

ANAS S.p.A.

anas Direzione Progettazione e Realizzazione Lavori

S.S. N. 9 "VIA EMILIA" VARIANTE DI CASALPUSTERLENGO ED ELIMINAZIONE PASSAGGIO A LIVELLO SULLA S.P. EX S.S. N.234

PROGETTO ESECUTIVO

IF01

IF - MURO DI SOSTEGNO OS07 - ASSE85

RELAZIONE TECNCIA E DI CALCOLO - TIPO 1

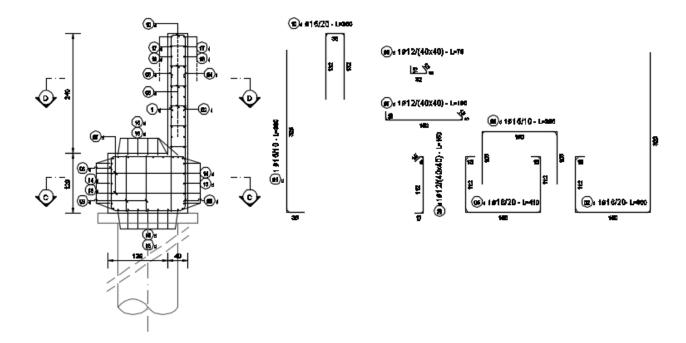
CODICE PR	OGETTO LIV. PROG. N. PROG.	NOME FILE IF01-T00OS07STRRE01_A.d	REVISIONE	SCALA:		
COMI	E 1701	CODICE T 0 0 OS 0 7	STRRE0	1 A		
D				·		
С						
В						
Α	EMISSIONE		GIUGNO 2018	ING. GIUSEPPE CRISÀ	PROF. ING. LUIGI MONTERISI	ING. VALERIO BAJETTI
REV.	DESCRIZIONE		DATA	REDATTO	VERIFICATO	APPROVATO

SOMMARIO

1	PREMESSA	4
2	DESCRIZIONE DELLE OPERE	4
3	UBICAZIONE DELL'OPERA	5
4	NORMATIVA DI RIFERIMENTO	6
5	UNITA' DI MISURA	6
6	MATERIALI	7
	6.1 Calcestruzzo	7
	6.1.1 Calcestruzzo per opere di sottofondazione	7
	6.1.2 Calcestruzzo per pali di fondazione (UNI 11104-2016)	
	6.1.3 Calcestruzzo per zattera di fondazione (UNI 11104-2016)	8
	6.1.4 Calcestruzzo per pareti in elevazione (UNI 11104-2016)	9
	6.2 Acciaio	9
	6.2.1 Acciaio per barre di armatura lenta	
7	CARATTERIZZAZIONE GEOTECNICA DEI TERRENI	10
8	ZONIZZAZIONE E CARATTERIZZAZIONE SISMICA	14
	8.1 Identificazione della località e dei parametri sismici generali	14
	8.2 Definizione della strategia progettuale	15
	8.3 Parametri numerici sismici	16
	8.4 Categoria dei terreni di fondazione e categoria topografica	17
	8.5 Categoria dei terreni di fondazione e categoria topografica	17
	8.6 Fattori di struttura	17
	8.6.1 Definizione dello spettro di progetto	18
	8.7 Definizione dei coefficienti sismici di calcolo	21
9	ANALISI DEI CARICHI	22
	9.1 Peso proprio delle strutture in cemento armato	22
	9.2 Spinta dei terreni a tergo dell'opera di sostegno	22
	9.3 Spinta dei sovraccarichi a tergo dell'opera di sostegno	22
	9.4 Azione sismica	23
	9.4.1 Azione inerziale delle masse	23
	9.5 Sovraspinta dinamica dei terreni	23
1(0 COMBINAZIONI DI CARICO	24
	10.1 Combinazioni di carico allo Stato Limite di Esercizio – Combinazioni quasi- permai 24	nenti
	10.2 Combinazioni di carico allo Stato Limite di Esercizio – Combinazioni frequenti	24
	10.3 Combinazioni di carico allo Stato Limite di Esercizio – Combinazioni caratteristiche.	24
	10.4 Combinazioni di carico allo Stato Limite Ultimo statiche	25
	10.5 Combinazione di carico sismiche	25
	10.6 Definizione dei coefficienti di partecipazione e riepilogo delle combinazioni	26
1	1 VALUTAZIONE DELLE AZIONI SOLLECITANTI	
	11.1 Dati di input	
	11.2 Azioni sollecitanti caratteristiche allo spiccato del muro frontale	
	11.3 Azioni sollecitanti caratteristiche alla base della zattera	
	11.4 Azioni sollecitanti di calcolo allo spiccato del muro frontale	
	11.5 Azioni sollecitanti di calcolo alla base della zattera	
12	2 SEZIONE DI SPICCATO DEL MURO FRONTALE – VERIFICHE STRUTTURALI	

	12.1	Sezione ed armatura di verifica	36
	12.2	Verifica allo Stato Limite di limitazione delle tensioni	36
	12.2.1	Combinazione Quasi Permanente	36
	12.2.2	2 Combinazione frequente	37
	12.2.3	Combinazione Caratteristica	38
	12.3	Verifica allo Stato Limite di fessurazione	39
	12.4	Verifica allo Stato Limite Ultimo per pressoflessione	40
	12.5	Verifica allo Stato Limite Ultimo per taglio	
13	PALI	DI FONDAZIONE – VALUTAZIONE DELLE AZIONI SOLLECITANTI	42
	13.1	Azioni sollecitanti di calcolo sul singolo palo di fondazione trasmesse dal muro	42
	13.2	Azioni sollecitanti sul singolo palo connesse alla deformabilità orizzontale del terren	
	13.2.1	Valutazione della costante di reazione orizzontale del terreno	42
	13.2.2	Combinazione SLE – Quasi Permanente	45
	13.2.3	Combinazione SLE – Frequente	46
	13.2.4	·	
	13.2.5	Combinazione SLU – STR	48
	13.2.6	Combinazione SLV	49
	13.3	Azioni sollecitanti totali sul singolo palo	50
	13.3.1	• •	
	13.3.2	2 Combinazioni allo Stato Limite Ultimo	51
14	PALI	DI FONDAZIONE – VERIFICHE STRUTTURALI	52
	14.1	Sezione ed armatura di verifica	52
	14.2	Verifica allo Stato Limite di limitazione delle tensioni	52
	14.2.1	Combinazione Quasi Permanente	52
	14.2.2	2 Combinazione frequente	53
	14.2.3	Combinazione Caratteristica	54
	14.3	Verifica allo Stato Limite di fessurazione	55
	14.3.1	Combinazione allo Stato Limite di Esercizio – Quasi Permanente	55
	14.3.2	Combinazione allo Stato Limite di Esercizio – Frequente	56
		Verifica allo Stato Limite Ultimo per pressoflessione	
	14.4.1		
	14.4.2	2 Condizione sismica	58
	14.5	Verifica allo Stato Limite Ultimo per taglio	59
15	PALI	DI FONDAZIONE – VERIFICHE GEOTECNICHE	60
	15.1	Formulazioni adottate per la verifica del carico limite ultimo	60
	15.1.1		
	15.1.2	Palo in terreno incoerente	61
	15.2	Verifiche del carico limite ultimo	62
	15.2.1	Caratteristiche geotecniche dei terreni per il calcolo del carico limite ultimo	62
	15.2.2	Combinazione allo Stato Limite Ultimo – STR – Condizioni non drenate	63
	15.2.3		
	15.2.4	Combinazione allo Stato Limite Ultimo – GEO – Condizioni non drenate	67
	15.2.5		
	15.2.6		
		71	
	15.2.7		73
	15.3	Valutazione dell'efficienza dei pali in gruppo	
	15.4	Verifica di portanza orizzontale	
		•	_

	15.4.1	Combinazione allo Stato Limite Ultimo – STR	75
	15.4.2	Combinazione allo Stato Limite Ultimo – GEO	77
	15.4.3	Combinazione allo Stato Limite di Salvaguardia della Vita	79
16	ZATTI	ERA DI FONDAZIONE – VERIFICHE STRUTTURALI	81
	16.1	Stato Limite di Esercizio – Combinazione Quasi Permanente	82
	16.2	Stato Limite di Esercizio – Combinazione Frequente	82
	16.3	Stato Limite di Esercizio – Combinazione rara	82
	16.4	Stato Limite Ultimo – STR	82
	16.5	Stato Limite di Salvaguardia della Vita	82
17	VALID	AZIONE DEL CALCOLO	84
	17.1	Valutazione delle azioni sollecitanti	85
	17.1.1	Combinazione allo Stato Limite Ultimo – STR – Condizione non drenate	85
	17.1.2	Combinazione allo Stato Limite Ultimo – STR – Condizione drenate	86
	17.1.3	Combinazione allo Stato Limite di Salvaguardia della Vita - Condizione no	on drenate
		87	
	17.1.4	Combinazione allo Stato Limite di Salvaguardia della Vita – Condizione drei	nate 88
	17.2	Riepilogo delle azioni sollecitanti	89
18	SOTT	OSCRIZIONE DELL'ELABORATO DA PARTE DEL RIT P	90


PREMESSA

La presente relazione di calcolo riporta la descrizione, il dimensionamento e le verifiche strutturali e geotecniche del muro di sostegno in cemento armato gettato in opera lungo l'asse 80 tra la progressiva km 6+389,97 e la progressiva km 6+490,30 nell'ambito del progetto esecutivo "S.S. n.9 Emilia – Variante di Casalpusterlengo ed eliminazione passaggio a livello sulla S.P. ex S.S. N.234".

2 DESCRIZIONE DELLE OPERE

I muri di sostegno dei contenimenti dei rilevati in corrispondenza delle spalle risultano così costituiti:

- Muro frontale di spessore pari a 40 cm e altezza massima pari a 240 cm
- Zattera di fondazione di larghezza pari a **160 cm** e altezza pari a **120 cm** con piede di monte di larghezza pari a **120 cm** (non è presente piede di valle)
- Fondazioni profonde realizzate mediante un'unica fila longitudinale di pali in cemento armato Ø1200, di lunghezza pari a 13,00 m e con interasse longitudinale pari a 360 cm.

3 UBICAZIONE DELL'OPERA

Il muro lungo l'asse 80 tra le progressive km 6+389,97 e km 6+490,30 è ubicato planimetricamente come mostrato nell'immagine successiva:

4 NORMATIVA DI RIFERIMENTO

La presente relazione è stata redatta in osservanza delle seguenti Normative Tecniche:

- Legge 05/01/1971 n.1086 → Norme per la disciplina delle opere in conglomerato cementizio armato, normale e precompresso ed a struttura metallica
- Legge 02/02/1974 n. 64 → Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche
- **DM 14/01/2008** → Nuove Norme Tecniche per le Costruzioni
- Circolare 02/02/2009 n. 617/C.S.LL.PP. →Istruzioni per l'applicazione delle "Nuove Norme Tecniche per le Costruzioni" di cui al DM 14/01/2008
- UNI EN 1992-1 (Eurocodice 2 Parte 1) → Progettazione delle strutture in calcestruzzo -Regole generali
- UNI EN 1992-2 (Eurocodice 2 Parte 2) → Progettazione delle strutture in calcestruzzo Ponti
- UNI EN 1998-5 (Eurocodice 8) Gennaio 2015 → Progettazione delle strutture per la resistenza sismica Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici
- UNI EN 206-1:2006 → Calcestruzzo Specificazione, prestazione e conformità
- **UNI 11104** → Calcestruzzo Specificazione, prestazione, produzione e conformità Istruzioni complementari per l'applicazione della EN 2016-1
- Servizio Tecnico Centrale della Presidenza del Consiglio Superiore dei LL.PP. Linee guida sul calcestruzzo strutturale

5 UNITA' DI MISURA

Nei calcoli è stato fatto uso delle seguenti unità di misura:

per i carichi: kN/m², kN/m, kN

per i momenti: kNm
 per i tagli e sforzi normali: kN
 per le tensioni: N/mm²
 per le accelerazioni: m/sec²

6 **MATERIALI**

6.1 **CALCESTRUZZO**

6.1.1 **CALCESTRUZZO PER OPERE DI SOTTOFONDAZIONE**

Per le opere di sottofondazione è stato previsto un calcestruzzo con classe di resistenza C12/15 e classe di esposizione X0.

Tale calcestruzzo non ha valenza strutturale e quindi non se ne riportano le caratteristiche meccaniche.

6.1.2 CALCESTRUZZO PER PALI DI FONDAZIONE (UNI 11104-2016)

Per i pali di fondazione è stato previsto un calcestruzzo con classe di resistenza C25/30 con le seguenti caratteristiche meccaniche:

	FOGLIO DI CALCOLO NUMERO:	CA-07> REV 02
	TITOLO:	CARATTERISTICHE MECCANICHE DEL CALCESTRUZZO
	VERSIONE:	REVISIONE N.02 DEL 06/10/2017
	REALIZZATO DA:	ING. NICOLA LIGAS
Ingegneria del Territorio s.r.l.	VERIFICATO DA:	ING. VALERIO BAJETTI

VERIFICATO DA: ING. VALERIO BAJETTI										
CARATTERISTICHE MECCANICHE DEI CALCESTRUZZI AI SENSI DEL D.M. 14.01.2008										
CLASSE DI RESISTENZA			C25/30							
DESCRIZIONE CARATTERISTICA	FORMULA DI CALCOLO	RIF. CAP. NORMA	VALOF	VALORE DI APPLICAZIONE						
Resistenza caratteristica cubica a compressione			R _{ck}	30,00	[N/mm ²]					
Resistenza caratteristica cilindrica a compressione	[0,83*Rck]	11.2.10.1	f _{ck}	24,90	[N/mm ²]					
Resistenza cilindrica media a compressione a 28 gg	[fck+8]	11.2.10.1	f _{cm}	32,90	[N/mm ²]					
Resistenza di calcolo a compressione	[acc*fck/Yc]	4.1.2.1.1.1	f _{cd}	14,11	[N/mm ²]					
Resistenza media a trazione	[0,30*fck ^{2/3}]	11.2.10.2	f _{ctm}	2,56	[N/mm ²]					
Resistenza caratteristica a trazione	[0,70*fctm]	11.2.10.2	f _{ctk}	1,79	[N/mm ²]					
Resistenza di calcolo a trazione	[fctk/1,5]	4.1.2.1.1.2	f _{ctd}	1,19	[N/mm ²]					
Tensione massima di compressione del cls in esercizio (rara)	[0,60*fck]	4.1.2.2.5.1	бс тах	14,94	[N/mm ²]					
Tensione massima di compressione del cls in esercizio (quasi perm)	[0,45*fck]	4.1.2.2.5.1	бс тах	11,21	[N/mm ²]					
Modulo elastico istantaneo	[Ec=Ecm]	C4.1.2.2.5	Ec	31.447,16	[N/mm ²]					
Modulo elastico medio	[22.000*(fcm/10) ^{0,3}]	11.2.10.3	E _{cm}	31.447,16	[N/mm ²]					

Classe di esposizione: XC2 Classe di consistenza: **S4**

Rapporto minimo acqua / cemento: 0,60 Contenuto minimo di cemento: 300 kg/mc Diametro massimo degli inerti: 30 mm

Copriferro netto minimo: 60 mm

6.1.3 CALCESTRUZZO PER ZATTERA DI FONDAZIONE (UNI 11104-2016)

Per la zattera di fondazione è stato previsto un calcestruzzo con classe di resistenza C28/35 con le seguenti caratteristiche meccaniche:

	FOGLIO DI CALCOLO NUMERO:	CA-07> REV 02
	TITOLO:	CARATTERISTICHE MECCANICHE DEL CALCESTRUZZO
	VERSIONE:	REVISIONE N.02 DEL 06/10/2017
	REALIZZATO DA:	ING. NICOLA LIGAS
Ingegneria del Territorio s.r.l.	VERIFICATO DA:	ING. VALERIO BAJETTI

	CARATTERISTICHE MECCANICHE DEI CALCESTRUZZI AI SENSI DEL D.M. 14.01.2008 LASSE DI RESISTENZA C28/35								
DESCRIZIONE CARATTERISTICA	FORMULA DI CALCOLO	RIF. CAP. NORMA VALORE DI AP							
Resistenza caratteristica cubica a compressione			R_{ck}	35,00	[N/mm ²]				
Resistenza caratteristica cilindrica a compressione	[0,83*Rck]	11.2.10.1	f _{ck}	29,05	[N/mm ²]				
Resistenza cilindrica media a compressione a 28 gg	[fck+8]	11.2.10.1	f _{cm}	37,05	[N/mm ²]				
Resistenza di calcolo a compressione	[acc*fck/Yc]	4.1.2.1.1.1	f _{cd}	16,46	[N/mm ²]				
Resistenza media a trazione	[0,30*fck ^{2/3}]	11.2.10.2	f _{ctm}	2,83	[N/mm ²]				
Resistenza caratteristica a trazione	[0,70*fctm]	11.2.10.2	f _{ctk}	1,98	[N/mm ²]				
Resistenza di calcolo a trazione	[fctk/1,5]	4.1.2.1.1.2	f _{ctd}	1,32	[N/mm ²]				
Tensione massima di compressione del cls in esercizio (rara)	[0,60*fck]	4.1.2.2.5.1	бс тах	17,43	[N/mm ²]				
Tensione massima di compressione del cls in esercizio (quasi perm)	[0,45*fck]	4.1.2.2.5.1	бс тах	13,07	[N/mm ²]				
Modulo elastico istantaneo	[Ec=Ecm]	C4.1.2.2.5	Ec	32 588,11	[N/mm ²]				
Modulo elastico medio	[22.000*(fcm/10) ^{0,3}]	11.2.10.3	E _{cm}	32 588,11	[N/mm ²]				

Classe di esposizione: XC2 Classe di consistenza: S4

Rapporto minimo acqua / cemento: 0,60 • Contenuto minimo di cemento: 300 kg/mc Diametro massimo degli inerti: 30 mm

Copriferro netto minimo: 40 mm

6.1.4 CALCESTRUZZO PER PARETI IN ELEVAZIONE (UNI 11104-2016)

Per le pareti in elevazione è stato previsto un calcestruzzo con classe di resistenza C32/40 con le seguenti caratteristiche meccaniche:

	FOGLIO DI CALCOLO NUMERO:	CA-07> REV 02
	TITOLO:	CARATTERISTICHE MECCANICHE DEL CALCESTRUZZO
	VERSIONE:	REVISIONE N.02 DEL 06/10/2017
	REALIZZATO DA:	ING. NICOLA LIGAS
Ingegneria del Territorio s.r.l.	VERIFICATO DA:	ING. VALERIO BAJETTI

CARATTERISTICHE MECCANICHE DEI CALCESTRUZZI AI SENSI DEL D.M. 14.01.2008										
CLASSE DI RESISTENZA	LASSE DI RESISTENZA									
DESCRIZIONE CARATTERISTICA	FORMULA DI CALCOLO	RIF. CAP. NORMA	VALORE DI APPLICAZIONE							
Resistenza caratteristica cubica a compressione			R _{ck}	40,00	[N/mm ²]					
Resistenza caratteristica cilindrica a compressione	[0,83*Rck]	11.2.10.1	f _{ck}	33,20	[N/mm ²]					
Resistenza cilindrica media a compressione a 28 gg	[fck+8]	11.2.10.1	f _{cm}	41,20	[N/mm ²]					
Resistenza di calcolo a compressione	[acc*fck/Yc]	4.1.2.1.1.1	f _{cd}	18,81	[N/mm ²]					
Resistenza media a trazione	[0,30*fck ^{2/3}]	11.2.10.2	f _{ctm}	3,10	[N/mm ²]					
Resistenza caratteristica a trazione	[0,70*fctm]	11.2.10.2	f _{ctk}	2,17	[N/mm ²]					
Resistenza di calcolo a trazione	[fctk/1,5]	4.1.2.1.1.2	f _{ctd}	1,45	[N/mm ²]					
Tensione massima di compressione del cls in esercizio (rara)	[0,60*fck]	4.1.2.2.5.1	бс тах	19,92	[N/mm ²]					
Tensione massima di compressione del cls in esercizio (quasi perm)	[0,45*fck]	4.1.2.2.5.1	бс тах	14,94	[N/mm ²]					
Modulo elastico istantaneo	[Ec=Ecm]	C4.1.2.2.5	Ec	33.642,78	[N/mm ²]					
Modulo elastico medio	[22.000*(fcm/10) ^{0,3}]	11.2.10.3	E _{cm}	33.642,78	[N/mm ²]					

Classe di esposizione: XF4 Classe di consistenza: S4

Rapporto minimo acqua / cemento: 0,45 • Contenuto minimo di cemento: 360 kg/mc

• Contenuto minimo in aria: 4,0%

Diametro massimo degli inerti: 30 mm

Copriferro netto minimo: 40 mm

A favore di sicurezza le verifiche sono state condotte considerando le caratteristiche meccaniche di un calcestruzzo C28/35.

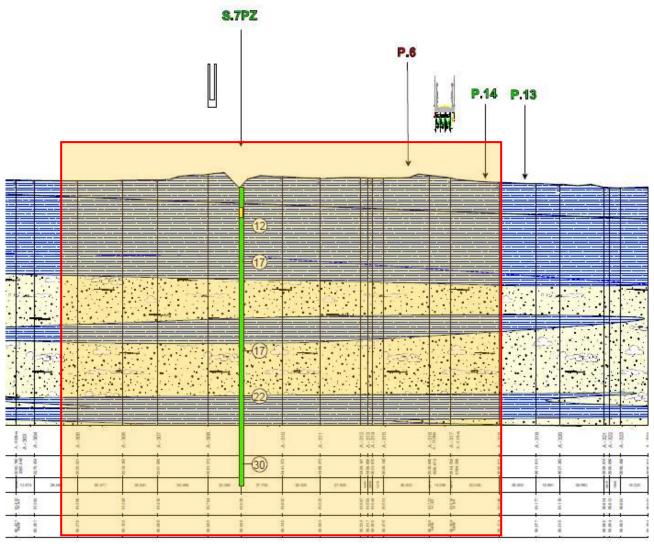
6.2 **ACCIAIO**

ACCIAIO PER BARRE DI ARMATURA LENTA

Per le barre di armatura lenta è stato previsto un acciaio del tipo B450C, con le seguenti caratteristiche meccaniche:

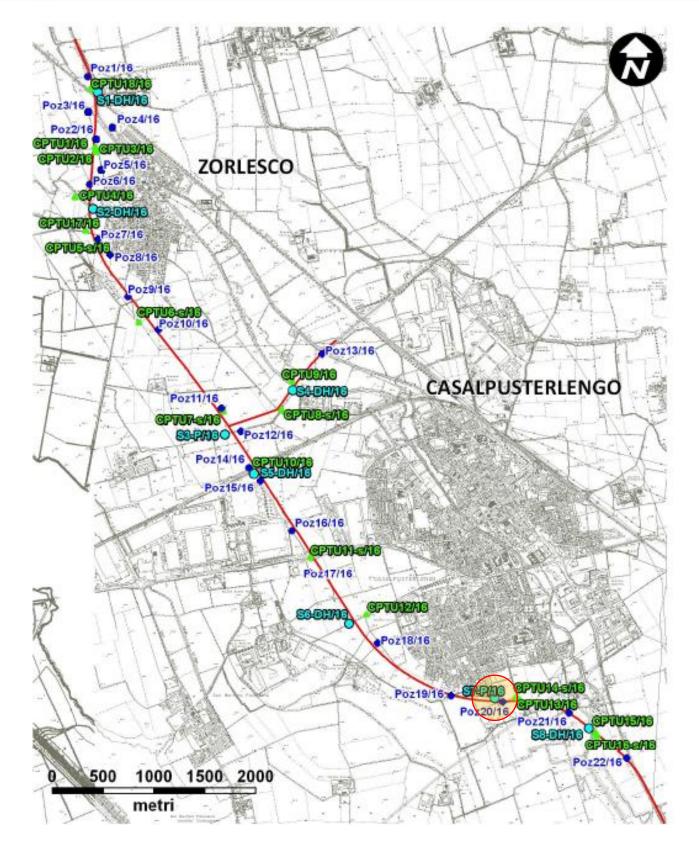
540,00 N/mm² (resistenza caratteristica a rottura) $f_{t,k}$ 450,00 N/mm² (tensione caratteristica di snervamento) 391,30 N/mm² $f_{y,d} =$ (tensione di snervamento di calcolo - $\gamma_c=1,15$)

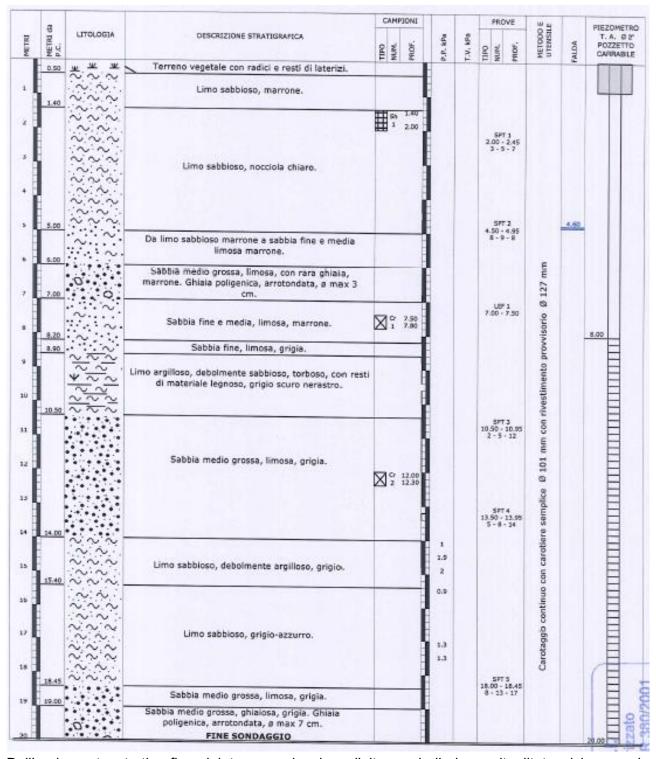
210.000,00 N/mm² (modulo elastico istantaneo)



CARATTERIZZAZIONE GEOTECNICA DEI TERRENI

Nell'immagine successiva è riportata lo stralcio del profilo geotecnico mediante il quale è possibile evincere la stratigrafia dei terreni:


La stratigrafia di riferimento è riscontrabile in corrispondenza del sondaggio **S.7PZ**. Ai fini delle verifiche geotecniche verrà considerato un numero di verticali indagate pari a **1**. Di seguito si riporta l'ubicazione del sondaggio di riferimento e la relativa stratigrafia:



Dall'andamento stratigrafico del terreno si evince l'alternarsi di due unita litotecniche con le seguenti caratteristiche geomeccaniche:

U1 - Terreni prevalentemente incoerenti

19,00 [kN/m³] Peso per unità di volume: $9,00 [kN/m^3]$ Peso per unità di volume del terreno immerso:

φ' 32,00 [°] Angolo di attrito interno (valore caratteristico):

27,00 [°] Angolo di attrito interno (valore di calcolo): φ'c

0,00 [kN/m²] Coesione efficace: c'

<u>U2 – Terreni prevalentemente coesivi</u>

19,50 [kN/m³] Peso per unità di volume:

c'

 $9,70 [kN/m^3]$

17,00 [kN/m²]

• Peso per unità di volume del terreno immerso:

• Coesione efficace (valore caratteristico):

Tensioni efficaci

27,00 [°] • Angolo di attrito interno (valore caratteristico):

• Angolo di attrito interno (valore di calcolo): = **22,00** [°]

13,60 [kN/m²] • Coesione efficace (valore di calcolo):

Tensioni totali

vedere tabella successiva • Coesione non drenata (valore caratteristico): $\mathbf{C}_{\mathbf{u}}$ vedere tabella successiva • Coesione non drenata (valore di calcolo): Cu'

 $0,00 [kN/m^2]$ Angolo di attrito: ϕ_{u}

Nella tabella successiva è riportata la variazione del valore della coesione non drenata in relazione alla profondità:

Tabella A - Variazione di Cu con la profondità

Profondità	Cu (valore paratteriction)	Cu (di calcolo)
m	(Kg/cm2)	(Kg/cm2)
2,00	0,054	0,043
4,00	0,156	0,125
6,00	0,259	0,207
8,00	0,362	0,289
10,00	0,464	0,371
12,00	0,567	0,454
14,00	0,670	0,536
16,00	0,772	0,618
18,00	0,875	0,700
20,00	0,978	0,782
22,00	1,080	0,864
24,00	1,183	0,946
28,00	1,286	1,028
28,00	1,388	1,111
30,00	1,491	1,193

Considerando il piano di posa della zattera di fondazione a quota -1,00 dal piano di campagna, la stratigrafia di progetto viene pertanto assunta come riportato nella tabella successiva:

STRATO	UNITA' LITOTECNICA	QUOTA INIZIALE [m]	QUOTA FINALE [m]	H _{strato} [m]	Y [kN/m³]	Y' [kN/m³]	φ' [ግ	φ'. [°]	φ _u [°]	c' [kN/m²]	c'。 [kN/m²]	c _u [kN/m²]	c _{uc} [kN/m²]
1	U2	0,00	6,00	6,00	19,50	9,70	27,00	22,18	-	0,00	0,00	12,90	9,21
2	U1	6,00	8,90	2,90	19,00	9,00	32,00	26,56	0,00	17,00	13,60	-	-
3	U2	8,90	10,50	1,60	19,50	9,70	27,00	22,18	-	0,00	0,00	44,70	31,93
4	U1	10,50	14,00	3,50	19,00	9,00	32,00	26,56	0,00	17,00	13,60	-	-
5	U2	14,00	18,45	4,45	19,50	9,70	27,00	22,18	-	0,00	0,00	77,95	55,68
6	U1	18,45	20,00	1,55	19,00	9,00	32,00	26,56	0,00	17,00	13,60	-	-

La falda di progetto è stata considerata a quota -1,00 m dal piano di campagna.

