

Direzione Progettazione e Realizzazione Lavori

S.S. n.131 "Carlo Felice" Completamento itinerario Sassari - Olbia

Potenziamento-Messa in sicurezza dal km 192+500 al km 209+500

1° lotto (dal km 193 al km 199)

PROGETTO DEFINITIVO

COD. CA349

PROGETTAZIONE: ATI VIA - SERING - VDP - BRENG

PROGETTISTA E RESPONSABILE DELL'INTEGRAZIONE DELLE PRESTAZIONI SPECIALISTICHE:

Dott. Ing. Giovanni Piazza (Ord. Ing. Prov. Roma 27296)

RESPONSABILI D'AREA:

Responsabile Tracciato stradale: Dott. Ing. Massimo Capasso

(Ord. Ing. Prov. Roma 26031)
Responsabile Strutture: Dott. Ing. Giovanni Piazza

(Ord. Ing. Prov. Roma 27296) Responsabile Idraulica, Geotecnica e Impianti: Dott. Ing. Sergio Di Maio

(Ord. Ing. Prov. Palermo 2872) Responsabile Ambiente: Dott. Ing. Francesco Ventura (Ord. Ing. Prov. Roma 14660)

GEOLOGO:

Dott. Geol. Enrico Curcuruto (Ord. Geo. Regione Sicilia 966)

COORDINATORE SICUREZZA IN FASE DI PROGETTAZIONE:

Dott. Ing. Matteo Di Girolamo (Ord. Ing. Prov. Roma 15138)

RESPONSABILE SIA:

Dott. Ing. Francesco Ventura (Ord. Ing. Prov. Roma 14660)

VISTO: IL RESPONSABILE DEL PROCEDIMENTO:

Dott. Ing. Salvatore Frasca

GRUPPO DI PROGETTAZIONE MANDATARIA:

MANDANTI:

CANTIFRIZZAZIONE Relazione Gestione Materie

CODICE PF	ROGETTO LIV. PROG. ANNO	NOME FILE CA349_TOOCAOOCANREO2	2_A		REVISIONE	SCALA:
	0349 D 20	CODICE TOO CAOO CAN REO2		A		
D						
С						
В						
Α	EMISSIONE		NOV 2020	F. PUCCI	E. CURCURUTO	G. PIAZZA
REV.	DESCRIZIONE		DATA	REDATTO	VERIFICATO	APPROVATO

Relazione gestione materie

INDICE GENERALE

IND	DICE GENERALE					
1.	PREMESSA					
2.	RIFERIMENTI NORMATIVI					
3.	UBICAZIONE DEL SITO DI PRODUZIONE					
4.	CAMPAGNA GEOGNOSTICA - AMBIENTALE	.				
	4.1 Campagna geognostica e ambientale 2018	,				
	4.2 Campagna geognostica e ambientale 2019	10				
5.	CARATTERIZZAZIONE GEOTECNICA MATERIALE DA SCAVO	14				
	5.1 Caratteristiche geotecniche dei terreni e delle rocce	14				
6.	CARATTERIZZAZIONE AMBIENTALE MATERIALE DA SCAVO	2				
	6.1 Indagini ambientali	2				
	6.2 Classificazione dei materiali come rifiuto	22				
7.	RIUTILIZZO DEI PRODOTTI DI SCAVO	28				
	7.1 Sottoprodotti	28				
8.	BILANCIO MATERIALI	29				
	8.1 Volumi Terre scavate	29				
	8.2 Fabbisogno materiali	30				
	8.3 Bilancio globale materiali	3				
9.	DEMOLIZIONI	32				
	9.1 Materiali da demolizione	33				
	9.2 Scarti ferrosi	33				
10.	AREE DI DEPOSITO	3				
11.	SISTEMA DI APPROVVIGIONAMENTO / SMALTIMENTO	34				
	11.1 Cave	34				
	11.2 Siti per il conferimento delle terre in esubero	31				

CA349

Relazione gestione materie

1. PREMESSA

Scopo della relazione che segue è la descrizione del piano di gestione delle terre delle opere previste nel progetto Definitivo dei lavori per il "Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 - 1° lotto (dal km 193 al km 199)".

Il presente piano di gestione delle terre, contiene le informazioni ed i dati necessari alla gestione dei volumi di terre di varia natura derivanti da scavi nell'area oggetto di intervento con relativa definizione delle quantità da conferire come sottoprodotti presso siti esterni all'area di cantiere o conferire in appropriata discarica se rifiuto; il tutto in conformità al D.L. 133 del 12/09/2014 art. 8 ("sblocca Italia") approvato il 14/07/2016 e nuovamente approvato con modifiche dal Consiglio dei Ministri in data 19/05/2017.

Il presente Piano di Gestione ed Utilizzo delle Terre da Scavo è redatto in conformità ai contenuti del D.Lgs. 152/2006, secondo la traccia indicata nel recente Decreto del 19/05/2017 Allegato 5 e secondo le "Linee Guida sull'applicazione della disciplina per l'utilizzo delle terre e rocce da scavo" del nuovo manuale pubblicato dal Consiglio del SNPA (Sistema Nazionale per la Protezione Ambientale), con delibera n. 54/2019 di approvazione.

Nella redazione del presente piano di gestione ed utilizzo terre, sono state inoltre integrate le risultanze delle "Indagini di Caratterizzazione ambientale" eseguite nel mese di aprile 2019.

Complessivamente, in relazione all'estensione dell'opera, il progetto definitivo conferma un esubero di materiali richiesti per la messa in opera dei rilevati rispetto a quelli provenienti dagli scavi, ma il ricorso al riutilizzo nell'ambito del cantiere dei materiali disponibili, riduce notevolmente le quantità da conferire in discarica e riduce la richiesta di materiale da cava per la formazione dei rilevati.

CA349

Relazione gestione materie

2. RIFERIMENTI NORMATIVI

Gli studi geologici e la redazione della presente relazione sono stati eseguiti seguendo le prescrizioni delle norme, i cui riferimenti sono di seguito riportati:

- □ ("Linee guida sull'applicazione della disciplina per l'utilizzo delle terre e rocce da scavo" Delibera n. 54/2019, del 09/05/2019, del Sistema Nazionale per la Protezione dell'Ambiente -SNPA-).
- □ Decreto del Presidente della Repubblica 13 giugno 2017, n. 120 "Regolamento recante la disciplina semplificata della gestione delle terre e rocce da scavo, ai sensi dell'articolo 8 del decreto-legge 12 settembre 2014, n. 133, convertito, con modificazioni, dalla legge 11 novembre 2014, n. 164".
- □ Legge 11 novembre 2014 n. 164. Conversione, con modificazioni, del decreto legge11 settembre 2014, n. 133, Misure urgenti per l'apertura dei cantieri, la realizzazione delle opere pubbliche, la digitalizzazione del Paese, la semplificazione burocratica, l'emergenza del dissesto idrogeologico e per la ripresa delle cattività produttive.
- □ Legge 11 agosto 2014 n. 116. Decreto "Sblocca Italia".

 Legge 9 agosto 2013 n.98 (conversione del Decreto del Fare). Conversione, con modificazioni, del decreto-legge 21 giugno 2013, n. 69. Disposizioni urgenti per il rilancio dell'economia
- □ Decreto Ministeriale 10 agosto 2012 n. 161. Regolamento recante la disciplina dell'utilizzazione delle terre e rocce da scavo
- □ Decreto Legislativo 28 giugno 2010, n. 128. "Modifiche ed integrazioni al decreto legislativo 3 aprile 2006, n. 152, recante norme in materia ambientale, a norma dell'articolo 12 della legge 18 giugno 2009, n. 69
- □ Legge n. 2 del 28 gennaio 2009 "Conversione in legge, con modificazioni, del decreto-legge 29 novembre 2008, n. 185, recante misure urgenti per il sostegno a famiglie, lavoro, occupazione e imprese per ridisegnare in funzione anti-crisi il quadro strategico nazionale" che introduce una modifica al D.lgs. n.152 del 3 aprile 2006 con riferimento agli artt. 185 "Limiti al campo di applicazione" e 186 "Terre e rocce da scavo";
- □ Delibera della Giunta Regionale n. 37/14 del 25/09/2007 Atti di indirizzo programmatico per il settore estrattivo. Procedura di approvazione del Piano Regionale Attività Estrattive (PRAE), come modificata dalla Delibera n°47/18 del 20.10.2009.
- □ Decreto Legislativo 16 gennaio 2008, n. 4 "Ulteriori disposizioni correttive ed integrative del decreto legislativo 3 aprile 2006, n. 152, recante norme in materia ambientale".
- Decreto Legislativo 3 aprile 2006, n. 152 "Norme in materia ambientale".
- □ D.M. 21 marzo 2005: "Metodi ufficiali di analisi mineralogica del suolo".

CA349

Relazione gestione materie

In particolare, il D.P.R. 13 giugno 2017 n. 120, vigente dal 22 agosto 2017, definisce l'utilizzo delle terre e rocce da scavo in esclusione dal regime di rifiuto dettando i criteri qualitativi da soddisfare perché queste possano essere considerate sottoprodotti. La norma stabilisce, inoltre, le procedure e le modalità affinché la gestione e l'utilizzo dei materiali da scavo avvenga senza pericolo per la salute dell'uomo e senza recare pregiudizio all'ambiente. Questo D.P.R. è stato emanato con lo scopo di semplificare la disciplina della gestione delle terre e rocce da scavo e recepisce ampiamente i contenuti del D.M. 10 agosto 2012 n. 161.

Viene ribadito il fondamentale principio che il materiale prodotto da operazioni di scavo è un sottoprodotto e non un rifiuto se sono rispettate le seguenti condizioni:

- il materiale da scavo deve essere generato durante la realizzazione dell'opera;
- il materiale da scavo deve essere riusato nell'esecuzione della stessa o di un'altra opera o in processi produttivi in sostituzione di materiali di cava;
- il materiale da scavo deve essere idoneo ad essere utilizzato direttamente senza alcun ulteriore trattamento diverso dalla normale pratica industriale;
- il materiale da scavo deve soddisfare i requisiti di qualità ambientale. Condizione indispensabile per il riutilizzo è comunque che il materiale non provenga da siti contaminati o sottoposti a procedimenti di bonifica.
- Nella eventualità in cui si riscontri la presenza di aliquote di materiale che non soddisfano le predette condizioni, queste devono essere trattate come rifiuto.

Nei casi in cui le terre e rocce da scavo contengano materiali di riporto, la componente di materiali di origine antropica frammisti ai materiali di origine naturale non può superare la quantità massima del 20% in peso.

Alla luce di quanto sopra indicato, per le terre e rocce provenienti dalle attività di scavo nell'appalto in esame si possono prefigurare sostanzialmente quattro possibilità:

- 1) il reimpiego nell'ambito dei lavori per la costruzione dei rilevati;
- 2) il reimpiego nell'ambito dei lavori per l'esecuzione di rinterri e riempimenti;
- 3) il reimpiego all'interno dei processi produttivi del cantiere, in sostituzione dei materiali di cava come gli aggregati costituenti il misto stabilizzato granulare ed il misto cementato;
 - 4) il conferimento del materiale in esubero a soggetti esterni autorizzati al ricevimento dello stesso.

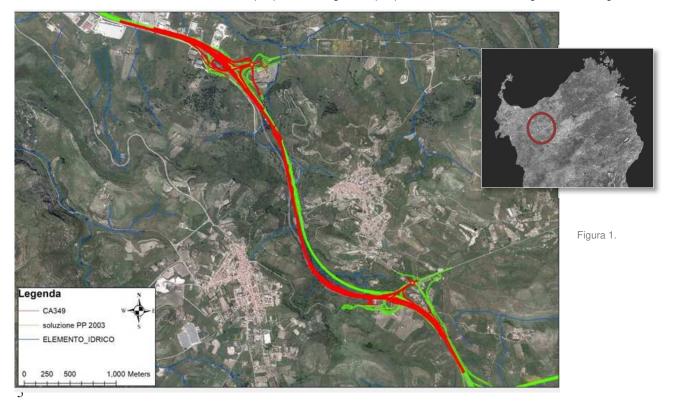
La seguenza concettuale che porta alla scelta tra queste possibilità può essere così sintetizzata:

- Determinazione delle caratteristiche geotecniche dei materiali: sono infatti tali proprietà a condizionare le possibili modalità di impiego dei materiali come sottoprodotti. Le indagini di laboratorio consentiranno di classificare i materiali provenienti dai vari siti in una ideale graduatoria, di qualità dei materiali: dai più pregiati ai meno;
- Determinazione delle concentrazioni di sostanze contaminanti: la caratterizzazione va eseguita su tutti i materiali soggetti a riutilizzo, sia che vengano reimpiegati nei processi di produzione dei materiali da costruzione, sia che vengano utilizzati per rinterri o riempimenti, sia che debbano essere conferiti a discarica;

CA349

Relazione gestione materie

□ Valutazione della distanza tra il sito di produzione ed i potenziali siti di utilizzo/conferimento. Il trasporto dei materiali comporta infatti un costo che va confrontato con i benefici dell'attività di riutilizzo, sia in termini economici, sia in termini di impatto sull'ambiente antropico e naturale.


L'attuale quadro normativo consente di escludere dal processo di gestione come sottoprodotti quelle terre da scavo non contaminate che vengono riutilizzate allo stato naturale, nell'ambito dei lavori di costruzione, direttamente nel luogo dove sono state generate.

Per il progetto in esame tale situazione potrà essere proposta esclusivamente per il terreno vegetale che sarà rimosso tramite scotico dalle aree di cantiere ed accantonato in specifiche porzioni delle stesse, al fine di essere riportato e riutilizzato come terreno vegetale.

Le eventuali lavorazioni effettuate sui materiali di scavo finalizzate ad ottimizzarne l'utilizzo (quali, ad esempio: la vagliatura, il lavaggio, la riduzione volumetrica, l'essiccazione mediante stendimento al suolo ed evaporazione, ecc.) non incidono sulla classificazione in quanto sono espressamente indicati nel D.P.R. 120/2017 all'Allegato 3 (in sostanza si tratta delle stesse lavorazioni che si praticano sui materiali di cava proprio per ottimizzarne l'utilizzo).

