COMMITTENTE:

ALTA SORVEGLIANZA:

GENERAL CONTRACTOR:

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N. 443/01

LINEA A.V. /A.C. TORINO – VENEZIA Tratta MILANO – VERONA Lotto funzionale Brescia-Verona

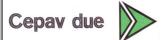
PROGETTO ESECUTIVO

IV16 – CAVALCAFERROVIA VIA BRESCIA - PK 108+954,045 Relazione sul comportamento sismico dell'opera, appoggi, ritegni sismici e giunti di dilatazione

GENE	RAL CONTRACTOR			DIRE	TTORE LAVOR	21		
	Consorzio Pav due							
Data:				Data	:	-		
C	COMMESSA LOTTO	FASE EN	TE TIPO	DDOC	OPERA/DISC	CIPLINA	PROGR	REV
					V 1 6	6 A 0	0 0 1	A
PRO	GETTAZIONE							IL PROGETTISTA
Rev.	Descrizione	Redatto	Data	Verificato	Data	Progettista Integratore	Data	MGEGIERE PACENTAL PROPERTY OF THE PACENTAL PROCESSION OF THE PACENTAL PROCESSION OF THE PACENTAL PROCESSION OF THE PACENTAL PACENTAL PROCESSION OF THE PACENTAL PROCESSION OF THE PACENTAL PACEN
Α	Emissione	Montecroci	08/05/20	Piagentini,	08/05/20	Liani	08/05/20	S LUCA PYACENTALLE
В				zigen				MONTH STYCK TOOL S
С								Data 08/05/20
CIG.	CIG. 751447334A File: INOR12EE2CLIV16A0001A_10.docx							

CUP: F81H91000000008

GENERAL CONTRACTOR



Progetto Lotto Codifica Documento Rev. Foglio Doc. N. INOR 12 E E2 CL IV 16A 0 001 A 2 di 45

INDICE

1	PRE	MESSA E DESCRIZIONE DELL'OPERA	4
2	NOI	RMATIVA DI RIFERIMENTO	5
	2.1	OPERE IN C.A. E STRUTTURE METALLICHE	5
	2.2	NORMATIVA SPECIFICA PER I PONTI STRADALI	5
	2.3	GEOTECNICA, FONDAZIONI E GEOLOGIA	6
,	2.4	ULTERIORI PRESCRIZIONI E SPECIFICHE TECNICHE DI RFI E ITALFERR	6
3	CAI	RATTERISTICHE DEI MATERIALI	7
	3.1	Calcestruzzo	7
	3.2	ACCIAIO	8
	3.2.	l Armature per c.a. – Acciaio B 450 C	8
	3.2.2	2 Carpenteria metallica – Classe S355	8
4	ELA	ABORATI DI RIFERIMENTO	9
5	SOF	TWARE DI CALCOLO	10
6	AN	ALISI DEI CARICHI	11
,	6.1	DATI GEOMETRICI DELL'IMPALCATO	11
,	6.2	AZIONI TRASMESSE DALL'IMPALCATO	11
	6.2.	l Azioni permanenti	11
	6.2.2	2 Deformazioni impresse	12
	6.2	β Cedimenti degli appoggi (ε4)	12
	6.2.	4 Calaggio (£4)	12
	6.2	5 Azioni variabili da traffico (q ₁)	12
	6.2.	6 Azioni orizzontali longitudinali	14
	6.	2.6.1 Frenatura (q ₃)	14
	6.2.		
		2.7.1 Azione Centrifuga (q4) 2.7.2 Azioni del vento (q5)	
7	AZI	ONE SISMICA	16
,	7.1	DEFINIZIONE DELL'AZIONE SISMICA	16

GENERAL CONTRACTOR

Doc. N.		Progetto INOR	Lotto 12	Codifica Documento E E2 CL IV 16A 0 001	Rev. A	Foglio 3 di 45
7.2	COMBINAZIONE DELL'AZIONE SISMICA					21
8 SIS	STEMA DI VINCOLAMENTO					22
9 MC	DDELLO AGLI ELEMENTI FINITI					23
10 RIS	SULTATI DELLE ANALISI					26
10.1	Analisi modale					26
10.2	COMBINAZIONI DI CARICO					29
10.	2.1 Combinazioni di carico statiche					29
10.	2.2 Combinazioni di carico sismiche					29
10.3	AZIONI E SPOSTAMENTI SUGLI APPOGGI					30
10.4	ROTAZIONE APPOGGI					35
10.5	VERIFICA DEI DISPOSITIVI DI VINCOLO					36
11 ES	CURSIONI MASSIME DI GIUNTI E VARCHI					37
12 SO	LLEVAMENTO DELL'IMPALCATO					38
13 AZ	ZIONI TRASMESSE DALL'IMPALCATO ALLE SOT	TOSTRUTTU	JRE			40
13.1	AZIONI TRASMESSE ALLA PILA 1					40
13.2	AZIONI TRASMESSE ALLA PILA 2					40
13.3	AZIONI TRASMESSE ALLA PILA 3					41
13.4	AZIONI TRASMESSE ALLA PILA 4					
13.5	AZIONI TRASMESSE ALLA PILA 5					
	UDIZIO MOTIVATO DI ACCETTABILITA' DEI RIS					

1 PREMESSA E DESCRIZIONE DELL'OPERA

La presente relazione riguarda il cavalcaferrovia denominato "Cavalcavia Via Brescia – IV16" che sovrappassa la futura linea AV/AC Milano-Verona in prossimità della progressiva 108+954,045.

In particolare, il presente documento tratta l'analisi dei carichi statici, la valutazione delle azioni sismiche, il calcolo delle azioni sugli apparecchi d'appoggio e le sollecitazioni tramesse dall'impalcato sulle sottostrutture.

Per lo studio globale della struttura sono state svolte analisi su un modello di calcolo agli elementi finiti rappresentante l'effettiva distribuzione di masse e rigidezze dell'opera.

Dal modello di calcolo si arriva alla definizione delle azioni in corrispondenza degli appoggi e le risultanti trasmesse dall'impalcato alle sottostrutture. Per quanto riguarda il calcolo delle sollecitazioni e le verifiche di pile e spalle, si rimanda alle specifiche relazioni.

L'andamento planimetrico dell'opera è in rettifilo, la viabilità in progetto al di sopra del cavalcavia è una strada di tipo F2. La sezione trasversale ell'opera è costituita da una sede carrabile di 8.50m, e da due cordoli esterni di larghezza complessiva pari a 3.7m (1.85m ognuno).

Il cavalcaferrovia, di lunghezza complessiva 265.00m, è costituito da 6 campate con luci variabili: 30.00m - 35.00m - 45.00m - 45.00m - 70.00m - 40.00m.

L'impalcato è della tipologia mista "acciaio-calcestruzzo" costituito da 2 travi a "doppio T" in acciaio di altezza variabile e soletta in calcestruzzo armato gettato in opera di spessore variabile da 0.22m a 0.30m. Le due travi sono collegate in campata, sulle pile e sulle spalle da diaframmi a parete piena posti ad interasse di 5.00m.

Il sistema di vincolamento previsto per il Cavalcavia è costituito da dispositivi di appoggio ed isolamento sismico in elastomero armato. Tali dispositivi, essendo caratterizzati da un ridotto valore della rigidezza orizzontale, garantiscono un disaccoppiamento del moto orizzontale della struttura rispetto a quello del terreno ed una conseguente riduzione della risposta sismica della struttura; inoltre tali dispositivi sono dotati di una certa capacità dissipativa in funzione della mescola elastomerica utilizzata, indispensabile per minimizzare gli spostamenti della struttura isolata.

Le spalle dell'opera, realizzate in conglomerato cementizio armato, presentano un plinto di forma rettangolare attestato su una palificata di fondazione costituita da pali Ø1500 mm. Lo sviluppo dell'elevazione è costituito da un fusto, dal superiore paraghiaia e da idonei muri di risvolto e orecchie atti a gestire il retrostante corpo del rilevato.

Le pile sono a setto continuo in c.a, di spessore 1.20m e larghezza 8.20m. Le dimensioni in altezza sono determinate dall'andamento altimetrico del tracciato stradale e dallo spessore dell'impalcato.

Nella tabella seguente si riporta il riepilogo delle caratteristiche geometriche del cavalcaferrovia.

	L campata	H fusto	Tipo di
	[m]	[m]	fondazione
SpA		4.50	9 pali 1500
	30.00		
P1		8.40	diaframmi
	35.00		
P2		9.40	diaframmi
	45.00		
Р3		9.60	diaframmi
	45.00		
P4		8.40	diaframmi
	70.00		
P5		5.90	diaframmi
	40.00		
SpB		3.80	6 pali 1500

2 NORMATIVA DI RIFERIMENTO

Il progetto delle strutture e le disposizioni esecutive sono conformi alle norme attualmente in vigore ed in particolare:

2.1 Opere in c.a. e strutture metalliche

- D. M. Min. II. TT. del 14 gennaio 2008 Norme tecniche per le costruzioni;
- CIRCOLARE 2 febbraio 2009, n.617 "Istruzione per l'applicazione delle «Nuove norme tecniche per le costruzioni» di cui al decreto ministeriale 14 gennaio 2008;
- UNI EN 1990 (Eurocodice 0) Aprile 2006: "Criteri generali di progettazione strutturale";
- UNI EN 1991-1-1 (Eurocodice 1) Agosto 2004: "Azioni sulle strutture Parte 1-1: Azioni in generale Pesi per unità di volume, pesi propri e sovraccarichi per gli edifici";
- UNI EN 1991-1-4 (Eurocodice 1) Luglio 2005: "Azioni sulle strutture Parte 1-4: Azioni in generale Azioni del vento";
- UNI EN 1992-1-1 (Eurocodice 2) Novembre 2005: "Progettazione delle strutture di calcestruzzo Parte 1-1: "Regole generali e regole per gli edifici";
- UNI EN 1993-1-1 (Eurocodice 3) Agosto 2005: "Progettazione delle strutture in acciaio Parte 1-1: Regole generali e regole per gli edifici";
- UNI EN 1998-1 (Eurocodice 8) Marzo 2005: "Progettazione delle strutture per la resistenza sismica Parte 1: Regole generali Azioni sismiche e regole per gli edifici";
- Linee guida sul calcestruzzo strutturale Presidenza del Consiglio Superiore dei Lavori Pubblici Servizio Tecnico Centrale;
- UNI EN 197-1:2011 "Cemento: composizione, specificazioni e criteri di conformità per cementi comuni;
- UNI EN 11104:2016 "Calcestruzzo: specificazione, prestazione, produzione e conformità", Istruzioni complementari per l'applicazione delle EN 206-1;
- UNI EN 206:2016 "Calcestruzzo: specificazione, prestazione, produzione e conformità";
- UNI EN 1337 Novembre 2001 "Appoggi Struttrali".

2.2 Normativa specifica per i ponti stradali

- UNI EN 1991-2-1 (Eurocodice 1) Marzo 2005: "Azioni sulle strutture Parte 2: Carichi da traffico sui ponti";
- UNI EN 1992-2 (Eurocodice 2) Gennaio 2006: "Progettazione delle strutture di calcestruzzo Parte 2: Ponti in calcestruzzo progettazione e dettagli costruttivi";
- UNI EN 1993-2 (Eurocodice 3) Gennaio 2007: "Progettazione delle strutture in acciaio Parte 2: Ponti di acciaio";
- UNI EN 1998-2 (Eurocodice 8) Febbraio 2006: "Progettazione delle strutture per la resistenza sismica Parte 2: Ponti".

2.3 Geotecnica, fondazioni e geologia

- UNI EN 1997-1 (Eurocodice 7) Febbraio 2005: "Progettazione geotecnica Parte 1: Regole generali";
- UNI EN 1998-5 (Eurocodice 8) Gennaio 2005: "Progettazione delle strutture per la resistenza sismica Parte 2: Fondazioni, strutture di contenimento ed aspetti geotecnici";
- UNI EN 1536:2010: "Esecuzione di lavori geotecnici speciali Pali trivellati".

2.4 Ulteriori prescrizioni e specifiche tecniche di rfi e italferr

•	RFI DTC SI PS MA IFS 001 A: "Manuale di progettazione delle opere civili – Parte II – Sezione 2: Pont
	e strutture".

3 CARATTERISTICHE DEI MATERIALI

Per la realizzazione dell'opera si prevede l'impiego dei materiali indicati nei paragrafi che seguono. Si indicheranno le caratteristiche prestazionali di resistenza minime e, con particolare riferimento ai calcestruzzi, anche le prescrizioni o caratteristiche da assicurare per garantire i requisiti di durabilità.

3.1 Calcestruzzo

Per garantire la durabilità delle strutture in calcestruzzo armato ordinario, esposte all'azione dell'ambiente, si devono adottare i provvedimenti atti a limitare gli effetti di degrado indotti dall'attacco chimico, fisico e derivante dalla corrosione delle armature e dai cicli di gelo e disgelo.

