

DIREZIONE CENTRALE PROGRAMMAZIONE PROGETTAZIONE

PA 12/09

CORRIDOIO PLURIMODALE TIRRENICO - NORD EUROPA
ITINERARIO AGRIGENTO - CALTANISSETTA - A19
S.S. N° 640 "DI PORTO EMPEDOCLE"
AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001
Dal km 44+000 allo svincolo con l'A19

PROGETTO ESECUTIVO

Contraente Generale:

OPERE D'ARTE MAGGIORI VIADOTTI

Viadotto Arenella II Relazione di calcolo Spalle - Carreggiata DX

Cod	Codice Unico Progetto (CUP): F91B09000070001																					
Cod	Codice Elaborato:																					
PA	12_09 -	- E	1	5	6	V	I	2	1	3	V	'	1	3	В	С	L	0	0	8	Α	Scala:
F							•					•	•									
Е																						
D																						
С																						
В																						
Α	Aprile 2011				EMI	SSIC	DNE					T. I	-ASC	LO	F.	NIGR	ELLI		М	. LITI		P. PAGLINI
REV.	DATA				DES	CRIZI	ONE					RE	DAT	то	VE	RIFIC	CATO		APPF	ROVA	го	AUTORIZZATO
Respons	abile del proncec	limento:		Ing	. MA	URIZ	IO A	RAN	ΛINI									•				

Il Consulente Specialista:

3TI ITALIA S.p.A.
DIRETTORE TECNICO
Ing. Stefano Luca Possati
Ordine degli Ingegneri
Provincia di Roma n. 20809

II Geologo:

Il Coordinatore per la sicurezza in fase di progetto:

QEPPINO A

Il Direttore dei lavori:

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19 *Progetto Esecutivo* Opera: Viadotto Arenella II

Relazione di calcolo Spalle – Carreggiata DX

Pagina 1 di 67

Nome file:

VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc

INDICE

1	GENERALITÀ	3
	1.1 INTRODUZIONE	3 3 3
2	ANALISI DELLA PALIFICATA DELLA SPALLA A	3
	2.1 AZIONI TRASMESSE DALL'IMPALCATO	3 3
3	ANALISI DELLA PALIFICATA DELLA SPALLA B	3
	3.1 AZIONI TRASMESSE DALL'IMPALCATO	3 3
4	VERIFICA DEI PALI DI FONDAZIONE SPALLA A	3
	4.1 VERIFICHE STRUTTURALI	3 3 3
5	VERIFICA DEI PALI DI FONDAZIONE SPALLA B	
	5.1 VERIFICHE STRUTTURALI 5.1.1 S.L.U. – Resistenza: presso-flessione 5.1.2 S.L.U. – Resistenza: taglio 5.1.3 S.L.E. – Fessurazione 5.1.4 S.L.E. – Limitazione delle tensioni 5.2 VERIFICHE GEOTECNICHE DEI PALI 5.2.1 S.L.U. – Verifica a carico limite verticale 5.2.2 S.L.U. – Verifica a carico limite orizzontale	3 3 3 3
6	ANALISI STRUTTURALE DELLA SPALLA A	3
	6.1 DESCRIZIONE DEL MODELLO DI CALCOLO 6.2 ANALISI DEI CARICHI	3 3 3

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19 *Progetto Esecutivo* Opera: Viadotto Arenella II

Relazione di calcolo Spalle – Carreggiata DX

Pagina 2 di 67

Nome file:

 $VI13\text{-}B\text{-}CL008\text{-}A.00_relazione_calcolo_Spalle_DX.doc$

7	BAGGIOLI	3
8	DISPOSITIVI ANTISISMICI	3

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19 *Progetto Esecutivo* Opera: Viadotto Arenella II

Relazione di calcolo Spalle - Carreggiata DX

Pagina 3 di 67

Nome file:

VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc

1 GENERALITÀ

1.1 INTRODUZIONE

Nella presente relazione si riportano le verifiche di sicurezza delle spalle della carreggiata destra del viadotto Arenella II, previsto nell'ambito del progetto esecutivo "CORRIDOIO PLURIMODALE TIRRENICO-NORD EUROPA - ITINERARIO AGRIGENTO -CALTANISSETTA-A19 - S.S. N° 640 "DI PORTO EMPEDOCLE" - AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 - Dal km 44+000 allo svincolo con l'A19".

In particolare, si analizza, per le verifiche strutturali, la Spalla B del viadotto. Infatti, la spalla A della carreggiata destra presenta gli stessi scarichi dell'implacato ma un muro frontale più basso (le altre caratteristiche geometriche sono uguali). Dunque, essendo la spalla B più sollecitata si estendo i risultati per essa ottenuti alla Spalla A.

1.2 CARATTERISTICHE DEI MATERIALI

1.2.1 Condizioni ambientali e classi di esposizione

Per l'umidità ambientale si assume RH = 70 %. Per quanto riguarda le classi di esposizione, si prevede l'alternarsi di cicli di gelo/disgelo, in presenza di agenti disgelanti, per cui, si applicheranno le seguenti classi di esposizione:

pali: XA2;

zattere spalle: XA2;

elevazione spalle: XF2;

baggioli: XF2.

Le caratteristiche del calcestruzzo dovranno pertanto rispettare, oltre i requisiti di resistenza indicati ai punti seguenti, anche i criteri previsti dalla vigente normativa (EN 11104 e EN 206) per quanto riguarda l'esposizione alle classi indicate.

1.2.2 Calcestruzzo

CALCESTRUZZO ZATTERA PILE, ZATTERA SPALLE E PALI C32/40

R_{ck}	=	40	MPa	resistenza caratteristica cubica
f_{ck}	=	33.20	MPa	resistenza caratteristica cilindrica
f_{ckj}	=	27.56	MPa	resistenza caratteristica cilindrica a j giorni
f_{cm}	=	41.20	MPa	resistenza cilindrica media
f_{ctm}	=	3.10	MPa	resistenza media a trazione semplice
f_{ctk}	=	4.03	MPa	resistenza caratteristica a trazione semplice
f_{cfm}	=	3.72	MPa	resistenza media a trazione per flessione
E_{cm}	=	33643	MPa	modulo elastico istantaneo
γ_{c}	=	1.50		coefficiente parziale di sicurezza
α_{cc}	=	0.85		coefficiente riduttivo per resistenze di lunga durata
f_{cd}	=	18.81	MPa	resistenza di calcolo a compressione
f_{ctd}	=	2.69	MPa	resistenza di calcolo a trazione
XA2				classe di esposizione
S3-				
S4				classe di consistenza

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Arenella II

Relazione di calcolo Spalle - Carreggiata DX

Pagina 4 di 67

Nome file:

VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc

CALCESTRUZZO ELEVAZIONE PILE, ELEVAZIONE SPALLE, PULVINO E BAGGIOLI C25/30

R_{ck} = **30** MPa resistenza caratteristica cubica

 f_{ck} = 24.90 MPa resistenza caratteristica cilindrica

f_{cki} = 20.67 MPa resistenza caratteristica cilindrica a j giorni

f_{cm} = 32.90 MPa resistenza cilindrica media

f_{ctm} = 2.56 MPa resistenza media a trazione semplice

 f_{ctk} = 3.33 MPa resistenza caratteristica a trazione semplice f_{cfm} = 3.07 MPa resistenza media a trazione per flessione

E_{cm} = 31447 MPa modulo elastico istantaneo

 γ_c = **1.50** coefficiente parziale di sicurezza

 α_{cc} = **0.85** coefficiente riduttivo per resistenze di lunga durata

f_{cd} = 14.11 MPa resistenza di calcolo a compressione

f_{ctd} = 2.22 MPa resistenza di calcolo a trazione

XF2 classe di esposizione

S3-

S4 classe di consistenza elevazione pile, elevazione spalle e pulvino

S4 classe di consistenza baggioli

CALCESTRUZZO SOLETTA E TRASVERSI IMPALCATO, CORDOLI, PREDALLES C32/40

R_{ck} = **40** MPa resistenza caratteristica cubica

f_{ck} = 33.20 MPa resistenza caratteristica cilindrica

f_{cki} = 27.56 MPa resistenza caratteristica cilindrica a j giorni

f_{cm} = 41.20 MPa resistenza cilindrica media

f_{ctm} = 3.10 MPa resistenza media a trazione semplice

 f_{ctk} = 4.03 MPa resistenza caratteristica a trazione semplice f_{cfm} = 3.72 MPa resistenza media a trazione per flessione

E_{cm} = 33643 MPa modulo elastico istantaneo

 γ_c = **1.50** coefficiente parziale di sicurezza

 α_{cc} = **0.85** coefficiente riduttivo per resistenze di lunga durata

 f_{cd} = 18.81 MPa resistenza di calcolo a compressione f_{ctd} = 2.69 MPa resistenza di calcolo a trazione

XD2 classe di esposizione S4 classe di consistenza

CALCESTRUZZO TRAVI PREFABBRICATE IN C.A.P. C45/55

R_{ck} = **55** MPa resistenza caratteristica cubica

 f_{ck} = 45.65 MPa resistenza caratteristica cilindrica

f_{cki} = 37.89 MPa resistenza caratteristica cilindrica a j giorni

f_{cm} = 53.65 MPa resistenza cilindrica media

f_{ctm} = 3.92 MPa resistenza media a trazione semplice

 f_{ctk} = 5.10 MPa resistenza caratteristica a trazione semplice f_{cfm} = 4.71 MPa resistenza media a trazione per flessione

E_{cm} = 36416 MPa modulo elastico istantaneo

 γ_c = **1.50** coefficiente parziale di sicurezza

 α_{cc} = **0.85** coefficiente riduttivo per resistenze di lunga durata

f_{cd} = 25.87 MPa resistenza di calcolo a compressione

 f_{ctd} = 3.40 MPa resistenza di calcolo a trazione

XD2 classe di esposizione S4 classe di consistenza

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19 **Progetto Esecutivo** Opera: Viadotto Arenella II

Relazione di calcolo Spalle - Carreggiata DX

Pagina 5 di 67

Nome file:

VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc

1.2.3 Acciaio per c.a. in barre ad aderenza migliorata

B450C				
$f_{y,nom}$	=	450	MPa	tensione nominale di snervamento
$\mathbf{f}_{t,nom}$	=	540	MPa	tensione nominale di rottura
f_{yk}	≥	$f_{y,nom}$		tensione caratteristica di snervamento
\mathbf{f}_{tk}	≥	$\mathbf{f}_{t,nom}$		tensione caratteristica di rottura
E_s	=	200000	MPa	modulo elastico istantaneo
γс	=	1.15		coefficiente parziale di sicurezza
f_{yd}	=	391.3	MPa	tensione di snervamento di calcolo

1.3 NORMATIVE DI RIFERIMENTO

UNI EN 1998-2:

UNI EN 1090 - 2:

Le analisi strutturali e le relative verifiche vengono eseguite secondo il metodo semi-probabilistico agli Stati Limite in accordo alle disposizioni normative previste dalla vigente normativa italiana e da quella europea (Eurocodici). In particolare, al fine di conseguire un approccio il più unitario possibile relativamente alle prescrizioni ed alle metodologie/criteri di verifica, si è fatto diretto riferimento alle varie parti degli Eurocodici, unitamente ai relativi National Application Documents, verificando puntualmente l'armonizzazione del livello di sicurezza conseguito con quello richiesto dalla vigente normativa nazionale.

In dettaglio si sono prese in esame quindi i seguenti documenti, che volta in volta verranno opportunamente richiamati:

•	D.M. 14 gennaio 2008:	Nuove norme tecniche per le costruzioni (indicate nel prosieguo "NTC")
•	Circolare n.617	Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni"
-	UNI EN 1990:	Basi della progettazione strutturale
-	UNI EN 1991-1-4:	Azioni sulle strutture – Azione del vento
•	UNI EN 1991-1-5:	Azioni sulle strutture – Azioni termiche
•	UNI EN 1991-2:	Azioni sulle strutture – Carichi da traffico sui ponti
•	UNI EN 1992-1-1:	Progettazione delle strutture di calcestruzzo - Regole generali e regole per gli edifici
-	UNI EN 1992-2:	Progettazione delle strutture di calcestruzzo – Ponti di calcestruzzo
•	UNI EN 1994-2:	Progettazione delle strutture composte acciaio-calcestruzzo – Ponti

Execution of steel structures and aluminium structures - part 2: technical

Progettazione delle strutture per la resistenza sismica – Ponti

requirementes for steel structures

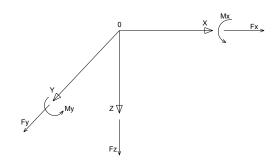
AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

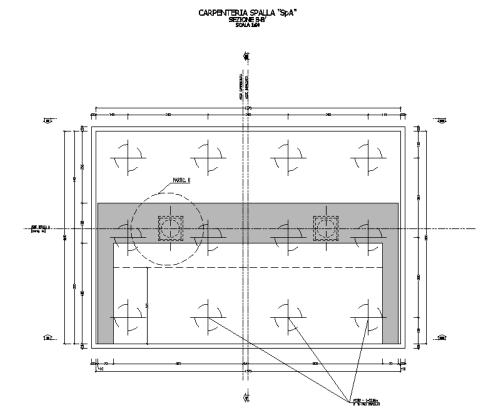
Dal km 44+000 allo svincolo con l'A19 **Progetto Esecutivo** Opera: Viadotto Arenella II

Relazione di calcolo Spalle - Carreggiata DX

Pagina 6 di 67

Nome file:


VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc


2 ANALISI DELLA PALIFICATA DELLA SPALLA A

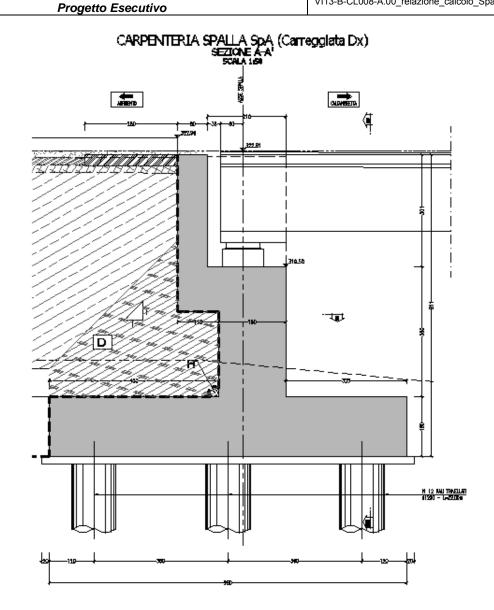
Si riporta nel presente capitolo il calcolo delle sollecitazioni nei pali di fondazione della spalla A della carreggiata destra.

Il calcolo delle sollecitazioni in fondazione è stato effettuato facendo riferimento ad un sistema di coordinate ortogonali destrogiro, avente origine in corrispondenza del filo di monte del plinto di fondazione (a metà del lato parallelo alla direzione trasversale al viadotto), a livello dell'intradosso del plinto stesso, asse x parallelo all'asse longitudinale dell'impalcato ed asse z diretto verso il basso.

Le azioni orizzontali (Fx ed Fy) e verticali (Fz) si assumono positive se di verso concorde con quello degli assi. Si indicheranno inoltre con Mx i momenti aventi asse-momento parallelo all'asse x (momenti trasversali) e con My (momenti longitudinali) i momenti aventi asse-momento parallelo all'asse y. I momenti si assumono positivi se di senso antiorario rispetto all'asse-momento cui si riferiscono.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19


Opera: Viadotto Arenella II

Relazione di calcolo Spalle – Carreggiata DX

Pagina 7 di 67

Nome file:

VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc

Geometrie Spalla

•	n.	Bx	Ву	Bz,min	Bz,max	V	X	Υ	Z
	[-]	[m]	[m]	[m]	[m]	[m ³]	[m]	[m]	[m]
plinto di fondazione	1	9.60	13.70	1.60	-	210.4	4.80	0.00	-0.80
muro frontale	1	1.80	13.50	3.50	-	85.1	5.45	0.00	-3.35
muro paraghiaia	1	0.80	13.50	4.20	-	45.4	3.85	0.00	-6.00
muro laterale sx	1	4.55	0.70	7.00	-	22.3	2.28	6.40	-5.10
muro laterale dx	1	4.55	0.70	7.00	-	22.3	2.28	-6.40	-5.10
bandiera sx	0	3.00	1.50	2.00	3	0.00	-1.40	6.00	-7.33
bandiera dx	0	1.00	1.00	1.00	1	0.00	-0.50	-6.25	-8.10
baggioli	2	1.10	1.10	0.35	-	0.85	5.20	0.00	-5.28
apparecchi di appoggio	2	0.90	0.90	0.47	-	0.76	5.20	0.00	-5.68

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19 **Progetto Esecutivo**

Opera:	Viadotto	Arenella	Ш

Relazione di calcolo Spalle - Carreggiata DX

Pagina 8 di 67

Nome file:

VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc

2.1 AZIONI TRASMESSE DALL'IMPALCATO

Si riportano nel seguete prospetto le azioni trasmesse dall'impalcato. Tali azioni sono riferite al baricentro appoggi e sono state desunte dalla risoluzione del modello di calcolo del viadotto.

AZIONI TRASMESSE DALL'IMPALCATO (RIFERITE AL BARICENTRO APPOGGI)

Coordinate baricentro appoggi						
X	=	5.20	m	coordinata x	(
у	=	0.00	m	coordinata y	/	
Z	=	-5.68	m	coordinata z	2	
	Fx	Fy	Fz	Mx	Му	
	[kN]	[kN]	[kN]	[kNm]	[kNm]	
g1	0	0	2316	135	0	peso proprio impalcato
g2	0	0	395	18	0	permanenti portati
e2	34	0	-493	6	34	ritiro
e3.6	44	0	237	9	44	temperatura - massima azione verticale
e3.8	125	0	-89	3	125	temperatura - massima azione trasversale
q1.1	0	1	1815	77	26	carico mobile - configurazione 1 (massima azione verticale)
q1.2	0	4	1363	5094	7	carico mobile - configurazione 2 (massimo momento trasversale)
q3	138	0	0	0	138	frenatura
q4	0	0	0	0	0	azione centrifuga
q5	0	130	0	277	0	azione del vento trasversale
q6.1x	604	86	-38	115	604	sisma longitudinale
q6.1y	181	288	-38	382	181	sisma trasversale
q6.1z	181	86	-126	115	181	sisma verticale
q7	27	0	0	0	0	azione parassita dei vincoli

2.2 AZIONI TRASMESSE DALLA SPALLA

Si riportano ora per singoli casi di carico le azioni trasmesse dalla spalla, inserite nel modello SAP rispettivamente come: peso proprio (g_1) , carichi di superficie $(g_2, g_3, q_{1.t}, q_{6.1}, q_{6.2-ter})$ e accelerazioni $(q_{6.2-sp})$.

AZIONI TRASMESSE DALLA SPALLA

Peso proprio spalla (g1)

γcls	=	25 kN/m ³	peso specifico calcestruzzo
g1.1	=	5260.8 kN	plinto di fondazione
g1.2	=	2126.3 kN	muro frontale
g1.3	=	1134.0 kN	muro paraghiaia
g1.4	=	557.4 kN	muro laterale sx
g1.5	=	557.4 kN	muro laterale dx
g1.6	=	0.0 kN	bandiera sx
g1.7	=	0.0 kN	bandiera dx
g1.8	=	21.2 kN	baggioli
g1.9	=	10.3 kN	apparecchi di appoggio
g1.10	=	0.0 kN	elemento 1
g1.11	=	0.0 kN	elemento 2
Fz	=	9667.3 kN	azione verticale
X	=	4.54 m	coordinata x punto di applicazione
у	=	0.00 m	coordinata y punto di applicazione
Z	=	-2.48 m	coordinata z punto di applicazione

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Arenella II

Relazione di calcolo Spalle – Carreggiata DX

Pagina 9 di 67

Nome file:

 $VI13\text{-}B\text{-}CL008\text{-}A.00_relazione_calcolo_Spalle_DX.doc$

Peso	terreno	su	fondaz	ione	(g2))
------	---------	----	--------	------	------	---

γt	=	18 kN/m ³	peso dell'unità di volume del terreno
V	=	391.8 m ³	volume di terreno sopra fondazione
Fz	=	7051.6 kN	peso del terreno
X	=	2.28 m	coordinata x punto di applicazione
y	=	0.00 m	coordinata y punto di applicazione
Z	=	-5.10 m	coordinata z punto di applicazione

Spinta del terreno (g3)

intradosso base muro plinto frontale														
γ	=	18	18	kN/m ³	peso dell'unità di volume del terreno									
ф	=	35	35	0	angolo di attrito del terreno									
Ka	=	0.271	0.271		coefficiente di spinta attiva									
K0	=	0.426	0.426		coefficiente di spinta a riposo									
K	=	0.426	0.426		coefficiente di spinta adottato									
Н	=	9.30	7.7	m	altezza di spinta terreno (rispetto a intradosso plinto)									
В	=	13.50	13.50	m	larghezza trasversale interessata dalla spinta (y-y)									
Fx	=	4481.1	3071.8	kN	spinta del terreno									
X	=	0.00	4.55	m	coordinata x punto di applicazione									
y	=	0.00	0	m	coordinata y punto di applicazione									
Z	=	-3.10	-4.17	m	coordinata z punto di applicazione									

Effetti del sovraccarico stradale sul rilevato (q1.t)

	intradosso base muro													
Incremento di spinta														
q	=	20.00	20.00	kPa	sovraccarico stradale									
ф	=	35	35	0	angolo di attrito del terreno									
K	=	0.426	0.426		coefficiente di spinta									
Н	=	9.30	7.70	m	altezza di spinta terreno									
В	=	13.50	13.50	m	larghezza trasversale interessata dalla spinta (y-y)									
Fx	=	1070.7	886.5	kN	spinta del terreno per effetto del sovraccarico									
X	=	0.00	4.55	m	coordinata x punto di applicazione									
у	=	0.00	0	m	coordinata y punto di applicazione									
Z	=	-4.65	-5.45	m	coordinata z punto di applicazione									
Incremento di azione verticale														
Bx	=	4.55	-	m	lunghezza del plinto interessata dal sovraccarico									
Fz	=	1228.5	-	kN	risultante verticale sovraccarico									
X	=	2.28	-	m	coordinata x punto di applicazione									
у	=	0.00	-	m	coordinata y punto di applicazione									
z	=	-1.60	-	m	coordinata z punto di applicazione									

Azioni sismiche (q6)

	.:-:-::
parametri s	SISMICI

a_g	=	0.096 g	accelerazione di picco
S_S	=	1.50	coefficiente di amplificazione stratigrafica
S_T	=	1.00	coefficiente di amplificazione topografica
S	=	1.50	
β_{m}	=	1.00	coefficiente di riduzione dell'accelerazione massima
a _{max}	=	0.144 g	accelerazione massima
K _h	=	0.144	coefficiente sismico orizzontale
K_{v}	=	0.072	coefficiente sismico verticale

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19 Progetto Esecutivo

Opera: Viadotto Arenella II

Relazione di calcolo Spalle - Carreggiata DX

Pagina 10 di 67

Nome file:

VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc

Incremento di spinta terreno in fase sismica (q6.1)

Ipotesi di struttura rigida

		intradosso	base mure	0	
		plinto	frontale		
γ	=	18	18	kN/m ³	peso dell'unità di volume del terreno
H	=	9.30	7.70	m	altezza di spinta terreno
В	=	13.50	13.50	m	larghezza trasversale interessata dalla spinta (y-y)
ΔΡ		3026.5	2074.7		incremneto di spinta in fase sismica (ipotesi di struttura rigida)
Ipotesi di struttura flessibile					
φ	=	35	35	•	angolo di attrito
Ψ	=	90	90	•	angolo di inclinazione rispetto all'orizz della parete del muro rivolta a monte
β	=	0	0	•	angolo di inclinazione rispetto all'orizz della superficie del terrapieno
δ	=	0	0	•	angolo di resistenza a taglio tra terreno-muro
θ	=	7.65	7.65	•	angolo definito per livello di falda al di sotto dell'opera di sostegno
K1	=	0.632	0.632		coefficiente di spinta del terreno (statico + dinamico) per β < Φ - ϑ
K2	=	0.803	0.803		coefficiente di spinta del terreno (statico + dinamico) per $\beta > \Phi - \vartheta$
K	=	0.632	0.632		coefficiente di spinta del terreno (statico + dinamico) effettivo
Ed	=	7117	4879	kN	spinta terreno in fase sismica (Mononobe-Okabe)
ΔS	=	2635.9	1807.0	kN	incremento di spinta in fase sismica (ipotesi struttura flessibile)
Valore adottato					
ΔΡ	=	3026.5	2074.7	kN	incremento di spinta terreno in fase sismica
X	=	0.00	4.55	m	coordinata x punto di applicazione
у	=	0.00	0.00	m	coordinata y punto di applicazione
Z	=	-4.65	-5.45	m	coordinata z punto di applicazione

Forze d'inerzia (q6.2)

	forza	coord x	coord y	coord z
	d'inerzia	p.to di	p.to di	p.to di
	u II lei zia	applicaz	applicaz	applicaz
	Fi	x	У	z
plinto	758	4.80	0.00	-0.80
muro frontale	306	5.45	0.00	-3.35
paraghiaia	163	3.85	0.00	-6.00
muro laterale sx	80	2.28	6.40	-5.10
muro laterale dx	80	2.28	-6.40	-5.10
bandiera sx	0	-1.40	6.00	-7.33
bandiera dx	0	-0.50	-6.25	-8.10
baggioli	3	5.20	0.00	-5.28
apparecchi di appoggio	1	5.20	0.00	-5.68
elemento 1	0	4.55	4.75	-7.90
elemento 2	0	4.55	-4.75	-7.90
terreno su plinto	1015	2.28	0.00	-5.10
risultante intradosso plinto	2408	3.59	0.00	-3.59
risultante base muro frontale	633	4.23	0.00	-4.49

RIEPILOGO SOLLECITAZIONI RISPETTO A BARICENTRO PALI

Nella tabella seguente vengono riepilogate le azioni trasmesse in fondazione dalla spalla e dall'impalcato. Dette azioni sono riferite al baricentro della paliificata.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19 *Progetto Esecutivo* Opera: Viadotto Arenella II

Relazione di calcolo Spalle - Carreggiata DX

Pagina 11 di 67

Nome file:

VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc

RIEPILOGO SOLLECITAZIONI RISPETTO BARICENTRO PALI

Coordinate baricentro pali						
X	=	4.80		coordinata		
у	=	0.00		coordinata	у	
z	=	0.00	m	coordinata	Z	
	Fx	Fy	Fz	Mx	Му	
	[kN]	[kN]	[kN]	[kNm]	[kNm]	
g1-imp	0	0	2316	137	-926	peso proprio impalcato
g1-sp	0	0	9667	0	2492	peso proprio spalla
g2-imp	0	0	395	18	-158	permanenti portati su impalcato
g2-sp	0	0	7052	0	17805	terreno su plinto spalla
g3-sp	4481	0	0	0	-13891	spinta del terreno su spalla
e2-imp	34	0	-493	6	39	ritiro
e3.6-imp	44	0	237	9	-301	temperatura - massima azione verticale
e3.8-imp	125	0	-89	4	-552	temperatura - massima azione trasversale
q1.1-imp	0	1	1815	81	-701	carico mobile - configurazione 1 (massima azione verticale)
q1.2-imp	0	4	1363	5115	-539	carico mobile - configurazione 2 (massimo momento trasversale)
q1t-sp	1071	0	1229	0	-1877	effetti del sovraccarico variabile sulla spalla
q3-imp	138	0	0	0	-648	frenatura su impalcato
q4-imp	0	0	0	0	0	azione centrifuga su impalcato
q5-imp	0	130	0	1014	0	azione del vento trasversale su impalcato
q6.1x-imp	604	86	-38	605	-2815	sisma 1 impalcato
q6.1y-imp	181	288	-38	2019	-833	sisma 2 impalcato
q6.1z-imp	181	86	-126	605	-798	sisma 3 impalcato
q6.1x-sp	3026	0	0	0	-14073	incremento di spinta terreno in fase sismica
q6.2x-sp	2408	0	0	0	-8633	forze d'inerzia longitudinali
q6.2y-sp	0	2408	0	8633	0	forze d'inerzia trasversali
q6.2z-sp	0	0	1204	0	1462	forze d'inerzia verticali
q7-imp	27	0	0	0	-154	azione parassita dei vincoli

2.4 COMBINAZIONI DI CARICO

Per le formulazioni generali delle combinazioni di carico nell'ambito dei vari S.L. si rimanda alle NTC cap. 2.5.3 (rif. Eurocodice EN 1990-annex.A2 cap. A2.3, A2.4). Scegliendo di adottare per le verifiche geotecniche della palificata l'approccio 2 (NTC cap.6) per il quale i coefficienti parziali delle azioni coincidono con quelli da adottare per le verifiche strutturali, le combinazioni da tenere in conto sono quella fondamentale (S.L.U), la sismica (S.L.V.), la frequente (S.L.E.), la quasi permanente (S.L.E.) e la caratteristica (S.L.E.). Le azioni elementari sono state combinate attraverso i coefficienti parziali riportati nella seguente matrice.