8

ZONIZZAZIONE E CARATTERIZZAZIONE SISMICA

8.1 **IDENTIFICAZIONE DELLA LOCALITÀ E DEI PARAMETRI SISMICI GENERALI**

oggetto del presente intervento ricade all'interno del territorio del Comune Casalpusterlengo sito nella provincia di Lodi:

Il sito è definito dalle seguenti coordinate geografiche:

Longitudine: 9,649419 Latitudine: 45,166026

8.2 **DEFINIZIONE DELLA STRATEGIA PROGETTUALE**

In riferimento al D.M. 14.01.2008 "Nuove Norme Tecniche per le Costruzioni", le opere sono progettate (in funzione dell'importanza strategica dell'infrastruttura) secondo i seguenti parametri:

Vita Nominale dell'opera:

50 anni

Tabella 2.4.I – Vita nominale V_N per diversi tipi di opere

	TIPI DI COSTRUZIONE				
1	Opere provvisorie – Opere provvisionali - Strutture in fase costruttiva ¹	≤ 10			
2	Opere ordinarie, ponti, opere infrastrutturali e dighe di dimensioni contenute o di importanza normale	≥ 50			
3	Grandi opere, ponti, opere infrastrutturali e dighe di grandi dimensioni o di importanza strategica	≥ 100			

Classe d'uso dell'opera:

I۷

2.4.2 CLASSI D'USO

In presenza di azioni sismiche, con riferimento alle conseguenze di una interruzione di operatività o di un eventuale collasso, le costruzioni sono suddivise in classi d'uso così definite:

Classe I: Costruzioni con presenza solo occasionale di persone, edifici agricoli.

Classe II: Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe d'uso III o in Classe d'uso IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi conseguenze rilevanti.

Classe III: Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso.

Classe IV: Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie con attività particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al D.M. 5 novembre 2001, n. 6792, "Norme funzionali e geometriche per la costruzione delle strade", e di tipo C quando appartenenti ad itinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico. Dighe connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica.

2,00 Coefficiente di utilizzo dell'opera:

Tab.	ab. 2.4.II – Valori del coefficiente d'uso C _U							
	CLASSE D'USO	I	II	III	IV			
	COEFFICIENTE C _U	0,7	1,0	1,5	2,0			

100 anni Vita di riferimento dell'opera:

PERIODO DI RIFERIMENTO PER L'AZIONE SISMICA 2.4.3

Le azioni sismiche su ciascuna costruzione vengono valutate in relazione ad un periodo di riferimento V_R che si ricava, per ciascun tipo di costruzione, moltiplicandone la vita nominale V_N per il coefficiente d'uso C_U:

$$V_{R} = V_{N} \cdot C_{U} \tag{2.4.1}$$

Qui di seguito si riporta la sintesi delle scelte progettuali adottati con i tempi di ritorno dell'azione sismica identificati in funzione del singolo stato limite.

8.3 **PARAMETRI NUMERICI SISMICI**

Nella tabella successiva sono riportati i parametri numerici sismici per i periodi di ritorno associati ai diversi Stati Limite:

SLAT0	T_R	a _g	F _o	T _c *
LIMITE	[anni]	[g]	[-]	[s]
SL0	60	0,037	2,574	0,226
SLD	101	0,046	2,538	0,256
SLV	949	0,100	2,542	0,297
SLC	1950	0,127	2,530	0,304

8.4 CATEGORIA DEI TERRENI DI FONDAZIONE E CATEGORIA TOPOGRAFICA

Ai sensi di quanto riportato nella Relazione Geotecnica e all'interno dei profili geotecnici allegati al presente progetto esecutivo il terreno di fondazione è classificato simicamente come di categoria C.

Categoria	.II – Categorie di sottosuolo Descrizione
A	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di V _{s,30} superiori a 800 m/s eventualmente comprendenti in superficie uno strato di alterazione, con spessore massimo pari a 3 m.
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di V _{s,30} compresi tra 360 m/s e 800 m/s (ovvero N _{SPT,30} > 50 nei terreni a grana grossa e c _{u,30} > 250 kPa nei terreni a grana fina).
C	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di $V_{s,30}$ compresi tra 180 m/s e 360 m/s (ovvero $15 < N_{SPT,30} < 50$ nei terreni a grana grossa e $70 < c_{u,30} < 250$ kPa nei terreni a grana fina).
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprieta meccaniche con la profondità e da valori di $V_{s,30}$ inferiori a 180 m/s (ovvero $N_{SPT,30} < 15$ nei terreni a grana grossa e $c_{u,30} < 70$ kPa nei terreni a grana fina).
E	Terreni dei sottosuoli di tipo C o D per spessore non superiore a 20 m, posti sul substrato di riferimento (con V _s > 800 m/s).

8.5 CATEGORIA DEI TERRENI DI FONDAZIONE E CATEGORIA TOPOGRAFICA

Considerando che il territorio si presenta essenzialmente pianeggiante e privo di significati salti di quota la categoria topografica del sito è stata assunta pari a categoria T₁.

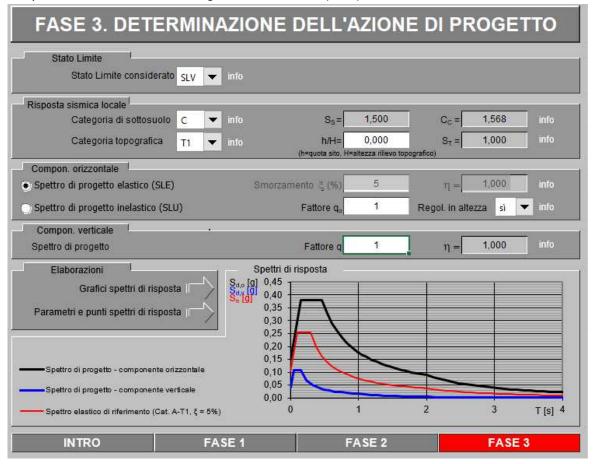
Categoria	Caratteristiche della superficie topografica
T1	Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤ 15°
T2	Pendii con inclinazione media i > 15°
Т3	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media $15^{\circ} \le i \le 30^{\circ}$
T4	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i > 30°

8.6 **FATTORI DI STRUTTURA**

A favore di sicurezza il calcolo e le verifiche sono stati effettuati in campo elastico.

Il fattore di struttura è stato pertanto posto pari a **q = 1,00**.

Lo spettro di progetto adottato sarà pertanto identico allo spettro elastico.



8.6.1 **DEFINIZIONE DELLO SPETTRO DI PROGETTO**

Nell'immagine successiva è riportata la determinazione dei parametri dello spettro di risposta valutato per lo Stato Limite di Salvaguardia della Vita (SLV):

Nella tabella successiva sono riportati analiticamente i parametri sismici ed i valori delle accelerazioni normalizzate in funzione del periodo di vibrazione:

Parametri indipendenti

	tir maipemaenti				
STATO LIMITE	SLV				
a _o	0,100 g				
F _o	2,542				
T _c *	0,297 s				
Ss	1,500				
C _C	1,568				
S _T	1,000				
q	1,000				

Parametri dipendenti

S	1,500
η	1,000
T _B	0,155 s
T _C	0,465 s
Tp	2,000 s

Espressioni dei parametri dipendenti

$$S = S_c \cdot S_T$$
 (NTC-08 Eq. 3.2.5)

$$\eta = \sqrt{10/(5+\xi)} \ge 0.55$$
; $\eta = 1/q$ (NTC-08 Eq. 3.2.6; §. 3.2.3.5)

$$T_n = T_c/3$$
 (NTC-07 Eq. 3.2.8)

$$T_n = C_n \cdot T_n^t$$
 (NTC-07 Eq. 3.2.7)

$$T_0 = 4,0 \cdot a_a / g + 1,6$$
 (NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 &\leq T < T_B \quad S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C \quad S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C &\leq T < T_D \quad S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T \quad S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \end{split}$$

Lo spettro di progetto $S_4(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_*(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

unti c	ello spettro		
	T [s]	Se [g]	
	0,000	0,150	
Τρ◀	0,155	0,381	
T₀ ◀	0,465	0,381	
	0,538	0,329	
	0,612	0,290	
	0,685	0,259	
	0,758	0,234	
	0,831	0,213	
	0,904	0,196	
	0,977	0,182	
	1,050	0,169	
	1,123	0,158	
	1,196	0,148	
	1,269	0,140	
	1,342	0,132	
	1,415	0,125	
	1,488	0,119	
	1,561	0,114	
	1,634	0,109	
	1,707	0,104 0,100	
	1,780		
1,854		0,096	
	1,927	0,092	
T₀◀	2,000	0,089	
	2,095	0,081	
	2,190	0,074	
	2,285	0,068	
	2,381	0,063	
	2,476	0,058	
	2,571	0,054	
	2,666	0,050	
	2,762	0,046	
	2,857	0,043	
	2,952	0,041	
	3,047	0,038	
	3,143	0,036	
	3,238	0,034	
	3,333	0,032	
	3,428	0,030	
	3,524	0,029	
	3,619	0,027	
	3,714	0,026	
	3,809	0,024	
	3,905	0,023	
	4,000	0,022	

Nell'immagine successiva è riportato il diagramma dello spettro di risposta per lo Stato Limite di Salvaguardia della Vita:

8.7 DEFINIZIONE DEI COEFFICIENTI SISMICI DI CALCOLO

Il coefficiente sismico orizzontale è determinato mediante la seguente relazione:

$$k_h = \beta_m \cdot \frac{a_{\text{max}}}{g}$$

dove:

 a_{max} → accelerazione orizzontale massima attesa al sito valutata mediante la seguente formulazione:

$$a_{\text{max}} = S \cdot \frac{a_g}{g} = S_S \cdot S_T \cdot \frac{a_g}{g} \rightarrow a_{\text{max}} = 1,50 \cdot 1,00 \cdot 0,100 = 0,151$$

g → accelerazione di gravità

Per via della presenza di un'unica fila di pali di fondazione il muro di sostegno può essere considerato come libero di ruotare introno al piede. Il coefficiente β_m viene pertanto determinato secondo quanto previsto dal D.M. 14.01.2008 "Nuove Norme Tecniche per le Costruzioni" – Tab. 7.11.II:

	Categoria di sottosuolo			
	Α	B, C, D, E		
	$\beta_{\rm m}$	$\beta_{\rm m}$		
$0.2 < a_g(g) \le 0.4$	0,31	0,31		
$0,1 \le a_g(g) \le 0,2$	0,29	0,24		
$a_{g}(g) \leq 0,1$	0,20	0,18		

Il coefficiente β_m assume un valore pari a **0,18**.

Il coefficiente sismico orizzontale risulta dunque pari a:

$$k_h = 0.18 \cdot 0.151 = 0.02718$$

Il coefficiente sismico verticale risulta invece pari a:

$$k_h = 0.50 \cdot k_h = 0.01359$$

ANALISI DEI CARICHI 9

9.1 PESO PROPRIO DELLE STRUTTURE IN CEMENTO ARMATO

Il peso per unità di volume delle strutture in cemento armato è assunto pari a $\gamma_{ca} = 25,0 \text{ kN/m}^3$. La valutazione del peso proprio degli elementi strutturali è riportata al paragrafo 11.1.

SPINTA DEI TERRENI A TERGO DELL'OPERA DI SOSTEGNO

La spinta del terreno sulle pareti laterali dell'opera è stata calcolata mediante la seguente relazione:

$$S_t = \frac{1}{2} \cdot \gamma \cdot k \cdot H^2$$

dove:

- y è il peso per unità di volume del terreno
- k è il coefficiente di spinta del terreno
- H è l'altezza complessiva dello strato di terreno

Per la presenza di un'unica fila di pali di fondazione l'opera di sostegno può essere considerata come libera di ruotare introno al piede. In tal senso le spinte del terreno a tergo verranno considerati in condizioni di equilibrio limite attivo. Verrà dunque determinato il valore del coefficiente di spinta attiva del terreno mediante la formulazione analitica di Coulomb:

$$k_{a} = \frac{sen^{2}(\beta + \varphi)}{sen^{2}\beta \cdot sen(\beta - \delta) \cdot \left[1 + \sqrt{\frac{sen(\varphi + \delta) \cdot sen(\varphi - \varepsilon)}{sen(\beta - \delta) \cdot sen(\beta + \varepsilon)}}\right]}$$

con:

- φ = angolo di attrito interno
- β = inclinazione del paramento di monte rispetto all'orizzontale \rightarrow considerata la pendenza del rilevato (34°) e la presenza della banca orizzontale a tergo dell'opera, si è considerato un angolo equivalente β = 21°
- δ = angolo di attrito terra muro
- ε = inclinazione del terreno di monte rispetto all'orizzontale

Il punto di applicazione della spinta è posto a 1/3 dell'altezza del singolo strato di terreno.

9.3 SPINTA DEI SOVRACCARICHI A TERGO DELL'OPERA DI SOSTEGNO

La spinta attiva dovuta ai sovraccarichi viene valutata mediante la seguente relazione:

$$S_q = q \cdot k \cdot H$$

dove:

q è l'entità del sovraccarico agente

Per la presenza di un'unica fila di pali di fondazione l'opera di sostegno può essere considerata come libera di ruotare introno al piede. In tal senso le spinte del terreno a tergo verranno considerati in condizioni di equilibrio limite attivo. Verrà dunque determinato il valore del coefficiente di spinta attiva del terreno mediante la formulazione analitica di Coulomb:

$$k_{a} = \frac{sen^{2}(\beta + \varphi)}{sen^{2}\beta \cdot sen(\beta - \delta) \cdot \left[1 + \sqrt{\frac{sen(\varphi + \delta) \cdot sen(\varphi - \varepsilon)}{sen(\beta - \delta) \cdot sen(\beta + \varepsilon)}}\right]}$$

con:

 ϕ = angolo di attrito interno

- β = inclinazione del paramento di monte rispetto all'orizzontale → considerata la pendenza del rilevato (34°) e la presenza della banca orizzontale a tergo dell'opera, si è considerato un angolo equivalente β = 21°
- δ = angolo di attrito terra muro
- ε = inclinazione del terreno di monte rispetto all'orizzontale

Il punto di applicazione della spinta è posto a 1/2 dell'altezza del singolo strato di terreno.

Non sono previsti carichi permanenti sul terreno a tergo dell'opera di sostegno.

Per quanto concerne i carichi accidentali connessi con il traffico veicolare, considerata la distanza della carreggiata dall'opera e un angolo di diffusione dei carichi da traffico veicolare pari a 30° attraverso il terreno, è possibile che tali carichi, debitamente diffusi, non interagiscano con l'opera di sostegno.

A favore di sicurezza è stato comunque considerato un sovraccarico accidentale sul terreno a tergo dell'opera di sostegno pari a **5,00 kN/m²**.

9.4 AZIONE SISMICA

Le sollecitazioni agenti sulla struttura in fase sismica vengono determinate attraverso un'analisi pseudo-statica, secondo quanto riportato nel DM 14.01.2008 "Nuove norme tecniche per le costruzioni", paragrafo 7.11.6.

9.4.1 AZIONE INERZIALE DELLE MASSE

Le azioni inerziali, orizzontali e verticali, dovute alle accelerazioni subite in fase sismica dalle masse degli elementi strutturali e del terreno vengono valutate moltiplicando il peso degli elementi strutturali per i coefficienti sismici orizzontale k_h e verticale k_v .

9.5 SOVRASPINTA DINAMICA DEI TERRENI

L'azione di spinta attiva dei terreni in fase sismica (spinta statica + sovraspinta dinamica) viene valutata mediante la seguente relazione:

$$E_d = \frac{1}{2} \cdot \gamma \cdot (1 \pm k_v) \cdot k_{aE} \cdot h^2 + E_{ws}$$

dove:

- γ è il peso per unità di volume del terreno
- k_v è il coefficiente sismico verticale
- k_{aE} è il coefficiente di spinta attiva dinamica valutato mediante la formulazione di Mononobe Okabe:

$$k_{aE} = \frac{sen^{2}(\psi + \varphi - \vartheta)}{\cos\vartheta \cdot sen^{2}\psi \cdot sen(\psi - \vartheta - \delta) \cdot \left[1 + \sqrt{\frac{sen(\varphi + \delta) \cdot sen(\varphi - \beta - \vartheta)}{sen(\varphi - \vartheta - \delta) \cdot sen(\psi + \beta)}}\right]}$$

- h è l'altezza della struttura soggetta alla spinta del terreno
- E_{ws} è l'eventuale spinta idrostatica (opera in presenza di falda)

L'angolo θ che compare nelle due formulazioni di Mononbe-Okabe vale:

$$\mathcal{G} = \frac{k_h}{1 \,\mu \, k_v}$$

10 COMBINAZIONI DI CARICO

10.1 COMBINAZIONI DI CARICO ALLO STATO LIMITE DI ESERCIZIO – COMBINAZIONI QUASI-PERMANENTI

Per le combinazioni di carico statiche relative alla struttura in oggetto si è fatto riferimento a quanto riportato nel capitolo nel D.M. 14.01.2008 "Nuove norme tecniche per le costruzioni", par. 2.5.3. Sulla base di ciò sono state individuate le combinazioni di carico statiche quasi permanenti allo Stato Limite di Esercizio, ottenute tramite la relazione generale:

$$F_d = \sum G_{kj} + \sum (\psi_{2i} \cdot Q_{ki})$$

dove:

- G_{kj} rappresenta il valore caratteristico della j-esima azione permanente
- Qki rappresenta il valore caratteristico della i-esima azione variabile
- Ψ_{2i} rappresentano i coefficienti di combinazione per tener conto della ridotta probabilità di concomitanza delle azioni variabili con i loro valori quasi permanenti

10.2 COMBINAZIONI DI CARICO ALLO STATO LIMITE DI ESERCIZIO – COMBINAZIONI FREQUENTI

Per le combinazioni di carico statiche relative alla struttura in oggetto si è fatto riferimento a quanto riportato nel capitolo nel D.M. 14.01.2008 "Nuove norme tecniche per le costruzioni", par. 2.5.3. Sulla base di ciò sono state individuate le combinazioni di carico statiche frequenti allo Stato Limite di Esercizio, ottenute tramite la relazione generale:

$$F_{d} = \sum G_{kj} + \psi_{11} \cdot Q_{k1} + \sum (\psi_{2i} \cdot Q_{ki})$$

dove:

- G_{ki} rappresenta il valore caratteristico della j-esima azione permanente
- Q_{k1} rappresenta il valore caratteristico dell'azione variabile di base in ogni combinazione
- Qki rappresenta il valore caratteristico della i-esima azione variabile
- Ψ_{1i} rappresentano i coefficienti di combinazione per tener conto della ridotta probabilità di concomitanza delle azioni variabili con i loro valori frequenti

10.3 COMBINAZIONI DI CARICO ALLO STATO LIMITE DI ESERCIZIO – COMBINAZION CARATTERISTICHE

Per le combinazioni di carico statiche relative alla struttura in oggetto si è fatto riferimento a quanto riportato nel capitolo nel D.M. 14.01.2008 "Nuove norme tecniche per le costruzioni", par. 2.5.3. Sulla base di ciò sono state individuate le combinazioni di carico statiche caratteristiche allo Stato Limite di Esercizio, ottenute tramite la relazione generale:

$$F_d = \sum G_{kj} + Q_{k1} + \sum (\psi_{0i} \cdot Q_{ki})$$

dove:

- G_{kj} rappresenta il valore caratteristico della j-esima azione permanente
- Q_{k1} rappresenta il valore caratteristico dell'azione variabile di base in ogni combinazione
- Q_{ki} rappresenta il valore caratteristico della i-esima azione variabile
- Ψ_{0i} rappresentano i coefficienti di combinazione per tener conto della ridotta probabilità di concomitanza delle azioni variabili con i loro valori caratteristici

10.4 COMBINAZIONI DI CARICO ALLO STATO LIMITE ULTIMO STATICHE

Per le combinazioni di carico statiche relative alla struttura in oggetto si è fatto riferimento a quanto riportato nel capitolo nel D.M. 14.01.2008 "Nuove norme tecniche per le costruzioni", par. 2.5.3. Sulla base di ciò sono state individuate le combinazioni di carico statiche allo Stato Limite Ultimo, ottenute tramite la relazione generale:

$$F_d = \sum_{j=1}^m \left(\gamma_{Gj} \cdot G_{kj} \right) + \gamma_{Q1} \cdot Q_{k1} + \sum_{i=2}^n \left(\psi_{0i} \cdot \gamma_{Qi} \cdot Q_{ki} \right)$$

dove:

- γ_G e γ_O rappresentano i coefficienti parziali di amplificazione dei carichi
- G_{ki} rappresenta il valore caratteristico della j-esima azione permanente
- Qk1 rappresenta il valore caratteristico dell'azione variabile di base in ogni combinazione
- Qki rappresenta il valore caratteristico della i-esima azione variabile
- Ψ_{0i} rappresentano i coefficienti di combinazione per tener conto della ridotta probabilità di concomitanza delle azioni variabili con i loro valori caratteristici

I coefficienti di amplificazione dei carichi per le combinazioni di carico, secondo il D.M. 14.01.2008 "Nuove norme tecniche per le costruzioni", par. 2.6, tabella 2.6.1, sono riepilogati nelle seguenti tabelle:

Tabella 2.6.I - Coefficienti parziali per le azioni o per l'effetto delle azioni nelle verifiche SLU

	70	Coefficiente ŶF	EQU	AI STR	A2 GEO
Carichi permanenti	favorevoli sfavorevoli	Ϋ́GI	0,9 1,1	1,0 1,3	1,0 1,0
Carichi permanenti non strutturali(1)	favorevoli sfavorevoli	γ _{G2}	0,0 1,5	0,0 1,5	0,0 1,3
Carichi variabili	favorevoli sfavorevoli	γoι	0,0 1,5	0,0 1,5	0,0 1,3

⁽¹⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare per essi gli stessi coefficienti validi per le azioni permanenti.

10.5 **COMBINAZIONE DI CARICO SISMICHE**

In fase sismica è state ipotizzate un'unica combinazione di carico allo Stato Limite di Salvaguardia ottenuta tramite la relazione generale:

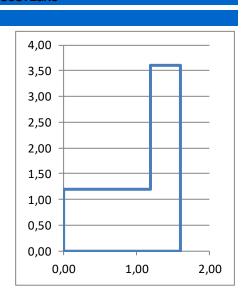
$$F_d = E + \sum G_{kj} + \sum (\psi_{2i} \cdot Q_{ki})$$

dove:

- E rappresenta il carico sismico
- Gki rappresenta il valore caratteristico della j-esima azione permanente
- Qki rappresenta il valore caratteristico della i-esima azione variabile
- Ψ_{2i} rappresentano i coefficienti di combinazione per tener conto della ridotta probabilità di concomitanza delle azioni variabili con i loro valori quasi permanenti

10.6 DEFINIZIONE DEI COEFFICIENTI DI PARTECIPAZIONE E RIEPILOGO DELLE COMBINAZIONI

La definizione dei coefficienti di partecipazione ψ dei carichi elementari e la definizione compiuta delle combinazioni di carico considerate per il dimensionamento e le verifiche sono riportati all'interno dei singoli capitoli successivi di valutazione delle azioni sollecitanti (strutturali e geotecniche).

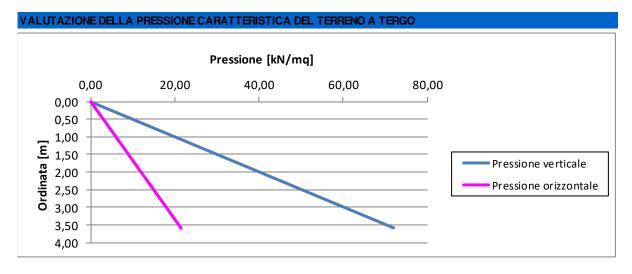


11

VALUTAZIONE DELLE AZIONI SOLLECITANTI

11.1 **DATI DI INPUT**

DIMENSIONAMENTO DI UN MURO DI SOSTEGNO CARATTERISTICHE GEOMETRICHE DEL MURO DI SOSTEGNO Altezza totale del muro frontale: 2,40 [m] Altezza del paramento interrato: 2,40 [m] Altezza del paramento fuori terra: 0,00 [m] Spessore del paramento interrato alla base: 0,40 [m] Spessore del paramento interrato in sommità: 0,40 [m] Spessore del paramento fuori terra alla base: 0,40 [m] Spessore del paramento fuori terra in sommità 0,40 [m] Lunghezza della zattera: 1,60 [m] Altezza della zattera: 1,20 [m] 1,20 Lunghezza del piede di monte della zattera: [m] Area della sezione trasversale del muro fronta 0,96 [m²] Volume del muro: 0,96 $[m^3/m]$ 24,00 [kN/m] Peso proprio del muro: Area della sezione trasversale della zattera: 1,92 $[m^2]$ Volume della zattera di fondazione: $[m^3/m]$ 1,92 Peso proprio della zattera di fondazione: 48,00 [kN/m]


CARATTERISTICHE GEOTECNICHE DEL TERRENO SPINGENTE

PARAMETRO		valore caratteristico	M1	M2	
Peso per unità di volume del terreno:	γ	20,00	20,00	20,00	[kN/m³]
Angolo di attrito interno del terreno:	φ	37,00	37,00	31,08	[°]
Angolo di attrito terreno/muro:	δ	26,67	26,67	0,00	[°]
Coesione efficace del terreno:	c'	0,00	0,00	0,00	[kN/m²]
Angolo del terreno a monte rispetto	β	21,00			[°]
all'orizzontale:	Р	21,00	21,00	21,00	[]
Angolo del paramento interno del muro	α	90,00	90,00	90,00	[°]
rispetto all'orizzontale:					

Metodo di calcolo del coefficiente di spinta attiva del terreno: Metodo di calcolo del coefficiente di spinta passiva del terreno:

METODO DI COULOMB ANALITICO METODO DI RANKINE

PARAMETRO		valore caratteristico	M1	M2
Coefficiente di spinta attiva del terreno:	k_{a}	0,299	0,299	0,427
Coefficiente di spinta passiva del terreno:	k_p	4,023	4,023	3,135

CARATTERIZZAZIONE SISMICA			
Valore del Peak Ground Acceleration Coefficiente riduttivo secondo D.M. 14.01.2008 - Tab. 7.11.2 Coefficiente sismico orizzontale Coefficiente sismico verticale	PGA eta_{m} k_{a}	0,150 0,18 0,027 0,014	
Metodo di calcolo del coefficiente di spinta dinamica del terreno:		MONOBE-OKABE	
Angolo θ Coefficiente di spinta dinamica del terreno	$ heta$ k $_{aE}$	1,57 0,458	[°]
SOVRACCARICHI PERMANENTI A TERGO DEL MURO			
Sovraccarico permanente a tergo del muro		0,00	[kN/m ²]
SOVRACCARICHI ACCIDENTALI A TERGO DEL MURO			
Sovraccarico accidentale generico a tergo del muro		5,00	[kN/m²]
Sono presenti carichi accidentali da traffico veicolare?		NO 🔻	
Carico concentrato da traffico Carico distribuito da traffico Lunghezza dell'area di impronta del carico concentrato Larghezza dell'area di impronta del carico concentrato Angolo di ripartizione verticale del carico concentrato		0,00 0,00 1,60 2,40 30,00	[kN] [kV/m²] [m] [m] [°]
URTO DA AUTOVEICOLO IN FASE DI SVIO (carico eccezionale)			
Deve essere applicato l'urto da autoveicolo in fase di svio?		NO 🔻	
Azione orizzontale concentrata dovuta all'urto da autoveicolo in fase di svio Numero di montanti del guard rail sui quali viene ripartito l'urto Interasse tra i montanti del guard rail		0,00 0 0,00	[kN] [m]
Angolo di ripartizione dell'azione dovuta all'urto da autoveicolo in svio		45,00	[°]