Al fine di ottenere la prestazione richiesta in funzione delle condizioni ambientali, nonché per la definizione della relativa classe, si fa riferimento alle indicazioni contenute nelle Linee Guida sul calcestruzzo strutturale edite dal Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici ovvero alle norme UNI EN 206-1:2016 ed UNI 11104:2016.

Ai fini di preservare le armature dai fenomeni di aggressione ambientale, dovrà essere previsto un idoneo copriferro; il suo valore, misurato tra la parete interna del cassero e la generatrice dell'armatura metallica più vicina, individua il cosiddetto "copriferro nominale".

Il copriferro nominale c_{nom} è somma di due contributi, il copriferro minimo c_{min} e la tolleranza di posizionamento h. Vale pertanto: $c_{nom} = c_{min} + h$.

La tolleranza di posizionamento delle armature "h", per le strutture gettate in opera, viene assunta pari ad 5 mm in quanto si prescrive che l'esecuzione sia sottoposta ad un sistema di assicurazione della qualità, nella quale siano incluse le misure dei copriferri.

Si utilizzano i seguenti tipi di calcestruzzo e copriferri minimi.

PARTE O ELEMENTO	Classe esposizione	Classe resistenza minima [MPa]	Ambiente	Copriferro minimo [mm]	Classe di resistenza adottata [MPa]
Cordoli laterali e marciapiedi	XC4 XD3 XF4	C 35/45	Molto Agg.	60	C 35/45
Soletta di impalcato	XC3	C 30/37	Ordinario	40	C 35/45
Baggioli e ritegni	XC4	C 32/40	Aggressivo	50	C 35/45
Elevazioni pile	XC4 XF1	C 32/40	Aggressivo	50	C 35/45
Elevazioni spalle	XC4 XF1	C 32/40	Aggressivo	50	C 32/40
Fondazioni pile e spalle	XC2	C 25/30	Ordinario	40	C 25/30
Pali e diaframmi di fondazione	XC2	C 25/30	Ordinario	60	C 25/30

Tabella 3.1 – Classi di cls e copriferri minimi

In conformità a quanto sopra, le caratteristiche meccaniche del calcestruzzo utilizzate nell'analisi/verifiche sono le seguenti:

Grandezza	u.m.	C25/30	C30/37	C32/40	C35/45	
resistenza caratteristica a compressione	f_{ck}	N/mm ²	25,00	30,00	32,00	35,00
resistenza di progetto a compressione	f_{cd}	N/mm ²	14,17	17,00	18,13	19,83
resistenza caratteristica a trazione	f_{ctk}	N/mm ²	1,80	2,00	2,12	2,25
tensione di aderenza cls-armatura	f_{bd}	N/mm ²	2,70	3,00	3,18	3,37
tensione massima di compressione (comb. rara)	$\sigma_{\rm c}$	N/mm ²	15,00	18,00	19,20	21,00
tensione massima di compressione (comb. quasi perm.)	σ_{c}	N/mm ²	11,25	13,50	14,40	15,75
modulo elastico medio istantaneo	Em	N/mm ²	31476	32836	33346	34077

Tabella 3.2 - grandezze meccaniche relative al cls

3.2 Acciaio

3.2.1 Armature per c.a. – Acciaio B 450 C

Si utilizzano per le armature degli elementi in c.a. la seguente tipologia di acciaio:

Acciaio tipo: B450 C Saldabile controllato in stabilimento

In conformità a quanto sopra, le caratteristiche meccaniche dell'acciaio d'armatura utilizzate nell'analisi/verifiche sono le seguenti:

Proprietà		Requisito
Limite di snervamento	fy	≥450 MPa
Limite di rottura	f_{t}	≥540 MPa
Allungamento totale al carico massimo	A_{gt}	≥7.5%
Rapporto	f_t/f_y	$1,15 \le R_{\rm m}/R_{\rm e} \le 1,35$
Rapporto	$f_{y \text{ misurato}} / f_{y \text{ nom}}$	≤ 1,25

3.2.2 Carpenteria metallica – Classe S355

Si utilizzano per le strutture metalliche del viadotto i seguenti tipi di acciaio:

Elementi saldati di spessore fino a 40mm S355J2G3 Elementi saldati di spessore superiore a 40mm S355K2G3 Elementi non saldati S355JO

In conformità a quanto sopra, le caratteristiche meccaniche dell'acciaio da carpenteria utilizzate nell'analisi/verifiche sono le seguenti:

GENERAL CONTRACTOR Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Documento Rev. Foglio

INOR

12

E E2 CL IV 16A 0 001

Α

9 di 45

4 ELABORATI DI RIFERIMENTO

Doc. N

Gli elaborati inerenti all'opera in oggetto sono elencati di seguito.

```
DESCRIZIONE
                                                                                                                                                                                                          CODICE
<u>IFOO — ELABORATI DI TRACCIAMENTO LINEA AV/AC</u>
RELAZIONE TECNICA DEL TRACCIAMENTO
                                                                                                                                                                                                INOR10EE2ROIF0000001
 rib7 - rilevato colleg. Qese-av/ac da pk 107+684,000 a pk 109+134,000 - planmetria di progetto - tavola 4
                                                                                                                                                                                                INOR12EE2PBRI8700004
                  CAVALCAFERROVIA TIPOLOGICO
 PRESCRIZIONI MATERIALI E NOTE GENERALI
STRADE CATEGORIA 12 — CARPENTERIA IMPALCATO — DETTAGLI
STRADE CATEGORIA C2 — CARPENTERIA IMPALCATO — DETTAGLI
STRADE CATEGORIA C2 CON PISTA CICLABILE — CARPENTERIA IMPALCATO — DETTAGLI
                                                                                                                                                                                                INOR1 1EE24TIV0000001
                                                                                                                                                                                                INDRI 1FF2RZIVOQA5001
                                                                                                                                                                                                 NOR11EE2BZIVOOA5002
                                                                                                                                                                                                INOR1 1EE2BZIVOOA5003
 RITEGNI SISMICI — DETTAGLI E POSIZIONAMENTO CUSCINETTI
CARPENTERIA METALLICA IMPALCATO — CONTROPASTRE SUPERIORI PER DISPOSITIVI DI APPOGGIO
                                                                                                                                                                                                INORT TEE 28YIVOOA 4001
INORT TEE 28ZIVOOA 5004
CARPENTERIA METALLICA MIPALCATO — CONTROPASTRE SUPERIORI PER DISPOSITIVI DI 
SCHEMA FISSIGGIO PER MONTAGGIO DISPOSITIVI DI APPOGGIO 
SOLLEVAMENTO DEGLI MIPALCATI 
SMALTIMENTO ACQUE METEORICHE — CLEMENTO DI DISCOMNESSIONE TIPO A 
SMALTIMENTO ACQUE METEORICHE — ELEMENTO DI DISCOMNESSIONE TIPO A 
SMALTIMENTO ACQUE METEORICHE — ELEMENTO DI DISCOMNESSIONE TIPO B 
SMALTIMENTO ACQUE METEORICHE — ELEMENTO DI DISCOMNESSIONE TIPO C 
ARMATURA BAGGIOLI E RITEGNI ANTISSIMICI SU PILE TIPO A 
ARMATURA BAGGIOLI E RITEGNI ANTISSIMICI SU PILE TIPO B 
ARREDO MIPALCATO — RETE DI PROTEZIONE H. 300CM 
ARREDO MIPALCATO — PARAPETTO REDONALE H. 110CM 
ARREDO MIPALCATO — PARAPETTO H. 150CM SU PISTA CICLABILE 
RELAZIONE DI CALCOLO RETE DI PROTEZIONE BI PROTEZIONE DI CALCABILE 
RELAZIONE DI CALCOLO RETE DI PROTEZIONE PER LA PROTEZIONE DALLE CORRENTI VAGANTI 
DISSENIO DINSILEME 
MESSA A TERRA E PREDISPOSIZIONE PER LA PROTEZIONE DALLE CORRENTI VAGANTI 
DISEGNO D'INSIEME 
MESSA A TERRA E PREDISPOSIZIONE PER LA PROTEZIONE DALLE CORRENTI VAGANTI 
DISEGNO D'INSIEME 
MESSA A TERRA E PREDISPOSIZIONE PER LA PROTEZIONE DALLE CORRENTI VAGANTI 
DISEGNO D'INSIEME 
MESSA A TERRA E PREDISPOSIZIONE PER LA PROTEZIONE DALLE CORRENTI VAGANTI 
DISEGNO D'INSIEME
                                                                                                                                                                                                INOR 1 1EE2DZIVOOA5001
INOR 1 1EE2BCIVOOA 100 1
                                                                                                                                                                                                INOR11EE2BYIVOOA8001
INOR11EE2BZIVOOA8001
                                                                                                                                                                                                INOR1 1EE2BZIVOOA8002
INOR1 1EE2BZIVOOA8003
                                                                                                                                                                                                INDR11FF2BCIVO044001
                                                                                                                                                                                                INOR 1 1EE2BZIVOOABOO1
                                                                                                                                                                                                INOR1 1EE2BZIVOOABOO2
INOR1 1EE2BZIVOOABOO3
                                                                                                                                                                                                INOR1 1EE2BZIVOOABOO4
INOR1 1EE2CLIVOOABOO1
                                                                                                                                                                                                INOR11EE2AZIVOQABOO1
 MESSA A TERRA E PREDISPOSIZIONE PER LA PROTEZIONE DALLE CORRENTI VAGANTI
RELAZIONE DESCRITTIVA
                                                                                                                                                                                                INOR11EE2RONOOABOO1
 <u>IV16 — CAVAL CAFERROVA VIA BRESCIA — PK 108+954,045</u>
RELAZIONE TECNICA GENERALE CAVAL CAFERROVA
RELAZIONE DI CALCOLO SPALLA A</u>
                                                                                                                                                                                                INOR12EE2ROIV16A0001
                                                                                                                                                                                                INDR12FF2CLIV16A6001
 RELAZIONE DI CALCOLO SPALLA B
RELAZIONE DI CALCOLO PILE
                                                                                                                                                                                                INOR12EE2CLIV16A6002
                                                                                                                                                                                                INOR12EE2CLIV16A4001
 RELAZIONE SUL COMPORTAMENTO SISMICO DELL'OPERA, APPOGGI, RITEGNI SISMICI E GIUNTI DI DILATAZIONE
                                                                                                                                                                                                INOR12EE2CLIV16A0001
 RELAZIONE DI CALCOLO IMPALCATO
PANTA FONDAZIONI E PIANTA IMPALCATO — TAV. 1/2
PIANTA FONDAZIONI E PIANTA IMPALCATO — TAV. 2/2
                                                                                                                                                                                                INDR12EE2CLIV16A5001
                                                                                                                                                                                                INOR12EE2P9IV16A0001
                                                                                                                                                                                                INOR12EE2P9IV16A0002
 SEZIONE LONGITUDINALE, PROSPETTO LONGITUDINALE E SEZIONI TRASVERSALI — TAV. 1/2
SEZIONE LONGITUDINALE, PROSPETTO LONGITUDINALE E SEZIONI TRASVERSALI — TAV. 1/2
                                                                                                                                                                                                INOR12EE2PZIV16A0001
                                                                                                                                                                                                INOR12EE2PZIV16A0002
 PANTA TRACCIAMENTO SOTTOSTRUTTURE E PLINTI DI FONDAZIONE
PANTA SCAVI
                                                                                                                                                                                                INOR12EE2PZIV16A3001
INOR12EE2PZIV1601001
 CARPENTERIA SPALLA A
CARPENTERIA SPALLA B
CARPENTERIA PILE
                                                                                                                                                                                                INOR12EE2BZIV16A6001
INOR12EE2BZIV16A6002
                                                                                                                                                                                                INOR 12EE2BZIV 16A400 1
INOR 12EE2BZIV 16A300 1
 CAMPENTERA PILE
ARMATURA DAFRAMAN DI FONDAZIONE SPALLE
ARMATURA SPALLA A — TAVOLA 1/2
ARMATURA SPALLA A — TAVOLA 2/2
ARMATURA SPALLA A — TAVOLA 2/2
                                                                                                                                                                                                INDR12FF2RZIV16A3002
                                                                                                                                                                                                INOR12EE2BBIV16A6001
                                                                                                                                                                                                INOR12EE2BZIV16A6003
  ARMATURA SPALLA B - TAVOLA 1/2
                                                                                                                                                                                                INDR12FF2RRIV1646002
  ARMATURA SPALLA B — TAVOLA 2/2
                                                                                                                                                                                                INOR12EE2BZIV16A6004
 ARMATURA FUSTO PILA P1
ARMATURA FUSTO PILA P2
                                                                                                                                                                                                INOR12FE2BZIV16A4003
ARABITURA FUSTO PUA P3
ARABITURA FUSTO PUA P3
ARABITURA FUSTO PUA P4
ARABITURA FUSTO PUA P5
ARABITURA FUSTO PUA P5
CASPOSTRIP DI APPOGGIO E GIUNTI
CARPOSTRIP DI APPOGGIO E GIUNTI
CARPOSTRIP DI APPOGGIO E GIUNTI
CARPOSTRIP MITALLICA IMPALCATO — DISEGNO D'ASSIGNE — TAV. 1/4
                                                                                                                                                                                                INOR12EE2BZIV16A4004
INOR12EE2BZIV16A4005
                                                                                                                                                                                                INOR12EE2BZIV16A4006
INOR12EE2BCIV16A6001
                                                                                                                                                                                                INOR12EE2BZIV16A5001
                                                                                                                                                                                                INOR12EE2BZIV16A5002
 CARPENTERIA METALLICA IMPALCATO — DISEGNO D'ASSIEME — TAV. 2/4
                                                                                                                                                                                                INOR12EE2BZIV16A5003
 CARPENTERIA METALLICA IMPALCATO — DISEGNO D'ASSIEME — TAV. 3/4
CARPENTERIA METALLICA IMPALCATO — DISEGNO D'ASSIEME — TAV. 4/4
                                                                                                                                                                                                INOR12EE2BZIV16A5004
                                                                                                                                                                                                INOR12FF2BZIV16A5005
 CARPENTERIA METALLICA IMPALCATO - TRAVERSI - TAV. 1/3
                                                                                                                                                                                                INOR12EE2BCIV16A5003
 CARPENTERIA METALLICA IMPALCATO — TRAVERSI — TAV. 2/3
                                                                                                                                                                                                INOR12EE2BCIV16A5001
 CARPENTERIA METALLICA IMPALCATO — TRAVERSI — TAV. 3/3
CARPENTERIA METALLICA IMPALCATO — DETTAGLI
                                                                                                                                                                                                INOR12EE2BZIV16A5007
                                                                                                                                                                                                INOR12EE2BKIV16A5001
INOR12EE2BKIV16A5008
 LASTRE TRALICCIATE IMPALCATO — TAVOLA 1/4
LASTRE TRALICCIATE IMPALCATO — TAVOLA 2/4
                                                                                                                                                                                                INDR12FF2RZIV16A5009
 LASTRE TRALICCIATE IMPALCATO - TAVOLA 3/4
                                                                                                                                                                                                INOR12EE2BZIV16A5010
 LASTRE TRALICCIATE IMPALCATO — TAVOLA 4/4
ARMATURA SOLETTA IMPALCATO — TAV. 1/2
ARMATURA SOLETTA IMPALCATO — TAV. 2/2
                                                                                                                                                                                                INOR12EE2BZIV16A5011
                                                                                                                                                                                                INOR12FF2BCIV16A5002
                                                                                                                                                                                                INDR12FF2RAIV16A5001
 FASI COSTRUTTIVE. Tavola 1/2
                                                                                                                                                                                                INOR12EE2BZIV16A1001
 FASI COSTRUTTIVE. Tavola 2/2
                                                                                                                                                                                                INOR12EE2B8IV16A1001
                                                                                                                                                                                                INDR12FF2RBIV1600001
 RFT AZIONE GEOTECNICA
 PROFILO STRATIGRAFICO
```


