

DIREZIONE CENTRALE PROGRAMMAZIONE PROGETTAZIONE

PA 12/09

CORRIDOIO PLURIMODALE TIRRENICO - NORD EUROPA ITINERARIO AGRIGENTO - CALTANISSETTA - A19 S.S. N° 640 "DI PORTO EMPEDOCLE" AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

PROGETTO ESECUTIVO

Contraente Generale:

OPERE D'ARTE MAGGIORI **VIADOTTI**

Viadotto Arenella III Relazione di calcolo Impalcato - Carreggiata DX

Cod						
Codice Elaborato:						
PA12_09 - E						
F						
E						
D						
С	Settembre 2011	Aggiornamento Progettuale T. FASOLO	F. NIGRELLI M.	LITI P. PA	GLINI	
В	Luglio 2011	Revisione a seguito di incontri con il Committente T. FASOLO	F. NIGRELLI M.	LITI P. PA	GLINI	
Α	Aprile 2011	EMISSIONE T. FASOLO	F. NIGRELLI M.	LITI P. PA	GLINI	
REV.	DATA DESCRIZIONE REDATTO VERIFICATO APPROVATO AUTORIZZATO					
Respons	sabile del procedi	nento: Ing. MAURIZIO ARAMINI		'		

Il Consulente Specialista:

3TI ITALIA S.p.A. DIRETTORE TECNICO Ing. Stefano Luca Possati Ordine degli Ingegneri Provincia di Roma n. 20809

Il Coordinatore per la sicurezza in fase di progetto:

Il Direttore dei lavori:

5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Favarella

Relazione di Calcolo Impalcato - Carreggiata DX

Pagina 1

Nome file: VI15-F- CL003_C.00_relazione_calcolo_impalcato_DX.doc.

INDICE

1.	Introduzione	3
	1.1 Descrizione generale dell'opera	3
	1.1.1 Impalcato	3
	1.2 Modalità realizzative	5
	1.3 Materiali utilizzati	5 5 5
	1.3.1 Condizioni ambientali e classi di esposizione per l'impalcato 1.3.2 Calcestruzzo	5
	1.3.3 Acciaio per c.a.p.	6
	1.3.4 Acciaio per c.a.	7
	1.4 Normative di riferimento	7
	1.5 Convenzioni generali, per le verifiche e le analisi globali	7
	1.6 Software di calcolo	8
2.	Impostazioni delle analisi e delle verifiche	9
	2.1 Metodologia di calcolo	9
	2.1.1 Coefficienti di viscosità e distribuzione	10
	2.2 Analisi della struttura	12
	2.2.1 Fasi di calcolo	12
	2.3 Dati generali delle sezioni di impalcato	12 12
	2.3.1 Larghezze collaboranti di soletta 2.3.2 Componenti delle sezioni	13
	2.3.2.1 Trave in cap ed armatura di precompressione	13
	2.3.2.2 Soletta centrale e di bordo	15
	2.3.2.3 Armatura lenta in soletta	15
	2.3.2.4 Armatura di rinforzo a fondo cassoncino	16
	2.3.3 Caratteristiche geometriche delle sezioni 2.3.3.1 SA-c (mezzeria) -Travi centrali	17 17
	2.3.3.2 SB-c (FiloRremp) - Travi centrali	17
	2.3.3.3 SD-c (a 9m) - Travi centrali	17
	2.3.3.4 SA-b (mezzeria) -Travi di bordo	18
	2.3.3.5 SB-b (FiloRiemp) - Travi di bordo	18
	2.3.3.6 SD-b (a 9m) - Travi di bordo	19
3.	Descrizione del modello numerico	19
4.	Analisi dei carichi	20
	4.1 Carichi agenti in fase 1 4.1.1 Peso proprio calcestruzzo travi (G _{k1} ')	20
	4.1.1 Peso proprio calcestruzzo travi (G _{k1} ') 4.1.2 Peso proprio soletta (Gk1")	20 20
	4.1.3 Peso proprio traversi (Gk1")	21
	4.1.4 Precompressione (Pk)	21
	4.2 Carichi agenti in fase 2	21
	4.2.1 Sovraccarichi permanenti (Gk2)	21
	4.2.2 Ritiro differenziale trave-soletta (Gsh,k)	22
	4.3 Carichi agenti in fase 3 4.3.1 Variazioni termiche (QTk)	23 23
	4.3.1.1 Variazioni termiche (QTK) 4.3.1.1 Variazioni termiche uniformi Δt _N	23
	4.3.1.2 Variazioni termiche lineari Δt_{M}	23
	4.3.1.3 Combinazione degli effetti uniformi e lineari	23
	4.3.2 Carichi mobili (Qk)	23
	4.3.2.1 Verifiche globali	24
	4.3.2.2 Verifiche locali	24
	4.3.3 Azioni di frenatura (Qlk) 4.3.4 Azione del vento (Fw,k)	24 25
	4.3.5 Sisma	26
5.	Combinazioni di carico	26
6.	Risultati Dell'analisi Strutturale Impalcato	27
	6.1 Sollecitazioni trave	27

CORRIDOIO PLURIMODALE TIRRENICO-NORD EUROPA ITINERARIO AGRIGENTO -CALTANISSETTA-A19 S.S. N° 640 "DI PORTO EMPEDOCLE"

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata DX Pagina 2

Nome file: VI15-F-

CL003_C.00_relazione_calcolo_impalcato_DX.doc.

	6.2 Sollecitazioni nei traversi6.3 Stato deformativo della struttura		29 31
7.	7.1 S.L.U. – Verifiche a pressoflessione 7.1.1 Sezione SA-c (fibre tese inferiori) 7.1.2 Sezione SB-c (fibre tese inferiori) 7.1.3 Sezione SC-c (fibre tese inferiori) 7.1.4 Sezione SD-c (fibre tese inferiori) 7.1.5 Sezione SA-b (fibre tese inferiori) 7.1.6 Sezione SB-b (fibre tese inferiori) 7.1.7 Sezione SC-b (fibre tese inferiori) 7.1.8 Sezione SD-b (fibre tese superiori) 7.1.9 Verifica del trasferimento della forza di f	cori) iori) iro nell'armatura inferiore (fibre tese inferiori) anterfaccia cassoncino/nucleo gettato in opera	32 332 333 334 336 337 339 339 339 339 339 339 339 339 339
8.	 8. Verifica dei traversi 8.1 Sezione in campata. Flessione SLU e S 8.2 Sezione in appoggio. Flessione SLU e S 8.3 Taglio e Torsione 	SLE 9	93 93 96 99
9.	 9.1 Werifica trasversale della soletta 9.1 Modello locale e condizioni di carico 9.2 Sollecitazioni di calcolo allo SLU e allo S 9.3 Verifiche a SLU e SLE per flessione. Ar 9.4 Verifiche a SLU e SLE per flessione. Ar 9.5 Verifica a taglio 	SLE 10 matura TIPO 1. 10 matura TIPO 2. 10	03 03 04 06 10

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata DX

Pagina 3

Nome file:
VI15-FCL003 C.00_relazione_calcolo_impalcato_DX.doc.

1. INTRODUZIONE

Nella presente relazione si riportano i calcoli di dimensionamento e le verifiche di sicurezza dell'impalcato della carreggiata DX del viadotto Arenella III, opera, quest'ultima prevista nell'ambito del progetto esecutivo "CORRIDOIO PLURIMODALE TIRRENICO-NORD EUROPA - ITINERARIO AGRIGENTO - CALTANISSETTA-A19 - S.S. N° 640 "DI PORTO EMPEDOCLE" - AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 - dal km 44+000 allo svincolo con l'A19"

1.1 Descrizione generale dell'opera

1.1.1 Impalcato

Il Viadotto Arenella III posto sulla carreggiata SX è costituito da n. 19 campate. L'intero impalcato si compone di due tronchi – tratto 1 e tratto 2 – strutturalmente sconnessi in corrispondenza della pila P09 ove è previsto un giunto di dilatazione.

L'impalcato è realizzato con travi a cassoncino in cemento armato precompresso a cavi pretesi, e sovrastante soletta gettata in opera; in asse ad ogni pila sono presenti traversi gettati in opera, che rendono tra loro solidali le travi, varate in semplice appoggio su dispositivi provvisori, realizzando uno schema finale di trave continua.

L' impalcato del TRATTO 1, è costituito da n. 9 campate aventi luce – misurata in asse impalcato – pari a 30 m e 31.0 rispettivamente per quelle di riva e per quelle centrali.

L' impalcato del TRATTO 2, è costituito da n. 11 campate aventi luce – misurata in asse impalcato – pari a 30 m e 31.0 rispettivamente per quelle di riva e per quelle centrali.

Tabella 1.1: Viadotto carreggiata SX

Campate	L [m]	
1	30.0	
2	31.0	
3	31.0	
4	31.0	TRATTO 1
5	31.0	IRATIOI
6	31.0	
7	31.0	
8	31.0	
9	30.0	
10	30.0	
11	31.0	
12	31.0	
13	31.0	
14	31.0	
15	31.0	TRATTO 2
16	31.0	IRATIO 2
17	31.0	
18	31.0	
19	31.0	
20	30.0	
Ltot	616	

Oltre che dal traverso, la continuità strutturale è garantita da un getto di calcestruzzo in opera all'interno della cavità dei cassoncini per una lunghezza di 1.50 mm, misurata dalla testata delle travi.

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata DX

Pagina 4

Nama filo:

Nome file: VI15-F-

CL003_C.00_relazione_calcolo_impalcato_DX.doc.

La sezione trasversale dell'impalcato è formata da n. 4 travi a cassoncino, di altezza 1.80 mm, disposte ad interasse trasversale di 2.50 m e da una soletta gettata in opera di altezza su predalles autoportanti. L'altezza complessiva della soletta è pari a 25 cm, di cui 20 cm di getto in opera e 5 cm di fondello prefabbricato in cls delle predalles.

L'impalcato, la cui larghezza complessiva è pari a 13.73 m, presenta un piano viabile di 10.50 m di larghezza e due cordoli laterali di larghezza 0.75 m ed 1.23 m.

La figure seguenti illustrano la sezione trasversale corrente e la sezione in asse pila dell'impalcato.

L'impalcato è vincolato alle sottostrutture mediante appoggi del tipo ad "isolatore sismico ad elastomero armato"; il legame forza-spostamento di tali dispositivi è di tipo elasto-lineare, sia per azioni impulsive (frenatura, sisma), sia per azioni lente (variazioni termiche, fluage, ritiro).

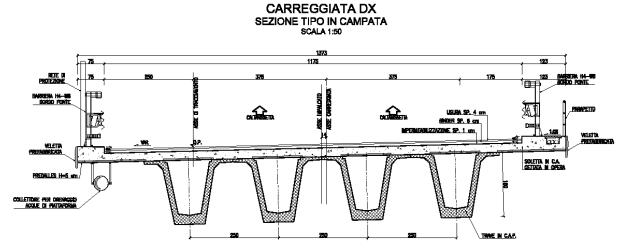


Figura 1.1 - Sezione corrente impalcato.

CARREGGIATA DX SEZIONE TIPO IN ASSE APPOGGIO SCALA 1:50

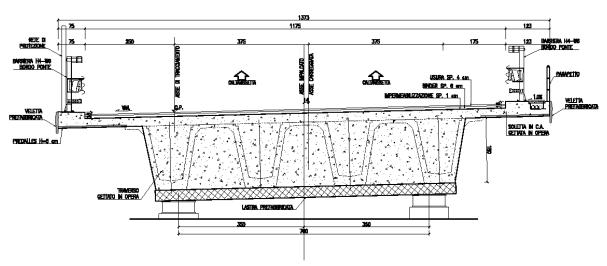


Figura 1.2 - Sezione in asse appoggio.

Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata DX

Pagina 5

Nome file:
VI15-FCL003_C.00_relazione_calcolo_impalcato_DX.doc.

1.2 Modalità realizzative

La realizzazione dell'impalcato si articola secondo le seguenti fasi esecutive:

Fase A: Posa in opera delle travi prefabbricate in c.a.p., varate in semplice appoggio su sostegni

provvisori;

Fase B: Posa in opera delle predalle e delle armature di traversi e soletta, quindi getto

contemporaneo della soletta e dei traversi.

Fase C: Rimozione degli appoggi provvisori e realizzazione delle finiture dell'impalcato, compresi i

cordoli laterali

1.3 Materiali utilizzati

1.3.1 Condizioni ambientali e classi di esposizione per l'impalcato

Per l'opera in esame si prevede l'esposizione al seguente "range" di temperature:

 $T_{min} = -15 \, ^{\circ}C$

 $T_{max} = 45 \, ^{\circ}C$

Per l'umidità ambientale si assume:

RH = 75 %.

Per quanto riguarda la classe di esposizione, si prevede, sia per il calcestruzzo della soletta, sia per quello della trave prefabbricata la seguente classe:

soletta, traversi, cordoli e travi: XC4.

Le caratteristiche del calcestruzzo dovranno pertanto rispettare, oltre i requisiti di resistenza indicati al punto seguente, anche i criteri previsti dalla vigente normativa (EN 11104 e EN 206) per quanto riguarda l'esposizione alle classi indicate.

1.3.2 Calcestruzzo

Per le classi di esposizione dei vari elementi strutturali in calcestruzzo, si rimanda al capitolo precedente Per il calcestruzzo delle travi prefabbricate si ha:

Classe =	C45/55		classe di resistenza
R _{ck} =	55	MPa	resistenza caratteristica cubica
$f_{ck} = 0.83*R_{ck} =$	45.65	MPa	resistenza caratteristica cilindrica a compressione
$f_{cm} = f_{ck} + 8 =$	53.65	MPa	resistenza a compressione media
E_{cm} = 22000 $(f_{cm}/10)^{0.3}$ =	36416	MPa	modulo elastico secante
$f_{ctm} = 0.3 f_{ck}^{2/3} =$	3.83	MPa	resistenza a trazione media
$f_{ctd} = \alpha_{ct} \ 0.7 \ f_{ctm} / \gamma_c =$	1.79	MPa	resistenza a trazione di calcolo
v =	0.2		coefficiente di Poisson
γ_c =	1.5		coefficiente parziale di sicurezza
α_{cc} =	0.85		coefficiente riduttivo per resistenze di lunga durata
$\alpha_{\rm ct}$ =	1		coefficiente per il calcolo della resistenza a trazione di calcolo
$f_{cd} = \alpha_{cc} * f_{ck}/\gamma_c =$	25.9	MPa	resistenza di calcolo a compressione
ε _{cu} =	0.0035		deformazione ultima a rottura
$\sigma_{\rm c}$ = 0.45 f _{ck} =	20.5	MPa	massima compressione in esercizio (SLE quasi permanente)

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Es	secutivo
-------------	----------

Opera: Viadotto Arenella III
Relazione di Calcolo Impalcato - Carreggiata DX
Pagina 6
Nome file:
VI15-F-
CL003_C.00_relazione_calcolo_impalcato_DX.doc.

$\sigma_{\rm c}$ = 0.60 f _{ck} =	27.4	MPa	massima compressione in esercizio (SLE caratteristica)
R _{ckj} =	45.0	MPa	resistenza caratteristica cubica al taglio dei trefoli
$f_{ckj} = 0.83*R_{ckj} =$	37.35	MPa	resistenza caratteristica al taglio dei trefoli
$f_{ctmj} = 0.3 f_{ckj}^{2/3} =$	3.35	MPa	resistenza a trazione media al taglio dei trefoli
$f_{ctdj} = \alpha_{ct} \ 0.7 \ f_{ctmj} \ / \gamma_c =$	1.56	MPa	resistenza a trazione di calcolo al taglio dei trefoli
$\sigma_{\rm c}$ = 0.70 $f_{\rm ckj}$ =	26.1	MPa	massima compressione iniziale
$\sigma_{\rm c}$ = 0.90 $f_{\rm ckj}$ =	33.6	MPa	massima compressione iniziale nelle zone di ancoraggio
$\phi(\infty, t_0) =$	1.79		coefficiente di viscosità
$E_{c^{\infty}} = E_{cm} / \left[1 + \phi(\infty, t_0) \right] =$	13052	MPa	modulo elastico secante a lungo termine termine

Per il calcestruzzo della soletta si ha:

Classe =	C32/40		classe di resistenza
R _{ck} =	40	MPa	resistenza caratteristica cubica
$f_{ck} = 0.83*R_{ck} =$	33.2	MPa	resistenza caratteristica cilindrica a compressione
$f_{cm} = f_{ck} + 8 =$	41.2	MPa	resistenza a compressione media
E_{cm} = 22000 $(f_{cm}/10)^{0.3}$ =	33643	MPa	modulo elastico secante a breve termine
$f_{ctm} = 0.3 f_{ck}^{2/3} =$	3.10	MPa	resistenza a trazione media
$f_{ctd} = \alpha_{ct} \ 0.7 \ f_{ctm} / \gamma_{c} =$	1.45	MPa	resistenza a trazione di calcolo
ν =	0.2		coefficiente di Poisson
γ_{c} =	1.5		coefficiente parziale di sicurezza
α_{cc} =	0.85		coefficiente riduttivo per resistenze di lunga durata
$\alpha_{\rm ct}$ =	1		coefficiente per il calcolo della resistenza a trazione di calcolo
$f_{cd} = \alpha_{cc} * f_{ck}/\gamma_c =$	18.8	MPa	resistenza di calcolo a compressione
$arepsilon_{cu}$	0.35	%	deformazione ultima a rottura
n _{cls0} =	0.924		Coeff. di omogeneizzazione cao/cap al tempo t ₀
$\phi(\infty, t_0) =$	1.79		Coefficiente di viscosità
$E_{c\infty} = E_{cm} / [1 + \phi(\infty, t_0)] =$	12058		modulo elastico secante a lungo termine
n _{clsoo} =	0.924		Coeff. di omogeneizzazione cao/cap al tempo too

1.3.3 Acciaio per c.a.p.

Tipo =	Trefoli da	0.6"	
E =	190000	MPa	modulo elastico
f _{ptk} =	1860	MPa	tensione di rottura
$f_{p(1)k} =$	1670	MPa	tensione caratteristica all'1% di deformazione totale
ε_{su} =	0.035		deformazione ultima a rottura
σ_{spi} = min{0.9 $f_{p(1)k}$, 0.8 f_{ptk} } =	1488		tensione limite iniziale
$\sigma_{\rm s} = 0.8 f_{\rm p(1)k} =$	1336		tensione limite in esercizio (combinazione rara)
n _{acc0j} =	7.00		coeff. di omogeneizzazione dell'acciaio al tempo t_{0j} (taglio trefoli)

DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III
Relazione di Calcolo Impalcato - Carreggiata DX
Pagina 7
Nome file:
VI15-F-
CL003_C.00_relazione_calcolo_impalcato_DX.doc.

n _{acc0} =	5.22	coeff. di omogeneizzazione dell'acciaio al tempo t ₀
n _{accoo} =	14.56	coeff. di omogeneizzazione dell'acciaio al tempo too

1.3.4 Acciaio per c.a.

Barre ad aderenza migliorata:	B450C		classe di resistenza
f _{yk} =	450	N/mm ²	resistenza caratteristica di snervamento
γ_s =	1.15		coefficiente parziale di sicurezza
f_{yd} =	391.3	N/mm ²	
E _s =	200000	N/mm ²	modulo elastico
v =	0.3		coefficiente di Poisson
$k = (f_t/f_y)_k =$	1.2		rapporto di sovraresistenza
$\varepsilon_{\text{uk}} = (A_{\text{gt}})_{k} =$	0.0075		deformazione ultima caratteristica
ε_{ud} = 0.9* ε_{uk} =	0.0675		deformazione ultima di calcolo
$\sigma_s = 0.8 f_{yk} =$	360	N/mm ²	Tensione limite in esercizio (Comb. Rara)

Per semplicità di calcolo anche per l'acciaio ordinario si adottano gli stessi coefficienti di omogeneizzazione acciaio/cls precedentemente determinati per l'acciaio per c.a.p.

Per quanto riguarda il calcolo dei coefficienti di viscosità riportati in questo paragrafo si rimanda ai paragrafi successivi, relativi alla metodologia di calcolo.

1.4 Normative di riferimento

Le analisi strutturali e le relative verifiche vengono eseguite secondo il metodo semi-probabilistico agli Stati Limite in accordo alle disposizioni normative previste dalla vigente normativa italiana e da quella europea (Eurocodici). In dettaglio si sono prese in esame i seguenti documenti, che di volta in volta verranno opportunamente richiamati:

D.M. 14 gennaio 2008: Nuove norme tecniche per le costruzioni (indicate nel prosieguo "NTC");
 Circolare n.617: Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni";

UNI EN 1990: Basi della progettazione strutturale;
 UNI EN 1991-1-4: Azioni sulle strutture – Azione del vento;
 UNI EN 1991-1-5: Azioni sulle strutture – Azioni termiche;

o UNI EN 1991-2: Azioni sulle strutture – Carichi da traffico sui ponti;

o UNI EN 1992-1-1: Progettazione delle strutture di calcestruzzo - regole generali e regole per gli

edifici;

UNI EN 1992-2: Progettazione delle strutture di calcestruzzo – Ponti di calcestruzzo;

1.5 Convenzioni generali, per le verifiche e le analisi globali

Le unità di misura sono quelle relative al sistema internazionale, ovvero:

lunghezze: m forze - coppie: kN, kNm tensioni: MPa

Per quanto riguarda le convenzioni di segno, si considerano, in generale, positive le tensioni compressione. Per quanto riguarda le azioni interne nell'impalcato, salvo diversamente specificato, si indicherà con:

Progetto Esecutivo

Pagina 8 Nome file: VI15-F-

 $CL003_C.00_relazione_calcolo_impalcato_DX.doc.$

Relazione di Calcolo Impalcato - Carreggiata DX

Opera: Viadotto Arenella III

P azione assiale (>0 se di trazione)

V2 azione tagliante agente nel piano verticale;

T momento torcente;

M3 momento flettente agente nel piano verticale.

1.6 Software di calcolo

L'analisi della struttura viene eseguita su un modello numerico agli elementi finiti, adottando il codice di calcolo SAP2000 della Computers and Structures, Inc.

Per le verifiche a stato limite ultimo e di esercizio delle sezioni in c.a.p. si sono utilizzati semplici fogli elettronici. In particolare per le sezioni ritenute significative si sono svolte le seguenti verifiche:

S.L.U.:

- Verifiche a pressoflessione semplice delle sezioni composite con presenza di armatura lenta in soletta e di precompressione nei cassoncini;
- Verifiche a taglio, secondo la teoria del traliccio di Morsch;
- Verifica della connessione trave soletta

S.L.E.:

- o Verifica elastica delle tensioni in esercizio
- o Verifica a fessurazione

Opera: Viadotto Arenella III
Relazione di Calcolo Impalcato - Carreggiata DX
Pagina 9
Nome file:
VI15-F-

CL003_C.00_relazione_calcolo_impalcato_DX.doc.

2. IMPOSTAZIONI DELLE ANALISI E DELLE VERIFICHE

2.1 Metodologia di calcolo

Sia l'introduzione di vincoli esterni quanto la solidarizzazione tra trave e soletta contrastano le deformazioni relative differite e pertanto generano entrambe ridistribuzione. In sintesi, quindi, i fenomeni analizzati sono i seguenti:

- l'introduzione di vincoli esterni posticipati rispetto all'istante di applicazione del carico comporta l'insorgere di un quadro auto-equilibrato di reazioni vincolari esterne che modificano i valori dei momenti flettenti e degli sforzi di taglio lungo l'impalcato continuo.
- la solidarizzazione tra trave e soletta dà luogo ad una ridistribuzione auto-equilibrata di tensioni interne alla sezione, apportando modifiche allo stato tensionale.

Poiché si considera valida la conservazione delle sezioni piane per la sezione composta, l'analisi strutturale e l'analisi sezionale sono disaccoppiabili e possono quindi essere studiate separatamente. Del primo effetto se ne tiene conto in sede di calcolo delle sollecitazioni mediante un modello FEM dell'intera struttura, mentre della ridistribuzione interna se ne tiene conto a livello di verifica delle tensioni a stato limite di esercizio.

Per valutare gli effetti della viscosità l'ordine cronologico degli eventi fondamentali è limitato ai seguenti istanti:

- t_0 =7 gg istante a partire dal quale si considerano valutabili le conseguenze del fenomeno viscoso sulla trave prefabbricata ossia l'istante di applicazione congiunta di precompressione e peso proprio.
- t_0^* = 60 gg istante di getto della soletta e dei traversi, coincidente con la solidarizzazione dei vincoli posticipati. Si assume che tutti i vincoli posticipati siano applicati contemporaneamente.
- t l'istante di osservazione, che per gli effetti a lungo termine si assume t=100.000 gg = ∞

Indicata pertanto con S_I la sollecitazione agente nella struttura nella configurazione precedente all'introduzione dei vincoli posticipati (struttura isostatica) e con S_{II} la sollecitazione agente sulla struttura pensata con vincoli posticipati (struttura iperstatica), la sollecitazione effettiva si ricava dalla relazione:

$$S(t) = S_1 + \xi(t) (S_{11} - S_1)$$

Analogamente lo stato tensionale interno delle sezioni si può calcolare come:

$$\sigma(t) = \sigma_1 + \xi(t) (\sigma_1 - \sigma_1)$$

Dove si è indicato con $\sigma_{_{|}}$ la tensione indotta dalla sollecitazione esterna nella generica fibra della trave prima della solidarizzazione alla soletta (la cui rigidezza rappresenta un vincolo interno posticipato per precompressione, peso proprio e peso della soletta stessa) e con $\sigma_{_{||}}$ la tensione agente nella medesima fibra per effetto della medesima azione sollecitante pensata direttamente applicata alla sezione composta.

I coefficienti di distribuzione dipendono dall'aliquota di rotazione delle travate che per effetto di peso proprio e precompressione (azioni applicate a t_0) e per effetto del peso proprio della soletta (applicato a t_0^*) la struttura manifesterebbe se non fosse introdotto un vincolo posticipato che ne impedisse il manifestarsi. Si dimostra che tali coefficienti possono calcolarsi con le formule:

DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Es	еси	tivo
-------------	-----	------

Opera: Viadotto	Arenella III
Relazione di Calcolo	Impalcato - Carreggiata DX

Pagina 10 Nome file: VI15-F-

CL003_C.00_relazione_calcolo_impalcato_DX.doc.

$$\xi(t) = \frac{\phi(t, t_o) - \phi(t_o^*, t_o)}{1 + \chi(t, t_o^*)\phi(t, t_o^*)}$$

per il peso proprio della trave e la precompressione

$$\xi(t) = \frac{\phi(t, t_o^*)}{1 + \chi(t, t_o^*)\phi(t, t_o^*)}$$

per il peso proprio della soletta

I coefficienti di viscosità che figurano nelle formule, qualitativamente riassunti anche nel grafico seguente, hanno il seguente significato:

 $\phi(\infty, t_0)$ valore a lungo termine della funzione di fluage che rappresenta l'evoluzione nel tempo dei fenomeni reologici indotti dall'applicazione al tempo to del peso proprio e della precompressione.

 $\phi(t_0^*,t_0)$ valore al tempo t₀* della precedente funzione

 $\phi(\infty, t_0^*)$ valore a lungo termine della funzione di fluage che rappresenta l'evoluzione nel tempo dei fenomeni reologici indotti dall'applicazione al tempo t₀* del peso proprio della soletta.

valore a lungo termine della aliquota viscosa residua $\phi_{\text{res}}(\infty, t_0)$

 $\chi(\infty, t_0^*)$ coefficiente di invecchiamento che tiene conto del fatto che l'incremento delle tensioni non è istantaneo ma varia nel tempo con legge affine a quella viscosa

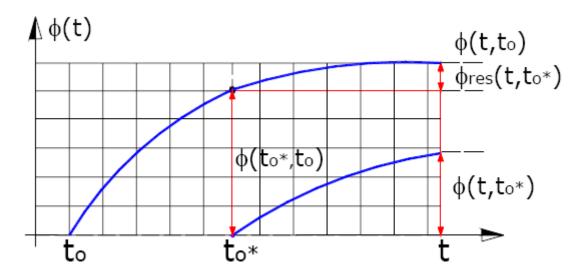


Figura 2.1 - Coefficienti di viscosità.

Coefficienti di viscosità e distribuzione 2.1.1

Con riferimento a quanto su esposto, nell'ipotesi che nei riguardi degli effetti indotti dalle azioni mutue interne le caratteristiche viscose della trave in c.a.p. e della soletta possano considerarsi affini, si riportano i valori dei coefficienti di viscosità e di distribuzione, calcolati secondo le modalità della EN 1992-1-1 Per guanto riguarda il perimetro e l'area esposta di una singola trave e dell'intera soletta, si ha:

Travi in cap

Progetto Esecutivo	Prog	etto	Ese	cutiv	/(
--------------------	------	------	-----	-------	----

Opera: Viadotto Arenella III
Relazione di Calcolo Impalcato - Carreggiata DX
Pagina 11
Nome file:
VI15-F-
CL003_C.00_relazione_calcolo_impalcato_DX.doc.

u = A = A = A = A = A = A = A = A = A =	10315 847168 164	mm mm² mm	Perimetro cassoncino Area cassoncino Spessore fittizio
Soletta			
b =	13230	mm	Larghezza soletta
s =	250	mm	Spessore soletta
u =	26960	mm	Perimetro della soletta
A =	3307500	mm^2	Area della soletta
$h_0 = 2A/u$	245	mm	Spessore fittizio

Per il peso proprio e la precompressione:

f _{ck} =	45.65	N/mm ²	resistenza caratteristica cilindrica a compressione istante di applicazione congiunta di precompressione e peso proprio (valore
t ₀ =	7	gg	equivalente riferito ad un cemento tipo N)
$t_0^* =$	60	gg	istante di introduzione dei vincoli posticipati = istante del getto della soletta
$h_0 =$	164	mm	spessore fittizio
RH =	75	%	umidità relativa
Cemento =	N		tipo di cemento (congruente con t0 equivalente) coefficiente di viscosità per il peso proprio della trave e la precompressione a
$\phi(\infty, t_0) =$	1.789		lungo termine
*			coefficiente di viscosità per il peso proprio della trave e la precompressione
$\phi(t_0^*,t_0) =$	0.897		a 60 gg
*.			aliquota viscosa residua per il calcolo delle ridistribuzioni viscose relative a
$\phi_{\text{res}}(\infty, t_0^*) =$	0.892		peso proprio e precompressione

Per il peso proprio della soletta:

f _{ck} =	45.65	N/mm ²	resistenza caratteristica cilindrica a compressione
t ₀ =	60	gg	istante di applicazione del peso proprio della soletta
$t_0^* =$	60	gg	istante di solidarizzazione dei vincoli = istante del getto della soletta
$h_0 =$	164	mm	Spessore fittizio
RH =	75	%	umidità relativa
Cemento =	N		tipo di cemento (congruente con t0 equivalente)
$\phi(\infty,{t_0}^*)=$	1.191		coefficiente di viscosità per il peso proprio della soletta a lungo termine coefficiente di viscosità per il peso proprio della soletta alla messa in
$\phi(t_0^*,t_0) =$	0		carico

Si ricavano i coefficienti di ridistribuzione:

$\chi =$	0.73	Coefficiente di invecchiamento
		Coefficiente di ridistribuzione per peso proprio e
$\xi = \phi_{\text{res}}(t_0^*, t_0) / [1 + \chi \phi(\infty, t_0^*)] =$	0.457	precompressione
$\xi = \phi(\infty,t_0^*) / [1 + \chi \phi(\infty,t_0^*)] =$	0.610	Coefficiente di ridistribuzione per il peso proprio della soletta
$\xi = 1 / [1 + \chi \phi(\infty, t_0^*)] =$	0.512	Coefficiente di ridistribuzione per il ritiro differenziale della soletta

Opera: Viadotto Arenella III
Relazione di Calcolo Impalcato - Carreggiata DX
Pagina 12
Nome file:
VI15-F-

 ${\tt CL003_C.00_relazione_calcolo_impalcato_DX.doc.}$

2.2 Analisi della struttura

Le sollecitazioni sono state calcolate mediante più modelli agli elementi finiti che si differenziano per lo schema statico della struttura (isostatico con vincoli provvisori oppure iperstatico con vincoli finali) e per le caratteristiche geometriche delle sezioni (sezioni trasversali formate dai soli cassoncini oppure sezioni composite cassoncino con soletta). Quindi per le analisi a stato limite ultimo si sono sovrapposte le sollecitazioni di calcolo derivanti dalle combinazioni di progetto, mentre per gli stati limiti di esercizio si sono sovrapposti gli stati tensionali delle sezioni.

Nei paragrafi successivi si riporta una descrizione delle fasi di calcolo, delle caratteristiche geometriche delle sezioni trasversali e dei modelli numerici.

2.2.1 Fasi di calcolo

Le caratteristiche geometrico-statiche delle sezioni di impalcato si differenziano in funzione della presenza o meno della soletta in c.a. e della rigidezza relativa acciaio calcestruzzo espressa in termini di coefficiente di omogeneizzazione. Per tenere conto della reale sequenza delle fasi esecutive, l'analisi della struttura si articolerà come di seguito specificato:

- fase 1: assenza della soletta (fase iniziale), sezioni resistenti formate dalle sole travi in c.a.p. con l'acciaio da precompressione omogeneizzato con coefficiente calcolato a breve termine. Lo schema analizzato è quello di trave in semplice appoggio.
- fase 2: presenza della soletta, con modulo elastico della trave e della soletta valutato a lungo termine e con coefficienti di omogeneizzazione dell'acciaio delle armature lente e precompresse calcolati a lungo termine. Lo schema analizzato è quello di trave continua.
- fase 3: presenza della soletta con modulo elastico della trave e della soletta valutato a breve termine e con coefficienti di omogeneizzazione dell'acciaio delle armature lente e precompresse calcolati a breve termine. Lo schema analizzato è quello di trave continua. Le azioni considerate in tale fase sono costituite dai carichi da traffico, azione del vento, azione della temperatura.

2.3 Dati generali delle sezioni di impalcato

2.3.1 Larghezze collaboranti di soletta

Le larghezze collaboranti di soletta vengono valutate sulla base dei criteri contenuti in EN 1992-1-1, punto 5.3.2.1.

Per quanto riguarda le travi interne la soletta collaborante coincide con l'interasse fra le travi stesse, mentre per la soletta delle travi di bordo se ne è verificata la dimensione effettivamente collaborante, che si riduce rispetto al valore massimo solo in prossimità degli appoggi. Della larghezza effettiva se ne è tenuto conto in sede di calcolo delle tensioni ma non ai fini del calcolo delle sollecitazioni.

Con riferimento alla figura seguente, la larghezza collaborante è stata valutata rispetto alla porzione di soletta posta all'esterno dell'anima del cassoncino, pari a 3.66 m.

DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III Relazione di Calcolo Impalcato - Carreggiata DX Pagina 13 Nome file: VI15-F-CL003_C.00_relazione_calcolo_impalcato_DX.doc.

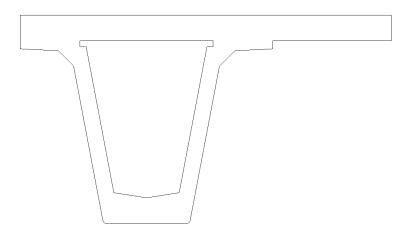


Figura 2.2 - Schema della trave di bordo (dimensioni in "m")

Calcolo larghezza collabarante (EC2 §5.3.2.1)

I ₁	=	30 m	lunghezza campata di riva
I_2	=	31 m	lunghezza campate centrali
I ₀ ^(riva)	=	25.5 m	distanza tra i punti di momento nullo sulla campata di riva
I ₀ (appoggio)	=	9.15 m	distanza tra i punti di momento nullo sull'asse appoggio
I ₀ (centrale)	=	21.7 m	distanza tra i punti di momento nullo sulle campate centrali
b_w	=	2.5 m	larghezza trave in c.a.p
b_1	=	1.87 m	larghezza soletta a sbalzo
b _{eff1} (riva)	=	2.92 m	
b _{eff1} (appoggio)	=	1.29 m	
b _{eff1} (centrale)	=	2.54 m	
b _{eff}	=	3.79 m	larghezza collaborante

2.3.2 Componenti delle sezioni

Le proprietà geometrico statiche delle sezioni sono state calcolate a partire dalla caratteristiche dei "componenti" di seguito descritti.

2.3.2.1 Trave in cap ed armatura di precompressione

Le principali dimensioni del cassoncino in cap sono riportate in figura; non sono previste zone ad anima e base rinforzata nelle zone di testata.

Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata DX

Pagina 14

Nome file:
V115-FCL003 C.00 relazione calcolo impalcato DX.doc.

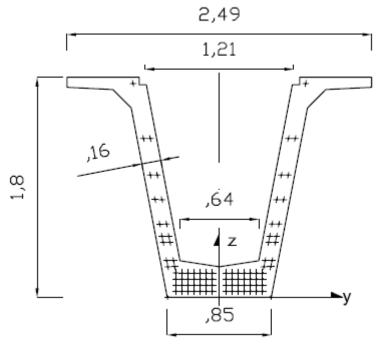


Figura 2.3 - Sezione trasversale delle travi a cassoncini in c.a.p.

Il cassoncino prevede la presenza di massimo 90 trefoli da 0.6", dei quali nella struttura in esame ne sono utilizzati al massimo 60; inoltre 10 trefoli sono neutralizzati da 0 a 9 m, mentre altri 14 trefoli sono neutralizzati da 0 a 1.5 m, come mostrato nella figura successiva.

Le coordinate dei trefoli, nel riferimento cartesiano indicato nelle figure precedenti, sono riportate in tabella, evidenziando i trefoli non utilizzati; per brevità e stante la simmetria si riportano solo le coordinate dei trefoli posti nella metà sinistra del cassoncino.

id	Y (mm)	Z (mm)	A (mm²)
1	-355.0	50.0	139.00
2	-305.0	50.0	139.00
3	-255.0	50.0	139.00
4	-205.0	50.0	139.00
5	-155.0	50.0	139.00
6	-105.0	50.0	139.00
7	-55.0	50.0	139.00
8	-55.0	100.0	139.00
9	-105.0	100.0	139.00
10	-155.0	100.0	139.00
11	-205.0	100.0	139.00
12	-255.0	100.0	139.00
13	-305.0	100.0	139.00
14	-355.0	100.0	139.00
15	-355.0	150.0	139.00
16	-305.0	150.0	139.00
17	-255.0	150.0	139.00
18	-205.0	150.0	139.00
19	-155.0	150.0	139.00

DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella I	II
----------------------------	----

Relazione di Calcolo Impalcato - Carreggiata DX

Pagina 15

Nome file: VI15-F-

 ${\tt CL003_C.00_relazione_calcolo_impalcato_DX.doc.}$

id	Y (mm)	Z (mm)	A (mm²)
20	-105.0	150.0	139.00
21	-55.0	150.0	139.00
22	-55.0	200.0	0.00
23	-105.0	200.0	0.00
24	-155.0	200.0	0.00
25	-205.0	200.0	0.00
26	-255.0	200.0	0.00
27	-305.0	200.0	0.00
28	-355.0	200.0	0.00
29	-364.5	250.0	139.00
30	-374.0	300.0	139.00
31	-420.5	250.0	139.00
32	-430.0	300.0	139.00
33	-402.5	450.0	139.00
34	-412.0	500.2	139.00
35	-458.5	450.0	139.00
36	-468.0	500.2	139.00
37	-431.0	600.2	139.00
38	-487.0	600.2	139.00
39	-469.0	800.0	139.00
40	-525.0	800.0	139.00
41	-507.0	1000.0	139.00
42	-563.0	1000.0	139.00
43	-564.0	1300.0	139.00
44	-620.0	1300.0	139.00
45	-705.5	1750.0	139.00

Si ha pertanto:

Area lorda del cassoncino: 0.8472 m²

Armatura da 0-1.5m: $139*(60-10-14) = 5004 \text{ mm}^2$ Armatura da 1.5-9m: $139*(60-10) = 6950 \text{ mm}^2$ Armatura corrente: 139*76= 8340 mm²

2.3.2.2 Soletta centrale e di bordo

La soletta collaborante dei cassoncini centrali ha dimensioni 2500x250 mm mentre per la soletta di bordo si è fatto riferimento ad un rettangolo di dimensioni 4370x250 mm; il baricentro della soletta è posto a 1800+250/2=1925mm dall'intradosso dei cassoncini.

2.3.2.3 Armatura lenta in soletta

Nella soletta è disposta una armatura corrente realizzata con φ14/200 sopra e sotto per tutto lo sviluppo dell'impalcato, e per tanto nella soletta collaborante delle travi si ha:

per la soletta delle travi centrali : 2500/200 = 12.5 ferri per strato => 2*12.5*153.94 = 3848 mm² per la soletta delle travi di bordo : 4370/200 = 21.85 ferri per strato => 2*21.85 *153.94 =6725 mm²

Inoltre si dispone, per 12 m in asse ad ogni pila una armatura aggiuntiva di φ26/200 sopra e sotto, e quindi: per la soletta delle travi centrali : 2500/200 = 12.5 ferri per strato => 2*12.5*530.93 = 13273 mm² per la soletta delle travi di bordo : 4370/200 = 21.85 ferri per strato => 2*21.85*530.93 =23165 mm²

Opera: Viadotto Arenella III
Relazione di Calcolo Impalcato - Carreggiata DX
Pagina 16
Nome file:
VI15-F-
CL003_C.00_relazione_calcolo_impalcato_DX.doc.

2.3.2.4 Armatura di rinforzo a fondo cassoncino

Nelle cavità riempite in prossimità degli appoggi in asse pila si dispone una ulteriore armatura per un totale di 16φ26=849 5mm² organizzata in tre strati:

strato 1 formato da $6\phi26$ a z=350mm dall'intradosso del cassoncino

strato 2 formato da 6\psi 26 a z=400mm dall'intradosso del cassoncino

strato 3 formato da 6\psi 26 a z=450mm dall'intradosso del cassoncino

Nella tabella seguente vengono riportate le principali caratteristiche geometriche dei vari elementi componenti appena descritti.

	id	A (mm^2)	zG (mm)	Jy (mm^4)
Cassoncino (area lorda)	0	847168	867	3.253E+11
Armatura di prec. corrente 60 trefoli	1	8340	420	1.65E+09
Armatura di prec. 50 trefoli	2	6950	466	1.53E+09
Armatura di prec. 36 trefoli	3	5004	572	1.33E+09
Soletta trave di bordo	4	109250	1925	4.883E+09
Soletta trave centrale	5	625000	1925	3.255E+09
Armatura lenta corrente (sezione centrale)	6	3848	1925	1.124E+07
Armatura lenta aggiuntiva inferiore	7	8495	394	1.294E+07
Armatura lenta aggiuntiva superiore (sezione centrale)	8	13273	1925	3.878E+07
Cavità del cassoncino	9	1409900	1117	2.645E+11
Armatura lenta corrente (sezione di bordo)	10	6725	1925	1.470E+07
Armatura lenta aggiuntiva superiore (sezione di bordo)	11	23165	1925	5.071E+07

Le grandezze in tabella sono:

- A Area del componente
- zG Posizione del baricentro di ogni componente riferita all'intradosso dei cassoncini
- Jy Momento di inerzia rispetto al baricentro di ogni singolo componente

Sommando il contributo di ogni "componente", adeguatamente pesato con i coefficienti di omogeneizzazione, si ricavano agevolmente le diverse proprietà delle sezioni semplici e composite necessarie per la modellazione e per le verifiche.

