COMMITTENTE:

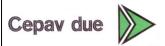
ALTA SORVEGLIANZA:

CUP: F81H91000000008

GENERAL CONTRACTOR:

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N. 443/01

LINEA A.V. /A.C. TORINO – VENEZIA Tratta MILANO – VERONA Lotto funzionale Brescia-Verona

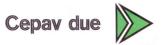

PROGETTO ESECUTIVO

Progetto cofinanziato

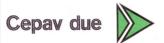
dalla Unione Europea

IV16 – CAVALCAFERROVIA VIA BRESCIA - PK 108+954,045 Relazione di calcolo spalla A

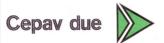
GENE	GENERAL CONTRACTOR				TORE LAVOR	el .		
	Consorzio Pav due							
Data:				Data:		-		
C	OMMESSA LOTTO I	FASE ENT	E TIPO	DOC	OPERA/DISCI	PLINA	PROGR	REV
I	N 0 R 1 2	EE	2 C	L	V 1 6	A 6	0 0 1	А
PRO	GETTAZIONE							IL PROGETTISTA
Rev.	Descrizione	Redatto	Data	Verificato	Data	Progettista Integratore	Data	MORPHICA PLANTAGE AND
Α	Emissione	Montanari	08/05/20	Piacentini	08/05/20	Liani	08/05/20	S LUCA PACENTALE
В				. Adem				MONVAS S
С								Data 05/20
CIG.	751447334A					File: INOR12	E2CLIV16A	1 A6001A_10.docx



Progetto Lotto Codifica Documento Rev. Foglio Doc. N. INOR 12 E E2 CL IV16 A6 001 A 2 di 109


INDICE

1	PRE	MESSA	6
2	NOR	ME, DECRETI E DOCUMENTI	9
	2.1	OPERE IN C.A. E STRUTTURE METALLICHE	9
	2.2	NORMATIVA SPECIFICA PER I PONTI STRADALI	9
	2.3	GEOTECNICA, FONDAZIONI E GEOLOGIA	10
	2.4	Ulteriori prescrizioni e specifiche tecniche di RFI e Italferr	10
3	CAR	ATTERISTICHE DEI MATERIALI	11
	3.1	Calcestruzzo	11
	3.2	Acciaio	12
	3.2.1	Armature per c.a. – Acciaio B 450 C	12
	3.2.2	Carpenteria metallica – Classe S355	12
4	ELA	BORATI DI RIFERIMENTO	13
5	CRI	TERI DI CALCOLO	14
	5.1	CRITERI E DEFINIZIONE DELL'AZIONE SISMICA	14
	5.1.1	Tipo di analisi condotta	14
	5.1.2	Definizione dei parametri di caratterizzazione sismica	16
	5.2	SPINTA DELLE TERRE	17
	5.3	COMBINAZIONI DI CARICO	18
	5.3.1	Combinazioni per la verifica allo SLU	19
	5.3.2	Combinazioni per la verifica allo SLE	20
	5.3.3	Coefficienti di combinazione delle azioni dovute al traffico	20
	5.3.1	Coefficienti di combinazione utilizzati nelle analisi strutturali	22
	5.4	VALUTAZIONE DELLE SOLLECITAZIONI SUGLI ELEMENTI STRUTTURALI	25
	5.4.1	Paraghiaia	25
	5.4.2	Muri di risvolto	26
	5.4.3	Platea di fondazione	27
	5.4.4	Pali di fondazione	27



Doc. N.	Progetto INOR	Lotto 12	Codifica Documento E E2 CL IV16 A6 001	Rev. A	Foglio 3 di 109
6 CRITERI DI VERIFICA					28
6.1 Verifiche SLU					28
6.1.1 Resistenza a sforzo normale e flessione					28
6.1.2 Verifiche allo stato limite ultimo per taglio					28
6.1.2.1 Elementi non armati a taglio					28
6.1.2.2 Elementi armati a taglio					29
6.2 Verifiche SLE				•••••	30
6.2.1 Verifiche allo stato limite di fessurazione					30
6.2.2 Verifiche delle tensioni in esercizio					33
7 ANALISI DELLA SPALLA					34
7.1 SISTEMA DI RIFERIMENTO					34
7.2 DATI DI INPUT					36
7.2.1 Geometria dell'impalcato					36
7.2.2 Geometria della spalla					37
7.3 AZIONI TRASMESSE DALL'IMPALCATO					38
7.3.1 Carichi permanenti					38
7.3.2 Carichi accidentali					39
7.3.3 Azione di frenamento					41
7.3.4 Azione centrifuga					41
7.3.5 Variazione termica					
7.3.6 Azione del vento					42
7.3.7 Azione sismica					43
7.4 AZIONI RELATIVE ALLA SPALLA					
7.4.1 Peso proprio					
7.4.2 Forze inerziali degli elementi della spalla					
7.4.3 Spinta delle terre					
7.4.3.1 Spinta statica dei terreno di monte					
7.4.3.3 Sovraspinta sismica del terreno di monte					
7.4.3.4 Forse inerziali del terreno imbarcato					

Doc. N.	Progetto INOR	Lotto 12	Codifica Documento E E2 CL IV16 A6 001	Rev. A	Foglio 4 di 109
7.5 SOLLECITAZIONI A SPICCATO FUSTO					55
7.5.1 Azioni elementari					55
7.5.2 Sollecitazioni a spiccato fusto					56
7.5.3 Sollecitazioni oggetto di verifica					58
7.6 SOLLECITAZIONI SULLA PALIFICATA DI FONDAZIONE					59
7.6.1.1 Azioni elementari					59
7.6.1.2 Sollecitazioni sulla palificata di fondazione					60
7.7 SOLLECITAZIONE SUI PALI DI FONDAZIONE				•••••	62
7.8 SOLLECITAZIONI SUL PARAGHIAIA		•••••		•••••	67
7.9 SOLLECITAZIONI SUI MURI DI RISVOLTO					70
7.9.1 Giudizio motivato di accettabilità dei risultati					78
7.10 SOLLECITAZIONI SULLA PLATEA DI FONDAZIONE				•••••	80
7.11 SOLLECITAZIONI SUI RITEGNI		•••••			81
7.11.1 Ritegni trasversali		•••••			81
7.11.2 Ritegni longitudinali		•••••			81
8 VERIFICHE DEGLI ELEMENTI STRUTTURALI				•••••	82
8.1 PARAGHIAIA				•••••	82
8.1.1 Verifiche agli SLU					82
8.1.1.1 Verifica a flessione					82
8.1.1.2 Verifica a Taglio					83
8.1.2 Verifiche agli SLE					84
8.1.2.1 Verifiche tensionali					84
8.1.2.2 Verifiche a fessurazione					85
8.2 Muri di risvolto					86
8.2.1 Verifiche agli SLU					86
8.2.1.1 Verifica a flessione					86
8.2.1.2 Verifica a Taglio					
8.2.2 Verifiche agli SLE					88
8.2.2.1 Verifiche tensionali					
8.2.2.2 Verifiche a fessurazione					
8.3 SEZIONE DI SPICCATO FUSTO					90

Doc. N.	Progetto INOR	Lotto 12	Codifica Documento E E2 CL IV16 A6 001	Rev. A	Foglio 5 di 10
8.3.1 Verifiche agli SLU					90
8.3.1.1 Verifica a flessione					
8.3.1.2 Verifica a Taglio					91
8.3.2 Verifiche agli SLE					92
8.3.2.1 Verifiche tensionali					92
8.3.2.2 Verifiche a fessurazione					93
8.4 PLATEA DI FONDAZIONE					94
8.4.1 Verifiche agli SLU					94
8.4.1.1 Verifica a flessione					94
8.4.1.2 Verifica a Taglio					95
8.4.2 Verifiche agli SLE					96
8.4.2.1 Verifiche tensionali					96
8.4.2.2 Verifiche a fessurazione					97
8.5 PALI DI FONDAZIONE – SEZIONE TESTA PALO (PROFON	иdità 0.00м)				98
8.5.1 Verifiche agli SLU					98
8.5.1.1 Verifica a flessione					98
8.5.1.2 Verifica a Taglio					99
8.5.2 Verifiche agli SLE					. 100
8.5.2.1 Verifiche tensionali					100
8.5.2.2 Verifiche a fessurazione					101
8.6 PALI DI FONDAZIONE – PRIMA SEZIONE CAMBIO ARMA	ATURA (PROFON	dità 15.00	м)		. 102
8.6.1 Verifiche agli SLU					. 102
8.6.1.1 Verifica a flessione					102
8.6.1.2 Verifica a Taglio					103
8.6.2 Verifiche agli SLE					. 104
8.6.2.1 Verifiche tensionali e a fessurazione					104
8.7 RITEGNI					. 105
8.7.1 Ritegni trasversali					. 105
8.7.2 Ritegni longitudinali					. 106
VERIFICHE GEOTECNICHE					. 107
9.1 VERIFICA DI PORTANZA VERTICALE DELLA PALIFICAT	Α				. 107
9.2 VERIFICA DI PORTANZA ORIZZONTALE DELLA PALIFIC	ATA				. 109

1 PREMESSA

La presente relazione riguarda l'analisi, il dimensionamento e la verifica dei principali elementi strutturali della spalla A del cavalcaferrovia denominato "Cavalcaferrovia Via Brescia – IV16" che sovrappassa la futura linea AV/AC Milano-Verona in prossimità della progressiva 108+954,045.

L'andamento planimetrico dell'opera è prevalentemente in rettifilo con un piccolo tratto curvilineo in corrispondenza della spalla A, la viabilità in progetto al di sopra del cavalcavia è una strada di tipo F2. La sezione trasversale dell'opera è costituita da una sede carrabile di 8.50m, e da due cordoli esterni di larghezza complessiva pari a 3.70m (1.85m ognuno).

Il cavalcaferrovia, di lunghezza complessiva di 265.00m, è costituito da 6 campate con luci variabili da 30.00m a 70.00m.

L'impalcato è della tipologia mista "acciaio-calcestruzzo" costituito da 2 travi a "doppio T" in acciaio di altezza variabile e soletta in calcestruzzo armato gettato in opera di spessore variabile da 0.22m a 0.30m. Le due travi sono collegate in campata, sulle pile e sulle spalle da diaframmi a parete piena posti ad interasse di 5.00m.

Il sistema di vincolamento previsto per il cavalcavia è costituito da dispositivi di appoggio ed isolamento sismico in elastomero armato. Tali dispositivi, essendo caratterizzati da un ridotto valore della rigidezza orizzontale, garantiscono un disaccoppiamento del moto orizzontale della struttura rispetto a quello del terreno ed una conseguente riduzione della risposta sismica della struttura; inoltre tali dispositivi sono dotati di una certa capacità dissipativa in funzione della mescola elastomerica utilizzata, indispensabile per minimizzare gli spostamenti della struttura isolata.

Le spalle dell'opera, realizzate in conglomerato cementizio armato, presentano un plinto di forma rettangolare attestato su una palificata di fondazione costituita da pali Ø1500 mm. Lo sviluppo dell'elevazione è costituito da un fusto, dal superiore paraghiaia e da idonei muri di risvolto e orecchie atti a gestire il retrostante corpo del rilevato.

Le pile sono a setto continuo in c.a, di spessore 1.20m e larghezza 8.20m. Le dimensioni in altezza sono determinate dall'andamento altimetrico del tracciato stradale e dallo spessore dell'impalcato.

Si riportano di seguito alcune immagini descrittive della spalla oggetto della presente relazione.

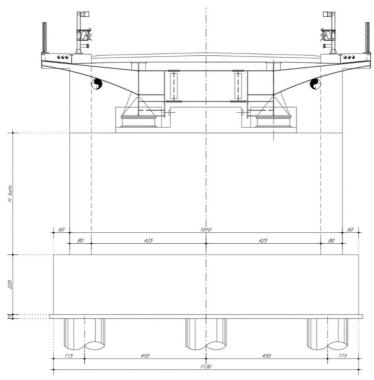


Figura 1 - Vista frontale

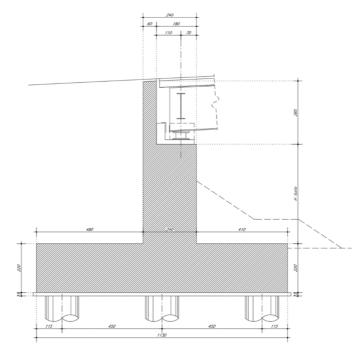


Figura 2 – Sezione in asse tracciamento

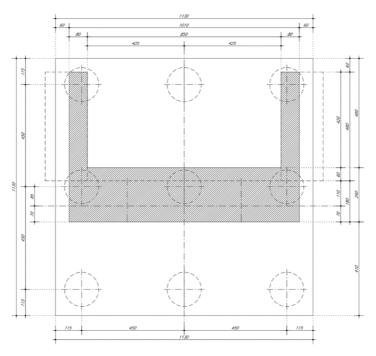


Figura 3 – Pianta fondazione e spiccato elevazione

Nella tabella seguente si riporta il riepilogo delle caratteristiche geometriche del cavalcaferrovia.

	L campata	H fusto	Tipo di
	[m]	[m]	fondazione
SpA		4.50	9 pali 1500
	30.00		
P1		8.40	diaframmi
	35.00		
P2		9.40	diaframmi
	45.00		
P3		9.60	diaframmi
	45.00		
P4		8.40	diaframmi
	70.00		
P5		5.90	diaframmi
	40.00		
SpB		3.80	6 pali 1500

2 NORME, DECRETI E DOCUMENTI

Il progetto delle strutture e le disposizioni esecutive sono conformi alle norme attualmente in vigore ed in particolare:

2.1 Opere in c.a. e strutture metalliche

- D. M. Min. II. TT. del 14 gennaio 2008 Norme tecniche per le costruzioni;
- CIRCOLARE 2 febbraio 2009, n.617 "Istruzione per l'applicazione delle «Nuove norme tecniche per le costruzioni» di cui al decreto ministeriale 14 gennaio 2008;
- UNI EN 1990 (Eurocodice 0) Aprile 2006: "Criteri generali di progettazione strutturale";
- UNI EN 1991-1-1 (Eurocodice 1) Agosto 2004: "Azioni sulle strutture Parte 1-1: Azioni in generale Pesi per unità di volume, pesi propri e sovraccarichi per gli edifici";
- UNI EN 1991-1-4 (Eurocodice 1) Luglio 2005: "Azioni sulle strutture Parte 1-4: Azioni in generale Azioni del vento";
- UNI EN 1992-1-1 (Eurocodice 2) Novembre 2005: "Progettazione delle strutture di calcestruzzo Parte 1-1: "Regole generali e regole per gli edifici";
- UNI EN 1993-1-1 (Eurocodice 3) Agosto 2005: "Progettazione delle strutture in acciaio Parte 1-1: Regole generali e regole per gli edifici";
- UNI EN 1998-1 (Eurocodice 8) Marzo 2005: "Progettazione delle strutture per la resistenza sismica Parte 1: Regole generali Azioni sismiche e regole per gli edifici";
- Linee guida sul calcestruzzo strutturale Presidenza del Consiglio Superiore dei Lavori Pubblici Servizio Tecnico Centrale;
- UNI EN 197-1:2011 "Cemento: composizione, specificazioni e criteri di conformità per cementi comuni;
- UNI EN 11104 marzo 2004 "Calcestruzzo: specificazione, prestazione, produzione e conformità", Istruzioni complementari per l'applicazione delle EN 206-1;
- UNI EN 206-1 ottobre 2006 "Calcestruzzo: specificazione, prestazione, produzione e conformità".

2.2 Normativa specifica per i ponti stradali

- UNI EN 1991-2-1 (Eurocodice 1) Marzo 2005: "Azioni sulle strutture Parte 2: Carichi da traffico sui ponti";
- UNI EN 1992-2 (Eurocodice 2) Gennaio 2006: "Progettazione delle strutture di calcestruzzo Parte 2: Ponti in calcestruzzo progettazione e dettagli costruttivi";
- UNI EN 1993-2 (Eurocodice 3) Gennaio 2007: "Progettazione delle strutture in acciaio Parte 2: Ponti di acciaio";
- UNI EN 1998-2 (Eurocodice 8) Febbraio 2006: "Progettazione delle strutture per la resistenza sismica Parte 2: Ponti".

2.3 Geotecnica, fondazioni e geologia

- UNI EN 1997-1 (Eurocodice 7) Febbraio 2005: "Progettazione geotecnica Parte 1: Regole generali";
- UNI EN 1998-5 (Eurocodice 8) Gennaio 2005: "Progettazione delle strutture per la resistenza sismica Parte 2: Fondazioni, strutture di contenimento ed aspetti geotecnici";
- UNI EN 1536:2010: "Esecuzione di lavori geotecnici speciali Pali trivellati".

2.4 Ulteriori prescrizioni e specifiche tecniche di RFI e Italferr

- RFI DTC SI PS MA IFS 001 A: "Manuale di progettazione delle opere civili";
- RFI DTC SI SP IFS 001 A: "Capitolato generale Tecnico di appalto delle Opere civili".

3 CARATTERISTICHE DEI MATERIALI

Per la realizzazione dell'opera si prevede l'impiego dei materiali indicati nei paragrafi seguenti. Si riportano le caratteristiche prestazionali di resistenza minime e, con particolare riferimento ai calcestruzzi, anche le prescrizioni o caratteristiche da assicurare per garantire i requisiti di durabilità.

3.1 Calcestruzzo

Per garantire la durabilità delle strutture in calcestruzzo armato ordinario, esposte all'azione dell'ambiente, si devono adottare i provvedimenti atti a limitare gli effetti di degrado indotti dall'attacco chimico, fisico e derivante dalla corrosione delle armature e dai cicli di gelo e disgelo.

Al fine di ottenere la prestazione richiesta in funzione delle condizioni ambientali, nonché per la definizione della relativa classe, si fa riferimento alle indicazioni contenute nelle Linee Guida sul calcestruzzo strutturale edite dal Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici ovvero alle norme UNI EN 206-1:2016 ed UNI 11104:2016.

Ai fini di preservare le armature dai fenomeni di aggressione ambientale, dovrà essere previsto un idoneo copriferro; il suo valore, misurato tra la parete interna del cassero e la generatrice dell'armatura metallica più vicina, individua il cosiddetto "copriferro nominale".

Il copriferro nominale c_{nom} è somma di due contributi, il copriferro minimo c_{min} e la tolleranza di posizionamento h. Vale pertanto: $c_{nom} = c_{min} + h$.

La tolleranza di posizionamento delle armature "h", per le strutture gettate in opera, viene assunta pari ad 5 mm in quanto si prescrive che l'esecuzione sia sottoposta ad un sistema di assicurazione della qualità, nella quale siano incluse le misure dei copriferri.

Si utilizzano i seguenti tipi di calcestruzzo e copriferri minimi.

PARTE O ELEMENTO	Classe esposizione	Classe resistenza minima [MPa]	Ambiente	Copriferro minimo [mm]	Classe di resistenza adottata [MPa]
Cordoli laterali e marciapiedi	XC4 XD3 XF4	C 35/45	Molto Agg.	60	C 35/45
Soletta di impalcato	XC3	C 30/37	Ordinario	40	C 35/45
Baggioli e ritegni	XC4	C 32/40	Aggressivo	50	C 35/45
Elevazioni pile	XC4 XF1	C 32/40	Aggressivo	50	C 35/45
Elevazioni spalle	XC4 XF1	C 32/40	Aggressivo	50	C 32/40
Fondazioni pile e spalle	XC2	C 25/30	Ordinario	40	C 25/30
Pali e diaframmi di fondazione	XC2	C 25/30	Ordinario	60	C 25/30

Tabella 3.1 – Classi di cls e copriferri minimi

In conformità a quanto sopra, le caratteristiche meccaniche del calcestruzzo utilizzate nell'analisi/verifiche sono le seguenti:

Grandezza		u.m.	C25/30	C30/37	C32/40	C35/45
Resistenza caratteristica a compressione	f_{ck}	N/mm ²	25,00	30,00	32,00	35,00
Resistenza di progetto a compressione	f_{cd}	N/mm ²	14,17	17,00	18,13	19,83
Resistenza caratteristica a trazione	f_{ctk}	N/mm ²	1,80	2,00	2,12	2,25
Tensione di aderenza cls-armatura	f_{bd}	N/mm ²	2,70	3,00	3,18	3,37
Tensione massima di compressione (comb. rara)	$\sigma_{\rm c}$	N/mm ²	15,00	18,00	19,20	21,00
Tensione massima di compressione (comb. q.p.)	$\sigma_{\rm c}$	N/mm ²	11,25	13,50	14,40	15,75
Modulo elastico medio istantaneo	Em	N/mm ²	31476	32836	33346	34077

Tabella 3.2 - Grandezze meccaniche relative al cls

3.2 Acciaio

3.2.1 Armature per c.a. – Acciaio B 450 C

Si utilizzano per le armature degli elementi in c.a. la seguente tipologia di acciaio:

Acciaio tipo: B450 C Saldabile controllato in stabilimento

In conformità a quanto sopra, le caratteristiche meccaniche dell'acciaio d'armatura utilizzate nell'analisi/verifiche sono le seguenti:

Proprietà		Requisito
Limite di snervamento	f_y	≥450 MPa
Limite di rottura	f_t	≥540 MPa
Allungamento totale al carico massimo	A_{gt}	≥7.5%
Rapporto	f_t/f_y	$1,15 \le R_{\rm m}/R_{\rm e} \le 1,35$
Rapporto	$f_{y \text{ misurato}} / f_{y \text{ nom}}$	≤ 1,25

3.2.2 Carpenteria metallica – Classe S355

Si utilizzano per le strutture metalliche del viadotto i seguenti tipi di acciaio:

Elementi saldati di spessore fino a 40mm S355J2G3 Elementi saldati di spessore superiore a 40mm S355K2G3 Elementi non saldati S355JO

In conformità a quanto sopra, le caratteristiche meccaniche dell'acciaio da carpenteria utilizzate nell'analisi/verifiche sono le seguenti:

Resistenza di calcolo (t< 40mm)	f_d	=	N/mm^2
Resistenza di calcolo (t >40mm)	f_d	=	N/mm^2
Modulo elastico	E_{S}	=	210000 N/mm^2

