COMMITTENTE

PROGETTAZIONE:

DIR	EZI	ON	ΕŢ	TEC	:NI	CA

U.O. INFRASTRUTTURE CENTRO

PROGETTO DEFINITIVO

VELOCIZZAZIONE DELLA LINEA ROMA – PESCARA
RADDOPPIO FERROVIARIO TRATTA CHIETI – INTERPORTO D'ABRUZZO
(LOTTO 3)

IDROLOGIA ED IDRAULICA

Relazione Smaltimento Acque Meteoriche – Piattaforma Ferroviaria

								S	CALA:	
									-	
COMMESSA	LOTTO	FASE	ENTE	TIPO DOC.	OPERA/DISCIPLINA	PROGR.	RE\	/ .		_

 I A 6 F
 0 3
 D
 2 9
 R I
 I D 0 0 0 2
 0 0 3
 A

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Emissione Esecutiva	P. Luciani	11/07/2019	M. Matteucci	12/07/2019	T. Paoletti	13/07/2019	F. Arduini 13/07/2019
				***		14		Single Back
								A LINE OF LINE
								Target and A
								il Roy

File: IA6F03D29RIID0002003A n. Elab.: 7-13

Relazione Smaltimento Acque Meteoriche - Piatt. Ferr.

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA6F
 03 D 29
 RI
 ID0002 003
 A
 2 di 15

INDICE

1.	PREMESSA	3
2.	INQUADRAMENTO DEL PROGETTO	4
3.	RIFERIMENTI NORMATIVI	5
4.	OPERE DI SMALTIMENTO	6
4.1	METODOLOGIE DI CALCOLO	
4.2	CURVE DI PROBABILITÀ PLUVIOMETRICA	6
5.	VERIFICA IDRAULICA ACQUE DI PIATTAFORMA	8
	5.1.1 Modello di trasformazione afflussi/deflussi ed elaborazioni idrauliche	8
6.	CRITERI DI PROGETTO	
6.1	LINEA FERROVIARIA IN RILEVATO	
6.2	LINEA FERROVIARIA IN TRINCEA	
6.3	FOSSI DI GUARDIA	12
7.	VERIFICA DEL SISTEMA DI DRENAGGIO ACQUE METEORICHE	13

Relazione Smaltimento Acque Meteoriche - Piatt. Ferr.

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA6F	03 D 29	RI	ID0002 003	Α	3 di 15

1. PREMESSA

La presente relazione ha per oggetto il dimensionamento idraulico delle opere finalizzate allo smaltimento delle acque meteoriche afferenti alla sede ferroviaria del raddoppio della tratta ferroviaria in progetto del lotto 3 tra Chieti e Interporto D'Abruzzo. Viene affrontato il tema dell'idraulica di piattaforma, definendo i criteri di progetto e caratteristiche dimensionali e tecniche degli elementi idraulici di superficie ferroviaria e delle opere necessarie al presidio idraulico dell'infrastruttura.

Per le piogge di progetto si è fatto riferimento alla Relazione Idrologica (<u>IA6F03D09RIID0001001A</u>) dell'area di progetto nella quale sono stati determinati i parametri pluviometrici.

Inoltre, il contesto piuttosto urbanizzato che caratterizza il progetto in oggetto comporta una difficoltà idraulica intrinseca, che consiste in un'incertezza delle condizioni al contorno, in particolare di valle, dovute all'impossibilità di ispezionare le continuità idrauliche urbane, sovente tombate. Dove non è stato possibile fare altrimenti si è quindi scelto di utilizzare come condizioni al contorno le pendenze rilevate dei tratti di monte e di valle. Nella fase esecutiva della progettazione dovrà essere meglio definito il raccordo dell'opera in progetto all'opera idraulica esistente.

Prima dell'inizio dei lavori andranno verificate puntualmente le quote precise dei recapiti, in quanto suscettibili di modifiche nel tempo.

Relazione Smaltimento Acque Meteoriche – Piatt. Ferr.

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA6F	03 D 29	RI	ID0002 003	Α	4 di 15

2. INQUADRAMENTO DEL PROGETTO

Il progetto del raddoppio della linea ferroviaria Pescara Porta Nuova-Interporto Val Pescara si sviluppa in destra idraulica del fiume Pescara e interessa diversi corsi d'acqua minori che confluiscono poi nel fiume principale. Lo studio del fiume Pescara è oggetto di altro elaborato. Il tracciato è caratterizzato da rilevati e trincee di modesta entità.

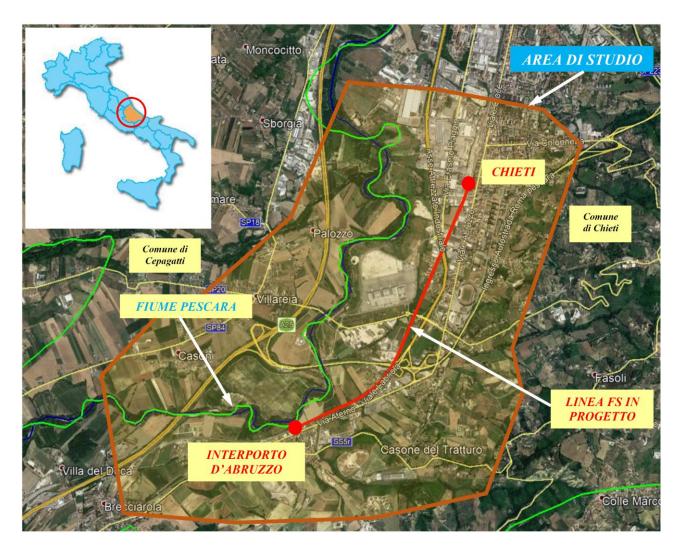


Figura 1 – Inquadramento Interventi del Lotto 3

Relazione Smaltimento Acque Meteoriche - Piatt. Ferr.