AZIONI SOLLECITANTI CARATTERISTICHE ALLO SPICCATO DEL MURO FRONTALE

AZIONI CARATTERISTICHE ALLA BASE DEL MURO FRONTALE (M1)			
CARICO	N [kN/m]	V [kN/m]	M [kNm/m]
Peso proprio della struttura	24,00	0,00	0,00
Spinta del terreno a tergo del muro	0,00	17,24	13,79
Spinta del sovraccarico permanente a tergo del muro	0,00	0,00	0,00
Spinta del sovraccarico accidentale generico a tergo del muro	0,00	3,59	4,31
Spinta del sovraccarico accidentale da traffico veicolare a tergo del muro	0,00	0,00	0,00
Urto da veicolo in svio	0,00	0,00	0,00
AZIONI CARATTERISTICHE ALLA BASE DEL MURO (M2)			
04.000			
CARICO	N [kN/m]	V [kN/m]	M [kNm/m]
Peso proprio della struttura	N [kN/m] 24,00	V [kN/m] 0,00	M [kNm/m] 0,00
Peso proprio della struttura	24,00	0,00	0,00
Peso proprio della struttura Spinta del terreno a tergo del muro	24,00 0,00	0,00 24,57	0,00 19,66
Peso proprio della struttura Spinta del terreno a tergo del muro Spinta del sovraccarico permanente a tergo del muro	24,00 0,00 0,00	0,00 24,57 0,00	0,00 19,66 0,00
Peso proprio della struttura Spinta del terreno a tergo del muro Spinta del sovraccarico permanente a tergo del muro Spinta del sovraccarico accidentale generico a tergo del muro	24,00 0,00 0,00 0,00	0,00 24,57 0,00 5,12	0,00 19,66 0,00 6,14
Peso proprio della struttura Spinta del terreno a tergo del muro Spinta del sovraccarico permanente a tergo del muro Spinta del sovraccarico accidentale generico a tergo del muro Spinta del sovraccarico accidentale da traffico veicolare a tergo del muro	24,00 0,00 0,00 0,00 0,00 0,00	0,00 24,57 0,00 5,12 0,00	0,00 19,66 0,00 6,14 0,00
Peso proprio della struttura Spinta del terreno a tergo del muro Spinta del sovraccarico permanente a tergo del muro Spinta del sovraccarico accidentale generico a tergo del muro Spinta del sovraccarico accidentale da traffico veicolare a tergo del muro Sovraspinta dinamica del terreno a tergo	24,00 0,00 0,00 0,00 0,00 0,00 0,00	0,00 24,57 0,00 5,12 0,00 1,84	0,00 19,66 0,00 6,14 0,00 2,20
Peso proprio della struttura Spinta del terreno a tergo del muro Spinta del sovraccarico permanente a tergo del muro Spinta del sovraccarico accidentale generico a tergo del muro Spinta del sovraccarico accidentale da traffico veicolare a tergo del muro Sovraspinta dinamica del terreno a tergo Inerzia sismica orizzontale del muro	24,00 0,00 0,00 0,00 0,00 0,00 0,00	0,00 24,57 0,00 5,12 0,00 1,84 0,65	0,00 19,66 0,00 6,14 0,00 2,20 0,78

11.3 **AZIONI SOLLECITANTI CARATTERISTICHE ALLA BASE DELLA ZATTERA**

AZIONI CARATTERISTICHE ALLA BASE DELLA ZATTERA (M1)			
CARICO	N [kN/m]	V [kN/m]	M [kNm/m]
Peso proprio della struttura	90,00	0,00	18,90
Peso proprio del terreno gravante sul piede di monte della zattera	43,20	0,00	-15,12
Spinta del terreno a tergo del muro	0,00	38,79	46,55
Sovraccarico permanente a tergo del muro	0,00	0,00	0,00
Spinta del sovraccarico permanente a tergo del muro	0,00	0,00	0,00
Sovraccarico accidentale generico a tergo del muro	4,50	0,00	-1,58
Spinta del sovraccarico accidentale generico a tergo del muro	0,00	5,39	9,70

AZIONI CARATTERISTICHE ALLA BASE DELLA ZATTERA (M2)			
CARICO	N [kN/m]	V [kN/m]	M [kNm/m]
Peso proprio della struttura	90,00	0,00	18,90
Peso proprio del terreno gravante sul piede di monte della zattera	43,20	0,00	-15,12
Spinta del terreno a tergo del muro	0,00	55,29	66,35
Sovraccarico permanente a tergo del muro	0,00	0,00	0,00
Spinta del sovraccarico permanente a tergo del muro	0,00	0,00	0,00
Sovraccarico accidentale generico a tergo del muro	4,50	0,00	-1,58
Spinta del sovraccarico accidentale generico a tergo del muro	0,00	7,68	13,82
Sovraccarico accidentale da traffico a tergo del muro	0,00	0,00	0,00
Spinta del sovraccarico accidentale da traffico veicolare a tergo del muro	0,00	0,00	0,00
Sovraspinta dinamica del terreno a tergo	0,00	4,13	7,44
Inerzia sismica orizzontale della struttura	0,00	2,43	3,50
Inerzia sismica verticale della struttura	1,22	0,00	0,26
Inerzia sismica orizzontale del terreno a tergo gravante sulla zattera	0,00	1,17	2,80
Inerzia sismica verticale del terreno a tergo gravante sulla zattera	0,58	0,00	-0,20

11.4 AZIONI SOLLECITANTI DI CALCOLO ALLO SPICCATO DEL MURO FRONTALE

	STATO LIMITE DI ESERCIZIO - COMBINAZIONE QUASI PERMANENTE								
CARICO	N_k [kN/m]	V_k [kN/m]	M_k [kNm/m]	γ	Ψ	N_{Sd} [kN/m]	V_{Sd} [kN/m]	M_{Sd} [kNm/m]	
r ₁	24,00	0,00	0,00	1,00	1,00	24,00	0,00	0,00	
r ₃	0,00	17,24	13,79	1,00	1,00	0,00	17,24	13,79	
r ₅	0,00	0,00	0,00	1,00	1,00	0,00	0,00	0,00	
q_2	0,00	3,59	4,31	1,00	0,00	0,00	0,00	0,00	
q_4	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	
e_1	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	
	TOTALE 24,00 17,24 13,79								

	STATO LIMITE DI ESERCIZIO - COMBINAZIONE FREQUENTE 01							
CARICO	$N_k [kN/m]$	V_k [kN/m]	M_k [kNm/m]	γ	Ψ	N_{Sd} [kN/m]	V_{Sd} [kN/m]	M_{Sd} [kNm/m]
r ₁	24,00	0,00	0,00	1,00	1,00	24,00	0,00	0,00
r ₃	0,00	17,24	13,79	1,00	1,00	0,00	17,24	13,79
r ₅	0,00	0,00	0,00	1,00	1,00	0,00	0,00	0,00
q_2	0,00	3,59	4,31	1,00	0,75	0,00	2,69	3,23
q_4	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00
e_1	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00
		TO	ΓALE			24,00	19,94	17,03

	STATO LIMITE DI ESERCIZIO - COMBINAZIONE FREQUENTE 02							
CARICO	$N_k [kN/m]$	V_k [kN/m]	M_k [kNm/m]	γ	Ψ	N_{Sd} [kN/m]	V_{Sd} [kN/m]	M_{Sd} [kNm/m]
r_1	24,00	0,00	0,00	1,00	1,00	24,00	0,00	0,00
r ₃	0,00	17,24	13,79	1,00	1,00	0,00	17,24	13,79
r ₅	0,00	0,00	0,00	1,00	1,00	0,00	0,00	0,00
q_2	0,00	3,59	4,31	1,00	0,00	0,00	0,00	0,00
q_4	0,00	0,00	0,00	1,00	0,75	0,00	0,00	0,00
e ₁	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00
		TO	ΓALE			24,00	17,24	13,79

		STAT	O LIMITE DI ESE	RCIZIO - COM	IBINAZIONE RA	ARA 01		
CARICO	N _k [kN/m]	V _k [kN/m]	M _k [kNm/m]	γ	Ψ	N _{Sd} [kN/m]	V _{Sd} [kN/m]	M _{Sd} [kNm/m]
r ₁	24,00	0,00	0,00	1,00	1,00	24,00	0,00	0,00
r ₃	0,00	17,24	13,79	1,00	1,00	0,00	17,24	13,79
	0,00	0,00	0,00	1,00	1,00	0,00	0,00	0,00
r ₅	0,00	3,59	4,31	1,00	1,00	0,00	3,59	4,31
q_2		· ·	•				· ·	· ·
q_4	0,00	0,00	0,00	1,00	0,75	0,00	0,00	0,00
e ₁	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00
		101	TALE			24,00	20,83	18,10
		STAT	O LIMITE DI ESE	RCIZIO - CON	IBINAZIONE RA	ARA 02		
CARICO	$N_k [kN/m]$	V_k [kN/m]	M_k [kNm/m]	Υ	Ψ	N_{Sd} [kN/m]	V_{Sd} [kN/m]	M_{Sd} [kNm/m]
r ₁	24,00	0,00	0,00	1,00	1,00	24,00	0,00	0,00
r ₃	0,00	17,24	13,79	1,00	1,00	0,00	17,24	13,79
r ₅	0,00	0,00	0,00	1,00	1,00	0,00	0,00	0,00
q_2	0,00	3,59	4,31	1,00	0,75	0,00	2,69	3,23
q_4	0,00	0,00	0,00	1,00	1,00	0,00	0,00	0,00
e ₁	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00
		TOT	Γ ALE	,		24,00	19,94	17,03
		ST	TATO LIMITE UL	TIMO - COME	SINAZIONE STE	R 01		
CARICO	$N_k [kN/m]$	V_k [kN/m]	M_k [kNm/m]	γ	Ψ	N _{Sd} [kN/m]	V _{Sd} [kN/m]	M _{Sd} [kNm/m]
r ₁	24,00	0,00	0,00	1,35	1,00	32,40	0,00	0,00
r ₃	0,00	17,24	13,79	1,50	1,00	0,00	25,86	20,69
	0,00	0,00	0,00	1,50	1,00	0,00	0,00	0,00
r ₅		· ·	•				· ·	-
q_2	0,00	3,59	4,31	1,50	1,00	0,00	5,39	6,47
q_4	0,00	0,00	0,00	1,35	0,75	0,00	0,00	0,00
e ₁	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00
		101	TALE			32,40	31,25	27,16
		S1	TATO LIMITE UL	TIMO - COME	SINAZIONE STE	R 02		
CARICO	$N_k [kN/m]$	V_k [kN/m]	M_k [kNm/m]	γ	Ψ	N_{Sd} [kN/m]	V_{Sd} [kN/m]	M_{Sd} [kNm/m]
r ₁	24,00	0,00	0,00	1,35	1,00	32,40	0,00	0,00
r ₃	0,00	17,24	13,79	1,50	1,00	0,00	25,86	20,69
r ₅	0,00	0,00	0,00	1,50	1,00	0,00	0,00	0,00
q_2	0,00	3,59	4,31	1,50	0,75	0,00	4,04	4,85
q_4	0,00	0,00	0,00	1,35	1,00	0,00	0,00	0,00
e ₁	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00
'	·	TOT	TALE		·	32,40	29,90	25,54
	S	TATO LIMITE	DI SALVAGUARI	DIA DELLA VI	TA - COMBINA	ZIONE SISM A 0	1	
CARICO	$N_k [kN/m]$	V_k [kN/m]	M_k [kNm/m]	γ	Ψ	N_{Sd} [kN/m]	V_{Sd} [kN/m]	M_{Sd} [kNm/m]
r ₁	24,00	0,00	0,00	1,00	1,00	24,00	0,00	0,00
r ₃	0,00	24,57	19,66	1,00	1,00	0,00	24,57	19,66
r_5	0,00	0,00	0,00	1,00	1,00	0,00	0,00	0,00
q_2	0,00	5,12	6,14	1,00	0,50	0,00	2,56	3,07
q_4	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00
S ₁	0,00	1,84	2,20	1,00	1,00	0,00	1,84	2,20
S ₂	0,00	0,65	0,78	1,00	1,00	0,00	0,65	0,78
S ₂	0,32	0,00	0,00	1,00	0,30	0,10	0,00	0,00
S ₄	0,00	0,78	0,93	1,00	1,00	0,00	0,78	0,93
- 4	-,		TALE	,	,	24,10	30,40	26,65
	9	TATOLIMITE	DI SALVAGUARI	DIA DELLA VI	TA - COMBINA	ZIONE SISM A O	2	
CARICO	N _k [kN/m]	V _k [kN/m]	M _k [kNm/m]	Y	Ψ	N _{Sd} [kN/m]	V _{Sd} [kN/m]	M _{Sd} [kNm/m]
r ₁	24,00	0,00	0,00	1,00	1,00	24,00	0,00	0,00
	0,00	24,57	19,66	1,00	1,00	0,00	24,57	19,66
r ₃	0,00					0,00	0,00	0,00
r ₅		0,00	0,00	1,00	1,00		· ·	-
q_2	0,00	5,12	6,14	1,00	0,50	0,00	2,56	3,07
q_4	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00
S ₁	0,00	1,84	2,20	1,00	1,00	0,00	1,84	2,20
s_2	0,00	0,65	0,78	1,00	1,00	0,00	0,65	0,78
s_3	0,32	0,00	0,00	1,00	-0,30	-0,10	0,00	0,00
S ₄	0,00	0,78	0,93	1,00	1,00	0,00	0,78	0,93
		TOT	TALE			23,90	30,40	26,65

STATO LIMITE DI SALVAGUARDIA DELLA VITA - COMBINAZIONE SISMA 03								
CARICO	$N_k [kN/m]$	V_k [kN/m]	M_k [kNm/m]	γ	Ψ	N_{Sd} [kN/m]	V_{Sd} [kN/m]	M_{Sd} [kNm/m]
r ₁	24,00	0,00	0,00	1,00	1,00	24,00	0,00	0,00
r ₃	0,00	24,57	19,66	1,00	1,00	0,00	24,57	19,66
r ₅	0,00	0,00	0,00	1,00	1,00	0,00	0,00	0,00
q_2	0,00	5,12	6,14	1,00	0,50	0,00	2,56	3,07
q_4	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00
S ₁	0,00	1,84	2,20	1,00	0,30	0,00	0,55	0,66
S ₂	0,00	0,65	0,78	1,00	0,30	0,00	0,19	0,23
s_3	0,32	0,00	0,00	1,00	1,00	0,32	0,00	0,00
S_4	0,00	0,78	0,93	1,00	0,30	0,00	0,23	0,28
		TOT	ΓALE			24,32	28,11	23,91

STATO LIMITE DI SALVAGUARDIA DELLA VITA - COMBINAZIONE SISMA 04									
CARICO	N_k [kN/m]	V_k [kN/m]	M_k [kNm/m]	γ	Ψ	N_{Sd} [kN/m]	V _{Sd} [kN/m]	M_{Sd} [kNm/m]	
r ₁	24,00	0,00	0,00	1,00	1,00	24,00	0,00	0,00	
r ₃	0,00	24,57	19,66	1,00	1,00	0,00	24,57	19,66	
r ₅	0,00	0,00	0,00	1,00	1,00	0,00	0,00	0,00	
q_2	0,00	5,12	6,14	1,00	0,50	0,00	2,56	3,07	
q_4	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	
S ₁	0,00	1,84	2,20	1,00	0,30	0,00	0,55	0,66	
S ₂	0,00	0,65	0,78	1,00	0,30	0,00	0,19	0,23	
S ₃	0,32	0,00	0,00	1,00	-1,00	-0,32	0,00	0,00	
S ₄	0,00	0,78	0,93	1,00	0,30	0,00	0,23	0,28	
	TOTALE 23,68 28,11 23,91								

RIEPILOGO DELLE AZIONI SOLLECITANTI SULLA SEZIONE DI BASE DEL	MURO

COMBINAZIONE DI CARICO	N_{Sd} [kN/m]	V_{Sd} [kN/m]	M_{Sd} [kNm/m]
Stato Limite di Esercizio - Combinazione Quasi Permanente	24,00	17,24	13,79
Stato Limite di Esercizio - Combinazione Frequente 01	24,00	19,94	17,03
Stato Limite di Esercizio - Combinazione Frequente 02	24,00	17,24	13,79
Stato Limite di Esercizio - Combinazione Rara 01	24,00	20,83	18,10
Stato Limite di Esercizio - Combinazione Rara 02	24,00	19,94	17,03
Stato Limite Ultimo - Combinazione STR 01	32,40	31,25	27,16
Stato Limite Ultimo - Combinazione STR 02	32,40	29,90	25,54
Stato Limite di Salvaguardia della Vita - Combinazione SISMA 01	24,10	30,40	26,65
Stato Limite di Salvaguardia della Vita - Combinazione SISMA 02	23,90	30,40	26,65
Stato Limite di Salvaguardia della Vita - Combinazione SISMA 03	24,32	28,11	23,91
Stato Limite di Salvaguardia della Vita - Combinazione SISMA 04	23,68	28,11	23,91

11.5 AZIONI SOLLECITANTI DI CALCOLO ALLA BASE DELLA ZATTERA

STATO LIMITE DI ESERCIZIO - COMBINAZIONE QUASI PERMANENTE								
CARICO	N_k [kN/m]	V_k [kN/m]	M_k [kNm/m]	γ	Ψ	N_{Sd} [kN/m]	V _{Sd} [kN/m]	M_{Sd} [kNm/m]
r_1	90,00	0,00	18,90	1,00	1,00	90,00	0,00	18,90
r_2	43,20	0,00	-15,12	1,00	1,00	43,20	0,00	-15,12
r ₃	0,00	38,79	46,55	1,00	1,00	0,00	38,79	46,55
r_4	0,00	0,00	0,00	1,00	1,00	0,00	0,00	0,00
r ₅	0,00	0,00	0,00	1,00	1,00	0,00	0,00	0,00
$q_{\scriptscriptstyle 1}$	4,50	0,00	-1,58	1,00	0,00	0,00	0,00	0,00
q_2	0,00	5,39	9,70	1,00	0,00	0,00	0,00	0,00
q_3	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00
q_4	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00
e ₁	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00
		TO	133,20	38,79	50,33			

		CTATO	LIMITE DI ESERC	IZIO COMPI	NAZIONE EDEC	NIENTE 01		
CARICO	NI [I-NI/7						\/ []-\ \ // \]	M [[-N]/7
CARICO	N_k [kN/m]	V _k [kN/m]	M_k [kNm/m]	γ 1.00	Ψ	N _{Sd} [kN/m]	V_{Sd} [kN/m]	M_{Sd} [kNm/m]
r ₁	90,00	0,00	18,90	1,00	1,00	90,00	0,00	18,90
r ₂	43,20 0,00	0,00	-15,12	1,00 1,00	1,00	43,20 0,00	0,00 38,79	-15,12 46,55
r ₃	-	38,79	46,55		1,00			
r ₄	0,00	0,00	0,00	1,00	1,00	0,00	0,00	0,00
r ₅	0,00	0,00	0,00	1,00	1,00	0,00	0,00	0,00
q₁ ~	4,50	0,00	-1,58 0.70	1,00	0,75	3,38	0,00	-1,18 7.07
q ₂	0,00	5,39	9,70	1,00	0,75	0,00	4,04	7,27
q ₃	0,00	0,00	0,00 0,00	1,00 1,00	0,00 0,00	0,00 0,00	0,00 0,00	0,00 0,00
q_4	0,00 0,00	0,00 0,00	0,00	1,00	0,00	0,00	0,00	0,00
e ₁	0,00		TALE	1,00	0,00	136,58	42,84	56,43
						<u> </u>		<u> </u>
			LIMITE DI ESERC	IZIO - COMBI	NAZIONE FREC	QUENTE 02		
CARICO	$N_k [kN/m]$	V_k [kN/m]	M_k [kNm/m]	Υ	Ψ	N_{Sd} [kN/m]	V _{Sd} [kN/m]	M_{Sd} [kNm/m]
r_1	90,00	0,00	18,90	1,00	1,00	90,00	0,00	18,90
r_2	43,20	0,00	-15,12	1,00	1,00	43,20	0,00	-15,12
r_3	0,00	38,79	46,55	1,00	1,00	0,00	38,79	46,55
r_4	0,00	0,00	0,00	1,00	1,00	0,00	0,00	0,00
r_5	0,00	0,00	0,00	1,00	1,00	0,00	0,00	0,00
q_1	4,50	0,00	-1,58	1,00	0,00	0,00	0,00	0,00
q_2	0,00	5,39	9,70	1,00	0,00	0,00	0,00	0,00
q_3	0,00	0,00	0,00	1,00	0,75	0,00	0,00	0,00
q_4	0,00	0,00	0,00	1,00	0,75	0,00	0,00	0,00
e ₁	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00
		TO	TALE			133,20	38,79	50,33
		STAT	O LIMITE DI ESE	RCIZIO - CON	/IBINAZIONE R	ARA 01		
CARICO	N , [kN/m]						V _{Sd} [kN/m]	M _{Sd} [kNm/m]
CARICO r ₁	N _k [kN/m] 90.00	V_k [kN/m]	M _k [kNm/m]	γ	Ψ	N _{Sd} [kN/m]	V _{Sd} [kN/m] 0.00	M _{Sd} [kNm/m] 18.90
r_1	90,00	V _k [kN/m] 0,00	M _k [kNm/m] 18,90	γ 1,00	<i>ψ</i> 1,00	N _{Sd} [kN/m] 90,00	0,00	18,90
r ₁ r ₂	90,00 43,20	V _k [kN/m] 0,00 0,00	M _k [kNm/m] 18,90 -15,12	γ 1,00 1,00	ψ 1,00 1,00	N _{Sd} [kN/m] 90,00 43,20	0,00 0,00	18,90 -15,12
r ₁ r ₂ r ₃	90,00	V _k [kN/m] 0,00	M _k [kNm/m] 18,90 -15,12 46,55	γ 1,00 1,00 1,00	ψ 1,00 1,00 1,00	N _{Sd} [kN/m] 90,00 43,20 0,00	0,00	18,90 -15,12 46,55
r ₁ r ₂ r ₃ r ₄	90,00 43,20 0,00	V _k [kN/m] 0,00 0,00 38,79 0,00	M _k [kNm/m] 18,90 -15,12 46,55 0,00	γ 1,00 1,00 1,00 1,00	ψ 1,00 1,00 1,00 1,00	N _{Sd} [kN/m] 90,00 43,20 0,00 0,00	0,00 0,00 38,79	18,90 -15,12
r ₁ r ₂ r ₃ r ₄ r ₅	90,00 43,20 0,00 0,00 0,00	V _k [kN/m] 0,00 0,00 38,79 0,00 0,00	M _k [kNm/m] 18,90 -15,12 46,55 0,00 0,00	<i>Y</i> 1,00 1,00 1,00 1,00 1,00	ψ 1,00 1,00 1,00 1,00 1,00	N _{Sd} [kN/m] 90,00 43,20 0,00	0,00 0,00 38,79 0,00	18,90 -15,12 46,55 0,00
r ₁ r ₂ r ₃ r ₄ r ₅ q ₁	90,00 43,20 0,00 0,00 0,00 4,50	V _k [kN/m] 0,00 0,00 38,79 0,00 0,00 0,00	M _k [kNm/m] 18,90 -15,12 46,55 0,00 0,00 -1,58	γ 1,00 1,00 1,00 1,00 1,00 1,00	ψ 1,00 1,00 1,00 1,00 1,00 1,00	N _{Sd} [kN/m] 90,00 43,20 0,00 0,00 0,00 4,50	0,00 0,00 38,79 0,00 0,00 0,00	18,90 -15,12 46,55 0,00 0,00 -1,58
r ₁ r ₂ r ₃ r ₄ r ₅ q ₁	90,00 43,20 0,00 0,00 0,00 4,50 0,00	V _k [kN/m] 0,00 0,00 38,79 0,00 0,00 0,00 5,39	M _k [kNm/m] 18,90 -15,12 46,55 0,00 0,00 -1,58 9,70	γ 1,00 1,00 1,00 1,00 1,00 1,00 1,00	ψ 1,00 1,00 1,00 1,00 1,00 1,00 1,00	N _{Sd} [kN/m] 90,00 43,20 0,00 0,00 0,00 4,50 0,00	0,00 0,00 38,79 0,00 0,00	18,90 -15,12 46,55 0,00 0,00 -1,58 9,70
$egin{array}{c} r_1 & r_2 & & & \\ r_3 & & r_4 & & \\ r_5 & & q_1 & & \\ q_2 & & q_3 & & \end{array}$	90,00 43,20 0,00 0,00 0,00 4,50 0,00 0,00	V _k [kN/m] 0,00 0,00 38,79 0,00 0,00 0,00 5,39 0,00	M _k [kNm/m] 18,90 -15,12 46,55 0,00 0,00 -1,58	γ 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	ψ 1,00 1,00 1,00 1,00 1,00 1,00 1,00 0,75	N _{Sd} [kN/m] 90,00 43,20 0,00 0,00 0,00 4,50 0,00 0,00	0,00 0,00 38,79 0,00 0,00 0,00 5,39 0,00	18,90 -15,12 46,55 0,00 0,00 -1,58 9,70 0,00
r ₁ r ₂ r ₃ r ₄ r ₅ q ₁ q ₂ q ₃ q ₄	90,00 43,20 0,00 0,00 0,00 4,50 0,00 0,00	V _k [kN/m] 0,00 0,00 38,79 0,00 0,00 0,00 5,39	M _k [kNm/m] 18,90 -15,12 46,55 0,00 0,00 -1,58 9,70 0,00	y 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	ψ 1,00 1,00 1,00 1,00 1,00 1,00 1,00 0,75 0,75	N _{Sd} [kN/m] 90,00 43,20 0,00 0,00 0,00 4,50 0,00 0,00 0,00	0,00 0,00 38,79 0,00 0,00 0,00 5,39 0,00 0,00	18,90 -15,12 46,55 0,00 0,00 -1,58 9,70 0,00 0,00
$egin{array}{c} r_1 & r_2 & & & \\ r_3 & & r_4 & & \\ r_5 & & q_1 & & \\ q_2 & & q_3 & & \end{array}$	90,00 43,20 0,00 0,00 0,00 4,50 0,00 0,00	V _k [kN/m] 0,00 0,00 38,79 0,00 0,00 5,39 0,00 0,00 0,00	M _k [kNm/m] 18,90 -15,12 46,55 0,00 0,00 -1,58 9,70 0,00 0,00	γ 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	ψ 1,00 1,00 1,00 1,00 1,00 1,00 1,00 0,75	N _{Sd} [kN/m] 90,00 43,20 0,00 0,00 0,00 4,50 0,00 0,00	0,00 0,00 38,79 0,00 0,00 0,00 5,39 0,00	18,90 -15,12 46,55 0,00 0,00 -1,58 9,70 0,00
r ₁ r ₂ r ₃ r ₄ r ₅ q ₁ q ₂ q ₃ q ₄	90,00 43,20 0,00 0,00 0,00 4,50 0,00 0,00	V _k [kN/m] 0,00 0,00 38,79 0,00 0,00 5,39 0,00 0,00 0,00	M _k [kNm/m] 18,90 -15,12 46,55 0,00 0,00 -1,58 9,70 0,00 0,00 0,00 0,00	y 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	ψ 1,00 1,00 1,00 1,00 1,00 1,00 1,00 0,75 0,75 0,00	N _{Sd} [kN/m] 90,00 43,20 0,00 0,00 0,00 4,50 0,00 0,00 0,00 0,0	0,00 0,00 38,79 0,00 0,00 0,00 5,39 0,00 0,00 0,00	18,90 -15,12 46,55 0,00 0,00 -1,58 9,70 0,00 0,00
r ₁ r ₂ r ₃ r ₄ r ₅ q ₁ q ₂ q ₃ q ₄ e ₁	90,00 43,20 0,00 0,00 0,00 4,50 0,00 0,00 0,00 0,0	V _k [kN/m] 0,00 0,00 38,79 0,00 0,00 5,39 0,00 0,00 0,00 TO	M _k [kNm/m] 18,90 -15,12 46,55 0,00 0,00 -1,58 9,70 0,00 0,00 0,00 TALE	7 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	Ψ 1,00 1,00 1,00 1,00 1,00 1,00 1,00 0,75 0,75 0,00	N _{Sd} [kN/m] 90,00 43,20 0,00 0,00 0,00 4,50 0,00 0,00 0,00 0,00 137,70	0,00 0,00 38,79 0,00 0,00 0,00 5,39 0,00 0,00 44,18	18,90 -15,12 46,55 0,00 0,00 -1,58 9,70 0,00 0,00 0,00 58,46
r ₁ r ₂ r ₃ r ₄ r ₅ q ₁ q ₂ q ₃ q ₄ e ₁	90,00 43,20 0,00 0,00 0,00 4,50 0,00 0,00 0,00 0,0	V _k [kN/m] 0,00 0,00 38,79 0,00 0,00 5,39 0,00 0,00 0,00 TO	M _k [kNm/m] 18,90 -15,12 46,55 0,00 0,00 -1,58 9,70 0,00 0,00 0,00 TALE TO LIMITE DI ESE M _k [kNm/m]	Y 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	Ψ 1,00 1,00 1,00 1,00 1,00 1,00 0,75 0,75 0,00	N _{Sd} [kN/m] 90,00 43,20 0,00 0,00 0,00 4,50 0,00 0,00 0,00 0,00 137,70 ARA 02 N _{Sd} [kN/m]	0,00 0,00 38,79 0,00 0,00 0,00 5,39 0,00 0,00 44,18	18,90 -15,12 46,55 0,00 0,00 -1,58 9,70 0,00 0,00 0,00 58,46
r ₁ r ₂ r ₃ r ₄ r ₅ q ₁ q ₂ q ₃ q ₄ e ₁	90,00 43,20 0,00 0,00 0,00 4,50 0,00 0,00 0,00 0,00 0,00 0,00	V _k [kN/m] 0,00 0,00 38,79 0,00 0,00 5,39 0,00 0,00 0,00 TO	M _k [kNm/m] 18,90 -15,12 46,55 0,00 0,00 -1,58 9,70 0,00 0,00 0,00 TALE TO LIMITE DI ESE M _k [kNm/m] 18,90	Y 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	Ψ 1,00 1,00 1,00 1,00 1,00 1,00 1,00 0,75 0,75 0,00 #BINAZIONE R Ψ 1,00	N _{Sd} [kN/m] 90,00 43,20 0,00 0,00 0,00 4,50 0,00 0,00 0,00 0,00 137,70 ARA 02 N _{Sd} [kN/m] 90,00	0,00 0,00 38,79 0,00 0,00 0,00 5,39 0,00 0,00 44,18 V _{Sd} [kN/m] 0,00	18,90 -15,12 46,55 0,00 0,00 -1,58 9,70 0,00 0,00 0,00 58,46 M _{Sd} [kNm/m] 18,90
r ₁ r ₂ r ₃ r ₄ r ₅ q ₁ q ₂ q ₃ q ₄ e ₁ CARICO r ₁ r ₂	90,00 43,20 0,00 0,00 0,00 4,50 0,00 0,00 0,00 0,00 0,00 0,00 0,00	V _k [kN/m] 0,00 0,00 38,79 0,00 0,00 5,39 0,00 0,00 TO	M _k [kNm/m] 18,90 -15,12 46,55 0,00 0,00 -1,58 9,70 0,00 0,00 0,00 TALE TO LIMITE DI ESE M _k [kNm/m] 18,90 -15,12	Y 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	Ψ 1,00 1,00 1,00 1,00 1,00 1,00 1,00 0,75 0,75 0,00 #BINAZIONE R Ψ 1,00 1,00	N _{Sd} [kN/m] 90,00 43,20 0,00 0,00 0,00 4,50 0,00 0,00 0,00 137,70 ARA 02 N _{Sd} [kN/m] 90,00 43,20	0,00 0,00 38,79 0,00 0,00 0,00 5,39 0,00 0,00 44,18 V _{Sd} [kN/m] 0,00 0,00	18,90 -15,12 46,55 0,00 0,00 -1,58 9,70 0,00 0,00 58,46 M _{Sd} [kNm/m] 18,90 -15,12
r ₁ r ₂ r ₃ r ₄ r ₅ q ₁ q ₂ q ₃ q ₄ e ₁ CARICO r ₁ r ₂ r ₃	90,00 43,20 0,00 0,00 0,00 4,50 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00	V _k [kN/m] 0,00 0,00 38,79 0,00 0,00 5,39 0,00 0,00 TO' STAT V _k [kN/m] 0,00 0,00 38,79	M _k [kNm/m] 18,90 -15,12 46,55 0,00 0,00 -1,58 9,70 0,00 0,00 0,00 TALE TO LIMITE DI ESE M _k [kNm/m] 18,90 -15,12 46,55	Y 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	Ψ 1,00 1,00 1,00 1,00 1,00 1,00 1,00 0,75 0,75 0,00 #BINAZIONE R Ψ 1,00 1,00 1,00 1,00	N _{Sd} [kN/m] 90,00 43,20 0,00 0,00 0,00 4,50 0,00 0,00 0,00 137,70 ARA 02 N _{Sd} [kN/m] 90,00 43,20 0,00	0,00 0,00 38,79 0,00 0,00 0,00 5,39 0,00 0,00 44,18 V _{Sd} [kN/m] 0,00 0,00 38,79	18,90 -15,12 46,55 0,00 0,00 -1,58 9,70 0,00 0,00 58,46 M _{Sd} [kNm/m] 18,90 -15,12 46,55
r ₁ r ₂ r ₃ r ₄ r ₅ q ₁ q ₂ q ₃ q ₄ e ₁ CARICO r ₁ r ₂ r ₃ r ₄	90,00 43,20 0,00 0,00 0,00 4,50 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00	V _k [kN/m] 0,00 0,00 38,79 0,00 0,00 5,39 0,00 0,00 TO' STAT V _k [kN/m] 0,00 0,00 38,79 0,00	M _k [kNm/m] 18,90 -15,12 46,55 0,00 0,00 -1,58 9,70 0,00 0,00 0,00 TALE TO LIMITE DI ESE M _k [kNm/m] 18,90 -15,12 46,55 0,00	Y 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	Ψ 1,00 1,00 1,00 1,00 1,00 1,00 1,00 0,75 0,75 0,00 #BINAZIONE R Ψ 1,00 1,00 1,00 1,00 1,00 1,00	N _{Sd} [kN/m] 90,00 43,20 0,00 0,00 0,00 4,50 0,00 0,00 0,00 137,70 ARA 02 N _{Sd} [kN/m] 90,00 43,20 0,00 0,00	0,00 0,00 38,79 0,00 0,00 0,00 5,39 0,00 0,00 44,18 V _{Sd} [kN/m] 0,00 0,00 38,79 0,00	18,90 -15,12 46,55 0,00 0,00 -1,58 9,70 0,00 0,00 58,46 <i>M</i> _{Sd} [kNm/m] 18,90 -15,12 46,55 0,00
r ₁ r ₂ r ₃ r ₄ r ₅ q ₁ q ₂ q ₃ q ₄ e ₁ CARICO r ₁ r ₂ r ₃ r ₄ r ₅	90,00 43,20 0,00 0,00 0,00 4,50 0,00 0,00 0,00 0,00 0,00 0,00 43,20 0,00 0,00 0,00	V _k [kN/m] 0,00 0,00 38,79 0,00 0,00 5,39 0,00 0,00 TOT STAT V _k [kN/m] 0,00 0,00 38,79 0,00 0,00	M _k [kNm/m] 18,90 -15,12 46,55 0,00 0,00 -1,58 9,70 0,00 0,00 0,00 TALE TO LIMITE DI ESE M _k [kNm/m] 18,90 -15,12 46,55 0,00 0,00	Y 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	Ψ 1,00 1,00 1,00 1,00 1,00 1,00 1,00 0,75 0,75 0,00 #BINAZIONE R Ψ 1,00 1,00 1,00 1,00 1,00 1,00 1,00	N _{Sd} [kN/m] 90,00 43,20 0,00 0,00 0,00 4,50 0,00 0,00 0,00 137,70 ARA 02 N _{Sd} [kN/m] 90,00 43,20 0,00 0,00 0,00	0,00 0,00 38,79 0,00 0,00 0,00 5,39 0,00 0,00 44,18 V _{Sd} [kN/m] 0,00 0,00 38,79 0,00 0,00	18,90 -15,12 46,55 0,00 0,00 -1,58 9,70 0,00 0,00 58,46 M _{Sd} [kNm/m] 18,90 -15,12 46,55 0,00 0,00
r ₁ r ₂ r ₃ r ₄ r ₅ q ₁ q ₂ q ₃ q ₄ e ₁ CARICO r ₁ r ₂ r ₃ r ₄ r ₅ q ₁	90,00 43,20 0,00 0,00 0,00 4,50 0,00 0,00 0,00 0,00 0,00 43,20 0,00 0,00 0,00 43,20 0,00 0,00 0,00 45,50	V _k [kN/m] 0,00 0,00 38,79 0,00 0,00 5,39 0,00 0,00 TO	M _k [kNm/m] 18,90 -15,12 46,55 0,00 0,00 -1,58 9,70 0,00 0,00 0,00 TALE TO LIMITE DI ESE M _k [kNm/m] 18,90 -15,12 46,55 0,00 0,00 -1,58	Y 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	Ψ 1,00 1,00 1,00 1,00 1,00 1,00 0,75 0,75 0,00 #BINAZIONE R Ψ 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,	N _{Sd} [kN/m] 90,00 43,20 0,00 0,00 0,00 4,50 0,00 0,00 0,00 137,70 ARA 02 N _{Sd} [kN/m] 90,00 43,20 0,00 0,00 0,00 3,38	0,00 0,00 38,79 0,00 0,00 0,00 5,39 0,00 0,00 44,18 V _{Sd} [kN/m] 0,00 0,00 38,79 0,00 0,00 0,00	18,90 -15,12 46,55 0,00 0,00 -1,58 9,70 0,00 0,00 58,46 <i>M</i> _{Sd} [<i>kNm/m</i>] 18,90 -15,12 46,55 0,00 0,00 -1,18
r ₁ r ₂ r ₃ r ₄ r ₅ q ₁ q ₂ q ₃ q ₄ e ₁ CARICO r ₁ r ₂ r ₃ r ₄ r ₅	90,00 43,20 0,00 0,00 0,00 4,50 0,00 0,00 0,00 0,00 0,00 0,00 43,20 0,00 0,00 0,00	V _k [kN/m] 0,00 0,00 38,79 0,00 0,00 5,39 0,00 0,00 TOT STAT V _k [kN/m] 0,00 0,00 38,79 0,00 0,00	M _k [kNm/m] 18,90 -15,12 46,55 0,00 0,00 -1,58 9,70 0,00 0,00 0,00 TALE TO LIMITE DI ESE M _k [kNm/m] 18,90 -15,12 46,55 0,00 0,00	Y 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	Ψ 1,00 1,00 1,00 1,00 1,00 1,00 1,00 0,75 0,75 0,00 #BINAZIONE R Ψ 1,00 1,00 1,00 1,00 1,00 1,00 1,00	N _{Sd} [kN/m] 90,00 43,20 0,00 0,00 0,00 4,50 0,00 0,00 0,00 137,70 ARA 02 N _{Sd} [kN/m] 90,00 43,20 0,00 0,00 0,00	0,00 0,00 38,79 0,00 0,00 0,00 5,39 0,00 0,00 44,18 V _{Sd} [kN/m] 0,00 0,00 38,79 0,00 0,00	18,90 -15,12 46,55 0,00 0,00 -1,58 9,70 0,00 0,00 58,46 M _{Sd} [kNm/m] 18,90 -15,12 46,55 0,00 0,00

