

COMUNE DI GENZANO DI LUCANIA (PZ)

PROGETTO DEFINITIVO RELATIVO ALLA REALIZZAZIONE DI UN IMPIANTO EOLICO COSTITUITO DA 10 AEROGENERATORI E DALLE RELATIVE OPERE DI CONNESSIONE ALLA R.T.N.

RELAZIONE TECNICA SPECIALISTICA
SULL'IMPATTO ELETTROMAGNETICO

ELABORATO

A.12

PROPONENTE:

PROGETTO E SIA:

SOCIETÀ DI INGEGNERIA & SERVIZI PER L'INGEGNERIA & SERVIZI PER L'INGEGNERIA & SERVIZI PER L'INGEGNERIA & VIO delle Resistenza, 45-70123 Bori vel .080 3219946 Fox. 680 3200946

II DIRETTORE TECNIGO
Dott. Ing. Orazio Tricarico

CONSULENZA:

0	DIC 2020	B.B.	A.A O.T.	A.A O.T.	Progetto definitivo
EM./REV.	DATA	REDATTO	VERIFICATO	APPROVATO	DESCRIZIONE

Indice

1.PREN	MESSE	2
2.GENI	ERALITÀ SULLE EMISSIONI ELETTROMAGNETICHE	2
3.NOR	MATIVA VIGENTE	3
3.1.	LEGISLAZIONE ITALIANA	3
3.2.	NORMATIVA ITALIANA CEI	6
4.DESC	CRIZIONE DELL'OPERA	8
4.1.	INQUADRAMENTO DELL'AREA	8
5.OPE	RE ELETTRICHE INERENTI LA CONNESSIONE ALLA RTN	10
5.1.	DESCRIZIONE DELLA SSEU	10
5.2.	DESCRIZIONE DELL'ELETTRODOTTO INTERRATO IN A.T.	11
5.3.	CARATTERISTICHE DELLA RETE ELETTRICA	12
6.VALU	JTAZIONE PREVENTIVA DEI CAMPI ELETTRICI E MAGNETICI	13
6.1.	APPLICAZIONE DELLA NORMATIVA SULLA TUTELA DELLA POPOLAZIONE	13
6.2.	CRITERI DI VALUTAZIONE	13
6.3.	ELETTRODOTTI A MT INTERRATI	15
6.4.	VALUTAZIONE ANALITICA DEI CAMPI MAGNETICI GENERATI DAGLI ELETTRODOTTI	15
6.4	1.1. CASO 3: N. 1 LINEA IN CAVO AT	24
6.5.	Considerazioni	25
6.6.	SOTTOSTAZIONE DI TRASFORMAZIONE E CONSEGNA AD ALTA TENSIONE DI UTENTE	26
7.CON	CLUSIONI	27

1. PREMESSE

La presente relazione ha lo scopo di descrivere le emissioni di campi magnetici, elettrici ed elettromagnetici generati durante l'esercizio dell'impianto eolico e definire la compatibilità dell'impianto con i limiti normativi di esposizione e tutela della popolazione nonché permettere la verifica di compatibilità ed interferenza dell'impianto con eventuali impianti elettrici ed elettronici presenti in zona.

Nel § 2. si riportano alcune generalità sulle emissioni elettromagnetiche degli impianti elettrici, nel § 3. si illustrano i riferimenti legislativi e normativi in materia di emissioni elettromagnetiche e nel § 4. si riporta l'inquadramento dell'opera rispetto alle aree circostanti con particolare riferimento alle loro destinazioni d'uso e la descrizione dell'opera da realizzarsi così come risultante dagli elaborati progettuali forniti dal Committente.

Il § 6. contiene la valutazione preventiva dei campi elettrici, magnetici ed elettromagnetici per le aree limitrofe interessate dal progetto e la relativa verifica di conformità dell'opera alla legislazione vigente in materia di esposizione della popolazione. Il § 7. contiene le conclusioni finali sulla base delle risultanze espresse nei paragrafi precedenti.

2. GENERALITÀ SULLE EMISSIONI ELETTROMAGNETICHE

I campi elettromagnetici consistono di onde elettriche (E) e magnetiche (H) che viaggiano insieme. Esse si propagano alla velocità della luce, e sono caratterizzate da una frequenza ed una lunghezza d'onda.

I campi ELF (Extremely Low Frequency) sono definiti come quelli di frequenza fino a 300 Hz. A frequenze così basse corrispondono lunghezze d'onda in aria molto grandi e, in situazioni pratiche, il campo elettrico e quello magnetico agiscono in modo indipendente l'uno dall'altro e vengono misurati e valutati separatamente.

I campi elettrici sono prodotti dalle cariche elettriche. Essi governano il moto di altre cariche elettriche che vi siano immerse. La loro intensità viene misurata in volt al metro (V/m) o in chilovolt al metro (kV/m). Quando delle cariche si accumulano su di un oggetto, fanno sì che cariche di segno uguale od opposto vengano, rispettivamente, respinte o attratte. L'intensità di questo effetto viene caratterizzata attraverso la tensione, misurata in volt (V). A ogni dispositivo collegato ad una presa

elettrica, anche se non acceso, è associato un campo elettrico che è proporzionale alla tensione della sorgente cui è collegato. L'intensità dei campi elettrici è massima vicino al dispositivo e diminuisce con la distanza. Molti materiali comuni, come il legno ed il metallo, costituiscono uno schermo per questi campi.

I campi magnetici sono prodotti dal moto delle cariche elettriche, cioè dalla corrente. Essi governano il moto delle cariche elettriche. La loro intensità si misura in ampere al metro (A/m), ma è spesso espressa in termini di una grandezza corrispondente, l'induzione magnetica, che si misura in tesla (T), millitesla (mT) o microtesla (μT). Ad ogni dispositivo collegato ad una presa elettrica, se il dispositivo è acceso e vi è una corrente circolante, è associato un campo magnetico proporzionale alla corrente fornita dalla sorgente cui il dispositivo è collegato. I campi magnetici sono massimi vicino alla sorgente e diminuiscono con la distanza. Essi non vengono schermati dalla maggior parte dei materiali di uso comune, e li attraversano facilmente.

Ai fini dell'esposizione umana alle radiazioni non ionizzanti, considerando le caratteristiche fisiche delle grandezze elettriche in gioco in un impianto fotovoltaico (tensioni fino a 30.000 V, correnti continue o alternate a frequenza di 50 Hz) i campi elettrici e magnetici sono da valutarsi separatamente perché disaccoppiati.

3. NORMATIVA VIGENTE

3.1. Legislazione italiana

In materia di prevenzione dai rischi di esposizione delle lavoratrici, dei lavoratori e della popolazione ai campi elettrici, magnetici ed elettromagnetici il riferimento legislativo è costituito dalla legge quadro n. 36 del 22 febbraio 2001.

