

Direzione Progettazione e Realizzazione Lavori

S.S. n.131 "Carlo Felice" Completamento itinerario Sassari — Olbia

Potenziamento-Messa in sicurezza dal km 192+500 al km 209+500

1° lotto (dal km 193 al km 199)

PROGETTO DEFINITIVO

COD. CA349

PROGETTAZIONE: ATTI VIA - SERING - VIDP - BRENG

PROGETTISTA E RESPONSABILE DELL'INTEGRAZIONE DELLE PRESTAZIONI SPECIALISTICHE:

Dott. Ing. Giovanni Piazza (Ord. Ing. Prov. Roma 27296)

RESPONSABILI D'AREA:

Responsabile Tracciato stradale: Dott. Ing. Massimo Capasso (Ord. Ing. Prov. Roma 26031)

Responsabile Strutture: Dott. Ing. Giovanni Piazza

(Ord. Ing. Prov. Roma 27296) Responsabile Idraulica, Geotecnica e Impianti: Dott. Ing. Sergio Di Mai

(Ord. Ing. Prov. Palermo 2872) Responsabile Ambiente: Dott. Ing. Francesco Ventura (Ord. Ing. Prov. Roma 14660)

GEOLOGO:

Dott. Geol. Enrico Curcuruto (Ord. Geo. Regione Sicilia 966)

COORDINATORE SICUREZZA IN FASE DI PROGETTAZIONE:

Dott. Ing. Matteo Di Girolamo (Ord. Ing. Prov. Roma 15138)

RESPONSABILE SIA:

Dott. Ing. Francesco Ventura (Ord. Ing. Prov. Roma 14660)

VISTO: IL RESPONSABILE DEL PROCEDIMENTO:

Dott. Ing. Salvatore Frasca

GRUPPO DI PROGETTAZIONE

MANDATARIA:

MANDANTI:

IMPIANTI TECNOLOGICI Capitolato speciale d'appalto

CODICE PF	ROGETTO LIV. PROG. ANNO	nome file CA349_TOOIMOOIMPREO5_A			REVISIONE	SCALA:
	0349 D 20	CODICE TOO IMOO IMP RE05		A	_	
D			_	-	-	-
С			_	_	_	_
В			_	_	_	_
Α	EMISSIONE		NOV 2020	F. LA IUPPA	M. CUCCARO	G. PIAZZA
REV.	DESCRIZIONE		DATA	REDATTO	VERIFICATO	APPROVATO

1°lotto (dal km 193 al km 199)

CA349

Capitolate Speciale di Appalto Impianti

INDICE

PREMESSA	2
Art. 1. Generalità	2
Art. 2. Regime di qualità delle forniture di materiale e delle modalità costruttive	2
CAPO I DESIGNAZIONE DEI MATERIALI E DEGLI IMPIANTI	3
Art. 3. Riferimenti normativi	4
Art. 4 Opere edili	9
4.1 Pozzetti di transito per reti elettriche	9
4.2 Pozzetti di transito per le predisposizioni secondo direttive ANAS	10
4.3 Polifore di predisposizione per infrastrutture a rete secondo direttive ANAS	10
4.4 Blocchi di fondazione per cartelli a messaggio variabile	11
Art. 5. Opere elettriche di illuminazione	12
5.1 Vie cavi - "Cavidotti, Tubazioni e passerelle portacavi"	12
5.2 Cavi elettrici	14
5.3 Pali di illuminazione	21
Art. 6. Apparecchi illuminanti	22
6.1 Apparecchi di illuminazione con lampade a LED	22
6.2 Corpi illuminanti per illuminazione intersezioni	23
Art. 7. Sistema di controllo ad onde convogliate	24
Art. 8 Pannelli a portale a pittogramma e messaggio variabile (PMV)	27
Art. 9 Quadri di bassa tensione	32
9.1. Caratteristiche tecniche	32
9.2. Caratteristiche costruttive e composizione	33
9.3. Elenco delle prove	34
9.4 Prove di tipo	35

CA349

Capitolate Speciale di Appalto Impianti

PREMESSA

Art. 1. Generalità

Questo documento costituisce il capitolato speciale tecnico degli impianti di cui alla progettazione definitiva dell'intervento dei lavori di potenziamento e messa in sicurezza della S.S.131 "Carlo Felice" del lotto 1 dal km 193 al km 199.

L'intervento è inserito con codice CA349 nel Contratto di Programma 2016 - 2020 sottoscritto tra Ministero delle Infrastrutture ed Anas, approvato con Delibera CIPE n.65 del 7 agosto 2017, pubblicata sulla gazzetta Ufficiale n.292 del 15 dicembre 2017.

Art. 2. Regime di qualità delle forniture di materiale e delle modalità costruttive

Tutti i materiali che saranno impiegati nell'appalto dovranno corrispondere a quanto stabilito nelle Leggi e Regolamenti ufficiali vigenti in materia, ed in particolare i materiali per impianti elettrici dovranno essere conformi per metodologia di fabbricazione, per qualità e tipologia dei singoli componenti impiegati, al complesso di Norme CEI, IEC, UNI, UNEL pertinenti alla specificità delle opere da realizzare ed in particolare, l'obbligo di osservanza delle vigenti leggi, regolamenti e normative relative alla sicurezza, al risparmio energetico ed all'inquinamento acustico e luminoso.

In particolare tutte le apparecchiature elettriche, indipendentemente che costituiscano dotazione di un assemblaggio composito o che abbiano un impiego univoco, dovranno essere omologate CE, dovranno essere prodotte e commercializzate in regime di qualità EN ISO 9000. L'Ente Certificatore del regime di qualità dovrà essere riconosciuto da Istituto Certificatore ai sensi della norma EN 45000.

I materiali e le apparecchiature in genere, dovranno essere della migliore qualità e di più aggiornata tecnologia reperibile in commercio in relazione alla loro specifica destinazione d'uso.

L'Appaltatore, prima di qualsiasi approvvigionamento di materiale, dovrà sottoporre all'approvazione della Direzione Lavori, mediante schede tecniche illustrative delle caratteristiche prestazionali, i materiali e le apparecchiature proposte e le modalità di installazione. Tutti i materiali, impiegati nella realizzazione delle opere impiantistiche del presente lotto dovranno essere perfettamente rispondenti al servizio cui saranno destinati; essi dovranno risultare compatibili con il sito di installazione, con le caratteristiche elettriche (tensione, corrente, ecc.) e con il regime di servizio richiesto e compatibili con quanto già esistente ed esercito.

CA349

Capitolate Speciale di Appalto Impianti

Per la provvista di materiali in genere, si richiamano espressamente le prescrizioni del Capitolato Generale di Appalto - Nome generali.

Comunque i materiali e le apparecchiature di fornitura in genere, prima della posa in opera, dovranno essere presentati, attraverso la modulistica preventivamente approvata dalla Direzione Lavori all'interno della quale siano riportati i riferimenti alle voci di elenco prezzi ed i riferimenti prestazionali delle apparecchiature indicate.

L'Ente Appaltante, attraverso la propria Direzione Lavori, darà conferma di accettazione con Ordine di Servizio. I materiali da costruzione e le apparecchiature proverranno da località e da costruttori che l'Appaltatore riterrà di sua convenienza, purché siano rispondenti ai requisiti di cui sopra, che dovranno essere documentati in modo esaustivo in merito alle prestazioni ed alla loro consistenza. L'accettazione dei materiali da parte della Direzione dei Lavori, non solleva l'Appaltatore dalla totale responsabilità in merito alla qualità e dell'aspetto tecnico finale ed alle prestazioni richieste per le opere impiantistiche realizzate anche per quanto può dipendere dai materiali stessi.

I materiali da impiegare nei lavori dovranno corrispondere ai requisiti di seguito fissati per i diversi componenti relativamente alla prestazione tecnico-funzionale di ogni singolo materiale, apparecchiatura e macchinario che dovranno essere impiegati nella realizzazione degli impianti elettrici e speciali, nelle opere edili dei fabbricati tecnologici, nelle opere di carpenteria metallica e nei manufatti minori nonché le loro modalità di installazione, messa in esercizio e collaudo. L'Appaltatore, dietro richiesta della Direzione Lavori, dovrà esibire documenti comprovanti la provenienza dei diversi materiali.

L'Appaltatore dovrà sottoporre ad accettazione preventiva la campionatura dei materiali che intende impiegare nell'esecuzione degli impianti ed in caso di danneggiamento degli stessi l'Appaltatore sarà tenuto a reintegrarli nella loro conformazione iniziale, così come dovranno essere reintegrati in conseguenza dell'effettuazione di prove distruttive su di essi ordinate dalla Direzione Lavori.

Resta esplicitamente inteso che la presentazione dei campioni non esonera l'Appaltatore dall'obbligo di sostituire, ad ogni richiesta, quei materiali che, pur essendo conformi ai campioni, non risultino corrispondenti alle prescrizioni di Capitolato o risultassero non adeguati per una realizzazione degli impianti a regola d'arte o non integrabili con il patrimonio di apparecchiature esercite.

Qualora la Direzione Lavori riscontri difformità prestazionali rispetto alla tipologia di materiale di riferimento approvato con scheda tecnica, e ne abbia rifiutato la fornitura, ritenendola non adatta all'impiego, l'Appaltatore dovrà sostituirla con altra corrispondente alle caratteristiche prescritte. I materiali rifiutati dovranno essere allontanati immediatamente dal cantiere a cura e spese dello stesso Appaltatore.

CAPO I DESIGNAZIONE DEI MATERIALI E DEGLI IMPIANTI

1° lotto (dal km 193 al km 199)

CA349

Capitolate Speciale di Appalto Impianti

Art. 3. Riferimenti normativi

I principali riferimenti normativi assunti alla base per la realizzazione del presente appalto sono:

- Circolare Ministero dei LL.PP. n. 7938 del 06/12/1999: "Sicurezza della circolazione nelle gallerie stradali con particolare riferimento ai veicoli che trasportano materiali pericolosi";
 - Decreto Legge del 5 giugno 2001: "Sicurezza nelle gallerie stradali";
 - Legge del 1 agosto 2002: "Disposizioni in materia di infrastrutture e trasporti";
- Direttiva 2004/54/CE del Parlamento Europeo e del Consiglio del 29 aprile 2004 relativa ai requisiti minimi di sicurezza per le gallerie della rete stradale transeuropea;
- D. Lgs. del 5 ottobre 2006 n. 264: "Attuazione della direttiva 2004/54/CE in materia di sicurezza per le gallerie della rete stradale transeuropea";
- Direzione Centrale Progettazione ANAS ottobre 2009: "Linee Guida per la progettazione della sicurezza nelle gallerie stradali secondo la normativa vigente";
 - Norma UNI 11095/11: "Illuminazione delle gallerie"; per gli impianti di illuminazione di galleria;
 - Norma UNI 11248: "Selezione delle categorie illuminotecniche";
 - Norma UNI 13201/2-3-4: "Illuminazione stradale;
 - alle prescrizioni applicabili contenute nelle disposizioni legislative;
 - alle prescrizioni applicabili contenute nelle Circolari Ministeriali;
 - alle prescrizioni delle Norme UNI e CEI;
- alle prescrizioni dei Vigili del Fuoco, degli Enti preposti a vigilare sulla sicurezza e delle Autorità locali;
- alle raccomandazioni PIARC (Permanent International Associations of Road Congress) per la ventilazione;
 - alle prescrizioni delle Norme Tecniche ENEL.
 In modo esplicativo e non limitativo si elencano le Leggi e le Normative di riferimento:
- D. Lgs. N. 163 del 12/4/2006: Codice dei contratti pubblici relativi a lavori, servizi e forniture in attuazione alle direttive comunitarie 2004/17/CE e 2004/18/CE;
- D. Lgs. T.U. D. Lgs. 81/2008 del 9/4/2008: Attuazione dell'articolo 1 della legge 3 agosto 2007, n. 123, in materia di tutela della salute e della sicurezza nei luoghi di lavoro;
- D.P.R. 1° agosto 2011, n. 151: "Regolamento recan te semplificazione della disciplina dei procedimenti relativi alla prevenzione degli incendi, a norma dell'articolo 49, comma 4-quater, del decreto-legge 31 maggio 2010, n. 78, convertito, con modificazioni, dalla legge 30 luglio 2010, n. 122";
 - D.P.R. n°303 del 19 marzo 1956: "Norme generali per l'igiene del lavoro"; (art. 64 potere ispettivo);
 - D.P.R. n°320 del 20 marzo 1956: "Norme per la prevenzione degli infortuni e l'igiene del lavoro in sotterraneo";

