COMMITTENTE:

ALTA SORVEGLIANZA:

GENERAL CONTRACTOR:

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N. 443/01

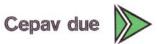
LINEA A.V. /A.C. TORINO – VENEZIA Tratta MILANO – VERONA Lotto funzionale Brescia-Verona

PROGETTO ESECUTIVO

VARIANTE DI TRACCIATO IN CORRISPONDENZA PROPRIETÀ ANCAP RELAZIONE IDRAULICA

GENERAL CONTRACTOR	DIRETTORE LAVORI
Consorzio Cepaw due Il Direttore del Consorzio (Ing. T. Taylanta) Data:	Data:
COMMESSA LOTTO FASE BNTE TIPO	DOC OPERA/DISCIPLINA PROGR REV
I N 0 R 1 1 E E 2 R	I R I 0 0 0 4 0 0 1 A
PROGETTAZIONE	L PROGETTISTA
Rev. Descrizione Redatto Data	
A Emissione ZIFFERERO 29/03/21	Verificato Data Progettista Data AIELLO 29/03/21 PROGETTISTO Data 29/03/21 PROGETTISTO DATA 29/03/21
В	23076 SI REGORDINIE (INGIV. Aleib) ALBO ÁRONI TALE NIGENERI VERONA
С	Data: 29/03/21
CIG. 751447334A	File: INOR11EE2RIRI0004001A_01.docx

Progetto cofinanziato dalla Unione Europea


CUP: F81H91000000008

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 11 E E2 RI RI 00 04 001 A 2 di 45

INI	DICE	
1.	PRE	EMESSA4
2.	NOI	RMATIVA DI RIFERIMENTO
3.	PAF	RAMETRI DI RIFERIMENTO
3	3.1.	IDROLOGIA5
3	3.2.	COEFFICIENTI DI DEFLUSSO
3	3.3.	COEFFICIENTE DI PERMEABILITÀ
4.	DRI	ENAGGIO DELLE ACQUE DI PIATTAFORMA
4	4.1.	DESCRIZIONE DEL SISTEMA
4	4.2.	METODOLOGIA DI VERIFICA DEI FOSSI/VASCHE DRENANTI
4	4.3.	METODOLOGIA DI VERIFICA DELLE CANALETTE
2	1.4.	METODOLOGIA DI VERIFICA DEI TOMBINI DI ATTRAVERSAMENTO
5.	VE	RIFICHE FOSSI/VASCHE DRENANTI
4	5.1.	FOSSO IN DESTRA DA PK 146+305 A PK 146+500
4	5.2.	VASCA DRENANTE A PK 145+371
4	5.3.	VASCA DRENANTE A PK 145+950
4	5.4.	VASCA DRENANTE A PK 146+450
6.	VEI	RIFICHE CANALETTE
(5.1.	TRATTO DA INIZIO INTERVENTO A PK 144+899 – RI58
(5.2.	TRATTO DA PK 144+899 A PK 145+371 – CANALETTA LS LATO BD
(5.3.	Tratto da pk 144+899 a pk 145+371 – Canaletta interclusa tra AV e LS
(5.4.	TRATTO DA PK 144+899 A PK 145+371 – CANALETTA AV LATO BP
(5.5.	TRATTO DA PK 145+371 A PK 145+950 – CANALETTA INTERCLUSA TRA AV E LS
(5.6.	TRATTO DA PK 145+371 A PK 145+950 – CANALETTA AV LATO BP
(5.7.	Tratto da pk 145+950 a pk 146+067 – Canaletta interclusa tra AV e LS
(5.8.	TRATTO DA PK 146+067 A 146+500 – CANALETTA LATO BD PRECEDENZA
(5.9.	TRATTO DA PK 146+067 A 146+500 – CANALETTA INTERCLUSA TRA AV E LS
7.	VEI	RIFICHE TOMBINI DI ATTRAVERSAMENTO

Doc. N.		Progetto INOR	Lotto 11	Codifica Documento E E2 RI RI 00 04 001	Rev. A	Foglio 3 di 45
7.1.	TRATTO DA INIZIO INTERVENTO A PK 144+899					40
7.2.	TOMBINO DN600 ALLA PK 145+371					40
7.3.	TOMBINO DN1500 ALLA PK 145+950					42
7.4.	TOMBINO DN1500 ALLA PK 146+067					43
7.5	TOMBINO DN1500 ALLA DV 146+375					15

1. PREMESSA

La presente relazione è relativa alle verifiche inerenti le opere di presidio idraulico relative allo smaltimento delle acque di piattaforma lungo la linea A.V. /A.C. TORINO – VENEZIA, tratta MILANO – VERONA, lotto funzionale Brescia – Verona, nel tratto cosiddetto di "variante Ancap".

Tale variante si è resa necessaria per ovviare alla problematica della tempistica della rilocazione della fabbrica di ceramiche Ancap sul cui sedime insisteva il tracciato di PD e di PE.

La variante si sviluppa comprendendo le WBS di PE RI58 (interessata parzialmente), TR23, RI59, TR24 e RI60 (interessata parzialmente).

La presente relazione valida e assume come base le conclusioni delle analisi idrologiche e idrografiche svolte nell'ambito del Progetto Definitivo, in particolare per quanto concerne i parametri di pluviometria in funzione dei vari tempi di ritorno.

Trattandosi di un progetto preliminare di variante sono state tenute in considerazione anche le relazioni idrauliche già presentate per i Progetti Esecutivi delle WBS parzialmente interessate (RI58 e RI60), alle quali sarà fatto in seguito specifico riferimento per gli elementi non modificati.

2. NORMATIVA DI RIFERIMENTO

I principali riferimenti normativi utilizzati per la presente progettazione vengono riassunti di seguito:

- D. Lgs. 3 aprile 2006, n.152, "Norme in materia ambientale"
- D. Lgs. 16 gennaio 2008, n. 4, "Ulteriori disposizioni correttive ed integrative del decreto legislativo 3 aprile 2006, n. 152, recante norme in materia ambientale"
- Deliberazione della Giunta Regionale del Veneto DGRV 6 ottobre 2009 n. 2948, "Nuove indicazioni per la formazione degli strumenti urbanistici" e in particolare l'Allegato A, "Valutazione di compatibilità idraulica per la redazione di nuovi strumenti urbanistici. Modalità operative e indicazioni tecniche".

3. PARAMETRI DI RIFERIMENTO

3.1. Idrologia

La previsione quantitativa delle piogge nell'area di interesse è stata realizzata attraverso la determinazione della curva di possibilità pluviometrica individuante la relazione che intercorre tra il tempo di pioggia (t) e l'altezza d'acqua piovuta (h), secondo la seguente formulazione:

$$h(t) = a \cdot t^n$$

nella quale i termini a ed n sono parametri dipendenti dal tempo di ritorno specificato.

Per quanto riguarda la distribuzione spaziale delle precipitazioni intense, è stata condotta, negli elaborati PAI, un'interpolazione spaziale con il metodo di Kriging dei parametri a e n delle linee segnalatrici, discretizzate in base ad un reticolo di 2 km di lato. Grazie a questa elaborazione si consente il calcolo delle linee segnalatrici in ciascun punto del bacino per tempi di ritorno di 20, 100, 200 e 500 anni, identificando la localizzazione sulla corografia.

Il tempo di ritorno utilizzato come riferimento è $T_R = 100$ anni, in linea con quanto prescritto nel manuale di progettazione Italferr, parte II sezione 3.

Si riportano di seguito le celle quadrate 2x2 km interessate dalla linea ferroviaria di progetto con i parametri a e n relativi a tempi di pioggia superiori all'ora.

Intervallo km	Cella PAI	a Tr20	n Tr20	a Tr25	n Tr25	a Tr50	n Tr50	a Tr100	n Tr100	a Tr200	n Tr200	a Tr500	n Tr500
da 109+121 a 110+877	EY83	45,65	0,251	47,23	0,250	52,50	0,247	58,35	0,244	63,78	0,242	70,94	0,239
da 110+877 a 112+881	EZ83	46,23	0,250	47,85	0,249	53,24	0,246	59,24	0,243	64,81	0,241	72,14	0,238
da 112+881 a 115+000	FA83	46,68	0,249	48,33	0,248	53,82	0,244	59,94	0,241	65,60	0,239	73,07	0,236
da 115+000 a 117+044	FB83	47,06	0,248	48,73	0,247	54,29	0,243	60,49	0,240	66,23	0,238	73,80	0,235
da 117+044 a 119+062	FC83	47,09	0,247	48,76	0,246	54,33	0,242	60,54	0,239	66,28	0,236	73,86	0,234
da 119+062 a 119+279	FD83	47,11	0,244	48,78	0,243	54,36	0,239	60,57	0,236	66,32	0,234	73,91	0,231
da 119+279 a 121+108	FD84	47,57	0,238	49,27	0,237	54,93	0,233	61,24	0,230	67,08	0,227	74,79	0,225
da 121+108 a 123+158	FE84	47,39	0,236	49,08	0,235	54,70	0,231	60,98	0,228	66,78	0,225	74,44	0,223
da 123+158 a 125+219	FF84	47,11	0,233	48,78	0,232	54,35	0,228	60,56	0,225	66,30	0,223	73,88	0,220
da 125+219 a 127+249	FG84	46,75	0,230	48,40	0,229	53,90	0,225	60,02	0,221	65,68	0,219	73,15	0,216
da 127+249 a 129+250	FH84	46,33	0,224	47,95	0,223	53,36	0,219	59,37	0,216	64,93	0,214	72,28	0,211
da 129+250 a 131+255	FI84	45,84	0,217	47,43	0,216	52,73	0,212	58,62	0,209	64,08	0,207	71,28	0,204
da 131+255 a 133+257	FJ84	45,33	0,208	46,88	0,207	52,06	0,203	57,81	0,200	63,13	0,198	70,17	0,195
da 133+257 a 135+258	FK84	44,80	0,195	46,32	0,194	51,36	0,190	56,96	0,187	62,14	0,185	68,99	0,182
da 135+258 a 137+262	FL84	44,51	0,199	46,02	0,198	51,04	0,194	56,62	0,191	61,78	0,189	68,61	0,186
da 137+262 a 139+289	FM85	44,52	0,207	46,04	0,206	51,12	0,203	56,75	0,200	61,97	0,198	68,88	0,195
da 139+289 a 141+337	FN85	44,25	0,209	45,77	0,208	50,82	0,204	56,43	0,201	61,62	0,199	68,50	0,196
da 141+337 a 143+342	FO85	43,92	0,210	45,43	0,209	50,75	0,206	56,01	0,203	61,17	0,200	68,00	0,198
da 143+342 a 145+431	FP85	43,69	0,210	45,19	0,209	50,19	0,205	55,74	0,202	60,87	0,200	67,69	0,197
da 145+431 a 147+449	FQ84	43,41	0,211	44,26	0,213	49,13	0,209	55,38	0,203	60,49	0,201	67,28	0,198
da 147+449 a 149+451	FR84	42,54	0,213	44,00	0,212	48,84	0,208	54,22	0,205	59,20	0,203	65,82	0,200
da 149+451 a FINE	FS84	42,21	0,215	43,66	0,214	48,47	0,210	53,81	0,206	58,75	0,204	65,33	0,201

Le celle di riferimento per il tratto interessato dalla variante Ancap sono la FP85 e la FQ84, che forniscono i seguenti valori per i parametri di pioggia relativi a un tempo di ritorno Tr = 100 anni:

- FP85: $a = 55,74 \text{ mm/h}^n$; n = 0,202

FQ84: $a = 55,38 \text{ mm/h}^n$; n = 0,203

Dovendo tuttavia trattare nella presente relazione anche di aree scolanti di dimensioni molto limitate, relative alla sola piattaforma ferroviaria e alle pertinenze nelle immediate vicinanze (rilevato, stradello), è necessario indagare gli afflussi relativi a transitori molto contenuti, largamente inferiori all'ora (Tempi di Corrivazione pari a 5 minuti).

Per il calcolo dell'altezza di pioggia su tempi inferiori all'ora è stato utilizzato il metodo di Bell: in relazione alla modesta variazione dei rapporti di intensità durata correlata al tempo di ritorno, si adotta la seguente relazione

$$\frac{P_T^t}{h_T^{60}} = \left(0.54t^{0.25} - 0.50\right)$$

applicabile per $5 \le t \le 120$ dove:

- P^t_T indica l'altezza di pioggia relativa ad un evento pari al tempo t riferita al periodo di ritorno T
- h^{60} _T è l'altezza di pioggia relativa ad un evento di durata pari ad un'ora riferita l periodo di ritorno T
- t è il tempo di pioggia espresso in minuti

La relazione può essere scritta anche forma seguente:

$$P_T^t = \beta t^* a$$

dove:

- $\beta t = (0.54 \ t^{0.25} \text{-} 0.50)$ $a = h^{60}_{T}$

Nota l'altezza di pioggia h_t relativa all'evento di durata t, passando ai logaritmi, le coppie altezza di pioggia-durata vengono regolarizzate con l'equazione di una retta dove il termine noto indica il parametro a e il coefficiente angolare rappresenta il parametro n'.

