

ANAS S.p.A.

anas Direzione Progettazione e Realizzazione Lavori

S.S. N. 9 "VIA EMILIA" VARIANTE DI CASALPUSTERLENGO ED ELIMINAZIONE PASSAGGIO A LIVELLO SULLA S.P. EX S.S. N.234

PROGETTO ESECUTIVO

HO05

CV01 - CAVALCAVIA STRADA VICINALE DELLE COSTE

RELAZIONE DI CALCOLO GEOTECNICA - PALI DI FONDAZIONE

CODICE PR	OGETTO	NOME FILE		REVISIONE	SCALA:	
PROGETTO	LIV. PROG. N. PROG.	HO05-S07CV01STRRE05_A.	dwg	NEVISIONE	SCALA:	
COMI	E 1701	CODICE S 0 7 C V 0 1	5 B			
D						
С						
В	EMISSIONE A SEGUITO DI IST	TRUTTORIA	LUGLIO 2018	ING. NICOLA LIGAS	PROF. ING. LUIGI MONTERISI	ING. VALERIO BAJETTI
Α	EMISSIONE		DICEMBRE 2017	ING. NICOLA LIGAS	PROF. ING. LUIGI MONTERISI	ING. VALERIO BAJETTI
REV.	DESCRIZIONE		DATA	REDATTO	VERIFICATO	APPROVATO

SOMMARIO

1	PRI	EMESSA	2
2	NO	RMATIVA	2
3	MA	TERIALI	2
	3.1	Calcestruzzo pali	2
	3.2	Armature ordinarie c.a.	3
	3.3	Caratteristiche di durabilità e copriferri	3
4	CAI	RATTERISTICHE GEOTECNICHE	3
5	GE	NERALITÀ SULLE VERIFICHE GEOTECNICHE E STRUTTURALI DEI PALI	5
	5.1	Verifiche di resistenza assiale (verticale)	5
	5.2	Verifiche di resistenza ai carichi trasversali (orizzontali)	8
	5.3	Verifiche di deformazione	9
6	PAI	_I SPALLE	9
	6.1	Sollecitazioni di progetto alla testa dei pali	9
	6.2	Calcolo delle caratteristiche di sollecitazione e deformazione del palo	10
	6.3	Verifica dei pali soggetti a carico verticale	15
	6.4	Pali soggetti a carico orizzontale - Verifica di resistenza del terreno	15
	6.5	Verifiche di deformazione palo	17
	6.6	Verifiche strutturali palo	
	6.6		
	6.6		
	6.6	'	
	6.6	4 Verifiche di fessurazione – Combinazioni quasi permanenti	18
	6.6		
7		_I PILE	
	7.1	Sollecitazioni di progetto alla testa dei pali	
	7.2	Calcolo delle caratteristiche di sollecitazione e deformazione del palo	
	7.3	Verifica dei pali soggetti a carico verticale	
	7.4	Pali soggetti a carico orizzontale - Verifica di resistenza del terreno	
	7.5	Verifiche strutturali palo	
	7.5.		
	7.5		
	7.5		
	7.5.	4 Tabulato di calcolo	36

PREMESSA

La presente relazione riporta i calcoli statici e geotecnici necessari per la progettazione esecutiva dei pali di fondazione del Cavalcavia Strada Vicinale Delle Coste, intersecante alla Pk. 5+059.88 la Variante di Casalpusterlengo alla S.S. n. 9 "Via Emilia".

L'opera in oggetto presenta uno schema statico di trave continua su tre campate aventi luci tra gli assi di appoggio pari a 31+38+31 m.

I pali di fondazione sono trivellati in cls. armato, di diametro 1200 mm e hanno la seguente disposizione:

- Spalle:

N = 4- numero pali: It = 3.60 m- interasse trasv.: L = 26.00 m- lunghezza:

- Pile:

N = 8- numero pali: It = 3.60 m- interasse trasv.: II = 3.60 minterasse long.: L = 21.00 m- lunghezza:

I pali delle spalle attraversano il rilevato in progetto; per evitare fenomeni di attrito negativo si dispone un rivestimento di lamiera metallica fino a 2 m di profondità dal piano di campagna.

NORMATIVA

Nella redazione dei calcoli statici ci si è attenuti alle prescrizioni della Normativa vigente; in particolare:

· Legge n°1086 del 05/11/1971

"Norme per la disciplina delle opere in conglomerato cementizio armato, normale e precompresso ed a struttura metallica"

- Legge n°64 del 02/02/1974:

"Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche"

Decreto Ministeriale 14/01/2008

"Norme tecniche per le costruzioni"

- Circolare Min. 02/02/2009, n° 617

"Istruzioni per l'applicazione delle Norme tecniche per le costruzioni di cui al D.M. 14/01/2008"

3 **MATERIALI**

3.1 **CALCESTRUZZO PALI**

C25/30 classe

 $R_{ck} \ge 30 \text{ N/mm}^2$ resistenza caratteristica cubica

CAVALCAVIA STRADA VICINALE DELLE COSTE – PALI DI FONDAZIONE – RELAZIONE STRUTTURALE E GEOTECNICA

resistenza caratteristica cilindrica $f_{ck} \ge 25 \text{ N/mm}^2$

resistenza allo stato limite ultimo: $f_{cd} = 25 \times 0.85 / 1.5 = 14.17 \text{ N/mm}^2$

tensione limite per combinazioni caratteristiche (rare): $s_1 = 0.6 \times 25 = 15.00 \text{ N/mm}^2$ tensione limite per combinazioni quasi permanenti: $s_2 = 0.45 \times 25 = 11.25 \text{ N/mm}^2$

3.2 ARMATURE ORDINARIE C.A.

acciaio tipo: B450C

tensione caratteristica di snervamento: $f_{yk} = 450 \text{ N/mm}^2$ tensione caratteristica di rottura: $f_{tk} = 540 \text{ N/mm}^2$

tensione limite per combinazioni caratteristiche (rare): s₃ = 0.8 x 450 = 360 N/mm²

3.3 CARATTERISTICHE DI DURABILITÀ E COPRIFERRI

Le caratteristiche minime di resistenza dei calcestruzzi per la durabilità e i copriferri vengono definiti in accordo con la Circolare 02/02/2009 n.617 e con UNI EN 206-1 per una vita nominale di 50 anni.

- Classe di esposizione ambientale: XC2 (cond. amb. ordinarie) - Copriferro nominale: $c_{\text{nom}} = c_{\text{min}} + \Delta c$ $c_{\text{nom}} = 80 \text{ mm}$

- Valori limite di apertura fessure: comb. frequenti: $w_3 = 0.4 \text{ mm}$ comb. quasi perm.: $w_2 = 0.3 \text{ mm}$

4 CARATTERISTICHE GEOTECNICHE

Si adottano le seguenti caratteristiche derivate dalla Relazione geotecnica:

a) Unità geotecnica U1: terreni prevalentemente incoerenti (sabbie)

- Peso specifico: $\gamma = 19 \text{ kN/m}^3$ - Peso specifico efficace: $\gamma' = 9 \text{ kN/m}^3$

- Angolo di attrito interno: $\phi = 32^{\circ}$ - Coesione drenata: c' = 0

- Coefficiente di reazione laterale: $K_h = \frac{\beta \cdot Z}{D}$ in cui:

Z: profondità

D: diametro del palo

β: coefficiente come da tabella seguente

Coefficiente β [MN/m³]			
	Secco / umido	Saturo	
Sabbia soffice (Dr < 30%)	2.24	1.24	
Sabbia media (30 < Dr < 70%)	6.72	4.48	
Sabbia e ghiaia (Dr > 70%)	17.92	10.88	

b) Unità geotecnica U2: terreni prevalentemente coesivi (limi)

- Peso specifico: $\gamma = 19.5 \text{ kN/m}^3$ - Peso specifico efficace: $\gamma' = 9.7 \text{ kN/m}^3$

- Angolo di attrito interno: $\phi = 27^{\circ}$

- Coesione drenata: c' = 17 kN/m²

- Coefficiente di reazione laterale (Bowles): c_u: coesione non drenata

K _h [MN/m³]				
	minimo	massimo		
$c_u \le 100 \text{ kN/m}^2$	12.2	24.5		
$c_u \le 200 \text{ kN/m}^2$	24.5	48.9		
$c_u > 200 \text{ kN/m}^2$	48.9	490		

Nella tabella seguente sono riportati i valori c_u e K_h in funzione della profondità.

Terreno coesivo U2						
Profondità	Cu	Kh				
[m]	$[kN/m^2]$	$[MN/m^3]$				
2.00	5.40	12.86				
4.00	15.60	14.12				
6.00	25.90	15.39				
8.00	36.20	16.65				
10.00	46.40	17.91				
12.00	56.70	19.17				
14.00	67.00	20.44				
16.00	77.20	21.70				
18.00	87.50	22.96				
20.00	97.80	24.23				
22.00	108.00	26.45				
24.00	118.30	28.97				
26.00	128.60	31.48				
28.00	138.80	33.97				
30.00	149.10	36.48				

c) Rilevato stradale (spalle): si nota che l'attrito laterale viene trascurato in quanto il palo è rivestito di lamierino; il coefficiente di reazione laterale viene cautelativamente valutato come per le sabbie (a), ma ridotto al 10 %.

- Peso specifico: $\gamma = 20 \text{ kN/m}^3$

- Angolo di attrito interno: $\varphi = 35^{\circ}$ (trascurato per portanza laterale)

- Coesione drenata: c' = 0

- Coefficiente di reazione laterale: $K_h = \frac{\beta \cdot Z}{D} \qquad \text{in cui:}$

Z: profondità

D: diametro del palo

 β : coefficiente come da tabella seguente

Coefficiente β	[MN/m³]	
	Secco / umido	Saturo
Rilevato stradale	0.672	0.448

Falda: il terreno in situ si considera saturo a partire da 5 m di profondità.

5 GENERALITÀ SULLE VERIFICHE GEOTECNICHE E STRUTTURALI DEI PALI

Le verifiche sono state eseguite con l'ausilio dei seguenti programmi di calcolo:

- RC-Sec, realizzato da "GeoStru Software S.a.s., Lungomare snc, 89032 Bianco (RC)", utilizzato per la verifica a pressoflessione e taglio delle sezioni in calcestruzzo armato agli stati limite.
- AllPile, realizzato da "CivilTech Software, Bellevue, WA U.S.A."; utilizzato per le verifiche geotecniche dei pali.

5.1 VERIFICHE DI RESISTENZA ASSIALE (VERTICALE)

La verifica di resistenza assiale dei pali viene svolta allo stato limite ultimo; facendo riferimento alle NTC 2008 si segue:

- Approccio 2: Combinazione: (A1/M1/R3)

Coefficienti parziali delle resistenze γ_R : segue estratto Tabella 6.4.II, NTC 2008, con i coefficienti parziali adottati evidenziati.

Tabella 6.4.II – Coefficienti parziali γ_B da applicare alle resistenze caratteristiche.

Resistenza	Simbolo		Pali infis	si	P	ali trivell	ati	Pali	ad elica co	ontinua
	$\gamma_{\mathbf{R}}$	(R1)	(R2)	(R3)	(R1)	(R2)	(R3)	(R1)	(R2)	(R3)
Base	Υ _b	1,0	1,45	1,15	1,0	1,7	1,35	1,0	1,6	1,3
Laterale in compressione	Ϋ́s	1,0	1,45	1,15	1,0	1,45	1,15	1,0	1,45	1,15
Totale (*)	\mathbf{Y}_{t}	1,0	1,45	1,15	1,0	1,6	1,30	1,0	1,55	1,25
Laterale in trazione	Yst	1,0	1,6	1,25	1,0	1,6	1,25	1,0	1,6	1,25

^(*) da applicare alle resistenze caratteristiche dedotte dai risultati di prove di carico di progetto

Fattore di correlazione (1 indagine): ξ_4 : segue estratto Tabella 6.4.IV, NTC 2008, con i coefficienti parziali adottati evidenziati.

Tabella 6.4.IV – Fattori di correlazione ξ per la determinazione della resistenza caratteristica in funzione del numero di verticali indagate.

Numero di verticali indagate	1	2	3	4	5	7	≥ 10
ξ ₃	1,70	1,65	1,60	1,55	1,50	1,45	1,40
ξ_4	1,70	1,55	1,48	1,42	1,34	1,28	1,21

La verifica viene eseguita tramite il programma di calcolo "AllPile", versione 7.12, prodotto da CivilTech Software, Bellevue, WA USA, il programma utilizza le procedure descritte in "Foundation & Earth Structures, Design Manual 7.02", pubblicato da "Department of Navy, Naval Facilities Engineering Command (NAVFAC, USA)".

La resistenza ultima del palo per sforzo assiale è la somma delle resistenze di punta e laterale:

$$Q_{ult} = Q_{tip} + Q_{side}$$

Da cui deriva la resistenza di calcolo:

$$R_d = \frac{Q_{tip}}{\gamma_b \times \xi} + \frac{Q_{side}}{\gamma_s \times \xi} = \frac{Q_{tip}}{1.35 \times 1.70} + \frac{Q_{side}}{1.15 \times 1.70}$$

La resistenza ultima di base vale:

$$Q_{tip} = A_{tip} x (N_q x S_v + N_c x C)$$
 in cui:

Atio: area sezione del palo alla punta

 N_q : fattore di portanza per terreni sciolti, tabellato in funzione dell'angolo di attrito e del tipo di palo (infisso o trivellato) (ved. Tabella 4.1 seguente)

Table 4-1. Bearing Capacity Factor, Nq

Ф	N _q	N _q
(Internal friction)	(Displacement pile)	(Non-Displacement pile)
26	11.0	5.6
28	15.2	7.6
30	21.0	10.3
31	24.6	12.1
32	29.1	14.2
33	34.5	16.9
34	41.3	20.3
35	49.9	24.6
36	60.9	30.1
37	75.0	37.1
38	93.0	46.1
39	116.	57.7
40	145.	72.3

S_v: tensione verticale (efficace) alla punta palo, salvo le limitazioni:

$$S_v < q_{limit} = 7.2 \text{ N/mm}^2$$

 N_c : fattore di portanza per terreni coesivi, tabellato in funzione della profondità relativa della punta palo Z/D (ved. Tabella 4.2 seguente)

Ingegneria del Territor

	6	=	
	C		
а		r	Ľ

Table 4-2. Bearing Capacity Factor, N_c

z/B (Depth/Width)	N _C
0	6.3
1	7.8
2	8.4
3	8.8
4	9
>4	9

C: coesione terreno

In presenza di discontinuità stratigrafiche nel tratto inferiore alla punta, si tiene conto delle caratteristiche dei terreni sottostanti interpolando per una profondità di 4 volte il diametro del palo. La resistenza ultima laterale vale:

 $Q_{side} = \Sigma S_f x P x \Delta L = \Sigma (f_0 + C_a) x P x \Delta L in cui:$

 $f_0 = K_{down} \times S_v \times tan \delta$ (in compressione)

 $f_0 = K_{up} \times S_v \times \tan \delta$ (in trazione)

 $K_{down} = S_h / S_v = 0.7$: (in compressione)

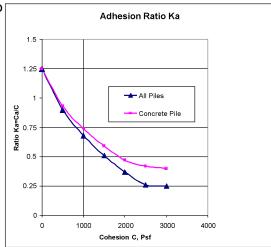
 $K_{up} = S_h / S_v = 0.4$: (in trazione)

S_h: tensione orizzontale (efficace) lungo il palo:

S_v: tensione verticale (efficace) lungo il palo, salvo le limitazioni:

 $S_f < (f_0 + C_a)_{limit} = 0.20 \text{ N/mm}^2$: portanza laterale limite

 δ = 0.8 x ϕ :angolo di attrito calcestruzzo/terreno


 $C_a = K_c \times K_a \times C$

 $K_c = 1$: fattore di adesione

K_a: rapporto di adesione (vedi figura a lato)

P: perimetro palo

ΔL: lunghezza tratto di palo

Il cedimento del palo viene calcolato secondo Reese e O'Neel (1988).