1°lotto (dal km 193 al km 199)

CA349

Capitolate Speciale di Appalto Impianti

- Legge n° 615 del 13 luglio 1966: "Provvedimenti c ontro l'inquinamento atmosferico" e regolamento di attuazione in vigore;
- DIRETTIVA 2006/42/CE DEL PARLAMENTO EUROPEO E DEL CONSIGLIO del 17 maggio 2006 relativa alle macchine e che modifica la direttiva 95/16/CE (rifusione);
- Legge n° 186 del 1 marzo 1968: "Disposizioni concernenti la produzione di materiali, apparecchiature, macchinari, installazioni e impianti elettrici ed elettronici";
- Legge n° 791 del 18 ottobre 1977: "Attuazione del la direttiva del Consiglio delle Comunità Europee n° 73/23/CEE relativa alle garanzie di sicurezza che deve possedere il materiale elettrico destinato ad essere utilizzato entro alcuni limiti di tensione";
- D.M. 26 giugno 1984: "Classificazione di reazione al fuoco ed omologazione dei materiali ai fini della prevenzione incendi";
 - D. M. LL.PP. del 12 dicembre 1985: "Norme tecniche per le tubazioni";
 - Legge 26 ottobre 1995 n°447: "Legge quadro sull' inquinamento acustico";
- D.P.R. n° 588 del 28 novembre 1987: "Attuazione delle Direttive CEE n. 79/113, n. 81/1051, n. 85/405, n. 84/533, n. 85/406, n. 84/534, n. 84/535, n. 85/407, n. 84/536, n. 85/408, n. 84/537, n. 85/409, relative al metodo di misura del rumore nonché al livello sonoro o di potenza acustica di motocompressori, gru a torre, gruppi elettrogeni di saldatura, gruppi elettrogeni;
- D.P.R. n.37 2008 "Norme per la sicurezza degli impianti", con riferimento ai seguenti articoli: 8 (finanziamento delle attività di normazione tecnica), 14 (verifiche), 16 (sanzioni);
- Decreto del Ministero dello Sviluppo Economico 22 gennaio 2008, n. 37: Regolamento concernente l'attuazione dell'articolo 11-quaterdecies, comma 13, lettera a) della Legge n. 248 del 2005, recante riordino delle disposizioni in materia di attività di installazione degli impianti all'interno degli edifici (G.U. n. 61 del 12 marzo 2008);
- Legge n° 10 del 9 gennaio 1991: "Norme per l'attu azione del nuovo Piano Energetico Nazionale in materia di uso razionale dell'energia, di risparmio energetico e di sviluppo delle fonti rinnovabili di energia" e regolamento di attuazione in vigore;
 - Circolare Ministero Interno, Direzione Generale Protezione Civile e Servizi Antincendi –
- 31/8/78, n. 31 MI.SA. (78) 11: Norme di sicurezza per installazione di motori a combustione interna accoppiati a macchina generatrice elettrica o a macchina operatrice;
- Circolare prot. 386 del 04/10/2000 emanata dalla Direzione Generale ANAS Direzione Centrale Affari Generali Ufficio Telecomunicazioni Specifiche generali per la costruzione di impianti di soccorso stradale".
- Legge n. 1086/81: "Norme per la disciplina delle opere di conglomerato cementizio armato, normale o precompresso, ed a struttura metallica";
 - Legge n. 64/74: "Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche";
 - D.M. 14/9/2005: "Norme Tecniche per le Costruzioni";

1°lotto (dal km 193 al km 199)

CA349

Capitolate Speciale di Appalto Impianti

- D. Lgs. 19/03/96 nº242: "Modificazioni ed integra zioni al decreto legislativo 19/09/94 nº626 recante attuazione di direttive comunitarie riguardanti il miglioramento della sicurezza e della salute dei lavoratori sul luogo di lavoro";
- D. Lgs. 25 novembre 1996 n° 626: "Attuazione dell'a direttiva 93/68 CEE Marcatura CE del materiale elettrico";
- D. Lgs. 31/09/97 n° 277 "Modificazioni al decreto legislativo 25 novembre 1996 n° 626, recante attuazione della direttiva 93/68/CEE in materia di marcatura CE del materiale elettrico destinato ad essere utilizzato entro taluni limiti di tensione";
- D.M. 19/02/07: "Criteri e modalità per incentivare la produzione di energia elettrica mediante conversione fotovoltaica della fonte solare, in attuazione dell'articolo 7 del decreto legislativo 29 dicembre 2003, n. 387";
- Delibera n. 90/07 Attuazione del Decreto del Ministro dello Sviluppo economico, di concerto con il Ministro dell'Ambiente e della tutela del territorio e del mare 19 febbraio 2007, ai fini dell'incentivazione della produzione di energia elettrica mediante impianti fotovoltaici;
- Delibera n. 88/07 "Disposizioni in materia di misura dell'energia elettrica prodotta da impianti di generazione";
- Delibera n. 89/07 "Condizioni tecnico economico per la connessione di impianti di produzione di energia elettrica alle reti elettriche con obbligo di connessione di terzi a tensione nominale minore o uguale a 1kW";
- Delibera n. 150/08 "Ulteriori disposizioni in materia di misura dell'energia elettrica prodotta da impianti di generazione in materia di misura dell'energia elettrica prodotta e immessa da impianti di produzione Cip n.6/92";
- Delibera n. 33/08 "Condizioni tecniche per la connessione alle reti di distribuzione dell'energia elettrica a tensione nominale superiore a 1 kV";
- Delibera n. 74/08 "Testo integrato delle modalità e delle condizioni tecnico-economiche per lo scambio sul posto (TISP);
- Delibera n. 99/08 "Testo integrato delle condizioni tecniche ed economiche per la connessione alle reti elettriche con obbligo di connessione di terzi degli impianti di produzione di energia elettrica".

Per la realizzazione di impianti elettrici si fa riferimento alla sequente normativa tecnica:

- CEI 64-8: "Impianti elettrici utilizzatori a tensione nominale non superiore a 1000 V in c.a. e a 1500 V in c.c.";
- CEI 17-13/1 CEI EN 61439-1-2-3-4: "Apparecchiature assiemate di protezione e di manovra per Bassa Tensione;
- CEI 23-51: "Prescrizioni per la realizzazione, le verifiche e le prove dei quadri di distribuzione per installazioni fisse per uso domestico e similare." Si sottolinea come, in conformità a quanto prescritto dalla Normativa CEI 23-51, i quadri di distribuzione con corrente nominale maggiore di 32A (e minore di

1°lotto (dal km 193 al km 199)

CA349

Capitolate Speciale di Appalto Impianti

125A), dovranno essere sottoposti a verifiche analitiche dei limiti di sovratemperatura, secondo le modalità illustrate dalla stessa CEI 23-51;

- CEI 11-17 "Impianti di produzione, trasmissione e distribuzione di energia elettrica Linee in cavo";
- CEI 11-27: "Lavori su impianti elettrici con accesso alle parti attive e conseguente rischio di folgorazione o arco elettrico";
 - ISO 3684: "Segnali di sicurezza, colori";
 - CEI 11-20: "Impianti di produzione di energia elettrica e gruppi di continuità collegati a reti di I e II categoria";
- CEI EN 60904-1 (CEI 82-1): "Dispositivi fotovoltaici. Parte 1: Misura delle caratteristiche fotovoltaiche tensione-corrente";
- CEI EN 60904-2 (CEI 82-2): "Dispositivi fotovoltaici. Parte 2: Prescrizione per le celle fotovoltaiche di riferimento";
 - CEI EN 60904-3 CEI (82-3): "Dispositivi fotovoltaici. Parte 3: Principi di misura per sistemi solari fotovoltaici per uso terrestre e irraggiamento spettrale di riferimento";
- CEI EN 61727 (CEI 82-9): "Sistemi fotovoltaici (FV). Caratteristiche dell'interfaccia di raccordo con la rete":
- CEI EN 61215 (CEI 82-8): "Moduli fotovoltaici in silicio cristallino per applicazioni terrestri. Qualifica del progetto e omologazione del tipo";
- CEI EN 61646 (CEI 82-12): "Moduli fotovoltaici (FV) a film sottile per usi terrestri Qualifica del progetto e approvazione di tipo". L'impiego di tali moduli è tuttavia consentito solo se la domanda di accesso alle tariffe incentivanti è presentata da persone giuridiche;
- CEI EN 61730-1 (CEI 82-27): "Qualificazione per la sicurezza dei moduli fotovoltaici Parte 1: Prescrizioni per la costruzione";
 - CEI EN 50380 (CEI 82-22): "Fogli informativi e dati di targa per moduli fotovoltaici";
- CEI EN 61000-3-2 (CEI 110-31): "Compatibilità elettromagnetica (EMC) Parte 3: Limiti Sezione 2: Limiti per le emissioni di corrente armonica (apparecchiature con corrente di ingresso = 16 A per fase)";
- CEI EN 60555-1 (CEI 77-2): "Disturbi nelle reti di alimentazione prodotti da apparecchi elettrodomestici e da equipaggiamenti elettrici simili- Parte 1: Definizioni";
 - CEI EN 60439-1-2-3: "Apparecchiature assiemate di protezione e manovra per bassa tensione";
- CEI EN 60445 (CEI 16-2): "Individuazione dei morsetti e degli apparecchi e delle estremità dei conduttori designati e regole generali per un sistema alfanumerico";
 - CEI EN 60529 (CEI 70-1;V1): "Gradi di protezione degli involucri (codice IP)";
 - CEI EN 60099 (CEI 37-1-2-3): "Scaricatori";
 - CEI 20-19: "Cavi isolati con gomma con tensione nominale non superiore a 450/750 V";
 - CEI 20-20: "Cavi isolati con polivinilcloruro con tensione nominale non superiore a 450/750 V";
 - CEI 81-10: (CEI EN 62305) "Protezione contro i fulmini";

1°lotto (dal km 193 al km 199)

CA349

Capitolate Speciale di Appalto Impianti

- CEI 81-3: (CEI EN 62305) "Valori medi del numero di fulmini a terra per anno e per chilometro quadrato";
 - CEI 81-10 (CEI EN 62305) Parte 2: "Valutazione del rischio";
 - UNI 10349: "Riscaldamento e raffrescamento degli edifici. Dati climatici";
 - UNI 8477: "Energia solare. Calcolo degli apporti per applicazioni in edilizia. Valutazione dell'energia raggiante ricevuta".

