifica delle tensioni di esercizio. 99 7.6 Verifica delle tensioni di esercizio. 99 7.6 Verifica a carico limite verticale. 101 7.6.1.1 Parametri geotecnici. 101 7.6.1.2 Criterio di calcolo del carico limite verticale. 101 7.6.1.1 Parametri geotecnici. 101 7.6.1.2 Criterio di verifica. 104 7.6.1.3 Criterio di verifica. 104 7.6.1.5 Riferimenti bibliografici. 107 7.6.2.1 Verifica a carico limite orizzontale. 107 7.6.2.2 Verifica a carico limite orizzontale. 107 7.6.2.2 Verifica a c			
7.5.1 Combinazioni di carico SLE .96 7.5.2 Azioni sui pali nelle combinazioni di carico .97 7.5.3 Verifica a flessurazione .98 7.5.3.1 Verifica allo stato limite di fessurazione combinazioni Frequenti .98 7.5.3.2 Verifica dello stato limite di fessurazione combinazioni Quasi Permanente .99 7.5.4 Verifica delle tensioni di esercizio .99 7.6.1 Verifica ca carico limite verticale .101 7.6.1.1 Parametri geotecnici .101 7.6.1.2 Criterio di calcolo del carico limite verticale .101 7.6.1.3 Criterio di verifica .104 7.6.1.4 Risultati .106 7.6.1.5 Riferimenti bibliografici .107 7.6.2.1 Verifica a carico limite orizzontale .107 7.6.2.1 Verifica in condizioni non frenate .107 7.6.2.1 Verifica in condizioni frenate .108 8 ANALSI DEL PLINTO DI FONDAZIONE TIPO A – 9 PALI .109 8.1 ANALSI DEL PLINTO DI FONDAZIONE TIPO A – 9 PALI .112 8.2 Veriricche Di RESISTENZA PER TENSIONI NORMALI .112 <td></td> <td>1 0</td> <td></td>		1 0	
7.5.2 Azioni sui pali nelle combinazioni di carico. 97 7.5.3 Verifica a fessurazione. 98 7.5.3.1 Verifica allo stato limite di fessurazione combinazioni Frequenti. 98 7.5.3.2 Verifica allo stato limite di fessurazione combinazioni Quasi Permanente. 99 7.5.4 Verifica allo stato limite di fessurazione combinazioni Quasi Permanente. 99 7.6 Verifica de Cortectniche. 101 7.6.1 Verifica a carico limite verticale. 101 7.6.1.2 Criterio di calcolo del carico limite verticale. 101 7.6.1.2 Criterio di verifica. 104 7.6.1.3 Criterio di verifica. 104 7.6.1.4 Risultati. 106 7.6.1.5 Riferimenti bibliografici. 107 7.6.2 Verifica a carico limite orizzontale. 107 7.6.2.1 Verifica in condizioni non drenate. 107 7.6.2.2 Verifica in condizioni drenate. 107 7.6.2.2 Verifica in condizioni drenate. 108 8 ANALSI DEL PLINTO DI FONDAZIONE TIPO A – 9 PALI. 109 8.1 ANALISI DEL PLINTO DI FONDAZIONE TIPO A – 9 PALI. <t< td=""><td></td><td></td><td></td></t<>			
7.5.3 Verifica al fessurazione. .98 7.5.3.1 Verifica allo stato limite di fessurazione combinazioni Quasi Permanente. .98 7.5.3.2 Verifica al costato limite di fessurazione combinazioni Quasi Permanente. .99 7.6 Verifica de centro de le tensioni di esercizio. .99 7.6 Verifica a carico limite verticale. .101 7.6.1.1 Parametri geotecnici. .101 7.6.1.2 Criterio di calcolo del carico limite verticale. .101 7.6.1.3 Criterio di verifica. .104 7.6.1.4 Risultati. .106 7.6.1.5 Riferimenti bibliografici. .107 7.6.2 Verifica a carico limite orizzontale. .107 7.6.2.1 Verifica in condizioni non drenate. .107 7.6.2.2 Verifica in condizioni drenate. .107 7.6.2.2 Verifica in condizioni drenate. .108 8 ANALSI DEL PLINTO DI FONDAZIONE TIPO A – 9 PALI. .109 8.1 ANALSI DEL CARICHI E COMBINAZIONI DI CARICO. .111 8.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI. .112 8.3 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI. .112 8.4 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI. .123 9.1 ANALSI DEL PLINTO DI FONDAZIONE TIPO B – 8 PALI. .120 9.2 VERIF			
7.5.3.1 Verifica allo stato limite di fessurazione combinazioni Frequenti			
7.5.3.2 Verifica allo stato limite di fessurazione combinazioni Quasi Permanente .99 7.5.4 Verifica delle tensioni di esercizio .99 7.6 VERIFICHE GEOTECNICHE .101 7.6.1 Verifica a carico limite verticale .101 7.6.1.1 Parametri geotecnici .101 7.6.1.2 Criterio di calcolo del carico limite verticale .101 7.6.1.3 Criterio di verifica .104 7.6.1.4 Risultati .106 7.6.1.5 Riferimenti bibliografici .107 7.6.2 Verifica a carico limite orizzontale .107 7.6.2.1 Verifica in condizioni ono drenate .107 7.6.2.2 Verifica in condizioni ono drenate .107 7.6.2.2 Verifica in condizioni drenate .108 8 ANALSI DEL PLINTO DI FONDAZIONE TIPO A – 9 PALI .109 8.1 ANALISI DEI CARICHI E COMBINAZIONI DI CARICO .111 8.2 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI .112 8.3 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI .112 9.3 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI .120 9.1 ANALSI DEL PLINTO DI FONDAZIONE TIPO B – 8 PALI .120 9.1 ANALSI DEL PLINTO DI FONDAZIONE TIPO C – 6 PALI .122 9.2 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIA		7.5.3 Verifica allo stato limito di fossurazione combinazioni Fraguenti	98
7.5.4 Verifica delle tensioni di esercizio			
7.6. Verifica a carico limite verticale 101 7.6.1.1 Verifica a carico limite verticale 101 7.6.1.2 Criterio di calcolo del carico limite verticale 101 7.6.1.3 Criterio di verifica 104 7.6.1.4 Risultati 106 7.6.1.5 Riferimenti bibliografici 107 7.6.2 Verifica a carico limite orizzontale 107 7.6.2.1 Verifica in condizioni non drenate 107 7.6.2.2 Verifica in condizioni drenate 108 8 ANALSI DEL PLINTO DI FONDAZIONE TIPO A – 9 PALI 109 8.1 ANALISI DEI CARICHI E COMBINAZIONI DI CARICO 111 8.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI 112 8.3 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI 114 8.4 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI 114 8.4 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI 120 9.1 ANALSI DEL PLINTO DI FONDAZIONE TIPO B – 8 PALI 120 9.1 ANALSI DEI CARICHI E COMBINAZIONI DI CARICO 122 9.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI 123 9.3 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI 125 9.4 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI 125 10.1 ANALSI DEL PLINTO DI FONDAZIONE TIPO C – 6	•		
7.6.1 Verifica a carico limite verticale 101 7.6.1.1 Parametri geotecnici 101 7.6.1.2 Criterio di calcolo del carico limite verticale 101 7.6.1.3 Criterio di verifica 104 7.6.1.4 Risultati 106 7.6.1.5 Riferimenti bibliografici 107 7.6.2 Verifica a carico limite orizzontale 107 7.6.2.1 Verifica in condizioni non drenate 107 7.6.2.2 Verifica in condizioni drenate 108 8 ANALSI DEL PLINTO DI FONDAZIONE TIPO A – 9 PALI 109 8.1 ANALISI DEI CARICHI E COMBINAZIONI DI CARICO 111 8.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI 112 8.3 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI 114 8.4 VERIFICHE A FESSURAZIONE 115 9 ANALSI DEL PLINTO DI FONDAZIONE TIPO B – 8 PALI 120 9.1 ANALSI DEI CARICHI E COMBINAZIONI DI CARICO 122 9.2 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI 123 9.3 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI 123 9.4 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI 125 9.4 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI 135 10.3 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI 137 <			
7.6.1.1 Parametri geotecnici. 101 7.6.1.2 Criterio di calcolo del carico limite verticale. 101 7.6.1.3 Criterio di verifica. 104 7.6.1.4 Risultati. 106 7.6.1.5 Riferimenti bibliografici. 107 7.6.2.1 Verifica a carico limite orizzontale. 107 7.6.2.1 Verifica in condizioni non drenate. 107 7.6.2.2 Verifica in condizioni drenate. 108 8 ANALSI DEL PLINTO DI FONDAZIONE TIPO A – 9 PALI. 109 8.1 ANALSI DEI CARICHI E COMBINAZIONI DI CARICO. 111 8.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI. 112 8.3 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI. 114 8.4 VERIFICHE A FESSURAZIONE 115 9 ANALSI DEL PLINTO DI FONDAZIONE TIPO B – 8 PALI. 120 9.1 ANALSI DEL PLINTO DI FONDAZIONE TIPO B – 8 PALI. 120 9.1 ANALSI DEL CARICHI E COMBINAZIONI DI CARICO. 122 9.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI. 123 9.3 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI. 125 10.1			
7.6.1.3 Criterio di verifica. 104 7.6.1.4 Risultati. 106 7.6.1.5 Riferimenti bibliografici. 107 7.6.2 Verifica a carico limite orizzontale. 107 7.6.2.1 Verifica in condizioni non drenate. 107 7.6.2.2 Verifica in condizioni drenate. 108 8 ANALSI DEL PLINTO DI FONDAZIONE TIPO A – 9 PALI. 109 8.1 ANALSI DEL PLINTO DI FONDAZIONE TIPO A – 9 PALI. 109 8.1 ANALSI DEL PLINTO DI FONDAZIONE TIPO A – 9 PALI. 111 8.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI. 112 8.3 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI. 114 8.4 VERIFICHE A FESSURAZIONE 115 9 ANALSI DEL PLINTO DI FONDAZIONE TIPO B – 8 PALI. 120 9.1 ANALSI DEL PLINTO DI FONDAZIONE TIPO B – 8 PALI. 120 9.1 ANALSI DEL PLINTO DI FONDAZIONE TIPO C – 6 PALI. 122 9.2 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI. 123 9.3 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI. 132 10.1 ANALSI DEL PLINTO DI FONDAZIONE TIPO C – 6 PALI. 132		7.6.1.1 Parametri geotecnici	101
7.6.1.4 Risultati. 106 7.6.1.5 Riferimenti bibliografici 107 7.6.2 Verifica a carico limite orizzontale 107 7.6.2.1 Verifica in condizioni non drenate 107 7.6.2.2 Verifica in condizioni drenate 108 8 ANALSI DEL PLINTO DI FONDAZIONE TIPO A – 9 PALI 109 8.1 ANALISI DEI CARICHI E COMBINAZIONI DI CARICO 111 8.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI 112 8.3 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI 114 8.4 VERIFICHE A FESSURAZIONE 115 9 ANALSI DEL PLINTO DI FONDAZIONE TIPO B – 8 PALI 120 9.1 ANALISI DEI CARICHI E COMBINAZIONI DI CARICO 122 9.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI 123 9.3 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI 125 9.4 VERIFICHE A FESSURAZIONE 126 10 ANALSI DEL PLINTO DI FONDAZIONE TIPO C – 6 PALI 132 10.1 ANALISI DEI CARICHI E COMBINAZIONI DI CARICO 134 10.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI 135 10.4 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI 137 10.4 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI 137 10.4 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI			
7.6.1.5 Riferimenti bibliografici 107 7.6.2 Verifica a carico limite orizzontale 107 7.6.2.1 Verifica in condizioni non drenate 107 7.6.2.2 Verifica in condizioni drenate 108 8 ANALSI DEL PLINTO DI FONDAZIONE TIPO A – 9 PALI 109 8.1 ANALSI DEI CARICHI E COMBINAZIONI DI CARICO 111 8.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI 112 8.3 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI 114 8.4 VERIFICHE A FESSURAZIONE 115 9 ANALSI DEL PLINTO DI FONDAZIONE TIPO B – 8 PALI 120 9.1 ANALSI DEL PLINTO DI FONDAZIONE TIPO B – 8 PALI 120 9.1 ANALSI DEI CARICHI E COMBINAZIONI DI CARICO 122 9.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI 123 9.3 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI 125 9.4 VERIFICHE A FESSURAZIONE 126 10 ANALSI DEL PLINTO DI FONDAZIONE TIPO C – 6 PALI 132 10.1 ANALSI DEL PLINTO DI FONDAZIONE TIPO C – 6 PALI 134 10.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI 137 <td></td> <td></td> <td></td>			
7.6.2 Verifica a carico límite orizzontale 107 7.6.2.1 Verifica in condizioni non drenate 107 7.6.2.2 Verifica in condizioni drenate 108 8 ANALSI DEL PLINTO DI FONDAZIONE TIPO A – 9 PALI 109 8.1 ANALSI DEL PLINTO DI FONDAZIONE TIPO A – 9 PALI 119 8.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI 112 8.3 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI 114 8.4 VERIFICHE A FESSURAZIONE 115 9 ANALSI DEL PLINTO DI FONDAZIONE TIPO B – 8 PALI 120 9.1 ANALSI DEL PLINTO DI FONDAZIONE TIPO B – 8 PALI 120 9.1 ANALSI DEI CARICHI E COMBINAZIONI DI CARICO 122 9.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI 123 9.4 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI 125 9.4 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI 132 10.1 ANALSI DEL PLINTO DI FONDAZIONE TIPO C – 6 PALI 132 10.1 ANALSI DEL PLINTO DI FONDAZIONI DI CARICO 134 10.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI 135 10.4 VERIFICHE DI RESISTENZA PER TE			
7.6.2.1 Verifica in condizioni non drenate			
7.6.2.2 Verifica in condizioni drenate			
8 ANALSI DEL PLINTO DI FONDAZIONE TIPO A – 9 PALI. 109 8.1 ANALISI DEI CARICHI E COMBINAZIONI DI CARICO. 111 8.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI. 112 8.3 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI. 114 8.4 VERIFICHE A FESSURAZIONE. 115 9 ANALSI DEL PLINTO DI FONDAZIONE TIPO B – 8 PALI. 120 9.1 ANALISI DEI CARICHI E COMBINAZIONI DI CARICO. 122 9.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI. 123 9.3 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI 125 9.4 VERIFICHE A FESSURAZIONE 126 10 ANALSI DEL PLINTO DI FONDAZIONE TIPO C – 6 PALI 132 10.1 ANALISI DEI CARICHI E COMBINAZIONI DI CARICO 134 10.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI 135 10.3 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI 137 10.4 VERIFICHE A FESSURAZIONE 138 11 ANALSI DEL PLINTO DI FONDAZIONE TIPO D – 5 PALI 144 11.1 ANALSI DEL PLINTO DI FONDAZIONE TIPO D – 5 PALI 144 11.1 ANALISI DEI CARICHI E COMBINAZIONI DI CARICO 146 11.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI 147 11.3 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI 147 11			
8.1 ANALISI DEI CARICHI E COMBINAZIONI DI CARICO 111 8.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI. 112 8.3 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI 114 8.4 VERIFICHE A FESSURAZIONE 115 9 ANALSI DEL PLINTO DI FONDAZIONE TIPO B – 8 PALI 120 9.1 ANALISI DEI CARICHI E COMBINAZIONI DI CARICO 122 9.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI. 123 9.3 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI. 125 9.4 VERIFICHE A FESSURAZIONE. 126 10 ANALSI DEL PLINTO DI FONDAZIONE TIPO C – 6 PALI 132 10.1 ANALSI DEI CARICHI E COMBINAZIONI DI CARICO 134 10.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI 135 10.3 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI 137 10.4 VERIFICHE A FESSURAZIONE 138 11 ANALSI DEL PLINTO DI FONDAZIONE TIPO D – 5 PALI 144 11.1 ANALSI DEL PLINTO DI FONDAZIONE TIPO D – 5 PALI 144 11.1 ANALSI DEL PLINTO DI FONDAZIONE TIPO D – 5 PALI 146 11.2 VERIFICHE DI RESISTENZA PER TENSIO	Ω		
8.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI. 112 8.3 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI. 114 8.4 VERIFICHE A FESSURAZIONE. 115 9 ANALSI DEL PLINTO DI FONDAZIONE TIPO B – 8 PALI. 120 9.1 ANALISI DEI CARICHI E COMBINAZIONI DI CARICO. 122 9.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI. 123 9.3 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI. 125 9.4 VERIFICHE A FESSURAZIONE. 126 10 ANALSI DEL PLINTO DI FONDAZIONE TIPO C – 6 PALI 132 10.1 ANALISI DEI CARICHI E COMBINAZIONI DI CARICO. 134 10.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI. 135 10.3 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI. 137 10.4 VERIFICHE A FESSURAZIONE. 138 11 ANALSI DEL PLINTO DI FONDAZIONE TIPO D – 5 PALI 144 11.1 ANALISI DEI CARICHI E COMBINAZIONI DI CARICO. 146 11.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI. 147 11.3 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI. 149			
8.3 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI 114 8.4 VERIFICHE A FESSURAZIONE 115 9 ANALSI DEL PLINTO DI FONDAZIONE TIPO B – 8 PALI 120 9.1 ANALISI DEI CARICHI E COMBINAZIONI DI CARICO 122 9.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI 123 9.3 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI 125 9.4 VERIFICHE A FESSURAZIONE 126 10 ANALSI DEL PLINTO DI FONDAZIONE TIPO C – 6 PALI 132 10.1 ANALISI DEI CARICHI E COMBINAZIONI DI CARICO 134 10.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI 135 10.3 VERIFICHE A FESSURAZIONE 138 11 ANALSI DEL PLINTO DI FONDAZIONE TIPO D – 5 PALI 144 11.1 ANALISI DEL PLINTO DI FONDAZIONE TIPO D – 5 PALI 144 11.1 ANALISI DEI CARICHI E COMBINAZIONI DI CARICO 146 11.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI 147 11.3 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI 149			
8.4 VERIFICHE A FESSURAZIONE 115 9 ANALSI DEL PLINTO DI FONDAZIONE TIPO B – 8 PALI 120 9.1 ANALISI DEI CARICHI E COMBINAZIONI DI CARICO 122 9.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI 123 9.3 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI 125 9.4 VERIFICHE A FESSURAZIONE 126 10 ANALSI DEL PLINTO DI FONDAZIONE TIPO C – 6 PALI 132 10.1 ANALISI DEI CARICHI E COMBINAZIONI DI CARICO 134 10.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI 135 10.3 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI 137 10.4 VERIFICHE A FESSURAZIONE 138 11 ANALSI DEL PLINTO DI FONDAZIONE TIPO D – 5 PALI 144 11.1 ANALSI DEI CARICHI E COMBINAZIONI DI CARICO 146 11.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI 147 11.3 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI 149	_		
9 ANALSI DEL PLINTO DI FONDAZIONE TIPO B – 8 PALI. 120 9.1 ANALISI DEI CARICHI E COMBINAZIONI DI CARICO. 122 9.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI. 123 9.3 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI. 125 9.4 VERIFICHE A FESSURAZIONE 126 10 ANALSI DEL PLINTO DI FONDAZIONE TIPO C – 6 PALI 132 10.1 ANALISI DEI CARICHI E COMBINAZIONI DI CARICO. 134 10.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI. 135 10.3 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI. 137 10.4 VERIFICHE A FESSURAZIONE. 138 11 ANALSI DEL PLINTO DI FONDAZIONE TIPO D – 5 PALI 144 11.1 ANALISI DEI CARICHI E COMBINAZIONI DI CARICO. 146 11.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI. 147 11.3 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI. 147 11.3 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI. 149			
9.1 ANALISI DEI CARICHI E COMBINAZIONI DI CARICO 122 9.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI. 123 9.3 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI. 125 9.4 VERIFICHE A FESSURAZIONE 126 10 ANALSI DEL PLINTO DI FONDAZIONE TIPO C – 6 PALI 132 10.1 ANALISI DEI CARICHI E COMBINAZIONI DI CARICO 134 10.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI 135 10.3 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI 137 10.4 VERIFICHE A FESSURAZIONE 138 11 ANALSI DEL PLINTO DI FONDAZIONE TIPO D – 5 PALI 144 11.1 ANALISI DEI CARICHI E COMBINAZIONI DI CARICO 146 11.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI 147 11.3 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI 149			
9.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI. 123 9.3 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI. 125 9.4 VERIFICHE A FESSURAZIONE 126 10 ANALSI DEL PLINTO DI FONDAZIONE TIPO C – 6 PALI 132 10.1 Analisi dei Carichi e combinazioni di carico 134 10.2 Verifiche di resistenza per tensioni normali 135 10.3 Verifiche di resistenza per tensioni tangenziali 137 10.4 Verifiche a fessurazione 138 11 ANALSI DEL PLINTO DI FONDAZIONE TIPO D – 5 PALI 144 11.1 Analisi dei carichi e combinazioni di carico 146 11.2 Verifiche di resistenza per tensioni normali 147 11.3 Verifiche di resistenza per tensioni tangenziali 149	9	ANALSI DEL PLINTO DI FONDAZIONE TIPO B – 8 PALI	120
9.3 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI 125 9.4 VERIFICHE A FESSURAZIONE 126 10 ANALSI DEL PLINTO DI FONDAZIONE TIPO C – 6 PALI 132 10.1 ANALISI DEI CARICHI E COMBINAZIONI DI CARICO 134 10.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI 135 10.3 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI 137 10.4 VERIFICHE A FESSURAZIONE 138 11 ANALSI DEL PLINTO DI FONDAZIONE TIPO D – 5 PALI 144 11.1 ANALISI DEI CARICHI E COMBINAZIONI DI CARICO 146 11.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI 147 11.3 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI 149	9.1	1 ANALISI DEI CARICHI E COMBINAZIONI DI CARICO	122
9.4 VERIFICHE A FESSURAZIONE 126 10 ANALSI DEL PLINTO DI FONDAZIONE TIPO C – 6 PALI 132 10.1 ANALISI DEI CARICHI E COMBINAZIONI DI CARICO 134 10.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI 135 10.3 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI 137 10.4 VERIFICHE A FESSURAZIONE 138 11 ANALSI DEL PLINTO DI FONDAZIONE TIPO D – 5 PALI 144 11.1 ANALISI DEI CARICHI E COMBINAZIONI DI CARICO 146 11.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI 147 11.3 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI 149	9.2		
10 ANALSI DEL PLINTO DI FONDAZIONE TIPO C – 6 PALI 132 10.1 ANALISI DEI CARICHI E COMBINAZIONI DI CARICO 134 10.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI 135 10.3 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI 137 10.4 VERIFICHE A FESSURAZIONE 138 11 ANALSI DEL PLINTO DI FONDAZIONE TIPO D – 5 PALI 144 11.1 ANALISI DEI CARICHI E COMBINAZIONI DI CARICO 146 11.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI 147 11.3 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI 149	9.3		
10.1 Analisi dei Carichi e combinazioni di Carico 134 10.2 Verifiche di resistenza per tensioni normali 135 10.3 Verifiche di resistenza per tensioni tangenziali 137 10.4 Verifiche a fessurazione 138 11 ANALSI DEL PLINTO DI FONDAZIONE TIPO D – 5 PALI 144 11.1 Analisi dei carichi e combinazioni di carico 146 11.2 Verifiche di resistenza per tensioni normali 147 11.3 Verifiche di resistenza per tensioni tangenziali 149	9.4	VERIFICHE A FESSURAZIONE	126
10.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI 135 10.3 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI 137 10.4 VERIFICHE A FESSURAZIONE 138 11 ANALSI DEL PLINTO DI FONDAZIONE TIPO D – 5 PALI 144 11.1 ANALISI DEI CARICHI E COMBINAZIONI DI CARICO 146 11.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI 147 11.3 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI 149	10	ANALSI DEL PLINTO DI FONDAZIONE TIPO C – 6 PALI	132
10.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI 135 10.3 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI 137 10.4 VERIFICHE A FESSURAZIONE 138 11 ANALSI DEL PLINTO DI FONDAZIONE TIPO D – 5 PALI 144 11.1 ANALISI DEI CARICHI E COMBINAZIONI DI CARICO 146 11.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI 147 11.3 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI 149	10	1.1 ANALISI DEI CARICHI E COMBINAZIONI DI CARICO	134
10.3 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI 137 10.4 VERIFICHE A FESSURAZIONE 138 11 ANALSI DEL PLINTO DI FONDAZIONE TIPO D – 5 PALI 144 11.1 ANALISI DEI CARICHI E COMBINAZIONI DI CARICO 146 11.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI 147 11.3 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI 149			
11 ANALSI DEL PLINTO DI FONDAZIONE TIPO D – 5 PALI 144 11.1 ANALISI DEI CARICHI E COMBINAZIONI DI CARICO 146 11.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI 147 11.3 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI 149	10		
11.1ANALISI DEI CARICHI E COMBINAZIONI DI CARICO14611.2VERIFICHE DI RESISTENZA PER TENSIONI NORMALI14711.3VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI149	10	.4 VERIFICHE A FESSURAZIONE	138
11.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI	11	ANALSI DEL PLINTO DI FONDAZIONE TIPO D – 5 PALI	144
11.2 VERIFICHE DI RESISTENZA PER TENSIONI NORMALI	11	.1 ANALISI DEI CARICHI E COMBINAZIONI DI CARICO	146
11.3 VERIFICHE DI RESISTENZA PER TENSIONI TANGENZIALI			
	11		
	11		

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 3 di 156
Nome file: VI01-C-CL004_B.00_relazione_pile.doc

GENERALITÀ

1.1 **Premessa**

Nella presente relazione si riportano le verifiche di sicurezza delle pile della carreggiata SX e DX del viadotto Giulfo previsto nell'ambito del progetto esecutivo "CORRIDOIO PLURIMODALE TIRRENICO-NORD EUROPA - ITINERARIO AGRIGENTO -CALTANISSETTA-A19 - S.S. N° 640 "DI PORTO EMPEDOCLE" - AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 - Dal km 44+000 allo svincolo con l'A19".

1.2 Caratteristiche geometriche del viadotto

Il viadotto in esame è a carreggiate separate (carreggiata dx e carreggiata sx). Esso presenta un tracciato planimetrico prevalentemente a curvatura costante di raggio – misurato sull'asse impalcato della carreggiata destra – pari a circa 1930 m. Solo le ultime quattro campate in direzione A19 presentano un tracciato a curvatura variabile secondo un arco di clotoide. Ciascuna delle due carreggiate è composta da n. 13 campate di luce pari a 65.0 m e 45.0 m rispettivamente per quelle centrali e per quelle di riva. Le campate della carreggiata sinistra (direzione Agrigento) presentano, invece, come evidenziato nella seguente tabella, luci lievemente inferiori:

Tabella 1.1 - Luci campate carreggiata sinistra (dir. Agrigento).

Campata carr

SX	L [m]
1	42.407
2	64.852
3	64.833
4	64.873
5	64.852
6	65.153
7	64.552
8	64.853
9	64.850
10	64.887
11	64.921
12	64.968
13	42.509

L'impalcato di ciascuna carreggiata è realizzato in acciaio-cls. con schema statico di trave continua su 14 appoggi.

La sezione trasversale dell'impalcato è formata da una coppia di travi a "doppio T" in composizione saldata, disposte ad interasse trasversale pari a 5.75 m ed aventi altezza costante di 2.8 m; lo sviluppo longitudinale è suddiviso in conci collegati mediante giunzioni saldate a completo ripristino.

I traversi, disposti ad interasse longitudinale pari a 4.50 m, sono realizzati mediante un profilo IPE 500, posto a metà della trave esterna; i traversi in asse alle pile ed alle spalle, e tre traversi posti a destra e sinistra di questi ultimi sono di tipo reticolare, con il corrente inferiore formato sempre da una IPE500, ma posto più in basso (a 1900mm dall'estradosso della trave esterna). Sono presenti inoltre ampie zone di irrigidimento, sia in posizione centrale all'IPE500 per accogliere due diagonali formati da 2L100x100x10, sia in corrispondenza dei collegamenti flange inferiori - IPE 500. Si rimanda alle tavole di progetto per approfondimenti.

Le travi principali sono irrigidite mediante stiffeners verticali ed un irrigidente longitudinale per tutto lo sviluppo della travata. La stabilizzazione della struttura metallica durante le fasi antecedenti alla realizzazione e solidarizzazione della soletta in c.a. è assicurata da un sistema di controventi superiori a

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 4 di 156
Nome file: VI01-C-CL004_B.00_relazione_pile.doc

croce, realizzato mediante profili angolari standard L80*6mm che vengono rimossi dopo il varo dell'impalcato in acciaio effettuato a Spinta a partire da una spalla del viadotto.

La soletta in calcestruzzo presenta larghezza complessiva di 12.75 m, e spessore variabile, pari a 350 mm in asse travi e 250 mm alle estremità. Il getto delle solette sarà effettuato mediante casseri autoportanti. La connessione soletta - travi è realizzata mediante pioli elettrosaldati tipo Nelson Ø22 mm.

Il piano viabile è di 10.50 m di larghezza, con due marciapiedi laterali, di larghezza pari a 1.50 m.e 0.75 m.

La figura seguente riporta la sezione trasversale dell'impalcato.

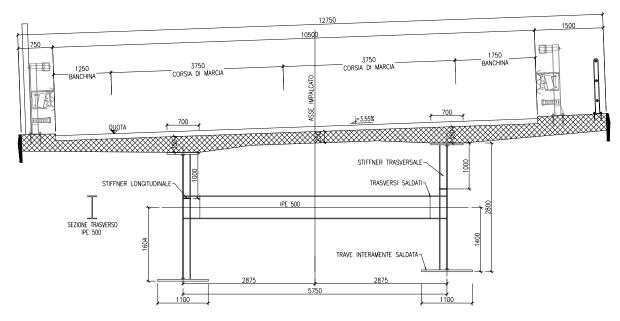


Figura 1-1 - Sezione trasversale tipo dell'impalcato.

Le pile sono realizzate in c.a.. Esse presentano una sagoma cruciforme e sono costituite da un fusto a sezione piena costante, iscritta in un rettangolo di dimensioni 4.00m×3.00m, e da un pulvino a sezione variabile che si allarga seguendo una curva circolare fino a raggiungere una larghezza tale da poter accogliere le due travi dell'impalcato poste ad interasse di 5.75m.

Tabella 1.2 - A	lia allah azzatl	o (carr DY	'A CYI

pila	H [m]
P01	9.46
P02	16.66
P03	21.46
P04	29.86
P05	31.46
P06	32.26
P07	33.46
P08	34.66
P09	34.66
P10	27.46
P11	19.06
P12	13.06

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 5 di 156
Nome file: VI01-C-CL004_B.00_relazione_pile.doc

Tutte le pile di entrambe le carreggiate del viadotto sono fondate su pali trivellati di grande diametro. In particolare, le palificata delle pile sono costituite da n.5, o n.6, o n.8, o n pali Ø1500mm posti ad interasse di 4.50m. Si riporta nel seguito un prospetto delle palificate adottate.

PILA	TIPO PLINTO	N. PALI	D [mm]
P01	D	5	1500
P02	С	6	1500
P03	В	8	1500
P04sx	В	8	1500
P04dx	Α	9	1500
P05	В	8	1500
P06	В	8	1500
P07	Α	9	1500
P08	Α	9	1500
P09	Α	9	1500
P10	В	8	1500
P11	С	6	1500
P12	С	6	1500

I pali sono collegati in testa da un plinto di fondazione di altezza 2.50m a pianta rettangolare. Nelle seguenti figure si illustra la geometria delle pile.

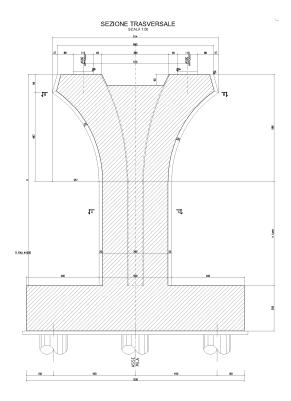


Figura 1-2 – Sezione trasversale con fondazione tipo A.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: **Viadotto Giulfo**Relazione di Calcolo Pile

Pagina 6 di 156

Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

SEZIONE A-A

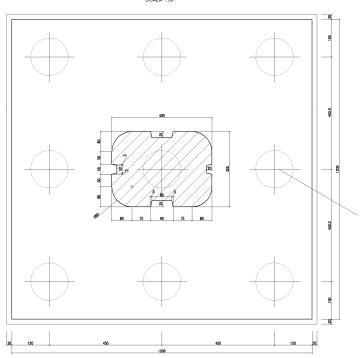


Figura 1-3 - Pianta spiccato fondazione tipo A.

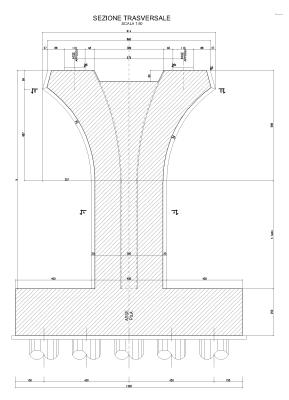


Figura 1-4 – Sezione trasversale con fondazione tipo B.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: **Viadotto Giulfo**Relazione di Calcolo Pile
Pagina 7 di 156

VI01-C-CL004_B.00_relazione_pile.doc

Nome file:

SEZIONE A-A
SCRLAT-50

1.1.PAL4000

1.1.PAL4

Figura 1-5 - Pianta spiccato fondazione tipo B.

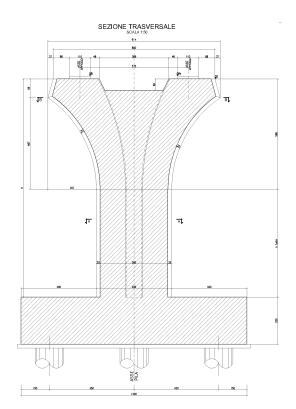


Figura 1-6 – Sezione trasversale con fondazione tipo C.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: **Viadotto Giulfo**Relazione di Calcolo Pile

Pagina 8 di 156

Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

SEZIONE A-A SCALA 1:50

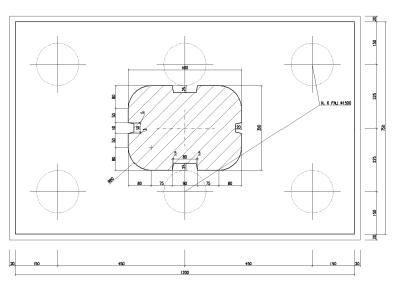


Figura 1-7 - Pianta spiccato fondazione tipo C.

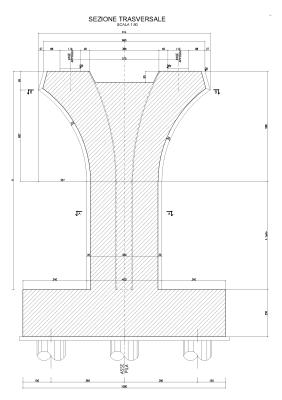


Figura 1-8 – Sezione trasversale con fondazione tipo D.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: **Viadotto Giulfo**Relazione di Calcolo Pile

Pagina 9 di 156

Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

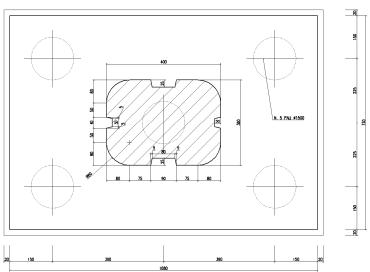


Figura 1-9 - Pianta spiccato fondazione tipo D.

L'impalcato è vincolato alle pile ed alle spalle mediante isolatori sismici ad elastomero armato; questi funzionano come appoggi elastici lineari sia in fase sismica che per le azioni statiche agenti, compreso effetti lenti quali variazioni termiche, fluage, ritiro .

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo Relazione di Calcolo Pile

Pagina 10 di 156

Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

1.3 Normativa di riferimento

Le analisi strutturali e le relative verifiche vengono eseguite secondo il metodo semi-probabilistico agli Stati Limite in accordo alle disposizioni normative previste dalla vigente normativa italiana e da quella europea (Eurocodici). In particolare, al fine di consequire un approccio il più unitario possibile relativamente alle prescrizioni ed alle metodologie/criteri di verifica, si è fatto diretto riferimento alle varie parti degli Eurocodici, unitamente ai relativi National Application Documents, verificando puntualmente l'armonizzazione del livello di sicurezza conseguito con quello richiesto dalla vigente normativa nazionale.

In dettaglio si sono prese in esame quindi i seguenti documenti, che volta in volta verranno opportunamente richiamati:

Nuove norme tecniche per le costruzioni (indicate nel prosieguo "NTC") D.M. 14 gennaio 2008:

UNI EN 1990: Basi della progettazione strutturale UNI EN 1991-1-4: Azioni sulle strutture – Azione del vento Azioni sulle strutture – Azioni termiche UNI EN 1991-1-5:

UNI EN 1991-2: Azioni sulle strutture – Carichi da traffico sui ponti

UNI EN 1992-1-1: Progettazione delle strutture di calcestruzzo - regole generali e regole per

Progettazione delle strutture di calcestruzzo – Ponti di calcestruzzo UNI EN 1992-2:

UNI EN 1993-1-1: Progettazione delle strutture di acciaio – Regole generali e regole per gli

edifici

UNI EN 1993-2: Progettazione delle strutture di acciaio - Ponti di acciaio

UNI EN 1993-1-5: Progettazione delle strutture di acciaio – Elementi strutturali a lastra Progettazione delle strutture di acciaio – Progettazione dei collegamenti Progettazione delle strutture di acciaio – Fatica UNI EN 1993-1-8:

UNI EN 1993-1-9:

Progettazione delle strutture composte acciaio-calcestruzzo – Regole UNI EN 1994-1-1:

generali e regole per gli edifici

UNI EN 1994-2: Progettazione delle strutture composte acciaio-calcestruzzo – Ponti

UNI EN 1998-2: Progettazione delle strutture per la resistenza sismica – Ponti

UNI EN 1090 - 2: Execution of steel structures and aluminium structures - part 2: technical

requirementes for steel structures

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19 *Progetto Esecutivo*

Relazione di Calcolo Pile
•

Opera: Viadotto Giulfo

Pagina 11 di 156

Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

1.4 Caratteristiche dei materiali

CALCESTRUZZO PALI DI FONDAZIONE C32/40

R_{ck}	= 40	MPa	resistenza caratteristica cubica
f_{ck}	= 33.20	MPa	resistenza caratteristica cilindrica
f_{cm}	= 27.56	MPa	resistenza cilindrica media
f_{ctm}	= 41.20	MPa	resistenza media a trazione semplice
f_{ctk}	= 3.10	MPa	resistenza caratteristica a trazione semplice
f_{cfm}	= 4.03	MPa	resistenza media a trazione per flessione
E_{cm}	= 3.72	MPa	modulo elastico istantaneo
γc	= 33643		coefficiente parziale di sicurezza
α_{cc}	= 1.50		coefficiente riduttivo per resistenze di lunga durata
f_{cd}	= 0.85	MPa	resistenza di calcolo a compressione
f _{ctd}	= 18.81	MPa	resistenza di calcolo a trazione
XA2			classe di esposizione
S3 - S4			classe di consistenza

CALCESTRUZZO FONDAZIONE PILE C32/40

R_{ck}	=	40	MPa	resistenza caratteristica cubica
f_{ck}	=	33.20	MPa	resistenza caratteristica cilindrica
f_{cm}	=	27.56	MPa	resistenza cilindrica media
f _{ctm}	=	41.20	MPa	resistenza media a trazione semplice
f _{ctk}	=	3.10	MPa	resistenza caratteristica a trazione semplice
f_{cfm}	=	4.03	MPa	resistenza media a trazione per flessione
E_{cm}	=	3.72	MPa	modulo elastico istantaneo
γс	=	33643		coefficiente parziale di sicurezza
$\alpha_{\sf cc}$	=	1.50		coefficiente riduttivo per resistenze di lunga durata
f_{cd}	=	0.85	MPa	resistenza di calcolo a compressione
f _{ctd}	=	18.81	MPa	resistenza di calcolo a trazione
XA2				classe di esposizione
S3 - S4				classe di consistenza

CALCESTRUZZO ELEVAZIONE PILE E PULVINI C28/35

R_{ck}	=	35	MPa	resistenza caratteristica cubica
f_{ck}	=	29.05	MPa	resistenza caratteristica cilindrica
f_{cm}	=	37.05	MPa	resistenza cilindrica media
f _{ctm}	=	2.83	MPa	resistenza media a trazione semplice
f _{ctk}	=	3.69	MPa	resistenza caratteristica a trazione semplice
f _{cfm}	=	3.40	MPa	resistenza media a trazione per flessione
E _{cm}	=	32588	MPa	modulo elastico istantaneo
γс	=	1.50		coefficiente parziale di sicurezza
$lpha_{ t cc}$	=	0.85		coefficiente riduttivo per resistenze di lunga durata
f_{cd}	=	16.46	MPa	resistenza di calcolo a compressione
f _{ctd}	=	2.46	MPa	resistenza di calcolo a trazione
XF2				classe di esposizione
S3 - S4				classe di consistenza

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera:	Viadotto	Giulfo
Relazio	ne di Cal	rolo Pile

Pagina 12 di 156

Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

CALCESTRUZZO BAGGIOLI C35/45

R_{ck}	=	45	MPa	resistenza caratteristica cubica
f _{ck}	=	37.35	MPa	resistenza caratteristica cilindrica
f _{cm}	=	45.35	MPa	resistenza cilindrica media
f _{ctm}	=	3.35	MPa	resistenza media a trazione semplice
f _{ctk}	=	4.36	MPa	resistenza caratteristica a trazione semplice
f _{cfm}	=	4.02	MPa	resistenza media a trazione per flessione
E _{cm}	=	34625	MPa	modulo elastico istantaneo
γс	=	1.50		coefficiente parziale di sicurezza
$lpha_{\sf cc}$	=	0.85		coefficiente riduttivo per resistenze di lunga durata
f_{cd}	=	21.17	MPa	resistenza di calcolo a compressione
f _{ctd}	=	2.91	MPa	resistenza di calcolo a trazione
XF4				classe di esposizione
S4				classe di consistenza
ACCIAIO PER C.A. B450C				
$f_{y,nom}$	=	450	MPa	tensione nominale di snervamento
$f_{t,nom}$	=	540	MPa	tensione nominale di rottura
f_{yk}	≥	$f_{y,nom}$		tensione caratteristica di snervamento
$f_{t,nom}$	≥	$f_{t,nom}$		tensione caratteristica di rottura
$(f_t/f_y)_k$	≥	1.15		
$(f_t/f_y)_k$	<	1.35		
γ_{s}	=	1.15		coefficiente di sicurezza
f_{yd}	=	391	MPa	tensione di snervamento di calcolo
σ_{s}	=	360.0	MPa	massima tensione in esercizio

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 13 di 156
Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

2 ANALISI GLOBALE DEL VIADOTTO

2.1 Descrizione del modello di calcolo

Per la valutazione delle azioni trasmesse alle sottostrutture dall'impalcato ed, in particolare, per la valutazione della risposta sismica del viadotto, è stato messo a punto un modello numerico agli elementi finiti dell'opera che, con buona approssimazione riproduce la distribuzione delle rigidezze e delle masse della struttura reale. In particolare è stato schematizzato il viadotto della carreggiata dx che pur avendo altezze delle pile identiche a quelle dell'altra carreggiata, presenta lunghezze delle campate lievemente maggiori (massima differenza 15 cm). Considerate le esigue differenze di luce delle campate delle due carreggiate, i risultati ottenuti per il viadotto della carreggiata dx saranno estesi a quello dell'altra carreggiata.

Tutte le membrature costituenti l'impalcato (travi longitudinali, trasversi) sono stati simulati attraverso elementi finiti del tipo beam a sei gradi di libertà per nodo. Con lo stesso tipo di elementi sono state modellate le pile del viadotto. Queste ultime sono state vincolate al piede – in corrispondenza dell'estradosso plinto – mediante vincoli di incastro. Allo scopo di simulare in maniera adeguata i cinematismi consentiti dagli apparecchi di appoggio di tipo elastomerico, tra l'impalcato e le pile pile sono stati introdotti degli elementi del tipo "Nlink". Nel caso specifico tali elementi sono caratterizzati da un comportamento elastico lineare:

K_e = 3.03 kN/mm (rigidezza equivalente orizzontale);

 $K_v = 2814 \text{ kN/mm} \text{ (rigidezza verticale);}$

Anche sulle spalle sono previsti isolatori elastomerici aventi le medesime caratteristiche di quelli predisposti sulle pile, pertanto, trascurando la deformabilità delle spalle rispetto a quella dei dispositivi simici, ossia ipotizzando che il moto sismico dell'impalcato risulti disaccoppiato rispetto a quello delle spalle, queste ultime sono state assimilate semplicemente a vincoli cedevoli elasticamente alla traslazione longitudinale, trasversale e verticale.

Le pile sono state schematizzate con elementi finiti del tipo beam a sei gradi di libertà per nodo. In particolare, gli elementi del fusto presentano sezione costante, sezione variabile quelli del pulvino di sommità.

Il modello numerici sono stati implementati mediante il codice di calcolo agli elementi finiti SAP 2000 della *Computers and Structuers, Inc.* Nelle seguenti figure sono riportate delle viste di tali modelli.

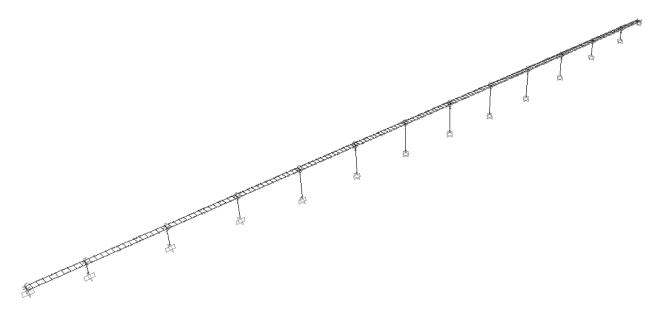


Figura 2-1 - Modello numerico del viadotto.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Relazione di Calcolo Pile

Opera: Viadotto Giulfo

Pagina 14 di 156

Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

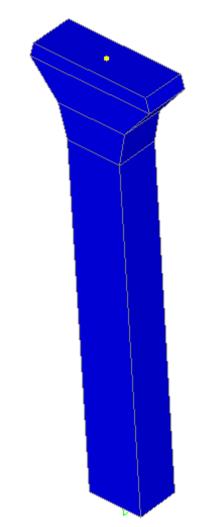


Figura 2-2 - Vista 3D di una delle pile del viadotto.

2.1.1 Calcolo della rigidezza effettiva delle pile

La rigidezza delle pile tiene in conto l'effettivo grado di fessurazione che queste raggiungono durante l'evento sismico. In luogo della rigidezza flessionale non-fessurata delle sezioni delle pile viene adottata una rigidezza effettiva valutata attraverso la seguente formula:

 $E_c \cdot J_{eff} = v \cdot M_{Rd} / \chi_y$

dove:

M_{Rd} = momento resistente di progetto (relativo allo sforzo normale prodotto dai soli carichi permanenti)

 χ_y = curvatura di snervamento (calcolata sui diagrammi M- χ)

v = fattore di correzione per la parte di pila non fessurata (~1.20).

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19 Progetto Esecutivo

Pagina 15 di 156

Opera: Viadotto Giulfo

Relazione di Calcolo Pile

Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

2.2 Analisi dei carichi

2.2.1 Peso Proprio (g1)

Il peso proprio della carpenteria metallica dell'impalcato è stato valuato automaticamente dal codice di calcolo impiegato per l'analisi sulla base dell'effetiva geometria delle membrature e sulla base di un peso specifico dell'acciaio pari a 78.5 kN/m³.

Il peso proprio della soletta è stato schematizzato come un carico uniformemente distribuito sulle due travi principali:

Α	=	3.94	mq	area sezione trasversale soletta
γ	=	25	kN/m ³	peso specifico calcestruzzo
n	=	2.00		numero travi
g _{soletta}	=	49.25	kN/m	peso soletta su ciascuna trave (cordoli esclusi)
$g_{c,sx}$	=	3.19	kN/m	peso cordolo sx
$g_{c,dx}$	=	6.38	kN/m	peso cordolo dx
$g_{1.2,sx}$	=	52.44	kN/m	peso soletta + cordolo su trave sx
g _{1.2,dx}	=	55.63	kN/m	peso soletta + cordolo su trave dx

Il peso delle pile è valuato automaticamente dal codice di calcolo sulla base dell'effetiva geometria delle pile, assumendo un peso specifico del calcestruzzo pari a 25 kN/m³.

2.2.2 Permanenti portati su impalcato (g2)

I sovraccarichi permanenti consistono nei seguenti contributi:

- Pavimentazione 3000 × 10.5 = 31500 kN/m
- Guard-rail, reti, parapetti = 2 kN/m

2.2.3 Effetti del ritiro (e2)

La deformazione di ritiro $\varepsilon(t,t_0)$ è pari a (cfr. relazione di calcolo dell'impalcato):

$$\varepsilon_{\rm s}(t,t_{\rm o}) = \varepsilon_{\rm cd}(t) + \varepsilon_{\rm ca}(t) = 0.000337$$

Gli effetti del ritiro vengono schematizzati mediante delle forze e delle coppie concentrate alle estremità dell'impalcato di intensità pari a:

```
(sforzo normale)
N_r = \varepsilon_{sh} \times E_s/n_{f2b} \times b_{eff} \times t_{cls}
M_r = N_r \times e
                                                          (coppia)
```

dove con e" si è indicata l'eccentricità fra il baricentro della soletta ed il baricentro della sezione composta omogeneizzata.

Effetti della temperatura (e3)

Ai fini della valutazione degli effetti delle variazioni termiche sulle sottostrutture è stata assunto un gradiente termico tra soletta e travi metalliche pari a:

$$\Delta T = \pm 10 \, ^{\circ}C$$

La coazione prodotta dal gradiente termico si traduce, nel caso di gradiente termico positivo (soletta a temperatura maggiore di quella della trave metallica), in uno sforzo di compressione agente sulla sola soletta di calcestruzzo che si aggiunge ad una tenso-flessione agente, invece, sull'intera sezione composta acciaiocalcestruzzo. Quest'ultima è stata implementata nel modello di calcolo attraerso delle forze longitidudinali e delle coppie concentrate alle estremità delle due travi.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 16 di 156
Nome file: VI01-C-CL004_B.00_relazione_pile.doc
VIUI-C-CLUU4_B.UU_IEIAZIOIIE_piie.uuc

2.2.5 Carichi mobili (q1)

Si seguono le disposizioni contenute nel D.M. 2008, cap. 5.1.3.3.5, equivalenti a quelle contenute in EN 1991-2. Si fa riferimento a ponti di I categoria.

Nel caso in esame, la carreggiata, di larghezza utile pari a 10.5 m, è in grado di ospitare 3 corsie di carico di larghezza convenzionale pari a 3.0 m. La parte rimanente ("remaining area") risulta pari a 1.50 m.

Corsia di carico n.1 costituita da:

- Schema di carico n.1: n. 4 carichi concentrati da 150 kN cadauno disposti ad interasse 2.00m in direzione longitudinale al viadotto e m. 2.00 in direzione trasversale
- Carico uniformemente ripartito di intensità 9.0 kPa su una larghezza di 3.00m

Corsia di carico n. 2 costituita da:

- Schema di carico n.1 ridotto: n. 4 carichi concentrati da 100 kN cadauno disposti ad interasse 2.00m in direzione longitudinale al viadotto e m. 2.00 in direzione trasversale
- Carico uniformemente ripartito di intensità 2.5 kPa su una larghezza di 3.00m

Corsia di carico n. 3 costituita da:

- Schema di carico n.1 ridotto: n. 4 carichi concentrati da 50 kN cadauno disposti ad interasse 2.00m in direzione longitudinale al viadotto e m. 2.00 in direzione trasversale
- Carico uniformemente ripartito di intensità 2.5 kPa su una larghezza di 3.00m

Corsia di carico n. 4 (Remaining area RA) costituita da:

• Carico uniformemente ripartito di intensità 2.5 kPa su una larghezza residua di impalcato pari a (10.50-3.00×3) = 1.5 m

Le stese dei carichi mobili prima definite sono state poste sull'impalcato nelle posizioni tali da produrre le sollecitazioni e le deformazioni più gravose, sia nelle membrature dell'impalcato sia nelle sottostrutture. La ricerca delle disposizioni sia longitudinali che trasversali dei carichi mobili più gravose è stata effettuata in maniera automatica dal codice di calcolo impiegato per l'analisi dell'impalcato. Infatti, il programma di calcolo "SAP 2000" esegue l'analisi delle sollecitazioni dovute ai carichi mobili partendo dalle linee d'influenza di ciascuna sezione e sommando soltanto i termini che contribuiscono a massimizzare il valore assoluto della sollecitazione stessa (rispettivamente per i valori massimi ed i valori minimi).

In tale maniera si ottempera a quanto previsto dalla Normativa che prevede che i carichi mobili siano disposti lungo l'asse della corsia nel modo più sfavorevole (disposizione a scacchiera).

2.2.6 Incremento dinamico dei carichi mobili (q2)

I carichi mobili prima descritti includono già gli effetti di amplificazione dinamica per pavimentazione di media rugosità.

2.2.7 zione di frenatura/accelerazione (q3)

La forza di frenamento o di accelerazione è funzione del carico verticale totale agente sulla corsia convenzionale n. 1 ed è uguale a:

 $180 \text{ kN} \le Q_3 = 0.6 \times (2 \times Q1 \text{k}) + 0.1 \times q1 \text{k} \times w1 \times L = 2520 \le 900 \text{ kN}$

larghezza corsie convenzionali W_{l} 3.00 m 300 kΝ singolo asse Q1k Q_{1k} 9 q_{1k} = kPa carico uniformemente distribuito = 800 lunghezza del viadotto m 900 forza di frenatura (accelerazione) sull'intero viadotto Q_3 kΝ

Tale azione viene ripartita sui n. 26 apparecchi di appoggio dell'impalcato.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 17 di 156
Nome file:
VI01-C-CL004_B.00_relazione_pile.doc

2.2.8 Forza centrifuga (q4)

Essendo il raggio di curvatura pari a circa R=1900 m, tale azione viene trascurata.

2.2.9 Azione del vento (q5)

Si riporta di seguito il dettaglio del calcolo dell'azione del vento sull'impalcato e sulle pile.

zona	=	4		Sicilia	
$V_{b,0}$	=	28	m/s		
a_0	=	500	m		
k _a	=	0.02	1/s		
a_s	=	516	m	altitudine del sito	
V_b	=	28.32	m/s	velocità di riferimento	
ρ	=	1.25	kg/m³	densità dell'aria	
q_b	= =	0.501 D	kN/m ²	pressione cinetica di riferimento classe di rugosità del terreno	
Ct	=	1.2 II		coefficiente di topografia categoria di esposizione del sito	
k_r	=	0.19			
z_0	=	0.05	m		
Z_{min}	=	4.00	m		
Z	=	35.00	m	altezza sul suolo	
C _e	=	4.22		coefficiente di esposizione	
c_p	=	1		coefficiente di forma	
c_{d}	=	1		coefficiente dinamico	
Vento su	impalcat	0			
p	=	2.5	kN/m ²	pressione del vento	
H_{vc}	=	3.00	m	altezza veicolo convenzionale	
H_{imp}	=	3.25	m	altezza impalcato	
H_{vento}	=	6.25	m	altezza superficie di spinta	
F_{vento}	=	18.75	kN/m	azione del vento su impalcato	
Vento su pile					
В	=	3	m	larghezza pila	
q _{5,pile}	=	7.5	kN/m	azione del vento trasversale su pile	

2.2.10 Azione sismica (q6)

La risposta sismica è stata determinata attraverso un'analisi dinamica elastico-lineare con spettro di risposta. A tal fine, sia per le due componenti orizzontali, sia per la componete verticale del sisma, si è fatto riferimento alla spettro di progetto elastico (coefficiente di struttura q=1) allo SLV. Sebbene i dispositivi sismici di cui si prevede l'impiego garantiscano uno smorzamento superiore al 15%, nelle analisi eseguite, conformemente a quanto prescritto in normativa, è stato considerato uno smorzamento pari al 10 %. Gli spettri considerati sono caratterizzati dai seguenti parametri:

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Pagina	18	di	156
--------	----	----	-----

Opera: Viadotto Giulfo

Relazione di Calcolo Pile

Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

 V_N 50 vita nominale dell'opera anni

2 coefficiente d'uso C_{U} V_R periodo di riferimento 100 anni

Categoria di suolo = B

\mathbf{a}_{g}	=	0.083 g	ac	celerazione orizzontale massima
F_0	=	2.661	fat	tore di amplificazione dello spettro in accelerazione orizzontale
F۷	=	1.035	fat	tore di amplificazione dello spettro in accelerazione verticale
T_{C}^{\star}	=	0.504 s	ре	riodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale
Ss	=	1.20		coefficiente di amplificazione stratigrafica
S_T	=	1		coefficiente di amplificazione topografica
C_c	=	1.262		coefficiente funzione della categoria di sottosuolo
S	=	1.200		coefficiente funzione della categoria di suolo e della topografia
T_B	=	0.212	S	parametro dello spettro
T_C	=	0.64	S	parametro dello spettro
T_D	=	1.93	s	parametro dello spettro
ξ	=	10	%	coefficiente di smorzamento viscoso convenzionale

Nella seguente figura si rappresentano, rispettivamente a tratto continuo e a tratto discontinuo, lo spettro elastico orizzontale e verticale.

