

DIREZIONE CENTRALE PROGRAMMAZIONE PROGETTAZIONE

PA 12/09

CORRIDOIO PLURIMODALE TIRRENICO - NORD EUROPA
ITINERARIO AGRIGENTO - CALTANISSETTA - A19
S.S. N° 640 "DI PORTO EMPEDOCLE"
AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001
Dal km 44+000 allo svincolo con l'A19

PROGETTO ESECUTIVO

Contraente Generale:

OPERE D'ARTE MAGGIORI VIADOTTI

Viadotto Arenella III Relazione di calcolo Impalcato - Carreggiata SX

Codice Unico Progetto (CUP): F91B0900070001																		
Coc	Codice Elaborato:																	
PA	.12_09 -	E 1	5 7	V I	2	1 4	\	/ 1	1	4	F	С	L	0	0	2	С	Scala:
F				•					•				,					
E																		
D																		
С	Settembre 2011	2011 Aggiornamento Progettuale				T. FASOLO F. NIGRELLI				M. LITI			P. PAGLINI					
В	Luglio 2011 Revisione a seguito di incontri con il Committente T. FASOLO F. NIGRELLI M. LITI P. PAGLINI						P. PAGLINI											
Α	Aprile 2011	O11 EMISSIONE				T.	T. FASOLO F. NIGF		NIGRI	ELLI		М.	LITI		P. PAGLINI			
REV.	REV. DATA DESCRIZIONE REDATTO VERIFICATO APPROVATO AUTORIZZATO																	
Responsabile del procedimento: Ing. MAURIZIO ARAMINI																		

Il Consulente Specialista:

3TI ITALIA S.p.A.
DIRETTORE TECNICO
Ing. Stefano Luca Possati
Ordine degli Ingegneri
Provincia di Roma n. 20809

5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Favarella

Relazione di Calcolo Impalcato - Carreggiata SX

Pagina 1

Nome file: VI15-F- CL002_C.00_relazione_calcolo_impalcato_SX.doc.

INDICE

1.	Introduzione 1.1 Descrizione generale dell'opera 1.1.1 Impalcato 1.2 Modalità realizzative 1.3 Materiali utilizzati 1.3.1 Condizioni ambientali e classi di esposizione per l'impalcato 1.3.2 Calcestruzzo 1.3.3 Acciaio per c.a.p. 1.3.4 Acciaio per c.a. 1.4 Normative di riferimento 1.5 Convenzioni generali, per le verifiche e le analisi globali 1.6 Software di calcolo	3 3 3 5 5 5 6 7 7 8 8
2.	Impostazioni delle analisi e delle verifiche 2.1 Metodologia di calcolo 2.1.1 Coefficienti di viscosità e distribuzione 2.2 Analisi della struttura 2.2.1 Fasi di calcolo 2.3 Dati generali delle sezioni di impalcato 2.3.1 Larghezze collaboranti di soletta 2.3.2 Componenti delle sezioni 2.3.2.1 Trave in cap ed armatura di precompressione 2.3.2.2 Soletta centrale e di bordo 2.3.2.3 Armatura lenta in soletta 2.3.2.4 Armatura di rinforzo a fondo cassoncino 2.3.3 Caratteristiche geometriche delle sezioni 2.3.3.1 SA-c (mezzeria) -Travi centrali 2.3.3.2 SB-c (FiloRremp) - Travi centrali 2.3.3.3 SD-c (a 9m) - Travi centrali 2.3.3.4 SA-b (mezzeria) -Travi di bordo 2.3.5 SB-b (FiloRiemp) - Travi di bordo 2.3.6 SD-b (a 9m) - Travi di bordo	9 9 10 12 12 12 12 13 13 15 15 16 17 17 17 17 18 18
3.	Descrizione del modello numerico	19
4.	Analisi dei carichi 4.1 Carichi agenti in fase 1 4.1.1 Peso proprio calcestruzzo travi (G_{k1} ') 4.1.2 Peso proprio soletta ($Gk1$ ") 4.1.3 Peso proprio traversi ($Gk1$ ") 4.1.4 Precompressione (Pk) 4.2 Carichi agenti in fase 2 4.2.1 Sovraccarichi permanenti ($Gk2$) 4.2.2 Ritiro differenziale trave-soletta (Gsh,k) 4.3 Carichi agenti in fase 3 4.3.1 Variazioni termiche (QTk) 4.3.1.1 Variazioni termiche uniformi Δt_N 4.3.1.2 Variazioni termiche lineari Δt_M 4.3.1.3 Combinazione degli effetti uniformi e lineari	20 20 21 21 21 22 22 22 23 23 23 23 23
	4.3.2 Carichi mobili (Qk) 4.3.2.1 Verifiche globali 4.3.2.2 Verifiche locali 4.3.3 Azioni di frenatura (Qlk) 4.3.4 Azione del vento (Fw,k) 4.3.5 Sisma	24 24 25 25 25 25
5.	4.3.2 Carichi mobili (Qk) 4.3.2.1 Verifiche globali 4.3.2.2 Verifiche locali 4.3.3 Azioni di frenatura (Qlk) 4.3.4 Azione del vento (Fw,k)	24 24 25 25 25

CORRIDOIO PLURIMODALE TIRRENICO-NORD EUROPA ITINERARIO AGRIGENTO -CALTANISSETTA-A19 S.S. N° 640 "DI PORTO EMPEDOCLE"

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata SX Pagina 2

Nome file: VI15-F-

CL002_C.00_relazione_calcolo_impalcato_SX.doc.

	6.2 Sollecitazioni nei traversi6.3 Stato deformativo della struttura	33 34
7.	Verifiche travi 7.1 S.L.U. – Verifiche a pressoflessione 7.1.1 Sezione SA-c (fibre tese inferiori) 7.1.2 Sezione SB-c (fibre tese inferiori/superiori) 7.1.3 Sezione SC-c (fibre tese superiori) 7.1.4 Sezione SC-c (fibre tese superiori) 7.1.5 Sezione SA-b (fibre tese inferiori) 7.1.6 Sezione SB-b (fibre tese inferiori) 7.1.7 Sezione SC-b (fibre tese inferiori) 7.1.8 Sezione SB-b (fibre tese superiori) 7.1.9 Verifica del trasferimento della forza di tiro nell'armatura inferiore (fibre tese inferiori) 7.1.9 Verifica del trasferimento della forza di tiro nell'armatura inferiore (fibre tese inferiori) 7.2 S.L.U. – Verifiche a taglio e torsione 7.2.1 Sezione SB-c (trave centrale) 7.2.2 Sezione SB-c (trave centrale) 7.2.3 Sezione SE-c (trave centrale) 7.2.4 Sezione SF-c (trave centrale) 7.2.5 Sezione SB-c (trave di bordo) 7.2.7 Sezione SB-b (trave di bordo) 7.2.8 Sezione SB-b (trave di bordo) 7.2.9 Sezione SB-b (trave di bordo) 7.2.10 Verifica della connessione trave soletta 7.4 Sezione SC-b (trave di bordo) 7.2.11 Sezione SC-b (trave di bordo) 7.2.12 Verifica della connessione trave soletta 7.4 S.L.E. rara - limitazione delle tensioni 7.4.1 Verifiche Sezione SB-c 7.4.2 Verifiche Sezione SB-c 7.4.3 Verifiche Sezione SB-b 7.4.6 Verifiche Sezione SB-b 7.4.6 Verifiche Sezione SB-b 7.4.7 Verifiche Sezione SB-c 7.5 S.L.E. – quasi permanente 7.5 Verifiche Sezione SB-c 7.6 Verifiche Sezione SB-c	35 36 36 38 38 39 40 42 43 45 45 47 49 51 53 55 57 60 62 64 64 66 67 88 99 93 94 95 96 97 97 97 98 98 99 99 90 90 90 90 90 90 90 90 90 90 90
8.	Verifica dei traversi 8.1 Sezione in campata. Flessione SLU e SLE 8.2 Sezione in appoggio. Flessione SLU e SLE 8.3 Taglio e Torsione	101 101 104 107
9.	Verifica trasversale della soletta 9.1 Modello locale e condizioni di carico 9.2 Sollecitazioni di calcolo allo SLU e allo SLE 9.3 Verifiche a SLU e SLE per flessione. Armatura TIPO 1. 9.4 Verifiche a SLU e SLE per flessione. Armatura TIPO 2. 9.5 Verifica a taglio	110 110 110 111 113 117

Opera: Viadotto Arenella III
Relazione di Calcolo Impalcato - Carreggiata SX
Pagina 3
Nome file:
VI15-FCL002_C.00_relazione_calcolo_impalcato_SX.doc.

1. INTRODUZIONE

Nella presente relazione si riportano i calcoli di dimensionamento e le verifiche di sicurezza dell'impalcato della carreggiata SX del viadotto Arenella III, opera, quest'ultima prevista nell'ambito del progetto esecutivo "CORRIDOIO PLURIMODALE TIRRENICO-NORD EUROPA - ITINERARIO AGRIGENTO - CALTANISSETTA-A19 - S.S. N° 640 "DI PORTO EMPEDOCLE" - AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 - dal km 44+000 allo svincolo con l'A19"

1.1 Descrizione generale dell'opera

1.1.1 Impalcato

Il Viadotto Arenella III posto sulla carreggiata SX è costituito da n. 19 campate. L'intero impalcato si compone di due tronchi – tratto 1 e tratto 2 – strutturalmente sconnessi in corrispondenza della pila P09 ove è previsto un giunto di dilatazione.

L'impalcato è realizzato con travi a cassoncino in cemento armato precompresso a cavi pretesi, e sovrastante soletta gettata in opera; in asse ad ogni pila sono presenti traversi gettati in opera, che rendono tra loro solidali le travi, varate in semplice appoggio su dispositivi provvisori, realizzando uno schema finale di trave continua.

L' impalcato del TRATTO 1, è costituito da n. 9 campate aventi luce – misurata in asse impalcato – pari a 30 m e 31.0 rispettivamente per quelle di riva e per quelle centrali.

L' impalcato del TRATTO 2, è costituito da n. 10 campate aventi luce – misurata in asse impalcato – pari a 30 m e 31.0 rispettivamente per quelle di riva e per quelle centrali.

Tabella 1.1: Viadotto carreggiata SX

Campate	L [m]		
1	30.0		
2	31.0		
3	31.0		
4	31.0	TRATTO 1	
5	31.0	INATIOI	
6	31.0		
7	31.0		
8	31.0		
9	30.0		
10	30.0		
11	31.0		
12	31.0		
13	31.0		
14	31.0		
15	31.0	TRATTO 2	
16	31.0		
17	31.0		
18	31.0		
19	30.0		
Ltot	585.00		

Oltre che dal traverso, la continuità strutturale è garantita da un getto di calcestruzzo in opera all'interno della cavità dei cassoncini per una lunghezza di 1.50 mm, misurata dalla testata delle travi.

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata SX

Pagina 4

Nome file:
VI15-FCL002_C.00_relazione_calcolo_impalcato_SX.doc.

La sezione trasversale dell'impalcato è formata da n. 4 travi a cassoncino, di altezza 1.80 mm, disposte ad interasse trasversale di 2.50 m e da una soletta gettata in opera di altezza su predalles autoportanti. L'altezza complessiva della soletta è pari a 25 cm, di cui 20 cm di getto in opera e 5 cm di fondello prefabbricato in cls delle predalles.

L'impalcato, la cui larghezza complessiva è pari a 12.48 m, presenta un piano viabile di 10.50 m di larghezza e due cordoli laterali di larghezza 0.75 m ed 1.23 m.

La figure seguenti illustrano la sezione trasversale corrente e la sezione in asse pila dell'impalcato.

L'impalcato è vincolato alle sottostrutture mediante appoggi del tipo ad "isolatore sismico ad elastomero armato"; il legame forza-spostamento di tali dispositivi è di tipo elasto-lineare, sia per azioni impulsive (frenatura, sisma), sia per azioni lente (variazioni termiche, fluage, ritiro).

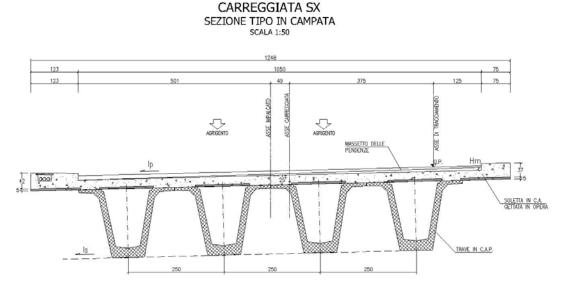


Figura 1.1 - Sezione corrente impalcato.

DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata SX

Pagina 5

Nome file: VI15-F-

CL002_C.00_relazione_calcolo_impalcato_SX.doc.

CARREGGIATA SX SEZIONE TIPO IN ASSE APPOGGIO SCALA 1:50

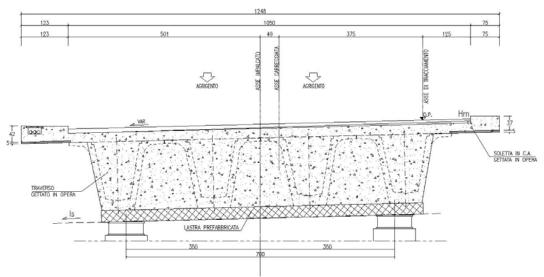


Figura 1.2 - Sezione in asse appoggio.

1.2 Modalità realizzative

La realizzazione dell'impalcato si articola secondo le seguenti fasi esecutive:

Fase A: Posa in opera delle travi prefabbricate in c.a.p., varate in semplice appoggio su sostegni

provvisori;

Fase B: Posa in opera delle predalle e delle armature di traversi e soletta, quindi getto

contemporaneo della soletta e dei traversi.

Fase C: Rimozione degli appoggi provvisori e realizzazione delle finiture dell'impalcato, compresi i

cordoli laterali

1.3 Materiali utilizzati

Condizioni ambientali e classi di esposizione per l'impalcato 1.3.1

Per l'opera in esame si prevede l'esposizione al seguente "range" di temperature:

 $T_{min} = -15 \, ^{\circ}C$

 $T_{max} = 45 \, ^{\circ}C$

Per l'umidità ambientale si assume:

RH = 75 %.

Per quanto riguarda la classe di esposizione, si prevede, sia per il calcestruzzo della soletta, sia per quello della trave prefabbricata la seguente classe:

soletta, traversi, cordoli e travi:

XC4.

Le caratteristiche del calcestruzzo dovranno pertanto rispettare, oltre i requisiti di resistenza indicati al punto seguente, anche i criteri previsti dalla vigente normativa (EN 11104 e EN 206) per quanto riguarda l'esposizione alle classi indicate.

DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata SX

Pagina 6

Nome file:
VI15-FCL002_C.00_relazione_calcolo_impalcato_SX.doc.

1.3.2 Calcestruzzo

Per le classi di esposizione dei vari elementi strutturali in calcestruzzo, si rimanda al capitolo precedente Per il calcestruzzo delle travi prefabbricate si ha:

Classe =	C45/55		classe di resistenza
R _{ck} =	55	MPa	resistenza caratteristica cubica
$f_{ck} = 0.83*R_{ck} =$	45.65	MPa	resistenza caratteristica cilindrica a compressione
$f_{cm} = f_{ck} + 8 =$	53.65	MPa	resistenza a compressione media
E_{cm} = 22000 $(f_{cm}/10)^{0.3}$ =	36416	MPa	modulo elastico secante
$f_{ctm} = 0.3 f_{ck}^{2/3} =$	3.83	MPa	resistenza a trazione media
$f_{ctd} = \alpha_{ct} \ 0.7 \ f_{ctm} / \gamma_{c} =$	1.79	MPa	resistenza a trazione di calcolo
v =	0.2		coefficiente di Poisson
γ_c =	1.5		coefficiente parziale di sicurezza
α_{cc} =	0.85		coefficiente riduttivo per resistenze di lunga durata
α_{ct} =	1		coefficiente per il calcolo della resistenza a trazione di calcolo
$f_{cd} = \alpha_{cc} * f_{ck}/\gamma_c =$	25.9	MPa	resistenza di calcolo a compressione
ε_{cu} =	0.0035		deformazione ultima a rottura
σ_c = 0.45 f_{ck} =	20.5	MPa	massima compressione in esercizio (SLE quasi permanente)
$\sigma_{\rm c}$ = 0.60 f _{ck} =	27.4	MPa	massima compressione in esercizio (SLE caratteristica)
R _{ckj} =	45.0	MPa	resistenza caratteristica cubica al taglio dei trefoli
$f_{ckj} = 0.83*R_{ckj} =$	37.35	MPa	resistenza caratteristica al taglio dei trefoli
$f_{ctmj} = 0.3 f_{ckj}^{2/3} =$	3.35	MPa	resistenza a trazione media al taglio dei trefoli
$f_{ctdj} = \alpha_{ct} \ 0.7 \ f_{ctmj} \ / \gamma_{c} =$	1.56	MPa	resistenza a trazione di calcolo al taglio dei trefoli
$\sigma_{\rm c}$ = 0.70 $f_{\rm ckj}$ =	26.1	MPa	massima compressione iniziale
$\sigma_{\rm c}$ = 0.90 $f_{\rm ckj}$ =	33.6	MPa	massima compressione iniziale nelle zone di ancoraggio
$\phi(\infty, t_0) =$	1.79		coefficiente di viscosità
$E_{c\infty} = E_{cm} / [1 + \varphi(\infty, t_0)] =$	13052	MPa	modulo elastico secante a lungo termine termine

Per il calcestruzzo della soletta si ha:

Classe =	C32/40		classe di resistenza
R _{ck} =	40	MPa	resistenza caratteristica cubica
$f_{ck} = 0.83*R_{ck} =$	33.2	MPa	resistenza caratteristica cilindrica a compressione
$f_{cm} = f_{ck} + 8 =$	41.2	MPa	resistenza a compressione media
E_{cm} = 22000 $(f_{cm}/10)^{0.3}$ =	33643	MPa	modulo elastico secante a breve termine
$f_{ctm} = 0.3 f_{ck}^{2/3} =$	3.10	MPa	resistenza a trazione media
$f_{ctd} = \alpha_{ct} \ 0.7 \ f_{ctm} / \gamma_{c} =$	1.45	MPa	resistenza a trazione di calcolo
ν =	0.2		coefficiente di Poisson
γ_{c} =	1.5		coefficiente parziale di sicurezza
α_{cc} =	0.85		coefficiente riduttivo per resistenze di lunga durata
$\alpha_{\rm ct}$ =	1		coefficiente per il calcolo della resistenza a trazione di

DAL KM 44+000 ALLO SVINCOLO CON L'A19

Proaetto	Esecutive

Opera: Viadotto Arenella III
Relazione di Calcolo Impalcato - Carreggiata SX
Pagina 7
Nome file:
VI15-F-
CL002_C.00_relazione_calcolo_impalcato_SX.doc.

calcolo

$f_{cd} = \alpha_{cc} * f_{ck}/\gamma_c =$	18.8	MPa	resistenza di calcolo a compressione
$arepsilon_{ extsf{cu}}$	0.35	%	deformazione ultima a rottura
n _{cls0} =	0.924		Coeff. di omogeneizzazione cao/cap al tempo t_{0}
$\phi(\infty, t_0) =$	1.79		Coefficiente di viscosità
$E_{c\infty} = E_{cm} / [1 + \phi(\infty, t_0)] =$	12058		modulo elastico secante a lungo termine
n _{clsoo} =	0.924		Coeff. di omogeneizzazione cao/cap al tempo too

1.3.3 Acciaio per c.a.p.

Tipo =	Trefoli da 0.	.6"	
E =	190000 M	MРа	modulo elastico
$f_{ptk} =$	1860 N	MРа	tensione di rottura
$f_{p(1)k} =$	1670 M	MРа	tensione caratteristica all'1% di deformazione totale
ε_{su} =	0.035		deformazione ultima a rottura
$\sigma_{spi} = min\{0.9 f_{p(1)k}, 0.8 f_{ptk}\} =$	1488		tensione limite iniziale
$\sigma_{\rm s} = 0.8 f_{\rm p(1)k} =$	1336		tensione limite in esercizio (combinazione rara)
n _{acc0j} =	7.00		coeff. di omogeneizzazione dell'acciaio al tempo $t_{0j}\mbox{ (taglio trefoli)}$
n _{acc0} =	5.22		coeff. di omogeneizzazione dell'acciaio al tempo $t_{\rm 0}$
n _{accoo} =	14.56		coeff. di omogeneizzazione dell'acciaio al tempo t_{oo}

1.3.4 Acciaio per c.a.

Barre ad aderenza migliorata:	B450C		classe di resistenza
f _{yk} =	450	N/mm ²	resistenza caratteristica di snervamento
γ_s =	1.15		coefficiente parziale di sicurezza
f _{yd} =	391.3	N/mm ²	
E _s =	200000	N/mm ²	modulo elastico
ν =	0.3		coefficiente di Poisson
$k = (f_t/f_y)_k =$	1.2		rapporto di sovraresistenza
$\varepsilon_{uk} = (A_{gt})_k =$	0.0075		deformazione ultima caratteristica
ε_{ud} = 0.9* ε_{uk} =	0.0675		deformazione ultima di calcolo
$\sigma_s = 0.8 f_{yk} =$	360	N/mm ²	Tensione limite in esercizio (Comb. Rara)

Per semplicità di calcolo anche per l'acciaio ordinario si adottano gli stessi coefficienti di omogeneizzazione acciaio/cls precedentemente determinati per l'acciaio per c.a.p.

Per quanto riguarda il calcolo dei coefficienti di viscosità riportati in questo paragrafo si rimanda ai paragrafi successivi, relativi alla metodologia di calcolo.

Progetto Esecutivo

Opera: Viadotto Arenella III
Relazione di Calcolo Impalcato - Carreggiata SX
Pagina 8
Nome file:
VI15-F-

CL002_C.00_relazione_calcolo_impalcato_SX.doc.

1.4 Normative di riferimento

Le analisi strutturali e le relative verifiche vengono eseguite secondo il metodo semi-probabilistico agli Stati Limite in accordo alle disposizioni normative previste dalla vigente normativa italiana e da quella europea (Eurocodici). In dettaglio si sono prese in esame i seguenti documenti, che di volta in volta verranno opportunamente richiamati:

D.M. 14 gennaio 2008: Nuove norme tecniche per le costruzioni (indicate nel prosieguo "NTC");
 Circolare n.617: Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni";

UNI EN 1990: Basi della progettazione strutturale;
 UNI EN 1991-1-4: Azioni sulle strutture – Azione del vento;
 UNI EN 1991-1-5: Azioni sulle strutture – Azioni termiche;

o UNI EN 1991-2: Azioni sulle strutture – Carichi da traffico sui ponti;

o UNI EN 1992-1-1: Progettazione delle strutture di calcestruzzo - regole generali e regole per gli

edifici;

UNI EN 1992-2: Progettazione delle strutture di calcestruzzo – Ponti di calcestruzzo;

1.5 Convenzioni generali, per le verifiche e le analisi globali

Le unità di misura sono quelle relative al sistema internazionale, ovvero:

lunghezze: m forze - coppie: kN, kNm tensioni: MPa

Per quanto riguarda le convenzioni di segno, si considerano, in generale, positive le tensioni compressione. Per quanto riguarda le azioni interne nell'impalcato, salvo diversamente specificato, si indicherà con:

P azione assiale (>0 se di trazione)

V2 azione tagliante agente nel piano verticale;

T momento torcente;

M3 momento flettente agente nel piano verticale.

1.6 Software di calcolo

L'analisi della struttura viene eseguita su un modello numerico agli elementi finiti, adottando il codice di calcolo SAP2000 della Computers and Structures, Inc.

Per le verifiche a stato limite ultimo e di esercizio delle sezioni in c.a.p. si sono utilizzati semplici fogli elettronici. In particolare per le sezioni ritenute significative si sono svolte le seguenti verifiche:

S.L.U.:

- Verifiche a pressoflessione semplice delle sezioni composite con presenza di armatura lenta in soletta e di precompressione nei cassoncini;
- Verifiche a taglio, secondo la teoria del traliccio di Morsch;
- Verifica della connessione trave soletta

S.L.E. :

- o Verifica elastica delle tensioni in esercizio
- Verifica a fessurazione

Opera: Viadotto Arenella III
Relazione di Calcolo Impalcato - Carreggiata SX
Pagina 9
Nome file: VI15-F-

CL002 C.00 relazione calcolo impalcato SX.doc.

2. IMPOSTAZIONI DELLE ANALISI E DELLE VERIFICHE

2.1 Metodologia di calcolo

Sia l'introduzione di vincoli esterni quanto la solidarizzazione tra trave e soletta contrastano le deformazioni relative differite e pertanto generano entrambe ridistribuzione. In sintesi, quindi, i fenomeni analizzati sono i seguenti:

- l'introduzione di vincoli esterni posticipati rispetto all'istante di applicazione del carico comporta l'insorgere di un quadro auto-equilibrato di reazioni vincolari esterne che modificano i valori dei momenti flettenti e degli sforzi di taglio lungo l'impalcato continuo.
- la solidarizzazione tra trave e soletta dà luogo ad una ridistribuzione auto-equilibrata di tensioni interne alla sezione, apportando modifiche allo stato tensionale.

Poiché si considera valida la conservazione delle sezioni piane per la sezione composta, l'analisi strutturale e l'analisi sezionale sono disaccoppiabili e possono quindi essere studiate separatamente. Del primo effetto se ne tiene conto in sede di calcolo delle sollecitazioni mediante un modello FEM dell'intera struttura, mentre della ridistribuzione interna se ne tiene conto a livello di verifica delle tensioni a stato limite di esercizio.

Per valutare gli effetti della viscosità l'ordine cronologico degli eventi fondamentali è limitato ai seguenti istanti:

- t_0 =7 gg istante a partire dal quale si considerano valutabili le conseguenze del fenomeno viscoso sulla trave prefabbricata ossia l'istante di applicazione congiunta di precompressione e peso proprio.
- t_0^* = 60 gg istante di getto della soletta e dei traversi, coincidente con la solidarizzazione dei vincoli posticipati. Si assume che tutti i vincoli posticipati siano applicati contemporaneamente.
- t l'istante di osservazione, che per gli effetti a lungo termine si assume t=100.000 gg = ∞

Indicata pertanto con S_I la sollecitazione agente nella struttura nella configurazione precedente all'introduzione dei vincoli posticipati (struttura isostatica) e con S_{II} la sollecitazione agente sulla struttura pensata con vincoli posticipati (struttura iperstatica), la sollecitazione effettiva si ricava dalla relazione:

$$S(t) = S_1 + \xi(t) (S_{11} - S_1)$$

Analogamente lo stato tensionale interno delle sezioni si può calcolare come:

$$\sigma(t) = \sigma_1 + \xi(t) (\sigma_1 - \sigma_1)$$

Dove si è indicato con $\sigma_{_{|}}$ la tensione indotta dalla sollecitazione esterna nella generica fibra della trave prima della solidarizzazione alla soletta (la cui rigidezza rappresenta un vincolo interno posticipato per precompressione, peso proprio e peso della soletta stessa) e con $\sigma_{_{||}}$ la tensione agente nella medesima fibra per effetto della medesima azione sollecitante pensata direttamente applicata alla sezione composta.

I coefficienti di distribuzione dipendono dall'aliquota di rotazione delle travate che per effetto di peso proprio e precompressione (azioni applicate a t_0) e per effetto del peso proprio della soletta (applicato a t_0^*) la struttura manifesterebbe se non fosse introdotto un vincolo posticipato che ne impedisse il manifestarsi. Si dimostra che tali coefficienti possono calcolarsi con le formule:

DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo	Progetto	Esecutivo
--------------------	----------	-----------

Opera: Viadotto Arenella III
Relazione di Calcolo Impalcato - Carreggiata SX
Pagina 10
Nome file:

CL002_C.00_relazione_calcolo_impalcato_SX.doc.

$$\xi(t) = \frac{\phi(t, t_o) - \phi(t_o^*, t_o)}{1 + \chi(t, t_o^*) \phi(t, t_o^*)}$$

per il peso proprio della trave e la precompressione

$$\xi(t) = \frac{\phi(t, t_o^*)}{1 + \chi(t, t_o^*)\phi(t, t_o^*)}$$

per il peso proprio della soletta

I coefficienti di viscosità che figurano nelle formule, qualitativamente riassunti anche nel grafico seguente, hanno il seguente significato:

 $\phi(\infty, t_0)$ valore a lungo termine della funzione di fluage che rappresenta l'evoluzione nel tempo dei fenomeni reologici indotti dall'applicazione al tempo t_0 del peso proprio e della precompressione.

 $\phi(t_0^*,t_0)$ valore al tempo t_0^* della precedente funzione

 $\phi(\infty, t_0^*)$ valore a lungo termine della funzione di fluage che rappresenta l'evoluzione nel tempo dei fenomeni reologici indotti dall'applicazione al tempo t_0^* del peso proprio della soletta.

 $\phi_{\text{res}}(\infty, t_0^*)$ valore a lungo termine della aliquota viscosa residua

 $\chi(\infty, t_0^*)$ coefficiente di invecchiamento che tiene conto del fatto che l'incremento delle tensioni non è istantaneo ma varia nel tempo con legge affine a quella viscosa

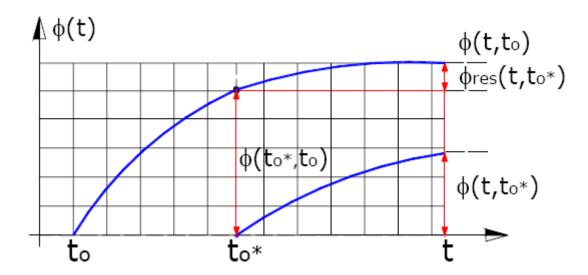


Figura 2.1 – Coefficienti di viscosità.

2.1.1 Coefficienti di viscosità e distribuzione

Con riferimento a quanto su esposto, nell'ipotesi che nei riguardi degli effetti indotti dalle azioni mutue interne le caratteristiche viscose della trave in c.a.p. e della soletta possano considerarsi affini, si riportano i valori dei coefficienti di viscosità e di distribuzione, calcolati secondo le modalità della EN 1992-1-1 Per quanto riguarda il perimetro e l'area esposta di una singola trave e dell'intera soletta, si ha:

Travi in cap

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III
Relazione di Calcolo Impalcato - Carreggiata SX
Pagina 11
Nome file:
VI15-F-
CL002_C.00_relazione_calcolo_impalcato_SX.doc.

u = A = A = A = A = A = A = A = A = A =	10315 847168 164	mm mm² mm	Perimetro cassoncino Area cassoncino Spessore fittizio	
<u>Soletta</u> b =	13230	mm	Larghezza soletta	
s =	250	mm	Spessore soletta	
u =	26960	mm	Perimetro della soletta	
A =	3307500	mm^2	Area della soletta	
$h_0 = 2A/u$	245	mm	Spessore fittizio	

Per il peso proprio e la precompressione:

f _{ck} =	45.65	N/mm ²	resistenza caratteristica cilindrica a compressione istante di applicazione congiunta di precompressione e peso proprio (valore
t ₀ =	7	gg	equivalente riferito ad un cemento tipo N)
$t_0^* =$	60	gg	istante di introduzione dei vincoli posticipati = istante del getto della soletta
$h_0 =$	164	mm	spessore fittizio
RH =	75	%	umidità relativa
Cemento =	N		tipo di cemento (congruente con t0 equivalente) coefficiente di viscosità per il peso proprio della trave e la precompressione a
$\phi(\infty, t_0) =$	1.789		lungo termine
			coefficiente di viscosità per il peso proprio della trave e la precompressione
$\phi(t_0^*,t_0) =$	0.897		a 60 gg
*.			aliquota viscosa residua per il calcolo delle ridistribuzioni viscose relative a
$\phi_{\text{res}}(\infty, t_0^*) =$	0.892		peso proprio e precompressione

Per il peso proprio della soletta:

f _{ck} =	45.65	N/mm ²	resistenza caratteristica cilindrica a compressione
t ₀ =	60	gg	istante di applicazione del peso proprio della soletta
$t_0^* =$	60	gg	istante di solidarizzazione dei vincoli = istante del getto della soletta
$h_0 =$	164	mm	Spessore fittizio
RH =	75	%	umidità relativa
Cemento =	N		tipo di cemento (congruente con t0 equivalente)
$\phi(\infty,{t_0}^*)=$	1.191		coefficiente di viscosità per il peso proprio della soletta a lungo termine coefficiente di viscosità per il peso proprio della soletta alla messa in
$\phi(t_0^*,t_0) =$	0		carico

Si ricavano i coefficienti di ridistribuzione:

$\chi =$	0.8	Coefficiente di invecchiamento
		Coefficiente di ridistribuzione per peso proprio e
$\xi = \phi_{\text{res}}(t_0^*, t_0) / [1 + \chi \phi(\infty, t_0^*)] =$	0.457	precompressione
$\xi = \phi(\infty, t_0^*) / [1 + \chi \phi(\infty, t_0^*)] =$	0.610	Coefficiente di ridistribuzione per il peso proprio della soletta
$\xi = 1 / [1 + \chi \phi(\infty, t_0^*)] =$	0.512	Coefficiente di ridistribuzione per il ritiro differenziale della soletta

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata SX

Pagina 12

Nome file:
VI15-FCL002_C.00_relazione_calcolo_impalcato_SX.doc.

2.2 Analisi della struttura

Le sollecitazioni sono state calcolate mediante più modelli agli elementi finiti che si differenziano per lo schema statico della struttura (isostatico con vincoli provvisori oppure iperstatico con vincoli finali) e per le caratteristiche geometriche delle sezioni (sezioni trasversali formate dai soli cassoncini oppure sezioni composite cassoncino con soletta). Quindi per le analisi a stato limite ultimo si sono sovrapposte le sollecitazioni di calcolo derivanti dalle combinazioni di progetto, mentre per gli stati limiti di esercizio si sono sovrapposti gli stati tensionali delle sezioni.

Nei paragrafi successivi si riporta una descrizione delle fasi di calcolo, delle caratteristiche geometriche delle sezioni trasversali e dei modelli numerici.

2.2.1 Fasi di calcolo

Le caratteristiche geometrico-statiche delle sezioni di impalcato si differenziano in funzione della presenza o meno della soletta in c.a. e della rigidezza relativa acciaio calcestruzzo espressa in termini di coefficiente di omogeneizzazione. Per tenere conto della reale sequenza delle fasi esecutive, l'analisi della struttura si articolerà come di seguito specificato:

- fase 1: assenza della soletta (fase iniziale), sezioni resistenti formate dalle sole travi in c.a.p. con l'acciaio da precompressione omogeneizzato con coefficiente calcolato a breve termine. Lo schema analizzato è quello di trave in semplice appoggio.
- fase 2: presenza della soletta, con modulo elastico della trave e della soletta valutato a lungo termine e con coefficienti di omogeneizzazione dell'acciaio delle armature lente e precompresse calcolati a lungo termine. Lo schema analizzato è quello di trave continua.
- fase 3: presenza della soletta con modulo elastico della trave e della soletta valutato a breve termine e con coefficienti di omogeneizzazione dell'acciaio delle armature lente e precompresse calcolati a breve termine. Lo schema analizzato è quello di trave continua. Le azioni considerate in tale fase sono costituite dai carichi da traffico, azione del vento, azione della temperatura.

2.3 Dati generali delle sezioni di impalcato

2.3.1 Larghezze collaboranti di soletta

Le larghezze collaboranti di soletta vengono valutate sulla base dei criteri contenuti in EN 1992-1-1, punto 5.3.2.1.

Per quanto riguarda le travi interne la soletta collaborante coincide con l'interasse fra le travi stesse, mentre per la soletta delle travi di bordo se ne è verificata la dimensione effettivamente collaborante, che si riduce rispetto al valore massimo solo in prossimità degli appoggi. Della larghezza effettiva se ne è tenuto conto in sede di calcolo delle tensioni ma non ai fini del calcolo delle sollecitazioni.

Con riferimento alla figura seguente, la larghezza collaborante è stata valutata rispetto alla porzione di soletta posta all'esterno dell'anima del cassoncino, pari a 3.66 m.

Progetto Esecutivo

Pagina 13 Nome file: VI15-F-CL002_C.00_relazione_calcolo_impalcato_SX.doc.

Relazione di Calcolo Impalcato - Carreggiata SX

Opera: Viadotto Arenella III

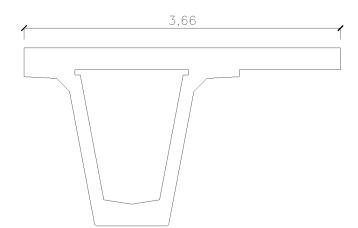
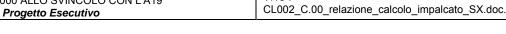


Figura 2.2 - Schema della trave di bordo (dimensioni in "m")

Calcolo larghezza collabarante (EC2 §5.3.2.1)

```
30 m lunghezza campata di riva
I_1
                     31 m lunghezza campate centrali
I_2
  (riva)
                  25.5 m distanza tra i punti di momento nullo sulla campata di riva
I<sub>0</sub> (appoggio)
               = 9.15 m distanza tra i punti di momento nullo sull'asse appoggio
  (centrale)
                  21.7 m distanza tra i punti di momento nullo sulle campate centrali
                    2.5 m larghezza trave in c.a.p
b_{w}
                  1.24 m larghezza soletta a sbalzo
b₁
b_{\text{eff1}}^{\text{ (riva)}}
               = 2.80 \text{ m}
b<sub>eff1</sub> (appoggio)
                  1.16 m
b<sub>eff1</sub> (centrale)
               = 2.42 \text{ m}
               = 3.66 m larghezza collaborante
b<sub>eff</sub>
```


2.3.2 Componenti delle sezioni

Le proprietà geometrico statiche delle sezioni sono state calcolate a partire dalla caratteristiche dei "componenti" di seguito descritti.

2.3.2.1 Trave in cap ed armatura di precompressione

Le principali dimensioni del cassoncino in cap sono riportate in figura; non sono previste zone ad anima e base rinforzata nelle zone di testata.

Opera: Viadotto Arenella III
Relazione di Calcolo Impalcato - Carreggiata SX
Pagina 14
Nome file:
VI15-F-

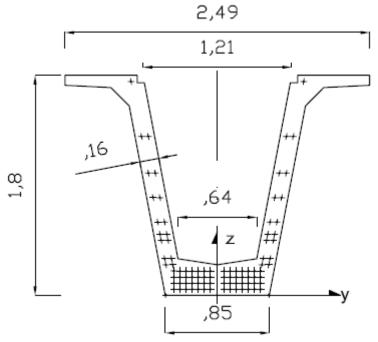


Figura 2.3 - Sezione trasversale delle travi a cassoncini in c.a.p.

Il cassoncino prevede la presenza di massimo 90 trefoli da 0.6", dei quali nella struttura in esame ne sono utilizzati al massimo 60; inoltre 10 trefoli sono neutralizzati da 0 a 9 m, mentre altri 14 trefoli sono neutralizzati da 0 a 1.5 m, come mostrato nella figura successiva.

Le coordinate dei trefoli, nel riferimento cartesiano indicato nelle figure precedenti, sono riportate in tabella, evidenziando i trefoli non utilizzati; per brevità e stante la simmetria si riportano solo le coordinate dei trefoli posti nella metà sinistra del cassoncino.

id	Y (mm)	Z (mm)	A (mm²)
1	-355.0	50.0	139.00
2	-305.0	50.0	139.00
3	-255.0	50.0	139.00
4	-205.0	50.0	139.00
5	-155.0	50.0	139.00
6	-105.0	50.0	139.00
7	-55.0	50.0	139.00
8	-55.0	100.0	139.00
9	-105.0	100.0	139.00
10	-155.0	100.0	139.00
11	-205.0	100.0	139.00
12	-255.0	100.0	139.00
13	-305.0	100.0	139.00
14	-355.0	100.0	139.00
15	-355.0	150.0	139.00
16	-305.0	150.0	139.00
17	-255.0	150.0	139.00
18	-205.0	150.0	139.00
19	-155.0	150.0	139.00

Progetto Esecutivo

Opera:	Viadotto	Arenella III	

Relazione di Calcolo Impalcato - Carreggiata SX

Pagina 15

Nome file: VI15-F-

 $CL002_C.00_relazione_calcolo_impalcato_SX.doc.$

id	Y (mm)	Z (mm)	A (mm²)
20	-105.0	150.0	139.00
21	-55.0	150.0	139.00
22	-55.0	200.0	0.00
23	-105.0	200.0	0.00
24	-155.0	200.0	0.00
25	-205.0	200.0	0.00
26	-255.0	200.0	0.00
27	-305.0	200.0	0.00
28	-355.0	200.0	0.00
29	-364.5	250.0	139.00
30	-374.0	300.0	139.00
31	-420.5	250.0	139.00
32	-430.0	300.0	139.00
33	-402.5	450.0	139.00
34	-412.0	500.2	139.00
35	-458.5	450.0	139.00
36	-468.0	500.2	139.00
37	-431.0	600.2	139.00
38	-487.0	600.2	139.00
39	-469.0	800.0	139.00
40	-525.0	800.0	139.00
41	-507.0	1000.0	139.00
42	-563.0	1000.0	139.00
43	-564.0	1300.0	139.00
44	-620.0	1300.0	139.00
45	-705.5	1750.0	139.00

Si ha pertanto:

Area lorda del cassoncino: 0.8472 m²

Armatura da 0-1.5m: 139*(60-10-14) = 5004 mm² Armatura da 1.5-9m: 139*(60-10) = 6950 mm² Armatura corrente: 139*76= 8340 mm²

2.3.2.2 Soletta centrale e di bordo

La soletta collaborante dei cassoncini centrali ha dimensioni 2500x250 mm mentre per la soletta di bordo si è fatto riferimento ad un rettangolo di dimensioni 36600x250 mm; il baricentro della soletta è posto a 1800+250/2=1925mm dall'intradosso dei cassoncini.

2.3.2.3 Armatura lenta in soletta

Nella soletta è disposta una armatura corrente realizzata con ϕ 14/200 sopra e sotto per tutto lo sviluppo dell'impalcato, e per tanto nella soletta collaborante delle travi si ha:

per la soletta delle travi centrali : 2500/200 = 12.5 ferri per strato => 2*12.5*153.94 = 3848 mm² per la soletta delle travi di bordo : 3370/200 = 18.3 ferri per strato => 2*18.3*153.94 = 5634 mm²

Inoltre si dispone, per 12 m in asse ad ogni pila una armatura aggiuntiva di ϕ 26/200 sopra e sotto, e quindi: per la soletta delle travi centrali : 2500/200 = 12.5 ferri per strato => 2*12.5*530.93 = 13273 mm²

per la soletta delle travi di bordo : 3660/200 = 18.3 ferri per strato => 2*18.3*530.93 =19432 mm²

Opera: Viadotto Arenella III
Relazione di Calcolo Impalcato - Carreggiata SX
Pagina 16
Nome file: VI15-F-
CL002 C.00 relazione calcolo impalcato SX.doc.

2.3.2.4 Armatura di rinforzo a fondo cassoncino

Nelle cavità riempite in prossimità degli appoggi in asse pila si dispone una ulteriore armatura per un totale di 16φ26=849 5mm² organizzata in tre strati:

strato 1 formato da $6\phi26$ a z=350mm dall'intradosso del cassoncino

strato 2 formato da 6\psi 26 a z=400mm dall'intradosso del cassoncino

strato 3 formato da 6\psi 26 a z=450mm dall'intradosso del cassoncino

Nella tabella seguente vengono riportate le principali caratteristiche geometriche dei vari elementi componenti appena descritti.

	id	A (mm^2)	zG (mm)	Jy (mm^4)
Cassoncino (area lorda)	0	847168	867	3.253E+11
Armatura di prec. corrente 60 trefoli	1	8340	420	1.65E+09
Armatura di prec. 50 trefoli	2	6950	466	1.53E+09
Armatura di prec. 36 trefoli	3	5004	572	1.33E+09
Soletta trave di bordo	4	937500	1925	4.883E+09
Soletta trave centrale	5	625000	1925	3.255E+09
Armatura lenta corrente (sezione centrale)	6	3848	1925	1.124E+07
Armatura lenta aggiuntiva inferiore	7	8495	394	1.294E+07
Armatura lenta aggiuntiva superiore (sezione centrale)	8	13273	1925	3.878E+07
Cavità del cassoncino	9	1409900	1117	2.645E+11
Armatura lenta corrente (sezione di bordo)	10	5188	1925	1.470E+07
Armatura lenta aggiuntiva superiore (sezione di bordo)	11	17892	1925	5.071E+07

Le grandezze in tabella sono:

- A Area del componente
- zG Posizione del baricentro di ogni componente riferita all'intradosso dei cassoncini
- Jy Momento di inerzia rispetto al baricentro di ogni singolo componente

Sommando il contributo di ogni "componente", adeguatamente pesato con i coefficienti di omogeneizzazione, si ricavano agevolmente le diverse proprietà delle sezioni semplici e composite necessarie per la modellazione e per le verifiche.

La collocazione delle sezioni considerate, riferita alla testata della trave precompressa, è così definita:

Tabella 2.1 - Indicazione delle sezioni

ID - sezione	trave	Descrizione della sezione
SA-b	bordo	x=L/2 (sezione di mezzeria)
SB-b	bordo	sezione a x=1.50m dalla testata della trave (sezione a filo riempimento in cls)
SD-b	bordo	sezione a 9.0m dalla testata della trave
SA-c	centrale	x=I/2 (sezione di mezzeria)
SB-c	centrale	sezione a x=1.50m dalla testata della trave (sezione a filo riempimento in cls)
SD-c	centrale	sezione a 9.0m dalla testata della trave

Progetto Esecutivo

D.M. 5.11.2001 Pagina 17
Nome file:
VI15-F

CL002_C.00_relazione_calcolo_impalcato_SX.doc.

coefficiente di omogeneizzazione armatura lenta-trave

Relazione di Calcolo Impalcato - Carreggiata SX

Opera: Viadotto Arenella III

I coefficienti di omogeneizzazione utilizzati sono quelli calcolati nei paragrafi relativi ai materiali; per il calcolo delle aree di acciaio omogeneizzate a calcestruzzo si utilizzano coefficienti "n-1" per tener conto della

2.3.3 Caratteristiche geometriche delle sezioni

sottrazione di area di cls dovuta alla presenza dei fori.