Per quanto attiene nello specifico l'impianto di spegnimento incendi si fa riferimento alla seguente normativa tecnica:

- UNI 804: Apparecchiature per estinzione incendi Raccordi per tubazioni flessibili;
- UNI 805: Apparecchiature per estinzione incendi Cannotti filettati per raccordi per tubazioni flessibili;
- UNI 807: Apparecchiature per estinzione incendi Cannotti non filettati per raccordi per tubazioni flessibili;
 - UNI 808: Apparecchiature per estinzione incendi Girelli per raccordi per tubazioni flessibili;
 - UNI 810: Apparecchiature per estinzione incendi Attacchi a vite;
- UNI 813: Apparecchiature per estinzione incendi Guarnizioni per raccordi e attacchi per tubazioni flessibili;
- UNI 814: Apparecchiature per estinzione incendi Chiavi per la manovra dei raccordi, attacchi e tappi per tubazioni flessibili;
 - UNI EN 10224: Tubi di acciaio, senza saldatura e saldati, per condotte di acqua;
- UNI EN 1074-2: Saracinesche flangiate per condotte d'acqua Condizioni tecniche di fornitura; UNI EN 7421/07: Apparecchiature per estinzione incendi Tappi per valvole e raccordi per tubazioni flessibili;
- UNI EN 7422/11: Apparecchiature per estinzione incendi Requisiti delle legature per tubazioni flessibili;
- UNI EN 10255-05: Tubi senza saldatura e saldati, di acciaio non legato, filettabili secondo UNI ISO 10226-1- UNI ISO 10226-2;
- UNI EN 14384/06: Apparecchiature per estinzione incendi Tubazioni flessibili antincendio di DN 45 e 70 per pressioni di esercizio fino a 1,2 MPa;
- UNI –EN 694/05: Apparecchiature per estinzione incendi Tubazioni semirigide di DN 20 e 25 per naspi antincendio;
- UNI-EN 1245/05: Apparecchiature per estinzione incendi Alimentazioni idriche per impianti automatici antincendio;
 - UNI 9795/10: Sistemi fissi automatici di rivelazione e di segnalazione manuale di incendio;
- UNI 10779/07: Impianti di estinzione incendi Reti di idranti Progettazione, installazione ed esercizio;

1°lotto (dal km 193 al km 199)

CA349

Capitolate Speciale di Appalto Impianti

- UNI EN 671-3 /09: Sistemi fissi di estinzione incendi Sistemi equipaggiati con tubazioni naspi antincendio con tubazioni semirigide;
- CEI 64-8 /12: Impianti elettrici utilizzatori a tensione nominale non superiore a 1000 V e a 1500 V in corrente continua;
 - CEI 64-7 "Impianti elettrici di illuminazione pubblica";
 - UNI ISO 13379-1:2012: Monitoraggio e diagnostica dello stato delle macchine Tecniche d'interpretazione dei dati e per la diagnosi Parte 1: Linee guida generali;
- UNI ISO 10816-3:2012: Vibrazioni meccaniche Valutazione delle vibrazioni delle macchine mediante misurazioni sulle parti non rotanti Parte 3: Macchine industriali con potenza nominale maggiore di 15 kW e velocità di rotazione nominale compresa tra 120 giri/min e 15.000 giri/min, quando misurate in sito
 - EC 1-2012 UNI EN ISO 13351:2010 Ventilatori Dimensioni;
- UNI EN 15727:2010: Ventilazione degli edifici Condotte e componenti delle reti di condotte, classificazione della tenuta e prove;
 - UNI EN ISO 13350:2009: Ventilatori industriali Prove prestazionali di ventilatori ad impulso;
 - UNI EN ISO 5802:2009 Ventilatori industriali Prove prestazionali in sito.

 Dovranno inoltre essere considerate le raccomandazioni contenute all'interno delle seguenti

 Guide:
- CEI 11-25 "Correnti di corto circuito nei sistemi trifasi in corrente alternata. Parte 0. Calcolo delle correnti":
- CEI 11-28 "Guida d'applicazione per il calcolo delle correnti di cortocircuito nelle reti radiali a bassa tensione";
 - CEI 11-35 "Guida all'esecuzione delle cabine elettriche d'utente";
- CEI 11-37 "Guida per l'esecuzione degli impianti di terra di stabilimenti industriali per sistemi di I, II e III categoria";
 - CEI 0-2: "Guida per la definizione della documentazione di progetto per impianti elettrici";
- CEI 82-25: "Guida alla realizzazione di sistemi di generazione fotovoltaica collegati alle reti elettriche di media e bassa tensione".
 - Guida CEI 64-14, "Guida alle verifiche degli impianti elettrici utilizzatori";
 - Guida per le connessioni alla rete elettrica di Enel distribuzione.

Art. 4 Opere edili

4.1 Pozzetti di transito per reti elettriche

CA349

Capitolate Speciale di Appalto Impianti

Dovranno avere le dimensioni interne utili indicate negli elaborati grafici ed essere preventivamente predisposti per l'ingresso dei cavidotti nelle 4 direzioni.

Quelli ubicati su sede stradale in sommità dovranno essere completi di chiusino in ghisa di tipo carrabile B250, mentre alla base dovranno essere provvisti di dreno per lo smaltimento delle acque meteoriche.

Quelli ubicati fuori dalla sede stradale in sommità dovranno essere completi di chiusino in ghisa B125, robusti, mentre alla base dovranno essere provvisti di dreno per lo smaltimento delle acque meteoriche.

I pozzetti di transito in esecuzione prefabbricata dovranno essere completi di fondo e posati su piani di appoggio regolarizzati attraverso uno strato di magrone di regolarizzazione di spessore non inferiore a 5 cm. I pozzetti promiscui per reti elettriche e trasmissione dati dovranno, all'interno, essere ripartiti da una parete verticale di spessore pari alle pareti esterne, in modo da creare due vani destinati uno al transito dei sistemi di trasmissione dati, alle reti geografiche e territoriali ed alle correnti deboli delle strumentazioni in campo, ed un secondo destinato al transito delle linee in cavo per la distribuzione dell'energia elettrica.

4.2 Pozzetti di transito per le predisposizioni secondo direttive ANAS

Dovranno avere le dimensioni interne utili indicate negli elaborati grafici ed essere preventivamente predisposti per l'ingresso dei cavidotti sulle 2 pareti lungo la direttrice dell'asse stradale. In sommità il pozzetto dovrà essere completo di chiusino in ghisa di tipo carrabile, mentre alla base dovrà essere ricavato il dreno per lo smaltimento delle acque meteoriche.

I pozzetti di transito in esecuzione prefabbricata dovranno essere completi di fondo ed essere posati su piani di appoggio regolarizzati attraverso uno strato di magrone di regolarizzazione di spessore non inferiore a 5 cm.

In considerazione del futuro impiego delle vie cavi predisposte, le tubazioni attestate all'interno dei pozzetti dovranno essere dotate di filo di traino, ed alle estremità di attestazione interne ai pozzetti di transito sigillate con tappi di lana di vetro resi impermeabili e solidali con le tubazione mediante catalizzatore a base di resine epossidiche.

4.3 Polifore di predisposizione per infrastrutture a rete secondo direttive ANAS

Dovranno essere realizzate lungo l'intero tracciato stradale sui due lati della sede stradale secondo lo schema di impianto indicato negli allegati elaborati di progetto.

1°lotto (dal km 193 al km 199)

CA349

Capitolate Speciale di Appalto Impianti

Le polifore dovranno essere protette meccanicamente attraverso elemento realizzato in calcestruzzo prefabbricato in modo da assicurare continuità e stabilità all'azione di dilavamento delle scarpate del rilevato.

La sezione corrente dovrà avere percorso quanto più rettilineo secondo una direttrice esterna al sistema di pozzetti di raccolta delle acque meteoriche.

La sezione corrente della polifora dovrà prevedere:

- a) la predisposizione di un elemento di ancoraggio in superficie;
- b) una prima sezione di scavo per la posa di un elemento di sostegno;
- c) regolarizzazione del fondo di impostazione del prefabbricato;
- d) la posa di un elemento prefabbricato costituente la parete del pozzetto da ancorare alla struttura di superficie per il sostegno della parete di scavo;
 - e) l'allargamento della sezione di scavo;
 - f) il completamento del piano di posa del fondo di impostazione del prefabbricato;
- g) la posa di un secondo elemento prefabbricato costituente l'intera struttura della protezione meccanica a forma di "U" per i cavidotti;
 - h) la posa del setto divisorio interno e degli elementi traversi di irrigidimento in cls. prefabbricato;
- i) la posa delle tubazioni asservite alle diverse reti di energia e telecomunicazione, completi di funi di traino in materiale plastico disposti all'interno nei diametri indicati sugli elaborati grafici di progetto;
 - j) il riempimento con sabbia lavata;
 - k) la posa dell'elemento prefabbricato di copertura;
 - I) la guaina di sommità antivegetativa;
 - m) la bandella di localizzazione delle predisposizioni interrate.

I cavidotti di diverso diametro dovranno essere disposti alla base nei diametri più grandi ed in sommità i diametri minori.

In presenza di opere d'arte il manufatto della polifora dovrà essere realizzato prevalentemente alla base delle stesse senza interferire con le sistemazioni idrauliche esistenti in modo da condizionarne il funzionamento per gravità.

Qualora questo non fosse possibile, si dovrà trasferire la linea di posa in sommità all'opera d'arte con cavidotti in acciaio inox AISI 316L di raccordo tra i due diversi piani di posa.

In presenza di viadotti, le polifore saranno sostituite con vie cavo a canale in vetroresina o acciaio inox ancorate all'opera stradale mediante strutture portanti in acciaio.

4.4 Blocchi di fondazione per cartelli a messaggio variabile

Dovranno essere realizzati in calcestruzzo ed eseguiti in conformità ai disegni di progetto e seguendo le prescrizioni della Direzione Lavori.

Ciascun basamento dovrà presentare lungo l'asse trasversale un foro leggermente conico per l'infissione del candelabro e dovrà avere incorporato il pozzetto di transito dei cavi di alimentazione,

1°lotto (dal km 193 al km 199)

CA349

Capitolate Speciale di Appalto Impianti

oltre alla predisposizione di tubi di raccordo dal pozzetto stesso al candelabro, qualora la dorsale dei cavi corra in banchina.

La base di appoggio dei blocchi di fondazione dovrà essere preventivamente regolarizzata mediante malta cementizia di opportuno spessore.

I blocchi di fondazione delle strutture portanti della cartellonistica a messaggio variabile dovranno essere realizzate in calcestruzzo armato completi dei tirafondi e delle piastre di attacco posizionate secondo gli elaborati grafici di progetto e della loro carpenteria metallica di sostegno fornita dal costruttore.