MATRICE COEFFICIENTI DI COMBINAZIONE DEI CARICHI	
--	--

	S.L.U.															
				q	1							q3				
g1-imp	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35
g1-sp	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35
g2-imp	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35
g2-sp	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35
g3-sp	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35
e2-imp	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20
e3-imp	0.72	-0.72	0.72	-0.72	0.72	-0.72	0.72	-0.72	0.72	-0.72	0.72	-0.72	0.72	-0.72	0.72	-0.72
q1.1-imp	1.35	1.35	1.35	1.35	0	0	0	0	1.01	1.01	1.01	1.01	0	0	0	0
q1.2-imp	0	0	0	0	1.35	1.35	1.35	1.35	0	0	0	0	1.01	1.01	1.01	1.01
q1t-sp	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
q3-imp	0	0	0	0	0	0	0	0	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50
q4-imp	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
q5-imp	0.90	0.90	-0.90	-0.90	0.90	0.90	-0.90	-0.90	0.90	0.90	-0.90	-0.90	0.90	0.90	-0.90	-0.90
q6.1x-imp	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
q6.1y-imp	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
q6.1z-imp	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
q6.1x-sp	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
q6.2x-sp	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
q6.2y-sp	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
q6.2z-sp	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
q7-imp	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19 *Progetto Esecutivo* Opera: Viadotto Arenella II

Relazione di calcolo Spalle – Carreggiata DX

Pagina 12 di 67

Nome file:

VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc

								S.I	s.Ļ.u.										
g1-Imp g1-sp g2-sp g2-imp g2-sp g3-sp e2-imp e3-imp q1-1-imp q1-1-imp q1-imp q4-imp q5-imp q6-1y-imp q6-1y-imp q6-1y-imp q6-2y-sp q6-2y-sp q6-2y-sp q6-2y-sp q6-2y-sp	1.35 1.35 1.35 1.35 1.35 1.20 0.72 1.01 0 1.50 0.90 0 0 0 0 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.20 0.72 1.01 0 1.01 0 0.90 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.20 0.72 1.01 0 1.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.20 -0.72 1.01 0 1.01 0 1.50 0 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.35 1.20 0.72 0 1.01 1.01 0 1.50 0.90 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.20 0 1.01 0 1.01 0 0.90 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.20 0.72 0 1.01 0 1.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.20 -0.72 0 1.01 0 0 1.50 0 0 0 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.20 0.72 1.01 0 1.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.20 0.72 1.01 0 0 1.01 0 0 0 0 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.20 0.72 1.01 0 1.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.35 1.20 0.72 1.01 0 1.01 0 0 0 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.35 1.20 0.72 0 1.01 1.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.20 0 1.01 0 0 1.01 0 0 0 0 0 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.20 0.72 0 1.01 1.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.20 0 1.01 1.01 0 0 0 0 0 0 0 0 0 0 0			
g1-imp g1-sp g2-imp g2-sp g2-sp g3-sp e2-imp g3-sp e3-imp q1-1-imp q1-2-imp q4-imp q5-imp q6-1y-imp	1.35 1.35 1.35 1.35 1.35 1.20 1.20 1.01 0 0.90 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.20 1.01 0 1.01 0 0 0 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.20 1.20 1.01 0 1.01 0 0 0 0 0 0 0	S.L e 1.35 1.35 1.35 1.35 1.35 1.35 1.20 -1.20 -1.20 -0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1.35 1.35 1.35 1.35 1.35 1.20 0 1.01 0 0 0.01 0 0 0 0 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.20 0 1.01 0 0 0.01 0 0 0 0 0 0 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.20 0 1.01 1.01 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5.x 1 1 1 1 1 1 1 0.50 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0	S.L. qe6		96 1 1 1 1 1 1 1 1 0.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
g1-imp g1-sp g2-imp g2-sp g2-sp g3-sp e2-imp e3-imp q1.1-imp q1.1-imp q1-imp q4-imp q5-imp q6-1x-imp q6-1x-imp q6-1x-imp q6-1x-sp q6-2x-sp q6-2x-sp q6-2x-sp q7-imp	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 0.60 0.75 0 0 0.75 0 0 0.60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		car 1 1 1 1 1 0.60 0 0.75 0.75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1-0.60 0 0-0.75 0.75 0 0 0.60 0 0 0	1 1 1 1 1 1 0.60 0 0.75 0 0 0 0.75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 0.600 0 0.755 0 0 0 0.0.75 0 0 0 0.0.600 0 0 0 0 0 0 0 0 0 0 0 0 0	-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 0.60 0.75 0 0 0.75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		.freq 1 1 1 1 1 1 1 0.60 0 0 0.75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 0.60 0 0 0.75 0 0 0 0.20 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 0.60 0 0-0.75 0 0 0 0-0.20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 0-0.60 0 0 0.75 0 0 0 0 0.75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	S.L.q 1 1 1 1 1 0.50 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

2.5 SOLLECITAZIONI SULLA PALIFICATA

Nelle tabelle seguenti si riportano le sollecitazioni sulla palificata, riferite al baricentro della stessa, nelle combinazioni di carico analizzate.

SOLLECITAZIONI SULLA PALIFICATA NELLE COMBINAZIONI DI CARICO

SOLLECITAZIONI SULLA PALIFICATA NELLE COMBINAZIONI DI CARICO																	
		SLU															
					q1			q3									
Fx	7592	7650	7592	7650	7592	7650	7592	7650	7438	7496	7438	7496		7497	7438	7497	
Fy	118	118	-115	-115	122	122	-111	-111	118	118	-115	-115		121	-112	-112	
Fz	29919	29684	29919	29684	29309	29074	29309	29074	28891	28656	28891	2865			28434	28199	
Mx	1244	1240	-580	-584	8039	8035	6215	6211	1217	1213	-608	-612		6309	4489	4484	
Му	3395	3214	3395	3214	3614	3433	3614	3433	3293	3112	3293	3112	2 3457	3276	3457	3276	
	SLU L DE																
					q4				q5								
Fx	7230	7289	7230	7289	7230	7289	7230	7289	7230	7289	7230	7289		7289	7230	7289	
Fy	118	118	-115	-115	121	121	-112	-112	195	195	-193	-193		198	-190	-190	
Fz	28891	28656	28891	28656	28434	28199	28434	28199	28891	28656	28891	2865			28434	28199	
Mx	1217	1213	-608	-612	6313	6309 4248	4489 4429	4484	1825	1821	-1216	-122		6917	3880	3876	
Му	4265	4084	4265	4084	4429	4246	4429	4248	4265	4084	4265	4084	4429	4248	4429	4248	
					S.L	.U.							S.L	.V.			ı
	1				e:	3					q6.x	- 1	q6	i.y	l q	6.z	
Fx	7:	251	7349	7251	7349	7251	7349	7251	7349	105	91 10	0632	4734	4775	4734	4775	
Fy	1	18	118	-115	-115	121	121	-112	-112	87	7	87 	2696	2696	87	87	ı
Fz	29	005 2	8614	29005	28614	28548	28156	28548		190	18 18	3855	19018	18855	20133	19970	ı
Mx			1214	-603	-610	6317	6311	4493	4486	77		767	10817	10814	770	767	
My				4121	3819	4285	3983	4285	3984	-204		0530	4284	4159	5782	5656	ı
,	, ,				00.0	00	5500	1200	0004				5-		0.02	5500	

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

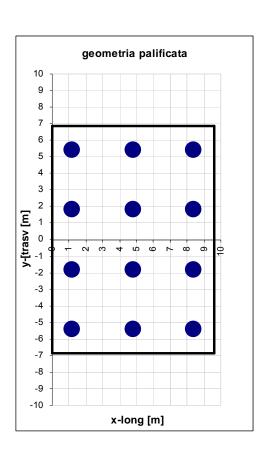
Dal km 44+000 allo svincolo con l'A19 *Progetto Esecutivo* Opera: Viadotto Arenella II

Relazione di calcolo Spalle – Carreggiata DX

Pagina 13 di 67

Nome file:

VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc


		S.L.E.																	
				S.L	car				l			S.L	.freq				S.I	L.qp	
Fx	5361	5409	5361	5409	5360	5409	5360	5409	5361	5409	5361	5409	5360	5409	5360	5409	4553	4594	
Fy	79	79	-77	-77	75	75	-80	-80	27	27	-25	-25	23	23	-28	-28	0	0	
Fz	21362	21166	21362	21166	18978	18783	18979	18783	21362	21166	21362	21166	18978	18783	18978	18783	19056	18893	
Mx	835	832	-381	-385	-3062	-3065	-4278	-4282	430	426	24	21	-3467	-3471	-3873	-3876	165	162	
Mv	3154	3003	3154	3003	4084	3933	4084	3933	3154	3003	3154	3003	4084	3933	4084	3933	5118	4992	

La geometria della palificata è dunque riportata ai fini del calcolo delle azioni (sforzo assiale e taglio) sui singoli pali:

CALCOLO AZIONI SUI PALI

Geometria della palificata

•					trasv	long
PALO	X	Υ	Хp	Yp	Jxi	Jyi
1	1.20	5.40	-3.60	5.40	29.16	12.96
2	1.20	1.80	-3.60	1.80	3.24	12.96
3	1.20	-1.80	-3.60	-1.80	3.24	12.96
4	1.20	-5.40	-3.60	-5.40	29.16	12.96
5	4.80	5.40	0.00	5.40	29.16	0.00
6	4.80	1.80	0.00	1.80	3.24	0.00
7	4.80	-1.80	0.00	-1.80	3.24	0.00
8	4.80	-5.40	0.00	-5.40	29.16	0.00
9	8.40	5.40	3.60	5.40	29.16	12.96
10	8.40	1.80	3.60	1.80	3.24	12.96
11	8.40	-1.80	3.60	-1.80	3.24	12.96
12	8.40	-5.40	3.60	-5.40	29.16	12.96

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

-10 603

-10 607

Opera: Viadotto Arenella II

Relazione di calcolo Spalle - Carreggiata DX

Pagina 14 di 67

Nome file:

VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc

17 603

-16 608

-16 603

608

								SI	_U							
				q	11							q	3			
SFORZO NORMALE																
PALO																
1	2646	2620	2595	2569	2791	2765	2741	2715	2556	2530	2505	2479	2665	2639	2614	2588
2	2623	2597	2606	2580	2642	2616	2625	2600	2533	2507	2516	2490	2548	2522	2531	2505
3	2600	2574	2616	2591	2493	2468	2510	2485	2511	2485	2528	2502	2431	2405	2448	2422
4	2577	2551	2627	2601	2345	2319	2395	2370	2488	2462	2539	2513	2314	2288	2365	2339
5	2528	2508	2477	2457	2666	2646	2615	2595	2441	2422	2391	2371	2545	2525	2494	2474
6	2505	2485	2488	2468	2517	2497	2500	2480	2419	2399	2402	2382	2428	2408	2411	2391
7	2482	2462	2499	2479	2368	2348	2385	2365	2396	2377	2413	2394	2311	2292	2328	2308
8	2459	2439	2509	2490	2219	2200	2270	2250	2374	2354	2424	2405	2194	2175	2245	2225
9	2410	2396	2359	2346	2540	2527	2490	2476	2327	2314	2276	2263	2425	2411	2374	2361
10	2387	2374	2370	2357	2391	2378	2374	2361	2305	2291	2288	2274	2308	2295	2291	2278
11	2364	2351	2381	2367	2242	2229	2259	2246	2282	2269	2299	2286	2191	2178	2208	2195
12	2341	2328	2391	2378	2094	2080	2144	2131	2259	2246	2310	2297	2074	2061	2125	2112
Nmax	2646	2620	2627	2601	2791	2765	2741	2715	2556	2530	2539	2513	2665	2639	2614	2588
TAGLIO																
taglio Vx	633	638	633	638	633	638	633	638	620	625	620	625	620	625	620	625
taglio Vy	10	10	-10	-10	10	10	-9	-9	10	10	-10	-10	10	10	-9	-9
V	633	638	633	638	633	638	633	638	620	625	620	625	620	625	620	625
	1				14			SI	_U			q	_			
				,	/*							ч	3			
SFORZO NORMALE																
PALO																
LUC																
1	2590	2564	2539	2513	2699	2673	2648	2622	2606	2580	2522	2496	2716	2690	2631	2605
	2590 2567	2564 2541	2539 2550	2513 2524	2699 2582	2673 2556	2648 2565	2622 2539	2606 2573	2580 2547	2522 2544	2496 2519	2716 2587	2690 2561	2631 2559	
1																2533
1 2	2567	2541	2550	2524	2582	2556	2565	2539	2573	2547	2544	2519	2587 2459 2331	2561	2559	2533 2462
1 2 3 4 5	2567 2544 2522 2441	2541 2519 2496 2422	2550 2561 2573 2391	2524 2536 2547 2371	2582 2465 2348 2545	2556 2439 2322 2525	2565 2482 2399 2494	2539 2456 2373 2474	2573 2539 2505 2458	2547 2513 2479 2439	2544 2567 2589 2374	2519 2541 2564 2354	2587 2459 2331 2562	2561 2433 2305 2542	2559 2487 2416 2477	2533 2462 2390 2458
1 2 3 4	2567 2544 2522	2541 2519 2496	2550 2561 2573	2524 2536 2547	2582 2465 2348	2556 2439 2322	2565 2482 2399	2539 2456 2373	2573 2539 2505	2547 2513 2479	2544 2567 2589	2519 2541 2564 2354 2377	2587 2459 2331	2561 2433 2305 2542 2414	2559 2487 2416 2477 2405	2533 2462 2390 2458 2386
1 2 3 3 4 5 6 6 7 7	2567 2544 2522 2441 2419 2396	2541 2519 2496 2422 2399 2377	2550 2561 2573 2391 2402 2413	2524 2536 2547 2371 2382 2394	2582 2465 2348 2545 2428 2311	2556 2439 2322 2525 2408 2292	2565 2482 2399 2494 2411 2328	2539 2456 2373 2474 2391 2308	2573 2539 2505 2458 2425 2391	2547 2513 2479 2439 2405 2371	2544 2567 2589 2374	2519 2541 2564 2354 2377 2399	2587 2459 2331 2562 2434 2305	2561 2433 2305 2542 2414 2286	2559 2487 2416 2477 2405 2334	2533 2462 2390 2458 2386 2314
1 2 3 4 5	2567 2544 2522 2441 2419 2396 2374	2541 2519 2496 2422 2399 2377 2354	2550 2561 2573 2391 2402 2413 2424	2524 2536 2547 2371 2382 2394 2405	2582 2465 2348 2545 2428	2556 2439 2322 2525 2408	2565 2482 2399 2494 2411	2539 2456 2373 2474 2391 2308 2225	2573 2539 2505 2458 2425 2391 2357	2547 2513 2479 2439 2405 2371 2337	2544 2567 2589 2374 2396 2419 2441	2519 2541 2564 2354 2377 2399 2422	2587 2459 2331 2562 2434	2561 2433 2305 2542 2414 2286 2158	2559 2487 2416 2477 2405 2334 2262	2533 2462 2390 2458 2386 2314 2242
1 2 3 4 5 6 6 7 8 9	2567 2544 2522 2441 2419 2396 2374 2293	2541 2519 2496 2422 2399 2377 2354 2280	2550 2561 2573 2391 2402 2413 2424 2243	2524 2536 2547 2371 2382 2394 2405 2229	2582 2465 2348 2545 2428 2311 2194 2391	2556 2439 2322 2525 2408 2292 2175 2378	2565 2482 2399 2494 2411 2328 2245 2340	2539 2456 2373 2474 2391 2308 2225 2327	2573 2539 2505 2458 2425 2391 2357 2310	2547 2513 2479 2439 2405 2371 2337 2297	2544 2567 2589 2374 2396 2419 2441 2226	2519 2541 2564 2354 2377 2399 2422 2212	2587 2459 2331 2562 2434 2305 2177 2408	2561 2433 2305 2542 2414 2286 2158 2395	2559 2487 2416 2477 2405 2334 2262 2324	2533 2462 2390 2458 2386 2314 2242 2310
1 2 3 3 4 4 5 6 6 7 7 8	2567 2544 2522 2441 2419 2396 2374	2541 2519 2496 2422 2399 2377 2354 2280 2257	2550 2561 2573 2391 2402 2413 2424	2524 2536 2547 2371 2382 2394 2405	2582 2465 2348 2545 2428 2311 2194	2556 2439 2322 2525 2408 2292 2175	2565 2482 2399 2494 2411 2328 2245	2539 2456 2373 2474 2391 2308 2225	2573 2539 2505 2458 2425 2391 2357	2547 2513 2479 2439 2405 2371 2337	2544 2567 2589 2374 2396 2419 2441	2519 2541 2564 2354 2377 2399 2422	2587 2459 2331 2562 2434 2305 2177	2561 2433 2305 2542 2414 2286 2158	2559 2487 2416 2477 2405 2334 2262	2533 2462 2390 2458 2386 2314 2242 2310
1 2 3 4 5 6 6 7 8 9 10	2567 2544 2522 2441 2419 2396 2374 2293 2271 2248	2541 2519 2496 2422 2399 2377 2354 2280 2257 2235	2550 2561 2573 2391 2402 2413 2424 2243 2254 2265	2524 2536 2547 2371 2382 2394 2405 2229 2241 2252	2582 2465 2348 2545 2428 2311 2194 2391 2274 2157	2556 2439 2322 2525 2408 2292 2175 2378 2261 2144	2565 2482 2399 2494 2411 2328 2245 2340 2257 2174	2539 2456 2373 2474 2391 2308 2225 2327 2244 2161	2573 2539 2505 2458 2425 2391 2357 2310 2276 2243	2547 2513 2479 2439 2405 2371 2337 2297 2263 2229	2544 2567 2589 2374 2396 2419 2441 2226 2248 2271	2519 2541 2564 2354 2377 2399 2422 2212 2235 2258	2587 2459 2331 2562 2434 2305 2177 2408 2280 2152	2561 2433 2305 2542 2414 2286 2158 2395 2266 2138	2559 2487 2416 2477 2405 2334 2262 2324 2252 2180	2533 2462 2390 2458 2386 2314 2242 2310 2238 2167
1 2 3 3 4 5 6 6 7 8 9 10	2567 2544 2522 2441 2419 2396 2374 2293 2271	2541 2519 2496 2422 2399 2377 2354 2280 2257	2550 2561 2573 2391 2402 2413 2424 2243 2254	2524 2536 2547 2371 2382 2394 2405 2229 2241	2582 2465 2348 2545 2428 2311 2194 2391 2274	2556 2439 2322 2525 2408 2292 2175 2378 2261	2565 2482 2399 2494 2411 2328 2245 2340 2257	2539 2456 2373 2474 2391 2308 2225 2327 2244	2573 2539 2505 2458 2425 2391 2357 2310 2276	2547 2513 2479 2439 2405 2371 2337 2297 2263	2544 2567 2589 2374 2396 2419 2441 2226 2248	2519 2541 2564 2354 2377 2399 2422 2212 2235	2587 2459 2331 2562 2434 2305 2177 2408 2280	2561 2433 2305 2542 2414 2286 2158 2395 2266	2559 2487 2416 2477 2405 2334 2262 2324 2252	2533 2462 2390 2458 2386 2314 2242 2310 2238 2167
1 2 3 4 5 6 7 7 8 9 1 10 11 12 Nmax	2567 2544 2522 2441 2419 2396 2374 2293 2271 2248	2541 2519 2496 2422 2399 2377 2354 2280 2257 2235	2550 2561 2573 2391 2402 2413 2424 2243 2254 2265	2524 2536 2547 2371 2382 2394 2405 2229 2241 2252	2582 2465 2348 2545 2428 2311 2194 2391 2274 2157	2556 2439 2322 2525 2408 2292 2175 2378 2261 2144	2565 2482 2399 2494 2411 2328 2245 2340 2257 2174	2539 2456 2373 2474 2391 2308 2225 2327 2244 2161	2573 2539 2505 2458 2425 2391 2357 2310 2276 2243	2547 2513 2479 2439 2405 2371 2337 2297 2263 2229	2544 2567 2589 2374 2396 2419 2441 2226 2248 2271	2519 2541 2564 2354 2377 2399 2422 2212 2235 2258	2587 2459 2331 2562 2434 2305 2177 2408 2280 2152	2561 2433 2305 2542 2414 2286 2158 2395 2266 2138	2559 2487 2416 2477 2405 2334 2262 2324 2252 2180	2533 2462 2390 2458 2386 2314 2242 2310 2238 2167 2095
1 2 3 3 4 5 6 6 7 8 8 9 10 11 12	2567 2544 2522 2441 2419 2396 2374 2293 2271 2248 2226	2541 2519 2496 2422 2399 2377 2354 2280 2257 2235 2213	2550 2561 2573 2391 2402 2413 2424 2243 2254 2265 2276	2524 2536 2547 2371 2382 2394 2405 2229 2241 2252 2263	2582 2465 2348 2545 2428 2311 2194 2391 2274 2157 2040	2556 2439 2322 2525 2408 2292 2175 2378 2261 2144 2027	2565 2482 2399 2494 2411 2328 2245 2340 2257 2174 2091	2539 2456 2373 2474 2391 2308 2225 2327 2244 2161 2078	2573 2539 2505 2458 2425 2391 2357 2310 2276 2243 2209	2547 2513 2479 2439 2405 2371 2337 2297 2263 2229 2196	2544 2567 2589 2374 2396 2419 2441 2226 2248 2271 2293	2519 2541 2564 2354 2377 2399 2422 2212 2235 2258 2280	2587 2459 2331 2562 2434 2305 2177 2408 2280 2152 2023	2561 2433 2305 2542 2414 2286 2158 2395 2266 2138 2010	2559 2487 2416 2477 2405 2334 2262 2324 2252 2180 2108	2605 2533 2462 2390 2458 2386 2314 2242 2310 2238 2167 2095 2605

				61	U.				Ì		e i	V.		
	1				3				q6	5.x		5.y	q6	6.z
SFORZO NORMALE PALO														
1	2594	2551	2543	2500	2703	2660	2653	2609	898	880	2034	2016	1900	1882
2	2572	2528	2555	2511	2586	2543	2569	2526	883	866	1834	1816	1886	1868
3	2549	2506	2566	2523	2469	2426	2486	2443	869	851	1633	1616	1871	1853
4	2526	2483	2577	2534	2352	2309	2403	2360	855	837	1433	1415	1857	1839
5	2451	2418	2400	2368	2554	2522	2504	2471	1606	1593	1885	1872	1699	1685
6	2428	2396	2412	2379	2437	2405	2421	2388	1592	1578	1685	1671	1685	1671
7	2406	2373	2423	2390	2321	2288	2337	2305	1578	1564	1485	1471	1671	1657
8	2383	2351	2434	2401	2204	2171	2254	2222	1563	1550	1284	1271	1656	1643
9	2308	2286	2257	2235	2406	2383	2355	2333	2315	2305	1737	1727	1498	1489
10	2285	2263	2268	2246	2289	2266	2272	2250	2300	2291	1536	1527	1484	1475
11	2263	2241	2280	2258	2172	2150	2189	2167	2286	2277	1336	1327	1470	1461
12	2240	2218	2291	2269	2055	2033	2105	2083	2272	2263	1136	1126	1456	1446
Nmax	2594	2551	2577	2534	2703	2660	2653	2609	2315	2305	2034	2016	1900	1882
TAGLIO	1										1			
taglio Vx	604	612	604	612	604	612	604	612	883	886	395	398	395	398
taglio Vy	10	10	-10	-10	10	10	-9	-9	7	7	225	225	7	7
V	604	613	604	612	604	613	604	612	883	886	454	457	395	398

-9 603

-9 607

10 603

607

603

608

-16 603

									S.L.E.									
				S.L.	.car							S.L.	freq				S.L	.qp
SFORZO NORMALE PALO																		
1	1913	1891	1879	1857	1638	1617	1605	1583	1902	1880	1890	1869	1627	1605	1616	1594	1770	1752
2	1897	1876	1886	1865	1695	1673	1684	1662	1894	1872	1890	1868	1691	1670	1687	1666	1767	1749
3	1882	1860	1893	1872	1752	1730	1763	1741	1886	1864	1889	1868	1755	1734	1759	1738	1764	1746
4	1866	1845	1900	1879	1808	1787	1842	1821	1878	1856	1889	1868	1820	1798	1831	1809	1761	1743
5	1803	1787	1770	1753	1496	1480	1463	1446	1792	1776	1781	1764	1485	1469	1474	1458	1593	1579
6	1788	1772	1777	1760	1553	1537	1542	1526	1784	1768	1780	1764	1549	1533	1546	1529	1590	1576
7	1772	1756	1784	1767	1610	1594	1621	1605	1776	1760	1780	1764	1614	1597	1617	1601	1586	1573
8	1757	1741	1791	1775	1667	1650	1700	1684	1768	1752	1780	1763	1678	1662	1689	1673	1583	1570
9	1694	1683	1660	1649	1355	1344	1321	1310	1683	1671	1671	1660	1343	1332	1332	1321	1415	1406
10	1678	1667	1667	1656	1411	1400	1400	1389	1675	1664	1671	1660	1408	1397	1404	1393	1412	1403
11	1663	1652	1674	1663	1468	1457	1479	1468	1667	1656	1670	1659	1472	1461	1476	1465	1409	1400
12	1647	1636	1681	1670	1525	1514	1559	1548	1659	1648	1670	1659	1536	1525	1547	1536	1406	1397
Nmax	1913	1891	1900	1879	1808	1787	1842	1821	1902	1880	1890	1869	1820	1798	1831	1809	1770	1752
TAGLIO																		
taglio Vx	447	451	447	451	447	451	447	451	447	451	447	451	447	451	447	451	379	383
taglio Vy	7	7	-6	-6	6	6	-7	-7	2	2	-2	-2	2	2	-2	-2	0	0
V	447	451	447	451	447	451	447	451	447	451	447	451	447	451	447	451	379	383

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Arenella II

Relazione di calcolo Spalle – Carreggiata DX

Pagina 15 di 67

Nome file:

VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc

RIEPILOGO

		SLU	SLV	SLE	
Nmax	2791	2791	2315	1913	kN
Nmin	837	2010	837	1913	kN
Vmax	886	638	886	451	kN

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19

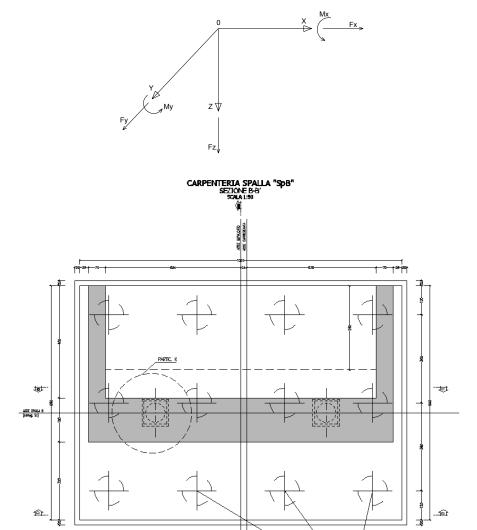
Progetto Esecutivo

Opera: Viadotto Arenella II

Relazione di calcolo Spalle - Carreggiata DX

Pagina 16 di 67

Nome file:


VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc

3 ANALISI DELLA PALIFICATA DELLA SPALLA B

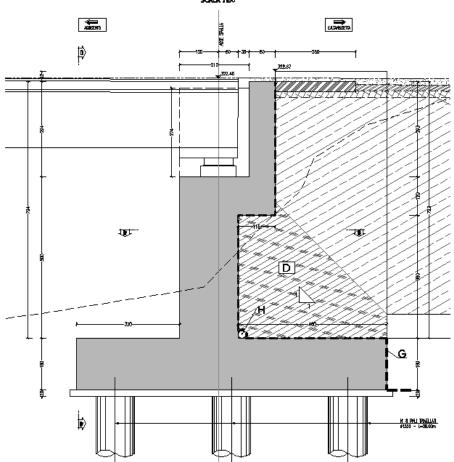
Si riporta nel presente capitolo il calcolo delle sollecitazioni nei pali di fondazione della spalla B della carreggiata destra.

Il calcolo delle sollecitazioni in fondazione è stato effettuato facendo riferimento ad un sistema di coordinate ortogonali destrogiro, avente origine in corrispondenza del filo di monte del plinto di fondazione (a metà del lato parallelo alla direzione trasversale al viadotto), a livello dell'intradosso del plinto stesso, asse x parallelo all'asse longitudinale dell'impalcato ed asse z diretto verso il basso.

Le azioni orizzontali (Fx ed Fy) e verticali (Fz) si assumono positive se di verso concorde con quello degli assi. Si indicheranno inoltre con Mx i momenti aventi asse-momento parallelo all'asse x (momenti trasversali) e con My (momenti longitudinali) i momenti aventi asse-momento parallelo all'asse y. I momenti si assumono positivi se di senso antiorario rispetto all'asse-momento cui si riferiscono.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19 *Progetto Esecutivo* Opera: Viadotto Arenella II


Relazione di calcolo Spalle – Carreggiata DX

Pagina 17 di 67

Nome file:

VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc

CARPENTERIA SPALLA SPB (Carreggista Dx) SEZIONE A-A' SORIA 160

_			
Geo	metr	ie S	palla

	n.	Bx	Ву	Bz,min	Bz,max	V	X	Υ	Z
	[-]	[m]	[m]	[m]	[m]	[m ³]	[m]	[m]	[m]
plinto di fondazione	1	9.60	13.20	1.60	-	202.8	4.80	0.00	-0.80
muro frontale	1	1.80	12.50	5.00	-	112.5	5.50	0.00	-4.10
muro paraghiaia	1	0.80	12.50	4.15	-	41.5	3.85	0.00	-7.48
muro laterale sx	1	4.60	0.70	8.25	-	26.6	2.30	5.90	-5.73
muro laterale dx	1	4.60	0.70	8.25	-	26.6	2.30	-5.90	-5.73
bandiera sx	0	3.00	1.50	2.00	3	0.00	-1.40	5.50	-8.58
bandiera dx	0	1.00	1.00	1.00	1	0.00	-0.50	-5.75	-9.35
baggioli	2	1.10	1.10	0.35	-	0.85	5.20	0.00	-6.78
apparecchi di appoggio	2	0.90	0.90	0.47	-	0.76	5.20	0.00	-7.18

3.1 AZIONI TRASMESSE DALL'IMPALCATO

Si riportano nel seguete prospetto le azioni trasmesse dall'impalcato. Tali azioni sono riferite al baricentro appoggi e sono state desunte dalla risoluzione del modello di calcolo del viadotto.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19 *Progetto Esecutivo*

Opera:	Viadotto	Arenella	II
--------	----------	----------	----

Relazione di calcolo Spalle - Carreggiata DX

Pagina 18 di 67

Nome file:

VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc

AZIONI TRASMESSE DALL'IMPALCATO (RIFERITE AL BARICENTRO APPOGGI)

Coordinate baricentro appoggi						
X	=	5.20	m	coordinata	X	
у	=	0.00	m	coordinata	y	
Z	=	-7.18	m	coordinata	Z	
	Fx	Fy	Fz	Mx	Му	
	[kN]	[kN]	[kN]	[kNm]	[kNm]	
g1	0	0	2253	136	0	peso proprio impalcato
g2	0	0	377	18	0	permanenti portati
e2	34	0	-493	6	34	ritiro
e3.6	44	0	237	9	44	temperatura - massima azione verticale
e3.8	125	0	-89	3	125	temperatura - massima azione trasversale
q1.1	0	0	1825	607	1	carico mobile - configurazione 1 (massima azione verticale)
q1.2	0	4	1377	4567	1	carico mobile - configurazione 2 (massimo momento trasversale)
q3	138	0	0	0	138	frenatura
q4	0	0	0	0	0	azione centrifuga
q5	0	130	0	291	0	azione del vento trasversale
q6.1x	604	86	-37	123	604	sisma longitudinale
q6.1y	181	287	-37	409	181	sisma trasversale
q6.1z	181	86	-123	123	181	sisma verticale
q7	26	0	0	0	0	azione parassita dei vincoli

3.2 AZIONI TRASMESSE DALLA SPALLA

Si riportano ora per singoli casi di carico le azioni trasmesse dalla spalla, inserite nel modello SAP rispettivamente come: peso proprio (g_1) , carichi di superficie $(g_2, g_3, q_{1.t}, q_{6.1}, q_{6.2-ter})$ e accelerazioni $(q_{6.2-sp})$.