MANDANTI:

5.2 VERIFICHE DI RESISTENZA AI CARICHI TRASVERSALI (ORIZZONTALI)

La verifica di resistenza laterale dei pali viene svolta allo stato limite ultimo; facendo riferimento alle NTC 2008 si segue:

- Approccio 2: Combinazione: (A1/M1/R3)

Coefficienti parziali delle resistenze γ_T : segue estratto Tabella 6.4.VI, NTC 2008, con i coefficienti parziali adottati evidenziati.

Tabella 6.4.VI - Coefficienti parziali γ_T per le verifiche agli stati limite ultimi di pali soggetti a carichi trasversali.

COEFFICIENTE PARZIALE (R1)	COEFFICIENTE PARZIALE (R2)	COEFFICIENTE PARZIALE (R3)
$\gamma_{\rm T} = 1.0$	$\gamma_T = 1.6$	$\gamma_{\rm T} = 1,3$

La determinazione delle sollecitazioni lungo il palo viene eseguita tramite il programma di calcolo "AllPile" applicando direttamente il codice COM624P (FHWA-SA-91-048, COM624P – Laterally Loaded Pile Program for the Microcomputer, Version 2.0, Wang and Reese, 1993).

Il codice risolve l'analisi laterale nell'ipotesi che il modulo di deformazione sia proporzionale alla profondità, con l'integrazione iterativa alle differenze finite delle seguenti equazioni differenziali non lineari:

1)
$$EI\frac{d^4Y}{dZ^4} + Q\frac{d^2Y}{dZ^2} - R - P_q = 0$$

2)
$$E\left(\frac{d^3Y}{dZ^3}\right) + Q\left(\frac{dY}{dZ}\right) - T = 0$$

3)
$$E\left(\frac{d^2Y}{dZ^2}\right) - M = 0$$

$$4) \qquad \frac{dY}{d7} - S_t = 0$$

In cui:

Q: carico assiale sul palo

Y: freccia laterale del palo alla profondità Z dalla testa palo

R: reazione del suolo per unità di lunghezza

E: modulo di elasticità del palo

I: momento d'inerzia del palo

P_a: carico laterale distribuito lungo il palo

T: sforzo di taglio

M: momento flettente

St: rotazione del palo

5.3 **VERIFICHE DI DEFORMAZIONE**

Per i pali si assumono le seguenti deformazioni limite ammissibili, allo SLU:

- deformazione orizzontale massima: 50 mm - deformazione verticale massima: 20 mm

PALI SPALLE

6.1 SOLLECITAZIONI DI PROGETTO ALLA TESTA DEI PALI

Seguono tabelle delle sollecitazioni alla testa dei pali ricavate dalla Relazione di calcolo delle sovrastrutture per le diverse combinazioni di carico.

COMBINAZIONI DI CARICO			PALO 1	PALO 2	PALO 3	PALO 4	P/	L I
		CONDIZIONE	N _{Sd,1}	N _{Sd,2}	N _{Sd,3}	N _{Sd,4}	M _{Sd}	V _{Sd}
			[kN]	[kN]	[kN]	[kN]	[kNm]	[kN]
SLE - QUASI PERMANENTI	GEN Q.P.(max)	1	1 587.17	1 587.17	1 587.17	1 587.17	-663.37	194.18
SLE - QUASI PERMANENTI	GEN Q.P.(min)	1	1 562.20	1 562.20	1 562.20	1 562.20	-717.22	169.70
	GEN FREQ Mobili(max)	1	1 780.23	2 030.24	2 280.25	2 530.27	-457.11	301.80
	GEN FREQ Vento(max)	1	1 577.28	1 583.88	1 590.49	1 597.09	-462.36	299.44
SLE - FREQUENTI	GEN FREQ Termico(max)	1	1 599.28	1 592.87	1 586.46	1 580.05	-456.97	302.13
SLE - FREQUENTI	GEN FREQ Mobili(min)	1	1 937.22	1 687.20	1 437.19	1 187.18	-530.25	268.56
	GEN FREQ Vento(min)	1	1 557.26	1 560.56	1 563.87	1 567.17	-516.21	274.96
	GEN FREQ Termico(min)	1	1 569.32	1 562.91	1 556.50	1 550.09	-521.60	272.79
	GEN RARA Mobili(max)	1	1 867.73	2 276.45	2 685.18	3 093.90	-386.64	339.97
	GEN RARA Vento(max)	1	1 791.24	2 035.63	2 280.01	2 524.39	-384.70	344.68
	GEN RARA Frenam(max)	1	1 785.78	2 037.44	2 289.10	2 540.76	-495.73	288.89
SLE - RARE	GEN RARA Termico(max)	1	1 796.84	2 044.13	2 291.42	2 538.72	-363.17	350.87
SLE - KAKE	GEN RARA Mobili(min)	1	2 185.92	1 768.47	1 351.02	933.57	-477.52	300.45
	GEN RARA Vento(min)	1	1 948.18	1 689.24	1 430.31	1 171.37	-468.61	308.56
	GEN RARA Frenam(min)	1	1 942.72	1 691.06	1 439.40	1 187.74	-579.64	250.75
	GEN RARA Termico(min)	1	1 933.80	1 677.77	1 421.74	1 165.72	-490.16	294.34
	GEN SLU Mobili(max)	1	2 571.33	3 122.44	3 673.56	4 224.68	-528.05	456.99
	GEN SLU Vento(max)	1	2 468.72	2 797.55	3 126.38	3 455.20	-525.43	464.58
	GEN SLU Frenamento(max)	1	2 459.70	2 799.44	3 139.18	3 478.92	-675.32	387.44
SLU - STR	GEN SLU Termico(max)	1	2 474.11	2 807.31	3 140.50	3 473.69	-499.59	470.28
SLU - STR	GEN SLU Mobili(min)	1	3 005.38	2 441.16	1 876.95	1 312.73	-641.04	408.32
	GEN SLU Vento(min)	1	2 685.08	2 334.43	1 983.77	1 633.11	-629.02	420.53
	GEN SLU Frenamento(min)	1	2 676.06	2 336.32	1 996.58	1 656.84	-778.91	340.36
	GEN SLU Termico(min)	1	2 666.50	2 320.21	1 973.92	1 627.63	-654.88	401.49
		1-1	1 570.56	1 612.56	1 654.56	1 696.56	22.30	572.98
		1-2	1 540.89	1 582.89	1 624.88	1 666.88	63.93	572.98
	GEN SLV Long(max)	1-3	1 599.25	1 622.12	1 644.99	1 667.87	22.30	568.73
		1-4	1 569.58	1 592.45	1 615.32	1 638.19	63.93	568.73
		1-1	1 412.13	1 552.12	1 692.10	1 832.08	-471.85	386.45
	OFN CLV/T/	1-2	1 382.46	1 522.44	1 662.43	1 802.41	-430.22	386.45
	GEN SLV Trasv(max)	1-3	1 412.13	1 552.12	1 692.10	1 832.08	-632.92	313.15
		1-4	1 382.46	1 522.44	1 662.43	1 802.41	-591.29	313.15
		1-1	1 628.95	1 670.96	1 712.97	1 754.98	-519.15	315.26
	GEN SLV Vert(max)	1-2	1 657.64	1 680.52	1 703.41	1 726.29	-519.15	307.47
	GEN SLV Veri(max)	1-3	1 628.95	1 670.96	1 712.97	1 754.98	-681.49	219.07
SLV		1-4	1 657.64	1 680.52	1 703.41	1 726.29	-681.49	207.70
SLV		1-1	1 579.79	1 556.92	1 534.05	1 511.18	-1 186.55	70.58
	GEN SLV Long(min)	1-2	1 550.12	1 527.25	1 504.37	1 481.50	-1 144.92	70.58
	GEN SLV Long(IIIII)	1-3	1 608.48	1 566.48	1 524.48	1 482.49	-1 186.55	99.16
		1-4	1 578.81	1 536.81	1 494.81	1 452.81	-1 144.92	99.16
		1-1	1 766.91	1 626.93	1 486.94	1 346.96	-711.90	307.12
	GEN SLV Trasv(min)	1-2	1 737.24	1 597.25	1 457.27	1 317.29	-670.27	307.12
	GEN OLV ITASV(IIIII)	1-3	1 766.91	1 626.93	1 486.94	1 346.96	-872.97	254.63
		1-4	1 737.24	1 597.25	1 457.27	1 317.29	-831.34	254.63
		1-1	1 491.73	1 468.84	1 445.96	1 423.08	-622.98	197.31
	CENI CI \/\\art/min\	1-2	1 520.42	1 478.41	1 436.40	1 394.39	-622.98	209.24
	GEN SLV Vert(min)	1-3	1 491.73	1 468.84	1 445.96	1 423.08	-784.05	97.77
		1-4	1 520.42	1 478.41	1 436.40	1 394.39	-784.05	120.04

CAVALCAVIA STRADA VICINALE DELLE COSTE – PALI DI FONDAZIONE – RELAZIONE STRUTTURALE E GEOTECNICA

Nella tabella successiva sono riepilogati i valori massimi e minimi delle azioni agenti sui pali di fondazione:

MASSIMI / MINIMI	N _{Sd,max} [kN]	N _{Sd,min} [kN]	MSd [kNm]	V _{Sd} [kN]
SLE - QUASI PERMANENTE	1 587.17	1 562.20	-717.22	194.18
SLE - FREQUENTI	2 530.27	1 187.18	-530.25	302.13
SLE - CARATTERISTICHE	3 093.90	933.57	-579.64	350.87
SLU - STR	4 224.68	1 312.73	-778.91	470.28
SLV	1 832.08	1 317.29	63.93	572.98

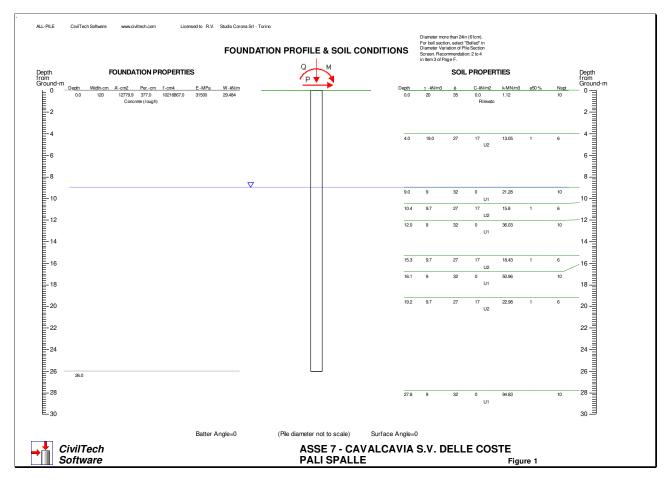
6.2 CALCOLO DELLE CARATTERISTICHE DI SOLLECITAZIONE E DEFORMAZIONE DEL PALO

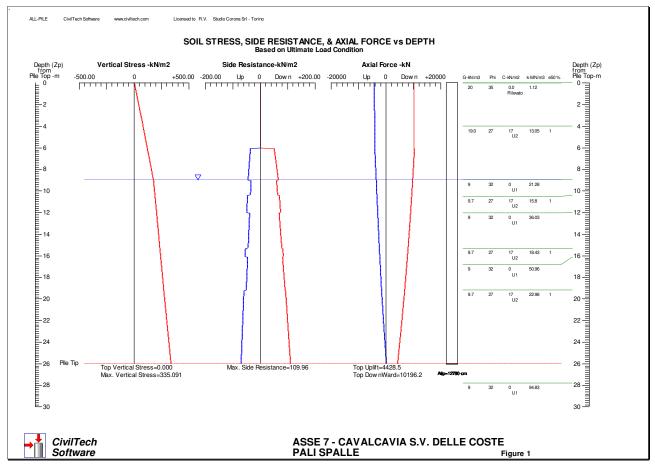
Il calcolo delle caratteristiche di sollecitazione e deformazione del palo viene effettuato mediante il programma di calcolo "Allpile", vers. 7.12, CivilTech Software, Bellevue, WA USA.

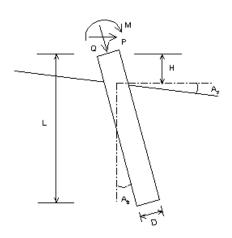
La testa del palo risulta a 4 m di altezza sul rilevato; si trascura la portanza per attrito laterale per il tratto incamiciato con lamierino, pari a 6 m.

Seguono i diagrammi risultanti dalle analisi verticale e laterale del palo.

Si omettono i tabulati in quanto i risultati grafici del programma AllPile sono completamente esaustivi.







