

COORDINAMENTO TERRITORIALE NORD-OVEST

Raccordo Autostradale tra l'Autostrada A4 e la Valtrompia

Predisposizione collegamento Concesio - Lumezzane ad unica carreggiata 1º Lotto Funzionale

PERIZIA DI VARIANTE TECNICA

REDAZIONE ATI:

00

REV.

Prima emissione

DESCRIZIONE

P. Lovisolo

A. Fatnassi

REDATTO

A. Aliotta

VERIFICATO

A. Del Grosso

APPROVATO

30/04/2020

DATA

IL PROGETT	IL PROGETTISTA				GRUPPO DI PROGETTAZIONE				
Demonstrate dell'interesione tre T. Al Al Al		Resp.	Resp. Progettazione Stradale		Ing. Lorenzo Ruffini				
Responsabile dell'interazione tra Ing. Alessandro Aliotta le varie discipline specialistiche Ord. Ingg. Genova N. 7995A			Resp. I	Resp. Progettazione Strutturale I		Ing. A	Ing. Andrea Tomarchio		
Direttore Tecnico Prof. Ing. Andrea Del Grosso Ord. Ingg. Genova N. 3611		Resp. I	Progettazione	Gallerie	Ing. F	ranz Pache	er		
			Resp. Progettazione Geotecnica		Ing. Alessio Bado				
		Resp. l	Resp. Progettazione Idraulica		Ing. Alice Canepa				
				Geolog	jo		Dott.	Roberto Pe	done
PROTOCO	DLLO E DATA			IL RES	PONSABILE DI	EL PROCEDIM	IENTO		
	Ing. Giancarlo LUONGO								
-				IL DIR	IL DIRETTORE DEI LAVORI				
				Ing	. Giuseppe	Zanfram	undo		
ID. ELABORAT	ГО							60	CALA
	Codice Commess	20110	 	rafo Tip. D	Disciplina Progre			50	ALA
	MICONV01148	LL01 PVT	SAR 00	R	CAP 030	0 0			,
CANTIERIZZAZ	CANTIERIZZAZIONE								1
CANTIERE SAREZZO PONTE FIUME MELLA									
RELAZIONE TECNICA DI CALCOLO SPALLE E FONDAZIONI									
02	-					-		-	-
01	-				-	-		-	-

PERIZIA DI VARIANTE TECNICA

Sommario

1	PF	REMESSA	5
2	RI	FERIMENTI	б
	2.1	NORMATIVA	б
	2.2	BIBLIOGRAFIA	6
3	SC	OFTWARE DI CALCOLO	7
4	М	IATERIALI IMPIEGATI E COPRIFERRO	8
	4.1	CARATTERISTICHE DEI MATERIALI	
		1.1 Acciaio da Carpenteria Metallica	
		1.2 Calcestruzzo	
		1.3 Acciaio da Cemento Armato	
	4.2		
5	CA	ARATTERIZZAZIONE GEOTECNICA, STRATIGRAFICA E SISMICA	
6		NALISI DEI CARICHI	
	6.1	PESI PROPRI STRUTTURALI – FASE 1	11
	6.2	CARICHI PERMANENTI PORTATI – FASE 2	11
	6.3	CEDIMENTI VINCOLARI	11
	6.4	RITIRO E SCORRIMENTI VISCOSI	11
	6.5	VARIAZIONE TERMICA DIFFERENZIALE	11
	6.6	VARIAZIONE TERMICA UNIFORME	11
	6.7	CARICHI MOBILI	
	6.8	AZIONE LONGITUDINALE DI FRENAMENTO	
	6.9	AZIONE CENTRIFUGA	
	6.10		
	6.11		
	6.12		
	6.13		
	6.14		
7		OMBINAZIONE DEI CARICHI	
8		CHEMA DI VINCOLO	
9	DI	ESCRIZIONE MODELLO GLOBALE E ANALISI MODALE	
	9.1	DESCRIZIONE MODELLO	
	9.2	ANALISI MODALE	39
10	ס	VERIFICA DELLE SPALLE	43
	10.1		
		0.1.1 Verifiche SLU	
		0.1.2 Verifiche SLE	
		VERIFICHE MURI PARAGHIAIA	
	-	0.2.1 Verifiche SLU	
		0.2.2 Verifiche SLE	
	-	0.2.3 Verifica Locale	
		VERIFICHE MURI ANDATORI	
	_	0.3.1 Verifiche SLU	
	10	0.3.2 Verifiche SLE	.05

PERIZIA DI VARIANTE TECNICA

11	VERIFICA BAGGIOLI		7 1
11.1	VERIFICA PRESSIONI LOCALIZZATE		71
11.1	VERIFICA TRANCIAMENTO ARMATURA BAGGIO	LO	72
11.1	VERIFICA ARMATURA A FLESSIONE		73
12	VERIFICA RITEGNI SISMICI TRASVERSALI		74
13	VERIFICA DADI DI FONDAZIONI		76
13	3.1.1 Verifiche SLU		76
13	3.1.2 Verifiche SLE		82
14	VERIFICA DEI PALI		88
	4.1.1 Fondazioni su pali – Metodologia	di calcolo	8
14	4.1.2 Risultati delle verifiche – Pali delle	e Spalle	94

APPENDICE A: TABULATI DI CALCOLO DELLA CAPACITA' PORTANTE VERTICALE DEI PALI

PERIZIA DI VARIANTE TECNICA

Indice delle Tabelle e delle Figure

Figura 5-1: Parametri geotecnici area Sarezzo	9
Figura 5-2: Profilo stratigrafico area Sarezzo	10
FIGURA 6-1. CONDIZIONE DI CARICO TRASVERSALE TE1	
FIGURA 6-2. REAZIONI VINCOLARI CONDIZIONE DI CARICO TRASVERSALE TE, APPLICATI LINEARMENTE ALLE TRAVI PRINCIPALI	12
FIGURA 6-3. CONDIZIONE DI CARICO TRASVERSALE MC3	12
FIGURA 6-4. REAZIONI VINCOLARI CONDIZIONE DI CARICO TRASVERSALE MC3, APPLICATI LINEARMENTE ALLE TRAVI PRINCIPALI	12
FIGURA 6-5. CONDIZIONE DI CARICO TRASVERSALE TE3	
FIGURA 6-6. REAZIONI VINCOLARI CONDIZIONE DI CARICO TRASVERSALE TE3, APPLICATI LINEARMENTE ALLE TRAVI PRINCIPALI	13
FIGURA 6.7: SPETTRO ELASTICO SLD- ORIZZONTALE E VERTICALE	18
FIGURA 6.8: SPETTRO ELASTICO SLV- ORIZZONTALE E VERTICALE	19
FIGURA 6.9: SPETTRO ELASTICO SLC- ORIZZONTALE E VERTICALE	19
FIGURA 6.10: SPETTRO ORIZZONTALE ISOLATO SLD	20
FIGURA 6.11: SPETTRO ORIZZONTALE ISOLATO SLV	20
FIGURA 6.12: SPETTRO ORIZZONTALE ISOLATO SLC	
FIGURA 6.13: RIEPILOGO DATI GENERALI COEFFICIENTI DI SPINTA	23
FIGURA 6.14: RIEPILOGO SPINTE STATICHE A TERGO SPALLA	
FIGURA 6.15: RIEPILOGO DATI GENERALI COEFFICIENTI DI SPINTA	23
FIGURA 6.16: RIEPILOGO SPINTE SISMICHE SLV A TERGO SPALLA	23
FIGURA 6.17: RIEPILOGO SPINTE SISMICHE SLV A TERGO SPALLA	23
FIGURA 6.18: RIEPILOGO SPINTE SISMICHE SLD A TERGO SPALLA	23
FIGURA 8.1: SCHEMA DI VINCOLO PONTE PROVVISORIO SUL FIUME MELLA	
FIGURA 9-1. MODELLO GLOBALE _ VISTA 3D SAP2000	34
FIGURA 9-2. CARPENTERIA SPALLA A E SPALLA B	35
FIGURA 9-3. MODELLO GLOBALE _ LINK RIGIDI	
FIGURA 9-4. DEFINIZIONE RIGIDEZZA VERTICALE EQUIVALENTE ISOLATORI_SAP2000	36
FIGURA 9-5. DEFINIZIONE RIGIDEZZA ORIZZONTALE EQUIVALENTE ISOLATORI_SAP2000	36
FIGURA 9-6. DEFINIZIONE RIGIDEZZA ORIZZONTALE EQUIVALENTE ISOLATORI_SAP2000	
FIGURA 9-7. DEFINIZIONE MOLLE DEI PALI DI FONDAZIONE_SAP2000	
FIGURA 9-8. APPLICAZIONE PRESSIONE "P-TERRENO" _ SAP2000	
FIGURA 9-9. APPLICAZIONE PRESSIONE "SLV_XTERRENO" _ SAP2000	
FIGURA 9-10. APPLICAZIONE PRESSIONE "SLV_X_+_TERRENO" _ SAP2000	
FIGURA 9-11. ANALISI MODALE _ MODO 1 _ T ₁ = 1.44 s	
FIGURA 9-12. ANALISI MODALE _ MODO 2 _ T ₂ = 1.41 s	
Figura 9-13. Analisi modale $_$ Modo 9 $_$ T $_9$ = 0.14 s $_$	
FIGURA 9-14. ANALISI MODALE $_$ MODO 10 $_$ T_{10} = 0.13 s	
FIGURA 14.1: SEZIONE FONDAZIONE SPALLA	
FIGURA 14.2: GRAFICO PER IL CALCOLO DEL COEFFICIENTE IO	
FIGURA 14.3: GRAFICO PER IL CALCOLO DEL COEFFICIENTE RK	
FIGURA 14.4: GRAFICO PER IL CALCOLO DEL COEFFICIENTE RV	
FIGURA 14.5: CAPACITÀ PORTANTE MICROPALI PILA	
FIGURA 14.6: VERIFICA CAPACITÀ PORTANTE PILA	
FIGURA 14.7: CARICO LIMITE ORIZZONTALE PALI SPALLA	
FIGURA 14.8: MOMENTO MASSIMO MICROPALI PILA	
FIGURA 14.9: VERIFICA PRESSOFLESSIONE PALO — SLU/SLV	
FIGURA 14.10: VERIFICA PRESSOFLESSIONE PALO — SLE/SLD	
FIGURA 14.11: RISULTATI VERIFICA A TAGLIO PALI	
FIGURA 14.12: SPOSTAMENTI ORIZZONTALI	101
TABELLA 5-1: PARAMETRI SPETTRI ORIZZONTALI ACCELERAZIONE SU SUOLO RIGIDO, VN 10 ANNI, CU 2, AREA SAREZZO	10
TABELLA 6.1: VALORI DELLA VITA NOMINALE VN IN FUNZIONE DEL TIPO DI COSTRUZIONE	

TABELLA 6.2: CLASSI D'USO PER LE DIVERSE TIPOLOGIE DI COSTRUZIONE	17
TABELLA 6.3: VALORI DEL COEFFICIENTE D'USO CU.	17
TABELLA 6.4: VALORI DI PROGETTO PER VN, CU E VR.	18
TABELLA 6.5: PARAMETRI SPETTRI ORIZZONTALI IN ACCELERAZIONE.	18
TABELLA 14.1: COEFFICIENTI PARZIALI PER LE AZIONI	91
TABELLA 14.2: COEFFICIENTI PARZIALI PER I PARAMETRI GEOTECNICI DEL TERRENO	92
TABELLA 14.3: COEFFICIENTI FR3 PER IL CALCOLO DELLA CAPACITÀ PORTANTE (N.T.C. 2018, TAB. 6.4.II)	92
TABELLA 14.4: COEFFICIENTI E RIDUTTIVI DELLA CAPACITÀ PORTANTE (N.T.C. 2018, TAB. 6.4.IV)	
TARELLA 1/1 5: COEFFICIENTIE ADDROCCIO DI NORMATIVA (N.T.C. 2018, TAR. 6.4 IV.)	

PERIZIA DI VARIANTE TECNICA

1 PREMESSA

Il presente documento si inserisce all'interno della Perizia di Variante Tecnica (PVT) al Progetto Esecutivo, ultimato in data febbraio 2005, incaricata da ANAS, al fine di prevedere l'esecuzione di una infrastruttura stradale a una sola carreggiata, nel tratto compreso tra gli abitati di S. Vigilio, Codolazza, Sarezzo e Lumezzane, con l'inserimento di un nuovo svincolo presso S. Vigilio rispetto a quanto previsto dal Progetto Esecutivo.

In particolare, nel presente documento si riportano i calcoli delle spalle e delle fondazioni del Ponte provvisorio sul fiume Mella utile per la viabilità di cantiere situato in zona Sarezzo tra la progressiva 0+029.63 (SPA) e 0+080.83 (SPB).

PERIZIA DI VARIANTE TECNICA

2 RIFERIMENTI

2.1 NORMATIVA

Il progetto è stato redatto in conformità alla vigente normativa:

- DM 17/01/2018 "Norme Tecniche per le Costruzioni";
- Istruzioni per l'applicazione delle Norme tecniche per le costruzioni di cui al DM 17/01/2018 Circolare 21 gennaio 2019 n°7;

Sono stati utilizzati inoltre i sequenti riferimenti di letteratura:

- CNR DT 207/2008, "Istruzioni per la valutazione delle azioni e degli effetti del vento sulle costruzioni";
- Circolare 11 febbraio 2019, n. 35 Istruzioni per l'applicazione dell'aggiornamento delle "Nuove norme tecniche per le costruzioni" di cui al D.M. 17 gennaio 2018;
- Decreto Ministeriale del 14 gennaio 2008: "Approvazione delle Nuove Norme Tecniche per le Costruzioni", G.U. n.29 del 04.2.2008, Supplemento Ordinario n.30;
- UNI EN 1991-1 Eurocodice 1 Azioni sulle Strutture Parti 1-7: Azioni in generale;
- UNI EN 1991-2:2005 Eurocodice 1 Azioni sulle Strutture Parte 2: Carichi da traffico sui ponti;
- UNI EN 1991-1-1:2005 Eurocodice 2 Progettazione delle Strutture in calcestruzzo Parte 1-1: Regole Generali e regole per gli edifici;
- UNI EN 1993-1-1:2005 Eurocodice 2 Progettazione delle Strutture in acciaio Parti 1-12;
- CNR-UNI 10011/97 Costruzioni in acciaio. Istruzioni per il calcolo, l'esecuzione, il collaudo e la manutenzione;
- UNI EN 1997-1: Eurocodice 7 Progettazione geotecnica Parte 1: Regole generali;
- UNI EN 1998-5: Eurocodice 8 Progettazione delle strutture per la resistenza sismica Parte 5: fondazioni, strutture di contenimento ed aspetti geotecnici.

2.2 BIBLIOGRAFIA

- AASHTO. 2007, LRFD Bridge Design Specifications, SI Units, 4th Edition;
- Berezantzev, V.G., Khrisofov, & Golubkov, V.N., 1961 Load bearing capacity and deformation of piled foundations, Proc. 5lh Int. Con5 Soil Mech., Paris, 2, pp. 11-15;
- E. Hoek, M.S. Diederichs, 2006, Empirical estimation of rock mass modulus, International Journal of Rock Mechanics & Mining Sciences 43 (2006) 203–215
- Lancellotta R., 2004, Geotecnica, Zanichelli, Bologna;
- Mononobe N., 1929, Earthquake-proof construction of masonry dams, Proc. of World Engineering Conference, vol.9, p.275;
- Okabe S., 1926, General theory of earth pressure, Journal of Japanese Society of Civil Engineering, Vol 12 No.1;
- O'Neill, M.W., and L.C. Reese, 1999, Drilled Shafts: Construction Procedures and Design Methods, Report FHWA-IF-99-025, Federal Highway Administration, Washington D.C., 758 p;
- Poulos, H.G., 1975 Design of Pile Foundation. Research Report No 271. The University of Sydney School of Civil Engineering, Sydney;
- Reese Wright, 1977, "Drilled shaft manual" U.S. Dept. Transportation, Offices of Research and Development, Implementation Div., HDV 2, Washington D.C., vol.1;
- Turner J., 2010, Base Resistance of Drilled Shafts in Fractured Rock, Conference: Art of Foundation Engineering Practice Congress 2010;
- Vesic, A.S., 1975 Principles of pile foundation design. Soil Mechanics Series No 38, Duke University.

PERIZIA DI VARIANTE TECNICA

3 SOFTWARE DI CALCOLO

Per la definizione dei modelli di calcolo delle strutture è stato utilizzato SAP2000 v21 della Computers&Structures, software integrato per analisi strutturale e verifiche (www.csi-italia.eu). Con ausilio del SAP2000 sono anche stati ricavati gli indicatori di rischio sismico ed i relativi spettri di risposta elastici e di progetto che sono stati verificati con software su foglio di calcolo Excel "Spettri-NTCver.1.0.3.xls" (www.cslp.it).

Le verifiche delle sezioni in C.A. a stato limite ultimo sono state condotte mediante l'ausilio del software "VCASLU" sviluppato dal Prof. Piero Gelfi (http://dicata.ing.unibs.it/gelfi/).

Per le restanti verifiche sono stati utilizzati i fogli di calcolo Excel prodotti in-house, i quali sono stati tutti verificati mediante casi studio reperiti in bibliografia.

PERIZIA DI VARIANTE TECNICA

4 MATERIALI IMPIEGATI E COPRIFERRO

Si riportano in seguito le caratteristiche meccaniche dei materiali e i relativi parametri di calcolo.

4.1 CARATTERISTICHE DEI MATERIALI

4.1.1 Acciaio da Carpenteria Metallica

Acciaio per predalles, traversi, controventi, travi principali pulvini, pile e tirafondi:

S355J0W per $t \le 20 \text{ mm}$

S355J2W per 20 < t <= 40 mm

S355K2W per t > 40 mm

Elementi non saldati, angolari e piastre S355J0W

Imbottiture con spessore < 3mm S355J0

Pioli di ancoraggio Secondo UNI EN ISO 13918 Tipo NELSON, acciaio ex ST 37-3 K (S235J2G3 + C450), fyk

= 350 N/mm2

Bulloni A.R. Secondo DM 17/1/2018 e UNI14399-1-8 par.3.4 (giunzioni a taglio)

Saldature Secondo DM 17/01/2018

4.1.2 Calcestruzzo

Calcestruzzo per soletta:

Classe di Resistenza C32/40 Classe di esposizione XF4

Calcestruzzo per pila e spalla:

Classe di Resistenza C32/40 Classe di Esposizione XC4

4.1.3 Acciaio da Cemento Armato

barre in acciaio: B450C

tensione caratteristica di rottura: ftk ≥ 540MPa tensione caratteristica di snervamento: fyk ≥ 450MPa

4.2 CALCOLO DELLE RESISTENZE DEI MATERIALI

Per le verifiche allo stato limite ultimo, le resistenze dei materiali vengono ridotte secondo i coefficienti espressi in

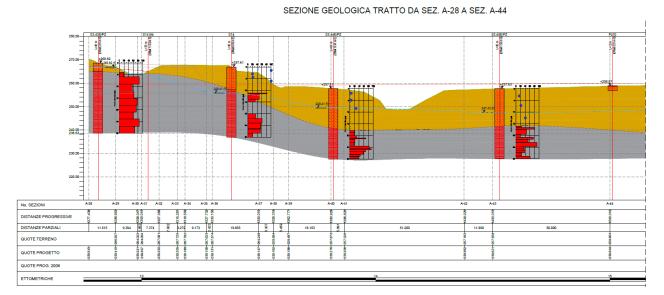
normativa.

Acciaio per carpenteria metallica $\gamma M0 = 1,05$ Calcestruzzo $\gamma C = 1,5$ Acciaio per armatura $\gamma S = 1,15$

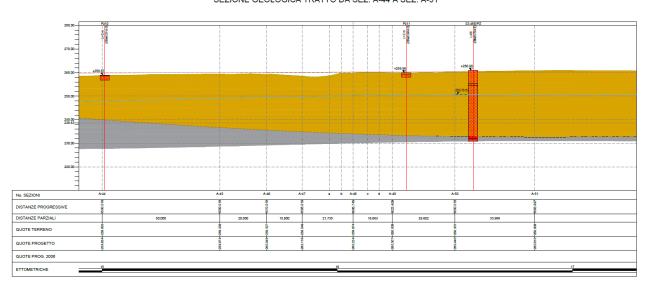
Le resistenze di calcolo hanno dunque i seguenti valori:
Acciaio per carpenteria metallica fyd = 338 MPa
Calcestruzzo C32/40 fcd =19 MPa
Acciaio per armatura fyd = 391 MPa

PERIZIA DI VARIANTE TECNICA

5 CARATTERIZZAZIONE GEOTECNICA, STRATIGRAFICA E SISMICA


Si riepilogano nelle tabelle seguenti i parametri geotecnici relativi all'area di progetto di Sarezzo, in cui ricadono le opere di fondazione oggetto del presente elaborato.

Unità	Descrizione	Υ	φ'	c'	E
-	-	kN/m³	0	kPa	MPa
В	Ghiaie e sabbie alluvionali	20	39	0	50
Е	Calcari marnosi	26	39	90	1000


Figura 5-1: Parametri geotecnici area Sarezzo

Il riepilogo riportato in questa sede della caratterizzazione geotecnica, stratigrafica e sismica, è analizzato in dettaglio negli elaborati specialistici dedicati (GTC0001 e GTC0002), a cui si rimanda per maggiori dettagli.

Dal punto di vista stratigrafico si riporta di seguito il profilo stratigrafico lungo il tracciato in area Sarezzo. Le fondazioni su pali del ponte oggetto di verifica si trovano a nord dell'attraversamento del torrente Faidana, poco più a nord del sondaggio S3.45/PZ. Per le verifiche delle due spalle A e B, è stata considerata la colonna stratigrafica di tale sondaggio; tale colonna è pienamente corretta per la spalla lato est, mentre la spalla lato ovest è più distante da tale sondaggio e non si può escludere la presenza del substrato roccioso a profondità superiore. Per questa ragione, per le verifiche geotecniche dei pali è stata utilizzata cautelativamente la colonna stratigrafica caratterizzata dalla sola presenza di unità geotecnica B e dall'assenza di roccia.

PERIZIA DI VARIANTE TECNICA

SEZIONE GEOLOGICA TRATTO DA SEZ. A-44 A SEZ. A-51

Figura 5-2: Profilo stratigrafico area Sarezzo

Per quanto riguarda la falda, essa è stata identificata a profondità comprese tra 8 m e 12 m. In particolare, presso la spalla est la falda è stata riscontrata a una profondità minima di 10.2 m. In fase di calcolo è stata considerata cautelativamente per entrambe le spalle la profondità minima di 8 m riscontrata nell'area.

Dal punto di vista sismico, per il caso in esame, si considera una vita nominale di 10 anni e una classe d'uso IV, corrispondente a Cu pari a 2. Si riportano di seguito i parametri sismici orizzontali in accelerazione su suolo rigido determinati per l'area di studio, considerando i parametri di vita nominale e classe d'uso sopra descritti.

Stato limite	T _R (anni)	a _g (g)	F _o (-)	T _c *(s)
SLO	30	0.040	2.474	0.212
SLD	35	0.043	2.457	0.218
SLV	332	0.125	2.416	0.273
SLC	682	0.162	2.441	0.282

Tabella 5-1: Parametri spettri orizzontali accelerazione su suolo rigido, VN 10 anni, Cu 2, area Sarezzo

In merito alla risposta sismica locale, dal punto di vista topografico l'area in esame è riconducibile alla categoria T1, con riferimento alle Tabelle 3.2.III e 3.2.IV, d delle NTC2018.

Per quanto riguarda la determinazione del coefficiente di stratigrafia, dalle indagini sismiche disponibili si ricava una categoria di sottosuolo B. A seguito dell'analisi sismica di II livello, richiesta dalla normativa della Regione Lombardia (D.G.R. IX/2616 del 30 Novembre 2011), con riferimento alla relazione di caratterizzazione sismica (Doc. GTC0002), si evince che il valore del fattore di amplificazione Fa ottenuto dall'analisi di II livello ricade all'interno della categoria di sottosuolo B per le prove eseguite nel comune di Sarezzo. Si nota tuttavia che le prove disponibili sono state eseguite nell'area di imbocco della galleria, per cui è possibile applicare una categoria di suolo B. Allontanandosi dall'imbocco lo spessore degli strati superficiali di terreno aumenta significativamente, rimanendo tuttavia inferiore rispetto a 30 m. Considerati anche i risultati delle prove SPT eseguite presso i sondaggi in tale area (S3.44E/PZ, S3.45E/PZ), si evincono valori ricadenti all'interno della categoria di suolo C fino al raggiungimento del substrato. Per questa ragione, si è scelto, con approccio cautelativo, di considerare una categoria di sottosuolo C che, considerata la presenza del substrato a profondità intorno ai 15 m, comporta l'adozione di una categoria di sottosuolo E per le opere comprese tra il ponte sul torrente Faidana e Sarezzo.

PERIZIA DI VARIANTE TECNICA

6 ANALISI DEI CARICHI

Nel seguente capitolo vengono riportate le analisi dei carichi inerenti l'impalcato e spalle.

In particolare, verranno riportati sia gli spettri sismici elastici sia gli spettri sismici di progetto in virtù dell'utilizzo degli isolatori sismici elastomerici come dispositivi di vincolo.

6.1 PESI PROPRI STRUTTURALI – FASE 1

Per la definizione dei pesi propri strutturali degli elementi costituenti l'impalcato metallico si rimanda alla Relazione tecnica di calcolo impalcato N° MICONV01148LL01PVTSAR00R CAP0301 00.

6.2 CARICHI PERMANENTI PORTATI – FASE 2

Per la definizione dei carichi permanenti portati dell'impalcato si rimanda alla Relazione tecnica di calcolo impalcato N° MICONV01148LL01PVTSAR00R CAP0301 00.

6.3 CEDIMENTI VINCOLARI

Dal momento che le campate del viadotto sono in semplice appoggio, gli eventuali cedimenti differenziali delle pile non comportano sollecitazioni sugli elementi delle campate.

6.4 RITIRO E SCORRIMENTI VISCOSI

Per la definizione dei carichi di ritiro e scorrimento viscosi portati dell'impalcato si rimanda alla Relazione tecnica di calcolo impalcato N° MICONV01148LL01PVTSAR00R CAP0301 00.

6.5 VARIAZIONE TERMICA DIFFERENZIALE

Per la definizione dei carichi dovuti alla variazione termica differenziale dell'impalcato si rimanda alla Relazione tecnica di calcolo impalcato N° MICONV01148LL01PVTSAR00R_CAP0301_00.

6.6 VARIAZIONE TERMICA UNIFORME

Si è considerata una variazione termica uniforme pari a 25°C su tutti gli elementi della struttura: questa condizione di carico ha effetti solamente deformativi, dal momento che la campata è isostatica.

6.7 CARICHI MOBILI

L'entità di tali carichi è coerente con quanto previsto da NTC2018.

La ripartizione trasversale dei carichi è stata eseguita considerando le condizioni di carico di seguito riportate, in esse il valore del carico concentrato rappresenta la singola ruota, mentre i carichi distribuiti sono valutati a metro lineare.

In particolare, per considerare le condizioni di carico più gravose sulle spalle, sono stati studiate le seguenti configurazioni di carico:

- Te1: Massimo squilibrio delle reazioni vincolari esterne;
- Mc3: Massima reazione sulla trave centrale.
- Te3: Massimo squilibrio tra trave esterna e trave centrale.

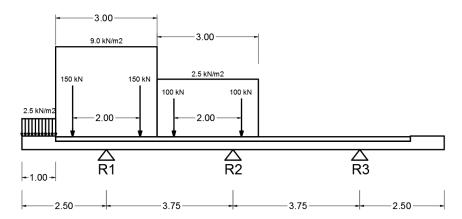


Figura 6-1. Condizione di carico trasversale Te1

Fase 3 – Te1			
R1 conc	334.88kN		
R1 dist	32.38kN/m		
R2 conc	170.64kN		
R2 dist	4.57kN/m		
R3 conc	5.32kN		
R3 dist	0.05kN/m		

Figura 6-2. Reazioni vincolari condizione di carico trasversale Te, applicati linearmente alle travi principali

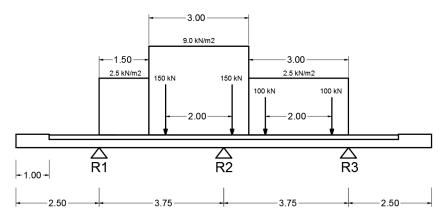


Figura 6-3. Condizione di carico trasversale Mc3

Fase 3 – Mc3			
R1 conc	39.22kN		
R1 dist	6.68kN/m		
R2 conc	361.55kN		
R2 dist	28.8kN/m		
R3 conc	99.22kN		
R3 dist	2.78kN/m		

Figura 6-4. Reazioni vincolari condizione di carico trasversale Mc3, applicati linearmente alle travi principali

PERIZIA DI VARIANTE TECNICA

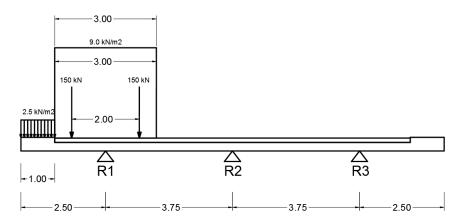


Figura 6-5. Condizione di carico trasversale Te3

Fase 3 – Te3			
R1 conc	300.33kN		
R1 dist	31.18kN/m		
R2 conc	-0.66kN		
R2 dist	-2.02kN/m		
R3 conc	0.33kN		
R3 dist	0.34kN/m		

Figura 6-6. Reazioni vincolari condizione di carico trasversale Te3, applicati linearmente alle travi principali

6.8 AZIONE LONGITUDINALE DI FRENAMENTO

L'azione longitudinale di frenamento è calcolata in base alla definizione presente su NTC2018. I limiti inferiore e superiore del valore dell'azione di frenamento sono espressi dalla seguente relazione:

 $180kN \le q_3 \le 0.6 (2Q_{1k}) + 0.1q_{1k} w_1 L \le 900kN$

Nei casi in esame, si ha:

Campata 51.2m: $q_3 = 0.6 (2 \times 300 \text{kN}) + 0.1 \times 9 \text{kN/m}^2 \times 3 \text{m} \times 51.2 \text{ m} \approx 500 \text{ kN}$

6.9 AZIONE CENTRIFUGA

L'azione centrifuga è calcolata in base alla definizione presente su NTC2008, Tabella 5.1.III

Nel caso in esame il tracciato è pressoché rettilineo per cui la forza centrifuga risulta Q₄ = 0 kN.

PERIZIA DI VARIANTE TECNICA

6.10 AZIONE DEL VENTO

DETERMINAZIONE PRESSIONE DEL VENTO secondo N.T.C. 2018

1) Calcolo Velocità Base di Riferimento (N.T.C. 2018 - 3.3.1)

La velocità base di riferimento vb è il valore medio su 10 minuti, a 10 m di altezza sul suolo su un terreno pianeggiante e omogeneo di categoria di esposizione II, riferito ad un periodo di ritorno TR = 50 anni.

ZONA	1	NTC 2018_tab 3.3.I
		_

 $V_{b,0}$ [m/s] 25 velocità base di riferimento al livello del mare, da Tab. 3.3.1 (T Rit = 50anni) a_s [m] 300 altitudine del sito dal livello mare

a₀ [m] 1000 NTC 2018 - da Tab 3.3.1

0,4 NTC 2018 - da Tab 3.3.I

Tab. 3.3.I -Valori dei parametri v_{b,0'} a_{0'} k_s

Zona	Descrizione	v _{b,0} [m/s]	a ₀ [m]	k_s
1	Valle d'Aosta, Piemonte, Lombardia, Trentino Alto Adige, Veneto, Friuli Venezia Giulia (con l'eccezione della pro- vincia di Trieste)	25	1000	0,40
2	Emilia Romagna	25	750	0,45
3	Toscana, Marche, Umbria, Lazio, Abruzzo, Molise, Puglia, Campania, Basilicata, Calabria (esclusa la provincia di Reggio Calabria)	27	500	0,37
4	Sicilia e provincia di Reggio Calabria	28	500	0,36
5	Sardegna (zona a oriente della retta congiungente Capo Teulada con l'Isola di Maddalena)	28	750	0,40
6	Sardegna (zona a occidente della retta congiungente Capo Teulada con l'Isola di Maddalena)	28	500	0,36
7	Liguria	28	1000	0,54
8	Provincia di Trieste	30	1500	0,50
9	Isole (con l'eccezione di Sicilia e Sardegna) e mare aperto	31	500	0,32

 $c_a = 1 per a_s < a_0$

 $c_a = 1 + k_s (a_s/a_0-1) per a_0 < a_s < 1500 m$

c_a 1,00 coefficiente di altitudine V_b [m/s] 25,00 velocità base di riferimento all'altitudine del sito, tempo rit. 50anni

2) Calcolo Velocità di Riferimento (N.T.C. 2018 - 3.3.2)

La velocità di riferimento vr è il valore medio su 10 minuti, a 10 m di altezza dal suolo su un terreno pianeggiante e omogeneo di categoria di esposizione II, riferito al periodo di ritorno di progetto TR.

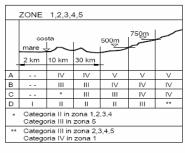
T _R [anni]	10	periodo di ritorno di progetto
C _R	0,903	coefficiente di ritorno
V _{b(TR)} [m/s]	22,58	velocità di riferimento all'altitudine del sito, tempo rit di progetto

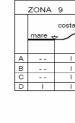
3) Calcolo Pressione Cinetica di Riferimento (N.T.C. 2018 - 3.3.6)

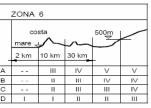
ρ [kg/m³]=	1,25	densità dell'aria
$q_r [kN/m^2]$	0,32	pressione cinetica di riferimento

4) Calcolo Coefficiente di Esposizione (N.T.C. 2018 - 3.3.7)

Il coefficiente di esposizione ce dipende dall'altezza z sul suolo del punto considerato, dalla topografia del terreno e dalla categoria di esposizione del sito ove sorge la costruzione.


C _t	1	coefficiente di topografia, =1 se non diversamente specificato
Classe Rugosità	В	NTC 2018 - da Tab 3.3.III
Cat. Esposizione	IV	NTC 2018 - da Fig 3.3.2


PERIZIA DI VARIANTE TECNICA


Tab. 3.3.III - C	lassi di rug	rosità del terre	710
------------------	--------------	------------------	-----

Classe di rugosità del terreno	Descrizione	
A	Aree urbane in cui almeno il 15% della superficie sia coperto da edifici la cui altezza media superi i 15 m	
В	Aree urbane (non di classe A), suburbane, industriali e boschive	
C Aree con ostacoli diffusi (alberi, case, muri, recinzioni,); are con rugosità non riconducibile alle classi A, B, D		
D	a) Mare e relativa fascia costiera (entro 2 km dalla costa); b) Lago (con larghezza massima pari ad almeno 1 km) e relativa fascia costiera (entro 1 km dalla costa)	
Б	c) Aree prive di ostacoli o con al più rari ostacoli isolati (aperta campagna, aeroporti, aree agricole, pascoli, zone paludose o sabbiose, superfici innevate o ghiacciate,)	

L'assegnazione della classe di rugosità non dipende dalla conformazione orografica e topografica del terreno. Si può assumere che il sito appartenga alla Classe A o B, purché la costruzione si trovi nell'area relativa per non meno di 1 km e comunque per non meno di 20 volte l'altezza della costruzione, per tutti i settori di provenienza del vento ampi almeno 30°. Si deve assumere che il sito appartenga alla Classe D, qualora la costruzione sorga nelle aree indicate con le lettere a) o b), oppure entro un raggio di 1 km da essa vi sia un settore ampio 30°, dove il 90% del terreno sia del tipo indicato con la lettera c). Laddove sussistano dubbi sulla scelta della classe di rugosità, si deve assegnare la classe più sfavorevole (l'azione del vento è in genere minima in Classe A e massima in Classe D).

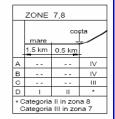


Fig. 3.3.2 - Definizione delle categorie di esposizione

Tab. 3.3.II - Parametri per la definizione del coefficiente di esposizione

z ₀ [m]	0,3
z _{min} [m]	8
K _r	0,22
z [m]	13
C _e (z _{min})	1,63
C _e (z)	1,96

Categoria di esposizione del sito	K _r	≈ ₀ [m]	≈ _{min} [m]
I	0,17	0,01	2
П	0,19	0,05	4
III	0,20	0,10	5
IV	0,22	0,30	8
V	0,23	0,70	12

altezza generica per valutare il profilo del vento

$$\begin{split} c_{e}\left(z\right) &= k_{r}^{2} c_{t} \ln \left(z/z_{0}\right) \left[7 + c_{t} \ln \left(z/z_{0}\right)\right] & \text{ per } z \geq z_{min} \\ c_{e}\left(z\right) &= c_{e}\left(z_{min}\right) & \text{ per } z < z_{min} \end{split}$$

5) Calcolo Coefficiente Dinamico (N.T.C. 2018 - 3.3.9)

Il coefficiente dinamico tiene conto degli effetti riduttivi associati alla non contemporaneità delle massime pressioni locali e degli effetti amplificativi dovuti alla risposta dinamica della struttura.

Esso può essere assunto cautelativamente pari ad 1 nelle costruzioni di tipologia ricorrente.

C_d 1

6) Calcolo Pressione Cinetica di Picco

La pressione cinetica di picco sopravento alla quota della struttura è:

p_{cinetica} [kN/m²] 0,63

7) Calcolo Coefficiente Aerodinamico (N.T.C. 2018 - 3.3.8) e Azione del Vento sul corpo

Il coefficiente di pressione (cp) o coefficiente di forza (cf) dipende dalla tipologia e dalla geometria della costruzione e dal suo orientamento rispetto alla direzione del vento.

PERIZIA DI VARIANTE TECNICA

DETERMINAZIONE PRESSIONE DEL VENTO SULL'IMPALCATO secondo N.T.C. 2018

L'azione del vento può essere convenzionalmente assimilata ad un sistema di carichi statici, la cui componente principale è orizzontale e diretta ortogonalmente all'asse del ponte e/o diretta nelle direzioni più sfavorevoli per alcuni dei suoi elementi (ad es. le pile).

1) Calcolo Coefficiente di pressione C_n (Circolare N.T.C. 2018 - C3.3.8.6.1 - Travi isolate)

Il coefficiente di pressione Cp è espresso in funzione del rapporto Superficie parte piena della trave (S_p) su Superficie delimitata dal contorno della trave (S).

La pressione totale si considera agente solo su S_o e si valuta utilizzando i seguenti valori del coefficiente C_o:

 C_{n}

$$c_p = 2 - \frac{4}{3} \phi$$
 per $0 \le \phi < 0.3$

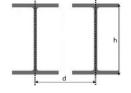
$$c_p = 1.6$$
 per $0.3 \le \phi \le 0.8$

$$c_p = 2.4 - \phi$$
 per $0.8 < \phi \le 1$

La pressione cinetica di picco sopravento alla quota della struttura risulta quindi:

p_{cinetica} [kN/m²]

0,88


2) Calcolo Coefficiente di riduzione μ (Circolare N.T.C. 2018 - C3.3.8.6.2 - Travi multiple)

Nel caso di più travi disposte parallelamente a distanza d non maggiore del doppio dell'altezza h, il valore della pressione sull'elemento successivo sarà pari a quello sull'elemento precedente moltiplicando per un coefficiente di riduzione dato da:

$$\mu = 1 - 1.2\phi \quad \text{per } \phi \le \frac{2}{3}$$

$$\mu = 0.2$$

per
$$\varphi > \frac{2}{3}$$

Per d/h \geq 5 gli elementi vengono considerati come isolati. Per 2 < d/h < 5 si procede all'interpolazione lineare.

h travi [m] h barriere [m] h mezzo [m]

2,50 0,00 3,00 S soletta [m] S paviment. [m]

S cordolo [m]

0,25 0,20 0,15

Viadotto

CARICO

Trave	h [m] d	d [m]	Coeff. Riduzione	p _{trave}	h _{tot} [m]	Azione a ml
Have	h _{trave} [m]	d _{prograssiva} [m]	μ	$[kN/m^2]$		[kN/m]
Trave 1 - Sopravento	2,50		1,000	0,88	5,95	5,21
Trave 2	2,50	3,75	0,200	0,18	2,50	0,44
Trave 3	2,50	3,75	0,040	0,04	2,50	0,09
Trave 4						
Trave 5						
Trave 6						
Trave 7						
Trave 8						
Barriera Sopravento	0,00		1,000	0,88	0,00	0,00
Barriera Sottovento	0,00	12,50			0,00	

Azione totale del vento a metro di struttura:

5,74 kN/m

PERIZIA DI VARIANTE TECNICA

6.11 AZIONE SISMICA

La caratterizzazione dell'azione sismica avviene, in accordo a quanto previsto dalle NTC 2018, individuando come parametro caratterizzante l'accelerazione orizzontale massima che questo produce nel substrato con una certa probabilità di accadimento in un certo intervallo temporale, funzione della tipologia della struttura.