 q_4 e₁ 0,00

0,00

0,00

0,00

0,00

0,00

TOTALE

1,00

1,00

1,00

0,00

0,00

0,00

136,58

0,00

0,00

42,84

0,00

0,00

56,43

		S	TATO LIMITE UL	ГІМО - СОМВ	INAZIONE ST	R 01		
CARICO	$N_k [kN/m]$	V_k [kN/m]	M _k [kNm/m]	γ	Ψ	N _{Sd} [kN/m]	V _{Sd} [kN/m]	M _{Sd} [kNm/n
r_1	90,00	0,00	18,90	1,35	1,00	121,50	0,00	25,52
r_2	43,20	0,00	-15,12	1,50	1,00	64,80	0,00	-22,68
r_3	0,00	38,79	46,55	1,50	1,00	0,00	58,19	69,83
r_4	0,00	0,00	0,00	1,50	1,00	0,00	0,00	0,00
r_5	0,00	0,00	0,00	1,50	1,00	0,00	0,00	0,00
q_1	4,50	0,00	-1,58	1,50	1,00	6,75	0,00	-2,36
q_2	0,00	5,39	9,70	1,50	1,00	0,00	8,08	14,55
q_3	0,00	0,00	0,00	1,35	0,75	0,00	0,00	0,00
q_4	0,00	0,00	0,00	1,35	0,75	0,00	0,00	0,00
e_1	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00
		TO	ΓALE			193,05	66,27	84,85
		S	TATO LIMITE UL'	ГІМО - СОМВ	INAZIONE ST	R 02		
CARICO	$N_k [kN/m]$	V_k [kN/m]	M_k [kNm/m]	γ	Ψ	N _{Sd} [kN/m]	V _{Sd} [kN/m]	M _{Sd} [kNm/r
r ₁	90,00	0,00	18,90	1,35	1,00	121,50	0,00	25,52
r_2	43,20	0,00	-15,12	1,50	1,00	64,80	0,00	-22,68
r ₃	0,00	38,79	46,55	1,50	1,00	0,00	58,19	69,83
r ₄	0,00	0,00	0,00	1,50	1,00	0,00	0,00	0,00
r ₅	0,00	0,00	0,00	1,50	1,00	0,00	0,00	0,00
q_1	4,50	0,00	-1,58	1,50	0,75	5,06	0,00	-1,77
q_2	0,00	5,39	9,70	1,50	0,75	0,00	6,06	10,91
q_3	0,00	0,00	0,00	1,35	1,00	0,00	0,00	0,00
q_4	0,00	0,00	0,00	1,35	1,00	0,00	0,00	0,00
e ₁	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00
		TO	ΓALE			191,36	64,25	81,80
		S	TATO LIMITE UL	TIMO - COMB	INAZIONE GE	O 01		
CARICO	$N_k [kN/m]$	V_k [kN/m]	M_k [kNm/m]	γ	ψ	N_{Sd} [kN/m]	V_{Sd} [kN/m]	M _{Sd} [kNm/i
r_1	90,00	0,00	18,90	1,00	1,00	90,00	0,00	18,90
r_2	43,20	0,00	-15,12	1,30	1,00	56,16	0,00	-19,66
r_3	0,00	55,29	66,35	1,30	1,00	0,00	71,88	86,26
r_4	0,00	0,00	0,00	1,30	1,00	0,00	0,00	0,00
r_5	0,00	0,00	0,00	1,30	1,00	0,00	0,00	0,00
q_1	4,50	0,00	-1,58	1,30	1,00	5,85	0,00	-2,05
q_2	0,00	7,68	13,82	1,30	1,00	0,00	9,98	17,97
q_3	0,00	0,00	0,00	1,15	0,75	0,00	0,00	0,00
q_4	0,00	0,00	0,00	1,15	0,75	0,00	0,00	0,00
		TO	TALE			152,01	81,86	101,42
		S	TATO LIMITE UL	ГІМО - СОМВ	INAZIONE GE	O 02		
CARICO	$N_k [kN/m]$	V_k [kN/m]	M_k [kNm/m]	γ	Ψ	N_{Sd} [kN/m]	V_{Sd} [kN/m]	M _{Sd} [kNm/
r_1	90,00	0,00	18,90	1,00	1,00	90,00	0,00	18,90
r_2	43,20	0,00	-15,12	1,30	1,00	56,16	0,00	-19,66
r ₃	0,00	55,29	66,35	1,30	1,00	0,00	71,88	86,26
r_4	0,00	0,00	0,00	1,30	1,00	0,00	0,00	0,00
	0.00	0,00	0,00	1 20	1 00	0.00	0.00	0.00
r_5	0,00 4.50	0,00	0,00 -1.58	1,30 1.30	1,00 0.75	0,00 4 39	0,00	0,00 -1 54

 q_1 q_2

 \mathbf{q}_3

 q_4

4,50

0,00

0,00

0,00

0,00

7,68

0,00

0,00

-1,58

13,82

0,00

0,00

TOTALE

1,30

1,30

1,15

1,15

0,75

0,75

1,00

1,00

4,39

0,00

0,00

0,00

150,55

0,00

7,49

0,00

0,00

79,37

-1,54

13,48

0,00

0,00

97,44

	S	TATO LIMITE	DI SALVAGUARD	IA DELLA VI	TA - COMBINA	AZIONE SISMA 0	1	
CARICO	$N_k [kN/m]$	V_k [kN/m]	M_k [kNm/m]	γ	Ψ	N_{Sd} [kN/m]	V _{Sd} [kN/m]	M_{Sd} [kNm/m]
r_1	90,00	0,00	18,90	1,00	1,00	90,00	0,00	18,90
r_2	43,20	0,00	-15,12	1,00	1,00	43,20	0,00	-15,12
r ₃	0,00	55,29	66,35	1,00	1,00	0,00	55,29	66,35
r_4	0,00	0,00	0,00	1,00	1,00	0,00	0,00	0,00
r ₅	0,00	0,00	0,00	1,00	1,00	0,00	0,00	0,00
q_1	4,50	0,00	-1,58	1,00	0,50	2,25	0,00	-0,79
q_2	0,00	7,68	13,82	1,00	0,50	0,00	3,84	6,91
q_3	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00
q_4	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00
S ₁	0,00	4,13	7,44	1,00	1,00	0,00	4,13	7,44
S ₂	0,00	2,43	3,50	1,00	1,00	0,00	2,43	3,50
s_3	1,22	0,00	0,26	1,00	0,30	0,36	0,00	0,08
S ₄	0,00	1,17	2,80	1,00	1,00	0,00	1,17	2,80
$s_{\scriptscriptstyle 5}$	0,58	0,00	-0,20	1,00	0,30	0,17	0,00	-0,06
		TOT	135,99	66,86	90,01			

	S	TATO LIMITE	DI SALVAGUARD	IA DELLA VI	TA - COMBINA	AZIONE SISMA 0	2	
CARICO	$N_k [kN/m]$	V_k [kN/m]	M_k [kNm/m]	γ	Ψ	N_{Sd} [kN/m]	V_{Sd} [kN/m]	M_{Sd} [kNm/m]
r ₁	90,00	0,00	18,90	1,00	1,00	90,00	0,00	18,90
r_2	43,20	0,00	-15,12	1,00	1,00	43,20	0,00	-15,12
r ₃	0,00	55,29	66,35	1,00	1,00	0,00	55,29	66,35
r ₄	0,00	0,00	0,00	1,00	1,00	0,00	0,00	0,00
r ₅	0,00	0,00	0,00	1,00	1,00	0,00	0,00	0,00
q_1	4,50	0,00	-1,58	1,00	0,50	2,25	0,00	-0,79
q_2	0,00	7,68	13,82	1,00	0,50	0,00	3,84	6,91
q_3	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00
q_4	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00
S ₁	0,00	4,13	7,44	1,00	1,00	0,00	4,13	7,44
S ₂	0,00	2,43	3,50	1,00	1,00	0,00	2,43	3,50
S ₃	1,22	0,00	0,26	1,00	-0,30	-0,36	0,00	-0,08
S_4	0,00	1,17	2,80	1,00	1,00	0,00	1,17	2,80
S ₅	0,58	0,00	-0,20	1,00	-0,30	-0,17	0,00	0,06
		TOT	134,91	66,86	89,98			

STATO LIMITE DI SALVAGUARDIA DELLA VITA - COMBINAZIONE SISMA 03								
CARICO	N_k [kN/m]	V_k [kN/m]	M_k [kNm/m]	γ	Ψ	N_{Sd} [kN/m]	V _{Sd} [kN/m]	M_{Sd} [kNm/m]
r ₁	90,00	0,00	18,90	1,00	1,00	90,00	0,00	18,90
r_2	43,20	0,00	-15,12	1,00	1,00	43,20	0,00	-15,12
r_3	0,00	55,29	66,35	1,00	1,00	0,00	55,29	66,35
r_4	0,00	0,00	0,00	1,00	1,00	0,00	0,00	0,00
r ₅	0,00	0,00	0,00	1,00	1,00	0,00	0,00	0,00
q_1	4,50	0,00	-1,58	1,00	0,50	2,25	0,00	-0,79
q_2	0,00	7,68	13,82	1,00	0,50	0,00	3,84	6,91
q_3	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00
q_4	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00
S ₁	0,00	4,13	7,44	1,00	0,30	0,00	1,24	2,23
s_2	0,00	2,43	3,50	1,00	0,30	0,00	0,73	1,05
s_3	1,22	0,00	0,26	1,00	1,00	1,22	0,00	0,26
s_4	0,00	1,17	2,80	1,00	0,30	0,00	0,35	0,84
\mathbf{s}_{5}	0,58	0,00	-0,20	1,00	1,00	0,58	0,00	-0,20
		TOT	137,25	61,45	80,43			

STATO LIMITE DI SALVAGUARDIA DELLA VITA - COMBINAZIONE SISMA 04								
CARICO	N_k [kN/m]	V_k [kN/m]	M_k [kNm/m]	γ	Ψ	N_{Sd} [kN/m]	V_{Sd} [kN/m]	M_{Sd} [kNm/m]
r_1	90,00	0,00	18,90	1,00	1,00	90,00	0,00	18,90
r ₂	43,20	0,00	-15,12	1,00	1,00	43,20	0,00	-15,12
r ₃	0,00	55,29	66,35	1,00	1,00	0,00	55,29	66,35
r ₄	0,00	0,00	0,00	1,00	1,00	0,00	0,00	0,00
r ₅	0,00	0,00	0,00	1,00	1,00	0,00	0,00	0,00
q_1	4,50	0,00	-1,58	1,00	0,50	2,25	0,00	-0,79
q_2	0,00	7,68	13,82	1,00	0,50	0,00	3,84	6,91
q_3	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00
q_4	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00
S ₁	0,00	4,13	7,44	1,00	0,30	0,00	1,24	2,23
S ₂	0,00	2,43	3,50	1,00	0,30	0,00	0,73	1,05
s_3	1,22	0,00	0,26	1,00	-1,00	-1,22	0,00	-0,26
S ₄	0,00	1,17	2,80	1,00	0,30	0,00	0,35	0,84
s_5	0,58	0,00	-0,20	1,00	-1,00	-0,58	0,00	0,20
TOTALE							61,45	80,32

RIEPILOGO DELLE AZIONI SOLLECITANTI ALLA BAS	SE DELLA ZATTERA		
COMBINAZIONE DI CARICO	N_{Sd} [kN/m]	V_{Sd} [kN/m]	M _{Sd} [kNm/m]
Stato Limite di Esercizio - Combinazione Quasi Permanente	133,20	38,79	50,33
Stato Limite di Esercizio - Combinazione Frequente 01	136,58	42,84	56,43
Stato Limite di Esercizio - Combinazione Frequente 02	133,20	38,79	50,33
Stato Limite di Esercizio - Combinazione Rara 01	137,70	44,18	58,46
Stato Limite di Esercizio - Combinazione Rara 02	136,58	42,84	56,43
Stato Limite Ultimo - Combinazione STR 01	193,05	66,27	84,85
Stato Limite Ultimo - Combinazione STR 02	191,36	64,25	81,80
Stato Limite Ultimo - Combinazione GEO 01	152,01	81,86	101,42
Stato Limite Ultimo - Combinazione GEO 02	150,55	79,37	97,44
Stato Limite di Salvaguardia della Vita - Combinazione SISMA 01	135,99	66,86	90,01
Stato Limite di Salvaguardia della Vita - Combinazione SISMA 02	134,91	66,86	89,98
Stato Limite di Salvaguardia della Vita - Combinazione SISMA 03	137,25	61,45	80,43
Stato Limite di Salvaguardia della Vita - Combinazione SISMA 04	133,65	61,45	80,32

12 SEZIONE DI SPICCATO DEL MURO FRONTALE – VERIFICHE STRUTTURALI

12.1 SEZIONE ED ARMATURA DI VERIFICA

La sezione di verifica è rettangolare con base pari a 100 cm e altezza pari a 40 cm.

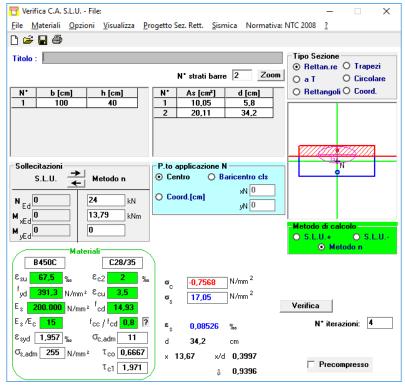
L'armatura verticale (armatura di forza) è prevista come segue:

- Ø16/10 interni (lato terreno)
- Ø16/20 esterni

L'armatura longitudinale di ripartizione è prevista come segue:

- Ø12/20 esterni
- Ø12/20 interni

L'armatura a taglio è costituita da spille Ø10/40x40.


Il copriferro netto minimo è assunto pari a 40 mm.

12.2 VERIFICA ALLO STATO LIMITE DI LIMITAZIONE DELLE TENSIONI

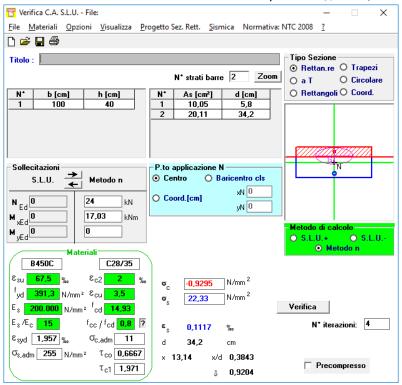
12.2.1 COMBINAZIONE QUASI PERMANENTE

L'azione normale di calcolo è assunta pari a N_{Sd} = 24,00 kN.

Il momento flettente di calcolo è assunto pari a M_{Sd} = 13,79 kNm.

Le tensioni sui materiali risultano pari a:

 $\sigma_c = 0.75 \text{ N/mm}^2 < 0.45 \text{ f}_{ck} = 13.07 \text{ N/mm}^2$ $\sigma_s = 17.05 \text{ N/mm}^2 < 0.80 \text{ f}_{yk} = 360.00 \text{ N/mm}^2$



12.2.2 COMBINAZIONE FREQUENTE

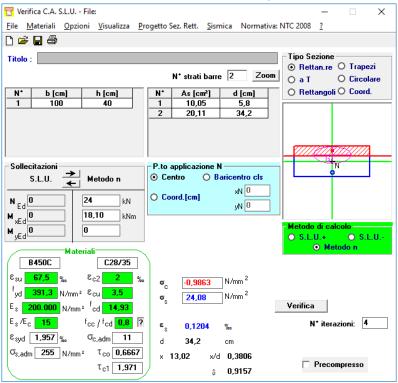
La combinazione di carico maggiormente gravosa è risultata la combinazione FREQUENTE 01.

L'azione normale di calcolo è assunta pari a N_{Sd} = 24,00 kN.

Il momento flettente di calcolo è assunto pari a $M_{sd} = 17,03 \text{ kNm}$.

Le tensioni sui materiali risultano pari a:

$$\begin{split} &\sigma_c = 0.92 \text{ N/mm}^2 < 0.45 \text{ f}_{ck} = 13.07 \text{ N/mm}^2 \\ &\sigma_s = 22.33 \text{ N/mm}^2 < 0.80 \text{ f}_{yk} = 360.00 \text{ N/mm}^2 \end{split}$$



12.2.3 COMBINAZIONE CARATTERISTICA

La combinazione di carico maggiormente gravosa è risultata la combinazione RARA 01.

L'azione normale di calcolo è assunta pari a N_{Sd} = 24,00 kN.

Il momento flettente di calcolo è assunto pari a M_{Sd} = 18,10 kNm.

Le tensioni sui materiali risultano pari a:

 $\sigma_c = 0.98 \text{ N/mm}^2 < 0.60 \text{ f}_{ck} = 17.43 \text{ N/mm}^2$

 $\sigma_s = 24,08 \text{ N/mm}^2 < 0,80 \text{ f}_{vk} = 360,00 \text{ N/mm}^2$

12.3 VERIFICA ALLO STATO LIMITE DI FESSURAZIONE

Per la verifica allo Stato Limite di fessurazione è stata utilizzata la procedura semplificata prevista dalla Circolare C.S.LL.PP. n.617 del 02.02.2009 – par. C4.1.2.2.4.6 – Tab. C4.1.II e C4.1.III. Le condizioni considerate sono riportate nella tabella seguente.

La verifica semplificata allo SL di fessurazione viene condotta secondo quanto previsto dalla Circolare C.S.LL.PP. n.617 del 02.02.2009, par. C4.1.2.2.4.6, tab. C4.1.III e C4.1.III.

TABELLA C4.1.II - Diametri massimi delle barre per il controllo di fessurazione								
Tensione nell'acciaio	Diame	Diametro massimo Ø delle barre [mm]						
$\sigma_{\rm s}$ [N/mm ²]	$w_3 = 0,40 \text{ mm}$	$w_2 = 0.30 \text{ mm}$	w ₁ = 0,20 mm					
160	40	32	25					
200	32	25	16					
240	20	16	12					
280	16	12	8					
320	12	10	6					
360	10	8	0					

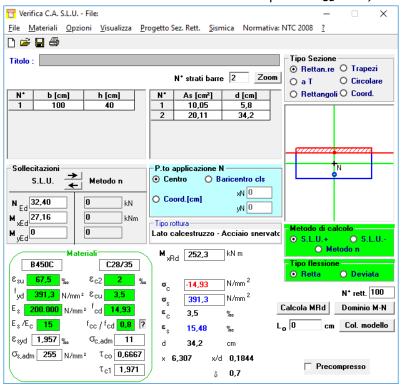
TABELLA C4.1.III - Spaziatura massima delle barre per il controllo di fessurazione								
Tensione nell'acciaio	Spaziatura	Spaziatura massima s delle barre delle barre [mm]						
$\sigma_{\rm s}$ [N/mm ²]	$w_3 = 0.40 \text{ mm}$	w ₂ = 0,30 mm	w ₁ = 0,20 mm					
160	300	300	200					
200	300	250	150					
240	250	200	100					
280	200	150	50					
320	150	100	0					
360	100	50	0					

CRITERI DI SCELTA DELLO STATO LIMITE DI FESSURAZIONE

I criteri di scelta dello Stato Limite di fessurazione sono definiti secondo quanto riportato dal D.M. 14.01.2008, par. 4.1.2.2.4.5, tab. 4.1.IV.