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA6F	03 D 29	RI	ID0002 003	Α	5 di 15

3. RIFERIMENTI NORMATIVI

- Regio Decreto 25/07/1904 n°523 "Testo unico delle disposizioni di alle opere idrauliche delle diverse categorie";
- Piano di Gestione del Rischio Alluvioni del Distretto Idrografico del f (P.G.R.A. 03/03/2016);
- "Manuale di Progettazione delle Opere Civili" della Rete Ferroviaria Italiana (RFI) aggiornato all'anno 2018.
- Prescrizioni normative del Ministero dei Lavori Pubblici In Italia i riferimenti normativi ai quali si deve attenere il progettista
- PIANO STRALCIO DIFESA ALLUVIONI P.S.D.A. redatto dall'Autorità dei Bacini Regionali e Interregionali del Fiume Sangro, approvato con delibera n.6 del 31/07/2007 del Comitato Istituzionale.
- Piano di gestione del rischio alluvioni (PGRA) del distretto dell'appennino centrale Adottato dal Comitato Istituzionale integrato il 17 dicembre 2015 Approvato dal Comitato Istituzionale integrato il 3 marzo 2016
- NTC 17/01/2018 e Circolare Esplicativa

Relazione Smaltimento Acque Meteoriche - Piatt. Ferr.

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA6F	03 D 29	RI	ID0002 003	Α	6 di 15

4. OPERE DI SMALTIMENTO

4.1 Metodologie di calcolo

La protezione della linea ferroviaria dalle acque meteoriche che vengono ad interessare il corpo ferroviario richiede la realizzazione di opere idrauliche che devono essere dimensionate e verificate adeguatamente. La procedura di calcolo e dimensionamento degli elementi costituenti il sistema di drenaggio e smaltimento delle acque di piattaforma, differente per ciascuna opera, si compone dei seguenti passi:

- Individuazione delle curve di possibilità pluviometrica;
- Calcolo delle portate generate dalla precipitazione meteorica;
- Dimensionamento e verifica degli elementi di raccolta e smaltimento delle acque meteoriche.

4.2 Curve di probabilità pluviometrica

Le leggi di probabilità pluviometricache mettono in relazione durata-intensità-frequenza, attraverso una legge a tre parametri del tipo:

$$i_d(T) = \frac{a(T_r)}{(b+d)^m}$$

dove:

- b = Parametro di trasformazione della scala temporale, indipendente sia dalla durata d, sia dal tempo di ritorno;
- m = Parametro adimensionale compreso tra 0 e 1, indipendente sia dalla durata, sia dal tempo di ritorno;
- $a(T_r)$ = Parametro dipendente dal tempo di ritorno, ma indipendente dalla durata, sono state definite nello studio idrologico.

Relazione Smaltimento Acque Meteoriche - Piatt. Ferr.

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA6F	03 D 29	RI	ID0002 003	Α	7 di 15

Ai fini della determinazione delle leggi di probabilità pluviometrica da considerare per il calcolo delle portate di piattaforma, i valori dei parametri **a(Tr)**, **b**, **m** per la determinazione della curva di probabilità pluviometrica (CPP), per i vari tempi di ritorno considerati, relativamente all'intero bacino del Fiume Aterno – Pescara sono:

SZO	A (kmq)	% A	a (Tr30)	a (Tr100)	a (Tr200)	a (Tr300)	b	m
B11	1367.2	43.1	41.71	49.49	53.98	56.62	0.10346	0.67822
B16	474.7	15.0	33.77	40.06	43.70	45.84	0.10513	0.68105
B17	60.0	1.9	46.61	55.30	60.32	63.27	0.08886	0.65318
B18	91.0	2.9	48.33	57.34	62.55	65.61	0.1167	0.70053
B19	9.5	0.3	36.89	43.76	47.74	50.07	0.11349	0.69514
B22	226.4	7.1	67.84	80.48	87.79	92.08	0.11012	0.68949
C2	258.7	8.2	61.89	78.25	87.69	93.20	0.11072	0.69052
C8	19.2	0.6	101.04	127.75	143.15	152.15	0.10011	0.67252
C9	162.9	5.1	54.20	68.52	76.78	81.61	0.10759	0.68521
C10	226.1	7.1	73.70	93.18	104.41	110.98	0.10339	0.6781
C13	105.2	3.3	57.44	72.62	81.37	86.49	0.08208	0.64138
C14	169.2	5.3	40.60	51.33	57.52	61.14	0.08974	0.65471
somma	3170	100						

Tab. 1 – Valori di superficie e dei parametri a(Tr), b, m per le sottozone VAPI ricadenti nel Bacino del F. Aterno-Pescara.

Per i dettagli riguardo la caratterizzazione idrologica dell'area in esame, si rimanda allo studio idrologico (IA6F03D09RIID0001001A). Ai fini delle verifiche condotte nella presente relazione é stato cosiderato un tempo di ritorno pari a 100 anni e la zona C2.

Relazione Smaltimento Acque Meteoriche - Piatt. Ferr.

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA6F
 03 D 29
 RI
 ID0002 003
 A
 8 di 15

5. VERIFICA IDRAULICA ACQUE DI PIATTAFORMA

5.1.1 Modello di trasformazione afflussi/deflussi ed elaborazioni idrauliche

La protezione della linea ferroviaria dalle acque meteoriche che vengono ad interessare il corpo ferroviario richiede la realizzazione di canalette rettangolari sulla sede di dimensioni variabili e fossi di guardia trapezoidali al piede del rilevato.

L'impostazione idrologica ed i metodi di dimensionamento delle opere tengono conto delle prescrizioni del "Manuale di progettazione"; le relazioni proposte nel manuale di progettazione derivano dal metodo dell'invaso secondo l'impostazione data dal "Metodo italiano", nel quale si fa l'ipotesi che il funzionamento dei drenaggi sia autonomo e sincrono:

- Autonomo ogni drenaggio si riempie e si svuota per effetto delle caratteristiche idrologiche del bacino scolante sotteso trascurando quindi eventuali rigurgiti indotti dai rami che seguono a valle.
- Sincrono tutti i drenaggi si riempiono e si svuotano contemporaneamente.

Tali ipotesi di funzionamento non sono pienamente aderenti alla realtà nella quale invece si ha una propagazione dell'onda di piena da monte verso valle e quindi il volume W effettivamente invasato è minore di quello intero complessivo della rete.

Il metodo italiano dell'invaso risulta più cautelativo, in quanto considera la laminazione solo del singolo tratto e non di tutti i tratti a monte, quindi, anche utilizzando curve di pioggia e due parametri fintanto che il tempo di corrivazione è <30min, si possono accettare gradi di riempimento maggiori del 80%.