Il modello di riferimento per la descrizione del moto sismico è costituito dallo spettro di risposta elastico, descritto da forme diverse per le componenti orizzontali e verticali del moto. L'azione sismica è caratterizzata da tre componenti traslazionali, di cui due orizzontali X e Y ed una verticale Z.

Le NTC 2018 caratterizzano l'azione sismica in funzione della pericolosità sismica di base del sito di costruzione. In particolare, la caratterizzazione delle azioni sismiche avviene a partire dalla definizione del periodo di riferimento per la costruzione.

La definizione dell'azione sismica parte con la determinazione della vita nominale è quella indicata nella Tab. 2.4.I del D.M.18 di seguito riportata.

Tabella 6.1: Valori della Vita Nominale VN in funzione del tipo di costruzione

	TIPI DI COSTRUZIONE		
1	Opere provvisorie – Opere provvisionali - Strutture in fase costruttiva ¹	≤ 10	
2	Opere ordinarie, ponti, opere infrastrutturali e dighe di dimensioni contenute o di importanza normale	≥ 50	
3	Grandi opere, ponti, opere infrastrutturali e dighe di grandi dimensioni o di importanza strategica	≥ 100	

Essendo l'opera in oggetto provvisoria, la vita nominale considerata è pari a 10 anni.

Con riferimento alla tabella precedente si evidenzia che, ai sensi e per gli effetti del Decreto del Capo Dipartimento della Protezione Civile n. 3685 del 21 ottobre 2003 il carattere strategico di un'opera o la sua rilevanza per le conseguenze di un eventuale collasso, sono definiti dalla classe d'uso.

In presenza di azioni sismiche, con riferimento alle conseguenze di una interruzione di operatività o di un eventuale collasso, le costruzioni sono suddivise in classi d'uso, come definite nel D.M. 18.

Tabella 6.2: Classi d'uso per le diverse tipologie di costruzione

Classe II: Costruzioni con presenza solo occasionale di persone, edifici agricoli.

Classe II: Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe d'uso III o in Classe d'uso IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi conseguenze rilevanti.

Classe III: Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso.

Classe IV: Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie con attività particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al D.M. 5 novembre 2001, n. 6792, "Norme funzionali e geometriche per la costruzione delle strade", e di tipo C quando appartenenti ad itinerari di collegamento tra capoluoghi di provincia non altresi serviti da strade di tipo A o B. Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico.

Dighe connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica.

Per l'opera in oggetto si è scelta una classe d'uso IV a cui corrisponde coefficiente Cu=2.0.

Le azioni sismiche vengono quindi valutate in relazione ad un periodo di riferimento V_r che si ricava moltiplicando la vita nominale V_N per il coefficiente d'uso C_U :

 $V_R = V_N \times C_U$

Tale valore riveste notevole importanza in quanto, assumendo che la legge di ricorrenza dell'azione sismica sia un processo Poissoniano, è utilizzato per valutare, fissata la probabilità di superamento P_{VR} corrispondente allo stato limite considerato (Tabella 3.2.1 della NTC), il periodo di ritorno T_R dell'azione sismica cui fare riferimento per la verifica.

Il valore del coefficiente d'uso C_U è definito, al variare della classe d'uso, come mostrato nella seguente tabella.

Tabella 6.3: Valori del coefficiente d'uso CU.

CLASSE D'USO	I	II	III	IV
COEFFICIENTE C_U	0,7	1,0	1,5	2,0

PERIZIA DI VARIANTE TECNICA

Riepilogando:

Tabella 6.4: Valori di progetto per VN, CU e VR.

V _N	Classe d'uso	Cu	V_R
10 anni	IV	2	20

Data la precedente vita utile di riferimento, si possono definire i parametri degli spettri sismici in accelerazione corrispondenti al sito in oggetto su suolo rigido. A tal fine si utilizza il foglio Excel messo a disposizione dal Consiglio Superiore dei Lavori Pubblici.

Inoltre, per la definizione degli spettri sismici di progetto vengono considerati anche i seguenti parametri:

- Categoria topografica T₁ a cui corrisponde un coefficiente S_t=1.
- Categoria del sottosuolo E, come definito nel capitolo 5 della seguente relazione.

Si ottengono pertanto i seguenti parametri:

Tabella 6.5: Parametri spettri orizzontali in accelerazione.

Stato limite	T _R (anni)	a _g (g)	F _o (-)	T _c *(s)
SLO	30	0.040	2.474	0.212
SLD	35	0.043	2.457	0.218
SLV	332	0.125	2.416	0.273
SLC	682	0.162	2.441	0.282

Ai fini del calcolo degli spettri sismici di progetto si è utilizzato un fattore di struttura pari a q=1.0.

Alla luce dei parametri sopra esposti e in accordi alle NTC 2018, vengono riportati in seguito gli spettri elastici corrispondenti agli stati limite SLD, SLV e SLC.



Figura 6.7: Spettro elastico SLD- orizzontale e verticale

PERIZIA DI VARIANTE TECNICA

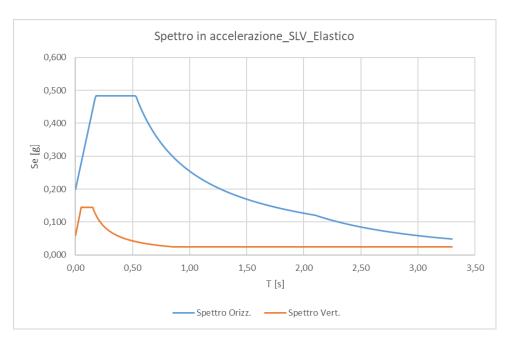


Figura 6.8: Spettro elastico SLV- orizzontale e verticale

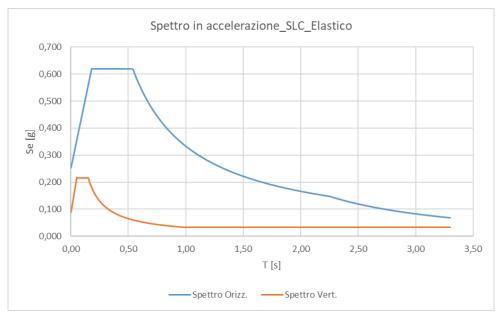


Figura 6.9: Spettro elastico SLC- orizzontale e verticale

Come precedentemente accennato, per il ponte oggetto di studio, è stato previsto l'utilizzo di Isolatori sismici elastomerici.

L'utilizzo di tali dispositivi di vincolo oltre a permettere il sostegno dei carichi verticali con elevate rigidezze, presenta anche una funzione di dissipazione di energia con meccanismi isteretici come verrà esplicitato nei capitoli successivi.

Come si vede dai grafici riportati in seguito, lo spettro orizzontale è stato ridotto con η =0.82 per periodi superiori a 1.12 s. Per il calcolo di η si rimanda ai paragrafi successivi. La scelta di smorzare i periodi sopra 1.12 s risulta a valle dell'analisi modale, dove sono evidenti i periodi fondamentali orizzontali dell'impalcato.

Figura 6.10: Spettro orizzontale Isolato SLD

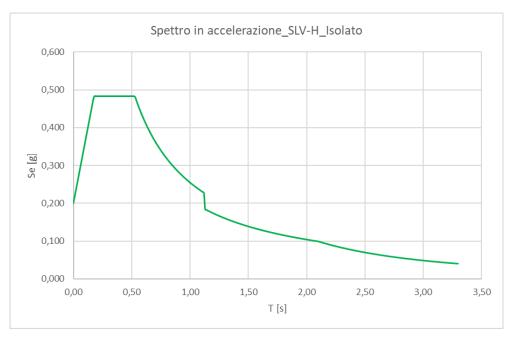


Figura 6.11: Spettro orizzontale Isolato SLV

PERIZIA DI VARIANTE TECNICA

Figura 6.12: Spettro orizzontale Isolato SLC

6.12 URTO DI VEICOLI IN SVIO

Per la definizione dei carichi dovuti agli urti di veicoli in svio si rimanda alla Relazione tecnica di calcolo impalcato N° MICONV01148LL01PVTSARSAR02R STR0001 00.

6.13 SPINTA DEL TERRENO

Le spinte dovute al terreno a tergo della spalla sono calcolate considerando condizioni di spinta attiva, considerando i contributi dovuti alla spinta del terreno, del sovraccarico, della falda (in questo caso assente nel riempimento a tergo della spalla), oltre all'incremento di spinta in condizioni sismiche. Si considerano in particolare le seguenti formulazioni:

Spinta del terreno (pressione)

$$P_A = \cdot \gamma' \cdot H \cdot K_A$$

Spinta dovuta al sovraccarico (pressione)

$$P_q = K_A \cdot q$$

Spinta dovuta all'acqua (pressione)

$$P_W = \gamma_W \cdot H$$

La spinta attiva in condizioni sismiche è calcolata impiegando la soluzione di Mononobe (1929) e Okabe (1926):

$$P_A = \gamma' \cdot H \cdot (1 - K_v) \cdot K_{MO}$$

nella quale:

se
$$\beta \le \varphi' - \theta \ \beta \le \varphi - \theta$$

PERIZIA DI VARIANTE TECNICA

$$K_{MO} = \frac{\sin^2(\xi + \phi' - \theta)}{\cos \theta \cdot \sin^2 \xi \cdot \sin(\phi' + \theta - \delta) \cdot \left[1 + \sqrt{\frac{\sin(\phi' + \delta) \cdot \sin(\phi' - \beta - \theta)}{\sin(\phi' + \theta - \delta) \cdot \sin(\xi + \beta)}}\right]^2}$$

se
$$\beta > \varphi' - \theta$$

$$K_{MO} = \frac{\sin^2(\xi + \phi' - \theta)}{\cos\theta \cdot \sin^2 \xi \cdot \sin(\xi - \theta - \delta)}$$

assumendo i simboli il significato seguente:

- H altezza del muro
- y' peso dell'unità di volume del terreno
- φ' angolo di resistenza al taglio del terreno
- ξ angolo di inclinazione rispetto all'orizzontale del paramento a monte dell'opera
- β angolo di inclinazione rispetto all'orizzontale della superficie del terrapieno
- δ angolo di attrito tra il terreno e l'opera di sostegno
- θ inclinazione rispetto alla verticale della risultante delle forze di massa agenti sul cuneo di terreno a tergo del muro

Nel caso di livello di falda al di sotto del muro di sostegno. θ è:

$$\gamma' = \gamma - \gamma_W$$

$$\tan \theta = \frac{K_h}{1 - K_v}$$

Nel caso invece di terreno al di sotto del livello di falda si ha:

$$\gamma' = \gamma - \gamma_W$$

$$\tan \theta = \frac{\gamma'}{\gamma' - \gamma_W} \cdot \frac{K_h}{1 - K_v}$$

yw è il peso dell'unità di volume dell'acqua.

La spinta statica del terreno è applicata ad un'altezza pari a 1/3 H dalla base del muro e la relativa pressione è costituita da un diagramma triangolare, mentre la spinta dovuta ai sovraccarichi è applicata a metà altezza del muro e la relativa pressione ha andamento costante. La distribuzione lungo il muro delle pressioni dovute ad azioni statiche e dinamiche agisce con un'inclinazione rispetto alla normale al muro pari a δ.

Nel caso in esame si considerano un sovraccarico accidentale dovuto al traffico veicolare di 20 kPa, un sovraccarico permanente dovuto al terreno al di sopra della spalla di 8.9 kPa. Il terreno spingente è costituito da terreno di riempimento, a cui vengono assegnati cautelativamente φ' pari a 32° e γ pari a 19 kN/m³.

Si riepilogano di seguito le pressioni a tergo della spalla in condizioni statiche e sismiche. I carichi non sono fattorizzati e sono impiegati all'interno dei modelli di calcolo Sap, in cui sono fattorizzati.

			Dati genera	ali e coefficier	nti di spinta			
	Strati	grafia		F	Parametri		Coeff.	Spinta
Unità	Da	Α	h	φ	γs	С	ka	kae
-	m	m	m	٥	kN/m³	kPa	-	-
Α	0	3.33	3.33	32	19	0	0.307	0.348
В	3.33	5.33	2	32	19	0	0.307	0.348

Figura 6.13: Riepilogo dati generali coefficienti di spinta

			Pr	essioni staticl	ne			
Pressioni	i verticali		Pr	essioni staticl	ne		P To	tale
σ'vtop	σ'vbot	σ'htop	σ'hbot	pbot	ptop			
kN/m ²								
0.0	63.27	0.00	19.44	8.89	0	0	8.89	28.33
63.3	101.27	19.44	31.12	8.89	0	0	28.33	40.01

Figura 6.14: Riepilogo spinte statiche a tergo spalla

		С	ati general	i e coefficie	enti di spint	a		
	Strati	grafia			Parametri		Coeff.	Spinta
Unità	Da	Α	h	φ	γs	C	ka	kae
-	m	m	m	•	kN/m³	kPa	-	-
Α	0	3.33	3.33	32	19	0	0.307	0.348
В	3.33	5.33	2	32	19	0	0.307	0.348

Figura 6.15: Riepilogo dati generali coefficienti di spinta

				Pressioni				
Pression	i verticali	Pre	ssioni sismi	iche (Mono	nobe - Oka	be)	P To	tale
σ'vtop	σ'vbot	σ'htop	σ'hbot	рQ	pwtop	pwbot	pbot	ptop
kN/m ²								
0.0	63.27	0.00	22.04	4.50	0.00	0.00	4.50	26.54
63.3	101.27	22.04	35.27	4.50	0.00	0.00	26.01	39.25

Figura 6.16: Riepilogo spinte sismiche SLV a tergo spalla

		С	Dati general	i e coefficie	enti di spint	а		
	Strati	grafia			Parametri		Coeff.	Spinta
Unità	Da	Α	h	φ	γs	С	ka	kae
-	m	m	m	•	kN/m³	kPa	-	ı
Α	0	3.33	3.33	32	19	0	0.307	0.304
В	3.33	5.33	2	32	19	0	0.307	0.304

Figura 6.17: Riepilogo spinte sismiche SLV a tergo spalla

				Pressioni			•				
Pressioni	verticali	Pre	ssioni sismi	iche (Mono	nobe - Oka	be)	P To	tale			
σ'vtop	σ'vbot	σ'htop	'htop σ'hbot pQ pwtop pwbot pbot ptop								
kN/m ²	kN/m ²	kN/m ²	kN/m ²	kN/m ²	kN/m ²	kN/m ²	kN/m ²	kN/m ²			
0.0	63.27	0.00	19.22	3.93	0.00	0.00	3.93	23.15			
63.3	101.27	19.22	30.77	3.93	0.00	0.00	23.19	34.74			

Figura 6.18: Riepilogo spinte sismiche SLD a tergo spalla

PERIZIA DI VARIANTE TECNICA

6.14 COSTANTI ELASTICHE DEI PALI

Al fine di considerare nei modelli di calcolo l'interazione terreno struttura lungo i pali di fondazione delle spalle, sono state calcolate le costanti elastiche da assegnare lungo i pali di fondazione per simulare la presenza del terreno.

Sono state determinate le costanti elastiche verticali mediante l'utilizzo della formulazione di Poulos & Davis (1975), illustrata in dettaglio nel successivo capitolo 14.1.1 e di seguito riepilogata.

$$\rho = \frac{PI}{E_s d}$$

Nel caso in esame si considera una forza verticale P unitaria ed è stata considerata la media pesata dei parametri geotecnici dei terreni attraversati dal palo. Si ottiene uno spostamento di 0.403 mm da cui si evince una costante elastica verticale di 2485065 kN/m.

Le costanti elastiche orizzontali e rotazionali vengono invece determinate mediante l'utilizzo del software LPile 6, in cui vengono modellati il palo e il terreno di progetto, e in cui vengono applicati rispettivamente una forza orizzontale unitaria e una rotazione unitaria.

Si ottengono rispettivamente i seguenti spostamenti e rotazioni:

x = 0.00000677 m;

 $\theta = 0.000000579 \text{ rad}$

da cui si ottengono:

 $k_x = 147710 \text{ kN/m}$

 $k_{\theta} = 1727116 \text{ kNm/rad}$

PERIZIA DI VARIANTE TECNICA

7 COMBINAZIONE DEI CARICHI

Le combinazioni di carico considerate per le verifiche sono state definite in accordo alle NTC 2018.

Dead+Fase1	carico fase 1 + peso proprio spalle
P _{terreno}	peso del terreno a tergo spalla + spinta attiva del terreno a tergo spalla
Fase2	carico fase 2
Q-terreno	sovraccarico a tergo spalla + spinta sovraccarico a tergo spalla
Mc3	carico mobile che massimizza le sollecitazioni sulla trave centrale
Te1	carico mobile che massimizza l'azione normale sul singolo appoggio
Te3	carico mobile che massimizza lo squilibrio trasversale tra le reazione degli appoggi
ventop	vento
venton	vento
Tunif	termica unifrome
tdiffp	termica differenziale
tdiffn	termica differenziale
Frenatura	frenatura
Ritiro	ritiro
SLD_Imp_Ex+0.3Ey+0.3Ez	sisma SLD impalcato + spalle
SLD_Imp_0.3Ex+Ey+0.3Ez	sisma SLD impalcato + spalle
SLD_Imp_0.3Ex+0.3Ey+Ez	sisma SLD impalcato + spalle
SLD_X_+_terreno	inerzia sismica terreno
SLD_Xterreno	inerzia sismica terreno
SLD_Y_+_terreno	inerzia sismica terreno
SLD_Yterreno	inerzia sismica terreno
SLV_Imp_Ex+0.3Ey+0.3Ez	sisma SLV impalcato + spalle
SLV_Imp_0.3Ex+Ey+0.3Ez	sisma SLV impalcato + spalle
SLV_Imp_0.3Ex+0.3Ey+Ez	sisma SLV impalcato + spalle
SLV_X_+_terreno	inerzia sismica terreno
SLV_Xterreno	inerzia sismica terreno
SLV_Y_+_terreno	inerzia sismica terreno
SLV_Yterreno	inerzia sismica terreno
SLC_Imp_Ex+0.3Ey+0.3Ez	sisma SLC impalcato + spalle

SLC_Imp_0.3Ex+Ey+0.3Ez	sisma SLC impalcato + spalle
SLC_Imp_0.3Ex+0.3Ey+Ez	sisma SLC impalcato + spalle
SLC_X_+_terreno	inerzia sismica terreno
SLC_Xterreno	inerzia sismica terreno
SLC_Y_+_terreno	inerzia sismica terreno
SLC_Yterreno	inerzia sismica terreno

							SLU							
					Мо	bili								
Nome Combo	Dead+Fase1	P _{terreno}	Fase2	Q-terreno	Mc3	Te1	Te3	ventop	venton	Tunif	tdiffp	tdiffn	Frenatura	Ritiro
SLU_01	1.35	1.35	1.5	1.35	1.35	-	-	0.9	-	0.72	0.72	-	-	-
SLU_02	1.35	1.35	1.5	1.35	1.35	-	-	0.9	-	0.72	-	0.72	-	-
SLU_03	1.35	1.35	1.5	1.35	1.35	-	-	-	0.9	0.72	0.72	-	-	-
SLU_04	1.35	1.35	1.5	1.35	1.35	-	-	-	0.9	0.72	-	0.72	-	-
SLU_05	1.35	1.35	1.5	1.0125	1.0125	-	-	1.5	-	0.72	0.72	-	-	-
SLU_06	1.35	1.35	1.5	1.0125	1.0125	-	-	1.5	-	0.72	-	0.72	-	-
SLU_07	1.35	1.35	1.5	1.0125	1.0125	-	-	-	1.5	0.72	0.72	-	-	-
SLU_08	1.35	1.35	1.5	1.0125	1.0125	-	-	-	1.5	0.72	-	0.72	-	-
SLU_09	1.35	1.35	1.5	1.0125	1.0125	-	-	0.9	-	1.5	1.5	-	-	-
SLU_10	1.35	1.35	1.5	1.0125	1.0125	-	-	-	0.9	1.5	1.5	-	-	-
SLU_11	1.35	1.35	1.5	1.0125	1.0125	-	-	0.9	-	1.5	-	1.5	-	-
SLU_12	1.35	1.35	1.5	1.0125	1.0125	-	-	-	0.9	1.5	-	1.5	-	-
 SLU_13	1.35	1.35	1.5	1.0125	1.0125	-	-	0.9	_	0.72	0.72	-	-	1.2
SLU_14	1.35	1.35	1.5	1.0125	1.0125	-	-	0.9	-	0.72	-	0.72	-	1.2
SLU_15	1.35	1.35	1.5	1.0125	1.0125	-	-	-	0.9	0.72	0.72	-	-	1.2
SLU_16	1.35	1.35	1.5	1.0125	1.0125	-	-	-	0.9	0.72	-	0.72	-	1.2
SLU_17	1.35	1.35	1.5	1.0125	1.0125	-	-	_	-	-	-	-	1.35	-
SLU_18	1.35	1.35	1.5	1.35	-	1.35	-	0.9	-	0.72	0.72	-	-	
SLU_19	1.35	1.35	1.5	1.35	-	1.35	-	0.9	-	0.72	-	0.72	-	
SLU_20	1.35	1.35	1.5	1.35		1.35		0.9	0.9	0.72	0.72		-	
					-		-	-	0.9			0.72	-	-
SLU_21	1.35	1.35	1.5	1.35	-	1.35	-	- 1 5		0.72	- 0.72	0.72	-	-
SLU_22	1.35	1.35	1.5	1.0125	-	1.0125	-	1.5	-	0.72	0.72		-	-
SLU_23	1.35	1.35	1.5	1.0125	-	1.0125	-	1.5	-	0.72		0.72	-	-
SLU_24	1.35	1.35	1.5	1.0125	-	1.0125	-	-	1.5	0.72	0.72	-	-	-
SLU_25	1.35	1.35	1.5	1.0125	-	1.0125	-	-	1.5	0.72	-	0.72	-	-
SLU_26	1.35	1.35	1.5	1.0125	-	1.0125	-	0.9	-	1.5	1.5	-	-	-
SLU_27	1.35	1.35	1.5	1.0125	-	1.0125	-	-	0.9	1.5	1.5	-	-	-
SLU_28	1.35	1.35	1.5	1.0125	-	1.0125	-	0.9	-	1.5	-	1.5	-	-
SLU_29	1.35	1.35	1.5	1.0125	-	1.0125	-	-	0.9	1.5	-	1.5	-	-
SLU_30	1.35	1.35	1.5	1.0125	-	1.0125	-	0.9	-	0.72	0.72	-	-	1.2
SLU_31	1.35	1.35	1.5	1.0125	-	1.0125	-	0.9	-	0.72	-	0.72	-	1.2
SLU_32	1.35	1.35	1.5	1.0125	-	1.0125	-	-	0.9	0.72	0.72	-	-	1.2
SLU_33	1.35	1.35	1.5	1.0125	-	1.0125	-	-	0.9	0.72	-	0.72	-	1.2
SLU_34	1.35	1.35	1.5	1.0125	-	1.0125	-	-	-	-	-	-	1.35	-
SLU_35	1.35	1.35	1.5	1.35	-	-	1.35	0.9	-	0.72	0.72	-	-	-
SLU_36	1.35	1.35	1.5	1.35	-	-	1.35	0.9	-	0.72	-	0.72	-	-
SLU_37	1.35	1.35	1.5	1.35	•	-	1.35	-	0.9	0.72	0.72	-	-	-
SLU_38	1.35	1.35	1.5	1.35	-	-	1.35	-	0.9	0.72	-	0.72	-	-
SLU_39	1.35	1.35	1.5	1.0125	-	-	1.0125	1.5	-	0.72	0.72	-	-	-
SLU_40	1.35	1.35	1.5	1.0125	1	-	1.0125	1.5	-	0.72	-	0.72	-	-
SLU_41	1.35	1.35	1.5	1.0125	1	-	1.0125	-	1.5	0.72	0.72	-	-	-
SLU_42	1.35	1.35	1.5	1.0125	-	-	1.0125	-	1.5	0.72	-	0.72	-	-
SLU_43	1.35	1.35	1.5	1.0125	-	-	1.0125	0.9	-	1.5	1.5	-	-	-
SLU_44	1.35	1.35	1.5	1.0125	-	-	1.0125	-	0.9	1.5	1.5	-	-	-
SLU_45	1.35	1.35	1.5	1.0125	-	-	1.0125	0.9	-	1.5	-	1.5	-	-
 SLU_46	1.35	1.35	1.5	1.0125	-	-	1.0125	-	0.9	1.5	-	1.5	-	-
SLU_47	1.35	1.35	1.5	1.0125	-	-	1.0125	0.9	-	0.72	0.72	-	-	1.2
SLU_48	1.35	1.35	1.5	1.0125	-	-	1.0125	0.9	-	0.72	-	0.72	-	1.2
SLU_49	1.35	1.35	1.5	1.0125	-	-	1.0125	-	0.9	0.72	0.72	-	-	1.2
SLU_50	1.35	1.35	1.5	1.0125	-	-	1.0125	-	0.9	0.72	-	0.72	-	1.2
		1.35	1.5	1.0125	-		1.0125	-	-	3.,2		J., 2		-

			×			S	LE rare							
Nome Combo	Dead+Fase1	D	Fase2		Mol	bili		ventop	venton	Tunif	tdiffp	tdiffn	Frenatura	Ritiro
Nonie Combo	Deautrasei	P _{terreno}	rasez	Q-terreno	Mc3	Te1	Te3	ventop	venton	Tullii	tump	tuiiii	riellatura	Kitilo
SLE_r_01	1	1	1	1	1	-	-	0.6	-	0.6	0.6	-	-	-
SLE_r_02	1	1	1	1	1	-	-	0.6	-	0.6	-	0.6	-	-
SLE_r_03	1	1	1	1	1	-	-	-	0.6	0.6	0.6	-	-	-
SLE_r_04	1	1	1	1	1	-	-	-	0.6	0.6	-	0.6	-	-
SLE_r_05	1	1	1	0.75	0.75	-	-	1	-	0.6	0.6	-	-	-
SLE_r_06	1	1	1	0.75	0.75	-	-	1	-	0.6	-	0.6	-	-
SLE_r_07	1	1	1	0.75	0.75	-	-	-	1	0.6	0.6	-	-	-
SLE_r_08	1	1	1	0.75	0.75	-	-	-	1	0.6	-	0.6	-	-
SLE_r_09	1	1	1	0.75	0.75	-	-	0.6	-	1	1	-	-	-
SLE_r_10	1	1	1	0.75	0.75	-	-	-	0.6	1	1	-	-	-
SLE_r_11	1	1	1	0.75	0.75	-	-	0.6	-	1	-	1	-	-
SLE_r_12	1	1	1	0.75	0.75	-	-	-	0.6	1	-	1	-	-
SLE_r_13	1	1	1	0.75	0.75	-	-	0.6	-	0.6	0.6	-	-	1
SLE_r_14	1	1	1	0.75	0.75	-	-	0.6	-	0.6	-	0.6	-	1
SLE_r_15	1	1	1	0.75	0.75	-	-	-	0.6	0.6	0.6	-	-	1
SLE_r_16	1	1	1	0.75	0.75	-	-	-	0.6	0.6	-	0.6	-	1
SLE_r_17	1	1	1	0.75	0.75	-	-	-	-	-	-	-	1	-
SLE_r_18	1	1	1	1	-	1	-	0.6	-	0.6	0.6	-	-	-
SLE_r_19	1	1	1	1	-	1	-	0.6	-	0.6	-	0.6	-	-
SLE_r_20	1	1	1	1	-	1	-	-	0.6	0.6	0.6	-	-	-
SLE_r_21	1	1	1	1	-	1	-	-	0.6	0.6	-	0.6	-	-
SLE_r_22	1	1	1	0.75	-	0.75	-	1	-	0.6	0.6	-	-	-
SLE_r_23	1	1	1	0.75	-	0.75	-	1	-	0.6	-	0.6	-	-
SLE_r_24	1	1	1	0.75	-	0.75	-	-	1	0.6	0.6	-	-	-
SLE_r_25	1	1	1	0.75	-	0.75	-	-	1	0.6	-	0.6	-	-
SLE_r_26	1	1	1	0.75	-	0.75	-	0.6	-	1	1	-	-	-
SLE_r_27	1	1	1	0.75	-	0.75	-	-	0.6	1	1	-	-	-
SLE_r_28	1	1	1	0.75	-	0.75	-	0.6	-	1	-	1	-	-
SLE r 29	1	1	1	0.75	_	0.75	_	-	0.6	1	-	1	-	-
SLE_r_30	1	1	1	0.75	-	0.75	-	0.6	-	0.6	0.6	-	-	1
SLE_r_31	1	1	1	0.75	_	0.75	_	0.6	_	0.6	-	0.6	-	1
SLE_r_32	1	1	1	0.75	-	0.75	_	-	0.6	0.6	0.6	-	_	1
SLE_r_33	1	1	1	0.75	_	0.75	_	-	0.6	0.6	-	0.6	-	1
											-			
SLE_r_34 SLE_r_35	1	1	1	0.75 1	-	0.75	1	0.6	-	0.6	0.6	-	-	-
							1	0.6	-		-		-	
SLE_r_36	1	1	1	1	-	-				0.6		0.6		-
SLE_r_37	1	1	1	1	-	-	1	-	0.6	0.6	0.6	-	-	-
SLE_r_38	1	1	1	1	-	-	1	-	0.6	0.6	-	0.6	-	-
SLE_r_39	1	1	1	0.75	-	-	0.75	1	-	0.6	0.6	-	-	-
SLE_r_40	1	1	1	0.75	-	-	0.75	1	-	0.6	-	0.6	-	-
SLE_r_41	1	1	1	0.75	-	-	0.75	-	1	0.6	0.6	-	-	-
SLE_r_42	1	1	1	0.75	-	-	0.75	-	1	0.6	-	0.6	-	-
SLE_r_43	1	1	1	0.75	-	-	0.75	0.6	-	1	1	-	-	-
SLE_r_44	1	1	1	0.75	-	-	0.75	-	0.6	1	1	-	-	-
SLE_r_45	1	1	1	0.75	-	-	0.75	0.6	-	1	-	1	-	-
SLE_r_46	1	1	1	0.75	-	-	0.75	-	0.6	1	-	1	-	-
SLE_r_47	1	1	1	0.75	-	-	0.75	0.6	-	0.6	0.6	-	-	1
SLE_r_48	1	1	1	0.75	-	-	0.75	0.6	-	0.6	-	0.6	-	1
SLE_r_49	1	1	1	0.75	-	-	0.75	-	0.6	0.6	0.6	-	-	1
SLE_r_50	1	1	1	0.75	-	-	0.75	-	0.6	0.6	-	0.6	-	1
SLE_r_51	1	1	1	0.75	1-1	-	0.75	-	-	-	-	-	1	-

	×					SLE	freque	nti			3			
Nome Combo	Dead+Fase1	D	Fase2		Mo	bili		vonton	venton	Tunif	tdiffp	tdiffn	Frenatura	Ritiro
Nome Combo	Deautrase1	P _{terreno}	rasez	Q-terreno	Mc3	Te1	Te3	ventop	venton	u	tunip	tuiiii	riellatura	Kitilo
SLE_f_01	1	1	1	1	1	-	-	0.2	-	0.6	0.6	-	-	-
SLE_f_02	1	1	1	1	1	-	-	0.2	-	0.6	-	0.6	-	-
SLE_f_03	1	1	1	1	1	-	-	-	0.2	0.6	0.6	1	=	-
SLE_f_04	1	1	1	1	1	-	-	-	0.2	0.6	-	0.6	-	-
SLE_f_05	1	1	1	0.75	0.75	-	-	1	-	0.6	0.6	-	-	-
SLE_f_06	1	1	1	0.75	0.75	-	-	1	-	0.6	-	0.6	-	-
SLE_f_07	1	1	1	0.75	0.75	-	-	-	1	0.6	0.6	-	-	-
SLE_f_08	1	1	1	0.75	0.75	-	-	-	1	0.6	-	0.6	-	-
SLE_f_09	1	1	1	0.75	0.75	-	-	0.2	-	1	1	-	-	-
SLE_f_10	1	1	1	0.75	0.75	-	-	-	0.2	1	1	-	-	-
SLE_f_11	1	1	1	0.75	0.75	-	-	0.2	-	1	-	1	-	-
SLE_f_12	1	1	1	0.75	0.75	-	-	-	0.2	1	-	1	-	-
SLE_f_13	1	1	1	0.75	0.75	-	-	0.2	-	0.6	0.6	-	-	1
SLE_f_14	1	1	1	0.75	0.75	-	-	0.2	-	0.6	-	0.6	-	1
SLE_f_15	1	1	1	0.75	0.75	-	-	-	0.2	0.6	0.6	-	-	1
SLE_f_16	1	1	1	0.75	0.75	-	-	-	0.2	0.6	-	0.6	-	1
SLE_f_17	1	1	1	0.75	0.75	-	-	-	-	-	-	-	1	-
SLE_f_18	1	1	1	1	-	1	-	0.2	_	0.6	0.6	-	_	_
SLE_f_19	1	1	1	1	-	1	-	0.2	-	0.6	-	0.6	_	_
SLE_f_20	1	1	1	1	_	1	-	-	0.2	0.6	0.6	-	_	-
SLE_f_21	1	1	1	1	-	1	-	-	0.2	0.6	-	0.6	_	-
SLE_f_22	1	1	1	0.75	-	0.75	-	1	-	0.6	0.6	-	_	-
SLE_f_23	1	1	1	0.75	-	0.75	_	1	-	0.6	-	0.6	-	-
SLE_f_24	1	1	1	0.75	-	0.75	-	-	1	0.6	0.6	-	-	-
					-				1					
SLE_f_25	1	1	1	0.75		0.75	-	- 0.2		0.6 1	1	0.6	-	-
SLE_f_26				0.75	-	0.75	-	0.2	- 0.3			-	=	-
SLE_f_27	1	1	1	0.75	-	0.75	-	-	0.2	1	1	-	-	-
SLE_f_28	1	1	1	0.75	-	0.75	-	0.2	-	1	-	1	-	-
SLE_f_29	1	1	1	0.75	-	0.75	-	-	0.2	1	-	1	-	-
SLE_f_30	1	1	1	0.75	-	0.75	-	0.2	-	0.6	0.6	-	-	1
SLE_f_31	1	1	1	0.75	-	0.75	-	0.2	-	0.6	-	0.6	-	1
SLE_f_32	1	1	1	0.75	-	0.75	-	-	0.2	0.6	0.6	-	-	1
SLE_f_33	1	1	1	0.75	-	0.75	-	-	0.2	0.6	-	0.6	-	1
SLE_f_34	1	1	1	0.75	-	0.75	-	-	-	-	-	-	1	-
SLE_f_35	1	1	1	1	-	-	1	0.2	-	0.6	0.6	-	-	-
SLE_f_36	1	1	1	1	-	-	1	0.2	-	0.6	-	0.6	-	-
SLE_f_37	1	1	1	1	-	-	1	-	0.2	0.6	0.6	-	-	-
SLE_f_38	1	1	1	1	-	-	1	-	0.2	0.6	-	0.6	-	-
SLE_f_39	1	1	1	0.75	-	-	0.75	1	-	0.6	0.6	-	-	-
SLE_f_40	1	1	1	0.75	-	-	0.75	1	-	0.6	-	0.6	-	-
SLE_f_41	1	1	1	0.75	-	-	0.75	-	1	0.6	0.6	-	-	-
SLE_f_42	1	1	1	0.75	-	-	0.75	-	1	0.6	-	0.6	-	-
SLE_f_43	1	1	1	0.75	-	-	0.75	0.2	-	1	1	-	-	-
SLE_f_44	1	1	1	0.75	-	-	0.75	-	0.2	1	1	-	-	-
SLE_f_45	1	1	1	0.75	-	-	0.75	0.2	-	1	-	1	-	-
SLE_f_46	1	1	1	0.75	-	-	0.75	-	0.2	1	-	1	-	-
SLE_f_47	1	1	1	0.75	-	-	0.75	0.2	-	0.6	0.6	-	-	1
SLE_f_48	1	1	1	0.75	-	-	0.75	0.2	-	0.6	-	0.6	-	1
SLE_f_49	1	1	1	0.75	-	-	0.75	-	0.2	0.6	0.6	-	-	1
SLE_f_50	1	1	1	0.75	-	-	0.75	-	0.2	0.6	-	0.6	-	1
SLE_f_51	1	1	1	0.75	-	-	0.75	-	-	-	-	_	1	-

					S	LE quas	i perm	anenti						
Nome Combo	Dead+Fase1	P _{terreno}	Fase2		Mo	bili		ventop	venton	Tunif	tdiffp	tdiffn	Frenatura	Ritiro
Trome combo	Dedd: ruse1	• terreno	ruscz	Q-terreno	Mc3	Te1	Te3	ventop	Venton		tunip	tuiiii	Trenatara	
SLE_qp_01	1	1	1	1	1	-	-	-	-	0.5	0.5	-	-	-
SLE_qp_02	1	1	1	1	1	-	-	-	-	0.5	-	0.5	-	-
SLE_qp_03	1	1	1	1	1	-	-	-	-	0.5	0.5	-	-	-
SLE_qp_04	1	1	1	1	1	-	-	-	-	0.5	-	0.5	-	-
SLE_qp_05	1	1	1	0.75	0.75	-	-	1	-	0.5	0.5	-	-	-
SLE_qp_06	1	1	1	0.75	0.75	-	-	1	-	0.5	-	0.5	-	-
SLE_qp_07	1	1	1	0.75	0.75	-	-	-	1	0.5	0.5	-	-	-
SLE_qp_08	1	1	1	0.75	0.75	-	-	-	1	0.5	-	0.5	-	-
SLE_qp_09	1	1	1	0.75	0.75	-	-	-	-	1	1	-	-	-
SLE_qp_10	1	1	1	0.75	0.75	-	-	-	-	1	1	-	-	-
SLE_qp_11	1	1	1	0.75	0.75	-	-	-	-	1	-	1	-	-
SLE_qp_12	1	1	1	0.75	0.75	-	-	-	-	1	-	1	-	-
SLE_qp_13	1	1	1	0.75	0.75	-	-	-	-	0.5	0.5	-	-	1
SLE_qp_14	1	1	1	0.75	0.75	-	-	-	-	0.5	-	0.5	-	1
SLE_qp_15	1	1	1	0.75	0.75	-	-	-	-	0.5	0.5	-	-	1
SLE_qp_16	1	1	1	0.75	0.75	-	-	-	-	0.5	-	0.5	-	1
SLE_qp_17	1	1	1	0.75	0.75	-	-	-	-	-	-	-	1	-
SLE_qp_18	1	1	1	1	-	1	-	-	-	0.5	0.5	-	-	_
SLE_qp_19	1	1	1	1	-	1	-	-	-	0.5	-	0.5	-	_
SLE_qp_20	1	1	1	1	-	1	_	-	-	0.5	0.5	-	_	_
SLE_qp_21	1	1	1	1	_	1	-	-	_	0.5	-	0.5	_	
SLE_qp_22	1	1	1	0.75	-	0.75	_	1	-	0.5	0.5	-	-	-
SLE_qp_23	1	1	1	0.75	-	0.75	-	1	-	0.5	-	0.5	-	_
SLE_qp_24	1	1	1	0.75	-	0.75	-	-	1	0.5	0.5	-	_	_
SLE_qp_25	1	1	1	0.75	_	0.75	-	-	1	0.5	-	0.5	-	_
SLE_qp_26	1	1	1	0.75	-	0.75	-	-	-	1	1	-	_	_
SLE_qp_27	1	1	1	0.75	_	0.75	-	-	-	1	1	-	-	_
SLE_qp_28	1	1	1	0.75	-	0.75	-	-	-	1	-	1	_	-
	1	1	1	0.75		0.75	-	-	-	1	-	1	-	
SLE_qp_29	1	1	1	0.75	-	0.75	-	-	-	0.5	0.5	-	-	1
SLE_qp_30					-		-	-	-		-		-	
SLE_qp_31	1	1	1	0.75		0.75				0.5		0.5	-	1
SLE_qp_32	1	1	1	0.75	-	0.75	-	-	-	0.5	0.5	-		1
SLE_qp_33	1	1	1	0.75	-	0.75	-	-	-	0.5	-	0.5	-	1
SLE_qp_34	1	1	1	0.75	-	0.75	-	-	-	-	-	-	1	-
SLE_qp_35	1	1	1	1	-	-	1	-	-	0.5	0.5	-	-	-
SLE_qp_36	1	1	1	1	-	-	1	-	-	0.5	-	0.5	-	-
SLE_qp_37	1	1	1	1	-	-	1	-	-	0.5	0.5	-	-	-
SLE_qp_38	1	1	1	1	-	-	1	-	-	0.5	-	0.5	-	-
SLE_qp_39	1	1	1	0.75	-	-	0.75	1	-	0.5	0.5	-	-	-
SLE_qp_40	1	1	1	0.75	-	-	0.75	1	-	0.5	-	0.5	-	-
SLE_qp_41	1	1	1	0.75	-	-	0.75	-	1	0.5	0.5	-	-	-
SLE_qp_42	1	1	1	0.75	-	-	0.75	-	1	0.5	-	0.5	-	-
SLE_qp_43	1	1	1	0.75	-	-	0.75	-	-	1	1	-	-	-
SLE_qp_44	1	1	1	0.75	-	-	0.75	-	-	1	1	-	-	-
SLE_qp_45	1	1	1	0.75	-	-	0.75	-	-	1	-	1	-	-
SLE_qp_46	1	1	1	0.75	-	-	0.75	-	-	1	-	1	-	-
SLE_qp_47	1	1	1	0.75	-	-	0.75	-	-	0.5	0.5	-	-	1
SLE_qp_48	1	1	1	0.75	-	-	0.75	-	-	0.5	-	0.5	-	1
SLE_qp_49	1	1	1	0.75	-	-	0.75	-	-	0.5	0.5	-	-	1
SLE_qp_50	1	1	1	0.75	-	-	0.75	-	-	0.5	-	0.5	-	1
SLE_qp_51	1	1	1	0.75	-	-	0.75	-	-	-	-	-	1	_