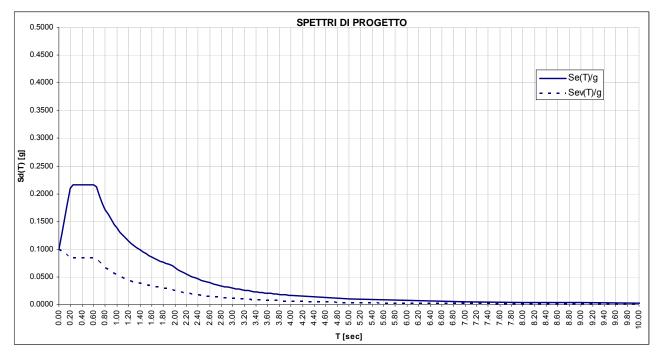


Figura 2-3 - Spettri elastici allo SLV.

La massa delle pile è computata automaticamente dal programma di calcolo, una volta definite le caratteristiche geometriche delle sezioni e la densità del materiale (quest'ultima assunta pari a 2500 kg_m/m³).

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Relazione di Calcolo Pile
Pagina 19 di 156

Opera: Viadotto Giulfo

Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

La massa dell'impalcato (comprensiva del peso proprio della carpenteria metallica, del peso della soletta e dei permanenti portati) è stata attribuita alle due travi principali come una massa per unità di lunghezza di valore pari a:

g1.1	=	25.5	kN/m	peso carpenteria metallica
g1.2	=	100	kN/m	peso soletta
g2	=	30.25	kN/m	peso permanenti portati
G	=	155.75	kN/m	carichi permanenti impalcato
M	=	15 88	t/m	massa

Sono stati considerati n. 150 modi di vibrare. Tale numero è risultato sufficiente ad eccitare in ciascuna delle tre direzioni del sisma una massa superiore allo 85% della massa totale.

Le tre componenti dell'azione sismica sono state combinate come di seguito:

 $E_x + 0.3 \times E_y + 0.3 \times E_z$; sisma 1) $0.3 \times E_x + E_y + 0.3 \times E_z;$ $0.3 \times E_x + 0.3 \times E_y + E_z;$ sisma 2) sisma 3)

dove:

 E_x = componete longitudinale;

 E_v = componete trasversale;

 E_z = componete verticale.

2.2.11 Resistenza parassita dei vincoli (q7)

Associati ai carichi verticali si considerano delle azioni orizzontali che a favore di sicurezza vengono valutati pari all'1% dei carichi verticali (tali azioni non sarebbero presenti in questa opera poichè non esiste un punto fisso rispetto al quale l'impalcato tende ad incipiente movimento) tenendo conto che sono dovute alle rotazioni degli isolatori che generano tali azioni orizzontali.

2.3 Riposta sismica del viadotto

Tabella 2.1 - Caratteristiche modali.

modo	Periodo	Frequenza	Frequenza Pulsazione	
	S	Hz	rad/sec	rad2/sec2
1	2.998	0.334	2.096	4.394
2	2.814	0.355	2.233	4.986
3	2.466	0.405	2.548	6.491
4	2.023	0.494	0.494 3.106	
5	1.624	0.616	3.868	14.961
6	1.212	0.825	5.182	26.855
7	1.202	0.832	5.228	27.327
8	1.154	154 0.866 5		29.622
9	1.152	0.868	5.456	29.772
10	1.096	0.912	5.731	32.845
11	11 1.058 0		5.936	35.241
12	1.013	0.987	6.200	38.443

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo Relazione di Calcolo Pile Pagina 20 di 156

modo	Periodo	Frequenza	Pulsazione	Autovalore
	S	Hz	rad/sec	rad2/sec2
13	0.997	1.003	6.303	39.724
14	0.983	1.017	6.392	40.860
15	0.951	1.052	6.608	43.667
16	0.905	1.105	6.945	48.228
17	0.905	1.143	7.181	51.565
18	0.867	1.153	7.101	52.467
19	0.817	1.133	7.691	59.155
20	0.803	1.246	7.827	61.259
21				
	0.779	1.284	8.066	65.057
22	0.755	1.325	8.322	69.262
23	0.726	1.377	8.652	74.864
24	0.699	1.430	8.984	80.708
25	0.668	1.498	9.409	88.529
26	0.611	1.638	10.292	105.920
27	0.579	1.727	10.852	117.770
28	0.558	1.792	11.258	126.750
29	0.537	1.863	11.708	137.070
30	0.512	1.953	12.269	150.540
31	0.473	2.112	13.272	176.160
32	0.473	2.114	13.281	176.380
33	0.470	2.128	13.372	178.800
34	0.441	2.266	14.235	202.640
35	0.418	2.395	15.047	226.410
36	0.403	2.479	15.575	242.580
37	0.403	2.484	15.607	243.580
38	0.397	2.516	15.810	249.950
39	0.368	2.716	17.067	291.290
40	0.366	2.731	17.157	294.380
41	0.364	2.748	17.264	298.050
42	0.360	2.779	17.462	304.920
43	0.356	2.806	17.632	310.890
44	0.353	2.835	17.816	317.400
45	0.344	2.909	18.275	333.970
46	0.335	2.988	18.777	352.560
47	0.327	3.061	19.234	369.930
48	0.321	3.117	19.586	383.620
49	0.314	3.183	19.999	399.950
50	0.309	3.231	20.301	412.140
51	0.299	3.340	20.983	440.280
52	0.297	3.370	21.174	448.340
53	0.297	3.372	21.187	448.900
54	0.276	3.621	22.751	517.590
55	0.264	3.785	23.779	565.450
56	0.260	3.848	24.180	584.660
57	0.248	4.029	25.316	640.890
58	0.246	4.029	26.024	677.250
59				
	0.215	4.647	29.197	852.450
60	0.211	4.749	29.836	890.200
61	0.207	4.839	30.404	924.410

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 21 di 156

modo	Periodo	Frequenza	Pulsazione	Autovalore
	S	Hz	rad/sec	rad2/sec2
62	0.204	4.892	30.736	944.670
63	0.204	4.897	30.770	946.790
64	0.199	5.034	31.630	1000.500
65	0.197	5.076	31.894	1017.200
66	0.190	5.271	33.117	1096.700
67	0.183	5.469	34.361	1180.700
68	0.177	5.661	35.567	1265.000
69	0.172	5.811	36.512	1333.100
70	0.171	5.839	36.689	1346.100
71	0.167	5.995	37.667	1418.800
72	0.164	6.109	38.386	1473.500
73	0.162	6.171	38.774	1503.400
74	0.158	6.331	39.780	1582.400
75	0.158	6.347	39.877	1590.200
76	0.157	6.367	40.005	1600.400
77	0.156	6.393	40.170	1613.600
78	0.156	6.409	40.270	1621.700
79	0.155	6.441	40.469	1637.700
80	0.154	6.493	40.798	1664.500
81	0.152	6.575	41.314	1706.800
82	0.152	6.598	41.454	1718.500
83	0.148	6.777	42.578	1812.900
84	0.144	6.939	43.601	1901.100
85	0.143	6.978	43.843	1922.200
86	0.129	7.770	48.821	2383.500
87	0.127	7.846	49.297	2430.200
88	0.113	8.881	55.801	3113.800
89	0.107	9.330	58.624	3436.800
90	0.107	9.556	60.042	3605.100
91	0.104	9.646	60.606	3673.100
92	0.103	9.721	61.076	3730.200
93	0.102	9.757	61.303	3758.000
94	0.102	9.788	61.501	3782.400
95	0.102	9.821	61.706	3807.600
96	0.101	9.915	62.300	3881.200
97	0.100	9.983	62.727	3934.700
98	0.100	10.008	62.879	3953.800
99	0.100	10.007	63.001	3969.200
100	0.099	10.145	63.744	4063.300
101	0.098	10.204	64.115	4110.700
102	0.098	10.204	64.115	4110.700
103	0.097	10.266	64.505	4160.900
104	0.097	10.270	64.530	4164.200
105	0.096	10.385	65.251	4257.600
106	0.095	10.489	65.906	4343.600
107	0.095	10.490	65.908	4343.800
108	0.095	10.543	66.244	4388.300
109	0.095	10.550	66.285	4393.600
110	0.093	10.550	66.667	4444.500
110	0.007	10.010	00.007	4444.000

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 22 di 156
Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

modo	Periodo	Frequenza	Pulsazione	Autovalore
	S	Hz	rad/sec	rad2/sec2
111	0.093	10.780	67.731	4587.500
112	0.093	10.781	67.740	4588.800
113	0.093	10.799	67.850	4603.600
114	0.092	10.828	68.037	4629.000
115	0.091	10.982	69.002	4761.200
116	0.091	11.020	69.241	4794.400
117	0.090	11.110	69.806	4872.900
118	0.090	11.128	69.919	4888.700
119	0.090	11.146	70.035	4905.000
120	0.089	11.182	70.260	4936.500
121	0.089	11.220	70.497	4969.800
122	0.087	11.491	72.202	5213.100
123	0.087	11.505	72.289	5225.700
124	0.081	12.312	77.360	5984.500
125	0.081	12.362	77.671	6032.800
126	0.079	12.587	79.089	6255.100
127	0.078	12.747	80.095	6415.100
128	0.076	13.101	82.315	6775.700
129	0.074	13.535	85.043	7232.300
130	0.073	13.617	85.560	7320.600
131	0.071	14.148	88.895	7902.400
132	0.069	14.460	90.854	8254.400
133	0.068	14.652	92.060	8475.100
134	0.068	14.796	92.967	8642.800
135	0.066	15.079	94.743	8976.200
136	0.066	15.091	94.822	8991.300
137	0.066	15.238	95.742	9166.600
138	0.065	15.359	96.503	9312.700
139	0.065	15.456	97.111	9430.600
140	0.065	15.495	97.357	9478.500
141	0.064	15.621	98.153	9633.900
142	0.064	15.622	98.155	9634.400
143	0.064	15.716	98.745	9750.700
144	0.063	15.784	99.177	9836.000
145	0.063	15.830	99.464	9893.200
146	0.063	15.839	99.517	9903.700
147	0.063	15.858	99.637	9927.500
148	0.063	15.881	99.786	9957.300
149	0.063	15.903	99.925	9984.900
150	0.062	16.095	101.130	10226.000

CORRIDOIO PLURIMODALE TIRRENICO-NORD EUROPA ITINERARIO AGRIGENTO -CALTANISSETTA-A19 S.S. N° 640 "DI PORTO EMPEDOCLE" AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19 Progetto Esecutivo

Pagina 23 di 156

Opera: Viadotto Giulfo

Relazione di Calcolo Pile

Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

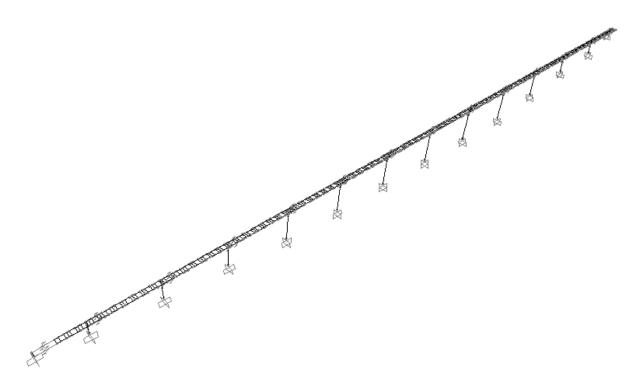


Figura 2-5 - Seconda forma modale.

Figura 2-6 - Terza forma modale (vista in pianta).

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 24 di 156

Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

3 SOLLECITAZIONI NELLE PILE

3.1 Sollecitazioni nelle condizioni di carico elementari

Si riportano al presente paragrafo le azioni in talune delle sezioni maggiormente significative delle pile. Tali azioni sono state determinate attraverso la risoluzione del modello numerico dell'impalcato (illustrato nella relazione di calcolo dello stesso) e del modello numerico globale predisposto per le analisi sismiche illustrato ai paragrafi precedenti.

Le azioni orizzontali (Fx ed Fy) e verticali (Fz) si assumono positive se di verso concorde con quello degli assi di riferimento. Si indicheranno inoltre con Mx i momenti aventi asse-momento parallelo all'asse x (momenti trasversali) e con My (momenti longitudinali) i momenti aventi asse-momento parallelo all'asse y. I momenti si assumono positivi se di senso antiorario rispetto all'asse-momento cui si riferiscono.

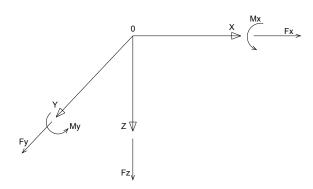


Figura 3.1 - Sistema di riferimento e convenzioni di segno delle azioni.

Nel seguito si indica con:

g1-pile	=	peso proprio della pila;
g1-impalcato	=	peso proprio dell'impalcato;
g2	=	permanenti portati su impalcato;
e2	=	ritiro;
e3	=	carico termico differenziale su impalcato (± 10 °C);
q1.1	=	carichi mobili – configurazione 1 (massima azione veriticale);
q1.2	=	carichi mobili – configurazione 2 (massimo momento trasversale);
q5-impalcato	=	vento trasversale su impalcato;
q5-pile	=	vento trasversae su pile;
q6.1 = sisma longitudin	ale + 0.3	sisma trasversale + 0.3 sisma verticale;
q6.2 = 0.3 sisma longitu	udinale +	· sisma trasversale + 0.3 sisma verticale;
q6.3 = 0.3 sisma longitu	udinale +	· 0.3 sisma trasversale + sisma verticale;

q7 = resistenza parassita dei vincoli (1% dei carichi permanenti).

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 25 di 156
Nome file: VI01-C-CL004_B.00_relazione_pile.doc

3.1.1 Sollecitazioni nella sezione di base delle pile

Si riportano nel seguito le tabelle con le sollecitazione nella sezione di spiccato per le condizione di carico elementare. Le convenzioni dei segni e le nomenclature utilizzate sono quelle descritte nel paragrafo precedente.

Tabella 3.3.1 – Sollecitazioni nella sezione di spiccato per le condizioni di carico elementari.

PILA	z (Quota)	TIDO CARIOC	Fz	Fx	Fy	Mx	Му
	m	TIPO CARICO	KN	KN	KN	KN-m	KN-m
P01	0	g1-impalcato	-8562,22	0,00	0,00	0,00	0,00
P01	0	g1-pile	-3861,79	0,00	0,00	0,00	0,00
P01	0	g2	-1802,76	0,00	0,00	0,00	0,00
P01	0	e2	-462,62	31,87	0,00	0,00	317,39
P01	0	e3	-462,62	31,87	0,00	0,00	317,39
P01	0	q1	-4470,21	0,00	-0,14	3061,91	0,00
P01	0	q1	-3387,55	0,00	-7,43	-9185,17	0,00
P01	0	q3	0,00	89,78	0,00	0,00	894,23
P01	0	q4	0,00	0,00	0,00	0,00	0,00
P01	0	q5-imp	0,00	0,00	-684,21	-6907,88	0,00
P01	0	q5-pile	0,00	0,00	-71,46	-346,85	0,00
P01	0	q6.1	268,80	734,70	95,77	901,00	6575,55
P01	0	q6.2	268,80	220,19	319,55	3006,39	1970,66
P01	0	q6.3	896,92	220,19	95,77	901,00	1970,66
P02	0	g1-impalcato	-9541,98	0,00	0,00	0,00	0,00
P02	0	g1-pile	-6021,40	0,00	0,00	0,00	0,00
P02	0	g2	-2009,05	0,00	0,00	0,00	0,00
P02	0	e2	69,87	23,81	0,00	0,00	408,55
P02	0	e3	69,87	23,81	0,00	0,00	408,55
P02	0	q1	-4883,58	0,00	11,85	-6514,73	0,00
P02	0	q1	-3593,91	0,00	-2,96	-9783,15	0,00
P02	0	q3	0,00	82,50	0,00	0,00	1415,62
P02	0	q4	0,00	0,00	0,00	0,00	0,00
P02	0	q5-imp	0,00	0,00	-880,61	-15127,69	0,00
P02	0	q5-pile	0,00	0,00	-129,98	-1129,73	0,00
P02	0	q6.1	339,97	1044,62	168,08	2449,65	14929,36
P02	0	q6.2	339,97	313,07	560,82	8173,84	4474,24
P02	0	q6.3	1134,40	313,07	168,08	2449,65	4474,24
P03	0	g1-impalcato	-9290,77	0,00	0,00	0,00	0,00
P03	0	g1-pile	-7462,15	0,00	0,00	0,00	0,00
P03	0	g2	-1956,16	0,00	0,00	0,00	0,00
P03	0	e2	-17,93	16,53	0,00	0,00	362,91
P03	0	e3	-17,93	16,53	0,00	0,00	362,91
P03	0	q1	-4936,84	0,00	19,78	-6259,59	0,00
P03	0	q1	-3541,00	0,00	0,59	-9677,10	0,00
P03	0	q3	0,00	74,29	0,00	0,00	1631,48
P03	0	q4	0,00	0,00	0,00	0,00	0,00
P03	0	q5-imp	0,00	0,00	-1000,49	-22096,95	0,00
P03	0	q5-pile	0,00	0,00	-168,54	-1908,35	0,00
P03	0	q6.1	354,23	1052,25	186,68	3524,66	19194,41
P03	0	q6.2	354,23	315,35	622,89	11760,87	5752,45
P03	0	q6.3	1181,96	315,35	186,68	3524,66	5752,45

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo Relazione di Calcolo Pile

Pagina 26 di 156

PILA	z (Quota)	TIDO CADIGO	Fz	Fx	Fz	Mx	My
	m	TIPO CARICO	KN	KN	KN	KN-m	KN-m
P04	0	g1-impalcato	-9354,53	0,00	0,00	0,00	0,00
P04	0	g1-pile	-9981,18	0,00	0,00	0,00	0,00
P04	0	g2	-1969,58	0,00	0,00	0,00	0,00
P04	0	e2	4,61	8,85	0,00	0,00	268,76
P04	0	e3	4,61	8,85	0,00	0,00	268,76
P04	0	q1	-4974,46	0,00	-16,17	2242,19	0,00
P04	0	q1	-3503,18	0,00	31,44	-8550,58	0,00
P04	0	q3	0,00	56,59	0,00	0,00	1718,11
P04	0	q4	0,00	0,00	0,00	0,00	0,00
P04	0	q5-imp	0,00	0,00	-956,00	28839,63	0,00
P04	0	q5-pile	0,00	0,00	-221,60	-3255,33	0,00
P04	0	q6.1	352,68	663,18	166,45	4386,36	17276,19
P04	0	q6.2	352,68	198,75	555,39	14636,11	5177,57
P04	0	q6.3	1176,79	198,75	166,45	4386,36	5177,57
P05	0	g1-impalcato	-9338,68	0,00	0,00	0,00	0,00
	_		-				
P05	0	g1-pile	10461,86	0,00	0,00	0,00	0,00
P05	0	g2	-1966,24	0,00	0,00	0,00	0,00
P05	0	e2	-1,16	4,82	0,00	0,00	153,93
P05	0	e3	-1,16	4,82	0,00	0,00	153,93
P05	0	q1	-4978,70	0,00	-21,12	2580,40	0,00
P05	0	q1	-3485,43	0,00	25,87	-8717,87	0,00
P05	0	q3	0,00	53,21	0,00	0,00	1700,56
P05	0	q4	0,00	0,00	0,00	0,00 -	0,00
P05	0	q5-imp	0,00	0,00	-992,59	31688,80	0,00
P05	0	q5-pile	0,00	0,00	-234,46	-3661,05	0,00
P05	0	q6.1	350,00	588,87	150,13	4198,23	16324,02
P05	0	q6.2	350,00	176,48	500,94	14008,37	4892,21
P05	0	q6.3	1167,84	176,48	150,13	4198,23	4892,21
P06	0	g1-impalcato	-9342,43	0,00	0,00	0,00	0,00
P06	0	g1-pile	- 10701,66	0,00	0,00	0,00	0,00
P06	0	g2	-1967,03	0,00	0,00	0,00	0,00
P06	0	e2	0,23	1,27	0,00	0,00	41,69
P06	0	e3	0,23	1,27	0,00	0,00	41,69
P06	0	q1	-4980,95	0,00	-20,62	2579,45	0,00
P06	0	q1	-3484,96	0,00	20,45	-8875,48	0,00
P06	0	q3	0,00	51,55	0,00	0,00	1688,80
P06	0	q4	0,00	0,00	0,00	0,00	0,00
P06	0	q5-imp	0,00	0,00	-1017,61	33326,50	0,00
P06	0	q5-pile	0,00	0,00	-241,95	-3902,33	0,00
P06	0	q6.1	348,95	553,46	142,00	4074,38	15830,50
P06	0	q6.2	348,95	165,87	473,82	13595,12	4744,31
P06	0	q6.3	1164,36	165,87	142,00	4074,38	4744,31
		•					

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo Relazione di Calcolo Pile

Pagina 27 di 156

PILA	z (Quota)	TIPO CARICO	Fz	Fx	Fz	Mx	Му
	m	TIF O CARICO	KN	KN	KN	KN-m	KN-m
P07	0	g1-impalcato	-9342,43	0,00	0,00	0,00	0,00
P07	0	a1 pilo	- 11061 64	0,00	0.00	0.00	0.00
P07 P07	0 0	g1-pile	11061,64 -1967,03	0,00	0,00 0,00	0,00 0,00	0,00 0,00
P07	0	g2 e2	0,23	-2,02	0,00	0,00	-68,57
P07	0	e3	0,23	-2,02 -2,02	0,00	0,00	-68,57
P07	0	q1	-4980,85	0,00	-22,12	2501,22	0,00
P07	0	q1	-3484,54	0,00	24,73	-8697,64	0,00
P07	0	q3	0,00	49,10	0,00	0,00	1667,41
P07	Ö	q4	0,00	0,00	0,00	0,00	0,00
	-	٦.	-,	-,	5,55	-	2,22
P07	0	q5-imp	0,00	0,00	-1000,16	33938,27	0,00
P07	0	q5-pile	0,00	0,00	-248,78	-4122,53	0,00
P07	0	q6.1	351,30	505,77	133,63	3984,37	15151,54
P07	0	q6.2	351,30	151,58	445,89	13294,79	4540,83
P07	0	q6.3	1172,21	151,58	133,63	3984,37	4540,83
P08	0	g1-impalcato	-9338,63	0,00	0,00	0,00	0,00
P08	0	g1-pile	- 11421,87	0,00	0,00	0,00	0,00
P08	0	g? plic g2	-1966,23	0,00	0,00	0,00	0,00
P08	Ö	e2	-1,16	-5,00	0,00	0,00	-175,62
P08	0	e3	-1,16	-5,00	0,00	0,00	-175,62
P08	0	q1	-4978,44	0,00	-19,03	2065,95	0,00
P08	0	q1	-3482,41	0,00	36,11	-8257,44	0,00
P08	0	q3	0,00	46,71	0,00	0,00	1642,29
P08	0	q4	0,00	0,00	0,00	0,00	0,00
Doo	0		0.00	0.00	0.40.00	-	0.00
P08	0	q5-imp	0,00	0,00	-949,09	33313,14	0,00
P08 P08	0	q5-pile	0,00	0,00 466,01	-252,80	-4248,09 3978,13	0,00 14593,21
P08	0 0	q6.1 q6.2	356,41 356,41	139,66	128,34 428,24	13273,95	4373,50
P08	0	q6.2 q6.3	1189,24	139,66	420,24 128,34	3978,13	4373,50
P09	0	g1-impalcato	-9354,76	0,00	0,00	0,00	0,00
1 00	O .	gr-impaicato	-	0,00	0,00	0,00	0,00
P09	0	g1-pile	11421,27	0,00	0,00	0,00	0,00
P09	0	g2	-1969,63	0,00	0,00	0,00	0,00
P09	0	e2	4,60	-8,07	0,00	0,00	-283,75
P09	0	e3	4,60	-8,07	0,00	0,00	-283,75
P09	0	q1	-4974,13	0,00	-26,81	2299,98	0,00
P09	0	q1	-3490,06	0,00	46,79	-7852,49	0,00
P09	0	q3	0,00	46,70	0,00	0,00	1641,97
P09	0	q4	0,00	0,00	0,00	0,00	0,00
P09	0	q5-imp	0,00	0,00	-894,67	- 31262,39	0,00
P09	0	q5-mp q5-pile	0,00	0,00	-094,07 -249,48	-4115,05	0,00
P09	0	q6.1	362,10	465,93	132,22	4098,88	14590,41
P09	0	q6.2	362,10	139,64	441,17	13676,88	4372,66
P09	Ő	q6.3	1208,21	139,64	132,22	4098,88	4372,66
	-	7	, - ·	, - ·	, 	,	,

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo Relazione di Calcolo Pile

Pagina 28 di 156

PILA	z (Quota)	TIDO CADICO	Fz	Fx	Fz	Mx	My
	m	TIPO CARICO	KN	KN	KN	KN-m	KN-m
P10	0	g1-impalcato	-9290,21	0,00	0,00	0,00	0,00
P10	0	g1-pile	-9261,80	0,00	0,00	0,00	0,00
P10	0	g2	-1956,04	0,00	0,00	0,00	0,00
P10	0	e2	-17,91	-14,75	0,00	0,00	-412,51
P10	0	e3	-17,91	-14,75	0,00	0,00	-412,51
P10	0	q1	-4936,31	0,00	36,19	-5621,32	0,00
P10	0	q1	-3491,83	0,00	17,98	-9036,53	0,00
P10	0	q3	0,00	61,79	0,00	0,00	1727,55
P10	0	q4	0,00	0,00	0,00	0,00	0,00
P10	0	q5-imp	0,00	0,00	-959,78	26804,03	0,00
P10	0	q5-pile	0,00	0,00	-210,23	-2948,47	0,00
P10	0	q6.1	361,30	781,23	188,72	4537,43	18513,21
P10	0	q6.2	361,30	234,13	629,71	15140,20	5548,30
P10	0	q6.3	1205,55	234,13	188,72	4537,43	5548,30
P11	0	g1-impalcato	-9542,84	0,00	0,00	0,00	0,00
P11	0	g1-pile	-6741,96	0,00	0,00	0,00	0,00
P11	0	g2	-2009,23	0,00	0,00	0,00	0,00
P11	0	e2	69,82	-24,00	0,00	0,00	-469,40
P11	0	e3	69,82	-24,00	0,00	0,00	-469,40
P11	0	q1	-4883,55	0,00	-6,08	3180,30	0,00
P11	0	q1	-3581,21	0,00	-6,36	-9864,62	0,00
P11	0	q3	0,00	78,71	0,00	0,00	1539,53
P11	0	q4	0,00	0,00	0,00	0,00	0,00
P11	0	q5-imp	0,00	0,00	-916,72	18074,33	0,00
P11	0	q5-pile	0,00	0,00	-152,41	-1562,17	0,00
P11	0	q6.1	341,86	1060,99	174,05	2913,20	17255,12
P11	0	q6.2	341,86	317,97	580,75	9720,56	5171,26
P11	0	q6.3	1140,71	317,97	174,05	2913,20	5171,26
P12	0	g1-impalcato	-8561,31	0,00	0,00	0,00	0,00
P12 P12	0 0	g1-pile	-5301,26	0,00	0,00	0,00	0,00
P12	_	g2 e2	-1802,57 -462,56	0,00 -31,80	0,00 0,00	0,00 0,00	0,00 -469,31
P12	0 0	e3	-462,56	-31,80 -31,80	0,00	0,00	-469,31
P12	0	q1	-462,56 -4469,69	0,00	6,59	-6044,82	0,00
P12	0	q1	-3290,26	0,00	-7,40	-9029,38	0,00
P12	0	q3	0,00	85,66	0,00	0,00	1264,36
P12	0	q4	0,00	0,00	0,00	0,00	0,00
P12	0	q5-imp	0,00	0,00	-702,34	10395,02	0,00
P12	0	q5-pile	0,00	0,00	-109,82	-807,97	0,00
P12	0	q6.1	271,81	1003,60	144,37	1810,15	12392,17
P12	0	q6.2	271,81	300,77	481,71	6039,98	3713,86
P12	0	q6.3	906,96	300,77	144,37	1810,15	3713,86
		-					

CORRIDOIO PLURIMODALE TIRRENICO-NORD EUROPA ITINERARIO AGRIGENTO -CALTANISSETTA-A19 S.S. N° 640 "DI PORTO EMPEDOCLE" DERNAMENTO E ADECUAMENTO ALLA CAT. R.DEL. D.M. 5.11.200

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 29 di 156
Nome file:
VI01-C-CL004_B.00_relazione_pile.doc

3.1.2 Sollecitazioni nella sezione posta a 10.50 m dall'estradosso plinto

In questo sottoparagrafo, sempre con riferimento alle condizioni di carico elementari, si riportano le tabelle con le sollecitazioni nella sezione della generica pila posta a quota 10.50 m dall'estradosso plinto. Ovviamente in queste tabelle sono escluse le pile con altezza inferiore a 10,5 m.

Tabella 3.2 - Sollecitazioni nella sezione a quota 10.5 m dall'estradosso plinto per le condizioni di carico elementari.

PILA	z (Quota)	TIDO CARICO	Fz	Fx	Fy	Mx	Му
	m	TIPO CARICO	KN	KN	KN	KN-m	KN-m
P02	10,5	g1-impalcato	-9541,98	0,00	0,00	0,00	0,00
P02	10,5	g1-pile	-2928,67	0,00	0,00	0,00	0,00
P02	10,5	g2	-2009,05	0,00	0,00	0,00	0,00
P02	10,5	e2	69,87	23,81	0,00	0,00	163,11
P02	10,5	e3	69,87	23,81	0,00	0,00	163,11
P02	10,5	q1	-3663,79	0,00	3,63	-9765,13	0,00
P02	10,5	q1	-4883,58	0,00	11,85	-6636,88	0,00
P02	10,5	q3	0,00	82,50	0,00	0,00	565,17
P02	10,5	q4	0,00	0,00	0,00	0,00	0,00
P02	10,5	q5-imp	0,00	0,00	-880,61	-6049,36	0,00
P02	10,5	q5-pile	0,00	0,00	-52,67	-188,26	0,00
P02	10,5	q6.1	339,97	1044,62	168,08	758,22	4408,54
P02	10,5	q6.2	339,97	313,07	560,82	2529,97	1321,21
P02	10,5	q6.3	1134,40	313,07	168,08	758,22	1321,21
P03	10,5	g1-impalcato	-9290,77	0,00	0,00	0,00	0,00
P03	10,5	g1-pile	-4390,90	0,00	0,00	0,00	0,00
P03	10,5	g2	-1956,16	0,00	0,00	0,00	0,00
P03	10,5	e2	-17,93	16,53	0,00	0,00	193,73
P03	10,5	e3	-17,93	16,53	0,00	0,00	193,73
P03	10,5	q1	-3578,35	0,00	2,23	-9699,14	0,00
P03	10,5	q1	-4936,84	0,00	19,78	-6462,05	0,00
P03	10,5	q3	0,00	74,29	0,00	0,00	870,90
P03	10,5	q4	0,00	0,00	0,00	0,00	0,00
P03	10,5	q5-imp	0,00	0,00	-1000,49	-11854,41	0,00
P03	10,5	q5-pile	0,00	0,00	-91,76	-575,95	0,00
P03	10,5	q6.1	354,23	1052,25	186,68	1635,79	8547,75
P03	10,5	q6.2	354,23	315,35	622,89	5458,21	2561,71
P03	10,5	q6.3	1181,96	315,35	186,68	1635,79	2561,71
P04	10,5	g1-impalcato	-9354,53	0,00	0,00	0,00	0,00
P04	10,5	g1-pile	-6831,18	0,00	0,00	0,00	0,00
P04	10,5	g2	-1969,58	0,00	0,00	0,00	0,00
P04	10,5	e2	4,61	8,85	0,00	0,00	175,81
P04	10,5	e3	4,61	8,85	0,00	0,00	175,81
P04	10,5	q1	-3549,69	0,00	34,98	-8898,05	0,00
P04	10,5	q1	-4974,46	0,00	-16,17	2412,03	0,00
P04	10,5	q3	0,00	56,59	0,00	0,00	1123,90
P04	10,5	q4	0,00	0,00	0,00	0,00	0,00
P04	10,5	q5-imp	0,00	0,00	-956,00	-18801,64	0,00
P04	10,5	q5-pile	0,00	0,00	-142,85	-1341,99	0,00
P04	10,5	q6.1	352,68	663,18	166,45	2645,48	10376,98
P04	10,5	q6.2	352,68	198,75	555,39	8827,26	3109,92

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo Relazione di Calcolo Pile

Pagina 30 di 156

PILA	z (Quota)	- 120 04 240	Fz	Fx	Fy	Mx	Му
1 1 1 1 1	m	TIPO CARICO	KN	KN	KN	KN-m	KN-m
P04	10,5	q6.3	1176,79	198,75	166,45	2645,48	3109,92
P05	10,5	g1-impalcato	-9338,68	0,00	0,00	0,00	0,00
P05	10,5	g1-pile	-7360,32	0,00	0,00	0,00	0,00
P05	10,5	g2	-1966,24	0,00	0,00	0,00	0,00
P05	10,5	e2	-1,16	4,82	0,00	0,00	104,14
P05	10,5	e3	-1,16	4,82	0,00	0,00	104,14
P05	10,5	q1	-3504,09	0,00	26,17	-8988,22	0,00
P05	10,5	q1	-4978,70	0,00	-21,12	2798,69	0,00
P05	10,5	q3	0,00	53,21	0,00	0,00	1150,46
P05	10,5	q4	0,00	0,00	0,00	0,00	0,00
P05	10,5	q5-imp	0,00	0,00	-992,59	-21427,00	0,00
P05	10,5	q5-pile	0,00	0,00	-156,92	-1637,95	0,00
P05	10,5	q6.1	350,00	588,87	150,13	2652,52	10289,14
P05	10,5	q6.2	350,00	176,48	500,94	8850,76	3083,60
P05	10,5	q6.3	1167,84	176,48	150,13	2652,52	3083,60
P06	10,5	g1-impalcato	-9342,43	0,00	0,00	0,00	0,00
P06	10,5	g1-pile	-7563,55	0,00	0,00	0,00	0,00
P06	10,5	g2	-1967,03	0,00	0,00	0,00	0,00
P06	10,5	e2	0,23	1,27	0,00	0,00	28,38
P06	10,5	e3	0,23	1,27	0,00	0,00	28,38
P06	10,5	q1	-3504,80	0,00	20,73	-9092,90	0,00
P06	10,5	q1	-4980,95	0,00	-20,62	2795,12	0,00
P06	10,5	q3	0,00	51,55	0,00	0,00	1149,56
P06	10,5	q4	0,00	0,00	0,00	0,00	0,00
P06	10,5	q5-imp	0,00	0,00	-1017,61	-22681,95	0,00
P06	10,5	q5-pile	0,00	0,00	-163,49	-1781,81	0,00
P06	10,5	q6.1	348,95	553,46	142,00	2595,61	10089,76
P06	10,5	q6.2	348,95	165,87	473,82	8660,85	3023,84
P06	10,5	q6.3	1164,36	165,87	142,00	2595,61	3023,84
P07	10,5	g1-impalcato	-9342,43	0,00	0,00	0,00	0,00
P07	10,5	g1-pile	-7956,64	0,00	0,00	0,00	0,00
P07	10,5	g2	-1967,03	0,00	0,00	0,00	0,00
P07	10,5	e2	0,23	-2,02	0,00	0,00	-47,67
P07	10,5	e3	0,23	-2,02	0,00	0,00	-47,67
P07	10,5	q1	-3503,18	0,00	25,02	-8957,46	0,00
P07	10,5	q1	-4980,85	0,00	-22,12	2730,11	0,00
P07	10,5	q3	0,00	49,10	0,00	0,00	1159,23
P07	10,5	q4	0,00	0,00	0,00	0,00	0,00
P07	10,5	q5-imp	0,00	0,00	-1000,16	-23586,65	0,00
P07	10,5	q5-pile	0,00	0,00	-171,15	-1949,41	0,00
P07	10,5	q6.1	351,30	505,77	133,63	2607,23	9956,25
P07	10,5	q6.2	351,30	151,58	445,89	8699,65	2983,83
P07	10,5	q6.3	1172,21	151,58	133,63	2607,23	2983,83
P08	10,5	g1-impalcato	-9338,63	0,00	0,00	0,00	0,00
P08	10,5	g1-pile	-8293,59	0,00	0,00	0,00	0,00
P08	10,5	g2	-1966,23	0,00	0,00	0,00	0,00
P08	10,5	e2	-1,16	-5,00	0,00	0,00	-123,54
P08	10,5	e3	-1,16	-5,00	0,00	0,00	-123,54
P08	10,5	q1	-3501,29	0,00	36,42	-8638,58	0,00

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo

Relazione di Calcolo Pile

Pagina 31 di 156

PILA	z (Quota)	TIDO CADICO	Fz	Fx	Fy	Mx	Му
	m	TIPO CARICO	KN	KN	KN	KN-m	KN-m
P08	10,5	q1	-4978,44	0,00	-19,03	2264,39	0,00
P08	10,5	q3	0,00	46,71	0,00	0,00	1155,23
P08	10,5	q4	0,00	0,00	0,00	0,00	0,00
P08	10,5	q5-imp	0,00	0,00	-949,09	-23416,40	0,00
P08	10,5	q5-pile	0,00	0,00	-174,59	-2019,77	0,00
P08	10,5	q6.1	356,41	466,01	128,34	2645,06	9765,00
P08	10,5	q6.2	356,41	139,66	428,24	8825,86	2926,52
P08	10,5	q6.3	1189,24	139,66	128,34	2645,06	2926,52
P09	10,5	g1-impalcato	-9354,76	0,00	0,00	0,00	0,00
P09	10,5	g1-pile	-8293,00	0,00	0,00	0,00	0,00
P09	10,5	g2	-1969,63	0,00	0,00	0,00	0,00
P09	10,5	e2	4,60	-8,07	0,00	0,00	-199,60
P09	10,5	e3	4,60	-8,07	0,00	0,00	-199,60
P09	10,5	q1	-3522,72	0,00	49,48	-8346,94	0,00
P09	10,5	q1	-4974,13	0,00	-26,81	2579,55	0,00
P09	10,5	q3	0,00	46,70	0,00	0,00	1155,00
P09	10,5	q4	0,00	0,00	0,00	0,00	0,00
P09	10,5	q5-imp	0,00	0,00	-894,67	-21933,18	0,00
P09	10,5	q5-pile	0,00	0,00	-171,27	-1921,37	0,00
P09	10,5	q6.1	362,10	465,93	132,22	2724,18	9763,07
P09	10,5	q6.2	362,10	139,64	441,17	9089,86	2925,94
P09	10,5	q6.3	1208,21	139,64	132,22	2724,18	2925,94
P10	10,5	g1-impalcato	-9290,21	0,00	0,00	0,00	0,00
P10	10,5	g1-pile	-6169,07	0,00	0,00	0,00	0,00
P10	10,5	g2	-1956,04	0,00	0,00	0,00	0,00
P10	10,5	e2	-17,91	-14,75	0,00	0,00	-260,42
P10	10,5	e3	-17,91	-14,75	0,00	0,00	-260,42
P10	10,5	q1	-3538,76	0,00	21,41	-9249,46	0,00
P10	10,5	q1	-4936,31	0,00	36,19	-5994,44	0,00
P10	10,5	q3	0,00	61,79	0,00	0,00	1090,59
P10	10,5	q4	0,00	0,00	0,00	0,00	0,00
P10	10,5	q5-imp	0,00	0,00	-959,78	-16909,59	0,00
P10	10,5	q5-pile	0,00	0,00	-132,91	-1179,74	0,00
P10	10,5	q6.1	361,30	781,23	188,72	2600,98	10535,34
P10	10,5	q6.2	361,30	234,13	629,71	8678,77	3157,38
P10	10,5	q6.3	1205,55	234,13	188,72	2600,98	3157,38
P11	10,5	g1-impalcato	-9542,84	0,00	0,00	0,00	0,00
P11	10,5	g1-pile	-3661,96	0,00	0,00	0,00	0,00
P11	10,5	g2	-2009,23	0,00	0,00	0,00	0,00
P11	10,5	e2	69,82	-24,00	0,00	0,00	-223,02
P11	10,5	e3	69,82	-24,00	0,00	0,00	-223,02
P11	10,5	q1	-3595,58	0,00	-5,92	-9802,12	0,00
P11	10,5	q1	-4883,55	0,00	-6,08	3242,74	0,00
P11	10,5	q3	0,00	78,71	0,00	0,00	731,46
P11	10,5	q4	0,00	0,00	0,00	0,00	0,00
P11	10,5	q5-imp	0,00	0,00	-916,72	-8662,71	0,00
P11	10,5	q5-pile	0,00	0,00	-75,41	-392,70	0,00
P11	10,5	q6.1	341,86	1060,99	174,05	1158,53	6528,34
P11	10,5	q6.2	341,86	317,97	580,75	3865,71	1956,51

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

	Opera: Viadotto Giulfo
ſ	Relazione di Calcolo Pile
	Pagina 32 di 156
Ī	Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

PILA	z (Quota)	TIPO CARICO	Fz	Fx	Fy	Mx	Му
	m	TIPO CARICO	KN	KN	KN	KN-m	KN-m
P11	10,5	q6.3	1140,71	317,97	174,05	1158,53	1956,51

3.2 Sollecitazioni nelle combinazioni di carico

Per risalire alle sollecitazioni di progetto per le pile in esame sono state utilizzate un totale di quattordici combinazioni di carico. In particolare, undici riferite allo stato limite ultimo e tre riferite alla combinazione sismica. Le combinazioni di carico sono ottenute con la seguente matrice dei coefficienti applicata alle condizioni di carico elementari:

Tabella 3.3 - Matrice delle combinazioni di carico

	MATRICE DELLE COMBINAZIONI DI CARICO													
	SLU1	SLU2	SLU3	SLU4	SLU5	SLU6	SLU7	SLU8	SLU9	SLU10	SLU11	SLV1	SLV2	SLV3
g1	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1	1	1
g1-pile	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1	1	1
g2	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1	1	1
e2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	0	0	0
e 3	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	0	0	0
q1.1	0	1,35	0	1,01	0	1,01	0	1,01	0,00	1,01	0,00	0,2	0,2	0,2
q1.2	0	0	1,35	0	1,01	0	1,01	0	1,01	0	1,01	0	0	0
q3	0	0	0	1,5	1,5	0	0	0	0	0	0	0	0	0
q4	0	0	0	0	0	1,5	1,5	0	0	0	0	0	0	0
q5-im	0	0,9	0,9	0,9	0,9	0,9	0,9	1,5	1,5	-1,5	-1,5	0	0	0
q5-pil	0	0,9	0,9	0,9	0,9	0,9	0,9	1,5	1,5	-1,5	-1,5	0	0	0
q6.2	0	0	0	0	0	0	0	0	0	0	0	1	0	0
q6.2	0	0	0	0	0	0	0	0	0	0	0	0	1	0
q6.2	0	0	0	0	0	0	0	0	0	0	0	0	0	1

3.2.1 Sollecitazioni nella sezione di base delle pile

In questa sezione riportiamo le sollecitazioni reletive alle diverse combinazioni di carico con riferimento alla sezione di spiccato.

Tabella 3.3.4 – Sollecitazioni nella sezione di spiccato per le combinazioni di carico considerate.

PILA	Z	Comb. Carico	Fz	Fx	Fy	Mx	Му
	m		KN	KN	KN	KN-m	KN-m
P01	0	SLU-1	-20316	76	0	0	762
P01	0	SLU-2	-26351	76	-680	-2396	762
P01	0	SLU-3	-24890	76	-690	-18929	762
P01	0	SLU-4	-24842	211	-680	-3429	2103
P01	0	SLU-5	-23746	211	-688	-15829	2103
P01	0	SLU-6	-24842	76	-680	-3429	762
P01	0	SLU-7	-23746	76	-688	-15829	762
P01	0	SLU-8	-24842	76	-1134	-7782	762
P01	0	SLU-9	-23746	76	-1141	-20182	762
P01	0	SLU-10	-24842	76	1133	13982	762
P01	0	SLU-11	-23746	76	1126	1582	762

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo Relazione di Calcolo Pile

Pagina 33 di 156

	Comb.						
PILA	Z	Carico	Fz	Fx	Fy	Mx	My
	m		KN	KN	KN	KN-m	KN-m
P01	0	SLV-1	-14852	735	96	1513	6576
P01	0	SLV-2	-14852	220	320	3619	1971
P01	0	SLV-3	-14224	220	96	1513	1971
P02	0	SLU-1	-23555	57	0	0	981
P02	0	SLU-2	-30148	57	-894	-23427	981
P02	0	SLU-3	-28407	57	-914	-27839	981
P02	0	SLU-4	-28500	181	-898	-21228	3104
P02	0	SLU-5	-27194	181	-913	-24537	3104
P02	0	SLU-6	-28500	57	-898	-21228	981
P02	0	SLU-7	-27194	57	-913	-24537	981
P02	0	SLU-8	-28500	57	-1504	-30982	981
P02	0	SLU-9	-27194	57	-1519	-34292	981
P02	0	SLU-10	-28500	57	1528	17790	981
P02	0	SLU-11	-27194	57	1513	14481	981
P02	0	SLV-1	-18209	1045	170	1147	14929
P02	0	SLV-2	-18209	313	563	6871	4474
P02	0	SLV-3	-17415	313	170	1147	4474
P03	0	SLU-1	-25300	40	0	0	871
P03	0	SLU-2	-31965	40	-1025	-30055	871
P03	0	SLU-3	-30081	40	-1051	-34669	871
P03	0	SLU-4	-30299	151	-1032	-27943	3318
P03	0	SLU-5	-28886	151	-1052	-31403	3318
P03	0	SLU-6	-30299	40	-1032	-27943	871
P03	0	SLU-7	-28886	40	-1052	-31403	871
P03	0	SLU-8	-30299	40	-1734	-42346	871
P03	0	SLU-9	-28886	40	-1753	-45806	871
P03	0	SLU-10	-30299	40	1774	29670	871
P03	0	SLU-11	-28886	40	1754	26210	871
P03	0	SLV-1	-19342	1052	191	2273	19194
P03	0	SLV-2	-19342	315	627	10509	5752
P03	0	SLV-3	-18514	315	191	2273	5752
P04	0	SLU-1	-28751	21	0	0	645
P04	0	SLU-2	-35467	21	-1082	-25859	645
P04	0	SLU-3	-33480	21	-1017	-40429	645
P04	0	SLU-4	-33788	106	-1076	-26615	3222
P04	0	SLU-5	-32298	106	-1028	-37543	3222
P04	0	SLU-6	-33788	21	-1076	-26615	645
P04	0	SLU-7	-32298	21	-1028	-37543	645
P04	0	SLU-8	-33788	21	-1783	-45872	645
P04	0	SLU-9	-32298	21	-1735	-56800	645
P04	0	SLU-10	-33788	21	1750	50413	645
P04	0	SLU-11	-32298	21	1798	39485	645
P04	0	SLV-1	-21947	663	163	4835	17276
P04	0	SLV-2	-21947	199	552	15085	5178
P04	0	SLV-3	-21123	199	163	4835	5178
P05	0	SLU-1	-29388	12	0	0	369
P05	0	SLU-2	-36109	12	-1133	-28331	369
P05	0	SLU-3	-34093	12	-1069	-43584	369

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo

Relazione di Calcolo Pile

Pagina 34 di 156

PILA	Z	Comb. Carico	Fz	Fx	Fy	Mx	Му
IILA	m	Carico	KN	KN	KN	KN-m	KN-m
P05	0	SLU-4	-34429	91	-1126	-29202	2920
P05	0	SLU-5	-32917	91	-1078	-40642	2920
P05	0	SLU-6	-34429	12	-1126	-29202	369
P05	0	SLU-7	-32917	12	-1078	-29202 -40642	369
P05	0	SLU-7	-34429	12	-1862	-50412	369
P05	0	SLU-6	-34429	12			369
P05	0	SLU-10		12	-1814	-61852	369
	0	1	-34429	12	1819	55637	
P05	_	SLU-11	-32917		1867	44198	369
P05	0	SLV-1	-22413	589	146	4714	16324
P05	0	SLV-2	-22413	176	497	14524	4892
P05	0	SLV-3	-21595	176	146	4714	4892
P06	0	SLU-1	-29714	3	0	0	100
P06	0	SLU-2	-36439	3	-1161	-30024	100
P06	0	SLU-3	-34419	3	-1106	-45488	100
P06	0	SLU-4	-34758	80	-1154	-30894	2633
P06	0	SLU-5	-33243	80	-1113	-42492	2633
P06	0	SLU-6	-34758	3	-1154	-30894	100
P06	0	SLU-7	-33243	3	-1113	-42492	100
P06	0	SLU-8	-34758	3	-1910	-53232	100
P06	0	SLU-9	-33243	3	-1869	-64830	100
P06	0	SLU-10	-34758	3	1868	58455	100
P06	0	SLU-11	-33243	3	1910	46857	100
P06	0	SLV-1	-22658	553	138	4590	15831
P06	0	SLV-2	-22658	166	470	14111	4744
P06	0	SLV-3	-21843	166	138	4590	4744
P07	0	SLU-1	-30200	-5	0	0	-165
P07	0	SLU-2	-36925	-5	-1154	-30878	-165
P07	0	SLU-3	-34905	-5	-1091	-45997	-165
P07	0	SLU-4	-35244	69	-1146	-31722	2337
P07	0	SLU-5	-33729	69	-1099	-43061	2337
P07	0	SLU-6	-35244	-5	-1146	-31722	-165
P07	0	SLU-7	-33729	-5	-1099	-43061	-165
P07	0	SLU-8	-35244	-5	-1896	-54559	-165
P07	0	SLU-9	-33729	-5	-1848	-65898	-165
P07	0	SLU-10	-35244	-5	1851	59624	-165
P07	0	SLU-11	-33729	-5	1898	48285	-165
P07	0	SLV-1	-23016	506	129	4485	15152
P07	0	SLV-2	-23016	152	441	13795	4541
P07	0	SLV-3	-22195	152	129	4485	4541
P08	0	SLU-1	-30684	-12	0	0	-421
P08	0	SLU-2	-37405	-12	-1107	-31016	-421
P08	0	SLU-3	-35385	-12	-1033	-44953	-421
P08	0	SLU-4	-35725	58	-1101	-31713	2042
P08	0	SLU-5	-34210	58	-1045	-42166	2042
P08	0	SLU-6	-35725	-12	-1101	-31713	-421
P08	0	SLU-7	-34210	-12	-1045	-42166	-421
P08	0	SLU-8	-35725	-12	-1822	-54250	-421
P08	0	SLU-9	-34210	-12	-1766	-64703	-421

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo

Relazione di Calcolo Pile

Pagina 35 di 156

DU 4 7		Comb.			_		
PILA	Z	Carico	Fz	Fx	Fy	Mx	My
	m		KN	KN	KN	KN-m	KN-m
P08	0	SLU-10	-35725	-12	1784	58434	-421
P08	0	SLU-11	-34210	-12	1839	47981	-421
P08	0	SLV-1	-23366	466	125	4391	14593
P08	0	SLV-2	-23366	140	424	13687	4373
P08	0	SLV-3	-22533	140	125	4391	4373
P09	0	SLU-1	-30696	-19	0	0	-681
P09	0	SLU-2	-37411	-19	-1066	-28735	-681
P09	0	SLU-3	-35407	-19	-967	-42441	-681
P09	0	SLU-4	-35732	51	-1057	-29511	1782
P09	0	SLU-5	-34229	51	-982	-39790	1782
P09	0	SLU-6	-35732	-19	-1057	-29511	-681
P09	0	SLU-7	-34229	-19	-982	-39790	-681
P09	0	SLU-8	-35732	-19	-1743	-50737	-681
P09	0	SLU-9	-34229	-19	-1669	-61017	-681
P09	0	SLU-10	-35732	-19	1689	55395	-681
P09	0	SLU-11	-34229	-19	1764	45116	-681
P09	0	SLV-1	-23378	466	127	4559	14590
P09	0	SLV-2	-23378	140	436	14137	4373
P09	0	SLV-3	-22532	140	127	4559	4373
P10	0	SLU-1	-27729	-35	0	0	-990
P10	0	SLU-2	-34393	-35	-1004	-34366	-990
P10	0	SLU-3	-32443	-35	-1029	-38977	-990
P10	0	SLU-4	-32727	57	-1016	-32469	1601
P10	0	SLU-5	-31264	57	-1035	-35927	1601
P10	0	SLU-6	-32727	-35	-1016	-32469	-990
P10	0	SLU-7	-31264	-35	-1035	-35927	-990
P10	0	SLU-8	-32727	-35	-1718	-50320	-990
P10	0	SLU-9	-31264	-35	-1737	-53778	-990
P10	0	SLU-10	-32727	-35	1792	38937	-990
P10	0	SLU-11	-31264	-35	1773	35479	-990
P10	0	SLV-1	-21134	781	196	3413	18513
P10	0	SLV-2	-21134	234	637	14016	5548
P10	0	SLV-3	-20290	234	196	3413	5548
P11	0	SLU-1	-24529	-58	0	0	-1127
P11	0	SLU-2	-31122	-58	-970	-13379	-1127
P11	0	SLU-3	-29364	-58	-971	-30990	-1127
P11	0	SLU-4	-29474	60	-968	-14453	1183
P11	0	SLU-5	-28155	60	-969	-27661	1183
P11	0	SLU-6	-29474	-58	-968	-14453	-1127
P11	0	SLU-7	-28155	-58	-969	-27661	-1127
P11	0	SLU-8	-29474	-58	-1610	-26235	-1127
P11	0	SLU-9	-28155	-58	-1610	-39443	-1127
P11	0	SLU-10	-29474	-58	1598	32675	-1127
P11	0	SLU-11	-28155	-58	1597	19467	-1127
P11	0	SLV-1	-18929	1061	173	3549	17255
P11	0	SLV-2	-18929	318	580	10357	5171
P11	0	SLV-3	-18130	318	173	3549	5171
P12	0	SLU-1	-22258	-76	0	0	-1126

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 36 di 156
Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

		Comb.					
PILA	Z	Carico	Fz	Fx	Fy	Mx	My
	m		KN	KN	KN	KN-m	KN-m
P12	0	SLU-2	-28292	-76	-722	-18243	-1126
P12	0	SLU-3	-26700	-76	-741	-22272	-1126
P12	0	SLU-4	-26784	52	-724	-16203	770
P12	0	SLU-5	-25589	52	-738	-19225	770
P12	0	SLU-6	-26784	-76	-724	-16203	-1126
P12	0	SLU-7	-25589	-76	-738	-19225	-1126
P12	0	SLU-8	-26784	-76	-1212	-22925	-1126
P12	0	SLU-9	-25589	-76	-1226	-25947	-1126
P12	0	SLU-10	-26784	-76	1225	10684	-1126
P12	0	SLU-11	-25589	-76	1211	7662	-1126
P12	0	SLV-1	-16287	1004	146	601	12392
P12	0	SLV-2	-16287	301	483	4831	3714
P12	0	SLV-3	-15652	301	146	601	3714

3.2.2 Sollecitazioni nella sezione posta a 10.50 m dall'estradosso plinto

In questa sezione riportiamo le sollecitazioni reletive alle diverse combinazioni di carico con riferimento alla sezione posta a 10.50 m dall'estradosso plinto.

Tabella 3.3.5 – Sollecitazioni a quota 10.5 m dall'estradosso plinto per le combinazioni di carico considerate.