VERTICAL ANALYSIS

Figure 1

Load Factor for Vertical Loads = 1.0 Load Factor for Lateral Loads = 1.0 Loads Supported by Pile Cap= 0 % Shear Condition: Static

Vertical Load, Q= 4224.7 -kN Shear Load, P= 573.0 -kN Moment, M= 63.9 -kN-m

Profile:

Pile Length, L= 26.0 -m Top Height, H= 0 -m Slope Angle, As= 0 Batter Angle, Ab= 0

* Zero Friction * Zero Friction Start: 0 -m End: 6 -m

Drilled Shaft (dia >24 in. or 61 cm)

Soil D	ata:						Pile Da	ıta:					
Depth	Gamma	Phi	С	K	e50 or Dr	Nspt	Depth	Width	Area	Per.	I	Е	Weight
-m	-kN/m3		-kN/m2	-MN/m3	%		-m	-cm	-cm2	-cm	-cm4	-MPa	-kN/m
0	20	35	0.0	1.12	30	10	0.0	120	12779.9	377.0	10216867	.031500	29.484
4	19.0	27	17	13.05	1	6	26.0						
9	9	32	0	21.28	60	10							
10.4	9.7	27	17	15.8	1	6							
12	9	32	0	36.03	60	10							
15.3	9.7	27	17	18.43	1	6							
16.1	9	32	0	50.96	60	10							
19.2	9.7	27	17	22.98	1	6							
27.8	9	32	0	94.83	60	10							
31	9.7	27	17	31.39	1	6							

Vertical capacity:

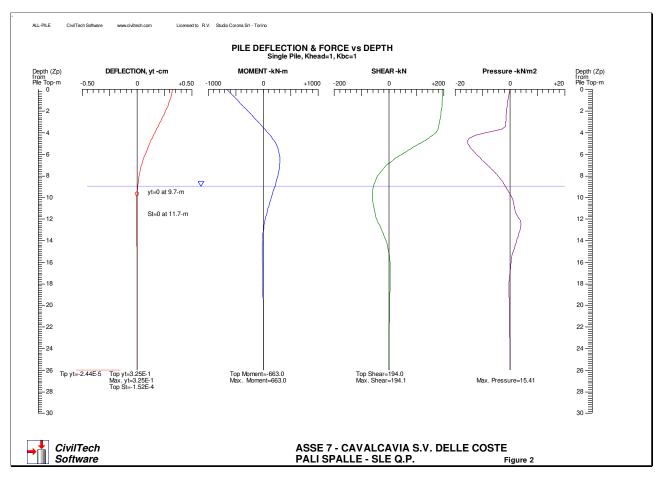
Weight above Ground= 0.00 Total Weight= 578.32-kN *Soil Weight is not included Side Resistance (Down)= 6146.391-kN Side Resistance (Up)= 3850.218-kN Tip Resistance (Down)= 4049.762-kN Tip Resistance (Up)= 0.000-kN Total Ultimate Capacity (Down)= 10196.153-kN Total Ultimate Capacity (Up)= 4428.540-kN Total Allowable Capacity (Down)= 4833.962-kN Total Allowable Capacity (Up)= 2411.759-kN OK! Qallow > Q

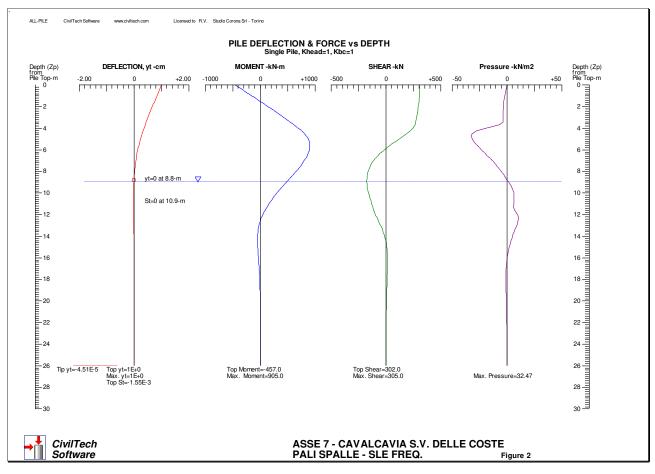
Settlement Calculation:

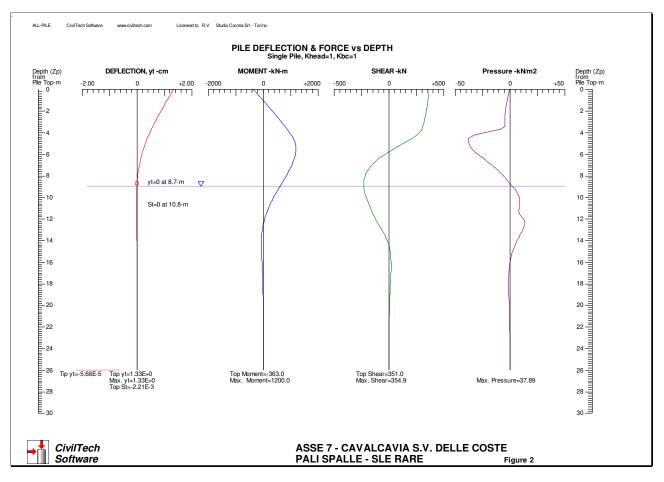
At Q= 4224.70-kN Settlement= 0.46337-cm At Xallow= 2.00-cm Qallow= 7685.50146-kN

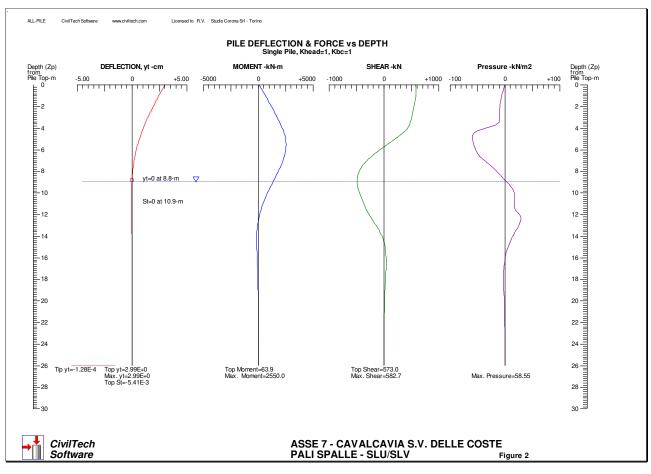
Note: If the program cannot find a result or the result exceeds the upper limit. The result will be displayed as 99999.

ASSE 7 - CAVALCAVIA S.V. DELLE COST PALI SPALLE









6.3 VERIFICA DEI PALI SOGGETTI A CARICO VERTICALE

La verifica viene svolta allo stato limite ultimo; in riferimento alle NTC 2008, si sceglie l'approccio 2, con le combinazioni A1/M1/R3 in cui si applicano i coefficienti parziali alle caratteristiche resistenti del palo:

- resistenza laterale in compressione: $\gamma_s = 1.15$ - resistenza alla base: $\gamma_b = 1.35$ - fattore di correlazione: $\xi_4 = 1.70$

Si ottiene:

- Sforzo verticale di progetto: $N_{sd} = 4224.7 \text{ kN}$

- Resistenza di progetto: $R_{sd} = 4834.0 \text{ kN}$ ($R_{sd} > N_{sd}$)

- Cedimento verticale: DZ = 4.63 mm (<20 mm: ammissibile)

6.4 PALI SOGGETTI A CARICO ORIZZONTALE - VERIFICA DI RESISTENZA DEL TERRENO

I coefficienti parziali (A1/M1/R3) risultano:

- resistenza laterale terreno: $\gamma_t = 1.30$

- fattore di correlazione: $\xi_4 = 1.70$

La resistenza di progetto del terreno si ottiene dalla formula:

 $R_{\text{sd}} = \, \alpha \frac{\lambda_p \times \sigma_v + 2 \times c' \!\! \times \!\! \sqrt{\lambda_p}}{\gamma_t \times \! \xi_3} \qquad \qquad \text{in cui:} \label{eq:Rsd}$

 $\alpha = 3$: coefficiente correttivo per tener conto dell'effetto arco

 $\lambda_{\rm p}$: coefficiente di spinta passiva

 σ_v : pressione geostatica efficace

c': coesione drenata

Segue il tabulato del calcolo svolto; si nota che per il rilevato si è tenuto conto dell'inclinazione 2:3 ($\varepsilon = -33.69^{\circ}$) del terreno nel calcolo della spinta passiva.

Il minimo coefficiente di sicurezza (resistenza / pressione) si ottiene a Zp = 3.90 m e vale:

 $R_{sd} / P_d = 92.91 / 33.4 = 2.782$ (>1: verificato)

Zp - Depth from pile Top yt - Pile top deflection Moment - Internal moment in pile shaft Shear - Internal shear force in pile shaft Pressure - Soil-Pile interactive pressure (Arching is considered) Slope - Deflection slope at pile top

Zp (m)	yt (cm)	Moment (kN.m)	Shear (kN)	Pressure (kN/m2)	Slope	Terreno	Gamma (kN/m3)	C' (kN/m2)	λр	σν (kN/m2)	R_Sd (kN/m2)	Verifica ? R/P > 1
0	2.99	63.9	573	0	-0.00541	Rilevato	20	0	0.8775	0	0	0
0.3	2.85	220	579	-1.6	-0.00538	Rilevato	20	0	0.8775	6	7.147	4.467
0.5 0.8	2.71 2.57	376 531	582.7 582.4	-3.2 -4.6	-0.00519 -0.00538	Rilevato Rilevato	20 20	0	0.8775 0.8775	10 16	11.912 19.059	3.722 4.143
1	2.43	684	578	-5.8	-0.00538	Rilevato	20	0	0.8775	20	23.824	4.107
1.3	2.29	835	570.8	-6.9	-0.00538	Rilevato	20	0	0.8775	26	30.971	4.488
1.6	2.15	984	562.3	-7.8	-0.00519	Rilevato	20	0	0.8775	32	38.118	4.887
1.8 2.1	2.02 1.89	1130 1270	552.8 542.1	-8.5 -9.1	-0.005 -0.005	Rilevato Rilevato	20 20	0	0.8775 0.8775	36 42	42.882 50.029	5.045 5.498
2.4	1.76	1410	530.7	-9.6	-0.005	Rilevato	20	0	0.8775	48	57.176	5.956
2.6	1.63	1550	519.5	-9.9	-0.00481	Rilevato	20	0	0.8775	52	61.941	6.257
2.9	1.51	1680	507.9	-10.1	-0.00462	Rilevato	20	0	0.8775	58	69.088	6.840
3.2 3.4	1.39 1.28	1810 1940	494.6 479.2	-10.1 -10.1	-0.00462 -0.00423	Rilevato Rilevato	20 20	0	0.8775 0.8775	64 68	76.235 81.000	7.548 8.020
3.7	1.17	2060	459.9	-16.4	-0.00423	Rilevato	20	0	0.8775	74	88.147	5.375
3.9	1.06	2180	430.9	-33.4	-0.00423	Rilevato	20	0	0.8775	78	92.912	2.782
4.2	0.96	2290	387.2	-49.2	-0.00396	U2	19.5	17	2.6629	83.85	378.416	7.691
4.5 4.7	0.86 0.77	2390 2460	329.2 261.5	-56.4 -58.4	-0.00373 -0.00341	U2 U2	19.5 19.5	17 17	2.6629 2.6629	89.7 93.6	399.563 413.661	7.084 7.083
5	0.68	2510	189.3	-58.6	-0.00335	U2	19.5	17	2.6629	99.45	434.807	7.420
5.3	0.6	2540	116.2	-57.8	-0.00312	U2	19.5	17	2.6629	105.3	455.954	7.888
5.5	0.52	2550	44.1	-56.5	-0.00281	U2	19.5	17 17	2.6629	109.2	470.051	8.319
5.8 6	0.45 0.39	2540 2520	-27.2 -97.1	-54.9 -53.1	-0.00273 -0.0025	U2 U2	19.5 19.5	17	2.6629 2.6629	115.05 118.95	491.198 505.296	8.947 9.516
6.3	0.33	2470	-164.3	-50.5	-0.00227	U2	19.5	17	2.6629	124.8	526.442	10.425
6.6	0.27	2410	-226.4	-46.4	-0.00204	U2	19.5	17	2.6629	130.65	547.589	11.801
6.8	0.22	2330	-282.1	-40.9	-0.00188	U2	19.5	17	2.6629	134.55	561.687	13.733
7.1 7.3	0.18 0.14	2240 2140	-332.2 -377.2	-34.8 -28.6	-0.00169 -0.0015	U2 U2	19.5 19.5	17 17	2.6629	140.4 144.3	582.833 596.931	16.748 20.872
7.6	0.11	2030	-415	-22.6	-0.0013	U2	19.5	17	2.6629	150.15	618.077	27.349
7.9	0.08	1900	-444.1	-16.9	-0.00116	U2	19.5	17	2.6629	156	639.224	37.824
8.1	0.05	1780	-466	-11.6	-0.00101	U2	19.5	17	2.6629	159.9	217.774	18.774
8.4 8.7	0.03 0.01	1650 1520	-482.8 -493.8	-6.9 -2.3	-0.00087 -0.0007	U2 U2	19.5 19.5	17 17	2.6629 2.6629	165.75 171.6	224.823 231.872	32.583 100.813
8.9	-0.01	1380	-497.5	2.6	-0.0007	U2	19.5	17	2.6629	175.5	236.571	90.988
9.2	-0.02	1250	-494	7.4	-0.00049	U1	9	0	3.2546	178.2	262.430	35.463
9.4	-0.03	1120	-484.9	11.7	-0.00039	U1	9	0	3.2546	180	265.081	22.656
9.7 10	-0.04 -0.04	993 872	-471 -453.1	15.3 17.5	-0.00028 -0.00022	U1 U1	9	0	3.2546 3.2546	182.7 185.4	269.057 273.033	17.585 15.602
10.2	-0.04	757	-433.2	17.3	-0.00022	U1	9	0	3.2546	187.2	275.684	15.316
10.5	-0.05	649	-412.7	17.8	-0.00007	U2	9.7	17	2.6629	190.11	254.175	14.279
10.8	-0.05	546	-391.2	17.7	-0.00003	U2	9.7	17	2.6629	193.02	257.681	14.558
11 11.3	-0.05 -0.05	449 358	-368.9 -346.2	17.6 17.3	0.00002 0.00006	U2 U2	9.7 9.7	17 17	2.6629 2.6629	194.96 197.87	260.019 263.525	14.774 15.233
11.6	-0.03	273	-340.2	17.3	0.00008	U2	9.7	17	2.6629	200.78	267.031	13.981
11.8	-0.04	194	-296.6	24.2	0.00011	U2	9.7	17	2.6629	202.72	269.369	11.131
12.1	-0.04	120	-266	28.6	0.00012	U1	9	0	3.2546	205.42	302.516	10.577
12.3	-0.04	57.1	-232.2 -197.2	29.8	0.00013	U1 U1	9	0	3.2546	207.22 209.92	305.167	10.240
12.6 12.9	-0.03 -0.03	5.5 -36.1	-162.8	28.8 26.7	0.00013 0.00014	U1	9	0	3.2546 3.2546	212.62	309.143 313.119	10.734 11.727
13.1	-0.02	-68.7	-130.2	24.2	0.00013	U1	9	Ō	3.2546	214.42	315.770	13.048
13.4	-0.02	-93.2	-100.1	21.4	0.00013	U1	9	0	3.2546	217.12	319.746	14.941
13.7	-0.02	-111 -122	-73.1 -49.4	18.6	0.00012	U1	9	0	3.2546	219.82 221.62	323.722	17.404
13.9 14.2	-0.02 -0.01	-122	-49.4	15.9 13.4	0.00012 0.0001	U1 U1	9	0	3.2546 3.2546	224.32	326.373 330.349	20.527 24.653
14.4	-0.01	-129	-12.2	11	0.00009	U1	9	Ō	3.2546	226.12	333.000	30.273
14.7	-0.01	-127	1.9	8.9	0.00008	U1	9	0	3.2546	228.82	336.976	37.862
15 15.2	-0.01 0	-123 -115	13.1 21.7	6.8 4.6	0.00007 0.00006	U1 U1	9	0	3.2546 3.2546	231.52 233.32	340.952 343.603	50.140 74.696
15.5	0	-107	27.9	2.8	0.00005	U2	9.7	17	2.6629	236.23	309.746	110.623
15.8	0	-97.4	32.1	1.7	0.00004	U2	9.7	17	2.6629	239.14	313.253	184.265
16	0	-87.6	34.7	0.9	0.00004	U2	9.7	17	2.6629	241.08	315.590	350.652
16.3 16.5	0	-77.6 -67.6	36 36.4	0.1 -0.6	0.00003 0.00002	U1 U1	9	0	3.2546 3.2546	243.78 245.58	359.007 361.658	3589.715 602.754
16.8	0	-57.7	35.7	-1.3	0.00002	U1	9	0	3.2546	248.28	365.634	281.255
17.1	0	-48.3	34.3	-1.9	0.00001	U1	9	0	3.2546	250.98	369.611	194.531
17.3	0	-39.6	32.1	-2.3	0.00001	U1	9	0	3.2546	252.78	372.261	161.852
17.6 17.9	0	-31.6 -24.5	29.4 26.4	-2.5 -2.7	0	U1 U1	9	0	3.2546 3.2546	255.48 258.18	376.238 380.214	150.494 140.819
18.1	0	-18.4	23.1	-2.7	0	U1	9	0	3.2546	259.98	382.865	141.801
18.4	0	-13.2	19.8	-2.7	0	U1	9	0	3.2546	262.68	386.841	143.274
18.6	0	-8.9	16.5	-2.6	0	U1	9	0	3.2546	264.48	389.492	149.804
18.9 19.2	0	-5.5 -3	13.3 10.6	-2.4 -1.9	0	U1 U1	9	0	3.2546 3.2546	267.18 269.88	393.468 397.444	163.944 209.180
19.4	0	-1.2	8.3	-1.4	0	U2	9.7	17	2.6629	271.82	352.630	251.877
19.7	0	0.3	6.4	-1.1	0	U2	9.7	17	2.6629	274.73	356.136	323.757
20	0	1.4	5	-0.9	0	U2	9.7	17	2.6629	277.64	359.643	399.598
20.2 20.5	0	2.3 2.9	3.8 2.8	-0.7 -0.6	0	U2 U2	9.7 9.7	17 17	2.6629 2.6629	279.58 282.49	361.980 365.486	517.107 609.134
20.8	0	3.4	2.0	-0.5	0	U2	9.7	17	2.6629	285.4	368.993	737.971
21	0	3.7	1.2	-0.5	0	U2	9.7	17	2.6629	287.34	371.330	742.646
21.3	0	3.8	0.7	-0.4	0	U2	9.7	17	2.6629	290.25	374.837	937.069
21.5 21.8	0	3.8 3.7	0.2 -0.2	-0.3 -0.2	0	U2 U2	9.7 9.7	17 17	2.6629	292.19 295.1		1257.206 1903.308
22.1	0	3.7	-0.2	-0.2	0	U2	9.7	17	2.6629 2.6629	298.01		1903.308
22.3	0	3.3	-0.8	-0.1	0	U2	9.7	17	2.6629	299.95	386.525	3864.860
22.6	0	3	-1	-0.1	0	U2	9.7	17	2.6629	302.86		3899.920
22.9	0	2.7 2.3	-1.1	-0.1 0	0	U2 U2	9.7	17 17	2.6629 2.6629	305.77		3934.980 9999.000
23.1 23.4	0	2.3	-1.1 -1.2	0	0	U2 U2	9.7 9.7	17 17	2.6629	307.71 310.62		9999.000
23.6	0	1.7	-1.2	0	0	U2	9.7	17	2.6629	312.56		9999.000
23.9	0	1.4	-1.1	0.1	0	U2	9.7	17	2.6629	315.47	405.225	4051.846
24.2 24.4	0	1.1 0.8	-1.1 -1	0.1 0.1	0	U2 U2	9.7 9.7	17 17	2.6629 2.6629	318.38 320.32		4086.906 4110.280
24.4	0	0.6	-0.9	0.1	0	U2	9.7	17	2.6629	323.23		4110.280
25	0	0.4	-0.7	0.1	0	U2	9.7	17	2.6629	326.14		4180.400
25.2	0	0.2	-0.6	0.1	0	U2	9.7	17	2.6629	328.08		4203.773
25.5 25.7	0	0.1 0	-0.4 -0.3	0.1 0.1	0	U2 U2	9.7 9.7	17 17	2.6629 2.6629	330.99 332.93		4238.833 4262.207
26	0	0	0.5	0.1	0	U2	9.7	17	2.6629	335.84		2148.741