SLC												
Nome Combo	Dead+Fase1	Fase2	P _{terreno}	Mobili		SIC Imp Eval 25val 25v	SLC_Imp_0.3Ex+Ey+0.3Ez	SLC Imp 0.3Ev+0.3Ev+Ez	SIC V + torrono	SIC V torrono	SIC V + torrono	SIC V torrono
				q	M _{max}	SEC_IIIP_EXTO.SEYTO.SEZ	SEC_IIIIP_0:SEX1EY10:SEE	SEC_IMP_0.SEX10.SEY1E2	3LC_X_+_terreno	SEC_Xterreno	SEC_1terreno	SEC_1terreno
SLC_X_01	1	1	1	0.2	0.2	1	•	-	1	=	0.3	=
SLC_X_02	1	1	1	0.2	0.2	1	Ε.	Ξ	1	=	-	0.3
SLC_X_03	1	1	1	0.2	0.2	1	Ψ.		-	1	0.3	=
SLC_X_04	1	1	1	0.2	0.2	1	=	Ξ	-	1	-	0.3
SLC_Y_01	1	1	1	0.2	0.2	=	1	-	0.3	=	1	=
SLC_Y_02	1	1	1	0.2	0.2	=	1	Ξ	0.3	=	=	1
SLC_Y_03	1	1	1	0.2	0.2	=	1		=	0.3	1	=
SLC_Y_04	1	1	1	0.2	0.2	-	1	=	-	0.3	-	1
SLC_Z_01	1	1	1	0.2	0.2	=		1	0.3	=	0.3	=
SLC_Z_02	1	1	1	0.2	0.2	=	=	1	0.3	=	-	0.3
SLC_Z_03	1	1	1	0.2	0.2	-	=	1		0.3	0.3	
SLC_Z_04	1	1	1	0.2	0.2	-	-	1	-	0.3	-	0.3

SLV												
Nome Combo	Dead+Fase1	Fase2	P _{terreno}	Mobili		SIV I 50 250 25-	SIV I 0.2550.25	SIN I 0.250.255-	CIV V	CIV V	51V V . A	CIV V
				q	M _{max}	SLV_Imp_Ex+0.3Ey+0.3Ez	SEV_IIIIP_0.SEX+EY+0.SE2	SLV_IIIIP_0.SEX+0.SEY+EZ	SLV_X_+_terreno	SLV_Xterreno	SLV_1_+_terreno	SLV_1terreno
SLV_X_01	1	1	1	0.2	0.2	1	•	•	1	-	0.3	-
SLV_X_02	1	1	1	0.2	0.2	1	=	=	1	=	-	0.3
SLV_X_03	1	1	1	0.2	0.2	1	•	•	-	1	0.3	-
SLV_X_04	1	1	1	0.2	0.2	1	=	Ξ	-	1	-	0.3
SLV_Y_01	1	1	1	0.2	0.2	-	1	=	0.3	=	1	-
SLV_Y_02	1	1	1	0.2	0.2	=	1	Ξ	0.3	=	=	1
SLV_Y_03	1	1	1	0.2	0.2	-	1	=	-	0.3	1	-
SLV_Y_04	1	1	1	0.2	0.2	=	1	Ξ	-	0.3	=	1
SLV_Z_01	1	1	1	0.2	0.2	-	=	1	0.3	=	0.3	-
SLV_Z_02	1	1	1	0.2	0.2	-	=	1	0.3	-	-	0.3
SLV_Z_03	1	1	1	0.2	0.2	-	=	1		0.3	0.3	
SLV_Z_04	1	1	1	0.2	0.2	=	-	1	=	0.3	-	0.3

SLD												
Nome Combo	Dead+Fase1	Fase2	P _{terreno}	Mobili		SLD_Imp_Ex+0.3Ey+0.3Ez	SID Inv. 0.3550.35	CLD Imp 0.35vi0.35vi5a	SID V . toward	CID V toward	SID V . toward	SID V towns
				q	M _{max}	3LD_IIIIP_LX+0.3EY+0.3EZ	SLD_IIIIP_0.SEX+EY+0.SEZ	SED_IIIIP_0.SEX+0.SEY+EZ	SLD_X_+_terreno	SLD_Xterreno	SLD_1_+_terreno	SLD_1terreno
SLD_X_01	1	1	1	0.2	0.2	1	-	-	1	-	0.3	-
SLD_X_02	1	1	1	0.2	0.2	1	=	≘	1	=	=	0.3
SLD_X_03	1	1	1	0.2	0.2	1	-	-	-	1	0.3	-
SLD_X_04	1	1	1	0.2	0.2	1	=	≘	-	1	=	0.3
SLD_Y_01	1	1	1	0.2	0.2	-	1	-	0.3	-	1	-
SLD_Y_02	1	1	1	0.2	0.2	-	1	≘	0.3	=	=	1
SLD_Y_03	1	1	1	0.2	0.2	-	1	-	-	0.3	1	-
SLD_Y_04	1	1	1	0.2	0.2	-	1	≘	=	0.3	=	1
SLD_Z_01	1	1	1	0.2	0.2	-	-	1	0.3	=	0.3	=
SLD_Z_02	1	1	1	0.2	0.2	-	=	1	0.3	=	=	0.3
SLD_Z_03	1	1	1	0.2	0.2	-	-	1		0.3	0.3	
SLD_Z_04	1	1	1	0.2	0.2	-	-	1	-	0.3	-	0.3

PERIZIA DI VARIANTE TECNICA

8 SCHEMA DI VINCOLO

Lo schema di vincolo del ponte oggetto di studio prevede l'utilizzo di n° 6 Isolatori elastomerici, di cui 3 sulla spalla A e 3 sulla spalla B.

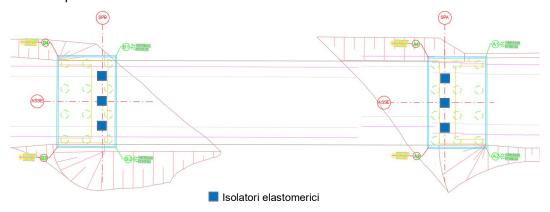


Figura 8.1: Schema di vincolo Ponte provvisorio sul fiume Mella

Considerata la sismicità della zona dove è ubicato il ponte, e considerata la struttura in oggetto, per il dimensionamento del sistema di vincolo tra impalcato e spalla la scelta dei dispositivi di vincolo è ricaduta su *Isolatori Sismici Elastomerici*.

Nel seguente capitolo viene riportato in sintesi il dimensionamento degli stessi.

In particolare, i carichi elementari che scaricano negli appoggi sono stati ottenuti dal modello globale e risultsano essere pari a:

fase 1 (G1) = 6321.87 KN;

fase 2 (G2) = 3231.23 KN;

fase 3 (Me1) = 3800.76 KN.

Considerando la combinazione delle masse sismiche per il caso in oggetto, in accordo a quanto riportato sulle NTC2018, si ottiene quanto segue:

M (massa sismica) = G1+G2+0.2Q = 6321.87+3231.23+0.2*(3800.76) = 10313.25 KN

Dopo aver analizzato lo spettro elastico di progetto, per ottenere dei benefici dal punto di vista delle sollecitazioni sismiche è stato deciso di imporre come minimo un periodo isolato di progetto pari $T_{iso} = 1.4 \text{ s.}$

Una volta definito il periodo del sistema isolato e calcolata la massa sismica della struttura, è possibile a questo punto calcolare la rigidezza orizzontale (K_h) a soddisfare i requisiti da noi imposti (periodo struttura isolata).

$$K_{h,tot} = 4 \pi^{2*} M/(T_{iso}^{2}) = 24.1 KN/mm$$

N° isolatori = 6

 $K_{h,iso} = K_{h,tot} / n^{\circ}$ isollatori = 24.1/6 = 4.02 KN/mm

Per quanto riguarda la definizione dello spostamento di domanda dell'isolatore invece, in accordo alle NTC2018:

$$d_2$$
= d_{SLC} + 0.5 $d_{termico}$ = 75 + 0.5 (7.5) = 78.75 mm

Considerata quindi, la rigidezza necessaria per ottenere periodi propri di vibrazione dell'ordine di T_{iso}=1.4 s, e considerata la domanda di spostamento, si è deciso di adottare isolatori elastomerici aventi le seguenti caratteristiche:

PERIZIA DI VARIANTE TECNICA

d2 = 150 mm spostamento sismico totale

Kh = 3.52 KN/mm rigidezza orizzontale singolo isolatore Kv = 2406 KN/mm rigidezza verticale singolo isolatore

De = 500 mm diametro elastomero

PERIZIA DI VARIANTE TECNICA

9 DESCRIZIONE MODELLO GLOBALE E ANALISI MODALE

Lo sviluppo del modello globale si è reso necessario per considerare correttamente le forze statiche e dinamiche sulle spalle e annessa fondazione.

Nel seguente capitolo viene riportata una descrizione del modello FEM e i risultati delle analisi modali.

9.1 DESCRIZIONE MODELLO

Ai fini della valutazione delle sollecitazioni sui principali elementi strutturali del ponte, e considerata la complessità strutturale della spalla, è stato sviluppato un modello globale agli elementi finiti mediante l'ausilio del software SAP2000. Tale modello comprende sia le spalle che l'impalcato.

Gli elementi principali usati per la modellazione sono "Frame" per gli elementi strutturali dell'impalcato ed elementi "Shell" per la definizione delle spalle, muri paraghiaia, muri andatori e dado di fondazione.

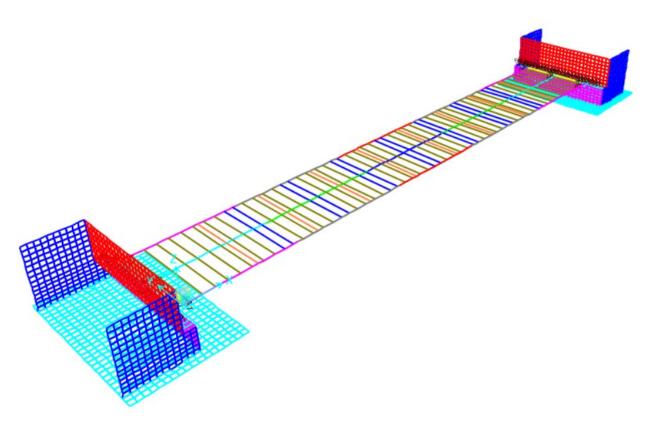


Figura 9-1. Modello globale _ Vista 3D SAP2000

PERIZIA DI VARIANTE TECNICA

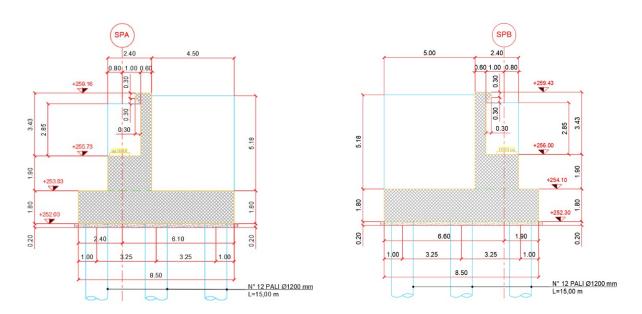


Figura 9-2. Carpenteria spalla A e spalla B

Per maggiori dettagli sulla definizione delle caratteristiche meccaniche degli elementi strutturali che compongono l'impalcato si rimanda alla Relazione tecnica di calcolo impalcato N° MICONV01148LL01PVTSAR00R_CAP0301_00.

I dispositivi di vincolo sono stati modellati mediante elementi "*link*" ai quali sono state assegnate le rispettive rigidezze nelle diverse direzioni. Per tener conto dell'eccentricità tra asse baricentrico della spalla e asse degli appoggi sono stati definiti dei "*link*" rigidi come riportato nella figura seguente.

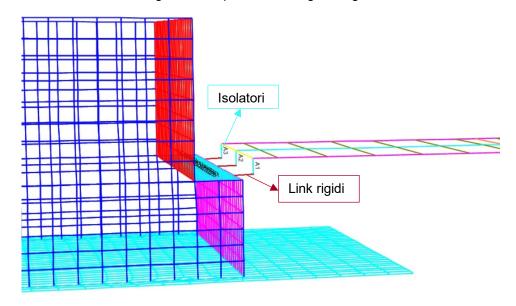


Figura 9-3. Modello globale _ Link rigidi

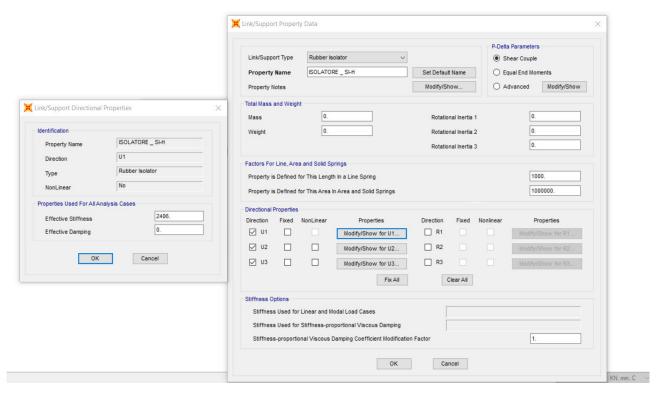


Figura 9-4. Definizione rigidezza verticale equivalente isolatori_SAP2000

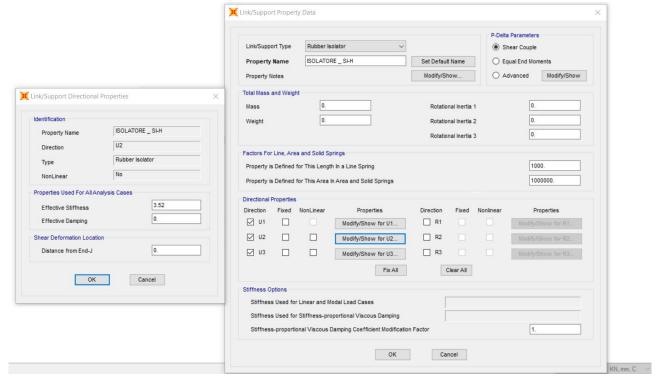


Figura 9-5. Definizione rigidezza orizzontale equivalente isolatori_SAP2000

PERIZIA DI VARIANTE TECNICA

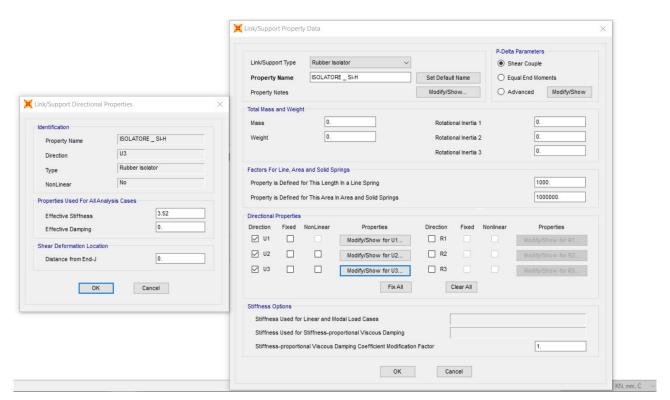


Figura 9-6. Definizione rigidezza orizzontale equivalente isolatori_SAP2000

Il dado di fondazione delle spalle presenta una fondazione profonda su pali. In particolare, nel modello globale, tali pali sono stati rappresentati mediante elementi "*Springs*" ai quali sono stati assegnati le rispettive rigidezze opportunamente calcolate mediante il software "Lpile6". Per le verifiche strutturali e geotecniche dei pali si rimanda ai capitoli 13 e 14.

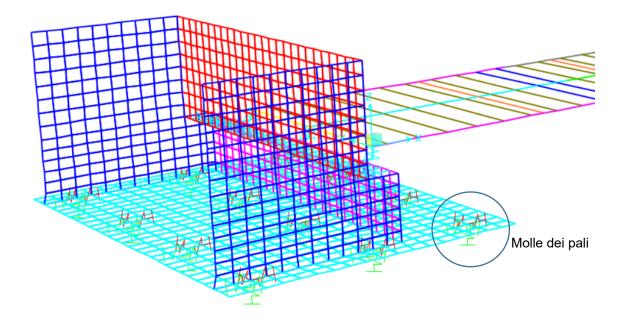


Figura 9-7. Definizione molle dei pali di fondazione_SAP2000

PERIZIA DI VARIANTE TECNICA

Nelle figure seguenti invece, vengono esposti alcune applicazione di carico sulle spalle.

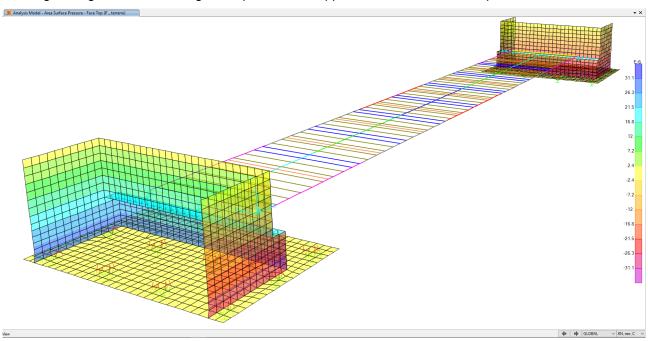


Figura 9-8. Applicazione pressione "P-terreno" _ SAP2000

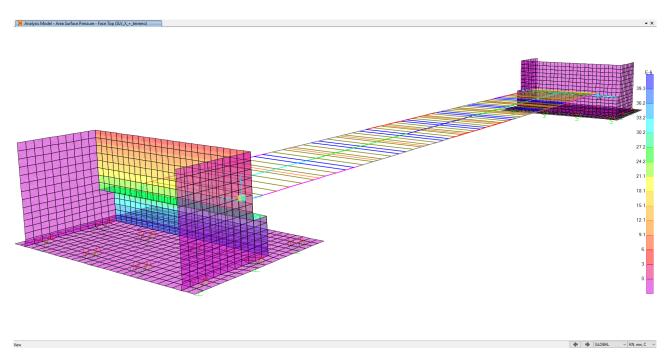


Figura 9-9. Applicazione pressione "SLV_X_-_terreno" _ SAP2000

PERIZIA DI VARIANTE TECNICA

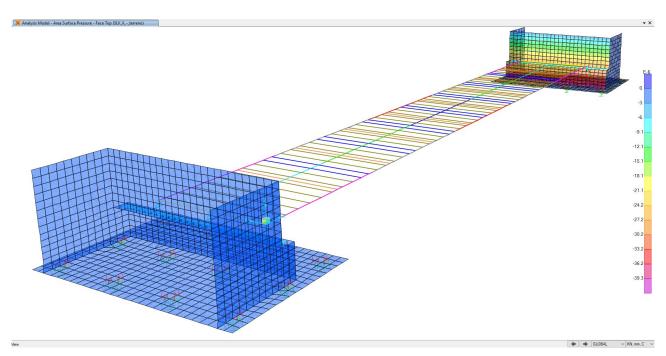


Figura 9-10. Applicazione pressione "SLV_X_+_terreno" _ SAP2000

9.2 ANALISI MODALE

Si riportano i risultati dell'analisi modale condotta sul modello globale.

TABLE: M	odal Load I	Participatio	n Ratios	
OutputCase	ItemType	Item	Static	Dynamic
Text	Text	Text	Percent	Percent
Modal	Acceleration	UX	100	99.9996
Modal	Acceleration	UY	100	99.9885
Modal	Acceleration	UZ	99.9972	99.2749

PERIZIA DI VARIANTE TECNICA

		oating Mas													
OutputCase	StepType	-	Period	UX	UY	UZ	SumUX	SumUY	SumUZ	RX	RY	RZ	SumRX	SumRY	SumR
Text	Text	Unitless	Sec	-	-	-	-	-	-	-	-	-	-	-	-
Modal	Mode	1	1.44	0.00	0.40	0.00	0.00	0.40	0.00	0.02	0.00	0.00	0.02	0.00	0.00
Modal	Mode	2	1.41	0.40	0.00	0.00	0.40	0.40	0.00	0.00	0.00	0.00	0.02	0.00	0.00
Modal	Mode	3	0.85	0.00	0.00	0.00	0.40	0.40	0.00	0.00	0.00	0.18	0.02	0.00	0.18
Modal	Mode	4	0.56	0.00	0.00	0.06	0.40	0.40	0.06	0.19	0.00	0.00	0.21	0.00	0.18
Modal	Mode	5	0.53	0.00	0.00	0.26	0.40	0.40	0.32	0.04	0.00	0.00	0.26	0.00	0.18
Modal	Mode	6	0.17	0.00	0.00	0.00	0.40	0.40	0.32	0.00	0.00	0.00	0.26	0.00	0.18
Modal	Mode	7	0.17	0.00	0.00	0.00	0.40	0.40	0.32	0.00	0.01	0.00	0.26	0.02	0.18
Modal	Mode	8	0.16	0.00	0.00	0.00	0.40	0.40	0.32	0.00	0.10	0.00	0.26	0.12	0.18
Modal	Mode	9	0.14	0.00	0.27	0.00	0.40	0.68	0.32	0.01	0.00	0.36	0.26	0.12	0.54
Modal	Mode	10	0.13	0.27	0.00	0.00	0.67	0.68	0.32	0.00	0.00	0.00	0.26	0.12	0.54
Modal	Mode	11	0.13	0.32	0.00	0.00	1.00	0.68	0.32	0.00	0.00	0.00	0.26	0.12	0.54
Modal	Mode	12	0.13	0.00	0.30	0.00	1.00	0.98	0.32	0.01	0.00	0.39	0.27	0.12	0.93
Modal	Mode	13	0.12	0.00	0.00	0.00	1.00	0.98	0.32	0.00	0.00	0.01	0.27	0.12	0.93
Modal	Mode	14	0.12	0.00	0.02	0.00	1.00	1.00	0.32	0.00	0.00	0.07	0.27	0.12	1.00
Modal	Mode	15	0.11	0.00	0.00	0.00	1.00	1.00	0.32	0.00	0.00	0.00	0.27	0.12	1.00
Modal	Mode	16	0.09	0.00	0.00	0.01	1.00	1.00	0.33	0.03	0.00	0.00	0.30	0.12	1.00
Modal	Mode	17	0.08	0.00	0.00	0.05	1.00	1.00	0.38	0.01	0.00	0.00	0.31	0.12	1.00
Modal	Mode	18	0.08	0.00	0.00	0.00	1.00	1.00	0.38	0.00	0.00	0.00	0.31	0.12	1.00
Modal	Mode	19	0.08	0.00	0.00	0.00	1.00	1.00	0.38	0.00	0.00	0.00	0.31	0.12	1.00
Modal	Mode	20	0.07	0.00	0.00	0.00	1.00	1.00	0.38	0.00	0.00	0.00	0.31	0.12	1.00
Modal	Mode	21	0.07	0.00	0.00	0.00	1.00	1.00	0.38	0.00	0.00	0.00	0.31	0.12	1.00
Modal	Mode	22	0.06	0.00	0.00	0.00	1.00	1.00	0.38	0.00	0.02	0.00	0.31	0.14	1.00
Modal	Mode	23	0.06	0.00	0.00	0.00	1.00	1.00	0.38	0.00	0.00	0.00	0.31	0.14	1.00
Modal	Mode	24	0.06	0.00	0.00	0.00	1.00	1.00	0.38	0.00	0.05	0.00	0.31	0.19	1.00
Modal	Mode	25	0.05	0.00	0.00	0.01	1.00	1.00	0.39	0.00	0.00	0.00	0.31	0.19	1.00
Modal	Mode	26	0.05	0.00	0.00	0.00	1.00	1.00	0.39	0.00	0.00	0.00	0.31	0.19	1.00
Modal	Mode	27	0.04	0.00	0.00	0.05	1.00	1.00	0.43	0.03	0.00	0.00	0.34	0.19	1.00
Modal	Mode	28	0.04	0.00	0.00	0.07	1.00	1.00	0.50	0.04	0.00	0.00	0.39	0.19	1.00
Modal	Mode	29	0.04	0.00	0.00	0.00	1.00	1.00	0.50	0.00	0.00	0.00	0.39	0.19	1.00
Modal	Mode	30	0.04	0.00	0.00	0.00	1.00	1.00	0.50	0.00	0.21	0.00	0.39	0.40	1.00
Modal	Mode	31	0.04	0.00	0.00	0.00	1.00	1.00	0.50	0.01	0.01	0.00	0.39	0.41	1.00
Modal	Mode	32	0.04	0.00	0.00	0.01	1.00	1.00	0.51	0.01	0.06	0.00	0.41	0.46	1.00
Modal	Mode	33	0.04	0.00	0.00	0.00	1.00	1.00	0.51	0.00	0.00	0.00	0.41	0.46	1.00
Modal	Mode	34	0.04	0.00	0.00	0.00	1.00	1.00	0.52	0.24		0.00	0.65	0.47	1.00
Modal	Mode	35	0.04	0.00	0.00	0.00	1.00	1.00	0.52	0.06	0.06	0.00	0.71	0.53	1.00
Modal	Mode	36	0.03	0.00	0.00	0.00	1.00	1.00	0.52	0.00	0.04	0.00	0.71	0.58	1.00
Modal	Mode	37	0.03	0.00	0.00	0.00	1.00	1.00	0.52	0.00	0.00	0.00	0.71	0.58	1.00
Modal	Mode	38	0.03	0.00	0.00	0.34	1.00	1.00	0.86	0.00	0.01	0.00	0.71	0.59	1.00
Modal	Mode	39	0.03	0.00	0.00	0.02	1.00	1.00	0.88	0.00	0.08	0.00	0.72	0.67	1.00
Modal	Mode	40	0.03	0.00	0.00	0.01	1.00	1.00	0.89	0.00	0.08	0.00	0.72	0.74	1.00
Modal	Mode	41	0.03	0.00		0.07	1.00	1.00	0.96	0.00	_		0.72	0.91	1.00
Modal	Mode	42	0.03	0.00	0.00	0.00	1.00	1.00	0.96	0.00	0.00	0.00	0.72	0.91	1.00
Modal	Mode	43	0.03	0.00	0.00	0.01	1.00	1.00	0.97	0.00	0.06	0.00	0.72	0.97	1.00
Modal	Mode	44	0.03	0.00	0.00	0.00	1.00	1.00	0.97	0.00	0.00	0.00	0.72	0.97	1.00
Modal	Mode	45	0.03	0.00	0.00	0.00	1.00	1.00	0.97	0.19	0.00	0.00	0.72	0.98	1.00
Modal	Mode	46	0.03	0.00	0.00	0.00	1.00	1.00	0.97	0.00	0.00	0.00	0.91	0.98	1.00
Modal	Mode	47	0.03	0.00	0.00	0.00	1.00	1.00	0.97	0.03	0.00	0.00	0.94	0.98	1.00
Modal	Mode	47	0.03	0.00	0.00	0.00	1.00		0.97	0.03	0.00	0.00	0.94	0.98	
						-		1.00							1.00
Modal	Mode	49	0.03	0.00	0.00	0.01	1.00	1.00	0.99	0.01	0.00	0.00	0.99	0.98	1.00

Nelle seguenti immagini vengono riportati i principali modi di vibrazione.

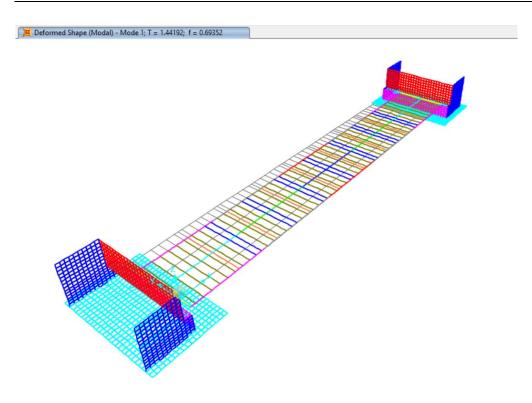


Figura 9-11. Analisi modale _ Modo 1 _ T₁ = 1.44 s

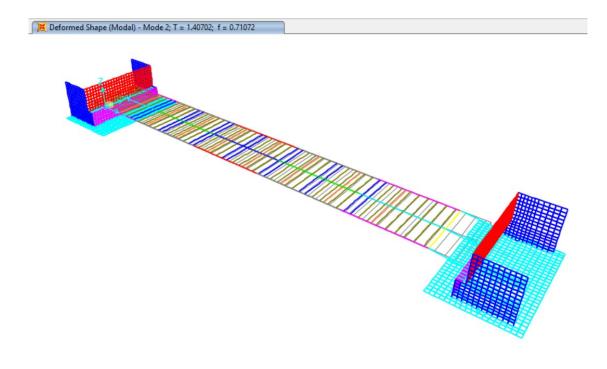


Figura 9-12. Analisi modale _ Modo 2 _ T₂ = 1.41 s

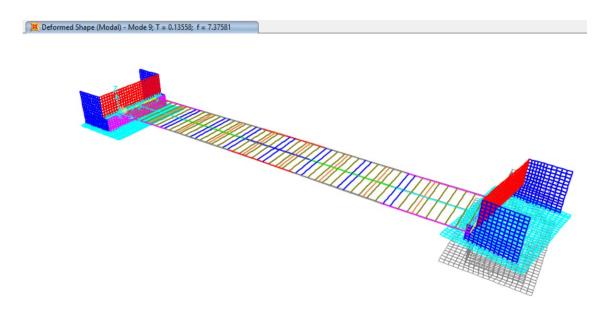


Figura 9-13. Analisi modale _ Modo 9 _ T₉ = 0.14 s

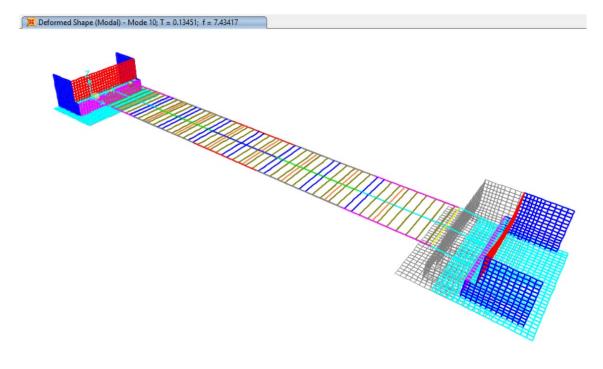


Figura 9-14. Analisi modale $_$ Modo 10 $_$ T_{10} = 0.13 s

PERIZIA DI VARIANTE TECNICA

10 VERIFICA DELLE SPALLE

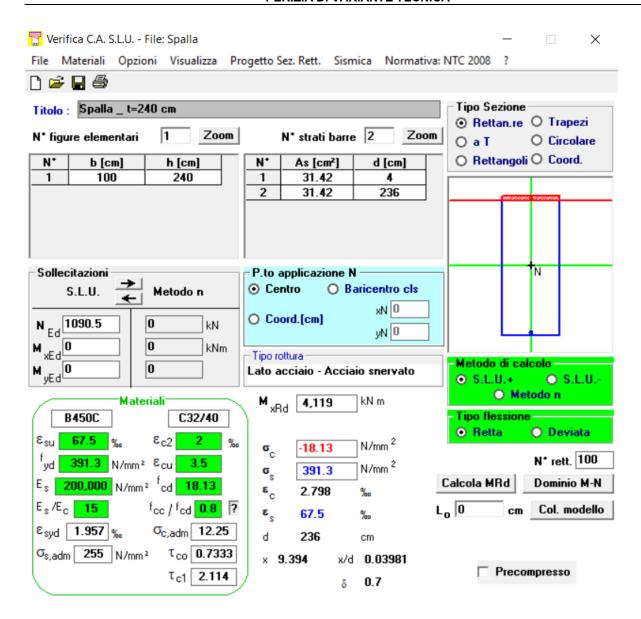
Come già precedentemente accennato, il calcolo delle sollecitazioni delle spalle è stato condotto mediante lo sviluppo di un modello agli elementi finiti.

Nel seguente capitolo verranno riportate le verifiche agli stati limite ultimi (Flessione e Taglio) e agli stati limite di esercizio (Fessurazione) dei principali elementi strutturali in accordo a quanto riportato nelle NTC2018 e le rispettive circolari esplicative.

Sono state condotte anche verifiche locali per i muri paraghiaia, baggioli e ritegni sismici.

Le sollecitazioni flettenti, nelle due direzioni principali degli elementi "Shell", sono state combinate tra di loro mediante le equazioni di Wood and Armer.

10.1 VERIFICHE SPALLE


In seguito, vengono riportate le verifiche SLU e le verifiche SLE delle spalle A e B.

Per le armature considerate si rimanda agli elaborati grafici corrispondenti a ciascun elemento.

10.1.1 Verifiche SLU

Verifica a flessione

	F1 [KN]	F2 [KN]	F3 [KN]	M1 [KNm]	M2 [KNm]	M3 [KNm]	SectionCut	OutputCase
max F1	1352,6	308,0	203,7	-111,7	-853,0	67,8	Spalla A _ 1	SLU_21
min F1	433,4	-34,1	28,4	-10,0	58,4	-7,5	Spalla B _ 3	SLV_Z_04
max F2	1352,6	308,0	203,7	-111,7	-853,0	67,8	Spalla A _ 1	SLU_21
min F2	1056,2	-307,5	253,3	25,7	-783,6	-66,7	Spalla A _ 2	SLU_02
max F3	842,9	-251,5	279,9	-18,8	-731,7	-53,7	Spalla A _ 2	SLU_34
min F3	469,7	-35,4	-514,9	-15,4	-298,7	-7,3	Spalla A _ 3	SLV_X_04
max M1	560,7	-65,8	72,2	151,1	381,9	-12,2	Spalla B _ 2	SLV_X_04
min M1	558,3	70,1	-53,5	-150,1	127,7	13,1	Spalla B _ 1	SLV_X_03
max M2	1090,5	298,3	25,5	69,2	576,7	65,1	Spalla B _ 1	SLU_20
min M2	1352,6	308,0	203,7	-111,7	-853,0	67,8	Spalla A _ 1	SLU_21
max M3	1352,6	308,0	203,7	-111,7	-853,0	67,8	Spalla A _ 1	SLU_21
min M3	1056,2	-307,5	253,3	25,7	-783,6	-66,7	Spalla A _ 2	SLU_02

PERIZIA DI VARIANTE TECNICA

Verifiche a taglio

1. MATERIALI			
1.1. Calcestruzzo [Rif.]		10 [0.4]	- 1
Resistenza caratteristica cubica cls	R _{ck}	40 [M	Paj
Coefficiente di sicurezza parziale per il calcestruzzo	Yc	1.5 [-]	
Coefficiente che tiene conto degli effetti di lungo termine	α_{CC}	1 [-]	
Resistenza caratteristica cilindrica	f _{ck}	33.2 [M	
Resistenza a compressione di progetto del CLS	f _{cd}	22.1 [M	Pa]
1.3. Acciaio da Armatura Ordinaria [Rif.]			
Tensione di snervamento caratteristica	f _{yk}	430 [M	Pa]
Coefficiente di sicurezza parziale per l'acciaio	Ϋ́s	1.15 [-]	
Modulo di elasticità secante dell'acciaio	Es	206000 [M	
Tensione di snervamento di progetto armatura a taglio	f _{ywk}	374 [M	Pa]
2. CARATTERISTICHE GEOMETRICHE			
Altezza trave CLS	H _{CLS}	2400 [m	
Larghezza minima trave CLS (o larghezza trave equvalente)	b _w	1000 [m	-
Altezza utile	d	2350 [m	
Braccio della coppia interna (0,9 d _{UTILE})	Z	2115 [m	-
Area sezione di CLS	A _c	2400000 [m	
Diametro armatura longitudinale tesa	φs	20 [m	m]
Numero ferri armatura longitudinale tesa	$n_{\phi s}$	10 [-]	
Area armatura tesa	A _{s I}	3142 [m	m ²]
A Sezione considerata $I_{\rm bd}$ $V_{\rm Ed}$ $I_{\rm bd}$ $V_{\rm Ed}$	A A	_	
AS AS	X	σ	
/ _{bd}	V _{Ed}		
A _{sl} A _{sl} A _{sl}		L	
		4 20 []	
Danasaturia di annatura la gattu di alla tara	k	1.29 [-]	
Percentuale di armatura longitudinale tesa	ρι	0.001 [-]	
	C _{Rd,c}	0.12 [-]	
	V _{min}	0.30 [-]	
	k ₁	0.15 [-]	- 1
Tensione di precompressione	$\sigma_{\sf cp}$	0.00	Paj
2 COLLECTATION!			
3. SOLLECITAZIONI Sfarza di Taglia di progretto	V/	370.0 []	11
Sforzo di Taglio di progetto	V _{Ed}	279.9 [kl	-
Coefficiente aggiuntivo contro il collasso duttile	Y _{Bd1}	1 [-]	
Sforzo di Torsione di progetto	T _{Ed}	1 [kr	vmj
A FLEMENTI CHE NON DICHIEDONO ADMATUDA A TACUO			
4. ELEMENTI CHE NON RICHIEDONO ARMATURA A TAGLIO	\ <u>\</u>	F00 [I:s	11
Valore di progetto della Resistenza a Taglio	V _{Rd,c}	599 [kl	
Valore minimo di progetto della Resistenza a Taglio	V _{Rd,c min}	696 [kl	
Valore di progetto della Resistenza a Taglio	V _{Rd,c}	696 [kl	
Coefficiente di sicurezza	K	2.49 [-]	OK

PERIZIA DI VARIANTE TECNICA

10.1.2 Verifiche SLE

Sono state condotte le verifiche a fessurazione considerando sia le combinazioni frequenti sia quelle quasi permanenti.