La collocazione delle sezioni considerate, riferita alla testata della trave precompressa, è così definita:

Tabella 2.1 - Indicazione delle sezioni

	iau	ella 2.1 - Illulcazione delle Sezioni
ID - sezione	trave	Descrizione della sezione
SA-b	bordo	x=L/2 (sezione di mezzeria)
SB-b	bordo	sezione a x=1.50m dalla testata della trave (sezione a filo riempimento in cls)
SD-b	bordo	sezione a 9.0m dalla testata della trave
SA-c	centrale	x=I/2 (sezione di mezzeria)
SB-c	centrale	sezione a x=1.50m dalla testata della trave (sezione a filo riempimento in cls)
SD-c	centrale	sezione a 9.0m dalla testata della trave

DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata DX

Pagina 17

Nome file:
VI15-FCL003_C.00_relazione_calcolo_impalcato_DX.doc.

coefficiente di omogeneizzazione armatura lenta-trave

I coefficienti di omogeneizzazione utilizzati sono quelli calcolati nei paragrafi relativi ai materiali; per il calcolo delle aree di acciaio omogeneizzate a calcestruzzo si utilizzano coefficienti "n-1" per tener conto della sottrazione di area di cls dovuta alla presenza dei fori.

2.3.3 Caratteristiche geometriche delle sezioni

2.3.3.1 SA-c (mezzeria) -Travi centrali

0.00

 n_{s}

0.00

13.56

4.22

	,	eria) - i ravi d					
id_sezione	SF1	SF2	SF3	SF4			
	trave+trefoli t=0	trave+trefoli t=infinito	trave+ trefoli+soletta t=infinito	trave+ trefoli+sol t=0			
n_c	0.00	0.000	0.924	0.924			coefficiente di omogeneizzazione soletta-trave
n_p	6.00	13.56	13.56	4.22			coefficiente di omogeneizzazione trefoli-trave
n_s	0.00	0.00	13.56	4.22			coefficiente di omogeneizzazione armatura lenta-trave
Н	1.8	1.8	2.05	2.05		m	altezza sezione
Α	0.8972	0.9603	1.5899	1.4761		m ²	area sezione trasversale
Y_{G}	0.8421	0.8144	1.2542	1.2819)	m	distanza da intradosso baricentro
J	0.3444	0.3674	0.8395	0.7525	5	m ⁴	momento d'inerzia sezione trasversale
Y_{eq}	0.4200	0.4200	0.4200	0.4200)	m	ordinata trefolo equivalente
W_s	0.359	0.373	1.055	0.980		m^3	modulo di resistenza superiore trave
W_{i}	0.409	0.451	0.669	0.587		m^3	modulo di resistenza inferiore trave
2.3.3.2 S	B-c (FiloRr	emp) - Trav	i centrali				
id_sezione	SF1	SF2	SF3	SF4			
descrizione	trave+trefoli t=0	trave+trefoli t=infinito	trave+ trefoli+soletta t=infinito	trave+ trefoli+soletta t=0			
n_c	0.00	0.000	0.924	0.924			coefficiente di omogeneizzazione soletta-trave
n_p	6.00	13.56	13.56	4.22			coefficiente di omogeneizzazione trefoli-trave
n_s	0.00	0.00	13.56	4.22			coefficiente di omogeneizzazione armatura lenta-trave
Н	1.8	1.8	2.05	2.05	m		altezza sezione
Α	0.8772	0.9150	1.5447	1.4620	m ²		area sezione trasversale
Y_{G}	0.8569	0.8451	1.2853	1.2924	m		distanza da intradosso baricentro
J	0.3355	0.3484	0.7864	0.7355	m ⁴		momento d'inerzia sezione trasversale
Y_{eq}	0.5722	0.5722	0.5722	0.5722	m		ordinata trefolo equivalente
W_s	0.356	0.365	1.028	0.971	m^3		modulo di resistenza superiore trave
W_{i}	0.391	0.412	0.612	0.569	m ³		modulo di resistenza inferiore trave
2.3.3.3 SD-c (a 9m) - Travi centrali							
id_sezione	SF1	SF2	SF3	SF4			
descrizione	trave+trefoli t=0	trave+trefoli t=infinito	trave+ trefoli+soletta t=infinito	trave+trefoli+ soletta t=0			
n _c	0.00	0.000	0.924	0.924			coefficiente di omogeneizzazione soletta-trave
n_p	6.00	13.56	13.56	4.22			coefficiente di omogeneizzazione trefoli-trave

CORRIDOIO PLURIMODALE TIRRENICO-NORD EUROPA ITINERARIO AGRIGENTO -CALTANISSETTA-A19 S.S. N° 640 "DI PORTO EMPEDOCLE"

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Pagina 18

Nome file:

VI15-F-

CL003_C.00_relazione_calcolo_impalcato_DX.doc.

Relazione di Calcolo Impalcato - Carreggiata DX

Opera: Viadotto Arenella III

Progetto Esecutivo

Н	1.8	1.8	2.05	2.05	m	altezza sezione
Α	0.8889	0.9414	1.5711	1.4702	m^2	area sezione trasversale
Y_{G}	0.8482	0.8269	1.2670	1.2863	m	distanza da intradosso baricentro
J	0.3406	0.3594	0.8174	0.7454	m^4	momento d'inerzia sezione trasversale
Y_{eq}	0.4660	0.4660	0.4660	0.4660	m	ordinata trefolo equivalente
W_s	0.358	0.369	1.044	0.976	m^3	modulo di resistenza superiore trave
W_{i}	0.402	0.435	0.645	0.579	m^3	modulo di resistenza inferiore trave

2.3.3.4 SA-b (mezzeria) -Travi di bordo

id_sezione SF1 SF2 SF4

descrizione	trave+trefoli t=0	trave+trefoli t=infinito	trave+trefoli+soletta t=infinito	trave+trefoli+soletta t=0		
n_c	0.00	0.000	0.924	0.924		coefficiente di omogeneizzazione soletta-trave
n_p	6.00	13.56	13.56	4.22		coefficiente di omogeneizzazione trefoli-trave
n_s	0.00	0.00	13.56	4.22		coefficiente di omogeneizzazione armatura lenta-trave
Н	1.8	1.8	2.05	2.05	m	altezza sezione
Α	0.8972	0.9603	1.9148	1.7825	m^2	area sezione trasversale
Y_{G}	0.8421	0.8144	1.3680	1.3924	m	distanza da intradosso baricentro
J	0.3444	0.3674	0.9624	0.8590	m^4	momento d'inerzia sezione trasversale
Y_{eq}	0.4200	0.4200	0.4200	0.4200	m	ordinata trefolo equivalente
W_s	0.359	0.373	1.411	1.306	${\rm m}^{\rm 3}$	modulo di resistenza superiore trave
W_{i}	0.409	0.451	0.704	0.617	${\rm m}^{\rm 3}$	modulo di resistenza inferiore trave

2.3.3.5 SB-b (FiloRiemp) - Travi di bordo

id_sezione SF1 SF2 SF3 SF4

descrizione	trave+trefoli t=0	trave+trefoli t=infinito	trave+trefoli+soletta t=infinito	trave+trefoli+soletta t=0		
n_c	0.00	0.000	0.924	0.924		coefficiente di omogeneizzazione soletta-trave
n_p	6.00	13.56	13.56	4.22		coefficiente di omogeneizzazione trefoli-trave
n_s	0.00	0.00	13.56	4.22		coefficiente di omogeneizzazione armatura lenta-trave
Н	1.8	1.8	2.05	2.05	m	altezza sezione
Α	0.8772	0.9150	1.8696	1.7684	m^2	area sezione trasversale
Y_{G}	0.8569	0.8451	1.3965	1.4020	m	distanza da intradosso baricentro
J	0.3355	0.3484	0.8978	0.8384	m^4	momento d'inerzia sezione trasversale
Y_{eq}	0.5722	0.5722	0.5722	0.5722	m	ordinata trefolo equivalente
W_s	0.356	0.365	1.374	1.294	m^3	modulo di resistenza superiore trave
W_{i}	0.391	0.412	0.643	0.598	m^3	modulo di resistenza inferiore trave

DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata DX

Pagina 19

Nome file: VI15-F-

 ${\tt CL003_C.00_relazione_calcolo_impalcato_DX.doc.}$

2.3.3.6 SD-b (a 9m) - Travi di bordo

id_sezione	SF1	SF2	SF3	SF4		
descrizione	trave+trefoli t=0	trave+trefoli t=infinito	trave+trefoli+soletta t=infinito	trave+trefoli+soletta t=0		
n _c	0.00	0.000	0.924	0.924		coefficiente di omogeneizzazione soletta-trave
n_{p}	6.00	13.56	13.56	4.22		coefficiente di omogeneizzazione trefoli-trave
ns	0.00	0.00	13.56	4.22		coefficiente di omogeneizzazione armatura lenta-trave
Н	1.8	1.8	2.05	2.05	m	altezza sezione
Α	0.8889	0.9414	1.8960	1.7766	m^2	area sezione trasversale
Y_{G}	0.8482	0.8269	1.3797	1.3964	m	distanza da intradosso baricentro
J	0.3406	0.3594	0.9355	0.8503	m^4	momento d'inerzia sezione trasversale
Y_{eq}	0.4660	0.4660	0.4660	0.4660	m	ordinata trefolo equivalente
W_s	0.358	0.369	1.396	1.301	${\rm m}^{\rm 3}$	modulo di resistenza superiore trave
W_i	0.402	0.435	0.678	0.609	m^3	modulo di resistenza inferiore trave

3. DESCRIZIONE DEL MODELLO NUMERICO

Sono stati elaborati più modelli agli elementi finiti per tener conto delle reali fasi costruttive. In particolare i modelli elaborati sono descritti nel seguito.

• FASE 1 – Travi in c.a.p. su appoggi provvisori

Il modello di calcolo è un graticcio formato dalle travi principali vincolate agli appoggi provvisori, posti a bordo trave.

Le azioni applicate sono il peso proprio dei cassoncini, ed il peso proprio della soletta, non reagente, compreso il peso dei riempimenti in testata ed i traversi, anch'essi non reagenti.

• FASE 2 - Maturazione della soletta, applicazione dei sovraccarichi permanenti, rimozione vincoli Si considera la struttura completa formata dalle travi composite con soletta collaborante.

Il modello di calcolo è un graticcio formato dalle travi longitudinali aventi sezioni omogeneizzate con rigidezza delle armature lente e precompresse valutata a tempo "infinito", e traversi schematizzati con la loro geometria reale.

Le azioni applicate sono tutte quelle della fase 1, per una valutazione degli effetti su schema iperstatico, delle deformazioni impresse indotte dalla precompressione e dal ritiro differenziale della soletta al fine di valutare gli effetti del secondo ordine, ed i carichi permanenti.

• FASE 3 - Applicazione dei carichi istantanei (mobili ed accidentali in genere)

I modelli di calcolo per la valutazione degli effetti indotti dal traffico, dalle variazioni termiche, dal vento e dal sisma, sono gli stessi descritti per la fase 2, ma con sezioni omogeneizzate "a tempo iniziale".

I carichi applicati sono quelli termici, da traffico compreso il carico folla sul marciapiede ed il vento.

La struttura è stata modellata in tridimensionale nelle ipotesi classiche di comportamento a graticcio, con quattro file di elementi trave (elementi *frames*) a sei gradi di libertà per nodo, che corrono lungo lo sviluppo longitudinale delle travate. Anche i traversi, presenti solo in asse alle spalle ed alle pile, sono modellati con travi tipo *frames*.

I vincoli esterni, costituiti da due molle orizzontali di eguale rigidezza $k_Y = k_X = 3030$ kN/m, ed una molla verticale $k_Z = \infty$ kN/m, sono applicati ai nodi del graticcio in asse alle spalle ed alle pile.

Di seguito si riporta una vista assonometrica del modello tridimensionale della struttura.

Progetto Esecutivo

Opera: Viadotto Arenella III
Relazione di Calcolo Impalcato - Carreggiata DX
Pagina 20

Nome file: VI15-F-

CL003_C.00_relazione_calcolo_impalcato_DX.doc.

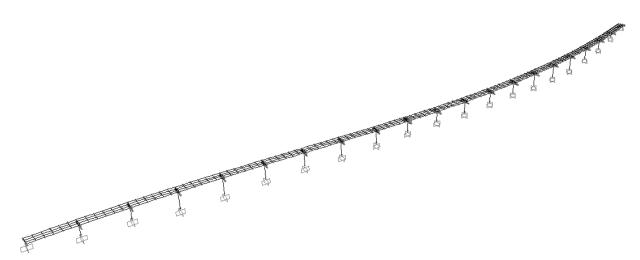


Figura 3.1 - Vista assonometrica del modello FEM dell'impalcato.

4. ANALISI DEI CARICHI

Di seguito si riporta la descrizione dei vari contributi di carico presi in esame ai fini dell'analisi globale dell'impalcato.

Le sollecitazioni per le verifiche sezionali sono state dedotte dall'analisi globale.

4.1 Carichi agenti in fase 1

4.1.1 Peso proprio calcestruzzo travi (G_{k1}')

Il peso delle travi principali è stato applicato come carico per unità di lunghezza. L'entità di tale carico è determinata come segue:

γ=	25.0	kN/m³	peso specifico c.a.
A =	0.847	m^2	sezione corrente
w =	21.175	N/m	peso per unità di lunghezza di una trave
A =	1.41	m^2	area cavità da riempire
w =	35.25	N/m	peso per unità di lunghezza delle cavità piene

4.1.2 Peso proprio soletta (Gk1")

Il peso della soletta di impalcato nei modelli numerici è calcolato automaticamente a partire dal suo spessore di 0.25 m e dal peso specifico del calcestruzzo γ =25.0 kN/m³. L'entità del carico, espressa per unità di lunghezza di impalcato è:

L_{tot} =	13.73	m	larghezza totale impalcato
s =	0.25	m	spessore incluso predalles
γ=	25.0	kN/m ³	peso specifico c.a.
w =	85.80	kN/m	peso per unità di lunghezza di impalcato

Opera: Viadotto Arenella III
Relazione di Calcolo Impalcato - Carreggiata DX
Pagina 21
Nome file:
VI15-F-
CL003_C.00_relazione_calcolo_impalcato_DX.doc.

4.1.3 Peso proprio traversi (Gk1")

I traversi hanno una base di larghezza variabile, mediamente pari ad 1.70 m, ed una altezza di 2.1m, al netto della soletta e compresa una piastra prefabbricata di base di spessore 0.3 m.

Nei modelli il peso è stato calcolato automaticamente a partire dalla effettiva area in pianta e dalla loro altezza, per una carico complessivo di:

h =	2.1 m	altezza traverso, incluso fondello prefabbricato, esclusa la soletta
γ=	25.0 kN/m ³	peso specifico c.a.
w =	52.50 kN/m ²	peso per unità di superficie

4.1.4 Precompressione (Pk)

La precompressione è imposta mediante cavi pretesi, con una tensione di tesatura iniziale pari a σ_{pm0} =1350 MPa.

Delle perdite di precompressione per viscosità, ritiro e rilassamento se ne tiene conto approfonditamente in sede di verifiche sezionali allo stato limite di servizio.

Per il calcolo degli effetti iperstatici della precompressione e per le verifiche sezionali a stato limite ultimo se ne tiene conto assumendo una perdita forfettaria, comprensiva di effetti differiti ed effetti istantanei, del 14%.

Nel seguito sono riportati, per la sezione corrente della trave centrale e della trave di bordo, i calcoli delle deformazioni e curvature impresse per precompressione a partire dalle quali sono stati calcolati gli effetti iperstatici della precompressione nel modello globale.

		TRAV-bordo	TRAV-cen		
Np	=	9908	9908	kN	precompressioneal netto delle cadute di tensione istantanee
Yeq	=	0.4200	0.4200		distanza del cavo equivalente dall'intradosso
Yg	=	1.8700	1.2927	m	distanza del baricentro sezone dall' intradosso
е	=	1.44	0.87	m	eccentricità soletta rispetto al baricentro della sezione composta
M_p	=	-14257	-8647	kN*m	momento flettente dovuto alla precompressione nella trave
ϵ_{perc}	=	-1.479E-04	-1.922E-04		deformazione impressa equivalente
χ_{prec}	=	-4.661E-04	-3.340E-04		curvatura impressa equivalente

4.2 Carichi agenti in fase 2

4.2.1 Sovraccarichi permanenti (Gk2)

Cordoli, di dimensioni 75 cm e 123 cm, è pari a:

 $h_{cordolo} = 0.18 \text{ m}$ altezza cordolo

 $g_{1.2.dxA}$ = 3.38 kN/m peso proprio del cordolo dx $g_{1.2.sxD}$ = 5.54 kN/m peso proprio del marciapiede sx

Oltre ai due cordoli sono stati presi in considerazione i seguenti carichi:

CORRIDOIO PLURIMODALE TIRRENICO-NORD EUROPA ITINERARIO AGRIGENTO -CALTANISSETTA-A19 S.S. N° 640 "DI PORTO EMPEDOCLE"

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III
Relazione di Calcolo Impalcato - Carreggiata DX
Pagina 22
Nome file:
VI15-F-
CL003_C.00_relazione_calcolo_impalcato_DX.doc.

	carico unitario [kPa]	larghezza [m]	carico lineare [kN/m]		
g _{2.1.sxD}	2.50	3.62	9.04	kN/m pavimen	tazione lato trave sx D - lato marciapiede
g _{2.1.sxC}	2.50	2.50	6.25	kN/m pavimen	tazione lato trave centrale sx C
g _{2.1.dxB}	2.50	2.50	6.25	kN/m pavimen	tazione lato trave centrale dx B
g _{2.1.dxA}	2.50	3.14	7.84	kN/m pavimen	tazione lato trave dx A - lato cordolo
g _{2.3.sxD}	-	-	1.00	kN/m guard-ra	il sx
g _{2.3.dxA}	-	-	1.00	kN/m guard-ra	il dx
g _{2.4.sxD}	-	-	1.00	kN/m veletta s	X
9 _{2.4.dxA}	-	-	1.00	kN/m veletta d	X
g _{2.5.dxA}	-	-	1.00	kN/m parapette	0
g _{2.dx} A	-	-	10.84	kN/m pavimen	tazione lato trave dx A - lato cordolo
g _{2.dx B}	-	-	6.25	kN/m pavimen	tazione lato trave centrale dx B
g _{2.sxC}	-	-	6.25	kN/m pavimen	tazione lato trave centrale sx C
$g_{2.sxD}$	-	-	11.04	kN/m pavimen	tazione lato trave sx D - lato marciapiede
g_2			34.38	permane	ente portato totale

Per garantire la pendenza nei tratti in curva del viadotto è stato considerato il peso del massetto delle pendenze pari a 18kN/mc e con sepssore variabile $5 \div 20$ cm.

4.2.2 Ritiro differenziale trave-soletta (Gsh,k)

Poiché la soletta viene gettata in opera su travi che hanno già sviluppato liberamente deformazioni omogenee di ritiro, ni tiene conto solo dello scorrimento relativo trave soletta, calcolato come:

$$\varepsilon_{\text{sh}} = \varepsilon_{\text{sh travi}} (60, \infty) - \varepsilon_{\text{sh soletta}} (2, \infty) = 1.9e-4$$

Vengono valutati separatamente gli effetti primari del ritiro e gli effetti secondari (dovuti all'iperstaticità della struttura). Gli effetti primari vengono valutati con la formula:

$$N_r = \varepsilon_{sh} * E_s / n_{f2b} * b_{eff} * t_{cls}$$

$$M_r = N_r * e$$

In particolare con "e" si è indicata l'eccentricità fra il baricentro della soletta ed il baricentro della sezione composta omogeneizzata in fase 2. In sede di verifica tensionale, nella soletta, alle tensioni indotte da N_r ed M_r si aggiunge lo stato di coazione locale di trazione $\sigma_{sh} = \epsilon_{sh} * E_s/n_{f2b}$

Gli effetti del ritiro primario nelle verifiche vengono ignorati nelle zone fessurate; gli effetti secondari vengono presi in conto dalla modellazione globale effettuata con SAP2000 in termini di deformazioni e curvature impresse.

Seguono i calcoli delle grandezze suddette.

5	_				
		TRAV-bordo	TRAV-cen		
$\epsilon_{\sf sh}$	=	0.00020	0.00020		deformazione da ritiro residua
E*c	=	11214	11214	MPa	modulo elastico ridotto cls per fenomeni viscosi
σ_{sh}	=	2.24	2.24	MPa	trazione nel calcestruzzo
A_c	=	1.09	0.625	m^2	area conglomerato
N_{sh}	=	2445	1402	kN	trazione nella soletta
е	=	0.49	0.63	m	eccentricità soletta rispetto al baricentro della sezione composta
M_{sh}	=	1198	883	kN*m	momento flettente nella trave
N_{rt}	=	2445	1402	kN	compressione su ciascuna trave
M_{rt}	=	1198	883	kN*m	momento flettente su ciascuna trave
ϵ_{rit}	=	-3.649E-05	-2.730E-05		deformazione impressa equivalente
χrit	=	3.916E-05	3.416E-05		curvatura impressa equivalente

+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata DX

Pagina 23

Nome file: VI15-F-

 $CL003_C.00_relazione_calcolo_impalcato_DX.doc.$

4.3 Carichi agenti in fase 3

4.3.1 Variazioni termiche (QTk)

I criteri per la determinazione degli effetti della temperatura sono contenuti in NTC-08, cap. 3.5 (rif. Eurocodici EN 1991-1-5). Dal momento che NTC-08 non riporta prescrizioni specifiche per il calcolo degli effetti della temperatura (in particolare i gradienti termici) per i ponti si farà riferimento ai criteri contenuti negli Eurocodici.

4.3.1.1 Variazioni termiche uniformi Δt_N

Per l'Italia, il "range" di temperatura dell'aria è definito dai seguenti valori:

 $T_{min} = -15 \, ^{\circ}C$

 $T_{max} = +45 \, ^{\circ}C$

a cui corrispondono, per ponti di gruppo 3 (tipologia impalcato di calcestruzzo), i seguenti valori riferiti alla struttura:

 $Te_{min} = -6 °C$

Te_{max} = +46 °C

Fissando T_0 a 15.0 °C, dedotto dall'Annesso nazionale dell'Eurocodice, si ottiene l'escursione termica effettiva subita dall'impalcato:

 $\Delta TN_{comp} = -21 \, ^{\circ}C$

 $\Delta TN_{exp} = +31 \, ^{\circ}C$

a cui corrisponde complessivamente un'escursione pari a:

 $\Delta T_{N} = 52.0 \, ^{\circ}C.$

4.3.1.2 Variazioni termiche lineari Δt_M

Per ponti di gruppo 3 (concrete box girdere), i valori caratteristici delle variazioni lineari di temperatura (gradiente tra intradosso ed estradosso) risultano:

 $\Delta T_{M,heat} = 10.0 \, ^{\circ}C$

 $\Delta T_{M,cool} = -5.0 \, ^{\circ}C$

Considerando il coefficiente riduttivo di Δt_{pos} concesso per tenere conto dello spessore del manto di asfaltatura (k_{sur} = 1 per t = 100.0 mm), si ottengono i valori di progetto:

 $k_{sur} \Delta T_{M,heat}$ = 10.0 °C

estradosso più caldo dell'intradosso

 $k_{sur} \Delta T_{M.cool} = -5.0 \, ^{\circ}C$

estradosso più freddo dell'intradosso

4.3.1.3 Combinazione degli effetti uniformi e lineari

La combinazione degli effetti dovuti alla variazione termica uniforme e lineare verrà effettuata sfruttando la formula di combinazione proposta dalla normativa, che prevede due combinazioni principali in cui Δt_M e Δt_N sono amplificati mediante differenti coefficienti di combinazione:

C1: $\Delta t_M + 0.35 \Delta t_N$

C2: $0.75 \Delta t_M + \Delta t_N$

4.3.2 Carichi mobili (Qk)

Si seguono le disposizioni contenute nel D.M. 2008, cap. 5.1.3.3.5, equivalenti a quelle contenute in EN 1991-2. Si fa riferimento a ponti di I categoria.

Nel caso in esame, la carreggiata, di larghezza utile pari a 10.50 m, è in grado di ospitare 3 corsie di carico di larghezza convenzionale pari a 3.0 m. La parte rimanente ("remaining area") risulta pari a 1.50 m.

Corsia di carico n.1 costituita da:

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata DX

Pagina 24

Nome file:
VI15-FCL003_C.00_relazione_calcolo_impalcato_DX.doc.

- ✓ Schema di carico n.1 : n. 4 carichi concentrati da 150 kN cadauno disposti ad interasse 2.00m in direzione longitudinale al viadotto e 1.2 m in direzione trasversale
- ✓ Carico uniformemente ripartito di intensita 9.0 kN/m²2 su una larghezza di 3.00m

Corsia di carico n. 2 costituita da :

- ✓ Schema di carico n.1 ridotto : n. 4 carichi concentrati da 100 kN cadauno disposti ad interasse 2.00m in direzione longitudinale al viadotto e 1.2 m in direzione trasversale
- √ Carico uniformemente ripartito di intensita 2.5 kN/m² su una larghezza di 3.00m.

Corsia di carico n. 3 costituita da:

- ✓ Schema di carico n.1 ridotto : n. 4 carichi concentrati da 50 kN cadauno disposti ad interasse 2.00m in direzione longitudinale al viadotto e 1.2 m in direzione trasversale
- ✓ Carico uniformemente ripartito di intensita 2.5 kN/m² su una larghezza di 3.00m

Corsia di carico n. 4 (Rimaining area RA) costituita da :

 ✓ - Carico uniformemente ripartito di intensita 2.5 kNn/m² su una larghezza residua di impalcato pari a (10.50-3.00*3)= 1.50 m

4.3.2.1 Verifiche globali

Le stese dei carichi mobili prima definite sono state poste sull'impalcato nelle posizioni tali da produrre le sollecitazioni e le deformazioni più gravose. La ricerca delle disposizioni sia longitudinali che trasversali dei carichi mobili più gravose è stata effettuata in maniera automatica dal codice di calcolo impiegato per l'analisi dell'impalcato. Infatti, il programma di calcolo SAP2000 esegue l'analisi delle sollecitazioni dovute ai carichi mobili partendo dalle linee d'influenza di ciascuna sezione e sommando soltanto i termini che contribuiscono a massimizzare il valore assoluto della sollecitazione stessa (rispettivamente per i valori massimi ed i valori minimi).

In tale maniera si ottempera a quanto previsto dalla Normativa che prevede che i carichi mobili siano disposti lungo l'asse della corsia nel modo più sfavorevole (disposizione a scacchiera).

4.3.2.2 Verifiche locali

Per le verifiche locali della soletta d'impalcato si ricorre allo schema di carico globale oltre al "Modello di carico 2" (LM2), composto da un veicolo ad un solo asse, avente un peso complessivo pari a 400 kN. E' stato redatto inoltre un modello locale descritto nel paragrafo dedicato alle verifiche trasversali della soletta.

4.3.3 Azioni di frenatura (Qlk)

La forza di frenamento o di accelerazione è funzione del carico verticale totale agente sulla corsia convenzionale n. 1. Tale azione viene equilibrata da reazioni vincolari longitudinali degli apparecchi di appoggio e pertanto la stessa non sarà considerata nei calcoli di dimensionamento e verifica dell'impalcato.

Progetto Esecutivo

Opera: Viadotto Arenella III
Relazione di Calcolo Impalcato - Carreggiata DX
Pagina 25
Nome file:
VI15-FCL003 C.00 relazione calcolo impalcato DX.doc.

4.3.4 Azione del vento (Fw,k)

Il carico neve viene trascurato in questa analisi in quanto la sua azione è significativa solamente in fase di esecuzione dell'opera; per quanto riguarda invece il vento, a partire da informazioni quali l'ubicazione geografica del sito di realizzazione dell'opera, la rugosità e la topografia del terreno, la categoria di esposizione del sito e l'altezza dal suolo, la normativa (NTC cap.3.3) permette di valutare l'azione del vento in termini di azioni statiche equivalenti (la pressione statica del vento può essere rappresentata in termini di sollecitazioni globali applicate poi alle travi come carichi distribuiti verticali ed orizzontali).

Di seguito si riporta il dettaglio del calcolo dell'azione del vento sull'impalcato e sulle pile del pviadotto

Vento su impalcato				
zona	=	4		sicilia
$V_{b,0}$	=	28	m/s	
a_0	=	500	m	
k _a	=	0.02	1/s	
a_s	=	315	m	altitudine del sito
V_b	=	28	m/s	velocità di riferimento
ρ	=	1.25	kg/m³	densità dell'aria
q_b	=	0.490	kN/m^2	pressione cinetica di riferimento
	=	D		classe di rugosità del terreno
\mathbf{c}_{t}	=	1		coefficiente di topografia
	=	II		categoria di esposizione del sito
k _r	=	0.19		Tabella 3.3.II
z_0	=	0.05	m	Tabella 3.3.II
Z _{min}	=	4.00	m	Tabella 3.3.II
Z	=	12.00	m	altezza sul suolo (massima)
C _e	=	2.47		coefficiente di esposizione
C_p	=	1		coefficiente di forma
c_d	=	1	0	coefficiente dinamico
р	=	1.21	kN/m ²	pressione del vento
H_{vc}	=	3.00	m	altezza veicolo convenzionale
H_{imp}	=	2.23	m	altezza impalcato
H_{vento}	=	5.23	m	altezza superficie di spinta
F _{vento}	=	6.33	kN/m	azione del vento su impalcato
Y_{G}	=	1.40	m	distanza da intradosso baricentro impalcato
е	=	1.22	m	eccentricità dell'azione del vento
M_{vento}	=	7.69	kNm/m	coppia torcente
d_{sx}	=	3.75	[m]	distanza trave sx da asse impalcato
di ₁	=	1.25	[m]	distanza della trave centrale sx da asse impalcato
di_2	=	-1.25	[m]	distanza della trave centrale dx da asse impalcato
d_{dx}	=	-3.75	[m]	distanza trave sx da asse impalcato
k		0.2	[m]	$k = [M/(d_1^2 + d_2^2 + + d_n^2)]$
$q_{5v,sxD}$	- =	0.92	[KN/m]	azioni verticali equilibranti - sx lato marciapiede
q _{5v,sxC}	-	0.31	[KN/m]	azioni verticali equilibranti - centrale sx
q _{5v,dxB}	=	-0.31	[KN/m]	azioni verticali equilibranti - centrale dx
q _{5v,dxA}	-	-0.92	[KN/m]	azioni verticali equilibranti - dx lato cordolo
q _{5h}	=	1.58	kN/m	azione orizzontale su ciascuna trave

Progetto Esecutivo

Pagina 26 Nome file: VI15-F-

 ${\tt CL003_C.00_relazione_calcolo_impalcato_DX.doc}.$

Relazione di Calcolo Impalcato - Carreggiata DX

Opera: Viadotto Arenella III

4.3.5 Sisma

Le azioni sismiche non sono dimensionanti per il calcolo degli elementi principali dell'impalcato. Di tali azioni si tiene conto nel dimensionamento e la verifica delle pile e delle spalle. Si rimando pertanto alle relazioni di calcolo delle sottostrutture per la valutazione dettagliata di dette azioni.

5. COMBINAZIONI DI CARICO

Per l'impalcato in esame, si evidenzia preliminarmente che, tra le azioni variabili da traffico si considereranno solamente i carichi di gruppo 1.

Per le formulazioni generali delle combinazioni di carico nell'ambito dei vari S.L. si rimanda a NTC-08 cap. 2.5.3 (rif. Eurocodice EN 1990-annex.A2, cap. A2.3, A2.4).

S.L.U. - fondamentale

Con riferimento ai carichi significativi, la combinazione assume la seguente forma:

$$E_d = \gamma_{G1} G_{k1} + \gamma_{G2} G_{k2} + \gamma_{ep} G_{kep} + \gamma_{sett} G_{ksett} + \gamma_{sh} G_{sh} + \gamma_{0.1} (Q_{k.TS} + Q_{k.UDL}) + \gamma_{0.2} \psi_{0.2} Q_{k.T}$$

Per quanto riguarda i coefficienti moltiplicativi, si fa riferimento a quanto contenuto in NTC-08, cap. 5.1.3.12, tab. 5.1.V, ripreso da EN 1990, annex A.2, e relativo N.A.D.. Si segnala a tale proposito qualche leggera discrepanza da quanto desumibile in origine da quest'ultimo riferimento normativo, discrepanza superata mediante una puntuale applicazione dei criteri contenuti nel N.A.D.. Per i coefficienti si considera quanto seque:

γ _{G1}	=	1.35 - 1	coefficiente moltiplicativo dei sovraccarichi permanenti strutturali;
γ̃G2	=	1.35 - 1	dal momento che sono di carattere compiutamente definito, i carichi permanenti portati verranno trattati alla stessa stregua dei carichi permanenti strutturali;
γ_{sht}	=	1.2 - 1.2	coefficiente moltiplicativo per le azioni dovute al ritiro, nell'analisi di lungo termine;
γ_{sht}	=	0	coefficiente moltiplicativo per le azioni dovute al ritiro, nell'analisi di breve termine;
γ _{Q1}	=	1.35 - 0	coefficiente moltiplicativo per i carichi da traffico;
γ _{Q2}	=	1.2	coefficiente moltiplicativo per i carichi di origine termica;
γ_{Qv}	=	1.5	coefficiente moltiplicativo per i carichi dovuti al vento.

I coefficienti di combinazione dell'azione di temperatura e del vento, risultano (cfr. NTC-08, tab. 5.1.VI):

 $\psi_{0.3} = 0.6$

 $\psi_{0,2} = 0.6$

Quanto evidenziato è relativo alla verifica allo S.L.U. delle travi d'impalcato, per le quali risulta significativa la sola combinazione con carichi mobili dominanti.

S.L.E. – fondamentale (rara)

Con riferimento ai carichi significativi, si ha la seguente combinazione dei valori caratteristici dei carichi (indice "k").

$$E_d = G_{k1} + G_{k2} + G_{kep} + G_{ksett} + G_{sh} + (Q_{k,TS} + Q_{k,UDL}) + \psi_{0,2} Q_{k,T}$$

Il coefficiente di combinazione dell'azione di temperatura, risulta (cfr. NTC-08, tab. 5.1.VI): $\psi_{0,2}$ = 0.6;

 $\psi_{0.3} = 0.6$.

La combinazione S.L.E. fondamentale verrà impiegata ai fini delle seguenti verifiche:

Relazione di Calcolo Impalcato - Carreggiata DX
Pagina 27

Opera: Viadotto Arenella III

Nome file: VI15-F-

 $CL003_C.00_relazione_calcolo_impalcato_DX.doc.$

- verifica allo S.L.E., limitazione delle tensioni.

S.L.E. - frequente

Tale combinazione si esprime simbolicamente attraverso la seguente espressione:

$$E_d = G_{k1} + G_{k2} + G_{kep} + G_{ksett.} + G_{sh} + (\psi_{1,1TS} Q_{k,TS} + \psi_{1,1UDL} Q_{k,UDL}) + \psi_{2,2} Q_{k,T}$$

I coefficienti di combinazione (NTC-08, tab. 5.1.VI, EN 1991-2,) risultano:

 $\psi_{1,1}$ = 0.75 per i contributi TS;

 $\psi_{1,1}$ = 0.4 per i contributi UDL;

 $\psi_{2,2}$ = 0.5 per la temperatura;

 $\psi_{2,3}$ = 0.0 per il vento.

La combinazione S.L.E. frequente viene impiegata per:

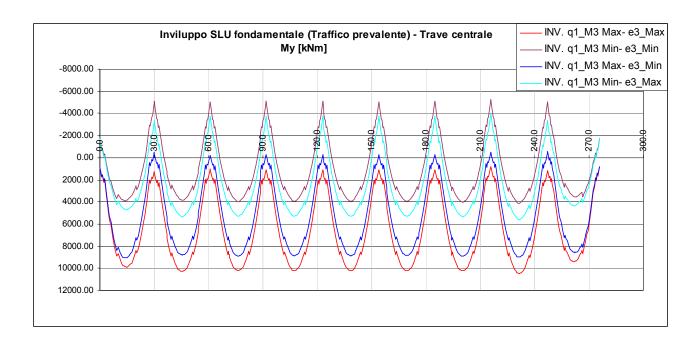
- verifiche a fessurazione

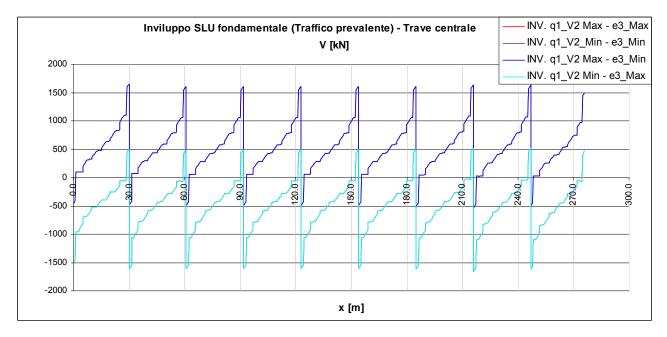
S.L.E. – quasi permanente

Risultano assenti i carichi mobili da traffico, i cui coefficienti quasi permanenti di combinazione sono nulli, mentre la temperatura viene associata al coefficiente di combinazione $\psi_{2,2} = 0.5$.

6. Risultati Dell'analisi Strutturale Impalcato

6.1 Sollecitazioni trave

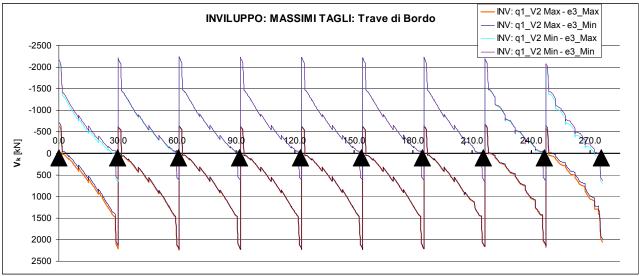

Nel seguito si riportano i diagrammi degli inviluppi con Traffico prevalente delle prime nove campate della travata di bordo lato ciglio esterno e della travata centrale adiacente.


Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata DX

Pagina 28

Nome file:
VI15-FCL003_C.00_relazione_calcolo_impalcato_DX.doc.


Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata DX

Pagina 29

Nome file:
VI15-FCL003_C.00_relazione_calcolo_impalcato_DX.doc.

6.2 Sollecitazioni nei traversi

Nel seguito si riportano i diagrammi degli inviluppi agli SLU, (Traffico dominante), del momento flettente del taglio e della torsione. Nelle Tabella 6.1 e Tabella 7.1 si riporatno le massime sollecitazioni adottate nelle verifiche.

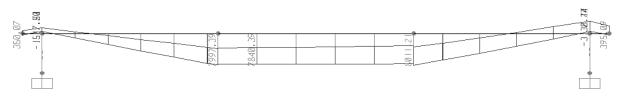


Figura 6.1: SLU fondamentale (Traffico dominante) - My

CORRIDOIO PLURIMODALE TIRRENICO-NORD EUROPA ITINERARIO AGRIGENTO -CALTANISSETTA-A19 S.S. N° 640 "DI PORTO EMPEDOCLE"

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III Relazione di Calcolo Impalcato - Carreggiata DX Pagina 30 Nome file: VI15-F-CL003_C.00_relazione_calcolo_impalcato_DX.doc.

Figura 6.2: SLU fondamentale (Traffico dominante) - Fz

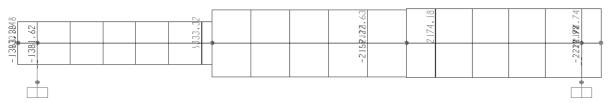


Figura 6.3: SLU fondamentale (Traffico dominante) - T

Tabella 6.1: Sollecitazioni combinate agli SLU per le verifiche a flessione

comb	My	Trasverso	
M3max	7974.32	P08	
M3min	-3125.74	P08	

Tabella 6.2: Sollecitazioni combinate agli SLU per le verifche a taglio

	V2	Т	Trasverso
V2max	5131.5	-37.1	P08
V2max	-4267.0	185.2	P08
Tmax	-2683.7	2282.8	P02
Tmax	-3089.8	-2292.6	P01

Nella Tabella 6.3 e nelle figure seguenti vengono riportate le sollecitazioni combinate agli SLE per le relative verifiche in esercizio.

Tabella 6.3: Sollecitazioni combinate agli SLE

rabella 6.5. Goliecitazioni combinate agli GEE					
	Му	Trasverso	COMB		
M3max	5368.1	P08	Frequente		
M3min	-1918.8	P08	Frequente		
M3max	3624.0	P08	Quasi Permermanente		
M3min	-784.3	P01	Quasi Permermanente		

Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata DX

Pagina 31

Nome file: VI15-F-

 ${\tt CL003_C.00_relazione_calcolo_impalcato_DX.doc}.$

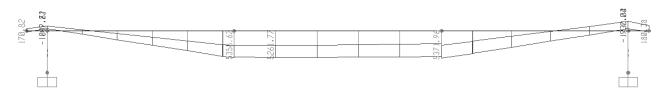


Figura 6.4: Momento My combinazione Frequente

Figura 6.5: Momento My combinazione Quasi Permanente

6.3 Stato deformativo della struttura

Le frecce massime prodotte dai carichi permanenti e dai carichi da traffico valgono:

 f_1 = 19.65 mm (freccia massima per carichi permanenti);

 f_2 = 36.61 mm (freccia massima per carichi da traffico).

Nelle seguenti figure si riportano le configurazioni deformate della struttura.

Figura 6.6: Spostamenti verticali Tratto 1

Figura 6.7: Spostamenti verticali Tratto 2

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata DX

Pagina 32

Nome file:
VI15-FCL003_C.00_relazione_calcolo_impalcato_DX.doc.

7. VERIFICHE TRAVI

Nei paragrafi successivi si riportano le verifiche di sicurezza delle sezioni più significative della trave. Tali sezioni sono riepilogate nel seguente prospetto, nel quale, oltre all'indicazione delle sezioni oggetto di verifica, viene indicato anche lo/gli stato/i limite considerato/i per la verifica di ciascuna sezione.