3. UBICAZIONE DEL SITO DI PRODUZIONE

L'intervento ricade nei Comuni di Florinas (SS) e Codrongianos (SS), Come illustrato nella figura 1 che segue.

CA349

Relazione gestione materie

La descrizione delle opere previste in progetto è riportata negli elaborati di progetto ed in particolare nella relazione di cantierizzazione T00CA00CANRE01. Per le modalità di svolgimento delle operazioni di scavo e demolizione all'interno del programma di esecuzione delle opere, si rimanda al cronoprogramma di cantiere (rif. **T00CA00CANCR01**).

Per la realizzazione dell'infrastruttura stradale di progetto, in considerazione dell'estensione dell'intervento, dell'ubicazione delle opere di progetto e del sistema di accessibilità e di mobilità all'interno al cantiere, si prevede di realizzare due Cantieri Base, un'Area Tecnica di stoccaggio terre e 5 Aree Tecniche come riportate di seguito in tabella:

ID	TIPO	AREA (mq)
CB01	Campo base	13.885,00
CB02	Campo base	20.890,00
AS	Area stoccaggio terre	5.280,00
AT01	Area tecnica	5.430,00
AT02	Area tecnica	9.035,00
AT03	Area tecnica	1.500,00
AT04	Area tecnica	3.600,00
AT05	Area tecnica	4.985,00

La localizzazione delle aree di cantiere è mostrata negli elaborati di cantierizzazione.

CA349

Relazione gestione materie

4. CAMPAGNA GEOGNOSTICA - AMBIENTALE

Le caratteristiche dei terreni e delle rocce interessati dal tracciato in progetto sono state investigate in passato con due campagne di indagini geognostiche, geofisiche, geotecniche e ambientali svolte nella campagna delle prove ANAS dell'anno 1997 e del 2015, per il Progetto di fattibilità tecnico economica (PFTE) e successivamente, nel novembre 2019, nell'ambito della progettazione definitiva.

Le campagne di indagini sono state condotte dalla società **Soc. Geotecno** del 1997 dalla **Soc. Sondedile** nell'anno 2015 e dalla **Soc. TECNO IN S.p.A**. di Napoli nel 2019, nel rispetto delle disposizioni, delle specifiche tecniche e del capitolato d'appalto ANAS, nonché delle raccomandazioni AGI (1977). Per le prove di laboratorio si è fatto riferimento alla normativa ASTM.

4.1 Campagna geognostica e ambientale 2018

Le indagini hanno interessato le tre alternative di tracciato proposte nel PFTE. Nella tabella seguente si riporta l'elenco dei sondaggi eseguiti, con l'indicazione della profondità d'indagine raggiunta e dell'attrezzatura installata.

SS 131 Indagini Ambientali		TE	RRE		AC	QUA
		PO	ZZETTI			
sigla campione	Ca1	Ca2	Ccls1	Crif	PA1	PCLAS1
PZ6	0,00-1,00	1,00-2,00				
PZ7	0,00-1,00	1,00-2,00				
PZA1	0,00-1,00					
PZA2	0,00-1,00					
PZA3	0,00-1,00					
PZA4	0,00-1,00	1,00-2,00				
		SON	DAGGI			
S1_PZ	0,00-1,00	1,00-2,00	0,00-2,00	0,00-2,00	Х	X
S3_DH	0,00-1,00	1,00-2,00	0,00-2,00	0,00-2,00		
S8	0,00-1,00	1,00-1,65	1,00-1,65			
S12_PZ	0,00-1,00		0,00-1,00	0,00-2,00	Χ	X
S14_DH			0,00-2,00			
S16	0,00-1,00	1,00-2,00	0,00-2,00	0,00-2,00		
S18_DH	0,00-1,00	1,00-2,00	0,00-2,00			

Figura 2. Sondaggi PFTE (Aprile 2019).

Il campionamento è stato eseguito nel mese di Aprile 2019 attraverso l'esecuzione di n. 6 pozzetti esplorativi approfonditi fino ad un massimo di 2,00 m dal p.c. nel corso dei quali, oltre ai rilievi stratigrafici, è stato eseguito il prelievo di massimo n. 2 campioni di terreno rappresentativi del primo e del secondo metro, i quali successivamente sono stati sottoposti alle determinazioni chimiche. Oltre ai campioni prelevati dai pozzetti, si è proceduto anche al prelievo di campioni da n. 7 sondaggi geognostici e di acque sotterranee da n. 2 piezometri. Il fine delle analisi risiede

Relazione gestione materie

nella caratterizzazione ambientale dei terreni, nonché per determinarne il grado di aggressività dei terreni e dell'acqua nei confronti del calcestruzzo.

Di seguito si riporta una tabella con indicazione delle coordinate GAUSS-BOAGA dei pozzetti e dei sondaggi ambientali realizzati.

Sigla ID	Coordinata G.B. Nord	Coordinata G.B. Est	Quota assoluta p.c.	Quota assoluta t.t.
S01-PZ	1473193,379	4499633,171	343,795	343,886
S03-DH	1472820,727	4499870,913	315,340	315,077
S08	1472334,897	4500622,347	259,970	
S12-PZ	1472257,561	4501086,534	255,127	255,388
S14-DH	1472165,429	4501352,284	229,812	229,613

Sigla ID	Coordinata G.B. Nord	Coordinata G.B. Est	Quota assoluta p.c.	Quota assoluta t.t.
S16	1472110,891	4501495,004	247,979	
S18-DH	1472003,094	4501692,754	213,796	213,807
Pz06	1471381,566	4502330,749	199,514	
Pz07	1471140,267	4502568,424	187,519	
PzA1	1473235,362	4499664,603	341,425	
PzA2	1473260,720	4499673,165	342,177	
PzA3	1473241,032	4499675,746	341,658	
PzA4	1473911,992	4499307,281	351,265	

Figura 3. Ubicazione indagini e Pozzetti PFTE (2019).

CA349

Relazione gestione materie

4.2 Campagna geognostica e ambientale 2019

Nel corso della presente fase di progettazione è stata effettuta una campagna di indagini geognostiche, geotecniche in sito e di laboratorio al fine di caratterizzare dal punto di vista geologico, geotecnico ed ambientale i terreni affioranti e del sottosuolo, insistenti su aree del tracciato precedentemente non indagate e sulle aree limitrofe a queste. La campagna di indagine geognostica si è articolata attraverso l'esecuzione delle sottoelencate indagini:

- nº 19 sondaggi a rotazione e carotaggio continuo
- nº 4 installazioni di piezometri di cui n. 1 con cella di Casagrande e n. 3 a tubo aperto
- n° 91 prove penetrometriche dinamiche S.P.T.
- nº 182 prelievi di campioni, di cui n. 43 indisturbati (CI) per analisi e prove di laboratorio, n. 105 rimaneggiati (CR) per analisi e prove di laboratorio e n. 34 litoidi (CL)
- n° 6 pozzetti esplorativi p = 2,0 m
- nº 6 campioni rimaneggiati prelevati dai pozzetti esplorativi
- n° 6 prove Down Hole
- nº 6 profili sismici con metodologia MASW e sismica a rifrazione

La posizione dei punti di indagine è riportata nelle Tavole di progetto CA349_T00GE00GETPU01_A e CA349_T00GE00GETPU02_A. Per le indagini antecedenti al 2019 sono indicate solo quelle che interagiscono direttamente con le opere in progetto.

Nella tabella riepilogativa di seguito riportata sono sintetizzati i sondaggi effettuati con indicazione della profondità raggiunta, della tipologia di installazione in foro, delle prove in sito e del prelievo di campioni (CI= campioni indisturbati, CR= campioni rimaneggiati), CL=campioni litoidi).

Relazione gestione materie

Sigla ID	profondità	SPT	CI	CR	CL	Tubo Down	Piezometro
S01-PZ	15	3	2	4	2		Χ
S02-DH	25	2	2	5	4	Χ	
S03-DH	30	2	1	4	6	X	
S04-PZ	25	2	1	1	5		X
S06	25	3	1	3	4		
S07-DH	30	6	4	7		Χ	
S08	25	9	2	5			
S09	25	6	2	5			
S10-DH	30	8	2	10		Χ	
S11	25	8	1	9			
S12-PZ	20	4	2	3	1		X
S13	25	7	3	7			
S14-DH	30	8	4	7		X	
S15	25	4	2	12			
S16	20	6	3	6			
S17	25	4	4	6			
S18-DH	30	7	3	6	1	Χ	
S19-PZ	25	3	4	5			X
S20	20	1			11		

Figura 4. Scheda sintetica sondaggi PD (2019).

Nella tabella riepilogativa di seguito riportata sono sintetizzati i pozzetti effettuati.

N.	Sigla ID	Coordinata G.B.	Coordinata G.B.	Quota assoluta p.c.
		Nord	Est	(m s.l.m.)
1	Pz01	1473275.588	4499771.808	318.214
2	Pz02	1473659.473	4499923.020	340.969
3	Pz04	1471783.746	4502075.891	204.637
4	Pz05	1471553.976	4502359.934	190.956
5	Pz06	1471381.566	4502330.749	199.514
6	Pz07	1471140.267	4502568.424	187.519

Figura 5. Scheda sintetica pozzetti PD (2019).

Relazione gestione materie

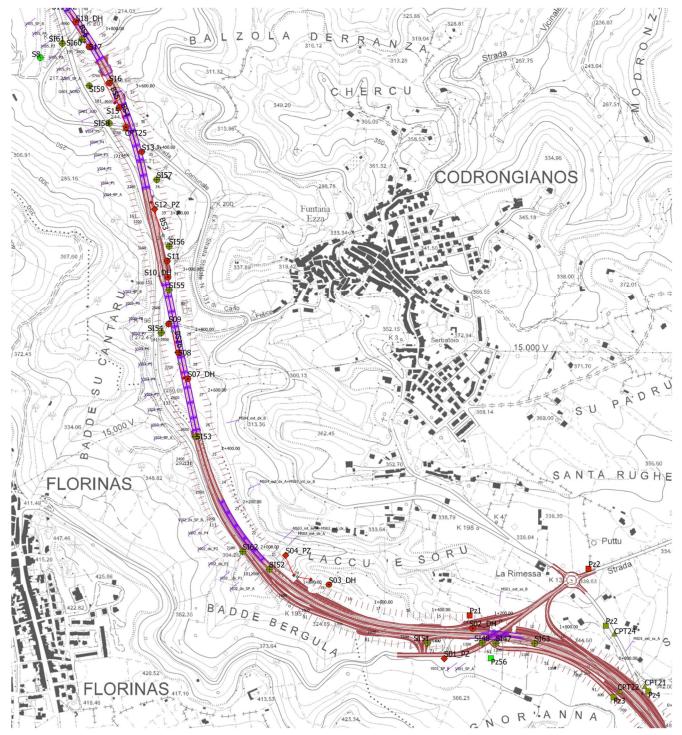


Figura 6. Ubicazione indagini Tavola CA349_T00GE00GETPU01_A.

Relazione gestione materie

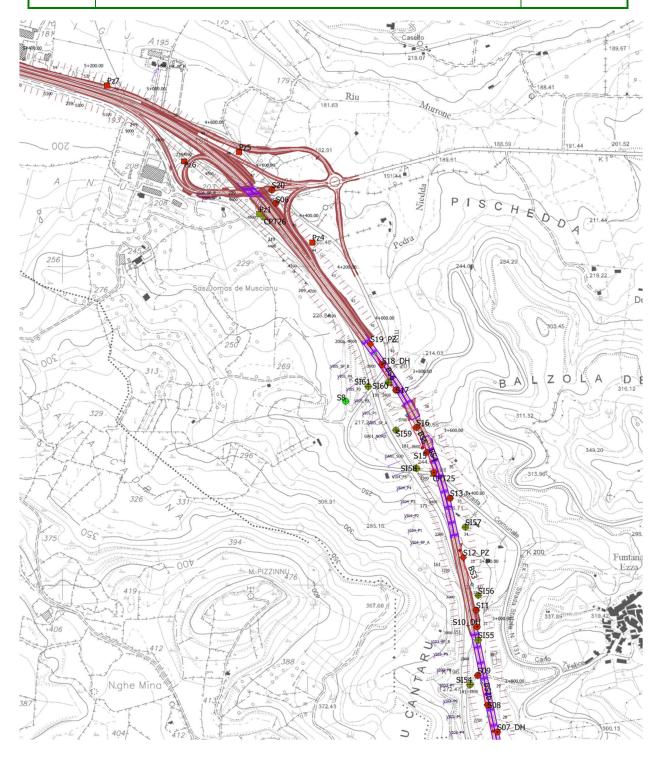


Figura 7. Ubicazione indagini Tavola CA349_T00GE00GETPU02_A.

CA349

Relazione gestione materie

5. CARATTERIZZAZIONE GEOTECNICA MATERIALE DA SCAVO

5.1 Caratteristiche geotecniche dei terreni e delle rocce

Ai fini della caratterizzazione geotecnica dei terreni e delle rocce interessati dal tracciato stradale si è fatto riferimento ai risultati delle tre campagne di indagini, richiamate nel paragrafo precedente, a conoscenze acquisite nel corso di numerose indagini geotecniche svolte nei pressi del comune di Codrongianos e a dati di letteratura.

I terreni e le rocce che ricadono nel volume di terreno significativo ai fini geotecnici sono stati raggruppati in 2 classi, per ciascuna delle quali possono distinguersi i termini principali indicati nella tabella che segue.