AZIONI TRASMESSE DALLA SPALLA

P	250	pro	prio	spal	la (a1)	í
	,,,,	$\mathbf{p}_{\mathbf{i}} \mathbf{q}_{\mathbf{j}}$	9110	Spui	ıu ı	ч.	,

γcls	=	25 kN/m ³	peso specifico calcestruzzo
g1.1	=	5068.8 kN	plinto di fondazione
g1.2	=	2812.5 kN	muro frontale
g1.3	=	1037.5 kN	muro paraghiaia
g1.4	=	664.1 kN	muro laterale sx
g1.5	=	664.1 kN	muro laterale dx
g1.6	=	0.0 kN	bandiera sx
g1.7	=	0.0 kN	bandiera dx
g1.8	=	21.2 kN	baggioli
g1.9	=	10.3 kN	apparecchi di appoggio
g1.10	=	0.0 kN	elemento 1
g1.11	=	0.0 kN	elemento 2
Fz	=	10278.5 kN	azione verticale
X	=	4.57 m	coordinata x punto di applicazione
У	=	0.00 m	coordinata y punto di applicazione
Z	=	-3.04 m	coordinata z punto di applicazione

Peso terreno su fondazione (g2)

γt	=	18 kN/m ³	peso dell'unità di volume del terreno
V	=	447.8 m ³	volume di terreno sopra fondazione
Fz	=	8060.6 kN	peso del terreno
X	=	2.30 m	coordinata x punto di applicazione
у	=	0.00 m	coordinata y punto di applicazione
Z	=	-5.73 m	coordinata z punto di applicazione

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Arenella II

Relazione di calcolo Spalle – Carreggiata DX

Pagina 19 di 67

Nome file:

VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc

Spinta del terreno (g3)

	intradosso plinto	base muro	o	
γ =	18	18	kN/m³	peso dell'unità di volume del terreno
φ =	35	35	0	angolo di attrito del terreno
Ka =	0.271	0.271		coefficiente di spinta attiva
K0 =	0.426	0.426		coefficiente di spinta a riposo
K =	0.426	0.426		coefficiente di spinta adottato
H =	10.75	9.15	m	altezza di spinta terreno (rispetto a intradosso plinto)
B =	12.50	12.50	m	larghezza trasversale interessata dalla spinta (y-y)
Fx =	5543.8	4016.4	kN	spinta del terreno
x =	0.00	4.60	m	coordinata x punto di applicazione
y =	0.00	0	m	coordinata y punto di applicazione
z =	-3.58	-4.65	m	coordinata z punto di applicazione

Effetti del sovraccarico stradale sul rilevato (q1.t)

		intradosso plinto	base mure frontale	0	
Incremento di spinta					
q	=	20.00	20.00	kPa	sovraccarico stradale
ф	=	35	35	0	angolo di attrito del terreno
K	=	0.426	0.426		coefficiente di spinta
Н	=	10.75	9.15	m	altezza di spinta terreno
В	=	12.50	12.50	m	larghezza trasversale interessata dalla spinta (y-y)
Fx	=	1146.0	975.4	kN	spinta del terreno per effetto del sovraccarico
X	=	0.00	4.60	m	coordinata x punto di applicazione
у	=	0.00	0	m	coordinata y punto di applicazione
Z	=	-5.38	-6.18	m	coordinata z punto di applicazione
Incremento di azione verticale					
Bx	=	4.60	-	m	lunghezza del plinto interessata dal sovraccarico
Fz	=	1150.0	-	kN	risultante verticale sovraccarico
X	=	2.30	-	m	coordinata x punto di applicazione
у	=	0.00	-	m	coordinata y punto di applicazione
Z	=	-1.60	-	m	coordinata z punto di applicazione

Azioni sismiche (q6)

٦i	٦i	sism	etri	param
	ш	21211	Cui	varanı

a_g	=	0.096 g	accelerazione di picco
S_S	=	1.50	coefficiente di amplificazione stratigrafica
S_T	=	1.00	coefficiente di amplificazione topografica
S	=	1.50	
β_{m}	=	1.00	coefficiente di riduzione dell'accelerazione massima
a _{max}	=	0.144 g	accelerazione massima
K_h	=	0.144	coefficiente sismico orizzontale
K_{v}	=	0.072	coefficiente sismico verticale

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19 Progetto Esecutivo

Opera: Viadotto Arenella II

Relazione di calcolo Spalle – Carreggiata DX

Pagina 20 di 67

Nome file:

VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc

Incremento di spinta terreno in fase sismica (q6.1)

Ipotesi di struttura rigida

		intradosso	base mure	0	
		plinto	frontale		
γ	=	18	18	kN/m ³	peso dell'unità di volume del terreno
Н	=	10.75	9.15	m	altezza di spinta terreno
В	=	12.50	12.50	m	larghezza trasversale interessata dalla spinta (y-y)
ΔΡ		3744.2	2712.6		incremneto di spinta in fase sismica (ipotesi di struttura rigida)
Ipotesi di struttura flessibile					
ф	=	35	35	۰	angolo di attrito
Ψ	=	90	90	۰	angolo di inclinazione rispetto all'orizz della parete del muro rivolta a monte
β	=	0	0	•	angolo di inclinazione rispetto all'orizz della superficie del terrapieno
δ	=	0	0	•	angolo di resistenza a taglio tra terreno-muro
θ	=	7.65	7.65	•	angolo definito per livello di falda al di sotto dell'opera di sostegno
K1	=	0.632	0.632		coefficiente di spinta del terreno (statico + dinamico) per β < Φ - ϑ
K2	=	0.803	0.803		coefficiente di spinta del terreno (statico + dinamico) per $\beta > \Phi - \vartheta$
K	=	0.632	0.632		coefficiente di spinta del terreno (statico + dinamico) effettivo
Ed	=	8805	6379	kN	spinta terreno in fase sismica (Mononobe-Okabe)
ΔS	=	3261.1	2362.6	kN	incremento di spinta in fase sismica (ipotesi struttura flessibile)
Valore adottato					
ΔΡ	=	3744.2	2712.6	kN	incremento di spinta terreno in fase sismica
X	=	0.00	4.60	m	coordinata x punto di applicazione
у	=	0.00	0.00	m	coordinata y punto di applicazione
Z	=	-5.38	-6.18	m	coordinata z punto di applicazione

Forze d'inerzia (q6.2)

1 6126 4 11161214 (q0:2)				
	forza d'inerzia	coord x p.to di applicaz	coord y p.to di applicaz	coord z p.to di applicaz
	Fi	X	у	z
plinto	730	4.80	0.00	-0.80
muro frontale	405	5.50	0.00	-4.10
paraghiaia	149	3.85	0.00	-7.48
muro laterale sx	96	2.30	5.90	-5.73
muro laterale dx	96	2.30	-5.90	-5.73
bandiera sx	0	-1.40	5.50	-8.58
bandiera dx	0	-0.50	-5.75	-9.35
baggioli	3	5.20	0.00	-6.78
apparecchi di appoggio	1	5.20	0.00	-7.18
elemento 1	0	4.55	4.75	-7.90
elemento 2	0	4.55	-4.75	-7.90
terreno su plinto	1161	2.30	0.00	-5.73
risultante intradosso plinto	2641	3.57	0.00	-4.22
risultante base muro frontale	750	4.34	0.00	-5.19

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19 **Progetto Esecutivo** Opera: Viadotto Arenella II

Relazione di calcolo Spalle - Carreggiata DX

Pagina 21 di 67

Nome file:

VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc

3.3 RIEPILOGO SOLLECITAZIONI RISPETTO A BARICENTRO PALI

Nella tabella seguente vengono riepilogate le azioni trasmesse in fondazione dalla spalla e dall'impalcato. Dette azioni sono riferite al baricentro della paliificata.

RIEPILOGO SOLLECITAZIONI RISPETTO BARICENTRO PALI

Coordinate baricentro pali						
X	=	4.80	m	coordinata	Х	
у	=	0.00	m	coordinata	y	
Z	=	0.00	m	coordinata	Z	
	_	_	_			
	Fx	Fy	Fz	Mx	My	
	[kN]	[kN]	[kN]	[kNm]	[kNm]	
g1-imp	0	0	2253	138	-901	peso proprio impalcato
g1-sp	0	0	10279	0	2319	peso proprio spalla
g2-imp	0	0	377	18	-151	permanenti portati su impalcato
g2-sp	0	0	8061	0	20151	terreno su plinto spalla
g3-sp	5544	0	0	0	-19865	spinta del terreno su spalla
e2-imp	34	0	-493	6	-13	ritiro
e3.6-imp	44	0	237	9	-366	temperatura - massima azione verticale
e3.8-imp	125	0	-89	3	-741	
q1.1-imp	0	0	1825	608	-729	carico mobile - configurazione 1 (massima azione verticale)
q1.2-imp	0	4	1377	4598	-550	carico mobile - configurazione 2 (massimo momento trasversale)
q1t-sp	1146	0	1150	0	-3285	effetti del sovraccarico variabile sulla spalla
q3-imp	138	0	0	0	-856	frenatura su impalcato
q4-imp	0	0	0	0	0	azione centrifuga su impalcato
q5-imp	0	130	0	1224	0	azione del vento trasversale su impalcato
q6.1x-imp	604	86	-37	742	-3722	sisma 1 impalcato
q6.1y-imp	181	287	-37	2474	-1105	sisma 2 impalcato
q6.1z-imp	181	86	-123	742	-1071	sisma 3 impalcato
q6.1x-sp	3744	0	0	0	-20125	incremento di spinta terreno in fase sismica
q6.2x-sp	2641	0	0	0	-11133	forze d'inerzia longitudinali
q6.2y-sp	0	2641	0	11133	0	forze d'inerzia trasversali
q6.2z-sp	0	0	1320	0	1618	forze d'inerzia verticali
q7-imp	26	0	0	0	-189	azione parassita dei vincoli

3.4 COMBINAZIONI DI CARICO

Per le formulazioni generali delle combinazioni di carico nell'ambito dei vari S.L. si rimanda alle NTC cap. 2.5.3 (rif. Eurocodice EN 1990-annex.A2 cap. A2.3, A2.4). Scegliendo di adottare per le verifiche geotecniche della palificata l'approccio 2 (NTC cap.6) per il quale i coefficienti parziali delle azioni coincidono con quelli da adottare per le verifiche strutturali, le combinazioni da tenere in conto sono quella fondamentale (S.L.U), la sismica (S.L.V.), la frequente (S.L.E.), la quasi permanente (S.L.E.) e la caratteristica (S.L.E.). Le azioni elementari sono state combinate attraverso i coefficienti parziali riportati nella seguente matrice.

MATRICE COEFFICIENTI DI COMBINAZIONE D	EI CARICHI

						i.L.U.										
		q1										q	3			
g1-imp	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35
g1-sp	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35
g2-imp	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35
g2-sp	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35
g3-sp	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35
e2-imp	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20
e3-imp	0.72	-0.72	0.72	-0.72	0.72	-0.72	0.72	-0.72	0.72	-0.72	0.72	-0.72	0.72	-0.72	0.72	-0.72
q1.1-imp	1.35	1.35	1.35	1.35	0	0	0	0	1.01	1.01	1.01	1.01	0	0	0	0
q1.2-imp	0	0	0	0	1.35	1.35	1.35	1.35	0	0	0	0	1.01	1.01	1.01	1.01
q1t-sp	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
q3-imp	0	0	0	0	0	0	0	0	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50
q4-imp	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
q5-imp	0.90	0.90	-0.90	-0.90	0.90	0.90	-0.90	-0.90	0.90	0.90	-0.90	-0.90	0.90	0.90	-0.90	-0.90
q6.1x-imp	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
q6.1y-imp	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
q6.1z-imp	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
q6.1x-sp	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
q6.2x-sp	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
q6.2y-sp	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
q6.2z-sp	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
q7-imp	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19 *Progetto Esecutivo* Opera: Viadotto Arenella II

Relazione di calcolo Spalle - Carreggiata DX

Pagina 22 di 67

Nome file:

 $VI13\text{-}B\text{-}CL008\text{-}A.00_relazione_calcolo_Spalle_DX.doc$

	S.L.U.																	
g1-imp g1-sp g2-imp g2-sp g3-sp e2-imp e3-imp q1.1-imp q1.2-imp q1-imp q3-imp q4-imp q5-imp q6.1x-imp q6.1x-imp q6.1x-imp q6.1x-sp q6.2x-sp q6.2x-sp q6.2x-sp q7-imp	1.35 1.35 1.35 1.35 1.35 1.20 0.72 1.01 0 1.50 0.90 0 0 0 0 0 0 0 0 0	1.35 1.35 <td< th=""><th>1.35 1.35 1.35 1.20 0.72 0 1.01 1.01 0 0 0 0 0 0 0</th><th colspan="7">1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.20 1.20 1.20 1.20 0.72 -0.72 -0.72 -0.72 0 0 0 0 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th></td<>							1.35 1.35 1.35 1.20 0.72 0 1.01 1.01 0 0 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.20 1.20 1.20 1.20 0.72 -0.72 -0.72 -0.72 0 0 0 0 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								
g1-imp g1-sp g2-imp g2-sp g3-sp e3-imp q1.1-imp q1.1-imp q1.2-imp q1.2-imp q4-imp q4-imp q5.1-imp q6.1-imp q6.1-imp q6.1-imp q6.1-imp q6.2-imp q6.2-imp q6.2-imp	1.35 1.35 1.35 1.35 1.35 1.35 1.20 1.20 1.20 0 0 0 0 0 0 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.20 1.01 0 1.01 0 0 0 0 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.20 1.20 1.01 0 0 0 0 0 0 0 0 0 0 0 0		u. 3 1.35 1.35 1.35 1.35 1.35 1.20 0 1.20 0 1.01 0 0 0 0 0 0 0 0 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.20 0 1.01 1.01 0 0 0 0 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.20 0 1.20 0 0 1.01 1.01 0 0 0 0 0 0 0 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.20 0 1.01 1.01 0 0 0 0 0 0 0 0 0	0 qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq	5.x	S.L. qe6		q6 1 1 1 1 1 1 0.50 0 0 0 0 0 0 1 0 0 1 0.60	1 1 1 1 1 1 1 1 -0.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
g1-imp g1-sp g2-imp g2-sp g3-sp e2-imp e1.1-imp q1.2-imp q1.2-imp q4-imp q4-imp q5-imp q6.1x-imp q6.1x-imp q6.1x-sp g6.2x-sp g6.2x-sp g6.2x-sp g7-imp	1 1 1 1 1 1 0.60 0.75 0 0.75 0 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 0.60 0.75 0 0.75 0 0.60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 0.60 0.75 0 0.75 0 0 0.75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	S.I. 1 1 1 1 1 1 1 0.600 0.75 0 0.75 0 0 0.75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	car 1 1 1 1 1 1 0.600 0 -0.75 0.75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 0.05 0 0.75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 0.60 0 0-0.75 0.75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 0.060 0 0-0.75 0.75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	S. 1 1 1 1 1 1 1 1 0.60 0.75 0 0.75 0 0 0.20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	L.E. 1 1 1 1 1 1 1 0.600 0.75 0 0.75 0 0.20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 0.60 0.75 0 0.75 0 0 0.75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	S.L. 1 1 1 1 1 1 0.600 0.75 0 0.75 0 0 0.75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 0.600 0 0 0.75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 0.0.60 0 0.75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 0.60 0 0-0.75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 -0.60 0 0.75 0.75 0 0 -0.20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	S.L.: 1 1 1 1 1 1 1 0.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9P 1 1 1 1 1 1 1 1 1 1 1 -0.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3.5 SOLLECITAZIONI SULLA PALIFICATA

Nelle tabelle seguenti si riportano le sollecitazioni sulla palificata, riferite al baricentro della stessa, nelle combinazioni di carico analizzate.

SOLLECITAZIONI SULLA PALIFICATA NELLE COMBINAZIONI DI CARICO																		
		S.L.U.																
						q1			ì					q3			1	
Fx	9	127	9186	9127	9186	9127	9186	9127	9186	8948	9007	8948	9007	8948	9007	8948	9007	
Fy		117	117	-116	-116	123	123	-111	-111	117	117	-116	-116	122	122	-112	-112	
Fz		1903	31669	31903	31669	31298	31064	31298	31064	30899	30665	30899	30665	30445	30211	30445	30211	
Mx	2	148	2144	-55	-59	7534	7530	5331	5327	1942	1938	-260	-264	5982	5978	3780	3776	
Му	-3	3770	-4040	-3770	-4040	-3530	-3799	-3529	-3799	-3700	-3969	-3700	-3969	-3519	-3789	-3519	-3788	
									S.L	U.								
	- 1	q4												q5				
Fx	8	741	8799	8741	8799	8741	8799	8741	8799	8741	8799	8741	8799	8741	8799	8741	8799	
Fy		117	117	-116	-116	122	122	-112	-112	195	195	-194	-194	199	199	-190	-190	
Fz	30	0899	30665	30899	30665	30445	30211	30445	30211	30899	30665	30899	30665	30445	30211	30445	30211	
Mx		942	1938	-260	-264	5982	5978	3780	3776	2677	2673	-994	-998	6716	6712	3045	3041	
Му	-2	2416	-2685	-2416	-2685	-2235	-2505	-2235	-2505	-2416	-2685	-2416	-2685	-2235	-2505	-2235	-2505	
						S.L	.U.				1			S.L.	v.			ı
	ĺ					e						q6.x	1	q6.		a a	6.z	ı
Fx		8762	88	360	8762	8860	8762	8860	8762	8860	1260		16	5797	5837	5797	5837	ı
Fy		117		17	-116	-116	122	122	-112	-112	87	87		2929	2929	87	87	ı
Fz		31013			31013	30622	30559	30168	30559		2055			20557	20395	21791	21629	ı
Mx		1947		940	-256	-262	5986	5980	3784	3777	909	906		13774	13771	909	906	ı
		-																ı
Mv		-2592	30	041	-2592	-3041	-2411	-2860	-2411	-2860	-3373	6 -3392	23	139	-48	1792	1605	4

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19 Progetto Esecutivo

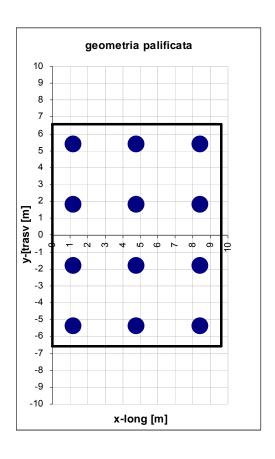
Opera: Viadotto Arenella II

Relazione di calcolo Spalle – Carreggiata DX

Pagina 23 di 67

Nome file:

VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc


									S.I	L.E.								
	I			S.L	car							S.L	.freq				S.I	qp
Fx	6480	6528	6479	6528	6479	6528	6479	6528	6480	6528	6479	6528	6479	6528	6479	6528	5616	5656
Fy	78	78	-77	-77	75	75	-81	-81	26	26	-25	-25	23	23	-29	-29	0	0
Fz	22849	22654	22849	22654	20447	20252	20447	20252	22849	22654	22849	22654	20447	20252	20447	20252	20594	20431
Mx	1359	1355	-110	-113	-2546	-2549	-4014	-4018	869	866	380	376	-3035	-3039	-3525	-3528	167	165
Mv	-1803	-2027	-1803	-2027	-844	-1068	-843	-1068	-1803	-2027	-1803	-2027	-844	-1068	-844	-1068	1244	1057

La geometria della palificata è dunque riportata ai fini del calcolo delle azioni (sforzo assiale e taglio) sui singoli pali:

CALCOLO AZIONI SUI PALI

Geometria della palificata

-					trasv	long
PALO	X	Υ	Хp	Yp	Jxi	Jyi
1	1.20	5.40	-3.60	5.40	29.16	12.96
2	1.20	1.80	-3.60	1.80	3.24	12.96
3	1.20	-1.80	-3.60	-1.80	3.24	12.96
4	1.20	-5.40	-3.60	-5.40	29.16	12.96
5	4.80	5.40	0.00	5.40	29.16	0.00
6	4.80	1.80	0.00	1.80	3.24	0.00
7	4.80	-1.80	0.00	-1.80	3.24	0.00
8	4.80	-5.40	0.00	-5.40	29.16	0.00
9	8.40	5.40	3.60	5.40	29.16	12.96
10	8.40	1.80	3.60	1.80	3.24	12.96
11	8.40	-1.80	3.60	-1.80	3.24	12.96
12	8.40	-5.40	3.60	-5.40	29.16	12.96

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

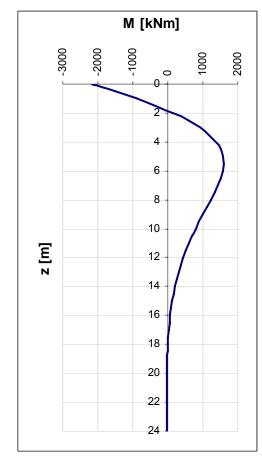
Dal km 44+000 allo svincolo con l'A19 **Progetto Esecutivo** Opera: Viadotto Arenella II

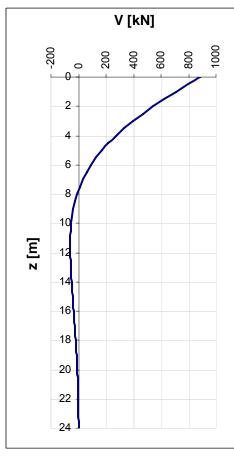
Relazione di calcolo Spalle - Carreggiata DX

Pagina 24 di 67

Nome file:

VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc


4 VERIFICA DEI PALI DI FONDAZIONE SPALLA A


4.1 VERIFICHE STRUTTURALI

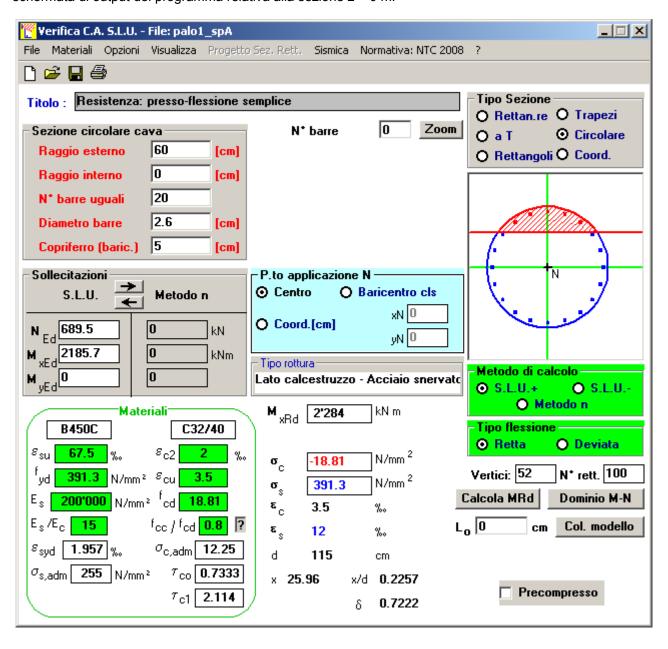
Per il calcolo delle sollecitazioni flettenti e taglianti agenti lungo il fusto del palo si adotta lo schema di palo con la testa impedita di ruotare, ma libera di traslare per effetto dell'azione orizzontale ivi applicata, ed immerso in un terreno schematizzato alla Winkler. Per la determinazione della lunghezza elastica del palo, λ , si adotta l'espressione di Zimmerman.

Di seguito si riporta il dettaglio dei calcoli di dimensionamento e verifica.

F	=	33643 MPa	modulo elastico calcestruzzo
_	_		
D	=	1200 mm	diametro palo
J	=	0.1018 m ⁴	momento d'inerzia del palo
K	=	13000 kN/m ³	costante di reazione del terreno
В	=	1.80 m	larghezza efficace del palo
E_s	=	23400 kN/m ²	modulo di elasticità del terreno
L0	=	4.92 m	lunghezza elastica del palo
h	=	0.00 m	altezza tratto libero
V	=	886.0 kN	taglio alla testa del palo
M_{max}	=	2179.1 kNm	massimo momento flettente
d_{max}	=	7.70 mm	spostamento massimo in testa
z2	=	9.70 m	profondità di calcolo momento flettente
M(z2)	=	852.3 kNm	momento flettente alla profondità z2
z3	=	20.7 m	profondità di calcolo momento flettente
M(z3)	=	-24.9 kNm	momento flettente alla profondità z3

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19 *Progetto Esecutivo* Opera: Viadotto Arenella II


Relazione di calcolo Spalle – Carreggiata DX

Pagina 25 di 67

Nome file:
VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc

4.1.1 S.L.U. – Resistenza: presso-flessione

La prima gabbia viene armata con 22 Ø26, mentre per le successive sono sufficienti 15 Ø18. Il momento ultimo del palo viene determinato con il programma V.C.A.S.L.U.: si riporta di seguito la schermata di output del programma relativa alla sezione z = 0 m.

	Z _{in}	Z _{in}	c'	Φ	n	s	M_{Ed}	N_{Ed}	M_{res}	
	[m]	[m]	[cm]	[mm]		[cm]	[kN*m]	[kN]	[kN*m]	
gabbia n.1	-1.3	10.7	5	26	22	15.7	2179.1	837.1	2284.0	OK
gabbia n.2	9.7	21.7	5	18	15	23.0	852.3	837.1	1057.0	ок

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19 *Progetto Esecutivo* Opera: Viadotto Arenella II

Relazione di calcolo Spalle – Carreggiata DX

Pagina 26 di 67

Nome file:

VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc

4.1.2 S.L.U. – Resistenza: taglio

Si dispongono spirali Ø12/200 nella prima gabbia dove le sollecitazioni taglianti sono maggiori, mentre nell'altra sono sicuramente sufficienti delle spirali Ø10/300. La verifica a taglio risulta soddisfatta se:

$$V_{Rd} \geq V_{Ed}$$

in cui:

 $V_{{\scriptscriptstyle Ed}}$: taglio di calcolo

 $V_{\it Rd} = \min (V_{\it Rsd}\,; V_{\it Rcd}\,)$: taglio resistente

 $V_{Rsd} = 0.9 \cdot d_e \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (\cot \alpha + \cot \theta) \cdot \sin \alpha$: resistenza di calcolo a taglio trazione

 $V_{\textit{Rcd}} = 0.9 \cdot d_{\textit{e}} \cdot b_{\textit{we}} \cdot \alpha_{\textit{c}} \cdot f_{\textit{cd}} \cdot \frac{\left(\cot \alpha + \cot \theta\right)}{\left(1 + \cot^2 \theta\right)}$: resistenza di calcolo a taglio compressione

dove:

 $d_a = 0.45 \cdot D + 0.64 \cdot (d - D/2)$: altezza utile equivalente della sezione

D: diametro della sezione

d: altezza utile della sezione

 $b_{we} = 0.9 \cdot D$: base equivalente della sezione

 A_{sw} : area dell'armatura trasversale

s: interasse tra due armature trasversali consecutive

 α_c : coefficiente maggiorativo per lo sforzo assiale

 $f_{cd}' = 0.5 \cdot f_{cd}$: resistenza a compressione ridotta del calcestruzzo d'anima

Sollecitazioni

V	=	886.0 kN	taglio di calcolo
NI	_	927 1 LNI	eforzo accialo di ca

N = 837.1 kN sforzo assiale di calcolo

Geometria

D	=	1200 mm	diametro sezione
d	=	1140 mm	altezza utile

d_e = 886 mm altezza utile equivalente

b_{we} = 1080 mm base equivalente

9.41 MPa

Materiali

an			
R_ck	=	40	resistenza caratteristica cubica
f_{ck}	=	33.20 MPa	resistenza caratteristica cilindrica
γc	=	1.50	coefficiente parziale di sicurezza
α_{cc}	=	0.85	coefficiente riduttivo per resistenze di lunga durata
f_{cd}	=	18.81 MPa	resistenza di calcolo a compressione

resistenza ridotta

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera:	Viadotto	Arenella	II
--------	----------	----------	----

Relazione di calcolo Spalle – Carreggiata DX

Pagina 27 di 67

Nome file:

VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc

γ_{s}	=	1.15	coefficiente di sicurezza acciaio
f_{yk}	=	450.0 MPa	tensione caratteristica di snervamento acciaio
f_{vd}	=	391.3 MPa	tensione di snervamento di calcolo dell'acciaio

Verifica per elementi provvisti di armatura a taglio

\mathcal{O}_{w}	=	12	mm	diametro dell'armatura a taglio
α	=	90	0	inclinazione dell'armatura trasversale
S	=	200	mm	passo staffe in direzione longitudinale
n_{br}	=	2		numero bracci
A_{sw}	=	226.2	mm^2	area resistente dell'armatura a taglio
ctg9	=	2.50		inclinazione delle bielle di calcestruzzo
$\sigma_{\sf cp}$	=	0.740	MPa	tensione media calcestruzzo
α_{c}	=	1.04		
V_{Rsd}	=	881.8	kN	resistenza taglio trazione
V_{Rcd}	=	2902.0	kN	resistenza taglio compressione
V_{Rd}	=	881.8	kN	resistenza a taglio
FS	=	1.00		

4.1.3 S.L.E. - Fessurazione

Si procede alla verifica dell'ampiezza di fessurazione per via indiretta, così come riportata nell'ultimo capoverso del punto 4.1.2.2.4.6 delle NTC, riferendosi ai limiti di tensione nell'acciaio d'armatura definiti nelle tabelle seguenti. La tensione σ_s è quella nell'acciaio d'armatura prossimo al lembo teso della sezione calcolata nella sezione parzializzata per la combinazione di carico pertinente.