5 SOFTWARE DI CALCOLO

Il codice di calcolo utilizzato è Straus7, programma di modellazione strutturale agli elementi finiti di comprovata validità. Il codice è stato utilizzato per il calcolo delle sollecitazioni derivanti dalle analisi statiche e dinamiche dell'opera. I risultati delle sollecitazioni sono stati controllati manualmente a campione mediante metodi semplificati per verificare l'ordine di grandezza dei risultati.

GENERAL CONTRACTOR Cepav due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
Doc. N.	Progetto INOR	Lotto 12	Codifica Documento E E2 CL IV 16A 0 001	Rev.	Foglio 11 di 45

6 ANALISI DEI CARICHI

6.1 Dati geometrici dell'impalcato

Si riporta di seguito il riepilogo delle caratteristiche geometriche dell'impalcato, necessarie a definire le azioni permanenti e variabili che agiscono sul ponte.

Larghezza carreggiata	8,50 m
Larghezza pavimentazione	8,50 m
Larghezza cordolo 1	1,85 m
Larghezza cordolo 2	1,85 m
Spessore medio soletta	0,24 m
Spessore pavimentazione	0,11 m
Spessore medio cordoli	0,17 m
Lunghezza totale impalcato	265,00 m

6.2 Azioni trasmesse dall'impalcato

6.2.1 Azioni permanenti

	Pe	eso unitari	io	Larghezza	Spessore	Numero		Carico lineare
	$[kN/m^3]$	$[kN/m^2]$	[kN/m]	[m]	[m]	[-]		[kN/m]
Peso struttura in acciaio		2.80		12.20			=	34.16
Peso soletta	25.00			12.20	0.24		=	73.20
Totale strutturali								107.36
Pavimentazione		2.40		8.50			=	20.40
Cordoli	25.00			1.85	0.17	2	=	15.73
Barriere sicurezza e parapetto			2.50			2	=	5.00
Totale Permanenti Portati								41.13

Totale 148.49

Si considera 150kN/m.

GENERAL CONTRACTOR **ALTA SORVEGLIANZA** Cepav due TALFERR **GRUPPO FERROVIE DELLO STATO ITALIANE** Progetto Lotto Codifica Documento Rev. Foglio INOR Doc. N 12 E E2 CL IV 16A 0 001 Α 12 di 45

6.2.2 Deformazioni impresse

Variazioni termiche (ε_2)

Per i calcoli relativi alle sottostrutture verrà applicata all'impalcato una variazione termica uniforme pari a:

ΔT= 30.00 °

I dispositivi di appoggio in elastomero armato previsti per l'opera in oggetto trasmettono agli elementi di sostegno un'azione orizzontale proporzionale alla loro rigidezza ed allo scorrimento massimo dovuto a deformazioni lente corrispondenti alla dilatazione termica dell'impalcato.

L'accorciamento dovuto ad escursione termica tra due punti A e B dell'impalcato è dato dalla seguente espressione:

 $dL_{AB} = L_{AB} * \alpha * dT$

dove si assume:

L_{AB}= distanza tra la pila e il baricentro delle rigidezze degli appoggi

 α = coefficiente di dilatazione termica

dT = variazione termica

Considerando i valori delle rigidezze orizzontali in condizioni di esercizio dei dispositivi previsti e la lunghezza dell'impalcato interessato da una variazione termica di 30°C, il programma calcola l'azione orizzontale conseguente alla suddetta deformazione termica.

 $H_{el} = n*dL_{AB}*k$

dove si assume:

n = numero dei dispositivi sulla pila

k = rigidezza orizzontale di ciascun dispositivo.

Per i calcoli relativi all'impalcato verrà applicata all'impalcato una variazione termica differenziale tra trave e soletta pari a:

 $\Delta T = 10.00 ^{\circ}$

6.2.3 Cedimenti degli appoggi (\varepsilon4)

E' stato considerato un cedimento degli appoggi pari

 $\delta = 1/5000 \, L_{M}$

dove Lm è il valore massimo della lunghezza delle due campate adiacenti all'elemento di sostegno oggetto di valutazione.

Per massimizzare le azioni indotte sulle sottostrutture, verranno implementati n.2 diversi casi di carico: ognuno di essi prevede l'applicazione del cedimento alle sottostrutture a gruppi alterni.

6.2.4 Calaggio (£4)

Si prevede un calaggio in corrispondenza della pila 5 di 7cm.

6.2.5 Azioni variabili da traffico (q₁)

Relativamente ai carichi mobili si fa riferimento a quanto prescritto dal NTC 2008 "Norme tecniche per le costruzioni" al punto 5.1.3.3. Compatibilmente con la larghezza della carreggiata, si sono individuate le corsie

convenzionali, su cui transitano gli schemi di carico previsti dalla normativa e i due marciapiedi su cui transita la folla.

Le colonne di carico, come definite dalla normativa, presentano i seguenti valori:

POSIZIONE	Carico asse Q _{ik} (kN)	Carico distribuito q _{ik} (kN/m²)
Corsia convenzionale 1	300,00	9,00
Corsia convenzionale 2	200,00	2,50
Corsia convenzionale 3	100,00	2,50
Altre corsie	-	2,50
Folla	-	2.50

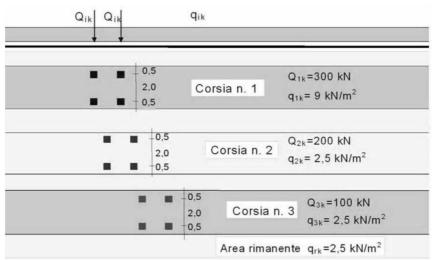


Figura 6.1 - Schema dei carichi mobili.

Le colonne dei carichi mobili vengono disposte, a partire da quella di entità massima, in adiacenza al cordolo numero 2, definito come il cordolo di larghezza minore. Il numero di colonne di carico prese in considerazione è quello che determina le condizioni più sfavorevoli per i singoli elementi strutturali. Nello specifico, verranno analizzate diverse configurazioni di colonne a partire dal numero massimo possibile sulla sezione trasversale fino alla singola colonna (con diverse disposizioni), in modo da valutare sia le massime azioni in compressione sia quelle in trazione sugli appoggi.

La distribuzione trasversale che massimizza le azioni di compressione e trazione sui pali sarà studiata ed esplicitata nella relazione di calcolo delle pile.

Longitudinalmente i carichi accidentali distribuiti, sono stati disposti in combinazioni tali da massimizzare le azioni sulle singole sottostrutture, con le classiche configurazioni "a scacchiera" delle travi continue.

Si riporta il riepilogo delle colonne di carico risultanti dall'analisi dei carichi accidentali effettuata.

Larghezza della carreggiata w	8,5	m
Larghezza corsia convenzionale	3	m
Numero max di corsie convenzionali	2	
Larghezza della zona rimanente wr	2,5	m

Nel caso specifico si ricava la massima compressione sugli appoggi disponendo due colonne di carico (corsia convenzionale 1 e corsia convenzionale 2) in aggiunta alla folla sul cordolo 2. I valori dei carichi relativi alla corsia ed alla folla sono quelli riportati nella tabella sovrastante, mentre le rispettive eccentricità sono riportate di seguito (l'eccentricità è calcolata rispetto al baricentro della sezione trasversale della soletta, intesa come somma della larghezza della carreggiata e dei due cordoli):

Eccentricità 1° colonna di carico	2,750	m
Eccentricità 2° colonna di carico	-0,250	m
Eccentricità folla su cordolo 2	5,175	m

6.2.6 Azioni orizzontali longitudinali

6.2.6.1 Frenatura (q_3)

La forza di frenamento o di accelerazione è funzione del carico verticale totale agente sulla corsia convenzionale numero 1 e, per i ponti di prima categoria, è data dalla seguente espressione:

 $180kN \le q_3 = 0.6*(2*Q_{1k}) + 0.10*q_{1k}*w_1*L \le 900kN$

essendo w₁ la larghezza della corsia ed L la lunghezza della zona caricata.

L'azione di frenamento totale massima per l'impalcato in oggetto risulta:

azione di frenamento totale q₃ 900.00 kN

Data la tipologia di vincolo si considera che alle sottostrutture venga trasmessa parte della suddetta azione secondo il rapporto tra la rigidezza orizzontale dei dispositivi di ciascun elemento di sostegno e la somma delle rigidezze orizzontali di tutti i dispositivi posti su pile e spalle.

6.2.7 Azioni orizzontali trasversali

6.2.7.1 Azione Centrifuga (q₄)

Il cavalcavia in oggetto è interamente in rettilineo, dunque l'azione centrifuga risulta nulla.

6.2.7.2 Azioni del vento (q₅)

Il testo unico NTC 2008 al punto 3.3, fornisce indicazioni per il calcolo della velocità di riferimento e della velocità media del vento. L'azione statica equivalente del vento è ricavabile, secondo quanto indicato dallo stesso documento, in funzione della velocità calcolata. Ai fini del calcolo delle sollecitazioni si fa riferimento al vento nella sola direzione perpendicolare all'asse principale dell'impalcato.

Le barriere fonoassorbenti rappresentano una superficie che, investita dal vento, induce un carico sulla struttura. L'azione del vento può essere convenzionalmente assimilata ad un carico orizzontale statico, diretto nelle direzioni più sfavorevoli per le pile.