6.5 VERIFICHE DI DEFORMAZIONE PALO

- Cedimento verticale: DZ = 4.63 mm (< 20 mm: ammissibile) - Deformazione orizzontale massima: DZ = 29.9 mm (< 50 mm: ammissibile)

6.6 VERIFICHE STRUTTURALI PALO

Si effettuano le verifiche a pressoflessione e taglio allo stato limite ultimo (verifiche di resistenza) e agli stati limite di esercizio (limitazione tensioni e fessurazione).

La sezione ha le seguenti caratteristiche:

- raggio: r = 60 cm

- armature long.: $16 \varnothing 30$, r = 60 - 8 - 1.2 - 3/2 = 49.3 cm

 $16 \varnothing 30$, $r = 49.3 - 2 \times 3 = 43.3$ cm

- spirale: Ø 12, passo 20 cm.

6.6.1 VERIFICHE DI RESISTENZA ALLO STATO LIMITE ULTIMO

6.6.1.1 Massimo sforzo assiale

Sollecitazioni Resistenze

Sforzo assiale: $N_{Sd} = 4224.7 \text{ kN}$

Momento flettente: $M_{Sd} = 2550.0 \text{ kN.m}$ $M_{Rd} = 4158.5 \text{ kN.m}$ \rightarrow Verificato: $M_{Rd} > M_{Sd}$ Sforzo tagliante: $V_{Sd} = 582.7 \text{ kN}$ $V_{Rd} = 2985.0 \text{ kN}$ \rightarrow Verificato: $V_{Rd} > V_{Sd}$

6.6.1.2 Minimo sforzo assiale

Sollecitazioni Resistenze

Sforzo assiale: $N_{Sd} = 1312.7 \text{ kN}$

Momento flettente: $M_{Sd} = 2550.0 \text{ kN.m}$ $M_{Rd} = 3719.1 \text{ kN.m}$ \rightarrow Verificato: $M_{Rd} > M_{Sd}$ Sforzo tagliante: $V_{Sd} = 582.7 \text{ kN}$ $V_{Rd} = 2549.8 \text{ kN}$ \rightarrow Verificato: $V_{Rd} > V_{Sd}$

6.6.2 VERIFICHE TENSIONALI ALLO STATO LIMITE DI ESERCIZIO – COMBINAZIONI RARE

6.6.2.1 Massimo sforzo assiale

Sollecitazioni

Sforzo assiale: $N_{Sd} = 3093.9 \text{ kN}$ Momento flettente: $M_{Sd} = 1200.0 \text{ kN.m}$

Tensione massima cls.: $s_c = 8.29 \text{ N/mm}^2$ \rightarrow Verificato: $s_c < s_1 = 15 \text{ N/mm}^2$ Tensione massima ferri: $s_f = 61.54 \text{ N/mm}^2$ \rightarrow Verificato: $s_f < s_3 = 360 \text{ N/mm}^2$

6.6.2.2 Minimo sforzo assiale

Sollecitazioni

Sforzo assiale: $N_{Sd} = 933.6 \text{ kN}$ Momento flettente: $M_{Sd} = 1200.0 \text{ kN.m}$

Tensione massima cls.: $s_c = 8.19 \text{ N/mm}^2$ \rightarrow Verificato: $s_c < s_1 = 15 \text{ N/mm}^2$ Tensione massima ferri: $s_f = 147.77 \text{ N/mm}^2$ \rightarrow Verificato: $s_f < s_3 = 360 \text{ N/mm}^2$

6.6.3 VERIFICHE DI FESSURAZIONE – COMBINAZIONI FREQUENTI

6.6.3.1 Massimo sforzo assiale

Sollecitazioni

Sforzo assiale: $N_{Sd} = 2530.3 \text{ kN}$ Momento flettente: $M_{Sd} = 905.0 \text{ kN.m}$ Tensione massima cls.: $s_c = 6.28 \text{ N/mm}^2$ Tensione massima ferri: $s_f = 40.64 \text{ N/mm}^2$

Apertura fessure: w = 0.033 mm \rightarrow Verificato: $w < w_3 = 0.4 \text{ mm}$

6.6.3.2 Minimo sforzo assiale

Sollecitazioni

 $\begin{array}{ll} \mbox{Sforzo assiale:} & \mbox{N}_{\mbox{Sd}} = 1187.2 \ \mbox{kN} \\ \mbox{Momento flettente:} & \mbox{M}_{\mbox{Sd}} = 905.0 \ \mbox{kN.m} \\ \mbox{Tensione massima cls.:} & \mbox{s}_{\mbox{c}} = 6.21 \ \mbox{N/mm}^2 \\ \mbox{Tensione massima ferri:} & \mbox{s}_{\mbox{f}} = 89.39 \ \mbox{N/mm}^2 \\ \end{array}$

Apertura fessure: w = 0.127 mm \rightarrow Verificato: $w < w_3 = 0.4 \text{ mm}$

6.6.4 VERIFICHE DI FESSURAZIONE – COMBINAZIONI QUASI PERMANENTI

6.6.4.1 Massimo sforzo assiale

Sollecitazioni

Sforzo assiale: $N_{Sd} = 1587.2 \text{ kN}$ Momento flettente: $M_{Sd} = 663.0 \text{ kN.m}$

Tensione massima cls.: $s_c = 4.57 \text{ N/mm}^2$ \rightarrow Verificato: $s_c < s_2 = 11.25 \text{ N/mm}^2$

Tensione massima ferri: $s_f = 37.86 \text{ N/mm}^2$

Apertura fessure: w = 0.032 mm \rightarrow Verificato: $w < w_2 = 0.3 \text{ mm}$

6.6.4.2 Minimo sforzo assiale

Sollecitazioni

Sforzo assiale: $N_{Sd} = 1562.2 \text{ kN}$ Momento flettente: $M_{Sd} = 663.0 \text{ kN.m}$

Tensione massima cls.: $s_c = 4.57 \text{ N/mm}^2$ \rightarrow Verificato: $s_c < s_2 = 11.25 \text{ N/mm}^2$

Tensione massima ferri: $s_f = 38.69 \text{ N/mm}^2$

Apertura fessure: w = 0.033 mm \rightarrow Verificato: $w < w_2 = 0.3 \text{ mm}$

6.6.5 TABULATO DI CALCOLO

Segue tabulato di calcolo eseguito con il programma "RC-Sec", realizzato da GeoStru Software S.a.s., Lungomare snc, 89032 – Bianco (RC).

CAVALCAVIA STRADA VICINALE DELLE COSTE - PALI DI FONDAZIONE - RELAZIONE STRUTTURALE E GEOTECNICA

DATI GENERALI SEZIONE IN C.A. NOME SEZIONE: SV COSTE SPALLE

Descrizione Sezione: CAVALCAVIA STRADA VIC. DELLE COSTE - PALI SPALLE

Metodo di calcolo resistenza: Stati Limite Ultimi Tipologia sezione: Sezione generica Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante
Condizioni Ambientali: Poco aggressive
Riferimento Sforzi assegnati: Assi x,y principali d'inerzia
Riferimento alla sismicità: Zona non sismica
Posizione sezione nell'asta: In zona critica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CONGLOMERATO - Classe: C25/30

Resis. compr. di calcolo fcd : 141.60 daN/cm²
Resis. compr. ridotta fcd': 70.80 daN/cm²
Def.unit. max resistenza ec2 : 0.0020
Def.unit. ultima ecu : 0.0035

Diagramma tensione-deformaz. : Parabola-Rettangolo Modulo Elastico Normale Ec : 314750 daN/cm²

Coeff. di Poisson : 0.20

Resis. media a trazione fctm: 25.60 daN/cm²

Coeff. Omogen. S.L.E. : 15.0 Combinazioni Rare in Esercizio (Tens.Limite):

Sc Limite: 150.00 daN/cm²
Apert.Fess.Limite: Non prevista

Combinazioni Frequenti in Esercizio (Tens.Limite):

Sc Limite: 150.00 daN/cm² Apert.Fess.Limite: 0.400 mm

Combinazioni Quasi Permanenti in Esercizio (Tens.Limite):

Sc Limite: 112.50 daN/cm² Apert.Fess.Limite: 0.300 mm

ACCIAIO - Tipo: B450C

Resist. caratt. snervam. fyk: 4500.0 daN/cm²
Resist. caratt. rottura ftk: 4500.0 daN/cm²
Resist. snerv. di calcolo fyd: 3913.0 daN/cm²
Resist. ultima di calcolo ftd: 3913.0 daN/cm²
Deform. ultima di calcolo Epu: 0.068
Modulo Elastico Ef: 2100000 daN/cm²
Diagramma tensione-deformaz.: Bilineare finito
Coeff. Aderenza ist. ß1*ß2: 1.00 daN/cm²
Coeff. Aderenza diff. ß1*ß2: 0.50 daN/cm²
Comb.Rare Sf Limite: 3600.0 daN/cm²

CARATTERISTICHE DOMINI CONGLOMERATO

DOMINIO N° 1

Forma del Dominio: Circolare Classe Conglomerato: C25/30

Raggio circonferenza: 60.00 cm Ascissa X centro circ.: 0.00 cm Ordinata Y centro circ.: 0.00 cm

DATI GENERAZIONI CIRCOLARI DI BARRE

N.Gen.	Numero assegnato alla singola generazione circolare di barre
Xcentro	Ascissa del centro della circonf. lungo cui sono disposte le barre gen.
Ycentro	Ordinata del centro della circonf. lungo cui sono disposte le barre gen.
Raggio	Raggio in cm della circonferenza lungo cui sono disposte le barre gen.
N.Barre	Numero di barre generate equidist. disposte lungo la circonf.
Diam.	Diametro in mm della singola barra generata

N.Gen. Xcentro,cm Ycentro,cm Raggio,cm N.Barre Diam.Ø,mm

1	0.00	0.00	49.30	16	30
2	0.00	0.00	43.30	16	30

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale in daN applicato nel Baric. (+ se di compressione)
Mx	Coppia concentrata in daNm applicata all'asse x princ. d'inerzia
	con verso positivo se tale da comprimere il lembo sup. della sez.
Му	Coppia concentrata in daNm applicata all'asse y princ. d'inerzia
	con verso positivo se tale da comprimere il lembo destro della sez.
Vy	Componente del Taglio [daN] parall. all'asse princ.d'inerzia y
Vx	Componente del Taglio [daN] parall. all'asse princ.d'inerzia x

N.Co	mb.	N	Mx	My	Vy	Vx	
1	42246		255000	0	58270	0	
2	13127	'3	255000	0	58270	0	

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale in daN applicato nel Baricentro (+ se di compressione) Coppia concentrata in daNm applicata all'asse x princ. d'inerzia Mx con verso positivo se tale da comprimere il lembo superiore della sez. Coppia concentrata in daNm applicata all'asse y princ. d'inerzia My con verso positivo se tale da comprimere il lembo destro della sez.