Applicando il metodo di Bell si ricavano i valori di β al variare del tempo di pioggia:

b t=5	b t=10	b t=20	b t=30	b t=40	b t=50
0.307	0.460	0.642	0.764	0.858	0.936

Da cui si possono ricavare i valori di n' tramite la seguente relazione:

$$n'(t) = \frac{\ln(\beta(t) \cdot t_{60}^{n})}{\ln(t)}$$

Si ottengono i valori riportati in tabella:

t (min)	b	n'
5	0.307	0.475
10	0.460	0.433
20	0.642	0.403
30	0.764	0.388
40	0.858	0.378
50	0.936	0.363

Per le elaborazioni che seguono è stata pertanto considerata la seguente combinazione di parametri:

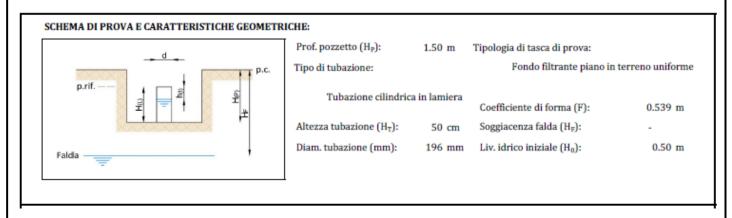
progressiva	a (mm/ore ⁿ) Tr100	n Tr100	n' Tr100
da 143+342 a 145+431	55,74	0,202	0,388
da 145+431 a 147+449	55,38	0,203	0,388

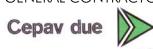
3.2. Coefficienti di deflusso

La riduzione dell'afflusso (ϕ) alle rete si considera dovuta principalmente a impermeabilità e ritardo, che variano a seconda della densità delle costruzioni e della topografia della zona.

Nel caso in esame si utilizza un coefficiente di deflusso $\phi = 1$ per le aree pavimentate, $\phi = 0.4$ per le scarpate dei rilevati in terra e $\phi = 0.7$ per le scarpate in terra afferenti ai tratti in trincea.

Si calcolano quindi le superfici afferenti efficaci come: A_{eff}=φA.

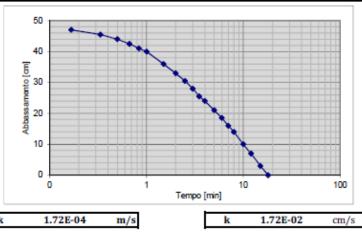

3.3. Coefficiente di permeabilità


Il coefficiente di permeabilità di riferimento è stato ricavato dalla prova Lefranc effettuata sul tratto di rilevato RI60 alla progressiva km 148+250, che ha fornito un valore pari a:

$$K = 1.72 \times 10^{-4} \text{ m/s}$$

Cautelativamente nelle verifiche di tutto il progetto di variante è stato assunto un valore pari a:

$$K = 1.50 \times 10^{-4} \text{ m/s}$$



ProgettoLottoCodifica DocumentoRev.FoglioDoc. N.11E E2 RI RI 00 04 001A8 di 45

TEM	PO	Δt	ABBASSAM.	LIVELLO (H)	PORTATA	CONDUCIBI	LITA' IDRAULICA
(min)	[s]	[sec]	[m]	[m] `´	[l/min]	[m/s]	[cm/s]
0.00	0	-	-	0.500	-	-	
0.17	10	10.0	0.030	0.470	5.43	3.46E-04	3.46E-02
0.33	20	10.0	0.015	0.455	2.72	1.82E-04	1.82E-02
0.50	30	10.0	0.015	0.440	2.72	1.88E-04	1.88E-02
0.67	40	10.0	0.015	0.425	2.72	1.94E-04	1.94E-02
0.83	50	10.0	0.015	0.410	2.72	2.01E-04	2.01E-02
1.00	60	10.0	0.010	0.400	1.81	1.38E-04	1.38E-02
1.50	90	30.0	0.040	0.360	2.41	1.97E-04	1.97E-02
2.00	120	30.0	0.030	0.330	1.81	1.62E-04	1.62E-02
2.50	150	30.0	0.025	0.305	1.51	1.47E-04	1.47E-02
3.00	180	30.0	0.025	0.280	1.51	1.60E-04	1.60E-02
3.50	210	30.0	0.025	0.255	1.51	1.75E-04	1.75E-02
4.00	240	30.0	0.015	0.240	0.91	1.13E-04	1.13E-02
5.00	300	60.0	0.030	0.210	0.91	1.25E-04	1.25E-02
6.00	360	60.0	0.025	0.185	0.75	1.18E-04	1.18E-02
7.00	420	60.0	0.025	0.160	0.75	1.35E-04	1.35E-02
8.00	480	60.0	0.020	0.140	0.60	1.25E-04	1.25E-02
10.00	600	120.0	0.040	0.100	0.60	1.57E-04	1.57E-02
12.00	720	120.0	0.030	0.070	0.45	1.66E-04	1.66E-02
15.00	900	180.0	0.040	0.030	0.40	2.63E-04	2.63E-02
18.00	1080	180.0	0.030	0.000	0.30	-	-

CONDUCIBILITA' IDRAULICA

Note:

Prova interrotta a 18:00 min causa esaurimento carico idrico. Conducibilità idraulica calcolata fra 0:30+10:00 min Conducibilità idraulica calcolata mediante la formulazione proposta dalle raccomandazioni A.G.I.

4. DRENAGGIO DELLE ACQUE DI PIATTAFORMA

4.1. Descrizione del sistema

Il sistema di smaltimento delle acque meteoriche è costituito da una serie di embrici e fossi interconnessi allo scopo di raccogliere e smaltire i deflussi superficiali prodotti da una precipitazione avente tempo di ritorno Tr 100 anni, recapitandoli in un idoneo corpo idrico ricettore. Sono state adottate le indicazioni progettuali presenti nel Manuale di progettazione RFI e successivamente sono state verificate tali scelte secondo la metodologia dei volumi di invaso.

Il drenaggio della piattaforma ferroviaria è realizzato per mezzo di un impluvio confinato da un cordolo delimitante la piattaforma opportunamente sagomato per il deflusso negli embrici. L'interasse tra gli embrici è pari a 15 m, come indicato nel manuale di progettazione RFI.

Quando l'altezza del rilevato è tale da richiedere la realizzazione di una o più banche intermedie, lungo queste ultime viene posata una canaletta costituita da un semitubo di diametro 300mm. Gli embrici del tratto superiore di scarpata scaricano nella canaletta che convoglia poi le acque negli embrici del tratto inferiore di scarpata, disassati rispetto a quelli superiori. Per i dettagli relativi agli embrici e alle canalette si rimanda all'elaborato specifico.

I fossi in terra posizionati al piede del rilevato raccolgono tutte le acque drenate dalla piattaforma e dal rilevato e trasportate dal sistema di embrici sopra illustrato. I fossi non recepiscono portate ulteriori poiché, trovandosi in ambito del tutto pianeggiante, fortemente regolato da una sistemazione irrigua destinata alla produzione agricola, non si verificano apporti relativi a deflussi di porzioni di terreno esterne alla recinzione.

Nel tratto da inizio intervento a pk 144+899 il progetto di variante non comporta modifiche a quanto previsto dal Progetto Esecutivo del tratto di rilevato RI58 per quanto riguarda il drenaggio delle acque di piattaforma, pertanto si rimanda all'elaborato specifico INOR11EE2RIRI5804001.

Nel tratto compreso tra la pk 144+899 e la pk 145+371 il sistema di smaltimento è costituito da canalette rettangolari in calcestruzzo grigliate posizionate a lato della piattaforma: una tra lo scalo RBN ex Corbaz e la linea storica e due ai lati della piattaforma AV/AC. Il recapito finale di questo tratto è costituito da una vasca drenante posizionata alla pk 145+371, nella quale le canalette confluiscono attraverso una tubazione DN600.

Nel tratto successivo, fino alla pk 145+950, sono presenti solo le due canalette poste ai lati della piattaforma AV/AC che scaricano in una seconda vasca drenante, posizionata alla pk 145+950, attraverso una tubazione DN1500.

Il tratto da pk 145+950 a pk 146+067 prevede la realizzazione di una canaletta posta al piede del rilevato della linea AV/AC dal lato del binario dispari, che scaricherà attraverso una tubazione DN1500 nel fosso del piazzale SSE FA25 Sona e che verrà meglio definito durante le future fasi di progettazione, non essendoci al momento un progetto del piazzale stesso; dal lato del binario pari vengono invece realizzati dei fossi drenanti come già previsto nel Progetto Esecutivo del rilevato RI60. Per le verifiche dei fossi di questo tratto si rimanda alla relazione idraulica di PE IN0R11EE2RIRI6004001.

L'ultimo tratto, dalla pk 146+067 alla fine dell'intervento, prevede un sistema di smaltimento costituito da: una canaletta rettangolare in calcestruzzo posizionata a lato della piattaforma del binario di precedenza dispari LS che scarica in un fosso drenante in terra; una canaletta interclusa posizionata al compluvio tra il rilevato della linea storica e il rilevato della linea AV/AC, che scarica attraverso una tubazione DN1500 in un fosso drenante al piede del rilevato AV lato binario pari; una serie di fossi drenanti al piede del rilevato AV lato binario pari, invariati rispetto a quelli previsti nel Progetto Esecutivo del rilevato RI60. Per le verifiche dei fossi drenanti si rimanda alla relazione idraulica di PE IN0R11EE2RIRI6004001, ad eccezione del fosso nel quale si realizza lo scarico della tubazione di attraversamento, per il quale viene riportata la nuova verifica nel seguito di questa relazione.

GENERAL CONTRACTOR Cepav due | TALFERR | GRUPPO FERROVIE DELLO STATO ITALIANE | Progetto | Lotto | Codifica Documento | Rev. | Foglio | INOR | 11 | E E2 RI RI 00 04 001 | A | 10 di 45 | A | 10 di 45

Gli elementi costituenti il sistema ed oggetto di verifica sono quindi:

- Fossi drenanti:
- Canalette;
- Tombini di attraversamento.

Nei paragrafi che seguono si descrivono le diverse metodologie utilizzate per le verifiche.

4.2. Metodologia di verifica dei fossi/vasche drenanti

Il metodo di calcolo utilizzato è quello dell'invaso semplificato, analogo a quello già utilizzato ed approvato da Italferr sulla linea A.V. Bologna–Firenze e Torino-Milano. La determinazione delle dimensioni trasversali dei fossi non rivestiti è stata effettuata tramite l'equazione di continuità o equazione dei serbatoi applicata alla situazione in esame (Da Deppo, Datei, Salandin, Sistemazione dei corsi d'acqua, edizioni libreria Cortina 1995):

$$Q_e(t) - Q_u(t) = \frac{d}{dt}W(t)$$

in cui la variazione del volume invasato al tempo t nel fosso è pari alla differenza tra la portata entrante dovuta all'evento meteorico riversatosi sulla piattaforma in esame e la portata uscente dispersa nel terreno circostante.

La portata entrante Qe(t) consiste nell'idrogramma di piena verificatosi in seguito ad un definito evento pluviometrico di durata variabile da 5 minuti a 6 ore procedendo per passi temporali di calcolo pari a 5 minuti:

$$\Delta T = 5$$

La funzione Qu(t), che rappresenta la portata uscente dal fosso non rivestito, risulta unicamente originata dalla infiltrazione nel terreno sottostante. La relazione utilizzata per il calcolo della portata infiltrata, ricavata da Vedernikov (Polubarinova, Kochina, Theory of ground water movement, Princeton University Press 1962) e adattata alle tipologie considerate, assume la seguente espressione:

$$Q_u(t) = k[B + 3 \cdot h(t)]L$$

dove:

- k è la permeabilità misurata in m/s
- B è la base superiore della sezione del fosso drenante;
- L è la lunghezza del fosso drenante;
- h(t) è l'altezza di riempimento del fosso drenante.

L'equazione di continuità è stata risolta attraverso una discretizzazione in intervalli di tempo di 5 minuti; esprimendo il volume invasato nel fosso non rivestito (affluito), come il prodotto tra le superfici longitudinale del canale W=BL e l'altezza di riempimento h(t) e sostituendo la formula di Vedernikov si riesce ad esprimere la variabile h(t +Dt)

$$h(t + \Delta t) = \frac{\frac{Q_{e}(t) + Q_{e}(t + \Delta t)}{2} + \frac{\sum h(t)}{\Delta t} - k \left[B + \frac{3}{2}h(t)\right] \cdot L}{\frac{\sum + \frac{3}{2}k \cdot L}{\Delta t}}$$

Il procedimento seguito consiste, per ogni idrogramma di piena, nell'osservare la variazione delle altezze di riempimento del ricettore ed in particolare che la massima altezza raggiunta dall'acqua non superi il limite imposto. La dimensione riportata nelle tabelle riassuntive risulta quindi essere la massima altezza idrica ottenuta con gli idrogrammi di piena previsti.

Le ipotesi utilizzate per condurre le verifiche idrauliche sono le seguenti:

- Drenaggio del fosso in funzione del reale riempimento, con variazione continua della portata drenata.
- Intensità di pioggia costante nell'intervallo di tempo dell'evento
- La durata dei transitori, inizio precipitazione e fine precipitazione sono considerati pari a 5 min. Ovvero si ipotizza una risposta (deflusso) ritardata di 5' del sistema alla sollecitazione (pioggia).
- Velo d'acqua uniformemente distribuito di 3 mm su tutte le superfici.
- Verifiche con tempi di pioggia: 20, 40, 60, 80, 100, 120, 140, 180 e 300 min.
- Coefficienti di afflusso $\varphi = 0.4$ per rilevato e $\varphi = 1$ per piattaforma ferroviaria e stradello.
- Non sono necessarie iterazioni di calcolo
- Permeabilità $K = 1.5 \times 10^{-4} \text{ m/s}$

Nel capitolo 5 sono riportati i dettagli delle verifiche, con grafici di sintesi per tutte le simulazioni effettuate e tabulati di dettaglio per la simulazione relativa al tempo di pioggia che massimizza il volume richiesto per la laminazione. Non si ritiene necessario presentare l'intera massa dei tabulati di dettaglio poiché l'evoluzione del fenomeno è chiaramente visibile dai grafici e dall'inviluppo dei risultati presentato nella tabella di verifica.