2.3.3.1 SA-c (mezzeria) -Travi centrali

0.00

 n_{s}

0.00

13.56

4.22

id_sezione	SF1	SF2	SF3	SF4			
	trave+trefoli t=0	trave+trefoli t=infinito	trave+ trefoli+soletta t=infinito	trave+ trefoli+sol t=0			
n _c	0.00	0.000	0.924	0.924			coefficiente di omogeneizzazione soletta-trave
n_p	6.00	13.56	13.56	4.22			coefficiente di omogeneizzazione trefoli-trave
n_s	0.00	0.00	13.56	4.22			coefficiente di omogeneizzazione armatura lenta-trave
Н	1.8	1.8	2.05	2.05		m	altezza sezione
Α	0.8972	0.9603	1.5899	1.4761		m ²	area sezione trasversale
Y_{G}	0.8421	0.8144	1.2542	1.2819)	m	distanza da intradosso baricentro
J	0.3444	0.3674	0.8395	0.7525	i	m ⁴	momento d'inerzia sezione trasversale
Y_{eq}	0.4200	0.4200	0.4200	0.4200)	m	ordinata trefolo equivalente
W_s	0.359	0.373	1.055	0.980		m^3	modulo di resistenza superiore trave
W_{i}	0.409	0.451	0.669	0.587		m ³	modulo di resistenza inferiore trave
2.3.3.2 S	B-c (FiloRr	emp) - Trav	i centrali				
id_sezione	SF1	SF2	SF3	SF4			
descrizione	trave+trefoli t=0	trave+trefoli t=infinito	trave+ trefoli+soletta t=infinito	trave+ trefoli+soletta t=0			
n_c	0.00	0.000	0.924	0.924			coefficiente di omogeneizzazione soletta-trave
n_p	6.00	13.56	13.56	4.22			coefficiente di omogeneizzazione trefoli-trave
n_s	0.00	0.00	13.56	4.22			coefficiente di omogeneizzazione armatura lenta-trave
Н	1.8	1.8	2.05	2.05	m		altezza sezione
Α	0.8772	0.9150	1.5447	1.4620	m ²		area sezione trasversale
Y_{G}	0.8569	0.8451	1.2853	1.2924	m		distanza da intradosso baricentro
J	0.3355	0.3484	0.7864	0.7355	m ⁴		momento d'inerzia sezione trasversale
Y_{eq}	0.5722	0.5722	0.5722	0.5722	m		ordinata trefolo equivalente
W_s	0.356	0.365	1.028	0.971	m^3		modulo di resistenza superiore trave
W_{i}	0.391	0.412	0.612	0.569	m^3		modulo di resistenza inferiore trave
2.3.3.3 S	D-c (a 9m)	- Travi cent	trali				
id_sezione	SF1	SF2	SF3	SF4			
descrizione	trave+trefoli t=0	trave+trefoli t=infinito	trave+ trefoli+soletta t=infinito	trave+trefoli+ soletta t=0			
n _c	0.00	0.000	0.924	0.924			coefficiente di omogeneizzazione soletta-trave
n_p	6.00	13.56	13.56	4.22			coefficiente di omogeneizzazione trefoli-trave

CORRIDOIO PLURIMODALE TIRRENICO-NORD EUROPA ITINERARIO AGRIGENTO -CALTANISSETTA-A19 S.S. N° 640 "DI PORTO EMPEDOCLE"

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19 Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata SX

Pagina 18

Nome file: VI15-F-

CL002_C.00_relazione_calcolo_impalcato_SX.doc.

Н	1.8	1.8	2.05	2.05	m	altezza sezione
Α	0.8889	0.9414	1.5711	1.4702	m ²	area sezione trasversale
Y_{G}	0.8482	0.8269	1.2670	1.2863	m	distanza da intradosso baricentro
J	0.3406	0.3594	0.8174	0.7454	m ⁴	momento d'inerzia sezione trasversale
Y_{eq}	0.4660	0.4660	0.4660	0.4660	m	ordinata trefolo equivalente
W_s	0.358	0.369	1.044	0.976	m^3	modulo di resistenza superiore trave
W_{i}	0.402	0.435	0.645	0.579	m^3	modulo di resistenza inferiore trave
2.3.3.4 SA	A-b (mezze	ria) -Travi o	li bordo			
id_sezione	SF1	SF2	SF3	SF4		
descrizione	trave+trefoli t=0	trave+trefoli t=infinito	trave+ trefoli+soletta t=infinito	trave+ trefoli+soletta t=0		
n_c	0.00	0.000	0.924	0.924		coefficiente di omogeneizzazione soletta-trave
n_p	6.00	13.56	13.56	4.22		coefficiente di omogeneizzazione trefoli-trave
ns	0.00	0.00	13.56	4.22		coefficiente di omogeneizzazione armatura lenta-trave
Н	1.8	1.8	2.05	2.05	m	altezza sezione
Α	0.8972	0.9603	1.8787	1.7649	m^2	area sezione trasversale
Y_{G}	0.8421	0.8144	1.3573	1.3871	m	distanza da intradosso baricentro
J	0.3444	0.3674	0.9510	0.8539	m ⁴	momento d'inerzia sezione trasversale
Y_{eq}	0.4200	0.4200	0.4200	0.4200	m	ordinata trefolo equivalente
W_s	0.359	0.373	1.373	1.288	m^3	modulo di resistenza superiore trave
W_{i}	0.409	0.451	0.701	0.616	${\rm m}^{\rm 3}$	modulo di resistenza inferiore trave
2.3.3.5 SE	B-b (FiloRie	emp) - Travi	i di bordo			
id_sezione	SF1	SF2	SF3	SF4		
descrizione	trave+trefoli t=0	trave+trefoli t=infinito	trave+ trefoli+soletta t=infinito	trave+ trefoli+soletta t=0		
n_{c}	0.00	0.000	0.924	0.924		coefficiente di omogeneizzazione soletta-trave
n_{p}	6.00	13.56	13.56	4.22		coefficiente di omogeneizzazione trefoli-trave
n_s	0.00	0.00	13.56	4.22		coefficiente di omogeneizzazione armatura lenta-trave
Н	1.8	1.8	2.05	2.05	m	altezza sezione
Α	0.8772	0.9150	1.8335	1.7508	m ²	area sezione trasversale
Y_{G}	0.8569	0.8451	1.3861	1.3967	m	distanza da intradosso baricentro
J	0.3355	0.3484	0.8874	0.8335	m ⁴	momento d'inerzia sezione trasversale
Y_{eq}	0.5722	0.5722	0.5722	0.5722	m	ordinata trefolo equivalente
W_{s}	0.356	0.365	1.337	1.276	m ³	modulo di resistenza superiore trave
W_{i}	0.391	0.412	0.640	0.597	m^3	modulo di resistenza inferiore trave

2.3.3.6 SI	D-b (a	9m) -	Travi	di	bordo
------------	--------	-------	-------	----	-------

SF1 SF2 SF3 SF4 id_sezione

Progetto Esecutivo

Opera: Viadotto Arenella III
Relazione di Calcolo Impalcato - Carreggiata SX
Pagina 19
Nome file:
VI15-F-
CL002_C.00_relazione_calcolo_impalcato_SX.doc.

descrizione	trave+trefoli t=0	trave+trefoli t=infinito	trave+ trefoli+soletta t=infinito	trave+ trefoli+soletta t=0		
n_c	0.00	0.000	0.924	0.924		coefficiente di omogeneizzazione soletta-trave
n_p	6.00	13.56	13.56	4.22		coefficiente di omogeneizzazione trefoli-trave
n_s	0.00	0.00	13.56	4.22		coefficiente di omogeneizzazione armatura lenta-trave
Н	1.8	1.8	2.05	2.05	m	altezza sezione
Α	0.8889	0.9414	1.8598	1.7590	m^2	area sezione trasversale
Y_{G}	0.8482	0.8269	1.3691	1.3911	m	distanza da intradosso baricentro
J	0.3406	0.3594	0.9245	0.8453	m^4	momento d'inerzia sezione trasversale
Y_{eq}	0.4660	0.4660	0.4660	0.4660	m	ordinata trefolo equivalente
W_s	0.358	0.369	1.358	1.283	m^3	modulo di resistenza superiore trave
W_{i}	0.402	0.435	0.675	0.608	m^3	modulo di resistenza inferiore trave

3. **DESCRIZIONE DEL MODELLO NUMERICO**

Sono stati elaborati più modelli agli elementi finiti per tener conto delle reali fasi costruttive. In particolare i modelli elaborati sono descritti nel seguito.

FASE 1 – Travi in c.a.p. su appoggi provvisori

Il modello di calcolo è un graticcio formato dalle travi principali vincolate agli appoggi provvisori, posti a bordo trave.

Le azioni applicate sono il peso proprio dei cassoncini, ed il peso proprio della soletta, non reagente, compreso il peso dei riempimenti in testata ed i traversi, anch'essi non reagenti.

FASE 2 - Maturazione della soletta, applicazione dei sovraccarichi permanenti, rimozione vincoli Si considera la struttura completa formata dalle travi composite con soletta collaborante.

Il modello di calcolo è un graticcio formato dalle travi longitudinali aventi sezioni omogeneizzate con rigidezza delle armature lente e precompresse valutata a tempo "infinito", e traversi schematizzati con la loro geometria reale.

Le azioni applicate sono tutte quelle della fase 1, per una valutazione degli effetti su schema iperstatico, delle deformazioni impresse indotte dalla precompressione e dal ritiro differenziale della soletta al fine di valutare gli effetti del secondo ordine, ed i carichi permanenti.

FASE 3 - Applicazione dei carichi istantanei (mobili ed accidentali in genere)

I modelli di calcolo per la valutazione degli effetti indotti dal traffico, dalle variazioni termiche, dal vento e dal sisma, sono gli stessi descritti per la fase 2, ma con sezioni omogeneizzate "a tempo iniziale". I carichi applicati sono quelli termici, da traffico compreso il carico folla sul marciapiede ed il vento.

La struttura è stata modellata in tridimensionale nelle ipotesi classiche di comportamento a graticcio, con quattro file di elementi trave (elementi frames) a sei gradi di libertà per nodo, che corrono lungo lo sviluppo longitudinale delle travate. Anche i traversi, presenti solo in asse alle spalle ed alle pile, sono modellati con travi tipo frames.

I vincoli esterni, costituiti da due molle orizzontali di eguale rigidezza k_x=8,3030 kN/m, ed una molla verticale $k_7=\infty$ kN/m, sono applicati ai nodi del graticcio in asse alle spalle ed alle pile.

Di seguito si riporta una vista assonometrica del modello tridimensionale della struttura.

DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III Relazione di Calcolo Impalcato - Carreggiata SX Pagina 20 Nome file:

CL002_C.00_relazione_calcolo_impalcato_SX.doc.

VI15-F-

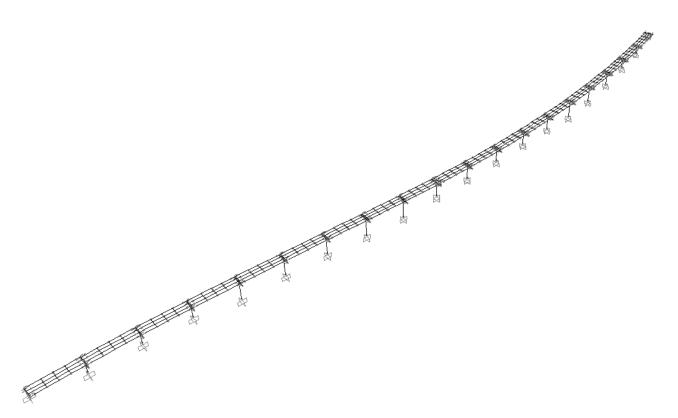


Figura 3.1 - Vista assonometrica del modello FEM dell'impalcato.

4. ANALISI DEI CARICHI

Di seguito si riporta la descrizione dei vari contributi di carico presi in esame ai fini dell'analisi globale dell'impalcato.

Le sollecitazioni per le verifiche sezionali sono state dedotte dall'analisi globale.

4.1 Carichi agenti in fase 1

4.1.1 Peso proprio calcestruzzo travi (G_{k1}')

Il peso delle travi principali è stato applicato come carico per unità di lunghezza. L'entità di tale carico è determinata come segue:

$\gamma =$	25.0	kN/m³	peso specifico c.a.
A =	0.847	m^2	sezione corrente
w =	21.175	N/m	peso per unità di lunghezza di una trave
A =	1.41	m^2	area cavità da riempire
w =	35.25	N/m	peso per unità di lunghezza delle cavità piene

Opera: Viadotto Arenella III
Relazione di Calcolo Impalcato - Carreggiata SX
Pagina 21
Nome file:
VI15-F-
CLOO2 COO relazione calcolo impalcato SY doc

4.1.2 Peso proprio soletta (Gk1")

Il peso della soletta di impalcato nei modelli numerici è calcolato automaticamente a partire dal suo spessore di 0.25 m e dal peso specifico del calcestruzzo γ =25.0 kN/m³. L'entità del carico, espressa per unità di lunghezza di impalcato è:

$L_{tot} =$	12.48	m	larghezza totale impalcato
s =	0.25	m	spessore incluso predalles
γ=	25.0	kN/m³	peso specifico c.a.
w =	78.0	kN/m	peso per unità di lunghezza di impalcato

4.1.3 Peso proprio traversi (Gk1")

I traversi hanno una base di larghezza variabile, mediamente pari ad 1.70 m, ed una altezza di 2.1m, al netto della soletta e compresa una piastra prefabbricata di base di spessore 0.3 m.

Nei modelli il peso è stato calcolato automaticamente a partire dalla effettiva area in pianta e dalla loro altezza, per una carico complessivo di:

h =	2.1 m	altezza traverso, incluso fondello prefabbricato, esclusa la soletta
γ=	25.0 kN/m ³	peso specifico c.a.
w =	52.50 kN/m ²	peso per unità di superficie

4.1.4 Precompressione (Pk)

La precompressione è imposta mediante cavi pretesi, con una tensione di tesatura iniziale pari a σ_{pm0} =1350 MPa.

Delle perdite di precompressione per viscosità, ritiro e rilassamento se ne tiene conto approfonditamente in sede di verifiche sezionali allo stato limite di servizio.

Per il calcolo degli effetti iperstatici della precompressione e per le verifiche sezionali a stato limite ultimo se ne tiene conto assumendo una perdita forfettaria, comprensiva di effetti differiti ed effetti istantanei, del 14%.

Nel seguito sono riportati, per la sezione corrente della trave centrale e della trave di bordo, i calcoli delle deformazioni e curvature impresse per precompressione a partire dalle quali sono stati calcolati gli effetti iperstatici della precompressione nel modello globale.

		TRAV-bordo	TRAV-cen		
Np	=	10473	10473	kN	precompressioneal netto delle cadute di tensione istantanee
Yeq	=	0.4000	0.3584		distanza del cavo equivalente dall'intradosso
Yg	=	1.3547	1.2514	m	distanza del baricentro sezone dall' intradosso
е	=	0.95	0.89	m	eccentricità soletta rispetto al baricentro della sezione composta
M_p	=	-9999	-9353	kN*m	momento flettente dovuto alla precompressione nella trave
ϵ_{perc}	=	-1.690E-04	-2.032E-04		deformazione impressa equivalente
χprec	=	-3.400E-04	-3.613E-04		curvatura impressa equivalente

Progetto Esecutivo

Pagina 22 Nome file: VI15-F-

Opera: Viadotto Arenella III

CL002_C.00_relazione_calcolo_impalcato_SX.doc.

Relazione di Calcolo Impalcato - Carreggiata SX

4.2 Carichi agenti in fase 2

4.2.1 Sovraccarichi permanenti (Gk2)

Cordoli, di dimensioni 75 cm e 123 cm, è pari a:

 $h_{cordolo}$ = 0.18 m altezza cordolo

 $g_{1.2.dxA}$ = 3.38 kN/m peso proprio del cordolo dx $g_{1.2.sxD}$ = 5.54 kN/m peso proprio del marciapiede sx

Oltre ai due cordoli sono stati presi in considerazione i seguenti carichi:

	carico unitario [kPa]	larghezza [m]	carico lineare [kN/m]	
9 _{2.1.sxD}	2.50	2.51	6.28	kN/m pavimentazione lato trave sx D - lato marciapiede
g _{2.1.sxC}	2.50	2.50	6.25	kN/m pavimentazione lato trave centrale sx C
g _{2.1.dxB}	2.50	2.50	6.25	kN/m pavimentazione lato trave centrale dx B
g _{2.1.dxA}	2.50	2.99	7.48	kN/m pavimentazione lato trave dx A - lato cordolo
g _{2.3.sxD}	-	-	1.00	kN/m guard-rail sx
g _{2.3.dxA}	-	-	1.00	kN/m guard-rail dx
g _{2.4.sxD}	-	-	1.00	kN/m veletta sx
g _{2.4.dxA}	-	-	1.00	kN/m veletta dx
g _{2.5.dxA}	-	-	1.00	kN/m parapetto
g _{2.dx} A	-	-	8.28	kN/m pavimentazione lato trave dx A - lato cordolo
9 _{2.dx B}	-	-	6.25	kN/m pavimentazione lato trave centrale dx B
g _{2.sxC}	-	-	6.25	kN/m pavimentazione lato trave centrale sx C
g _{2.sxD}	-	-	10.48	kN/m pavimentazione lato trave sx D - lato marciapiede
g_2			31.25	permanente portato totale

Per garantire la pendenza nei tratti in curva del viadotto è stato considerato il peso del massetto delle pendenze pari a 18kN/mc e con sepssore variabile 5 ÷ 20 cm.

4.2.2 Ritiro differenziale trave-soletta (Gsh,k)

Poiché la soletta viene gettata in opera su travi che hanno già sviluppato liberamente deformazioni omogenee di ritiro, ni tiene conto solo dello scorrimento relativo trave soletta, calcolato come:

$$\varepsilon_{\text{sh}} = \varepsilon_{\text{sh travi}}(60, \infty) - \varepsilon_{\text{sh soletta}}(2, \infty) = 1.9e-4$$

Vengono valutati separatamente gli effetti primari del ritiro e gli effetti secondari (dovuti all'iperstaticità della struttura). Gli effetti primari vengono valutati con la formula:

$$N_r = \varepsilon_{sh} * E_s / n_{f2b} * b_{eff} * t_{cls}$$

$$M_r = N_r * e$$

In particolare con "e" si è indicata l'eccentricità fra il baricentro della soletta ed il baricentro della sezione composta omogeneizzata in fase 2. In sede di verifica tensionale, nella soletta, alle tensioni indotte da N_r ed M_r si aggiunge lo stato di coazione locale di trazione $\sigma_{sh} = \epsilon_{sh} * E_s/n_{f2b}$

Gli effetti del ritiro primario nelle verifiche vengono ignorati nelle zone fessurate; gli effetti secondari vengono presi in conto dalla modellazione globale effettuata con SAP2000 in termini di deformazioni e curvature impresse.

DAL KM 44+000 ALLO SVINCOLO CON L'A19

Proge	etto	Ese	cuti	v

Opera: Viadotto Arenella III
Relazione di Calcolo Impalcato - Carreggiata SX
Pagina 23

Nome file: VI15-F-

CL002_C.00_relazione_calcolo_impalcato_SX.doc.

Seguono i calcoli delle grandezze suddette.

		TRAV-bordo	TRAV-cen		
$\epsilon_{\sf sh}$	=	0.00020	0.00020		deformazione da ritiro residua
E*c	=	11214	11214	MPa	modulo elastico ridotto cls per fenomeni viscosi
σ_{sh}	=	2.24	2.24	MPa	trazione nel calcestruzzo
A_c	=	0.94	0.625	m^2	area conglomerato
N_{sh}	=	2097	1402	kN	trazione nella soletta
е	=	0.53	0.63	m	eccentricità soletta rispetto al baricentro della sezione composta
M_{sh}	=	1103	886	kN*m	momento flettente nella trave
N_{rt}	=	2097	1402	kN	compressione su ciascuna trave
M_{rt}	=	1103	886	kN*m	momento flettente su ciascuna trave
ϵ_{rit}	=	-3.384E-05	-2.720E-05		deformazione impressa equivalente
χ_{rit}	=	3.750E-05	3.424E-05		curvatura impressa equivalente

4.3 Carichi agenti in fase 3

4.3.1 Variazioni termiche (QTk)

I criteri per la determinazione degli effetti della temperatura sono contenuti in NTC-08, cap. 3.5 (rif. Eurocodici EN 1991-1-5). Dal momento che NTC-08 non riporta prescrizioni specifiche per il calcolo degli effetti della temperatura (in particolare i gradienti termici) per i ponti si farà riferimento ai criteri contenuti negli Eurocodici.

4.3.1.1 Variazioni termiche uniformi Δt_N

Per l'Italia, il "range" di temperatura dell'aria è definito dai seguenti valori:

 $T_{min} = -15 \, ^{\circ}C$

 T_{max} = +45 °C

a cui corrispondono, per ponti di gruppo 3 (tipologia impalcato di calcestruzzo), i seguenti valori riferiti alla struttura:

 $Te_{min} = -6 °C$

 $Te_{max} = +46 \, ^{\circ}C$

Fissando T_0 a 15.0 °C, dedotto dall'Annesso nazionale dell'Eurocodice, si ottiene l'escursione termica effettiva subita dall'impalcato:

 $\Delta TN_{comp} = -21 \, ^{\circ}C$

 $\Delta TN_{exp} = +31 \, ^{\circ}C$

a cui corrisponde complessivamente un'escursione pari a:

 $\Delta T_{N} = 52.0 \, ^{\circ}C.$

4.3.1.2 Variazioni termiche lineari Δt_M

Per ponti di gruppo 3 (concrete box girdere), i valori caratteristici delle variazioni lineari di temperatura (gradiente tra intradosso ed estradosso) risultano:

 $\Delta T_{M,heat} = 10.0 \, ^{\circ}C$

 $\Delta T_{M.cool} = -5.0 \, ^{\circ}C$

Considerando il coefficiente riduttivo di Δt_{pos} concesso per tenere conto dello spessore del manto di asfaltatura (k_{sur} = 1 per t = 100.0 mm), si ottengono i valori di progetto:

 $k_{sur} \Delta T_{M.heat} = 10.0 \, ^{\circ}C$

estradosso più caldo dell'intradosso estradosso più freddo dell'intradosso

 $k_{sur} \Delta T_{M.cool} = -5.0 \,^{\circ}C$

Pagina 24 Nome file: VI15-F-

 ${\tt CL002_C.00_relazione_calcolo_impalcato_SX.doc.}$

Relazione di Calcolo Impalcato - Carreggiata SX

Opera: Viadotto Arenella III

Progetto Esecutivo

4.3.1.3 Combinazione degli effetti uniformi e lineari

La combinazione degli effetti dovuti alla variazione termica uniforme e lineare verrà effettuata sfruttando la formula di combinazione proposta dalla normativa, che prevede due combinazioni principali in cui Δt_M e Δt_N sono amplificati mediante differenti coefficienti di combinazione:

C1: $\Delta t_M + 0.35 \Delta t_N$ C2: $0.75 \Delta t_M + \Delta t_N$

4.3.2 Carichi mobili (Qk)

Si seguono le disposizioni contenute nel D.M. 2008, cap. 5.1.3.3.5, equivalenti a quelle contenute in EN 1991-2. Si fa riferimento a ponti di I categoria.

Nel caso in esame, la carreggiata, di larghezza utile pari a 10.50 m, è in grado di ospitare 3 corsie di carico di larghezza convenzionale pari a 3.0 m. La parte rimanente ("remaining area") risulta pari a 1.50 m.

Corsia di carico n.1 costituita da:

- ✓ Schema di carico n.1 : n. 4 carichi concentrati da 150 kN cadauno disposti ad interasse 2.00m in direzione longitudinale al viadotto e 1.2 m in direzione trasversale
- ✓ Carico uniformemente ripartito di intensita 9.0 kN/m²2 su una larghezza di 3.00m

Corsia di carico n. 2 costituita da:

- ✓ Schema di carico n.1 ridotto : n. 4 carichi concentrati da 100 kN cadauno disposti ad interasse 2.00m in direzione longitudinale al viadotto e 1.2 m in direzione trasversale
- √ Carico uniformemente ripartito di intensita 2.5 kN/m² su una larghezza di 3.00m

Corsia di carico n. 3 costituita da:

- ✓ Schema di carico n.1 ridotto : n. 4 carichi concentrati da 50 kN cadauno disposti ad interasse 2.00m in direzione longitudinale al viadotto e 1.2 m in direzione trasversale
- ✓ Carico uniformemente ripartito di intensita 2.5 kN/m² su una larghezza di 3.00m

Corsia di carico n. 4 (Rimaining area RA) costituita da :

 ✓ - Carico uniformemente ripartito di intensita 2.5 kNn/m² su una larghezza residua di impalcato pari a (10.50-3.00*3)= 1.50 m

4.3.2.1 Verifiche globali

Le stese dei carichi mobili prima definite sono state poste sull'impalcato nelle posizioni tali da produrre le sollecitazioni e le deformazioni più gravose. La ricerca delle disposizioni sia longitudinali che trasversali dei

Nome file: VI15-F-CL002 C.00 relazione calcolo impalcato SX.doc.

Relazione di Calcolo Impalcato - Carreggiata SX

Opera: Viadotto Arenella III

Pagina 25

carichi mobili più gravose è stata effettuata in maniera automatica dal codice di calcolo impiegato per l'analisi dell'impalcato. Infatti, il programma di calcolo SAP2000 esegue l'analisi delle sollecitazioni dovute ai carichi mobili partendo dalle linee d'influenza di ciascuna sezione e sommando soltanto i termini che contribuiscono a massimizzare il valore assoluto della sollecitazione stessa (rispettivamente per i valori

In tale maniera si ottempera a quanto previsto dalla Normativa che prevede che i carichi mobili siano disposti lungo l'asse della corsia nel modo più sfavorevole (disposizione a scacchiera).

4.3.2.2 Verifiche locali

massimi ed i valori minimi).

Per le verifiche locali della soletta d'impalcato si ricorre allo schema di carico globale oltre al "Modello di carico 2" (LM2), composto da un veicolo ad un solo asse, avente un peso complessivo pari a 400 kN. E' stato redatto inoltre un modello locale descritto nel paragrafo dedicato alle verifiche trasversali della soletta.

4.3.3 Azioni di frenatura (QIk)

La forza di frenamento o di accelerazione è funzione del carico verticale totale agente sulla corsia convenzionale n. 1. Tale azione viene equilibrata da reazioni vincolari longitudinali degli apparecchi di appoggio e pertanto la stessa non sarà considerata nei calcoli di dimensionamento e verifica dell'impalcato.

4.3.4 Azione del vento (Fw,k)

Vento su impalcato

Il carico neve viene trascurato in questa analisi in quanto la sua azione è significativa solamente in fase di esecuzione dell'opera; per quanto riguarda invece il vento, a partire da informazioni quali l'ubicazione geografica del sito di realizzazione dell'opera, la rugosità e la topografia del terreno, la categoria di esposizione del sito e l'altezza dal suolo, la normativa (NTC cap.3.3) permette di valutare l'azione del vento in termini di azioni statiche equivalenti (la pressione statica del vento può essere rappresentata in termini di sollecitazioni globali applicate poi alle travi come carichi distribuiti verticali ed orizzontali).

Di seguito si riporta il dettaglio del calcolo dell'azione del vento sull'impalcato e sulle pile del pviadotto

<u>vento su impaicato</u>				
zona	=	4		sicilia
$V_{b,0}$	=	28	m/s	
a_0	=	500	m	
k _a	=	0.02	1/s	
a_s	=	315	m	altitudine del sito
V_b	=	28	m/s	velocità di riferimento
ρ	=	1.25	kg/m³	densità dell'aria
q_b	=	0.490	kN/m²	pressione cinetica di riferimento
	=	D		classe di rugosità del terreno
Ct	=	1		coefficiente di topografia
	=	П		categoria di esposizione del sito
k_r	=	0.19		Tabella 3.3.II
z_0	=	0.05	m	Tabella 3.3.II
Z _{min}	=	4.00	m	Tabella 3.3.II
Z	=	12.00	m	altezza sul suolo (massima)
C _e	=	2.47		coefficiente di esposizione
C_p	=	1		coefficiente di forma
C_{d}	=	1		coefficiente dinamico
р	=	1.21	kN/m²	pressione del vento
H _{vc}	=	3.00	m	altezza veicolo convenzionale
H_{imp}	=	2.23	m	altezza impalcato
•				

Pagina 26

Nome file:
VI15-FCL002_C.00_relazione_calcolo_impalcato_SX.doc.

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata SX

Esecutivo

H _{vento}	=	5.23	m	altezza superficie di spinta
F _{vento}	=	6.33	kN/m	azione del vento su impalcato
Y_{G}	=	1.40	m	distanza da intradosso baricentro impalcato
е	=	1.22	m	eccentricità dell'azione del vento
M_{vento}	=	7.69	kNm/m	coppia torcente
d_{sx}	=	3.75	[m]	distanza trave sx da asse impalcato
di_1	=	1.25	[m]	distanza della trave centrale sx da asse impalcato
di_2	=	-1.25	[m]	distanza della trave centrale dx da asse impalcato
d_{dx}	=	-3.75	[m]	distanza trave sx da asse impalcato
k	=	0.2	[m]	$k = [M/(d_1^2 + d_2^2 + + d_n^2)]$
$q_{5v,sxD}$	=	0.92	[KN/m]	azioni verticali equilibranti - sx lato marciapiede
$q_{5v,sxC}$	=	0.31	[KN/m]	azioni verticali equilibranti - centrale sx
$q_{5v,dxB}$	=	-0.31	[KN/m]	azioni verticali equilibranti - centrale dx
$q_{5v,dxA}$	=	-0.92	[KN/m]	azioni verticali equilibranti - dx lato cordolo
q _{5h}	=	1.58	kN/m	azione orizzontale su ciascuna trave

4.3.5 Sisma

Le azioni sismiche non sono dimensionanti per il calcolo degli elementi principali dell'impalcato. Di tali azioni si tiene conto nel dimensionamento e la verifica delle pile e delle spalle. Si rimando pertanto alle relazioni di calcolo delle sottostrutture per la valutazione dettagliata di dette azioni.

5. COMBINAZIONI DI CARICO

Per l'impalcato in esame, si evidenzia preliminarmente che, tra le azioni variabili da traffico si considereranno solamente i carichi di gruppo 1.

Per le formulazioni generali delle combinazioni di carico nell'ambito dei vari S.L. si rimanda a NTC-08 cap. 2.5.3 (rif. Eurocodice EN 1990-annex.A2, cap. A2.3, A2.4).

S.L.U. - fondamentale

Con riferimento ai carichi significativi, la combinazione assume la seguente forma:

$$E_{d} = \gamma_{G1} \; G_{k1} + \gamma_{G2} \; G_{k2} + \gamma_{ep} \; G_{kep} + \gamma_{sett.} \; G_{ksett.} + \gamma_{sh} \; G_{sh} + \gamma_{q,1} \; (Q_{k,TS} + Q_{k,UDL}) + \gamma_{q,2} \; \psi_{0,2} \; Q_{k,T}$$

Per quanto riguarda i coefficienti moltiplicativi, si fa riferimento a quanto contenuto in NTC-08, cap. 5.1.3.12, tab. 5.1.V, ripreso da EN 1990, annex A.2, e relativo N.A.D.. Si segnala a tale proposito qualche leggera discrepanza da quanto desumibile in origine da quest'ultimo riferimento normativo, discrepanza superata mediante una puntuale applicazione dei criteri contenuti nel N.A.D.. Per i coefficienti si considera quanto seque:

γ _{G1}	=	1.35 - 1	coefficiente moltiplicativo dei sovraccarichi permanenti strutturali;
γ̃G2	=	1.35 - 1	dal momento che sono di carattere compiutamente definito, i carichi permanenti portati verranno trattati alla stessa stregua dei carichi permanenti strutturali;
γ_{sht}	=	1.2 - 1.2	coefficiente moltiplicativo per le azioni dovute al ritiro, nell'analisi di lungo termine;
γ_{sht}	=	0	coefficiente moltiplicativo per le azioni dovute al ritiro, nell'analisi di breve termine;
γQ1	=	1.35 - 0	coefficiente moltiplicativo per i carichi da traffico;
γQ2	=	1.2	coefficiente moltiplicativo per i carichi di origine termica;

DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata SX

Pagina 27

Nome file: VI15-F-

CL002 C.00 relazione calcolo impalcato SX.doc.

1.5 γ_{Qv}

coefficiente moltiplicativo per i carichi dovuti al vento.

I coefficienti di combinazione dell'azione di temperatura e del vento, risultano (cfr. NTC-08, tab. 5.1.VI):

 $\psi_{0.3} = 0.6$

 $\psi_{0,2} = 0.6$

Quanto evidenziato è relativo alla verifica allo S.L.U. delle travi d'impalcato, per le quali risulta significativa la sola combinazione con carichi mobili dominanti.

S.L.E. – fondamentale (rara)

Con riferimento ai carichi significativi, si ha la sequente combinazione dei valori caratteristici dei carichi (indice "k").

$$E_d = G_{k1} + G_{k2} + G_{kep} + G_{ksett.} + G_{sh} + (Q_{k,TS} + Q_{k,UDL}) + \psi_{0,2} Q_{k,T}$$

Il coefficiente di combinazione dell'azione di temperatura, risulta (cfr. NTC-08, tab. 5.1.VI):

 $\psi_{0,2} = 0.6$;

 $\psi_{0,3}$ =0.6.

La combinazione S.L.E. fondamentale verrà impiegata ai fini delle seguenti verifiche:

verifica allo S.L.E., limitazione delle tensioni.

S.L.E. - frequente

Tale combinazione si esprime simbolicamente attraverso la seguente espressione:

$$E_d = G_{k1} + G_{k2} + G_{kep} + G_{ksett.} + G_{sh} + (\psi_{1,1TS} Q_{k,TS} + \psi_{1,1UDL} Q_{k,UDL}) + \psi_{2,2} Q_{k,T}$$

I coefficienti di combinazione (NTC-08, tab. 5.1.VI, EN 1991-2,) risultano:

 $\psi_{1,1}$ = 0.75 per i contributi TS;

 $\psi_{1,1}$ = 0.4 per i contributi UDL;

 $\psi_{2,2}$ = 0.5 per la temperatura;

 $\psi_{2,3}$ = 0.0 per il vento.

La combinazione S.L.E. frequente viene impiegata per:

verifiche a fessurazione

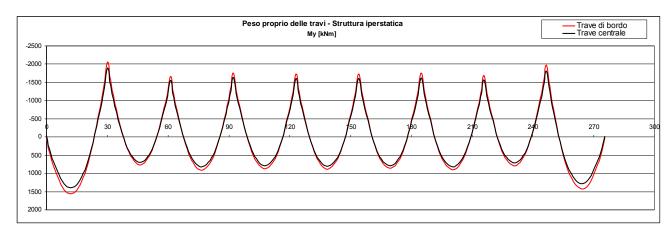
S.L.E. – quasi permanente

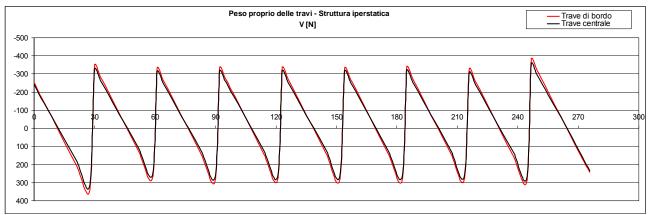
Risultano assenti i carichi mobili da traffico, i cui coefficienti quasi permanenti di combinazione sono nulli, mentre la temperatura viene associata al coefficiente di combinazione $\psi_{2,2} = 0.5$.

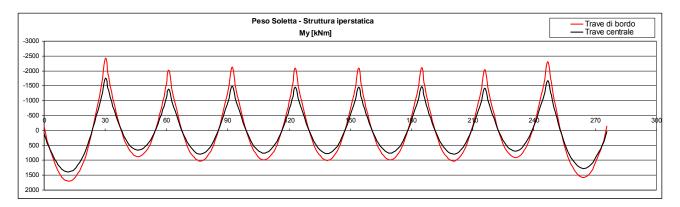
Risultati Dell'analisi Strutturale Impalcato 6.

6.1 Sollecitazioni trave

A valle dell'analisi strutturale, effettuate per le singole azioni caratteristiche, vengono eseguiti gli inviluppi e le combinazioni di carico pertinenti ai vari scopi, rispettivamente per max/min V e max/min M.

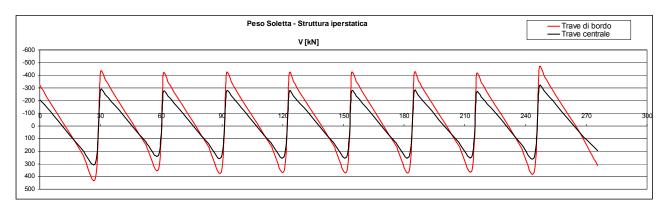

Opera: Viadotto Arenella III

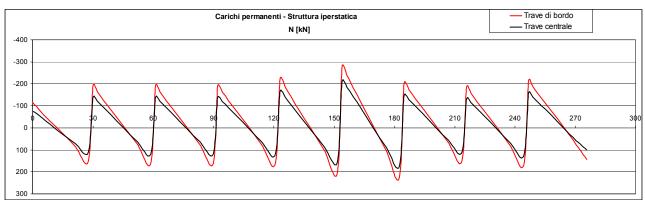

Relazione di Calcolo Impalcato - Carreggiata SX

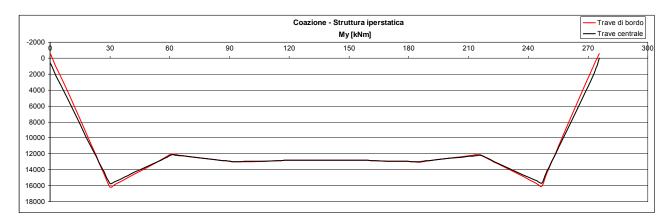

Pagina 28

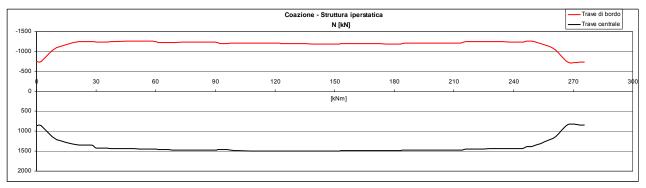
Nome file:
VI15-FCL002_C.00_relazione_calcolo_impalcato_SX.doc.

Nel seguito si riportano i diagrammi delle sollecitazioni delle prime nove campate della travata di bordo lato ciglio esterno (SX) e della travata centrale adiacente, organizzati per condizioni di carico elementari.

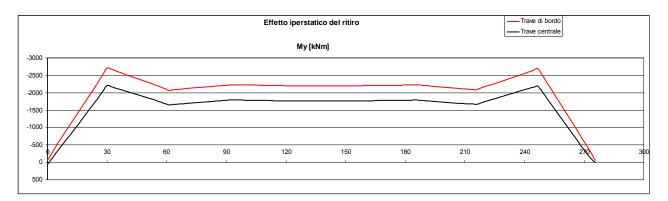

Pagina 29 Nome file: VI15-F-

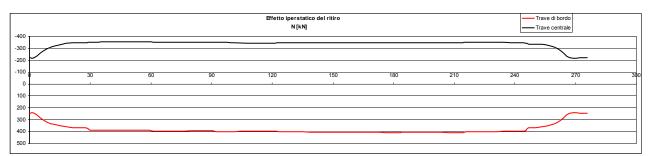

CL002_C.00_relazione_calcolo_impalcato_SX.doc.

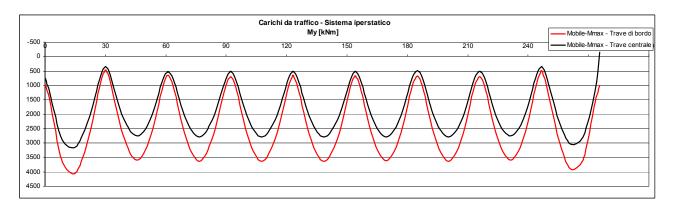

Relazione di Calcolo Impalcato - Carreggiata SX

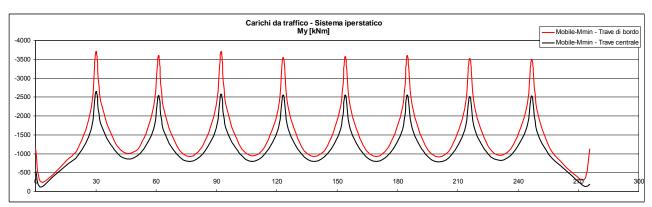

Opera: Viadotto Arenella III

Progetto Esecutivo

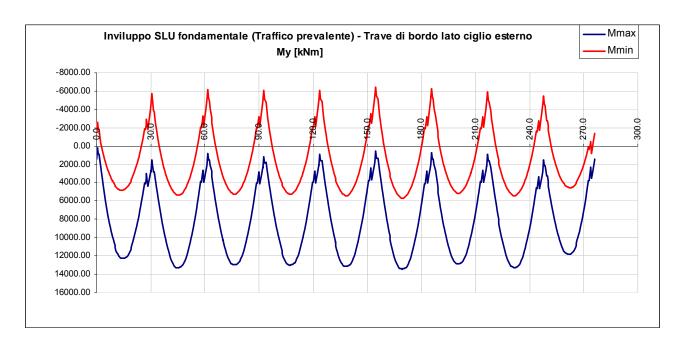

Pagina 30 Nome file: VI15-F-

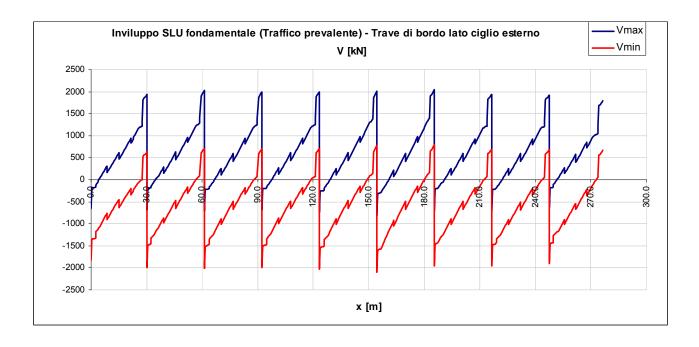

CL002_C.00_relazione_calcolo_impalcato_SX.doc.


Relazione di Calcolo Impalcato - Carreggiata SX


Opera: Viadotto Arenella III

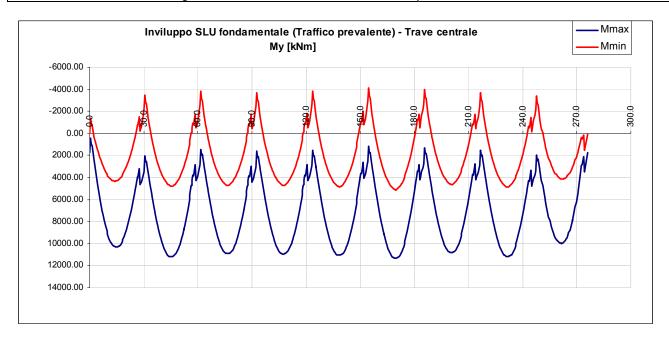
Progetto Esecutivo

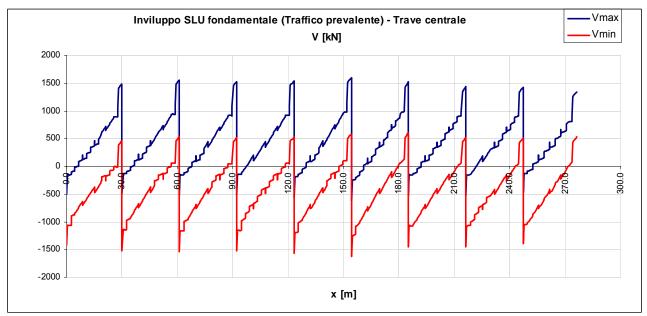




Opera: Viadotto Arenella III
Relazione di Calcolo Impalcato - Carreggiata SX
Pagina 31
Nome file:
VI15-FCL002_C.00_relazione_calcolo_impalcato_SX.doc.

Nel seguito si riportano i diagrammi degli inviluppi con Traffico prevalente delle prime nove campate della travata di bordo lato ciglio esterno (SX) e della travata centrale adiacente.


Pagina 32 Nome file: VI15-F-


 ${\tt CL002_C.00_relazione_calcolo_impalcato_SX.doc.}$

Relazione di Calcolo Impalcato - Carreggiata SX

Opera: Viadotto Arenella III

Progetto Esecutivo

Progetto Esecutivo

Opera: Viadotto Arenella III
Relazione di Calcolo Impalcato - Carreggiata SX
Pagina 33
Nome file: V115-F-
CL002 C.00 relazione calcolo impalcato SX doc

6.2 Sollecitazioni nei traversi

Nel seguito si riportano i diagrammi degli inviluppi agli SLU, (Traffico dominante), del momento flettente del taglio e della torsione. Nelle Tabella 6.1 e Tabella 7.1 si riporatno le massime sollecitazioni adottate nelle verifiche.

Figura 6.1: SLU fondamentale (Traffico dominante) - My

Figura 6.2: SLU fondamentale (Traffico dominante) - Fz

Figura 6.3: SLU fondamentale (Traffico dominante) - T

Tabella 6.1: Sollecitazioni combinate agli SLU per le verifiche a flessione

comb	My	Trasverso	
M3max	8478.85	P01	
M3min	-1889.66	P10	

Tabella 6.2: Sollecitazioni combinate agli SLU per le verifche a taglio

tanton terror terror agree of the terror and terror agree of the terror and terror and terror agree of the terror and terror and terror agree of the terror and terror agree of the terror						
	V2	Т	Trasverso			
V2max	4302	253	P01			
V2max	4859.62	193.5	P08			
Tmax	86.66	2738	P05			
Tmax	3087	2625	P06			

Progetto Esecutivo

Opera: Viadotto Arenella III
Relazione di Calcolo Impalcato - Carreggiata SX
Pagina 34
Nome file:
VI15-FCL002_C.00_relazione_calcolo_impalcato_SX.doc.

Nella Tabella 6.3 e nelle figure seguenti vengono riportate le sollecitazioni combinate agli SLE per le relative verifiche in esercizio.

Tabella 6.3: Sollecitazioni combinate agli SLE

	My	Trasverso	СОМВ
M3max	5654.125	P01	Frequente
M3min	-1280.13	P10	Frequente
M3max	3664.5	P08	Quasi Permermanente
M3min	-787.3	P18	Quasi Permermanente

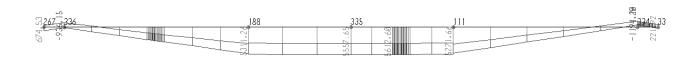


Figura 6.4: Momento My combinazione Frequente

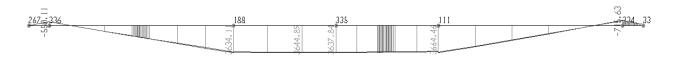


Figura 6.5: Momento My combinazione Quasi Permanente

6.3 Stato deformativo della struttura

Le frecce massime prodotte dai carichi permanenti e dai carichi da traffico valgono:

 f_1 = 19.47 mm (freccia massima per carichi permanenti);

 f_2 = 36.85 mm (freccia massima per carichi da traffico).

Nelle seguenti figure si riportano le configurazioni deformate della struttura.

