COMMITTENTE:

ALTA SORVEGLIANZA:

GENERAL CONTRACTOR:

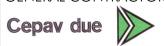
INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N. 443/01

LINEA A.V. /A.C. TORINO – VENEZIA Tratta MILANO – VERONA Lotto funzionale Brescia-Verona

PROGETTO ESECUTIVO

RI89 – RILEVATO COLLEG. QBSE-AV/AC DA PK 105+384,00 A PK 105+814,00

TOMBINI CIRCOLARI – RELAZIONE DI CALCOLO


GENE	eral contractor			DIRET	TORE LAVOR	.I		
1	Consorzio Pav due							
Data:				Data:		-		
C	OMMESSA LOTTO	FASE ENT	E TIPO	DOC	OPERA/DISCII	PUNA	PROGR	REV
I	N 0 R 1 2	E E	2 C	L R	I 8 9	0 4	0 0 1	Α
PRO	GETTAZIONE							VIE PROGETTISTA
Rev.	Descrizione	Redatto	Data	Verificato	Data	Progettista Integratore	Data	TO THE TOWN CA
А	Emissione	GUILARTE	29/11/19	AIELLO	29/11/19	LIANI	29/11/19	
В		- 00	-				AL AL	BO PROVINCIALE INSEGNERI VERONA I Iscriziona N° 1553
С								Data: 29/17/19

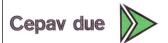
CIG. 751447334A

File: INOR12EE2CLRI8904001A 10.docx

CUP: F81H91000000008

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 12 E E2 CL RI89 04 001 A 2 di 71

Doc.	. IN.		IINUK	12	E EZ CL R189 04 00 1	А	2 ai /
IND	ICE						
1.	INTR	ODUZIONE					6
2.	NOR	MATIVA DI RIFERIMENTO					7
3.	CRIT	ERI DI CALCOLO					8
3	.1.	Criteri e definizione dell'azione sismica					8
3	.2.	COMBINAZIONE DI CARICO					9
	3.2.1.	Combinazioni per la verifica allo SLU					9
	3.2.2.	Combinazioni per la verifica allo SLE					. 10
4.	CARA	ATTERISTICHE DEI MATERIALI					. 11
4	.1.	CALCESTRUZZO PER MAGRONE					. 11
4	.2.	Calcestruzzo					. 11
4	.3.	ACCIAIO PER CEMENTO ARMATO					. 11
4	.4.	DURABILITÀ E PRESCRIZIONI SUI MATERIALI					. 12
4	.5.	COPRIFERRO MINIMO E COPRIFERRO NOMINALE					. 12
5.	PARA	AMETRI SISMICI					. 13
6.	PARA	AMETRI GEOTECNICI					. 14
7.	GEO	METRIA DELLA STRUTTURA					. 15
8.	MOD	ELLAZIONE STRUTTURALE					. 16
8	.1.	CODICE DI CALCOLO – RISPETTO DEL CAPITOLO 10.2 D	ELLE NTC08				. 16
	8.1.1.	Tipo di analisi svolta					. 16
	8.1.2.	Origine e caratteristiche dei codici di calcolo					. 16
	8.1.3.	Affidabilità dei codici utilizzati					. 16
	8.1.4.	Informazioni generali sull'elaborazione					. 16
	8.1.5.	Giudizio motivato di accettabilità dei risultati					. 16
8	.2.	MODELLAZIONE ADOTTATA					. 17
9.	ANA	LISI DEI CARICHI – TOMBINO D1500					. 19
9	.1.	PESO PROPRIO STRUTTURE (LOAD1)					. 19
9	.2.	Carichi permanenti portati (Load2 e Load3)					. 19



Doc. N		Progetto INOR	12	E E2 CL RI89 04 001	A Rev.	3 di 7
9.3.	SPINTA DEL TERRENO (LOAD4 E LOAD5)					19
9.4.	AZIONI TERMICHE E RITIRO (LOAD $6 \div 9$)					20
9.5.	CARICHI MOBILI VERTICALI SULLA SOLETTA SUPERIOR	RE (LOAD 10 E L	(DAD 11)			21
9.6.	SPINTA DEL SOVRACCARICO SUL RILEVATO (LOAD 12	E LOAD 13)				22
9.7.	Frenatura e avviamento (Load 14 e Load 15)					23
9.8.	SOVRACCARICHI ACCIDENTALI SULLA SOLETTA DI FON	NDAZIONE			••••	23
9.9.	SERPEGGIO					23
9.10). FORZA CENTRIFUGA					23
9.11	. AZIONE SISMICA (LOAD 16÷21)					24
9.12	2. RIEPILOGO DEI CARICHI SOLLECITANTI					26
10. C	CALCOLO DELLE SOLLECITAZIONI					27
10.1	. CONDIZIONI E COMBINAZIONI DI CARICO ADOTTATE					27
1	0.1.1. Combinazioni SLU di tipo STR					28
1	0.1.2. Combinazioni SLU di tipo GEO					31
1	0.1.3. Combinazioni SLV					32
1	0.1.4. Combinazioni SLE – Quasi Permanente –Caratter	istica				33
10.2						
1	0.2.1. Inviluppo momento flettente SLU/SLV – STR					35
	0.2.2. Inviluppo taglio SLU/SLV – STR					
	0.2.3. Inviluppo momento flettente SLE – Quasi Permane					
	0.2.4. Inviluppo momento flettente SLE – Caratteristico					
	ZERIFICHE DI RESISTENZA ULTIMA E DI ESERCIZI					
11.1						
	1.1.1. Soletta inferiore – sezione di incastro					
1	11.1.1.1. Verifiche allo stato limite ultimo per flessione					
	11.1.1.2. Verifiche allo stato limite ultimo per taglio					
	11.1.1.3. Verifiche allo stato limite di esercizio					
1	1.1.2. Soletta inferiore – sezione di mezzeria					42
-	11.1.2.1. Verifiche allo stato limite ultimo per flessione					
	11.1.2.2. Verifiche allo stato limite di esercizio					

Doc. N.		Progetto INOR	Lotto 12	Codifica Documento E E2 CL RI89 04 001	Rev.	Foglio 4 di 71
11.2. Piedr	ITTO					44
11.2.1. Pie	dritto – sezione di incastro					45
11.2.1.1.	Verifiche allo stato limite ultimo per flessione					45
11.2.1.2.	Verifiche allo stato limite ultimo per taglio					46
11.2.1.3.	Verifiche allo stato limite di esercizio					47
11.2.2. Pie	dritto – sezione di mezzeria					48
11.2.2.1.	Verifiche allo stato limite ultimo per flessione					48
11.2.2.2.	Verifiche allo stato limite di esercizio					49
11.2.3. Pie	dritto – sezione di incastro superiore					50
11.2.3.1.	Verifiche allo stato limite ultimo per flessione					50
11.2.3.2.	Verifiche allo stato limite di esercizio					51
11.3. SOLET	TTA SUPERIORE					52
11.3.1. Sol	etta superiore – sezione di incastro					53
11.3.1.1.	Verifiche allo stato limite ultimo per flessione					
11.3.1.2.	Verifiche allo stato limite ultimo per taglio					54
11.3.1.3.	Verifiche allo stato limite di esercizio					55
11.3.2. Sol	etta superiore – sezione di mezzeria					56
11.3.2.1.	Verifiche allo stato limite ultimo per flessione					56
11.3.2.2.	Verifiche allo stato limite di esercizio					57
11.4. Verif	ICA EFFETTI LONGITUDINALI DA RITIRO					58
11.4.1. Cod	azioni interne dovute ai fenomeni di ritiro					58
11.4.2. Cal	lcolo delle sollecitazioni longitudinali dovute ai	fenomeni di rii	tiro			59
12 VERIFICH	E DI DEFORMAZIONE E VIBRAZIONE					60
12.1. INFLES	SSIONE NEL PIANO VERTICALE DELL'IMPALCATO					60
12.2. STATO	D LIMITE DI COMFORT DEI PASSEGGERI					60
13. ANALISI S	STRUTTURALE IN DIREZIONE LONGITUDI	NALE				61
13.1. Geom	IETRIA E MODELLAZIONE					61
13.1.1.1.	Codice di calcolo					61
13.1.1.2.	Modellazione adottata					61
13.2. ANAL	ISI DEI CARICHI					63
13.2.1. Pes	so proprio					63
	so permanente - Rilevato					
	llast e armamento					
13.2.3. Bal	iusi e armamenio		• • • • • • • • • • • • • • • • • • • •			03

Progetto INOR	Lotto 12	Codifica Documento E E2 CL RI89 04 001	Rev.	Foglio 5 di 71
				63
				63
				63
				64
				64
				65
istica				65
VILUPPO				66
				66
				66
				68
				71
	istica	istica	istica VILUPPO Parte	istica VILUPPO ente

1. INTRODUZIONE

La presente relazione è relativa al calcolo dei tombini circolari facenti parte dell'opera denominata "RI89 – Rilevato colleg. QBSE-AV/AC da pk 105+384,000 a pk 105+814,000", previsti nell'ambito dei lavori inerenti la linea A.V./A.C. TORINO – VENEZIA, tratta MILANO – VERONA, lotto funzionale Brescia – Verona.

Il tombino IN10354 è costituito da una struttura scatolare di dimensioni esterne trasversali pari a 2.40×2.35m, lunghezza 22.0m, spessore minimo 0.30m e presenta un ricoprimento, ovvero la distanza tra la quota del piano ferro e l'estradosso della soletta superiore, pari a 1.13m.

Il tombino IN10353 è costituito da una struttura scatolare di dimensioni esterne trasversali pari a 2.40×2.35m, lunghezza 24.0m, spessore minimo 0.30m e presenta un ricoprimento, ovvero la distanza tra la quota del piano ferro e l'estradosso della soletta superiore, pari a 1.13m.

Il tombino IN10Q38 è costituito da una struttura scatolare di dimensioni esterne trasversali pari a 2.40×2.35m, lunghezza 12.7m, spessore minimo 0.30m e presenta un ricoprimento, ovvero la distanza tra la quota del piano ferro e l'estradosso della soletta superiore, pari a 1.26m.

Gli imbocchi dei tombini sono costituiti da pozzetti in c.a.

Tutte le opere sono realizzate in cemento armato gettato in opera.

L'analisi strutturale viene effettuata su un modello piano che descrive una striscia larga 1.00m, secondo i criteri di calcolo descritti nei paragrafi seguenti. L'analisi della struttura scatolare viene svolta con un programma agli elementi finiti schematizzando i vari setti con elementi "beam" mutuamente incastrati mentre l'analisi degli imbocchi viene svolta analiticamente valutando l'entità dei carichi sollecitanti i piedritti e determinando i valori di sollecitazione nelle sezioni di interesse.

Le azioni considerate nel calcolo sono quelle tipiche di una struttura interrata con le aggiunte delle azioni di tipo ferroviario, con applicazione della Normativa sui ponti ferroviari D. M. Min. II. TT. del 14 gennaio 2008 – Norme tecniche per le costruzioni.

I tombini sono ubicati nel Comune di Mazzano (BS), essendo in zona sismica verranno considerate anche le azioni derivanti dall'analisi sismica, secondo quanto previsto dal D.M. 14/01/08.

2. NORMATIVA DI RIFERIMENTO

- UNI EN 197-1 giugno 2001 "Cemento: composizione, specificazioni e criteri di conformità per cementi comuni";
- UNI EN 11104 luglio 2016 "Calcestruzzo: specificazione, prestazione, produzione e conformità", Istruzioni complementari per l'applicazione delle EN 206-1;
- UNI EN 206-1 ottobre 2006 "Calcestruzzo: specificazione, prestazione, produzione e conformità".
- UNI EN 1998-5 (Eurocodice 8) Gennaio 2005: "Progettazione delle strutture per la resistenza sismica Parte
 5: Fondazioni, strutture di contenimento ed aspetti geotecnici";
- UNI EN 1992-1-1 (Eurocodice 2) Novembre 2005: "Progettazione delle strutture di calcestruzzo Parte 1:
 Regole generali e regole per edifici";
- D. M. Min. II. TT. del 14 gennaio 2008 Norme tecniche per le costruzioni;
- CIRCOLARE 2 febbraio 2009, n.617 Istruzione per l'applicazione delle «Nuove norme tecniche per le costruzioni» di cui al decreto ministeriale 14 gennaio 2008;
- Linee guida sul calcestruzzo strutturale Presidenza del Consiglio Superiore dei Lavori Pubblici Servizio Tecnico Centrale;
- RFI DTC SI MA IFS 001 A Manuale di Progettazione delle Opere Civili;
- RFI DTC SI SP IFS 001 A Capitolato Generale Tecnico di Appalto delle Opere Civili.

GENERAL CONTRACTOR Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Documento Rev. Foglio INOR 12 E E2 CL RI89 04 001 A 8 di 71

3. CRITERI DI CALCOLO

In ottemperanza al D.M. del 14.01.2008 (Norme tecniche per le costruzioni), i calcoli sono condotti con il metodo semiprobabilistico agli stati limite.

3.1. Criteri e definizione dell'azione sismica

L'effetto dell'azione sismica di progetto sull'opera nel suo complesso, includendo il volume significativo di terreno, la struttura di fondazione, gli elementi strutturali e non strutturali, nonché gli impianti, deve rispettare gli stati limite ultimi e di esercizio definiti al § 3.2.1, i cui requisiti di sicurezza sono indicati nel § 7.1 della norma.

Per Stato Limite di salvaguardia della Vita (SLV) si intende che l'opera a seguito del terremoto subisce rotture e crolli dei componenti non strutturali e impiantistici e significativi danni di componenti strutturali, cui si associa una perdita significativa di rigidezza nei confronti delle azioni orizzontali (creazione di cerniere plastiche secondo il criterio della gerarchia delle resistenze), mantenendo ancora un margine di sicurezza (resistenza e rigidezza) nei confronti delle azioni verticali.

In merito alle opere scatolari di cui trattasi, nel rispetto del punto § 7.9.2., assimilando l'opera scatolare alla categoria delle spalle da ponte, rientrando tra le opere che si muovono con il terreno (§ 7.9.2.1), si può ritenere che la struttura debba mantenere sotto l'azione sismica un comportamento elastico; queste categorie di opere che si muovono con il terreno non subiscono le amplificazioni dell'accelerazione del suolo.

Per la definizione dell'azione sismica occorre definire il periodo di riferimento P_{VR} in funzione dello stato limite considerato.

La vita nominale (V_N) dell'opera è stata assunta pari a 100 anni.

La classe d'uso assunta è la III.

Il periodo di riferimento (V_R) per l'azione sismica, data la vita nominale e la classe d'uso, vale:

$$V_R = V_N \cdot C_u = 150$$
 anni

Il valore di probabilità di superamento del periodo di riferimento P_{VR} , cui riferirsi per individuare l'azione sismica agente, è:

$$P_{VR}(SLV)=10\%$$

Il periodo di ritorno dell'azione sismica T_R espresso in anni vale:

$$T_R(SLV) = -\frac{Vr}{\ln(1-Pvr)} = 1424 \text{ anni}$$

Dato il valore del periodo di ritorno suddetto, tramite le tabelle riportate nell'Allegato B della norma o tramite la mappatura messa a disposizione in rete dall'Istituto Nazionale di Geofisica e Vulcanologia (INGV), è possibile definire i valori di a_g , F_0 , T^*_c .

- a_g → accelerazione orizzontale massima del terreno su suolo di categoria A, espressa come frazione dell'accelerazione di gravità;
- $F_0 \rightarrow$ valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- T*_c → periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale;
- $S \rightarrow$ coefficiente che comprende l'effetto dell'amplificazione stratigrafica (Ss) e dell'amplificazione topografica (St).

GENERAL CONTRACTOR Cepav due ALTA SORVEGLIANZA ITALFERR

	Progetto	Lotto	Codifica Documento	Rev.	Foglio
Doc. N.	INOR	12	E E2 CL RI89 04 001	Α	9 di 71

GRUPPO FERROVIE DELLO STATO ITALIANE

Il calcolo viene eseguito con il metodo <u>pseudostatico</u> (N.T. par. 7.11.6). In queste condizioni l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.

Le spinte delle terre, considerando lo scatolare una struttura rigida e priva di spostamenti (NT par. 7.11.6.2.1 e EC8-5 par.7.3.2.1), sono calcolate in regime di spinta a riposo, condizione che comporta il calcolo delle spinte in condizione sismica con l'incremento dinamico di spinta del terreno calcolato secondo la formula di Wood:

$$\Delta P_d = S \cdot a_g / g \cdot \gamma \cdot |h_{tot}|^2$$

La spinta si considera come un carico uniformemente distribuito su h_{tot}.

L'azione sismica è rappresentata da un insieme di forze statiche orizzontali e verticali, date dal prodotto delle forze di gravità per le accelerazioni sismiche massime attese al suolo, considerando la componente verticale agente verso l'alto o verso il basso, in modo da produrre gli effetti più sfavorevoli.

3.2. Combinazione di carico

Le combinazioni di carico, considerate ai fini delle verifiche, sono stabilite in modo da garantire la sicurezza in conformità a quanto prescritto al cap. 2 delle NTC.

3.2.1. Combinazioni per la verifica allo SLU

Gli stati limite ultimi delle opere interrate si riferiscono allo sviluppo di meccanismi di collasso, determinati dalla mobilitazione della resistenza del terreno, e al raggiungimento della resistenza degli elementi strutturali che compongono l'opera.

Le verifiche strutturali agli stati limite ultimi sono eseguiti in riferimento ai seguenti stati limite:

- SLU di tipo geotecnico (GEO) e di equilibrio di corpo rigido (EQU), collasso per carico limite dell'insieme fondazione-terreno;
- SLU di tipo strutturale (STR), raggiungimento della resistenza negli elementi strutturali.

Le verifiche vengono condotte secondo l'approccio progettuale "Approccio 1" e le relative combinazione previste:

- combinazione 1 (A1+M1+R1) STR;

- combinazione 2 (A2+M2+R2) GEO.

Le combinazioni di carico di tipo A1 STR e A2 GEO vengono effettuate adottando i gruppi di azioni indicati in tabella 5.2.IV delle N.T.C. con i coefficienti parziali di sicurezza ferroviari indicati in tabella 5.2.V e i coefficienti di combinazione dei carichi ferroviari della tabella 5.2.VI, presenti al capitolo 5.2.3.3.1 delle N.T.C.; per quanto riguarda i coefficienti parziali per i parametri geotecnici del terreno, si fa riferimento alla tabella 6.2.II delle N.T.C.

Ai fini delle verifiche degli stati limiti ultimi si definiscono le seguenti combinazioni delle azioni:

Combinazione fondamentale, impiegata per gli stati limiti ultimi SLU:

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{O1} \cdot Q_{k1} + \sum_i \gamma_{Oi} \cdot \psi_{Oi} \cdot Q_{ki} \implies (\Phi_d' = \Phi_k')$$

Combinazione sismica, impiegata per gli stati limiti ultimi connessi all'azione sismica E:

$$E + G_1 + G_2 + \sum_i \psi_{2i} \cdot Q_{ki} \Longrightarrow (\Phi_d' = \Phi_k')$$

Gli effetti dell'azione sismica sono valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali.

 $G_1 {+} G_2 {+} \textstyle{\sum_i} \psi_{2i} {\cdot} Q_{ki}$

L'azione sismica è calcolata come combinazione delle componenti orizzontali con quella verticale come $E = 1.0 \times E_x + 0.3 \times E_y + 0.3 \times E_z$ con rotazione dei coefficienti moltiplicativi.

I valori del coefficiente ψ_{2i} sono quelli riportati nella tabella 5.2.VI della norma; la stessa propone nel caso di ponti, e più in generale per opere ferroviarie, di assumere per i carichi dovuti al transito dei mezzi ψ_{2i} = 0.2 (condizione cautelativa).

3.2.2. Combinazioni per la verifica allo SLE

Le combinazioni di carico allo SLE vengono effettuate adottando i gruppi di azioni indicati in tabella 5.2.IV delle N.T.C. con i coefficienti di combinazione dei carichi ferroviari della tabella 5.2.VI delle N.T.C. presenti al capitolo 5.2.3.3.2 della norma.

Ai fini delle verifiche degli <u>stati limite di esercizio</u> (fessurazione/stato tensionale) si definiscono le seguenti combinazioni:

Quasi permanente \Rightarrow $G_1 + G_2 + \psi_{21} \cdot Q_{k1} + \sum_i \psi_{2i} \cdot Q_{ki} \Rightarrow (\Phi_d' = \Phi_k')$

Frequente \Rightarrow $G_1 + G_2 + \psi_{11} \cdot Q_{k1} + \sum_i \psi_{2i} \cdot Q_{ki} \Rightarrow (\Phi_d' = \Phi_k')$

Rara \Rightarrow $G_1 + G_2 + Q_{k1} + \sum_i \psi_{0i} \cdot Q_{ki} \Rightarrow (\Phi_d' = \Phi_k').$

4. CARATTERISTICHE DEI MATERIALI

Per la realizzazione dell'opera è previsto l'impiego dei sottoelencati materiali.

4.1. Calcestruzzo per magrone

Per il magrone di sottofondazione si prevede l'utilizzo di calcestruzzo di classe Rck 15.

4.2. Calcestruzzo

Per la realizzazione delle strutture, si prevede l'utilizzo di calcestruzzo avente classe di resistenza C32/40 (Rck ≥40 N/mm²) che presenta le seguenti caratteristiche:

• Resistenza caratteristica a compressione (cilindrica) $\rightarrow f_{ck} = 0.83 \times R_{ck} = 33.20 \text{ N/mm}^2$

Resistenza media a compressione $\rightarrow f_{cm} = f_{ck} + 8 = 41.20 \text{ N/mm}^2$

Modulo elastico $\rightarrow E_{cm} = 22000 \times (f_{cm}/10)^{0.3} = 33643 \text{ N/mm}^2$

• Resistenza di calcolo a compressione $\rightarrow f_{cd} = \alpha_{cc} \times f_{ck}/\gamma_c = 0.85 * f_{ck}/1.5 = 18.81 \text{ N/mm}^2$

Resistenza a trazione media $\rightarrow f_{ctm} = 0.30 \times f_{ck}^{2/3} = 3.10 \text{ N/mm}^2$

• Resistenza a trazione $\rightarrow f_{ctk} = 0.7 \times f_{ctm} = 2.169 \text{ N/mm}^2$

• Resistenza a trazione di calcolo $\rightarrow f_{ctd} = f_{ctk} / \gamma_c = 1.446 \text{ N/mm}^2$

• Resistenza a compressione (comb. Rara) $\rightarrow \sigma_c = 0.55 \times f_{ck} = 18.26 \text{ N/mm}^2$

Resistenza a compressione (comb. Quasi permanente) $\rightarrow \sigma_c = 0.40 \times f_{ck} = 13.28 \text{ N/mm}^2$

4.3. Acciaio per cemento armato

Per le armature metalliche si adottano tondini in acciaio del tipo B450C saldabile, controllato in stabilimento e che presentano le seguenti caratteristiche:

Proprietà	Requisito
Limite di snervamento f _y	≥450 MPa
Limite di rottura ft	≥540 MPa
Allungamento totale al carico massimo Agt	≥7.5%
Rapporto f _t /f _y	$1,15 \le R_{\rm m}/R_{\rm e} \le 1,35$
Rapporto f _{y misurato} / f _{y nom}	≤ 1,25

• Tensione di snervamento caratteristica $\rightarrow f_{yk} \ge 450 \text{ N/mm}^2$

• Tensione caratteristica a rottura $\rightarrow f_{tk} \ge 540 \text{ N/mm}^2$

• Tensione in condizione di esercizio (comb. Rara) $\rightarrow \sigma_s = 0.75 * f_{yk} = 337.50 \text{ N/mm}^2$

• Fattore di sicurezza acciaio $\rightarrow \gamma_s = 1.15$

• Resistenza a trazione di calcolo $\rightarrow f_{yd} = f_{yk} / \gamma_s = 391.30 \text{ N/mm}^2$

4.4. Durabilità e prescrizioni sui materiali

Per garantire la durabilità delle strutture in calcestruzzo armato ordinario, esposte all'azione dell'ambiente, si devono adottare i provvedimenti atti a limitare gli effetti di degrado indotti dall'attacco chimico, fisico e derivante dalla corrosione delle armature e dai cicli di gelo e disgelo.

Al fine di ottenere la prestazione richiesta in funzione delle condizioni ambientali, nonché per la definizione della relativa classe, si fa riferimento alle indicazioni contenute nelle Linee Guida sul calcestruzzo strutturale edite dal Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici ovvero alle norme UNI EN 206-1:2006 ed UNI 11104:2004.