	TERRENI DI COPERTURA					
TR	Terreno vegetale, rimaneggiato, costituito da sabbia e ghiaia talvolta limosa argillosa, di colore marrone. Rara presenza di ciottoli di forma sub-arrotondata. Materiali di riporto, di varia natura (asfalto, cemento, etc.), rimaneggiati, aventi in genere la granulometria dalla sabbia con ghiaia alla sabbia con limo con rari ciottoli.					
SL	SL Sabbia con limo e limo con sabbia, talora argillosa o ghiaiosa e generalmente addensata di colore variabile dal marrone al grigiastro al giallastro.					
Ghiaia con sabbia e sabbia ghiaiosa a tratti limosa, da sciolta ad addensata, di marrone o marrone chiaro tendente talvolta al biancastro.						
AL	Argilla con limo sabbiosa, consistente, di colore dal nerastro al grigiastro al marrone.					
	ROCCE DEL SUBSTRATO					
CMF	CMF Depositi cementati, Calcari e calcari marnosi, da fratturati a molto fratturati, spess prelevati nella granulometria da ghiaia a sabbia. Colore dal marrone scuro al grigio chiaro.					
CM	Calcari marnosi compatti di colore dal marrone al biancastro.					

Classificazione geotecnica dei terreni

Con riferimento alla classificazione geotecnica sopra riportata, in Appendice A si allegano le colonne stratigrafiche di sintesi dei sondaggi distinte per campagna d'indagine. Per ciascun sondaggio sono indicati i terreni riconosciuti dall'esame delle stratigrafie, la posizione dei campioni indisturbati e dei piezometri, i valori N₃₀ ricavati dalle prove SPT, la profondità della falda ove presente.

Dal punto di vista geotecnico si identifica un primo tratto di tracciato, fino al km 2+500 circa, lungo il quale è presente uno strato continuo di sabbia limosa SL, con spessori variabili da 3 m a 15 m, al di sopra di un'alternanza di calcari marnosi CM e CMF.

Nel tratto successivo, fino al km 3+200, si rinviene limo sabbioso (SL) con lenti di ghiaie e sabbie (G) e marne (CMF) di spessore variabile da 3 m a 5 m circa.

CA349

Relazione gestione materie

Dal km 3+200 al km 3+700 è presente un deposito di terreni di origine alluvionale a grana fina, composto da argilla e limo (AL) fino alla profondità massima di 11,5 m. Al sotto il quale si rinvengono sabbie limose SL. Più avanti, fino al km 4+500, si alternando strati di AL e SL. Da questa progressiva in avanti la stratigrafia dei terreni resta approssimativamente costante, presentandosi come uno strato uniforme di sabbia limosa (SL) nei primi metri che ricopre i calcari marnosi CMF, CM.

Nelle pagine che si illustrano, per ciascuno dei terreni indicati nella classificazione geotecnica, le principali caratteristiche fisiche e meccaniche determinate con le indagini in sito e di laboratorio. In particolare, si è fatto riferimento alle campagne di indagine eseguite sui terreni di fondazione, i cui risultati sono riportati negli specifici elaborati allegati al progetto, corredati di tabelle di sintesi, ai quali si rimanda per i dettagli sui valori sperimentali analizzati nella presente relazione.

I parametri di resistenza dei terreni a grana fina in termini di sforzi effettivi sono stati determinati sulla base dei risultati delle prove di laboratorio (prove di taglio diretto CD, prove di compressione triassiale CIU e CID).

La resistenza a taglio non drenata dei terreni a grana fina Cu è stata valutata facendo riferimento sia ai risultati delle prove di laboratorio (prove di compressione monoassiale ad espansione laterale libera e prove triassiali non consolidate non drenate UU), sia all'interpretazione dei risultati delle misure con il penetrometro tascabile sulle carote estratte nel corso dei sondaggi e delle prove penetrometriche dinamiche SPT.

Per le prove SPT si è fatto riferimento a Stroud (1974), che correla Cu a N_{60} , con N_{60} numero di colpi corretto per tenere conto dei fenomeni dissipativi durante il passaggio da energia cinetica del maglio a onda di energia di compressione delle aste (Schmertmann 1978).

I terreni a granulometria prevalentemente sabbioso-ghiaiosa sono stati caratterizzati da parametri di resistenza in termini di sforzi effettivi, determinati sulla base dei risultati di prove di laboratorio (taglio diretto CD, triassiali CIU e CID) e di correlazioni con i risultati delle prove penetrometriche dinamiche SPT utilizzando le seguenti correlazioni:

- Shioi & Fukuni (1982): $\varphi' = 0.3 \times N_{60} + 27^{\circ}$;
- Peck, Hanson and Thornburn (1956): φ' = 0,28×N_{SPT}+27,2°.

Per la determinazione della densità relativa Dr dei terreni sabbioso-ghiaiosi si è fatto riferimento alle correlazioni che legano il numero di colpi N_{SPT} a Dr:

Gibbs & Holtz (1957):

$$N_{SPT} = \left(17 + 24 \cdot \frac{\sigma_{v0}}{p_a}\right) \cdot D_R^2$$

• Schultze & Mezembach (1961):

 $ln(Dr\%) = 0.478 \times ln(N_{SPT}) - 0.262 \times ln(\sigma'_{v0}) + 2.84.$

I valori del modulo di taglio G_0 e del modulo di elasticità E_0 iniziali sono stati ricavati a partire dai valori della velocità delle onde di taglio Vs ottenuti indirettamente a partire dai valori di N_{SPT} .

La velocità di propagazione delle onde di taglio Vs può essere ricavata direttamente dai risultati delle prove Down-Hole oppure valutata indirettamente, dai risultati delle prove SPT, per mezzo dell'equazione di Ohta & Goto

CA349

Relazione gestione materie

(1978):

$$Vs = 67,3 \times N_{60}^{0.17} \times z^{0.199} \times A \times B$$

dove:

- z è la profondità di calcolo (m dal p.c.) della velocità di propagazione delle onde di taglio;
- ✓ A è il fattore che tiene conto dell'età geologica del deposito (v. tabella sotto);
- ✓ B è il fattore che tiene conto della granulometria del deposito (v. tabella sotto).

	Depositi recenti	Depositi antichi
Δ	1.0	1,3
	1,0	1,0

Coefficiente A funzione dell'epoca geologica del deposito

	Ghiaia	Sabbia ghiaiosa			
В	3500	3287	20336	329	62

Coefficiente B funzione della composizione granulometrica del deposito

Il modulo di taglio a piccolissime deformazioni G₀ si ricava dalla seguente espressione:

$$G_0 = Vs^2 \gamma/g$$

dove:

- \checkmark γ è il peso dell'unità di volume del terreno (kN/m³);
- ✓ g è l'accelerazione di gravità pari a 9.81 m/sec².

Pertanto, risulta:

$$E_0 = 2 G_0 (1+v)$$

con v modulo di Poisson.

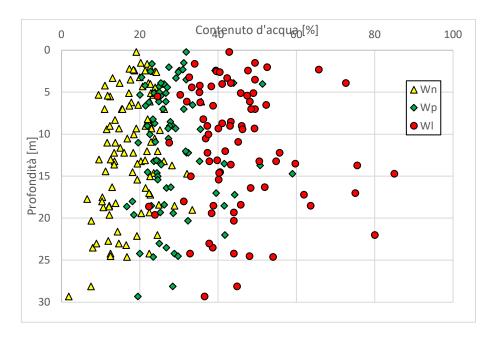
Per la stima del modulo elastico operativo E'op dei terreni a granulometria prevalentemente sciolta a partire dai risultati delle prove SPT, si è fatto ricorso a relazioni empiriche:

- ☐ E'op = 2,0×N₆₀ (Schmertmann per sabbia a grana grossa)
- \Box E'_{op} = (191+7,71×N₆₀)/10 (D'Appolonia per sabbia e ghiaia normalmente consolidata)
- \Box E'_{op} = 1,2×(6+N₆₀/60×55) (European Conference on SPT, 1974 per sabbia ghiaiosa e ghiaia.

Terreno agrario o vegetale, Materiali di riporto - TR

Il terreno agrario/vegetale, di spessore generalmente pari a 50-100 cm, è costituito di sabbie e ghiaie talora argillose limose di colore marrone, raramente con elementi lapidei di varia natura a spigoli sub-arrotondati. Localmente si rinvengono materiali di riporto di varia natura e granulometria.

Relazione gestione materie


Sabbia con limo e limo con sabbia - SL

I terreni SL sono costituiti di sabbia con limo a grana medio-fine e limo con sabbia, talora argillosa o ghiaiosa e generalmente addensata.

Si presentano in maniera diffusa lungo tutto il tracciato. Il colore è variabile dal marrone al grigiastro al giallastro. Spesso sono a copertura di calcari marnosi o altre formazioni rocciose profonde e comprende terreni da diversa origine (depositi piroclastici, epiclastici e alluvionali, formazioni marnose sciolte). Include lenti di terreni a grana grossa (G) o a grana molto fine (AL).

Lo spessore minimo non scende mai al di sotto di 6,0 m (sondaggio S14-DH).

L'andamento del contenuto naturale d'acqua WN e dei limiti di Atterberg WP e WL è illustrato nel grafico successivo in funzione della profondità.

Terreni SL – Andamento del contenuto naturale d'acqua e dei limiti di Atterberg con la profondità

Il contenuto naturale d'acqua WN varia tra 2% e 33% ed è talora prossimo o maggiore del limite di plasticità WP.

I limiti plasticità WP e liquidità WL rientrano nei seguenti campi di variazione:

$$W_P = 17 \div 60\%$$
; $W_L = 22 \div 85\%$

Risulta sempre W_P < W_L. L'indice di plasticità I_P è compreso tra il 5% ed il 49%.

Il peso dell'unità di volume γ varia nell'intervallo 18-20 kN/m³. Il limite di ritiro W_R vale mediamente il 20%.

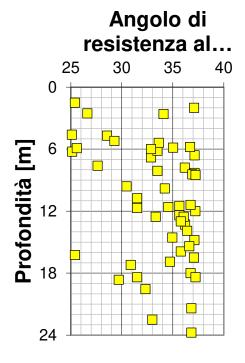
La composizione granulometrica dei terreni SL è variabile dalla sabbia con limo argillosa al limo con

CA349

Relazione gestione materie

sabbia o sabbioso. La percentuale della frazione argillosa è compresa tra il 10% e il 20%.

Sono disponibili i risultati di numerose prove SPT. Dalla loro elaborazione si ricavano i seguenti valori medi di angolo d'attrito ϕ ' in termini di pressioni effettive:


$$\phi' = 34^{\circ}$$
.

Si nota che l'angolo di resistenza al taglio risulta essere mediamente inferiore nei primi metri (vedi diagramma "*Terreni SL – Valori dell'angolo d'attrito* φ ' *da prove SPT*"). Si assume, pertanto, un valore angolo medio φ ' = 30° fino alla profondità di 8 m, φ ' = 34° più in basso.

Da 37 prove triassiali consolidate drenate CD, 8 prove triassiali consolidate non drenate CIU e 5 prove di taglio diretto CID effettuate sui campioni prevalentemente limosi si è ottenuto:

$$c'\cong 10\text{ - }20\text{ kPa}; \qquad \qquad \phi'=30\text{ - }36$$

In definitiva, al fine di tener conto della componente fine del terreno si considera un valore di coesione pari a c' = 10 kPa.

Terreni SL – Valori dell'angolo d'attrito φ' da prove SPT

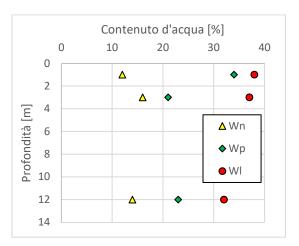
Relazione gestione materie

Dalle prove SPT si ottiene un valore del modulo elastico operativo:

$$E'_{op SPT} = 10 \div 55 MPa$$
.

Ghiaia con sabbia e sabbia ghiaiosa - G

I terreni G stati rinvenuti si presentano nella sezione centrale del tracciato come lenti all'interno della sabbia limosa SL. Sono presenti lungo i sondaggi S03-DH, S08, S09, S12-PZ, S13, S16, S17 e S18-DH con spessori compresi tra 0,8 m e 4 m; ad eccezione del sondaggio S18-DH dove si raggiunge lo spessore massimo pari a 7 m.


Possono essere descritti come ghiaia con sabbia e sabbia ghiaiosa a tratti limosa, da sciolta ad addensata. Il colore varia dal marrone al marrone, tendente talvolta al biancastro.

Sono disponibili i risultati di prove di laboratorio eseguite su campioni rimaneggiati.

I valori del contenuto naturale d'acqua W_N , dei limiti di consistenza W_P , W_L e del limite di ritiro W_R variano nei seguenti intervalli:

$$W_N = 9 \div 19\%$$
; $W_P = 21 \div 34\%$; $W_L = 32 \div 38\%$.

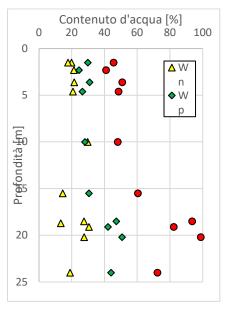
Nel grafico che segue i valori del contenuto naturale d'acqua e dei limiti di consistenza sono diagrammati in funzione della profondità. Risulta sempre $W_N < W_{P_c}$

Terreni G – Andamento con la profondità del contenuto naturale d'acqua W_N e dei limiti di consistenza W_P W_L

Il peso dell'unità di volume γ è mediamente pari a 19,5 kN/m³.

Dal punto di vista granulometrico si tratta di sabbia con ghiaia limosa o ghiaia sabbiosa limosa. La percentuale della frazione fine (%d<0,075 mm) è variabile dal 6% al 40%.

Relazione gestione materie


I valori dell'angolo d'attrito ϕ ' e del modulo elastico operativo E_{op} ricavati dalle prove SPT si attestano, rispettivamente, sui valori medi di 31° e 22 GPa, con $N_{SPT} = 20 \div >50$.

Argille con limo sabbiose - AL

Lenti di terreni a grana fina AL sono state rinvenute diffusamente lungo il tracciato, similmente ai terreni a grana grossa G, Sono presenti tra la progressiva km 2+600 e km 4+400, principalmente negli strati superficiali.

Si tratta di argilla con limo e limo con argilla in matrice sabbiosa di colore dal nerastro al marrone.

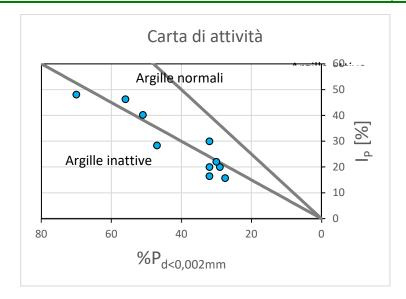
Nel grafico successivo è illustrato l'andamento del contenuto naturale d'acqua e dei limiti di consistenza in funzione della profondità.