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 12 E E2 CL IV16 A6 001 A 13 di 109

4 ELABORATI DI RIFERIMENTO

Gli elaborati inerenti all'opera in oggetto sono elencati di seguito.

```
DESCRIZIONE
                                                                                                          CODICE
<u> IVOO - CAVALCAFERROVIA TIPOLOGICO</u>
PRESCRIZIONI MATERIALI E NOTE GENERALI
                                                                                                     INOR11EE24TIV00000001
STRADE CATEGORIA F2 - CARPENTERIA IMPALCATO - DETTAGLI
                                                                                                     INOR11EE2BZIVOOA5001
RITEGNI SISMICI — DETTAGLI E POSIZIONAMENTO CUSCINETTI
CARPENTERIA METALLICA IMPALCATO — CONTROPIASTRE SUPERIORI PER DISPOSITIVI DI APPOGGIO
                                                                                                     INOR11EE2BYIVOOA4001
                                                                                                     INOR11EE2BZIVOOA5004
SCHEMA FISSAGGIO PER MONTAGGIO DISPOSITIVI DI APPOGGIO
                                                                                                     INOR11EE2DZIVOOA5001
SOLLEVAMENTO DEGLI IMPALCATI
                                                                                                     INOR11EE2BCIVOOA1001
ARMATURA BAGGIOLI E RITEGNI ANTISISMICI SU PILE. TIPO A
ARMATURA BAGGIOLI E RITEGNI ANTISISMICI SU PILE. TIPO B
                                                                                                     INOR11EE2BCIVOOA4001
                                                                                                     INOR11EE2BCIVOOA4002
MESSA A TERRA E PREDISPOSIZIONE PER LA PROTEZIONE DALLE CORRENTI VAGANTI
RELAZIONE DESCRITTIVA
                                                                                                     INOR11EE2RONOOABOO1
<u> IV16 — CAVALCAFERROVIA VIA BRESCIA — PK 108+954,045</u>
RELAZIONE TECNICA GENERALE CAVALCAFERROVIA
                                                                                                     INOR12EE2ROIV16A0001
RELAZIONE DI CALCOLO SPALLA A
                                                                                                     INOR12FE2CLIV16A6001
RELAZIONE DI CALCOLO SPALLA B
RELAZIONE DI CALCOLO PILE
                                                                                                     INOR12EE2CLIV16A6002
                                                                                                     INOR12EE2CLIV16A4001
RELAZIONE SUL COMPORTAMENTO SISMICO DELL'OPERA, APPOGGI, RITEGNI SISMICI E GIUNTI DI DILATAZIONE
                                                                                                     INOR12FF2CI IV16A0001
RELAZIONE DI CALCOLO IMPALCATO
                                                                                                     INOR12EE2CLIV16A5001
PIANTA FONDAZIONI E PIANTA IMPALCATO - TAV. 1/2
                                                                                                     INOR12EE2P9IV16A0001
PIANTA FONDAZIONI E PIANTA IMPALCATO - TAV. 2/2
                                                                                                     INOR12EE2P9IV16A0002
SEZIONE LONGITUDINALE, PROSPETTO LONGITUDINALE E SEZIONI TRASVERSALI - TAV. 1/2
                                                                                                     INOR12EE2PZIV16A0001
SEZIONE LONGITUDINALE, PROSPETTO LONGITUDINALE E SEZIONI TRASVERSALI - TAV. 1/2
                                                                                                     INOR12EE2PZIV16A0002
PIANTA TRACCIAMENTO SOTTOSTRUTTURE E PLINTI DI FONDAZIONE
                                                                                                     INOR12EE2PZIV16A3001
PIANTA SCAVI
                                                                                                     INOR12EE2PZIV1601001
CARPENTERIA SPALLA A
                                                                                                     INOR12EE2BZIV16A6001
CARPENTERIA SPALLA B
                                                                                                     INOR12EE2BZIV16A6002
CARPENTERIA PILE
                                                                                                     INDR12FF2R7IV16A4001
ARMATURA PALI DI FONDAZIONE SPALLE
                                                                                                     INOR12EE2BZIV16A3001
ARMATURA DIAFRAMMI DI FONDAZIONE PILE
                                                                                                     INOR12EE2BZIV16A3002
ARMATURA SPALLA A - TAVOLA 1/2
                                                                                                     INOR12EE2BBIV16A6001
ARMATURA SPALLA A - TAVOLA 2/2
                                                                                                     INOR12EE2BZIV16A6003
ARMATURA SPALLA B - TAVOLA 1/2
                                                                                                     INOR12EE2BBIV16A6002
ARMATURA SPALLA B - TAVOLA 2/2
                                                                                                     INOR12EE2BZIV16A6004
ARMATURA FUSTO PILA PI
                                                                                                     INOR12EE2BZIV16A4002
ARMATURA FUSTO PILA P2
                                                                                                     INOR12EE2BZIV16A4003
ARMATURA FUSTO PILA P3
                                                                                                     INOR12EE2BZIV16A4004
ARMATURA FUSTO PILA P4
                                                                                                     INOR12EE2BZIV16A4005
ARMATURA FUSTO PILA PS
                                                                                                     INOR12EE2BZIV16A4006
ARMATURA BAGGIOLI E RITEGNI ANTISISMICI SU SPALLE
                                                                                                     INOR12EE2BCIV16A6001
DISPOSITIVI DI APPOGGIO E GIUNTI
                                                                                                     INOR12EE2BZIV16A5001
CARPENTERIA METALLICA IMPALCATO - DISEGNO D'ASSIEME - TAV. 1/4
                                                                                                     INOR12FF2BZIV16A5002
CARPENTERIA METALLICA IMPALCATO - DISEGNO D'ASSIEME - TAV. 2/4
                                                                                                     INOR12EE2BZIV16A5003
CARPENTERIA METALLICA IMPALCATO - DISEGNO D'ASSIEME - TAV. 3/4
                                                                                                     INOR12EE2BZIV16A5004
CARPENTERIA METALLICA IMPALCATO - DISEGNO D'ASSIEME - TAV. 4/4
                                                                                                     INOR12EE2BZIV16A5005
CARPENTERIA METALLICA IMPALCATO - TRAVERSI - TAV. 1/3
                                                                                                     INOR12EE2BCIV16A5003
CARPENTERIA METALLICA IMPALCATO - TRAVERSI - TAV. 2/3
                                                                                                     INOR12EE2BCIV16A5001
CARPENTERIA METALLICA IMPALCATO - TRAVERSI - TAV. 3/3
                                                                                                     INOR12EE2BZIV16A5007
CARPENTERIA METALLICA IMPALCATO - DETTAGLI
                                                                                                     INOR12EE2BKIV16A5001
LASTRE TRALICCIATE IMPALCATO - TAVOLA 1/4
                                                                                                     INOR12EE2BZIV16A5008
LASTRE TRALICCIATE IMPALCATO - TAVOLA 2/4
                                                                                                     INOR12EE2BZIV16A5009
LASTRE TRALICCIATE IMPALCATO - TAVOLA 3/4
                                                                                                     INOR12FF2BZIV16A5010
LASTRE TRALICCIATE IMPALCATO - TAVOLA 4/4
                                                                                                     INOR12EE2BZIV16A5011
ARMATURA SOLETTA IMPALCATO - TAV. 1/2
                                                                                                     INOR12EE2BCIV16A5002
ARMATURA SOLETTA IMPALCATO - TAV. 2/2
                                                                                                     INOR12FE2BAIV16A5001
FASI COSTRUTTIVE. Tavola 1/2
                                                                                                     INOR12EE2BZIV16A1001
FASI COSTRUTTIVE. Tavola 2/2
                                                                                                     INDR12FF2RRIV16A1001
RELAZIONE GEOTECNICA
                                                                                                     INOR12EE2RBIV1600001
PROFILO STRATIGRAFICO
                                                                                                     INOR12EE2F6IV1600001
```


5 CRITERI DI CALCOLO

In ottemperanza al D.M. del 14.01.2008 (Norme tecniche per le costruzioni), i calcoli sono condotti con il metodo semiprobabilistico agli stati limite.

5.1 Criteri e definizione dell'azione sismica

5.1.1 Tipo di analisi condotta

L'effetto dell'azione sismica di progetto sull'opera nel suo complesso, includendo il volume significativo di terreno, la struttura di fondazione, gli elementi strutturali e non, nonché gli impianti, deve rispettare gli stati limite ultimi e di esercizio definiti al § 3.2.1, i cui requisiti di sicurezza sono indicati nel § 7.1 della norma.

Il rispetto degli stati limite si considera conseguito quando:

- nei confronti degli Stati Limite di Esercizio siano rispettate le verifiche relative al solo Stato Limite di Danno;
- nei confronti degli Stati Limite Ultimi siano rispettate le indicazioni progettuali e costruttive riportate nel § 7 e siano soddisfatte le verifiche relative al solo Stato Limite di salvaguardia della Vita.

Per Stato Limite di Danno (SLD) s'intende che l'opera, nel suo complesso, a seguito del terremoto, includendo gli elementi strutturali, quelli non strutturali, le apparecchiature rilevanti alla sua funzione, subisce danni tali da non provocare rischi agli utenti e non compromette significativamente la capacità di resistenza e di rigidezza nei confronti delle azioni verticali e orizzontali.

Per Stato Limite di Salvaguardia della Vita (SLV) si intende che l'opera a seguito del terremoto subisce rotture e crolli dei componenti non strutturali e impiantistici e significativi danni di componenti strutturali, cui si associa una perdita significativa di rigidezza nei confronti delle azioni orizzontali (creazione di cerniere plastiche secondo il criterio della gerarchia delle resistenze), mantenendo ancora un margine di sicurezza (resistenza e rigidezza) nei confronti delle azioni verticali.

Gli stati limite, sia di Esercizio sia Ultimi, sono individuati riferendosi alle prestazioni che l'opera a realizzarsi deve assolvere durante un evento sismico; per la funzione che l'opera deve espletare nella sua vita utile, è significativo calcolare lo Stato Limite di Danno (SLD) per l'esercizio e lo Stato Limite di Salvaguardia della Vita (SLV) per lo stato limite ultimo.

Con riferimento al \S 7.9.2., le spalle rientrano tra le opere alle quali non è richiesta capacità dissipativa. Si può ritenere che la struttura debba mantenere sotto l'azione sismica il comportamento elastico (fattore di struttura assunto unitario). Queste strutture, muovendosi con il terreno, non subiscono le amplificazioni dell'accelerazione del suolo: le forze di inerzia di progetto possono pertanto essere determinate considerando un'accelerazione pari ad a_g*S (\S 7.9.5.6.2).

Il livello di protezione richiesto per la sottostruttura nei confronti dello SLD è da ritenere conseguito se sono soddisfatte le relative verifiche allo SLV.

L'azione sismica è rappresentata da un insieme di forze statiche orizzontali e verticali, date dal prodotto delle forze di gravità per i coefficienti sismici di seguito definiti, di cui la componente verticale è considerata agente verso l'alto o verso il basso in quanto di pertinenza, in modo da produrre gli effetti più sfavorevoli.

Il calcolo dell'azione sismica verticale e dell'azione sismica orizzontale dovuta alla massa inerziale attinente alla struttura della spalla ed al terreno imbarcato viene eseguito con analisi <u>pseudostatica</u> (NTC § 7.11.6) mediante metodi di equilibrio limite. In queste condizioni l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.

GENERAL CONTRACTOR Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Documento Rev. Foglio INOR 12 E E2 CL IV16 A6 001 A 15 di 109

Nelle verifiche allo Stato Limite Ultimo i valori dei coefficienti sismici orizzontali k_h e verticale k_v possono essere valutati mediante le espressioni:

 $k_v = \pm 0.5* k_h$

$$k_h=\beta_m$$
. $\frac{a \max}{g}$

ove:

- a_{max} accelerazione orizzontale massima attesa al sito;
- g accelerazione di gravità.

L'accelerazione massima è valutata mediante la seguente relazione:

$$a_{max} = S \cdot a_g = Ss \cdot S_T \cdot a_g$$

Essendo la spalla una struttura che non ammette spostamenti relativi rispetto al terreno, il coefficiente β_m , assume valore unitario (NT § 7.11.6.2.1).

Le spinte delle terre, in condizioni sismiche, sono calcolate in regime di spinta attiva, condizione che comporta il calcolo della sovraspinta sismica con la formula di Mononobe-Okabe:

$$\Delta P_d = 1/2 \times S \times (1 + k_v) \times (K - k_a) \times \gamma \times h_{tot}^2$$

Il punto di applicazione della sovraspinta che interessa la spalla è posto h/2.

Il calcolo dell'azione sismica orizzontale dovuta alla massa inerziale attinente all'impalcato è derivato da una analisi dinamica che ha coinvolto l'intero organismo strutturale costituito da impalcato, dispositivi di vincolo e sottostrutture. Tale analisi, avente come obiettivo, tra l'altro, la determinazione dei requisiti prestazioni dei dispositivi di vincolamento, viene diffusamente descritta nel documento "Relazione di Calcolo apparecchi di appoggio e giunti di dilatazione". L'azione sismica sulla spalla dovuta alla massa inerziale dell'impalcato è determinata sulla base delle risultanze dell'analisi dinamica secondo la relazione

$$F_0 = \delta * Ke$$

ove:

- δ spostamento orizzontale massimo dell'impalcato (riferimento alla sezione di appoggio sulla spalla) nelle Configurazioni di Carico sismiche (SLV);
- Ke rigidezza orizzontale equivalente del complessivo sistema di vincolamento dell'impalcato sulla spalla nelle Configurazioni di Carico sismiche (SLV).

5.1.2 Definizione dei parametri di caratterizzazione sismica

Ai sensi del D.M. 14/01/2008 si esegue la determinazione dei parametri sismici che caratterizzano il sito di riferimento. I dati sismici del sito di costruzione, di seguito riportati, sono relativi alla sismicità propria del sito di ubicazione.

I parametri di vita nominale, classe d'uso e periodo di riferimento, vengono determinati conformemente a quanto previsto nel paragrafo 2.4 delle NTC 2008 e sulla base delle caratteristiche dell'opera progettata.

Trattandosi di un ponte di importanza strategica, si assume quale valore di vita nominale V_N=100anni.

Con riferimento alle conseguenze di un'interruzione di operatività o di un eventuale collasso, l'opera si colloca in Classe d'uso III: Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Alla suddetta classe d'uso è associato un valore del coefficiente d'uso $C_U=1,5$.

Si determina quindi il periodo di riferimento per l'azione sismica:

$$V_R = V_N \cdot C_U = 100*1,5=150$$
 anni

La classificazione del terreno di fondazione è determinata sulla base delle risultanze della relazione geotecnica allegata alla documentazione.

Le condizioni topografiche del sito, come dichiarato in relazione geotecnica, sono riconducibili a quelle della categoria T1 (Superficie pianeggiante, pendii e rilevati isolati con inclinazione media $i \le 15^{\circ}$). La normativa vigente associa alla suddetta categoria un coefficiente di amplificazione topografica $S_T=1$.

Nella tabella seguente si riassumono i dati di base di caratterizzazione sismica:

Vita nominale (V _N)	100 anni
Classe d'uso	III
Coefficiente d'uso (C _U)	1,5
Periodo di riferimento (V _R)	150 anni
Categoria topografica	T1

Tabella 5.1 - Dati di base per la caratterizzazione sismica

I valori dei parametri sismici, caratterizzanti la sismicità del sito di ubicazione, sono costituiti da:

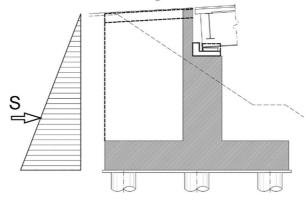
- accelerazione orizzontale massima al suolo (a_g);
- valore massimo del fattore di amplificazione dello spettro di accelerazione orizzontale (Fo);
- periodo di inizio del tratto a velocità costante dello spettro di accelerazione orizzontale (TC*).

I valori dei parametri sismici in oggetto, unitamente alla classificazione del terreno ai fini della caratterizzazione sismica, sono riportati in sede di analisi della struttura, quali dati di base nella definizione delle azioni sismiche.

5.2 Spinta delle terre

La spinta del terreno viene valutata in regime di spinta a riposo in condizioni statiche mentre, in condizioni sismiche, in regime di spinta attiva.

Le caratteristiche geomeccaniche assunte per il terreno utilizzato per il terrapieno della spalla sono valutate in uniformità a quanto previsto dal capitolato d'appalto in materia di materiale da rilevato e riportati in sede di analisi della struttura, quali dati di base nella definizione delle azioni di spinta delle terre.


L'andamento delle tensioni orizzontali efficaci assume forma triangolare con valore massimo alla base:

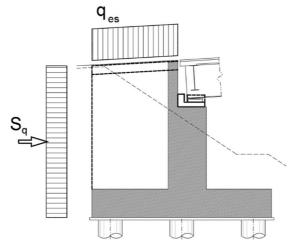
$$\sigma = K \gamma H$$
 [kN/m²]

La risultante di spinta statica è pari a:

$$S_{stat} = \frac{1}{2} \gamma \cdot H^2 \cdot k$$
 [kN/m]

La spinta così calcolata è applicata ad una distanza H/3 a partire dalla base della fondazione

In condizioni statiche si considera un sovraccarico accidentale pari a qes=30.00 kN/m².


Il diagramma delle tensioni orizzontali che ne scaturiscono ha andamento costante con modulo pari a:

$$\sigma_{\rm q} = q_{\rm es} * k$$
 [kN/m²

La risultante di spinta e pari a:

$$S_q = q_{es} * H * k$$
 [kN/m]

La risultante di spinta è applicata a 1/2 dell'altezza dalla base.

5.3 Combinazioni di carico

Le combinazioni di carico, considerate ai fini delle verifiche, sono stabilite in modo da garantire la sicurezza in conformità a quanto prescritto al cap. 2 delle NT. Si riporta di seguito la sintesi delle combinazioni di carico previste dalla norma:

• Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_P \cdot P + \gamma_{O1} \cdot Q_{k1} + \gamma_{O2} \cdot \psi_{O2} \cdot Q_{k2} + \gamma_{O3} \cdot \psi_{O3} \cdot Q_{k3} + \dots$$

• Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili, da utilizzarsi nelle verifiche alle tensioni ammissibili di cui al 2.7 delle NTC:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$

• Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

- Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine: $G_1+G_2+P+\psi_{21}\cdot Q_{k1}+\psi_{22}\cdot Q_{k2}+\psi_{23}\cdot Q_{k3}^{\dagger}+\dots$
- Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E: $G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + ...$
- Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali di progetto A_d:

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + ...$$

5.3.1 Combinazioni per la verifica allo SLU

Gli stati limite ultimi delle opere interrate si riferiscono allo sviluppo di meccanismi di collasso, determinati dalla mobilitazione della resistenza del terreno, e al raggiungimento della resistenza degli elementi strutturali che compongono l'opera.

Le verifiche agli stati limite ultimi sono eseguiti in riferimento ai seguenti stati limite:

- SLU di tipo geotecnico (GEO) e di equilibrio di corpo rigido (EQU) collasso per carico limite dell'insieme fondazione-terreno:
- SLU di tipo strutturale (STR) raggiungimento della resistenza negli elementi strutturali.

Le verifiche saranno condotte secondo l'approccio progettuale "Approccio 1", utilizzando i coefficienti parziali riportati nelle Tabelle 6.2.I e 5.1.V per i parametri geotecnici e le azioni.

- combinazione 1 \rightarrow (A1+M1+R1) \rightarrow STR
- combinazione $2 \rightarrow (A2+M1+R2) \rightarrow GEO$ (carico limite)

PARAMETRO	GRANDEZZA ALLA QUALE	COEFFICIENTE	(M1)	(M2)
	APPLICARE IL	PARZIALE		
	COEFFICIENTE PARZIALE	γм		
Tangente dell'angolo di resistenza al taglio	$tan \phi'_k$	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c′ _k	γc	1,0	1,25
Resistenza non drenata	c_{uk}	Ycu	1,0	1,4
Peso dell'unità di volume	γ	Ϋ́γ	1,0	1,0

Tabella 5.2 - Coefficienti parziali per i parametri geotecnici del terreno

CARICHI	EFFETTO	Coefficiente Parziale y _F (0 y _E)	EQU	(A1) STR	(A2) GEO
Permanenti	Favorevole	24	0,9	1,0	1,0
Permanenti	Sfavorevole	γ _{G1}	1,1	1,3	1,0
Permanenti non strutturali (1)	Favorevole	24	0,0	0,0	0,0
remanent non stuttual	Sfavorevole	$\gamma_{\rm G2}$	1,5	1,5	1,3
Variabili	Favorevole		0,0	0,0	0,0
v arraum	Sfavorevole	γ_{Qi}	1,5	1,5	1,3

Tabella 5.3 - Coefficienti parziali per le azioni o per l'effetto delle azioni

VERIFICA	COEFFICIENTE	COEFFICIENTE	COEFFICIENTE
	PARZIALE	PARZIALE	PARZIALE
	(R1)	(R2)	(R3)
Capacità portante	$\gamma_{\rm R} = 1.0$	$\gamma_R = 1.8$	$\gamma_{\rm R}=2.3$
Scorrimento	$\gamma_{\rm R} = 1.0$	$\gamma_R = 1.1$	$\gamma_{R} = 1,1$

Tabella 5.4 - Coefficienti parziali yR per la resistenza del sistema

Per la condizione sismica le verifiche agli stati limite ultimi devono essere effettuate ponendo pari all'unità i coefficienti parziali sulle azioni e impiegando i parametri geotecnici e le resistenze di progetto, con i valori dei coefficienti parziali sopra indicati (7.11.1 NTC).

Gli effetti dell'azione sismica saranno valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali: $G_1+G_2+\sum_i\psi_{2i}\cdot Q_{ki}$

Per opere del tipo in oggetto è lecito assumere valore nullo per il coefficiente ψ_{2i} .