<u>Verifica fessurazione – combo. Frequente</u>

	F1 [KN]	F2 [KN]	F3 [KN]	M1 [KNm]	M2 [KNm]	M3 [KNm]	SectionCut	OutputCase
max F1	979.2	219.1	151.4	-83.0	-622.9	48.2	Spalla A _ 1	SLE_f_21
min F1	477.8	-33.0	143.1	-58.0	-418.0	-5.2	Spalla A _ 3	SLE_f_47
max F2	890.9	220.4	151.6	-80.3	-579.9	48.5	Spalla A _ 1	SLE_f_25
min F2	724.2	-220.2	179.8	31.5	-540.4	-47.9	Spalla A _ 2	SLE_f_06
max F3	606.4	-183.7	207.5	-12.9	-534.5	-39.3	Spalla A _ 2	SLE_f_34
min F3	563.5	-180.6	-32.2	4.6	381.9	-38.3	Spalla B _ 2	SLE_f_38
max M1	731.5	203.6	24.3	66.4	368.1	43.9	Spalla B _ 1	SLE_f_34
min M1	930.0	202.8	149.6	-85.9	-597.6	45.0	Spalla A _ 1	SLE_f_37
max M2	786.0	211.6	15.5	51.3	421.2	46.1	Spalla B _ 1	SLE_f_20
min M2	979.2	219.1	151.4	-83.0	-622.9	48.2	Spalla A _ 1	SLE_f_21
max M3	890.9	220.4	151.6	-80.3	-579.9	48.5	Spalla A _ 1	SLE_f_25
min M3	724.2	-220.2	179.8	31.5	-540.4	-47.9	Spalla A _ 2	SLE_f_06

1. MATERIALI			
1.1. Calcestruzzo [Rif.]			
Resistenza caratteristica cubica cls CAP	R _{ck}	40	[MPa]
Coefficiente di sicurezza parziale per il calcestruzzo	Ϋ́c	1.5	-
Coefficiente che tiene conto degli effetti di lungo termine	α _{cc}	0.85	
Rapporto tra modulo elastico cis teso e cis compresso	ξ _i		[mm]
Resistenza caratteristica cilindrica	f _{ck}		[MPa]
Valore medio della resistenza a compressione cilindrica	f _{cm}	41.20	
Valore medio della resistenza a trazione assiale del calcestruzzo	f _{ctm}		[MPa]
Valore caratteristico della resistenza a trazione assiale del carcestruzzo Valore caratteristico della resistenza a trazione assiale (frattile 5%)			[MPa]
,	f _{ctk;0.05}		
Valore caratteristico della resistenza a trazione assiale (frattile 95%)	f _{ctk;0.95}		[MPa]
Modulo di elasticità secante del cls CAP	E _{cm}	33643	
Resistenza a trazione dl CLS per flessione	f _{ctd}		[MPa]
	f _{ct,eff}	3.10	[MPa]
4.2 Applied to American C. P. 1. (C)(.)			
1.2. Acciaio da Armatura Ordinaria [Rif.]		2222	[
Modulo di elasticità secante dell'acciaio	Es	206000	[MPa]
1.3. Acciaio da Precompressione [Rif.]	_	22.22.5	rs
Modulo di elasticità secante dell'acciaio	E _P	206000	[MPa]
2 COSESSIONEL DI CALCOSTINE DI			
2. COEFFICIENTI DI OMOGENEIZZAZIONE			
2.1. Acciaio da Armatura Lenta [Rif.]			
Coefficiente di omogeneizzazione	$n_{\!\scriptscriptstyle{igophi}}$	15	[-]
2.2. Acciaio da Precompressione [Rif.]			
Coefficiente di omogeneizzazione	n _P	15	[-]
3. CARATTERISTICHE GEOMETRICHE TRAVE			
Altezza trave CLS	H _{CLS}		[mm]
Larghezza trave CLS (o larghezza trave equvalente)	B _{CLS}		[mm]
Baricentro trave da lembo inferiore	Y G,CLS		[mm]
Copriferro	С		[mm]
Area trave	A _{CLS}	2400000	
Momento di inerzia trave	J _{CLS}	1.152E+12	[mm ⁴]
Altezza utile	d _{UTILE}	2360	[mm]
3.1. Armatura Lenta trave in CAP			
3.1.a Armatura superiore			
Diametro	фѕ	20	[mm]
Numero	$n_{\phi s}$	10	[-]
Diametro ferri infittimento	φ' _s	0	[mm]
Numero ferri infittimento	n' _{φs}	0	[-]
Passo armatura superiore	p _i	100	[mm]
Distanza da lembo superiore a baricentro ferri superiori	d'	50	[mm]
Area totale armatura superiore	A _{s,sup}	3142	[mm ²]
3.1.b Armatura inferiore			
Diametro	Фі	20	[mm]
Numero	n _{φi}	10	[-]
Diametro ferri infittimento	φ'ι		[mm]
Numero ferri infittimento	n' _{фi}		[-]
Passo armatura inferiore	p _l		[mm]
Distanza da lembo superiore a baricentro ferri inferiori	d		[mm]
	-		[mm ²]

CEZIONE INTERA	CHE STATICH							
SEZIONE INTERAN Baricentro	ENTE KEAGE	VIE				.,	1200	[mm]
						Уg	2494248	[mm]
Area						A		
Momento d'inerzia		1.6				J	1276642688531	
Modulo di resisten	•					W _{c,SUP}	1063868907	_
Modulo di resisten						W _{s,SUP}	1110124077	
Modulo di resisten	za inferiore ST	EEL				W _{s,INF}	1110124077	
Modulo di resisten	za inferiore CL	.S				W _{c,INF}	1063868907	[mm³]
SEZIONE PARZIAL	ZZATA							
Formula per ricerca	obiettivo							
Asse neutro da lem	bo superiore o	con N e M				y n (RICERCA)	391	[mm]
Asse neutro da lem	bo superiore					y n	391	[mm]
Momento statico s	ezione parzial	izzata rispe	tto all'asse	neutro		S'n	33116	[mm ³]
Momento d'inerzia						J'	206251484553	[mm ⁴]
Modulo di resisten	•					W _{c,SUP}	527945359	_
Modulo di resisten	· ·					W _{s,SUP}	605432089	
Modulo di resisten	•					W _{s,INF}	105266239	
Modulo di resisten						W _{c,INF}	102646805	
ivioualo di resisteri	la illicitore el					V C,INF	1020+0003	[]
5. SOLLECITAZIO								
Sforzo normale ag						N	0.1	[kN]
Momento sollecita				rio segno)		M _P		[kNm]
Momento sollecita	nte <u>(con il pro</u>	prio segno	<u>)</u>			M		[kNm]
						е	6229000	-
						u	6227800	[mm]
SEZIONE INTERAM		NTE			-			
Tensione lembo su	periore CLS					$\sigma_{c,sup}$		[N/mm ²
Tensione armatura	lenta superio	re				$\sigma_{s,sup}$		[N/mm ²
Tensione armatura	lenta inferior	e				$\sigma_{s,inf}$		[N/mm ²
Tensione lembo in	eriore CLS					$\sigma_{c,inf}$	0.59	[N/mm ²]
Stato limite di forn	nazione delle j	fessure		$\sigma_{c,inf}$	<	f _{ctm} /1.2	ОК	
SEZIONE PARZIAL	ZZATA							
Tensione lembo su	periore CLS					$\sigma_{c,sup}$	-1.18	[N/mm ²]
Tensione armatura	lenta superio	re				$\sigma_{s,sup}$	-15.43	[N/mm ²]
Tensione armatura	lenta inferior	e				$\sigma_{s,inf}$	88.76	[N/mm ²
Tensione lembo in	eriore CLS					$\sigma_{c,inf}$	6.07	[N/mm ²
						-y		
	tesa consider					σ_{s}		[Mpa]
Tensione armatura		- .	ne media	cls		$\varepsilon_{\rm sm}$ - $\varepsilon_{\rm cm}$	0.00026	
Tensione armatura	lia armatura -	Deformazio	The media					
Tensione armatura Deformazione med Distanza massima	ra le fessure					S _{r,max}		[mm]
Tensione armatura Deformazione med Distanza massima Valore massimo ar	ra le fessure nmisibile di am					S _{r,max} W _{k,max}	0.3	[mm]
6. VERIFICA DI FI Tensione armatura Deformazione med Distanza massima Valore massimo ar Ampiezza delle fes	ra le fessure nmisibile di am							[mm]

PERIZIA DI VARIANTE TECNICA

Verifica fessurazione - combo. Quasi permanente

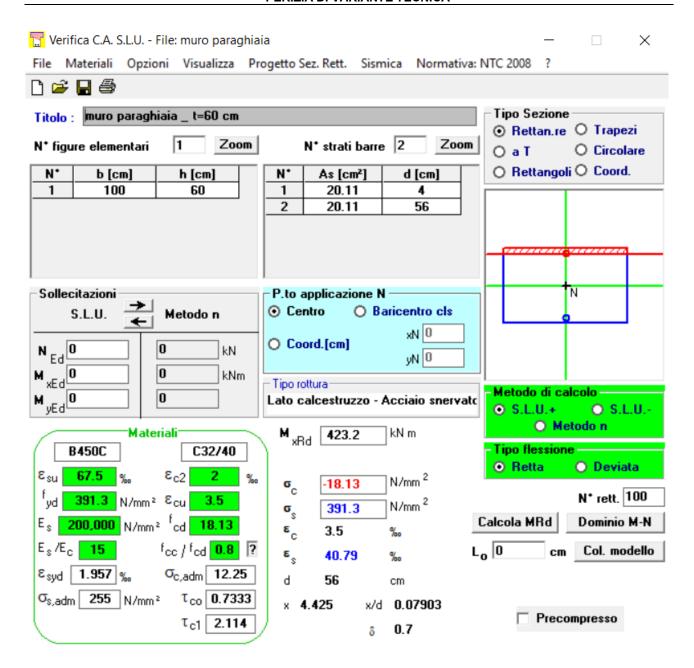
	F1 [KN]	F2 [KN]	F3 [KN]	M1 [KNm]	M2 [KNm]	M3 [KNm]	SectionCut	OutputCase
max F1	977.5	216.3	151.4	-83.0	-622.3	47.5	Spalla A _ 1	SLE_qp_19
min F1	412.1	-1.9	114.9	-3.3	-325.4	0.0	Spalla A _ 3	SLE_qp_13
max F2	977.5	216.3	151.4	-83.0	-622.3	47.5	Spalla A _ 1	SLE_qp_19
min F2	759.8	-216.1	187.9	19.8	-571.3	-46.7	Spalla A _ 2	SLE_qp_02
max F3	615.2	-185.7	204.4	-21.0	-525.6	-39.6	Spalla A _ 2	SLE_qp_19
min F3	565.5	-183.3	-31.7	4.0	382.2	-39.0	Spalla B _ 2	SLE_qp_36
max M1	569.1	-170.7	154.3	68.4	-426.6	-36.5	Spalla A _ 2	SLE_qp_13
min M1	564.0	-186.3	15.4	-90.4	294.8	-38.9	Spalla B _ 2	SLE_qp_17
max M2	784.3	208.8	15.2	50.8	421.0	45.4	Spalla B _ 1	SLE_qp_18
min M2	977.5	216.3	151.4	-83.0	-622.3	47.5	Spalla A _ 1	SLE_qp_19
max M3	977.5	216.3	151.4	-83.0	-622.3	47.5	Spalla A _ 1	SLE_qp_19
min M3	759.8	-216.1	187.9	19.8	-571.3	-46.7	Spalla A _ 2	SLE_qp_02

1. MATERIALI					
1.1. Calcestruzzo [Rif.]					
Resistenza caratteristica cubio	a cls CAP		R _{ck}	40	[MPa]
Coefficiente di sicurezza parzi	ale per il calcestruzz	0	γ _c	1.5	[-]
Coefficiente che tiene conto d	degli effetti di lungo	termine	$\alpha_{\rm CC}$	0.85	[-]
Rapporto tra modulo elastico			ξί		[mm]
Resistenza caratteristica cilino			f _{ck}		[MPa]
Valore medio della resistenza		odrica	f _{cm}		[MPa]
Valore medio della resistenza	•				[MPa]
			f _{ctm}		-
Valore caratteristico della res			f _{ctk;0.05}		[MPa]
Valore caratteristico della res		siale (frattile 95%)	f _{ctk;0.95}		[MPa]
Modulo di elasticità secante d	el cls CAP		E _{cm}	33643	[MPa]
Resistenza a trazione dl CLS po	er flessione		f _{ctd}	1.45	[MPa]
			$f_{ct,eff}$	3.10	[MPa]
1.2. Acciaio da Armatura Ordi	naria [Rif.]				
Modulo di elasticità secante d	ell'acciaio		Es	206000	[MPa]
1.3. Acciaio da Precompressio	ne [Rif.]				
Modulo di elasticità secante d	ell'acciaio		E _P	206000	[MPa]
2. COEFFICIENTI DI OMOG	ENEIZZAZIONE				
2.1. Acciaio da Armatura Lent	a [<i>Rif.</i>]				
Coefficiente di omogeneizzazi			n _Φ	15	[-]
2.2. Acciaio da Precompressio			υ.φ	20	
Coefficiente di omogeneizzazi			n _P	15	[-]
Coefficiente di omogeneizzazi	Offic		Пр	13	LJ
3. CARATTERISTICHE GEOI	METDICUE TDAVE				
Altezza trave CLS	VILINICIIL INAVL		H _{CLS}	2400	[mm]
Larghezza trave CLS (o larghez	ra travo ogunyalonto	\			[mm]
Baricentro trave da lembo info	· .)	B _{CLS}		
	eriore		Y G,CLS		[mm]
Copriferro			С		[mm]
Area trave			A _{CLS}	2400000	
Momento di inerzia trave			J _{CLS}	1.152E+12	[mm ⁴]
Altezza utile			d _{UTILE}	2360	[mm]
3.1. Armatura Lenta trave in C	:AP				
3.1.a Armatura superiore					
Diametro			Φs	20	[mm]
Numero			$n_{\phi s}$	10	[-]
Diametro ferri infittimento			ф's	0	[mm]
Numero ferri infittimento			n' _{фs}	0	[-]
Passo armatura superiore			p _i		[mm]
Distanza da lembo superiore a	baricentro ferri sup	eriori	d'		[mm]
Area totale armatura superior			A _{s,sup}		[mm ²]
3.1.b Armatura inferiore	-		r s,sup	J172	
Diametro			фі	20	[mm]
Numero					[-]
Diametro ferri infittimento			n _{φi}		[mm]
			φ',		
Numero ferri infittimento			n' _{фi}		[-]
Passo armatura inferiore	1		p _i		[mm]
Distanza da lembo superiore a		eriori	d		[mm]
Area totale armatura inferiore	<u> </u>		$A_{s,inf}$	3142	[mm ²]

4. CARATTERISTICHE STATICHE TRAVE				
SEZIONE INTERAMENTE REAGENTE				
Baricentro		Уg	1200	[mm]
Area		A	2494248	[mm ²]
Momento d'inerzia		J	1276642688531	-
Modulo di resistenza superiore CLS		W _{c,SUP}	1063868907	
Modulo di resistenza superiore STEEL		W _{s,SUP}	1110124077	
Modulo di resistenza inferiore STEEL		W _{s,INF}	1110124077	
Modulo di resistenza inferiore CLS			1063868907	
viodulo di resistenza inferiore CLS		W _{c,INF}	1063868907	[111111]
SEZIONE PARZIALIZZATA				
Formula per ricerca obiettivo				
Asse neutro da lembo superiore con N e M		y n (RICERCA)	391	[mm]
Asse neutro da lembo superiore		y n	391	[mm]
Momento statico sezione parzializzata rispetto all'as:	se neutro	S'n	33068	[mm ³]
Momento d'inerzia sezione parzializzata rispetto all'a	isse neutro	J'	206251484546	[mm ⁴]
Modulo di resistenza superiore CLS		W _{c,SUP}	527945492	
Modulo di resistenza superiore STEEL		W _{s,SUP}	605432264	
Modulo di resistenza inferiore STEEL		W _{s,INF}	105266233	
Modulo di resistenza inferiore CLS		W _{c,INF}	102646800	
Wiodulo di lesistenza ililenore eza		C,INF	102010000	<u></u>
5. SOLLECITAZIONI E STATO TENSIONALE				
Sforzo normale agente o di precompressione (con il p	proprio segno)	N	0.1	[kN]
Momento sollecitante di precompressione (con il pro	oprio segno)	M _P	0	[kNm]
Momento sollecitante (con il proprio segno)		M	623.8	[kNm]
		e	6238000	[mm]
		u	6236800	[mm]
SEZIONE INTERAMENTE REAGENTE				
Tensione lembo superiore CLS		$\sigma_{c,sup}$	-0.59	[N/mm ²]
Tensione armatura lenta superiore		$\sigma_{s,sup}$	-8.43	[N/mm ²]
Tensione armatura lenta inferiore		$\sigma_{s,inf}$	8.43	[N/mm ²]
Tensione lembo inferiore CLS		$\sigma_{c,inf}$	0.59	[N/mm ²]
Stato limite di formazione delle fessure	$\sigma_{c,inf}$ <	f _{ctm} /1.2	ок	
SEZIONE PARZIALIZZATA				
Tensione lembo superiore CLS		$\sigma_{c,sup}$	-1.18	[N/mm ²]
Tensione armatura lenta superiore		$\sigma_{s,sup}$	-15.46	[N/mm ²]
Tensione armatura lenta inferiore		$\sigma_{s,inf}$	88.89	[N/mm ²]
Tensione lembo inferiore CLS		$\sigma_{c,inf}$	6.08	[N/mm ²]
6. VERIFICA DI FESSURAZIONE				
Tensione armatura tesa considerando la sezione fess	surata	σ_{s}	88.89	[Mpa]
Deformazione media armatura - Deformazione medi	a cls	$\epsilon_{\rm sm}$ - $\epsilon_{\rm cm}$	0.00026	[-]
Distanza massima tra le fessure		S _{r,max}	271	[mm]
Valore massimo ammisibile di ampiezza delle fessure		$\mathbf{W}_{k,max}$	0.2	[mm]
Ampiezza delle fessure		W _k	0.070	[mm]
Stato limite di apertura delle fessure	W _k	$W_{k,max}$	ОК	

PERIZIA DI VARIANTE TECNICA

10.2 VERIFICHE MURI PARAGHIAIA


10.2.1 Verifiche SLU

In seguito, vengono riportate le verifiche SLU e le verifiche SLE dei muri paraghiaia.

Per le armature considerate si rimanda agli elaborati grafici corrispondenti a ciascun elemento.

Verifiche a flessione

	F1 [KN]	F2 [KN]	F3 [KN]	M1 [KNm]	M2 [KNm]	M3 [KNm]	SectionCut	OutputCase
max F1	423,7	312,8	158,4	-36,0	-88,8	113,2	Paraghiaia A _ 1	SLU_19
min F1	-203,7	0,8	66,7	0,3	-79,0	1,8	Paraghiaia A _ 3	SLU_02
max F2	422,5	316,8	161,9	-36,5	-90,7	114,9	Paraghiaia A _ 1	SLU_21
min F2	353,1	-274,1	-117,1	-27,1	67,2	-98,4	Paraghiaia B _ 2	SLU_13
max F3	422,5	316,8	161,9	-36,5	-90,7	114,9	Paraghiaia A _ 1	SLU_21
min F3	348,3	-265,7	-124,2	-29,9	71,3	-96,6	Paraghiaia B _ 2	SLU_17
max M1	187,4	-80,0	49,6	36,8	-13,6	-26,5	Paraghiaia A _ 2	SLV_Y_03
min M1	132,4	90,5	30,3	-36,9	-29,0	30,0	Paraghiaia A _ 1	SLV_Y_04
max M2	-143,6	-16,1	-71,8	1,1	82,4	-2,6	Paraghiaia B _ 3	SLU_36
min M2	422,5	316,8	161,9	-36,5	-90,7	114,9	Paraghiaia A _ 1	SLU_21
max M3	422,5	316,8	161,9	-36,5	-90,7	114,9	Paraghiaia A _ 1	SLU_21
min M3	391,6	-269,9	145,3	36,3	-83,1	-99,5	Paraghiaia A _ 2	SLU_02

PERIZIA DI VARIANTE TECNICA

Verifiche a taglio

1. MATERIALI			
1.1. Calcestruzzo [Rif.]			
Resistenza caratteristica cubica cls	R _{ck}	40 [N	ЛРа]
Coefficiente di sicurezza parziale per il calcestruzzo	Yc	1.5 [-]]
Coefficiente che tiene conto degli effetti di lungo termine	$\alpha_{\sf CC}$	1 [-]]
Resistenza caratteristica cilindrica	f _{ck}	33.2 [N	/IPa]
Resistenza a compressione di progetto del CLS	f _{cd}	22.1 [N	/IPa]
1.3. Acciaio da Armatura Ordinaria [Rif.]			
Tensione di snervamento caratteristica	f _{yk}	430 [N	ЛРа]
Coefficiente di sicurezza parziale per l'acciaio	γs	1.15	
Modulo di elasticità secante dell'acciaio	Es	206000 [N	ИРа]
Tensione di snervamento di progetto armatura a taglio	f _{ywk}	374 [N	ЛРа]
2. CARATTERISTICHE GEOMETRICHE			
Altezza trave CLS	H _{CLS}	600 [n	
Larghezza minima trave CLS (o larghezza trave equvalente)	b _w	1000 [n	
Altezza utile	d	560 [n	
Braccio della coppia interna (0,9 d _{UTILE})	Z	504 [n	-
Area sezione di CLS	A _c	600000 [n	
Diametro armatura longitudinale tesa	Φs	20 [n	nm]
Numero ferri armatura longitudinale tesa	$n_{\phi s}$	10 [-]]
Area armatura tesa	A _{s1}	3142 [n	nm²]
figura 6.3 Definizione di A _{sl} nella espressione (6.2) Legenda A Sezione considerata	σ. Δ	-	
figura 6.3 Definizione di A _{si} nella espressione (6.2) Legenda A Sezione considerata bd V _{Ed} V _E	A _{sl} A		
figura 6.3 Definizione di A _{si} nella espressione (6.2) Legenda A Sezione considerata		ρ	
figura 6.3 Definizione di A _{si} nella espressione (6.2) Legenda A Sezione considerata I bd VEd VEd	X	P	
figura 6.3 Definizione di A _{si} nella espressione (6.2) Legenda A Sezione considerata V _{Ed} V _{Ed} V _{Ed} V _{Ed} V _{Ed} V _{Ed}			
figura 6.3 Definizione di A _{si} nella espressione (6.2) Legenda A Sezione considerata V _{Ed} V _{Ed} V _{Ed} V _{Ed} V _{Ed} V _{Ed}		1.60 [-]	
figura 6.3 Definizione di A _{sl} nella espressione (6.2) Legenda A Sezione considerata V _{Ed}	v _{Ed}		
figura 6.3 Definizione di A _{sl} nella espressione (6.2) Legenda A Sezione considerata V _{Ed}	V _{Ed}	1.60 [-]]
figura 6.3 Definizione di A _{sl} nella espressione (6.2) Legenda A Sezione considerata V _{Ed}	V _{Ed}	1.60 [-] 0.006 [-]]
figura 6.3 Definizione di A _{sl} nella espressione (6.2) Legenda A Sezione considerata I bd	k PI CRd,c	1.60 [-] 0.006 [-] 0.12 [-]]]]
Figura 6.3 Definizione di A _{sl} nella espressione (6.2) Legenda A Sezione considerata bd VEd VE	k p ₁ C _{Rd,c} V _{min}	1.60 [-] 0.006 [-] 0.12 [-] 0.41 [-]]]]]
figura 6.3 Definizione di A _{sl} nella espressione (6.2) Legenda A Sezione considerata / bd / Ed / bd / Ed / bd / bd Percentuale di armatura longitudinale tesa	V _{Ed} k ρ ₁ C _{Rd,c} v _{min} k ₁	1.60 [-] 0.006 [-] 0.12 [-] 0.41 [-] 0.15 [-]]]]]
Figura 6.3 Definizione di A _{sl} nella espressione (6.2) Legenda A Sezione considerata I bd VEd VEd VEd VA sl Percentuale di armatura longitudinale tesa Tensione di precompressione	V _{Ed} k ρ ₁ C _{Rd,c} v _{min} k ₁	1.60 [-] 0.006 [-] 0.12 [-] 0.41 [-] 0.15 [-]]]]]
Percentuale di armatura longitudinale tesa Tensione di precompressione Solutione di A _{sl} nella espressione (6.2)	V _{Ed} k ρ ₁ C _{Rd,c} v _{min} k ₁	1.60 [-] 0.006 [-] 0.12 [-] 0.41 [-] 0.15 [-]]]]] ИРа]
Figura 6.3 Definizione di A _{sl} nella espressione (6.2) Legenda A Sezione considerata V _{Ed} V _{Ed} V _{Ed} V _{Ed} V _{Ed} V _{Ed} Percentuale di armatura longitudinale tesa Tensione di precompressione Si SOLLECITAZIONI Sforzo di Taglio di progetto	k PI CRd,c Vmin k1 σcp	1.60 [-] 0.006 [-] 0.12 [-] 0.41 [-] 0.15 [-] 0.00 [N]]]] ИРа]
Percentuale di armatura longitudinale tesa Tensione di precompressione 3. SOLLECITAZIONI Sforzo di Taglio di progetto Coefficiente aggiuntivo contro il collasso duttile	V_{Ed} k ρ_{I} $C_{Rd,c}$ V_{min} k_{1} σ_{cp} V_{Ed}	1.60 [-] 0.006 [-] 0.12 [-] 0.41 [-] 0.15 [-] 0.00 [N]]]] ИРа]
Percentuale di armatura longitudinale tesa Tensione di precompressione 3. SOLLECITAZIONI Sforzo di Taglio di progetto Coefficiente aggiuntivo contro il collasso duttile	V _{Ed} k ρ _I C _{Rd,c} V _{min} k ₁ σ _{cp}	1.60 [-] 0.006 [-] 0.12 [-] 0.41 [-] 0.15 [-] 0.00 [N]]]] MPa] N]
Percentuale di armatura longitudinale tesa Tensione di precompressione 3. SOLLECITAZIONI Sforzo di Taglio di progetto Coefficiente aggiuntivo contro il collasso duttile Sforzo di Torsione di progetto	V _{Ed} k ρ _I C _{Rd,c} V _{min} k ₁ σ _{cp}	1.60 [-] 0.006 [-] 0.12 [-] 0.41 [-] 0.15 [-] 0.00 [N]]]] MPa] N]
Percentuale di armatura longitudinale tesa Tensione di precompressione 3. SOLLECITAZIONI Sforzo di Taglio di progetto Coefficiente aggiuntivo contro il collasso duttile Sforzo di Torsione di progetto 4. ELEMENTI CHE NON RICHIEDONO ARMATURA A TAGLIO	V _{Ed} k ρ _I C _{Rd,c} V _{min} k ₁ σ _{cp}	1.60 [-] 0.006 [-] 0.12 [-] 0.41 [-] 0.15 [-] 0.00 [N	
Percentuale di armatura longitudinale tesa Tensione di precompressione 3. SOLLECITAZIONI Sforzo di Taglio di progetto Coefficiente aggiuntivo contro il collasso duttile Sforzo di Torsione di progetto 4. ELEMENTI CHE NON RICHIEDONO ARMATURA A TAGLIO Valore di progetto della Resistenza a Taglio	V _{Ed} k ρ _I C _{Rd,c} v _{min} k ₁ σ _{cp} V _{Ed} Y _{Bd1} T _{Ed}	1.60 [-] 0.006 [-] 0.41 [-] 0.15 [-] 0.00 [N 161.9 [k 1 [-]]]]] MPa] N]] Nm]
figura 6.3 Definizione di A _{sl} nella espressione (6.2) Legenda A Sezione considerata / bd / Ed / Bd / B	V _{Ed} k ρ _I C _{Rd,c} V _{min} k ₁ σ _{cp} V _{Ed} V _{Bd} V _{Bd} T _{Ed}	1.60 [-] 0.006 [-] 0.12 [-] 0.41 [-] 0.15 [-] 0.00 [N 161.9 [k 1 [-] 1 [k]]]

PERIZIA DI VARIANTE TECNICA

10.2.2 Verifiche SLE

Verifica fessurazione - combo. Frequente

	F1 [KN]	F2 [KN]	F3 [KN]	M1 [KNm]	M2 [KNm]	M3 [KNm]	SectionCut	OutputCase
max F1	310.4	229.6	117.3	-26.8	-65.8	83.4	Paraghiaia A _ 1	SLE_f_19
min F1	-148.3	-0.4	49.6	0.0	-58.6	0.3	Paraghiaia A _ 3	SLE_f_02
max F2	310.1	230.5	118.1	-26.9	-66.2	83.7	Paraghiaia A _ 1	SLE_f_21
min F2	259.6	-199.3	-85.6	-20.1	49.2	-71.7	Paraghiaia B _ 2	SLE_f_13
max F3	310.1	230.5	118.1	-26.9	-66.2	83.7	Paraghiaia A _ 1	SLE_f_21
min F3	255.2	-193.8	-91.8	-22.3	52.7	-70.7	Paraghiaia B _ 2	SLE_f_17
max M1	287.5	-196.2	106.0	26.8	-60.7	-72.4	Paraghiaia A _ 2	SLE_f_02
min M1	310.1	230.5	118.1	-26.9	-66.2	83.7	Paraghiaia A _ 1	SLE_f_21
max M2	-103.5	-13.0	-53.4	1.0	61.2	-3.0	Paraghiaia B _ 3	SLE_f_36
min M2	310.1	230.5	118.1	-26.9	-66.2	83.7	Paraghiaia A _ 1	SLE_f_21
max M3	310.1	230.5	118.1	-26.9	-66.2	83.7	Paraghiaia A _ 1	SLE_f_21
min M3	287.5	-196.2	106.0	26.8	-60.7	-72.4	Paraghiaia A _ 2	SLE_f_02

1. MATERIALI			
1.1. Calcestruzzo [Rif.]			
Resistenza caratteristica cubica cls CAP	R _{ck}	40	[MPa]
Coefficiente di sicurezza parziale per il calcestruzzo	Yc	1.5	
Coefficiente che tiene conto degli effetti di lungo termine	α_{CC}	0.85	
Rapporto tra modulo elastico cls teso e cls compresso	ξ _i		[mm]
Resistenza caratteristica cilindrica	f _{ck}		[MPa]
Valore medio della resistenza a compressione cilindrica	f _{cm}	41.20	-
Valore medio della resistenza a trazione assiale del calcestruzzo	f _{ctm}		[MPa]
Valore caratteristico della resistenza a trazione assiale del calcestruzzo			[MPa]
·	, caryonos		
Valore caratteristico della resistenza a trazione assiale (frattile 95			[MPa]
Modulo di elasticità secante del cls CAP	E _{cm}	33643	-
Resistenza a trazione dl CLS per flessione	f _{ctd}		[MPa]
	f _{ct,eff}	3.10	[MPa]
1.2. Assisis de Augustium Oudinouis (Dif.)			
1.2. Acciaio da Armatura Ordinaria [Rif.]		200000	[[] 4D - 1
Modulo di elasticità secante dell'acciaio	E _S	206000	[IVIPa]
1.3. Acciaio da Precompressione [Rif.]	-	200000	[0.45.3
Modulo di elasticità secante dell'acciaio	E _P	206000	[IMPa]
2.0055505171717171717171717171717171717171			
2. COEFFICIENTI DI OMOGENEIZZAZIONE			
2.1. Acciaio da Armatura Lenta [Rif.]		45	r 1
Coefficiente di omogeneizzazione	n _φ	15	[-]
2.2. Acciaio da Precompressione [Rif.]		45	
Coefficiente di omogeneizzazione	n _P	15	[-]
2 CARATTERISTICUE OF CAASTRICUE TRAVE			
3. CARATTERISTICHE GEOMETRICHE TRAVE		600	f1
Altezza trave CLS	H _{CLS}		[mm]
Larghezza trave CLS (o larghezza trave equvalente)	B _{CLS}		[mm]
Baricentro trave da lembo inferiore	Y G,CLS		[mm]
Copriferro	С		[mm]
Area trave	A _{CLS}	600000	
Momento di inerzia trave	J _{CLS}	18000000000	[mm ⁺]
Altezza utile	d _{UTILE}	560	[mm]
3.1. Armatura Lenta trave in CAP			
3.1.a Armatura superiore			
Diametro	φs		[mm]
Numero	$n_{\phi s}$		[-]
Diametro ferri infittimento	φ's		[mm]
Numero ferri infittimento	n' _{φs}		[-]
Passo armatura superiore	p _i		[mm]
Distanza da lembo superiore a baricentro ferri superiori	d'		[mm]
Area totale armatura superiore	$A_{s,sup}$	3142	[mm ²]
3.1.b Armatura inferiore			
Diametro	ф	20	[mm]
Numero	n _{φi}	10	[-]
Diametro ferri infittimento	φ',	0	[mm]
Numero ferri infittimento	n' _{фi}	0	[-]
Passo armatura inferiore	p _i	100	[mm]
Distanza da lembo superiore a baricentro ferri inferiori	d	550	[mm]
			[mm ²]

	NTERAMEN	NTE REAGE	NTE						
Baricentro							Уg	300	[mm]
Area							A	694248	[mm ²]
Momento	d'inerzia						J	23890486225	
Modulo di	i resistenza	superiore C	LS				W _{c,SUP}	79634954	
	resistenza	•					W _{s,SUP}	95561945	
	resistenza						W _{s,INF}	95561945	
	resistenza						W _{c.INF}	79634954	
vioudio di	1 (3)3(C)12a	Initeriore CL	.5				V C,INF	75054554	[]
SEZIONE I	_ PARZIALIZZ	ATA							
ormula p	er ricerca o	biettivo							
Asse neuti	ro da lembo	superiore (con N e M				Yn (RICERCA)	139	[mm]
Asse neuti	ro da lembo	superiore					y _n	139	[mm]
Momento	statico sez	ione parzial	izzata rispet	to all'asse	e neutro		S'n	-5442826	[mm ³]
			alizzata risp				J'	9225376719	
	i resistenza						W _{c,SUP}	66225568	
	resistenza	•					W _{s,SUP}	103304980	
	resistenza						W _{s,INF}	22462696	
	i resistenza						W _{c,INF}	20024796	
TIO GGIO GI	T COISTETILE						C,INF	2002 1730	
5. SOLLE	CITAZIONI	E STATO	ΓENSIONA	LE					
			ompressione		roprio segn	o)	N	0.1	[kN]
			pressione (c			_	M _P	0	[kNm]
Momento	sollecitant	e (con il pro	prio segno)			М	66.1	[kNm]
							е	661000	[mm]
							u	660700	[mm]
			ITE						
SEZIONE I	NTERAME	NTE REAGE	VIE						
	NTERAMEN lembo supe		NIE				$\sigma_{c,sup}$	-0.83	[N/mm²
Tensione I		riore CLS					$\sigma_{c,sup}$ $\sigma_{s,sup}$		
Tensione l Tensione a	lembo supe	riore CLS nta superio	re					-10.37	[N/mm ² [N/mm ²
Tensione l Tensione a Tensione a	lembo supe armatura le	riore CLS nta superio nta inferior	re				$\sigma_{s,sup}$ $\sigma_{s,inf}$	-10.37 10.38	[N/mm ²
Tensione l Tensione a Tensione a	lembo supe armatura le armatura le	riore CLS nta superio nta inferior	re				$\sigma_{s,sup}$	-10.37 10.38	[N/mm ²
Tensione I Tensione a Tensione a	lembo supe armatura le armatura le	riore CLS nta superio nta inferior iore CLS	re e		$\sigma_{c,inf}$	<	$\sigma_{s,sup}$ $\sigma_{s,inf}$ $\sigma_{c,inf}$	-10.37 10.38	[N/mm ²
Tensione I Tensione a Tensione a	lembo supe armatura le armatura le lembo infer	riore CLS nta superio nta inferior iore CLS	re e		$\sigma_{c,inf}$	<	$\sigma_{s,sup}$ $\sigma_{s,inf}$	-10.37 10.38 0.83	[N/mm ²
Tensione I Tensione a Tensione a Tensione I	lembo supe armatura le armatura le lembo infer	riore CLS nta superio nta inferior iore CLS zione delle	re e		$\sigma_{c,inf}$	<	$\sigma_{s,sup}$ $\sigma_{s,inf}$ $\sigma_{c,inf}$	-10.37 10.38 0.83	[N/mm ²
Tensione I Tensione a Tensione a Tensione I Stato limit	lembo supe armatura le armatura le lembo infer te di forma	riore CLS nta superio nta inferior iore CLS zione delle	re e		σ _{c,inf}	<	$\sigma_{s,sup}$ $\sigma_{s,inf}$ $\sigma_{c,inf}$	-10.37 10.38 0.83	[N/mm ²
Tensione I Tensione a Tensione a Tensione I Stato limit SEZIONE I Tensione I	lembo supe armatura le armatura le lembo infer te di forma: PARZIALIZZ	riore CLS nta superio nta inferior iore CLS zione delle ATA riore CLS	re e fessure		$\sigma_{c,inf}$	<	$\sigma_{s,sup}$ $\sigma_{s,inf}$ $\sigma_{c,inf}$ $f_{ctm}/1.2$	-10.37 10.38 0.83 <i>OK</i>	[N/mm]
Tensione I Tensione a Tensione a Tensione I Stato limit SEZIONE I Tensione I	lembo supe armatura le armatura le lembo infer te di forma: PARZIALIZZ lembo supe	nta superio nta inferior iore CLS zione delle ATA riore CLS	fessure		σ _{c,inf}	<	$\sigma_{s,sup}$ $\sigma_{s,inf}$ $\sigma_{c,inf}$ $f_{ctm}/1.2$ $\sigma_{c,sup}$	-10.37 10.38 0.83 ΟΚ -1.00 -9.60	[N/mm]
Tensione I Tensione a Tensione a Tensione I Stato limit SEZIONE I Tensione I Tensione a Tensione a	lembo supe armatura le armatura le lembo infer te di forma: PARZIALIZZ lembo supe armatura le	nta superio nta inferior iore CLS zione delle ATA riore CLS nta superio nta inferior	fessure		$\sigma_{c,inf}$	<	$\begin{split} &\sigma_{s,sup} \\ &\sigma_{s,inf} \\ &\sigma_{c,inf} \\ &f_{ctm}/1.2 \\ &\sigma_{c,sup} \\ &\sigma_{s,sup} \end{split}$	-10.37 10.38 0.83 <i>OK</i> -1.00 -9.60 44.14	[N/mm ²
Tensione I Tensione a Tensione a Tensione I Stato limit SEZIONE I Tensione I Tensione a Tensione a	lembo supe armatura le armatura le lembo infer te di forma: PARZIALIZZ lembo supe armatura le	nta superio nta inferior iore CLS zione delle ATA riore CLS nta superio nta inferior	fessure		σ _{c,inf}	<	$\begin{split} &\sigma_{s,sup} \\ &\sigma_{s,inf} \\ &\sigma_{c,inf} \\ &f_{ctm}/1.2 \\ &\sigma_{c,sup} \\ &\sigma_{s,sup} \\ &\sigma_{s,inf} \end{split}$	-10.37 10.38 0.83 <i>OK</i> -1.00 -9.60 44.14	[N/mm ² [N/mm ² [N/mm ²
Tensione I Tensione a Tensione I Tensione I Tensione I Tensione I Tensione I Tensione I Tensione a Tensione I	lembo supe armatura le armatura le lembo infer te di forma: PARZIALIZZ lembo supe armatura le	nta superio nta inferior iore CLS zione delle ATA riore CLS nta superio nta inferior iore CLS	fessure		O _{c,inf}	<	$\begin{split} &\sigma_{s,sup} \\ &\sigma_{s,inf} \\ &\sigma_{c,inf} \\ &f_{ctm}/1.2 \\ &\sigma_{c,sup} \\ &\sigma_{s,sup} \\ &\sigma_{s,inf} \end{split}$	-10.37 10.38 0.83 <i>OK</i> -1.00 -9.60 44.14	[N/mm] [N/mm]
Tensione I Tensione a Tensione a Tensione I Stato limit SEZIONE I Tensione a Tensione a Tensione a	lembo supe armatura le lembo infer te di forma: PARZIALIZZ lembo supe armatura le lembo infer CA DI FESS	nta superio nta inferior iore CLS zione delle ATA riore CLS nta superio nta inferior iore CLS	fessure	one fessu		<	$\begin{split} &\sigma_{s,sup} \\ &\sigma_{s,inf} \\ &\sigma_{c,inf} \\ &f_{ctm}/1.2 \\ &\sigma_{c,sup} \\ &\sigma_{s,sup} \\ &\sigma_{s,inf} \end{split}$	-10.37 10.38 0.83 <i>OK</i> -1.00 -9.60 44.14 3.30	[N/mm] [N/mm]
Tensione I Tensione a Tensione a Tensione I Stato limit SEZIONE I Tensione a Tensione a Tensione a Tensione I	lembo supe armatura le armatura le lembo infer te di forma: PARZIALIZZ lembo supe armatura le armatura le lembo infer CA DI FESS armatura te	nta superio nta inferior iore CLS zione delle ATA riore CLS nta superio nta inferior iore CLS	re e e e E		rata	<	$\begin{split} &\sigma_{s,sup} \\ &\sigma_{s,inf} \\ &\sigma_{c,inf} \\ &f_{ctm}/1.2 \\ &\sigma_{c,sup} \\ &\sigma_{s,sup} \\ &\sigma_{s,inf} \\ &\sigma_{c,inf} \end{split}$	-10.37 10.38 0.83 <i>OK</i> -1.00 -9.60 44.14 3.30	[N/mm] [N/mm] [N/mm] [N/mm] [N/mm]
Tensione I Tensione a Tensione a Tensione I Tensione I Tensione I Tensione a Tensione a Tensione a Tensione a Tensione a Tensione a	lembo supe armatura le armatura le lembo infer te di forma: PARZIALIZZ lembo supe armatura le armatura le lembo infer CA DI FESS armatura te	nta superio nta inferior iore CLS zione delle ATA riore CLS nta superio nta inferior iore CLS	re e fessure re e E ando la sezi		rata	<	$\begin{split} &\sigma_{s,sup} \\ &\sigma_{s,inf} \\ &\sigma_{c,inf} \\ &f_{ctm}/1.2 \\ &\sigma_{c,sup} \\ &\sigma_{s,sup} \\ &\sigma_{s,inf} \\ &\sigma_{c,inf} \\ \end{split}$	-10.37 10.38 0.83 <i>OK</i> -1.00 -9.60 44.14 3.30 44.14 0.00013	[N/mm] [N/mm] [N/mm] [N/mm] [N/mm]
Tensione I Tensione a Tensione I Stato limit SEZIONE I Tensione a	lembo supe armatura le lembo infer le di forma: le lembo supe armatura le lembo infer le lembo i	nta superio nta inferior iore CLS zione delle ATA riore CLS nta superio nta inferior iore CLS SURAZION asa consider armatura - le fessure	re e fessure re e E ando la sezi	ne media	rata	<	$\begin{split} &\sigma_{s,sup} \\ &\sigma_{s,inf} \\ &\sigma_{c,inf} \\ &f_{ctm}/1.2 \\ &\sigma_{c,sup} \\ &\sigma_{s,sup} \\ &\sigma_{s,inf} \\ &\sigma_{c,inf} \\ &\sigma_{s} \\ &\epsilon_{sm} - \epsilon_{cm} \end{split}$	-10.37 10.38 0.83 OK -1.00 -9.60 44.14 3.30 44.14 0.00013 271	[N/mm] [N/mm] [N/mm] [N/mm] [N/mm] [N/mm]
Tensione I Tensione a Tensione a Tensione I Stato limit SEZIONE I Tensione a	lembo supe armatura le lembo infer le di forma: le lembo supe armatura le lembo infer le lembo i	nta superio nta inferior iore CLS zione delle ATA riore CLS nta superio nta inferior iore CLS SURAZION sa consider armatura - le fessure nisibile di an	re e fessure re e lando la sezi	ne media	rata	<	$\begin{split} &\sigma_{s,sup} \\ &\sigma_{s,inf} \\ &\sigma_{c,inf} \\ &f_{ctm}/1.2 \\ &\sigma_{c,sup} \\ &\sigma_{s,sup} \\ &\sigma_{s,inf} \\ &\sigma_{c,inf} \\ &\sigma_{c,inf} \\ \end{split}$	-10.37 10.38 0.83 OK -1.00 -9.60 44.14 3.30 44.14 0.00013 271	[N/mm] [N/mm] [N/mm] [N/mm] [N/mm] [N/mm] [Mpa] [-] [mm] [mm]