La legge 36, all'art. 4 comma 2, rimanda ad un successivo decreto attuativo la definizione dei limiti di esposizione, i valori di attenzione e gli obiettivi di qualità, le tecniche di misurazione e rilevamento dell'inquinamento elettromagnetico. Di fondamentale importanza risulta l'art. 3 della legge che riporta le definizioni:

elettrodotto: è l'insieme delle linee elettriche, delle sottostazioni e delle cabine di trasformazione;

esposizione dei lavoratori e delle lavoratrici: è ogni tipo di esposizione dei lavoratori e delle lavoratrici che, per la loro specifica attività lavorativa, sono esposti a campi elettrici, magnetici ed elettromagnetici;

esposizione della popolazione: è ogni tipo di esposizione ai campi elettrici, magnetici ed elettromagnetici, ad eccezione dell'esposizione di cui alla lettera f) e di quella intenzionale per scopi diagnostici o terapeutici;

limite di esposizione, è il valore di campo elettrico, magnetico ed elettromagnetico, considerato come valore di immissione, definito ai fini della tutela della salute da effetti acuti, che non deve essere superato in alcuna condizione di esposizione della popolazione e dei lavoratori;

valore di attenzione, è il valore di campo elettrico, magnetico ed elettromagnetico, considerato come valore di immissione, che non deve essere, superato negli ambienti abitativi, scolastici e nei luoghi adibiti a permanenze prolungate. Esso costituisce misura di cautela ai fini della protezione da possibili effetti a lungo termine e deve essere raggiunto nei tempi e nei modi previsti dalla legge;

obiettivi di qualità sono:

- i criteri localizzativi, gli standard urbanistici, le prescrizioni e le incentivazioni per l'utilizzo delle migliori tecnologie disponibili, indicati dalle leggi regionali secondo le competenze definite dall'articolo 8;
- i valori di campo elettrico, magnetico ed elettromagnetico, definiti dallo Stato secondo le previsioni di cui all'articolo 4, comma 1, lettera a), ai fini della progressiva miticizzazione dell'esposizione ai campi medesimi.

Il DPCM 8 luglio 2003 attua quanto previsto dalla legge quadro riguardo alla "fissazione dei limiti di esposizione, dei valori di attenzione e degli obiettivi di qualità per la protezione della popolazione dalle esposizioni ai campi elettrici e magnetici alla frequenza di rete (50 Hz) generati dagli elettrodotti". Agli articoli 3 e 4 esso stabilisce i seguenti limiti:

Limite di esposizione: 100 µT per l'induzione magnetica e 5 kV/m per il campo elettrico.

Valore di attenzione: nelle aree gioco per l'infanzia, in ambienti abitativi, in ambienti scolastici e nei luoghi adibiti a permanenze non inferiori a quattro ore giornaliere, **10μT** per l'induzione magnetica, da intendersi come mediana dei valori nell'arco delle 24 ore nelle normali condizioni di esercizio dell'elettrodotto;

Obiettivo di qualità: nella progettazione, di nuovi elettrodotti in corrispondenza di aree gioco per l'infanzia, di ambienti abitativi, di ambienti scolastici e di luoghi adibiti a permanenze non inferiori a quattro ore ... (omissis)...., ai fini della progressiva minimizzazione dell'esposizione ai campi elettrici e

magnetici generati dagli elettrodotti operanti alla frequenza di 50 Hz, e' fissato l'obiettivo di qualità di **3 μT per il valore** dell'induzione magnetica, da intendersi come mediana dei valori nell'arco delle 24 ore nelle normali condizioni di esercizio.

In base all'art. 5 le tecniche di misurazione da adottare sono quelle indicate dalla norma CEI 211-6 prima edizione e successivi aggiornamenti. Inoltre, il sistema agenziale APAT-ARPA dovrà determinare le procedure di misura e valutazione, con l'approvazione del Ministero dell'Ambiente, per la determinazione del valore di induzione magnetica utile ai fini della verifica del non superamento del valore di attenzione e dell'obiettivo di qualità. Per la verifica delle disposizioni di cui agli articoli 3 e 4, oltre alle misurazioni e determinazioni di cui sopra, il sistema agenziale APAT- ARPA può avvalersi di metodologie di calcolo basate su dati tecnici e storici dell'elettrodotto.

Dal campo di applicazione del DPCM è espressamente esclusa, invece, l'applicazione dei limiti, valori di attenzione e obiettivi di qualità di cui sopra ai lavoratori esposti ai campi per ragioni professionali (art. 1 comma 2).

Inoltre, in base all'art. 1 comma 3 per tutte le sezioni di impianto non incluse nella definizione di *elettrodotto* o che sono esercite con frequenze diverse dai 50 Hz, fino a 100 kHz, si applicano i limiti della **raccomandazione del Consiglio dell'Unione Europea del 12 luglio1999**, pubblicata nella G.U.C.E. n. 199 del 30 luglio 1999. In particolare, andrà rispettato, se applicabile nei confronti della popolazione, per la sezione in corrente continua il limite di riferimento per induzione magnetica di **40.000 μT**.

L'art. 6 del DPCM 8/7/03 recita:

"Per la determinazione delle fasce di rispetto si dovrà fare riferimento all'obiettivo di qualità di cui all'art. 4 [...]"

"L'APAT, sentite le ARPA, definirà la metodologia di calcolo per la determinazione delle fasce di rispetto ai fini delle verifiche delle autorità competenti".

Per quanto riguarda la determinazione delle fasce di rispetto riferite agli elettrodotti sia aerei che interrati, il Ministero dell'Ambiente ha comunicato con lettera prot. DSA/2004/25291 del 15 novembre 2004, che "a metodica da usarsi per la determinazione provvisoria delie fasce di rispetto pertinenti ad una o più linee elettriche aeree o interrate che insistono sulla medesima porzione di territorio può compiersi come seque:

[...]

Progetto per la realizzazione di un impianto eolico costituito da 10 turbine e relative opere di connessione da realizzarsi nel comune di Genzano di Lucania (PZ)

Le linee possono essere schematizzate così come prevede la norma CEI211-4 "Guida ai metodi di calcolo dei campi elettrici e magnetici generati da linee elettriche", cap. 4.1. Il calcolo può essere eseguito secondo l'algoritmo definito al cap. 4.3.

Si calcolano le regioni di spazio definite dal luogo delle superfici di isocampo di induzione magnetica pari a 3 **µT** in termini di valore efficace.

Le proiezioni verticali a livello del suolo di dette superfici determinano le fasce di rispetto. Le relative dimensioni, espresse in metri, possono essere arrotondate all'intero più vicino"

3.2. Normativa italiana CEI

La costruzione ed esercizio della centrale elettrica, così come riportato negli elaborati tecnici di progetto, sarà eseguita secondo le norme di legge e le norme tecniche del CEI nonché, per la parte di connessione alla rete, secondo le disposizioni normative di Terna e dell'Enel Distribuzione S.p.a.