4.3. Metodologia di verifica delle canalette

La portata affluente alla canaletta è determinata mediante l'espressione del coefficiente udometrico:

$$u = 2520n' \frac{(\varphi a)^{1/n'}}{W^{\frac{(1-n')}{n}}} [l/s \cdot ha]$$

dove:

- ϕ è il coefficiente di deflusso, assunto costante e pari a 0,9 come indicato nel manuale di progettazione RFI (paragrafo 3.7.2.2.6);
- W è il volume specifico d'invaso, dato da $W = W_1' + W_1'' + W_2$
- $W_1' = 0,005$ m, per la parte relativa alla piattaforma ferroviaria con presenza della massicciata (paragrafo 3.7.2.2.6 manuale di progettazione RFI);
- W_1 " = 0,003 m, per la parte (velo d'acqua) relativa alla eventuale porzione di bacino scolante esterna alla piattaforma (paragrafo 3.7.2.2.6 manuale di progettazione RFI);
- $W_2 = p \times A_t/L$ m, per la parte relativa alla canaletta, ponendo che la sezione liquida massima sia pari al p% della sezione totale A_t ; L è la larghezza del bacino scolante;
- i parametri a (in metri-ore-n) ed n' della curva di probabilità climatica (per Tr = 100 anni) da assumere nella formula di u, sono riportati nel precedente paragrafo 3.1.

Determinato il coefficiente udometrico u, la portata affluente per metro di lunghezza della canaletta è pari a:

$$q = \frac{u}{10000} \cdot L \ (l/s/m)$$

La verifica della sezione della canaletta viene eseguita applicando la formula di Chézy:

Progetto
Doc. N. INOR

Codifica Documento Rev. Foglio E E2 RI RI 00 04 001 A 12 di 45

$$Q = A \left[\left(\frac{1}{n} \right) R^{1/6} \right] \sqrt{R * J}$$

dove:

Q=portata [m³/s]

A=area liquida [m²]

n=coefficiente di scabrezza di Manning [m^{1/3}/s] (0,015 per i manufatti in cls)

R=raggio idraulico [m]

J=pendenza longitudinale [m/m]

Le verifiche delle canalette sono riportate nel capitolo 6.

4.4. Metodologia di verifica dei tombini di attraversamento

L'analisi idraulica dei tombini di attraversamento viene eseguita mediante valutazione del deflusso della corrente a pelo libero in condizioni di moto uniforme.

Viene utilizzata la formula di Chézy:

$$Q = A \left[\left(\frac{1}{n} \right) R^{1/6} \right] \sqrt{R * J}$$

dove:

Q=portata [m³/s]

A=area liquida [m²]

n=coefficiente di scabrezza di Manning [m^{1/3}/s] (0,015 per le tubazioni in cls)

R=raggio idraulico [m]

J=pendenza longitudinale [m/m]

La portata in ingresso nei tombini è quella che viene raccolta dalle canalette descritte al precedente paragrafo 4.3 e riportata per ogni singolo tratto nel capitolo 6.

Le tubazioni si ritengono verificate con riempimento massimo pari al 70%, si verifica inoltre che la velocità sia inferiore a 5 m/s.

Come indicato nella circolare del Ministero dei Lavori Pubblici n.11633 del 7/1/1974, la velocità massima della corrente all'interno della tubazione non dovrà di norma superare i 5 m/s. Data l'elevata pendenza longitudinale delle tubazioni in questione si è ritenuto quindi opportuno verificare che questo limite non venisse superato.

Le verifiche di ogni singolo attraversamento sono riportate nel capitolo 7.

5. <u>VERIFICHE FOSSI/VASCHE DRENANTI</u>

In questo capitolo si riportano le verifiche effettuate con il metodo descritto al paragrafo 4.2.

Come già accennato nel paragrafo 4.1 per le verifiche dei fossi drenanti si rimanda alle relazioni idrauliche (INOR11EE2RIRI5804001 e INOR11EE2RIRI6004001) del progetto esecutivo dei due tratti di rilevato RI58 e RI60 in quanto le modifiche apportate dal progetto di variante non influiscono sul dimensionamento di tali elementi.

L'unico fosso che viene qui verificato è quello al piede del rilevato della linea AV/AC lato binario pari interessato dallo scarico della tubazione di attraversamento alla pk 146+375 introdotta con il progetto di variante. Vengono inoltre verificate le vasche drenanti realizzate alle pk 145+371, 145+950 e 146+450.

Si precisa che la lunghezza effettiva del fosso drenante è pari a circa il 90% della lunghezza reale dell'intero fosso, per tenere conto delle parti rivestite in calcestruzzo e delle eventuali interruzioni del fosso dovute alla presenza di attraversamenti trasversali.

Tutti i fossi sono realizzati in tratti con pendenza del fondo costante e pari a 0,00 m/m.

La tabella di calcolo è divisa in sezioni:

Geometrie: vengono esplicitate tutte le geometrie caratteristiche del sistema drenante e del bacino afferente. Vengono considerate due diverse tipologie di terreno, uno impermeabile per piattaforma ferroviaria e stradello, e uno moderatamente permeabile per il rilevato, eventuale berme e banche orizzontali non rivestite.

Caratteristiche Idrologiche e di permeabilità: parametri della legge di afflusso per tempo di ritorno pari a 100 anni, coefficiente di permeabilità del terreno (ipotizzato costante per tutta la durata della simulazione).

Volumi invasati nella rete di drenaggio: calcolo dei piccoli invasi superficiali

Verifica del fosso drenante: sintesi dei risultati della simulazione: viene riportato il massimo riempimento del fosso in termini di volume invasato e tirante idrico. Il rapporto tra il volume effettivamente invasato e il massimo volume invasabile con riempimento al 100% restituisce il coefficiente di riempimento reale. Il fosso è verificato per coefficienti di riempimento inferiori al 90%.

A seguire viene presentato il tabulato degli afflussi, discretizzato secondo il passo di calcolo, con l'altezza di pioggia cumulata e la portata afferente secondo il modello cinematico.

I grafici di inviluppo dei risultati mostrano l'andamento nel tempo del volume invasato e del tirante idrico. La linea tratteggiata orizzontale in alto nel grafico indica la profondità del fosso.

5.1. Fosso in destra da pk 146+305 a pk 146+500

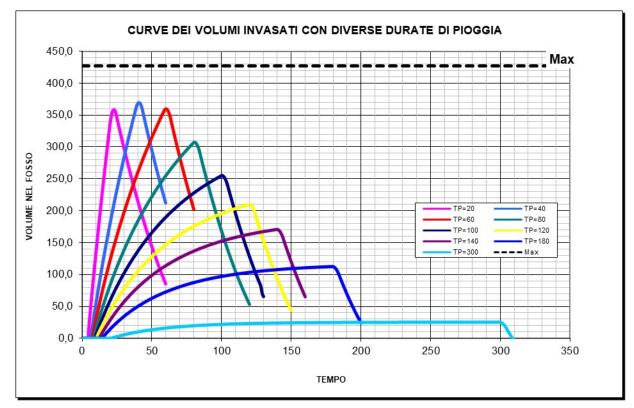
Questo fosso drenante riceve il contributo del tombino di attraversamento alla pk 146+375, deve quindi essere dimensionato per poter smaltire non solo le acque meteoriche relative alla semipiattaforma e al rilevato lato BP compreso tra le progressive pk 146+305 e pk 146+500 ma anche quelle relative alla semipiattaforma e al rilevato lato BD della AV e alla semipiattaforma e al rilevato sud della linea storica nel tratto afferente alla canaletta da pk 146+100 a pk 146+500.

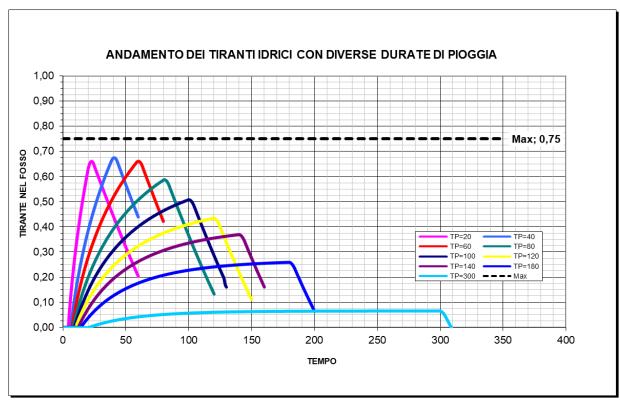
La larghezza del fondo del fosso è pari a 2,00m, l'altezza minima è pari a 0,75m, la pendenza nulla.

La lunghezza effettivamente drenante del fosso, decurtata dei tratti rivestiti in corrispondenza degli embrici e dello sbocco del tombino, risulta pari a 182m.

Il riempimento del fosso risulta pari all'87%.

VERIFICA FOSSO	GEOMETRIE		
L1 - lunghezza del tratto ferroviario sversante nel fosso	m	195,00	•
B1 - larghezza piattaforma sversante nel fosso	m	6,55	
L2 - lunghezza della canaletta	m	406,00	
B2 - larghezza piattaforma sversante nella canaletta	m	19,75	
B3 - Larghezza piattaiorina sversante nella canaletta		3,00	aa aaaanta = 0
L3 - Lunghezza dello stradello	m m	195,00	se assente = 0
B4 - Larghezza media del rilevato sversante nel fosso			se assente = 0
	m	16,00 25,00	proiez. orizz. media
B5 - Larghezza media del rilevato sversante nella canaletta	m		proiez. orizz. media
B6 - Larghezza arginelli / banche intermedie φ1 - coeff. Afflusso bitumato	m	2,00	larghezza cumulata
1	-	1	
φ2 - coeff. Afflusso rilevato	-,	0,4	
superficie impermeabilizzata L1xB1+L2xB2+L3xB3	m ²	9881	
superficie efficace impermeabile	m ²	9881	
superficie permeabile L1x(B4+B6)+L2xB5	m ²	13660	
superficie efficace permeabile	m ²	5464	
lunghezza fosso drenante	m	182,00	
base minore fosso trapezio	m	2,00	
pendenza sponde (h su b): 1 su		1,50	rapporto vert/orizz
altezza max disponibile del fosso	m	0,75	
larghezza max in testa del fosso	m	4,25	
CARATTERISTICHE IDROLOGIC	CHE E DI PERMI	EABILITA'	
K - coefficiente di permeabilità del terreno	m/s	1,50E-04	
a Tempo di ritorno100 anni	mm/h	55,38	
n TR100		0,203	
n' TR100		0,388	
VOLUMI INVASATI SULLA	RETE DI DREN <i>i</i>	(GGIO	
velo d'acqua uniformemente ripartito di 3 mm	mm	3	
volume invasato sulla superficie impermeabile =	m ³	29,6	
volume invasato sulla superficie permeabile =	m ³	41,0	
altezza acqua media nella rete	m	0,02	
lunghezza della rete di drenaggio	m	195	
volume invasato sulla rete =	m ³	2,0	
TOTALE INVASI =	m ³	72,7	
		,-	
VERIFICA DEL	FOSSO		
CAPACITA' DI INVASO RICHIESTA	m ³	369,7	
CAPACITA' MASSIMA DI INVASO DEL FOSSO	m ³	426,6	
MASSIMO RIEMPIMENTO CALCOLATO	m	0,67	risultato simulazione
% RIEMPIMENTO		87%	
ESITO VERIFICA		positivo	
23110 1211111011		, , , , , , ,	






Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 11 E E2 RI RI 00 04 001 A 15 di 45

PORTATE AFFERENTI							
tempo	altezza acqua portata						
pioggia	cumulata (h)	afferente					
minuti	mm	m³/s					
10	27,63	0,7067					
15	32,34	0,5514					
20	36,16	0,4624					
30	42,32	0,3608					
40	47,32	0,3025					
50	51,60	0,2639					
60	55,38	0,2361					
70	57,14	0,2088					
80	58,71	0,1877					
90	60,13	0,1709					
100	61,43	0,1571					
110	62,63	0,1456					
120	63,75	0,1359					
130	64,79	0,1275					
140	65,77	0,1202					
150	66,70	0,1137					
160	67,58	0,1080					
170	68,42	0,1029					
180	69,22	0,0983					
190	69,98	0,0942					
200	70,71	0,0904					
210	71,42	0,0870					
220	72,09	0,0838					
230	72,75	0,0809					
240	73,38	0,0782					
250	73,99	0,0757					
260	74,58	0,0734					
270	75,15	0,0712					
280	75,71	0,0692					
290	76,25	0,0672					
300	76,78	0,0655					