Condizioni ambientali:	Aggressive	-	Armatura:	Poco sensibile					
COMBINAZIONE ALLO S.L.E. QUASI PERMANENTE									
Stato limite:			6	apertura fessu	ire				
Ampiezza massima delle	≤	w1							
Tensione massima nell'a	cciaio calcolata:		$\sigma_{s,max}$	17,05	[N/m m ²]				
Diametro massimo delle	barre di armature post	te in opera:	$arnothing_{\sf max}$	16	[mm]				
Spaziatura massima delle	e barre di armatura pos	ste in opera:	S _{max}	100,00	[mm]				
Diametro massimo delle	barre di armatura cons	sentito:	\mathcal{O}_{max}	25,00	[mm]				
Spaziatura massima delle	e barre di armatura cor	nsentita:	Smax	200,00	[mm]				
VERIFICA POSITIVA									

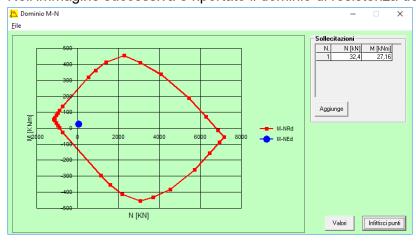
COMBINAZIONE ALLO S.L.E. FREQUENTE							
Stato limite:		а	pertura fessu	ıre			
Ampiezza massima delle fessure:	w _d ≤		w2				
Tensione massima nell'acciaio calcolata:		$\sigma_{\text{s,max}}$	22,33	[N/mm ²]			
Diametro massimo delle barre di armature poste i	n opera:	\emptyset_{max}	16	[mm]			
Spaziatura massima delle barre di armatura poste	in opera:	S _{max}	100,00	[mm]			
Diametro massimo delle barre di armatura conser	tito:	\emptyset_{max}	32,00	[mm]			
Spaziatura massima delle barre di armatura conse	entita:	s_{max}	300,00	[mm]			
VERIF	ICA POSITIVA						



12.4 VERIFICA ALLO STATO LIMITE ULTIMO PER PRESSOFLESSIONE

La combinazione di carico maggiormente gravosa è risultata la combinazione SLU - STR 01.

L'azione normale di calcolo è assunta pari a N_{sd} = 32,40 kN.


Il momento flettente di calcolo è assunto pari a M_{Sd} = 27,16 kNm.

Il momento resistente risulta pari a:

 $M_{Rd} = 252,30 \text{ kNm} > M_{Sd} = 27,16 \text{ kNm}$

Nell'immagine successiva è riportato il dominio di resistenza della sezione:

12.5 VERIFICA ALLO STATO LIMITE ULTIMO PER TAGLIO

La combinazione di carico maggiormente gravosa è risultata la combinazione SLU - STR 01.

L'azione tagliante di calcolo è assunta pari a V_{Sd} = 31,25 kN.

A favore di sicurezza non viene considerato il contributo dell'azione normale.

CARATTERISTICHE GEOMETRICHE DELLA SEZIONE							
Base della zezione trasversale:	b	100,00	[cm]				
Altezza della sezione trasversale:	h	40,00	[cm]				
Copriferro netto:	C	4,00	[cm]				
Altezza utile della sezione:	d	36,00	[cm]				
CARATTERISTICHE DEI MATE	ERIALI						
Classe di resistenza del calcestruzzo:		C28/35	•				
Resistenza caratteristica cubica a compressione:	R_{ck}	35,00	$[N/m m^2]$				
Resistenza caratteristica cilindrica a compressione:	f _{ck}	29,05	$[N/mm^2]$				
Resistenza di calcolo a compressione:	f_{cd}	16,46	[N/mm ²]				
Tipologia dell'acciaio da armatura:		B450C	•				
Tensione caratteristica di rottura:	f_{tk}	540,00	[N/mm ²]				
Tensione caratteristica di snervamento:	f _{yk}	450,00	[N/mm ²]				
Resistenza di calcolo:	f_{yd}	391,30	[N/mm ²]				
AZIONI SOLLECITANTI DI CAL	.COLO						
Azione tagliante di calcolo:	$V_{S,d}$	31,25	[kN]				
Azione normale di calcolo:	$N_{S,d}$	0,00	[kN]				
ARMATURA TRASVERSA	LE						
Inclinazione dei puntoni di calcestruzzo:	θ	39,00	[°]				
Cotangente dell'angolo θ:	cot(θ)	1,23	1''				
Inclinazione dell'armatura trasversale rispetto all'asse della trave:	α	90,00	[°]				
Numero di bracci dell'armatura trasversale:	n	2,50					
Passo longitudinale delle armature trasversali:	S	40,00	[cm]				
Diametro dell'armatura trasversale:	\emptyset_{trasv}	10,00	[mm]				
Area della singola barra:	A_{barra}	0,79	[cm ²]				
Area totale dell'armatura trasversale:	A_{tot}	4,94	[cm ² /m]				

VERIFICA ALLO S.L.U. PER TAGLIO

La verifica allo S.L.U. per taglio viene condotta secondo quanto previsto dal D.M. 14.01.2008, par.4.1.2.1.3.2 La resistenza di calcolo a "taglio trazione" viene valutata mediante la seguente relazione:

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot [\cot (\alpha) + \cot (\theta)] \cdot sen (\alpha)$$

La resistenza di calcolo a "taglio compressione" viene valutata mediante la seguente relazione:

$$V_{Rcd} = 0.9 \cdot d \cdot b_{w} \cdot \alpha_{c} \cdot f_{cd} \cdot \frac{\left[\cot \left(\alpha\right) + \cot \left(\theta\right)\right]}{\left[1 + \cot^{2}\left(\theta\right)\right]}$$

Larghezza minima della sezione: 100,00 [cm] Resistenza a compressione ridotta del calcestruzzo: 8,23 [N/mm²]f'yd [N/mm²]Tensione media di compressione nella sezione: 0,000 σ_{cp} Coefficiente maggiorativo $\alpha_{\text{c}}\text{:}$ 1,0000 77,30 RESISTENZA DI CALCOLO A "TAGLIO TRAZIONE" V_{Rsd} [kN] [kN] RESISTENZA DI CALCOLO A "TAGLIO COMPRESSIONE" 1.304,26 V_{Rcd} AZIONE TAGLIANTE RESISTENTE DELLA SEZIONE: 77,30 [kN] $V_{R,d}$ COEFFICIENTE DI SICUREZZA: 2,47 $F_S=V_{R,d}/V_{S,d}$

LA VERIFICA RISULTA POSITIVA

IF - MURO DI SOSTEGNO ASSE 80 DA PGR. KM 6+389,97 A PGR. KM 6+490,30 - RELAZIONE TECNICA E DI CALCOLO

PALI DI FONDAZIONE – VALUTAZIONE DELLE AZIONI SOLLECITANTI 13

13.1 AZIONI SOLLECITANTI DI CALCOLO SUL SINGOLO PALO DI FONDAZIONE TRASMESSE DAL MURO

Nella tabella successiva sono riportati i valori delle azioni sollecitanti in testa al singolo palo di fondazione, considerato un interasse longitudinale tra i pali pari a 3,60 m:

RIEPILOGO DELLE AZIONI SOLLECITANTI SUL SINGOLO PAL	O DI FONDAZIO	NE	
COMBINAZIONE DI CARICO	N_{Sd} [kN/m]	V _{Sd} [kN/m]	M _{Sd} [kNm/m]
Stato Limite di Esercizio - Combinazione Quasi Permanente	479,52	139,66	181,20
Stato Limite di Esercizio - Combinazione Frequente 01	491,67	154,21	203,13
Stato Limite di Esercizio - Combinazione Frequente 02	479,52	139,66	181,20
Stato Limite di Esercizio - Combinazione Rara 01	495,72	159,06	210,44
Stato Limite di Esercizio - Combinazione Rara 02	491,67	154,21	203,13
Stato Limite Ultimo - Combinazione STR 01	694,98	238,59	305,46
Stato Limite Ultimo - Combinazione STR 02	688,91	231,31	294,49
Stato Limite Ultimo - Combinazione GEO 01	547,24	294,71	365,12
Stato Limite Ultimo - Combinazione GEO 02	541,97	285,72	350,79
Stato Limite di Salvaguardia della Vita - Combinazione SISMA 01	489,56	240,70	324,03
Stato Limite di Salvaguardia della Vita - Combinazione SISMA 02	485,68	240,70	323,92
Stato Limite di Salvaguardia della Vita - Combinazione SISMA 03	494,09	221,22	289,54
Stato Limite di Salvaguardia della Vita - Combinazione SISMA 04	481,15	221,22	289,17

13.2 AZIONI SOLLECITANTI SUL SINGOLO PALO CONNESSE ALLA DEFORMABILITÀ ORIZZONTALE DEL **TERRENO**

Per effetto del taglio e della deformabilità del terreno nell'intorno del palo si generano le azioni sollecitanti definite nel seguito.

13.2.1 VALUTAZIONE DELLA COSTANTE DI REAZIONE ORIZZONTALE DEL TERRENO

Per terreni prevalentemente incoerenti si considera la costante di reazione orizzontale del terreno variabile con la profondità, secondo la seguente relazione lineare:

$$k_h = n_h \cdot \frac{z}{d}$$

dove:

- n_h → costante dipendente dalla litologia
- z → profondità
- d → diametro del palo

Il valore della costante n_h viene determinato per via tabellare in funzione del valore della densità relativa del terreno:

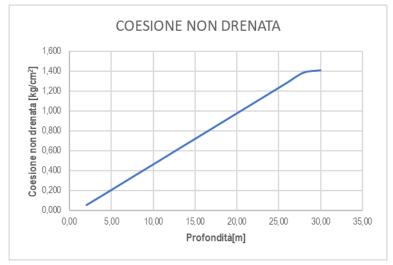
Sabbia sciolta (Dr%<30%)	secca-umida nh=0.224	satura nh=0.128;
Sabbia media (Dr>30 e<=70%)	secca- umida nh=0.672	satura nh=0.448;
Sabbia grossa (Dr%>70)	secca-umida nh=1.792	satura nh=1.088;

Per terreni prevalentemente coerenti sovraconsolidati (c_u > 0,50 kg/cm²) si considera la costante di reazione orizzontale del terreno variabile con la profondità, secondo la seguente relazione lineare (Matlock & Reese,1956)

$$k_h = c_f \cdot \frac{c_u}{d}$$

dove:

- c_f → costante assunta pari a 67 (Davisson 1970)
- c₁₁ → coesione non drenata
- d → diametro del palo


Per terreni prevalentemente coerenti normal-consolidati si considera la costante di reazione orizzontale del terreno variabile con la profondità, secondo la seguente relazione lineare (Matlock & Reese, 1956)

$$k_h = \delta \cdot \frac{z}{d}$$

dove:

- $\delta \rightarrow$ costante dipendente dalla coesione non drenata:
 - \circ $c_u <= 0.25 \text{ kg/cm}^2 \rightarrow \delta = 0.022 \text{ kg/cm}^3 = 0.22 \text{ N/cm}^3$
 - $0.25 < c_u <= 0.50 \text{ kg/cm}^2 \rightarrow \delta = 3.51 \text{ kg/cm}^3 = 35.10 \text{ N/cm}^3$
- z → profondità
- d → diametro del palo

In relazione a quanto riportato negli allegati della relazione geotecnica è stata determinato, per i terreni coerenti, l'andamento della coesione non drenata (valore caratteristico) in funzione della profondità:

È possibile notare come, fino alla profondità di circa 28 m dal piano di campagna (profondità ampiamente superiore alla lunghezza dei pali di fondazione), la variazione della coesione non drenata risulta pressoché lineare.

Per gli strati di terreno coerente, una volta determinata l'equazione della retta che descrive la variabilità della coesione non drenata con la profondità, sono stati calcolati i valori della coesione non drenata alla quota iniziale e alla quota finale dello strato e ne è stato successivamente ottenuto il valore medio di strato.

Per quanto concerne i terreni incoerenti, si riportano di seguito i valori della densità relativa ottenuti in relazione ai valori di N₁(60) determinati, per le diverse profondità indagate, a seguito della prova SPT (mediante la formulazione di Mayerhof, 1957):

IF - MURO DI SOSTEGNO ASSE 80 DA PGR. KM 6+389,97 A PGR. KM 6+490,30 - RELAZIONE TECNICA E DI CALCOLO

PROFONDITA'	σ _ν [kg/cmq)	N _{SPT}	CORREZIONE TERZAGHI N' _{SPT}	RAPPORTO DI ENERGIA C _{ER}	DIAMETRO DEL FORO C _B	TIPO DI CAMPIONATO RE	LUNGHEZZA ASTE C _R	N(60)	D _R [%]
10,50	0,95	17	16,00	0,90	1,05	1,00	1,00	15,12	63,67
13,50	1,22	22	18,50	0,90	1,05	1,00	1,00	17,48	63,45
18,00	1,62	40	27,50	0,90	1,05	1,00	1,00	25,99	70,28

Sono stati pertanto assunti i seguenti valori medi della densità relativa in funzione della profondità:

• $0.00 - 13.00 \text{ m} \rightarrow D_r = 63.00 \%$

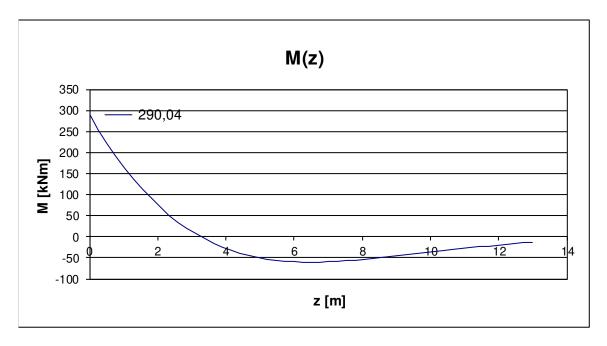
Essendo stata posta la falda di progetto a **1,00 m** dal piano di campagna, il terreno al di sopra di tale quota è considerato "secco – umido", mentre il terreno al di sotto è considerato "saturo".

Il valore di \mathbf{k}_h finale è stato determinato come media ponderata dei valori di \mathbf{k}_h valutati per ciascuno strato della stratigrafia considerata:

UNITA' LITOTECNICA	QUOTA INIZIALE [m]	QUOTA FINALE [m]	H _{strato} [m]	C _u QUOTA INIZIALE	C _u QUOTA FINALE	C _{u,MEDIA} STRATO [kg/cm ²]	Dr [%]	n _h	δ [N/cm³]	d [m]	k _h QUOTA INIZIALE	k _h QUOTA FINALE	k _{h,media} STRATO	k _{h,media} . h _{strato}
U2	0,00	1,00	1,00	0,000	0,003	0,002	-	-	0,220	1,20	0,00	0,18	0,09	0,09
U2	1,00	6,00	5,00	0,003	0,258	0,131	-	-	0,220	1,20	0,18	1,10	0,64	3,21
U1	6,00	8,90	2,90	-	-	-	63,00	0,488	-	1,20	2,44	3,62	3,03	8,79
U2	8,90	10,50	1,60	0,406	0,488	0,447			35,100	1,20	260,33	307,13	283,73	453,96
U1	10,50	13,00	2,50	-	-	-	63,00	0,488	-	1,20	4,27	5,29	4,78	11,95
			13,00											466,05

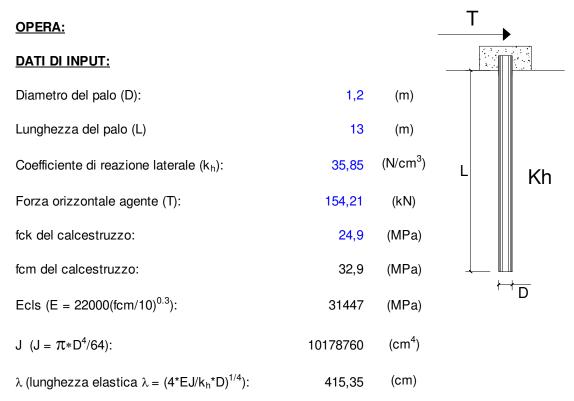
 $k_h = 466,05 / 13,00 = 35,85 \text{ N/cm}^3$

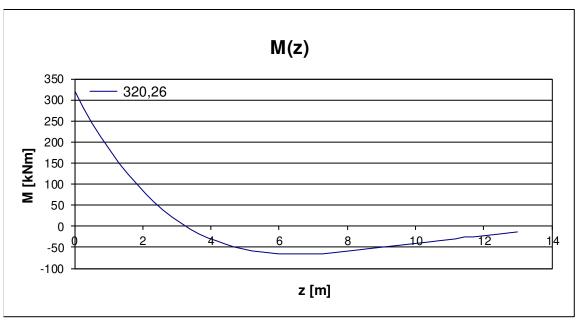
Per la valutazione delle azioni sollecitanti sul palo di fondazione per effetto dell'azione tagliante in testa e della deformabilità è stato utilizzato il metodo di Matlock & Reese con k_h variabile con la profondità.



13.2.2 COMBINAZIONE SLE – QUASI PERMANENTE

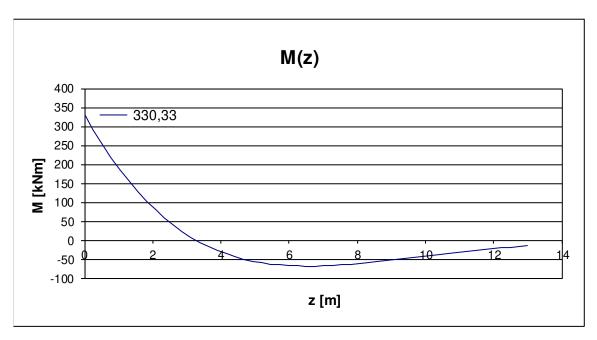
OPERA:				•
DATI DI INPUT:				
Diametro del palo (D):	1,2	(m)		
Lunghezza del palo (L)	13	(m)		
Coefficiente di reazione laterale (k _h):	35,85	(N/cm^3)	L	Kh
Forza orizzontale agente (T):	139,66	(kN)		
fck del calcestruzzo:	24,9	(MPa)		
fcm del calcestruzzo:	32,9	(MPa)		
Ecls (E = $22000(fcm/10)^{0.3}$):	31447	(MPa)	1	¹ D
$J (J = \pi * D^4/64)$:	10178760	(cm ⁴)		
λ (lunghezza elastica $\lambda = (4*EJ/k_h*D)^{1/4}$):	415,35	(cm)		





COMBINAZIONE SLE – FREQUENTE

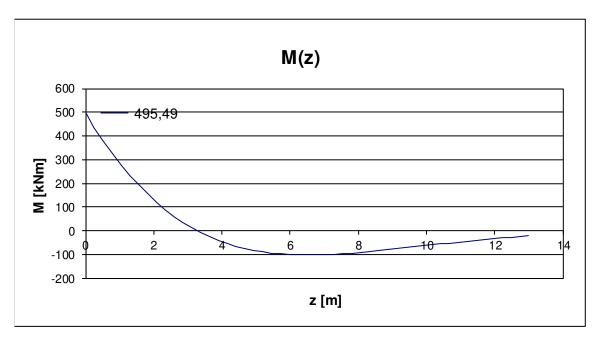
La combinazione di carico maggiormente gravosa è risultata la combinazione SLE - FREQUENTE 01.



13.2.4 COMBINAZIONE SLE - RARA

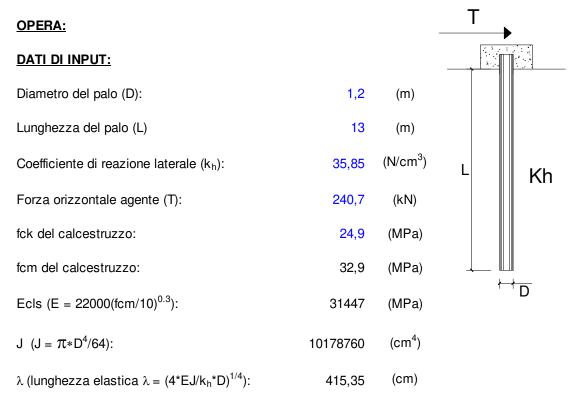
La combinazione di carico maggiormente gravosa è risultata la combinazione SLE – RARA 01.

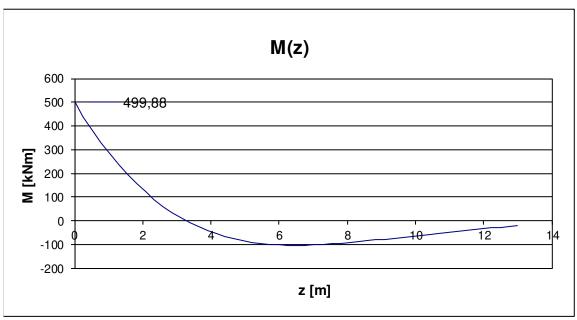
OPERA:				•
DATI DI INPUT:				
Diametro del palo (D):	1,2	(m)		
Lunghezza del palo (L)	13	(m)		
Coefficiente di reazione laterale (k _h):	35,85	(N/cm^3)	L	Kh
Forza orizzontale agente (T):	159,06	(kN)		
fck del calcestruzzo:	24,9	(MPa)		
fcm del calcestruzzo:	32,9	(MPa)		
Ecls (E = $22000(fcm/10)^{0.3}$):	31447	(MPa)	1	¹ D
$J (J = \pi * D^4/64)$:	10178760	(cm ⁴)		
λ (lunghezza elastica $\lambda = (4*EJ/k_h*D)^{1/4}$):	415,35	(cm)		



13.2.5 COMBINAZIONE SLU – STR

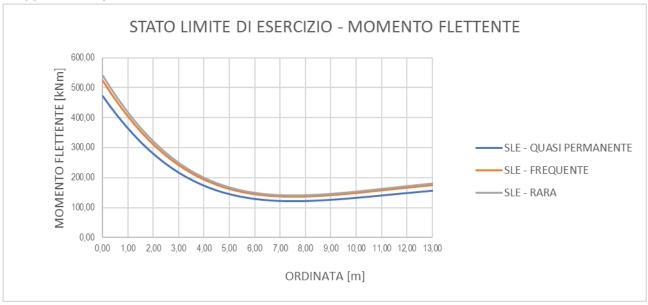
La combinazione di carico maggiormente gravosa è risultata la combinazione SLU – STR 01.


OPERA:				•
DATI DI INPUT:				
Diametro del palo (D):	1,2	(m)		
Lunghezza del palo (L)	13	(m)		
Coefficiente di reazione laterale (k _h):	35,85	(N/cm^3)	L	Kh
Forza orizzontale agente (T):	238,59	(kN)		
fck del calcestruzzo:	24,9	(MPa)		
fcm del calcestruzzo:	32,9	(MPa)		
Ecls (E = $22000(fcm/10)^{0.3}$):	31447	(MPa)	1	¹ D
$J (J = \pi * D^4/64)$:	10178760	(cm ⁴)		
λ (lunghezza elastica $\lambda = (4*EJ/k_h*D)^{1/4}$):	415,35	(cm)		



13.2.6 COMBINAZIONE SLV

La combinazione di carico maggiormente gravosa è risultata la combinazione SLV – 01.

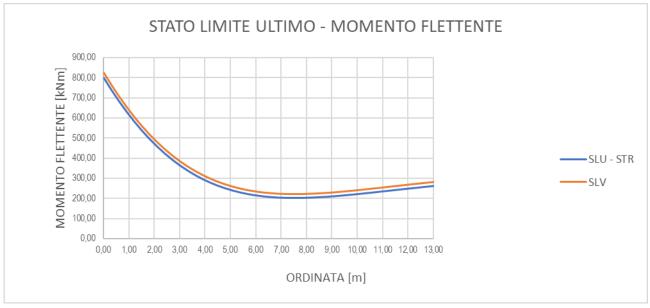


13.3 AZIONI SOLLECITANTI TOTALI SUL SINGOLO PALO

13.3.1 COMBINAZIONI ALLO STATO LIMITE DI ESERCIZIO

Nel grafico successivo è riportato l'andamento del momento flettente di calcolo per le combinazioni maggiormente gravose allo Stato Limite di Esercizio:

Nel grafico successivo è riportato l'andamento dell'azione tagliante di calcolo per le combinazioni maggiormente gravose allo Stato Limite di Esercizio:



13.3.2 COMBINAZIONI ALLO STATO LIMITE ULTIMO

Nel grafico successivo è riportato l'andamento del momento flettente di calcolo per le combinazioni maggiormente gravose allo Stato Limite Ultimo STR e allo Stato Limite di Salvaguardia della Vita:

Nel grafico successivo è riportato l'andamento dell'azione tagliante di calcolo di calcolo per le combinazioni maggiormente gravose allo Stato Limite Ultimo STR e allo Stato Limite di Salvaguardia della Vita:

14 PALI DI FONDAZIONE – VERIFICHE STRUTTURALI

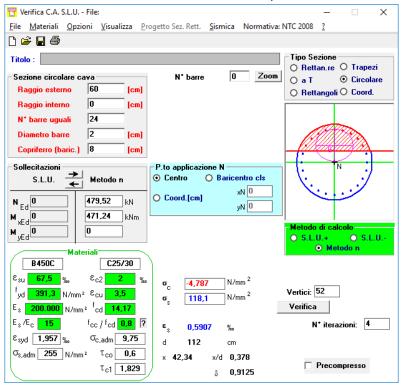
14.1 SEZIONE ED ARMATURA DI VERIFICA

La sezione di verifica è circolare con diametro pari a 120 cm.

L'armatura verticale (armatura di forza) è prevista come segue:

• 24Ø20 disposti a raggiera.

L'armatura a taglio è costituita da una spirale Ø10/15.


Il copriferro netto minimo è assunto pari a 60 mm.

14.2 VERIFICA ALLO STATO LIMITE DI LIMITAZIONE DELLE TENSIONI

14.2.1 COMBINAZIONE QUASI PERMANENTE

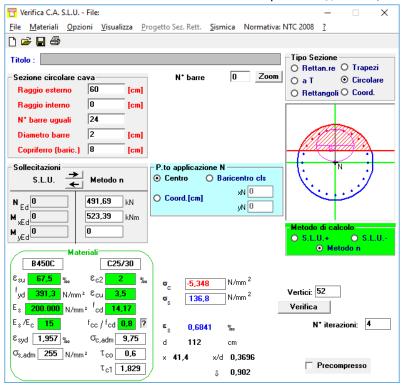
L'azione normale di calcolo è assunta pari a N_{Sd} = 479,52 kN.

Il momento flettente di calcolo è assunto pari a $M_{Sd} = 471,24$ kNm.

Le tensioni sui materiali risultano pari a:

 $\sigma_c = 4,78 \text{ N/mm}^2 < 0,45 \text{ f}_{ck} = 11,20 \text{ N/mm}^2$

 $\sigma_s = 118,10 \text{ N/mm}^2 < 0,80 \text{ f}_{vk} = 360,00 \text{ N/mm}^2$



14.2.2 **COMBINAZIONE FREQUENTE**

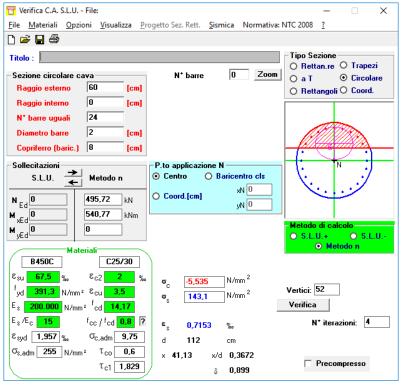
La combinazione di carico maggiormente gravosa è risultata la combinazione FREQUENTE 01.

L'azione normale di calcolo è assunta pari a N_{Sd} = 491,67 kN.

Il momento flettente di calcolo è assunto pari a M_{Sd} = 523,39 kNm.

Le tensioni sui materiali risultano pari a:

 $\sigma_c = 5.34 \text{ N/mm}^2 < 0.45 \text{ f}_{ck} = 11.20 \text{ N/mm}^2$ $\sigma_s = 136,80 \text{ N/mm}^2 < 0,80 \text{ f}_{vk} = 360,00 \text{ N/mm}^2$



14.2.3 COMBINAZIONE CARATTERISTICA

La combinazione di carico maggiormente gravosa è risultata la combinazione RARA 01.

L'azione normale di calcolo è assunta pari a N_{Sd} = 495,72 kN.

Il momento flettente di calcolo è assunto pari a $M_{Sd} = 540,77 \text{ kNm}$.