La valutazione dei campi elettrici e magnetici a frequenza industriale è invece argomento della Norma CEI 211-4 "*Guida ai metodi di calcolo dei campi elettrici e magnetici generati da linee elettriche*", dalla quale sono state tratte tutte le ipotesi di calcolo. In particolare:

tutti i conduttori costituenti la linea (sia i conduttori attivi sia i conduttori di guardia) sono considerati rettilinei, orizzontali, di lunghezza infinita e paralleli tra di loro; in base a queste ipotesi, si trascura la componente longitudinale dell'induzione magnetica; nella realtà, i conduttori suddetti si dispongono secondo una catenaria, ma la componente longitudinale non supera in genere il 10% delle altre componenti del campo, per cui:

l'errore che si commette, nel calcolo della risultante, è certamente inferiore, in percentuale, a questo valore;

i conduttori sono considerati di forma cilindrica, con diametro costante disposti a fascio di 3 per fase; si suppone che la distanza tra i singoli conduttori a uguale potenziale sia piccola rispetto alla distanza tra i conduttori a diverso potenziale;

si suppone inoltre che i conduttori appartenenti ad un fascio siano uguali tra di loro e che, in una sezione normale del fascio, i loro centri giacciano su una circonferenza (circonferenza circoscritta al fascio); in base a queste ipotesi, si sostituisce al fascio di sub-conduttori un conduttore unico di opportuno diametro equivalente;

Proponente: BLUE STONE RENEWABLE V Srl

Progetto per la realizzazione di un impianto eolico costituito da 10 turbine e relative opere di connessione da realizzarsi nel comune di Genzano di Lucania (PZ)

il suolo è considerato piano, privo di irregolarità, perfettamente conduttore dal punto di vista elettrico, perfettamente trasparente dal punto di vista magnetico;

si trascura l'influenza sulla distribuzione del campo dei tralicci stessi, di piloni di sostegno, degli edifici, della vegetazione e di qualunque altro oggetto che si trovi nell'area interessata, ovvero si calcola il campo imperturbato.

Le ipotesi suddette permettono di ridurre il calcolo del campo ad un problema piano, essendo, in questo caso, la distribuzione stessa uguale su qualunque sezione normale all'asse longitudinale della linea. A parità di altri fattori, l'accuratezza dei dati forniti è ovviamente tanto maggiore quanto più le condizioni reali sono aderenti a quelle sopra elencate.

La guida CEI 106-11 "Guida per la determinazione delle fasce di rispetto per gli elettrodotti secondo le disposizioni del DPCM 8 luglio 2003 (art. 6) - Parte 1: Linee elettriche aeree e in cavo" costituisce l'applicazione delle formule fornite dalla guida CEI 211-4 ai diversi tipi di elettrodotti, quindi anche interrati. A sufficiente distanza dalla terna di conduttori, la superficie su cui l'induzione assume lo stesso valore (superficie isolivello) ha con buona approssimazione la forma di un cilindro avente come asse la catenaria ideale passante per il baricentro dei conduttori. La sezione trasversale di tale cilindro è una circonferenza. Prendendo in considerazione il valore di 3 µT, si può calcolare il raggio della corrispondente circonferenza, che costituisce la fascia di rispetto.

4. DESCRIZIONE DELL'OPERA

4.1. Inquadramento dell'area

Il parco eolico ricade nel territorio comunale di Genzano di Lucania, in provincia di Potenza, Basilicata.

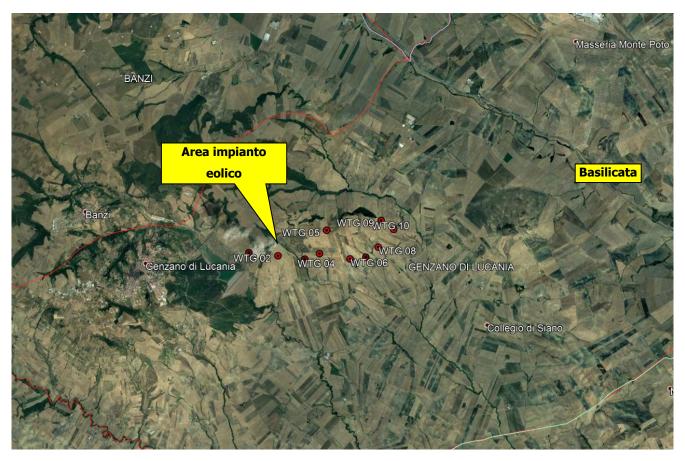


Figura 4-1: Inquadramento intervento di area vasta

Il sito di intervento è situato nell'area a est del centro abitato di Genzano di Lucania, a circa 5,3 km, mentre dista circa 7,5 km da centro abitato del comune di Banzi.

È raggiungibile direttamente dalla SS 655 Bradanica, uscendo all'altezza dell'innesto con la SP 128 e imboccando la SP Pilella Santo Spirito in direzione sud-ovest fino a raggiungere la SP 74 Monteserico.

Figura 4-2: Inquadramento intervento di area vasta

Lo schema di allacciamento alla RTN, in base al Preventivo di connessione ricevuto da Terna con CP 201900393, prevede il collegamento in antenna a 150 kV su un futuro ampliamento della Stazione Elettrica di Trasformazione della RTN a 380/150 kV denominata "Genzano".

Per l'allacciamento dell'impianto sarà, quindi, prevista la costruzione di una sottostazione elettrica di trasformazione dell'energia prodotta dal parco eolico (SE di utenza) alla quale convergeranno i cavi di potenza e controllo provenienti dal parco eolico.

Il cavo AT 150kV in uscita dalla sottostazione utente verrà collegato al sistema di sbarre a 150kV del futuro ampliamento della stazione Elettrica di Trasformazione SE della RTN a 380/150 kV.

L'elettrodotto interrato seguendo il percorso indicato nelle tavole allegate giungerà alla Sottostazione di Consegna, in adiacenza alla Stazione TERNA. Tutto il percorso dell'elettrodotto di vettoriamento avverrà su viabilità pubblica (strade vicinali e provinciali).

La Centrale eolica sarà ubicata su terreni a destinazione agricola non caratterizzati dalla permanenza media di popolazione superiore alle 4 ore giornaliere, o non considerate come zone sensibili di cui all'art. 4 comma 1 del DPCM 8 luglio 2003 e in ogni caso è situata a distanze dagli eventuali fabbricati, tali da non richiedere una valutazione puntuale dei campi elettromagnetici.

Il tracciato degli elettrodotti interrati segue principalmente un percorso su proprietà privata e su viabilità di servizio (come illustrato nelle tavole allegate al progetto definitivo) allo scopo di minimizzare l'impatto ambientale.

5. OPERE ELETTRICHE INERENTI LA CONNESSIONE ALLA RTN

In questa sezione vengono descritte in generale le OO.EE. relative all'impianto di rete per la connessione ed agli impianti di utenza per la connessione.

Come già accennato lo schema di allacciamento alla RTN, in base al Preventivo di connessione ricevuto da Terna con CP 201900393, prevede il collegamento in antenna a 150 kV su un futuro ampliamento della Stazione Elettrica di Trasformazione della RTN a 380/150 kV denominata "Genzano". Nella progettazione di tali opere si è ipotizzato che lo stallo nella sezione a 150 kV della S.E. sia dedicato alla Proponente fermo restando che in futuro tale stallo, previo accordo tra le parti ed ai fini dell'ottenimento del benestare tecnico da TERNA S.p.A., possa/debba essere condiviso con altri Produttori.