PILA	Z	Comb. Carico	Fz	Fx	Fy	Mx	My
	m		KN	KN	KN	KN-m	KN-m
P02	10,5	SLU-1	-19380	57	0	0	391
P02	10,5	SLU-2	-24326	57	-835	-18797	391
P02	10,5	SLU-3	-25973	57	-824	-14574	391
P02	10,5	SLU-4	-23090	181	-836	-15501	1239
P02	10,5	SLU-5	-24325	181	-828	-12334	1239
P02	10,5	SLU-6	-23090	57	-836	-15501	391
P02	10,5	SLU-7	-24325	57	-828	-12334	391
P02	10,5	SLU-8	-23090	57	-1396	-19244	391
P02	10,5	SLU-9	-24325	57	-1388	-16076	391
P02	10,5	SLU-10	-23090	57	1404	-531	391
P02	10,5	SLU-11	-24325	57	1412	2637	391
P02	10,5	SLV-1	-14872	1045	169	-1195	4409
P02	10,5	SLV-2	-14872	313	562	577	1321
P02	10,5	SLV-3	-14078	313	169	-1195	1321
P03	10,5	SLU-1	-21154	40	0	0	465
P03	10,5	SLU-2	-25985	40	-980	-24281	465
P03	10,5	SLU-3	-27819	40	-956	-19911	465
P03	10,5	SLU-4	-24777	151	-981	-21008	1771
P03	10,5	SLU-5	-26153	151	-963	-17730	1771
P03	10,5	SLU-6	-24777	40	-981	-21008	465
P03	10,5	SLU-7	-26153	40	-963	-17730	465

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo Relazione di Calcolo Pile

Pagina 37 di 156

PILA	Z	Comb. Carico	Fz	Fx	Fy	Mx	Му
	m		KN	KN	KN	KN-m	KN-m
P03	10,5	SLU-8	-24777	40	-1636	-28466	465
P03	10,5	SLU-9	-26153	40	-1618	-25188	465
P03	10,5	SLU-10	-24777	40	1641	8825	465
P03	10,5	SLU-11	-26153	40	1658	12103	465
P03	10,5	SLV-1	-15999	1052	187	-304	8548
P03	10,5	SLV-2	-15999	315	623	3518	2562
P03	10,5	SLV-3	-15172	315	187	-304	2562
P04	10,5	SLU-1	-24499	21	0	0	422
P04	10,5	SLU-2	-29291	21	-942	-30142	422
P04	10,5	SLU-3	-31214	21	-1011	-14873	422
P04	10,5	SLU-4	-28093	106	-954	-27139	2108
P04	10,5	SLU-5	-29535	106	-1005	-15687	2108
P04	10,5	SLU-6	-28093	21	-954	-27139	422
P04	10,5	SLU-7	-29535	21	-1005	-15687	422
P04	10,5	SLU-8	-28093	21	-1613	-39225	422
P04	10,5	SLU-9	-29535	21	-1665	-27773	422
P04	10,5	SLU-10	-28093	21	1684	21206	422
P04	10,5	SLU-11	-29535	21	1632	32658	422
P04	10,5	SLV-1	-18513	663	173	866	10377
P04	10,5	SLV-2	-18513	199	562	7048	3110
P04	10,5	SLV-3	-17688	199	173	866	3110
P05	10,5	SLU-1	-25201	12	0	0	250
P05	10,5	SLU-2	-29931	12	-999	-32893	250
P05	10,5	SLU-3	-31922	12	-1063	-16980	250
P05	10,5	SLU-4	-28749	91	-1008	-29859	1976
P05	10,5	SLU-5	-30242	91	-1056	-17925	1976
P05	10,5	SLU-6	-28749	12	-1008	-29859	250
P05	10,5	SLU-7	-30242	12	-1056	-17925	250
P05	10,5	SLU-8	-28749	12	-1698	-43698	250
P05	10,5	SLU-9	-30242	12	-1746	-31764	250
P05	10,5	SLU-10	-28749	12	1751	25497	250
P05	10,5	SLU-11	-30242	12	1703	37431	250
P05	10,5	SLV-1	-19016	589	155	855	10289
P05	10,5	SLV-2	-19016	176	506	7053	3084
P05	10,5	SLV-3	-18198	176	155	855	3084
P06	10,5	SLU-1	-25478	3	0	0	68
P06	10,5	SLU-2	-30210	3	-1035	-34293	68
P06	10,5	SLU-3	-32202	3	-1091	-18244	68
P06	10,5	SLU-4	-29027	80	-1042	-31224	1792
P06	10,5	SLU-5	-30521	80	-1084	-19187	1792
P06	10,5	SLU-6	-29027	3	-1042	-31224	68
P06	10,5	SLU-7	-30521	3	-1084	-19187	68
P06	10,5	SLU-8	-29027	3	-1751	-45902	68
P06	10,5	SLU-9	-30521	3	-1793	-33866	68
P06	10,5	SLU-10	-29027	3	1793	27489	68
P06	10,5	SLU-11	-30521	3	1751	39526	68
P06	10,5	SLV-1	-19225	553	146	777	10090
P06	10,5	SLV-2	-19225	166	478	6842	3024

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo

Relazione di Calcolo Pile

Pagina 38 di 156

PILA	Z	Comb. Carico	Fz	Fx	Fy	Mx	Му
	m		KN	KN	KN	KN-m	KN-m
P06	10,5	SLV-3	-18410	166	146	777	3024
P07	10,5	SLU-1	-26009	-5	0	0	-114
P07	10,5	SLU-2	-30738	-5	-1020	-35075	-114
P07	10,5	SLU-3	-32733	-5	-1084	-19297	-114
P07	10,5	SLU-4	-29556	69	-1029	-32052	1624
P07	10,5	SLU-5	-31052	69	-1077	-20218	1624
P07	10,5	SLU-6	-29556	-5	-1029	-32052	-114
P07	10,5	SLU-7	-31052	-5	-1077	-20218	-114
P07	10,5	SLU-8	-29556	-5	-1732	-47374	-114
P07	10,5	SLU-9	-31052	-5	-1779	-35540	-114
P07	10,5	SLU-10	-29556	-5	1782	29235	-114
P07	10,5	SLU-11	-31052	-5	1735	41068	-114
P07	10,5	SLV-1	-19615	506	139	816	9956
P07	10,5	SLV-2	-19615	152	451	6908	2984
P07	10,5	SLV-3	-18795	152	139	816	2984
P08	10,5	SLU-1	-26461	-12	0	0	-296
P08	10,5	SLU-2	-31187	-12	-962	-34555	-296
P08	10,5	SLU-3	-33182	-12	-1037	-19836	-296
P08	10,5	SLU-4	-30006	58	-974	-31639	1436
P08	10,5	SLU-5	-31501	58	-1031	-20600	1436
P08	10,5	SLU-6	-30006	-12	-974	-31639	-296
P08	10,5	SLU-7	-31501	-12	-1031	-20600	-296
P08	10,5	SLU-8	-30006	-12	-1649	-46901	-296
P08	10,5	SLU-9	-31501	-12	-1705	-35862	-296
P08	10,5	SLU-10	-30006	-12	1722	29408	-296
P08	10,5	SLU-11	-31501	-12	1666	40447	-296
P08	10,5	SLV-1	-19942	466	136	917	9765
P08	10,5	SLV-2	-19942	140	436	7098	2927
P08	10,5	SLV-3	-19109	140	136	917	2927
P09	10,5	SLU-1	-26472	-19	0	0	-479
P09	10,5	SLU-2	-31228	-19	-893	-32737	-479
P09	10,5	SLU-3	-33188	-19	-996	-17987	-479
P09	10,5	SLU-4	-30039	51	-909	-29920	1253
P09	10,5	SLU-5	-31509	51	-986	-18857	1253
P09	10,5	SLU-6	-30039	-19	-909	-29920	-479
P09	10,5	SLU-7	-31509	-19	-986	-18857	-479
P09	10,5	SLU-8	-30039	-19	-1549	-44233	-479
P09	10,5	SLU-9	-31509	-19	-1626	-33170	-479
P09	10,5	SLU-10	-30039	-19	1649	27331	-479
P09	10,5	SLU-11	-31509	-19	1572	38394	-479
P09	10,5	SLV-1	-19960	466	142	1055	9763
P09	10,5	SLV-2	-19960	140	451	7420	2926
P09	10,5	SLV-3	-19114	140	142	1055	2926
P10	10,5	SLU-1	-23554	-35	0	0	-625
P10	10,5	SLU-2	-28331	-35	-955	-28767	-625
P10	10,5	SLU-3	-30218	-35	-935 -935	-24373	-625
P10	10,5	SLU-4	-27137	57	-962	-24373	1011
P10	10,5	SLU-5	-28552	57	-902 -947	-2350	1011

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo

Relazione di Calcolo Pile

Pagina 39 di 156

		Comb.					
PILA	Z	Carico	Fz	Fx	Fy	Mx	My
	m		KN	KN	KN	KN-m	KN-m
P10	10,5	SLU-6	-27137	-35	-962	-25645	-625
P10	10,5	SLU-7	-28552	-35	-947	-22350	-625
P10	10,5	SLU-8	-27137	-35	-1617	-36499	-625
P10	10,5	SLU-9	-28552	-35	-1602	-33203	-625
P10	10,5	SLU-10	-27137	-35	1661	17769	-625
P10	10,5	SLU-11	-28552	-35	1676	21065	-625
P10	10,5	SLV-1	-17762	781	193	751	10535
P10	10,5	SLV-2	-17762	234	634	6829	3157
P10	10,5	SLV-3	-16918	234	193	751	3157
P11	10,5	SLU-1	-20371	-58	0	0	-535
P11	10,5	SLU-2	-25225	-58	-901	-21383	-535
P11	10,5	SLU-3	-26964	-58	-901	-3772	-535
P11	10,5	SLU-4	-24012	60	-899	-18075	562
P11	10,5	SLU-5	-25316	60	-899	-4867	562
P11	10,5	SLU-6	-24012	-58	-899	-18075	-535
P11	10,5	SLU-7	-25316	-58	-899	-4867	-535
P11	10,5	SLU-8	-24012	-58	-1494	-23508	-535
P11	10,5	SLU-9	-25316	-58	-1494	-10300	-535
P11	10,5	SLU-10	-24012	-58	1482	3658	-535
P11	10,5	SLU-11	-25316	-58	1482	16866	-535
P11	10,5	SLV-1	-15591	1061	173	-802	6528
P11	10,5	SLV-2	-15591	318	580	1905	1957
P11	10,5	SLV-3	-14792	318	173	-802	1957

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 40 di 156
Nome file:
VI01-C-CL004_B.00_relazione_pile.doc

4 VERIFICHE ALLO SLU E SLE DEL FUSTO PILE

Dopo un'attenta analisi delle sollecitazioni agenti sulle differenti pile, sono stati individuati due gruppi di pile che si presentano sufficientemente omogenei da un punto di vista della sollecitazione. Il risultato è l'individuazione di un gruppo di pile di testata (gruppo 1) costituito dalle pile P01, P02, P11 e P12 con lunghezze più modeste ed di un gruppo di pile di campata costituito dalle pile P03, P04, P05, P06, P07, P08, P09 e P10. All'interno di questi due gruppi di pile si sono analizzate, per le verifiche di resistenza, le seguenti n. 3 condizioni di sollecitazione:

- massimo momento flettente trasversale (M_x);
- massimo momento flettente longitudinale (M_v);
- massima compressione N.

Sulla base di queste condizioni di sollecitazioni si sono condotte le verifiche di resistenza a presso flessione deviata utilizzando VcaSlu versione 7.6 che conduce questo tipo di verifico costruendo il dominio di resistenza Mx-My con sforzo normale assegnato pari a quello di calcolo per la condizione di sollecitazione considerata.

4.1 Verifica per tensioni normali

La sezione tipo del fusto pile è rappresentata in figura 4.1. Attraverso diverse analisi di predimensionamento si è scelto di armare longitudinalmente il fusto delle pile con ferri posti ad interasse 10 cm. Il diametro dei ferri viene precisato nei paragrafi successivi. Nella tabella 4.1 sono riportate le coordinate delle posizioni della gabbia generica gabbia di armatura. Queste coordinate valgono per entrambi i gruppi di pile. Le differenziazioni avvengono solo a livello dei diametri adottati.

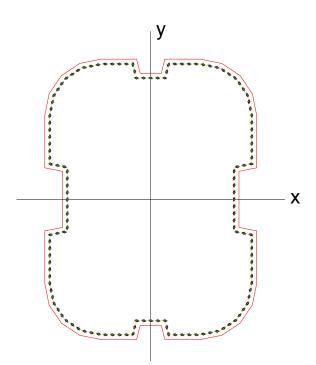


Figura 4.1 – Sezione tipo fusto pile

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 41 di 156
Nome file:
VI01-C-CL004_B.00_relazione_pile.doc

Tabella 4.4.1 – Coordinate delle posizione dei ferri di armatura

Posizione V [cm] V[cm]								
Posizione	X [cm]	Y[cm]						
1	-118,1	10,0						
2	-118,1	20,0						
3	-118,1	30,0						
4	-118,1	40,0						
5	-122,4	46,5						
6	-132,2	48,5						
7	-142,0	50,4						
8	-143,1	59,5						
9	-143,1	69,5						
10	-143,1	79,5						
11	-143,1	89,5						
12	-143,1	99,5						
13	-143,1	109,5						
14	-143,1	119,5						
15	-142,5	129,5						
16	-140,5	139,3						
17	-137,2	148,7						
18	-132,7	157,6						
19	-127,0	165,8						
20	-120,2	173,1						
21	-112,5	179,5						
22	-104,0	184,7						
23	-94,8	188,8						
24	-9 -1 ,0 -85,2	191,5						
25	-75,3	192,9						
26	-65,3	193,1						
27	-55,3	193,1						
28	-45,3	193,1						
29	-45,3	193,1						
30								
	-25,4	193,0						
31	-22,9	183,3						
32	-20,5	173,6						
33	-10,9	173,1						
34	-0,9	173,1						
35	9,1	173,1						
36	19,1	173,1						
37	22,5	181,5						
38	24,9	191,2						
39	33,4	193,1						
40	43,4	193,1						
41	53,4	193,1						
42	63,4	193,1						
43	73,4	193,0						
44	83,4	191,9						
45	93,0	189,4						
46	102,3	185,6						
47	110,9	180,6						
48	118,8	174,4						
47	110,9	180,6						

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo				
Relazione di Calcolo Pile				
Pagina 42 di 156				
Nome file:				

VI01-C-CL004_B.00_relazione_pile.doc

Posizione	X [cm]	Y[cm]
49	125,8	167,3
50	131,7	159,2
51	136,5	150,4
52	140,0	141,1
53	142,2	131,3
54	143,1	121,4
55	143,1	111,4
56	143,1	101,4
57	143,1	91,4
58	143,1	81,4
59	143,1	71,4
60	143,1	61,4
61	143,1	51,4
62	134,0	48,8
63	124,2	46,9
64	118,1	41,9
65	118,1	31,9
66	118,1	21,9
67	118,1	11,9
68	118,1	1,9
69	118,1	-8,1
70	118,1	-18,1
71	118,1	-28,1
72	118,1	-38,1
73	120,5	-46,1
74	130,3	-48,1
75	140,1	-50,1
76	143,1	-57,6
77	143,1	-67,6
78	143,1	-77,6
79	143,1	-87,6
80	143,1	-97,6
81	143,1	
82	143,1	-107,6 -117,6
83	143,1	-117,6
84	141,0	-137,5
85	137,9	-147,0
86	137,9	-156,0
87	128,1	-164,3
88	121,5	-171,8
89	114,0	-171,8
90	105,6	-183,8
91	96,6	-188,1
92	87,0	-191,1
93	77,2	-191,1
94	67,2	-192,7
95	57,2	-193,1
96	47,2	-193,1
97	37,2	-193,1
98	27,2	-193,1
50	£1,£	100,1

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 43 di 156
Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

Posizione	X [cm]	Y[cm]
99	23,4	-185,1
100	21,0	-175,4
101	12,8	-173,1
102	2,8	-173,1
103	-7,2	-173,1
104	-17,2	-173,1
105	-22,0	-179,7
106	-24,5	-189,4
107	-31,6	-193,1
108	-41,6	-193,1
109	-51,6	-193,1
110	-61,6	-193,1
111	-71,6	-193,1
112	-81,5	-192,2
113	-91,3	-189,9
114	-100,6	-186,4
115	-109,4	-181,6
116	-117,4	-175,6
117	-124,5	-168,7
118	-130,7	-160,8
119	-135,7	-152,1
120	-139,4	-142,9
121	-141,9	-133,2
122	-143,0	-123,2
123	-143,1	-113,2
124	-143,1	-103,2
125	-143,1	-93,2
126	-143,1	-83,2
127	-143,1	-73,2
128	-143,1	-63,2
129	-143,1	-53,2
130	-135,8	-49,2
131	-126,0	-47,2
132	-118,1	-43,7
133	-118,1	-33,7
134	-118,1	-23,7
135	-118,1	-13,7
136	-118,1	-3,7

4.1.1 Sezione di spiccato

4.1.1.1 Gruppo 1: pile P01, P02, P11 e P12

Per armare la sezione di spiccato si è progettata un'armatura di n. 136 Φ22 a passo 10 cm presente lungo tutto il fusto della generica pila. Per questo gruppo di pile si è effettuato il dimensionamento solo rispetto alla sezione di base in quanto la sezione posta a 10,5 m dallo spiccato, vista l'altezza inferiore rispetto al gruppo di pile 2, era poco significativa. Nella tabella 4.2 si riportano le sollecitazioni relative alle condizioni considerate e i momenti resistenti associati. In figura 4.2 si riporta la schermata relativa alla verifica della

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 44 di 156
Nome file:
VI01-C-CL004_B.00_relazione_pile.doc

condizione di sollecitazione Mxmax. In figura 4.3, invece, si riporta il dominio resistente della sezione sempre in riferimento alla condizione di sollecitazione Mxmax. Come si evince dalla tabella 4.2 la pila dimensionante nel gruppo è la P11.

Tabella 4.4.2 - Verifica sezione di spiccato

Gruppo 1 : PILE P01,P02,P11 e P12								
QUOTA z=0 m As=Ø22/10 (n. 136)								
COMB.	PILA	N	Mx	Му	Mxrd	Myrd		
		KN	KNm	KNm	KNm	KNm	Verifica Mrd>Med	
Nmax	11	31122,15	13379,44	1126,56	81307	7644	0k	0k
Mxmax	11	28155,35	39442,67	1126,56	78848	2529	0k	0k
Mymax	11	18928,87	3549,25	17255,12	9521	49866	0k	0k

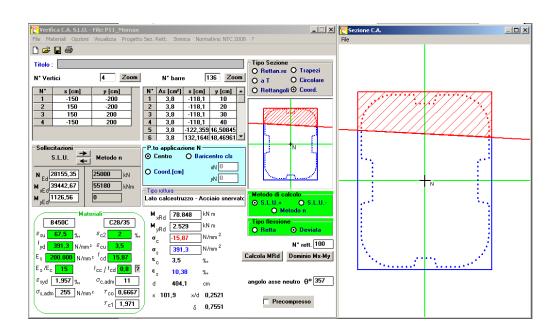


Figura 4.2 – Verifica della condizione Mx,max

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 45 di 156
Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

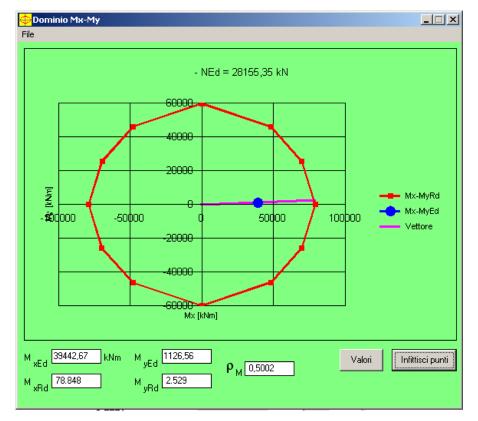


Figura 4.3 – Dominio resistente Mx-My nella condizione di sollecitazione Mxmax

4.1.1.2 Gruppo 2: pile P03, P04, P05, P06, P07, P08, P09, P10

Allo stesso modo di quanto fatto per il primo gruppo di pile si è proceduto per il secondo. Le armature longitudinali adottate sono in numero di 136 come prima. In questo caso, però, l'armatura adottata rimane costante fino a 10.5 m dallo spiccato di fondazione. A partire dalla quota successiva si utilizzerà un altro diametro del ferro. Tra quota z=0 m e quota z=10.5 m si utilizza un'armatura di n. 136 Φ 26 a passo 10 cm. In tabella 4.3 si riporta la verifica per le tre condizioni di sollecitazione considerate in riferimento alla sezione posta alla base delle pile.

Gru QUOTA z=0								
COMB. PILA N Mx My Mxrd Myrd								
		KN	KNm	KNm	KNm	KNm	Verifica I	Mrd>Med
Nmax	09	37410,67	28734,73	681,01	100201	2748	0k	0k
Mxmax	07	33728,53	65897,56	164,56	96888	920	0k	0k
Mymax	03	19342,22	2272,75	19194,41	6129	60358	0k	0k

Tabella 4.4.3 – Verifica sezione di spiccato

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo				
Relazione di Calcolo Pile				
Pagina 46 di 156				
Nome file:				

4.1.2 Sezione posta a 10.50 m dall'estradosso plinto

Questa verifica viene condotta solo per le pile del Gruppo 2: P03, P04, P05, P06, P07, P08, P09, P10; ovvero, le pile più alte del viadotto Giulfo. Per tali pile ad una quota superiore a 10.5 m dallo spiccato di fondazione è stata progettata una armatura di passo uguale a quello sottostante ma con diametro inferiore. La gabbia di armatura longitudinale da adottare sarà, allora, composta da n. 136 Φ22 a passo 10 cm. Le verifiche di resistenza sono state condotte con lo stesso criterio adottato in precedenza. Nella tabella 4.4. si riporta il prospetto delle verifiche effettuate in relazione alle condizioni di sollecitazioni considerate.

Gruppo 2: PILE P03, P04, P05, P06, P07, P08, P09, P10 QUOTA z=10.5 m As=Ø22/10 (n. 136) COMB. **PILA** Ν Mx Мy Mxrd Myrd Verifica Mrd>Med ΚN KNm **KNm** KNm KNm **Nmax** 479,04 09 33187,50 17986,70 84530 2556 0k 0k **Mxmax** 07 29555,66 | 47373,52 114,41 80723 847 0k 0k 10 17761,78 751,08 10535,34 1959 49278 0k 0k

Tabella 4.4.4 – Verifica sezione posta a 10.5 m dall'estradosso plinto

4.2 Verifica per tensioni tangenziali

Mymax

Per le verifiche alle tensioni tangenziali non è necessario effettuare la distinzione per i diversi gruppi di pile. Essendo le sollecitazioni taglianti sufficientemente omogenee nelle due direzioni principali e su tutte le pile la verifica verrà condotta sulla pila più sollecitata secondo le seguenti n. 4 condizioni di sollecitazione:

- sforzo normale minimo e taglio in direzione trasversale associato (F_v N_{min});
- massimo taglio in direzione trasversale e sforzo normale associato (F_{vmax} N);
- sforzo normale minimo e taglio in direzione longitudinale associato (F_x N_{min});
- massimo taglio in direzione longitudinale e sforzo normale associato (F_{xmax} N).

Queste condizioni, come deve essere, si trovano in corrispondenza delle tre combinazioni sismiche. Per le verifiche di taglio si fa riferimento a quanto prescritto nel paragrafo 4.1.2.1.3 delle norme tecniche per le costruzioni. A vantaggio di statica, per il calcolo del taglio resistente, ci riferiamo ad una sezione rettangolare ideale di calcestruzzo iscritta all'interno della sezione reale della pila (figura 4.4). Ancora, viste le ridotte sollecitazioni taglianti rispetto al taglio resistente del solo calcestruzzo, sempre a vantaggio di statica, le armature longitudinali prese in considerazioni nel calcolo sono quelle delle pile meno armate, ovvero n. 136 Ф22 a passo 10 cm.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 47 di 156
Nome file:
VI01-C-CL004_B.00_relazione_pile.doc

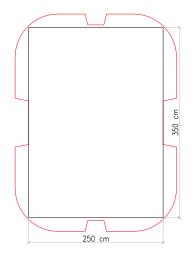


Figura 4.4 – Sezione di riferimento per il calcolo del taglio resistente

La verifica a taglio viene eseguita nella sezione più sfavorevole per tutte le pile che risulta essere quella all'estradosso del plinto di fondazione. La verifica condotta è riportata nel foglio di calcolo seguente:

\/EDIEICA	וח	DEGISTENT	7A A TAGI	IO SEZIONE	DETTANGO	N VDE	<u> </u>
VERIFICA DI RESISTENZA A TAGLIO SEZIONE (NTC 2008)					. KLITANGC		
(1110 2000)							
sezione verifica	di	taglio trasversale	taglio trasversale	taglio longitudinale	taglio longitudinale		
corrispondente	а	Nmin	Fymax	Nmin	Fxmax		
Sollecitazio	ni						
V	=	320	1910	735	1061	kN	taglio
N	=	14224	33243	14224	18929	kN	sforzo normale (>0 compressione)
Geometria							
В	=	2500	2500	3500	3500	mm	larghezza sezione
Н	=	3500	3500	2500	2500	mm	altezza sezione
С	=	80	80	80	80	mm	copriferro
d	=	3420	3420	2420	2420	mm	altezza utile
Materiali							
R _{ck}	=	35,0	35,0	35,0	35,0	MPa	resistenza caratteristica cubica
f _{ck}	=	29,1	29,1	29,1	29,1	MPa	resistenza caratteristica cilindrica
gc	=	1,5	1,5	1,5	1,5		coefficiente parziale di sicurezza
a_{cc}	=	0,85	0,85	0,85	0,85		coefficiente riduttivo per resistenze di lunga durata
f _{cd}	=	16,5	16,5	16,5	16,5	MPa	resistenza di calcolo a compressione
gs	=	1,15	1,15	1,15	1,15		coefficiente di sicurezza acciaio
f _{vk}	=	450,0	450,0	450,0	450,0	MPa	tensione caratteristica di snervamento acciaio
f _{yd}	=	391,3	391,3	391,3	391,3	MPa	tensione di snervamento di calcolo dell'acciaio
Verifica per elementi sprovvisti di armatura a taglio							
A _{sl}	=	51698,0	51698,0	51698,0	51698,0	mm ²	armatura longitudinale
rı	=	0,00591	0,00591	0,00591	0,00591		rapporto geometrico di armatura longitudinale
k	=	1,2	1,2	1,3	1,3		-
V _{min}	=	0,3	0,3	0,3	0,3		

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto	Esecutivo
riogello	ESECULIVO

Opera: Viadotto Giulfo					
Relazione di Calcolo Pile					
Pagina 48 di 156					
Nome file: VI01-C-CL004_B.00_relazione_pile.doc					

S _{cp}	=	1,6	3,8	1,6	2,2	MPa	tensione media calcestruzzo
							tensione media di compressione
S _{cp,ad}	=	1,6	3,3	1,6	2,2	MPa	adottata (<=0.2fcd)
V_{Rd}	=	5371,4	7509,0	5440,8	6124,0	kN	taglio resistente
check	=	OK	OK	OK	OK		

Il taglio resistente del solo calcestruzzo è maggiore risulta essere maggiore della sollecitazione di progetto.

4.3 Verifica a fessurazione (SLE)

Per le pile è prescritta una classe di esposizione XF2, classificate al punto 4.1.2.2.4.3 come condizioni ambientali aggressive. Le combinazioni di carico da considerare sono quella "frequente" per lo stato limite di apertura delle fessure e quella "quasi permanente" per lo stato limite di decompressione. Le matrici dei coefficienti per formare le combinazioni di carico sono riportati in tabella 4.5 e 4.6.

Tabella 4.4.5 – Matrice coefficienti per formare le combinazioni di carico frequenti

MATRICE COEFFICIENTI DI COMBINAZIONE DEI CARICHI_ SLE comb.frequente							
	SLE-F1	SLE-F2	SLE-F3	SLE-F4	SLE-F5	SLE-F6	
	Schema	Schema	AZ-	AZ-	AZ-	AZ-	
	1.1	1.2	termiche.1	termiche.2	vento.1	vento.2	
g1	1	1	1	1	1	1	peso proprio impalcato
g1-							
pile	1	1	1	1	1	1	peso proprio pile
g2	1	1	1	1	1	1	permanenti portati
e2	0,6	0,6	0,6	0,6	0,6	0,6	ritiro
е3	0,6	0,6	0,6	0,6	0,6	0,6	temperatura
							carico mobile - massima azione
q1.1	0,75	0	0,75	0	0,75	0	verticale
							carico mobile - massimo
q1.2	0	0,75	0	0,75	0	0,75	momento trasversale
q3	0	0	0	0	0	0	frenatura
q4	0	0	0	0	0	0	azione centrifuga
q5-							
imp	0	0	0	0	0,2	0,2	vento su impalcato
q5-	_	_	_	_			
pile	0	0	0	0	0,2	0,2	vento su pile
q6.1	0	0	0	0	0	0	sisma (X+0.3Y+0.3Z)
q6.2	0	0	0	0	0	0	sisma (0.3X+Y+0.3Z)
q6.3	0	0	0	0	0	0	sisma (0.3X+0.3Y+Z)

Tabella 4.6 – Matrice coefficienti per formare le combinazioni di carico frequenti

MATRICE COEFFICIENTI DI COMBINAZIONE DEI CARICHI_ SLE quasi perm.				
G				
g1	1			
g1-pile 1				
g2	1			

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 49 di 156
Nome file: VI01-C-CL004_B.00_relazione_pile.doc

e2	0,5
e3	0,5
q1.1	0
q1.2 q3 q4	0
q3	0
q4	0
q5-imp	0
q5-pile	0
q6.1	0
q6.1 q6.2 q6.3	0
q6.3	0

Le condizioni di sollecitazione esaminate per la verifica a fessurazione sono le seguenti due:

- momento trasversale minimo (M_{xmin});
- momento longitudinale minimo (M_{ymin}).

Prendendo in considerazione tutte le pile da P01 a P12 i valori delle azioni di calcolo da considerare per lo stato limite di fessurazione sono quelli riportati in tabella 4.7 e 4.8.

Tabella 4.7 – Azioni di calcolo per lo stato limite di apertura delle fessure

	RIEPILOGO	
	Mx,mim	My,min
Fz	-26106,47	-26471
Mx	-16405,88	-15320
My	-2352,77	-2695,52
Pila	P07	P09
	SLF-F2	SLF-F2

Tabella 4.8 – Azioni di calcolo per lo stato limite di decompressione

	RIEPILOGO			
	Mx,mim	My,min		
	-			
Fz	22741,06	-22741		
Mx	-1962,52	-1963		
My	-2246,27	-2246,27		
Pila	P09	P09		
	SLE-QP	SLE-QP		

Riportiamo nel seguito il foglio di calcolo per la condizione Mxmin e per la condizione Mymin.

armature	poco sensibili		
	comb.	comb.	

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 50 di 156
Nome file:
VI01-C-CL004_B.00_relazione_pile.doc

		FREQUENTE	QUASI PERM.		
diametri ma fessurazion		mi delle barre per i	l controllo della		
σ_{s}		w2=0.30 mm	w1=0.20 mm		
[MPa]		Ø	Ø		
160		32	25		
200		25	16		
240		16	12		
280		12	8		
320		10	6		
360		8	0		
spaziatura r	mas	ssima delle barre pe	er il controllo della	 fessur	razione
σ _s		w2=0.30 mm	w1=0.20 mm		
[MPa]		wz=0.30 mm	Ø 1–0.20 IIIII		
160	H	300	200		
200		250	150		
240	H	200	100		
280		150	50		
320		100	0		
360		50	0		
		Mx,max	Mx,max		comb.
M_{Ed}	=	16405,88	1963	kNm	Momento di calcolo (fibre tese verso il basso)
N_{Ed}	=	26106	22741	kN	Sforzo Normale di calcolo (>0 compressione)
		comb.	comb.		
		FREQUENTE	QUASI PERM.		
Materiali		TREGUENTE	QUASI FERIVI.		
Rck	=	35	35	MPa	resistenza caratteristica cubica
f _{ck}	=	29,05	29,05	+	resistenza caratteristica cilindrica
f _{cm}	=	37,05	37,05	MPa	resistenza cilindrica media
f _{ctm}	=	2,83	2,83	 	resistenza media a trazione semplice
f _{cfm}	=	2,43	2,43	MPa	resistenza media a trazione per flessione
σ_{t}	=	2,36	2,36	MPa	tensione limite apertura fessure
n	=	15	15		coefficiente di omogeneizzazione armature
n'	=	0,00	0,00		coefficiente di omogeneizzazione cls teso
Geometria					
В	=	3000	3000	mm	base sezione
Н	=	4000	4000	mm	altezza sezione
Armatura					
n ₁	=	18	18		n. tondini inferiori
Ø ₁	=	26	26	mm	diametro tondini inferiori
d ₁	=	3950	3950	mm	distanza da lembo compresso
A _{s1}	=	9557	9557	mm ²	area armatura inferiore
n ₂	=	18	18		n. tondini superiori
\emptyset_2	=	26	26	mm	diametro tondini superiori

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 51 di 156
Nome file: VI01-C-CL004_B.00_relazione_pile.doc

d_2	=	50	50	mm	distanza da lembo compresso (copriferro)
A _{s2}	=	9557	9557	mm ²	area armatura superiore
Sollecitazio	ni				
М	=	16405,9	1962,5	kNm	Momento di calcolo (fibre tese verso il basso)
N	=	26106,5	22741,1	KN	Sforzo Normale di calcolo (>0 compressione)
е	=	628	86	mm	eccentricità
Caratteristi compression		e sezione interamen	te reagente a		
A _{cls}	=	12000000	12000000	mm ²	area calcestruzzo
As	=	19113,4	19113,4	mm ²	area armatura
A _{id}	=	1,23E+07	1,23E+07	mm ²	area sezione ideale
d_{G}	=	2000,0	2000,0	mm	distanza baricentro sezione ideale da lembo superiore
J_{id}	=	1,71E+13	1,71E+13	mm ⁴	momento d'inerzia baricentrico sezione ideale
$ ho_{id}$	=	1179,4	1179,4	mm	raggio d'inerzia sezione
Y _{nocc,s}	=	1304,5	1304,5	mm	quota punto di nocciolo superiore
Caratteristi	che	sezione interamen	te reagente a trazio	ne	
A _{cls,t}	=	-	-	mm ²	area calcestruzzo teso omogeneizzato
As	=	-	-	mm ²	area armatura
$A_{id,t}$	=	-	-	mm ²	area sezione ideale
d _{G,t}	=	-	-	mm	distanza baricentro sezione ideale da lembo superiore
$J_{id,t}$	=	-	-	mm ⁴	momento d'inerzia baricentrico sezione ideale
$\rho_{id,t}$	=	-	-	mm	raggio d'inerzia sezione
Y _{nocc,i}	=	-	-	mm	quota punto di nocciolo inferiore
Comportan	nen	to sezione			
		decompressione	decompressione		

condizioni

ambientali aggressive

armature poco sensibili

comb. comb. FREQUENTE QUASI PERM.

diametri massimi delle barre per il controllo della fessurazione

 σ_s w2=0.30 mm w1=0.20 mm

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 52 di 156
Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

[MPa]	Ø	Ø
160	32	25
200	25	16
240	16	12
280	12	8
320	10	6

8

Caratteristiche sezione interamente reagente a

360

spaziatura massima delle barre per il controllo della fessurazione

0

$\sigma_{\rm s}$		w2=0.30 mm	w1=0.20 mm	.0004.	u=10110
[MPa]		w2=0.30 mm Ø	w 1=0.20 mm Ø		
160		300	200		
200		250	150		
240		200	100		
280		150	50		
320		100	0		
360		50	0		
		My,max	My,max		comb.
M_{Ed}	=	2695,52	2246	kNm	Momento di calcolo (fibre tese verso il basso)
N_{Ed}	=	26471	22741	kN	Sforzo Normale di calcolo (>0 compressione)
		comb. FREQUENTE	comb. QUASI PERM.		
Materiali					
Rck	=	35	35		resistenza caratteristica cubica
f_{ck}	=	29,05	29,05	MPa	resistenza caratteristica cilindrica
f_{cm}	=	37,05	37,05		resistenza cilindrica media
f_{ctm}	=	2,83	2,83	MPa	resistenza media a trazione semplice
f_{cfm}	=	2,43	2,43	MPa	resistenza media a trazione per flessione
σ_{t}	=	2,36	2,36	MPa	tensione limite apertura fessure
n	=	15	15		coefficiente di omogeneizzazione armature
n'	=	0,00	0,00		coefficiente di omogeneizzazione cls teso
Geometria		4000	4000		haar aariana
B H	=	4000	4000	mm	base sezione
⊓ Armatura	=	3000	3000	mm	altezza sezione
n ₁	=	22	22		n. tondini inferiori
\emptyset_1	=	26	26	mm	diametro tondini inferiori
d_1	=	2950	2950	mm	distanza da lembo compresso
A_{s1}	=	11680	11680	mm^2	area armatura inferiore
n_2	=	22	22		n. tondini superiori
\emptyset_2	=	26	26	mm	diametro tondini superiori
d_2	=	50	50	mm	distanza da lembo compresso (copriferro)
A_{s2}	=	11680	11680	mm^2	area armatura superiore
Sollecitaz	ioni				
M	=	2695,5	2246,3	kNm	,
N	=	26470,7	22741,1	KN	Sforzo Normale di calcolo (>0 compressione)
e •	=	102	99	mm	eccentricità

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

٦	Opera: Viadotto Giulfo
ļ	•
	Relazione di Calcolo Pile
	Pagina 53 di 156
	Nome file:
	VI01-C-CL004_B.00_relazione_pile.doc

compressi	one				
A_{cls}	=	12000000	12000000	mm^2	area calcestruzzo
A_s	=	23360,9	23360,9	mm^2	area armatura
A_{id}	=	1,24E+07	1,24E+07	mm^2	area sezione ideale
d_G	=	1500,0	1500,0	mm	distanza baricentro sezione ideale da lembo superiore
J_{id}	=	9,74E+12	9,74E+12	mm ⁴	momento d'inerzia baricentrico sezione ideale
$ ho_{id}$	=	887,9	887,9	mm	raggio d'inerzia sezione
$Y_{nocc,s}$	=	974,4	974,4	mm	quota punto di nocciolo superiore
Caratterist	iche s	sezione interame	nte reagente a trazio	ne	
$A_{\text{cls},t}$	=	-	-	mm^2	area calcestruzzo teso omogeneizzato
A_s	=	-	-	mm^2	area armatura
$A_{id,t}$	=	-	-	mm^2	area sezione ideale
$d_{G,t} \\$	=	-	-	mm	distanza baricentro sezione ideale da lembo superiore
$J_{\text{id},t}$	=	-	-	mm^4	momento d'inerzia baricentrico sezione ideale
$\rho_{id,t}$	=	-	-	mm	raggio d'inerzia sezione
$Y_{nocc,i}$	=	-	-	mm	quota punto di nocciolo inferiore
Comportar	nento	sezione			

Comportamento sezione

decompressione decompressione

Com'è evidente dai calcoli non è stato necessario procedere con il calcolo delle aperture delle fessure perché anche nella combinazione frequente la sezione non risulta mai parzializzata. La verifica a fessurazione risulta soddisfatta.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: **Viadotto Giulfo**Relazione di Calcolo Pile

Pagina 54 di 156

Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

5 EFFETTI DEL SECONDO ORDINE

Le pile del viadotto Giulfo, vista la notevole altezza, sono sicuramente da annoverare nella classe degli elementi strutturali snelli. Per la verifica di stabilità degli elementi snelli, nel punto 4.1.2.1.7.2 le NTC consentono l'utilizzo di metodi di elaborazione algebrizzati basati sulla concentrazione dell'equilibrio nelle sezioni critiche e, per i quali rimanda a documenti di comprovata validità. Per analizzare gli effetti del secondo ordine si è fatto riferimento alle norme UNI EN 1992-1-1:2005 e in particolare al metodo basato sulla "curvatura nominale" riportato al punto 5.8. Nelle sezioni successive si illustra brevemente il metodo di verifica utilizzato. Infine, si riporta il dettagli odei calcoli di verifica eseguiti.

5.1 Metodo basato sulla curvatura nominale

Il metodo è adatto in primo luogo per elementi isolati con forza normale costante (cautelativamente si è assunto lo sforzo di compressione al piede della pila) e una lunghezza libera di inflessione I_0 definita come nei paragrafi successivi. Il metodo dà un momento del secondo ordine nominale basato su un'inflessione che a sua volta è basata sulla lunghezza libera d'inflessione e su una curvatura massima stimata. Il momento di progetto risultante è utilizzato per il calcolo di sezioni trasversali con riferimento al momento flettente e alla forza assiale.

5.1.1 Valutazione della snellezza

Gli effetti del secondo ordine possono essere trascurati se la snellezza λ è al di sotto di un certo valore λ_{lim} . Il valore raccomandato viene calcolo come di seguito indicato

 $\lambda_{lim} = 20 \cdot A \cdot B \cdot C / \sqrt{n}$

dove:

 $A = 1 / (1 + 0.2 \varphi_{ef})$ (se φ_{ef} non è noto, si può adottare A = 0.7);

 $B = \sqrt{1 + 2\omega}$ (se ω non è noto, si può adottare B = 1,1);

 $C = 1.7 - r_{\rm m}$ (se $r_{\rm m}$ non è noto, si può adottare C = 0.7);

 φ_{ef} è il coefficiente efficace di viscosità; vedere punto 5.8.4;

 $\omega = A_{\rm s} f_{\rm vd} / (A_{\rm c} f_{\rm cd})$; rapporto meccanico di armatura;

A_s è l'area totale dell'armatura longitudinale;

 $n = N_{Ed} / (A_c f_{cd})$; forza assiale adimensionale;

 $r_{\rm m} = M_{\rm 01} / M_{\rm 02}$; rapporto tra i momenti;

 M_{01} , M_{02} sono i momenti del primo ordine alle estremità, $|M_{02}| \ge |M_{01}|$.

Se i momenti finali M_{01} e M_{02} provocano trazione sullo stesso lato, si raccomanda che $r_{\rm m}$ sia assunto positivo (cioè $C \le 1,7$), in caso contrario negativo (cioè C > 1,7).

Nei casi seguenti, si raccomanda che $r_{\rm m}$ sia assunto pari a 1,0 (cioè C=0,7):

- per telai a nodi fissi soggetti solo a momenti del primo ordine o a momenti dovuti prevalentemente ad imperfezioni o a carico trasversale;
- per telai a nodi mobili in generale.

Mentre la snellezza di calcolo l₀ può essere valutata come segue:

$$\lambda = I_0 / i$$

dove:

 I_0 è la lunghezza libera d'inflessione

i è il raggio d'inerzia della sezione di calcestruzzo non fessurato.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo	
Relazione di Calcolo Pile	
Dogina EE di 1EC	

Pagina 55 di 156

Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

Ipotizzando per le pile in esame, sia in direzione trasversale, sia in direzione longitudinale, uno schema di trave incastrata alla base e libera in sommità, è stata assunta una lunghezza libera di inflessione pari a l_0 =2l.

5.1.2 Viscosità

L'effetto della viscosità deve essere tenuto in conto nell'analisi al secondo ordine, con particolare riferimento sia alle condizioni generali di viscosità, sia alla durata dei diversi carichi nelle combinazioni di carico considerate. La durata di applicazione dei carichi può essere presa in considerazione in modo semplificato adottando un coefficiente efficace di viscosità ϕ_{ef} , il quale, utilizzato insieme al carico di progetto, dà una deformazione viscosa (curvatura) corrispondente al carico quasi-permanente:

 $\varphi_{\text{ef}} = \varphi_{(\infty, t_0)} \cdot M_{\text{OEqp}} / M_{\text{OEd}}$

dove:

 $\varphi_{(\infty,\mathsf{t}_0)}$ è il coefficiente finale di viscosità

 M_{OEqp} è il momento flettente del primo ordine sotto la combinazione di carico quasi-permanente (SLE);

 M_{OEd} è il momento flettente del primo ordine sotto la combinazione di carico di

progetto (SLU).

Secondo quanto prescritto al punto 5.8.4.4 è stato assunto un valore di: $\varphi(\infty,t_0)=2$.

5.1.3 Momenti flettenti

Si riporta per esteso quanto descritto al punto 5.8.8.2 dell'eurocodice 2 per i momenti flettenti:

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

•	•	•	_	~	_	_	• • • •	-		-	٠	• •	•						
Pr	0	g	e	tto	E	s	ec	ut	iv	0									

Opera: Viadotto Giulfo							
Relazione di Calcolo Pile							
Pagina 56 di 156							
Nome file:							
VI01-C-CL004_B.00_relazione_pile.doc							

5.8.8.2

Momenti flettenti

(1) Il momento di progetto è:

$$M_{\rm Ed} = M_{\rm 0Ed} + M_2$$
 (5.31)

dove:

 $\it M_{\rm oEd}$ è il momento del primo ordine, che tiene conto dell'effetto delle imperfezioni, vedere anche punto 5.8.8.2 (2);

è il momento del secondo ordine nominale, vedere punto 5.8.8.2 (3).

Il valore massimo di $M_{\rm Ed}$ è dato dalle distribuzioni di $M_{\rm 0Ed}$ e M_2 ; quest'ultimo può essere preso come parabolico oppure sinusoidale sulla lunghezza libera d'infles-

Nel caso di elementi iperstatici, M_{0Ed} è determinato per le condizioni reali di vincolo, mentre M_2 Nota dipenderà dalle condizioni di vincolo attraverso la lunghezza libera d'inflessione, vedere punto 5.8.8.1 (1)

Momenti diversi del primo ordine alle estremità M_{01} e M_{02} possono essere sostituiti con un momento del primo ordine equivalente di estremità M_{0e} :

$$M_{0e} = 0.6 M_{02} + 0.4 M_{01} \ge 0.4 M_{02}$$
 (5.32)

 M_{01} e M_{02} dovrebbero avere lo stesso segno se essi provocano trazione sullo stesso lato, altrimenti segni opposti. Inoltre, $|M_{02}| \ge |M_{01}|$.

(3) Il momento nominale del secondo ordine M₂ nell'espressione (5.31) è

$$M_2 = N_{\text{Ed}} \, \theta_2 \tag{5.33}$$

dove:

è il valore di progetto della forza assiale;

 e_2 è l'inflessione = $(1/r) l_0^2 / c$;

1/r è la curvatura, vedere punto 5.8.8.3;

è la lunghezza libera d'inflessione, vedere punto 5.8.3.2; I_0

С è un fattore che dipende dalla distribuzione della curvatura, vedere punto 5.8.8.2 (4).

(4) Nel caso di sezione trasversale costante, si utilizza generalmente c = 10 (≈ π²). Se il momento del primo ordine è costante, si raccomanda di utilizzare un valore minore (8 è un limite inferiore, che corrisponde a momento totale costante).

Nota

Il valore π^2 corrisponde ad una distribuzione di curvatura sinusoidale. Il valore per una curvatura costante è 8. Si noti che c dipende dalla distribuzione della curvatura totale, mentre co nel punto 5.8.7.3 (2) dipende soltanto dalla curvatura corrispondente al momento del primo ordine.

5.1.4 Curvatura

Si riporta per esteso quanto descritto al punto 5.8.8.3 dell'eurocodice 2 per la valutazione della curvatura nominale:

5.8.8.3 Curvatura

> (1) Nel caso di elementi con sezioni trasversali simmetriche (comprese le armature), si può utilizzare la seguente relazione:

$$1/r = K_r \cdot K_o \cdot 1/r_0 \tag{5.34}$$

è un coefficiente correttivo che dipende dal carico assiale, vedere punto 5.8.8.3 (3);

è un coefficiente per tener conto della viscosità, vedere punto 5.8.8.3 (4);

 $1/r_0 = \varepsilon_{vd} / (0.45 d);$

 $\varepsilon_{yd} = f_{yd} / E_s;$

è l'altezza utile; vedere anche punto 5.8.8.3 (2).

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera:	Viadotto	Giulfo
Relazio	ne di Cal	colo Pile

Pagina 57 di 156

Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

(2) Se le armature non sono tutte concentrate su lati opposti, ma parte di esse è distribuita parallelamente al piano d'inflessione, d è definito come

$$d = (h/2) + i_s (5.35)$$

dove i_s è il raggio d'inerzia dell'area totale delle armature.

(3) Nell'espressione (5.34) si dovrebbe adottare K, pari a:

$$K_r = (n_u - n) / (n_u - n_{bal}) \le 1$$
 (5.36)

dove:

 $n = N_{Ed} / (A_c f_{cd})$, forza assiale adimensionale;

N_{Ed} è il valore di progetto della forza assiale;

 $n_{\omega} = 1 + \omega$

n_{bal} è il valore di n corrispondente al massimo valore del momento resistente; si può adottare il valore 0,4;

 $\omega = A_s f_{vd} / (A_c f_{cd});$

A_s è l'area totale delle armature;

à l'area della sezione trasversale di calcestruzzo.

(4) Si raccomanda che l'effetto della viscosità sia tenuto in conto attraverso il seguente coefficiente:

$$K_o = 1 + \beta \varphi_{ef} \ge 1$$
 (5.37)

dove:

 φ_{ef} è il coefficiente efficace di viscosità, vedere punto 5.8.4;

 $\beta = 0.35 + f_{ck}/200 - \lambda/150;$

i è la snellezza, vedere punto 5.8.3.1.

5.1.5 Flessione deviata

Il metodo descritto precedentemente può essere utilizzato anche nel caso di flessione deviata. In una prima fase si effettuano calcoli separati – a presso-flessione retta – per ciascuna delle direzioni principali. Si tiene conto delle imperfezioni soltanto nella direzione nella quale esse provocano l'effetto più sfavorevole. Nel punto 5.8.9 l'EN 1992 prescrive la verifica a flessione deviata solo nel caso in cui non siano rispettate le seguenti limitazioni:

Nessun'altra verifica è necessaria se i rapporti di snellezza soddisfano le due condizioni seguenti:

$$\lambda_v / \lambda_z \le 2 e \lambda_z / \lambda_v \le 2$$
 (5.38a)

e se le eccentricità relative $e_{\rm y}/h$ e $e_{\rm z}/b$ (vedere figura 5.7) soddisfano una delle seguenti condizioni:

$$\frac{e_{\rm y}/h_{\rm eq}}{e_{\rm z}/b_{\rm eq}} \le 0.2$$
 oppure $\frac{e_{\rm z}/b_{\rm eq}}{e_{\rm y}/h_{\rm eq}} \le 0.2$ (5.38b)

dove:

b, h sono la larghezza e l'altezza della sezione;

 $b_{eq} = i_v \cdot \sqrt{12}$ e $h_{eq} = i_z \cdot \sqrt{12}$ per una sezione rettangolare equivalente;

 λ_{y} , λ_{z} sono le snellezze I_{0} / i rispettivamente secondo gli assi y e z;

i_y, i_z sono i raggi d'inerzia rispettivamente secondo gli assi y e z;

 $e_z = M_{Edy} / N_{Ed}$; eccentricità lungo l'asse z;

 $e_v = M_{Edz} / N_{Ed}$; eccentricità lungo l'asse y;

 $M_{\rm Edv}$ è il momento di progetto che include il momento di inerzia lungo l'asse y;

M_{Edz} è il momento di progetto che include il momento di inerzia lungo l'asse z;

N_{Ed} è il valore di progetto del carico assiale nella rispettiva combinazione di carico.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 58 di 156
Nome file:
VI01-C-CL004_B.00_relazione_pile.doc

Nel caso in cui queste limitazioni non siano rispettate occorre verificare la flessione deviata secondo le indicazioni del punto 5.8.9.4:

Se la condizione dell'espressione (5.38) non è soddisfatta, si raccomanda di tener conto della flessione deviata compresi gli effetti del secondo ordine in ogni direzione [a meno che essi non possano essere trascurati secondo i punti 5.8.2 (6) o 5.8.3]. In assenza di un calcolo accurato della sezione trasversale per flessione deviata, si può utilizzare il seguente criterio semplificato:

$$\left(\frac{M_{\text{Edz}}}{M_{\text{Rdz}}}\right)^{a} + \left(\frac{M_{\text{Edy}}}{M_{\text{Rdy}}}\right)^{a} \le 1,0 \tag{5.39}$$

dove:

M_{Edz/y} è il momento di progetto intorno all'asse considerato, comprendente un momento nominale del secondo ordine;

M_{Rdz/y} è il momento resistente nella direzione considerata;

a è l'esponente;

per sezioni circolari ed ellittiche: a = 2

per sezioni rettangolari:

$N_{\rm Ed}/N_{\rm Rd}$	0,1	0,7	1,0
a =	1,0	1,5	2,0

con interpolazione lineare per valori intermedi;

N_{Ed} è il valore di progetto della forza assiale;

 $N_{\rm Rd} = A_{\rm c} f_{\rm cd} + A_{\rm S} f_{\rm yd}$, valore di progetto della forza normale resistente: dove:

A_c è l'area lorda della sezione di calcestruzzo,

As è l'area delle armature longitudinali.

5.2 Verifica all'instabilità

Le verifiche per le pile sono state condotte secondo quanto descritto ai paragrafi precedente. In particolare si è fatto riferimento a n. 3 condizioni di sollecitazione:

- Sforzo normale massimo (N_{xmax});
- momento trasversale massimo (M_{xmax});
- momento longitudinale massimo (M_{ymax}).

Tali condizioni sono state analizzate in riferimento alle pile più alte, ovvero quelle soggette agli effetti maggiori nell'analisi al secondo ordine. Nella tabella 5.1 sono riportate le pile sulle quali si sono valutate le condizioni di sollecitazione prese in esame.

Tabella 5.1 – Pile esaminate per le condizioni di sollecitazione considerate

	Pile				
Nmax	P07-P08-P09				
Mxmax	P07-P08-P09				
Mymax	P03-P04-P07-P08-P09				

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo						
Relazione di Calcolo Pile						
Pagina 59 di 156						
Nome file:						

La sezione critica analizzata per le verifiche è quella di attacco fondazione pila. La verifica è stata condotta considerando il momento di calcolo $M_{\rm ed}$ amplificato degli effetti del secondo ordine in base al metodo della curvatura nominale. La verifica di resistenza è stata sempre condotta in flessione deviata. Si distinguono però due casi:

- 1. la limitazione al punto 5.8.9.3 EN 1992 è rispettata: si considera il momento di calcolo amplificato degli effetti del secondo ordine solo nella direzione più gravosa;
- 2. la limitazione al punto 5.8.9.3 EN 1992 non è rispettata: si considerano i momenti di calcolo amplificati degli effetti del secondo ordine in entrambe le direzioni.

5.2.1 Momenti di calcolo al secondo ordine

In questo paragrafo riportiamo i fogli di calcolo, relativi alle pile analizzate, dove sono stati determinati i momenti di progetto $M_{\rm ed}$ amplificati degli effetti del secondo ordine. Nel caso in cui è stato necessario condurre la verifica a flessione deviata secondo il punto 5.8.9.4 EN 1992 in questi fogli è presente anche tale verifica.