I pozzetti di transito, parte integrante dei blocchi di fondazione, dovranno essere corredati di chiusini in ghisa serie pesante di tipo carrabile. La superficie superiore dei blocchi dovrà essere sagomata, ancora in corso di getto, a quattro spioventi per assicurare l'allontanamento dell'acqua dalla base dei candelabri.

Nel caso in cui i blocchi di fondazione venissero a trovarsi in scarpate di terra, in presenza di materiale friabile e non fosse possibile spostarli in terreno più adatto, gli stessi dovranno essere integrati nella loro geometria specifica con le modalità prescritte dalla Direzione Lavori.

L'Appaltatore, in ogni caso, dovrà produrre il calcolo di verifica della stabilità della fondazione, in relazione:

- al tipo di candelabro, o al tipo di struttura per il sostegno dei cartelli indicatori a pellicola o a messaggio variabile;
 - alla natura del terreno su cui è impostata la fondazione stessa;
 - alla velocità del vento che dovrà essere assunta pari a 150 Km/h.

Art. 5. Opere elettriche di illuminazione

5.1 Vie cavi - "Cavidotti, Tubazioni e passerelle portacavi"

1.1.1.1.1 5.1.1 Tubazioni in materiale termoplastico per posa interrata

Dovranno essere di tipo singola parete con elevata resistenza di isolamento con superfici interne perfettamente lisce, bicchierati da un lato e marchiati IMQ in superficie.

In esterno dovranno essere dotati di banda gialla tracciata a spirale sulla superficie in modo da evidenziare la presenza della rete elettrica. Le bande di segnalazione dovranno essere presenti anche sulle tubazioni di piccolo diametro. I cavidotti per reti interrate dovranno essere realizzati con materiale termoplastico a base di cloruro di polivinile inattaccabile dagli acidi e dai microrganismi e dovranno

CA349

Capitolate Speciale di Appalto Impianti

essere di "serie pesante" con resistenza allo schiacciamento non inferiore a 450 Newton in conformità alla norme CEI 23-29, 23-46 CEI-EN 1-2-4.

1.1.1.1.2 5.1.2 Tubazioni flessibili in polietilene a doppia parete per posa interrata

Dovranno essere realizzati in polietilene a doppia parete concentrica. La parete esterna dovrà essere con profilo di superficie spiralato in modo da favorire l'ammorsamento nel terreno o nel calcestruzzo ogni qualvolta si sia in presenza di protezione meccanica supplementare. La parete interna dovrà essere liscia e con elevata resistenza di isolamento.

La connessione delle tubazioni dovrà essere attuata con appositi manicotti di giunzione lineare in grado di assicurare la continuità nella giunzione di entrambe le pareti.

In assenza di bande di segnalazione sulla superficie esterna, la presenza dei cavidotti dovrà essere segnalata mediante nastri di segnalamento posati lungo l'intero tracciato di posa.

1.1.1.1.3 5.1.4 Passerellle portacavi

Le passerelle portacavi per impianti dovranno essere costruite con lamiera di acciaio inox AISI 304L con lo spessore della lamiera misurato prima della lavorazione non inferiore a 15/10 mm.

Le passerelle dovranno essere lavorate in modo da ottenere il bordo rinforzato attraverso sagomatura ed arrotondato in sommità. Dovranno essere fornite in elementi modulari con taglie da 1 a 6 metri complete di elementi di giunzione e bulloneria a testa arrotondata in acciaio inox AISI 304L.

L'altezza minima del bordo dovrà essere di 70 mm, mentre la larghezza potrà variare da 100 a 300 mm in base alle indicazioni di progetto.

Le passerelle dovranno essere fornite complete di staffe di fissaggio, giunti, pezzi speciali e mensole di sostegno regolabili in altezza, costruite con profilato d'acciaio zincato a caldo, opportunamente asolato e di spessore adeguato all'entità dei pesi installati all'interno del canale.

I sistemi di assemblaggio, ed i loro accessori, dovranno essere forniti completi di bulloneria in numero totale da soddisfare, con il massimo carico ammissibile, la seguente espressione: f < D/200

dove: f = freccia

D = interdistanza tra due punti di fissaggio consecutivi

Il dimensionamento dei tasselli dovrà essere eseguito in base al peso della struttura del sistema di cavidotti attrezzato, delle linee in cavo e delle apparecchiature illuminanti corredate degli accessori di dotazione, maggiorate di un coefficiente di sicurezza non inferiore a 2.

CA349

Capitolate Speciale di Appalto Impianti

Il sistema di fissaggio alla volta dovrà essere realizzato in acciaio austenico con percentuale di cromo non inferiore al 18% e del 12% di nichel in modo da favorire la naturale passivazione propria delle materie inossidabili.

1.1.1.1.4 5.1.5 Cavidotti in PVC autoestinguente per impianti interni agli edifici di cabina elettrica

Dovranno essere di tipo isolante rigidi a bassissima emissione di alogeni costruiti con materiale termoplastico autoestinguente di colore grigio RAL 7035 secondo le Norme CEI 23-8.

5.2 Cavi elettrici

1.1.1.1.5 5.2.1 Dispersore di terra longitudinale

Il dispersore longitudinale (quando previsto), all'interno degli scavi, dovrà essere costituito da treccia o corda di sezione non inferiore a 35 mmq o da tondo in acciaio zincato di sezione non 50 mmq o da barra in acciaio non trattato di sezione non inferiore a100 mmq.

La sezione del dispersore, se prevista, dovrà essere conforme a quanto indicato negli elaborati grafici allegati in relazione alla tipologia di materiale impiegato, comunque non inferiore a quanto previsto dalle normativa CEI 11-8, 64-8 64-12 per gli impianti di terra.

I dispersori di terra longitudinali, in espansione all'impianto di terra di cabina elettrica,(corda di rame nudo) o i collegamenti equipotenziali realizzati in corda di rame nudo (es. messa a terra delle vie cavi di galleria) in corrispondenza dei portali d'imbocco di galleria dovranno essere posati alla base dello scavo entro un letto di terreno vegetale di spessore non inferiore a 5/10 cm. All'impianto di terra dovranno essere collegati tutti gli utilizzatori con isolamento in classe 1 attraverso corda isolata di sezione non inferiore a 16mmq. Il collegamento al conduttore di terra dovrà essere effettuato mediante barra sezionabile dotata di capocorda con serraggio a mezzo bulloni in ottone cadmiato. Una volta eseguito l'impianto di terra, e rinterrato lo scavo, dovrà essere eseguita la misura di resistenza di terra in modo da conoscerne il valore effettivo. I sistemi di alimentazione TN-S, ed IT alimentati in media tensione attraverso propria cabina di trasformazione o in cogenerazione o in autoproduzione, dovranno avere il valore di impedenza di terra compatibile con il valore della tensione massima ammissibile verso terra e con il tempo di protezione intervento predeterminata sulla rete di media tensione in corrispondenza del punto di interconnessione dall'Ente Erogatore dell'energia elettrica.

1.1.1.1.6 5.2.2 Conduttore di terra e conduttori di protezione

1°lotto (dal km 193 al km 199)

CA349

Capitolate Speciale di Appalto Impianti

I conduttori di terra, se costituiti da conduttore flessibile isolato, dovranno avere guaina termoplastica giallo-verde a semplice isolamento tipo NO7V-K, con anima interna in treccia di rame, ed essere costruite secondo le norme CEI 20-22 II, 20-37 e 20-38. Il conduttore di protezione dovrà essere collegato a tutte le apparecchiature elettriche in classe 1 e dovrà essere costituito da conduttore chiaramente identificabile con guaina esterna striata di colore giallo-verde.

La sezione del conduttore di protezione dovrà essere definita secondo i criteri indicati nella tabella 54F della Norma CEI 64-8 e di seguito riportata:

Sezione dei conduttori di fase dell'impianto: S (mmq)

Sezione minima del corrispondente conduttore di protezione: Sp (mm2)

$$S < 16$$
 $Sp = S$

16 < S < 35 Sp =16

$$S > 35$$
 $Sp = S/2$

Tutti i conduttori di protezione di ogni singolo circuito dovranno essere portati separatamente alla barra di terra del quadro generale di bassa tensione presente all'interno della cabina elettrica.

I collegamenti equipotenziali dovranno essere costruiti secondo le norme CEI 20-22 II, 20-37 e 20-38 ed assicurare l'equipotenzialità delle masse estranee.

I conduttori equipotenziali dovranno essere collegati a nodi locali di attestazione periferica ed interconnessi con il sistema generale dell'impianto di terra; dovranno essere collegati ed identificati in modo univoco sul collettore di terra più vicino.

1.1.1.1.7 5.2.3 Cavi isolati per reti esterne di energia tipo FG16(O)R16

Dovranno essere a doppio tipo di isolamento isolati in gomma etilpropilenica di qualità G16 sotto guaina di PVC con particolari caratteristiche di reazione al fuoco e rispondente al Regolamento Prodotti da Costruzione (CPR).

Adatti per tensioni fino a 600/1000 V. Grado di isolamento 4 kV, costituiti da conduttori in corda flessibile di rame rosso ricotto, classe 5. Guaina esterna in PVC di qualità R16;

Colore: grigio;

A garanzia di ciò, tali cavi dovranno avere incorporato, per tutta la loro lunghezza, il contrassegno con l'indicazione della conformità dei cavi stessi alle norme C.E.I. nel formato seguente:

"Costruttore cavo FG16OR16 0,6/1 kV (sezione) Cca-s3,d1,a3 IEMMEQU (anno) (m) (tracciabilità)."

- temperatura di funzionamento 90 ℃
- temperatura minima di posa 0℃;
- temperatura di corto circuito 250℃
- Costruzione e requisiti CEI 20- 13;

1°lotto (dal km 193 al km 199)

CA349

Capitolate Speciale di Appalto Impianti

- Propagazione fiamma CEI EN 60332-1-2;
- Raggio minimo di curvatura almeno 6 volte il diametro massimo;

I cavi multipolari dovranno avere numero di conduttori e sezione come indicato negli elaborati grafici di progetto allegati, e comunque il loro dimensionamento non potrà essere inferiore a quanto richiesto dalla verifica tecnica per il coordinamento delle protezioni in bassa tensione.

1.1.1.1.8 5.2.4 Cavi isolati per reti esterne di energia tipo ARG16(O)R16

Dovranno essere a doppio tipo di isolamento isolati in gomma etilpropilenica di qualità G16 sotto guaina di PVC con particolari caratteristiche di reazione al fuoco e rispondente al Regolamento Prodotti da Costruzione (CPR).

Adatti per tensioni fino a 600/1000 V. Grado di isolamento 4 kV, costituiti da conduttori di corda di alluminio rigida, classe 2. Guaina esterna in PVC di qualità R16;

Colore: grigio;

A garanzia di ciò, tali cavi dovranno avere incorporato, per tutta la loro lunghezza, il contrassegno con l'indicazione della conformità dei cavi stessi alle norme C.E.I. nel formato seguente:

"Costruttore cavo ARG16OR16 0,6/1 kV (sezione) Cca-S3,d1,a3 IEMMEQU (anno) (m) (tracciabilità)."