Tabella 7.1 - Indicazione delle sezioni di verifica.

rabella 7.1 - mulcazione delle Sezioni di Vernica.							
				Stati limite verificati			
ID - sezione	trave	Descrizione della sezione	Materiale	SLE – limitazione delle tensioni	SLE – verifica a fessurazione	SLU – tensioni normali	SLU – taglio, torsione e loro interazione
SA-b	bordo	x=L/2 (sezione di mezzeria) sezione a x=1.50m dalla testata della	c.a.p.	Х	Х	X	
SB-b	bordo	trave (sezione a filo riempimento in cls)	c.a.p.	X	Х	Х	X
SC-b	bordo	sezione di testata della trave sezione a 9.0m	c.a.o.	X	Χ	X	X
SD-b	bordo	dalla testata della trave sezione a	c.a.p.	X	Χ	Х	X
SE-b	bordo	x=3.225m da testata trave x=I/2	c.a.p.				X
SA-c	centrale	(sezione di mezzeria) sezione a x=1.50m dalla testata della	c.a.p.	X	X	X	
SB-c	centrale	trave (sezione a filo riempimento in cls)	c.a.p.	X	Х	Х	X
SC-c	centrale	sezione di testata della trave sezione a 9.0m	c.a.o.	X	Χ	Χ	X
SD-c	centrale	dalla testata della trave sezione a	c.a.p.	X	X	Χ	X
SE-c	centrale	x=3.225m da testata trave	c.a.p.				X

7.1 S.L.U. – Verifiche a pressoflessione

Nei paragrafi successivi si riportano le verifiche a pressoflessione delle sezioni significative della trave. Vengono riportate le sollecitazioni agenti e resistenti e lo stato deformativo nelle fibre estreme del calcestruzzo e dell'acciaio, oltre ai coefficienti di utilizzo che risultano tutti minori dell'unità.

7.1.1 Sezione SA-c (fibre tese inferiori)

Sezione: Cassoncini + Soletta 2500x250 mm

Precompressione: tutti i trefoli sono attivi 60 trefoli Armatura corrente in soletta φ 14/200 sopra e sotto

Posizione: mezzeria

Sollecitazioni:

CORRIDOIO PLURIMODALE TIRRENICO-NORD EUROPA ITINERARIO AGRIGENTO -CALTANISSETTA-A19 S.S. N° 640 "DI PORTO EMPEDOCLE"

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata DX

Pagina 33

Nome file: VI15-F-

 ${\tt CL003_C.00_relazione_calcolo_impalcato_DX.doc.}$

Verifica:

SLU fondamentale Mmax - Fibre tese all'intradosso $M_{Ed,max}$ = 10469 kNm

 $M_{Rd} = 17337 \text{ kNm}$ Momento resitente positivo

 $C_u = M_{Ed,max} / M_{Rd} = 0.60 < 1$ coefficiente di utilizzo

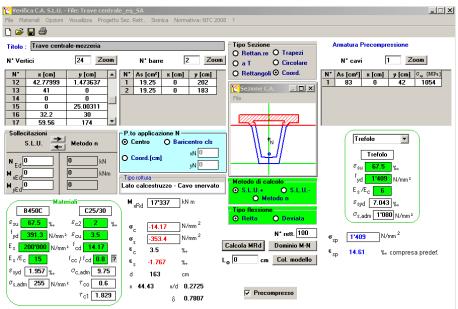


Figura 7.1: Momento resitente sezione di mezzeria.

Sezione SB-c (fibre tese inferiori/superiori)

Sezione: Cassoncini + Soletta 2500x250 mm

Precompressione: sono attivi 36 trefoli trefoli

Armatura corrente in soletta \(\phi \) 14/200+\(\phi \) 26/200 sopra e sotto

Posizione: a filo riempimento

Sollecitazioni:

$M_{Ed,max}$ = 2114.99 kNm	SLU fondamentale Mmax – Fibre tese all'intradosso
$M_{Ed,min}$ = -3728.38 kNm	SLU fondamentale Mmin – Fibre tese all'estradosso

Verifica:

$M_{Rd} = 10240 \text{ k}$:Nm	Momento resitente positivo
M_{Rd} = -6223 kl	Nm	Momento resitente negativo

 $C_u = M_{Ed,max} / M_{Rd} = 0.21 < 1$ coefficiente di utilizzo $C_u = M_{Ed,min} / M_{Rd} = 0.60 < 1$ coefficiente di utilizzo

DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata DX

Pagina 34

Nome file: VI15-F-

 ${\tt CL003_C.00_relazione_calcolo_impalcato_DX.doc}.$

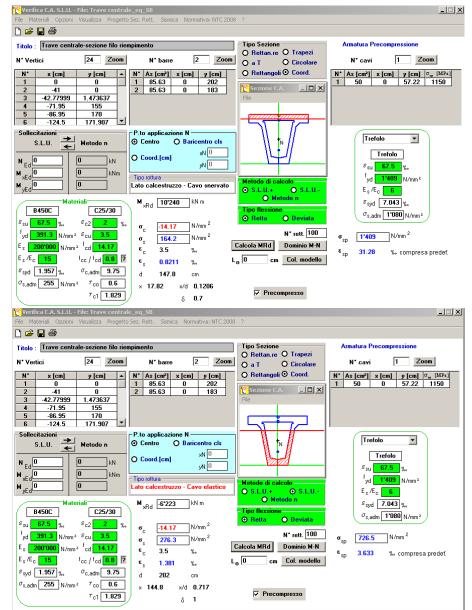


Figura 7.2: Momento resistente sezione a filo riempimento

7.1.3 Sezione SC-c (fibre tese superiori)

Sezione: Cassoncini + Soletta 2500x250 mm + Cavità casssoncino piena

Precompressione: non efficace

Armatura corrente in soletta φ 14/200+φ 26/200 sopra e sotto Armatura a fondo cassoncino:6+6+6 φ 26 a z=350, 400, 450mm

Posizione: a filo traverso

Sollecitazioni:

DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata DX

Pagina 35

Nome file: VI15-F-

CL003 C.00 relazione calcolo impalcato DX.doc.

 $M_{Ed,min}$ = -5254.20 kNm SLU fondamentale Mmin - Fibre tese all'estradosso

Verifica:

 $M_{Rd} = -11229 \text{ kNm}$ Momento resitente negativo

 $C_u = M_{Ed,min} / M_{Rd} = 0.47 < 1$ coefficiente di utilizzo

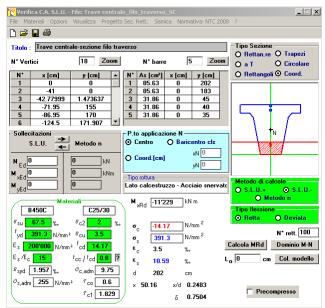


Figura 7.3: Momento resistente sezione a filo traverso

Sezione SD-c (fibre tese inferiori)

Sezione: Cassoncini + Soletta 2500x250 mm

Precompressione: sono attivi 50 trefoli trefoli

Posizione: a 9,00 m dalla testata

Sollecitazioni:

SLU fondamentale Mmax - Fibre tese all'intradosso $M_{Ed,max} = 9056.80 6kNm$

Verifica:

M_{Rd}=14414 kNm Momento resitente positivo

 $C_u = M_{Ed,min} / M_{Rd} = 0.63 < 1$ coefficiente di utilizzo

DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III Relazione di Calcolo Impalcato - Carreggiata DX Pagina 36 Nome file: VI15-F-

 ${\tt CL003_C.00_relazione_calcolo_impalcato_DX.doc}.$

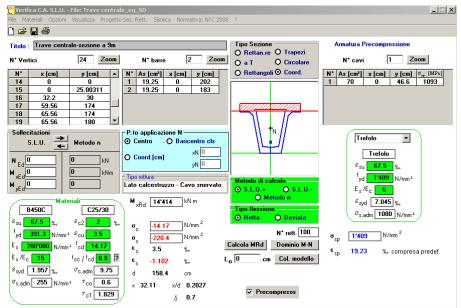


Figura 7.4: Momento resistente sezione a 9m dalla testata

7.1.5 Sezione SA-b (fibre tese inferiori)

Sezione: Cassoncini + Soletta 3750x250 mm

Precompressione: tutti i trefoli sono attivi 60 trefoli

Posizione: mezzeria

Sollecitazioni:

SLU fondamentale Mmax – Fibre tese all'intradosso $M_{Ed,max}$ = 15834kNm

Verifica:

 M_{Rd} = 17956kNm Momento resitente positivo

 $C_u = M_{Ed,max} / M_{Rd} = 0.88 < 1$ coefficiente di utilizzo

DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata DX

Pagina 37

Nome file:
V115-FCL003 C.00 relazione calcolo impalcato DX.doc.

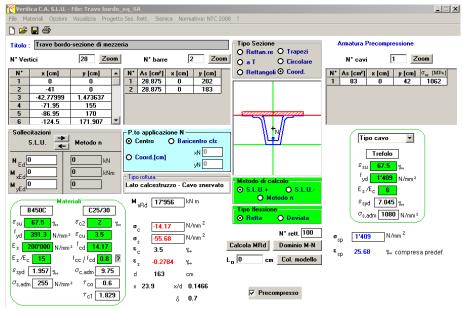


Figura 7.5: Momento resitente sezione di mezzeria.

7.1.6 Sezione SB-b (fibre tese inferiori/superiori)

Sezione: Cassoncini + Soletta 3790x250 mm

Precompressione: sono attivi 36 trefoli trefoli

Armatura corrente in soletta \(\phi \) 14/200+\(\phi \) 26/200 sopra e sotto

Posizione: a filo riempimento

Sollecitazioni:

$M_{Ed,max} = 4639.78 \text{ kNm}$	SLU fondamentale Mmax – Fibre tese all'intradosso
$M_{Ed,min}$ = -3608.51 kNm	SLU fondamentale Mmin – Fibre tese all'estradosso

Verifica:

M_{Rd} = 1850kNm	Momento resitente positivo
M_{Rd} = -6559 kNm	Momento resitente negativo
$C_u = M_{Ed,max} / M_{Rd} = 0.43 < 1$	coefficiente di utilizzo
$C_u = M_{Ed,min} / M_{Rd} = 0.55 < 1$	coefficiente di utilizzo

MMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata DX

Pagina 38

Nome file:
VI15-F-

Figura 7.6: Momento resistente sezione a filo riempimento

CORRIDOIO PLURIMODALE TIRRENICO-NORD EUROPA ITINERARIO AGRIGENTO -CALTANISSETTA-A19 S.S. N° 640 "DI PORTO EMPEDOCLE" AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata DX

Pagina 39

Nome file: VI15-F-

CL003 C.00 relazione calcolo impalcato DX.doc.

7.1.7 Sezione SC-b (fibre tese superiori)

Sezione: Cassoncini + Soletta 3790x250 mm + Cavità casssoncino piena

Precompressione: non efficace

Armatura corrente in soletta \(\phi \) 14/200+\(\phi \) 26/200 sopra e sotto

Posizione: a filo traverso

Sollecitazioni:

 $M_{Ed,min}$ = -5867 kNm SLU fondamentale Mmin – Fibre tese all'estradosso

Verifica:

 $M_{Rd} = -11229 \text{ kNm}$ Momento resitente negativo

 $C_u = M_{Ed,min} / M_{Rd} = 0.52 < 1$ coefficiente di utilizzo

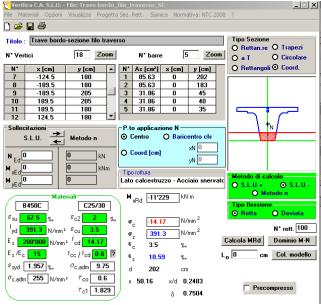


Figura 7.7: Momento resistente sezione a filo traverso

7.1.8 Sezione SD-b (fibre tese inferiori)

Sezione: Cassoncini + Soletta 3790x250 mm

Precompressione: sono attivi 50 trefoli trefoli

Posizione: a 9,00 m dalla testata

Sollecitazioni:

 $M_{Ed,max}$ = 13578kNm

SLU fondamentale Mmax - Fibre tese all'intradosso

Verifica:

DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata DX

Pagina 40

Nome file:
VI15-FCL003 C.00 relazione calcolo impalcato DX.doc.

M_{Rd}=14728 kNm

Momento resitente positivo

 $C_u = M_{Ed,min} / M_{Rd} = 0.92 < 1$

coefficiente di utilizzo

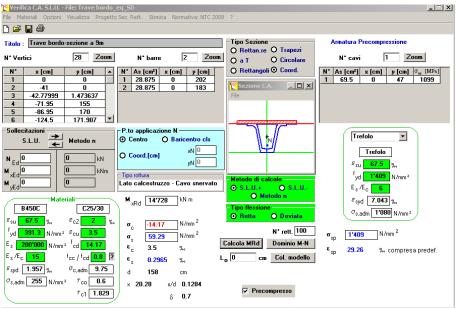


Figura 7.8: Momento resistente sezione a 9m dalla testata

7.1.9 Verifica del trasferimento della forza di tiro nell'armatura inferiore (fibre tese inferiori)

Si verifica che lo sforzo di trazione che nasce per equilibrare il momento negativo in appoggio (fibre tese inferiori possa essere interamente trasferito dal nucleo in cls alle travi in cap, perché possa ritenersi garantita la continuità anche per flessione negativa. Si cumulano tre contributi di natura diversa:

- l'aderenza fra cao e cap lungo la zona piena
- la resistenza a sfilamento dei trefoli, le cui code per almeno 600mm sono annegate nel traverso
- le resistenza a snervamento di 6\(\phi 22 \), che fuoriescono dalla travata in cap ed entrano nel traverso

Si rimanda alle tavole da disegno per i particolari costruttivi

$$F_{Sd} = \frac{M_{Sd}}{0.9 \cdot d};$$

Materiali

Calcestruzzo riempimento C32/40

R_{ck}	=	40	MPa	resistenza caratteristica cubica
f _{ck}	=	33.2	MPa	resistenza caratteristica cilindrica
f_{cm}	=	41.2	MPa	resistenza cilindrica media
$\alpha_{\rm cc}$	=	0.85		coefficiente riduttivo per resistenze di lunga durata
γ_{c}	=	1.5		coefficiente parziale di sicurezza
f_{cd}	=	18.81	MPa	resistenza di calcolo a compressione
f _{ctm}	=	3.10	MPa	resistenza media a trazione semplice (assiale)
f _{ctk}	=	2.17	MPa	resistenza caratteristica a trazione semplice (assiale)
С	=	1.00		per solette, pareti, ed elemeti con spessori minori di 50mm va ridotta di 0,80

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera. Viadotto Archena in	Opera:	Viadotto	Arenella III
----------------------------	--------	----------	--------------

Relazione di Calcolo Impalcato - Carreggiata DX

Pagina 41

Nome file: VI15-F-

f _{ctd} Acciaio	=	1.45	MPa	resistenza di calcolo a trazione del calcestruzzo			
f_{yk}	=	450		tensione caratteristica di snervamento			
γs	=	1.15		coefficiente parziale di sicurezza			
f_{yd}	=	391.30	MPa	tensione di snervamento di calcolo			
Sollecitaz	ione						
M_{Ed}	=	3592.28	kNm	momento minimo (fibre tese inferiori) in asse appoggio			
Z_G	=	200	mm	baricentro armatura aggiuntiva riferito all'intradosso trave			
d	=	1600	mm	distanza del baricntro armatura inferiore dall'estradosso soletta			
F_{sd}	=	2495		tiro totale nelle armature lente superiori			
Contribut	o dell' ad	erenza tra g	etti di cls				
С	=	0.45		fattore di calcolodell'aderenza fra superfici scabre			
f_{ctd}	=	1.45	MPa	resistenza a trazione del cls in opera			
ΣS_c	=	1652	mm	contorno aderente base cassoncino (fondo+500mm a dx e sx)			
lr	=	1500	mm	distanza inizio cassoncino - fine del riempimento			
τ_{Rd} = Cf_{ctd}	=	0.65	MPa	tensione tagliante resistente del calcestruzzo in opera			
F _{Rd1}	=	1613	kN	contributo dell' aderenza			
Contribut	o dell' arı	matura lenta	a presente	nella suola del cassoncino			
ф	=	22	mm	diametro barre			
n	=	6		numero ferri			
A_{sl}	=	2281	mmq	area ferri			
f_{yd}	=	391.30	MPa				
F _{Rd2}	=	892	kN	contributo dell' aderenza			
Contribut	o delle co	ode dei trefo	oli				
φ	=		mm	diametro trefoli			
n	=	30		numero ferri			
u_{sl}	=	47	mm	perimetro aderente di un trefolo			
η_1	=	1.0		condizione di buona aderenza			
η_2	=	1.0		1 per diametri <32 mm			
f_{bd}	=	3.25	MPa	tensione ultima di aderenza (EN 1992-1-1 8.4.3 ed 8.4.4)			
α_4	=	0.7		per ancoraggio in trazione			
$\alpha_2\alpha_3\alpha_5$	=	0.7		limite inferiore di tutti i fattori			
f _{bd} *	=	1.59	MPa	aderenza effettiva acc-cls a SLU			
1	=	600	mm	lungezza di ancoraggio			
F _{Rd3}	=	1349	kN	contributo aderenza code trefoli			
Resistenz	za Totale	$F_{RdT}=F_{Rd1}+F$	Rd2+FRd3				
F_RdT	=	3854		resistenza totale			
Fsd	=	2495		tiro totale nelle armature lente superiori			
F _{RdT} /Fsd	=	1.54		se >1 verifica soddisfatta			
		ok					

DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata DX

Pagina 42

Nome file: VI15-F-

CL003_C.00_relazione_calcolo_impalcato_DX.doc.

7.2 S.L.U. – Verifiche a taglio e torsione

7.2.1 Sezione SB-c (trave centrale)

Campata:		P04-P05	P08-P09		
Trave:		SB (filo	TRAVE CENTRALE SB (filo		
Sezione:		riempimento)	riempimento)		
COMB		VEd,max - TEd	VEd - TEd,max		
Sollecitazioni					
V_{Ed}	=	1102	229	kN	taglio di caloclo
T_{Ed}	=	20	356	kN	torsione di caloclo
N_{Ed}	=	0	0	kN	sforzo normale i calcolo
Materiali					
Calcestruzzo					
R_{ck}	=	55	55	MPa	resistenza caratteristica cubica
f_{ck}	=	45.7	45.7	MPa	resistenza caratteristica cilindrica
$\alpha_{\rm cc}$	=	0.85	0.85		coefficiente riduttivo per resistenze di lunga durata
γ_{c}	=	1.50	1.50		coefficiente parziale di sicurezza
f_{cd}	=	25.87	25.87	MPa	resistenza di calcolo a compressione
Acciaio					
f_{yk}	=	450	450	MPa	tensione caratteristica di snervamento
γs	=	1.15	1.15		coefficiente parziale di sicurezza
f _{yd} Verifica capacità a Taglio	=	391.30	391.30	MPa	tensione di snervamento di calcolo
Verifica per elementi s	prov	vvisti di armatura a tagli	0		
b_w	=	314	314	mm	larghezza minima sezione
d	=	1925	1925	mm	altezza utile
\emptyset_{w}	=	14	14	mm	diametro ferri long. tesi
n	=	25	25		numero
A_{sl}	=	3848	3848	mm ²	armatura longitudinale
A_c	=	1460327	1460327	mm ²	area sezione cls
k	=	1.32	1.32		
$\sigma_{\sf cp}$	=	0.0000	0.0000	MPa	tensione media calcestruzzo <=0,2f _{cd} rapporto geometrico di armatura longitudinale
$ ho_{ extsf{1}}$	=	0.00637	0.00637		<=0,02
V _{min}	=	0.360	0.360	ı	
V_{Rd}	=	294.90	294.90	kN	taglio resistente
V_{Ed}	=	1102	228.5	kN	taglio di caloclo
FS		0.27	1.29		se >1 verifica soddisfatta
Verifica per elementi p taglio	rovv	no visti di armatura a	ok		
Ø _w	=	12	12	mm	diametro armatura resistente a taglio
α	=	90.00	90.00	0	angolo di inclinazione armatura trasversale
S	=	150.00	150.00	mm	passo staffe

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19 *Progetto Esecutivo* Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata DX

Pagina 43

Nome file: VI15-F-

CL003_C.00_relazione_calcolo_impalcato_DX.doc.

n _{br}	=	4.0	4.0		numero bracci armatura trasversale
A_{sw}	=	452.39	452.39	mmq	area armatura trasversale posta nell'interasse s
b_w	=	314.00	314.00	mm	larghezza minima sezione
f_{cd}	=	25.87	25.87	MPa	
ν	=	0.5	0.5		coeff. di riduzione f _{cd}
f' _{cd}	=	12.93	12.93	MPa	resistenza a compressione del cls ridotta
ω_{sw}	=	0.14529	0.14529		% meccanica di armatura trasversale
α c	=	1.00000	1.00000		
cot⊚	=	1.562	1.562		valore di calcolo check 1≤cot⊕*≤2,5
V_{Rsd}	=	3194.6736	3194.6736	kN	Resistenza "taglio trazione"
V_{Rcd}	=	3194.6736	3194.6736	kN	Resistenza "taglio compressione"
V_{Rd}	=	3194.6736	3194.6736	kN	Resistenza a taglio
V_{Ed}	=	1102	228.5	kN	taglio di caloclo
FS	=	2.90	13.98		se >1 verifica soddisfatta
		ok	ok		
Verifica capa	cità a Torsione)			
\emptyset_{w}	=	12	12	mm	diametro armatura resistente a taglio
α	=	90.00	90.00	o	angolo di inclinazione armatura trasversale
3	=	150	150	mm	passo staffe
1 _{br}	=	2	2		numero bracci armatura trasversale
A _s	=	226.19 1.51	226.19 1.51	mmq mmq/m	area armatura trasversale posta nell'interasse s
A₅/s ∑A		5001		m	
ΣA _I	=		5001	mmq	area complessiva barre longitudinali
A _c t	=	1734000 157	1734000 157	mmq mm	area sezione spessore sezione cava
Ω	=	1930000	1930000	mmq	area racchiusa dalla fibra media
u _m	=	5800	5800	mm	perimetro medio del nucleo resistente
ω_{sw}	=	0.15	0.15		% meccanica di armatura trasversale
	=	0.08			% meccanica di armatura trasversale % meccanica di armatura longitudinale
₩sl			0.08		ŭ
ν	=	0.5	0.5		coeff. di riduzione f _{cd}
f' _{cd}	=	12.93	12.93	MPa	resistenza a compressione del cls ridotta
$\sigma_{\sf cp}$	=	0.000	0.000	MPa	tensione media calcestruzzo <=0,2f _{cd}
αc	=	1.0000	1.0000		
cot⊕	=	1.56	1.56		Valore di calcolo (0.4≤cot⊕*≤2,5)
T_{Rcd}	=	3558.86	3558.86	kNm	resistenza offerta dal calcestruzzo
T_Rsd	=	3558.86	3558.86	kNm	resistenza offerta dall'armatura trasversale
T_Rld	=	833.58	833.58	kNm	resistenza offerta dall'armatura longitudinale
T _{Rd}	=	833.58	833.58	kNm	Resistenza a torsione
T_Sd	=	20	355.87	kN	Torsione di caloclo
FS	=	41.68	2.34		
		ok	ok		

Verifica interazione Taglio - Torsione Sollecitazioni

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Drogotto	Esecutivo

Оре	era:	Viad	otto	Α	ren	ella	a III	
)		:			-	-	_	

Relazione di Calcolo Impalcato - Carreggiata DX

Pagina 44

Nome file: VI15-F-

CL003_C.00_relazione_calcolo_impalcato_DX.doc.

1					
cot⊕	=	1.562	1.562		valore di calcolo
V_{Ed}	=	1102	228.5	kN	taglio di caloclo
T _{Ed} Reistenze	=	20	355.87	kN	torsione di caloclo
V_{Rcd}	=	3194.67	3194.67	kN	Resistenza a taglio lato cls
T _{Rod} Verifica	=	3558.86	3558.86	kNm	Resistenza a torsione lato cls
$T_{Ed}/T_{Rcd}+V_{Ed}/V_{Rcd}$	=	0.35	0.17		se <1 verifica soddisfatta
		ok	ok		

7.2.2 Sezione SD-c (trave centrale)

Campata: Trave: Sezione: COMB		P05-P06 TRAVE CENTRALE SD (a 9m da testata) VEd,max - TEd	P08-P09 TRAVE CENTRALE SD (a 9m da testata) VEd - TEd,max		
V _{Ed}	=	743	119	kN	taglio di caloclo
T _{Ed}	=	16	321	kN	torsione di caloclo
N _{Ed}	=	0	0	kN	sforzo normale i calcolo
Materiali		-	-		
Calcestruzzo					
R_{ck}	=	55	55	MPa	resistenza caratteristica cubica
f_{ck}	=	45.7	45.7	MPa	resistenza caratteristica cilindrica
$lpha_{ { m cc}}$	=	0.85	0.85		coefficiente riduttivo per resistenze di lunga durata
γ_{c}	=	1.50	1.50		coefficiente parziale di sicurezza
f_{cd}	=	25.87	25.87	MPa	resistenza di calcolo a compressione
Acciaio					
f_{yk}	=	450	450	MPa	tensione caratteristica di snervamento
γ_{s}	=	1.15	1.15		coefficiente parziale di sicurezza
f_{yd}	=	391.30	391.30	MPa	tensione di snervamento di calcolo
Verifica capacit	_				
		di armatura a taglio			
b _w d	=	314 1925	314 1925	mm mm	larghezza minima sezione altezza utile
Ø _w	=	14	14	mm	diametro ferri long. tesi
n	=	25	25		numero
A_{sl}	=	3848	3848	mm^2	armatura longitudinale
A _c	=	1734000	1734000	mm^2	area sezione cls
k	=	1.32	1.32		
$\sigma_{\sf cp}$	=	0.0000	0.0000	MPa	tensione media calcestruzzo <=0,2f _{cd}
$ ho_{1}$	=	0.00637	0.00637		rapporto geometrico di armatura longitudinale <=0,02
V_{min}	=	0.360	0.360		

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata DX

Pagina 45

Nome file: VI15-F-

V _{Rd}	=	294.90	294.90	kN	taglio resistente
V_{Ed}	=	742.65	118.95	kN	taglio di caloclo
FS		0.40	2.48		se >1 verifica soddisfatta
		no	ok		
		i di armatura a taglio			
\mathcal{O}_{w}	=	12	12	mm	diametro armatura resistente a taglio
α	=	90.00	90.00	0	angolo di inclinazione armatura trasversale
S		400.00	400.00	mm	passo staffe
n _{br}	=	4.0	4.0		numero bracci armatura trasversale
A _{sw}	=	452.39	452.39	mmq	area armatura trasversale posta nell'interasse s
b _w	=	314.00	314.00	mm	larghezza minima sezione
f_{cd}	=	25.87	25.87	MPa	
ν	=	0.5	0.5		coeff. di riduzione f _{cd}
f' _{cd}	=	12.93	12.93	MPa	resistenza a compressione del cls ridotta
$\omega_{\rm sw}$	=	0.05448	0.05448		% meccanica di armatura trasversale
$\alpha \mathbf{c}$	=	1.00000	1.00000		
cot⊕	=	1.235	1.235		valore di calcolo check 1≤cot⊕*≤2,5
V_{Rsd}	=	946.7679	946.7679	kN	Resistenza "taglio trazione"
V_{Rcd}	=	3441.2916	3441.2916	kN	Resistenza "taglio compressione"
\mathbf{V}_{Rd}	=	946.7679	946.7679	kN	Resistenza a taglio
V_{Ed}	=	742.65	118.95	kN	taglio di caloclo
FS	=	1.27	7.96		se >1 verifica soddisfatta
Verifica ca	pacità a Torsion	ok e	ok		
Ø _w	=	12	12	mm	diametro armatura resistente a taglio
α	=	90.00	90.00	•	angolo di inclinazione armatura trasversale
s	=	400	400	mm	passo staffe
n_{br}	=	2	2		numero bracci armatura trasversale
A_s	=	226.19	226.19	mmq	area armatura trasversale posta nell'interasse s
A _s /s	=	0.57	0.57	mmq/mm	
ΣA_l	=	5001	5001	mmq	area complessiva barre longitudinali
Ac	=	1734000	1734000	mmq	area sezione
t	=	157	157	mm	spessore sezione cava
Α	=	1930000	1930000	mmq	area racchiusa dalla fibra media
\boldsymbol{u}_{m}	=	5800	5800	mm	perimetro medio del nucleo resistente
ω_{sw}	=	0.05	0.05		% meccanica di armatura trasversale
$\omega_{\rm sl}$	=	0.08	0.08		% meccanica di armatura longitudinale
ν	=	0.5	0.5		coeff. di riduzione f _{cd}
f' _{cd}	=	12.93	12.93	MPa	resistenza a compressione del cls ridotta
$\sigma_{\sf cp}$	=	0.000	0.000	MPa	tensione media calcestruzzo <=0,2f _{cd}
$\alpha \mathbf{c}$	=	1.0000	1.0000		
cot⊕	=	1.23	1.23		Valore di calcolo (0.4≤cot⊕*≤2,5)
T_Rcd	=	3833.59	3833.59	kNm	resistenza offerta dal calcestruzzo

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

_			
Proc	ietto	Esecutivo)

Opera: Viadotto Arenella III
Relazione di Calcolo Impalcato - Carreggiata DX
Pagina 46
Nome file:

CL003_C.00_relazione_calcolo_impalcato_DX.doc.

T_Rsd	=	1054.70	1054.70	kNm	resistenza offerta dall'armatura trasversale
T_{RId}	=	1054.70	1054.70	kNm	resistenza offerta dall'armatura longitudinale
T _{Rd}	=	1054.70	1054.70	kNm	Resistenza a torsione
T_Sd	=	15.5	321.42	kN	Torsione di caloclo
FS	=	68.04	3.28		
		ok	ok		
Verifica inter	azione Tagli	o - Torsione			
Sollecitazion	i				
cot⊕	=	1.235	1.235		valore di calcolo
V_{Ed}	=	742.65	118.95	kN	taglio di caloclo
T_{Ed}	=	15.5	321.42	kN	torsione di caloclo
Reistenze					
V_{Rcd}	=	3441.29	3441.29	kN	Resistenza a taglio lato cls
T_Rcd	=	3833.59	3833.59	kNm	Resistenza a torsione lato cls
Verifica				_	
$T_{Ed}/T_{Rcd}+V_{Ed}/V$	/ _{Rcd} =	0.22	0.12		se <1 verifica soddisfatta
		ok	ok		

7.2.3 Sezione SE-c (trave centrale)

Campata:		P05-P06	P07-P08		
Trave:		TRAVE CENTRALE	TRAVE CENTRALE		
Sezione:		SE (a 3.225m da testata)	SE (a 3.225m da testata)		
COMB		VEd,max - TEd	VEd - TEd,max		
Sollecitazioni					
V_{Ed}	=	1473	765	kN	taglio di caloclo
T_{Ed}	=	245	341	kN	torsione di caloclo
N_{Ed}	=	0	0	kN	sforzo normale i calcolo
Materiali					
Calcestruzzo					
R_{ck}	=	55	55	MPa	resistenza caratteristica cubica
f _{ck}	=	45.7	45.7	MPa	resistenza caratteristica cilindrica
$\alpha_{\rm cc}$	=	0.85	0.85		coefficiente riduttivo per resistenze di lunga durata
γc	=	1.50	1.50		coefficiente parziale di sicurezza
f_{cd}	=	25.87	25.87	MPa	resistenza di calcolo a compressione
Acciaio					
f_{yk}	=	450	450	MPa	tensione caratteristica di snervamento
γs	=	1.15	1.15		coefficiente parziale di sicurezza
f_{yd}	=	391.30	391.30	MPa	tensione di snervamento di calcolo
Verifica capacit	à a taglio				
Verifica per elen	nenti sprovvis	sti di armatura a taglio			
b_w	=	314	314	mm	larghezza minima sezione
d	=	1925	1925	mm	altezza utile
\emptyset_{w}	=	14	14	mm	diametro ferri long. tesi

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata DX Pagina 47

Nome file: VI15-F-

n	=	25	25		numero
A_{sl}	=	3848	3848	mm^2	armatura longitudinale
A _c	=	1734000	1734000	mm^2	area sezione cls
k	=	1.32	1.32		
$\sigma_{\sf cp}$	=	0.0000	0.0000	MPa	tensione media calcestruzzo <=0,2f _{cd}
$ ho_{1}$	=	0.00637	0.00637		rapporto geometrico di armatura longitudinale <=0,02
V_{min}	=	0.360	0.360		
V_{Rd}	=	294.90	294.90	kN	taglio resistente
V_{Ed}	=	1472.88	764.83	kN	taglio di caloclo
FS		0.20	0.39		se >1 verifica soddisfatta
		no	no		
Verifica per	elementi provvist	ti di armatura a taglio			
\emptyset_{w}	=	12	12	mm	diametro armatura resistente a taglio
α	=	90.00	90.00	0	angolo di inclinazione armatura trasversale
S	=	200.00	200.00	mm	passo staffe
n_{br}	=	4.0	4.0		numero bracci armatura trasversale
A_{sw}	=	452.39	452.39	mmq	area armatura trasversale posta nell'interasse s
b_{w}	=	314.00	314.00	mm	larghezza minima sezione
f_{cd}	=	25.87	25.87	MPa	
ν	=	0.5	0.5		coeff. di riduzione f _{cd}
f' _{cd}	=	12.93	12.93	MPa	resistenza a compressione del cls ridotta
ω_{sw}	=	0.10897	0.10897		% meccanica di armatura trasversale
α c	=	1.00000	1.00000		
cot⊚	=	1.000	1.000		valore di calcolo 1≤cot⊕*≤2,5
V_{Rsd}	=	1533.4524	1533.4524	kN	Resistenza "taglio trazione"
V_{Rcd}	=	3518.1257	3518.1257	kN	Resistenza "taglio compressione"
V_{Rd}	=	3518.1257	3518.1257	kN	Resistenza a taglio
V_{Ed}	=	1472.88	764.83	kN	taglio di caloclo
FS	=	2.39	4.60		se >1 verifica soddisfatta
		ok	ok		
Calcolo de	Ila Reisitenza a	Torsione			
\emptyset_{w}	=	12	12	mm	diametro armatura resistente a taglio
α	=	90.00	90.00	0	angolo di inclinazione armatura trasversale
S	=	200	200	mm	passo staffe
n_{br}	=	2	2		numero bracci armatura trasversale
A_s	=	226.19	226.19	mmq	area armatura trasversale posta nell'interasse s
A _s /s	=	1.13	1.13	mmq/mm	
ΣA_I	=	5001	5001	mmq	area complessiva barre longitudinali
A_c	=	1734000	1734000	mmq	area sezione
t	=	157	157	mm	spessore sezione cava
Α	=	1930000	1930000	mmq	area racchiusa dalla fibra media
u _m	=	5800	5800	mm	perimetro medio del nucleo resistente
ω_{sw}	=	0.11	0.11		% meccanica di armatura trasversale
ω_{sl}	=	0.08	0.08		% meccanica di armatura longitudinale

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19 *Progetto Esecutivo* Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata DX

Pagina 48

Nome file: VI15-F-

CL003_C.00_relazione_calcolo_impalcato_DX.doc.

ν	=	0.5	0.5		coeff. di riduzione f_{cd}
f' _{cd}	=	12.93	12.93	MPa	resistenza a compressione del cls ridotta
$\sigma_{\sf cp}$	=	0.000	0.000	MPa	tensione media calcestruzzo <=0,2f _{cd}
α c	=	1.0000	1.0000		
cot⊙	=	1.00	1.00		Valore di calcolo (0.4≤cot⊕*≤2,5)
T_Rcd	=	3919.18	3919.18	kNm	resistenza offerta dal calcestruzzo
T_Rsd	=	1708.26	1708.26	kNm	resistenza offerta dall'armatura trasversale
T_{RId}	=	1302.36	1302.36	kNm	resistenza offerta dall'armatura longitudinale
T _{Rd}	=	1302.36	1302.36	kNm	Resistenza a torsione
T_{Sd}	=	244.69	340.98	kN	Torsione di caloclo
FS	=	5.32	3.82		
		ok 	ok		
Verifica inte Sollecitazio	razione Taglio	- Torsione			
1	nı				
cot⊙	=	1.000	1.000		valore di calcolo
V_{Ed}	=	1472.88	764.83	kN	taglio di caloclo
T_{Ed}	=	244.69	340.98	kN	torsione di caloclo
Reistenze					
V_{Rcd}	=	3518.13	3518.13	kN	Resistenza a taglio lato cls
T_Rcd	=	3919.18	3919.18	kNm	Resistenza a torsione lato cls
Verifica				_	
$T_{Ed}/T_{Rcd}+V_{Ed}/$	V _{Rcd} =	0.48	0.30		se <1 verifica soddisfatta
		ok	ok		

7.2.4 Sezione SC-c (trave centrale)

Campata:		P05	P05		
Trave:		TRAVE CENTRALE	TRAVE CENTRALE		
Sezione:		SC (testata)	SC (testata)		
COMB		VEd,max - TEd	VEd - TEd,max		
Sollecitazioni					
V_{Ed}	=	1614	718	kN	taglio di caloclo
T_{Ed}	=	56	353	kN	torsione di caloclo
N_{Ed}	=	0	0	kN	sforzo normale i calcolo
Materiali					
Calcestruzzo					
R _{ck}	=	55	55	MPa	resistenza caratteristica cubica
f_{ck}	=	45.7	45.7	MPa	resistenza caratteristica cilindrica
α_{cc}	=	0.85	0.85		coefficiente riduttivo per resistenze di lunga durata
γ_{c}	=	1.50	1.50		coefficiente parziale di sicurezza
f_{cd}	=	25.87	25.87	MPa	resistenza di calcolo a compressione
Acciaio					
f_{yk}	=	450	450	MPa	tensione caratteristica di snervamento

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata DX

Pagina 49

Nome file: VI15-F-

γs	:	=	1.15	1.15		coefficiente parziale di sicurezza
f _{vd}	:		391.30	391.30	MPa	tensione di snervamento di calcolo
-	rifica capacità a			001.00	۵	
	_	iti sprovvisti di armat	tura a taglio			
$b_{\rm w}$:	= ;	829.2	829.2	mm	larghezza minima sezione
d	=	=	1925	1925	mm	altezza utile
$Ø_{\rm w}$	=	=	14	14	mm	diametro ferri long. tesi
n	:	=	24	24		numero
A_{sl}	=	=	3695	3695	mm ²	armatura longitudinale
A_c	:	= 17	734000	1734000	mm^2	area sezione cls
k	=	=	1.32	1.32		
$\sigma_{\sf cp}$,	= C	0.0000	0.0000	MPa	tensione media calcestruzzo <=0,2f _{cd}
ρ_1	=	= 0	.00231	0.00231		rapporto geometrico di armatura longitudinale <=0,02
V _{mir}	n :	= (0.360	0.360		
V _R		= 5	573.97	573.97	kN	taglio resistente
V_{Ec}	i =	= 10	613.88	718.02	kN	taglio di caloclo
FS			0.36	0.80		se >1 verifica soddisfatta
			no	no		
Ve	rifica per elemen	iti provvisti di armatu	ıra a taglio			
$Ø_{w}$	=	=	12	12	mm	diametro armatura resistente a taglio
α	:	= !	90.00	90.00	0	angolo di inclinazione armatura trasversale
S	Ē	= 3	300.00	300.00	mm	passo staffe
n_{br}	=	=	4.0	4.0		numero bracci armatura trasversale
A_{sw}	, =	= 4	152.39	452.39	mmq	area armatura trasversale posta nell'interasse s
$b_{\text{w}} \\$:	= 8	329.20	829.20	mm	larghezza minima sezione
\mathbf{f}_{cd}	Ē	= :	25.87	25.87	MPa	
ν	:	=	0.5	0.5		coeff. di riduzione f_{cd}
f'cd	=	=	12.93	12.93	MPa	resistenza a compressione del cls ridotta
ω_{sv}	, =	= 0	.02751	0.02751		% meccanica di armatura trasversale
α	; =	= 1.	.00000	1.00000		
cot	:Θ	= ;	2.500	2.500		valore di calcolo 1≤cot⊕*≤2,5
V_{Rs}	sd =				kN	Resistenza "taglio trazione"
V _{Ro}				6407.2695	kN	Resistenza "taglio compressione"
VRO					kN	Resistenza a taglio
V _E			613.88		kN	taglio di caloclo
FS			1.58	3.56		se >1 verifica soddisfatta
			ok	ok		
Ca	Icolo della Reis	itenza a Torsione				
\emptyset_{w}	=	=	14	14	mm	diametro armatura resistente a taglio
α	=	= !	90.00	90.00	•	angolo di inclinazione armatura trasversale
s	=	=	100	100	mm	passo staffe
n_{br}	=	=	2	2		numero bracci armatura trasversale
A_s	=	= 3	307.88	307.88	mmq	area armatura trasversale posta nell'interasse s
A _s /	s =	=	3.08	3.08	mmq/mm	

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19 Progetto Esecutivo

Relazione	di Calcolo	Impalo
Dogina FO		

Opera: Viadotto Arenella III

cato - Carreggiata DX

Pagina 50

Nome file:

VI15-F-

CL003_C.00_relazione_calcolo_impalcato_DX.doc.