Per la verifica dei fossi di guardia si è tenuto in conto del contributo delle acque precipitate sulla piattaforma ferroviaria, sul rilevato (scarpata) e dei contributi di portata provenienti dall'esterno all'area ferroviaria.

Nei tratti in cui la nuova linea in progetto risultasse di ostacolo al naturale deflusso delle acque (in tal caso i fossi assumono la funzione di canali di gronda).

Il calcolo delle portate è stato eseguito secondo il metodo dell'invaso mediante la relazione:

Relazione Smaltimento Acque Meteoriche - Piatt. Ferr.

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA6F
 03 D 29
 RI
 ID0002 003
 A
 9 di 15

$$u = 2168 * n * \frac{(\psi * a)^{1/n}}{w^{1/n-1}}$$
(1)

In cui:

u = Coefficiente udometrico [l/s/ha]

 ψ = Coefficiente di deflusso [-]

W = Volume specifico d'invaso [m]

a, n = Parametri della curva di possibilità pluviometrica, con **a** espresso il [m/hn]

Il volume W è valutato secondo la seguente espressione:

$$W = \frac{0.005(A_p + A_s) + 0.003A_e + \sigma L}{A_p + A_r + A_e}$$
(2)

In cui:

 A_p = Area della piattaforma ferroviaria [m²]

 A_s = Area della scarpata [m²]

 A_e = Area esterna [m²]

L [m] e σ [m²], rispettivamente, rappresentano la lunghezza e la sezione idrica nel fosso per il grado di riempimento effettivo.

Per quanto attiene il coefficiente di deflusso, esso è stato assunto pari a 0.9 per la piattaforma ferroviaria, 0.6 per la scarpata e 0.3 per le superfici esterne. Ricavato il coefficiente udometrico, la portata si ottiene come

$$Q = u(A_p + A_r + A_e) \tag{3}$$

Dove la superficie totale drenata A=Ap+ Ar +Ae è espressa in ettari e la portata Q in [l/s].

Relazione Smaltimento Acque Meteoriche - Piatt. Ferr.

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO 10 di 15
IA6F	03 D 29	RI	ID0002 003	A	10 al 15

Al fine di valutare il volume invasato nei fossi, sono state imposte, come è usuale, condizioni di moto uniforme, assumendo la relazione di Gauckler-Stricker:

$$Q = A K_s R^{2/3} i^{1/2}$$
 (4)

In cui:

Q = Portata [m³/s]

Pendenza media del fosso [m/m]

A = Sezione idrica (area bagnata) [m²]

Ks = Coefficiente di scabrezza di Gauckler-Strickler, assunto per i fossi non rivestiti pari a 65
 [m^{1/3}/s] e 70 [m^{1/3}/s] per le canalette

R = Raggio idraulico pari al rapporto tra sezione idrica (area bagnata) e contorno bagnato [m]

I drenaggi sono stati dimensionati assumendo un grado di riempimento fio al 100%, avendo adottato condizioni cautelative in termini di portate di deflusso (come esposto in precedenza).

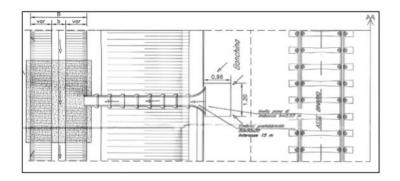
Per valutare il volume "invasato" nel fosso (**A** x **L**) si assume un grado di riempimento di primo tentativo, si ricava il coefficiente udometrico e quindi la portata. Si ricava il grado di riempimento associato a tale portata e si ripete il procedimento sino ad ottenere i valori corretti di portata e di grado di riempimento convergenti verso la soluzione stabile.

La predetta procedura applicata alle singole aree ha consentito di definire i valori delle portate critiche da esse scolanti.

Rimandando alla planimetria lo schema idraulico e la localizzazione dei singoli punti di recapito, in allegato si riportano i risultati delle elaborazioni.

Relazione Smaltimento Acque Meteoriche - Piatt. Ferr.

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA6F	03 D 29	RI	ID0002 003	Α	11 di 15


6. CRITERI DI PROGETTO

Come previsto dal Manuale di Progettazione RFI/Italferr il drenaggio di piataforma verrà verificato utilizzando i seguenti tempi di ritorno Tr:

- Drenaggio della piattaforma Tr= 100 anni
- Fossi di guardia Tr = 100 anni

6.1 Linea ferroviaria in rilevato

Nei tratti in rilevato, la raccolta delle acque di piattaforma avviene in corrispondenza dell'elemento marginale della sezione ferroviaria dotata di una pendenza trasversale pari a 3.0%, costituito da un cordolo in conglomerato bituminoso interrotto con un interasse di 15 m, per consentire, attraverso canalizzazioni in embrici il recapito delle acque di piattaforma in fossi di guardia realizzati in terra e/o rivestiti in calcestruzzo.

Il recapito finale del sistema di drenaggio avviene o direttamente con i fossi di guardia (eventualmente disperdenti), o recapitando all'interno dei tombini di attraversamento e quindi con canali di riprofilatura e riammagliamento al reticolo esistente. In molti tratti del progetto il drenaggio essendo in presenza di muri, avviene in canalette testa muro di misura 40X50 cm che seguono la piattaforma. In altri casi il drenaggio di piattaformaé affidato a canalette rettangolari 70X70 cm che raccolgono anche le acque delle aree esterne trattandosi di sezioni quasi a raso.

Relazione Smaltimento Acque Meteoriche - Piatt. Ferr.

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA6F
 03 D 29
 RI
 ID0002 003
 A
 12 di 15

6.2 Linea ferroviaria in trincea

Per quanto riguarda la raccolta delle acque di piattaforma, questa avviene tramite la predisposzione di canalette rettangolari realizzate in calcestruzzo 70X100, in grado di intercettare le acque che ruscellano sulla piattaforma per effetto della sua pendenza trasversale e recapitarle successivamente al ricettore finale.

Inoltre, sono presenti fossi di guardia trapezoidali rivestiti in calcestruzzo in testa alle trincee che intercettano le acque esterne scolanti. Tali fossi sono disposti a presidio del corpo ferroviario.