PERIZIA DI VARIANTE TECNICA

<u>Verifica fessurazione – combo. Quasi permanente</u>

	F1 [KN]	F2 [KN]	F3 [KN]	M1 [KNm]	M2 [KNm]	M3 [KNm]	SectionCut	OutputCase
max F1	310.1	230.0	117.7	-26.8	-66.0	83.5	Paraghiaia A _ 1	SLE_qp_19
min F1	-148.0	-0.8	49.6	-0.1	-58.7	-0.2	Paraghiaia A _ 3	SLE_qp_02
max F2	310.1	230.0	117.7	-26.8	-66.0	83.5	Paraghiaia A _ 1	SLE_qp_19
min F2	265.5	-198.1	-83.4	-20.5	48.8	-71.9	Paraghiaia B _ 2	SLE_qp_01
max F3	310.1	230.0	117.7	-26.8	-66.0	83.5	Paraghiaia A _ 1	SLE_qp_19
min F3	226.9	-183.9	-96.2	-21.4	53.0	-66.0	Paraghiaia B _ 2	SLE_qp_17
max M1	287.5	-195.6	105.6	26.7	-60.5	-72.2	Paraghiaia A _ 2	SLE_qp_02
min M1	310.1	230.0	117.7	-26.8	-66.0	83.5	Paraghiaia A _ 1	SLE_qp_19
max M2	-103.5	-13.5	-53.4	1.1	61.2	-3.5	Paraghiaia B _ 3	SLE_qp_36
min M2	310.1	230.0	117.7	-26.8	-66.0	83.5	Paraghiaia A _ 1	SLE_qp_19
max M3	310.1	230.0	117.7	-26.8	-66.0	83.5	Paraghiaia A _ 1	SLE_qp_19
min M3	287.5	-195.6	105.6	26.7	-60.5	-72.2	Paraghiaia A _ 2	SLE_qp_02

1. MATERIALI							
1.1. Calcestruzzo [R	if. 1						
Resistenza caratteri		ls CAP			R _{ck}	40	[MPa]
Coefficiente di sicur			struzzo		Ϋ́c	1.5	-
Coefficiente che tie	·	•			α _{CC}	0.85	
Rapporto tra modul					ξ _i		[mm]
Resistenza caratteri			Ompresso		f _{ck}		[MPa]
		-	o cilindrica				
Valore medio della i					f _{cm}		[MPa]
Valore medio della i					f _{ctm}		[MPa]
Valore caratteristico			•	•	f _{ctk;0.05}		[MPa]
Valore caratteristico			one assiale (fr	attile 95%)	f _{ctk;0.95}		[MPa]
Modulo di elasticità					E _{cm}	33643	
Resistenza a trazion	e dl CLS per f	lessione			f _{ctd}		[MPa]
					f _{ct,eff}	3.10	[MPa]
1.2. Acciaio da Arma							
Modulo di elasticità					Es	206000	[MPa]
1.3. Acciaio da Prec	<u>ompressione</u>	[Rif.]					
Modulo di elasticità	secante dell'	acciaio			E _P	206000	[MPa]
2. COEFFICIENTI D	O OMOGEN	EIZZAZIOI	NE				
2.1. Acciaio da Arma	atura Lenta [F	Rif.]					
Coefficiente di omo	geneizzazione	е			n_{ϕ}	15	[-]
2.2. Acciaio da Prec	<u>ompressione</u>	[Rif.]					
Coefficiente di omo	geneizzazione	е			n _P	15	[-]
3. CARATTERISTIC	HE GEOME	TRICHE TE	RAVE				
Altezza trave CLS					H _{CLS}	600	[mm]
Larghezza trave CLS	(o larghezza	trave equva	alente)		B _{CLS}	1000	[mm]
Baricentro trave da	lembo inferio	re			Y G,CLS		[mm]
Copriferro					С	40	[mm]
Area trave					A _{CLS}	600000	$[mm^2]$
Momento di inerzia	trave				J _{CLS}	18000000000	[mm ⁴]
Altezza utile					d _{UTILE}	560	[mm]
3.1. Armatura Lenta	trave in CAP				OHEE		
3.1.a Armatura sup							
Diametro					фѕ	20	[mm]
Numero					$n_{\phi s}$	10	
Diametro ferri infitt	imento				φ's		[mm]
Numero ferri infittin	nento				n' _{фs}		[-]
Passo armatura sup	eriore				p _l		[mm]
Distanza da lembo s		ricentro fe	rri superiori		d'		[mm]
Area totale armatur	-				A _{s,sup}		[mm ²]
3.1.b Armatura infe	•				, 's,sup	3172	
Diametro					ф	20	[mm]
Numero						10	
Diametro ferri infitti	imento				n _{φi} φ'ι		[mm]
Numero ferri infittir							[-]
Numero ferri infittir Passo armatura infe					n' _{фi}		[mm]
		ricontra fa	rri inforic =		p _i		
Distanza da lembo s	•	iricentro re	menori		d		[mm]
Area totale armatur	a interiore				A _{s,inf}	3142	[mm ²]

	NTFRAME	NTE REAGEN	ITF					
Baricentro						Уg	300	[mm]
Area						A	694248	
Momento	d'inerzia					J	23890486225	
		superiore CL	c			W _{c,SUP}	79634954	
		•					95561945	-
		superiore ST				W _{s,SUP}	95561945	
		inferiore STE				W _{s,INF}		
Modulo di	resistenza	inferiore CLS	5			W _{c,INF}	79634954	[mm [*]]
SEZIONE F	 PARZIALIZZ	ATA						
Formula p	er ricerca o	biettivo						
Asse neutr	ro da lembo	superiore c	on N e M			Yn (RICERCA)	139	[mm]
Asse neutr	ro da lembo	superiore				Уn	139	[mm]
Momento	statico sez	ione parziali	zzata rispetto	o all'asse neutro		S'n	-5442826	
				to all'asse neutro		J'	9225376719	[mm ⁴]
		superiore CL				W _{c,SUP}	66225568	• •
		superiore ST				W _{s,SUP}	103304980	_
		inferiore STE				W _{s,INF}	22462696	
							20024796	
iviouulo di	resistenza	inferiore CLS)			W _{c,INF}	20024796	fuun]
5 SOLLEG	L CITAZIONI	Ε STΔΤΟ Τ	ENSIONALE	-				
				- (con il proprio segi	no)	N	0.1	[kN]
				on il proprio segno		M _P		[kNm]
		e (con il pro			-	M		[kNm]
		1001111				е	661000	
						u	660700	
SEZIONE I	NTERAME	NTE REAGEN	ITE			-		į
Tensione I	lembo supe	riore CLS				$\sigma_{c,sup}$	-0.83	[N/mm ²
	•	nta superior	e			σ _{s,sup}	-10.37	[N/mm ²
		nta inferiore				$\sigma_{s,inf}$		[N/mm ²]
	lembo infer					-,		[N/mm ²
Tensione i	embo imei	IOTE CL3				$\sigma_{c,inf}$	0.83	[14/11111]
Stato limit	te di forma	zione delle f	essure	$\sigma_{c,inf}$	<	f _{ctm} /1.2	ОК	
	PARZIALIZZ	ATA						
SEZIONE F	PARZIALIZZ lembo supe					$\sigma_{c,sup}$	-1.00	[N/mm ²]
SEZIONE F Tensione l	lembo supe		e			$\sigma_{c,sup}$ $\sigma_{s,sup}$		
SEZIONE F Tensione I Tensione a	lembo supe armatura le	riore CLS					-9.60	[N/mm ²
SEZIONE F Tensione I Tensione a Tensione a	lembo supe armatura le	riore CLS enta superior enta inferiore				$\sigma_{s,sup}$ $\sigma_{s,inf}$	-9.60 44.14	[N/mm ²]
SEZIONE F Tensione I Tensione a Tensione a	lembo supe armatura le armatura le	riore CLS enta superior enta inferiore				$\sigma_{s,sup}$	-9.60 44.14	[N/mm ²]
SEZIONE F Tensione I Tensione a Tensione I	lembo supe armatura le armatura le lembo infer	riore CLS enta superior enta inferiore	2			$\sigma_{s,sup}$ $\sigma_{s,inf}$	-9.60 44.14	[N/mm ²]
SEZIONE F Tensione a Tensione a Tensione a Tensione I	lembo supe armatura le armatura le lembo infer CA DI FES	riore CLS enta superior enta inferiore riore CLS SURAZIONE	2	ne fessurata		$\sigma_{s,sup}$ $\sigma_{s,inf}$	-9.60 44.14 3.30	[N/mm ²]
SEZIONE F Tensione a Tensione a Tensione I	lembo supe armatura le armatura le lembo infer CA DI FES armatura te	riore CLS enta superior enta inferiore riore CLS SURAZIONE	=			$\sigma_{s,sup}$ $\sigma_{s,inf}$ $\sigma_{c,inf}$	-9.60 44.14 3.30	[N/mm ²] [N/mm ²]
SEZIONE F Tensione a Tensione a Tensione l Tensione a Deformazione a	lembo supe armatura le armatura le lembo infer CA DI FES armatura te	riore CLS enta superior enta inferiore riore CLS SURAZIONE esa considera armatura - I	E ando la sezio			$\sigma_{s,sup}$ $\sigma_{s,inf}$ $\sigma_{c,inf}$	-9.60 44.14 3.30 44.14 0.00013	[N/mm ²] [N/mm ²]
SEZIONE F Tensione a Tensione a Tensione l G. VERIFIC Tensione a Deformazi	lembo supe armatura le armatura le lembo infer CA DI FES: armatura te ione media nassima tra	riore CLS enta superior enta inferiore riore CLS SURAZIONE esa considera armatura - I I le fessure	E ando la sezio	e media cls		$\sigma_{s,sup}$ $\sigma_{s,inf}$ $\sigma_{c,inf}$ σ_{s} $\varepsilon_{sm} - \varepsilon_{cm}$	-9.60 44.14 3.30 44.14 0.00013 271	[-]
SEZIONE F Tensione a Tensione a Tensione l G. VERIFI Tensione a Deformazi Distanza n Valore ma	lembo supe armatura le armatura le lembo infer CA DI FES: armatura te ione media nassima tra	riore CLS enta superiore enta inferiore riore CLS SURAZIONE esa considera armatura - I I le fessure nisibile di am	E ando la sezio Deformazion	e media cls		$\sigma_{s,sup}$ $\sigma_{s,inf}$ $\sigma_{c,inf}$ σ_{s} $\varepsilon_{sm} - \varepsilon_{cm}$ $s_{r,max}$	-9.60 44.14 3.30 44.14 0.00013 271	[N/mm²] [N/mm²] [N/mm²] [Mpa] [-] [mm] [mm]

PERIZIA DI VARIANTE TECNICA

10.2.3 Verifica Locale

Come prescritto dalle NTC2018, per i muri paraghiaia è stata condotta un'ulteriore verifica locale dovuta ai carichi da traffico.

Verifica Carico da traffico su muri paraghiaia - NTC2018 §C5.1.3.3.5.2

altezza muro paraghiaia	h	3.33	[m]
spessore muro paraghiaia	t	0.6	[m]
impronta ruota		0.4	[m]
larghezza trasv. Tandem	b	2.4	[m]
larghezza collaborante	B_{eff}	9.06	[m]
carico verticale	Q_{1k}	300	[KN]
carico orizzontale	0.6^*Q_{1k}	180	[KN]

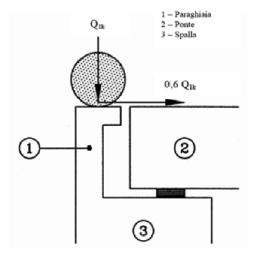


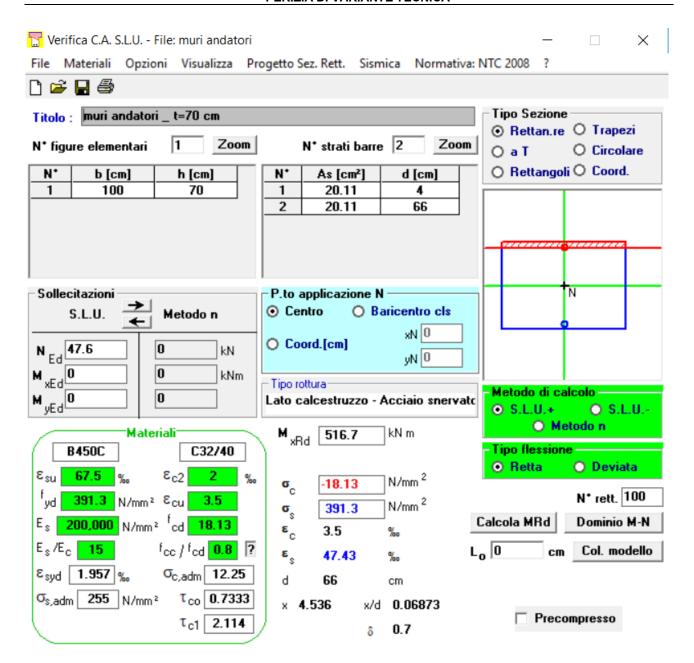
Figura C5.1.1 - Carichi da traffico su muri paraghiaia

Sollecitazioni a metro alla base del muro paraghiaia

carico verticale	$N_{\sf Ed}$	44.7	[KN]
momento flettente	M_{Ed}	89.3	[KNm]
taglio	T_{Ed}	26.8	[KN]

PERIZIA DI VARIANTE TECNICA

10.3 VERIFICHE MURI ANDATORI


In seguito, vengono riportate le verifiche SLU e le verifiche SLE dei muri andatori.

Per le armature considerate si rimanda agli elaborati grafici corrispondenti a ciascun elemento.

10.3.1 Verifiche SLU

Verifica a Flessione

	F1 [KN]	F2 [KN]	F3 [KN]	M1 [KNm]	M2 [KNm]	M3 [KNm]	SectionCut	OutputCase
max F1	477,9	244,5	-12,3	58,4	-61,7	124,1	Muri andatori _ A _3	SLU_21
min F1	30,9	-23,2	-76,1	3,0	5,1	-32,3	Muri Andatori _ A _2	SLV_X_01
max F2	477,9	244,5	-12,3	58,4	-61,7	124,1	Muri andatori _ A _3	SLU_21
min F2	433,7	-251,2	30,3	39,7	42,0	-122,7	Muri Andatori _ B _1	SLU_01
max F3	206,1	-54,7	52,1	-16,8	-13,7	-25,1	Muri andatori _ A _ 1	SLV_X_01
min F3	58,0	130,1	-164,3	-13,7	45,1	162,2	Muri andatori _ A _4	SLU_21
max M1	477,9	244,5	-12,3	58,4	-61,7	124,1	Muri andatori _ A _3	SLU_21
min M1	429,3	-208,8	-1,1	-46,8	-54,9	-106,7	Muri andatori _ A _ 1	SLU_02
max M2	60,4	121,4	-161,8	-11,8	45,1	149,8	Muri andatori _ A _4	SLU_25
min M2	477,9	244,5	-12,3	58,4	-61,7	124,1	Muri andatori _ A _3	SLU_21
max M3	58,0	130,1	-164,3	-13,7	45,1	162,2	Muri andatori _ A _4	SLU_21
min M3	47,6	-127,8	-148,0	15,8	41,5	-155,5	Muri Andatori _ A _2	SLU_02

PERIZIA DI VARIANTE TECNICA

Verifica a Taglio

1. MATERIALI			
1. WATERIALI 1.1. Calcestruzzo [Rif.]			
Resistenza caratteristica cubica cls	R _{ck}	40 [MPa]	
Coefficiente di sicurezza parziale per il calcestruzzo		1.5 [-]	
	Ϋ́c		
Coefficiente che tiene conto degli effetti di lungo termine	α _{CC}	1 [-]	
Resistenza caratteristica cilindrica	f _{ck}	33.2 [MPa]	
Resistenza a compressione di progetto del CLS	f _{cd}	22.1 [MPa]	
1.3. Acciaio da Armatura Ordinaria [Rif.]	£	450 [N4De]	
Tensione di snervamento caratteristica	f _{yk}	450 [MPa]	
Coefficiente di sicurezza parziale per l'acciaio	Ϋ́s	1.15 [-]	
Modulo di elasticità secante dell'acciaio	Es	206000 [MPa]	
Tensione di snervamento di progetto armatura a taglio	f _{ywk}	391 [MPa]	
2. CARATTERISTICHE GEOMETRICHE			
Altezza trave CLS	ш	700 [mm]	
Larghezza trave CLS Larghezza minima trave CLS (o larghezza trave equvalente)	H _{CLS}	1000 [mm]	
Altezza utile	b _w	660 [mm]	
Braccio della coppia interna (0,9 d _{UTILE})	z	594 [mm]	
Area sezione di CLS		700000 [mm ²]	
	A _c		
Diametro armatura longitudinale tesa	φs	16 [mm]	
Numero ferri armatura longitudinale tesa	n _{φs}	10 [-]	
Area armatura tesa	A _{s1}	2011 [mm ²]	
V _{Ed} V _{Ed} A _{sl}	75° A		
AS XXS		σ	
A _{sl} A _{sl}	V _{Ed}		
	k	1.55 [-]	
Percentuale di armatura longitudinale tesa	ρι	0.003 [-]	
	C _{Rd,c}	0.12 [-]	
	V _{min}	0.39 [-]	
	k ₁	0.15 [-]	
Tensione di precompressione	$\sigma_{\rm cp}$	0.00 [MPa]	
	Ср	[
3. SOLLECITAZIONI			
Sforzo di Taglio di progetto	V_{Ed}	251 [kN]	
Coefficiente aggiuntivo contro il collasso duttile	Y _{Bd1}	1 [-]	
	, 501	1 [kNm]	
Sforzo di Torsione di progetto	T _{Ed}		
Sforzo di Torsione di progetto	T _{Ed}		
	T _{Ed}		
4. ELEMENTI CHE NON RICHIEDONO ARMATURA A TAGLIO		266 [kN]	
4. ELEMENTI CHE NON RICHIEDONO ARMATURA A TAGLIO Valore di progetto della Resistenza a Taglio	V _{Rd,c}		
A. ELEMENTI CHE NON RICHIEDONO ARMATURA A TAGLIO Valore di progetto della Resistenza a Taglio Valore minimo di progetto della Resistenza a Taglio Valore di progetto della Resistenza a Taglio		266 [kN]	

PERIZIA DI VARIANTE TECNICA

10.3.2 Verifiche SLE

<u>Verifica fessurazione – combo. Frequente</u>

	F1 [KN]	F2 [KN]	F3 [KN]	M1 [KNm]	M2 [KNm]	M3 [KNm]	SectionCut	OutputCase
max F1	348.9	176.4	-7.7	42.0	-44.8	89.8	Muri andatori _ A _3	SLE_f_21
min F1	18.0	90.3	44.2	10.4	-1.7	113.3	Muri andatori _ B _4	SLE_f_02
max F2	348.9	176.4	-7.7	42.0	-44.8	89.8	Muri andatori _ A _3	SLE_f_21
min F2	309.8	-182.9	24.6	29.1	29.9	-89.5	Muri Andatori _ B _1	SLE_f_05
max F3	46.9	-92.8	61.8	-7.4	-7.0	-116.7	Muri andatori _ B _2	SLE_f_17
min F3	42.4	96.3	-120.0	-10.3	33.0	119.7	Muri andatori _ A _4	SLE_f_21
max M1	348.9	176.4	-7.7	42.0	-44.8	89.8	Muri andatori _ A _3	SLE_f_21
min M1	324.7	168.4	24.4	-39.0	37.2	88.3	Muri andatori _ B _3	SLE_f_20
max M2	324.7	168.4	24.4	-39.0	37.2	88.3	Muri andatori _ B _3	SLE_f_20
min M2	348.9	176.4	-7.7	42.0	-44.8	89.8	Muri andatori _ A _3	SLE_f_21
max M3	42.4	96.3	-120.0	-10.3	33.0	119.7	Muri andatori _ A _4	SLE_f_21
min M3	44.4	-98.8	52.3	-9.1	-3.4	-125.0	Muri andatori _ B _2	SLE_f_01

1. MATERIALI			
1.1. Calcestruzzo [Rif.]			
Resistenza caratteristica cubica cls CAP	R _{ck}	40	[MPa]
Coefficiente di sicurezza parziale per il calcestruzzo	Ϋ́c	1.5	[-]
Coefficiente che tiene conto degli effetti di lungo termine	α_{CC}	0.85	
Rapporto tra modulo elastico cls teso e cls compresso	ξ _i		[mm]
Resistenza caratteristica cilindrica	f _{ck}		[MPa]
Valore medio della resistenza a compressione cilindrica	f _{cm}		[MPa]
Valore medio della resistenza a trazione assiale del calcestruzzo	f _{ctm}		[MPa]
Valore caratteristico della resistenza a trazione assiale (frattile 5%)	f _{ctk;0.05}		[MPa]
Valore caratteristico della resistenza a trazione assiale (frattile 5%)			[MPa]
Modulo di elasticità secante del cls CAP	f _{ctk;0.95}		-
	E _{cm}	33643	
Resistenza a trazione dl CLS per flessione	f _{ctd}		[MPa]
	f _{ct,eff}	3.10	[MPa]
1.2. Applied de Augustine Configuration (D.C.)			
1.2. Acciaio da Armatura Ordinaria [Rif.]	-	22225	[0.45]
Modulo di elasticità secante dell'acciaio	E _S	206000	[MPa]
1.3. Acciaio da Precompressione [Rif.]		0	rs
Modulo di elasticità secante dell'acciaio	E _P	206000	[MPa]
2 00 FFF 10 FAIT D. 0.4.2.2			
2. COEFFICIENTI DI OMOGENEIZZAZIONE			
2.1. Acciaio da Armatura Lenta [Rif.]			
Coefficiente di omogeneizzazione	nφ	15	[-]
2.2. Acciaio da Precompressione [Rif.]			
Coefficiente di omogeneizzazione	n _P	15	[-]
3. CARATTERISTICHE GEOMETRICHE TRAVE			
Altezza trave CLS	H _{CLS}		[mm]
Larghezza trave CLS (o larghezza trave equvalente)	B _{CLS}		[mm]
Baricentro trave da lembo inferiore	Y G,CLS		[mm]
Copriferro	С		[mm]
Area trave	A _{CLS}	700000	[mm²]
Momento di inerzia trave	J _{CLS}	28583333333	[mm ⁴]
Altezza utile	d _{UTILE}	660	[mm]
3.1. Armatura Lenta trave in CAP			
3.1.a Armatura superiore			
Diametro	фѕ	16	[mm]
Numero	n _{φs}	10	[-]
Diametro ferri infittimento	φ' _s	0	[mm]
Numero ferri infittimento	n' _{фs}	0	[-]
Passo armatura superiore	p _i	100	[mm]
Distanza da lembo superiore a baricentro ferri superiori	d'	48	[mm]
Area totale armatura superiore	A _{s,sup}	2011	[mm ²]
3.1.b Armatura inferiore			
Diametro	фі	16	[mm]
Numero	$n_{\phi i}$	10	[-]
Diametro ferri infittimento	φ',		[mm]
Numero ferri infittimento	n' _{фi}		[-]
Passo armatura inferiore	p _l		[mm]
Distanza da lembo superiore a baricentro ferri inferiori	d		[mm]
	1.5		

ントモ・ロー・リー・		HE STATICH NTE REAGEN							
Baricentro		VIE KLAGEI	VIL				Уg	350	[mm]
Area							A	760319	
Momento	d'inerzia						J	34084629008	
		superiore C	C				-	97384654	
							W _{c,SUP}	112863010	
		superiore S					W _{s,SUP}		
		inferiore ST					W _{s,INF}	112863010	
Modulo di	resistenza	inferiore CL	S				W _{c,INF}	97384654	[mm]
SEZIONE I	PARZIALIZZ	'ATA							
Formula p	er ricerca c	biettivo							
Asse neuti	ro da lembo	superiore o	on N e M				y n (RICERCA)	154	[mm]
Asse neuti	ro da lembo	superiore					y n	154	[mm]
Momento	statico sez	ione parziali	zzata rispe	to all'asse n	eutro		S'n	7224	[mm ³]
Momento	d'inerzia se	ezione parzia	alizzata risp	etto all'asse	neutro		J'	9035909879	[mm ⁴]
Modulo di	i resistenza	superiore C	LS				W _{c,SUP}	58725170	[mm ³]
Modulo di	i resistenza	superiore S	ΓEEL				W _{s,SUP}	85350919	[mm ³]
		inferiore ST					W _{s,INF}	18139580	
Modulo di	i resistenza	inferiore CL	ς				W _{c,INF}	16545278	
ivio dalo di	T CSISTETIZA						V C,INF	103 13270	[]
5. SOLLE	CITAZIONI	E STATO 1	ENSIONA	LE					
					orio segn	0)	N	0.1	[kN]
Sforzo normale agente o di precompressione (con il proprio segno) Momento sollecitante di precompressione (con il proprio segno)							M _P		[kNm]
Momento	sollecitant	e (con il pro	prio segno	1			М	125.1	[kNm]
							е	1251000	[mm]
							u	1250650	[mm]
SEZIONE I	NTERAMEI	NTE REAGEN	ITE						
Tensione I	lembo supe	riore CLS					$\sigma_{c,sup}$	-1.28	[N/mm ²]
Tensione a	armatura le	enta superio	·e				$\sigma_{s,sup}$	-16.62	[N/mm ²]
Tensione a	armatura le	enta inferior	9				$\sigma_{s,inf}$	16.63	[N/mm ²]
Tensione !	lembo infer	iore CLS					$\sigma_{c,inf}$	1.28	[N/mm ²]
							Cylini		
Stato limi	te di forma	zione delle j	fessure	C	o _{c,inf}	<	f _{ctm} /1.2	ОК	
SEZIONE I	 PARZIALIZZ	'ATA							
Tensione l	lembo supe	riore CLS					$\sigma_{c,sup}$	-2.13	[N/mm ²]
Tensione armatura lenta superiore							$\sigma_{s,sup}$		[N/mm ²
		enta inferior					$\sigma_{s,inf}$		[N/mm ²]
	lembo infer						$\sigma_{c,inf}$		[N/mm ²
2							- c,mi	7.50	. ,
		SURAZION							
	Tensione armatura tesa considerando la sezione fessurat						$\sigma_{\rm s}$	103.45	
Tensione a		Deformazione media armatura - Deformazione media cls					ϵ_{sm} - ϵ_{cm}	0.00030	[-]
Tensione a Deformaz	ione media		Deformazio	The fine did ci.					_
Tensione a Deformaz Distanza n	ione media nassima tra	le fessure					S _{r,max}		[mm]
Tensione a Deformaz Distanza n Valore ma	ione media massima tra assimo amm	i le fessure nisibile di am					W _{k,max}	0.3	[mm]
Tensione a Deformaz Distanza n Valore ma	ione media nassima tra	i le fessure nisibile di am							[mm]

PERIZIA DI VARIANTE TECNICA

<u>Verifica fessurazione – combo. Quasi permanente</u>

	F1 [KN]	F2 [KN]	F3 [KN]	M1 [KNm]	M2 [KNm]	M3 [KNm]	SectionCut	OutputCase
max F1	347.9	175.1	-7.3	41.7	-44.7	89.2	Muri andatori _ A _3	SLE_qp_19
min F1	18.2	90.4	44.4	10.4	-1.8	113.5	Muri andatori _ B _4	SLE_qp_02
max F2	347.9	175.1	-7.3	41.7	-44.7	89.2	Muri andatori _ A _3	SLE_qp_19
min F2	314.6	-179.6	20.7	27.9	30.3	-88.0	Muri Andatori _ B _1	SLE_qp_01
max F3	55.4	-73.1	73.4	-2.5	-12.6	-89.3	Muri andatori _ B _2	SLE_qp_17
min F3	42.2	96.3	-119.7	-10.4	32.9	119.6	Muri andatori _ A _4	SLE_qp_19
max M1	347.9	175.1	-7.3	41.7	-44.7	89.2	Muri andatori _ A _3	SLE_qp_19
min M1	323.8	167.5	24.0	-38.6	37.0	87.8	Muri andatori _ B _3	SLE_qp_18
max M2	323.8	167.5	24.0	-38.6	37.0	87.8	Muri andatori _ B _3	SLE_qp_18
min M2	347.9	175.1	-7.3	41.7	-44.7	89.2	Muri andatori _ A _3	SLE_qp_19
max M3	42.2	96.3	-119.7	-10.4	32.9	119.6	Muri andatori _ A _4	SLE_qp_19
min M3	44.1	-98.7	52.0	-9.1	-3.4	-124.8	Muri andatori _ B _2	SLE_qp_01

1. MATERIALI			
1.1. Calcestruzzo [Rif.]			
Resistenza caratteristica cubica cls CAP	R _{ck}	40	[MPa]
Coefficiente di sicurezza parziale per il calcestruzzo	Ϋ́c	1.5	
Coefficiente che tiene conto degli effetti di lungo termine	α_{CC}	0.85	
Rapporto tra modulo elastico cls teso e cls compresso	ξ _i		[mm]
Resistenza caratteristica cilindrica	f _{ck}	33.2 41.20	[MPa] [MPa]
Valore medio della resistenza a compressione cilindrica	f _{cm}		
Valore medio della resistenza a trazione assiale del calcestruzzo			
	f _{ctm}		[MPa]
Valore caratteristico della resistenza a trazione assiale (frattile 5%)	f _{ctk;0.05}		[MPa]
Valore caratteristico della resistenza a trazione assiale (frattile 95%)	f _{ctk;0.95}		[MPa]
Modulo di elasticità secante del cls CAP	E _{cm}	33643	
Resistenza a trazione dl CLS per flessione	f _{ctd}	1.45	[MPa]
	f _{ct,eff}	3.10	[MPa]
1.2. Acciaio da Armatura Ordinaria [Rif.]			[] 4F '
Modulo di elasticità secante dell'acciaio	E _S	206000	[MPa]
1.3. Acciaio da Precompressione [Rif.]			
Modulo di elasticità secante dell'acciaio	E _P	206000	[MPa]
2. COEFFICIENTI DI OMOGENEIZZAZIONE			
2.1. Acciaio da Armatura Lenta [Rif.]			
Coefficiente di omogeneizzazione	n _φ	15	[-]
2.2. Acciaio da Precompressione [Rif.]			
Coefficiente di omogeneizzazione	n _P	15	[-]
3. CARATTERISTICHE GEOMETRICHE TRAVE			
Altezza trave CLS	H _{CLS}		[mm]
Larghezza trave CLS (o larghezza trave equvalente)	B _{CLS}		[mm]
Baricentro trave da lembo inferiore	Y G,CLS		[mm]
Copriferro	С		[mm]
Area trave	A _{CLS}	700000	[mm ²]
Momento di inerzia trave	J _{CLS}	28583333333	[mm ⁴]
Momento di inerzia trave Altezza utile	J _{CLS}		[mm ⁴]
Altezza utile			
Altezza utile 3.1. Armatura Lenta trave in CAP			
Altezza utile 3.1. Armatura Lenta trave in CAP 3.1.a Armatura superiore		660	
Altezza utile 3.1. Armatura Lenta trave in CAP 3.1.a Armatura superiore Diametro	d _{UTILE}	660	[mm]
	d _{UTILE} Φ _S	16 10	[mm]
Altezza utile 3.1. Armatura Lenta trave in CAP 3.1.a Armatura superiore Diametro Numero Diametro ferri infittimento	$\begin{array}{c} d_{\text{UTILE}} \\ \\ \phi_{\text{S}} \\ \\ n_{\phi_{\text{S}}} \\ \\ \phi'_{\text{S}} \end{array}$	16 10 0	[mm] [mm] [-]
Altezza utile 3.1. Armatura Lenta trave in CAP 3.1.a Armatura superiore Diametro Numero Diametro ferri infittimento Numero ferri infittimento	d _{UTILE} φ _S n _{φs} φ's n' _{φs}	16 10 0	[mm] [mm] [-] [mm]
Altezza utile 3.1. Armatura Lenta trave in CAP 3.1.a Armatura superiore Diametro Numero Diametro ferri infittimento Numero ferri infittimento Passo armatura superiore	$\begin{array}{c} d_{\text{UTILE}} \\ \\ \phi_{\text{S}} \\ \\ n_{\phi_{\text{S}}} \\ \\ \phi'_{\text{S}} \end{array}$	16 10 0 0	[mm] [-] [mm]
Altezza utile 3.1. Armatura Lenta trave in CAP 3.1.a Armatura superiore Diametro Numero Diametro ferri infittimento Numero ferri infittimento Passo armatura superiore Distanza da lembo superiore a baricentro ferri superiori	$\begin{array}{c} d_{\text{UTILE}} \\ \\ \varphi_{S} \\ \\ n_{\varphi_{S}} \\ \\ \varphi'_{S} \\ \\ n'_{\varphi_{S}} \\ \\ p_{l} \\ \\ d' \end{array}$	16 10 0 0 100 48	[mm] [mm] [-] [mm] [-] [mm]
Altezza utile 3.1. Armatura Lenta trave in CAP 3.1.a Armatura superiore Diametro Numero Diametro ferri infittimento Numero ferri infittimento Passo armatura superiore Distanza da lembo superiore a baricentro ferri superiori Area totale armatura superiore	d _{UTILE} φ _s n _{φs} φ's n' _{φs} p _l	16 10 0 0 100 48	[mm] [-] [mm] [-] [mm]
Altezza utile 3.1. Armatura Lenta trave in CAP 3.1.a Armatura superiore Diametro Numero Diametro ferri infittimento Numero ferri infittimento Passo armatura superiore Distanza da lembo superiore a baricentro ferri superiori Area totale armatura superiore 3.1.b Armatura inferiore	$\begin{array}{c} d_{\text{UTILE}} \\ \\ \varphi_{S} \\ \\ n_{\varphi_{S}} \\ \\ \varphi'_{S} \\ \\ n'_{\varphi_{S}} \\ \\ p_{I} \\ \\ d' \\ \\ A_{s,sup} \end{array}$	16 10 0 0 100 48 2011	[mm] [-] [mm] [-] [mm] [mm] [mm]
Altezza utile 3.1. Armatura Lenta trave in CAP 3.1.a Armatura superiore Diametro Numero Diametro ferri infittimento Numero ferri infittimento Passo armatura superiore Distanza da lembo superiore a baricentro ferri superiori Area totale armatura superiore Diametro Diametro	$\begin{array}{c} d_{\text{UTILE}} \\ \\ \varphi_{S} \\ \\ n_{\varphi_{S}} \\ \\ \varphi'_{S} \\ \\ n'_{\varphi_{S}} \\ \\ p_{I} \\ \\ d' \\ \\ A_{s,sup} \\ \\ \end{array}$	16 10 0 0 100 48 2011	[mm] [-] [mm] [-] [mm] [mm] [mm]
Altezza utile 3.1. Armatura Lenta trave in CAP 3.1.a Armatura superiore Diametro Numero Diametro ferri infittimento Numero ferri infittimento Passo armatura superiore Distanza da lembo superiore a baricentro ferri superiori Area totale armatura superiore 3.1.b Armatura inferiore Diametro Numero	$\begin{array}{c} d_{\text{UTILE}} \\ \\ \varphi_{S} \\ \\ n_{\varphi_{S}} \\ \\ \varphi'_{S} \\ \\ n'_{\varphi_{S}} \\ \\ p_{l} \\ \\ d' \\ \\ A_{s,sup} \\ \\ \\ \varphi_{l} \\ \\ \end{array}$	16 10 0 100 48 2011	[mm] [-] [mm] [-] [mm] [mm] [mm] [mm ²]
Altezza utile 3.1. Armatura Lenta trave in CAP 3.1.a Armatura superiore Diametro Numero Diametro ferri infittimento Numero ferri infittimento Passo armatura superiore Distanza da lembo superiore a baricentro ferri superiori Area totale armatura superiore Diametro Numero Diametro Diametro Diametro Diametro Diametro ferri infittimento	$\begin{array}{c} d_{\text{UTILE}} \\ \\ \varphi_{S} \\ \\ n_{\varphi_{S}} \\ \\ \varphi'_{S} \\ \\ n'_{\varphi_{S}} \\ \\ p_{l} \\ \\ d' \\ \\ A_{s,sup} \\ \\ \\ \varphi_{l} \\ \\ \\ \phi_{l} \\ \\ \\ \phi'_{l} \\ \end{array}$	16 10 0 0 100 48 2011 16 10	[mm] [-] [mm] [-] [mm] [mm] [mm] [mm] [m
Altezza utile 3.1. Armatura Lenta trave in CAP 3.1.a Armatura superiore Diametro Numero Diametro ferri infittimento Numero ferri infittimento Passo armatura superiore Distanza da lembo superiore a baricentro ferri superiori Area totale armatura superiore 3.1.b Armatura inferiore Diametro Numero Diametro Numero Diametro ferri infittimento Numero ferri infittimento	$\begin{array}{c} d_{\text{UTILE}} \\ \\ \varphi_{S} \\ \\ n_{\varphi_{S}} \\ \\ \varphi'_{S} \\ \\ \rho_{I} \\ \\ d' \\ \\ A_{s,sup} \\ \\ \\ \varphi_{I} \\ \\ \\ \phi_{I} \\ \\ \\ \phi'_{I} \\ \\ \\ n'_{\varphi_{I}} \\ \end{array}$	16 10 0 0 100 48 2011 16 10 0	[mm] [-] [mm] [-] [mm] [mm] [mm] [mm] [-] [mm]
Altezza utile 3.1. Armatura Lenta trave in CAP 3.1.a Armatura superiore Diametro Numero Diametro ferri infittimento Numero ferri infittimento Passo armatura superiore Distanza da lembo superiore a baricentro ferri superiori Area totale armatura superiore Diametro Numero Diametro Diametro Diametro Diametro Diametro ferri infittimento	$\begin{array}{c} d_{\text{UTILE}} \\ \\ \varphi_{S} \\ \\ n_{\varphi_{S}} \\ \\ \varphi'_{S} \\ \\ n'_{\varphi_{S}} \\ \\ p_{l} \\ \\ d' \\ \\ A_{s,sup} \\ \\ \\ \varphi_{l} \\ \\ \\ \phi_{l} \\ \\ \\ \phi'_{l} \\ \end{array}$	16 10 0 0 100 48 2011 16 10 0	[mm] [-] [mm] [-] [mm] [mm] [mm] [mm] [m

4. CARATTERISTICHE STATICH	F TRAVE						
SEZIONE INTERAMENTE REAGEN							
Baricentro					Уg	350	[mm]
Area					A	760319	
Momento d'inerzia					J	34084629008	
Modulo di resistenza superiore CL	S				W _{c,SUP}	97384654	
Modulo di resistenza superiore ST					W _{s,SUP}	112863010	
Modulo di resistenza superiore STE						112863010	
					W _{s,INF}	97384654	
Modulo di resistenza inferiore CLS	'				W _{c,INF}	97384654	funu 1
SEZIONE PARZIALIZZATA							
Formula per ricerca obiettivo							
Asse neutro da lembo superiore co	on N e M				Yn (RICERCA)	154	[mm]
Asse neutro da lembo superiore					y _n	154	[mm]
Momento statico sezione parzializ	zata rispet	to all'asse	neutro		S'n	7247	[mm ³]
Momento d'inerzia sezione parzia					J'	9035909881	[mm ⁴]
Modulo di resistenza superiore CL	S				W _{c,SUP}	58725129	[mm ³]
Modulo di resistenza superiore ST	EEL				W _{s,SUP}	85350831	[mm ³]
Modulo di resistenza inferiore STE					W _{s,INF}	18139584	[mm ³]
Modulo di resistenza inferiore CLS					W _{c,INF}	16545281	[mm ³]
					C,TTET		
5. SOLLECITAZIONI E STATO T	ENSIONAL	.E					
Sforzo normale agente o di precoi	mpressione	(con il pro	prio segn	<u>o)</u>	N	0.1	[kN]
Momento sollecitante di precomp		M _P	0	[kNm]			
Momento sollecitante (con il pro	rio segno)	1			М	124.7	[kNm]
					е	1247000	[mm]
					u	1246650	[mm]
SEZIONE INTERAMENTE REAGEN	TE						2
Tensione lembo superiore CLS					$\sigma_{c,sup}$		[N/mm²]
Tensione armatura lenta superiore	9				$\sigma_{s,sup}$	-16.57	[N/mm ²]
Tensione armatura lenta inferiore					$\sigma_{s,inf}$	16.58	[N/mm ²]
Tensione lembo inferiore CLS					$\sigma_{c,inf}$	1.28	[N/mm ²]
Stato limite di formazione delle f	essure		$\sigma_{c,inf}$	<	f _{ctm} /1.2	ОК	
CEZIONE DADZIALIZZATA							
SEZIONE PARZIALIZZATA Tanciana lamba superiora CLS						2.12	[N/mm ²]
Tensione lembo superiore CLS					σ _{c,sup}		[N/mm ²
Tensione armatura lenta superiore					σ _{s,sup}		
Tensione armatura lenta inferiore					$\sigma_{s,inf}$		[N/mm ²]
Tensione lembo inferiore CLS					σ _{c,inf}	7.54	[N/mm ²]
6. VERIFICA DI FESSURAZIONE							
Tensione armatura tesa considera		one fessura	ata		$\sigma_{\rm s}$	103.12	[Mpa]
Deformazione media armatura - D	eformazio	ne media c	ls		ε _{sm} - ε _{cm}	0.00030	
Distanza massima tra le fessure					S _{r.max}		[mm]
Valore massimo ammisibile di amp	oiezza delle	fessure		İ	W _{k,max}		[mm]
Ampiezza delle fessure					w _k	0.090	

PERIZIA DI VARIANTE TECNICA

11 VERIFICA BAGGIOLI

Nel seguente capitolo sono state riportate le verifiche inerenti i baggioli. In particolare, sono state condotte verifiche globali di resistenza e verifiche locali come prescritto dalle NTC2018 e le rispettive circolari esplicative del 2019.