N.Co	mb. N	Mx	My	
1	309390	120000	0	
2	93357	120000	0	

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Ν Sforzo normale in daN applicato nel Baricentro (+ se di compressione) Mx Coppia concentrata in daNm applicata all'asse x princ. d'inerzia con verso positivo se tale da comprimere il lembo superiore della sez. Μv Coppia concentrata in daNm applicata all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro della sez.

N.Co	N.Comb.		Mx	My	
1	2530	27	90500	0	
2	1187	18	90500	0	

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Ν Sforzo normale in daN applicato nel Baricentro (+ se di compressione) Mx Coppia concentrata in daNm applicata all'asse x princ. d'inerzia con verso positivo se tale da comprimere il lembo superiore della sez. My Coppia concentrata in daNm applicata all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro della sez.

N.Co	mb. N	Mx	My	
1	158717	66300	0	
2	156220	66300	0	

RISULTATI DEL CALCOLO

Copriferro netto minimo barre longitudinali: 9.2 cm Interferro netto minimo barre longitudinali: 3.0 cm Copriferro netto minimo staffe: 8.0 cm

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

Ver	S = combinazione verificata / N = combin. non verificata
N	Sforzo normale assegnato [in daN] (positivo se di compressione)
Mx	Momento flettente assegnato [in daNm] riferito all'asse x princ. d'inerzia
My	Momento flettente assegnato [in daNm] riferito all'asse y princ. d'inerzia
N ult	Sforzo normale ultimo [in daN] nella sezione (positivo se di compress.)
Mx ult	Momento flettente ultimo [in daNm] riferito all'asse x princ. d'inerzia
My ult	Momento flettente ultimo [in daNm] riferito all'asse y princ. d'inerzia
Mis.Sic.	Misura sicurezza = rapporto vettoriale tra (N ult,Mx ult,My ult) e (N,Mx,My)
,	Verifica positiva se tale rapporto risulta >=1.000

N.Co	mb. Ver	N	Mx	Му	N ult	Mx ult	My ult	Mis.Sic.	
1	S 422468	25	55000	0	422490	415853	0	1.631	
2	S 131273	25	55000	0	131293	371912	0	1.458	

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
ec 3/7	Deform. unit. del conglomerato nella fibra a 3/7 dell'altezza efficace
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
ef min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xf min	Ascissa in cm della barra corrisp. a ef min (sistema rif. X,Y,O sez.)
Yf min	Ordinata in cm della barra corrisp. a ef min (sistema rif. X,Y,O sez.)
ef max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xf max	Ascissa in cm della barra corrisp. a ef max (sistema rif. X,Y,O sez.)
Yf max	Ordinata in cm della barra corrisp. a ef max (sistema rif. X,Y,O sez.)

N.Comb. ec max ec 3/7 Xc max Yc max ef min Xf min Yf min ef max Xf max Yf max

1	0.00350	0.00010	0.0	60.0	0.00279	0.0	49.3	-0.00373	0.0	-49.3
2	0.00350	-0.00080	0.0	60.0	0.00260	0.0	49.3	-0.00564	0.0	-49.3

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

Coeff. a nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.

CAVALCAVIA STRADA VICINALE DELLE COSTE – PALI DI FONDAZIONE – RELAZIONE STRUTTURALE E GEOTECNICA

h Coeff. b nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.

С Coeff. c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.

x/d Rapp. di duttilità a rottura in presenza di sola fless.(travi)

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N.Comb. x/d C.Rid.

0.00000000 0.000066130 -0.000467807 1

0.00000000 0.000083649 -0.001518915

ARMATURE A TAGLIO

Diametro staffe: 12 mm

Passo staffe: 20.0 cm [Passo massimo di normativa = 25.0 cm]

N.Bracci staffe: 2

METODO AGLI STATI LIMITE ULTIMI - VERIFICHE A TAGLIO

Ver S = comb. verificata a taglio / N = comb. non verificata

Vsdu Taglio agente [daN] = proiez. di Vx e Vy sulla normale all'asse neutro

Vcd Taglio resistente ultimo [daN] lato conglomerato compresso

Vwd Taglio resistente [daN] assorbito dalle staffe

Dmed Altezza utile media pesata [cm] valutata lungo strisce ortog. all'asse neutro.

Vengono prese nella media le strisce con almeno un estremo compresso.

I pesi della media sono costituiti dalle stesse lunghezze delle strisce.

bw Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro.

E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed.

Teta Angolo [gradi sessadec.] di inclinazione dei puntoni di conglomerato

Coefficiente maggiorativo della resistenza a taglio per compressione Acw

Ast Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m] Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m] A Eff

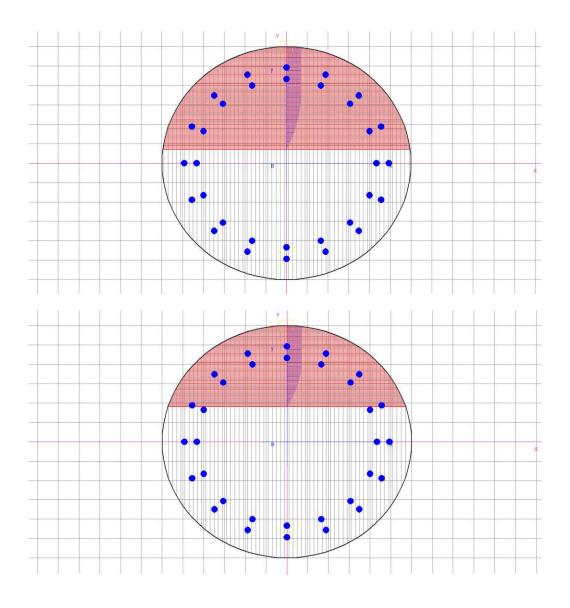
(Tra parentesi è indicata la quota dell'area relativa alle sole legature.

L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio)

N.Comb. Ver Vsdu Vcd Vwd Dmed bw Teta Acw Ast A_Eff

S 58270 298497 97422 97.8 111.1 21.80° 1.250 6.8 11.3(0.0)

S 58270 254985 98431 98.9 108.5 21.80° 1.082

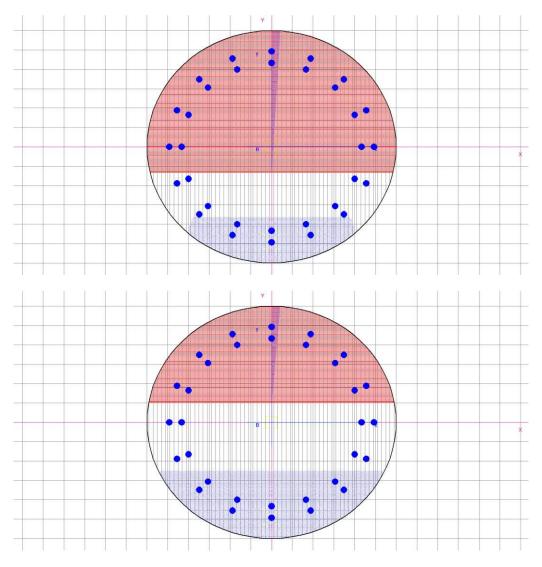


COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

Ver	S = combinazione verificata / N = combin. non verificata
Sc max	Massima tensione positiva di compressione nel conglomerato [daN/cm²]
Xc max	Ascissa in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)
Yc max	Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)
Sf min	Minima tensione negativa di trazione nell'acciaio [daN/cm²]
Xf min	Ascissa in cm della barra corrisp. a Sf min (sistema rif. X,Y,O)
Yf min	Ordinata in cm della barra corrisp. a Sf min (sistema rif. X,Y,O)
Ac eff.	Area di conglomerato [cm²] in zona tesa considerata aderente alle barre
D fess.	Distanza calcolata tra le fessure espressa in mm
К3	Coeff. di normativa dipendente dalla forma del diagramma delle tensioni
Ap.fess.	Apertura calcolata delle fessure espressa in mm

N.Comb. Ver Sc max Xc max Yc max Sf min Xf min Yf min

1	S	82.9	0.0	0.0	-615	0.0 -49.3
2	ς	81 9	0.0	0.0	-1478	0.0 -49.3

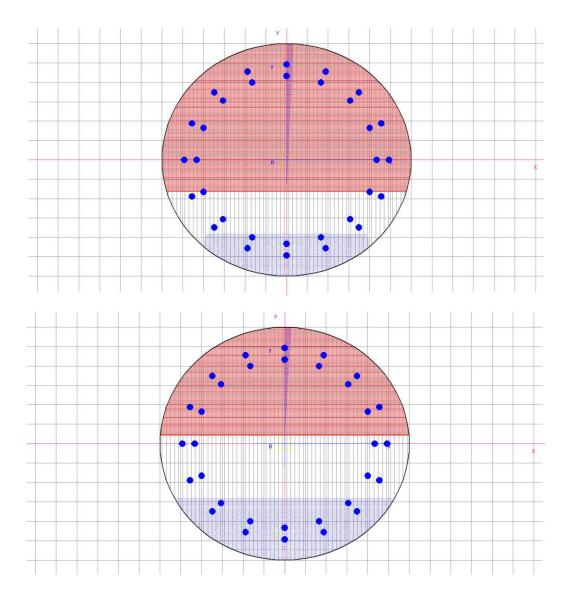


COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

N.Comb. Ver Sc max Xc max Yc max Sf min Xf min Yf min Ac eff. D fess. K3 Ap.Fess.

S 62.8 0.0 0.0 -406 0.0 -49.3 1368 247 0.132 0.033

2 S 62.1 0.0 0.0 -894 0.0 -49.3 2422 265 0.167 0.127

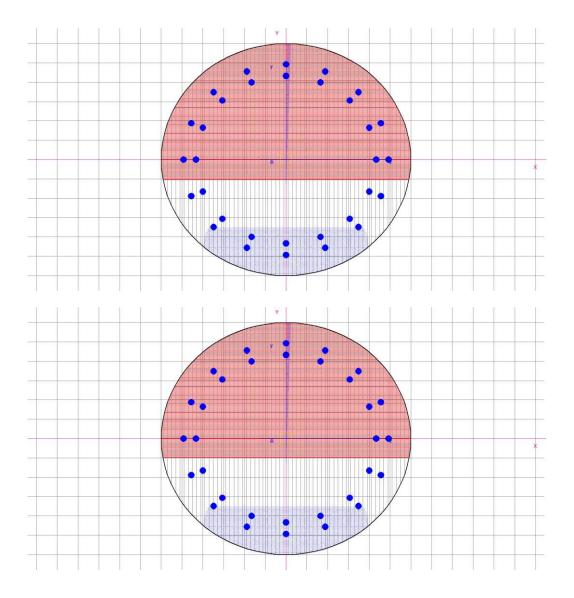


COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

N.Comb. Ver Sc max Xc max Yc max Sf min Xf min Yf min Ac eff. D fess. K3 Ap.Fess.

S 45.7 0.0 0.0 -379 0.0 -49.3 1595 261 0.144 0.032 1

S 45.7 0.0 0.0 -387 0.0 -49.3 1595 262 0.145 0.033 2



PALI PILE

7.1 SOLLECITAZIONI DI PROGETTO ALLA TESTA DEI PALI

Seguono tabelle delle sollecitazioni alla testa dei pali ricavate dalla Relazione di calcolo delle sovrastrutture per le diverse combinazioni di carico.