Infine, il recapito delle canalette di piattaforma è costituito dallo scarico diretto (a inizio/finetrincea) negli stessi fossi di quardia.

6.3 Fossi di guardia

Sono utilizzate canalizzazioni a sezione trapezia in terra, con inclinazione delle sponde pari a 1/1, caratterizzate da dimensioni pari ad una larghezza minima alla base ed una altezza minima pari a 0.50 m. Nel caso in cui le condizioni di pendenza e portate di progetto lo richiedano i fossi di guardia saranno rivestiti in cls. di velocità elevate o difficoltà di manutenzione dell'opera stessa.

Relazione Smaltimento Acque Meteoriche - Piatt. Ferr.

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA6F
 03 D 29
 RI
 ID0002 003
 A
 13 di 15

7. VERIFICA DEL SISTEMA DI DRENAGGIO ACQUE METEORICHE

		DA	TI RETE			COLLETTORE											
Ramo	Ni	N _{i+1}	zfi	zf₁+1	L	İmed	Tipologico	Sezione	Ks	Diam/E	Diam/H	Tirante	Ab	Сь	Lь	Ri	Q
IDr	ID _N	IDn	[m]	[m]	[m]	[m/m]		00210110	[mm ^{1/3} s ⁻¹]	[m]	[m]	[m]	[m²]	[m]	[m]	[m]	[l/s]
SX 12+	852	918		SX 12+918	66.000	0.0022	R_50	r_cls	70.000	0.500	0.700	0.201	0.101	0.902	0.500	0.111	76.354
CV 42	918	960		SX 12+960	42.000	0.0003	R_50	r_cls	70.000	0.500	0.700	0.238	0.119	0.977	0.500	0.122	37.261
SX 13+	15 15	313	SX 12+960 SX 13+15	SX 13+15 SX 13+313	55.000 298.000	0.0014	R_40 R_40	r_cls r_cls	70.000 70.000	0.400	0.500 0.500	0.425 0.259	0.170 0.103	1.251 0.917	0.400	0.136 0.113	119.589 131.083
SX 14+	70	313	SX 13+13		757.000	0.0054	R 40	r_cls	70.000	0.400	0.500	0.402	0.161	1.204	0.400	0.113	217.059
	80	182		SX 14+182	102.000	0.0054	R_70	r_cls	70.000	0.700	1.000	0.108	0.076	0.917	0.700	0.083	74.444
	182	410	SX 14+182	SX 14+410	228.000	0.0054	R_50	r_cls	70.000	0.500	0.700	0.506	0.253	1.512	0.500	0.167	396.755
	410	850		SX 14+850	440.000	0.0028	R_70	r_cls	70.000	0.700	1.000	0.192	0.134	1.083	0.700	0.124	122.925
	850	960		SX 14+960	110.000	0.0052	R_50	r_cls	70.000	0.500	0.700	0.152	0.076	0.805	0.500	0.095	79.790
SX 15+	80 80	220	SX 14+960 SX 15+80	SX 15+80 SX 15+220	120.000 140.000	0.0084	R_50 R_40	r_cls	70.000 70.000	0.500 0.400	0.700 0.500	0.255 0.222	0.127 0.089	1.009 0.843	0.500 0.400	0.126 0.105	205.967 79.736
	240	300		SX 15+220	60.000	0.0033	R 50	r_cls r_cls	70.000	0.500	0.700	0.222	0.069	0.768	0.500	0.103	53.144
	300	540		SX 15+540	240.000	0.0072	R_70	r_cls	70.000	0.700	1.000	0.137	0.096	0.973	0.700	0.098	120.675
	660	675	SX 15+660	SX 15+675	15.000	0.0072	R_40	r_cls	70.000	0.400	0.500	0.087	0.035	0.574	0.400	0.061	31.844
DX 12+	0	951	DX 12+0	DX 12+951	951.000	0.0022	R_50	r_cls	70.000	0.500	0.700	0.488	0.244	1.475	0.500	0.165	240.529
DX 13+	0	15	DX 12+951		64.000	0.0003	R_40	r_cls	70.000	0.400	0.500	0.346	0.138	1.092	0.400	0.127	44.394
	15	313		DX 13+313	298.000	0.0060	R_50	r_cls	70.000	0.500	0.700	0.283	0.141	1.065	0.500	0.133	199.496
	313 560	560 860		DX 13+560 DX 13+860	247.000 300.000	0.0014	R_50 R_50	r_cls r_cls	70.000 70.000	0.500 0.500	0.700 0.700	0.245 0.415	0.123 0.208	0.991 1.331	0.500 0.500	0.124 0.156	80.926 264.593
	860	980		DX 13+800 DX 13+980	120.000	0.0059	R 50	r_cls	70.000	0.500	0.700	0.351	0.208	1.202	0.500	0.136	251.263
DX 14+	0	182	DX 14+0	DX 14+182	182.000	0.0054	R 70	r_cls	70.000	0.700	1.000	0.131	0.091	0.961	0.700	0.095	98.421
	182	220	DX 14+182	DX 14+220	38.000	0.0054	R_50	r_cls	70.000	0.500	0.700	0.638	0.319	1.776	0.500	0.180	524.261
	260	410	DX 14+260	DX 14+410	150.000	0.0054	R_50	r_cls	70.000	0.500	0.700	0.272	0.136	1.044	0.500	0.130	180.299
	410	520		DX 14+520	110.000	0.0002	R_70	r_cls	70.000	0.700	1.000	0.190	0.133	1.080	0.700	0.123	31.232
	520	820		DX 15+080	300.000	0.0028	R_70	r_cls	70.000	0.700	1.000	0.223	0.156	1.146	0.700	0.136	152.332