Per quanto riguardo le condizioni ambientali e la sensibilità delle armature sono state assunte:

condizioni ambientali aggressive;

ок

ок

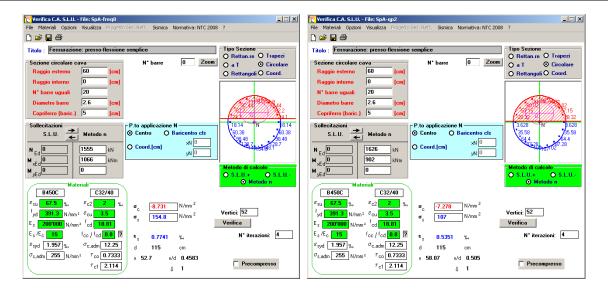
armature poco sensibili.

condizioni ambientali aggressive

Definita la massima tensione ammissibile nelle barre di acciaio, si considerano per ogni combinazione le condizioni di sforzo normale e taglio agente e, con l'ausilio del programma di calcolo V.C.A.S.L.U., utilizzando un'analisi elastica, si determina la massima tensione nelle barre di armatura, per la combinazione più gravosa.

armature poco sensibili Diametri massimi delle barre per il controllo della fessurazione w1=0.20 mm [MPa] Ø 160 32 32 32 32 32 25 16 12 25 16 12 25 16 12 25 16 25 16 25 16 25 16 16 12 <mark>25</mark> 16 12 12 12 280 12 12 12 8 360 Spaziatura m assima delle barre per il controllo fessurazione w1=0.20 mm [MPa] Ø ø 200 200 160 300 300 300 300 300 300 300 300 200 240 280 250 200 150 250 250 250 250 250 250 250 150 150 200 150 200 150 200 150 200 150 200 150 200 150 200 150 100 50 100 50 320 100 100 100 100 100 100 100 50 Sollecitazioni agenti combinazione freq 2 4.92 0.00 freq 7 4.92 0.00 qp1 4.92 0.00 freq 3 freq 4 qp2 lunghezza elastica del palo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 altezza tratto libero 1648 451 1659 451 1343 447 1332 451 1332 447 1321 451 1406 379 1397 383 kN kN sforzo assiale taglio alla testa del palo N V M_{max} 1099 1109 1099 1109 1099 1109 1099 1109 933 941 kN*m massimo momento flettente 160 **107** tensione massima nell'acciaio da normativa $\sigma_{s,max}$ 155 σ_{Sd max} tensione massima di trazione nell'acciaio di calcolo

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001


Dal km 44+000 allo svincolo con l'A19 *Progetto Esecutivo* Opera: Viadotto Arenella II

Relazione di calcolo Spalle - Carreggiata DX

Pagina 28 di 67

Nome file:

VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc

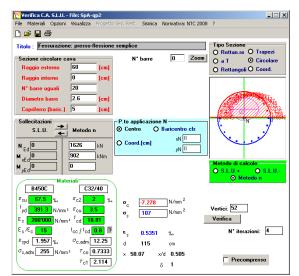
4.1.4 S.L.E. – Limitazione delle tensioni

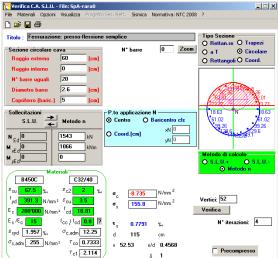
Materiali

In accordo con quanto previsto dalle NTC al punto 4.1.2.2.5, si verifica ora che le massime tensioni agenti nel calcestruzzo e nell'acciaio in fase di esercizio per la combinazione caratteristica e per quella quasi permanente siano inferiori ai massimi valori consentiti (per il calcestruzzo, compressione: 0,60 f_{ck} in combinazione caratteristica e 0,40 f_{ck} in combinazione quasi permanente; per l'acciaio: 0,80 f_{yk} in combinazione caratteristica). Le tensioni sono state ottenute con la stessa metodologia utilizzata per le verifiche di fessurazione.

Materiali													
Rck	=	40	MPa		resistenza	caratteristic	a cubica						
f _{ck}	=	33.20	MPa		resistenza	caratteristic	a cilindrica						
f _{vk}	=	450.0	MPa		resistenza	caratteristic	a di snerva	mento cilino	Irica				
,													
						combir	nazione						
		rara1	rara2	rara3	rara4	rara5	rara6	rara7	rara8	qp1	qp2		
Sollecitazi	oni ag	enti											
L0	=	4.92	4.92	4.92	4.92	4.92	4.92	4.92	4.92	4.92	4.92	m	lunghezza elastica del palo
h	=	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	m	altezza tratto libero
N	=	1647	1636	1660	1649	1355	1344	1321	1310	1406	1397	kN	sforzo assiale
V	=	447	451	447	451	447	451	447	451	379	383	kN	taglio alla testa del palo
M_{max}	=	1099	1109	1099	1109	1099	1109	1099	1109	933	941	kN*m	massimo momento flettente
Tensione r	massin	na di com	pressione d	el calcestr	uzzo nelle (condizioni	di esercizio	•					
$\sigma_{c,max}$	=	19.92	19.92	19.92	19.92	19.92	19.92	19.92	19.92	14.94	14.94	[MPa]	massima tensione del cls da normativa
$\sigma_{c,Sd}$	=	-	-	-	-	-	-	-	8.74	-	7.28	[MPa]	tensione di calcolo del cls in esercizio
		ок	ок	ок	ок	ок	ок	ОК	ок	ок	ок		
Tensione r	massin	na dell'ac	ciaio in con	dizioni di e	sercizio								
$\sigma_{s,max}$	=	360	360	360	360	360	360	360	360			[MPa]	massima tensione dell'acciaio normativa
$\sigma_{s.Sd}$	=	-	-	-	-	-	-	-	156			[MPa]	tensione di calcolo dell' acciaio in esercizio
		ок	ок	ок	ок	ок	ок	ок	ок				

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001


Dal km 44+000 allo svincolo con l'A19 **Progetto Esecutivo** Opera: Viadotto Arenella II


Relazione di calcolo Spalle - Carreggiata DX

Pagina 29 di 67

Nome file:

VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc

4.2 VERIFICHE GEOTECNICHE DEI PALI

Nella seguente tabella si riportano i parametri fisico-meccanici dei terreni interessati dai pali di fondazione e adottati nel seguito per le verifiche geotecniche. Tali parametri derivano dal lavoro di caratterizzazione riportato nella relazione geotecnica a corredo del presente progetto esecutivo.

	TRV1	TRV2a	TRV2b	TF1
peso secco gamma_d (kN/m3)	19.6	19.8	19.3	19.8
gamma_sat (kN/m3)	19.6	19.8	19.3	19.8
coesione non dren. cu (kPa)	129	199	199 ¹	70 ²
coesione dren. c' (kPa)	19	24	21	5
angolo attrito phi' (°)	21	19	23	23

4.2.1 S.L.U. – Verifica a carico limite verticale

Il carico limite verticale Q_{lim} dei singoli pali (trivellati) è stato calcolato in condizioni non drenate e drenate in funzione del diametro d e della lunghezza L dei pali. La formula utilizzata è:

$$Q_{lim} = p_{lim} \frac{\pi d^2}{4} + \pi d \int_{0}^{L} s_{lim}$$

dove le resistenze unitarie alla punta e laterale sono rispettivamente calcolate come:

$$p_{lim,u} = \sigma_{vL} + N_c c_u \qquad \qquad s_{lim,u} = \alpha c_u$$

in condizioni non drenate, e come:

$$p_{lim,d} = N_c c' + N_q \sigma_{vL}'$$

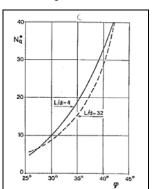
$$s_{lim,d} = k \mu \sigma_{vz}'$$

¹ In mancanza di dati si è assunto il valore della cu dello strato argilloso superiore.

² Si è assunto il valore minimo tra i due dati a disposizione, per l'unità TF1, ricavati dalle prove di laboratorio, ritenendo non plausibile per i terreni di origine alluvionale una cu=525.92 kPa.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19 **Progetto Esecutivo**


Opera: Viadotto Arenella II
Relazione di calcolo Spalle – Carreggiata DX
Pagina 30 di 67
Nome file: VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc

in condizioni drenate. In queste equazioni, si sono indicate rispettivamente con σ_{vL} e con σ_{vL} la tensione totale ed efficace agenti in sito alla quota della punta del palo. I valori assunti per il coefficiente di adesione α sono stati ricavati in funzione della coesione non drenata secondo i valori riportati di seguito:

Cu	α
(kPa)	(-)
<25	0.9
25 ÷ 50	8.0
50 ÷ 75	0.6
≥ 75	0.4

Il coefficiente di tensione orizzontale k è stato determinato con la formula di Jacky: $k=1-sen\varphi'$, mentre il coefficiente di attrito vale: $\mu=\tan\varphi'$.

Si osserva che in condizioni drenate, *al fine di limitare i cedimenti*, si è volutamente considerato un ridotto contributo della resistenza alla punta (è infatti noto che tale resistenza si mobilita per cedimenti prossimi al 25% del diametro del palo) considerando N_q i valori desunti dal grafico riportato in figura. Riguardo N_C , si è assunto in condizioni non drenate N_C = 9 e in condizioni drenate N_C è stato determinato con la relazione:

$$Nc = (Nq - 1) \cdot (\tan(\varphi'))^{-1}$$

In Tabella 1 i valori dei coefficienti Nc ed Nq adottati per i diverse unità geotecniche.

			TRV1	TRV2a	TRV2b	TF1
coeff.	Nq	(cond. drenate)	4.0	4.0	4.0	4.0
coeff.	Nc	(cond. drenate)	7.7	8.6	7.2	7.1

Tabella 1 – Coefficienti Ng ed Nc assunti per le diverse unità geotecniche

Per i rapporti opere-terreni considerati nei calcoli, si è fatto riferimento al profilo geotecnico a corredo del presente progetto esecutivo. Nelle verifiche si è considerata la falda contenuta tra -3÷-5m (tetto falda) e -10m (letto falda) al di sotto del p.c., ossia il letto della falda coincidente con il tetto dell'unità geotecnica TRV2a.

Di seguito le stratigrafie apprese dal profilo geotecnico sotto la spalla in esame.

STR	STRATIGRAFIA SOTTO SPICCATO FONDAZIONE SPALLA A - CARR. DX								
strati	Unità geotecniche	spessore strato da testa palo	quota iniziale	quota finale					
		(m)	m	m					
1° strato	TF1	4	0	4					
2° strato	TRV1	5	4	9					
3° strato	TRV2a	10	9	19					
4° strato	TRV2b	26	19	45					

La verifica della sicurezza nei riguardi degli stati limite ultimi di resistenza è stata effettuata con il "metodo dei coefficienti parziali" di sicurezza espresso dalla equazione formale:

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19 *Progetto Esecutivo*

Opera:	Viadotto	Arenella	Ш
--------	----------	----------	---

Relazione di calcolo Spalle – Carreggiata DX

Pagina 31 di 67

Nome file:

VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc

Rd ≥Ed

dove:

Rd è la resistenza di progetto, valutata in base ai valori di progetto della resistenza dei materiali e ai valori nominali delle grandezze geometriche interessate:

$$R_{d} = \frac{1}{\gamma_{R}} R \left[\gamma_{F} F_{k}; \frac{X_{k}}{\gamma_{M}}; a_{d} \right]$$

il coefficiente γ_R opera direttamente sulla resistenza del sistema. I coefficienti parziali di sicurezza, γ_{Mi} e γ_{Fj} , associati rispettivamente al materiale i-esimo e all'azione j-esima, tengono in conto la variabilità delle rispettive grandezze e le incertezze relative alle tolleranze geometriche e all'affidabilità del modello di calcolo;

Ed è il valore di progetto dell'effetto delle azioni, valutato direttamente come Ed= $E_k \gamma_E$ con $\gamma_E=\gamma_F$:

$$E_d = \gamma_E E \left[F_k; \frac{X_k}{\gamma_M}; a_d \right]$$

La verifica della relazione $Rd \ge Ed$ è stata effettuata impiegando diverse combinazioni di gruppi di coefficienti parziali (cfr tabelle sotto), rispettivamente definiti per le azioni (A1 e A2), per i parametri geotecnici (M1 e M2) e per le resistenze (R1, R2 e R3).

CARICHI	EFFETTO	Coefficiente Parziale $\gamma_E (o \gamma_E)$	EQU	(A1) STR	(A2) GEO
Permanenti	Favorevole		0,9	1,0	1,0
Permanenti	Sfavorevole	γ _{G1}	1,1	1,3	1,0
Permanenti non strutturali (1)	Favorevole		0,0	0,0	0,0
Permanenti non strutturan	Sfavorevole	γ _{G2}	1,5	1,5	1,3
Variabili	Favorevole		0,0	0,0	0,0
	Sfavorevole	γQi	1,5	1,5	1,3
(1) qualora i carichi permanenti non strutt		definiti, si potranno adottare	- 7-	- /-	

PARAMETRO GRANDEZZA ALLA QUALE COEFFICIENTE (M1) (M2) APPLICARE IL PARZIALE COEFFICIENTE PARZIALE γM Tangente dell'angolo di 1,0 1.25 tan \psi's 70 resistenza al taglio 1.0 1,25 Coesione efficace c'k Resistenza non drenata 1,0 1,4 Peso dell'unità di volume

Resistenza	stenza Simbolo Pali infissi		Pali trivellati			Pali ad elica continua				
	γR	(R1)	(R2)	(R3)	(R1)	(R2)	(R3)	(R1)	(R2)	(R3)
Base	γь	1,0	1,45	1,15	1,0	1,7	1,35	1,0	1,6	1,3
Laterale in compressione	γs	1,0	1,45	1,15	1,0	1,45	1,15	1,0	1,45	1,15
Totale (*)	γ,	1,0	1,45	1,15	1,0	1,6	1,30	1,0	1,55	1,25
Laterale in trazione	Υst	1,0	1,6	1,25	1,0	1,6	1,25	1,0	1,6	1,25

^(*) da applicare alle resistenze caratteristiche dedotte dai risultati di prove di carico di progetto.

I diversi gruppi di coefficienti di sicurezza parziali sono stati scelti nell'ambito dei due approcci progettuali distinti e alternativi consentiti dal DM 14/01/08 per la progettazione geotecnica.

Nel caso specifico, le verifiche geotecniche (GEO) in termini di capacità portante dei pali sono state condotte sulla base dell'approccio 2, con i coefficienti parziali → A1+M1+R3.

La capacità portante dei pali, determinata mediante procedura analitica basata sui parametri geotecnici dei terreni interessati, è stata ridotta del fattore di correlazione ζ per la determinazione della resistenza caratteristica in funzione del numero di verticali indagate. Considerando l'adozione di una sola relazione analitica per la valutazione del carico limite si è assunto il fattore ζ_3 Per i terreni interessati dall'opera in esame, il numero di verticali di indagine è 6.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Arenella II

Relazione di calcolo Spalle - Carreggiata DX

Pagina 32 di 67

Nome file:

 $VI13\text{-}B\text{-}CL008\text{-}A.00_relazione_calcolo_Spalle_DX.doc$

$R_{c,k} = Min$	$\frac{\left(R_{c,cal}\right)_{media}}{\xi_3};$	$\frac{\left(R_{c,cal}\right)_{min}}{\xi_4}$	
. 1	(R _{t cal})	(R. cal) .]	

ro di verticali indagate
$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

Numero di verticali indagate	1	2	3	4	5	7	≥ 10
ξ3	1,70	1,65	1,60	1,55	1,50	1,45	1,40
ξ4	1,70	1,55	1,48	1,42	1,34	1,28	1,21

Nel seguito si riportano i risultati delle verifiche condotte. Si evidenzia che ai carichi in testa palo si è aggiunto il contributo del peso palo compensato, cioè sottraendo al peso del palo il peso della colonna di terreno (ovvero calcolando il peso del palo con peso specifico $\gamma_p = \gamma_{c,a} - \gamma_t$).

azioni verti	azioni verticali massime in testa palo			teristiche pali fon	dazione		carico	limite	check dr	check ud
pila/spalla	statica	dinamica	diam. Palo	N° pali	lunghezza palo	PP. Compensato	Qlim_d	Qlim_u		
	kN	kN	m		m	kN	kN	kN		
spalla A	3403.50	2877.40	1.2	12	22	178.48	4094.6	4464.8	ok	ok

4.2.2 S.L.U. – Verifica a carico limite orizzontale

Il calcolo del carico limite orizzontale dei pali viene effettuato secondo il metodo proposto da Broms per terreni coesivi. Si riporta di seguito il dettaglio del calcolo del carico limite trasversale del palo.

CALCOLO DEL CARICO LIMITE ORIZZONTALE IN TERRENI COESIVI

D = 1.20 m diametro palo L = 22.00 m lunghezza palo

M_v = 2284.0 kNm momento di plasticizzazione del palo

c_u = **150.1** kPa coesione non drenata

palo corto

Q_{lim,1} = 32743.8 kN carico limite per palo corto

 M_{max} = 389651.6 kNm momento massimo

palo intermedio

 $Q_{lim,2}$ = 12168.4 kN carico limite per palo intermedio

f = 7.5 m

 M_{max} = 65292.0 kNm momento massimo

palo lungo

 F_h

Q_{lim,3} = 1911.6 kN carico limite per palo lungo

MR PALO LUNGO meccanismo di rottura

Q_{lim,m} = 1911.6 kN carico limite (valore medio)

 ξ_3 = 1.60 fattore di correlazione

 $Q_{lim,k}$ = 1194.7 kN carico limite (valore caratteristico)

 γ_T = 1.30 coefficiente parziale

886.0 kN

Q_{lim,d} = 919.0 kN carico limite (valore di progetto)

azione trasversale testa palo

FS 1.04

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19 **Progetto Esecutivo**

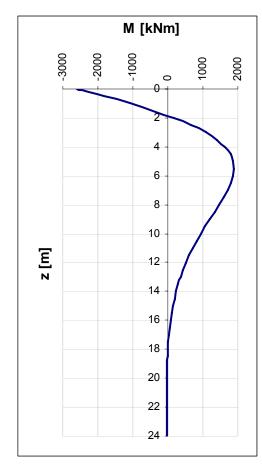
Opera:	Viadotto	Arenella	II
--------	----------	----------	----

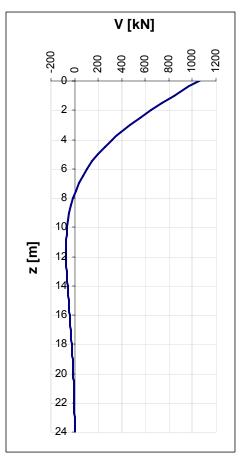
Relazione di calcolo Spalle - Carreggiata DX

Pagina 33 di 67

Nome file:

VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc


5 VERIFICA DEI PALI DI FONDAZIONE SPALLA B

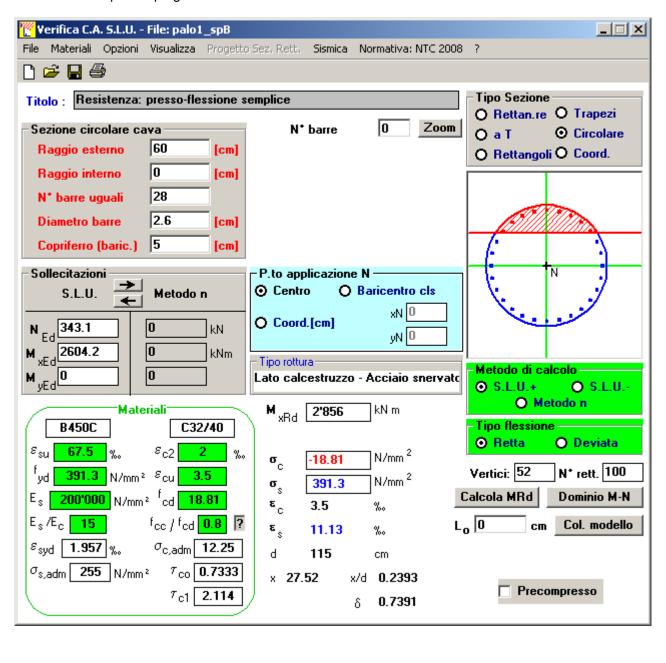

5.1 VERIFICHE STRUTTURALI

Per il calcolo delle sollecitazioni flettenti e taglianti agenti lungo il fusto del palo si adotta lo schema di palo con la testa impedita di ruotare, ma libera di traslare per effetto dell'azione orizzontale ivi applicata, ed immerso in un terreno schematizzato alla Winkler. Per la determinazione della lunghezza elastica del palo, λ , si adotta l'espressione di Zimmerman.

Di seguito si riporta il dettaglio dei calcoli di dimensionamento e verifica.

Е	=	33643 MPa	modulo elastico calcestruzzo
D	=	1200 mm	diametro palo
J	=	0.1018 m ⁴	momento d'inerzia del palo
K	=	13000 kN/m ³	costante di reazione del terreno
В	=	1.80 m	larghezza efficace del palo
E_s	=	23400 kN/m ²	modulo di elasticità del terreno
L0	=	4.92 m	lunghezza elastica del palo
h	=	0.00 m	altezza tratto libero
V	=	1053.8 kN	taglio alla testa del palo
M_{max}	=	2591.8 kNm	massimo momento flettente
d_{max}	=	9.16 mm	spostamento massimo in testa
z2	=	9.70 m	profondità di calcolo momento flettente
M(z2)	=	1013.7 kNm	momento flettente alla profondità z2
z3	=	20.7_m	profondità di calcolo momento flettente
M(z3)	=	-29.7 kNm	momento flettente alla profondità z3

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001


Dal km 44+000 allo svincolo con l'A19 **Progetto Esecutivo**

Opera: Viadotto Arenella II	
Relazione di calcolo Spalle – Carreggiata DX	
Pagina 34 di 67	
Nome file: VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc	

5.1.1 S.L.U. – Resistenza: presso-flessione

La prima gabbia viene armata con 28 Ø26, la seconda con 18 Ø18 mentre, per l'ultima gabbia sono sufficienti 15 Ø18.

Il momento ultimo del palo viene determinato con il programma V.C.A.S.L.U.: si riporta di seguito la schermata di output del programma relativa alla sezione z = 0 m.

	z _{in} [m]	z _{in} [m]	c' [cm]	Φ [mm]	n	s [cm]	M _{Ed} [kN*m]	N _{Ed} [kN]	M _{res} [kN*m]	
gabbia n.1	-1.3	10.7	5	26	28	12.3	2591.8	496.5	2856.0	OK
gabbia n.2	9.7	21.7	5	18	18	19.2	1013.7	496.5	1089.0	OK
gabbia n.3	20.7	25.0	5	18	15	23.0	29.7	496.5	902.6	OK

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19 **Progetto Esecutivo** Opera: Viadotto Arenella II

Relazione di calcolo Spalle - Carreggiata DX

Pagina 35 di 67

Nome file:

VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc

5.1.2 S.L.U. – Resistenza: taglio

Si dispongono spirali Ø14/200 nella prima gabbia dove le sollecitazioni taglianti sono maggiori, mentre nelle altre sono sicuramente sufficienti delle spirali Ø10/300. La verifica a taglio risulta soddisfatta se:

$$V_{Rd} \geq V_{Ed}$$

in cui:

 $V_{{\scriptscriptstyle Ed}}$: taglio di calcolo

 $V_{\it Rd} = \min (V_{\it Rsd}\,; V_{\it Rcd}\,)$: taglio resistente

 $V_{Rsd} = 0.9 \cdot d_e \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (\cot \alpha + \cot \theta) \cdot \sin \alpha$: resistenza di calcolo a taglio trazione

 $V_{\textit{Rcd}} = 0.9 \cdot d_{\textit{e}} \cdot b_{\textit{we}} \cdot \alpha_{\textit{c}} \cdot f_{\textit{cd}} \cdot \frac{\left(\cot \alpha + \cot \theta\right)}{\left(1 + \cot^2 \theta\right)}$: resistenza di calcolo a taglio compressione

dove:

 $d_a = 0.45 \cdot D + 0.64 \cdot (d - D/2)$: altezza utile equivalente della sezione

D: diametro della sezione

d: altezza utile della sezione

 $b_{we} = 0.9 \cdot D$: base equivalente della sezione

 A_{sw} : area dell'armatura trasversale

s: interasse tra due armature trasversali consecutive

 α_c : coefficiente maggiorativo per lo sforzo assiale

 $f_{cd} = 0.5 \cdot f_{cd}$: resistenza a compressione ridotta del calcestruzzo d'anima

Sollecitazioni

V	=	1053.8	kN	taglio di calcolo
N 1		400 5		

N = 496.5 kN sforzo assiale di calcolo

Geometria

D	=	1200 mm	diametro sezione
d	=	1140 mm	altezza utile

d_e = 886 mm altezza utile equivalente

 b_{we} = 1080 mm base equivalente

Materiali

R_{ck}	=	40		resistenza caratteristica cubica
f_{ck}	=	33.20	MPa	resistenza caratteristica cilindrica
γ_{c}	=	1.50		coefficiente parziale di sicurezza
α_{cc}	=	0.85		coefficiente riduttivo per resistenze di lunga durata
f_cd	=	18.81	MPa	resistenza di calcolo a compressione
f' _{cd}	=	9.41	MPa	resistenza ridotta

 γ_s = 1.15 coefficiente di sicurezza acciaio

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19 **Progetto Esecutivo**

Opera: Viadotto Arenella I	ı
----------------------------	---

Relazione di calcolo Spalle - Carreggiata DX

Pagina 36 di 67

Nome file:

VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc

f_{yk}	=	450.0 MPa	tensione caratteristica di snervamento acciaio
f_{vd}	=	391.3 MPa	tensione di snervamento di calcolo dell'acciaio

Verifica per elementi provvisti di armatura a taglio

\emptyset_{w}	=	14	mm	diametro dell'armatura a taglio
α	=	90	0	inclinazione dell'armatura trasversale
S	=	200	mm	passo staffe in direzione longitudinale
n_{br}	=	2		numero bracci
A_{sw}	=	307.9	mm^2	area resistente dell'armatura a taglio
ctg9	=	2.50		inclinazione delle bielle di calcestruzzo
$\sigma_{\sf cp}$	=	0.439	MPa	tensione media calcestruzzo
α_{c}	=	1.02		
V_{Rsd}	=	1200.3	kN	resistenza taglio trazione
V_{Rcd}	=	2857.3	kN	resistenza taglio compressione
V_{Rd}	=	1200.3	kN	resistenza a taglio
FS	=	1.14		

5.1.3 S.L.E. - Fessurazione

Si procede alla verifica dell'ampiezza di fessurazione per via indiretta, così come riportata nell'ultimo capoverso del punto 4.1.2.2.4.6 delle NTC, riferendosi ai limiti di tensione nell'acciaio d'armatura definiti nelle tabelle seguenti. La tensione σ_s è quella nell'acciaio d'armatura prossimo al lembo teso della sezione calcolata nella sezione parzializzata per la combinazione di carico pertinente.

Per quanto riguardo le condizioni ambientali e la sensibilità delle armature sono state assunte:

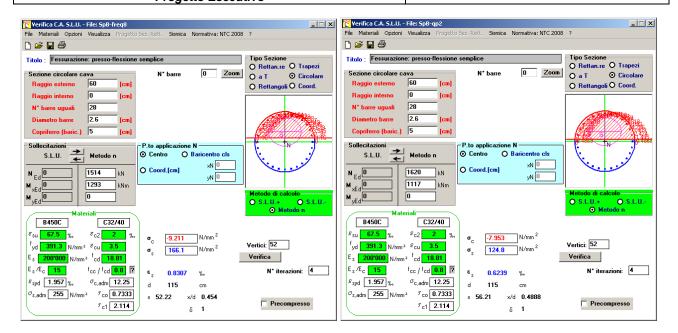
- · condizioni ambientali aggressive;
- armature poco sensibili.

condizioni ambientali aggressive

Definita la massima tensione ammissibile nelle barre di acciaio, si considerano per ogni combinazione le condizioni di sforzo normale e taglio agente e, con l'ausilio del programma di calcolo V.C.A.S.L.U., utilizzando un'analisi elastica, si determina la massima tensione nelle barre di armatura, per la combinazione più gravosa.

armature poco sensibili Diametri massimi delle barre per il controllo della fessurazione w1=0.20 mm [MPa] Ø Ø 160 25 16 12 25 16 12 25 16 12 200 25 16 25 16 25 16 25 16 12 16 16 12 12 280 12 12 12 10 8 10 10 8 10 10 8 Spaziatura massima delle [MPa] 160 Ø Ø 200 200 250 250 200 250 250 250 250 250 250 150 150 240 280 200 150 200 150 200 150 200 150 200 150 200 150 100 50 200 50 100 100 100 100 100 100 100 100 Sollecitazioni agenti combi qp1 4.92 0.00 frea 2 frea 3 frea 4 frea 7 4.92 0.00 1577 4.92 0.00 4.92 0.00 4.92 0.00 4.92 0.00 4.92 0.00 4.92 0.00 4.92 0.00 lunghezza elastica del palo altezza tratto libero N V 1817 1793 1831 1807 1590 1566 1553 1668 1661 kN sforzo assiale kN kN*m 544 1338 544 1338 taglio alla testa del palo M_{max} 1338 1328 1151 1159 1328 1328 1338 1328 massimo momento flettente 200 **166** 160 **125** MPa MPa tensione massima nell'acciaio da normativa tensione massima di trazione nell'acciaio di calcolo 200 200 200 200 200 200 200 160 $\sigma_{\text{Sd,max}}$ oĸ oĸ ок ок

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001


Dal km 44+000 allo svincolo con l'A19 **Progetto Esecutivo** Opera: Viadotto Arenella II

Relazione di calcolo Spalle - Carreggiata DX

Pagina 37 di 67

Nome file:

VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc

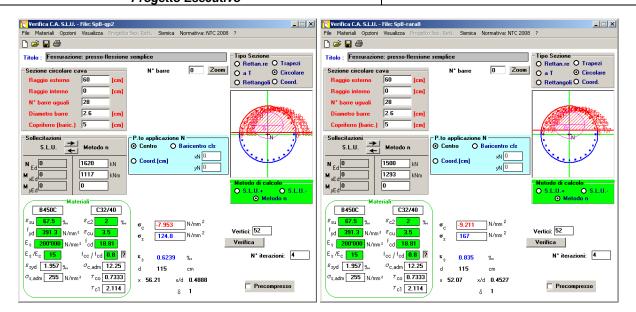
5.1.4 S.L.E. – Limitazione delle tensioni

In accordo con quanto previsto dalle NTC al punto 4.1.2.2.5, si verifica ora che le massime tensioni agenti nel calcestruzzo e nell'acciaio in fase di esercizio per la combinazione caratteristica e per quella quasi permanente siano inferiori ai massimi valori consentiti (per il calcestruzzo, compressione: 0,60 f_{ck} in combinazione caratteristica e 0,40 f_{ck} in combinazione quasi permanente; per l'acciaio: 0,80 f_{yk} in combinazione caratteristica). Le tensioni sono state ottenute con la stessa metodologia utilizzata per le verifiche di fessurazione.