5.1. DESCRIZIONE DELLA SSEU

Sulla base dell'ipotesi di cui sopra, la SSEU 30/150 kV sarà di proprietà della Società Proponente ed avrà la finalità di permettere la connessione dell'impianto eolico alla Stazione Elettrica TERNA.

Tutte le apparecchiature ed i componenti nella SSEU saranno conformi alle relative Specifiche Tecniche TERNA S.p.A.. Le opere in argomento sono progettate e saranno costruite e collaudate in osservanza alla regola dell'arte dettata, in particolare, dalle più aggiornate:

disposizioni nazionali derivanti da leggi, decreti e regolamenti applicabili, con eventuali aggiornamenti, con particolare attenzione a quanto previsto in materia antinfortunistica;

disposizioni e prescrizioni delle Autorità locali, Enti ed Amministrazioni interessate;

norme CEI, IEC, CENELEC, ISO, UNI in vigore, con particolare attenzione a quanto previsto in materia di compatibilità elettromagnetica.

Progetto definitivo

Redazione: Atech srl

Proponente: BLUE STONE RENEWABLE V Srl

Progetto per la realizzazione di un impianto eolico costituito da 10 turbine e relative opere di connessione da realizzarsi nel comune di Genzano di Lucania (PZ)

I requisiti funzionali generali per la realizzazione della SSEU saranno:

vita utile non inferiore a 40 anni. Le scelte di progetto, di esercizio e di manutenzione

ordinaria saranno fatte tenendo conto di questo requisito;

elevate garanzie di sicurezza nel dimensionamento strutturale;

elevato standard di prevenzione dei rischi d'incendio, ottenuta mediante un'attenta scelta

dei materiali.

5.2. DESCRIZIONE DELL'ELETTRODOTTO INTERRATO IN A.T.

Il collegamento dalla SSEU alla futura sezione a 150 kV della Stazione Elettrica RTN avverrà

mediante una connessione in antenna in A.T. da realizzarsi in elettrodotto interrato a 150 kV

Per la realizzazione dell'elettrodotto sarà impiegando un cavo tipo XLPE 150 kV - alluminio -

3x1x1.400 mm².

Il cavidotto sarà totalmente interrato ad una profondità di 1,5 m, interessando con il suo tracciato

la viabilità già esistente e senza alcuna interferenza con altre opere preesistenti. Saranno garantite le

aree impegnate e le fasce di rispetto previste dalle vigenti normative.

Il progetto elettrico dell'opera è stato elaborato:

• considerando il tipo di collegamento e la lunghezza della tratta;

tenendo conto dei dati di resistività termica, di densità e umidità del terreno e di tutti gli

altri parametri chimico – fisici disponibili da impiegare nel calcolo delle portate;

dimensionando il cavo in conformità alle caratteristiche richieste ed in funzione dei calcoli

per la determinazione della portata in corrente e delle correnti di sovraccarico del cavo in

base al tracciato, alle modalità di posa, ai valori di resistività termica del terreno ed al tipo

di collegamento delle guaine.

5.3. CARATTERISTICHE DELLA RETE ELETTRICA

La rete elettrica da realizzare è divisa in tre sezioni in base alla tensione di esercizio:

Bassa tensione (inferiore a 1 kV) completamente interna alla recinzione del campo della centrale fotovoltaica;

Media Tensione (30 kV) tra le cabine di trasformazione, da queste alle cabine di smistamento e quindi alla sottostazione di trasformazione e consegna; tali condutture sono tutte realizzate in esecuzione interrata secondo la norma CEI 11-17 e il regolamento di attuazione del Codice della Strada. Particolari realizzativi di questa sezione di rete sono:

- utilizzo di cavi unipolari a campo elettrico radiale singolarmente schermati con gli schermi atterrati ad entrambe le estremità, disposti ad elica visibile su linee parallele in piano, posati direttamente nello scavo;
- disposizione nello scavo di corda nuda in rame, parallelamente agli elettrodotti, per la creazione di un impianto di terra globale tra la centrale e la sottostazione.

Alta Tensione (150 kV), completamente interna alla recinzione della sottostazione di consegna, costituita essenzialmente da: trasformatore elevatore MT/AT, sbarre in tubi di alluminio, apparecchiature di sezionamento, interruzione e misura AT, raccordo AT aereo a semplice terna, sorretto da opportuno sostegno a traliccio secondo le specifiche Terna, per la connessione in antenna con la stazione Terna.

6. VALUTAZIONE PREVENTIVA DEI CAMPI ELETTRICI E MAGNETICI

6.1. Applicazione della normativa sulla tutela della popolazione

Per tutto ciò che attiene la valutazione dei campi magnetici ed elettrici all'interno dell'impianto fotovoltaico, essendo l'accesso alla centrale ammesso esclusivamente a personale lavoratore autorizzato, non trova applicazione il DPCM 8 luglio 2003.

Essendo le zone direttamente confinanti con l'impianto di rete non adibite né ad una permanenza giornaliera non inferiore alle 4 ore né a zone gioco per l'infanzia/abitazioni scuole, vanno verificati esclusivamente i limiti di esposizione. Non trovano applicazione, per le stesse motivazioni, gli obiettivi di qualità del DPCM 8 luglio 2003.

Rimane comunque inteso che i limiti esposti dal DPCM si applicano esclusivamente alla parte esterna della centrale e relativamente ai campi magnetici prodotti da correnti di frequenza 50 Hz.

6.2. Criteri di valutazione

Al contrario delle linee elettriche, per le quali è ormai consolidato un metodo di calcolo preventivo dei campi magnetici ed elettrici, per le cabine elettriche e per tutti i sistemi non assimilabili alle linee elettriche, a causa delle geometrie complesse, non è agevole determinare gli andamenti dei campi elettrici e magnetici con modelli matematici, ma a valle di considerazioni preventive di massima, in caso di dubbio si deve procedere direttamente alle misure in campo.

In particolare, è stato più volte dimostrato da misure sperimentali condotte in tutta Italia dal sistema agenziale ARPA sulle cabine MT/BT della Distribuzione, che i campi elettrici all'esterno delle cabine a media tensione risultano essere abbondantemente inferiori ai limiti di legge.

Per quanto concerne invece i campi magnetici è necessario identificare nella centrale eolica le possibili sorgenti emissive e le loro caratteristiche.

Una prima sorgente emissiva è rappresentata dal generatore eolico e dai relativi cavidotti di collegamento.

Per quanto concerne la sezione in corrente alternata le principali sorgenti emissive sono l'inverter, le sbarre di bassa tensione dei quadri generali BT, i trasformatori elevatori e gli elettrodotti in alta, media, bassa tensione.