Figura 6.6: Spostamenti verticali Tratto 1

Progetto Esecutivo

Relazione di Calcolo Impalcato - Carreggiata SX
Pagina 35
Nome file:
VI15-FCL002_C.00_relazione_calcolo_impalcato_SX.doc.

Opera: Viadotto Arenella III

Figura 6.7: Spostamenti verticali Tratto 2

7. VERIFICHE TRAVI

Nei paragrafi successivi si riportano le verifiche di sicurezza delle sezioni più significative della trave. Tali sezioni sono riepilogate nel seguente prospetto, nel quale, oltre all'indicazione delle sezioni oggetto di verifica, viene indicato anche lo/gli stato/i limite considerato/i per la verifica di ciascuna sezione.

Tabella 7.1 - Indicazione delle sezioni di verifica.

		rabe	IIIU	icazione delle se		rarificati	
ID -		Descrizione			Stati limite v		
sezione	trave	della sezione	Materiale	SLE – limitazione delle tensioni	SLE – verifica a fessurazione	SLU – tensioni normali	SLU – taglio, torsione e loro interazione
SA-b	bordo	x=L/2 (sezione di mezzeria) sezione a x=1.50m dalla testata della	c.a.p.	X	Х	Χ	
SB-b	bordo	trave (sezione a filo riempimento in cls)	c.a.p.	X	Х	Х	Х
SC-b	bordo	sezione di testata della trave sezione a 9.0m	c.a.o.	X	Χ	Χ	Х
SD-b	bordo	dalla testata della trave	c.a.p.	X	Χ	Χ	Χ
SE-b	bordo	sezione a x=3.225m da testata trave sezione a	c.a.p.				X
SF-b	bordo	x=6.225m da testata trave x=I/2	c.a.p.				X
SA-c	centrale	(sezione di mezzeria) sezione a x=1.50m dalla testata della	c.a.p.	Х	X	X	
SB-c	centrale	trave (sezione a filo riempimento in cls) sezione di testata	c.a.p.	Х	Х	Х	Х
SC-c	centrale	della trave sezione a 9.0m	c.a.o.	X	Χ	Х	Χ
SD-c	centrale	dalla testata della trave sezione a	c.a.p.	X	Х	Х	X
SE-c	centrale	x=3.225m da testata trave sezione a	c.a.p.				X
SF-c	centrale	x=6.225m da testata trave	c.a.p.				Χ

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata SX

Pagina 36

Nome file:
VI15-FCL002_C.00_relazione_calcolo_impalcato_SX.doc.

7.1 S.L.U. – Verifiche a pressoflessione

Nei paragrafi successivi si riportano le verifiche a pressoflessione delle sezioni significative della trave. Vengono riportate le sollecitazioni agenti e resistenti e lo stato deformativo nelle fibre estreme del calcestruzzo e dell'acciaio, oltre ai coefficienti di utilizzo che risultano tutti minori dell'unità.

7.1.1 Sezione SA-c (fibre tese inferiori)

Sezione: Cassoncini + Soletta 2500x250 mm

Precompressione: tutti i trefoli sono attivi 60 trefoli Armatura corrente in soletta ϕ 14/200 sopra e sotto

Posizione: mezzeria

Sollecitazioni:

M_{Ed,max}= 11316 kNm SLU fondamentale Mmax – Fibre tese all'intradosso

Verifica:

M_{Rd}= 17337 kNm Momento resitente positivo

 $C_u = M_{Ed,max} / M_{Rd} = 0.65 < 1$ coefficiente di utilizzo

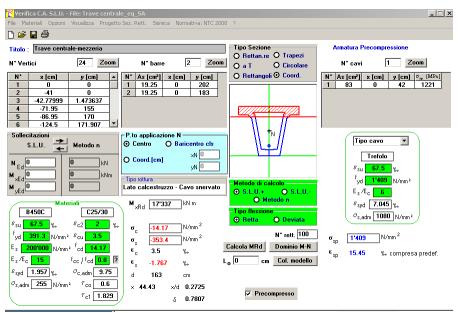


Figura 7.1: Momento resitente sezione di mezzeria.

7.1.2 Sezione SB-c (fibre tese inferiori/superiori)

Sezione: Cassoncini + Soletta 2500x250 mm

Precompressione: sono attivi 36 trefoli trefoli

Posizione: a filo riempimento

Sollecitazioni:

CORRIDOIO PLURIMODALE TIRRENICO-NORD EUROPA ITINERARIO AGRIGENTO -CALTANISSETTA-A19 S.S. N° 640 "DI PORTO EMPEDOCLE" AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III Relazione di Calcolo Impalcato - Carreggiata SX Pagina 37 Nome file: VI15-F-CL002 C.00 relazione calcolo impalcato SX.doc.

 $M_{Ed,max}$ = 4452.68 kNm SLU fondamentale Mmax - Fibre tese all'intradosso $M_{Ed,min}$ = -3193.81 kNm SLU fondamentale Mmin - Fibre tese all'estradosso

Verifica:

 M_{Rd} = 10240 kNm Momento resitente positivo M_{Rd} = -5479 kNm Momento resitente negativo

 $C_u = M_{Ed,max} / M_{Rd} = 0.43 < 1$ coefficiente di utilizzo $C_u = M_{Ed,min} / M_{Rd} = 0.58 < 1$ coefficiente di utilizzo

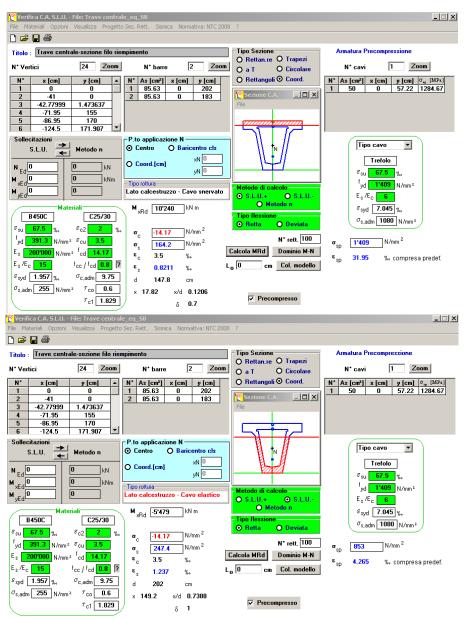


Figura 7.2: Momento resistente sezione a filo riempimento

Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata SX

Pagina 38

Nome file:
VI15-FCL002_C.00_relazione_calcolo_impalcato_SX.doc.

7.1.3 Sezione SC-c (fibre tese superiori)

Sezione: Cassoncini + Soletta 2500x250 mm + Cavità casssoncino piena

Precompressione: non efficace

Armatura corrente in soletta φ 14/200+φ 26/200 sopra e sotto Armatura a fondo cassoncino:6+6+6 φ 26 a z=350, 400, 450mm

Posizione: a filo traverso

Sollecitazioni:

M_{Ed,min}= -4105.22 kNm SLU fondamentale Mmin – Fibre tese all'estradosso

Verifica:

M_{Rd}= -11229 kNm Momento resitente negativo

 $C_u = M_{Ed,min} / M_{Rd} = 0.37 < 1$ coefficiente di utilizzo

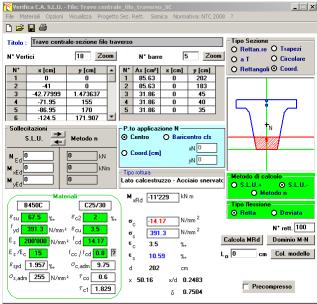


Figura 7.3: Momento resistente sezione a filo traverso

7.1.4 Sezione SD-c (fibre tese inferiori)

Sezione: Cassoncini + Soletta 2500x250 mm

Precompressione: sono attivi 50 trefoli trefoli Armatura corrente in soletta ϕ 14/200 sopra e sotto

Posizione: a 9,00 m dalla testata

Sollecitazioni:

 $M_{Ed,max} = 9281.86 kNm$

SLU fondamentale Mmax - Fibre tese all'intradosso

Verifica:

Nome file:
VI15-FCL002_C.00_relazione_calcolo_impalcato_SX.doc.

Progetto Esecutivo

Momento resitente positivo

Pagina 39

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata SX

 $C_u = M_{Ed,min} / M_{Rd} = 0.64 < 1$

M_{Rd}=14414 kNm

coefficiente di utilizzo



Figura 7.4: Momento resistente sezione a 9m dalla testata

7.1.5 Sezione SA-b (fibre tese inferiori)

Sezione: Cassoncini + Soletta 3750x250 mm

Precompressione: tutti i trefoli sono attivi 60 trefoli Armatura corrente in soletta ϕ 14/200 sopra e sotto

Posizione: mezzeria

Sollecitazioni:

M_{Ed,max}= 13430.16kNm SLU fondamentale Mmax – Fibre tese all'intradosso

Verifica:

M_{Rd}= 17942kNm Momento resitente positivo

 $C_u = M_{Ed,max} / M_{Rd} = 0.75 < 1$ coefficiente di utilizzo

CORRIDOIO PLURIMODALE TIRRENICO-NORD EUROPA ITINERARIO AGRIGENTO -CALTANISSETTA-A19 S.S. N° 640 "DI PORTO EMPEDOCLE" AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III Relazione di Calcolo Impalcato - Carreggiata SX Pagina 40 Nome file: VI15-F-CL002_C.00_relazione_calcolo_impalcato_SX.doc.

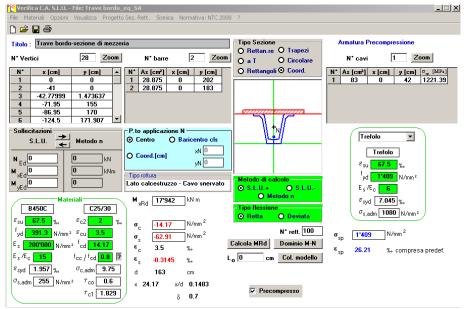


Figura 7.5: Momento resitente sezione di mezzeria.

7.1.6 Sezione SB-b (fibre tese inferiori/superiori)

Sezione: Cassoncini + Soletta 3750x250 mm

Precompressione: sono attivi 36 trefoli trefoli

Posizione: a filo riempimento

 C_u = $M_{Ed,min}$ / M_{Rd} =0.88<1

Sollecitazioni:

$M_{Ed,max} = 5404.10 \text{ kNm}$	SLU fondamentale Mmax – Fibre tese all'intradosso
$M_{Ed,min} = -5128.53 \text{ kNm}$	SLU fondamentale Mmin – Fibre tese all'estradosso

coefficiente di utilizzo

Verifica:

M_{Rd} = 10846kNm	Momento resitente positivo
M_{Rd} = -5820 kNm	Momento resitente negativo
$C_u = M_{Ed,max} / M_{Rd} = 0.50 < 1$	coefficiente di utilizzo

CORRIDOIO PLURIMODALE TIRRENICO-NORD EUROPA ITINERARIO AGRIGENTO -CALTANISSETTA-A19 S.S. N° 640 "DI PORTO EMPEDOCLE" MODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata SX

Pagina 41

Nome file: VI15-F-

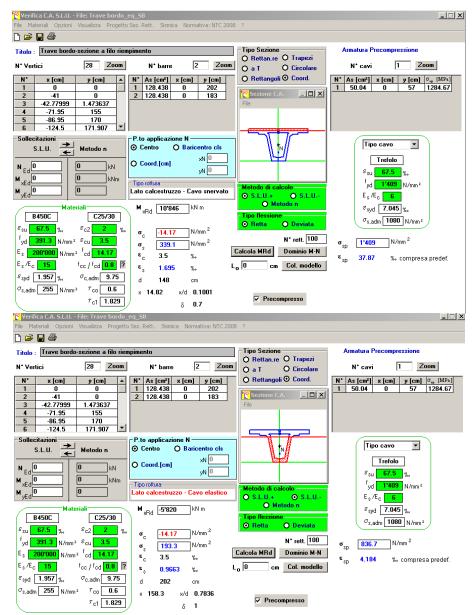


Figura 7.6: Momento resistente sezione a filo riempimento

Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata SX

Pagina 42

Nome file: VI15-F-

CL002_C.00_relazione_calcolo_impalcato_SX.doc.

7.1.7 Sezione SC-b (fibre tese superiori)

Sezione: Cassoncini + Soletta 3750x250 mm + Cavità casssoncino piena

Precompressione: non efficace

Armatura corrente in soletta \(\phi \) 14/200+\(\phi \) 26/200 sopra e sotto

Posizione: a filo traverso

Sollecitazioni:

 $M_{Ed,min} = -6419.87 \text{ kNm}$ SLU fondamentale Mmin – Fibre tese all'estradosso

Verifica:

 $M_{Rd} = -11229 \text{ kNm}$ Momento resitente negativo

 $C_u = M_{Ed,min} / M_{Rd} = 0.57 < 1$ coefficiente di utilizzo

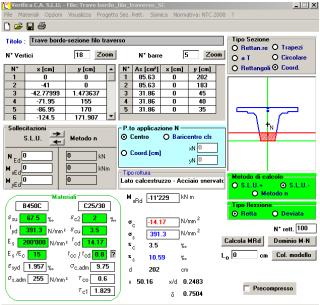


Figura 7.7: Momento resistente sezione a filo traverso

7.1.8 Sezione SD-b (fibre tese inferiori)

Sezione: Cassoncini + Soletta 3750x250 mm

Precompressione: sono attivi 50 trefoli trefoli

Posizione: a 9,00 m dalla testata

Sollecitazioni:

 $M_{Ed,max} = 12243.02 kNm$

SLU fondamentale Mmax – Fibre tese all'intradosso

Verifica:

Pagina 43 Nome file: VI15-F-

 ${\tt CL002_C.00_relazione_calcolo_impalcato_SX.doc.}$

Relazione di Calcolo Impalcato - Carreggiata SX

Opera: Viadotto Arenella III

Progetto Esecutivo

 $M_{Rd} = 14717 \text{ kNm}$

Momento resitente positivo

 $C_u = M_{Ed,min} / M_{Rd} = 0.83 < 1$

coefficiente di utilizzo

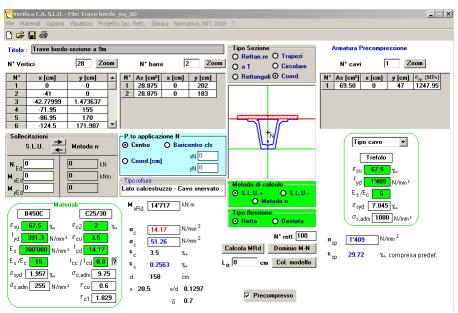


Figura 7.8: Momento resistente sezione a 9m dalla testata

7.1.9 Verifica del trasferimento della forza di tiro nell'armatura inferiore (fibre tese inferiori)

Si verifica che lo sforzo di trazione che nasce per equilibrare il momento negativo in appoggio (fibre tese inferiori possa essere interamente trasferito dal nucleo in cls alle travi in cap, perché possa ritenersi garantita la continuità anche per flessione negativa. Si cumulano tre contributi di natura diversa:

- l'aderenza fra cao e cap lungo la zona piena
- la resistenza a sfilamento dei trefoli, le cui code per almeno 600mm sono annegate nel traverso
- le resistenza a snervamento di 6φ22, che fuoriescono dalla travata in cap ed entrano nel traverso

Si rimanda alle tavole da disegno per i particolari costruttivi

$$F_{Sd} = \frac{M_{Sd}}{0.9 \cdot d}$$

Materiali

Calcestruzzo riempimento C32/40

R_{ck}	=	40	MPa	resistenza caratteristica cubica
f_{ck}	=	33.2	MPa	resistenza caratteristica cilindrica
f_{cm}	=	41.2	MPa	resistenza cilindrica media
$\alpha_{\rm cc}$	=	0.85		coefficiente riduttivo per resistenze di lunga durata
γ_{c}	=	1.5		coefficiente parziale di sicurezza
f_{cd}	=	18.81	MPa	resistenza di calcolo a compressione
f_{ctm}	=	3.10	MPa	resistenza media a trazione semplice (assiale)
f _{ctk}	=	2.17	MPa	resistenza caratteristica a trazione semplice (assiale)

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: \	Viadotto .	Arenella	Ш
----------	------------	----------	---

Relazione di Calcolo Impalcato - Carreggiata SX

Pagina 44

Nome file: VI15-F-

С	=	1.00		per solette, pareti, ed elemeti con spessori minori di 50mm va ridotta di 0,80
f _{ctd} Acciaio	=	1.45	MPa	resistenza di calcolo a trazione del calcestruzzo
f_{yk}	=	450		tensione caratteristica di snervamento
γs	=	1.15		coefficiente parziale di sicurezza
f_{yd}	=	391.30		tensione di snervamento di calcolo
Sollecitaz	ione			
M_{Ed}	=	3482	kNm	momento minimo (fibre tese inferiori) in asse appoggio
\mathbf{z}_{G}	=	200	mm	baricentro armatura aggiuntiva riferito all'intradosso trave
d	=	1600	mm	distanza del baricntro armatura inferiore dall'estradosso soletta
F _{sd}	= .	2418		tiro totale nelle armature lente superiori
Contribut	o dell' ad	erenza tra	getti di	
C	=	0.45		fattore di calcolodell'aderenza fra superfici scabre
f _{ctd}	=	1.45	MPa	resistenza a trazione del cls in opera
ΣS _c	=	1652		contorno aderente base cassoncino (fondo+500mm a dx e sx)
lr .	=	1500		distanza inizio cassoncino - fine del riempimento
τ_{Rd} = cf_{ctd}	=	0.65	MPa	tensione tagliante resistenet del calcestruzzo in opera
F _{Rd1}	=	1613	kN	contributo dell' aderenza
	o dell' arr	matura ler	nta prese	ente nella sulo del cassoncino
ф	=	22	mm	diametro
n	=	6		numero ferri
A_{sl}	=		mmq	area ferri
f _{yd}	=	391.30	MPa	
F _{Rd2}	=	892		contributo dell' aderenza
Contribut	o delle co			diametro trafali
φ n	=	30	mm	diametro trefoli numero ferri
u _{sl}	=	47	mm	perimetro aderente di un trefolo
η_1	=	1.0		condizione di buona aderenza
η_2	=	1.0		1 per diametri <32 mm
f _{bd}	=		MPa	tensione ultima di aderenza (EN 1992-1-1 8.4.3 ed 8.4.4)
α_4	=	0.7		per ancoraggio in trazione
$\alpha_2\alpha_3\alpha_5$	=	0.7		limite inferiore di tutti i fattori
f _{bd} *	=	1.59	MPa	aderenza effettiva acc-cls a SLU
I	=		mm	lungezza di ancoraggio
F _{Rd3}	=	1349	kN	contributo aderenza code trefoli
Resistenz	a Totale	F _{RdT} =F _{Rd1} +	F _{Rd2} +F _R	d3
F _{RdT}	=	3854	kN	resistenza totale
F_{sd}	=	2418	kN	tiro totale nelle armature lente superiori
F_{RdT}/Fsd	=	1.59		se >1 verifica soddisfatta

CORRIDOIO PLURIMODALE TIRRENICO-NORD EUROPA ITINERARIO AGRIGENTO -CALTANISSETTA-A19 S.S. N° 640 "DI PORTO EMPEDOCLE" AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

MMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 9 DAL KM 44+000 ALLO SVINCOLO CON L'A19 **Progetto Esecutivo** Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata SX

Pagina 45

Nome file: VI15-F-

CL002_C.00_relazione_calcolo_impalcato_SX.doc.

7.2 S.L.U. – Verifiche a taglio e torsione

7.2.1 Sezione SB-c (trave centrale)

Campata: Trave: Sezione: COMB		P04-P05 TRAVE CENTRALE SB (filo riempimento) VEd,max - TEd	P08-P09 TRAVE CENTRALE SB (filo riempimento) VEd - TEd,max		
Sollecitazioni					
V_{Ed}	=	1534	877	kN	taglio di caloclo
T_{Ed}	=	348	746	kN	torsione di caloclo
N _{Ed} Materiali Calcestruzzo	=	0	0	kN	sforzo normale i calcolo
R_{ck}	=	55	55	MPa	resistenza caratteristica cubica
f_{ck}	=	45.7	45.7	MPa	resistenza caratteristica cilindrica
αcc	=	0.85	0.85		coefficiente riduttivo per resistenze di lunga durata
$\gamma_{ extsf{c}}$	=	1.50	1.50		coefficiente parziale di sicurezza
f _{cd}	=	25.87	25.87	MPa	resistenza di calcolo a compressione
Acciaio					·
f_{yk}	=	450	450	MPa	tensione caratteristica di snervamento
γs	=	1.15	1.15		coefficiente parziale di sicurezza
f_{yd}	=	391.30	391.30	MPa	tensione di snervamento di calcolo
Verifica capac	_				
	menti sprovvis	sti di armatura a taglio			
b _w	=	314	314	mm	larghezza minima sezione
d		1925	1925	mm	altezza utile
Ø _w n	=	14 25	14 25	mm	diametro ferri long. tesi numero
A _{sl}	=	3848	3848	mm²	armatura longitudinale
A _c	=	1460327	1460327	mm ²	area sezione cls
k	=	1.32	1.32		area sezione dis
$\sigma_{\sf cp}$	=	0.0000	0.0000	MPa	tensione media calcestruzzo <=0,2f _{cd}
$ ho_1$	=	0.00637	0.00637		rapporto geometrico di armatura longitudinale <=0,02
V _{min}	=	0.360	0.360		
V_{Rd}	=	294.90	294.90	kN	taglio resistente
V_{Ed}	=	1534	877.42	kN	taglio di caloclo
FS		0.19	0.34		se >1 verifica soddisfatta
	,,	no	no		
		i di armatura a taglio	4-		
\mathcal{O}_{w}	=	12	12	mm	diametro armatura resistente a taglio
α	=	90.00	90.00	0	angolo di inclinazione armatura trasversale
\$	=	150.00	150.00	mm	passo staffe
n_{br}	=	4.0	4.0		numero bracci armatura trasversale

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata SX

Pagina 46

Nome file: VI15-F-

A_{sw}	=	452.39	452.39	mmq	area armatura trasversale posta nell'interasse s
b_w	=	314.00	314.00	mm	larghezza minima sezione
f_{cd}	=	25.87	25.87	MPa	
ν	=	0.5	0.5		coeff. di riduzione f _{cd}
f'cd	=	12.93	12.93	MPa	resistenza a compressione del cls ridotta
ω_{sw}	=	0.14529	0.14529		% meccanica di armatura trasversale
α c	=	1.00000	1.00000		
cot⊕	=	1.562	1.562		valore di calcolo 1≤cot⊕*≤2,5
V_{Rsd}	=	3194.6736	3194.6736	kN	Resistenza "taglio trazione"
V_{Rcd}	=	3194.6736	3194.6736	kN	Resistenza "taglio compressione"
V_{Rd}	=	3194.6736	3194.6736	kN	Resistenza a taglio
V_{Ed}	=	1534	877.42	kN	taglio di caloclo
FS	=	2.08	3.64		se >1 verifica soddisfatta
		ok	ok		
Verifica cap	acità a Torsione	9			
\emptyset_{w}	=	12	12	mm	diametro armatura resistente a taglio
α	=	90.00	90.00	0	angolo di inclinazione armatura trasversale
S	=	150	150	mm	passo staffe
n_{br}	=	2	2		numero bracci armatura trasversale
A_s	=	226.19	226.19	mmq	area armatura trasversale posta nell'interasse s
A _s /s	=	1.51	1.51	mmq/mm	
ΣA_{l}	=	5001	5001	mmq	area complessiva barre longitudinali
A_c	=	1734000	1734000	mmq	area sezione
t	=	157	157	mm	spessore sezione cava
Ω	=	1930000	1930000	mmq	area racchiusa dalla fibra media
u _m	=	5800	5800	mm	perimetro medio del nucleo resistente
ω_{sw}	=	0.15	0.15		% meccanica di armatura trasversale
$\omega_{\rm sl}$	=	80.0	0.08		% meccanica di armatura longitudinale
ν	=	0.5	0.5		coeff. di riduzione f _{cd}
f' _{cd}	=	12.93	12.93	MPa	resistenza a compressione del cls ridotta
$\sigma_{\sf cp}$	=	0.000	0.000	MPa	tensione media calcestruzzo <=0,2f _{cd}
α c	=	1.0000	1.0000		
cot⊕	=	1.56	1.56		Valore di calcolo (0.4≤cot⊕*≤2,5)
T_Rcd	=	3558.86	3558.86	kNm	resistenza offerta dal calcestruzzo
T_Rsd	=	3558.86	3558.86	kNm	resistenza offerta dall'armatura trasversale
T_{RId}	=	833.58	833.58	kNm	resistenza offerta dall'armatura longitudinale
T _{Rd}	=	833.58	833.58	kNm	Resistenza a torsione
T_Sd	=	348	746.43	kN	Torsione di caloclo
FS	=	2.40	1.12		
		ok	ok		
	razione Taglio - 	Torsione			
Sollecitazio					
cot⊕	=	1.562	1.562		valore di calcolo

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera. Viadotto Archena in	Opera:	Viadotto	Arenella III
----------------------------	--------	----------	--------------

Relazione di Calcolo Impalcato - Carreggiata SX

Pagina 47

Nome file: VI15-F-

taglio di caloclo torsione di caloclo

CL002_C.00_relazione_calcolo_impalcato_SX.doc.

V_{Ed}	=	1534	877.42	kN
T_{Ed}	=	348	746.43	kN
Reistenze				
V_{Rcd}	=	3194.67	3194.67	kN
T_Rcd	=	3558.86	3558.86	kNm
Verifica				_
$T_{Ed}/T_{Rcd}+V_{Ed}/V_{Rcd}$	=	0.58	0.48	
		ok	ok	

se <1 verifica soddisfatta

Resistenza a taglio lato cls

Resistenza a torsione lato cls

7.2.2 Sezione SD-c (trave centrale)

Campata: Trave: Sezione: COMB Sollecitazioni		P05-P06 TRAVE CENTRALE SD (a 9m da testata) VEd,max - TEd	P08-P09 TRAVE CENTRALE SD (a 9m da testata) VEd - TEd,max		
V_{Ed}	=	806	168	kN	taglio di caloclo
T_{Ed}	=	256	669	kN	torsione di caloclo
N _{Ed} Materiali Calcestruzzo	=	0	0	kN	sforzo normale i calcolo
R_{ck}	=	55	55	MPa	resistenza caratteristica cubica
f_{ck}	=	45.7	45.7	MPa	resistenza caratteristica cilindrica
$\alpha_{\rm cc}$	=	0.85	0.85		coefficiente riduttivo per resistenze di lunga durata
γ_{c}	=	1.50	1.50		coefficiente parziale di sicurezza
f _{cd} Acciaio	=	25.87	25.87	MPa	resistenza di calcolo a compressione
f _{yk}	=	450	450	MPa	tensione caratteristica di snervamento
γs	=	1.15	1.15		coefficiente parziale di sicurezza
f_{yd}	=	391.30	391.30	MPa	tensione di snervamento di calcolo
Verifica capaci Verifica per eler	•	di armatura a taglio			
$b_{\rm w}$	=	314	314	mm	larghezza minima sezione
d	=	1925	1925	mm	altezza utile
Ø _w	=	14 25	14 25	mm	diametro ferri long. tesi
n A	=			mm²	numero
A _{sl}		3848 1734000	3848 1734000	mm ²	armatura longitudinale area sezione cls
A _c k	=	1.32	1.32	ШШ	area sezione dis
$\sigma_{\sf cp}$	=	0.0000	0.0000	MPa	tensione media calcestruzzo <=0,2fcd
ρ_1	=	0.00637	0.00637	🚨	rapporto geometrico di armatura longitudinale <=0,02
V _{min}	=	0.360	0.360		rapporto goometrioo ai armatara longitudinale 4-0,02
V _{Rd}	=	294.90	294.90	kN	taglio resistente
V_{Ed}	=	805.78	167.93	kN	taglio di caloclo

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata SX

Pagina 48

Nome file: VI15-F-

FS		0.37	1.76		se >1 verifica soddisfatta
		no	ok		
		i di armatura a taglio	40		
\emptyset_{w}	=	12	12	mm 。	diametro armatura resistente a taglio
α s	=	90.00 400.00	90.00 400.00	mm	angolo di inclinazione armatura trasversale passo staffe
n _{br}	=	4.0	4.0	111111	numero bracci armatura trasversale
	=	452.39	452.39	mmq	area armatura trasversale posta nell'interasse s
A_sw b_w	=	314.00	314.00	mm	larghezza minima sezione
f _{cd}	=	25.87	25.87	MPa	laighezza milima sezione
vcd V	=	0.5	0.5	IVII U	coeff. di riduzione f_{cd}
		12.93	12.93	MPa	
f' _{cd}	=			IVIFA	resistenza a compressione del cls ridotta
ω_{sw}	=	0.05448	0.05448		% meccanica di armatura trasversale
αC	=	1.00000	1.00000		valere di calcole (4/cet/)*<2 F)
cot⊕	=	1.235	1.235		valore di calcolo (1≤cot⊕*≤2,5)
V_{Rsd}	=	946.7679	946.7679	kN	Resistenza "taglio trazione"
V _{Rcd}	=	3441.2916 946.7679	3441.2916	kN	Resistenza e taglio compressione"
V _{Rd}			946.7679	kN	Resistenza a taglio
$V_{\sf Ed}$ FS	=	805.78 1.17	167.93 5.64	kN	taglio di caloclo se >1 verifica soddisfatta
10		ok	ok		Se y i vermeu socialitata
Verifica cap	acità a Torsione	•			
\emptyset_{w}	=	12	12	mm	diametro armatura resistente a taglio
α	=	90.00	90.00	0	angolo di inclinazione armatura trasversale
α s	=	90.00 400	90.00 400	° mm	angolo di inclinazione armatura trasversale passo staffe
s	=	400	400		passo staffe
s n _{br}	=	400 2	400 2	mm	passo staffe numero bracci armatura trasversale
s n _{br} A _s	= =	400 2 226.19	400 2 226.19	mm	passo staffe numero bracci armatura trasversale
s n_{br} A_s A_s/s	= = =	400 2 226.19 0.57 5001 1734000	400 2 226.19 0.57 5001 1734000	mmq mmq/mm	passo staffe numero bracci armatura trasversale area armatura trasversale posta nell'interasse s
$\begin{array}{l} s \\ n_{br} \\ A_s \\ A_s/s \\ \sum A_l \\ A_c \\ t \end{array}$	= = = = =	400 2 226.19 0.57 5001 1734000 157	400 2 226.19 0.57 5001 1734000 157	mmq mmq/mm mmq mmq mm	passo staffe numero bracci armatura trasversale area armatura trasversale posta nell'interasse s area complessiva barre longitudinali area sezione spessore sezione cava
$\begin{array}{l} s \\ n_{br} \\ A_s \\ A_s/s \\ \sum A_l \\ A_c \\ t \\ A \end{array}$	= = = = = = =	400 2 226.19 0.57 5001 1734000 157 1930000	400 2 226.19 0.57 5001 1734000 157 1930000	mmq mmq/mm mmq mmq mmq mmq mm	passo staffe numero bracci armatura trasversale area armatura trasversale posta nell'interasse s area complessiva barre longitudinali area sezione spessore sezione cava area racchiusa dalla fibra media
$\begin{array}{c} s \\ n_{br} \\ A_s \\ A_s/s \\ \sum A_l \\ A_c \\ t \\ A \\ u_m \end{array}$	= = = = = = =	400 2 226.19 0.57 5001 1734000 157 1930000 5800	400 2 226.19 0.57 5001 1734000 157 1930000 5800	mmq mmq/mm mmq mmq mm	passo staffe numero bracci armatura trasversale area armatura trasversale posta nell'interasse s area complessiva barre longitudinali area sezione spessore sezione cava area racchiusa dalla fibra media perimetro medio del nucleo resistente
$\begin{array}{l} s \\ n_{br} \\ A_s \\ A_s/s \\ \sum A_l \\ A_c \\ t \\ A \\ u_m \\ \omega_{sw} \end{array}$	= = = = = = =	400 2 226.19 0.57 5001 1734000 157 1930000 5800 0.05	400 2 226.19 0.57 5001 1734000 157 1930000 5800 0.05	mmq mmq/mm mmq mmq mmq mmq mm	passo staffe numero bracci armatura trasversale area armatura trasversale posta nell'interasse s area complessiva barre longitudinali area sezione spessore sezione cava area racchiusa dalla fibra media perimetro medio del nucleo resistente % meccanica di armatura trasversale
$\begin{array}{c} s \\ n_{br} \\ A_s \\ A_s/s \\ \sum A_l \\ A_c \\ t \\ A \\ u_m \end{array}$	= = = = = = =	400 2 226.19 0.57 5001 1734000 157 1930000 5800 0.05 0.08	400 2 226.19 0.57 5001 1734000 157 1930000 5800 0.05 0.08	mmq mmq/mm mmq mmq mmq mmq mm	passo staffe numero bracci armatura trasversale area armatura trasversale posta nell'interasse s area complessiva barre longitudinali area sezione spessore sezione cava area racchiusa dalla fibra media perimetro medio del nucleo resistente % meccanica di armatura trasversale % meccanica di armatura longitudinale
$\begin{array}{l} s \\ n_{br} \\ A_s \\ A_s/s \\ \sum A_l \\ A_c \\ t \\ A \\ u_m \\ \omega_{sw} \end{array}$	= = = = = = =	400 2 226.19 0.57 5001 1734000 157 1930000 5800 0.05	400 2 226.19 0.57 5001 1734000 157 1930000 5800 0.05	mmq mmq/mm mmq mmq mmq mmq mm	passo staffe numero bracci armatura trasversale area armatura trasversale posta nell'interasse s area complessiva barre longitudinali area sezione spessore sezione cava area racchiusa dalla fibra media perimetro medio del nucleo resistente % meccanica di armatura trasversale
$\begin{array}{l} s \\ n_{br} \\ A_s \\ A_s/s \\ \sum A_l \\ A_c \\ t \\ A \\ u_m \\ \omega_{sw} \\ \omega_{sl} \end{array}$	= = = = = = = =	400 2 226.19 0.57 5001 1734000 157 1930000 5800 0.05 0.08	400 2 226.19 0.57 5001 1734000 157 1930000 5800 0.05 0.08	mmq mmq/mm mmq mmq mmq mmq mm	passo staffe numero bracci armatura trasversale area armatura trasversale posta nell'interasse s area complessiva barre longitudinali area sezione spessore sezione cava area racchiusa dalla fibra media perimetro medio del nucleo resistente % meccanica di armatura trasversale % meccanica di armatura longitudinale
$\begin{array}{l} s \\ n_{br} \\ A_s \\ A_s/s \\ \sum A_l \\ A_c \\ t \\ A \\ u_m \\ \omega_{sw} \\ \omega_{sl} \\ \mathcal{V} \end{array}$	= = = = = = = = = = = = = = = = = = = =	400 2 226.19 0.57 5001 1734000 157 1930000 5800 0.05 0.08 0.5	400 2 226.19 0.57 5001 1734000 157 1930000 5800 0.05 0.08 0.5	mmq mmq/mm mmq mmq mm mm	passo staffe numero bracci armatura trasversale area armatura trasversale posta nell'interasse s area complessiva barre longitudinali area sezione spessore sezione cava area racchiusa dalla fibra media perimetro medio del nucleo resistente % meccanica di armatura trasversale % meccanica di armatura longitudinale coeff. di riduzione f _{cd}
$\begin{array}{c} \mathbf{s} \\ \mathbf{n}_{\mathrm{br}} \\ \mathbf{A_{s}} \\ \mathbf{A_{s}/s} \\ \mathbf{\Sigma} \mathbf{A_{l}} \\ \mathbf{A_{c}} \\ \mathbf{t} \\ \mathbf{A} \\ \mathbf{u_{m}} \\ \boldsymbol{\omega_{sw}} \\ \boldsymbol{\omega_{sl}} \\ \boldsymbol{\nu} \\ \mathbf{f_{cd}} \end{array}$	= = = = = = = = = = = = = = = = = = = =	400 2 226.19 0.57 5001 1734000 157 1930000 5800 0.05 0.08 0.5 12.93	400 2 226.19 0.57 5001 1734000 157 1930000 5800 0.05 0.08 0.5 12.93	mmq mmq/mm mmq mmq mm mm mmm	passo staffe numero bracci armatura trasversale area armatura trasversale posta nell'interasse s area complessiva barre longitudinali area sezione spessore sezione cava area racchiusa dalla fibra media perimetro medio del nucleo resistente % meccanica di armatura trasversale % meccanica di armatura longitudinale coeff. di riduzione f _{cd} resistenza a compressione del cls ridotta
$\begin{array}{l} \mathbf{S} \\ \mathbf{n}_{br} \\ \mathbf{A}_{s} \\ \mathbf{A}_{s}/\mathbf{S} \\ \sum \mathbf{A}_{l} \\ \mathbf{A}_{c} \\ \mathbf{t} \\ \mathbf{A} \\ \mathbf{u}_{m} \\ \boldsymbol{\omega}_{sw} \\ \boldsymbol{\omega}_{sl} \\ \boldsymbol{\nu} \\ \mathbf{f}_{cd} \\ \boldsymbol{\sigma}_{cp} \end{array}$	= = = = = = = = = =	400 2 226.19 0.57 5001 1734000 157 1930000 5800 0.05 0.08 0.5 12.93 0.000	400 2 226.19 0.57 5001 1734000 157 1930000 5800 0.05 0.08 0.5 12.93 0.000	mmq mmq/mm mmq mmq mm mm mmm	passo staffe numero bracci armatura trasversale area armatura trasversale posta nell'interasse s area complessiva barre longitudinali area sezione spessore sezione cava area racchiusa dalla fibra media perimetro medio del nucleo resistente % meccanica di armatura trasversale % meccanica di armatura longitudinale coeff. di riduzione f _{cd} resistenza a compressione del cls ridotta
s n_{br} A_s A_s/s $\sum A_l$ A_c t A u_m ω_{sw} ω_{sl} ν f_{cd} σ_{cp}		400 2 226.19 0.57 5001 1734000 157 1930000 5800 0.05 0.08 0.5 12.93 0.000 1.0000	400 2 226.19 0.57 5001 1734000 157 1930000 5800 0.05 0.08 0.5 12.93 0.000 1.0000	mmq mmq/mm mmq mmq mm mm mmm	passo staffe numero bracci armatura trasversale area armatura trasversale posta nell'interasse s area complessiva barre longitudinali area sezione spessore sezione cava area racchiusa dalla fibra media perimetro medio del nucleo resistente % meccanica di armatura trasversale % meccanica di armatura longitudinale coeff. di riduzione f _{cd} resistenza a compressione del cls ridotta tensione media calcestruzzo <=0,2f _{cd}
$\begin{array}{l} \mathbf{S} \\ \mathbf{n}_{br} \\ \mathbf{A}_{s} \\ \mathbf{A}_{s} / \mathbf{S} \\ \sum \mathbf{A}_{l} \\ \mathbf{A}_{c} \\ \mathbf{t} \\ \mathbf{A} \\ \mathbf{u}_{m} \\ \boldsymbol{\omega}_{sw} \\ \boldsymbol{\omega}_{sl} \\ \boldsymbol{\nu} \\ \mathbf{f}_{cd} \\ \boldsymbol{\sigma}_{cp} \\ \boldsymbol{\alpha} \mathbf{C} \\ \mathbf{cot} \boldsymbol{\Theta} \end{array}$		400 2 226.19 0.57 5001 1734000 157 1930000 5800 0.05 0.08 0.5 12.93 0.000 1.0000 1.23	400 2 226.19 0.57 5001 1734000 157 1930000 5800 0.05 0.08 0.5 12.93 0.000 1.0000 1.23	mmq mmq/mm mmq mmq mm mmq mm MPa MPa	passo staffe numero bracci armatura trasversale area armatura trasversale posta nell'interasse s area complessiva barre longitudinali area sezione spessore sezione cava area racchiusa dalla fibra media perimetro medio del nucleo resistente % meccanica di armatura trasversale % meccanica di armatura longitudinale coeff. di riduzione f _{cd} resistenza a compressione del cls ridotta tensione media calcestruzzo <=0,2f _{cd} Valore di calcolo (0.4≤cot⊕*≤2,5)

CORRIDOIO PLURIMODALE TIRRENICO-NORD EUROPA ITINERARIO AGRIGENTO -CALTANISSETTA-A19 S.S. N° 640 "DI PORTO EMPEDOCLE" DERNAMENTO E ADEGLIAMENTO ALLA CAT. B.DEL D.M. 5.12

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto .	Esecutivo
------------	-----------

Opera: Viadotto Arenella III	
Relazione di Calcolo Impalcato - Carreggiata SX	

Pagina 49

Nome file: VI15-F-

CL002_C.00_relazione_calcolo_impalcato_SX.doc.

T _{Rd}	=	1054.70	1054.70	kNm	Resistenza a torsione
T_Sd	=	256.19	668.9	kN	Torsione di caloclo
FS	=	4.12	1.58		
		ok	ok		
Verifica intera	azione Taglio	- Torsione			
Sollecitazioni					
cot⊙	=	1.235	1.235		valore di calcolo
V_{Ed}	=	805.78	167.93	kN	taglio di caloclo
T_{Ed}	=	256.19	668.9	kN	torsione di caloclo
Reistenze					
V_{Rcd}	=	3441.29	3441.29	kN	Resistenza a taglio lato cls
T_Rcd	=	3833.59	3833.59	kNm	Resistenza a torsione lato cls
Verifica				_	
$T_{Ed}/T_{Rcd}+V_{Ed}/V_{Ed}$	Rcd =	0.30	0.22		se <1 verifica soddisfatta
		ok	ok		

7.2.3 Sezione SE-c (trave centrale)

Campata:		P05-P06	P07-P08		
Trave:		TRAVE CENTRALE	TRAVE CENTRALE		
Sezione:		SE (a 3.225m testata)	SE (a 3.225m testata)		
COMB		VEd,max - TEd	VEd - TEd,max		
Sollecitazioni					
V_{Ed}	=	1062	428	kN	taglio di caloclo
T_{Ed}	=	260	874	kN	torsione di caloclo
N_{Ed}	=	0	0	kN	sforzo normale i calcolo
Materiali					
Calcestruzzo					
R_{ck}	=	55	55	MPa	resistenza caratteristica cubica
f_{ck}	=	45.7	45.7	MPa	resistenza caratteristica cilindrica
$\alpha_{\rm cc}$	=	0.85	0.85		coefficiente riduttivo per resistenze di lunga durata
γ_{c}	=	1.50	1.50		coefficiente parziale di sicurezza
f_{cd}	=	25.87	25.87	MPa	resistenza di calcolo a compressione
Acciaio					
f_{yk}	=	450	450	MPa	tensione caratteristica di snervamento
γs	=	1.15	1.15		coefficiente parziale di sicurezza
f_{yd}	=	391.30	391.30	MPa	tensione di snervamento di calcolo
Verifica capac	ità a taglio				
Verifica per ele	menti sprov	visti di armatura a taglio			
$b_{\rm w}$	=	314	314	mm	larghezza minima sezione
d	=	1925	1925	mm	altezza utile
\emptyset_{w}	=	14	14	mm	diametro ferri long. tesi
n	=	25	25		numero
A_{sl}	=	3848	3848	mm^2	armatura longitudinale
Ac	=	1734000	1734000	mm^2	area sezione cls

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

-000 ALLO SVINCOLO CON L'A19	
Progetto Esecutivo	

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata SX

Pagina 50

Nome file: VI15-F-

k	=	1.32	1.32		
$\sigma_{\sf cp}$	=	0.0000	0.0000	MPa	tensione media calcestruzzo <=0,2f _{cd}
ρ_1	=	0.00637	0.00637		rapporto geometrico di armatura longitudinale <=0,02
V _{min}	=	0.360	0.360		
V_{Rd}	=	294.90	294.90	kN	taglio resistente
V_{Ed}	=	1062	428.31	kN	taglio di caloclo
FS		0.28	0.69		se >1 verifica soddisfatta
Verifica per eleme	enti proveziati di ar	no	no		
Ø _w	=	12	12	mm	diametro armatura resistente a taglio
α	=	90.00	90.00	0	•
s	=	200.00	200.00	mm	angolo di inclinazione armatura trasversale passo staffe
n _{br}	=	4.0	4.0		numero bracci armatura trasversale
A _{sw}	=	452.39	452.39	mmq	area armatura trasversale posta nell'interasse s
b _w	=	314.00	314.00	mm	larghezza minima sezione
f _{cd}	=	25.87	25.87	MPa	largitezza milima sezione
ν · · · · · · · · · · · · · · · · · · ·	=	0.5	0.5	IVII a	acoff di riduziono f
				MPa	coeff. di riduzione f _{cd}
f' _{cd}	=	12.93	12.93	IVIPa	resistenza a compressione del cls ridotta
ω_{sw}	=	0.10897	0.10897		% meccanica di armatura trasversale
α c	=	1.00000	1.00000		valere d'acteur (about 4 set 0 t s0 5)
cot⊕	=	1.000	1.000		valore di calcolo (check 1≤cot⊕*≤2,5)
V_{Rsd}	=	1533.4524	1533.4524	kN	Resistenza "taglio trazione"
V _{Rcd}	=	3518.1257	3518.1257	kN	Resistenza "taglio compressione"
V _{Rd}	=	3518.1257	3518.1257	kN	Resistenza a taglio
V _{Ed} FS	=	1062 3.31	428.31 8.21	kN	taglio di caloclo se >1 verifica soddisfatta
10		ok	ok		SC - I Verilled Soudistatta
Calcolo della Rei	sitenza a Torsio	one			
\emptyset_{w}	=	12	12	mm	diametro armatura resistente a taglio
α	=	90.00	90.00	0	angolo di inclinazione armatura trasversale
s	=	200	200	mm	passo staffe
n_{br}	=	2	2		numero bracci armatura trasversale
A_s	=	226.19	226.19	mmq	area armatura trasversale posta nell'interasse s
A _s /s	=	1.13	1.13	mmq/mm	
ΣA_I	=	5001	5001	mmq	area complessiva barre longitudinali
A_c	=	1734000	1734000	mmq	area sezione
t	=	157	157	mm	spessore sezione cava
Α	=	1930000	1930000	mmq	area racchiusa dalla fibra media
u _m	=	5800	5800	mm	perimetro medio del nucleo resistente
$\omega_{ m sw}$	=	0.11	0.11		% meccanica di armatura trasversale
ω_{sl}	=	0.08	0.08		% meccanica di armatura longitudinale
ν	=	0.5	0.5		coeff. di riduzione f _{cd}
f' _{cd}	=	12.93	12.93	MPa	resistenza a compressione del cls ridotta

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19 Progetto Esecutivo

Opera: Viadotto Arenella III
Relazione di Calcolo Impalcato - Carreggiata SX
Pagina 51
Nome file: V115-F-

CL002_C.00_relazione_calcolo_impalcato_SX.doc.