La pressione cinetica del vento è calcolata secondo quanto stabilito dalla normativa. Il calcolo è riportato di seguito:

GENERAL CONTRACTOR Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Documento Rev. Foglio

INOR

12

1) Valle d'Aosta, Piemonte, Lombardia, Trentino Alto Adige, Veneto, Friuli Venezia Giulia (con l'eccezione della provincia di Trieste)

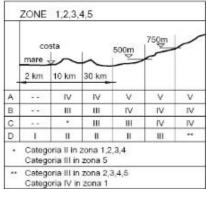
Zona	v _{b,0} [m/s]	a _o [m]	k _a [1/s]
1	25	1000	0.01
a _s (altit	tudine sul livello del	mare [m])	146
	T _R (Tempo di ritorn	0)	100
	$V_b = V_{b,0}$	pera _s ≤a _o	
	792 531 66	7709000	100
V _b	= v _{b,0} + k _s (a _s - a ₀)	per a ₀ < a _s ≤ 15	10-25
Vb	792 531 66	per a ₀ < a _s ≤ 15	500 m
Vb	= v _{b,0} + k _s (a _s - a ₀)	per a ₀ < a _s ≤ 15	10-25

Doc. N.

p (pressione [kN/m2] con c_p unitario) = $q_b c_e c_d$	0.861
q _b (pressione cinetica di riferimento [KN/m²])	0.423
c _e (coefficiente di esposizione)	2.037
c _t (coefficiente di topografia)	1.00
c _d (coefficiente dinamico)	1.00

E E2 CL IV 16A 0 001

Α


15 di 45

D) Aree prive di ostacoli (aperta campagna, aeroporti, aree agricole, pascoli, zone paludose o sabbiose, superfici innevate o ghiacciate, mare, laghi,....)

Quota del punto considerato rispetto al suolo Distanza media dalla costa in linea d'aria

(distanze negative per costruzioni in mare)

	ZONA	6			
	mare .	osta		500ш	
9	2 km	+	30 km	-	
Α		111	IV	V	V
В		- 11	111	IV	IV
C	1.22	11	101	111	IV
D	100	i i	11	II	100

	mare	cost	_
	1.5 km	0.5 km	
Α	22	2.5	IV
В	333	123	IV
C	15:50		111
D	. 1		

	ZONA	0
	mare 🕁	costa
Α		- 1
В		- 1
4	**	1
C		

Categoria di esposizione	Classe di rugosità	k,	z _o [m]	z _{min} [m]
	D	0.19	0.05	4

b [m]	d _{tot} [m]	C _{fx,0}	α ₁ [°]	Κα ₁	α ₂ [°]	Κα ₁	C _f	p [kN/m²]
12.20	6.00	1.85	0.00	0.00	0.00	0.00	1.9	1.59
Parapetti solidi, barriere antirumore, barriere di sicurezza solide o traffico:						Cun	/a b)	

Si assume cautelativamente una pressione del vento imposta pari a: $p_{\text{\tiny V}} = 2.50 \text{kN/m}^2.$

La superficie esposta del vento è pari a 6.4m dati da:

- un mezzo transitante di 3m;
- altezza di trave più soletta.

Si considera pertanto un'azione lineare pari a:

 $q = 2.50 \text{ kN/m}^2 * 6.40 \text{m} = 16 \text{ kN/m}.$

7 AZIONE SISMICA

7.1 Definizione dell'azione sismica

Per la definizione dell'azione sismica, occorre fissare la vita di riferimento dell'opera di (VR), a partire della vita nominale (VN) e la classe d'uso secondo la seguente relazione

 $V_R = V_N \cdot C_u$

Nel caso specifico si ottiene:

Classe d'uso	Ш
Cu =	1,5
$V_N =$	100
$V_R =$	150

I valori di probabilità di superamento del periodo di riferimento P_{VR} , cui riferirsi per individuare l'azione sismica agente e il periodo di ritorno T_{R} , espresso in anni, valgono:

Stato limite	P _{VR} (%)	T _R (anni)
SLC	5	2924
SLV	10	1424
SLD	63	151

Dato il valore del periodo di ritorno suddetto, tramite le tabelle riportate nell'Allegato B della norma o tramite la mappatura messa a disposizione in rete dall'Istituto Nazionale di Geofisica e Vulcanologia (INGV), è possibile definire i valori di a_g , F_0 , T^*_c .

 $a_g \rightarrow$ accelerazione orizzontale massima del terreno su suolo di categoria A, espressa come frazione dell'accelerazione di gravità;

 $F_0 \rightarrow \text{valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;}$

 $T^*_c \rightarrow \text{ periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale;}$

 $S \rightarrow$ coefficiente che comprende l'effetto dell'amplificazione stratigrafica (Ss) e dell'amplificazione topografica (St);

I parametri spettrali per il calcolo dell'azione sismica vengono individuati sulla base del rischio sismico per la località considerata:

Stato limite	$\mathbf{a}_{\mathbf{g}}$	Fo	$\mathbf{T_{C}}^{*}$
SLC	0,276	2,488	0,286
SLV	0,230	2,476	0,281
SLD	0,095	2,466	0,257

Data l'ubicazione dell'opera, si assume la categoria topografica T1, mentre dalla relazione geotecnica si evince che può essere adottata la categoria di sottosuolo B. Si ottiene quindi (valido per SLV):

$$Ss = 1,172$$

 $St = 1,000$
 $S = Ss \cdot St = 1,172$

GENERAL CONTRACTOR Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Documento Rev. Foglio INOR 12 E E2 CL IV 16A 0 001 A 17 di 45

La risposta all'azione sismica viene calcolata separatamente per ciascuna delle componenti orizzontali, longitudinale e trasversale, e per quella verticale.

Per gli stati limite ultimi, ovvero di salvaguardia della vita e di collasso, lo spettro di progetto $S_d(T)$ da utilizzare, è lo spettro elastico, dove si sostituisce a η il valore 1/q, in cui q è il fattore di struttura. Nel caso in esame di ponte isolato, si assume un fattore di struttura pari a 1.0, come ricavato dalla Tabella 7.9.I del D.M. del 14.01.2008 (Norme tecniche per le costruzioni).

In accordo con la norma NTC (par. 7.10.5.3.2) lo spettro elastico va ridotto per il campo di periodo $T \ge 0.8T_{is}$. Il periodo della struttura isolata T_{is} risulta pari a circa 1.4s (vedere risultati analisi modale) pertanto $0.8T_{is}$ è circa 1.12s.

Per periodi $T < T_{is}$ lo spettro corrisponde allo spettro descritto nel paragrafo "Azione sismica" con smorzamento pari al 5%; per periodi $T > T_{is}$ invece si assume per il coefficiente riduttivo η il valore corrispondente al coefficiente di smorzamento viscoso equivalente ξ_{esi} del sistema d'isolamento assunto pari a 15%. Si riportano gli spettri di risposta orizzontali e verticali:

Spettro di risposta elastico – componente orizzontale

Lo spettro di risposta elastico della componente orizzontale è definito dalle seguenti espressioni:

$$0 \le T < T_{B}$$

$$S_{e}(T) = a_{g} \cdot S \cdot \eta \cdot F_{0} \cdot \left[\frac{T}{T_{B}} + \frac{1}{\eta \cdot F_{0}} \left(1 - \frac{T}{T_{B}} \right) \right]$$

$$T_{B} \le T < T_{C}$$

$$S_{e}(T) = a_{g} \cdot S \cdot \eta \cdot F_{0}$$

$$S_{e}(T) = a_{g} \cdot S \cdot \eta \cdot F_{0} \cdot \left(\frac{T_{C}}{T} \right)$$

$$T_{D} \le T$$

$$S_{e}(T) = a_{g} \cdot S \cdot \eta \cdot F_{0} \cdot \left(\frac{T_{C}T_{D}}{T^{2}} \right)$$

in cui si ha:

η=0.707 corrispondente a uno smorzamento ζ pari al 15%

 $T_C = C_C T_C *$

 $T_B = T_C/3$

 $T_D = 4.0 a_g/g + 1.6$

Si riportano di seguito i diagrammi degli spettri per ciascuno degli Stati Limite indagati.

Figura 2 – Spettro orizzontale SLC

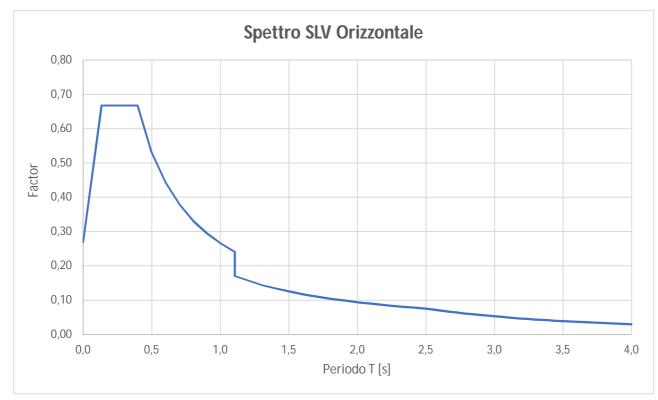


Figura 3 – Spettro orizzontale SLV

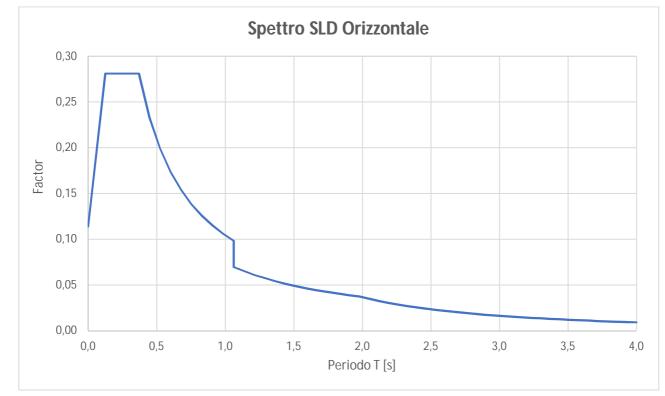


Figura 4 – Spettro orizzontale SLD

Spettro di risposta elastico – componente verticale

Lo spettro di risposta elastico della componente verticale è definito dalle seguenti espressioni:

$$0 \le T < T_{B}$$

$$S_{ve}(T) = a_{g} \cdot S \cdot \eta \cdot F_{V} \cdot \left[\frac{T}{T_{B}} + \frac{1}{\eta \cdot F_{V}} \left(1 - \frac{T}{T_{B}} \right) \right]$$

$$T_{B} \le T < T_{C}$$

$$S_{ve}(T) = a_{g} \cdot S \cdot \eta \cdot F_{V}$$

$$T_{C} \le T < T_{D}$$

$$S_{ve}(T) = a_{g} \cdot S \cdot \eta \cdot F_{V} \cdot \left(\frac{T_{C}}{T} \right)$$

$$T_{D} \le T$$

$$S_{ve}(T) = a_{g} \cdot S \cdot \eta \cdot F_{V} \cdot \left(\frac{T_{C}T_{D}}{T^{2}} \right)$$

in cui si ha:

$$F_V = 1.35 \cdot F_0 \cdot \left(\frac{a_g}{g}\right)^{0.5}$$

η=1 corrispondente a uno smorzamento ζ pari al 5%

I valori di T_B,T_C e T_D sono riportati nella tabella 3.2.VII del D.M.08 e valgono:

$$T_B = 0.05 \text{ s}$$

 $T_C = 0.15 \text{ s}$

$$T_D = 1,00 \text{ s}$$

Si riportano di seguito i diagrammi degli spettri per ciascuno degli Stati Limite indagati.

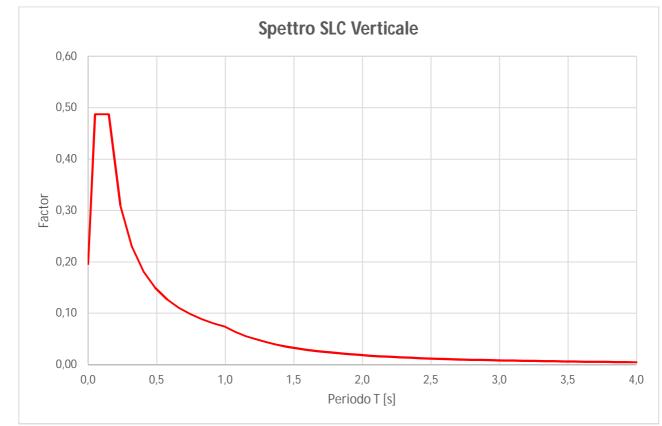


Figura 5 – Spettro verticale SLC

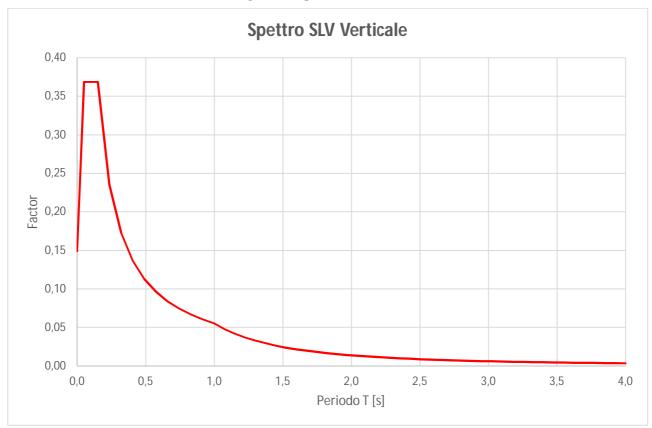


Figura 6 – Spettro verticale SLV

GENERAL CONTRACTOR Cepav due	ALTA SORVE GRUPPO FERROV	TALI	FERR		
	Progetto	Lotto	Codifica Documento	Rev.	Foglio
Doc. N.	INOR	12	E E2 CL IV 16A 0 001	Α	21 di 45

7.2 Combinazione dell'azione sismica

Poiché la risposta all'azione sismica viene calcolata separatamente per ciascuna delle tre componenti, gli effetti sulla struttura sono combinati successivamente applicando la seguente espressione:

 $1.00*E_x + 0.3*E_y + 0.3*E_z$

con rotazione dei coefficienti moltiplicativi e conseguente individuazione degli effetti più gravosi.