- temperatura di funzionamento 90 ℃;
- temperatura minima di posa 0 ℃;
- temperatura di corto circuito 250℃
- Costruzione e requisiti CEI 20- 13;
- Propagazione fiamma CEI EN 60332-1-2;

I cavi multipolari dovranno avere numero di conduttori e sezione come indicato negli elaborati grafici di progetto allegati, e comunque il loro dimensionamento non potrà essere inferiore a quanto richiesto dalla verifica tecnica per il coordinamento delle protezioni in bassa tensione.

1.1.1.1.9 5.2.4 Cavi isolati per reti esterne di energia tipo FG7(O)M1

Dovranno essere di tipo non propaganti l'incendio, con isolamento elastomerico reticolato a base poliolefinica, grado di isolamento 4, costituiti da conduttori di rame, rivestiti con guaine e riempitivi speciali aventi caratteristiche tali da assicurare, in caso di incendio, un ridottissimo sviluppo di fumi opachi, la totale assenza di acido cloridrico e un ridottissimo sviluppo di gas o sostanze tossiche.

1°lotto (dal km 193 al km 199)

CA349

Capitolate Speciale di Appalto Impianti

I cavi dovranno essere costruiti secondo le Norme CEI 20-11 V2 20-35, 20-22 III, 20-37 I-II-III e 20-38.

I cavi avranno numero di conduttori e sezione come indicato negli elaborati grafici di progetto allegati e comunque il loro dimensionamento non potrà essere inferiore a quanto richiesto per il coordinamento delle protezioni.

1.1.1.1.10 5.2.5 Cavi isolati per reti esterne di energia tipo FTG10(O)M1

Dovranno essere di tipo non propaganti la fiamma e resistenti al fuoco, costituiti da materiale elastomerico reticolato a base poliolefenilica, con grado di isolamento 4, con conduttori di rame, rivestiti con guaina in silicone calza vetro, riempitivo in fibra di vetro e nastratura interna in vetro mica aventi caratteristiche tali da assicurare, in caso di incendio, un ridottissimo sviluppo di fumi opachi, la totale assenza di acido cloridrico e un ridottissimo sviluppo di gas o sostanze tossiche e resistere per 3 ore ad una fiamma di 750°C.

Le caratteristiche del cavo dovranno essere:

- temperatura di funzionamento 90 ℃
- temperatura di corto circuito 250℃
- raggio massimo di piegatura 6 volte diametro
- non propagante la fiamma CEI 20-35
- non propagante l'incendio CEI 20-22 III
- assenza di emissione di gas tossici CEI 20-38/1 e20/38/2
- resistenza al fuoco CEI 20 -45
- rispondenza alla normativa Europea EN 50200
- assenza di piombo nelle schermature interne;
- allestimento con condutture flessibili.

I cavi con le caratteristiche sopra indicate dovranno alimentare i circuiti di illuminazione permanente e tutte le utenze che costituiscono parte del sistema di sicurezza.

1.1.1.1.11 5.2.7 Cavi isolati per circuiti di segnalazione, soccorso e telecontrollo

Dovranno essere di tipo resistente al fuoco, con isolamento elastomerico reticolato a base poliolefenilica, adatti per tensione di esercizio fino a 1000 V, grado di isolamento 4.

Saranno di tipo multipolare nelle sezioni e tipologie indicate negli allegati elaborati grafici ed avranno conduttori di rame stagnato, rivestiti con guaina antifuoco ed antiroditore e riempitivi speciali aventi caratteristiche tali da assicurare, in caso di incendio, un ridottissimo sviluppo di fumi opachi, la totale assenza di acido cloridrico e ridottissimo sviluppo di gas o sostanze tossiche e resistere per 3 ore sottoposti alla fiamma di 750°C.

1° lotto (dal km 193 al km 199)

CA349

Capitolate Speciale di Appalto Impianti

I cavi dovranno essere costruiti secondo le Norme CEI 20-11/V2, 20-35, 20-36, 20-22III, 20-37III- III e 20-38.

1.1.1.1.12 5.2.8 Cavi a fibra ottica criteri generali

I cavi a fibra ottica, previsti per l'allestimento della rete di comunicazione autostradale per l'interconnessione dei nodi primari allestiti all'interno delle cabine di trasformazione e per l'interconnessione dei nodi territoriali previsti lungo il tracciato, dovranno essere costituiti da cavi multifibra in esecuzione armata adatti per una posa in esterno.

Cavi a fibra ottica di tipo monomodale

Sono di seguito specificate le caratteristiche dei materiali e le caratteristiche costruttive necessarie alla realizzazione dei cavi a fibra ottica monomodale rimandando la definizione specifica del numero di fibre, previste per ogni singolo collegamento, a quanto riportato negli allegati elaborati grafici parte integrante del progetto stesso.

In particolare i cavi dovranno avere:

- a) caratteristiche costruttive
- fibre ottiche monomodali con caratteristiche fisiche: 9/125 micron;
- loose con tamponamento di gelatina siliconata ad assorbimento di idrogeno, e costruito con materiale antifiamma e zero alogeni;
 - cordino centrale di rinforzo in acciaio;
- protezione antiroditore in acciaio in esecuzione armata con maglia di acciaio per installazione esterna a bassissima emissione di alogeni in caso di incendio.
 - b) caratteristiche ottiche
 - attenuazione (1300 nm) <1,2 db/km
 - campo di impiego (1300 nm) 300-1200 MHz/km
 - numerical aperture 0,275 ±0,15 nm
 - zero dispersion wave length 1320-1365 nm
 - zero dispersion slope 0,09
 - indice di rifrazione di gruppo (1300 nm) 1,491
 - c) caratteristiche fisiche
 - "core diameter" 9,2 micron
 - "clad diameter" 125 ±2 micron
 - diametro esterno >250 micron
 - concentricità del rivestimento >80%
 - disallineamento del "core" <6%
 - disallineamento del "clad" <2%
 - differenza parallelismo "core/clad" <1
 - d) caratteristiche ottiche

1°lotto (dal km 193 al km 199)

CA349

Capitolate Speciale di Appalto Impianti

- attenuazione (1300 nm) <0,4
- numerical aperture 0,13 nm
- zero dispersion wave length 1310 ±10 nm
- zero dispersion slope <0,092
- model field diameter (1300 nm) 9,3 ±0,5
- e) indice di rifrazione di gruppo a 1300 nm 1,4675
- f) proprietà "antifiamma" e "zero alogeni" conforme a:
- CEI 20-22 (Cap. III): Norme di prova che devono accertare la proprietà di non propagazione d'incendio da parte di cavi elettrici;
- CEI 20-37: Prove sui gas emessi durante la combustione di cavi elettrici "Cavi aventi ridotta emissione di fumi e di gas tossici o corrosivi". Nonché le raccomandazioni della Standard DIN VDE 0207/24, HM4 del marzo 1989.
 - g) prova di collaudo e test di accettazione dei cavi a fibra ottica

Tutti i cavi armati e non saranno soggetti ad una serie finale di test e prove di collaudo, in fabbrica da verificare a campione sulla base di un prelievo casuale effettuato dalla Direzione Lavori sull'intera fornitura approntata.

Le prove effettuate, documentate in contraddittorio se eseguite in fabbrica, o certificate da ENTE terzo, se eseguite presso laboratorio ufficiale, saranno considerati "Test di accettazione prima della spedizione in cantiere".

Il fornitore per conto dell'Appaltatore dovrà documentare l'esito positivo delle seguenti prove:

• Prova di percussione:

l'energia d'urto che il cavo deve assorbire senza che si producano variazioni permanenti di attenuazione deve essere di almeno 30 J; per valori di energia 50 J non dovrà riscontrarsi alcuna rottura di fibra (rif. Racc. CCITT G652);

• Prova di schiacciamento:

deve essere possibile sottoporre il cavo senza che si verifichino variazioni permanenti di attenuazione, ad un carico di almeno 1200 N/100 mm; per valori di carico 2300N/1200 mm non dovrà riscontrarsi alcuna rottura di fibra (rif. IEC 794-1);

• Prova di tiro:

il cavo, mediante i suoi elementi di trazione centrale e periferico, deve essere sottoposto a trazione con un carico di 50 daN, senza provocare allungamenti elastici delle fibre ottiche superiori allo 0,05% e allungamenti elastici del cavo superiori allo 0,25%;

• Raggio di curvatura:

deve essere possibile curvare il cavo senza che si riscontrino variazioni permanenti di attenuazione fino ad un raggio di curvatura pari a 20 volte il diametro esterno del cavo;

• Prove climatiche:

1°lotto (dal km 193 al km 199)

CA349

Capitolate Speciale di Appalto Impianti

l'attenuazione delle fibre ottiche a -10℃ e +40℃ verificata mediante OTDR (riflettore ottico), non dovrà discostarsi dai valori misurati a temperatura ambiente, nell'arco delle tolleranze e degli errori dello strumento di misura; nel campo di temperature -20℃ +60℃ gli incrementi di attenuazione dovranno comunque risultare inferiori a 0,10 dB/km (rif. norme IEC).

L'Appaltatore, in sede di accettazione dei materiali, dovrà produrre le prove di tipo dei cavi e la rispondenza della produzione alle prestazioni sopra indicate.

In sede di fornitura le prestazioni dovranno essere confermate attraverso prove di laboratorio ordinate dalla Direzione Lavori da eseguirsi su una o più campionature prelevata direttamente sulle forniture presenti in cantiere.

h) normative di riferimento

Per quanto riguarda le proprietà delle fibre ottiche si dovranno adottare le raccomandazioni specificate nelle Normative CCITT riferite ai vari tipi di fibre di seguito descritte:

- EN 187.000 Normativa generale dei cavi;
- EN 188.000 Normativa europea sulle fibre.

Cavi a fibra ottica di tipo multimodale

Le caratteristiche dei materiali e le modalità costruttive per la realizzazione dei cavi a fibra ottica multimodale dovranno essere conformi a quanto di seguito specificato rimandando la definizione del numero di fibre previste di ogni singolo collegamento a quanto riportato negli allegati elaborati grafici parte integrante del progetto stesso.

In particolare i cavi a fibra ottica multimodale per i collegamenti locali tra i singoli apparati dovranno essere:

- a) caratteristiche fisiche
- "core diameter" 62,5 ±3 micron
- "clad diameter" 125 ±2 micron
- diametro esterno >250 micron
- concentricità del rivestimento >80%
- disallineamento del "core" <5%
- disallineamento del "clad" <2%
- differenza parallelismo "core/clad" <3
- b) caratteristiche ottiche
- attenuazione (850 nm)<3,7 db/km
- campo di impiego (850 nm) 160-400 MHz/km
- numerical aperture 0,275 ±0,15 nm
- zero dispersion wave length 1320-1365 nm
- zero dispersion slope 0,097
- c) indice di rifrazione di gruppo (850 nm) 1,49

1°lotto (dal km 193 al km 199)

CA349

Capitolate Speciale di Appalto Impianti

Esecuzione armata con maglia di acciaio per installazione esterna a bassa emissione di alogeni in caso di incendio con allestimento singola coppia o in configurazione multicoppia con allestimento. I riferimenti normativi e le prestazioni strutturali dei cavi di resistenza meccanica dovranno essere le medesime indicate per i cavi sopramenzionati allestiti con fibre monomodali.