EFFETTI DEL SECONDO ORDINE IN PRESENZA DI CARICO ASSIALE (EC2 - § 5.8)									
	METODO DELLA CURVATURA NOMINALE								
PILA PO									
		Nma	Mx,ma						
		X	Х	My,max					
R _{ck}	=	-	-	35	MPa	resistenza caratteristica cubica			
f _{ck}	=	-	-	29,05	MPa	resistenza caratteristica cilindrica			
γс	=	-	-	1,50		coefficiente parziale di sicurezza			
$lpha_{ t cc}$	=	-	-	0,85		coefficiente riduttivo per resistenze di lunga durata			
f _{cd}	=	-	-	16,46	MPa	resistenza di calcolo a compressione			
f _{cm}	=	1	-	37,05	MPa	resistenza cilindrica media			
E _{cm}	=	ı	-	32588	MPa	modulo elastico istantaneo			
f_{yk}	=	ı	-	450,00	MPa	tensione caratteristica di snervamento acciaio			
γs		-	-	1,15		coefficiente di sicurezza			
f _{yd}	1	-	-	391	MPa	tensione di snervamento di calcolo acciaio			
Es	=	-	-	206000	MPa	modulo elastico acciaio			
$\varepsilon_{ m vd}$	=	-	-	0,00190		deformazione allo snervamento di calcolo			
Geometr									
element									
d _x	=	-	-	2,95	m	altezza utile longitudinale			
d _y	=	-	-	3,95	m	altezza utile trasversale			
A _c	=	ı	-	10,88	m ²	area sezione trasversale			
L	=	-	-	21,46	m	altezza elemento			
J_x	=	-	-	13,63	m ⁴	momento d'inerzia trasversale			
J_y	=	-	-	7,22	m ⁴	momento d'inerzia longitudinale			
i _x	=	1	-	0,81	m^4	raggio d'inerzia longitudinale			
İ _y	=	1	-	1,12	m ⁴	raggio d'inerzia trasversale			
As	=	1		72206	mm ²	area armatura longitudinale totale disposta nella sezione			
ω	=	-	-	0,16		rapporto meccanico di armatura			
α_{x}	=	-	-	2,00		coefficiente di vincolo longitudinale			
α_{y}	=	-	-	2,00		coefficiente di vincolo trasversale			
L _{0x}	=	-	-	42,92	m	lunghezza libera d'inflessione longitudinale			

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 60 di 156
Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

EFFETTI DEL SECONDO ORDINE IN PRESENZA DI CARICO ASSIALE (EC2 - § 5.8) METODO DELLA CURVATURA NOMINALE								
METODO PILA PO3		ELLA (CURVAT	URA NOMI	NALE			
				40.00		lunchama libana diinflassiana tusanasala		
L _{Oy}	=	-	-	42,92	m	lunghezza libera d'inflessione trasversale		
λ_{x}	=	-	-	52,69		snellezza longitudinale		
λ _y	=	-	-	38,35		snellezza trasversale		
λ Valutazio	= ne (- della er	- nellezza	52,69		snellezza massima		
limite	110	Jelia Si	ICIICZZA					
Α	=	-	-	0,70				
В	=	-	-	1,15		coeffciente funzione del rapporto meccanico di armatura		
С	=	-	-	0,70		Coeff. funz. del rapp. dei mom. Flett. alle estremità		
n	=	-	-	0,1080		forza assiale adimensionale		
λ_{lim}	=	-	-	34,20		snellezza limite		
		-	-					
ϑ_0	=	-	-	0,005				
α_{h}	=	-	-	0,67				
α_{m}	=	-	-	1,00				
ϑ_{i}	=	-	-	0,00333				
e _{ix}	=	-	-	0,07	m	eccentricità aggiuntiva longitudinale		
e _{iv}	=	_	-	0,07	m	eccentricità aggiuntiva trasversale		
Sollecitaz	io			,				
ni								
N_{Ed}	=	-	-	19342,2	kN	sforzo normale di calcolo		
$M_{1,x}$	=	-	-	2272,7		momento flettente trasversale del primo ordine		
$M_{2,x}$	=	-	-	2272,7		momento flettente trasversale del primo ordine		
$M_{1,y}$	=	-	-	0,0		momento flettente longitudinale del primo ordine		
$M_{2,y}$	=	-	-	19194,4		momento flettente longitudinale del primo ordine		
M _{01,x}	=	_	-	3656		minimo momento flettente trasversale (in valore assoluto)		
M _{02,x}	=	-	-	3656		massimo momento flettente trasversale (in valore assoluto)		
M _{01,y}	=	_	_	1383,61		minimo momento flettente longitudinale (in valore assoluto)		
M _{02,v}	=	_	_	20578,02		max momento flettente longitudinale (in valore assoluto)		
	=		_	3656,4	kN	momento flettente di calcolo trasversale equivalente		
M _{0Ed,x}		-		,		<u> </u>		
M _{0Ed,y} Buckling	=	_	-	12900,3	kN	momento flettente di calcolo longitudinale equivalente		
	=	=		1,1578				
n _u		-	-					
n _{bal}	=	-	-	0,40				
K _r	=	-	-	1,385		coefficiente correttivo funzione del carico assiale		
$\varphi(\infty, t_0)$	=	-	-	2		coefficiente di viscosità a tempo infinito		
c Buckling	=	-	-	9,87		fattore funzione della distribuzione della curvatura		
longitudin	ale							
M _{SLE} /M _S								
LU	=	-	-	0,74		rapporto momento SLE/momento SLU		
$\phi_{\text{eff},x}$	=	-	-	1,4815		coefficiente di viscosità efficace		

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 61 di 156
Nome file:
VI01-C-CL004_B.00_relazione_pile.doc

EFFETT	I DE	L SEC	ONDO C	ORDINE IN	PRESE	ENZA DI CARICO ASSIALE (EC2 - § 5.8)
		ELLA (CURVAT	URA NOMI	NALE	
PILA PO)3		1	1	<u> </u>	
β_{x}	=	-	-	0,144		
$K_{\scriptscriptstyle{\phiX}}$	=		-	1,213335 77		coefficiente che tiene conto della viscosità
$(1/r_0)_x$	=	-	-	0,0014		
$(1/r)_{x}$	=	-	-	0,0024		curvatura longitudinale
e _{2x}	=	-	_	0,449	m	inflessione longitudinale
M _{2v}	=	-	-	8683,2	kNm	momento nominale del 2° ordine longitudinale
M _{Edv}	=		_	21583,5	kNm	momento di progetto longitudinale
Buckling	•					
trasvers						
M_{SLE}/M_{S}	=	_	_	0,74		rapporto momento SLE/momento SLU
Φ _{eff,v}	=	_	_	1,4815		coefficiente di viscosità efficace
βγ	=		_	0,240		Coomicionio di Viccosta Ginedeo
Κ _{φγ}	=		_	1,355		
$(1/r_0)_v$	=	_	_	0,001		curvatura trasversale
(1/r) _v	=		_	0,002		curvatura trasversale
	1=1		_	0,374	m	inflessione trasversale
е _{2у} м	=		_	7241,9	kNm	momento nominale del 2° ordine trasversale
M _{2x}	- -		_			
M _{Edx}		sione (deviata -	10898,3 verifica	kNm	momento di progetto trasversale
geometr		0.01.0	aoviata	vormou		
$\lambda_{max}/\lambda_{min}$	=	-	-	1,37		rapporto di snellezza massimo (se <=2 sufficiente verifica a flessione semplice)
$b_{x,eq}$	=	-	-	2,82	m	dimensione longitudinale equivalente
b _{y,eq}	=	-	_	3,88	m	dimensione trasversale equivalente
e _x	=	-	-	0,60	m	eccentricità longitudinale che non tiene conto delle imperfezioni
eγ	=	-	-	0,12	m	eccentricità trasversale che non tiene conto delle imperfezioni
e _{x0}	=	-	-	0,667	m	eccentricità longitudinale
e_{v0}	=	-	-	0,19	m	eccentricità trasversale
e/b	=	-	-	2,57		minimo rapporto eccentricità/dimensioni equivalenti
(e/b) _x	=	-	-	4,13		minimo rapporto eccentricità/dimensioni equivalenti con imperfezioni longitudinali
(e/b) _v	=	_	_	2,29		minimo rapporto eccentricità/dimensioni equivalenti con imperfezioni trasversali
Buckling flessione deviata - verifica semplificata						
N_{Rd}	=	-		207358	kN	forza nominale resistente
а	=	-	-	1,00		esponente del dominio
M_{Rdx}	=	-	-	80386	kNm	momento resistente trasversale per pressoflessione retta
M_{Rdy}	=		_	60749	kNm	momento resistente longitudinale per pressoflessione retta
check	=	-	-	0,49		se <1 verifica soddisfatta

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 62 di 156
Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

EFFE1	TTI DE	L SECON	DO ORDIN	E IN PRES	SENZA	DI CARICO ASSIALE (EC2 - § 5.8) -
ИЕТО	DO DI	ELLA CUR	RVATURA N	NOMINALI	E	
PILA F	204		1	1	ı	T
		Nmax	Mx,max	My,max		
R_{ck}	=	-	-	35	MPa	resistenza caratteristica cubica
ck	=	-	-	29,05	MPa	resistenza caratteristica cilindrica
/c	=	-	-	1,50		coefficiente parziale di sicurezza
α_{cc}	=	-	-	0,85		coefficiente riduttivo per resistenze di lunga durata
: cd	=	-	-	16,46	MPa	resistenza di calcolo a compressione
: cm	=	-	-	37,05	MPa	resistenza cilindrica media
= cm	=	-	-	32588	MPa	modulo elastico istantaneo
; yk	=	-	-	450,00	MPa	tensione caratteristica di snervamento acciaio
′s	=	-	-	1,15		coefficiente di sicurezza
: yd	=	_	-	391	MPa	tensione di snervamento di calcolo acciaio
_ = -s	=	_	-	206000	MPa	modulo elastico acciaio
-S Vd	=	_	_	0,00190	_	deformazione allo snervamento di calcolo
-	etria e	lemento		0,00100		defermations and entertained at earleste
l _x	=	-	-	2,95	m	altezza utile longitudinale
d _v	=	_	-	3,95	m	altezza utile trasversale
Α _c	=	_	-	10,88	m ²	area sezione trasversale
-	=	-	-	29,86	m	altezza elemento
l _x	=	-	-	13,63	m ⁴	momento d'inerzia trasversale
l _v	=	-	-	7,22	m ⁴	momento d'inerzia longitudinale
x	=	-	-	0,81	m ⁴	raggio d'inerzia longitudinale
v	=	_	_	1,12	m ⁴	raggio d'inerzia trasversale
						area armatura longitudinale totale disposta nella
∖ s	=	-	-	72206	mm ²	sezione
0	=	-	-	0,16		rapporto meccanico di armatura
lχ	=	-	-	2,00		coefficiente di vincolo longitudinale
λy	=	-	-	2,00		coefficiente di vincolo trasversale
-0x	=	-	-	59,72	m	lunghezza libera d'inflessione longitudinale
-0y	=	-	-	59,72	m	lunghezza libera d'inflessione trasversale
ιχ	=	-	-	73,31		snellezza longitudinale
-y	=	-	-	53,36		snellezza trasversale
	<u> = </u>		-	73,31		snellezza massima
		della snelle	ezza limite	0.70		
4	=	-	-	0,70		coeffciente funzione del rapporto meccanico di
3	=	-	-	1,15		armatura
_						Coeff. funz. del rapp. dei momenti flettenti alle
<u> </u>	=	_	-	0,70		estremità
<u>n</u>	=	-	-	0,1225		forza assiale adimensionale

32,11

snellezza limite

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 63 di 156
Nome file:
VI01-C-CL004_B.00_relazione_pile.doc

EFFETT	I DE	EL SECONI	OO ORDIN	E IN PRES	SENZA	DI CARICO ASSIALE (EC2 - § 5.8) -
		ELLA CUR	VATURA I	NOMINALI	E	
PILA PO	4			1		T
θ_0	=	-	-	0,005		
α_{h}	=	-	-	0,67		
α_{m}	=	-	-	1,00		
ϑ_{i}	=	-	-	0,00333		
e _{ix}	=	-		0,10	m	eccentricità aggiuntiva longitudinale
e _{iv}	=	_	-	0,10	m	eccentricità aggiuntiva trasversale
Sollecita	zi					
oni N _{Ed}	=	_	_	21947,5	kN	sforzo normale di calcolo
	=			4834,8	KIN	momento flettente trasversale del primo ordine
M _{1,x}		-				
M _{2,x}	=	-	-	4834,8		momento flettente trasversale del primo ordine
M _{1,y}	=	-	-	0,0		momento flettente longitudinale del primo ordine
$M_{2,y}$	=	-		17276,2		momento flettente longitudinale del primo ordine minimo momento flettente trasversale (in valore
M _{01,x}	=	-	-	7019		assoluto)
				7040		massimo momento flettente trasversale (in valore
M _{02,x}	=	-	-	7019		assoluto) minimo momento flettente longitudinale (in valore
$M_{01,y}$	=	-	-	2184,51		assoluto)
				19460,7		max momento flettente longitudinale (in valore
$M_{02,y}$	=	-	-	0		assoluto)
$M_{0Ed,x}$	=	-	-	7019,3	kN	momento flettente di calcolo trasversale equivalente
M _{0Ed,y}	=	-	-	12550,2	kN	momento flettente di calcolo longitudinale equivalente
Bucklin g		_	_			
n _u	=	_	-	1,1578		
n _{bal}	=	-	-	0,40		
K _r	=	-	_	1,366		coefficiente correttivo funzione del carico assiale
$\varphi(\infty, t_0)$	=	_	-	2		coefficiente di viscosità a tempo infinito
C ,.0/	=	_	-	9,87		fattore funzione della distribuzione della curvatura
	lon	gitudinale				
$M_{\text{SLE}}/M_{\text{S}}$				0,74		rapporto momento SLE/momento SLU
LU	=	-	-	1,4815		coefficiente di viscosità efficace
φ _{eff,x}		-	-			coemciente di viscosità emicace
β_{x}	=	-	-	0,007 1,00965		
$K_{\phi x}$	=	-	-	027		coefficiente che tiene conto della viscosità
$(1/r_0)_x$	=	-	-	0,0014		
(1/r) _x	=	-	-	0,0020		curvatura longitudinale
e _{2x}	=			0,713	m	inflessione longitudinale
M _{2v}	=	-	-	15653,4	kNm	momento nominale del 2° ordine longitudinale
M _{Edv}	=	-	-	28203,7	kNm	momento di progetto longitudinale
Buckling	tras	sversale				
M _{SLE} /M _S	=	_	-	0,74		rapporto momento SLE/momento SLU

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 64 di 156
Nome file:
VI01-C-CL004_B.00_relazione_pile.doc

EFFETT	EFFETTI DEL SECONDO ORDINE IN PRESENZA DI CARICO ASSIALE (EC2 - § 5.8) -									
			VATURA N			, J				
PILA PO	4				ı					
LU										
Φ _{eff,y}	=	-	-	1,4815		coefficiente di viscosità efficace				
β_y	=	-	-	0,140						
$K_{\phi y}$	=	-	-	1,207						
$(1/r_0)_y$	=	-	-	0,001		curvatura trasversale				
(1/r) _y	=	-	-	0,002		curvatura trasversale				
e _{2y}	=	-	-	0,637	m	inflessione trasversale				
M _{2x}	=	-	-	13972,5	kNm	momento nominale del 2° ordine trasversale				
M_{Edx}	=	-	-	20991,8	kNm	momento di progetto trasversale				
Buckling geometri		ssione devia	ata - verifica	1						
$\lambda_{\text{max}}/\lambda_{\text{min}}$	=	-	-	1,37		rapporto di snellezza massimo (se <=2 sufficiente verifica a flessione semplice)				
$b_{x,eq}$	=	-	-	2,82	m	dimensione longitudinale equivalente				
$b_{y,eq}$	=	-	ı	3,88	m	dimensione trasversale equivalente				
e _x	=	-	-	0,47	m	eccentricità longitudinale che non tiene conto delle imperfezioni				
e _v	=	-	-	0,22	m	eccentricità trasversale che non tiene conto delle imperfezioni				
e _{x0}	=	-	-	0,572	m	eccentricità longitudinale				
e_{y0}	=	-	-	0,32	m	eccentricità trasversale				
e/b	=	-	-	1,30		minimo rapporto eccentricità/dimensioni equivalenti				
(e/b) _x	=	-	-	1,89		minimo rapporto eccentricità/dimensioni equivalenti con imperfezioni longitudinali				
(e/b) _y	=	-	-	1,07		minimo rapporto eccentricità/dimensioni equivalenti con imperfezioni trasversali				
Buckling semplific		ssione devia	ata - verifica	1						
N_{Rd}	=	-	-	207358	kN	forza nominale resistente				
а	=	-	-	1,50		esponente del dominio				
M_{Rdx}	=	-	-	83693	kNm	momento resistente trasversale per pressoflessione retta				
M_{Rdy}	=	-	-	63365	kNm	momento resistente longitudinale per pressoflessione retta				
check	=	-	-	0,42		se <1 verifica soddisfatta				

EFFETTI DEL SECONDO ORDINE IN PRESENZA DI CARICO ASSIALE (EC2 - § 5.8)									
METODO DELLA CURVATURA NOMINALE									
PILA P07									
		Nmax	Mx,max	My,max					
R _{ck}	=	35	35	35	MPa	resistenza caratteristica cubica			
f _{ck}	=	29,05	29,05	29,05	MPa	resistenza caratteristica cilindrica			
γc	=	1,50	1,50	1,50		coefficiente parziale di sicurezza			
$\alpha_{\sf cc}$	=	0,85	0,85	0,85		coefficiente riduttivo per resistenze di lunga durata			

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

e_{iy} = 0,11

0,11

0,11 m

eccentricità aggiuntiva trasversale

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 65 di 156
Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

		Progetto Esecutivo VIU1-C-CL004_B.00_relazione_pile.do									
EFFETT	EFFETTI DEL SECONDO ORDINE IN PRESENZA DI CARICO ASSIALE (EC2 - § 5.8)										
			ATURA NON			SANIOO ACCIALL (LOL 3 0.0)					
PILA PO											
f_{cd}	=	16,46	16,46	16,46	MPa	resistenza di calcolo a compressione					
f_{cm}	=	37,05	37,05 37,05		МРа	resistenza cilindrica media					
E_{cm}	=	32588	32588	32588	MPa	modulo elastico istantaneo					
f_{yk}	=	450,00	450,00	450,00	MPa	tensione caratteristica di snervamento acciaio					
γ_{s}	=	1,15	1,15	1,15		coefficiente di sicurezza					
f _{yd}	=	391	391	391	MPa	tensione di snervamento di calcolo acciaio					
Es	=	206000	206000	206000	MPa	modulo elastico acciaio					
$\epsilon_{ ext{yd}}$	=	0,00190	0,00190	0,00190		deformazione allo snervamento di calcolo					
Geomet	ria ele	emento									
d _x	=	2,95	2,95	2,95	m	altezza utile longitudinale					
d _y	=	3,95	3,95	3,95	m	altezza utile trasversale					
A _c	=	10,88	10,88	10,88	m ²	area sezione trasversale					
L	=	33,46	33,46	33,46	m	altezza elemento					
J _x	=	13,63	13,63	13,63	m ⁴	momento d'inerzia trasversale					
J _y	=	7,22	7,22	7,22	m ⁴	momento d'inerzia longitudinale					
İ _x	=	0,81	0,81	0,81	m ⁴	raggio d'inerzia longitudinale					
İ _y	=	1,12	1,12	1,12	m ⁴	raggio d'inerzia trasversale					
A_s	=	72206	72206	72206	mm ²	area armatura longitudinale totale disposta nella sezione					
ω	=	0,16	0,16	0,16		rapporto meccanico di armatura					
α_{x}	=	2,00	2,00	2,00		coefficiente di vincolo longitudinale					
α_{y}	=	2,00	2,00	2,00		coefficiente di vincolo trasversale					
L_{0x}	=	66,92	66,92 66,92		m	lunghezza libera d'inflessione longitudinale					
L_{0y}	=	66,92	66,92 66,92		m	lunghezza libera d'inflessione trasversale					
λ_{x}	=	82,15	82,15	82,15		snellezza longitudinale					
λ_{y}	=	59,79	59,79	59,79		snellezza trasversale					
λ		82,15	82,15	82,15		snellezza massima					
	one d	ella snellez 0,70	2a limite 0,70	0,70							
A B	=	1,15	1,15	1,15		coeffciente funzione del rapporto meccanico di armatura					
		1,10	.,	1,10		Coeff. funzione del rapporto dei momenti flettenti					
С	=	0,70	0,70	0,70		alle estremità (=0.7 se il rapporto non è noto)					
n	=	0,2062	0,1883	0,1285		forza assiale adimensionale					
λ_{lim}	=	24,76	25,90	31,36		snellezza limite					
90	=	0,005	0,005	0,005							
α_{h}	=	0,67	0,67	0,67							
α_{m}	=	1,00	1,00	1,00							
θ_{i}	=	0,00333	0,00333	0,00333							
e _{ix}	=	0,11	0,11	0,11	m	eccentricità aggiuntiva longitudinale					
- IX	-	-,	-,	-,,,,	 						

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 66 di 156
Nome file:
VI01-C-CL004_B.00_relazione_pile.doc

EFFETTI DEL SECONDO ORDINE IN PRESENZA DI CARICO ASSIALE (EC2 - § 5.8) METODO DELLA CURVATURA NOMINALE									
PILA P07		LLA CURV	ATURA NUN	IINALE					
Sollecitaz									
i									
N_{Ed}	=	36924,6	33728,5	23016,0	kN	sforzo normale di calcolo			
$M_{1,x}$	=	30878,1	65897,6	4484,6		momento flettente trasversale del primo ordine			
$M_{2,x}$	=	30878,1	65897,6	4484,6		momento flettente trasversale del primo ordine			
$M_{1,y}$	=	0,0	0,0	0,0		momento flettente longitudinale del primo ordine			
$M_{2,y}$	=	164,6	164,6	15151,5		momento flettente longitudinale del primo ordine			
B.4		0.4000	00050	7050		minimo momento flettente trasversale (in valore			
M _{01,x}	=	34996	69659	7052		assoluto) massimo momento flettente trasversale (in valore			
M _{02,x}	=	34996	69659	7052		assoluto)			
		4440.00	0704.00	0507.05		minimo momento flettente longitudinale (in valore			
M _{01,y}	=	4118,32	3761,86	2567,05 17718,5		assoluto) massimo momento flettente longitudinale (in valore			
M _{02,v}	=	4282,88	3926,41	9		assoluto)			
		0.4000.4	22252 4	-0-4-		momento flettente di calcolo trasversale			
M _{0Ed,x}	=	34996,4	69659,4	7051,7	kN	equivalente momento flettente di calcolo longitudinale			
$M_{0Ed,y}$	=	4217,1	3860,6	11658,0	kN	equivalente			
Buckling									
n _u	=	1,1578	1,1578	1,1578					
n _{bal}	=	0,40	0,40	0,40					
K _r	=	1,256	1,279	1,358		coefficiente correttivo funzione del carico assiale			
φ(∞,t ₀)	=	2	2	2		coefficiente di viscosità a tempo infinito			
С	=	9,87	9,87	9,87		fattore funzione della distribuzione della curvatura			
Buckling I	ong	itudinale							
M _{SLE} /M _{SL}	=	0,74	0,74	0,74		rapporto momento SLE/momento SLU			
φ _{eff,x}	=	1,4815	1,4815	1,4815		coefficiente di viscosità efficace			
β _x	=	-0,052	-0,052	-0,052		Sommerme at vicebola emission			
Κ _{φx}	=	1	1	1		coefficiente che tiene conto della viscosità			
$(1/r_0)_x$	<u> </u>	0,0014	0,0014	0,0014		225			
$(1/r)_x$	† <u> </u>	0,0014	0,0014	0,0019		curvatura longitudinale			
	Ē	0,815	0,831	0,882	m	inflessione longitudinale			
M_{2v}	<u> </u>	30106,6	28016,4	20297,6	kNm	momento nominale del 2° ordine longitudinale			
	 -	34323,7	31877,0	31955,6	kNm	momento di progetto longitudinale			
M _{Edy} Buckling t			310//,0	3 1935,0	VINIU	momento di progetto longitudinale			
M _{SLE} /M _{SL}	1								
U	=	0,74	0,74	0,74		rapporto momento SLE/momento SLU			
Φ _{eff,y}	=	1,4815	1,4815	1,4815		coefficiente di viscosità efficace			
β_y	=	0,097	0,097	0,097					
$K_{\phi y}$	=	1,143	1,143	1,143					
$(1/r_0)_y$	=	0,001	0,001	0,001		curvatura trasversale			
(1/r) _v	=	0,002	0,002	0,002		curvatura trasversale			

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 67 di 156
Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

EFFETTI	EFFETTI DEL SECONDO ORDINE IN PRESENZA DI CARICO ASSIALE (EC2 - § 5.8)									
METODO	DE	LLA CUR	VATURA	NOM	INALE		·			
PILA P07										
e_{2y}	=	0,696	0,70	9	0,753	m	inflessione trasversale			
M _{2x}	=	25704,4	2391	9,8	17329,7	kNm	momento nominale del 2° ordine trasversale			
M_{Edx}	=	60700,8			24381,3	kNm	momento di progetto trasversale			
Buckling fl	ess	ione devia	ata - verifi	ca ge	ometrica					
$\lambda_{\text{max}}/\lambda_{\text{min}}$	=	1,37	1,37		1,37		rapporto di snellezza massimo (se <=2 sufficiente verifica a flessione semplice)			
$b_{x,eq}$	=	2,82	2,82		2,82	m	dimensione longitudinale equivalente			
b _{y,eq}	=	3,88	3,88		3,88	m	dimensione trasversale equivalente			
e _x	=	0,00	0,00		0,39	m	eccentricità longitudinale che non tiene conto delle imperfezioni			
e _v	=	0,84	1,95		0,19		eccentricità trasversale che non tiene conto delle imperfezioni			
e_{x0}	=	0,114	0,114	0,507		m	eccentricità longitudinale			
e_{y0}	=	0,95	2,07		0,31		eccentricità trasversale			
e/b	=	0,09	0,04	1,20			minimo rapporto eccentricità/dimensioni equivalenti			
(e/b) _x	=	0,10	0,04		1,89		minimo rapporto eccentricità/dimensioni equivalenti con imperfezioni longitudinali			
(e/b) _v	=	0,00	0,00		0,94		minimo rapporto eccentricità/dimensioni equivalenti con imperfezioni trasversali			
Buckling fl	ess	ione devia	ata - verifi	ca sei	mplificata					
N_{Rd}	=	-	-	207358		kN	forza nominale resistente			
а	=	-	-		1,50		esponente del dominio			
M_{Rdx}	=	-	-	8	85444		momento resistente trasversale per pressoflessione retta			
M_{Rdv}	=	_	-	6	4748	kNm	momento resistente longitudinale per pressoflessione retta			
check	=	-	-		0,50		se <1 verifica soddisfatta			

EFFETTI D	EFFETTI DEL SECONDO ORDINE IN PRESENZA DI CARICO ASSIALE (EC2 - § 5.8)								
METODO I	METODO DELLA CURVATURA NOMINALE								
PILA P08									
		Nmax	Mx,max	My,max					
R _{ck}	=	35	35	35	MPa	resistenza caratteristica cubica			
f _{ck}	=	29,05	29,05	29,05	MPa	resistenza caratteristica cilindrica			
γc	=	1,50	1,50	1,50		coefficiente parziale di sicurezza			
$\alpha_{\sf cc}$	=	0,85	0,85	0,85		coefficiente riduttivo per resistenze di lunga durata			
f _{cd}	=	16,46	16,46	16,46	MPa	resistenza di calcolo a compressione			
f _{cm}	=	37,05	37,05	37,05	MPa	resistenza cilindrica media			
E _{cm}	=	32588	32588	32588	MPa	modulo elastico istantaneo			
f _{yk}	=	450,00	450,00	450,00	MPa	tensione caratteristica di snervamento acciaio			
γs	=	1,15	1,15	1,15		coefficiente di sicurezza			
f _{yd}	=	391	391	391	MPa	tensione di snervamento di calcolo acciaio			

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 68 di 156
Nome file:
VI01-C-CL004_B.00_relazione_pile.doc

EFFETTI DEL SECONDO ORDINE IN PRESENZA DI CARICO ASSIALE (EC2 - § 5.8)									
	METODO DELLA CURVATURA NOMINALE								
PILA P08		LLA OOK	VAIONA	HOMINAL	_				
E _s	=	206000	206000	206000	МРа	modulo elastico acciaio			
ε _{vd}	=	0,00190		0,00190	-	deformazione allo snervamento di calcolo			
Geometria	ele			,					
d _x	=	2,95	2,95	2,95	m	altezza utile longitudinale			
d _y	=	3,95	3,95	3,95	m	altezza utile trasversale			
A _c	=	10,88	10,88	10,88	m ²	area sezione trasversale			
L	=	34,66	34,66	34,66	m	altezza elemento			
J_x	=	13,63	13,63	13,63	m ⁴	momento d'inerzia trasversale			
J_{v}	=	7,22	7,22	7,22	m ⁴	momento d'inerzia longitudinale			
i _x	=	0,81	0,81	0,81	m ⁴	raggio d'inerzia longitudinale			
İ _y	=	1,12	1,12	1,12	m ⁴	raggio d'inerzia trasversale			
A _s	=	72206	72206	72206	mm²	area armatura longitudinale totale disposta nella sezione			
ω	=	0,16	0,16	0,16		rapporto meccanico di armatura			
α_{x}	=	2,00	2,00	2,00		coefficiente di vincolo longitudinale			
α_{y}	=	2,00	2,00	2,00		coefficiente di vincolo trasversale			
L _{0x}	=	69,32	69,32	69,32	m	lunghezza libera d'inflessione longitudinale			
L_{0v}	=	69,32	69,32	69,32	m	lunghezza libera d'inflessione trasversale			
λ_{x}	=	85,10	85,10	85,10		snellezza longitudinale			
λ_{v}	=	61,93	61,93	61,93		snellezza trasversale			
λ	=	85,10	85,10	85,10		snellezza massima			
Valutazion limite	ie d	ella snelle	zza						
A	=	0,70	0,70	0,70					
В	_	1,15	1,15	1,15		coeffciente funzione del rapporto meccanico di armatura			
С	=	0,70	0,70	0,70		coeffciente funzione del rapporto dei momenti flettenti alle estremità (=0.7 se il rapporto non è noto)			
n	=	0,2088	0,1910	0,1305		forza assiale adimensionale			
λ_{lim}	=	24,60	25,72	31,12		snellezza limite			
ϑ_0	=	0,005	0,005	0,005					
α_{h}	=	0,67	0,67	0,67					
α_{m}	=	1,00	1,00	1,00					
ϑ_{i}	=	0,00333	0,00333	0,00333					
e _{ix}	=	0,12	0,12	0,12	m	eccentricità aggiuntiva longitudinale			
e _{iy}	=	0,12	0,12	0,12	m	eccentricità aggiuntiva trasversale			
Sollecitazi	oni								
N_{Ed}	=	37404,8	34209,8	23366,0	kN	sforzo normale di calcolo			
$M_{1,x}$	=	31016,1	64702,5	4391,3		momento flettente trasversale del primo ordine			
$M_{2,x}$	=	31016,1	64702,5	4391,3		momento flettente trasversale del primo ordine			
$M_{1,y}$	=	0,0	0,0	0,0		momento flettente longitudinale del primo ordine			

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 69 di 156
Nome file:
VI01-C-CL004_B.00_relazione_pile.doc

EFFETTI C	EL	SECONI	OO ORDIN	IE IN PRES	SENZ	A DI CARICO ASSIALE (EC2 - § 5.8)
METODO	DE	LLA CUR	VATURA	NOMINAL	E	, <u> </u>
PILA P08	1		Г		1	
$M_{2,y}$	=	421,5	421,5	14593,2		momento flettente longitudinale del primo ordine
M _{01,x}	=	35338	68655	7091		minimo momento flettente trasversale (in valore assoluto)
M _{02,x}	=	35338	68655	7091		massimo momento flettente trasversale (in valore assoluto)
M _{01,y}	=	4321,50	3952,37	2699,55		minimo momento flettente longitudinale (in valore assoluto)
M _{02,y}	=	4742,99	4373,87	17292,76		massimo momento flettente longitudinale (in valore assoluto)
$M_{0Ed,x}$	=	35337,6	68654,9	7090,9	kN	momento flettente di calcolo trasversale equivalente
$M_{0Ed,y}$	=	4574,4	4205,3	11455,5	kN	momento flettente di calcolo longitudinale equivalente
Buckling						
n _u	=	1,1578	1,1578	1,1578		
n _{bal}	=	0,40	0,40	0,40		
K _r	=	1,252	1,276	1,356		coefficiente correttivo funzione del carico assiale
φ(∞,t ₀)	=	2	2	2		coefficiente di viscosità a tempo infinito
С	=	9,87	9,87	9,87		fattore funzione della distribuzione della curvatura
Buckling lo	ngi	tudinale				
M_{SLE}/M_{SLU}	=	0,74	0,74	0,74		rapporto momento SLE/momento SLU
Φ _{eff,x}	=	1,4815	1,4815	1,4815		coefficiente di viscosità efficace
β_{x}	=	-0,072	-0,072	-0,072		
$K_{\scriptscriptstyle{\phiX}}$	=	1	1	1		coefficiente che tiene conto della viscosità
$(1/r_0)_x$	=	0,0014	0,0014	0,0014		
(1/r) _x	=	0,0018	0,0018	0,0019		curvatura longitudinale
e _{2x}	=	0,872	0,889	0,944	m	inflessione longitudinale
M _{2v}	=	32632,7	30406,4	22068,9	kNm	
M_{Edy}	=	37207,1	34611,7	33524,4	kNm	momento di progetto longitudinale
Buckling tr			,	,		1 3 3
M _{SLE} /M _{SLU}	=	0,74	0,74	0,74		rapporto momento SLE/momento SLU
φ _{eff,y}	=	1,4815	1,4815	1,4815		coefficiente di viscosità efficace
β_{y}	=	0,082	0,082	0,082		
$K_{\scriptscriptstyle{\phiV}}$	=	1,122	1,122	1,122		
(1/r ₀) _v	=	0,001	0,001	0,001		curvatura trasversale
(1/r) _v	=	0,002	0,002	0,002		curvatura trasversale
e _{2v}	=	0,731	0,745	0,791	m	inflessione trasversale
<u>С_{2у} </u>	=	27344,9		18492,9	kNm	momento nominale del 2° ordine trasversale
M _{Edx}	=		94134,3	25583,7	kNm	momento di progetto trasversale
Buckling fle	ess				171.4111	momonto di progetto trasversale
geometrica						
$\lambda_{\sf max}/\lambda_{\sf min}$	=	1,37	1,37	1,37		rapporto di snellezza massimo (se <=2 sufficiente verifica a flessione semplice)
$b_{x,eq}$	=	2,82	2,82	2,82	m	dimensione longitudinale equivalente
$b_{y,eq}$	=	3,88	3,88	3,88	m	dimensione trasversale equivalente

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 70 di 156
Nome file:
VI01-C-CL004_B.00_relazione_pile.doc

EFFETT	EFFETTI DEL SECONDO ORDINE IN PRESENZA DI CARICO ASSIALE (EC2 - § 5.8)								
				NOMINAL		, ,			
PILA PO	8								
e _x	=	0,01	0,01	0,37	m	eccentricità longitudinale che non tiene conto delle imperfezioni			
e_v	=	0,83	1,89	0,19	m	eccentricità trasversale che non tiene conto delle imperfezioni			
e_{x0}	=	0,122	0,123	0,490	m	eccentricità longitudinale			
e_{v0}	=	0,94	2,01	0,30	m	eccentricità trasversale			
e/b	=	0,09	0,04	1,18		minimo rapporto eccentricità/dimensioni equivalenti			
(e/b) _x		0,11	0,05	1,90		minimo rapporto eccentricità/dimensioni equivalenti con imperfezioni longitudinali			
(e/b) _v		0,01	0,00	0,90		minimo rapporto eccentricità/dimensioni equivalenti con imperfezioni trasversali			
Buckling semplific		ione devia	ata - verific	a					
N_{Rd}	=	-	-	207358	kN	forza nominale resistente			
а	=	-	-	1,50		esponente del dominio			
M_{Rdx}	=	-	-	85444	kNm	momento resistente trasversale per pressoflessione retta			
M_{Rdy}	=	-	-	64748	kNm	momento resistente longitudinale per pressoflessione retta			
check	=	-	_	0,54		se <1 verifica soddisfatta			

EFFETTI I	EFFETTI DEL SECONDO ORDINE IN PRESENZA DI CARICO ASSIALE (EC2 - § 5.8)								
	METODO DELLA CURVATURA NOMINALE								
PILA P09									
		Nmax	Mx,max	My,max					
R _{ck}	=	35	35	35	MPa	resistenza caratteristica cubica			
f _{ck}	=	29,05	29,05	29,05	MPa	resistenza caratteristica cilindrica			
γc	=	1,50	1,50	1,50		coefficiente parziale di sicurezza			
$\alpha_{\sf cc}$	=	0,85	0,85	0,85		coefficiente riduttivo per resistenze di lunga durata			
f _{cd}	=	16,46	16,46	16,46	MPa	resistenza di calcolo a compressione			
f _{cm}	=	37,05	37,05	37,05	MPa	resistenza cilindrica media			
E _{cm}	=	32588	32588	32588	MPa	modulo elastico istantaneo			
f _{yk}	=	450,00	450,00	450,00	MPa	tensione caratteristica di snervamento acciaio			
γ_{s}	=	1,15	1,15	1,15		coefficiente di sicurezza			
f_{vd}	=	391	391	391	MPa	tensione di snervamento di calcolo acciaio			
Es	=	206000	206000	206000	MPa	modulo elastico acciaio			
$\varepsilon_{ m vd}$	=	0,00190	0,00190	0,00190		deformazione allo snervamento di calcolo			
Geometria	ele	mento							
d _x	=	2,95	2,95	2,95	m	altezza utile longitudinale			
d _y	=	3,95	3,95	3,95	m	altezza utile trasversale			
A _c	=	10,88	10,88	10,88	m ²	area sezione trasversale			
L	=	34,66	34,66	34,66	m	altezza elemento			
J_x	=	13,63	13,63	13,63	m ⁴	momento d'inerzia trasversale			

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo	
Relazione di Calcolo Pile	
Pagina 71 di 156	
Nome file:	

VI01-C-CL004_B.00_relazione_pile.doc

EFFETTI	DEL	SECONI	DO ORDIN	IE IN PRE	SENZ	A DI CARICO ASSIALE (EC2 - § 5.8)			
		LLA CUR	VATURA	NOMINAL	E				
PILA POS)				Ι,	I			
J_{y}	=	7,22	7,22	7,22	m ⁴	momento d'inerzia longitudinale			
İ _x	=	0,81	0,81	0,81	m ⁴	raggio d'inerzia longitudinale			
İ _y	=	1,12	1,12	1,12	m ⁴	raggio d'inerzia trasversale			
A_s	=	72206	72206	72206	mm ²	area armatura longitudinale totale disposta nella sezione			
ω ω	=	0,16	0,16	0,16	111111	rapporto meccanico di armatura			
α_{x}	=	2,00	2,00	2,00		coefficiente di vincolo longitudinale			
α_{V}	=	2,00	2,00	2,00		coefficiente di vincolo trasversale			
L _{0x}	=	69,32	69,32	69,32	m	lunghezza libera d'inflessione longitudinale			
L _{0v}	=	69,32	69,32	69,32	m	lunghezza libera d'inflessione trasversale			
λ_{x}	=	85,10	85,10	85,10		snellezza longitudinale			
λ_{y}	=	61,93	61,93	61,93		snellezza trasversale			
λ	=	85,10	85,10	85,10		snellezza massima			
Valutazio	ne d	ella snelle	zza	·					
limite	=	0.70	0.70	0.70					
Α	+-	0,70	0,70	0,70		coeffciente funzione del rapporto meccanico di			
В	=	1,15	1,15	1,15		armatura			
С	_	0.70	0.70	0.70		coeffciente funzione del rapporto dei momenti flettenti			
n	+-	0,70 0,2089	0,70 0,1911	0,70 0,1305		alle estremità (=0.7 se il rapporto non è noto) forza assiale adimensionale			
	=	24,59	25,71	31,11		snellezza limite			
λ_{lim}		24,00	20,71	01,11		STOREZZA IIITIC			
90	=	0,005	0,005	0,005					
α_{h}	=	0,67	0,67	0,67					
α_{m}	=	1,00	1,00	1,00					
ϑ_{i}	=	0,00333	•	0,00333					
e _{ix}	=	0,12	0,12	0,12	m	eccentricità aggiuntiva longitudinale			
e _{iv}	=	0,12	0,12	0,12	m	eccentricità aggiuntiva trasversale			
Sollecitaz	zioni	- ,	- ,	- ,					
N _{Ed}	=	37410,7	34229,3	23378,4	kN	sforzo normale di calcolo			
$M_{1,x}$	=	28734,7	61016,8	4558,9		momento flettente trasversale del primo ordine			
$M_{2,x}$	=	28734,7	61016,8	4558,9		momento flettente trasversale del primo ordine			
M _{1,y}	=	0,0	0,0	0,0		momento flettente longitudinale del primo ordine			
M _{2,V}	=	681,0	681,0	14590,4		momento flettente longitudinale del primo ordine			
-			0.407.4			minimo momento flettente trasversale (in valore			
M _{01,x}	=	33057	64971	7260		assoluto) massimo momento flettente trasversale (in valore			
$M_{02,x}$	=	33057	64971	7260	L	assoluto)			
M _{01,y}	=	4322,18	3954,62	2700,98		minimo momento flettente longitudinale (in valore assoluto)			
M _{02,y}	=	5003,19	4635,63	17291,39		massimo momento flettente longitudinale (in valore assoluto)			
$M_{0Ed,x}$	=	33056,9	64971,4	7259,9	kN	momento flettente di calcolo trasversale equivalente			

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 72 di 156
Nome file:
VI01-C-CL004_B.00_relazione_pile.doc

EFFETTI C	EFFETTI DEL SECONDO ORDINE IN PRESENZA DI CARICO ASSIALE (EC2 - § 5.8)									
METODO						,				
PILA P09										
$M_{0Ed,y}$	=	4730,8	4363,2	11455,2	kN	momento flettente di calcolo longitudinale equivalente				
Buckling										
n _u	=	1,1578	1,1578	1,1578						
n _{bal}	=	0,40	0,40	0,40						
K _r	=	1,252	1,276	1,356		coefficiente correttivo funzione del carico assiale				
$\varphi(\infty,t_0)$	=	2	2	2		coefficiente di viscosità a tempo infinito				
C	=	9,87	9,87	9,87		fattore funzione della distribuzione della curvatura				
Buckling lo	ngi									
M_{SLE}/M_{SLU}	=	0,74	0,74	0,74		rapporto momento SLE/momento SLU				
φ _{eff,x}	=	1,4815	1,4815	1,4815		coefficiente di viscosità efficace				
β_{x}	=	-0,072	-0,072	-0,072						
$K_{\phi x}$	=	1	1	1		coefficiente che tiene conto della viscosità				
$(1/r_0)_x$	=	0,0014	0,0014	0,0014						
$(1/r)_x$	=	0,0018	0,0018	0,0019		curvatura longitudinale				
e_{2x}	=	0,872	0,889	0,944	m	inflessione longitudinale				
M_{2y}	=	32636,7	30420,3	22079,1	kNm	momento nominale del 2° ordine longitudinale				
M_{Edv}	=	37367,5	34783,6	33534,3	kNm	momento di progetto longitudinale				
Buckling tra	asv	ersale								
M_{SLE}/M_{SLU}	=	0,74	0,74	0,74		rapporto momento SLE/momento SLU				
Φ _{eff,y}	=	1,4815	1,4815	1,4815		coefficiente di viscosità efficace				
β_{y}	=	0,082	0,082	0,082						
$K_{\phi y}$	=	1,122	1,122	1,122						
$(1/r_0)_v$	=	0,001	0,001	0,001		curvatura trasversale				
(1/r) _y	=	0,002	0,002	0,002		curvatura trasversale				
e _{2y}	=	0,731	0,745	0,791	m	inflessione trasversale				
M _{2x}	=	27348,3	25491,0	18501,4	kNm	momento nominale del 2° ordine trasversale				
M_{Edx}	=	60405,2	90462,5	25761,3	kNm	momento di progetto trasversale				
Buckling fle		ione devia	ta - verific	a						
geometrica	1					rapporto di snellezza massimo (se <=2 sufficiente				
$\lambda_{\text{max}}/\lambda_{\text{min}}$	=	1,37	1,37	1,37		verifica a flessione semplice)				
b _{x,eq}	=	2,82	2,82	2,82	m	dimensione longitudinale equivalente				
b _{y,eq}	=	3,88	3,88	3,88	m	dimensione trasversale equivalente				
						eccentricità longitudinale che non tiene conto delle				
e _x	=	0,01	0,01	0,37	m	imperfezioni eccentricità trasversale che non tiene conto delle				
e_v	=	0,77	1,78	0,20	m	imperfezioni				
e_{x0}	=	0,126	0,127	0,490	m	eccentricità longitudinale				
e _{v0}	=	0,88	1,90	0,31	m	eccentricità trasversale				
e/b	=	0,10	0,05	1,15	1	minimo rapporto eccentricità/dimensioni equivalenti				
(e/b) _x	=	0,12	0,05	1,83		minimo rapporto eccentricità/dimensioni equivalenti con imperfezioni longitudinali				

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo	
Relazione di Calcolo Pile	
Pagina 73 di 156	
Nome file: VI01-C-CL004 B.00 relazione pile	e.doc

EFFETTI DEL SECONDO ORDINE IN PRESENZA DI CARICO ASSIALE (EC2 - § 5.8)									
METODO DELLA CURVATURA NOMINALE									
PILA P09									
(e/b) _v = 0,01 0,00 0,88 minimo rapporto eccentricità/dimensioni equivaler									
Buckling flessione deviata - verifica semplificata									
N_{Rd}	=	-	-	207358	kN	forza nominale resistente			
а	=	-	-	1,50		esponente del dominio			
M_{Rdx}	=	-	-	85460	kNm	momento resistente trasversale per pressoflessione retta			
M _{Rdy}	=	-	-	64760	momento resistente longitudinale per pressoflessio				
check	=	-	-	0,54		se <1 verifica soddisfatta			

			TURA NOMIN		CAN	CO ASSIALE (EC2 - § 5.8)			
PILA P		LA CURVA	I OKA NOMIN	IALE					
		Nmax	Mx,max	My,max					
R _{ck}	=	35	35	35	MPa	resistenza caratteristica cubica			
f _{ck}	=	29,05	29,05	29,05	MPa	resistenza caratteristica cilindrica			
γс	=	1,50	1,50	1,50		coefficiente parziale di sicurezza			
$\alpha_{\sf cc}$	=	0,85	0,85	0,85		coefficiente riduttivo per resistenze di lunga durata			
f _{cd}	=	16,46	16,46	16,46	МРа	resistenza di calcolo a compressione			
f _{cm}	=	37,05	37,05	37,05	MPa	resistenza cilindrica media			
E _{cm}	=	32588	32588	32588	MPa	modulo elastico istantaneo			
f_{yk}	=	450,00	450,00	450,00	MPa	tensione caratteristica di snervamento accia			
Υs	=	1,15	1,15	1,15		coefficiente di sicurezza			
f_{yd}	=	391	391	391	MPa	tensione di snervamento di calcolo acciaio			
Es	=	206000	206000	206000	MPa	modulo elastico acciaio			
$\epsilon_{ extsf{vd}}$	=	0,00190	0,00190	0,00190		deformazione allo snervamento di calcolo			
Geome	tria elei	mento							
d _x	=	2,95	2,95	2,95	m	altezza utile longitudinale			
d _v	=	3,95	3,95	3,95	m	altezza utile trasversale			
A _c	=	10,88	10,88	10,88	m^2	area sezione trasversale			
L	=	19,06	19,06	19,06	m	altezza elemento			
J_x	=	13,63	13,63	13,63	m ⁴	momento d'inerzia trasversale			
J_{y}	=	7,22	7,22	7,22	m ⁴	momento d'inerzia longitudinale			
i _x	=	0,81	0,81	0,81	m ⁴	raggio d'inerzia longitudinale			
i _v	=	1,12	1,12	1,12	m ⁴	raggio d'inerzia trasversale			
A _s	=	51698	51698	51698	mm ²	area armatura longitudinale totale disposta nella sezione			
ω	=	0,11	0,11	0,11		rapporto meccanico di armatura			
α_{x}	=	2,00	2,00	2,00		coefficiente di vincolo longitudinale			
α_{v}	=	2,00	2,00	2,00		coefficiente di vincolo trasversale			

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 74 di 156
Nome file:
VI01-C-CL004_B.00_relazione_pile.doc

EFFETTI	DEL	SECONDO	ORDINE IN P	RESENZA D	I CAR	ICO ASSIALE (EC2 - § 5.8)		
			TURA NOMIN			, ,		
PILA P11								
L_{0x}	=	38,12	38,12	38,12	m	lunghezza libera d'inflessione longitudinale		
L _{0y}	=	38,12	38,12	38,12	m	lunghezza libera d'inflessione trasversale		
λ_{x}	=	46,79	46,79	46,79		snellezza longitudinale		
λ _γ	=	34,06	34,06	34,06		snellezza trasversale		
λ	=	46,79	46,79	46,79		snellezza massima		
Valutazior	ne de	ella snellezza	limite					
Α	=	0,70	0,70	0,70				
В	=	1,11	1,11	1,11		coeffciente funzione del rapporto meccanico di armatura		
С	=	0,70	0,70	0,70		coeffciente funzione del rapporto dei momenti flettenti alle estremità (=0.7 se il rapporto non è noto)		
n	=	0,1738	0,1572	0,1057		forza assiale adimensionale		
λ_{lim}	=	26,03	27,37	33,38		snellezza limite		
		,	,	,				
ϑ_0	=	0,005	0,005	0,005				
α_{h}	=	0,67	0,67	0,67				
α_{m}	=	1,00	1,00	1,00				
ϑ_{i}	=	0,00333	0,00333	0,00333				
e _{ix}	=	0,06	0,06	0,06	m	eccentricità aggiuntiva longitudinale		
e _{iv}	=	0,06	0,06	0,06	m	eccentricità aggiuntiva trasversale		
Sollecitaz	ioni	0,00	3,33	0,00		occontribute agginitate tractorioaic		
N _{Ed}	=	31122,2	28155,3	18928,9	kN	sforzo normale di calcolo		
Lu						momento flettente trasversale del primo		
M _{1,x}	=	13379,4	39442,7	3549,3		ordine		
$M_{2,x}$	=	13379,4	39442,7	3549,3		momento flettente trasversale del primo ordine		
M _{1,y}	=	0,0	0,0	0,0		momento flettente longitudinale del primo ordine		
						momento flettente longitudinale del primo		
M _{2,y}	=	1126,6	1126,6	17255,1		ordine minimo momento flettente trasversale (in		
M _{01,x}	=	15357	41231	4752		valore assoluto)		
M _{02,x}	=	15357	41231	4752		massimo momento flettente trasversale (in valore assoluto)		
M _{01,y}	=	1977,29	1788,80	1202,61		minimo momento flettente longitudinale (in valore assoluto)		
M _{02,y}	=	3103,86	2915,37	18457,73		massimo momento flettente longitudinale (in valore assoluto)		
						momento flettente di calcolo trasversale		
$M_{0Ed,x}$	=	15356,7	41231,5	4751,9	kN	equivalente momento flettente di calcolo longitudinale		
$M_{0Ed,v}$	=	2653,2	2464,7	11555,7	kN	equivalente		
Buckling				, 				
n _u	=	1,1129	1,1129	1,1129				
n _{bal}	=	0,40	0,40	0,40				
K _r	=	1,317	1,341	1,413		coefficiente correttivo funzione del carico assiale		

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo						
Relazione di Calcolo Pile						
Pagina 75 di 156						
Nome file:						

VI01-C-CL004_B.00_relazione_pile.doc

EFFETTI DEL SECONDO ORDINE IN PRESENZA DI CARICO ASSIALE (EC2 - § 5.8)										
	DE	LLA CURVAT	TURA NOMIN	ALE						
PILA P11		_								
$\varphi(\infty, t_0)$	=	2	2	2		coefficiente di viscosità a tempo infinito fattore funzione della distribuzione della				
С	=	9,87	9,87	9,87		curvatura				
Buckling lo	ngi	tudinale	·	·						
M _{SLE} /M _{SLU}	=	0,74	0,74	0,74		rapporto momento SLE/momento SLU				
φ _{eff,x}	=	1,4815	1,4815	1,4815		coefficiente di viscosità efficace				
β_{x}	=	0,183	0,183	0,183						
$K_{\phi x}$	=	1,27153162	1,27153162	1,27153162		coefficiente che tiene conto della viscosità				
$(1/r_0)_x$	=	0,0014	0,0014	0,0014						
(1/r) _x	=	0,0024	0,0024	0,0026		curvatura longitudinale				
e _{2x}	=	0,353	0,359	0,378	m	inflessione longitudinale				
M _{2y}	=	10982,6	10110,9	7164,0	kNm	momento nominale del 2° ordine longitudinale				
M_{Edy}	=	13635,9	12575,7	18719,7	kNm	momento di progetto longitudinale				
Buckling trasversale										
M_{SLE}/M_{SLU}	=	0,74	0,74	0,74		rapporto momento SLE/momento SLU				
φ _{eff,y}	=	1,4815	1,4815	1,4815		coefficiente di viscosità efficace				
β_{y}	=	0,268	0,268	0,268						
$K_{\phi y}$	=	1,397	1,397	1,397						
$(1/r_0)_y$	=	0,001	0,001	0,001		curvatura trasversale				
(1/r) _y	=	0,002	0,002	0,002		curvatura trasversale				
e _{2y}	=	0,290	0,295	0,311	m	inflessione trasversale				
M_{2x}	=	9013,7	8298,3	5879,6	kNm	momento nominale del 2° ordine trasversale				
M_{Edx}	=	24370,4	49529,7	10631,5	kNm	momento di progetto trasversale				
Buckling fle	ess	ione deviata -	verifica geom	netrica						
$\lambda_{\text{max}}/\lambda_{\text{min}}$	=	1,37	1,37	1,37		rapporto di snellezza massimo (se <=2 sufficiente verifica a flessione semplice)				
b _{x,eq}	=	2,82	2,82	2,82	m	dimensione longitudinale equivalente				
b _{y,eq}	=	3,88	3,88	3,88	m	dimensione trasversale equivalente				
e _x	=	0,02	0,02	0,55	m	eccentricità longitudinale che non tiene conto delle imperfezioni				
		-	-			eccentricità trasversale che non tiene conto				
e _y	=	0,43	1,40	0,19	m	delle imperfezioni				
e _{x0}	=	0,085	0,088	0,610	m	eccentricità longitudinale				
e _{y0}	=	0,49	1,46	0,25	m	eccentricità trasversale minimo rapporto eccentricità/dimensioni				
e/b	=	0,13	0,04	1,77		equivalenti				
(e/b) _x	=	0,14	0,05	2,37		minimo rapporto eccentricità/dimensioni equivalenti con imperfezioni longitudinali				
(e/b) _v	=	0,03	0,01	1,59		minimo rapporto eccentricità/dimensioni equivalenti con imperfezioni trasversali				
	ess		verifica semp	· · · · · · · · · · · · · · · · · · ·						
N_{Rd}	=	-	-	199333	kN	forza nominale resistente				
а	=	-	-	1,00		esponente del dominio				
M_{Rdx}	=	-	-	67213	kNm	momento resistente trasversale per				

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 76 di 156
Nome file: VI01-C-CL004_B.00_relazione_pile.doc

EFFETTI C	EFFETTI DEL SECONDO ORDINE IN PRESENZA DI CARICO ASSIALE (EC2 - § 5.8)								
METODO DELLA CURVATURA NOMINALE									
PILA P11	PILA P11								
	pressoflessione retta								
M_{Rdv}	=	-	-	50603	kNm	momento resistente longitudinale per pressoflessione retta			
check	=	-	-	- 0,53 se <1 verifica soddisfatta					

5.2.2 Verifica di resistenza per l'instabilità

Nella tabella xx e xx sono riportate le verifiche di resistenza a flessione deviata per i due gruppi di pile considerate. Le verifiche sono state condotte con l'ausilio del programma VcaSlu versione 7.6 così come già illustrato nel paragrafo per le verifiche a tensioni normali. Nei casi in cui il punto 5.8.9.3 dell'EN 1992 non era soddisfatto, oltre alla verifica semplificata del punto 5.8.9.4 dell'EN 1992, è stata condotta una ulteriore verifica a flessione deviata considerando il momento di calcolo amplificato nella direzione più sfavorevole.

Tabella 4.5.2 – Gruppo 1: Verifiche a di resistenza a flessione deviata considerando gli effetti del secondo ordine nella direzione più sfavorevole.

Gruppo 1 : PILE P01,P02,P11 e P12											
QUOTA z=0											
COMB.											
		KN	KNm	KNm	KNm	KNm	Verifica Mrd>Med				
Nmax	11	31122,15	24370,44	13635,88	64221	36615	ok	ok			
Mxmax	11	28155,35	49529,74	1126,56	78848	2529	ok	ok			
Mymax	11	18928,87	3549,25	18719,67	7570	50099	ok	ok			

Tabella 4.5.3 – Gruppo 2: Verifiche a di resistenza a flessione deviata considerando gli effetti del secondo ordine nella direzione più sfavorevole.

Gruppo 2:								
QUOTA z=0								
COMB.	PILA	Myrd						
		KN	KNm	KNm	KNm	KNm	Verifica Mrd>Med	
Nmax	09	37410,67	60405,22	37367,52	73569	46606	ok	ok
Mxmax	09	34229,29	90462,49	681,01	97391	914,2	ok	ok
Mymax	09	23378,39	4558,88	33534,32	8171	64123	ok	ok
Nmax	80	37404,75	62682,51	37207,10	74580	45653	ok	ok
Mxmax	08	34209,80	94134,28	421,50	97371	914,5	ok	ok
Mymax	08	23366,00	4391,32	33524,36	8171	64111	ok	ok
Nmax	07	36924,59	60700,75	34323,68	76226	43610	ok	ok
Mxmax	07	33728,53	93579,20	164,56	96888	920	ok	ok
Mymax	07	23015,96	4484,61	31955,60	8177	63774	ok	ok
Mymax	03	19342,22	2272,75	21583,48	6129	60358	ok	ok
Mymax	04	21947,50	4834,80	28203,66	10269	62472	ok	ok

Concludendo, le verifiche effettuate sono tutte soddisfatte per cui per le pile progettate lo stato limite di instabilità è scongiurato nei confronti delle azioni di progetto.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 77 di 156
Nome file: VI01-C-CL004_B.00_relazione_pile.doc

6 VERIFICA DEL PULVINO

Il dimensionamento dell'armatura del pulvino è stato eseguito ipotizzando un meccanismo resistente tirantepuntone, seguendo le indicazioni dell' EC2.

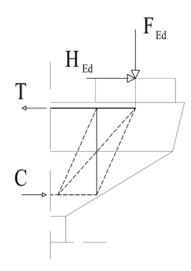


Figura 6-1 - Modello di calcolo: Strut and Tie.

Tale dimensionamento viene eseguito prendendo a riferimento due distinte condizioni di carico: la prima relativa alla massima azione verticale trasmessa dall'impalcato e corrispondente azione trasversale; la seconda relativa alla massima azione trasversale e corrispondente azione verticale.

F_{Ed} e quella orizzontale H_{Ed}.

Nel calcolo della forza H_{Ed} è stato portato in conto anche l'azione parassita dei vincoli.

RIEF				
	$F_{Ed,max}$	H _{Ed.max}	Pila	comb
F_{Ed}	12883.9	401.9	P11	SLU-2
H_{Ed}	8645.5	816.3	P06	SLU-9

Si riporta di seguito il dettaglio dei calcoli di verifica.