GENERAL CONTRACTOR Cepav due	ALTA SORVE GRUPPO FERROV	TALI	FERR		
	Progetto	Lotto	Codifica Documento	Rev.	Foglio
Doc. N.	INOR	12	E E2 CL IV16 A6 001	Α	20 di 109

Combinazioni per la verifica allo SLE 5.3.2

Ai fini delle verifiche degli stati limite di esercizio (stato tensionale e fessurazione) si adoperano le combinazioni di carico rara, frequente e quasi permanente. Conservativamente, in sede di verifica, potranno essere considerate le combinazioni di carico rare anche in rappresentanza delle combinazioni di carico frequenti e quasi permanenti.

5.3.3 Coefficienti di combinazione delle azioni dovute al traffico

Ai fini della determinazione dei valori caratteristici delle azioni dovute al traffico, si considerano le combinazioni riportate nella seguente tabella:

		Carichi su marciapiedi e piste ciclabili				
	Carichi verticali			Carichi orizz	ontali	Carichi verticali
Gruppo di azioni	Modello principale (Schemi di carico 1, 2, 3, 4, 6)	Veicoli speciali	Folla (Schema di carico 5)	Frenatura q ₃	Forza centrifuga q ₄	Carico uniformemente. distribuito
1	Valore caratteristico					Schema di carico 5 con valore di combinazione 2,5 kN/m²
2 a	Valore frequente			Valore caratteristico		
2 b	Valore frequente				Valore caratteristico	
3 (*)						Schema di carico 5 con valore caratteristico 5,0 kN/m ²
4 (**)			Schema di carico 5 con valore caratteristico 5,0 kN/m²			Schema di carico 5 con valore caratteristico 5,0 kN/m²
5 (***)	Da definirsi per il singolo progetto	Valore caratteristico o nominale				

Da considerare solo se si considerano veicoli speciali

Tabella 5.5 - Combinazioni dei carichi delle azioni dovute al traffico

Nella seguente tabella, invece, si riportano i coefficienti di combinazione delle diverse categorie di azione:

Azioni	Gruppo di azioni (Tabella 5.1.IV)	Coefficiente ψ ₀ di combinazione	Coefficiente ψ 1 (valori frequenti)	Coefficiente ψ ₂ (valori quasi permanenti)
	Schema 1 (Carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (Carichi distribuiti	0,40	0,40	0,0
	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
Azioni da traffico	Schema 2	0,0	0,75	0,0
(Tabella 5.1.IV)	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folia)		0,75	0,0
	5	0,0	0,0	0,0
	Vento a ponte scarico			
17	SLU e SLE	0,6	0,2	0,0
Vento q ₅	Esecuzione	0,8		0,0
	Vento a ponte carico	0,6		
Nove a	SLU e SLE	0,0	0,0	0,0
Neve q ₅	esecuzione	0,8	0,6	0,5
Temperatura	Tk	0,6	0,6	0,5

Tabella 5.6 – Coefficienti di combinazione delle diverse categorie di azione

5.3.1 Coefficienti di combinazione utilizzati nelle analisi strutturali

Sono state considerate tutte le combinazioni di carico contemplate dalla normativa per il caso in esame ma di seguito, per brevità di esposizione, si riportano le combinazioni più significative.

In sede di analisi della struttura, i coefficienti di combinazione delle azioni elementari nelle varie Combinazioni di Carico indagate risultano pertanto:

SLU-A1:

<u> </u>	Comb.										
Pesi propri e portati	1	2	3	4	5	6	7	8	9	10	11
impalcato	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35
Inerzia sismica impalcato	-	1	1	ı	1	-	1	1	-	1	-
Traffico impalcato	0.00	0.00	0.00	0.00	0.00	0.00	1.35	1.35	1.01	1.01	1.01
Frenatura	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.35	1.35
DT	1.20	0.72	0.72	0.72	0.72	1.20	0.72	0.72	0.72	0.72	0.72
Vento	0.00	1.50	0.00	0.90	1.50	0.90	0.90	0.90	0.90	0.90	0.90
Peso proprio spalla	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35
Inerzia sismica spalla	-	-	-	=	-	-	-	-	-	-	-
Terreno imbarcato	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35
Spinta a riposo terre	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35
Spinta attiva terre	-	-	-	-	-	-	-	-	-	-	-
Sovraspinta sismica terre	-	-	-	=	-	-	-	-	-	-	-
Inerzia sismica terreno imbarcato	-	-	-	-	-	-	-	-	-	-	-
Traffico tergo spalla	0.00	0.00	1.35	1.35	0.54	0.54	0.00	0.54	1.35	0.00	0.54

GENERAL CONTRACTOR ALTA SORVEGLIANZA Cepav due **ITALFERR** GRUPPO FERROVIE DELLO STATO ITALIANE Progetto INOR Foglio 23 di 109 Lotto Codifica Documento Rev. E E2 CL IV16 A6 001

12

SLE Rare:

Doc. N.

	Comb.										
	1	2	3	4	5	6	7	8	9	10	11
Pesi propri e portati impalcato	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Inerzia sismica impalcato	-	_	-	-	-	-	-	-	-	-	-
Traffico impalcato	0.00	0.00	0.00	0.00	0.00	0.00	1.00	1.00	0.75	0.75	0.75
Frenatura	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	1.00
DT	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Vento	0.00	1.00	0.00	0.60	1.00	0.60	0.60	0.60	0.60	0.60	0.60
Peso proprio spalla	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Inerzia sismica spalla	-	-	-	-	-	-	-	-	-	-	-
Terreno imbarcato	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Spinta a riposo terre	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Spinta attiva terre	-	ı	1	ı	1	-	-	-	ı	-	-
Sovraspinta sismica terre	-	-	ı	-	-	-	-	-	-	-	-
Inerzia sismica terreno imbarcato	-	-	-	-	_	-	-	-	_=	-	-
Traffico tergo spalla	0.00	0.00	1.00	1.00	0.40	0.40	0.00	0.40	1.00	0.00	0.40

SLE Frequenti:

	Comb.	Comb.	Comb.	Comb.
	1	2	3	4
Pesi propri e portati				
impalcato	1,00	1,00	1,00	1,00
Inerzia sismica impalcato	-	-	-	-
Traffico impalcato	0,00	0,00	0,00	0,75
Frenatura	0,00	0,00	0,00	0,00
DT	0,60	0,50	0,50	0,50
Vento	0,00	0,00	0,20	0,00
Peso proprio spalla	1,00	1,00	1,00	1,00
Inerzia sismica spalla	-	-	-	_
Terreno imbarcato	1,00	1,00	1,00	1,00
Spinta a riposo terre	1,00	1,00	1,00	1,00
Spinta attiva terre	-	-	-	-
Sovraspinta sismica terre	-	-	-	-
Inerzia sismica terreno				
imbarcato	_	-	-	-
Traffico tergo spalla	0,00	0,40	0.00	0.00

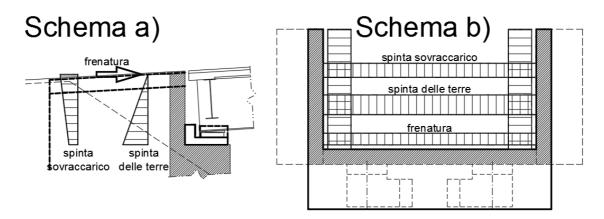
GENERAL CONTRACTOR Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto INOR 12 E E2 CL IV16 A6 001 A 24 di 109

SLE Quasi Permanenti:

	Comb. 1
Pesi propri e portati impalcato	1.00
Inerzia sismica impalcato	-
Traffico impalcato	0.00
Frenatura	0.00
DT	0.50
Vento	0.00
Peso proprio spalla	1.00
Inerzia sismica spalla	-
Terreno imbarcato	1.00
Spinta a riposo terre	1.00
Spinta attiva terre	-
Sovraspinta sismica terre	-
Inerzia sismica terreno	
imbarcato	-
Traffico tergo spalla	0.00

SLV:

	Comb. 1
Pesi propri e portati impalcato	1.00
Inerzia sismica impalcato	1.00
Traffico impalcato	ı
Frenatura	ı
DT	0.50
Vento	ı
Peso proprio spalla	1.00
Inerzia sismica spalla	1.00
Terreno imbarcato	1.00
Spinta a riposo terre	ı
Spinta attiva terre	1.00
Sovraspinta sismica terre	1.00
Inerzia sismica terreno	
imbarcato	1.00
Traffico tergo spalla	-

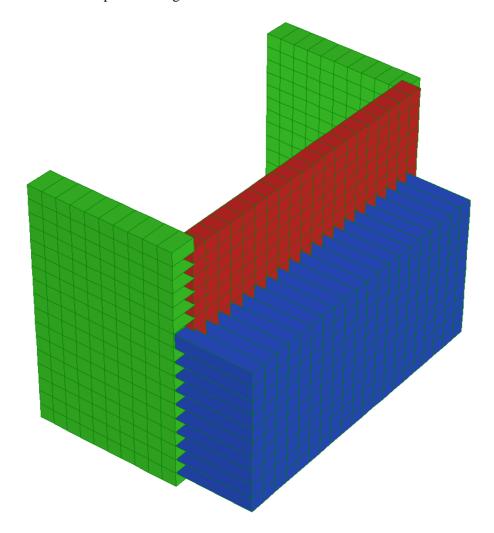

5.4 Valutazione delle sollecitazioni sugli elementi strutturali

5.4.1 Paraghiaia

Il calcolo delle sollecitazioni viene effettuato sulla base delle spinte delle terre, di quelle derivanti dal sovraccarico sul rilevato, nonché dell'azione di frenamento determinata ai sensi della Circ. Min. LL. PP. 617/2009 p.to C5.1.3.3.7.2. La condizione sismica viene valutata con le relative sovraspinte.

Il paraghiaia presenta uno schema statico di lastra incastrata su 3 lati (alla base sul fusto ed alle estremità laterali sui muri di risvolto). Tale schema può essere semplificato in via conservativa come duplice funzionamento (vedi figure):

- calcolo delle sollecitazioni che interessano le fibre verticali: si considera il funzionamento di schema di mensola verticale inflessa incastrata nel fusto:
- calcolo delle sollecitazioni che interessano le fibre orizzontali: si considera il funzionamento di schema di mensola orizzontale tenso-inflessa (con trazione connessa alle spinte agenti sui muri di risvolto) incastrata nei muri di risvolto.



In considerazione dei rapporti dimensionali caratterizzanti il paraghiaia della spalla in oggetto, come funzionamento dimensionante, è assunto lo schema statico di mensola verticale incastrata alla base sul fusto. Nella direzione ortogonale verrà comunque disposta idonea armatura atta a garantire un buon funzionamento d'assieme e ad assorbire eventuali sollecitazioni flessionali secondarie.

5.4.2 Muri di risvolto

L'analisi dei muri di risvolto è stata eseguita mediante un modello di calcolo implementato con il software Straus7, grazie al quale è stato possibile valutare la ripartizione delle sollecitazioni nelle strutture in elevazione. La geometria della struttura e i rapporti reciproci tra gli elementi strutturali sono chiaramente individuati dalle immagini dei modelli strutturali riportati di seguito.

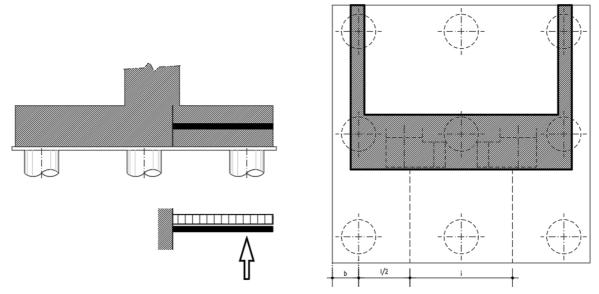
Il modello è composto dal fusto, dal superiore paraghiaia e dai retrostanti muri di risvolto. Le varie parti della struttura sono state modellate con elementi a quattro nodi tipo "shell".

Le strutture in calcestruzzo sono vincolate rigidamente tra loro, mentre, i vincoli alla base, realizzati con incastri, riproducono il collegamento delle strutture in elevazione con la platea di fondazione.

Il peso proprio di tutti gli elementi strutturali modellati è calcolato in automatico dal software utilizzato.

Essendo l'analisi limitata alle strutture costituenti i muri di risvolto, il calcolo delle sollecitazioni viene effettuato sulla base delle spinte delle terre e di quelle derivanti dal sovraccarico sul rilevato, trascurando le azioni derivanti dall'impalcato in quanto non influenti per le analisi delle porzioni di struttura in oggetto. La condizione sismica viene valutata con le relative sovraspinte.

I carichi sono stati inseriti mediante l'applicazione di carichi di superficie direttamente sui singoli elementi bidimensionali.



5.4.3 Platea di fondazione

Il comportamento della platea in direzione longitudinale è riconducibile allo schema di trave a mensola vincolata in corrispondenza dell'incastro con lo spiccato fusto. La mensola frontale risulta caricata dall'azione assiale dei pali frontali (soggetti a massimo sforzo normale di compressione), sgravata del peso proprio della platea e del peso del terreno di ricoprimento. Lo schema di calcolo è il seguente con larghezza di calcolo al minimo tra:

l'interasse dei pali

• il semi-interasse dei pali sommato alla larghezza dello sbalzo trasversale i/2+b

In corrispondenza degli allineamenti dei pali, ove si prevede una concentrazione degli stati sollecitativi e tensionali, viene prevista una quantità di armatura integrativa.

Vista la geometria globale della spalla non risultano significative le verifiche della platea in direzione trasversale e quelle dello sbalzo posteriore.

5.4.4 Pali di fondazione

Per quanto riguarda i criteri di calcolo impiegati per le analisi, il dimensionamento e la determinazione della capacità portante delle palificate si rimanda alla specifica Relazione Geotecnica.

GENERAL CONTRACTOR Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Documento Rev. Foglio INOR 12 E E2 CL IV16 A6 001 A 28 di 109

6 CRITERI DI VERIFICA

6.1 Verifiche SLU

6.1.1 Resistenza a sforzo normale e flessione

Si fa riferimento alle ipotesi di base riportate nel paragrafo 4.1.2.1.2.1 delle NT:

- Conservazione delle sezioni piane,
- Perfetta aderenza tra acciaio e calcestruzzo,
- Resistenza a trazione del calcestruzzo nulla,
- Rottura del calcestruzzo determinata dal raggiungimento della sua capacità deformativa ultima a compressione,
- Rottura dell'armatura tesa determinata dal raggiungimento della sua capacità deformativa ultima.

Per quanto concerne i materiali si adotta il diagramma di calcolo tensione-deformazione "parabola-rettangolo" per il calcestruzzo, elastico-perfettamente plastico per l'acciaio.

La verifica di resistenza si conduce confrontando $M_{Rd}(N_{Ed})$ con M_{Ed} come indicato di seguito:

$$M_{Rd} = M_{Rd}(N_{Ed}) \ge M_{Ed}$$

dove:

M_{Rd} è il valore di calcolo del momento resistente corrispondente a N_{Ed},

N_{Ed} è il valore di calcolo della compressione assiale (sforzo normale) dell'azione,

M_{Ed} è il valore di calcolo della componente flettente dell'azione.

6.1.2 Verifiche allo stato limite ultimo per taglio

Si distingue tra elementi non armati a taglio (paragrafo 4.1.2.1.3.1 delle NT) ed elementi armati a taglio con staffe (paragrafo 4.1.2.1.3.2 delle NT).

6.1.2.1 Elementi non armati a taglio

La verifica di resistenza si pone con:

 $V_{Rd} \ge V_{Ed}$

dove:

V_{Rd} è il valore di calcolo della resistenza a taglio,

V_{Ed} è il valore di calcolo dello sforzo di taglio agente.

Con riferimento all'elemento fessurato da momento flettente, la resistenza al taglio si valuta con:

$$V_{Rd} = \{0.18 \ k \ (100 \ \rho_1 \ f_{ck})^{1/3} / \gamma_C + 0.15 \ \sigma_{cp} \} \ b_w \ d \geq (\upsilon_{min} + 0.15 \ \sigma_{cp}) \ b_w \ d$$

Con

 $\begin{array}{l} k = 1 + (200/d)^{1/2} <= 2 \\ \upsilon_{min} = 0.035 \; k^{3/2} \, fc k^{1/2} \end{array}$

dove:

d è l'altezza utile della sezione (in mm),

 ρ_1 è il rapporto geometrico di armatura longitudinale (≤ 0.02),

 σ_{cp} è la tensione media di compressione nella sezione ($\leq 0.2 f_{ck}$),

b_w è la larghezza minima della sezione (in mm).

6.1.2.2 Elementi armati a taglio

La resistenza a taglio V_{Rd} per elementi strutturali dotati di specifica armatura a taglio è valutata sulla base di una adeguata schematizzazione a traliccio.

Gli elementi resistenti dell'ideale traliccio sono: le armature trasversali, le armature longitudinali, il corrente compresso di calcestruzzo ed i puntoni d'anima inclinati.

L'inclinazione ϑ dei puntoni di calcestruzzo rispetto all'asse della trave deve rispettare i seguenti limiti: $1 \le \operatorname{ctg} \vartheta \le 2.5$.

La verifica di resistenza si pone con:

 $V_{Rd} \ge V_{Ed}$

dove:

V_{Ed} è il valore di calcolo dello sforzo di taglio agente.

Con riferimento all'armatura trasversale (staffe), la resistenza di calcolo a "taglio trazione" si calcola con: $V_{Rsd} = 0.9 \text{ d } A_{sw}/\text{s f}_{yd} \text{ ctg}\vartheta$.

Con riferimento al calcestruzzo d'anima, la resistenza di calcolo a "taglio compressione" si calcola con: $V_{Rcd} = 0.9 \text{ d b}_w \alpha_c \text{ f'}_{cd} \text{ ctg}\vartheta (1 + \text{ctg}^2\vartheta).$

La resistenza al taglio della trave è la minore delle due sopra definite:

 $V_{Rd} = \min (V_{Rcd}, V_{Rsd}),$

dove:

d è l'altezza utile della sezione,

 σ_{cp} è la tensione media di compressione nella sezione ($\leq 0.2 f_{ck}$),

b_w è la larghezza minima della sezione,

A_{sw} è l'area dell'armatura trasversale,

s è l'interasse tra due armature trasversali consecutive,

f'cd è la resistenza a compressione ridotta del calcestruzzo d'anima,

6.2 Verifiche SLE

6.2.1 Verifiche allo stato limite di fessurazione

In ordine di severità si distinguono i seguenti stati limite:

- Stato limite di decompressione nel quale la tensione normale è ovunque di compressione ed al più uguale a 0;
- Stato limite di formazione delle fessure nel quale la tensione normale di trazione nella fibra più sollecitata è:

$$\sigma_{ct} = f_{ctm}/1.2$$

con f_{ctm} definito nel paragrafo 11.2.10.2 delle NT;

• Stato limite di apertura delle fessure, il valore limite di apertura della fessura calcolato al livello considerato è pari ad uno dei seguenti valori nominali:

 $w_1 = 0.2 \text{ mm};$

 $w_2 = 0.3 \text{ mm}$;

 $w_3 = 0.4 \text{ mm}.$

Lo stato limite di fessurazione è fissato in funzione delle condizioni ambientali e della sensibilità delle armature alla corrosione, come descritto nel seguito. Le combinazioni di riferimento sono:

- Combinazione Quasi Permanente,
- Combinazione Frequente.

Le condizioni ambientali si distinguono come riportato nella tabella seguente:

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Tabella 6.1 – Condizioni ambientali e classi di esposizione

Per quanto concerne la sensibilità delle armature, trattandosi di armature di acciaio ordinario queste si considerano poco sensibili.

La scelta dei limiti di fessurazione si esegue sulla base di quanto riportato nella tabella seguente:

Gruppi di Condizioni		Combinazione	Armatura						
Gruppi di esigenze	ambientali	di azioni	Sensibile		Poco sens	ibile			
esigenze	ampientan	ui azioni	Stato limite	Wd	Stato limite	$\mathbf{w_d}$			
	Ordinaria	frequente	ap. fessure	$\leq w_2$	ap. fessure	$\leq w_3$			
a	Ordinarie	quasi permanente	ap. fessure	$\leq w_1$	ap. fessure	$\leq w_2$			
b	Aggressive	frequente	ap. fessure	$\leq w_1$	ap. fessure	$\leq \mathbf{w}_2$			
	Agglessive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$			
	Molto aggressive	frequente	formazione fessure	-	ap. fessure	$\leq w_1$			
С	Mono aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$			

Tabella 6.2 – Limiti di fessurazione

Per quanto concerne gli stati limite di decompressione ("a" nell'elenco precedente) e di formazione delle fessure ("b"), le tensioni sono calcolate in base alle caratteristiche geometriche e meccaniche della sezione omogeneizzata non fessurata.

Per quanto concerne lo stato limite di apertura delle fessure il valore di calcolo di apertura w_d non deve superare i valori nominali w_1 , w_2 , w_3 secondo quanto riportato nella tabella precedente.

Il valore di calcolo è dato da:

 $w_d = 1.7 w_m$

dove:

w_m rappresenta l'ampiezza media delle fessure.

L'ampiezza media delle fessure w_m è calcolata come prodotto della deformazione media delle barre d'armatura ϵ_{Sm} per la distanza tra le fessure Δ_{Sm} :

 $w_m = \epsilon_{\text{Sm}} \; \Delta_{\text{Sm}}$

Per i valori di ϵ_{sm} e Δ_{sm} si fa riferimento a quanto indicato da comprovata letteratura tecnica.

Nella Circolare Applicativa del 2009, si fa riferimento al seguente calcolo per w_d:

 $w_d\!=\epsilon_{\text{Sm}}\;\Delta_{\text{Smax}}$

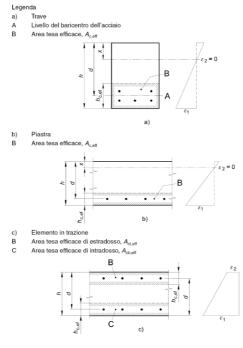
dove:

 Δ_{smax} rappresenta la distanza massima tra le fessure.