 Progetto
 Lotto
 Codifica Documento
 Rev.
 Foglio

 Doc. N.
 INOR
 11
 E E2 RI RI 00 04 001
 A
 17 di 45

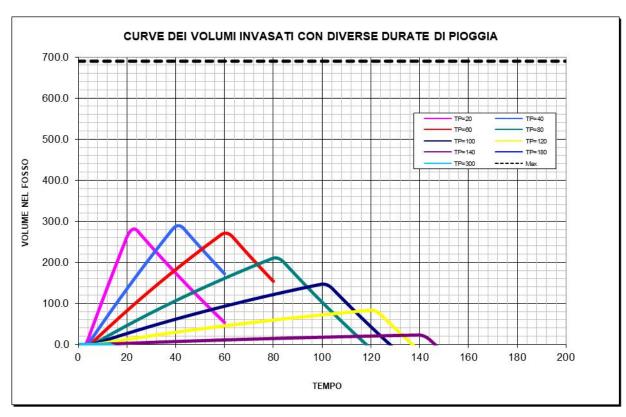
	PORTATE AFFERENTI E DI INFILTRAZIONE								
portate per	Γpioggia =40	MIN	0,303	m³/s					
tempo pioggia evento critico	portata afferente	Volume scaricato nel fosso	Volume presente nel fosso	Sezione Idraulica	Altezza acqua interna al fosso	Larghezza pelo libero	portata infiltrata		
minuti	m³∕s	m³	m³	m²	т	т	m³∕s		
1	0,061	3,63	0,0	0,0000	0,00	2,00	0,0546		
2	0,121	10,89	0,0	0,0000	0,00	2,00	0,0546		
3	0,182	21,78	0,0	0,0000	0,00	2,00	0,0546		
5	0,242 0,303	36,30 54,46	0,0 0,0	0,0000	0,00	2,00	0,0546		
6	0,303	72,61	0,0	0.0000	0,00	2,00	0,0546 0,0546		
7	0.303	90,76	14,9	0,0817	0,04	2,12	0.0611		
8	0,303	108,91	29,4	0,1613	0,08	2,23	0,0671		
9	0,303	127,07	43,5	0,2389	0,11	2,33	0,0727		
10	0,303	145,22	57,3	0,3147	0,14	2,43	0,0779		
11	0,303	163,37	70,8	0,3888	0,17	2,52	0,0828		
12	0,303	181,52	83,9	0,4612	0,20	2,60	0,0874		
13	0,303	199,67	96,8	0,5321	0,23	2,68	0,0918		
14	0,303	217,83	109,5	0,6016	0,25	2,76	0,0960		
15 16	0,303 0,303	235,98 254,13	121,9 134,0	0,6697 0,7365	0,28 0,30	2,83 2,90	0,1000 0,1038		
17	0,303	272,28	146,0	0,7365	0,30	2,90	0,1036		
18	0,303	290,44	157,7	0,8663	0,34	3,03	0,1110		
19	0,303	308,59	169,2	0,9294	0,36	3,09	0,1144		
20	0,303	326,74	180,4	0,9915	0,38	3,15	0,1176		
21	0,303	344,89	191,5	1,0524	0,40	3,21	0,1208		
22	0,303	363,04	202,4	1,1123	0,42	3,27	0,1238		
23	0,303	381,20	213,2	1,1713	0,44	3,32	0,1267		
24	0,303	399,35	223,7	1,2292	0,46	3,37	0,1296		
25	0,303	417,50	234,1	1,2863	0,47	3,42	0,1323		
26 27	0,303	435,65	244,3	1,3424	0,49	3,47	0,1350		
28	0,303 0,303	453,81 471,96	254,4 264,3	1,3976 1,4520	0,51 0,52	3,52 3,57	0,1376 0,1401		
29	0,303	490,11	274,0	1,5056	0,54	3,61	0,1425		
30	0,303	508,26	283,6	1,5583	0,55	3,65	0,1449		
31	0,303	526,41	293,1	1,6103	0,57	3,70	0,1472		
32	0,303	544,57	302,4	1,6615	0,58	3,74	0,1495		
33	0,303	562,72	311,6	1,7120	0,59	3,78	0,1517		
34	0,303	580,87	320,6	1,7617	0,61	3,82	0,1538		
35	0,303	599,02	329,6	1,8107	0,62	3,86	0,1559		
36	0,303	617,17	338,4	1,8591	0,63	3,89	0,1580		
37 38	0,303	635,33	347,0	1,9067	0,64	3,93	0,1599		
39	0,303 0,303	653,48 671,63	355,6 364,0	1,9537 2,0001	0,66 0,67	3,97 4,00	0,1619 0,1638		
40	0,303	686,15	368,7	2,0001	0,67	4,00	0,1638		
41	0,182	697,04	369,7	2,0314	0,67	4,02	0,1651		
42	0,121	704,31	367,1	2,0169	0,67	4,01	0,1645		
43	0,061	707,94	360,8	1,9826	0,66	3,99	0,1631		
44	0,000	707,94	351,0	1,9288	0,65	3,95	0,1609		
45	0,000	707,94	341,4	1,8758	0,64	3,91	0,1587		
46	0,000	707,94	331,9	1,8235	0,62	3,87	0,1564		
47	0,000	707,94	322,5	1,7719	0,61	3,83	0,1543		
48 49	0,000	707,94 707,94	313,2	1,7211 1,6709	0,60	3,79	0,1521		
50	0,000	707,94 707,94	304,1 295,1	1,6709	0,58 0,57	3,75 3,71	0,1499 0,1477		
51	0,000	707,94	286,3	1,5728	0,56	3,67	0,1477		
52	0,000	707,94	277,5	1,5248	0,54	3,63	0,1434		
53	0,000	707,94	268,9	1,4776	0,53	3,59	0,1412		
54	0,000	707,94	260,4	1,4310	0,52	3,55	0,1391		
55	0,000	707,94	252,1	1,3851	0,50	3,51	0,1370		
56	0,000	707,94	243,9	1,3400	0,49	3,47	0,1349		
57	0,000	707,94	235,8	1,2955	0,48	3,43	0,1327		
58	0,000	707,94	227,8	1,2518	0,46	3,39	0,1306		
59	0,000	707,94	220,0	1,2087	0,45	3,35	0,1286		
60	0,000	707,94	212,3	1,1663	0,44	3,32	0,1265		

5.2. Vasca drenante a pk 145+371

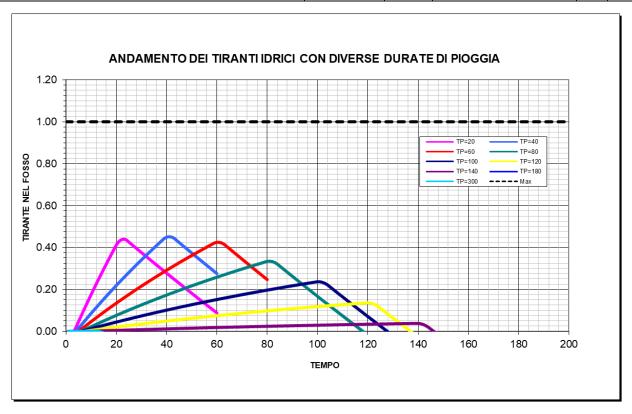
Questa vasca drenante riceve le acque provenienti dal tombino di attraversamento DN600 alla pk 145+371 (v. par.7.2), ovvero le acque convogliate dalle canalette del tratto da pk 144+899 a pk 145+371 descritte e verificate ai par.6.2, 6.3,

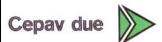
La vasca presenta una superficie del fondo pari a 600 m² ed un'altezza utile pari a 1,00m. È verificata

VERIFICA FOSSO - G	EOMETRIE		
L1 - lunghezza del tratto ferroviario sversante nel fosso	m	0.00	
B1 - larghezza piattaforma sversante nel fosso	m	0.00	
L2 - lunghezza della canaletta	m	480.00	
B2 - larghezza piattaforma sversante nella canaletta	m	24.89	
B3 - Larghezza dello stradello	m	0.00	se assente = 0
L3 - Lunghezza dello stradello	m	0.00	se assente = 0
B4 - Larghezza media del rilevato sversante nel fosso	m	0.00	proiez. orizz. media
5 - Larghezza media del rilevato sversante nella canaletta	m	0.00	proiez. orizz. media
B6 - Larghezza arginelli / banche intermedie	m	0.00	larghezza cumulata
arphi1 - coeff. Afflusso bitumato	-	1	
arphi2 - coeff. Afflusso rilevato	-	0.4	
superficie impermeabilizzata L1xB1+L2xB2+L3xB3	m ²	11945	
superficie efficace impermeabile	m ²	11945	
superficie permeabile L1x(B4+B6)+L2xB5	m ²	0	
superficie efficace permeabile	m^2	0	
lunghezza fosso drenante	m	60.00	
base minore fosso trapezio	m	10.00	
pendenza sponde (h su b): 1 su		1.50	rapporto vert/orizz
altezza max disponibile del fosso	m	1.00	<u> </u>
larghezza max in testa del fosso	m	13.00	
CARATTERISTICHE IDROLOGICH	E E DI PERM	EABILITA'	
K - coefficiente di permeabilità del terreno	m/s	1.50E-04	
a Tempo di ritorno100 anni	mm/h	55.74	
n TR100		0.202	
n' TR100		0.388	
VOLUMI INVASATI SULLA RE	TE DI DREN	AGGIO	
unto allo agua uniforma ancente vincontito di Organi		2	
velo d'acqua uniformemente ripartito di 3 mm	mm 3	3	
volume invasato sulla superficie impermeabile = volume invasato sulla superficie permeabile =	m ³ m ³	35.8	
		0.0	
altezza acqua media nella rete	m	0.02	
lunghezza della rete di drenaggio	<u>m</u>	0	
volume invasato sulla rete =	m ³ m ³	0.0	
TOTALE INVASI =	m	35.8	
VERIFICA DEL F	OSSO		
CAPACITA' DI INVASO RICHIESTA	m ³	289.4	
CAPACITA' MASSIMA DI INVASO DEL FOSSO	m ³	690.0	
SALA AGENTA IN AGGINA DI INVAGO DELLI OGGO	111		+
	m	0.45	risultato simulazion
MASSIMO RIEMPIMENTO CALCOLATO % RIEMPIMENTO	m	0.45 42%	risultato simulazion



ProgettoLottoCodifica DocumentoRev.FoglioDoc. N.11E E2 RI RI 00 04 001A19 di 45


		PORTATE A	AFFERENTI		
tempo pioggia	altezza acqua cumulata (h)	portata afferente	tempo pioggia	altezza acqua cumulata (h)	portata afferente
minuti	mm	m³∕s	minuti	mm	m³∕s
10	27.81	0.5537	160	67.95	0.0846
15	32.55	0.4320	170	68.79	0.0806
20	36.40	0.3623	180	69.59	0.0770
30	42.60	0.2827	190	70.35	0.0737
40	47.63	0.2370	200	71.09	0.0708
50	51.93	0.2068	210	71.79	0.0681
60	55.74	0.1849	220	72.47	0.0656
70	57.50	0.1635	230	73.12	0.0633
80	59.08	0.1470	240	73.75	0.0612
90	60.50	0.1338	250	74.36	0.0592
100	61.80	0.1230	260	74.96	0.0574
110	63.00	0.1140	270	75.53	0.0557
120	64.12	0.1064	280	76.09	0.0541
130	65.16	0.0998	290	76.63	0.0526
140	66.15	0.0941	300	77.15	0.0512
150	67.07	0.0890			



 Progetto
 Lotto
 Codifica Documento
 Rev.
 Foglio

 Doc. N.
 INOR
 11
 E E2 RI RI 00 04 001
 A
 20 di 45

 Progetto
 Lotto
 Codifica Documento
 Rev.
 Foglio

 Doc. N.
 INOR
 11
 E E2 RI RI 00 04 001
 A
 21 di 45

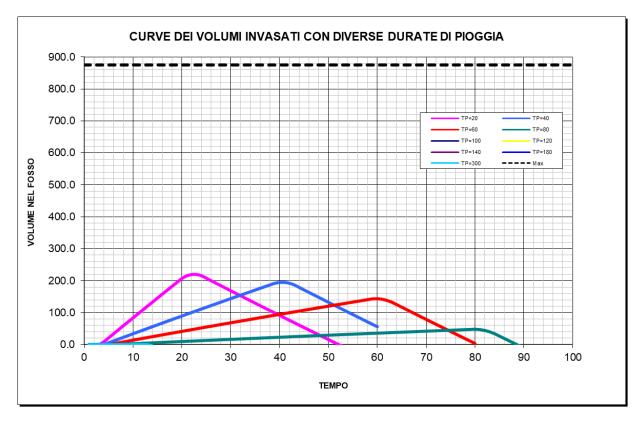
portate per Tpioggia =40 MIN 0.237 m³/s								
tempo pioggia evento critico	portata afferente	Volume scaricato nel fosso	Volume presente nel fosso	Sezione Idraulica	Altezza acqua interna al fosso	Larghezza pelo libero	portata infiltrata	
minuti	m3/s	m3	m3	m2	m	m	m3/s	
			-					
1	0.047	2.84	0.0	0.0000	0.00	10.00	0.0900	
2 3	0.095 0.142	8.53 17.07	0.0	0.0000	0.00	10.00	0.0900	
<u> </u>	0.142	28.44	0.0	0.0000	0.00	10.00	0.0900	
5	0.190	42.67	8.8	0.1470	0.00	10.04	0.0900	
6	0.237	56.89	17.6	0.2933	0.03	10.09	0.0916	
7	0.237	71.11	26.3	0.4387	0.04	10.13	0.0924	
8	0.237	85.33	35.0	0.5834	0.06	10.17	0.0931	
9	0.237	99.56	43.6	0.7273	0.07	10.22	0.0939	
10	0.237	113.78	52.2	0.8705	0.09	10.26	0.0946	
11	0.237	128.00	60.8	1.0129	0.10	10.30	0.0954	
12	0.237	142.22	69.3	1.1545	0.11	10.34	0.0961	
13	0.237	156.45	77.7	1.2955	0.13	10.38	0.0969	
14	0.237	170.67	86.1	1.4356	0.14	10.42	0.0976	
15	0.237	184.89	94.5	1.5751	0.15	10.46	0.0983	
16	0.237	199.11	102.8	1.7138	0.17	10.50	0.0990	
17	0.237	213.33	111.1	1.8518	0.18	10.54	0.0997	
18	0.237	227.56	119.3	1.9891	0.19	10.58	0.1004	
19	0.237	241.78	127.5	2.1257	0.21	10.62	0.1011	
20	0.237	256.00	135.7	2.2616	0.22	10.66	0.1018	
21	0.237	270.22	143.8	2.3968	0.23	10.69	0.1025	
22	0.237	284.45	151.9	2.5314	0.24	10.73	0.1032	
23	0.237	298.67	159.9	2.6652	0.26	10.77	0.1039	
24	0.237	312.89	167.9	2.7984	0.27	10.81	0.1045	
25	0.237 0.237	327.11 341.34	175.9 183.8	2.9309 3.0628	0.28 0.29	10.84	0.1052 0.1058	
26 27	0.237	341.34	191.6	3.1939	0.29	10.88	0.1058	
28	0.237	369.78	191.5	3.3245	0.32	10.95	0.1003	
29	0.237	384.00	207.3	3.4544	0.33	10.99	0.1071	
30	0.237	398.22	215.0	3.5837	0.34	11.02	0.1084	
31	0.237	412.45	222.7	3.7123	0.35	11.06	0.1090	
32	0.237	426.67	230.4	3.8403	0.36	11.09	0.1097	
33	0.237	440.89	238.1	3.9677	0.38	11.13	0.1103	
34	0.237	455.11	245.7	4.0944	0.39	11.16	0.1109	
35	0.237	469.34	253.2	4.2206	0.40	11.19	0.1115	
36	0.237	483.56	260.8	4.3461	0.41	11.23	0.1121	
37	0.237	497.78	268.3	4.4710	0.42	11.26	0.1127	
38	0.237	512.00	275.7	4.5953	0.43	11.29	0.1133	
39	0.237	526.22	283.1	4.7191	0.44	11.33	0.1139	
40	0.190	537.60	287.7	4.7948	0.45	11.35	0.1143	
41	0.142	546.14	289.4	4.8228	0.45	11.36	0.1144	
42	0.095	551.83	288.2	4.8032	0.45	11.35	0.1143	
43	0.047	554.67	284.2	4.7363	0.44	11.33	0.1140	
44	0.000	554.67	277.3	4.6223	0.43	11.30	0.1134	
45 46	0.000	554.67	270.5	4.5089	0.42	11.27	0.1129	
46 47	0.000	554.67 554.67	263.8	4.3960 4.2837	0.41	11.24	0.1124	
48	0.000	554.67	257.0 250.3	4.2837	0.40	11.21 11.18	0.1118 0.1113	
49	0.000	554.67	243.6	4.0606	0.38	11.15	0.1113	
50	0.000	554.67	237.0	3.9498	0.37	11.12	0.1107	
51	0.000	554.67	230.4	3.8396	0.36	11.09	0.1097	
52	0.000	554.67	223.8	3.7300	0.35	11.06	0.1091	
53	0.000	554.67	217.3	3.6209	0.34	11.03	0.1086	
54	0.000	554.67	210.7	3.5123	0.33	11.00	0.1081	
55	0.000	554.67	204.3	3.4042	0.32	10.97	0.1075	
56	0.000	554.67	197.8	3.2967	0.31	10.94	0.1070	
57	0.000	554.67	191.4	3.1897	0.31	10.92	0.1065	
58	0.000	554.67	185.0	3.0832	0.30	10.89	0.1059	
59	0.000	554.67	178.6	2.9773	0.29	10.86	0.1054	
60	0.000	554.67	172.3	2.8718	0.28	10.83	0.1049	