Materiali													
Rck	=	40	MPa		resistenza								
f _{ck}	=	33.20	MPa		resistenza								
f_{yk}	=	450.0	MPa		resistenza	caratteristic	a di snerva	mento cilino	Irica				
						combir	nazione						
		rara1	rara2	rara3	rara4	rara5	rara6	rara7	rara8	qp1	qp2		
Sollecitazi	oni ane	nti											
LO	=	4.92	4.92	4.92	4.92	4.92	4.92	4.92	4.92	4.92	4.92	m	lunghezza elastica del palo
h	=	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	m	altezza tratto libero
N	=	1804	1780	1838	1814	1604	1580	1563	1539	1668	1661	kN	sforzo assiale
V	=	540	544	540	544	540	544	540	544	468	471	kN	taglio alla testa del palo
M_{max}	=	1328	1338	1328	1338	1328	1338	1328	1338	1151	1159	kN*m	massimo momento flettente
Tensione r	massim	a di com	pressione d	el calcestr	uzzo nelle d	ondizioni	di esercizio	.					
$\sigma_{c,max}$	=	19.92	19.92	19.92	19.92	19.92	19.92	19.92	19.92	14.94	14.94	[MPa]	massima tensione del cls da normativa
$\sigma_{c,Sd}$	=	-	-	-		-	-	-	9.21	-	7.95	[MPa]	tensione di calcolo del cls in esercizio
0,00		ок	ок	ок	ок	ок	ок	ок	ок	ок	ок		
Tensione r	massim	a dell'ac	ciaio in con	dizioni di e	sercizio								
$\sigma_{s.max}$	=	360	360	360	360	360	360	360	360			[MPa]	massima tensione dell'acciaio normativa
σ _{s,Sd}	=		-						167			[MPa]	tensione di calcolo dell' acciaio in esercizio
≎ s,5a		ок	ок	ок	ок	ок	ок	ок	OK			[ivii a]	teriolorie di odiocio dell' decidio ili esercizio
		JK	JK	JK	JK	OK.	JK	JK.	OK.				

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19 *Progetto Esecutivo*


Opera:	Viadotto	Arenella	II

Relazione di calcolo Spalle - Carreggiata DX

Pagina 38 di 67

Nome file:

VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc

5.2 VERIFICHE GEOTECNICHE DEI PALI

Nella seguente tabella si riportano i parametri fisico-meccanici dei terreni interessati dai pali di fondazione e adottati nel seguito per le verifiche geotecniche. Tali parametri derivano dal lavoro di caratterizzazione riportato nella relazione geotecnica a corredo del presente progetto esecutivo.

	TRV1	TRV2a	TRV2b	TF1
peso secco gamma_d				
(kN/m3)	19.6	19.8	19.3	19.8
gamma_sat (kN/m3)	19.6	19.8	19.3	19.8
coesione non dren. cu (kPa)	129	199	199 ³	70 ⁴
coesione dren. c' (kPa)	19	24	21	5
angolo attrito phi' (°)	21	19	23	23

5.2.1 S.L.U. – Verifica a carico limite verticale

Il carico limite verticale Q_{lim} dei singoli pali (trivellati) è stato calcolato in condizioni non drenate e drenate in funzione del diametro d e della lunghezza L dei pali. La formula utilizzata è:

$$Q_{lim} = p_{lim} \frac{\pi d^2}{4} + \pi d \int_{0}^{L} s_{lim}$$

dove le resistenze unitarie alla punta e laterale sono rispettivamente calcolate come:

$$p_{lim,u} = \sigma_{vL} + N_c c_u \qquad \qquad s_{lim,u} = \alpha c_u$$

in condizioni non drenate, e come:

$$p_{lim,d} = N_c c' + N_a \sigma_{vL}'$$

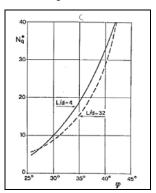
$$s_{lim,d} = k \mu \sigma_{vz}'$$

³ In mancanza di dati si è assunto il valore della cu dello strato argilloso superiore.

⁴ Si è assunto il valore minimo tra i due dati a disposizione, per l'unità TF1, ricavati dalle prove di laboratorio, ritenendo non plausibile per i terreni di origine alluvionale una cu=525.92 kPa.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19 **Progetto Esecutivo**


Opera: Viadotto Arenella II
Relazione di calcolo Spalle – Carreggiata DX
Pagina 39 di 67
Nome file: VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc

in condizioni drenate. In queste equazioni, si sono indicate rispettivamente con σ_{vL} e con σ_{vL} la tensione totale ed efficace agenti in sito alla quota della punta del palo. I valori assunti per il coefficiente di adesione α sono stati ricavati in funzione della coesione non drenata secondo i valori riportati di seguito:

C _u	α
(kPa)	(-)
<25	0.9
25 ÷ 50	0.8
50 ÷ 75	0.6
≥ 75	0.4

Il coefficiente di tensione orizzontale k è stato determinato con la formula di Jacky: $k=1-sen\varphi'$, mentre il coefficiente di attrito vale: $\mu=\tan\varphi'$.

Si osserva che in condizioni drenate, *al fine di limitare i cedimenti*, si è volutamente considerato un ridotto contributo della resistenza alla punta (è infatti noto che tale resistenza si mobilita per cedimenti prossimi al 25% del diametro del palo) considerando N_q i valori desunti dal grafico riportato in figura. Riguardo N_C , si è assunto in condizioni non drenate N_C = 9 e in condizioni drenate N_C è stato determinato con la relazione:

$$Nc = (Nq - 1) \cdot (\tan(\varphi'))^{-1}$$

In tabella si riportano ora i valori dei coefficienti Nc ed Nq adottati per i diverse unità geotecniche.

			TRV1	TRV2a	TRV2b	TF1
coeff.	Nq	(cond. drenate)	4.0	4.0	4.0	4.0
coeff.	Nc	(cond. drenate)	7.7	8.6	7.2	7.1

Tabella 2 – Coefficienti Nq ed Nc assunti per le diverse unità geotecniche

Per i rapporti opere-terreni considerati nei calcoli, si è fatto riferimento al profilo geotecnico a corredo del presente progetto esecutivo. Nelle verifiche si è considerata la falda contenuta tra -3÷-5m (tetto falda) e -10m (letto falda) al di sotto del p.c., ossia il letto della falda coincidente con il tetto dell'unità geotecnica TRV2a.

STI	STRATIGRAFIA SOTTO SPICCATO FONDAZIONE SPALLA B - CARR. DX							
strati	Unità geotecniche	spessore strato da testa palo	quota iniziale	quota finale				
		(m)	m	m				
1° strato	TF1	2	0	2				
2° strato	TRV1	3	2	5				
3° strato	TRV2a	12	5	17				
4° strato	TRV2b	28	17	45				

La verifica della sicurezza nei riguardi degli stati limite ultimi di resistenza è stata effettuata con il "metodo dei coefficienti parziali" di sicurezza espresso dalla equazione formale:

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19 **Progetto Esecutivo**

Opera: Viadotto Arenella II
Relazione di calcolo Spalle – Carreggiata DX
Pagina 40 di 67

Nome file:

VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc

dove:

Rd è la resistenza di progetto, valutata in base ai valori di progetto della resistenza dei materiali e ai valori nominali delle grandezze geometriche interessate:

$$R_{d} = \frac{1}{\gamma_{R}} R \left[\gamma_{F} F_{k}; \frac{X_{k}}{\gamma_{M}}; a_{d} \right]$$

il coefficiente γ_R opera direttamente sulla resistenza del sistema. I coefficienti parziali di sicurezza, γ_{Mi} e γ_{Fj} , associati rispettivamente al materiale i-esimo e all'azione j-esima, tengono in conto la variabilità delle rispettive grandezze e le incertezze relative alle tolleranze geometriche e all'affidabilità del modello di calcolo;

Ed è il valore di progetto dell'effetto delle azioni, valutato direttamente come Ed= $E_k \gamma_E$ con $\gamma_E=\gamma_F$:

$$E_d = \gamma_E E \left[F_k; \frac{X_k}{\gamma_M}; a_d \right]$$

La verifica della relazione $Rd \ge Ed$ è stata effettuata impiegando diverse combinazioni di gruppi di coefficienti parziali (cfr tabelle sotto), rispettivamente definiti per le azioni (A1 e A2), per i parametri geotecnici (M1 e M2) e per le resistenze (R1, R2 e R3).

CARICHI	EFFETTO	Coefficiente Parziale γ_E (o γ_E)	EQU	(A1) STR	(A2) GEO
Permanenti	Favorevole		0,9	1,0	1,0
Permanenti	Sfavorevole	γ _{G1}	1,1	1,3	1,0
Permanenti non strutturali (1)	Favorevole	.,	0,0	0,0	0,0
Permanenti non strutturan	Sfavorevole	γ _{G2}	1,5	1,5	1,3
Variabili	Favorevole		0,0	0,0	0,0
v ariabili	Sfavorevole	YQi	1,5	1,5	1,3

1) qualora i carichi permanenti non strutturali siano compiutamente definiti, si potranno adottare gli stessi coefficienti validi per le azioni permanenti

PARAMETRO	GRANDEZZA ALLA QUALE	COEFFICIENTE	(M1)	(M2)
	APPLICARE IL	PARZIALE		
	COEFFICIENTE PARZIALE	γм		
Tangente dell'angolo di resistenza al taglio	tan φ' _k	γφ	1,0	1,25
Coesione efficace	c' _k	γ.,	1,0	1,25
Resistenza non drenata	c_{uk}	Yeu	1,0	1,4
Peso dell'unità di volume	γ	γ,	1,0	1,0

Resistenza Simbolo		Pali infissi			Pali trivellati			Pali ad elica continua		
	γR	(R1)	(R2)	(R3)	(R1)	(R2)	(R3)	(R1)	(R2)	(R3)
Base	γь	1,0	1,45	1,15	1,0	1,7	1,35	1,0	1,6	1,3
Laterale in compressione	γs	1,0	1,45	1,15	1,0	1,45	1,15	1,0	1,45	1,15
Totale (*)	Υt	1,0	1,45	1,15	1,0	1,6	1,30	1,0	1,55	1,25
Laterale in trazione	γ _{st}	1,0	1,6	1,25	1,0	1,6	1,25	1,0	1,6	1,25

^(*) da applicare alle resistenze caratteristiche dedotte dai risultati di prove di carico di progetto.

I diversi gruppi di coefficienti di sicurezza parziali sono stati scelti nell'ambito dei due approcci progettuali distinti e alternativi consentiti dal DM 14/01/08 per la progettazione geotecnica.

Nel caso specifico, le verifiche geotecniche (GEO) in termini di capacità portante dei pali sono state condotte sulla base dell'approccio 2, con i coefficienti parziali → A1+M1+R3.

La capacità portante dei pali, determinata mediante procedura analitica basata sui parametri geotecnici dei terreni interessati, è stata ridotta del fattore di correlazione ζ per la determinazione della resistenza caratteristica in funzione del numero di verticali indagate. Considerando l'adozione di una sola relazione analitica per la valutazione del carico limite si è assunto il fattore ζ_3 Per i terreni interessati dall'opera in esame, il numero di verticali di indagine è 6.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Arenella II

Relazione di calcolo Spalle - Carreggiata DX

Pagina 41 di 67

Nome file:

VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc

$R_{c,k} = Min$	$\left\{ \frac{\left(R_{c,cal}\right)_{media}}{\xi_3} \right.$	$\left\{\frac{\left(R_{c,cal}\right)_{min}}{\xi_4}\right\}$
$R_{t,k} = Min$	$\left\{\frac{\left(R_{t,cal}\right)_{media}}{\xi_3}\right\}$	$\left\{\frac{\left(R_{t,cal}\right)_{min}}{\xi_4}\right\}$

Numero di verticali indagate	1	2	3	4	5	7	≥ 10
ξ3	1,70	1,65	1,60	1,55	1,50	1,45	1,40
ξ4	1,70	1,55	1,48	1,42	1,34	1,28	1,21

Nel seguito si riportano i risultati delle verifiche condotte. Si evidenzia che ai carichi in testa palo si è aggiunto il contributo del peso palo compensato, cioè sottraendo al peso del palo il peso della colonna di terreno (ovvero calcolando il peso del palo con peso specifico $\gamma_p = \gamma_{c,a} - \gamma_t$).

azioni verti	cali massime ir	n testa palo	caratteristiche pali fondazione			carico limi		limite	check dr	check ud
pila/spalla	statica	dinamica	diam. Palo	N° pali	lunghezza palo	PP. Compensato	Qlim_d	Qlim_u		
	kN	kN	m		m	kN	kN	kN		
spalla B	3874.90	3537.60	1.2	12	25	205.51	5268.3	5305.5	ok	ok

5.2.2 S.L.U. – Verifica a carico limite orizzontale

Il calcolo del carico limite orizzontale dei pali viene effettuato secondo il metodo proposto da Broms per terreni coesivi. Si riporta di seguito il dettaglio del calcolo del carico limite trasversale del palo.

CALCOLO DEL CARICO LIMITE ORIZZONTALE IN TERRENI COESIVI

D = 1.20 m diametro palo

L = 25.00 m lunghezza palo

M_y = 2856.0 kNm momento di plasticizzazione del palo

c_u = **156.0** kPa coesione non drenata

palo corto

 $Q_{lim,1}$ = 39077.3 kN carico limite per palo corto

 M_{max} = 523636.3 kNm momento massimo

palo intermedio

Q_{lim,2} = 14725.4 kN carico limite per palo intermedio

f = 8.7 m

 M_{max} = 88017.5 kNm momento massimo

palo lungo

Q_{lim,3} = 2300.5 kN carico limite per palo lungo

MR PALO LUNGO meccanismo di rottura

Q_{lim,m} = 2300.5 kN carico limite (valore medio)

 ξ_3 = 1.60 fattore di correlazione

Q_{lim,k} = 1437.8 kN carico limite (valore caratteristico)

 γ_T = 1.30 coefficiente parziale

 $Q_{lim,d}$ = 1106.0 kN carico limite (valore di progetto) F_h = 1053.8 kN azione trasversale testa palo

FS 1.05

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19 **Progetto Esecutivo** Opera: Viadotto Arenella II

Relazione di calcolo Spalle - Carreggiata DX

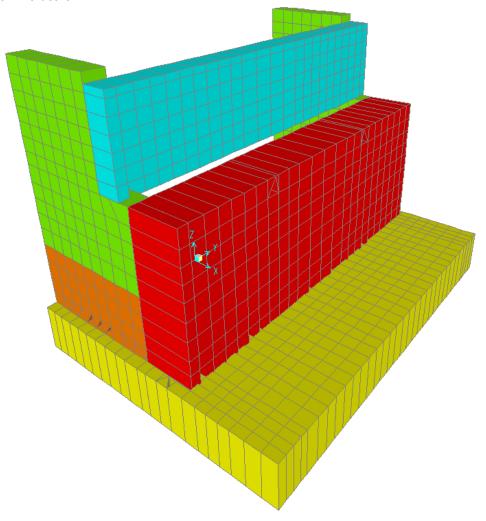
Pagina 42 di 67

Nome file:

VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc

6 ANALISI STRUTTURALE DELLA SPALLA B

Si descrive in questo capitolo l'analisi strutturale della spalla B della carreggiata destra. La spalla A della carreggiata destra presenta gli stessi scarichi dell'impalcato e, a meno del muro frontale, la stessa geometria della spalla B. Essendo il muro frontale della spalla B più alto di quello della spalla A ed essendo la spalla B di conseguenza più sollecitata si estendono i risultati delle verifiche strutturali anche alla spalla A.


6.1 DESCRIZIONE DEL MODELLO DI CALCOLO

Il calcolo delle sollecitazioni agenti sugli elementi che costituiscono la spalla è stato eseguito in SAP2000 schematizzando gli elementi strutturali (plinto di fondazione, muro frontale, trave paraghiaia e muri laterali) come piastre rettangolari, con il plinto vincolato mediante incastri in corrispondenza degli assi dei pali di fondazione.

Lo schema statico appena descritto è stato risolto mettendo a punto un modello numerico agli elementi finiti che, con buona approssimazione, riproduce l'effettiva geometria e la effettiva distribuzione delle rigidezze della struttura reale. Gli elementi shell impiegati includono gli effetti della deformabilità a taglio.

Nella seguente figura si illustra la geometria del modello.

Il sistema di riferimento globale è impostato con asse X parallelo ai muri laterali, asse Y parallelo al muro frontale e asse Z verticale.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera:	Viadotto	Arenella	Ш
--------	----------	----------	---

Relazione di calcolo Spalle - Carreggiata DX

Pagina 43 di 67

Nome file:

VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc

Geometrie Spalla

	n.	Bx	Ву	Bz,min	Bz,max	V	X	Υ	Z
	[-]	[m]	[m]	[m]	[m]	[m ³]	[m]	[m]	[m]
plinto di fondazione	1	9.60	13.20	1.60	-	202.8	4.80	0.00	-0.80
muro frontale	1	1.80	12.50	5.00	-	112.5	5.50	0.00	-4.10
muro paraghiaia	1	0.80	12.50	4.15	-	41.5	3.85	0.00	-7.48
muro laterale sx	1	4.60	0.70	8.25	-	26.6	2.30	5.90	-5.73
muro laterale dx	1	4.60	0.70	8.25	-	26.6	2.30	-5.90	-5.73
bandiera sx	0	3.00	1.50	2.00	3	0.00	-1.40	5.50	-8.58
bandiera dx	0	1.00	1.00	1.00	1	0.00	-0.50	-5.75	-9.35
baggioli	2	1.10	1.10	0.35	-	0.85	5.20	0.00	-6.78
apparecchi di appoggio	2	0.90	0.90	0.47	-	0.76	5.20	0.00	-7.18

6.2 ANALISI DEI CARICHI

La spalla risulta sollecitata da forze concentrate trasmesse dall'impalcato in corrispondenza degli appoggi. Oltre alle suddette forze concentrate sono state applicate le forze di superficie che agiscono sulle piastre. Di seguito si riportano le condizioni di carico elementari considerate, i cui valori numerici sono stati forniti nel paragrafo dedicato all'analisi della palificata della stessa spalla.

g1-imp g1-sp	peso proprio impalcato peso proprio spalla
g2-imp	permanenti portati su impalcato
g2-sp	terreno su plinto spalla
g3-sp	spinta del terreno su spalla
e2-imp	ritiro
e3-imp	carico termico differenziale
q1.1-imp	carico mobile dinamizzato - configurazione 1 (massima azione verticale)
q1.2-imp	carico mobile dinamizzato - configurazione 2 (massimo momento trasversale)
q1t-sp	effetti del sovraccarico variabile sulla spalla
q3-imp	frenatura su impalcato
q4-imp	azione centrifuga su impalcato
q5-imp	azione del vento trasversale su impalcato
q6.1x-imp	sisma 1 impalcato
q6.1y-imp	sisma 2 impalcato
q6.1z-imp	sisma 3 impalcato
q6.1x-sp	incremento di spinta terreno in fase sismica
q6.2x-sp	forze d'inerzia longitudinali
q6.2y-sp	forze d'inerzia trasversali
q6.2z-sp	forze d'inerzia verticali
q7-imp	azione parassita dei vincoli

6.3 COMBINAZIONI DI CARICO

Per le combinazioni si rimanda alle NTC cap. 2.5.3. Adottando per le verifiche geotecniche l'approccio 2 (NTC cap.6) per il quale i coefficienti parziali delle azioni coincidono con quelli delle verifiche strutturali, si considera la combinazione fondamentale (S.L.U), sismica (S.L.V.), frequente (S.L.E.) e quasi permanente (S.L.E.). Le azioni elementari sono state combinate attraverso i coefficienti parziali riportati nella seguente matrice.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19 *Progetto Esecutivo* Opera: Viadotto Arenella II

Relazione di calcolo Spalle - Carreggiata DX

Pagina 44 di 67

Nome file:

VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc

MATRICE COEFFICIENTI DI C	COMBINAZIO	ONE DEI CA	ARICHI															
g1-imp g1-sp g2-sp g2-sp g3-sp e2-imp e3-imp q1-1-imp q1-2-imp q4-imp q4-imp q5-imp q6-1x-imp q6-1x-imp q6-1x-sp q6-2x-sp q6-2x-sp q6-2x-sp q6-2x-sp q7-imp	1.35 1.35 1.35 1.35 1.35 1.2 0.72 1.35 0 0.90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.2 -0.72 1.35 0 0 0.90 0 0 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.2 0.72 1.35 0 0 0 0 0 0 0 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.35 1.2 2-0.72 1.35 0 0 0-0.90 0 0 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.35 1.2 0.72 0 1.35 1.35 0 0 0 0 0 0 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.35 1.22 -0.72 0 1.35 1.35 0 0 0 0 0 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.35 1.2 0.72 0 1.35 1.35 0 0 0 0 0 0 0 0 0 0 0	\$.1 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 0 0 0 0 0 0 0 0 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.35 1.20 0.72 1.01 0 1.01 0 0.90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.20 -0.72 1.01 0 1.01 1.50 0 0 0 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.20 0.72 1.01 0 1.01 1.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.20 -0.72 1.01 0 1.01 0 -0.90 0 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.35 1.20 0.72 0 1.01 1.50 0 0.90 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.20 0.72 0 1.01 1.50 0 0 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.20 0.72 0 1.01 1.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.20 -0.72 0 1.01 1.50 0 0 0 0 0 0 0 0 0		
g1-imp g1-sp g2-imp g2-sp g2-sp g3-sp e2-imp g3-sp e3-imp q1-1-imp q1-2-imp q4-imp q5-imp q5-imp q6-1y-imp q6-1y-imp q6-1y-imp q6-2y-sp q6-2y-sp q6-2y-sp q6-2y-sp q6-2y-sp	1.35 1.35 1.35 1.35 1.35 1.35 1.20 0.72 1.01 0 1.01 0 0.90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.20 -0.72 1.01 0 1.50 0.90 0 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.20 0.72 1.01 0 1.50 -0.90 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.20 -0.72 1.01 0 1.50 -0.90 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.35 1.20 0.72 0 1.01 1.01 0 1.50 0.90 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.35 1.20 -0.72 0 1.01 1.01 0 0 0 0 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.20 0.72 0 1.01 1.01 0 1.50 -0.90 0 0 0 0	\$.I35 1.35 1.35 1.35 1.35 1.35 1.20 -0.72 0 1.01 1.01 0 1.50 -0.90 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.35 1.20 0.72 1.01 0 1.01 0 0 1.50 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.20 -0.72 1.01 0 0 1.50 0 0 0 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.20 0.72 1.01 0 1.01 0 -1.50 0 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.36 1.20 -0.72 1.01 0 1.01 0 -1.50 0 0 0 0 0 0	5 1.35 1.35 1.35 1.35 1.35 1.20 0.72 0 1.01 1.01 0 0 1.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.36 1.20 -0.72 0 1.01 1.01 0 0 0 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.30 0.72 0 1.01 1.01 0 0 -1.50 0 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.36 1.20 -0.72 0 1.01 1.01 0 -1.50 0 0 0 0 0 0		
g1-imp g1-sp g2-imp g2-sp g3-sp e3-imp e1-1-imp q1-1-imp q1-1-imp q1-1-imp q4-imp q5-imp q6.1-imp q6.1-imp q6.1-imp q6.1-imp q6.1-imp q6.1-imp q6.1-imp q6.2-sp q6.2-sp q6.2-sp	1.35 1.35 1.35 1.35 1.35 1.20 1.20 1.01 0 0 0 0 0 0 0 0 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.20 -1.20 1.01 0 0 0.90 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.20 1.20 1.01 0 0 0 0 0 0 0 0 0 0	S.Ie 1.35 1.35 1.35 1.35 1.35 1.20 1.01 0 1.01 0 0 0 0 0 0 0 0 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.20 0 1.20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.20 0 1.01 1.01 0 0 0 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.20 0 1.20 0 0 0 0 0 0 0 0 0 0	1.35 1.35 1.35 1.35 1.35 1.20 0 1.01 1.01 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.x 1 1 1 1 1 1 1 -0.50 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0	S.L qe		1 1 1 1 1 1 1 0.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.z 1 1 1 1 1 1 1 -0.50 0 0 0 0 0 0 0 1 0 0 0 1 0.60				
g1-imp g1-sp g2-imp g2-sp g3-sp g3-sp e2-imp e3-imp q1-1-imp q1-1-imp q1-imp q4-imp q5-imp q6-1y-imp q6-1y-imp q6-1y-imp q6-2x-sp	1 1 1 1 1 1 0.60 0.75 0 0 0.75 0 0 0.60	1 1 1 1 1 1 1 1-0.60 0.75 0 0.75 0 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 0.60 0.75 0 0.75 0 0 0.75 0 0 0 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0	S.L. 1 1 1 1 1 1 1 0-0.60 0.75 0 0.75 0 0 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	car 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 0-0.60 0 0-0.75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 0.60 0 0-0.75 0 0 0 0-0.60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 0.060 0 0-0.75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	S.I 1 1 1 1 1 1 1 1 0.60 0.75 0 0.75 0 0 0.20 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 0.60 0.75 0 0.75 0 0 0.75 0 0 0 0.00 0 0.00 0 0 0 0 0 0 0 0 0 0	S.L. 1 1 1 1 1 1 1 1 0.60 0.75 0 0.75 0 0 0.020 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 0.60 0 0 -0.75 0 0.20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 0-0.60 0 0-0.75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 0.60 0 0-0.75 0 0 0 0-0.20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1-0.60 0 0-0.75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	S.L.qp 1 0.50 -0.5 0	550

6.4 SOLLECITAZIONI

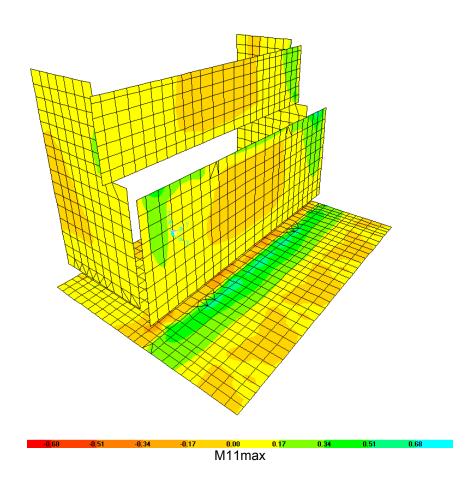
Si riportano di seguito le schermate delle sollecitazioni risultanti (M11max, M11min, M22max, M22min, V13max, V13min, V23max, V23min) per l'inviluppo delle combinazioni relative allo stato limite ultimo ed allo stato limite di salvaguardia della vita, necessarie per il dimensionamento dell'armatura a flessione e di quella a taglio.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19 **Progetto Esecutivo**

Opera:	Viadotto	Arenella	Ш
--------	----------	----------	---

Relazione di calcolo Spalle - Carreggiata DX


Pagina 45 di 67

Nome file:

VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc

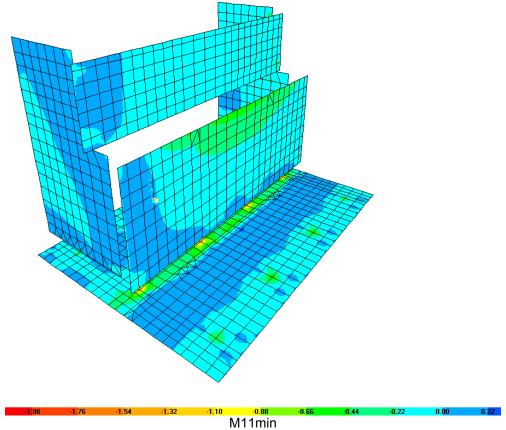
Ricordiamo che non si è tenuto conto nel modello dell'effetto della frenatura sul terrapieno (C5.1.3.3.7.2, Circolare n. 617) in quanto, per il dimensionamento della trave paraghiaia risulta dimensionante la combinazione sismica. Infatti, il momento della combinazione sismica valutato in corrispondenza dell'incastro con il muro frontale risulta maggiore di quello della combinazione statica valutato nel medesimo punto.