Le tensioni sui materiali risultano pari a:

 $\sigma_c = 5.35 \text{ N/mm}^2 < 0.60 \text{ f}_{ck} = 14.94 \text{ N/mm}^2$

 σ_s = 143,10 N/mm² < 0,80 f_{yk} = 360,00 N/mm²

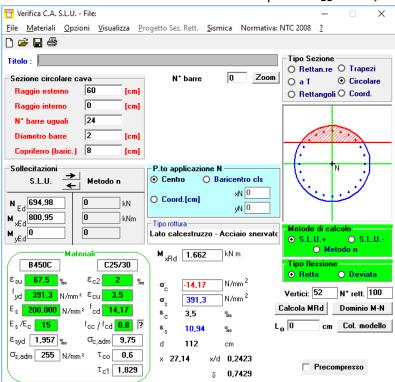
14.3 VERIFICA ALLO STATO LIMITE DI FESSURAZIONE

14.3.1 COMBINAZIONE ALLO STATO LIMITE DI ESERCIZIO – QUASI PERMANENTE

	VERIFICA ALLO STATO LIMITE DI APERTURA DELLE FESSURE							
D	120	cm			Armatura te	sa	Armatura compressa:	
				A_s	47,12	cm^2	A_{s}' 47,78 cm^{2}	
$\mathrm{cf}_{\mathrm{effettivo}}$	7	cm		y _{G As} (*)	35,47	cm	(*) da lembo teso $y_{G.As'}$ (*) 100,89 cm	
cf _{norma}	6	cm		x (cm) (*)	n _{ferri}	Φ (mm)	$x (cm) (*) \qquad n_{ferri} \qquad \Phi (mm)$	
d	84,53	cm	eff	8	1	20	86 2 26	
			eff	10	2	20	97 2 26	
R _{ck}	30	MPa	eff	15	2	20	105 2 26	
f_{ctm}	2,61	MPa	eff	23	2	20	110 2 26	
f_{ctk}	1,82	MPa	eff	34	2	20	112 1 26	
E_s	210000	MPa	eff	46	2	20		
n	15		eff	60	2	20		
			eff	74	2	20		
Sezione	inte ram.	reagente						
У _G	60,94							
A _{ideale}	12733	cm ²						
I _{ideale}	12257875	cm ⁴		$\Phi_{ m medio}$	20	mm	$\Phi_{ m staffe}$ 10 mm	
			-					
Fessurazi	one indot	ta da:			Calc	olo delle te	nsioni nella sezione fessurata	
carichi			•	N	479,52	2 kN	carico assiale agente	
Caratte ris	tiche aml	biente:		M	471,2	4 kN m	momento agente	
molto o mo	deratament	e aggressivo	•	e	98,2	7 cm	eccentricità GRANDE ECCENTRICITÀ	
				en	16,3	0 cm	estremità nocciolo d'inerzia	
β_1	1			u	38,2	7 cm	distanza centro di pressione - lembo compresso	
β_2	0,5			Уc		5 cm	asse n (da lembo compresso) RIS. #1	
k ₁	0,8			A*		6 cm ²	area ideale	
k_2	0,5			S _n *		6 cm ³	momento statico relativo all'asse n	
k	-			$I_{n,acc}*$	209715	4	momento d'inerzia armature rispetto all'asse n	
H _{A cls eff}	22,50	cm		I_n^*	560937	4 cm ⁴	momento d'inerzia relativo all'asse n	
alfa	225,24	0		$\sigma_{ m c}$	4,48	8 MPa	massima tensione di compressione nel cls	
A _{cls eff}	4309,81	cm ²		$\sigma_{ m s}$	70,49	9 MPa	tensione di trazione nell'acciaio	
$A_{s \text{ eff}}$	47,12	mm^2		$\sigma_{ m smax}$		2 MPa	tensione di trazione nell'acciaio	
$\rho_{\rm r}$	0,0109						condizione di carico di prima fessurazione	
				N		0 kN	carico assiale agente	
$\sigma_{\rm s}$	70,49	MPa		$\mathbf{M}_{\mathbf{F}}$		0 kN m	momento di prima fessurazione	
σ_{sr}		MPa		e	125,1		eccentricità GRANDE ECCENTRICITÀ	
ε _{sm}	0,00033			u		5 cm	distanza centro di pressione - lembo compresso	
S _{rm}	232,9	mm		y_c		4 cm	asse n (da lembo compresso) RIS. #2	
W _m	0,078	mm		A*		0 cm^2	area ideale	
β	1,7			S _n *	22562		momento statico relativo all'asse n	
χ	1,5			I _{n,acc} *	238279		momento d'inerzia armature rispetto all'asse n	
***	0.422	170.110	1	I _n *	1241690		momento d'inerzia relativo all'asse n	
Wk	0,133	mm		σ _{cr}		7 MPa	massima tensione di compressione nel cls	
W _k limite	0,2	mm		$\sigma_{ m sr}$	· ·	1 MPa	tensione di trazione nell'acciaio	
$\mathbf{w}_{\mathbf{k}}$	<	W _k limite		$\sigma_{ m srmax}$	13,6	7 MPa	tensione di trazione nell'acciaio	

14.3.2 COMBINAZIONE ALLO STATO LIMITE DI ESERCIZIO – FREQUENTE

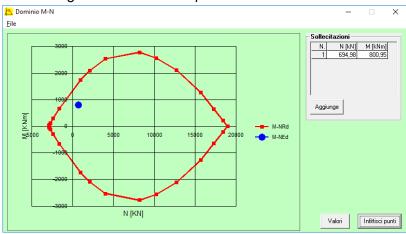
		VER	IFIC	CA ALLO STAT	TO LIMITE	E DI APER	TURA DELL	E FESSURE	C	
D	120	cm			Armatura tes				tura comp	oressa:
				A_s	47,12	cm^2		A_s '	47,78	cm ²
cf _{effettivo}	7	cm		y _{G As} (*)	35,47	cm	(*) da lembo teso		100,89	cm
cf _{norma}	6	cm		x (cm) (*)	n _{ferri}	Φ (mm)	` ´	x (cm) (*)	n _{ferri}	Φ (mm)
d	84,53	cm	eff	8	1	20	~	86	2	26
			eff	10	2	20		97	2	26
R_{ck}	30	MPa	eff	15	2	20		105	2	26
f_{ctm}	2,61	MPa	eff	23	2	20		110	2	26
f _{ctk}	1,82	MPa	eff	34	2	20		112	1	26
E _s		MPa	eff	46	2	20				
n	15		eff	60	2	20				
			eff	74	2	20				
Sezione i	interam. 1	~~~~~~]							
$y_{ m G}$	60,94									
A _{ideale}	12733	_								
I _{ideale}	12257875			$\Phi_{ m medio}$	20	mm		$\Phi_{ m staffe}$	10	mm
ideale			3	inculo				stanc	-	
Fessurazio	ne indot	ta da:			Calc	olo delle te	ensioni nella se	ezione fessur	ata	
carichi			-	N	491,67	7 kN	carico assiale	agente		
Caratte ris	tiche amb	oiente:		M	523,39) kN m	momento ago	ente		
molto o mod	deratamente	e aggressivo	•	e	106,45	5 cm	eccentricità	GRANDE	E ECCEN	TRICITÀ
				en	16,30	0 cm	estremità nocc	ciolo d'inerzia		
β_1	1			u	46,45	5 cm	distanza centro	o di pressione	- lembo c	ompresso
β_2	0,5			y_c		9 cm	asse n (da lem	ibo compresso)	RIS. #1
\mathbf{k}_1	0,8			A*	475	7 cm ²	area ideale			
\mathbf{k}_2	0,5			S_n^*	39566	5 cm ³	momento stati	co relativo all'a	asse n	
k	-			$I_{n,acc}*$	2126608	8 cm ⁴	momento d'ine	rzia armature	rispetto a	ıll'asse n
H _{A cls eff}	22,50	cm		I_n^*	555880	1 cm ⁴	momento d'ine	rzia relativo a	ll'asse n	
alfa _	227,68	0		$\sigma_{ m c}$	5,01	l MPa	massima tensi	one di compre	ssione ne	l cls
$A_{cls\ eff}$	4356,60	cm^2		$\sigma_{ m s}$	82,46	6 MPa	tensione di tra	zione nell'accia	aio	
$A_{s \text{ eff}}$	47,12	mm^2		$\sigma_{ m smax}$	133,66	6 MPa	tensione di tra	zione nell'accia	aio	
$\rho_{\rm r}$	0,0108			Calco	olo delle ten	sioni nella	condizione di	carico di prin	na fessui	razione
				N	492	2 kN	carico assiale	agente		
$\sigma_{\rm s}$	82,46	MPa		$\mathbf{M}_{\mathbf{F}}$	602	2 kN m	momento di _l	prima fessura	azione	
$\sigma_{\rm sr}$	5,03	MPa		e	122,44	4 cm	eccentricità	GRANDE	E ECCEN	TRICITÀ
ε _{sm}	0,00039			u		4 cm	distanza centro	o di pressione	- lembo c	
S _{rm}	234,9	mm		y_c		4 cm	asse n (da lem	ibo compresso)	RIS. #2
W _m	0,092	mm		A*		0 cm^2	area ideale			
β	1,7			S _n *	225625		momento stati			
χ	1,5	•		$I_{n,acc}*$	2382794	_	momento d'ine		-	ıll'asse n
				I_n*	12475822		momento d'ine			
$\mathbf{w}_{\mathbf{k}}$	0,157	mm		$\sigma_{ m cr}$		l MPa	massima tensi	_		l cls
W _k limite	0,3	mm		$\sigma_{ m sr}$		3 MPa	tensione di tra			
$\mathbf{w}_{\mathbf{k}}$	<	W _{k limite}		$\sigma_{ m srmax}$	14,01	l MPa	tensione di tra	zione nell'accia	aio	


14.4 VERIFICA ALLO STATO LIMITE ULTIMO PER PRESSOFLESSIONE

14.4.1 **CONDIZIONE STATICA**

La combinazione di carico maggiormente gravosa è risultata la combinazione SLU - STR 01.

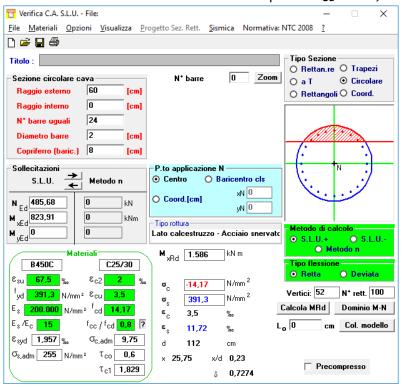
L'azione normale di calcolo è assunta pari a N_{Sd} = 694,98 kN.


Il momento flettente di calcolo è assunto pari a M_{Sd} = 800,95 kNm.

Il momento resistente risulta pari a:

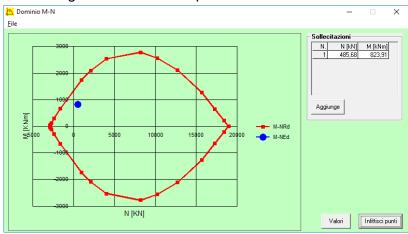
 $M_{Rd} = 1.662,00 \text{ kNm} > M_{Sd} = 800,95 \text{ kNm}$

Nell'immagine successiva è riportato il dominio di resistenza della sezione:



14.4.2 **CONDIZIONE SISMICA**

La combinazione di carico maggiormente gravosa è risultata la combinazione SLV – SISMA 02. L'azione normale di calcolo è assunta pari a N_{Sd} = 485,68 kN.


Il momento flettente di calcolo è assunto pari a M_{Sd} = 823,91 kNm.

Il momento resistente risulta pari a:

 $M_{Rd} = 1.586,00 \text{ kNm} > M_{Sd} = 823,91 \text{ kNm}$

Nell'immagine successiva è riportato il dominio di resistenza della sezione:

14.5 VERIFICA ALLO STATO LIMITE ULTIMO PER TAGLIO

La combinazione di carico maggiormente gravosa è risultata la combinazione SLV 01.

L'azione tagliante di calcolo è assunta pari a V_{Sd} = 240,70 kN.

A favore di sicurezza non viene considerato il contributo dell'azione normale.

La verifica viene condotta su una sezione quadrata equivalente di lato pari a 106,34 cm (equivalenza d'area).

(equivalenza d'area).				
CARATTERISTICHE GEOMETRICHE DELI	LA SEZIONE		,	
Base della zezione trasversale:	b	106,34	[cm]	
Altezza della sezione trasversale:	h	106,34	[cm]	
Copriferro netto:	С	6,00	[cm]	
Altezza utile della sezione:	d	100,34	[cm]	
CARATTERISTICHE DEI MATERI	IALI			
Classe di resistenza del calcestruzzo:		C25/30		¥
Resistenza caratteristica cubica a compressione:	R_ck	30,00	$[N/mm^2]$	
Resistenza caratteristica cilindrica a compressione:	f_{ck}	24,90	$[N/mm^2]$	
Resistenza di calcolo a compressione:	f_{cd}	14,11	[N/mm ²]	
Tipologia dell'acciaio da armatura:		B450C		¥
Tensione caratteristica di rottura:	f _{tk}	540.00	[N/mm ²]	
Tensione caratteristica di snervamento:	f _{vk}	450,00	[N/mm ²]	
Resistenza di calcolo:	iyk f _{vd}	391,30	[N/mm ²]	
Hesisteliza di calcolo.	'yd	391,30][[1]	
AZIONI SOLLECITANTI DI CALCO	OLO			
Azione tagliante di calcolo:	$V_{S,d}$	240,70	[kN]	
Azione normale di calcolo:	$N_{\text{S,d}}$	0,00	[kN]	
ARMATURA TRASVERSALE				
Inclinazione dei puntoni di calcestruzzo:	θ	45,00	[°]	
Cotangente dell'angolo θ:	cot(θ)	1,00		
Inclinazione dell'armatura trasversale rispetto all'asse della trave:	α	90,00	[°]	
Numero di bracci dell'armatura trasversale:	n	2,00		
Passo longitudinale delle armature trasversali:	S	15,00	[cm]	
Diametro dell'armatura trasversale:	\mathcal{O}_{trasv}	10,00	[mm]	
Area della singola barra:	A_{barra}	0,79	[cm ²]	
Area totale dell'armatura trasversale:	A_{tot}	10,53	[cm ² /m]	
VERIFICA ALLO S.L.U. PER TAG	LIO			
La verifica allo S.L.U. per taglio viene condotta secondo quanto previs La resistenza di calcolo a "taglio trazione" viene valutata mediante la :			r.4.1.2.1.3.2	
$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot [\cot (\alpha) + \cos (\alpha)]$	+ cot (θ)]· sen (α		
La resistenza di calcolo a "taglio compressione" viene valutata media	ante la segu	ente relazione:		
	ot (α)	$+ \cot (\theta)$)]	
$V_{Rcd} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot f_{cd} \cdot \frac{\left[cc\right]}{cd}$	$1 \pm co$	$\frac{1}{(a + 2)(a)}$	<u>, </u>	

$V = 0.9 \cdot d \cdot b \cdot \alpha \cdot f \cdot L$			<u>/ </u>
$V_{Rcd} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot f_{cd} \cdot \underline{}$	$1 + \cot$	$^{2}\left(heta ight) ight]$	
Larghezza minima della sezione:	b_{w}	106,34	[cm]
Resistenza a compressione ridotta del calcestruzzo:	f' _{yd}	7,06	$[N/mm^2]$
Tensione media di compressione nella sezione:	$\sigma_{\sf cp}$	0,000	$[N/mm^2]$
Coefficiente maggiorativo α_c :	α_{c}	1,0000	
RESISTENZA DI CALCOLO A "TAGLIO TRAZIONE"	V_{Rsd}	372,22	[kN]
RESISTENZA DI CALCOLO A "TAGLIO COMPRESSIONE"	V_{Rcd}	3.387,51	[kN]
			1
AZIONE TAGLIANTE RESISTENTE DELLA SEZIONE:	$V_{R,d}$	372,22	[kN]
COEFFICIENTE DI SICUREZZA:	$F_S=V_{R,d}/V_{S,d}$	1,55	
LA VERIFICA RISULTA POSITIVA			
· · · · · · · · · · · · · · · · · · ·		· ·	

IF - MURO DI SOSTEGNO ASSE 80 DA PGR. KM 6+389,97 A PGR. KM 6+490,30 - RELAZIONE TECNICA E DI CALCOLO

PALI DI FONDAZIONE - VERIFICHE GEOTECNICHE 15

15.1 FORMULAZIONI ADOTTATE PER LA VERIFICA DEL CARICO LIMITE ULTIMO

La stima della capacità portante per carico verticale di un palo isolato Q_{LIM} mediante formule statiche è ottenuta valutando i massimi mobilizzabili, in condizioni di equilibrio limite, della resistenza laterale Q_S e di quella di punta Q_P:

$$Q_{LIM} + W_P = Q_S + Q_P$$

essendo W_P il peso proprio del palo.

Si fanno le seguenti ipotesi:

- il carico limite del sistema palo terreno è condizionato dalla resistenza del terreno e non da quella del palo;
- il palo è un corpo cilindrico rigido;
- i termini di capacità portante per attrito e/o aderenza laterale Q_s e di capacità portante di punta **Q**_P non si influenzano reciprocamente e possono essere determinati separatamente.

15.1.1 PALO IN TERRENO COESIVO SATURO

Stima della capacità portante laterale Qs

La capacità portante per aderenza e/o per attrito laterale Q_s per un palo di diametro D e lunghezza L è per definizione:

$$Q_{S} = \pi \cdot D \cdot \int_{0}^{L} \tau_{s} \cdot dz$$

Si assume che le tensioni tangenziali limite siano una quota parte della resistenza a taglio non drenata originaria del terreno indisturbato:

$$\tau_s = \alpha \cdot c_u$$

In cui α è un coefficiente empirico di aderenza che dipende dal tipo di terreno, dalla resistenza al taglio non drenata del terreno indisturbato, dal metodo di costruzione del palo, dal tempo, dalla profondità e dal cedimento del palo.

Per la valutazione del coefficiente α per i pali trivellati si assume la seguente formulazione con cu espresso in [kPa] (Viggiani, 1999):

- $c_u < 25 \rightarrow \alpha = 0.70$
- $25 < c_u < 70 \rightarrow \alpha = 0.70 0.08 \cdot (c_u 25)$
- $70 < c_{11} \rightarrow \alpha = 0.35$

Stima della capacità portante di punta Q_P

Per la stima della capacità portante di punta Q_P si esegue un'analisi in condizioni non drenate, in termini di tensioni totali. L'equazione di riferimento è formalmente identica a quella della capacità portante di fondazioni superficiali su terreno coesivo in condizioni non drenate:

$$Q_P = A_P \cdot q_P = A_P \cdot \left(c_u \cdot N_c + \sigma_{v0,P} \right)$$

in cui:

- A_P è l'area di base del palo;
- q_P è la capacità portante unitaria;
- c_u è la resistenza al taglio in condizioni non drenate del terreno alla profondità della base del palo;
- $\sigma_{v0,P}$ è la tensione verticale totale alla punta;
- N_c è il fattore di capacità portante, il cui valore è assunto pari a 9,00.

15.1.2 PALO IN TERRENO INCOERENTE

Nel caso di pali in terreni incoerenti, e quindi a elevata permeabilità, l'analisi è svolta sempre con riferimento alle condizioni drenate e quindi in termini di tensioni efficaci.

Stima della capacità portante laterale Qs

La capacità portante per aderenza e/o per attrito laterale per un palo di diametro D e lunghezza L è per definizione:

$$Q_S = \pi \cdot D \cdot \int_0^L \tau_s \cdot dz$$

Si assume che le sovrappressioni interstiziali che si generano durante la messa in opera del palo si siano dissipate al momento di applicazione del carico e che pertanto la tensione tangenziale limite possa essere valutata, con riferimento alle tensioni efficaci, nel modo seguente:

$$\tau_s = \sigma_h \cdot \tan \delta = K \cdot \sigma_{v_0} \cdot \tan \delta$$

in cui:

- σ'_h è la tensione efficace orizzontale nel terreno a contatto con il palo;
- σ'_{v0} è la tensione efficace verticale iniziale prima della messa in opera del palo;
- K è un coefficiente di spinta, rapporto fra σ'_h e $\sigma'_{v0} \rightarrow K = 1-sen(\phi')$
- tan δ è il coefficiente di attrito palo terreno → μ = tan δ = tan(φ')

Stima della capacità portante di punta QP

Per la stima della capacità portante di punta Q_P dei pali in terreni incoerenti è stimata con l'equazione:

$$Q_{P} = A_{P} \cdot q_{P} = A_{P} \cdot \sigma_{v0,P} \cdot N_{q}$$

in cui:

- A_P è l'area di base del palo;
- q_P è la capacità portante unitaria;
- σ_{v0,P} è la tensione verticale totale alla punta;
- N_a è il fattore di capacità portante.

15.2 VERIFICHE DEL CARICO LIMITE ULTIMO

15.2.1 CARATTERISTICHE GEOTECNICHE DEI TERRENI PER IL CALCOLO DEL CARICO LIMITE ULTIMO

Si riportano di seguito i parametri geotecnici delle unità litotecniche (valori minimi e medi), desunti dalla relazione geotecnica generale e utilizzati per il calcolo del carico limite ultimo.

Unità litotecnica U1

Peso per unità di volume umido: γ = 19,00 kN/m³

Peso per unità di volume immerso: y = 9,00 kN/m³

Angolo di attrito interno (valore minimo): φ = 30,00°

Angolo di attrito interno (valore medio): φ = 32,00°

• Coesione efficace: c' = 0,00 kN/m²

Unità litotecnica U2

Peso per unità di volume umido: γ = 19,50 kN/m³

Peso per unità di volume immerso: y = 9,70 kN/m³

Angolo di attrito efficace (valore minimo): φ' = 26,00°

Angolo di attrito efficace (valore medio): φ' = 27,00°

Coesione efficace (valore minimo): c' = 7,00 kN/m²

Coesione efficace (valore medio): c' = 17,00 kN/m²

Per la determinazione del valore della coesione non drenata si fa riferimento alla legge di variazione cautelativa, desunta dalla relazione geotecnica generale, di seguito riportata:

$$c_u = \frac{p - 0.957}{19.48} \left[\frac{kg}{cm^2} \right]$$

Profondità	Coesione non drenata
m	Cu (Kg/cm²)
2,00	0,054
4,00	0,156
6,00	0,259
8,00	0,362
10,00	0,464
12,00	0,567
14,00	0,670
16,00	0,772
18,00	0,875
20,00	0,978
22,00	1,080
24,00	1,183
26,00	1,286
28,00	1,388
30,00	1,491

Trattandosi di valori medi, i valori minimi della coesione non drenata verranno assunti come:

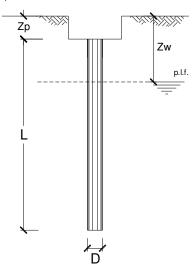
$$c_{u,\min} = c_{u,med} - 0.010 \left[\frac{kg}{cm^2} \right]$$

15.2.2 COMBINAZIONE ALLO STATO LIMITE ULTIMO – STR – CONDIZIONI NON DRENATE

La combinazione di carico maggiormente gravosa è risultata la combinazione SLU - STR 01. L'azione normale di compressione di calcolo è assunta pari a N_{Sd} = 694,98 kN.

CALCOLO DELLA CAPACITA' PORTANTE DI UN PALO TRIVELLATO DI GRANDE DIAMETRO

CANTIERE: OPERA:


DATI DI INPUT:

Diametro del Palo (D):	1,20	(m)	Area del Palo (Ap):	1,131	(m ²)
Quota testa Palo dal p.c. (z _p):	0,00	(m)	Quota falda dal p.c. (z _w):	1,00	(m)
Carico Assiale Permanente (G):	694,98	(kN)	Carico Assiale variabile (Q):		(kN)

Numero di strati 4 💠 Lpalo = 13,00 (m)

	coefficienti parz	iali	azi	oni	resistenz	resistenza laterale e di base			
Metodo di calcolo			permanenti γ _G	variabili γο	γь	γs	γs traz		
	A1+M1+R1	0	1,30	1,50	1,00	1,00	1,00		
⊃	A2+M1+R2	0	1,00	1,30	1,70	1,45	1,60		
SLU	A1+M1+R3	0	1,30	1,50	1,35	1,15	1,25		
	SISMA	0	1,00	1,00	1,35	1,15	1,25		
DM88		0	1,00	1,00	1,00	1,00	1,00		
definiti dal progettista		•	1,00	1,00	1,00	1,00	1,00		

n	1	2	30	4	5 ()	7	≥10 ○	T.A.	prog.
ξ3	1,70	1,65	1,60	1,55	1,50	1,45	1,40	1,00	1,00
ξ4	1,70	1,55	1,48	1,42	1,34	1,28	1,21	1,00	1,00

PARAMETRI MEDI

Strata	Spess		Parametri del terreno					
Strato	Spess	Tipo di terreno	γ	C' med	φ' _{med}	C _{u med}		
(-)	(m)		(kN/m^3)	(kPa)	(°)	(kPa)		
1	6,00	U2	19,50			12,9		
2	2,90	U1	19,00		32,0			
3	1,60	U2	19,50			44,7		
4	2,50	U1	19,00		32,0			

-	(n.	b.:	lo	spe	ssore	deg	li stra	ti è	compu	tato	dalla	quota	di intrad	dosso d	lel p	linto)	

C	Coefficienti di Calcolo							
k	μ	а	α					
(-)	(-)	(-)	(-)					
0,00	0,00		0,70					
0,47	0,62							
0,00	0,00		0,54					
0,47	0,62							

PARAMETRI	MINIMI	(solo	per	SLU	١
I AIIAMEIIU	14111411411	(SOIO	pei	JLU	,

Ctroto	Cnoon		Parametri del terreno					
Strato	Spess	Tipo di terreno	γ	C' _{min}	φ' _{min}	C _{u min}		
(-)	(m)		(kN/m^3)	(kPa)	(°)	(kPa)		
1	6,00	U2	19,00			11,9		
2	2,90	U1	19,50		30,0			
3	1,60	U2	19,00			43,7		
4	2,50	U1	19,50		30,0			

C	coefficient	i di Calcol	0
k	μ	а	α
(-)	(-)	(-)	(-)
0,00	0,00		0,70
0,50	0,58		
0,00	0,00		0,55
0,50	0,58		

RISULTATI

Strato	Spess				media			minima (solo SLU)				
Strato	Spess	Tipo di terreno	Qsi	Nq	Nc	qb	Qbm	Qsi	Nq	Nc	qb	Qbm
(-)	(m)		(kN)	(-)	(-)	(kPa)	(kN)	(kN)	(-)	(-)	(kPa)	(kN)
1	6,00	U2	204,3					188,4				
2	2,90	U1	257,1					245,5				
3	1,60	U2	146,1					145,0				
4	2,50	U1	331,0	21,05	0,00	2753,4	3114,1	320,6	17,65	0,00	2288,7	2588,4

CARICO ASSIALE AGENTE

 $Nd = N_{G} \cdot \gamma_{G} + N_{Q} \cdot \gamma_{Q}$

Nd = 706,3 (kN)

CAP	ΔCΙΤΔ'	PORT	ANTE	MFDIA

base $R_{b;cal\ med} = 3114,1\ (kN)$ laterale $R_{s;cal\ med} = 938,4\ (kN)$

totale $R_{c;cal\ med} = 4052,5 (kN)$

CAPACITA' PORTANTE MINIMA

base $R_{b;cal min} = 2588,4 (kN)$ laterale $R_{s;cal min} = 899,4 (kN)$ totale $R_{c;cal min} = 3487,8 (kN)$

CAPACITA' PORTANTE CARATTERISTICA

 $R_{b,k} = Min(R_{b,cal\ med}/\xi_3; R_{b,cal\ min}/\xi_4) = 1522,6 (kN)$

 $R_{s,k} = Min(R_{s,cal\ med}/\xi_3; R_{s,cal\ min}/\xi_4) = 529,1 (kN)$

 $R_{c,k} = R_{b,k} + R_{s,k}$ = 2051,7 (kN)

CAPACITA' PORTANTE DI PROGETTO

 $R_{c,d} = R_{bk}/\gamma b + R_{sk}/\gamma s$ Fs = Rc,d / Nd

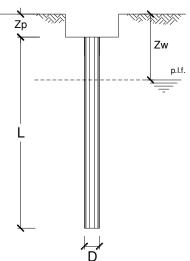
 $R_{c,d} = 2051,7 \text{ (kN)}$ Fs = 2,90

15.2.3 COMBINAZIONE ALLO STATO LIMITE ULTIMO – STR – CONDIZIONI DRENATE

La combinazione di carico maggiormente gravosa è risultata la combinazione SLU - STR 01. L'azione normale di compressione di calcolo è assunta pari a N_{Sd} = 694,98 kN.