5.3. Vasca drenante a pk 145+950

Questa vasca drenante riceve le acque provenienti dal tombino di attraversamento DN1500 alla pk 145+950 (v. par. 7.3), ovvero le acque convogliate dalle canalette del tratto da pk 145+371 a pk 145+950 descritte e verificate ai par. 6.5, 6.6.

La vasca presenta una superficie del fondo pari a 826,42 m² ed un'altezza utile pari a 1,00m. È verificata con un riempimento del 25%.

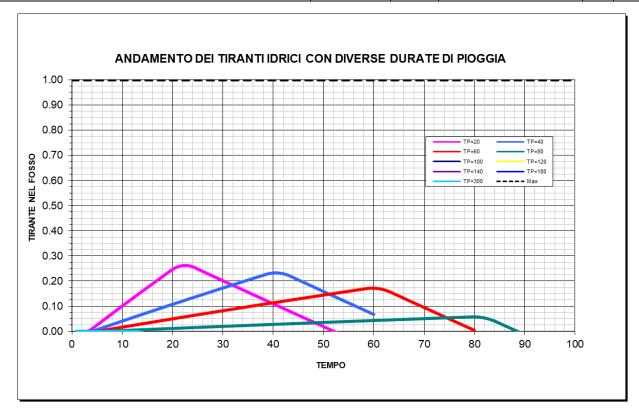
FOMETRIE		
	0.00	
		se assente = 0
		se assente = 0
		proiez. orizz. medi
		proiez. orizz. medi
		larghezza cumulat
		larghezza cumulat
- 2		
m²		
m		
m		
	1.50	rapporto vert/orizz
m	1.00	
m	28.43	
E E DI PERM	EABILITA'	
mm/h		
	0.388	
TE DI DRENA	AGGIO	
mm	3	
m ³	3 33.1	
m ³	33.1	
m ³ m ³ m	33.1 0.0	
m ³ m ³ m	33.1 0.0 0.02	
m ³ m ³ m	33.1 0.0 0.02 0	
m ³ m ³ m m m	33.1 0.0 0.02 0	
m ³ m ³ m m m m ³	33.1 0.0 0.02 0 0.0 33.1	
m ³ m ³ m m m m ³ m ³ osso m ³	33.1 0.0 0.02 0 0.0 33.1	
m ³ m ³ m m m m ³ m ³ m ³ m ³	33.1 0.0 0.02 0 0.0 33.1 219.5 875.2	ricultata simulazio
m ³ m ³ m m m m ³ m ³ osso m ³	33.1 0.0 0.02 0 0.0 33.1	risultato simulazio
	m m m E E DI PERMI m/s mm/h	m 0.00 m 0.00 m 577.00 m 19.10 m 0.00 m 0.00 m 0.00 m 0.00 - 1 - 0.4 m² 11021 m² 0 m² 0 m 32.50 m 25.43 1.50 1.00 m 28.43

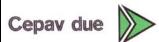


 Progetto
 Lotto
 Codifica Documento
 Rev.
 Foglio

 Doc. N.
 INOR
 11
 E E2 RI RI 00 04 001
 A
 23 di 45

		PORTATE A	AFFERENTI		
tempo pioggia	altezza acqua cumulata (h)	portata afferente	tempo pioggia	altezza acqua cumulata (h)	portata afferente
minuti	mm	m³∕s	minuti	mm	m³∕s
10	27.81	0.5109	160	67.95	0.0780
15	32.55	0.3986	170	68.79	0.0743
20	36.40	0.3343	180	69.59	0.0710
30	42.60	0.2608	190	70.35	0.0680
40	47.63	0.2187	200	71.09	0.0653
50	51.93	0.1908	210	71.79	0.0628
60	55.74	0.1706	220	72.47	0.0605
70	57.50	0.1509	230	73.12	0.0584
80	59.08	0.1356	240	73.75	0.0564
90	60.50	0.1235	250	74.36	0.0546
100	61.80	0.1135	260	74.96	0.0530
110	63.00	0.1052	270	75.53	0.0514
120	64.12	0.0981	280	76.09	0.0499
130	65.16	0.0921	290	76.63	0.0485
140	66.15	0.0868	300	77.15	0.0472
150	67.07	0.0821			





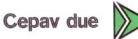
 Progetto
 Lotto
 Codifica Documento
 Rev.
 Foglio

 Doc. N.
 INOR
 11
 E E2 RI RI 00 04 001
 A
 24 di 45

 Progetto
 Lotto
 Codifica Documento
 Rev.
 Foglio

 Doc. N.
 INOR
 1 1
 E E2 RI RI 00 04 001
 A
 25 di 45

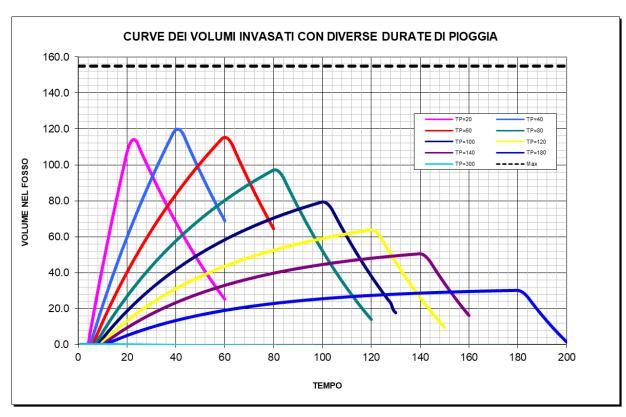
PORTATE AFFERENTI E DI INFILTRAZIONE									
portate per Tr	oioggia =40 M	IN	0.219	m³/s					
tempo pioggia evento critico	portata afferente	Volume scaricato nel fosso	Volume presente nel fosso	Sezione Idraulica	Altezza acqua interna al fosso	Larghezza pelo libero	portata infiltrata		
minuti	m3/s	m3	m3	m2	m	m	m3/s		
1	0.044	2.62	0.0	0.0000	0.00	25.43	0.1240		
2	0.087	7.87	0.0	0.0000	0.00	25.43	0.1240		
3	0.131	15.75	0.0	0.0000	0.00	25.43	0.1240		
4	0.175	26.24	0.0	0.0000	0.00	25.43	0.1240		
5	0.219	39.37	5.7	0.1749	0.01	25.45	0.1242		
6	0.219	52.49	11.4	0.3494	0.01	25.47	0.1244		
7	0.219	65.61	17.0	0.5236	0.02	25.49	0.1246		
8	0.219	78.73	22.7	0.6973	0.03	25.51	0.1248		
9 10	0.219	91.85 104.97	28.3 33.9	0.8708 1.0438	0.03	25.53 25.55	0.1250 0.1252		
11	0.219	118.10	39.5	1.2165	0.04	25.57	0.1252		
12	0.219	131.22	45.1	1.3888	0.05	25.59	0.1254		
13	0.219	144.34	50.7	1.5608	0.06	25.61	0.1258		
14	0.219	157.46	56.3	1.7323	0.07	25.63	0.1259		
15	0.219	170.58	61.9	1.9036	0.07	25.65	0.1261		
16	0.219	183.70	67.4	2.0744	0.08	25.67	0.1263		
17	0.219	196.83	73.0	2.2449	0.09	25.69	0.1265		
18	0.219	209.95	78.5	2.4151	0.09	25.71	0.1267		
19	0.219	223.07	84.0	2.5849	0.10	25.73	0.1269		
20	0.219	236.19	89.5	2.7543	0.11	25.75	0.1271		
21	0.219	249.31	95.0	2.9234	0.11	25.77	0.1273		
22	0.219	262.44	100.5	3.0921	0.12	25.79	0.1275		
23	0.219	275.56	106.0	3.2605	0.13	25.81	0.1277		
24 25	0.219 0.219	288.68 301.80	111.4 116.9	3.4285 3.5962	0.13 0.14	25.83 25.85	0.1279 0.1281		
26	0.219	314.92	122.3	3.7635	0.14	25.87	0.1281		
27	0.219	328.04	127.7	3.9305	0.15	25.89	0.1283		
28	0.219	341.17	133.2	4.0971	0.16	25.91	0.1286		
29	0.219	354.29	138.6	4.2634	0.17	25.93	0.1288		
30	0.219	367.41	144.0	4.4293	0.17	25.95	0.1290		
31	0.219	380.53	149.3	4.5949	0.18	25.96	0.1292		
32	0.219	393.65	154.7	4.7601	0.19	25.98	0.1294		
33	0.219	406.78	160.1	4.9250	0.19	26.00	0.1296		
34	0.219	419.90	165.4	5.0896	0.20	26.02	0.1297		
35	0.219	433.02	170.7	5.2538	0.20	26.04	0.1299		
36	0.219	446.14	176.1	5.4176	0.21	26.06	0.1301		
37	0.219	459.26	181.4	5.5812 5.7444	0.22	26.08	0.1303		
38 39	0.219	472.38 485.51	186.7 192.0	5.7444	0.22 0.23	26.10 26.12	0.1305		
40	0.219 0.175	485.51	192.0	5.9890	0.23	26.12	0.1307 0.1308		
41	0.173	503.88	194.7	5.9898	0.23	26.13	0.1308		
42	0.087	509.13	192.1	5.9099	0.23	26.12	0.1307		
43	0.044	511.75	186.9	5.7494	0.22	26.10	0.1305		
44	0.000	511.75	179.0	5.5085	0.21	26.07	0.1302		
45	0.000	511.75	171.2	5.2681	0.20	26.04	0.1300		
46	0.000	511.75	163.4	5.0282	0.20	26.01	0.1297		
47	0.000	511.75	155.6	4.7888	0.19	25.99	0.1294		
48	0.000	511.75	147.9	4.5499	0.18	25.96	0.1291		
49	0.000	511.75	140.1	4.3115	0.17	25.93	0.1289		
50	0.000	511.75	132.4	4.0735	0.16	25.90	0.1286		
51 52	0.000	511.75 511.75	124.7	3.8361 3.5992	0.15	25.88 25.85	0.1283		
52 53	0.000	511.75	117.0 109.3	3.5992	0.14 0.13		0.1281 0.1278		
53	0.000	511.75	109.3	3.3628	0.13	25.82 25.79	0.1278		
55	0.000	511.75	94.0	2.8914	0.12	25.79	0.1273		
56	0.000	511.75	86.3	2.6564	0.10	25.74	0.1273		
57	0.000	511.75	78.7	2.4219	0.09	25.71	0.1267		
58	0.000	511.75	71.1	2.1880	0.09	25.69	0.1265		
59	0.000	511.75	63.5	1.9545	0.08	25.66	0.1262		
60	0.000	511.75	55.9	1.7215	0.07	25.63	0.1259		


5.4. Vasca drenante a pk 146+450

Questa vasca drenante riceve le acque provenienti dalla canaletta lato BD del binario di precedenza della Linea Storica del tratto da pk 146+067 a pk 146+450 descritta e verificata al par. 6.8.