Non si considerano importanti per la verifica dei limiti di esposizione, considerando che tali impianti sono chiusi all'interno degli aereogeneratori, questi locali non prevedono la presenza di lavoratori se non per il tempo strettamente necessario alle operazioni di manutenzione, i seguenti componenti:

i cavi a media tensione e le sbarre dei quadri di media tensione, segregati nelle cabine MT, non accessibili al pubblico;

i cavi di bassa tensione tra il trasformatore e gli inverter considerando che le diverse fasi saranno in posa ravvicinata in cunicolo interrato all'interno della cabina o comunque all'interno dell'impianto.

Si ricorda a tal proposito che il valore di campo magnetico generato da un sistema elettrico trifase simmetrico ed equilibrato in un punto dello spazio è estremamente dipendente dalla distanza esistente tra gli assi dei conduttori delle tre fasi. Per assurdo, infatti, se i tre conduttori coincidessero nello spazio, il campo magnetico esterno risulterebbe nullo per qualsiasi valore della corrente circolante nei conduttori. Per questo motivo il problema dei campi magnetici è poco sentito nelle reti di bassa e media tensione in cavo dove gli spessori degli isolanti sono molto contenuti permettendo alle tre fasi di essere estremamente ravvicinate tra loro se non addirittura inserite nello stesso cavo multipolare (bassa tensione).

La valutazione dei campi generati dal trasformatore parte da dati sperimentali su una taglia e tipo standard di trasformatore MT/BT per poi essere estesa con le dovute approssimazioni alla varia gamma di tipologie e potenze. Si riporta in tabella l'induzione magnetica prodotta da due trasformatori MT/BT isolati in resina della potenza rispettivamente di 400 e 1000 kVA e tensione di corto circuito 4% e 6% rispettivamente.

Potenza	Distanza dal trasformatore					
trasformatore	1 m	2 m	3 m	5 m	7 m	10 m
400 kVA	57,57 μT	8,27 μΤ	2,66 μΤ	0,64 μΤ	0,25 μΤ	0,09 μΤ
1000 kVA	136,53 μΤ	19,60 μΤ	6,30 μT	1,51 μΤ	0,59 μΤ	0,22 μΤ

I valori ottenuti sono compatibili con la legislazione sia all'interno che all'esterno della centrale.

Pertanto, considerando anche una sovrapposizione degli effetti (il trasformatore realmente presente al piede della torre ha potenza pari a 5.350 kVA) in un punto esterno alla centrale il valore

di induzione magnetica determinato dalle varie sorgenti in condizioni di funzionamento a potenza nominale sarà di molto inferiore al limite di esposizione.

6.3. Elettrodotti a MT interrati

Come si evince dalle tavole allegate l'elettrodotto interrato si sviluppa principalmente su terreno agricolo di proprietà privata o su strade pubbliche extraurbane e quindi non attraversa zone abitate; sono del tutto assenti fabbricati residenziali nella zona interessata.

Il tratto più significativo, sotto il profilo delle emissioni di campi elettromagnetici, sarà quello tra la Cabina di raccolta e la SSE, essendo questo quello interessato dalla massima intensità di corrente, pari appunto alla somma dei 4 contributi circolanti sulle 4 linee.

Le linee direttamente interrate sono costituite da terne trifase costituite da cavi unipolari intrecciati ad elica visibile, conduttori in alluminio isolati in XLPE, sigla commerciale ARG7H1R 18/30 kV, di sezione 185mm²; ove sono presenti più terne che viaggiano parallelamente, esse sono disposte affiancate in piano a distanza di 40 cm l'una dall'altra.

La corrente nominale massima, che si avrà solo se tutti gli aerogeneratori erogheranno la massima potenza, sarà pari a 962,28 A.

6.4. Valutazione analitica dei campi magnetici generati dagli elettrodotti

La valutazione è effettuata nei riguardi dell'elettrodotto interrato presente progetto, considerando i casi di posa più gravosi, ma senza portare in conto la presenza di eventuali linee elettriche interrate o aeree già esistenti.

Per quanto riguarda i campi elettrici prodotti dagli elettrodotti interrati, essi sono trascurabili grazie allo schermo dei cavi atterrato ad entrambe le estremità e all'effetto schermante del terreno stesso.

Per quanto riguarda la generazione di campi magnetici, si trova che la disposizione a trifoglio dei cavi unipolari consente di avere valori di induzione assai ridotti, grazie alla possibilità di avvicinare i conduttori. Infatti i campi magnetici, interagendo tra loro, si attenuano a vicenda. Si ricorda infatti che il valore di campo magnetico generato da un sistema elettrico trifase simmetrico ed equilibrato in un punto dello spazio è estremamente dipendente dalla distanza esistente tra gli assi dei conduttori

delle tre fasi. Per assurdo, infatti, se i tre conduttori coincidessero nello spazio il campo magnetico esterno risulterebbe nullo per qualsiasi valore della corrente circolante nei conduttori.

In generale gli elettrodotti dedicati alla trasmissione e distribuzione di energia elettrica sono percorsi da correnti elettriche di intensità diversa, ma tutte alla frequenza di 50 Hz, e quindi tutti i fenomeni elettromagnetici che li vedono come sorgenti possono essere studiati correttamente con il modello per campi quasi statici.

Tabella Spettro elettromagnetico (insieme di tutte le possibili frequenze delle radiazioni elettromagnetiche)

DENOMINAZIONE			FREQUENZA	LUNGHEZZA D'ONDA
FREQUENZE ESTRE	ELF	0 - 3kHz	> 100Km	
FREQUENZE BASSI	QUENZE BASSISSIME VLF 3 - 30kHz 100 - 10Kr			
RADIOFREQUENZE	FREQUENZE BASSE (ONDE LUNGHE)	LF	30 - 300kHz	10 - 1Km
	MEDIE FREQUENZE (ONDE MEDIE)	MF	300kHz - 3MHz	1Km - 100m
I KADIOI KEQUENZE	ALTE FREQUENZE	HF	3MHz 3 - 30MHz 30 - 300MHz	100 - 10m
	FREQUENZE ALTISSIME (ONDE METRICHE)	VHF	30 - 300MHz	10 - 1m
	ONDE DECIMETRICHE	UHF	300MHz - 3GHz	1m - 10cm
MICROONDE	ONDE CENTIMETRICHE	SHF	3 - 30GHz	10 - 1cm
	FREQUENZE BASSE (ONDE LUNGHE) MEDIE FREQUENZE (ONDE MEDIE) ALTE FREQUENZE FREQUENZE ALTISSIME (ONDE MF MF MF MF MF MF MF MF MF M	30 - 300GHz	1cm - 1mm	
INFRAROSSO		IR	0,3 - 385THz	1000 - 0,78mm
LUCE VISIBILE			385 - 750THz	780 - 400nm
ULTRAVIOLETTO			750 - 3000THz	400 - 100nm
RADIAZIONI IONIZZANTI			> 3000THz	< 100nm

Il metodo di calcolo adottato dal progettista dell'opera per la stima dei campi elettromagnetici è conforme alla norma CEI 211-4 "Guida ai metodi di calcolo dei campi elettrici e magnetici generati da linee elettriche".