Le combinazioni di carico, considerate ai fini delle verifiche, sono stabilite in modo da garantire la sicurezza in conformità a quanto prescritto al cap. 2 del sovracitato *D.M. 14/01/2008*.

Gli effetti dell'azione sismica saranno valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

 $G_1 {+} G_2 {+} \textstyle \sum_i \! \psi_{2i} {\cdot} Q_{ki}$

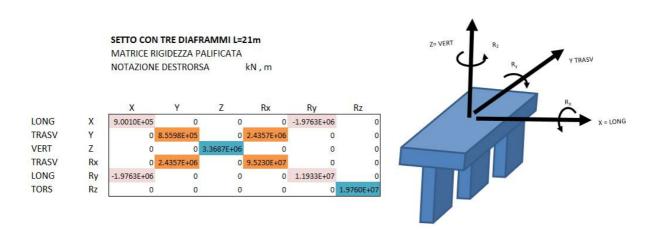
I valori del coefficiente ψ_{2i} sono quelli riportati nella tabella 2.5.I della norma; nel caso in oggetto si assume per i carichi dovuti al transito dei mezzi ψ_{2i} = 0.

8 SISTEMA DI VINCOLAMENTO

Il sistema di vincolamento previsto per il Cavalcavia è costituito da dispositivi di appoggio ed isolamento sismico in elastomero armato. Tali dispositivi, essendo caratterizzati da un ridotto valore della rigidezza orizzontale, garantiscono un disaccoppiamento del moto orizzontale della struttura rispetto a quello del terreno ed una conseguente riduzione della risposta sismica della struttura; inoltre tali dispositivi sono dotati di una certa capacità dissipativa in funzione della mescola elastomerica utilizzata, indispensabile per minimizzare gli spostamenti della struttura isolata. Le caratteristiche dei dispositivi di appoggio, posti rispettivamente in corrispondenza delle spalle e delle pile, vengono in primo luogo definite in funzione della portata verticale che tali elementi devono essere in grado di garantire e quindi in base alle azioni trasmesse dall'impalcato. La rigidezza traslazionale dei dispositivi di isolamento kh è proporzionale allo spessore totale $t_{\rm e}$ della gomma secondo l'espressione $kh = G*A/t_{\rm e}$

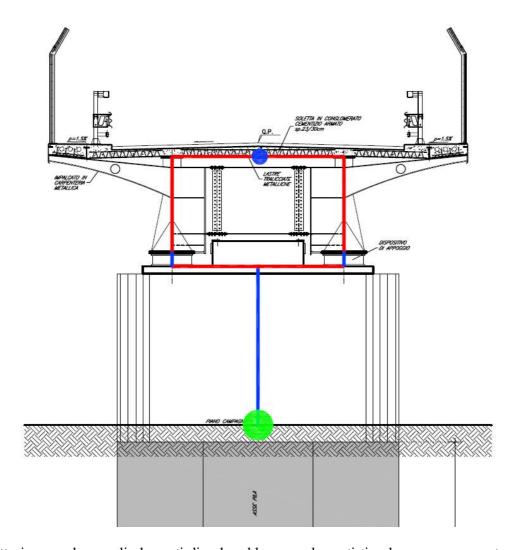
Il valore della rigidezza traslazionale dei dispositivi è proporzionale al modulo di elasticità tangenziale G. Le mescole elastomeriche ad alto smorzamento di cui sono costituiti i dispositivi di isolamento sono caratterizzate da una sensibile variazione del modulo G al variare della deformazione. In particolare, il valore di G al disotto del 50% della deformazione massima di un dispositivo risulta circa 2,0 volte superiore al valore assunto da G per deformazioni più elevate. Di conseguenza il valore della rigidezza traslazionale dei dispositivi in condizioni di esercizio risulta più elevata di quella in condizione sismica. Di seguito si anticipano i valori delle rigidezze traslazionali dei dispositivi previsti in corrispondenza delle spalle e delle pile in condizioni di esercizio e sismiche. I valori di rigidezza ridotta saranno utilizzati nell'analisi al fine della valutazione delle azioni sismiche, mentre i valori in condizione di esercizio si utilizzeranno nelle analisi statiche lineari. Mediante la modellazione sarà possibile valutare la ripartizione delle azioni orizzontali trasmesse dall'impalcato ai diversi elementi di sostegno. Nel seguito si riportano le rigidezze dei dispositivi utilizzati.

Kh dispositivi spalle Kh dispositivi pile Condizioni di esercizio 9.00 kN/mm 12.08 kN/mm Condizioni sismiche 4.50 kN/mm 6.04 kN/mm


9 MODELLO AGLI ELEMENTI FINITI

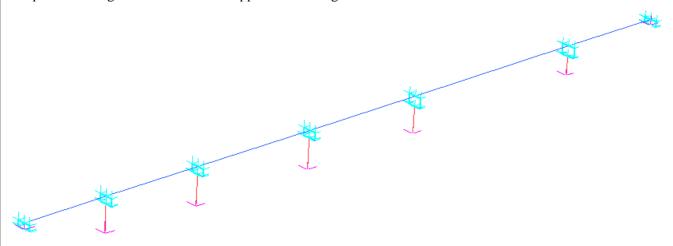
Le analisi sono state svolte mediante un modello agli elementi finiti nel quale si è implementata la geometria, i carichi di tipo statico e gli spettri di progetto agenti nelle tre direzioni principali (x, y, z).

Il modello è in grado di descrivere tutti i gradi di libertà significativi caratterizzanti la risposta dinamica e riproduce le caratteristiche di inerzia e di rigidezza della struttura, e di vincolo degli impalcati.


Il modello di calcolo utilizzato è costituito essenzialmente da:

- Elementi tipo "beam" (con comportamento elastico-lineare) che schematizzano l'impalcato;
- Elementi tipo spring-dumper per modellare gli isolatori (h = 35cm, a favore di sicurezza);
- Link rigidi che vanno a completare la geometria della sovrastruttura;
- Elementi tipo "beam" che schematizzano le pile (in accordo con le NTC si considera un modulo elastico pari al 50% del modulo elastico medio istantaneo);
- Elementi tipo "User defined" incastrati alla base in cui si introduce la matrice di rigidezza definita nella relazione geotecnica e di cui si riportano i valori nella tabella sottostante (si rimanda alla relazione per ulteriori dettagli):

GENERAL CONTRACTOR Cepav due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Letto Codifico Documento Dou Foo				
Doc. N.	Progetto	Lotto	Codifica Documento	Rev.	Foglio
	INOR	12	E E2 CL IV 16A 0 001	A	24 di 45


Si riporta di seguito una sezione trasversale del cv con indicazione della tipologia di elementi utilizzati, con riferimento anche alle quote di inizio/fine dei vari elementi, tarate al fine di cogliere correttamente anche lo sviluppo altimetrico dell'opera necessario alla corretta valutazione delle azioni flettenti alle sezioni di base considerate.

Come descritto in precedenza, gli elementi di colore blu sono elementi tipo beam e rappresentano il fusto pila (con la relativa sezione filante in pianta), gli isolatori con la loro relativa altezza (dotati di opportuna rigidezza verticale e laterale), l'impalcato concentrato in un beam in direzione longitudinale avente le caratteristiche omogenizzate della sezione composta acciaio-calcestruzzo. Gli elementi di colore rosso sono invece dei link rigidi e collegano rigidamente gli elementi dai loro baricentri alle posizioni di inizio/fine. Infine la pila risulta vincolata alla base tramite un elemento finito definito attraverso la matrice di rigidezza geotecnica del sistema di fondazione.

Si riporta nella figura sottostante una rappresentazione grafica del modello utilizzato:

Le analisi svolte sulla struttura sono:

Analisi statica lineare per determinare gli effetti delle azioni di tipo statico;

Determinazione dei modi di vibrare della struttura (analisi modale);

Calcolo degli effetti dell'azione sismica, rappresentata dallo spettro di risposta di progetto per ciascuno dei modi di vibrare individuati;

Combinazione degli effetti relativi a ciascun modo di vibrare.

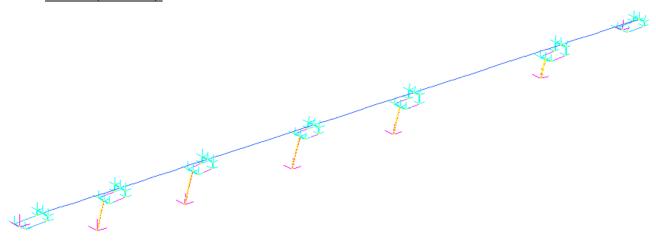
Verranno presi in considerazione un numero di modi di vibrare la cui massa partecipante sia superiore all'85%. Per la combinazione degli effetti relativi ai singoli modi verrà utilizzata una combinazione quadratica completa degli effetti relativi a ciascun modo.

Il modello di calcolo è stato risolto con l'ausilio del software Straus7.

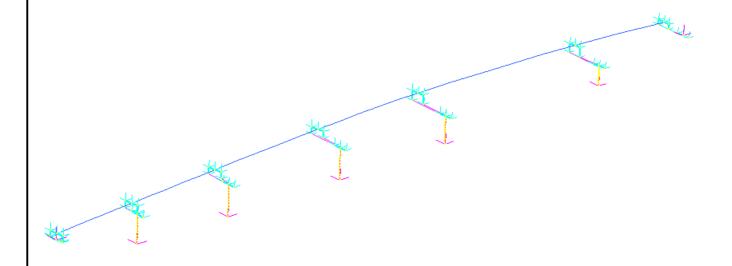
10 RISULTATI DELLE ANALISI

10.1 Analisi modale

Nella seguente tabella vengono riepilogati i dati fondamentali dell'analisi modale eseguita dal programma di calcolo; per ciascuno dei modi di vibrare presi in considerazione si riporta il periodo e la percentuale di massa partecipante, parziale e totale, nelle tre direzioni principali:


- X: direzione parallela all'asse longitudinale del viadotto;
- Y: direzione perpendicolare all'asse longitudinale del viadotto;
- Z: direzione verticale.
- Si riportano nella tabella seguente i risultati principali dell'analisi modale effettuata

MODE	PARTICIPATION	FOR TRANSLATION	AL EXCITATION			
Mode	Frequency	Modal Mass	Modal Stiff	PF-X	PF-Y	PF-Z
	(Hz)	(Eng)	(Eng)	(%)	(%)	(%)
1	6.3209E-01	3.9864E+06	6.2878E+07	85.327	0.000	0.000
2	6.4536E-01	2.2619E+06	3.7191E+07	0.000	68.293	0.000
3	7.6749E-01	1.2944E+06	3.0099E+07	0.000	3.365	0.000
4	9.3943E-01	7.5721E+05	2.6382E+07	0.000	9.736	0.000
5	1.5829E+00	8.9106E+05	8.8142E+07	0.000	0.000	0.000
6	2.4734E+00	9.9062E+05	2.3925E+08	0.000	0.016	0.000
7	3.5881E+00	8.1970E+04	4.1661E+07	2.174	0.000	0.000
8	3.6289E+00	1.6437E+06	8.5452E+08	0.000	0.000	0.000
9	3.6717E+00	8.0834E+04	4.3022E+07	2.499	0.000	0.000
10	4.1529E+00	1.4049E+05	9.5659E+07	0.004	0.000	0.000
11	4.1600E+00	1.4057E+05	9.6035E+07	4.769	0.000	0.000
12	5.9686E+00	2.0881E+05	2.9367E+08	0.733	0.000	0.000
13	6.1113E+00	8.7176E+04	1.2854E+08	1.359	0.000	0.001
14	6.4680E+00	1.0623E+06	1.7545E+09	0.000	0.000	0.000
15	6.7601E+00	9.2901E+05	1.6761E+09	0.000	0.000	23.547
16	7.0702E+00	8.7073E+05	1.7183E+09	0.000	0.000	16.461
17	7.4893E+00	7.5818E+05	1.6789E+09	0.000	0.000	19.453
18	7.8072E+00	1.4203E+05	3.4178E+08	0.000	4.230	0.000
19	7.9357E+00	1.4071E+05	3.4984E+08	0.000	4.017	0.000
20	7.9388E+00	6.8501E+05	1.7044E+09	0.000	0.000	15.253
21	8.6309E+00	1.3294E+05	3.9095E+08	0.000	3.702	0.000
22	8.6416E+00	1.3305E+05	3.9224E+08	0.000	3.635	0.000
23	8.8250E+00	5.5931E+05	1.7196E+09	0.000	0.000	11.483
24	1.0861E+01	1.0771E+05	5.0164E+08	0.000	0.000	0.000
25	1.0976E+01	1.0743E+05	5.1092E+08	0.001	2.639	0.000
TOTAL	TRANSLATIONAL	MASS PARTICIPA	TION FACTORS	96.865	99.633	86.198



Si riportano anche le deformate amplificate per il primo modo di traslazione dell'impalcato (modo dominante) sia in direzione longitudinale sia in direzione trasversale:

- Modo 1 (0.632 Hz):

- Modo 2 (0.64536 Hz):

Criterio di attendibilità dei risultati:

L'attendibilità dei risultati scaturiti dall'analisi modale del modello FEM sopra descritto è stata verificata mediante semplici calcoli svolti secondo le regole di dinamica delle strutture.