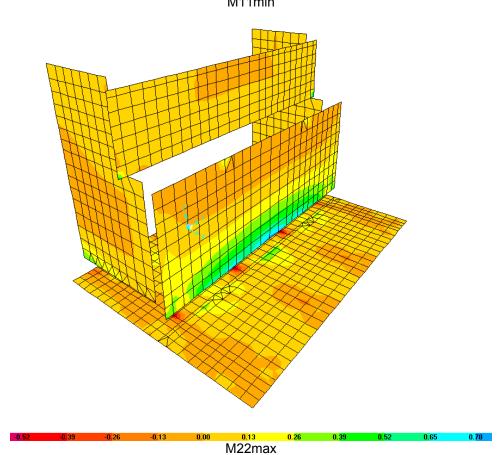
01.11	M(g3)	30.4 kN*m		M(g3)	22.5 kN*m
S.L.U	M(q3)	109.0 kN*m	CLV	M(q6.1)	21.3 kN*m
fren	Mtot	139.5 kN*m	S.L.V.	M(q6.2)	106.7 kN*m
				Mtot	150.5 kN*m

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo


Opera: Viadotto Arenella II


Relazione di calcolo Spalle – Carreggiata DX

Pagina 46 di 67

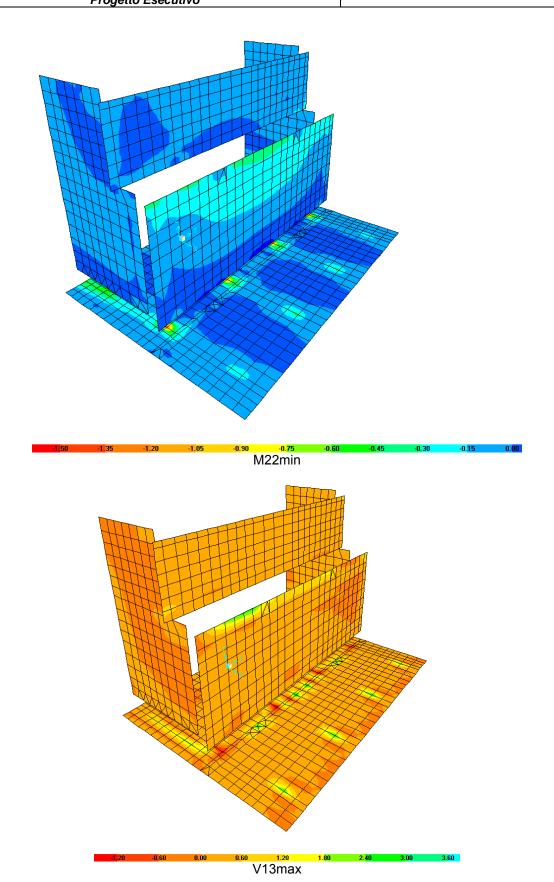
Nome file:

 $VI13\text{-}B\text{-}CL008\text{-}A.00_relazione_calcolo_Spalle_DX.doc$

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo


Opera: Viadotto Arenella II

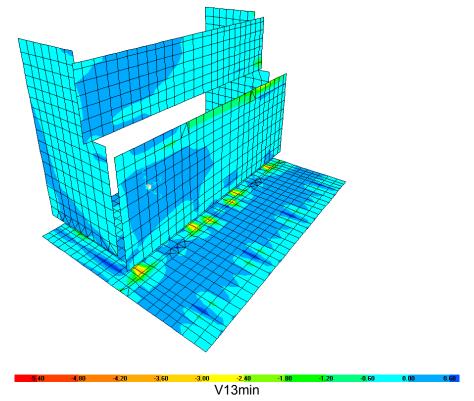
Relazione di calcolo Spalle – Carreggiata DX

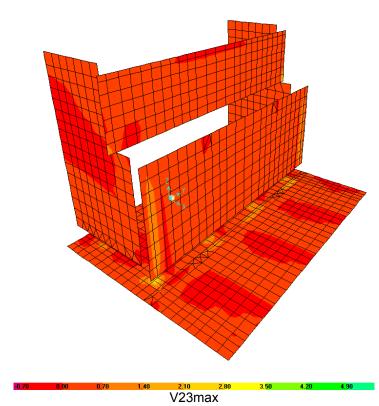
Pagina 47 di 67

Nome file:

VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001


Dal km 44+000 allo svincolo con l'A19 *Progetto Esecutivo* Opera: Viadotto Arenella II

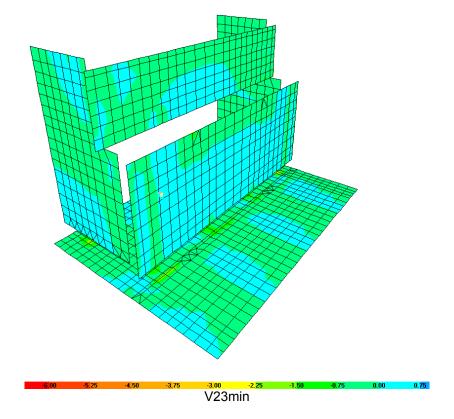

Relazione di calcolo Spalle – Carreggiata DX

Pagina 48 di 67

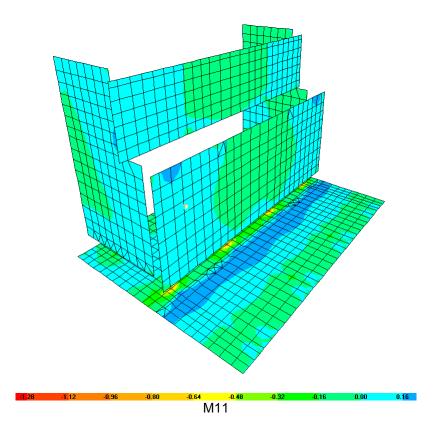
Nome file:

VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001


Dal km 44+000 allo svincolo con l'A19 **Progetto Esecutivo** Opera: Viadotto Arenella II

Relazione di calcolo Spalle – Carreggiata DX

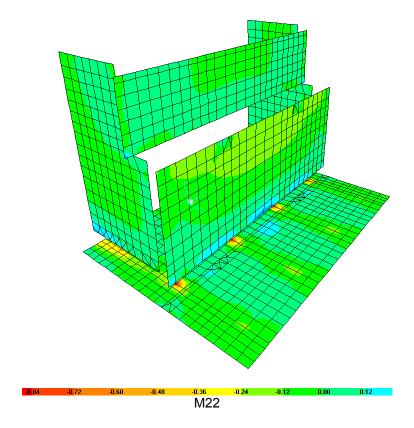

Pagina 49 di 67

Nome file:

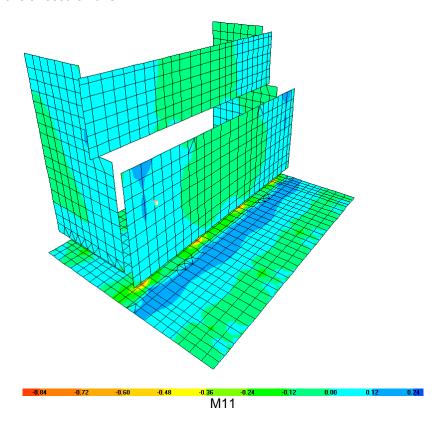
VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc

Sono ora presentate le schermate delle sollecitazioni risultanti (M11, M22) per l'inviluppo delle combinazioni relative allo stato limite di esercizio (combinazioni frequenti), necessarie per effettuare le verifiche a fessurazione.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001


Dal km 44+000 allo svincolo con l'A19 *Progetto Esecutivo* Opera: Viadotto Arenella II

Relazione di calcolo Spalle - Carreggiata DX


Pagina 50 di 67

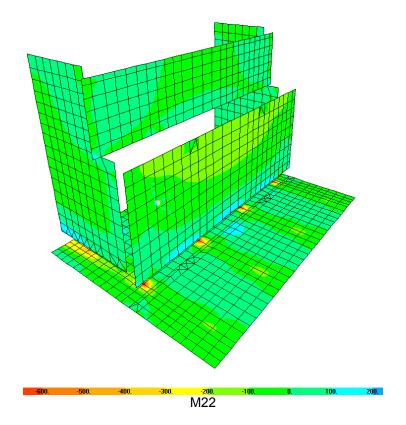
Nome file:

VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc

Infine si riportano di seguito le schermate delle sollecitazioni risultanti (M11, M22) per l'inviluppo delle combinazioni relative allo stato limite di esercizio (combinazioni quasi permanenti), necessarie anch'esse per effettuare le verifiche a fessurazione.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19 *Progetto Esecutivo*


Opera:	Viadotto	Arenella	II
--------	----------	----------	----

Relazione di calcolo Spalle - Carreggiata DX

Pagina 51 di 67

Nome file:

 $VI13\text{-}B\text{-}CL008\text{-}A.00_relazione_calcolo_Spalle_DX.doc$

6.5 ARMATURA A FLESSIONE DEGLI ELEMENTI

Sulla base delle sollecitazioni ottenute è stata disposta la seguente armatura a flessione. Nel seguito si riportano le aramture adottate:

											Fe	rri									
					A	rmatu	ra Lat	o ter	ra				Armatura Lato fuori terra								
					$A_{res,1}$					$A_{res,2}$	$A_{res,TOT}$				$A_{res,1}$					$A_{res,2}$	$A_{res,TOT}$
					[cm ²]					[cm ²]	[cm ²]				[cm ²]					[cm ²]	[cm ²]
plinto	Χ	5	Φ	22	19.0	+	0	Φ	0	0.0	19.0	5	Φ	18	12.7	+	0	Φ	0	0.0	12.7
pilito	Υ	5	Φ	22	19.0	+	0	Φ	0	0.0	19.0	5	Φ	18	12.7	+	0	Φ	0	0.0	12.7
muro	Υ	5	Φ	18	12.7	+	0	Φ	0	0.0	12.7	5	Φ	16	10.1	+	0	Φ	0	0.0	10.1
front	Z	5	Φ	18	12.7	+	0	Φ	0	0.0	12.7	5	Φ	16	10.1	+	0	Φ	0	0.0	10.1
trave	Υ	5	Φ	18	12.7	+	0	Φ	0	0.0	12.7	5	Φ	16	10.1	+	0	Φ	0	0.0	10.1
paragh	Z	5	Φ	18	12.7	+	0	Φ	0	0.0	12.7	5	Φ	16	10.1	+	0	Φ	0	0.0	10.1
muro	Χ	5	Φ	22	19.0	+	0	Φ	0	0.0	19.0	5	Φ	16	10.1	+	0	Φ	0	0.0	10.1
and inf	Z	5	Φ	22	19.0	+	0	Φ	0	0.0	19.0	5	Φ	16	10.1	+	0	Φ	0	0.0	10.1
muro	Χ	5	Φ	22	19.0	+	0	Φ	0	0.0	19.0	5	Φ	16	10.1	+	0	Φ	0	0.0	10.1
and sup	Z	5	Φ	22	19.0	+	0	Φ	0	0.0	19.0	5	Φ	16	10.1	+	0	Φ	0	0.0	10.1

Per il plinto lato terra = superiore, lato fuori terra = inferiore

6.6 VERIFICA DEGLI ELEMENTI COSTITUENTI LA SPALLA

6.6.1 S.L.U. - Resistenza: presso-flessione

Il momento ultimo viene determinato con il programma V.C.A.S.L.U.: si riporta di seguito la tabella riassuntiva dei momenti resistenti:

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19 *Progetto Esecutivo*

Opera:	Viadotto	Arenella I
--------	----------	------------

Relazione di calcolo Spalle – Carreggiata DX

Pagina 52 di 67

Nome file:

VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc

VERIFICA		PRESSOFL	
VERIEI A	Δ		

M_{Ed}^{ter}	M_Rd^{ter}		$M_{Ed}^{f.ter}$	$M_Rd^{ f.ter}$	
[kN*m]	[kN*m]		[kN*m]	[kN*m]	
1100	1124	OK	510	756	OK
880	1105	OK	160	745	OK
540	855	OK	440	677	OK
780	916	OK	300	741	OK
340	362	OK	180	288	OK
140	281	OK	80	282	OK
220	463	OK	40	248	OK
460	472	OK	130	271	OK
450	463	OK	170	248	OK
150	446	OK	50	244	OK

6.6.2 S.L.U. – Resistenza: taglio

Per quanto riguarda la platea si è ritenuto opportuno disporre un cavallotto al metro quadro per assolvere la funzione di armatura resistente a taglio, mentre sugli altri elementi sono state disposte staffe aperte (a C) a passo costante (20 cm) nelle due direzioni.

Considerando una striscia di un metro di parete, la verifica a taglio risulta soddisfatta se:

$$V_{Rd} \geq V_{Ed}$$

in cui:

 $V_{{\scriptscriptstyle Ed}}$: taglio di calcolo

 $V_{\it Rd} = \min(V_{\it Rsd}; V_{\it Rcd})$: taglio resistente

 $V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (\cot \alpha + \cot \theta) \cdot \sin \alpha$: resistenza di calcolo a taglio trazione

 $V_{\textit{Rcd}} = 0.9 \cdot d \cdot b_{\textit{w}} \cdot \alpha_{\textit{c}} \cdot f_{\textit{cd}} \cdot \frac{\left(\cot \alpha + \cot \theta\right)}{\left(1 + \cot^2 \theta\right)} \text{:} \qquad \text{resistenza di calcolo a taglio compressione}$

dove:

d: altezza utile della sezione

 b_{ω} : base equivalente della sezione

 $A_{\rm cw}$: area dell'armatura trasversale

s: interasse tra due armature trasversali consecutive

 α_c : coefficiente maggiorativo per lo sforzo assiale

 f_{cd} '= $0.5 \cdot f_{cd}$: resistenza a compressione ridotta del calcestruzzo d'anima

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19 *Progetto Esecutivo* Opera: Viadotto Arenella II

Relazione di calcolo Spalle – Carreggiata DX

Pagina 53 di 67

Nome file:

VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc

		plinto	muro fr	tr paragh	m and inf	m and sup		
Sollecitazi	oni							
V	=	1380	1660	460	400	370	kN	taglio di calcolo
N	=	0	84	0	88	0	kN	sforzo assiale di calcolo
Geometria		4000	4000	000	700	700		alkanna dalla assissa
h d'	=	1600 30	1800 30	800 30	700 30	700 30	mm mm	altezza della sezione copriferro
d	=	1570	1770	770	670	670	mm	altezza utile della sezione
b_w	=	1000	1000	1000	1000	1000	mm	base della sezione
vv								3400 40114 00210110
Materiali								
R_{ck}	=	40	30	30	30	30	MPa	resistenza caratteristica cubica
f_{ck}	=	33.20	24.90	24.90	24.90	24.90	MPa	resistenza caratteristica cilindrica
γс	=	1.50	1.50	1.50	1.50	1.50		coefficiente parziale di sicurezza
$lpha_{ t cc}$	=	0.85	0.85	0.85	0.85	0.85		coefficiente riduttivo per resistenze di lunga durata
f_{cd}	=	18.81	14.11	14.11	14.11	14.11	MPa	resistenza di calcolo a compressione
f' _{cd}	=	9.41	7.06	7.06	7.06	7.06	MPa	resistenza ridotta
γs	=	1.15	1.15	1.15	1.15	1.15		coefficiente di sicurezza acciaio
f_{yk}	=	450.0	450.0	450.0	450.0	450.0	MPa	tensione caratteristica di snervamento acciaio
f_{yd}	=	391.3	391.3	391.3	391.3	391.3	MPa	tensione di snervamento di calcolo dell'acciaio
Verifica pe	r elem	nenti provi	visti di arr	matura a				
taglio	. 0.0	iona provi		nata a				
$\varnothing_{\sf w}$	=	26	12	12	12	12	mm	diametro dell'armatura a taglio
α	=	90	90	90	90	90	0	inclinazione dell'armatura trasversale
S	=	1'000	200	400	400	400	mm	passo staffe in direzione longitudinale
n_{br}	=	2.0	5.0	2.5	2.5	2.5	•	numero bracci
A_sw	=	1'061.86	565.49	282.74	282.74	282.74	mm ²	area resistente dell'armatura a taglio
ctg9	=	2.50	2.50	2.50	2.50	2.50		inclinazione delle bielle di calcestruzzo
$\sigma_{\sf cp}$	=	0.000	0.047	0.000	0.125	0.000	MPa	tensione media calcestruzzo
$\sigma_{\sf cp,ad}$	=	0.000	0.047	0.000	0.125	0.000	MPa	tensione media di compressione adottata (<=0.2fcd)
$lpha_{ extsf{c}}$	=	1.00	1.00	1.00	1.01	1.00		
V_{Rsd}	=	1467.79	4406.19	479.20	416.97	416.97	kN	resistenza taglio trazione
V_{Rcd}	=	9494.0	8054.1	3492.2	3065.6	3038.7	kN	resistenza taglio compressione
V_{Rd}	=	1467.8	4406.2	479.2	417.0	417.0	kN	resistenza a taglio
FS	=	1.06	2.65	1.04	1.04	1.13		

Si considera agente come sforzo assiale sul muro frontale il peso della trave paraghiaia e sul muro andatore inferiore il peso della porzione di muro andatore sovrastante.

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19 *Progetto Esecutivo* Opera: Viadotto Arenella II

Relazione di calcolo Spalle - Carreggiata DX

Pagina 54 di 67

Nome file:

VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc

6.6.3 S.L.E. – Fessurazione

Le verifiche di fessurazione vengono condotte in relazione alle indicazioni riportate negli Eurocodici (in particolare si veda EN 1992-1-1 cap. 7.3) e riprese sia dalle NTC (cap. 4.1.2.2.4) che dalla Circolare n.617. È richiesto in particolare, laddove il momento agente superi quello di fessurazione, di verificare che la tensione nelle barre di armatura rientri in determinati limiti (dipendenti dal diametro e dalla spaziatura dei ferri) o in alternativa di controllare che l'ampiezza della fessura che si apre non superi un determinato valore (funzione dello stato limite, delle condizioni ambientali e del tipo di armatura).

Si riportano di seguito le tabelle per le combinazioni considerate (frequente e quasi permanente), ricordando che si opera con armature poco sensibili ed in condizioni ambientali aggressive.

condizioni ambienta	li	ordinarie		aggressive	
armature		poco sensibili	poco sensibili		

Combinazione					frec	quente					
			pli	into			muro fr	ontale			
Sezione			Χ	,	Υ		Υ		Z		
		sup	inf	sup	inf	terra	fuori terra	terra	fuori terra		
Materiali											
Rck	=	40	40	40	40	30	30	30	30	MPa	resist caratteristica cubica
f_{ck}	=	33.20	33.20	33.20	33.20	24.90	24.90	24.90	24.90	MPa	resist caratteristica cilindrica
f _{cm}	=	27.56	27.56	27.56	27.56	32.90	32.90	32.90	32.90	MPa	resist cilindrica media
f_{ctm}	=	41.20	41.20	41.20	41.20	2.56	2.56	2.56	2.56	MPa	resist media a trazione semplice
f _{cfm}	=	4.03	4.03	4.03	4.03	3.07	3.07	3.07	3.07	MPa	resist media a trazione per flessione
σ_{t}	=	34.33	34.33	34.33	34.33	2.13	2.13	2.13	2.13	MPa	tensione limite di apertura delle fessure
n	=	15	15	15	15	15	15	15	15		coeff di omogeneizz armature (compr)
n'	=	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001		coeff di omogeneizz armature (tens)
Geometria											
В	=	1000	1000	1000	1000	1000	1000	1000	1000	mm	base sezione
Н	=	1600	1600	1600	1600	1800	1800	1800	1800	mm	altezza sezione
Armatura											
n _{1a}	=	5	5	5	5	5	5	5	5		n° tondini zona tesa
n _{1b}	=	0	0	0	0	0	0	0	0		
Ø _{1a}	=	22	18	22	18	18	16	18	16	mm	diametro tondini armatura tesa
Ø _{1b}	=	0	0	0	0	0	0	0	0	mm	diametro tondini armatura tesa
Ø _{1eq}	=	22	18	22	18	18	16	18	16	mm	diametro equiv tondini armatura tesa
d' _{sup}	=	35	35	57	53	35	35	53	51	mm	copriferro superiore
d ₁	=	1565	1565	1543	1547	1765	1765	1747	1749	mm	dist armatura tesa da lembo compr
A_{s1}	=	1901	1272	1901	1272	1272	1005	1272	1005	mm^2	area armatura tesa
n _{2a}	=	5	5	5	5	5	5	5	5		n° tondini zona compressa
n _{2b}	=	0	0	0	0	0	0	0	0		
\emptyset_{2a}	=	18	22	18	22	16	18	16	18	mm	diametro tondini armatura compressa
\emptyset_{2b}	=	0	0	0	0	0	0	0	0	mm	diametro tondini armatura compressa
\emptyset_{2eq}	=	18	22	18	22	16	18	16	18	mm	diametro equiv tondini armatura compr
d' _{inf}	=	35	35	53	57	35	35	51	53	mm	copriferro inferiore
d_2	=	35	35	53	57	35	35	51	53	mm	dist armatura compr da lembo compr
A_{s2}	=	1272	1901	1272	1901	1005	1272	1005	1272	mm ²	area armatura compressa
Sollecitazioni											
М	=	540	270	480	180	170	130	250	210	kN*m	momento flettente
N	=	0	0	0	0	0	0	84	84	kN	sforzo normale
е	=	0	0	0	0	0	0	2976	2500	mm	eccentricità

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19

Calcolo dell'apertura delle fessure

С

Progetto Esecutivo

Opera: Viadotto Arenella II

Relazione di calcolo Spalle – Carreggiata DX

Pagina 55 di 67

Nome file:

VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc

mm ricoprimento armatura

A, a 6100000 1600000 1600000 1600000 1600000 1600000 1600000 1600000 1600000 1600000 160000 160000 160000 160000 160000 160000 160000 160000 160000 16000			1600000	1600000	1600000	1600000	1900000	1900000	1900000	1900000	mm^2	area calcestruzzo
A												
Part												·
Contact Con												
Carateristics Carateristi												00 0
A	$Y_{\text{nocc,s}}$	=	1083	1077	1082	1076	1211	1209	1210	1208	mm	dist p.to di nocciolo sup da asse baric
A	Carattariations	00710	na intarar	monto room	ionto o ton	ciono						
A				_			1900	1800	1800	1800	mm ²	area calcoetruzzo
A _{ct}												
											_	
Paralle Par												•
Parzializ Par												
Sezione Parzializ Parzi												
	Y _{nocc,i}	=	1529	1490	1497	1400	17 14	1093	1000	1059	111111	dist p.to di fiocciolo ini da asse banc
Y _n = 257 295 256 270 230 202 300 281 mm	Sezione		parzializ	parzializ	parzializ	parzializ	parzializ	parzializ	parzializ	parzializ		
Y _n = 257 295 256 270 230 202 300 281 mm												
Y _n = 257 305 256 207 230 202 300 281 mm distanza asse neutro da lembo compridação J _n = 5.5E+10 3.9E+10 5.4E+10 5.0E+10 5.0E+10 7.0E+10 7.0E+10 mm distanza asse neutro da lembo compridaçãa S, a = 5.5E+10 2.3E+05 2.2E+05 2.1E+05 92E-05 2.1E+07 2.2E+05 1.5E+05 7.0E mm distanza asse neutro da lembo compridaçãa (f(Y _n)=0) = 2 2.51 4.1-05 2.3E-05 2.2E-05 2.1E-05 92E-05 2.1E-05 2.EE-05 1.5E-05 7.5E-05 7.5E-05 <t< td=""><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		_										
			•		050	007	000	000	000	001		attata a sa a sa a sa a sa a sa a sa a
No control of the second se												·
Tensioni ne $Tensioni ne Tensioni ne Ten$		=										•
Tensioni nel material		=									mm	momento statico sezione parzializzata
σ _c = -2.51 -1.42 -2.29 -0.98 -0.79 -0.65 -1.50 -1.44 MPa max tens di compr nel cis (sez fess) σ _s = 191.3 141.2 172.9 95.6 78.9 76.0 108.8 113.1 MPa tens dell'armat tesa (sez fess) Controllo della fessurazione M _{flossa} = 15930 15757 15864 15698 1214 1209 1238 1233 kNm momento di fessurazione check1 Verifica a fessurazione surzi unitational di minima di maxima della surzi unitational di minima di maxima della surzi unitational di minima delle barre di armatura tesa li minima di minima delle barre inferiori spa. = -2.51 -2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50	$f(Y_n)=0$	=	-	-	-	-	-	-	5.3E-05	1.5E-05		
Control della Essurazione Milesia September	Tensioni nei ma	ateria	ıli									
Controllo della Surazione	σ.	=	-2.51	-1.42	-2.29	-0.98	-0.79	-0.65	-1.50	-1.44	MPa	max tens di compr nel cls (sez fess)
Controllo della Essurazione			191.3	141.2					108.8	113.1	MPa	
Missas	O _S											,
Verifica a fessurazione senza il calcolo diretto	Controllo della	fessi	urazione									
Verifica a fessurazione senza il calcolo diretto Wmax	M_{fess}	=	15930	15757	15864	15698	1214	1209	1238	1233	kNm	momento di fessurazione
W _{max} = 0.40 0.40 0.40 0.40 0.40 0.40 0.40 mm crack limit width ε*s = 40 40 40 40 40 40 40 mm crack limit width **s* = 40 40 40 40 40 40 mm mm crack limit width **** = 40 40 40 40 40 40 mm mm rack limit width **** = 40 40 40 40 40 mm mm mm 16 16 16 16 16 16 16 mm	M _{fess} / M	=	29.50	58.36	33.05	87.21	7.14	9.30	4.95	5.87		check1
W _{max} = 0.40 0.40 0.40 0.40 0.40 0.40 0.40 mm crack limit width ε*s = 40 40 40 40 40 40 40 mm crack limit width **s* = 40 40 40 40 40 40 mm mm crack limit width **** = 40 40 40 40 40 40 mm mm rack limit width **** = 40 40 40 40 40 mm mm mm 16 16 16 16 16 16 16 mm												
F*s	Verifica a fessu	urazio										
32 32 32 32 32 32 32 32		=	0.40	0.40		0.40			0.40			crack limit width
20 20 20 20 20 20 20 20	F*s	=		40		40						
a = 300 300 300 300 300 300 300 300 300 3				32		32						
$a = \begin{bmatrix} 12 & 12 & 12 & 12 & 12 & 12 & 12 & 12$			20	20	20	20	20	20	20	20	mm	
$a = \begin{bmatrix} 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10$												
$ a = \begin{array}{ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	а	=										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
σ^*_{s1} = MPa lim di tens nell'acc (diam dei ferri) sp _s = 186 186 177 179 186 186 179 180 mm spaziatura delle barre superiori sp _i = 186 186 179 177 186 186 180 179 mm spaziatura delle barre inferiori sp = mm spaziatura massima delle barre σ^*_{s2} = MPa lim di tens nell'acc (spaziatura dei ferri) $\sigma_{s,lim}$ = MPa limite di tensione max nell'acciaio	~							100				diam may dalla harra di armatura t
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								-				
sp_i = 186 186 179 177 186 186 180 179 mm spaziatura delle barre inferiori sp = mm spaziatura massima delle barre σ^*_{s2} = MPa lim di tens nell'acc (spaziatura dei ferri) $\sigma_{s,lim}$ = MPa limite di tensione max nell'acciaio												,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		=										·
σ^*_{s2} = MPa lim di tens nell'acc (spaziatura dei ferri) $\sigma_{s,lim}$ = MPa limite di tensione max nell'acciaio			LOD	100	179	177	100					•
$\sigma_{\text{s,lim}}$ = MPa limite di tensione max nell'acciaio			100									enaziatura macaima dalla harra
S _{S,lim}	sp	=	-	-	-	-	-	-	-			•
$\sigma_{\rm s,lim}/\sigma_{\rm s}$ = Check2	sp σ* _{s2}	=	-	-	-	-	-	-	-	-	MPa	lim di tens nell'acc (spaziatura dei ferri)
	$\begin{array}{c} \text{sp} \\ \sigma*_{\text{s2}} \\ \sigma_{\text{s,lim}} \end{array}$	=	- - -	-	-	-	-	-	-	-	MPa	lim di tens nell'acc (spaziatura dei ferri) limite di tensione max nell'acciaio

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Arenella II

Relazione di calcolo Spalle – Carreggiata DX

Pagina 56 di 67

Nome file:

VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc

$h_{ct,eff}$	=	-	-	-	-	-	-	-	-	mm	altezza dell'area di cls teso attorno all'armatura compi
h _{cb,eff}	=	-	-	-	-	-	-	-	-	mm	altezza dell'area di cls teso attorno all'armatura tesa
$A_{cb,eff}$	=	-	-	-	-	-	-	-	-	mm^2	effective tension area
ρ _{eff}	=	-	-	-	-	-	-	-	-		rapporto A _s /A _{c,eff}
k_t	=	-	-	-	-	-	-	-	-		fattore che tiene conto della durata di applicazione de
Es	=	210000	210000	210000	210000	210000	210000	210000	210000	MPa	modulo di elasticità dell'acciaio
d*	=	-	-	-	-	-	-	-	-	mm	
\mathbf{k}_1	=	-	-	-	-	-	-	-	-		coeff che tiene conto delle proprietà di aderenza dell'a
ε ₂	=	-	-	-	-	-	-	-	-		massima deformazione di trazione all'estremità della
ε ₁	=	-	-	-	-	-	-	-	-		minima deformazione di trazione all'estremità della se
k_2	=	-	-	-	-	-	-	-	-		coeff che tiene conto della distribuzione delle deforma
k ₃	=	-	-	-	-	-	-	-	-		
k ₄	=	-	-	-	-	-	-	-	-		
Δ_{smax1}	=	-	-	-	-	-	-	-	-	mm	limite superiore per il calcolo della distanza massima
Δ_{smax2}	=	-	-	-	-	-	-	-	-	mm	limite superiore per il calcolo della distanza massima
$\Delta_{\rm sm}$	=	-	-	-	-	-	-	-	-	mm	distanza massima tra le fessure
ε _{sm} -ε _{cm}	=	-	-	-	-	-	-	-	-		differenza tra la deformazione media nell'armatura tes
W _k	=	-	-	-	-	-	-	-	-	mm	ampiezza delle fessure (valore caratteristico)
w _d	=	-	-	-	-	-	-	-	-	mm	ampiezza delle fessure (valore di calcolo)
J		OK		check3							

muro andatore

Combinazione frequente

trave paraghiaia

Sezione			Y		Z		X		Z		
		terra	fuori terra								
Materiali											
Rck	=	30	30	30	30	30	30	30	30	MPa	resist caratteristica cubica
f _{ck}	=	24.90	24.90	24.90	24.90	24.90	24.90	24.90	24.90	MPa	resist caratteristica cilindrica
f _{cm}	=	32.90	32.90	32.90	32.90	32.90	32.90	32.90	32.90	MPa	resist cilindrica media
f _{ctm}	=	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	MPa	resist media a trazione semplice
f _{cfm}	=	3.07	3.07	3.07	3.07	3.07	3.07	3.07	3.07	MPa	resist media a trazione per flessione
σ_{t}	=	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	MPa	tensione limite di apertura delle fessure
n	=	15	15	15	15	15	15	15	15		coeff di omogeneizz armature (compr)
n'	=	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001		coeff di omogeneizz armature (tens)
Geometria											
В	=	1000	1000	1000	1000	1000	1000	1000	1000	mm	base sezione
Н	=	800	800	800	800	700	700	700	700	mm	altezza sezione
Armatura											
n _{1a}	=	5	5	5	5	5	5	5	5		n° tondini zona tesa
n _{1b}	=	0	0	0	0	0	0	0	0		
Ø _{1a}	=	18	16	18	16	22	16	22	16	mm	diametro tondini armatura tesa
Ø _{1b}	=	0	0	0	0	0	0	0	0	mm	diametro tondini armatura tesa
Ø _{1eq}	=	18	16	18	16	22	16	22	16	mm	diametro equiv tondini armatura tesa
d' _{sup}	=	35	35	53	51	35	35	57	51	mm	copriferro superiore
d₁	=	765	765	747	749	665	665	643	649	mm	dist armatura tesa da lembo compr
A _{s1}	=	1272	1005	1272	1005	1901	1005	1901	1005	mm^2	area armatura tesa
n _{2a}	=	5	5	5	5	5	5	5	5		n° tondini zona compressa
n _{2b}	=	0	0	0	0	0	0	0	0		
\emptyset_{2a}	=	16	18	16	18	16	22	16	22	mm	diametro tondini armatura compressa
\emptyset_{2b}	=	0	0	0	0	0	0	0	0	mm	diametro tondini armatura compressa
\emptyset_{2eq}	=	16	18	16	18	16	22	16	22	mm	diametro equiv tondini armatura compr
d' _{inf}	=	35	35	51	53	35	35	51	57	mm	copriferro inferiore

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M.