$\sigma_{\sf cp}$	=	0.000	0.000	MPa	tensione media calcestruzzo <=0,2f _{cd}
α c	=	1.0000	1.0000		
cot⊙	=	1.00	1.00		Valore di calcolo (0.4≤cot⊕*≤2,5)
T_Rcd	=	3919.18	3919.18	kNm	resistenza offerta dal calcestruzzo
T_Rsd	=	1708.26	1708.26	kNm	resistenza offerta dall'armatura trasversale
T_{RId}	=	1302.36	1302.36	kNm	resistenza offerta dall'armatura longitudinale
T _{Rd}	=	1302.36	1302.36	kNm	Resistenza a torsione
T_Sd	=	260.42	873.86	kN	Torsione di caloclo
FS	=	5.00	1.49		
		ok	ok		
Verifica interaz	ione Taglio ·	· Torsione			
Sollecitazioni					
cot⊙	=	1.000	1.000		valore di calcolo
V_{Ed}	=	1062	428.31	kN	taglio di caloclo
T_{Ed}	=	260.42	873.86	kN	torsione di caloclo
Reistenze					
V_{Rcd}	=	3518.13	3518.13	kN	Resistenza a taglio lato cls
T_Rcd	=	3919.18	3919.18	kNm	Resistenza a torsione lato cls
Verifica				_	
$T_{Ed}/T_{Rcd}+V_{Ed}/V_{Rc}$	d =	0.37	0.34		se <1 verifica soddisfatta
		ok	ok		

7.2.4 Sezione SF-c (trave centrale)

Campata:		P05-P06	P07-P08		
Trave:		TRAVE CENTRALE	TRAVE CENTRALE		
Sezione:		SF (a 6.225m da testata)	SF (a 6.225m da testata)		
COMB		VEd,max - TEd	VEd - TEd,max		
Sollecitazioni					
V_{Ed}	=	911	216	kN	taglio di caloclo
T_{Ed}	=	214	907	kN	torsione di caloclo
N_{Ed}	=	0	0	kN	sforzo normale i calcolo
Materiali					
Calcestruzzo					
R_{ck}	=	55	55	MPa	resistenza caratteristica cubica
f_{ck}	=	45.7	45.7	MPa	resistenza caratteristica cilindrica
$\alpha_{\rm cc}$	=	0.85	0.85		coefficiente riduttivo per resistenze di lunga durata
γ_{c}	=	1.50	1.50		coefficiente parziale di sicurezza
f_{cd}	=	25.87	25.87	MPa	resistenza di calcolo a compressione
Acciaio					
f_{yk}	=	450	450	MPa	tensione caratteristica di snervamento
γs	=	1.15	1.15		coefficiente parziale di sicurezza
\mathbf{f}_{yd}	=	391.30	391.30	MPa	tensione di snervamento di calcolo
Verifica capaci	tà a taglio				

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata SX Pagina 52

Nome file: VI15-F-

Verifica per	elementi sprovvi	sti di armatura a taglio			
b_w	=	314	314	mm	larghezza minima sezione
d	=	1925	1925	mm	altezza utile
\emptyset_{w}	=	14	14	mm	diametro ferri long. tesi
n	=	25	25		numero
A_{sl}	=	3848	3848	mm ²	armatura longitudinale
A _c	=	1734000	1734000	mm ²	area sezione cls
k	=	1.32	1.32		
$\sigma_{\sf cp}$	=	0.0000	0.0000	MPa	tensione media calcestruzzo <=0,2f _{cd} rapporto geometrico di armatura longitudinale
$ ho_1$	=	0.00637	0.00637		<=0,02
V _{min}	=	0.360	0.360	_	
V_{Rd}	=	294.90	294.90	kN	taglio resistente
V_{Ed}	=	910.82	216.07	kN	taglio di caloclo
FS		0.32 no	1.36 ok		se >1 verifica soddisfatta
Verifica per	elementi provvis	ti di armatura a taglio	OK		
Ø _w	=	12	12	mm	diametro armatura resistente a taglio
α	=	90.00	90.00	0	angolo di inclinazione armatura trasversale
s	=	400.00	400.00	mm	passo staffe
n_{br}	=	4.0	4.0		numero bracci armatura trasversale
A_sw	=	452.39	452.39	mmq	area armatura trasversale posta nell'interasse s
b_w	=	314.00	314.00	mm	larghezza minima sezione
f_{cd}	=	25.87	25.87	MPa	
ν	=	0.5	0.5		coeff. di riduzione f _{cd}
f' _{cd}	=	12.93	12.93	MPa	resistenza a compressione del cls ridotta
ω_{sw}	=	0.05448	0.05448		% meccanica di armatura trasversale
α c	=	1.00000	1.00000		
cot⊕	=	1.235	1.235		valore di calcolo (1≤cot⊙*≤2,5)
V_{Rsd}	=	946.9068	946.9068	kN	Resistenza "taglio trazione"
V_{Rcd}	=	3441.1866	3441.1866	kN	Resistenza "taglio compressione"
V_{Rd}	=	946.9068	946.9068	kN	Resistenza a taglio
V_{Ed}	=	910.82	216.07	kN	taglio di caloclo
FS	=	1.04	4.38		se >1 verifica soddisfatta
Calcolo dell	la Reisitenza a	ok Torsione	ok		
Ø _w	=	12	12	mm	diametro armatura resistente a taglio
α	=	90.00	90.00	0	angolo di inclinazione armatura trasversale
S	=	400	400	mm	passo staffe
n _{br}	=	2	2		numero bracci armatura trasversale
A_s	=	226.19	226.19	mmq	area armatura trasversale posta nell'interasse s
A _s /s	=	0.57	0.57	mmq/mm	
ΣA_i	=	5001	5001	mmq	area complessiva barre longitudinali
Ac	=	1734000	1734000	mmq	area sezione
t	=	157	157	mm	spessore sezione cava

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19 *Progetto Esecutivo*

0	ре	ra:	Viad	0	tto	Α	ren	ell	a III
J	-		:	•	-			-	_

Relazione di Calcolo Impalcato - Carreggiata SX

Pagina 53

Nome file: VI15-F-

CL002_C.00_relazione_calcolo_impalcato_SX.doc.

Α	=	1930000	1930000	mmq	area racchiusa dalla fibra media
u _m	=	5800	5800	mm	perimetro medio del nucleo resistente
ω_{sw}	=	0.05	0.05		% meccanica di armatura trasversale
ω_{sl}	=	0.08	0.08		% meccanica di armatura longitudinale
ν	=	0.5	0.5		coeff. di riduzione f _{cd}
f ' _{cd}	=	12.93	12.93	MPa	resistenza a compressione del cls ridotta
$\sigma_{\sf cp}$	=	0.000	0.000	MPa	tensione media calcestruzzo <=0,2f _{cd}
α c	=	1.0000	1.0000		
cot⊚	=	1.24	1.24		Valore di calcolo (0.4≤cot⊖*≤2,5)
T_Rcd	=	3833.47	3833.47	kNm	resistenza offerta dal calcestruzzo
T_Rsd	=	1054.85	1054.85	kNm	resistenza offerta dall'armatura trasversale
T_{RId}	=	1054.54	1054.54	kNm	resistenza offerta dall'armatura longitudinale
T _{Rd}	=	1054.54	1054.54	kNm	Resistenza a torsione
T_Sd	=	213.85	906.5	kN	Torsione di caloclo
FS	=	4.93	1.16		
		ok	ok		
	razione Tagli	o - Torsione			
Sollecitazion	ni				
cot⊚	=	1.235	1.235		valore di calcolo
V_{Ed}	=	910.82	216.07	kN	taglio di caloclo
T_{Ed}	=	213.85	906.5	kN	torsione di caloclo
Reistenze					
V_{Rcd}	=	3441.19	3441.19	kN	Resistenza a taglio lato cls
T_Rcd	=	3833.47	3833.47	kNm	Resistenza a torsione lato cls
Verifica				_	
$T_{Ed}/T_{Rcd}+V_{Ed}/T_{Rcd}$	V _{Rcd} =	0.32	0.30		se <1 verifica soddisfatta
		ok	ok		

7.2.5 Sezione SC-c (trave centrale)

Campata:		P05	P05		
Trave:		TRAVE CENTRALE	TRAVE CENTRALE		
Sezione:		SC (testata)	SC (testata)		
COMB		VEd,max - TEd	VEd - TEd,max		
Sollecitazioni					
V_{Ed}	=	1592	880	kN	taglio di caloclo
T_{Ed}	=	347	876	kN	torsione di caloclo
N_{Ed}	=	0	0	kN	sforzo normale i calcolo
Materiali					
Calcestruzzo					
R _{ck}	=	55	55	MPa	resistenza caratteristica cubica
f_{ck}	=	45.7	45.7	MPa	resistenza caratteristica cilindrica
$\alpha_{\rm cc}$	=	0.85	0.85		coefficiente riduttivo per resistenze di lunga durata
γ_{c}	=	1.50	1.50		coefficiente parziale di sicurezza

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata SX Pagina 54

Nome file: VI15-F-

f _{cd}	=	25.87	25.87	MPa	resistenza di calcolo a compressione
Acciaio f _{yk}	=	450	450	MPa	tensione caratteristica di snervamento
γs	=	1.15	1.15	WII G	coefficiente parziale di sicurezza
	=	391.30	391.30	MPa	tensione di snervamento di calcolo
f _{yd} Verifica cap	acità a taglio	391.30	391.30	IVIFA	tensione di shervamento di calcolo
-	_	risti di armatura a taglio			
b_w	=	829.2	829.2	mm	larghezza minima sezione
d	=	1925	1925	mm	altezza utile
\emptyset_{w}	=	14	14	mm	diametro ferri long. tesi
n	=	24	24		numero
A_{sl}	=	3695	3695	mm^2	armatura longitudinale
A_{c}	=	1734000	1734000	mm^2	area sezione cls
k	=	1.32	1.32		
σ_{cp}	=	0.0000	0.0000	MPa	tensione media calcestruzzo <=0,2f _{cd}
ρ_1	=	0.00231	0.00231		rapporto geometrico di armatura longitudinale <=0,02
V _{min}	=	0.360	0.360		
V_{Rd}	=	573.97	573.97	kN	taglio resistente
V_{Ed}	=	1592.341806	879.88	kN	taglio di caloclo
FS		0.36	0.65		se >1 verifica soddisfatta
\	-1	no	no		
		sti di armatura a taglio			
\emptyset_{w}	=	12	12	mm	diametro armatura resistente a taglio
α	=	90.00	90.00	0	angolo di inclinazione armatura trasversale
S		300.00	300.00	mm	passo staffe
n _{br}	=	4.0	4.0		numero bracci armatura trasversale
A _{sw}	=	452.39	452.39	mmq	area armatura trasversale posta nell'interasse s
b _w	=	829.20	829.20	mm	larghezza minima sezione
f _{cd}	=	25.87	25.87	MPa	
ν	=	0.5	0.5		coeff. di riduzione f _{cd}
f' _{cd}	=	12.93	12.93	MPa	resistenza a compressione del cls ridotta
ω_{sw}	=	0.02751	0.02751		% meccanica di armatura trasversale
$\alpha \mathbf{c}$	=	1.00000	1.00000		
cot⊙	=	2.500	2.500		valore di calcolo (1≤cot⊕*≤2,5)
V_{Rsd}	=	2555.7539	2555.7539	kN	Resistenza "taglio trazione"
V_{Rcd}	=	6407.2695	6407.2695	kN	Resistenza "taglio compressione"
V_{Rd}	=	2555.7539	2555.7539	kN	Resistenza a taglio
V_{Ed}	=	1592.341806	879.88	kN	taglio di caloclo
FS	=	1.61	2.90		se >1 verifica soddisfatta
Colonia dell'	la Daiaita	ok	ok		
	a Reisitenza a				
Ø _w	=	14	14	mm	diametro armatura resistente a taglio
α	=	90.00	90.00	° mm	angolo di inclinazione armatura trasversale
S	=	100	100	mm	passo staffe

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Οŗ	pera:	Viac	lotto /	Arenel	la III
----	-------	------	---------	--------	--------

Relazione di Calcolo Impalcato - Carreggiata SX

Pagina 55

Nome file: VI15-F-

CL002_C.00_relazione_calcolo_impalcato_SX.doc.

n _{br}	=	2	2		numero bracci armatura trasversale
	_	307.88	307.88	mma	
A _s	_			mmq	area armatura trasversale posta nell'interasse s
A _s /s		3.08	3.08	mmq/mm	
ΣA_{I}	=	9557	9557	mmq	area complessiva barre longitudinali
A _c	=	1734000	1734000	mmq	area sezione
u t	=	5520 314	5520 314.1	mm mm	perimetro della sezione spessore sezione cava
Ω	=	1940000.00	1940000.00	mmq	area racchiusa dalla fibra media
u _m	=	4280	4280	mm	perimetro medio del nucleo resistente
ω_{sw}	=	0.15	0.15		% meccanica di armatura trasversale
ω_{sl}	=	0.11	0.11		% meccanica di armatura longitudinale
ν	=	0.5	0.5		coeff. di riduzione f _{cd}
f' _{cd}	=	12.93	12.93	MPa	resistenza a compressione del cls ridotta
$\sigma_{\sf cp}$	=	0.000	0.000	MPa	tensione media calcestruzzo <=0,2f _{cd}
α c	=	1.0000	1.0000		
cot⊙	=	2.50	2.50		Valore di calcolo (0.4≤cotQ*≤2,5)
T_Rcd	=	5436.03	5436.03	kNm	resistenza offerta dal calcestruzzo
T_Rsd	=	11685.91	11685.91	kNm	resistenza offerta dall'armatura trasversale
T_Rld	=	1356.04	1356.04	kNm	resistenza offerta dall'armatura longitudinale
T _{Rd}	=	1356.04	1356.04	kNm	Resistenza a torsione
T_{Sd}	=	347.42	876.46	kN	Torsione di caloclo
FS	=	3.90	1.55		
Mante a tracana	· .	ok	ok		
Verifica interazi Sollecitazioni	ione ra	igilo - Forsione			
cot©	=	2.500	2.500		valore di calcolo
V _{Ed}	=	1592.341806	879.88	kN	taglio di caloclo
T _{Ed}	_	347.42	876.46	kN	torsione di caloclo
Reistenze		547.42	070.40	KI V	torsione di calocio
V_{Rcd}	=	6407.27	6407.27	kN	Resistenza a taglio lato cls
T_Rcd	=	5436.03	5436.03	kNm	Resistenza a torsione lato cls
Verifica				_	
$T_{Ed}/T_{Rcd}+V_{Ed}/V_{Rcd}$	₃ =	0.31	0.30		se <1 verifica soddisfatta
		ok	ok		

7.2.6 Sezione SB-b (trave di bordo)

Campata:	P02-P03	P08-P09		
Trave:	TRAVE BORDO	TRAVE BORDO		
Sezione:	SB (filo riempimento)	SB (filo riempimento)		
COMB	VEd,max - TEd	VEd - TEd,max		
Sollecitazioni				
V _{Ed} =	1999	1029	kN	taglio di caloclo
T _{Ed} =	83	634	kN	torsione di caloclo

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata SX

Pagina 56

Nome file: VI15-F-

N_{Ed}	=	0	0	kN	sforzo normale i calcolo
Materiali					
Calcestruzzo					
R_{ck}	=	55	55	MPa	resistenza caratteristica cubica
f _{ck}	=	45.7	45.7	MPa	resistenza caratteristica cilindrica
$\alpha_{\rm cc}$	=	0.85	0.85		coefficiente riduttivo per resistenze di lunga durata
γ_{c}	=	1.50	1.50		coefficiente parziale di sicurezza
f_{cd}	=	25.87	25.87	MPa	resistenza di calcolo a compressione
Acciaio					
f_{yk}	=	450	450	MPa	tensione caratteristica di snervamento
γs	=	1.15	1.15		coefficiente parziale di sicurezza
f_{yd}	=	391.30	391.30	MPa	tensione di snervamento di calcolo
Verifica capaci	_				
	menti sprovvisti di	_			
b _w d	=	314 1925	314 1925	mm mm	larghezza minima sezione altezza utile
	=	14	1923		diametro ferri long. tesi
Ø _w n	=	25	25	mm	numero
A _{sl}	=	3848	3848	mm²	armatura longitudinale
A _c	=	1460327	1460327	mm²	area sezione cls
k	=	1.32	1.32		4.04 002.01.0 0.0
$\sigma_{\sf cp}$	=	0.0000	0.0000	MPa	tensione media calcestruzzo <=0,2f _{cd}
$ ho_1$	=	0.00637	0.00637		rapporto geometrico di armatura longitudinale <=0,02
V_{min}	=	0.360	0.360		
V_{Rd}	=	294.90	294.90	kN	taglio resistente
V_{Ed}	=	1999.21	1029.06	kN	taglio di caloclo
FS		0.15	0.29		se >1 verifica soddisfatta
Varifica par alar	manti provinti di a	no	no		
	menti provvisti di a	_	40		diamaka amaka amaka a kadia
Ø _w	=	12	12	mm	diametro armatura resistente a taglio
α s	=	90.00 150.00	90.00 150.00	mm	angolo di inclinazione armatura trasversale passo staffe
n _{br}	=	4.0	4.0		numero bracci armatura trasversale
A _{sw}	=	452.39	452.39	mmq	area armatura trasversale posta nell'interasse s
b _w	=	314.00	314.00	mm	larghezza minima sezione
f _{cd}	=	25.87	25.87	MPa	·
ν	=	0.5	0.5		coeff. di riduzione f _{cd}
f'cd	=	12.93	12.93	MPa	resistenza a compressione del cls ridotta
ω_{sw}	=	0.14529	0.14529		% meccanica di armatura trasversale
α C	=	1.00000	1.00000		
cot⊙	=	1.562	1.562		valore di calcolo (1≤cot⊕*≤2,5)
V_{Rsd}	=	3194.6736	3194.6736	kN	Resistenza "taglio trazione"
V _{Rcd}	=	3194.6736	3194.6736	kN	Resistenza "taglio compressione"
V_{Rd}] =	3194.6736	3194.6736	kN	Resistenza a taglio

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19 *Progetto Esecutivo* Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata SX

Pagina 57

Nome file: VI15-F-

CL002_C.00_relazione_calcolo_impalcato_SX.doc.

	V_{Ed}	=	1999.21	1029.06	kN	taglio di caloclo
	FS	=	1.60	3.10		se >1 verifica soddisfatta
			ok	ok		
	Verifica capacità	a Torsione				
	\emptyset_{w}	=	12	12	mm	diametro armatura resistente a taglio
	α	=	90.00	90.00	0	angolo di inclinazione armatura trasversale
	S	=	150	150	mm	passo staffe
	n_{br}	=	2	2		numero bracci armatura trasversale
	A_s	=	226.19	226.19	mmq	area armatura trasversale posta nell'interasse s
	A _s /s	=	1.51	1.51	mmq/mm	
	ΣA_I	=	5001	5001	mmq	area complessiva barre longitudinali
	A_c	=	1734000	1734000	mmq	area sezione
	t	=	157	157	mm	spessore sezione cava
	Ω	=	1930000	1930000	mmq	area racchiusa dalla fibra media
ĺ	u_{m}	=	5800	5800	mm	perimetro medio del nucleo resistente
	$\omega_{\rm sw}$	=	0.15	0.15		% meccanica di armatura trasversale
	$\omega_{\rm sl}$	=	0.08	0.08		% meccanica di armatura longitudinale
	ν	=	0.5	0.5		coeff. di riduzione f _{cd}
	f'cd	=	12.93	12.93	MPa	resistenza a compressione del cls ridotta
•	$\sigma_{\sf cp}$	=	0.000	0.000	MPa	tensione media calcestruzzo <=0,2f _{cd}
	$\alpha \mathbf{c}$	=	1.0000	1.0000		
	cot	=	1.56	1.56		Valore di calcolo (0.4≤cot⊕*≤2,5)
	T_Rcd	=	3558.86	3558.86	kNm	resistenza offerta dal calcestruzzo
	T_Rsd	=	3558.86	3558.86	kNm	resistenza offerta dall'armatura trasversale
	T_Rld	=	833.58	833.58	kNm	resistenza offerta dall'armatura longitudinale
	T _{Rd}	=	833.58	833.58	kNm	Resistenza a torsione
	T_{Sd}	=	83.29	634.13	kN	Torsione di caloclo
	FS	=	10.01	1.31		
			ok	ok		
	Sollecitazioni	ne Taglio - Torsior	ne			
	cot⊙	=	1.562	1.562		valore di calcolo
	V _{Ed}	=	1999.21	1029.06	kN	taglio di caloclo
	T _{Ed} Reistenze	=	83.29	634.13	kN	torsione di caloclo
	V_{Rcd}	=	3194.67	3194.67	kN	Resistenza a taglio lato cls
	T _{Rcd} Verifica	=	3558.86	3558.86	kNm	Resistenza a torsione lato cls
	T (T .) (0 (0.05	0.50		.4 .16

0.50

se <1 verifica soddisfatta

7.2.7 Sezione SD-b (trave di bordo)

 $T_{Ed}/T_{Rcd}+V_{Ed}/V_{Rcd}$ =

Campata:P05-P06P08-P09Trave:TRAVE BORDOTRAVE BORDO

0.65

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata SX

Pagina 58

Nome file: VI15-F-

Sezione: COMB		SD (a 9m da testata) VEd,max - TEd	SD (a 9m da testata) VEd - TEd,max		
Sollecitazioni		,	,		
V_{Ed}	=	1052	467	kN	taglio di caloclo
T _{Ed}	=	73	521	kN	torsione di caloclo
N_{Ed}	=	0	0	kN	sforzo normale i calcolo
Materiali					
Calcestruzzo					
R _{ck}	=	55	55	MPa	resistenza caratteristica cubica
f_{ck}	=	45.7	45.7	MPa	resistenza caratteristica cilindrica
$\alpha_{\rm cc}$	=	0.85	0.85		coefficiente riduttivo per resistenze di lunga durata
γ_{c}	=	1.50	1.50		coefficiente parziale di sicurezza
f_{cd}	=	25.87	25.87	MPa	resistenza di calcolo a compressione
Acciaio					
f_{yk}	=	450	450	MPa	tensione caratteristica di snervamento
γs	=	1.15	1.15		coefficiente parziale di sicurezza
f _{yd}	=	391.30	391.30	MPa	tensione di snervamento di calcolo
Verifica capaci	_	i di armatura a taglio			
b _w	=	314	314	mm	larghezza minima sezione
d d	=	1925	1925	mm	altezza utile
\varnothing_{w}	=	14	14	mm	diametro ferri long. tesi
n	=	25	25		numero
A_{sl}	=	3848	3848	mm^2	armatura longitudinale
A _c	=	1734000	1734000	mm^2	area sezione cls
k	=	1.32	1.32		
$\sigma_{\sf cp}$	=	0.0000	0.0000	MPa	tensione media calcestruzzo <=0,2f _{cd}
$ ho_1$	=	0.00637	0.00637		rapporto geometrico di armatura longitudinale <=0,02
V _{min}	=	0.360	0.360	ı	
V_{Rd}	=	294.90	294.90	kN	taglio resistente
V _{Ed}	=	1051.82	467.09	kN	taglio di caloclo
FS		0.28 no	0.63 no		se >1 verifica soddisfatta
Verifica per eler	menti provvisti	di armatura a taglio	110		
Ø _w	=	12	12	mm	diametro armatura resistente a taglio
α	=	90.00	90.00	٥	angolo di inclinazione armatura trasversale
s	=	400.00	400.00	mm	passo staffe
n_{br}	=.	4.0	4.0		numero bracci armatura trasversale
A_{sw}	=	452.39	452.39	mmq	area armatura trasversale posta nell'interasse s
b_{w}	=	314.00	314.00	mm	larghezza minima sezione
f_{cd}	=	25.87	25.87	MPa	
ν	=	0.5	0.5		coeff. di riduzione f_{cd}
f'cd	=	12.93	12.93	MPa	resistenza a compressione del cls ridotta
$\omega_{ m sw}$	=	0.05448	0.05448		% meccanica di armatura trasversale

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata SX Pagina 59

Nome file:

VI15-F-

α C	=	1.00000	1.00000		
cot⊚	=	2.500	2.500		valore di calcolo (1≤cot⊕*≤2,5)
V_{Rsd}	=	1916.8154	1916.8154	kN	Resistenza "taglio trazione"
V _{Rcd}	=	2426.2936	2426.2936	kN	Resistenza "taglio compressione"
V_{Rd}	=	1916.8154	1916.8154	kN	Resistenza a taglio
V_{Ed}	=	1051.82	467.09	kN	taglio di caloclo
FS	=	1.82	4.10		se >1 verifica soddisfatta
Verifica capacità	a Torsione	ok	ok		
Ø _w	=	12	12	mm	diametro armatura resistente a taglio
α	=	90.00	90.00	0	angolo di inclinazione armatura trasversale
S	=	400	400	mm	passo staffe
n _{br}	=	2	2		numero bracci armatura trasversale
A _s	=	226.19	226.19	mmq	area armatura trasversale posta nell'interasse s
	=	0.57	0.57	mmg/mm	area armatura trasversale posta rieli interasse s
A _s /s				•	area complessive harro longitudinali
ΣA_{l}	=	5001	5001	mmq	area complessiva barre longitudinali
A _c	=	1734000 157	1734000 157	mmq mm	area sezione spessore sezione cava
A	=	1930000	1930000	mmq	area racchiusa dalla fibra media
u _m	=	5800	5800	mm	perimetro medio del nucleo resistente
ω_{sw}	=	0.05	0.05		% meccanica di armatura trasversale
	=	0.08	0.08		
ω_{sl}					% meccanica di armatura longitudinale
ν	=	0.5	0.5		coeff. di riduzione f _{cd}
f' _{cd}	=	12.93	12.93	MPa	resistenza a compressione del cls ridotta
$\sigma_{\sf cp}$	=	0.000	0.000	MPa	tensione media calcestruzzo <=0,2f _{cd}
α c	=	1.0000	1.0000		
cot⊙	=	2.50	2.50		Valore di calcolo (0.4≤cot⊕*≤2,5)
T_Rcd	=	2702.88	2702.88	kNm	resistenza offerta dal calcestruzzo
T_Rsd	=	2135.33	2135.33	kNm	resistenza offerta dall'armatura trasversale
T _{Rld}	=	520.94	520.94	kNm	resistenza offerta dall'armatura longitudinale
T _{Rd}	=	520.94	520.94	kNm	Resistenza a torsione
T_Sd	=	72.67	520.94	kN	Torsione di caloclo
FS	=	7.17	1.00		
Verifica interazio	ne Taglio - To	0k	ok		
Sollecitazioni	nie ragilo - ro	isione			
cot⊚	=	2.500	2.500		valore di calcolo
V _{Ed}	=	1051.82	467.09	kN	taglio di caloclo
T _{Ed}	=	72.67	520.94	kN	torsione di caloclo
Reistenze		12.01	520.9 4	IXIX	toroione di odiodio
V _{Rcd}	=	2426.29	2426.29	kN	Resistenza a taglio lato cls
T _{Rcd}	=	2702.88	2702.88	kNm	Resistenza a torsione lato cls
Verifica	-	02.00	_, 02.30	1111	
$T_{Ed}/T_{Rcd}+V_{Ed}/V_{Rcd}$	=	0.46	0.39		se <1 verifica soddisfatta

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata SX

Pagina 60

Nome file: VI15-F-

CL002_C.00_relazione_calcolo_impalcato_SX.doc.

ok ok

7.2.8 Sezione SE-b (trave di bordo)

Campata:		P02-P03	P08-P09		
Trave:		TRAVE BORDO	TRAVE BORDO		
Sezione:		SE (3.225m testata)	SE (a3.225m testata)		
СОМВ		VEd,max - TEd	VEd - TEd,max		
Sollecitazioni					
V_{Ed}	=	1935	532	kN	taglio di caloclo
T_{Ed}	=	89	614	kN	torsione di caloclo
N_{Ed}	=	0	0	kN	sforzo normale i calcolo
Materiali					
Calcestruzzo					
R _{ck}	=	55	55	MPa	resistenza caratteristica cubica
f_{ck}	=	45.7	45.7	MPa	resistenza caratteristica cilindrica
$\alpha_{\rm cc}$	=	0.85	0.85		coefficiente riduttivo per resistenze di lunga durata
γ_{c}	=	1.50	1.50		coefficiente parziale di sicurezza
f_{cd}	=	25.87	25.87	MPa	resistenza di calcolo a compressione
Acciaio					
f_{yk}	=	450	450	MPa	tensione caratteristica di snervamento
γs	=	1.15	1.15		coefficiente parziale di sicurezza
f_{yd}	=	391.30	391.30	MPa	tensione di snervamento di calcolo
Verifica capac	_				
Verifica per ele	menti spro	vvisti di armatura a taglio			
b _w	=	314	314	mm	larghezza minima sezione
d	=	1925	1925	mm	altezza utile
Ø _w	=	14	14	mm	diametro ferri long. tesi
n	=	25	25	2	numero
A_{sl}	=	3848	3848	mm²	armatura longitudinale
Ac	=	1734000	1734000	mm ²	area sezione cls
k	=	1.32	1.32		
$\sigma_{\sf cp}$	=	0.0000	0.0000	MPa	tensione media calcestruzzo <=0,2f _{cd}
$ ho_1$	=	0.00637	0.00637		rapporto geometrico di armatura longitudinale <=0,02
V _{min}	=	0.360	0.360		
V_{Rd}	=	294.90	294.90	kN	taglio resistente
V _{Ed}	=	1935.2	531.7	kN	taglio di caloclo
FS		0.15	0.55		se >1 verifica soddisfatta
Verifica ner ele	menti provi	no visti di armatura a taglio	no		
Ø _w	=	visii di armatura a tagilo 12	12	mm	diametro armatura resistente a taglio
		90.00	90.00	0	-
α s	=	200.00	90.00 200.00	mm	angolo di inclinazione armatura trasversale passo staffe
	=	4.0	4.0		numero bracci armatura trasversale
n _{br}	_	4.0	4.∪		numero pracci armatura trasversale

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Nome file: VI15-F-

Pagina 61

CL002_C.00_relazione_calcolo_impalcato_SX.doc.

Relazione di Calcolo Impalcato - Carreggiata SX

Opera: Viadotto Arenella III

Progetto	Esecutivo	

A_{sw}	=	452.39	452.39	mmq	area armatura trasversale posta nell'interasse s
b _w	=	314.00	314.00	mm	larghezza minima sezione
f_{cd}	=	25.87	25.87	MPa	
ν	=	0.5	0.5		coeff. di riduzione f _{cd}
f' _{cd}	=	12.93	12.93	MPa	resistenza a compressione del cls ridotta
ω_{sw}	=	0.10897	0.10897		% meccanica di armatura trasversale
α c	=	1.00000	1.00000		
cot⊕*	=	1.894	1.894		check 1≤cot⊕*≤2,5
cot⊚	=	1.894	1.894		valore di calcolo
V_{Rsd}	=	2904.8718	2904.8718	kN	Resistenza "taglio trazione"
V_{Rcd}	=	2904.8718	2904.8718	kN	Resistenza "taglio compressione"
V_{Rd}	=	2904.8718	2904.8718	kN	Resistenza a taglio
V_{Ed}	=	1935.2	531.7	kN	taglio di caloclo
FS	=	1.50	5.46		se >1 verifica soddisfatta
Calcolo della	a Reisitenza a	ok Torsione	ok		
Ø _w	=	12	12	mm	diametro armatura resistente a taglio
α	=	90.00	90.00	o	angolo di inclinazione armatura trasversale
s	=	200	200	mm	passo staffe
n_{br}	=	2	2		numero bracci armatura trasversale
A_s	=	226.19	226.19	mmq	area armatura trasversale posta nell'interasse s
A _s /s	=	1.13	1.13	mmq/mm	
ΣA_l	=	5001	5001	mmq	area complessiva barre longitudinali
A_c	=	1734000	1734000	mmq	area sezione
t	=	157	157	mm	spessore sezione cava
Α	=	1930000	1930000	mmq	area racchiusa dalla fibra media
u _m	=	5800	5800	mm	perimetro medio del nucleo resistente
ω_{sw}	=	0.11	0.11		% meccanica di armatura trasversale
$\omega_{ m sl}$	=	0.08	0.08		% meccanica di armatura longitudinale
ν	=	0.5	0.5		coeff. di riduzione f _{cd}
f' _{cd}	=	12.93	12.93	MPa	resistenza a compressione del cls ridotta
$\sigma_{\sf cp}$	=	0.000	0.000	MPa	tensione media calcestruzzo <=0,2f _{cd}
ας	=	1.0000	1.0000		
cot⊕ [*] s	=	1.894	1.894		crisi contemporanea biella cls -armatura As
cot⊕ [*] ₁	=	0.45	0.45		crisi contemporanea biella cls -armatura Al
$\cot\Theta^*{}_{\text{l-s}}$	=	0.873	0.873		crisi contemporanea armatura As e armatura Al
cot⊕	=	1.89	1.89		Valore di calcolo (0.4≤cot⊕*≤2,5)
T_Rcd	=	3236.02	3236.02	kNm	resistenza offerta dal calcestruzzo
T_Rsd	=	3236.02	3236.02	kNm	resistenza offerta dall'armatura trasversale
T _{Rld}	=	687.50	687.50	kNm	resistenza offerta dall'armatura longitudinale
T_{Rd}	=	687.50	687.50	kNm	Resistenza a torsione
T_{Sd}	=	89.23	614.42	kN	Torsione di caloclo

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

	Progetto	Esecutiv	/(
--	----------	----------	----

Opera: Viadotto Arenella III	Opera:	Viadotto	Arenella I	II
------------------------------	--------	----------	------------	----

Relazione di Calcolo Impalcato - Carreggiata SX Pagina 62

Nome file: VI15-F-

CL002_C.00_relazione_calcolo_impalcato_SX.doc.

FS	=	7.70	1.12		
		ok	ok		
Verifica inte	erazione Taglio	- Torsione			
Sollecitazio	oni				
cot⊙	=	1.894	1.894		valore di calcolo
V_{Ed}	=	1935.2	531.7	kN	taglio di caloclo
T_{Ed}	=	89.23	614.42	kN	torsione di caloclo
Reistenze					
V_{Rcd}	=	2904.87	2904.87	kN	Resistenza a taglio lato cls
T_Rcd	=	3236.02	3236.02	kNm	Resistenza a torsione lato cls
Verifica				_	
T _{Ed} /T _{Rcd} +V _{Ed}	_I /V _{Rcd} =	0.69	0.37		se <1 verifica soddisfatta
		ok	ok		

7.2.9 Sezione SF-b (Trave di bordo)

Campata:		P02-P03	P08-P09		
Trave:		TRAVE BORDO SF (a 6.225m da	TRAVE BORDO SF (a 6.225m da		
Sezione:		testata)	testata)		
COMB		VEd,max - TEd	VEd - TEd,max		
Sollecitazioni					
V_{Ed}	=	1216	391	kN	taglio di caloclo
T_{Ed}	=	36	616	kN	torsione di caloclo
N_{Ed}	=	0	0	kN	sforzo normale i calcolo
Materiali					
Calcestruzzo					
R_{ck}	=	55	55	MPa	resistenza caratteristica cubica
f_{ck}	=	45.7	45.7	MPa	resistenza caratteristica cilindrica coefficiente riduttivo per resistenze di lunga
$\alpha_{\rm cc}$	=	0.85	0.85		durata
γ_{c}	=	1.50	1.50		coefficiente parziale di sicurezza
f_{cd}	=	25.87	25.87	MPa	resistenza di calcolo a compressione
Acciaio					
f_{yk}	=	450	450	MPa	tensione caratteristica di snervamento
γs	=	1.15	1.15		coefficiente parziale di sicurezza
f _{yd}	=	391.30	391.30	MPa	tensione di snervamento di calcolo
Verifica capacità a taglio					
Verifica per element	i sprov	visti di armatura a			
taglio					
b _w	=	314	314	mm	larghezza minima sezione
d	=	1925	1925	mm	altezza utile
\emptyset_{w}	=	14	14	mm	diametro ferri long. tesi
n	=	25	25		numero
A_{sl}	=	3848	3848	mm^2	armatura longitudinale
Ac	=	1734000	1734000	mm^2	area sezione cls
k	=	1.32	1.32		

CORRIDOIO PLURIMODALE TIRRENICO-NORD EUROPA

ITINERARIO AGRIGENTO -CALTANISSETTA-A19
S.S. N° 640 "DI PORTO EMPEDOCLE"

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001
DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella II	Opera:	Viadotto	Arenella	Ш
-----------------------------	--------	----------	----------	---

Relazione di Calcolo Impalcato - Carreggiata SX Pagina 63

Nome file: VI15-F-

$\sigma_{\sf cp}$	=	0.0000	0.0000	MPa	tensione media calcestruzzo <=0,2f _{cd}
$ ho_1$	=	0.00637	0.00637		rapporto geometrico di armatura longitudinale <=0,02
V_{min}	=	0.360	0.360		
V_{Rd}	=	294.90	294.90	kN	taglio resistente
V_{Ed}	=	1216.19	390.52	kN	taglio di caloclo
FS		0.24	0.76		se >1 verifica soddisfatta
\/amifiaa mamalam		no ti di amantuna a	no		
Verifica per elem taglio	enu provvis	u di armatura a			
\emptyset_{w}	=	12	12	mm	diametro armatura resistente a taglio
α	=	90.00	90.00	0	angolo di inclinazione armatura trasversale
s	=	400.00	400.00	mm	passo staffe
n_{br}	=	4.0	4.0		numero bracci armatura trasversale
A_sw	=	452.39	452.39	mmq	area armatura trasversale posta nell'interasse s
$b_{\rm w}$	=	314.00	314.00	mm	larghezza minima sezione
f_{cd}	=	25.87	25.87	MPa	
ν	=	0.5	0.5		coeff. di riduzione f_{cd}
f' _{cd}	=	12.93	12.93	MPa	resistenza a compressione del cls ridotta
$\omega_{ m sw}$	=	0.05448	0.05448		% meccanica di armatura trasversale
α c	=	1.00000	1.00000		
cot⊙	=	2.000	2.000		valore di calcolo check 1≤cot⊕*≤2,5
V_{Rsd}	=	1533.4524	1533.4524	kN	Resistenza "taglio trazione"
V _{Rcd}	=	2814.5005	2814.5005	kN	Resistenza "taglio compressione"
V _{Rcd}	=	2814.5005 1533.4524	2814.5005 1533.4524	kN kN	Resistenza "taglio compressione" Resistenza a taglio
V_{Rd}	=	1533.4524 1216.19 1.26	1533.4524 390.52 3.93	kN	Resistenza a taglio
V _{Rd} V _{Ed} FS	= - -	1533.4524 1216.19 1.26 ok	1533.4524 390.52	kN	Resistenza a taglio taglio di caloclo
V _{Rd} V _{Ed} FS Calcolo della Re	= = = eisitenza a	1533.4524 1216.19 1.26 ok Torsione	1533.4524 390.52 3.93 ok	kN kN	Resistenza a taglio taglio di caloclo se >1 verifica soddisfatta
V_{Rd} V_{Ed} FS Calcolo della Re	= = = eisitenza a =	1533.4524 1216.19 1.26 ok Torsione 12	1533.4524 390.52 3.93 ok 12	kN kN mm	Resistenza a taglio taglio di caloclo se >1 verifica soddisfatta diametro armatura resistente a taglio
V_{Rd} V_{Ed} FS Calcolo della Re \emptyset_w	= = = eisitenza a = =	1533.4524 1216.19 1.26 ok Torsione 12 90.00	1533.4524 390.52 3.93 ok 12 90.00	kN kN mm	Resistenza a taglio taglio di caloclo se >1 verifica soddisfatta diametro armatura resistente a taglio angolo di inclinazione armatura trasversale
V_{Rd} V_{Ed} FS Calcolo della Re \emptyset_w α S	= = = = eisitenza a = = = =	1533.4524 1216.19 1.26 ok Torsione 12 90.00 400	1533.4524 390.52 3.93 ok 12 90.00 400	kN kN mm	Resistenza a taglio taglio di caloclo se >1 verifica soddisfatta diametro armatura resistente a taglio angolo di inclinazione armatura trasversale passo staffe
$\begin{array}{c} \textbf{V}_{\textbf{Rd}} \\ \textbf{V}_{\textbf{Ed}} \\ \textbf{FS} \\ \\ \textbf{Calcolo della Re} \\ \textbf{\emptyset}_{\textbf{w}} \\ \alpha \\ \textbf{s} \\ \textbf{n}_{\textbf{br}} \\ \end{array}$	= = = eisitenza a = = = =	1533.4524 1216.19 1.26 ok Torsione 12 90.00 400 2	1533.4524 390.52 3.93 ok 12 90.00 400 2	kN kN mm °	Resistenza a taglio taglio di caloclo se >1 verifica soddisfatta diametro armatura resistente a taglio angolo di inclinazione armatura trasversale passo staffe numero bracci armatura trasversale
$\begin{array}{c} \textbf{V}_{\textbf{Rd}} \\ \textbf{V}_{\textbf{Ed}} \\ \textbf{FS} \\ \\ \textbf{Calcolo della Re} \\ \textbf{Ø}_{\textbf{w}} \\ \alpha \\ \textbf{s} \\ \textbf{n}_{\textbf{br}} \\ \textbf{A}_{\textbf{s}} \\ \end{array}$	= = = eisitenza a = = = = =	1533.4524 1216.19 1.26 ok Torsione 12 90.00 400 2 226.19	1533.4524 390.52 3.93 ok 12 90.00 400 2 226.19	kN kN mm o mm	Resistenza a taglio taglio di caloclo se >1 verifica soddisfatta diametro armatura resistente a taglio angolo di inclinazione armatura trasversale passo staffe
$\begin{array}{c} \textbf{V}_{\text{Rd}} \\ \\ \text{V}_{\text{Ed}} \\ \\ \text{FS} \\ \\ \\ \textbf{Calcolo della Re} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	= = = = = = = = = = = = = = = = = =	1533.4524 1216.19 1.26 ok Torsione 12 90.00 400 2 226.19 0.57	1533.4524 390.52 3.93 ok 12 90.00 400 2 226.19 0.57	kN kN mm o mm mmq mmq/m m	Resistenza a taglio taglio di caloclo se >1 verifica soddisfatta diametro armatura resistente a taglio angolo di inclinazione armatura trasversale passo staffe numero bracci armatura trasversale area armatura trasversale posta nell'interasse s
$\begin{array}{c} \textbf{V}_{\textbf{Rd}} \\ \textbf{V}_{\textbf{Ed}} \\ \textbf{FS} \\ \\ \textbf{Calcolo della Re} \\ \textbf{\emptyset}_{\textbf{w}} \\ \boldsymbol{\alpha} \\ \textbf{s} \\ \textbf{n}_{\textbf{br}} \\ \textbf{A}_{\textbf{s}} \\ \textbf{A}_{\textbf{s}} / \textbf{s} \\ \boldsymbol{\Sigma} \textbf{A}_{\textbf{I}} \\ \end{array}$	= = = = = = = = = =	1533.4524 1216.19 1.26 ok Torsione 12 90.00 400 2 226.19 0.57 5001	1533.4524 390.52 3.93 ok 12 90.00 400 2 226.19 0.57 5001	kN kN mm o mmq mmq/m mmq/m m	Resistenza a taglio taglio di caloclo se >1 verifica soddisfatta diametro armatura resistente a taglio angolo di inclinazione armatura trasversale passo staffe numero bracci armatura trasversale area armatura trasversale posta nell'interasse s area complessiva barre longitudinali
$\begin{array}{c} \textbf{V}_{\textbf{Rd}} \\ \textbf{V}_{\textbf{Ed}} \\ \textbf{FS} \\ \\ \textbf{Calcolo della Re} \\ \textbf{Ø}_{\textbf{w}} \\ \textbf{α} \\ \textbf{s} \\ \textbf{n}_{\textbf{br}} \\ \textbf{A}_{\textbf{s}} \\ \textbf{A}_{\textbf{s}} / \textbf{s} \\ \textbf{Σ} \textbf{A}_{\textbf{l}} \\ \textbf{A}_{\textbf{c}} \\ . \end{array}$	= = = = = = = = = = = = = = = = = =	1533.4524 1216.19 1.26 ok Torsione 12 90.00 400 2 226.19 0.57 5001 1734000	1533.4524 390.52 3.93 ok 12 90.00 400 2 226.19 0.57 5001 1734000	kN kN mm o mmq mmq/m m mmq mmq	Resistenza a taglio taglio di caloclo se >1 verifica soddisfatta diametro armatura resistente a taglio angolo di inclinazione armatura trasversale passo staffe numero bracci armatura trasversale area armatura trasversale posta nell'interasse s area complessiva barre longitudinali area sezione
$\begin{array}{c} \textbf{V}_{\textbf{Rd}} \\ \textbf{V}_{\textbf{Ed}} \\ \textbf{FS} \\ \\ \textbf{Calcolo della Re} \\ \textbf{Ø}_{\textbf{w}} \\ \textbf{α} \\ \textbf{s} \\ \textbf{n}_{\textbf{br}} \\ \textbf{A}_{\textbf{s}} \\ \textbf{A}_{\textbf{s}} / \textbf{s} \\ \textbf{Σ} \textbf{A}_{\textbf{I}} \\ \textbf{A}_{\textbf{c}} \\ \textbf{t} \\ \end{array}$	= = = = = = = = = = = = = = = = = =	1533.4524 1216.19 1.26 ok Torsione 12 90.00 400 2 226.19 0.57 5001 1734000 157	1533.4524 390.52 3.93 ok 12 90.00 400 2 226.19 0.57 5001 1734000 157	kN kN mm o mmq mmq/m m mmq mmq mmq	Resistenza a taglio taglio di caloclo se >1 verifica soddisfatta diametro armatura resistente a taglio angolo di inclinazione armatura trasversale passo staffe numero bracci armatura trasversale area armatura trasversale posta nell'interasse s area complessiva barre longitudinali area sezione spessore sezione cava
$\begin{array}{c} \textbf{V}_{\textbf{Rd}} \\ \textbf{V}_{\textbf{Ed}} \\ \textbf{FS} \\ \\ \textbf{Calcolo della Re} \\ \textbf{\emptyset}_{\textbf{w}} \\ \textbf{\alpha} \\ \textbf{s} \\ \textbf{n}_{\textbf{br}} \\ \textbf{A}_{\textbf{s}} \\ \textbf{A}_{\textbf{s}} / \textbf{s} \\ \textbf{\Sigma} \textbf{A}_{\textbf{l}} \\ \textbf{A}_{\textbf{c}} \\ \textbf{t} \\ \textbf{A} \end{array}$	= = = = = = = = = = = = = = = = = =	1533.4524 1216.19 1.26 ok Torsione 12 90.00 400 2 226.19 0.57 5001 1734000 157 1930000	1533.4524 390.52 3.93 ok 12 90.00 400 2 226.19 0.57 5001 1734000 157 1930000	kN kN mm o mmq mmq/m m mmq mmq mmq mmq mmq mmq mmq	Resistenza a taglio taglio di caloclo se >1 verifica soddisfatta diametro armatura resistente a taglio angolo di inclinazione armatura trasversale passo staffe numero bracci armatura trasversale area armatura trasversale posta nell'interasse s area complessiva barre longitudinali area sezione spessore sezione cava area racchiusa dalla fibra media
$\begin{array}{c} \textbf{V}_{\textbf{Rd}} \\ \textbf{V}_{\textbf{Ed}} \\ \textbf{FS} \\ \\ \textbf{Calcolo della Re} \\ \textbf{Ø}_{\textbf{w}} \\ \textbf{\alpha} \\ \textbf{s} \\ \textbf{n}_{\textbf{br}} \\ \textbf{A}_{\textbf{s}} \\ \textbf{A}_{\textbf{s}} / \textbf{s} \\ \textbf{\Sigma} \textbf{A}_{\textbf{i}} \\ \textbf{A}_{\textbf{c}} \\ \textbf{t} \\ \textbf{A} \\ \textbf{u}_{\textbf{m}} \\ \\ \end{array}$	= = = = = = = = = = = = = = = = = =	1533.4524 1216.19 1.26 ok Torsione 12 90.00 400 2 226.19 0.57 5001 1734000 157 1930000 5800	1533.4524 390.52 3.93 ok 12 90.00 400 2 226.19 0.57 5001 1734000 157 1930000 5800	kN kN mm o mmq mmq/m m mmq mmq mmq	Resistenza a taglio taglio di caloclo se >1 verifica soddisfatta diametro armatura resistente a taglio angolo di inclinazione armatura trasversale passo staffe numero bracci armatura trasversale area armatura trasversale posta nell'interasse s area complessiva barre longitudinali area sezione spessore sezione cava area racchiusa dalla fibra media perimetro medio del nucleo resistente
$\begin{array}{c} \textbf{V}_{\textbf{Rd}} \\ \textbf{V}_{\textbf{Ed}} \\ \textbf{FS} \\ \\ \textbf{Calcolo della Re} \\ \textbf{\varnothing}_{\textbf{w}} \\ \boldsymbol{\alpha} \\ \textbf{s} \\ \textbf{n}_{\textbf{br}} \\ \textbf{A}_{\textbf{s}} \\ \textbf{A}_{\textbf{s}} / \textbf{s} \\ \boldsymbol{\Sigma} \textbf{A}_{\textbf{l}} \\ \textbf{A}_{\textbf{c}} \\ \textbf{t} \\ \textbf{A} \\ \textbf{u}_{\textbf{m}} \\ \boldsymbol{\omega}_{\textbf{sw}} \\ \end{array}$	= = = = = = = = = = = = = = = = = =	1533.4524 1216.19 1.26 ok Torsione 12 90.00 400 2 226.19 0.57 5001 1734000 157 1930000 5800 0.05	1533.4524 390.52 3.93 ok 12 90.00 400 2 226.19 0.57 5001 1734000 157 1930000 5800 0.05	kN kN mm o mmq mmq/m m mmq mmq mmq mmq mmq mmq mmq	Resistenza a taglio taglio di caloclo se >1 verifica soddisfatta diametro armatura resistente a taglio angolo di inclinazione armatura trasversale passo staffe numero bracci armatura trasversale area armatura trasversale posta nell'interasse s area complessiva barre longitudinali area sezione spessore sezione cava area racchiusa dalla fibra media perimetro medio del nucleo resistente % meccanica di armatura trasversale
$\begin{array}{c} \mathbf{V_{Rd}} \\ \mathbf{V_{Ed}} \\ \mathbf{FS} \\ \\ \mathbf{Calcolo\ della\ Re} \\ \boldsymbol{\varnothing_{w}} \\ \boldsymbol{\alpha} \\ \mathbf{s} \\ \mathbf{n_{br}} \\ \mathbf{A_{s}} \\ \mathbf{A_{s}/s} \\ \boldsymbol{\Sigma A_{i}} \\ \mathbf{A_{c}} \\ \mathbf{t} \\ \mathbf{A} \\ \mathbf{u_{m}} \\ \boldsymbol{\omega_{sw}} \\ \boldsymbol{\omega_{sl}} \\ \end{array}$	= = = = = = = = = = = = = = = = = =	1533.4524 1216.19 1.26 ok Torsione 12 90.00 400 2 226.19 0.57 5001 1734000 157 1930000 5800 0.05 0.08	1533.4524 390.52 3.93 ok 12 90.00 400 2 226.19 0.57 5001 1734000 157 1930000 5800 0.05 0.08	kN kN mm o mmq mmq/m m mmq mmq mmq mmq mmq mmq mmq	Resistenza a taglio taglio di caloclo se >1 verifica soddisfatta diametro armatura resistente a taglio angolo di inclinazione armatura trasversale passo staffe numero bracci armatura trasversale area armatura trasversale posta nell'interasse s area complessiva barre longitudinali area sezione spessore sezione cava area racchiusa dalla fibra media perimetro medio del nucleo resistente % meccanica di armatura trasversale % meccanica di armatura longitudinale
V_{Rd} V_{Ed} FS Calcolo della Re \emptyset_w α s n_{br} A_s A_s/s $\sum A_l$ A_c t A u_m ω_{sw} ω_{sl}	= = = = = = = = = = = = = = = = = =	1533.4524 1216.19 1.26 ok Torsione 12 90.00 400 2 226.19 0.57 5001 1734000 157 1930000 5800 0.05 0.08 0.5	1533.4524 390.52 3.93 ok 12 90.00 400 2 226.19 0.57 5001 1734000 157 1930000 5800 0.05 0.08 0.5	kN kN mm mmq mmq/m mmq mmq mmq mmq mmq mmm	Resistenza a taglio taglio di caloclo se >1 verifica soddisfatta diametro armatura resistente a taglio angolo di inclinazione armatura trasversale passo staffe numero bracci armatura trasversale area armatura trasversale posta nell'interasse s area complessiva barre longitudinali area sezione spessore sezione cava area racchiusa dalla fibra media perimetro medio del nucleo resistente % meccanica di armatura trasversale % meccanica di armatura longitudinale coeff. di riduzione f _{cd}
$\begin{array}{c} \mathbf{V_{Rd}} \\ \mathbf{V_{Ed}} \\ \mathbf{FS} \\ \\ \mathbf{Calcolo\ della\ Re} \\ \boldsymbol{\varnothing_{w}} \\ \boldsymbol{\alpha} \\ \mathbf{s} \\ \mathbf{n_{br}} \\ \mathbf{A_{s}} \\ \mathbf{A_{s}/s} \\ \boldsymbol{\Sigma A_{i}} \\ \mathbf{A_{c}} \\ \mathbf{t} \\ \mathbf{A} \\ \mathbf{u_{m}} \\ \boldsymbol{\omega_{sw}} \\ \boldsymbol{\omega_{sl}} \\ \end{array}$	= = = = = = = = = = = = = = = = = =	1533.4524 1216.19 1.26 ok Torsione 12 90.00 400 2 226.19 0.57 5001 1734000 157 1930000 5800 0.05 0.08	1533.4524 390.52 3.93 ok 12 90.00 400 2 226.19 0.57 5001 1734000 157 1930000 5800 0.05 0.08	kN kN mm o mmq mmq/m m mmq mmq mmq mmq mmq mmq mmq	Resistenza a taglio taglio di caloclo se >1 verifica soddisfatta diametro armatura resistente a taglio angolo di inclinazione armatura trasversale passo staffe numero bracci armatura trasversale area armatura trasversale posta nell'interasse s area complessiva barre longitudinali area sezione spessore sezione cava area racchiusa dalla fibra media perimetro medio del nucleo resistente % meccanica di armatura trasversale % meccanica di armatura longitudinale