DX 15+	170	220	DX 14+	DX 15+80 DX 15+220	260.000 50.000	0.0058	R_70	r_cls	70.000 70.000	0.700 0.700	1.000 1.000	0.329	0.230 0.056	1.358 0.859	0.700 0.700	0.170 0.065	376.518
DX 12+	180	260		DX 15+220 DX 15+260	80.000	0.0084	R_70 R 40	r_cls r cls	70.000	0.400	0.500	0.080	0.056	0.859	0.400	0.065	57.853 61.796
	220	280		DX 15+280	60.000	0.0033	R_70	r_cls	70.000	0.700	1.000	0.183	0.069	0.898	0.700	0.030	50.572
	152	499		DX 15+499	347.000	0.0033	R 40	r_cls	70.000	0.400	0.500	0.300	0.120	1.000	0.400	0.120	118.015
	499	691	DX 15+499	DX 15+691	192.000	0.0072	R_40	r_cls	70.000	0.400	0.500	0.216	0.087	0.833	0.400	0.104	113.562
	691	842		DX 15+842	151.000	0.0061	R_40	r_cls	70.000	0.400	0.500	0.205	0.082	0.810	0.400	0.101	97.649
	842	942		DX 15+942	100.000	0.0043	R_40	r_cls	70.000	0.400	0.500	0.189	0.076	0.778	0.400	0.097	73.486
DX 12+	860	950	44.946	41.548	90.000	0.0378	T_50	t_terra	65.000	0.500	0.500	0.135	0.086	0.883	0.771	0.097	229.807
SX 14+ SX 14+	70 160	160 220	46.025 45.588	45.709 46.440	90.000 60.000	0.0035 0.0142	T_50 T_50	t_terra t_terra	65.000 65.000	0.500 0.500	0.500 0.500	0.194 0.210	0.135 0.149	1.049 1.094	0.888	0.128 0.136	132.152 305.631
SX 14+	420	520	47.534	47.077	100.000	0.0046	T_50	t_terra	65.000	0.500	0.500	0.193	0.133	1.045	0.885	0.128	148.757
SX 14+	780	820	51.507	46.914	40.000	0.1148	T_50	t_terra	65.000	0.500	0.500	0.062	0.035	0.676	0.624	0.052	106.957
DX 15+	70	100	44.097	43.646	30.000	0.0150	T_70	t_terra	65.000	0.700	0.700	0.498	0.597	2.109	1.696	0.283	2049.371
DX 15+	100	170	43.800	38.006	70.000	0.0828	T_50	t_terra	65.000	0.500	0.500	0.123	0.077	0.848	0.746	0.090	289.062
SX 15+	90	170	42.744	40.167	80.000	0.0322	T_50	t_terra	65.000	0.500	0.500	0.201	0.141	1.068	0.902	0.132	425.265
DX 15+ SX 15+	280 280	370 310	37.194 40.531	41.302 42.228	90.000 30.000	0.0456 0.0566	T_50 T_50	t_terra	65.000 65.000	0.500 0.500	0.500 0.500	0.277 0.329	0.215 0.273	1.284 1.432	1.054 1.159	0.168 0.191	909.616 1399.691
DX 15+	280 370	430	40.531	42.228 44.106	60,000	0.0566	T_50	t_terra t_terra	65.000	0.500	0.500	0.329	0.273	0.771	0.692	0.191	108.332
SX 15+	430	550	44.602	41.800	120.000	0.0273	T_50	t_terra	65.000	0.500	0.500	0.183	0.125	1.017	0.866	0.123	306.608
DX 15+	530	940	41.258	39.355	410.000	0.0046	T_50	t_terra	65.000	0.500	0.500	0.322	0.265	1.411	1.144	0.188	384.693
SX 15+	550	650	42.207	39.475	100.000	0.0273	T_50	t_terra	65.000	0.500	0.500	0.170	0.114	0.982	0.841	0.116	292.400
DX 12+	950		44.994	43.008	310.000	0.0064	R_505	r_cls	70.000	0.500	0.500	0.419	0.209	1.338	0.500	0.157	340.762
DX 13+	260	585	43.008	43.953	325.000	0.0029	R_505	r_cls	70.000	0.500	0.500	0.497	0.249	1.494	0.500	0.166	283.773
DX 13+ DX 14+	590 520	880 780	43.953 47.877	44.953 46.613	290.000 260.000	0.0034	R_505 R_505	r_cls	70.000 70.000	0.500 0.500	0.500 0.500	0.460 0.413	0.230	1.421 1.325	0.500	0.162 0.156	281.229 291.362
DX 14+	820 820	780 970	46.537	46.521	150.000	0.0049	R_505 R_505	r_cls r_cls	70.000	0.500	0.500	0.413	0.206	1.325	0.500	0.136	28.568
DX 15+	170	280	30.030	37.824	110.000	0.0001	R_505	r_cls	70.000	0.500	0.500	0.162	0.143	0.825	0.500	0.130	322.702
SX 12+	950		44.994	43.008	310.000	0.0064	R_505	r_cls	70.000	0.500	0.500	0.419	0.209	1.338	0.500	0.157	340.762
SX 13+	260	580	43.008	43.850	320.000	0.0027	R_505	r_cls	70.000	0.500	0.500	0.501	0.251	1.502	0.500	0.167	276.222
SX 13+	760		43.891	46.466	310.000	0.0083	R_505	r_cls	70.000	0.500	0.500	0.398	0.199	1.296	0.500	0.154	363.899
SX 15+	170	250	42.434	42.537	80.000	0.0013	R_505	r_cls	70.000	0.500	0.500	0.336	0.168	1.172	0.500	0.143	115.518
SX 15+	650	942	41.760	39.680	292.000	0.0071	R_505	r_cls	70.000	0.500	0.500	0.401	0.200	1.301	0.500	0.154	339.850