Materiali

R_{ck}	=	35	35 MF	a resistenza caratteristica cilindrica
f_{ck}	=	29.05	29.05 MF	a resistenza caratteristica cubica
f_{cd}	=	16.5	16.5 MF	a resistenza di calcolo a compressione
f_{yd}	=	391.3	391.3 MF	a tensione di snervamento di calcolo
β_1	=	1.18	1.18	coefficiente per la resistenza del nodo compresso
β_2	=	1.00	1.00	coefficiente per la resistenza del nodo teso-compresso
β_3	=	0.88	0.88	coefficiente per la resistenza del nodo teso-compresso
$\sigma_{\text{1Rd},\text{max}}$	=	20.20	20.20 MF	a resistenza a compressione per nodi compressi

Pila P11 P06

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Opera: Viadotto Giulfo Relazione di Calcolo Pile Pagina 78 di 156

Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

L										
Comb.	Comb. SLU-2 SLU-9									
F_{Ed}	=	12883.00	8645.50	kN	azione verticale di calcolo appoggio					
H _{Ed}	=	401.94	816.26		azione orizzontale di calcolo appoggio					
<u>Lu</u>										
Geometri	а									
a_c	=	1075	1075		distanza asse appoggio 1 estradosso pila					
В	=	3000	3000	mm	larghezza pulvino					
h _c	=	3200	3200		altezza pulvino					
С	=	50	50	mm	copriferro					
S	=	60	60	mm	altezza dente estradosso pulvino					
b ₁	=	1100	1100		larghezza baggiolo					
b_2	=	1100	1100		lunghezza baggiolo					
b_3	=	200		mm	altezza baggiolo					
d	=	Hbi 3150	Hbe 3150	mm	id baggioli altezza utile					
u Z	=	2520	2520		braccio della coppia interna					
X ₁	=	212.6	142.7		larghezza collaborante pila					
y ₁	=	504.0	504.0		altezza biella compressa					
	=	1181.3	1146.3		distanza tra F_{Ed} e asse 1 larghezza pila collaborante					
а										
a _H	=	310	520	mm	distanza tra H _{Ed} e armatura					
С	=	6089	4101	kN	risultante di compressione					
Т	=	6491	4918		risultante di trazione					
Verifiche F	Puntone-1	Tirante								
σ_{c}	=	2.01		MPa	risultante di compressione					
FS	=	10.03	14.89		risultante di trazione					
n	=	40	30		numero ferri superiore					
Ø	=	26	26	mm	diametro armatura superiore					
A_s	=	21237.2	15927.9	mm^2	•					
σ_{s}	=	306			tensione di trazione nel tirante					
FS	=	1.28	1.27		check (if >1 verified)					
					,					
Armatura	a Taglio									
_			orizzontali		disposizione staffe					
F_{wd}	=	3887.5	2727.1	kN	risultante forza di taglio					
n	_	0	0		numero eteffe					

		orizzontali	orizzontali		disposizione staffe
F_{wd}	=	3887.5	2727.1	kN	risultante forza di taglio
n_{w}	=	8	8		numero staffe
S_W	=	200	200	mm	passo staffe
\emptyset_{w}	=	20	20	mm	diametro staffe
k_2	=	0.25	0.25		coefficiente per l'armatura a taglio minima
$A_{\text{s,lnk}}$	=	5309.3	3982.0	mm^2	armatura minima a taglio
A_{sw}	=	14844.8	14405.4	mm^2	armatura di progetto
σ_{s}	=	262	189	MPa	tensione di trazione staffe
FS	=	1.49	2.07		check (se >1 verificato)

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 79 di 156
Nome file: VI01-G-CL 004_B 00_relazione_pile doc

6.1 Verifica baggioli

La verifica è condotta considerando un meccanismo resistente tirante-puntone, seguendo le indicazioni dell' EC2, secondo quanto già fatto per il pulvino.

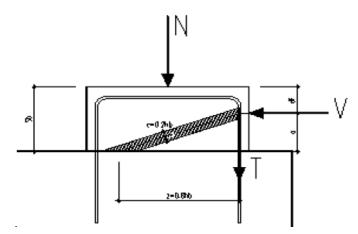


Figura 6-2 - Modello di calcolo: Strut and Tie.

Inoltre, viene effettuata la verifica dell'armatura orizzontale considerando le forze di fenditura secondo quanto indicato nelle raccomandazioni FIP-CEB

Nella verifica della pressione di contatto si può osservare che le pressioni possono raggiungere valori molto elevati, prossimi a quelli della resistenza del calcestruzzo, a patto però che l'area caricata sia opportunamente distanziata dal bordo del calcestruzzo. In tal caso la diffusione del carico all'interno dell'elemento in calcestruzzo genera tensioni di trazione perpendicolari alla direzione del carico e bisogna predisporre un'opportuna armatura. L'armatura può essere calcolata mediante la seguente formulazione (FIP-CEB):

$$T = \frac{N}{3.3} \cdot \left(\frac{b - b_0}{b}\right)$$

in cui:

N = carico concentrato all'appoggio

b = larghezza del baggilo

b₀ = larghezza dell'appoggio

RIEPIL				
	$\mathbf{F}_{Ed,max}$	$H_{Ed.max}$	Pila	comb
N=F _{Ed}	12883.9	401.9	P11	SLU-2
V=H _{Ed}	8645.5	816.3	P06	SLU-9

Materiali

R_{ck}	=	45	45	MPa	resistenza caratteristica cilindrica
f_{ck}	=	37.35	37.35	MPa	resistenza caratteristica cubica
f_{cd}	=	21.2	21.2	MPa	resistenza di calcolo a compressione
\mathbf{f}_{yd}	=	391.3	391.3	MPa	tensione di snervamento di calcolo
β_1	=	1.18	1.18		coefficiente per la resistenza del nodo compresso
β_2	=	1.00	1.00		coefficiente per la resistenza del nodo teso-compresso
β_3	=	0.88	0.88		coefficiente per la resistenza del nodo teso-compresso
$\sigma_{1Rd,max}$	=	24.99	24.99	MPa	resistenza a compressione per nodi compressi

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

	Opera: Viadotto Giulfo					
	Relazione di Calcolo Pile					
Pagina 80 di 156						
	Nome file: VI01-C-CL004_B.00_relazione_pile.doc					

Pila Comb.		P11 SLU-2	P06 SLU-9		
$N=F_{Ed}$	=	12883.00	8645.50	kN	azione verticale di calcolo appoggio
$V=H_{Ed}$	=	401.94	816.26	kN	azione orizzontale di calcolo appoggio
Verifica ba	aggiolo				
b_1	=	1100	1100	mm	larghezza baggiolo
b_2	=	1100	1100	mm	lunghezza baggiolo
b_3	=	200	410	mm	altezza baggiolo
C	=	30	30	mm	copriferro
d z	=	1070 856	1070 856	mm mm	altezza utile braccio della coppia interna
Σ Χ ₁	=	14.6	29.7	mm	larghezza collaborante
•	=	171.2	171.2	mm	•
y₁ a	=	207.3	424.8	111111	altezza biella compressa
α	=	0.24	0.46	rad	
С	=	413.56	911.26	kN	
Т	=	97.34	405.12	kN	
Verifiche F	Puntone-T	irante			
σ_{c}	=	1.10	2.42	MPa	risultante di compressione
FS	=	22.76	10.33		risultante di trazione
n	=	6	6		numero ferri superiore
Ø	=	20	20	mm	diametro armatura superiore
A_s	=	1885.0	1885.0	mm^2	area armatura superiore
σ_{s}	=	52	215	MPa	tensione di trazione nel tirante
FS	=	7.58	1.82		check (if >1 verified)
Verifiche	armatura	a fenditura			
b_1	=	1100	1100	mm	larghezza baggiolo
b_3	=	200	410	mm	altezza baggiolo
b_0	=	950	950	mm	larghezza appoggio
T	=	532	357	kN	
A_s	=	1360	913	mmq	armatura necessaria
p	=	200	200	mm	passo
n n	=	1 8	2 8		numero ferri vert. numero ferri orizzont
n Ø	=	8 16		mm	
Ø _w			16	mm	diametro staffe
A_{sw}	=	1608.5 1.18	3297.4 3.61	mm ²	armatura di progetto check (se >1 verificato)
		ok	ok		oncor (se - i vermoate)

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 81 di 156
Nome file: VI01-C-CL004_B.00_relazione_pile.doc

7 ANALSI DELLE PALIFICATE

Si riportano le azioni agenti a quota intradosso plinto di fondazione delle pile. Tali azioni sono riferite al baricentro delle palificate.

Di seguito si indica con:

- Fx = azione longitudinale;
- Fy = azione trasversale;
- Fz = azione verticale;
- Mx = momento trasversale;
- My = momento longitudinale.
- g1 = peso proprio impalcato e pila;
- g2 = permanenti portati su impalcato + peso terreno di ricoprimento plinti;
- e2 = ritiro soletta impalcato;
- e3 = effetti termici impalcato;
- q1.1 = carichi mobili massime azioni verticali;
- q1.2 = carichi mobili massima azione trasversale;
- q3 = frenatura;
- q4 = azione centrifuga;
- q5 = azione del vento sull'impalcato e sulle pile;
- q6.1 = sisma longitudinale + 0.3 sisma trasversale + 0.3 sisma verticale;
- q6.2 = 0.3 sisma longitudinale + sisma trasversale + 0.3 sisma verticale;
- q6.3 = 0.3 sisma longitudinale + 0.3 sisma trasversale + sisma verticale;
- q7 = resistenza parassita dei vincoli (1% dei carichi permanenti).

La convenzione sui segni delle azioni è la medesima di quella già esplicitata ai paragrafi precedenti.

7.1 Azioni nelle condizioni elementari di carico

	Condizione elementare					
pila	di carico	Fx	Fy	Fz	Mx	My
		[kN]	[kN]	[kN]	[kNm]	[kNm]
P01	g1	0.0	0.0	23078.8	0.0	0.0
P01	g2	0.0	0.0	4871.1	0.0	0.0
P01	e2	163.1	0.0	528.3	0.0	1217.0
P01	e3	163.1	0.0	528.3	0.0	1217.0
P01	q1.1	0.0	3.0	3415.8	9514.1	0.0
P01	q1.2	0.0	1.3	4473.8	3216.1	0.0
P01	q3	89.5	0.0	0.0	0.0	667.6
P01	q4	0.0	0.0	0.0	0.0	0.0
P01	q5	0.0	769.9	0.0	9251.0	0.0
P01	q6.1	732.6	94.1	-279.9	1127.8	4720.9
P01	q6.2	219.6	314.1	-279.9	2278.2	1963.7
P01	q6.3	219.6	94.1	-933.9	1127.8	1414.8
P01	q7	103.7	0.0	0.0	0.0	773.5
P02	g1	0.0	0.0	26214.1	0.0	0.0
P02	g2	0.0	0.0	5076.5	0.0	0.0
P02	e2	121.6	0.0	-80.8	0.0	1783.1
P02	e3	121.6	0.0	-80.8	0.0	1783.1
P02	q1.1	0.0	15.1	3720.4	10246.8	0.0

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo

Relazione di Calcolo Pile

Pagina 82 di 156

pila	Condizione elementare di carico	Fx	Fy	Fz	Mx	My
Pila	ui carico	[kN]	[kN]	[kN]	[kNm]	[kNm]
P02	q1.2	0.0	12.5	4886.2	6906.2	0.0
P02	q3	82.4	0.0	0.0	0.0	1207.4
P02	q4	0.0	0.0	0.0	0.0	0.0
P02	q 5	0.0	1064.7	0.0	19819.3	0.0
P02	q6.1	1042.3	165.6	-350.2	2813.7	12287.2
P02	q6.1 q6.2	312.4	552.7	-350.2	7131.2	4463.3
P02	q6.2 q6.3	312.4	165.6	-1168.7	2813.7	3682.4
P02	q7.0	115.5	0.0	0.0	0.0	1693.2
P03	g1	0.0	0.0	27404.6	0.0	0.0
P03	g2	0.0	0.0	5023.9	0.0	0.0
P03	e2	84.3	0.0	20.9	0.0	1640.4
P03	e3	84.3	0.0	20.9	0.0	1640.4
P03	q1.1	0.0	13.5	3658.0	10075.8	0.0
P03	q1.2	0.0	18.9	4940.1	6746.3	0.0
P03	q3	74.3	0.0	0.0	0.0	1445.8
P03	q4	0.0	0.0	0.0	0.0	0.0
P03	q5	0.0	1198.7	0.0	27562.8	0.0
P03	q6.1	1051.6	183.3	-377.4	3893.7	16557.8
P03	q6.2	315.1	611.7	-377.4	10519.3	5750.1
P03	q6.3	315.1	183.3	-1259.4	3893.7	4962.3
P03	q7	112.5	0.0	0.0	0.0	2188.6
P04	g1	0.0	0.0	29987.9	0.0	0.0
P04	g2	0.0	0.0	5037.4	0.0	0.0
P04	e2	45.1	0.0	-5.4	0.0	1256.8
P04	e3	45.1	0.0	-5.4	0.0	1256.8
P04	q1.1	0.0	35.7	3585.8	9029.4	0.0
P04	q1.2	0.0	16.0	4978.1	2534.7	0.0
P04	q3	56.7	0.0	0.0	0.0	1579.2
P04	q4	0.0	0.0	0.0	0.0	0.0
P04	q5	0.0	1182.8	0.0	35345.7	0.0
P04	q6.1	662.7	163.5	-375.6	4721.0	15610.1
P04	q6.2	198.6	545.5	-375.6	13450.1	5174.7
P04	q6.3	198.6	163.5	-1253.2	4721.0	4678.3
P04	q7	113.2	0.0	0.0	0.0	3155.0
P05	g1	0.0	0.0	30452.3	0.0	0.0
P05	g2	0.0	0.0	5034.0	0.0	0.0
P05	e2	24.5	0.0	1.4	0.0	722.6
P05	e3	24.5	0.0	1.4	0.0	722.6
P05	q1.1	0.0	17.6	3489.7	9097.0	0.0
P05	q1.2	0.0	20.3	4982.5	2958.2	0.0
P05	q3	53.4	0.0	0.0	0.0	1571.9
P05	q4	0.0	0.0	0.0	0.0	0.0
P05	q5	0.0	1216.2	0.0	38080.9	0.0
P05	q6.1	589.2	150.5	-370.8	4580.1	14865.6
P05	q6.2	176.6	502.1	-370.8	13100.3	4896.6
P05	q6.3	176.6	150.5	-1237.4	4580.1	4455.1
P05	q7	113.0	0.0	0.0	0.0	3330.4

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo

Relazione di Calcolo Pile

Pagina 83 di 156

	Condizione elementare					
pila	di carico	Fx	Fy	Fz	Mx	Му
		[kN]	[kN]	[kN]	[kNm]	[kNm]
P06	g1	0.0	0.0	30696.0	0.0	0.0
P06	g2	0.0	0.0	5034.8	0.0	0.0
P06	e2	6.5	0.0	-0.3	0.0	195.9
P06	e3	6.5	0.0	-0.3	0.0	195.9
P06	q1.1	0.0	12.2	3487.7	9243.3	0.0
P06	q1.2	0.0	19.8	4984.8	2959.4	0.0
P06	q3	51.7	0.0	0.0	0.0	1565.5
P06	q4	0.0	0.0	0.0	0.0	0.0
P06	q5	0.0	1243.3	0.0	39815.0	0.0
P06	q6.1	553.6	143.7	-368.8	4481.8	14459.1
P06	q6.2	165.9	479.5	-368.8	12833.8	4748.1
P06	q6.3	165.9	143.7	-1230.4	4481.8	4333.3
P06	q7	113.1	0.0	0.0	0.0	3422.3
P07	g1	0.0	0.0	31056.0	0.0	0.0
P07	g2	0.0	0.0	5034.8	0.0	0.0
P07	e2	10.3	0.0	-0.3	0.0	323.6
P07	e3	10.3	0.0	-0.3	0.0	323.6
P07	q1.1	0.0	14.2	3483.9	9160.4	0.0
P07	q1.2	0.0	20.9	4984.7	2898.9	0.0
P07	q3	49.3	0.0	0.0	0.0	1550.7
P07	q4	0.0	0.0	0.0	0.0	0.0
P07	q5	0.0	1246.5	0.0	41118.2	0.0
P07	q6.1	505.8	138.3	-370.7	4473.5	13900.4
P07	q6.2	151.6	461.6	-370.7	12846.2	4544.9
P07	q6.3	151.6	138.3	-1236.9	4473.5	4165.9
P07	q7	113.1	0.0	0.0	0.0	3558.0
P08	g1	0.0	0.0	31412.3	0.0	0.0
P08	g2	0.0	0.0	5034.0	0.0	0.0
P08	e2	25.5	0.0	1.4	0.0	831.2
P08	e3	25.5	0.0	1.4	0.0	831.2
P08	q1.1	0.0	22.4	3488.7	8878.0	0.0
P08	q1.2	0.0	47.1	4982.3	5557.2	0.0
P08	q3	46.9	0.0	0.0	0.0	1531.3
P08	q4	0.0	0.0	0.0	0.0	0.0
P08	q5	0.0	1225.0	0.0	41491.9	0.0
P08	q6.1	466.3	127.6	-376.0	4264.0	13444.7
P08	q6.2	139.7	425.8	-376.0	12223.3	4378.6
P08	q6.3	139.7	127.6	-1254.7	4264.0	4029.3
P08	q7	113.0	0.0	0.0	0.0	3692.1
P09	g1	0.0	0.0	31428.1	0.0	0.0
P09	g2	0.0	0.0	5037.4	0.0	0.0
P09	e2	41.1	0.0	-5.4	0.0	1343.6
P09	e3	41.1	0.0	-5.4	0.0	1343.6
P09	q1.1	0.0	33.1	3491.2	8521.6	0.0
P09	q1.2	0.0	25.2	4977.9	2729.2	0.0
P09	q3	46.8	0.0	0.0	0.0	1529.9
P09	q4	0.0	0.0	0.0	0.0	0.0

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo

Relazione di Calcolo Pile

Pagina 84 di 156

	Condizione elementare					
pila	di carico	Fx	Fy	Fz	Mx	Му
		[kN]	[kN]	[kN]	[kNm]	[kNm]
P09	q5	0.0	1186.7	0.0	39990.7	0.0
P09	q6.1	465.8	127.2	-383.2	4252.4	13432.4
P09	q6.2	139.6	424.4	-383.2	12169.9	4374.6
P09	q6.3	139.6	127.2	-1278.7	4252.4	4025.6
P09	q7	113.2	0.0	0.0	0.0	3698.6
P10	g1	0.0	0.0	29203.8	0.0	0.0
P10	g2	0.0	0.0	5023.8	0.0	0.0
P10	e2	75.3	0.0	20.9	0.0	1916.4
P10	e3	75.3	0.0	20.9	0.0	1916.4
P10	q1.1	0.0	19.7	3575.2	9567.0	0.0
P10	q1.2	0.0	15.7	4939.6	3150.9	0.0
P10	q3	61.9	0.0	0.0	0.0	1575.9
P10	q4	0.0	0.0	0.0	0.0	0.0
P10	q5	0.0	1225.1	0.0	34379.5	0.0
P10	q6.1	781.9	179.1	-382.7	4758.2	16575.8
P10	q6.2	234.3	597.7	-382.7	13426.0	5553.5
P10	q6.3	234.3	179.1	-1277.0	4758.2	4967.7
P10	q7	112.5	0.0	0.0	0.0	2863.3
P11	g1	0.0	0.0	26935.3	0.0	0.0
P11	g2	0.0	0.0	5076.7	0.0	0.0
P11	e2	122.6	0.0	-80.8	0.0	2091.5
P11	e3	122.6	0.0	-80.8	0.0	2091.5
P11	q1.1	0.0	9.5	3685.5	10187.5	0.0
P11	q1.2	0.0	6.3	4886.2	3441.8	0.0
P11	q3	78.7	0.0	0.0	0.0	1343.1
P11	q4	0.0	0.0	0.0	0.0	0.0
P11	q5	0.0	1123.9	0.0	23406.0	0.0
P11	q6.1	1057.6	177.3	-352.5	3413.7	14564.0
P11	q6.2	317.0	591.7	-352.5	9030.3	5157.2
P11	q6.3	317.0	177.3	-1176.1	3413.7	4364.7
P11	q7	115.5	0.0	0.0	0.0	1970.5
P12	g1	0.0	0.0	24517.6	0.0	0.0
P12	g2	0.0	0.0	4871.0	0.0	0.0
P12	e2	162.8	0.0	528.3	0.0	1995.3
P12	e3	162.8	0.0	528.3	0.0	1995.3
P12	q1.1	0.0	12.4	3412.4	9328.3	0.0
P12	q1.1	0.0	3.3	4473.3	2587.7	0.0
P12	q3	85.6	0.0	0.0	0.0	1048.9
P12	q4 q4	0.0	0.0	0.0	0.0	0.0
P12	q 5	0.0	809.5	0.0	13152.8	0.0
P12	q6.1	1002.9	145.1	-282.6	2176.3	9872.4
P12	q6.1 q6.2	300.6	484.0	-282.6	5345.3	3710.1
P12	q6.2 q6.3	300.6	145.1	-942.8	2176.3	2958.7
P12	q0.3 q7	103.7	0.0	0.0	0.0	1146.7
1 14	ј Ч	100.7	0.0	0.0	l 0.0	1140.7

CORRIDOIO PLURIMODALE TIRRENICO-NORD EUROPA ITINERARIO AGRIGENTO -CALTANISSETTA-A19 S.S. N° 640 "DI PORTO EMPEDOCLE" AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

MMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.200 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 85 di 156
Nome file: VI01-C-CL004_B.00_relazione_pile.doc

7.2 Azioni nelle combinazioni di carico

Le azioni riportate per ciascuna pila al paragrafo precedente sono state combinate attraverso i coefficienti riportati nella tabella seguente. In particolare, sono state considerate n. 14 combinazioni di carico, di cui n. 11 statiche e n. 3 sismiche.

Tabella 7.1 - Matrice dei coefficienti di combinazione dei carichi.

	SLU-1	SLU-2	SLU-3	SLU-4	SLU-5	SLU-6	SLU-7	SLU-8	SLU-9	SLU-10	SLU-11	SLV-1	SLV-2	SLV-3
g1	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1	1	1
g2	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1	1	1
e2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	0	0	0
e3	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	0	0	0
q1.1	0	1.35	0	1.01	0	1.01	0	1.01	0.00	1.01	0.00	0.2	0.2	0.2
q1.2	0	0	1.35	0	1.01	0	1.01	0	1.01	0	1.01	0	0	0
q3	0	0	0	1.5	1.5	0	0	0	0	0	0	0	0	0
q4	0	0	0	0	0	1.5	1.5	0	0	0	0	0	0	0
q5	0	0.9	0.9	0.9	0.9	0.9	0.9	1.5	1.5	-1.5	-1.5	0	0	0
q6.1	0	0	0	0	0	0	0	0	0	0	0	1	0	0
q6.2	0	0	0	0	0	0	0	0	0	0	0	0	1	0
q6.3	0	0	0	0	0	0	0	0	0	0	0	0	0	1
q7	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2

Tabella 7.2 - Azioni sulle palificate nelle combinazioni di carico.

PILA		SLU-1	SLU-2	SLU-3	SLU-4	SLU-5	SLU-6	SLU-7	SLU-8	SLU-9	SLU-10	SLU-11	SLV-1	SLV-2	SLV-3
	Fx	516.0	516.0	516.0	650.2	650.2	516.0	516.0	516.0	516.0	516.0	516.0	857	344	344
	Fy	0.0	697.0	694.7	696.0	694.3	696.0	694.3	1157.9	1156.2	-1151.7	-1153.5	95	315	95
P01	Fz	39000.3	43611.6	45039.9	42458.8	43530.0	42458.8	43530.0	42458.8	43530.0	42458.8	43530.0	28353	28353	27699
	Mx	0.0	21169.9	12667.6	17958.9	11582.2	17958.9	11582.2	23509.5	17132.8	-4243.5	-10620.2	3031	4181	3031
	Му	3849.0	3849.0	3849.0	4850.5	4850.5	3849.0	3849.0	3849.0	3849.0	3849.0	3849.0	5649	2892	2343
	Fx	430.5	430.5	430.5	554.0	554.0	430.5	430.5	430.5	430.5	430.5	430.5	1181	451	451
	Fy	0.0	978.7	975.1	973.5	970.9	973.5	970.9	1612.4	1609.7	-1581.7	-1584.4	169	556	169
P02	Fz	42048.5	47071.0	48644.9	45815.4	46995.8	45815.4	46995.8	45815.4	46995.8	45815.4	46995.8	31685	31685	30866
	Mx	0.0	31670.6	27160.8	28212.3	24830.0	28212.3	24830.0	40103.9	36721.6	-19354.1	-22736.4	4863	9181	4863
	Му	6311.2	6311.2	6311.2	8122.3	8122.3	6311.2	6311.2	6311.2	6311.2	6311.2	6311.2	14319	6495	5714
	Fx	337.3	337.3	337.3	448.7	448.7	337.3	337.3	337.3	337.3	337.3	337.3	1187	450	450
	Fy	0.0	1097.1	1104.3	1092.6	1098.0	1092.6	1098.0	1811.8	1817.2	-1784.4	-1779.0	186	614	186
P03	Fz	43828.5	48766.8	50497.6	47532.2	48830.3	47532.2	48830.3	47532.2	48830.3	47532.2	48830.3	32783	32783	31901
	Mx	0.0	38408.8	33914.1	35008.2	31637.2	35008.2	31637.2	51545.9	48174.8	-31142.4	-34513.5	5909	12535	5909
	Му	6563.4	6563.4	6563.4	8732.1	8732.1	6563.4	6563.4	6563.4	6563.4	6563.4	6563.4	19184	8376	7589
	Fx	244.2	244.2	244.2	329.2	329.2	244.2	244.2	244.2	244.2	244.2	244.2	799	334	334
	Fy	0.0	1112.7	1086.1	1100.6	1080.7	1100.6	1080.7	1810.3	1790.4	-1738.1	-1758.0	171	553	171
P04	Fz	47271.1	52111.9	53991.6	50901.7	52311.4	50901.7	52311.4	50901.7	52311.4	50901.7	52311.4	35367	35367	34489
	Mx	0.0	44000.9	35233.1	40953.4	34377.6	40953.4	34377.6	62160.9	55585.0	-43876.3	-50452.2	6527	15256	6527
	Му	6802.3	6802.3	6802.3	9171.0	9171.0	6802.3	6802.3	6802.3	6802.3	6802.3	6802.3	19396	8961	8464
	Fx	194.5	194.5	194.5	274.6	274.6	194.5	194.5	194.5	194.5	194.5	194.5	725	312	312
	Fy	0.0	1118.3	1122.0	1112.4	1115.1	1112.4	1115.1	1842.1	1844.8	-1806.4	-1803.6	154	506	154
P05	Fz	47909.8	52620.8	54636.1	51443.0	52954.5	51443.0	52954.5	51443.0	52954.5	51443.0	52954.5	35813	35813	34947
	Mx	0.0	46553.7	38266.4	43483.5	37268.0	43483.5	37268.0	66332.1	60116.6	-47910.7	-54126.2	6400	14920	6400
	Му	5730.7	5730.7	5730.7	8088.7	8088.7	5730.7	5730.7	5730.7	5730.7	5730.7	5730.7	18862	8893	8452

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19 *Progetto Esecutivo* Opera: **Viadotto Giulfo**Relazione di Calcolo Pile

Pagina 86 di 156

Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

	Fx	151.3	151.3	151.3	228.9	228.9	151.3	151.3	151.3	151.3	151.3	151.3	689	302	302
	Fy	0.0	1135.4	1145.6	1131.3	1138.9	1131.3	1138.9	1877.2	1884.9	-1852.5	-1844.9	146	482	146
P06	Fz	48235.9	52944.3	54965.3	51767.2	53283.0	51767.2	53283.0	51767.2	53283.0	51767.2	53283.0	36060	36060	35198
	Mx	0.0	48312.0	39828.7	45192.4	38829.9	45192.4	38829.9	69081.4	62718.9	-50363.7	-56726.1	6330	14682	6330
	Му	4576.9	4576.9	4576.9	6925.2	6925.2	4576.9	4576.9	4576.9	4576.9	4576.9	4576.9	18566	8855	8440
	Fx	160.4	160.4	160.4	234.3	234.3	160.4	160.4	160.4	160.4	160.4	160.4	642	287	287
	Fy	0.0	1141.0	1150.0	1136.2	1143.0	1136.2	1143.0	1884.1	1890.8	-1855.3	-1848.5	141	464	141
P07	Fz	48721.9	53425.1	55451.2	52249.3	53768.9	52249.3	53768.9	52249.3	53768.9	52249.3	53768.9	36417	36417	35551
	Mx	0.0	49372.9	40919.9	46281.3	39941.5	46281.3	39941.5	70952.2	64612.5	-52402.5	-58742.2	6306	14678	6306
	Му	5046.3	5046.3	5046.3	7372.4	7372.4	5046.3	5046.3	5046.3	5046.3	5046.3	5046.3	18170	8814	8435
	Fx	196.7	196.7	196.7	267.1	267.1	196.7	196.7	196.7	196.7	196.7	196.7	602	275	275
	Fy	0.0	1132.8	1166.2	1125.2	1150.2	1125.2	1150.2	1860.2	1885.3	-1814.8	-1789.8	132	430	132
P08	Fz	49205.7	53915.4	55931.7	52737.9	54250.2	52737.9	54250.2	52737.9	54250.2	52737.9	54250.2	36768	36768	35889
	Mx	0.0	49328.0	44844.9	46331.7	42969.4	46331.7	42969.4	71226.8	67864.5	-53248.8	-56611.1	6040	13999	6040
	Му	6425.5	6425.5	6425.5	8722.3	8722.3	6425.5	6425.5	6425.5	6425.5	6425.5	6425.5	17875	8809	8460
	Fx	234.6	234.6	234.6	304.9	304.9	234.6	234.6	234.6	234.6	234.6	234.6	602	276	276
	Fy	0.0	1112.6	1102.0	1101.5	1093.5	1101.5	1093.5	1813.5	1805.5	-1746.5	-1754.5	134	431	134
P09	Fz	49215.5	53928.6	55935.6	52750.3	54255.6	52750.3	54255.6	52750.3	54255.6	52750.3	54255.6	36781	36781	35885
	Mx	0.0	47495.8	39676.0	44619.7	38754.9	44619.7	38754.9	68614.1	62749.3	-51357.8	-57222.6	5957	13874	5957
	Му	7663.1	7663.1	7663.1	9957.9	9957.9	7663.1	7663.1	7663.1	7663.1	7663.1	7663.1	17871	8813	8464
	Fx	315.6	315.6	315.6	408.5	408.5	315.6	315.6	315.6	315.6	315.6	315.6	917	369	369
	Fy	0.0	1129.3	1123.8	1122.6	1118.5	1122.6	1118.5	1857.7	1853.6	-1817.7	-1821.8	183	602	183
P10	Fz	46257.3	51083.9	52925.8	49877.3	51258.7	49877.3	51258.7	49877.3	51258.7	49877.3	51258.7	34560	34560	33666
	Mx	0.0	43857.0	35195.2	40628.2	34131.8	40628.2	34131.8	61255.9	54759.5	-41882.6	-48379.0	6672	15339	6672
	Му	8035.4	8035.4	8035.4	10399.3	10399.3	8035.4	8035.4	8035.4	8035.4	8035.4	8035.4	20012	8989	8404
	Fx	432.8	432.8	432.8	550.9	550.9	432.8	432.8	432.8	432.8	432.8	432.8	1196	456	456
	Fy	0.0	1024.4	1020.0	1021.2	1017.9	1021.2	1017.9	1695.5	1692.3	-1676.3	-1679.5	179	594	179
P11	Fz	43022.4	47997.9	49618.8	46754.0	47969.7	46754.0	47969.7	46754.0	47969.7	46754.0	47969.7	32397	32397	31573
	Mx	0.0	34818.5	25711.9	31380.2	24550.3	31380.2	24550.3	45423.8	38593.9	-24794.2	-31624.1	5451	11068	5451
	Му	7384.1	7384.1	7384.1	9398.9	9398.9	7384.1	7384.1	7384.1	7384.1	7384.1	7384.1	16929	7522	6729
	Fx	515.0	515.0	515.0	643.3	643.3	515.0	515.0	515.0	515.0	515.0	515.0	1127	425	425
	Fy	0.0	745.3	733.1	741.1	731.9	741.1	731.9	1226.8	1217.7	-1201.8	-1210.9	148	486	148
P12	Fz	40942.4	45549.1	46981.4	44397.5	45471.6	44397.5	45471.6	44397.5	45471.6	44397.5	45471.6	29788	29788	29128
	Mx	0.0	24430.7	15330.9	21282.4	14457.5	21282.4	14457.5	29174.0	22349.2	-10284.3	-17109.1	4042	7211	4042
	Μv	6164.8	6164.8	6164.8	7738.1	7738.1	6164.8	6164.8	6164.8	6164.8	6164.8	6164.8	11248	5086	4335

7.3 Azioni sui pali

Nell'ipotesi di plinto di fondazione infinitamente rigido, le azioni assiali alla testa dei pali sono state determinate attraverso la seguente espressione:

$$N = \frac{F_z}{n} + \frac{M_x}{J_x} + \frac{M_y}{J_y}$$

dove

N = azione assiale alla testa del singolo palo (>0 se di compressione);

n = numero di pali che compongono la palificata;

Fz = azione verticale sulla palificata;

Mx = momento trasversale;

My = momento longitudinale;

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulto	
Relazione di Calcolo Pile	
Pagina 87 di 156	

Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

$$J_x = \sum_{j=1}^n y_j^2$$

$$J_y = \sum_{i=1}^n x_j^2$$

 x_j , y_j = ascissa e ordinata del palo j-esimo nel sistema di riferimento avente per origine il baricentro della palificata.

Le palificate delle pile presentano diverse geometria in pianta. Le palificate sono costituite da pali Ø1500 ma, con geometrie e numeri di pali differenti. Nel seguito si descrivono le tipologie di plinto e palificata associata:

Fondazione tipo A

Il plinto ha dimensioni in pianta 12.00×12.00 m con un'altezza di 2.50 m. La palificata è costituita da n. 9 pali $\emptyset 1500$ posti ad interasse di 4.50 m.

Geometria della palificata									
	trasversale	longitudinale							
PALO	Х	Υ	Jxi	Jyi					
1	-4.50	-4.50	20.25	20.25					
2	-4.50	0.00	0.00	20.25					
3	-4.50	4.50	20.25	20.25					
4	0.00	-4.50	20.25	0.00					
5	0.00	0.00	0.00	0.00					
6	0.00	4.50	20.25	0.00					
7	4.50	-4.50	20.25	20.25					
8	4.50	0.00	0.00	20.25					
9	4.50	4.50	20.25	20.25					

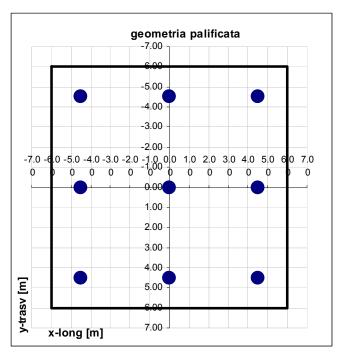


Figura 7-1 - Geometria palificata tipo A.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 88 di 156
Nome file: VI01-C-CL004_B.00_relazione_pile.doc

Fondazione tipo B

Il plinto ha dimensioni in pianta 12.00×10.65 m con un'altezza di 2.50 m. La palificata è costituita da n. 8 pali $\emptyset 1500$ posti ad interasse di 4.50 m.

Geometria della palificata								
			trasversale	longitudinale				
PALO	X	Υ	Jxi	Jyi				
1	-3.83	-4.50	20.25	14.63				
2	-3.83	0.00	0.00	14.63				
3	-3.83	4.50	20.25	14.63				
4	0.00	-2.25	5.06	0.00				
5	0.00	2.25	5.06	0.00				
6	3.83	-4.50	20.25	14.63				
7	3.83	0.00	0.00	14.63				
8	3.83	4.50	20.25	14.63				

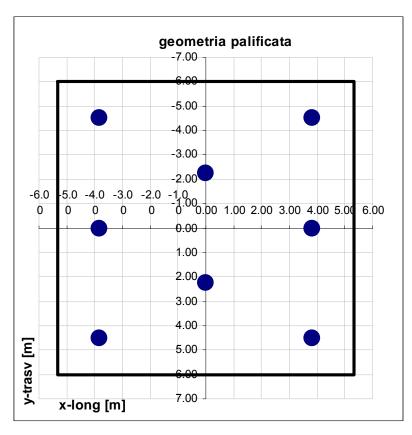


Figura 7-2 - Geometria palificata tipo B.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

	Opera: Viadotto Giulfo
Ī	Relazione di Calcolo Pile
Ī	Pagina 89 di 156
	Nome file: VI01-C-CL 004 B 00 relazione pile doc

Fondazione tipo C

Il plinto ha dimensioni in pianta 12.00×7.50 m con un'altezza di 2.50 m. La palificata è costituita da n. 6 pali $\emptyset 1500$ posti ad interasse di 4.50 m.

Geometria della palificata									
	trasversale longi								
PALO	X	Υ	Jxi	Jyi					
1	-2.25	-4.50	20.25	5.06					
2	-2.25	0.00	0.00	5.06					
3	-2.25	4.50	20.25	5.06					
4	2.25	-4.50	20.25	5.06					
5	2.25	0.00	0.00	5.06					
6	2.25	4.50	20.25	5.06					

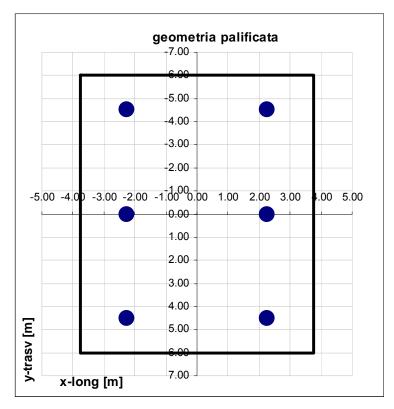


Figura 7-3 - Geometria palificata tipo C.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 90 di 156
Nome file: VI01-C-CL004_B.00_relazione_pile.doc

Fondazione tipo D

Il plinto ha dimensioni in pianta 10.80×7.50 m con un'altezza di 2.50 m. La palificata è costituita da n. 5 pali $\emptyset 1500$ posti ad interasse di 4.50 m.

Geometria della palificata								
			trasversale	longitudinale				
PALO	X	Υ	Jxi	Jyi				
1	-2.25	-3.90	15.21	5.06				
2	-2.25	3.90	15.21	5.06				
3	0.00	0.00	0.00	0.00				
4	2.25	-3.90	15.21	5.06				
5	2.25	3.90	15.21	5.06				

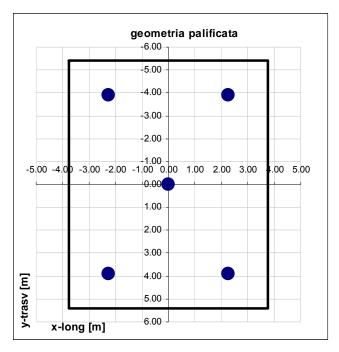


Figura 7-4 - Geometria palificata tipo D.

Si riassumono nella tabella seguente le azioni alla testa dei pali di fondazione delle pile.

Tabella 7.3 - Azioni assiali sui pali.

PILA	PALO	SLU-1	SLU-2	SLU-3	SLU-4	SLU-5	SLU-6	SLU-7	SLU-8	SLU-9	SLU-10	SLU-11	SLV-1	SLV-2	SLV-3
	1	6284	5849	6680	5936	6559	5824	6447	5469	6092	7248	7871	4664	4284	4166
	2	6284	8563	8304	8238	8044	8127	7932	8483	8288	6704	6509	5053	4820	4555
P01	3	5856	6779	7064	6548	6762	6548	6762	6548	6762	6548	6762	4231	4231	4100
	4	5429	4994	5825	4858	5481	4969	5592	4613	5236	6392	7015	3409	3641	3645
	5	5429	7708	7449	7160	6966	7272	7077	7627	7433	5848	5654	3797	4177	4034
P02	1	6019	5096	5609	5213	5598	5079	5464	4419	4803	7722	8106	4992	4173	4218
	2	6019	6856	7118	6781	6977	6647	6843	6647	6843	6647	6843	5262	4683	4489
	3	6019	8615	8627	8348	8357	8214	8223	8875	8883	5571	5580	5532	5193	4759
	4	5084	4161	4674	4010	4395	4144	4529	3484	3868	6787	7171	2871	3210	3372

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo Relazione di Calcolo Pile

Pagina 91 di 156

PILA	PALO	SLU-1	SLU-2	SLU-3	SLU-4	SLU-5	SLU-6	SLU-7	SLU-8	SLU-9	SLU-10	SLU-11	SLV-1	SLV-2	SLV-3
	5	5084	5921	6183	5577	5774	5712	5908	5712	5908	5712	5908	3141	3721	3642
	6	5084	7680	7692	7145	7154	7279	7288	7940	7948	4636	4645	3411	4231	3912
	1	5185	3906	4344	4014	4343	3920	4248	3103	3432	7186	7515	4213	3415	3597
	2	5185	5803	6019	5743	5905	5648	5811	5648	5811	5648	5811	4505	4034	3889
	3	5185	7699	7694	7472	7468	7377	7373	8194	8190	4111	4106	4797	4653	4181
P03	4	4899	4568	4896	4498	4744	4498	4744	4090	4335	6131	6377	3523	3359	3413
1 00	5	4899	6465	6570	6227	6306	6227	6306	6635	6714	4593	4673	3815	3978	3705
	6	4613	3334	3772	3253	3582	3348	3676	2531	2860	6614	6943	2541	2685	2936
	7	4613	5231	5447	4982	5144	5076	5239	5076	5239	5076	5239	2833	3304	3228
	8	4613	7127	7122	6711	6707	6805	6801	7622	7618	3539	3534	3125	3923	3520
	1	5626	4058	4726	4161	4662	4058	4559	3010	3511	8247	8748	4515	3629	3929
	2	5626	6231	6466	6183	6359	6080	6256	6080	6256	6080	6256	4837	4382	4251
	3	5626	8404	8206	8206	8057	8102	7954	9150	9001	3913	3765	5159	5136	4573
P04sx	4	5330	4848	5300	4772	5111	4772	5111	4249	4587	6867	7206	3831	3615	3721
	5	5330	7021	7040	6795	6809	6795	6809	7318	7332	4700	4714	4153	4369	4043
	6	5033	3466	4134	3362	3863	3465	3966	2418	2918	7654	8155	2824	2848	3191
	7	5033	5638	5873	5384	5560	5487	5663	5487	5663	5487	5663	3147	3601	3513
	8	5033	7811	7613	7406	7258	7510	7361	8557	8408	3320	3172	3469	4355	3836
	1	5185	4093	4627	4159	4560	4072	4472	3286	3686	7214	7614	4170	3460	3667
	2	5185	5723	5932	5676	5833	5589	5745	5589	5745	5589	5745	4412	4025	3909
	3	5185	7353	7237	7193	7106	7105	7018	7891	7804	3963	3877	4653	4590	4151
	4	4933	3841	4375	3820	4220	3820	4220	3034	3435	6962	7362	3452	3128	3354
P04dx	5	4933	5471	5680	5337	5493	5337	5493	5337	5493	5337	5493	3693	3693	3596
	6	4933	7101	6985	6853	6766	6853	6766	7639	7552	3712	3625	3935	4258	3837
	7	4681	3589	4123	3480	3880	3568	3968	2782	3183	6710	7110	2733	2796	3041
	8	4681	5219	5428	4997	5154	5085	5241	5085	5241	5085	5241	2975	3361	3282
	9	4681	6849	6733	6514	6427	6601	6515	7387	7300	3460	3373	3217	3926	3524
	1	5659	3949	4610	4056	4552	3954	4450	2825	3321	8467	8963	4554	3698	3992
	2	5659	6248	6500	6204	6393	6101	6290	6101	6290	6101	6290	4870	4435	4308
	3	5659	8547	8390	8351	8233	8248	8130	9377	9259	3735	3617	5186	5172	4624
P05	4	5410	4849	5306	4778	5120	4778	5120	4213	4556	7034	7377	3890	3679	3781
	5	5410	7148	7195	6925	6960	6925	6960	7489	7525	4668	4704	4206	4416	4097
	6	5160	3450	4111	3351	3847	3454	3950	2326	2822	7968	8463	2910	2923	3255
	7	5160	5749	6001	5499	5688	5602	5791	5602	5791	5602	5791	3226	3660	3571
	8	5160	8048	7890	7646	7528	7749	7631	8877	8759	3236	3118	3542	4397	3887
	1	5650	3853	4524	3962	4465	3860	4363	2680	3183	8578	9082	4575	3739	4026
	2	5650	6238	6491	6194	6383	6091	6281	6091	6281	6091	6281	4887	4464	4339
	3	5650	8624	8458	8425	8301	8323	8198	9503	9378	3604	3479	5200	5189	4651
P06	4	5450	4846	5308	4776	5123	4776	5123	4186	4533	7135	7482	3922	3716	3814
	5	5450	7232	7275	7008	7040	7008	7040	7598	7630	4648	4681	4235	4441	4127
	6	5251	3454	4125	3358	3862	3461	3964	2281	2785	8179	8683	2957	2968	3290
	7	5251	5840	6092	5590	5780	5692	5882	5692	5882	5692	5882	3270	3693	3603
Do-	8	5251	8225	8059	7822	7697	7924	7799	9104	8979	3205	3081	3582	4418	3916
P07	1	5319	3647	4248	3757	4208	3654	4104	2557	3008	8040	8490	4337	3549	3808
	2	5319	5841	6066	5814	5983	5711	5879	5711	5879	5711	5879	4617	4202	4089
	3	5319	8036	7885	7871	7758	7768	7655	8864	8751	3382	3269	4898	4854	4369
	4	5094	3423	4023	3429	3880	3429	3880	2333	2784	7815	8266	3530	3158	3433
	5	5094	5617	5842	5486	5655	5486	5655	5486	5655	5486	5655	3810	3810	3714
	6	5094	7811	7661	7543	7430	7543	7430	8640	8527	3157	3044	4090	4462	3994

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: **Viadotto Giulfo**Relazione di Calcolo Pile
Pagina 92 di 156

Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

PILA	PALO	SLU-1	SLU-2	SLU-3	SLU-4	SLU-5	SLU-6	SLU-7	SLU-8	SLU-9	SLU-10	SLU-11	SLV-1	SLV-2	SLV-3
	7	4870	3198	3799	3102	3552	3205	3656	2109	2559	7591	8042	2722	2766	3059
	8	4870	5393	5618	5159	5328	5262	5431	5262	5431	5262	5431	3002	3418	3339
	9	4870	7587	7436	7216	7103	7319	7206	8415	8303	2933	2820	3283	4071	3619
	1	5386	4082	4473	4148	4440	4063	4355	3141	3433	7751	8043	4287	3657	3841
	2	5386	5909	6133	5864	6032	5779	5947	5779	5947	5779	5947	4511	4175	4065
	3	5386	7736	7794	7580	7623	7495	7538	8417	8460	3806	3850	4735	4694	4288
	4	5148	3844	4235	3825	4117	3825	4117	2903	3195	7513	7805	3625	3330	3528
P08	5	5148	5671	5895	5541	5709	5541	5709	5541	5709	5541	5709	3849	3849	3751
	6	5148	7498	7556	7257	7300	7257	7300	8179	8222	3568	3612	4073	4367	3975
	7	4910	3607	3997	3502	3794	3587	3879	2665	2957	7275	7567	2963	3004	3214
	8	4910	5433	5658	5218	5386	5303	5471	5303	5471	5303	5471	3187	3523	3438
	9	4910	7260	7318	6934	6977	7019	7062	7941	7984	3330	3374	3411	4041	3662
	1	5433	4198	4710	4258	4643	4173	4558	3285	3669	7728	8112	4292	3663	3844
	2	5433	5957	6180	5911	6078	5826	5993	5826	5993	5826	5993	4512	4177	4064
	3	5433	7716	7649	7563	7513	7478	7428	8367	8317	3924	3874	4733	4691	4285
	4	5149	3914	4426	3889	4274	3889	4274	3001	3385	7444	7829	3630	3336	3530
P09	5	5149	5673	5896	5542	5709	5542	5709	5542	5709	5542	5709	3850	3850	3751
	6	5149	7432	7365	7195	7145	7195	7145	8083	8033	3640	3590	4071	4364	3971
	7	4865	3630	4143	3521	3905	3606	3990	2717	3101	7160	7545	2968	3010	3217
	8	4865	5389	5612	5173	5340	5258	5425	5258	5425	5258	5425	3188	3524	3437
	9	4865	7148	7082	6826	6776	6911	6861	7799	7749	3356	3306	3409	4038	3658
	1	5553	3991	4649	4102	4596	3999	4493	2981	3474	8074	8567	4434	3525	3816
	2	5553	6157	6387	6109	6281	6006	6178	6006	6178	6006	6178	4763	4283	4145
	3	5553	8322	8125	8115	7967	8012	7864	9031	8883	3937	3789	5092	5040	4475
P10	4	5203	4723	5168	4652	4985	4652	4985	4143	4476	6690	7023	3726	3512	3615
1 10	5	5203	6889	6906	6659	6671	6659	6671	7168	7180	4621	4634	4056	4270	3944
	6	4853	3290	3948	3196	3690	3299	3793	2280	2774	7374	7867	2690	2742	3084
	7	4853	5456	5687	5202	5375	5305	5478	5305	5478	5305	5478	3019	3499	3413
	8	4853	7622	7425	7209	7061	7312	7164	8330	8182	3237	3089	3349	4257	3743
	1	6261	5155	5932	5288	5870	5139	5721	4359	4941	8260	8842	5271	4263	4379
	2	6261	7090	7360	7032	7234	6883	7085	6883	7085	6883	7085	5574	4878	4682
P11	3	6261	9024	8788	8775	8598	8626	8449	9406	9229	5505	5328	5877	5492	4984
	4	5167	4062	4838	3896	4478	4045	4627	3265	3847	7166	7748	2764	3148	3382
	5	5167	5996	6266	5639	5842	5789	5991	5789	5991	5789	5991	3066	3763	3685
	6	5167	7930	7694	7383	7206	7532	7355	8312	8135	4411	4234	3369	4378	3987
	1	5824	5234	5978	5334	5892	5217	5775	4779	5337	6971	7529	4494	3862	3872
	2	5824	6591	6830	6516	6695	6399	6578	6399	6578	6399	6578	4719	4262	4097
P12	3	5824	7949	7682	7698	7498	7582	7382	8020	7820	5828	5628	4943	4663	4321
• • •	4	4910	4321	5065	4187	4745	4304	4862	3865	4424	6057	6616	2828	3108	3230
	5	4910	5678	5917	5370	5549	5486	5665	5486	5665	5486	5665	3052	3509	3455
	6	4910	7035	6769	6552	6352	6668	6468	7107	6907	4915	4715	3277	3910	3679

Il taglio longitudinale/trasversale alla testa dei pali è stato determinato dividendo l'azione longitudinale/trasversale agente sulla palificata per il numero dei pali. Il taglio risultante è stato ottenuto dalla somma vettoriale dei due tagli.

Di seguito vengono riepilogato per ciascuna pila i valori massimi, minimi e medi dell'azione assiale ed il valore massimo del taglio. I valori riportati sono espressi in kN.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: **Viadotto Giulfo**Relazione di Calcolo Pile
Pagina 93 di 156

Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

Tabella 7.4 - Riepilogo sollecitazioni sui pali.

	Nmax [kN]	Nmax,slv [kN]	Nmin [kN]	Nmedio [kN]	Vmax [kN]	n. pali [-]	Dpalo [mm]
P01	8563	5053	3409	7064	254	5	1500
P02	8883	5532	2871	6651	278	6	1500
P03	8194	4797	2531	5733	231	8	1500
P04sx	9150	5159	2418	6170	228	8	1500
P04dx	7891	4653	2733	5680	203	9	1500
P05	9377	5186	2326	6250	232	8	1500
P06	9503	5200	2281	6292	236	8	1500
P07	8864	4898	2109	5842	211	9	1500
P08	8460	4735	2665	5895	211	9	1500
P09	8367	4733	2717	5896	203	9	1500
P10	9031	5092	2280	6037	236	8	1500
P11	9406	5877	2764	6813	292	6	1500
P12	8020	4943	2828	6373	222	6	1500
max	9503	5877	3409	7064	292		

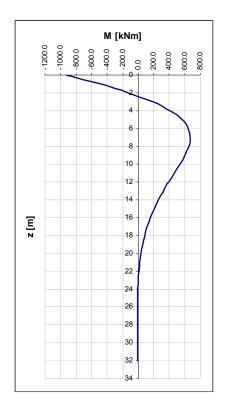
7.4 Verifiche strutturali dei pali (SLU)

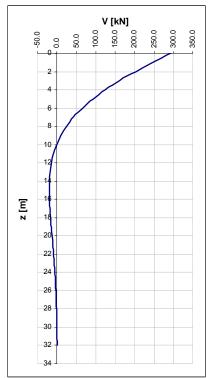
Per il calcolo della sollecitazione flettente e tagliante agenti lungo il fusto del palo si adotta lo schema di palo con la testa impedita di ruotare, ma libera di traslare per effetto dell'azione orizzontale ivi applicata, ed immerso in un terreno schematizzato alla Winkler. Per la determinazione della lunghezza elastica del palo, λ , si adotta l'espressione di *Zimmerman*.

Determinazione momento flettente massimo (palo vincolato in testa con bipendolo)

E	=	36050	MPa	modulo elastico calcestruzzo
D	=	1500	mm	diametro palo
J	=	248504887637	mm ⁴	momento d'inerzia del palo
K	=	15000	kN/m ³	costante di reazione del terreno
В	=	1500	mm	larghezza efficace del palo
E_s	=	22500	kN/m ²	modulo di elasticità del terreno
λ	=	6.32	m	lunghezza elastica del palo
h	=	0.00	m	altezza tratto libero
V	=	292.00	kN	taglio alla testa del palo
M_{max}	=	922.32	kNm	massimo momento flettente

Nelle seguenti figure si riportano i diagrammi del momento flettente e del taglio lungo il fusto del palo. Tali diagrammi sono stati ottenuti sulla base del massimo valore del taglio agente sui pali (pila P11; combinazione di carico SLU-8).


AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19


Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 94 di 156
Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

Figura 7-5 - Diagramma del momento flettente del taglio lungo il fusto del palo.

7.4.1 Verifica dei pali allo SLU per tensioni normali

Si prevede di disporre lungo tutto il palo un'armatura longitudinale costituita da n. 16Ø22 pari all'armatura minima prevista dalla normativa.

Nella seguente tabella si riepilogano i valori delle sollecitazioni massima agente in testa palo e il momento resistente.

	Sforzo	Momento		Momento
Profondità	normale	flettente	armatura	resistente
Z [m]	N [kN]	M [kNm]		M _R [kNm]
0	3200	922	16Ø22	3230

La verifica è stata condotta utilizzando il programma di calcolo VcaSlu.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: **Viadotto Giulfo**Relazione di Calcolo Pile
Pagina 95 di 156

Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

7.4.2 Verifica dei pali a taglio

Si riporta di seguito la verifica a taglio del palo maggiormente sollecitato.

VERIFICA DI RESISTENZA A TAGLIO SEZIONE CIRCOLARE (NTC 2008)

sezione		testa palo		,
Sollecitazio	ni			
V	=	292	KN	taglio
N	=	3200	KN	sforzo normale (>0 compressione)
Geometria				
D	=	1500	mm	diametro sezione
С	=	50	mm	copriferro
d	=	1450	mm	altezza utile
b_{we}	=	1350	mm	larghezza
d _e	=	1123	mm	altezza utile equivalente
Materiali				
R_{ck}	=	40	MPa	resistenza caratteristica cubica
f_{ck}	=	32	MPa	resistenza caratteristica cilindrica
γс	=	1.50		coefficiente parziale di sicurezza
$lpha_{ t cc}$	=	0.85		coefficiente riduttivo
f_{cd}	=	18.13	MPa	resistenza di calcolo a compressione
γ_{s}	=	1.15		coefficiente di sicurezza acciaio
f_{yk}	=	450	MPa	tensione caratteristica di snervamento acciaio
f_{yd}	=	391.30	MPa	tensione di snervamento di calcolo dell'acciaio
Verifica per	el	ementi spr	ovvist	i di armatura a taglio
n	=	16		numero ferri longitudinali
Ø	=	22	mm	diametro ferri longitudinali
A_{sl}	=	6082.1	mm ²	armatura longitudinale
ρ_{l}	=	0.004		rapporto geometrico di armatura longitudinale
k	=	1.422		
V_{min}	=	0.336		
σ_{cp}	=	1.811	MPa	tensione media calcestruzzo (>0 compressione)
$\sigma_{\text{cp,ad}}$	=	1.811	MPa	tensione media di compressione adottata (<=0.2fcd)
V_{Rd}	=	1017.55 verificato	kN	taglio resistente

Essendo il taglio portato dal solo calcestruzzo maggiore del taglio di calcolo non sarebbe necessario disporre specifica armatura a taglio ma, ai fini di aumentare il confinamento del csl, si dispone un'armatura a taglio fuori calcolo.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

	Opera: Viadotto Giulfo
	Relazione di Calcolo Pile
Ī	Pagina 96 di 156
	Nome file: VI01-C-CL 004 B 00 relazione pile doc

7.5 Verifiche dei pali agli SLE

In questo paragrafo vengono riportate le verifiche allo stato limite di fessurazione e le verifiche delle tensioni in esercizio.