11.1 VERIFICA PRESSIONI LOCALIZZATE

La resistenza a compressione del baggiolo viene verificata sia con la formula dell'EC2-1 al punto 6.63, sia con l'indicazione presente nel Manuale di progettazione ferroviario che prevede un rapporto di confinamento fisso pari a 1.30.

6.7 Pressioni localizzate

- (1)P Nel caso di pressioni localizzate, occorre tener presenti le rotture locali (vedere in seguito) e le forze di trazione trasversali (vedere punto 6.5).
- (2) Nel caso di un carico uniformemente ripartito sull'area A_{c0} (vedere figura 6.29) la forza di compressione ultima può essere determinata come segue:

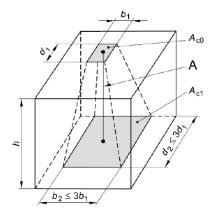
$$F_{\text{Rdu}} = A_{c0} \cdot f_{cd} \cdot \sqrt{A_{c1}/A_{c0}} \le 3.0 \cdot f_{cd} \cdot A_{c0}$$
 (6.63)

dove:

A_{c0} è l'area caricata;

- $A_{\rm c1}$ è la massima area di diffusione del carico utilizzata per il calcolo e che ha una forma omotetica a quella di $A_{\rm c0}$.
- (3) Si raccomanda che l'area di diffusione $A_{\rm c1}$ richiesta dalla forza di compressione ultima $F_{\rm Rdu}$ soddisfi le condizioni seguenti:
 - l'altezza di diffusione del carico nella direzione del carico stesso si raccomanda sia presa come indicato nella figura 6.29;
 - il centro dell'area di diffusione $A_{\rm o1}$ raccomanda sia sulla retta di azione passante per il centro dell'area caricata $A_{\rm o0}$;
 - se sull'area di calcestruzzo agiscono più forze di compressione, si raccomanda che le aree di diffusione non siano sovrapposte.

Si raccomanda che il valore di $F_{\rm Rdu}$ sia ridotto se il carico non è uniformemente distribuito sull'area $A_{\rm c0}$ o se esistono forze di taglio importanti.

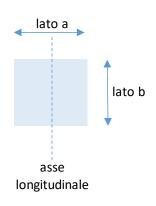

figura 6.29 Distribuzione di progetto nel caso di pressioni localizzate

Legenda

A Linea di azione

 $h \geq (b_2 - b_1) e$

 $\geq (d_2 - d_1)$

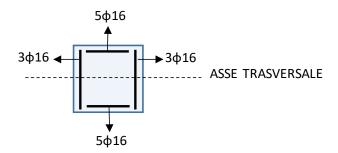


(4) Si raccomanda di disporre idonee armature in grado di equilibrare le forze di trazione trasversali dovute all'effetto del carico.

PERIZIA DI VARIANTE TECNICA

In particolare, nel caso in esame:

classe CLS		C32/40	
resistenza di progetto cls	f_cd	18.13	[Mpa]
lato a _ baggiolo	a	1.00	[m]
lato b _ baggiolo	b	1.10	[m]
altezza _ baggiolo	h	0.17	[m]
piastra isolatore_a1	a_1	0.55	[m]
piastra isolatore_b1	b_1	0.55	[m]
Area caricata	A_{c0}	0.3025	$[m^2]$
Forza di compressione ultima	$F_{Rd,u}$	5485.3	[KN]
Forza di compressione sollecitante	F_{Ed}	4520	[KN]



 $F_{ed} < F_{Rd,u}$

Verifica Soddisfatta

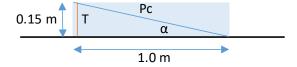
11.1 VERIFICA TRANCIAMENTO ARMATURA BAGGIOLO

sollecitazione di taglio	V_{Ed}	315,4	[KN]
armatura verticale		16ф16	
	Av	3217	$[mm^2]$

tensione caratteristica di snervamento	f_{yk}	450	[Mpa]
coefficiente di sicurezza parziale	Ϋ́s	1,15	[-]
tensione di snervamento di progetto	f_{yd}	391	[Mpa]
tensione di snervamento acciaio	τ	170	[Mpa]

 $\tau < F_{yd}$

Verifica Soddisfatta


PERIZIA DI VARIANTE TECNICA

11.1 VERIFICA ARMATURA A FLESSIONE

sollecitazione di taglio V_{Ed} 315,4 [KN] altezza baggiolo h 0,15 [m] d 1,00 [m]

angolo puntone compresso (α)

Pc Puntone compresso

T Tirante

Pc = 318,7 KN

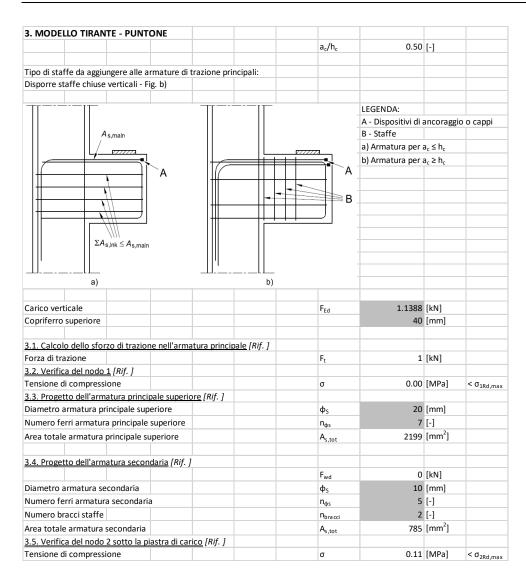
T = 46 KN

fyd = 391 Mpa

Armatura adottata 5 φ 16

tensione acciaio =
$$\frac{T}{A_s}$$
 = $\frac{46000}{1005.3}$ = 45.8 MPa < f_{yd} = 391 MPa

Verifica Soddisfatta


PERIZIA DI VARIANTE TECNICA

12 VERIFICA RITEGNI SISMICI TRASVERSALI

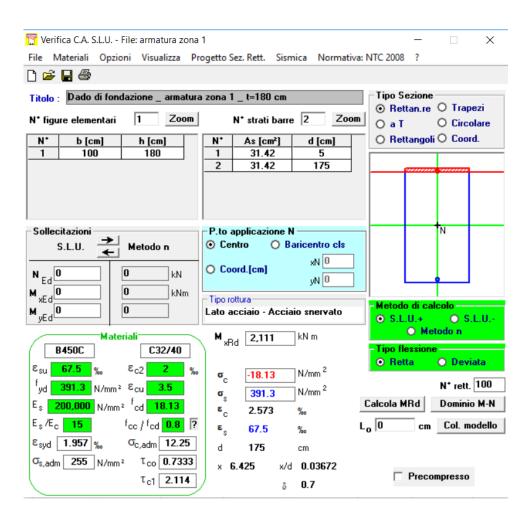
In asse trasversale agli appoggi sono stati previsti dei ritegni sismici in cemento armato. Tali ritegni sono stati dimensionati considerando la forza orizzontale massima proveniente dallo stesso impalcato e posizionati considerando la corsa massima degli isolatori. Tali ritegni non dovranno permettere allo stesso impalcato di fuoriuscire dall'ingombro previsto da progetto.

In seguito, vengono riportate le verifiche strutturali. Per quando riguarda maggiori dettagli si rimanda agli elaborati grafici degli stessi.

1. MATERIALI 1.1. Calcestruzzo [Rif.]			
1.1. Calcestruzzo [Rif.]			
Resistenza caratteristica cubica cls	R _{ck}	40	[MPa]
Coefficiente di sicurezza parziale per il calcestruzzo	Yc	1.5	[-]
Coefficiente che tiene conto degli effetti di lungo termine	α_{cc}	0.85	[-]
Resistenza caratteristica cilindrica	f _{ck}	33.2	[MPa]
Resistenza di progetto a compressione del cls	f _{cd}	18.81	[MPa]
1.3. Acciaio da Armatura Ordinaria [Rif.]			
Tensione di rottura	ft	540	[MPa]
Tensione di snervamento caratteristica	f _{yk}	450	[MPa]
Coefficiente di sicurezza parziale per l'acciaio	γs	1.15	[-]
Modulo di elasticità secante dell'acciaio	Es	206000	[MPa]
$k = f_t/f_{vk}$	k	1.2	
Tensione a rottura di progetto	f _{td}		[MPa]
Tensione a snervamento di progetto	f _{yd}		[MPa]
Tipo di nodo:	yu	1	,
	ν	0.5	[-]
	v'	0.83	
	k ₁	1	[-]
	k ₂	0.85	[-]
	k ₃	0.75	[-]
Nodo compresso	σ _{1Rd,max}		[MPa]
Nodo compresso-teso con armatura in una direzione	σ _{2Rd.max}		[MPa]
Nodo compresso-teso con armatura in due direzioni	σ _{3Rd.max}		[MPa]
	- Sku,max		
2. CARATTERISTICHE GEOMETRICHE			
Larghezza pilastro superiore	I _{p,s}	2400	[mm]
Larghezza pilastro inferiore	I _{p,i}		[mm]
Altezza mensola	h _c		[mm]
Sblazo mensola	b _{sbalzo}		[mm]
Profondità della mensola	b _w		[mm]
Distanza forza applicata dal filo interno del pilastro	a _c		[mm]
Larghezza piastra di carico	I _{piastra}		[mm]
Profondità piastra di carico	b _{piastra}		[mm]
	D pi as tra	100	[11111]
a _c −			
ן F _{Ed}			
H _{Ed} L ^{Ed}			
F _{id}			
0//			
F_{wd} F_{Wd}			
'Ed			

PERIZIA DI VARIANTE TECNICA

13 VERIFICA DADI DI FONDAZIONI


In seguito, vengono riportate le verifiche SLU e le verifiche SLE dei dadi di fondazione.

Per le armature considerate si rimanda agli elaborati grafici corrispondenti a ciascun elemento.

13.1.1 Verifiche SLU

Verifica a flessione - zona 1

	Direz.	Combinazione	M _{d,max} [KNm/m]
Bottom X Y		SLV_X_04	164
		SLU_20	351
Ton	Х	SLU_21	-1998
Тор	Υ	SLU_21	-803

PERIZIA DI VARIANTE TECNICA

Verifiche a taglio

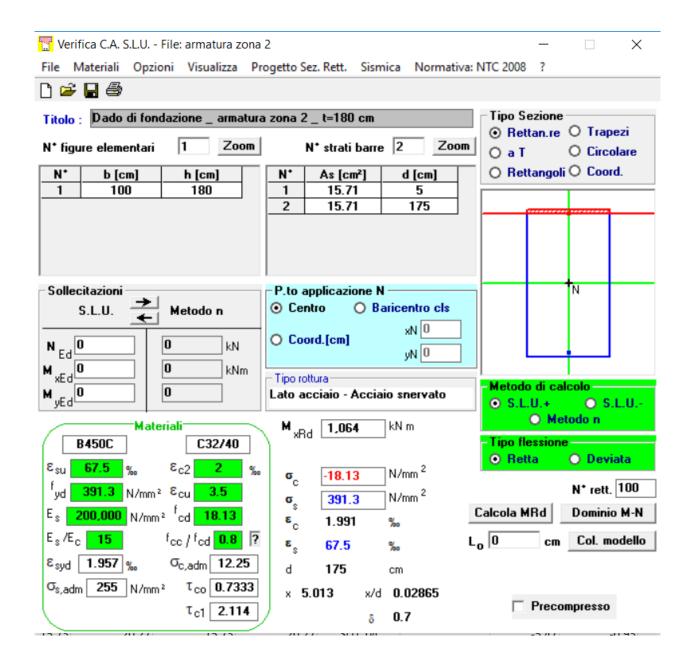
1. MATERIALI			
1.1. Calcestruzzo [Rif.]			
Resistenza caratteristica cubica cls	R _{ck}	40 [MPa]
Coefficiente di sicurezza parziale per il calcestruzzo	Yc	1.5 [[-]
Coefficiente che tiene conto degli effetti di lungo termine	α_{CC}	1 [[-]
Resistenza caratteristica cilindrica	f _{ck}	33.2 [
Resistenza a compressione di progetto del CLS	f _{cd}	22.1 [
1.3. Acciaio da Armatura Ordinaria [Rif.]			
Tensione di snervamento caratteristica	f _{yk}	430 [MPa]
Coefficiente di sicurezza parziale per l'acciaio	Ϋ́s	1.15 [[-]
Modulo di elasticità secante dell'acciaio	Es	206000 [MPa]
Tensione di snervamento di progetto armatura a taglio	f _{ywk}	374 [MPa]
	,		
2. CARATTERISTICHE GEOMETRICHE			
Altezza trave CLS	H _{CLS}	1800 [mm]
Larghezza minima trave CLS (o larghezza trave equvalente)	b _w	1000 [
Altezza utile	d	1750 [mm]
Braccio della coppia interna (0,9 d _{UTILE})	Z	1575 [mm]
Area sezione di CLS	A _c	1800000 [mm ²]
Diametro armatura longitudinale tesa	φs	20 [mm]
Numero ferri armatura longitudinale tesa	$n_{\phi s}$	10 [_
Area armatura tesa	A _{sl}	3142 [
	3.		
figura 6.3 Definizione di A _{sl} nella espressione (6.2)			
Legenda		-	
Legenda A Sezione considerata		-	
Legenda A Sezione considerata	A _{sl} 85° A	- - -	
Legenda A Sezione considerata	A _{sl} 85° A	- - -	
Legenda A Sezione considerata / bd VEd VEd VEd VEd VED VED VED VE	X	- - - -	
Legenda A Sezione considerata / bd VEd VEd VEd VED	A _{sl} V _{Ed}	- O	
Legenda A Sezione considerata / bd VEd VEd VEd VEd VED VED VED VE	X	\[\sqrt{\rho} \]	
Legenda A Sezione considerata / bd VEd VEd VEd VEd VED VED VED VE	X	1.34	·-]
Legenda A Sezione considerata	bd V _{Ed}		
Legenda A Sezione considerata	k k	1.34 [[-]
Legenda A Sezione considerata I	k Pı	1.34 [[-] [-]
Legenda A Sezione considerata Ved Ve	k PI CRd,c	1.34 [0.002 [0.12 [[-] [-] [-]
Legenda A Sezione considerata	k Pı C _{Rd,c} V _{min}	1.34 [0.002 [0.12 [0.31 [[-] [-] [-]
Legenda A Sezione considerata	k P _I C _{Rd,c} V _{min} k ₁	1.34 [0.002 [0.12 [0.31 [0.15 [[-] [-] [-]
Legenda A Sezione considerata	k P _I C _{Rd,c} V _{min} k ₁	1.34 [0.002 [0.12 [0.31 [0.15 [[-] [-] [-]
Legenda A Sezione considerata	k P _I C _{Rd,c} V _{min} k ₁	1.34 [0.002 [0.12 [0.31 [0.15 [-] -] -] -] MPa]
Legenda A Sezione considerata	k P _I C _{Rd,c} V _{min} k ₁ σ _{cp}	1.34 [0.002 [0.12 [0.31 [0.15 [0.00 [-] -] -] -] MPa]
Legenda A Sezione considerata	k PI CRd,c Vmin k1 σcp	1.34 [0.002 [0.12 [0.31 [0.00 [875 [1 [-] -] -] -] MPa]
Legenda A Sezione considerata	k p _I C _{Rd,c} V _{min} k ₁ σ _{cp}	1.34 [0.002 [0.12 [0.31 [0.00 [875 [1 [-] -] -] -] MPa] kN]
Legenda A Sezione considerata	k PI CRd,c Vmin k1 σcp	1.34 [0.002 [0.12 [0.31 [0.00 [875 [1 [-] -] -] -] MPa] kN]
Legenda A Sezione considerata	k p _I C _{Rd,c} V _{min} k ₁ σ _{cp} V _{Ed} V _{Ed} V _{Ed}	1.34 [0.002 [0.12 [0.31 [0.15 [0.00 [875 [1 [1 [-] -] -] -] MPa] kN] -]
Legenda A Sezione considerata	k Pl CRd,c Vmin k1 σcp VEd VBd1 TEd	1.34 [0.002 [0.12 [0.31 [0.15 [0.00 [875 [1 [1 [-] -] -] MPa] kN] -] kNm]
Legenda A Sezione considerata	k p _I C _{Rd,c} V _{min} k ₁ σ _{cp} V _{Ed} V _{Ed} V _{Ed}	1.34 [0.002 [0.12 [0.31 [0.15 [0.00 [875 [1 [1 [-] -] -] -] MPa] kN] -] kNm]

	RMATURA A TAG	JLIO				
Angolo compreso tra armatura a taglio	o e asse trave		α	90	[°]	
Angolo compreso tra puntone cls com	presso e asse trav	e	θ	45	[°]	
	1 <= cot θ	<= 2,5	cot θ	1.000	[-]	ОК
Diametro staffe			φ _{sw}	16	[mm]	
Iumero totale braccia			n _{φsw}	3	[-]	
lumero di ferri trasv da considerare p	er la verifica a tors	sione	n _{φsw,tors}	1	[-]	
rea armatura tesa			A _{sw}	603	[mm ²]	
asso massimo delle staffe per le verif	fiche a torsione		S _{t,max}	1313	[mm]	
Passo staffe			S	300	[mm]	ОК
Legenda A Corrente compres B Puntoni C Corrente teso D Armatura a taglio	B B	V	F_{cd} $\cot \theta - \cot \alpha)$	N M		
		c c	F _{td} = z	v \ / -		
Normativa utilizzata:	22008	b _w	- N	v \ / -		
b _w	22008	b _w	- N	0.50		
Iormativa utilizzata: NTC	C2008 Iza a Taglio del CLS	b _w	F _{td}	1.00	[-]	
lormativa utilizzata: NTC oefficiente di riduzione della resisten	C2008 Iza a Taglio del CLS	b _w	F _{td} Z		[-]	
ormativa utilizzata: oefficiente di riduzione della resisten esistenza a Taglio offerta dalle staffe	C2008 Iza a Taglio del CLS	b _w	F _{td} v v a _{cw}	1.00	[-] [kN]	
ormativa utilizzata: oefficiente di riduzione della resisten esistenza a Taglio offerta dalle staffe esistenza a Taglio offerta dal punton	c2008 Iza a Taglio del CLS e e compresso	b _w	F_{td} $\stackrel{\sim}{N}$ $\stackrel{\sim}{N}$ $\stackrel{\sim}{N}$ $\stackrel{\sim}{V}$ $\stackrel{\sim}{$	1.00 1184	[-] [kN] [kN]	
Jormativa utilizzata:	c2008 Iza a Taglio del CLS e e compresso	b _w	$\begin{array}{c c} F_{td} & \stackrel{\sim}{N} & \stackrel{\sim}{N} \\ \\ \hline V \\ \hline \alpha_{cw} \\ \hline V_{Rd,sw} \\ \hline V_{Rd,max} \\ \end{array}$	1.00 1184 8715	[-] [kN] [kN] [kN]	OK

PERIZIA DI VARIANTE TECNICA

Verifiche a punzonamento

vermone a panzonar	<u>101110</u>			
1. MATERIALI				
1.1. Calcestruzzo [Rif.]				
Resistenza caratteristic	a cubica cls	R _{ck}	40 [[MPa]
Coefficiente di sicurezz	a parziale per il calcestruzzo	Υc	1.5	[-]
Coefficiente che tiene d	onto degli effetti di lungo termine	$lpha_{\sf CC}$	0.85 [[-]
Resistenza caratteristic	a cilindrica	f _{ck}	33.2 [[MPa]
Resistenza a compressi	one di progetto del CLS	f _{cd}	18.8 [[MPa]
1.3. Acciaio da Armatur	a Ordinaria [Rif.]			
Tensione di snervament	o caratteristica	f _{yk}	450 [[MPa]
Coefficiente di sicurezz	a parziale per l'acciaio	γs	1.15 [[-]
Modulo di elasticità sec	ante dell'acciaio	Es	206000 [[MPa]
Tensione di snervament	o di progetto armatura a taglio	f _{ywk}	391 [[MPa]
2. SOLLECITAZIONI				
Sforzo di Taglio di proge	etto	V_{Ed}	1918.21 [[kN]
Momento flettente atto	orno all'asse z	$M_{Ed,y}$	1998 [[kNm]
Momento flettente atto	orno all'asse y	M _{Ed,z}	803 [[kNm]
Eccentricità in direzione		e _y	1041.596071 [[mm]
Eccentricità in direzione	·	e _z	418.6194421 [[mm]
3. ALTEZZA UTILE, RA	APPORTO GEOMETRICO DI ARI	MATURA E PERIMETRI DI VE	RIFICA	
Sezione di analisi:	Pilastro circolare			
Posizione:	Interno/Interno eccenti	ricità in y		
Altezza piastra		h _{CLS}	1800 [[mm]
Copriferro		С	50 [[mm]
Dimensione parallela as	se z	$ c_1 $	1200 [[mm]
Dimensione parallela as	se y	c ₂	1200 [[mm]
Raggio circonferenza		r	1200 [[mm]
Altezza utile in x		d _x	1740 [[mm]
Altezza utile in y		d _y	1720 [[mm]
Altezza utile efficace		d _{eff}	1730 [[mm]
Diametro armatura lon	gitudinale tesa in direzione x	Фѕ,х	20 [[mm]
Passo armatura longitu	dinale tesa in direzione x	$p_{\phi s,x}$	200 [[mm]
Diametro armatura lon	gitudinale tesa in direzione y	Фѕ,у	20 [[mm]
Passo armatura longitu	dinale tesa in direzione y	$p_{\phi s,y}$	200 [[mm]
Area armatura tesa in d	irezione y	A _{sI,x}	18190 [[mm ²]
Area armatura tesa in d	irezione z	A _{s1,y}	18190 [[mm²]
		k	1.34 [
Percentuale di armatura	longitudinale tesa in direzione x	ρ_{lx}	0.0009 [
	longitudinale tesa in direzione y	ρ_{ly}	0.0009 [
Percentuale di armatura		ρι	0.0009 [
		C _{Rd,c}	0.12	
			0.31 [-
		V _{min}	0.1	
Tanciana di pracamara	riana	k ₁		
Tensione di precompres	Sione	σ_{cp}	0 [[MPa]


4. COEFFICIENTE β						
Modalità di calcolo coefficie	ente β:	Rigoroso				
Coefficiente β in uso per il c	aso in esame			1.23	[-]	
Perimetro di verifica a dista	nza 2d			29280	[mm]	
Perimetro di verifica intorno	al pilastro			7540	[mm]	
5. RESISTENZA A PUNZO	NAMENTO DI P	IASTRE E FONDAZIONI	PRIVE DI ARMATU	IRA A TAGLIO		
Normativa utilizzata:	NTC2008					
Coefficiente di riduzione del	la resistenza a Ta	glio del CLS	ν	0.50	[-]	
Valore di progetto della Res	istenza a Punzona	imento	V _{Rd,c}	0.23	[N/mm ²]	
Valore massimo di progetto	della Resistenza a	a Punzonamento	V _{Rd,max}	4.70	[N/mm ²]	
Valore sollecitane lungo il pe	erimetro di verific	a del pilastro	V _{Ed,u0}	0.18	[N/mm ²]	ОК
Valore sollecitane lungo il pe	erimetro di verific	a a distanza 2d	V _{Ed,u}	0.05	[N/mm ²]	
Coefficiente di sicurezza inte	orno al pilastro		K _{u0}	26.07	[-]	ОК
Coefficiente di sicurezza a d	istanza 2d		K _u	5.00	[-]	ОК

PERIZIA DI VARIANTE TECNICA

Verifica a flessione - zona 2

Momenti flettenti

	Direz.	Combinazione	M _{d,max} [KNm/m]
Dattam	Х	SLU_21	319
Bottom		SLU_21	323
Ton	Х	SLU_21	-509
Тор	Υ	SLU_21	-499

PERIZIA DI VARIANTE TECNICA

13.1.2 Verifiche SLE

Sono state condotte le verifiche a fessurazione considerando sia le combinazioni frequenti sia quelle quasi permanenti.

<u>Verifica fessurazione – combo. Frequente – zona 1</u>

Momenti flettenti

	Direz.	Combinazione	M _{d,max} [KNm/m]
Rottom X		SLE_f_20	136
Bottom	Υ	SLE_f_20	255
Ton	Х	SLE_f_35	-965
Тор	Υ	SLE_f_21	-535

4 MATERIALI			
1. MATERIALI			
1.1. Calcestruzzo [Rif.]			
Resistenza caratteristica cubica cls CAP	R _{ck}		[MPa]
Coefficiente di sicurezza parziale per il calcestruzzo	Ϋ́c	1.5	
Coefficiente che tiene conto degli effetti di lungo termine	α_{CC}	0.85	[-]
Rapporto tra modulo elastico cls teso e cls compresso	ξ_{i}	0.5	[mm]
Resistenza caratteristica cilindrica	f _{ck}	33.2	[MPa]
Valore medio della resistenza a compressione cilindrica	f _{cm}	41.20	[MPa]
Valore medio della resistenza a trazione assiale del calcestruzzo	f _{ctm}	3.10	[MPa]
/alore caratteristico della resistenza a trazione assiale (frattile 5%)	f _{ctk;0.05}	2.17	[MPa]
/alore caratteristico della resistenza a trazione assiale (frattile 95%		4.03	[MPa]
Modulo di elasticità secante del cls CAP	E _{cm}	33643	
Resistenza a trazione dl CLS per flessione	f _{ctd}		[MPa]
resisteriza a trazione di CLS per riessione			
	f _{ct,eff}	3.10	[MPa]
1.2. Accipio da Armatura Ordinario (Bif. 1			
L.2. Acciaio da Armatura Ordinaria [Rif.]	-	200000	[NAD-1
Modulo di elasticità secante dell'acciaio	Es	206000	[INIPa]
1.3. Acciaio da Precompressione [Rif.]	-	225255	[0.45]
Modulo di elasticità secante dell'acciaio	E _P	206000	[MPa]
2. COEFFICIENTI DI OMOGENEIZZAZIONE			
2.1. Acciaio da Armatura Lenta [Rif.]			
Coefficiente di omogeneizzazione	n _φ	15	[-]
2.2. Acciaio da Precompressione [Rif.]			
Coefficiente di omogeneizzazione	n _P	15	[-]
3. CARATTERISTICHE GEOMETRICHE TRAVE			
Altezza trave CLS	H _{CLS}	1800	[mm]
Larghezza trave CLS (o larghezza trave equvalente)	B _{CLS}	1000	[mm]
Baricentro trave da lembo inferiore	Y G,CLS	900	[mm]
Copriferro	С	50	[mm]
Area trave	A _{CLS}	1800000	[mm ²]
Momento di inerzia trave	J _{CLS}	4.86E+11	[mm ⁴]
Altezza utile	d _{UTILE}		[mm]
3.1. Armatura Lenta trave in CAP	UTILE	1750	[]
3.1.a Armatura superiore			
Diametro	φ _s	20	[mm]
Numero			[-]
Diametro ferri infittimento	n _{φs}		
	φ's		[mm]
Numero ferri infittimento	n' _{\$\phis\$}		[-]
Passo armatura superiore	p _i		[mm]
Distanza da lembo superiore a baricentro ferri superiori	d'		[mm]
Area totale armatura superiore	A _{s,sup}	3142	[mm ²]
3.1.b Armatura inferiore			
Diametro	Фі		[mm]
Numero	n _{φi}		[-]
Diametro ferri infittimento	φ',	0	[mm]
Numero ferri infittimento	n' _{фi}		[-]
Passo armatura inferiore	p _I	100	[mm]
Distanza da lembo superiore a baricentro ferri inferiori	d	1740	[mm]
Area totale armatura inferiore	A _{s,inf}	3142	[mm ²]

3.2. Armatura di precompressione 3.2.a Armatura superiore (Cavo equivalente) Distanza da lembo superiore a baricentro ferri superiori Area totale armatura superiore 3.2.b Armatura inferiore (Cavo equivalente) Distanza da lembo inferiore a baricentro ferri inferiori Distanza da lembo superiore a baricentro ferri inferiori Area totale armatura inferiore 4. CARATTERISTICHE STATICHE TRAVE SEZIONE INTERAMENTE REAGENTE Baricentro Area Momento d'inerzia		$\begin{array}{c} \Phi_{wire} \\ p' \\ \\ A_{p,sup} \\ \end{array}$ $\begin{array}{c} p \\ \\ A_{p,inf} \\ \end{array}$	0 0	[mm] [mm] [mm ²]
Distanza da lembo superiore a baricentro ferri superiori Area totale armatura superiore 3.2.b Armatura inferiore (Cavo equivalente) Distanza da lembo inferiore a baricentro ferri inferiori Distanza da lembo superiore a baricentro ferri inferiori Area totale armatura inferiore 4. CARATTERISTICHE STATICHE TRAVE SEZIONE INTERAMENTE REAGENTE Baricentro Area Momento d'inerzia		p' A _{p,sup}	0 0	[mm]
Area totale armatura superiore 3.2.b Armatura inferiore (Cavo equivalente) Distanza da lembo inferiore a baricentro ferri inferiori Distanza da lembo superiore a baricentro ferri inferiori Area totale armatura inferiore 4. CARATTERISTICHE STATICHE TRAVE SEZIONE INTERAMENTE REAGENTE Baricentro Area Momento d'inerzia		A _{p,sup}	0	
3.2.b Armatura inferiore (Cavo equivalente) Distanza da lembo inferiore a baricentro ferri inferiori Distanza da lembo superiore a baricentro ferri inferiori Area totale armatura inferiore 4. CARATTERISTICHE STATICHE TRAVE SEZIONE INTERAMENTE REAGENTE Baricentro Area Momento d'inerzia		р	0	
Distanza da lembo inferiore a baricentro ferri inferiori Distanza da lembo superiore a baricentro ferri inferiori Area totale armatura inferiore 4. CARATTERISTICHE STATICHE TRAVE SEZIONE INTERAMENTE REAGENTE Baricentro Area Momento d'inerzia				
Area totale armatura inferiore 4. CARATTERISTICHE STATICHE TRAVE SEZIONE INTERAMENTE REAGENTE Baricentro Area Momento d'inerzia				[mm]
4. CARATTERISTICHE STATICHE TRAVE SEZIONE INTERAMENTE REAGENTE Baricentro Area Momento d'inerzia				[mm]
SEZIONE INTERAMENTE REAGENTE Baricentro Area Momento d'inerzia		p,iiii		[mm ²]
SEZIONE INTERAMENTE REAGENTE Baricentro Area Momento d'inerzia				
Baricentro Area Momento d'inerzia				
Area Momento d'inerzia				
Momento d'inerzia		Уg	900	[mm]
		Α	1894248	[mm ²]
Madula di rasistanza superiore CLC		J	552501233291	[mm ⁴]
Modulo di resistenza superiore CLS		W _{c.SUP}	613890259	
Modulo di resistenza superiore STEEL		W _{s,SUP}	657739563	[mm³]
Modulo di resistenza inferiore STEEL		W _{s,INF}	657739563	
Modulo di resistenza inferiore CLS		W _{c,INF}	613890259	
Modulo di l'esistenza illienore CES		VV _{C,INF}	013890239	[111111]
SEZIONE PARZIALIZZATA				
Formula per ricerca obiettivo				
Asse neutro da lembo superiore con N e M		Yn (RICERCA)	328	[mm]
Asse neutro da lembo superiore		y _n	328	[mm]
Momento statico sezione parzializzata rispetto all'asse neutro		S'n	11413	[mm ³]
Momento d'inerzia sezione parzializzata rispetto all'asse neutro		J'	109100083638	[mm ⁴]
Modulo di resistenza superiore CLS		W _{c,SUP}	332312451	[mm ³]
Modulo di resistenza superiore STEEL		W _{s,SUP}	406625984	[mm ³]
Modulo di resistenza inferiore STEEL		W _{s,INF}	77283082	[mm ³]
Modulo di resistenza inferiore CLS		W _{c,INF}	74132302	
Internal of the state of the st		· · C,INF	7.1202002	. ,
5. SOLLECITAZIONI E STATO TENSIONALE				
Sforzo normale agente o di precompressione (con il proprio segn	0)	N	0.1	[kN]
Momento sollecitante di precompressione (con il proprio segno)		M _P		[kNm]
Momento sollecitante (con il proprio segno)		M		[kNm]
		е	9560000	-
		u	9559100	
SEZIONE INTERAMENTE REAGENTE				. ,
Tensione lembo superiore CLS		$\sigma_{c,sup}$	-1.56	[N/mm ²]
Tensione armatura lenta superiore		_	-21.80	[N/mm ²]
Tensione armatura lenta inferiore		$\sigma_{s,inf}$		[N/mm ²]
Tensione lembo inferiore CLS				[N/mm ²]
Tensione tembo interiore CLS		$\sigma_{c,inf}$	1.30	[14/11111]
Stato limite di formazione delle fessure $\sigma_{c,inf}$	<	f _{ctm} /1.2	ОК	
SEZIONE PARZIALIZZATA				
Tensione lembo superiore CLS		σ _{c,sup}	-7 88	[N/mm ²]
Tensione armatura lenta superiore				[N/mm ²]
Tensione armatura lenta inferiore		σ _{s,sup}		[N/mm ²]
		$\sigma_{s,inf}$		[N/mm ²]
Tensione lembo inferiore CLS		σ _{c,inf}	12.90	[[[[[[[[[[[[[[[[[[[
6. VERIFICA DI FESSURAZIONE				
Tensione armatura tesa considerando la sezione fessurata		σ_{s}	185.55	[Mpa]
Deformazione media armatura - Deformazione media cls		ε _{sm} - ε _{cm}	0.00058	
Distanza massima tra le fessure		S _{r,max}		[mm]
Valore massimo ammisibile di ampiezza delle fessure		W _{k,max}		[mm]
Ampiezza delle fessure		W _k	0.192	
P				
Stato limite di apertura delle fessure W _k				

PERIZIA DI VARIANTE TECNICA

<u>Verifica fessurazione – combo. Quasi permanente - zona 1</u>

Momenti flettenti

	Direz.	Combinazione	M _{d,max} [KNm/m]
Dattam	Х	SLE_qp_18	136
Bottom	Υ	SLE_qp_18	255
Ton	Х	SLE_qp_08	-948
Тор	Υ	SLE_qp_21	-534