Tab. 2 – Tabella riepilogativa del calcolo in moto uniforme – Tr = 100 [anni].

Relazione Smaltimento Acque Meteoriche - Piatt. Ferr.

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA6F
 03 D 29
 RI
 ID0002 003
 A
 14 di 15

		DAT	I RETE		SUPERFICI DRENATE											
Ramo	Ni	N _{i+1}	zfi	zf _{i+1}	L	İmed	Lp	Lr	Lae	Sp	Sr	Sae	Фр	Фг	Фае	Ф
IDr	ID _N	ID _N	[m]	[m]	[m]	[m/m]	[m]	[m]	[m]	[m²]	[m ²]	$[m^2]$	0.9	0.6	0.3	
SX 12+	852	918	SX 12+852	SX 12+918	66.000	0.0022	9.100	0.000	0.000	600.600	0.000	0.000	0.900	0.600	0.300	0.900
	918	960	SX 12+918	SX 12+960	42.000	0.0003	9.100	0.000	0.000	382.200	0.000	0.000	0.900	0.600	0.300	0.900
SX 13+	15		SX 12+960		55.000	0.0014	9.100	0.000	0.000	882.700	0.000	0.000	0.900	0.600	0.300	0.900
CVAA	15	313	SX 13+15		298.000	0.0060	6.400	0.000	0.000	1907.200	0.000	0.000	0.900	0.600	0.300	0.900
SX 14+	70 80	182	SX 13+313 SX 14+80		757.000 102.000	0.0054 0.0054	6.400 6.400	0.000	0.000	5497.600 652.800	0.000	0.000	0.900 0.900	0.600 0.600	0.300 0.300	0.900 0.900
	182	410	SX 14+60 SX 14+182		228.000	0.0054	6.400	0.000	0.000	4275.200	0.000	0.000	0.900	0.600	0.300	0.900
	410	850	SX 14+410		440.000	0.0028	6.400	0.000	0.000	2816.000	0.000	0.000	0.900	0.600	0.300	0.900
	850	960	SX 14+850		110.000	0.0052	6.400	0.000	0.000	704.000	0.000	0.000	0.900	0.600	0.300	0.900
SX 15+	80		SX 14+960	SX 15+80	120.000	0.0084	6.400	0.000	0.000	1472.000	0.000	0.000	0.900	0.600	0.300	0.900
	80	220	SX 15+80	SX 15+220	140.000	0.0033	6.400	0.000	0.000	896.000	0.000	0.000	0.900	0.600	0.300	0.900
	240	300	SX 15+240		60.000	0.0033	6.400	0.000	0.000	384.000	0.000	0.000	0.900	0.600	0.300	0.900
	300	540	SX 15+300		240.000	0.0072	6.400	0.000	0.000	1536.000	0.000	0.000	0.900	0.600	0.300	0.900
DX 12+	660	675 051	SX 15+660 DX 12+0	DX 12+951	15.000 951.000	0.0072 0.0022	6.400 9.100	0.000	0.000	96.000 8654.100	0.000	0.000	0.900 0.900	0.600 0.600	0.300 0.300	0.900 0.900
DX 12+ DX 13+	0 0	951 15	DX 12+0 DX 12+951		64.000	0.0022	9.100	0.000	0.000	582.400	0.000	0.000	0.900	0.600	0.300	0.900
DX 13.	15	313	DX 13+15		298.000	0.0060	9.100	0.000	0.000	2711.800	0.000	0.000	0.900	0.600	0.300	0.900
	313	560	DX 13+313		247.000	0.0014	6.400	0.000	0.000	1580.800	0.000	0.000	0.900	0.600	0.300	0.900
	560	860	DX 13+560	DX 13+860	300.000	0.0039	6.400	0.000	0.000	3852.800	0.000	0.000	0.900	0.600	0.300	0.900
	860	980	DX 13+860	DX 13+980	120.000	0.0054	6.400	0.000	0.000	1932.800	0.000	0.000	0.900	0.600	0.300	0.900
DX 14+	0	182	DX 14+0	DX 14+182	182.000	0.0054	6.400	0.000	0.000	1164.800	0.000	0.000	0.900	0.600	0.300	0.900
	182	220	DX 14+182		38.000	0.0054	6.400	0.000	0.000	1907.200	0.000	0.000	0.900	0.600	0.300	0.900
	260	410	DX 14+260		150.000	0.0054	6.400	0.000	0.000	1664.000	0.000	0.000	0.900	0.600	0.300	0.900
	410 520	520 820	DX 14+410 DX 14+520		110.000 300.000	0.0002 0.0028	6.400 6.400	0.000	0.000	704.000 2624.000	0.000	0.000	0.900 0.900	0.600 0.600	0.300 0.300	0.900 0.900
	520	820	DX 14+520 DX 14+	DX 15+080 DX 15+80	260.000	0.0028	6.400	0.000	0.000	4288.000	0.000	0.000	0.900	0.600	0.300	0.900
DX 15+	170	220	DX 15+170		50.000	0.0084	6.400	0.000	0.000	320.000	0.000	0.000	0.900	0.600	0.300	0.900
	180	260	DX 15+180		80.000	0.0033	6.400	0.000	0.000	512.000	0.000	0.000	0.900	0.600	0.300	0.900