7.5.1 Combinazioni di carico SLE

Le combinazioni di carico sono ottenute con la seguente matrice dei coefficienti applicata alle condizioni di carico elementari:

	MATRICE DI COMB. SLE caratteristica							
SLEc1	SLEc2	SLEc3	SLEc4	SLEc5	SLEc6	SLEc7	SLEc8	
3072.7	3007.8	5167.2	5102.3	2698.1	2633.2	4792.7	4727.8	
4454.4	4389.5	4454.4	4389.5	3651.5	3586.6	3651.5	3586.6	
5836.1	5771.2	3741.5	3676.6	4604.9	4540.0	2510.3	2445.4	
3593.4	3594.2	4640.7	4641.5	3004.7	3005.5	4052.0	4052.8	
4975.1	4975.9	3927.8	3928.7	3958.1	3958.9	2910.8	2911.6	
2732.5	2799.0	4827.0	4893.6	2357.9	2424.4	4452.5	4519.0	
4114.2	4180.7	4114.2	4180.7	3311.3	3377.8	3311.3	3377.8	
5495.9	5562.4	3401.3	3467.8	4264.7	4331.2	2170.1	2236.7	

MATRICE DI COMB. SLE frequente							
SLEf1	SLEf2	SLEf3	SLEf4	SLEf5	SLEf6	SLEf7	SLEf8
3770.9	3706.0	4469.0	4404.1	3396.3	3331.4	4094.5	4029.6
4454.4	4389.5	4454.4	4389.5	3651.5	3586.6	3651.5	3586.6
5137.9	5073.0	4439.7	4374.8	3906.7	3841.8	3208.5	3143.6
3942.5	3943.3	4291.6	4292.4	3353.8	3354.6	3702.9	3703.7
4626.0	4626.8	4276.9	4277.7	3609.0	3609.8	3259.9	3260.7
3430.7	3497.2	4128.8	4195.4	3056.1	3122.6	3754.3	3820.8
4114.2	4180.7	4114.2	4180.7	3311.3	3377.8	3311.3	3377.8
4797.7	4864.2	4099.5	4166.0	3566.5	3633.0	2868.3	2934.9

MATRICE DI COMB. SLE quasi					
perm	anete				
SLEp1	SLEp2				
4112.8	4058.7				
4112.8	4058.7				
4112.8	4058.7				
3948.2	3948.8				
3948.2	3948.8				
3783.5	3839.0				
3783.5	3839.0				
3783.5	3839.0				

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 97 di 156
Nome file: VI01-C-CL004_B.00_relazione_pile.doc

7.5.2 Azioni sui pali nelle combinazioni di carico

RIEPILOGO SLEc						
	Vmax	N(Vmax)				
P01	113	3750				
P02	117	3205				
P03	95	1928				
P04sx	94	2732				
P04dx	83	2772				
P05	94	2165				
P06	96	2178				
P07	85	2047				
P08	86	2191				
P09	83	2818				
P10	97	2607				
P11	122	3155				
P12	98	3272				

RIEPILOGO SLEf					
	Vmax	N(Vmax)			
P01	72	3988			
P02	58	3646			
P03	41	2472			
P04sx	37	3431			
P04dx	33	3296			
P05	35	2917			
P06	34	2964			
P07	31	2778			
P08	33	2805			
P09	33	3411			
P10	40	3286			
P11	59	3675			
P12	61	3564			

RIEPILOGO SLEqp						
	Vmax	N(Vmax)				
P01	61	4054				
P02	42	3842				
P03	24	3464				
P04sx	17	3784				
P04dx	15	3514				
P05	13	3873				
P06	10	3935				
P07	9	3657				
P08	12	3685				
P09	14	3658				
P10	23	3653				
P11	42	3916				
P12	51	3678				

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo				
Relazione di Calcolo Pile				
Pagina 98 di 156				
Nome file:				

VI01-C-CL004_B.00_relazione_pile.doc

7.5.3 Verifica a fessurazione

La verifica allo stato limite di fessurazione viene eseguito attraverso il calcolo elastico della sezione, se la l'eccentricità dovuta ai carichi esterni risulta interna al nocciolo centrale di inerzia della sezione omogeneizzata allora la sezione è tutta compressa e la verifica è soddisfatta.

Se invece la sezione risulta parzializzata allora si procede al calcolo del momento di prima fessurazione se quest'ultimo risulta maggiore del momento di progetto la verifica è soddisfatta altrimenti si procede al calcolo dell'apertura delle fessure. La verifica a fessurazione è stata condotta per:

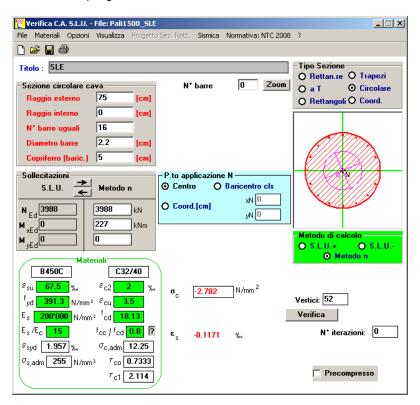
- Armature poco sensibile;
- Condizioni ambientali Aggressive.

7.5.3.1 Verifica allo stato limite di fessurazione combinazioni Frequenti

Le sollecitazioni massime agenti nella condizione freguente sono:

Sollecitazioni agenti

combinazione


Freq.

L0 = **6.32** m lunghezza elastica del palo

N = 3988 kN sforzo assiale

V = **72** kN taglio alla testa del palo M_{max} = 227 kN*m massimo momento flettente

La verifica è stata condotta con il programma VcaSlu:

La sezione risulta tutta compressa non è quindi necessario procedere al calcolo delle aperture delle fessure.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Relazione di Calcolo Pile

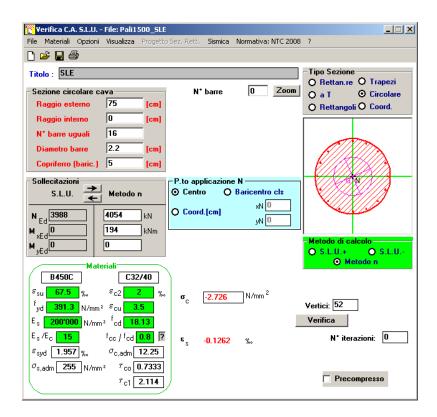
Opera: Viadotto Giulfo

Pagina 99 di 156

Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

Verifica allo stato limite di fessurazione combinazioni Quasi Permanente 7.5.3.2


Sollecitazioni agenti

QP

L0 6.32 m lunghezza elastica del palo

4054 kΝ sforzo assiale

٧ taglio alla testa del palo 61 kΝ $M_{max} =$ 194 kN*m massimo momento flettente

La sezione risulta tutta compressa non è quindi necessario procedere al calcolo delle aperture delle fessure.

7.5.4 Verifica delle tensioni di esercizio

Si verifica che le tensioni di calcolo dovute alle combinazioni rare e quasi permanenti siano inferiori ai massimi valori consentiti di seguito riportati:

-massima tensione di compressione del calcestruzzo

 $\sigma_{c} < 0.60 f_{ck}$ combinazione rara

 $\sigma_{c} < 0.45 f_{ck}$ combinazione quasi permanente

-massima tensione dell'acciaio

 $\sigma_c < 0.80 f_{kvk}$ combinazione rara

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Rel	lazio	one	di	Ca	lcolo	Pile

Opera: Viadotto Giulfo

Pagina 100 di 156

Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

M	ate	rıa	и

Rck	=	40	MPa	resistenza caratteristica cubica
f_{ck}	=	32	MPa	resistenza caratteristica cilindrica
\mathbf{f}_{yk}	=	450	MPa	resistenza caratteristica di snervamento cilindrica

		combir	nazione		
		Rara	QP		
Sollecita	zioni ag	enti			
L0	=	6.32	6.32	m	lunghezza elastica del palo
N	=	3155	4054	kN	sforzo assiale
V	=	122	61	kN	taglio alla testa del palo
M_{max}	=	385	194	kN*m	massimo momento flettente

Tensione massima di compressione del calcestruzzo nelle condizioni di esercizio

$\sigma_{\text{c,max}}$	=	19.20	14.40	[MPa]	massima tensione del cls da normativa
$\sigma_{\text{c,Sd}}$	=	2.77	2.35	[MPa]	tensione di calcolo del cls in esercizio
		OK	OK		

Tensione massima dell'acciaio in condizioni di esercizio

$\sigma_{s,max}$ = 360 [MPa] m	nassima tensione dell'acciaio normativa
-,	ensione di calcolo dell' acciaio in sercizio

Le verifiche per le tensioni in esercizio sono soddisfatte.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 101 di 156
Nome file: VI01-C-CL004_B.00_relazione_pile.doc

7.6 Verifiche geotecniche

7.6.1 Verifica a carico limite verticale

7.6.1.1 Parametri geotecnici

Nella seguente tabella si riportano i parametri fisico-meccanici dei terreni interessati dai pali di fondazione e adottati nel seguito per le verifiche geotecniche. Tali parametri derivano dal lavoro di caratterizzazione riportato nella relazione geotecnica a corredo del presente progetto esecutivo.

Tabella 7.5 - Parametri fisico-meccanici adottati nelle verifiche geotecniche.

	TRV1	TRV2A	TRV2B
peso secco γ_d (kN/m ³)	18	18.8	19.2
peso saturo γ _{sat} (kN/m ³)	18	18.8	19.2
coesione non drenata cu (kPa)	40	110	119
coesione dren. c' (kPa)	10	24	34
angolo attrito φ' (°)	17	21	17

7.6.1.2 Criterio di calcolo del carico limite verticale

Il carico limite verticale Q_{lim} dei singoli pali (trivellati) è stato calcolato in condizioni non drenate e drenate in funzione del diametro d e della lunghezza L dei pali. La formula utilizzata è:

$$Q_{lim} = p_{lim} \frac{\pi d^2}{4} + \pi d \int_{0}^{L} s_{lim}$$

dove le resistenze unitarie alla punta e laterale sono rispettivamente calcolate come:

$$p_{lim,u} = \sigma_{vL} + N_c c_u$$

in condizioni non drenate, e come:

$$p_{lim,d} = N_c c' + N_a \sigma_{vL}'$$

$$s_{lim,u} = \alpha c_u$$

$$s_{lim,d} = k \mu \sigma_{vz}$$

in condizioni drenate. In queste equazioni, si sono indicate rispettivamente con σ_{vL} e con σ_{vL} la tensione totale ed efficace agenti in sito alla quota della punta del palo. I valori assunti per il coefficiente di adesione α sono stati ricavati in funzione della coesione non drenata secondo i valori riportati in tabella:

Tabella 7.6 - Valori del coefficiente α in funzione di cu [1].

C _u	α
(kPa)	(-)
<25	0.9
25 ÷ 50	0.8
50 ÷ 75	0.6
≥ 75	0.4

Il coefficiente di tensione orizzontale k è stato determinato con la formula di Jacky:

$$k = 1 - sen \omega'$$

e il coefficiente di attrito $\mu = tan \phi'$

Si osserva che in condizioni drenate, al fine di limitare i cedimenti, si è volutamente considerato un ridotto contributo della resistenza alla punta (è infatti noto che tale resistenza si mobilita per cedimenti prossimi al 25% del diametro del palo) considerando N_q i valori desunti dal grafico riportato in Figura 7-6. Riguardo Nc,

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo	
Relazione di Calcolo Pile	
Pagina 102 di 156	
Nome file:	

VI01-C-CL004_B.00_relazione_pile.doc

invece, si è assunto in condizioni non drenate Nc=9 e in condizioni drenate Nc è stato determinato con la relazione:

 $Nc = (Nq - 1) \cdot (tan(\varphi'))^{-1}$

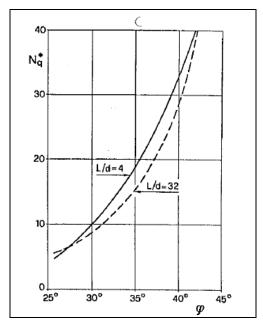


Figura 7-6 – Coefficienti Nq corrispondenti all'insorgere delle deformazioni plastiche alla punta (Berezantev, 1965)

In Tabella 7.7 i valori dei coefficienti Nc ed Nq adottati per i diverse unità geotecniche.

Tabella 7.7 – Coefficienti Nq ed Nc assunti per le diverse unità geotecniche

coeff.	Nq (cond. drenate)	4.0	4.0	4.0
coeff.	Nc (cond. drenate)	9.6	7.8	9.9

Per i rapporti opere-terreni considerati nei calcoli, si è fatto riferimento al profilo geotecnico a corredo del presente progetto esecutivo. Nelle verifiche si è considerata l'assenza di falda.

	STRATIGRAFIA SOTTO SPICCATO FONDAZIONE PILA 1					
strati	Unità geotecniche	spessore strato da testa palo	quota iniziale	quota finale		
		(m)	m	m		
1° strato	TVR1	3	0		3	
2° strato	TVR2A	7	3		10	
3° strato	TVR2B	35	10		45	
	STRATIGRAFIA SO	TTO SPICCATO FONI	DAZIONE PILA 2			
strati	Unità geotecniche	spessore strato da testa palo	quota iniziale	quota finale		
		(m)	m	m		
1° strato	TVR1	3	0		3	

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

TVR1

 1° strato

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 103 di 156
Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

0

2

2° strato	TVR2A	8] 3	11
3° strato	TVR2B	34	11	45
0 502400				
	STRATIGRAFIA SO	OTTO SPICCATO FONI	DAZIONE PILA 3	l
strati	Unità geotecniche	spessore strato da testa palo	quota iniziale	quota finale
		(m)	m	m
1° strato	TVR1	4	0	4
2° strato	TVR2A	10	4	14
3° strato	TVR2B	31	14	45
	STRATIGRAFIA SO	OTTO SPICCATO FONI	DAZIONE PILA 4	
strati	Unità geotecniche	spessore strato da testa palo	quota iniziale	quota finale
		(m)	m	m
1° strato	TVR1	2	0	2
2° strato	TVR2A	11	2	13
3° strato	TVR2B	32	13	4:
	STRATIGRAFIA SO	TTO SPICCATO FONI	DAZIONE PILA 5	
strati	Unità geotecniche	spessore strato da testa palo	quota iniziale	quota finale
		(m)	m	m
1° strato	TVR1	1	0	1
2° strato	TVR2A	11	1	12
3° strato	TVR2B	33	12	4:
	STRATIGRAFIA SO	OTTO SPICCATO FONI	DAZIONE PILA 6	
strati	Unità geotecniche	spessore strato da testa palo	quota iniziale	quota finale
		(m)	m	m
1° strato	TVR1	1	0	1
2° strato	TVR2A	9	1	10
3° strato	TVR2B	35	10	45
	STRATIGRAFIA SO	OTTO SPICCATO FONI	 DAZIONE PILA 7	
strati	Unità geotecniche	spessore strato da testa palo	quota iniziale	quota finale
		(m)	m	m
1° strato	TVR1	2	0	2
2° strato	TVR2A	10	2	12
3° strato	TVR2B	33	12	45
	COMP A DESCRIPTION OF STATE OF	ATTO COLOGIA TO TOTAL		
	STRATIGRAFIA SO	OTTO SPICCATO FONI	DAZIONE PILA 8 	
strati	Unità geotecniche	spessore strato da testa palo	quota iniziale	quota finale
		(m)	m	m

2

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 104 di 156
Nome file:
VI01-C-CL004_B.00_relazione_pile.doc

2° strato	TVR2A	10	2	12
3° strato	TVR2B	33	12	45
	STRATIGRAFIA SO	TTO SPICCATO FONI	DAZIONE PILA 9	
strati	Unità geotecniche	spessore strato da testa palo	quota iniziale	quota finale
		(m)	m	m
1° strato	TVR2A	10	0	10
2° strato	TVR2B	35	10	45
3° strato	TVR2B	0	45	45
	STRATIGRAFIA SO	TTO SPICCATO FOND	AZIONE PILA 10)
strati	Unità geotecniche	spessore strato da testa palo	quota iniziale	quota finale
		(m)	m	m
1° strato	TVR2A	11	0	11
2° strato	TVR2B	34	11	45
3° strato	TVR2B	0	45	45
	STRATIGRAFIA SO	TTO SPICCATO FOND	AZIONE PILA 1	L
strati	Unità geotecniche	spessore strato da testa palo	quota iniziale	quota finale
		(m)	m	m
1° strato	TVR1	2	0	2
2° strato	TVR2A	9	2	11
3° strato	TVR2B	34	11	45
	STRATIGRAFIA SO	TTO SPICCATO FOND	AZIONE PILA 12	2
strati	Unità geotecniche	spessore strato da testa palo	quota iniziale	quota finale
		(m)	m	m
1° strato	TVR1	2	0	2
2° strato	TVR2A	9	2	11
3° strato	TVR2B	34	11	45

7.6.1.3 Criterio di verifica

La verifica della sicurezza nei riguardi degli **stati limite ultimi** di resistenza è stata effettuata con il "metodo dei coefficienti parziali" di sicurezza espresso dalla equazione formale:

Rd *≥*Ed

dove:

Rd è la resistenza di progetto, valutata in base ai valori di progetto della resistenza dei materiali e ai valori nominali delle grandezze geometriche interessate:

$$R_{d} = \frac{1}{\gamma_{R}} R \left[\gamma_{F} F_{k}; \frac{X_{k}}{\gamma_{M}}; a_{d} \right]$$

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 105 di 156
Nome file:
VI01-C-CL004_B.00_relazione_pile.doc

Il coefficiente γR opera direttamente sulla resistenza del sistema. I coefficienti parziali di sicurezza, γ_{Mi} e γ_{Fj} , associati rispettivamente al materiale i-esimo e all'azione j-esima, tengono in conto la variabilità delle rispettive grandezze e le incertezze relative alle tolleranze geometriche e all'affidabilità del modello di calcolo.

Ed è il valore di progetto dell'effetto delle azioni, valutato direttamente come Ed= $E_k \gamma_E$ con $\gamma_E=\gamma_F$:

$$E_d = \gamma_E E \left[F_k; \frac{X_k}{\gamma_M}; a_d \right]$$

La verifica della relazione $Rd \ge Ed$ è stata effettuata impiegando diverse combinazioni di gruppi di coefficienti parziali (cfr tabelle sotto), rispettivamente definiti per le azioni (A1 e A2), per i parametri geotecnici (M1 e M2) e per le resistenze (R1, R2 e R3).

Tabella 7.8 - Coefficienti parziali per le azioni o effetti delle azioni (tab. 6.2.l del DM14-01-2008)

CARICHI	EFFETTO	Coefficiente Parziale _{YF} (o _{YE})	EQU	(A1) STR	(A2) GEO
Permanenti	Favorevole		0,9	1,0	1,0
Permanenti	Sfavorevole	γ _{G1}	1,1	1,3	1,0
Permanenti non strutturali (1)	Favorevole	.,	0,0	0,0	0,0
Permanenti non strutturan	Sfavorevole	$\gamma_{\rm G2}$	1,5	1,5	1,3
Variabili	Favorevole	.,	0,0	0,0	0,0
v ai iauiii	Sfavorevole	γQi	1,5	1,5	1,3

(1) qualora i carichi permanenti non strutturali siano compiutamente definiti, si potranno adottare gli stessi coefficienti validi per le azioni permanenti

Tabella 7.9 – Coefficienti parziali per i parametri geotecnici dei terreni (tab. 6.2.II del DM14-01-2008)

PARAMETRO	GRANDEZZA ALLA QUALE	COEFFICIENTE	(M1)	(M2)
	APPLICARE IL	PARZIALE		
	COEFFICIENTE PARZIALE	γ_{M}		
Tangente dell'angolo di	tan φ' _k	$\gamma_{\phi'}$	1,0	1,25
resistenza al taglio				
Coesione efficace	c′ _k	γ _c ′	1,0	1,25
Resistenza non drenata	c_{uk}	γ _{cu}	1,0	1,4
Peso dell'unità di volume	γ	γ_{γ}	1,0	1,0

Tabella 7.10 – Coefficienti parziali da applicare alle resistenze caratteristiche

		-								
Resistenza	Simbolo	Pali infissi			Pa	ali trivella	ati	Pali ad elica continua		
	$\gamma_{ m R}$	(R1) (R2) (R3)			(R1)	(R2)	(R3)	(R1)	(R2)	(R3)
Base	$\gamma_{\rm b}$	1,0	1,45	1,15	1,0	1,7	1,35	1,0	1,6	1,3
Laterale in	$\gamma_{\rm s}$	1,0	1,45	1,15	1,0	1,45	1,15	1,0	1,45	1,15
compressione										
Totale (*)	γ_{t}	1,0	1,45	1,15	1,0	1,6	1,30	1,0	1,55	1,25
Laterale in	$\gamma_{\rm st}$	1,0	1,6	1,25	1,0	1,6	1,25	1,0	1,6	1,25
trazione										

^(*) da applicare alle resistenze caratteristiche dedotte dai risultati di prove di carico di progetto.

I diversi gruppi di coefficienti di sicurezza parziali sono stati scelti nell'ambito dei due **approcci progettuali** distinti e alternativi consentiti dal DM 14/01/08 per la progettazione geotecnica.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo								
Relazione di Calcolo Pile								
Pagina 106 di 156								
Nome file:								

Nel caso specifico, le verifiche geotecniche (GEO) in termini di capacità portante dei pali sono state condotte sulla base dell'approccio:

Approccio 2, con i coefficienti parziali → A1+M1+R3.

Nel caso di azioni sismiche, per le verifiche effettuate con l'approccio 1 si è fatto riferimento ai coefficienti R3 (NTC2008 7.11.5.3). Inoltre, siccome la capacità portante è determinata mediante procedura analitica, basata sui parametri geotecnici dei terreni interessati, questa è stata ulteriormente ridotta del fattore di correlazione ξ (cfr. Tabella 7.11) per la determinazione della resistenza caratteristica in funzione del numero di verticali indagate. Considerando l'adozione di una sola relazione analitica per la valutazione del carico limite si è assunto il fattore ξ_3 . Per i terreni interessati dall'opera in esame, il numero di verticali di indagine è 10.

$$R_{c,k} = Min \left\{ \frac{\left(R_{c,cal}\right)_{media}}{\xi_3}; \frac{\left(R_{c,cal}\right)_{min}}{\xi_4} \right\}$$

$$R_{t,k} = Min \left\{ \frac{\left(R_{t,cal}\right)_{media}}{\xi_3}; \frac{\left(R_{t,cal}\right)_{min}}{\xi_4} \right\}$$

Tabella 7.11 - Fattori di correlazione ξ per la determinazione della resistenza caratteristica in funzione del numero di verticali indagate

Numero di verticali indagate	1	2	3	4	5	7	≥ 10
ξ ₃	1,70	1,65	1,60	1,55	1,50	1,45	1,40
\$ 4	1,70	1,55	1,48	1,42	1,34	1,28	1,21

7.6.1.4 Risultati

Nel seguito si riportano i risultati delle verifiche per i pali delle pile.

Si evidenzia che ai carichi in testa palo si è aggiunto il contributo del peso palo compensato, cioè sottraendo al peso del palo il peso della colonna di terreno (ovvero calcolando il peso del palo con peso specifico $\gamma_p = \gamma_{c.a} - \gamma_t$).

Tabella 7.12 - Riepilogo dei risultati secondo l'approccio 2

azioni v	azioni verticali massime			cara	atteristiche pali fon	PP. Compensato	carico	limite	check dr	check ud		
pila/spalla	statica	dinamica	diam. Palo	N° palo	lunghezza palo	Lungh- compl.	Volume	11. Compensato	Qlim_d	Qlim_u		
	kN	kN	m		m	m	m3	kN	kN	kN		
Pila1	8563	5053	1.5	5	40	200	112.5	568.74	14914.7	7143.0	ok	ok
Pila2	8883	5532	1.5	6	40	240	135.0	569.69	14929.8	7132.1	ok	ok
Pila3	8194	4797	1.5	8	36	288	162.0	519.12	12420.1	6425.9	ok	ok
Pila4sx	9150	5159	1.5	8	40	320	180.0	569.69	14727.8	7137.7	ok	ok
Pila4dx	7891	4653	1.5	9	40	360	202.5	1828.58	14727.8	7137.7	ok	ok
Pila5	9377	5186	1.5	8	38	304	171.0	539.16	13579.1	6869.9	ok	ok
Pila6	9503	5200	1.5	8	40	320	180.0	564.92	14977.0	7214.7	ok	ok
Pila7	8864	4898	1.5	9	36	324	182.3	513.39	12192.4	6511.1	ok	ok
Pila8	8460	4735	1.5	9	36	324	182.3	513.39	12192.4	6511.1	ok	ok
Pila9	8367	4733	1.5	9	36	324	182.3	507.67	12707.3	6621.5	ok	ok

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 107 di 156
Nome file: VI01-C-CL004_B.00_relazione_pile.doc

azioni v	erticali ma	assime	caratteristiche pali fondazione					PP. Compensato	carico	limite	check dr	check ud
pila/spalla	statica	dinamica	diam. Palo	N° palo	lunghezza palo	Lungh- compl.			Qlim_d	Qlim_u		
	kN	kN	m		m	m	m3	kN	kN	kN		
Pila10	9031	5092	1.5	8	38	304	171.0	536.29	13590.5	6916.7	ok	ok
Pila11	9406	5877	1.5	6	40	240	135.0	567.78	14961.5	7167.9	ok	ok
Pila12	8020	4943	1.5	6	36	216	121.5	512.44	12666.9	6538.8	ok	ok

7.6.1.5 Riferimenti bibliografici

- [1]. AGI, (1997), "Raccomandazioni sui pali di fondazione".
- [2]. Mancina M., Nori R., Iasiello P.,(2007) "Progetti e calcoli di geotecnica con Excel", Vol. II, DEI
- [3]. Lancellotta, R. (1987), "Geotecnica", Zanichelli.
- [4]. Viggiani C. (1999), "Fondazioni", Hedilius.
- [5]. Boweles, J. (1998), "Fondazioni progetto e analisi", Mc Graww-Hill.
- [6]. Cestelli Guidi C. (1991), "Geotecnica e tecnica delle fondazioni 2", ottava edizione, Hoepli.

7.6.2 Verifica a carico limite orizzontale

Si riporta di seguito il calcolo del carico limite orizzontale dei pali di fondazione delle pile. Il calcolo del carico limite orizzontale viene eseguito sia in condizioni drenate, sia in condizioni non drenate, facendo riferimento al palo maggiormente sollecitato, secondo l'approccio 2.

Il metodo utilizzato è quello di Broms , dove in condizione drenate si assume che la resistenza del terreno vari linearmente con la profondità z secondo la legge:

$$p = 3K_n \cdot \gamma \cdot z \cdot d$$
.

mentre in condizioni non drenate si assume un diagramma semplificato con reazione nulla fino a z=1.5d, e a partire da tale profondità, la reazione si assume costante con la profondità e pari:

$$p = 9 \cdot c_u \cdot d$$

7.6.2.1 Verifica in condizioni non drenate

D	=	1.5	m	diametro palo
L	=	40.0	m	lunghezza palo momento di plasticizzazione del
M_y	=	2100	kNm	palo
C_{u}	=	40	kPa	coesione non drenata
palo corto				
$Q_{lim,1}$	=	20385	kN	carico limite per palo corto
M _{max} <u>palo</u> <u>intermedio</u>	=	430633	kNm	momento massimo
$Q_{\text{lim,2}}$	=	7854	kN	carico limite per palo intermedio
f	=	14.5	m	
M _{max} palo lungo	=	72693.3	kNm	momento massimo
$Q_{lim,3}$	=	1237	kN	carico limite per palo lungo

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 108 di 156
Nome file: VI01-C-CL004_B.00_relazione_pile.doc

MR	=	PALO LUNGO		meccanismo di rottura
$Q_{\text{lim},m}$	=	1237.0	kN	carico limite (valore medio)
ξ	=	1.4		fattore di correlazione
$Q_{\text{lim,k}}$	=	883.6	kN	carico limite (valore caratteristico)
γт	=_	1.30		coefficiente parziale
$Q_{\text{lim,d}}$	=	679.7	kN	carico limite (valore di progetto)
F_h		292.0	kN	azione trasversale testa palo
check		2.33		se >1 verifica soddisfatta

7.6.2.2 Verifica in condizioni drenate

D =	1.500	m	diametro palo
_ L =	40.00	m	lunghezza palo
_ L/D =	26.67	m	iangnezza pare
			momento di plasticizzazione del
$M_y =$	2100	kNm	palo
φ' =	17	0	angolo d'attrito
k_p =	1.8		coefficiente di spinta passiva
γ =	18	kN/m ³	peso unità di volume
palo corto			
Q _{lim,1} =	118347	kN	carico limite per palo corto
M _{max} =	3155920	kNm	momento massimo
<u>palo</u>			
<u>intermedio</u>			
$Q_{lim,2}$ =	39502	kN	carico limite per palo intermedio
f =	23.2	m	
M_{max} =	611181	kNm	momento massimo
<u>palo lungo</u>			
Q _{lim,3} =	1450.8	kN	carico limite per palo lungo
MR =	PALO LUNGO		meccanismo di rottura
$Q_{lim,m}$ =	1450.8	kN	carico limite (valore medio)
ξ =	1.4		fattore di correlazione
$Q_{lim,k}$ =	1036.3	kN	carico limite (valore caratteristico)
γ _T =	1.30		coefficinte parziale
Q _{lim,d} =	797.1	kN	carico limite (valore di progetto)
F_h =	292.0	kN	azione trasversale testa palo
check =	292.0	KIN	se >1 verifica soddisfatta

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 109 di 156
Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

8 ANALSI DEL PLINTO DI FONDAZIONE TIPO A – 9 PALI

Il plinto presenta pianta rettangolare di dimensioni 12,00×12,00 m ed altezza pari a 2,50 m. Esso è fondato su n. 9 pali Ø1500 mm posti ad interasse di 4.50 m.

Il calcolo delle sollecitazioni è stato eseguito schematizzando il plinto come un piastra rettangolare, vincolata mediante incastri al fusto della pila sovrastante e caricato da forze concentrate in corrispondenza degli assi dei pali, dal peso proprio e dal peso del terreno di ricoprimento del plinto stesso.

Lo schema statico appena descritto è stato risolto mettendo a punto un modello numerico agli elementi finiti che, con buona approssimazione, riproduce l'effettiva geometria e la effettiva distribuzione delle rigidezze della struttura reale. Il modello numerico è composto da elementi finiti di tipo shell. La quasi totalità degli elementi shell impiegati sono di tipo quadrangolare a quattro nodi e tutti includono gli effetti della deformabilità a taglio (formulazione di *Mindlin-Reissner*).

Nelle seguenti figure si illustrano la geometria del plinto e la sua schematizzazione numerica.

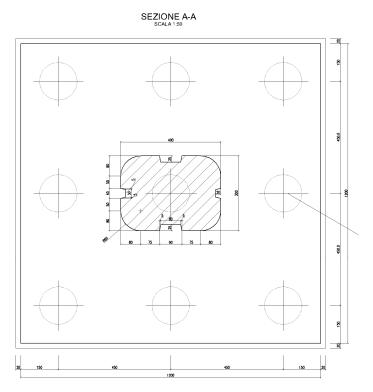


Figura 8-1 - Pianta del plinto di fondazione tipo A.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: **Viadotto Giulfo**Relazione di Calcolo Pile
Pagina 110 di 156

Nome file:

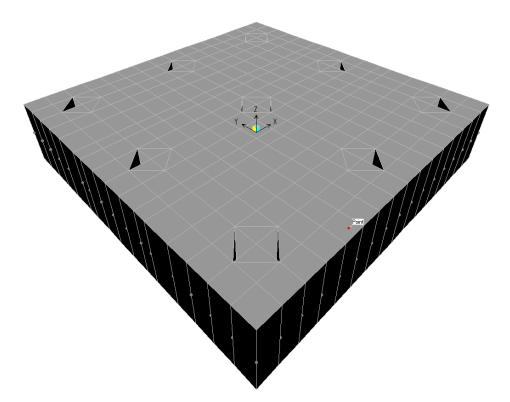


Figura 8-2 - Modello di calcolo del plinto.

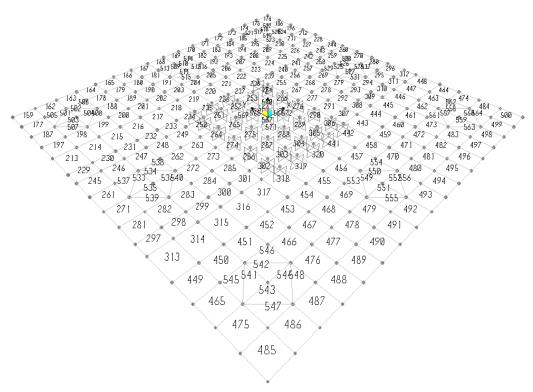


Figura 8-3 - Modello numerico con numerazione degli elementi shell.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 111 di 156
Nome file:

8.1 Analisi dei carichi e combinazioni di carico

Il plinto risulta sollecitato da forze concentrate in corrispondenza dei pali. I valori di tali azioni sono quelli determinati ai precedenti paragrafi dedicati all'analisi delle palificate. In particolare, di seguito si riportano le azioni sui pali della pila P07, alle quali si fa riferimento per il dimensionamento dei plinti tipo A, in quanto risultano essere le più gravose.

PILA	PALO	SLU-1	SLU-2	SLU-3	SLU-4	SLU-5	SLU-6	SLU-7	SLU-8	SLU-9	SLU-10	SLU-11	SLV-1	SLV-2	SLV-3
P06	1	5319	3647	4248	3757	4208	3654	4104	2557	3008	8040	8490	4337	3549	3808
	2	5319	5841	6066	5814	5983	5711	5879	5711	5879	5711	5879	4617	4202	4089
	3	5319	8036	7885	7871	7758	7768	7655	8864	8751	3382	3269	4898	4854	4369
	4	5094	3423	4023	3429	3880	3429	3880	2333	2784	7815	8266	3530	3158	3433
	5	5094	5617	5842	5486	5655	5486	5655	5486	5655	5486	5655	3810	3810	3714
	6	5094	7811	7661	7543	7430	7543	7430	8640	8527	3157	3044	4090	4462	3994
	7	4870	3198	3799	3102	3552	3205	3656	2109	2559	7591	8042	2722	2766	3059
	8	4870	5393	5618	5159	5328	5262	5431	5262	5431	5262	5431	3002	3418	3339
	9	4870	7587	7436	7216	7103	7319	7206	8415	8303	2933	2820	3283	4071	3619

Tabella 8.1 - Azioni esercitate dai pali nelle combinazioni di carico relative alle verifiche di resistenza.

PILA	PALO	SLEf1	SLEf2	SLEf3	SLEf4	SLEf5	SLEf6	SLEf7	SLEf8
P06	1	3511	3494	4242	4225	3207	3190	3938	3921
	2	4182	4165	4182	4165	3476	3459	3476	3459
	3	4853	4835	4122	4104	3745	3728	3014	2997
	4	3393	3393	4124	4124	3089	3089	3820	3820
	5	4064	4064	4064	4064	3358	3358	3358	3358
	6	4735	4735	4004	4004	3627	3627	2896	2896
	7	3275	3293	4006	4024	2971	2989	3702	3720
	8	3946	3963	3946	3963	3240	3258	3240	3258
	9	4617	4634	3886	3903	3509	3527	2778	2796

Tabella 8.2 - Azioni esercitate dai pali nelle combinazioni di carico Frequenti relative alle verifiche agli SLE.

PILA	PALO	SLEp1	SLEp2
P06	1	3890	3876
	2	3890	3876
	3	3890	3876
	4	3774	3774
	5	3774	3774
	6	3774	3774
	7	3657	3672
	8	3657	3672
	9	3657	3672

Tabella 8.3 - Azioni esercitate dai pali nelle combinazioni di carico Quasi Permanenti relative alle verifiche agli SLE.

PILA	PALO	SLEc1	SLEc2	SLEc3	SLEc4	SLEc5	SLEc6	SLEc7	SLEc8
P06	1	2780	2763	4973	4956	2476	2459	4669	4652
	2	4182	4165	4182	4165	3476	3459	3476	3459
	3	5584	5566	3391	3373	4476	4459	2283	2266
	4	2662	2662	4855	4855	2358	2358	4551	4551

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 112 di 156
Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

PILA	PALO	SLEc1	SLEc2	SLEc3	SLEc4	SLEc5	SLEc6	SLEc7	SLEc8
	5	4064	4064	4064	4064	3358	3358	3358	3358
	6	5466	5466	3273	3273	4358	4358	2165	2165
	7	2544	2562	4737	4755	2240	2258	4433	4451
	8	3946	3963	3946	3963	3240	3258	3240	3258
	9	5348	5365	3155	3172	4240	4257	2047	2065

Tabella 8.4 - Azioni esercitate dai pali nelle combinazioni di carico Rare relative alle verifiche agli SLE.

Oltre che dalle azioni trasmesse dai pali il plinto risulta sollecitato dal peso proprio e dal peso del terreno di ricoprimento.

Il peso proprio è stato valutato in maniera automatica dal codice di calcolo una volta definito lo spessore del plinto, pari a 2,50 m, ed il peso specifico del calcestruzzo, assunto pari a 25,0 kN/m³.

Il peso del terreno di ricoprimento, coerentemente con quanto riportato nell'analisi della palificata, è stato determinato assumendo uno spessore del terreno stesso di 1,0 m. Quest'ultima azione è stata implementata nel modello di calcolo come un carico di superficie uniformemente distribuito sull'estradosso del plinto, ma al di fuori della superficie di ingombro della sezione di base della pila, di valore pari a:

$$g2= 18.0 \times 1.0 = 18.0 \text{ kPa}$$
 (peso terreno).

Nelle combinazioni di carico sia il peso proprio del plinto, sia il peso del terreno di ricoprimento, sono stati combinati con le azioni esercitate dai pali impiegando un coefficiente parziale pari a 1.35; nelle combinazioni di carico SLE il coefficiente parziale è stato assunto di valore pari a 1.

8.2 Verifiche di resistenza per tensioni normali

Nelle seguenti figure si rappresentano gli inviluppi massimi del momento flettente longitudinale (M₁₁) e trasversale (M₂₂). Tali momenti si intendono positivi se tendono le fibre inferiori del plinto.

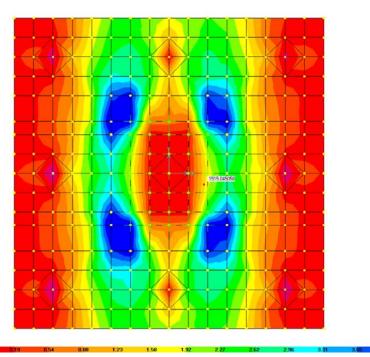


Figura 8-4: Inviluppo dei massimi per il momento flettente longitudinale M₁₁

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

PLINTO DI FONDAZIONE

Relazione di Calcolo Pile

Opera: Viadotto Giulfo

Pagina 113 di 156

Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

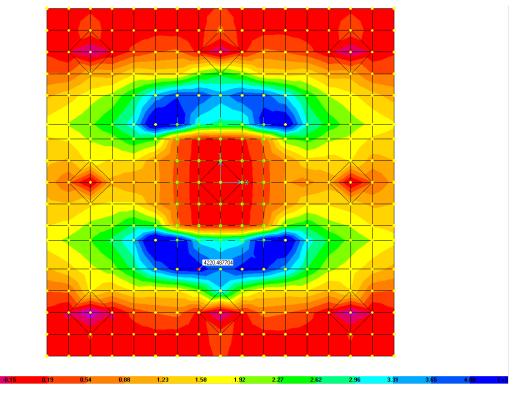


Figura 8-5: Inviluppo dei massimi per il momento flettente trasversale M₂₂

Le verifiche sono state condotte facendo riferimento ad una sezione di larghezza unitaria; le sollecitazioni assunte a base delle verifiche sono quelle desunte dalla risoluzione del modello di calcolo del plinto, mediate sulla larghezza di riferimento della sezione oggetto di verifica.

VERIFICA A PRESSO FLESSIONE Med FS

				$A_{res,TOT}$	M _{Sd}	M_{Rd}	. 0		
Momento tras	versale N	122		[cm ²]	[cm ²]	[cm ²]			
Arm-inf	10	Φ	26	53.1	4988	5028	1.01	OK	momento trasversale Mx+=M22
Arm-sup	5	Φ	22	19.0	786	1811	2.30	OK	momento trasversale Mx-=M22-
Momento Ion	gitudinale	M11							
Momento Ion Arm-inf	gitudinale 10	• М11	26	53.1	4841	5028	1.04	OK	momento longitudinale My+=M11+

L'armatura inferiore posta in direzione trasversale è costituita da barre Ø26/10, mentre l' armatura superiore è costituita da Ø22/20. L'armatura inferiore posta in direzione longitudinale è costituita da barre Ø26/10, mentre l' armatura superiore è costituita da Ø22/20.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Pagina 114 di 156

Opera: Viadotto Giulfo

Relazione di Calcolo Pile

Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

Verifiche di resistenza per tensioni tangenziali 8.3

Sulla base delle mappe tensionali generate dal modello di calcolo sono state estrapolate le sollecitazioni di taglio massime V13 e V23. Successivamente, è stata condotta la verifica SLU per tensioni tangenziali riferendosi ad una sezione 1.00 x 2.50 m. Nel seguito si riporta la procedura di calcolo seguita.

VERIFICA DI RESISTENZA A TACLIO SEZIONE RETTANCOLARE (NTC 2008)

VERIFICA DI	RE			IO SE	ZIONE RETTANGOLARE (NTC 2008)
		plinto	plinto		
		V13max	V23max		
Sollecitazioni					
V	=	2350	3056	kN	taglio
N	=	0	0	kN	sforzo normale (>0 compressione)
Geometria		4000	4000		
В	=	1000	1000	mm	larghezza sezione
Н	=	2500 50	2500 50	mm	altezza sezione
c d	=	2450	2450	mm	copriferro altezza utile
ս Materiali	_	2430	2430	mm	altezza utile
	_	40.0	40.0	MDa	recistores constituistics outlies
R_{ck}	=	40.0	40.0		resistenza caratteristica cubica
f_{ck}	=	32.0	32.0	MPa	resistenza caratteristica cilindrica
$\gamma_{\rm c}$	=	1.5	1.5		coefficiente parziale di sicurezza
$\alpha_{\rm cc}$	=	0.9	0.9		coefficiente riduttivo per resistenze di lunga durata
f_{cd}	=	18.1	18.1	MPa	resistenza di calcolo a compressione
$\gamma_{ m s}$	=	1.15	1.15		coefficiente di sicurezza acciaio
f_{yk}	=	450.0	450.0	MPa	tensione caratteristica di snervamento acciaio
f_{yd}	=	391.3	391.3	MPa	tensione di snervamento di calcolo dell'acciaio
Verifica per el	em	enti spro	vvisti di a	rmatu	ra a taglio
A_{sl}	=	7209.0	7209.0	mm^2	armatura longitudinale
ρ_{l}	=	0.00288			rapporto geometrico di armatura longitudinale
k	=	1.3	1.3		
V_{min}	=	0.3	0.3		
$\sigma_{\sf cp}$	=	0.0	0.0	MPa	tensione media calcestruzzo
$\sigma_{\sf cp,ad}$	=	0.0	0.0	MPa	tensione media di compressione adottata (<=0.2fcd)
•		792.8	792.8	kN	,
V _{Rd} check	=	NO	NO	KIN	taglio resistente
Verifica per el			_	l matur	a a tanlin
_		-			_
Ø _w	=	24	24	mm 。	diametro armatura resistente a taglio
a	=	90.0 500	90.0 500	mm	inclinazione armatura
S	=	อบบ	อบบ	mm	interasse armature a taglio

\emptyset_{w}	=	24	24	mm	diametro armatura resistente a taglio
а	=	90.0	90.0	0	inclinazione armatura
S	=	500	500	mm	interasse armature a taglio
n_{br}	=	2.0	2.0		numero bracci armatura trasversale
A_{sw}	=	904.78	904.78	mm^2	area armatura trasversale posta nell'interasse s
ctgΘ (V)	=	21.2	16.3		
ctgΘ	=	2.5	2.5		
Θ	=	22	22	0	inclinazione bielle di calcestruzzo
V_{Rsd}	=	3903.33	3903.33	kN	taglio resistente armatura
a_c	=	1.00	1.00		coefficiente maggiorativo
f' _{cd}	=	9.07	9.07	MPa	resistenza ridotta
V_{Rcd}	=	14280.0	14280.0	kN	taglio resistente calcestruzzo

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: **Viadotto Giulfo**Relazione di Calcolo Pile

Pagina 115 di 156

Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

VERIFICA DI RESISTENZA A TAGLIO SEZIONE RETTANGOLARE (NTC 2008)

plinto plinto
V13max V23max

V_{Rd} = 3903.3 3903.3 kN taglio resistente sezione

check = OK OK

L'armatura a taglio per il plinto in progetto sarà costituita da cavallotti 2Ø24/mq.

comb.

8.4 Verifiche a fessurazione

comb.

comb.

Le verifiche in oggetto vengono eseguite confrontando l'apertura delle fessure con l'apertura limite fissata dalle norme. Nell'ipotesi di ambiente moderatamente aggressivo, l'apertura limite delle fessure vale 0.2 mm per le combinazioni di carico Frequenti, e 0.3 mm per le combinazioni di carico Quasi Permanenti

Nel caso in cui il momento di fessurazione della sezione dovesse risultare maggiore del momento agente, non si procederà con la valutazione dell'ampiezza delle fessure, ritenendosi, in tal caso, la verifica automaticamente soddisfatta. Nel seguito si riportano le verifiche per la condizione frequente e quasi permanente.

comb.

	COIIID.	COIIID.	COIIID.	COIIID.		
	FREQUENTE	FREQUENTE	FREQUENTE	FREQUENTE		
	Momento trasv	ersale M11=Mx	Momento longit	udinale M22=My		
	inf	sup	inf	sup		
diametri mas	ssimi delle barre pe	r il controllo della	fessurazione			
σ_{s}	w2=0.30 mm	w2=0.30 mm	w2=0.30 mm	w2=0.30 mm		
[MPa]	Ø	Ø	Ø	Ø		
160	32	32	32	32		
200	25	25	25	25		
240	16	16	16	16		
280	12	12	12	12		
320	10	10	10	10		
360	8	8	8	8		
•	nassima delle barre	per il controllo de	lla fessurazione			
σ_{s}	w2=0.30 mm	w2=0.30 mm	w2=0.30 mm	w2=0.30 mm		
[MPa]	Ø	Ø	Ø	Ø		
160	300	300	300	300		
200	250	250	250	250		
240	200	200	200	200		
280	150	150	150	150		
320	100	100	100	100		
360	50	50	50	50		
M _{Ed}	= 2800	406	2590	410	kNm	Momento di calcolo (fibre tese verso il b
	= 0	0	0	0		·
l _{Ed}					kN	Sforzo Normale di calcolo (>0 compress
	comb.	comb.	comb.	comb.		
	FREQUENTE	FREQUENTE	FREQUENTE	FREQUENTE		
Materiali						
			4.0	40	MPa	registerne corottoristics subject
Rck =	= 40	40	40	40	IVIFA	resistenza caratteristica cubica

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

comb.

comb.

comb.

comb.

Opera: **Viadotto Giulfo**Relazione di Calcolo Pile

D---i--- 440 di 450

Pagina 116 di 156

Nome file:

		comb.	comb.	comb.	comb.		
		FREQUENTE	FREQUENTE	FREQUENTE	FREQUENTE		
		Momento trasve	ersale M11=Mx	Momento longit	udinale M22=My		
		inf	sup	inf	sup		
$f_{\rm cm}$	=	40.00	40.00	40.00	40.00	MPa	resistenza cilindrica media
f _{ctm}	=	3.02	3.02	3.02	3.02	MPa	resistenza media a trazione semplice
f_{cfm}	=	2.65	2.65	2.65	2.65	MPa	resistenza media a trazione per flessione
$\sigma_{t} \\$	=	2.52	2.52	2.52	2.52	MPa	tensione limite apertura fessure
n	=	15	15	15	15		coefficiente di omogeneizzazione armature
n'	=	0.00	0.00	0.00	0.00		coefficiente di omogeneizzazione cls teso
Geomet	ria =	4000	4000	4000	4000		haaa aariana
В	=	1000 2500	1000 2500	1000 2500	1000 2500	mm mm	base sezione altezza sezione
Armatur		2000	2000	2000	2000		4,022 6026.0
n ₁	=	10	5	10	5		n. tondini inferiori
\emptyset_1	=	26	22	26	22	mm	diametro tondini inferiori
d_1	=	2450	2450	2450	2450	mm	distanza da lembo compresso
A _{s1}	=	5309	1901	5309	1901	mm ²	area armatura inferiore
n ₂	=	5	10	5	10		n. tondini superiori
\emptyset_2	=	22	26	22	26	mm	diametro tondini superiori
d_2	=	50	50	50	50	mm	distanza da lembo compresso (copriferro)
A_{s2}	=	1901	5309	1901	5309	mm^2	area armatura superiore
Sollecita	azioni						
М	=	2800.0	406.0	2590.0	410.0	kNm	Momento di calcolo (fibre tese verso il basso)
N	=	0.0	0.0	0.0	0.0	KN	Sforzo Normale di calcolo (>0 compressione)
е	=	Inf	Inf	Inf	Inf	mm	eccentricità
			ente reagente a co			2	
A _{cls}	=	2500000	2500000	2500000	2500000	mm²	area calcestruzzo
As	=	7210.0	7210.0	7210.0	7210.0	mm²	area armatura
A_{id}	=	2.61E+06	2.61E+06	2.61E+06	2.61E+06	mm ²	area sezione ideale
d_{G}	=	1273.5	1226.5	1273.5	1226.5	mm	distanza baricentro sezione ideale da lembo superiore
$J_{\text{id}} \\$	=	1.46E+12	1.46E+12	1.46E+12	1.46E+12	mm ⁴	momento d'inerzia baricentrico sezione ideale
ρ_{id}	=	747.3	747.3	747.3	747.3	mm	raggio d'inerzia sezione
$Y_{\text{nocc},s}$	=	818.2	788.0	818.2	788.0	mm	quota punto di nocciolo superiore
Caratter	ristiche	sezione interame	ente reagente a tra	azione			
$\textbf{A}_{\text{cls},t}$	=	-	-	-	-	mm ²	area calcestruzzo teso omogeneizzato
A_s	=	-	-	-	-	mm ²	area armatura
$\boldsymbol{A}_{\text{id},t}$	=	-	-	-	-	mm²	area sezione ideale
$d_{G,t} \\$	=	-	-	-	-	mm	distanza baricentro sezione ideale da lembo superiore
$J_{\text{id},t} \\$	=	-	-	-	-	mm ⁴	momento d'inerzia baricentrico sezione ideale
$\rho_{id,t}$	=	-	-	-	-	mm	raggio d'inerzia sezione
$Y_{\text{nocc},i}$	=	-	-	-	-	mm	quota punto di nocciolo inferiore
Compor	rtamento	sezione					
_		parzializzata	parzializzata	parzializzata	parzializzata		
		sezione parzializ			 -		
Yn	=	528.07	291.05	528.07	291.05	mm	distanza asse neutro da lembo compresso

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo

Relazione di Calcolo Pile

Pagina 117 di 156

Nome file:

		comb.	comb.	comb.	comb.		
		Momento trasve	ersale M11=Mx	Momento longito	udinale M22=My		
J_n	=	inf 3.50E+11	sup 1.46E+11	inf 3.50E+11	sup 1.46E+11	mm ⁴	momento d'inerzia sezione parzializzata
S_n	=	0.00	0.00	0.00	0.00	mm ³	momento statico sezione parzializzata
$f(Y_n)=0$	=	-	-	-	-		
Tensioni	nei m	ateriali					
σ_{c}	=	-4.23	-0.81	-3.91	-0.82	MPa	tensione nel lembo più compresso del cls calcolata nella sezione fessurata
σ_{s}	=	230.8	90.2	213.5	91.1	MPa	tensione dell'armatura tesa calcolata nella sezione fessurata
Verifica a	fessu	ırazione					
M_{fess}	-	2992.2	2881.6	2992.2	2881.6	kNm	momento limite di apertura fessure
M _{fess} / M	=	1.07	7.10	1.16	7.03		check1
\mathbf{w}_{max}	-	0.30	0.30	0.30	0.30	mm	valore limite ampiezza fessure

	comb.	comb.	comb.	comb.		
	QUASI PERM.	QUASI PERM.	QUASI PERM.	QUASI PERM.		
	Momento trasv	versale M11=Mx	Momento longit	udinale M22=My		
	inf	sup	inf	sup		
diametri mass	simi delle barre pe	r il controllo della	fessurazione			
σ_{s}	w1=0.20 mm	w1=0.20 mm	w1=0.20 mm	w1=0.20 mm		
[MPa]	Ø	Ø	Ø	Ø		
160	25	25	25	25		
200	16	16	16	16		
240	12	12	12	12		
280	8	8	8	8		
320	6	6	6	6		
360	0	0	0	0		
σ_{s}	w1=0.20 mm	w1=0.20 mm	w1=0.20 mm	w1=0.20 mm		
σ_{s}	w1=0 20 mm	w1=0 20 mm	w1=0 20 mm	w1=0.20 mm		
[MPa]	Ø	Ø	Ø	Ø		
160	200	200	200	200		
200	150	150	150	150		
240	100	100	100	100		
280	50	50	50	50		
320	0	0	0	0		
360	0	0	0	0		
M _{Ed} =	2240	324.8	2072	328		kNm
N _{Ed} =	0	0	0	0		kN
	comb.	comb.	comb.	comb.		
	QUASI PERM.	QUASI PERM.	QUASI PERM.	QUASI PERM.		
Materiali						
Rck =	40	40	40	40	1	MPa

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: **Viadotto Giulfo**Relazione di Calcolo Pile

Pagina 118 di 156

Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

		comb.	comb.	comb.	comb.		
		QUASI PERM.	QUASI PERM.	QUASI PERM.	QUASI PERM.		
		Momento trasv	versale M11=Mx	Momento longiti	udinale M22=My		
		inf	sup	inf	sup		
f_{ck}	=	32	32	32	32	MPa	resistenza caratteristica cilindrica
f_{cm}	=	40.00	40.00	40.00	40.00	MPa	resistenza cilindrica media
f _{ctm}	=	3.02	3.02	3.02	3.02	MPa	resistenza media a trazione semplice
f _{cfm}	=	2.65	2.65	2.65	2.65	MPa	resistenza media a trazione per flessione
$\sigma_{t} \\$	=	2.52	2.52	2.52	2.52	MPa	tensione limite apertura fessure
n	=	15	15	15	15		coefficiente di omogeneizzazione armature
n'	=	0.00	0.00	0.00	0.00		coefficiente di omogeneizzazione cls teso
Geomet							
В	=	1000	1000	1000	1000	mm	base sezione
H	=	2500	2500	2500	2500	mm	altezza sezione
Armatur			_		_		
n ₁	=	10	5	10	5		n. tondini inferiori
Ø ₁	=	26	22	26	22	mm	diametro tondini inferiori
d ₁	=	2450	2450	2450	2450	mm	distanza da lembo compresso
A _{s1}	=	5309	1901	5309	1901	mm ²	area armatura inferiore
n_2	=	5	10	5	10		n. tondini superiori
Ø ₂	=	22	26	22	26	mm	diametro tondini superiori
d_2	=	50	50	50	50	mm	distanza da lembo compresso (copriferro)
A _{s2}	=	1901	5309	1901	5309	mm ²	area armatura superiore
Sollecita	azioni						
М	=	2240.0	324.8	2072.0	328.0	kNm	Momento di calcolo (fibre tese verso il basso)
N	=	0.0	0.0	0.0	0.0	KN	Sforzo Normale di calcolo (>0 compressione)
e	=	Inf	Inf	Inf	Inf	mm	eccentricità
			ente reagente a co			2	
A _{cls}	=	2500000	2500000	2500000	2500000	mm²	area calcestruzzo
As	=	7210.0	7210.0	7210.0	7210.0	mm²	area armatura
A_{id}	=	2.61E+06	2.61E+06	2.61E+06	2.61E+06	mm ²	area sezione ideale
d_G	=	1273.5	1226.5	1273.5	1226.5	mm	distanza baricentro sezione ideale da lembo superiore
J_{id}	=	1.46E+12	1.46E+12	1.46E+12	1.46E+12	mm⁴	momento d'inerzia baricentrico sezione ideale
ρ_{id}	=	747.3	747.3	747.3	747.3	mm	raggio d'inerzia sezione
Y _{nocc,s}	=	818.2	788.0	818.2	788.0	mm	quota punto di nocciolo superiore
Caratter	ristiche	sezione interam	ente reagente a tra	azione			
$A_{cls,t}$	=	-	-	-	-	mm ²	area calcestruzzo teso omogeneizzato
As	=	-	-	-	-	mm ²	area armatura
$A_{id,t}$	=	-	-	-	-	mm ²	area sezione ideale
$d_{G,t} \\$	=	-	-	-	-	mm	distanza baricentro sezione ideale da lembo superiore
$J_{id,t} \\$	=	-	-	-	-	mm ⁴	momento d'inerzia baricentrico sezione ideale
$\rho_{id,t}$	=	-	-	-	-	mm	raggio d'inerzia sezione
$Y_{\text{nocc},i}$	=	-	-	-	-	mm	quota punto di nocciolo inferiore
Compor	rtament	o sezione					

parzializzata

parzializzata

parzializzata

parzializzata

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: **Viadotto Giulfo**Relazione di Calcolo Pile

Pagina 119 di 156

Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

		comb.	comb.	comb.	comb.		
		QUASI PERM.	QUASI PERM.	QUASI PERM.	QUASI PERM.		
		Momento trasv	rersale M11=Mx	Momento longito	udinale M22=My		
		inf	sup	inf	sup		
Y_n	=	528.07	291.05	528.07	291.05	mm	distanza asse neutro da lembo compresso
J_{n}	=	3.50E+11	1.46E+11	3.50E+11	1.46E+11	mm ⁴	momento d'inerzia sezione parzializzata
S_n	=	0.00	0.00	0.00	0.00	mm ³	momento statico sezione parzializzata
$f(Y_n)=0$	=	-	-	-	-		
Tensioni i	nei m	nateriali					
σ_{c}	=	-3.38	-0.65	-3.13	-0.66	MPa	tensione nel lembo più compresso del cls calcolata nella sezione fessurata
σ_{s}	=	184.6	72.2	170.8	72.9	MPa	tensione dell'armatura tesa calcolata nella sezione fessurata
Verifica a	fess	urazione					
M_{fess}	=	2992.2	2881.6	2992.2	2881.6	kNm	momento limite di apertura fessure
M _{fess} / M	=	1.34	8.87	1.44	8.79		check1
W _{max}	=	0.20	0.20	0.20	0.20	mm	valore limite ampiezza fessure

Dai risultati ottenuti emerge che il momento di prima fessurazione della sezione è sempre maggiore del momento di calcolo non è quindi necessario il calcolo dell'apertura delle fessure.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 120 di 156
Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

9 ANALSI DEL PLINTO DI FONDAZIONE TIPO B – 8 PALI

Il plinto presenta pianta rettangolare di dimensioni 12,00×10,65 m ed altezza pari a 2,50 m. Esso è fondato su n. 8 pali Ø1500 mm posti ad interasse di 4.50 m.