ΣA_I	=	9557	9557	mmq	area complessiva barre longitudinali
A_c	=	1734000	1734000	mmq	area sezione
u	=	5520	5520	mm	perimetro della sezione
t	=	314	314.1	mm	spessore sezione cava
Ω	=	1940000.00	1940000.00	mmq	area racchiusa dalla fibra media
u _m	=	4280	4280	mm	perimetro medio del nucleo resistente
ω_{sw}	=	0.15	0.15		% meccanica di armatura trasversale
$\omega_{\rm sl}$	=	0.11	0.11		% meccanica di armatura longitudinale
ν	=	0.5	0.5		coeff. di riduzione f_{cd}
f' _{cd}	=	12.93	12.93	MPa	resistenza a compressione del cls ridotta
$\sigma_{\sf cp}$	=	0.000	0.000	MPa	tensione media calcestruzzo $\leq 0.2f_{cd}$
α c	=	1.0000	1.0000		
cot⊕	=	2.50	2.50		Valore di calcolo (0.4≤cot⊕*≤2,5)
T_Rcd	=	5436.03	5436.03	kNm	resistenza offerta dal calcestruzzo
T_Rsd	=	11685.91	11685.91	kNm	resistenza offerta dall'armatura trasversale
T_Rld	=	1356.04	1356.04	kNm	resistenza offerta dall'armatura longitudinale
T _{Rd}	=	1356.04	1356.04	kNm	Resistenza a torsione
T_{Sd}	=	56.12	352.65	kN	Torsione di caloclo
FS	=	24.16	3.85		
		ok	ok		
Verifica inte	razione Taglio	o - Torsione			
Sollecitazio	ni				
cot⊙	=	2.500	2.500		valore di calcolo
V_{Ed}	=	1613.88	718.02	kN	taglio di caloclo
T_{Ed}	=	56.12	352.65	kN	torsione di caloclo
Reistenze					
V_{Rcd}	=	6407.27	6407.27	kN	Resistenza a taglio lato cls
T_Rcd	=	5436.03	5436.03	kNm	Resistenza a torsione lato cls
Verifica					
$T_{Ed}/T_{Rcd}+V_{Ed}/T_{Rcd}$	/V _{Rcd} =	0.26	0.18		se <1 verifica soddisfatta
		ok	ok		

7.2.5 Sezione SB-b (trave di bordo)

Campata:		P02-P03	P08-P09		
Trave:		TRAVE BORDO	TRAVE BORDO		
Sezione:		SB (filo riempimento)	SB (filo riempimento)		
COMB		VEd,max - TEd	VEd - TEd,max		
Sollecitazioni					
V_{Ed}	=	2096	2070	kN	taglio di caloclo
T_{Ed}	=	1047	1048	kN	torsione di caloclo
N_{Ed}	=	0	0	kN	sforzo normale i calcolo

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19 Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata DX Pagina 51

Nome file: VI15-F-

Materiali					
Calcestruzzo					
R_{ck}	=	55	55	MPa	resistenza caratteristica cubica
f_{ck}	=	45.7	45.7	MPa	resistenza caratteristica cilindrica
$\alpha_{\rm cc}$	=	0.85	0.85		coefficiente riduttivo per resistenze di lunga durata
γ_{c}	=	1.50	1.50		coefficiente parziale di sicurezza
f_{cd}	=	25.87	25.87	MPa	resistenza di calcolo a compressione
Acciaio					
f_{yk}	=	450	450	MPa	tensione caratteristica di snervamento
γs	=	1.15	1.15		coefficiente parziale di sicurezza
f_{yd}	=	391.30	391.30	MPa	tensione di snervamento di calcolo
Verifica capa	_	ati ali anno atoma a ta alia			
		sti di armatura a taglio	044		landa and ortifica and a
b _w d	=	314 1925	314 1925	mm mm	larghezza minima sezione altezza utile
Ø _w	=	14	14	mm	diametro ferri long. tesi
n n	=	25	25		numero
A_{sl}	=	3848	3848	mm²	armatura longitudinale
Ac	=	1460327	1460327	mm²	area sezione cls
k	=	1.32	1.32		
$\sigma_{\sf cp}$	=	0.0000	0.0000	MPa	tensione media calcestruzzo <=0,2f _{cd}
$ ho_{1}$	=	0.00637	0.00637		rapporto geometrico di armatura longitudinale <=0,02
V _{min}	=	0.360	0.360		
V _{min}	=	0.360 294.90	0.360 294.90	kN	taglio resistente
				kN kN	taglio resistente taglio di caloclo
V_{Rd}	=	294.90 2096.01 0.14	294.90 2069.93 0.14		•
V _{Rd} V _{Ed} FS	=	294.90 2096.01 0.14 no	294.90 2069.93		taglio di caloclo
V _{Rd} V _{Ed} FS Verifica per el	= = lementi provvis	294.90 2096.01 0.14 no ti di armatura a taglio	294.90 2069.93 0.14 no	kN	taglio di caloclo se >1 verifica soddisfatta
V_{Rd} V_{Ed} FS Verifica per el \emptyset_w	= = lementi provvis =	294.90 2096.01 0.14 no ti di armatura a taglio 12	294.90 2069.93 0.14 no	kN	taglio di caloclo se >1 verifica soddisfatta diametro armatura resistente a taglio
V_{Rd} V_{Ed} FS Verifica per el \mathcal{O}_{w}	= = lementi provvis	294.90 2096.01 0.14 no ti di armatura a taglio 12 90.00	294.90 2069.93 0.14 no 12 90.00	kN mm °	taglio di caloclo se >1 verifica soddisfatta diametro armatura resistente a taglio angolo di inclinazione armatura trasversale
\mathbf{V}_{Rd} V_{Ed} FS $\mathrm{Verifica\ per\ el}$ \emptyset_{w} α s	= = dementi provvis = =	294.90 2096.01 0.14 no ti di armatura a taglio 12 90.00 150.00	294.90 2069.93 0.14 no 12 90.00 150.00	kN	taglio di caloclo se >1 verifica soddisfatta diametro armatura resistente a taglio angolo di inclinazione armatura trasversale passo staffe
$\begin{array}{c} \textbf{V}_{\textbf{Rd}} \\ \textbf{V}_{\textbf{Ed}} \\ \textbf{FS} \\ \\ \textbf{Verifica per el} \\ \textbf{\varnothing}_{\textbf{w}} \\ \textbf{\alpha} \\ \textbf{s} \\ \textbf{n}_{\textbf{br}} \\ \end{array}$	= = = = = = = =	294.90 2096.01 0.14 no ti di armatura a taglio 12 90.00	294.90 2069.93 0.14 no 12 90.00	mm ° mm	taglio di caloclo se >1 verifica soddisfatta diametro armatura resistente a taglio angolo di inclinazione armatura trasversale passo staffe numero bracci armatura trasversale
$\begin{array}{c} \textbf{V}_{\text{Rd}} \\ \textbf{V}_{\text{Ed}} \\ \textbf{FS} \\ \\ \textbf{Verifica per el} \\ \textbf{\varnothing}_{\text{w}} \\ \textbf{\alpha} \\ \textbf{s} \\ \textbf{n}_{\text{br}} \\ \textbf{A}_{\text{sw}} \\ \end{array}$	= = = = = = = = = = = = = = = = = = =	294.90 2096.01 0.14 no ti di armatura a taglio 12 90.00 150.00 4.0	294.90 2069.93 0.14 no 12 90.00 150.00 4.0	kN mm °	taglio di caloclo se >1 verifica soddisfatta diametro armatura resistente a taglio angolo di inclinazione armatura trasversale passo staffe numero bracci armatura trasversale area armatura trasversale posta nell'interasse s
$\begin{array}{c} \textbf{V}_{\text{Rd}} \\ \\ \text{V}_{\text{Ed}} \\ \\ \text{FS} \\ \\ \\ \text{Verifica per el} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	= = = = = = = = = = = = = = = = = = =	294.90 2096.01 0.14 no ti di armatura a taglio 12 90.00 150.00 4.0 452.39	294.90 2069.93 0.14 no 12 90.00 150.00 4.0 452.39	mm o mm	taglio di caloclo se >1 verifica soddisfatta diametro armatura resistente a taglio angolo di inclinazione armatura trasversale passo staffe numero bracci armatura trasversale
$\begin{array}{c} \textbf{V}_{\text{Rd}} \\ \textbf{V}_{\text{Ed}} \\ \textbf{FS} \\ \\ \textbf{Verifica per el} \\ \textbf{\varnothing}_{\text{w}} \\ \textbf{\alpha} \\ \textbf{s} \\ \textbf{n}_{\text{br}} \\ \textbf{A}_{\text{sw}} \\ \end{array}$	= = = = = = = = = = = = = = = = = = =	294.90 2096.01 0.14 no ti di armatura a taglio 12 90.00 150.00 4.0 452.39 314.00	294.90 2069.93 0.14 no 12 90.00 150.00 4.0 452.39 314.00	mm o mm mmq mm	taglio di caloclo se >1 verifica soddisfatta diametro armatura resistente a taglio angolo di inclinazione armatura trasversale passo staffe numero bracci armatura trasversale area armatura trasversale posta nell'interasse s
$\begin{array}{l} \textbf{V}_{\text{Rd}} \\ \textbf{V}_{\text{Ed}} \\ \textbf{FS} \\ \\ \text{Verifica per el} \\ \textbf{\varnothing}_{\text{w}} \\ \textbf{\alpha} \\ \textbf{s} \\ \textbf{n}_{\text{br}} \\ \textbf{A}_{\text{sw}} \\ \textbf{b}_{\text{w}} \\ \textbf{f}_{\text{cd}} \\ \end{array}$	= = = = = = = = = = = = = = = = = = =	294.90 2096.01 0.14 no ti di armatura a taglio 12 90.00 150.00 4.0 452.39 314.00 25.87	294.90 2069.93 0.14 no 12 90.00 150.00 4.0 452.39 314.00 25.87	mm o mm mmq mm	taglio di caloclo se >1 verifica soddisfatta diametro armatura resistente a taglio angolo di inclinazione armatura trasversale passo staffe numero bracci armatura trasversale area armatura trasversale posta nell'interasse s larghezza minima sezione
$\begin{array}{c} \textbf{V}_{\text{Rd}} \\ \textbf{V}_{\text{Ed}} \\ \textbf{FS} \\ \\ \textbf{Verifica per el} \\ \textbf{Ø}_{\text{w}} \\ \\ \alpha \\ \\ \textbf{s} \\ \\ \textbf{n}_{\text{br}} \\ \\ \textbf{A}_{\text{sw}} \\ \\ \textbf{b}_{\text{w}} \\ \\ \textbf{f}_{\text{cd}} \\ \\ \\ \nu \\ \end{array}$	=	294.90 2096.01 0.14 no ti di armatura a taglio 12 90.00 150.00 4.0 452.39 314.00 25.87 0.5	294.90 2069.93 0.14 no 12 90.00 150.00 4.0 452.39 314.00 25.87 0.5	mm mm mmq mm MPa	taglio di caloclo se >1 verifica soddisfatta diametro armatura resistente a taglio angolo di inclinazione armatura trasversale passo staffe numero bracci armatura trasversale area armatura trasversale posta nell'interasse s larghezza minima sezione coeff. di riduzione f _{cd}
$\begin{array}{c} \textbf{V}_{\textbf{Rd}} \\ \textbf{V}_{\textbf{Ed}} \\ \textbf{FS} \\ \\ \textbf{Verifica per el} \\ \textbf{Ø}_{\textbf{w}} \\ \\ \alpha \\ \\ \textbf{s} \\ \\ \textbf{n}_{\textbf{br}} \\ \\ \textbf{A}_{\textbf{sw}} \\ \\ \textbf{b}_{\textbf{w}} \\ \\ \textbf{f}_{\textbf{cd}} \\ \\ \\ \boldsymbol{\nu} \\ \\ \textbf{f}_{\textbf{cd}} \\ \end{array}$	=	294.90 2096.01 0.14 no ti di armatura a taglio 12 90.00 150.00 4.0 452.39 314.00 25.87 0.5 12.93	294.90 2069.93 0.14 no 12 90.00 150.00 4.0 452.39 314.00 25.87 0.5 12.93	mm mm mmq mm MPa	taglio di caloclo se >1 verifica soddisfatta diametro armatura resistente a taglio angolo di inclinazione armatura trasversale passo staffe numero bracci armatura trasversale area armatura trasversale posta nell'interasse s larghezza minima sezione coeff. di riduzione f _{cd} resistenza a compressione del cls ridotta
$\begin{array}{l} \textbf{V}_{\text{Rd}} \\ \textbf{V}_{\text{Ed}} \\ \textbf{FS} \\ \\ \textbf{Verifica per el} \\ \textbf{Ø}_{\text{w}} \\ \\ \alpha \\ \\ \textbf{s} \\ \\ \textbf{n}_{\text{br}} \\ \\ \textbf{A}_{\text{sw}} \\ \\ \textbf{b}_{\text{w}} \\ \\ \textbf{f}_{\text{cd}} \\ \\ \\ \boldsymbol{\nu} \\ \\ \textbf{f}_{\text{cd}} \\ \\ \\ \boldsymbol{\omega}_{\text{sw}} \\ \\ \\ \boldsymbol{\omega}_{\text{sw}} \\ \\ \end{array}$	=	294.90 2096.01 0.14 no ti di armatura a taglio 12 90.00 150.00 4.0 452.39 314.00 25.87 0.5 12.93 0.14529	294.90 2069.93 0.14 no 12 90.00 150.00 4.0 452.39 314.00 25.87 0.5 12.93 0.14529	mm mm mmq mm MPa	taglio di caloclo se >1 verifica soddisfatta diametro armatura resistente a taglio angolo di inclinazione armatura trasversale passo staffe numero bracci armatura trasversale area armatura trasversale posta nell'interasse s larghezza minima sezione coeff. di riduzione f _{cd} resistenza a compressione del cls ridotta
$egin{aligned} \mathbf{V_{Rd}} \\ \mathbf{V_{Ed}} \\ \mathbf{FS} \\ \end{aligned}$ Verifica per el $egin{aligned} egin{aligned} egin{aligne$	=	294.90 2096.01 0.14 no ti di armatura a taglio 12 90.00 150.00 4.0 452.39 314.00 25.87 0.5 12.93 0.14529 1.00000	294.90 2069.93 0.14 no 12 90.00 150.00 4.0 452.39 314.00 25.87 0.5 12.93 0.14529 1.00000	mm mm mmq mm MPa	taglio di caloclo se >1 verifica soddisfatta diametro armatura resistente a taglio angolo di inclinazione armatura trasversale passo staffe numero bracci armatura trasversale area armatura trasversale posta nell'interasse s larghezza minima sezione coeff. di riduzione f _{cd} resistenza a compressione del cls ridotta % meccanica di armatura trasversale
\mathbf{V}_{Rd} V_{Ed} FS Verifica per el \emptyset_{w} α s n_{br} A_{sw} b_{w} f_{cd} ν f_{cd} ω_{sw} α c $\cot\Theta$	=	294.90 2096.01 0.14 no ti di armatura a taglio 12 90.00 150.00 4.0 452.39 314.00 25.87 0.5 12.93 0.14529 1.00000 1.200	294.90 2069.93 0.14 no 12 90.00 150.00 4.0 452.39 314.00 25.87 0.5 12.93 0.14529 1.00000 1.200	mm mmq mm MPa	taglio di caloclo se >1 verifica soddisfatta diametro armatura resistente a taglio angolo di inclinazione armatura trasversale passo staffe numero bracci armatura trasversale area armatura trasversale posta nell'interasse s larghezza minima sezione coeff. di riduzione f _{cd} resistenza a compressione del cls ridotta % meccanica di armatura trasversale valore di calcolo 1≤cot⊕*≤2,5
$\begin{array}{c} \textbf{V}_{\textbf{Rd}} \\ \textbf{V}_{\textbf{Ed}} \\ \textbf{FS} \\ \\ \textbf{Verifica per el} \\ \textbf{\varnothing}_{\textbf{w}} \\ \boldsymbol{\alpha} \\ \textbf{s} \\ \textbf{n}_{\textbf{br}} \\ \textbf{A}_{\textbf{sw}} \\ \textbf{b}_{\textbf{w}} \\ \textbf{f}_{\textbf{cd}} \\ \boldsymbol{\nu} \\ \textbf{f}_{\textbf{cd}} \\ \boldsymbol{\omega}_{\textbf{sw}} \\ \boldsymbol{\alpha} \textbf{c} \\ \textbf{cot} \boldsymbol{\Theta} \\ \textbf{V}_{\textbf{Rsd}} \\ \end{array}$	=	294.90 2096.01 0.14 no ti di armatura a taglio 12 90.00 150.00 4.0 452.39 314.00 25.87 0.5 12.93 0.14529 1.00000 1.200 2453.5238	294.90 2069.93 0.14 no 12 90.00 150.00 4.0 452.39 314.00 25.87 0.5 12.93 0.14529 1.00000 1.200 2453.5238	mm mmq mm MPa MPa	taglio di caloclo se >1 verifica soddisfatta diametro armatura resistente a taglio angolo di inclinazione armatura trasversale passo staffe numero bracci armatura trasversale area armatura trasversale posta nell'interasse s larghezza minima sezione coeff. di riduzione f _{cd} resistenza a compressione del cls ridotta % meccanica di armatura trasversale valore di calcolo 1≤cot⊕*≤2,5 Resistenza "taglio trazione"

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Οŗ	pera:	Viac	lotto /	Arenel	la III
----	-------	------	---------	--------	--------

Relazione di Calcolo Impalcato - Carreggiata DX

Pagina 52

Nome file: VI15-F-

CL003_C.00_relazione_calcolo_impalcato_DX.doc.

	FS	=	1.17	1.19		se >1 verifica soddisfatta
			ok	ok		
	Verifica capacità	a Torsione				
	\emptyset_{w}	=	12	12	mm	diametro armatura resistente a taglio
	α	=	90.00	90.00	0	angolo di inclinazione armatura trasversale
	S	=	150	150	mm	passo staffe
	n_{br}	=	2	2		numero bracci armatura trasversale
	A_s	=	226.19	226.19	mmq	area armatura trasversale posta nell'interasse s
	A _s /s	=	1.51	1.51	mmq/mm	
	ΣA_{l}	=	5001	5001	mmq	area complessiva barre longitudinali
	A_c	=	1734000	1734000	mmq	area sezione
	t	=	157	157	mm	spessore sezione cava
	Ω	=	1930000	1930000	mmq	area racchiusa dalla fibra media
	u _m	=	5800	5800	mm	perimetro medio del nucleo resistente
	ω_{sw}	=	0.15	0.15		% meccanica di armatura trasversale
	ω_{sl}	=	0.08	0.08		% meccanica di armatura longitudinale
	ν	=	0.5	0.5		coeff. di riduzione f_{cd}
	$\mathbf{f'}_{cd}$	=	12.93	12.93	MPa	resistenza a compressione del cls ridotta
	$\sigma_{\sf cp}$	=	0.000	0.000	MPa	tensione media calcestruzzo <=0,2f _{cd}
	$\alpha \mathbf{c}$	=	1.0000	1.0000		
	cot⊚	=	1.20	1.20		Valore di calcolo (0.4≤cot⊕*≤2,5)
	T_Rcd	=	3854.93	3854.93	kNm	resistenza offerta dal calcestruzzo
	T_Rsd	=	2733.22	2733.22	kNm	resistenza offerta dall'armatura trasversale
	T_{RId}	=	1085.39	1085.39	kNm	resistenza offerta dall'armatura longitudinale
	T _{Rd}	=	1085.39	1085.39	kNm	Resistenza a torsione
	T_Sd	=	1047.33	1048.29	kN	Torsione di caloclo
	FS	=	1.04	1.04		
			ok	ok		
		ne Taglio - Torsio	ne			
ı	Sollecitazioni					
	cot	=	1.200	1.200		valore di calcolo
	V_{Ed}	=	2096.01	2069.93	kN	taglio di caloclo
	T _{Ed} Reistenze	=	1047.33	1048.29	kN	torsione di caloclo
	V_{Rcd}	=	3460.45	3460.45	kN	Resistenza a taglio lato cls
	T_Rcd	=	3854.93	3854.93	kNm	Resistenza a torsione lato cls
	Verifica					
	$T_{Ed}/T_{Rcd}+V_{Ed}/V_{Rcd}$	=	0.88	0.87		se <1 verifica soddisfatta

ok

7.2.6 Sezione SD-b (trave di bordo)

Campata:P05-P06P08-P09Trave:TRAVE BORDOTRAVE BORDO

ok

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata DX Pagina 53

Nome file: VI15-F-

Sezione: COMB		SD (a 9m da testata) VEd,max - TEd	SD (a 9m da testata) VEd - TEd,max		
Sollecitazioni		ved,max red	ved rea,max		
V _{Ed}	=	928	687	kN	taglio di caloclo
T _{Ed}	=	685	946	kN	torsione di caloclo
N_{Ed}	=	0	0	kN	sforzo normale i calcolo
Materiali		-	-		
Calcestruzzo					
R_{ck}	=	55	55	MPa	resistenza caratteristica cubica
f_{ck}	=	45.7	45.7	MPa	resistenza caratteristica cilindrica
$\alpha_{\rm cc}$	=	0.85	0.85		coefficiente riduttivo per resistenze di lunga durata
γ_{c}	=	1.50	1.50		coefficiente parziale di sicurezza
f_{cd}	=	25.87	25.87	MPa	resistenza di calcolo a compressione
Acciaio					
f_{yk}	=	450	450	MPa	tensione caratteristica di snervamento
γs	=	1.15	1.15		coefficiente parziale di sicurezza
f _{yd}	=	391.30	391.30	MPa	tensione di snervamento di calcolo
Verifica capac	_	i di armatura a taglio			
b _w	=	314	314	mm	larghezza minima sezione
d d	=	1925	1925	mm	altezza utile
\emptyset_{w}	=	14	14	mm	diametro ferri long. tesi
n	=	25	25		numero
A_{sl}	=	3848	3848	mm^2	armatura longitudinale
A _c	=	1734000	1734000	mm^2	area sezione cls
k	=	1.32	1.32		
$\sigma_{\sf cp}$	=	0.0000	0.0000	MPa	tensione media calcestruzzo <=0,2f _{cd}
$ ho_1$	=	0.00637	0.00637		rapporto geometrico di armatura longitudinale <=0,02
V _{min}	=	0.360	0.360	I	
V_{Rd}	=	294.90	294.90	kN	taglio resistente
V _{Ed}	=	927.8	687.26	kN	taglio di caloclo se >1 verifica soddisfatta
FS		0.32 no	0.43 no		se > i verilica soddistatta
Verifica per ele	menti provvisti	di armatura a taglio			
\emptyset_{w}	=	12	12	mm	diametro armatura resistente a taglio
α	=	90.00	90.00	٥	angolo di inclinazione armatura trasversale
s	=	400.00	400.00	mm	passo staffe
n_{br}	=	4.0	4.0		numero bracci armatura trasversale
A_{sw}	=	452.39	452.39	mmq	area armatura trasversale posta nell'interasse s
b_w	=	314.00	314.00	mm	larghezza minima sezione
f_{cd}	=	25.87	25.87	MPa	
ν	=	0.5	0.5		coeff. di riduzione f_{cd}
f' _{cd}	=	12.93	12.93	MPa	resistenza a compressione del cls ridotta
$\omega_{ m sw}$	=	0.05448	0.05448		% meccanica di armatura trasversale

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata DX Pagina 54

Nome file: VI15-F-

α c	=	1.00000	1.00000		
cot⊙	=	1.235	1.235		valore di calcolo 1≤cot⊕*≤2,5
V_{Rsd}	=	946.7679	946.7679	kN	Resistenza "taglio trazione"
V_{Rcd}	=	3441.2916	3441.2916	kN	Resistenza "taglio compressione"
V _{Rd}	=	946.7679	946.7679	kN	Resistenza a taglio
V_{Ed}	=	927.8	687.26	kN	taglio di caloclo
FS	=	1.02	1.38		se >1 verifica soddisfatta
		ok	ok		
Verifica capacità		40	40		
\emptyset_{w}	=	12	12	mm	diametro armatura resistente a taglio
α	=	90.00	90.00	0	angolo di inclinazione armatura trasversale
S	=	400	400	mm	passo staffe
n _{br}	=	2	2		numero bracci armatura trasversale
A_s	=	226.19	226.19	mmq	area armatura trasversale posta nell'interasse s
A _s /s	=	0.57	0.57	mmq/mm	
ΣA_I	=	5001	5001	mmq	area complessiva barre longitudinali
A _c	=	1734000	1734000	mmq	area sezione
t A	=	157 1930000	157 1930000	mm	spessore sezione cava area racchiusa dalla fibra media
				mmq	
u _m	=	5800	5800	mm	perimetro medio del nucleo resistente
ω_{sw}	=	0.05	0.05		% meccanica di armatura trasversale
ω_{sl}	=	0.08	0.08		% meccanica di armatura longitudinale
ν	=	0.5	0.5		coeff. di riduzione f _{cd}
f' _{cd}	=	12.93	12.93	MPa	resistenza a compressione del cls ridotta
$\sigma_{\sf cp}$	=	0.000	0.000	MPa	tensione media calcestruzzo <=0,2f _{cd}
α c	=	1.0000	1.0000		
cot⊙	=	1.23	1.23		Valore di calcolo (0.4≤cot⊙*≤2,5)
T_Rcd	=	3833.59	3833.59	kNm	resistenza offerta dal calcestruzzo
T_Rsd	=	1054.70	1054.70	kNm	resistenza offerta dall'armatura trasversale
T_{Rld}	=	1054.70	1054.70	kNm	resistenza offerta dall'armatura longitudinale
T _{Rd}	=	1054.70	1054.70	kNm	Resistenza a torsione
T_{Sd}	=	685.38	946.43	kN	Torsione di caloclo
FS	=	1.54	1.11		
Vanisiaa intanania	T T.	ok	ok		
Verifica interazio Sollecitazioni	ne ragilo - ro	orsione			
cot⊕	=	1.235	1.235		valore di calcolo
V _{Ed}	=	927.8	687.26	kN	taglio di caloclo
T _{Ed} Reistenze	=	685.38	946.43	kN	torsione di caloclo
V _{Rcd}	=	3441.29	3441.29	kN	Resistenza a taglio lato cls
T _{Rcd}	=	3833.59	3833.59	kNm	Resistenza a torsione lato cls
Verifica	_	0000.00	0000.00	Mail	1.000001120 a torotorio lato dio
$T_{Ed}/T_{Rcd}+V_{Ed}/V_{Rcd}$	=	0.45	0.45		se <1 verifica soddisfatta

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19 *Progetto Esecutivo*

ok

ok

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata DX

Pagina 55

Nome file: VI15-F-

 ${\tt CL003_C.00_relazione_calcolo_impalcato_DX.doc}.$

7.2.7 Sezione SE-b (trave di bordo)

Sollecitazioni Visit = 1452 1386 kN taglio di caloclo T∈0 = 894 976 kN torsione di caloclo Materiali Caloestruzzo R₂k = 55 55 MPa resistenza caratteristica cubica f₂k = 45.7 45.7 MPa resistenza caratteristica cubica f₂k = 45.7 45.7 MPa resistenza caratteristica cubica f₂k = 1.50 1.50 coefficiente parziale di sicurezza f₂c = 1.50 1.50 coefficiente parziale di sicurezza f₂c = 1.50 MPa resistenza di calcolo a compressione Ceritica capacità a taglio Verifica capacità a taglio b₂ = 1.15 1.15 coefficiente parziale di sicurezza f₂c = 1.14 1.4 mm larghezza minima sezione f₂c 314 314	Campata: Trave: Sezione: COMB		P02-P03 TRAVE BORDO SE (a 3.225m da testata) VEd,max - TEd	P08-P09 TRAVE BORDO SE (a 3.225m da testata) VEd - TEd,max		
$T_{\rm Ref}$ = 894 976 kN torsione di caloclo N _{icit} = 0 0 kN sforzo normale i caloclo Materiali Calcestruzzo R_{ck} = 55 55 MPa resistenza caratteristica cubica f_{ck} = 45.7 45.7 MPa resistenza caratteristica cilindrica confliciente induttivo per resistenza di lunga durrali $α_{co}$ = 0.85 0.85 MPa resistenza di calcolo a compressione $γ_c$ = 1.50 1.50 coefficiente parziale di sicurezza f_{cd} = 25.87 25.87 MPa resistenza di calcolo a compressione Accialo + + 450 MPa tensione caratteristica di sicurezza f_{cd} = 450 450 MPa tensione caratteristica di sicurezza f_{cd} = 1.15 1.15 coefficiente parziale di sicurezza f_{cd} = 313.0 391.30 MPa te	Sollecitazioni					
N _{Ed} = 0 0 kN sforzo normale i calcolo Materiali Caloestruzzo R _{ck} = 55 55 MPa resistenza caratteristica cubica f _{ck} = 45.7 45.7 MPa resistenza caratteristica cilindrica coefficiente riduttivo per resistenze di cucreza di l'undo cerificiente parziale di sicurezza γ _c = 1.50 1.50 coefficiente parziale di sicurezza f _{kk} = 450 450 MPa resistenza di calcolo a compressione Acciaio f _{yc} = 1.15 1.15 coefficiente parziale di sicurezza f _{yc} = 1.15 1.15 coefficiente parziale di sicurezza f _{yc} = 1.15 1.15 coefficiente parziale di sicurezza Verifica capacità a taglio Verifica ca	V_{Ed}	=	1452	1386	kN	taglio di caloclo
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	T_{Ed}	=	894	976	kN	torsione di caloclo
Calcestruzzo R _{ck} = 55 55 MPa resistenza caratteristica cubica f _{ck} = 45.7 45.7 MPa cresistenza caratteristica cilindrica constituca constituca constituca constituca constituca constituca constituca constituca constituca di unga durata γc = 1.50 1.50 coefficiente parziale di sicurezza f _{cd} = 25.87 MPa resistenza di calcolo a compressione Acciaio T 450 MPa tensione caratteristica di snervamento γs = 450 450 MPa tensione caratteristica di snervamento Verifica capacità a taglio Verifica per elementi sprovvisti di armatura a taglio bw = 314 314 mm larghezza minima sezione d = 1925 1925 mm altezza utile Øw = 14 14 mm diametro ferri long, tesi n = 25 25 25 25 25 25 25 25	N_{Ed}	=	0	0	kN	sforzo normale i calcolo
R _{cs} = 555 MPa resistenza caratteristica cubica f _{cs} = 45.7 45.7 MPa resistenza caratteristica cilindrica colindrica conficiente ridutivo per resistenza di lunga durata c_{cc} = 0.85 0.85 coefficiente ridutivo per resistenza di cluro per sistenza di lunga durata $γ_c$ = 1.50 1.50 coefficiente parziale di sicurezza f_{cd} = 25.87 25.87 MPa resistenza di calcolo a compressione Accialo T T coefficiente parziale di sicurezza f_{ys} = 450 450 MPa tensione caratteristica di snervamento Veriffica capacità a taglio Veriffica capacità a taglio Veriffica capacità a taglio MPa tensione caratteristica di snervamento b _w = 314 314 mm larghezza minima sezione b _w = 314 314 mm larghezza minima sezione ch = 145 14 14 mm diametro ferri long, tesi n = <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
	Calcestruzzo					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	R _{ck}	=	55	55	MPa	resistenza caratteristica cubica
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	f _{ck}	=	45.7	45.7	MPa	
$ f_{\text{od}} = 25.87 \\ \text{Acciaio} \\ $	$\alpha_{\rm cc}$	=	0.85	0.85		
Acciaio $ f_{yk} = 450 \qquad 450 \qquad MPa \qquad tensione caratteristica di snervamento \gamma_s = 1.15 \qquad 1.15 \qquad coefficiente parziale di sicurezza \\ f_{yd} = 391.30 \qquad 391.30 \qquad MPa \qquad tensione di snervamento di calcolo \\ \hline \textit{Verifica capacità a taglio} \\ \hline \textit{Verifica per elementi sprovvisti di armatura a taglio } \\ b_w = 314 \qquad 314 \qquad mm \qquad larghezza minima sezione \\ d = 1925 \qquad 1925 \qquad mm \qquad altezza utile \\ \hline \textit{Ø}_w = 144 \qquad 14 \qquad mm \qquad diametro ferri long. tesi \\ n = 25 \qquad 25 \qquad numero \\ A_{st} = 3848 \qquad 3848 \qquad mm^2 \qquad armatura longitudinale \\ A_c = 1734000 \qquad 1734000 \qquad mm^2 \qquad area sezione cls \\ \hline \textit{k} = 1.32 \qquad 1.32 \qquad \\ \hline \textit{σ_{cp}} = 0.0000 \qquad 0.0000 \qquad MPa \qquad tensione media calcestruzzo <=0.2f_{cd} \\ rapporto geometrico di armatura longitudinale <=0.02 \\ \hline \textit{V}_{Md} = 294.90 \qquad 294.90 \qquad kN \qquad taglio resistente \\ \hline \textit{V}_{Ed} = 1451.62 \qquad 1385.74 \qquad kN \qquad taglio di calcolo \\ \hline \textit{FS} \qquad 0.20 \qquad 0.21 \qquad no \qquad no \\ \hline \textit{Verifica per elementi provvisti di armatura a taglio} \\ \hline \textit{Ø}_w = 12 \qquad 12 \qquad mm \qquad diametro armatura resistente a taglio \\ \hline \textit{Ø}_w = 12 \qquad 12 \qquad mm \qquad diametro armatura resistente a taglio \\ \hline \textit{Ø}_w = 12 \qquad 12 \qquad mm \qquad diametro armatura resistente a taglio \\ \hline \textit{Ø}_w = 12 \qquad 12 \qquad mm \qquad diametro armatura resistente a taglio \\ \hline \textit{σ_{cp}} = 12 \qquad 12 \qquad mm \qquad diametro armatura resistente a taglio \\ \hline \textit{σ_{cp}} = 12 \qquad mm \qquad diametro armatura resistente a taglio \\ \hline \textit{σ_{cp}} = 12 \qquad mm \qquad diametro armatura resistente a taglio \\ \hline \textit{σ_{cp}} = 12 \qquad mm \qquad diametro armatura resistente a taglio \\ \hline \textit{σ_{cp}} = 12 \qquad mm \qquad diametro armatura resistente a taglio \\ \hline \textit{σ_{cp}} = 12 \qquad mm \qquad diametro armatura resistente a taglio \\ \hline \textit{σ_{cp}} = 12 \qquad mm \qquad diametro armatura resistente a taglio \\ \hline \textit{σ_{cp}} = 12 \qquad mm \qquad diametro armatura resistente a taglio \\ \hline \textit{σ_{cp}} = 12 \qquad mm \qquad diametro armatura resistente a taglio \\ \hline \textit{σ_{cp}} = 12 \qquad mm \qquad diametro armatura resistente a taglio \\ \hline \textit{σ_{cp}} = 12 \qquad mm \qquad diametro armatura a taglio \\ \hline \textit{σ_{cp}} = 12 \qquad mm \qquad diametro armatura a taglio \\ \hline \textit{σ_{cp}} = 12 \qquad mm \qquad diametro armatura a taglio \\ \hline $	γ_{c}	=	1.50	1.50		coefficiente parziale di sicurezza
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	f_{cd}	=	25.87	25.87	MPa	resistenza di calcolo a compressione
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Acciaio					
	f_{yk}	=	450	450	MPa	tensione caratteristica di snervamento
Verifica capacità a taglio Verifica per elementi sprovvisti di armatura a taglio b. = 314 314 mm larghezza minima sezione d = 1925 1925 mm altezza utile Øw = 14 14 mm diametro ferri long. tesi n = 25 25 numero A _{sl} = 3848 3848 mm² armatura longitudinale A _c = 1734000 1734000 mm² area sezione cls k = 1.32 1.32 area sezione cls V = 0.0000 0.0000 MPa tensione media calcestruzzo <=0,2fod rapporto geometrico di armatura longitudinale <=0,02	γs	=	1.15	1.15		coefficiente parziale di sicurezza
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	f_{yd}	=	391.30	391.30	MPa	tensione di snervamento di calcolo
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		_				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Verifica per elen	nenti sprovvis	ti di armatura a taglio			
						•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	d	=			mm	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					mm	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					mm	area sezione cis
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					MDo	tanaiana madia aalaaatruzza <=0.2f
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	∪ cp	_			IVIPa	rapporto geometrico di armatura
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ ho_1$	=	0.00637	0.00637		longitudinale <=0,02
V_{Ed} = 1451.62 1385.74 kN taglio di caloclo FS 0.20 0.21 se >1 verifica soddisfatta no no no Verifica per elementi provvisti di armatura a taglio \mathcal{O}_{w} = 12 12 mm diametro armatura resistente a taglio		=			l	
FS 0.20 0.21 se >1 verifica soddisfatta no no no Verifica per elementi provvisti di armatura a taglio \mathcal{O}_{w} = 12 12 mm diametro armatura resistente a taglio	V_{Rd}	=		294.90	kN	
No no No Verifica per elementi provvisti di armatura a taglio \mathcal{O}_{w} = 12 mm diametro armatura resistente a taglio		=			kN	_
Verifica per elementi provvisti di armatura a taglio	FS					se >1 verifica soddisfatta
$\emptyset_{\rm w}$ = 12 mm diametro armatura resistente a taglio	Verifica ner elem	nenti provvisti		110		
	·	•	-	12	mm	diametro armatura resistente a taglio
= 90.00 90.00 anyolo unindinazione amatura trasversale						
s = 200.00 200.00 mm passo staffe					mm	· ·

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata DX

Pagina 56

Nome file: VI15-F-

CL003_C.00_relazione_calcolo_impalcato_DX.doc.

n_{br}	=	4.0	4.0		numero bracci armatura trasversale
A_sw	=	452.39	452.39	mmq	area armatura trasversale posta nell'interasse s
b_{w}	=	314.00	314.00	mm	larghezza minima sezione
f_{cd}	=	25.87	25.87	MPa	
ν	=	0.5	0.5		coeff. di riduzione f _{cd}
f' _{cd}	=	12.93	12.93	MPa	resistenza a compressione del cls ridotta
ω_{sw}	=	0.10897	0.10897		% meccanica di armatura trasversale
$\alpha \mathbf{c}$	=	1.00000	1.00000		
cot⊕	=	1.000	1.000		valore di calcolo 1≤cot⊕*≤2,5
V_{Rsd}	=	1533.4524	1533.4524	kN	Resistenza "taglio trazione"
V_{Rcd}	=	3518.1257	3518.1257	kN	Resistenza "taglio compressione"
V_{Rd}	=	3518.1257	3518.1257	kN	Resistenza a taglio
V_{Ed}	=	1451.62	1385.74	kN	taglio di caloclo
FS	=	2.42	2.54		se >1 verifica soddisfatta
Calaala da	lla Daiaitanna a T	ok	ok		
	lla Reisitenza a T		40		diamantana anno akaman ana diakamka anka anka alia
Ø _w	=	12	12	mm 。	diametro armatura resistente a taglio
α s	=	90.00 200	90.00 200	mm	angolo di inclinazione armatura trasversale passo staffe
	=	2	2	111111	numero bracci armatura trasversale
n _{br}	=	226.19	226.19	mma	area armatura trasversale posta nell'interasse s
A _s A _s /s	=	1.13	1.13	mmq mmq/mm	·
A _s /s ΣA _i	=	5001	5001	mmq	area complessiva barre longitudinali
	=	1734000	1734000	•	area sezione
A _c t	=	157	157	mmq mm	spessore sezione cava
A	=	1930000	1930000	mmq	area racchiusa dalla fibra media
U _m	=	5800	5800	mm	perimetro medio del nucleo resistente
ω_{sw}	=	0.11	0.11		% meccanica di armatura trasversale
ω_{sl}	=	0.08	0.08		% meccanica di armatura longitudinale
ν	=	0.5	0.5		coeff. di riduzione f _{cd}
f' _{cd}	=	12.93	12.93	MPa	resistenza a compressione del cls ridotta
$\sigma_{\sf cp}$	=	0.000	0.000	MPa	tensione media calcestruzzo <=0,2f _{cd}
α c	=	1.0000	1.0000		
cot⊕	=	1.00	1.00		Valore di calcolo (0.4≤cot⊙*≤2,5)
T_Rcd	=	3919.18	3919.18	kNm	resistenza offerta dal calcestruzzo
T_Rsd	=	1708.26	1708.26	kNm	resistenza offerta dall'armatura trasversale
T_{RId}	=	1302.36	1302.36	kNm	resistenza offerta dall'armatura longitudinale
T _{Rd}	=	1302.36	1302.36	kNm	Resistenza a torsione
T_{Sd}	=	893.64	975.92	kN	Torsione di caloclo
FS	=	1.46	1.33		
		ok	ok		

Verifica interazione Taglio - Torsione Sollecitazioni

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Droc	otto	Esa	cutiv	,
riou	IELLO	ESE	cuuv	ι

Opera:	<u>Viadotto</u>	Arenella III	

Relazione di Calcolo Impalcato - Carreggiata DX Pagina 57

Nome file: VI15-F-

CL003_C.00_relazione_calcolo_impalcato_DX.doc.