1. MATERIALI							
1.1. Calcestruzzo [R	f.]						
Resistenza caratteri:	-	cls CAP			R _{ck}	40	[MPa]
Coefficiente di sicur	ezza parziale	e per il calce	struzzo		Υ _c	1.5	
Coefficiente che tier		•		ne	α_{CC}	0.85	
Rapporto tra modul					ξ _i		[mm]
Resistenza caratteri:					f _{ck}		[MPa]
Valore medio della r		-	ne cilindrica		f _{cm}		[MPa]
Valore medio della r		•			f _{ctm}		[MPa]
Valore caratteristico					f _{ctk;0.05}		[MPa]
Valore caratteristico							[MPa]
			Une assidie	(Hattile 95%)	f _{ctk;0.95}		
Modulo di elasticità					E _{cm}	33643	
Resistenza a trazion	e al CLS per	riessione			f _{ctd}		[MPa]
					f _{ct,eff}	3.10	[MPa]
1 2 Acciaio do A	tura Ordina	ria [Dif 1	-				
<u>1.2. Acciaio da Arma</u> Modulo di elasticità					E	206000	[NADal
					Es	206000	[IVIPa]
<u>1.3. Acciaio da Preco</u> Modulo di elasticità		-			E	206000	[NADal
iviodulo di elasticita	secante dell	accialo			E _P	206000	[IVIPa]
2. 6055516151151	1 0140651	15177 4 710	A.F				
2. COEFFICIENTI D			NE				
2.1. Acciaio da Arma						45	r 1
Coefficiente di omo	_				n _φ	15	[-]
2.2. Acciaio da Preco						45	
Coefficiente di omo	geneizzazion	ne			n _P	15	[-]
3. CARATTERISTIC	LE CEOM	TDICUE TI	DAVE				
Altezza trave CLS	HE GEOIVIE	I I KICHE II	NAVE		H _{CLS}	1800	[mm]
Larghezza trave CLS	(o larghezza	trave equiv	alente)		B _{CLS}		[mm]
Baricentro trave da							[mm]
Copriferro	enibo initeri	ore			YG,CLS C		[mm]
						1800000	
Area trave					A _{CLS}		
Momento di inerzia	trave				J _{CLS}	4.86E+11	
Altezza utile					d _{UTILE}	1750	[mm]
3.1. Armatura Lenta		2					
3.1.a Armatura sup	eriore					20	
Diametro					Φs		[mm]
Numero					n _{φs}	10	
Diametro ferri infitti					φ's		[mm]
Numero ferri infittin -					n' _{фs}		[-]
Passo armatura sup					p _i		[mm]
Distanza da lembo s	•	aricentro fe	rri superior	i	d'		[mm]
Area totale armatur	•				A _{s,sup}	3142	[mm ²]
3.1.b Armatura infe	riore						
Diametro					φι		[mm]
Numero					n _{φi}	10	
Diametro ferri infitti					φ',		[mm]
Numero ferri infittin	nento				n' _{фi}		[-]
	_	1	1		I	100	[mm]
Passo armatura infe					p _i		
		aricentro fe	erri inferiori		d d	1740	[mm] [mm ²]

	di precompression	e						
	ra superiore (Cavo	_	e)			φ _{wire}	0	[mm]
	mbo superiore a ba					p'		[mm]
	matura superiore					A _{p,sup}		[mm ²]
	ra inferiore (Cavo e	eauivalente)			, vp,sup		[]
	mbo inferiore a bar	•	•				0	[mm]
Distanza da le	mbo superiore a ba	ricentro fei	ri inferiori			р		[mm]
Area totale ar	matura inferiore					$A_{p,inf}$	0	[mm ²]
						P /····		
4. CARATTER	RISTICHE STATICH	IE TRAVE						
SEZIONE INTE	RAMENTE REAGEN	NTE						
Baricentro						Уg	900	[mm]
Area						A	1894248	[mm ²]
Momento d'in	ierzia					J	552501233291	[mm ⁴]
Modulo di res	istenza superiore Cl	LS				W _{c,SUP}	613890259	
	istenza superiore ST					W _{s,SUP}	657739563	[mm³]
	istenza inferiore ST					W _{s,INF}	657739563	
	istenza inferiore CL						613890259	
iviouulo ul res	isteriza iliteriore CL					W _{c,INF}	013030253	נייייין ן
SEZIONE PAR	ZIALIZZATA							
	icerca obiettivo							
•	a lembo superiore o	on N e M				Yn (RICERCA)	328	[mm]
Asse neutro da	a lembo superiore					y _n	328	[mm]
Momento sta	tico sezione parziali	izzata rispet	to all'asse	neutro		S'n	11413	[mm ³]
	erzia sezione parzia	-				J'	109100083638	[mm ⁴]
	istenza superiore Cl					W _{c,SUP}	332312451	
	istenza superiore S					W _{s,SUP}	406625984	-
	istenza inferiore ST					W _{s,INF}	77283082	
							74132302	-
Modulo di res	istenza inferiore CL	.5				W _{c,INF}	74132302	[111111]
5 SOLLECITA	AZIONI E STATO T	FNSIONA	F					
	le agente o di preco			nrio segn	0)	N	0.1	[kN]
	lecitante di precom					M _P		[kNm]
	lecitante (con il pro	_				M		
								lkNml
			<u>-</u>				9560000	[kNm]
			-			е	9560000 9559100	[mm]
SEZIONE INTE	ERAMENTE REAGEN						9560000 9559100	[mm]
	ERAMENTE REAGEN					e u	9559100	[mm]
Tensione lemb	ERAMENTE REAGEN	NTE				e u σ _{c,sup}	9559100	[mm] [mm] [N/mm²]
Tensione lemb	ERAMENTE REAGEN DO Superiore CLS atura lenta superior	NTE re				$\begin{array}{c} e \\ u \\ \\ \sigma_{c,sup} \\ \\ \sigma_{s,sup} \end{array}$	9559100 -1.56 -21.80	[mm] [mm] [N/mm²]
Tensione lemb Tensione arma Tensione arma	eramente reagen oo superiore CLS atura lenta superior atura lenta inferiore	NTE re				$\begin{array}{c} e \\ u \\ \\ \sigma_{c,sup} \\ \\ \sigma_{s,sup} \\ \\ \sigma_{s,inf} \end{array}$	9559100 -1.56 -21.80 21.80	[mm] [mm] [N/mm²] [N/mm²]
Tensione lemb Tensione arma Tensione arma	ERAMENTE REAGEN DO Superiore CLS atura lenta superior	NTE re				$\begin{array}{c} e \\ u \\ \\ \sigma_{c,sup} \\ \\ \sigma_{s,sup} \end{array}$	9559100 -1.56 -21.80 21.80	[mm] [mm] [N/mm²] [N/mm²]
Tensione lemb Tensione arma Tensione arma Tensione lemb	cramente reagen co superiore CLS atura lenta superior atura lenta inferiore co inferiore CLS	NTE re				$\begin{array}{c} e \\ u \\ \\ \sigma_{c,sup} \\ \\ \sigma_{s,sup} \\ \\ \sigma_{s,inf} \\ \\ \sigma_{c,inf} \end{array}$	9559100 -1.56 -21.80 21.80 1.56	[mm] [mm] [N/mm²]
Tensione lemb Tensione arma Tensione arma Tensione lemb	eramente reagen oo superiore CLS atura lenta superior atura lenta inferiore	NTE re		$\sigma_{c,inf}$	<	$\begin{array}{c} e \\ u \\ \\ \sigma_{c,sup} \\ \\ \sigma_{s,sup} \\ \\ \sigma_{s,inf} \end{array}$	9559100 -1.56 -21.80 21.80	[mm] [mm] [N/mm²] [N/mm²]
Tensione lemb Tensione arma Tensione arma Tensione lemb Stato limite di	eramente reagen po superiore CLS atura lenta superiora atura lenta inferiora po inferiore CLS i formazione delle j	NTE re		$\sigma_{c,inf}$	<	$\begin{array}{c} e \\ u \\ \\ \sigma_{c,sup} \\ \\ \sigma_{s,sup} \\ \\ \sigma_{s,inf} \\ \\ \sigma_{c,inf} \end{array}$	9559100 -1.56 -21.80 21.80 1.56	[mm] [mm] [N/mm²] [N/mm²]
Tensione lemb Tensione arma Tensione arma Tensione lemb Stato limite di SEZIONE PAR	ERAMENTE REAGEN DO Superiore CLS atura lenta superiore atura lenta inferiore DO inferiore CLS i formazione delle j	NTE re		$\sigma_{c,inf}$	<	$\begin{array}{c} e \\ u \\ \\ \sigma_{c,sup} \\ \\ \sigma_{s,sup} \\ \\ \sigma_{s,inf} \\ \\ \sigma_{c,inf} \\ \end{array}$	9559100 -1.56 -21.80 21.80 1.56	[mm] [mm] [N/mm²] [N/mm²] [N/mm²]
Tensione lemb Tensione arma Tensione lemb Stato limite di SEZIONE PAR Tensione lemb	cramente reagento o superiore CLS atura lenta superiore cLS o inferiore CLS of formazione delle justicality and consuperiore CLS consumers con	nte re e e fessure		σ _{c,inf}	<	$\begin{array}{c} e \\ u \\ \\ \sigma_{c,sup} \\ \sigma_{s,sup} \\ \sigma_{s,inf} \\ \sigma_{c,inf} \\ \end{array}$	9559100 -1.56 -21.80 21.80 1.56 OK	[mm] [mm] [N/mm²] [N/mm²] [N/mm²]
Tensione lemb Tensione arma Tensione lemb Stato limite di SEZIONE PAR Tensione lemb Tensione arma	cramente reagento o superiore CLS atura lenta superiore CLS i formazione delle juli ziali	NTE re e fessure		σ _{c,inf}	<	$\begin{array}{c} e \\ u \\ \\ \sigma_{c,sup} \\ \sigma_{s,sup} \\ \sigma_{s,inf} \\ \sigma_{c,inf} \\ \\ f_{ctm}/1.2 \\ \\ \\ \sigma_{c,sup} \\ \\ \sigma_{s,sup} \\ \end{array}$	9559100 -1.56 -21.80 21.80 1.56 OK	[mm] [mm] [N/mm²] [N/mm²] [N/mm²] [N/mm²]
Tensione lemb Tensione arma Tensione lemb Stato limite di SEZIONE PAR Tensione lemb Tensione arma Tensione arma	consuperiore CLS atura lenta superiore CLS atura lenta inferiore con inferiore CLS iformazione delle j ZIALIZZATA con superiore CLS atura lenta superiore atura lenta superiore atura lenta inferiore	NTE re e fessure		σ _{c,inf}	<	$\begin{array}{c} e \\ u \\ \\ \sigma_{c,sup} \\ \sigma_{s,sup} \\ \sigma_{s,inf} \\ \\ \sigma_{c,inf} \\ \end{array}$	9559100 -1.56 -21.80 21.80 1.56 OK -2.88 -35.27 185.55	[mm] [mm] [N/mm²] [N/mm²] [N/mm²] [N/mm²]
Tensione lemb Tensione arma Tensione lemb Stato limite di SEZIONE PAR Tensione lemb Tensione arma Tensione arma	cramente reagento o superiore CLS atura lenta superiore CLS i formazione delle juli ziali	NTE re e fessure		σ _{c,inf}	<	$\begin{array}{c} e \\ u \\ \\ \sigma_{c,sup} \\ \sigma_{s,sup} \\ \sigma_{s,inf} \\ \sigma_{c,inf} \\ \\ f_{ctm}/1.2 \\ \\ \\ \sigma_{c,sup} \\ \\ \sigma_{s,sup} \\ \end{array}$	9559100 -1.56 -21.80 21.80 1.56 OK -2.88 -35.27 185.55	[mm] [mm] [N/mm²] [N/mm²]
Tensione lemb Tensione arma Tensione lemb Stato limite di SEZIONE PAR: Tensione lemb Tensione arma Tensione arma Tensione lemb	conferiore CLS atura lenta superiore atura lenta inferiore cLS if formazione delle julia superiore cLS zIALIZZATA con superiore CLS atura lenta superiore atura lenta inferiore cus atura lenta inferiore con inferiore cLS	nte re e fessure		σ _{c,inf}	<	$\begin{array}{c} e \\ u \\ \\ \sigma_{c,sup} \\ \sigma_{s,sup} \\ \sigma_{s,inf} \\ \\ \sigma_{c,inf} \\ \end{array}$	9559100 -1.56 -21.80 21.80 1.56 OK -2.88 -35.27 185.55	[mm] [mm] [N/mm²] [N/mm²] [N/mm²] [N/mm²]
Tensione lemb Tensione arma Tensione lemb Stato limite di SEZIONE PAR: Tensione lemb Tensione arma Tensione arma Tensione lemb Tensione lemb 6. VERIFICA	conferiore CLS atura lenta superiore CLS atura lenta inferiore con inferiore CLS if formazione delle j ZIALIZZATA con superiore CLS atura lenta superiore atura lenta inferiore con inferiore CLS	nte re e fessure			<	$\begin{array}{c} e \\ u \\ \\ \sigma_{c,sup} \\ \sigma_{s,sup} \\ \sigma_{s,inf} \\ \sigma_{c,inf} \\ \end{array}$	9559100 -1.56 -21.80 21.80 1.56 OK -2.88 -35.27 185.55 12.90	[mm] [mm] [N/mm²] [N/mm²] [N/mm²] [N/mm²] [N/mm²]
Tensione lemb Tensione arma Tensione lemb Stato limite di SEZIONE PAR: Tensione lemb Tensione arma Tensione lemb Tensione lemb Tensione lemb Tensione lemb Tensione lemb Tensione arma	consuperiore CLS atura lenta superiore CLS atura lenta inferiore con inferiore CLS atura lenta inferiore con inferiore CLS atura lenta superiore atura lenta superiore atura lenta inferiore con inferiore CLS atura lenta superiore con inferiore CLS atura lenta inferiore con inferiore CLS atura lenta inferiore con inferiore CLS atura lenta inferiore con inferiore CLS	nte re e fessure re e E ando la sezi	one fessur	ata	<	$\begin{array}{c} e \\ u \\ \\ \sigma_{c,sup} \\ \sigma_{s,inf} \\ \sigma_{c,inf} \\ \\ \sigma_{c,inf} \\ \end{array}$	9559100 -1.56 -21.80 21.80 1.56 OK -2.88 -35.27 185.55 12.90	[mm] [mm] [N/mm²] [N/mm²] [N/mm²] [N/mm²] [N/mm²]
Tensione lemb Tensione arma Tensione arma Tensione lemb Stato limite di SEZIONE PAR: Tensione lemb Tensione arma Tensione lemb 6. VERIFICA Tensione arma Deformazione	consuperiore CLS atura lenta superiore atura lenta inferiore con inferiore CLS aturalenta inferiore con inferiore CLS aturalenta superiore aturalenta superiore aturalenta inferiore con inferiore CLS aturalenta inf	nte re e fessure re e E ando la sezi	one fessur	ata	<	$\begin{array}{c} e \\ u \\ \\ \sigma_{c,sup} \\ \sigma_{s,sup} \\ \sigma_{s,inf} \\ \sigma_{c,inf} \\ \\ \sigma_{c,inf} \\ \\ \sigma_{c,sup} \\ \sigma_{s,sup} \\ \\ \sigma_{s,sup} \\ \\ \sigma_{s,inf} \\ \\ \sigma_{c,inf} \\ \\ \sigma_{c,sup} \\ \\ \sigma_{s,inf} \\ \\ \sigma_{c,sup} \\ \\ \sigma_{s,sup} \\ \\ \\ \sigma_{s,sup} \\ \\ \sigma_{s,sup} \\ \\ \sigma_{s,sup} \\ \\ \sigma_{s,sup} \\ \\ \sigma_{s,$	9559100 -1.56 -21.80 21.80 1.56 OK -2.88 -35.27 185.55 12.90 185.55 0.00058	[mm] [mm] [N/mm²] [N/mm²] [N/mm²] [N/mm²] [N/mm²] [N/mm²] [N/mm²]
Tensione lemb Tensione arma Tensione arma Tensione lemb Stato limite di SEZIONE PAR: Tensione arma Tensione arma Tensione lemb 6. VERIFICA Tensione arma Deformazione Distanza mass	consuperiore CLS atura lenta superiore atura lenta inferiore con inferiore CLS atura lenta inferiore con inferiore CLS atura lenta superiore atura lenta superiore atura lenta inferiore con inferiore CLS atu	re e fessure E ando la sezi	one fessur ne media c	ata	<	$\begin{array}{c} e \\ u \\ \\ \sigma_{c,sup} \\ \sigma_{s,sup} \\ \sigma_{s,inf} \\ \sigma_{c,inf} \\ \\ \sigma_{c,sup} \\ \sigma_{s,sup} \\ \sigma_{s,sup} \\ \sigma_{s,sup} \\ \sigma_{s,inf} \\ \sigma_{c,inf} \\ \\ \\ \sigma_{c,inf} \\ \\$	9559100 -1.56 -21.80 21.80 1.56 OK -2.88 -35.27 185.55 12.90 185.55 0.00058 332	[mm] [mm] [N/mm²] [N/mm²] [N/mm²] [N/mm²] [N/mm²] [N/mm²] [N/mm²] [N/mm²] [N/mm²]
Tensione lemb Tensione arma Tensione arma Tensione lemb Stato limite di SEZIONE PAR: Tensione arma Tensione arma Tensione lemb Co. VERIFICA Tensione arma Deformazione Distanza mass Valore massin	consuperiore CLS atura lenta superiore atura lenta inferiore con inferiore CLS atura lenta inferiore con inferiore CLS atura lenta superiore atura lenta superiore atura lenta superiore atura lenta inferiore con inferiore CLS atura lenta superiore atura lenta inferiore con inferiore CLS	re e fessure E ando la sezi	one fessur ne media c	ata	<	$\begin{array}{c} e \\ U \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	9559100 -1.56 -21.80 21.80 1.56 OK -2.88 -35.27 185.55 12.90 185.55 0.00058 332 0.2	[mm] [mm] [N/mm²] [N/mm²] [N/mm²] [N/mm²] [N/mm²] [N/mm²] [N/mm²] [N/mm²] [m/mm²]
Tensione lemb Tensione arma Tensione arma Tensione lemb Stato limite di SEZIONE PAR: Tensione arma Tensione arma Tensione lemb Co. VERIFICA Tensione arma Deformazione Distanza mass	consuperiore CLS atura lenta superiore atura lenta inferiore con inferiore CLS atura lenta inferiore con inferiore CLS atura lenta superiore atura lenta superiore atura lenta superiore atura lenta inferiore con inferiore CLS atura lenta superiore atura lenta inferiore con inferiore CLS	re e fessure E ando la sezi	one fessur ne media c	ata	<	$\begin{array}{c} e \\ u \\ \\ \sigma_{c,sup} \\ \sigma_{s,sup} \\ \sigma_{s,inf} \\ \sigma_{c,inf} \\ \\ \sigma_{c,sup} \\ \sigma_{s,sup} \\ \sigma_{s,sup} \\ \sigma_{s,sup} \\ \sigma_{s,inf} \\ \sigma_{c,inf} \\ \\ \\ \sigma_{c,inf} \\ \\$	9559100 -1.56 -21.80 21.80 1.56 OK -2.88 -35.27 185.55 12.90 185.55 0.00058 332	[mm] [mm] [N/mm²] [N/mm²] [N/mm²] [N/mm²] [N/mm²] [N/mm²] [N/mm²] [N/mm²] [m/mm²]

PERIZIA DI VARIANTE TECNICA

14 VERIFICA DEI PALI

Si riportano di seguito i contributi relativi alle verifiche geotecniche delle fondazioni su pali spalle del ponte provvisorio di cantiere sul torrente Mella. In particolare, le fondazioni su pali sono costituite, per entrambe le spalle, da 12 pali trivellati D1200 mm, di lunghezza 15 m, armati con armatura longitudinale costituita da $24\phi26$ e da armatura a taglio $\phi12/20$.

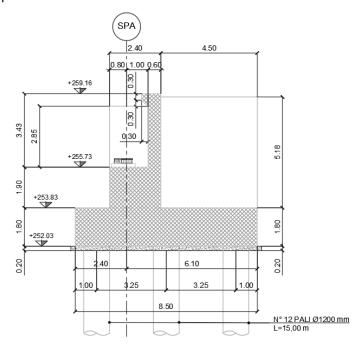


Figura 14.1: Sezione fondazione Spalla

14.1.1 Fondazioni su pali – Metodologia di calcolo

Le verifiche delle fondazioni profonde su pali sono eseguite in accordo al capitolo 6.4 delle N.T.C. 2018 e al capitolo 7.11.5 per l'analisi in condizioni sismiche.

Le verifiche delle fondazioni su pali devono essere effettuate con riferimento almeno ai seguenti stati limite, quando pertinenti:

- 1. SLU di tipo geotecnico (GEO)
 - · collasso per carico limite della palificata nei riguardi dei carichi assiali;
 - collasso per carico limite della palificata nei riguardi dei carichi trasversali;
 - collasso per carico limite di sfilamento nei riguardi dei carichi assiali di trazione;
 - stabilità globale;
- 2. SLU di tipo strutturale (STR)
 - raggiungimento della resistenza dei pali;
 - raggiungimento della resistenza della struttura di collegamento dei pali,

accertando che il valore di progetto delle azioni o dell'effetto delle azioni Ed sia inferiore al valore di progetto delle resistenze Rd per ogni stato limite considerato.

La verifica di stabilità globale deve essere effettuata secondo l'Approccio 1:

- Combinazione 2: (A2+M2+R2)

tenendo conto dei coefficienti parziali riportati nelle Tabelle 6.2.I e 6.2.II NTC 2008 per le azioni e i parametri geotecnici, e nella Tabella 6.8.I per le resistenze globali. Nel caso in esame tale verifica non risulta rilevante in quanto sono presenti opere di sostegno specifiche, che sono analizzate negli elaborati specialistici dedicati.

PERIZIA DI VARIANTE TECNICA

Le rimanenti verifiche devono essere effettuate, tenendo conto dei valori dei coefficienti parziali riportati nelle Tab. 6.2.I, 6.2.II e 6.4.II NTC 2008, in accordo all'Approccio 2: Combinazione A1+M1+R3.

Nelle verifiche effettuate con l'approccio 2 che siano finalizzate al dimensionamento strutturale, il coefficiente γ_R non deve essere portato in conto.

Le verifiche SLU sopra riportate sono state eseguite sia in condizioni statiche sia in condizioni sismiche SLV. Le verifiche in condizioni definitive sono state eseguite considerando una vita utile dell'opera di 50 anni.

Le verifica di capacità portante verticale viene eseguita mediante fogli excel validati.

La portata limite verticale Qlim di un palo trivellato di medio e grande diametro viene calcolata con riferimento all'equazione:

Qlim = QB,lim + QLlim – W = qb · Ab + $\sum \pi \cdot Di \cdot \Delta Hi \cdot \tau lim,i$ - W compressione

Qlim = W + QLlim = $y'(\sum \Delta Hi) \cdot Ab + \sum \pi \cdot Di \cdot \Delta Hi \cdot \tau lim,i$ trazione

Dove:

QB,lim = portata limite di base;

QLlim = portata limite laterale;

W = peso proprio del palo;

gb = portata unitaria di base;

y' = peso di volume sommerso del palo;

Ab = area di base:

Di = diametro del concio i-esimo di palo;

 Δ Hi = altezza del concio i-esimo di palo;

rlim,i = attrito laterale unitario limite del concio i-esimo di palo.

Per i terreni coesivi la portata unitaria di base è calcolata come:

$$q_b = 9cu + \sigma v$$

dove:

cu = coesione non drenata (kPa);

 σ_{V} = tensione geostatica verticale (kPa);

I valori di q_b sono interamente mobilizzati ad una profondità critica z_c (Meyerhof, Sastry [1978]), secondo l'espressione $z_c = m \cdot D$ con D pari al diametro del palo e m variabile tra 4 e 8. Per i pali in oggetto le lunghezze sono sempre sufficienti a garantire la mobilitazione della portata di punta.

In terreni coesivi in condizioni drenate la portata unitaria di base è calcolata in accordo alla teoria di Vesic:

$$Q_{punta} = (\mu \sigma' v Nq + c' Nc) Ap$$

Essendo:

$$\mu = [1 + 2(1 - \text{sen}\phi')]/3$$

 $Nq=3/(3-sen\phi') exp{[(\pi/2-\phi')tan(\phi']tan^2(\pi/4+\phi'/2) Irr^{(4sen\phi'/3(1+sen\phi')))}$

Irr : indice di rigidezza = $G/(c'+\sigma'vtan\phi')$

G: modulo elastico di taglio

 $\sigma'v$ = tensione verticale efficace in punta

$$Nc = (Nq - 1) \cot \varphi'$$

In terreni incoerenti la portata di punta è calcolata in accordo alla teoria di Berezantzev:

PERIZIA DI VARIANTE TECNICA

$$Q_{punta} = \sigma v' \times Nq \times Ap$$

Essendo per pali trivellati Nq = calcolato con ϕ^* secondo Kishida:

$$\phi^* = \phi' - 3^\circ \text{ per}$$

vPer la valutazione dell'attrito laterale per i terreni coesivi, si utilizza l'equazione:

tlim = α * cu ≤ 150 kPa (compressione); 100 (trazione)

Dove:

 α = coefficiente riduttivo:

= 0.9 per cu \leq 25 kPa; 0.8 per 25 < cu \leq 50 kPa; 0.6 per 50 < cu \leq 75 kPa; 0.4 per cu > 75 kPa; AGI [1984]);

cu = coesione non drenata (kPa).

I valori dell'attrito laterale limite in terreni granulari sono valutati mediante l'espressione:

$$Tlim = K * σ'v * tan(φ)$$

dove:

K = rapporto tra pressione orizzontale e pressione verticale efficace in prossimità del palo;

 $\sigma'v$ = pressione geostatica verticale efficace;

φ = angolo di attrito

Per pali trivellati si adotta (N. T. C. 2008):

K = 0.5 in compressione;

K = 0.5 in trazione.

Nel caso di formazioni rocciose la resistenza laterale è valutata in accordo ai criteri di O'Neill e Reese (1999) adottati anche nelle specifiche AASHTO (2007) LRFD:

$$q_{s,i} = 0.65 \cdot \alpha_E \cdot p_a \cdot (\frac{q_u}{p_a})^{0.5} < 7.8 \cdot p_a \cdot (f'_c / p_a)^{0.5} \text{ [ksf]} \le 200 \div 250 \text{ kPa},$$

con:

- q_u = resistenza a compressione uniassiale della roccia intatta, da assumere non superiore alla resistenza a compressione f_c del calcestruzzo.
- p_a = pressione atmosferica
- f'c = la resistenza a compressione del calcestruzzo
- $\alpha_{\rm E}=$ fattore di riduzione (introdotto per tener conto della fratturazione dell'ammasso), funzione del rapporto $E_{\rm m}/E_{\rm i}$ tra il modulo dell'ammasso e quello del provino intatto determinato con riferimento alle tabelle seguenti. La legge di variazione di $\alpha_{\rm E}$ in funzione di $E_{\rm m}/E_{\rm i}$ può essere approssimata con la funzione $\alpha_{\rm E} \approx (\frac{E_{\rm m}}{E_{\rm e}})^{0.2579} \cdot 0.9762$.

PERIZIA DI VARIANTE TECNICA

RQD (percent)	E_i	E_{I}		
(percent)	Closed Joints	Open Joints		
100	1.00	0.60		
70	0.70	0.10		
50	0.15	0.10		
20	0.05	0.05		

Estimation of Em Based on RQD (after O'Neill and Reese, 1999)

E _m /E _i	α_{E}
1.0	1.0
0.5	0.8
0.3	0.7
0.1	0.55
0.05	0.45

Estimation of α_E (O'Neill and Reese, 1999)

Caratterizzando l'ammasso roccioso attraverso il criterio di rottura di Hoek e Brown (HB) e il parametro GSI (Geological Strength Index), così come indicato nella relazione di caratterizzazione geotecnica (GTC0001), a cui si rimand aper maggiori dettagli, il modulo E_m può essere determinato direttamente con la relazione proprosta da Hoek & Diederichs (2006):

$$E_{\rm rm} = E_{\rm i} \left(0.02 + \frac{1 - D/2}{1 + {\rm e}^{((60 + 15D - {\rm GSI})/11)}} \right).$$

Caratterizzato l'ammasso roccioso attraverso il criterio di rottura di Hoek e Brown (HB) e il parametro GSI (Geological Strength Index) la portanza di base può essere determinata con l'apporccio suggerito da Turner (2006):

$$q_b = A + q_u [m_b \frac{A}{q_u} + s]^a \le 2.5 q_u$$

$$A = \sigma_{vb}' + q_u \left[m_b \frac{\sigma_{vb}'}{q_u} + s \right]^a$$

Per quanto riguarda i parametri m_b , s, a, q_u che compaiono nelle relazioni precedenti si rimanda alla caratterizzazione di Hoek e Brown (HB) delle formazioni rocciose riportata nella relazione geotecnica (Doc. GTC0001), assumendo il fattore di disturbo D=0.7.

Tali verifiche devono essere effettuate secondo l'Approccio 2, con la combinazione (A1+M1+R3), tenendo conto dei valori dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II, 6.4.II e 6.4.VI delle NTC 2018.

Si riportano di seguito le tabelle di normativa considerate per il calcolo dei pali.

Tabella 14.1: Coefficienti parziali per le azioni

Tab. 6.2.I - Coefficienti parziali per le azioni o per l'effetto delle azioni

	Effetto	Coefficiente Parziale γ_{F} (o γ_{E})	EQU	(A1)	(A2)
Carichi permanenti Gı	Favorevole	γ _{G1}	0,9	1,0	1,0
	Sfavorevole		1,1	1,3	1,0
Carichi permanenti G2(1)	Favorevole	γ _{G2}	0,8	0,8	0,8
	Sfavorevole		1,5	1,5	1,3
Azioni variabili Q	Favorevole	Υ _Q	0,0	0,0	0,0
	Sfavorevole		1,5	1,5	1,3

PERIZIA DI VARIANTE TECNICA

Tabella 14.2: Coefficienti parziali per i parametri geotecnici del terreno

Tab. 6.2.II - Coefficienti parziali per i parametri geotecnici del terreno

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale γ_{M}	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	$ an {\phi'}_k$	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c′ _k	γc	1,0	1,25
Resistenza non drenata	c_{uk}	$\gamma_{\rm cu}$	1,0	1,4
Peso dell'unità di volume	γγ	γ_{γ}	1,0	1,0

Tabella 14.3: Coefficienti yR3 per il calcolo della capacità portante (N.T.C. 2018, Tab. 6.4.II).

Resistenza	Simbolo	Pali infissi	Pali trivellati	Pali ad elica continua
	γ_{R}	(R3)	(R3)	(R3)
Base	γь	1,15	1,35	1,3
Laterale in compressione	γs	1,15	1,15	1,15
Totale (*)	γ	1,15	1,30	1,25
Laterale in trazione	γ _{st}	1,25	1,25	1,25

[🖰] da applicare alle resistenze caratteristiche dedotte dai risultati di prove di carico di progetto.

Si è verificato che F_{cd} < R_{cd}

dove:

F_{cd} = carico assiale di compressione o di trazione assunto in progetto nelle verifiche allo stato limite ultimo;

R_{cd} = capacità portante di progetto allo stato limite ultimo nei confronti dei carichi assiali.

Sono stati applicati i coefficienti correttivi identificati ξ da normativa per un modello geotecnico caratterizzato da un numero di verticali d'indagine disponibili maggiore o pari a 5.

Tabella 14.4: Coefficienti ξ riduttivi della capacità portante (N.T.C. 2018, Tab. 6.4.IV)

Numero di verticali indagate	1	2	3	4	5	7	≥ 10
ξ ₃	1,70	1,65	1,60	1,55	1,50	1,45	1,40
ξ_4	1,70	1,55	1,48	1,42	1,34	1,28	1,21

Per il calcolo del carico limite orizzontale è stato considerato il capitolo 6.4.3.1.2 delle NTC 2018, con riferimento ai fattori di resistenza γ_R riportati nella tabella 6.4.VI.

Tabella 14.5: Coefficienti e approccio di normativa (N.T.C. 2018, Tab. 6.4.IV)

Coefficiente parziale (R3)
$\gamma_T = 1.3$

La determinazione del carico limite orizzontale viene eseguita mediante il software LPile 6, sviluppato da Ensoft.

PERIZIA DI VARIANTE TECNICA

Il calcolo dei cedimenti per il palo singolo viene effettuato secondo l'approccio di Poulos e Davis (1975):

$$\rho = \frac{PI}{E_s d}$$

Dove:

 $I = I_0 R_k R_h R_v$

ρ = cedimento della testa del palo

l₀ = coefficiente di influenza del cedimento per palo incompressibile in una massa seminfinita e

per vs = 0.5

R_k = fattore di correzione per la compressibilità del palo

Rh = fattore di correzione per profondità, dello strato, finita su una base rigida

R_v = fattore di correzione per il coefficiente di Poisson del terreno vs

h = profondità totale dello strato

d = diametro del palo

P = carico agente testa del palo

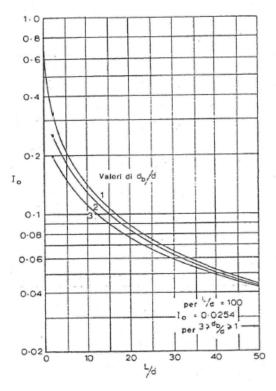


Figura 14.2: Grafico per il calcolo del coefficiente I0

PERIZIA DI VARIANTE TECNICA

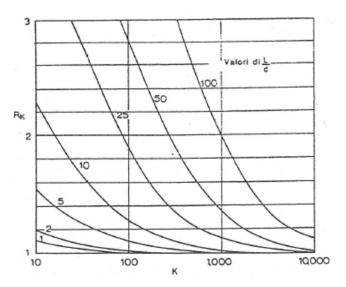


Figura 14.3: Grafico per il calcolo del coefficiente RK

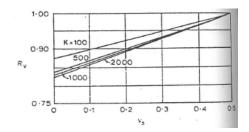


Figura 14.4: Grafico per il calcolo del coefficiente Rv

Dove K è il coefficiente di rigidezza del palo, pari al rapporto tra modulo di Young del palo e del terreno.

14.1.2 Risultati delle verifiche - Pali delle Spalle

Per quanto riguarda le azioni trasmesse ai pali delle spalle, si fa riferimento al calcolo delle azioni massime SLU/SLV, determinato nel precedente capitolo 13, a cui si rimanda per maggiori dettagli, e di seguito riepilogate:

Compressione massima: 5987 kN;

Trazione massima: 1035 kN

Taglio massimo: 422 kN

In condizioni di esercizio SLE/SLD le azioni massime sono le seguenti:

Compressione massima: 4347 kN;

Trazione massima: 952 kNTaglio massimo: 209 kN

Si riporta di seguito la curva di capacità portante dei pali D1200 mm. Si fa riferimento alla condizione stratigrafica più gravosa per le due spalle, ovvero quella della Spalla ovest, caratterizzata da un maggiore approfondimento del substrato lapideo (Unità E), che viene pertanto cautelativamente trascurato. In appendice A sono riportati i tabulati di calcolo completi relativi al calcolo della capacità portante.

PERIZIA DI VARIANTE TECNICA

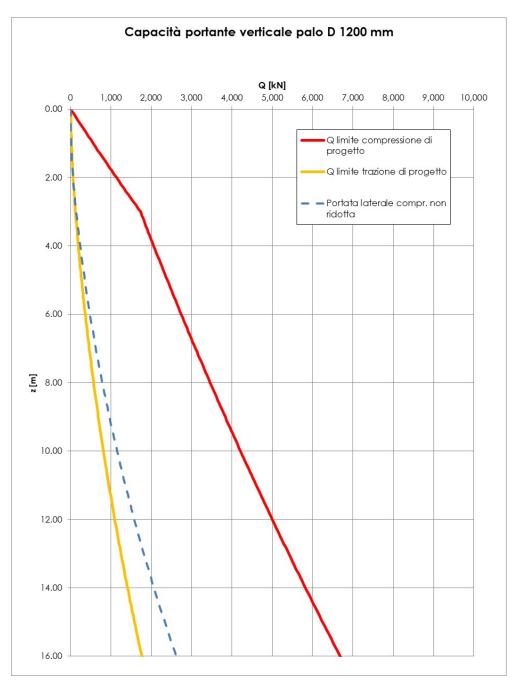


Figura 14.5: Capacità portante micropali pila

Si riportano di seguito i valori di capacità portante di progetto ottenuti, già ridotti dei fattori riduttivi previsti dalla normativa.

Capacità portante di progetto				
Q _{d,compr} (kN)	6,251			
Q _{d,traz} (kN)	1,584			

Figura 14.6: Verifica capacità portante pila

La verifica di capacità portante risulta soddisfatta sia a compressione sia a trazione.

Si riporta di seguito la curva del carico limite orizzontale, determinata mediante il software LPile 6. Si considerano le caratteristiche geometriche del palo e una condizione di testa palo impedita di ruotare.

PERIZIA DI VARIANTE TECNICA

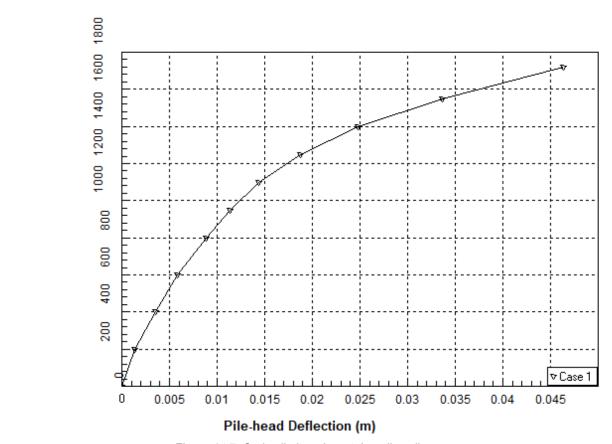


Figura 14.7: Carico limite orizzontale pali spalla

Il carico limite orizzontale risulta pari a 1720 kN. Considerati i fattori riduttivi richiesti da normativa, si ottiene un carico limite orizzontale pari a 882 kN, superiore al massimo taglio di 422 kN e la verifica è soddisfatta.

Si determina il massimo momento agente lungo il fusto del micropalo, mediante il software LPile, per una azione orizzontale di 422 kN applicata in testa. Si ottiene un momento massimo pari a 856 kNm in condizioni SLU, come visibile nella figura seguente.

Lateral Load (kN)

PERIZIA DI VARIANTE TECNICA

Bending Moment (kN-m)

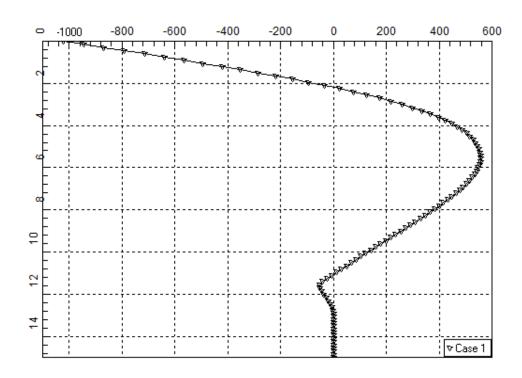


Figura 14.8: Momento massimo micropali pila

Si riporta di seguito la verifica strutturale del palo D1200 mm, sottoposto al massimo momento flettente, ipotizzato applicato simultaneamente alla massima trazione di 1077 kN, con approccio cautelativo. La verifica è eseguita in accordo alle NTC 2018, da cui si evince un momento resistente di 1859 kNm. La verifica è pertanto soddisfatta.

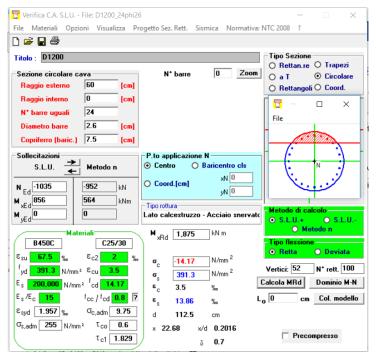


Figura 14.9: Verifica pressoflessione palo – SLU/SLV

PERIZIA DI VARIANTE TECNICA

La verifica sezionale SLE risulta soddisfatta, essendo le tensioni in calcestruzzo e acciaio, pari rispettivamente a 3.1 N/mm² e 226 N/mm², inferiori ai valori limite previsti dalle norme N.T.C. 2018 per i materiali impiegati, pari rispettivamente a 11.25 N/mm² e 360 N/mm².

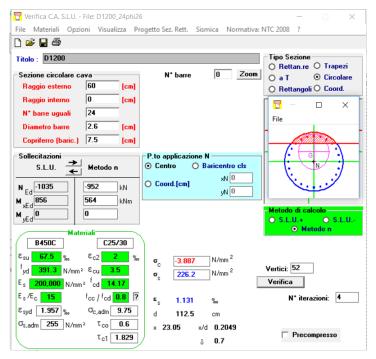


Figura 14.10: Verifica pressoflessione palo – SLE/SLD

Per quanto riguarda la verifica a taglio, si riportano di seguito i risultati della verifica, considerando la presenza di una armatura a taglio $\phi 12/20$.

1. MATERIALI			
1.1. Calcestruzzo [Rif.]			
Resistenza caratteristica cubica cls	R _{ck}	30	[MPa]
Coefficiente di sicurezza parziale per il calcestruzzo	Υ _c	1.5	[-]
Coefficiente che tiene conto degli effetti di lungo termine	α_{cc}	0.85	[-]
Resistenza caratteristica cilindrica	f _{ck}	24.9	[MPa]
Resistenza a compressione di progetto del CLS	f _{cd}	14.1	[MPa]
1.3. Acciaio da Armatura Ordinaria [Rif.]			
Tensione di snervamento caratteristica	f _{yk}	450	[MPa]
Coefficiente di sicurezza parziale per l'acciaio	γs	1.15	[-]
Modulo di elasticità secante dell'acciaio	Es	206000	
Tensione di snervamento di progetto armatura a taglio	f _{ywk}		[MPa]
a chistoric di shervamento di prosecto di matara di tassio	- ywk	332	[4]
2. CARATTERISTICHE GEOMETRICHE			
Altezza trave CLS	H _{CLS}	1060	[mm]
Larghezza minima trave CLS (o larghezza trave equvalente)	b _w	1000	
Altezza utile	d	1000	
Braccio della coppia interna (0,9 d _{UTUF})	Z		[mm]
Area sezione di CLS	A _c	1060000	
Diametro armatura longitudinale tesa	φ _s		[mm]
Numero ferri armatura longitudinale tesa	η _{φs}	12	
variiero terri arritatura iorigitaamare tesa	Пфs		
figura 6.3 Definizione di A_{si} nella espressione (6.2) Legenda A Sezione considerata	A _{s1}	6371	[mm²]
figura 6.3 Definizione di A_{si} nella espressione (6.2) Legenda	A _{s1}		[mm²]
figura 6.3 Definizione di A _{si} nella espressione (6.2) Legenda A Sezione considerata V _{Ed} V _{Ed} V _{Ed}	A _{sl} % A	6371	[mm²]
figura 6.3 Definizione di A _{si} nella espressione (6.2) Legenda A Sezione considerata V _{Ed}	A _{sl} & A	0	
Tigura 6.3 Definizione di A _{si} nella espressione (6.2) Legenda A Sezione considerata I bd VEd VEd A _{si} A _{si} I bd V _{Ed} I bd	A _{sl} V _{Ed}	1.45	[-]
figura 6.3 Definizione di A _{si} nella espressione (6.2) Legenda A Sezione considerata I bd VEd VEd A _{si} A _{si} I A _{si} I A _{si}	A _{sl} V _{Ed}	1.45 0.006	[-]
figura 6.3 Definizione di A _{si} nella espressione (6.2) Legenda A Sezione considerata I bd VEd VEd A _{si} A _{si} I A _{si} I A _{si}	A _{sl} V _{Ed} k P _l C _{Rd,c}	1.45 0.006 0.12	[-] [-]
figura 6.3 Definizione di A _{si} nella espressione (6.2) Legenda A Sezione considerata I bd VEd VEd A _{si} A _{si}	A _{sl} V _{Ed} k P _l C _{Rd,c} V _{min}	1.45 0.006 0.12 0.30	[-] [-] [-]
Figura 6.3 Definizione di A _{st} nella espressione (6.2) Legenda A Sezione considerata	A _{sl} V _{Ed} k p _l C _{Rd,c} V _{min} k ₁	1.45 0.006 0.12 0.30 0.15	[-] [-] [-]
Figura 6.3 Definizione di A _{st} nella espressione (6.2) Legenda A Sezione considerata	A _{sl} V _{Ed} k P ₁ C _{Rd,c} V _{min}	1.45 0.006 0.12 0.30 0.15	[-] [-] [-]
Percentuale di armatura longitudinale tesa Tensione di precompressione Definizione di A _{st} nella espressione (6.2) Legenda A Sezione considerata V _{Ed} V _{Ed} V _{Ed} I _b V _{Ed} I _b I _b I _c I	A _{sl} V _{Ed} k p _l C _{Rd,c} V _{min} k ₁	1.45 0.006 0.12 0.30 0.15	[-] [-] [-]
Percentuale di armatura longitudinale tesa Tensione di precompressione Belia espressione (6.2) Legenda A Sezione considerata V _{Ed} V _{Ed} V _{Ed} V _{Ed} I _b	A _{sl} V _{Ed} k ρ _l C _{Rd,c} V _{min} k ₁ σ _{cp}	1.45 0.006 0.12 0.30 0.15 0.00	[-] [-] [-] [-] [MPa]
Definizione di A _{si} nella espressione (6.2) Legenda A Sezione considerata A Sezione consi	A _{sl} V _{Ed} k ρ _l C _{Rd,c} V _{min} k ₁ σ _{cp}	1.45 0.006 0.12 0.30 0.15 0.00	[-] [-] [-] [-] [-] [MPa]
Percentuale di armatura longitudinale tesa Tensione di precompressione 3. SOLLECITAZIONI Sforzo di Taglio di progetto	A _{sl} V _{Ed} k ρ _l C _{Rd,c} V _{min} k ₁ σ _{cp}	1.45 0.006 0.12 0.30 0.15 0.00	[-] [-] [-] [-] [MPa]
Percentuale di armatura longitudinale tesa Tensione di precompressione 3. SOLLECITAZIONI Sforzo di Taglio di progetto Coefficiente aggiuntivo contro il collasso duttile	A _{sl} V _{Ed} k ρ _l C _{Rd,c} V _{min} k ₁ σ _{cp}	1.45 0.006 0.12 0.30 0.15 0.00	[-] [-] [-] [-] [-] [MPa]
Percentuale di armatura longitudinale tesa Tensione di precompressione 3. SOLLECITAZIONI Sforzo di Taglio di progetto Coefficiente aggiuntivo contro il collasso duttile 4. ELEMENTI CHE NON RICHIEDONO ARMATURA A TAGLIO	A _{sl} V _{Ed} k P _l C _{Rd,c} V _{min} k ₁ σ _{cp} V _{Ed}	1.45 0.006 0.12 0.30 0.15 0.00	[-] [-] [-] [-] [MPa] [kN]
Percentuale di armatura longitudinale tesa Tensione di progetto Coefficiente aggiuntivo contro il collasso duttile 4. ELEMENTI CHE NON RICHIEDONO ARMATURA A TAGLIO Valore di progetto della Resistenza a Taglio	k P1 CRd,c Vmin k1 σcp VEd VEd VRd,c	1.45 0.006 0.12 0.30 0.15 0.00	[-] [-] [-] [-] [MPa] [kN] [-]
Legenda A Sezione considerata	k P1 CRd,c Vmin k1 Gcp VEd VRd,C VRd,c min	1.45 0.006 0.12 0.30 0.15 0.00 422 1	[-] [-] [-] [MPa] [kN] [-]
Percentuale di armatura longitudinale tesa Tensione di precompressione 3. SOLLECITAZIONI Sforzo di Taglio di progetto Coefficiente aggiuntivo contro il collasso duttile 4. ELEMENTI CHE NON RICHIEDONO ARMATURA A TAGLIO Valore di progetto della Resistenza a Taglio	k P1 CRd,c Vmin k1 σcp VEd VEd VRd,c	1.45 0.006 0.12 0.30 0.15 0.00	[-] [-] [-] [-] [MPa] [kN] [-]

PERIZIA DI VARIANTE TECNICA

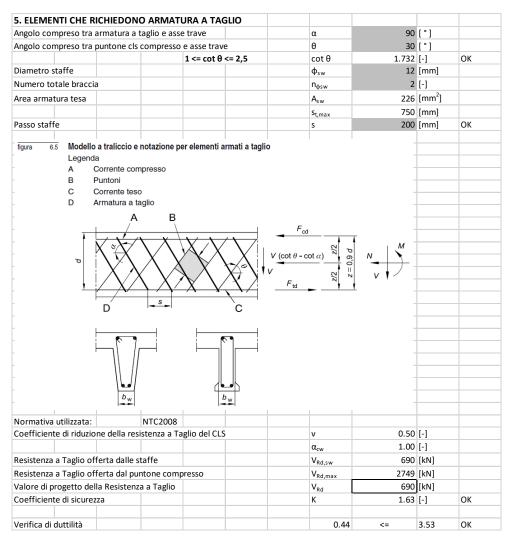


Figura 14.11: Risultati verifica a taglio pali

Con riferimento alla figura sopra riportata, si ottiene un taglio resistente del palo pari a 690 kN e la verifica è soddisfatta.