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19 *Progetto Esecutivo*

Opera:	Viadotto	Arenella III	
Relazion	e di Calcolo	Impalcato - Car	rec

Relazione di Calcolo Impalcato - Carreggiata SX Pagina 64

Nome file: VI15-F-

CL002_C.00_relazione_calcolo_impalcato_SX.doc.

Ĭ					
α c	=	1.0000	1.0000		
cot⊙	=	2.00	2.00		Valore di calcolo (0.4≤cot⊕*≤2,5)
T_Rcd	=	3135.35	3135.35	kNm	resistenza offerta dal calcestruzzo
T_Rsd	=	1708.26	1708.26	kNm	resistenza offerta dall'armatura trasversale
T_Rld	=	651.18	651.18	kNm	resistenza offerta dall'armatura longitudinale
T _{Rd}	=	651.18	651.18	kNm	Resistenza a torsione
T_{Sd}	=	36.31	615.64	kN	Torsione di caloclo
FS	=	17.93	1.06		
		ok	ok		
Verifica interazio	ne Taglio	- Torsione			
Sollecitazioni					
cot⊚	=	2.000	2.000		valore di calcolo
V_{Ed}	=	1216.19	390.52	kN	taglio di caloclo
T_{Ed}	=	36.31	615.64	kN	torsione di caloclo
Reistenze					
V_{Rcd}	=	2814.50	2814.50	kN	Resistenza a taglio lato cls
T_Rcd	=	3135.35	3135.35	kNm	Resistenza a torsione lato cls
Verifica				_	
$T_{Ed}/T_{Rcd}+V_{Ed}/V_{Rcd}$	=	0.44	0.34		se <1 verifica soddisfatta
		ok	ok		

7.2.10 b (trave di bordo)

7.2.11 Sezione SC-b (trave di bordo)

Campata: Trave:		P05 TRAVE BORDO	P09 TRAVE BORDO		
Sezione:		SC (testata)	SC (testata)		
COMB		VEd,max - TEd	VEd - TEd,max		
Sollecitazioni					
V_{Ed}	=	2107	1115	kN	taglio di caloclo
T_{Ed}	=	105	648	kN	torsione di caloclo
N_{Ed}	=	0	0	kN	sforzo normale i calcolo
Materiali Calcestruzzo					
R_{ck}	=	55	55	MPa	resistenza caratteristica cubica
f_{ck}	=	45.7	45.7	MPa	resistenza caratteristica cilindrica
$\alpha_{\rm cc}$	=	0.85	0.85		coefficiente riduttivo per resistenze di lunga durata
γ_{c}	=	1.50	1.50		coefficiente parziale di sicurezza
f_{cd}	=	25.87	25.87	MPa	resistenza di calcolo a compressione
Acciaio					
f_{yk}	=	450	450	MPa	tensione caratteristica di snervamento
γs	=	1.15	1.15		coefficiente parziale di sicurezza
f_{yd}	=	391.30	391.30	MPa	tensione di snervamento di calcolo
Verifica capacit	à a taglio				

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Are	nella III
---------------------	-----------

Relazione di Calcolo Impalcato - Carreggiata SX Pagina 65

Nome file: VI15-F-

Verifica per	elementi sprovvi	sti di armatura a taglio			
b_{w}	=	829.2	829.2	mm	larghezza minima sezione
d	=	1925	1925	mm	altezza utile
\emptyset_{w}	=	14	14	mm	diametro ferri long. tesi
n	=	24	24	2	numero
A _{sl}	=	3695	3695	mm ²	armatura longitudinale
A _c	=	1734000	1734000	mm ²	area sezione cls
k	=	1.32	1.32		
$\sigma_{\sf cp}$	=	0.0000	0.0000	MPa	tensione media calcestruzzo <=0,2f _{cd}
$ ho_1$	=	0.00231	0.00231		rapporto geometrico di armatura longitudinale <=0,02
V _{min}	=	0.360	0.360		
V _{Rd}	=	573.97	573.97	kN	taglio resistente
V_{Ed} FS	=	2107.1 0.27	1114.54	kN	taglio di caloclo se >1 verifica soddisfatta
F3		no	0.51 no		Se >1 Vernica SoudiStatta
Verifica per	elementi provvis	ti di armatura a taglio			
$\emptyset_{\rm w}$	=	12	12	mm	diametro armatura resistente a taglio
α	=	90.00	90.00	۰	angolo di inclinazione armatura trasversale
s	=	300.00	300.00	mm	passo staffe
n _{br}	=	4.0	4.0		numero bracci armatura trasversale
A_{sw}	=	452.39	452.39	mmq	area armatura trasversale posta nell'interasse s
b _w	=	829.20	829.20	mm	larghezza minima sezione
f_{cd}	=	25.87	25.87	MPa	
ν	=	0.5	0.5		coeff. di riduzione f _{cd}
f' _{cd}	=	12.93	12.93	MPa	resistenza a compressione del cls ridotta
ω_{sw}	=	0.02751	0.02751		% meccanica di armatura trasversale
α c	=	1.00000	1.00000		
cot⊕	=	2.500	2.500		valore di calcolo (1≤cot⊕*≤2,5)
V_{Rsd}	=	2555.7539	2555.7539	kN	Resistenza "taglio trazione"
V_{Rcd}	=	6407.2695	6407.2695	kN	Resistenza "taglio compressione"
V_{Rd}	=	2555.7539	2555.7539	kN	Resistenza a taglio
V_{Ed}	=	2107.1	1114.54	kN	taglio di caloclo
FS	=	1.21	2.29		se >1 verifica soddisfatta
Calcolo dol	lla Reisitenza a	ok Torsiona	ok		
Ø _w	=	14	14	mm	diametro armatura resistente a taglio
α	=	90.00	90.00	0	angolo di inclinazione armatura trasversale
s	=	100	100	mm	passo staffe
n _{br}	=	2	2		numero bracci armatura trasversale
A _s	=	307.88	307.88	mmq	area armatura trasversale posta nell'interasse s
A _s /s	=	3.08	3.08	mmg/mm	·
ΣA _I	=	9557	9557	mmq	area complessiva barre longitudinali
A _c	=	1734000	1734000	mmq	area sezione
u	=	5520	5520	mm	perimetro della sezione
					-

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19 *Progetto Esecutivo*

Opera:	<u>Viadotto</u>	Arenell	a III

Relazione di Calcolo Impalcato - Carreggiata SX

Pagina 66

Nome file: VI15-F-

CL002_C.00_relazione_calcolo_impalcato_SX.doc.

t	=	314	314.1	mm	spessore sezione cava
Ω	=	1940000.00	1940000.00	mmq	area racchiusa dalla fibra media
u _m	=	4280	4280	mm	perimetro medio del nucleo resistente
ω_{sw}	=	0.15	0.15		% meccanica di armatura trasversale
ω_{sl}	=	0.11	0.11		% meccanica di armatura longitudinale
ν	=	0.5	0.5		coeff. di riduzione f_{cd}
f' _{cd}	=	12.93	12.93	MPa	resistenza a compressione del cls ridotta
$\sigma_{\sf cp}$	=	0.000	0.000	MPa	tensione media calcestruzzo <=0,2f _{cd}
α c	=	1.0000	1.0000		
cot⊙	=	2.50	2.50		Valore di calcolo (0.4≤cot⊕*≤2,5)
T_Rcd	=	5436.03	5436.03	kNm	resistenza offerta dal calcestruzzo
T_Rsd	=	11685.91	11685.91	kNm	resistenza offerta dall'armatura trasversale
T_{RId}	=	1356.04	1356.04	kNm	resistenza offerta dall'armatura longitudinale
T _{Rd}	=	1356.04	1356.04	kNm	Resistenza a torsione
T_{Sd}	=	104.85	648.4	kN	Torsione di caloclo
FS	=	12.93	2.09		
		ok	ok		
Verifica interazio	one Taglio - Torsi	one			
Sollecitazioni I					
cot⊕	=	2.500	2.500		valore di calcolo
V_{Ed}	=	2107.1	1114.54	kN	taglio di caloclo
T_{Ed}	=	104.85	648.4	kN	torsione di caloclo
Reistenze					
V_{Rcd}	=	6407.27	6407.27	kN	Resistenza a taglio lato cls
T_Rcd	=	5436.03	5436.03	kNm	Resistenza a torsione lato cls
Verifica					
$T_{Ed}/T_{Rcd}+V_{Ed}/V_{Rcd}$	=	0.35	0.29		se <1 verifica soddisfatta

7.2.12 Verifica del trasferimento del taglio all' interfaccia cassoncino/nucleo gettato in opera

Si verifica che tutto il taglio a filo traverso possa essere trasferito alle travi mediante la resistenza a taglio di staffe di connessione disposte lungo il perimetro interno dei cassoncini. Si trascura il contributo dell'aderenza fra i due getti di calcestruzzo.

V_{Ed}	=	2107		taglio massimo di progetto a filo trasverso
ф	=	12	mm	diametro
n_{b}	=	8		numero di bracci lungo il perimetro interno
n_{f}	=	14		numero di file a passo 100 mm
n_{tot}	=	112		numero totale
A_s	=	12666.9	mmq	area armatura trasversale
\mathbf{f}_{yd}	=	391.3	MPa	tensione di snervamento di calcolo
$f_{yd}/3^{1/2}$	=	226		tensione ideale
V_{Rd}	=	2862	kN	resitenza offerta dall'armatura trasversale
V_{Rd}/V_{Ed}	=	1.36		se >1 verifica soddisfatta

CORRIDOIO PLURIMODALE TIRRENICO-NORD EUROPA ITINERARIO AGRIGENTO -CALTANISSETTA-A19 S.S. N° 640 "DI PORTO EMPEDOCLE" AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella I	Ш
----------------------------	---

Relazione di Calcolo Impalcato - Carreggiata SX Pagina 67

Nome file:

VI15-F-

CL002_C.00_relazione_calcolo_impalcato_SX.doc.

7.3 Verifica della connessione trave soletta

La connessione trave-soletta è verificata a partire dal taglio massimo.

Da 0 a 3.2 m Sollecitazioni

V_{Ed}	=	2107100	N	taglio massimo in testata
S _{sol}	=	387375833	mm^3	momento statico della soletta
J_yo	=	8.39E+11	mm ⁴	momento di inerzia intera sezione
q_{Ed}	=	972	N/mm	scorrimento di calcolo
Calcolo resistenza				
ϕ_1	=	12	mm	diametro
n_{b1}	=	4		numero di bracci
A _{s1}	=	452	mmq	area armatura trasversali
S ₁	=	75	mm	passo
A _{s1} /s ₁	=	6.03		
ϕ_2	=	12	mm	diametro
n_{b2}	=	4		numero di bracci
A _{s2}	=	452	mmq	area armatura trasversali
s2	=	150	mm	passo
A _{s2} /s ₂	=	3.02		
f_{yd}	=	391.3	MPa	tensione di snervamento di calcolo
f _{vd} /3 ^{1/2}	=	226	MPa	tensione ideale
q _{Rd}	=	2044	N/mm	scorrimento resistente
q_{Rd}/q_{Ed}	=	2.10		se >1 verifica soddisfatta

Da 3.2 a 6.2 m Sollecitazioni

V_{Ed}	=	1935250	kN	taglio massimo in testata
S_{sol}	=	387375833	mm ³	momento statico della soletta
J_{yo}	=	8.39E+11	mm ⁴	momento di inerzia intera sezione
q_{Ed}	=	893	N/mm	scorrimento di calcolo
Calcolo resistenza				
ϕ_1	=	12	mm	diametro
n _{b1}	=	4		numero di bracci
A _{s1}	=	452	mmq	area armatura trasversali
s ₁	=	100	mm	passo
A_{s1}/s_1	=	4.52		
ϕ_2	=	12	mm	diametro
n_{b2}	=	4		numero di bracci
A _{s2}	=	452	mmq	area armatura trasversali
s2	=	200	mm	passo

Pagina 68 Nome file: VI15-F-

CL002_C.00_relazione_calcolo_impalcato_SX.doc.

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata SX

D	F
Prodetto	Esecutive

A_{s2}/s_2	=	2.26	
f_{yd}	=	391.3 MPa	tensione di snervamento di calcolo
$f_{yd}/3^{1/2}$	=	226 MPa	tensione ideale
q _{Rd}	=	1533 N/mm	scorrimento resistente
q_{Rd}/q_{Ed}	=	1.72	se >1 verifica soddisfatta

7.4 S.L.E. rara - limitazione delle tensioni

Si riportano nei paragrafi successivi le tensioni nelle fibre più sollecitate della trave, della soletta, delle armature di precompressione ed ordinaria; sono indicate anche le sollecitazioni agenti nelle varie fasi sulle sezioni verificate. Le tensioni sono state calcolate nell'ipotesi di calcestruzzo reagente e laddove, in soletta, sono state riscontrate trazioni del calcestruzzo, evenienza che si verifica nelle vicinanze degli assi pila, si è fatta una seconda verifica semplificata, trascurando tutto il contributo della soletta; tale verifica si ritiene soddisfatta se al lembo superiore teso di trave compaiono compressioni o trazioni modeste inferiori alla resistenza stessa a trazione del calcestruzzo.

Le perdite di precompressione sono state introdotte in termini di sollecitazioni equivalenti.

I limiti tensionali per le combinazioni rara sono:

Combinazione rara (fondamentale)

 σ_c = 27.4 MPa massima compressione in esercizio cap

 σ_c = 19.9 MPa massima compressione in esercizio cao

 σ_p = 1336 MPa massima trazione in esercizio trefoli

 σ_s = 360 MPa massima trazione in esercizio armatura lenta

Mentre al taglio trefoli:

al taglio trefoli (tensioni iniziali)

 σ_{ci} = 26.1 MPa massima compressione iniziale cap

 σ_{cti} = 1.79 MPa massima trazione iniziale cap

 σ_{ci} = 23.2 MPa massima compressione iniziale cao

 σ_{pi} = 1488 MPa massima trazione iniziale trefoli

 σ_{si} = 360 MPa massima trazione iniziale armatura lenta

Nei paragrafi successivi si riportano le verifiche di sicurezza delle sezioni più significative della trave e indicate nel seguente modo:

SA-c: sezione di mezzeria trave centrale

SB-c: sezione a x=1.5m (filo riempimento) trave centrale SD-c: sezione a 9.0m dalla testata della trave centrale

SA-b: sezione di mezzeria trave di bordo

SB-b: sezione a x=1.5m (filo riempimento) trave di bordo

Progetto Esecutivo

Relazione di Calcolo Impalcato - Carreggiata SX Pagina 69

Opera: Viadotto Arenella III

Nome file: VI15-F-

CL002_C.00_relazione_calcolo_impalcato_SX.doc.

SD-b: sezione a 9.0m dalla testata della trave di bordo

Inoltre con:

SF1, SF2, SF3, SF4 si sono indicate le caratteristiche geometriche delle sezioni calcolate nelle varie fasi e riportate nel paragrafo 2.3.3 Caratteristiche geometriche delle sezioni

7.4.1 Verifiche Sezione SA-c

Caratteristiche precompressione

id_cavo	n. trefoli	area singolo trefolo	area trefoli	distanza da intradosso	presoll.	precompressione iniziale
	np	A_{pt}	A_p	Y_p	σ_{pi}	N_{pi}
		mm^2	mm^2	mm	MPa	kN
1	12	139.0	1668	50	1350	2252
2	8	139.0	1112	100	1350	1501
3	6	139.0	834	150	1350	1126
4	4	139.0	556	200	1350	751
5	4	139.0	556	250	1350	751
6	4	139.0	556	300	1350	751
7	4	139.0	556	450	1350	751
8	2	139.0	278	500.2	1350	375
9	2	139.0	278	600.2	1350	375
10	4	139.0	556	800	1350	751
11	4	139.0	556	1000	1350	751
12	4	139.0	556	1300	1350	751
13	2	139.0	278	1750	1350	375
TOT	60		8340.0	420.01		11259

Simbologia e unità di misura

 $N_k = kN$ valore caratteristico sforzo normale

M_k = kNm valore caratteristico momento flettente

 Ψ_0 = coefficiente per combinazione rara

 Ψ_1 = coefficiente per combinazione frequente

 $\Psi_2 =$ coefficiente per combinazione quasi permanente

 σ_{cs} = MPa tensione estradosso soletta

 σ_{ci} = MPa tensione intradosso soletta

= MPa tensione estradosso trave prefabbricata

= MPa tensione intradosso trave prefabbricata

 σ_{eq} = MPa tensione a livello trefolo equivalente

 σ_{cp} = MPa tensione media nel calcestruzzo

 σ_{os} = MPa tensione nel trefolo superiore

 σ_{pi} = MPa tensione nel trefolo inferiore

= MPa tensione nell'armatura lenta superiore

Calcolo Delle Tensioni Nelle Condizioni Elementari Di Carico

Relazione di Calcolo Impalcato - Carreggiata SX Pagina 70 Nome file: VI15-F-

CL002_C.00_relazione_calcolo_impalcato_SX.doc.

Opera: Viadotto Arenella III

Progetto	Esecutivo	

Azione	coazione al netto delle cadute istantanee (isostatico)	coazione al netto delle cadute istantanee (isostatico)	coazione al netto delle cadute istantanee (iperstatico)	peso proprio trave (isostatico)	peso proprio trave (isostatico)	peso proprio trave (iperstatico)	peso soletta (isostatico)
Fase	SF1	SF3	SF3	SF1	SF3	SF3	SF1
N_k	10186.4	10186.4	8715.5	0.0	0.0	-0.1	0.0
M_{k}	-4299.2	-8497.5	4074.0	1900.0	1900.0	821.1	1508.0
Ψ_0	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ψ_{1}	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ψ_2	1.00	1.00	1.00	1.00	1.00	1.00	1.00
σ_{cs}	0.0	-1.6	9.3	0.0	1.8	0.8	0.0
σ_{ci}	0.0	0.9	8.1	0.0	1.2	0.5	0.0
σ_{s}	-0.6	0.9	8.1	5.3	1.2	0.5	4.2
σ_{i}	21.9	19.1	-0.6	-4.6	-2.8	-1.2	-3.7
σ_{eq}	16.6	14.9	1.4	-2.3	-1.9	-0.8	-1.8
σ_{cp}	11.35	6.41	5.48	0.00	0.00	0.00	0.00
σ_{ps}	0.13	20.21	114.84	35.07	16.34	7.06	27.83
σ_{pi}	148.69	270.76	-5.28	-30.59	-39.68	-17.15	-24.28
σ_{ss}	0.00	-5.58	127.21	0.00	22.10	9.55	0.00

Azione	peso soletta (isostatico)	peso soletta (iperstatico)	permanenti portati	ritiro isostatico + ritiro locale	ritiro iperstatico	carichi mobili max	carichi mobili min
Fase	SF3	SF3	SF3	SF3	SF3	SF4	SF4
N _k	0.0	0.0	0.0	1583	346.4	0.0	0.0
M _k	1508.0	796.1	317.0	1061.6	-1726.7	2797.4	-779.5
Ψ_0	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ψ_1	1.00	1.00	1.00	1.00	1.00	0.75	0.75
Ψ_2	1.00	1.00	1.00	1.00	1.00	0.00	0.00
σ_{cs}	1.4	0.8	0.3	-0.5	-1.4	2.9	-0.8
σ_{ci}	1.0	0.5	0.2	-0.8	-0.9	1.9	-0.5
σ_{s}	1.0	0.5	0.2	1.7	-0.9	1.9	-0.5
σ_{i}	-2.3	-1.2	-0.5	-0.6	2.8	-4.8	1.3
σ_{eq}	-1.5	-0.8	-0.3	-0.1	1.9	-3.2	0.9
$\sigma_{\sf cp}$	0.00	0.00	0.00	1.00	0.22	0.00	0.00
σ_{ps}	12.97	6.85	2.73	23.62	-11.68	9.08	-2.53

DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

	Opera:	Viadotto	Arenella	Ш
--	--------	----------	----------	---

Relazione di Calcolo Impalcato - Carreggiata SX Pagina 71

Nome file: VI15-F-

CL002_C.00_relazione_calcolo_impalcato_SX.doc.

σ_{pi}	-31.50	-16.63	-6.62	-7.68	39.24	-23.90	6.66
σ_{ss}	17.54	9.26	3.69	26.84	-16.92	12.48	-3.48

Azione	vento	termico MAX	termico MIN	cadute differite a tempo infinito	ridistribuzione coazione al netto cadute istantanee e differite	ridistribuzione peso proprio trave	ridistribuzione peso soletta
Fase	SF4	SF4	SF4	SF3			
N_k	0.0	-109.0	142.4	-1391.5	-	-	-
M_k	-10.2	1219.7	-609.9	1160.8	-	-	-
Ψ_{0}	0.60	0.60	0.60	1.00	1.00	1.00	1.00
Ψ_{1}	0.00	0.50	0.50	1.00	1.00	1.00	1.00
Ψ_2	0.00	0.50	0.50	1.00	1.00	1.00	1.00
σ_{cs}	0.0	1.2	-0.5	0.2	2.8	2.2	1.9
σ_{ci}	0.0	8.0	-0.3	-0.1	4.8	1.5	1.3
σ_{s}	0.0	8.0	-0.3	-0.1	4.5	4.3	2.9
σ_{i}	0.0	-2.2	1.1	-2.6	31.5	-5.9	-4.4
σ_{eq}	0.0	-1.5	0.8	-2.0	25.2	-3.5	-2.7
σ_{cp}	0.00	-0.07	0.10	-0.88	15.5	0.0	0.0
σ_{ps}	-0.03	3.57	-1.48	-2.76	76.2	38.6	28.0
σ_{pi}	0.09	-10.81	5.72	-36.99	360.0	-64.1	-51.1
σ_{ss}	-0.05	5.06	-2.22	0.76	55.2	26.5	23.2

	verifica al taglio trefoli	verifica a fine fase 2 a t=infinito	verifica a fine fase 3 a t=0 (max mobili + max termico)	verifica a fine fase 3 a t=0 (max mobili + min termico)	verifica a fine fase 3 a t=0 (min mobili + max termico)	verifica a fine fase 3 a t=0 (min mobili + min termico)		
Combi	nazione RARA	(Fondamentale)						
σ_{cs}	0.0	4.66	8.21	7.19	4.56	3.54	MPa	tensione estradosso soletta
σ_{ci}	0.0	5.20	7.58	6.93	5.12	4.46	MPa	tensione intradosso soletta
σ_{s}	4.7	11.91	14.29	13.64	11.83	11.17	MPa	tensione estradosso
σ_{i}	17.2	19.52	13.48	15.45	19.57	21.54	MPa	tensione intradosso
σ_{eq}	14.3	17.75	13.67	15.03	17.76	19.12	MPa	tensione a livello trefolo equivalente
σ_{cp}	11.4	15.07	15.03	15.13	15.03	15.13	MPa	tensione media nel calcestruzzo
σ_{ps}	-1186.2	-1077.28	-1066.07	-1069.10	-1077.68	-1080.72	MPa	tensione nel trefolo superiore
σ_{pi}	-1103.3	-999.26	-1029.60	-1019.69	-999.03	-989.12	MPa	tensione nel trefolo inferiore
σ_{ss}	0.0	108.66	124.14	119.78	108.19	103.82	MPa	tensione nell'armatura lenta superiore

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III
Relazione di Calcolo Impalcato - Carreggiata SX
Pagina 72
Nome file: VI15-F-

CL002_C.00_relazione_calcolo_impalcato_SX.doc.

check1	OK	OK	OK	OK	OK	OK	check compressione cap
check2	OK	OK	OK	OK	OK	OK	check trazione cap
check3	OK	OK	OK	OK	OK	OK	check trefoli

Le perdite di precompressione per ritiro, viscosità e rilassamento sono calcolate nelle tabelle seguenti a partire dalla tensione al netto delle perdite elastiche

Cadute di tensione istantanee

0.657 1440

8.72

 $\Delta\sigma_{\text{pr}}(t)$

Cadute per o	Cadute per deformazione elastica									
N_{pi}	=	11259.00	kN	sforzo di precompressione iniziale						
M _{pi}	=	-4751.94	kN m	momento coattivo iniziale						
·	=	18.37	MP a	tensione nel cls a quota trefolo equivalente						
$\sigma_{\sf eq}$	_		MP							
$\Delta\sigma_{el}$	=	128.61	а	caduta di tensione per deformazione elastica						
ΔN_{el}	=	1072.6	kN	caduta di precompressione per deformazione elastica						
f	=	0.095	_	frazione caduta di precompressione						
		one differite n		·						
t 4	=	1440	ore	istante in cui vengono valutate le cadute di tensione						
t=∞ Caduta par r	= itiro	438000	ore	tempo infinito (inserire numero sufficientemente grande)						
Cadute per r										
$\varepsilon_{cs}(t)$	=	0.00014		deformazione per ritiro a tempo t						
ε _{cs} (∞)	=	0.00035	MP	deformazione totale per ritiro a tempo infinito						
$\Delta\sigma_{s,t}$	=	26.60	a MP	perdita per ritiro a tempo t						
$\Delta\sigma_{\text{s,inf}}$	=	66.50	a	perdita per ritiro a tempo infinito						
Cadute per viscosità										
$\phi(t,t_0)$	=	0.89		coefficiente di viscosità al tempo t e applicazione del carico al tempo t ₀						
$\varphi(\infty,t_0)$	=	1.7900		coefficiente di viscosità a tempo infinito e applicazione del carico al tempo $t_{\rm 0}$						
N_p	=	10186	kN kN	precompressione iniziale con cadute istantanee scontate						
M_p	=	-8921.80	m kN	momento coattivo						
M_{g}	=	3200	m MP	momento flettente (prodotto dai carichi permanenti)						
σ_{eq}	=	14.18	a MP	tensione calcestruzzo a livello cavo risultante						
$\Delta\sigma_{\text{c},t}$	=	65.87	a MP	perdita di tensione per viscosità al tempo t						
$\Delta\sigma_{\text{c,inf}}$	=	132.47	a	perdita di tensione per viscosità a tempo infinito						
Cadute per r	ilass	samento								
clp	=	2		classe dell'acciao da precompresso (1=fili o trefoli a rilassamento ordinario; =2 fili o trefoli a basso rilassamento, =3 barre)						
ρ ₁₀₀₀	=	2.5	%	perdita per rilassamento a 1000 ore dopo la messa in tensione (=8%, 2.5%, 4% riepettivamente per acciaio di classe 1, 2 , 3)						
σ_{pm0}	=	1221	MP a	valore assoluto della precompressione iniziale al netto delle cadute istantanee						
P_{m0}	=	10186	kN kN	precompressione iniziale al netto delle cadute istantanee						
M_{pm0}	=	-8922	m kN	momento coattivo di precompressione						
M_g	=	3200	m MP	momento flettente (prodotto dai carichi permanenti)						
σ_{eq}	=	14.18	а	tensione nel calcestruzzo a livello del cavo equivalente rapporto tra tensione di precompressione inziale (al netto delle cadute istantanee) e tensione di						
	=	0.657		rapporto tra tensione di precompressione inziale (ai netto delle cadute istantanee) e tensione di						

tempo dopo la messa in tensione (istante in cui vengono valutate le cadute di tensione)

caduta di tensione per rilassamento al tempo t

Pagina 73 Nome file:

VI15-F-

CL002_C.00_relazione_calcolo_impalcato_SX.doc.

Relazione di Calcolo Impalcato - Carreggiata SX

Opera: Viadotto Arenella III

Progetto Esecutivo

MP $\Delta \sigma_{pr}(\infty)$ 37.99 caduta di tensione per rilassamento a tempo t=infinito а Interazione tra le cadute di tensione per effetti differiti 0.00035 deformazione totale per ritiro a tempo infinito ε_{cs}(∞) MP 37.99 caduta di tensione per rilassamento a tempo t=infinito $\Delta\sigma_{\text{pr}}(\infty)$ а MP 14.18 tensione nel cls a quota livello del trefolo equivalente prodotto dai carichi permanenti а $\sigma_{\text{c,QP}}$ m 8340 area totale cavi precompressione m^2 m A_{c} 847168 m^2 area sezione trave 325000000 m J_{c} 000 m⁴ momento d'inerzia trave 0.876 distanza fra baricentro sezione cls e baricentro cavi m MP

cadute di tensioni totali a tempo t

cadute di tensioni totali a tempo infinito

7.4.2 Verifiche Sezione SB-c

87.8

166.85

а MP

а

 $\Delta\sigma_{p,c+s+r}(t)$

 $\Delta \sigma_{p,c+s+r}(\infty)$

Caratteristiche precompressione

id_cavo	n. trefoli	area singolo trefolo	area trefoli	distanza da intradosso	presoll.	precompressione iniziale
	np	A_{pt}	A_p	Y_p	σ_{pi}	N_{pi}
		mm^2	mm^2	mm	MPa	kN
1	8	139.0	1112	50	1350	1501
2	6	139.0	834	100	1350	1126
3	0	139.0	0	150	1350	0
4	0	139.0	0	200	1350	0
5	0	139.0	0	250	1350	0
6	2	139.0	278	300	1350	375
7	2	139.0	278	450	1350	375
8	2	139.0	278	500.2	1350	375
9	2	139.0	278	600.2	1350	375
10	4	139.0	556	800	1350	751
11	4	139.0	556	1000	1350	751
12	4	139.0	556	1300	1350	751
13	2	139.0	278	1750	1350	375
	36		5004.0	572.24		6755

DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata SX Pagina 74

Nome file: VI15-F-

Azione	coazione al netto delle cadute istantanee (isostatico)	coazione al netto delle cadute istantanee (isostatico)	coazione al netto delle cadute istantanee (iperstatico)	peso proprio trave (isostatico)	peso proprio trave (isostatico)	peso proprio trave (iperstatico)	peso soletta (isostatico)
Fase	SF1	SF3	SF3	SF1	SF3	SF3	SF1
N_{k}	6428.5	6428.5	5005.6	0.0	0.0	0.2	0.0
M_{k}	-1830.0	-4584.1	10884.8	411.0	411.0	-1170.5	343.0
Ψ_0	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ψ_1	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ψ_2	1.00	1.00	1.00	1.00	1.00	1.00	1.00
σ_{cs}	0.0	-0.3	13.8	0.0	0.4	-1.1	0.0
σ_{ci}	0.0	1.2	10.4	0.0	0.3	-0.8	0.0
σ_{s}	2.2	1.2	10.4	1.2	0.3	-0.8	1.0
σ_{i}	12.0	11.7	-14.6	-1.0	-0.7	1.9	-0.9
σ_{eq}	8.9	8.3	-6.6	-0.3	-0.4	1.1	-0.3
σ_{cp}	7.33	4.16	3.24	0.00	0.00	0.00	0.00
σ_{ps}	17.20	21.16	140.82	7.66	3.54	-10.07	6.39
σ_{pi}	82.11	165.44	-201.77	-6.92	-9.40	26.77	-5.78
σ_{ss}	0.00	6.30	176.09	0.00	4.87	-13.86	0.00

Azione	peso soletta (isostatico)	peso soletta (iperstatico)	permanenti portati	ritiro isostatico + ritiro locale	ritiro iperstatico	carichi mobili max	carichi mobili min
Fase	SF3	SF3	SF3	SF3	SF3	SF4	SF4
N_{k}	0.0	0.0	0.0	1583	350.9	0.0	0.0
M_{k}	343.0	-1118.7	-438.3	1012.4	-2174.1	651.7	-1795.6
Ψ_0	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ψ_1	1.00	1.00	1.00	1.00	1.00	0.75	0.75
Ψ_2	1.00	1.00	1.00	1.00	1.00	0.00	0.00
σ_{cs}	0.3	-1.1	-0.4	-0.5	-1.9	0.7	-1.8
σ_{ci}	0.2	-0.7	-0.3	-0.8	-1.2	0.4	-1.2
σ_{s}	0.2	-0.7	-0.3	1.7	-1.2	0.4	-1.2
σ_{i}	-0.6	1.8	0.7	-0.6	3.8	-1.1	3.2
$\sigma_{\sf eq}$	-0.3	1.0	0.4	0.1	2.2	-0.6	1.8
$\sigma_{\sf cp}$	0.00	0.00	0.00	1.02	0.23	0.00	0.00
σ_{ps}	2.95	-9.62	-3.77	23.63	-15.40	2.12	-5.83
σ_{pi}	-7.85	25.59	10.02	-8.24	53.03	-5.75	15.83

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19 Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata SX Pagina 75

Nome file: VI15-F-

CL002_C.00_relazione_calcolo_impalcato_SX.doc.

4.06 -13.25 -5.19 26.91 -22.44 2.93 -8.06 σ_{ss}

Azione	vento	termico MAX	termico MIN	cadute differite a tempo infinito	ridistribuzione coazione al netto cadute istantanee e differite	ridistribuzione peso proprio trave	ridistribuzione peso soletta
Fase	SF4	SF4	SF4	SF3			
N_{k}	0.0	-74.4	97.1	-678.9	-	-	-
M_k	12.7	1520.2	-760.1	484.1	-	-	-
Ψ_{0}	0.60	0.60	0.60	1.00	1.00	1.00	1.00
Ψ_{1}	0.00	0.50	0.50	1.00	1.00	1.00	1.00
Ψ_{2}	0.00	0.50	0.50	1.00	1.00	1.00	1.00
σ_{cs}	0.0	1.5	-0.7	0.0	6.1	-0.1	-0.3
σ_{ci}	0.0	1.0	-0.5	-0.1	6.2	-0.1	-0.2
σ_{s}	0.0	1.0	-0.5	-0.1	7.3	0.5	0.2
σ_{i}	0.0	-2.7	1.4	-1.2	13.0	-0.4	0.2
σ_{eq}	0.0	-1.5	8.0	-0.9	11.2	-0.1	0.2
σ_{cp}	0.00	-0.05	0.07	-0.44	10.2	0.0	0.0
σ_{ps}	0.04	4.67	-2.12	-2.23	99.0	3.1	-0.4
σ_{pi}	-0.11	-13.67	7.05	-17.47	138.5	-0.9	5.5
σ_{ss}	0.06	6.56	-3.07	-0.67	89.2	-1.5	-4.0

			verifica a	verifica a	verifica a	verifica a					
			fine fase	fine fase	fine fase	fine fase					
			3 a t=0	3 a t=0	3 a t=0	3 a t=0					
			(max mobili +	(max mobili +	(min mobili +	(min					
	verifica al	verifica a fine		min		mobili + min					
			max	termico)	max	termico)					
	taglio trefoli	fase 2 a t=infinito	termico)	terriico)	termico)	terriico)					
Combin	Combinazione RARA (Fondamentale)										
σ_{cs}	0.0	2.10	3.69	2.35	1.17	-0.17	MPa	tensione estradosso soletta			
σ_{ci}	0.0	2.64	3.70	2.82	2.01	1.14	MPa	tensione intradosso soletta			
σ_{s}	3.3	7.37	8.42	7.55	6.73	5.86	MPa	tensione estradosso			
σ_{i}	11.0	14.71	11.91	14.39	16.21	18.69	MPa	tensione intradosso			
σ_{eq}	8.5	12.37	10.80	12.21	13.20	14.61	MPa	tensione a livello trefolo equivalente			
σ_{cp}	7.3	10.28	10.25	10.32	10.25	10.32	MPa	tensione media nel calcestruzzo			
σ_{ps}	-1259.8	-1191.72	-1186.78	-1190.85	-1194.73	-1198.80	MPa	tensione nel trefolo superiore			
σ_{pi}	-1209.5	-1115.18	-1129.20	-1116.76	-1107.61	-1095.18	MPa	tensione nel trefolo inferiore			
σ_{ss}	0.0	71.40	78.30	72.52	67.31	61.54	MPa	tensione nell'armatura lenta superiore			
check1	OK	OK	OK	OK	OK	OK		check compressione cap			

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III Relazione di Calcolo Impalcato - Carreggiata SX Pagina 76 Nome file: VI15-F-CL002_C.00_relazione_calcolo_impalcato_SX.doc.

check2	OK	OK	OK	OK	OK	OK	check trazione cap
check3	OK	OK	OK	OK	OK	OK	check trefoli

Le perdite di precompressione per ritiro, viscosità e rilassamento sono calcolate nelle tabelle seguenti a partire dalla tensione al netto delle perdite elastiche.

Cadute di tensione istantanee

Cadute p	or dofor	maziona	olactica
Cadute b	er defort	nazione	eiastica

1440

Cadute per deform	mazi	one elastica					
N_{pi}	=	6755.40	kN	sforzo di precompressione iniziale			
M_{pi}	=	-1923.04	kN m	momento coattivo iniziale			
σ_{eq}	=	9.33	M Pa	tensione nel cls a quota trefolo equivalente			
$\Delta\sigma_{\text{el}}$	=	65.33	M Pa	caduta di tensione per deformazione elastica			
ΔN_{el}	=	326.9	kN	caduta di precompressione per deformazione elastica			
f	=	0.048		frazione caduta di precompressione			
Cadute di tensio	ne d	ifferite nel tempo	•				
t	=	1440	ore	istante in cui vengono valutate le cadute di tensione			
t=∞	=	438000	ore	tempo infinito (inserire numero sufficientemente grande)			
Cadute per ritiro							
$\epsilon_{cs}(t)$	=	0.00014		deformazione per ritiro a tempo t			
$\mathcal{E}_{\text{CS}}(\infty)$	=	0.00035	М	deformazione totale per ritiro a tempo infinito			
$\Delta\sigma_{\text{s},t}$	=	26.60	Pa	perdita per ritiro a tempo t			
$\Delta\sigma_{\text{s,inf}}$	=	66.50	M Pa	perdita per ritiro a tempo infinito			
Cadute per viscos	sità						
$\varphi(t,t_0)$	=	0.89		coefficiente di viscosità al tempo t e applicazione del carico al tempo $t_{\text{\scriptsize 0}}$			
$\varphi(\infty,t_0)$	=	1.7900		coefficiente di viscosità a tempo infinito e applicazione del carico al tempo $t_{\rm 0}$			
N_p	=	6428	kN kN	precompressione iniziale con cadute istantanee scontate			
M_{p}	=	-4651.81	m kN	momento coattivo			
M_g	=	3200	m M	momento flettente (prodotto dai carichi permanenti)			
σ_{eq}	=	5.99	Pa M	tensione calcestruzzo a livello cavo risultante			
$\Delta\sigma_{\text{c},t}$	=	27.80	Pa M	perdita di tensione per viscosità al tempo t			
$\Delta\sigma_{c,inf}$	=	55.91	Pa	perdita di tensione per viscosità a tempo infinito			
Cadute per rilassa	amer	nto					
clp	=	2		classe dell'acciao da precompresso (1=fili o trefoli a rilassamento ordinario; =2 fili o trefoli a basso rilassamento, =3 barre)			
ρ ₁₀₀₀	=	2.5	%	perdita per rilassamento a 1000 ore dopo la messa in tensione (=8%, 2.5%, 4% riepettivamente per acciaio di classe 1, 2 , 3)			
σ_{pm0}	=	1285	M Pa	valore assoluto della precompressione iniziale al netto delle cadute istantanee			
P_{m0}	=	6428	kN kN	precompressione iniziale al netto delle cadute istantanee			
M_{pm0}	=	-4652	m kN	momento coattivo di precompressione			
M_{g}	=	3200	m M	momento flettente (prodotto dai carichi permanenti)			
σ_{eq}	=	5.99	Pa	tensione nel calcestruzzo a livello del cavo equivalente rapporto tra tensione di precompressione inziale (al netto delle cadute istantanee) e			
μ	=	0.691		tensione di rottura			

ore tempo dopo la messa in tensione (istante in cui vengono valutate le cadute di tensione)

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III
Relazione di Calcolo Impalcato - Carreggiata SX
Pagina 77
Nome file: VI15-F-
CL002_C.00_relazione_calcolo_impalcato_SX.doc.