1					
cot⊙	=	1.000	1.000		valore di calcolo
V_{Ed}	=	1451.62	1385.74	kN	taglio di caloclo
T_{Ed}	=	893.64	975.92	kN	torsione di caloclo
Reistenze					
V_{Rcd}	=	3518.13	3518.13	kN	Resistenza a taglio lato cls
T_Rcd	=	3919.18	3919.18	kNm	Resistenza a torsione lato cls
Verifica					
$T_{Ed}/T_{Rcd}+V_{Ed}/V_{Rcd}$	=	0.64	0.64		se <1 verifica soddisfatta
		ok	ok		

7.2.8 Sezione SC-b (trave di bordo)

Campata: Trave: Sezione: COMB Sollecitazioni		P05 TRAVE BORDO SC (testata) VEd,max - TEd	P09 TRAVE BORDO SC (testata) VEd - TEd,max		
V _{Ed}	=	2244	1977	kN	taglio di caloclo
	=	112	1377	kN	torsione di calocio
T _{Ed}					
N _{Ed} Materiali	=	0	0	kN	sforzo normale i calcolo
Calcestruzzo					
R _{ck}	=	55	55	MPa	resistenza caratteristica cubica
f_{ck}	=	45.7	45.7	MPa	resistenza caratteristica cilindrica
α_{cc}	=	0.85	0.85		coefficiente riduttivo per resistenze di lunga durata
γc	=	1.50	1.50		coefficiente parziale di sicurezza
f_{cd}	=	25.87	25.87	MPa	resistenza di calcolo a compressione
Acciaio					
f_{yk}	=	450	450	MPa	tensione caratteristica di snervamento
γ_{s}	=	1.15	1.15		coefficiente parziale di sicurezza
\mathbf{f}_{yd}	=	391.30	391.30	MPa	tensione di snervamento di calcolo
Verifica capaci	_				
Verifica per eler	nenti sprovvisti d	di armatura a taglio			
b _w	=	829.2	829.2	mm	larghezza minima sezione
d	=	1925	1925	mm	altezza utile
\emptyset_{w}	=	14	14	mm	diametro ferri long. tesi
n	=	24	24	2	numero
A_{sl}	=	3695	3695	mm²	armatura longitudinale
A _c	=	1734000	1734000	mm ²	area sezione cls
k	=	1.32	1.32		
$\sigma_{\sf cp}$	=	0.0000	0.0000	MPa	tensione media calcestruzzo <=0,2f _{cd}
$ ho_1$	=	0.00231	0.00231		rapporto geometrico di armatura longitudinale <=0,02
V_{min}	=	0.360	0.360		
V_{Rd}	=	573.97	573.97	kN	taglio resistente

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata DX

Pagina 58

Nome file: VI15-F-

$V_{\sf Ed}$ FS	=	2244 0.26	1977.17 0.29	kN	taglio di caloclo se >1 verifica soddisfatta
10		no	no		30 × 1 vermea 30ddisiatta
Verifica per e	elementi provvis	ti di armatura a taglio			
\emptyset_{w}	=	12	12	mm	diametro armatura resistente a taglio
α	=	90.00	90.00	0	angolo di inclinazione armatura trasversale
S	=	300.00	300.00	mm	passo staffe
n_{br}	=	4.0	4.0		numero bracci armatura trasversale
A_{sw}	=	452.39	452.39	mmq	area armatura trasversale posta nell'interasse s
b_{w}	=	829.20	829.20	mm	larghezza minima sezione
f_{cd}	=	25.87	25.87	MPa	
ν	=	0.5	0.5		coeff. di riduzione f _{cd}
f' _{cd}	=	12.93	12.93	MPa	resistenza a compressione del cls ridotta
ω_{sw}	=	0.02751	0.02751		% meccanica di armatura trasversale
$\alpha \mathbf{c}$	=	1.00000	1.00000		
cot⊚	=	2.200	2.200		valore di calcolo 1≤cot⊙*≤2,5
V_{Rsd}	=	2249.0634	2249.0634	kN	Resistenza "taglio trazione"
V_{Rcd}	=	6999.7225	6999.7225	kN	Resistenza "taglio compressione"
V_{Rd}	=	2249.0634	2249.0634	kN	Resistenza a taglio
V_{Ed}	=	2244	1977.17	kN	taglio di caloclo
FS	=	1.00	1.14		se >1 verifica soddisfatta
Calcala dall	a Daioitanea a '	ok Tarajana	ok		
	a Reisitenza a	Torsione		mm	diametro ermatura registante e taglio
\emptyset_{w}	=	Torsione 12	12	mm °	diametro armatura resistente a taglio
$\mathbf{Ø_{w}}$		Torsione 12 90.00	12 90.00	0	angolo di inclinazione armatura trasversale
$m{\varnothing}_{f w}$ $lpha$	=	12 90.00 100	12 90.00 100		angolo di inclinazione armatura trasversale passo staffe
$egin{aligned} oldsymbol{arphi}_{\mathbf{w}} & & & & \\ & & & & \\ & & & & \\ & & & &$	= = =	12 90.00 100 2	12 90.00 100 2	° mm	angolo di inclinazione armatura trasversale passo staffe numero bracci armatura trasversale
$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$	= = = =	12 90.00 100 2 226.19	12 90.00 100 2 226.19	° mm mmq	angolo di inclinazione armatura trasversale passo staffe
	= = = =	Torsione 12 90.00 100 2 226.19 2.26	12 90.00 100 2 226.19 2.26	o mm mmq mmq/mm	angolo di inclinazione armatura trasversale passo staffe numero bracci armatura trasversale area armatura trasversale posta nell'interasse s
$egin{aligned} egin{aligned} egin{aligned} egin{aligned} eta \ \mathbf{s} \ \mathbf{n}_{br} \ \mathbf{A_s} \ \mathbf{A_s/s} \ \mathbf{\Sigma A_l} \end{aligned}$	= = = = =	12 90.00 100 2 226.19 2.26 9557	12 90.00 100 2 226.19 2.26 9557	o mm mmq mmq/mm mmq	angolo di inclinazione armatura trasversale passo staffe numero bracci armatura trasversale area armatura trasversale posta nell'interasse s area complessiva barre longitudinali
	= = = =	Torsione 12 90.00 100 2 226.19 2.26	12 90.00 100 2 226.19 2.26	o mm mmq mmq/mm	angolo di inclinazione armatura trasversale passo staffe numero bracci armatura trasversale area armatura trasversale posta nell'interasse s
$egin{aligned} egin{aligned} egin{aligned} egin{aligned} eta & & & \\ \mathbf{s} & & & \\ \mathbf{n}_{br} & & & \\ \mathbf{A}_{s} & & & \\ \mathbf{A}_{s} / \mathbf{s} & & & \\ \sum \mathbf{A}_{l} & & & \\ \mathbf{A}_{c} & & & \end{aligned}$	= = = = = =	12 90.00 100 2 226.19 2.26 9557 1734000	12 90.00 100 2 226.19 2.26 9557 1734000	omm mmq mmq/mm mmq mmq	angolo di inclinazione armatura trasversale passo staffe numero bracci armatura trasversale area armatura trasversale posta nell'interasse s area complessiva barre longitudinali area sezione
$\mathcal{O}_{\mathbf{w}}$ α \mathbf{s} $\mathbf{n}_{\mathbf{br}}$ $\mathbf{A}_{\mathbf{s}}$ $\mathbf{A}_{\mathbf{s}}/\mathbf{s}$ $\mathbf{\Sigma}\mathbf{A}_{\mathbf{l}}$ $\mathbf{A}_{\mathbf{c}}$ \mathbf{u}	= = = = = = =	12 90.00 100 2 226.19 2.26 9557 1734000 5520	12 90.00 100 2 226.19 2.26 9557 1734000 5520	omm mmq mmq/mm mmq mmq mm	angolo di inclinazione armatura trasversale passo staffe numero bracci armatura trasversale area armatura trasversale posta nell'interasse s area complessiva barre longitudinali area sezione perimetro della sezione
$egin{aligned} arphi_{\mathbf{w}} & & & & \\ & & & & \\ & & & & \\ & & & &$	= = = = = = = =	12 90.00 100 2 226.19 2.26 9557 1734000 5520 314	12 90.00 100 2 226.19 2.26 9557 1734000 5520 314.1	omm mmq mmq/mm mmq mmq mm	angolo di inclinazione armatura trasversale passo staffe numero bracci armatura trasversale area armatura trasversale posta nell'interasse s area complessiva barre longitudinali area sezione perimetro della sezione spessore sezione cava
$egin{aligned} arphi_{\mathbf{w}} & & & & & & \\ & & & & & & & \\ & & & &$	= = = = = = = =	12 90.00 100 2 226.19 2.26 9557 1734000 5520 314 1940000.00	12 90.00 100 2 226.19 2.26 9557 1734000 5520 314.1 1940000.00	omm mmq mmq/mm mmq mmq mm mm	angolo di inclinazione armatura trasversale passo staffe numero bracci armatura trasversale area armatura trasversale posta nell'interasse s area complessiva barre longitudinali area sezione perimetro della sezione spessore sezione cava area racchiusa dalla fibra media
$egin{aligned} egin{aligned} egin{aligned} egin{aligned} eta & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$	= = = = = = = = =	12 90.00 100 2 226.19 2.26 9557 1734000 5520 314 1940000.00 4280	12 90.00 100 2 226.19 2.26 9557 1734000 5520 314.1 1940000.00 4280	omm mmq mmq/mm mmq mmq mm mm	angolo di inclinazione armatura trasversale passo staffe numero bracci armatura trasversale area armatura trasversale posta nell'interasse s area complessiva barre longitudinali area sezione perimetro della sezione spessore sezione cava area racchiusa dalla fibra media perimetro medio del nucleo resistente
$\begin{array}{l} \varnothing_{\rm w} \\ \alpha \\ {\rm s} \\ {\rm n_{br}} \\ {\rm A_s} \\ {\rm A_s/s} \\ {\rm \sum} {\rm A_l} \\ {\rm A_c} \\ {\rm u} \\ {\rm t} \\ {\rm \Omega} \\ {\rm u_m} \\ {\omega_{\rm sw}} \end{array}$		12 90.00 100 2 226.19 2.26 9557 1734000 5520 314 1940000.00 4280 0.11	12 90.00 100 2 226.19 2.26 9557 1734000 5520 314.1 1940000.00 4280 0.11	omm mmq mmq/mm mmq mmq mm mm	angolo di inclinazione armatura trasversale passo staffe numero bracci armatura trasversale area armatura trasversale posta nell'interasse s area complessiva barre longitudinali area sezione perimetro della sezione spessore sezione cava area racchiusa dalla fibra media perimetro medio del nucleo resistente % meccanica di armatura trasversale
$\begin{array}{l} \varnothing_{\mathbf{w}} \\ \alpha \\ \mathbf{s} \\ \mathbf{n_{br}} \\ \mathbf{A_{s}} \\ \mathbf{A_{s}/s} \\ \boldsymbol{\Sigma} \mathbf{A_{l}} \\ \mathbf{A_{c}} \\ \mathbf{u} \\ \mathbf{t} \\ \boldsymbol{\Omega} \\ \mathbf{u_{m}} \\ \boldsymbol{\omega_{sw}} \\ \boldsymbol{\omega_{sl}} \end{array}$	= = = = = = = = = =	12 90.00 100 2 226.19 2.26 9557 1734000 5520 314 1940000.00 4280 0.11 0.11	12 90.00 100 2 226.19 2.26 9557 1734000 5520 314.1 1940000.00 4280 0.11 0.11	omm mmq mmq/mm mmq mmq mm mm	angolo di inclinazione armatura trasversale passo staffe numero bracci armatura trasversale area armatura trasversale posta nell'interasse s area complessiva barre longitudinali area sezione perimetro della sezione spessore sezione cava area racchiusa dalla fibra media perimetro medio del nucleo resistente % meccanica di armatura trasversale % meccanica di armatura longitudinale
$\begin{array}{l} \varnothing_{\mathbf{w}} \\ \alpha \\ \mathbf{s} \\ \mathbf{n}_{\mathbf{br}} \\ \mathbf{A}_{\mathbf{s}} \\ \mathbf{A}_{\mathbf{s}} / \mathbf{s} \\ \sum \mathbf{A}_{\mathbf{l}} \\ \mathbf{A}_{\mathbf{c}} \\ \mathbf{u} \\ \mathbf{t} \\ \mathbf{\Omega} \\ \mathbf{u}_{\mathbf{m}} \\ \boldsymbol{\omega}_{\mathbf{sw}} \\ \boldsymbol{\omega}_{\mathbf{sl}} \\ \boldsymbol{\nu} \end{array}$		12 90.00 100 2 226.19 2.26 9557 1734000 5520 314 1940000.00 4280 0.11 0.11 0.5	12 90.00 100 2 226.19 2.26 9557 1734000 5520 314.1 1940000.00 4280 0.11 0.11 0.5	mmq mmq/mm mmq mmq mm mm mm mm mm	angolo di inclinazione armatura trasversale passo staffe numero bracci armatura trasversale area armatura trasversale posta nell'interasse s area complessiva barre longitudinali area sezione perimetro della sezione spessore sezione cava area racchiusa dalla fibra media perimetro medio del nucleo resistente % meccanica di armatura trasversale % meccanica di armatura longitudinale coeff. di riduzione f _{cd}
$\begin{array}{l} \varnothing_{\mathbf{w}} \\ \alpha \\ \mathbf{s} \\ \mathbf{n}_{\mathbf{br}} \\ \mathbf{A}_{\mathbf{s}} \\ \mathbf{A}_{\mathbf{s}} / \mathbf{s} \\ \sum \mathbf{A}_{\mathbf{l}} \\ \mathbf{A}_{\mathbf{c}} \\ \mathbf{u} \\ \mathbf{t} \\ \Omega \\ \mathbf{u}_{\mathbf{m}} \\ \boldsymbol{\omega}_{\mathbf{sw}} \\ \boldsymbol{\omega}_{\mathbf{sl}} \\ \boldsymbol{\nu} \\ \mathbf{f}_{\mathbf{cd}} \end{array}$		12 90.00 100 2 226.19 2.26 9557 1734000 5520 314 1940000.00 4280 0.11 0.11 0.5 12.93	12 90.00 100 2 226.19 2.26 9557 1734000 5520 314.1 1940000.00 4280 0.11 0.11 0.5 12.93	mmq mmq/mm mmq mmq mm mm mm mm mm mm mm	angolo di inclinazione armatura trasversale passo staffe numero bracci armatura trasversale area armatura trasversale posta nell'interasse s area complessiva barre longitudinali area sezione perimetro della sezione spessore sezione cava area racchiusa dalla fibra media perimetro medio del nucleo resistente % meccanica di armatura trasversale % meccanica di armatura longitudinale coeff. di riduzione f _{cd} resistenza a compressione del cls ridotta
$egin{aligned} arphi_{\mathbf{w}} & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$		12 90.00 100 2 226.19 2.26 9557 1734000 5520 314 1940000.00 4280 0.11 0.11 0.5 12.93 0.000	12 90.00 100 2 226.19 2.26 9557 1734000 5520 314.1 1940000.00 4280 0.11 0.11 0.5 12.93 0.000	mmq mmq/mm mmq mmq mm mm mm mm mm mm mm	angolo di inclinazione armatura trasversale passo staffe numero bracci armatura trasversale area armatura trasversale posta nell'interasse s area complessiva barre longitudinali area sezione perimetro della sezione spessore sezione cava area racchiusa dalla fibra media perimetro medio del nucleo resistente % meccanica di armatura trasversale % meccanica di armatura longitudinale coeff. di riduzione f _{cd} resistenza a compressione del cls ridotta

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Drogotto	Esecutivo

Opera: Viadotto Arenella III
Relazione di Calcolo Impalcato - Carreggiata DX
Pagina 59
Nome file:
V115-F-

CL003_C.00_relazione_calcolo_impalcato_DX.doc.

T_{Rsd}		=	7555.30	7555.30	kNm	resistenza offerta dall'armatura trasversale
T_{RId}		=	1540.95	1540.95	kNm	resistenza offerta dall'armatura longitudinale
T _{Rd}		=	1540.95	1540.95	kNm	Resistenza a torsione
T_{Sd}		=	111.52	1377.31	kN	Torsione di caloclo
FS		=	13.82	1.12		
			ok	ok		
Verifica	a interazio	ne Taglio - To	orsione			
Solleci	itazioni					
cot⊝		=	2.200	2.200		valore di calcolo
V_{Ed}		=	2244	1977.17	kN	taglio di caloclo
T_{Ed}		=	111.52	1377.31	kN	torsione di caloclo
Reister	nze					
V_{Rcd}		=	6999.72	6999.72	kN	Resistenza a taglio lato cls
T_Rcd		=	5938.68	5938.68	kNm	Resistenza a torsione lato cls
Verifica	а				_	
T _{Ed} /T _{Rcc}	d+V _{Ed} /V _{Rcd}	=	0.34	0.51		se <1 verifica soddisfatta
			ok	ok		

7.2.9 Verifica del trasferimento del taglio all' interfaccia cassoncino/nucleo gettato in opera

Si verifica che tutto il taglio a filo traverso possa essere trasferito alle travi mediante la resistenza a taglio di staffe di connessione disposte lungo il perimetro interno dei cassoncini. Si trascura il contributo dell'aderenza fra i due getti di calcestruzzo.

V_{Ed}	=	2244	kN	taglio massimo di progetto a filo trasverso
ф	=	12	mm	diametro barre
n_{b}	=	8		numero di bracci lungo il perimetro interno
n_{f}	=	14		numero di file a passo 100 mm
n_{tot}	=	112		numero totale
A_s	=	12666.9	mmq	area armatura trasversale
f_{yd}	=	391.3	MPa	tensione di snervamento di calcolo
$f_{yd}/3^{1/2}$	=	226		tensione ideale
V_{Rd}	=	2862	kN	resitenza offerta dall'armatura trasversale
V_{Rd}/V_{Ed}	=	1.28		se >1 verifica soddisfatta
		ok		

DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata DX

Pagina 60

Nome file: VI15-F-

CL003_C.00_relazione_calcolo_impalcato_DX.doc.

7.3 Verifica della connessione trave soletta

La connessione trave-soletta è verificata a partire dal taglio massimo.

Da 0 a 3.2 m Sollecitazioni

V_{Ed}	=	1662385.2	N	taglio massimo in testata
S _{sol}	=	3.87E+08	mm^3	momento statico della soletta
J_{yo}	=	8.39E+11	mm ⁴	momento di inerzia intera sezione
q_{Ed}	=	767	N/mm	scorrimento di calcolo
Calcolo resistenza				
ϕ_1	=	12	mm	diametro
n_{b1}	=	4		numero di bracci
A _{s1}	=	452	mmq	area armatura trasversali
S ₁	=	75	mm	passo
A_{s1}/s_1	=	6.03		
ϕ_2	=	12	mm	diametro
n_{b2}	=	4		numero di bracci
A _{s2}	=	452	mmq	area armatura trasversali
s2	=	150	mm	passo
A_{s2}/s_2	=	3.02		
f_{yd}	=	391.3	MPa	tensione di snervamento di calcolo
$f_{yd}/3^{1/2}$	=	226	MPa	tensione ideale
q _{Rd}	=	2044	N/mm	scorrimento resistente
q_{Rd}/q_{Ed}	=	2.66 ok		se >1 verifica soddisfatta

Da 3.2 a 9 m Sollecitazioni

V_{Ed}	=	1074814.8	kN	taglio massimo in testata
S _{sol}	=	387375833	mm ³	momento statico della soletta
J_yo	=	8.39E+11	mm^4	momento di inerzia intera sezione
\mathbf{q}_{Ed}	=	496	N/mm	scorrimento di calcolo
Calcolo resistenza				
ϕ_1	=	12	mm	diametro
n_{b1}	=	4		numero di bracci
A _{s1}	=	452	mmq	area armatura trasversali
S ₁	=	100	mm	passo
A_{s1}/s_1	=	4.52		
ϕ_2	=	12	mm	diametro
n_{b2}	=	4		numero di bracci
A_{s2}	=	452	mmq	area armatura trasversali
s2	=	200	mm	passo
A_{s2}/s_2	=	2.26		
f_{yd}	=	391.3	MPa	tensione di snervamento di calcolo

CORRIDOIO PLURIMODALE TIRRENICO-NORD EUROPA ITINERARIO AGRIGENTO -CALTANISSETTA-A19 S.S. N° 640 "DI PORTO EMPEDOCLE" AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Pagina 61 Nome file: VI15-F-

VI15-F-CL003 C.00 relazione calcolo impalcato DX.doc.

Progetto Esecutivo

tensione ideale

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata DX

$f_{yd}/3^{1/2}$	=	226	MPa
q _{Rd}	=	1533	N/mm
q_{Rd}/q_{Ed}	=	3.09	
		ok	

scorrimento resistente se >1 verifica soddisfatta

7.4 S.L.E. rara - limitazione delle tensioni

Si riportano nei paragrafi successivi le tensioni nelle fibre più sollecitate della trave, della soletta, delle armature di precompressione ed ordinaria; sono indicate anche le sollecitazioni agenti nelle varie fasi sulle sezioni verificate. Le tensioni sono state calcolate nell'ipotesi di calcestruzzo reagente e laddove, in soletta, sono state riscontrate trazioni del calcestruzzo, evenienza che si verifica nelle vicinanze degli assi pila, si è fatta una seconda verifica semplificata, trascurando tutto il contributo della soletta; tale verifica si ritiene soddisfatta se al lembo superiore teso di trave compaiono compressioni o trazioni modeste inferiori alla resistenza stessa a trazione del calcestruzzo.

Le perdite di precompressione sono state introdotte in termini di sollecitazioni equivalenti.

I limiti tensionali per le combinazioni rara sono:

Combinazione rara (fondamentale)

 σ_c = 27.4 MPa massima compressione in esercizio cap

 σ_c = 19.9 MPa massima compressione in esercizio cao

 σ_p = 1336 MPa massima trazione in esercizio trefoli

 σ_s = 360 MPa massima trazione in esercizio armatura lenta

Mentre al taglio trefoli:

al taglio trefoli (tensioni iniziali)

 σ_{ci} = 26.1 MPa massima compressione iniziale cap

 σ_{cti} = 1.79 MPa massima trazione iniziale cap

 σ_{ci} = 23.2 MPa massima compressione iniziale cao

 σ_{pi} = 1488 MPa massima trazione iniziale trefoli

 σ_{si} = 360 MPa massima trazione iniziale armatura lenta

Nei paragrafi successivi si riportano le verifiche di sicurezza delle sezioni più significative della trave e indicate nel seguente modo:

SA-c: sezione di mezzeria trave centrale

SB-c: sezione a x=1.5m (filo riempimento) trave centrale SD-c: sezione a 9.0m dalla testata della trave centrale

SA-b: sezione di mezzeria trave di bordo

SB-b: sezione a x=1.5m (filo riempimento) trave di bordo SD-b: sezione a 9.0m dalla testata della trave di bordo

Inoltre con:

DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata DX

Pagina 62

Nome file:

VI15-F-CL003_C.00_relazione_calcolo_impalcato_DX.doc.

SF1, **SF2**, **SF3**, **SF4** si sono indicate le caratteristiche geometriche delle sezioni calcolate nelle varie fasi e riportate nel paragrafo 2.3.3 Caratteristiche geometriche delle sezioni

7.4.1 Verifiche Sezione SA-c

Caratteristiche precompressione

id_cavo	n. trefoli	area singolo trefolo	area trefoli	distanza da intradosso	presoll.	precompressione iniziale
	np	A_{pt}	A_p	Y_p	σ_{pi}	N_{pi}
		mm^2	mm^2	mm	MPa	kN
1	12	139.0	1668	50	1350	2252
2	8	139.0	1112	100	1350	1501
3	6	139.0	834	150	1350	1126
4	4	139.0	556	200	1350	751
5	4	139.0	556	250	1350	751
6	4	139.0	556	300	1350	751
7	4	139.0	556	450	1350	751
8	2	139.0	278	500.2	1350	375
9	2	139.0	278	600.2	1350	375
10	4	139.0	556	800	1350	751
11	4	139.0	556	1000	1350	751
12	4	139.0	556	1300	1350	751
13	2	139.0	278	1750	1350	375
TOT	60		8340.0	420.01		11259

Simbologia e unità di misura

 $egin{array}{lll} N_k &=& kN & \mbox{valore caratteristico sforzo normale} \ M_k &=& kNm & \mbox{valore caratteristico momento flettente} \ \Psi_0 &=& \mbox{coefficiente per combinazione rara} \end{array}$

 Ψ_1 = coefficiente per combinazione frequente

 Ψ_2 = coefficiente per combinazione quasi permanente

 σ_{cs} = MPa tensione estradosso soletta σ_{ci} = MPa tensione intradosso soletta

 σ_s = MPa tensione estradosso trave prefabbricata σ_i = MPa tensione intradosso trave prefabbricata

 σ_{eq} = MPa tensione a livello trefolo equivalente

 σ_{cp} = MPa tensione media nel calcestruzzo σ_{ps} = MPa tensione nel trefolo superiore

 σ_{pi} = MPa tensione nel trefolo inferiore

 σ_{ss} = MPa tensione nell'armatura lenta superiore

Calcolo Delle Tensioni Nelle Condizioni Elementari Di Carico

	coazione al netto	coazione al netto	coazione al netto				
	delle cadute	delle cadute	delle cadute	peso proprio	peso proprio	peso proprio	peso
	istantanee	istantanee	istantanee	trave	trave	trave	soletta
Azione	(isostatico)	(isostatico)	(iperstatico)	(isostatico)	(isostatico)	(iperstatico)	(isostatico)

CORRIDOIO PLURIMODALE TIRRENICO-NORD EUROPA ITINERARIO AGRIGENTO -CALTANISSETTA-A19 S.S. N° 640 "DI PORTO EMPEDOCLE" AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Pagina 63 Nome file: VI15-F-

CL003_C.00_relazione_calcolo_impalcato_DX.doc.

Relazione di Calcolo Impalcato - Carreggiata DX

Opera: Viadotto Arenella III

 	00070	000_0
	Progetto	Esecutivo

Fase	SF1	SF3	SF3	SF1	SF3	SF3	SF1
N_k	10186.4	10186.4	8982.2	0.0	0.0	0.5	0.0
M_k	-4299.2	-8497.5	-4882.4	1975.87	1975.9	1358.7	3098.87
Ψ_0	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ψ_1	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ψ_2	1.00	1.00	1.00	1.00	1.00	1.00	1.00
σ_{cs}	0.0	-1.6	1.0	0.0	1.9	1.3	0.0
σ_{ci}	0.0	0.9	2.5	0.0	1.3	0.9	0.0
σ_{s}	-0.6	0.9	2.5	5.5	1.3	0.9	8.6
σ_{i}	21.9	19.1	12.9	-4.8	-3.0	-2.0	-7.6
σ_{eq}	16.6	14.9	10.5	-2.4	-2.0	-1.3	-3.8
σ_{cp}	11.35	6.41	5.65	0.00	0.00	0.00	0.00
σ_{ps}	0.13	20.21	40.27	36.47	16.99	11.69	57.19
σ_{pi}	148.69	270.76	184.23	-31.81	-41.27	-28.37	-49.89
σ_{ss}	0.00	-5.58	25.45	0.00	22.99	15.81	0.00

Azione	peso soletta (isostatico)	peso soletta (iperstatico)	nermanenti nortati	ritiro isostatico + ritiro locale	ritiro ineretatico	carichi mobili max	carichi mobili min
AZIONE	(1303tatico)	(iperstatico)	permanenti portati	Titilo isostatico + Titilo locale	Titilo iperstatico	IIIax	111111
Fase	SF3	SF3	SF3	SF3	SF3	SF4	SF4
N_{k}	0.0	0.0	0.0	1583	474.9	0.0	0.0
M_{k}	3098.9	1440.0	528.4	1061.6	-844.7	3301.8	-530.9
Ψ_0	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ψ_1	1.00	1.00	1.00	1.00	1.00	0.75	0.75
Ψ_2	1.00	1.00	1.00	1.00	1.00	0.00	0.00
σ_{cs}	2.9	1.4	0.5	-0.5	-0.5	3.4	-0.5
σ_{ci}	2.0	0.9	0.3	-0.8	-0.3	2.3	-0.4
σ_{s}	2.0	0.9	0.3	1.7	-0.3	2.3	-0.4
σ_{i}	-4.6	-2.2	-0.8	-0.6	1.6	-5.6	0.9
σ_{eq}	-3.1	-1.4	-0.5	-0.1	1.1	-3.8	0.6
σ_{cp}	0.00	0.00	0.00	1.00	0.30	0.00	0.00
σ_{ps}	26.65	12.38	4.54	23.62	-2.91	10.72	-1.72
σ_{pi}	-64.72	-30.07	-11.04	-7.68	21.99	-28.21	4.54
σ_{ss}	36.05	16.75	6.15	26.84	-5.48	14.73	-2.37

CORRIDOIO PLURIMODALE TIRRENICO-NORD EUROPA ITINERARIO AGRIGENTO -CALTANISSETTA-A19 S.S. N° 640 "DI PORTO EMPEDOCLE" AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19 Progetto Esecutivo

Opera: Viadotto Arenella III
Relazione di Calcolo Impalcato - Carreggiata DX
Pagina 64

Nome file: VI15-F-

CL003_C.00_relazione_calcolo_impalcato_DX.doc.

Azione	vento	termico MAX	termico MIN	cadute differite a tempo infinito	ridistribuzione coazione al netto cadute istantanee e differite	ridistribuzione peso proprio trave	ridistribuzione peso soletta
Fase	SF4	SF4	SF4	SF3			
N_k	0.0	-45.3	59.0	-1391.5	-	-	-
M_{k}	-7.2	651.5	-329.9	1160.8	-	-	-
Ψ_0	0.60	0.60	0.60	1.00	1.00	1.00	1.00
Ψ_1	0.00	0.50	0.50	1.00	1.00	1.00	1.00
Ψ_2	0.00	0.50	0.50	1.00	1.00	1.00	1.00
σ_{cs}	0.0	0.6	-0.3	0.2	-1.2	2.5	3.8
σ_{ci}	0.0	0.4	-0.2	-0.1	1.9	1.7	2.6
σ_{s}	0.0	0.4	-0.2	-0.1	1.5	4.7	5.9
σ_{i}	0.0	-1.1	0.6	-2.6	36.1	-6.5	-8.9
σ_{eq}	0.0	-0.8	0.4	-2.0	28.0	-3.9	-5.4
σ_{cp}	0.00	-0.03	0.04	-0.88	14.8	0.0	0.0
σ_{ps}	-0.02	1.96	-0.86	-2.76	36.2	42.1	56.5
σ_{pi}	0.06	-5.73	3.03	-36.99	424.2	-71.5	-102.5
σ_{ss}	-0.03	2.75	-1.26	0.76	4.5	30.2	46.3

SLE - Verifica del Livello Tensionale

	verifica al taglio trefoli	verifica a fine fase 2 a t=infinito	verifica a fine fase 3 a t=0 (max mobili + max termico)	verifica a fine fase 3 a t=0 (max mobili + min termico)	verifica a fine fase 3 a t=0 (min mobili + max termico)	verifica a fine fase 3 a t=0 (min mobili + min termico)		
Combin	azione RARA	(Fondamentale)						
σ_{cs}	0.0	4.68	8.43	7.87	4.51	3.96	MPa	tensione estradosso soletta
σ_{ci}	0.0	5.26	7.78	7.42	5.14	4.78	MPa	tensione intradosso soletta
σ_{s}	4.9	13.81	16.33	15.97	13.69	13.33	MPa	tensione estradosso
σ_{i}	17.0	18.25	11.95	13.00	18.48	19.53	MPa	tensione intradosso
σ_{eq}	14.2	17.22	12.97	13.69	17.36	18.08	MPa	tensione a livello trefolo equivalente
σ_{cp}	11.4	15.22	15.20	15.24	15.20	15.24	MPa	tensione media nel calcestruzzo
σ_{ps}	-1184.8	-1064.09	-1052.21	-1053.90	-1064.65	-1066.34	MPa	tensione nel trefolo superiore
σ_{pi}	-1104.5	-1004.95	-1036.56	-1031.31	-1003.81	-998.56	MPa	tensione nel trefolo inferiore
σ_{ss}	0.0	109.23	125.58	123.18	108.49	106.08	MPa	tensione nell'armatura lenta superiore
check1	OK	OK	OK	OK	OK	OK		check compressione cap
check2	OK	OK	OK	OK	OK	OK		check trazione cap
check3	OK	OK	OK	OK	OK	OK		check trefoli

Le perdite di precompressione per ritiro, viscosità e rilassamento sono calcolate nelle tabelle seguenti a partire dalla tensione al netto delle perdite elastiche

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata DX

Pagina 65

Nome file:

VI15-F-

CL003_C.00_relazione_calcolo_impalcato_DX.doc.

Cadute di tensione istantanee

Cadute	ner	deform	nazione	elastica

•				
N_{pi}	=	11259.00	kN kN	sforzo di precompressione iniziale
M_{pi}	=	-4751.94	m	momento coattivo iniziale
σ_{eq}	=	18.37	MP a	tensione nel cls a quota trefolo equivalente
$\Delta\sigma_{el}$	=	128.61	MP a	caduta di tensione per deformazione elastica
ΔN_{el}	=	1072.6	kN	caduta di precompressione per deformazione elastica
f	=	0.095		frazione caduta di precompressione
Cadute di t	ensi	one differite n	el ten	npo
t	=	1440	ore	istante in cui vengono valutate le cadute di tensione
t=∞	=	438000	ore	tempo infinito (inserire numero sufficientemente grande)
Cadute per	ritiro			
$\epsilon_{cs}(t)$	=	0.00014		deformazione per ritiro a tempo t
ε _{cs} (∞)	=	0.00035	MP	deformazione totale per ritiro a tempo infinito
$\Delta\sigma_{s,t}$	=	26.60	a MP	perdita per ritiro a tempo t
$\Delta\sigma_{\text{s,inf}}$	=	66.50	a	perdita per ritiro a tempo infinito
Cadute per viscosità				
$\varphi(t,t_0)$	=	0.89		coefficiente di viscosità al tempo t e applicazione del carico al tempo t ₀
φ(∞,t ₀)	=	1.7900		coefficiente di viscosità a tempo infinito e applicazione del carico al tempo t₀
N _p	=	10186	kN	precompressione iniziale con cadute istantanee scontate
M _p	=	-8921.80	kN m	momento coattivo
M _q	=	3200	kN m	momento flettente (prodotto dai carichi permanenti)
· ·			MP	
$\sigma_{\sf eq}$	=	14.18	a MP	tensione calcestruzzo a livello cavo risultante
$\Delta\sigma_{c,t}$	=	65.87	a MP	perdita di tensione per viscosità al tempo t
$\Delta\sigma_{\text{c,inf}}$	=	132.47	а	perdita di tensione per viscosità a tempo infinito
Cadute per	rilass	samento		classe dell'acciao da precompresso (1=fili o trefoli a rilassamento ordinario; =2 fili o trefoli a basso
clp	=	2		rilassamento, =3 barre)
ρ ₁₀₀₀	=	2.5	%	perdita per rilassamento a 1000 ore dopo la messa in tensione (=8%, 2.5%, 4% riepettivamente per acciaio di classe 1, 2, 3)
σ_{pm0}	=	1221	MP a	valore assoluto della precompressione iniziale al netto delle cadute istantanee
P _{m0}	=	10186	kN	precompressione iniziale al netto delle cadute istantanee
M_{pm0}	=	-8922	kN m	momento coattivo di precompressione
M _q	=	3200	kN m	momento flettente (prodotto dai carichi permanenti)
•			MP	
$\sigma_{\sf eq}$	=	14.18	а	tensione nel calcestruzzo a livello del cavo equivalente rapporto tra tensione di precompressione inziale (al netto delle cadute istantanee) e tensione di
μ	=	0.657		rottura
t	=	1440	ore MP	tempo dopo la messa in tensione (istante in cui vengono valutate le cadute di tensione)
$\Delta\sigma_{\text{pr}}\!\left(t ight)$	=	8.72	a MP	caduta di tensione per rilassamento al tempo t
Λσ (m)	_	37.00	'''	caduta di tanciana par rilassamento a tempo t-infinito

caduta di tensione per rilassamento a tempo t=infinito

Interazione tra le cadute di tensione per effetti differiti

а

= 0.00035 deformazione totale per ritiro a tempo infinito ε_{cs}(∞)

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto	Esecutivo

Opera: Viadotto Arenella III
Relazione di Calcolo Impalcato - Carreggiata DX
Pagina 66
Nome file:
VI15-F-
CL003 C 00 relazione calcolo impalcato DX doc

			MP	
$\Delta\sigma_{pr}(\infty)$	=	37.99	a MP	caduta di tensione per rilassamento a tempo t=infinito
$\sigma_{\text{c,QP}}$	=	14.18	a m	tensione nel cls a quota livello del trefolo equivalente prodotto dai carichi permanenti
A_p	=	8340	m² m	area totale cavi precompressione
A_c	=	847168 325000000	m ² m	area sezione trave
J _c	=	000	m ⁴	momento d'inerzia trave
Z_{cp}	=	0.876	m MP	distanza fra baricentro sezione cls e baricentro cavi
$\Delta\sigma_{\text{p,c+s+r}}\!(t)$	=	87.8	a MP	cadute di tensioni totali a tempo t
$\Delta\sigma_{p,c+s+r}(\infty)$	=	166.85	а	cadute di tensioni totali a tempo infinito

7.4.2 Verifiche Sezione SB-c

Caratteristiche precompressione

id_cavo	n. trefoli	area singolo trefolo	area trefoli	distanza da intradosso	presoll.	precompressione iniziale
	np	A_{pt}	A_p	Y_p	σ_{pi}	N_{pi}
		mm^2	mm^2	mm	MPa	kN
1	8	139.0	1112	50	1350	1501
2	6	139.0	834	100	1350	1126
3	0	139.0	0	150	1350	0
4	0	139.0	0	200	1350	0
5	0	139.0	0	250	1350	0
6	2	139.0	278	300	1350	375
7	2	139.0	278	450	1350	375
8	2	139.0	278	500.2	1350	375
9	2	139.0	278	600.2	1350	375
10	4	139.0	556	800	1350	751
11	4	139.0	556	1000	1350	751
12	4	139.0	556	1300	1350	751
13	2	139.0	278	1750	1350	375
	36		5004.0	572.24		6755

Calcolo Delle Tensioni Nelle Condizioni Elementari Di Carico

	coazione al netto	coazione al netto	coazione al netto				
	delle cadute	delle cadute	delle cadute	peso proprio	peso proprio	peso proprio	peso
	istantanee	istantanee	istantanee	trave	trave	trave	soletta
Azione	(isostatico)	(isostatico)	(iperstatico)	(isostatico)	(isostatico)	(iperstatico)	(isostatico)

MMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.20 DAL KM 44+000 ALLO SVINCOLO CON L'A19 Progetto Esecutivo Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata DX

Pagina 67

Nome file: VI15-F-

Fase	SF1	SF3	SF3	SF1	SF3	SF3	SF1
N_k	6428.5	6428.5	5091.4	0.0	0.0	0.5	0.0
M_k	-1830.0	-4584.1	6450.3	426.3	426.3	-1364.8	699.6
Ψ_0	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ψ_1	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ψ_2	1.00	1.00	1.00	1.00	1.00	1.00	1.00
σ_{cs}	0.0	-0.3	9.6	0.0	0.4	-1.3	0.0
σ_{ci}	0.0	1.2	7.5	0.0	0.3	-0.9	0.0
σ_{s}	2.2	1.2	7.5	1.2	0.3	-0.9	2.0
σ_{i}	12.0	11.7	-7.2	-1.1	-0.7	2.2	-1.8
σ_{eq}	8.9	8.3	-2.6	-0.4	-0.4	1.2	-0.6
σ_{cp}	7.33	4.16	3.30	0.00	0.00	0.00	0.00
σ_{ps}	17.20	21.16	103.48	7.94	3.67	-11.74	13.04
σ_{pi}	82.11	165.44	-99.54	-7.18	-9.75	31.22	-11.78
σ_{ss}	0.00	6.30	124.38	0.00	5.05	-16.16	0.00

Azione	peso soletta (isostatico)	peso soletta (iperstatico)	permanenti portati	ritiro isostatico + ritiro locale	ritiro iperstatico	carichi mobili max	carichi mobili min
Fase	SF3	SF3	SF3	SF3	SF3	SF4	SF4
N_{k}	0.0	0.0	0.0	1583	511.2	0.0	0.0
M_k	699.6	-1384.7	-507.7	1012.4	-2201.7	644.9	-2228.7
Ψ_{0}	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ψ_{1}	1.00	1.00	1.00	1.00	1.00	0.75	0.75
Ψ_{2}	1.00	1.00	1.00	1.00	1.00	0.00	0.00
σ_{cs}	0.7	-1.3	-0.5	-0.5	-1.8	0.7	-2.3
σ_{ci}	0.5	-0.9	-0.3	-0.8	-1.1	0.4	-1.5
σ_{s}	0.5	-0.9	-0.3	1.7	-1.1	0.4	-1.5
σ_{i}	-1.1	2.3	0.8	-0.6	3.9	-1.1	3.9
σ_{eq}	-0.6	1.3	0.5	0.1	2.3	-0.6	2.2
σ_{cp}	0.00	0.00	0.00	1.02	0.33	0.00	0.00
σ_{ps}	6.02	-11.91	-4.37	23.63	-14.12	2.09	-7.24
σ_{pi}	-16.00	31.67	11.61	-8.24	55.18	-5.69	19.65
σ_{ss}	8.29	-16.40	-6.01	26.91	-21.26	2.90	-10.01

CORRIDOIO PLURIMODALE TIRRENICO-NORD EUROPA ITINERARIO AGRIGENTO -CALTANISSETTA-A19 S.S. N° 640 "DI PORTO EMPEDOCLE" AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19 Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata DX

Pagina 68

Nome file: VI15-F-

Azione	vento	termico MAX	termico MIN	cadute differite a tempo infinito	ridistribuzione coazione al netto cadute istantanee e differite	ridistribuzione peso proprio trave	ridistribuzione peso soletta
Fase	SF4	SF4	SF4	SF3			
N_{k}	0.0	-81.7	106.6	-678.9	-	-	-
M_{k}	12.6	1537.2	-769.8	484.1	-	-	-
Ψ_0	0.60	0.60	0.60	1.00	1.00	1.00	1.00
Ψ_1	0.00	0.50	0.50	1.00	1.00	1.00	1.00
Ψ_{2}	0.00	0.50	0.50	1.00	1.00	1.00	1.00
σ_{cs}	0.0	1.5	-0.7	0.0	3.6	-0.2	-0.1
σ_{ci}	0.0	1.0	-0.5	-0.1	4.2	-0.1	-0.1
σ_{s}	0.0	1.0	-0.5	-0.1	5.4	0.5	0.7
σ_{i}	0.0	-2.8	1.4	-1.2	15.2	-0.3	-0.5
σ_{eq}	0.0	-1.6	8.0	-0.9	12.1	0.0	-0.1
σ_{cp}	0.00	-0.06	0.07	-0.44	9.5	0.0	0.0
σ_{ps}	0.04	4.70	-2.12	-2.23	72.8	2.6	3.8
σ_{pi}	-0.11	-13.85	7.17	-17.47	169.3	0.6	-1.3
σ_{ss}	0.06	6.61	-3.08	-0.67	57.1	-2.3	-1.7

SLE - Verifica	del	Livello	Tensionale
----------------	-----	---------	-------------------

	verifica al taglio trefoli	verifica a fine fase 2 a t=infinito	verifica a fine fase 3 a t=0 (max mobili + max termico)	verifica a fine fase 3 a t=0 (max mobili + min termico)	verifica a fine fase 3 a t=0 (min mobili + max termico)	verifica a fine fase 3 a t=0 (min mobili + min termico)		
Combin	azione RARA	(Fondamentale)						
σ_{cs}	0.0	0.49	2.08	0.73	-0.88	-2.23	MPa	tensione estradosso soletta
σ_{ci}	0.0	1.60	2.65	1.78	0.67	-0.21	MPa	tensione intradosso soletta
σ_{s}	3.4	6.74	7.79	6.91	5.81	4.93	MPa	tensione estradosso
σ_{i}	10.9	17.38	14.58	17.09	19.63	22.14	MPa	tensione intradosso
σ_{eq}	8.5	14.00	12.42	13.85	15.23	16.67	MPa	tensione a livello trefolo equivalente
σ_{cp}	7.3	10.40	10.37	10.45	10.37	10.45	MPa	tensione media nel calcestruzzo
σ_{ps}	-1259.5	-1202.52	-1197.58	-1201.68	-1206.92	-1211.01	MPa	tensione nel trefolo superiore
σ_{pi}	-1209.7	-1074.90	-1088.97	-1076.36	-1063.63	-1051.02	MPa	tensione nel trefolo inferiore
σ_{ss}	0.0	52.06	58.96	53.14	46.05	40.24	MPa	tensione nell'armatura lenta superiore
check1	OK	OK	OK	OK	OK	OK		check compressione cap
check2	OK	OK	OK	OK	OK	OK		check trazione cap
check3	OK	OK	OK	OK	OK	OK		check trefoli

CORRIDOIO PLURIMODALE TIRRENICO-NORD EUROPA ITINERARIO AGRIGENTO -CALTANISSETTA-A19 S.S. N° 640 "DI PORTO EMPEDOCLE" AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Pagina 69 Nome file: VI15-F-

 ${\tt CL003_C.00_relazione_calcolo_impalcato_DX.doc}.$

Relazione di Calcolo Impalcato - Carreggiata DX

Opera: Viadotto Arenella III

Progetto Esecutivo

per effetti differiti

Le perdite di precompressione per ritiro, viscosità e rilassamento sono calcolate nelle tabelle seguenti a partire dalla tensione al netto delle perdite elastiche.