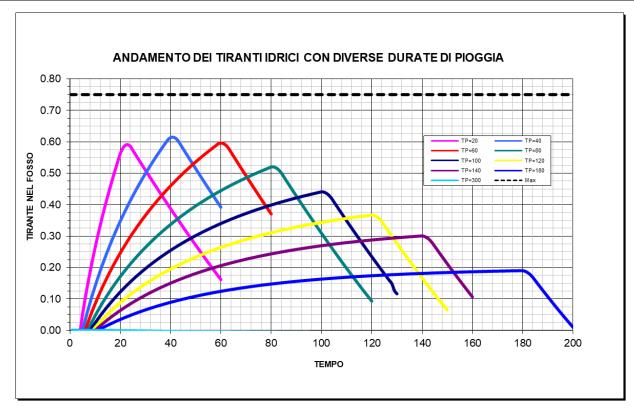
La vasca si),75 m. È verificata

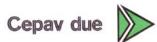
VERIFICA FOSSO - G	EOMETRIE	.	
L1 - lunghezza del tratto ferroviario sversante nel fosso	m	373.00	
B1 - larghezza piattaforma sversante nel fosso	m	0.00	
L2 - lunghezza della canaletta	m	373.00	
B2 - larghezza piattaforma sversante nella canaletta	m	13.20	
B3 - Larghezza dello stradello	m	0.00	se assente = 0
L3 - Lunghezza dello stradello	m	373.00	se assente = 0
B4 - Larghezza media del rilevato sversante nel fosso	m	0.00	proiez. orizz. medi
5 - Larghezza media del rilevato sversante nella canaletta	m	0.00	proiez. orizz. med
B6 - Larghezza arginelli / banche intermedie	m	0.00	larghezza cumulat
arphi1 - coeff. Afflusso bitumato	-	1	
arphi2 - coeff. Afflusso rilevato	-	0.4	
superficie impermeabilizzata L1xB1+L2xB2+L3xB3	m ²	4924	
superficie efficace impermeabile	m ²	4924	
superficie permeabile L1x(B4+B6)+L2xB5	m ²	0	
superficie efficace permeabile	m ²	0	
lunghezza fosso drenante	m	57.00	
base minore fosso trapezio	m	2.50	
pendenza sponde (h su b): 1 su		1.50	rapporto vert/orizz
altezza max disponibile del fosso	m	0.75	Tapporto vorti onizz
larghezza max in testa del fosso	m	4.75	
g			
CARATTERISTICHE IDROLOGICH	E E DI PERM	EABILITA'	
K - coefficiente di permeabilità del terreno	m/s	1.50E-04	
a Tempo di ritorno100 anni	mm/h	55.38	
n TR100	111111111	0.203	
n' TR100		0.388	
II IIII		0.000	
VOLUMI INVASATI SULLA RE	TE DI DREN	AGGIO	
velo d'acqua uniformemente ripartito di 3 mm	mm	3	
volume invasato sulla superficie impermeabile =	m ³	14.8	
volume invasato sulla superficie permeabile =	m ³	0.0	
altezza acqua media nella rete	m	0.02	
lunghezza della rete di drenaggio	m	373	
volume invasato sulla rete =	m ³	3.9	-
TOTALE INVASI =	m ³	18.7	-
TOTALL HAVAGE		10.7	-
VERIFICA DEL F	osso		
CAPACITA' DI INVASO RICHIESTA	m ³	119.9	
CAPACITA' MASSIMA DI INVASO DEL FOSSO	m ³	155.0	
MASSIMO RIEMPIMENTO CALCOLATO	m	0.61	risultato simulazio
% RIEMPIMENTO	111	77%	nounate simulazio
/U INILIVII IIVILINIO		positivo	



Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 11 E E2 RI RI 00 04 001 A 27 di 45

		PORTATE A	AFFERENTI		
tempo pioggia	altezza acqua cumulata (h)	portata afferente	tempo pioggia	altezza acqua cumulata (h)	portata afferente
minuti	mm	m³∕s	minuti	mm	m³∕s
10	27.63	0.2268	160	67.58	0.0347
15	32.34	0.1769	170	68.42	0.0330
20	36.16	0.1484	180	69.22	0.0316
30	42.32	0.1158	190	69.98	0.0302
40	47.32	0.0971	200	70.71	0.0290
50	51.60	0.0847	210	71.42	0.0279
60	55.38	0.0757	220	72.09	0.0269
70	57.14	0.0670	230	72.75	0.0260
80	58.71	0.0602	240	73.38	0.0251
90	60.13	0.0548	250	73.99	0.0243
100	61.43	0.0504	260	74.58	0.0235
110	62.63	0.0467	270	75.15	0.0228
120	63.75	0.0436	280	75.71	0.0222
130	64.79	0.0409	290	76.25	0.0216
140	65.77	0.0386	300	76.78	0.0210
150	66.70	0.0365			





Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 11 E E2 RI RI 00 04 001 A 28 di 45

 Progetto
 Lotto
 Codifica Documento
 Rev.
 Foglio

 Doc. N.
 INOR
 1 1
 E E2 RI RI 00 04 001
 A
 29 di 45

portate per Tpioggia =40 MIN 0.097 m³/s								
tempo pioggia evento critico	oggia =40 MIN portata afferente	Volume scaricato nel	0.097 Volume presente nel	Sezione Idraulica	Altezza acqua interna al	Larghezza pelo libero	portata infiltrata	
		fosso	fosso		fosso	·		
minuti	m3/s	m3	m3	m2	m	m	m3/s	
1	0.019	1.16	0.0	0.0000	0.00	2.50	0.0214	
2	0.039	3.49	0.0	0.0000	0.00	2.50	0.0214	
3	0.058	6.99	0.0	0.0000	0.00	2.50	0.0214	
4	0.078	11.65	0.0	0.0000	0.00	2.50	0.0214	
5	0.097	17.47	0.0	0.0000	0.00	2.50	0.0214	
6 7	0.097	23.30	4.5	0.0797	0.03	2.59	0.0230 0.0245	
8	0.097 0.097	29.12 34.95	9.0 13.3	0.1577 0.2341	0.06	2.68	0.0245	
9	0.097	40.77	17.6	0.3090	0.09	2.85	0.0259	
10	0.097	46.60	21.8	0.3824	0.12	2.92	0.0273	
11	0.097	52.42	25.9	0.3624	0.14	3.00	0.0280	
12	0.097	58.24	29.9	0.5252	0.17	3.07	0.0233	
13	0.097	64.07	33.9	0.5947	0.13	3.13	0.0322	
14	0.097	69.89	37.8	0.6630	0.23	3.20	0.0333	
15	0.097	75.72	41.6	0.7301	0.25	3.26	0.0344	
16	0.097	81.54	45.4	0.7961	0.27	3.32	0.0354	
17	0.097	87.37	49.1	0.8610	0.29	3.38	0.0364	
18	0.097	93.19	52.7	0.9249	0.31	3.44	0.0374	
19	0.097	99.02	56.3	0.9877	0.33	3.49	0.0383	
20	0.097	104.84	59.8	1.0496	0.35	3.54	0.0392	
21	0.097	110.66	63.3	1.1105	0.36	3.59	0.0401	
22	0.097	116.49	66.7	1.1705	0.38	3.64	0.0409	
23	0.097	122.31	70.1	1.2296	0.40	3.69	0.0418	
24	0.097	128.14	73.4	1.2879	0.41	3.74	0.0426	
25	0.097	133.96	76.7	1.3453	0.43	3.78	0.0433	
26	0.097	139.79	79.9	1.4018	0.44	3.83	0.0441	
27	0.097	145.61	83.1	1.4576	0.46	3.87	0.0448	
28	0.097	151.43	86.2	1.5126	0.47	3.91	0.0456	
29	0.097	157.26	89.3	1.5668	0.49	3.96	0.0463	
30	0.097	163.08	92.4	1.6202	0.50	4.00	0.0470	
31	0.097	168.91	95.4	1.6730	0.51	4.04	0.0476	
32	0.097	174.73	98.3	1.7250	0.52	4.07	0.0483	
33	0.097	180.56	101.3	1.7764	0.54	4.11	0.0489	
34	0.097	186.38	104.1	1.8270	0.55	4.15	0.0496	
35	0.097	192.21	107.0	1.8770	0.56	4.18	0.0502	
36	0.097	198.03	109.8	1.9264	0.57	4.22	0.0508	
37 38	0.097 0.097	203.85	112.6	1.9751 2.0232	0.58	4.25 4.29	0.0514	
38	0.097	209.68 215.50	115.3 118.0	2.0232	0.60 0.61	4.29	0.0520	
40	0.097	220.16	119.5	2.0707	0.61	4.34	0.0528	
41	0.058	223.66	119.9	2.1029	0.61	4.34	0.0520	
42	0.039	225.99	119.0	2.0881	0.61	4.33	0.0527	
43	0.019	227.15	117.0	2.0530	0.60	4.31	0.0523	
44	0.000	227.15	113.9	1.9979	0.59	4.27	0.0517	
45	0.000	227.15	110.8	1.9436	0.58	4.23	0.0510	
46	0.000	227.15	107.7	1.8899	0.56	4.19	0.0503	
47	0.000	227.15	104.7	1.8369	0.55	4.16	0.0497	
48	0.000	227.15	101.7	1.7846	0.54	4.12	0.0490	
49	0.000	227.15	98.8	1.7330	0.53	4.08	0.0484	
50	0.000	227.15	95.9	1.6820	0.51	4.04	0.0478	
51	0.000	227.15	93.0	1.6318	0.50	4.01	0.0471	
52	0.000	227.15	90.2	1.5822	0.49	3.97	0.0465	
53	0.000	227.15	87.4	1.5332	0.48	3.93	0.0458	
54	0.000	227.15	84.6	1.4850	0.46	3.89	0.0452	
55	0.000	227.15	81.9	1.4374	0.45	3.86	0.0446	
56	0.000	227.15	79.3	1.3905	0.44	3.82	0.0439	
57	0.000	227.15	76.6	1.3442	0.43	3.78	0.0433	
58	0.000	227.15	74.0	1.2986	0.42	3.75	0.0427	
59	0.000	227.15	71.5	1.2537	0.40	3.71	0.0421	

6. VERIFICHE CANALETTE

6.1. Tratto da inizio intervento a pk 144+899 - RI58

Per la verifica delle canalette di questo tratto si rimanda alla relazione idraulica del Progetto Esecutivo del rilevato RI58 INOR11EE2RIRI5804001.

6.2. Tratto da pk 144+899 a pk 145+371 – Canaletta LS lato BD

Canaletta 50x50 con griglia carrabile posta a lato della piattaforma della linea storica lato binario dispari. Raccoglie tutte le acque scolanti dalla piattaforma della linea storica. Il primo tratto risulta verificato con un riempimento del 58%.

Calcol	o afflussi diretti			
	L1=	11,1044	(m), bacino drenate	o piattaforma ferroviaria;
	L2=			uto oltre la piattaforma;
	L= L1 + L2 =	11,1044	(m)	
	Area bagnata (b=0,5m h=0,29m) =	0,146	m2	
	W1'=	0,005	(m)	
	W1"=	0	(m)	
	W2= A/L =	0,013	(m)	
	Risulta quindi W=	0,018	(m)	
	Il coefficiente di deflusso medio è	1,00		
	Con i dati riportati si calcola:			
	coefficiente udometrico u =	320,66	(l/s/ha)	
	portata affluente per metro di cunetta =	0,356	(l/s/m).	
	Poiché la lunghezza del tronco di calcolo è pari a	479	m, si calcola 170,6	l/s.
Verific	a sezione manufatto			
	Largh. fondo	0,50	m	
	Altezza totale	0,50	m	
	Pendenza sponde H/V	pareti ver	m/m	
	Percentuale riempimento	58	%	
	Altezza idrica	0,29	m	
	Area bagnata	0,15	mq	
	Raggio Idraulico	0,13	m	
	Pendenza longitudinale	0,0045	m/m	
	Coefficiente di Manning	0,015	s/m^1/3	
	Portata	170,56	l/s	
	Velocità	1,17	m/s	
La sez	zione idraulica, con un riempimento del	58,29	%, risulta piename	⊥ nte verificata

GENERAL CONTRACTOR Cepav due

Codifica Documento Progetto Lotto Rev. Foglio INOR Doc. N. E E2 RI RI 00 04 001 31 di 45 11

Il secondo tratto, in contropendenza rispetto alla pendenza della livelletta del corpo ferroviario, risulta verificato con un riempimento del 36%.

Il canale viene posato come da sezione tipo seguendo la livelletta dell'asse ferroviario di progetto, la pendenza idraulica nella direzione opposta viene realizzata con un getto di magrone all'interno della canaletta.

Calco	lo afflussi diretti			
	L1=	10.84	(m) hacino drenat	o piattaforma ferroviaria;
	L2=			uto oltre la piattaforma;
	L= L1 + L2 =	10,84		pianaionna,
	Area bagnata (b=0,5m h=0,18m) =	0,090		
	W1'=	0,005	(m)	
	W1"=	0	(m)	
	W2= A/L =	0,008	(m)	
	Risulta quindi W=	0,013	(m)	
	Il coefficiente di deflusso medio è	1,00		
	Con i dati riportati si calcola:			
	coefficiente udometrico u =	520,58	(l/s/ha)	
	portata affluente per metro di cunetta =	0,564	(l/s/m).	
	Poiché la lunghezza del tronco di calcolo è pari a	75	m, si calcola 42,3	3 I/s.
Verific	a sezione manufatto			
	Largh. fondo	0,50	m	
	Altezza totale	0,50	m	
	Pendenza sponde H/V	pareti ver	m/m	
	Percentuale riempimento	36		
	Altezza idrica	0,18	m	
	Area bagnata	0,09	mq	
	Raggio Idraulico	0,10	m	
	Pendenza longitudinale	0,0010	m/m	
	Coefficiente di Manning	0,015	s/m^1/3	
	Portata	42,32	l/s	
	Velocità	0,47		
a se	zione idraulica, con un riempimento del	36 12	%, risulta piename	te verificata

6.3. Tratto da pk 144+899 a pk 145+371 – Canaletta interclusa tra AV e LS

Canaletta 50x50 con griglia carrabile posta tra le due piattaforma della Linea Storica e della AV, lato BD della AV. Raccoglie le acque scolanti dalla semipiattaforma della linea AV lato LS. Risulta verificata con un riempimento del 37%.