Terreni AL – Andamento del contenuto naturale d'acqua e dei limiti di Atterberg con la profondità

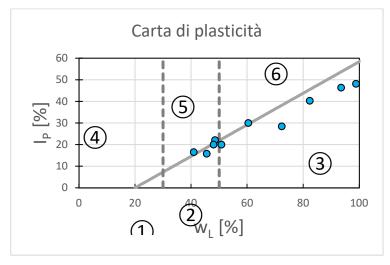
Il contenuto naturale d'acqua W_N varia tra 15% e 26%. I limiti plasticità W_P e liquidità W_L rientrano nei seguenti campi di valori:

$$W_P = 24 \div 50\%$$
; $W_L = 40 \div 99\%$

Risulta sempre WP < WL.


Nei grafici che seguono si riportano la "Carta di plasticità" e la "Carta di attività".

Si tratta di terreni di plasticità da media ad alta, da inattivi a normali. Alcuni dei punti sperimentali ricadono nell'area dei "limi inorganici ad alta compressibilità".


L'indice di plasticità I_P è compreso tra il 15% ed il 48%.

Relazione gestione materie

Terreni AL - Carta di attività

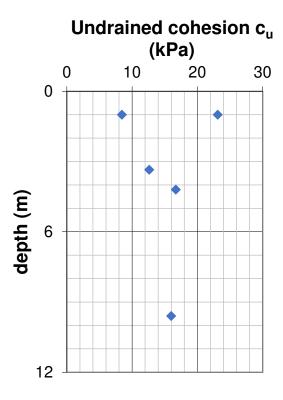
- 1 limi inorganici di bassa compressibilità;
- 2 limi inorganici di media compressibilità e limi organici;
- limi inorganici di alta compressibilità e argille organiche;
- 4 argille inorganiche di bassa plasticità;
- argille inorganiche di media plasticità;
- argille inorganiche di alta plasticità.

Terreni AL – Carta di plasticità

Il peso dell'unità di volume γ varia nell'intervallo 18-20 kN/m³.

II limite di ritiro W_R vale 20%.(campione S01-PZ_CR1).

La composizione granulometrica dei terreni AL è variabile dal limo con argilla sabbioso all'argilla limosa sabbiosa.



CA349

Relazione gestione materie

La percentuale della frazione argillosa è compresa tra il 22% e il 70%.

Dall'elaborazione di numerose prove SPT si ricava un valore medio di coesione non drenata $C_u \cong 16$ kPa.

Terreni AL – Valori della coesione non drenata da prove SPT

Dalle stesse prove SPT si ottiene:

 $M = 5 \div 25 MPa$

con M modulo edometrico.

I risultati delle prove triassiali non consolidate non drenate UU) forniscono valori di coesione non drenata sempre maggiore di 80 kPa, prevalentemente attribuibile ai terreni argillo-limosi profondi.

Substrato roccioso

Depositi saldati e calcari fratturati - CMF

I depositi cementati e i calcari fratturati CMF si rinvengono al di sotto della sabbia limosa SL, a profondità variabile da 2 m fino ai 8 m e assumono spessori di oltre 20 m.

Sono presenti da inizio tracciato fino al km 2+000 lungo i sondaggi S02-DH, S03-DH, S04-PZ, S06 e S18-DH.

I termini CMF sono fratturati e alterati, di colore dal marrone al biancastro, spesso prelevati come sabbia o

CA349

Relazione gestione materie

ghiaia.

Il peso γ è pari a 20 kN/m³.

La caratterizzazione meccanica dell'ammasso roccioso si è basata su prove di compressione monoassiale non confinata e dell'osservazione delle cassette catalogatrici provenienti dai carotaggi.

Le caratteristiche di resistenza e deformabilità (coesione c, angolo di resistenza al taglio ϕ , il modulo di Young sono stete determinate sulla base della teoria di Hoek-Brown:

$$c = 0.63 \text{ MPa};$$
 $\phi = 22^{\circ};$ $E_{rm} = 0.311 \text{GPa}.$

Dalle prove Down-Hole si ottengono i seguenti valori della velocità delle onde di taglio V_s e del modulo di taglio G_0 .

$$V_s = 600 \div 1000 \text{ m/s}, \qquad G_0 = 700 \div 2500 \text{ MPa}$$

I risultati di prove compressione monoassiale hanno fornito i seguenti valori di modulo di Young secante E_s , modulo di Young tangente E_t e coefficiente di Poisson v, calcolati al 50% della tensione a rottura:

$$E_s = 1.3 \text{ GPa}$$
; $E_t = 1.1 \text{ GPa}$; $v = 0.35$.

Calcare marnoso compatto - CM

Il calcare marnoso si presenta di colore dal marrone al biancastro, poco fratturato e mediamente cementato, spesso alternato a zone meno cementate e alterate (CMF).

Si rinviene al di sotto della sabbia limosa SL e della parte alterata della formazione marnosa CMF, a partire da una profondità minima compresa tra 3 m e 10 m, con spessori massimi accertati da 20 m a 30 m (fondo foro sondaggi).

È presente lungo il tracciato dal km 0+000 al km 1+900 (v. sondaggi Si47, Si48 e Si63 del 1997, S02-DH, S03-DH e S06 del 2019) a partire da una profondità minima di 3 m alternato a strati di sabbia limosa SL.

I risultati delle prove in sito e di laboratorio mostrano una sostanziale uniformità di comportamento dei terreni CM. I parametri meccanici tendono a migliorare passando dalla parte alterata (CMF) e ali sottostanti calcari CM.

Il peso γ è pari a 21 kN/m³.

La caratterizzazione meccanica dell'ammasso roccioso è avvenuta sulla base dei test di compressione monoassiale non confinata e dell'osservazione delle cassette provenienti dai

CA349

Relazione gestione materie

carotaggi.

Si è sfruttata per individuare sia le caratteristiche di resistenza

I valori di coesione c, angolo di resistenza al taglio ϕ , e modulo di Young dell'ammasso roccioso valutati con la teoria di Hoek-Brown valgono:

$$c = 0.63 \text{ MPa};$$
 $\phi = 28^{\circ};$ $E_{rm} = 1 \text{ GPa}.$

Dalle prove Down-Hole si ottiene

$$V_s = 1100 \div 1300 \text{ m/s}, \qquad G_0 = 3000 \div 3700 \text{ MPa}$$

I risultati di prove compressione monoassiale hanno fornito i seguenti valori di modulo di Young secante E_s , modulo di Young tangente E_t e coefficiente di Poisson v, calcolati al 50% dello sforzo a rottura:

$$E_s = 1.5 \div 20 \text{ GPa};$$
 $E_t = 1 \div 18 \text{ GPa};$ $v = 0.25 \div 0.36.$

Coefficienti di rigonfiamento

Nella seguente Tabella si riportano i coefficienti di rigonfiamento dalla letteratura tecnico-scientifica.

Il coefficiente C rappresenta il fattore di carico, rapporto fra massa volumica in banco e massa volumica sciolta:

$$C = Ms/Mb$$

Fs è il coefficiente di rigonfiamento:

$$Fs = (1/C - 1)100 = (Vs/Vb- 1)100$$

Tipologia	С	Fs (%)	Coefficiente di rigonfiamento
Rocce (marne)	0,65	54	1,54
Ghiaia	0,87	15	1,15
Sabbia	0,84	19	1,19
Limo	0,75	33	1,33
Argilla	0,8	25	1,25
Scotico	0,8	25	1,25

CA349

Relazione gestione materie

6. CARATTERIZZAZIONE AMBIENTALE MATERIALE DA SCAVO

Nel corso della presente fase progettuale sono state svolte attività di campionamento di terreno condotte ai fini della caratterizzazione ambientale dei materiali di scavo ai sensi del D.P.R. 120/2017 nonché per la loro ammissibilità in impianto di recupero e/o discarica.

6.1 Indagini ambientali

Il sito oggetto di studio ha subito un approfondito iter di analisi ambientale per la componente suolo e sottosuolo in fase di progetto definitivo; Il campionamento è stato eseguito nel mese di Aprile 2019 attraverso l'esecuzione di n. 6 pozzetti esplorativi approfonditi fino ad un massimo di 2,00 m dal p.c. nel corso dei quali, oltre ai rilievi stratigrafici, è stato eseguito il prelievo di massimo n. 2 campioni di terreno rappresentativi del primo e del secondo metro, i quali successivamente sono stati sottoposti alle determinazioni chimiche. Oltre ai campioni prelevati dai pozzetti, si è proceduto anche al prelievo di campioni da n. 7 sondaggi geognostici e di acque sotterranee da n. 2 piezometri. Il fine delle analisi risiede nella caratterizzazione ambientale dei terreni, nonché per determinarne il grado di aggressività dei terreni e dell'acqua nei confronti del calcestruzzo.

La posizione dei punti di indagine è riportata anteriormente e nelle tavole di progetto.

I campioni prelevati rappresentano i campioni di terreno prelevati per la caratterizzazione delle terre e rocce da scavo ai sensi del D.P.R. 120/2017. I campioni CRIF sono stati sottoposti alle determinazioni sul tal quale e al test di cessione per la classificazione dei rifiuti solidi secondo la D.M. 27/09/2010 e per la possibilità di recupero secondo il D.M. n.186 del 05/04/06.

I campioni PAI rappresentano le acque sotterranee nelle quali sono stati ricercati i parametri da confrontare con le CSC di cui alla Tabella 2 dell'Allegato 5 al titolo V della parte Quarta del D.Lgs. 152/2006. I campioni PACLS e CLS, rispettivamente di acqua e terreno, sono stati sottoposti ad analisi al fine di valutare il grado di aggressività del terreno sulle strutture di calcestruzzo secondo UNI EN 206:2016.

SS 131 Indagini Ambientali		TE	RRE		ACQUA		
		PO	ZZETTI				
sigla campione	Ca1	Ca2	Ccls1	Crif	PA1	PCLAS1	
PZ6	0,00-1,00	1,00-2,00					
PZ7	0,00-1,00	1,00-2,00					
PZA1	0,00-1,00						
PZA2	0,00-1,00						
PZA3	0,00-1,00						
PZA4	0,00-1,00	1,00-2,00					
		SON	DAGGI				
S1_PZ	0,00-1,00	1,00-2,00	0,00-2,00	0,00-2,00	Х	X	
S3_DH	0,00-1,00	1,00-2,00	0,00-2,00	0,00-2,00			
S8	0,00-1,00	1,00-1,65	1,00-1,65				
S12_PZ	0,00-1,00		0,00-1,00	0,00-2,00	Х	Х	
S14_DH			0,00-2,00				
S16	0,00-1,00	1,00-2,00	0,00-2,00	0,00-2,00			
S18_DH	0,00-1,00	1,00-2,00	0,00-2,00				

CA349

Relazione gestione materie

Nei campioni di terreno prelevati ai fini ambientali sono stati ricercati i parametri indicati dal D.P.R. 120/2017:

- Metalli [As, Cd, Co, Cr totale, CrVI, Hg, Ni, Pb, Cu, Zn]
- Idrocarburi [C ≤ 12 e C > 12]
- Aromatici organici [BTEX e Stirene]
- Aromatici policiclici [IPA]
- Amianto

e concentrazioni ottenute sono state riferite alla totalità dei materiali secchi. Il laboratorio chimico-ambientale incaricato ha applicato le metodiche di preparazione e tecniche analitiche conformi ai protocolli nazionali e/o internazionali ufficialmente riconosciuti quali, ad esempio, le metodiche EPA, ISO,INI EN, IRSA-CNR, il Manuale Tecnico" Metodologie analitiche di riferimento" a cura dell'ICRAM, Ministero Ambiente e Tutela del Territorio (2001). Nelle tabelle sotto sono riportati, oltre l'elenco de parametri ricercati, le unità di misura, i limiti di rilevabilità (L.R.) e le metodiche applicate ed il possesso dell'accreditamento Accredia.

CA349

Relazione gestione materie

Riferendosi ai suddetti criteri, è stato possibile ottenere dati confrontabili con le "concentrazioni soglia di contaminazione (CSC)" di cui alla Tabella 1, Colonna A e B dell'Allegato 5 al Titolo V della Parte Quarta del D.Lgs. 152/06, come previsto dal D.P.R. 120/2017.

Nelle tabelle di seguito sono riepilogati i risultati della caratterizzazione chimica sui campioni di terreno prelevati, rapportati alle "Concentrazioni Soglia di Contaminazione (CSC)" dei siti ad uso verde pubblico privato e residenziale (colonna A) e di quelli ad uso commerciale ed industriale (colonna B) come da Allegato 5 al Titolo V della Parte Quarta del D.Lgs. 152/2006.