	220	280	DX 15+220	DX 15+280	60.000	0.0033	6.400	0.000	0.000	384.000	0.000	0.000	0.900	0.600	0.300	0.900
	152	499	DX 15+152	DX 15+499	347.000	0.0033	6.400	0.000	0.000	2220.800	0.000	0.000	0.900	0.600	0.300	0.900
	499	691	DX 15+499		192.000	0.0072	6.400	0.000	0.000	1228.800	0.000	0.000	0.900	0.600	0.300	0.900
	691	842		DX 15+842	151.000	0.0061	6.400	0.000	0.000	966.400	0.000	0.000	0.900	0.600	0.300	0.900
DV 42:	842	942		DX 15+942	100.000	0.0043	6.400	0.000	0.000	640.000	0.000	0.000	0.900	0.600	0.300	0.900
DX 12+	860 70	950 160	44.946 46.025	41.548 45.709	90.000 90.000	0.0378 0.0035	6.400 6.400	5.000 5.000	10.000 10.000	576.000 576.000	450.000 450.000	900.000 900.000	0.900 0.900	0.600 0.600	0.300 0.300	0.550 0.550
SX 14+ SX 14+	160	220	45.588	46.440	60.000	0.0033	6.400	23.000	10.000	384.000	1380.000	600.000	0.900	0.600	0.300	0.530
SX 14+	420	520	47.534	47.077	100.000	0.0046	6.400	5.000	10.000	640.000	500.000	1000.000	0.900	0.600	0.300	0.550
SX 14+	780	820	51.507	46.914	40.000	0.1148	0.000	10.000	10.000	0.000	400.000	400.000	0.900	0.600	0.300	0.450
DX 15+	70	100	44.097	43.646	30.000	0.0150	0.000	5.000	20.000	4288.000	150.000	600.000	0.900	0.600	0.300	0.820
DX 15+	100	170	43.800	38.006	70.000	0.0828	6.400	5.000	20.000	448.000	350.000	1400.000	0.900	0.600	0.300	0.470
SX 15+	90	170	42.744	40.167	80.000	0.0322	0.000	5.000	50.000	0.000	750.000	5400.000	0.900	0.600	0.300	0.337
DX 15+	280	370	37.194	41.302	90.000	0.0456	6.400	12.000	20.000	576.000	1830.000	7200.000	0.900	0.600	0.300	0.393
SX 15+	280	310	40.531	42.228	30.000	0.0566	0.000	6.000	50.000	0.000	2010.000	8700.000	0.900	0.600	0.300	0.356
DX 15+ SX 15+	370 430	430 550	42.467 44.602	44.106 41.800	60.000 120.000	0.0273 0.0234	0.000	10.000 3.000	10.000 50.000	0.000	600.000 360.000	600.000 6000.000	0.900 0.900	0.600 0.600	0.300 0.300	0.450 0.317
DX 15+	530	940	41.258	39.355	410.000	0.0046	6.400	10.000	10.000	2624.000	4100.000		0.900	0.600	0.300	0.559
SX 15+	550	650	42.207	39.475	100.000	0.0273	6.400	10.000	10.000	640.000		1000.000	0.900	0.600	0.300	0.559
DX 12+	950		44.994	43.008	310.000	0.0064	0.000	0.000	50.000	0.000	0.000	15500.000	0.900	0.600	0.300	0.300
DX 13+	260	585	43.008	43.953	325.000	0.0029	0.000	0.000	50.000	0.000	0.000	16250.000	0.900	0.600	0.300	0.300
DX 13+	590	880	43.953	44.953	290.000	0.0034	0.000	0.000	50.000	0.000	0.000	14500.000	0.900	0.600	0.300	0.300
DX 14+	520	780	47.877	46.613	260.000	0.0049	0.000	0.000	50.000	0.000	0.000	13000.000	0.900	0.600	0.300	0.300
DX 14+	820	970	46.537	46.521	150.000	0.0001	0.000	0.000	20.000	0.000	0.000	3000.000	0.900	0.600	0.300	0.300
DX 15+	170	280	30.030 44.994	37.824	110.000	0.0709	0.000	0.000	50.000	0.000	0.000	5500.000	0.900	0.600	0.300	0.300
SX 12+ SX 13+	950 260	580	44.994	43.008 43.850	310.000 320.000	0.0064 0.0027	0.000	0.000	50.000 50.000	0.000 0.000	0.000	15500.000 16000.000	0.900 0.900	0.600 0.600	0.300 0.300	0.300 0.300
SX 13+	760	300	43.891	46.466	310.000	0.0027	0.000	0.000	50.000	0.000	0.000	15500.000	0.900	0.600	0.300	0.300
SX 15+	170	250	42.434	42.537	80.000	0.0013	0.000	0.000	50.000	0.000	0.000	4000.000	0.900	0.600	0.300	0.300
SX 15+	650	942	41.760	39.680	292.000	0.0071	0.000	0.000	50.000	0.000	0.000	14600.000	0.900	0.600	0.300	0.300