Gli impianti per la produzione e la distribuzione dell'energia elettrica alla frequenza di 50 Hz costituiscono una sorgente di campi elettromagnetici nell'intervallo 30-300 Hz. Il campo magnetico è generato in funzione della potenza trasmessa (corrente) e della disposizione geometrica dei conduttori, che può essere nel piano o a triangolo.

Il campo elettrico E generato da un conduttore interrato risente molto dello smorzamento dovuto alla presenza del terreno ed è dato dall'equazione:

$$E = (r \times I) / 2 \times r \times r^2$$

Redazione: Atech srl Progetto definitivo

Proponente: BLUE STONE RENEWABLE V Srl

Progetto per la realizzazione di un impianto eolico costituito da 10 turbine e relative opere di connessione da realizzarsi nel comune di Genzano di Lucania (PZ)

dove:

r = densità di carica volumica del terreno, che assumiamo pari a 102 Wm;

I = corrente circolante nel cavo;

r = distanza a cui si calcola il valore del campo elettrico.

Il campo di induzione magnetica B in ogni punto P dello spazio è calcolato integrando numericamente per ogni singolo conduttore l'equazione:

$$B = \mu_0 \mu_r \iint \frac{i}{r^3} (r \ x \ s) \ ds$$

dove:

i = corrente all'interno dei cavi;

r = vettore distanza tra un tratto ds di conduttore ed il punto P;

μο = permeabilità magnetica dell'aria;

 μ r = permeabilità magnetica del terreno;

Nel calcolo si è assunto il valore di 1.25 x 10-6 N/A2 per la permeabilità magnetica mo dell'aria ed un valore unitario per la permeabilità magnetica relativa mr del terreno. L'intensità del campo generato da ogni conduttore è poi sommata vettorialmente, tenendo conto sia degli sfasamenti di corrente che della diversa posizione di ogni conduttore.

Per quanto riguarda il valore del campo elettrico, trattandosi di linee interrate, esso è da ritenersi insignificante in quanto la somma vettoriale delle tre correnti di fase è nulla, essendo il sistema esercito a neutro isolato, eventuali sfasamenti di lievissima entità, inoltre, risulterebbero ulteriormente attenuati grazie anche all'effetto schermante del rivestimento del cavo e del terreno. Nel seguito verranno quindi esposti i risultati del solo calcolo del campo magnetico. La situazione più significativa ai fini del calcolo dell'intensità del campo magnetico è quella relativa al campo magnetico generato dal tratto di cavidotto che parte dalla cabina di raccolta interna all'impianto (potenza elettrica trasportata 45,00 MW) e arriva alla cabina di trasformazione e consegna.

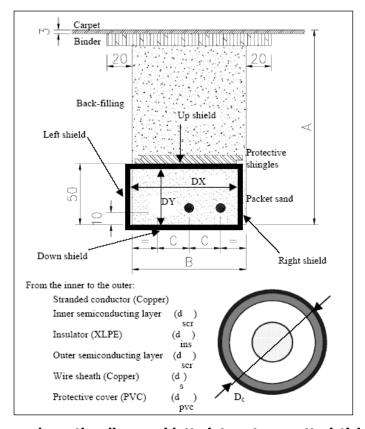
Redazione: Atech srl

Proponente: BLUE STONE RENEWABLE V Srl

Progetto per la realizzazione di un impianto eolico costituito da 10 turbine e relative opere di connessione da realizzarsi nel comune di Genzano di Lucania (PZ)

I metodi di controllo del campo magnetico si basano principalmente sulla riduzione della distanza tra le fasi, sull'installazione di circuiti addizionali (spire) nei quali circolano correnti di schermo, sull'utilizzazione di circuiti in doppia terna a fasi incrociate e sull'utilizzazione di linee in cavo. I valori di campo magnetico risultano, inoltre, essere notevolmente abbattuti mediante interramento degli elettrodotti. Questi vengono posti a circa 1,0 – 1,2 metri di profondità e sono composti da un conduttore cilindrico, una quaina isolante, una quaina conduttrice (la quale funge da schermante per i disturbi esterni, i quali sono più acuti nel sottosuolo in quanto il terreno è molto più conduttore dell'aria) e un rivestimento produttivo. I cavi interrati generano, a parità di corrente trasportata, un campo magnetico al livello del suolo più intenso degli elettrodotti aerei (circa il doppio), però l'intensità di campo magnetico si riduce molto più rapidamente con la distanza. Tra i vantaggi collegati all'impiego dei cavi interrati c'è da considerare che i valori di intensità di campo magnetico decrescono molto più rapidamente con la distanza. Tra gli svantaggi ci sono problemi di perdita di energia legati alla potenza reattiva (produzione, oltre ad una certa lunghezza del cavo, di una corrente capacitiva, dovuta all'interazione tra il cavo ed il terreno stesso, che si contrappone a quella di trasmissione). Altri metodi con i quali ridurre i valori di intensità di campo elettrico e magnetico possono essere quelli di usare "linee compatte", dove i cavi vengono avvicinati tra di loro in quanto questi sono isolati con delle membrane isolanti.

Confrontando il campo magnetico generato da linee aeree con quello generato da cavi interrati, si rileva che per i cavi interrati l'intensità massima del campo magnetico è più elevata, ma presenta un'attenuazione più pronunciata.

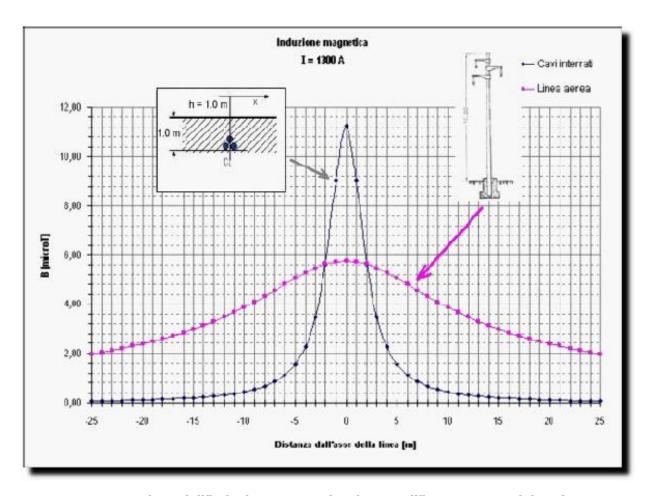


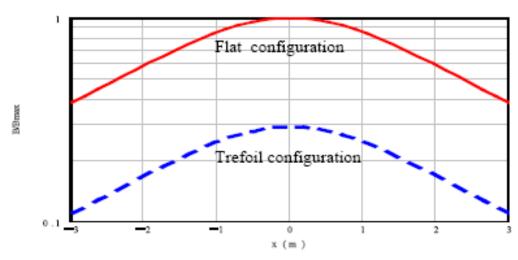
Progetto definitivo

Proponente: BLUE STONE RENEWABLE V Srl

Redazione: Atech srl

Progetto per la realizzazione di un impianto eolico costituito da 10 turbine e relative opere di connessione da realizzarsi nel comune di Genzano di Lucania (PZ)