Il calcolo delle sollecitazioni è stato eseguito schematizzando il plinto come un piastra rettangolare, vincolata mediante incastri al fusto della pila sovrastante e caricato da forze concentrate in corrispondenza degli assi dei pali, dal peso proprio e dal peso del terreno di ricoprimento del plinto stesso.

Lo schema statico appena descritto è stato risolto mettendo a punto un modello numerico agli elementi finiti che, con buona approssimazione, riproduce l'effettiva geometria e la effettiva distribuzione delle rigidezze della struttura reale. Il modello numerico è composto da elementi finiti di tipo shell. La quasi totalità degli elementi shell impiegati sono di tipo quadrangolare a quattro nodi e tutti includono gli effetti della deformabilità a taglio (formulazione di *Mindlin-Reissner*).

Nelle seguenti figure si illustrano la geometria del plinto e la sua schematizzazione numerica.

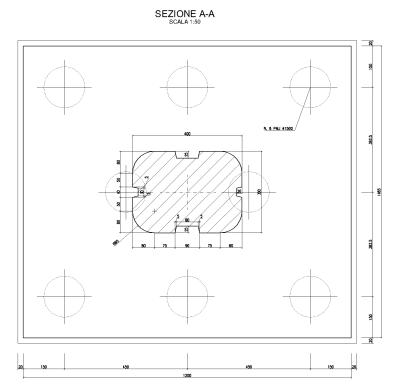


Figura 9-1 - Pianta del plinto di fondazione tipo B.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile

Pagina 121 di 156

Nome file:

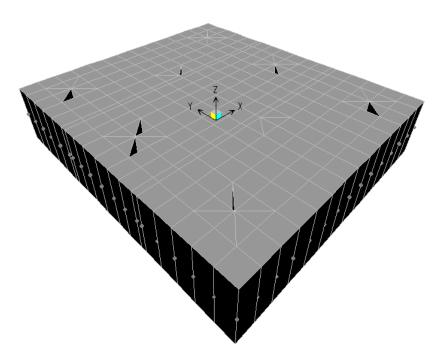


Figura 9-2 - Modello di calcolo del plinto.

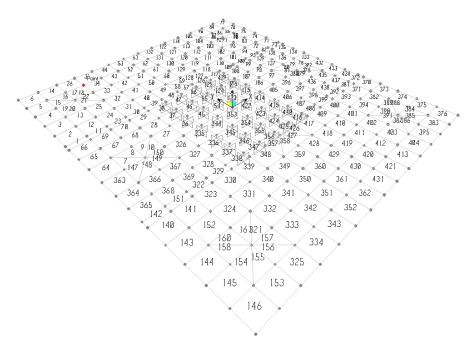


Figura 9-3 - Modello numerico con numerazione degli elementi shell.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 122 di 156
Nome file: VI01-C-CL004 B.00 relazione pile.doc

9.1 Analisi dei carichi e combinazioni di carico

Il plinto risulta sollecitato da forze concentrate in corrispondenza dei pali. I valori di tali azioni sono quelli determinati ai precedenti paragrafi dedicati all'analisi delle palificate. In particolare, di seguito si riportano le azioni sui pali della pila P06, alle quali si fa riferimento per il dimensionamento dei plinti tipo B, in quanto risultano essere le più gravose.

PILA	PALO	SLU-1	SLU-2	SLU-3	SLU-4	SLU-5	SLU-6	SLU-7	SLU-8	SLU-9	SLU-10	SLU-11	SLV-1	SLV-2	SLV-3
	1	5650	3853	4524	3962	4465	3860	4363	2680	3183	8578	9082	4575	3739	4026
	2	5650	6238	6491	6194	6383	6091	6281	6091	6281	6091	6281	4887	4464	4339
	3	5650	8624	8458	8425	8301	8323	8198	9503	9378	3604	3479	5200	5189	4651
P06	4	5450	4846	5308	4776	5123	4776	5123	4186	4533	7135	7482	3922	3716	3814
1 00	5	5450	7232	7275	7008	7040	7008	7040	7598	7630	4648	4681	4235	4441	4127
	6	5251	3454	4125	3358	3862	3461	3964	2281	2785	8179	8683	2957	2968	3290
	7	5251	5840	6092	5590	5780	5692	5882	5692	5882	5692	5882	3270	3693	3603
	8	5251	8225	8059	7822	7697	7924	7799	9104	8979	3205	3081	3582	4418	3916

Tabella 9.1 - Azioni esercitate dai pali nelle combinazioni di carico relative alle verifiche di resistenza.

PILA	PALO	SLEf1	SLEf2	SLEf3	SLEf4	SLEf5	SLEf6	SLEf7	SLEf8
	1	3732	3722	4518	4508	3390	3379	4176	4166
	2	4467	4457	4467	4457	3673	3663	3673	3663
	3	5203	5193	4417	4406	3957	3947	3170	3160
P06	4	3997	3997	4390	4390	3428	3428	3821	3821
100	5	4732	4732	4339	4339	3712	3712	3319	3319
	6	3526	3536	4312	4322	3183	3194	3970	3980
	7	4261	4271	4261	4271	3467	3477	3467	3477
	8	4997	5007	4210	4221	3750	3761	2964	2974

Tabella 9.2 - Azioni esercitate dai pali nelle combinazioni di carico Frequenti relative alle verifiche agli SLE.

PILA	PALO	SLEp1	SLEp2			
	1	4140	4131			
	2	4140	4131			
	3	4140	4131			
P06	4	4037	4037			
F00	5	4037	4037			
	6	3935	3944			
	7	4037 4037 3935 3944 3935 3944				
	8	3935	3944			

Tabella 9.3 - Azioni esercitate dai pali nelle combinazioni di carico Quasi Permanenti relative alle verifiche agli SLE.

PILA	PALO	SLEc1	SLEc2	SLEc3	SLEc4	SLEc5	SLEc6	SLEc7	SLEc8
P06	1	2945	2935	5305	5295	2603	2593	4962	4952
	2	4467	4457	4467	4457	3673	3663	3673	3663
	3	5989	5979	3630	3620	4743	4733	2384	2374
	4	3603	3603	4783	4783	3035	3035	4215	4215
	5	5125	5125	3946	3946	4105	4105	2925	2925
	6	2739	2749	5099	5109	2397	2407	4756	4766

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

	Opera: Viadotto Giulfo
	Relazione di Calcolo Pile
Ī	Pagina 123 di 156
Ī	Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

PILA	PALO	SLEc1	SLEc2	SLEc3	SLEc4	SLEc5	SLEc6	SLEc7	SLEc8
	7	4261	4271	4261	4271	3467	3477	3467	3477
	8	5783	5794	3424	3434	4537	4547	2178	2188

Tabella 9.4 - Azioni esercitate dai pali nelle combinazioni di carico Rare relative alle verifiche agli SLE.

Oltre che dalle azioni trasmesse dai pali il plinto risulta sollecitato dal peso proprio e dal peso del terreno di ricoprimento.

Il peso proprio è stato valutato in maniera automatica dal codice di calcolo una volta definito lo spessore del plinto, pari a 2,50 m, ed il peso specifico del calcestruzzo, assunto pari a 25,0 kN/m³.

Il peso del terreno di ricoprimento, coerentemente con quanto riportato nell'analisi della palificata, è stato determinato assumendo uno spessore del terreno stesso di 1,0 m. Quest'ultima azione è stata implementata nel modello di calcolo come un carico di superficie uniformemente distribuito sull'estradosso del plinto, ma al di fuori della superficie di ingombro della sezione di base della pila, di valore pari a:

$$g2= 18.0 \times 1.0 = 18.0 \text{ kPa}$$
 (peso terreno).

Nelle combinazioni di carico sia il peso proprio del plinto, sia il peso del terreno di ricoprimento, sono stati combinati con le azioni esercitate dai pali impiegando un coefficiente parziale pari a 1.35; nelle combinazioni di carico SLE il coefficiente parziale è stato assunto di valore pari a 1.

9.2 Verifiche di resistenza per tensioni normali

Nelle seguenti figure si rappresentano gli inviluppi massimi del momento flettente longitudinale (M_{11}) e trasversale (M_{22}). Tali momenti si intendono positivi se tendono le fibre inferiori del plinto.

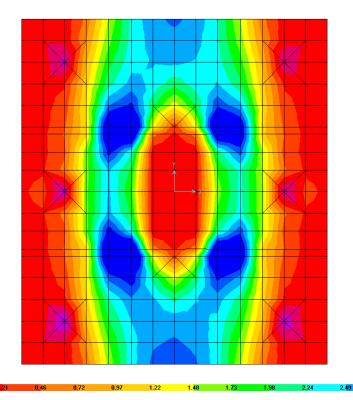


Figura 9-4: Inviluppo dei massimi per il momento flettente longitudinale M₁₁

CORRIDOIO PLURIMODALE TIRRENICO-NORD EUROPA
ITINERARIO AGRIGENTO -CALTANISSETTA-A19
S.S. N° 640 "DI PORTO EMPEDOCLE"
DERNAMENTO E ADECUAMENTO ALLA CAT. R.DEL. D.M. 5.11.200

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 124 di 156
Nome file:
VI01-C-CL004_B.00_relazione_pile.doc

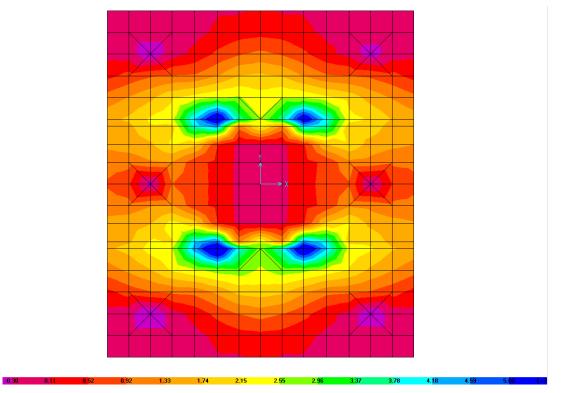


Figura 9-5: Inviluppo dei massimi per il momento flettente trasversale M₂₂

Le verifiche sono state condotte facendo riferimento ad una sezione di larghezza unitaria; le sollecitazioni assunte a base delle verifiche sono quelle desunte dalla risoluzione del modello di calcolo del plinto, mediate sulla larghezza di riferimento della sezione oggetto di verifica.

VERIFICA A PRESSO FLESSIONE

PLINTO DI FO	PLINTO DI FONDAZIONE					M_{Rd}	FS		
Momento tras	versale N	122		[cm ²]	[cm ²]	[cm ²]			
Arm-inf	10	Φ	26	53.1	4820	5028	1.04	OK	momento trasversale Mx+=M22
Arm-sup	5	Φ	22	19.0	460	1811	3.94	OK	momento trasversale Mx-=M22-
Mamanta lan									
Momento long	gitudinale	M11							
Arm-inf	gitudinale 10	• М11 Ф	26	53.1	4217	5028	1.19	OK	momento longitudinale My+=M11+

L'armatura inferiore posta in direzione trasversale è costituita da barre Ø26/10, mentre l'armatura superiore è costituita da Ø22/20. L'armatura inferiore posta in direzione longitudinale è costituita da barre Ø26/10, mentre l'armatura superiore è costituita da Ø22/20.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: **Viadotto Giulfo**Relazione di Calcolo Pile
Pagina 125 di 156

Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

9.3 Verifiche di resistenza per tensioni tangenziali

Sulla base delle mappe tensionali generate dal modello di calcolo sono state estrapolate le sollecitazioni di taglio massime V13 e V23. Successivamente, è stata condotta la verifica SLU per tensioni tangenziali riferendosi ad una sezione 1.00 x 2.50 m. Nel seguito si riporta la procedura di calcolo seguita.

VERIFICA DI RESISTENZA A TAGLIO SEZIONE RETTANGOLARE (NTC 2008)

VERIFICA DI	RE			IO SE	ZIONE RETTANGOLARE (NTC 2008)
		plinto	plinto		
		V13max	V23max		
Sollecitazioni					
V	=	2750	2800	kN	taglio
N	=	0	0	kN	sforzo normale (>0 compressione)
Geometria					
В	=	1000	1000	mm	larghezza sezione
Н	=	2500	2500	mm	altezza sezione
C	=	50	50	mm	copriferro
d	=	2450	2450	mm	altezza utile
Materiali					
R_{ck}	=	40.0	40.0	MPa	resistenza caratteristica cubica
f_{ck}	=	32.0	32.0	MPa	resistenza caratteristica cilindrica
$\gamma_{\rm c}$	=	1.5	1.5		coefficiente parziale di sicurezza
$\alpha_{\rm cc}$	=	0.9	0.9		coefficiente riduttivo per resistenze di lunga durata
f_{cd}	=	18.1	18.1	MPa	resistenza di calcolo a compressione
$\gamma_{ m s}$	=	1.15	1.15		coefficiente di sicurezza acciaio
f_{yk}	=	450.0	450.0	MPa	tensione caratteristica di snervamento acciaio
f_{yd}	=	391.3	391.3	MPa	tensione di snervamento di calcolo dell'acciaio
Verifica per el	em	enti spro	vvisti di a	rmatu	ra a taglio
A_{sl}	=	7209.0	7209.0	mm^2	armatura longitudinale
ρ_{l}	=	0.00288	0.00288		rapporto geometrico di armatura longitudinale
k	=	1.3	1.3		
V_{min}	=	0.3	0.3		
$\sigma_{\sf cp}$	=	0.0	0.0	MPa	tensione media calcestruzzo
σ.	=	0.0	0.0	MPa	tensione media di compressione adottata (<=0.2fcd)
$\sigma_{\sf cp,ad}$,
V _{Rd}	=	792.8 NO	792.8	kN	taglio resistente
check	=		NO	matur:	o o toglio
Verifica per el	em	-			_
\varnothing_{w}	=	24	24	mm	diametro armatura resistente a taglio
а	=	90.0	90.0	0	inclinazione armatura

\emptyset_{w}	=	24	24	mm	diametro armatura resistente a taglio
а	=	90.0	90.0	0	inclinazione armatura
s	=	500	500	mm	interasse armature a taglio
n_{br}	=	2.0	2.0		numero bracci armatura trasversale
A_{sw}	=	904.78	904.78	mm^2	area armatura trasversale posta nell'interasse s
ctgΘ (V)	=	18.1	17.8		
ctgΘ	=	2.5	2.5		
Θ	=	22	22	0	inclinazione bielle di calcestruzzo
V_{Rsd}	=	3903.33	3903.33	kN	taglio resistente armatura
a_c	=	1.00	1.00		coefficiente maggiorativo
f' _{cd}	=	9.07	9.07	MPa	resistenza ridotta
V_{Rcd}	=	14280.0	14280.0	kN	taglio resistente calcestruzzo

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
D =! = 400 -!! 450

Pagina 126 di 156

Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

VERIFICA DI RESISTENZA A TAGLIO SEZIONE RETTANGOLARE (NTC 2008)

plinto plintoV13max V23max

V_{Rd} = 3903.3 3903.3 kN taglio resistente sezione

comb.

comb.

check = OK OK

L'armatura a taglio per il plinto in progetto sarà costituita da cavallotti 2Ø24/mq.

9.4 Verifiche a fessurazione

comb.

comb.

Le verifiche in oggetto vengono eseguite confrontando l'apertura delle fessure con l'apertura limite fissata dalle norme. Nell'ipotesi di ambiente moderatamente aggressivo, l'apertura limite delle fessure vale 0.2 mm per le combinazioni di carico Frequenti, e 0.3 mm per le combinazioni di carico Quasi Permanenti

Nel caso in cui il momento di fessurazione della sezione dovesse risultare maggiore del momento agente, non si procederà con la valutazione dell'ampiezza delle fessure, ritenendosi, in tal caso, la verifica automaticamente soddisfatta. Nel seguito si riportano le verifiche per la condizione frequente e quasi permanente.

		FREQUENTE	FREQUENTE		FREQUENTE ongitudinale		
		Momento trasve	ersale M11=Mx		2=My		
		inf	sup	inf	sup		
diametri m	nassi	imi delle barre p	er il controllo d	ella fessurazion	е		
σ_{s}		w2=0.30 mm	w2=0.30 mm	w2=0.30 mm	w2=0.30 mm		
[MPa]		Ø	Ø	Ø	Ø		
160		32	32	32	32		
200		25	25	25	25		
240		16	16	16	16		
280		12	12	12	12		
320		10	10	10	10		
360		8	8	8	8		
spaziatura	mas	ssima delle barr	e per il controllo	della fessurazi	ione		
σ_{s}		w2=0.30 mm	w2=0.30 mm	w2=0.30 mm	w2=0.30 mm		
[MPa]		Ø	Ø	Ø	Ø		
160		300	300	300	300		
200		250	250	250	250		
240		200	200	200	200		
280		150	150	150	150		
320		100	100	100	100		
360		50	50	50	50		
M_{Ed}	=	2280	324	2929	250	kNm	Momento di calcolo (fibre tese verso il basso)
N_{Ed}	=	0	0	0	0	kN	Sforzo Normale di calcolo (>0 compressione)
		comb.	comb.	comb.	comb.		
		FREQUENTE	FREQUENTE	FREQUENTE	FREQUENTE		
Materiali							
Rck	=	40	40	40	40	MPa	resistenza caratteristica cubica
f_{ck}	=	32	32	32	32	MPa	resistenza caratteristica cilindrica

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: **Viadotto Giulfo**Relazione di Calcolo Pile

Pagina 127 di 156

Nome file:

		comb.	comb.	comb.	comb.		
		FREQUENTE	FREQUENTE	FREQUENTE	FREQUENTE		
		Momento trasv	ersale M11=Mx		ongitudinale 2=My		
		inf	sup	inf	sup		
cm	=	40.00	40.00	40.00	40.00	MPa	resistenza cilindrica media
otm	=	3.02	3.02	3.02	3.02	MPa	resistenza media a trazione semplice
cfm	=	2.65	2.65	2.65	2.65	MPa	resistenza media a trazione per flessione
r _t	=	2.52	2.52	2.52	2.52	MPa	tensione limite apertura fessure
1	=	15	15	15	15		coefficiente di omogeneizzazione armature
'	=	0.00	0.00	0.00	0.00		coefficiente di omogeneizzazione cls teso
eometr	ria						
3	=	1000	1000	1000	1000	mm	base sezione
1	=	2500	2500	2500	2500	mm	altezza sezione
rmatur			_		_		
1	=	10	5	10	5		n. tondini inferiori
) ₁	=	26	22	26	22	mm	diametro tondini inferiori
l ₁	=	2450	2450	2450	2450	mm	distanza da lembo compresso
N _{s1}	=	5309	1901	5309	1901	mm ²	area armatura inferiore
12	=	5	10	5	10		n. tondini superiori
0 2	=	22	26	22	26	mm	diametro tondini superiori
l ₂	=	50	50	50	50	mm	distanza da lembo compresso (copriferro)
N _{s2}	=	1901	5309	1901	5309	mm^2	area armatura superiore
Sollecita	zioni						
Л	=	2280.0	324.0	2929.0	250.0	kNm	Momento di calcolo (fibre tese verso il basso)
١	=	0.0	0.0	0.0	0.0	KN	Sforzo Normale di calcolo (>0 compressione)
:	=	Inf	Inf	Inf	Inf	mm	eccentricità
	istiche	sezione interar	mente reagente)		
cls	=	2500000	2500000	2500000	2500000	mm²	area calcestruzzo
\s	=	7210.0	7210.0	7210.0	7210.0	mm ²	area armatura
Aid	=	2.61E+06	2.61E+06	2.61E+06	2.61E+06	mm ²	area sezione ideale
lg	=	1273.5	1226.5	1273.5	1226.5	mm	distanza baricentro sezione ideale da lembo superior
id	=	1.46E+12	1.46E+12	1.46E+12	1.46E+12	mm ⁴	momento d'inerzia baricentrico sezione ideale
id	=	747.3	747.3	747.3	747.3	mm	raggio d'inerzia sezione
nocc,s	=	818.2	788.0	818.2	788.0	mm	quota punto di nocciolo superiore
aratteri	istiche	sezione interar	mente reagente	a trazione			
cls,t	=	-	-	-	-	mm^2	area calcestruzzo teso omogeneizzato
۸s	=	-	-	-	-	mm^2	area armatura
$\lambda_{\text{id,t}}$	=	-	-	-	-	mm ²	area sezione ideale
$I_{G,t}$	=	-	-	-	-	mm	distanza baricentro sezione ideale da lembo superior
id,t	=	-	<u>-</u>	_	-	mm ⁴	momento d'inerzia baricentrico sezione ideale
	=	_	_	_	_	mm	raggio d'inerzia sezione
P _{id,t}	_	•	-	-	-		
nocc,i		- to sozione	-	-	-	mm	quota punto di nocciolo inferiore
ompon	tarrient	parzializzata	parzializzata	parzializzata	parzializzata		
Caratteri	istiche	sezione parzia		parzializzald	parzializzata		
oaratteri In	=	528.07	291.05	528.07	291.05	mm	distanza asse neutro da lembo compresso
* 0		323.07	201.00	323.07	201.00		accombate at longer compressor

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo Relazione di Calcolo Pile

Pagina 128 di 156

Nome file:

		comb.	comb.	comb.	comb.		
		FREQUENTE	FREQUENTE	FREQUENTE Momento	FREQUENTE ongitudinale		
		Momento trasv	ersale M11=Mx		2=My		
		inf	sup	inf	sup	4	
J _n	=	3.50E+11	1.46E+11	3.50E+11	1.46E+11	mm⁴	momento d'inerzia sezione parzializzata
S _n	=	0.00	0.00	0.00	0.00	mm ³	momento statico sezione parzializzata
$f(Y_n)=0$	=	-	-	-	-		
Tensioni n	nei m	ateriali					
σ_{c}	=	-3.44	-0.65	-4.42	-0.50	MPa	tensione nel lembo più compresso del cls calcolata nella sezione fessurata
$\sigma_{\rm s}$	=	187.9	72.0	241.4	55.6	MPa	tensione dell'armatura tesa calcolata nella sezione fessurata
Verifica a f	fess	urazione				ı	
M _{fess}	=	2992.2	2881.6	2992.2	2881.6	kNm	momento limite di apertura fessure
M _{fess} / M	=	1.31	8.89	1.02	11.53		check1
W _{max}	=	0.30	0.30	0.30	0.30	mm	valore limite ampiezza fessure
Ø _{max}	=	-	-	-	-	mm	diametro massimo delle barre
σ* _{s1}	=	-	-	-	-	MPa	limite di tensione max nell'acciaio dovuta al diametro dei ferri
sp _s	=	-	-	-	-		spaziatura delle barre superiori
sp _i	=	-	-	-	-		spaziatura delle barre inferiori
sp _{max}	=	_	_	_	_	mm	spaziatura massima delle barre
	=	_	_	_	_	MPa	limite di tensione max nell'acciaio dovuta alla spaziatura dei ferri
σ* _{s2}		-	-	-	_		
J _{s,lim}	-	-	-	-		MPa 	limite di tensione max nell'acciaio
$\sigma_{\rm s,lim}/\sigma_{\rm s}$	=	-					check2
2	=	-	-	-	-	mm	ricoprimento armatura
n _{ct,eff}	=	-	-	-	-	mm	altezza efficace cls teso attorno armatura superiore
1 _{cb,eff}	=	-	-	-	-	mm	altezza efficace cls teso attorno armatura inferiore
A _{cb,eff}	=	-	-	-	-	mm²	area efficace di cls teso attorno all'armatura
D _{eff}	=	-	-	-	-		rapporto A _s /A _{c.eff}
k _t	=	-	-	-	-		fattore dipendente dalla durata del carico (0.6 per carichi di breve durata; 0.4 per caricl lunga durata)
Es	=	200000	200000	200000	200000	MPa	modulo elastico acciaio
*	=	-	-	-	-	mm	zona efficace armatura (5*(c+Ø/2))
K ₁	=	-	-	-	-		0.80 per barre ad aderenza migliorate; 1.6 per barre lisce
2	=	-	-	-	-		deformazione a lembo inferiore della sezione fessurata
ε ₁	=	-	-	-	-		deformazione a lembo superiore della sezione fessurata
k ₂	=	-	-	-	-		0.50 nel caso di flessione; 1.0 nel caso di trazione semplice; $(\epsilon 1+\epsilon 2)/2\epsilon 1$ nel caso di tensoflessione
k ₃	=	-	-	-	-		
k ₄	=	-	_	_	-		
$\Delta_{ m smax1}$	_	-	_	_	_	mm	distanza media tra le fessure nella zona d* attorno alle barre
Δ _{smax2}	=	_	_	_	_	mm	distanza media tra le fessure al di fuori della zona d* attorno alle barre
		-	-	-	-		
Δ_{sm}	=	-	-	-	-	mm	distanza media tra le fessure
ε _{sm}	=	-	-	-	-		deformazione unitaria media delle barre di armatura
W _m	=	-	-	-	-	mm	apertura media delle fessure
W _d	=	-	-	-	-	mm	valore di calcolo di apertura delle fessure
		verificato	verificato	verificato	verificato		check3

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: **Viadotto Giulfo**Relazione di Calcolo Pile

Pagina 129 di 156

Nome file:

		comb. QUASI PERM. trasversale 1=Mx		comb. QUASI PERM. ongitudinale		
	inf	sup	inf	sup		
diametri ma	ssimi delle barre	per il controllo	della fessurazio	ne		
σ_{s}	w1=0.20 mm	w1=0.20 mm	w1=0.20 mm	w1=0.20 mm		
[MPa]	Ø	Ø	Ø	Ø		
160	25	25	25	25		
200	16	16	16	16		
240	12	12	12	12		
280	8	8	8	8		
320	6	6	6	6		
360	0	0	0	0		
spaziatura r	massima delle ba	rre per il contro	llo della fessura	zione		
σ_{s}	w1=0.20 mm	w1=0.20 mm	w1=0.20 mm	w1=0.20 mm		
[MPa]	Ø	Ø	Ø	Ø		
160	200	200	200	200		
200	150	150	150	150		
240	100	100	100	100		
280	50	50	50	50		
320	0	0	0	0		
360	0	0	0	0		
M_{Ed}	= 1824	259	2343	200	kNm	Momento di calcolo (fibre tese verso il basso
N _{Ed}	= 0	0	0	0	kN	Sforzo Normale di calcolo (>0 compressione
	comb. QUASI PERM.	comb. QUASI PERM.	comb. QUASI PERM.	comb. QUASI PERM.		
Materiali						
Rck	= 40	40	40	40	MPa	resistenza caratteristica cubica
f _{ck}	= 32	32	32	32	MPa	resistenza caratteristica cilindrica
f _{cm}	= 40.00	40.00	40.00	40.00	MPa	resistenza cilindrica media
	= 3.02	3.02	3.02	3.02	MPa	resistenza media a trazione semplice
0.11						
f _{cfm}	= 2.65	2.65	2.65	2.65	MPa	resistenza media a trazione per flessione
σ_{t}	= 2.52	2.52	2.52	2.52	MPa	tensione limite apertura fessure
n :	= 15	15	15	15		coefficiente di omogeneizzazione armature
n'	= 0.00	0.00	0.00	0.00		coefficiente di omogeneizzazione cls teso
Geometria						
	= 1000	1000	1000	1000	mm	base sezione
H	= 2500	2500	2500	2500	mm	altezza sezione
Armatura						
	= 10	5	10	5		n. tondini inferiori
n ₁	= 10 = 26	5 22	10 26	5 22	mm	n. tondini inferiori diametro tondini inferiori
n ₁ Ø ₁					mm mm	
Ø ₁	= 26	22	26	22		diametro tondini inferiori
n ₁ Ø ₁ d ₁ A _{s1}	= 26 = 2450	22 2450	26 2450	22 2450	mm	diametro tondini inferiori distanza da lembo compresso

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: **Viadotto Giulfo**Relazione di Calcolo Pile

Pagina 130 di 156

Nome file:

			comb. QUASI PERM. trasversale 1=Mx	comb. QUASI PERM. Momento lo M22			
		inf	sup	inf	sup		
d ₂	=	50	50	50	50	mm	distanza da lembo compresso (copriferro)
A_{s2}	=	1901	5309	1901	5309	mm ²	area armatura superiore
Sollecitaz	ioni						
M	=	1824.0	259.2	2343.2	200.0	kNm	Momento di calcolo (fibre tese verso il basso)
N	=	0.0	0.0	0.0	0.0	KN	Sforzo Normale di calcolo (>0 compressione)
e Caratteris	= stiche	Inf	Inf	Inf a compression	Inf	mm	eccentricità
A _{cls}	=	2500000	2500000	2500000	2500000	mm²	area calcestruzzo
A _s	_	7210.0	7210.0	7210.0	7210.0	mm ²	area armatura
•		2.61E+06	2.61E+06	2.61E+06	2.61E+06	mm ²	
A _{id}	=						area sezione ideale
d_G	=	1273.5	1226.5	1273.5	1226.5	mm	distanza baricentro sezione ideale da lembo superiore
J_{id}	=	1.46E+12	1.46E+12	1.46E+12	1.46E+12	mm⁴	momento d'inerzia baricentrico sezione ideale
ρ_{id}	=	747.3	747.3	747.3	747.3	mm	raggio d'inerzia sezione
$Y_{nocc,s}$	=	818.2	788.0	818.2	788.0	mm	quota punto di nocciolo superiore
Caratteris	stiche	sezione intera	amente reagente	a trazione			
$\textbf{A}_{\text{cls},t}$	=	-	-	-	-	mm ²	area calcestruzzo teso omogeneizzato
A_s	=	-	-	-	-	mm ²	area armatura
$\boldsymbol{A}_{\text{id},t}$	=	-	-	-	-	mm²	area sezione ideale
$d_{G,t} \\$	=	-	-	-	-	mm	distanza baricentro sezione ideale da lembo superiore
$J_{\text{id},t}$	=	-	-	-	-	mm ⁴	momento d'inerzia baricentrico sezione ideale
$\rho_{id,t}$	=	-	-	-	-	mm	raggio d'inerzia sezione
Y _{nocc,i}	=	-	-	-	-	mm	quota punto di nocciolo inferiore
Comporta	ament	o sezione					
		parzializzata	parzializzata	parzializzata	parzializzata		
Caratteris	stiche	sezione parzi	alizzata				
Y_{n}	=	528.07	291.05	528.07	291.05	mm	distanza asse neutro da lembo compresso
J_n	=	3.50E+11	1.46E+11	3.50E+11	1.46E+11	mm ⁴	momento d'inerzia sezione parzializzata
S_n	=	0.00	0.00	0.00	0.00	mm³	momento statico sezione parzializzata
$f(Y_n)=0$	=	-	-	-	-		
Tensioni	nei m	ateriali					
σ_{c}	=	-2.75	-0.52	-3.54	-0.40	MPa	tensione nel lembo più compresso del cls calcolata nella sezione fessurata
σ_{s}	=	150.3	57.6	193.1	44.4	MPa	tensione dell'armatura tesa calcolata nella sezione fessurata
Verifica a	fessu	ırazione					
M _{fess}	=	2992.2	2881.6	2992.2	2881.6	kNm	momento limite di apertura fessure
M _{fess} / M	-	1.64	11.12	1.28	14.41		check1
W _{max}	-	0.20	0.20	0.20	0.20	mm	valore limite ampiezza fessure
$Ø_{max}$	-	-	-	-	-	mm	diametro massimo delle barre
σ* _{s1}	=	-	-	-	-	MPa	limite di tensione max nell'acciaio dovuta al diametro dei ferri
sp _s	=	-	-	-	-	-	spaziatura delle barre superiori
	_	_	_	_	_		spaziatura delle barre inferiori
sp _i	_	-	-	-	-	m==	
sp _{max}	=	-	-	-	-	mm	spaziatura massima delle barre

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: **Viadotto Giulfo**Relazione di Calcolo Pile

Pagina 131 di 156

Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

			comb. QUASI PERM. trasversale 1=Mx	comb. QUASI PERM. Momento lo M22			
		inf	sup	inf	sup		
σ^{\star}_{s2}	=	-	-	-	-	MPa	limite di tensione max nell'acciaio dovuta alla spaziatura dei ferri
$\sigma_{\text{s,lim}}$	=	-	-	-	-	MPa	limite di tensione max nell'acciaio
$\sigma_{s,lim}/\sigma_s$	-	-	-	-	-		check2
С	=	-	-	-	-	mm	ricoprimento armatura
$h_{\text{ct,eff}}$	=	-	-	-	-	mm	altezza efficace cls teso attorno armatura superiore
$h_{\text{cb,eff}}$	=	-	-	-	-	mm	altezza efficace cls teso attorno armatura inferiore
$A_{cb,eff}$	=	-	-	-	-	$\rm mm^2$	area efficace di cls teso attorno all'armatura
$ ho_{ ext{eff}}$	=	-	-	-	-		rapporto A _s /A _{c,eff}
\mathbf{k}_{t}	=	-	-	-	-		fattore dipendente dalla durata del carico (0.6 per carichi di breve durata; 0.4 per carichi di lunga durata)
E_s	=	200000	200000	200000	200000	MPa	modulo elastico acciaio
d*	=	-	-	-	-	mm	zona efficace armatura (5*(c+Ø/2))
k ₁	=	-	-	-	-		0.80 per barre ad aderenza migliorate; 1.6 per barre lisce
ϵ_2	=	-	-	-	-		deformazione a lembo inferiore della sezione fessurata
ε ₁	=	-	-	-	-		deformazione a lembo superiore della sezione fessurata
k_2	=	-	-	-	-		0.50 nel caso di flessione; 1.0 nel caso di trazione semplice; $(\epsilon 1 + \epsilon 2)/2\epsilon 1~$ nel caso di tensoflessione
k ₃	=	-	-	-	-		
k ₄	=	-	-	-	-		
Δ_{smax1}	=	-	-	-	-	mm	distanza media tra le fessure nella zona d* attorno alle barre
Δ_{smax2}	=	-	-	-	-	mm	distanza media tra le fessure al di fuori della zona d* attorno alle barre
Δ_{sm}	=	-	-	-	-	mm	distanza media tra le fessure
ϵ_{sm}	=	-	-	-	-		deformazione unitaria media delle barre di armatura
\mathbf{w}_{m}	=	-	-	-	-	mm	apertura media delle fessure
\mathbf{w}_{d}	=	-	-	-	-	mm	valore di calcolo di apertura delle fessure
		verificato	verificato	verificato	verificato		check3

Dai risultati ottenuti emerge che il momento di prima fessurazione della sezione è sempre maggiore del momento di calcolo non è quindi necessario il calcolo dell'apertura delle fessure.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 132 di 156
Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

10 ANALSI DEL PLINTO DI FONDAZIONE TIPO C – 6 PALI

Il plinto presenta pianta rettangolare di dimensioni 12,00×7,50 m ed altezza pari a 2,50 m. Esso è fondato su n. 6 pali Ø1500 mm posti ad interasse di 4.50 m.

Il calcolo delle sollecitazioni è stato eseguito schematizzando il plinto come un piastra rettangolare, vincolata mediante incastri al fusto della pila sovrastante e caricato da forze concentrate in corrispondenza degli assi dei pali, dal peso proprio e dal peso del terreno di ricoprimento del plinto stesso.

Lo schema statico appena descritto è stato risolto mettendo a punto un modello numerico agli elementi finiti che, con buona approssimazione, riproduce l'effettiva geometria e la effettiva distribuzione delle rigidezze della struttura reale. Il modello numerico è composto da elementi finiti di tipo shell. La quasi totalità degli elementi shell impiegati sono di tipo quadrangolare a quattro nodi e tutti includono gli effetti della deformabilità a taglio (formulazione di *Mindlin-Reissner*).

Nelle seguenti figure si illustrano la geometria del plinto e la sua schematizzazione numerica.

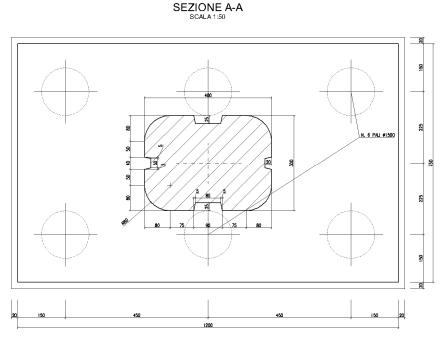


Figura 10-1 - Pianta del plinto di fondazione tipo C.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 133 di 156
Nome file:

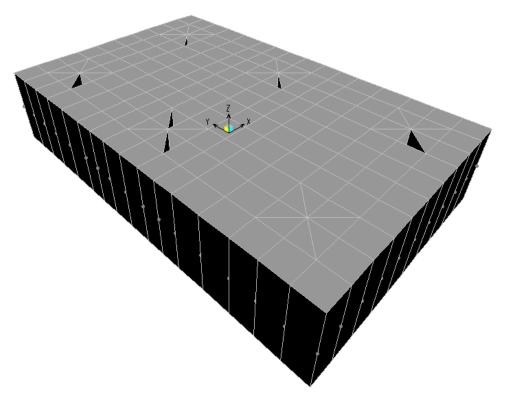


Figura 10-2 - Modello di calcolo del plinto.

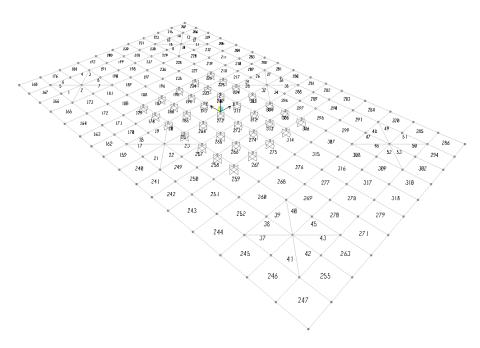


Figura 10-3 - Modello numerico con numerazione degli elementi shell.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 134 di 156
Nome file:
VI01-C-CL004 B.00 relazione pile.doc

10.1 Analisi dei carichi e combinazioni di carico

Il plinto risulta sollecitato da forze concentrate in corrispondenza dei pali. I valori di tali azioni sono quelli determinati ai precedenti paragrafi dedicati all'analisi delle palificate. In particolare, di seguito si riportano le azioni sui pali della pila P11, alle quali si fa riferimento per il dimensionamento dei plinti tipo C, in quanto risultano essere le più gravose.

PILA	PALO	SLU-1	SLU-2	SLU-3	SLU-4	SLU-5	SLU-6	SLU-7	SLU-8	SLU-9	SLU-10	SLU-11	SLV-1	SLV-2	SLV-3
	1	6261	5155	5932	5288	5870	5139	5721	4359	4941	8260	8842	5271	4263	4379
	2	6261	7090	7360	7032	7234	6883	7085	6883	7085	6883	7085	5574	4878	4682
P11	3	6261	9024	8788	8775	8598	8626	8449	9406	9229	5505	5328	5877	5492	4984
F 11	4	5167	4062	4838	3896	4478	4045	4627	3265	3847	7166	7748	2764	3148	3382
	5	5167	5996	6266	5639	5842	5789	5991	5789	5991	5789	5991	3066	3763	3685
	6	5167	7930	7694	7383	7206	7532	7355	8312	8135	4411	4234	3369	4378	3987

Tabella 10.1 - Azioni esercitate dai pali nelle combinazioni di carico relative alle verifiche di resistenza.

PILA	PALO	SLEf1	SLEf2	SLEf3	SLEf4	SLEf5	SLEf6	SLEf7	SLEf8
	1	4346	4177	4866	4697	3843	3673	4363	4193
	2	5031	4861	5031	4861	3959	3790	3959	3790
P11	3	5715	5546	5195	5026	4076	3906	3556	3386
F11	4	3675	3877	4196	4398	3172	3374	3692	3894
	5	4360	4562	4360	4562	3288	3491	3288	3491
	6	5044	5247	4524	4726	3405	3607	2885	3087

Tabella 10.2 - Azioni esercitate dai pali nelle combinazioni di carico Frequenti relative alle verifiche agli SLE.

PILA	PALO	SLEp1	SLEp2		
	1	4556	4415		
	2	4556	4415		
P11	3	4556	4415		
FII	4	3916	4084		
	5	3916	4084		
	6	3916	4084		

Tabella 10.3 - Azioni esercitate dai pali nelle combinazioni di carico Quasi Permanenti relative alle verifiche agli SLE.

PILA	PALO	SLEc1	SLEc2	SLEc3	SLEc4	SLEc5	SLEc6	SLEc7	SLEc8
	1	3826	3656	5387	5217	3323	3153	4883	4713
	2	5031	4861	5031	4861	3959	3790	3959	3790
P11	3	6236	6066	4675	4505	4596	4426	3036	2866
FII	4	3155	3357	4716	4918	2652	2854	4212	4414
	5	4360	4562	4360	4562	3288	3491	3288	3491
	6	5565	5767	4004	4206	3925	4127	2365	2567

Tabella 10.4 - Azioni esercitate dai pali nelle combinazioni di carico Rare relative alle verifiche agli SLE.

Oltre che dalle azioni trasmesse dai pali il plinto risulta sollecitato dal peso proprio e dal peso del terreno di ricoprimento.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 135 di 156
Nome file: VI01-C-CI 004 B 00 relazione pile doc

Il peso proprio è stato valutato in maniera automatica dal codice di calcolo una volta definito lo spessore del plinto, pari a 2,50 m, ed il peso specifico del calcestruzzo, assunto pari a 25,0 kN/m³.

Il peso del terreno di ricoprimento, coerentemente con quanto riportato nell'analisi della palificata, è stato determinato assumendo uno spessore del terreno stesso di 1,0 m. Quest'ultima azione è stata implementata nel modello di calcolo come un carico di superficie uniformemente distribuito sull'estradosso del plinto, ma al di fuori della superficie di ingombro della sezione di base della pila, di valore pari a:

$$g2= 18.0 \times 1.0 = 18.0 \text{ kPa}$$
 (peso terreno).

Nelle combinazioni di carico sia il peso proprio del plinto, sia il peso del terreno di ricoprimento, sono stati combinati con le azioni esercitate dai pali impiegando un coefficiente parziale pari a 1.35; nelle combinazioni di carico SLE il coefficiente parziale è stato assunto di valore pari a 1.

10.2 Verifiche di resistenza per tensioni normali

Nelle seguenti figure si rappresentano gli inviluppi massimi del momento flettente longitudinale (M_{11}) e trasversale (M_{22}). Tali momenti si intendono positivi se tendono le fibre inferiori del plinto.

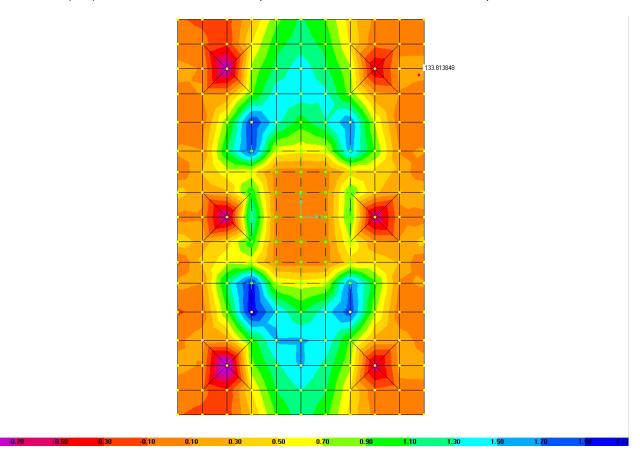


Figura 10-4: Inviluppo dei massimi per il momento flettente longitudinale M₁₁

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: **Viadotto Giulfo**Relazione di Calcolo Pile
Pagina 136 di 156

Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

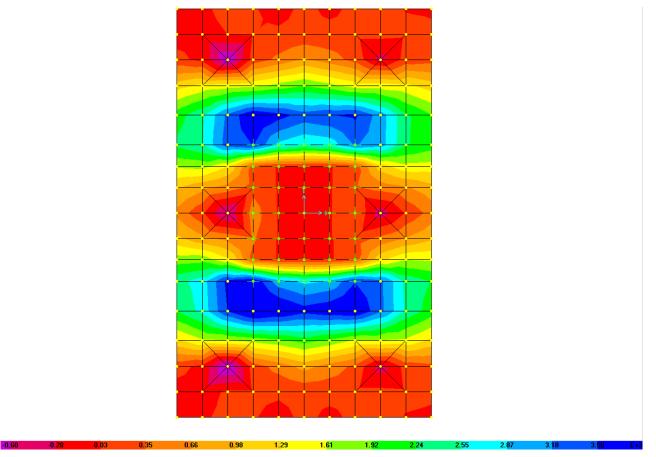


Figura 10-5: Inviluppo dei massimi per il momento flettente trasversale M₂₂

Le verifiche sono state condotte facendo riferimento ad una sezione di larghezza unitaria; le sollecitazioni assunte a base delle verifiche sono quelle desunte dalla risoluzione del modello di calcolo del plinto, mediate sulla larghezza di riferimento della sezione oggetto di verifica.

					VERIFIC	A A PRES	SO FLES	SIONE	
PLINTO DI F	ONDAZI	ONE		$A_{\text{res},\text{TOT}}$	\mathbf{M}_{Sd}	\mathbf{M}_{Rd}	FS		
Momento tra	sversale	M22		[cm ²]	[cm ²]	[cm ²]			
Arm-inf	10	Φ	26	53.1	4100	5028	1.23	OK	momento trasversale Mx+=M22
Arm-sup	5	Φ	22	19.0	370	1811	4.89	OK	momento trasversale Mx-=M22-
Momento Iono	nitudinal	e M11							
•			00	50.4	4000	F000	0.50	014	and the second s
Arm-inf	10	Φ	26	53.1	1990	5028	2.53	OK	momento longitudinale My+=M11+
Arm-sup	5	Φ	22	19.0	606	1811	2.99	OK	momento longitudinale My-=M11-

L'armatura inferiore posta in direzione trasversale è costituita da barre \emptyset 26/10, mentre l'armatura superiore è costituita da \emptyset 22/20. L'armatura inferiore posta in direzione longitudinale è costituita da barre \emptyset 26/10, mentre l'armatura superiore è costituita da \emptyset 22/20.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 137 di 156
Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

10.3 Verifiche di resistenza per tensioni tangenziali

Sulla base delle mappe tensionali generate dal modello di calcolo sono state estrapolate le sollecitazioni di taglio massime V13 e V23. Successivamente, è stata condotta la verifica SLU per tensioni tangenziali riferendosi ad una sezione 1.00 x 2.50 m. Nel seguito si riporta la procedura di calcolo seguita.

VERIFICA DI RESISTENZA A TAGLIO SEZIONE RETTANGOLARE (NTC 2008)

sezione di					
verifica		plinto	plinto		
corrispondente	a	V13max	V23max		
Sollecitazioni					
V	=	2200	3274	kN	taglio
N Geometria	=	0	0	kN	sforzo normale (>0 compressione)
В	=	1000	1000	mm	larghezza sezione
H	=	2500	2500	mm	altezza sezione
С	=	50	50	mm	copriferro
d	=	2450	2450	mm	altezza utile
Materiali					
R_{ck}	=	40.0	40.0	MPa	resistenza caratteristica cubica
f_{ck}	=	32.0	32.0	MPa	resistenza caratteristica cilindrica
$\gamma_{ m c}$	=	1.5	1.5		coefficiente parziale di sicurezza
$lpha_{ m cc}$	=	0.9	0.9		coefficiente riduttivo per resistenze di lunga durata
f_{cd}	=	18.1	18.1	MPa	resistenza di calcolo a compressione
$\gamma_{ m s}$	=	1.15	1.15		coefficiente di sicurezza acciaio
f_{yk}	=	450.0	450.0	MPa	tensione caratteristica di snervamento acciaio
f_{yd}	=	391.3	391.3	MPa	tensione di snervamento di calcolo dell'acciaio
Verifica per el	em	enti spro	vvisti di a	rmatu	ra a taglio
A_{sl}	=	7209.0	7209.0	mm^2	armatura longitudinale
A_{sl} ρ_{l}	=		7209.0 0.00288	mm ²	armatura longitudinale rapporto geometrico di armatura longitudinale
				mm ²	_
ρ_{l}	=	0.00288	0.00288	mm ²	_
ρ _l k	=	0.00288 1.3	0.00288 1.3		rapporto geometrico di armatura longitudinale tensione media calcestruzzo
$\begin{array}{c} \rho_{l} \\ k \\ v_{min} \\ \sigma_{cp} \end{array}$	= = =	0.00288 1.3 0.3 0.0	0.00288 1.3 0.3 0.0	MPa	rapporto geometrico di armatura longitudinale tensione media calcestruzzo tensione media di compressione adottata
$\begin{array}{c} \rho_l \\ k \\ \\ v_{min} \\ \\ \sigma_{cp} \\ \\ \sigma_{cp,ad} \end{array}$	= = =	0.00288 1.3 0.3 0.0	0.00288 1.3 0.3 0.0	MPa MPa	rapporto geometrico di armatura longitudinale tensione media calcestruzzo tensione media di compressione adottata (<=0.2fcd)
$\begin{array}{l} \rho_l \\ k \\ \\ v_{min} \\ \\ \sigma_{cp} \\ \\ \sigma_{cp,ad} \\ \\ v_{Rd} \end{array}$	= = =	0.00288 1.3 0.3 0.0 0.0 792.8	0.00288 1.3 0.3 0.0 0.0 792.8	MPa	rapporto geometrico di armatura longitudinale tensione media calcestruzzo tensione media di compressione adottata
$\begin{array}{l} \rho_{l} \\ k \\ \\ v_{min} \\ \\ \sigma_{cp} \\ \\ \sigma_{cp,ad} \\ \\ v_{Rd} \\ \\ check \\ \end{array}$	= = = = =	0.00288 1.3 0.3 0.0 0.0 792.8 NO	0.00288 1.3 0.3 0.0 0.0 792.8 NO	MPa MPa kN	rapporto geometrico di armatura longitudinale tensione media calcestruzzo tensione media di compressione adottata (<=0.2fcd) taglio resistente
$\begin{array}{l} \rho_{l} \\ k \\ \\ v_{min} \\ \\ \sigma_{cp} \\ \\ \sigma_{cp,ad} \\ \\ v_{Rd} \\ \\ check \\ \textbf{Verifica per el} \end{array}$	= = = = = 	0.00288 1.3 0.3 0.0 0.0 792.8 NO enti prove	0.00288 1.3 0.3 0.0 0.0 792.8 NO	MPa MPa kN matur	rapporto geometrico di armatura longitudinale tensione media calcestruzzo tensione media di compressione adottata (<=0.2fcd) taglio resistente a a taglio
$\begin{array}{l} \rho_{l} \\ k \\ v_{min} \\ \sigma_{cp} \\ \\ \sigma_{cp,ad} \\ v_{Rd} \\ check \\ \textbf{Verifica per el} \\ \emptyset_{w} \\ \end{array}$	= = = = = 	0.00288 1.3 0.3 0.0 0.0 792.8 NO enti prove	0.00288 1.3 0.3 0.0 0.0 792.8 NO visti di arr	MPa MPa kN matur	tensione media calcestruzzo tensione media di compressione adottata (<=0.2fcd) taglio resistente a a taglio diametro armatura resistente a taglio
$\begin{array}{l} \rho_{l} \\ k \\ \\ v_{min} \\ \\ \sigma_{cp} \\ \\ \sigma_{cp,ad} \\ \\ v_{Rd} \\ \\ check \\ \textbf{Verifica per el} \end{array}$	= = = = = em	0.00288 1.3 0.3 0.0 0.0 792.8 NO enti prove	0.00288 1.3 0.3 0.0 0.0 792.8 NO	MPa MPa kN matura	rapporto geometrico di armatura longitudinale tensione media calcestruzzo tensione media di compressione adottata (<=0.2fcd) taglio resistente a a taglio
$\begin{array}{l} \rho_{l} \\ k \\ v_{min} \\ \sigma_{cp} \\ \\ \sigma_{cp,ad} \\ v_{Rd} \\ check \\ \textbf{Verifica per el} \\ \emptyset_{w} \\ a \end{array}$	= = = = = em	0.00288 1.3 0.3 0.0 0.0 792.8 NO enti prove	0.00288 1.3 0.3 0.0 0.0 792.8 NO visti di arr 24 90.0	MPa MPa kN matur	tensione media calcestruzzo tensione media di compressione adottata (<=0.2fcd) taglio resistente a a taglio diametro armatura resistente a taglio inclinazione armatura
$\begin{array}{l} \rho_l \\ k \\ v_{min} \\ \sigma_{cp} \\ \\ \sigma_{cp,ad} \\ v_{Rd} \\ check \\ \textbf{Verifica per el} \\ \emptyset_w \\ a \\ s \\ n_{br} \\ \end{array}$	= = = = = em	0.00288 1.3 0.3 0.0 0.0 792.8 NO enti prove 24 90.0 500	0.00288 1.3 0.3 0.0 0.0 792.8 NO visti di arr 24 90.0 500	MPa MPa kN matur mm °	tensione media calcestruzzo tensione media di compressione adottata (<=0.2fcd) taglio resistente a a taglio diametro armatura resistente a taglio inclinazione armatura interasse armature a taglio numero bracci armatura trasversale
$\begin{array}{l} \rho_{l} \\ k \\ v_{min} \\ \sigma_{cp} \\ \\ \sigma_{cp,ad} \\ v_{Rd} \\ check \\ \textbf{Verifica per el} \\ \emptyset_{w} \\ a \\ s \\ \end{array}$	= = = = = = = = = = = = = = = = = = =	0.00288 1.3 0.3 0.0 0.0 792.8 NO enti prove 24 90.0 500 2.0	0.00288 1.3 0.3 0.0 0.0 792.8 NO visti di ari 24 90.0 500 2.0	MPa MPa kN matur mm °	tensione media calcestruzzo tensione media di compressione adottata (<=0.2fcd) taglio resistente a a taglio diametro armatura resistente a taglio inclinazione armatura interasse armature a taglio
$\begin{array}{l} \rho_{l} \\ k \\ v_{min} \\ \sigma_{cp} \\ \\ \sigma_{cp,ad} \\ v_{Rd} \\ check \\ \textbf{Verifica per el} \\ \emptyset_{w} \\ a \\ s \\ n_{br} \\ A_{sw} \\ \end{array}$	= = = = = = = = = = = = = = = = = = =	0.00288 1.3 0.3 0.0 0.0 792.8 NO enti prove 24 90.0 500 2.0 904.78 22.7 2.5	0.00288 1.3 0.3 0.0 0.0 792.8 NO visti di arr 24 90.0 500 2.0 904.78 15.2 2.5	MPa MPa kN matur mm mm mm	tensione media calcestruzzo tensione media di compressione adottata (<=0.2fcd) taglio resistente a a taglio diametro armatura resistente a taglio inclinazione armatura interasse armature a taglio numero bracci armatura trasversale area armatura trasversale posta nell'interasse s
$\begin{array}{l} \rho_{l} \\ k \\ v_{min} \\ \sigma_{cp} \\ \\ \sigma_{cp,ad} \\ v_{Rd} \\ check \\ \textbf{Verifica per el} \\ \emptyset_{w} \\ a \\ s \\ n_{br} \\ A_{sw} \\ ctg\Theta \left(V \right) \\ \end{array}$	= = = = = = = = = = = = = = = = = = =	0.00288 1.3 0.3 0.0 0.0 792.8 NO enti prov 24 90.0 500 2.0 904.78 22.7	0.00288 1.3 0.3 0.0 0.0 792.8 NO visti di ari 24 90.0 500 2.0 904.78 15.2	MPa MPa kN matur mm °	tensione media calcestruzzo tensione media di compressione adottata (<=0.2fcd) taglio resistente a a taglio diametro armatura resistente a taglio inclinazione armatura interasse armature a taglio numero bracci armatura trasversale
$\begin{array}{l} \rho_{l} \\ k \\ v_{min} \\ \sigma_{cp} \\ \\ \sigma_{cp,ad} \\ v_{Rd} \\ check \\ \textbf{Verifica per el} \\ \emptyset_{w} \\ a \\ s \\ n_{br} \\ A_{sw} \\ ctg\Theta \ (V) \\ ctg\Theta \\ \end{array}$	= = = = = em	0.00288 1.3 0.3 0.0 0.0 792.8 NO enti prove 24 90.0 500 2.0 904.78 22.7 2.5	0.00288 1.3 0.3 0.0 0.0 792.8 NO visti di arr 24 90.0 500 2.0 904.78 15.2 2.5	MPa MPa kN matur mm mm mm	tensione media calcestruzzo tensione media di compressione adottata (<=0.2fcd) taglio resistente a a taglio diametro armatura resistente a taglio inclinazione armatura interasse armature a taglio numero bracci armatura trasversale area armatura trasversale posta nell'interasse s

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 138 di 156
Nome file: VI01-C-CI 004 B 00 relazione pile doc

f' cd	= .	9.07	9.07	MPa	resistenza ridotta
V_{Rcd}	=	14280.0	14280.0	kN	taglio resistente calcestruzzo
V_{Rd}	=	3903.3	3903.3	kN	taglio resistente sezione
check	=	OK	OK		

L'armatura a taglio per il plinto in progetto sarà costituita da cavallotti 2Ø24/mq.