La deformazione unitaria delle barre, ε_{sm} , può essere calcolata con la seguente espressione:

$$\varepsilon_{sm} = 1/E_s \left[\sigma_s - k_t f_{ctm} / \rho_{eff} \left(1 + \alpha_e \rho_{eff} \right) \right] \ge 0.6 \sigma_s / E_s$$

dove:


 σ_{s} è la tensione nell'armatura tesa valutata considerando la sezione fessurata,

 α_e è il rapporto E_s/E_{cm} ,

 ρ_{eff} è pari ad $A_s/A_{c,eff}$,

 $A_{c,eff}$ è l'area efficace di calcestruzzo teso attorno all'armatura, di altezza $h_{c,ef}$, dove $h_{c,ef}$ è il valore minore tra 2.5(h-d), (h-x)/3 ed h/2 (come indicato in figura seguente); nel caso di elementi in trazione, in cui esistono due aree efficaci, l'una all'estradosso e l'altra all'intradosso, entrambe le aree vanno considerate separatamente,

k_t è un fattore dipendente dalla durata del carico.

GENERAL CONTRACTOR Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Documento Rev. Foglio INOR 12 E E2 CL IV16 A6 001 A 32 di 109

Per quanto concerne la distanza massima Δ_{smax} , nel caso in cui l'armatura sia disposta con una spaziatura non superiore a 5 (c + ϕ /2), essa può essere valutata come segue:

 $\Delta_{smax} = k_3 c + k_1 k_2 k_3 k_4 \phi/\rho_{eff}$

dove:

 ϕ è il diametro delle barre (se nella sezione sono impiegate barre di diametro diverso si raccomanda l'uso di un opportuno diametro equivalente ϕ_{eq}),

c è il ricoprimento delle barre di armatura,

k₁ è funzione dell'aderenza delle armature,

k₂ è funzione dello stato sollecitativo di trazione o flessione,

k₃ assume il valore fisso di 3.4,

k₄ assume il valore fisso di 0.425.

Nel caso in esame, come riportato nelle caratteristiche dei materiali, le strutture di elevazione presentano classe di esposizione XC4 e XF1, le strutture di fondazione XC2 e i pali di fondazione XC2. Si ottengono pertanto i seguenti limiti per lo stato limite di fessurazione:

	Condizioni ambientali	Combinazione azioni	limite apertura fessure w _d
Strutture di elevazione	Aggressive	Frequente	\leq w ₂ = 0.3 mm
		Quasi Permanente	\leq w ₁ = 0.2 mm
Strutture di fondazione	Ordinarie	Frequente	\leq w ₃ = 0.4 mm
		Quasi Permanente	\leq w ₂ = 0.3 mm
Pali di fondazione	Ordinarie	Frequente	\leq w ₃ = 0.4 mm
		Quasi Permanente	\leq w ₂ = 0.3 mm

Nei casi previsti dalla norma, la verifica di fessurazione può essere condotta per via indiretta (C4.1.2.2.4). Essa consiste nell'appurare che la tensione nelle barre di armatura sia limitata entro determinati valori tabellati in funzione del diametro della barra e della spaziatura massima:

Tensione nell'acciaio	Diametro massimo ϕ delle barre (mm)		
σ _s [MPa]	w ₃ = 0,4 mm	$w_2 = 0.3 \text{ mm}$	$w_1 = 0,2 \text{ mm}$
160	40	32	25
200	32	25	16
240	20	16	12
280	16	12	8
320	12	10	6
360	10	8	-

Tensione nell'acciaio	Spaziatura massima s delle barre (mm)		
σ, [MPa]	w ₃ = 0,4 mm	$w_2 = 0.3 \text{ mm}$	$\mathbf{w}_1 = 0.2 \text{ mm}$
160	300	300	200
200	300	250	150
240	250	200	100
280	200	150	50
320	150	100	•
360	100	50	-

6.2.2 Verifiche delle tensioni in esercizio

La massima tensione di compressione del calcestruzzo σ_c deve rispettare la seguente limitazione:

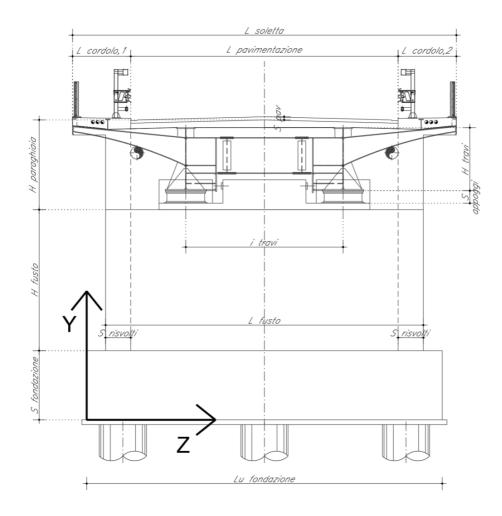
- $\sigma c < 0.60$ fck per combinazione caratteristica (rara),
- $\sigma c < 0.45$ fck per combinazione quasi permanente.

La tensione massima per l'acciaio σ_s deve rispettare la limitazione seguente:

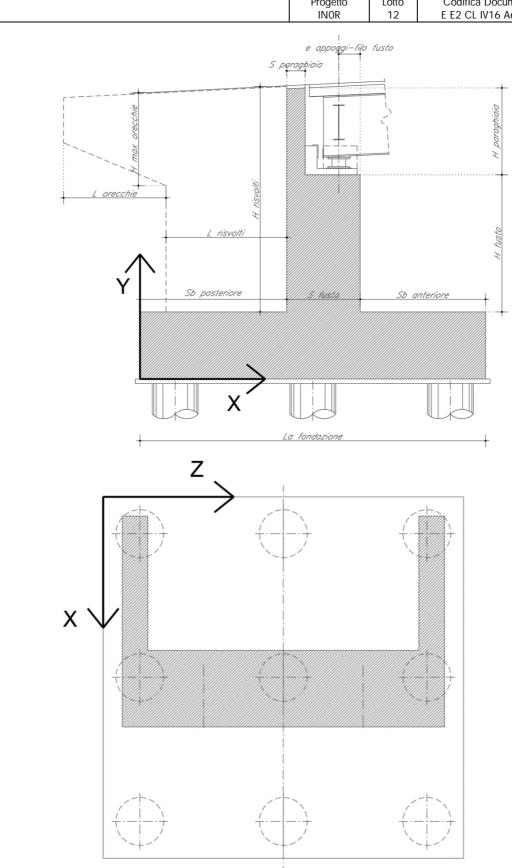
 $\bullet \quad \sigma_s < 0.80 \; f_{yk} \quad \ \ \text{per combinazione caratteristica}.$

Nel caso in esame si ottiene pertanto:

- Per le strutture di elevazione $f_{ck} = 32$ MPa da cui:
 - $-\sigma_c < 0.60 \; f_{ck} = 19.2 \; MPa$ per combinazione caratteristica (rara),
 - σ_c $< 0.45~f_{ck}$ = 14.4 MPa $\,$ per combinazione quasi permanente.
- Per le strutture di fondazione e per i pali di fondazione fck = 25 MPa da cui:
 - $-\sigma_c < 0.60 f_{ck} = 15 MPa$ per combinazione caratteristica (rara),
 - $-\sigma_c < 0.45 \; f_{ck} = 11.3 \; MPa$ per combinazione quasi permanente.
- Per l'acciaio B450C la tensione deve rispettare il seguente limite: $\sigma s < 0.80 f_{yk} = 360 Mpa$



7 ANALISI DELLA SPALLA


Nel presente paragrafo si riporta l'analisi globale della spalla in oggetto. Per la geometria e le caratteristiche dimensionali si fa riferimento alle figure riportate in premessa. Per ulteriori dettagli si rimanda agli elaborati grafici di riferimento.

7.1 Sistema di riferimento

Nell'immagine riportata di seguito viene rappresentato il sistema di riferimento impiegato per svolgere l'analisi.

7.2 Dati di input

7.2.1 Geometria dell'impalcato

Si riportano di seguito i principali dati geometrici dell'impalcato necessari per l'analisi della spalla. La simbologia adottata fa riferimento ai parametri indicati nelle figure precedenti.

Dati relativi all'impalcato

		1-00
Numero travi	n° travi	2,00
Lunghezza impalcato (m)	$L_{impalcato}$	265,00
Interasse travi (m)	i _{travi}	5,00
Altezza travi in corrispondenza dell'appoggio (m)	H travi	2,00
Interasse appoggi (m)	i _{appoggi}	30-35-45- 45-70-40
Lunghezza di afferenza alla spalla (m)	L afferenza(spalla)	15,00
Larghezza pavimentazione (m)	L pavimentazione	8,50
Spessore pavimentazione (m)	S pavimentazione	0,10
Larghezza soletta (m)	L soletta	12,20
Larghezza carreggiata (m)	L carreggiata	8,50
Spessore medio soletta (m)	S soletta	0,24
Larghezza cordolo n° 1 -a maggior z- (m)	L _{cordolo,1}	1,85
Larghezza cordolo n° 2 -a minor z- (m)	L _{cordolo,2}	1,85
Altezza max cordoli (m)	H _{max,cordoli}	0,15
Altezza media cordoli (m)	H _{media,cordoli}	0,15

Dati relativi agli appoggi ed alla curvatura impalcato

Spessore apparecchi di appoggio della spalla (m)	S appoggi	0,25
Posizione asse appoggi rispetto a filo valle fusto (m)	e appoggi-filo fusto	0,70
Eccentricità asse impalcato-asse appoggi travi (m)	e impalcato-appoggi	0,00
Raggio di curvatura -zero se rettilineo- (m)	R curvatura	150,00
Azione d'attrito sugli appoggi in % sui carichi permanenti	a%	0,00

7.2.2 Geometria della spalla

Si riportano di seguito i principali dati geometrici necessari per il calcolo delle azioni globali relative alla spalla. La simbologia adottata fa riferimento ai parametri indicati nelle figure precedenti.

Dati relativi alla spalla

Altezza fusto spalla (m)	H_{fusto}	4,50
Spessore fusto spalla (m)	S fusto	2,40
Lunghezza fusto spalla (m)	L_{fusto}	10,45
Eccentricità trasversale fusto rispetto alla platea (m)	e fusto-spalla	0,18
Altezza media paraghiaia (m)	H paraghiaia	2,85
Spessore paraghiaia (m)	S paraghiaia	0,60
Altezza risvolti (m)	H _{risvolti}	7,35
Lunghezza risvolti (m)	$L_{risvolti}$	4,20
Spessore medio risvolti (m)	S risvolti	0,80
Altezza massima orecchie (m)	H _{orecchie}	0,00
Lunghezza massima orecchie (m)	L orecchie	0,00
Spessore medio orecchie (m)	S orecchie	0,00

Dati relativi alla platea di fondazione

Lunghezza platea di fondazione (m)	Lu fondazione	11,30
Larghezza platea di fondazione -lungo asse stradale- (m)	La fondazione	11,30
Sbalzo anteriore (m)	Sb anteriore	4,10
Sbalzo posteriore (m)	Sb posteriore	4,80
Spessore platea (m)	S fondazione	2,20

Dati relativi alla palificata di fondazione

Numero di pali	n° pali	9,00
Diametro pali (m)	D pali	1,50

7.3 Azioni trasmesse dall'impalcato

Le azioni descritte nella 'Relazione di calcolo apparecchi di appoggio e giunti di dilatazione' e trasmesse alla spalla in esame sono riportate di seguito.

7.3.1 Carichi permanenti

Si riporta di seguito l'analisi dei carichi permanenti unitari riferiti all'impalcato.

	Pe	so unitari	О.	Larghezza	Spessore	Numero		Carico lineare
	$[kN/m^3]$	$[kN/m^2]$	[kN/m]	[m]	[m]	[-]		[kN/m]
Peso struttura in acciaio		2.80		12.20			=	34.16
Peso soletta	25.00			12.20	0.24		=	73.20
Totale strutturali								107.36
Pavimentazione		2.40		8.50			=	20.40
Cordoli	25.00			1.85	0.17	2	=	15.73
Barriere sicurezza e parapetto			2.50			2	=	5.00
Totale Permanenti Portati								41.13
Totale								148.49

Le azioni permanenti trasmesse dall'impalcato allo spiccato del fusto e in corrispondenza dell'intradosso della fondazione sono le seguenti.

7.3.2 Carichi accidentali

Le colonne dei carichi mobili vengono disposte, a partire da quella di entità massima, in adiacenza al cordolo n° 1. Nella tabella seguente si riassumono le singole reazioni sulla spalla dovute ad ogni singola colonna di carico, e la reazione totale, riferite all'asse della carreggiata:

CARICHI VERTICALI DA TRAFFICO							
SCHEMA DI CARICO 1	Cors	ia 1	Co	rsia 2	Cors	sia 3	Rimanente
Larghezza corsia [m]	3,0	00	3	,00	0,0	00	2,50
Q ik [kN] afferente a spalla	300	300	200	200	0	0	
Ascissa Tandem [m]	8,00	6,00	5,00	3,00	2,00	0,00	
Rispetto a baricentro spiccato fusto:							
Momento trasv. da carico tandem [kNm]	967,50	367,50	45,00	-355,00	0,00	0,00	
Rispetto a baricentro palificata:							
Momento trasv. da carico tandem [kNm]	1.020,00	420,00	80,00	-320,00	0,00	0,00	
$q_{ik} [kN/m^2]$	9,0	00	2	,50	0,0	00	2,50
q ik [kN] afferente a spalla	405	,00	11	2,50	0,0	00	93,75
Ascissa colonna di carico [m]	7,0	00	4	,00	2,5	50	1,25
Rispetto a baricentro spiccato fusto:							
Momento trasv. da carico distr. [kNm]	901	,13	-8	7,19	0,0	00	-330,47
Rispetto a baricentro palificata:							
Momento trasv. da carico distr. [kNm]	1.113	3,75	97	2,00	-67	,50	0,00

CARICHI VERTICALI DA FOI	LLA	
Q fk	2,50	kN/m^2
Largh. pedonale 1	1,85	m
Largh. pedonale 2	1,85	m
q _{fk,1}	4,63	kN/m
q fk,2	4,63	kN/m
$F_{ m marciapiede\ 1}$	69	kN
F marciapiede 2	69	kN
Z folla,marciapiede 1	-0,93	m
Z folla,marciapiede 2	9,78	m

F,	TALI	FERR		
Progetto	Lotto	Codifica Documento	Rev.	Foglio 40 di 109
	GRUPPO FERRO	GRUPPO FERROVIE DELLO S Progetto Lotto	GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Documento	GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Documento Rev.

Le azioni dovute ai carichi mobili trasmesse dall'impalcato allo spiccato del fusto e in corrispondenza dell'intradosso della fondazione sono le seguenti.

CARICHI VERT	CARICHI VERTICALI DA FOLLA E TRAFFICO						
N traffico	1.611	kN					
N folla	139	kN					
N tot	1.750	kN					
M trasv,traffico	1.508	kNm					
M _{trasv,folla}	-49	kNm	SPICCATO FUSTO				
M trasv,tot	1.460	kNm					
M long,traffico	806	kNm					
M long,folla	69	kNm					
M long,tot	875	kNm					
N traffico	1.611	kN					
N folla	139	kN					
N tot	1.750	kN					
M trasv,traffico	1.790	kNm	INTER A DOCCO				
M _{trasv,folla}	359	kNm	INTRADOSSO FONDAZIONE				
M trasv,tot	2.456	kNm	0 00 .2 - 2200 .2				
M long,traffico	1.370	kNm					
M long,folla	118	kNm					
M long,tot	1.488	kNm					

7.3.3 Azione di frenamento

Le azioni di frenamento trasmesse dall'impalcato allo spiccato del fusto e in corrispondenza dell'intradosso della fondazione sono le seguenti.

AZIONI DI ACCI	AZIONI DI ACCELERAZIONE E FRENATURA						
T long,frenatura	103,32	kN					
e vert	5,10	m					
e trasv	0,00	m	SPICCATO FUSTO				
M long,frenatura	527	kNm					
M torc, frenatura	0,00	kNm					
T long,frenatura	103,32	kN					
e vert	7,30	m					
e trasv	0,18	m	INTRADOSSO FONDAZIONE				
M long,frenatura	754	kNm					
M torc, frenatura	18,08	kNm					

7.3.4 Azione centrifuga

L'azione centrifuga trasmessa dall'impalcato allo spiccato del fusto e in corrispondenza dell'intradosso della fondazione è la seguente.

Ionaazione e la seguen			
AZIONE CENTIRE	TUGA		
Raggio	150	m	
T _{trasv,centrifuga}	200	kN	
e vert	5,10	m	SPICCATO FUSTO
e long	0,50	m	SHEEMIOTOSIO
M _{trasv,frenatura}	1.020,00	kNm	
M torc,frenatura	100,00	kNm	
T trasv,centrifuga	200,00	kN	
e vert	7,30	m	
e long	0,85	m	INTRADOSSO FONDAZIONE
M _{trasv,frenatura}	1.460,00	kNm	
M torc, frenatura	170,00	kNm	

7.3.5 Variazione termica

Variazione termica uniforme di progetto 30,000 °C
Fattore moltiplicativo k appoggi per bassi spostamenti 2,00

T long	859 kN	
e vert	5,10 m	CDICCATO
e _{trasv}	0,00	SPICCATO FUSTO
M long	4.379 kNm	10010
M torc	0,00 kNm	

T long	859 kN	
e vert	7,30 m	INTERADORGO
e trasv	0,18	INTRADOSSO FONDAZIONE
M long	6.268 kNn	
$M_{ { m torc}}$	150,26 kNn	1

7.3.6 Azione del vento

Pressione vento	2,50	kPa
L 1° campata	30,00	m
% afferenza carico vento alla spalla	50,00	%
H impalcato	3,00	m
H barriera	3,00	m

Т	trasv 2	25 kN	
e.	rert	5,1 m	SDICCATO
e	ong),5 m	SPICCATO FUSTO
M	trasv 1.8	23 kNm	10010
\mathbf{N}	tore	13 kNm	

T trasv	225	kN	
e vert	7,3	m	
e long	0,9	m	INTRADOSSO FONDAZIONE
M trasv	2.318	kNm	TOTALIOTAL
M torc	191	kNm	

7.3.7 Azione sismica

Di seguito si riportano i parametri assunti alla base del calcolo dell'azione sismica.

Stato limite di salvaguardia della vita (SLV) 10,00 % Probabilità di superamento T_{R} 1424 anni 0,2300 g a g 0,1500 g a gv $F_{\,0}$ 2,4760 F v 1,6070 T c* 0,2810 s Categoria suolo В T1 Categoria topografica S_t 1,0000 S_s 1,1722 S 1,172 C_{c} 1,4179 Тв 0,1328 T c0,3984 T_D 2,5200

Sulla spalla in oggetto il sistema di vincolamento trasmette le azioni sismiche longitudinali derivanti dall'impalcato calcolate di seguito.

Lunghezza totale ponte	265,00	m
Luce campata adiacente spalla fissa	30,00	m
m impalcato totale	4.051.987,77	kg
m impalcato afferente a spalla fissa	229.357,80	kg
F SISMICA LONG	10.716,91	kN
% sisma in y (long.)	100,00	%
% sisma in x (trasv.)	30,00	%
% sisma in verticale	30,00	%
spalla	isolata	

Le azioni dovute al sisma trasmesse dall'impalcato allo spiccato del fusto e in corrispondenza dell'intradosso della fondazione sono le seguenti.

N T long T trasv e vert e trasv e long M trasv	249,49 kN 900,00 kN 270,00 kN 5,10 m 0,00 m 0,50 m 1.863,00 kN	SPICCATO FUSTO
M _{trasv}	1.863,00 kN	
M torc M long	135,00 kN 4.714,74 kN	

M_{long} 6.782,06 kNm

7.4 Azioni relative alla spalla

7.4.1 Peso proprio

Elemento strutturale	N (kN)	x _G (m)	y _G (m)
Paraghiaia	447	5,10	8,13
Muri d'ala	1.235	2,70	5,88
Orecchie	0	0,00	0,00
Fusto	2.822	6,00	4,45
Plinto	7.023	5,65	1,10

Le azioni dovute ai pesi propri degli elementi della spalla, allo spiccato del fusto e in corrispondenza dell'intradosso della fondazione, sono le seguenti.