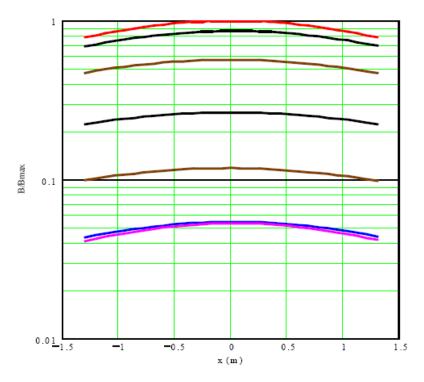

Rappresentazione schematica di un cavidotto interrato: caratteristiche geometriche, configurazione, schermatura


Redazione: Atech srl

Proponente: BLUE STONE RENEWABLE V Srl

Progetto per la realizzazione di un impianto eolico costituito da 10 turbine e relative opere di connessione da realizzarsi nel comune di Genzano di Lucania (PZ)

Attenuazione dell'induzione magnetica dovuta all'interramento dei cavi


Attenuazione dell'induzione magnetica dovuta all'utilizzo di cavidotti con cavi in configurazione planare o trifase

Redazione: Atech srl

Proponente: BLUE STONE RENEWABLE V Srl

Progetto per la realizzazione di un impianto eolico costituito da 10 turbine e relative opere di connessione da realizzarsi nel comune di Genzano di Lucania (PZ)

Attenuazione dell'induzione magnetica con la distanza per effetto della schermatura

Il campo elettrico risulta ridotto in maniera significativa per l'effetto combinato dovuto alla speciale guaina metallica schermante del cavo ed alla presenza del terreno che presenta una conducibilità elevata. Per le linee elettriche di MT a 50 Hz, i campi elettrici misurati attraverso prove sperimentali sono risultati praticamente nulli, per l'effetto schermante delle guaine metalliche e del terreno sovrastante i cavi interrati. Considerando:

- la tipologia di posa dei cavi previsti in progetto,
- la tipologia di cavidotto definito in progetto: trifase unipolare,

si è stimato il valore del campo elettromagnetico, o più precisamente le distanze minime dal cavidotto che garantiscono il rispetto dei limiti normativi, mediante le formule matematiche per il calcolo del campo magnetico. Il valore del campo magnetico indotto dipende dal valore di corrente elettrica che attraversa il conduttore, pertanto per il calcolo del valore del campo magnetico si è preso in considerazione la linea elettrica interrata destinata al trasporto dell'energia elettrica prodotta dall'intero impianto, ossia si è considerato il cavidotto che raccoglie tutta la energia elettrica prodotta dal parco eolico (caso peggiore dal punto di vista dell'induzione di campi elettromagnetici), e

disposizione dei conduttori ai vertici di un triangolo equilatero. L'equazione per conduttori trifase disposti a triangolo (che rappresenta la scelta progettuale adottata) è la seguente:

$$B = \frac{0.245 * I * S}{2D}$$

Dove:

B è il campo magnetico, espresso in μT , generato alla distanza D espressa in metri;

S è la distanza tra i conduttori che, nel caso di posa a trefolo, si può assumere pari a non più di 0,1 m;

I è il valore mediano della corrente che circola nei conduttori, espressa in Ampere;

Dalla formula precedente è facile ricavare:

$$D = \frac{0.245 * I * S}{2B}$$

È evidente che il campo elettromagnetico si attenui all'aumentare della distanza D, dunque è immediato determinare la distanza D alla quale si riscontrano i limiti di legge.

Nel nostro caso la <u>corrente massima</u> complessivamente circolante è pari a 962,28 A, suddivisa in 4 terne di conduttori ciascuna intrecciata a trefolo (vedi Relazione Tecnica degli impianti elettrici).

Al fine di individuare il valore mediano del campo elettromagnetico precedente è evidente che, poiché la formula precedente presenta una linearità diretta tra corrente e campo magnetico, è importante determinare il valore mediano della corrente che circola nei cavidotti interrati.

A tal proposito, la campagna anemologica condotta dalla società proponente ha dimostrato che, nel corso di oltre un anno di rilevazioni, le ore equivalenti di produzione sono pari a circa 2000 sulle 8640 annualmente disponibili.

Dunque, pur nell'ipotesi estremamente conservativa che il valor medio della corrente coincida col valor mediano si avrebbe che il valor mediano della corrente sarebbe pari al 23% del valor massimo, vale a dire circa 220 A.

Redazione: Atech srl

Progetto per la realizzazione di un impianto eolico costituito da 10 turbine e relative opere di connessione da realizzarsi nel comune di Genzano di Lucania (PZ)

La cosa è ovviamente del tutto improbabile in quanto il valore della ventosità media del sito, combinato con l'analisi della curva caratteristica di produzione dell'aerogeneratore, porterebbe ad un valore estremamente più basso del valor mediano della potenza erogata e, di conseguenza, della corrente circolante, dunque il valor mediano della corrente da assumere dovrebbe essere molto inferiore ai 220 A sopra determinati.

Il valore mediano di 220 A, assunto come base di calcolo, inoltre, è ulteriormente cautelativo in quanto non tiene conto del fatto che le 4 terne di cavi sono distanziate orizzontalmente una dall'altra, dunque gli effetti delle terne più lontane sono vettorialmente attenuati dalla loro maggior distanza dal punto di interasse.

Trascurando anche questo secondo aspetto e sostituendo i valori determinati si possono calcolare le distanze D al di sotto delle quali il valore di campo è maggiore del limite imposto, in corrispondenza di ciascuna soglia di campo magnetico considerata.

Dunque, imponendo le condizioni limite, si ottiene:

 $B = 100 \,\mu\text{T}$ in corrispondenza di $D = 0.027 \,\text{m}$

 $B = 10 \mu T$ in corrispondenza di D = 0.27 m;

 $B = 3 \mu T$ in corrispondenza di D = 0.90 m.

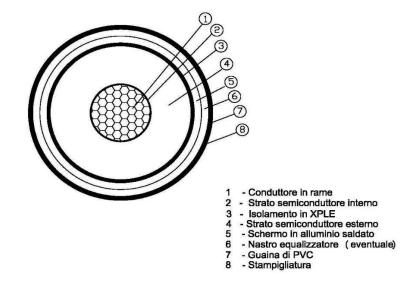
In riferimento al valore di soglia di attenzione epidemiologica (SAE) che è di 3 µT, si ha, dunque, che il limite del campo magnetico è a una distanza da ricadere al di sotto della superficie stradale.

È solo il caso di aggiungere che, ripetendo lo stesso ragionamento, in corrispondenza del valor massimo della corrente, pari a 962 A, si otterrebbe:

 $B = 100 \, \mu T$ in corrispondenza di $D = 0.119 \, m$

 $B = 10 \,\mu\text{T}$ in corrispondenza di $D = 1,19 \,\text{m}$;

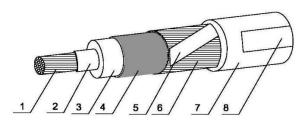
 $B = 3 \mu T$ in corrispondenza di D = 3,93 m.