Per le opere della presente relazione si adotta quanto segue:

<u>Fondazione/ Elevazione</u> CLASSE DI ESPOSIZIONE XC4 + XF1

4.5. Copriferro minimo e copriferro nominale

Al fine di preservare le armature dai fenomeni di aggressione ambientale, dovrà essere previsto un idoneo copriferro; il suo valore, misurato tra la parete interna del cassero e la generatrice dell'armatura metallica più vicina, individua il cosiddetto "copriferro nominale".

Il copriferro nominale c_{nom} è somma di due contributi, il copriferro minimo c_{min} e la tolleranza di posizionamento h. Vale pertanto: $c_{nom} = c_{min} + h$. Considerate le condizioni ambientali dell'opera e le classi di resistenza del calcestruzzo, si adotta un copriferro nominale pari a $c_{nom} = 50$ mm.

5. PARAMETRI SISMICI

Le azioni sismiche impiegate sono rappresentative del territorio Comunale dove è ubica l'opera e risultano maggiori rispetto ai valori calcolati considerando le coordinate geografiche.

L'opera ricade nel Comune di Mazzano in provincia di Brescia, per il quale i corrispondenti valori delle caratteristiche sismiche per lo SLV (TR=1424 anni) sono i seguenti:

$$a_g = 0.232 g$$

$$a_{gv} = 0.151 g;$$

$$F_0 = 2.440;$$

$$T*_{c} = 0.280 \text{ s};$$

Per quanto riguarda il sottosuolo su cui insiste l'opera, si assume che ricada in categoria sismica "B" e categoria topografica "T1". Il coefficiente di amplificazione stratigrafica e topografica risultano quindi:

$$S_S = 1.173$$

$$S_T = 1.0$$

L'accelerazione massima orizzontale viene valutata pari a:

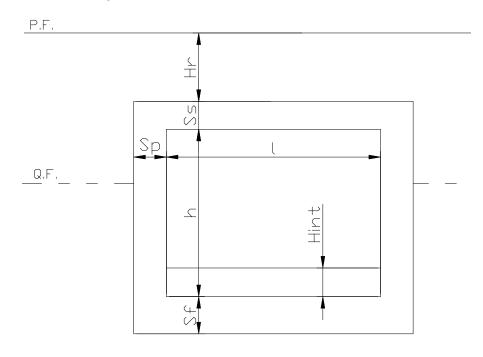
$$a_{max}$$
 (SLV) = S $a_g = 1.173 \times 1.00 \times 0.232$ g = 0.2724 g.

6. PARAMETRI GEOTECNICI

I parametri geotecnici caratteristici impiegati per caratterizzare i materiali da rinterro, sono:

Materiali da rinterro a tergo dello scatolare:

- $-\Phi'_{k} = 35^{\circ}$
- $\quad \gamma_m = 20 \ kN/m^3$
- $\quad \gamma' = 10 \text{ kN/m}^3$
- $\quad \gamma_{\rm w} = 10 \text{ kN/m}^3$


Il coefficiente di spinta a riposo corrispondente è pari a $k_0 = 0.426$.

Per quanto riguarda le caratteristiche geotecniche del terreno in situ, si rimanda allo specifico documento Rif. [1].

7. GEOMETRIA DELLA STRUTTURA

Si riportano di seguito le dimensioni geometriche della struttura scatolare:

Dimensioni geometriche (sezione in retto):

- 1 = 1.70 m
- h = 1.70 m
- Ss = 0.30 m
- Sf = 0.35 m
- Sp = 0.35 m
- Hr = 1.13 m
- P.F. = quota Piano Ferro
- Q.F. = quota Falda

La falda risulta posizionata al di sotto del piano di fondazione dello scatolare e pertanto non influenza il dimensionamento dell'opera.

L'asse del tombino è posizionato in retto rispetto all'asse ferroviario.

8. MODELLAZIONE STRUTTURALE

8.1. Codice di calcolo – rispetto del capitolo 10.2 delle NTC08

L'analisi della struttura scatolare è stata condotta con un programma agli elementi finiti schematizzando i vari setti con elementi mutuamente incastrati e facendo riferimento ad una larghezza unitaria di struttura che viene pertanto risolta come struttura piana.

8.1.1. Tipo di analisi svolta

Trattandosi di opera interrata di tipo rigido la determinazione delle sollecitazioni sia in campo statico che in campo sismico è stata svolta mediante analisi statica lineare secondo le teorie classiche della Scienza delle Costruzioni, trascurando le eventuali capacità dissipative della struttura (q=1) e sfruttando il principio di sovrapposizione degli effetti.

L'analisi strutturale è stata svolta mediante un codice di calcolo FEM attraverso la modellazione con elementi di tipo "beam" a 2 nodi con 6 g.d.l.. Il metodo FEM sfrutta l'analisi di calcolo matriciale mediante costruzione della matrice di rigidezza della struttura. Le sollecitazioni ottenute per ciascun caso di carico vengono combinate tra loro mediante gli opportuni coefficienti di combinazione previsti dalla normativa secondo il principio di sovrapposizione degli effetti.

La verifica delle sezioni è stata svolta mediante calcolo dei valori di sollecitazione resistente allo SLU e mediante determinazione delle tensioni sui materiali o dell'ampiezza delle fessure per le verifiche agli SLE. Le operazioni di calcolo dei valori resistenti sono sviluppate mediante metodo analitico con l'ausilio di fogli di calcolo autoprodotti per automatizzare la procedura.

Le combinazioni di carico considerate per ciascuno stato limite sono riportate in forma tabellare nei capitoli specifici.

8.1.2. Origine e caratteristiche dei codici di calcolo

Per la determinazione delle sollecitazioni è stato impiegato il software FEM denominato SAP2000, prodotto dalla Computer e Structure inc. e distribuito dalla CSI Italia srl.

8.1.3. Affidabilità dei codici utilizzati

Riguardo il codice FEM impiegato, la casa produttrice ha provveduto alla produzione di tutti i documenti di validazione del software che non sono allegati alla presente relazione di calcolo per ragioni di sintesi, ma che possono essere forniti in qualsiasi momento o richiesti direttamente alla casa produttrice.

8.1.4. Informazioni generali sull'elaborazione

Sono stati eseguiti i seguenti controlli relativi al calcolo svolto mediante software FEM:

- verifica analitica della risultante dei carichi applicati al modello;
- verifica a vista della rispondenza dei diagrammi di momento flettente e delle deformate con i carichi applicati;
- verifica analitica dei valori di sollecitazione mediante combinazione dei carichi elementari.

8.1.5. Giudizio motivato di accettabilità dei risultati

Data la semplicità dello schema di calcolo e l'impiego di una modellazione FEM con 6 g.d.l., i risultati numerici svolti portano a risultati perfettamente rispondenti al medesimo calcolo svolto con linea elastica indipendentemente dalla geometria o dal numero di elementi impiegati per la modellazione. Si escludono pertanto errori di calcolo legati al metodo numerico.

Le verifiche svolte in corso di analisi, riassunte precedentemente, consentono l'individuazione di eventuali errori grossolani di modellazione geometrica o di modellazione, applicazione e combinazione dei carichi.

GENERAL CONTRACTOR Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto INOR 12 E E2 CL RI89 04 001 A 17 di 71

Le verifiche strutturali svolte in via analitica secondo la formulazione classiche della Scienza delle Costruzioni, escludono la possibilità di errori numerici di calcolo.

8.2. Modellazione adottata

La struttura viene schematizzata attraverso un modello analitico agli elementi finiti, assumendo uno schema statico di telaio chiuso.

L'analisi strutturale viene condotta con il metodo degli spostamenti per la valutazione dello stato tenso-deformativo indotto da carichi statici.

Il suolo viene modellato facendo ricorso all'usuale artificio delle molle elastiche alla Winkler.

La caratteristica elastica della generica molla viene calcolata nel seguente modo:

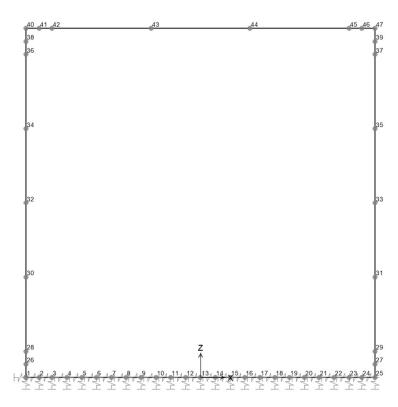
- K_s = costante di sottofondo $[F/L^3]$
- b_t = interasse trasversale di competenza della generica molla
- b_1 = interasse longitudinale di competenza della generica molla (= 1.00 m)
- W_s = $K_s/(b_t \times b_l)$ = caratteristica elastica della generica molla

La costante di sottofondo adottata per la modellazione, funzione del tipo di terreno presente in sito, è pari a:

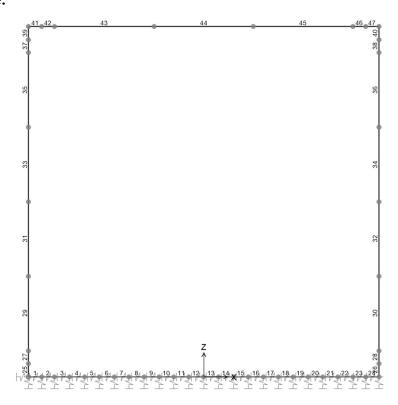
$$K_s = 5000 \text{ kN/m}^3$$

Per le caratteristiche geometriche delle varie aste si è quindi assunto:

- una sezione rettangolare b x $h = 100 x S_s$ cm per la soletta superiore
- una sezione rettangolare b x $h = 100 x S_f$ cm per la soletta di fondazione
- una sezione rettangolare b x $h = 100 x S_p$ cm per i piedritti.


Per quanto riguarda la rigidezza delle aste del reticolo si è assunto:

- E_c = 33643 N/mm² (Per cls Rck 40).


Lo schema statico della struttura scatolare e la relativa numerazione dei nodi e delle aste sono riportati nelle seguenti figure.

Numerazione dei nodi:

Numerazione delle aste:

	Progetto	Lotto	Codifica Documento	Rev.	Foglio
Doc. N.	INOR	12	E E2 CL RI89 04 001	Α	19 di 71

9. ANALISI DEI CARICHI – TOMBINO D1500

Nel seguente paragrafo si descrivono i carichi elementari da assumere per le verifiche di resistenza in esercizio ed in presenza dell'evento sismico.

Vengono prese in considerazione le condizioni elementari di carico di seguito determinate.

Tali Combinazioni Elementari saranno opportunamente combinate secondo quanto previsto dalla normativa vigente.

Per i materiali si assumono i seguenti pesi specifici:

- calcestruzzo armato: $\gamma_{c.a.} = 25 \text{ kN/m}^3$

- rilevato: $\gamma_{ril} = 20 \text{ kN/m}^3$

- sovrastruttura ferroviaria: $\gamma_{ric} = 24 \text{ kN/m}^3$

- massicciata + armamento: $\gamma_{ballast} = 18 \text{ kN/m}^3$

9.1. Peso proprio strutture (Load1)

- soletta superiore $S_s \times \gamma_{ca} = 0.30 \times 25.00 = 7.50 \text{ kN/m}^2$

- piedritti $S_p \times \gamma_{c.a.} = 0.35 \times 25.00 = 8.75 \text{ kN/m}^2$

- soletta inferiore $S_i \times \gamma_{c.a.} = 0.35 \times 25.00 = 8.75 \text{ kN/m}^2$

9.2. Carichi permanenti portati (Load2 e Load3)

Si considera che il ballast abbia uno spessore pari a 80 cm.

Load2 (sovraccarico ad esclusione del ballast ed armamento):

peso sovrastruttura ferroviaria (H_{ric} - $H_{ballast}$) × γ_{ric} = 0.33 x 24.00 = **7.92 kN/m²**

Load 3 (sovraccarico dovuto a ballast e armamento):

peso ballast + armamento $H_{ballast} \times \gamma_{ballast} = 0.80 \text{ x } 18.00 = 14.40 \text{ kN/m}^2$

9.3. Spinta del terreno (Load4 e Load5)

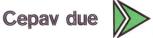
Il rinterro a ridosso dello scatolare verrà realizzato tramite materiale arido di buone caratteristiche meccaniche. Secondo quanto riportato in precedenza per il rinterro si assumono i seguenti parametri:

 $\gamma_t = 20 \text{ kN/m}^3$

 $\gamma_w = 10 \; kN/m^3$

 $\phi'_k = 35^\circ$

 $k_{0,k} = 0.4264$ $k_{0,M1} = 0.4264$ $k_{0,M2} = 0.5113$


 $k_{a,k} = 0.2710 \qquad \qquad k_{a,M1} = 0.2710 \qquad \qquad k_{a,M2} = 0.3434$

Si riporta di seguito il calcolo delle pressioni agenti sulla struttura, eseguito sia per la Combinazione 1 (A1+M1+R1) che per la Combinazione 2 (A2+M2+R2), ed indicando con Load 4 le spinte a riposo sul piedritto sinistro e con Load 5 quelle sul piedritto destro.

Approccio 1 – Combinazione 1

• Pressione in asse soletta superiore:

 $P_1 (h_1 = 1.13 + 0.30/2 = 1.28m) = k_{0,M1} \times [H_{ballast} \times \gamma_{ballast} + (h_1 - H_{ballast}) \times \gamma_t) = k_{0,M1} \times [H_{ballast} \times \gamma_{ballast} + (h_1 - H_{ballast}) \times \gamma_t) = k_{0,M1} \times [H_{ballast} \times \gamma_{ballast} + (h_1 - H_{ballast}) \times \gamma_t) = k_{0,M1} \times [H_{ballast} \times \gamma_{ballast} + (h_1 - H_{ballast}) \times \gamma_t) = k_{0,M1} \times [H_{ballast} \times \gamma_{ballast} + (h_1 - H_{ballast}) \times \gamma_t) = k_{0,M1} \times [H_{ballast} \times \gamma_{ballast} + (h_1 - H_{ballast}) \times \gamma_t) = k_{0,M1} \times [H_{ballast} \times \gamma_{ballast} + (h_1 - H_{ballast}) \times \gamma_t) = k_{0,M1} \times [H_{ballast} \times \gamma_{ballast} + (h_1 - H_{ballast}) \times \gamma_t) = k_{0,M1} \times [H_{ballast} \times \gamma_{ballast} + (h_1 - H_{ballast}) \times \gamma_t) = k_{0,M1} \times [H_{ballast} \times \gamma_{ballast} + (h_1 - H_{ballast}) \times \gamma_t) = k_{0,M1} \times [H_{ballast} \times \gamma_{ballast} + (h_1 - H_{ballast}) \times \gamma_t) = k_{0,M1} \times [H_{ballast} \times \gamma_{ballast} + (h_1 - H_{ballast}) \times \gamma_t) = k_{0,M1} \times [H_{ballast} \times \gamma_{ballast} + (h_1 - H_{ballast}) \times \gamma_t) = k_{0,M1} \times [H_{ballast} \times \gamma_{ballast} + (h_1 - H_{ballast}) \times \gamma_t) = k_{0,M1} \times [H_{ballast} \times \gamma_{ballast} + (h_1 - H_{ballast}) \times \gamma_t) = k_{0,M1} \times [H_{ballast} \times \gamma_{ballast} + (h_1 - H_{ballast}) \times \gamma_t) = k_{0,M1} \times [H_{ballast} \times \gamma_{ballast} + (h_1 - H_{ballast}) \times \gamma_t) = k_{0,M1} \times [H_{ballast} \times \gamma_{ballast} + (h_1 - H_{ballast}) \times \gamma_t)$

	Progetto	Lotto	Coditica Documento	Rev.	Foglio
Doc. N.	INOR	12	E E2 CL RI89 04 001	Α	20 di 71

=
$$0.4264 \times [(0.80 \times 20 + (1.13 - 0.80) \times 20] = 10.23 \text{ kN/m}^2$$

• Pressione in asse soletta inferiore:

$$\begin{split} &P_2 \; (h_2 = 1.13 + 0.30 + 1.70 + 0.35 / 2 = 3.31 m) = P_1 + k_{0,M1} \times (h_2 - h_1) \times \gamma_t = \\ &= 10.23 + 0.4264 \; x \; (3.31 - 1.28) \; x \; 20 = \textbf{27.50 kN/m}^2 \end{split}$$

<u>Approccio 1 – Combinazione 2</u>

• Pressione in asse soletta superiore:

$$\begin{split} &P_1 \; (h_1 = 1.13 + 0.30/2 = 1.28 m) = k_{0,M2} \times [H_{ballast} \times \gamma_{ballast} + (h_1 - H_{ballast}) \times \gamma_t \;) = \\ &= 0.5113 \times [(0.80 \times 20 + (1.13 - 0.80) \times 20] = \textbf{12.27 kN/m}^2 \end{split}$$

• Pressione in asse soletta inferiore:

$$\begin{split} &P_2 \; (h_2 = 1.13 + 0.30 + 1.70 + 0.35 / 2 = 3.31 m) = P_1 + k_{0,M2} \times (h_2 - h_1) \times \gamma_t = \\ &= 12.27 + 0.5113 \; x \; (3.31 - 1.28) \; x \; 20 = \textbf{32.98 kN/m}^2 \end{split}$$

9.4. Azioni termiche e ritiro (Load $6 \div 9$)

Sono stati considerati gli effetti dovuti alle variazioni termiche. In particolare, è stata considerata una variazione termica uniforme di ±15° C sulla soletta superiore (Load 6 e Load 7), ed un salto termico di 5°C (analizzando i due casi di intradosso più caldo dell'estradosso e viceversa), con andamento lineare nello spessore della soletta superiore (Load 8 e Load 9).

Il valore applicato della variazione termica uniforme viene ridotto di 1/3 per considerare gli effetti viscosi del calcestruzzo, ed è quindi pari a $\pm 5^{\circ}$ C.

Per il coefficiente di dilatazione termica si assume:

$$\alpha = 10 * 10^{-6} = 0.00001 \, ^{\circ}\text{C}^{-1}$$

Ritiro

Gli effetti del ritiro vanno valutati a "lungo termine" attraverso il calcolo dei coefficienti di ritiro finale ε_{cs} (t,t₀) e di viscosità ϕ (t, t₀), come definiti nell'EC 2- UNI EN 1992-1-1 Novembre 2005 e D. M.14-01-2008.

L'analisi delle sollecitazioni viene svolta per una striscia di larghezza unitaria della sola soletta superiore, assumendo la dimensione convenzionale h_0 pari a $2 \times A/u = 2 \times H = 60$ cm, ed un calcestruzzo C32/40 classe N.

Caratteristiche della sezione:

B = 100 cm

H = 30 cm

Deformazione da ritiro:

$$U.R. = 75\%$$

$$\varepsilon_{ca} (t = \infty) = 2.5 \times (f_{ck} - 10) \times 10^{-6} = 2.5 \times (0.83 \times 40 - 10) \times 10^{-6} = 0.058 \%$$

$$\varepsilon_{cd}(t=\infty) = k_h \times \varepsilon_{cd,0} = 0.7 \times 0.32$$
 % = 0.22 % (per calcestruzzo C32/40 classe N, U.R.=75%)

$$\varepsilon_r = \varepsilon_{ca} + \varepsilon_{cd} = 0.278 \%$$

Effetto viscosità:

Il modulo viscoso a tempo infinito, in considerazione del valore di h_0 , della resistenza del calcestruzzo e della U.R., può cautelativamente essere assunto pari a ϕ ($t = \infty$) = 2.5.

GENERAL CONTRACTOR Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Documento Rev. Foglio INOR 12 E E2 CL RI89 04 001 A 21 di 71

Il ritiro viene considerato nel calcolo delle sollecitazioni come un'azione termica applicata alla soletta superiore di intensità pari a:

$$\alpha \times \Delta T \times E_c = -\epsilon_r \times E_c / (1 + \phi)$$

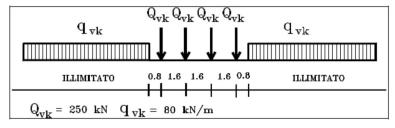
$$\Delta T = -\varepsilon_r / [\alpha \times (1 + \phi)] = -0.278 \% / [10 \times 10^{-6} \times (1 + 2.5)] = -7.94 \cong -10 \text{ °C}.$$

L'azione termica viene combinata con le altre azioni solamente quando il suo contributo incrementa le sollecitazioni. Per semplicità di calcolo, essa si considera sommata all'azione termica uniforme negativa (**Load 7**), considerando quindi un'azione pari a:

$$\Delta T^{(-)} = -5 - 10 = -15 \, ^{\circ}\text{C}.$$

9.5. Carichi mobili verticali sulla soletta superiore (Load 10 e Load 11)

Detta L_d la *larghezza di diffusione del carico trasversale* dalla rotaia alla quota del piano medio della soletta di copertura, assumendo che detta diffusione avvenga con rapporto 4/1 lungo il ballast ed il terrapieno e 1/1 lungo le strutture in c.a., si ottiene, considerando 2.60 m la larghezza della traversina:


$$L_d = 2.60 + 2 \times ((H_r - 0.40)/4 + S_s/2) = 2.60 + 2 \times ((1.13 - 0.40)/4 + 0.30/2) = 3.265 \text{ m} < 4.00 \text{ m} \text{ (interasse binario)}$$

Incremento dinamico per linee con elevato standard manutentivo

Nel caso di scatolare con $1 \le 8m$ e $h \le 5m$ si assume $\phi_2 = 1.20$.

Treno LM71 (Load 10)

Il treno LM71 è schematizzato da quattro assi da 250 kN su una lunghezza di 6.4m e da un carico distribuito di 80 kN/m in entrambe le direzioni per una lunghezza illimitata.

Treno di carico LM71

Si determina la larghezza di diffusione in direzione longitudinale del singolo asse, considerando una larghezza della traversina pari a 0.25m:

$$L_1 = 0.25 + 2 \times ((1.12 - 0.40)/4 + 0.30/2) = 0.915 \text{ m} < 1.60 \text{ m}.$$

La lunghezza di ripartizione longitudinale risulta minore all'interasse delle traverse, si considera un'unica impronta di carico di lunghezza pari a $L_1 = 0.915 + 3 \times 1.60 = 5.715$ m.

Tutti i valori dei carichi suddetti dovranno essere moltiplicati per un coefficiente di adattamento " α ", variabile in ragione della tipologia dell'infrastruttura (ferrovie ordinarie, ferrovie leggere, metropolitane, ecc.).

Modello di carico	Coefficiente "a"
LM71	1.1
SW/0	1.1
SW/2	1.0

Coefficiente di adattamento " α " in funzione del modello di carico

Il carico equivalente distribuito relativo ai quattro assi vale:

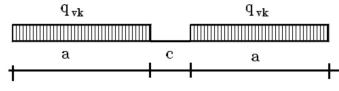
$$q_{equi} = 250 \times 4 / 5.715 = 174.98 \text{ kN/m}$$

GENERAL CONTRACTOR Cepav due ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE

ProgettoLottoCodifica DocumentoRev.FoglioDoc. N.11E E2 CL RI89 04 001A22 di 71

- in corrispondenza dei quattro assi da 250 kN

$$q_1 = \alpha \times q_{equi} \ / \ L_{d1} \times \phi_2 = 1.10 \times 174.98 \ / \ 3.265 \times 1.20 = \textbf{70.74 kN/m}^2$$


- in corrispondenza del carico q = 80 kN/m

$$q_2 = \alpha \times q / L_{d1} \times \phi_2 = 1.10 \times 80 / 3.265 \times 1.20 = 32.34 \text{ kN/m}^2$$
.

La lunghezza di diffusione del mezzo pesante è praticamente uguale alla larghezza lorda dello scatolare, si considererà pertanto un'unica condizione di carico con il mezzo pesante uniformemente distribuito su tutta la luce di calcolo (Load 10).

Treno SW/2 (Load 11)

Viene schematizzato da un carico uniformemente ripartito

Treno di carico SW

Tale carico schematizza gli effetti statici prodotti dal traffico ferroviario pesante.

L'articolazione del carico è mostrata nella figura sopra riportata e, per tale modello di carico, sono considerate due distinte configurazioni denominate SW/0 ed SW/2 (l'SW/0 va considerato solo per travi continue qualora più sfavorevole dell'LM71).

Treno di Carico	q _{vk} [kN/m]	a [m]	c [m]
SW/0	133	15.0	5.3
SW/2	150	25.0	7.0

Caratteristiche Treni di Carico SW

Per i manufatti scatolari in oggetto non si prende in considerazione il treno SW/0.

$$q_{vk} = 150 \text{ kN/m}$$

$$q = q_{vk} / L_d \times \phi_2 = 150 / 3.265 \times 1.20 = 55.13 \text{ kN/m}^2$$

Si considera il treno di carico SW/2 applicato su tutta la soletta superiore (Load 11).