Tab. 3-Tabella riepilogativa del calcolo delle superfici drenate e coefficienti di deflusso.

Relazione Smaltimento Acque Meteoriche - Piatt. Ferr.

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA6F
 03 D 29
 RI
 ID0002 003
 A
 15 di 15

		DATI RETE					INVA	VERIFICHE							
Ramo	Ni	Ni+1	L	İmed	Wp	Wr	Wae	Wc	w	u	Q₽	G.R.	V	Fr	Corrente
IDr	IDΝ	IDν	[m]	[m/m]	[m³]	[m³]	[m³]	[m³]	[m]	[l/(s*ha)]	[l/s]	[%]	[m/s]		
SX 12+	852	918	66.000	0.0022	3.003	0.000	0.000	6.641	0.016	1271.301	76.4	29%	0.76	0.540	Lenta
	918	960	42.000	0.0003	1.911	0.000	0.000	5.003	0.018	974.914	37.3	34%	0.31	0.205	Lenta
SX 13+	15	242	55.000	0.0014	4.414	0.000	0.000	9.361	0.016	1354.810	119.6	85%	0.70	0.344	Lenta
SX 14+	15 70	313	298.000 757.000	0.0060 0.0054	9.536 27.488	0.000	0.000	30.835 121.792	0.021 0.027	687.304 394.827	131.1 217.1	52% 80%	1.27 1.35	0.795 0.679	Lenta Lenta
3X 14T	80	182	102.000	0.0054	3.264	0.000	0.000	7.743	0.027	1140.384	74.4	11%	0.98	0.075	Lenta
	182	410	228.000	0.0054	21.376	0.000	0.000	57.698	0.018	928.038	396.8	72%	1.57	0.704	Lenta
	410	850	440.000	0.0028	14.080	0.000	0.000	59.012	0.026	436.525	122.9	19%	0.92	0.669	Lenta
	850	960	110.000	0.0052	3.520	0.000	0.000	8.383	0.017	1133.386	79.8	22%	1.05	0.856	Lenta
SX 15+	80		120.000	0.0084	7.360	0.000	0.000	15.280	0.015	1399.228	206.0	36%	1.62	1.023	Veloce
	80	220	140.000	0.0033	4.480	0.000	0.000	12.408	0.019	889.916	79.7	44%	0.90	0.610	Lenta
	240 300	300 540	60.000 240.000	0.0033 0.0072	1.920 7.680	0.000	0.000	4.015 22.937	0.015 0.020	1383.954 785.645	53.1 120.7	19% 14%	0.79 1.26	0.693 1.091	Lenta Veloce
	660	675	15.000	0.0072	0.480	0.000	0.000	0.522	0.020	3317.081	31.8	17%	0.92	0.991	Lenta
DX 12+	0	951	951.000	0.0022	43.271	0.000	0.000	231.865	0.032	277.937	240.5	70%	0.99	0.451	Lenta
DX 13+	0	15	64.000	0.0003	2.912	0.000	0.000	8.856	0.020	762.257	44.4	69%	0.32	0.174	Lenta
	15	313	298.000	0.0060	13.559	0.000	0.000	42.116	0.021	735.660	199.5	40%	1.41	0.848	Lenta
	313	560	247.000	0.0014	7.904	0.000	0.000	30.293	0.024	511.931	80.9	35%	0.66	0.425	Lenta
	560	860	300.000	0.0039	19.264	0.000	0.000	62.319	0.021	686.755	264.6	59%	1.27	0.631	Lenta
DV 4.4	860	980	120.000	0.0054	9.664	0.000	0.000	21.061	0.016	1299.997	251.3	50%	1.43	0.771	Lenta
DX 14+	0 182	182	182.000 38.000	0.0054 0.0054	5.824	0.000	0.000	16.647	0.019	844.972	98.4	13% 91%	1.08	0.950	Lenta
	260	220 410	150.000	0.0054	9.536 8.320	0.000	0.000	12.121 20.388	0.011 0.017	2748.851 1083.528	524.3 180.3	39%	1.64 1.33	0.657 0.812	Lenta Lenta
	410	520	110.000	0.0002	3.520	0.000	0.000	14.621	0.017	443.630	31.2	19%	0.23	0.312	Lenta
	520	820	300.000	0.0028	13.120	0.000	0.000	46.800	0.023	580.534	152.3	22%	0.98	0.660	Lenta
			260.000	0.0058	21.440	0.000	0.000	59.867	0.019	878.074	376.5	33%	1.64	0.910	Lenta
DX 15+	170	220	50.000	0.0084	1.600	0.000	0.000	2.786	0.014	1807.910	57.9	8%	1.04	1.175	Veloce
	180	260	80.000	0.0033	2.560	0.000	0.000	5.855	0.016	1206.944	61.8	37%	0.84	0.630	Lenta
	220	280	60.000	0.0033	1.920	0.000	0.000	4.149	0.016	1316.985	50.6	10%	0.73	0.743	Lenta
	152	499	347.000	0.0033	11.104	0.000	0.000	41.664	0.024	531.410	118.0	60%	0.98	0.573	Lenta
	499 691	691 842	192.000 151.000	0.0072 0.0061	6.144 4.832	0.000	0.000	16.626 12.372	0.019 0.018	924.172 1010.445	113.6 97.6	43% 41%	1.31 1.19	0.900 0.841	Lenta Lenta
	842	942	100.000	0.0061	3.200	0.000	0.000	7.558	0.018	1148.223	73.5	38%	0.97	0.714	Lenta
DX 12+	860	950	90.000	0.0378	2.880	2.250	2.700	7.737	0.017	1193.185	229.8	27%	2.67	2.556	Lenta
SX 14+	70	160	90.000	0.0035	2.880	2.250	2.700	12.129	0.010	686.147	132.2	39%	0.98	0.804	Lenta
SX 14+	160	220	60.000	0.0142	1.920	6.900	1.800	8.941	0.008	1292.856	305.6	42%	2.05	1.627	Veloce
SX 14+	420	520	100.000	0.0046	3.200	2.500	3.000	13.348	0.010	695.127	148.8	39%	1.11	0.916	Lenta
SX 14+	780	820	40.000	0.1148	0.000	2.000	1.200	1.399	0.006	1336.964	107.0	12%	3.06	4.126	Veloce
DX 15+	70	100	30.000	0.0150	21.440	0.750	1.800	17.899	0.008	4067.826	2049.4	71%	3.43	1.849	Veloce
DX 15+ SX 15+	100 90	170 170	70.000 80.000	0.0828 0.0322	2.240 0.000	1.750 3.750	4.200 16.200	5.370 11.261	0.006 0.005	1315.112 691.488	289.1 425.3	25% 40%	3.77 3.02	3.752 2.441	Veloce Veloce
DX 15+	280	370	90.000	0.0322	2.880	9.150	21.600	19.382	0.005	946.925	909.6	55%	4.22	2.441	Veloce
SX 15+	280	310	30.000	0.0566	0.000	10.050	26.100	8.195	0.004	1306.901	1399.7	66%	5.12	3.369	Veloce
DX 15+	370	430	60.000	0.0273	0.000	3.000	1.800	3.429	0.007	902.771	108.3	19%	1.90	2.105	Veloce
SX 15+	430	550	120.000	0.0234	0.000	1.800	18.000	14.994	0.005	482.089	306.6	37%	2.45	2.063	Veloce
DX 15+	530	940	410.000	0.0046	13.120	20.500	12.300	108.636	0.014	355.408	384.7	64%	1.45	0.963	Lenta
SX 15+	550	650	100.000	0.0273	3.200	5.000	3.000	11.421	0.009	1107.575	292.4	34%	2.56	2.218	Veloce
DX 12+	950		310.000	0.0064	0.000	0.000	46.500	64.910	0.007	219.847	340.8	84%	1.63	0.803	Lenta
DX 13+	260	585	325.000	0.0029	0.000	0.000	48.750	80.781	0.008	174.630	283.8	99%	1.14	0.517	Lenta
DX 13+ DX 14+	590 520	880 780	290.000 260.000	0.0034 0.0049	0.000	0.000	43.500 39.000	66.759 53.635	0.008 0.007	193.951 224.125	281.2 291.4	92% 83%	1.22 1.41	0.575 0.702	Lenta
DX 14+	820	970	150.000	0.0049	0.000	0.000	9.000	22.403	0.010	95.226	28.6	60%	0.19	0.702	Lenta Lenta
DX 15+	170	280	110.000	0.0709	0.000	0.000	16.500	8.934	0.005	586.732	322.7	32%	3.97	3.147	Veloce
SX 12+	950		310.000	0.0064	0.000	0.000	46.500	64.910	0.007	219.847	340.8	84%	1.63	0.803	Lenta
SX 13+	260	580	320.000	0.0027	0.000	0.000	48.000	80.197	0.008	172.639	276.2	100%	1.10	0.497	Lenta
SX 13+	760		310.000	0.0083	0.000	0.000	46.500	61.670	0.007	234.773	363.9	80%	1.83	0.926	Lenta
SX 15+	170	250	80.000	0.0013	0.000	0.000	12.000	13.435	0.006	288.795	115.5	67%	0.69	0.379	Lenta
SX 15+	650	942	292.000	0.0071	0.000	0.000	43.800	58.482	0.007	232.774	339.8	80%	1.70	0.856	Lenta

Tab. 4 - Tabella riepilogativa del calcolo con il metodo dell'invaso e verifiche idrauliche dei drenaggi - Tr = 100 [anni].