			М	
$\Delta\sigma_{\text{pr}}(t)$	=	12.38	Pa M	caduta di tensione per rilassamento al tempo t
$\Delta\sigma_{pr}(\infty)$	=	46.63	Pa	caduta di tensione per rilassamento a tempo t=infinito
Interazione tra le per effetti differiti		ite di tensione		
ε _{cs} (∞)	=	0.00035		deformazione totale per ritiro a tempo infinito
$\Delta\sigma_{pr}(\infty)$	=	46.63	M Pa	caduta di tensione per rilassamento a tempo t=infinito
ΔOpr()		40.00	М	cadata ai terisione per massamente a tempo è iminito
$\sigma_{c,QP}$	=	5.99	Pa	tensione nel cls a quota livello del trefolo equivalente prodotto dai carichi permanenti
^	_	5004	m m²	
A_p	=	5004	m	area totale cavi precompressione
Ac	=	847168	m ²	area sezione trave
v			m	
J_c	=	325000000000	m ⁴	momento d'inerzia trave
Z _{cp}	=	0.724	m	distanza fra baricentro sezione cls e baricentro cavi
—ор			M	
$\Delta\sigma_{p,c+s+r}(t)$	=	60.4	Pa M	cadute di tensioni totali a tempo t
$\Delta\sigma_{p,c+s+r}(\infty)$	=	135.67	Pa	cadute di tensioni totali a tempo infinito

7.4.3 Verifiche Sezione SD-c

Caratteristiche precompressione

id_cavo	n. trefoli	area singolo trefolo	area trefoli	distanza da intradosso	presoll.	precompressione iniziale
	np	A_{pt}	A_p	Y_p	σ_{pi}	N_{pi}
		mm^2	mm^2	mm	MPa	kN
1	8	139.0	1112	50	1350	1501
2	6	139.0	834	100	1350	1126
3	6	139.0	834	150	1350	1126
4	4	139.0	556	200	1350	751
5	4	139.0	556	250	1350	751
6	2	139.0	278	300	1350	375
7	2	139.0	278	450	1350	375
8	2	139.0	278	500.2	1350	375
9	2	139.0	278	600.2	1350	375
10	4	139.0	556	800	1350	751
11	4	139.0	556	1000	1350	751
12	4	139.0	556	1300	1350	751
13	2	139.0	278	1750	1350	375
TOT	50		6950.0	466.02		9383

Calcolo Delle Tensioni Nelle Condizioni Elementari Di Carico

	coazione al netto	coazione al netto	coazione al netto				
	delle cadute	delle cadute	delle cadute	peso proprio	peso proprio	peso proprio	peso
	istantanee	istantanee	istantanee	trave	trave	trave	soletta
Azione	(isostatico)	(isostatico)	(iperstatico)	(isostatico)	(isostatico)	(iperstatico)	(isostatico)

Relazione di Calcolo Impalcato - Carreggiata SX Pagina 78 Nome file: VI15-F-

 ${\tt CL002_C.00_relazione_calcolo_impalcato_SX.doc}.$

Opera: Viadotto Arenella III

Proge	etto	Ese	cuti	v

Fase	SF1	SF3	SF3	SF1	SF3	SF3	SF1
N_{k}	8673.2	8673.2	7205.4	0.0	0.0	0.4	0.0
M_{k}	-3314.7	-6947.0	5431.4	1747.1	1747.1	413.5	1328.9
Ψ_0	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ψ_1	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ψ_2	1.00	1.00	1.00	1.00	1.00	1.00	1.00
σ_{cs}	0.0	-1.1	9.8	0.0	1.7	0.4	0.0
σ_{ci}	0.0	1.0	8.1	0.0	1.1	0.3	0.0
σ_{s}	0.5	1.0	8.1	4.9	1.1	0.3	3.7
σ_{i}	18.0	16.3	-3.8	-4.4	-2.7	-0.6	-3.3
σ_{eq}	13.5	12.3	-0.7	-2.0	-1.7	-0.4	-1.5
$\sigma_{\sf cp}$	9.76	5.52	4.59	0.00	0.00	0.00	0.00
σ_{ps}	6.87	20.61	113.51	32.38	15.03	3.56	24.63
σ_{pi}	122.68	230.97	-50.96	-28.66	-37.87	-8.96	-21.80
σ_{ss}	0.00	-1.05	130.44	0.00	20.48	4.85	0.00

Azione	peso soletta (isostatico)	peso soletta (iperstatico)	permanenti portati	ritiro isostatico + ritiro locale	ritiro iperstatico	carichi mobili max	carichi mobili min
Fase	SF3	SF3	SF3	SF3	SF3	SF4	SF4
N_{k}	0.0	0.0	0.0	1583	349.4	0.0	0.0
M_k	1328.9	396.4	178.1	1041.4	-1696.7	2199.3	-995.7
Ψ_{0}	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ψ_{1}	1.00	1.00	1.00	1.00	1.00	0.75	0.75
Ψ_{2}	1.00	1.00	1.00	1.00	1.00	0.00	0.00
σ_{cs}	1.3	0.4	0.2	-0.5	-1.4	2.3	-1.0
σ_{ci}	0.9	0.3	0.1	-0.8	-0.9	1.5	-0.7
σ_{s}	0.9	0.3	0.1	1.7	-0.9	1.5	-0.7
σ_{i}	-2.1	-0.6	-0.3	-0.6	2.9	-3.8	1.7
σ_{eq}	-1.3	-0.4	-0.2	0.0	1.9	-2.4	1.1
σ_{cp}	0.00	0.00	0.00	1.01	0.22	0.00	0.00
σ_{ps}	11.43	3.41	1.53	23.63	-11.36	7.14	-3.23
σ_{pi}	-28.81	-8.59	-3.86	-7.91	40.02	-19.04	8.62
σ_{ss}	15.58	4.65	2.09	26.87	-16.65	9.84	-4.45

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata SX Pagina 79

Nome file: VI15-F-

CL002_C.00_relazione_calcolo_impalcato_SX.doc.

Azione	vento	termico MAX	termico MIN	cadute differite a tempo infinito	ridistribuzione coazione al netto cadute istantanee e differite	ridistribuzione peso proprio trave	ridistribuzione peso soletta
Fase	SF4	SF4	SF4	SF3			
N_{k}	0.0	-100.8	131.4	-1076.6	-	-	-
M_{k}	0.5	1199.5	-599.8	862.3	-	-	-
Ψ_0	0.60	0.60	0.60	1.00	1.00	1.00	1.00
Ψ_{1}	0.00	0.50	0.50	1.00	1.00	1.00	1.00
Ψ_2	0.00	0.50	0.50	1.00	1.00	1.00	1.00
σ_{cs}	0.0	1.2	-0.5	0.1	3.5	1.9	1.5
σ_{ci}	0.0	0.8	-0.3	-0.1	5.0	1.3	1.0
σ_{s}	0.0	8.0	-0.3	-0.1	5.3	3.9	2.5
σ_{i}	0.0	-2.1	1.1	-2.0	25.3	-5.4	-3.7
σ_{eq}	0.0	-1.4	0.7	-1.5	20.1	-3.0	-2.1
σ_{cp}	0.00	-0.07	0.09	-0.69	13.4	0.0	0.0
σ_{ps}	0.00	3.54	-1.48	-2.56	80.7	34.2	23.1
σ_{pi}	0.00	-10.74	5.66	-28.67	288.1	-57.5	-42.6
σ_{ss}	0.00	5.01	-2.22	0.13	62.1	22.7	18.4

	verifica al	verifica a fine fase 2 a t=infinito	verifica a fine fase 3 a t=0 (max mobili + max termico)	verifica a fine fase 3 a t=0 (max mobili + min termico)	verifica a fine fase 3 a t=0 (min mobili + max termico)	verifica a fine fase 3 a t=0 (min mobili + min termico)		
Combin	azione RARA	(Fondamentale)	,	,	,	,		
σ_{cs}	0.0	4.52	7.47	6.46	4.20	3.19	MPa	tensione estradosso soletta
σ_{ci}	0.0	4.79	6.77	6.12	4.56	3.91	MPa	tensione intradosso soletta
σ_{s}	5.4	11.69	13.67	13.02	11.46	10.81	MPa	tensione estradosso
σ_{i}	13.7	15.39	10.31	12.27	15.83	17.79	MPa	tensione intradosso
σ_{eq}	11.5	14.44	11.18	12.47	14.70	15.98	MPa	tensione a livello trefolo equivalente
σ_{cp}	9.8	13.20	13.16	13.25	13.16	13.25	MPa	tensione media nel calcestruzzo
σ_{ps}	-1208.7	-1109.57	-1100.30	-1103.32	-1110.68	-1113.69	MPa	tensione nel trefolo superiore
σ_{pi}	-1153.9	-1071.26	-1096.75	-1086.91	-1069.09	-1059.25	MPa	tensione nel trefolo inferiore
σ_{ss}	0.0	104.71	117.55	113.22	103.26	98.93	MPa	tensione nell'armatura lenta superiore
check1	OK	OK	OK	OK	OK	OK		check compressione cap
check2	OK	OK	OK	OK	OK	OK		check trazione cap
check3	OK	OK	OK	OK	OK	OK		check trefoli

DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III Relazione di Calcolo Impalcato - Carreggiata SX Pagina 80

Nome file: VI15-F-

CL002_C.00_relazione_calcolo_impalcato_SX.doc.

Le perdite di precompressione per ritiro, viscosità e rilassamento sono calcolate nelle tabelle seguenti a partire dalla tensione al netto delle perdite elastiche.

Cadute di tensione	ist	antanee						
Cadute per deformazione elastica								
N_{pi}	=	9382.50	kN	sforzo di precompressione iniziale				
M_{pi}	=	-3585.73	kNm	momento coattivo iniziale				
σ_{eq}	=	14.58	MPa	tensione nel cls a quota trefolo equivalente				
$\Delta\sigma_{\text{el}}$	=	102.05	MPa	caduta di tensione per deformazione elastica				
ΔN_{el}	=	709.3	kN	caduta di precompressione per deformazione elastica				
f	=	0.076		frazione caduta di precompressione				
Cadute di tensione								
t t=∞	=	1440 438000	ore	istante in cui vengono valutate le cadute di tensione				
Cadute per ritiro	_	436000	ore	tempo infinito (inserire numero sufficientemente grande)				
$\varepsilon_{cs}(t)$	=	0.00014		deformazione per ritiro a tempo t				
ε _{cs} (∞)	=	0.00035		deformazione totale per ritiro a tempo infinito				
$\Delta \sigma_{s,t}$	=	26.60	MPa	perdita per ritiro a tempo t				
	=	66.50	MPa	perdita per ritiro a tempo infinito				
$\Delta \sigma_{s,inf}$ Cadute per viscosità		00.50	IVII a	perdita per ritiro a tempo inimito				
$\varphi(t,t_0)$		0.89		coefficiente di viscosità al tempo t e applicazione del carico al tempo t₀				
$\varphi(\infty,t_0)$	=	1.7900		coefficiente di viscosità a tempo infinito e applicazione del carico al tempo t ₀				
N _p	=	8673	kN	precompressione iniziale con cadute istantanee scontate				
M _p	=	-7197.49	kNm	momento coattivo				
M _q	=	3200	kNm	momento flettente (prodotto dai carichi permanenti)				
$\sigma_{\rm eq}$	=	10.74	MPa	tensione calcestruzzo a livello cavo risultante				
	_	49.89	MPa	perdita di tensione per viscosità al tempo t				
$\Delta \sigma_{c,t}$	_	100.35	MPa					
$\Delta\sigma_{c,inf}$ Cadute per rilassam			IVIFa	perdita di tensione per viscosità a tempo infinito				
clp		2		classe dell'acciao da precompresso (1=fili o trefoli a rilassamento ordinario; =2 fili o trefoli a basso rilassamento, =3 barre) perdita per rilassamento a 1000 ore dopo la messa in tensione (=8%, 2.5%, 4%				
ρ ₁₀₀₀	=	2.5	%	riepettivamente per acciaio di classe 1, 2, 3)				
σ_{pm0}	=	1248	MPa	valore assoluto della precompressione iniziale al netto delle cadute istantanee				
P_{m0}	=	8673	kN	precompressione iniziale al netto delle cadute istantanee				
M_{pm0}	=	-7197	kNm	momento coattivo di precompressione				
M_g	=	3200	kNm	momento flettente (prodotto dai carichi permanenti)				
$\sigma_{\sf eq}$	=	10.74	MPa	tensione nel calcestruzzo a livello del cavo equivalente				
μ	=	0.671		rapporto tra tensione di precompressione inziale (al netto delle cadute istantanee) e tensione di rottura tempo dopo la messa in tensione (istante in cui vengono valutate le cadute di				
t	=	1440	ore	tensione)				
$\Delta\sigma_{\sf pr}(t)$	=	10.10	MPa	caduta di tensione per rilassamento al tempo t				
$\Delta\sigma_{pr}(\infty)$	=	41.42	MPa	caduta di tensione per rilassamento a tempo t=infinito				
Interazione tra le ca	dute	e di tensione per e	effetti differiti					
ε _{cs} (∞)	=	0.00035		deformazione totale per ritiro a tempo infinito				
$\Delta\sigma_{pr}(\infty)$	=	41.42	MPa	caduta di tensione per rilassamento a tempo t=infinito				

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III
Relazione di Calcolo Impalcato - Carreggiata SX
Pagina 81
Nome file:
VI15-F-
CL002_C.00_relazione_calcolo_impalcato_SX.doc.

$\sigma_{\text{c,QP}}$	=	10.74	MPa	tensione nel cls a quota livello del trefolo equivalente prodotto dai carichi permanenti
A_p	=	6950	mm^2	area totale cavi precompressione
A _c	=	847168	mm^2	area sezione trave
J_c	=	325000000000	mm ⁴	momento d'inerzia trave
Z_{cp}	=	0.830	m	distanza fra baricentro sezione cls e baricentro cavi
$\Delta\sigma_{\text{p,c+s+r}}(t)$	=	76.6	MPa	cadute di tensioni totali a tempo t
$\Delta\sigma_{p,c+s+r}(\infty)$	=	154.91	MPa	cadute di tensioni totali a tempo infinito
f2	=	0.057		frazione caduta di precompressione al tempo t

7.4.4 Verifiche Sezione SA-b

Caratteristiche precompressione

id_cavo	n. trefoli	area singolo trefolo	area trefoli	distanza da intradosso	presoll.	precompressione iniziale
	np	A_{pt}	A_p	Y_p	σ_{pi}	N_{pi}
		mm^2	mm^2	mm	MPa	kN
1	12	139.0	1668	50	1350	2252
2	8	139.0	1112	100	1350	1501
3	6	139.0	834	150	1350	1126
4	4	139.0	556	200	1350	751
5	4	139.0	556	250	1350	751
6	4	139.0	556	300	1350	751
7	4	139.0	556	450	1350	751
8	2	139.0	278	500.2	1350	375
9	2	139.0	278	600.2	1350	375
10	4	139.0	556	800	1350	751
11	4	139.0	556	1000	1350	751
12	4	139.0	556	1300	1350	751
13	2	139.0	278	1750	1350	375
тот	60		8340.0	420.01		11259

Calcolo Delle Tensioni Nelle Condizioni Elementari Di Carico

Azione	coazione al netto delle cadute istantanee (isostatico)	coazione al netto delle cadute istantanee (isostatico)	coazione al netto delle cadute istantanee (iperstatico)	peso proprio trave (isostatico)	peso proprio trave (isostatico)	peso proprio trave (iperstatico)	peso soletta (isostatico)
Fase	SF1	SF3	SF3	SF1	SF3	SF3	SF1

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19 Progetto Esecutivo Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata SX

Pagina 82

Nome file: VI15-F-

N_{k}	10186.4	10186.4	11417.0	0.0	0.0	1.4	0.0
M_{k}	-4299.2	-9547.7	2998.4	2137.9	2137.9	910.0	2964.8
Ψ_0	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ψ_1	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ψ_2	1.00	1.00	1.00	1.00	1.00	1.00	1.00
σ_{cs}	0.0	-1.5	8.3	0.0	1.6	0.7	0.0
σ_{ci}	0.0	1.0	7.5	0.0	1.0	0.4	0.0
σ_{s}	-0.6	1.0	7.5	5.9	1.0	0.4	8.2
σ_{i}	21.9	19.0	1.8	-5.2	-3.1	-1.3	-7.2
$\sigma_{\sf eq}$	16.6	14.8	3.1	-2.6	-2.1	-0.9	-3.6
$\sigma_{\sf cp}$	11.35	5.42	6.08	0.00	0.00	0.00	0.00
σ_{ps}	0.13	21.54	106.51	39.46	12.85	5.48	54.72
σ_{pi}	148.69	270.06	28.47	-34.42	-42.79	-18.20	-47.73
σ_{ss}	0.00	-4.04	114.54	0.00	18.58	7.92	0.00

Azioni	peso soletta (isostatico)	peso soletta (iperstatico)	permanenti portati	ritiro isostatico + ritiro locale	ritiro iperstatico	carichi mobili max
Fasi	SF3	SF3	SF3	SF3	SF3	SF4
N_{k}	0.0	0.0	0.0	2374	-393.8	0.0
M_{k}	2964.8	1034.1	484.2	1347.7	-2154.3	3633.6
Ψ_{0}	1.00	1.00	1.00	1.00	1.00	1.00
Ψ_{1}	1.00	1.00	1.00	1.00	1.00	0.75
Ψ_{2}	1.00	1.00	1.00	1.00	1.00	0.00
σ_{cs}	2.2	0.8	0.4	-0.3	-1.8	2.8
σ_{ci}	1.4	0.5	0.2	-0.6	-1.2	1.8
σ_{s}	1.4	0.5	0.2	1.9	-1.2	1.8
σ_{i}	-4.2	-1.5	-0.7	-0.7	2.9	-5.9
σ_{eq}	-2.9	-1.0	-0.5	-0.1	1.9	-4.1
σ_{cp}	0.00	0.00	0.00	1.26	-0.21	0.00
σ_{ps}	17.83	6.22	2.91	26.50	-16.00	8.06
σ_{pi}	-59.34	-20.70	-9.69	-8.58	40.07	-29.70
σ_{ss}	25.77	8.99	4.21	30.11	-21.78	11.95

Opera: Viadotto Arenella III
Relazione di Calcolo Impalcato - Carre

Relazione di Calcolo Impalcato - Carreggiata SX Pagina 83

Nome file:

VI15-F-

CL002_C.00_relazione_calcolo_impalcato_SX.doc.

	uzione peso oletta
Fasi SF4 SF4 SF3	
N_k 0.0 -106.1 137.3 -1330.4 -	-
M_k -18.8 1386.7 -693.4 1247.0 -	-
Ψ_0 0.60 0.60 0.60 1.00 1.00	1.00
Ψ_1 0.00 0.50 0.50 1.00 1.00 1.00	1.00
Ψ_2 0.00 0.50 0.50 1.00 1.00 1.00	1.00
σ_{cs} 0.0 1.0 -0.5 0.2 1.2 1.9	2.6
$\sigma_{ci} = 0.0 = 0.6 = -0.3 = -0.1$ 3.4 1.2	1.7
σ_s 0.0 0.6 -0.3 -0.1 3.1 4.4	4.9
$\sigma_i = 0.0$ -2.3 1.2 -2.5 31.1 -6.5	-8.0
σ_{eq} 0.0 -1.6 0.9 -1.9 24.6 -3.9	-5.0
$\sigma_{cp} = 0.00 -0.06 = 0.08 = -0.71$ 13.5 0.0	0.0
σ_{ps} -0.04 2.76 -1.13 -2.81 56.4 36.8	43.0
σ_{pi} 0.15 -11.65 6.07 -35.27 354.5 -69.8	90.6
σ_{ss} -0.06 4.25 -1.87 0.53 33.9 22.2	31.3

			verifica a fine fase 3 a t=0 (max mobili +	verifica a fine fase 3 a t=0 (max mobili +	verifica a fine fase 3 a t=0 (min mobili +	verifica a fine fase 3 a t=0 (min mobili +		
	verifica al taglio trefoli	verifica a fine fase 2 a t=infinito	max termico)	min termico)	max termico)	min termico)		
Combin	azione RARA	(Fondamentale)						
σ_{cs}	0.0	4.72	8.14	7.25	4.60	3.71	MPa	tensione estradosso soletta
σ_{ci}	0.0	5.05	7.17	6.65	4.97	4.45	MPa	tensione intradosso soletta
σ_{s}	5.3	13.70	15.82	15.30	13.62	13.09	MPa	tensione estradosso
σ_{i}	16.6	16.22	8.95	11.06	16.36	18.47	MPa	tensione intradosso
σ_{eq}	14.0	15.63	10.55	12.05	15.72	17.21	MPa	tensione a livello trefolo equivalente
σ_{cp}	11.4	14.35	14.31	14.39	14.31	14.39	MPa	tensione media nel calcestruzzo
σ_{ps}	-1181.8	-1067.13	-1057.43	-1059.77	-1067.55	-1069.88	MPa	tensione nel trefolo superiore
σ_{pi}	-1107.1	-1033.14	-1069.74	-1059.11	-1032.47	-1021.84	MPa	tensione nel trefolo inferiore
σ_{ss}	0.0	107.99	122.45	118.78	107.46	103.79	MPa	tensione nell'armatura lenta superiore
check1	OK	OK	OK	OK	OK	OK		check compressione cap
check2	OK	OK	OK	OK	OK	OK		check trazione cap
check3	OK	OK	OK	OK	OK	OK		check trefoli

MENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001
DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

MP

= 37.99

 $\Delta\sigma_{\text{pr}}(\infty)$

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata SX

Pagina 84

Nome file:
VI15-FCL002_C.00_relazione_calcolo_impalcato_SX.doc.

Le perdite di precompressione per ritiro, viscosità e rilassamento sono calcolate nelle tabelle seguenti a partire dalla tensione al netto delle perdite elastiche.

Cadute di tensione istantanee

Cadute di tensione istantanee									
Cadute per de	Cadute per deformazione elastica								
N_{pi}	=	11259.00	kN kN	sforzo di precompressione iniziale					
M_{pi}	=	-4751.94	m MP	momento coattivo iniziale					
σ_{eq}	-	18.37	a MP	tensione nel cls a quota trefolo equivalente					
$\Delta\sigma_{\text{el}}$	=	128.61	а	caduta di tensione per deformazione elastica					
ΔN_{el}	=	1072.6	kN	caduta di precompressione per deformazione elastica					
f	=	0.095		frazione caduta di precompressione					
Cadute di ten	nsior	ne differite n	el ten	npo					
t	=	1440	ore	istante in cui vengono valutate le cadute di tensione					
t=∞		438000	ore	tempo infinito (inserire numero sufficientemente grande)					
Cadute per riti	iro								
$\epsilon_{cs}(t)$	=	0.00014		deformazione per ritiro a tempo t					
ε _{cs} (∞)	=	0.00035	MP	deformazione totale per ritiro a tempo infinito					
$\Delta\sigma_{\text{s},t}$	-	26.60	a MP	perdita per ritiro a tempo t					
$\Delta\sigma_{\text{s,inf}}$ Cadute per	=	66.50	а	perdita per ritiro a tempo infinito					
viscosità									
$\varphi(t,t_0)$	=	0.89		coefficiente di viscosità al tempo t e applicazione del carico al tempo $t_{\rm 0}$					
$\varphi(\infty,t_0)$	=	1.7900		coefficiente di viscosità a tempo infinito e applicazione del carico al tempo $t_{\scriptscriptstyle 0}$					
N_p	=	10186	kN kN	precompressione iniziale con cadute istantanee scontate					
M_p	=	-10001.79	m kN	momento coattivo					
M_g	=	3200	m MP	momento flettente (prodotto dai carichi permanenti)					
σ_{eq}	-	14.20	a MP	tensione calcestruzzo a livello cavo risultante					
$\Delta\sigma_{c,t}$	-	65.94	a MP	perdita di tensione per viscosità al tempo t					
$\Delta\sigma_{\text{c,inf}}$	=	132.63	а	perdita di tensione per viscosità a tempo infinito					
Cadute per rila	assa	mento		alana dallania da musa musa (4-6li a kafali a milana mana andimania -0 fili a kafali a hanna					
clp	=	2		classe dell'acciao da precompresso (1=fili o trefoli a rilassamento ordinario; =2 fili o trefoli a basso rilassamento, =3 barre)					
ρ1000	=	2.5	%	perdita per rilassamento a 1000 ore dopo la messa in tensione (=8%, 2.5%, 4% riepettivamente per acciaio di classe 1, 2 , 3)					
σ_{pm0}	=	1221	MP a	valore assoluto della precompressione iniziale al netto delle cadute istantanee					
P_{m0}	=	10186	kN kN	precompressione iniziale al netto delle cadute istantanee					
M_{pm0}	=	-10002	m kN	momento coattivo di precompressione					
M_g	=	3200	m MP	momento flettente (prodotto dai carichi permanenti)					
σ_{eq}	=	14.20	а	tensione nel calcestruzzo a livello del cavo equivalente rapporto tra tensione di precompressione inziale (al netto delle cadute istantanee) e tensione di					
μ	=	0.657		rottura					
t	= _	1440	ore	tempo dopo la messa in tensione (istante in cui vengono valutate le cadute di tensione)					
$\Delta\sigma_{\text{pr}}(t)$	-	8.72	MP a MD	caduta di tensione per rilassamento al tempo t					

caduta di tensione per rilassamento a tempo t=infinito

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III
Relazione di Calcolo Impalcato - Carreggiata SX
Pagina 85
Nome file:
VI15-F-
CL002_C.00_relazione_calcolo_impalcato_SX.doc.

Interazione tra le cadute di tensione per effetti differiti

ε _{cs} (∞)	=	0.00035	MP	deformazione totale per ritiro a tempo infinito
$\Delta\sigma_{\sf pr}(\infty)$	=	37.99	a MP	caduta di tensione per rilassamento a tempo t=infinito
$\sigma_{\text{c,QP}}$	=	14.20	a m	tensione nel cls a quota livello del trefolo equivalente prodotto dai carichi permanenti
A_p	=	8340	m^2	area totale cavi precompressione
A_c	=	847168 325000000	m m² m	area sezione trave
J_c	=	000	m ⁴	momento d'inerzia trave
\mathbf{Z}_{cp}	=	0.982	m MP	distanza fra baricentro sezione cls e baricentro cavi
$\Delta\sigma_{\text{p,c+s+r}}(t)$	=	87.9	a MP	cadute di tensioni totali a tempo t
$\Delta\sigma_{\text{p,c+s+r}}(\infty)$	=	159.52	а	cadute di tensioni totali a tempo infinito

7.4.5 Verifiche Sezione SB-b

Caratteristiche precompressione

id_cavo	n. trefoli	area singolo trefolo	area trefoli	distanza da intradosso	presoll.	precompressione iniziale
_	np	A_{pt}	A_p	Y_p	σ _{pi}	
		mm²	mm²	mm	MPa	kN
1	8	139.0	1112	50	1350	1501
2	6	139.0	834	100	1350	1126
3	0	139.0	0	150	1350	0
4	0	139.0	0	200	1350	0
5	0	139.0	0	250	1350	0
6	2	139.0	278	300	1350	375
7	2	139.0	278	450	1350	375
8	2	139.0	278	500.2	1350	375
9	2	139.0	278	600.2	1350	375
10	4	139.0	556	800	1350	751
11	4	139.0	556	1000	1350	751
12	4	139.0	556	1300	1350	751
13	2	139.0	278	1750	1350	375
TOT	36		5004.0	572.24		6755

Pagina 86 Nome file: VI15-F-

CL002_C.00_relazione_calcolo_impalcato_SX.doc.

Relazione di Calcolo Impalcato - Carreggiata SX

Opera: Viadotto Arenella III

Proge	etto	Ese	cuti	v

Azioni	coazione al netto delle cadute istantanee (isostatico)	coazione al netto delle cadute istantanee (isostatico)	coazione al netto delle cadute istantanee (iperstatico)	peso proprio trave (isostatico)	peso proprio trave (isostatico)	peso proprio trave (iperstatico)	peso soletta (isostatico)
Fase	SF1	SF3	SF3	SF1	SF3	SF3	SF1
N_k	6428.5	6428.5	7656.2	0.0	0.0	1.2	0.0
M_k	-1830.0	-5231.7	6764.0	307.1	307.1	-1664.8	420.0
Ψ_0	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ψ_1	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ψ_2	1.00	1.00	1.00	1.00	1.00	1.00	1.00
σ_{cs}	0.0	-0.4	9.2	0.0	0.2	-1.2	0.0
σ_{ci}	0.0	1.1	7.3	0.0	0.1	-0.8	0.0
σ_{s}	2.2	1.1	7.3	0.9	0.1	-0.8	1.2
σ_{i}	12.0	11.7	-6.4	-0.8	-0.5	2.6	-1.1
$\sigma_{\sf eq}$	8.9	8.3	-2.0	-0.3	-0.3	1.5	-0.4
$\sigma_{\sf cp}$	7.33	3.51	4.18	0.00	0.00	0.00	0.00
$\sigma_{\sf ps}$	17.20	19.81	101.19	5.72	1.83	-9.93	7.83
σ_{pi}	82.11	165.73	-87.47	-5.17	-6.73	36.50	-7.07
σ_{ss}	0.00	4.79	120.61	0.00	2.72	-14.71	0.00

Azioni	peso soletta (isostatico)	peso soletta (iperstatico)	permanenti portati	ritiro isostatico + ritiro locale	ritiro iperstatico	carichi mobili max	carichi mobili min
Fasi	SF3	SF3	SF3	SF3	SF3	SF4	SF4
N_{k}	0.0	0.0	0.0	2374	-395.3	0.0	0.0
M_k	420.0	-2019.4	-986.4	1279.4	-2069.3	660.7	-3606.4
Ψ_0	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ψ_{1}	1.00	1.00	1.00	1.00	1.00	0.75	0.75
Ψ_{2}	1.00	1.00	1.00	1.00	1.00	0.00	0.00
σ_{cs}	0.3	-1.5	-0.7	-0.3	-1.8	0.5	-2.8
σ_{ci}	0.2	-0.9	-0.5	-0.6	-1.2	0.3	-1.7
σ_{s}	0.2	-0.9	-0.5	1.9	-1.2	0.3	-1.7
σ_{i}	-0.7	3.2	1.5	-0.7	3.0	-1.1	6.0
σ_{eq}	-0.4	1.9	0.9	0.1	1.7	-0.7	3.6
σ_{cp}	0.00	0.00	0.00	1.29	-0.22	0.00	0.00
σ_{ps}	2.51	-12.06	-5.89	26.49	-15.49	1.46	-7.98

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Opera:	Viadotto	Arenella	Ш

Relazione di Calcolo Impalcato - Carreggiata SX

Pagina 87

Nome file: VI15-F-

CL002_C.00_relazione_calcolo_impalcato_SX.doc.

σ_{pi}	-9.21	44.27	21.62	-9.19	42.22	-5.57	30.42
σ_{ss}	3.71	-17.86	-8.72	30.16	-21.44	2.19	-11.93

Azioni	vento	termico MAX	termico MIN	cadute differite a tempo infinito	ridistribuzione coazione al netto cadute istantanee e differite	ridistribuzione peso proprio trave	ridistribuzione peso soletta
Fasi	SF4	SF4	SF4	SF3			
N_k	0.0	-110.8	143.6	-659.0	-	-	-
M_k	74.9	1329.7	-664.9	536.3	-	-	-
Ψ_{0}	0.60	0.60	0.60	1.00	1.00	1.00	1.00
Ψ_1	0.00	0.50	0.50	1.00	1.00	1.00	1.00
$\Psi_{\textbf{2}}$	0.00	0.50	0.50	1.00	1.00	1.00	1.00
σ_{cs}	0.1	1.0	-0.4	0.0	2.8	-0.3	-0.6
σ_{ci}	0.0	0.6	-0.2	-0.1	3.5	-0.2	-0.4
σ_{s}	0.0	0.6	-0.2	-0.1	4.7	0.3	0.1
σ_{i}	-0.1	-2.3	1.2	-1.2	15.0	0.3	0.8
σ_{eq}	-0.1	-1.4	0.7	-0.9	11.7	0.3	0.6
σ_{cp}	0.00	-0.06	0.08	-0.36	8.6	0.0	0.0
σ_{ps}	0.17	2.61	-1.04	-2.03	62.7	0.4	-1.8
σ_{pi}	-0.63	-11.55	6.04	-16.99	166.4	7.1	15.0
σ_{ss}	0.25	4.07	-1.77	-0.49	46.3	-4.0	-7.2

			verifica a	verifica a	verifica a	verifica a		
			fine fase	fine fase	fine fase	fine fase		
			3 a t=0	3 a t=0	3 a t=0	3 a t=0		
			(max	(max	(min	(min		
			mobili +	mobili +	mobili +	mobili +		
	verifica al	verifica a fine	max	min	max	min		
	taglio trefoli	fase 2 a t=infinito	termico)	termico)	termico)	termico)		
Combin	azione RARA	(Fondamentale)						
σ_{cs}	0.0	-0.31	0.83	-0.02	-2.51	-3.36	MPa	tensione estradosso soletta
σ_{ci}	0.0	1.09	1.78	1.29	-0.28	-0.78	MPa	tensione intradosso soletta
σ_{s}	3.0	5.74	6.43	5.94	4.36	3.87	MPa	tensione estradosso
σ_{i}	11.2	19.36	16.81	18.90	23.96	26.05	MPa	tensione intradosso
σ_{eq}	8.6	15.03	13.51	14.78	17.73	19.00	MPa	tensione a livello trefolo equivalente
σ_{cp}	7.3	9.92	9.88	9.97	9.88	9.97	MPa	tensione media nel calcestruzzo
σ_{ps}	-1261.7	-1212.33	-1209.20	-1211.40	-1218.64	-1220.84	MPa	tensione nel trefolo superiore
σ_{pi}	-1207.7	-1050.39	-1063.27	-1052.72	-1027.27	-1016.73	MPa	tensione nel trefolo inferiore
σ_{ss}	0.0	42.59	47.37	43.86	33.25	29.74	MPa	tensione nell'armatura lenta superiore
check1	OK	OK	OK	OK	OK	OK		check compressione cap

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata SX

Pagina 88

Nome file:
VI15-FCL002_C.00_relazione_calcolo_impalcato_SX.doc.

check2	OK	OK	OK	OK	OK	OK	check trazione cap
check3	OK	OK	OK	OK	OK	OK	check trefoli

Le perdite di precompressione per ritiro, viscosità e rilassamento sono calcolate nelle tabelle seguenti a partire dalla tensione al netto delle perdite elastiche.

Cadute di tensione istantanee

Cadute per deformazione elastica

Cadule per	uei	ormazione elastic	а	
N_{pi}	=	6755.40	kN kN	sforzo di precompressione iniziale
M_{pi}	=	-1923.04	m MP	momento coattivo iniziale
σ_{eq}	=	9.33	a MP	tensione nel cls a quota trefolo equivalente
$\Delta\sigma_{\text{el}}$	=	65.33	a	caduta di tensione per deformazione elastica
ΔN_{el}	=	326.9	kN	caduta di precompressione per deformazione elastica
f Cadute di t nel tempo		0.048 ione differite		frazione caduta di precompressione
t	=	1440	ore	istante in cui vengono valutate le cadute di tensione
t=∞ Cadute per ritiro	=	438000	ore	tempo infinito (inserire numero sufficientemente grande)
$\epsilon_{cs}(t)$	=	0.00014		deformazione per ritiro a tempo t
ε _{cs} (∞)	=	0.00035	MP	deformazione totale per ritiro a tempo infinito
$\Delta\sigma_{s,t}$	=	26.60	a MP	perdita per ritiro a tempo t
$\Delta\sigma_{\text{s,inf}}$	=	66.50	а	perdita per ritiro a tempo infinito
Cadute per	visc	cosità		
$\varphi(t,t_0)$	=	0.89		coefficiente di viscosità al tempo t e applicazione del carico al tempo t ₀
$\varphi(\infty,t_0)$	=	1.7900		coefficiente di viscosità a tempo infinito e applicazione del carico al tempo t ₀
N_p	=	6428	kN kN	precompressione iniziale con cadute istantanee scontate
M_p	=	-5333.37	m kN	momento coattivo
M_{g}	=	3200	m MP	momento flettente (prodotto dai carichi permanenti)
σ_{eq}	=	5.94	a MP	tensione calcestruzzo a livello cavo risultante
$\Delta\sigma_{c,t}$	=	27.58	a MP	perdita di tensione per viscosità al tempo t
$\Delta\sigma_{\text{c,inf}}$	=	55.47	а	perdita di tensione per viscosità a tempo infinito
Cadute per	rilas	ssamento		alacca dell'accide de procemproces (4-fili e trafeli e rileccamente ordinario: -2 fili e trafeli e
clp	=	2		classe dell'acciao da precompresso (1=fili o trefoli a rilassamento ordinario; =2 fili o trefoli a basso rilassamento, =3 barre) perdita per rilassamento a 1000 ore dopo la messa in tensione (=8%, 2.5%, 4% riepettivamente
ρ ₁₀₀₀	=	2.5	% MP	per acciaio di classe 1, 2 , 3)
σ_{pm0}	=	1285	а	valore assoluto della precompressione iniziale al netto delle cadute istantanee
P_{m0}	=	6428	kN kN	precompressione iniziale al netto delle cadute istantanee
M_{pm0}	=	-5333	m kN	momento coattivo di precompressione
M_{g}	=	3200	m MP	momento flettente (prodotto dai carichi permanenti)
σ_{eq}	=	5.94	а	tensione nel calcestruzzo a livello del cavo equivalente rapporto tra tensione di precompressione inziale (al netto delle cadute istantanee) e tensione di
μ	=	0.691		rottura
t	=	1440	ore	tempo dopo la messa in tensione (istante in cui vengono valutate le cadute di tensione)

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III
Relazione di Calcolo Impalcato - Carreggiata SX
Pagina 89
Nome file: VI15-F-

CL002_C.00_relazione_calcolo_impalcato_SX.doc.

			MP						
$\Delta\sigma_{\text{pr}}(t)$	=	12.38	a MP	caduta di tensione per rilassamento al tempo t					
$\Delta\sigma_{pr}(\infty)$	=	46.63	а	caduta di tensione per rilassamento a tempo t=infinito					
Interazione	Interazione tra le cadute di tensione per effetti differiti								
ε _{cs} (∞)	=	0.00035	MP	deformazione totale per ritiro a tempo infinito					
$\Delta\sigma_{pr}(\infty)$	=	46.63	a MP	caduta di tensione per rilassamento a tempo t=infinito					
$\sigma_{\text{c,QP}}$	=	5.94	a m	tensione nel cls a quota livello del trefolo equivalente prodotto dai carichi permanenti					
A_p	=	5004	m ² m	area totale cavi precompressione					
A_c	=	847168	m ² m	area sezione trave					
J_{c}	=	325000000000	m ⁴	momento d'inerzia trave					
Z _{cp}	=	0.830	m MP	distanza fra baricentro sezione cls e baricentro cavi					
$\Delta\sigma_{\text{p,c+s+r}}\!(t)$	=	60.2	a MP	cadute di tensioni totali a tempo t					
$\Delta\sigma_{\text{p,c+s+r}}(\infty)$	=	131.70	а	cadute di tensioni totali a tempo infinito					

7.4.6 Verifiche Sezione SD-b

Caratteristiche precompressione

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	id_cavo	n. trefoli	singolo trefolo	area trefoli	distanza da intradosso	presoll.	precompressione iniziale
1 8 139.0 1112 50 1350 1501 2 6 139.0 834 100 1350 1126 3 6 139.0 834 150 1350 1126 4 4 139.0 556 200 1350 751 5 4 139.0 556 250 1350 751 6 2 139.0 278 300 1350 375 7 2 139.0 278 450 1350 375 8 2 139.0 278 500.2 1350 375 9 2 139.0 278 600.2 1350 375 10 4 139.0 556 800 1350 751 11 4 139.0 556 1000 1350 751 12 4 139.0 556 1300 1350 751 13 2 139.0 278 1750 1350 375 14 0 139		np	A_{pt}	A_p	Y_p	σ_{pi}	N_{pi}
2 6 139.0 834 100 1350 1126 3 6 139.0 834 150 1350 1126 4 4 139.0 556 200 1350 751 5 4 139.0 556 250 1350 751 6 2 139.0 278 300 1350 375 7 2 139.0 278 450 1350 375 8 2 139.0 278 500.2 1350 375 9 2 139.0 278 600.2 1350 375 10 4 139.0 556 800 1350 751 11 4 139.0 556 1000 1350 751 12 4 139.0 556 1300 1350 751 13 2 139.0 278 1750 1350 375 14 0 139.0 0 50 1350 0 15 0 139.0 <td></td> <td></td> <td>mm^2</td> <td>mm^2</td> <td>mm</td> <td>MPa</td> <td>kN</td>			mm^2	mm^2	mm	MPa	kN
4 4 139.0 556 200 1350 751 5 4 139.0 556 250 1350 751 6 2 139.0 278 300 1350 375 7 2 139.0 278 450 1350 375 8 2 139.0 278 500.2 1350 375 9 2 139.0 278 600.2 1350 375 10 4 139.0 556 800 1350 751 11 4 139.0 556 1000 1350 751 12 4 139.0 556 1300 1350 751 13 2 139.0 278 1750 1350 375 14 0 139.0 0 50 1350 0 15 0 139.0 0 50 1350 0							
5 4 139.0 556 250 1350 751 6 2 139.0 278 300 1350 375 7 2 139.0 278 450 1350 375 8 2 139.0 278 500.2 1350 375 9 2 139.0 278 600.2 1350 375 10 4 139.0 556 800 1350 751 11 4 139.0 556 1000 1350 751 12 4 139.0 556 1300 1350 751 13 2 139.0 278 1750 1350 375 14 0 139.0 0 50 1350 0 15 0 139.0 0 50 1350 0	3	6	139.0	834	150	1350	1126
6 2 139.0 278 300 1350 375 7 2 139.0 278 450 1350 375 8 2 139.0 278 500.2 1350 375 9 2 139.0 278 600.2 1350 375 10 4 139.0 556 800 1350 751 11 4 139.0 556 1000 1350 751 12 4 139.0 556 1300 1350 751 13 2 139.0 278 1750 1350 375 14 0 139.0 0 50 1350 0 15 0 139.0 0 50 1350 0	4	4	139.0	556	200	1350	751
7 2 139.0 278 450 1350 375 8 2 139.0 278 500.2 1350 375 9 2 139.0 278 600.2 1350 375 10 4 139.0 556 800 1350 751 11 4 139.0 556 1000 1350 751 12 4 139.0 556 1300 1350 751 13 2 139.0 278 1750 1350 375 14 0 139.0 0 50 1350 0 15 0 139.0 0 50 1350 0	5	4	139.0	556	250	1350	751
8 2 139.0 278 500.2 1350 375 9 2 139.0 278 600.2 1350 375 10 4 139.0 556 800 1350 751 11 4 139.0 556 1000 1350 751 12 4 139.0 556 1300 1350 751 13 2 139.0 278 1750 1350 375 14 0 139.0 0 50 1350 0 15 0 139.0 0 50 1350 0	6	2	139.0	278	300	1350	375
9 2 139.0 278 600.2 1350 375 10 4 139.0 556 800 1350 751 11 4 139.0 556 1000 1350 751 12 4 139.0 556 1300 1350 751 13 2 139.0 278 1750 1350 375 14 0 139.0 0 50 1350 0 15 0 139.0 0 50 1350 0	7	2	139.0	278	450	1350	375
10 4 139.0 556 800 1350 751 11 4 139.0 556 1000 1350 751 12 4 139.0 556 1300 1350 751 13 2 139.0 278 1750 1350 375 14 0 139.0 0 50 1350 0 15 0 139.0 0 50 1350 0	8	2	139.0	278	500.2	1350	375
11 4 139.0 556 1000 1350 751 12 4 139.0 556 1300 1350 751 13 2 139.0 278 1750 1350 375 14 0 139.0 0 50 1350 0 15 0 139.0 0 50 1350 0	9	2	139.0	278	600.2	1350	375
12 4 139.0 556 1300 1350 751 13 2 139.0 278 1750 1350 375 14 0 139.0 0 50 1350 0 15 0 139.0 0 50 1350 0	10	4	139.0	556	800	1350	751
13 2 139.0 278 1750 1350 375 14 0 139.0 0 50 1350 0 15 0 139.0 0 50 1350 0	11	4	139.0	556	1000	1350	751
14 0 139.0 0 50 1350 0 15 0 139.0 0 50 1350 0	12	4	139.0	556	1300	1350	751
15 0 139.0 0 50 1350 0	13	2	139.0	278	1750	1350	375
	14	0	139.0	0	50	1350	0
TOT 50 6950.0 466.02 9383	15	0	139.0	0	50	1350	0
	TOT	50		6950.0	466.02		9383

Calcolo Delle Tensioni Nelle Condizioni Elementari Di Carico

	coazione ai nello	coazione ai nello	coazione ai nello				
	delle cadute	delle cadute	delle cadute	peso proprio	peso proprio	peso proprio	peso
	istantanee	istantanee	istantanee	trave	trave	trave	soletta
Azioni	(isostatico)	(isostatico)	(iperstatico)	(isostatico)	(isostatico)	(iperstatico)	(isostatico)

ERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.200 DAL KM 44+000 ALLO SVINCOLO CON L'A19 *Progetto Esecutivo* Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata SX

Pagina 90

Nome file: VI15-F-

Fasi	SF1	SF3	SF3	SF1	SF3	SF3	SF1
N_k	8673.2	8673.2	9902.9	0.0	0.0	1.3	0.0
M_k	-3314.7	-7833.1	4498.5	1799.0	1799.0	458.0	2462.0
Ψ_0	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ψ_1	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ψ_2	1.00	1.00	1.00	1.00	1.00	1.00	1.00
σ_{cs}	0.0	-1.1	8.6	0.0	1.3	0.3	0.0
σ_{ci}	0.0	1.0	7.4	0.0	0.8	0.2	0.0
σ_{s}	0.5	1.0	7.4	5.0	0.8	0.2	6.9
σ_{i}	18.0	16.3	-1.3	-4.5	-2.7	-0.7	-6.1
$\sigma_{\sf eq}$	13.5	12.3	0.9	-2.0	-1.8	-0.4	-2.8
$\sigma_{\sf cp}$	9.76	4.66	5.32	0.00	0.00	0.00	0.00
σ_{ps}	6.87	20.92	104.51	33.34	10.79	2.76	45.63
σ_{pi}	122.68	230.63	-15.93	-29.51	-37.37	-9.51	-40.39
σ_{ss}	0.00	-0.67	116.90	0.00	15.75	4.02	0.00

Azioni	peso soletta (isostatico)	peso soletta (iperstatico)	permanenti portati	ritiro isostatico + ritiro locale	ritiro iperstatico	carichi mobili max	carichi mobili min
Fasi	SF3	SF3	SF3	SF3	SF3	SF4	SF4
N_{k}	0.0	0.0	0.0	2374	-394.5	0.0	0.0
M_{k}	2462.0	521.9	227.3	1319.6	-2121.2	2834.5	-1217.4
Ψ_0	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ψ_{1}	1.00	1.00	1.00	1.00	1.00	0.75	0.75
Ψ_{2}	1.00	1.00	1.00	1.00	1.00	0.00	0.00
σ_{cs}	1.8	0.4	0.2	-0.3	-1.8	2.2	-0.9
σ_{ci}	1.1	0.2	0.1	-0.6	-1.2	1.4	-0.6
σ_{s}	1.1	0.2	0.1	1.9	-1.2	1.4	-0.6
σ_{i}	-3.6	-0.8	-0.3	-0.7	2.9	-4.7	2.0
σ_{eq}	-2.4	-0.5	-0.2	0.0	1.9	-3.1	1.3
σ_{cp}	0.00	0.00	0.00	1.28	-0.21	0.00	0.00
σ_{ps}	14.77	3.13	1.36	26.50	-15.81	6.28	-2.70
σ_{pi}	-51.15	-10.84	-4.72	-8.83	40.98	-23.47	10.08
σ_{ss}	21.55	4.57	1.99	30.14	-21.66	9.34	-4.01

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata SX

Pagina 91

Nome file:
VI15-F-

CL002_C.00_relazione_calcolo_impalcato_SX.doc.