10.4 Verifiche a fessurazione

comb.

comb.

comb.

FREQUENTE FREQUENTE FREQUENTE FREQUENTE

Momento trasversale M11=Mx Momento longitudinale M22=My

Le verifiche in oggetto vengono eseguite confrontando l'apertura delle fessure con l'apertura limite fissata dalle norme. Nell'ipotesi di ambiente moderatamente aggressivo, l'apertura limite delle fessure vale 0.2 mm per le combinazioni di carico Frequenti, e 0.3 mm per le combinazioni di carico Quasi Permanenti

Nel caso in cui il momento di fessurazione della sezione dovesse risultare maggiore del momento agente, non si procederà con la valutazione dell'ampiezza delle fessure, ritenendosi, in tal caso, la verifica automaticamente soddisfatta. Nel seguito si riportano le verifiche per la condizione frequente e quasi permanente.

comb.

		inf	sup	inf	sup		
diametri r	nass	imi delle barre į	per il controllo d	lella fessurazion	е		
σ_{s}		w2=0.30 mm	w2=0.30 mm	w2=0.30 mm	w2=0.30 mm		
[MPa]		Ø	Ø	Ø	Ø		
160		32	32	32	32		
200		25	25	25	25		
240		16	16	16	16		
280		12	12	12	12		
320		10	10	10	10		
360		8	8	8	8		
•	a ma	ssima delle bar	re per il controll	o della fessurazi	ione		
σ_{s}		w2=0.30 mm	w2=0.30 mm	w2=0.30 mm	w2=0.30 mm		
[MPa]		Ø	Ø	Ø	Ø		
160		300	300	300	300		
200		250	250	250	250		
240		200	200	200	200		
280		150	150	150	150		
320		100	100	100	100		
360		50	50	50	50		
M_{Ed}	=	1197	306	2214	220	kNm	Momento di calcolo (fibre tese verso il basso)
N _{Ed}	=	0	0	0	0	kN	Sforzo Normale di calcolo (>0 compressione)
· •Ea							Olorzo Normale ar carcolo (- o compressione)
		comb.	comb.	comb.	comb.		
		FREQUENTE	FREQUENTE	FREQUENTE	FREQUENTE		
Materiali							
Rck	=	40	40	40	40	MPa	resistenza caratteristica cubica
f_{ck}	=	32	32	32	32	MPa	resistenza caratteristica cilindrica

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: **Viadotto Giulfo**Relazione di Calcolo Pile

Pagina 139 di 156

Nome file:

		comb.	comb.	comb.	comb.		
		FREQUENTE	FREQUENTE	FREQUENTE	FREQUENTE		
		Momento trasversale M11=Mx		Momento longitudinale M22=My			
		inf	sup	inf	sup		
f _{cm}	=	40.00	40.00	40.00	40.00	MPa	resistenza cilindrica media
f_{ctm}	=	3.02	3.02	3.02	3.02	MPa	resistenza media a trazione semplice
f_{cfm}	=	2.65	2.65	2.65	2.65	MPa	resistenza media a trazione per flessione
σ_{t}	=	2.52	2.52	2.52	2.52	MPa	tensione limite apertura fessure
n	=	15	15	15	15		coefficiente di omogeneizzazione armature
n'	=	0.00	0.00	0.00	0.00		coefficiente di omogeneizzazione cls teso
Geometri							
В	=	1000	1000	1000	1000	mm	base sezione
H Armatura	=	2500	2500	2500	2500	mm	altezza sezione
		40	-	40	-		a tandini inforiari
n ₁	=	10	5	10	5		n. tondini inferiori
Ø ₁	=	26	22	26	22	mm	diametro tondini inferiori
d ₁	=	2450	2450	2450	2450	mm	distanza da lembo compresso
A _{s1}	=	5309	1901	5309	1901	mm ²	area armatura inferiore
n ₂	=	5	10	5	10		n. tondini superiori
\emptyset_2	=	22	26	22	26	mm	diametro tondini superiori
d_2	=	50	50	50	50	mm	distanza da lembo compresso (copriferro)
A_{s2}	=	1901	5309	1901	5309	mm^2	area armatura superiore
Sollecitaz	zioni						
М	=	1197.0	306.0	2214.0	220.0	kNm	Momento di calcolo (fibre tese verso il basso)
N	=	0.0	0.0	0.0	0.0	KN	Sforzo Normale di calcolo (>0 compressione)
e •	=	Inf	Inf	Inf	Inf	mm	eccentricità
	=	2500000	2500000	a compressione	2500000	mm ²	avec colorate in a
A _{cls}			7210.0			mm ²	area calcestruzzo area armatura
A _s	=	7210.0		7210.0	7210.0		
A_{id}	=	2.61E+06	2.61E+06	2.61E+06	2.61E+06	mm ²	area sezione ideale
d_G	=	1273.5	1226.5	1273.5	1226.5	mm	distanza baricentro sezione ideale da lembo superiore
J_id	=	1.46E+12	1.46E+12	1.46E+12	1.46E+12	mm⁴	momento d'inerzia baricentrico sezione ideale
ρ_{id}	=	747.3	747.3	747.3	747.3	mm	raggio d'inerzia sezione
Y _{nocc,s}	=	818.2	788.0	818.2	788.0	mm	quota punto di nocciolo superiore
		e sezione intera	mente reagente	a trazione		2	
$A_{cls,t}$	=	-	-	-	-	mm ²	area calcestruzzo teso omogeneizzato
A _s	=	-	-	-	-	mm ²	area armatura
$A_{\text{id},t}$	=	-	-	-	-	mm ²	area sezione ideale
$d_{\text{G},t} \\$	=	-	-	-	-	mm	distanza baricentro sezione ideale da lembo superiore
$J_{id,t} \\$	=	-	-	-	-	mm ⁴	momento d'inerzia baricentrico sezione ideale
$\rho_{\text{id},t}$	=	-	-	-	-	mm	raggio d'inerzia sezione
$Y_{\text{nocc},i}$	=	-	-	-	-	mm	quota punto di nocciolo inferiore
Comport	amen	to sezione					
		parzializzata	parzializzata	parzializzata	parzializzata		
		e sezione parzia					
Y_n	=	528.07	291.05	528.07	291.05	mm	distanza asse neutro da lembo compresso

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo

Relazione di Calcolo Pile

Pagina 140 di 156

Nome file:

		comb.	comb.	comb.	comb.		
		FREQUENTE	FREQUENTE	FREQUENTE	FREQUENTE		
		Momento trasv	ersale M11=Mx	Momento longitu	udinale M22=My		
	_	inf 3.50E+11	sup 1.46E+11	inf 3.50E+11	sup 1.46E+11	mm ⁴	momento d'inerzia sezione parzializzata
J _n	_				0.00		·
S _n		0.00	0.00	0.00		mm³	momento statico sezione parzializzata
f(Y _n)=0 Tensioni	=	- votoriali	-	-	-		
σ _c	=	-1.81	-0.61	-3.34	-0.44	MPa	tensione nel lembo più compresso del cls calcolata nella sezione fessurata
$\sigma_{\rm s}$	_	98.7	68.0	182.5	48.9	МРа	tensione dell'armatura tesa calcolata nella sezione fessurata
Verifica a			00.0	102.0	40.0	ivii u	Consists dell'arriada dese calcona relia occione reconada
M _{fess}	=	2992.2	2881.6	2992.2	2881.6	kNm	momento limite di apertura fessure
M _{fess} / M	=	2.50	9.42	1.35	13.10		check1
W _{max}	=	0.30	0.30	0.30	0.30	mm	valore limite ampiezza fessure
\emptyset_{max}	=	-	-	-	-	mm	diametro massimo delle barre
σ^{\star}_{s1}	=	-	-	-	-	MPa	limite di tensione max nell'acciaio dovuta al diametro dei ferri
sp_s	=	-	-	-	-		spaziatura delle barre superiori
sp_i	=	-	-	-	-		spaziatura delle barre inferiori
sp_max	=	-	-	-	-	mm	spaziatura massima delle barre
$\sigma^{\star}_{~s2}$	=	-	-	-	-	MPa	limite di tensione max nell'acciaio dovuta alla spaziatura dei ferri
$\sigma_{\text{s,lim}}$	=	-	-	-	-	MPa	limite di tensione max nell'acciaio
$\sigma_{s,lim}/\sigma_s$	=	-	-	-	-		check2
С	=	-	-	-	-	mm	ricoprimento armatura
$h_{\text{ct,eff}}$	=	-	-	-	-	mm	altezza efficace cls teso attorno armatura superiore
$h_{\text{cb,eff}}$	=	-	-	-	-	mm	altezza efficace cls teso attorno armatura inferiore
$A_{\text{cb,eff}}$	=	-	-	-	-	$\rm mm^2$	area efficace di cls teso attorno all'armatura
ρ_{eff}	=	-	-	-	-		rapporto A _s /A _{c,eff}
\mathbf{k}_{t}	=	-	-	-	-		fattore dipendente dalla durata del carico (0.6 per carichi di breve durata; 0.4 per carichi di lunga durata)
Es	=	200000	200000	200000	200000	MPa	modulo elastico acciaio
d*	=	-	-	-	-	mm	zona efficace armatura (5*(c+Ø/2))
k ₁	=	-	-	-	-		0.80 per barre ad aderenza migliorate; 1.6 per barre lisce
ϵ_2	=	-	-	-	-		deformazione a lembo inferiore della sezione fessurata
ϵ_1	=	-	-	-	-		deformazione a lembo superiore della sezione fessurata
k_2	=	-	-	-	-		0.50 nel caso di flessione; 1.0 nel caso di trazione semplice; $(\epsilon 1 + \epsilon 2)/2\epsilon 1~$ nel caso di tensoflessione
k ₃	=	-	-	-	-		
k ₄	=	-	-	-	-		
Δ_{smax1}	=	-	-	-	-	mm	distanza media tra le fessure nella zona d* attorno alle barre
Δ_{smax2}	=	-	-	-	-	mm	distanza media tra le fessure al di fuori della zona d* attorno alle barre
Δ_{sm}	=	-	-	-	-	mm	distanza media tra le fessure
ϵ_{sm}	=	-	-	-	-		deformazione unitaria media delle barre di armatura
\mathbf{w}_{m}	=	-	-	-	-	mm	apertura media delle fessure
\mathbf{w}_{d}	=	-	-	-	-	mm	valore di calcolo di apertura delle fessure
		verificato	verificato	verificato	verificato		check3

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: **Viadotto Giulfo**Relazione di Calcolo Pile

Pagina 141 di 156

Nome file:

comb. QUASI PERM. QUASI PERM. QUASI PERM. M22=My diametri massimi delle barre per il controllo della fessurazione σ w1=0.20 mm w1=0.20 mm w1=0.20 mm w1=0.20 mm w1=0.20 mm ω1=0.20 mm
inf sup inf sup diametri massimi delle barre per il controllo della fessurazione σ _s w1=0.20 mm w1=0.20 mm w1=0.20 mm w1=0.20 mm [MPa] Ø Ø Ø Ø 160 25 25 25 25
diametri massimi delle barre per il controllo della fessurazione σ _s
σ _s w1=0.20 mm w1=0.20 mm w1=0.20 mm w1=0.20 mm [MPa] Ø Ø Ø 160 25 25 25 25
[MPa] Ø Ø Ø Ø Ø 160 25 25 25 25
160 25 25 25 25 160 25 25 25 25
200 16 16 16 16
240 12 12 12 12
280 8 8 8 8
320 6 6 6 6
360 0 0 0
spaziatura massima delle barre per il controllo della fessurazione
$\sigma_{_S}$ w1=0.20 mm w1=0.20 mm w1=0.20 mm w1=0.20 mm
[MPa] Ø Ø Ø
160 200 200 200 200
200 150 150 150 150
240 100 100 100 100
280 50 50 50
320 0 0 0 0
360 0 0 0
_
M _{Ed} = 958 245 1771 176 kNm
$N_{\rm Ed}$ = 0 0 0 0 kN
comb. comb. comb.
QUASI PERM. QUASI PERM. QUASI PERM.
Materiali
f_{ck} = 32 32 32 MPa
f_{ck} = 32 32 32 MPa f_{cm} = 40.00 40.00 40.00 MPa
f_{ck} = 32 32 32 MPa f_{cm} = 40.00 40.00 40.00 40.00 MPa f_{ctm} = 3.02 3.02 3.02 MPa
f _{ck} = 32 32 32 32 MPa f _{cm} = 40.00 40.00 40.00 40.00 MPa f _{ctm} = 3.02 3.02 3.02 MPa f _{ctm} = 2.65 2.65 2.65 MPa
f_{ck} = 32 32 32 32 MPa f_{cm} = 40.00 40.00 40.00 40.00 MPa f_{ctm} = 3.02 3.02 3.02 3.02 MPa f_{ctm} = 2.65 2.65 2.65 MPa σ_t = 2.52 2.52 2.52 MPa
f_{ck} = 32 32 32 32 MPa f_{cm} = 40.00 40.00 40.00 40.00 MPa f_{ctm} = 3.02 3.02 3.02 3.02 MPa f_{ctm} = 2.65 2.65 2.65 2.65 MPa σ_t = 2.52 2.52 2.52 2.52 MPa f_{ctm} = 15 15 15 15
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: **Viadotto Giulfo**Relazione di Calcolo Pile

Pagina 142 di 156

Nome file:

		comb.	comb.	comb.	comb.		
		QUASI PERM.	QUASI PERM.	QUASI PERM.	QUASI PERM.		
		Momento trasv	ersale M11=Mx	Momento longitudinale M22=My			
		inf	sup	inf	sup		
d ₂	=	50	50	50	50	mm	distanza da lembo compresso (copriferro)
A_{s2}	=	1901	5309	1901	5309	mm ²	area armatura superiore
Sollecitaz	ioni						
М	=	957.6	244.8	1771.2	176.0	kNm	Momento di calcolo (fibre tese verso il basso)
N	=	0.0	0.0	0.0	0.0	KN	Sforzo Normale di calcolo (>0 compressione)
e Caratteris		Inf sezione interan	Inf nente reagente a	Inf	Inf	mm	eccentricità
A _{cls}	=	2500000	2500000	2500000	2500000	mm ²	area calcestruzzo
A _s	_	7210.0	7210.0	7210.0	7210.0	mm ²	area armatura
						mm ²	
A _{id}	=	2.61E+06	2.61E+06	2.61E+06	2.61E+06		area sezione ideale
d_G	=	1273.5	1226.5	1273.5	1226.5	mm	distanza baricentro sezione ideale da lembo superiore
J_id	=	1.46E+12	1.46E+12	1.46E+12	1.46E+12	mm⁴	momento d'inerzia baricentrico sezione ideale
ρ_{id}	=	747.3	747.3	747.3	747.3	mm	raggio d'inerzia sezione
$Y_{\text{nocc,s}}$	=	818.2	788.0	818.2	788.0	mm	quota punto di nocciolo superiore
Caratteris	tiche	sezione interan	ente reagente a	trazione			
$\boldsymbol{A}_{\text{cls},t}$	=	-	-	-	-	mm^2	area calcestruzzo teso omogeneizzato
A_s	=	-	-	-	-	mm^2	area armatura
$\boldsymbol{A}_{id,t}$	=	-	-	-	-	mm^2	area sezione ideale
$d_{G,t} \\$	=	-	-	-	-	mm	distanza baricentro sezione ideale da lembo superiore
$J_{id,t}$	=	-	-	-	-	mm ⁴	momento d'inerzia baricentrico sezione ideale
$\rho_{\text{id},t}$	=	-	-	-	-	mm	raggio d'inerzia sezione
Y _{nocc,i}	=	-	-	-	-	mm	quota punto di nocciolo inferiore
Comporta	men	to sezione					
		parzializzata	parzializzata	parzializzata	parzializzata		
Caratteris	tiche	sezione parziali	zzata				
Y_{n}	=	528.07	291.05	528.07	291.05	mm	distanza asse neutro da lembo compresso
J_{n}	=	3.50E+11	1.46E+11	3.50E+11	1.46E+11	mm ⁴	momento d'inerzia sezione parzializzata
S_{n}	=	0.00	0.00	0.00	0.00	${\rm mm}^3$	momento statico sezione parzializzata
$f(Y_n)=0$	=	-	-	-	-		
Tensioni	nei m	ateriali					
σ_{c}	=	-1.45	-0.49	-2.67	-0.35	MPa	tensione nel lembo più compresso del cls calcolata nella sezione fessurata
σ_{s}	=	78.9	54.4	146.0	39.1	MPa	tensione dell'armatura tesa calcolata nella sezione fessurata
Verifica a	fess	urazione					
M_{fess}	=	2992.2	2881.6	2992.2	2881.6	kNm	momento limite di apertura fessure
M _{fess} / M	=	3.12	11.77	1.69	16.37		check1
W _{max}	=	0.20	0.20	0.20	0.20	mm	valore limite ampiezza fessure
Ø _{max}	=	-	-	-	-	mm	diametro massimo delle barre
σ^{\star}_{s1}	=	-	-	-	-	MPa	limite di tensione max nell'acciaio dovuta al diametro dei ferri
sp_s	=	-	-	-	-		spaziatura delle barre superiori
spi	_	-	_	-	_		spaziatura delle barre inferiori
	_	-	-	-	-	mm	
sp_{max}	=	-	-	-	-	mm	spaziatura massima delle barre

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: **Viadotto Giulfo**Relazione di Calcolo Pile

Pagina 143 di 156

Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

		comb.	comb.	comb.	comb.		
		QUASI PERM.	QUASI PERM.	QUASI PERM.	QUASI PERM.		
		Momento trasv	versale M11=Mx	Momento longit	udinale M22=My		
		inf	sup	inf	sup		
σ^{\star}_{s2}	=	-	-	-	-	MPa	limite di tensione max nell'acciaio dovuta alla spaziatura dei ferri
$\sigma_{\text{s,lim}}$	=	-	-	-	-	MPa	limite di tensione max nell'acciaio
$\sigma_{s,lim}/\sigma_s$	=	- 1	-	- 1	-		check2
С	=	-	-	-	-	mm	ricoprimento armatura
$h_{\text{ct,eff}}$	=	-	-	-	-	mm	altezza efficace cls teso attorno armatura superiore
$h_{\text{cb,eff}}$	=	-	-	-	-	mm	altezza efficace cls teso attorno armatura inferiore
$A_{cb,eff}$	=	-	-	-	-	mm^2	area efficace di cls teso attorno all'armatura
ρ_{eff}	=	-	-	-	-		rapporto A _s /A _{c,eff}
\mathbf{k}_{t}	=	-	-	-	-		fattore dipendente dalla durata del carico (0.6 per carichi di breve durata; 0.4 per carichi di lunga durata)
Es	=	200000	200000	200000	200000	MPa	modulo elastico acciaio
d*	=	-	-	-	-	mm	zona efficace armatura (5*(c+Ø/2))
\mathbf{k}_1	=	-	-	-	-		0.80 per barre ad aderenza migliorate; 1.6 per barre lisce
ϵ_2	=	-	-	-	-		deformazione a lembo inferiore della sezione fessurata
ε ₁	=	-	-	-	-		deformazione a lembo superiore della sezione fessurata
k ₂	=	-	-	-	-		0.50 nel caso di flessione; 1.0 nel caso di trazione semplice; (ɛ1+ɛ2)/2ɛ1 nel caso di tensoflessione
k ₃	=	-	-	-	-		
k ₄	=	-	-	-	-		
Δ_{smax1}	=	-	-	-	-	mm	distanza media tra le fessure nella zona d* attorno alle barre
Δ_{smax2}	=	_	-	-	-	mm	distanza media tra le fessure al di fuori della zona d* attorno alle barre
Δ_{sm}	=	-	-	-		mm	distanza media tra le fessure
ε _{sm}	=	-	-	-	-		deformazione unitaria media delle barre di armatura
w _m	=	<u>-</u>	-	-	-	mm	apertura media delle fessure
	_	_		_	_	mm	valore di calcolo di apertura delle fessure
W _d	-	verificato	verificato	verificato	verificato	111111	check3
		vernicato	vernicato	verilleato	verillicato		CHECKO

Dai risultati ottenuti emerge che il momento di prima fessurazione della sezione è sempre maggiore del momento di calcolo non è quindi necessario il calcolo dell'apertura delle fessure.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 144 di 156
Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

11 ANALSI DEL PLINTO DI FONDAZIONE TIPO D – 5 PALI

Il plinto presenta pianta rettangolare di dimensioni 10,80×7,50 m ed altezza pari a 2,50 m. Esso è fondato su n. 5 pali Ø1500 mm posti ad interasse di 4.50 m.

Il calcolo delle sollecitazioni è stato eseguito schematizzando il plinto come un piastra rettangolare, vincolata mediante incastri al fusto della pila sovrastante e caricato da forze concentrate in corrispondenza degli assi dei pali, dal peso proprio e dal peso del terreno di ricoprimento del plinto stesso.

Lo schema statico appena descritto è stato risolto mettendo a punto un modello numerico agli elementi finiti che, con buona approssimazione, riproduce l'effettiva geometria e la effettiva distribuzione delle rigidezze della struttura reale. Il modello numerico è composto da elementi finiti di tipo shell. La quasi totalità degli elementi shell impiegati sono di tipo quadrangolare a quattro nodi e tutti includono gli effetti della deformabilità a taglio (formulazione di *Mindlin-Reissner*).

Nelle seguenti figure si illustrano la geometria del plinto e la sua schematizzazione numerica.

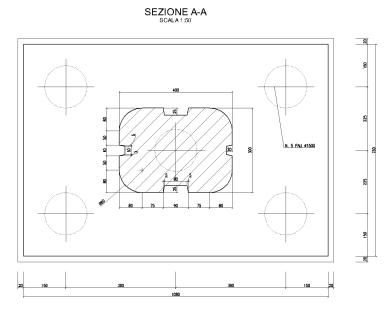


Figura 11-1 - Pianta del plinto di fondazione tipo D.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: **Viadotto Giulfo**Relazione di Calcolo Pile

Pagina 145 di 156

Nome file:

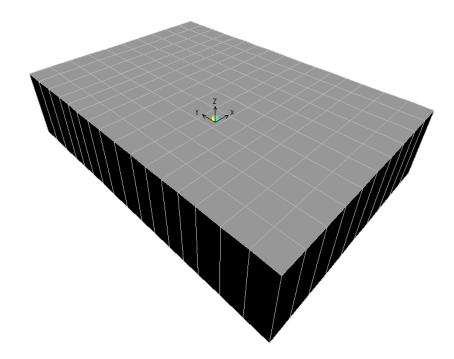


Figura 11-2 - Modello di calcolo del plinto.

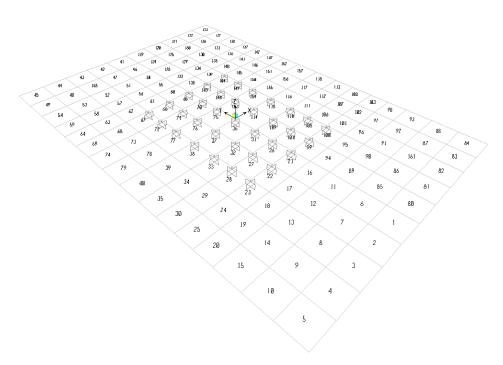


Figura 11-3 - Modello numerico con numerazione degli elementi shell.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 146 di 156
Nome file: VI01-C-CI 004 B 00 relazione pile doc

11.1 Analisi dei carichi e combinazioni di carico

Il plinto risulta sollecitato da forze concentrate in corrispondenza dei pali. I valori di tali azioni sono quelli determinati ai precedenti paragrafi dedicati all'analisi delle palificate. In particolare, di seguito si riportano le azioni sui pali della pila P01, alle quali si fa riferimento per il dimensionamento dei plinti tipo D, in quanto risultano essere le più gravose.

PILA	PALO	SLU-1	SLU-2	SLU-3	SLU-4	SLU-5	SLU-6	SLU-7	SLU-8	SLU-9	SLU-10	SLU-11	SLV-1	SLV-2	SLV-3
	1	6284	5849	6680	5936	6559	5824	6447	5469	6092	7248	7871	4664	4284	4166
	2	6284	8563	8304	8238	8044	8127	7932	8483	8288	6704	6509	5053	4820	4555
P01	3	5856	6779	7064	6548	6762	6548	6762	6548	6762	6548	6762	4231	4231	4100
	4	5429	4994	5825	4858	5481	4969	5592	4613	5236	6392	7015	3409	3641	3645
	5	5429	7708	7449	7160	6966	7272	7077	7627	7433	5848	5654	3797	4177	4034

Tabella 11.1 - Azioni esercitate dai pali nelle combinazioni di carico relative alle verifiche di resistenza.

PILA	PALO	SLEf1	SLEf2	SLEf3	SLEf4	SLEf5	SLEf6	SLEf7	SLEf8
	1	4524	4234	4761	4472	3952	3663	4189	3900
	2	5676	5386	5438	5149	3880	3591	3643	3354
P01	3	4832	4705	4832	4705	3648	3521	3648	3521
	4	3988	4023	4225	4260	3416	3452	3653	3689
	5	5140	5175	4902	4938	3344	3380	3107	3142

Tabella 11.2 - Azioni esercitate dai pali nelle combinazioni di carico Frequenti relative alle verifiche agli SLE.

PILA	PALO	SLEp1	SLEp2	
	1	4563	4322	
	2	4563	4322	
P01	3	4309	4203	
	4	4054	4084	
	5	4054	4084	

Tabella 11.3 - Azioni esercitate dai pali nelle combinazioni di carico Quasi Permanenti relative alle verifiche agli SLE.

PILA	PALO	SLEc1	SLEc2	SLEc3	SLEc4	SLEc5	SLEc6	SLEc7	SLEc8
	1	4286	3997	4998	4709	3715	3426	4427	4137
	2	5913	5624	5201	4912	4117	3828	3406	3117
P01	3	4832	4705	4832	4705	3648	3521	3648	3521
	4	3750	3786	4462	4498	3179	3215	3891	3926
	5	5377	5412	4665	4701	3581	3617	2870	2905

Tabella 11.4 - Azioni esercitate dai pali nelle combinazioni di carico Rare relative alle verifiche agli SLE.

Oltre che dalle azioni trasmesse dai pali il plinto risulta sollecitato dal peso proprio e dal peso del terreno di ricoprimento.

Il peso proprio è stato valutato in maniera automatica dal codice di calcolo una volta definito lo spessore del plinto, pari a 2,50 m, ed il peso specifico del calcestruzzo, assunto pari a 25,0 kN/m³.

Il peso del terreno di ricoprimento, coerentemente con quanto riportato nell'analisi della palificata, è stato determinato assumendo uno spessore del terreno stesso di 1,0 m. Quest'ultima azione è stata

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo	
Relazione di Calcolo Pile	
Pagina 147 di 156	
Nome file:	

VI01-C-CL004_B.00_relazione_pile.doc

implementata nel modello di calcolo come un carico di superficie uniformemente distribuito sull'estradosso del plinto, ma al di fuori della superficie di ingombro della sezione di base della pila, di valore pari a:

$$g2= 18.0 \times 1.0 = 18.0 \text{ kPa}$$
 (peso terreno).

Nelle combinazioni di carico sia il peso proprio del plinto, sia il peso del terreno di ricoprimento, sono stati combinati con le azioni esercitate dai pali impiegando un coefficiente parziale pari a 1.35; nelle combinazioni di carico SLE il coefficiente parziale è stato assunto di valore pari a 1.

11.2 Verifiche di resistenza per tensioni normali

Nelle seguenti figure si rappresentano gli inviluppi massimi del momento flettente longitudinale (M_{11}) e trasversale (M_{22}) . Tali momenti si intendono positivi se tendono le fibre inferiori del plinto.

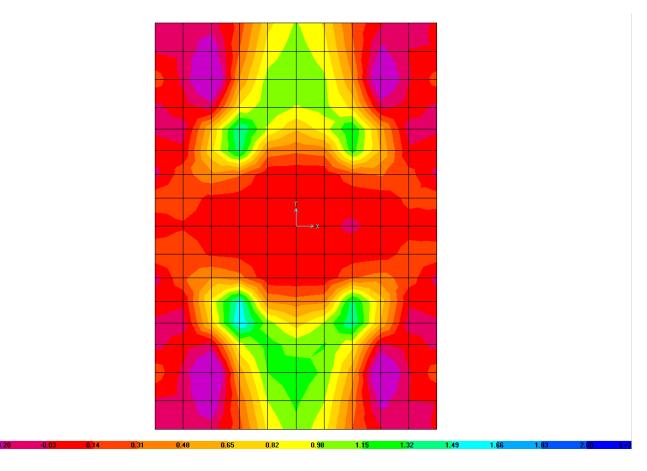


Figura 11-4: Inviluppo dei massimi per il momento flettente longitudinale M₁₁

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo
Relazione di Calcolo Pile
Pagina 148 di 156
Nome file:
VI01-C-CL004_B.00_relazione_pile.doc

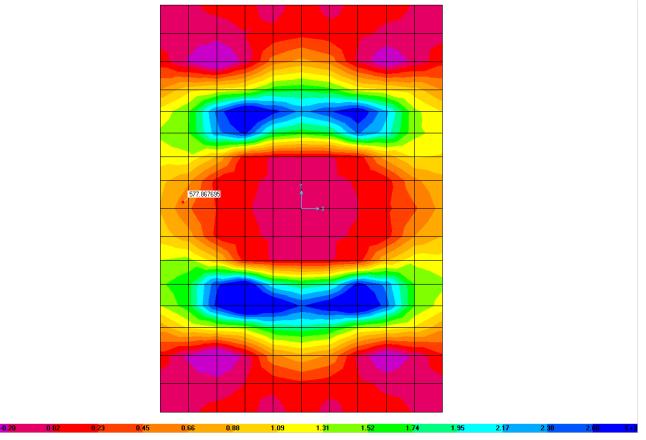


Figura 11-5: Inviluppo dei massimi per il momento flettente trasversale M₂₂

Le verifiche sono state condotte facendo riferimento ad una sezione di larghezza unitaria; le sollecitazioni assunte a base delle verifiche sono quelle desunte dalla risoluzione del modello di calcolo del plinto, mediate sulla larghezza di riferimento della sezione oggetto di verifica.

VERIFICA A PRESSO FLESSIONE

PLINTO DI FONDAZIONE				$A_{\text{res}, \text{TOT}}$	M_{Sd}	\mathbf{M}_{Rd}	FS				
Momento trasv	ersale M2	22		[cm ²]	[cm ²]	[cm ²]					
Arm-inf	10	Φ	26	53.1	3200	5028	1.57	OK	momento trasversale Mx+=M22		
Arm-sup	5	Φ	22	19.0	980	1811	1.85	OK	momento trasversale Mx-=M22-		
Momento longitudinale M11											
Arm-inf	10	Φ	26	53.1	1960	5028	2.57	OK	momento longitudinale My+=M11+		
Arm-sup	5	Φ	22	19.0	970	1811	1.87	OK	momento longitudinale My-=M11-		

L'armatura inferiore posta in direzione trasversale è costituita da barre Ø26/10, mentre l' armatura superiore è costituita da Ø22/20. L'armatura inferiore posta in direzione longitudinale è costituita da barre Ø26/10, mentre l' armatura superiore è costituita da Ø22/20.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: **Viadotto Giulfo**Relazione di Calcolo Pile
Pagina 149 di 156
Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

11.3 Verifiche di resistenza per tensioni tangenziali

Sulla base delle mappe tensionali generate dal modello di calcolo sono state estrapolate le sollecitazioni di taglio massime V13 e V23. Successivamente, è stata condotta la verifica SLU per tensioni tangenziali riferendosi ad una sezione 1.00 x 2.50 m. Nel seguito si riporta la procedura di calcolo seguita.

VERIFICA DI RESISTENZA A TAGLIO SEZIONE RETTANGOLARE (NTC 2008)

		plinto	plinto V23max								
Sollecitazioni	i	VISIIIAX	VZJIIIAX								
V	=	1990	2900	kN	taglio						
N	=	0	0	kN	sforzo normale (>0 compressione)						
Geometria											
В	=	1000	1000	mm	larghezza sezione						
Н	=	2500	2500	mm	altezza sezione						
C	=	50	50	mm	copriferro						
d Materiali	=	2450	2450	mm	altezza utile						
	=	40.0	40.0	MDo	resistenza caratteristica cubica						
R_{ck}		40.0									
f _{ck}	=	32.0	32.0	мРа	resistenza caratteristica cilindrica						
$\gamma_{\rm c}$	=	1.5	1.5		coefficiente parziale di sicurezza						
$\alpha_{\rm cc}$	=	0.9	0.9		coefficiente riduttivo per resistenze di lunga durata						
$ m f_{cd}$	=	19.8	19.8	мРа	resistenza di calcolo a compressione						
$\gamma_{ m s}$	=	1.15	1.15		coefficiente di sicurezza acciaio						
f_{yk}	=	450.0	450.0	MPa	tensione caratteristica di snervamento acciaio						
f_{yd}	=	391.3	391.3		tensione di snervamento di calcolo dell'acciaio						
Verifica per elementi sprovvisti di armatura a taglio											
A_{sl}	=	7209.0	7209.0	mm ²	armatura longitudinale						
ρ_{I}	=		0.00288		rapporto geometrico di armatura longitudinale						
k	=	1.3	1.3								
V_{min}	=	0.3	0.3								
$\sigma_{\sf cp}$	=	0.0	0.0	MPa	tensione media calcestruzzo						
<i>a</i>	_	0.0	0.0	MDo	tensione media di compressione adottata						
$\sigma_{\sf cp,ad}$	=	0.0			(<=0.2fcd)						
V _{Rd} check	=	816.9 NO	816.9 NO	kN	taglio resistente						
Verifica per e			_	l matur	a a taulio						
Ø _w	=	24	24	mm	diametro armatura resistente a taglio						
a	_	90.0	90.0	0	inclinazione armatura						
S	=	500	500	mm	interasse armature a taglio						
n _{br}	=	2.0	2.0		numero bracci armatura trasversale						
A _{sw}	=	904.78	904.78	mm^2	area armatura trasversale posta nell'interasse s						
ctgΘ (V)	=	27.4	18.8		a. 22 a.matara tractoreare poeta non interacció						
ctgΘ	=	2.5	2.5								
Θ	=	22	22	0	inclinazione bielle di calcestruzzo						
V_{Rsd}	=	3903.33	3903.33	kN	taglio resistente armatura						
a _c	=	1.00	1.00		coefficiente maggiorativo						
f' _{cd}	=	9.92	9.92	MPa	resistenza ridotta						

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

	Opera: Viadotto Giulfo
	Relazione di Calcolo Pile
Ī	Pagina 150 di 156
F	Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

 V_{Rcd} = 15618.8 15618.8 kN taglio resistente calcestruzzo V_{Rd} = 3903.3 3903.3 kN taglio resistente sezione check = OK OK

comb.

L'armatura a taglio per il plinto in progetto sarà costituita da cavallotti 2Ø24/mq.

11.4 Verifiche a fessurazione

comb.

Le verifiche in oggetto vengono eseguite confrontando l'apertura delle fessure con l'apertura limite fissata dalle norme. Nell'ipotesi di ambiente moderatamente aggressivo, l'apertura limite delle fessure vale 0.2 mm per le combinazioni di carico Frequenti, e 0.3 mm per le combinazioni di carico Quasi Permanenti

Nel caso in cui il momento di fessurazione della sezione dovesse risultare maggiore del momento agente, non si procederà con la valutazione dell'ampiezza delle fessure, ritenendosi, in tal caso, la verifica automaticamente soddisfatta. Nel seguito si riportano le verifiche per la condizione frequente e quasi permanente.

comb.

comb.

		FREQUENTE	FREQUENTE	FREQUENTE	QUENTE FREQUENTE		
		Momento trasve	ersale M11=Mx	Momento longitu	udinale M22=My		
		inf	sup	inf	sup		
diametri n	nassimi de	elle barre per il c	ontrollo della fe	essurazione			
σ_{s}		w2=0.30 mm	w2=0.30 mm	w2=0.30 mm	w2=0.30 mm		
[MPa]		Ø	Ø	Ø	Ø		
160		32	32	32	32		
200		25	25	25	25		
240		16	16	16	16		
280		12	12	12	12		
320		10	10	10	10		
360		8	8	8	8		
•	a massima	delle barre per	il controllo della	a fessurazione			
σ_{s}		w2=0.30 mm	w2=0.30 mm	w2=0.30 mm	w2=0.30 mm		
[MPa]		Ø	Ø	Ø	Ø		
160		300	300	300	300		
200		250	250	250	250		
240		200	200	200	200		
280		150	150	150	150		
320		100	100	100	100		
360		50	50	50	50		
							comb.
M_{Ed}	=	991	414	2033	322	kNm	Momento di calcolo (fibre tese verso il basso)
N_{Ed}	=	0	0	0	0	kN	Sforzo Normale di calcolo (>0 compressione)
		comb.	comb.	comb.	comb.		
Materiali		FREQUENTE	FREQUENTE	FREQUENTE	FREQUENTE		
Rck	=	40	40	40	40	MPa	resistenza caratteristica cubica
f _{ck}	=	32	32	32	32	MPa	resistenza caratteristica cilindrica
f _{cm}	=	40.00	40.00	40.00	40.00	MPa	resistenza cilindrica media

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: **Viadotto Giulfo**Relazione di Calcolo Pile

Pagina 151 di 156

Nome file:

		comb.	comb.	comb.	comb.		
		FREQUENTE	FREQUENTE	FREQUENTE	FREQUENTE		
		Momento trasve		=	udinale M22=My		
f_{ctm}	=	inf 3.02	sup 3.02	inf 3.02	sup 3.02	MPa	resistenza media a trazione semplice
f _{cfm}	=	2.65	2.65	2.65	2.65	MPa	resistenza media a trazione per flessione
$\sigma_{\rm t}$	=	2.52	2.52	2.52	2.52		tensione limite apertura fessure
n	=	15	15	15	15	WII G	coefficiente di omogeneizzazione armature
n'	=	0.00	0.00	0.00	0.00		coefficiente di omogeneizzazione cls teso
Geomet	tria						
В	=	1000	1000	1000	1000	mm	base sezione
Н	=	2500	2500	2500	2500	mm	altezza sezione
Armatu		40	-	40	_		as Associated traffic atoms
n ₁	=	10	5	10	5		n. tondini inferiori
Ø ₁	=	26	22	26	22	mm	diametro tondini inferiori
d ₁	=	2450	2450	2450	2450	mm	distanza da lembo compresso
A _{s1}	=	5309	1901	5309	1901	mm ²	area armatura inferiore
n_2	=	5	10	5	10		n. tondini superiori
\emptyset_2	=	22	26	22	26	mm	diametro tondini superiori
d_2	=	50	50	50	50	mm	distanza da lembo compresso (copriferro)
A_{s2}	=	1901	5309	1901	5309	$\rm mm^2$	area armatura superiore
Sollecit	azioni						
М	=	991.0	414.0	2033.0	322.0	kNm	Momento di calcolo (fibre tese verso il basso)
N	=	0.0	0.0	0.0	0.0	KN	Sforzo Normale di calcolo (>0 compressione)
e Carattei		Inf ezione interamente	Inf reagente a com	Inf pressione	Inf	mm	eccentricità
A _{cls}	=	2500000	2500000	2500000	2500000	mm ²	area calcestruzzo
A _s	=	7210.0	7210.0	7210.0	7210.0	mm ²	area armatura
A _{id}	=	2.61E+06	2.61E+06	2.61E+06	2.61E+06	mm ²	area sezione ideale
d_G	=	1273.5	1226.5	1273.5	1226.5	mm	distanza baricentro sezione ideale da lembo superiore
	=			1.46E+12		mm ⁴	·
J _{id}		1.46E+12	1.46E+12		1.46E+12		momento d'inerzia baricentrico sezione ideale
ρ_{id}	=	747.3	747.3	747.3	747.3	mm	raggio d'inerzia sezione
Y _{nocc,s}	=	818.2	788.0	818.2	788.0	mm	quota punto di nocciolo superiore
	ristiche se =	zione interamente	reagente a traz	ione		mm^2	area calcestruzzo teso omogeneizzato
A _{cls,t}		-	-	-	-		•
As	=	-	-	-	-	mm ²	area armatura
$A_{id,t}$	=	-	-	-	-	mm ²	area sezione ideale
$d_{G,t}$	=	-	-	-	-	mm	distanza baricentro sezione ideale da lembo superiore
$J_{\text{id},t}$	=	-	-	-	-	mm⁴	momento d'inerzia baricentrico sezione ideale
$\rho_{\text{id},t}$	=	-	-	-	-	mm	raggio d'inerzia sezione
$Y_{\text{nocc},i}$	=	-	-	-	-	mm	quota punto di nocciolo inferiore
Compo	rtamento						
Caratta	rictioha a-	parzializzata	parzializzata	parzializzata	parzializzata		
		zione parzializzata		529.07	201.05	mm	distanza assa nautro da lamba comercasa
Yn	=	528.07	291.05	528.07	291.05	mm	distanza asse neutro da lembo compresso
J_n	=	3.50E+11	1.46E+11	3.50E+11	1.46E+11	mm⁴	momento d'inerzia sezione parzializzata

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: **Viadotto Giulfo**Relazione di Calcolo Pile

Pagina 152 di 156

Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

		comb.	comb.	comb.	comb.		
		Momento trasve	ersale M11=Mx	Momento longiti	udinale M22=My		
		inf	sup	inf	sup		
S_n	=	0.00	0.00	0.00	0.00	mm ³	momento statico sezione parzializzata
$f(Y_n)=0$	=	-	-	-	-		
Tensioni	nei materi						
σ_{c}	=	-1.50	-0.83	-3.07	-0.64	MPa	tensione nel lembo più compresso del cls calcolata nella sezione fessurata
σs	=	81.7	92.0	167.6	71.6	MPa	tensione dell'armatura tesa calcolata nella sezione fessurata
	fessurazi		0004.0	2002.2	2004.0	Liklina	are and the the discussion for a second
M _{fess}	=	2992.2	2881.6	2992.2	2881.6	kNm	momento limite di apertura fessure
M _{fess} / M	=	3.02	6.96	1.47	8.95		check1
W _{max}	=	0.30	0.30	0.30	0.30	mm	valore limite ampiezza fessure
\emptyset_{max}	=	-	-	-	-	mm	diametro massimo delle barre
σ* _{s1}	=	-	-	-	-	MPa	limite di tensione max nell'acciaio dovuta al diametro dei ferri
sp_s	=	-	-	-	-		spaziatura delle barre superiori
sp_i	=	-	-	=	-		spaziatura delle barre inferiori
sp_{max}	=	-	-	-	-	mm	spaziatura massima delle barre
σ^*_{s2}	=	-	-	-	-	MPa	limite di tensione max nell'acciaio dovuta alla spaziatura dei ferri
$\sigma_{\text{s,lim}}$	=	-	-	-	-	MPa	limite di tensione max nell'acciaio
$\sigma_{\text{s,lim}}/\sigma_{\text{s}}$	=	-	-	-	-		check2
С	=	-	-	-	-	mm	ricoprimento armatura
$h_{\text{ct,eff}}$	=	-	-	-	-	mm	altezza efficace cls teso attorno armatura superiore
$h_{\text{cb,eff}}$	=	-	-	-	-	mm	altezza efficace cls teso attorno armatura inferiore
$A_{\text{cb,eff}}$	=	-	-	-	-	mm ²	area efficace di cls teso attorno all'armatura
ρ_{eff}	=	-	-	-	-		rapporto A _s /A _{c,eff}
\mathbf{k}_{t}	=	-	-	-	-		fattore dipendente dalla durata del carico (0.6 per carichi di breve durata; 0.4
Es	=	200000	200000	200000	200000	MPa	modulo elastico acciaio
d*	=	-	-	-	-	mm	zona efficace armatura (5*(c+Ø/2))
k_1	=	-	-	-	-		0.80 per barre ad aderenza migliorate; 1.6 per barre lisce
ϵ_2	=	-	-	-	-		deformazione a lembo inferiore della sezione fessurata
ε ₁	=	-	-	-	-		deformazione a lembo superiore della sezione fessurata
k_2	=	-	-	-	-		0.50 nel caso di flessione; 1.0 nel caso di trazione semplice; $(\epsilon 1+\epsilon 2)/2\epsilon 1$ ne
k ₃	=	-	-	-	-		
k ₄	=	-	-	-	-		
Δ_{smax1}	=	-	-	-	-	mm	distanza media tra le fessure nella zona d* attorno alle barre
Δ_{smax2}	=	-	-	-	-	mm	distanza media tra le fessure al di fuori della zona d* attorno alle barre
Δ_{sm}	=	-	-	-	-	mm	distanza media tra le fessure
$\epsilon_{\sf sm}$	=	-	-	-	-		deformazione unitaria media delle barre di armatura
W _m	=	-	-	-	-	mm	apertura media delle fessure
W _d	=	-	-	-	-	mm	valore di calcolo di apertura delle fessure
-		verificato	verificato	verificato	verificato		check3

comb. comb. comb.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: **Viadotto Giulfo**Relazione di Calcolo Pile

Pagina 153 di 156

Nome file:

		QUASI PERM.	QUASI PERM.	QUASI PERM.	QUASI PERM.				
		Momento trasv	ersale M11=Mx	Momento longit	udinale M22=My				
		inf	sup	inf	sup				
diametri massimi delle barre per il controllo della fessurazione									
σ_{s}		w1=0.20 mm	w1=0.20 mm	w1=0.20 mm	w1=0.20 mm				
[MPa]		Ø	Ø	Ø	Ø				
160		25	25	25	25				
200		16	16	16	16				
240		12	12	12	12				
280		8	8	8	8				
320		6	6	6	6				
360		0	0	0	0				
spaziatura	a ma	assima delle bar	re per il controlle	o della fessurazi	one				
σ_{s}		w1=0.20 mm	w1=0.20 mm	w1=0.20 mm	w1=0.20 mm				
[MPa]		Ø	Ø	Ø	Ø				
160		200	200	200	200				
200		150	150	150	150				
240		100	100	100	100				
280		50	50	50	50				
320		0	0	0	0				
360		0	0	0	0				
M_{Ed}	=	793	331	1626	258	kNm			
N_{Ed}	=	0	0	0	0	kN			
		comb.	comb.	comb.	comb.				
		QUASI PERM.	QUASI PERM.	QUASI PERM.	QUASI PERM.				
Materiali									
Rck	=	40	40	40	40	MPa			
f _{ck}	=	32	32	32	32	MPa			
f _{cm}	=	40.00	40.00	40.00	40.00	MPa			
f _{ctm}	=	3.02	3.02	3.02	3.02	MPa			
f _{cfm}	=	2.65	2.65	2.65	2.65	MPa			
	=	2.52	2.52	2.52	2.52	MPa			
σ_{t}						IVIPa			
n	=	15	15	15	15				
n'	=	0.00	0.00	0.00	0.00				
Geometria		4000	4000	4000	4000				
B H	=	1000 2500	1000 2500	1000 2500	1000 2500	mm			
⊓ Armatura		2500	2500	2500	2500	mm			
	=	40	5	10	5				
n ₁		10							
Ø ₁	=	26	22	26	22	mm			
d_1	=	2450	2450	2450	2450	mm			
A _{s1}	=	5309	1901	5309	1901	mm^{2}			
n ₂	=	5	10	5	10				
\emptyset_2	=	22	26	22	26	mm			
d_2	=	50	50	50	50	mm			

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

comb.

comb.

comb.

comb.

Opera: **Viadotto Giulfo**Relazione di Calcolo Pile

Pagina 154 di 156

Nome file:

		QUASI PERM.	QUASI PERM.	QUASI PERM.	QUASI PERM.			
		Momento trasversale M11=Mx		Momento longitudinale M22=My				
		inf	sup	inf	sup			
A_{s2}	=	1901	5309	1901	5309	mm^2	area armatura superiore	
Sollecitaz	Sollecitazioni							
М	=	792.8	331.2	1626.4	257.6	kNm	Momento di calcolo (fibre tese verso il basso)	
N	=	0.0	0.0	0.0	0.0	KN	Sforzo Normale di calcolo (>0 compressione)	
e Carattaria	=	Inf	Inf mente reagente	Inf	Inf	mm	eccentricità	
	=	2500000	2500000	2500000	2500000	mm^2	area calcestruzzo	
A_{cls} A_{s}	_	7210.0	7210.0	7210.0	7210.0	mm ²	area armatura	
						mm ²	area sezione ideale	
A _{id}	=	2.61E+06	2.61E+06	2.61E+06	2.61E+06			
d_{G}	=	1273.5	1226.5	1273.5	1226.5	mm	distanza baricentro sezione ideale da lembo superiore	
J_id	=	1.46E+12	1.46E+12	1.46E+12	1.46E+12	mm⁴	momento d'inerzia baricentrico sezione ideale	
$\rho_{id} \\$	=	747.3	747.3	747.3	747.3	mm	raggio d'inerzia sezione	
$Y_{nocc,s}$	=	818.2	788.0	818.2	788.0	mm	quota punto di nocciolo superiore	
Caratteris	stich	e sezione intera	mente reagente	a trazione				
$\boldsymbol{A}_{\text{cls},t}$	=	-	-	-	-	mm ²	area calcestruzzo teso omogeneizzato	
A_s	=	-	-	-	-	mm^2	area armatura	
$\boldsymbol{A}_{\text{id},t}$	=	-	-	-	-	mm^2	area sezione ideale	
$d_{G,t} \\$	=	-	-	-	-	mm	distanza baricentro sezione ideale da lembo superiore	
$\boldsymbol{J}_{\text{id},t}$	=	-	-	-	-	mm ⁴	momento d'inerzia baricentrico sezione ideale	
$\rho_{\text{id},t}$	=	-	-	-	-	mm	raggio d'inerzia sezione	
$Y_{\text{nocc,i}}$	=	-	-	-	-	mm	quota punto di nocciolo inferiore	
Comporta	amen	nto sezione						
		parzializzata	parzializzata	parzializzata	parzializzata			
Caratteris	stich	e sezione parzia	alizzata					
Y_{n}	=	528.07	291.05	528.07	291.05	mm	distanza asse neutro da lembo compresso	
J_{n}	=	3.50E+11	1.46E+11	3.50E+11	1.46E+11	mm ⁴	momento d'inerzia sezione parzializzata	
S_{n}	=	0.00	0.00	0.00	0.00	mm^3	momento statico sezione parzializzata	
$f(Y_n)=0$	=	-	-	-	-			
Tensioni	nei n	nateriali						
σ_{c}	=	-1.20	-0.66	-2.46	-0.51	MPa	tensione nel lembo più compresso del cls calcolata nella sezione fessurata	
σ_{s}	=	65.3	73.6	134.1	57.2	MPa	tensione dell'armatura tesa calcolata nella sezione fessurata	
Verifica a	fess	surazione						
M_{fess}	=	2992.2	2881.6	2992.2	2881.6	kNm	momento limite di apertura fessure	
M _{fess} / M	=	3.77	8.70	1.84	11.19		check1	
W _{max}	=	0.20	0.20	0.20	0.20	mm	valore limite ampiezza fessure	
$Ø_{max}$	=	-	-	-	-	mm	diametro massimo delle barre	
σ* _{s1}	=	-	-	-	-	MPa	limite di tensione max nell'acciaio dovuta al diametro dei ferri	
sp_s	=	-	-	-	-		spaziatura delle barre superiori	
sp _s	=	-	-	-	-		spaziatura delle barre superiori spaziatura delle barre inferiori	
sp_i		- -	- - -	- - -	- - -	mm		
	=	- - -	- - -	- - -	- - -	mm MPa	spaziatura delle barre inferiori	

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: **Viadotto Giulfo**Relazione di Calcolo Pile

Pagina 155 di 156

Nome file:

VI01-C-CL004_B.00_relazione_pile.doc

		comb.	comb.	comb.	comb.		
		QUASI PERM.	QUASI PERM.	QUASI PERM.	QUASI PERM.		
	Momento trasve		ersale M11=Mx	Momento longitudinale M22=My			
		inf	sup	inf	sup		
$\sigma_{\text{s,lim}}$	=	-	-	-	-	MPa	limite di tensione max nell'acciaio
$\sigma_{s,lim}/\sigma_s$	s =	-	-	-	-		check2
С	=	-	-	-	-	mm	ricoprimento armatura
$h_{\text{ct},\text{eff}}$	=	-	-	-	-	mm	altezza efficace cls teso attorno armatura superiore
$h_{\text{cb},\text{eff}}$	=	-	-	-	-	mm	altezza efficace cls teso attorno armatura inferiore
$A_{\text{cb,eff}}$	=	-	-	-	-	$\rm mm^2$	area efficace di cls teso attorno all'armatura
ρ_{eff}	=	-	-	-	-		rapporto A _s /A _{c,eff}
\mathbf{k}_{t}	=	-	-	-	-		fattore dipendente dalla durata del carico (0.6 per carichi di breve durata; 0.4 per c
E_s	=	200000	200000	200000	200000	MPa	modulo elastico acciaio
d*	=	-	-	-	-	mm	zona efficace armatura (5*(c+Ø/2))
\mathbf{k}_1	=	-	-	-	-		0.80 per barre ad aderenza migliorate; 1.6 per barre lisce
ε ₂	=	-	-	-	-		deformazione a lembo inferiore della sezione fessurata
ε ₁	=	-	-	-	-		deformazione a lembo superiore della sezione fessurata
k_2	=	-	-	-	-		0.50 nel caso di flessione; 1.0 nel caso di trazione semplice; $(\epsilon 1+\epsilon 2)/2\epsilon 1$ nel caso
k_3	=	-	-	-	-		
k ₄	=	-	-	-	-		
Δ_{smax1}	=	-	-	-	-	mm	distanza media tra le fessure nella zona d* attorno alle barre
Δ_{smax2}	=	-	-	-	-	mm	distanza media tra le fessure al di fuori della zona d* attorno alle barre
Δ_{sm}	=	-	-	-	-	mm	distanza media tra le fessure
ϵ_{sm}	=	-	-	-	-		deformazione unitaria media delle barre di armatura
W _m	=	-	-	-	-	mm	apertura media delle fessure
w_d	=	-	-	-	-	mm	valore di calcolo di apertura delle fessure
		verificato	verificato	verificato	verificato		check3

Dai risultati ottenuti emerge che il momento di prima fessurazione della sezione è sempre maggiore del momento di calcolo non è quindi necessario il calcolo dell'apertura delle fessure.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Giulfo						
Relazione di Calcolo Pile						
Pagina 156 di 156						
Nome file: VI01-C-CL004 B.00 relazione pile.doc						

12 ISOLATORI SISMICI

Si riportano di seguito le massime azioni agenti sugli isolatori elastomerici e gli spostamenti massimi ottenuti dalla risoluzione del modello di calcolo globale del viadotto. Si segnala che le azioni e gli spostamenti in condizioni sismiche riportati nel seguito fanno riferimento all'analisi sismica con spettro elastico allo stato limite di collasso (SLC).

Tabella 12.1 - Massime azioni sugli isolatori

CON	NDIZIONI STAT	TCHE	CONDIZIONI SISMICHE			
Massima	Massima	Massima	Massima	Massima	Massima	
azione	azione	azione	azione	azione	azione	
verticale	longitudinale	trasversale	verticale	Iongitudinale	trasversale	
Pstat	V2stat	V3stat	Psism	V2sism	V3sism	
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	
12944	438	791	6400	579	163	

Tabella 12.2 - Spostamenti massimi.

Massimo spostamento in condizioni statiche	Massimo spostamento in condizioni sismiche		
III CONUIZIONI Staticne	in condizioni sismiche		
Ustat	Usism		
[mm]	[mm]		
204	191		

Lo spostamento orizzontale U è stato ottenuto dalla combinazione vettoriale dello spostamento longitudinale U2 e dello spostamento trasversale U3.