1.1.1.1.13 5.2.9 Cavi per collegamenti telefonici terminali e di trasmissione dati

Dovranno essere di tipo per interno in categoria 6 adatti per connessioni a prese telefoniche o di trasmissione dati RJ45 di pari categoria.

I cavi telefonici dovranno essere a 4coppie di tipo UTP o FTP in relazione alla tipologia delle apparecchiature elettroniche di fonia e trasmissione dati da essi interconnesse.

Dovranno essere ad una o più coppie secondo gli schemi e le modalità di collegamento proprie delle apparecchiature approvvigionate. Dovranno avere guaine isolanti di tipo non propaganti l'incendio, ed essere costituiti internamente da conduttori in rame, rivestiti con guaina in PVC. I conduttori avranno diametro nominale minimo pari a 0,6 mm, e le anime interne dovranno essere cablate a coppie o a quarte secondo quanto indicato negli elaborati grafici allegati. I cavi telefonici, utilizzati per i collegamenti di segnali, dovranno essere costruiti secondo le Norme CEI 46-5, 20-22 II.

1.1.1.1.14 5.2.10 Cavi per trasmissione dati

I cavi dovranno essere di categoria 6, isolati acusticamente e dovranno avere bassa capacità, schermatura globale interna e schermatura di superficie del tipo a calza con schermatura della superficie superiore al 65%.

I conduttori dovranno essere a trefoli 24 AWG (7x32); dovranno avere rivestimento esterno in PVC cromo; impedenza nominale 100 ohm, capacità nominale 40 pF/m.

I conduttori dovranno essere in rame stagnato con smalto isolante tipo Datalene o similare, dovranno avere la schermatura interna di tipo chiuso in alluminio e poliestere ed essere corredati dei connettori di collegamento terminale.

5.3 Pali di illuminazione

I pali per illuminazione pubblica devono essere conformi alle norme UNI-EN 40. E' previsto l'impiego di pali d'acciaio S235 secondo norma CNR- UNI 7070/82, a sezione circolare e forma conica (forma A2 - norma UNI-EN 40/2). Le caratteristiche dimensionali ed estetiche, ed i particolari costruttivi sono indicati nei disegni di progetto. Lo standard di qualità da assumere a riferimento è il PALO CONICO tipo "ITO SCHREDER"; altezza totale 8,80 m, classe d'isolamento II, dotato di morsettiera sempre di classe II, dotato di singolo sbraccio da 2,5 o 2m.

1°lotto (dal km 193 al km 199)

CA349

Capitolate Speciale di Appalto Impianti

Palo e sbraccio dovranno essere zincati a caldo a norma UNI EN 1461 e successivamente verniciati a polvere in colore grigio scuro tipo "ferro micaceo" in perfetta analogia ai pali utilizzati in altre installazioni limitrofe. Sui pali dovranno essere praticate numero due aperture delle seguenti dimensioni:

- un foro ad asola della dimensione di almeno 150 x 50 mm, per il passaggio dei conduttori, posizionato con il bordo inferiore a 500 mm circa dal previsto livello del suolo;
- una finestrella d'ispezione delle dimensioni 200 x 75 mm circa; tale finestrella dovrà essere posizionata con l'asse orizzontale parallelo al piano verticale passante per l'asse longitudinale del braccio o dell'apparecchio di illuminazione a cima-palo e collocata possibilmente dalla parte opposta al senso di transito del traffico veicolare, con il bordo inferiore ad almeno 600 mm sopra dei livello del suolo. La chiusura della finestrella d'ispezione dovrà avvenire mediante un portello realizzato in lamiera zincata a filo palo con bloccaggio mediante chiave triangolare oppure, solo nel caso sussistano difficoltà di collocazione della morsettiera e previo benestare dei direttore dei lavori, con portello in rilievo, adatto al contenimento di detta morsettiera, sempre con bloccaggio mediante chiave triangolare. Il portello deve comunque essere montato in modo da soddisfare il grado minimo di protezione interna IP 44 secondo Norma CEI 70-1. La finestrella d'ispezione dovrà consentire l'accesso all'alloggiamento elettrico che dovrà essere munito di un dispositivo di fissaggio (guida metallica) destinato a sostenere la morsettiera di connessione in classe II.

Per la protezione di tutte le parti in acciaio (pali, portello, guida d'attacco, braccio e codoli) è richiesta la zincatura a caldo. Il percorso dei cavi nei blocchi e nell'asola inferiore dei pali sino alla morsettiera di connessione, dovrà essere protetto tramite uno o più tubi in PVC flessibile serie pesante diametro minimo 63 mm, posato all'atto della collocazione dei pali stessi entro i fori predisposti nei blocchi di fondazione medesimi, come da disegni esecutivi.

Art. 6. Apparecchi illuminanti

6.1 Apparecchi di illuminazione con lampade a LED

Gli apparecchi di illuminazione con lampada a LED devono essere del tipo certificato ENEC con struttura portante realizzata in alluminio pressofuso o estruso con profilo a bassissima esposizione al vento, vano porta lampada IP66 con accesso facilitato.

Coperchi laterali in lamiera di acciaio AISI 304/316L.

Sistema di dissipazione del calore concepito in modo tale da garantire per il gruppo ottico il mantenimento di almeno l'80% del flusso luminoso iniziale a temperatura ambiente esterna media pari

1°lotto (dal km 193 al km 199)

CA349

Capitolate Speciale di Appalto Impianti

a 25℃ per un periodo di almeno 90.000 ore (L80B10) ed una vita media di almeno 110.000 ore in condizioni di normale funzionamento (TM21 - L70).

Finitura superficiale con garanzia integrale di almeno 10 anni sulle lenti, su tutte le parti metalliche, comprende diversi stadi di pretrattamento dei materiali.

La lampada è composta da una barra a led conforme alla norma EN62471 con "gruppo di rischio 1" (basso), con temperatura colore a 4000 K e resa cro matica CRI di almeno 75.

Principali caratteristiche prestazionali:

- Lenti di vetro piatte o di materiale similare che garantiscono un rendimento luminoso superiore al 90% all'esterno dell'apparecchio;
 - Driver regolabile con ingresso 1-10V o DALI per tele gestione;
 - Grado IK non minore di IK08;
 - Comprensivo di modulo per la gestione ad onde convogliate o ad onde radio;
 - Garanzia sull'intero prodotto di almeno 5 anni;
 - Classe di isolamento 2;
 - Cos f > 0.9;
 - Grado di protezione non minore di IP65 conforme a EN60598-1;
 - Temperatura di funzionamento da -20℃ a +50℃;
 - Alimentazione da 230V+/- 15% 50/60Hz;
 - Efficienza luminosa non minore di 110 lm/W.

Completo di viteria in acciaio inox, accessori, attacco per fissaggio al palo o sbraccio e quanto altro occorra per l'installazione ed il cablaggio.

Flusso luminoso netto reso all'esterno del proiettore.

Apparecchio fornito con driver elettronico per applicazione outdoor, cablato in classe 2.

• indice di resa cromatica CRI non inferiore a 80

6.2 Corpi illuminanti per illuminazione intersezioni

Apparecchio di illuminazione di tipo simmetrico o asimmetrico contro flusso, certificato ENEC con struttura portante realizzata in alluminio pressofuso o estruso o in acciaio inox almeno AISI 304, vano porta lampada IP66 con accesso facilitato, completo di interfaccia per trasmissione ad onde convogliate o onde radio con controllo del flusso luminoso del tipo punto-punto, con alimentatore interno.

Sistema di dissipazione del calore concepito in modo tale da garantire per il gruppo ottico il mantenimento di almeno l'80% del flusso luminoso a temperatura ambiente media pari a 25℃ per un periodo di almeno 90.000 ore (L80B10) ed una vita media di almeno 110.000 ore in condizioni di normale funzionamento (TM21 – L70).

1°lotto (dal km 193 al km 199)

CA349

Capitolate Speciale di Appalto Impianti

Finitura superficiale con garanzia integrale di almeno 10 anni sulle lenti, su tutte le parti metalliche, comprende diversi stadi di pretrattamento dei materiali.

Supporto di montaggio completo di piastra e chiusure a leva per aggancio rapido a canalina portacavi, con sistema anti-caduta il tutto realizzato in lamiera di acciaio inox almeno AISI 304.

La lampada è composta da una barra a led conforme alla norma EN62471 con "gruppo di rischio 1" (basso) con temperatura colore a 4000 K e resa crom atica CRI di almeno 75.

Principali caratteristiche prestazionali:

- Lenti di vetro piatte o di materiale similare che garantiscono un rendimento luminoso superiore al 90% all'esterno dell'apparecchio;
 - Driver regolabile con ingresso 1-10V o DALI per tele gestione;
 - Grado IK non minore di IK08;
 - Comprensivo di modulo per la gestione ad onde convogliate o ad onde radio;
 - Garanzia sull'intero prodotto di almeno 5 anni;
 - Classe di isolamento elettrico II;
 - Cos f > 0.9;
 - Grado di protezione non minore di IP65 conforme a EN60598-1;
 - Temperatura di funzionamento da -20℃ a +50℃;
 - Alimentazione da 230V+/- 15% 50/60Hz;
 - Ottica: Simmetrica/asimmetrica, stradale;
 - corrente di pilotaggio fino a 750mA;
 - efficienza luminosa non inferiore a 110 lm/W.

Il corpo illuminante deve essere fornito con cavo uscente di sezione minima 2x1.5mmq di tipo FTG10(O)M1 nel caso di utilizzo per illuminazione permanente e FG10(O)M1 nel caso di utilizzo per illuminazione di rinforzo, e spina CEE 2P 16A 230V IP65, completo di viteria in acciaio inox almeno AISI 304.

Sono compresi accessori, staffe per attacco alla canalina, materiali per il cablaggio e quanto altro occorre per dare il lavoro compiuto a perfetta regola d'arte.

Flusso luminoso netto reso all'esterno del proiettore.

I corpi illuminanti saranno montati sulla testa dei pali di illuminazione

Art. 7. Sistema di controllo ad onde convogliate

Il sistema ad onde convogliate è costituito principalmente da 3 componenti:

SS 131 "Carlo Felice" Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500

1° lotto (dal km 193 al km 199)

CA349

Capitolate Speciale di Appalto Impianti

• l'alimentatore che va installato sul punto luce al posto del reattore tradizionale e che sostituisce tutti gli ausiliari (accenditore, reattore, condensatore) e ha già il telecontrollo integrato.

• Per telecontrollare punti luce non regolabili (es. potenze elevate, lampade alogene o Sodio bassa pressione, la maggior parte degli attuali prodotti a LED) si installa il solo telecontrollo, contenuto nella Control Box o CB, installabile nel vano ausiliari, presso la morsettiera o l'asola del palo o in pozzetto. La CB è in grado di regolare il reattore a cui è collegata in modalità 0-10V.

• la centralina o CU - Control Unit che va installata all'interno del quadro o punto presa.

• il software di gestione "CB Manager" che può essere installato su un normale PC.

Al "CB Manager" è abbinato il Servizio Visualizzazione Dati via web, che permette al Cliente di accedere via internet da qualsiasi pc a tutte le informazioni di funzionamento e relative alle anomalie raccolte dal sistema.