γ	25,00	kN/m ³	CDICCATO
N	3.268	kN	SPICCATO FUSTO
M long	-402	kNm	10510
γ	25,00	kN/m^3	
N	11.526	kN	INTRADOSSO
M long	-2.901	kNm	FONDAZIONE
M trasv	788	kNm	

GENERAL CONTRACTOR Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto INOR 12 E E2 CL IV16 A6 001 A 46 di 109

7.4.2 Forze inerziali degli elementi della spalla

	Rispetto base fusto	Rispetto intradosso fondazione		
N	446,74	446,74	kN	
Massa paraghiaia	45.538,99	45.538,99	kg	₹
T long	120,44	120,44	kN	PARAGHIAIA
e vert,paraghiaia	5,93	8,13	m	4GF
M long,paraghiaia	713,63	978,61	kNm	AR.
T trasv	36,13	36,13	kN	P.
M trasv	214,09	293,58	kNm	

N	1.234,80 kM	N	
Massa muri d'ala	125.871,56 kg	g e	A
T long	332,91 kN	N	D'ALA
e vert,muri d'ala	5,88 m	L	ZI D
M long,muri d'ala	1.955,86 kN	Nm	MURI]
T trasv	99,87 kN	N	2
M trasv	586,76 kN	Nm	

N	2.821.50	2.821,50	kN	
Massa fusto	•	287.614,68		
T long	760,70	760,70	kN	0
e vert,fusto	2,25	4,45	m	FUSTO
M long,fusto	1.711,57	3.385,11	kNm	F
T trasv	228,21	228,21	kN	
M _{trasv}	513,47	1.015,53	kNm	

N	7.022,95	kN	
Massa plinto	715.897,04	kg	
T_{long}	1.893,44	kN	0
e vert,plinto	1,10	m	PLINTO
M long,plinto	2.082,79	kNm	PI
T trasv	568,03	kN	
M trasv	624,84	kNm	

Progetto Lotto Codifica Documento Rev. Foglio Doc. N. 12 E E2 CL IV16 A6 001 A 47 di 109

Massa totale	333.153,67	kg	TC
N sismica	147,07	kN	SUF
T long	881,14	kN	,0 F
M long,plinto	2.407,11	kNm	AT
T trasv	264,34	kN	SPICCATO FUST
M trasv	727,56	kNm	SP
Massa totale	1.174.922,27	kg) E
N sismica	518,67	kN	SSC
T long	3.107,50	kN	DO
M long,plinto	8.271,82	kNm	RA]
T trasv	932,25	kN	INTRADOSSO FONDAZIONE
M trasv	2.520,71	kNm	I I

7.4.3 Spinta delle terre

7.4.3.1 Spinta statica del terreno di monte

SPINTA RIPOSO TERRENO DI MONTE

φκ [°]	φκ [rad]	tg(φκ)
38,00	0,66	0,78

M1				
K 0	0,38			
γ	20,00	kN/m^3		
H MEDIA PARAGHIAIA	2,85	m		
H _{FUSTO}	4,50	m		
H PLINTO	2,20	m		
H media(spalla)	9,55	m		
B terreno imbarcato	4,80	m		
θ	0,00	0		
X G,terreno imbarcato(MONTE)	2,40	m		
X G,terreno imbarcato(VALLE)	8,86	m		
X G,PALIFICATA	5,65	m		
<u>Paraghiaia</u>				
L paraghiaia	10,45	m		
H paraghiaia	2,85	m		
S paraghiaia	326	kN		
y s,paraghiaia	7,65	m		
<u>Fusto</u>				
L _{FUSTO}	10,45	m		
H _{FUSTO}	4,50	m		
S _{FUSTO}	1.843	kN		
y s,fusto	4,12	m		
<u>Plinto</u>				
L PLINTO	11,30	m		
H PLINTO	2,20	m		
S PLINTO	1.615	kN		
y s,plinto	1,05	m		

GENERAL CONTRACTOR Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE

Progetto Lotto Codifica Documento Rev. Foglio Doc. N. INOR 12 E E2 CL IV16 A6 001 A 49 di 109

T long,spinta	2.170	kN	0
M long,spinta	5.316	kNm	SPICCATO FUSTC
N terreno imbarcato	0	kN	FO
M long,terreno imbarcato	0	kNm	ΛΤΟ
N tot	0	kN	CA
T long,tot	2.170	kN	PIC
M long,tot	5.316	kNm	<i>O</i> 1
T long, spinta	3.784	kN	
M long,spinta	11.788	kNm	SO
N terreno imbarcato	8.511	kN	OS; [OI]
M long,terreno imbarcato	-17.806	kNm	AD SAZ
N_{tot}	8.511	kN	INTRADOSSO FONDAZIONE
T long,tot	3.784	kN	N E
M long,tot	-6.017	kNm	

SPINTA ATTIVA TERRENO DI MONTE

fk [°]	fk [rad]	tg(fk)
38,00	0,66	0,78

M1				
K a	0,24			
γ	20,00	kN/m^3		
H MEDIA PARAGHIAIA	2,85	m		
H _{FUSTO}	4,50	m		
H PLINTO	2,20	m		
H media(spalla)	9,55	m		
B terreno imbarcato	4,80	m		
θ	0,00	0		
X G,terreno imbarcato	2,40	m		
X G,terreno imbarcato(VALLE)	8,86	m		
X G,PALIFICATA	5,65	m		
<u>Paraghiaia</u>				
L paraghiaia	10,45	m		
H paraghiaia	2,85	m		
S paraghiaia	202	kN		
y s,paraghiaia	7,65	m		
<u>Fusto</u>				
L _{FUSTO}	10,45	m		
H _{FUSTO}	4,50	m		
S _{FUSTO}	1.141	kN		
y s,fusto	4,12	m		
<u>Plinto</u>				
L PLINTO	11,30	m		
H PLINTO	2,20	m		
S PLINTO	999	kN		
y s,plinto	1,05	m		

GENERAL CONTRACTOR Cepav due ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE

Progetto Lotto Codifica Documento Rev. Foglio Doc. N. INOR 12 E E2 CL IV16 A6 001 A 51 di 109

T long,spinta	1.343	kN	С
M long,spinta	3.290	kNm	SPICCATO FUSTO
N terreno imbarcato	0	kN	FU
M long,terreno imbarcato	0	kNm	OL
N_{tot}	0	kN	CA
T long,tot	1.343	kN	PIC
M long,tot	3.290	kNm	S
$T_{long,spinta}$	2.342	kN	
M long,spinta	7.296	kNm	SO 出
N terreno imbarcato	8.511	kN	OS: IOI
M long,terreno imbarcato	-17.806	kNm	AD SAZ
N_{tot}	8.511	kN	INTRADOSSO FONDAZIONE
T long,tot	2.342	kN	ZI E
M long,tot	-10.510	kNm	

7.4.3.2 Traffico a tergo spalla

M1			
K0	0,38		
q traffico	30,00	kN/m^2	
H SPALLA	9,55	m	
B PLINTO	11,30	m	
H PLINTO	2,20	m	
B TERRENO IMBARCATO	4,80	m	
L paraghiaia	10,45	m	
X G,PALIFICATA	5,65	m	

N T_{long}	0 kN 886 kN	SPICCATO FUSTO
${f M}_{ m \ long}$	3.255 kNm	
N	1.505 kN	INTER A DOCCO
T long	1.151 kN	INTRADOSSO FONDAZIONE
M long	604 kNm	T OT ID TELOTIVE

7.4.3.3 Sovraspinta sismica del terreno di monte

φκ [°]	φκ [rad]	tg(φκ)
38,00	0,66	0,78

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		M1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H media(spalla)	9,55	m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		20,00	kN/m^3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0,24	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	k _h	0,27	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	k _v	0,13	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	θ	13,36	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	α	90,00	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	β	0,00	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	δ	0,00	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	K a,e	0,38	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		394,33	kN/m
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	S _a	216,96	kN/m
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\Delta\Sigma$	177,38	kN/m
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$q_{\Delta\Sigma}$	18,57	kN/m/m
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		<u>Paraghiaia</u>	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	L paraghiaia	10,45	m
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H paraghiaia	2,85	m
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\Delta\Sigma$ e,PARAGHIAIA	553	kN
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	y Se,PARAGHIAIA	8,13	m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M long,PARAGHIAIA	4.495	kNm
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		<u>Fusto</u>	
$\begin{array}{ccccc} \Delta\Sigma_{\text{ e,FUSTO}} & 873 & \text{kN} \\ \text{y se,FUSTO} & 4,45 & \text{m} \\ \hline M_{\text{long,FUSTO}} & 3.887 & \text{kNm} \\ \hline & & & \\ \hline L_{\text{PLINTO}} & 11,30 & \text{m} \\ \end{array}$	L _{FUSTO}	10,45	m
y se, Fusto 4,45 m M long, Fusto 3.887 kNm Plinto L PLINTO 11,30 m	H _{FUSTO}	4,50	kN
M long,FUSTO 3.887 kNm Plinto 11,30 m	$\Delta\Sigma$ e,FUSTO	873	kN
Plinto L PLINTO 11,30 m	y Se,FUSTO	4,45	m
L PLINTO 11,30 m	M long, FUSTO	3.887	kNm
•		<u>Plinto</u>	
H printo 2.20 m	L PLINTO	11,30	m
2,20 m	H PLINTO	2,20	m
$\Delta\Sigma$ e,plinto 462 kN	$\Delta\Sigma$ e,PLINTO	462	kN
y _{Se,PLINTO} 1,10 m	y se,PLINTO	1,10	m
M long,PLINTO 508 kNm	M long,PLINTO	508	kNm

T long,spinta M long,spinta	1.427 kN 5.243 kNm	SPICCATO FUSTO
T long,spinta	1.888 kN	INTRADOSSO
M long,spinta	8.889 kNm	FONDAZIONE

7.4.3.4 Forse inerziali del terreno imbarcato

Massa terreno imbarcato	650.935,78	kg	
T long,SISMICA	1.721,63	kN	
у б	3,81	m	SPICCATO FUSTO
M long,SISMICA	6.559,41	kNm	FU
T trasv,SISMICA	516,49	kN	ΛΤΟ
M trasv,SISMICA	1.967,82	kNm	ΣC.Α
N SISMICA	0,00	kN	SPIG
X G	-3,60	m	
M long,SISMICA	0,00	kNm	
Massa terreno imbarcato	867.577,98	kg	
T long,SISMICA	2.294,62	kN	NE
y G, terreno imbarcato MONTE	6,01	m	ZIC
y G,terreno imbarcato VALLE	3,12	m	IDA
M long,SISMICA	12.602,02	kNm	NO.
T trasv,SISMICA	688,38	kN	D. I
M trasv, SISMICA	4.137,19	kNm	INTRAD. FONDAZIONE
N SISMICA	382,99	kN	N N
X G	-3,25	m	

7.5 Sollecitazioni a spiccato fusto

7.5.1 Azioni elementari

SOLLECITAZIONI SPICCATO FUSTO						
	N [kN]	T long [kN]	M long [kNm]	T trasv [kN]	M trasv [kNm]	M torc [kNm]
Pesi propri + portati impalcato	2.250	-	1.125	-	0	
Inerzia sismica impalcato	249	900	4.715	270	1.863	135
Traffico impalcato	1.750	-	875	-	1.460	-
Frenatura e centrifuga	-	103	527	200	1.020	100
DT	-	859	4.379	-	-	0
Attrito	-	0	0	-	-	0
Vento	-	-	-	225	1.823	113
P.P. spalla	3.268	-	-402	-	-	-
Inerzia sismica spalla	147	881	2.407	264	728	-
Terreno imbarcato	0	-	0	-	-	-
Spinta statica terre a riposo	-	2.170	5.316	-	-	-
Spinta statica terre attiva	-	1.343	3.290	-	-	-
Sovraspinta sismica terre	-	1.427	5.243	-	-	-
Inerzia sismica terreno imbarcato	0	1.722	6.559	516	1.968	-
Traffico tergo spalla	0	886	3.255	-	-	-

7.5.2 Sollecitazioni a spiccato fusto

Di seguito si riportano le sollecitazioni globali risultanti nella sezione di spiccato fusto.

		COMBO SLU-A1									
	1	2	3	4	5	6	7	8	9	10	11
N [kN]	7.450	7.450	7.450	7.450	7.450	7.450	9.812	9.812	9.217	9.217	9.217
T long [kN]	3.959	3.547	4.743	4.743	4.026	4.438	3.547	4.026	4.743	3.687	4.165
M long [kNm]	13.407	11.305	15.699	15.699	13.063	15.164	12.486	14.244	16.583	12.900	14.658
T trasv [kN]	0	338	0	203	338	203	203	203	203	473	473
M trasv [kNm]	0	2.734	0	1.640	2.734	1.640	3.611	3.611	3.115	4.492	4.492
M torc [kNm]	0	169	0	101	169	101	101	101	101	236	236

		COMBO SLE - RARE									
	1	2	3	4	5	6	7	8	9	10	11
N [kN]	5.518	5.518	5.518	5.518	5.518	5.518	7.268	7.268	6.831	6.831	6.831
T long [kN]	3.028	2.685	3.570	3.570	3.039	3.383	2.685	3.039	3.570	2.788	3.142
M long [kNm]	10.418	8.666	11.921	11.921	9.968	11.719	9.541	10.843	12.577	9.849	11.151
T trasv [kN]	0	225	0	135	225	135	135	135	135	335	335
M trasv [kNm]	0	1.823	0	1.094	1.823	1.094	2.553	2.553	2.188	3.208	3.208
M torc [kNm]	0	113	0	68	113	68	68	68	68	168	168

	COMBO SLE - FREQUENTE						
	1	2	3	4			
N [kN]	5.518	5.518	5.518	6.831			
T long [kN]	2.685	2.953	2.599	2.599			
M long [kNm]	8.666	9.530	8.228	8.884			
T trasv [kN]	0	0	45	0			
M trasv [kNm]	0	0	365	1.095			
M torc [kNm]	0	0	23	0			

	COMBO SLE - QP
	1
N [kN]	5.518
T long [kN]	2.599
M long [kNm]	8.228
T trasv [kN]	0
M trasv [kNm]	0
M torc [kNm]	0

	COMBO SLV
	1
N [kN]	5.915
T long [kN]	6.702
M long [kNm]	25.127
T trasv [kN]	1.051
M trasv [kNm]	4.558
M torc [kNm]	135

7.5.3 Sollecitazioni oggetto di verifica

La verifica dell'elemento strutturale viene condotta facendo riferimento ad una sezione di larghezza unitaria. Le sollecitazioni a spiccato fusto riferite ad una larghezza unitaria pari a 1 m risultano pertanto:

	COMBO SLU-A1										
	1	2	3	4	5	6	7	8	9	10	11
N [kN]	842	842	842	842	842	842	1.109	1.109	1.041	1.041	1.041
T long [kN]	447	401	536	536	455	501	401	455	536	417	471
M long [kNm]	1.515	1.277	1.774	1.774	1.476	1.713	1.411	1.609	1.874	1.458	1.656

		COMBO SLE - RARE									
	1	2	3	4	5	6	7	8	9	10	11
N [kN]	624	624	624	624	624	624	821	821	772	772	772
T long [kN]	342	303	403	403	343	382	303	343	403	315	355
M long [kNm]	1.177	979	1.347	1.347	1.126	1.324	1.078	1.225	1.421	1.113	1.260

	COMB	O SLE -	FREQU	JENTE
	1	2	3	4
N [kN]	624	624	624	772
T long [kN]	303	334	294	294
M long [kNm]	979	1.077	930	1.004

	COMBO SLE - QP
	1
N [kN]	624
T long [kN]	294
M long [kNm]	930

	COMBO SLV
	1
N [kN]	668
T long [kN]	757
M long [kNm]	2.839

7.6 Sollecitazioni sulla palificata di fondazione

7.6.1.1 Azioni elementari

Si riportano di seguito le caratteristiche di sollecitazione relative alla palificata, riferite agli assi baricentrici della platea.

SOLLECITAZIONI INTRADOSSO FONDAZIONE								
		T long	M long	T trasv	M trasv	M torc		
	N [kN]	[kN]	[kNm]	[kN]	[kNm]	[kNm]		
Pesi propri + portati impalcato	2.250	-	1.913	-	394	-		
Inerzia sismica impalcato	249	900	6.782	270	2.501	387		
Traffico impalcato	1.750	-	1.488	-	2.456	-		
Frenatura e centrifuga	-	103	754	200	1.460	188		
DT	-	859	6.268	-	-	150		
Attrito	-	0	0	-	-	0		
Vento	-	-	-	225	2.318	191		
P.P. spalla	11.526	-	-2.901	-	788	-		
Inerzia sismica spalla	519	3.107	8.272	932	2.521	-		
Terreno imbarcato	8.511	-	-17.806	-	-	-		
Spinta statica terre a riposo	-	3.784	11.788	-	-	-		
Spinta statica terre attiva	-	2.342	7.296	-	-	-		
Sovraspinta sismica terre	-	1.888	8.889	-	-	-		
Inerzia sismica terreno imbarcato	383	2.295	11.357	688	4.137	-		
Traffico tergo spalla	1.505	1.151	604	-	-	-		

GENERAL CONTRACTOR ALTA SORVEGLIANZA Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto INOR Lotto Codifica Documento Foglio

12

E E2 CL IV16 A6 001

60 di 109

7.6.1.2 Sollecitazioni sulla palificata di fondazione

Doc. N.

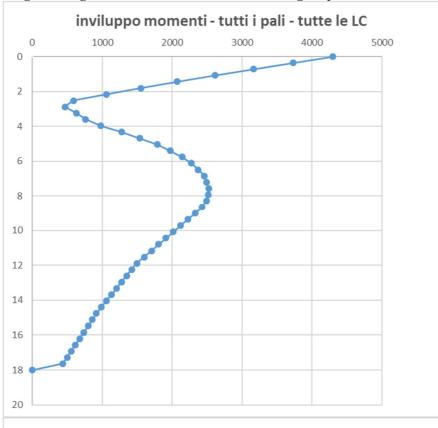
Le sollecitazioni riportate nella tabella sottostante sono calcolate rispetto al baricentro della palificata.

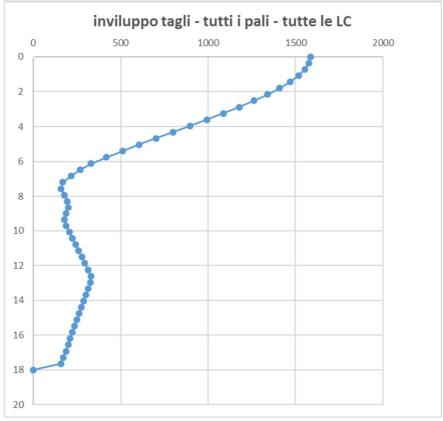
		COMBO SLU-A1									
	1	2	3	4	5	6	7	8	9	10	11
N [kN]	30.087	30.087	32.119	32.119	30.900	30.900	32.450	33.262	33.886	31.855	32.667
T long [kN]	6.139	5.727	7.281	7.281	6.349	6.761	5.727	6.349	7.281	5.867	6.488
M long [kNm]	-1.936	-4.945	-4.130	-4.130	-4.619	-1.610	-2.937	-2.611	-2.627	-2.424	-2.098
T trasv [kN]	0	338	0	203	338	203	203	203	203	473	473
M trasv [kNm]	1.595	5.072	1.595	3.681	5.072	3.681	6.996	6.996	6.161	8.132	8.132
M torc [kNm]	180	395	108	280	395	352	280	280	280	534	534

		COMBO SLE RARA									
	1	2	3	4	5	6	7	8	9	10	11
N [kN]	22.287	22.287	23.792	23.792	22.889	22.889	24.037	24.639	25.104	23.599	24.201
T long [kN]	4.643	4.300	5.450	5.450	4.760	5.103	4.300	4.760	5.450	4.403	4.863
M long [kNm]	-738	-3.245	-2.641	-2.641	-3.004	-496	-1.758	-1.516	-1.526	-1.375	-1.134
T trasv [kN]	0	225	0	135	225	135	135	135	135	335	335
M trasv [kNm]	1.182	3.499	1.182	2.572	3.499	2.572	5.028	5.028	4.414	5.874	5.874
M torc [kNm]	150	281	90	205	281	265	205	205	205	393	393

	COM	COMBO SLE FREQUENTE									
	1	1 2 3 4									
N [kN]	22.287	22.889	22.287	23.599							
T long [kN]	4.300	4.674	4.214	4.214							
M long [kNm]	-3.245	-3.630	-3.872	-2.756							
T trasv [kN]	0	0	45	0							
M trasv [kNm]	1.182	1.182	1.645	3.024							
M torc [kNm]	90	75	113	75							

	COMBO
	SLE - QP
	1
N [kN]	22.287
T long [kN]	4.214
M long [kNm]	-3.872
T trasv [kN]	0
M trasv [kNm]	1.182
M torc [kNm]	75




	COMBO SLV
	1
N [kN]	23.438
T long [kN]	10.962
M long [kNm]	26.936
T trasv [kN]	1.891
M trasv [kNm]	10.340
M torc [kNm]	462

7.7 Sollecitazione sui pali di fondazione

Si riportano di seguito i grafici degli andamenti delle sollecitazioni lungo il palo:

Le massime sollecitazioni risultano in corrispondenza della sezione di testa del palo, si riportano pertanto le azioni in testa a ciascun palo:

		Azio	oni assi	ale a tes	ta palo	(kN)			
G 1	Palo	Palo	Palo	Palo	Palo	Palo	Palo	Palo	Palo
Comb.	1	2	3	4	5	6	7	8	9
SLU 1	-2921	-2969	-3017	-3295	-3343	-3391	-3669	-3717	-3765
SLU 2	-2912	-3089	-3266	-3166	-3343	-3520	-3420	-3597	-3774
SLU 3	-3133	-3181	-3229	-3521	-3569	-3617	-3908	-3957	-4005
SLU 4	-3055	-3181	-3306	-3443	-3569	-3694	-3831	-3957	-4082
SLU 5	-2949	-3126	-3303	-3256	-3433	-3610	-3564	-3741	-3918
SLU 6	-2880	-3006	-3132	-3308	-3433	-3559	-3735	-3861	-3986
SLU 7	-3065	-3291	-3517	-3380	-3606	-3831	-3694	-3920	-4146
SLU 8	-3102	-3328	-3553	-3470	-3696	-3922	-3838	-4064	-4290
SLU 9	-3131	-3332	-3532	-3565	-3765	-3966	-3998	-4198	-4399
SLU 10	-2921	-3200	-3479	-3260	-3539	-3819	-3600	-3879	-4158
SLU 11	-2957	-3236	-3515	-3351	-3630	-3909	-3744	-4023	-4302
SLE RA 1	-2136	-2172	-2207	-2441	-2476	-2512	-2745	-2781	-2817
SLE RA 2	-2150	-2272	-2393	-2355	-2476	-2598	-2559	-2681	-2803
SLE RA 3	-2304	-2340	-2375	-2608	-2644	-2679	-2912	-2948	-2983
SLE RA 4	-2252	-2340	-2427	-2556	-2644	-2731	-2860	-2947	-3035
SLE RA 5	-2177	-2299	-2420	-2422	-2543	-2665	-2666	-2788	-2909
SLE RA 6	-2112	-2199	-2286	-2456	-2543	-2630	-2800	-2888	-2975
SLE RA 7	-2260	-2421	-2583	-2509	-2671	-2832	-2759	-2920	-3082
SLE RA 8	-2287	-2448	-2610	-2576	-2738	-2899	-2866	-3027	-3188
SLE RA 9	-2309	-2452	-2595	-2646	-2789	-2932	-2984	-3127	-3270
SLE RA 10	-2153	-2354	-2555	-2421	-2622	-2823	-2689	-2891	-3092
SLE RA 11	-2180	-2381	-2582	-2488	-2689	-2890	-2796	-2997	-3198
SLE FR 1	-2236	-2272	-2307	-2441	-2476	-2512	-2645	-2681	-2717
SLE FR 2	-2288	-2324	-2359	-2507	-2543	-2579	-2727	-2763	-2798
SLE FR 3	-2244	-2297	-2350	-2423	-2476	-2529	-2603	-2656	-2709
SLE FR 4	-2317	-2409	-2500	-2531	-2622	-2714	-2744	-2836	-2927
SLE QP 1	-2261	-2297	-2332	-2441	-2476	-2512	-2620	-2656	-2692
SLV 1	89	-464	-1018	-2051	-2604	-3157	-4191	-4744	-5297