partire dalla tensione ai netto delle perdite elastiche.								
Cadute di tensione istantanee								
Cadute per defe	Cadute per deformazione elastica							
N_{pi}	=	6755.40	kN kN	sforzo di precompressione iniziale				
M_{pi}	=	-1923.04	m M	momento coattivo iniziale				
σ_{eq}	=	9.33	Pa M	tensione nel cls a quota trefolo equivalente				
$\Delta\sigma_{\text{el}}$	=	65.33	Pa	caduta di tensione per deformazione elastica				
ΔN_{el}	=	326.9	kN	caduta di precompressione per deformazione elastica				
f	=	0.048		frazione caduta di precompressione				
Cadute di tens	ione d	differite nel temp	0					
t	=	1440	ore	istante in cui vengono valutate le cadute di tensione				
t=∞	=	438000	ore	tempo infinito (inserire numero sufficientemente grande)				
Cadute per ritire	0							
$\epsilon_{cs}(t)$	=	0.00014		deformazione per ritiro a tempo t				
ε _{cs} (∞)	=	0.00035	М	deformazione totale per ritiro a tempo infinito				
$\Delta\sigma_{\text{s,t}}$	=	26.60	Pa M	perdita per ritiro a tempo t				
$\Delta\sigma_{\text{s,inf}}$	=	66.50	Pa	perdita per ritiro a tempo infinito				
Cadute per viso	cosità							
$\varphi(t,t_0)$	=	0.89		coefficiente di viscosità al tempo t e applicazione del carico al tempo $t_{\text{\scriptsize 0}}$				
$\varphi(\infty,t_0)$	=	1.7900		coefficiente di viscosità a tempo infinito e applicazione del carico al tempo $t_{\rm 0}$				
N_{p}	=	6428	kN kN	precompressione iniziale con cadute istantanee scontate				
M_p	=	-4651.81	m kN	momento coattivo				
M_{g}	=	3200	m M	momento flettente (prodotto dai carichi permanenti)				
σ_{eq}	=	5.99 Pa M 27.80 Pa M		tensione calcestruzzo a livello cavo risultante				
$\Delta\sigma_{c,t}$	=			perdita di tensione per viscosità al tempo t				
$\Delta \sigma_{c,inf}$ = 55.91		Pa	perdita di tensione per viscosità a tempo infinito					
Cadute per rilas	ssame	nto						
clp	=	2		classe dell'acciao da precompresso (1=fili o trefoli a rilassamento ordinario; =2 fili o tr a basso rilassamento, =3 barre)				
ρ ₁₀₀₀	=	2.5	%	perdita per rilassamento a 1000 ore dopo la messa in tensione (=8%, 2.5%, 4% riepettivamente per acciaio di classe 1, 2 , 3)				
σ_{pm0}	=	1285	M Pa	valore assoluto della precompressione iniziale al netto delle cadute istantanee				
P_{m0}	=	6428	kN kN	precompressione iniziale al netto delle cadute istantanee				
M_{pm0}	=	-4652	m kN	momento coattivo di precompressione				
M_g	=	3200	m M	momento flettente (prodotto dai carichi permanenti)				
$\sigma_{\sf eq}$	=	5.99	Pa	tensione nel calcestruzzo a livello del cavo equivalente rapporto tra tensione di precompressione inziale (al netto delle cadute istantanee) e				
μ	=	0.691		tensione di rottura				
t	=	1440	ore M	tempo dopo la messa in tensione (istante in cui vengono valutate le cadute di tensione)				
$\Delta\sigma_{\text{pr}}(t)$	=	12.38	Pa M	caduta di tensione per rilassamento al tempo t				
$\Delta\sigma_{pr}(\infty)$	=	46.63	Pa	caduta di tensione per rilassamento a tempo t=infinito				
Interazione tra		ute di tensione						

CORRIDOIO PLURIMODALE TIRRENICO-NORD EUROPA ITINERARIO AGRIGENTO -CALTANISSETTA-A19 S.S. N° 640 "DI PORTO EMPEDOCLE" AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

-000 ALLO	SVINCOLO	CON	L'A19
Progetto I	Esecutivo		

Opera: Viadotto Arenella III
Relazione di Calcolo Impalcato - Carreggiata DX
Pagina 70
Nome file:
VI15-F-
CL 003 C 00 relazione calcolo impalcato DY doc

ε _{cs} (∞)	=	0.00035		deformazione totale per ritiro a tempo infinito
$\Delta\sigma_{\sf pr}(\infty)$	=	46.63	M Pa M	caduta di tensione per rilassamento a tempo t=infinito
$\sigma_{\text{c,QP}}$	=	5.99	Pa m	tensione nel cls a quota livello del trefolo equivalente prodotto dai carichi permanenti
A_p	=	5004	m ² m	area totale cavi precompressione
A_c	=	847168	m^2	area sezione trave
J _c	=	325000000000	m m⁴	momento d'inerzia trave
Z_{cp}	=	0.724	m M	distanza fra baricentro sezione cls e baricentro cavi
$\Delta\sigma_{\text{p,c+s+r}}\!(t)$	=	60.4	Pa M	cadute di tensioni totali a tempo t
$\Delta\sigma_{p,c+s+r}(\infty)$	=	135.67	Pa	cadute di tensioni totali a tempo infinito

7.4.3 **Verifiche Sezione SD-c**

Caratteristiche precompressione

id_cavo	n. trefoli	area singolo trefolo	area trefoli	distanza da intradosso	presoll.	precompressione iniziale
	np	A_{pt}	A_p	Y_p	σ_{pi}	N_{pi}
		mm^2	mm^2	mm	MPa	kN
1	8	139.0	1112	50	1350	1501
2	6	139.0	834	100	1350	1126
3	6	139.0	834	150	1350	1126
4	4	139.0	556	200	1350	751
5	4	139.0	556	250	1350	751
6	2	139.0	278	300	1350	375
7	2	139.0	278	450	1350	375
8	2	139.0	278	500.2	1350	375
9	2	139.0	278	600.2	1350	375
10	4	139.0	556	800	1350	751
11	4	139.0	556	1000	1350	751
12	4	139.0	556	1300	1350	751
13	2	139.0	278	1750	1350	375
TOT	50		6950.0	466.02		9383

Calcolo Delle Tensioni Nelle Condizioni Elementari Di Carico

Azione	coazione al netto delle cadute istantanee (isostatico)	coazione al netto delle cadute istantanee (isostatico)	coazione al netto delle cadute istantanee (iperstatico)	peso proprio trave (isostatico)	peso proprio trave (isostatico)	peso proprio trave (iperstatico)	peso soletta (isostatico)
Fase	SF1	SF3	SF3	SF1	SF3	SF3	SF1
N_{k}	8673.2	8673.2	9961.4	0.0	0.0	0.6	0.0
M_{k}	-3314.7	-6947.0	104.3	1533.0	1533.0	628.8	2413.2
Ψ_0	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ψ_1	1.00	1.00	1.00	1.00	1.00	1.00	1.00

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19 Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata DX Pagina 71

Nome file: VI15-F-

Ψ_{2}	1.00	1.00	1.00	1.00	1.00	1.00	1.00
σ_{cs}	0.0	-1.1	6.4	0.0	1.5	0.6	0.0
σ_{ci}	0.0	1.0	6.4	0.0	1.0	0.4	0.0
σ_{s}	0.5	1.0	6.4	4.3	1.0	0.4	6.7
σ_{i}	18.0	16.3	6.2	-3.8	-2.4	-1.0	-6.0
σ_{eq}	13.5	12.3	6.2	-1.7	-1.5	-0.6	-2.7
$\sigma_{\sf cp}$	9.76	5.52	6.34	0.00	0.00	0.00	0.00
σ_{ps}	6.87	20.61	93.21	28.41	13.19	5.42	44.73
σ_{pi}	122.68	230.97	90.06	-25.15	-33.23	-13.63	-39.59
σ_{ss}	0.00	-1.05	93.54	0.00	17.97	7.38	0.00

Azione	peso soletta (isostatico)	peso soletta (iperstatico)	permanenti portati	ritiro isostatico + ritiro locale	ritiro iperstatico	carichi mobili max	carichi mobili min
Fase	SF3	SF3	SF3	SF3	SF3	SF4	SF4
N_k	0.0	0.0	0.0	1583	506.6	0.0	0.0
M_k	2413.2	653.9	242.1	1041.4	-1480.8	2511.7	-881.4
Ψ_{0}	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ψ_{1}	1.00	1.00	1.00	1.00	1.00	0.75	0.75
Ψ_{2}	1.00	1.00	1.00	1.00	1.00	0.00	0.00
σ_{cs}	2.3	0.6	0.2	-0.5	-1.1	2.6	-0.9
σ_{ci}	1.6	0.4	0.2	-0.8	-0.6	1.7	-0.6
σ_{s}	1.6	0.4	0.2	1.7	-0.6	1.7	-0.6
σ_{i}	-3.7	-1.0	-0.4	-0.6	2.6	-4.3	1.5
σ_{eq}	-2.4	-0.6	-0.2	0.0	1.8	-2.8	1.0
σ_{cp}	0.00	0.00	0.00	1.01	0.32	0.00	0.00
σ_{ps}	20.76	5.63	2.08	23.63	-8.05	8.16	-2.86
σ_{pi}	-52.31	-14.18	-5.25	-7.91	36.80	-21.75	7.63
σ_{ss}	28.28	7.66	2.84	26.87	-12.66	11.24	-3.94

	termico	termico	cadute differite a	ridistribuzione coazione al netto	ridistribuzione peso	ridistribuzione peso
Azione vento	MAX	MIN	tempo infinito	cadute istantanee e differite	proprio trave	soletta

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11. DAL KM 44+000 ALLO SVINCOLO CON L'A19 Progetto Esecutivo

.2001	Nome ii
.2001	\/I15_F_

Pagina 72

CL003_C.00_relazione_calcolo_impalcato_DX.doc.

Relazione di Calcolo Impalcato - Carreggiata DX

Opera: Viadotto Arenella III

N_k	0.0	-51.2	66.7	-1076.6	-	-	-
M_k	-5.6	1063.6	-532.0	862.3	-	-	-
Ψ_{0}	0.60	0.60	0.60	1.00	1.00	1.00	1.00
Ψ_{1}	0.00	0.50	0.50	1.00	1.00	1.00	1.00
Ψ_{2}	0.00	0.50	0.50	1.00	1.00	1.00	1.00
σ_{cs}	0.0	1.1	-0.5	0.1	1.4	1.7	2.7
σ_{ci}	0.0	0.7	-0.3	-0.1	3.6	1.2	1.8
σ_{s}	0.0	0.7	-0.3	-0.1	3.8	3.5	4.5
σ_{i}	0.0	-1.9	1.0	-2.0	28.5	-4.9	-6.7
σ_{eq}	0.0	-1.2	0.6	-1.5	22.1	-2.7	-3.8
σ_{cp}	0.00	-0.03	0.05	-0.69	13.4	0.0	0.0
σ_{ps}	-0.02	3.27	-1.49	-2.56	61.6	31.1	41.6
σ_{pi}	0.05	-9.39	4.84	-28.67	333.6	-53.1	-76.4
σ_{ss}	-0.02	4.58	-2.14	0.13	36.4	21.3	33.0

SLE - Verifica del Livello Tensionale

			verifica a fine fase 3 a t=0 (max	verifica a fine fase 3 a t=0 (max	verifica a fine fase 3 a t=0 (min	verifica a fine fase 3 a t=0 (min		
			mobili +	mobili +	mobili +	mobili +		
	verifica al taglio trefoli	verifica a fine fase 2 a t=infinito	max termico)	min termico)	max termico)	min termico)		
Combin	•	(Fondamentale)	terriico)	terriico)	terriico)	terriico)		
Combin		` ,						
σ_{cs}	0.0	4.63	7.83	6.90	4.36	3.42	MPa	tensione estradosso soletta
σ_{ci}	0.0	5.12	7.27	6.66	4.93	4.32	MPa	tensione intradosso soletta
σ_{s}	4.8	12.88	15.03	14.42	12.69	12.08	MPa	tensione estradosso
σ_{i}	14.2	16.56	11.11	12.81	16.96	18.66	MPa	tensione intradosso
σ_{eq}	11.8	15.61	12.12	13.22	15.86	16.96	MPa	tensione a livello trefolo equivalente
σ_{cp}	9.8	14.00	13.98	14.03	13.98	14.03	MPa	tensione media nel calcestruzzo
σ_{ps}	-1212.7	-1098.46	-1088.35	156.74	148.58	145.72	MPa	tensione nel trefolo superiore
σ_{pi}	-1150.4	-1048.86	-1076.21	180.28	201.11	209.65	MPa	tensione nel trefolo inferiore
σ_{ss}	0.0	107.87	121.84	117.81	106.66	102.63	MPa	tensione nell'armatura lenta superiore
check1	OK	OK	OK	OK	OK	OK		check compressione cap
check2	OK	OK	OK	OK	OK	OK		check trazione cap
check3	OK	OK	OK	OK	OK	OK		check trefoli

Le perdite di precompressione per ritiro, viscosità e rilassamento sono calcolate nelle tabelle seguenti a partire dalla tensione al netto delle perdite elastiche.

Cadute di tensione istantanee

Cadute per deformazione elastica

N_{pi}	=	9382.50	kN	sforzo di precompressione iniziale
M_{pi}	=	-3585.73	kNm	momento coattivo iniziale
σ_{eq}	=	14.58	MPa	tensione nel cls a quota trefolo equivalente
$\Delta\sigma_{el}$	=	102.05	MPa	caduta di tensione per deformazione elastica

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III	Opera:	Viadotto	Arenella I	II
------------------------------	--------	----------	------------	----

Relazione di Calcolo Impalcato - Carreggiata DX Pagina 73

Nome file: VI15-F-

ΔN_{el}	= '	709.3	kN	caduta di precompressione per deformazione elastica		
f		0.076		frazione caduta di precompressione		
Cadute di tensior	ne diffe	erite nel tempo				
t		1440	ore	istante in cui vengono valutate le cadute di tensione		
t=∞ Cadute per ritiro	= .	438000	ore	tempo infinito (inserire numero sufficientemente grande)		
	_	0.00044				
$\varepsilon_{cs}(t)$		0.00014		deformazione per ritiro a tempo t		
ε _{cs} (∞)		0.00035		deformazione totale per ritiro a tempo infinito		
$\Delta\sigma_{s,t}$	=	26.60	MPa	perdita per ritiro a tempo t		
$\Delta\sigma_{s,inf}$		66.50	MPa	perdita per ritiro a tempo infinito		
Cadute per viscos	ità					
$\varphi(t,t_0)$	=	0.89		coefficiente di viscosità al tempo t e applicazione del carico al tempo t ₀		
$\varphi(\infty,t_0)$	=	1.7900		coefficiente di viscosità a tempo infinito e applicazione del carico al tempo t ₀		
N_p	=	8673	kN	precompressione iniziale con cadute istantanee scontate		
M_p	=	-7197.49	kNm	momento coattivo		
M_{g}	=	3200	kNm	momento flettente (prodotto dai carichi permanenti)		
$\sigma_{\sf eq}$	=_	10.74	MPa	tensione calcestruzzo a livello cavo risultante		
$\Delta\sigma_{c,t}$	= .	49.89	MPa	perdita di tensione per viscosità al tempo t		
$\Delta\sigma_{ extsf{c,inf}}$	-	100.35	MPa	perdita di tensione per viscosità a tempo infinito		
Cadute per rilassamento						
clp	= :	2		classe dell'acciao da precompresso (1=fili o trefoli a rilassamento ordinario; =2 fili o trefoli a basso rilassamento, =3 barre) perdita per rilassamento a 1000 ore dopo la messa in tensione (=8%, 2.5%, 4%		
ρ ₁₀₀₀	= :	2.5	%	riepettivamente per acciaio di classe 1, 2, 3)		
σ_{pm0}	=	1248	MPa	valore assoluto della precompressione iniziale al netto delle cadute istantanee		
P_{m0}	=	8673	kN	precompressione iniziale al netto delle cadute istantanee		
M_{pm0}	=	-7197	kNm	momento coattivo di precompressione		
M_{g}	=	3200	kNm	momento flettente (prodotto dai carichi permanenti)		
σ_{eq}	=	10.74	MPa	tensione nel calcestruzzo a livello del cavo equivalente rapporto tra tensione di precompressione inziale (al netto delle cadute istantanee) e		
μ	=	0.671		tensione di rottura tempo dopo la messa in tensione (istante in cui vengono valutate le cadute di		
t	=_	1440	ore	tensione)		
$\Delta\sigma_{pr}(t)$	=	10.10	MPa	caduta di tensione per rilassamento al tempo t		
Δσ _{pr} (∞)	= .	41.42	MPa	caduta di tensione per rilassamento a tempo t=infinito		
Interazione tra le d	cadute o	di tensione per e	ffetti differiti			
ε _{cs} (∞)	=	0.00035		deformazione totale per ritiro a tempo infinito		
$\Delta\sigma_{pr}(\infty)$	= .	41.42	MPa	caduta di tensione per rilassamento a tempo t=infinito		
$\sigma_{c,QP}$	=	10.74	MPa	tensione nel cls a quota livello del trefolo equivalente prodotto dai carichi permanenti		
Ap	=	6950	mm ²	area totale cavi precompressione		
A _c		847168	mm²	area sezione trave		
J _c		3250000000000	mm ⁴	momento d'inerzia trave		
		0.830		distanza fra baricentro sezione els e baricentro cavi		
Z _{cp} (t)			M M Do			
$\Delta \sigma_{p,c+s+r}(t)$		76.6	MPa	cadute di tensioni totali a tempo t		
$\Delta\sigma_{p,c+s+r}(\infty)$	_	154.91 0.057	MPa	cadute di tensioni totali a tempo infinito		
f2	-	0.001		frazione caduta di precompressione al tempo t		

Progetto Esecutivo

Relazione di Calcolo Impalcato - Carreggiata DX Pagina 74 Nome file: VI15-F-

CL003_C.00_relazione_calcolo_impalcato_DX.doc.

Opera: Viadotto Arenella III

7.4.4 Verifiche Sezione SA-b

Caratteristiche	precompressione
-----------------	-----------------

id_cavo	n. trefoli	area singolo trefolo	area trefoli	distanza da intradosso	presoll.	precompressione iniziale
	np	A_{pt}	A_p	Y_p	σ_{pi}	N_{pi}
		mm^2	mm^2	mm	MPa	kN
1	12	139.0	1668	50	1350	2252
2	8	139.0	1112	100	1350	1501
3	6	139.0	834	150	1350	1126
4	4	139.0	556	200	1350	751
5	4	139.0	556	250	1350	751
6	4	139.0	556	300	1350	751
7	4	139.0	556	450	1350	751
8	2	139.0	278	500.2	1350	375
9	2	139.0	278	600.2	1350	375
10	4	139.0	556	800	1350	751
11	4	139.0	556	1000	1350	751
12	4	139.0	556	1300	1350	751
13	2	139.0	278	1750	1350	375
тот	60		8340.0	420.01		11259

Calcolo Delle Tensioni Nelle Condizioni Elementari Di Carico

Azione	coazione al netto delle cadute istantanee (isostatico)	coazione al netto delle cadute istantanee (isostatico)	coazione al netto delle cadute istantanee (iperstatico)	peso proprio trave (isostatico)	peso proprio trave (isostatico)	peso proprio trave (iperstatico)	peso soletta (isostatico)
Fase	SF1	SF3	SF3	SF1	SF3	SF3	SF1
N_{k}	10186.4	10186.4	11389.4	0.0	0.0	0.6	0.0
M_{k}	-4299.2	-9656.8	5643.6	2126	2126.0	790.0	3331
Ψ_0	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ψ_1	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ψ_2	1.00	1.00	1.00	1.00	1.00	1.00	1.00
σ_{cs}	0.0	-1.5	9.9	0.0	1.5	0.6	0.0
σ_{ci}	0.0	1.0	8.5	0.0	1.0	0.4	0.0
σ_{s}	-0.6	1.0	8.5	5.9	1.0	0.4	9.3
σ_{i}	21.9	19.0	-2.1	-5.2	-3.0	-1.1	-8.1
σ_{eq}	16.6	14.8	0.4	-2.6	-2.1	-0.8	-4.1
σ_{cp}	11.35	5.32	5.95	0.00	0.00	0.00	0.00
σ_{ps}	0.13	21.65	119.22	39.24	12.29	4.57	61.48
σ_{pi}	148.69	270.01	-25.93	-34.23	-42.39	-15.75	-53.63
σ_{ss}	0.00	-3.91	134.16	0.00	17.91	6.66	0.00

Opera: Viadotto Arenella III
Relazione di Calcolo Impalcato - Carreggiata DX
Pagina 75
Nome file:
VI15-F-

Azioni	peso soletta (isostatico)	peso soletta (iperstatico)	permanenti portati	ritiro isostatico + ritiro locale	ritiro iperstatico	carichi mobili max
Fasi	SF3	SF3	SF3	SF3	SF3	SF4
N_{k}	0.0	0.0	0.0	2399	-562.4	0.0
M_{k}	3331.0	952.5	463.7	1336.4	-2587.2	4054.7
Ψ_{0}	1.00	1.00	1.00	1.00	1.00	1.00
Ψ_{1}	1.00	1.00	1.00	1.00	1.00	0.75
Ψ_{2}	1.00	1.00	1.00	1.00	1.00	0.00
σ_{cs}	2.4	0.7	0.3	-0.3	-2.1	3.1
σ_{ci}	1.5	0.4	0.2	-0.7	-1.5	1.9
σ_{s}	1.5	0.4	0.2	1.9	-1.5	1.9
σ_{i}	-4.7	-1.4	-0.7	-0.6	3.4	-6.6
σ_{eq}	-3.3	-0.9	-0.5	-0.1	2.3	-4.6
σ_{cp}	0.00	0.00	0.00	1.25	-0.29	0.00
σ_{ps}	19.25	5.50	2.68	25.97	-19.23	8.81
σ_{pi}	-66.42	-18.99	-9.25	-8.40	47.31	-33.08
σ_{ss}	28.07	8.03	3.91	29.50	-26.08	13.12

Azioni	vento	termico tern ento MAX M		cadute differite a tempo infinito	ridistribuzione coazione al netto cadute istantanee e differite	ridistribuzione peso proprio trave	ridistribuzione peso soletta	
				,				
Fasi	SF4	SF4	SF4	SF3				
N_{k}	0.0	-120.2	156.9	-1328.7	-	-	-	
M_k	25.6	1604.0	-802.2	1259.7	-	-	-	
Ψ_{0}	0.60	0.60	0.60	1.00	1.00	1.00	1.00	
Ψ_{1}	0.00	0.50	0.50	1.00	1.00	1.00	1.00	
Ψ_{2}	0.00	0.50	0.50	1.00	1.00	1.00	1.00	
σ_{cs}	0.0	1.2	-0.5	0.2	2.4	1.8	2.8	
σ_{ci}	0.0	0.7	-0.3	-0.1	4.4	1.1	1.8	
σ_{s}	0.0	0.7	-0.3	-0.1	4.0	4.3	5.4	

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19 Progetto Esecutivo

Pagina	76

Relazione di Calcolo Impalcato - Carreggiata DX

Opera: Viadotto Arenella III

VI15-F-

CL003_C.00_relazione_calcolo_impalcato_DX.doc.

0.0	-2.7	1.4	-2.5	30.1	-6.4	-8.7
0.0	-1.9	1.0	-1.9	24.0	-3.9	-5.4
0.00	-0.07	0.09	-0.69	13.8	0.0	0.0
0.06	3.13	-1.28	-2.82	69.1	35.7	46.6
-0.21	-13.44	7.00	-35.22	340.4	-68.2	-98.9
0.08	4.84	-2.14	0.51	49.4	21.0	33.0
	0.0 0.00 0.06 -0.21	0.0 -1.9 0.00 -0.07 0.06 3.13 -0.21 -13.44	0.0 -1.9 1.0 0.00 -0.07 0.09 0.06 3.13 -1.28 -0.21 -13.44 7.00	0.0 -1.9 1.0 -1.9 0.00 -0.07 0.09 -0.69 0.06 3.13 -1.28 -2.82 -0.21 -13.44 7.00 -35.22	0.0 -1.9 1.0 -1.9 24.0 0.00 -0.07 0.09 -0.69 13.8 0.06 3.13 -1.28 -2.82 69.1 -0.21 -13.44 7.00 -35.22 340.4	0.0 -1.9 1.0 -1.9 24.0 -3.9 0.00 -0.07 0.09 -0.69 13.8 0.0 0.06 3.13 -1.28 -2.82 69.1 35.7 -0.21 -13.44 7.00 -35.22 340.4 -68.2

SLE - Verifica del Livello Tensionale

	verifica al	verifica a fine fase 2 a t=infinito	verifica a fine fase 3 a t=0 (max mobili + max termico)	verifica a fine fase 3 a t=0 (max mobili + min termico)	verifica a fine fase 3 a t=0 (min mobili + max termico)	verifica a fine fase 3 a t=0 (min mobili + min termico)		
Combin	•	(Fondamentale)	,	,	,	,		
σ_{cs}	0.0	5.03	8.84	7.83	5.05	4.04	MPa	tensione estradosso soletta
σ_{ci}	0.0	5.17	7.52	6.93	5.17	4.58	MPa	tensione intradosso soletta
σ_{s}	5.3	14.20	16.55	15.96	14.20	13.60	MPa	tensione estradosso
σ_{i}	16.7	14.59	6.40	8.83	14.43	16.87	MPa	tensione intradosso
σ_{eq}	14.0	14.50	8.77	10.49	14.38	16.11	MPa	tensione a livello trefolo equivalente
σ_{cp}	11.4	14.11	14.07	14.17	14.07	14.17	MPa	tensione media nel calcestruzzo
σ_{ps}	-1182.0	-1063.44	-1052.71	-1055.36	-1063.49	-1066.14	MPa	tensione nel trefolo superiore
σ_{pi}	-1106.9	-1053.60	-1094.86	-1082.60	-1054.41	-1042.15	MPa	tensione nel trefolo inferiore
σ_{ss}	0.0	111.17	127.24	123.06	111.19	107.01	MPa	tensione nell'armatura lenta superiore
check1	OK	OK	OK	OK	OK	OK		check compressione cap
check2	OK	OK	OK	OK	OK	OK		check trazione cap
check3	OK	OK	OK	OK	OK	OK		check trefoli

Le perdite di precompressione per ritiro, viscosità e rilassamento sono calcolate nelle tabelle seguenti a partire dalla tensione al netto delle perdite elastiche.

Cadute di tensione istantanee

Cadute per deformazione elastica

N_{pi}	=	11259.00	kN kN	sforzo di precompressione iniziale
$M_{\text{pi}} \\$	=	-4751.94	m MP	momento coattivo iniziale
σ_{eq}	=	18.37	a MP	tensione nel cls a quota trefolo equivalente
$\Delta\sigma_{\text{el}}$	=	128.61	а	caduta di tensione per deformazione elastica
ΔN_{el}	=	1072.6	kN	caduta di precompressione per deformazione elastica
f	=	0.095		frazione caduta di precompressione
			-	

Cadute di tensione differite nel tempo

t = 1440 ore istante in cui vengono valutate le cadute di tensione t=∞ = 438000 ore tempo infinito (inserire numero sufficientemente grande) Cadute per ritiro

= 0.00014 $\epsilon_{\text{cs}}(t)$

deformazione per ritiro a tempo t

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata DX Pagina 77

Nome file:

VI15-F-

ε _{cs} (∞)	= (0.00035		deformazione totale per ritiro a tempo infinito
$\Delta\sigma_{\text{s},t}$	= :	26.60	MP a	perdita per ritiro a tempo t
$\Delta\sigma_{s,inf}$	= (66.50	MP a	perdita per ritiro a tempo infinito
Cadute pe	r visc	osità		
$\varphi(t,t_0)$	= (0.89		coefficiente di viscosità al tempo t e applicazione del carico al tempo $t_{\text{\scriptsize 0}}$
$\varphi(\infty,t_0)$	= '	1.7900		coefficiente di viscosità a tempo infinito e applicazione del carico al tempo $t_{\rm 0}$
N_{p}	=	10186	kN kN	precompressione iniziale con cadute istantanee scontate
M_p	= -	-10001.79	m kN	momento coattivo
\mathbf{M}_{g}	= ;	3200	m MP	momento flettente (prodotto dai carichi permanenti)
σ_{eq}	= _	14.20	а	tensione calcestruzzo a livello cavo risultante
$\Delta\sigma_{\text{c},t}$	= (65.94	MP a MP	perdita di tensione per viscosità al tempo t
$\Delta\sigma_{\text{c,inf}}$	=	132.63	a	perdita di tensione per viscosità a tempo infinito
Cadute pe	r rilas	ssamento		classe dell'accide de processore (4-fili e trafeli e rileccemente ordinarie, -2 fili e trafeli e basse
clp	= :	2		classe dell'acciao da precompresso (1=fili o trefoli a rilassamento ordinario; =2 fili o trefoli a basso rilassamento, =3 barre) perdita per rilassamento a 1000 ore dopo la messa in tensione (=8%, 2.5%, 4% riepettivamente per
ρ1000	= :	2.5	% MP	acciaio di classe 1, 2, 3)
σ_{pm0}	= '	1221	а	valore assoluto della precompressione iniziale al netto delle cadute istantanee
P_{m0}	= '	10186	kN kN	precompressione iniziale al netto delle cadute istantanee
M_{pm0}	= -	-10002	m kN	momento coattivo di precompressione
M_{g}	= :	3200	m MP	momento flettente (prodotto dai carichi permanenti)
σ_{eq}	=	14.20	а	tensione nel calcestruzzo a livello del cavo equivalente rapporto tra tensione di precompressione inziale (al netto delle cadute istantanee) e tensione di
μ	= (0.657		rottura
t	= '	1440	ore MP	tempo dopo la messa in tensione (istante in cui vengono valutate le cadute di tensione)
$\Delta\sigma_{\text{pr}}(t)$	= 8	8.72	a MP	caduta di tensione per rilassamento al tempo t
$\Delta\sigma_{\text{pr}}(\infty)$	= (37.99	а	caduta di tensione per rilassamento a tempo t=infinito
Interazione	e tra l	e cadute di te	ension	e per effetti differiti
ε _{cs} (∞)	= (0.00035	MP	deformazione totale per ritiro a tempo infinito
$\Delta\sigma_{pr}(\infty)$	= ;	37.99	a MP	caduta di tensione per rilassamento a tempo t=infinito
$\sigma_{\text{c,QP}}$	=	14.20	a m	tensione nel cls a quota livello del trefolo equivalente prodotto dai carichi permanenti
A_p	= 8	8340	m^2	area totale cavi precompressione
A_c		847168 325000000	m m² m	area sezione trave
J_{c}		000	m ⁴	momento d'inerzia trave
z_{cp}	= (0.982	m MP	distanza fra baricentro sezione cls e baricentro cavi
$\Delta \sigma_{p,c+s+r}(t)$	= 8	87.9	мР a MР	cadute di tensioni totali a tempo t
$\Delta\sigma_{p,c+s+r}(\infty)$	=	159.52	а	cadute di tensioni totali a tempo infinito

DAL KM 44+000 ALLO SVINCOLO CON L'A19 Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata DX Pagina 78

Nome file: VI15-F-

CL003_C.00_relazione_calcolo_impalcato_DX.doc.

7.4.5 Verifiche Sezione SB-b

Caratteristiche precompressione

id_cavo	n. trefoli	area singolo trefolo	area trefoli	distanza da intradosso	presoll.	precompressione iniziale
_	np	A_{pt}	A_p	Y_p	σ _{pi}	
	·	mm²	mm²	mm	MPa	kN
1	8	139.0	1112	50	1350	1501
2	6	139.0	834	100	1350	1126
3	0	139.0	0	150	1350	0
4	0	139.0	0	200	1350	0
5	0	139.0	0	250	1350	0
6	2	139.0	278	300	1350	375
7	2	139.0	278	450	1350	375
8	2	139.0	278	500.2	1350	375
9	2	139.0	278	600.2	1350	375
10	4	139.0	556	800	1350	751
11	4	139.0	556	1000	1350	751
12	4	139.0	556	1300	1350	751
13	2	139.0	278	1750	1350	375
TOT	36		5004.0	572.24		6755

Calcolo Delle Tensioni Nelle Condizioni Elementari Di Carico

Azioni	coazione al netto delle cadute istantanee (isostatico)	coazione al netto delle cadute istantanee (isostatico)	coazione al netto delle cadute istantanee (iperstatico)	peso proprio trave (isostatico)	peso proprio trave (isostatico)	peso proprio trave (iperstatico)	peso soletta (isostatico)
Fase	SF1	SF3	SF3	SF1	SF3	SF3	SF1
N_k	6428.5	6428.5	7625.4	0.0	0.0	0.6	0.0
M_{k}	-1830.0	-5298.7	-5345.5	121.0	121.0	-17.6	206.0
Ψ_0	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ψ_{1}	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ψ_2	1.00	1.00	1.00	1.00	1.00	1.00	1.00
σ_{cs}	0.0	-0.4	0.2	0.0	0.1	0.0	0.0
σ_{ci}	0.0	1.1	1.7	0.0	0.1	0.0	0.0
σ_{s}	2.2	1.1	1.7	0.3	0.1	0.0	0.6
σ_{i}	12.0	11.7	12.4	-0.3	-0.2	0.0	-0.5
σ_{eq}	8.9	8.3	9.0	-0.1	-0.1	0.0	-0.2
σ_{cp}	7.33	3.44	4.08	0.00	0.00	0.00	0.00
σ_{ps}	17.20	19.69	28.74	2.25	0.69	-0.10	3.84
σ_{pi}	82.11	165.77	176.11	-2.04	-2.64	0.39	-3.47
σ_{ss}	0.00	4.65	13.57	0.00	1.04	-0.15	0.00

1.77

 σ_{ss}

0.37

0.09

Opera: Viadotto Arenella III
Relazione di Calcolo Impalcato - Carreggiata DX
Pagina 79
Nome file:
VI15-FCL003_C.00_relazione_calcolo_impalcato_DX.doc.

Azioni	peso soletta (isostatico)	peso soletta (iperstatico)	permanenti portati	ritiro isostatico + ritiro locale	ritiro iperstatico	carichi mobili max	carichi mobili min
Fasi	SF3	SF3	SF3	SF3	SF3	SF4	SF4
N_{k}	0.0	0.0	0.0	2399	-561.4	0.0	0.0
M_{k}	206.0	43.1	11.1	1268.1	8.0	100.2	669.2
Ψ_{0}	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ψ_{1}	1.00	1.00	1.00	1.00	1.00	0.75	0.75
Ψ_{2}	1.00	1.00	1.00	1.00	1.00	0.00	0.00
σ_{cs}	0.1	0.0	0.0	-0.3	-0.3	0.1	0.5
σ_{ci}	0.1	0.0	0.0	-0.7	-0.3	0.0	0.3
σ_{s}	0.1	0.0	0.0	1.9	-0.3	0.0	0.3
σ_{i}	-0.3	-0.1	0.0	-0.7	-0.3	-0.2	-1.1
σ_{eq}	-0.2	0.0	0.0	0.1	-0.3	-0.1	-0.7
σ_{cp}	0.00	0.00	0.00	1.28	-0.30	0.00	0.00
σ_{ps}	1.18	0.25	0.06	25.96	-4.33	0.22	1.45
σ_{pi}	-4.50	-0.94	-0.24	-9.01	-4.55	-0.84	-5.63

29.55

-4.30

0.33

2.18

Azioni	vento	termico MAX	termico MIN	cadute differite a tempo infinito	ridistribuzione coazione al netto cadute istantanee e differite	ridistribuzione peso proprio trave	ridistribuzione peso soletta
Fasi	SF4	SF4	SF4	SF3			
N_{k}	0.0	-123.3	160.9	-658.5	-	-	-
M_k	3.6	2.6	-5.0	542.8	-	-	-
Ψ_{0}	0.60	0.60	0.60	1.00	1.00	1.00	1.00
Ψ_{1}	0.00	0.50	0.50	1.00	1.00	1.00	1.00
Ψ_{2}	0.00	0.50	0.50	1.00	1.00	1.00	1.00
σ_{cs}	0.0	-0.1	0.1	0.0	-0.3	0.1	0.2
σ_{ci}	0.0	-0.1	0.1	-0.1	1.7	0.1	0.1
σ_{s}	0.0	-0.1	0.1	-0.1	2.9	0.2	0.3
σ_{i}	0.0	-0.1	0.1	-1.2	23.3	-0.3	-0.6
σ_{eq}	0.0	-0.1	0.1	-0.9	16.8	-0.2	-0.3
σ_{cp}	0.00	-0.07	0.09	-0.35	9.1	0.0	0.0

DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto	Esecutivo
riouello	ESECULIV

Opera: Viadotto	Arenella	Ш
Polaziono di Calcolo	Impalcato	Carroa

Relazione di Calcolo Impalcato - Carreggiata DX

Pagina 80 Nome file:

VI15-F-

CL003_C.00_relazione_calcolo_impalcato_DX.doc.

σ_{ps}	0.01	-0.36	0.46	-2.02	40.8	1.9	2.8
σ_{pi}	-0.03	-0.39	0.52	-16.98	282.6	-3.6	-6.4
σ_{ss}	0.01	-0.36	0.46	-0.48	10.2	1.0	2.0

SLE - Verifica del Livello Tensionale

	verifica al	verifica a fine	verifica a fine fase 3 a t=0 (max mobili + max	verifica a fine fase 3 a t=0 (max mobili + min	verifica a fine fase 3 a t=0 (min mobili + max	verifica a fine fase 3 a t=0 (min mobili + min termina)		
Combin	taglio trefoli	fase 2 a t=infinito (Fondamentale)	termico)	termico)	termico)	termico)		
Combin		(Folidamentale)						
σ_{cs}	0.0	-0.66	-0.62	-0.53	-0.18	-0.09	MPa	tensione estradosso soletta
σ_{ci}	0.0	0.82	0.83	0.92	1.10	1.19	MPa	tensione intradosso soletta
σ_{s}	2.5	4.95	4.96	5.05	5.23	5.32	MPa	tensione estradosso
σ_{i}	11.7	20.16	19.94	20.04	18.99	19.09	MPa	tensione intradosso
σ_{eq}	8.8	15.32	15.18	15.28	14.61	14.71	MPa	tensione a livello trefolo equivalente
σ_{cp}	7.3	9.72	9.68	9.78	9.68	9.78	MPa	tensione media nel calcestruzzo
σ_{ps}	-1265.2	-1219.48	-1219.47	-1218.98	-1218.24	-1217.74	MPa	tensione nel trefolo superiore
σ_{pi}	-1204.6	-1042.84	-1043.94	-1043.39	-1048.73	-1048.18	MPa	tensione nel trefolo inferiore
σ_{ss}	0.0	38.04	38.16	38.65	40.02	40.51	MPa	tensione nell'armatura lenta superiore
check1	OK	OK	OK	OK	OK	OK		check compressione cap
check2	OK	OK	OK	OK	OK	OK		check trazione cap
check3	OK	OK	OK	OK	OK	OK		check trefoli

Le perdite di precompressione per ritiro, viscosità e rilassamento sono calcolate nelle tabelle seguenti a partire dalla tensione al netto delle perdite elastiche.

Cadute di tensione istantanee

Cadute per deformazione elastica

N_{pi}	=	6755.40	kN	sforzo di precompressione iniziale
M_{pi}	=	-1923.04	kN m MP	momento coattivo iniziale
σ_{eq}	=	9.33	a MP	tensione nel cls a quota trefolo equivalente
$\Delta\sigma_{\text{el}}$	=	65.33	а	caduta di tensione per deformazione elastica
ΔN_{el}	=	326.9	kN	caduta di precompressione per deformazione elastica
f Cadute di nel tempo	= tens	0.048 sione differite		frazione caduta di precompressione
t	=	1440	ore	istante in cui vengono valutate le cadute di tensione
t=∞ Cadute per ritiro	=	438000	ore	tempo infinito (inserire numero sufficientemente grande)
$\epsilon_{cs}(t)$	=	0.00014		deformazione per ritiro a tempo t
ε _{cs} (∞)	=	0.00035	MP	deformazione totale per ritiro a tempo infinito
$\Delta\sigma_{\text{s},t}$	=	26.60	a MP	perdita per ritiro a tempo t
$\Delta\sigma_{\text{s,inf}}$	=	66.50	а	perdita per ritiro a tempo infinito
Cadute per	vis	cosità		

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III
Relazione di Calcolo Impalcato - Carreggiata DX
Pagina 81
Nome file:
VI15-FCL003_C.00_relazione_calcolo_impalcato_DX.doc.

$\varphi(t,t_0)$	=	0.89		coefficiente di viscosità al tempo t e applicazione del carico al tempo $t_{\rm 0}$
$\varphi(\infty,t_0)$	=	1.7900		coefficiente di viscosità a tempo infinito e applicazione del carico al tempo t ₀
N_{p}	=	6428	kN	precompressione iniziale con cadute istantanee scontate
M_{p}	=	-5333.37	kN m	momento coattivo
M_{g}	=	3200	kN m MP	momento flettente (prodotto dai carichi permanenti)
σ_{eq}	=	5.94	а	tensione calcestruzzo a livello cavo risultante
$\Delta\sigma_{\text{c},t}$	=	27.58	MP a MP	perdita di tensione per viscosità al tempo t
$\Delta\sigma_{\text{c,inf}}$	=	55.47	a	perdita di tensione per viscosità a tempo infinito
Cadute per	rilas	samento		
clp	=	2		classe dell'acciao da precompresso (1=fili o trefoli a rilassamento ordinario; =2 fili o trefoli a basso rilassamento, =3 barre)
ρ ₁₀₀₀	=	2.5	% MP	perdita per rilassamento a 1000 ore dopo la messa in tensione (=8%, 2.5%, 4% riepettivamente per acciaio di classe 1, 2, 3)
σ_{pm0}	=	1285	a	valore assoluto della precompressione iniziale al netto delle cadute istantanee
$P_{m0} \\$	=	6428	kN kN	precompressione iniziale al netto delle cadute istantanee
M_{pm0}	=	-5333	m kN	momento coattivo di precompressione
M_{g}	=	3200	m MP	momento flettente (prodotto dai carichi permanenti)
σ_{eq}	=	5.94	а	tensione nel calcestruzzo a livello del cavo equivalente rapporto tra tensione di precompressione inziale (al netto delle cadute istantanee) e tensione di
μ	=	0.691		rottura
t	=	1440	ore MP	tempo dopo la messa in tensione (istante in cui vengono valutate le cadute di tensione)
$\Delta\sigma_{\rm pr}(t)$	=	12.38	a MP	caduta di tensione per rilassamento al tempo t
$\Delta\sigma_{\text{pr}}(\infty)$	=	46.63	a	caduta di tensione per rilassamento a tempo t=infinito
Interazione	tra I	e cadute di tensio	one pe	er effetti differiti
ε _{cs} (∞)	=	0.00035		deformazione totale per ritiro a tempo infinito
Δσ _{pr} (∞)	_	46.63	MP a	caduta di tensione per rilassamento a tempo t=infinito
, , ,			MP	
$\sigma_{c,QP}$	=	5.94	a mু	tensione nel cls a quota livello del trefolo equivalente prodotto dai carichi permanenti
A_p	=	5004	m² m	area totale cavi precompressione
A _c	=	847168	m² m	area sezione trave
Jc	=	325000000000	m ⁴	momento d'inerzia trave
\mathbf{Z}_{cp}	=	0.830	m MP	distanza fra baricentro sezione cls e baricentro cavi
$\Delta\sigma_{\text{p,c+s+r}}\!(t)$	=	60.2	a MP	cadute di tensioni totali a tempo t
$\Delta\sigma_{\text{p,c+s+r}}(\infty)$	=	131.70	a	cadute di tensioni totali a tempo infinito

7.4.6 Verifiche Sezione SD-b

Caratteristiche precompressione

id cavo n. trefoli

area

singolo area distanza da trefolo trefoli intradosso

presoll.

precompressione iniziale

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19 Progetto Esecutivo

CL003_C.00_relazione_calcolo_impalcato_DX.doc.