9.6. Spinta del sovraccarico sul rilevato (Load 12 e Load 13)

<u> Approccio 1 – Combinazione 1</u>

Per quanto riguarda il carico del treno LM71, in considerazione della larghezza dello scatolare e della disposizione di carico assunta e precedentemente descritta, risulta agente a tergo dei piedritti il carico dovuta al mezzo pesante; si ha pertanto (Load 12):

$$p_1 = \alpha \times q / L_{d1} \times k_{0.M1} = 1.10 \times 174.98 / 3.265 \times 0.4264 = 25.14 \text{ kN/m}^2$$

Per il treno SW/2 si ottiene (Load 13):

$$p_2 = q_{vk} / L_{d1} \times k_{0,M1} = 150 / 3.265 \times 0.4264 = 19.59 \text{ kN/m}^2$$

Approccio 1 – Combinazione 2

GENERAL CONTRACTOR Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Documento Rev. Foglio

Per quanto riguarda il carico del treno LM71, in considerazione della larghezza dello scatolare e della disposizione di carico assunta e precedentemente descritta, risulta agente a tergo dei piedritti il carico dovuta al mezzo pesante; si ha pertanto (Load 12):

INOR

12

E E2 CL RI89 04 001

23 di 71

$$p_1 = \alpha \times q / L_{d1} \times k_{0,M2} = 1.10 \times 174.98 / 3.265 \times 0.5113 = 30.14 \text{ kN/m}^2$$

Per il treno SW/2 si ottiene (Load 13):

Doc. N.

$$p_2 = q_{vk} / L_{d1} \times k_{0,M2} = 150 / 3.265 \times 0.5113 = 23.49 \text{ kN/m}^2$$

Nel modello di calcolo si considera la spinta congruente al treno di carico verticale considerato. La spinta è applicata sul solo piedritto sinistro per massimizzare gli effetti di sbilanciamento della struttura.

9.7. Frenatura e avviamento (Load 14 e Load 15)

Le forze di frenatura e di avviamento agiscono sulla sommità del binario nella direzione longitudinale dello stesso.

I valori caratteristici da considerare sono i seguenti:

 $Q_{la,k} = 33 \text{ [kN/m]} \times L \text{ [m]} \leq 1000 \text{ kN}$ avviamento per modelli di carico LM71, SW/0 e SW/2

 $Q_{lb,k} = 20 \text{ [kN/m]} \times L \text{ [m]} \le 6000 \text{ kN}$ frenatura per modelli di carico LM71 e SW/0

 $Q_{lb,k} = 35 \text{ [kN/m]} \times L[m]$ frenatura per modello di carico SW/2

Treno LM71 – avviamento (Load 14)

$$Q_{avv,LM71} = 33.0 / L_d = 33.0 / 3.265 = 10.11 \text{ kN/m}^2$$

Tale valore viene incrementato per tenere conto della riduzione di lunghezza della soletta nel modello di calcolo:

$$Q_{avv,LM71} = 10.11 \times (2.40/2.05) = 11.83 \text{ kN/m}^2$$

Treno SW/2 – frenatura (Load 15)

$$Q_{fren.SW/2} = 35.0 / L_d = 35.0 / 3.265 = 10.72 \text{ kN/m}$$

Tale valore viene incrementato per tenere conto della riduzione di lunghezza della soletta nel modello di calcolo:

$$Q_{\text{fren,SW/2}} = 10.72 \times (2.40/2.05) = 12.55 \text{ kN/m}^2$$

Nel modello di calcolo si considera l'azione congruente al treno di carico verticale considerato. La spinta è applicata da sinistra verso destra per massimizzare gli effetti di sbilanciamento della struttura.

9.8. Sovraccarichi accidentali sulla soletta di fondazione

A favore di sicurezza si trascurano i carichi presenti sulla soletta di fondazione.

9.9. Serpeggio

Poiché l'asse del tombino è posto in retto rispetto all'asse ferroviario e poiché la sezione di calcolo è ortogonale all'asse del sottopasso, la forza longitudinale relativa al serpeggio risulta ortogonale al piano del telaio di calcolo: essa non dà perciò effetti nel modello e non viene quindi quantificata.

9.10. Forza centrifuga

L'asse ferroviario in corrispondenza del tombino non è in curva e quindi sulla struttura non agisce una forza centrifuga.

	Progetto	Lotto	Codifica Documento	Rev.	Foglio
Doc. N.	INOR	12	E E2 CL RI89 04 001	Α	24 di 71

9.11. Azione sismica (Load 16÷21)

La risultante delle forze inerziali orizzontali indotte dal sisma viene valutata con la seguente espressione:

$$F_h = P \times a_{gh}$$
;

$$F_v = P \times a_{gv}$$
;

P = peso proprio;

 a_g = accelerazioni sismiche al suolo.

 $a_{gh} = 0.272$ g, accelerazione orizzontale;

 $a_{gv} = 0.151$ g, accelerazione verticale.

Per tener conto dell'incremento di spinta del terreno dovuta al sisma si fa riferimento all'EC8-5, appendice E – "Analisi semplificata per le strutture di contenimento", punto 9 – "Forze causate dalla spinta del terreno per strutture rigide", in cui l'incremento di spinta sismica ΔP per la condizione a riposo viene valutato come:

$$\Delta P_d = S \cdot a_g / g \cdot \gamma \cdot h_{tot}^2$$

La risultante di tale incremento di spinta (**Load 16**) viene considerata uniformemente distribuita su tutta l'altezza della sezione verticale rigida di riferimento h_{tot}:

$$\Delta p_d = S \cdot a_g / g \cdot \gamma \cdot h_{tot} = 0.272 \times 20.0 \times 3.48 = 18.96 \text{ kN/m}^2.$$

Per tenere in conto della metà dello spessore della soletta superiore che non è modellata che subisce la forza sismica, il carico applicato alla struttura risulta pari a:

$$\Delta p_{d,incr} = \Delta p_d \times (H_{interna} + S_s + S_i) / (H_{interna} + S_s/2 + S_i) = 18.96 \times 2.18 / 2.03 = 20.36 \text{ kN/m}^2$$

Ai fini del calcolo delle azioni sismiche orizzontali dovute all'inerzia degli elementi strutturali si considera sulla soletta superiore anche l'inerzia dovuta alla presenza del rilevato (Load 17):

Piedritti:
$$\Delta p_{p,h} = \gamma_{c,a} \times S_p \times a_{gh} = 25 \times 0.35 \times 0.272$$
 = 2.38 kN/m²

Soletta:
$$\Delta p_{s,h} = (\gamma_{c,a} \times S_s + G_{sovracc}) \times a_{gh} = (25 \times 0.30 + 22.32) \times 0.272 = 8.12 \text{ kN/m}^2$$

Sulla soletta superiore sono presenti alternativamente i treno di carico LM71 e SW/2 dei quali si considera l'inerzia della massa ad essi associata (Load 18 e Load 19).

Considerando inoltre che le N.T.C. assegnano alle masse derivanti dal carico mobile un coefficiente di combinazione $\psi_2 = 0.20$, l'effetto inerziale del treno di carico LM71 (**Load 18**) vale:

$$\Delta p_{LM71,h} = 70.74 \times 0.20 \times 0.272 = 3.85 \text{ kN/m}^2$$

Tale valore viene incrementato per tenere conto della riduzione di lunghezza della soletta nel modello di calcolo:

$$\Delta p_{LM71,h} = 3.85 \times (2.40/2.05)$$
 = 4.51 kN/m²

Analogamente, l'effetto inerziale del treno di carico SW/2 (Load 19) vale:

$$\Delta p_{SW/2,h} = 55.13 \times 0.20 \times 0.272 = 3.00 \text{ kN/m}^2$$

Tale valore viene incrementato per tenere conto della riduzione di lunghezza della soletta nel modello di calcolo:

$$\Delta p_{SW/2,h} = 3.00 \times (2.40/2.05)$$
 = 3.52 kN/m².

GENERAL CONTRACTOR Cepav due

 Progetto
 Lotto
 Codifica Documento
 Rev.
 Foglio

 Doc. N.
 INOR
 12
 E E2 CL RI89 04 001
 A
 25 di 71

Ai fini del calcolo delle azioni sismiche verticali dovute all'inerzia degli elementi strutturali si considera sulla soletta superiore anche l'inerzia dovuta alla presenza del rilevato. Le azioni verticali si considerano alternativamente agenti verso l'alto o verso il basso (Load 20, Load 21):

Piedritti: $\Delta p_{p,v} = \pm \gamma_{c.a.} \times S_p \times a_{gv} = \pm 25 \times 0.35 \times 0.151$ $= \pm 1.32 \text{ kN/m}^2$

Soletta: $\Delta p_{s,v} = \pm (\gamma_{c.a.} \times S_s + G_{sovracc}) \times a_{gv} = \pm (25 \times 0.30 + 22.32) \times 0.151 = \pm 4.50 \text{ kN/m}^2$

Sulla soletta superiore sono presenti alternativamente i treno di carico LM71 e SW/2 dei quali si considera l'inerzia della massa ad essi associata (Load 22÷25). Le azioni verticali si considerano alternativamente agenti verso l'alto o verso il basso.

L'inerzia del treno LM71 si considera uniformemente distribuito sulla soletta superiore (Load 22 e Load 23):

$$\Delta p_{LM71,v} = \pm 70.74 \times 0.20 \times 0.151$$
 = $\pm 2.14 \text{ kN/m}^2$

L'inerzia del treno SW/2 si considera uniformemente distribuito sulla soletta superiore (Load 24 e Load 25):

$$\Delta p_{SW/2,v} = \pm 55.13 \times 0.20 \times 0.151$$
 = $\pm 1.66 \text{ kN/m}^2$

9.12. Riepilogo dei carichi sollecitanti

Nella seguente tabella vengono riportati i valori delle sollecitazioni per i singoli casi di carico, determinati come sopra riportato.

	Soletta superiore	7,50	kN/m ²
Load 1	Piedritti	8,75	kN/m ²
	Soletta inferiore	8,75	kN/m²
Load 2	Sovraccarico permanente	7,92	kN/m ²
Load 3	Ballast	14,40	kN/m ²
Load 4, Load 5 (con M1)	P1	10,23	kN/m ²
Loud 4, Loud 3 (con M1)	P2	27,50	kN/m ²
Load 4, Load 5 (con M2)	P1	12,27	kN/m²
Loud 4, Loud 5 (con M2)	P2	32,98	kN/m²
Load 6	T	5	°C
Load 7	T + ritiro	-15	°C
Load 8	ΔΤ	16,67	°C/m
Load 9	ΔΤ	-16,67	°C/m
Load 10	qLM71	70,74	kN/m ²
Load 11	qsw/2	55,13	kN/m ²
Load 12 (con M1)	рьм71	25,14	kN/m ²
Load 12 (con M2)	p _{LM71}	30,14	kN/m ²
Load 13 (con M1)	psw/2	19,59	kN/m²
Load 13 (con M2)	psw/2	23,49	kN/m²
Load 14	Qavv,LM71	11,83	kN/m ²
Load 15	Qfren,SW/2	12,55	kN/m ²
Load 16	$\Delta p_{ m d,inc}$	20,36	kN/m ²
Load 17	$\Delta p_{ m p,h}$	2,38	kN/m ²
Loui 17	$\Delta p_{\mathrm{s,h}}$	8,12	kN/m ²
Load 18	$\Delta p_{\text{LM71,h}}$	4,51	kN/m ²
Load 19	$\Delta p_{SW/2,h}$	3,52	kN/m ²
Load 20	$\Delta p_{p,v^+}$	1,32	kN/m ²
Loui 20	$\Delta p_{s,v^+}$	4,50	kN/m ²
Load 21	$\Delta p_{ m p,v}$ -	-1,32	kN/m ²
Loui 21	$\Delta p_{ m s,v}$ -	-4,50	kN/m ²
Load 22	Δ p _{LM71,v+}	2,14	kN/m ²
Load 23	$\Delta p_{\rm SW/2,v-}$	-2,14	kN/m ²
Load 24	Δрιм71,ν+	1,66	kN/m²
Load 25	Δpsw/2,v-	-1,66	kN/m ²

10. CALCOLO DELLE SOLLECITAZIONI

Gli effetti dei carichi verticali dovuti alla presenza dei convogli vanno sempre combinati con le altre azioni derivanti dal traffico ferroviario, adottando i coefficienti indicati in Tab. 5.2.IV (NTC).

	Azioni verticali	Frenatura e avviamento	
Gruppo 1	1	0.50	Rara e frequente
Gruppo 3	1(0,5)	1.00	Rara e frequente
Gruppo 4	0.80	0.80	Fessurazione

Per le verifiche agli stati limite ultimi si adottano i valori dei coefficienti parziali in Tab. 5.2.V e i coefficienti di combinazione Ψ in Tab. 5.2.VI (NTC).

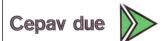
Per le verifiche agli stati limite d'esercizio si adottano i valori dei coefficienti parziali in Tab. 5.2.VI (NTC).

10.1. Condizioni e combinazioni di carico adottate

Le condizioni elementari di carico considerate sono di seguito riassunte:

Load	Tipo	Carico
1	Ggk	Peso proprio della struttura
2	Gk	Peso rilevato
3	Gk	Peso ballast
4	Gk	Spinta terre da sinistra
5	Gk	Spinta terre da destra
6	Qk	Carico termico positivo uniforme
7	Qk	Carico termico negativo uniforme
8	Qk	Carico termico variabile +/-
9	Qk	Carico termico variabile -/+
10	Qk	Carico LM71 centrale
11	Qk	Carico SW/2
12	Qk	Spinta LM71 su piedritto sx
13	Qk	Spinta SW/2 su piedritto sx
14	Qk	Avviamento LM71
15	Qk	Frenatura SW/2
16	Qk	Incremento dinamico terreno
17	Qk	Azioni sismiche inerziali orizzontali da permanenti
18	Qk	Azioni sismiche inerziali orizzontali da LM71
19	Qk	Azioni sismiche inerziali orizzontali da SW/2
20	Qk	Azioni sismiche inerziali verso alto da permanenti
21	Qk	Azioni sismiche inerziali verso basso da permanenti
22	Qk	Azioni sismiche inerziali verso alto da LM71
23	Qk	Azioni sismiche inerziali verso basso da LM71
24	Qk	Azioni sismiche inerziali verso alto da SW/2
25	Qk	Azioni sismiche inerziali verso basso da SW/2

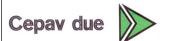
 Progetto
 Lotto
 Codifica Documento
 Rev.
 Foglio


 Doc. N.
 INOR
 12
 E E2 CL RI89 04 001
 A
 28 di 71

I carichi caratteristici sopra elencati, al fine di ottenere le sollecitazioni di progetto per effettuare le successive verifiche, sono opportunamente combinati fra loro.

I valori numerici riportati nelle colonne delle seguenti tabelle di combinazione indicano il coefficiente moltiplicativo con il quale la condizione elementare è considerata. Tali valori sono il risultato dei prodotti tra coefficienti parziali operanti sulle azioni.

10.1.1. Combinazioni SLU di tipo STR


The color of the																	
1																	
1																5	_
1						*	× .							171	V/2	nen	甘口
1	CC		بي	yat	llast	ra S	ra d	E E	l ji	<u>+</u>	Ļ	171	V/2	1	S	via.	eu a
1	o _n		~	👸	Ba	ler	Le L	÷	Ë	<u> </u>	Ď	🖆	5	<u>:</u>	inta	l av	/2 fr
1						,								S _p	S _c	M7	SW.
1																	0.1
1			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
3	1										0						
A							ı		I		1		ı	1	1		
S															1		
6 GR1-1 1,35 1,35 1,5 1,35 1,0 9,0 0,9 0 0,145 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0									1		1						
8 GR3-1 1,35 1,35 1,5 1,35 1,0 9,0 0,0,9 0 0,0,8 0 0,5,8 0 0 1,45 0 0,10 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1	6	GR1-1		1,35	1,5		1				0	1,45	0	1,45	0	0	0
9 GR3-2 1,35 1,35 1,5 1,35 1,5 1,35 1,09 0 0,9 0 0,145 0 0 0 0 0,05 10 GR1-1 1,35 1,35 1,5 1,35 1 0,9 0 0,9 0 0 0,45 0 0 0 0 0,58 12 GR3-1 1,35 1,35 1,5 1,35 1 0,9 0 0,9 0 0 0 1,45 0 0 0 0 0,58 13 GR3-2 1,35 1,35 1,5 1,35 1 0,9 0 0,9 0 0 0 1,45 0 0 0 0 0,44 14 GR1-1 1,35 1,35 1,5 1,35 1 0,9 0 0,9 0 0 0 1,45 0 0 0 0 1,45 15 GR1-2 1,35 1,35 1,5 1,35 1 0,9 0 0,9 0 0 0 1,45 0 0 0 0 1,45 16 GR3-1 1,35 1,35 1,5 1,35 1 0,9 0 0,9 0 0 0 0,58 0											1			1 '		,	
10 GR1-1 1,35 1,35 1,5 1,35 1 0,9 0 0,9 0 0 0 1,45 0 0 0 0 0 0 0 0 0	1 1						ı				1	1 -		1 '			1 1
12 13 135 1,35 1,5 1,5 1,35 1 0,9 0 0,9 0 0 0,58 0 0 0 1,45 14 1,35 1,35 1,5 1,35 1 0,9 0 0,9 0 0 0 1,45 0 0 0 1,45 15 14 135 1,35 1,5 1,35 1 0,9 0 0,9 0 0 0 1,45 0 0,58 0											1				-		
13 GR3-2 1,35 1,35 1,5 1,35 1 0,9 0 0,9 0 0 1,16 0 0 0 1,45 0 0 0 0 0 0 0 0 0				1,35	1,5	1,35				0,9	1	1	,	1		l .	
14 GR1-1 1,35 1,35 1,5 1,35 1 0,9 0 0,9 0 0 0 1,45 0 1,45 0 0 0,58 1,45 1,35											1						
15 GR1-2 1,35 1,35 1,35 1,35 1 0,9 0 0,9 0 0 0,58 0 0,58 0 0,58 0 1,45 1,4							1				1		-				_
17 GR3-2 1,35 1,35 1,55 1,35 1 0,9 0 0,9 0 0 0,1,16 0 1,16 0 1,45	1 .						ı				1	1			1 '		
18											1				1 -		
19		GR3-2					l .			-					1 -		
20		GR1-1									1		1		1		
22 GR3-2 1,35 1,35 1,5 1,35 1 0 0,9 0,9 0 1,16 0 0 0 1,45 0 0 0 0 0 0 0 0 0									1 '		1		1				
23 GR1-1 1,35 1,35 1,5 1,5 1,35 1 0 0,9 0,9 0,9 0 1,45 0 1,45 0 0,58 0 0											1				-		
24 GR1-2 1,35 1,35 1,5 1,35 1,5 1,35 1 0 0,9 0,9 0 1,45 0 0,58 0 25 GR3-1 1,35 1,35 1,5 1,35 1 0 0,9 0 0,58 0 0,58 0 1,45 0 26 GR3-2 1,35 1,35 1,5 1,35 1 0 0,9 0 0 1,16 0 1,45 0 28 GR1-2 1,35 1,35 1,5 1,35 1 0 0,9 0 0 1,45 0 0 0 0,58 0 0 0,58 29 GR3-1 1,35 1,35 1,5 1,35 1 0 0,9 0 0 1,45 0 0 0,58 30 GR3-2 1,35 1,5 1,35 1 0 0,9 0 0 1,45 0											1					_	1 1
25	1						l .				1			1 '		1	
27											1		1	1 '			
28 GR1-2 1,35 1,35 1,5 1,35 1,0 1,35 1 0 0,9 0,9 0 0 0 1,45 0 0 0 0,58 29 GR3-1 1,35 1,5 1,35 1,5 1,35 1 0 0,9 0,9 0 0 0 0,58 0 0 0 0 1,45 30 GR3-2 1,35 1,35 1,5 1,35 1 0 0,9 0,9 0 0 0 1,45 0 1,45 0 0 0 1,45 31 GR1-1 1,35 1,35 1,5 1,35 1 0 0,9 0,9 0 0 0 1,45 0 1,45 0 0,58 33 GR3-2 1,35 1,35 1,5 1,35 1 0 0,9 0,9 0 0 0 1,45 0 1,45 0 0,58 33 GR3-1 1,35 1,35 1,5 1,35 1 0 0,9 0,9 0 0 0 0,58 0 0,58 0 1,45 34 GR3-2 1,35 1,35 1,5 1,35 1 0 0,9 0,9 0 0 0 0,58 0 0,58 0 1,45 34 GR3-2 1,35 1,35 1,5 1 1 1 1,5 0 1,5 0 0 0 0 0 0 0 0 0 0 0 0 0							ı		1 '		1					_	1 1
29 GR3-1 1,35 1,35 1,5 1,35 1 0 0,9 0,9 0 0 0,58 0 0 0 1,45 30 GR3-2 1,35 1,35 1,5 1,35 1 0 0,9 0,9 0 0 1,46 0 0 1,45 0 0 1,45 0 0 1,45 0 0 1,45 0 0 0 1,45 0 0,58 0 0 0 0 1,45 0 0,58 0 0,58 0 0,58 0 0,58 0 0,58 0 0,58 0 0,58 0 0,58 0 0,58 0 0,58 0 0,58 0 0,58 0 0,58 0 0,58 0 0,58 0 0,58 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td>1 1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>i</td> <td>1</td> <td></td> <td></td> <td></td> <td>ı</td> <td></td>	1 1										i	1				ı	
30 GR3-2 1,35 1,35 1,5 1,35 1 0 0 0,9 0,9 0,9 0 0 1,45 0 1,45 0 0 0 1,45							1				-				-	ı	
32 GR1-2 1,35 1,35 1,5 1,35 1 0 0,9 0,9 0 0 1,45 0 1,45 0 0,58 33 GR3-1 1,35 1,35 1,5 1,35 1 0 0,9 0,9 0 0 0,58 0 0,58 34 GR3-2 1,35 1,35 1,5 1,35 1,5 1 0 0,9 0,9 0 0 1,16 0 1,45 35 1,35 1,35 1,5 1 1 1,5 0							1				1						
33 GR3-1 1,35 1,35 1,5 1,35 1,5 1 0 0,9 0,9 0,9 0 0,58 0 0,58 0 1,45 34 GR3-2 1,35 1,35 1,5 1,5 1 1 0,9 0,9 0,9 0 0,9 0 1,45 0 0 0 0 0,58 36 GR1-1 1,35 1,35 1,5 1 1 0,9 0 0,9 0 0,9 0 1,45 0 0 0 0 0,58 37 GR1-2 1,35 1,35 1,5 1 1 0,9 0 0,9 0 1,45 0 0 0 0 0,58 38 GR3-1 1,35 1,35 1,5 1 1 0,9 0 0,9 0 1,45 0 0 0 0 0,58 39 GR3-2 1,35 1,35 1,5 1 1 0,9 0 0,9 0 1,45 0 0 0 0 1,45 0 40 GR1-1 1,35 1,35 1,5 1 1 0,9 0 0,9 0 1,45 0 0 0 0 1,45 0 40 GR1-1 1,35 1,35 1,5 1 1 0,9 0 0,9 0 1,45 0 1,45 0 0 0 41 GR1-2 1,35 1,35 1,5 1 1 0,9 0 0,9 0 1,45 0 1,45 0 0,58 0 42 GR3-1 1,35 1,35 1,5 1 1 0,9 0 0,9 0 1,45 0 1,45 0 0,58 0 43 GR3-2 1,35 1,35 1,5 1 1 0,9 0 0,9 0 1,45 0 1,45 0 0,58 0 44 GR1-1 1,35 1,35 1,5 1 1 0,9 0 0,9 0 1,45 0 1,45 0 0,58 0 45 GR1-2 1,35 1,35 1,5 1 1 0,9 0 0,9 0 0,9 0 1,16 0 1,16 0 1,45 0 46 GR3-1 1,35 1,35 1,5 1 1 0,9 0 0,9 0 0,9 0 1,45 0 0 1,45 0 0,58 0 47 GR3-2 1,35 1,35 1,5 1 1 0,9 0 0,9 0 0,9 0 1,16 0 1,16 0 1,16 0 1,45 0 48 GR1-1 1,35 1,35 1,5 1 1 0,9 0 0,9 0 0 0,9 0 0 1,45 0 0 0 0,9 0 48 GR1-2 1,35 1,35 1,5 1 1 0,9 0 0,9 0 0 0,9 0 0 1,45 0 0 0 0,9 0 48 GR1-1 1,35 1,35 1,5 1 1 1 0,9 0 0,9 0 0 0,9 0 0 1,45 0 0 0 0 0,9 0 48 GR1-1 1,35 1,35 1,5 1 1 1 0,9 0 0,9 0 0 0,9 0 0 1,45 0 0 0 0 0,9 0 0 0 0																	
34 GR3-2 1,35 1,35 1,5 1,35 1,5 1 0 0,9 0,9 0 0 1,16 0 1,16 0							l .				1		_	1	1 -		
35 1,35 1,35 1,5 1 1 1,5 0 1,5 0							ı				i				1 -		-
37 GR1-2 1,35 1,35 1,5 1 1 0,9 0 0,9 0 1,45 0 0 0,58 0 38 GR3-1 1,35 1,35 1,5 1 1 0,9 0 0,9 0 0,58 0 0 0 1,45 0 39 GR3-2 1,35 1,35 1,5 1 1 0,9 0 0,9 0 1,16 0 0 0 1,45 0 40 GR1-1 1,35 1,35 1,5 1 1 0,9 0 0,9 0 1,45 0 0 0 41 GR1-2 1,35 1,35 1,5 1 1 0,9 0 0,9 0 1,45 0 0,58 0 0,58 0 1,45 0 0 0,58 0 1,45 0 0 0,44 GR1-1 1,35 1,35 1,5 1 </td <td>35</td> <td></td> <td></td> <td>1,35</td> <td>1,5</td> <td></td> <td>1</td> <td>1,5</td> <td></td> <td></td> <td>d .</td> <td>_</td> <td></td> <td>0</td> <td></td> <td>0</td> <td></td>	35			1,35	1,5		1	1,5			d .	_		0		0	
38 GR3-1 1,35 1,35 1,5 1 1 0,9 0 0,9 0 0,58 0 0 0 1,45 0 39 GR3-2 1,35 1,35 1,5 1 1 0,9 0 0,9 0 1,16 0 0 0 1,45 0 40 GR1-1 1,35 1,35 1,5 1 1 0,9 0 0,9 0 1,45 0 0 0 41 GR1-2 1,35 1,35 1,5 1 1 0,9 0 0,9 0 1,45 0 0,58 0 0,58 0 0,58 0 0,58 0 0,58 0 0,58 0 0,58 0 0,58 0 1,45 0 0 4 4 GR1-1 1,35 1,35 1,5 1 1 0,9 0 0,9 0 0 1,45 0 0						1					1				1		
39 GR3-2 1,35 1,35 1,5 1 1 0,9 0 0,9 0 1,16 0 0 0 1,45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							1				1		1				
40 GR1-1 1,35 1,35 1,5 1 1 0,9 0 0,9 0 1,45 0 1,45 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>1</td> <td></td> <td></td> <td></td> <td>1</td> <td>1 .</td> <td></td> <td></td> <td></td> <td></td> <td></td>						1	1				1	1 .					
42 GR3-1 1,35 1,35 1,5 1 1 0,9 0 0,9 0 0,58 0 0,58 0 1,45 0 43 GR3-2 1,35 1,35 1,5 1 1 0,9 0 0,9 0 0,58 0 1,45 0 44 GR1-1 1,35 1,35 1,5 1 1 0,9 0 0,9 0 0 1,45 0 0 0 45 GR1-2 1,35 1,35 1,5 1 1 0,9 0 0,9 0 0 1,45 0					1,5	1					-	1,45		1 '	-		
43 GR3-2 1,35 1,35 1,5 1 1 0,9 0 0,9 0 1,16 0 1,16 0 1,45 0 44 GR1-1 1,35 1,35 1,5 1 1 0,9 0 0,9 0 0 1,45 0 0 0 0 45 GR1-2 1,35 1,35 1,5 1 1 0,9 0 0,9 0 0 1,45 0 0 0 0,58 46 GR3-1 1,35 1,35 1,5 1 1 0,9 0 0,9 0 0 0,58 0 0 0 1,45 47 GR3-2 1,35 1,35 1,5 1 1 0,9 0 0,9 0 0 1,16 0 0 1,45 48 GR1-1 1,35 1,35 1,5 1 1 0,9 0 0,9 0													-				
44 GR1-1 1,35 1,35 1,5 1 1 0,9 0 0,9 0 0 1,45 0											1				1		
46 GR3-1 1,35 1,35 1,5 1 1 0,9 0 0,9 0 0,58 0 0 0 1,45 47 GR3-2 1,35 1,35 1,5 1 1 0,9 0 0,9 0 0 1,16 0 0 0 1,45 48 GR1-1 1,35 1,35 1,5 1 1 0,9 0 0,9 0 0 1,45 0 1,45 0 0 0 0 1,45 0 0 0 0 0 1,45 0 0 0 0 1,45 0	1 1	GR1-1					1				1			1			
47 GR3-2 1,35 1,35 1,5 1 1 0,9 0 0,9 0 0 1,16 0 0 0 1,45 0 0 1,45 0 0 0 1,45 0 0 0 1,45 0 0 0 0 1,45 0 0 0 0 0 1,45 0 0 0 0 0 0 1,45 0 0 0 0 0 0 0 1,45 0 0 0 0 0 0 1,45 0 1,45 0 <	1 1						ı				1	i i	_	1	_	l	
48 GR1-1 1,35 1,35 1,5 1 1 0,9 0 0,9 0 0 1,45 0 1,45 0 0 0 0 0 1,45 0 1,45 0 0,58 0 0,58 0 0,58 0 0,58 0 0,58 0 0,58 0 0,58 0 1,45 0 1,45 0 0,58 0 0,58 0 0,58 0 1,45 0 0,58 0 1,45 0 0,58 0 1,45 0 0,58 0 1,45 0 0,58 0 1,45 0 0 0,58 0 0,58 0 1,45 0 0 0,58 0 1,45 0 0 0 0 0 0 1,45 0 0 1,45 0 0 1,45 0 0 1,45 0 0 0 0 0 0 0 0 <td>1 1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td>	1 1						1				-				-		
49 GR1-2 1,35 1,35 1,5 1 1 0,9 0 0,9 0 0 1,45 0 1,45 0 0,58 50 GR3-1 1,35 1,35 1,5 1 1 0,9 0 0,9 0 0 0,58 0 0,58 0 1,45 51 GR3-2 1,35 1,35 1,5 1 1 0,9 0 0,9 0 0 1,16 0 1,16 0 1,45 52 1,35 1,35 1,5 1 1 0 1,5 1,5 0	1 1						1				1		-				_
51 GR3-2 1,35 1,35 1,5 1 1 0,9 0 0,9 0 0,1,16 0 1,16 0 1,16 0 1,45 52 1,35 1,35 1,5 1 1 0 1,5 1,5 0 </td <td>49</td> <td>GR1-2</td> <td>1,35</td> <td>1,35</td> <td>1,5</td> <td>1</td> <td>1</td> <td>0,9</td> <td>0</td> <td>0,9</td> <td>0</td> <td>0</td> <td>1,45</td> <td></td> <td>1,45</td> <td>0</td> <td>0,58</td>	49	GR1-2	1,35	1,35	1,5	1	1	0,9	0	0,9	0	0	1,45		1,45	0	0,58
52 1,35 1,35 1,5 1 1 0 1,5 1,5 0 0 0 0 0 0 0 53 GR1-1 1,35 1,35 1,5 1 1 0 0,9 0,9 0 1,45 0 0 0 0 0 0 54 GR1-2 1,35 1,35 1,5 1 1 0 0,9 0,9 0 1,45 0 0 0 0,58 0											1				1 -		
53 GR1-1 1,35 1,35 1,5 1 1 0 0,9 0,9 0 1,45 0 0 0 0 0 0 0 0 0 0 0,58 0 0 0 0 0,58 0 0 0 0 0,58 0 0 0 0 0 0 0,58 0		GR3-2									1			1			
54 GR1-2 1,35 1,35 1,5 1 1 0 0,9 0,9 0 1,45 0 0 0 0,58 0		GR1-1				1	1			_			1		1		
55 GR3-1 1,35 1,35 1,5 1 1 0 0,9 0,9 0 0,58 0 0 0 1,45 0	54	GR1-2	1,35	1,35	1,5	1	1		0,9		0	1,45	0	1	0		0
	55	GR3-1	1,35	1,35	1,5	1	1	0	0,9	0,9	0	0,58	0	0	0	1,45	0