		D. Lgs. 152	/06 All. 5 Tab. 1	
Parametro				
		Colonna A	Colonna B	
Arsenico	mg/Kg s.s.	20	50	EPA 3050B 1996 + EPA 206.2 1978
Cadmio	mg/Kg s.s.	2	15	EPA 30508 1996 + EPA 213.2 1978
Cobalto	mg/Kg s.s.	20	250	EPA 3050B 1996 + EPA 219.2 1978
Cromo Totale	mg/Kg s.s.	150	800	EPA 3050B 1996 + EPA 218.2 1978
Cromo Esavalente	mg/Kg s.s.	2	15	EPA 3050B 1996 + APAT CNR IRSA 3150C Man29 2003
Mercurio	mg/Kg s.s.	1	5	EPA 30508 1996 + EPA Method 245.2 197
Nichel	mg/Kg s.s.	120	500	EPA 30508 1996 + EPA Method 249.2 197
Piombo	mg/Kg s.s.	100	1000	EPA 30508 1996 + EPA Method 239.2 197
Rame	mg/Kg s.s.	120	500	EPA 30508 1996 + EPA Method 220.2 197
			DG AJL 5 Tab.	
Parametro				
No.		Colonna A	Colonna B	
Etilbenzene	mg/Kg s.s.	0,5	50	EPA 5021A 2003 + APAT CNR :RSA 5140 Man 29 2003
Stirene	mg/Kg s.s.	0.5	50	EPA 5021A 2003 + APAT CNR IRSA 5140 Men 29 2003
Toluene	mg/Kg s.s.	0.5	50	EPA 5021A 2003 + APAT CNR IRSA 5140 Man 29 2003
Xilene	mg/Kg s.s.	0.5	50	EPA 5021A 2003 + APAT CNR IRSA 5140 Men 29 2003
Sommatoria Organici Aromatici	mg/Kg s.s.	7	100	EPA 5021A 2003 + APAT CNR IRSA 5140 Man 29 2003
Benzo[A]Antracene	mg/Kg s.s.	0.5	10	EFA 3550C 2007 + EPA 8270D 2007
Benzo(A)Pirene	mg/Kg s.s.	0.1	10	EPA 3550C 2007 + EPA 8270D 2007
Benzo(B)Fluorentene	mg/Kg s.s.	0.5	10	EFA 3550C 2007 + EPA 8270D 2007
Benzo(K)Fluorantene	mg/Kg s.s.	0.5	10	EPA 3550C 2007 + EPA 8270D 2007
Benzo(G,H,I)Perilene	mg/Kg s.s.	0.1	10	EPA 3550C 2007 + EPA 8270D 2007
Crisene	mg/Kg s.s.	5	50	EPA 3550C 2007 + EPA 8270D 2007
Dibenzo(A,E)Pirene	mg/Kg s.s.	0.1	10	EPA 3550C 2007 + EPA 8270D 2007
Dibenzo(A,L)Pirene	mg/Kg s.s.	0.1	10	EPA 3550C 2007 + EPA 8270D 2007
Dibenzo(A,I)Pirene	mg/Kg s.s.	0.1	10	EPA 3550C 2007 + EPA 8270D 2007
Dibenzo(A,H)Pirene	mg/Kg s.s.	0.1	- 10	EPA 3550C 2007 + EPA 8270D 2007
Dibenzo(A,H)Antracene	mg/Kg s.s.	0.1	10	EPA 3550C 2007 + EPA 8270D 2007
Indenopirene	mg/kg s.s.	0.1	5	EPA 3550C 2007 + EPA 8270D 2007
Pirene	mg/Kg s.s.	5	50	EPA 3550C 2007 + EPA 8270D 2007
Sommatoria Ipa (De Calcolo)	mg/Kg s.s.	10	100	EPA 3550C 2007 + EPA 8270D 2007
Idrocarburi Cc12 (6xCc12)	mg/Kg s.s.	10	250	EPA 5021A 2014 + EPA 8015D 2003
Idrocarburi C-12 (C12-C40)	mg/Kg s.s.	50	750	EPA 3540C 2007 + EPA 8015D 2003
Amianto	mg/Kg s.s.	1000	1000	I.R-Trasformata di Fourier

CA349

Relazione gestione materie

		Li	miti	B 00	B 00	D 07	D 07			D. 4.0	D.44	D 44
PARAMETRO	U. M.	D. Lgs. 152/0	6 All. 5 Tab. 1	Pz06 CA1(0-1 m)	Pz06 CA2(1-2 m)	Pz07 CA1(0-1 m)	Pz07 CA2(1-2 m)	PzA1 CA1(0-1 m)	PzA2 CA1(0-1 m)	PzA3 CA1(0-1 m)	PzA4 CA1(0-1 m)	PzA4 CA2(1-2 m)
Arsenico	mg/Kg s.s.	20	50	< 2	<2	3.53	2.96	2.03	2.15	4.08	2.58	4.94
Cadmio	mg/Kg s.s.	2	15	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7
Cobalto	mg/Kg s.s.	20	250	2.44	2.19	2.71	2.35	< 2	< 2	2.23	2.22	3.85
Cromo totale	mg/Kg s.s.	150	800	7.76	7.22	6.32	5.08	8.68	7.31	7.48	9.95	16.2
Mercurio	mg/Kg s.s.	1	5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Nichel	mg/Kg s.s.	120	500	4.44	4.08	4.17	3.01	4.19	5.24	5.43	6.49	11.5
Piombo	mg/Kg s.s.	100	1000	10.6	8.03	6.64	4.67	27.7	19.8	28.3	6.58	6.55
Rame	mg/Kg s.s.	120	600	5.11	4.68	6.65	5.83	5.61	8.37	7.83	6.11	6.91
Zinco	mg/Kg s.s.	150	1500	24.3	20.7	23.1	18.6	108	63.5	80.3	36.7	63.1
drocarburi pesanti (C>12)	mg/Kg s.s.	50	750	< 5	14.3	< 5	< 5	43.7	151	22.7	< 5	< 5
drocarburi leggeri (C<12)	mg/Kg s.s.	10	250	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Benzo(a)antracene	mg/Kg s.s.	0.5	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pirene	mg/Kg s.s.	0.1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluorantene	mg/Kg s.s.	0.5	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perilene	mg/Kg s.s.	0.1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluorantene	mg/Kg s.s.	0.5	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Crisene	mg/Kg s.s.	5	50	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenzo(a,e)pirene	mg/Kg s.s.	0.1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenzo(a,h)antracene	mg/Kg s.s.	0.1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenzo(a,h)pirene	mg/Kg s.s.	0.1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenzo(a,i)pirene	mg/Kg s.s.	0.1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenzo(a,l)pirene	mg/Kg s.s.	0.1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indenopirene	mg/Kg s.s.	0.1	5	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pirene	mg/Kg s.s.	5	50	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Sommatoria policiclici aromatici	mg/Kg s.s.	10	100	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzene	mg/Kg s.s.	0.1	2	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Bilbenzene	mg/Kg s.s.	0.5	50	0.00988	< 0.005	0.00753	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Stirene	mg/Kg s.s.	0.5	50	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Toluene	mg/Kg s.s.	0.5	50	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Xilene	mg/Kg s.s.	0.5	50	0.0054	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Sommatoria organici aromatici	mg/Kg s.s.	1	100	0.0153	< 0.005	0.00753	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Cromo esavalente	mg/Kg s.s.	2	15	<1	<1	<1	<1	<1	<1	<1	<1	<1
Amianto	mg/Kg s.s.	1000	1000	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100

Limiti ai sensi del D.Lgs. 152/2006 parte IV Allegato V tabella 1A (sito ad uso verde pubblico e privato, residenziale).

Limiti ai sensi del D.Lgs. 152/2006 parte IV Allegato V tabella 1B (siti ad uso commerciale ed industriale).

CA349

Relazione gestione materie

			miti	S1PZ	S1PZ	S3DH	S3DH	S8	S8	S12PZ CA1	S16 CA1	S16 CA2	S18DH CA1	S18DH CA2
PARAMETRO	U. M.	D. Lgs. 152/0 Colonna A	06 All. 5 Tab. 1 Colonna B	CA1(0-1 m)	CA2(1-2 m)	CA1(0-1 m)	CA2(1-2 m)	CA1(0-1 m)	CA2(1-1,65 m)	(0-1 m)	(0-1 m)	(1-2 m)	(0-1 m)	(1-2 m)
Arsenico	mg/Kg s.s.	20	50	2,83	2,49	< 2	3,35	< 2	<2	< 2	9,65	9,39	<2	< 2
Cadmio	mg/Kg s.s.	2	15	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7	3,77	3,54	< 0.7	< 0.7
Cobalto	mg/Kg s.s.	20	250	3,81	< 2	< 2	< 2	< 2	< 2	< 2	12,6	11,9	< 2	< 2
Cromo totale	mg/Kg s.s.	150	800	20,1	10,6	7,64	11,2	3,03	<2	8,7	13	12,3	3,06	2,47
Mercurio	mg/Kg s.s.	1	5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Nichel	mg/Kg s.s.	120	500	13,6	7,74	6,26	8,17	< 2	< 2	5,45	14,1	13,3	< 2	< 2
Piombo	mg/Kg s.s.	100	1000	6,52	3,8	2,84	3,3	< 2	< 2	5,93	40,1	37,8	2,71	2,14
Rame	mg/Kg s.s.	120	600	6,8	4,45	3,04	4,59	< 2	< 2	9,96	74,5	70,3	2,46	< 2
Zinco	mg/Kg s.s.	150	1500	57,6	33,3	21,8	34,2	< 10	< 10	40,7	63,6	60	13,2	10,2
Idrocarburi pesanti (C>12)	mg/Kg s.s.	50	750	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Idrocarburi leggeri (C<12)	mg/Kg s.s.	10	250	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Benzo(a)antracene	mg/Kg s.s.	0,5	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pirene	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluorantene	mg/Kg s.s.	0,5	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perilene	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluorantene	mg/Kg s.s.	0,5	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Crisene	mg/Kg s.s.	5	50	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenzo(a,e)pirene	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenzo(a,h)antracene	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenzo(a,h)pirene	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenzo(a,i)pirene	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenzo(a,I)pirene	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indenopirene	mg/Kg s.s.	0,1	5	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pirene	mg/Kg s.s.	5	50	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Sommatoria policiclici aromatici	mg/Kg s.s.	10	100	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzene	mg/Kg s.s.	0,1	2	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Etilbenzene	mg/Kg s.s.	0,5	50	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Stirene	mg/Kg s.s.	0,5	50	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Toluene	mg/Kg s.s.	0,5	50	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Xilene	mg/Kg s.s.	0,5	50	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Sommatoria organici aromatici	mg/Kg s.s.	1	100	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Cromo esavalente	mg/Kg s.s.	2	15	< 1	<1	< 1	<1	< 1	<1	< 1	<1	<1	<1	< 1
Amianto	mg/Kg s.s.	1000	1000	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100

Limiti ai sensi del D.Lgs. 152/2006 parte IV Allegato V tabella 1A (sito ad uso verde pubblico e privato, residenziale).

Limiti ai sensi del D.Lgs. 152/2006 parte IV Allegato V tabella 1B (siti ad uso commerciale ed industriale).

CA349

Relazione gestione materie

Dall'osservazione delle risultanze si evince che sussistono i seguenti superamenti dei limiti normativi relativi al D.Lgs. 152/06 All.5 alla parte IV – Tab. 1 – Col. A.

Idrocarburi pesanti (C > 12): si riscontra il superamento del limite in Col. A con una concentrazione di 151 mg/kg s.s. per il campione PzA2 CA1(0 - 1 m).

Cadmio: si riscontra il superamento del limite in Col. A con una concentrazione di 3,77 mg/kg s.s. per il campione S16CA1(0-1 m) e un superamento del limite in Col.A con una concentrazione di 3,54 mg/kg s.s. per il campione S16CA2 (1-2 m).

Le analisi chimiche sui campioni di acqua e terreno prelevato hanno fornito i risultati esposti di seguito.

Classe di esposizione per le acque

		S1_PZ PA CLS1	S12_PZ PA CLS1	Classi di esposizione				
PARAMETRO	U.M.			XA1	XA2	ХАЗ		
pН	unità pH	6.84	6.8	5.5-6.5	4.5-5.5	4.0-4.5		
Azoto ammoniacale (ione ammonio)	mg/L	0.51	0.44	15-30	<u>30-60</u>	<u>60-100</u>		
Solfati (ione solfato)	mg/L	<10	<10	200-600	600-3000	3000-6000		
Anidride carbonica aggressiva	mg/L	<0.1	<0.1	15-40	<u>40-100</u>	<u>>100</u>		
Magnesio	mg/L	6.5	8.5	300-1000	1000-3000	>3000		

Classe di esposizione per i terreni

		S1_PZ CLS1 (0-2 m)	S3_DH CLS1 (0-2 m)	S8 CLS1 (0-1.65 m)	S12_PZ CLS1 (0-1 m)	Classi di esposizione		
PARAMETRO	U.M.					XA1	XA2	XA3
Solfato (ione solfato)	%	0,211	0,198	0,131	0,228	2000-3000	3000-12000	12000-24000
Acidità	ml CaCO ₃ /kg	0.00042	0.00027	0.00029	0.0004	200	non inc	contrato

		S14_DH CLS1 (0-2 m)	S16 CLS1 (0-2 m)	S18_DH CLS1 (0-2 m)	Classi di esposizione			
PARAMETRO	U.M.				XA1	XA2	XA3	
Solfato (ione solfato)	%	0,184	0,0990	0,156	2000-3000	3000-12000	12000-24000	
Acidità	ml CaCO ₃ /kg	0.0003	0.00037	0.00035	200	non incontrato		

Si nota, in tal caso, che sussiste esposizione all'attacco chimico da parte del terreno, per i campioni S1_PZ CLS1 e S12_PZ CLS1 nella classe di esposizione XA1."concentrazioni soglia di contaminazione (CSC)" di cui alla Tabella 1, Colonna A e B dell'Allegato 5 al Titolo V della Parte Quarta del D.Lgs. 152/06, come previsto dal D.M. 120/2017.

CA349

Relazione gestione materie

6.2 Classificazione dei materiali come rifiuto

Nella campagna indagini condotta nel 2019 I campioni di terreno t.q. "compositi", sono stati sottoposti ad Campioni di terreno t.q. "compositi", sono stati sottoposti ad analisi chimico-fisiche finalizzate alla verifica della conformità ai sensi del D.M. del 27.09.2010 « Definizione dei criteri di ammissibilità dei rifiuti in discarica», relativamente ai limiti di Ammissibilità in discarica per rifiuti inerti, non pericolosi e pericolosi, sia su campioni tal quale che con test di cessione all'acqua

Nelle tabelle sotto sono riportati, oltre l'elenco de parametri ricercati, le unità di misura, i limiti di rilevabilità (L.R.) e le metodiche applicate.