CALCOLO DELLA CAPACITA' PORTANTE DI UN PALO TRIVELLATO DI GRANDE DIAMETRO

CANTIERE: OPERA:


DATI DI INPUT:

Diametro del Palo (D):	1,20	(m)	Area del Palo (Ap):	1,131	(m ²)
Quota testa Palo dal p.c. (z _p):	0,00	(m)	Quota falda dal p.c. (z _w):	1,00	(m)
Carico Assiale Permanente (G):	706,32	(kN)	Carico Assiale variabile (Q):		(kN)

Numero di strati 4 💠 Lpalo = 13,00 (m)

	coefficienti parz	iali	azi	oni	resistenz	resistenza laterale e di base			
	Metodo di calco	olo	permanenti γ _G	variabili γο	γь	γs	γs traz		
	A1+M1+R1	0	1,30	1,50	1,00	1,00	1,00		
SLU	A2+M1+R2	0	1,00	1,30	1,70	1,45	1,60		
SI	A1+M1+R3	0	1,30	1,50	1,35	1,15	1,25		
	SISMA	0	1,00	1,00	1,35	1,15	1,25		
DM88		0	1,00	1,00	1,00	1,00	1,00		
definiti dal progettista		•	1,00	1,00	1,70	1,45	1,60		

n	1	2	30	4	5 ()	7	≥10 ○	T.A.	prog.
ξ3	1,70	1,65	1,60	1,55	1,50	1,45	1,40	1,00	1,00
ξ4	1,70	1,55	1,48	1,42	1,34	1,28	1,21	1,00	1,00

PARAMETRI MEDI

Strato Spess		Parametri del terreno						
Spess	Tipo di terreno	γ	C' med	φ' _{med}	C _{u med}			
(m)		(kN/m^3)	(kPa)	(°)	(kPa)			
6,00	U2	19,50	17,0	27,0				
2,90	U1	19,00		32,0				
1,60	U2	19,50	17,0	27,0				
2,50	U1	19,00		32,0				
	(m) 6,00 2,90 1,60	(m) 6,00 U2 2,90 U1 1,60 U2	Spess (m) Tipo di terreno γ (kN/m³) 6,00 U2 19,50 2,90 U1 19,00 1,60 U2 19,50	Spess (m) Tipo di terreno γ (kN/m³) (kPa) 6,00 U2 19,50 17,0 2,90 U1 19,00 17,0 1,60 U2 19,50 17,0	Spess (m) Tipo di terreno γ (kN/m³) c' med (kN/m³) φ' med (c') 6,00 U2 19,50 17,0 27,0 2,90 U1 19,00 32,0 1,60 U2 19,50 17,0 27,0			

-	(n.	b.:	lo	spe	ssore	deg	li stra	ti è	compu	tato	dalla	quota	di intrad	dosso d	lel p	linto)	

C	coefficient	i di Calcol	0
k	μ	а	α
(-)	(-)	(-)	(-)
0,55	0,51		
0,47	0,62		
0,55	0,51		
0,47	0,62		
		·	·

PARAMETRI	MINIMI	(solo	per	SLU	١

044.	0		Pa		del terren	
Strato	Spess	Tipo di terreno	γ	C' min	φ' _{min}	C _{u min}
(-)	(m)		(kN/m^3)	(kPa)	(°)	(kPa)
1	6,00	U2	19,00	7,0	26,0	
2	2,90	U1	19,50		30,0	
3	1,60	U2	19,00	7,0	26,0	
4	2,50	U1	19,50		30,0	

	coefficient	i di Calcol	0
k	μ	а	α
(-)	(-)	(-)	(-)
0,56	0,49		
0,50	0,58		
0,56	0,49		
0,50	0,58		

RISULTATI

Strato	Spess				media			minima (solo SLU)				
Sirato	Spess	Tipo di terreno	Qsi	Nq	Nc	qb	Qbm	Qsi	Nq	Nc	qb	Qbm
(-)	(m)		(kN)	(-)	(-)	(kPa)	(kN)	(kN)	(-)	(-)	(kPa)	(kN)
1	6,00	U2	237,0					224,1				
2	2,90	U1	257,1					245,5				
3	1,60	U2	169,0					163,2				
4	2,50	U1	331,0	21,05	0,00	2753,4	3114,1	320,6	17,65	0,00	2288,7	2588,4

CARICO	ASSIAI	LE AGENTE

 $Nd = N_G \cdot \gamma_G + N_Q \cdot \gamma_Q$ Nd = 706,3 (kN)

i			
CAPA	CITA'	PORTAN	ITF MFDIA

3114,1 (kN) base R_{b;cal med} = laterale R_{s;cal med} = 994,1 (kN) totale R_{c;cal med} = 4108,1 (kN)

CAPACITA' PORTANTE MINIMA

2588,4 (kN) base R_{b;cal min} = laterale R_{s;cal min} = 953,3 (kN) 3541,7 (kN) totale R_{c;cal min} =

CAPACITA' PORTANTE CARATTERISTICA

 $R_{b,k} = Min(R_{b,cal\ med}/\xi_3; R_{b,cal\ min}/\xi_4) = 1522,6 (kN)$

 $R_{s,k} = Min(R_{s,cal\ med}/\xi_3; R_{s,cal\ min}/\xi_4) = 560,8 (kN)$

 $R_{c,k} = R_{b,k} + R_{s,k}$ = 2083,4 (kN)

CAPACITA' PORTANTE DI PROGETTO

Fs = Rc,d / Nd $R_{c,d} = R_{bk}/\gamma b + R_{sk}/\gamma s$

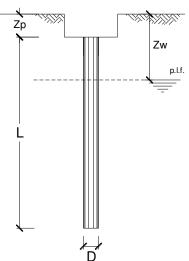
 $R_{c,d} = 1282,4 (kN)$ Fs = 1,82

15.2.4 COMBINAZIONE ALLO STATO LIMITE ULTIMO – GEO – CONDIZIONI NON DRENATE

La combinazione di carico maggiormente gravosa è risultata la combinazione SLU - GEO 01. L'azione normale di compressione di calcolo è assunta pari a N_{Sd} = 547,24 kN.

CALCOLO DELLA CAPACITA' PORTANTE DI UN PALO TRIVELLATO DI GRANDE DIAMETRO

CANTIERE: OPERA:


DATI DI INPUT:

Diametro del Palo (D):	1,20	(m)	Area del Palo (Ap):	1,131	(m ²)
Quota testa Palo dal p.c. (z _p):	0,00	(m)	Quota falda dal p.c. (z _w):	1,00	(m)
Carico Assiale Permanente (G):	547,24	(kN)	Carico Assiale variabile (Q):		(kN)

Numero di strati 4 💠 Lpalo = 13,00 (m)

	coefficienti parz	iali	azi	oni	resistenza laterale e di base			
	Metodo di calco	No.	permanenti	variabili	26	2/	2/ .	
	Metodo di Calco	10	γg	γα	γь	γs	γs traz	
	A1+M1+R1	0	1,30	1,50	1,00	1,00	1,00	
SLU	A2+M1+R2	0	1,00	1,30	1,70	1,45	1,60	
S	A1+M1+R3	0	1,30	1,50	1,35	1,15	1,25	
	SISMA	0	1,00	1,00	1,35	1,15	1,25	
DM88		0	1,00	1,00	1,00	1,00	1,00	
definiti dal progettista		•	1,00	1,00	1,70	1,45	1,60	

n	1	2	30	4	5 ()	7	≥10 ○	T.A.	prog.
ξ3	1,70	1,65	1,60	1,55	1,50	1,45	1,40	1,00	1,00
ξ4	1,70	1,55	1,48	1,42	1,34	1,28	1,21	1,00	1,00

PARAMETRI MEDI

Ctroto	Space		P	arametri	del terrer	10
Strato Spess		Tipo di terreno	γ	C' med	φ' _{med}	C _{u med}
(-)	(m)		(kN/m^3)	(kPa)	(°)	(kPa)
1	6,00	U2	19,50			9,2
2	2,90	U1	19,00		25,6	
3	1,60	U2	19,50			31,9
4	2,50	U1	19,00		25,6	
	·					

1	n.	b.:	lo	spes	sore	degl	strat	è	comput	ato	dalla	quota	di in	trad	losso	de	l pli	nto)

C	coefficient	i di Calcol	0
k	μ	а	α
(-)	(-)	(-)	(-)
0,00	0,00		0,70
0,57	0,48		
0,00	0,00		0,65
0,57	0,48		
-			

PARAMETRI	MINIMI	(solo	per	SLU	١

Ctroto	Cnoon	Spess Time di terrone	Parametri del terreno						
Strato	opess	Tipo di terreno	γ	C' min	φ' _{min}	C _{u min}			
(-)	(m)		(kN/m^3)	(kPa)	(°)	(kPa)			
1	6,00	U2	19,00			8,5			
2	2,90	U1	19,50		24,0				
3	1,60	U2	19,00			31,2			
4	2,50	U1	19,50		24,0				

C	Coefficienti di Calcolo									
k	μ	а	α							
(-)	(-)	(-)	(-)							
0,00	0,00		0,70							
0,59	0,45									
0,00	0,00		0,65							
0,59	0,45									

IF - MURO DI SOSTEGNO ASSE 80 DA PGR. KM 6+389,97 A PGR. KM 6+490,30 - RELAZIONE TECNICA E DI CALCOLO

RISULTATI

Strato	Spess				media			minima (solo SLU)				
Strato	opess	Tipo di terreno	Qsi	Nq	Nc	qb	Qbm	Qsi	Nq	Nc	qb	Qbm
(-)	(m)		(kN)	(-)	(-)	(kPa)	(kN)	(kN)	(-)	(-)	(kPa)	(kN)
1	6,00	U2	145,7					134,6				
2	2,90	U1	238,1					224,6				
3	1,60	U2	125,1					122,3				
4	2,50	U1	306,6	12,12	0,00	1585,6	1793,3	293,3	11,52	0,00	1494,4	1690,1
		_										

CARICO	ASSIALE	AGENTE

 $Nd = N_{G} \cdot \gamma_{G} + N_{Q} \cdot \gamma_{Q}$

Nd = 547,2 (kN)

CAPACITA' PORTANTE MEDIA

base $R_{b;cal med} = 1793,3 (kN)$ laterale $R_{s;cal med} = 815,5 (kN)$

totale $R_{c;cal\ med} = 2608,8 (kN)$

CAPACITA' PORTANTE MINIMA

base $R_{b;cal min} = 1690,1 (kN)$ laterale $R_{s;cal min} = 774,8 (kN)$ totale $R_{c;cal min} = 2465,0 (kN)$

CAPACITA' PORTANTE CARATTERISTICA

 $R_{b,k} = Min(R_{b,cal\ med}/\xi_3; R_{b,cal\ min}/\xi_4) = 994,2 (kN)$

 $R_{s,k} = Min(R_{s,cal\ med}/\xi_3; R_{s,cal\ min}/\xi_4) = 455,8 (kN)$

 $R_{c,k} = R_{b,k} + R_{s,k}$ = 1450,0 (kN)

CAPACITA' PORTANTE DI PROGETTO

 $R_{c,d} = R_{bk}/\gamma b + R_{sk}/\gamma s$ Fs = Rc,d / Nd

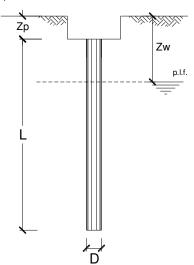
 $R_{c,d} = 899,2 \text{ (kN)}$ Fs = 1,64

15.2.5 COMBINAZIONE ALLO STATO LIMITE ULTIMO – GEO – CONDIZIONI DRENATE

La combinazione di carico maggiormente gravosa è risultata la combinazione SLU - GEO 01. L'azione normale di compressione di calcolo è assunta pari a N_{Sd} = 547,24 kN.

CALCOLO DELLA CAPACITA' PORTANTE DI UN PALO TRIVELLATO DI GRANDE DIAMETRO

CANTIERE: OPERA:


DATI DI INPUT:

Diametro del Palo (D): 1,20 Area del Palo (Ap): 1,131 (m²)(m) Quota testa Palo dal p.c. (z_p): Quota falda dal p.c. (z_w): 0,00 (m) 1,00 (m) Carico Assiale Permanente (G): 547,24 (kN) Carico Assiale variabile (Q): (kN)

Numero di strati 4 💠 Lpalo = 13,00 (m)

	coefficienti parz	iali	azi	ioni	resistenza laterale e di base			
Metodo di calcolo		permanenti γ _G	variabili γ _Q	γь	γs	γs traz		
	A1+M1+R1	0	1,30	1,50	1,00	1,00	1,00	
SLU	A2+M1+R2	0	1,00	1,30	1,70	1,45	1,60	
SI	A1+M1+R3	0	1,30	1,50	1,35	1,15	1,25	
	SISMA	0	1,00	1,00	1,35	1,15	1,25	
DM88		0	1,00	1,00	1,00	1,00	1,00	
definiti dal progettista		1,00	1,00	1,70	1,45	1,60		

n	1 (2	30	4	5 ()	7	≥10 ○	T.A.	prog.
ξ ₃	1,70	1,65	1,60	1,55	1,50	1,45	1,40	1,00	1,00
ξ4	1,70	1,55	1,48	1,42	1,34	1,28	1,21	1,00	1,00

PARAMETRI MEDI

Spage		Parametri del terreno						
Spess	Tipo di terreno	γ	C' med	φ' _{med}	C _{u med}			
(m)		(kN/m^3)	(kPa)	(°)	(kPa)			
6,00	U2	19,50	13,1	21,6				
2,90	U1	19,00		25,6				
1,60	U2	19,50	13,1	21,6				
2,50	U1	19,00		25,6				
	(m) 6,00 2,90 1,60	(m) 6,00 U2 2,90 U1 1,60 U2	Spess (m) Tipo di terreno γ (kN/m³) 6,00 U2 19,50 2,90 U1 19,00 1,60 U2 19,50	Spess (m) Tipo di terreno γ (kN/m³) (kPa) 6,00 U2 19,50 13,1 2,90 U1 19,00 1,60 U2 19,50 13,1	Spess (m) Tipo di terreno γ (kN/m³) c' med (kN/m³) φ' med (c') 6,00 U2 19,50 13,1 21,6 2,90 U1 19,00 25,6 1,60 U2 19,50 13,1 21,6			

-	(n.	b.:	lo	spe	ssore	deg	li stra	ti è	compu	tato	dalla	quota	di intrad	dosso d	lel p	linto)	

Coefficienti di Calcolo									
k	μ	а	α						
(-)	(-)	(-)	(-)						
0,63	0,40								
0,57	0,48								
0,63	0,40								
0,57	0,48								
		·	·						

PARAMETRI	MINIMI	(solo	per SLU)
	14111411411	(JUIU	pei olo,

Ctroto	Spess	1988	Parametri del terreno						
Strato	opess	Tipo di terreno	γ	C' _{min}	φ' _{min}	C _{u min}			
(-)	(m)		(kN/m^3)	(kPa)	(°)	(kPa)			
1	6,00	U2	19,00	5,6	20,8				
2	2,90	U1	19,50		24,0				
3	1,60	U2	19,00	5,6	20,8				
4	2,50	U1	19,50		24,0				

C	coefficient	i di Calcol	0		
k	μ	а	α		
(-)	(-)	(-)	(-)		
0,64	0,38				
0,59	0,45				
0,64	0,38				
0,59	0,45				

RISULTATI

Strato	Spess				media				mini	ma (solo	SLU)	
Strato	opess	Tipo di terreno	Qsi	Nq	Nc	qb	Qbm	Qsi	Nq	Nc	qb	Qbm
(-)	(m)		(kN)	(-)	(-)	(kPa)	(kN)	(kN)	(-)	(-)	(kPa)	(kN)
1	6,00	U2	213,2					200,4				
2	2,90	U1	238,1					224,6				
3	1,60	U2	152,0					145,9				
4	2,50	U1	306,6	12,12	0,00	1585,6	1793,3	293,3	11,52	0,00	1494,4	1690,1
		_										

CARICO	ASSIAL	<u>E AGENTE</u>
		,

 $Nd = N_{G} \cdot \gamma_{G} + N_{Q} \cdot \gamma_{Q}$

Nd = 547,2 (kN)

CAPACITA'	PORTANTE MEDIA

base $R_{b;cal\ med} = 1793,3 (kN)$ laterale $R_{s;cal\ med} = 909,8 (kN)$

totale $R_{c;cal\ med} = 2703,1 (kN)$

CAPACITA' PORTANTE MINIMA

base $R_{b;cal min} = 1690,1 (kN)$ laterale $R_{s;cal min} = 864,2 (kN)$ totale $R_{c;cal min} = 2554,4 (kN)$

CAPACITA' PORTANTE CARATTERISTICA

 $R_{b,k} = Min(R_{b,cal\ med}/\xi_3; R_{b,cal\ min}/\xi_4) = 994,2 (kN)$

 $R_{s,k} = Min(R_{s,cal\ med}/\xi_3; R_{s,cal\ min}/\xi_4) = 508,4 (kN)$

 $R_{c,k} = R_{b,k} + R_{s,k}$ = 1502,6 (kN)

CAPACITA' PORTANTE DI PROGETTO

 $R_{c,d} = R_{bk}/\gamma b + R_{sk}/\gamma s$ Fs = Rc,d / Nd

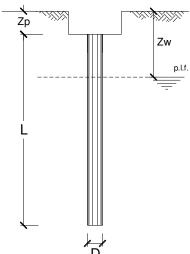
 $R_{c,d} = 935,4 \text{ (kN)}$ Fs = 1,71

15.2.6 COMBINAZIONE ALLO STATO LIMITE DI SALVAGUARDIA DELLA VITA - CONDIZIONI NON **DRENATE**

La combinazione di carico maggiormente gravosa è risultata la combinazione SLV – SISMA 03. L'azione normale di compressione di calcolo è assunta pari a N_{sd} = 494,09 kN.

CALCOLO DELLA CAPACITA' PORTANTE DI UN PALO TRIVELLATO DI GRANDE DIAMETRO

CANTIERE: OPERA:


DATI DI INPUT:

Diametro del Palo (D):	1,20	(m)	Area del Palo (Ap):	1,131	(m ⁻)
Quota testa Palo dal p.c. (z _p):	0,00	(m)	Quota falda dal p.c. (z _w):	1,00	(m)
Carico Assiale Permanente (G):	494,09	(kN)	Carico Assiale variabile (Q):		(kN)

4 🛊 Numero di strati Lpalo = 13,00 (m)

coefficienti parziali			azioni resistenza lateral			a laterale	e di base
	Metodo di calco	olo	permanenti	variabili	γь	γs	γ _{s traz}
			γ̈́G	γα	76	18	75 traz
	A1+M1+R1	0	1,30	1,50	1,00	1,00	1,00
SLU	A2+M1+R2	0	1,00	1,30	1,70	1,45	1,60
SI	A1+M1+R3	0	1,30	1,50	1,35	1,15	1,25
	SISMA	0	1,00	1,00	1,35	1,15	1,25
DM88		1,00	1,00	1,00	1,00	1,00	
definit	ti dal progettista	•	1,00	1,00	1,35	1,15	1,25

n	1	2	3	4	50	7	≥10 ○	T.A.	prog.
ξ3	1,70	1,65	1,60	1,55	1,50	1,45	1,40	1,00	1,00
ξ4	1,70	1,55	1,48	1,42	1,34	1,28	1,21	1,00	1,00

PARAMETRI MEDI

Ctroto	Spess		Parametri del terreno				
Sirato	Spess	Tipo di terreno	γ	C' med	φ' _{med}	C _{u med}	
(-)	(m)		(kN/m^3)	(kPa)	(°)	(kPa)	
1	6,00	U2	19,50			9,2	
2	2,90	U1	19,00		25,6		
3	1,60	U2	19,50			31,9	
4	2,50	U1	19,00		25,6		

(n.b.: lo spessore degli strati è computato dalla quota di intradosso del pl	into)
--	-------

Coefficienti di Calcolo									
k μ a α									
(-)	(-)	(-)	(-)						
0,00	0,00		0,70						
0,57	0,48								
0,00	0,00		0,65						
0,57	0,48								

PARAMETRI MINIMI (se	olo per SLU)
----------------------	-------------	---

Ctroto	Spess		Pa	arametri	del terrer	10
Strato	Spess	Tipo di terreno	γ	C' _{min}	φ' _{min}	C _{u min}
(-)	(m)		(kN/m^3)	(kPa)	(°)	(kPa)
1	6,00	U2	19,00			8,5
2	2,90	U1	19,50		24,0	
3	1,60	U2	19,00			31,2
4	2,50	U1	19,50		24,0	

On afficienti di Onlanta									
Coefficienti di Calcolo									
k	k μ a α								
(-)	(-)	(-)	(-)						
0,00	0,00		0,70						
0,59	0,45								
0,00	0,00		0,65						
0,59	0,45								

RISULTATI

Strato	Spess				media			minima (solo SLU)					
Strato	opess	Tipo di terreno	Qsi	Nq	Nc	qb	Qbm	Qsi	Nq	Nc	qb	Qbm	
(-)	(m)		(kN)	(-)	(-)	(kPa)	(kN)	(kN)	(-)	(-)	(kPa)	(kN)	
1	6,00	U2	145,7					134,6					
2	2,90	U1	238,1					224,6					
3	1,60	U2	125,1					122,3					
4	2,50	U1	306,6	12,12	0,00	1585,6	1793,3	293,3	11,52	0,00	1494,4	1690,1	

CARICO	ASSIALI	E AGENTE

 $Nd = N_{G} \cdot \gamma_{G} + N_{Q} \cdot \gamma_{Q}$

Nd = 494,1 (kN)

CAPA	CITA'	PORT	ΔNTF	MFDIA

base $R_{b;cal med} = 1793,3 (kN)$ laterale $R_{s;cal med} = 815,5 (kN)$

totale R_{c;cal med} = 2608,8 (kN)

CAPACITA' PORTANTE MINIMA

base $R_{b;cal min} = 1690,1 (kN)$ laterale $R_{s;cal min} = 774,8 (kN)$ totale $R_{c;cal min} = 2465,0 (kN)$

CAPACITA' PORTANTE CARATTERISTICA

 $R_{b,k} = Min(R_{b,cal\ med}/\xi_3; R_{b,cal\ min}/\xi_4) = 994,2 (kN)$

 $R_{s,k} = Min(R_{s,cal\ med}/\xi_3; R_{s,cal\ min}/\xi_4) = 455,8 (kN)$

 $R_{c,k} = R_{b,k} + R_{s,k}$ = 1450,0 (kN)

CAPACITA' PORTANTE DI PROGETTO

 $R_{c,d} = R_{bk}/\gamma b + R_{sk}/\gamma s$ Fs = Rc,d / Nd

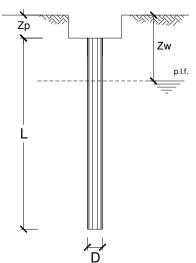
 $R_{c,d} = 1132.8 \text{ (kN)}$ Fs = 2,29

15.2.7 COMBINAZIONE ALLO STATO LIMITE DI SALVAGUARDIA DELLA VITA – CONDIZIONI DRENATE

La combinazione di carico maggiormente gravosa è risultata la combinazione SLV – SISMA 03. L'azione normale di compressione di calcolo è assunta pari a N_{Sd} = 494,09 kN.

CALCOLO DELLA CAPACITA' PORTANTE DI UN PALO TRIVELLATO DI GRANDE DIAMETRO

CANTIERE: OPERA:


DATI DI INPUT:

Diametro del Palo (D): 1,20 Area del Palo (Ap): 1,131 (m²)(m) Quota testa Palo dal p.c. (z_p): Quota falda dal p.c. (z_w): 0,00 (m) 1,00 (m) Carico Assiale Permanente (G): 494,09 (kN) Carico Assiale variabile (Q): (kN)

Numero di strati 4 💠 Lpalo = 13,00 (m)

	coefficienti parz	iali	azi	ioni	resistenz	resistenza laterale e di base			
	Metodo di calco	olo	permanenti γ _G	variabili γ _Q	γь	γs	γs traz		
	A1+M1+R1	0	1,30	1,50	1,00	1,00	1,00		
SLU	A2+M1+R2	0	1,00	1,30	1,70	1,45	1,60		
SI	A1+M1+R3	0	1,30	1,50	1,35	1,15	1,25		
	SISMA	0	1,00	1,00	1,35	1,15	1,25		
DM88		0	1,00	1,00	1,00	1,00	1,00		
definiti dal progettista		•	1,00	1,00	1,35	1,15	1,25		

n	1 (2	3	4	5 ()	7	≥10 ○	T.A.	prog.
ξ3	1,70	1,65	1,60	1,55	1,50	1,45	1,40	1,00	1,00
ξ4	1,70	1,55	1,48	1,42	1,34	1,28	1,21	1,00	1,00

PARAMETRI MEDI

Strata	Spess		P		del terrer	10
Strato	Spess	Tipo di terreno	γ	C' med	φ' _{med}	C _{u med}
(-)	(m)		(kN/m^3)	(kPa)	(°)	(kPa)
1	6,00	U2	19,50	13,1	21,6	
2	2,90	U1	19,00		25,6	
3	1,60	U2	19,50	13,1	21,6	
4	2,50	U1	19,00		25,6	

1	n.	b.:	lo	spes	sore	degl	strat	è	comput	ato	dalla	quota	di in	trad	losso	de	l pli	nto)

C	Coefficienti di Calcolo										
k	μ	а	α								
(-)	(-)	(-)	(-)								
0,63	0,40										
0,57	0,48										
0,63	0,40										
0,57	0,48										
_											

PARAMETRI M	INIMI (solo	per SLU)
	11411411 (3010	pc. oco,

Ctroto	Spess		Parametri del terreno						
Strato	opess	Tipo di terreno	γ	C' _{min}	φ' _{min}	C _{u min}			
(-)	(m)		(kN/m^3)	(kPa)	(°)	(kPa)			
1	6,00	U2	19,00	5,6	20,8				
2	2,90	U1	19,50		24,0				
3	1,60	U2	19,00	5,6	20,8				
4	2,50	U1	19,50		24,0				

	Coefficienti di Calcolo										
k	μ	а	α								
(-)	(-)	(-)	(-)								
0,64	0,38										
0,59	0,45										
0,64	0,38										
0,59	0,45										

IF - MURO DI SOSTEGNO ASSE 80 DA PGR. KM 6+389,97 A PGR. KM 6+490,30 - RELAZIONE TECNICA E DI CALCOLO

RISULTATI

Strato	Spess	lipo di terreno	media					minima (solo SLU)					
Strato	Opess		Qsi	Nq	Nc	qb	Qbm	Qsi	Nq	Nc	qb	Qbm	
(-)	(m)		(kN)	(-)	(-)	(kPa)	(kN)	(kN)	(-)	(-)	(kPa)	(kN)	
1	6,00	U2	213,2					200,4					
2	2,90	U1	238,1					224,6					
3	1,60	U2	152,0					145,9					
4	2,50	U1	306,6	12,12	0,00	1585,6	1793,3	293,3	11,52	0,00	1494,4	1690,1	

CARICO ASSIALE AGENTE	
$Nd = N_{G} \cdot \gamma_{G} + N_{Q} \cdot \gamma_{Q}$	
Nd = 494,1 (kN)	
NG = 494,1 (KN)	

CAPACITA' PORTANTE MEDIA							
base	R _{b;cal med} =	1793,3 (kN)	base				
laterale	R _{s;cal med} =	909,8 (kN)	later				
totale	R _{c:cal med} =	2703,1 (kN)	total				

CAPACIT	A' PORTANTE MINIMA		
base	R _{b;cal min} =	1690,1 (kN)	
laterale	R _{s;cal min} =	864,2 (kN)	
totale	R _{c;cal min} =	2554,4 (kN)	

CAPACITA' PORTANTE CARATTERISTIC	<u>CA</u>	CAPACITA' PORTANTE DI PROGETTO		
$R_{b,k} = Min(R_{b,cal\ med}/\xi_3; R_{b,cal\ min}/\xi_4)$	= 994,2 (kN)	$R_{c,d} = R_{bk}/\gamma b + R_{sk}/\gamma s$	Fs = Ro	,d / Nd
$R_{s,k} = Min(R_{s,cal\ med}/\xi_3; R_{s,cal\ min}/\xi_4)$	= 508,4 (kN)	$R_{c,d} = 1178,5 (kN)$	Fs =	2,39
$R_{c,k} = R_{b,k} + R_{s,k}$	= 1502,6 (kN)			

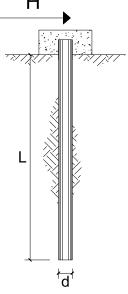
VALUTAZIONE DELL'EFFICIENZA DEI PALI IN GRUPPO

Poiché l'interasse tra i pali di fondazione è pari a 3 volte il diametro dei pali stessi (i = 3,60 m = 3 · d = 3,60 m) non si procede di seguito alla valutazione dell'efficienza dei pali in gruppo.

15.4 **VERIFICA DI PORTANZA ORIZZONTALE**

15.4.1 COMBINAZIONE ALLO STATO LIMITE ULTIMO - STR

La combinazione di carico maggiormente gravosa è risultata la combinazione SLU – STR 01. L'azione tagliante di calcolo è assunta pari a V_{Sd} = 238,59 kN.


CARICO LIMITE ORIZZONTALE DI UN PALO IN TERRENI INCOERENTI PALI CON ROTAZIONE IN TESTA IMPEDITA

OPERA:

TEORIA DI BASE:

(Broms, 1964)

coe	fficienti parz	iali	Α		М	R
Metodo di calcolo		permanenti	permanenti variabili		γт	
			γg	γo	γ _φ '	′ '
	A1+M1+R1	0	1,30	1,50	1,00	1,00
SLU	A2+M1+R2	0	1,00	1,30	1,00	1,60
IS	A1+M1+R3	0	1,30	1,50	1,00	1,30
	SISMA	0	1,00	1,00	1,00	1,30
DM88		0	1,00	1,00	1,00	1,00
definiti dal progettista		1,00	1,00	1,00	1,00	

n	1.●	2	~ ()	40	50	7	≥10	T.A.	prog.
ξ ₃	1,70	1,65	1,60	1,55	1,50	1,45	1,40	1,00	1,00
ξ4	1,70	1,55	1,48	1,42	1,34	1,28	1,21	1,00	1,00

$$Palo \ corto: \qquad \qquad H = 1.5 k_p \gamma d^3 \left(\frac{L}{d}\right)^2$$

Palo intermedio:
$$H = \frac{1}{2}k_{p}\gamma d^{3}\left(\frac{L}{d}\right)^{2} + \frac{M_{y}}{L}$$

$$\begin{array}{ll} \underline{\textit{Palo intermedio:}} & H = \frac{1}{2} k_p \gamma d^3 \left(\frac{L}{d}\right)^2 + \frac{M_y}{L} \\ \\ \underline{\textit{Palo lungo:}} & H = k_p \gamma d^3 \sqrt[3]{3.676 \, \frac{M_y}{k_p \gamma d^4}} \end{array}$$

DATI DI INPUT:

Lunghezza del palo	L =	13,00	(m)			
Diametro del palo	d =	1,20	(m)			
Momento di plasticizzazione della sezione	My =	1676,72	(kN m)			
Angolo di attrito del terreno	$\phi'_{med} =$	27,00	(°)	$\phi'_{min}=$	26,00	(°)
Angolo di attrito di calcolo del terreno	$\phi'_{\text{med,d}}=$	27,00	(°)	$\phi'_{\text{ min,d}} =$	26,00	(°)
Coeff. di spinta passiva (kp = $(1+\sin\varphi')/(1-\sin\varphi')$	$n\phi'))$ kp $_{med} =$	2,66	(-)	kp _{min} =	2,56	(-)
Peso di unità di volume (con falda $\gamma = \gamma'$)	γ =	19,50	(kN/m^3)			
Carico Assiale Permanente (G):	G =	238,59	(kN)			
Carico Assiale variabile (Q):	Q =	0	(kN)			

Palo corto:

H1 _{med}= 15796,29 (kN) H1 _{min}= 15192,01 (kN)

Palo intermedio:

 $H2_{med} = 5394,41$ (kN) $H2_{min} = 5192,98$ (kN)

Palo lungo:

 $H3_{med} = 1332,75$ (kN) $H3_{min} = 1315,54$ (kN)

 $H_{med} = 1332,75$ (kN) palo lungo $H_{min} = 1315,54$ (kN) palo lungo

 $H_k = Min(H_{med}/\xi_3; R_{min}/\xi_4) = 773,85$ (kN)

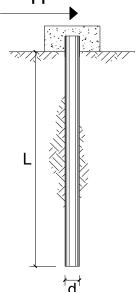
 $H_d = H_k/\gamma_T = 773,85$ (kN)

 $F_d = G \cdot \gamma_G + Q \cdot \gamma_Q = 238,59$ (kN)

FS = Hd / Fd = 3,24

COMBINAZIONE ALLO STATO LIMITE ULTIMO - GEO 15.4.2

La combinazione di carico maggiormente gravosa è risultata la combinazione SLU - GEO 01. L'azione tagliante di calcolo è assunta pari a V_{sd} = 294,71 kN.