5.11.2001 Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Arenella II

Relazione di calcolo Spalle – Carreggiata DX

Pagina 57 di 67

Nome file:

VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc

			, , og .	CITO EGO.	<u> </u>						
d_2	=	35	35	51	53	35	35	51	57	mm	dist armatura compr da lembo compr
A _{s2}	=	1005	1272	1005	1272	1005	1901	1005	1901	mm ²	area armatura compressa
7.52											·
Sollecitazio	ni										
М	=	120	20	70	60	100	10	170	40	kN*m	momento flettente
N	=	0	0	0	0	0	0	88	88	kN	sforzo normale
е	=	0	0	0	0	0	0	1943	457	mm	eccentricità
Caratteristic	he s	sezione int	eramente r	eagente a	compressi	nne					
A _{cls}	=	800000	800000	800000	800000	700000	700000	700000	700000	mm^2	area calcestruzzo
A _{cls}	=	2278	2278	2278	2278	2906	2906	2906	2906	mm ²	area armatura
A _{id}	=	8.3E+05	8.3E+05	8.3E+05	8.3E+05	7.4E+05	7.4E+05	7.4E+05	7.4E+05	mm^2	area sezione ideale
d_G	=	402	398	402	398	356	344	355	345	mm	dist baric sezione ideale da lembo sup
J_{id}	=	4.7E+10	4.7E+10	4.7E+10	4.7E+10	3.3E+10	3.3E+10	3.2E+10	3.2E+10	mm^4	momento d'inerzia baric sez ideale
$\rho_{\text{id},t}$	=	238	238	237	237	210	210	209	209	mm	raggio giratore di inerzia della sezione
$Y_{nocc,s}$	=	543	540	541	539	480	473	478	471	mm	dist p.to di nocciolo sup da asse baric
•											
Caratteristic		sezione into 800	eramente r 800	eagente a 1 800	tensione 800	700	700	700	700	mm²	area calcestruzzo
A _{cls,t}	=	2278	2278	2278	2278	2906	2906	2906	2906	mm ²	area armatura
A _s A _{id.t}	=	3.5E+04	3.5E+04	3.5E+04	3.5E+04	4.4E+04	4.4E+04	4.4E+04	4.4E+04	mm ²	area sezione ideale
d _{G,t}	=	442	358	439	361	446	254	437	263	mm	dist baric sez ideale da lembo sup
$J_{id,t}$	=	4.5E+09	4.5E+09	4.1E+09	4.1E+09	3.9E+09	3.9E+09	3.5E+09	3.5E+09	mm ⁴	momento d'inerzia baric sez ideale
$\rho_{id,t}$	=	360	360	343	343	299	299	281	281	mm	raggio giratore di inerzia della sezione
Y _{nocc,i}	=	735	720	708	688	646	605	617	563	mm	dist p.to di nocciolo inf da asse baric
Sezione		parzializ	parzializ	parzializ	parzializ	parzializ	parzializ	parzializ	parzializ		
Caratteristic	che s	sezione pa	rzializzata								
Y_n	=	143	126	143	126	159	111	179	216	mm	distanza asse neutro da lembo compr
J_n	=	8.5E+09	7.0E+09	8.1E+09	6.6E+09	8.9E+09	5.2E+09	8.3E+09	6.9E+09	mm ⁴	momento d'inerzia sezione parzializzata
S_n	=	9.6E-04	3.8E-08	6.5E-09	1.5E-05	5.1E-08	0.0E+00	4.7E+06	2.1E+07	mm ³	momento statico sezione parzializzata
$f(Y_n)=0$	=	-	-	-	-	-	-	-2.4E-05	2.9E-06		
Tensioni ne	i ma	toriali									
σ_{c}	=	-2.01	-0.36	-1.24	-1.15	-1.79	-0.21	-3.66	-1.25	MPa	max tens di compr nel cls (sez fess)
$\sigma_{\rm s}$	=	131.2	27.5	78.7	84.6	85.6	15.8	142.7	37.5	MPa	tens dell'armat tesa (sez fess)
~5											
Controllo de	ella f										
M_{fess}	=	253	251	250	248	204	197	211	205	kNm	momento di fessurazione
M _{fess} / M	=	2.11	12.53	3.58	4.14	2.04	19.71	1.24	5.12		check1
Verifica a fe	eeur	razione ser	nza il calco	lo diretto							
W _{max}	= =	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	mm	crack limit width
wwmax F*s	=	40	40	40	40	40	40	40	40	mm	
. 3		32	32	32	32	32	32	32	32	mm	
		20	20	20	20	20	20	20	20	mm	
		16	16	16	16	16	16	16	16	mm	
		12	12	12	12	12	12	12	12	mm	
		10	10	10	10	10	10	10	10	mm	
а	=	300	300	300	300	300	300	300	300	mm	
		300	300	300	300	300	300	300	300	mm	
		250	250	250	250	250	250	250	250	mm mm	
		200 150	200 150	200 150	200 150	200 150	200 150	200 150	200 150	mm	
		100	150 100	150 100	100	150 100	150 100	150 100	100	mm	
\emptyset_{max}	=	-	-	-	-	-	-	-	-	mm	diam max delle barre di armatura tesa
σ* _{s1}	=	-	-	-	-	-	-	-	-	MPa	lim di tens nell'acc (diam dei ferri)
٠.											

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19 *Progetto Esecutivo* Opera: Viadotto Arenella II

Relazione di calcolo Spalle – Carreggiata DX

Pagina 58 di 67

Nome file:

VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc

sp _s =	186	186	179	180	186	186	177	180	mm	spaziatura delle barre superiori
sp _i =	186	186	180	179	186	186	180	177	mm	spaziatura delle barre inferiori
sp =	-	-	-	-	-	-	-	-	mm	spaziatura massima delle barre
σ* _{s2} =	-	-	-	-	-	-	-	-	MPa	lim di tens nell'acc (spaziatura dei ferri)
$\sigma_{s,lim}$ =	-	-	-	-	-	-	-	-	MPa	limite di tensione max nell'acciaio
$\sigma_{s,lim} / \sigma_s = $	-	-	-	-	-	-	-	-		check2
ilcolo dell'aper	rtura delle	fessure								
c =	-	-	-	-	-	-	-	-	mm	ricoprimento armatura
h _{ct,eff} =	-	-	-	-	-	-	-	-	mm	altezza dell'area di cls teso attorno all'armatura compres
h _{cb,eff} =	-	-	-	-	-	-	-	-	mm	altezza dell'area di cls teso attorno all'armatura tesa
A _{cb,eff} =	-	-	-	-	-	-	-	-	mm^2	effective tension area
ρ _{eff} =	-	-	-	-	-	-	-	-		rapporto A _s /A _{c,eff}
k _t =	-	-	-	-	-	-	-	-		fattore che tiene conto della durata di applicazione dei ca
E _s =	210000	210000	210000	210000	210000	210000	210000	210000	MPa	modulo di elasticità dell'acciaio
d* =	-	-	-	-	-	-	-	-	mm	
k ₁ =	-	-	-	-	-	-	-	-		coeff che tiene conto delle proprietà di aderenza dell'arm
ε ₂ =	-	-	-	-	-	-	-	-		massima deformazione di trazione all'estremità della sez
ε ₁ =	-	-	-	-	-	-	-	-		minima deformazione di trazione all'estremità della sezio
k ₂ =	-	-	-	-	-	-	-	-		coeff che tiene conto della distribuzione delle deformazio
k ₃ =	-	-	-	-	-	-	-	-		
k ₄ =	-	-	-	-	-	-	-	-		
Δ_{smax1} =	-	-	-	-	-	-	-	-	mm	limite superiore per il calcolo della distanza massima tra
Δ_{smax2} =	-	-	-	-	-	-	-	-	mm	limite superiore per il calcolo della distanza massima tra
Δ_{sm} =	-	-	-	-	-	-	-	-	mm	distanza massima tra le fessure
ε_{sm} - ε_{cm} =	-	-	-	-	-	-	-	-		differenza tra la deformazione media nell'armatura tesa e
w _k =	-	-	-	-	-	-	-	-	mm	ampiezza delle fessure (valore caratteristico)
w _d =		-	-	-	-	-	-	-	mm	ampiezza delle fessure (valore di calcolo)
	OK	OK	OK	OK	OK	OK	OK	OK		check3
==	- - OK	- - OK	- - OK	- - OK	- - OK	- - OK				ampiezza delle fessure (valore di calc

Combinazione quasi permanente

			plii	nto			muro fr	ontale			
Sezione)	X		Υ		Υ		Z		
		sup	inf	sup	inf	terra	fuori terra	terra	fuori terra		
Materiali											
Rck	=	40	40	40	40	30	30	30	30	MPa	resist caratteristica cubica
f_{ck}	=	33.20	33.20	33.20	33.20	24.90	24.90	24.90	24.90	MPa	resist caratteristica cilindrica
f_{cm}	=	27.56	27.56	27.56	27.56	32.90	32.90	32.90	32.90	MPa	resist cilindrica media
f_{ctm}	=	41.20	41.20	41.20	41.20	2.56	2.56	2.56	2.56	MPa	resist media a trazione semplice
f_{cfm}	=	4.03	4.03	4.03	4.03	3.07	3.07	3.07	3.07	MPa	resist media a trazione per flessione
σ_{t}	=	34.33	34.33	34.33	34.33	2.13	2.13	2.13	2.13	MPa	tensione limite di apertura delle fessure
n	=	15	15	15	15	15	15	15	15		coeff di omogeneizz armature (compr)
n'	=	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001		coeff di omogeneizz armature (tens)
Geometria											
В	=	1000	1000	1000	1000	1000	1000	1000	1000	mm	base sezione
Н	=	1600	1600	1600	1600	1800	1800	1800	1800	mm	altezza sezione
Armatura											
n _{1a}	=	5	5	5	5	5	5	5	5		n° tondini zona tesa
n _{1b}	=	0	0	0	0	0	0	0	0		
Ø _{1a}	=	22	18	22	18	18	16	18	16	mm	diametro tondini armatura tesa
Ø _{1b}	=	0	0	0	0	0	0	0	0	mm	diametro tondini armatura tesa
Ø _{1eq}	=	22	18	22	18	18	16	18	16	mm	diametro equiv tondini armatura tesa

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19 *Progetto Esecutivo* Opera: Viadotto Arenella II

Relazione di calcolo Spalle – Carreggiata DX

Pagina 59 di 67

Nome file:

VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc

			Prog	etto Ese	cutivo						
الم	_	35	35	57	53	35	35	53	51	mm	copriferro superiore
d' _{sup}	=	35 1565	1565	1543	55 1547	1765	35 1765	55 1747	1749	mm	dist armatura tesa da lembo compr
d₁	=	1901	1272	1901	1272	1272	1005	1272	1005	mm ²	area armatura tesa
A_{s1}	=	5	5	5	5	5	5	5		111111	
n _{2a}	=								5		n° tondini zona compressa
n _{2b}	=	0	0	0	0	0	0	0	0		
\emptyset_{2a}	=	18	22	18	22	16	18	16	18	mm	diametro tondini armatura compressa
\emptyset_{2b}	=	0	0	0	0	0	0	0	0	mm	diametro tondini armatura compressa
\emptyset_{2eq}	=	18	22	18	22	16	18	16	18	mm	diametro equiv tondini armatura compr
d' _{inf}	=	35	35	53	57	35	35	51	53	mm	copriferro inferiore
d_2	=	35	35	53	57	35	35	51	53	mm	dist armatura compr da lembo compr
A_{s2}	=	1272	1901	1272	1901	1005	1272	1005	1272	mm ²	area armatura compressa
Sollecitazio	oni										
М	=	400	210	400	140	130	100	190	170	kN*m	momento flettente
N	=	0	0	0	0	0	0	84	84	kN	sforzo normale
е	=	0	0	0	0	0	0	2262	2024	mm	eccentricità
Caratteristi	iche s	ezione int	eramente r	eagente a	compress	ione					
A _{cls}			1600000	-	•		1800000	1800000	1800000	mm^2	area calcestruzzo
A _s	=	3173	3173	3173	3173	2278	2278	2278	2278	mm^2	area armatura
A _s	=	1.6E+06	1.6E+06	1.6E+06	1.6E+06	1.8E+06	1.8E+06	1.8E+06	1.8E+06	mm ²	area sezione ideale
	=	804	796	804	796	902	898	902	898	mm	dist baric sezione ideale da lembo sup
d _G	_	3.7E+11	3.7E+11	3.7E+11	3.7E+11	5.1E+11	5.1E+11	5.1E+11	5.1E+11	mm ⁴	momento d'inerzia baric sez ideale
J_{id}		473	473	472	472	528	528	528	528	mm	raggio giratore di inerzia della sezione
$\rho_{id,t}$	=	1083	1077	1082	1076	1211	1209	1210	1208	mm	dist p.to di nocciolo sup da asse baric
$Y_{\text{nocc,s}}$	=	1003	1077	1002	1070	1211	1209	1210	1200	111111	dist p.to di nocciolo sup da asse banc
Caratteristi	iche s		eramente r	_							
$A_{cls,t}$	=	1600	1600	1600	1600	1800	1800	1800	1800	mm ²	area calcestruzzo
A_s	=	3173	3173	3173	3173	2278	2278	2278	2278	mm ²	area armatura
$A_{id,t}$	=	4.9E+04	4.9E+04	4.9E+04	4.9E+04	3.6E+04	3.6E+04	3.6E+04	3.6E+04	mm^2	area sezione ideale
$d_{G,t}$	=	947	653	941	659	996	804	993	807	mm	dist baric sez ideale da lembo sup
$J_{id,t}$	=	2.7E+10	2.7E+10	2.6E+10	2.6E+10	2.6E+10	2.6E+10	2.5E+10	2.5E+10	mm ⁴	momento d'inerzia baric sez ideale
$\rho_{id,t}$	=	743	743	724	724	846	846	829	829	mm	raggio giratore di inerzia della sezione
$Y_{nocc,i}$	=	1529	1498	1497	1453	1714	1693	1686	1659	mm	dist p.to di nocciolo inf da asse baric
Sezione		parzializ	parzializ	parzializ	parzializ	parzializ	parzializ	parzializ	parzializ		
6											
Caratteristi	iche s =	sezione pa 257	rzializzata 205	256	207	230	202	327	305	mm	distanza asse neutro da lembo compr
Y _n	=	5.5E+10	3.9E+10	5.4E+10	3.8E+10	5.0E+10	4.0E+10	5.1E+10	4.2E+10	mm ⁴	momento d'inerzia sezione parzializzat
J _n		4.1E-05	2.3E-05	4.3E-05	2.2E-05	2.1E-05	9.2E-05	3.0E+07	2.9E+07	mm ³	momento statico sezione parzializzata
S_n $f(Y_n)=0$	=	4.1E-05 -	2.3E-03	4.3E-05 -	-	2.1E-05 -	9.2E-05	-2.3E-05	7.6E-06	111111	momento statico sezione parzializzala
Tensioni ne		teriali -1.86	-1.11	-1.91	-0.76	-0.60	-0.50	-1.21	-1.23	MPa	max tens di compr nel cls (sez fess)
σ_{c} σ_{s}	=	-1.86 141.7	109.8	-1.91 144.0	-0.76 74.3	-0.60 60.4	-0.50 58.4	79.0	-1.23 87.5	MPa	tens dell'armat tesa (sez fess)
	ا مالد د										
Controllo d	iella f	essurazioi 15930	ne 15757	15864	15698	1214	1209	1238	1233	kNm	momento di fessurazione
M _{fess}		39.83	75.03	39.66	112.13	9.34	12.09	6.51	7.25	IN WILL	check1
M _{fess} / M	=	39.03	75.05	39.00	112.13	9.54	12.09	0.51	7.23		CHECKI
Verifica a fe	essur	azione sei	nza il calco	lo diretto							
\mathbf{W}_{max}	=	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	mm	crack limit width
F*s	=	32	32	32	32	32	32	32	32	mm	
		26	26	26	26	26	26	26	26	mm	
		16	16	16	16	16	16	16	16	mm	
		12	12	12	12	12	12	12	12	mm	
		10	10	10	10	10	10	10	10	mm	
				-	· -	-					

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19 *Progetto Esecutivo* TCIazione di calco

Relazione di calcolo Spalle – Carreggiata DX

Opera: Viadotto Arenella II

Pagina 60 di 67

Nome file:

VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc

		8	8	8	8	8	8	8	8	mm	
а	=	300	300	300	300	300	300	300	300	mm	
		250	250	250	250	250	250	250	250	mm	
		200	200	200	200	200	200	200	200	mm	
		15	15	15	15	15	15	15	15	mm	
		100	100	100	100	100	100	100	100	mm	
		50	50	50	50	50	50	50	50	mm	
$Ø_{max}$	=	-	-	-	-	-	-	-	-	mm	diam max delle barre di armatura tesa
σ* _{s1}	=	-	-	-	-	-	-	-	-	MPa	lim di tens nell'acc (diam dei ferri)
sp_s	=	186	186	177	179	186	186	179	180	mm	spaziatura delle barre superiori
sp_i	=	186	186	179	177	186	186	180	179	mm	spaziatura delle barre inferiori
sp	=	-	-	-	-	-	-	-	-	mm	spaziatura massima delle barre
σ* _{s2}	=	-	-	-	-	-	-	-	-	MPa	lim di tens nell'acc (spaziatura dei ferri)
$\sigma_{\text{s,lim}}$	=_	-	-	-		-	-	-	-	MPa	limite di tensione max nell'acciaio
$\sigma_{\text{s,lim}} / \sigma_{\text{s}}$	=	-	-	-	-	-	-	-	-		check2
Calcolo dell	-	ura delle	fessure								
С	=	-	-	-	-	-	-	-	-	mm	ricoprimento armatura
$h_{\text{ct,eff}}$	=	-	-	-	-	-	-	-	-	mm	altezza dell'area di cls teso attorno all'armatura compress
$h_{cb,eff}$	=	-	-	-	-	-	-	-	-	mm	altezza dell'area di cls teso attorno all'armatura tesa
$A_{cb,eff}$	=	-	-	-	-	-	-	-	-	mm ²	effective tension area
ρ_{eff}	=	-	-	-	-	-	-	-	-		rapporto A _s /A _{c,eff}
\mathbf{k}_{t}	=	-	-	-	-	-	-	-	-		fattore che tiene conto della durata di applicazione dei ca
E_s	=	210000	210000	210000	210000	210000	210000	210000	210000	MPa	modulo di elasticità dell'acciaio
d*	=	-	-	-	-	-	-	-	-	mm	
d* k ₁	=	-	-	-	-	-	-	-	-	mm	coeff che tiene conto delle proprietà di aderenza dell'arm
		- - -	- - -	- - -	- - -	- - -	- - -	- -	- - -	mm	coeff che tiene conto delle proprietà di aderenza dell'arm massima deformazione di trazione all'estremità della sez
k ₁	=	- - -	- - - -	- - -	- - -	- - -	- - -	- - -	- - -	mm	• •
$\mathbf{k_1}$ $\mathbf{\epsilon_2}$	=	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - -	mm	massima deformazione di trazione all'estremità della sez
$egin{array}{c} k_1 \ \epsilon_2 \ \epsilon_1 \end{array}$	= =	- - - -	- - - - -	- - - -	- - - - -	- - - -	- - - -	- - - -	- - - -	mm	massima deformazione di trazione all'estremità della sez minima deformazione di trazione all'estremità della sezio
k ₁ ε ₂ ε ₁ k ₂	= = =	-	- - - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - -	mm	massima deformazione di trazione all'estremità della sez minima deformazione di trazione all'estremità della sezio
k ₁ ε ₂ ε ₁ k ₂ k ₃	= = = =	-	-	- - - - - -	- - - - -		-	-	-	mm	massima deformazione di trazione all'estremità della sez minima deformazione di trazione all'estremità della sezio
k ₁ ε ₂ ε ₁ k ₂ k ₃ k ₄	= = = =	-	-	- - - - - -	- - - - - -	-	-	-	-		massima deformazione di trazione all'estremità della sezione minima deformazione di trazione all'estremità della sezione delle deformazione di trazione all'estremità della sezione delle deformazione di trazione all'estremità della sezione delle deformazione delle del
$egin{array}{c} k_1 & \epsilon_2 & & \\ \epsilon_1 & & \\ k_2 & & \\ k_3 & & \\ k_4 & & \\ \Delta_{smax1} & & \end{array}$	= = = = =		-	- - - - - - -	- - - - - - -	-	-	-	-	mm	massima deformazione di trazione all'estremità della sezione minima deformazione di trazione all'estremità della sezione delle deformazione di trazione all'estremità della sezione delle deformazione di trazione all'estremità della sezione delle deformazione delle del
$egin{array}{c} k_1 & \epsilon_2 & & \\ \epsilon_1 & k_2 & & \\ k_3 & k_4 & & \\ \Delta_{smax1} & & & \end{array}$	= = = = = = =		-	- - - - - - - -	- - - - - - - -	- - - - - - - -	-	-	-	mm mm	massima deformazione di trazione all'estremità della sezione all'estremità della sezione della distribuzione della deformazione della distribuzione della deformazione della distribuzione della deformazione della distribuzione distribuzion
$\begin{array}{c} k_1 \\ \epsilon_2 \\ \epsilon_1 \\ k_2 \\ k_3 \\ k_4 \\ \Delta_{smax1} \\ \Delta_{smax2} \\ \Delta_{sm} \end{array}$	= = = = = = = = = = = = = = = = = = = =		-	- - - - - - - -	- - - - - - - - -	-	-	-	-	mm mm	massima deformazione di trazione all'estremità della sezione all'estremità della sezione della distribuzione della deformazione della distribuzione della deformazione della distribuzione della deformazione della distribuzione distribuzion
$\begin{array}{c} k_1 \\ \epsilon_2 \\ \epsilon_1 \\ k_2 \\ k_3 \\ k_4 \\ \Delta_{smax1} \\ \Delta_{smax2} \\ \Delta_{sm} \\ \epsilon_{sm} - \epsilon_{cm} \end{array}$	= = = = = = = = = = = = = = = = = = = =		-	- - - - - - - - -	- - - - - - - - -	-	-	-	-	mm mm mm	massima deformazione di trazione all'estremità della sezione della distribuzione della deformazione di trazione all'estremità della sezione della distribuzione della deformazione della distribuzione della deformazione della distribuzione della distribuzione della distribuzione della distribuzione della distribuzione della distribuzione di limite superiore per il calcolo della distribuzione massima tra distribuzione per il calcolo della distribuzione massima tra distribuzione media nell'armatura tesa differenza tra la deformazione media nell'armatura tesa di

Combinazione	quasi permanente

			trave par	aghiaia			muro ar	ndatore			
Sezione			Υ		Z		Χ		Z		
		terra	fuori terra	terra	fuori terra	terra	fuori terra	terra	fuori terra		
Materiali											
Rck	=	30	30	30	30	30	30	30	30	MPa	resist caratteristica cubica
f _{ck}	=	24.90	24.90	24.90	24.90	24.90	24.90	24.90	24.90	MPa	resist caratteristica cilindrica
f_{cm}	=	32.90	32.90	32.90	32.90	32.90	32.90	32.90	32.90	MPa	resist cilindrica media
f _{ctm}	=	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	MPa	resist media a trazione semplice
f_{cfm}	=	3.07	3.07	3.07	3.07	3.07	3.07	3.07	3.07	MPa	resist media a trazione per flessione
$\sigma_{\rm t}$	=	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	MPa	tensione limite di apertura delle fessure
n	=	15	15	15	15	15	15	15	15		coeff di omogeneizz armature (compr)
n'	=	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001		coeff di omogeneizz armature (tens)

Geometria

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Arenella II

Relazione di calcolo Spalle – Carreggiata DX

Pagina 61 di 67

Nome file:

VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc

				J. 10				l .			
В	=	1000	1000	1000	1000	1000	1000	1000	1000	mm	base sezione
Н	=	800	800	800	800	700	700	700	700	mm	altezza sezione
Armatura											
n _{1a}	=	5	5	5	5	5	5	5	5		n° tondini zona tesa
n_{1b}	=	0	0	0	0	0	0	0	0		
\emptyset_{1a}	=	18	16	18	16	22	16	22	16	mm	diametro tondini armatura tesa
\emptyset_{1b}	=	0	0	0	0	0	0	0	0	mm	diametro tondini armatura tesa
\emptyset_{1eq}	=	18	16	18	16	22	16	22	16	mm	diametro equiv tondini armatura tesa
d' _{sup}	=	35	35	53	51	35	35	57	51	mm	copriferro superiore
d_1	=	765	765	747	749	665	665	643	649	mm	dist armatura tesa da lembo compr
A_{s1}	=	1272	1005	1272	1005	1901	1005	1901	1005	mm ²	area armatura tesa
n_{2a}	=	5	5	5	5	5	5	5	5		n° tondini zona compressa
n _{2b}	=	0	0	0	0	0	0	0	0		diametra tandini armetura samprassa
Ø _{2a}	=	16 0	18 0	16 0	18 0	16 0	22 0	16 0	22 0	mm mm	diametro tondini armatura compressa diametro tondini armatura compressa
\emptyset_{2b}	=	16	18	16	18	16	22	16	22	mm	diametro equiv tondini armatura compr
Ø _{2eq}	=	35	35	51	53	35	35	51	57	mm	copriferro inferiore
d' _{inf} d ₂	=	35	35	51	53	35	35	51	57	mm	dist armatura compr da lembo compr
A _{s2}	=	1005	1272	1005	1272	1005	1901	1005	1901	mm ²	area armatura compressa
A _{S2}											
Sollecitazio	ni										
М	=	60	10	50	20	80	10	150	50	kN*m	momento flettente
N	=	0	0	0	0	0	0	88	88	kN	sforzo normale
е	=	0	0	0	0	0	0	1714	571	mm	eccentricità
Caratteristic	che s			_	-					2	
A_{cls}	=	800000	800000	800000	800000	700000	700000	700000	700000	mm ²	area calcestruzzo
A_s	=	2278	2278	2278	2278	2906	2906	2906	2906	mm ²	area armatura
A _{id}	=	8.3E+05	8.3E+05	8.3E+05	8.3E+05	7.4E+05	7.4E+05	7.4E+05	7.4E+05	mm ²	area sezione ideale
d_{G}	=	402 4.7E+10	398 4.7E+10	402 4.7E+10	398 4.7E+10	356 3.3E+10	344 3.3E+10	355 3.2E+10	345 3.2E+10	mm mm⁴	dist baric sezione ideale da lembo sup momento d'inerzia baric sez ideale
J _{id}	=	238	238	237	237	210	210	209	209	mm	raggio giratore di inerzia della sezione
$\rho_{id,t}$	=	543	540	541	539	480	473	478	471	mm	dist p.to di nocciolo sup da asse baric
Y _{nocc,s}	_			•							
Caratteristic	he s	ezione int	eramente r	eagente a	tensione						
$A_{cls,t}$	=	800	800	800	800	700	700	700	700	mm^2	area calcestruzzo
As	=	2278	2278	2278	2278	2906	2906	2906	2906	mm^2	area armatura
$A_{\text{id},t}$	=	3.5E+04	3.5E+04	3.5E+04	3.5E+04	4.4E+04	4.4E+04	4.4E+04	4.4E+04	mm^2	area sezione ideale
$d_{\text{G},t} \\$	=	442	358	439	361	446	254	437	263	mm	dist baric sez ideale da lembo sup
$J_{id,t}$	=	4.5E+09	4.5E+09	4.1E+09	4.1E+09	3.9E+09	3.9E+09	3.5E+09	3.5E+09	mm ⁴	momento d'inerzia baric sez ideale
$\rho_{\text{id},t}$	=	360	360	343	343	299	299	281	281	mm	raggio giratore di inerzia della sezione
$Y_{nocc,i}$	=	735	720	708	688	646	605	617	563	mm	dist p.to di nocciolo inf da asse baric
Sezione		parzializ									
Caratteristic	che s	ezione pa	rzializzata								
Y_n	=	143	126	143	126	159	111	182	188	mm	distanza asse neutro da lembo compr
J_n	=	8.5E+09	7.0E+09	8.1E+09	6.6E+09	8.9E+09	5.2E+09	8.3E+09	5.9E+09	mm ⁴	momento d'inerzia sezione parzializzata
S_{n}	=	9.6E-04	3.8E-08	6.5E-09	1.5E-05	5.1E-08	0.0E+00	5.4E+06	1.4E+07	mm ³	momento statico sezione parzializzata
$f(Y_n)=0$	=	-	-	-	-	-	-	-9.5E-07	0.0E+00		
Tensioni ne	i ma	teriali									
σ_{c}	=	-1.01	-0.18	-0.88	-0.38	-1.43	-0.21	-3.28	-1.59	MPa	max tens di compr nel cls (sez fess)
σ_{s}	=	65.6	13.7	56.2	28.2	68.5	15.8	124.6	58.6	MPa	tens dell'armat tesa (sez fess)
Controll	.u- ^		_								
Controllo de				250	240	204	107	244	205	le N loo	momento di foccurazione
M_{fess}	=	253	251	250	248	204	197	211	205	kNm	momento di fessurazione