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 12 E E2 CL RI89 04 001 A 29 di 71

						1		1						1	1	
															身	ge.
					xs	<u>×</u>							Spinta LM71	Spinta SW/2	LM71 avviamento	SW/2 frenatura
n° CC		4.P	Rilevato	Ballast	la S	Terra dx	T+ unif	T- unif	+ -	Ė	LM71	SW/2	5	S	- Zi	eua.
°		~	Rile	Bal	Terra		±	į.	DT	DT	5	5	l ta	ints	å	2 fr
			-			-							Spi	Sp	M71	/W.
																3 2
			_	_		_	_	_	_	<u> </u>						
	0000	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
56 57	GR3-2 GR1-1	1,35 1,35	1,35 1,35	1,5 1,5	1	1	0	0,9 0,9	0,9 0,9	0	1,16 1,45	0	0 1,45	0	1,45 0	0
58	GR1-1	1,35	1,35	1,5	i	i	0	0,9	0,9	ő	1,45	ő	1,45	0	0,58	0
59	GR3-1	1,35	1,35	1,5	1	1	0	0,9	0,9	0	0,58	Ō	0,58	0	1,45	0
60	GR3-2	1,35	1,35	1,5	1	1	0	0,9	0,9	0	1,16	0	1,16	0	1,45	0
61	GR1-1	1,35	1,35	1,5	1	1	0	0,9	0,9	0	0	1,45	0	0	0	0
62 63	GR1-2 GR3-1	1,35 1,35	1,35 1,35	1,5 1,5	1	1	0	0,9 0,9	0,9 0,9	0	0	1,45 0,58	0	0	0	0,58 1,45
64	GR3-2	1,35	1,35	1,5	1	1	Ŏ	0,9	0,9	Ö	ő	1,16	Ö	Ö	ő	1,45
65	GR1-1	1,35	1,35	1,5	1	1	0	0,9	0,9	0	0	1,45	0	1,45	0	Ô
66	GR1-2	1,35	1,35	1,5	1	1	0	0,9	0,9	0	0	1,45	0	1,45	0	0,58
67	GR3-1	1,35	1,35	1,5 1.5	1	1	0	0,9	0,9	0	0	0,58	0	0,58	0	1,45
68 69	GR3-2	1,35 1,35	1,35 1,35	1,5 1,5	1,35	1	0 1,5	0,9 0	0,9 0	1,5	0	1,16 0	0	1,16 0	0	1,45 0
70	GR1-1	1,35	1,35	1,5	1,35	1	0,9	Ö	Ö	0,9	1,45	0	0	ő	0	o
71	GR1-2	1,35	1,35	1,5	1,35	1	0,9	0	0	0,9	1,45	0	0	0	0,58	0
72	GR3-1	1,35	1,35	1,5	1,35	1	0,9	0	0	0,9	0,58	0	0	0	1,45	0
73 74	GR3-2 GR1-1	1,35 1,35	1,35 1,35	1,5 1,5	1,35 1,35	1	0,9 0,9	0	0	0,9 0,9	1,16 1,45	0	0 1,45	0	1,45 0	0 0
75	GR1-1	1,35	1,35	1,5	1,35	i	0,9	ő	ő	0,9	1,45	ŏ	1,45	0	0,58	0
76	GR3-1	1,35	1,35	1,5	1,35	1	0,9	0	0	0,9	0,58	0	0,58	0	1,45	0
77	GR3-2	1,35	1,35	1,5	1,35	1	0,9	0	0	0,9	1,16	0	1,16	0	1,45	0
78	GR1-1	1,35	1,35	1,5	1,35	1	0,9	0	0	0,9	0	1,45	0	0	0	0
79 80	GR1-2 GR3-1	1,35 1,35	1,35 1,35	1,5 1,5	1,35 1,35	1	0,9 0,9	0	0	0,9 0,9	0	1,45 0,58	0	0	0	0,58 1,45
81	GR3-1	1,35	1,35	1,5	1,35	i	0,9	ő	ŏ	0,9	0	1,16	Ö	Ö	ő	1,45
82	GR1-1	1,35	1,35	1,5	1,35	1	0,9	0	0	0,9	0	1,45	0	1,45	0	0
83	GR1-2	1,35	1,35	1,5	1,35	1	0,9	0	0	0,9	0	1,45	0	1,45	0	0,58
84 85	GR3-1 GR3-2	1,35	1,35	1,5	1,35	1	0,9	0	0	0,9	0	0,58	0	0,58	0	1,45
86	GR3-2	1,35 1,35	1,35 1,35	1,5 1,5	1,35 1,35	1	0,9	1,5	0	0,9 1,5	0	1,16 0	0	1,16 0	0	1,45 0
87	GR1-1	1,35	1,35	1,5	1,35	1	Ō	0,9	Ŏ	0,9	1,45	Ö	ō	Ö	Ö	0
88	GR1-2	1,35	1,35	1,5	1,35	1	0	0,9	0	0,9	1,45	0	0	0	0,58	0
89	GR3-1	1,35	1,35	1,5	1,35	1	0	0,9	0	0,9	0,58	0	0	0	1,45	0
90 91	GR3-2 GR1-1	1,35 1,35	1,35 1,35	1,5 1,5	1,35 1,35	1	0	0,9 0,9	0	0,9 0,9	1,16 1,45	0	0 1,45	0	1,45 0	0
92	GR1-1	1,35	1,35	1,5	1,35	li	0	0,9	ŏ	0,9	1,45	Ö	1,45	0	0,58	0
93	GR3-1	1,35	1,35	1,5	1,35	1	0	0,9	O	0,9	0,58	O	0,58	0	1,45	0
94	GR3-2	1,35	1,35	1,5	1,35	1	0	0,9	0	0,9	1,16	0	1,16	0	1,45	0
95 96	GR1-1 GR1-2	1,35	1,35	1,5	1,35	1	0	0,9	0	0,9	0	1,45	0	0	0	0 58
97	GR1-2 GR3-1	1,35 1,35	1,35 1,35	1,5 1,5	1,35 1,35	1	0	0,9 0,9	0	0,9 0,9	0	1,45 0,58	0	0	0	0,58 1,45
98	GR3-2	1,35	1,35	1,5	1,35	1	o	0,9	Ŏ	0,9	Ŏ	1,16	Ō	ō	Ŏ	1,45
99	GR1-1	1,35	1,35	1,5	1,35	1	0	0,9	0	0,9	0	1,45	0	1,45	0	0
100	GR1-2	1,35	1,35	1,5 1.5	1,35	1	0	0,9	0	0,9	0	1,45	0	1,45 0,58	0	0,58
101 102	GR3-1 GR3-2	1,35 1,35	1,35 1,35	1,5 1,5	1,35 1,35	1	0	0,9 0,9	0	0,9 0,9	0	0,58 1,16	0	1,16	0	1,45 1,45
103		1,35	1,35	1,5	1	1	1,5	0	Ŏ	1,5	0	0	Ö	0	Ö	0
104	GR1-1	1,35	1,35	1,5	1	1	0,9	0	0	0,9	1,45	0	0	0	0	0
105	GR1-2	1,35	1,35	1,5 1.5	1	1	0,9	0	0	0,9	1,45	0	0	0	0,58	0
106 107	GR3-1 GR3-2	1,35 1,35	1,35 1,35	1,5 1,5	1	1	0,9 0,9	0	0	0,9 0,9	0,58 1,16	0	0	0	1,45 1,45	0 0
108	GR1-1	1,35	1,35	1,5	1	1	0,9	0	0	0,9	1,45	0	1,45	Ö	0	0
109	GR1-2	1,35	1,35	1,5	1	1	0,9	0	0	0,9	1,45	0	1,45	0	0,58	0
110	GR3-1	1,35	1,35	1,5	1	1	0,9	0	0	0,9	0,58	0	0,58	0	1,45	0
111 112	GR3-2 GR1-1	1,35 1,35	1,35 1,35	1,5 1,5	1	1	0,9 0,9	0	0	0,9 0,9	1,16 0	0 1,45	1,16 0	0	1,45 0	0 0
113	GR1-1 GR1-2	1,35	1,35	1,5	1	1	0,9	0	0	0,9	0	1,45	0	0	0	0,58
114	GR3-1	1,35	1,35	1,5	1	1	0,9	0	Ö	0,9	0	0,58	0	ő	Ö	1,45
115	GR3-2	1,35	1,35	1,5	1	1	0,9	0	0	0,9	0	1,16	0	0	0	1,45
116	GR1-1	1,35	1,35	1,5	1	1	0,9	0	0	0,9	0	1,45	0	1,45	0	0
117 118	GR1-2 GR3-1	1,35 1,35	1,35 1,35	1,5 1,5	1	1	0,9 0,9	0	0	0,9 0,9	0	1,45 0,58	0	1,45 0,58	0	0,58 1,45
119	GR3-1	1,35	1,35	1,5	1	1	0,9	0	0	0,9	0	1,16	0	1,16	0	1,45
120		1,35	1,35	1,5	1	1	0	1,5	0	1,5	0	0	0	0	0	0
121	GR1-1	1,35	1,35	1,5	1	1	0	0,9	0	0,9	1,45	0	0	0	0	0

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 12 E E2 CL RI89 04 001 A 30 di 71

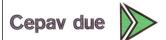
n° CC		P.P	Rilevato	Ballast	Terra sx	Terra dx	T+ unif	T- unif	DT +	DT-	LM71	SW/2	Spinta LM71	Spinta SW/2	LM71 avviamento	SW/2 frenatura
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
122	GR1-2	1,35	1,35	1,5	1	1	0	0,9	0	0,9	1,45	0	0	0	0,58	0
123	GR3-1	1,35	1,35	1,5	1	1	0	0,9	0	0,9	0,58	0	0	0	1,45	0
124	GR3-2	1,35	1,35	1,5	1	1	0	0,9	0	0,9	1,16	0	0	0	1,45	0
125	GR1-1	1,35	1,35	1,5	1	1	0	0,9	0	0,9	1,45	0	1,45	0	0	0
126	GR1-2	1,35	1,35	1,5	1	1	0	0,9	0	0,9	1,45	0	1,45	0	0,58	0
127	GR3-1	1,35	1,35	1,5	1	1	0	0,9	0	0,9	0,58	0	0,58	0	1,45	0
128	GR3-2	1,35	1,35	1,5	1	1	0	0,9	0	0,9	1,16	0	1,16	0	1,45	0
129	GR1-1	1,35	1,35	1,5	1	1	0	0,9	0	0,9	0	1,45	0	0	0	0
130	GR1-2	1,35	1,35	1,5	1	1	0	0,9	0	0,9	0	1,45	0	0	0	0,58
131	GR3-1	1,35	1,35	1,5	1	1	0	0,9	0	0,9	0	0,58	0	0	0	1,45
132	GR3-2	1,35	1,35	1,5	1	1	0	0,9	0	0,9	0	1,16	0	0	0	1,45
133	GR1-1	1,35	1,35	1,5	1	1	0	0,9	0	0,9	0	1,45	0	1,45	0	0
134	GR1-2	1,35	1,35	1,5	1	1	0	0,9	0	0,9	0	1,45	0	1,45	0	0,58
135	GR3-1	1,35	1,35	1,5	1	1	0	0,9	0	0,9	0	0,58	0	0,58	0	1,45
136	GR3-2	1,35	1,35	1,5	1	1	0	0,9	0	0,9	0	1,16	0	1,16	0	1,45

Progetto INOR Foglio 31 di 71 Lotto Codifica Documento Rev. 12 E E2 CL RI89 04 001 Doc. N. Α

10.1.

. <u>2. Coi</u>	mbinazi	ioni S	LU di	tipo (GEO											
J) L		a .	Rilevato	Ballast	Terra sx	Terra dx	T+ unif	T- unif	DT +	DT.	LM71 centro	LM71 terra	LM71 avviamento	SW/2	SW/2 terra	SW/2 frenatura
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 51 52 53 54 55 56 57 58 59 60 61	GR1-1 GR1-2 GR3-1 GR3-2 GR1-1 GR3-2 GR3-1 GR3-2 GR3-1 GR3-2 GR3-1 GR3-2 GR1-1 GR3-2 GR3-1 GR3-1 GR3-2 GR3-1 GR3-2 GR3-1 GR3-2 GR3-1 GR3-1 GR3-1 GR3-2 GR3-1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1,3 0,78 0,78 0,78 0,78 0,78 0,78 0,78 0,78 0,78 0,78 0,78 0,78 0,78 0,78 0,00 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1,3 0,78 0,78 0,78 0,78 0,78 0,78 0,78 0,78	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1,25 1,25 1,25 0,5 1 1,25 1,25 0,5 1 0 0 0 0 0 0 1,25 1,25 0,5 1 1 1,25 1,25 0,5 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1,25 1,25 0,5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0,5 1,25 1,25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 Progetto
 Lotto
 Codifica Documento
 Rev.
 Foglio

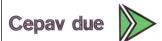

 Doc. N.
 INOR
 12
 E E2 CL RI89 04 001
 A
 32 di 71

n° CC		P.P	Rilevato	Ballast	Terra sx	Terra dx	T+ unif	T- unif	DT +	. та	LM71 centro	LM71 terra	LM71 avviamento	SW/2	SW/2 terra	SW/2 frenatura
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
63	GR3-1	1	1	1,3	1	1	0	0,78	0	0,78	0	0	0	0,5	0	1,25
64	GR3-2	1	1	1,3	1	1	0	0,78	0	0,78	0	0	0	1	0	1,25
65	GR1-1	1	1	1,3	1	1	0	0,78	0	0,78	0	0	0	1,25	1,25	0
66	GR1-2	1	1	1,3	1	1	0	0,78	0	0,78	0	0	0	1,25	1,25	0,5
67	GR3-1	1	1	1,3	1	1	0	0,78	0	0,78	0	0	0	0,5	0,5	1,25
68	GR3-2	1	1	1,3	1	1	0	0,78	0	0,78	0	0	0	1	1	1,25

10.1.3. Combinazioni SLV

I coefficienti di combinazione SLV applicati ai singoli Load Case sono i medesimi sia per l'Approccio 1-Combinazione 1 che per l'Approccio 1-Combinazione 2.