Opera: Viadotto Arenella III
Relazione di Calcolo Impalcato - Carreggiata DX
Pagina 82
Nome file:

	np	A_{pt}	A_p	Y_p	σ_{pi}	N_{pi}
		mm^2	mm^2	mm	MPa	kN
1 2	8 6	139.0 139.0	1112 834	50 100	1350 1350	1501 1126
3	6	139.0	834	150	1350	1126
4	4	139.0	556	200	1350	751
5	4	139.0	556	250	1350	751
6	2	139.0	278	300	1350	375
7	2	139.0	278	450	1350	375
8	2	139.0	278	500.2	1350	375
9	2	139.0	278	600.2	1350	375
10	4	139.0	556	800	1350	751
11	4	139.0	556	1000	1350	751
12	4	139.0	556	1300	1350	751
13	2	139.0	278	1750	1350	375
14	0	139.0	0	50	1350	0
15	0	139.0	0	50	1350	0
TOT	50		6950.0	466.02		9383

Calcolo Delle Tensioni Nelle Condizioni Elementari Di Carico

Azioni	coazione al netto delle cadute istantanee (isostatico)	coazione al netto delle cadute istantanee (isostatico)	coazione al netto delle cadute istantanee (iperstatico)	peso proprio trave (isostatico)	peso proprio trave (isostatico)	peso proprio trave (iperstatico)	peso soletta (isostatico)
Fasi	SF1	SF3	SF3	SF1	SF3	SF3	SF1
N_{k}	8673.2	8673.2	9698.6	0.0	0.0	0.8	0.0
M_k	-3314.7	-7924.9	-1481.2	1595.0	1595.0	1479.8	2509.0
Ψ_{0}	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ψ_1	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ψ_2	1.00	1.00	1.00	1.00	1.00	1.00	1.00
σ_{cs}	0.0	-1.1	4.1	0.0	1.1	1.1	0.0
σ_{ci}	0.0	1.0	4.4	0.0	0.7	0.7	0.0
σ_{s}	0.5	1.0	4.4	4.5	0.7	0.7	7.0
σ_{i}	18.0	16.3	7.3	-4.0	-2.4	-2.2	-6.2
σ_{eq}	13.5	12.3	6.6	-1.8	-1.6	-1.4	-2.8
$\sigma_{\sf cp}$	9.76	4.57	5.12	0.00	0.00	0.00	0.00
σ_{ps}	6.87	20.94	65.94	29.56	9.19	8.53	46.50
σ_{pi}	122.68	230.61	105.13	-26.17	-33.01	-30.62	-41.16
σ_{ss}	0.00	-0.65	61.91	0.00	13.54	12.56	0.00

Relazione di Calcolo Impalcato - Carreggiata DX Pagina 83 Nome file:

Opera: Viadotto Arenella III

 $\label{lem:viii-first} VI15\text{-}F\text{-} \\ \text{CL003_C.00_relazione_calcolo_impalcato_DX.doc}.$

Azioni	peso soletta (isostatico)	peso soletta (iperstatico)	permanenti portati	ritiro isostatico + ritiro locale	ritiro iperstatico	carichi mobili max	carichi mobili min
Fasi	SF3	SF3	SF3	SF3	SF3	SF4	SF4
N_{k}	0.0	0.0	0.0	2399	-460.1	0.0	0.0
M_k	2509.0	1733.6	632.2	1308.3	-975.3	3868.2	-1097.4
Ψ_{0}	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ψ_{1}	1.00	1.00	1.00	1.00	1.00	0.75	0.75
Ψ_{2}	1.00	1.00	1.00	1.00	1.00	0.00	0.00
σ_{cs}	1.8	1.2	0.5	-0.3	-0.9	3.0	-0.8
σ_{ci}	1.1	0.8	0.3	-0.7	-0.7	1.8	-0.5
σ_{s}	1.1	0.8	0.3	1.9	-0.7	1.8	-0.5
σ_{i}	-3.7	-2.6	-0.9	-0.7	1.2	-6.4	1.8
σ_{eq}	-2.5	-1.7	-0.6	0.0	0.7	-4.2	1.2
σ_{cp}	0.00	0.00	0.00	1.27	-0.24	0.00	0.00
σ_{ps}	14.46	9.99	3.64	25.96	-9.15	8.40	-2.38
σ_{pi}	-51.92	-35.88	-13.08	-8.65	16.65	-31.97	9.07
σ_{ss}	21.29	14.71	5.37	29.53	-11.81	12.55	-3.56

		termico MIN	cadute differite a tempo infinito	ridistribuzione coazione al netto cadute istantanee e differite	ridistribuzione peso proprio trave	ridistribuzione peso soletta	
Fasi	SF4	SF4	SF4	SF3			
N_{k}	0.0	-64.8	84.3	-1035.0	-	-	-
M_{k}	17.0	567.4	-292.1	945.7	-	-	-
Ψ_{0}	0.60	0.60	0.60	1.00	1.00	1.00	1.00
Ψ_{1}	0.00	0.50	0.50	1.00	1.00	1.00	1.00
Ψ_{2}	0.00	0.50	0.50	1.00	1.00	1.00	1.00
σ_{cs}	0.0	0.4	-0.2	0.1	0.5	1.6	2.6
σ_{ci}	0.0	0.2	-0.1	-0.1	2.8	1.0	1.6
σ_{s}	0.0	0.2	-0.1	-0.1	3.1	3.4	4.3
σ_{i}	0.0	-1.0	0.5	-1.9	29.0	-5.5	-7.7
σ_{eq}	0.0	-0.7	0.4	-1.5	22.3	-3.2	-4.6
σ_{cp}	0.00	-0.04	0.05	-0.55	11.9	0.0	0.0
σ_{ps}	0.04	1.04	-0.39	-2.50	51.2	29.1	38.7

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo	Prog	etto	Ese	cutiv	/(
--------------------	------	------	-----	-------	----

Opera:	Viadotto	Arenella	Ш
Doloziono	di Calcolo	Impalcato	Carroac

Relazione di Calcolo Impalcato - Carreggiata DX

Pagina 84

Nome file: VI15-F-

CL003_C.00_relazione_calcolo_impalcato_DX.doc.

 t_0

σ_{ss} 0.06 1.65 -0.70 0.08 24.3 19.3 30.3	σ_{pi}	-0.14	-4.88	2.66	-27.52	339.5	-61.2	-89.9
	σ_{ss}	0.06	1.65	-0.70	0.08	24.3	19.3	30.3

SLE - Verifica del Livello Tensionale

			verifica a fine fase 3 a t=0 (max mobili +	verifica a fine fase 3 a t=0 (max mobili +	verifica a fine fase 3 a t=0 (min mobili +	verifica a fine fase 3 a t=0 (min mobili +		
	verifica al taglio trefoli	verifica a fine fase 2 a t=infinito	max termico)	min termico)	max termico)	min termico)		
Combin	azione RARA	(Fondamentale)						
σ_{cs}	0.0	4.02	7.25	6.90	3.43	3.08	MPa	tensione estradosso soletta
σ_{ci}	0.0	4.23	6.21	6.02	3.85	3.66	MPa	tensione intradosso soletta
σ_{s}	5.0	12.19	14.17	13.97	11.81	11.62	MPa	tensione estradosso
σ_{i}	14.0	13.44	6.49	7.38	14.64	15.54	MPa	tensione intradosso
σ_{eq}	11.7	13.11	8.47	9.09	13.91	14.52	MPa	tensione a livello trefolo equivalente
σ_{cp}	9.8	12.41	12.39	12.44	12.39	12.44	MPa	tensione media nel calcestruzzo
σ_{ps}	-1211.5	-1110.95	-1101.91	-1102.76	-1112.69	-1113.54	MPa	tensione nel trefolo superiore
σ_{pi}	-1151.4	-1092.08	-1127.06	-1122.54	-1086.02	-1081.50	MPa	tensione nel trefolo inferiore
σ_{ss}	0.0	96.97	110.55	109.14	94.44	93.02	MPa	tensione nell'armatura lenta superiore
check1	OK	OK	OK	OK	OK	OK		check compressione cap
check2	OK	OK	OK	OK	OK	OK		check trazione cap
check3	OK	OK	OK	OK	OK	OK		check trefoli

Le perdite di precompressione per ritiro, viscosità e rilassamento sono calcolate nelle tabelle seguenti a partire dalla tensione al netto delle perdite elastiche.

Cadute di tensione istantanee

Cadute per deformazione elastica

N_{pi}	=	9382.50	kN kN	sforzo di precompressione iniziale			
M_{pi}	=	-3585.73	m MP	momento coattivo iniziale			
σ_{eq}	=	14.58	a MP	tensione nel cls a quota trefolo equivalente			
$\Delta\sigma_{\text{el}}$	=	102.05	а	caduta di tensione per deformazione elastica			
ΔN_{el}	=	709.3	kN	caduta di precompressione per deformazione elastica			
f	=	0.076		frazione caduta di precompressione			
Cadute di tensione differite nel tempo							
t	=	1440	ore	istante in cui vengono valutate le cadute di tensione			

τ	=	1440	ore	istante in cui vengono valutate le cadute di tensione
t=∞	=	438000	ore	tempo infinito (inserire numero sufficientemente grande)
Cadute per ri	tiro			
$\epsilon_{cs}(t)$	=	0.00014		deformazione per ritiro a tempo t
ε _{cs} (∞)	=	0.00035	MP	deformazione totale per ritiro a tempo infinito
$\Delta\sigma_{s,t}$	=	26.60	a MP	perdita per ritiro a tempo t
Δσ _{s,inf} Cadute per viscosità	=	66.50	а	perdita per ritiro a tempo infinito

$\phi(t,t_0)$	=	0.89	coefficiente di viscosità al tempo t e applicazione del carico al tempo $t_{\rm 0}$
$\varphi(\infty,t_0)$	=	1.7900	coefficiente di viscosità a tempo infinito e applicazione del carico al tempo t

 N_p = 8673 kN precompressione iniziale con cadute istantanee scontate

Pagina 85

Nome file:
VI15-FCL003 C.00 relazione calcolo impalcato DX.doc.

Relazione di Calcolo Impalcato - Carreggiata DX

Opera: Viadotto Arenella III

Progetto Esecutivo

			kN	
M_p	=	-8117.05	m kN	momento coattivo
M_{g}	=	3200	m MP	momento flettente (prodotto dai carichi permanenti)
σ_{eq}	=	10.75	a MP	tensione calcestruzzo a livello cavo risultante
$\Delta\sigma_{c,t}$	=	49.92	a MP	perdita di tensione per viscosità al tempo t
$\Delta\sigma_{\text{c,inf}}$	=	100.40	a	perdita di tensione per viscosità a tempo infinito
Cadute per i	rilass	samento		
		_		classe dell'acciao da precompresso (1=fili o trefoli a rilassamento ordinario; =2 fili o trefoli a
clp	=	2		basso rilassamento, =3 barre)
ρ1000	=	2.5	% MP	perdita per rilassamento a 1000 ore dopo la messa in tensione (=8%, 2.5%, 4% riepettivamente per acciaio di classe 1, 2, 3)
σ_{pm0}	=	1248	а	valore assoluto della precompressione iniziale al netto delle cadute istantanee
P_{m0}	=	8673	kN kN	precompressione iniziale al netto delle cadute istantanee
M_{pm0}	=	-8117	m	momento coattivo di precompressione
			kN	
M_g	=	3200	m MP	momento flettente (prodotto dai carichi permanenti)
σ_{eq}	=	10.75	а	tensione nel calcestruzzo a livello del cavo equivalente
μ	=	0.671		rapporto tra tensione di precompressione inziale (al netto delle cadute istantanee) e tensione di rottura
t	=	1440	ore	tempo dopo la messa in tensione (istante in cui vengono valutate le cadute di tensione)
$\Delta\sigma_{\text{pr}}(t)$	=	10.10	MP a MP	caduta di tensione per rilassamento al tempo t
$\Delta\sigma_{\sf pr}(\infty)$	=	41.42	a	caduta di tensione per rilassamento a tempo t=infinito
Interazione t	tra le	cadute di ten	sione	per effetti differiti
ε _{cs} (∞)	=	0.00035		deformazione totale per ritiro a tempo infinito
-03()			MP	
$\Delta\sigma_{pr}(\infty)$	=	41.42	a MP	caduta di tensione per rilassamento a tempo t=infinito
$\sigma_{\text{c,QP}}$	=	10.75	а	tensione nel cls a quota livello del trefolo equivalente prodotto dai carichi permanenti
A_p	=	6950	m m²	area totale cavi precompressione
^	_	0.47400	m	
A _c	=	847168 325000000	m² m	area sezione trave
J_c	=	000	m ⁴	momento d'inerzia trave
\mathbf{z}_{cp}	=	0.936	m MP	distanza fra baricentro sezione cls e baricentro cavi
$\Delta\sigma_{\text{p,c+s+r}}\!(t)$	=	76.7	a MP	cadute di tensioni totali a tempo t
$\Delta\sigma_{p,c+s+r}(\infty)$	=	149.09	a	cadute di tensioni totali a tempo infinito

7.5 S.L.E. – quasi permanente

Si riportano nei paragrafi successivi le tensioni nelle fibre più sollecitate della trave, della soletta, delle armature di precompressione ed ordinaria; sono indicate anche le sollecitazioni agenti nelle varie fasi sulle sezioni verificate. Le tensioni sono state calcolate nell'ipotesi di calcestruzzo reagente e laddove, in soletta, sono state riscontrate trazioni del calcestruzzo, evenienza che si verifica nelle vicinanze degli assi pila, si è fatta una seconda verifica semplificata, trascurando tutto il contributo della soletta; tale verifica si ritiene

Progetto Esecutivo

Opera: Viadotto Arenella III
Relazione di Calcolo Impalcato - Carreggiata DX
Pagina 86
Nome file:
VI15-F-
CL003_C.00_relazione_calcolo_impalcato_DX.doc.

soddisfatta se al lembo superiore teso di trave compaiono compressioni o trazioni modeste inferiori alla resistenza stessa a trazione del calcestruzzo.

Le perdite di precompressione sono state introdotte in termini di sollecitazioni equivalenti.

I limiti tensionali per le combinazioni quasi permanente sono:

Combinazione quasi permanente

 σ_c = 20.5 MPa massima compressione in esercizio cap σ_c = 14.9 MPa massima compressione in esercizio cao σ_p = 1336 MPa massima trazione in esercizio trefoli

 σ_s = 360 MPa massima trazione in esercizio armatura lenta

Mentre al taglio trefoli:

al taglio trefoli (tensioni iniziali)

 σ_{ci} = 26.1 MPa massima compressione iniziale cap σ_{cti} = 1.79 MPa massima trazione iniziale cap σ_{ci} = 23.2 MPa massima compressione iniziale cao σ_{pi} = 1488 MPa massima trazione iniziale trefoli σ_{si} = 360 MPa massima trazione iniziale armatura lenta

Nei paragrafi successivi si riportano le verifiche di sicurezza delle sezioni più significative della trave e indicate nel seguente modo:

SA-c: sezione di mezzeria trave centrale

SB-c: sezione a x=1.5m (filo riempimento) trave centrale SD-c: sezione a 9.0m dalla testata della trave centrale

SA-b: sezione di mezzeria trave di bordo

SB-b: sezione a x=1.5m (filo riempimento) trave di bordo SD-b: sezione a 9.0m dalla testata della trave di bordo

Inoltre con:

SF1, **SF2**, **SF3**, **SF4** si sono indicate le caratteristiche geometriche delle sezioni calcolate nelle varie fasi e riportate nel paragrafo 2.3.3 Caratteristiche geometriche delle sezioni

Il calcolo delle tensioni nelle condizioni elementari di carico e le caratteristiche della precompressione non vengono qui riportate in quanto sono le stesse di quelle calcolate per la combinazione rara e indicate nel paragrafo precedente (7.4 S.L.E. rara - limitazione delle tensioni).

7.5.1 Verifiche Sezione SA-c

SLE - Verifica del Livello Tensionale

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella II	Opera:	Viadotto	Arenella	Ш
-----------------------------	--------	----------	----------	---

Relazione di Calcolo Impalcato - Carreggiata DX

Pagina 87

Nome file: VI15-F-

CL003_C.00_relazione_calcolo_impalcato_DX.doc.

Combina	zione QUASI PER	MANENTE				
σ_{cs}	0.00	4.68	5.00	5.00	MPa	tensione estradosso soletta
σ_{ci}	0.00	5.26	5.47	5.47	MPa	tensione intradosso soletta
σ_{s}	4.89	13.81	14.02	14.02	MPa	tensione estradosso
σ_{i}	17.03	18.25	17.68	17.68	MPa	tensione intradosso
σ_{eq}	14.20	17.22	16.83	16.83	MPa	tensione a livello trefolo equivalente
$\sigma_{\sf cp}$	11.35	15.22	15.20	15.20	MPa	tensione media nel calcestruzzo
σ_{ps}	-1'184.79	-1'064.09	-1'063.11	-1'063.11	MPa	tensione nel trefolo superiore
σ_{pi}	-1'104.51	-1'004.95	-1'007.81	-1'007.81	MPa	tensione nel trefolo inferiore
σ_{ss}	0.00	109.23	110.60	110.60	MPa	tensione nell'armatura lenta superiore
check1	OK	OK	OK	OK		check compressione cap
check2	OK	OK	OK	OK		check trazione cap
check3	OK	OK	OK	OK		verifica trefoli

7.5.2 Verifiche Sezione SB-c

SLE - Verifica del Livello Tensionale

	verifica al taglio trefoli	verifica a fine fase 2 a t=infinito	verifica a fine fase 3 a t=0 (max mobili + max termico)	verifica a fine fase 3 a t=0 (max mobili + min termico)		
Combin	azione QUASI PE	RMANENTE				
σ_{cs}	0.00	0.49	1.25	1.25	MPa	tensione estradosso soletta
σ_{ci}	0.00	1.60	2.10	2.10	MPa	tensione intradosso soletta
σ_{s}	3.38	6.74	7.24	7.24	MPa	tensione estradosso
σ_{i}	10.91	17.38	16.00	16.00	MPa	tensione intradosso
σ_{eq}	8.52	14.00	13.22	13.22	MPa	tensione a livello trefolo equivalente
σ_{cp}	7.33	10.40	10.38	10.38	MPa	tensione media nel calcestruzzo
σ_{ps}	-1'259.53	-1'202.52	-1'200.17	-1'200.17	MPa	tensione nel trefolo superiore
σ_{pi}	-1'209.74	-1'074.90	-1'081.83	-1'081.83	MPa	tensione nel trefolo inferiore
σ_{ss}	0.00	52.06	55.36	55.36	MPa	tensione nell'armatura lenta superiore
check1	OK	OK	OK	OK		check compressione cap
check2	OK	OK	OK	OK		check trazione cap
check3	OK	OK	OK	OK		verifica trefoli

7.5.3 Verifiche Sezione SD-c

SLE - Verifica del Livello Tensionale

Combin	verifica al taglio trefoli azione QUASI PE	verifica a fine fase 2 a t=infinito RMANENTE	verifica a fine fase 3 a t=0 (max mobili + max termico)	verifica a fine fase 3 a t=0 (max mobili + min termico)		
σ_{cs}	0.00	4.63	5.16	5.16	MPa	tensione estradosso soletta

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19 *Progetto Esecutivo* Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata DX

Pagina 88

Nome file: VI15-F-

 ${\tt CL003_C.00_relazione_calcolo_impalcato_DX.doc}.$

σ_{ci}	0.00	5.12	5.47	5.47	MPa	tensione intradosso soletta
σ_{s}	4.78	12.88	13.23	13.23	MPa	tensione estradosso
σ_{i}	14.19	16.56	15.62	15.62	MPa	tensione intradosso
σ_{eq}	11.76	15.61	15.00	15.00	MPa	tensione a livello trefolo equivalente
σ_{cp}	9.76	14.00	13.98	13.98	MPa	tensione media nel calcestruzzo
σ_{ps}	-1'212.67	-1'098.46	-1'096.82	-1'096.82	MPa	tensione nel trefolo superiore
σ_{pi}	-1'150.41	-1'048.86	-1'053.55	-1'053.55	MPa	tensione nel trefolo inferiore
σ_{ss}	0.00	107.87	110.16	110.16	MPa	tensione nell'armatura lenta superiore
check1	OK	OK	OK	OK		check compressione cap
check2	OK	OK	OK	OK		check trazione cap
check3	OK	OK	OK	OK		verifica trefoli

7.5.4 Verifiche Sezione SA-b

SLE - Verifica del Livello Tensionale

	verifica al taglio trefoli	verifica a fine fase 2 a t=infinito	verifica a fine fase 3 a t=0 (max mobili + max termico)	verifica a fine fase 3 a t=0 (max mobili + min termico)		
Combir	nazione QUASI PE	RMANENTE				
σ_{cs}	0.00	4.02	4.22	4.22	MPa	tensione estradosso soletta
σ_{ci}	0.00	4.23	4.35	4.35	MPa	tensione intradosso soletta
σ_{s}	4.95	12.19	12.30	12.30	MPa	tensione estradosso
σ_{i}	14.04	13.44	12.95	12.95	MPa	tensione intradosso
σ_{eq}	11.69	13.11	12.78	12.78	MPa	tensione a livello trefolo equivalente
σ_{cp}	9.76	12.41	12.39	12.39	MPa	tensione media nel calcestruzzo
σ_{ps}	-1211.52	-1110.95	-1110.43	-1110.43	MPa	tensione nel trefolo superiore
σ_{pi}	-1151.43	-1092.08	-1094.52	-1094.52	MPa	tensione nel trefolo inferiore
σ_{ss}	0.00	96.97	97.80	97.80	MPa	tensione nell'armatura lenta superiore
check1	OK	OK	OK	OK		check compressione cap
check2	OK	OK	OK	OK		check trazione cap
check3	OK	OK	OK	OK		verifica trefoli

7.5.5 Verifiche Sezione SB-b

SLE - Verifica del Livello Tensionale

	verifica al taglio trefoli	verifica a fine fase 2 a t=infinito	verifica a fine fase 3 a t=0 (max mobili + max termico)	verifica a fine fase 3 a t=0 (max mobili + min termico)		
Combi	nazione QUASI PE	RMANENTE				
σ_{cs}	0.00	0.49	1.01	1.01	MPa	tensione estradosso soletta
σ_{ci}	0.00	1.53	1.84	1.84	MPa	tensione intradosso soletta
σ_{s}	2.87	6.07	6.38	6.38	MPa	tensione estradosso

MMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 9 DAL KM 44+000 ALLO SVINCOLO CON L'A19 *Progetto Esecutivo*

Opera: Viadotto Arenella III
Relazione di Calcolo Impalcato - Carreggiata DX
Pagina 89
Nome file:
VI15-F-
CL003 C 00 relazione calcolo impalcato DX doc

σ_{i}	11.38	17.33	16.11	16.11	MPa	tensione intradosso
σ_{eq}	8.67	13.75	13.01	13.01	MPa	tensione a livello trefolo equivalente
σ_{cp}	7.33	9.72	9.69	9.69	MPa	tensione media nel calcestruzzo
σ_{ps}	-1'262.92	-1'207.67	-1'206.31	-1'206.31	MPa	tensione nel trefolo superiore
σ_{pi}	-1'206.67	-1'079.76	-1'085.92	-1'085.92	MPa	tensione nel trefolo inferiore
σ_{ss}	0.00	51.60	53.74	53.74	MPa	tensione nell'armatura lenta superiore
check1	OK	OK	OK	OK		check compressione cap
check2	OK	OK	OK	OK		check trazione cap
check3	OK	OK	OK	OK		verifica trefoli

7.5.6 Verifiche Sezione SD-b

SLE - Verifica del Livello Tensionale

	verifica al taglio trefoli	verifica a fine fase 2 a t=infinito	verifica a fine fase 3 a t=0 (max mobili + max termico)	verifica a fine fase 3 a t=0 (max mobili + min termico)		
Combin	azione QUASI PE	RMANENTE				
σ_{cs}	0.00	4.02	4.22	4.22	MPa	tensione estradosso soletta
σ_{ci}	0.00	4.23	4.35	4.35	MPa	tensione intradosso soletta
σ_{s}	4.95	12.19	12.30	12.30	MPa	tensione estradosso
σ_{i}	14.04	13.44	12.95	12.95	MPa	tensione intradosso
σ_{eq}	11.69	13.11	12.78	12.78	MPa	tensione a livello trefolo equivalente
σ_{cp}	9.76	12.41	12.39	12.39	MPa	tensione media nel calcestruzzo
σ_{ps}	-1211.52	-1110.95	-1110.43	-1110.43	MPa	tensione nel trefolo superiore
σ_{pi}	-1151.43	-1092.08	-1094.52	-1094.52	MPa	tensione nel trefolo inferiore
σ_{ss}	0.00	96.97	97.80	97.80	MPa	tensione nell'armatura lenta superiore
check1	OK	OK	OK	OK		check compressione cap
check2	OK	OK	OK	OK		check trazione cap
check3	OK	OK	OK	OK		verifica trefoli

7.6 S.L.E. – Frequente (limitazione ampiezza fessure)

Si riportano i risultati relativi alla sola combinazione frequente in quanto quelli relativi alla combinazione quasi permanete sono già stati riportati nei paragarfi precedenti.

7.6.1 Verifiche Sezione SA-c

Combinazione	verifica al taglio trefoli FREQUENTE	verifica a fine fase 2 a t=infinito	verifica a fine fase 3 a t=0 (max mobili + max termico)	verifica a fine fase 3 a t=0 (max mobili + min termico)		
σ_{cs}	0.00	4.68	7.52	4.59	MPa	tensione estradosso soletta

Progetto Esecutivo

Pagina 90 Nome file: VI15-F-

 ${\tt CL003_C.00_relazione_calcolo_impalcato_DX.doc}.$

Relazione di Calcolo Impalcato - Carreggiata DX

Opera: Viadotto Arenella III

σ_{ci}	0.00	5.26	7.17	5.19	MPa	tensione intradosso soletta
σ_{s}	4.89	13.81	15.72	13.74	MPa	tensione estradosso
σ_{i}	17.03	18.25	13.46	18.36	MPa	tensione intradosso
σ_{eq}	14.20	17.22	13.99	17.28	MPa	tensione a livello trefolo equivalente
$\sigma_{\sf cp}$	11.35	15.22	15.20	15.20	MPa	tensione media nel calcestruzzo
$\sigma_{\sf ps}$	-1184.79	-1064.09	-1055.07	-1064.40	MPa	tensione nel trefolo superiore
σ_{pi}	-1104.51	-1004.95	-1028.97	-1004.41	MPa	tensione nel trefolo inferiore
σ_{ss}	0.00	109.23	121.65	108.82	MPa	tensione nell'armatura lenta superiore

La trave precompressa nella sezione in oggetto mantiene sempre uno stato di compressione, (sia per la combinazione frequente che per quella quasi permanente) anche in presenza di carichi da traffico e pertanto si ritiene soddisfatto sia lo stato limite di fessurazione che di decompressione.

7.6.2 Verifiche Sezione SB-c

	verifica al taglio trefoli	verifica a fine fase 2 a t=infinito	verifica a fine fase 3 a t=0 (max mobili + max termico)	verifica a fine fase 3 a t=0 (max mobili + min termico)		
Combinazione	FREQUENTE					
σ_{cs}	0.00	0.49	1.75	-0.47	MPa	tensione estradosso soletta
σ_{ci}	0.00	1.60	2.44	0.95	MPa	tensione intradosso soletta
σ_{s}	3.38	6.74	7.57	6.08	MPa	tensione estradosso
σ_{i}	10.91	17.38	15.15	18.94	MPa	tensione intradosso
σ_{eq}	8.52	14.00	12.74	14.85	MPa	tensione a livello trefolo equivalente
σ_{cp}	7.33	10.40	10.38	10.38	MPa	tensione media nel calcestruzzo
σ_{ps}	-1259.53	-1202.52	-1198.60	-1205.60	MPa	tensione nel trefolo superiore
σ_{pi}	-1209.74	-1074.90	-1086.09	-1067.09	MPa	tensione nel trefolo inferiore
σ_{ss}	0.00	52.06	57.54	47.86	MPa	tensione nell'armatura lenta superiore

La trave precompressa nella sezione in oggetto mantiene sempre uno stato di compressione, (sia per la combinazione frequente che per quella quasi permanente) anche in presenza di carichi da traffico e pertanto si ritiene soddisfatto sia lo stato limite di fessurazione che di decompressione.

7.6.3 Verifiche Sezione SD-c

	verifica al taglio trefoli	verifica a fine fase 2 a t=infinito	verifica a fine fase 3 a t=0 (max mobili + max termico)	verifica a fine fase 3 a t=0 (max mobili + min termico)		
Combinazione	FREQUENTE					
σ_{cs}	0.00	4.63	7.09	4.48	MPa	tensione estradosso soletta
σ_{ci}	0.00	5.12	6.77	5.02	MPa	tensione intradosso soletta
σ_{s}	4.78	12.88	14.53	12.77	MPa	tensione estradosso

Progetto Esecutivo

Pagina 91 Nome file: VI15-F-

 $CL003_C.00_relazione_calcolo_impalcato_DX.doc.$

Relazione di Calcolo Impalcato - Carreggiata DX

Opera: Viadotto Arenella III

σ_{i}	14.19	16.56	12.37	16.76	MPa	tensione intradosso
σ_{eq}	11.76	15.61	12.93	15.73	MPa	tensione a livello trefolo equivalente
σ_{cp}	9.76	14.00	13.98	13.98	MPa	tensione media nel calcestruzzo
σ_{ps}	-1212.67	-1098.46	-1090.70	-1098.97	MPa	tensione nel trefolo superiore
σ_{pi}	-1150.41	-1048.86	-1069.86	-1047.83	MPa	tensione nel trefolo inferiore
σ_{ss}	0.00	107.87	118.59	107.20	MPa	tensione nell'armatura lenta superiore

La trave precompressa nella sezione in oggetto mantiene sempre uno stato di compressione, (sia per la combinazione frequente che per quella quasi permanente) anche in presenza di carichi da traffico e pertanto si ritiene soddisfatto sia lo stato limite di fessurazione che di decompressione.

7.6.4 Verifiche Sezione SA-b

	verifica al taglio trefoli	verifica a fine fase 2 a t=infinito	verifica a fine fase 3 a t=0 (max mobili + max termico)	verifica a fine fase 3 a t=0 (max mobili + min termico)		
Combinazion	e FREQUENTE					
σ_{cs}	0.00	5.03	7.94	5.09	MPa	tensione estradosso soletta
σ_{ci}	0.00	5.17	6.96	5.20	MPa	tensione intradosso soletta
σ_{s}	5.31	14.20	15.99	14.23	MPa	tensione estradosso
σ_{i}	16.67	14.59	8.33	14.36	MPa	tensione intradosso
σ_{eq}	14.02	14.50	10.12	14.33	MPa	tensione a livello trefolo equivalente
σ_{cp}	11.35	14.11	14.08	14.08	MPa	tensione media nel calcestruzzo
σ_{ps}	-1182.02	-1063.44	-1055.26	-1063.34	MPa	tensione nel trefolo superiore
σ_{pi}	-1106.93	-1053.60	-1085.12	-1054.79	MPa	tensione nel trefolo inferiore
σ_{ss}	0.00	111.17	123.43	111.39	MPa	tensione nell'armatura lenta superiore

La trave precompressa nella sezione in oggetto mantiene sempre uno stato di compressione, (sia per la combinazione frequente che per quella quasi permanente) anche in presenza di carichi da traffico e pertanto si ritiene soddisfatto sia lo stato limite di fessurazione che di decompressione.

7.6.5 Verifiche Sezione SB-b

Combinazione	verifica al taglio trefoli • FREQUENTE	verifica a fine fase 2 a t=infinito	verifica a fine fase 3 a t=0 (max mobili + max termico)	verifica a fine fase 3 a t=0 (max mobili + min termico)		
σ_{cs}	0.00	-0.66	-0.64	0.00	MPa	tensione estradosso soletta
σ_{ci}	0.00	0.82	0.82	0.00	MPa	tensione intradosso soletta
σ_{s}	2.52	4.95	4.95	2.52	MPa	tensione estradosso
σ_{i}	11.69	20.16	19.99	11.69	MPa	tensione intradosso

DAL KM 44+000 ALLO SVINCOLO CON L'A19 Progetto Esecutivo

Opera: Viadotto Arenella III
Relazione di Calcolo Impalcato - Carreggiata DX
Pagina 92
Nome file: VI15-F-
CL003_C.00_relazione_calcolo_impalcato_DX.doc.

σ_{eq}	8.78	15.32	15.21	8.78	MPa	tensione a livello trefolo equivalente
$\sigma_{\sf cp}$	7.33	9.72	9.69	7.33	MPa	tensione media nel calcestruzzo
σ_{ps}	-1265.22	-1219.48	-1219.49	-1265.22	MPa	tensione nel trefolo superiore
σ_{pi}	-1204.60	-1042.84	-1043.67	-1204.60	MPa	tensione nel trefolo inferiore
σ_{ss}	0.00	38.04	38.11	0.00	MPa	tensione nell'armatura lenta superiore

In questo caso, in cui si riscontrano delle tensioni di trazione all' estradosso della soletta, nella combimazione frequente, si procede alla verifica dell'ampiezza di fessurazione per via indiretta, così come riportata nell'ultimo capoverso del punto 4.1.2.2.4.6 delle NTC, riferendosi ai limiti di tensione nell'acciaio d'armatura definiti nelle tabelle seguenti. La tensione σ_{ss} è quella nell'acciaio d'armatura prossimo al lembo teso della sezione calcolata nella sezione parzializzata per la combinazione di carico pertinente.

Per quanto riguardo le condizioni ambientali e la sensibilità delle armature sono state assunte:

- condizioni ambientali aggressive;
- armature poco sensibili.

Tabella 7.2: Tensioni di riferimento

	FREQUENTE
Diametri massimi delle barre per il controllo della fess	surazione
σs	w2=0.30 mm
[MPa]	Ø
160	32
200	25
240	16
280	12
320	10
360	8
Spaziatura massima delle barre per il controllo della f	essurazione
σs	w2=0.30 mm
[MPa]	Ø
160	300
200	250
240	200
280	150
320	100
360	50

Dalla Tabella 7.2 la massima tensione ammissibile nelle barre di acciaio è pari a 240 MPa, superiore alla tensioni calcolate per la combinazione frequente, la verifica risulta quindi soddisfatta.

7.6.6 Verifiche Sezione SD-b

trefoli

verifica a fine fase 3 a t=0 verifica a fine (max verifica a fine fase 3 a t=0 mobili + verifica al taglio fase 2 a (max mobili + min t=infinito max termico) termico)

MENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001
DAL KM 44+000 ALLO SVINCOLO CON L'A19
Progetto Esecutivo

Nom
VI15
CL00

Opera: Viadotto Arenella III
Relazione di Calcolo Impalcato - Carreggiata DX
Pagina 93
Nome file:
VI15-F-
CL003_C.00_relazione_calcolo_impalcato_DX.doc.

Combinazione	FREQUENTE					
σ_{cs}	0.00	4.14	6.30	3.93	MPa	tensione estradosso soletta
σ_{ci}	0.00	4.37	5.70	4.23	MPa	tensione intradosso soletta
σ_{s}	5.52	12.59	13.92	12.45	MPa	tensione estradosso
σ_{i}	13.53	13.56	8.91	13.91	MPa	tensione intradosso
σ_{eq}	11.46	13.31	10.21	13.53	MPa	tensione a livello trefolo equivalente
$\sigma_{\sf cp}$	9.76	12.61	12.58	12.58	MPa	tensione media nel calcestruzzo
σ_{ps}	-1207.74	-1107.06	-1101.00	-1107.73	MPa	tensione nel trefolo superiore
σ_{pi}	-1154.78	-1088.49	-1111.91	-1086.74	MPa	tensione nel trefolo inferiore
σ_{ss}	0.00	98.85	107.94	97.93	MPa	tensione nell'armatura lenta superiore

La trave precompressa nella sezione in oggetto mantiene sempre uno stato di compressione, anche in presenza di carichi da traffico e pertanto si ritiene soddisfatto sia lo stato limite di fessurazione che di decompressione.

8. VERIFICA DEI TRAVERSI

Per tutte le verifiche si è fatto riferimento ad una sezione rettangolare 1600x2050 mm, armata con $10\phi26$ sopra e sotto in corrispondenza degli apparecchi di appoggio e $10\phi26$ sopra con $10+10\phi26$ sotto in campata. A taglio e torsione sono presenti staffe $\phi14/150$ a 6 braccia; si utilizzano 4 braccia a taglio e 2 a torsione. Nel tabulato che segue si riportano le verifiche a stato limite ultimo per flessione e le verifiche di esercizio per combinazioni rara e frequente.

8.1 Sezione in campata. Flessione SLU e SLE

				A _{res,1} [cm ²]					A _{res,1} [cm ²]	A _{res,TOT} [cm ²]	M_{Ed} [cm ²]	M _{Rd} [cm ²]	FS
Arm-sup	10	Φ	26	53.1	+	0	Φ	0	0.0	53.1	7974	9523	1.19
Arm-inf	12	Φ	26	58 4	+	12	Φ	26	63.7	127 4			

Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata DX

Pagina 94

Nome file:
V115-FCL003 C.00 relazione calcolo impalcato DX.doc.

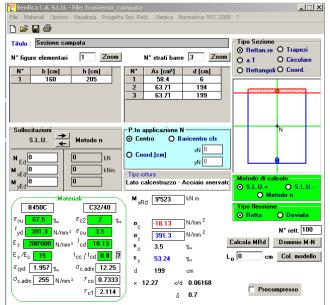


Figura 8.1: Momento resistente Sezione di campata trasverso

Le verifiche di fessurazione vengono condotte in relazione alle indicazioni riportate negli Eurocodici (in particolare si veda EN 1992-1-1 cap. 7.3) e riprese sia dalle NTC (cap. 4.1.2.2.4) che dalla Circolare n.617. È richiesto in particolare, laddove il momento agente superi quello di fessurazione, di verificare che la tensione nelle barre di armatura rientri in determinati limiti (dipendenti dal diametro e dalla spaziatura dei ferri) o in alternativa di controllare che l'ampiezza della fessura che si apre non superi un determinato valore (funzione dello stato limite, delle condizioni ambientali e del tipo di armatura).

Si riportano di seguito le tabelle per le combinazioni considerate (frequente e quasi permanente), ricordando che si opera con armature poco sensibili ed in condizioni ambientali aggressive (classe di esposizione XC4).

		comb.	comb.		
MATERIALI		FREQUENTE	QUASI PERM.		
Calcestruzzo					
R_{ck}	=	40	40	MPa	resistenza caratteristica cubica
f_{ck}	=	33.20	33.20	MPa	resistenza caratteristica cilindrica
f_{cm}	=	41.20	41.20	MPa	resistenza cilindrica media
f _{ctm}	=	3.10	3.10	MPa	resistenza media a trazione semplice
f _{ctk}	=	2.17	2.17	MPa	resistenza caratteristica a trazione semplice
f_{cfm}	=	3.72	3.72	MPa	resistenza media a trazione per flessione
γс	=	1.50	1.50		coefficiente parziale di sicurezza
$lpha_{ t cc}$	=	0.85	0.85		coefficiente riduttivo per resistenze di lunga durata
f_{cd}	=	18.81	18.81	MPa	resistenza di calcolo a compressione
f _{ctd}	=	1.45	1.45	MPa	resistenza di calcolo a trazione
Ec	=	33643	33643	MPa	modulo di Young

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera. Viadotto Archena in	Opera:	Viadotto	Arenella III
----------------------------	--------	----------	--------------

Relazione di Calcolo Impalcato - Carreggiata DX Pagina 95

Nome file: VI15-F-

Acciao					
Es	=	206000	206000	MPa	modulo di Young acciaio
γs	=	1.15	1.15		coefficiente parziale acciaio
f_{yk}	=	450.0	450.0	MPa	tensione caratteristica di snervamento acciaio
f _{yd}	=	391.3	391.3	MPa	tensione di snervamento di calcolo dell'acciaio
n	=	15	15	u	coefficiente di omogeneizzazione
					3
GEOMETRIA SE	ZIONE				
В	=	1600	1600	mm	larghezza
Н	=	2050	2050	mm	altezza
C'	=	60	60	mm	copriferro
ARMATURA					
numero barre					
n1 (superiore)	=	10	10		numero barre strato 1
n2	=				numero barre strato 2
n3	=				numero barre strato 3
n4	=				numero barre strato 4
n5 n6	_				numero barre strato 5 numero barre strato 6
n7	=	12	12		numero barre strato 7
n8 (inferiore)	=	12	12		numero barre strato 8
diametro barre					namere same en ale e
Ø1	=	26	26	mm	diametro barre strato 1
Ø2	=			mm	diametro barra strato 2
Ø3	=			mm	diametro barra strato 3
Ø4	=			mm	diametro barra strato 4
Ø5	=			mm	diametro barra strato 5
Ø6	=			mm	diametro barra strato 6
Ø7	=	26	26	mm	diametro barra strato 7
Ø8	=	26	26	mm	diametro barra strato 8
ordinate barre					
y1	=	1990	1990	mm	ordinata barre strato 1
y2	=			mm	ordinata barre strato 2
y3	=			mm	ordinata barre strato 3
y4	_			mm	ordinata barre strato 4 ordinata barre strato 5
y5 y6	_			mm mm	ordinata barre strato 6
y7	=	110	110	mm	ordinata barre strato 7
y8	=	60	60	mm	ordinata barre strato 8
area barre					
A _{s1}	=	5309	5309	mm²	area barre strato 1
A _{s2}	=	0	0	$\rm mm^2$	area barre strato 2
A_{s3}	=	0	0	$\rm mm^2$	area barre strato 3
A _{s4}	=	0	0	$\rm mm^2$	area barre strato 4
A_{s5}	=	0	0	$\rm mm^2$	area barre strato 5
A_{s6}	=	0	0	$\rm mm^2$	area barre strato 6
A _{s7}	=	6371	6371	$\rm mm^2$	area barre strato 7
A _{s8}	=	6371	6371	$\rm mm^2$	area barre strato 8
SOLLECITAZION	NI				

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

3624

5368

Μ

Opera: Viadotto Arenella III

kNm momento flettente (sempre >0 tende le fibre inferiori)

Relazione di Calcolo Impalcato - Carreggiata DX

Pagina 96

Nome file: VI15-F-

CL003_C.00_relazione_calcolo_impalcato_DX.doc.