GENERAL CONTRACTOR



Progetto Lotto Codifica Documento Rev. Foglio Doc. N. INOR 12 E E2 CL IV16 A6 001 A 64 di 109

	TAGLIO a testa palo (kN)								
Comb.	Palo	Palo	Palo	Palo	Palo	Palo	Palo	Palo	Palo
Collib.	1	2	3	4	5	6	7	8	9
SLU 1	573	576	579	573	576	579	891	894	898
SLU 2	533	539	549	533	539	548	825	832	842
SLU 3	682	684	686	682	684	686	1057	1059	1062
SLU 4	679	684	690	679	684	689	1054	1059	1066
SLU 5	591	597	606	591	597	606	916	923	933
SLU 6	629	634	642	629	634	641	978	985	993
SLU 7	533	538	544	533	538	544	828	833	840
SLU 8	592	596	602	591	596	602	919	924	931
SLU 9	679	683	689	679	683	689	1055	1060	1067
SLU 10	544	552	566	543	552	565	844	854	868
SLU 11	602	610	624	601	610	623	935	945	959
SLE RA 1	433	435	438	433	435	438	674	677	680
SLE RA 2	400	404	411	400	404	410	620	625	632
SLE RA 3	510	512	513	510	512	513	792	793	795
SLE RA 4	508	512	516	508	512	516	789	793	798
SLE RA 5	443	447	454	443	447	453	687	692	699
SLE RA 6	474	478	484	474	478	484	739	744	750
SLE RA 7	400	404	408	400	403	408	622	626	631
SLE RA 8	443	447	451	443	447	451	689	693	698
SLE RA 9	508	511	516	508	511	515	790	794	799
SLE RA 10	408	414	424	408	414	423	634	641	651
SLE RA 11	451	457	467	451	457	466	701	709	719
SLE FR 1	402	404	406	402	404	406	623	625	627
SLE FR 2	438	439	440	438	439	440	678	680	681
SLE FR 3	394	396	398	394	396	398	610	612	615
SLE FR 4	395	396	397	395	396	397	612	613	615
SLE QP 1	395	396	397	395	396	397	611	612	614
SLV 1	1034	1041	1073	1033	1040	1071	1602	1611	1635

GENERAL CONTRACTOR

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 12 E E2 CL IV16 A6 001 A 65 di 109

		MC	MENT	O a test	a palo ((kN)			
Comb	Palo	Palo	Palo	Palo	Palo	Palo	Palo	Palo	Palo
Comb.	1	2	3	4	5	6	7	8	9
SLU 1	1162	1169	1177	1162	1169	1177	1664	1672	1682
SLU 2	1136	1151	1168	1137	1151	1168	1612	1630	1649
SLU 3	1418	1422	1427	1418	1422	1427	2019	2024	2029
SLU 4	1411	1421	1434	1411	1422	1434	2011	2024	2038
SLU 5	1244	1259	1276	1245	1259	1276	1769	1787	1807
SLU 6	1263	1276	1291	1263	1276	1292	1814	1830	1847
SLU 7	1105	1115	1127	1106	1116	1129	1576	1588	1603
SLU 8	1213	1223	1235	1213	1224	1236	1733	1746	1760
SLU 9	1383	1394	1406	1384	1394	1406	1980	1992	2006
SLU 10	1108	1128	1150	1109	1129	1151	1588	1612	1638
SLU 11	1216	1236	1258	1217	1237	1259	1746	1770	1796
SLE RA 1	864	869	876	864	870	876	1242	1249	1256
SLE RA 2	844	855	867	845	855	867	1200	1213	1227
SLE RA 3	1052	1056	1060	1052	1056	1060	1501	1505	1510
SLE RA 4	1048	1055	1064	1048	1055	1064	1496	1505	1515
SLE RA 5	924	935	947	925	935	947	1317	1330	1344
SLE RA 6	939	949	961	939	949	961	1353	1365	1379
SLE RA 7	821	828	837	821	829	838	1173	1182	1193
SLE RA 8	901	908	917	901	909	918	1290	1299	1310
SLE RA 9	1027	1035	1044	1027	1035	1044	1472	1481	1492
SLE RA 10	823	838	854	824	839	855	1182	1200	1219
SLE RA 11	903	918	934	904	918	935	1299	1317	1336
SLE FR 1	852	856	860	852	856	860	1209	1213	1218
SLE FR 2	929	932	935	929	932	936	1318	1321	1325
SLE FR 3	848	852	857	848	852	857	1199	1204	1210
SLE FR 4	829	832	836	829	832	836	1178	1181	1185
SLE QP 1	849	852	855	849	852	856	1201	1204	1208
SLV 1	2981	3007	3082	2977	3003	3075	4319	4351	4412

Le sollecitazioni in testa palo più gravose per le diverse combinazioni di carico risultano:

SLU	
Nmax (kN)	-2880
Nmin (kN)	-4399
Vmax (kN)	1067
Mmax (kN)	2038

SLV	
Nmax (kN)	89
Nmin (kN)	-5297
Vmax (kN)	1635
Mmax (kN)	4412

SLE RARA						
Nmax (kN)	-2112					
Nmin (kN)	-3270					
Vmax (kN)	799					
Mmax (kN)	1515					

SLE FREQUENTI			
Nmax (kN) -2236			
Nmin (kN)	-2927		
Vmax (kN)	681		
Mmax (kN)	1325		

SLE QP			
Nmax (kN)	-2261		
Nmin (kN)	-2692		
Vmax (kN)	614		
Mmax (kN)	1208		

GENERAL CONTRACTOR Cepav due	ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
	Progetto	Lotto	Codifica Documento	Rev.	Foglio
Doc. N.	INOR	12	E E2 CL IV16 A6 001	Α	67 di 109

7.8 Sollecitazioni sul paraghiaia

In considerazione dei rapporti dimensionali caratterizzanti la parte d'opera in oggetto, come funzionamento dimensionante è assunto lo schema statico di mensola verticale incastrata alla base sul fusto. Le sollecitazioni oggetto di verifica sono determinate con riferimento ad una sezione di larghezza unitaria.

dimensionante è assunto lo sche di verifica sono determinate co			
H paraghiaia	2,85	m	
H SPALLA	9,5	m	tria
B paraghiaia	0,6	m	Geometria
B PLINTO, MONTE	4,8	m	Ge
y g,paraghiaia	1,425	m	
A (Area)	1,71	m^2	ica
N/metro	42,75	KN	Inerzia sismica
Massa	4357,80	Kg	ia s
T long,sismica	11,61	KN	nerz
M long,sismica	16,54	KNm	I
k ₀	0,384		e,
γ	20	kN/m^3	teri
S PARAGHIAIA	31,22	kN	Spinta riposo terre
y s,paraghiaia	0,95	m	a rij
T long,riposo	31,22	kN	pint
$M_{long,riposo}$	29,66	kNm	N
k a	0,238		o o
γ		kN/m ³	terr
S paraghiaia	19,32		Spinta attiva terre
y s,paraghiaia	0,95		a at
T long,attiva	19,32		pint
$M_{long,attiva}$	18,36	kNm	<i>S</i> 2
k h	0,272		
k _v	0,136		
θ	13,45	0	ca
α	90	0	ismi
β	0	0	ıta s
δ	0	0	spin
K a,e	0,382		Sovraspinta sismica
S _e	391,68	kN	Š
S _a	214,69		
$\Delta\Sigma$	176,99	kN	

GENERAL CONTRACTOR ALTA SORVEGLIANZA Cepav due *ITALFERR* **GRUPPO FERROVIE DELLO STATO ITALIANE** Progetto Lotto Codifica Documento Foglio INOR Doc. N. 12 E E2 CL IV16 A6 001 68 di 109 $q_{\Delta\Sigma}$ 18,63 kN/m 53,10 kN $\Delta\Sigma$ e,Paraghiaia 1,425 m y se,paraghiaia 53,10 KN $T_{long,\Delta\Sigma\epsilon}$ 75,66 kNm $M_{long,\Delta\Sigma\epsilon}$ Inerzia terreno imbarcato Massa terreno imbarcato 27889,91 kg $T_{long,terreno}$ 74,29 kN 1,43 m y G $M_{long,terreno}$ 105,87 kNm Traffico tergo spalla $30,00 \text{ kN/m}^2$ q traffico 32,86 kN $T_{\ long, traffico}$ 1,43 m УG 46,83 kNm $M_{\ long,\ traffico}$

300,0 KN

180,0 KN

34,3 KN 97,7 KNm Carichi orizz. da traffico

M long,frenatura Riassumendo:

 $T_{\ long,frenatura}$

 $Q_{1k,v}$

 $Q_{1k,h}$

	N [kN]	T long [kN]	M long [kNm]
Peso Proprio paraghiaia	42,8	0,0	0,0
Inerzia sismica	0,0	11,6	16,5
Spinta riposo delle terre	0,0	31,2	29,7
Spinta attiva delle terre	0,0	19,3	18,4
Sovraspinta sismica delle terre	0,0	53,1	75,7
Inerzia sismica terreno imbarcato	0,0	74,3	105,9
Traffico tergo spalla	0,0	32,9	46,8
Frenatura	0,0	34,3	97,7

Si riportano quindi le combinazioni maggiormente dimensionanti:

COMBO SLU-STR				
N T long M long				
[kN]	[kN]	[kNm]		
57,7	108,1	200,0		
57,7	86,5	103,3		

COMBO SLV				
N T long M long				
[kN]	[kN]	[kNm]		
42,8	158,3	216,4		

COMBO RARA					
N T long M long					
[kN]	[kN]	[kNm]			
42,8	78,6	146,1			
42,8	64,1	76,5			

COMBO FREQUENTE				
N T long M long				
[kN]	[kN]	[kNm]		
42,8	44,4	48,4		

COMBO QUASI			
PERMANENTE			
N T long M long			
[kN] [kN] [kNm]			
42,8	31,2	29,7	

7.9 Sollecitazioni sui muri di risvolto

Si riportano i diagrammi delle caratteristiche delle sollecitazioni di momento flettente e taglio, che permettono di sintetizzare l'ordine di grandezza delle principali caratteristiche della sollecitazione.

Figura 4 – Diagramma momento flettente piano orizzontale combinazione SLU

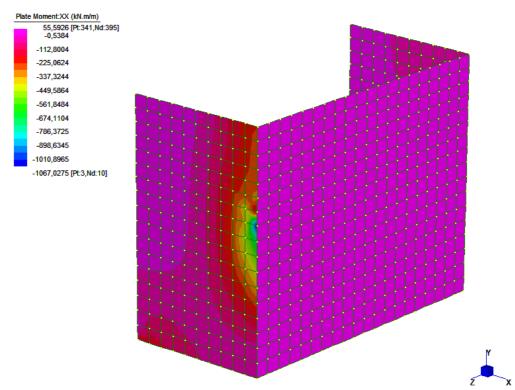
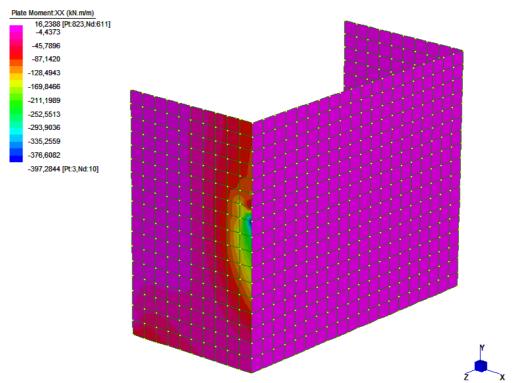



Figura 5 – Diagramma momento flettente piano orizzontale combinazione SLV

GENERAL CONTRACTOR Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE					
	Progetto	Lotto	Codifica Documento	Rev.	Foglio
Doc. N.	INOR	12	E E2 CL IV16 A6 001	Α	71 di 109

 $Figura\ 6-Diagramma\ momento\ flettente\ piano\ orizzontale\ combinazione\ SLE\ Rare$

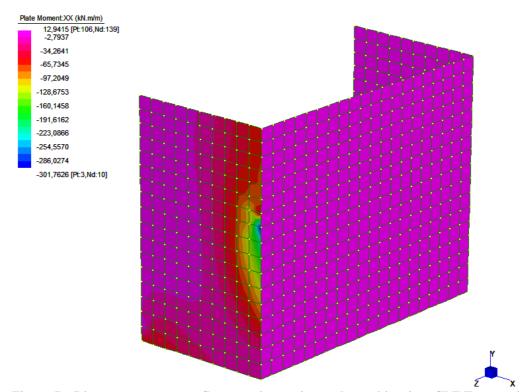


Figura 7 – Diagramma momento flettente piano orizzontale combinazione SLE Frequenti

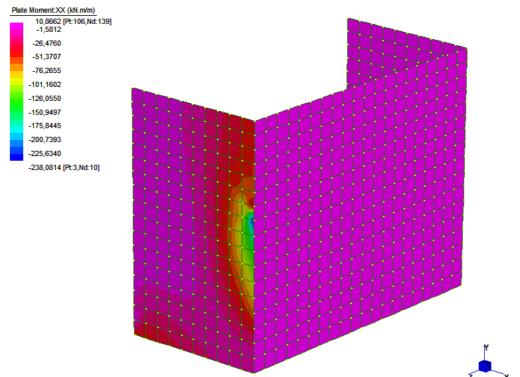
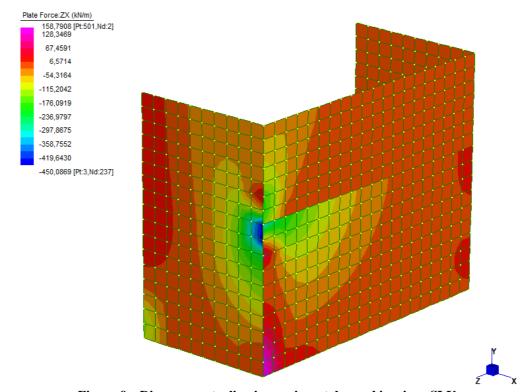



Figura 8 – Diagramma momento flettente piano orizzontale combinazione SLE Quasi Permanenti

 $Figura\ 9-Diagramma\ taglio\ piano\ orizzontale\ combinazione\ SLU$

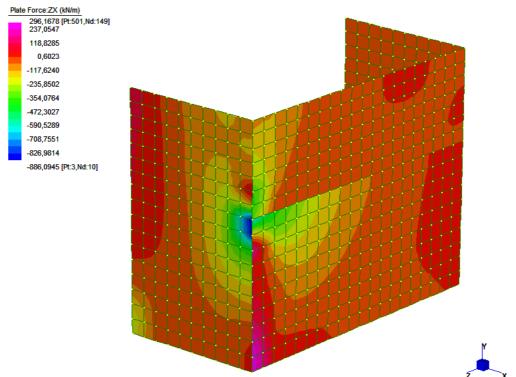


Figura 10 – Diagramma taglio piano orizzontale combinazione SLV

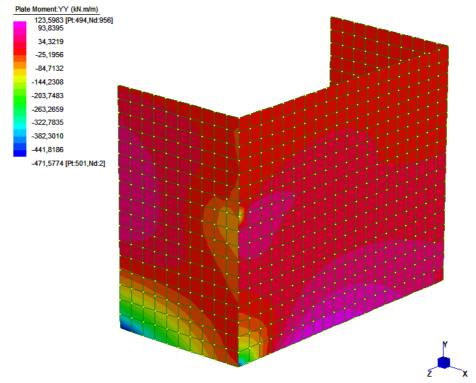


Figura 11 – Diagramma momento flettente piano verticale combinazione SLU

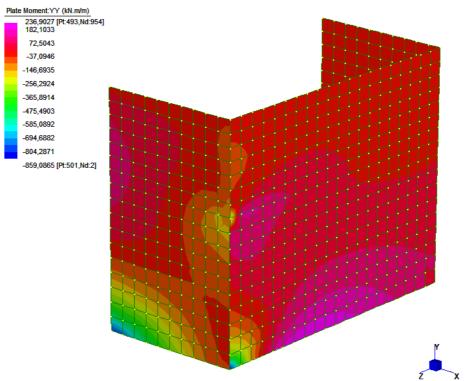


Figura 12 - Diagramma momento flettente piano verticale combinazione SLV

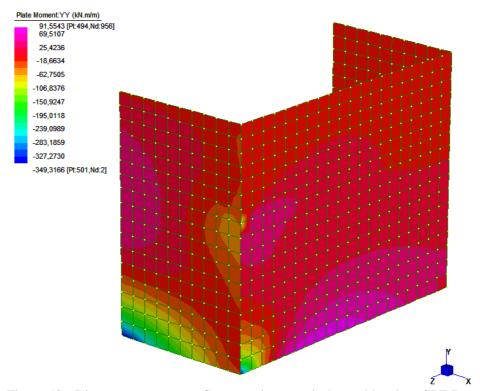


Figura 13 – Diagramma momento flettente piano verticale combinazione SLE Rare

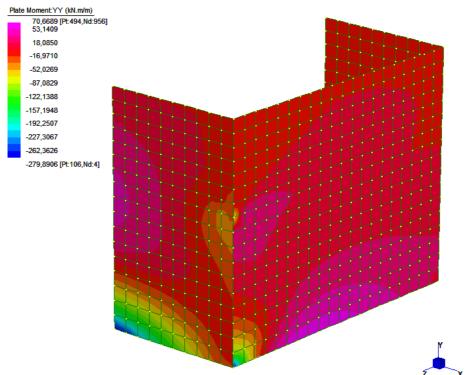


Figura 14 – Diagramma momento flettente piano verticale combinazione SLE Frequenti

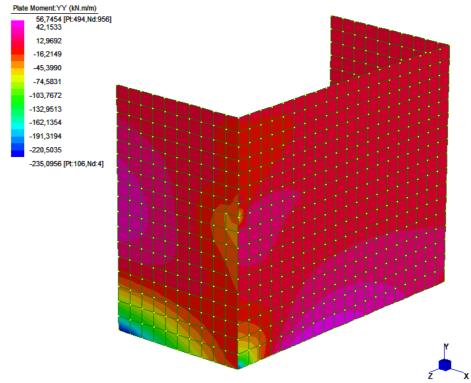


Figura 15 – Diagramma momento flettente piano verticale combinazione SLE Quasi Permanenti

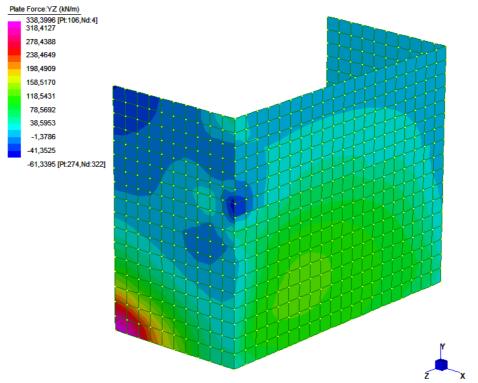


Figura 16 – Diagramma taglio piano verticale combinazione SLU

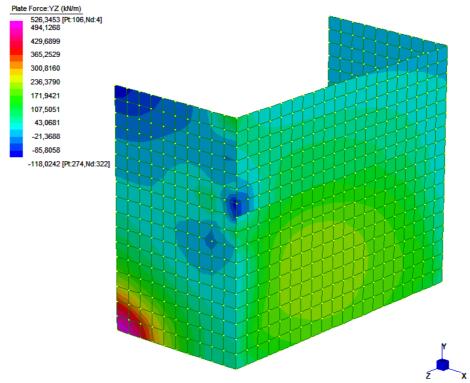


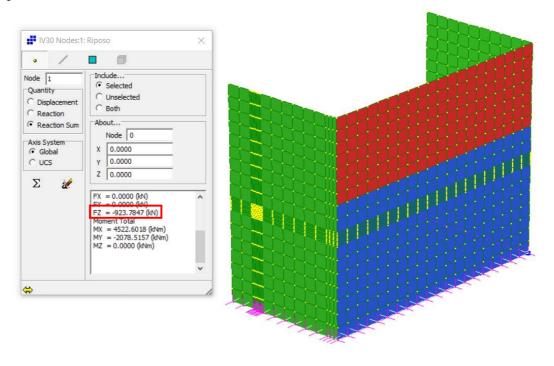
Figura 17 – Diagramma taglio piano verticale combinazione SLV

Sulla base delle sollecitazioni elementari ottenute dalle analisi della struttura, combinando i risultati secondo quanto riportato nello specifico paragrafo, si ricava che le massime sollecitazioni su una sezione di lunghezza unitaria risultano:

Combinazione di carico	V _{ZX} [kN]	V _{YZ} [kN]]	M _{XX} [kNm]	M _{YY} [kNm]
SLU	428	325	320	426
SLV	820	498	610	712
SLE Rare	-	-	237	315
SLE Frequente	-	-	183	256
SLE Quasi Permanente	-	-	147	216

7.9.1 Giudizio motivato di accettabilità dei risultati

I risultati ottenuti dall'analisi agli elementi finiti sono stati confrontati con alcune semplici calcolazioni manuali:

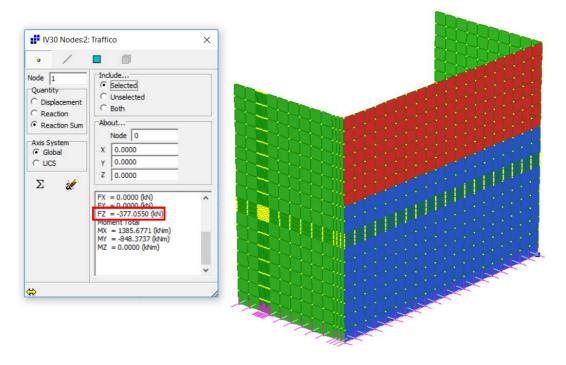

o Per valutare che l'entità delle azioni delle spinte restituite dal software fosse corretta si è svolto un semplice calcolo di controllo: si valuta la spinta triangolare del terreno sul risvolto e sull'orecchio.