Il sistema costituito dall'impalcato sui dispositivi di isolamento, infatti, equivale ad un oscillatore semplice di massa pari alla massa dell'impalcato e rigidezza pari alla somma delle rigidezze degli isolatori: $m_{TOT} = 3975000 \text{kg}$

$$K_{HTOT} = 10 \cdot \frac{6.04kN}{mm} + 4 \cdot \frac{4.50kN}{mm} = 7.840 \cdot 10^7 N/mm$$

Il periodo proprio di vibrare dell'oscillatore semplice di massa merigidezza kè pari a:

$$T = 2\pi \sqrt{\frac{m}{k}} = 2\pi \sqrt{\frac{3975000}{78400000}} = 1.41s$$

Mentre la frequenza risulta:

$$f = \frac{1}{T} = \frac{1}{1.41} = 0.71 \, Hz$$

Il valore di frequenza/periodo così ottenuto è confrontabile al valore ricavato dall'analisi modale eseguita sul modello FEM.

MODE	PARTICIPATION	FOR TRANSLATION	AL EXCITATION			
Mode	Frequency	Modal Mass	Modal Stiff	PF-X	PF-Y	PF-Z
	(Hz)	(Eng)	(Eng)	(%)	(%)	(%)
1	6.3209E-01	3.9864E+06	6.2878E+07	85.327	0.000	0.000
2	6.4536E-01	2.2619E+06	3.7191E+07	0.000	68.293	0.000

Si può notare come le frequenze calcolate a mano e quelle calcolate con il programma di calcolo non siano perfettamente coincidenti in quanto nel calcolo a mano semplificato non si è tenuto conto della deformabilità delle pile, che porta ad un aumento del periodo e ad una relativa diminuzione della frequenza.

10.2 Combinazioni di carico

10.2.1 Combinazioni di carico statiche

In condizioni statiche, i carichi permanenti e accidentali vengono combinati secondo la tabella seguente, definita al fine di ottenere le massime azioni e i massimi spostamenti in corrispondenza degli appoggi.

COMBINAZIONI A1 STR Tab 5.1.V NTC08									
		G1,G2	q5 Vento	q1 Traffico	q3 Frenatura	q4 Centrifuga	ε3 Azione termica	ε2 Ritiro	ε4 Cedimenti
	SLU 1	1.35	1.5	1.0125	0	0	0.72	1.2	1.2
	SLU 2	1.35	0.9	1.35	0	0	0.72	1.2	1.2
SLU	SLU 3	1.35	0.9	1.0125	1.35	0	0.72	1.2	1.2
	SLU 4	1.35	0.9	1.0125	0	1.35	0.72	1.2	1.2
	SLU5	1.35	0.9	1.0125	0	0	1.2	1.2	1.2

10.2.2 Combinazioni di carico sismiche

In condizioni sismiche, separatamente per ciascun Stato Limite indagato (SLC, SLV, SLD), poiché la risposta all'azione sismica viene calcolata separatamente per ciascuna delle tre componenti (orizzontale longitudinale, orizzontale trasversale, verticale), gli effetti sulla struttura sono combinati successivamente applicando la seguente espressione:

 $E=1.00*E_x + 0.3*E_y + 0.3*E_z$

con rotazione dei coefficienti moltiplicativi e conseguente individuazione degli effetti più gravosi. Si ottengono le seguenti combinazioni di carico significative.

	Ex	Ey	Ez
E 1	1,00	0,30	0,30
E 2	0,30	1,00	0,30
E 3	0,30	0,30	1,00
E 4	-0,30	-0,30	-1,00

Alle combinazioni così ottenute verranno sommati gli effetti delle azioni permanenti e il 50% dell'azione termica, secondo l'espressione:

 $G_1 {+} G_2 {+} E {+} \psi_{21} Q_{k1}$

10.3 Azioni e spostamenti sugli appoggi

Nella seguente tabella vengono riepilogate le azioni massime e minime ottenute in corrispondenza dei dispositivi presenti su ciascun elemento di sostegno.

I simboli hanno i seguenti significati:

N: Carico verticale (il segno positivo indica l'azione verso il basso);

Hlong: Azione di taglio in direzione parallela all'asse longitudinale del viadotto


Htrasv: Azione di taglio in direzione perpendicolare all'asse longitudinale del viadotto

Si riportano prima le azioni elementari agenti sugli appoggi:

SPALLA A							
	N max [kN]	N min [kN]	Hlong [kN]	Htrasv [kN]			
Pesi Propri	863	863	0	0			
Vento	141	-141	0	129			
Traffico	1343	-221	0	0			
Frenatura	0	0	74	0			
Azione termica	36	-36	399	0			
Ritiro	-26	-26	0	0			
Calaggio	2	2	0	0			
Cedimenti	21	-23	0	0			
V) $0.3Ex + 0.3Ey + Ez \pm DT$	76	-76	230	66			
L) $Ex + 0.3Ey + 0.3*Ez \pm DT$	96	-96	502	66			
T) $0.3Ex + Ey + 0.3*Ez \pm DT$	172	-172	230	220			

SPALLA B							
	N max [kN]	N min [kN]	Hlong [kN]	Htrasv [kN]			
Pesi Propri	822	822	0	0			
Vento	202	-202	0	193			
Traffico	1456	-464	0	0			
Frenatura	0	0	75	0			
Azione termica	72	-72	437	0			
Ritiro	-44	-44	0	0			
Calaggio	141	141	0	0			
Cedimenti	23	-21	0	0			
V) $0.3Ex + 0.3Ey + Ez \pm DT$	98	-98	243	107			
L) $Ex + 0.3Ey + 0.3*Ez \pm DT$	121	-121	516	107			
T) $0.3Ex + Ey + 0.3*Ez \pm DT$	262	-262	243	356			

GENERAL CONTRACTOR

ProgettoLottoCodifica DocumentoRev.FoglioDoc. N.INOR12E E2 CL IV 16A 0 001A31 di 45

PILA 1							
	N max [kN]	N min [kN]	Hlong [kN]	Htrasv [kN]			
Pesi Propri	2595	2595	0	0			
Vento	322	-322	0	239			
Traffico	2317	-389	0	0			
Frenatura	0	0	60	0			
Azione termica	40	-40	244	0			
Ritiro	30	30	0	0			
Calaggio	-10	-10	0	0			
Cedimenti	63	-60	0	0			
V) $0.3Ex + 0.3Ey + Ez \pm DT$	1302	-1302	212	72			
L) $Ex + 0.3Ey + 0.3*Ez \pm DT$	453	-453	488	72			
T) $0.3Ex + Ey + 0.3*Ez \pm DT$	587	-587	212	240			

PILA 2							
	N max [kN]	N min [kN]	Hlong [kN]	Htrasv [kN]			
Pesi Propri	3097	3097	0	0			
Vento	417	-417	0	317			
Traffico	2575	-422	0	0			
Frenatura	0	0	54	0			
Azione termica	6	-6	139	0			
Ritiro	-6	-6	0	0			
Calaggio	28	28	0	0			
Cedimenti	70	-75	0	0			
V) $0.3Ex + 0.3Ey + Ez \pm DT$	1655	-1655	174	96			
L) $Ex + 0.3Ey + 0.3*Ez \pm DT$	566	-566	434	96			
T) $0.3Ex + Ey + 0.3*Ez \pm DT$	752	-752	174	319			

PILA 3							
	N max [kN]	N min [kN]	Hlong [kN]	Htrasv [kN]			
Pesi Propri	3149	3149	0	0			
Vento	505	-505	0	397			
Traffico	2744	-925	0	0			
Frenatura	0	0	53	0			
Azione termica	17	-17	36	0			
Ritiro	-8	-8	0	0			
Calaggio	-102	-102	0	0			
Cedimenti	75	-70	0	0			
V) $0.3Ex + 0.3Ey + Ez \pm DT$	1849	-1849	136	148			
L) $Ex + 0.3Ey + 0.3*Ez \pm DT$	658	-658	395	148			
T) $0.3Ex + Ey + 0.3*Ez \pm DT$	948	-948	136	493			

GENERAL CONTRACTOR ALTA SORVEGLIANZA Cepav due **ITALFERR** GRUPPO FERROVIE DELLO STATO ITALIANE Progetto INOR Lotto Codifica Documento Rev. Foglio Doc. N. E E2 CL IV 16A 0 001

12

Α

32 di 45

PILA 4							
	N max [kN]	N min [kN]	Hlong [kN]	Htrasv [kN]			
Pesi Propri	4476	4476	0	0			
Vento	778	-778	0	454			
Traffico	3317	-518	0	0			
Frenatura	0	0	60	0			
Azione termica	5	-5	71	0			
Ritiro	2	2	0	0			
Calaggio	203	203	0	0			
Cedimenti	64	-67	0	0			
V) $0.3Ex + 0.3Ey + Ez \pm DT$	2425	-2425	152	181			
L) $Ex + 0.3Ey + 0.3*Ez \pm DT$	899	-899	434	181			
T) $0.3Ex + Ey + 0.3*Ez \pm DT$	1424	-1424	152	602			

	PILA 5			
	N min [kN]	Hlong [kN]	Htrasv [kN]	
Pesi Propri	4873	4873	0	0
Vento	689	-689	0	391
Traffico	3354	-318	0	0
Frenatura	0	0	75	0
Azione termica	86	-86	310	0
Ritiro	53	53	0	0
Calaggio	-262	-262	0	0
Cedimenti	47	-50	0	0
V) $0.3Ex + 0.3Ey + Ez \pm DT$	2249	-2249	242	163
L) $Ex + 0.3Ey + 0.3*Ez \pm DT$	844	-844	556	163
T) $0.3Ex + Ey + 0.3*Ez \pm DT$	1310	-1310	242	543

Di seguito si riportano le sollecitazioni combinate agli SLU e agli SLC per gli appoggi in esame e i relativi spostamenti (calcolati con la rigidezza statica agli SLU e con la rigidezza sismica agli SLC):


	COMBINAZIONI A1 STR Tab 5.1.V NTC08								
Appoggio	СОМВО	N max compr [kN]	N max traz [kN]	H long [kN]	H trasv [kN]	Hcomb [kN]	Spostamento Long [mm]	Spostamento Trasv [mm]	
	SLU 1	2759	345	287	194	346	32	22	
Spalla A	SLU 2	3127	355	287	116	310	32	13	
	SLU 3	2674	430	387	116	404	43	13	

GENERAL CONTRACTOR Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Documento

Doc. N.					Progetto INOR	Lotto 12	Codifica Documento E E2 CL IV 16A 0 00	_	Foglio 33 di 45
	SLU 4	2674	430	287	116	310	32	13	
	SLU5	2691	412	479	116	493	53	13	
	SLU 1	3083	60	315	290	428	35	32	
	SLU 2	3453	25	315	174	359	35	19	
Spalla B	SLU 3	2962	182	416	174	451	46	19	
	SLU 4	2962	182	315	174	359	35	19	
	SLU5	2996	147	524	174	552	58	19	
	SLC 1	936	740	230	66	239	51	15	
Spalla A	SLC 2	956	720	502	66	506	112	15	
	SLC 3	1032	644	230	220	318	51	49	
	SLC 1	1040	800	243	107	266	54	24	
Spalla B	SLC 2	1063	777	516	107	527	115	24	
	SLC 3	1204	636	243	356	431	54	79	