IVI	=	5368	3624	KINM	momento flettente (sempre >u tende le fibre inferiori)
N	=	0	0	kN	sforzo normale (>0 compressione)
VERIFICA TENSIO	NI NEI I	MATERIALI			
cs	=	1	1		
CS	=	flessione semplice	flessione semplice		
an	=	540.8	540.8	mm	asse neutro (distanza da lembo compresso)
Y_n	=	1509	1509	mm	ordinata asse neutro
Α	=	1135985	1135985	mm^2	area sezione reagente
J	=	490571007675	490571007675	mm^4	momento d'inerzia sezione reagente
S	=	0	0	mm ³	momento statico sezione reagente
σ_{c}	=	-5.92	-3.99	MPa	tensione calcestruzzo
σ_{s}	=	237.88	160.59	MPa	tensione massima acciaio
VERIFICA A FESS	URAZIO	NE			
sezione tesa				ı	
M_{fess}	=	3600.9	3600.9	kNm	momento di fessurazione
$FS=M_{fess}/M_{Sd}$	=	0.7	1.0		check ok se >1
$lpha_{e}$	=	6.123	6.123	MPa	rapporto tra i moduli elastici
d	=	1965	1965	mm	altezza utile della sezione
$h_{c,eff}$	=	213	213	mm	altezza area efficace calcestruzzo teso
$A_{c,eff}$	=	340000	340000	mm^2	area efficace calcestruzzo teso
A_s	=	12742	12742	mm^2	area di armatura tesa
$ ho_{ ext{eff}}$	=	0.0375	0.0375		
k_{t}	=	0.4	0.4		(=0.6 per carichi di breve durata; =0.4 per carichi di lunga durata)
$\epsilon_{\sf sm}$	=	0.00096	0.00058		deformazione unitaria media delle barre
Ø	=	26	26		diametro equivalente delle barre tese
\mathbf{k}_1	=	0.8	0.8		(=0.8 per barre ad aderenza migliorata; =1.6 per barre lisce)
ε ₁	=	0.000491	0.000331		deformazione massima di trazione
ϵ_2	=	0.0	0.0		deformazione minima di trazione
k_2	=	0.5	0.5		fattore di forma diagramma delle deformazioni
k_3	=	3.4	3.4		(posto dalle NTC pari a 3.4)
k_4	=	0.425	0.425		(posto dalle NTC pari a 0.425)
С	=	47	47	mm	ricoprimento armatura
S	=	150	150	mm	distanza tra le barre
$\Delta_{\text{s,max}}$	=	277.7	277.7	mm	distanza massima tra le fessure
W_d	=	0.266	0.162	mm	apertura di calcolo delle fessure
W _{max}	=	0.30	0.20	mm	valore limite ampiezza fessure
FS	=	1.13	1.24		check ok se >1
		ok	ok		

8.2 Sezione in appoggio. Flessione SLU e SLE

				$A_{res,TOT}$	\mathbf{M}_{Ed}	\mathbf{M}_{Rd}	FS
				[cm ²]	[cm ²]	[cm ²]	
Arm-sup	10	Φ	26	53.1	-3126	-4058	1.30

Progetto Esecutivo

Pagina 97 Nome file: VI15-F-

 ${\tt CL003_C.00_relazione_calcolo_impalcato_DX.doc}.$

Relazione di Calcolo Impalcato - Carreggiata DX

Opera: Viadotto Arenella III

Arm-inf 12 Φ 26 63.7

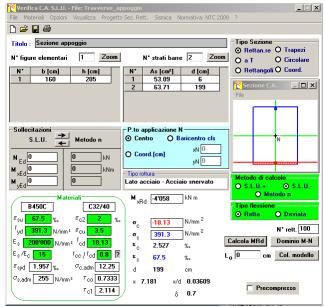


Figura 8.2: Momento resistente Sezione di appoggio trasverso

Le verifiche di fessurazione vengono condotte in relazione alle indicazioni riportate negli Eurocodici (in particolare si veda EN 1992-1-1 cap. 7.3) e riprese sia dalle NTC (cap. 4.1.2.2.4) che dalla Circolare n.617. È richiesto in particolare, laddove il momento agente superi quello di fessurazione, di verificare che la tensione nelle barre di armatura rientri in determinati limiti (dipendenti dal diametro e dalla spaziatura dei ferri) o in alternativa di controllare che l'ampiezza della fessura che si apre non superi un determinato valore (funzione dello stato limite, delle condizioni ambientali e del tipo di armatura).

Si riportano di seguito le tabelle per le combinazioni considerate (frequente e quasi permanente), ricordando che si opera con armature poco sensibili ed in condizioni ambientali aggressive (classe di esposizione XC4).

MATERIALI Calcestruzzo		FREQUENTE comb.	QUASI PERM. comb.		
R _{ck}	=	40	40	MPa	resistenza caratteristica cubica
f _{ck}	=	33.20	33.20	MPa	resistenza caratteristica cilindrica
f_{cm}	=	41.20	41.20	MPa	resistenza cilindrica media
f _{ctm}	=	3.10	3.10	MPa	resistenza media a trazione semplice
f _{ctk}	=	2.17	2.17	MPa	resistenza caratteristica a trazione semplice
f_{cfm}	=	3.72	3.72	MPa	resistenza media a trazione per flessione
γс	=	1.50	1.50		coefficiente parziale di sicurezza
$lpha_{ t cc}$	=	0.85	0.85		coefficiente riduttivo per resistenze di lunga durata
f_{cd}	=	18.81	18.81	MPa	resistenza di calcolo a compressione
f_{ctd}	=	1.45	1.45	MPa	resistenza di calcolo a trazione
Ec	=	33643	33643	MPa	modulo di Young
Acciao					
E_s	=	206000	206000	MPa	modulo di Young acciaio
γs	=	1.15	1.15		coefficiente parziale acciaio
f_{yk}	=	450.0	450.0	MPa	tensione caratteristica di snervamento acciaio

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001
DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata DX

Pagina 98

Nome file: VI15-F-

f_{yd}	=	391.3	391.3	MPa	tensione di snervamento di calcolo dell'acciaio
n	=	15	15		coefficiente di omogeneizzazione
					· ·
GEOMETRIA SEZ	IONE				
В	=	1600	1600	mm	larghezza
Н	=	2050	2050	mm	altezza
c'	=	60	60	mm	copriferro
ARMATURA					
numero barre					
n1 (superiore)	=	12	12		numero barre strato 1
n2	=				numero barre strato 2
n3	=				numero barre strato 3
n4	=				numero barre strato 4
n5	=				numero barre strato 5
n6	=				numero barre strato 6
n7 n8 (inferiore)	=	10	10		numero barre strato ?
diametro barre	=	10	10		numero barre strato 8
Ø1	=	26	26	mm	diametro barre strato 1
Ø2	=	20	20	mm	diametro barra strato 2
Ø3	=			mm	diametro barra strato 3
Ø4	=			mm	diametro barra strato 4
Ø5	=			mm	diametro barra strato 5
Ø6	=			mm	diametro barra strato 6
Ø7	=			mm	diametro barra strato 7
Ø8	=	26	26	mm	diametro barra strato 8
ordinate barre					
y1	=	1990	1990	mm	ordinata barre strato 1
y2	=			mm	ordinata barre strato 2
у3	=			mm	ordinata barre strato 3
y4	=			mm	ordinata barre strato 4
у5	=			mm	ordinata barre strato 5
у6	=			mm	ordinata barre strato 6
у7	=			mm	ordinata barre strato 7
у8	=	60	60	mm	ordinata barre strato 8
area barre					
A _{s1}	=	6371	6371	mm ²	area barre strato 1
A _{s2}	=	0	0	mm^2	area barre strato 2
A_{s3}	=	0	0	mm^2	area barre strato 3
A _{s4}	=	0	0	$\rm mm^2$	area barre strato 4
A_{s5}	=	0	0	mm²	area barre strato 5
A_{s6}	=	0	0	mm²	area barre strato 6
A _{s7}	=	0	0	$\rm mm^2$	area barre strato 7
A _{s8}	=	5309	5309	$\rm mm^2$	area barre strato 8
SOLLECITAZIONI	I				
M	=	1918.8	784.3	kNm	momento flettente (sempre >0 tende le fibre inferiori)
N	=	0	0	kN	sforzo normale (>0 compressione)
VERIFICA TENSIO	ONI NEI MATE				
CS	=	1	1		

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III
Relazione di Calcolo Impalcato - Carreggiata DX
Pagina 99
Nome file:
VI15-F-
CL003_C.00_relazione_calcolo_impalcato_DX.doc.

cs	=	flessione semplice	flessione semplice		
an	=	356.6	356.6	mm	asse neutro (distanza da lembo compresso)
Y_n	=	1693	1693	mm	ordinata asse neutro
Α	=	745781	745781	mm^2	area sezione reagente
J	=	245069509088	245069509088	mm ⁴	momento d'inerzia sezione reagente
S	=	0	0	mm ³	momento statico sezione reagente
σ_{c}	=	-2.79	-1.14	MPa	tensione calcestruzzo
σ_{s}	=	191.83	78.41	MPa	tensione massima acciaio
VERIFICA A FES	SURAZIO	ONE			
sezione tesa				l	
M_{fess}	=	3290.7	3290.7	kNm	momento di fessurazione
$FS=M_{\text{fess}}/M_{\text{Sd}}$	=	1.7	4.2		check ok se >1
$lpha_{e}$	=	6.123	6.123	MPa	rapporto tra i moduli elastici
d	=	1990	1990	mm	altezza utile della sezione
$h_{c,eff}$	=	150	150	mm	altezza area efficace calcestruzzo teso
$A_{c,eff}$	=	240000	240000	mm^2	area efficace calcestruzzo teso
A_s	=	5309	5309	mm^2	area di armatura tesa
$ ho_{ ext{eff}}$	=	0.0221	0.0221		
\mathbf{k}_{t}	=	0.4	0.4		(=0.6 per carichi di breve durata; =0.4 per carichi di lunga durata)
ϵ_{sm}	=	0.00062	0.00023		deformazione unitaria media delle barre
Ø	=	26	26		diametro equivalente delle barre tese
\mathbf{k}_1	=	8.0	0.8		(=0.8 per barre ad aderenza migliorata; =1.6 per barre lisce)
ϵ_1	=	0.000394	0.000161		deformazione massima di trazione
ϵ_2	=	0.0	0.0		deformazione minima di trazione
k_2	=	0.5	0.5		fattore di forma diagramma delle deformazioni
k ₃	=	3.4	3.4		(posto dalle NTC pari a 3.4)
k_4	=	0.425	0.425		(posto dalle NTC pari a 0.425)
С	=	47	47	mm	ricoprimento armatura
S	=	150	150	mm	distanza tra le barre
$\Delta_{\text{s,max}}$	=	359.6	359.6	mm	distanza massima tra le fessure
\mathbf{W}_{d}	=	0.224	0.082	mm	apertura di calcolo delle fessure
\mathbf{W}_{max}	=	0.30	0.20	mm	valore limite ampiezza fessure
FS	=	1.34	2.44		check ok se >1
		ok	ok		

8.3 Taglio e Torsione

A taglio e torsione sono presenti staffe \(\phi 14/150 \) a 6 braccia; si utilizzano 4 braccia a taglio e 2 a torsione.

Trasverso		P08	P08	P02	P01		
Sollecitazioni		VEd,max - TEd	VEd,max - TEd	VEd - TEd,max	VEd - TEd,max		
V_{Ed}	=	5132	4267	2684	3090	kN	taglio di caloclo
T _{Ed}	=	37	185	2283	2293	kN	torsione di caloclo

DAL KM 44+000 ALLO SVINCOLO CON L'A19 Progetto Esecutivo

Relazione di Calcolo Impalcato - Carreggiata DX Pagina 100

Opera: Viadotto Arenella III

Nome file: VI15-F-

N_{Ed}	=	0	0	0	0	kN	sforzo normale i calcolo
Materiali							
Calcestruzzo							
R_{ck}	=	40	40	40	40	MPa	resistenza caratteristica cubica
f _{ck}	=	33.2	33.2	33.2	33.2	MPa	resistenza caratteristica cilindrica
α_{cc}	=	0.85	0.85	0.85	0.85		coefficiente riduttivo
γ_{c}	=	1.50	1.50	1.50	1.50		coefficiente parziale di sicurezza
f_{cd}	=	18.81	18.81	18.81	18.81	MPa	resistenza di calcolo a compressione
Acciaio							
f _{yk}	=	450	450	450	450	MPa	tensione caratteristica di snervamento
γs	=	1.15	1.15	1.15	1.15		coefficiente parziale di sicurezza
f _{yd}	=	391.30	391.30	391.30	391.30	MPa	tensione di snervamento di calcolo
Verifica capac		agiio sprovvisti di arma	atura a tanlin				
	=	1600	1600	1600	1600	mm	larghezza minima sezione
b _w d	=	1930	1930	1930	1930	mm	altezza utile
\emptyset_{w}	=	14	14	14	14	mm	diametro ferri long. tesi
n	=	24	24	24	24		numero
A_{sl}	=	3695	3695	3695	3695	mm^2	armatura longitudinale
A _c	=	3280000	3280000	3280000	3280000	mm²	area sezione cls
k	=	1.32	1.32	1.32	1.32		
$\sigma_{\sf cp}$	=	0.0000	0.0000	0.0000	0.0000	MPa	tensione media calcestruzzo $\leq 0.2f_{cd}$
$ ho_{1}$	=	0.00120	0.00120	0.00120	0.00120		rapporto geometrico di armatura long.
V _{min}	=	0.307	0.307	0.307	0.307		
V_{Rd}	=	946.49	946.49	946.49	946.49	kN	taglio resistente
V_{Ed}	=	5131.51	4267	2683.665	3089.8437	kN	taglio di caloclo
FS		0.18	0.22	0.35	0.31		se >1 verifica soddisfatta
Verifica ner ele	menti i	no orovvisti di armat	no tura a taglio	no	no		
Ø _w	=	14	14	14	14	mm	diametro armatura resistente a taglio
α	=	90.00	90.00	90.00	90.00	0	angolo di inclinazione armatura trasversale
S	=	150.00	150.00	150.00	150.00	mm	passo staffe
n_{br}	=	4.0	4.0	4.0	4.0		numero bracci armatura trasversale
A_{sw}	=	615.75	615.75	615.75	615.75	mmq	area armatura trasversale
b_{w}	=	1600.00	1600.00	1600.00	1600.00	mm	larghezza minima sezione
f_{cd}	=	18.81	18.81	18.81	18.81	MPa	
ν	=	0.5	0.5	0.5	0.5		coeff. di riduzione f_{cd}
f' _{cd}	=	9.41	9.41	9.41	9.41	MPa	resistenza a compressione del cls ridotta
ω_{sw}	=	0.05336	0.05336	0.05336	0.05336		% meccanica di armatura trasversale
$\alpha \mathbf{c}$	=	1.00000	1.00000	1.00000	1.00000		
cot⊕	=	2.50	2.50	1.20	1.20		check 1≤cot⊕*≤2,5
V_{Rsd}	=	6975.4011	6975.4011	3348.1925	3348.1925	kN	Resistenza "taglio trazione"
V _{Rcd}	=	9014.8303	9014.8303	12857.2170	12857.2170	kN	Resistenza "taglio compressione"
V_{Rd}	=	6975.4011	6975.4011	3348.1925	3348.1925	kN	Resistenza a taglio

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata DX Pagina 101

Nome file: VI15-F-

V_{Ed}	=	5131.51	4267	2683.665	3089.8437	kN	taglio di caloclo
FS	=	1.36	1.63	1.25	1.08		se >1 verifica soddisfatta
		ok	ok	ok	ok		
Calcolo della Re	isite	nza a Torsione					
\emptyset_{w}	=	14	14	14	14	mm	diametro armatura resistente a taglio
α	=	90.00	90.00	90.00	90.00	0	angolo di inclinazione armatura trasversale
S	=	150	150	150	150	mm	passo staffe
n_{br}	=	2	2	2	2		numero bracci armatura trasversale
A_s	=	307.88	307.88	307.88	307.88	mmq	area armatura trasversale
A _s /s	=	2.05	2.05	2.05	2.05	mmq/mm	
ΣA_I	=	13804	13804	13804	13804	mmq	area complessiva barre longitudinali
A_c	=	3.28E+06	3.28E+06	3.28E+06	3.28E+06	mmq	area sezione
u	=	7300.00	7300.00	7300.00	7300.00	mm	perimetro della sezione
t	=	449	449	449.3	449.3	mm	spessore sezione cava
Ω	=	1.84E+06	1.84E+06	1.84E+06	1.84E+06	mmq	area racchiusa dalla fibra media
u _m	=	5503	5503	5503	5503	mm	perimetro medio del nucleo resistente
$\omega_{ m sw}$	=	0.10	0.10	0.10	0.10		% meccanica di armatura trasversale
ω_{sl}	=	0.12	0.12	0.12	0.12		% meccanica di armatura longitudinale
ν	=	0.5	0.5	0.5	0.5		coeff. di riduzione f _{cd}
f ' _{cd}	=	9.41	9.41	9.41	9.41	MPa	resistenza a compressione del cls ridotta
$\sigma_{\sf cp}$	=	0.000	0.000	0.000	0.000	MPa	tensione media calcestruzzo <=0,2f _{cd}
ας	=	1.0000	1.0000	1.0000	1.0000		
cot⊕	=	2.50	2.50	1.20	1.20		Valore di calcolo (0.4≤cot⊕*≤2,5)
T_Rcd	=	5368.85	5368.85	7657.21	7657.21	kNm	resistenza offerta dal calcestruzzo
T_Rsd	=	7396.59	7396.59	3550.36	3550.36	kNm	resistenza offerta dall'armatura trasversale
T_{RId}	=	1446.43	1446.43	3013.40	3013.40	kNm	resistenza offerta dall'armatura longitudinale
T _{Rd}	=	1446.43	1446.43	3013.40	3013.40	kNm	Resistenza a torsione
T_Sd	=	37.06	185.182	2282.826	2292.5966	kN	Torsione di caloclo
FS	=	39.03	7.81	1.32	1.31		
		ok	ok	ok	ok		
Verifica interazioni Sollecitazioni	one 1	aglio - Torsion	e				
cot⊕	=	2.500	2.500	1.200	1.200		valore di calcolo
V_{Ed}	=	5131.51	4267	2683.665	3089.8437	kN	taglio di caloclo
T_{Ed}	=	37.06	185.182	2282.826	2292.5966	kN	torsione di caloclo
Reistenze							
V_{Rcd}	=	9014.83	9014.83	12857.22	12857.22	kN	Resistenza a taglio lato cls
T_Rcd	=	5368.85	5368.85	7657.21	7657.21	kNm	Resistenza a torsione lato cls
Verifica							
$T_{Ed}/T_{Rcd}+V_{Ed}/V_{Rcd}$	=	0.58	0.51	0.51	0.54		se <1 verifica soddisfatta
		ok	ok	ok	ok		

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata DX Pagina 102

Nome file: VI15-F-

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata DX

Pagina 103

Nome file:
VI15-FCL003_C.00_relazione_calcolo_impalcato_DX.doc.

9. VERIFICA TRASVERSALE DELLA SOLETTA

9.1 Modello locale e condizioni di carico

Per il calcolo statico della soletta è stato redatto un modello numerico considerando una porzione di impalcato lungo 10 m, ed una larghezza totale rappresentativa della prima campata, con larghezza di 13.50 m. All'interfaccia soletta-travi principali viene introdotto un vincolo di cerniera. I carichi introdotti nel modello sono:

- il peso proprio della soletta (PP)
- i permanenti portati (PERM)
- i carichi da traffico dello schema LM1 ed LM2, posizionati in base alle superfici di influenza che determinano i momenti flettenti massimi e minimi in mezzeria dei vari campi centrali ed in prossimità dello sbalzo.

Le suddette condizioni di carico elementari sono state combinate con i coefficienti riportati nei paragrafi precedenti, per il calcolo delle sollecitazioni di progetto di Stato limite ultimo e di esercizio.

E' stato redatto anche un secondo modello locale relativo alla zona di soletta a sbalzo posta in prossimità della spalla A, dove in corrispondenza del traverso la parte a sbalzo presenta una profondità maggiore. La sezione trasversale verificata è una striscia di larghezza unitaria e di altezza 250 mm. Si utilizzano 2 tipologie di armatura:

φ20/200 sup, φ20/200 infφ20/100 sup, φ20/200 infper 5 m dal filo traverso della spalla A. (TIPO 2)

9.2 Sollecitazioni di calcolo allo SLU e allo SLE

Le sollecitazioni, agenti nelle sezioni in asse alle travi longitudinali ed in mezzeria, sono riassunte nella tabella seguente.

		Impalc. Corrente	Zona spalla	
		My/Sy	My / Sy	
	App., Mmax	86.64	200	kNm
	Mezz., Mmin	-32.59		kNm
SLU	Mezz., Mmax	22.26		kNm
	App, Vmax	261	329	kN
	Mezz, Vmax	226		kN
	App., Mmax	64.18	148.4	kNm
SLE c.	Mezz., Mmin	-24.14		kNm
	Mezz., Mmax	16.36		kNm
	App., Mmax	52.66	119.1	kNm
SLE f.	Mezz., Mmin	-17.72		kNm
	Mezz., Mmax	12.02		kNm

Progetto Esecutivo

Relazione di Calcolo Impalcato - Carreggiata DX

Opera: Viadotto Arenella III

Pagina 104

Nome file: VI15-F-

 ${\tt CL003_C.00_relazione_calcolo_impalcato_DX.doc}.$

9.3 Verifiche a SLU e SLE per flessione. Armatura TIPO 1.

DATI GENERALI SEZIONE IN C.A. NOME SEZIONE: Soletta Corrente

(Percorso File: C:\LUSAS145\Projects\Favarella\modelli\Soletta_Corrente.sez)

Descrizione Sezione: Soletta corrente

Metodo di calcolo resistenza: Stati Limite Ultimi Normativa di riferimento: N.T.C. Tipologia sezione: Sezione predefinita Forma della sezione: Rettangolare Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Poco aggressive Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Zona non sismica Posizione sezione nell'asta: In zona critica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CONGLOMERATO -Classe: C32/40

Resis. compr. di calcolo fcd : 188.00 daN/cm² Resis. compr. ridotta fcd': 94.00 daN/cm² Def.unit. max resistenza ec2 : 0.0020

Def.unit. ultima ecu: 0.0035

Diagramma tensione-deformaz. : Parabola-Rettangolo

Modulo Elastico Normale Ec : 336430 daN/cm² Coeff. di Poisson 0.20

31.00 daN/cm² Resis. media a trazione fctm:

Coeff. Omogen. S.L.E. : 15.0

Combinazioni Rare in Esercizio

Sc Limite : 199.20 daN/cm² Apert.Fess.Limite : Non prevista

Combinazioni Frequenti in Esercizio

Sc Limite : 199.20 daN/cm²

Apert.Fess.Limite : 0.200 mm

ACCIAIO Tipo: B450C

Resist. caratt. snervam. fyk: 4500.0 daN/cm² 4500.0 daN/cm² Resist. caratt. rottura ftk: Resist. snerv. di calcolo fyd: 3913.0 daN/cm² Resist. ultima di calcolo ftd: 3913.0 daN/cm² Deform. ultima di calcolo Epu: 0.068 Modulo Elastico 2000000 daN/cm² Ef : Diagramma tensione-deformaz. : Bilineare finito 1.00 daN/cm² Coeff. Aderenza ist. £1*£2: Coeff. Aderenza diff. ß1*ß2: 0.50 daN/cm² Comb.Rare Sf Limite : 3600.0 daN/cm²

CARATTERISTICHE GEOMETRICHE ED ARMATURE SEZIONE

100.0 cm Base: 25.0 cm Altezza:

 $5020 (15.7 \text{ cm}^2)$ Barre inferiori $5020 (15.7 \text{ cm}^2)$ Barre superiori

Copriferro barre inf.(dal baric. barre) : 6.0 cm Copriferro barre sup.(dal baric. barre) : 3.5 cm

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [daN] applicato nel baricentro (posit. se di compress.) N Coppia concentrata in daNm applicata all'asse \boldsymbol{x} baric. della sezione Mx con verso positivo se tale da comprimere il lembo sup. della sezione Taglio [daN] in direzione parallela all'asse y baric. della sezione Vν

N.Comb.	N	Mx	Vy	MT
1	Λ	-8664	10	
2	0	3259	10	0

DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III Relazione di Calcolo Impalcato - Carreggiata DX

Pagina 105

Nome file: VI15-F-

 ${\tt CL003_C.00_relazione_calcolo_impalcato_DX.doc}.$

N	Sforzo normale [daN] applicato nel baricentro (positivo se di compress.)
Mx	Coppia concentrata in daNm applicata all'asse x baricenrico della sezione
	con verso positivo se tale da comprimere il lembo superiore della sezione
My	Coppia concentrata in daNm applicata all'asse y baricentrico della sezione
	con verso positivo se tale da comprimere il lembo destro della sezione

N.Comb.	N	Mx
1	0	-6418
2	0	2414

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [daN] applicato nel baricentro (positivo se di compress.)
Mx	Coppia concentrata in daNm applicata all'asse x baricenrico della sezione
	con verso positivo se tale da comprimere il lembo superiore della sezione
My	Coppia concentrata in daNm applicata all'asse y baricentrico della sezione
	con verso positivo se tale da comprimere il lembo destro della sezione

N.Comb.	N	Mx
1	0	-5266
2	0	1772

RISULTATI DEL CALCOLO

Copriferro netto minimo barre longitudinali: 2.5 cm Interferro netto minimo barre longitudinali: 13.5 cm Copriferro netto minimo staffe: 1.7 cm

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

Ver	S = combinazione verificata / N = combin. non verificata
N	Sforzo normale assegnato [in daN] (positivo se di compressione)
Mx	Momento flettente assegnato [in daNm] riferito all'asse x baricentrico
N ult	Sforzo normale ultimo [in daN] nella sezione (positivo se di compress.)
Mx ult	Momento flettente ultimo [in daNm] riferito all'asse x baricentrico
Mis.Sic.	Misura sicurezza = rapporto vettoriale tra (N ult,Mx ult) e (N,Mx)
	Verifica positiva se tale rapporto risulta >=1.000
Yneutro	Ordinata [in cm] dell'asse neutro a rottura nel sistema di rif. X,Y,O sez.
x/d	Rapp. di duttilità a rottura misurato in presenza di sola flessione (travi)
C.Rid.	Coeff. di riduz. momenti per sola flessione in travi continue
	Area efficace barre inf. (per presenza di torsione)= 15.7 cm²
	Area efficace barre sup. (per presenza di torsione)= 15.7 cm²

N.Comb.	Ver	N	Mx	N ult	Mx ult	Mis.Sic.	Yneutro	x/d	C.Rid.
1	S	0	-8664	18	-12558	1.449	5.2	0.24	0.74
2	S	0	3259	-28	10626	3.261	21.3	0.19	0.70

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max ec 3/7				_	merato a co	_	e .'altezza ef:	ficace
Yc max	Or	dinata in	cm della f	ibra corris	sp. a ec ma	x (sistema	a rif. X,Y,O	
ef min					o (negativa			
Yf min					-	•	rif. X,Y,O	sez.)
ef max					-		ompressione)	
Yf max	Or	dinata in	cm della b	arra corri:	sp. a ef ma	x (sistema	rif. X,Y,O	sez.)
N.Comb.	ec max	ec 3/7	Yc max	ef min	Yf min	ef max	Yf max	
1 2	0.00350 0.00350	-0.00373 -0.00668		-0.00055 0.00017	6.0 21.5		21.5 6.0	

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata DX

Pagina 106

Nome file: VI15-F-

 $CL003_C.00_relazione_calcolo_impalcato_DX.doc.$

Ver Sc max Yc max Sc min Yc min Sf min Yf min Dw Eff. Ac eff. Af eff. D barre	Massima to Ordinata Minima te Ordinata Minima te Ordinata Spessore Area di carea Barr	ensione di in cm dell nsione di in cm dell nsione di in cm dell di conglom longl. [cm ² te tese di	compress a fibra compre	s.(+) ned corrisp. .(+) ned corrisp. (-) ned corrisp. m] in zon a tesa ac [cm²] ric	l conglom a Sc max conglom. a Sc min l'acciaic a Sf min na tesa c derente a cadente n	on verificat a. in fase f c (sistema n in fase f c (sistema n c [daN/cm²] c (sistema n considerata clle barre (lell'area ef caci (verifi	essurata rif. X,Y, essurata rif. X,Y, rif. X,Y, aderente (verifica ficace(v	(0) ([daN (0) (0) a lle a fess	[/cm²] e barre
N.Comb. Ver S	c max Yc m	ax Sc min	Yc min	Sf min	Yf min	Dw Eff. Ac	eff. Af	eff.	Dbarre
1 S 2 S		.0 0.0		-2201 -933	6.0 21.5	17.5 20.0	870 919	15.7 15.7	22.0
COMBINAZIONI RARE	IN ESERCIZ	IO - VER	IFICA API	ERTURA FI	ESSURE				
Ver ScImax ScI_min Sc Eff K3 Beta12 Eps Srm Ap.fess.	Massima to Minima te Tensione Coeff. di Prodotto Deformazi Distanza	ensione ne nsione nel	l conglome conglome dello spe = 0,25 di adere ia media m tra le	merato ne erato ne essore es (Scmin + enza Beta tra le s fessure	ello STAT llo STATO fficace n ScEff)/(al*Beta2 fessure	on verificat O I non fes O I non fes ello STATO 2 Scmin)	surato [d	daN/cm	
N.Comb. Ver	ScImax	ScImin S	c Eff	K3	Beta12	Eps	Srm	. Ap	Fess.
1 S 2 S	51.2 18.7	-49.6 -19.3	0.0	0.125 0.125	1.0	0.000671 0.000187	149 203		0.170 0.064
COMBINAZIONI FREQ	UENTI IN ES	ERCIZIO -	VERIFI	CA MASSII	ME TENSIC	NI NORMALI			
N.Comb. Ver S	c max Yc m	ax Sc min	Yc min	Sf min	Yf min	Dw Eff. Ac	eff. Af	eff.	Dbarre
1 S 2 S		.0 0.0				8.7 9.2	870 919	15.7 15.7	22.0 22.0
COMBINAZIONI FREQ	UENTI IN ES	ERCIZIO -	VERIFIC	CA APERT	URA FESSU	TRE			
N.Comb. Ver	ScImax	ScImin S	c Eff	К3	Beta12	Eps	Srm	Ap.	Fess.
1 S 2 S	42.0 13.7		-11.9 -3.9	0.162 0.159	0.5 0.5	0.000641 0.000137	166 219		0.180 0.051

9.4 Verifiche a SLU e SLE per flessione. Armatura TIPO 2.

DATI GENERALI SEZIONE IN C.A. NOME SEZIONE: SolettaSpalla

 $(Percorso\ File:\ C: \LUSAS145 \backslash Projects \backslash Favarella \backslash modelli \backslash SolettaSpalla.sez)$

Descrizione Sezione: Soletta prima campata. Sbalzo. Metodo di calcolo resistenza: Stati Limite Ultimi Normativa di riferimento: N.T.C. Tipologia sezione: Sezione predefinita Forma della sezione: Rettangolare Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Poco aggressive Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Zona non sismica Posizione sezione nell'asta: In zona critica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CONGLOMERATO - Classe: C32/40

Resis. compr. di calcolo fcd : 188.00 daN/cm^2

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

```
Opera: Viadotto Arenella III
```

Relazione di Calcolo Impalcato - Carreggiata DX

Pagina 107

Nome file: VI15-F-

CL003_C.00_relazione_calcolo_impalcato_DX.doc.

```
Resis. compr. ridotta fcd':
                                                          94.00 daN/cm<sup>2</sup>
                    Def.unit. max resistenza ec2 :
                                                         0.0020
                    Def.unit. ultima ecu:
                                                         0.0035
                    Diagramma tensione-deformaz. :
                                                         Parabola-Rettangolo
                    Modulo Elastico Normale Ec :
                                                         336430 daN/cm<sup>2</sup>
                    Coeff. di Poisson
                                                           0.20
                    Resis. media a trazione fctm:
                                                         31.00 daN/cm<sup>2</sup>
                        Coeff. Omogen. S.L.E. :
                                                          15.0
         Combinazioni Rare in Esercizio
                                                       199.20 daN/cm<sup>2</sup>
                                       Sc Limite :
                               Apert.Fess.Limite:
                                                         Non prevista
         Combinazioni Frequenti in Esercizio
                                                       199.20 daN/cm<sup>2</sup>
                                       Sc Limite :
                               Apert.Fess.Limite :
                                                          0.200 mm
               - Tipo: B450C
  ACCIAIO
                                                     4500.0 daN/cm<sup>2</sup>
4500.0 daN/cm<sup>2</sup>
                    Resist. caratt. snervam. fyk:
                    Resist. caratt. rottura ftk:
                    Resist. snerv. di calcolo fyd:
                                                         3913.0 daN/cm<sup>2</sup>
                    Resist. ultima di calcolo ftd:
                                                        3913.0 daN/cm<sup>2</sup>
                    Deform. ultima di calcolo Epu:
                                                          0.068
                                        Ef :
                                                      2000000 daN/cm<sup>2</sup>
                    Modulo Elastico
                    Diagramma tensione-deformaz. :
                                                       Bilineare finito
                                                        1.00 daN/cm<sup>2</sup>
0.50 daN/cm<sup>2</sup>
                    Coeff. Aderenza ist. £1*£2:
                    Coeff. Aderenza diff. £1*£2:
                                                       3600.0 daN/cm<sup>2</sup>
                         Comb.Rare
                                       Sf Limite :
CARATTERISTICHE GEOMETRICHE ED ARMATURE SEZIONE
                      100.0 cm
        Base:
        Altezza:
                      25.0 cm
                                                                     5Ø20 (15.7 cm<sup>2</sup>)
        Barre inferiori
        Barre superiori
                                                                    10Ø20 (31.4 cm<sup>2</sup>)
                                                     6.5 cm
        Copriferro barre inf.(dal baric. barre) :
        Copriferro barre sup.(dal baric. barre) :
                                                       3.5 cm
ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA
      M
                    Sforzo normale [daN] applicato nel baricentro (posit. se di compress.)
      Mx
                    Coppia concentrata in daNm applicata all'asse x baric. della sezione
                    con verso positivo se tale da comprimere il lembo sup. della sezione
                    Taglio [daN] in direzione parallela all'asse y baric. della sezione
      Vν
    N.Comb.
                    0 -20000
                                           1.0
COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA
                    Sforzo normale [daN] applicato nel baricentro (positivo se di compress.)
                    Coppia concentrata in daNm applicata all'asse \boldsymbol{x} baricenrico della sezione
      Μx
                    con verso positivo se tale da comprimere il lembo superiore della sezione
                    Coppia concentrata in daNm applicata all'asse y baricentrico della sezione
                    con verso positivo se tale da comprimere il lembo destro della sezione
    N. Comb.
                   N
```

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

-14837

N Sforzo normale [daN] applicato nel baricentro (positivo se di compress.)

Mx Coppia concentrata in daNm applicata all'asse x baricenrico della sezione
con verso positivo se tale da comprimere il lembo superiore della sezione

My Coppia concentrata in daNm applicata all'asse y baricentrico della sezione
con verso positivo se tale da comprimere il lembo destro della sezione

N.Comb.	N	Mx
1	0	-11910

0

1

DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata DX

Pagina 108

Nome file:

VI15-F-

 ${\tt CL003_C.00_relazione_calcolo_impalcato_DX.doc}.$

)

RISULTATI DEL CALCOLO

Copriferro netto minimo barre longitudinali: 2.5 cm $\,$ Interferro netto minimo barre longitudinali: 8.3 cm Copriferro netto minimo staffe: 1.7 cm

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

Ver	S = combinazione verificata / N = combin. non verificata
N	Sforzo normale assegnato [in daN] (positivo se di compressione)
Mx	Momento flettente assegnato [in daNm] riferito all'asse x baricentrico
N ult	Sforzo normale ultimo [in daN] nella sezione (positivo se di compress.)
Mx ult	Momento flettente ultimo [in daNm] riferito all'asse x baricentrico
Mis.Sic.	Misura sicurezza = rapporto vettoriale tra (N ult,Mx ult) e (N,Mx)
	Verifica positiva se tale rapporto risulta >=1.000
Yneutro	Ordinata [in cm] dell'asse neutro a rottura nel sistema di rif. X,Y,O sez.
x/d	Rapp. di duttilità a rottura misurato in presenza di sola flessione (travi
C.Rid.	Coeff. di riduz. momenti per sola flessione in travi continue
	Area efficace barre inf. (per presenza di torsione)= 15.7 cm²
	Area efficace barre sup. (per presenza di torsione)= 31.4 cm²
N.Comb. Ver	N Mx N ult Mx ult Mis.Sic. Yneutro x/d C.Rid.

N.Comb	. Ver	N	Mx	N ult	Mx ult	Mis.Sic.	Yneutro	x/d	C.Rid.
1	S	0	-20000	19	-22287	1.114	7.3	0.34	0.86

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. uni	t. massima del cong	lomerato a compressione	е
ec 3/7	Deform. uni	t. del conglomerato	nella fibra a 3/7 del:	l'altezza efficace
Yc max	Ordinata in	n cm della fibra cor	risp. a ec max (sistema	a rif. X,Y,O sez.)
ef min	Deform. uni	lt. minima nell'accia	aio (negativa se di tra	azione)
Yf min	Ordinata ir	n cm della barra cor	risp. a ef min (sistema	a rif. X,Y,O sez.)
ef max	Deform. uni	lt. massima nell'acc	iaio (positiva se di c	ompressione)
Yf max	Ordinata in	n cm della barra cor	risp. a ef max (sistema	a rif. X,Y,O sez.)
N.Comb.	ec max ec 3/7	7 Yc max ef min	n Yf min ef max	Yf max
1	0.00350 -0.00164	0.0 0.0003	6.5 -0.00681	21.5

COMBINAZIONI RARE IN ESERCIZIO - VERIFICA MASSIME TENSIONI NORMALI

```
S = combinazione verificata / N = combin. non verificata
              Massima tensione di compress.(+) nel conglom. in fase fessurata ([daN/cm²]
 Sc max
 Yc max
              Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)
  Sc min
              Minima tensione di compress.(+) nel conglom. in fase fessurata ([daN/cm^2]
  Yc min
              Ordinata in cm della fibra corrisp. a Sc min (sistema rif. X,Y,O)
              Minima tensione di trazione (-) nell'acciaio [daN/cm²]
 Sf min
 Yf min
              Ordinata in cm della barra corrisp. a Sf min (sistema rif. X,Y,O)
 Dw Eff.
              Spessore di conglomerato [cm] in zona tesa considerata aderente alle barre
              Area di congl. [cm²] in zona tesa aderente alle barre (verifica fess.)
 Ac eff.
 Af eff.
              Area Barre tese di acciaio [cm²] ricadente nell'area efficace(verifica fess.)
              Distanza media in cm tra le barre tese efficaci (verifica fess.)
 D barre
N.Comb. Ver Sc max Yc max Sc min Yc min Sf min Yf min Dw Eff. Ac eff. Af eff. Dbarre
```

-2654

6.5

17.5

762

31.4

9.7

COMBINAZIONI RARE IN ESERCIZIO - VERIFICA APERTURA FESSURE

0.0 0.0

S 147.2

Ver	S = combinazione verificata / N = combin. non verificata
ScImax	Massima tensione nel conglomerato nello STATO I non fessurato [daN/cm²]
ScI_min	Minima tensione nel conglomerato nello STATO I non fessurato [daN/cm²]
Sc Eff	Tensione al limite dello spessore efficace nello STATO I [daN/cm²]
K3	Coeff. di normativa = 0,25 (Scmin + ScEff)/(2 Scmin)
Beta12	Prodotto dei Coeff. di aderenza Betal*Beta2
Eps	Deformazione unitaria media tra le fessure
Srm	Distanza media in mm tra le fessure
Ap.fess.	Apertura delle fessure in mm = 1,7*Eps*Srm

0.0

Progetto Esecutivo

Opera: Viadotto Arenella III	ı
------------------------------	---

Relazione di Calcolo Impalcato - Carreggiata DX Pagina 109

Nome file: VI15-F-

	N.Comb.	Ver	ScImax	ScImin	Sc	Eff	К3	Beta12	Eps	Srm	Ap.Fess.
	1	S	113.9	-98.9		0.0	0.125	1.0	0.001196	94	0.190
COME	BINAZIONI	FREQU	ENTI IN I	ESERCIZIO	-	VERIFIC	CA MASSI	ME TENSIO	NI NORMALI		
	N.Comb.	Ver Sc	max Yc	max Sc m	in	Yc min	Sf min	Yf min	Dw Eff. Ac	eff. Af	eff. Dbarre
	1	s 1	18.1	0.0 0	. 0	0.0	-2130	6.5	7.6	762	31.4 9.7
COMBINAZIONI FREQUENTI IN ESERCIZIO - VERIFICA APERTURA FESSURE											
	N.Comb.	Ver	ScImax	ScImin	Sc	Eff	K3	Beta12	Eps	Srm	Ap.Fess.
	1	S	91.4	-79.4	- 2	27.3	0.168	0.5	0.000984	102	0.170

DAL KM 44+000 ALLO SVINCOLO CON L'A19

Progetto Esecutivo

Opera: Viadotto Arenella III

Relazione di Calcolo Impalcato - Carreggiata DX

Pagina 110

Nome file: VI15-F-

CL003 C.00 relazione calcolo impalcato DX.doc.

9.5 Verifica a taglio

La verifica a taglio è riportata nei paragrafi seguenti.

```
V_{sd} =
                                                                   329.00 kN
                                                                     391.3 N/mm<sup>2</sup>
                                                   f_{yd} =
                                                   f_{ck} =
                                                                       33.2 N/mm<sup>2</sup>
                                                                                                  C32/40
                                                                     18.81 N/mm<sup>2</sup>
                                                   f_{cd} =
                                                   f'_{cd} =
                                                                       9.41 N/mm<sup>2</sup>
                                                                                             1 \le \text{ctg } \theta \le 2.5
                                                \cot \theta =
                                                                       2.50
                                                     d =
                                                                        160 mm
                                                                                                  altezza utile minima
                                                    b_c =
                                                                      1000 mm
                                                                                                  Base sezione
                                                                            8 mm
                                                    φ<sub>w</sub> =
                                                                          45
                                                     \alpha =
                                           n bracci =
                                                                            5
                                                                       92.5 mm
                                                                        251 mm<sup>2</sup>
                                                  A_{sw} =
                                                                     2.717 mm<sup>2</sup>/mm
                                                A_{sw}/s=
                                                   \alpha_c =
                                                                            1 membrature non compresse
                                                    \phi_1 =
                                                                          20 mm
                               n ferri long. tesi =
                                                                            5
                                                                   1570.8 mm<sup>2</sup>
                                  \rho_l = A_{sl} / (b_w d) =
                                                                     0.010
                                k = 1 + (200/d)^{1/2} =
                                                                       2.00
                                                                            0 N/mm<sup>2</sup>
                       \sigma_{cp} = v_{min} = 0.035 \text{ k}^{3/2} f_{ck}^{-1/2} =
                                                                       0.57 N/mm<sup>2</sup>
           V_{Rdmin} = (v_{min} + 0.15 \sigma_{cp}) b_w d =
                                                                     91.26 kN
V_{Rd} = { 0.18 k (100 \rho_l f<sub>ck</sub>)<sup>1/3</sup> + \sigma_{cp} } b<sub>w</sub> d >=V_{Rdmin}
                                                                                                         183.99 kN
                   V_{Rcd} = 0.9 d bw \alpha_c f'cd (cot \alpha + cot \theta) / (1+cot<sup>2</sup> \theta) =
                                                                                                        653.93 kN
                              V_{Rsd} = 0.9 d A_{sw} / s f_{vd} (cot \alpha + cot \theta ) sin \alpha =
                                                                                                        378.90 kN
```

 $V_{Rd} = min(V_{Rcd}, V_{Rsd}) =$

378.90 kN