CAVALCAVIA STRADA VICINALE DELLE COSTE – PALI DI FONDAZIONE – RELAZIONE STRUTTURALE E GEOTECNICA

			PALO 1	PALO 2	PALO 3	PALO 4	PALO 5	PALO 6	PALO 7	PALO 8	PALI
COMB	INAZIONI DI CARICO		N _{Sd.1}	N _{Sd.2}	N _{Sd.3}	N _{Sd.4}	N _{Sd.5}	N _{Sd.6}	N _{Sd.7}	N _{Sd.8}	V _{Sd}
			[kN]	[kN]							
OLE OLIAGI DEDMANENTI	GEN Q.P.(max)	-	1 793.81	1 793.81	1 793.81	1 793.81	1 756.96	1 756.96	1 756.96	1 756.96	3.49
SLE - QUASI PERMANENTI	GEN Q.P.(min)	-	1 814.57	1 814.57	1 814.57	1 814.57	1 723.71	1 723.71	1 723.71	1 723.71	8.61
	GEN FREQ Mobili(max)	-	1 845.38	1 937.03	2 028.68	2 120.33	1 837.96	1 929.61	2 021.25	2 112.90	1.30
	GEN FREQ Vento(max)	-	1 772.94	1 789.70	1 806.47	1 823.23	1 727.74	1 744.50	1 761.27	1 778.03	8.39
SLE - FREQUENTI	GEN FREQ Termico(max)	-	1 795.41	1 795.41	1 795.41	1 795.41	1 756.83	1 756.83	1 756.83	1 756.83	3.66
SLE - FREQUENTI	GEN FREQ Mobili(min)	-	1 976.05	1 884.41	1 792.76	1 701.11	1 837.17	1 745.52	1 653.87	1 562.22	13.20
	GEN FREQ Vento(min)	-	1 799.69	1 816.46	1 833.22	1 849.98	1 688.29	1 705.05	1 721.81	1 738.58	12.78
	GEN FREQ Termico(min)	-	1 827.52	1 827.52	1 827.52	1 827.52	1 709.49	1 709.49	1 709.49	1 709.49	11.18
	GEN RARA Mobili(max)	-	1 804.33	2 033.88	2 263.43	2 492.98	1 815.21	2 044.76	2 274.31	2 503.86	20.72
	GEN RARA Vento(max)	-	1 713.75	1 891.21	2 068.66	2 246.11	1 713.10	1 890.55	2 068.00	2 245.46	36.29
	GEN RARA Frenam(max)	-	1 985.42	2 076.66	2 167.89	2 259.13	1 699.50	1 790.74	1 881.97	1 973.21	27.10
SLE - RARE	GEN RARA Termico(max)	-	1 757.18	1 900.15	2 043.12	2 186.08	1 778.14	1 921.10	2 064.07	2 207.03	21.52
SLE - KARE	GEN RARA Mobili(min)	-	2 019.87	1 893.79	1 767.70	1 641.62	1 895.39	1 769.31	1 643.22	1 517.13	26.61
	GEN RARA Vento(min)	-	1 835.16	1 830.14	1 825.12	1 820.11	1 716.89	1 711.87	1 706.85	1 701.83	39.60
	GEN RARA Frenam(min)	-	2 106.83	2 015.59	1 924.36	1 833.12	1 703.29	1 612.05	1 520.82	1 429.58	38.24
	GEN RARA Termico(min)	-	1 895.20	1 855.70	1 816.19	1 776.69	1 755.32	1 715.82	1 676.32	1 636.81	26.65
	GEN SLU Mobili(max)	-	2 469.75	2 787.40	3 105.05	3 422.70	2 486.60	2 804.25	3 121.90	3 439.55	31.33
SLU - STR	GEN SLU Vento(max)	-	2 339.70	2 592.20	2 844.70	3 097.19	2 340.98	2 593.48	2 845.97	3 098.47	54.56
	GEN SLU Frenamento(max)	-	2 725.86	2 849.03	2 972.19	3 095.36	2 342.03	2 465.19	2 588.36	2 711.53	36.38
	GEN SLU Termico(max)	-	2 407.34	2 608.11	2 808.87	3 009.64	2 434.55	2 635.31	2 836.08	3 036.84	32.38
	GEN SLU Mobili(min)	-	2 756.99	2 594.54	2 432.08	2 269.62	2 600.83	2 438.37	2 275.91	2 113.45	38.51
	GEN SLU Vento(min)	-	2 499.86	2 506.03	2 512.19	2 518.35	2 352.08	2 358.24	2 364.40	2 370.56	58.54
	GEN SLU Frenamento(min)	-	2 886.02	2 762.85	2 639.69	2 516.52	2 353.13	2 229.96	2 106.79	1 983.62	50.50
	GEN SLU Termico(min)	-	2 587.44	2 541.87	2 496.30	2 450.73	2 413.73	2 368.16	2 322.59	2 277.02	38.28
	GEN SLV Long(max)	1	643.52	726.21	808.91	891.61	1 774.00	1 856.69	1 939.39	2 022.08	200.13
	GEN SLV Long(max)	2	622.23	704.93	787.63	870.32	1 752.71	1 835.41	1 918.10	2 000.80	200.13
	GEN SLV Long(max)	3	659.25	731.46	803.66	875.87	1 789.73	1 861.94	1 934.14	2 006.35	189.55
	GEN SLV Long(max)	4	637.97	710.18	782.38	854.58	1 768.45	1 840.65	1 912.86	1 985.06	189.55
	GEN SLV Trasv(max)	1	761.76	1 037.34	1 312.91	1 588.49	1 075.43	1 351.01	1 626.58	1 902.16	238.48
	GEN SLV Trasv(max)	2	740.48	1 016.05	1 291.63	1 567.20	1 054.15	1 329.72	1 605.30	1 880.87	238.48
	GEN SLV Trasv(max)	3	787.99	1 063.56	1 339.14	1 614.71	1 049.20	1 324.78	1 600.35	1 875.93	232.59
	GEN SLV Trasv(max)	4	766.70	1 042.28	1 317.85	1 593.43	1 027.92	1 303.50	1 579.07	1 854.65	232.59
	GEN SLV Vert(max)	1	1 112.40	1 195.17	1 277.94	1 360.70	1 427.07	1 509.84	1 592.61	1 675.37	88.29
	GEN SLV Vert(max)	2	1 128.14	1 200.42	1 272.69	1 344.97	1 442.81	1 515.09	1 587.36	1 659.64	60.49
	GEN SLV Vert(max)	3	1 138.63	1 221.40	1 304.16	1 386.93	1 400.85	1 483.61	1 566.38	1 649.15	70.79
SLV	GEN SLV Vert(max)	4	1 154.37	1 226.64	1 298.92	1 371.19	1 416.58	1 488.86	1 561.13	1 633.41	29.58
OLV.	GEN SLV Long(min)	1	2 027.59	1 955.39	1 883.19	1 810.98	769.40	697.19	624.99	552.79	201.53
	GEN SLV Long(min)	2	2 006.31	1 934.11	1 861.90	1 789.70	748.12	675.91	603.71	531.50	201.53
	GEN SLV Long(min)	3	2 043.33	1 960.64	1 877.94	1 795.24	785.14	702.44	619.74	537.05	211.52
	GEN SLV Long(min)	4	2 022.05	1 939.35	1 856.66	1 773.96	763.85	681.16	598.46	515.76	211.52
	GEN SLV Trasv(min)	1	1 898.86	1 623.29	1 347.71	1 072.14	1 509.93	1 234.35	958.78	683.20	233.49
	GEN SLV Trasv(min)	2	1 877.58	1 602.00	1 326.43	1 050.85	1 488.64	1 213.07	937.49	661.92	233.49
	GEN SLV Trasv(min)	3	1 925.09	1 649.51	1 373.94	1 098.36	1 483.70	1 208.12	932.55	656.97	241.50
	GEN SLV Trasv(min)	4	1 903.81	1 628.23	1 352.66	1 077.08	1 462.42	1 186.84	911.27	635.69	241.50
	GEN SLV Vert(min)	1	1 511.20	1 438.92	1 366.65	1 294.37	1 121.26	1 048.99	976.71	904.44	36.02
	GEN SLV Vert(min)	2	1 526.93	1 444.17	1 361.40	1 278.64	1 137.00	1 054.23	971.47	888.70	73.71
	GEN SLV Vert(min)	3	1 537.43	1 465.15	1 392.87	1 320.60	1 095.04	1 022.76	950.49	878.21	71.49
	GEN SLV Vert(min)	4	1 553.16	1 470.40	1 387.63	1 304.86	1 110.77	1 028.01	945.24	862.47	96.16

Nella tabella successiva sono riepilogati i valori massimi e minimi delle azioni agenti sui pali di fondazione (inviluppati per le due pile):

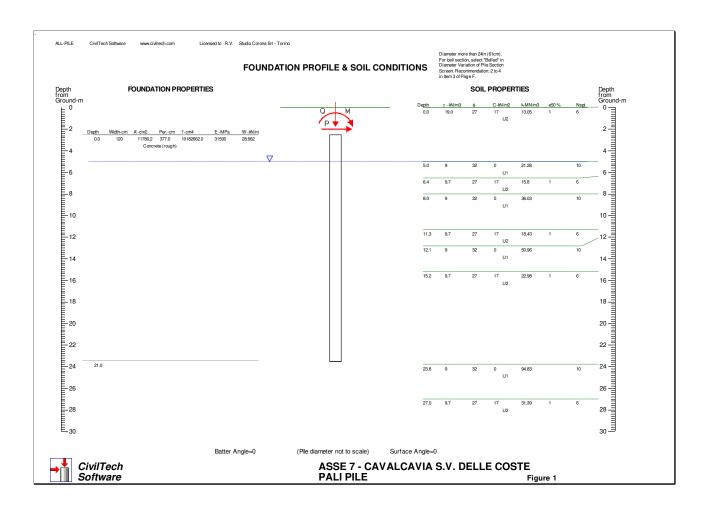
MASSIMI / MINIMI	N _{Sd,max} [kN]	N _{Sd,min} [kN]	V _{Sd} [kN]
SLE - QUASI PERMANENTE	1 814.57	1 723.71	8.61
SLE - FREQUENTI	2 120.33	1 562.22	13.20
SLE - CARATTERISTICHE	2 503.86	1 429.58	39.60
SLU - STR	3 439.55	1 983.62	58.54
SLV	2 043.33	515.76	241.50

7.2 CALCOLO DELLE CARATTERISTICHE DI SOLLECITAZIONE E DEFORMAZIONE DEL PALO

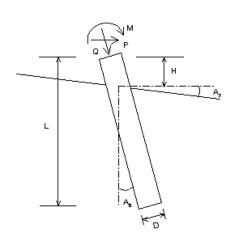
Il calcolo delle caratteristiche di sollecitazione e deformazione del palo viene effettuato mediante il programma di calcolo "Allpile", vers. 7.12, CivilTech Software, Bellevue, WA USA.

La testa del palo risulta a circa 2 m di profondità dal p.c.

Seguono i diagrammi risultanti dalle analisi verticale e laterale del palo.



Si omettono i tabulati in quanto i risultati grafici del programma AllPile sono completamente esaustivi.



VERTICAL ANALYSIS

Figure 1

Loads

Load Factor for Vertical Loads = 1.0 Load Factor for Lateral Loads = 1.0 Loads Supported by Pile Cap= 0 % Shear Condition: Static

Vertical Load, Q= 3439.6 -kN Shear Load, P= 241.5 -kN Slope Restain St= 0.00 -cm/-cm

Profile:

Pile Length, L= 21.0 -m Top Height, H= -2.5 -m Slope Angle, As= 0 Batter Angle, Ab= 0 Fixed Head Condition

Drilled Shaft (dia >24 in. or 61 cm)

Soil D	ata:						Pile Da	ıta:					
Depth	Gamma	Phi	С	K	e50 or Dr	Nspt	Depth	Width	Area	Per.	1	E	Weight
-m	-kN/m3		-kN/m2	-MN/m3	%		-m	-cm	-cm2	-cm	-cm4	-MPa	-kN/m
0	19.0	27	17	13.05	1	6	0.0	120	11780.2	2 377.0	10182662	.031500	28.662
5	9	32	0	21.28	60	10	21.0						
6.4	9.7	27	17	15.8	1	6							
8	9	32	0	36.03	60	10							
11.3	9.7	27	17	18.43	1	6							
12.1	9	32	0	50.96	60	10							
15.2	9.7	27	17	22.98	1	6							
23.8	9	32	0	94.83	60	10							
27	9.7	27	17	31.39	1	6							

Vertical capacity:

Weight above Ground= 0.00 Total Weight= 396.06-kN *Soil Weight is not included Side Resistance (Down)= 4799.680-kN Side Resistance (Up)= 3109.806-kN

Tip Resistance (Down)= 3372.669-kN Tip Resistance (Up)= 0.000-kN

Total Ultimate Capacity (Down)= 8172.349-kN Total Ultimate Capacity (Up)= 3505.863-kN

Total Allowable Capacity (Down)= 3866.218-kN Total Allowable Capacity (Up)= 1876.917-kN

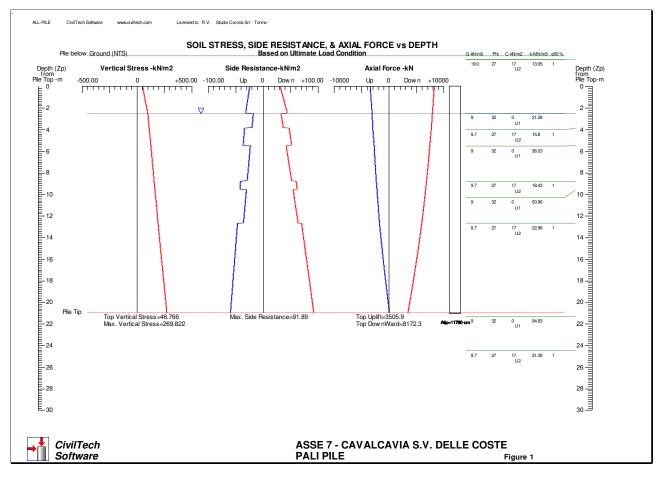
OK! Qallow > Q

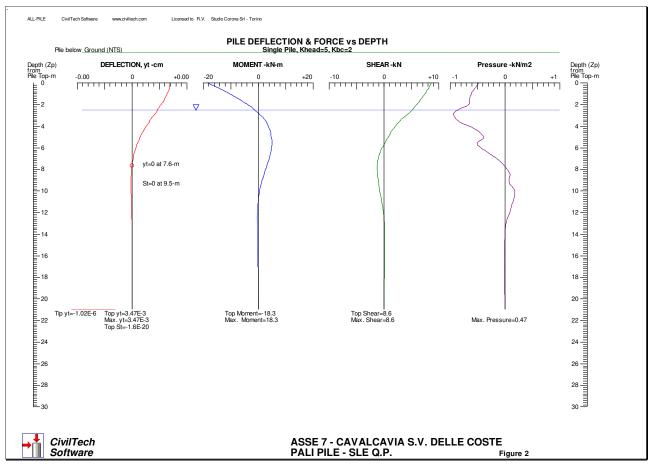
Settlement Calculation:

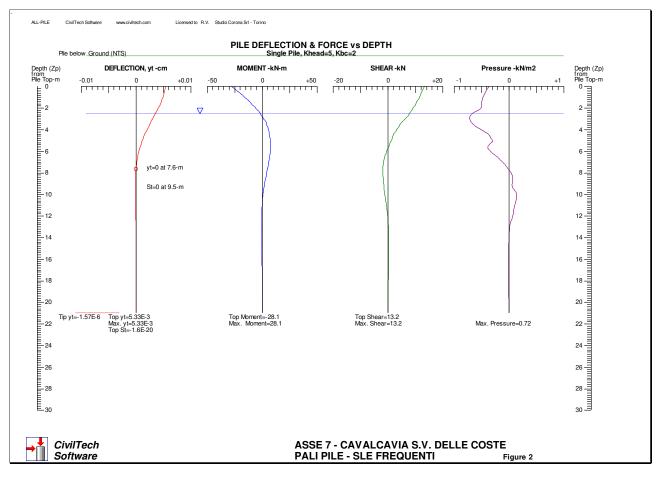
At Q= 3439.55-kN Settlement= 0.47020-cm At Xallow= 2.00-cm Qallow= 6074.23438-kN

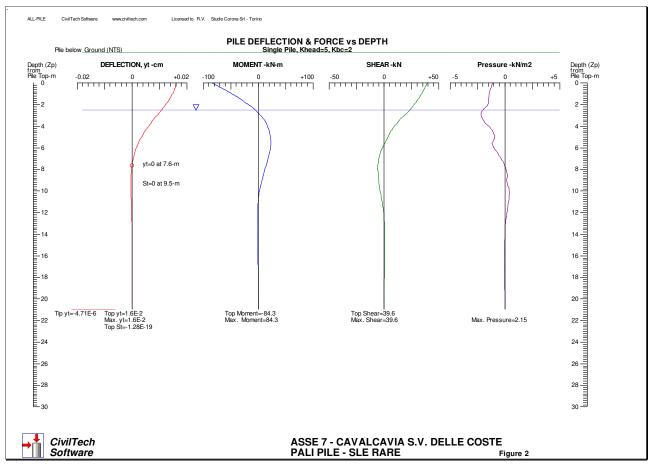
Note: If the program cannot find a result or the result exceeds the upper limit. The result will be displayed as 99999.