								1
		COMBI	NAZIONI .	A1 STR Ta	ab 5.1.V NT	C08		
Appoggio	СОМВО	N max compr [kN]	N max traz [kN]	H long [kN]	H trasv [kN]	Hcomb [kN]	Spostamento Long [mm]	Spostamento Trasv [mm]
	SLU 1	6461	1643	176	359	399	15	30
	SLU 2	7049	1705	176	215	278	15	18
Pila 1	SLU 3	6267	1837	257	215	335	21	18
	SLU 4	6267	1837	176	215	278	15	18
	SLU5	6287	1817	293	215	363	24	18
	SLU 1	7528	1971	100	476	486	8	39
	SLU 2	8147	2078	100	285	302	8	24
Pila 2	SLU 3	7278	2221	173	285	334	14	24
	SLU 4	7278	2221	100	285	302	8	24
	SLU5	7281	2218	167	285	330	14	24
	SLC 1	3980	1253	212	72	224	35	12
Pila 1	SLC 2	3131	2102	488	72	493	81	12
	SLC 3	3265	1968	212	240	320	35	40
	SLC 1	4844	1389	174	96	199	29	16
Pila 2	SLC 2	3755	2478	434	96	444	72	16
	SLC 3	3941	2292	174	319	363	29	53

GENERAL CONTRACTOR

ProgettoLottoCodifica DocumentoRev.FoglioDoc. N.INOR12E E2 CL IV 16A 0 001A34 di 45

	COMBINAZIONI A1 STR Tab 5.1.V NTC08									
Appoggio	СОМВО	N max compr [kN]	N max traz [kN]	H long [kN]	H trasv [kN]	Hcomb [kN]	Spostamento Long [mm]	Spostamento Trasv [mm]		
	SLU 1	7757	1247	26	596	596	2	49		
	SLU 2	8380	1238	26	357	358	2	30		
Pila 3	SLU 3	7454	1550	97	357	370	8	30		
	SLU 4	7454	1550	26	357	358	2	30		
	SLU5	7462	1542	43	357	360	4	30		
	SLU 1	10894	2906	51	681	683	4	56		
	SLU 2	11547	3198	51	409	412	4	34		
Pila 4	SLU 3	10428	3373	132	409	429	11	34		
	SLU 4	10428	3373	51	409	412	4	34		
	SLU5	10430	3370	85	409	417	7	34		
	SLC 1	4963	1120	136	148	201	23	25		
Pila 3	SLC 2	3772	2311	395	148	422	65	25		
	SLC 3	4062	2021	136	493	511	23	82		
	SLC 1	7170	2189	152	181	236	25	30		
Pila 4	SLC 2	5644	3715	434	181	470	72	30		
	SLC 3	6169	3190	152	602	621	25	100		

COMBINAZIONI A1 STR Tab 5.1.V NTC08									
Appoggio	СОМВО	N max compr [kN]	N max traz [kN]	H long [kN]	H trasv [kN]	Hcomb [kN]	Spostamento Long [mm]	Spostamento Trasv [mm]	
	SLU 1	10875	3197	223	587	628	18	49	
	SLU 2	11594	3503	223	352	417	18	29	
Pila 5	SLU 3	10462	3611	324	352	479	27	29	
	SLU 4	10462	3611	223	352	417	18	29	
	SLU5	10503	3569	372	352	512	31	29	
	SLC 1	6960	2365	242	163	292	40	27	
Pila 5	SLC 2	5555	3770	556	163	579	92	27	
	SLC 3	6021	3304	242	543	594	40	90	

10.4 Rotazione appoggi

Nel presente paragrafo si riportano le rotazioni degli appoggi dovuti ai pesi propri e ai carichi permanenti portati. Con il valore negativo si considera una rotazione in senso orario.

Si riportano sia le rotazioni delle condizioni elementari di carico sia la somma dei tre contributi precedentemente riportati. I valori delle rotazioni sono stati ricavati direttamente dal modello di calcolo.

Valori di rotazione in gradi - casi elementari:

ROTAZIONI IV16 [°]								
	SP A	P1	P2	Р3	P4	P5	SP B	
Peso proprio	-0.1530	0.0480	-0.1190	0.1160	-0.1740	0.1220	0.1080	
Perm. Port.	-0.0290	0.0070	-0.0230	0.0220	-0.0410	0.0300	0.0230	
Calaggio								

Valori di rotazione in radianti – casi elementari:

ROTAZIONI IV16 [°]										
	SP A	P1	P2	P3	P4	P5	SP B			
Peso proprio	-0.0027	0.0008	-0.0021	0.0020	-0.0030	0.0021	0.0019			
Perm. Port.	-0.0005	0.0001	-0.0004	0.0004	-0.0007	0.0005	0.0004			
Calaggio										

Rotazioni (PP+Perm+ Alzaggio) in radianti:

	SP A	P1	P2	P3	P4	P5	SP B
ROTAZIONE IMPALCATO (rad)	-0.0032	0.00099	-0.0026	0.0028	-0.0047	0.0029	0.0052

10.5 Verifica dei dispositivi di vincolo

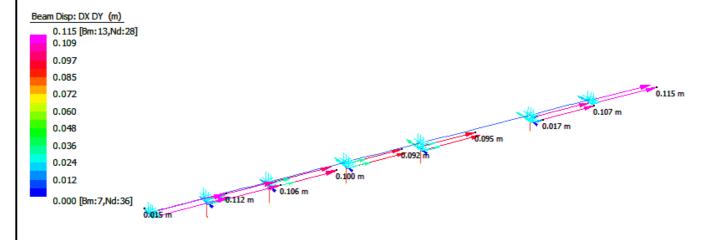
Per quanto riguarda le sollecitazioni di natura sismica, in accordo a quanto riportato al punto 7.10 del D.M. 2008, i dispositivi del sistema d'isolamento debbono essere in grado di sostenere, senza rotture, gli spostamenti valutati per un terremoto avente probabilità di superamento pari a quella prevista per lo SLC, al fine di garantire il soddisfacimento del requisito riguardante il livello superiore di sicurezza richiesto al sistema di isolamento rispetto alle altre parti costituenti l'opera.

Per un corretto funzionamento del sistema di isolamento, occorre che gli elementi della sottostruttura si mantengano in campo sostanzialmente elastico, sotto l'effetto delle azioni sismiche di progetto. Tutte le verifiche sui dispositivi di appoggio sono riportate in appositi elaborati.

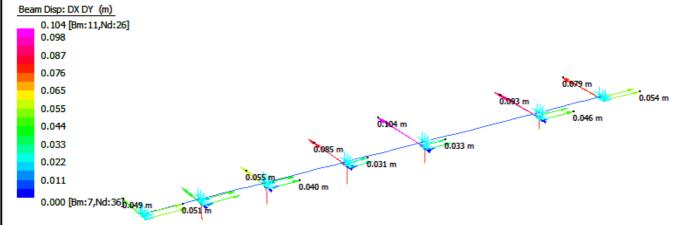
GENERAL CONTRACTOR Cepav due	ALTA SORVE GRUPPO FERROV	TALI	FERR		
Doc. N.	Progetto	Lotto	Codifica Documento	Rev.	Foglio
	INOR	12	E E2 CL IV 16A 0 001	A	37 di 45

11 ESCURSIONI MASSIME DI GIUNTI E VARCHI

Si riportano di seguito gli spostamenti massimi in condizioni sismiche, provocati da una escursione termica di± 30°C e dal sisma di progetto allo stato limite di collasso. Gli spostamenti in condizione sismica sono riferiti allo spettro elastico di progetto smorzato del 15% conformemente agli isolatori adottati.


L'ampiezza del giunto si ottiene combinando l'azione sismica con coefficiente 1 e la variazione termica con coefficiente 0.50.

Il varco paraghiaia-soletta sarà progettato con la massima escursione prodotta in combinazione sismica SLC al fine di evitare il martellamento degli elementi strutturali


Anche i giunti saranno progettati tenendo in considerazione la massima escursione in combinazione sismica SLC. Qualora gli spostamenti trasversali siano maggiori rispetto agli spostamenti orizzontali, si terrà conto di questi (vedere paragrafo 10.3 sugli spostamenti degli appoggi agli SLC) per il dimensionamento del giunto, essendo gli spostamenti garantiti dal giunto in direzione trasversale simili agli spostamenti in direzione longitudinale.

Essendo dimensionante per gli spostamenti la condizione sismica SLC si riportano nelle immagini sottostanti gli spostamenti ottenuti dal modello di calcolo per il sisma principale in direzione longitudinale e trasversale. I valori sono combinati con anche il 50% dell'azione termica.

Direzione longitudinale:

<u>Direzione trasversale:</u>

Lo spostamento massimo ricavato in precedenza vale 12cm.

Si assumono dunque varchi di ampiezza pari a 14.00cm e giunti con escursione pari a +/-13.00cm.

12 SOLLEVAMENTO DELL'IMPALCATO

Si riportano nel presente paragrafo le portate utili dei martinetti su ciascun elemento di sostegno (pila o spalla). Il sollevamento dell'impalcato avviene a ponte "scarico" pertanto non si considera il contributo dovuto ai carichi variabili da traffico nel calcolo delle sollecitazioni sui martinetti.

Le sollecitazioni gravanti su ciascun martinetto sono le medesime ricavate per gli appoggi (vedere paragrafo sopra).

SPALLA A	
	N max [kN]
Pesi Propri	863
Vento	141
Ritiro	-26
Calaggio	2
Cedimenti	21
ТОТ	1001
CARICO DA SOLLEVARE	1250
n° martinetti ad appoggio	1
PORTATA UTILE MARTINETTO	1500
n° tot martinetti	2

SPALLA B						
	N max [kN]					
Pesi Propri	822					
Vento	202					
Ritiro	-44					
Calaggio	141					
Cedimenti	23					
TOT	1144					
CARICO DA SOLLEVARE	1250					
n° martinetti ad appoggio	1					
PORTATA UTILE MARTINETTO	1500					
n° tot martinetti	2					

PILA 1	
	N max
	[kN]
Pesi Propri	2595
Vento	322
Ritiro	30
Calaggio	-10
Cedimenti	63
ТОТ	3000
CARICO DA SOLLEVARE	3250
n° martinetti ad appoggio	2
PORTATA UTILE MARTINETTO	2000
n° tot martinetti	4

PILA 2	
	N max [kN]
Pesi Propri	3097
Vento	417
Ritiro	-6
Calaggio	28
Cedimenti	70
TOT	3606
CARICO DA SOLLEVARE	3750
n° martinetti ad appoggio	2
PORTATA UTILE MARTINETTO	2400
n° tot martinetti	4

PILA 3	
	N max [kN]
Pesi Propri	3149
Vento	505
Ritiro	-8
Calaggio	-102
Cedimenti	75
ТОТ	3619
CARICO DA SOLLEVARE	3750
n° martinetti ad appoggio	2
PORTATA UTILE MARTINETTO	2400
n° tot martinetti	4

PILA 4	
	N max [kN]
Pesi Propri	4476
Vento	778
Ritiro	2
Calaggio	203
Cedimenti	64
ТОТ	5523
CARICO DA SOLLEVARE	5750
n° martinetti ad appoggio	2
PORTATA UTILE MARTINETTO	3500
n° tot martinetti	4

PILA 5	
	N max [kN]
Pesi Propri	4873
Vento	689
Ritiro	53
Calaggio	-262
Cedimenti	47
TOT	5400
CARICO DA SOLLEVARE	5500
n° martinetti ad appoggio	2
PORTATA UTILE MARTINETTO	3400
n° tot martinetti	4

13 AZIONI TRASMESSE DALL'IMPALCATO ALLE SOTTOSTRUTTURE

Si riportano di seguito le azioni trasmesse dall'impalcato alle sottostrutture (pile), in corrispondenza del sistema di vincolamento, calcolate attraverso il modello di calcolo agli elementi finiti descritto in precedenza.