Calcol	o afflussi diretti				
	L1=	6.55	(m), bacino d	renato	piattaforma ferroviaria;
	L2=		. ,		ito oltre la piattaforma;
	L= L1 + L2 =	6,55			
	Area bagnata (b=0,5m h=0,18m) =	0,092	` '		
	W1'=	0,005	(m)		
	W1"=	0	(m)		
	W2= A/L =	0,014	(m)		
	Risulta quindi W=	0,019	(m)		
	Il coefficiente di deflusso medio è	1,00			
	Con i dati riportati si calcola:				
	coefficiente udometrico u =	298,20	(l/s/ha)		
	portata affluente per metro di cunetta =	0,195	(l/s/m).		
	Poiché la lunghezza del tronco di calcolo è pari a	467	m, si calcola	91,2	l/s.
Verific	a sezione manufatto				
	Largh. fondo	0,50	m		
	Altezza totale	0,50	m		
	Pendenza sponde H/V	pareti ver	m/m		
	Percentuale riempimento	37	%		
	Altezza idrica	0,18	m		
	Area bagnata	0,09	mq		
	Raggio Idraulico	0,11	m		
	Pendenza longitudinale	0,0045	m/m		
	Coefficiente di Manning	0,015	s/m^1/3		
	Portata	91,21	l/s		
	Velocità	1,00	m/s		
2 507	ione idraulica, con un riempimento del	36 62	%, risulta pier	namen	te verificata

6.4. Tratto da pk 144+899 a pk 145+371 - Canaletta AV lato BP

Canaletta 50x50 con griglia carrabile posta a lato della piattaforma AV. Raccoglie le acque scolanti dalla semipiattaforma della linea AV lato Ancap. Risulta verificata con un riempimento del 37%.

Calcol	o afflussi diretti				
	L1=	6.55	(m), bacino dr	renato	piattaforma ferroviaria;
	L2=				ito oltre la piattaforma;
	L= L1 + L2 =	6,55			
	Area bagnata (b=0,5m h=0,18m) =	0,092			
	W1'=	0,005	(m)		
	W1"=	0	(m)		
	W2= A/L =	0,014	(m)		
	Risulta quindi W=	0,019	(m)		
	Il coefficiente di deflusso medio è	1,00			
	Con i dati riportati si calcola:				
	coefficiente udometrico u =	297,91	(l/s/ha)		
	portata affluente per metro di cunetta =	0,195	(l/s/m).		
	Poiché la lunghezza del tronco di calcolo è pari a	468	m, si calcola	91,3	l/s.
Verific	a sezione manufatto				
	Largh. fondo	0,50	m		
	Altezza totale	0,50	m		
	Pendenza sponde H/V	pareti ver	m/m		
	Percentuale riempimento	37	%		
	Altezza idrica	0,18	m		
	Area bagnata	0,09	mq		
	Raggio Idraulico	0,11	m		
	Pendenza longitudinale	0,0045	m/m		
	Coefficiente di Manning	0,015	s/m^1/3		
	Portata	91,32	l/s		
	Velocità	1,00	m/s		
2 5 6 7	ione idraulica, con un riempimento del	36 65	%, risulta pien	amen	te verificata

6.5. Tratto da pk 145+371 a pk 145+950 – Canaletta interclusa tra AV e LS

Canaletta 50x50 posta tra le due piattaforma della Linea Storica e della AV, lato BD della AV. Per i primi 217 m la canaletta è grigliata. La pendenza longitudinale utilizzata per la verifica è la minore tra le pendenze dei due tratti contigui, quindi 0,27%.

Raccoglie le acque scolanti dalla semipiattaforma della linea AV lato LS e dalla parte di piattaforma della Linea Storica compresa tra la linea di colmo esistente e la canaletta in progetto.

Risulta verificata con un riempimento del 78%.

Calcolo	o afflussi diretti				
	L1=		(m), bacino drenato piattaforma ferroviar		
	L2=		(m), event. contributo oltre la piattaform		
	L= L1 + L2 =	12.55			
	Area bagnata (b=0.5m h=0.39m) =	0.195			
	W1'=	0.005	· ,		
	W1"=		(m)		
	W2= A/L =	0.016	(m)		
	Risulta quindi W=	0.021	(m)		
	Il coefficiente di deflusso medio è	1.00			
	Con i dati riportati si calcola:				
	coefficiente udometrico u =	263.24	(l/s/ha)		
	portata affluente per metro di cunetta =	0.330	(l/s/m).		
	Poiché la lunghezza del tronco di calcolo è pari a	580	m, si calcola 19	91.6	l/s.
Verifica	a sezione manufatto				
	Largh. fondo	0.50	m		
	Altezza totale	0.50	m		
	Pendenza sponde H/V	pareti ver	m/m		
	Percentuale riempimento	78	%		
	Altezza idrica	0.39	m		
	Area bagnata	0.20	mq		
	Raggio Idraulico	0.15	m		
	Pendenza longitudinale	0.0027	m/m		
	Coefficiente di Manning	0.015	s/m^1/3		
	Portata	191.61	l/s		
	Velocità	0.98	m/s		
la sez	ione idraulica, con un riempimento del	78 00	%, risulta piena	men	te verificata

6.6. Tratto da pk 145+371 a pk 145+950 - Canaletta AV lato BP

Canaletta 50x50 posta a lato della piattaforma AV. Raccoglie le acque scolanti dalla semipiattaforma della linea AV lato Ancap. Risulta verificata con un riempimento del 46%.

Calcol	o afflussi diretti				
	L1=	6.55	(m), bacino d	lrenato	piattaforma ferroviaria;
	L2=		(m), event. contributo oltre la piattaforma		
	L= L1 + L2 =	6,55			
	Area bagnata (b=0,5m h=0,23m) =	0,114	` '		
	W1'=	0,005	(m)		
	W1"=	0	(m)		
	W2= A/L =	0,017	(m)		
	Risulta quindi W=	0,022	(m)		
	Il coefficiente di deflusso medio è	1,00			
	Con i dati riportati si calcola:				
	coefficiente udometrico u =	228,94	(l/s/ha)		
	portata affluente per metro di cunetta =	0,150	(l/s/m).		
	Poiché la lunghezza del tronco di calcolo è pari a	545	m, si calcola	81,7	l/s.
Verific	a sezione manufatto				
	Largh. fondo	0,50	m		
	Altezza totale	0,50	m		
	Pendenza sponde H/V	pareti ver	m/m		
	Percentuale riempimento	46	%		
	Altezza idrica	0,23	m		
	Area bagnata	0,11	mq		
	Raggio Idraulico	0,12	m		
	Pendenza longitudinale	0,0020	m/m		
	Coefficiente di Manning	0,015	s/m^1/3		
	Portata	81,73	l/s		
	Velocità	0,72			
2 567	ione idraulica, con un riempimento del	45 60	%, risulta pier	namen	nte verificata

6.7. Tratto da pk 145+950 a pk 146+067 – Canaletta interclusa tra AV e LS

Canaletta 50x50 posta al piede del rilevato della linea AV lato Linea Storica.

Raccoglie le acque scolanti dalla semipiattaforma della AV, della scarpata del rilevato AV lato BD e della parte di piattaforma della Linea Storica compresa tra il colmo esistente e la canaletta e la scarpata della LS lato BP. Risulta verificata con un riempimento del 47%.

Calcol	o afflussi diretti			
	L1=	28.1761	(m), bacino drenat	o piattaforma ferroviaria;
	L2=			uto oltre la piattaforma;
	L= L1 + L2 =	34.1761	(m)	
	Area bagnata (b=0.5m h=0.24m) =	0.118	m2	
	W1'=	0.00412	(m)	
	W1"=	0.00053	(m)	
	W2= A/L =	0.003	(m)	
	Risulta quindi W=	0.008	(m)	
	Il coefficiente di deflusso medio è	0.95		
	Con i dati riportati si calcola:			
	coefficiente udometrico u =	976.21	(l/s/ha)	
	portata affluente per metro di cunetta =	3.336	(l/s/m).	
	Poiché la lunghezza del tronco di calcolo è pari a	115	m, si calcola 383.7	/ I/s.
Verific	a sezione manufatto			
	Largh. fondo	0.50	m	
	Altezza totale	0.50	m	
	Pendenza sponde H/V	pareti ver	m/m	
	Percentuale riempimento	47	%	
	Altezza idrica	0.24	m	
	Area bagnata	0.12	mq	
	Raggio Idraulico	0.12	m	
	Pendenza longitudinale	0.0395	m/m	
	Coefficiente di Manning	0.015	s/m^1/3	
	Portata	383.68	l/s	
	Velocità	3.25	m/s	
La sez	zione idraulica, con un riempimento del	47.23	%, risulta piename	te verificata

6.8. Tratto da pk 146+067 a 146+500 – Canaletta lato BD Precedenza

Canaletta 50x50 posta a lato della piattaforma del binario di precedenza dispari LS. Raccoglie le acque scolanti dalla semipiattaforma della LS e dal binario dispari di precedenza. Risulta verificata con un riempimento del 62%.

Calcol	o afflussi diretti				
	L1=	13.2	(m), bacino drenato	 o piattaforma ferroviaria;	
	L2=		(m), event. contributo oltre la piattaforn		
	L= L1 + L2 =	13.2	· ·		
	Area bagnata (b=0.5m h=0.31m) =	0.154	m2		
	W1'=	0.005	(m)		
	W1"=	0	(m)		
	W2= A/L =	0.012	(m)		
	Risulta quindi W=	0.017	(m)		
	Il coefficiente di deflusso medio è	1.00			
	Con i dati riportati si calcola:				
	coefficiente udometrico u =	359.89	(l/s/ha)		
	portata affluente per metro di cunetta =	0.475	(l/s/m).		
	Poiché la lunghezza del tronco di calcolo è pari a	374	m, si calcola 177.7	l/s.	
/erific	a sezione manufatto				
	Largh. fondo	0.50	m		
	Altezza totale	0.50	m		
	Pendenza sponde H/V	pareti ver	m/m		
	Percentuale riempimento	62			
	Altezza idrica	0.31	m		
	Area bagnata	0.15	mq		
	Raggio Idraulico	0.14	m		
	Pendenza longitudinale	0.0042	m/m		
	Coefficiente di Manning	0.015	s/m^1/3		
	Portata	177.67	l/s		
	Velocità	1.15	m/s		
a sez	cione idraulica, con un riempimento del	61 60	%, risulta pienamer	nte verificata	

6.9. Tratto da pk 146+067 a 146+500 – Canaletta interclusa tra AV e LS

Canaletta 70x70 posta al compluvio tra il rilevato della linea AV lato nord e il rilevato della LS lato sud. Raccoglie le acque scolanti dalla semipiattaforma della LS, dal binario di precedenza pari, dalla semipiattaforma AV lato BD e dalle due scarpate.

Il primo tratto risulta verificato con un riempimento del 58%.

Calcol	o afflussi diretti			
	L1=	19.75	(m), bacino drenato	piattaforma ferroviaria;
	L2=		. ,	to oltre la piattaforma;
	L= L1 + L2 =	45.75		
	Area bagnata (b=0.7m h=0.4m) =	0.282	m2	
	W1'=	0.00216	(m)	
	W1"=	0.0017	(m)	
	W2= A/L =	0.006	(m)	
	Risulta quindi W=	0.010	(m)	
	Il coefficiente di deflusso medio è	0.83		
	Con i dati riportati si calcola:			
	coefficiente udometrico u =	495.60	(l/s/ha)	
	portata affluente per metro di cunetta =	2.267	(l/s/m).	
	Poiché la lunghezza del tronco di calcolo è pari a	278	m, si calcola 630.3	l/s.
erifica	a sezione manufatto			
	Largh. fondo	0.70	m	
	Altezza totale	0.70	m	
	Pendenza sponde H/V	pareti ver	m/m	
	Percentuale riempimento	58	%	
	Altezza idrica	0.40	m	
	Area bagnata	0.28	mq	
	Raggio Idraulico	0.19	m	
	Pendenza longitudinale	0.0105	m/m	
	Coefficiente di Manning	0.015	s/m^1/3	
	Portata	630.33	I/s	
	Velocità	2.24	m/s	

 Progetto
 Lotto
 Codifica Documento
 Rev.
 Foglio

 Doc. N.
 11
 E E2 RI RI 00 04 001
 A
 39 di 45

Il secondo tratto risulta verificato con un riempimento del 38%.