n° CC	ď.	Rilevato	Ballast	Terra sx	Terra dx	T+ unif	T- unif	DT+	DT.	LM71 centro	SW/2	LM71 terra	SW/2 terra	LM71 avviamento	SW/2 frenatura	Incremento dinamico terreno	Azioni sismiche orizzontali	Sisma orizz da massa LM71	Sisma orizz da massa SW2	Azioni sismiche verticali verso l'alto	Azioni sismiche verticali verso il basso	Sisma verso alto da LM71	Sisma verso basso da LM71	Sisma verso alto da SW2	Sisma verso basso da SW2
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
1 2 3 4	1 1 1	1 1 1	1 1 1 1	1 1 1	1 1 1	0,5 0,5 0,5 0,5	0 0 0	0,5 0,5 0,5 0,5	0 0 0	0 0,2 0 0	0 0 0,2 0	0 0,2 0 0	0 0 0,2 0	0 0,2 0 0	0 0 0,2 0	1 1 1 0,3	1 1 1 0,3	1	1	0,3 0,3 0,3 1		0,3		0,3	
5 6 7 8	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	0,5 0,5 0,5 0,5	0 0 0	0,5 0,5 0,5 0,5	0 0 0 0	0,2 0 0 0,2	0 0,2 0 0	0,2 0 0 0,2	0 0,2 0 0	0,2 0 0 0,2	0 0,2 0 0	0,3 0,3 1 1	0,3 0,3 1 1	0,3	0,3	1	0,3 0,3	1	0,3	1	
9 10 11 12	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1	0,5 0,5 0,5 0,5	0 0 0	0,5 0,5 0,5 0,5	0 0 0 0	0 0 0,2 0	0,2 0 0 0 0,2	0 0 0,2 0	0,2 0 0 0,2	0 0 0,2 0	0,2 0 0 0,2	1 0,3 0,3 0,3	1 0,3 0,3 0,3	0,3	0,3		0,3 1 1 1		1		0,3
13 14 15 16	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	0 0 0 0	0,5 0,5 0,5 0,5	0,5 0,5 0,5 0,5	0 0 0 0	0 0,2 0 0	0 0 0,2 0	0 0,2 0 0	0 0 0,2 0	0 0,2 0 0	0 0 0,2 0	1 1 1 0,3	1 1 1 0,3	1	1	0,3 0,3 0,3		0,3		0,3	
17 18 19 20	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	0 0 0 0	0,5 0,5 0,5 0,5	0,5 0,5 0,5 0,5	0 0 0 0	0,2 0 0 0,2	0 0,2 0 0	0,2 0 0 0,2	0 0,2 0 0	0,2 0 0 0,2	0 0,2 0 0	0,3 0,3 1 1	0,3 0,3 1 1	0,3	0,3	1 1	0,3 0,3	1	0,3	1	
21 22 23 24	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	0 0 0 0	0,5 0,5 0,5 0,5	0,5 0,5 0,5 0,5	0 0 0 0	0 0 0,2 0	0,2 0 0 0,2	0 0 0,2 0	0,2 0 0 0,2	0 0 0,2 0	0,2 0 0 0,2	0,3 0,3 0,3	0,3 0,3 0,3	0,3	0,3		0,3 1 1 1		1		0,3
25 26 27 28	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	0,5 0,5 0,5 0,5	0 0 0	0 0 0 0	0,5 0,5 0,5 0,5	0 0,2 0 0	0 0 0,2 0	0 0,2 0 0	0 0 0,2 0	0 0,2 0 0	0 0 0,2 0	1 1 1 0,3	1 1 1 0,3	1	1	0,3 0,3 0,3		0,3		0,3	
29 30 31	1 1 1	1 1 1	1 1 1	1 1 1	1 1 1	0,5 0,5 0,5	0 0 0	0 0 0	0,5 0,5 0,5	0,2 0 0	0 0,2 0	0,2 0 0	0 0,2 0	0,2 0 0	0 0,2 0	0,3 0,3 1	0,3 0,3 1	0,3	0,3	1 1	0,3	1		1	
32 33 34 35	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	0,5 0,5 0,5 0,5	0 0 0	0 0 0	0,5 0,5 0,5 0,5	0,2 0 0 0,2	0 0,2 0 0	0,2 0 0 0,2	0 0,2 0 0	0,2 0 0 0,2	0 0,2 0 0	1 1 0,3 0,3	1 1 0,3 0,3	0,3	1		0,3 0,3 1 1		0,3		0,3
36	1	1	1	1	1	0,5	Ō	Ō	0,5	0	0,2	0	0,2	0	0,2	0,3	0,3	-,-	0,3		1				1



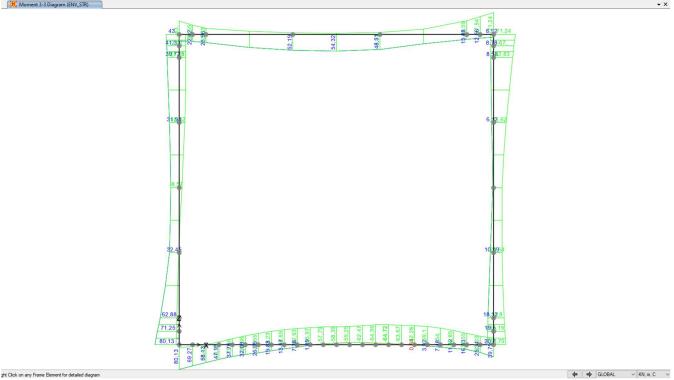
Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 12 E E2 CL RI89 04 001 A 33 di 71

n° CC	P.P	Rilevato	Ballast	Terra sx	Terra dx	T+ unif	T- unif	DT+	DT.	LM71 centro	SW/2	LM71 terra	SW/2 terra	LM71 avviamento	SW/2 frenatura	Incremento dinamico terreno	Azioni sismiche orizzontali	Sisma orizz da massa LM71	Sisma orizz da massa SW2	Azioni sismiche verticali verso l'alto	Azioni sismiche verticali verso il basso	Sisma verso alto da LM71	Sisma verso basso da LM71	Sisma verso alto da SW2	Sisma verso basso da SW2
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
37	1	1	1	1	1	0	0,5	0	0,5	0	0	0	0	0	0	1	1			0,3					
38	1	1	1	1	1	0	0,5	0	0,5	0,2	0	0,2	0	0,2	0	1	1	1		0,3		0,3			
39	1	1	1	1	1	0	0,5	0	0,5	0	0,2	0	0,2	0	0,2	1	1		1	0,3				0,3	
40	1	1	1	1	1	0	0,5	0	0,5	0	0	0	0	0	0	0,3	0,3			1					
41	1 1	1	1	1	1	0	0,5	0	0,5	0,2	0	0,2	0	0,2	0	0,3	0,3	0,3		1		1			
42	1	1	1	1	1	0	0,5	0	0,5	0	0,2	0	0,2	0	0,2	0,3	0,3		0,3	1				1	
43	1	1	1	1	1	0	0,5	0	0,5	0	0	0	0	0	0	1	1	١.			0,3				
44	1	1	1	1	1	0	0,5	0	0,5	0,2	0	0,2	0	0,2	0	1	1	1	١.		0,3		0,3		
45	1	1	1	1	1	0	0,5	0	0,5	0	0,2	0	0,2	0	0,2	1	1		1		0,3				0,3
46	1	1	1	1	1	0	0,5	0	0,5	0	0	0	0	0	0	0,3	0,3				1				
47	1	1	1	1	1	0	0,5	0	0,5	0,2	0	0,2	0	0,2	0	0,3	0,3	0,3			1		1		
48	1	1	1	1	1	0	0,5	0	0,5	0	0,2	0	0,2	0	0,2	0,3	0,3		0,3		1				1

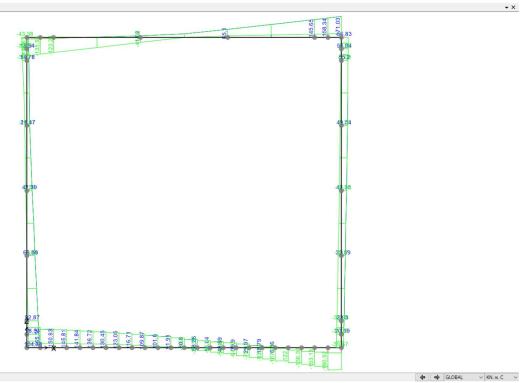
10.1.4. Combinazioni SLE – Quasi Permanente – Caratteristica

	ى° در		P.P	Rilevato	Ballast	Terra sx	Terra dx	T+ unif	T- unif	DT +	DT -	LM71 centro	SW/2	LM71 terra	SW/2 terra	LM71 avviamento	SW/2 frenatura	
			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	İ
Ī	QP1		1	1	1	1	1	0,5	0	0,5	0							İ
l	QP2		1	1	1	1	1	Ō	0,5	0,5	0							l
	QP3		1	1	1	1	1	0,5	0	0	0,5							l
ļ	QP4		1	1	1	1	1	0	0,5	0	0,5							
	Car1	gr1	1	1	1	1	1	0,6	0	0,6		1	0	0	0	0,5	0	ļ
ļ	Car2	gr1	1	1	1	1	1	0,6	0	0,6		1	0	0	0	0	0	
	Car3	gr1	1	1	1	1	1	0,6	0	0,6		1	0	1	0	0,5	0	
	Car4	gr1	1	1	1	1	1	0,6	0	0,6		1	0	1	0	0	0	
	Car5	gr1	1	1	1	1	1	0	0,6	0,6		1	0	0	0	0,5	0	
	Car6	gr1	1	1	1	1	1	0	0,6	0,6		1	0	0	0	0	0	
	Car7	gr1	1	1	1	1	1	0	0,6	0,6		1	0	1	0	0,5	0	
	Car8	gr1	1	1	1	1	1	0	0,6	0,6		1	0	1	0	0	0	
	Car9	gr3	1	1	1	1	1	0,6	0	0,6		0,5	0	0	0	1	0	
	Car10	gr3	1	1	1	1	1	0,6	0	0,6		1	0	0	0	1	0	
	Car11	gr3	1	1 1	1	1	1	0,6	0	0,6		1	0	1	0	1	0	
	Car12	gr3	1 1	1	1	1	1	0,6	0	0,6		0,5	0	0,5	0	1	0	
	Car13	gr3	1	1	1	1	1	0	0,6	0,6		0,5	0	0	0	1	0	
	Car14	gr3	1	1	1	1	1	0	0,6	0,6		1	0	0	0	1	0	
	Car15	gr3	1	1	1	1	1	0	0,6	0,6		1	0	1	0	1	0	
	Car16	gr3	1	1	1	1	1	0	0,6	0,6		0,5	0	0,5	0	1	0	
l	Car17	gr1	1 1	1	1	1	1	0,6	0	0,6		0	1	0	0	0	0,5 0	
	Car18 Car19	gr1	1			-		0,6		0,6		_		0	1	0	-	
	Car19	gr1	1 1	1 1	1	1	1	0,6	0	0,6		0	1	0	1	0	0,5	
ł	Car20	gr1	1	1	1	1	1	0,6 0		0,6 0,6		0	1	0	0	0	0	l
ł	Car21	gr1	1	1	1	1	1	0	0,6 0,6	0,6		0	1	0	0	0	0,5 0	l
-	Car23	gr1	1	1 1	1 1	1	1	0	0,6	0,6		0	1	0	1	0	0,5	
l	Car24	gr1 gr1		1	1 1	1	1	0	0,6	0,6		0	1	0	1	0	0,5	l
l	Car25	gr3	1	1 1	1 1	1	1	0,6	0,6	0,6		0	0,5	0	Ö	0	1	ı
	Car26	gr3	1			1	i	0,6	ő	0,6		0	1	0	0	0	1	
l	Car27	gr3	i		1 1	1	1	0,6	ő	0,6		0	i	0	1	Ö	1	
	Car28	gr3	1	1 1	1 1	1	1	0,6	0	0,6		0	0,5	0	0,5	0	1	ı
	Car29	gr3	1		1 1	1	1	0,6	0,6	0,6		0	0,5	0	0,5	0	1	
	Car30	gr3	1		1 1	1	1	0	0,6	0,6		0	1	0	0	0	1	
1	Car31	gr3	1	1 1	1 1	1	1	0	0,6	0,6		0	1	0	1	0	1	ı
	Car32	gr3	1		1 1	1	1	0	0,6	0,6		0	0,5	0	0,5	0	1	
	Car33	9.0	1	1	1	1	1	1	0,0	1		0	0,3	0	0,3	0	Ö	1
- 1	Jui 33	1	' '	' '	' '	•	'		, ,	•	ı	, ,	, ,		•		, ,	1

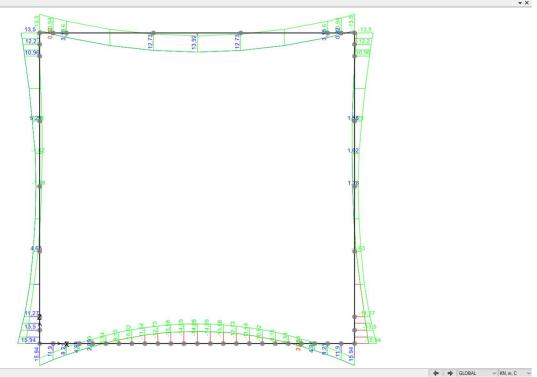
 Progetto
 Lotto
 Codifica Documento
 Rev.
 Foglio


 Doc. N.
 INOR
 12
 E E2 CL RI89 04 001
 A
 34 di 71

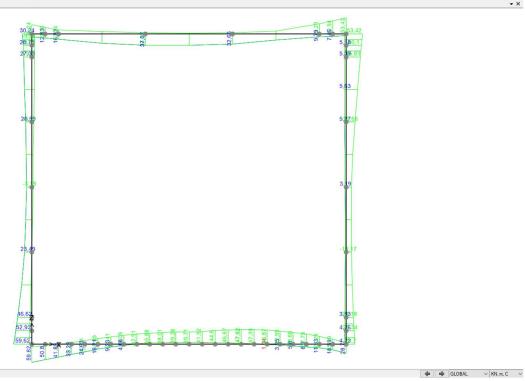
ى د د		q.	Rilevato	Ballast	Terra sx	Terra dx	T+ unif	T- unif	DT +	DT -	LM71 centro	SW/2	LM71 terra	SW/2 terra	LM71 avviamento	SW/2 frenatura
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Car34		1	1	1	1	1	0	1	1		0	0	0	0	0	0
Car35	gr1	1	1	1	1	1	0,6	0		0,6	1	0	0	0	0,5	0
Car36	gr1	1	1	1	1	1	0,6	0		0,6	1	0	0	0	0	0
Car37	gr1	1	1	1	1	1	0,6	0		0,6	1	0	1	0	0,5	0
Car38	gr1	1	1	1	1	1	0,6	0		0,6	1	0	1	0	0	0
Car39	gr1	1	1	1	1	1	0	0,6		0,6	1	0	0	0	0,5	0
Car40	gr1	1	1	1	1	1	0	0,6		0,6	1	0	0	0	0	0
Car41	gr1	1	1	1	1	1	0	0,6		0,6	1	0	1	0	0,5	0
Car42	gr1	1	1	1	1	1	0	0,6		0,6	1	0	1	0	0	0
Car43	gr3	1	1	1	1	1	0,6	0		0,6	0,5	0	0	0	1	0
Car44	gr3	1	1	1	1	1	0,6	0		0,6	1	0	0	0	1	0
Car45	gr3	1	1	1	1	1	0,6	0		0,6	1	0	1	0	1	0
Car46 Car47	gr3	1	1	1	1	1	0,6	0		0,6	0,5	0	0,5	0	1	0
Car47	gr3	1 1	1	1	1 1	1	0	0,6 0,6		0,6	0,5 1	0	0	0	1	0
Car46 Car49	gr3 gr3		1	1	1	1	0	0,6		0,6 0.6	1	0	1	0	1	0
Car49	gr3			1 1	1	1	0	0,6		0,6	0,5	0	0,5	0	1	0
Car51	gr1	1	1		1	1	0,6	0,6		0.6	0,3	1	0,3	0	ö	0,5
Car52	gr1		1	1 1	1	1	0,6	Ö		0,6	0	1	0	0	0	0,5
Car53	gr1	l i	1	1	i	1	0,6	ő		0,6	ő	1	Ö	1	ŏ	0,5
Car54	gr1	i	1	1 1	1	1	0,6	ő		0.6	ő	1	Ö	1	ŏ	0,0
Car55	gr1	1	1	1 1	1	1	0	0,6		0,6	ō	1	0	Ö	ō	0,5
Car56	gr1	1	1	1	1	1	Ö	0,6		0,6	Ō	1	Ō	Ō	Ō	0
Car57	gr1	1	1	1	1	1	0	0,6		0,6	o	1	0	1	0	0,5
Car58	gr1	1	1	1 1	1	1	0	0,6		0,6	0	1	0	1	0	Ó
Car59	gr3	1	1	1 1	1	1	0,6	Ó		0,6	0	0,5	0	0	0	1
Car60	gr3	1	1	1	1	1	0,6	0		0,6	0	1	0	0	0	1
Car61	gr3	1	1	1	1	1	0,6	0		0,6	0	1	0	1	0	1
Car62	gr3	1	1	1	1	1	0,6	0		0,6	0	0,5	0	0,5	0	1
Car63	gr3	1	1	1	1	1	0	0,6		0,6	0	0,5	0	0	0	1
Car64	gr3	1	1	1	1	1	0	0,6		0,6	0	1	0	0	0	1
Car65	gr3	1	1	1	1	1	0	0,6		0,6	0	1	0	1	0	1
Car66	gr3	1	1	1	1	1	0	0,6		0,6	0	0,5	0	0,5	0	1
Car67		1	1	1	1	1	1	0		1	0	0	0	0	0	0
Car68		1	1	1	1	1	0	1		1	0	0	0	0	0	0


10.2. Diagrammi di inviluppo

10.2.1. Inviluppo momento flettente SLU/SLV - STR


10.2.2. Inviluppo taglio SLU/SLV – STR

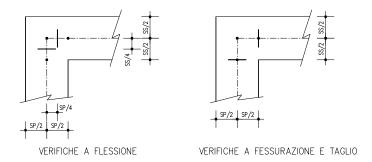
ght Click on any Frame Element for detailed diagram



10.2.4. Inviluppo momento flettente SLE – Caratteristico K Moment 3-3 Diagram (ENVE_CAR)

ght Click on any Frame Element for detailed diagram

ght Click on any Frame Element for detailed diagram


11. VERIFICHE DI RESISTENZA ULTIMA E DI ESERCIZIO

Di seguito si riportano le verifiche delle sezioni per le aste più significative e per le Combinazioni di carico risultate più critiche.

Le verifiche a flessione sono effettuate rispettivamente:

- nella sezione ubicata a metà fra asse piedritto e sezione d'attacco piedritto-soletta nel caso delle verifiche della soletta;
- nella sezione ubicata a metà fra asse soletta e sezione d'attacco del piedritto nel caso delle verifiche del piedritto.

Le verifiche a fessurazione e a taglio sono eseguite nelle sezioni di attacco soletta-piedritto.

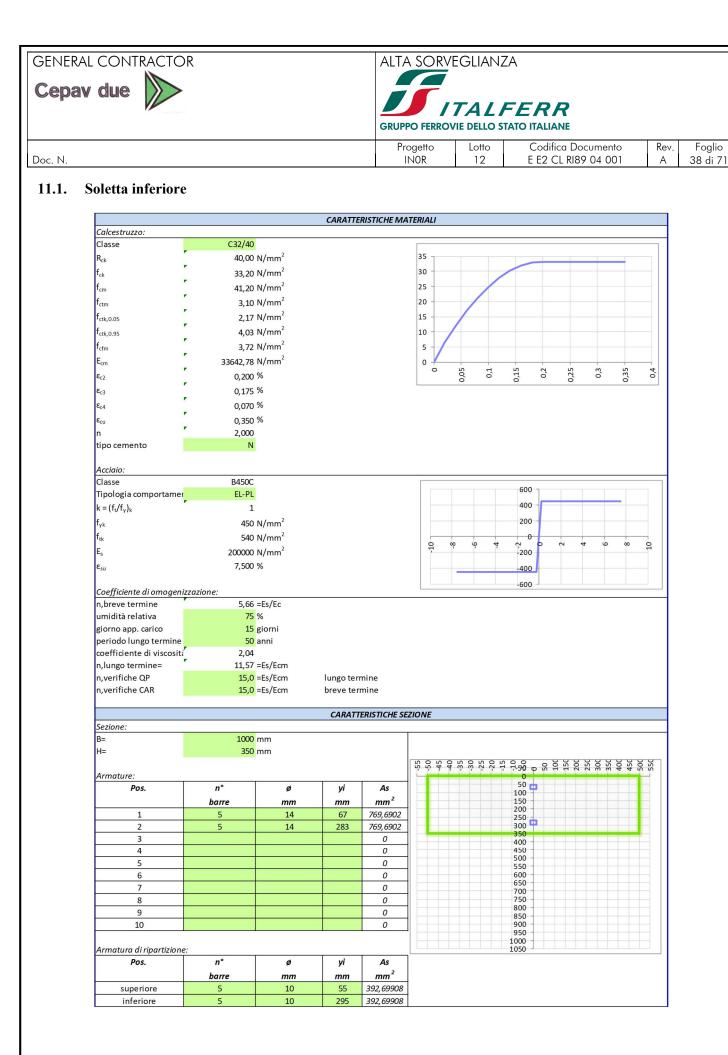
I calcoli di verifica sono effettuati con il metodo degli Stati Limite, applicando il combinato D. M.14.01.2008 con l'UNI EN 1992 (Eurocodice 2).

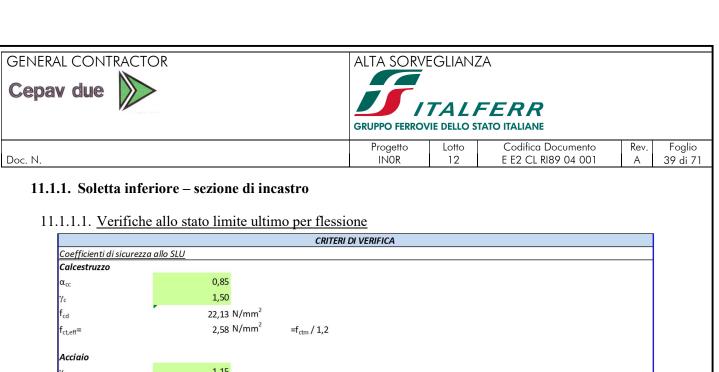
Le verifiche a taglio sono svolte considerando il puntone in calcestruzzo inclinato di 45° e staffe verticali.

<u>Verifica di formazione delle fessure</u>: la verifica si esegue per la sezione interamente reagente determinando il momento di prima fessurazione e confrontandolo con quello sollecitante; se risulta $M_{cr} < M_{Ed}$ la verifica si considera soddisfatta, altrimenti si procede alla verifica di apertura delle fessure.

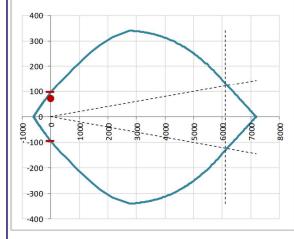
<u>Verifica di apertura delle fessure</u>: l'apertura convenzionale delle fessure è calcolata con le modalità indicate nell'Eurocodice 2-1, come indicato dal D. M. Min. II. TT. del 14 gennaio 2008, e valutata con le sollecitazioni relative alla Combinazioni Rara della normativa vigente sui ponti ferroviari. Le massime aperture ammissibili sono:

- condizioni ambientali aggressive e molto aggressive: w_k≤w₃=0.20mm


- condizioni ambientali ordinarie: w_k≤w₃=0.30mm


<u>Verifica delle tensioni di esercizio</u>: si verifica che le tensioni di lavoro presenti nel calcestruzzo siano inferiori ai seguenti limiti:

- combinazione QP $\sigma_c < 0.40 \ f_{ck}$;


- combinazione Rara $\sigma_c < 0.55 f_{ck}$

e che le tensioni di lavoro presenti nell'acciaio siano σ_s< 0.75 f_{vk}.