1°lotto (dal km 193 al km 199)

CA349

Capitolate Speciale di Appalto Impianti

La comunicazione tra alimentatori o CB e CU avviene tramite onde convogliate a modulazione di frequenza.

Il protocollo utilizzato configura ogni punto come ripetitore e permette di utilizzare il sistema anche in presenza di elevati disturbi, cavi poco isolati e impianti estesi. E' sufficiente che la distanza tra la CU e il primo punto luce e tra un punto luce e il successivo sia entro i 600mt. Non sono necessari filtri.

La comunicazione tra la CU e il centro di gestione dove risiede il CB Manager può essere effettuata via GSM/GPRS grazie al modem integrato nella CU oppure via Ethernet o altri tipi di modem esterni.

Architettura semplice:

La centralina o CU - Control Unit - presso il quadro di alimentazione, e un alimentatore elettronico con telecontrollo integrato (HID*, o in alcuni casi il solo dispositivo di telecontrollo, CB - Control Box) presso il punto luce.

Unico elemento sul punto luce:

L'alimentatore con telecontrollo integrato - ingombro minimo, semplice da installare.

Il telecontrollo è applicabile ai corpi illuminanti a LED scelti e agisce con regolazione 0-10V.

Regolazione:

Si può impostare il valore di luminosità su qualsiasi livello compreso tra il 100% e il 20% (o lo spegnimento del punto luce).

Ogni livello di regolazione può essere impostato a qualsiasi orario

Ogni profilo può contenere fino a 5 diversi livelli di regolazione, ognuno variabile dal 100% al 20% di luminosità (o spegnimento)

Possibilità di programmazione di più profili di regolazione sia all'interno dello stesso impianto che durante l'arco dell'anno

1° lotto (dal km 193 al km 199)

CA349

Capitolate Speciale di Appalto Impianti

Informazioni tecniche:

- elevato rendimento (≥ 93%), ridotto autoconsumo, nessuna energia reattiva (cosfi > 0,96)
- pieno funzionamento dell'alimentatore garantito fino a 95℃, doppia protezione per sovratemperature
- rilevazione parametri per ogni punto luce (tensione e corrente di alimentazione, potenza assorbita dal sistema alimentatore + lampada, temperatura alimentatore, ecc.)
- segnalazione allarmi (es. spegnimento lampada, mancanza alimentazione elettrica sul quadro, interruzione di linea)
- rilevazione stato di degrado della lampada grazie alla misurazione della tensione di lampada
- protezione reversibile per 380V
- piena compatibilità elettromagnetica sia dei circuiti di alimentazione e regolazione che della comunicazione PLC (onde convogliate)
- lunga durata: 72.000h con tasso di guasto inferiore al 10% (corrispondente a circa 17 anni di funzionamento).

Art. 8 Pannelli a portale a pittogramma e messaggio variabile (PMV)

Caratteristiche generali

Protezione elettrica conformi alle Norme CEI, alle Leggi, decreti e regolamenti vigenti alla data di consegna ed in particolare i contatti diretti con protezione IP20

Alimentazione elettrica 230V+10%/50 Hz + 1 Hz

Immunità a disturbi secondo standard IEC e VDE

Condizioni ambientali esterne umidità relativa 0 ÷ 100%

temperatura ambiente -30 / +45℃

Impossibilità di formazione condensa o ghiaccio su vetro grado di impermeabilità IP55

Resistenza della struttura a vento costante fino a 120 km/h con raffiche fino a 200 km/h

Serrature con chiave unificata avente cifratura unica per l'intera attrezzatura.

La serratura dovrà essere protetta poiché dovrà essere applicata all'esterno. Le chiavi dovranno avere una punzonatura indicante il numero progressivo Connessioni variedotate di pressacavo con grado di protezione IP55

Tecnologia di comando mediante elettronica modulare a microprocessore integrata nel cartello Struttura meccanica

I cartelli dovranno avere una loro struttura metallica portante e saranno installati in una struttura metallica di sostegno per l'ubicazione finale ad adeguata altezza dal livello del suolo (le specifiche degli

1° lotto (dal km 193 al km 199)

CA349

Capitolate Speciale di Appalto Impianti

attacchi meccanici tra le due parti dovranno essere decise in accordo tra il costruttore dei cartelli ed il costruttore dei portali).

La struttura meccanica del cartello a ponte in attraversamento ai due sensi di marcia sull'intera sezione autostrade e dovrà risultare praticamente indeformabile alle sollecitazioni dovute al peso anche accidentale ed all'azione del vento.

Tutta la struttura portante del cartello dovrà essere zincata a caldo, dovrà essere resistente alla corrosione e in particolare tutta la cassa di alloggiamento esterna al cartello dovrà essere in acciaio inossidabile tipo AISI 316 con satinatura di grado 4 orizzontale o alluminio verniciato in grigio chiaro esternamente e nero internamente.

Tutte le parti interne, non in acciaio inossidabile, dovranno essere trattate con cadmiatura o zincatura con passivazione gialla classificazione UNI F.CD 12 III.

Tutte le parti metalliche devono essere curate in modo da non presentare spigoli taglienti o sporgenze che possano arrecare danno.

Tutta la viteria per la struttura meccanica utilizzata dovrà essere di acciaio inox tranne per la viteria necessaria alle connessioni elettriche.

Le guarnizioni utilizzate per garantire il grado di protezione richiesto dovranno essere tali da conservare nel tempo le caratteristiche originali di tenuta per temperatura nel range richiesto. Non dovranno essere del tipo ad incollaggio, ma di tipo automobilistico con anima in metallo, chiuse ad anello con vulcanizzazione.

La lastra trasparente a protezione del piano di lettura dovrà avere ottime caratteristiche resilienti. Inoltre dovrà avere l'inclinazione più opportuna per ridurre al minimo l'eventuale riflessione dei raggi solari verso le corsie di marcia (effetto specchio), dovrà resistere a corpi contundenti e non creare pericolo per caduta di materiali nel caso di rottura.

La protezione esterna deve essere di grado IP54, rimovibile solo con appositi attrezzi. A protezione rimossa dovrà essere garantito che tutte le parti eventualmente in tensione siano protette dai contatti diretti secondo le norme vigenti (IP20) o quelle in vigore al momento della realizzazione dell'opera.

Ugualmente, tutte le parti sotto tensione devono essere protette dai contatti accidentali con appositi setti e protezioni, sulle coperture deve essere indicata la tensione di alimentazione con simbologia regolamentare.

Elettronica

L'elettronica del cartello dovrà essere realizzata in modo modulare così da poter facilitare le operazioni di manutenzione e la ricerca dei guasti.

L'elettronica di potenza del cartello alfanumerico dovrà essere costituita da circuito di riga e di colonna facilmente sostituibili.

I moduli di visualizzazione dovranno anch'essi poter essere sostituiti singolarmente in modo rapido e semplice (ad incastro).

1°lotto (dal km 193 al km 199)

CA349

Capitolate Speciale di Appalto Impianti

L'elettronica di comando prevederà una scheda CPU che pilota l'intero sistema con firmware su EPROM che dovrà essere indipendente dal particolare cartello. Per potere individuare l'indirizzo

del cartello dovranno essere previsti almeno 8 dip-switch mediante i quali sarà possibile assegnare l'indirizzo dei cartelli su due caratteri numerici al protocollo multipunto utilizzato.

Dovrà essere prevista una porta di comunicazione seriale asincrona 24 V per il collegamento dati. Il tipo di comunicazione è asincrona con velocità programmabile da 50 Baud a 9600 Baud (50, 110, 300, 1200, 2400, 4800, 9600).

Dovrà essere inoltre previsto un pulsante che consenta il lancio del programma di test locale dei cartelli alfanumerici e pittogrammi con un pulsante per il re-start di tutta l'elettronica.

Rappresenterà requisito preferenziale la disponibilità di una elettronica di comando concepita con caratteristiche di architettura modulare.

L'Hardware richiesto dovrà consentire il pilotaggio del cartello a pittogrammi in modo disgiunto dal comando dei semafori. I semafori dovranno operare in modo coordinato secondo lo schema di progetto. Dovranno essere utilizzati bus standard in formato singolo Europa tipo VIE BUS. Per i connettori si richiedono contatti dorati per segnali con corrente inferiore a 5 A., mentre per correnti superiori sono sufficienti in ottone stagnato.

Su tutte le schede gli zoccoli per componenti dovranno avere i contatti dorati. Tutte le dorature dovranno corrispondere a quanto prescritto nelle Norme MIL-G-45204; tutte le schede dovranno avere subito trattamento di antipassivazione e trattate con apposite vernici antifungo in conformità alle specifiche di qualità in uso per il Ministero della Difesa.

I comandi di attivazione dovranno essere realizzati utilizzando componentistica allo stato solido. Opportuni criteri costruttivi e di progetto dovranno eliminare gli effetti condotti od indotti derivanti dalle variazioni di potenze anche impulsive assorbite attraverso tali comandi.

Tutte le schede elettroniche utilizzate nel cartello dovranno essere alloggiate in rack standard o comunque inserite ad incastro con connettori in modo da poter effettuare sostituzioni senza la necessità di essere forniti di attrezzatura alcuna negli interventi di manutenzione. L'elettronica di comando e comunicazione dovrà risiedere nella centralina ubicata all'interno del cartello.

Tutta l'elettronica dovrà essere protetta contro le sovratensioni di origine atmosferica e non che dovessero manifestarsi sulla rete di alimentazione.

Tutti i connettori di introduzione dovranno essere provvisti di chiavi antinversione.

Deve essere possibile in modo agevole sezionare l'interfaccia V24, V23 tra la CPU ed il modem di linea per indagini o controlli di manutenzione. L'interbloccaggio quindi dovrà essere fatto in maniera che sia installabile un cavo a V24 a T per strumentazione di monitor in linea.

Dovrà essere prevista l'elettronica di lettura e i sensori necessari per poter effettuare il test sul funzionamento dei circuiti e, delle lampade necessarie alla formazione dei pittogrammi e della presenza dell'alimentazione relativa.

1°lotto (dal km 193 al km 199)

CA349

Capitolate Speciale di Appalto Impianti

Su tutte le schede utilizzate dovranno essere previsti nei punti più significativi dei test point per effettuare misure.

Cartello a pittogramma variabile

I cartelli a pittogramma variabile dovranno permettere la realizzazione di segnaletica stradale rispettando le specifiche tecniche generali e le indicazioni riportate negli allegati elaborati grafici.

La segnaletica dovrà essere costruita per ottenere i seguenti pittogrammi:

- messaggio base con logo del Consorzio per le Autostrade Siciliane;
- messaggio di cortesia con data ora e temperatura esterna;
- manutenzione;
- veicolo fermo:
- limitazioni di velocità (50 70 90 Km/h);
- · coda:
- incidente.

La condizione di manutenzione, attivata dal sub-centro in modo manuale, dovrà essere prevaricata l'operatività dell'automatismo in caso di evento anomalo in intersezione.

La segnaletica di "Vento forte" dovrà essere costruita per ottenere i seguenti pittogrammi:

- messaggio base con logo di ANAS;
- messaggio di cortesia con data ora e temperatura esterna;
- limitazioni di velocità (50 km/h) associata alla indicazione di vento;
- limitazioni di velocità (70 km/h) associata alla indicazione di vento;
- limitazioni di velocità (90 km/h) associata alla indicazione di vento.