	Test su	Tal quale	
Parametro	U.M	Metodo	L.R.
Stato fisico		VISIVO	
Colore		APAT CNR IRSA 2020B Man 29 2003	
Odore		APAT CNR IRSA 2050 Man 29 2003	
inflammabilità		Regolamento (CE) N.440/2008	
RESIDUO A 105 °C	%	CNR IRSA 2 Q 64 Met 2	0,01
RESIDUO A 550 °C	%	CNR IRSA 2 Q 64 Met.2	0,1
Antimonio	mg/Kg	EPA 3050B 1996 + EPA 204.2 1978	0,003
Arsenico	mg/Kg	EPA 3050B 1996 + EPA 206.2 1978	0,001
Cadmio	mg/Kg	EPA 3050B 1996 + EPA 213.2 1978	0,001
Cromo totale	mg/Kg	EPA 3050B 1996 + EPA 218.2 1978	0.001
Cromo esavalente	mg/Kg	EPA 3050B 1996 +APAT CNR IRSA 3150C Man29 2003	0,005
Mercurio	mg/Kg	EPA 3050B 1996 + EPA Method 245.2 1974	0.002
Nichel	mg/Kg	EPA 3050B 1996 + EPA Method 249.2 1978	0,001
Plombo	mg/Kg	EPA 3050B 1996 + EPA Method 239.2 1978	1
Rame	mg/Kg	EPA 3050B 1996 + EPA Method 220.2 1978	0,001
Zinco	mg/Kg	EPA 3050B 1996 + EPA 289.2 1978	0,000
Amianto		DM 06/09/94 GU SG N*220 20/09/1994 ALL1-MOCF	1000
Idrocarburi (C<12)	mg/Kg	EPA 5021A + EPA 8015D 2003	0,5
Idrocarburi C10-C40	mg/Kg	UNI EN 14039:2005	1
PCB	mg/Kg	EPA 3550B+EPA 8082A	0,01
Endosulfan	mg/Kg	EPA 8270D:1998	0.01
Esaciorobutadiene	mg/Kg	EPA 8270D:1998	0.01
Naftaleni policiorurati	mg/Kg	EPA 8270D:1998	LQ
Alcani C10-C13 Cloro	mg/Kg	EPA 8270D:1998	0.01
Tetrabromodifeniletere	mg/Kg	EPA 8270D:1998	0.01

CA349

Relazione gestione materie

Parametro	U.M	Metodo	L.R.
Pentabromodifeniletere	mg/Kg	EPA 8270D:1998	0.01
Esabromodifeniletere	mg/Kg	EPA 8270D:1998	0.01
Eptabromodifeniletere	mg/Kg	EPA 8270D:1998	0.01
Decabromodifeniletere	mg/Kg	EPA 8270D:1998	0.01
Ac. Perfluoroottano sulfonato e derivanti	mg/Kg	EPA 8270D:1998	0.01
DDT	mg/Kg	EPA 8270D:1998	0.01
Clordano	mg/Kg	EPA 8270D:1998	0.01
Esaciorocicioesani compreso il Lindano	mg/Kg	EPA 8270D:1998	0.01
Dieldrin	mg/Kg	EPA 8270D:1998	0.01
Endrin	mg/Kg	EPA 8270D:1998	0.01
Eptacioro	mg/Kg	EPA 8270D:1998	0.01
Esaclorobenzene	mg/Kg	EPA 8270D:1998	0.01
Clordecone	mg/Kg	EPA 8270D:1998	0.01
Aldrin	mg/Kg	EPA 8270D:1998	0.01
Pentaciorobenzene	mg/Kg	EPA 8270D:1998	0.01
PCB	mg/Kg	EPA 8270D:1998	0.01
Mirex	mg/Kg	EPA 8270D:1998	0.01
Toxafene	mg/Kg	EPA 8270D:1998	0.01
Esabromobifenile	mg/Kg	EPA 8270D:1998	0.01
Esabromociciododecano	mg/Kg	EPA 8270D:1998	0.01
Pentaciorofenolo	mg/Kg	EPA 3550C:2007+EP 8270E:2018	1
Cloroformio	mg/Kg	CNR IRSA 23A Q 64 Met.23a	1
1,1 - Dicioroetano	mg/Kg	CNR IRSA 23A Q 64 Met.23a	5
1,2-Dictoroetano	mg/Kg	CNR IRSA 23A Q 64 Met 23a	5
Tetracloroetilene	mg/Kg	CNR IRSA 23A Q 64 Met.23a	5
1,2-Dicloropropano	mg/Kg	CNR IRSA 23A Q 64 Met 23a	5
1,1,2,2-Tetracloroetano	mg/Kg	CNR IRSA 23A Q 64 Met 23a	5
Tetracioruro di carbonio	mg/Kg	CNR IRSA 23A Q 64 Met 23a	5
1,1,2-Tricloroetano	mg/Kg	CNR IRSA 23A Q 64 Met 23a	1
1,1,1-Tricloroetano	mg/Kg	CNR IRSA 23A Q 64 Met 23a	1
Tricioroettiene	mg/Kg	CNR IRSA 23A Q 64 Met 23a	1
1,2,3-Tricloropropano	mg/Kg	CNR IRSA 23A Q 64 Met 23a	5
Naffalene	mg/Kg s.s.	EPA 8270D 2016	0.01
Acenafillene	mg/Kg s.s.	EPA 8270D 2018	0.01
Acenattene	mg/Kg s.s.	EPA 8270D 2018	0.01
Fluorene	mg/Kg s.s.	EPA 8270D 2018	0.01
Fenantrene	mg/Kg s.s.	EPA 8270D 2018	0.01
Antracene	mg/Kg s.s.	EPA 8270D 2018	0.01
Fluorantene	mg/Kg s.s.	EPA 8270D 2018	0.01

CA349

Relazione gestione materie

	Test su Tai qua	10	
Parametro	U.M	Metodo	L,F
Pirene	mg/Kg s.s.	EPA 8270D 2018	0.0
Benzo(a)antracene	mg/Kg s.s.	EPA 8270D 2018	0.0
Crisene	mg/Kg s.s.	EPA 8270D 2018	0.0
Benzo(b)fluorantene	mg/Kg s.s.	EPA 8270D 2018	0.0
Benzo(k)fluorantene	mg/Kg s.s.	EPA 8270D 2018	0.0
Benzo(j)fluorantene	mg/Kg s.s.	EPA 8270D 2018	0.0
Benzo(e)pirene	mg/Kg s.s.	EPA 8270D 2018	0.0
Benzo(a)pirene	mg/Kg s.s.	EPA 82700 2018	0.0
Perilene	mg/Kg s.s.	EPA 8270D 2018	0.0
Indeno(1,2,3-c,d)pirene	mg/Kg s.s.	EPA 8270D 2018	0.0
Benzo(ghi)perliene	mg/Kg s.s.	EPA 8270D 2018	0.0
Dibenzo(a,h)antracene	mg/Kg s.s.	EPA 8270D 2018	0.0
Dibenzo(a,l)pirene	mg/Kg s.s.	EPA 8270D 2018	0.0
Dibenzo(a,e)plrene	mg/Kg s.s.	EPA 8270D 2018	0.0
Dibenzo(a,I)pirene	mg/Kg s.s.	EPA 8270D 2018	0.0
Dibenzo(a,h)pirene	mg/Kg s.s.	EPA 8270D 2018	0.0
Cumene	mg/Kg	EPA 5021A+EPA 8021-B	0,0
Dipentene	mg/Kg	EPA 5021A+EPA 8021-B	0,0
Benzene	mg/Kg	EPA 5021A+EPA 8021-B	0,0
Toluene	mg/Kg	EPA 5021A+EPA 8021-B	0,0
O-Xilene	mg/Kg	EPA 5021A+EPA 8021-B	0,0
P-XIIene	mg/Kg	EPA 5021A+EPA 8021-B	0,0
M-XIIene	mg/Kg	EPA 5021A+EPA 8021-B	0,0
Etilbenzene	mg/Kg	EPA 5021A+EPA 8021-B	0,0
1,3,5-Trimetilbenzene	mg/Kg	EPA 5021A+EPA 8021-B	0,0
Stirene	mg/Kg	EPA 5021A+EPA 8021-B	0,0
Acetone	mg/Kg	EPA 5021A+EPA 8015-B	0,0
Alcol Isobutilico	mg/Kg	EPA 5021A+EPA 8015-B	0,0
n-Butanolo	mg/Kg	EPA 5021A+EPA 8015-B	0,0
Etanolo	mg/Kg	EPA 5021A+EPA 8015-B	0,0
Etile Acetano	mg/Kg	EPA 5021A+EPA 8015-8	0,0
Metiletiichetone	mg/Kg	EPA 5021A+EPA 8015-B	0.0

Analogamente nelle tabelle di seguito si riportano le medesime informazioni relativamente ai test di cessione per ammissibilità in discarica e recupero.

Sono tutti ammissibili in discariche per inerti ad esclusione dl due campioni (S16_CA1 e S16_CA2) a causa del superamento del parametro Cadmio e di un campione Pz_A2 per superamento dei limiti degli idrocarburi pesanti (C > 12). I rimanenti materiali risultano gestibili secondo procedure di recupero completo

CA349

Relazione gestione materie

Test di cessione								
Antimonio	mg/L	UNI EN 16170:2016						
Arsenico	mg/L	UNI EN 16170:2016						
Bario	mg/L	UNI EN 16170:2016						
Cadmio	mg/L	UNI EN 16170:2016						
Cromo totale	mg/L	UNI EN 16170:2016						
Molibdeno	mg/L	UNI EN 16170:2016						
Nichel	mg/L	UNI EN 16170:2016						
Piombo	mg/L	UNI EN 16170:2016						
Rame	mg/L	APAT CNR IRSA 3250B Man 29 2003						
Selenio	mg/L	UNI EN 16170:2016						
Zinco	mg/L	UNI EN 16170:2016						
Mercurio	mg/L	UNI EN 16170:2016						
Carbonio organico disciolto	mg/L	APAT CNR IRSA 5040 Man 29 2003						
Cloruri	mg/L	APAT CNR IRSA 4090 A1 Man 29 2003						
Fluoruri	mg/L	APAT CNR IRSA 4100 B Man 29 2003						
Solfati	mg/L	APAT CNR IRSA 4140 B Man 29 2003						
Indice di Fenolo	mg/L	APAT CNR IRSA 5070 A2Man 29 2003						
TDS	mg/L	APAT CNR IRSA 2090 Man 29 2003						
Cianuri	μg/L	EPA9010C 2004+EPA9213 1996						
Berillio	µg/L	APAT CNR IRSA 3100 Man 29 2003						
Cobalto	mg/L	EPA219,2 1978						
Vanadio	μg/L	APAT CNR IRSA 3310A Man 29 2003						
COD	mg/L	APAT CNR IRSA 5130 Man 29 2003						
Nitrati	mg/L	APAT CNR IRSA 4040 A1 Man 29 2003						

Le risultanze analitiche e le modalità di smaltimento ammesse per la tipologia di rifiuto risultante dalle analisi sono riepilogate nella tabella seguente.

Dalle determinazioni analitiche effettuate ai fini della classificazione dei materiali come rifiuti, tutti i campioni di terreno sono rientrati nel Codice CER 17 05 04 che comprende «*Terra e rocce da scavo, diverse da quelle di cui alla voce 17 05 03**».

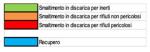
Inoltre, a seguito di Test di cessione è stato effettuato il giudizio sulla ammissibilità del rifiuto in discarica e/o impianto di recupero con individuazione della relativa tipologia (in particolare, per quanto riguarda il recupero si fa riferimento al Par. 7.31-bis.3 del D.M. 05/02/2008, recepito nel D.M. 186/06) che prevede la possibilità di recupero parziale nell'ambito di industria di ceramica e laterizio e recupero completo, subordinatamente all'esecuzione di test di cessione sul rifiuto tal quale, per recuperi ambientali e formazione di rilevati e sottofondi stradali.

Le tabelle seguente mostrano i risultati delle prove sul tal quale e dei test di cessione per ammissibilità in discarica e recupero.