1,15 391,30 N/mm² f_{yd} 0,196 % ε_{vd} STATO LIMITE ULTIMO - PRESSOFLESSIONE NSd MSd NRd+ NRd-MRd+ MRd-MSd/MRd Combinazione frame/nodo [kN] [kNm] [kN] [kN] [kNm] [kNm] SLU26 7187,03 73% 0,0 69,3 -602,37 95,50 -95,50 Sezione: Fibre compresse Superiori 18,81 N/mm² $\sigma_{c,max}$ = -391,30 N/mm² $\sigma_{s,min}$ = 100 0,35 % 150 200 -2,15 % $\epsilon_{s,min}$ = 283,00 d= mm 300 39,55 x/d=0,14 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 Dominio M-N NSd [kN] MSd [kNm] Combinazione fram/nodo 400 300 200 100 -100 -200

SLU26	2	0,0	69,3
į i			
	1		
	The state of the s		
	*	3	

GENERAL CONTRACTOR

 Progetto
 Lotto
 Codifica Documento
 Rev.
 Foglio

 Doc. N.
 INOR
 12
 E E2 CL RI89 04 001
 A
 40 di 71

11.1.1.2. Verifiche allo stato limite ultimo per taglio

CALCESTRUZZO						
Calsse calcestruzzo C32/40						
Resistenza cubica caratteristica Rck 40,00 Mpa						
Resistenza cilindrica caratteristica f_{ck} 33,2 Mpa						

	ACCIAIO
Tipologia	B450C
Reisitenza caratteristica allo snervamento	450 Mpa

	COEFFICIENTI MATERIALE	
Coefficiente di sicurezza per il calcestruzzo	γς	1,50
Coefficiente riduttivo per resistenze di lunga durata	α_{cc}	0,85
Coefficiente di sicurezza per l'acciaio	γs	1,15

GEOMETRIA SEZIONE C.A.					
Base	b		1000	mm	
Altezza	h		350 mm		
Barre tese		numero	diametro barre	copriferro in	Area barre
		barre	[mm]	asse barra [mm]	[mm2]
strato1		5	14	67	770
strato2		0	0	0	0
strato3		0	0	0	0
strato4		0	0	0	0
strato5		0	0	0	0
Area barre tese	A_s		770	mm2	
Posizione della barra equivalente	c*		67	mm	

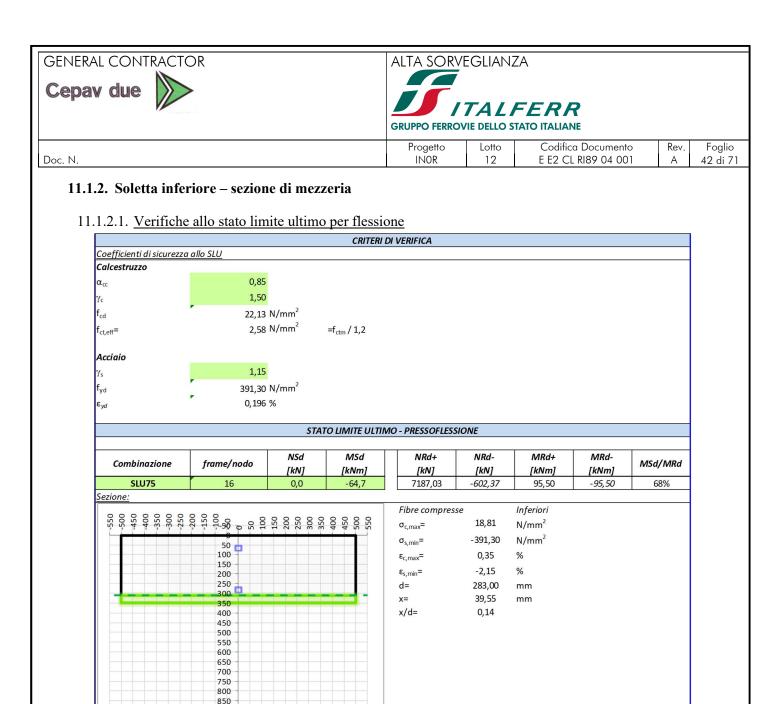
SOLLECITAZIONI							
Load Case		SLU58					
Frame		23					
Azione assiale (+ di compressione)	N _{Ed}	0	kN				
Taglio	V_{Ed}	153,13	kN				

VERIFICA RESISTENZA SEZIONE SENZA ARMATURA A TAGLIO						
Altezza utile della sezione	d	283 mm				
Coefficiente	k	1,84				
Rapporto di armatura longitudinale	ρl	0,27%				
Tensione assiale media	$\sigma_{ m cp}$	0,00 N/mm2				
	0.2 x f _{cd}	3,76 N/mm2				
	v_{\min}	0,50 N/mm2				
Resistenza al taglio minima	$V_{rd,min}$	142,52 kN				
Resistenza al taglio senza armatura	V_{rd}	142,52 kN				
Verifica		1,07 E' necessario prevedere armatura a taglio				

ARMATURA A TAGLIO						
Diametro staffe	ф	10	mm			
Numero braccia	n	5				
Passo staffe	S	200	mm			
Inclinazione staffe (rispetto all'orizzontale)	α	90	•			
Inclinazione del puntone in calcestruzzo	θ	45	•			
Valore minimo di inclinazione del puntone in calcestruzzo	θ_{min}	21,80	•			

VERIFICA RESISTENZA SEZIONE CON ARMATURA A TAGLIO							
Coefficiente di riduzione per fessurazione	ν_1	0,5					
Resistenza cilindrica di progetto	f_{cd}	18,81333333 N/mm2					
Area armatura a taglio	A _{st}	392,70 mm2					
	σ_{cp}/f_{cd}	0					
Coefficiente di interazione	α_{cw}	1					
Resistenza a tagio per rottura delle armature	V_{rds}	195,69 kN					
Resistenza a taglio per rottura del puntone in calcestruzzo	V_{rcd}	1197,94 kN					
Resistenza al taglio	V_{rd}	195,69 kN					
Verifica		0,78 <u>Verifica soddisfatta</u>					

GENERAL CONTRACTOR ALTA SORVEGLIANZA Cepav due **ITALFERR** GRUPPO FERROVIE DELLO STATO ITALIANE Progetto INOR Foglio 41 di 71 Lotto Codifica Documento Rev.


Doc. N.

12

E E2 CL RI89 04 001

Α

11.1.1.3. <u>Ver</u>	ifiche allo stato	limite di ese	<u>ercizio</u>						
		PA	NRAMETRI V	ERIFICA FES.	SU	RAZIONE			
kt=	0,40		(0,6 = azio	ni di breve d	ura	ıta; 0,4 = az	ioni di lung	a durata)	
k ₁ =	0,80		(0,8=barre	ad aderenz	a n	nigliorata; 1	1,6= barre li	iscie e trefo	di)
k ₃ =	3,40		(valore rad	ccomandato)				
k ₄ =	0,425		(valore rad	ccomandato)				
			•						
			CRITI	ERI DI VERIFI	CA				
<u>Fessurazione</u>			•	•		•			
Condiz. Ambientali:	2		1- Ordinar	rie; 2- Aggres	siv	e; 3- Molto	aggressive	2	
	Aggressive								
Armature:	2		1-Sensibili,	; 2-Poco sens	sibi	ili			
	Poco sensibilie								
<u>Tensioni in esercizio</u>									
	Limite	Limite	$\sigma_{c,max}$	$\sigma_{s,max}$					
Combinazione	σ_c / fck	σ_s / fyk	[N/mm ²]	[N/mm²]					
Quasi Permanente	0,40	0,75	13,28	337,50					
Caratteristica	0,55	0,75	18,26	337,50					
		SOLL	ECITAZION	I SLE (N+ di c	om	ipressione)			
<u>Fessurazione</u>	1		1	ı			1	ı	
Combinazione	n. combinazione	frame/nodo	N	М		w _d	w _{lim}	M0 - Mf	
		-	[kN]	[kNm]		[mm]	[mm]	[kNm]	
Caratteristica	CAR15	3	0,0	41,9		Msd <mf< td=""><td>0,200</td><td>56,70</td><td>-</td></mf<>	0,200	56,70	-
Tensioni in esercizio									
			N	М		σ _{c, min}	$\sigma_{s,max}$	$\sigma_{s,min}$	
Combinazione	n. combinazione	nodo	[kN]	[kNm]		[N/mm ²]	., .	[N/mm ²]	
Quasi permanente	QP2	2	0,0	11,9		-1,30	59,65		Sezione parzializzata
Caratteristica	CAR15	2	0,0	50,8		-5,55	254,63	-3,25	Sezione parzializzata

Dominio M-N					
400					
300					
200					
100					
0 ==:		0	0 0		
000	1000,	300	4000	2000	8000
-200					
-300					
-400					

Combinazione	fram/nodo	NSd [kN]	MSd [kNm]
SLU75	16	0,0	-64,7
	1		
	1		
	1		
	Ĺ		

GENERAL CONTRACTOR Cepav due

Progetto INOR Codifica Documento Rev. Foglio Lotto Doc. N. 12 E E2 CL RI89 04 001 43 di 71

11.1.2.2. Verifiche allo stato limite di esercizio

PARAMETRI VERIFICA FESSURAZIONE						
kt=	0,40	(0,6 = azioni di breve durata; 0,4 = azioni di lunga durata)				
k ₁ =	0,80	(0,8=barre ad aderenza migliorata; 1,6= barre liscie e trefoli)				
k ₃ =	3,40	(valore raccomandato)				
k ₄ =	0,425	(valore raccomandato)				
	CRITERI DI VERIFICA					

<u>Fessurazione</u>

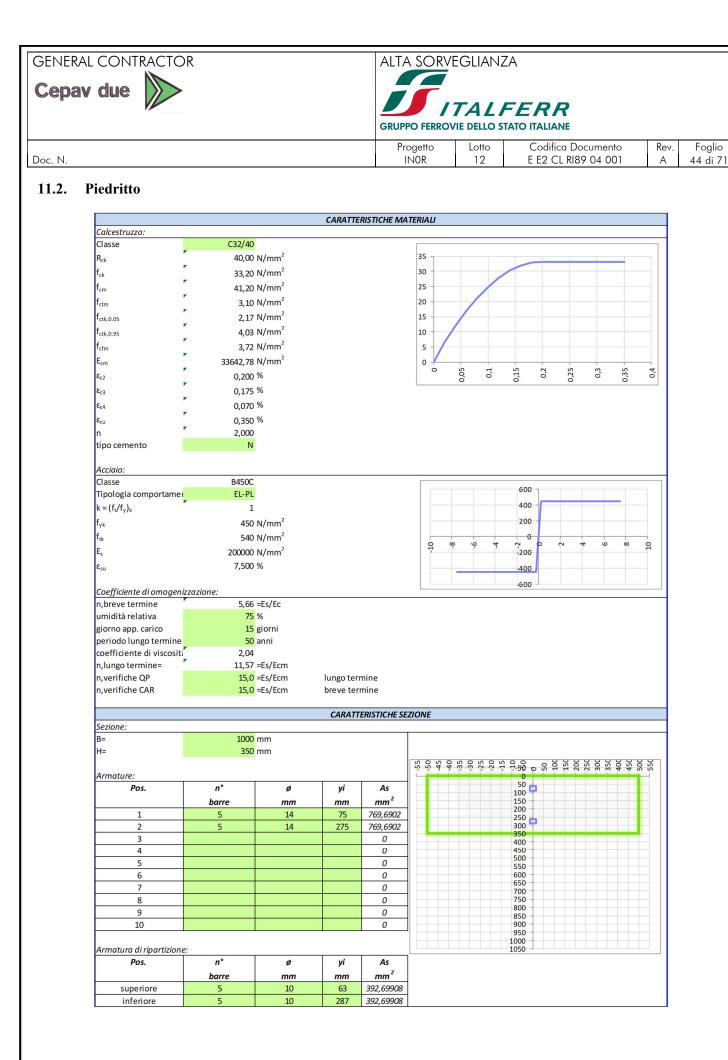
Condiz. Ambientali: 1- Ordinarie; 2- Aggressive; 3- Molto aggressive

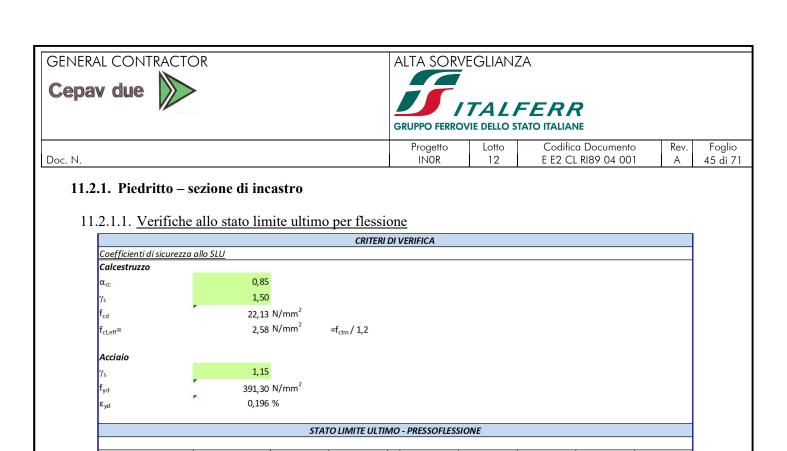
Armature: 1-Sensibili; 2-Poco sensibili Poco sensibilie

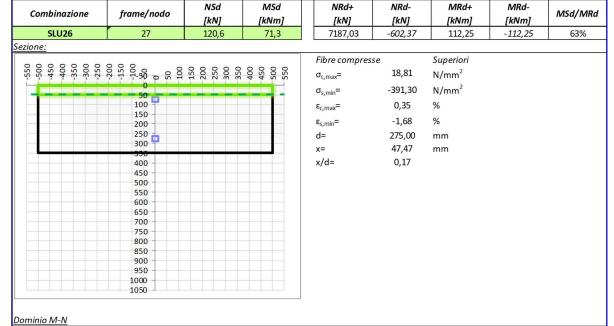
Aggressive

Tensioni in esercizio

	Limite	Limite	$\sigma_{c,max}$	$\sigma_{s,max}$
Combinazione	σ_c / fck	σ_s / fyk	[N/mm ²]	[N/mm ²]
Quasi Permanente	0,40	0,75	13,28	337,50
Caratteristica	0,55	0,75	18,26	337,50


SOLLECITAZIONI SLE (N+ di compressione)


<u>Fessurazione</u>


Combinazione	n. combinazione	frame/nodo	N [kN]	M [kNm]	w _d [mm]	w _{lim} [mm]	M0 - Mf [kNm]	
Caratteristica	CAR45	16	0,0	-47,6	Msd <mf< th=""><th>0,200</th><th>-56,70</th><th>-</th></mf<>	0,200	-56,70	-

Tensioni in esercizio

Combinazione	n. combinazione	nodo	N [kN]	M [kNm]	σ _{c,min} [N/mm ²]	σ _{s,max} [N/mm ²]	$\sigma_{s,min}$ [N/mm ²]	
Quasi permanente	QP3	12	0,0	-14,3	-1,56	71,48	-0,91	Sezione parzializzata
Caratteristica	CAR45	16	0,0	-47,6	-5,20	238,69	-3,05	Sezione parzializzata

300					!	
200						
100						
0 0 0	1000,	30,00	4000	2000	7 00 P	
-200						
-300			_		i	
-400						

Combinazione	fram/nodo	NSd [kN]	MSd [kNm]
SLU26	27	120,6	71,3

GENERAL CONTRACTOR

 Progetto
 Lotto
 Codifica Documento
 Rev.
 Foglio

 Doc. N.
 1NOR
 12
 E E2 CL RI89 04 001
 A
 46 di 71

11.2.1.2. Verifiche allo stato limite ultimo per taglio

	CALCESTRUZZO		
Calsse calcestruzzo		C32/40	
Resistenza cubica caratteristica	Rck	40,00 Mpa	
Resistenza cilindrica caratteristica	f _{ck}	33,2 Mpa	

	ACCIAIO
Tipologia	B450C
Reisitenza caratteristica allo snervamento	450 Mpa

	COEFFICIENTI MATERIALE	
Coefficiente di sicurezza per il calcestruzzo	γc	1,50
Coefficiente riduttivo per resistenze di lunga durata	$lpha_{cc}$	0,85
Coefficiente di sicurezza per l'acciaio	γs	1,15

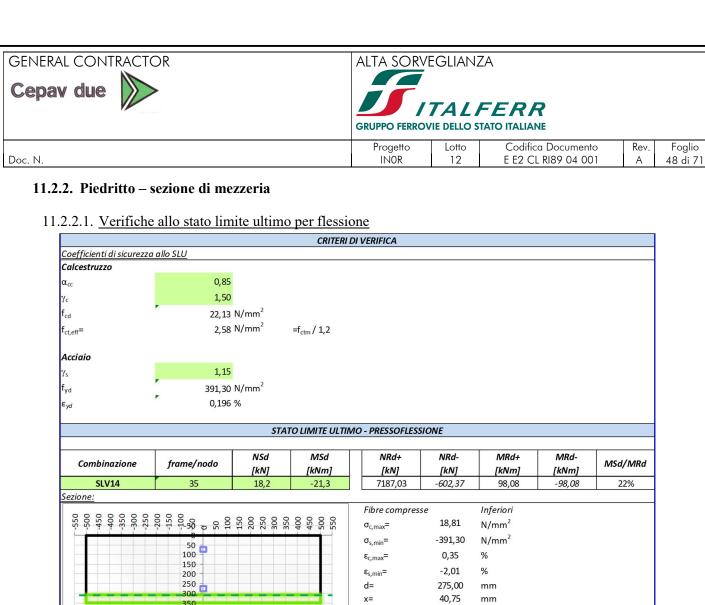
	GEOI	METRIA SEZION	E C.A.		
Base	b		1000	mm	
Altezza	h		350	mm	
Barre tese		numero barre	diametro barre [mm]	copriferro in asse barra [mm]	Area barre [mm2]
strato1		5	14	75	770
strato2		0	0	0	0
strato3		0	0	0	0
strato4		0	0	0	0
strato5		0	0	0	0
Area barre tese	A_s		770	mm2	
Posizione della barra equivalente	c*		75	mm	

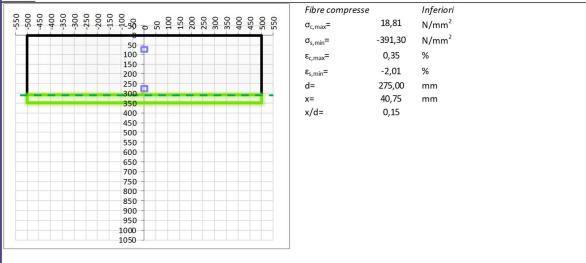
SOLLECITAZIONI					
Load Case		SLU26			
Frame		29			
Azione assiale (+ di compressione)	N _{Ed}	119,597	kN		
Taglio	V_{Ed}	92,87	kN		

VERIFICA RESISTENZA SEZIONE SENZA ARMATURA A TAGLIO					
Altezza utile della sezione	d	275 mm			
Coefficiente	k	1,85			
Rapporto di armatura longitudinale	ρΙ	0,28%			
Tensione assiale media	$\sigma_{ m cp}$	0,34 N/mm2			
	0.2 x f _{cd}	3,76 N/mm2			
	ν_{min}	0,51 N/mm2			
Resistenza al taglio minima	$V_{rd,min}$	153,96 kN			
Resistenza al taglio senza armatura	V_{rd}	153,96 kN			
Verifica		0,60 <u>Verifica soddisfatta</u>			

GENERAL CONTRACTOR ALTA SORVEGLIANZA Cepav due **ITALFERR** GRUPPO FERROVIE DELLO STATO ITALIANE Progetto INOR Lotto Codifica Documento Rev. Foglio

47 di 71


Α


E E2 CL RI89 04 001

12

Doc. N.

11.2.1.3. <u>Ver</u>	ifiche allo stato	limite di es	erc1Z10						
		P.A	NRAMETRI V	'ERIFICA FESS	SU	RAZIONE			
kt=	0,40		(0,6 = azio	ni di breve dı	ıra	ıta; 0,4 = az	ioni di lung	ga durata)	
k ₁ =	0,80		(0,8=barre	ad aderenzo	n r	nigliorata; 1	1,6= barre l	liscie e trefo	li)
k ₃ =	3,40		(valore rad	ccomandato,)				
k ₄ =	0,425		(valore rad	ccomandato,)				
			CRITI	ERI DI VERIFI	CA				
<u>Fessurazione</u>									
Condiz. Ambientali:	2		1- Ordinar	ie; 2- Aggres	siv	e; 3- Molto	aggressive	e	
	Aggressive								
Armature:	2		1-Sensibili,	; 2-Poco sens	ibi	ili			
	Poco sensibilie								
Tensioni in esercizio									
	Limite	Limite	$\sigma_{c,max}$	$\sigma_{s,max}$					
Combinazione	σ_c / fck	σ_s / fyk	[N/mm²]	[N/mm²]					
Quasi Permanente	0,40	0,75	13,28	337,50					
Caratteristica	0,55	0,75	18,26	337,50					
	sc	DLLECITAZIONI SL	E (N+ di con	npressione -	- 1	Л+ tende le	fibre infer	riori)	
Fessurazione									
			N	М		w _d	w _{lim}	M0 - Mf	
Combinazione	n. combinazione	frame/nodo	[kN]	[kNm]		[mm]	[mm]	[kNm]	
Caratteristica	CAR15	29	98,2	46,6		Msd <mf< td=""><td>0,200</td><td>61,85</td><td>-</td></mf<>	0,200	61,85	-
Tensioni in esercizio									
		4	N	М		$\sigma_{c,min}$	$\sigma_{s,max}$	$\sigma_{s,min}$	
Combinazione	n. combinazione	combinazione nodo	[kN]	[kNm]		[N/mm ²]	[N/mm²]	[N/mm ²]	
Quasi permanente	QP2	27	47,5	13,5		-1,44	37,39	-5,46	Sezione parzializzata
Caratteristica	CAR15	27	98,9	52,9		-5,94	203,55	-9,26	Sezione parzializzata

400					
300				1	
200					
100					-
0 ===			-		
7-100	1000,	30,00	4000	5000	0008
100					-
-200					
-300				1	
-400					

Combinazione	fram/nodo	NSd [kN]	MSd [kNm]
SLV14	35	18,2	-21,3
	Ī		

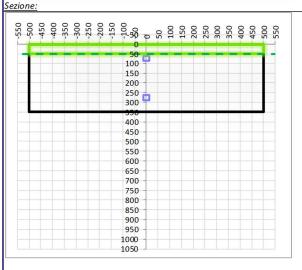
GENERAL CONTRACTOR ALTA SORVEGLIANZA Cepav due **ITALFERR** GRUPPO FERROVIE DELLO STATO ITALIANE Progetto INOR Lotto Codifica Documento Rev. Foglio

E E2 CL RI89 04 001

12

49 di 71

Α


Doc. N.

11.2.2.2. <u>Ver</u>	ifiche allo stato	limite di es	<u>ercizio</u>						
		P.A	RAMETRI V	ERIFICA FESS	U	RAZIONE			
kt=	0,40		(0,6 = azio	ni di breve dı	ıra	nta; 0,4 = az	ioni di lung	a durata)	
k ₁ =	0,80		(0,8=barre	ad aderenzo	n r	nigliorata; 1	1,6= barre l	iscie e trefo	li)
k ₃ =	3,40		(valore rad	ccomandato,)				
k ₄ =	0,425		(valore rad	ccomandato,)				
			CDIT						
			CRITI	ERI DI VERIFI	CA				
<u>Fessurazione</u>						0.11			
Condiz. Ambientali:	2		1- Ordinar	ie; 2- Aggres	SİV	e; 3- Molto	aggressive	2	
A	Aggressive		1 (: -: :	. 2 0	:1- :	:1:			
Armature:	Poco sensibilie		1-Sensibili,	: 2-Poco sens	IDI	'''			
	r oco sensionie								
Tensioni in esercizio									
	Limite	Limite	$\sigma_{c,max}$	$\sigma_{\text{s,max}}$					
Combinazione	σ_c / fck	σ_s / fyk	[N/mm ²]	[N/mm²]					
Quasi Permanente	0,40	0,75	13,28	337,50					
Caratteristica	0,55	0,75	18,26	337,50					
		OLLEGITATION CL	F / Bl		_		£:1	t =t1	
	30	OLLECITAZIONI SL	E (IN+ ai con	npressione -	٠ ٨	vı+ tenae ıe	fibre infer	iori)	
<u>Fessurazione</u>			1				1	ı	
Combinazione	n. combinazione	frame/nodo	N	М		W _d	W _{lim}	M0 - Mf	
		-	[kN]	[kNm]		[mm]	[mm]	[kNm]	
Caratteristica	CAR32	37	43,4	-9,3		Msd <mf< td=""><td>0,200</td><td>-58,66</td><td>-</td></mf<>	0,200	-58,66	-
<u>Tensioni in esercizio</u>									
			N	М		$\sigma_{c,min}$	$\sigma_{s,max}$	$\sigma_{s,min}$	
Combinazione	n. combinazione	nodo	[kN]	[kNm]		[N/mm²]	[N/mm²]	[N/mm ²]	
Quasi permanente	QP2	33	37,5	-1,6		-0,17	-0,87	-2,14	Sezione interamente compressa
Caratteristica	CAR32	37	43,4	-9,3		-0,94	19,39	-4,98	Sezione parzializzata

NSd MSd NRd+ NRd-MRd+ MRd-MSd/MRd Combinazione frame/nodo [kN] [kNm] [kN] [kN] [kNm] [kNm] SLU77 38 7187,03 116,81 -116,81 57% 158,3 67,0 -602,37

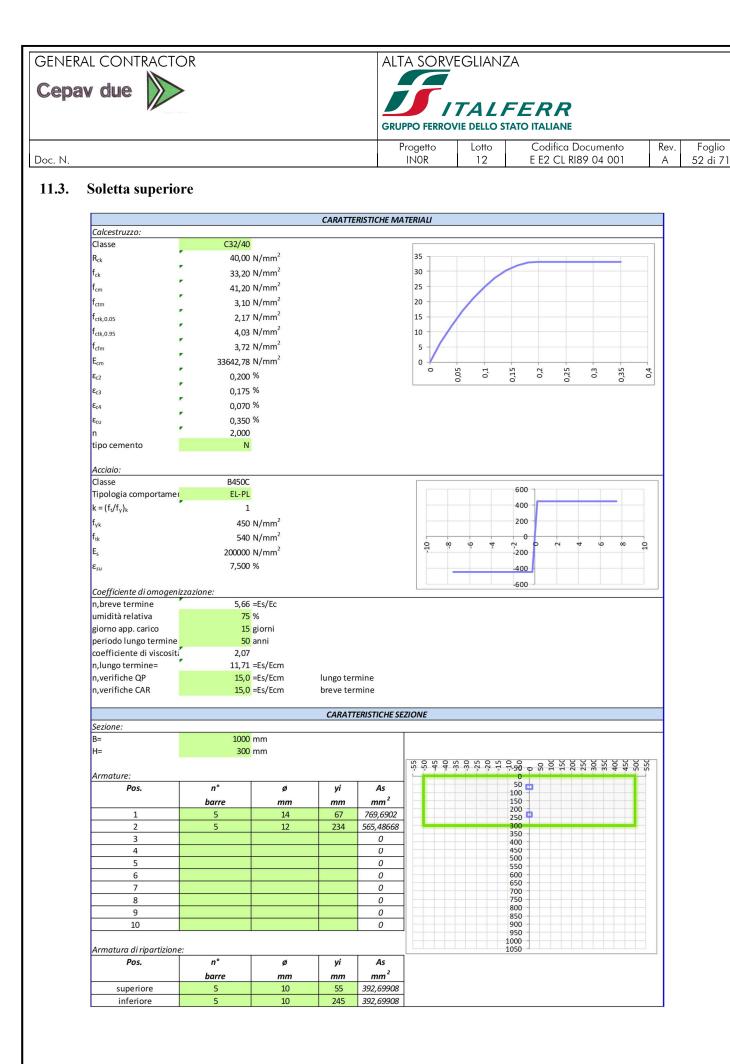
Fibre compresse		Superiori
$\sigma_{c,max}$ =	18,81	N/mm ²
$\sigma_{s,min}$ =	-391,30	N/mm ²
$\epsilon_{c,max}$ =	0,35	%
ε _{s,min} =	-1,62	%
d=	275,00	mm
x=	48,97	mm
x/d=	0,18	

<u>Dominio M-N</u>						
400						
300				1		
200						
100					\	
0 0 0	1000/	30,00	4000	0009	20002	8000
-200						
-300				1		
-400						

	NSd [kN]	MSd [kNm]
38	158,3	67,0

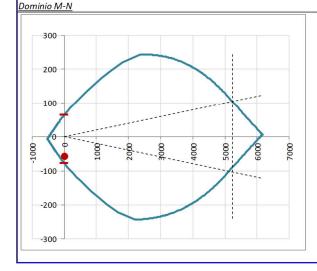
GENERAL CONTRACTOR ALTA SORVEGLIANZA Cepav due **ITALFERR** GRUPPO FERROVIE DELLO STATO ITALIANE Progetto INOR Lotto Codifica Documento Rev. Foglio

12


E E2 CL RI89 04 001

51 di 71

Α


Doc. N.