La realizzazione dovrà essere conforme alle normative vigenti in materia di segnaletica stradale. Non dovranno essere riscontrate differenze di definizione da punto a punto del messaggio visualizzato. I circuiti ottici dovranno essere dotati di una sorgente luminosa di sicurezza che, all'occorrenza, dovrà essere inserita automaticamente da un opportuno circuito elettronico sito a bordo del cartello stesso.

L'elettronica del cartello, oltre al controllo della sorgente luminosa, dovrà consentire la comunicazione su linea seriale RS232/485 verso un host sia per i comandi sia per la diagnostica del cartello stesso.

La potenzialità di ogni stazione dovrà essere composta da n. 1 pittogramma variabile costituito da pannello luminoso con matrice grafica attiva di dim. 1200x1350 mm a led con rappresentazione di tutta la segnaletica stradale secondo le prescrizioni e le specifiche colorimetriche del Codice della Strada.

Ogni matrice dovrà avere 72 righe e 64 colonne e ciascun pixel dovrà essere formato da 4 led diversamente colorati (rosso verde blu giallo) per un totale di 4608 pixel e di 18.432 led.

Caratteristiche prestazionali delle sorgenti luminose: • luminanza L3

- contrasto R3
- angolo di lettura B6
- regolazione automatica della luminosità su 256 livelli

1°lotto (dal km 193 al km 199)

CA349

Capitolate Speciale di Appalto Impianti

- porta seriale RS 232/485
- alimentazione 220V
- condizioni climatiche di operatività:
- umidità 0/95%;
- temperatura -5%+55℃.

A fianco di ogni cartello di accesso dovranno essere installate n. 1 lanterna semaforica diametro 300 mm per il colore rosso e n° 2 lanterne semaforiche diametro 200 per i colori giallo e il verde, equipaggiate con sorgente luminosa costituita da scheda precablata con 246 LED di colore ambra con intensità luminosa non inferiore a 500 cd ed angolo di 30°, mentre per la segnalazione di vento forte dovranno essere attrezzate due lanterne di diametro 200mm a luce gialla attrezzate con sorgente luminosa costituita da scheda precablata con 120 LED di colore ambra con intensità luminosa non inferiore a 250cd ed angolo di 30°.

I pannelli dovranno essere installati su una struttura metallica di sostegno conforme ai disegni allegati di tipo a semiportale dimensionata per il sostegno e la manutenzione del cartello indicatore.

La struttura dovrà essere costruita in acciaio zincato a caldo e verniciato e dovrà essere completa dei seguenti accessori:

- piastra e contropiastra con tirafondi per il fissaggio della struttura al blocco di fondazione o al cordolo del viadotto;
 - agganci e predisposizioni per il fissaggio dei cartelli;
 - bulloneria in acciaio inox;
 - accessori complementari alla posa.

Prove di accettazione di fabbrica dei cartelli a messaggio variabile

Al fine di verificare le prestazioni e la rispondenza dei cartelli a messaggio variabile e di segnalazione di "vento forte", alle specifiche tecniche previste dal presente Capitolato ed alle schede tecniche, presentate dall'Appaltatore alla Direzione Lavori, si dovrà procedere all'esecuzione delle prove di accettazione dei materiali presso il costruttore delle apparecchiature.

Elenco delle principali prove da effettuare:

- prova di emissione dei diodi led con la rilevazione dei valori di luminanza emessa con ogni tonalità di colore:
- prova di uniformità dei diodi led con la rilevazione dei valori di luminanza emessa con ogni tonalità di colore su campioni posizionati sulla stessa riga ma su differenti colonne;
- prova di funzionamento dell'impianto di ventilazione interna al pannello, alle soglie di temperatura di 50℃ e 80℃;
- prove di misura della resistenza di isolamento con pannello a messaggio variabile spento ed elettronica scollegata applicando la tensione di 1000V c.c. con durata dell'applicazione di 10 secondi;

1°lotto (dal km 193 al km 199)

CA349

Capitolate Speciale di Appalto Impianti

- prove di misura della rigidità dielettrica con pannello a messaggio variabile spento ed elettronica scollegata applicando la tensione di 1500V c.c. con durata dell'applicazione di 1 minuto;
- misura dell'assorbimenti minimo (con pittogramma "coda") a CPU e ventole di raffreddamento in funzione:
- misura degli assorbimenti massimo (con pittogramma "coda i") a CPU in funzione e scaldiglie anticondensa in funzione;
 - autotest locale: simulando il disinnesco di una scheda led;
 - prove di continuità sul circuito di messa a terra;
- prova di spegnimento e riaccensione del pannello a messaggio variabile attraverso l'inserzione dell'interruttore generale di protezione.
 - il controllo delle schermate tipo secondo i dettami del Codice della Strada.

Art. 9 Quadri di bassa tensione

I quadri di bassa tensione per la distribuzione della potenza dovranno essere di tipo totalmente segregato (forma 4), realizzati affiancando scomparti normati nella forma costruttiva dalle certificazioni di tipo, contenenti le apparecchiature di bassa tensione, pure normalizzate, progettati singolarmente e nel loro insieme per offrire con la massima semplicità costruttiva una molteplicità di impiego per soddisfare le esigenze di impianto.

9.1. Caratteristiche tecniche

- Caratteristiche ambientali:
- temperatura ambiente massima 40°C
- temperatura ambiente media (rif. 24 h) 35°C
- temperatura ambiente minima -10°C
- umidità relativa massima 25℃ 90%
- installazione all'interno di un quadro stradale in resina
- altitudine s.l.m. <1000 m
- Caratteristiche elettriche:
- livello di isolamento nominale 690 V
- tensione di esercizio 380 V
- frequenza nominale 50 Hz
- sistema elettrico trifase+neutro
- tensione di tenuta a 50Hz per min.
- circuiti di potenza 2500 V

1° lotto (dal km 193 al km 199)

CA349

Capitolate Speciale di Appalto Impianti

- circuiti ausiliari 2000 V
- corrente ammissibile di breve durata per 1 sec. 8-16 KA
- tensione nominale circuiti ausiliari 220V-24V-50Hz

Rispondenza a norme tecniche e leggi antinfortunistiche

Per quanto non espressamente precisato nel presente Capitolato, i quadri dovranno essere rispondenti alle seguenti norme:

- CEI EN 61439-1 (CEI 17-13/1 fasc. 1433);
- "Apparecchiature assiemate di protezione e di manovra per bassa tensione (quadri BT)";
- IEC 439 e successive varianti;
- "Low voltage switchgear and controlgear assemblies".

In generale dovranno soddisfare le seguenti caratteristiche:

- impiego di materiali isolanti ad alto grado di autoestinguibilità e completa segregazione metallica tra i singoli scomparti, per impedire il diffondersi di incendi;
- messa a terra franca di tutta la struttura del quadro e dei componenti estraibili per tutta la corsa di sezionamento od inserzione;
 - protezioni IP20 dopo la traslazione degli interruttori estraibili o sezionabili;
 - isolamento in aria di tutte le parti in tensione;
 - blocchi meccanici ed elettromeccanici in conformità allo schema di progetto;
 - accessibilità agli apparecchi ed ai circuiti senza pericolo di contatti con i componenti in tensione;
 - accurata scelta dei materiali isolanti impiegati in base a caratteristiche di bassa emissione di fumi.

Gli scomparti dovranno essere forniti completamente montati e provati in tutti i loro componenti ed allestimenti definitivi, con prove di officina eseguite in presenza della Direzione Lavori.

9.2. Caratteristiche costruttive e composizione

I quadri elettrici devono essere in materiale isolante in modo da non costituire una massa elettrica.

Gli interruttori s.d. dovranno essere opportunamente coordinati tra di loro in modo da garantire la selettività, la protezione dei circuiti e tarati secondo quanto indicato negli schemi di progetto.

Il potere di interruzione degli interruttori automatici dovrà essere almeno uguale alla corrente di corto circuito trifase convenzionale nel punto di connessione alla rete (15 kA terifase 6 kA monofase).

Circuiti ausiliari e cablaggi

Le apparecchiature ausiliarie dovranno essere disposte in celle separate metallicamente dalle celle interruttori.

Dovrà essere sempre possibile accedere alle apparecchiature ausiliarie con il quadro in tensione. Il cablaggio interno dovrà essere realizzato con cavi di tipo flessibile non propaganti l'incendio (sec. CEI 20-22), di sezione non inferiore a 1,5 mmq per i circuiti ausiliari e 2,5 mmq per i circuiti di potenza.

1°lotto (dal km 193 al km 199)

CA349

Capitolate Speciale di Appalto Impianti

Tutte le connessioni dovranno essere effettuate mediante capocorda a compressione e ciascun conduttore dovrà essere numerato con idonei contrassegni.

I conduttori dovranno essere alloggiati su apposite canalette di materiale plastico e in appositi vani all'interno degli scomparti.

Tutti i conduttori dovranno far capo a morsettiere componibili numerate. Opportune targhette, pantografate, dovranno indicare a fronte quadro, ciascuna apparecchiatura e relativa sequenza di manovra.

Tutte le indicazioni di stato e i comandi di ogni apparecchiatura dovranno essere riportati in morsettiera per poter essere remotizzati attraverso sistemi di telecontrollo

Messa a terra

Non prevista, perché il sistema di protezione adottato è con componenti tutti di classe II (doppio isolamento).

Accessori

Serie di accessori che dovranno essere forniti:

- schemi e disegni di progetto;
- istruzioni per l'installazione, l'esercizio e la manutenzione del quadro;
- targhe di identificazione apparecchiature;
- schema unifilare in dotazione alla carpenteria;
- cartellonistica di prevenzione antinfortunistica ;
- prove di tipo;
- manuale di manutenzione ordinaria e straordinaria.

9.3. Elenco delle prove

- a) Prove di accettazione:
- prova di isolamento a frequenza industriale verso massa e tra le fasi alla tensione di 2.5kV- 220V per 1 minuto;
 - prove di isolamento, con resistenza sui circuiti ausiliari;
 - prove di funzionamento degli interruttori magnetotermici differenziali;
 - prova dei dispositivi ausiliari;
 - · verifica dei cablaggi;
- controllo dell'intercambiabilità dei componenti estraibili e degli altri componenti identici fra loro per costruzione e caratteristiche.

1°lotto (dal km 193 al km 199)

CA349

Capitolate Speciale di Appalto Impianti

9.4 Prove di tipo

L'Appaltatore dovrà produrre copia dei certificati relativi alle prove di tipo realizzate da un laboratorio indipendente attestanti la rispondenza del quadro e delle apparecchiature alle Norme sopraccitate.

In particolare è richiesta dimostrazione delle seguenti prove:

- prova per la verifica dei limiti di sovratemperatura;
- prova per la verifica delle distanze in aria e superficiali;
- prova per la verifica della tenuta di corto circuito del circuito principale per un valore non inferiore a 16kA/1S;
 - prove per la verifica della tenuta al corto circuito del circuito di protezione (CEI 17-13/1);
 - prova per la verifica dei gradi di protezione (non inferiore a IP65).