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19 *Progetto Esecutivo* Opera: Viadotto Arenella II

Relazione di calcolo Spalle – Carreggiata DX

Pagina 62 di 67

Nome file:

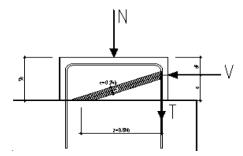
VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc

M _{fess} / M	=	4.21	25.05	5.01	12.42	2.55	19.71	1.41	4.10		check1
Verifica a fe	ssur	azione ser	nza il calco	lo diretto							
W _{max}	=	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	mm	crack limit width
F*s	=	32	32	32	32	32	32	32	32	mm	
		26	26	26	26	26	26	26	26	mm	
		16	16	16	16	16	16	16	16	mm	
		12	12	12	12	12	12	12	12	mm	
		10	10	10	10	10	10	10	10	mm	
		8	8	8	8	8	8	8	8	mm	
а	=	300	300	300	300	300	300	300	300	mm	
		250	250	250	250	250	250	250	250	mm	
		200	200	200	200	200	200	200	200	mm	
		15	15	15	15	15	15	15	15	mm	
		100	100	100	100	100	100	100	100	mm	
_		50	50	50	50	50	50	50	50	mm	diam may dalla harra di armatura taca
\mathcal{O}_{max}	=	-	-	-	-	-	-	-	-	mm MPa	diam max delle barre di armatura tesa
σ* _{s1}	=	- 186	- 186	- 179	180	- 186	- 186	- 177	- 180	mm	lim di tens nell'acc (diam dei ferri) spaziatura delle barre superiori
sp _s	=	186	186	180	179	186	186	180	177	mm	spaziatura delle barre inferiori
sp _i	=	-	-	-	-	-	-	-	-	mm	spaziatura massima delle barre
sp	_	_	_	_	_	_	_	_	_	MPa	lim di tens nell'acc (spaziatura dei ferri)
	_					_	_	_	_	MPa	limite di tensione max nell'acciaio
σ* _{s2}	_	_	_	_	-						
$\sigma_{\text{s,lim}}$	= =	-	-	-	-	-	-	-	-		check2
		-	-	-	-	-	-	-	-		
$\sigma_{s,lim}$ $\sigma_{s,lim}/\sigma_{s}$	= l'aper	- rtura delle -	- fessure	-	-	-	-	-	-	l	check2
$\begin{array}{c} \sigma_{s,lim} \\ \sigma_{s,lim} / \sigma_{s} \end{array}$ Calcolo dell	= l'aper =	- rtura delle - -	- fessure - -	-	-	-	-	-	-	mm	ricoprimento armatura
$\begin{array}{c} \sigma_{s,lim} \\ \sigma_{s,lim} / \sigma_{s} \end{array}$ Calcolo dell c $_{c,eff}$	= 'aper = =	- rtura delle - - -	- fessure - -	- - - -	- - -	-	-	-	- - -	mm mm	ricoprimento armatura altezza dell'area di cls teso attorno all'armatura compres
$\sigma_{s,lim} \\ \sigma_{s,lim} / \sigma_{s}$ Calcolo dell c $h_{ct,eff}$ $h_{cb,eff}$	= l'aper =	- rtura delle - - -	- - fessure - - -							mm mm mm	ricoprimento armatura
$\begin{split} &\sigma_{\text{s,lim}} \\ &\sigma_{\text{s,lim}} / \sigma_{\text{s}} \\ &\text{Calcolo dell} \\ &\text{C} \\ &h_{\text{ct,eff}} \\ &h_{\text{cb,eff}} \\ &A_{\text{cb,eff}} \end{split}$	= 'aper = = =	- - rtura delle - - - -	- fessure - - -					- - - -		mm mm	ricoprimento armatura altezza dell'area di cls teso attorno all'armatura compres altezza dell'area di cls teso attorno all'armatura tesa effective tension area
$\sigma_{s,lim} \\ \sigma_{s,lim} / \sigma_{s}$ $\begin{array}{c} \textbf{Calcolo dell} \\ \textbf{C} \\ \textbf{h}_{ct,eff} \\ \textbf{h}_{cb,eff} \\ \textbf{A}_{cb,eff} \\ \textbf{p}_{eff} \end{array}$	= 'aper = = = =	- 	- fessure - - - -						- - - -	mm mm mm	check2 $ \label{eq:check2} $ ricoprimento armatura $ \text{altezza dell'area di cls teso attorno all'armatura compresaltezza dell'area di cls teso attorno all'armatura tesa effective tension area \text{rapporto } A_s/A_{c,eff} $
$\sigma_{s,lim}$ $\sigma_{s,lim}/\sigma_{s}$ Calcolo delle c $h_{ct,eff}$ $h_{cb,eff}$ $A_{cb,eff}$ ρ_{eff} k_{t}	= 'aper = = = =	- rtura delle - - - - - 210000	fessure 210000	- - - - - - 210000	- - - - - - - 210000	- - - - - - 210000	- - - - - - 210000	- - - - - 210000	- - - -	mm mm mm	ricoprimento armatura altezza dell'area di cls teso attorno all'armatura compres altezza dell'area di cls teso attorno all'armatura tesa effective tension area rapporto A _s /A _{c,eff} fattore che tiene conto della durata di applicazione dei ca
$\sigma_{s,lim} \\ \sigma_{s,lim} / \sigma_{s}$ $\begin{array}{c} \textbf{Calcolo dell} \\ \textbf{C} \\ \textbf{h}_{ct,eff} \\ \textbf{h}_{cb,eff} \\ \textbf{A}_{cb,eff} \\ \textbf{p}_{eff} \end{array}$	= 'aper = = = =	- - - -	- - - -	- - - - - - - 210000				- - - - -	- - - - -	mm mm mm mm²	check2 $ \label{eq:check2} $ ricoprimento armatura $ \text{altezza dell'area di cls teso attorno all'armatura compresaltezza dell'area di cls teso attorno all'armatura tesa effective tension area \text{rapporto } A_s/A_{c,eff} $
$\begin{array}{c} \sigma_{s,lim} \\ \sigma_{s,lim} / \sigma_s \end{array}$ Calcolo dell $\begin{array}{c} c \\ h_{ct,eff} \\ h_{cb,eff} \\ A_{cb,eff} \\ \rho_{eff} \\ k_t \\ E_s \\ d^* \end{array}$	= 	- - - -	- - - -	- - - - - - - 210000				- - - - - - 210000	- - - - -	mm mm mm mm²	ricoprimento armatura altezza dell'area di cls teso attorno all'armatura compres altezza dell'area di cls teso attorno all'armatura tesa effective tension area rapporto A _s /A _{c,eff} fattore che tiene conto della durata di applicazione dei ca
$\begin{array}{c} \sigma_{s,lim} \\ \sigma_{s,lim} / \sigma_s \end{array}$ Calcolo dell c c h _{ct,eff} h _{cb,eff} A _{cb,eff} ρ_{eff} k _t E _s d* k ₁	= 'aper - - - - - -	- - - -	- - - -	- - - - - - - 210000				- - - - - - 210000	- - - - -	mm mm mm mm²	ricoprimento armatura altezza dell'area di cls teso attorno all'armatura compres altezza dell'area di cls teso attorno all'armatura tesa effective tension area rapporto A _e /A _{c,eff} fattore che tiene conto della durata di applicazione dei ci modulo di elasticità dell'acciaio coeff che tiene conto delle proprietà di aderenza dell'arm
$\begin{array}{c} \sigma_{s,lim} \\ \sigma_{s,lim} / \sigma_s \end{array}$ Calcolo dell $\begin{array}{c} c \\ h_{ct,eff} \\ h_{cb,eff} \\ A_{cb,eff} \\ \rho_{eff} \\ k_t \\ E_s \\ d^* \end{array}$	= 	- - - -	- - - -	- - - - - - 210000 - - -				- - - - - - 210000	- - - - -	mm mm mm mm²	ricoprimento armatura altezza dell'area di cls teso attorno all'armatura compres altezza dell'area di cls teso attorno all'armatura tesa effective tension area rapporto A _s /A _{c,eff} fattore che tiene conto della durata di applicazione dei ca modulo di elasticità dell'acciaio
$\begin{array}{c} \sigma_{s,lim} \\ \sigma_{s,lim} / \sigma_s \end{array}$ Calcolo dell c $\begin{array}{c} c \\ h_{ct,eff} \\ h_{cb,eff} \\ A_{cb,eff} \\ \rho_{eff} \\ k_t \\ E_s \\ d^* \\ k_1 \\ \epsilon_2 \end{array}$	= 'aper = = = =	- - - -	- - - -	- - - - - - 210000				- - - - - - 210000	- - - - -	mm mm mm mm²	ricoprimento armatura altezza dell'area di cls teso attorno all'armatura compres altezza dell'area di cls teso attorno all'armatura tesa effective tension area rapporto A _s /A _{c,eff} fattore che tiene conto della durata di applicazione dei ca modulo di elasticità dell'acciaio coeff che tiene conto delle proprietà di aderenza dell'arm massima deformazione di trazione all'estremità della sezione
$\begin{array}{c} \sigma_{s,lim} \\ \sigma_{s,lim} / \sigma_s \end{array}$ Calcolo dell $\begin{array}{c} c \\ h_{ct,eff} \\ h_{cb,eff} \\ A_{cb,eff} \\ A_{cb,eff} \\ \epsilon_t \\ \epsilon_s \\ d^* \\ k_1 \\ \epsilon_2 \\ \epsilon_1 \end{array}$	= 	- - - -	- - - -	- - - - - - 210000 - - - -				- - - - - - 210000	- - - - -	mm mm mm mm²	ricoprimento armatura altezza dell'area di cls teso attorno all'armatura compres altezza dell'area di cls teso attorno all'armatura tesa effective tension area rapporto A _s /A _{c,eff} fattore che tiene conto della durata di applicazione dei ca modulo di elasticità dell'acciaio coeff che tiene conto delle proprietà di aderenza dell'arm massima deformazione di trazione all'estremità della sezi minima deformazione di trazione all'estremità della sezione all'estremità della sezi
$\begin{array}{c} \sigma_{s,lim} \\ \sigma_{s,lim} / \sigma_s \end{array}$	= 'aper = = = =	- - - -	- - - -	- - - - - - 210000 - - - - -				- - - - - - 210000	- - - - - 210000 - - -	mm mm mm mm²	ricoprimento armatura altezza dell'area di cls teso attorno all'armatura compres altezza dell'area di cls teso attorno all'armatura tesa effective tension area rapporto A _s /A _{c,eff} fattore che tiene conto della durata di applicazione dei ca modulo di elasticità dell'acciaio coeff che tiene conto delle proprietà di aderenza dell'arm massima deformazione di trazione all'estremità della sezi minima deformazione di trazione all'estremità della sezione all'estremità della sezi
$\begin{array}{c} \sigma_{\text{s,lim}} \\ \sigma_{\text{s,lim}} / \sigma_{\text{s}} \end{array}$	= 'aper = = = =	- - - -	- - - -	- - - - - - 210000 - - - - - -				- - - - - - 210000	- - - - - 210000 - - -	mm mm mm mm²	ricoprimento armatura altezza dell'area di cls teso attorno all'armatura compres altezza dell'area di cls teso attorno all'armatura tesa effective tension area rapporto A _s /A _{c,eff} fattore che tiene conto della durata di applicazione dei ca modulo di elasticità dell'acciaio coeff che tiene conto delle proprietà di aderenza dell'arm massima deformazione di trazione all'estremità della sezi minima deformazione di trazione all'estremità della sezione all'estremità della sezi
$\begin{array}{c} \sigma_{s,lim} \\ \sigma_{s,lim} / \sigma_s \end{array}$ Calcolo dell $\begin{array}{c} c \\ h_{ct,eff} \\ h_{cb,eff} \\ A_{cb,eff} \\ A_{cb,eff} \\ \epsilon_s \\ d^* \\ k_1 \\ \epsilon_2 \\ \epsilon_1 \\ k_2 \\ k_3 \\ k_4 \\ \Delta_{smax1} \end{array}$	= 'aper = = = =	- - - -	- - - -	- - - - - - - - - - - - - - - - - - -				- - - - - - 210000	- - - - - 210000 - - -	mm mm mm² MPa mm	ricoprimento armatura altezza dell'area di cls teso attorno all'armatura compres altezza dell'area di cls teso attorno all'armatura tesa effective tension area rapporto A _s /A _{c.eff} fattore che tiene conto della durata di applicazione dei ca modulo di elasticità dell'acciaio coeff che tiene conto delle proprietà di aderenza dell'armassima deformazione di trazione all'estremità della sezi coeff che tiene conto della distribuzione delle deformazione delle della della della delle
$\begin{array}{c} \sigma_{\text{s,lim}} \\ \sigma_{\text{s,lim}} / \sigma_{\text{s}} \end{array}$	= 'aper = = = =	- - - -	- - - -	- - - - - - 210000 - - - - - - - - - - - - - - - - -				- - - - - - 210000	- - - - - 210000 - - -	mm mm mm² MPa mm	ricoprimento armatura altezza dell'area di cls teso attorno all'armatura compres altezza dell'area di cls teso attorno all'armatura tesa effective tension area rapporto A _s /A _{c,eff} fattore che tiene conto della durata di applicazione dei ca modulo di elasticità dell'acciaio coeff che tiene conto delle proprietà di aderenza dell'arm massima deformazione di trazione all'estremità della sezi minima deformazione di trazione all'estremità della sezi coeff che tiene conto della distribuzione delle deformazio limite superiore per il calcolo della distanza massima tra
$\begin{array}{c} \sigma_{s,lim} \\ \sigma_{s,lim} / \sigma_s \end{array}$ Calcolo dell $\begin{array}{c} c \\ h_{ct,eff} \\ h_{cb,eff} \\ A_{cb,eff} \\ A_{cb,eff} \\ \epsilon_s \\ d^* \\ k_1 \\ \epsilon_2 \\ \epsilon_1 \\ k_2 \\ k_3 \\ k_4 \\ \Delta_{smax1} \end{array}$	= 'aper = = = =	- - - -	- - - -	- - - - - - 210000 - - - - - - - - - - - - - - - - -				- - - - - - 210000	- - - - - 210000 - - -	mm mm mm² MPa mm	ricoprimento armatura altezza dell'area di cls teso attorno all'armatura compres altezza dell'area di cls teso attorno all'armatura tesa effective tension area rapporto A _s /A _{c.eff} fattore che tiene conto della durata di applicazione dei ca modulo di elasticità dell'acciaio coeff che tiene conto delle proprietà di aderenza dell'arm massima deformazione di trazione all'estremità della sezi minima deformazione di trazione all'estremità della sezi coeff che tiene conto della distribuzione delle deformazione di trazione delle deformazione di trazione delle deformazione di trazione all'estremità della sezi coeff che tiene conto della distribuzione delle deformazione di mitte superiore per il calcolo della distanza massima tra distanza massima tra le fessure
$\begin{array}{c} \sigma_{\text{s,lim}} \\ \sigma_{\text{s,lim}} / \sigma_{\text{s}} \end{array}$	= 'aper = = = =	- - - -	- - - -	- - - - - - 210000 - - - - - - - - - - - - - - - - -				- - - - - - 210000	- - - - - 210000 - - -	mm mm mm² MPa mm	ricoprimento armatura altezza dell'area di cls teso attorno all'armatura compres altezza dell'area di cls teso attorno all'armatura tesa effective tension area rapporto A _s /A _{c.eff} fattore che tiene conto della durata di applicazione dei ca modulo di elasticità dell'acciaio coeff che tiene conto delle proprietà di aderenza dell'arm massima deformazione di trazione all'estremità della sezi minima deformazione di trazione all'estremità della sezi coeff che tiene conto della distribuzione delle deformazione di trazione all'estremità della sezi coeff che tiene conto della distribuzione delle deformazione di minima tra limite superiore per il calcolo della distanza massima tra limite superiore per il calcolo della distanza massima tra
$\begin{array}{c} \sigma_{\text{s,lim}} \\ \sigma_{\text{s,lim}} / \sigma_{\text{s}} \end{array}$	= 'aper = = = =	- - - -	- - - -	- - - - - - 210000 - - - - - - - - - - - - - - - - -				- - - - - - 210000	- - - - - 210000 - - -	mm mm mm² MPa mm	ricoprimento armatura altezza dell'area di cls teso attorno all'armatura compres altezza dell'area di cls teso attorno all'armatura tesa effective tension area rapporto A _s /A _{c.eff} fattore che tiene conto della durata di applicazione dei ca modulo di elasticità dell'acciaio coeff che tiene conto delle proprietà di aderenza dell'arm massima deformazione di trazione all'estremità della sezi minima deformazione di trazione all'estremità della sezi coeff che tiene conto della distribuzione delle deformazione limite superiore per il calcolo della distanza massima tra distanza massima tra le fessure differenza tra la deformazione media nell'armatura tesa differenza tra la deformazione media nell'armatura tesa di

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19 *Progetto Esecutivo* Opera: Viadotto Arenella II

Relazione di calcolo Spalle - Carreggiata DX


Pagina 63 di 67

Nome file:

VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc

7 BAGGIOLI

Il dimensionamento dell'armatura dei baggioli è stato eseguito ipotizzando un meccanismo resistente tirantepuntone, seguendo le indicazioni dell' EC2.

Tale dimensionamento viene eseguito prendendo a riferimento due distinte condizioni di carico: la prima relativa alla massima azione verticale trasmessa dall'impalcato e corrispondente azione trasversale; la seconda relativa alla massima azione trasversale e corrispondente azione verticale.

Inoltre, viene effettuata la verifica dell'armatura orizzontale considerando le forze di fenditura secondo quanto indicato nelle raccomandazioni FIP-CEB.

Nella verifica della pressione di contatto si può osservare che le pressioni possono raggiungere valori molto elevati, prossimi a quelli della resistenza del calcestruzzo, a patto però che l'area caricata sia opportunamente distanziata dal bordo del calcestruzzo. In tal caso la diffusione del carico all'interno dell'elemento in calcestruzzo genera tensioni di trazione perpendicolari alla direzione del carico e bisogna predisporre un'opportuna armatura. L'armatura può essere calcolata mediante la seguente formulazione (FIP-CEB):

$$T = \frac{N}{3.3} \cdot \left(\frac{b - b_0}{b}\right)$$

in cui:

N = carico concentrato all'appoggio

b = larghezza del baggilo

b₀ = larghezza dell'appoggio

RIEPILOGO Baggioli più sollecitati

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19

Progetto Esecutivo

Opera: Viadotto Arenella II

Relazione di calcolo Spalle – Carreggiata DX

Pagina 64 di 67

Nome file:

VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc

Bridge Cap - Strut & Tie Model (calcolo mensole tozze con a<z/2)

			•		·
Materiali					
R _{ck}	=	30	30	MPa	resistenza caratteristica cilindrica
f _{ck}	=	24.90	24.90	MPa	resistenza caratteristica cubica
f _{cd}	=	14.1	14.1	MPa	resistenza di calcolo a compressione
f _{yd}	=1	391.3	391.3	MPa	tensione di snervamento di calcolo
-				IVII a	coefficiente per la resistenza del nodo
β_1	=	1.00	1.00		compresso
$\sigma_{\text{1Rd},\text{max}}$	=	12.70	12.70	MPa	resistenza a compressione per nodi compressi
Mensola					
		SpA-S	SpA-D		
F_{Ed}	=	3564	1219	kN	azione verticale di calcolo appoggio
H_{Ed}	=	60	455	kN	azione orizzontale di calcolo appoggio
Geometria					
b_1	=	1100	1100	mm	larghezza baggiolo
b_2	=	1100	1100	mm	lunghezza baggiolo
b _{3,max}	=	470	470	mm	altezza baggiolo (massima: a favore di sicurezza)
b_0		950	950	mm	larghezza appoggio
C	=	30	30	mm	copriferro
d	=	1070	1070	mm	altezza utile
z	=	856	856	mm	braccio della coppia interna
Σ X ₁	=	4.3	32.6	mm	larghezza biella compressa
	_	214.0	214.0	mm	altezza biella compressa
y₁ a	_	472.2	486.3	mm	altezza biella compressa
_	_	0.50	0.52		
α	_	0.50	0.52	rad	
Verifica pun	ton	e e tirant	e principa	ile (arn	natura orizzontale)
С	=	69	523	kN	risultante di compressione
Т	=	33	259	kN	risultante di trazione
		0.45			
$\sigma_{\rm c}$	=	0.15	1.11	MPa	tensione di compressione nel puntone
FS	=	86.69	11.43		
n	=	6	6		numero ferri superiore
Ø	=	14	14	mm	diametro armatura superiore
A_s	=	923.6	923.6	mm^2	area armatura superiore
σ_{s}	=	36.08	279.94	MPa	tensione di trazione nel tirante
FS	=	10.85	1.40		
Verifiche a f	end	itura (arr	natura		
verticale)		•			
Т	=	147	50	kN	risultante forza di taglio
A_s	=	376.4	376.4	mm^2	armatura necessaria
n_{str}	=	3	3		numero strati
n_{br}	=	8	8		numero bracci x strato
\emptyset_{w}	=	14	14	mm	diametro staffe
A_{sw}	=	3694.5	3694.5	mm^2	armatura di progetto
FS	=	9.82	9.82		

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

> Dal km 44+000 allo svincolo con l'A19 Progetto Esecutivo

> > peso dell'isolatore

Opera: Viadotto Arenella II

Relazione di calcolo Spalle - Carreggiata DX

Pagina 65 di 67

Nome file:

VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc

DISPOSITIVI ANTISISMICI 8

Vengono disposti degli isolatori elastomerici con l'obiettivo di migliorare la risposta della struttura in caso di eventi sismici. Essi consentono sostanzialmente di aumentare il periodo proprio della struttura, di sostenere i carichi verticali senza apprezzabili cedimenti, e di contenere lo spostamento orizzontale della struttura isolata. I dispositivi previsti presentano le seguenti caratteristiche:

SI-N 900/168

kg

V	10980	kN	massimo carico verticale agente sull'isolatore in fase di sisma
F_{zd}	21220	kN	massimo carico verticale allo S.L.U. in esercizio
K_e	3.03	kN/mm	rigidezza orizzontale equivalente
K_v	2814	kN/mm	rigidezza verticale
d	0.300	m	massimo spostamento dell'isolatore
D_g	0.900	m	diametro dell'elastomero
W	1049	ka	peso dell'isolatore

A partire dal modello di calcolo globale della carreggiata sinistra sono state determinate le massime azioni verticali in fase di sisma (S.L.C.) e statica (S.L.U.) sui singoli isolatori per verificarne la loro portanza (come per il dimensionamento dei baggioli, anche in questo caso la carreggiata sinistra risulta quella dimensionante per via delle luci maggiori).

AZIONI sugli APPOGGI

Azioni trasmesse dall'impalcato									
Joint	OutputCase	Fx	Fy	Fz	Mx	My	Mz	spalla	
Text	Text	KN	KN	KN	KN-m	KN-m	KN-m	Spana	
SpA-D	G1+G2	0	0	1377	0	0	0		
SpA-D	E2	17	0	-245	0	0	0		
SpA-D	E3	22	0	120	0	0	0		
SpA-D	Q1	0	1	890	0	0	0		
SpA-D	Q5	0	65	-21	0	0	0		
SpA-D	Q7	14	0	0	0	0	0	spalla A	
SpA-S	G1+G2	0	0	1334	0	0	0	spalla A	
SpA-S	E2	17	0	-247	0	0	0		
SpA-S	E3	22	0	117	0	0	0		
SpA-S	Q1	0	1	1450	0	0	0		
SpA-S	Q5	0	65	21	0	0	0		
SpA-S	Q7	13	0	0	0	0	0		
SpB-D	G1+G2	0	0	1337	0	0	0		
SpB-D	E2	17	0	-246	0	0	0		
SpB-D	E3	22	0	120	0	0	0		
SpB-D	Q1	0	1	979	0	0	0		
SpB-D	Q5	0	65	-23	0	0	0		
SpB-D	Q7	13	0	0	0	0	0	spalla B	
SpB-S	G1+G2	0	0	1293	0	0	0	spalla D	
SpB-S	E2	17	0	-247	0	0	0		
SpB-S	E3	22	0	117	0	0	0		
SpB-S	Q1	0	1	1368	0	0	0		
SpB-S	Q5	0	65	23	0	0	0		
SpB-S	Q7	13	0	0	0	0	0		

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19 *Progetto Esecutivo* Opera: Viadotto Arenella II

Relazione di calcolo Spalle - Carreggiata DX

Pagina 66 di 67

Nome file:

VI13-B-CL008-A.00_relazione_calcolo_Spalle_DX.doc

Azione sismica (S.L.C max Fz)									
Joint	OutputCase	Fx	Fy	Fz	Mx	My	Mz	spalla	
Text	Text	KN	KN	KN	KN-m	KN-m	KN-m	эрана	
SpA-D	Q6	126	60	89	0	0	0	spalla A	
SpA-S	Q6	126	60	86	0	0	0	spalla A	
SpB-D	Q6	126	60	87	0	0	0	spalla B	
SpB-S	Q6	126	60	84	0	0	0	Spalla D	

Azioni totali sugli appoggi (Combinazione sismica - max Fz)									
Joint	OutputCase	Fx	Fy	Fz	Mx	My	Mz	spalla	
Text	Text	KN	KN	KN	KN-m	KN-m	KN-m	Spana	
SpA-D	S.L.C.	162	60	1281	0	0	0	spalla A	
SpA-S	S.L.C.	161	60	1232	0	0	0	Spalla A	
SpB-D	S.L.C.	162	60	1238	0	0	0	spalla B	
SpB-S	S.L.C.	161	60	1188	0	0	0	spalla D	
•		162	60	1281					

Azioni totali sugli appoggi (Combinazione fondamentale)									
Joint	OutputCase	Fx	Fy	Fz	Mx	My	Mz	spalla	
Text	Text	KN	KN	KN	KN-m	KN-m	KN-m	Spana	
SpA-D	S.L.U.	49	59	2834	0	0	0	spalla A	
SpA-S	S.L.U.	49	60	3564	0	0	0	Spalla A	
SpB-D	S.L.U.	49	60	2896	0	0	0	analla D	
SpB-S	S.L.U.	48	60	3400	0	0	0	spalla B	
•		49	60	3564					

Come si può vedere dalle tabelle precedenti i massimi carichi verticali agenti nelle due combinazioni risultano compatibili con il massimo carico che può sopportare il dispositivo in fase di sisma ed allo S.L.U. Gli spostamenti orizzontali subiti dall'isolatore, dovuti a quei singoli casi di carico che determinano spostamenti sul piano X-Y, sono stati valutati come rapporto tra la sollecitazione prodotta dal caso di carico nella direzione X o Y e la rigidezza orizzontale equivalente dell'isolatore. Gli spostamenti nelle due direzioni sono stati infine combinati vettorialmente per le due combinazioni da verificare.

		S.L	.C.			
	SpA-D	SpA-S	SpB-D	SpB-S		
$d_{Q6,x}$	0.138	0.138	0.138	0.138	m	spostamento longitudinale dell'impalcato dovuto al sisma longitudinale
$d_{Q6,y}$	0.066	0.066	0.066	0.066	m	spostamento longitudinale dell'impalcato dovuto al sisma trasversale
$d_{E2,x}$	0.006	0.006	0.006	0.006	m	dilatazione dell'impalcato dovuto al ritiro
$d_{E3,x}$	0.021	0.021	0.021	0.021	m	dilatazione dell'impalcato dovuto all'effetto termico
$d_{E,tot}$	0.168	0.168	0.168	0.168	m	spostamento longitudinale totale dell'impalcato
		S.L	.U.			
	SpA-D	SpA-S	SpB-D	SpB-S		
$d_{E2,x}$	0.006	0.006	0.006	0.006	m	dilatazione dell'impalcato dovuto al ritiro
$d_{E3,x}$	0.021	0.021	0.021	0.021	m	dilatazione dell'impalcato dovuto all'effetto termico
$d_{Q1,y}$	0.001	0.001	0.001	0.001	m	spostamento longitudinale dell'impalcato dovuto ai carichi mobili
$d_{Q5,y}$	0.021	0.021	0.021	0.021	m	spostamento longitudinale dell'impalcato dovuto al vento
$d_{E,tot}$	0.029	0.030	0.030	0.030	m	spostamento longitudinale totale dell'impalcato
d _{giunto}	0.335				m	massima escursione del giunto

Il massimo spostamento dell'isolatore è pari a 168 mm, inferiore quindi al massimo spostamento consentito all'isolatore, pari a 300 mm.