11.2.3.2. <u>Ver</u>	ifiche allo stato	limite di eso	<u>ercizio</u>						
		PA	RAMETRI V	ERIFICA FESS	UI	RAZIONE			
kt=	0,40		(0,6 = azio	ni di breve di	ıra	ta; 0,4 = az	ioni di lung	ga durata)	
k ₁ =	0,80		(0,8=barre	ad aderenzo	m	nigliorata; 1	1,6= barre l	iscie e trefo	li)
k ₃ =	3,40		(valore rad	ccomandato)				
k ₄ =	0,425		(valore rad	ccomandato)				
			•						
			CRITI	ERI DI VERIFI	CA				
<u>Fessurazione</u>									
Condiz. Ambientali:	2		1- Ordinar	ie; 2- Aggres	siv	e; 3- Molto	aggressive	2	
	Aggressive								
Armature:	2		1-Sensibili;	2-Poco sens	ibi	li			
	Poco sensibilie								
<u>Tensioni in esercizio</u>									
	Limite	Limite	$\sigma_{c,max}$	$\sigma_{\text{s,max}}$					
Combinazione	σ_c / fck	σ_s / fyk	[N/mm ²]	[N/mm²]					
Quasi Permanente	0,40	0,75	13,28	337,50					
Caratteristica	0,55	0,75	18,26	337,50					
			- (-) !!		_				
	30	DLLECITAZIONI SLI	E (N+ di con	pressione -	٠ ٨	/I+ tende Ie	fibre infer	iori)	
<u>Fessurazione</u>	1		1			Г	1	ı	
Combinazione	n. combinazione	frame/nodo	N	M		W _d	W lim	M0 - Mf	
Cavatta viati aa	CADAE	36	[kN]	[kNm]		[mm]	[mm]	[kNm]	
Caratteristica	CAR45	36	125,5	46,8		Msd <mf< td=""><td>0,200</td><td>63,44</td><td>-</td></mf<>	0,200	63,44	-
<u>Tensioni in esercizio</u>									
Combinazione	n. combinazione	nodo	N	М		$\sigma_{c,min}$	$\sigma_{s,max}$	$\sigma_{s,min}$	
Combinazione	n. combinazione	nouo	[kN]	[kNm]		[N/mm ²]	[N/mm²]	[N/mm ²]	
Quasi permanente	QP3	38	31,2	12,2		-1,34	41,32	-3,37	Sezione parzializzata
Caratteristica	CAR45	38	124,8	50,1		-5,52	171,90	-13,35	Sezione parzializzata



1,15 391,30 N/mm² f_{yd} 0,196 % ε_{vd} STATO LIMITE ULTIMO - PRESSOFLESSIONE NSd MSd NRd+ NRd-MRd+ MRd-MSd/MRd Combinazione frame/nodo [kN] [kNm] [kN] [kN] [kNm] [kNm] SLU77 46 6166,46 64,50 -77,32 75% 0,0 -57,9 -522,46 Sezione: Fibre compresse Inferiori 18,81 N/mm² $\sigma_{c,max}$ = -391,30 N/mm² $\sigma_{s,min}$ = 50 m 0,35 % 150 200 -2,03 % ε_{s,min}= 233,00 d= mm 34,31 350 x/d=0,15 400 450 500 550 600 700 750 800 850 950 1000

fram/nodo 46	NSd [kN] 0,0	MSd [kNm]
	0,0	-57,9

GENERAL CONTRACTOR

 Progetto
 Lotto
 Codifica Documento
 Rev.
 Foglio

 Doc. N.
 INOR
 12
 E E2 CL RI89 04 001
 A
 54 di 71

11.3.1.2. Verifiche allo stato limite ultimo per taglio

CALCESTRUZZO					
Calsse calcestruzzo C32/40					
Resistenza cubica caratteristica	Rck	40,00 Mpa			
Resistenza cilindrica caratteristica	f _{ck}	33,2 Mpa			

	ACCIAIO
Tipologia	B450C
Reisitenza caratteristica allo snervamento	450 Mpa

	COEFFICIENTI MATERIALE	
Coefficiente di sicurezza per il calcestruzzo	γς	1,50
Coefficiente riduttivo per resistenze di lunga durata	α_{cc}	0,85
Coefficiente di sicurezza per l'acciaio	γs	1,15

GEOMETRIA SEZIONE C.A.											
Base	b		mm								
Altezza	h		mm								
Barre tese		numero	diametro barre	copriferro in	Area barre						
		barre	[mm]	asse barra [mm]	[mm2]						
strato1		5	14	67	770						
strato2		0	0	0	0						
strato3		0	0	0	0						
strato4		0	0	0	0						
strato5		0	0	0	0						
Area barre tese	A_s		770	mm2							
Posizione della barra equivalente	c*		67	mm							

SOLLECITAZIONI											
Load Case		SLU7									
Frame		45									
Azione assiale (+ di compressione)	N _{Ed}		kN								
Taglio	V_{Ed}	145,65	kN								

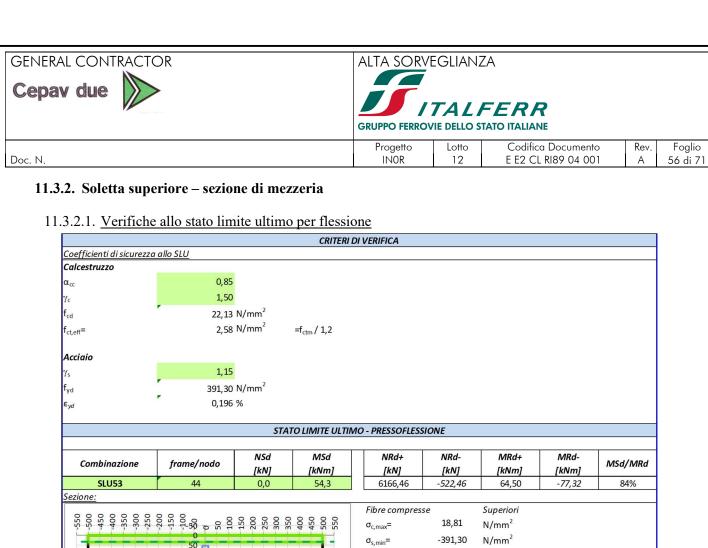
VERI	FICA RESISTENZA SEZIONE SENZA A	RMATURA A TAGLIO
Altezza utile della sezione	d	233 mm
Coefficiente	k	1,93
Rapporto di armatura longitudinale	ρl	0,33%
Tensione assiale media	$\sigma_{ m cp}$	0,00 N/mm2
	0.2 x f _{cd}	3,76 N/mm2
	v_{\min}	0,54 N/mm2
Resistenza al taglio minima	$V_{rd,min}$	125,64 kN
Resistenza al taglio senza armatura	V_{rd}	125,64 kN
Verifica		1,16 E' necessario prevedere armatura a taglio

ARMATURA A TAGLIO											
Diametro staffe	ф	10	mm								
Numero braccia	n	5									
Passo staffe	S	200	mm								
Inclinazione staffe (rispetto all'orizzontale)	α	90	•								
Inclinazione del puntone in calcestruzzo	θ	45	•								
Valore minimo di inclinazione del puntone in calcestruzzo	θ_{min}	21,80	•								

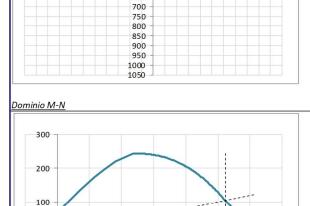
VERIFICA RESIST	VERIFICA RESISTENZA SEZIONE CON ARMATURA A TAGLIO											
Coefficiente di riduzione per fessurazione	ν_1	0,5										
Resistenza cilindrica di progetto	f_{cd}	18,81333333 N/mm2										
Area armatura a taglio	A _{st}	392,70 mm2										
	σ_{cp}/f_{cd}	0										
Coefficiente di interazione	α_{cw}	1										
Resistenza a tagio per rottura delle armature	V_{rds}	161,12 kN										
Resistenza a taglio per rottura del puntone in calcestruzzo	V_{rcd}	986,29 kN										
Resistenza al taglio	V_{rd}	161,12 kN										
Verifica		0,90 <u>Verifica soddisfatta</u>										

GENERAL CONTRACTOR ALTA SORVEGLIANZA Cepav due **ITALFERR** GRUPPO FERROVIE DELLO STATO ITALIANE Progetto INOR Lotto Codifica Documento Rev. Foglio

12


E E2 CL RI89 04 001

55 di 71


Α

Doc. N.

11.3.1.3. <u>Ver</u>	ifiche allo stato	limite di eso	<u>ercizio</u>									
		PA	RAMETRI V	ERIFICA FESS	SUI	RAZIONE						
kt=	0,40 (0,6 = azioni di breve durata; 0,4 = azioni di lunga durata)											
k ₁ =	0,80 (0,8=barre ad aderenza migliorata; 1,6= barre liscie e trefoli)											
k ₃ =	3,40 (valore raccomandato)											
k ₄ =	0,425											
-												
			CRITI	RI DI VERIFI	CA							
<u>Fessurazione</u>												
Condiz. Ambientali:	2		1- Ordinar	ie; 2- Aggres	siv	e; 3- Molto	aggressive	2				
	Aggressive											
Armature:	2		1-Sensibili;	2-Poco sens	ibi	'li						
	Poco sensibilie											
Tensioni in esercizio												
	Limite	Limite	$\sigma_{c,max}$	$\sigma_{\text{s,max}}$								
Combinazione	σ_c / fck	σ_s / fyk	[N/mm²]	[N/mm ²]								
Quasi Permanente	0,40	0,75	13,28	337,50								
Caratteristica	0,55	0,75	18,26	337,50								
		SOLL	ECITAZIONI	SLE (N+ di c	om	pressione)						
<u>Fessurazione</u>	1		1			1	ı	ı				
Combinazione	n. combinazione	frame/nodo	N	M		W _d	W _{lim}	M0 - Mf				
0	CARAF	45	[kN]	[kNm]		[mm]	[mm]	[kNm]				
Caratteristica	CAR45	45	0,0	-33,2		Msd <mf< td=""><td>0,200</td><td>-40,92</td><td>-</td></mf<>	0,200	-40,92	-			
Tensioni in esercizio												
Combinazione	n. combinazione	nodo	N	М		$\sigma_{c,min}$	$\sigma_{s,max}$	$\sigma_{s,min}$				
Combinazione	n. combinazione	nodo	[kN]	[kNm]		[N/mm ²]	[N/mm²]	[N/mm ²]				
Quasi permanente	QP3	46	0,0	-10,9		-1,65	66,87	1,16	Sezione parzializzata			
Caratteristica	CAR45	46	0,0	-42,9		-6,49	262,46	4,56	Sezione parzializzata			

100 0,35 % 150 200 -2,04 % $\epsilon_{s,min}$ = 234,00 d= mm 34,31 350 x/d=0,15 400 450

-100

-200

-300

550 600

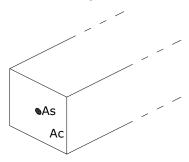
Combinazione	fram/nodo	NSd [kN]	MSd [kNm]
SLU53	44	0,0	54,3
		L	
,			

GENERAL CONTRACTOR ALTA SORVEGLIANZA Cepav due **ITALFERR** GRUPPO FERROVIE DELLO STATO ITALIANE Progetto INOR Foglio 57 di 71 Lotto Codifica Documento Rev. E E2 CL RI89 04 001 Doc. N. 12

Α

11.3.2.2. Verifiche allo stato limite di esercizio

		P.A	NRAMETRI V	ERIFICA FESS	SURAZIONE						
kt=	0,40 (0,6 = azioni di breve durata; 0,4 = azioni di lunga durata)										
k ₁ =	0,80 (0,8=barre ad aderenza migliorata; 1,6= barre liscie e trefoli)										
k ₃ =	3,40 (valore raccomandato)										
k ₄ =	0,425 (valore raccomandato)										
				·							
			CRITI	ERI DI VERIFI	CA						
<u>Fessurazione</u>											
Condiz. Ambientali:	2		1- Ordinar	ie; 2- Aggres.	sive; 3- Molto	aggressiv	e				
Armature:	Armature: 2 1-Sensibili; 2-Poco sensibili										
Aimature.	Poco sensibilie		1-3611310111,	2-1 000 30113	ii)iii						
Tensioni in esercizio											
	Limite	Limite	$\sigma_{c,max}$	$\sigma_{s,max}$							
Combinazione	$\sigma_{\rm c}$ / fck	σ _s / fyk	[N/mm ²]	[N/mm²]							
Quasi Permanente	0,40	0,75	13,28	337,50							
Caratteristica	0,55	0,75	18,26	337,50							
		SOLI	ECITAZIONI	SLE (N+ di c	ompressione						
<u>Fessurazione</u>	1		1	1			T	T			
Combinazione	n. combinazione	frame/nodo	N	M	W _d	W _{lim}	M0 - Mf				
C	CARAF	43	[kN]	[kNm]	[mm]	[mm]	[kNm]	_			
Caratteristica	CAR15	43	0,0	37,1	Msd <mf< td=""><td>0,200</td><td>40,92</td><td>-</td></mf<>	0,200	40,92	-			
<u>Tensioni in esercizio</u>											
Combinaciono	n combinant-		N	М	$\sigma_{c,min}$	$\sigma_{s,max}$	$\sigma_{s,min}$				
Combinazione	n. combinazione	nodo	[kN]	[kNm]	[N/mm ²]	[N/mm²]	[N/mm ²]				
Quasi permanente	QP2	44	0,0	13,9	-2,41	112,52	6,42	Sezione parzializzata			
Caratteristica	CAR15	43	0,0	37,1	-6,42	299,66	17,09	Sezione parzializzata			



11.4. Verifica effetti longitudinali da ritiro

Vengono discussi brevemente gli effetti dovuti al ritiro nel calcestruzzo che provocano stati interni di coazione con l'armatura. Scopo della trattazione è quello di verificare l'armatura minima longitudinale nella soletta superiore dello scatolare.

11.4.1. Coazioni interne dovute ai fenomeni di ritiro

Per il calcolo delle coazioni interne dovute ai fenomeni di ritiro si consideri una sezione di area unitaria A_c con un'unica barra di armatura di area A_s come rappresentato nell'immagine sottostante:

Si assumono le seguenti ipotesi:

- perfetta aderenza tra calcestruzzo ed acciaio;
- deformata piana della sezione in calcestruzzo;
- comportamento del calcestruzzo e dell'acciaio elastico e lineare.

Le equazioni di equilibrio, congruenza e legame dell'insieme calcestruzzo + acciaio che governano il fenomeno sono:

- $N_c + N_s = 0$ (equazione di equilibrio)
- $\varepsilon_r = \varepsilon_s \varepsilon_c$ (equazione di congruenza)
- $N_c = A_c \sigma_c = A_c E_c \varepsilon_c$ (equazione legame costitutivo del calcestruzzo)
- $N_s = A_s \sigma_s = A_s E_s \varepsilon_s$ (equazione legame costitutivo dell'acciaio)

Sostituendo le equazioni di legame in quella di equilibrio ed esprimendo la deformazione del calcestruzzo in funzione di quella dell'acciaio si ha:

$$N_s$$
 = - N_c = A_s E_s A_c E_c ϵ_r / $(A_s$ E_s + A_c $E_c)$

Il comportamento viscoso del calcestruzzo viene considerato attraverso l'abbattimento del modulo elastico, pertanto è necessario sostituire il valore di E_c con E_c^* . La tensione sull'acciaio e sul calcestruzzo risultano quindi pari a:

$$\sigma_s = A_c E_c^* E_s \varepsilon_r / (A_s E_s + A_c E_c^*)$$

$$\sigma_c = -A_s E_c^* E_s E_r / (A_s E_s + A_c E_c^*)$$

GENERAL CONTRACTOR

	Progetto	Lotto	Codifica Documento	Rev.	Foglio
Doc. N.	INOR	12	E E2 CL RI89 04 001	Α	59 di 71

11.4.2. Calcolo delle sollecitazioni longitudinali dovute ai fenomeni di ritiro

L'analisi delle sollecitazioni viene svolta per una striscia di larghezza unitaria, assumendo la dimensione convenzionale h_0 pari a $2 \times A/u = 2 \times H = 60$ cm, ed un calcestruzzo C32/40 classe N.

Caratteristiche della sezione:

B = 100 cm

H = 30 cm

 $A_{s,long} = 1 + 1 \varnothing 10/20 = 785 \text{ mm}^2$

 $E_s = 210\ 000\ N/mm^2$

 $E_c = 33643 \text{ N/mm}^2$

Deformazione da ritiro:

U.R. = 75%

$$\epsilon_{ca} (t=\infty) = 2.5 \times (f_{ck} - 10) \times 10^{-6} = 2.5 \times (0.83 \times 40 - 10) \times 10^{-6} = 0.058 \%$$

$$\varepsilon_{\rm cd}(t=\infty) = k_{\rm h} \times \varepsilon_{\rm cd,0} = 0.7 \times 0.32 \% = 0.22 \%$$
 (per calcestruzzo C32/40 classe N, U.R.=75%)

$$\varepsilon_r = \varepsilon_{ca} + \varepsilon_{cd} = 0.278 \%$$

A favore di sicurezza, si assume comunque una deformazione $\varepsilon_r = 0.400 \text{ }\%$

Effetto viscosità:

Il modulo viscoso a tempo infinito, in considerazione del valore di h_0 , della resistenza del calcestruzzo e della U.R., può cautelativamente essere assunto pari a ϕ ($t=\infty$) = 2.5. Il modulo elastico ridotto del calcestruzzo risulta quindi pari a:

$$E_c^* = E_c / (1+\phi) = 9612 \text{ N/mm}^2.$$

Tensioni nei materiali:

$$\begin{split} \sigma_s &= (1000 \times 300) \times 9612 \times 210000 \times 0.00040 \ / \ (785 \times 210000 + 1000 \times 300 \times 9612) = 79.46 \ N/mm^2 \\ \sigma_c &= -785 \times 9612 \times 210000 \times 0.00040 \ / \ (785 \times 210000 + 1000 \times 300 \times 9612) = -0.21 \ N/mm^2 \end{split}$$

La sollecitazione sul calcestruzzo risulta molto inferiore rispetto alla resistenza a trazione e quindi non porta a fessurazione il calcestruzzo; la sollecitazione sull'acciaio risulta modesta ed accettabile per le normali condizioni di esercizio della struttura.

12. VERIFICHE DI DEFORMAZIONE E VIBRAZIONE

12.1. Inflessione nel piano verticale dell'impalcato

In base a quanto indicato nelle Istruzioni FS, nonché nel D.M. 14.01.08, considerando la presenza del treno di carico LM71, incrementato con il corrispondente coefficiente dinamico, e considerando la variazione di temperatura lineare lungo l'altezza dell'impalcato pari a \pm 2.5° centigradi, il massimo angolo di rotazione θ_{max} all'estremità dell'impalcato dovrà risultare inferiore a θ_{amm} = 3.5·10⁻³ rad (essendo il manufatto a una sola campata ed assumendo la rotazione massima consentita per i manufatti a due binari). Per quanto riguarda le rotazioni attribuibili alla presenza del treno di carico LM71, si sono considerate le Combinazioni Elementari costituite dal carico centrato (Load 10) e si sono valutate le rotazioni sui nodi estremi della soletta superiore depurate della rototraslazione rigida della struttura. Inoltre lo spostamento orizzontale, conseguente all'inflessione per effetto dei carichi accidentali verticali del piano di posa del ballast, dovrà risultare non superiore ad 8.0 mm.

Nodo 40:

• Rotazione prodotta dal treno di carico LM71 centrato (Load 10)

$$\theta_{acc,cen} = 1.3 \times 10^{-4} \text{ rad}$$

• Rotazione prodotta dalla variazione termica lineare lungo l'altezza dell'impalcato

$$\theta_{\Delta t} = \pm 5.0 \times 10^{-5} \text{ rad}$$

Rotazione complessiva

Il massimo angolo di rotazione all'estremità della soletta superiore, dovuto alla presenza del treno di carico LM71, incrementato con il corrispondente coefficiente dinamico, e alla variazione lineare di temperatura lungo l'altezza dell'impalcato, vale, a meno del segno:

$$\theta_{tot} = \theta_{acc.cen} + \theta_{\Delta t} = 1.80 \times 10^{-4} \text{ rad} << \theta_{amm} = 3.5 \times 10^{-3} \text{ rad}$$

• Spostamento orizzontale del piano di posa del ballast

$$\delta = \theta_{\text{tot}} \times H = 1.80 \times 10^{-4} \times (300/2 + 330) = 0.09 \text{ mm} (< 8.0 \text{ mm})$$

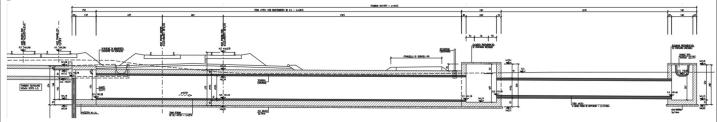
12.2. Stato limite di comfort dei passeggeri

La verifica viene eseguita in base a quanto indicato nelle Istruzioni FS, considerando la presenza del treno di carico LM71 incrementato con il corrispondente coefficiente dinamico.

Nodo 40:

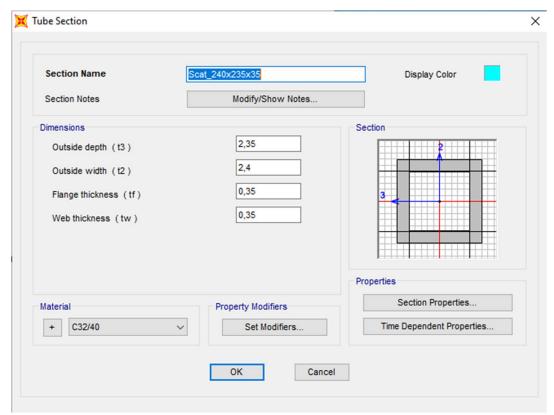
Freccia limite ammissibile (velocità del treno V > 250km/h, numero di campate n = 1)

$$\delta \lim = \alpha \times 1/2400 \times L = 1.5 \times 1/2400 \times 2050 = 1.28 \text{ mm}$$


Freccia massima dell'impalcato prodotta dal treno LM71

 δ max = 0.10 mm (traslazione verticale nodi 43 e 44) $< \delta$ lim = 1.28 mm.

13. ANALISI STRUTTURALE IN DIREZIONE LONGITUDINALE


L'analisi longitudinale dei tombini viene svolta schematizzandoli nella loro intera lunghezza come travi su suolo elastico alla Winkler. La costante di sottofondo è costante lungo l'asse del manufatto in relazione a quanto già esposto per l'analisi trasversale.