CARICO LIMITE ORIZZONTALE DI UN PALO IN TERRENI INCOERENTI PALI CON ROTAZIONE IN TESTA IMPEDITA Н

OPERA:

TEORIA DI BASE:

(Broms, 1964)

coe	fficienti parz	iali	Α		M	R
Metodo di calcolo			permanenti	variabili	$\gamma_{\phi'}$	γт
			γG	γQ	·	
	A1+M1+R1 A2+M1+R2		1,30	1,50	1,00	1,00
SLU			1,00	1,30	1,00	1,60
S	A1+M1+R3	0	1,30	1,50	1,00	1,30
	SISMA	0	1,00	1,00	1,00	1,30
DM88		0	1,00	1,00	1,00	1,00
definiti dal	definiti dal progettista		1,00	1,00	1,00	1,60

n	1	20	ಇ೦	4	50	7	≥10	T.A.	prog.
ξ3	1,70	1,65	1,60	1,55	1,50	1,45	1,40	1,00	1,00
ξ ₄	1,70	1,55	1,48	1,42	1,34	1,28	1,21	1,00	1,00

 $H = 1.5k_p \gamma d^3 \left(\frac{L}{d}\right)^2$ Palo corto:

Palo intermedio:

$$\begin{split} H &= \frac{1}{2} k_p \gamma d^3 \bigg(\frac{L}{d} \bigg)^2 + \frac{M_y}{L} \\ H &= k_p \gamma d^3 \sqrt[3]{ \left(3.676 \, \frac{M_y}{k_p \gamma d^4} \right)^2} \end{split}$$
Palo lungo:

DATI DI INPUT:

Lunghezza del palo 13,00 (m) Diametro del palo d =1,20 (m)

Momento di plasticizzazione della sezione 1623,36 (kN m) My =

Angolo di attrito del terreno 27,00 $\varphi'_{\text{med}}=$ (°) $\varphi'_{min} =$ 26,00 (°)

Angolo di attrito di calcolo del terreno 27,00 (°) (°) $\phi'_{min,d} =$ 26,00 $\varphi'_{\text{med,d}} =$

Coeff. di spinta passiva (kp = $(1+\sin\varphi')/(1-\sin\varphi')$) 2,66 (-) 2,56 (-) $kp_{med} =$ $kp_{min} =$

Peso di unità di volume (con falda $\gamma = \gamma'$) (kN/m^3) 19,50 $\gamma =$

Carico Assiale Permanente (G): G = 294,71 (kN)

Carico Assiale variabile (Q): Q = 0 (kN)

Palo corto:

H1 _{med}= 15796,29 (kN) H1 _{min}= 15192,01 (kN)

Palo intermedio:

 $H2_{med}$ = 5390,30 (kN) $H2_{min}$ = 5188,88 (kN)

Palo lungo:

 $H3_{med} = 1304,33$ (kN) $H3_{min} = 1287,48$ (kN)

 \mathbf{H}_{med} = 1304,33 (kN) palo lungo \mathbf{H}_{min} = 1287,48 (kN) palo lungo

 $H_k = Min(H_{med}/\xi_3; R_{min}/\xi_4) = 757,34$ (kN)

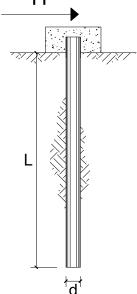
 $H_d = H_k/\gamma_T = 473,34$ (kN)

 $F_d = G \cdot \gamma_G + Q \cdot \gamma_Q = 294,71$ (kN)

FS = Hd / Fd = 1,61

COMBINAZIONE ALLO STATO LIMITE DI SALVAGUARDIA DELLA VITA 15.4.3

La combinazione di carico maggiormente gravosa è risultata la combinazione SLV - SISMA 01. L'azione tagliante di calcolo è assunta pari a V_{sd} = 240,70 kN.


CARICO LIMITE ORIZZONTALE DI UN PALO IN TERRENI INCOERENTI PALI CON ROTAZIONE IN TESTA IMPEDITA Н

OPERA:

TEORIA DI BASE:

(Broms, 1964)

CO	efficienti parz	iali	Α		М	R
Metodo di calcolo			permanenti YG	v ariabili γο	$\gamma_{\phi'}$	γт
	A1+M1+R1	0	1,30	1,50	1,00	1,00
⊃	A2+M1+R2	0	1,00	1,30	1,00	1,60
SLU	A1+M1+R3	0	1,30	1,50	1,00	1,30
	SISMA	0	1,00	1,00	1,00	1,30
DM88		0	1,00	1,00	1,00	1,00
definiti dal progettista		•	1,00	1,00	1,00	1,30

n	1	20	ಇ೦	4	50	7	≥10	T.A.	prog.
ξ ₃	1,70	1,65	1,60	1,55	1,50	1,45	1,40	1,00	1,00
ξ4	1,70	1,55	1,48	1,42	1,34	1,28	1,21	1,00	1,00

 $H = 1.5k_p \gamma d^3 \left(\frac{L}{d}\right)^2$ Palo corto:

Palo intermedio:

$$\begin{split} H &= \frac{1}{2} k_p \gamma d^3 \bigg(\frac{L}{d} \bigg)^2 + \frac{M_y}{L} \\ H &= k_p \gamma d^3 \sqrt[3]{ \left(3.676 \, \frac{M_y}{k_p \gamma d^4} \right)^2} \end{split}$$
Palo lungo:

DATI DI INPUT:

Lunghezza del palo 13,00 (m) Diametro del palo d =1,20 (m) Momento di plasticizzazione della sezione My = 1602,14 (kN m) Angolo di attrito del terreno 27,00 $\varphi'_{\text{med}}=$ (°) Angolo di attrito di calcolo del terreno 27,00 (°) $\phi'_{min,d} =$ $\varphi'_{\text{med,d}} =$ Coeff. di spinta passiva (kp = $(1+\sin\varphi')/(1-\sin\varphi')$) 2,66 (-) $kp_{med} =$ $kp_{min} =$

Peso di unità di volume (con falda $\gamma = \gamma'$) (kN/m^3) 19,50 $\gamma =$

Carico Assiale Permanente (G): G = 240,7 (kN) Carico Assiale variabile (Q): Q = 0 (kN)

 $\varphi'_{min} =$

26,00

26,00

2,56

(°)

(°)

(-)

IF - MURO DI SOSTEGNO ASSE 80 DA PGR. KM 6+389,97 A PGR. KM 6+490,30 - RELAZIONE TECNICA E DI CALCOLO

H1 med=	15796,29	(kN)	H1 _{min} =	15192,01	(kN)
---------	----------	------	---------------------	----------	------

Palo intermedio:

H2
$$_{\text{med}}$$
= 5388,67 (kN) **H2** $_{\text{min}}$ = 5187,25 (kN)

Palo lungo:

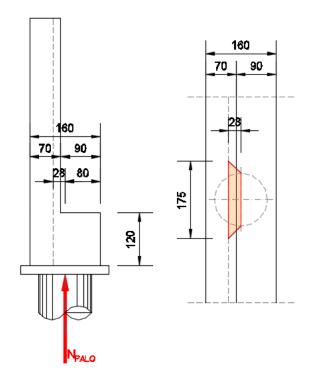
$$H3_{med} = 1292,93$$
 (kN) $H3_{min} = 1276,23$ (kN)

$$H_{med} = 1292,93$$
 (kN) palo lungo $H_{min} = 1276,23$ (kN) palo lungo

$$H_k = Min(H_{med}/\xi_3; R_{min}/\xi_4) = 750,72$$
 (kN)

$$H_d = H_k/\gamma_T = 577,48$$
 (kN)

$$F_d = G \cdot \gamma_G + Q \cdot \gamma_Q = 240,70$$
 (kN)



ZATTERA DI FONDAZIONE – VERIFICHE STRUTTURALI 16

La verifica della zattera di fondazione è stata condotta con il metodo degli stati limite, calcolando la capacità ultima di resistenza dell'elemento strutturale rispetto ai principali meccanismi di collasso individuabili.

È necessario osservare che, dato il valore dei rapporti altezza – piede di monte della zattera, la mensola da verificare è di tipo "tozzo". Pertanto non può essere impiegata la "teoria della trave", ma è più opportuno adottare una schematizzazione a traliccio basata sull'ipotesi di un meccanismo di trasferimento degli sforzi a "tirante di acciaio" - "puntone di cls" che meglio rappresenta il reale andamento delle tensioni all'interno dei materiali costituenti l'elemento.

Per la verifica della fondazione è necessario per prima cosa stabilire la larghezza di zattera di fondazione competente al singolo palo, da assumere per il meccanismo resistente a tirantepuntone. Questo valore si ottiene diffondendo il carico trasmesso dal palo secondo delle isostatiche a 45° fino a 1/4 dello spessore del muro in elevazione, ed è pari a 175 cm (come mostrato delle immagini successive):

Di seguito si assume quindi un sistema a tirante-puntone isolato dal resto del plinto e di larghezza pari a 1,75 m, nel quale il tirante è costituito da 17,5 Ø16 (Area: 35,175 cm²).

La reazione normale massima trasmessa dal singolo palo di fondazione vale:

- SLE QUASI PERMANENTE → N_{Sd} = 479,52 kN
- SLE FREQUENTE → N_{Sd} = 491,67 kN
- SLE RARA \rightarrow N_{Sd} = 495,72 kN
- $SLU STR \rightarrow N_{Sd} = 694,98 \text{ kN}$
- $SLV \rightarrow N_{Sd} = 494,09 \text{ kN}$

Detta h = 1,152 m la distanza del baricentro del tirante inferiore dal lembo compresso superiore ed assumendo quale braccio b della mensola tozza, quello che va dal centro dei pali ad 1/4 dello spessore del muro in elevazione, e pertanto b = 0.28 m, si calcola la risultante ultima resistente sull'insieme dei pali di bordo in direzione trasversale, assumendo:

- $\sigma_s = 360,00 \text{ N/mm}^2$ (tensione limite definita per le verifiche di limitazione delle tensioni in esercizio)
- f_{yd} = **391,30 N/mm²** (resistenza di calcolo dell'acciaio)

16.1 STATO LIMITE DI ESERCIZIO – COMBINAZIONE QUASI PERMANENTE

La resistenza massima del tirante in acciaio vale:

$$T_{Rd} = A_s \cdot \sigma_s \cdot \frac{h}{d} = \left[\left(35,175 \cdot 10^2 \right) \cdot 360,00 \cdot \frac{1,152}{0,28} \right] \cdot 10^{-3} = 5.209,92 \, kN > N_{Sd} = 479,52 \, kN$$

La tensione massima sul puntone compresso in calcestruzzo vale:

$$\sigma_{c} = \frac{N_{Sd}}{(0, 2 \cdot h \cdot l) \cdot (sen(\arctan(\frac{h}{b})))} = \frac{479, 52 \cdot 10^{3}}{\left(0, 2 \cdot 1, 152 \cdot 1, 75\right) \cdot 10^{6} \cdot (sen(\arctan(\frac{1, 152}{0, 28})))} = 1, 22 \frac{N}{mm^{2}} < 0, 45 \cdot f_{ck} = 13, 07 \frac{N}{mm^{2}} < 0.00 \cdot 10^{10} \cdot (sen(\arctan(\frac{1, 152}{0, 28}))) = 1, 22 \cdot \frac{N}{mm^{2}} < 0.00 \cdot 10^{10} \cdot (sen(\arctan(\frac{1, 152}{0, 28}))) = 1, 22 \cdot \frac{N}{mm^{2}} < 0.00 \cdot 10^{10} \cdot (sen(\arctan(\frac{1, 152}{0, 28}))) = 1, 22 \cdot \frac{N}{mm^{2}} < 0.00 \cdot 10^{10} \cdot (sen(\arctan(\frac{1, 152}{0, 28}))) = 1, 22 \cdot \frac{N}{mm^{2}} < 0.00 \cdot 10^{10} \cdot (sen(\arctan(\frac{1, 152}{0, 28}))) = 1, 22 \cdot \frac{N}{mm^{2}} < 0.00 \cdot 10^{10} \cdot (sen(\arctan(\frac{1, 152}{0, 28}))) = 1, 22 \cdot \frac{N}{mm^{2}} < 0.00 \cdot 10^{10} \cdot (sen(\arctan(\frac{1, 152}{0, 28}))) = 1, 22 \cdot \frac{N}{mm^{2}} < 0.00 \cdot 10^{10} \cdot (sen(\arctan(\frac{1, 152}{0, 28}))) = 1, 22 \cdot \frac{N}{mm^{2}} < 0.00 \cdot 10^{10} \cdot (sen(\arctan(\frac{1, 152}{0, 28}))) = 1, 22 \cdot \frac{N}{mm^{2}} < 0.00 \cdot 10^{10} \cdot (sen(\arctan(\frac{1, 152}{0, 28}))) = 1, 22 \cdot \frac{N}{mm^{2}} < 0.00 \cdot 10^{10} \cdot (sen(\arctan(\frac{1, 152}{0, 28}))) = 1, 22 \cdot \frac{N}{mm^{2}} < 0.00 \cdot 10^{10} \cdot (sen(\arctan(\frac{1, 152}{0, 28}))) = 1, 22 \cdot \frac{N}{mm^{2}} < 0.00 \cdot 10^{10} \cdot (sen(\arctan(\frac{1, 152}{0, 28}))) = 1, 22 \cdot \frac{N}{mm^{2}} < 0.00 \cdot 10^{10} \cdot (sen(\arctan(\frac{1, 152}{0, 28}))) = 1, 22 \cdot \frac{N}{mm^{2}} < 0.00 \cdot 10^{10} \cdot (sen(\arctan(\frac{1, 152}{0, 28}))) = 1, 22 \cdot \frac{N}{mm^{2}} < 0.00 \cdot 10^{10} \cdot (sen(\arctan(\frac{1, 152}{0, 28}))) = 1, 22 \cdot \frac{N}{mm^{2}} < 0.00 \cdot 10^{10} \cdot (sen(\frac{1, 152}{0, 28})) = 1, 22 \cdot \frac{N}{mm^{2}} < 0.00 \cdot 10^{10} \cdot (sen(\frac{1, 152}{0, 28})) = 1, 22 \cdot \frac{N}{mm^{2}} < 0.00 \cdot 10^{10} \cdot (sen(\frac{1, 152}{0, 28})) = 1, 22 \cdot \frac{N}{mm^{2}} < 0.00 \cdot 10^{10} \cdot (sen(\frac{1, 152}{0, 28})) = 1, 22 \cdot \frac{N}{mm^{2}} < 0.00 \cdot 10^{10} \cdot (sen(\frac{1, 152}{0, 28})) = 1, 22 \cdot \frac{N}{mm^{2}} < 0.00 \cdot 10^{10} \cdot (sen(\frac{1, 152}{0, 28})) = 1, 22 \cdot \frac{N}{mm^{2}} < 0.00 \cdot 10^{10} \cdot (sen(\frac{1, 152}{0, 28})) = 1, 22 \cdot \frac{N}{mm^{2}} < 0.00 \cdot 10^{10} \cdot (sen(\frac{1, 152}{0, 28})) = 1, 22 \cdot \frac{N}{mm^{2}} < 0.00 \cdot 10^{10} \cdot (sen(\frac{1, 152}{0, 28})) = 1, 22 \cdot \frac{N}{mm^{2}} < 0.00 \cdot 10^{10} \cdot (sen(\frac{1, 152}{0, 28})) = 1, 22 \cdot \frac{N}{mm^{2}} < 0.00 \cdot 10^{10} \cdot (sen(\frac{1, 152}{0, 28})) = 1, 22 \cdot \frac{N}{mm^{2}} < 0.00 \cdot 10^{$$

16.2 STATO LIMITE DI ESERCIZIO – COMBINAZIONE FREQUENTE

La resistenza massima del tirante in acciaio vale:

$$T_{Rd} = A_s \cdot \sigma_s \cdot \frac{h}{d} = \left[\left(35,175 \cdot 10^2 \right) \cdot 360,00 \cdot \frac{1,152}{0,28} \right] \cdot 10^{-3} = 5.209,92 \, kN > N_{Sd} = 491,67 \, kN$$

La tensione massima sul puntone compresso in calcestruzzo vale:

$$\sigma_{c} = \frac{N_{Sd}}{(0, 2 \cdot h \cdot l) \cdot (sen(\arctan(\frac{h}{b})))} = \frac{491,67 \cdot 10^{3}}{\left(0, 2 \cdot 1,152 \cdot 1,75\right) \cdot 10^{6} \cdot (sen(\arctan(\frac{1,152}{0,28})))} = 1,25 \frac{N}{mm^{2}} < 0,45 \cdot f_{ck} = 13,07 \frac{N}{mm^{2}} < 0.45 \cdot f_{ck} = 13,07 \frac{N}{mm^{2}} < 0.45 \cdot f_{ck} = 13,07 \cdot \frac{N}{mm^{2}} < 0.45 \cdot f_{ck} = 13$$

16.3 STATO LIMITE DI ESERCIZIO – COMBINAZIONE RARA

La resistenza massima del tirante in acciaio vale:

$$T_{Rd} = A_s \cdot \sigma_s \cdot \frac{h}{d} = \left[\left(35,175 \cdot 10^2 \right) \cdot 360,00 \cdot \frac{1,152}{0,28} \right] \cdot 10^{-3} = 5.209,92 \, kN > N_{Sd} = 495,72 \, kN$$

La tensione massima sul puntone compresso in calcestruzzo vale:

$$\sigma_{c} = \frac{N_{sd}}{(0, 2 \cdot h \cdot l) \cdot (sen(\arctan(\frac{h}{b})))} = \frac{495,72 \cdot 10^{3}}{\left(0, 2 \cdot 1,152 \cdot 1,75\right) \cdot 10^{6} \cdot (sen(\arctan(\frac{1,152}{0.28})))} = 1,27 \cdot \frac{N}{mm^{2}} < 0,60 \cdot f_{ck} = 17,43 \cdot \frac{N}{mm^{2}} < 0.60 \cdot f_{ck$$

16.4 STATO LIMITE ULTIMO – STR

La resistenza massima del tirante in acciaio vale:

$$T_{Rd} = A_s \cdot \sigma_s \cdot \frac{h}{d} = \left[\left(35,175 \cdot 10^2 \right) \cdot 391,30 \cdot \frac{1,152}{0,28} \right] \cdot 10^{-3} = 5.662,89 \ kN > N_{Sd} = 694,98 \ kN$$

La tensione massima sul puntone compresso in calcestruzzo vale:

$$\sigma_{c} = \frac{N_{sd}}{(0, 2 \cdot h \cdot l) \cdot (sen(\arctan(\frac{h}{b})))} = \frac{694,98 \cdot 10^{3}}{\left(0, 2 \cdot 1,152 \cdot 1,75\right) \cdot 10^{6} \cdot (sen(\arctan(\frac{1,152}{0,28})))} = 1,77 \frac{N}{mm^{2}} < f_{cd} = 19,36 \frac{N}{mm^{2}}$$

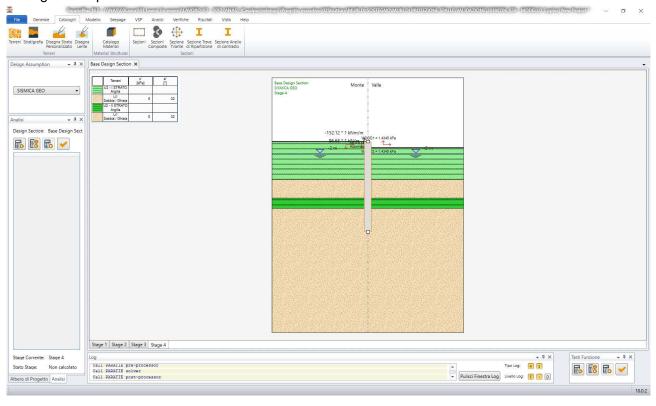
16.5 STATO LIMITE DI SALVAGUARDIA DELLA VITA

La resistenza massima del tirante in acciaio vale:

$$T_{Rd} = A_s \cdot \sigma_s \cdot \frac{h}{d} = \left[\left(35,175 \cdot 10^2 \right) \cdot 391,30 \cdot \frac{1,152}{0,28} \right] \cdot 10^{-3} = 5.662,89 \ kN > N_{Sd} = 494,09 \ kN$$

La tensione massima sul puntone compresso in calcestruzzo vale:

$$\sigma_{c} = \frac{N_{sd}}{(0, 2 \cdot h \cdot l) \cdot (sen(\arctan(\frac{h}{b})))} = \frac{494,09 \cdot 10^{3}}{\left(0, 2 \cdot 1,152 \cdot 1,75\right) \cdot 10^{6} \cdot (sen(\arctan(\frac{1,152}{0,28})))} = 1,26 \frac{N}{mm^{2}} < f_{cd} = 19,36 \frac{N}{mm^{2}}$$

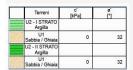

IF - MURO DI SOSTEGNO ASSE 80 DA PGR. KM 6+389,97 A PGR. KM 6+490,30 - RELAZIONE TECNICA E DI CALCOLO

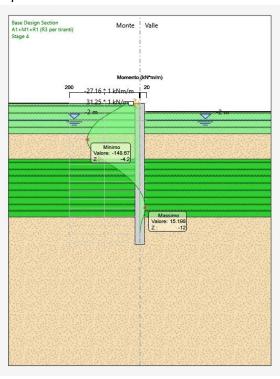
VALIDAZIONE DEL CALCOLO 17

La validazione del calcolo viene condotta secondo uno schema a paratia di pali Ø1200, di lunghezza pari a 15 m (+ lo spessore della zattera di testa pari a 1,20 m per un totale di 16,20 m). Le azioni taglianti e flessionali (sia in fase statica che in fase sismica) agenti sulla sezione di spiccato del muro sono state desunte dal calcolo del muro di cui al capitolo 11 e applicate puntualmente in testa alla paratia.

Il modello di calcolo è stato realizzato mediante il software Paratie Plus 2018.

Di seguito è riportata lo schema finale del modello di calcolo:



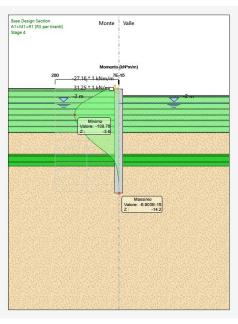


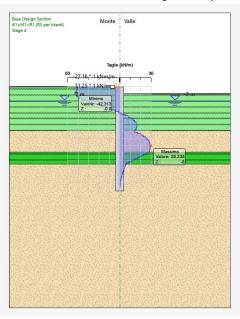
17.1 **VALUTAZIONE DELLE AZIONI SOLLECITANTI**

17.1.1 COMBINAZIONE ALLO STATO LIMITE ULTIMO - STR - CONDIZIONE NON DRENATE

Nell'immagine successiva è riportato l'andamento del momento flettente sui pali:

Terreni	c' [kPa]	[°]
U2 - I STRATO Argilla		
U1 Sabbia / Ghiaia	0	32
U2 - II STRATO Argilla		
U1 Sabbia / Ghiaia	0	32

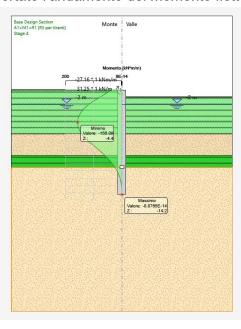


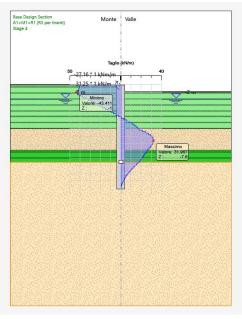

17.1.2 COMBINAZIONE ALLO STATO LIMITE ULTIMO – STR – CONDIZIONE DRENATE

Nell'immagine successiva è riportato l'andamento del momento flettente sui pali:

Terreni	c' [kPa]	6,
U2 - I STRATO Argilla		
U1 Sabbia / Ghiaia	0	32
U2 - II STRATO Argilla		
U1 Sabbia / Ghiaia	0	32

Terreni	c' [kPa]	[1]
U2 - I STRATO Argilla		
U1 Sabbia / Ghiaia	0	32
U2 - II STRATO Argilla		
U1 Sabbia / Ghiaia	0	32

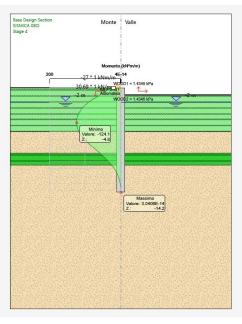


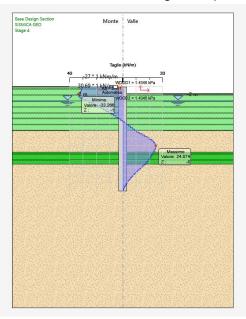

COMBINAZIONE ALLO STATO LIMITE DI SALVAGUARDIA DELLA VITA - CONDIZIONE NON 17.1.3 **DRENATE**

Nell'immagine successiva è riportato l'andamento del momento flettente sui pali:

Terreni	c' [kPa]	6,
U2 - I STRATO Argilla		
U1 Sabbia / Ghiaia	0	32
U2 - II STRATO Argilla		
U1 Sabbia / Ghiaia	0	32

Terreni	c' [kPa]	(1)
U2 - I STRATO Argilla		
U1 Sabbia / Ghiaia	0	32
U2 - II STRATO Argilla		
U1 Sabbia / Ghiaia	0	32




17.1.4 COMBINAZIONE ALLO STATO LIMITE DI SALVAGUARDIA DELLA VITA – CONDIZIONE DRENATE

Nell'immagine successiva è riportato l'andamento del momento flettente sui pali:

Terreni	Terreni (kPa)	
U2 - I STRATO Argilla		
U1 Sabbia / Ghiaia	0	32
U2 - II STRATO Argilla		
U1 Sabbia / Ghiaia	0	32

Terreni	[kPa]	[1]
U2 - I STRATO Argilla		
U1 Sabbia / Ghiaia	0	32
U2 - II STRATO Argilla		
U1 Sabbia / Ghiaia	0	32

17.2 RIEPILOGO DELLE AZIONI SOLLECITANTI

Nella tabella successiva sono riportati i valori delle azioni sollecitanti sulla paratia di pali, valutate per unità di lunghezza della paratia stessa:

COMBINAZIONE	CONDIZIONE	M	٧
COMBINAZIONE	CONDIZIONE	[kNm/m]	[kN/m]
SLU - STR	non drenata	-148,67	-42,31
3L0 - 31K	drenata	-138,76	-42,31
SLV	non drenata	-156,89	-43,41
SLV	drenata	-124,10	-33,27

Nella tabella successiva sono riportati i valori delle azioni sollecitanti sul singolo palo, considerato un interasse tra i pali pari a 3,60 m:

		MODELLO "A PARATIA"		
COMBINAZIONE	CONDIZIONE	М	V	
		[kNm]	[kN]	
SLU - STR	non drenata	-535,21	-152,33	
	drenata	-499,54	-152,33	
SLV	non drenata	-564,80	-156,28	
SLV	drenata	-446,76	-119,76	

Di seguito è infine riportato il confronto tra le azioni sollecitanti sul singolo palo valutate mediante il modello di calcolo "a paratia" e le medesime azioni valutate con il modello "a muro" (capitoli 13 e 14):

		MODELLO "A PARATIA"		MODELLO "A MURO"	
COMBINAZIONE	CONDIZIONE	M	V	M	V
		[kNm]	[kN]	[kNm]	[kN]
SLU - STR	non drenata	-535,21	-152,33	800,95	238,59
	drenata	-499,54	-152,33		
SLV	non drenata	-564,80	-156,28	823,91	240,70
SLV	drenata	-446,76	-119,76		

I risultati ottenuti mediante il modello "a paratia" risultano inferiori rispetto ai risultati ottenuti mediante il modello "a muro".

Risultano infine, in entrambe i casi, inferiori alle corrispondenti azioni resistenti calcolate.

SOTTOSCRIZIONE DELL'ELABORATO DA PARTE DEL R.T.P.

18

IF - MURO DI SOSTEGNO ASSE 80 DA PGR. KM 6+389,97 A PGR. KM 6+490,30 - RELAZIONE TECNICA E DI CALCOLO

STUDIO CORONA S.r.l.	ECOPLAN S.r.I.
I.T. S.r.l.	E&G S.r.l.
CONSORZIO UNING	ARKE' INGEGNERIA S.r.I.
SETAC S.r.l.	ING. RENATO DEL PRETE
DOTT. DANILO GALLO	