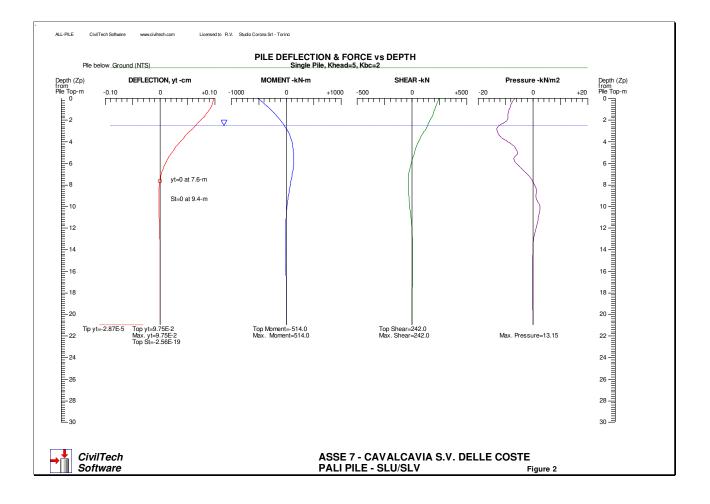
ASSE 7 - CAVALCAVIA S.V. DELLE COST PALI PILE











7.3 VERIFICA DEI PALI SOGGETTI A CARICO VERTICALE

La verifica viene svolta allo stato limite ultimo; in riferimento alle NTC 2008, si sceglie l'approccio 2, con le combinazioni A1/M1/R3 in cui si applicano i coefficienti parziali alle caratteristiche resistenti del palo:

- resistenza laterale in compressione: $\gamma_s = 1.15$ - resistenza alla base: $\gamma_b = 1.35$ - fattore di correlazione: $\xi_4 = 1.70$

Si ottiene:

- Sforzo verticale di progetto: $N_{sd} = 3439.6 \text{ kN}$

- Resistenza di progetto: $R_{sd} = 3866.2 \; kN \qquad (\; R_{sd} > N_{sd} \;) \label{eq:Resistenza}$

- Cedimento verticale: DZ = 4.70 mm (ammissibile)

7.4 PALI SOGGETTI A CARICO ORIZZONTALE - VERIFICA DI RESISTENZA DEL TERRENO

I coefficienti parziali (A1/M1/R3) risultano:

- resistenza laterale terreno: $\gamma_t = 1.30$ - fattore di correlazione: $\xi_4 = 1.70$

CAVALCAVIA STRADA VICINALE DELLE COSTE – PALI DI FONDAZIONE – RELAZIONE STRUTTURALE E GEOTECNICA

La resistenza di progetto del terreno si ottiene dalla formula:

$$R_{\text{sd}} = \, \alpha \frac{\lambda_p \times \sigma_v \, + 2 \times c' \!\! \times \!\! \sqrt{\lambda_p}}{\gamma_t \times \! \xi_3} \qquad \qquad \text{in cui:} \label{eq:Rsd}$$

 α = 3: coefficiente correttivo per tener conto dell'effetto arco

λ_p: coefficiente di spinta passiva

 σ_v : pressione geostatica efficace

c': coesione drenata

Segue il tabulato del calcolo svolto.

Il minimo coefficiente di sicurezza (resistenza / pressione) si ottiene a Zp = 0.00 m e vale:

$$R_{sd} / P_d = 89.69 / 6.6 = 13.6$$
 (>1: verificato)

Zp - Depth from pile Top yt - Pile top deflection Moment - Internal moment in pile shaft Shear - Internal shear force in pile shaft Pressure - Soil-Pile interactive pressure (Arching is considered) Slope - Deflection slope at pile top

Ζp	yt	Moment	Shear	Pressure	Slope	Terreno	Gamma	C'	λр	σν	R_Sd	Verifica ?
(m) 0	(cm) 0.1	(kN.m) -514	(kN) 242	(kN/m2) -6.6	0	U2	(kN/m3) 19.5	(kN/m2) 17	0.8775	(kN/m2) 39	(kN/m2) 89.690	R/P > 1 13.589
0.2	0.1	-463	235.5	-7.1	-0.00002	U2	19.5	17	2.6629	42.9	230.390	32.449
0.4 0.6	0.1 0.09	-414 -367	228.5 221.3	-7.6 -8	-0.00005 -0.00007	U2 U2	19.5 19.5	17 17	2.6629 2.6629	46.8 50.7	244.488 258.586	32.169 32.323
0.8	0.09	-321	213.9	-8.3	-0.00007	U2	19.5	17	2.6629	56.55	279.732	33.703
1.1	0.09	-278	205.9	-8.6	-0.00012	U2	19.5	17	2.6629	60.45	293.830	34.166
1.3 1.5	0.09 0.08	-236 -196	197.5 188.6	-8.8 -9	-0.00014 -0.00016	U2 U2	19.5 19.5	17 17	2.6629 2.6629	64.35 68.25	307.928 322.026	34.992 35.781
1.7	0.08	-157	179.6	-9.1	-0.00016	U2	19.5	17	2.6629	72.15	336.123	36.937
1.9 2.1	0.08 0.07	-121 -87.1	170.3 160.4	-9.1 -9.6	-0.00018 -0.00019	U2 U2	19.5 19.5	17 17	2.6629 2.6629	76.05 79.95	350.221 364.319	38.486 37.950
2.3	0.07	-54.9	149.8	-11.2	-0.0002	U2	19.5	17	2.6629	83.85	378.416	33.787
2.5 2.8	0.06 0.06	-24.6 2.6	138.6 126.5	-12.6 -13.1	-0.00019 -0.0002	U2 U2	19.5 19.5	17 17	2.6629 2.6629	87.75 93.6	392.514 413.661	31.152 31.577
3	0.06	26.8	113.7	-13.1	-0.0002	U2	19.5	17	2.6629	97.5	427.758	32.653
3.2 3.4	0.05 0.05	48 66.4	100.6 87.7	-12.8 -12.3	-0.0002 -0.0002	U1 U1	9	0	3.2546 3.2546	99.3 101.1	438.708 446.661	34.274 36.314
3.6	0.04	82.2	75.4	-11.4	-0.00018	U1	9	0	3.2546	102.9	454.613	39.878
3.8 4	0.04 0.04	95.4 106	64.3 54.4	-10 -8.6	-0.00018 -0.00018	U1 U1	9	0	3.2546 3.2546	104.7 106.5	462.566 470.518	46.257 54.711
4.2	0.03	115	45.5	-7.6	-0.00017	U1	9	0	3.2546	108.3	478.470	62.957
4.4 4.7	0.03	123 129	37.5 30.2	-6.8 -6.1	-0.00016 -0.00015	U1 U2	9 9.7	0 17	3.2546 2.6629	110.1 113.01	486.423 483.824	71.533 79.315
4.7	0.03	134	23.7	-5.5	-0.00015	U2	9.7	17	2.6629	114.95	490.837	89.243
5.1	0.02	137	17.5	-5.5	-0.00013	U2	9.7	17	2.6629	116.89	497.849	90.518
5.3 5.5	0.02 0.01	140 141	11.3 4.9	-6.4 -7	-0.00013 -0.00011	U2 U1	9.7 9.7	17 17	2.6629 2.6629	118.83 120.77	504.862 511.875	78.885 73.125
5.7	0.01	141	-1.7	-6.9	-0.00011	U1	9.7	17	2.6629	122.71	518.887	75.201
5.9 6.2	0.01 0.01	139 136	-8.4 -14.7	-6.2 -5.4	-0.0001 -0.00009	U1 U1	9.7 9	17 0	2.6629 3.2546	124.65 127.35	525.900 562.633	84.822 104.191
6.4	0.01	131	-20.1	-4.5	-0.00008	U1	9	0	3.2546	129.15	570.586	126.797
6.6 6.8	0.01 0	125 119	-24.6 -28.2	-3.6 -2.7	-0.00007 -0.00006	U1 U1	9	0	3.2546 3.2546	130.95 132.75	578.538 586.491	160.705 217.218
7	0	112	-31.1	-2	-0.00006	U1	9	0	3.2546	134.55	594.443	297.220
7.2 7.4	0	105 97	-33.3 -34.7	-1.3 -0.6	-0.00005 -0.00004	U1 U1	9	0	3.2546 3.2546	136.35 138.15	602.396	463.378 1017.230
7.4	0	89.2	-35.5	-0.6	-0.00004	U1	9	0	3.2546	139.95	618.300	6182.385
7.8	0	81.5	-35.7	0.4	-0.00003 -0.00002	U1 U1	9	0	3.2546 3.2546	141.75	626.253 638.181	1565.593
8.1 8.3	0	73.8 66.3	-35.4 -34.6	0.8 1.1	-0.00002	U1	9	0	3.2546	144.45 146.25	646.134	797.717 587.389
8.5	0	59.1	-33.5	1.3	-0.00001	U1	9	0	3.2546	148.05	654.086	503.139
8.7 8.9	0	52.2 45.6	-32.4 -31.2	1.3 1.1	-0.00001 -0.00001	U1 U1	9	0	3.2546 3.2546	149.85 151.65	662.039 669.991	509.257 609.077
9.1	0	39.3	-30.1	1.1	0	U1	9	0	3.2546	153.45	677.943	616.307
9.3 9.6	0	33.1 27.2	-28.8 -27.3	1.2 1.8	0	U1 U2	9 9.7	0 17	3.2546 2.6629	155.25 158.16	685.896 647.032	571.575 359.460
9.8	0	21.5	-25.5	2.3	0	U2	9.7	17	2.6629	160.1	654.045	284.366
10 10.2	0	16.4 12	-23.3 -20.9	2.5 2.5	0.00001	U2 U2	9.7 9.7	17 17	2.6629 2.6629	162.04 163.98	661.057 668.070	264.422 267.227
10.4	0	8.1	-18.4	2.5	0.00001	U1	9	0	3.2546	165.78	732.418	292.966
10.6 10.8	0	4.7 1.9	-16 -13.7	2.4 2.2	0.00001 0.00001	U1 U1	9	0	3.2546 3.2546	167.58 169.38	740.370 748.322	308.486 340.145
11	0	-0.5	-11.4	2	0.00001	U1	9	0	3.2546	171.18	756.275	378.136
11.2 11.4	0	-2.4 -3.9	-9.4 -7.5	1.9 1.7	0.00001 0.00001	U1 U1	9	0	3.2546 3.2546	172.98 174.78	764.227 772.180	402.223 454.221
11.7	0	-3. 9 -5	-7.5	1.5	0.00001	U1	9	0	3.2546	177.48	784.108	522.735
11.9 12.1	0	-5.9 -6.4	-4.2 -2.8	1.3 1.2	0.00001 0.00001	U1 U1	9	0	3.2546 3.2546	179.28 181.08	792.061 800.013	609.273 666.672
12.3	0	-6.7	-1.7	1.2	0.00001	U1	9	0	3.2546	182.88	807.965	807.957
12.5	0	-6.7	-0.7	0.7	0	U1 U1	9	0	3.2546	184.68	815.918 823.870	1165.580
12.7 12.9	0	-6.6 -6.4	0.6	0.5 0.3	0	U1	9	0	3.2546 3.2546	186.48 188.28		1647.708 2772.650
13.1	0	-6.1	1	0.2	0	U1	9	0	3.2546	190.08		4198.666
13.4 13.6	0	-5.8 -5.5	1.2 1.4	0.2 0.1	0	U2 U2	9.7 9.7	17 17	2.6629 2.6629	192.99 194.93		3864.483 7798.699
13.8	0	-5.2	1.6	0.1	0	U2	9.7	17	2.6629	196.87		7868.819
14 14.2	0	-4.8 -4.4	1.7 1.7	0	0	U2 U2	9.7 9.7	17 17	2.6629 2.6629	198.81 200.75		9999.000 9999.000
14.4	0	-4	1.7	0	0	U2	9.7	17	2.6629	202.69	807.999	9999.000
14.6 14.9	0	-3.6 -3.3	1.7 1.7	0 -0.1	0	U2 U2	9.7 9.7	17 17	2.6629 2.6629	204.63 207.54		9999.000 8254.480
15.1	0	-2.9	1.7	-0.1	0	U2	9.7	17	2.6629	209.48	832.543	8324.600
15.3 15.5	0	-2.6 -2.3	1.6 1.5	-0.1 -0.1	0	U2 U2	9.7 9.7	17 17	2.6629 2.6629	211.42 213.36		8394.720 8464.840
15.7	0	-2	1.4	-0.1	0	U2	9.7	17	2.6629	215.3	853.581	8534.960
15.9 16.1	0	-1.7 -1.4	1.3 1.2	-0.1 -0.1	0	U2 U2	9.7 9.7	17 17	2.6629 2.6629	217.24 219.18		8605.080 8675.200
16.3	0	-1.2	1.1	-0.1	0	U2	9.7	17	2.6629	221.12	874.619	8745.320
16.5 16.8	0	-1 -0.8	1 0.9	-0.1 -0.1	0	U2 U2	9.7 9.7	17 17	2.6629 2.6629	223.06 225.97		8815.440 8920.620
17	0	-0.6	0.8	-0.1	0	U2	9.7	17	2.6629	227.91		2996.913
17.2	0	-0.5	0.7	-0.1	0	U2	9.7	17	2.6629	229.85		3020.287
17.4 17.6	0	-0.3 -0.2	0.6 0.5	-0.1 -0.1	0	U2 U2	9.7 9.7	17 17	2.6629 2.6629	231.79 233.73		3043.660 3067.033
17.8	0	-0.1	0.4	-0.1	0	U2	9.7	17	2.6629	235.67	309.072	3090.407
18 18.2	0	-0.1 0	0.3 0.3	-0.1 -0.1	0	U2 U2	9.7 9.7	17 17	2.6629 2.6629	237.61 239.55		3113.780 3137.153
18.5	0	0	0.2	-0.1	0	U2	9.7	17	2.6629	242.46	317.253	3172.213
18.7 18.9	0	0.1 0.1	0.1 0.1	-0.1 0	0	U2 U2	9.7 9.7	17 17	2.6629 2.6629	244.4 246.34		3195.587 9999.000
19.1	0	0.1	0.1	0	0	U2	9.7	17	2.6629	248.28	324.266	9999.000
19.3 19.5	0	0.1 0.1	0	0	0	U2 U2	9.7 9.7	17 17	2.6629 2.6629	250.22 252.16		9999.000 9999.000
19.7	0	0.1	0	0	0	U2	9.7	17	2.6629	254.1	331.278	9999.000
19.9 20.1	0	0.1 0	-0.1	0	0	U2 U2	9.7 9.7	17 17	2.6629 2.6629	256.04 257.98		9999.000 9999.000
20.4	0	0	-0.1	0	0	U2	9.7	17	2.6629	260.89	339.460	9999.000
20.6 20.8	0	0	0	0	0	U2 U2	9.7 9.7	17 17	2.6629 2.6629	262.83 264.77		9999.000 9999.000
21	0	0	0	0	0	U2	9.7	17	2.6629	266.71		9999.000

7.5 VERIFICHE STRUTTURALI PALO

Si effettuano le verifiche a pressoflessione e taglio allo stato limite ultimo (verifiche di resistenza) e agli stati limite di esercizio (limitazione tensioni e fessurazione).