SPINTA RIPOSO TERRENO DI MONTE

φ _k [°]	φ _k [rad]	tg(ϕ_k)
38.00	0.66	0.78

M1			
K 0	0.38		
γ	20.00	kN/m^3	
	<u>Risvolto</u>		
L CALCOLO RISVOLTO	4.50	m	
H RISVOLTO	7.35	m	
S RISVOLTO	924	kN	

O La spinta complessiva è risultata di circa 924 kN, tale valore è in effetti similare allo sforzo di taglio indicato dal software (è possibile richiedere al software una somma degli sforzi orizzontali registrati alla base delle strutture in elevazione, come mostrato nell'immagine sottostante). Questo dimostra che il software ha computato correttamente i carichi dati.


o Ad ulteriore controllo si valuta la spinta rettangolare del sovraccarico tergo spalla.

SOVRACCARICO TERGO SPALLA

φ _k [°]	φ _k [rad]	tg(ϕ_k)
38.00	0.66	0.78

	M1		
K 0		0.38	
q		30.00	kN/m^2
	Risvolto		
L CALCOLO RISVOLTO		4.50	m
H RISVOLTO		7.35	m
S RISVOLTO		377	kN

O La spinta complessiva è risultata di circa 377 kN, tale valore è in effetti similare allo sforzo di taglio indicato dal software (è possibile richiedere al software una somma degli sforzi orizzontali registrati alla base delle strutture in elevazione, come mostrato nell'immagine sottostante). Questo dimostra che il software ha computato correttamente i carichi dati.

GENERAL CONTRACTOR Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto INOR 12 E E2 CL IV16 A6 001 A 80 di 109

7.10 Sollecitazioni sulla platea di fondazione

La mensola frontale risulta caricata dall'azione assiale dei pali frontali, i massimi sforzi di compressione, valutati considerando le distribuzioni elastiche, risultano:

SLU	
Nmax (kN)	-4339

SLV		
Nmax (kN)	-5297	

SLE RARA		
Nmax (kN)	-3597	

SLE FREQUENTI		
Nmax (kN)	-3220	

SLE QP		
Nmax (kN)	-2961	

Le azioni dei pali sono sgravate del peso proprio della platea e del peso del terreno di ricoprimento. La sezione di verifica è assunta non a filo fusto ma in posizione affondata nella sezione di incastro per potere consentire idonee diffusioni degli stati tensionali.

Caratteristiche geometriche

Larghezza sezione reagente	340,00 cm
Altezza sezione reagente	220,00 cm
Altezza terreno di ricoprimento	165,00 cm
Sbalzo anteriore fondazione	410,00 cm
Approfondimento sezione di incastro nel fusto	15,00 cm
Luce di calcolo mensola inflessa	425,00 cm
Distanza asse palo da sezione di verifica	310,00 cm
Peso proprio	187,00 kN/m
Peso terreno di ricoprimento	112,20 kN/m

Sollecitazioni sulla sezione di incastro fusto

	VEd [kN]	MEd [kNm]
Combinazioni di Carico SLU	3.067,40	10.748,75
Combinazioni di Carico SLV	4.025,40	13.718,55
Combinazioni di Carico SLE Rare	2.325,40	8.448,55
Combinazioni di Carico SLE Frequenti	1.948,40	7.279,85
Combinazioni di Carico SLE Quasi Perm.	1.689,40	6.476,95

GENERAL CONTRACTOR Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Documento Rev. Foglio INOR 12 E E2 CL IV16 A6 001 A 81 di 109

7.11 Sollecitazioni sui ritegni

Nel presente paragrafo si analizzano i ritegni sismici.

L'azione sollecitante presa in considerazione deriva dalle massime sollecitazioni che sono in grado trasmettere gli appoggi allo SLC.

7.11.1 Ritegni trasversali

I risvolti trasversali sono presenti su tutte le strutture in elevazione, ovvero sia sulle pile che sulle spalle, e pertanto, ai fini dell'analisi dei ritegni in oggetto, si considerano i soli appoggi della spalla.

Nel caso in esame gli isolatori presentano una rigidezza di 4.50kN/mm e uno spostamento massimo che si assume cautelativamente pari a 120 mm.

Si ottiene pertanto una forza su ogni appoggio pari a:

 $F_{Ed} = K\delta = 4.50 \text{ kN/mm} * 120 \text{ mm} = 540 \text{ kN}$

Essendo presenti due isolatori su ciascuna spalla la forza agente sul ritegno in oggetto risulta pari a:

 $F_{Ed} = 540 \text{ kN} * 2 = 1080 \text{ kN}$

7.11.2 Ritegni longitudinali

I risvolti longitudinali sono presenti solo sulle spalle e pertanto, ai fini dell'analisi dei ritegni in oggetto, si considerano gli appoggi presenti nell'intera opera.

Nel caso in esame gli isolatori presentano le seguenti caratteristiche:

	K isolatore	n onn	K tot
[kN/mm]		n app	[kN/mm]
kspA	4.50	2	9.00
kpila 1	6.04	2	12.08
kpila 2	6.04	2	12.08
kpila 3	6.04	2	12.08
kpila 4	6.04	2	12.08
kpila 5	6.04	2	12.08
kpila 6	6.04	2	12.08
kspB	4.50	2	9.00
			78.40

Lo spostamento massimo si assume pari a 120 mm.

Si ottiene pertanto una forza su totale pari a:

 $F_{Ed} = K\delta = 78.40 \text{ kN/mm} * 120 \text{ mm} = 9408 \text{ kN}$

Essendo presenti due isolatori su ciascuna spalla la forza agente sul ritegno in oggetto risulta pari a:

 $F_{Ed} = 9408 \text{ kN} / 2 = 4704 \text{ kN}.$

8 VERIFICHE DEGLI ELEMENTI STRUTTURALI

Si riportano di seguito le verifiche degli elementi strutturali le cui sollecitazioni di verifica sono state calcolate ai paragrafi precedenti.

8.1 Paraghiaia

Il calcolo di verifica si riferisce ad una sezione di larghezza unitaria.

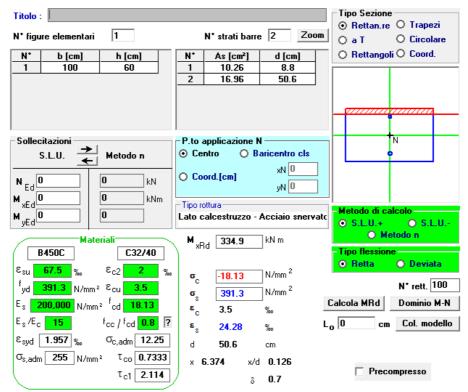
B = 100 cm

H = 60 cm

 $As = \frac{18}{15}$

A's = $\phi 14/15$

Asw = spille $\phi 10/45x20$


8.1.1 Verifiche agli SLU

8.1.1.1 Verifica a flessione

Dalle analisi statiche e sismiche, le sollecitazioni più gravose risultano:

 $M_{Ed} = 216.4 \ kNm$

A favore di sicurezza si trascura il contributo benefico dello sforzo di compressione.

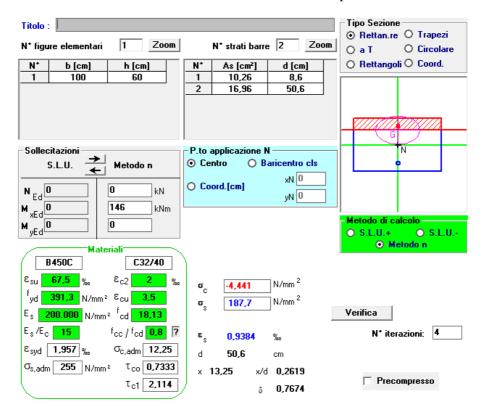
Essendo $M_{RD} > M_{ED}$ la verifica risulta soddisfatta.

GENERAL CONTRACTOR Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto INOR 12 E E2 CL IV16 A6 001 A 83 di 109

8.1.1.2 Verifica a Taglio

			
$V_{\rm sdu}$	158.3	kN	
N_{sdu}	0	kN	
R_{ck}	40	N/mm^2	
f_{ck}	32	N/mm^2	
$\gamma_{ m c}$	1,50		
f_{yk}	450	N/mm^2	
$b_{\rm w}$	100	cm	
d	51,5	cm	
$A_{\rm sl}$	16,96	cm^2	
c	8,5	cm	
α	90	gradi	
α	1,57	rad	
θ	21,80	gradi	
$ctg\theta$	2,50		
A_{sw}	1,78	cm^2	
passo	20	cm	
f_{cd}	18,13	N/mm^2	
f_{yd}	391,30	N/mm^2	
$\sigma_{ m cp}$	0,00	N/mm^2	
Verifica senza armatura resistente a taglio			
V_{Rd}	220	kN	
Verifica con armatura resistente a taglio			
V_{Rcd}	1449	kN	
V_{Rsd}	403	kN	
$ m V_{Rd}$	403	kN	

Essendo $V_{\text{RD}} > V_{\text{ED}}$ la verifica risulta soddisfatta.



8.1.2 Verifiche agli SLE

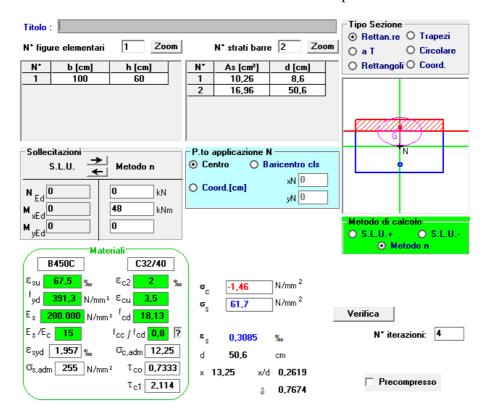
8.1.2.1 Verifiche tensionali

Si determinano i tassi di lavoro sui materiali in condizioni di carico SLE Rare, le sollecitazioni più gravose risultano: $M_{ED} = 146 \text{ KNm}$

A favore di sicurezza si trascura il contributo benefico dello sforzo di compressione.

Essendo σ_c < 0.60 f_{ck} e σ_s < 0.80 f_{yk} la verifica è soddisfatta.

Inoltre, essendo verificata anche la condizione limite riferita agli stati limite di esercizio quasi permanenti (σ_c < 0.45 f_{ck}) non risulta necessario eseguire ulteriori verifiche.



8.1.2.2 Verifiche a fessurazione

Si determinano i tassi di lavoro sui materiali in condizioni di carico SLE Frequenti, le sollecitazioni più gravose risultano:

 $M_{ED} = 48 \text{ kNm}$

A favore di sicurezza si trascura il contributo benefico dello sforzo di compressione.

I tassi di lavoro nelle armature nelle combinazioni di carico agli Stati Limite di Esercizio Frequenti permangono inferiori ai limiti riportati nelle tabelle C4.1.II e C4.1.III della Circolare 2 febbraio 2009 n. 617 (punto C4.1.2.2.4.6). La verifica dell'ampiezza di fessurazione è da intendersi pertanto svolta per via indiretta ed implicitamente soddisfatta in ragione dei tassi di lavoro di progetto sulle armature precedentemente determinati.

Inoltre, essendo verificata anche la condizione limite riferita agli stati limite di esercizio quasi permanenti non risulta necessario eseguire ulteriori verifiche.

8.2 Muri di risvolto

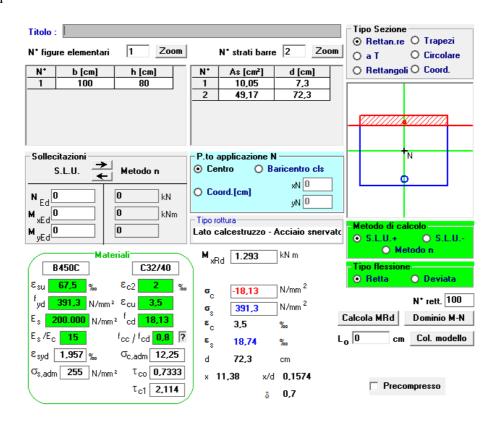
Il calcolo di verifica si riferisce ad una sezione di larghezza unitaria.

B = 100 cm

H = 80 cm

 $As = \frac{\phi}{24/20} + \frac{\phi}{26/20}$

A's = $\phi 16/20$


Asw = spille $\phi 10/20x20$

8.2.1 Verifiche agli SLU

8.2.1.1 Verifica a flessione

Dalle analisi statiche e sismiche, le sollecitazioni più gravose risultano:

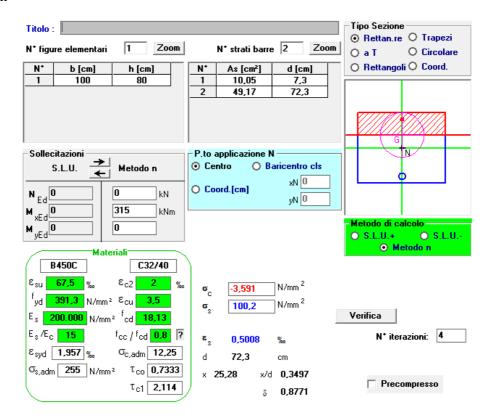
 $M_{Ed} = 712 \text{ kNm}$

Essendo $M_{RD} > M_{ED}$ la verifica risulta soddisfatta.

GENERAL CONTRACTOR Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto INOR 12 E E2 CL IV16 A6 001 A 87 di 109

8.2.1.2 Verifica a Taglio

	_		
$V_{ m sdu}$	820	kN	
$N_{ m sdu}$	0	kN	
R_{ck}	40	N/mm^2	
f_{ck}	32	N/mm^2	
γο	1,50		
f_{yk}	450	N/mm^2	
$b_{\rm w}$	100	cm	
d	72,3	cm	
A_{sl}	49,15	cm^2	
c	7,70	cm	
α	90	gradi	
α	1,57	rad	
θ	21,80	gradi	
$ctg\theta$	2,50		
A_{sw}	4,00	cm^2	
passo	20	cm	
f_{cd}	18,13	N/mm^2	
f_{yd}	391,30	N/mm^2	
$\sigma_{ m cp}$	0,00	N/mm^2	
Verifica senza armatura resistente a taglio			
V_{Rd}	370	kN	
Verifica con armatura resistente a taglio			
V_{Rcd}	2034	kN	
V_{Rsd}	1273	kN	
$V_{ m Rd}$	1273	kN	
	<u> </u>		

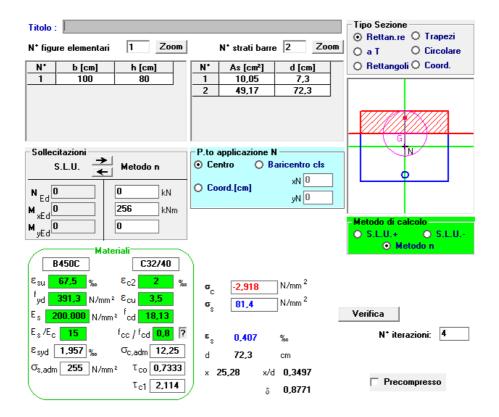

Essendo $V_{\text{RD}} > V_{\text{ED}}$ la verifica risulta soddisfatta.

8.2.2 Verifiche agli SLE

8.2.2.1 Verifiche tensionali

Si determinano i tassi di lavoro sui materiali in condizioni di carico SLE Rare, le sollecitazioni più gravose risultano: $M_{ED} = 315 \, \text{KNm}$

Essendo $\sigma_c\!<\!0.60~f_{ck}~e~\sigma_s\!<\!0.80~f_{yk}$ la verifica è soddisfatta.


Inoltre, essendo verificata anche la condizione limite riferita agli stati limite di esercizio quasi permanenti (σ_c < 0.45 f_{ck}) non risulta necessario eseguire ulteriori verifiche.

8.2.2.2 Verifiche a fessurazione

Si determinano i tassi di lavoro sui materiali in condizioni di carico SLE Frequenti, le sollecitazioni più gravose risultano:

 $M_{ED} = 256 \text{ kNm}$

I tassi di lavoro nelle armature nelle combinazioni di carico agli Stati Limite di Esercizio Frequenti permangono inferiori ai limiti riportati nelle tabelle C4.1.II e C4.1.III della Circolare 2 febbraio 2009 n. 617 (punto C4.1.2.2.4.6). La verifica dell'ampiezza di fessurazione è da intendersi pertanto svolta per via indiretta ed implicitamente soddisfatta in ragione dei tassi di lavoro di progetto sulle armature precedentemente determinati.

Inoltre, essendo verificata anche la condizione limite riferita agli stati limite di esercizio quasi permanenti non risulta necessario eseguire ulteriori verifiche.

8.3 Sezione di spiccato fusto

Il calcolo di verifica si riferisce ad una sezione di larghezza unitaria.

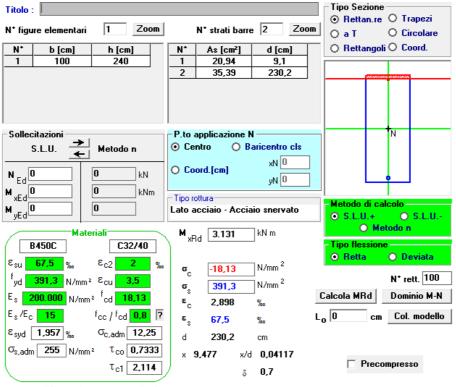
B = 100 cm

H = 240 cm

 $As = \frac{\phi}{26}/15$

A's = $\phi 20/15$

Asw = spille $\phi 10/45x20$


8.3.1 Verifiche agli SLU

8.3.1.1 Verifica a flessione

Dalle analisi statiche e sismiche, le sollecitazioni più gravose risultano:

 $M_{Ed} = 2839 \text{ kNm}$

A favore di sicurezza si trascura il contributo benefico dello sforzo di compressione.

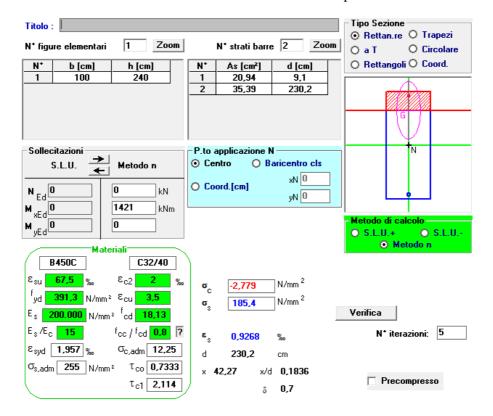
Essendo $M_{RD} > M_{ED}$ la verifica risulta soddisfatta.

GENERAL CONTRACTOR Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Doc. N. Progetto Lotto Codifica Documento Rev. Foglio INOR 12 E E2 CL IV16 A6 001 A 91 di 109

8.3.1.2 Verifica a Taglio

5.5.1.2 Verifica a	<u>rugiro</u>		
$V_{\rm sdu}$	757	kN	
N_{sdu}	0	kN	
Rck	40	N/mm^2	
f_{ck}	32	N/mm^2	
γ _c	1,50		
f_{yk}	450	N/mm^2	
$b_{\rm w}$	100	cm	
d	230,2	cm	
A_{sl}	35,40	cm^2	
c	9,80	cm	
α	90	gradi	
α	1,57	rad	
θ	21,80	gradi	
ctgθ	2,50		
$\theta_{imposto}$	21,80	gradi	
A_{sw}	1,78	cm^2	
passo	20	cm	
f_{cd}	18,13	N/mm^2	
f_{yd}	391,30	N/mm^2	
$\sigma_{ m cp}$	0,00	N/mm^2	
Verifica senza a	rmatura resiste	nte a taglio	
V_{Rd}	671	kN	
Verifica con armatura resistente a taglio			
V_{Rcd}	6477	kN	
$ m V_{Rsd}$	1802	kN	
V_{Rd}	1802	kN	

Essendo $V_{\text{RD}} > V_{\text{ED}}$ la verifica risulta soddisfatta.


8.3.2 Verifiche agli SLE

8.3.2.1 Verifiche tensionali

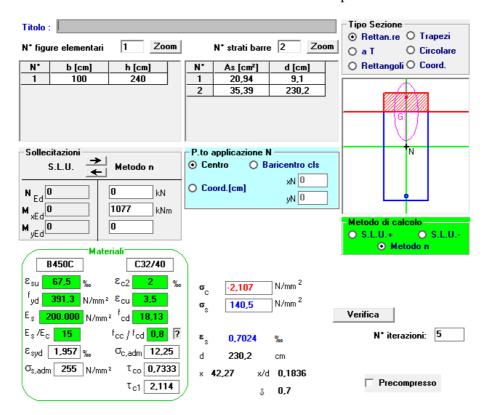
Si determinano i tassi di lavoro sui materiali in condizioni di carico SLE Rare, le sollecitazioni più gravose risultano:

 $M_{ED} = 1421 \text{ KNm}$

A favore di sicurezza si trascura il contributo benefico dello sforzo di compressione.

Essendo $\sigma_c < 0.60 \; f_{ck} \; e \; \sigma_s < 0.80 \; f_{yk}$ la verifica è soddisfatta.

Inoltre, essendo verificata anche la condizione limite riferita agli stati limite di esercizio quasi permanenti (σ_c < 0.45 f_{ck}) non risulta necessario eseguire ulteriori verifiche.



8.3.2.2 Verifiche a fessurazione

Si determinano i tassi di lavoro sui materiali in condizioni di carico SLE Frequenti, le sollecitazioni più gravose risultano:

 $M_{ED} = 1077 \; kNm$

A favore di sicurezza si trascura il contributo benefico dello sforzo di compressione.

I tassi di lavoro nelle armature nelle combinazioni di carico agli Stati Limite di Esercizio Frequenti permangono inferiori ai limiti riportati nelle tabelle C4.1.II e C4.1.III della Circolare 2 febbraio 2009 n. 617 (punto C4.1.2.2.4.6). La verifica dell'ampiezza di fessurazione è da intendersi pertanto svolta per via indiretta ed implicitamente soddisfatta in ragione dei tassi di lavoro di progetto sulle armature precedentemente determinati. Inoltre, essendo verificata anche la condizione limite riferita agli stati limite di esercizio quasi permanenti non risulta necessario eseguire ulteriori verifiche.