Calcol	o afflussi diretti			
	L1=	19.75	(m), bacino drenat	o piattaforma ferroviaria;
	L2=			uto oltre la piattaforma;
	L= L1 + L2 =	42.75	(m)	
	Area bagnata (b=0.7m h=0.26m) =	0.185	m2	
	W1'=	0.00231	(m)	
	W1"=	0.00161	(m)	
	W2= A/L =	0.004	(m)	
	Risulta quindi W=	0.008	(m)	
	Il coefficiente di deflusso medio è	0.84		
	Con i dati riportati si calcola:			
	coefficiente udometrico u =	691.88	(l/s/ha)	
	portata affluente per metro di cunetta =	2.958	(l/s/m).	
	Poiché la lunghezza del tronco di calcolo è pari a	128	m, si calcola 378.6	6 l/s.
√erific	a sezione manufatto			
	Largh. fondo	0.70	m	
	Altezza totale	0.70	m	
	Pendenza sponde H/V	pareti ver	m/m	
	Percentuale riempimento	38	%	
	Altezza idrica	0.26	m	
	Area bagnata	0.19	mq	
	Raggio Idraulico	0.15	m	
	Pendenza longitudinale	0.0117	m/m	
	Coefficiente di Manning	0.015	s/m^1/3	
	Portata	378.59	l/s	
	Velocità	2.04		
2 567	zione idraulica, con un riempimento del	27 22	%, risulta piename	nte verificata

7. VERIFICHE TOMBINI DI ATTRAVERSAMENTO

7.1. Tratto da inizio intervento a pk 144+899

Per la verifica dei tombini di attraversamento di questo tratto si rimanda alla relazione idraulica del Progetto Esecutivo del rilevato RI58 INOR11EE2RIRI5804001.

7.2. Tombino DN600 alla pk 145+371

Il tombino alla progressiva km 145+371 convoglia le acque provenienti dalle canalette descritte ai paragrafi 6.2, 6.3, 6.4 e le recapita alla vasca drenante del paragrafo 5.2.

Ha diametro 600 mm e pendenza pari all'1%.

Il primo tratto (sotto la Linea Storica) riceve la portata della canaletta lato Binario Dispari della Linea Storica (par. 6.2), pari a 213 l/s; nel secondo tratto (sotto la linea AV/AC) si aggiunge la portata della canaletta interclusa tra AV e LS (par. 6.3), pari a 91 l/s, per un totale di 304 l/s; nel terzo tratto (scarico nella vasca) si aggiunge la portata della canaletta lato Binario Pari della linea AV (par. 6.4), pari a 91 l/s, per un totale di 395 l/s.

Si riportano le verifiche di ciascun tratto.

			Manning n =		0.015
				i =	0.01
alfa	h	Area idr.	Rg idr	V	Q
	m	mq	m	m/s	mc/s
1.00	0.0367	0.007	0.024	0.55	0.004
1.10	0.0442	0.009	0.028	0.62	0.006
1.20	0.0524	0.012	0.033	0.69	0.008
1.30	0.0612	0.015	0.039	0.76	0.012
1.40	0.0705	0.019	0.044	0.84	0.016
1.50	0.0805	0.023	0.050	0.91	0.021
1.60	0.0910	0.027	0.056	0.98	0.026
1.70	0.1020	0.032	0.063	1.05	0.033
1.80	0.1135	0.037	0.069	1.12	0.042
1.90	0.1255	0.043	0.075	1.19	0.051
2.00	0.1379	0.049	0.082	1.26	0.062
2.10	0.1507	0.056	0.088	1.32	0.074
2.20	0.1639	0.063	0.095	1.39	0.087
2.30	0.1775	0.070	0.101	1.45	0.101
2.40	0.1913	0.078	0.108	1.51	0.117
2.50	0.2054	0.086	0.114	1.57	0.134
2.60	0.2198	0.094	0.120	1.62	0.152
2.70	0.2343	0.102	0.126	1.68	0.172
2.80	0.2490	0.111	0.132	1.73	0.192
2.90	0.2638	0.120	0.138	1.78	0.213
3.00	0.2788	0.129	0.143	1.82	0.234
3.10	0.2938	0.138	0.148	1.87	0.257
3.20	0.3088	0.147	0.153	1.90	0.279
3.30	0.3237	0.156	0.157	1.94	0.302
3.40	0.3387	0.164	0.161	1.98	0.325
3.50	0.3535	0.173	0.165	2.01	0.348
3.60	0.3682	0.182	0.168	2.03	0.370
3.70	0.3827	0.190	0.171	2.06	0.392
3.80	0.3970	0.199	0.174	2.08	0.413
3.90	0.4111	0.206	0.176	2.10	0.433
4.00	0.4248	0.214	0.178	2.11	0.452

11

41 di 45

Verifica deflussi in condot	ta cheolai	·
Dati:		
Portata	213	1/s
Pendenza longitudinale	1	%
diametro	600	mm
n Manning	0.015	s/m ^{1/3}
risultati:		
h idrica =	0.26	m
R raggio idraulico =	0.14	m
V velocità =	1.78	m/s
% riempimento =	44	%

Verifica deflussi in condo	tta circolar	e
Dati:		
Portata	304	1/s
Pendenza longitudinale	1	%
diametro	600	mm
n Manning	0.015	s/m ^{1/3}
risultati:		
h idrica =	0.32	m
R raggio idraulico =	0.16	m
V velocità =	1.94	m/s
% riempimento =	54	%

Verifica deflussi in condot	ta circolar	e
Dati:		
Portata	395	1/s
Pendenza longitudinale	1	%
diametro	600	mm
n Manning	0.015	s/m ^{1/3}
risultati:		
h idrica =	0.38	m
R raggio idraulico =	0.17	m
V velocità =	2.06	m/s
% riempimento =	64	%

7.3. Tombino DN1500 alla pk 145+950

Il tombino alla progressiva km 145+950 convoglia le acque provenienti dalle canalette descritte ai paragrafi 6.5, 6.6 e le recapita alla vasca drenante del paragrafo 5.3.

Ha diametro 1500 mm e pendenza pari all'1%.

Il primo tratto (sotto la Linea AV/AC) riceve la portata della canaletta interclusa tra AV e LS (par. 6.5), pari a 182 l/s; nel secondo tratto (scarico nella vasca) si aggiunge la portata della canaletta lato Binario Pari della linea AV (par. 6.6), pari a 82 l/s, per un totale di 264 l/s.

Si riportano le verifiche di ciascun tratto.

			Ma	0.015	
				i =	0.01
alfa	h	Area idr.	Rg idr	V	Q
	m	mq	m	m/s	mc/s
1.00	0.0918	0.045	0.059	1.02	0.045
1.10	0.1106	0.059	0.071	1.15	0.067
1.20	0.1310	0.075	0.084	1.28	0.096
1.30	0.1529	0.095	0.097	1.41	0.133
1.40	0.1764	0.117	0.111	1.54	0.180
1.50	0.2012	0.141	0.126	1.67	0.236
1.60	0.2275	0.169	0.141	1.80	0.305
1.70	0.2550	0.199	0.156	1.93	0.385
1.80	0.2838	0.232	0.172	2.06	0.479
1.90	0.3137	0.268	0.188	2.19	0.587
2.00	0.3448	0.307	0.205	2.31	0.710

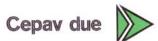
Verifica deflussi in condo	tta circolar	e
Dati:		
Portata	182	1/s
Pendenza longitudinale	1	%
diametro	1500	mm
n Manning	0.015	s/m ^{1/3}
risultati:		
h idrica =	0.18	m
R raggio idraulico =	0.11	m
V velocità =	1.54	m/s
% riempimento =	12	%

Verifica deflussi in condo	tta circolar	e
Dati:		
Portata	263	1/s
Pendenza longitudinale	1	%
diametro	1500	mm
n Manning	0.015	s/m ^{1/3}
risultati:		
h idrica =	0.20	m
R raggio idraulico =	0.13	m
V velocità =	1.67	m/s
% riempimento =	13	%

7.4. Tombino DN1500 alla pk 146+067

Il tombino alla progressiva km 146+067 convoglia le acque provenienti dalla canaletta descritta al paragrafo 6.7 e le recapita nel fosso drenante del piazzale SSE SONA FA25.

Ha diametro 1500 mm e pendenza pari allo 0,5%.


La portata è quella della canaletta interclusa tra AV e LS (par. 6.7), pari a 384 l/s.

			Manning n =		0.015
				i =	0.005
alfa	h	Area idr.	Rg idr	V	Q
	m	mq	m	m/s	mc/s
1.00	0.0918	0.045	0.059	0.72	0.032
1.10	0.1106	0.059	0.071	0.81	0.048
1.20	0.1310	0.075	0.084	0.90	0.068
1.30	0.1529	0.095	0.097	1.00	0.094
1.40	0.1764	0.117	0.111	1.09	0.127
1.50	0.2012	0.141	0.126	1.18	0.167
1.60	0.2275	0.169	0.141	1.28	0.215
1.70	0.2550	0.199	0.156	1.37	0.272
1.80	0.2838	0.232	0.172	1.46	0.339
1.90	0.3137	0.268	0.188	1.55	0.415
2.00	0.3448	0.307	0.205	1.64	0.502

Verifica deflussi in condo	tta circolar	e
Dati:		
Portata	384	1/s
Pendenza longitudinale	0.5	%
diametro	1500	mm
n Manning	0.015	s/m ^{1/3}
risultati:		
h idrica =	0.28	m
R raggio idraulico =	0.17	m
V velocità =	1.46	m/s
% riempimento =	19	%

Una volta attraversato il rilevato ferroviario, è necessario inserire un secondo tratto di tubazione da posare sotto la piazzola di inversione dello stradello RFI per raggiungere il fosso drenante del piazzale FA25. Questo secondo tratto ha diametro 600 mm e pendenza 0,5%.

La portata è sempre quella della canaletta interclusa tra AV e LS (par. 6.7), pari a 384 l/s.

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. 11 E E2 RI RI 00 04 001 A 44 di 45

		Manning n =		0.015				
			i =	0.005				
h	Area idr.	Rg idr	V	Q	Verifica deflussi in condotta circola		are	
m	mq	m	m/s	mc/s	Dati:			
					Portata	384	l/s	
0.0367	0.007	0.024	0.39	0.003	Pendenza longitudinale	0.5		
0.0442	0.009	0.028	0.44	0.004	diametro		mm	
0.0524	0.012	0.033	0.49	0.006	n Manning	0.015	s/m	
0.0612	0.015	0.039	0.54	0.008	risultati:			
0.0705	0.019	0.044	0.59	0.011	h idrica =	0.50	m	
0.0805	0.023	0.050	0.64	0.015	R raggio idraulico =	0.18	m	
0.0910	0.027	0.056	0.69	0.019	V velocità =	1.52	m/s	
0.1020	0.032	0.063	0.74	0.024	% riempimento =		%	
0.1020	0.032	0.069	0.74	0.024	/o nempinento –	0.5	/0	
0.1155	0.043	0.075	0.73	0.036				
0.1379	0.049	0.082	0.89	0.044				
0.1507	0.056	0.088	0.94	0.052				
0.1639	0.063	0.095	0.98	0.061				
0.1775	0.070	0.101	1.02	0.072				
0.1913	0.078	0.108	1.07	0.083				
0.2054	0.086	0.114	1.11	0.095				
0.2198	0.094	0.120	1.15	0.108				
0.2343	0.102	0.126	1.19	0.121				
0.2490	0.111	0.132	1.22	0.136				
0.2638	0.120	0.138	1.26	0.150				
0.2788	0.129	0.143	1.29	0.166				
0.2938	0.138	0.148	1.32	0.182				
0.3088	0.147	0.153	1.35	0.198				
0.3237	0.156	0.157	1.37	0.214				
0.3387	0.164	0.161	1.40	0.230				
0.3535	0.173	0.165	1.42	0.246				
0.3682	0.182	0.168	1.44	0.262				
0.3827	0.190	0.171	1.46	0.277				
0.3970	0.199	0.174	1.47	0.292				
0.4111	0.206	0.176	1.48	0.306				
0.4248	0.214	0.178	1.49	0.320				
0.4383	0.221	0.180	1.50	0.333				
0.4515	0.228	0.181	1.51	0.344				
0.4642	0.235	0.182	1.51	0.355				
0.4766	0.241	0.182 0.183	1.52	0.365				
0.4885 0.4999	0.246 0.252	0.183	1.52 1.52	0.374 0.382				
0.4999	0.252	0.182	1.52	0.382				
0.5106	0.261	0.182	1.51	0.394				
0.5212	0.265	0.180	1.50	0.398				
0.5403	0.268	0.179	1.50	0.401				

7.5. Tombino DN1500 alla pk 146+375

Il tombino alla progressiva km 146+375 convoglia le acque provenienti dalla canaletta descritta al paragrafo 6.9 e le recapita nel fosso drenante descritto al paragrafo 5.1.

Ha diametro 1500 mm e pendenza pari allo 0,5%.

La portata è quella della canaletta interclusa tra AV e LS (par. 6.9), pari a 393,15+256,44=649,59 l/s.

			Manning n =		0.015
				i =	0.005
alfa	h	Area idr.	Rg idr	V	Q
	m	mq	m	m/s	mc/s
1.00	0.0918	0.045	0.059	0.72	0.032
1.10	0.1106	0.059	0.071	0.81	0.048
1.20	0.1310	0.075	0.084	0.90	0.068
1.30	0.1529	0.095	0.097	1.00	0.094
1.40	0.1764	0.117	0.111	1.09	0.127
1.50	0.2012	0.141	0.126	1.18	0.167
1.60	0.2275	0.169	0.141	1.28	0.215
1.70	0.2550	0.199	0.156	1.37	0.272
1.80	0.2838	0.232	0.172	1.46	0.339
1.90	0.3137	0.268	0.188	1.55	0.415
2.00	0.3448	0.307	0.205	1.64	0.502
2.10	0.3768	0.348	0.221	1.72	0.599
2.20	0.4098	0.391	0.237	1.81	0.707
2.30	0.4436	0.437	0.253	1.89	0.825
2.40	0.4782	0.485	0.269	1.97	0.954
2.50	0.5135	0.535	0.285	2.04	1.092

Verifica deflussi in condotta circolare					
Dati:					
Portata	650	1/s			
Pendenza longitudinale	0.5	%			
diametro	1500	mm			
n Manning	0.015	s/m ^{1/3}			
risultati:					
h idrica =	0.38	m			
R raggio idraulico =	0.22	m			
V velocità =	1.72	m/s			
% riempimento =	25	%			