La sezione ha le seguenti caratteristiche:

- raggio: r = 60 cm

- armature long.: $16 \varnothing 24$, r = 60 - 8 - 1.2 - 2.4/2 = 49.6 cm

- spirale: Ø 12, passo 20 cm.

7.5.1 VERIFICHE DI RESISTENZA ALLO STATO LIMITE ULTIMO

7.5.1.1 Massimo sforzo assiale

Sollecitazioni Resistenze

Sforzo assiale: $N_{Sd} = 3439.5 \text{ kN}$

Momento flettente: $M_{Sd} = 514 \text{ kN.m}$ $M_{Rd} = 2346 \text{ kN.m}$ \rightarrow Verificato: $M_{Rd} > M_{Sd}$ Sforzo tagliante: $V_{Sd} = 242.0 \text{ kN}$ $V_{Rd} = 2880 \text{ kN}$ \rightarrow Verificato: $V_{Rd} > V_{Sd}$

7.5.1.2 Minimo sforzo assiale

Sollecitazioni Resistenze

Sforzo assiale: $N_{Sd} = 515.8 \text{ kN}$

Momento flettente: $M_{Sd} = 514 \text{ kN.m}$ $M_{Rd} = 1526 \text{ kN.m}$ \rightarrow Verificato: $M_{Rd} > M_{Sd}$ Sforzo tagliante: $V_{Sd} = 242.0 \text{ kN}$ $V_{Rd} = 2272 \text{ kN}$ \rightarrow Verificato: $V_{Rd} > V_{Sd}$

7.5.2 VERIFICHE TENSIONALI ALLO STATO LIMITE DI ESERCIZIO – COMBINAZIONI RARE

7.5.2.1 Massimo sforzo assiale

Sollecitazioni

Sforzo assiale: $N_{Sd} = 2504 \text{ kN}$ Momento flettente: $M_{Sd} = 84.3 \text{ kN.m}$

Tensione massima cls.: $s_c = 2.46 \text{ N/mm}^2$ \rightarrow Verificato: $s_c < s_1 = 15 \text{ N/mm}^2$ Tensione massima ferri: $s_f = -24.85 \text{ N/mm}^2$ \rightarrow Verificato: $s_f < s_3 = 360 \text{ N/mm}^2$

Nota: sezione interamente reagente

7.5.2.2 Minimo sforzo assiale

Sollecitazioni

Sforzo assiale: $N_{Sd} = 1430 \text{ kN}$ Momento flettente: $M_{Sd} = 84.3 \text{ kN.m}$

Tensione massima cls.: $s_c = 1.59 \text{ N/mm}^2$ \rightarrow Verificato: $s_c < s_1 = 15 \text{ N/mm}^2$ Tensione massima ferri: $s_f = -11.85 \text{ N/mm}^2$ \rightarrow Verificato: $s_f < s_3 = 360 \text{ N/mm}^2$

Nota: sezione interamente reagente

7.5.3 VERIFICHE DI FESSURAZIONE

La sezione risulta interamente reagente per ogni combinazione di esercizio.

Si omettono le verifiche di fessurazione.

7.5.4 TABULATO DI CALCOLO

Segue tabulato di calcolo eseguito con il programma "RC-Sec", realizzato da GeoStru Software S.a.s., Lungomare snc, 89032 – Bianco (RC).

DATI GENERALI SEZIONE IN C.A. NOME SEZIONE: SV COSTE PILE

Descrizione Sezione: CAVALCAVIA S.V. DELLE COSTE - PALI PILE

Metodo di calcolo resistenza:

Tipologia sezione:

Normativa di riferimento:

Percorso sollecitazione:

Stati Limite Ultimi

Sezione generica

N.T.C.

A Sforzo Norm. costante

Condizioni Ambientali:

Riferimento Sforzi assegnati:

Riferimento alla sismicità:

Posizione sezione nell'asta:

Assi x,y principali d'inerzia

Zona non sismica

In zona critica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CONGLOMERATO - Classe: C25/30

Resis. compr. di calcolo fcd : 141.60 daN/cm²
Resis. compr. ridotta fcd': 70.80 daN/cm²
Def.unit. max resistenza ec2 : 0.0020
Def.unit. ultima ecu : 0.0035

Diagramma tensione-deformaz. : Parabola-Rettangolo Modulo Elastico Normale Ec : 314750 daN/cm²

Coeff. di Poisson : 0.20

Resis. media a trazione fctm: 25.60 daN/cm²

Coeff. Omogen. S.L.E. : 15.0
Combinazioni Rare in Esercizio (Tens.Limite):
Sc Limite : 150.00 daN/cm²
Apert.Fess.Limite : Non prevista

ACCIAIO - Tipo: B450C

Resist. caratt. snervam. fyk: 4500.0 daN/cm²
Resist. caratt. rottura ftk: 4500.0 daN/cm²
Resist. snerv. di calcolo fyd: 3913.0 daN/cm²
Resist. ultima di calcolo ftd: 3913.0 daN/cm²
Deform. ultima di calcolo Epu: 0.068
Modulo Elastico Ef: 2100000 daN/cm²
Diagramma tensione-deformaz.: Bilineare finito
Coeff. Aderenza ist. ß1*ß2: 1.00 daN/cm²
Coeff. Aderenza diff. ß1*ß2: 0.50 daN/cm²
Comb.Rare Sf Limite: 3600.0 daN/cm²

CARATTERISTICHE DOMINI CONGLOMERATO

DOMINIO N° 1

Forma del Dominio: Circolare Classe Conglomerato: C25/30

Raggio circonferenza: 60.00 cm
Ascissa X centro circ.: 0.00 cm
Ordinata Y centro circ.: 0.00 cm

CAVALCAVIA STRADA VICINALE DELLE COSTE – PALI DI FONDAZIONE – RELAZIONE STRUTTURALE E GEOTECNICA

DATI GENERAZIONI CIRCOLARI DI BARRE

N.Gen. Numero assegnato alla singola generazione circolare di barre
 Xcentro Ascissa del centro della circonf. lungo cui sono disposte le barre gen.
 Ycentro Ordinata del centro della circonf. lungo cui sono disposte le barre gen.
 Raggio Raggio in cm della circonferenza lungo cui sono disposte le barre gen.
 N.Barre Numero di barre generate equidist. disposte lungo la circonf.

Diam. Diametro in mm della singola barra generata

N.Gen. Xcentro,cm Ycentro,cm Raggio,cm N.Barre Diam.Ø,mm

1 0.00 0.00 49.60 16 24

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale in daN applicato nel Baric. (+ se di compressione)
 Mx Coppia concentrata in daNm applicata all'asse x princ. d'inerzia con verso positivo se tale da comprimere il lembo sup. della sez.
 My Coppia concentrata in daNm applicata all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro della sez.
 Vy Componente del Taglio [daN] parall. all'asse princ.d'inerzia y
 Vx Componente del Taglio [daN] parall. all'asse princ.d'inerzia x

N.Co	mb.	N	Mx	Му	Vy	Vx	
1	34395	55	51400	0	24200	0	
2	5157	6	51400	0	24200	0	

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale in daN applicato nel Baricentro (+ se di compressione)
 Mx Coppia concentrata in daNm applicata all'asse x princ. d'inerzia con verso positivo se tale da comprimere il lembo superiore della sez.
 My Coppia concentrata in daNm applicata all'asse y princ. d'inerzia

con verso positivo se tale da comprimere il lembo destro della sez.

N.Co	mb.	N	Mx	Му	
1	25038	36	8430	0	
2	1429	58	8430	0	

RISULTATI DEL CALCOLO

Copriferro netto minimo barre longitudinali: 9.2 cm Interferro netto minimo barre longitudinali: 17.0 cm

Copriferro netto minimo staffe: 8.0 cm

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

Ver	S = combinazione verificata / N = combin. non verificata
N	Sforzo normale assegnato [in daN] (positivo se di compressione)
Mx	Momento flettente assegnato [in daNm] riferito all'asse x princ. d'inerzia
My	Momento flettente assegnato [in daNm] riferito all'asse y princ. d'inerzia
N ult	Sforzo normale ultimo [in daN] nella sezione (positivo se di compress.)
Mx ult	Momento flettente ultimo [in daNm] riferito all'asse x princ. d'inerzia
My ult	Momento flettente ultimo [in daNm] riferito all'asse y princ. d'inerzia

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N ult,Mx ult,My ult) e (N,Mx,My) Verifica positiva se tale rapporto risulta >=1.000

N.Co	mb. Ver	Ν	Mx	M	y Nult	Mx ult	My ult	Mis.Sic.	
1	S 343955	5 5:	1400	0	343952	234652	0	4.565	
2	S 51576	51	400	0	51582	152595	0	2.969	

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
ec 3/7	Deform. unit. del conglomerato nella fibra a 3/7 dell'altezza efficace
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
ef min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xf min	Ascissa in cm della barra corrisp. a ef min (sistema rif. X,Y,O sez.)
Yf min	Ordinata in cm della barra corrisp. a ef min (sistema rif. X,Y,O sez.)
ef max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xf max	Ascissa in cm della barra corrisp. a ef max (sistema rif. X,Y,O sez.)
Yf max	Ordinata in cm della barra corrisp. a ef max (sistema rif. X,Y,O sez.)

N.Comb. ec max ec 3/7 Xc max Yc max ef min Xf min Yf min ef max Xf max Yf max

1 0.00350 -0.00056 0.0 60.0 0.00268 0.0 49.6 -0.00516 0.0 -49.6

2 0.00350 -0.00333 0.0 60.0 0.00212 0.0 49.6 -0.01105 0.0 -49.6

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

Coeff. a nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.

b Coeff. b nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.

Coeff. c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. C

x/d Rapp. di duttilità a rottura in presenza di sola fless.(travi)

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N.Comb. b x/d C.Rid.

0.00000000 0.000079009 -0.001240513

0.000000000 0.000132777 -0.004466643

ARMATURE A TAGLIO

Diametro staffe: 12 mm

Passo staffe: 20.0 cm [Passo massimo di normativa = 25.0 cm]

N.Bracci staffe:

METODO AGLI STATI LIMITE ULTIMI - VERIFICHE A TAGLIO

Ver S = comb. verificata a taglio / N = comb. non verificata

Vsdu Taglio agente [daN] = proiez. di Vx e Vy sulla normale all'asse neutro

Vcd Taglio resistente ultimo [daN] lato conglomerato compresso

Taglio resistente [daN] assorbito dalle staffe Vwd

Altezza utile media pesata [cm] valutata lungo strisce ortog. all'asse neutro. Dmed

Vengono prese nella media le strisce con almeno un estremo compresso.

I pesi della media sono costituiti dalle stesse lunghezze delle strisce.

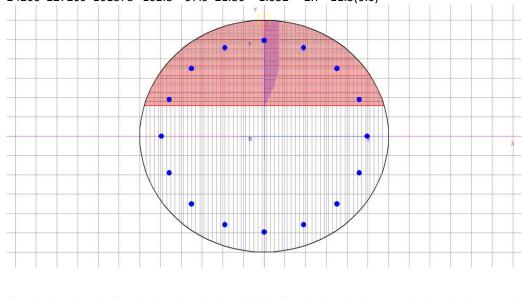
bw Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro. E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed.

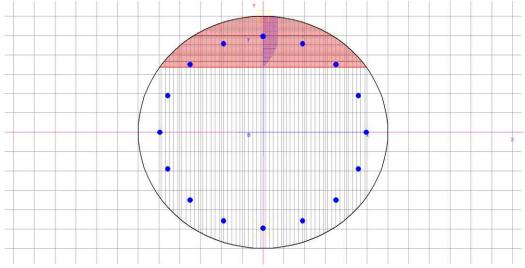
Teta Angolo [gradi sessadec.] di inclinazione dei puntoni di conglomerato

Acw Coefficiente maggiorativo della resistenza a taglio per compressione

Ast Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m]

A_Eff Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m]


(Tra parentesi è indicata la quota dell'area relativa alle sole legature.


L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio)

N.Comb. Ver Vsdu Vcd Vwd Dmed bw Teta Acw Ast A_Eff

1 S 24200 287994 98014 98.4 109.6 21.80° 1.215 2.8 11.3(0.0)

2 S 24200 227209 101878 102.3 97.9 21.80° 1.032 2.7 11.3(0.0)

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

Ver S = combinazione verificata / N = combin. non verificata

Sc max Massima tensione positiva di compressione nel conglomerato [daN/cm²]

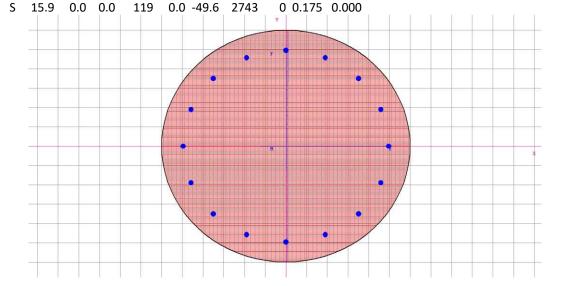
Xc max Ascissa in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)
Yc max Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)

Sf min Minima tensione negativa di trazione nell'acciaio [daN/cm²]
Xf min Ascissa in cm della barra corrisp. a Sf min (sistema rif. X,Y,O)

Yf min Ordinata in cm della barra corrisp. a Sf min (sistema rif. X,Y,O)

CAVALCAVIA STRADA VICINALE DELLE COSTE – PALI DI FONDAZIONE – RELAZIONE STRUTTURALE E GEOTECNICA

Ac eff. Area di conglomerato [cm²] in zona tesa considerata aderente alle barre


D fess. Distanza calcolata tra le fessure espressa in mm

К3 Coeff. di normativa dipendente dalla forma del diagramma delle tensioni

Ap.fess. Apertura calcolata delle fessure espressa in mm

N.Comb. Ver Sc max Xc max Yc max Sf min Xf min Yf min Ac eff. D fess. K3 Ap.Fess.

24.6 0.0 0.0 249 0.0 -49.6 1482 0 0.139 0.000 2