8.4 Platea di fondazione

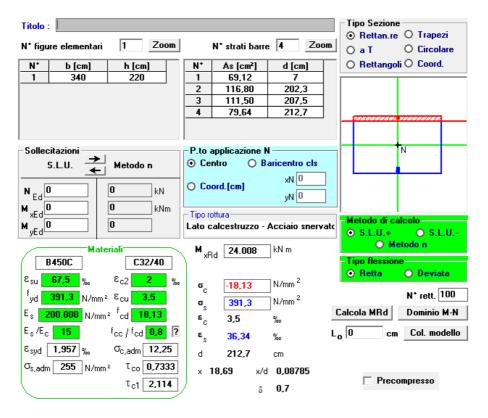
Il calcolo di verifica si riferisce ad una sezione di larghezza unitaria.

B = 340 cm

H = 220 cm

 $As = 1\phi 26/15 + 36\phi 26$

A's = $\phi 20/15$


Asw = spille $\phi 14/30x40$

8.4.1 Verifiche agli SLU

8.4.1.1 Verifica a flessione

Dalle analisi statiche e sismiche, le sollecitazioni più gravose risultano:

 $M_{Ed} = 13719 \text{ kNm}$

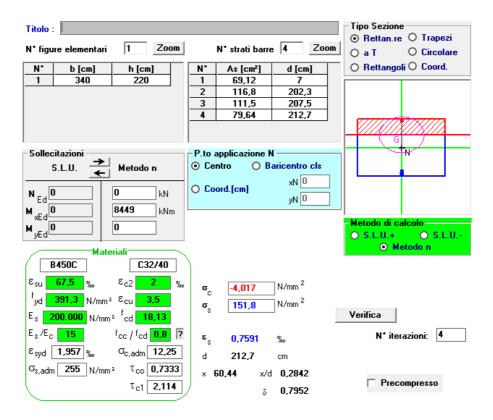
Essendo $M_{RD} > M_{ED}$ la verifica risulta soddisfatta.

GENERAL CONTRACTOR Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Doc. N. Progetto Lotto Codifica Documento Rev. Foglio 1NOR 12 E E2 CL IV16 A6 001 A 95 di 109

8.4.1.2 Verifica a Taglio

5.4.1.2 <u>verifica a</u>	rugiio		
$V_{\rm sdu}$	4025	kN	
$N_{\rm sdu}$	0	kN	
R_{ck}	40	N/mm^2	
f_{ck}	32	N/mm^2	
γο	1,50		
f_{yk}	450	N/mm^2	
$b_{\rm w}$	340	cm	
d	212,7	cm	
A_{sl}	307,98	cm^2	
С	7,30	cm	
α	90	gradi	
α	1,57	rad	
θ	21,80	gradi	
$ctg\theta$	2,50		
A_{sw}	17,45	cm^2	
passo	40	cm	
f_{cd}	18,13	N/mm^2	
f_{yd}	391,30	N/mm^2	
$\sigma_{ m cp}$	0,00	N/mm ²	
Verifica senza a	rmatura resiste	nte a taglio	
V_{Rd}	2708	kN	
Verifica con armatura resistente a taglio			
V_{Rcd}	20348	kN	
V_{Rsd}	8172	kN	
V_{Rd}	8172	kN	

Essendo $V_{\text{RD}} > V_{\text{ED}}$ la verifica risulta soddisfatta.



8.4.2 Verifiche agli SLE

8.4.2.1 Verifiche tensionali

Si determinano i tassi di lavoro sui materiali in condizioni di carico SLE Rare, le sollecitazioni più gravose risultano:

 $M_{ED} = 8449 \text{ KNm}$

Essendo $\sigma_c < 0.60 \; f_{ck} \; e \; \sigma_s < 0.80 \; f_{yk}$ la verifica è soddisfatta.


Inoltre, essendo verificata anche la condizione limite riferita agli stati limite di esercizio quasi permanenti (σ_c < 0.45 f_{ck}) non risulta necessario eseguire ulteriori verifiche.

8.4.2.2 Verifiche a fessurazione

Si determinano i tassi di lavoro sui materiali in condizioni di carico SLE Frequenti, le sollecitazioni più gravose risultano:

 $M_{ED} = 7280 \text{ kNm}$

I tassi di lavoro nelle armature nelle combinazioni di carico agli Stati Limite di Esercizio Frequenti permangono inferiori ai limiti riportati nelle tabelle C4.1.II e C4.1.III della Circolare 2 febbraio 2009 n. 617 (punto C4.1.2.2.4.6). La verifica dell'ampiezza di fessurazione è da intendersi pertanto svolta per via indiretta ed implicitamente soddisfatta in ragione dei tassi di lavoro di progetto sulle armature precedentemente determinati. Inoltre, essendo verificata anche la condizione limite riferita agli stati limite di esercizio quasi permanenti non risulta necessario eseguire ulteriori verifiche.

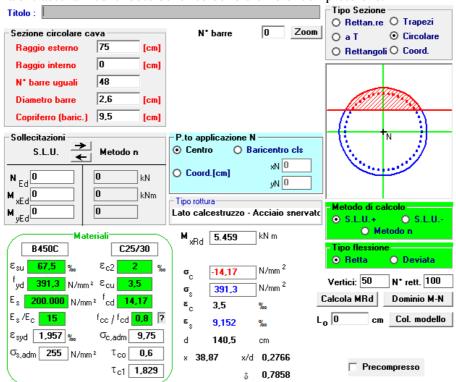
8.5 Pali di fondazione – Sezione testa palo (profondità 0.00m)

Il calcolo di verifica si riferisce alla sezione di testa palo che, dalle analisi effettuate, risulta la più sollecitata.

D = 150 cm

 $As = 48\phi 26$

Asw = staffe $\phi 12/10$


8.5.1 Verifiche agli SLU

8.5.1.1 Verifica a flessione

Dalle analisi statiche e sismiche, le sollecitazioni più gravose risultano:

 $M_{\text{Ed}} = 4412 \; kNm$

A favore di sicurezza si trascura il contributo benefico dello sforzo di compressione.

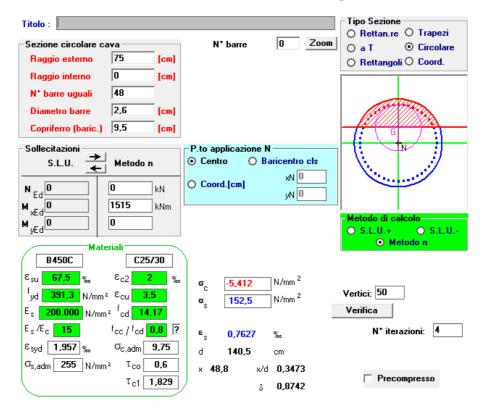
Essendo $M_{RD} > M_{ED}$ la verifica risulta soddisfatta.

GENERAL CONTRACTOR Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto INOR 12 E E2 CL IV16 A6 001 A 99 di 109

8.5.1.2 Verifica a Taglio

, , , , , , , , , , , , , , , , , , ,	145110		
$V_{\rm ed}$	1635	kN	
$N_{\rm ed}$	0	kN	
R_{ck}	30	N/mm^2	
f_{ck}	25	N/mm^2	
$\gamma_{\rm c}$	1,50		
f_{yk}	450	N/mm^2	
Φ	150	cm	
$b_{\rm w}$	135,00	cm	
h _e	93,67	cm	
d	84,17	cm	
A_{sl}	254,88	cm^2	
с	9,50	cm	
α	90	gradi	
α	1,57	rad	
θ	21,80	gradi	
ctgθ	2,50		
A_{sw}	2,26	cm^2	
passo	10	cm	
$ m f_{cd}$	14,17	N/mm^2	
$ m f_{yd}$	391,30	N/mm^2	
$\sigma_{ m cp}$	0,00	N/mm^2	
Verifica senza armatura resistente a taglio			
V_{Rd}	616	kN	
Verifica con armatura resistente a taglio			
V_{Rcd}	2498	kN	
$ m V_{Rsd}$	1675	kN	
V_{Rd}	1675	kN	

Essendo $V_{\text{RD}} > V_{\text{ED}}$ la verifica risulta soddisfatta.



8.5.2 Verifiche agli SLE

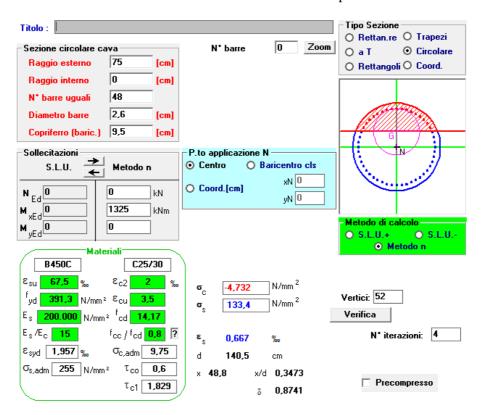
8.5.2.1 Verifiche tensionali

Si determinano i tassi di lavoro sui materiali in condizioni di carico SLE Rare, le sollecitazioni più gravose risultano: $M_{ED} = 1515 \text{ KNm}$

A favore di sicurezza si trascura il contributo benefico dello sforzo di compressione.

Essendo $\sigma_c < 0.60 \; f_{ck} \; e \; \sigma_s < 0.80 \; f_{yk} \; la \; verifica è soddisfatta.$

Inoltre, essendo verificata anche la condizione limite riferita agli stati limite di esercizio quasi permanenti (σ_c < 0.45 f_{ck}) non risulta necessario eseguire ulteriori verifiche.



8.5.2.2 Verifiche a fessurazione

Si determinano i tassi di lavoro sui materiali in condizioni di carico SLE Frequenti, le sollecitazioni più gravose risultano:

 $M_{ED} = 1325 \text{ kNm}$

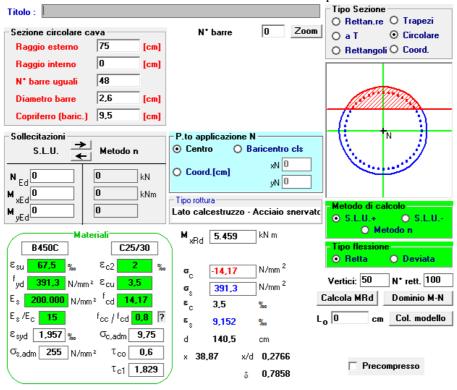
A favore di sicurezza si trascura il contributo benefico dello sforzo di compressione.

I tassi di lavoro nelle armature nelle combinazioni di carico agli Stati Limite di Esercizio Frequenti permangono inferiori ai limiti riportati nelle tabelle C4.1.II e C4.1.III della Circolare 2 febbraio 2009 n. 617 (punto C4.1.2.2.4.6). La verifica dell'ampiezza di fessurazione è da intendersi pertanto svolta per via indiretta ed implicitamente soddisfatta in ragione dei tassi di lavoro di progetto sulle armature precedentemente determinati.

Inoltre, essendo verificata anche la condizione limite riferita agli stati limite di esercizio quasi permanenti non risulta necessario eseguire ulteriori verifiche.

8.6 Pali di fondazione – Prima sezione cambio armatura (profondità 15.00m)

Il calcolo di verifica si riferisce alla sezione di cambio armatura, posizionata a 15.00m di profondità dalla testa del palo:


D = 150 cm $As = 48\phi26$ $Asw = staffe \phi12/20$

8.6.1 Verifiche agli SLU

8.6.1.1 Verifica a flessione

Dalle analisi statiche e sismiche, le sollecitazioni più gravose risultano: $M_{\text{Ed}} = 878 \text{ kNm}$

A favore di sicurezza si trascura il contributo benefico dello sforzo di compressione.

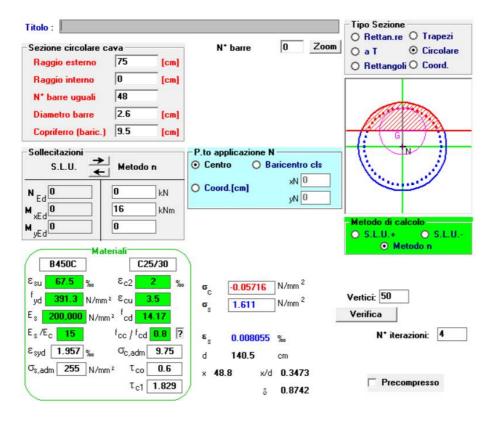
Essendo $M_{RD} > M_{ED}$ la verifica risulta soddisfatta.

GENERAL CONTRACTOR Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto INOR 12 E E2 CL IV16 A6 001 A 103 di 109

8.6.1.2 Verifica a Taglio

· · · · · · · · · · · · · · · · · · ·	rugno		
$V_{\rm ed}$	255	kN	
$N_{\rm ed}$	0	kN	
R_{ck}	30	N/mm^2	
f_{ck}	25	N/mm^2	
$\gamma_{\rm c}$	1,50		
f_{yk}	450	N/mm ²	
Φ	150	cm	
$b_{ m w}$	135,00	cm	
$\mathbf{h_{e}}$	93,67	cm	
d	84,17	cm	
A_{sl}	191,16	cm ²	
c	9,50	cm	
α	90	gradi	
α	1,57	rad	
θ	21,80	gradi	
ctgθ	2,50		
A_{sw}	2,26	cm^2	
passo	20	cm	
$ m f_{cd}$	14,17	N/mm^2	
$f_{ m yd}$	391,30	N/mm^2	
$\sigma_{ m cp}$	0,00	N/mm ²	
Verifica senza armatura resistente a taglio			
V_{Rd}	560	kN	
Verifica con armatura resistente a taglio			
V_{Rcd}	2498	kN	
$V_{ m Rsd}$	838	kN	
$V_{ m Rd}$	838	kN	

Essendo $V_{\text{RD}} > V_{\text{ED}}$ la verifica risulta soddisfatta.


8.6.2 Verifiche agli SLE

8.6.2.1 Verifiche tensionali e a fessurazione

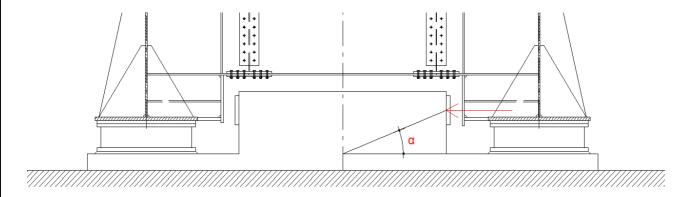
Si determinano i tassi di lavoro sui materiali in condizioni di carico SLE Rare, le sollecitazioni più gravose risultano:

 $M_{ED} = 16 \text{ KNm}$

A favore di sicurezza si trascura il contributo benefico dello sforzo di compressione.

Essendo $\sigma_c < 0.60 \; f_{ck} \; e \; \sigma_s < 0.80 \; f_{yk}$ la verifica è soddisfatta.

Inoltre, essendo verificata anche la condizione limite riferita agli stati limite di esercizio quasi permanenti (σ_c < 0.45 f_{ck}) non risulta necessario eseguire ulteriori verifiche.


I tassi di lavoro nelle armature, valutati cautelativamente in combinazione di carico agli Stati Limite di Esercizio Rare, permangono inferiori ai limiti riportati nelle tabelle C4.1.II e C4.1.III della Circolare 2 febbraio 2009 n. 617 (punto C4.1.2.2.4.6). La verifica dell'ampiezza di fessurazione è da intendersi pertanto svolta per via indiretta ed implicitamente soddisfatta in ragione dei tassi di lavoro di progetto sulle armature precedentemente determinati. Inoltre, essendo verificata anche la condizione limite riferita agli stati limite di esercizio quasi permanenti non risulta necessario eseguire ulteriori verifiche.

8.7 Ritegni

8.7.1 Ritegni trasversali

La verifica è eseguita avvalendosi del metodo tirante-puntone. Si assume che il carico generi la formazione di una biella compressa di inclinazione pari ad α che dipende dalla geometria del ritegno. A favore di sicurezza si adotta α =45°.

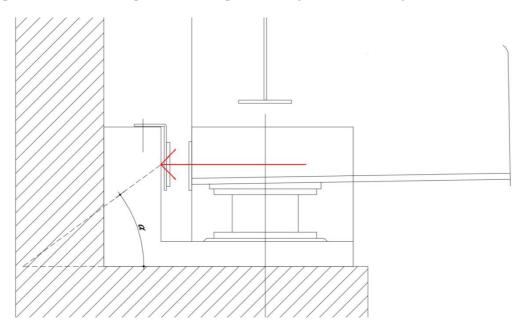
La trazione che nasce nelle armature può quindi essere calcolata mediante considerazioni geometriche, come nel seguito riportato:

$$T_{Ed} = F_{Ed} * tan \alpha = 1080 \text{ kN} * tan (45^{\circ}) = 1080 \text{ kN}$$

A favore di sicurezza si considera un'armatura costituita solo dai ferri posti sul lato minore del ritegno, ovvero $10\varphi26$: $A_s = 5310 mm^2$

La trazione resistente vale pertanto:

$$T_{Rd} = A_s * f_{yd} = 5310 \text{ mm}^2 * 391 \text{ MPa} = 2076 \text{ kN}$$


Si ottiene:

 $T_{Ed}/T_{Rd} = 1080 \; kN \; / \; 2076 kN = 0.52 < 1 \; verificato$

8.7.2 Ritegni longitudinali

La verifica è eseguita avvalendosi del metodo tirante-puntone. Si assume che il carico generi la formazione di una biella compressa di inclinazione pari ad α che dipende dalla geometria del ritegno.

La trazione che nasce nelle armature può quindi essere calcolata mediante considerazioni geometriche, come nel seguito riportato:

$$T_{Ed} = F_{Ed} * tan \alpha = 4704 \text{ kN} * tan (35^\circ) = 3294 \text{ kN}$$

A favore di sicurezza si considera un'armatura costituita solo dai ferri posti sul lato minore del ritegno, ovvero $17\varphi26$: $A_s = 9027 \text{ mm}^2$

La trazione resistente vale pertanto:

$$T_{Rd} = A_s * f_{yd} = 9027 \text{ mm}^2 * 391 \text{ MPa} = 3530 \text{ kN}$$

Si ottiene

 $T_{Ed}/T_{Rd} = 3294 \ kN \ / \ 3530 \ kN = 0.93 < 1 \ verificato$

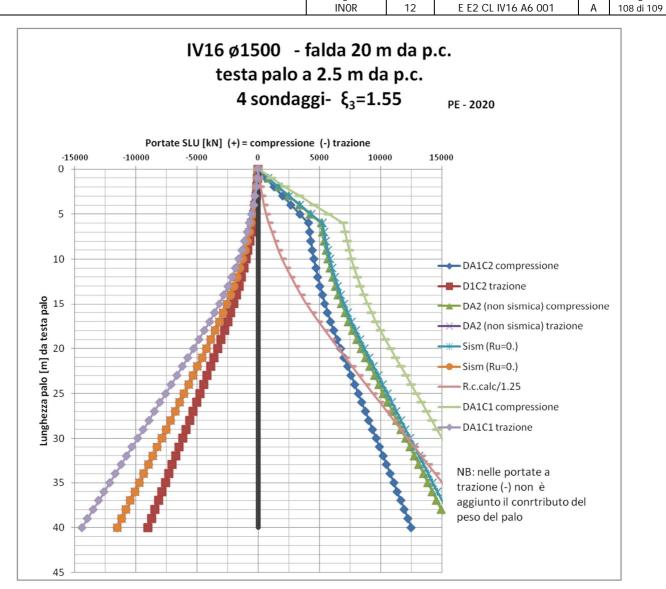
9 VERIFICHE GEOTECNICHE

9.1 Verifica di portanza verticale della palificata

Dalle analisi statiche e sismiche i massimi sforzi di compressione risultano:

 $N_{max,SLU} = -4399 \text{ kN}$

 $N_{max,SLV} = -5297 \text{ kN}$


 $N_{max,SLE} = -3597 \text{ kN}$

Si adottano pali di lunghezza pari a 18.00m.

Si riportano di seguito la tabella e il diagramma di portanza del palo singolo forniti dal Progettista Geotecnico per l'opera in oggetto:

Profondità	DA2 (non sismica)		SISMIC	A
	Compressione	Trazione	Compressione	Trazione
0	2	0	2	0
1	816	-50	830	-50
2	1648	-118	1677	-118
3	2499	-202	2543	-202
4	3368	-303	3427	-303
5	4256	-422	4330	-422
6	5163	-557	5251	-557
7	5271	-710	5375	-710
8	5398	-879	5517	-879
9	5544	-1066	5677	-1066
10	5708	-1270	5856	-1270
11	5891	-1491	6054	-1491
12	6092	-1729	6270	-1729
13	6312	-1984	6505	-1984
14	6551	-2256	6758	-2256
15	6808	-2545	7030	-2545
16	7083	-2851	7320	-2851
17	7377	-3174	7629	-3174
18	7699	-3514	7963	-3514
19	8047	-3865	8320	-3865
20	8406	-4226	8687	-4226

9.2 Verifica di portanza orizzontale della palificata

Dalle analisi statiche e sismiche i massimi sforzi di taglio agenti sulla palificata risultano:

 $T_{max,SLU} = 7281 \text{ kN}$ $T_{max,SLV} = 10962 \text{ kN}$

Si riporta di seguito la verifica di portanza orizzontale della palificata, eseguita sulla base dei dati forniti dal Progettista Geotecnico per l'opera in oggetto:

 $\begin{array}{ccc} R_{front} & & 11625 & kN \\ R_{sides} & & 14302 & kN \\ \hline & & 25927 & kN \end{array}$

 R_d = 25927 / 1.3 = 19944 kN eff.gr = 25927 / (3875 · 9) 0.743

Essendo T_{Rd} = 19944 kN > T_{Ed} la verifica risulta soddisfatta.

Si procede determinando la quota di profondità della cerniera plastica:

R_{d,SAFE}

profondità cerniera plastica

19922 kN

11.37 m

Per garantire la formazione della cerniera plastica in profondità si prevede il prolungamento dell'armatura in grado di garantire il momento resistente sufficiente a soddisfare la verifica $(48\phi26)$ fino alla quota di 18m.