CA349

Relazione gestione materie

		TAL QUALE	34		212
PARAMETRO	U.M.	S1PZ CRIF (0.00-2.00 m)	\$3DH CRIF (0.00-2.00 m)	\$12PZ CRIF (0.00-2.00 m)	S16 CRIF (0.00-2.00 m)
Natura		INORGANICA	INORGANICA	NORGANICA	INORGANICA
Otata finian	· · · · · · · · · · · · · · · · · · ·	SOLIDO NON	SOLIDO NON	SOLIDO NON	SOLIDO NON
Stato fisico		PULVERULENTO	PULVERULENTO	PULVERULENTO	PULVERULENTO
Colore		MARRONE	MARRONE	VARIO	MARRONE CHIARO
Odore		INODORE	INODORE	INODORE	INODORE
pH	Unità pH	7,53	7,9	8,24	8,87
RESIDUO A 105 °C	%	84,1	86,9	94,4	83,4
Arsenico	mg/Kg	< 2	5,65	2,54	<2
Cadmio	mg/Kg	< 2	< 2	< 2	< 2
Cromo totale	mg/Kg	11	21,9	14,9	12
Mercurio	mg/Kg	<2	< 2	< 2	<2
Nichel	mg/Kg	7,58	16	8,17	8,53
Plombo	mg/Kg	3,58	7,63	8,49	3,61
Rame	mg/Kg	4,32	9,34	12,2	6,15
Zinco	mg/Kg	32	68,2	53,6	39,1
ldrocarburi pesanti (C>12)	mg/Kg	< 100	< 100	< 100	< 100
Benzo(a)antracene	mg/Kg s.s.	< 1.00	< 1.00	< 1.00	< 1.00
Benzo(a)pirene	mg/Kg s.s.	< 1.00	< 1.00	< 1.00	< 1.00
Benzo(b)fluorantene	mg/Kg s.s.	< 1.00	< 1.00	< 1.00	< 1.00
Benzo(e)pirene	mg/Kg s.s.	< 1.00	< 1.00	< 1.00	< 1.00
Benzo(ghi)perilene	mg/Kg s.s.	< 1.00	< 1.00	< 1.00	< 1.00
Benzo(j)fluorantene	mg/Kg s.s.	< 1.00	< 1.00	< 1.00	< 1.00
Benzo(k)fluorantene	mg/Kg s.s.	< 1.00	< 1.00	< 1.00	< 1.00
Crisene	mg/Kg s.s.	< 1.00	< 1.00	< 1.00	< 1.00
Dibenzo(a,e)pirene	mg/Kg s.s.	< 1.00	< 1.00	< 1.00	< 1.00
Dibenzo(a,h)antracene	mg/Kg s.s.	< 1.00	< 1.00	< 1.00	< 1.00
Indeno(1,2,3-c,d)pirene	mg/Kg s.s.	< 1.00	< 1.00	< 1.00	< 1.00
Pirene	mg/Kg s.s.	< 1.00	< 1.00	< 1.00	< 1.00
PCB 101	mg/Kg	< 0.50	< 0.50	< 0.50	< 0.50
PCB 105	mg/Kg	< 0.50	< 0.50	< 0.50	< 0.50
PCB 110	mg/Kg	< 0.50	< 0.50	< 0.50	< 0.50
PCB 114	mg/Kg	< 0.50	< 0.50	< 0.50	< 0.50
PCB 118	mg/Kg	< 0.50	< 0.50	< 0.50	< 0.50
PCB 123	mg/Kg	< 0.50	< 0.50	< 0.50	< 0.50
PCB 126	mg/Kg	< 0.50	< 0.50	< 0.50	< 0.50
PCB 128	mg/Kg	< 0.50	< 0.50	< 0.50	< 0.50
PCB 138	mg/Kg	< 0.50	< 0.50	< 0.50	< 0.50
PCB 146	mg/Kg	< 0.50	< 0.50	< 0.50	< 0.50
PCB 149	mg/Kg	< 0.50	< 0.50	< 0.50	< 0.50
PCB 151	mg/Kg	< 0.50	< 0.50	< 0.50	< 0.50
PCB 153	mg/Kg	< 0.50	< 0.50	< 0.50	< 0.50
PCB 156	mg/Kg	< 0.50	< 0.50	< 0.50	< 0.50
PCB 157	mg/Kg	< 0.50	< 0.50	< 0.50	< 0.50
PCB 167	mg/Kg	< 0.50	< 0.50	< 0.50	< 0.50
PCB 169	mg/Kg	< 0.50	< 0.50	< 0.50	< 0.50
PCB 170	mg/Kg	< 0.50	< 0.50	< 0.50	< 0.50
PCB 177	mg/Kg	< 0.50	< 0.50	< 0.50	< 0.50
PCB 180	mg/Kg	< 0.50	< 0.50	< 0.50	< 0.50
PCB 183	mg/Kg	< 0.50	< 0.50	< 0.50	< 0.50
PCB 187	mg/Kg	< 0.50	< 0.50	< 0.50	< 0.50
PCB 189	mg/Kg	< 0.50	< 0.50	< 0.50	< 0.50
PCB 28	mg/Kg	< 0.50	< 0.50	< 0.50	< 0.50
PCB 30	mg/Kg s.s.	< 0.50	< 0.50	< 0.50	< 0.50
PCB 31	mg/Kg	< 0.50	< 0.50	< 0.50	< 0.50
PCB 52	mg/Kg	< 0.50	< 0.50	< 0.50	< 0.50
PCB 77	mg/Kg	< 0.50	< 0.50	< 0.50	< 0.50
PCB 81	mg/Kg	< 0.50	< 0.50	< 0.50	< 0.50
PCB 95	mg/Kg	< 0.50	< 0.50	< 0.50	< 0.50
PCB 99	mg/Kg	< 0.50	< 0.50	< 0.50	< 0.50
Sommatoria IPA	mg/Kg	< 1.00	< 1.00	< 1.00	< 1.00
1,1,2,2-tetracloroetano	mg/Kg s.s.	< 1.0	< 1.0	< 1.0	< 1.0
Benzene	mg/Kg s.s.	< 1.0	< 1.0	< 1.0	< 1.0
Bromodiclorometano	mg/Kg s.s.	< 1.0	< 1.0	< 1.0	< 1.0
Clorometano Cloruro di Vinile	mg/Kg s.s.	< 1.0	< 1.0	< 1.0 < 1.0	< 1.0 < 1.0
	mg/Kg s.s.	< 1.0	< 1.0	< 1.0	< 1.0
Dibromoclorometano Esaclorobutadiene	mg/Kg s.s.	< 1.0	< 1.0		
Esaciorobutadiene Etilbenzene	mg/Kg s.s.	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0
	mg/Kg s.s.	**************************************			
Stirene	mg/Kg s.s.	< 1.0	< 1.0	< 1.0	< 1.0
Tetraclorometano Toluene	mg/Kg s.s.	< 1.0	< 1.0	< 1.0	< 1.0
	mg/Kg s.s.	< 1.0	< 1.0	< 1.0	< 1.0
Tribromometano Xilene	mg/Kg s.s.	< 1.0	< 1.0	< 1.0 < 1.0	< 1.0
	mg/Kg s.s.	< 1.0	< 1.0	*************************	< 1.0
Carbonio organico totale	mg/Kg	< 1000	< 1000	< 1000	< 1000


CA349

Relazione gestione materie

	Test di cessione per a	mmissibilità in discarica				I	Limiti DM 27/09/2010	
Parametro	U. M.	S1PZ CRIF (0.00-2.00 m)	S3DH CRIF (0.00-2.00 m)	S12PZ CRIF (0.00-2.00 m)	S16 CRIF (0.00-2.00 m)	Tab.2 Rifiuti inerti	Tab.5 Rifiuti non pericolosi	Tab.6 Rifiuti pericolosi
Antimonio	μg/L	0,303	0,278	1,19	0,637	6	70	500
Arsenico	μg/L	1,4	1,13	8,76	1,61	50	200	2500
Bario	μg/L	7,91	9,55	15,4	7	2000	10000	30000
Cadmio	μg/L	< 0.1	< 0.1	< 0.1	< 0.1	4	100	200
Cromo totale	μg/L	1,5	1,3	4,41	0,801	50	1000	7000
Molibdeno	μg/L	6,91	8,3	11	3,87	50	1000	3000
Nichel	µg/L	1,62	1,75	2,97	0,389	40	1000	4000
Piombo	μg/L	0,699	0,621	2,4	0,238	50	1000	5000
Rame	μg/L	0,85	0,972	5,01	0,825	200	5000	10000
Selenio	μg/L	0,753	0,424	1,57	0,444	10	50	700
Zinco	μg/L	6,54	6,2	20,4	3,51	400	5000	20000
Mercurio	μg/L	< 0.1	< 0.1	< 0.1	< 0.1	1	20	50
Carbonio organico disciolto	mg/L	2,59	2,82	6,36	3,06	50	100	100
Cloruri	mg/L	< 10	< 10	< 10	< 10	80	2500	2500
Fluoruri	mg/L	0,94	0,6	< 0.4	0,42	1	<u>15</u>	50
Solfati	mg/L	< 10	< 10	< 10	< 10	100	5000	5000
Solidi totali disciolti	mg/L	73	83,5	71,5	59,5	400	10000	10000
Indice di Fenolo	mg/L	< 0.1	< 0.1	< 0.1	< 0.1	0,1		

Test di cessione per recupero						
Parametro	U. M.	S1PZ CRIF (0.00-2.00 m)	S3DH CRIF (0.00-2.00 m)	S12PZ CRIF (0.00-2.00 m)	S16 CRIF (0.00-2.00 m)	Limiti DM n.186 05/04/2006
Cianuri	μg/L	< 50	< 50	< 50	< 50	50
Arsenico	μg/L	1,4	1,13	8,76	1,61	50
Bario	μg/L	7,91	9,55	15,4	7	1000
Cadmio	μg/L	< 0.1	< 0.1	< 0.1	< 0.1	5
Cromo totale	μg/L	1,5	1,3	4,41	0,801	50
Nichel	μg/L	1,62	1,75	2,97	0,389	10
Piombo	μg/L	0,699	0,621	2,4	0,238	50
Rame	μg/L	0,85	0,972	5,01	0,825	50
Selenio	μg/L	0,753	0,424	1,57	0,444	10
Zinco	μg/L	6,54	6,2	20,4	3,51	3000
Berillio	μg/L	0,109	< 0.1	0,191	< 0.1	10
Cobalto	μg/L	0,132	0,13	0,537	< 0.1	250
Vanadio	μg/L	3,39	2,1	20,4	3,3	250
Mercurio	μg/L	< 0.1	< 0.1	< 0.1	< 0.1	1
Cloruri	mg/L	< 10	< 10	< 10	< 10	100
Richiesta chimica di ossigeno (COD)	mg/L	< 10	< 10	13	< 10	30
Fluoruri	mg/L	0,94	0,6	< 0.4	0,42	1,5
Nitrati	mg/L	< 10	< 10	< 10	< 10	50
pH	unità pH	8,56	8,46	8,76	8,99	12
Solfati	mg/L	< 10	< 10	< 10	< 10	250
Amianto	mg/L	< 30	< 30	< 30	< 30	30

		S1PZ CRIF (0.00-2.00 m)	S3DH CRIF (0.00-2.00 m)	S12PZ CRIF (0.00-2.00 m)	\$16 CRIF (0.00-9.00 m)
	Codice CER	17 05 04	17 05 04	17 05 04	17 05 04
	CLASSIFICAZIONE				
Rifiuto sp	eciale non pericoloso	si	si	si	si
	SMALTIMENTO				
Discarica per rifiuti inerti		si	si	si	si
Discarica per rifiuti non pericolosi			si	si	si
Discario					
RECUPERO COMPLETO		si	si	si	si

CA349

Relazione gestione materie

I dati evidenziano che i terreni campionati sono associabili a codice CER 17 05 04 dal momento che non contengono sostanze pericolose.

L'esecuzione dei test di cessione ha messo in evidenza che in tutti i casi i terreni sono ammissibili in discariche per rifiuti inerti e non pericolosi; inoltre i materiali risultano anche gestibili secondo procedure di recupero completo.

7. RIUTILIZZO DEI PRODOTTI DI SCAVO

7.1 Sottoprodotti

Dalle analisi fin qui condotte e dai dati a disposizione, anche grazie alla presenza di un territorio modestamente antropizzato, caratterizzato dall'alternarsi di superfici destinate all'agricoltura, superfici destinate ad attività produttiva ed aree urbanizzate, ma anche di modesti rilievi collinari boscati, emerge un quadro ambientale positivo, in cui la qualità dei terreni e delle acque superficiali risulta buona.

Come stabilisce il DPR120/2017 all'art. 4 Criteri per qualificare le terre e rocce da scavo come sottoprodotti, tra i requisiti imprescindibili per la classificazione come sottoprodotto del materiale di scavo ai fini quindi del riutilizzo, c'è la soddisfazione dei parametri di qualità ambientale, come alla lettera "d: soddisfano i requisiti di qualità ambientale espressamente previsti dal Capo II o dal Capo III o dal Capo IV del presente regolamento, per le modalità di utilizzo specifico di cui alla lettera b).

La caratterizzazione delle terre condotta nel 2019 ha evidenziato la quasi totale congruità delle terre al riutilizzo per tutti i materiali provenienti dai sondaggi, pozzetti e piezometri effettuati nell'area di studio. Ad eccezione dei materiali provenienti dai campioni sopraelencati.

È stato preso quindi in considerazione un riutilizzo delle terre e rocce da scavo sia ai fini dell'utilizzo come terra vegetale che per materiale da rilevato, intendendo, il materiale necessario per:

- formare il rilevato stradale (ad eccezione dello strato anticapillare),
- · sostituire il terreno da bonificare,
- la formazione dei rilevati a tergo delle spalle,
- il rinterro delle fondazioni delle opere d'arte principali e minori con compattamento,
- Il ricoprimento delle opere d'arte senza compattamento e con profilatura della scarpata.

I materiali proveniente da scavo, del tutto esenti da frazioni o componenti vegetali, organiche e da elementi solubili, gelivi o comunque instabili nel tempo, non di natura argilloscistosa nonché alterabili o molto fragili appartenenti ai gruppi A1, A2-4, A2-5, A3 e A2-6, A2-7 possono essere utilizzati senza trattamento nella realizzazione dei rilevati stradali.

Per l'ultimo strato di 30 cm dovranno essere impiegati materiali appartenenti esclusivamente ai gruppi A1 e A3 (per le terre appartenenti al gruppo A3 vale quanto già detto in precedenza).

Il Capitolato ANAS prevede l'utilizzo delle terre appartenenti ai gruppi A2-6 e A2-7 solo se provenienti da scavi nell'ambito dello stesso cantiere.

CA349

Relazione gestione materie

Il loro utilizzo è previsto per la formazione di rilevati soltanto al di sotto di 2.0 m dal piano di posa della fondazione della pavimentazione stradale, previa predisposizione di uno strato anticapillare di spessore non inferiore a 30 cm.

Le terre provenienti da scavi di sbancamento e di fondazione appartenenti ai gruppi A4, A5, A6, A7 possono essere riutilizzate previa stabilizzazione a calce e/o cemento, ovvero conferite ad aree di deposito delle terre di scarto.

I materiali prodotti da attività di scavo, appartenenti alle unità TR (Terreno di Riporto) e Sabbie Limose (SL) per il progetto sono in prevalenza appartenenti ai gruppi A4, A2 (A2-4) e A1 (A1-b) della classificazione UNI-EN 13242 (ex CNR-UNI 10006) potranno essere riutilizzati ai fini della formazione dei rilevati stradali.

8. BILANCIO MATERIALI

8.1 Volumi Terre scavate

Le valutazioni volumetriche dei materiali provenienti dagli scavi sono state sviluppate in base ai computi metrici di progetto definitivo.

Nella tabella di sintesi seguente, vengono riepilogati i volumi di scavo all'interno del tracciato stradale.

La voce scavi comprende tutti gli scavi di sbancamento delle viabilità in progetto, gli scavi per le fondazioni di tutte le opere (maggiori, minori) previste in progetto e gli scavi per inalveazioni e fossi di guardia.

Le valutazioni comprendono altresì la formazione delle opere di fondazione profonda (pali trivellati di grande diametro), in termini di scavo. Nella tabella sotto riportata sono sintetizzati i volumi di scavo previsti.

Come indicato nella relazione Geotecnica, il progetto prevede uno scavo per scotico di 20 cm e uno strato di bonifica nella realizzazione di tutti i rilevati in progetto, di spessore variabile lungo l'asse stradale in funzione dello spessore delle formazioni alterate affioranti.