13.1 Azioni trasmesse alla pila 1

	CONDIZIONE ELEMENTARE		N(kN)	Mt(kNm)	Tl(kN)	Tt(kN)	Afferenza (m)
	Peso permanente	g	5190,00	-	-	-	-
	Cedimento (max compressione)	ε4	126,00	-	-	-	-
	Cedimento (max trazione)	ε ₄	-120,00	-	-	-	-
CARICHI ELEMENTARI	Carichi accidentali	q_1	-	-	-	-	40,00
STATICI	Frenatura	q_3	-	-	120,00	-	-
	Azione centrifuga	q_4	-	-	-	-	-
	Vento su impalcato	q_5	-	1611,00	-	478,00	-
	Azione termica	\mathbf{q}_7	-	-	488,00	-	-
CARICHI ELEMENTARI SISMICI	E 1 (massimo sisma longitudinale)	q_6	-	329,10	688,00	153,00	-
	E 2 (massimo sisma trasversale)	q_6	-	1097,00	206,40	510,00	-
	E 3 (massimo sisma verticale)	\mathbf{q}_6	1886,00	-	-	-	-

13.2 Azioni trasmesse alla pila 2

	CONDIZIONE ELEMENTARE		N(kN)	Mt(kNm)	Tl(kN)	Tt(kN)	Afferenza (m)
	Peso permanente	g	6194,00	-	-	-	-
	Cedimento (max compressione)	ε4	140,00	-	-	-	-
	Cedimento (max trazione)	ε4	-150,00	-	-	-	-
CARICHI ELEMENTARI	Carichi accidentali	q_1	-	-	-	-	49,00
STATICI	Frenatura	q_3	-	-	110,00	-	-
	Azione centrifuga	q_4	-		-		-
	Vento su impalcato	q_5	-	2086,00	-	635,00	-
	Azione termica	\mathbf{q}_7	-	-	279,00	-	-
CARICHI ELEMENTARI SISMICI	E 1 (massimo sisma longitudinale)	q_6	-	362,40	646,00	167,10	-
	E 2 (massimo sisma trasversale)	q_6	-	1208,00	193,80	557,00	-
SISTIFICI	E 3 (massimo sisma verticale)	q_6	2402,00	-	=	-	-

13.3 Azioni trasmesse alla pila 3

	CONDIZIONE ELEMENTARE		N(kN)	Mt(kNm)	Tl(kN)	Tt(kN)	Afferenza (m)
	Peso permanente	g	6298,00	-	-	-	-
	Cedimento (max compressione)	E 4	150,00	-	-	-	-
	Cedimento (max trazione)	€4	-140,00	-	-	-	-
CARICHI ELEMENTARI	Carichi accidentali	q_1	-	=	1	-	52,00
STATICI	Frenatura	q_3	-	-	106,00	-	-
	Azione centrifuga	q_4	-		-		-
	Vento su impalcato	q_5	-	2524,00	-	795,00	-
	Azione termica	\mathbf{q}_7	-	=	73,00	-	-
CARICHI ELEMENTARI SISMICI	E 1 (massimo sisma longitudinale)	q_6	-	553,20	639,00	255,30	-
	E 2 (massimo sisma trasversale)	q_6	-	1844,00	191,70	851,00	-
	E 3 (massimo sisma verticale)	q_6	2625,00	-	-	-	-

13.4 Azioni trasmesse alla pila 4

· · · · · · · · · · · · · · · · · · ·	CONDIZIONE ELEMENTARE		N(kN)	Mt(kNm)	Tl(kN)	Tt(kN)	Afferenza (m)
	Peso permanente	g	8952,00	-	-	-	-
	Cedimento (max compressione)	E 4	128,00	-	-	-	-
	Cedimento (max trazione)	€4	-134,00	-	-	-	-
CARICHI ELEMENTARI	Carichi accidentali	\mathbf{q}_1	-	-	-	-	67,00
STATICI	Frenatura	q_3	-	-	120,00	-	-
	Azione centrifuga	q_4	-		-		-
	Vento su impalcato	q ₅	-	3893,00	-	907,00	-
	Azione termica	\mathbf{q}_7	-	-	144,00	-	-
CARICHI ELEMENTARI SISMICI	E 1 (massimo sisma longitudinale)	q_6	-	988,50	689,00	312,60	-
	E 2 (massimo sisma trasversale)	q_6	-	3295,00	206,70	1042,00	-
	E 3 (massimo sisma verticale)	q_6	3343,00	-	-	-	-

13.5 Azioni trasmesse alla pila 5

	CONDIZIONE ELEMENTARE		N(kN)	Mt(kNm)	Tl(kN)	Tt(kN)	Afferenza (m)
	Peso permanente	g	9746,00	-	-	-	-
	Cedimento (max compressione)	ε4	94,00	-	-	-	-
	Cedimento (max trazione)	E 4	-100,00	-	-	-	-
CARICHI ELEMENTARI	Carichi accidentali	q_1	-	-	-	-	66,00
STATICI	Frenatura	q_3	-	-	150,00	-	-
	Azione centrifuga	q_4	-		-		-
	Vento su impalcato	q 5	-	3446,00	-	781,00	-
	Azione termica	\mathbf{q}_7	-	-	621,00	-	-
CARICHI ELEMENTARI SISMICI	E 1 (massimo sisma longitudinale)	q_6	-	886,20	787,00	280,50	-
	E 2 (massimo sisma trasversale)	q_6	-	2954,00	236,10	935,00	-
	E 3 (massimo sisma verticale)	q_6	3090,00	-	-	-	-

14 GIUDIZIO MOTIVATO DI ACCETTABILITA' DEI RISULTATI

Si riporta, come richiesto dal DM 14/01/2008 al paragrafo 10.2, un giudizio di accettabilità dei risultati, condotto attraverso una verifica manuale dei calcoli numerici svolti. In realtà il calcolo condotto per gli appoggi non ha richiesto l'ausilio di codici software, se non per alcune limitate valutazioni. Sono stati infatti utilizzati dei fogli di calcoli elettronici, in cui sono state implementate le formulazioni "manuali", allo scopo di rendere più agevole l'esecuzione di tutte le valutazioni numeriche e quindi molto più controllati rispetto analoghe valutazioni svolte tramite software e quindi meno controllabili. Ad ogni modo verranno nel seguito rifatte a tale scopo alcune calcolazioni, relativamente ai casi di carico più significativi (pesi e traffico) in termini di azioni verticali agenti e quindi maggiormente incidenti sulle verifiche finali rispetto ai restanti.

Per prima cosa si ricorda che il valore di carico distribuito valido per il cv in oggetto è pari a 150.0 kN/m.

I carichi da traffico vengono disposti invece come spiegato nel paragrafo "Azioni accidentali da traffico veicolare" della Relazione di calcolo delle pile, ovvero al fine di massimizzare l'azione di compressione negli appoggi, oppure al fine di massimizzare l'azione flettente/verticale di compressione nelle pile.

La lunghezza di afferenza è stata valutata manualmente secondo uno schema semplificato di incastro-appoggio per la prima ed ultima campata, quindi assegnando una maggiore aliquota di carico alla pila rispetto alla spalla, mentre di incastro-incastro per tutte le campate intermedie, quindi assegnando a ciascuna pila metà del carico. Le caratteristiche geometriche del cv sono:

	L campata
	[m]
SpA	
	30.00
P1	
	35.00
P2	
	45.00
P3	
	45.00
P4	
	70.00
P5	
	40.00
SpB	

Si riporta di seguito il calcolo svolto manualmente e confrontato con i risultati esposti nei paragrafi precedenti, relativamente all'azione dei pesi verticali:

GENERAL CONTRACTOR ALTA SORVEGLIANZA Cepav due ITALFERR **GRUPPO FERROVIE DELLO STATO ITALIANE** Lotto Codifica Documento Progetto Rev. Foglio Doc. N INOR E E2 CL IV 16A 0 001 12 Α 44 di 45

		VALORE CALCOLO MANUALE	VALORE CALCOLO DA MODELLO	Frrore
		Pesi) q = 150.00 kN/m	Pesi) q = 150.00 kN/m	Errore
Luci				
L1	30.00			
Afferenza pila P1	38.75>	Pesi P1) N = 2906.25 kN	Pesi P1) N = 2834.00 kN	1.03
L2	40.00			
Afferenza pila P1	40.00>	Pesi P2) N = 3000.00 kN	Pesi P2) N = 3252.00 kN	0.92
L3	40.00			
Afferenza pila P3	37.50>	Pesi P3) N = 2812.50 kN	Pesi P3) N = 2367.00 kN	1.19
L4	35.00			
Afferenza pila P4	50.00>	Pesi P4) N = 3750.00 kN	Pesi P4) N = 3877.00 kN	0.97
L5	65.00			
Afferenza pila P5	57.50>	Pesi P5) N = 4312.50 kN	Pesi P5) N = 4763.00 kN	0.91
L6	40.00			

Si riporta invece di seguito per il carico da traffico la ripartizione trasversale operata tramite Courbon, definite le eccentricità trasversali delle risultanti delle singole corsie rispetto l'asse appoggi, sia per carico distribuito sia per carichi tandem. Vengono determinate ora le azioni per ogni appoggio considerando le stese occupanti per intero l'impalcato; nel seguito si considererà poi il caso di sole due stese presenti al fine di massimizzare l'azione di sbilanciamento trasversale dei carichi.

Carico distribuito:

N°Travi	2	APPOGGIO	Carico_F	27 kN/m		Carico_F	7.5 kN/m		Carico_F	6.25 kN/m		q [kN/m]_MAX. TRAZ.	q [kN/m]_MAX COMPR.
		ESISTENTE	eccentricità	-2.75	m	eccentricità	0.25	m	eccentricità	3	m	Corsia 1+2	Corsia 1+2+3
d_trave 1	-2.5 m	SI	k1	1.0500	28.35	k1	0.4500	3.38	k1	-0.1000	-0.63	31.73	31.10
d_trave 2	2.5 m	SI	k2	-0.0500	-1.35	k2	0.5500	4.13	k2	1.1000	6.88	2.78	9.65

Carico tandem:

2	APPOGGIO	Carico_F	600	kN	Carico_F	400	kN	Carico_F	0	kN	q [kN]_MAX. TRAZ.	q [kN]_MAX. COMPR.
	ESISTENTE	eccentricità	-2.75	m	eccentricità	0.25	m	eccentricità	3	m	Corsia 1+2	Corsia 1+2+3
-2.5 m	SI	k1	1.0500	630.00	k1	0.4500	180.00	k1	-0.1000	0.00	810.00	810.00
2.5 m	SI	k2	-0.0500	-30.00	k2	0.5500	220.00	k2	1.1000	0.00	190.00	190.00
-	-2.5 m	ESISTENTE -2.5 m SI	-2.5 m Sl k1	ESISTENTE eccentricità -2.75 -2.5 m SI k1 1.0500	ESISTENTE eccentricità -2.75 m -2.5 m SI k1 1.0500 630.00	ESISTENTE eccentricità -2.75 m m eccentricità -2.5 m SI k1 1.0500 630.00 k1	ESISTENTE eccentricità -2.75 m eccentricità 0.25 m -2.5 m SI k1 1.0500 630.00 k1 0.4500	ESISTENTE eccentricità -2.75 m eccentricità 0.25 m -2.5 m SI k1 1.0500 630.00 k1 0.4500 180.00	ESISTENTE eccentricità -2.75 m eccentricità 0.25 m eccentricità -2.5 m Si k1 1.0500 630.00 k1 0.4500 180.00 k1	ESISTENTE eccentricità -2.75 m eccentricità 0.25 m eccentricità 3 -2.5 m Si k1 1.0500 630.00 k1 0.4500 180.00 k1 -0.1000	ESISTENTE eccentricità -2.75 m eccentricità 0.25 m eccentricità 3 m -2.5 m SI k1 1.0500 630.00 k1 0.4500 180.00 k1 -0.1000 0.00	ESISTENTE eccentricità -2.75 m eccentricità 0.25 m eccentricità 3 m Corsia 1+2 -2.5 m Si k1 1.0500 630.00 k1 0.4500 180.00 k1 -0.1000 0.00 810.00

Folla:

N°Travi	2	APPOGGIO	Carico_F 4.625		kN/m	Carico_F	4.625 kN/m		q [kN/m]_MAX. TRAZ.	q [kN/m]_MAX COMPR.	
		ESISTENTE	eccentricità	-5.175	m	eccentricità	5.175	m	Folla Sx	Folla Sx+Dx	
d_trave 1	-2.5 m	SI SI	k1	1.5350	7.10	k1	-0.5350	-2.47	7.10	4.63	
d_trave 2	2.5 m	SI	k2	-0.5350	-2.47	k2	1.5350	7.10	-2.47	4.63	

Il controllo manuale rispetto ai numeri estratti dalle tabelle esposte in precedenza nella relazione conduce a:

						OLO MANUALE	VALOR			
					A C	OMPRESSIONE	MAS	Freeze		
		Ta	ndem)	F =	810.00 kN				Errore
		Traf	f. Distr.)	q =	38.82 kN/m				
Luci										
L1	30.00									
Afferenza pila P1	36.25 -	-> T	raff. P1)	N =	2217.38 kN	Traff. P	1) N =	2317.00 kN	0.96
L2	35.00									
Afferenza pila P2	40.00	-> T	Traff. P2)	N =	2362.98 kN	Traff. P2	2) N =	2575.00 kN	0.92
L3	45.00									
Afferenza pila P3	45.00 -	-> T	Traff. P3)	N =	2557.10 kN	Traff. PC	3) N =	2744.00 kN	0.93
L4	45.00									
Afferenza pila P4	57.50 -	-> T	Гraff. Р4)	N =	3042.40 kN	Traff. P	1) N =	3317.00 kN	0.92
L5	70.00									
Afferenza pila P5	60.00	-> T	raff. P5)	N =	3139.46 kN	Traff. P	5) N =	3354.00 kN	0.94
L6	40.00				•			•		

Gli errori riscontrati sono essenzialmente dovuti all'errore nella valutazione dell'afferenza per carichi verticali distribuiti applicati sull'impalcato. Tramite una valutazione più accurata, ad esempio attraverso un modello agli elementi finiti, è possibile cogliere la configurazione di carico più corretta per il calcolo dell'azione gravante sulle varie pile.