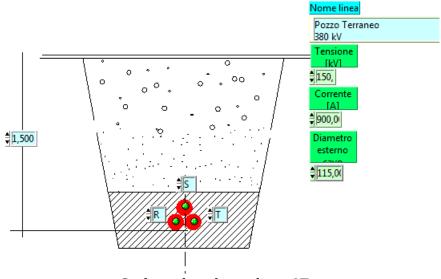

Dunque anche in corrispondenza del valore massimo della corrente, cioè quando tutti gli aerogeneratori sono alla massima produzione si supererebbe soltanto l'ultimo dei limiti sul percorso del cavidotto, per una fascia di circa 3,74 m a destra e sinistra dell'asse dello stesso, senza considerare gli effetti attenuativi indicati e trascurati per cautela.

6.4.1. Caso 3: n. 1 linea in cavo AT

Il collegamento in cavo 150 kV tra la stazione 30/150 kV e la stazione 150/380 kV di TERNA, deve trasportare una potenza di 45 MW e quindi è interessato da una corrente nominale di circa 192 A.

Lo schema tipo del cavo 150 kV è il seguente:




Figura 3 - Schema tipo cavo 150 kV

Il cavo sarà posato lungo il tracciato, in configurazione a trifoglio con cavi a contatto, con schermi collegati con il sistema "cross bonding", temperatura del conduttore non superiore a 90°, profondità di posa 1,50 m, temperatura del terreno 20°C, resistività termica del terreno 1,5°Cxm/W.

Con le ipotesi di cui sopra, pur essendo la corrente massima prevista per l'intero parco di 192 A, il calcolo dei campi magnetici è stato effettuato considerando la massima e non il valor mediano.

Il tracciato del cavo presenterà pertanto la seguente sezione di posa riportata con profondità di posa di 1,5 m.

Sezione tipo elettrodotto AT

Con la suddetta geometria e parametri di posa e con i valori elettrici di massimo carico abbiamo i seguenti andamenti del campo magnetico.

Applicando i criteri di calcolo già applicati in precedenza, si dimostra che i valori di campo magnetico a quota terreno (1,5 m) in asse linea sono in ogni caso inferiori al limite di esposizione pari a 3 μ T anche in corrispondenza del valore massimo della corrente, a maggior ragione il limite sarà rispettato in corrispondenza del valore mediano, sebbene determinato cautelativamente.

6.5. Considerazioni

Si ribadisce che le correnti utilizzate nei calcoli per il nuovo impianto, ai sensi della normativa vigente, sono ben maggiori delle correnti di impiego valutate in condizioni di potenza nominale dell'impianto. Inoltre la scelta di sezioni dei cavi (e quindi portate) elevate ha anche lo scopo di ridurre le cadute di tensione sulle linee, a fronte di correnti di esercizio ridotte rispetto alla portata del cavo stesso.

A seguito dei sopralluoghi effettuati si è riscontrato che le fasce di rispetto calcolate sono sempre rispettate, considerando il fatto che sono del tutto assenti edifici ad uso residenziale o similare vicini alla viabilità lungo la quale saranno interrate le linee a MT. Anche la zone di installazione della

sottostazione di consegna, in prossimità della futura stazione Terna, interessano solo terreni ad uso agricolo, che non prevedono la permanenza di persone per più di 4 ore giornaliere, garantendo il rispetto di norme e leggio vigenti, oltre che la salvaguardia della salute umana.

Come già detto nei paragrafi precedenti, si è verificato che i limiti di esposizione sono sempre verificati, così come sono sempre verificati gli obiettivi di qualità.

Inoltre, considerando che la mediana sulle 24 ore dei valori di corrente che percorrono tutte le sezioni di impianto sono molto minori al valore nominale, l'impatto elettromagnetico ai sensi della legge italiana è nullo.

6.6. Sottostazione di trasformazione e consegna ad alta tensione di utente

Nella sottostazione elettrica di utenza la tensione viene innalzata da 30 kV a 150 kV. La sottostazione di impianto ospita:

il trasformatore MT/AT, il modulo AT e il raccordo AT aereo per la connessione in antenna alla stazione Terna, realizzati con apparecchiature isolate in aria (AIS - Air Insulated Switchgear) all'aperto;

il quadro MT (ricezione e protezione linee, interfaccia, protezione trafo e misura) nel fabbricato lato utente;

il quadro BT (sotto relativa fornitura richiesta al gestore locale) di alimentazione dei servizi ausiliari di sottostazione e il sistema computerizzato di gestione da locale e da remoto della rete elettrica e della centrale fotovoltaica (nel fabbricato lato utente).

Le stazioni ad alta tensione sono caratterizzate da valori di campo elettrico ed induzione magnetica che dipendono - oltre che dall'intensità di corrente di esercizio - dagli specifici componenti (sezionatori di sbarra, interruttori, trasformatori, etc.) presenti nella stazione stessa.

I valori più elevati del campo elettrico sono attribuibili al funzionamento dei sezionatori di sbarra (1.2-5.0 kV/m), mentre il valore più elevato di induzione magnetica è registrabile in corrispondenza

dei trasformatori ($6.0-15.0~\mu T$), valori che scendono in genere al disotto persino degli obiettivi di qualità in corrispondenza della recinzione della stazione.

Risultati estremamente confortanti sono stati ottenuti dall'ARPA Emilia Sezione di Bologna che ha monitorato una Cabina Primaria Enel nel centro urbano di Bologna1: i valori di induzione magnetica all'esterno della cabina lungo le recinzioni sono risultati essere inferiori a 1 μ T, quelli di campo elettrico inferiore a 1 V/m.

La stazione ad alta tensione, quindi, è caratterizzata da valori di induzione magnetica e di campo elettrico inferiori ai limiti normativi vigenti.

Inoltre, considerando che la mediana sulle 24 ore dei valori di corrente che percorrono tutte le sezioni di impianto sono molto inferiori a quelle di progetto, **l'impatto elettromagnetico ai sensi** della legge italiana è nullo.

7. CONCLUSIONI

A seguito delle valutazioni preventive eseguite, tenendo sempre presente le dovute approssimazioni conseguenti alla complessità geometrica della sorgente emissiva e precisando che le simulazioni dei paragrafi precedenti riguardano solo le opere elettriche di progetto, si presume che l'opera proposta, per le sue caratteristiche emissive e per l'ubicazione scelta, sarà conforme alla normativa italiana in tema di protezione della popolazione dagli effetti dei campi elettromagnetici, magnetici ed elettrici. Successivamente alla realizzazione ed entrata in esercizio dell'impianto, il rispetto dei limiti di esposizione, se necessario, potrà essere verificato e confermato con misure dirette in campo. Inoltre, considerando che la mediana sulle 24 ore dei valori di corrente che percorrono tutte le sezioni di impianto sono molto inferiori a quelle di progetto, l'impatto elettromagnetico ai sensi della legge italiana è nullo.