Tipologia di scavo	Volumi di scavo in m ³
Bonifiche rilevati	41.693,52
Scavi per scotico e gradonature	33.080,69
Scavi	
(sbancamento, fondazioni)	571.893,09
Scavi per pali	18.602,45
Totale materiale da scavo	665.269,74

Dei materiali di risulta derivante dagli scavi, come dettagliato nel paragrafo precedente, sono recuperabili i materiali superficiali di tipo vegetale derivanti dallo scotico, per la realizzazione di tutte le lavorazioni ove è previsto il reimpiego di terreno vegetale (rivestimenti scarpate, formazione aiuole e aree verdi, riempimento

CA349

Relazione gestione materie

di cavi, ecc.), il materiale per il ritombamento ed il rinterro delle opere d'arte e materiale per rilevati stradali. Nella tabella di seguito riportata vengono evidenziate le quantità di terre recuperabili:

Materiali recuperabili	Volume in m ³
materiali superficiali di tipo vegetale	24.314,36
materiali per rilevati	234.011,66
Recupero da scavo per riempimenti	235.184,37
Totale materiale recuperabile	493.510,39

La percentuale di materiale recuperato ammonta quindi a 493.510,39 m³/665.269,74 m³ =74% La restante parte dei materiali da scavo sarà conferita a discarica.

8.2 Fabbisogno materiali

Le diverse lavorazioni che presentano un fabbisogno di materiale, sono le seguenti:

- □ Formazione Rilevati
- □ Messa in opera terreno vegetale
- ☐ Messa in opera materiale arido per ritombamenti

Per materiale da rilevato, impropriamente, si intende il materiale necessario per:

- □ formare il rilevato stradale,
- □ sostituire il terreno da bonificare,
- □ la formazione dei rilevati a tergo delle spalle,
- □ il rinterro delle fondazioni delle opere d'arte principali e minori con compattamento,
- ☐ Il ricoprimento delle opere d'arte senza compattamento e con profilatura della scarpata.

Al terzo punto è previsto l'impiego di terreno vegetale per il ricoprimento delle scarpate, il riempimento delle aiuole e delle aree verdi.

Al quarto punto è previsto la messa in opera del materiale per il ritombamento dei collettori e per il reinterro delle opere d'arte.

Nella tabella di sintesi seguente, vengono riepilogati i volumi del fabbisogno di materiali all'interno del tracciato stradale.

CA349

Relazione gestione materie

Fabbisogno Opere	Volumi in m ³
Rilevati	502.008,74
Terreno vegetale	24.314,36
Sostituzione scotico	25.733,14
Gradonatura	6.087,55
Sostituzione bonifica	41.693,52
Riempimenti	235.184,37

Al fabbisogno si aggiungono i materiali per la realizzazione della pavimentazione stradale. Il dimensionamento della pavimentazione è stato elaborato sulla base di indagini e di rilevamento dei flussi di traffico. In particolare, per quel che concerne il Bilancio Materie, il dimensionamento e la scelta della tipologia di fondazione stradale sono stati fatti sulla base di ipotesi di traffico e di portanza del sottofondo. Per la pavimentazione dell'asse principale e delle rampe di svincolo si è previsto di utilizzare una fondazione stradale di tipo non legato in misto granulare stabilizzato meccanico/granulometrico. Per la realizzazione degli strati di fondazione stradale e del fabbisogno di conglomerato bituminoso per gli strati della pavimentazione (usura, binder, base) vengono sintetizzate nella tabella seguente le quantità previste:

Fabbisogno Opere	Volumi in m³
Fondazione misto cementato	25.804,25
Fondazione misto granulare	85.305,28
Base	21.323,30
Binder	11.034,87
Usura	7.106,98

8.3 Bilancio globale materiali

Il bilancio dei materiali di scavo e di approvvigionamento, dettagliato nei paragrafi precedenti, è stato redatto sulla base dell'analisi delle relative quantità riportate nell'ambito del computo metrico del presente progetto. In particolare, si è provveduto alla individuazione dei materiali di cui si prevede l'escavazione, valutando l'attitudine all'eventuale reimpiego sulla base delle loro caratteristiche tecniche; si è quindi effettuata l'analisi dei fabbisogni in materie da utilizzare nei diversi processi produttivi.

È necessario reperire in cava il fabbisogno di 341.511,28 m³ di materiale per rilevato.

CA349

Relazione gestione materie

A tale approvvigionamento in cava andrà aggiunto il fabbisogno di conglomerato bituminoso per gli strati di usura, binder, base della pavimentazione e di misto granulare stabilizzato per la fondazione stradale sopra riportati.

Per quanto concerne il terreno vegetale, a fronte di un fabbisogno di **24.314,36 m³**, dagli scavi di scotico sono disponibili i m³ di materiale superficiale vegetale-humifero necessari, pertanto, non esiste la necessità di sopperire **m³** di terreno vegetale.

Il bilancio finale determina che:

il materiale da portare a discarica proveniente dagli scavi in banco è pari a 171.759,35 m³.

Tale quantità si incrementa in volume del 25% dallo scavo in banco allo smosso determinando quindi che i volumi da conferire in discarica saranno pari a **214.699,19 m³** (171.759,35m³ x 1,25).

9. **DEMOLIZIONI**

Nel corso dei lavori di adeguamento al tipo B della SS 131, si procederà alla demolizione di varie opere esistenti come dettagliato negli elaborati di progetto **T00EG00GENPL01** e **T00EG00GENPL01**.

In particolare, i materiali oggetto di analisi saranno essenzialmente connessi alla demolizione delle seguenti opere:

- 0 pavimentazione stradale;
- 1 tombini;
- 2 guard rail;
- 3 muri;
- 4 recinzioni;
- 5 edifici.

I materiali oggetto di demolizione sono principalmente costituiti da:

- □ materiale inerte (conglomerato cementizio armato e no, laterizi e intonaci);
- materiali ferrosi;
- conglomerato bituminoso.

Per quanto possibile e previsto dal progetto si prevede di riutilizzare i materiali provenienti dalle operazioni di demolizione, tuttavia, ove il riutilizzo o il riciclaggio dei materiali non risultasse fattibile, si dovrà procedere al corretto smaltimento in discarica degli stessi individuando per ciascuno di essi il relativo codice CER.

CA349

Relazione gestione materie

9.1 Materiali da demolizione

Si prevede la produzione complessiva di 15.733,63 m³ di calcestruzzo da demolizione e di 49.279,45 m³ di pavimentazione stradale.

In questa categoria "materiali da demolizioni," rientra il calcestruzzo armato e non.

Non si prevede il riutilizzo o lo smaltimento di questi materiali, essi possono essere inviati al recupero in procedura semplificata (D.M. del 5 aprile 2006 n. 186) oppure gestiti come rifiuti nel rispetto di quanto indicato nella parte IV del D.Lgs. 152/06.

Sulla base di esperienze pregresse maturate in lavori simili i codici CER che possono essere attribuiti a questi materiali sono i seguenti:

- □ Codice CER 17.01.01 cemento;
- □ Codice CER 17.01.07 miscugli o scorie di cemento, mattoni, mattonelle e ceramiche, diverse da quelle di cui alla voce 17.01.06;
- □ Codice CER 17.09.04 rifiuti misti dell'attività di costruzione e demolizione, diversi da quelli di cui alle voci 17.09.01*, 17.09.02* e 17.09.03*.
- □ Codice CER 17 02 03 Plastica
- □ Codice CER 17 04 05 Ferro e acciaio
- Codice CER 17 04 07 Metalli misti

Oltre ai materiali sopra descritti, si aggiunge la presenza dei prodotti di demolizione provenienti dalla rimozione della piattaforma stradale esistente. A questi materiali si può attribuire il codice CER 17.03.02 miscele bituminose diverse da quelle di cui alla voce 17.03.01.

9.2 Scarti ferrosi

La produzione di materiali ferrosi deriva dalla rimozione di eventuali recinzioni, guard-rail, cartellonistica stradale. A questi materiali, non riutilizzabili nell'ambito dello stesso intervento, possono essere attribuiti i codici CER 17.04.05 ferro e acciaio o CER 17.04.07 metalli misti e potranno essere destinati a recupero in idonei impianti.

10. AREE DI DEPOSITO

Durante le operazioni di scavo, reinterro ed edificazione dell'opera viaria, il materiale superficiale e quello profondo non utilizzabile, od in attesa di utilizzo, verranno disposti nelle specifiche aree di stoccaggio temporaneo previste nei vari cantieri di progetto. Come indicato nella relazione di cantierizzazione T00CA01CANRE01 e nelle relative planimetrie relative alla localizzazione dei campi cantiere nelle sedi di cantiere di ciascun lotto, sono state disposte delle aree di deposito temporaneo dei materiali provenienti dagli scavi che assumeranno le seguenti funzioni:

o deposito di interscambio: avente lo scopo di consentire l'accumulo temporaneo di terreno nel periodo di attesa precedente al trasferimento e al riutilizzo;

CA349

Relazione gestione materie

- o deposito di compensazione: avente lo scopo di consentire l'accumulo di terreno per brevi periodi qualora, per ragioni operative (come ad esempio avverse condizioni meteorologiche, sottoservizi e/o sopraservizi non risolti secondo le tempistiche programmate) sia momentaneamente impedito il recapito diretto del terreno scavato sul luogo di destinazione;
- o deposito provvisorio: per il deposito temporaneo, in attesa di altro eventuale riutilizzo, del materiale scavato che, a consuntivo, risulterà in eccesso rispetto ai fabbisogni interni al progetto;
- deposito temporaneo di stoccaggio rifiuti.

11. SISTEMA DI APPROVVIGIONAMENTO / SMALTIMENTO

11.1 Cave

Al fine di valutare la reperibilità e la disponibilità di risorse esterne adatte per la costruzione dell'opera è stato effettuato un censimento degli attuali siti estrattivi autorizzati ed attivi nelle vicinanze del tracciato.

A tal fine è stato consultato II Catasto regionale dei giacimenti di cava e Pubblico registro dei titoli minerari (https://www.regione.sardegna.it/speciali/pianoattivitaestrattive/catastocave) aggiornando con sopralluoghi e visite le informazioni ricavabili dallo stesso.

La normativa di riferimento della Regione Sardegna, in tema di funzioni e competenze amministrative e per l'esercizio e la sicurezza delle attività estrattive, è la seguente:

- Delibera della Giunta Regionale n. 37/14 del 25/09/2007 - Atti di indirizzo programmatico per il settore estrattivo. Procedura di approvazione del Piano Regionale Attività Estrattive (PRAE), come modificata dalla Delibera n°47/18 del 20.10.2009.

Partendo dall'elenco dei siti censiti si è provveduto allo sviluppo delle seguenti operazioni:

- □ ubicazione delle aree di cava;
- reperimenti di dati relativi ai volumi di scavo autorizzati e alle tipologie dimateriali prodotti;
- definizione dei poli produttivi adiacenti al tracciato (raggruppamenti di cave) e individuazione dei percorsi cava-cantiere di riferimento.

In particolare, sono state individuate le seguenti cave autorizzate con disponibilità sufficiente a fornire i materiali quantizzati nel bilancio materiali di cava:

- □ Cava Murineddu Ditta S.C.S. srl (codice 1162_C; Comune di Ploaghe (SS);
- □ Cava Sos Coroneddos Ditta EREDI MANGHINA SALVATORE srl (codice 001321 Comune di Codrongianos) (CA);
- Cava Funtanedda Ulumu Ditta EREDI MANGHINA SALVATORE srl (codice 407_C; Comune di Ploaghe (SS);
- Cava Santa Giulia Ditta EREDI MANGHINA S. srl (codice 1289_C; Comune di Ploaghe(SS);
- Cav Sas Renas –Ditta MAFFEI SARDA SILICATI spa (codice 466_C, 45_C; Comune di Ossi (SS);

In ogni caso durante l'iter progettuale e dopo sarà necessario verificare l'effettiva disponibilità dei quantitativi e dei siti prescelti.

Le notizie raccolte sono esposte in dettaglio nella tavola denominata "Planimetria con ubicazione cave e discariche **T00CA00CANPL01**; evidenziano che sono state localizzate in prossimità del tracciato 5 siti di cava

CA349

Relazione gestione materie

per approvvigionamento materiali, distribuiti a ovest e 4 a est rispetto all'asse stradale in progetto e che allo stato attuale assicurano una disponibilità di materiali in grado di soddisfare le necessità di progetto. In ogni caso sarà necessario predisporre verifiche della disponibilità dei quantitativi e dei siti prescelti.

11.2 Siti per il conferimento delle terre in esubero

Per i materiali non idonei al riutilizzo per la formazione del corpo stradale o in esubero, sono stati censiti i siti autorizzati per lo smaltimento a discarica dei materiali di risulta. (Planimetria con ubicazione cave e discariche **T00CA00CANPL01**) che di seguito si riportano:

Tipologia del sito	Discarica inerti
Ditta	EREDI MANGHINA SALVATORE sri
Localizzazione Impianto	Comune di Codrongianos (SS) – Sos Coroneddos
Distanza dal sito di progetto	Circa 1,6 km
	Cemento (CER 170101)
	Mattoni (CER 170102)
	Mattonelle e ceramiche (CER 170103)
	Miscugli o scorie di cemento, mattoni, mattonelle e ceramici (CER 170107)
Materiali da smaltire	Materiali da costruzione a base di gesso (CER 170802)
	Rifiuti misti dell'attività di costruzione e demolizione (CER 170904)
	Rifiuti materiali compositi a base di cemento (CER 101311)
	Scarti di ceramica, mattoni, mattonelle e materiali da pietris per massicciate ferroviarie (CER 170508)
	Miscele bituminose (CER 170302)
	Terre e rocce (CER 170504)

Si segnala inoltre che, in concomitanza alle attività di verifica delle potenzialità dell'industria estrattiva nell'area d'intervento, è stata verificata in molte cave cessate, ma non recuperate ambientalmente, la disponibilità ricettiva per la realizzazione di rimodellamenti e recuperi ambientali.