13.1. Geometria e modellazione

13.1.1.1. Codice di calcolo

L'analisi della struttura scatolare è stata condotta con un programma agli elementi finiti (SAP2000) schematizzando la sezione con elementi "beam" mutuamente incastrati aventi sezione scatolare equivalente a quella adottata per l'analisi trasversale.

13.1.1.2. Modellazione adottata

La struttura viene schematizzata attraverso un modello analitico agli elementi finiti, assumendo uno schema statico di trave su letto di molle facendo ricorso all'usuale artificio delle molle elastiche alla Winkler

L'analisi strutturale viene condotta con il metodo degli spostamenti per la valutazione dello stato tenso-deformativo indotto da carichi statici.

La caratteristica elastica della generica molla viene calcolata nel seguente modo:

 $K_s = 5000 \text{ kN/m}^3$

Lo schema statico della struttura scatolare e la relativa numerazione dei nodi e delle aste sono riportati nelle seguenti figure.

Numerazione dei nodi:

Numerazione delle aste:

GENERAL CONTRACTOR Cepav due

	Progetto	Lotto	Codifica Documento	Rev.	Foglio
Doc. N.	INOR	12	E E2 CL RI89 04 001	Α	63 di 71

13.2. Analisi dei carichi

I carichi considerati sono i seguenti:

13.2.1. Peso proprio

$$pp = 3.88 \times 25 = 97.00 \text{ kN/m}.$$

13.2.2. Peso permanente - Rilevato

Lo spessore di rilevato nella zona della piattaforma ferroviaria è pari ad H_r meno lo spessore di ballast:

$$pr1 = (1.13 - 0.80) \times 24 \times 2.40 = 19.01 \text{ kN/m};$$

Per la zona sotto stradello si assume un ricoprimento di 30 cm:

$$pr2 = 0.30 \times 20 \times 2.40 = 14.40 \text{ kN/m}.$$

13.2.3. Ballast e armamento

Si assume uno spessore costante di ballast pari a 0.80m:

$$pb = 0.80 \times 18 \times 2.40 = 34.56 \text{ kN/m};$$

13.2.4. Carichi mobili ferroviari sulla soletta superiore

Per il calcolo dettagliato dell'analisi dei carichi mobili, si rimanda al capitolo specifico sviluppato per l'analisi trasversale.

Poiché i carichi dovuti al treno LM71 risultano maggiori rispetto a quelli del treno SW2, per il calcolo delle sollecitazioni verranno impiegati solamente i primi.

Si riportano di seguito i valori di sollecitazione applicati in asse soletta.

$$q_{LM71} = 70.74 \times 2.40 = 169.78 \text{ kN/m}$$

13.2.5. Carichi mobili stradali sulla soletta superiore

Trattandosi di uno stradello di servizio, i carichi mobili stradali vengono considerati applicando un sovraccarico pari a $20kN/m^2$ su tutta l'area carrabile.

$$q_{acc} = 20 \times 2.40 = 48 \text{ kN/m}.$$

13.2.6. Carichi sismici

L'analisi sismica viene svolta considerando il sisma nella direzione verticale e longitudinale all'asse dello scatolare e applicando al modello di carico i sovraccarichi sismici verticali e i momenti generati dai carichi sismici longitudinali.

Il calcolo delle sollecitazioni inerziali viene determinato in analogia a quanto svolto per l'analisi traversale.

Sisma verticale:

$$I_{h,z,pp} = 0.151 \times 97.00 = 14.65 \text{ kN/m}$$

$$I_{h,z,pperm,1} = 0.151 \times 19.01 = 2.87 \text{ kN/m}$$

$$I_{h,z,pperm,2} = 0.151 \times 14.40 = 2.17 \text{ kN/m}$$

$$I_{h,z,ballast} = 0.151 \times 34.56 = 5.22 \text{ kN/m}$$

L'azione inerziale in direzione verticale legata alle masse simiche dei treni di carico (pari al 20% dei treni di progetto) risulta pari a:

$$I_{q,z} = 0.151 \times 0.20 \times 169.78 = 5.13 \text{ kN/m}$$

GENERAL CONTRACTOR Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Documento Rev. Foglio INOR 12 E E2 CL RI89 04 001 A 64 di 71

Sisma orizzontale:

 $I_{g,h,pp} = 0.2724 \times 97.00 \times 1.175 = 31.05 \text{ kNm/m}$

 $I_{g,h,pperm,1} = 0.2724 \times 19.01 \times 2.52 = 13.05 \ kNm/m$

 $I_{g,h,pperm,2} = 0.2724 \times 14.40 \times 2.50 = 9.81 \text{ kNm/m}$

 $I_{g h,ballast} = 0.2724 \times 34.56 \times 3.08 = 29.00 \text{ kNm/m}$

L'azione inerziale in direzione orizzontale legata alle masse simiche dei treni di carico (pari al 20% dei treni di progetto) risulta pari a:

 $I_{q,h} = 0.2724 \times 0.20 \times 169.78 \times 5.28 = 48.84 \; kNm/m$

13.1. Condizioni e combinazioni di carico adottate

Le condizioni elementari di carico considerate sono di seguito riassunte:

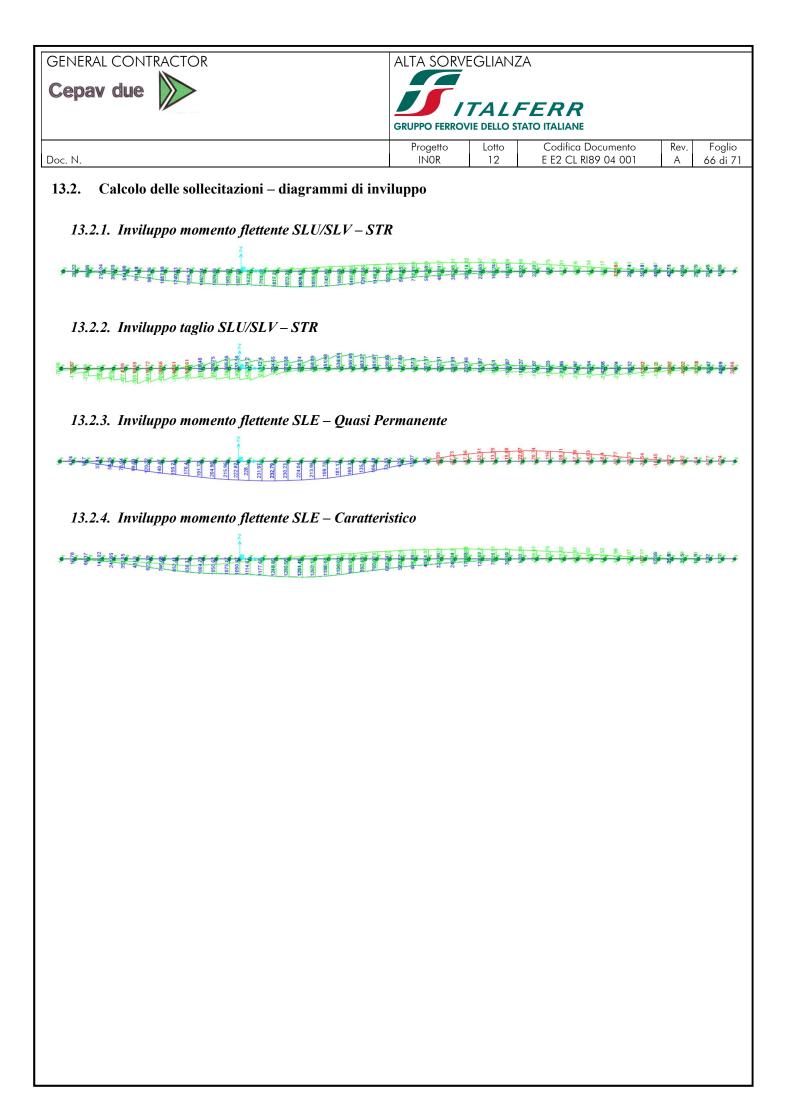
Load	Tipo	Carico
1	Ggk	Peso proprio della struttura
2	Gk	Peso rilevato
3	Gk	Peso ballast
4	Qk	Carico LM71 DX
5	Qk	Carico LM71 SX
6	Qk	Carico accidentale su stradello
7	Qk	Sisma x
8	Qk	Sisma z
9	Qk	Sisma x – LM71 DX
10	Qk	Sisma x – LM71 SX
11	Qk	Sisma x – LM71 DX
12	Qk	Sisma x – LM71 SX

I carichi caratteristici sopra elencati, al fine di ottenere le sollecitazioni di progetto per effettuare le successive verifiche, sono opportunamente combinati fra loro.

I valori numerici riportati nelle colonne delle seguenti tabelle di combinazione indicano il coefficiente moltiplicativo con il quale la condizione elementare è considerata. Tali valori sono il risultato dei prodotti tra coefficienti parziali operanti sulle azioni.

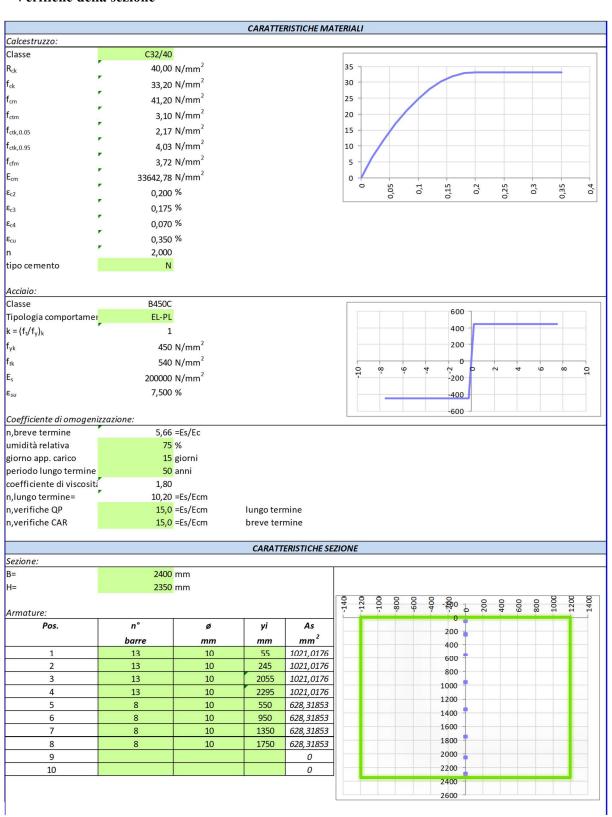
13.1.1. Combinazioni SLU di tipo STR

п°СС	P.P	Rilevato	Ballast	LM71 dx	LM71 sx	Accidentale	Inerzia sismica x	Inerzia sismica z	Inerzia sismica x - LM71 dx	Inerzia sismica x - LM71 sx	Inerzia sismica z - LM71 dx	Inerzia sismica z - LM71 sx
	1	2	3	4	5	6	7	8	9	10	11	12
SLU1	1	1	1	0	0	0						
SLU2	1	1	1	0	0	1,5						
SLU3	1,35	1,35	1,5	0	0	0						
SLU4	1,35	1,35	1,5	0	0	1,5						
SLU5	1	1	1	1,45	0	0						
SLU6	1	1	1	1,45	0	1,5						
SLU7	1,35	1,35	1,5	1,45	0	0						
SLU8	1,35	1,35	1,5	1,45	0	1,5						
SLU9	1	1	1	0	1,45	0						
SLU10	1	1	1	0	1,45	1,5						
SLU11	1,35	1,35	1,5	0	1,45	0						
SLU12	1,35	1,35	1,5	0	1,45	1,5						
SLU13	1	1	1	1,45	1,45	0						
SLU14	1	1	1	1,45	1,45	1,5						
SLU15	1,35	1,35	1,5	1,45	1,45	0						
SLU16	1,35	1,35	1,5	1,45	1,45	1,5						

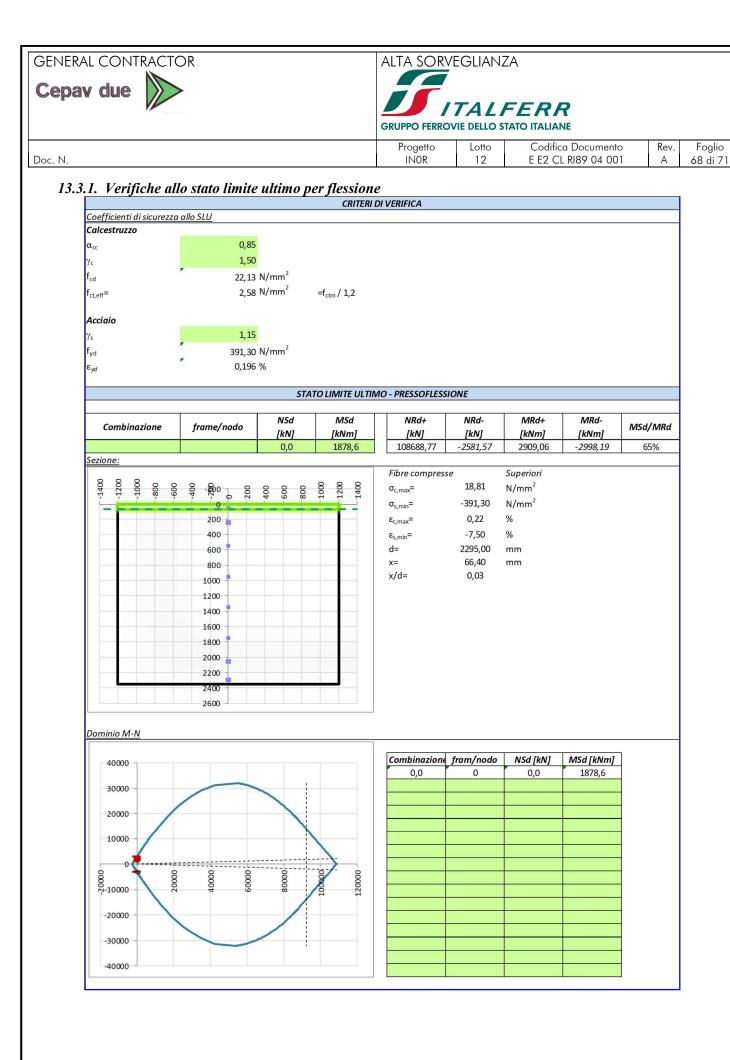

13.1.2. Combinazioni SLV

I coefficienti di combinazione SLV applicati ai singoli Load Case sono i medesimi sia per l'Approccio 1-Combinazione 1 che per l'Approccio 1-Combinazione 2.

n° CC	P.P	Rilevato	Ballast	LM71 dx	LM71 sx	Accidentale	Inerzia sismica x	Inerzia sismica z	Inerzia sismica x - LM71 dx	Inerzia sismica x - LM71 sx	Inerzia sismica z - LM71 dx	Inerzia sismica z - LM71 sx
	1	2	3	4	5	6	7	8	9	10	11	12
SLV1	1	1	1	0	0	0	1	0,3	,	10	11	12
SLV1	1	1	1	0	0	0	1	-0,3				
SLV3	1	1	1	0	0	0	-1	0,3				
SLV4	1	1	1	0	0	0	-1	-0,3				
SLV5	1	1	1	0	0	0	0,3	1				
SLV6	1	1	1	0	ő	0	0,3	-1				
SLV7	1	1	1	0	0	0	-0,3	1				
SLV8	1	1	1	0	0	0	-0,3	-1				
SLV9	1	1	1	0,2	0	0	1	0,3	1		0,3	
SLV10	1	1	1	0,2	0	0	1	-0,3	1		-0,3	
SLV11	1	1	1	0,2	0	0	-1	0,3	-1		0,3	
SLV12	1	1	1	0,2	0	0	-1	-0,3	-1		-0,3	
SLV13	1	1	1	0,2	0	0	0,3	1	0,3		1	
SLV14	1	1	1	0,2	0	0	0,3	-1	0,3		-1	
SLV15	1	1	1	0,2	0	0	-0,3	1	-0,3		1	
SLV16	1	1	1	0,2	0	0	-0,3	-1	-0,3		-1	
SLV17	1	1	1	0	0,2	0	1	0,3		1		0,3
SLV18	1	1	1	0	0,2	0	1	-0,3		1		-0,3
SLV19	1	1	1	0	0,2	0	-1	0,3		-1		0,3
SLV20	1	1	1	0	0,2	0	-1	-0,3		-1		-0,3
SLV21	1	1	1	0	0,2	0	0,3	1		0,3		1
SLV22	1	1	1	0	0,2	0	0,3	-1		0,3		-1
SLV23	1	1	1	0	0,2	0	-0,3	1		-0,3		1
SLV24	1	1	1	0	0,2	0	-0,3	-1		-0,3		-1
SLV25	1	1	1	0,2	0,2	0	1	0,3	1	1	0,3	0,3
SLV26	1	1	1	0,2	0,2	0	1	-0,3	1	1	-0,3	-0,3
SLV27	1	1	1	0,2	0,2	0	-1	0,3	-1	-1	0,3	0,3
SLV28	1	1	1	0,2	0,2	0	-1	-0,3	-1	-1	-0,3	-0,3
SLV29	1	1	1	0,2	0,2	0	0,3	1	0,3	0,3	1	1
SLV30	1	1	1	0,2	0,2	0	0,3	-1	0,3	0,3	-1	-1
SLV31	1	1	1	0,2	0,2	0	-0,3	1	-0,3	-0,3	1	1
SLV32	1	1	1	0,2	0,2	0	-0,3	-1	-0,3	-0,3	-1	-1


13.1.3. Combinazioni SLE – Quasi Permanente – Caratteristica

n° CC	d'd	Rilevato	Ballast	LM71 dx	LM71 sx	Accidentale	Inerzia sismica x	Inerzia sismica z	Inerzia sismica x - LM71 dx	Inerzia sismica x - LM71 sx	Inerzia sismica z - LM71 dx	Inerzia sismica z - LM71 sx
	1	2	3	4	5	6	7	8	9	10	11	12
QP01	1	1	1	0	0	0						
CAR01	1	1	1	0	0	0						
CAR02	1	1	1	0	0	1						
CAR03	1	1	1	1	0	0						
CAR04	1	1	1	1	0	1						
CAR05	1	1	1	0	1	0						
CAR06	1	1	1	0	1	1						
CAR07	1	1	1	1	1	0						
CAR08	1	1	1	1	1	1						



13.3. Verifiche della sezione

In considerazione del legame costitutivo del calcestruzzo secondo il quale la resistenza a trazione del materiale è nulla, le verifiche della sezione sono svolte trascurando la cavità della sezione e verificando che l'asse neutro non cada in corrispondenza dei piedritti.

GENERAL CONTRACTOR Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Documento Rev. Foglio INOR 12 E E2 CL RI89 04 001 A 69 di 71

13.3.2. Verifiche allo stato limite ultimo per taglio

CALCESTRUZZO						
Calsse calcestruzzo		C32/40				
Resistenza cubica caratteristica	Rck	40,00 Mpa				
Resistenza cilindrica caratteristica	f _{ck}	33,2 Mpa				

	ACCIAIO
Tipologia	B450C
Reisitenza caratteristica allo snervamento	450 Mpa

	COEFFICIENTI MATERIALE	
Coefficiente di sicurezza per il calcestruzzo	γc	1,50
Coefficiente riduttivo per resistenze di lunga durata	α_{cc}	0,85
Coefficiente di sicurezza per l'acciaio	γs	1,15

GEOMETRIA SEZIONE C.A.								
Base			700					
Altezza	h		2350	mm				
Barre tese		numero	diametro barre	copriferro in	Area barre			
		barre	[mm]	asse barra [mm]	[mm2]			
strato1		4	10	295	314			
strato2		4	10	55	314			
strato3		0	0	0	0			
strato4		0	0	0	0			
strato5		0	0	0	0			
Area barre tese	A_s		628	mm2				
Posizione della barra equivalente	c*		175					

	SOLLECITAZIONI						
Load Case							
Frame							
Azione assiale (+ di compressione)	N _{Ed}	0	kN				
Taglio	V_{Ed}	539,63	kN				

VERIFICA RESISTENZA SEZIONE SENZA ARMATURA A TAGLIO						
Altezza utile della sezione	d	2175 mm				
Coefficiente	k	1,30				
Rapporto di armatura longitudinale	ρl	0,04%				
Tensione assiale media	$\sigma_{ m cp}$	0,00 N/mm2				
	0.2 x f _{cd}	3,76 N/mm2				
	$ u_{\min}$	0,30 N/mm2				
Resistenza al taglio minima	$V_{rd,min}$	456,80 kN				
Resistenza al taglio senza armatura	V_{rd}	456,80 kN				
Verifica		1,18 E' necessario prevedere armatura a taglio				

ARMATURA A TAGLIO							
Diametro staffe	ф	14	mm				
Numero braccia	n	4					
Passo staffe	S	200	mm				
Inclinazione staffe (rispetto all'orizzontale)	α	90	•				
Inclinazione del puntone in calcestruzzo	θ	45	0				
Valore minimo di inclinazione del puntone in calcestruzzo	θ_{min}	25,32	ō				

VERIFICA RESIST	VERIFICA RESISTENZA SEZIONE CON ARMATURA A TAGLIO							
Coefficiente di riduzione per fessurazione	ν_1	0,5						
Resistenza cilindrica di progetto	f _{cd}	18,81333333 N/mm2						
Area armatura a taglio	A _{st}	615,75 mm2						
	σ_{cp}/f_{cd}	0						
Coefficiente di interazione	α_{cw}	1						
Resistenza a tagio per rottura delle armature	V_{rds}	2358,26 kN						
Resistenza a taglio per rottura del puntone in calcestruzzo	V_{rcd}	6444,74 kN						
Resistenza al taglio	V_{rd}	2358,26 kN						
Verifica		0,23 <u>Verifica soddisfatta</u>						

La verifica a taglio viene svolta considerando che l'intera azione venga assorbita dai soli piedritti. Si considera l'armatura verticale dei piedritti funzionale ad assorbire anche l'azione di taglio.

		PA	RAMETRI V	ERIFICA FESS	U	RAZIONE			
kt=	0,40 (0,6 = azioni di breve durata; 0,4 = azioni di lunga durata)								
k ₁ =	0,80	0,80 (0,8=barre ad aderenza migliorata; 1,6= barre liscie e trefoli)							
k ₃ =	3,40		(valore rad	ccomandato)					
k ₄ =	0,425		(valore rad	ccomandato)	1				
			CRITI	ERI DI VERIFIC	CA				
<u>Fessurazione</u>									
Condiz. Ambientali:	2		1- Ordinar	ie; 2- Aggres:	siv	e; 3- Molto	aggressive	2	
	Aggressive								
Armature:	2		1-Sensibili,	2-Poco sens	ibi	li			
	Poco sensibilie								
Tensioni in esercizio									
	Limite	Limite	$\sigma_{c,max}$	$\sigma_{s,max}$					
Combinazione	σ_c / fck	σ_s / fyk	[N/mm ²]	[N/mm²]					
Quasi Permanente	0,40	0,75	13,28	337,50					
Caratteristica	0,55	0,75	18,26	337,50					
		SOLL	.ECITAZIONI	SLE (N+ di co	om	pressione)			
Fessurazione_									
Combinazione	n. combinazione	frame/nodo	N	М		W _d	w _{lim}	M0 - Mf	
			[kN]	[kNm]		[mm]	[mm]	[kNm]	
Caratteristica	CAR		0,0	1291,5		Msd <mf< td=""><td>0,200</td><td>4173,87</td><td>-</td></mf<>	0,200	4173,87	-
Tensioni in esercizio									
Combinazione	n. combinazione	nodo	N	М		$\sigma_{c,min}$	$\sigma_{s,max}$	$\sigma_{s,min}$	
Combinazione	ii. combinazione	11000	[kN]	[kNm]		[N/mm ²]	[N/mm ²]	[N/mm ²]	
Quasi permanente	QP		0,0	232,8		-0,38	42,90	-4,57	Sezione parzializzata
Caratteristica	CAR		0,0	1291,5	1	-2,12	237,99	-25,33	Sezione parzializzata

14. RIFERIMENTI

14.1. Documenti referenziati

Rif. [1] Cepav due, documento nº INOR 12 E E2 RB RI89 00 001, intitolato "RI89 - RILEVATO COLLEG. QBSE-AV/AC DA PK 105+384,000 A PK 105+814,000 - RELAZIONE GEOTECNICA".

14.2. Documenti correlati

Non sono presenti documenti correlati.

14.3. Documenti superati

Non sono presenti documenti superati.