Azioni	vento	termico MAX	termico MIN	cadute differite a tempo infinito	ridistribuzione coazione al netto cadute istantanee e differite	ridistribuzione peso proprio trave	ridistribuzione peso soletta
Fasi	SF4	SF4	SF4	SF3			
N_k	0.0	-108.0	139.9	-1036.1	-	-	-
M_k	-3.5	1364.4	-682.3	935.8	-	-	-
Ψ_0	0.60	0.60	0.60	1.00	1.00	1.00	1.00
Ψ_{1}	0.00	0.50	0.50	1.00	1.00	1.00	1.00
Ψ_{2}	0.00	0.50	0.50	1.00	1.00	1.00	1.00
σ_{cs}	0.0	1.0	-0.5	0.1	1.8	1.5	2.0
σ_{ci}	0.0	0.6	-0.3	-0.1	3.5	0.9	1.3
σ_{s}	0.0	0.6	-0.3	-0.1	3.7	3.7	4.0
σ_{i}	0.0	-2.3	1.2	-1.9	25.0	-5.4	-6.5
σ_{eq}	0.0	-1.6	0.8	-1.5	19.5	-3.1	-3.8
σ_{cp}	0.00	-0.06	0.08	-0.56	11.6	0.0	0.0
σ_{ps}	-0.01	2.70	-1.10	-2.50	59.0	30.2	34.5
σ_{pi}	0.03	-11.62	6.07	-27.55	283.1	-57.7	-73.5
σ_{ss}	-0.01	4.18	-1.83	0.08	38.6	17.6	24.3

SLE -	Verifica	del	Livello	Tensionale
-------	----------	-----	---------	-------------------

	verifica al	verifica a fine fase 2 a	verifica a fine fase 3 a t=0 (max mobili + max	verifica a fine fase 3 a t=0 (max mobili + min	verifica a fine fase 3 a t=0 (min mobili + max	verifica a fine fase 3 a t=0 (min mobili + min		
	taglio trefoli	t=infinito	termico)	termico)	termico)	termico)		
Combin	azione RARA (Fondamentale)						
σ_{cs}	0.00	4.14	4.64	4.64	0.00	4.14	MPa	tensione estradosso soletta
σ_{ci}	0.00	4.37	4.67	4.67	0.00	4.37	MPa	tensione intradosso soletta
σ_{s}	5.52	12.59	12.89	12.89	5.52	12.59	MPa	tensione estradosso
σ_{i}	13.53	13.56	12.41	12.41	13.53	13.56	MPa	tensione intradosso
σ_{eq}	11.46	13.31	12.53	12.53	11.46	13.31	MPa	tensione a livello trefolo equivalente
σ_{cp}	9.76	12.61	12.58	12.58	9.76	12.61	MPa	tensione media nel calcestruzzo
σ_{ps}	-1'207.74	-1'107.06	-1'105.71	-1'105.71	-1'207.74	-1'107.06	MPa	tensione nel trefolo superiore
σ_{pi}	-1'154.78	-1'088.49	-1'094.30	-1'094.30	-1'154.78	-1'088.49	MPa	tensione nel trefolo inferiore
σ_{ss}	0.00	98.85	100.94	100.94	0.00	98.85	MPa	tensione nell'armatura lenta superiore
check1	OK	OK	OK	OK	OK	OK		check compressione cap
check2	OK	OK	OK	OK	OK	OK		check trazione cap
check3	OK	OK	OK	OK	OK	OK		check trefoli

Le perdite di precompressione per ritiro, viscosità e rilassamento sono calcolate nelle tabelle seguenti a partire dalla tensione al netto delle perdite elastiche.

Cadute di tensione istantanee

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Cadute per deformazione elastica

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata SX Pagina 92

Nome file: VI15-F-

Cadute per de	HOI	mazione eiast	ca	
N_{pi}	=	9382.50	kN	sforzo di precompressione iniziale
M_{pi}	=	-3585.73	kN m MP	momento coattivo iniziale
σ_{eq}	=	14.58	a MP	tensione nel cls a quota trefolo equivalente
$\Delta\sigma_{\text{el}}$	=	102.05	a	caduta di tensione per deformazione elastica
ΔN_{el}	=	709.3	kN	caduta di precompressione per deformazione elastica
f	=	0.076		frazione caduta di precompressione
Cadute di ter	nsio	ne differite n	el ten	про
t	=	1440	ore	istante in cui vengono valutate le cadute di tensione
t=∞	=	438000	ore	tempo infinito (inserire numero sufficientemente grande)
Cadute per rit	iro			
$\epsilon_{cs}(t)$	=	0.00014		deformazione per ritiro a tempo t
ε _{cs} (∞)	=	0.00035		deformazione totale per ritiro a tempo infinito
$\Delta\sigma_{s,t}$	=	26.60	MP a	perdita per ritiro a tempo t
Λσ	=	66.50	MP a	perdita per ritiro a tempo infinito
$\Delta \sigma_{s,inf}$ Cadute per		00.50	a	peralta per ritiro a tempo iminito
viscosità	_	0.00		goofficiente di viscocità al tempe te applicazione del carico al tempe t
$\varphi(t,t_0)$	=	0.89		coefficiente di viscosità al tempo t e applicazione del carico al tempo to
$\varphi(\infty, t_0)$	=	1.7900	1.81	coefficiente di viscosità a tempo infinito e applicazione del carico al tempo to
N _p	=	8673	kN kN	precompressione iniziale con cadute istantanee scontate
Mp	=	-8117.05	m kN	momento coattivo
M_{g}	=	3200	m MP	momento flettente (prodotto dai carichi permanenti)
σ_{eq}	=	10.75	a MP	tensione calcestruzzo a livello cavo risultante
$\Delta\sigma_{c,t}$	=	49.92	a MP	perdita di tensione per viscosità al tempo t
$\Delta\sigma_{\text{c,inf}}$	=	100.40	а	perdita di tensione per viscosità a tempo infinito
Cadute per ril	ass	amento		alance dell'accion de una comune de (4-fili a trafali a vilaccamente audinovie, -2 fili a trafali a
clp	=	2		classe dell'acciao da precompresso (1=fili o trefoli a rilassamento ordinario; =2 fili o trefoli a basso rilassamento, =3 barre)
ρ ₁₀₀₀	=	2.5	%	perdita per rilassamento a 1000 ore dopo la messa in tensione (=8%, 2.5%, 4% riepettivamente per acciaio di classe 1, 2 , 3)
σ_{pm0}	=	1248	MP a	valore assoluto della precompressione iniziale al netto delle cadute istantanee
P _{m0}	=	8673	kN	precompressione iniziale al netto delle cadute istantanee
M_{pm0}	=	-8117	kN m	momento coattivo di precompressione
M_q	=	3200	kN m	momento flettente (prodotto dai carichi permanenti)
$\sigma_{\sf eq}$	=	10.75	MP a	tensione nel calcestruzzo a livello del cavo equivalente
	=	0.671	-	rapporto tra tensione di precompressione inziale (al netto delle cadute istantanee) e tensione di rottura
μ t	=	1440	ore	tempo dopo la messa in tensione (istante in cui vengono valutate le cadute di tensione)
$\Delta\sigma_{\rm pr}(t)$	=	10.10	MP a	caduta di tensione per rilassamento al tempo t
∆σ _{pr} (∞)	=	41.42	MP a	caduta di tensione per rilassamento a tempo t=infinito
	a le			per effetti differiti
ε _{cs} (∞)	=	0.00035		deformazione totale per ritiro a tempo infinito
$\Delta\sigma_{pr}(\infty)$	=	41.42	MP a	caduta di tensione per rilassamento a tempo t=infinito
$\sigma_{\text{c,QP}}$	=	10.75	MP	tensione nel cls a quota livello del trefolo equivalente prodotto dai carichi permanenti

Pagina 93 Nome file: VI15-F-

 ${\tt CL002_C.00_relazione_calcolo_impalcato_SX.doc.}$

Relazione di Calcolo Impalcato - Carreggiata SX

Opera: Viadotto Arenella III

Progetto Esecutivo

			а	
A_{n}	=	6950	m m²	area totale cavi precompressione
A _c	=	847168	m m²	area sezione trave
J _c	_	325000000 000	m m ⁴	momento d'inerzia trave
Z _{cp}	=	0.936	m	distanza fra baricentro sezione els e baricentro cavi
$\Delta\sigma_{\text{p,c+s+r}}(t)$	=	76.7	MP a	cadute di tensioni totali a tempo t
Δσ _{p,c+s+r} (∞)	=	149.09	MP a	cadute di tensioni totali a tempo infinito

7.5 S.L.E. – quasi permanente

Si riportano nei paragrafi successivi le tensioni nelle fibre più sollecitate della trave, della soletta, delle armature di precompressione ed ordinaria; sono indicate anche le sollecitazioni agenti nelle varie fasi sulle sezioni verificate. Le tensioni sono state calcolate nell'ipotesi di calcestruzzo reagente e laddove, in soletta, sono state riscontrate trazioni del calcestruzzo, evenienza che si verifica nelle vicinanze degli assi pila, si è fatta una seconda verifica semplificata, trascurando tutto il contributo della soletta; tale verifica si ritiene soddisfatta se al lembo superiore teso di trave compaiono compressioni o trazioni modeste inferiori alla resistenza stessa a trazione del calcestruzzo.

Le perdite di precompressione sono state introdotte in termini di sollecitazioni equivalenti.

I limiti tensionali per le combinazioni quasi permanente sono:

Combinazione quasi permanente

 σ_c = 20.5 MPa massima compressione in esercizio cap σ_c = 14.9 MPa massima compressione in esercizio cao σ_p = 1336 MPa massima trazione in esercizio trefoli σ_s = 360 MPa massima trazione in esercizio armatura lenta

Mentre al taglio trefoli:

al taglio trefoli (tensioni iniziali)

 σ_{ci} = 26.1 MPa massima compressione iniziale cap σ_{cti} = 1.79 MPa massima trazione iniziale cap σ_{ci} = 23.2 MPa massima compressione iniziale cao σ_{pi} = 1488 MPa massima trazione iniziale trefoli σ_{si} = 360 MPa massima trazione iniziale armatura lenta

Nei paragrafi successivi si riportano le verifiche di sicurezza delle sezioni più significative della trave e indicate nel seguente modo:

SA-c: sezione di mezzeria trave centrale

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata SX

Pagina 94

Nome file:
VI15-FCL002_C.00_relazione_calcolo_impalcato_SX.doc.

SB-c: sezione a x=1.5m (filo riempimento) trave centrale SD-c: sezione a 9.0m dalla testata della trave centrale

SA-b: sezione di mezzeria trave di bordo

SB-b: sezione a x=1.5m (filo riempimento) trave di bordo SD-b: sezione a 9.0m dalla testata della trave di bordo

Inoltre con:

SF1, **SF2**, **SF3**, **SF4** si sono indicate le caratteristiche geometriche delle sezioni calcolate nelle varie fasi e riportate nel paragrafo 2.3.3 Caratteristiche geometriche delle sezioni

Il calcolo delle tensioni nelle condizioni elementari di carico e le caratteristiche della precompressione non vengono qui riportate in quanto sono le stesse di quelle calcolate per la combinazione rara e indicate nel paragrafo precedente (7.4 S.L.E. rara - limitazione delle tensioni).

7.5.1 Verifiche Sezione SA-c

SLE - Verifica del Livello Tensionale

	verifica al taglio trefoli	verifica a fine fase 2 a	verifica a fine fase 3 a t=0 (max mobili + max termico)	verifica a fine fase 3 a t=0 (max mobili + min termico)		
Combin	nazione QUASI PE		max termico)	min termico)		
σ_{cs}	0.00	4.66	5.25	5.25	MPa	tensione estradosso soletta
σ_{ci}	0.00	5.20	5.58	5.58	MPa	tensione intradosso soletta
σ_{s}	4.68	11.91	12.29	12.29	MPa	tensione estradosso
σ_{i}	17.22	19.52	18.45	18.45	MPa	tensione intradosso
σ_{eq}	14.29	17.75	17.01	17.01	MPa	tensione a livello trefolo equivalente
σ_{cp}	11.35	15.07	15.04	15.04	MPa	tensione media nel calcestruzzo
σ_{ps}	-1'186.19	-1'077.28	-1'075.49	-1'075.49	MPa	tensione nel trefolo superiore
σ_{pi}	-1'103.29	-999.26	-1'004.67	-1'004.67	MPa	tensione nel trefolo inferiore
σ_{ss}	0.00	108.66	111.18	111.18	MPa	tensione nell'armatura lenta superiore
check1	OK	OK	OK	OK		check compressione cap
check2	OK	OK	OK	OK		check trazione cap
check3	OK	OK	OK	OK		verifica trefoli

7.5.2 Verifiche Sezione SB-c

	verifica al taglio trefoli	verifica a fine fase 2 a t=infinito	verifica a fine fase 3 a t=0 (max mobili + max termico)	verifica a fine fase 3 a t=0 (max mobili + min termico)						
Comb	Combinazione QUASI PERMANENTE									
σ_{cs}	0.00	2.10	2.86	2.86	MPa	tensione estradosso soletta				
σ_{ci}	0.00	2.64	3.14	3.14	MPa	tensione intradosso soletta				

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19 Progetto Esecutivo

Opera. Viadotto Archena in	Opera:	Viadotto	Arenella III
----------------------------	--------	----------	--------------

Relazione di Calcolo Impalcato - Carreggiata SX

Pagina 95

Nome file: VI15-F-

CL002_C.00_relazione_calcolo_impalcato_SX.doc.

σ_{s}	3.34	7.37	7.87	7.87	MPa	tensione estradosso
σ_{i}	10.95	14.71	13.35	13.35	MPa	tensione intradosso
σ_{eq}	8.53	12.37	11.60	11.60	MPa	tensione a livello trefolo equivalente
$\sigma_{\sf cp}$	7.33	10.28	10.25	10.25	MPa	tensione media nel calcestruzzo
σ_{ps}	-1'259.81	-1'191.72	-1'189.39	-1'189.39	MPa	tensione nel trefolo superiore
σ_{pi}	-1'209.48	-1'115.18	-1'122.01	-1'122.01	MPa	tensione nel trefolo inferiore
σ_{ss}	0.00	71.40	74.68	74.68	MPa	tensione nell'armatura lenta superiore
check1	OK	OK	OK	OK		check compressione cap
check2	OK	OK	OK	OK		check trazione cap
check3	OK	OK	OK	OK		verifica trefoli

7.5.3 Verifiche Sezione SD-c

SLE - Verifica del Livello Tensionale

O a washi in	verifica al taglio trefoli	verifica a fine fase 2 a t=infinito	verifica a fine fase 3 a t=0 (max mobili + max termico)	verifica a fine fase 3 a t=0 (max mobili + min termico)		
Combii	nazione QUASI PE	RWANENIE				
σ_{cs}	0.00	4.52	5.10	5.10	MPa	tensione estradosso soletta
σ_{ci}	0.00	4.79	5.17	5.17	MPa	tensione intradosso soletta
σ_{s}	5.38	11.69	12.07	12.07	MPa	tensione estradosso
σ_{i}	13.66	15.39	14.32	14.32	MPa	tensione intradosso
σ_{eq}	11.52	14.44	13.74	13.74	MPa	tensione a livello trefolo equivalente
σ_{cp}	9.76	13.20	13.16	13.16	MPa	tensione media nel calcestruzzo
σ_{ps}	-1'208.70	-1'109.57	-1'107.80	-1'107.80	MPa	tensione nel trefolo superiore
σ_{pi}	-1'153.93	-1'071.26	-1'076.63	-1'076.63	MPa	tensione nel trefolo inferiore
σ_{ss}	0.00	104.71	107.21	107.21	MPa	tensione nell'armatura lenta superiore
check1	OK	OK	OK	OK		check compressione cap
check2	OK	OK	OK	OK		check trazione cap
check3	OK	OK	OK	OK		verifica trefoli

7.5.4 Verifiche Sezione SA-b

	verifica al taglio trefoli	verifica a fine fase 2 a t=infinito	verifica a fine fase 3 a t=0 (max mobili + max termico)	verifica a fine fase 3 a t=0 (max mobili + min termico)		
Combi	nazione QUASI PE	RMANENTE				
σ_{cs}	0.00	4.72	5.22	5.22	MPa	tensione estradosso soletta
σ_{ci}	0.00	5.05	5.36	5.36	MPa	tensione intradosso soletta
σ_{s}	5.34	13.70	14.01	14.01	MPa	tensione estradosso

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19 Progetto Esecutivo Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata SX

Pagina 96

Nome file: VI15-F-

CL002_C.00_relazione_calcolo_impalcato_SX.doc.

σ_{i}	16.64	16.22	15.06	15.06	MPa	tensione intradosso
σ_{eq}	14.00	15.63	14.82	14.82	MPa	tensione a livello trefolo equivalente
$\sigma_{\sf cp}$	11.35	14.35	14.32	14.32	MPa	tensione media nel calcestruzzo
σ_{ps}	-1'181.80	-1'067.13	-1'065.74	-1'065.74	MPa	tensione nel trefolo superiore
σ_{pi}	-1'107.12	-1'033.14	-1'038.97	-1'038.97	MPa	tensione nel trefolo inferiore
σ_{ss}	0.00	107.99	110.12	110.12	MPa	tensione nell'armatura lenta superiore
check1	OK	OK	OK	OK		check compressione cap
check2	OK	OK	OK	OK		check trazione cap
check3	OK	OK	OK	OK		verifica trefoli

7.5.5 Verifiche Sezione SB-b

SLE - Verifica del Livello Tensionale

	verifica al taglio	verifica a fine fase 2 a	verifica a fine fase 3 a t=0 (max mobili +	verifica a fine fase 3 a t=0 (max mobili +		
	trefoli	t=infinito	max termico)	min termico)		
Combin	azione QUASI PE	RMANENTE				
σ_{cs}					MPa	tensione estradosso soletta
σ_{ci}	0.00	-0.31	0.18	0.18	MPa	tensione intradosso soletta
σ_{s}	0.00	1.09	1.38	1.38	MPa	tensione estradosso
σ_{i}	3.05	5.74	6.03	6.03	MPa	tensione intradosso
σ_{eq}	11.22	19.36	18.22	18.22	MPa	tensione a livello trefolo equivalente
σ_{cp}	8.62	15.03	14.34	14.34	MPa	tensione media nel calcestruzzo
σ_{ps}	7.33	9.92	9.89	9.89	MPa	tensione nel trefolo superiore
σ_{pi}	-1'261.75	-1'212.33	-1'211.03	-1'211.03	MPa	tensione nel trefolo inferiore
σ_{ss}	-1'207.73	-1'050.39	-1'056.16	-1'056.16	MPa	tensione nell'armatura lenta superiore
check1	0.00	42.59	44.62	44.62		check compressione cap
check2	OK	OK	OK	OK		check trazione cap
check3	OK	OK	OK	OK		verifica trefoli

7.5.6 Verifiche Sezione SD-b

	verifica al taglio trefoli	verifica a fine fase 2 a t=infinito	verifica a fine fase 3 a t=0 (max mobili + max termico)	verifica a fine fase 3 a t=0 (max mobili + min termico)		
Comb	inazione QUASI PE	RMANENTE				
σ_{cs}	0.00	4.14	4.64	4.64	MPa	tensione estradosso soletta
σ_{ci}	0.00	4.37	4.67	4.67	MPa	tensione intradosso soletta
σ_{s}	5.52	12.59	12.89	12.89	MPa	tensione estradosso
σ_{i}	13.53	13.56	12.41	12.41	MPa	tensione intradosso
$\sigma_{\sf eq}$	11.46	13.31	12.53	12.53	MPa	tensione a livello trefolo equivalente

Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata SX

Pagina 97

Nome file:
VI15-FCL002 C.00 relazione calcolo impalcato SX.doc.

$\sigma_{\sf cp}$	9.76	12.61	12.58	12.58	MPa	tensione media nel calcestruzzo
σ_{ps}	-1'207.74	-1'107.06	-1'105.71	-1'105.71	MPa	tensione nel trefolo superiore
σ_{pi}	-1'154.78	-1'088.49	-1'094.30	-1'094.30	MPa	tensione nel trefolo inferiore
σ_{ss}	0.00	98.85	100.94	100.94	MPa	tensione nell'armatura lenta superiore
check1	OK	OK	OK	OK		check compressione cap
check2	OK	OK	OK	OK		check trazione cap
check3	OK	OK	OK	OK		verifica trefoli

7.6 S.L.E. – Frequente (limitazione ampiezza fessure)

Si riportano i risultati relativi alla sola combinazione frequente in quanto quelli relativi alla combinazione quasi permanete sono già stati riportati nei paragarfi precedenti.

7.6.1 Verifiche Sezione SA-c

	verifica al taglio trefoli	verifica a fine fase 2 a t=infinito	verifica a fine fase 3 a t=0 (max mobili + max termico)	verifica a fine fase 3 a t=0 (max mobili + min termico)		
Combinazion	ne FREQUENTE					
σ_{cs}	0.00	4.66	7.39	4.65	MPa	tensione estradosso soletta
σ_{ci}	0.00	5.20	7.03	5.18	MPa	tensione intradosso soletta
σ_{s}	4.68	11.91	13.74	11.89	MPa	tensione estradosso
σ_{i}	17.22	19.52	14.87	19.44	MPa	tensione intradosso
σ_{eq}	14.29	17.75	14.61	17.68	MPa	tensione a livello trefolo equivalente
$\sigma_{\sf cp}$	11.35	15.07	15.04	15.04	MPa	tensione media nel calcestruzzo
σ_{ps}	-1186.19	-1077.28	-1068.68	-1077.39	MPa	tensione nel trefolo superiore
σ_{pi}	-1103.29	-999.26	-1022.59	-999.67	MPa	tensione nel trefolo inferiore
σ_{ss}	0.00	108.66	120.54	108.58	MPa	tensione nell'armatura lenta superiore

La trave precompressa nella sezione in oggetto mantiene sempre uno stato di compressione, (sia per la combinazione frequente che per quella quasi permanente) anche in presenza di carichi da traffico e pertanto si ritiene soddisfatto sia lo stato limite di fessurazione che di decompressione.

7.6.2 Verifiche Sezione SB-c

	verifica al taglio trefoli	verifica a fine fase 2 a t=infinito	verifica a fine fase 3 a t=0 (max mobili + max termico)	verifica a fine fase 3 a t=0 (max mobili + min termico)		
Combinazion	e FREQUENTE					
σ_{cs}	0.00	2.10	3.36	1.47	MPa	tensione estradosso soletta
σ_{ci}	0.00	2.64	3.48	2.21	MPa	tensione intradosso soletta
σ_{s}	3.34	7.37	8.20	6.94	MPa	tensione estradosso

DAL KM 44+000 ALLO SVINCOLO CON L'A19 Progetto Esecutivo

Opera: Viadotto Arenella III
Relazione di Calcolo Impalcato - Carreggiata SX
Pagina 98
Nome file:
VI15-F-
CL002 C.00 relazione calcolo impalcato SX.doc.

σ_{i}	10.95	14.71	12.49	15.71	MPa	tensione intradosso
σ_{eq}	8.53	12.37	11.12	12.92	MPa	tensione a livello trefolo equivalente
σ_{cp}	7.33	10.28	10.25	10.25	MPa	tensione media nel calcestruzzo
σ_{ps}	-1259.81	-1191.72	-1187.80	-1193.76	MPa	tensione nel trefolo superiore
σ_{pi}	-1209.48	-1115.18	-1126.32	-1110.14	MPa	tensione nel trefolo inferiore
σ_{ss}	0.00	71.40	76.88	68.64	MPa	tensione nell'armatura lenta superiore

La trave precompressa nella sezione in oggetto mantiene sempre uno stato di compressione, (sia per la combinazione frequente che per quella quasi permanente) anche in presenza di carichi da traffico e pertanto si ritiene soddisfatto sia lo stato limite di fessurazione che di decompressione.

7.6.3 Verifiche Sezione SD-c

	verifica al taglio trefoli	verifica a fine fase 2 a t=infinito	verifica a fine fase 3 a t=0 (max mobili + max termico)	verifica a fine fase 3 a t=0 (max mobili + min termico)		
Combinazione	FREQUENTE					
σ_{cs}	0.00	4.52	6.80	4.34	MPa	tensione estradosso soletta
σ_{ci}	0.00	4.79	6.31	4.66	MPa	tensione intradosso soletta
σ_{s}	5.38	11.69	13.21	11.56	MPa	tensione estradosso
σ_{i}	13.66	15.39	11.48	15.61	MPa	tensione intradosso
σ_{eq}	11.52	14.44	11.93	14.56	MPa	tensione a livello trefolo equivalente
$\sigma_{\sf cp}$	9.76	13.20	13.16	13.16	MPa	tensione media nel calcestruzzo
σ_{ps}	-1208.70	-1109.57	-1102.45	-1110.23	MPa	tensione nel trefolo superiore
σ_{pi}	-1153.93	-1071.26	-1090.91	-1070.17	MPa	tensione nel trefolo inferiore
σ_{ss}	0.00	104.71	114.59	103.87	MPa	tensione nell'armatura lenta superiore

La trave precompressa nella sezione in oggetto mantiene sempre uno stato di compressione, (sia per la combinazione frequente che per quella quasi permanente) anche in presenza di carichi da traffico e pertanto si ritiene soddisfatto sia lo stato limite di fessurazione che di decompressione.

7.6.4 Verifiche Sezione SA-b

	verifica al taglio trefoli	verifica a fine fase 2 a t=infinito	verifica a fine fase 3 a t=0 (max mobili + max termico)	verifica a fine fase 3 a t=0 (max mobili + min termico)		
Combinazion	e FREQUENTE					
σ_{cs}	0.00	4.72	7.34	4.69	MPa	tensione estradosso soletta
σ_{ci}	0.00	5.05	6.68	5.02	MPa	tensione intradosso soletta
σ_{s}	5.34	13.70	15.33	13.67	MPa	tensione estradosso
σ_{i}	16.64	16.22	10.64	16.19	MPa	tensione intradosso
σ_{eq}	14.00	15.63	11.73	15.60	MPa	tensione a livello trefolo equivalente

DAL KM 44+000 ALLO SVINCOLO CON L'A19 Progetto Esecutivo

Opera: Viadotto Arenella III
Relazione di Calcolo Impalcato - Carreggiata SX
Pagina 99
Nome file: VI15-F- CL002_C.00_relazione_calcolo_impalcato_SX.doc.

σ_{cp}	11.35	14.35	14.32	14.32	MPa	tensione media nel calcestruzzo
σ_{ps}	-1181.80	-1067.13	-1059.70	-1067.28	MPa	tensione nel trefolo superiore
σ_{pi}	-1107.12	-1033.14	-1061.24	-1033.29	MPa	tensione nel trefolo inferiore
σ_{ss}	0.00	107.99	119.08	107.83	MPa	tensione nell'armatura lenta superiore

La trave precompressa nella sezione in oggetto mantiene sempre uno stato di compressione, (sia per la combinazione frequente che per quella quasi permanente) anche in presenza di carichi da traffico e pertanto si ritiene soddisfatto sia lo stato limite di fessurazione che di decompressione.

7.6.5 Verifiche Sezione SB-b

	verifica al taglio trefoli	verifica a fine fase 2 a t=infinito	verifica a fine fase 3 a t=0 (max mobili + max termico)	verifica a fine fase 3 a t=0 (max mobili + min termico)		
Combinazion	e FREQUENTE					
σ_{cs}	0.00	-0.31	0.57	-1.94	MPa	tensione estradosso soletta
σ_{ci}	0.00	1.09	1.62	0.07	MPa	tensione intradosso soletta
σ_{s}	3.05	5.74	6.27	4.72	MPa	tensione estradosso
σ_{i}	11.22	19.36	17.39	22.75	MPa	tensione intradosso
σ_{eq}	8.62	15.03	13.85	17.02	MPa	tensione a livello trefolo equivalente
σ_{cp}	7.33	9.92	9.89	9.89	MPa	tensione media nel calcestruzzo
σ_{ps}	-1261.75	-1212.33	-1209.93	-1217.01	MPa	tensione nel trefolo superiore
σ_{pi}	-1207.73	-1050.39	-1060.34	-1033.35	MPa	tensione nel trefolo inferiore
σ_{ss}	0.00	42.59	46.26	35.68	MPa	tensione nell'armatura lenta superiore

In questo caso, in cui si riscontrano delle tensioni di trazione all' estradosso della soletta, nella combimazione frequente, si procede alla verifica dell'ampiezza di fessurazione per via indiretta, così come riportata nell'ultimo capoverso del punto 4.1.2.2.4.6 delle NTC, riferendosi ai limiti di tensione nell'acciaio d'armatura definiti nelle tabelle seguenti. La tensione σ_{ss} è quella nell'acciaio d'armatura prossimo al lembo teso della sezione calcolata nella sezione parzializzata per la combinazione di carico pertinente.

Per quanto riguardo le condizioni ambientali e la sensibilità delle armature sono state assunte:

- condizioni ambientali aggressive;
- armature poco sensibili.

Tabella 7 2: Tensioni di riferimento

Tabella 7.2. Tellsloll	ii di filefililefilo				
	FREQUENTE				
Diametri massimi delle barre per il controllo della fessurazione					
σs	w2=0.30 mm				
[MPa]	Ø				
160	32				
200	25				
240	16				
280	12				

Opera: Viadotto Arenella III
Relazione di Calcolo Impalcato - Carreggiata SX
Pagina 100
Nome file:
VI15-F-
CL002_C.00_relazione_calcolo_impalcato_SX.doc.

320	10
360	8
Spaziatura massima delle barre per il controllo della f	essurazione
σs	w2=0.30 mm
[MPa]	Ø
160	300
200	250
240	200
280	150
320	100
360	50

Dalla Tabella 7.2 la massima tensione ammissibile nelle barre di acciaio è pari a 240 MPa, superiore alla tensioni calcolate per la combinazione frequente, la verifica risulta quindi soddisfatta.

7.6.6 Verifiche Sezione SD-b

	verifica al taglio trefoli	verifica a fine fase 2 a t=infinito	verifica a fine fase 3 a t=0 (max mobili + max termico)	verifica a fine fase 3 a t=0 (max mobili + min termico)		
Combinazion	e FREQUENTE					
σ_{cs}	0.00	4.14	6.30	3.93	MPa	tensione estradosso soletta
σ_{ci}	0.00	4.37	5.70	4.23	MPa	tensione intradosso soletta
σ_{s}	5.52	12.59	13.92	12.45	MPa	tensione estradosso
σ_{i}	13.53	13.56	8.91	13.91	MPa	tensione intradosso
σ_{eq}	11.46	13.31	10.21	13.53	MPa	tensione a livello trefolo equivalente
$\sigma_{\sf cp}$	9.76	12.61	12.58	12.58	MPa	tensione media nel calcestruzzo
σ_{ps}	-1207.74	-1107.06	-1101.00	-1107.73	MPa	tensione nel trefolo superiore
σ_{pi}	-1154.78	-1088.49	-1111.91	-1086.74	MPa	tensione nel trefolo inferiore
σ_{ss}	0.00	98.85	107.94	97.93	MPa	tensione nell'armatura lenta superiore

La trave precompressa nella sezione in oggetto mantiene sempre uno stato di compressione, anche in presenza di carichi da traffico e pertanto si ritiene soddisfatto sia lo stato limite di fessurazione che di decompressione.

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata SX

Pagina 101

Nome file:
VI15-FCL002 C.00_relazione_calcolo_impalcato_SX.doc.

8. VERIFICA DEI TRAVERSI

Per tutte le verifiche si è fatto riferimento ad una sezione rettangolare 1600x2050 mm, armata con $10\phi26$ sopra e sotto in corrispondenza degli apparecchi di appoggio e $10\phi26$ sopra con $10+10\phi26$ sotto in campata. A taglio e torsione sono presenti staffe $\phi14/150$ a 6 braccia; si utilizzano4 braccia a taglio e 2 a torsione. Nel tabulato che segue si riportano le verifiche a stato limite ultimo per flessione e le verifiche di esercizio per combinazioni rara e frequente.

8.1 Sezione in campata. Flessione SLU e SLE

				$A_{\text{res},1}$					$A_{\text{res},1}$	$A_{\text{res}, \text{TOT}}$	M_{Ed}	\mathbf{M}_{Rd}	FS
				[cm ²]					[cm ²]	[cm ²]	[cm ²]	[cm ²]	
Arm-sup	10	Φ	26	53.1	+	0	Φ	0	0.0	53.1	8479	9523	1.12
Arm-inf	12	Φ	26	58.4	+	12	Φ	26	63.7	127.4			

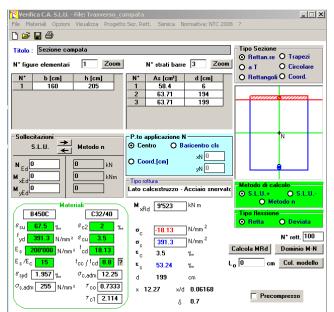


Figura 8.1: Momento resistente Sezione di campata trasverso

Le verifiche di fessurazione vengono condotte in relazione alle indicazioni riportate negli Eurocodici (in particolare si veda EN 1992-1-1 cap. 7.3) e riprese sia dalle NTC (cap. 4.1.2.2.4) che dalla Circolare n.617. È richiesto in particolare, laddove il momento agente superi quello di fessurazione, di verificare che la tensione nelle barre di armatura rientri in determinati limiti (dipendenti dal diametro e dalla spaziatura dei ferri) o in alternativa di controllare che l'ampiezza della fessura che si apre non superi un determinato valore (funzione dello stato limite, delle condizioni ambientali e del tipo di armatura).

Si riportano di seguito le tabelle per le combinazioni considerate (frequente e quasi permanente), ricordando che si opera con armature poco sensibili ed in condizioni ambientali aggressive (classe di esposizione XC4).

DAL KM 44+000 ALLO SVINCOLO CON L'A19 Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata SX Pagina 102

Nome file: VI15-F-

		comb.	comb.		
MATERIALI		FREQUENTE	QUASI PERM.		
Calcestruzzo					
R _{ck}	=	40	40	MPa	resistenza caratteristica cubica
f_{ck}	=	33.20	33.20	MPa	resistenza caratteristica cilindrica
f_{cm}	=	41.20	41.20	MPa	resistenza cilindrica media
f_{ctm}	=	3.10	3.10	MPa	resistenza media a trazione semplice
f _{ctk}	=	2.17	2.17	MPa	resistenza caratteristica a trazione semplice
f _{cfm}	=	3.72	3.72	MPa	resistenza media a trazione per flessione
γς	=	1.50	1.50		coefficiente parziale di sicurezza
α_{cc}	=	0.85	0.85		coefficiente riduttivo per resistenze di lunga durata
f_{cd}	=	18.81	18.81	MPa	resistenza di calcolo a compressione
f _{ctd}	=	1.45	1.45	MPa	resistenza di calcolo a trazione
E _c	=	33643	33643		modulo di Young
Acciao		00010	00010	u	modulo di Toding
Es	=	206000	206000	MPa	modulo di Young acciaio
γs	=	1.15	1.15		coefficiente parziale acciaio
f _{yk}	=	450.0	450.0	MPa	tensione caratteristica di snervamento acciaio
f _{yd}	=	391.3	391.3	MPa	tensione di snervamento di calcolo dell'acciaio
n	=	15	15	u	coefficiente di omogeneizzazione
GEOMETRIA SEZ	ZIONE				
В	=	1600	1600	mm	larghezza
H c'	=	2050 60	2050 60	mm mm	altezza copriferro
ARMATURA	_	00	00	111111	copiliento
numero barre					
n1 (superiore)	=	10	10		numero barre strato 1
n2	=				numero barre strato 2
n3	=				numero barre strato 3
n4	=				numero barre strato 4
n5	=				numero barre strato 5
n6	=	10	10		numero barre strato 6
n7 n8 (inferiore)	=	12 12	12 12		numero barre strato 7 numero barre strato 8
diametro barre		12	12		numero parre strato o
Ø1	=	26	26	mm	diametro barre strato 1
Ø2	=			mm	diametro barra strato 2
Ø3	=			mm	diametro barra strato 3
Ø4	=			mm	diametro barra strato 4
Ø5	=			mm	diametro barra strato 5
Ø6	=			mm	diametro barra strato 6
Ø7	=	26	26	mm	diametro barra strato 7
Ø8	=	26	26	mm	diametro barra strato 8
ordinate barre					

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Es	secutivo
-------------	----------

0.0

 ϵ_{2}

0.0

deformazione minima di trazione

Opera: Viadotto Arenella III	Opera:	Viadotto	Arenella I	II
------------------------------	--------	----------	------------	----

Relazione di Calcolo Impalcato - Carreggiata SX Pagina 103

Nome file: VI15-F-

y1	=	1990	1990	mm	ordinata barre strato 1
y2	=			mm	ordinata barre strato 2
у3	=			mm	ordinata barre strato 3
y4	=			mm	ordinata barre strato 4
y5	=			mm	ordinata barre strato 5
y6	=	440	440	mm	ordinata barre strato 6
y7 y8	_	110 60	110 60	mm mm	ordinata barre strato 7 ordinata barre strato 8
area barre	_	00	00	111111	ordinata barre strato o
A _{s1}	=	5309	5309	mm^2	area barre strato 1
	=	0	0	mm ²	area barre strato 2
A _{s2}	=	0	0	mm ²	area barre strato 3
A _{s3}	=				area barre strato 4
A _{s4}		0	0	mm ²	
A _{s5}	=	0	0	mm ²	area barre strato 5
A_{s6}	=	0	0	mm ²	area barre strato 6
A _{s7}	=	6371	6371	mm ²	area barre strato 7
A_{s8}	=	6371	6371	mm ²	area barre strato 8
SOLLECITAZIO					
M	=	5654	3664	kNm	· ·
N VERIFICA TENS	=	0 MATERIALI	0	kN	sforzo normale (>0 compressione)
CS CS	=	MATERIALI 1	1		
cs	=	•	flessione semplice		
an	=	540.8	540.8	mm	asse neutro (distanza da lembo compresso)
Yn	=	1509	1509	mm	ordinata asse neutro
Α	=	1135985	1135985	$\rm mm^2$	area sezione reagente
J	=	490571007675	490571007675	mm^4	momento d'inerzia sezione reagente
S	=	0	0	mm ³	momento statico sezione reagente
σ_{c}	=	-6.23	-4.04	MPa	tensione calcestruzzo
σ_{s}	=	250.55	162.36	MPa	tensione massima acciaio
VERIFICA A FE	SSURAZIO	DNE			
sezione tesa					
M_{fess}	=	3600.9	3600.9	kNm	momento di fessurazione
$FS=M_{fess}/M_{Sd}$	=	0.6	1.0		check ok se >1
α_{e}	=	6.123	6.123	MPa	rapporto tra i moduli elastici
d	=	1965	1965	mm	altezza utile della sezione
$h_{c,eff}$	=	213	213	mm	altezza area efficace calcestruzzo teso
$A_{c,eff}$	=	340000	340000	mm^2	area efficace calcestruzzo teso
A_s	=	12742	12742	$\mathrm{mm^2}$	area di armatura tesa
Peff	=	0.0375	0.0375		
\mathbf{k}_{t}	=	0.4	0.4		(=0.6 per carichi di breve durata; =0.4 per carichi di lunga durata)
ϵ_{sm}	=	0.00102	0.00059		deformazione unitaria media delle barre
Ø	=	26	26		diametro equivalente delle barre tese
\mathbf{k}_1	=	0.8	0.8		(=0.8 per barre ad aderenza migliorata; =1.6 per barre lisce)
ϵ_1	=	0.000517	0.000335		deformazione massima di trazione

Pagina 104 Nome file: VI15-F-

 ${\tt CL002_C.00_relazione_calcolo_impalcato_SX.doc.}$

Relazione di Calcolo Impalcato - Carreggiata SX

Opera: Viadotto Arenella III

Progetto Esecutivo

k_2	=	0.5	0.5	f	attore di forma diagramma delle deformazioni
k_3	=	3.4	3.4	(posto dalle NTC pari a 3.4)
k_4	=	0.425	0.425	(posto dalle NTC pari a 0.425)
С	=	47	47	mm r	icoprimento armatura
s	=	150	150	mm c	distanza tra le barre
$\Delta_{\text{s,max}}$	=	277.7	277.7	mm c	distanza massima tra le fessure
\mathbf{W}_{d}	=	0.283	0.164	mm a	apertura di calcolo delle fessure
W _{max}	=	0.30	0.20	mm V	valore limite ampiezza fessure
FS	=	1.06	1.22	c	check ok se >1
		ok	ok		

8.2 Sezione in appoggio. Flessione SLU e SLE

FS M_{Ed} $A_{res,TOT}$ M_{Rd} [cm²] [cm²] [cm²] Arm-sup 10 Φ 26 53.1 -1890 -4058 2.15 **Arm-inf** 12 Φ 26 63.7

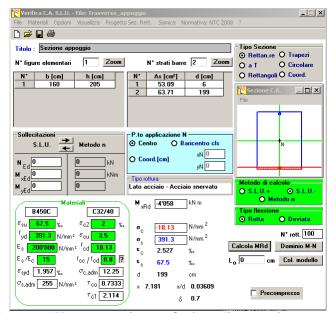


Figura 8.2: Momento resistente Sezione di appoggio trasverso

Le verifiche di fessurazione vengono condotte in relazione alle indicazioni riportate negli Eurocodici (in particolare si veda EN 1992-1-1 cap. 7.3) e riprese sia dalle NTC (cap. 4.1.2.2.4) che dalla Circolare n.617. È richiesto in particolare, laddove il momento agente superi quello di fessurazione, di verificare che la tensione nelle barre di armatura rientri in determinati limiti (dipendenti dal diametro e dalla spaziatura dei ferri) o in alternativa di controllare che l'ampiezza della fessura che si apre non superi un determinato valore (funzione dello stato limite, delle condizioni ambientali e del tipo di armatura).

Si riportano di seguito le tabelle per le combinazioni considerate (frequente e quasi permanente), ricordando che si opera con armature poco sensibili ed in condizioni ambientali aggressive (classe di esposizione XC4).

DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata SX Pagina 105

Nome file: VI15-F-

MATERIALI Calcestruzzo		FREQUENTE comb.	QUASI PERM. comb.		
R _{ck}	=	40	40	MPa	resistenza caratteristica cubica
f _{ck}	=	33.20	33.20	MPa	resistenza caratteristica cilindrica
f _{cm}	=	41.20	41.20	MPa	resistenza cilindrica media
f _{ctm}	=	3.10	3.10	MPa	resistenza media a trazione semplice
f _{ctk}	=	2.17	2.17		resistenza caratteristica a trazione semplice
f _{cfm}	=	3.72	3.72	MPa	resistenza media a trazione per flessione
γς	=	1.50	1.50		coefficiente parziale di sicurezza
$lpha_{ t cc}$	=	0.85	0.85		coefficiente riduttivo per resistenze di lunga durata
f_{cd}	=	18.81	18.81	MPa	resistenza di calcolo a compressione
f _{ctd}	=	1.45	1.45	MPa	resistenza di calcolo a trazione
Ec	=	33643	33643	MPa	modulo di Young
Acciao					· ·
Es	=	206000	206000	MPa	modulo di Young acciaio
γs	=	1.15	1.15		coefficiente parziale acciaio
f _{yk}	=	450.0	450.0	MPa	·
		391.3			
f _{yd} n	=	391.3 15	391.3 15	MPa	tensione di snervamento di calcolo dell'acciaio coefficiente di omogeneizzazione
"	_	10	13		coefficiente di omogeneizzazione
GEOMETRIA SEZ	IONE				
В	=	1600	1600	mm	larghezza
Н	=	2050	2050	mm	altezza
C'	=	60	60	mm	copriferro
ARMATURA					
numero barre		40	40		romana harra atasta d
n1 (superiore) n2	=	12	12		numero barre strato 1 numero barre strato 2
n3	_				numero barre strato 3
n4	=				numero barre strato 4
n5	=				numero barre strato 5
n6	=				numero barre strato 6
n7	=				numero barre strato 7
n8 (inferiore)	=	10	10		numero barre strato 8
diametro barre					
Ø1	=	26	26	mm	diametro barre strato 1
Ø2	=			mm	diametro barra strato 2
Ø3	=			mm	diametro barra strato 3
Ø4	=			mm	diametro barra strato 4
Ø5 Ø6	=			mm mm	diametro barra strato 5 diametro barra strato 6
Ø7	=			mm	diametro barra strato 7
Ø8	=	26	26	mm	diametro barra strato 8
ordinate barre					
y1	=	1990	1990	mm	ordinata barre strato 1
y2	=			mm	ordinata barre strato 2
у3	=			mm	ordinata barre strato 3

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

3.4

 k_3

3.4

(posto dalle NTC pari a 3.4)

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata SX Pagina 106

Nome file:

VI15-F-

y4 v=	=			mm	ordinata barre strato 4 ordinata barre strato 5
y5 y6	=			mm mm	ordinata barre strato 5
y0 y7	=			mm	ordinata barre strato 7
y8	=	60	60	mm	ordinata barre strato 8
area barre					
A_{s1}	=	6371	6371	mm^2	area barre strato 1
A_{s2}	=	0	0	mm^2	area barre strato 2
A_{s3}	=	0	0	mm^2	area barre strato 3
A_{s4}	=	0	0	mm^2	area barre strato 4
A_{s5}	=	0	0	mm^2	area barre strato 5
A_{s6}	=	0	0	mm^2	area barre strato 6
A _{s7}	=	0	0	mm^2	area barre strato 7
A_{s8}	=	5309	5309	mm^2	area barre strato 8
SOLLECITAZI	ONI				da sap
M	=	1280	787		momento flettente (sempre >0 tende le fibre inferiori)
N	=	0	0	kN	sforzo normale (>0 compressione)
VERIFICA TEI	NSIONI NE =		4		
cs cs	=	1 flessione semplice	1		
an	=	356.6	356.6	mm	asse neutro (distanza da lembo compresso)
Y_n	=	1693	1693	mm	ordinata asse neutro
A	=	745781	745781	mm ²	area sezione reagente
J	=	245069509088	245069509088	mm ⁴	momento d'inerzia sezione reagente
S	=	0	0	mm ³	momento statico sezione reagente
σ_{c}	=	-1.86	-1.15	MPa	tensione calcestruzzo
σ_{s}	=	127.97	78.68	MPa	tensione massima acciaio
		121.01			terisione massima acciaio
VERIFICA A F	ESSURAZ				tensione massima accidio
sezione tesa	ESSURAZ				tensione massima accidio
_	ESSURAZ =		3290.7	kNm	momento di fessurazione
sezione tesa		IONE		kNm	
sezione tesa M _{fess}	=	3290.7	3290.7	kNm MPa	momento di fessurazione
sezione tesa M_{fess} $FS=M_{fess}/M_{Sd}$	=	3290.7 2.6	3290.7 4.2		momento di fessurazione check ok se >1
sezione tesa M_{fess} $FS=M_{\text{fess}}/M_{\text{Sd}}$ α_{e}	= =	3290.7 2.6 6.123	3290.7 4.2 6.123	MPa	momento di fessurazione check ok se >1 rapporto tra i moduli elastici
sezione tesa M_{fess} $FS=M_{fess}/M_{Sd}$ α_{e} d	= = =	3290.7 2.6 6.123 1990	3290.7 4.2 6.123 1990	MPa mm	momento di fessurazione check ok se >1 rapporto tra i moduli elastici altezza utile della sezione
sezione tesa $\begin{aligned} & \text{M}_{\text{fess}} \\ & \text{FS=M}_{\text{fess}}/\text{M}_{\text{Sd}} \\ & \alpha_{\text{e}} \\ & \text{d} \\ & \text{h}_{\text{c,eff}} \end{aligned}$	= = = =	3290.7 2.6 6.123 1990 150	3290.7 4.2 6.123 1990 150	MPa mm mm mm²	momento di fessurazione check ok se >1 rapporto tra i moduli elastici altezza utile della sezione altezza area efficace calcestruzzo teso
sezione tesa $\begin{aligned} & \text{M}_{\text{fess}} \\ & \text{FS=M}_{\text{fess}}/\text{M}_{\text{Sd}} \\ & \alpha_e \\ & \text{d} \\ & \text{h}_{c,\text{eff}} \\ & \text{A}_{c,\text{eff}} \end{aligned}$	= = = = =	3290.7 2.6 6.123 1990 150 240000	3290.7 4.2 6.123 1990 150 240000	MPa mm mm mm²	momento di fessurazione check ok se >1 rapporto tra i moduli elastici altezza utile della sezione altezza area efficace calcestruzzo teso area efficace calcestruzzo teso
sezione tesa $\begin{aligned} & \text{M}_{\text{fess}} \\ & \text{FS=M}_{\text{fess}}/\text{M}_{\text{Sd}} \\ & \alpha_e \\ & \text{d} \\ & \text{h}_{c,\text{eff}} \\ & \text{A}_{c,\text{eff}} \\ & \text{A}_{s} \end{aligned}$	= = = = =	3290.7 2.6 6.123 1990 150 240000 5309	3290.7 4.2 6.123 1990 150 240000 5309	MPa mm mm mm²	momento di fessurazione check ok se >1 rapporto tra i moduli elastici altezza utile della sezione altezza area efficace calcestruzzo teso area efficace calcestruzzo teso
sezione tesa $\begin{aligned} & \text{M}_{\text{fess}} \\ & \text{FS=M}_{\text{fess}}/\text{M}_{\text{Sd}} \\ & \alpha_e \\ & \text{d} \\ & \text{h}_{c,\text{eff}} \\ & \text{A}_{c,\text{eff}} \\ & \text{A}_s \\ & \rho_{\text{eff}} \\ & \text{k}_t \\ & \epsilon_{\text{sm}} \end{aligned}$	= = = = = =	3290.7 2.6 6.123 1990 150 240000 5309 0.0221 0.4 0.00037	3290.7 4.2 6.123 1990 150 240000 5309 0.0221 0.4 0.00023	MPa mm mm mm²	momento di fessurazione check ok se >1 rapporto tra i moduli elastici altezza utile della sezione altezza area efficace calcestruzzo teso area efficace calcestruzzo teso area di armatura tesa (=0.6 per carichi di breve durata; =0.4 per carichi di lunga durata) deformazione unitaria media delle barre
sezione tesa $\begin{aligned} & \text{M}_{\text{fess}} \\ & \text{FS=M}_{\text{fess}}/\text{M}_{\text{Sd}} \\ & \alpha_e \\ & \text{d} \\ & \text{h}_{c,\text{eff}} \\ & \text{A}_{c,\text{eff}} \\ & \text{A}_s \\ & \text{Peff} \\ & \text{k}_t \end{aligned}$	= = = = = =	3290.7 2.6 6.123 1990 150 240000 5309 0.0221 0.4	3290.7 4.2 6.123 1990 150 240000 5309 0.0221 0.4 0.00023 26	MPa mm mm mm²	momento di fessurazione check ok se >1 rapporto tra i moduli elastici altezza utile della sezione altezza area efficace calcestruzzo teso area efficace calcestruzzo teso area di armatura tesa (=0.6 per carichi di breve durata; =0.4 per carichi di lunga durata) deformazione unitaria media delle barre diametro equivalente delle barre tese
sezione tesa $\begin{aligned} & \text{M}_{\text{fess}} \\ & \text{FS=M}_{\text{fess}}/\text{M}_{\text{Sd}} \\ & \alpha_e \\ & \text{d} \\ & \text{h}_{c,\text{eff}} \\ & \text{A}_{c,\text{eff}} \\ & \text{A}_s \\ & \rho_{\text{eff}} \\ & \text{k}_t \\ & \epsilon_{\text{sm}} \end{aligned}$	= = = = = = = =	3290.7 2.6 6.123 1990 150 240000 5309 0.0221 0.4 0.00037	3290.7 4.2 6.123 1990 150 240000 5309 0.0221 0.4 0.00023	MPa mm mm mm²	momento di fessurazione check ok se >1 rapporto tra i moduli elastici altezza utile della sezione altezza area efficace calcestruzzo teso area efficace calcestruzzo teso area di armatura tesa (=0.6 per carichi di breve durata; =0.4 per carichi di lunga durata) deformazione unitaria media delle barre
sezione tesa $\begin{aligned} & M_{fess} \\ & FS = M_{fess}/M_{Sd} \\ & \alpha_e \\ & d \\ & h_{c,eff} \\ & A_{c,eff} \\ & A_s \\ & \rho_{eff} \\ & k_t \\ & \epsilon_{sm} \\ & \varnothing \end{aligned}$	= = = = = = =	3290.7 2.6 6.123 1990 150 240000 5309 0.0221 0.4 0.00037 26	3290.7 4.2 6.123 1990 150 240000 5309 0.0221 0.4 0.00023 26	MPa mm mm mm²	momento di fessurazione check ok se >1 rapporto tra i moduli elastici altezza utile della sezione altezza area efficace calcestruzzo teso area efficace calcestruzzo teso area di armatura tesa (=0.6 per carichi di breve durata; =0.4 per carichi di lunga durata) deformazione unitaria media delle barre diametro equivalente delle barre tese
sezione tesa $\begin{aligned} & M_{fess} \\ & FS = M_{fess}/M_{Sd} \\ & \alpha_e \\ & d \\ & h_{c,eff} \\ & A_{c,eff} \\ & A_s \\ & \rho_{eff} \\ & k_t \\ & \epsilon_{sm} \\ & \varnothing \\ & k_1 \end{aligned}$	= = = = = = = = = = = = = = = = = = = =	3290.7 2.6 6.123 1990 150 240000 5309 0.0221 0.4 0.00037 26 0.8	3290.7 4.2 6.123 1990 150 240000 5309 0.0221 0.4 0.00023 26 0.8	MPa mm mm mm²	momento di fessurazione check ok se >1 rapporto tra i moduli elastici altezza utile della sezione altezza area efficace calcestruzzo teso area efficace calcestruzzo teso area di armatura tesa (=0.6 per carichi di breve durata; =0.4 per carichi di lunga durata) deformazione unitaria media delle barre diametro equivalente delle barre tese (=0.8 per barre ad aderenza migliorata; =1.6 per barre lisce)

Progetto Esecutivo

LLA CAT. B DEL D.M. 5.11.2001	1401110
	VI15-I
OLO CON L'A19	VIID-I
OLO OON LAND	01.000

Opera: Viadotto Arenella III
Relazione di Calcolo Impalcato - Carreggiata SX
Pagina 107
Nome file: VI15-F-
CL002 C 00 relazione calcole impaleate SV dec

k_4	=	0.425	0.425		(posto dalle NTC pari a 0.425)
С	=	47	47	mm	ricoprimento armatura
s	=	150	150	mm	distanza tra le barre
$\Delta_{\text{s,max}}$	=	359.6	359.6	mm	distanza massima tra le fessure
\mathbf{W}_{d}	=	0.134	0.082	mm	apertura di calcolo delle fessure
W_{max}	=	0.30	0.20	mm	valore limite ampiezza fessure
FS	=	2.24	2.43		check ok se >1
		ok	ok		

Taglio e Torsione 8.3

Trasverso		P01	P08	P05	P06		
Sollecitazioni		VEd,max - TEd	VEd,max - TEd	VEd - TEd,max	VEd - TEd,max		
V_{Ed}	=	4302	4860	87	3087	kN	taglio di caloclo
T_{Ed}	=	253	194	2738	2625	kN	torsione di caloclo
N_{Ed}	=	0	0	0		kN	sforzo normale i calcolo
Materiali							
Calcestruzzo							
R _{ck}	=	40	40	40	40	MPa	resistenza caratteristica cubica
f_{ck}	=	33.2	33.2	33.2	33.2	MPa	resistenza caratteristica cilindrica
$\alpha_{\rm cc}$	=	0.85	0.85	0.85	0.85		coefficiente riduttivo
γ_{c}	=	1.50	1.50	1.50	1.50		coefficiente parziale di sicurezza
f_{cd}	=	18.81	18.81	18.81	18.81	MPa	resistenza di calcolo a compressione
Acciaio							
f_{yk}	=	450	450	450	450	MPa	tensione caratteristica di snervamento
γs	=	1.15	1.15	1.15	1.15		coefficiente parziale di sicurezza
f_{yd}	=	391.30	391.30	391.30	391.30	MPa	tensione di snervamento di calcolo
Verifica capacit		_					
·		sprovvisti di arma	ŭ				
b _w	=	1600	1600	1600	1600	mm	larghezza minima sezione
d		1930	1930	1930	1930	mm	altezza utile
Ø _w n	=	14 24	14 24	14 24	14 24	mm	diametro ferri long. tesi numero
A _{sl}	=	3695	3695	3695	3695	mm²	armatura longitudinale
A _c	=	3280000	3280000	3280000	3280000	mm ²	area sezione cls
k	=	1.32	1.32	1.32	1.32		area sezione dis
$\sigma_{\sf cp}$	=	0.0000	0.0000	0.0000	0.0000	MPa	tensione media calcestruzzo <=0,2f _{cd}
$ ho_1$	=	0.00120	0.00120	0.00120	0.00120		rapporto geometrico di armatura long.
V _{min}	=	0.307	0.307	0.307	0.307		
V _{Rd}	=	946.49	946.49	946.49	946.49	kN	taglio resistente
V_{Ed}	=	4302	4859.62	86.66	3087	kN	taglio di caloclo
FS		0.22	0.19	10.92	0.31		se >1 verifica soddisfatta
		no	no	ok	no		

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata SX Pagina 108

Nome file: VI15-F-

Verifica per ele	ementi p	rovvisti di armat	ura a taglio				
\emptyset_{w}	=	14	14	14	14	mm	diametro armatura resistente a taglio
α	=	90.00	90.00	90.00	90.00	0	angolo di inclinazione armatura trasversale
S	=	150.00	150.00	150.00	150.00	mm	passo staffe
n_{br}	=	4.0	4.0	4.0	4.0		numero bracci armatura trasversale
A_{sw}	=	615.75	615.75	615.75	615.75	mmq	area armatura trasversale
b_{w}	=	1600.00	1600.00	1600.00	1600.00	mm	larghezza minima sezione
f_{cd}	=	18.81	18.81	18.81	18.81	MPa	
ν	=	0.5	0.5	0.5	0.5		coeff. di riduzione f_{cd}
f' _{cd}	=	9.41	9.41	9.41	9.41	MPa	resistenza a compressione del cls ridotta
ω_{sw}	=	0.05336	0.05336	0.05336	0.05336		% meccanica di armatura trasversale
α c	=	1.00000	1.00000	1.00000	1.00000		
cot⊚	=	2.50	2.50	1.20	1.20		check 1≤cot⊕*≤2,5
V_{Rsd}	=	6975.4011	6975.4011	3348.1925	3348.1925	kN	Resistenza "taglio trazione"
V_{Rcd}	=	9014.8303	9014.8303	12857.2170	12857.2170	kN	Resistenza "taglio compressione"
V_{Rd}	=	6975.4011	6975.4011	3348.1925	3348.1925	kN	Resistenza a taglio
V_{Ed}	=	4302	4859.62	86.66	3087	kN	taglio di caloclo
FS	=	1.62	1.44	38.64	1.08		se >1 verifica soddisfatta
Calcala dalla	Poinito	ok nza a Torsione	ok	ok	ok		
		14	14	14	14	mm	diametro armatura registante a taglia
$\mathbf{\mathcal{O}}_{w}$	=		14			mm 。	diametro armatura resistente a taglio
S	=	90.00 150	90.00 150	90.00 150	90.00 150	mm	angolo di inclinazione armatura trasversale passo staffe
n _{br}	=	2	2	2	2		numero bracci armatura trasversale
A _s	=	307.88	307.88	307.88	307.88	mmq	area armatura trasversale
A _s /s	=	2.05	2.05	2.05	2.05	mmq/mm	
ΣA_{l}	=	13804	13804	13804	13804	mmq	area complessiva barre longitudinali
A _c	=	3.28E+06	3.28E+06	3.28E+06	3.28E+06	mmq	area sezione
u	=	7300.00	7300.00	7300.00	7300.00	mm	perimetro della sezione
t	=	449	449	449.3	449.3	mm	spessore sezione cava
Ω	=	1.84E+06	1.84E+06	1.84E+06	1.84E+06	mmq	area racchiusa dalla fibra media
u _m	=	5503	5503	5503	5503	mm	perimetro medio del nucleo resistente
ω_{sw}	=	0.10	0.10	0.10	0.10		% meccanica di armatura trasversale
ω_{sl}	=	0.12	0.12	0.12	0.12		% meccanica di armatura longitudinale
ν	=	0.5	0.5	0.5	0.5		coeff. di riduzione f_{cd}
f' _{cd}	=	9.41	9.41	9.41	9.41	MPa	resistenza a compressione del cls ridotta
$\sigma_{\sf cp}$	=	0.000	0.000	0.000	0.000	MPa	tensione media calcestruzzo <=0,2f _{cd}
α c	=	1.0000	1.0000	1.0000	1.0000		
cot⊙	=	2.50	2.50	1.20	1.20		Valore di calcolo (0.4≤cot⊕*≤2,5)
T_Rcd	=	5368.85	5368.85	7657.21	7657.21	kNm	resistenza offerta dal calcestruzzo
T_Rsd	=	7396.59	7396.59	3550.36	3550.36	kNm	resistenza offerta dall'armatura trasversale
T_Rld	=	1446.43	1446.43	3013.40	3013.40	kNm	resistenza offerta dall'armatura longitudinale
T _{Rd}	=	1446.43	1446.43	3013.40	3013.40	kNm	Resistenza a torsione

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella	Ш	
--------------------------	---	--

Relazione di Calcolo Impalcato - Carreggiata SX Pagina 109

Nome file: VI15-F-

	T_{Sd}	=	253	193.5	2738	2625	kN	Torsione di caloclo
	FS	=	5.72	7.48	1.10	1.15		
			ok	ok	ok	ok		
	Verifica interazio	ne Ta	glio - Torsione					
ı	Sollecitazioni							
	cot@	=	2.500	2.500	1.200	1.200		valore di calcolo
	V_{Ed}	=	4302	4859.62	86.66	3087	kN	taglio di caloclo
	T_{Ed}	=	253	193.5	2738	2625	kN	torsione di caloclo
	Reistenze							
	V_{Rcd}	=	9014.83	9014.83	12857.22	12857.22	kN	Resistenza a taglio lato cls
	T_Rcd	=	5368.85	5368.85	7657.21	7657.21	kNm	Resistenza a torsione lato cls
	Verifica						_	
	$T_{Ed}/T_{Rcd}+V_{Ed}/V_{Rcd}$	=	0.52	0.58	0.36	0.58		se <1 verifica soddisfatta
			ok	ok	ok	ok		

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata SX

Pagina 110

Nome file:
VI15-FCL002_C.00_relazione_calcolo_impalcato_SX.doc.

9. VERIFICA TRASVERSALE DELLA SOLETTA

9.1 Modello locale e condizioni di carico

Per il calcolo statico della soletta è stato redatto un modello numerico considerando una porzione di impalcato lungo 10 m, ed una larghezza totale rappresentativa della prima campata, con larghezza di 13.50 m. All'interfaccia soletta-travi principali viene introdotto un vincolo di cerniera. I carichi introdotti nel modello sono:

- il peso proprio della soletta (PP)
- i permanenti portati (PERM)
- i carichi da traffico dello schema LM1 ed LM2, posizionati in base alle superfici di influenza che determinano i momenti flettenti massimi e minimi in mezzeria dei vari campi centrali ed in prossimità dello sbalzo.

Le suddette condizioni di carico elementari sono state combinate con i coefficienti riportati nei paragrafi precedenti, per il calcolo delle sollecitazioni di progetto di Stato limite ultimo e di esercizio.

E' stato redatto anche un secondo modello locale relativo alla zona di soletta a sbalzo posta in prossimità della spalla A, dove in corrispondenza del traverso la parte a sbalzo presenta una profondità maggiore. La sezione trasversale verificata è una striscia di larghezza unitaria e di altezza 250 mm. Si utilizzano 2 tipologie di armatura:

φ20/200 sup, φ20/200 infφ20/100 sup, φ20/200 infper 5 m dal filo traverso della spalla A. (TIPO 2)

9.2 Sollecitazioni di calcolo allo SLU e allo SLE

Le sollecitazioni, agenti nelle sezioni in asse alle travi longitudinali ed in mezzeria, sono riassunte nella tabella seguente.

		Impalc. Corrente	Zona spalla	
		My/Sy	My / Sy	
	App., Mmax	86.64	200	kNm
	Mezz., Mmin	-32.59		kNm
SLU	Mezz., Mmax	22.26		kNm
	App, Vmax	261	329	kN
	Mezz, Vmax	226		kN
	App., Mmax	64.18	148.4	kNm
SLE c.	Mezz., Mmin	-24.14		kNm
	Mezz., Mmax	16.36		kNm
	App., Mmax	52.66	119.1	kNm
SLE f.	Mezz., Mmin	-17.72		kNm
	Mezz., Mmax	12.02		kNm

Progetto Esecutivo

Relazione di Calcolo Impalcato - Carreggiata SX Pagina 111

Opera: Viadotto Arenella III

Nome file:

VI15-F-

 ${\tt CL002_C.00_relazione_calcolo_impalcato_SX.doc}.$

9.3 Verifiche a SLU e SLE per flessione. Armatura TIPO 1.

DATI GENERALI SEZIONE IN C.A. NOME SEZIONE: Soletta Corrente

(Percorso File: C:\LUSAS145\Projects\Favarella\modelli\Soletta_Corrente.sez)

Descrizione Sezione: Soletta corrente

Metodo di calcolo resistenza: Stati Limite Ultimi Normativa di riferimento: N.T.C. Tipologia sezione: Sezione predefinita Forma della sezione: Rettangolare Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Poco aggressive Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Zona non sismica Posizione sezione nell'asta: In zona critica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CONGLOMERATO -Classe: C32/40

Resis. compr. di calcolo fcd : 188.00 daN/cm² Resis. compr. ridotta fcd': 94.00 daN/cm² Def.unit. max resistenza ec2 : 0.0020

Def.unit. ultima ecu: 0.0035

Diagramma tensione-deformaz. : Parabola-Rettangolo Modulo Elastico Normale Ec : 336430 daN/cm²

Coeff. di Poisson 0.20

31.00 daN/cm² Resis. media a trazione fctm:

Coeff. Omogen. S.L.E. : 15.0

Combinazioni Rare in Esercizio

Sc Limite : 199.20 daN/cm² Apert.Fess.Limite : Non prevista

Combinazioni Frequenti in Esercizio

Sc Limite : 199.20 daN/cm² Apert.Fess.Limite : 0.200 mm

ACCIAIO Tipo: B450C

Resist. caratt. snervam. fyk: 4500.0 daN/cm² 4500.0 daN/cm² Resist. caratt. rottura ftk: Resist. snerv. di calcolo fyd: 3913.0 daN/cm² Resist. ultima di calcolo ftd: 3913.0 daN/cm² Deform. ultima di calcolo Epu: 0.068 Modulo Elastico 2000000 daN/cm² Ef : Diagramma tensione-deformaz. : Bilineare finito 1.00 daN/cm² Coeff. Aderenza ist. £1*£2: Coeff. Aderenza diff. ß1*ß2: 0.50 daN/cm² Comb.Rare Sf Limite : 3600.0 daN/cm²

CARATTERISTICHE GEOMETRICHE ED ARMATURE SEZIONE

100.0 cm Base: 25.0 cm Altezza:

 $5020 (15.7 \text{ cm}^2)$ Barre inferiori $5020 (15.7 \text{ cm}^2)$ Barre superiori

Copriferro barre inf.(dal baric. barre) : 6.0 cm Copriferro barre sup.(dal baric. barre) : 3.5 cm

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [daN] applicato nel baricentro (posit. se di compress.) N Coppia concentrata in daNm applicata all'asse \boldsymbol{x} baric. della sezione Mx con verso positivo se tale da comprimere il lembo sup. della sezione Taglio [daN] in direzione parallela all'asse y baric. della sezione Vν

N.Comb.	N	Mx	Vy	MT
1	0	-8664	10	0
2	0	3259	10	0

DAL KM 44+000 ALLO SVINCOLO CON L'A19 CL002_C.00_relazione_calcolo_impalcato_SX.doc.

Progetto Esecutivo

Opera: Viadotto Arenella III Relazione di Calcolo Impalcato - Carreggiata SX Pagina 112 Nome file: VI15-F-

N	Sforzo normale [daN] applicato nel baricentro (positivo se di compress.)
Mx	Coppia concentrata in daNm applicata all'asse x baricenrico della sezione
	con verso positivo se tale da comprimere il lembo superiore della sezione
My	Coppia concentrata in daNm applicata all'asse y baricentrico della sezione
	con verso positivo se tale da comprimere il lembo destro della sezione

N.Comb.	N	Mx
1	0	-6418
2	0	2414

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [daN] applicato nel baricentro (positivo se di compress.)
Mx	Coppia concentrata in daNm applicata all'asse x baricenrico della sezione
	con verso positivo se tale da comprimere il lembo superiore della sezione
My	Coppia concentrata in daNm applicata all'asse y baricentrico della sezione
	con verso positivo se tale da comprimere il lembo destro della sezione

N.Comb.	N	Mx
1	0	-5266
2	0	1772

RISULTATI DEL CALCOLO

Copriferro netto minimo barre longitudinali: 2.5 cm Interferro netto minimo barre longitudinali: 13.5 cm Copriferro netto minimo staffe: 1.7 cm

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

Ver	S = combinazione verificata / N = combin. non verificata
N	Sforzo normale assegnato [in daN] (positivo se di compressione)
Mx	Momento flettente assegnato [in daNm] riferito all'asse x baricentrico
N ult	Sforzo normale ultimo [in daN] nella sezione (positivo se di compress.)
Mx ult	Momento flettente ultimo [in daNm] riferito all'asse x baricentrico
Mis.Sic.	Misura sicurezza = rapporto vettoriale tra (N ult,Mx ult) e (N,Mx)
	Verifica positiva se tale rapporto risulta >=1.000
Yneutro	Ordinata [in cm] dell'asse neutro a rottura nel sistema di rif. X,Y,O sez.
x/d	Rapp. di duttilità a rottura misurato in presenza di sola flessione (travi)
C.Rid.	Coeff. di riduz. momenti per sola flessione in travi continue
	Area efficace barre inf. (per presenza di torsione)= 15.7 cm²
	Area efficace barre sup. (per presenza di torsione)= 15.7 cm²

N.Comb.	Ver	N	Mx	N ult	Mx ult	Mis.Sic.	Yneutro	x/d	C.Rid.
1	S	0	-8664	18	-12558	1.449	5.2	0.24	0.74
2	S	0	3259	-28	10626	3.261	21.3	0.19	0.70

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
ec 3/7	Deform. unit. del conglomerato nella fibra a 3/7 dell'altezza efficace
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
ef min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Yf min	Ordinata in cm della barra corrisp. a ef min (sistema rif. X,Y,O sez.)
ef max	Deform. unit. massima nell'acciaio (positiva se di compressione)
Yf max	Ordinata in cm della barra corrisp. a ef max (sistema rif. X,Y,O sez.)
N.Comb.	ec max ec 3/7 Yc max ef min Yf min ef max Yf max

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata SX

Pagina 113

Nome file:

VI15-F-

 ${\tt CL002_C.00_relazione_calcolo_impalcato_SX.doc.}$

Ver Sc max Yc max Sc min Yc min Sf min Yf min Dw Eff. Ac eff. Af eff. D barre	Massima te Ordinata i Minima ten Ordinata i Minima ten Ordinata i Spessore d Area di co Area Barre Distanza m	ensione di con cm della sione di con cm della sione di ton cm della in cm della il conglome: cmgl. [cm²] e tese di acedia in cm	compress fibra compress fibra crazione barra crato [crato craio craio tra le	s.(+) nel corrisp. .(+) nel corrisp. (-) nell corrisp. m] in zon a tesa ac [cm²] ric barre te	l conglor a Sc max conglom a Sc mix l'acciaic a Sf mix na tesa c derente a cadente r ese effic	n (sistema n considerata alle barre nell'area ei caci (verifi	fessurata rif. X,Y, essurata rif. X,Y, rif. X,Y, aderente (verifica fficace(verificates) ica fess	,0) ([daN ,0) ,0) e alle a fess verifi	[/cm²] e barre s.) ca fess.)
N.Comb. Ver Sc	c max Yc ma	x Sc min	Yc min	Sf min	Yf min	Dw Eff. Ac	eff. Af	eff. 	Dbarre
1 S	80.4 0.	0.0	0.0	-2201	6.0	17.5	870	15.7	22.0
2 S	33.2 25.	0.0	25.0	-933	21.5	20.0	919	15.7	22.0
COMBINAZIONI RARE	IN ESERCIZI	O - VERI	FICA API	ERTURA FI	ESSURE				
ScImax ScI_min Sc Eff K3 Beta12 Eps	Minima ten Tensione a Coeff. di Prodotto d Deformazio	sione nel	conglome ello spe = 0,25 di adere	erato nel essore e (Scmin + enza Beta	llo STATO fficace n ScEff)/ al*Beta2	FO I non fessonello STATO	surato [d	daN/cm	-
Srm Ap.fess.		nedia in mm Nelle fessu:		fessure					
	Apertura d		re in m	fessure		Eps	Srm	Ap.	Fess.
Ap.fess.	Apertura d	ScImin Sc	re in m	fessure m = 1,7*I K3	Eps*Srm		Srm 1		Fess. 0.170
Ap.fess.	Apertura d	ScImin Sc 	re in m	fessure m = 1,7*I K3	Eps*Srm Beta12				
Ap.fess. N.Comb. Ver	Apertura d ScImax 51.2 18.7	ScImin Sc -49.6	Eff 0.0 0.0	fessure m = 1,7*H K3 0.125 0.125	Eps*Srm Beta12 1.0 1.0	0.000671 0.000187	149		0.170
Ap.fess. N.Comb. Ver 1 S 2 S	Apertura d ScImax 51.2 18.7 JENTI IN ESE	ScImin Sc -49.6 -19.3	Eff 0.0 0.0 VERIFIC	fessure m = 1,7*I K3 0.125 0.125 CA MASSIN	Eps*Srm Beta12 1.0 1.0	0.000671 0.000187 DNI NORMALI	149 203	- -	0.170 0.064
Ap.fess. N.Comb. Ver 1 S 2 S COMBINAZIONI FREQUE N.Comb. Ver So	ScImax 51.2 18.7 JENTI IN ESE	ScImin Sc -49.6 -19.3 CRCIZIO -	Eff 0.0 0.0 VERIFIC YC min	fessure m = 1,7*F K3 0.125 0.125 CA MASSIN	Eps*Srm Beta12 1.0 1.0 ME TENSION Yf min	0.000671 0.000187 DNI NORMALI Dw Eff. Ac	149 203 eff. Af	eff.	0.170 0.064 Dbarre
Ap.fess. N.Comb. Ver 1 S 2 S COMBINAZIONI FREQUE	Apertura d ScImax 51.2 18.7 JENTI IN ESE	ScImin Sc -49.6 -19.3 RCIZIO - EX Sc min 0 0.0	Eff 0.0 0.0 VERIFIC	fessure m = 1,7*F K3 0.125 0.125 CA MASSIN Sf min -1806	Eps*Srm Beta12 1.0 1.0 1.0 ME TENSIO Yf min 6.0	0.000671 0.000187 DNI NORMALI Dw Eff. Ac	149 203	- -	0.170 0.064 Dbarre
Ap.fess. N.Comb. Ver 1 S 2 S COMBINAZIONI FREQUE N.Comb. Ver So 1 S	Apertura d	ScImin Sc -49.6 -19.3 CRCIZIO - EX Sc min 0 0.0 0 0.0	Eff 0.0 0.0 VERIFIC YC min 0.0 25.0	fessure m = 1,7*I K3 0.125 0.125 CA MASSIN -1806 -685	Eps*Srm Beta12 1.0 1.0 ME TENSI Yf min 6.0 21.5	0.000671 0.000187 DNI NORMALI Dw Eff. Ac 8.7 9.2	149 203 eff. Af	eff.	0.170 0.064 Dbarre
Ap.fess. N.Comb. Ver 1 S 2 S COMBINAZIONI FREQUENT N.Comb. Ver Schools 1 S 2 S	Apertura d	ScImin Sc -49.6 -19.3 CRCIZIO - EX Sc min 0 0.0 0 0.0	Eff 0.0 0.0 VERIFIC 10.0 VERIFIC 10.0 VERIFIC	fessure m = 1,7*I K3 0.125 0.125 CA MASSIN -1806 -685	Eps*Srm Beta12 1.0 1.0 ME TENSI Yf min 6.0 21.5	0.000671 0.000187 DNI NORMALI Dw Eff. Ac 8.7 9.2	149 203 eff. Af	eff. 15.7 15.7	0.170 0.064 Dbarre
Ap.fess. N.Comb. Ver 1 S 2 S COMBINAZIONI FREQUE N.Comb. Ver Sc 1 S 2 S COMBINAZIONI FREQUE 1 S 2 S	Apertura of ScImax 51.2 18.7 JENTI IN ESE 2 max Yc ma 65.9 24.4 25. JENTI IN ESE ScImax	ScImin Sc -49.6 -19.3 CRCIZIO - EX Sc min 0 0.0 0 0.0 CRCIZIO -	Eff 0.0 0.0 VERIFIC YC min 0.0 25.0 VERIFIC	fessure m = 1,7*I K3 0.125 0.125 CA MASSIN Sf min -1806 -685 CA APERTO K3	### PESST	0.000671 0.000187 ONI NORMALI DW Eff. Ac 8.7 9.2	149 203 eff. Af 870 919	eff. 15.7 15.7	0.170 0.064 Dbarre 22.0 22.0

9.4 Verifiche a SLU e SLE per flessione. Armatura TIPO 2.

DATI GENERALI SEZIONE IN C.A. NOME SEZIONE: SolettaSpalla

 $(Percorso\ File:\ C: \LUSAS145 \backslash Projects \backslash Favarella \backslash modelli \backslash SolettaSpalla.sez)$

Descrizione Sezione: Soletta prima campata. Sbalzo. Metodo di calcolo resistenza: Stati Limite Ultimi Normativa di riferimento: N.T.C. Tipologia sezione: Sezione predefinita Forma della sezione: Rettangolare Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Poco aggressive Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Zona non sismica Posizione sezione nell'asta: In zona critica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CONGLOMERATO - Classe: C32/40

Resis. compr. di calcolo fcd : 188.00 daN/cm^2

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

```
Opera: Viadotto Arenella III
```

Relazione di Calcolo Impalcato - Carreggiata SX

Pagina 114

Nome file: VI15-F-

 ${\tt CL002_C.00_relazione_calcolo_impalcato_SX.doc.}$

```
Resis. compr. ridotta fcd': 94.00 daN/cm²
Def.unit. max resistenza ec2: 0.0020
Def.unit. ultima ecu: 0.0035
```

Diagramma tensione-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 336430 daN/cm²
Coeff. di Poisson: 0.20
Resis. media a trazione fctm: 31.00 daN/cm²

Coeff. Omogen. S.L.E. : 15.0

Combinazioni Rare in Esercizio

Sc Limite: 199.20 daN/cm²
Apert.Fess.Limite: Non prevista

Combinazioni Frequenti in Esercizio

Sc Limite : 199.20 daN/cm² Apert.Fess.Limite : 0.200 mm

ACCIAIO - Tipo: B450C

Resist. caratt. snervam. fyk: 4500.0 daN/cm²
Resist. caratt. rottura ftk: 4500.0 daN/cm²
Resist. snerv. di calcolo fyd: 3913.0 daN/cm²
Resist. ultima di calcolo ftd: 3913.0 daN/cm²
Deform. ultima di calcolo Epu: 0.068
Modulo Elastico Ef : 2000000 daN/cm²

Modulo Elastico Ef : 2000000 daN/cm²
Diagramma tensione-deformaz. : Bilineare finito
Coeff. Aderenza ist. £1*£2 : 1.00 daN/cm²
Coeff. Aderenza diff. £1*£2 : 0.50 daN/cm²
Comb.Rare Sf Limite : 3600.0 daN/cm²

CARATTERISTICHE GEOMETRICHE ED ARMATURE SEZIONE

Base: 100.0 cm Altezza: 25.0 cm

Barre inferiori : $5020 (15.7 \text{ cm}^2)$ Barre superiori : $10020 (31.4 \text{ cm}^2)$

Copriferro barre inf.(dal baric. barre) : 6.5 cm Copriferro barre sup.(dal baric. barre) : 3.5 cm

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [daN] applicato nel baricentro (posit. se di compress.)
Mx Coppia concentrata in daNm applicata all'asse x baric. della sezione
con verso positivo se tale da comprimere il lembo sup. della sezione
Vy Taglio [daN] in direzione parallela all'asse y baric. della sezione

N.Comb.	N	Mx	Vy	MT
1	0	-20000	10	0

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [daN] applicato nel baricentro (positivo se di compress.)
Mx Coppia concentrata in daNm applicata all'asse x baricenrico della sezione
con verso positivo se tale da comprimere il lembo superiore della sezione
My Coppia concentrata in daNm applicata all'asse y baricentrico della sezione
con verso positivo se tale da comprimere il lembo destro della sezione

N.Comb.	N	Mx
1	0	-14837

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [daN] applicato nel baricentro (positivo se di compress.)

Mx Coppia concentrata in daNm applicata all'asse x baricenrico della sezione
con verso positivo se tale da comprimere il lembo superiore della sezione

My Coppia concentrata in daNm applicata all'asse y baricentrico della sezione
con verso positivo se tale da comprimere il lembo destro della sezione

N.Comb.	N	Mx		
1	Ο	-11910		

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata SX

Pagina 115

Nome file: VI15-F-

 ${\tt CL002_C.00_relazione_calcolo_impalcato_SX.doc}.$

RISULTATI DEL CALCOLO

Copriferro netto minimo barre longitudinali: 2.5 cm $\,$ Interferro netto minimo barre longitudinali: 8.3 cm Copriferro netto minimo staffe: 1.7 cm

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

Ver	S = combinazione verificata / N = combin. non verificata								
N	Sforzo normale assegnato [in daN] (positivo se di compressione)								
Mx	Momento flettente assegnato [in daNm] riferito all'asse x baricentrico								
N ult	Sforzo normale ultimo [in daN] nella sezione (positivo se di compress.)								
Mx ult	Momento flettente ultimo [in daNm] riferito all'asse x baricentrico								
Mis.Sic.	Misura sicurezza = rapporto vettoriale tra (N ult,Mx ult) e (N,Mx)								
	Verifica positiva se tale rapporto risulta >=1.000								
Yneutro	Ordinata [in cm] dell'asse neutro a rottura nel sistema di rif. X,Y,O sez.								
x/d	Rapp. di duttilità a rottura misurato in presenza di sola flessione (travi)								
C.Rid.	Coeff. di riduz. momenti per sola flessione in travi continue								
	Area efficace barre inf. (per presenza di torsione)= 15.7 cm²								
	Area efficace barre sup. (per presenza di torsione)= 31.4 cm²								
1.Comb. Ver	N Mx N ult Mx ult Mis.Sic. Yneutro x/d C.Rid.								

N.Comb.	Ver	N	Mx	N ult	Mx ult	Mis.Sic.	Yneutro	x/d	C.Rid.
1	S	0	-20000	19	-22287	1.114	7.3	0.34	0.86

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	De	form. unit.	massima d	el conglom	erato a co	mpressione		
ec 3/7	De	Deform. unit. del conglomerato nella fibra a 3/7 dell'altezza efficace						
Yc max	Or	dinata in c	m della fi	bra corris	p. a ec ma	x (sistema	rif. X,Y,O s	sez.)
ef min	De	form. unit.	minima ne	ll'acciaio	(negativa	se di tra	zione)	
Yf min	Or	Ordinata in cm della barra corrisp. a ef min (sistema rif. X,Y,O sez.)						
ef max	De	Deform. unit. massima nell'acciaio (positiva se di compressione)						
Yf max	Or	Ordinata in cm della barra corrisp. a ef max (sistema rif. X,Y,O sez.)						
N.Comb.	ec max	ec 3/7	Yc max	ef min	Yf min	ef max	Yf max	
1	0.00350	-0.00164	0.0	0.00038	6.5	-0.00681	21.5	

COMBINAZIONI RARE IN ESERCIZIO - VERIFICA MASSIME TENSIONI NORMALI

```
S = combinazione verificata / N = combin. non verificata
              Massima tensione di compress.(+) nel conglom. in fase fessurata ([daN/cm^2]
 Sc max
 Yc max
              Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)
  Sc min
             Minima tensione di compress.(+) nel conglom. in fase fessurata ([daN/cm²]
  Yc min
              Ordinata in cm della fibra corrisp. a Sc min (sistema rif. X,Y,O)
              Minima tensione di trazione (-) nell'acciaio [daN/cm²]
 Sf min
 Yf min
              Ordinata in cm della barra corrisp. a Sf min (sistema rif. X,Y,O)
 Dw Eff.
              Spessore di conglomerato [cm] in zona tesa considerata aderente alle barre
             Area di congl. [cm²] in zona tesa aderente alle barre (verifica fess.)
 Ac eff.
 Af eff.
              Area Barre tese di acciaio [cm²] ricadente nell'area efficace(verifica fess.)
              Distanza media in cm tra le barre tese efficaci (verifica fess.)
 D barre
N.Comb. Ver Sc max Yc max Sc min Yc min Sf min Yf min Dw Eff. Ac eff. Af eff. Dbarre
```

S 147.2 0.0 0.0 -2654 6.5 17.5 762 31.4 9.7 0.0

COMBINAZIONI RARE IN ESERCIZIO - VERIFICA APERTURA FESSURE

Ver ScImax	S = combinazione verificata / N = combin. non verificata Massima tensione nel conqlomerato nello STATO I non fessurato [daN/cm²]
ScI_min	Minima tensione nel conglomerato nello STATO I non fessurato [daN/cm²]
Sc Eff	Tensione al limite dello spessore efficace nello STATO I [daN/cm²]
K3	Coeff. di normativa = 0,25 (Scmin + ScEff)/(2 Scmin)
Beta12	Prodotto dei Coeff. di aderenza Betal*Beta2
Eps	Deformazione unitaria media tra le fessure
Srm	Distanza media in mm tra le fessure
Ap.fess.	Apertura delle fessure in mm = 1,7*Eps*Srm

Nome file: VI15-F-

CL002_C.00_relazione_calcolo_impalcato_SX.doc.

Relazione di Calcolo Impalcato - Carreggiata SX Pagina 116

Opera: Viadotto Arenella III

Progetto Esecutivo

	N.Comb.	Ver	ScImax	ScImin	Sc	Eff	К3	Beta12	Eps	Srm	Ap.Fess.
	1	S	113.9	-98.9		0.0	0.125	1.0	0.001196	94	0.190
COME	BINAZIONI	FREQUE	NTI IN E	ESERCIZIO	-	VERIFI	CA MASSI	ME TENSIO	NI NORMALI		
	N.Comb.	Ver Sc	max Yc	max Sc m	in	Yc min	Sf min	Yf min	Dw Eff. Ac	eff. Af	eff. Dbarre
	1	s 11	.8.1	0.0 0	. 0	0.0	-2130	6.5	7.6	762	31.4 9.7
COME	BINAZIONI	FREQUE	NTI IN E	ESERCIZIO	-	VERIFI	CA APERT	URA FESSU	RE		
	N.Comb.	Ver	ScImax	ScImin	Sc	Eff	К3	Beta12	Eps	Srm	Ap.Fess.
	1	s	91.4	-79.4		27.3	0.168	0.5	0.000984	102	0.170

44+000 ALLO SVINCOLO C Progetto Esecutivo

Opera: Viadotto Arenella III
Relazione di Calcolo Impalcato - Carreggiata SX
Pagina 117
Nome file: VI15-F-

CL002 C.00 relazione calcolo impalcato SX.doc.

9.5 Verifica a taglio

La verifica a taglio è riportata nei paragrafi seguenti.

$$V_{sd} = 329.00 \text{ kN} \\ f_{yd} = 391.3 \text{ N/mm}^2 \\ f_{ck} = 33.2 \text{ N/mm}^2 \quad \text{C}32/40 \\ f_{cd} = 18.81 \text{ N/mm}^2 \\ f_{cd} = 9.41 \text{ N/mm}^4 \\ \text{Cot } \theta = 2.50 \quad 1 \leq \text{ctg } \theta \leq 2.5 \\ \text{d} = 160 \text{ mm} \quad \text{altezza utile minima} \\ \text{b}_c = 1000 \text{ mm} \quad \text{Base sezione} \\ \phi_w = 8 \text{ mm} \\ \alpha = 45 \\ \text{n bracci} = 5 \\ \text{s} = 92.5 \text{ mm} \\ A_{sw} = 251 \text{ mm}^4 \\ A_{sw}/\text{s} = 2.717 \text{ mm}^4/\text{mm} \\ \alpha_c = 1 \text{ membrature non compresse} \\ \phi_l = 20 \text{ mm} \\ \text{n ferri long. tesi} = 5 \\ A_{sl} = 1570.8 \text{ mm}^4 \\ \rho_l = A_{sl} / (b_w \text{ d}) = 0.010 \\ \text{k} = 1 + (200/\text{d})^{1/2} = 2.00 \\ \sigma_{cp} = 0 \text{ N/mm}^2 \\ V_{min} = 0.035 \text{ k}^{3/2} f_{ck}^{-1/2} = 0.57 \text{ N/mm}^2 \\ V_{Rdmin} = (v_{min} + 0.15 \sigma_{cp}) \text{ b}_w \text{ d} = 91.26 \text{ kN} \\ V_{Rd} = \{0.18 \text{ k } (100 \rho_l f_{ck})^{1/3} + \sigma_{cp}\} \text{ b}_w \text{ d} >= V_{Rdmin} \\ V_{Rsd} = 0.9 \text{ d} \text{ b}_{sw} / \text{s} f_{vd} (\cot \alpha + \cot \theta) / (1 + \cot^2 \theta) = 653.93 \text{ kN} \\ V_{Rd} = \min(V_{Rcd}, V_{Rsd}) = 378.90 \text{ kN} \\ V_{Rd} = \min(V_{Rcd}, V_{Rsd}) = 378.90 \text{ kN} \\ V_{Rd} = \min(V_{Rcd}, V_{Rsd}) = 378.90 \text{ kN} \\ V_{Rd} = \min(V_{Rcd}, V_{Rsd}) = 378.90 \text{ kN} \\ V_{Rd} = \min(V_{Rcd}, V_{Rsd}) = 378.90 \text{ kN} \\ V_{Rd} = \min(V_{Rcd}, V_{Rsd}) = 378.90 \text{ kN} \\ V_{Rd} = \min(V_{Rcd}, V_{Rsd}) = 378.90 \text{ kN} \\ V_{Rd} = \min(V_{Rcd}, V_{Rsd}) = 378.90 \text{ kN} \\ V_{Rd} = \min(V_{Rcd}, V_{Rsd}) = 378.90 \text{ kN} \\ V_{Rd} = \min(V_{Rcd}, V_{Rsd}) = 378.90 \text{ kN} \\ V_{Rd} = \min(V_{Rcd}, V_{Rsd}) = 378.90 \text{ kN} \\ V_{Rd} = \min(V_{Rcd}, V_{Rsd}) = 378.90 \text{ kN} \\ V_{Rd} = \min(V_{Rcd}, V_{Rsd}) = 378.90 \text{ kN} \\ V_{Rd} = \min(V_{Rcd}, V_{Rsd}) = 378.90 \text{ kN} \\ V_{Rd} = \min(V_{Rcd}, V_{Rsd}) = 378.90 \text{ kN} \\ V_{Rd} = \min(V_{Rcd}, V_{Rsd}) = 378.90 \text{ kN} \\ V_{Rd} = 10.90 \text{ km} + 10.10 \text{ k$$