Per quanto riguarda gli spostamenti in condizioni SLE, si riporta di seguito il calcolo degli spostamenti verticali, calcolati mediante la metodologia di Poulos & Davis (1975), per un carico massimo SLE di 4347 kN.

Si ottiene uno spostamento massimo di 1.9 mm che si considera accettabile.

Per quanto riguarda gli spostamenti orizzontali, si riporta di seguito il calcolo dello spostamento orizzontale mediante Lpile, dovuto a una azione orizzontale SLE di 136 kN e SLD di 209 kN.

PERIZIA DI VARIANTE TECNICA

Lateral Deflection (meters)

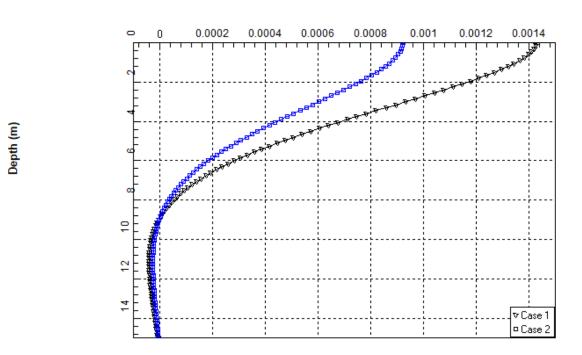


Figura 14.12: Spostamenti orizzontali

Il massimo spostamento orizzontale del micropalo è pari a 1.4 mm e si considera accettabile.

APPENDICE VERTICALE	A: TABULA DEI PALI	ATI DI CA	ALCOLO	DELLA	CAPACITA'	PORTANTE

		Drenata	C-l-l-i-/		Peso	Angolo di	Tensione		V					Attrito	Area	Portata laterale		Portata Ultimo	Attrito Laterale	Portata Ultima	Tensione	Nq	Na	Resistenza		Portata di	Carico Limita				
Unità	Profondità	/Non drenata	Sabbia/ Argilla	Diametro	specifico terreno (γ')	Angolo di attrito (φ)	verticale efficace o	KIIQZ	Mpr	tanδ	c'	Alfa	Cυ	Laterale fs _i	laterale A _{Li}	plugged dQ _{Li}	Peso (kN)	plugged coressione Q _{lat,lim}	traz fs _i	trazione Q _{traz,lim}	verticale efficace q _L	(Berezantez ev, 1961)	Nc (Terzaghi)	Unitaria alla Base q _p	Area Base A _B	base plugged Q _{Base}	Carico Limite Q _{lim}	Qcompr rid	l Qtraz rio	d Qd, compr Qo	d, traz
B	m 0.00	D	S	m 1.20	kN/m ³ 20.00	39.00	kPa 0.00	0.50	0.50	0.81	kPa 0.00	0.00	kPa 0.00	kPa 0.00	m ²	0.00		kN 0.00	kN 0.00	0.00	0.00	50.40	61.00	kPa 0.00	m ²	kN 0.00	kN 0.00	kN 0.00	kN 0.00	kN 0.00	kN 0.00
В	0.10	D	S	1.20	20.00	39.00 39.00	1.00	0.50	0.50	0.81	0.00	0.00	0.00	0.40	0.38	0.15	1.70	0.15	0.40	0.15	2.00 4.00	50.40 50.40	61.00	100.80	1.13 1.13	114.00	114.16 228.62	84.45 168.89	1.82 3.88	56.30	1.36
В	0.20	D D	S	1.20 1.20	20.00	39.00	5.00	0.50	0.50	0.81	0.00	0.00	0.00	2.02	0.38	0.46	3.39 5.09	0.61 1.37	1.21 2.02	0.61 1.37	6.00	50.40	61.00 61.00	302.40	1.13	228.01 342.01	343.38	253.34	6.19	112.60 168.89	2.90 4.62
B 	0.40	D D	S S	1.20 1.20	20.00	39.00 39.00	7.00 9.00	0.50		0.81	0.00	0.00	0.00	2.83 3.64	0.38	1.07	6.79 8.48	2.44 3.82	2.83 3.64	2.44 3.82	8.00 10.00	50.40 50.40	61.00 61.00		1.13	456.01 570.02	458.46 573.83	337.79 422.23	8.74 11.54	225.19 281.49	6.52 8.61
В	0.60	D	S	1.20	20.00	39.00	11.00	0.50	0.50	0.81	0.00	0.00	0.00	4.45	0.38	1.68	10.18	5.50	4.45	5.50	12.00	50.40	61.00	604.81	1.13	684.02	689.51	506.68	14.57	337.79	10.88
В	0.70 0.80	D D	S	1.20	20.00	39.00 39.00	13.00 15.00	0.50		0.81	0.00	0.00	0.00	5.26 6.07	0.38	1.98	11.88	7.48 9.77	5.26 6.07	7.48 9.77	14.00 16.00	50.40 50.40	61.00 61.00		1.13 1.13	798.02 912.03	805.50 921.79	591.13 675.57	17.86 21.39	394.09 450.38	13.33 15.96
B B	0.90	D D	S	1.20 1.20	20.00	39.00 39.00	17.00 19.00	0.50		0.81	0.00	0.00	0.00	6.88 7.69	0.38	2.59	15.27 16.96	12.36 15.26	6.88 7.69	12.36 15.26	18.00 20.00	50.40 50.40	61.00 61.00		1.13	1,026.03	1,038.39 1,155.30	760.02 844.47	25.16 29.18	506.68 562.98	18.78 21.77
В	1.10	D	S	1.20	20.00	39.00	21.00	0.50	0.50	0.81	0.00	0.00	0.00	8.50	0.38	3.21	18.66	18.47	8.50	18.47	22.00	50.40	61.00	1,108.81	1.13	1,254.04	1,272.51	928.92	33.44	619.28	24.95
В В	1.20	D D	S	1.20 1.20	20.00	39.00 39.00	23.00 25.00	0.50		0.81	0.00	0.00	0.00	9.31 10.12	0.38	3.51	20.36 22.05	21.98 25.80	9.31 10.12	21.98 25.80	24.00 26.00	50.40 50.40	61.00 61.00		1.13	1,368.04 1,482.04	1,390.02 1,507.84	1,012.12 1,098.19	37.94 42.69	674.75 732.12	28.31 31.86
B	1.40	D D	S	1.20 1.20	20.00	39.00 39.00	27.00 29.00	0.50		0.81	0.00	0.00	0.00	10.93 11.74	0.38	4.12	23.75 25.45	29.92 34.34	10.93 11.74	29.92 34.34	28.00 30.00	50.40 50.40	61.00 61.00		1.13	1,596.05 1,710.05	1,625.96 1,744.39	1,184.52 1,271.12	47.68 52.92	789.68 847.41	35.59 39.49
В	1.60	D	S	1.20	20.00	39.00	31.00	0.50	0.50	0.81	0.00	0.00	0.00	12.55	0.38	4.73	27.14	39.08	12.55	39.08	32.00	50.40	61.00	1,612.82	1.13	1,824.05	1,863.13	1,357.99	58.40	905.32	43.59
<u>В</u>	1.70	D D	S	1.20	20.00	39.00 39.00	33.00 35.00	0.50		0.81	0.00	0.00	0.00	13.36 14.17	0.38	5.04	28.84 30.54	44.11 49.46	13.36 14.17	44.11 49.46	34.00 36.00	50.40 50.40	61.00 61.00		1.13	1,938.06 2,052.06	1,982.17 2,101.51	1,445.12 1,532.51	64.13 70.10	963.41 1,021.67	47.86 52.31
В	1.90 2.00	D D	S	1.20 1.20	20.00	39.00 39.00	37.00 39.00	0.50		0.81	0.00	0.00	0.00	14.98 15.79	0.38	5.65 5.95	32.23 33.93	55.10 61.06	14.98 15.79	55.10 61.06	38.00 40.00	50.40 50.40	61.00 61.00		1.13	2,166.06 2,280.06	2,221.16 2,341.12	1,620.17 1,708.10	76.32 82.77	1,080.12 1,138.73	56.95 61.77
В	2.10	D	S	1.20	20.00	39.00	41.00	0.50	0.50	0.81	0.00	0.00	0.00	16.60	0.38	6.26	35.63	67.31	16.60	67.31	42.00	50.40	61.00	2,116.82	1.13	2,394.07	2,461.38	1,796.29	89.48	1,197.53	66.77
B B	2.20	D D	S	1.20 1.20	20.00	39.00 39.00	43.00 45.00	0.50		0.81	0.00	0.00	0.00	17.41 18.22	0.38	6.56	37.32 39.02	73.88 80.75	17.41 18.22	73.88 80.75	44.00 46.00	50.40 50.40	61.00 61.00		1.13	2,508.07 2,622.07	2,581.95 2,702.82	1,884.75 1,973.47	96.42 103.62	1,256.50 1,315.65	71.96 77.33
В	2.40 2.50	D D	S S	1.20 1.20	20.00 20.00	39.00 39.00	47.00 49.00	0.50	0.50	0.81	0.00	0.00	0.00	19.03 19.84	0.38	7.17 7.48	40.72 42.41	87.92 95.40	19.03 19.84	87.92 95.40	48.00 50.00	50.40 50.40	61.00 61.00	2,419.22	1.13 1.13	2,736.08 2,850.08	2,824.00 2,945.48	2,062.46 2,151.72	111.05 118.73	1,374.97 1,434.48	82.87 88.61
B	2.60	D	S	1.20	20.00	39.00	51.00	0.50	0.50	0.81	0.00	0.00	0.00	20.65	0.38	7.78	44.11	103.19	20.65	103.19	52.00	50.40	61.00	2,620.83	1.13	2,964.08	3,067.27	2,241.24	126.66	1,494.16	94.52
B B	2.70 2.80	D D	S S	1.20 1.20	20.00	39.00 39.00	53.00 55.00	0.50		0.81	0.00	0.00	0.00	21.46 22.27	0.38	8.09 8.40	45.80 47.50	111.28 119.67	21.46 22.27	111.28 119.67	54.00 56.00	50.40 50.40	61.00 61.00		1.13	3,078.09 3,192.09	3,189.36 3,311.76	2,331.02 2,421.07	134.82 143.24	1,554.01 1,614.05	100.62 106.89
В	2.90	D	S	1.20	20.00	39.00	57.00	0.50	0.50	0.81	0.00	0.00	0.00	23.08	0.38	8.70	49.20	128.37	23.08	128.37	58.00	50.40	61.00	2,923.23	1.13	3,306.09	3,434.46	2,511.39	151.89	1,674.26	113.35
В В1	3.00 3.10	D D	S	1.20	20.00 10.00	39.00 39.00	59.00 60.50	0.50		0.81	0.00	0.00	0.00	23.89 24.50	0.38	9.01	50.89 52.59	137.38 146.61	23.89 24.50	137.38 146.61	60.00	50.40 50.40	61.00 61.00		1.13	3,420.10 3,477.10	3,557.47 3,623.71	2,601.97 2,650.53	160.80 169.88	1,734.65 1,767.02	120.00 126.78
B1	3.20 3.30	D D	S S	1.20 1.20	10.00	39.00 39.00	61.50 62.50	0.50		0.81	0.00	0.00	0.00	24.90 25.31	0.38	9.39 9.54	54.29 55.98	156.00 165.54	24.90 25.31	156.00 165.54	62.00 63.00	50.40 50.40	61.00 61.00		1.13	3,534.10 3,591.10	3,690.10 3,756.64	2,699.22 2,748.04	179.09 188.41	1,799.48 1,832.03	133.65 140.61
B1	3.40	D	S	1.20	10.00	39.00	63.50	0.50	0.50	0.81	0.00	0.00	0.00	25.71	0.38	9.69	57.68	175.23	25.71	175.23	64.00	50.40	61.00	3,225.63	1.13	3,648.10	3,823.34	2,796.99	197.86	1,864.66	147.66
B1 B1	3.50 3.60	D D	S	1.20	10.00	39.00 39.00	64.50 65.50	0.50		0.81	0.00	0.00	0.00	26.12 26.52	0.38	9.85	59.38 61.07	185.08 195.07	26.12 26.52	185.08 195.07	65.00 66.00	50.40 50.40	61.00		1.13	3,705.11 3,762.11	3,890.18 3,957.18	2,846.08 2,895.30	207.44 217.13	1,897.39 1,930.20	154.80 162.04
B1	3.70 3.80	D	S	1.20	10.00	39.00	66.50	0.50	0.50	0.81	0.00	0.00	0.00	26.93	0.38	10.15	62.77 64.47	205.23	26.93	205.23	67.00	50.40	61.00 61.00	3,376.83	1.13	3,819.11	4,024.33 4,091.64	2,944.66 2,994.14	226.95	1,963.10	169.37
B1 B1	3.90	D D	S	1.20 1.20	10.00	39.00 39.00	67.50 68.50	0.50	0.50	0.81	0.00	0.00	0.00	27.33 27.74	0.38	10.30 10.46	66.16	215.53 225.98	27.33 27.74	215.53 225.98	68.00 69.00	50.40 50.40		3,427.23 3,477.63	1.13	3,876.11 3,933.11	4,159.10	3,043.76	236.89 246.95	1,996.10 2,029.18	176.78 184.29
B1	4.00 4.10	D D	S	1.20	10.00	39.00 39.00	69.50 70.50	0.50		0.81	0.00	0.00	0.00	28.14 28.54	0.38	10.61	67.86 69.55	236.59 247.35	28.14 28.54	236.59 247.35	70.00 71.00	50.40 50.40	61.00 61.00	3,528.04 3,578.44	1.13	3,990.11 4,047.12	4,226.71 4,294.47	3,093.51 3,143.40	257.13 267.44	2,062.34 2,095.60	191.89 199.58
B1	4.20 4.30	D D	S S	1.20	10.00	39.00	71.50	0.50	0.50	0.81	0.00	0.00	0.00	28.95	0.38	10.91	71.25	258.27	28.95	258.27	72.00	50.40	61.00	3,628.84	1.13	4,104.12	4,362.38 4,430.45	3,193.42	277.87	2,128.94	207.36
B1 B1	4.40	D	S	1.20 1.20	10.00	39.00 39.00	72.50 73.50	0.50	0.50	0.81	0.00	0.00	0.00	29.35 29.76	0.38	11.07 11.22	72.95 74.64	269.33 280.55	29.35 29.76	269.33 280.55	73.00 74.00	50.40 50.40	61.00 61.00	3,729.64	1.13	4,161.12 4,218.12	4,498.67	3,243.57 3,293.85	288.42 299.09	2,162.38 2,195.90	215.24 223.20
B1	4.50 4.60	D D	S	1.20	10.00	39.00 39.00	74.50 75.50	0.50		0.81	0.00	0.00	0.00	30.16 30.57	0.38	11.37	76.34 78.04	291.93 303.45	30.16 30.57	291.93 303.45	75.00 76.00	50.40 50.40	61.00	_	1.13	4,275.12 4,332.12	4,567.05 4,635.57	3,344.26 3,394.81	309.88 320.80	2,229.51 2,263.21	231.25 239.40
B1 B1	4.70	D	S	1.20	10.00	39.00	76.50	0.50	0.50	0.81	0.00	0.00	0.00	30.97	0.38	11.68	79.73	315.13	30.97	315.13	77.00	50.40	61.00	3,880.84	1.13	4,389.12	4,704.25	3,445.49	331.83	2,297.00	247.64
B1	4.80 4.90	D D	S	1.20	10.00	39.00 39.00	77.50 78.50	0.50	0.50	0.81	0.00	0.00	0.00	31.38 31.78	0.38	11.83	81.43 83.13	326.96 338.94	31.38 31.78	326.96 338.94	78.00 79.00	50.40 50.40	61.00 61.00	3,981.64	1.13	4,446.13 4,503.13	4,773.08 4,842.07	3,496.31 3,547.25	343.00 354.28	2,330.87 2,364.84	255.97 264.39
B1	5.00	D D	S	1.20	10.00	39.00 39.00	79.50 80.50	0.50		0.81	0.00	0.00	0.00	32.19 32.59	0.38	12.13	84.82 86.52	351.07 363.36	32.19 32.59	351.07 363.36	80.00 81.00	50.40 50.40	61.00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.13	4,560.13 4,617.13	4,911.20 4,980.49	3,598.33 3,649.54	365.68 377.21	2,398.89 2,433.03	272.90 281.50
B1	5.20	D	S	1.20	10.00	39.00	81.50	0.50	0.50	0.81	0.00	0.00	0.00	33.00	0.38	12.44	88.22	375.80	33.00	375.80	82.00	50.40	61.00	4,132.84	1.13	4,674.13	5,049.93	3,700.89	388.86	2,467.26	290.19
B1 B1	5.30 5.40	D D	S	1.20 1.20	10.00	39.00 39.00	82.50 83.50	0.50	0.50		0.00	0.00	0.00	33.40 33.81	0.38		89.91 91.61	388.39 401.14	33.40 33.81	388.39 401.14	83.00 84.00	50.40 50.40		4,183.24 4,233.64	1.13 1.13	4,731.13 4,788.14	5,119.53 5,189.28	3,803.98	400.63 412.52	2,501.58 2,535.98	298.98 307.85
B1 B1	5.50 5.60	D D	S	1.20	10.00	39.00 39.00	84.50 85.50		0.50		0.00	0.00	0.00	34.21 34.62	0.38		93.31 95.00	414.04 427.09	34.21 34.62	414.04 427.09	85.00 86.00	50.40 50.40		4,284.04 4,334.44	1.13	4,845.14 4,902.14	5,259.18 5,329.23	-	424.54 436.67	2,570.48 2,605.06	316.82 325.88
B1	5.70	D	S	1.20	10.00	39.00	86.50	0.50	0.50	0.81	0.00	0.00	0.00	35.02	0.38	13.20	96.70	440.29	35.02	440.29	87.00	50.40	61.00	4,384.84	1.13	4,959.14	5,399.43	3,959.60	448.93	2,639.73	335.02
B1 B1	5.80 5.90	D D	S	1.20 1.20	10.00	39.00 39.00		0.50			0.00	0.00	0.00	35.43 35.83	0.38		98.39 100.09	453.65 467.16	35.43 35.83	453.65 467.16	88.00 89.00	50.40 50.40		4,435.24 4,485.64	1.13 1.13	5,016.14 5,073.14	5,469.79 5,540.30	4,011.74 4,064.02	461.31 473.82		344.26 353.59
B1 B1	6.00	D D		1.20 1.20	10.00	39.00 39.00		0.50			0.00	0.00	0.00	36.24 36.64		13.66	101.79 103.48	480.82 494.63	36.24 36.64	480.82 494.63	90.00	50.40 50.40		4,536.05 4,586.45	1.13	5,130.15 5,187.15	5,610.96 5,681.78	-	486.44 499.19		363.02 372.53
B1	6.20	D	S	1.20	10.00	39.00	91.50	0.50	0.50	0.81	0.00	0.00	0.00	37.05	0.38		105.18	508.60	37.05	508.60	92.00	50.40	61.00	4,636.85 4,687.25	1.13	5,244.15	5,752.75	4,221.63	512.06	2,814.42	382.13
B1 B1	6.30 6.40	D D	S S	1.20 1.20	10.00	39.00 39.00	93.50	0.50	0.50	0.81	0.00	0.00	0.00	37.45 37.86	0.38	14.27	108.57	522.72 536.99	37.45 37.86	522.72 536.99	93.00 94.00	50.40 50.40	61.00	4,737.65	1.13 1.13	5,301.15 5,358.15	5,823.87 5,895.14		525.05 538.17	2,884.92	391.83 401.62
B1	6.50 6.60	D D	S	1.20 1.20	10.00	39.00 39.00	94.50 95.50		0.50		0.00	0.00	0.00	38.26 38.67	0.38		110.27 111.97	551.41 565.99	38.26 38.67	551.41 565.99	95.00 96.00	50.40 50.40		4,788.05 4,838.45	1.13	5,415.15 5,472.16	5,966.57 6,038.15		551.40 564.76		411.49 421.46
B1	6.70	D	S	1.20	10.00	39.00	96.50	0.50	0.50	0.81	0.00	0.00	0.00	39.07	0.38	14.73	113.66	580.72	39.07	580.72	97.00	50.40	61.00	4,888.85	1.13	5,529.16	6,109.88	4,486.98	578.24	2,991.32	431.52
B1 B1	6.80 6.90	D D	S	1.20 1.20	10.00 10.00	39.00 39.00	98.50	0.50	0.50	0.81	0.00	0.00	0.00	39.48 39.88	0.38	15.04		595.60 610.64	39.48 39.88	595.60 610.64	98.00 99.00	50.40 50.40	61.00	4,939.25 4,989.65	1.13 1.13	5,586.16 5,643.16	6,181.76 6,253.80	4,540.45 4,594.05	591.84 605.57	3,062.70	441.67 451.92
B1 B1	7.00 7.10	D D		1.20 1.20	10.00	39.00 39.00		0.50			0.00	0.00	0.00	40.29 40.69		15.19 15.34		625.83 641.17	40.29 40.69	625.83 641.17	100.00	50.40 50.40		5,040.05 5,090.45	1.13	5,700.16 5,757.16	6,325.99 6,398.33	-	619.41 633.38		462.25 472.67
B1	7.20	D	S	1.20	10.00	39.00	101.50	0.50	0.50	0.81	0.00	0.00	0.00	41.10	0.38	15.49	122.15	656.66	41.10	656.66	102.00	50.40	61.00	5,140.85	1.13	5,814.17	6,470.83	4,755.65	647.47	3,170.44	483.19
B1 B1	7.30 7.40	D D	S	1.20 1.20	10.00	39.00 39.00	103.50	0.50	0.50	0.81	0.00	0.00	0.00	41.50 41.91	0.38		123.84 125.54	672.31 688.10	41.50 41.91	672.31 688.10	103.00 104.00	50.40 50.40	61.00	5,191.25 5,241.65	1.13 1.13	5,871.17 5,928.17	6,543.47 6,616.27	4,864.05	661.69 676.02	3,206.52 3,242.70	493.80 504.49
B1	7.50 7.60	D D	S S	1.20 1.20	10.00 10.00	39.00 39.00		0.50			0.00	0.00	0.00	42.31 42.72			127.23 128.93	704.06 720.16	42.31 42.72	704.06 720.16	105.00 106.00	50.40 50.40		5,292.05 5,342.45	1.13 1.13	5,985.17 6,042.17	6,689.23 6,762.33		690.48 705.06		515.28 526.16
B1	7.70	D	S	1.20	10.00	39.00	106.50	0.50	0.50	0.81	0.00	0.00	0.00	43.12	0.38	16.26	130.63	736.42	43.12	736.42	107.00	50.40	61.00	5,392.85	1.13	6,099.17	6,835.59	5,027.64	719.76	3,351.76	537.13
B1 B1	7.80 7.90	D D	S	1.20 1.20	10.00	39.00 39.00		0.50			0.00	0.00	0.00	43.53 43.93	0.38		132.32 134.02	752.82 769.39	43.53 43.93	752.82 769.39	108.00 109.00	50.40 50.40		5,443.25 5,493.65	1.13	6,156.18 6,213.18	6,909.00 6,982.56	5,082.44 5,137.36	734.58 749.53	3,388.29 3,424.91	548.20 559.35
B1 B1	8.00 8.10	D D	S S	1.20 1.20	10.00 10.00	39.00 39.00	109.50	0.50	0.50	0.81	0.00	0.00	0.00	44.34 44.74			135.72 137.41	786.10 802.97	44.34 44.74	786.10 802.97	110.00 111.00	50.40 50.40		5,544.05 5,594.46	1.13	6,270.18 6,327.18	7,056.28 7,130.15		764.60 779.79	3,461.62	570.59 581.93
B1	8.20	D	S	1.20	10.00	39.00	111.50	0.50	0.50	0.81	0.00	0.00	0.00	45.15	0.38	17.02	139.11	819.99	45.15	819.99	112.00	50.40	61.00	5,644.86	1.13	6,384.18	7,204.17	5,302.94	795.10	3,535.30	593.36
B1	8.30 8.40	D D	S	1.20 1.20	10.00	39.00 39.00		0.50			0.00	0.00	0.00	45.55 45.96				837.16 854.48	45.55 45.96	837.16 854.48	113.00 114.00	50.40 50.40		5,695.26 5,745.66	1.13	6,441.18 6,498.18	7,278.34 7,352.67		810.53 826.09	3,572.27 3,609.33	604.87 616.48
B1 B1	8.50 8.60	D D	S	1.20	10.00	39.00 39.00	114.50	0.50	0.50	0.81	0.00	0.00	0.00	46.36 46.77		17.48	144.20	871.96 889.59	46.36 46.77	871.96 889.59	115.00 116.00	50.40 50.40	61.00	5,796.06 5,846.46	1.13	6,555.19	7,427.15 7,501.78	5,469.72	841.77 857.57	3,646.48	628.18 639.98
B1	8.70	D	S	1.20	10.00	39.00	116.50	0.50	0.50	0.81	0.00	0.00	0.00	47.17	0.38	17.78	145.90 147.59	907.37	47.17	907.37	117.00	50.40	61.00	5,896.86	1.13	6,612.19	7,576.56	5,581.57	873.49	3,721.05	651.86
B1	8.80 8.90	D D	S	1.20 1.20	10.00	39.00 39.00	117.50 118.50		0.50	$\overline{}$	0.00	0.00	0.00	47.57 47.98	0.38		149.29 150.98	925.31 943.40	47.57 47.98	925.31 943.40	118.00 119.00	50.40 50.40		5,947.26 5,997.66	1.13	6,726.19 6,783.19	7,651.50 7,726.59	5,637.69 5,693.95	889.53 905.70	3,758.46 3,795.96	663.83 675.90
B1	9.00	D	S	1.20	10.00	39.00	119.50	0.50	0.50	0.81	0.00	0.00	0.00	48.38	0.38	18.24	152.68	961.64	48.38	961.64	120.00	50.40	61.00	6,048.06	1.13	6,840.19	7,801.83	5,750.34	921.99	3,833.56	688.05
B1	9.10	D	S	1.20	10.00	39.00	120.50	0.50	0.30	U.01	0.00	0.00	0.00	48.79	0.38	18.39	154.38	980.03	48.79	980.03	121.00	50.40	61.00	6,098.46	1.13	6,897.20	7,877.23	5,806.86	938.40	3,871.24	700.30

Unità	Profondità	Drenata /Non drenata	Sabbia/	Diametro	Peso specifico terreno (γ')	Angolo di attrito (φ)	Tensione verticale efficace as		z Kc mr	co tano	c'	Alfa	Cu	Attrito Laterale fs _i	Area laterale A _{Li}	Portata laterale plugged dQ _{Li}	Peso (kN)	Portata Ultimo laterale plugged coressione Q _{lat,im}	a Attrito Laterale traz fs _i	Portata Ultimo trazione Q _{traz,lim}	Tensione verticale efficace q _L	Nq (Berezantez ev, 1961)	Nc (Terzaghi)	Resistenza Unitaria alla Base q _p	Area Base A _B	Portata di base plugged Q _{Base}	Carico Limite Q _{lim}	Qcompr rid	d Qtraz rid	Qd, compr	Qd, traz
	m			m	kN/m ³	۰	kPa		-		kPa	-	kPa	kPa	m ²	kN		kN	kN	kN	kPa	-		kPa	m ²	kN	kN	kN	kN	kN	kN
B1	9.20	D		1.20	10.00	39.00	121.50				0.00	0.00	0.00	49.19	0.38	18.55		998.58	49.19	998.58	122.00	50.40		6,148.86	1.13	6,954.20	7,952.77	5,863.51	954.93	3,909.01	712.64
B1	9.30 9.40	D D		1.20	10.00	39.00 39.00	122.50		0.5		0.00	0.00	0.00	49.60 50.00	0.38	18.70 18.85	157.77	1,017.27 1.036.13	49.60 50.00	1,017.27	123.00	50.40 50.40			1.13	7,011.20 7.068.20	8,028.47 8,104.33	5,920.30 5,977.22	971.59	3,946.86	725.07
B1	9.40	D		1.20	10.00	39.00	123.50	0.50		50 0.81	0.00	0.00	0.00	50.00	0.38	19.00	161 16	1,036.13	50.41	1,036.13	124.00	50.40		.,	1.13	7,066.20	8,180.33	6,034.27	988.37 1,005.27	3,984.81 4,022.85	737.59 750.20
B1	9.60	D	S	1.20	10.00	39.00	125.50	0.00	0.5	0.01	0.00	0.00	0.00	50.81	0.38	19.16	162.86	1,074.29	50.81	1,074.29	126.00	50.40		-,	1.13	7,182.20	8,256.49	6,091.45	1,022.29	4,060.97	762.90
B1	9.70	D	S	1.20	10.00	39.00	126.50		0.5		0.00	0.00	0.00	51.22	0.38	19.31	164.56	1,093.59	51.22	1,093.59	127.00	50.40			1.13	7,239.21	8,332.80	6,148.77	1,039.43	4,099.18	775.70
B1	9.80	D	S	1.20	10.00	39.00	127.50	0.50	0.5	50 0.81	0.00	0.00	0.00	51.62	0.38	19.46	166.25	1,113.06	51.62	1,113.06	128.00	50.40			1.13	7,296.21	8,409.26	6,206.22	1,056.70	4,137.48	788.58
B1	9.90	D	S	1.20	10.00	39.00	128.50	0.00	0.5	0.01	0.00	0.00	0.00	52.03	0.38	19.61	167.95	1,132.67	52.03	1,132.67	129.00	50.40		0,001.00	1.13	7,353.21	8,485.88	6,263.80	1,074.09	4,175.87	801.56
B1	10.00	D	S	1.20	10.00	39.00	129.50		0.5		0.00	0.00	0.00	52.43	0.38	19.77	169.65	1,152.44	52.43	1,152.44	130.00	50.40		.,	1.13	7,410.21	8,562.65 8,639.57	6,321.52	1,091.60	4,214.35	814.62
B1	10.10	D D	2	1.20	10.00	39.00 39.00	130.50	0.50	0.5		0.00	0.00	0.00	52.84 53.24	0.38	19.92 20.07	171.34 173.04	1,172.36 1,192.43	52.84 53.24	1,172.36	131.00	50.40 50.40			1.13	7,467.21 7,524.21	8,639.57	6,379.37 6,437.35	1,109.23 1,126.98	4,252.91 4,291.57	827.78 841.03
B1	10.30	D	S	1.20	10.00	39.00	132.50	_	0.5		0.00	0.00	0.00	53.65	0.38	20.22	174.74	1,212.65	53.65	1,212.65	133.00	50.40		.,	1.13	7,581.22	8,793.87	6,495.46	1,144.86	4,330.31	854.37
B1	10.40	D		1.20	10.00	39.00	133.50	0.50	_		0.00	0.00	0.00	54.05	0.38	20.38	176.43	1,233.03	54.05	1,233.03	134.00	50.40		6,753.67	1.13	7,638.22	8,871.25	6,553.71	1,162.86	4,369.14	867.80
B1	10.50	D	S	1.20	10.00	39.00	134.50	0.50		50 0.81	0.00	0.00	0.00	54.46	0.38	20.53	178.13	1,253.56	54.46	1,253.56	135.00	50.40			1.13	7,695.22	8,948.78	6,612.09	1,180.98	4,408.06	881.33
B1	10.60	D	S	1.20	10.00	39.00	135.50	0.50	_		0.00	0.00	0.00	54.86	0.38	20.68	179.82	1,274.24	54.86	1,274.24	136.00	50.40			1.13	7,752.22	9,026.47	6,670.60	1,199.22	4,447.07	894.94
B1	10.70	D	S	1.20	10.00	39.00	136.50	0.50	_	50 0.81	0.00	0.00	0.00	55.27	0.38	20.84	181.52	1,295.08	55.27	1,295.08	137.00	50.40			1.13	7,809.22	9,104.30	6,729.24	1,217.59	4,486.16	908.65
B1 B1	10.80	D D	3	1.20	10.00	39.00 39.00	137.50 138.50	0.50		50 0.81 50 0.81	0.00	0.00	0.00	55.67 56.08	0.38	20.99	183.22	1,316.07 1,337.21	55.67 56.08	1,316.07 1,337.21	138.00	50.40 50.40		-,	1.13	7,866.22 7,923.23	9,182.29 9,260.43	6,788.02 6,846.93	1,236.07 1,254.68	4,525.35 4,564.62	922.44 936.33
B1	11.00	D		1.20	10.00	39.00	139.50	0.50			0.00	0.00	0.00	56.48	0.38	21.29	186.61	1,358.50	56.48	1,358.50	140.00	50.40		7,056.07	1.13	7,723.23	9,338.73	6,905.98	1,273.41	4,603.98	950.31
B1	11.10	D	S	1.20	10.00	39.00	140.50	0.00	0.5		0.00	0.00	0.00	56.89	0.38	21.45	188.31	1,379.95	56.89	1,379.95	141.00	50.40			1.13	8,037.23	9,417.18	6,965.15	1,292.27	4,643.43	964.38
B1	11.20	D	S	1.20	10.00	39.00	141.50	0.50	0.5	50 0.81	0.00	0.00	0.00	57.29	0.38	21.60	190.00	1,401.55	57.29	1,401.55	142.00	50.40	61.00	7,156.87	1.13	8,094.23	9,495.78	7,024.46	1,311.24	4,682.97	978.54
B1	11.30	D	S	1.20	10.00	39.00	142.50		0.5		0.00	0.00	0.00	57.70	0.38	21.75	191.70	1,423.30	57.70	1,423.30	143.00	50.40		7,207.27	1.13	8,151.23	9,574.53	7,083.90	1,330.34	4,722.60	992.79
B1	11.40	D	S	1.20	10.00	39.00	143.50	0.50	, 0.0		0.00	0.00	0.00	58.10	0.38	21.90	193.40	1,445.20	58.10	1,445.20	144.00	50.40			1.13	8,208.23	9,653.44	7,143.47	1,349.56	4,762.32	1,007.13
B1 B1	11.50	D D	S	1.20	10.00	39.00	144.50 145.50		0.5		0.00	0.00	0.00	58.51 58.91	0.38	22.06	195.09	1,467.26 1,489.47	58.51 58.91	1,467.26	145.00	50.40			1.13	8,265.24	9,732.49 9,811.70	7,203.18	1,368.90	4,802.12	1,021.57 1.036.09
B1	11.60	D	<u>S</u>	1.20	10.00	39.00 39.00	145.50		0.5		0.00	0.00	0.00	59.32	0.38	22.21	198.49	1,511.83	59.32	1,511.83	146.00	50.40 50.40		. ,	1.13	8,322.24 8,379.24	9,891.07	7,263.02 7,322.99	1,388.36 1,407.95	4,842.01 4,881.99	1,050.71
B1	11.80	D		1.20	10.00	39.00	147.50		0.5		0.00	0.00	0.00	59.72	0.38	22.51	200.18	1,534.34	59.72	1,534.34	148.00	50.40			1.13	8,436,24	9,970.58	7,383.10	1,427.66	4,922.06	1.065.42
B1	11.90	D	S	1.20	10.00	39.00	148.50	0.50	0.5	50 0.81	0.00	0.00	0.00	60.13	0.38	22.67	201.88	1,557.01	60.13	1,557.01	149.00	50.40	61.00	7,509.67	1.13	8,493.24	10,050.25	7,443.33	1,447.49	4,962.22	1,080.21
B1	12.00	D	S	1.20	10.00	39.00	149.50	0.50			0.00	0.00	0.00	60.53	0.38	22.82	203.58	1,579.83	60.53	1,579.83	150.00	50.40			1.13	8,550.24	10,130.07	7,503.70	1,467.44	5,002.47	1,095.10
B1	12.10	D	S	1.20	10.00	39.00	150.50	_	0.5		0.00	0.00	0.00	60.94	0.38	22.97	205.27	1,602.80	60.94	1,602.80	151.00	50.40			1.13	8,607.25	10,210.05	7,564.21	1,487.51	5,042.81	1,110.09
B1	12.20	D D		1.20	10.00	39.00 39.00	151.50 152.50	0.50	0.5		0.00	0.00	0.00	61.34	0.38	23.13	206.97	1,625.93	61.34	1,625.93	152.00 153.00	50.40 50.40			1.13	8,664.25	10,290.18 10,370.45	7,624.84 7.685.61	1,507.71 1.528.03	5,083.23 5.123.74	1,125.16 1,140.32
B1	12.30	D	3	1.20	10.00	39.00	153.50	0.50	_	50 0.81	0.00	0.00	0.00	62.15	0.38	23.28	210.36	1,649.21	62.15	1,672.64	154.00	50.40			1.13	8,721.25 8,778.25	10,370.45	7,085.61	1,528.03	5,123.74 5,164.34	1,140.32
B1	12.50	D	S	1.20	10.00	39.00	154.50	0.50		50 0.81	0.00	0.00	0.00	62.56	0.38	23.43	212.06	1,696.22	62.56	1,696.22	155.00	50.40			1.13	8,835.25	10,531.47	7,807.55	1,569.03	5,205.03	1,170.92
B1	12.60	D	S	1.20	10.00	39.00	155.50	0.50		50 0.81	0.00	0.00	0.00	62.96	0.38	23.74	213.75	1,719.96	62.96	1,719.96	156.00	50.40	$\overline{}$		1.13	8,892.25	10,612.21	7,868.71	1,589.72	5,245.81	1,186.36
B1	12.70	D	S	1.20	10.00	39.00	156.50	0.50	0.5	50 0.81	0.00	0.00	0.00	63.37	0.38	23.89	215.45	1,743.84	63.37	1,743.84	157.00	50.40		7,912.88	1.13	8,949.25	10,693.10	7,930.01	1,610.53	5,286.68	1,201.88
B1	12.80	D		1.20	10.00	39.00	157.50	0.50		50 0.81	0.00	0.00	0.00	63.77	0.38	24.04	217.15	1,767.88	63.77	1,767.88	158.00	50.40		7,963.28	1.13	9,006.26	10,774.14	7,991.45	1,631.45	5,327.63	1,217.50
B1	12.90	D	S	1.20	10.00	39.00	158.50	0.50	, 0.0	50 0.81	0.00	0.00	0.00	64.18	0.38	24.19	218.84	1,792.08	64.18	1,792.08	159.00	50.40		8,013.68	1.13	9,063.26	10,855.34	8,053.01	1,652.51	5,368.67	1,233.21
B1	13.00	D D	S	1.20	10.00	39.00 39.00	159.50 160.50	0.50	0.5	50 0.81 50 0.81	0.00	0.00	0.00	64.58	0.38	24.35	220.54	1,816.42 1,840.92	64.58	1,816.42 1,840.92	160.00	50.40 50.40		8,064.08 8,114.48	1.13	9,120.26 9,177,26	10,936.68 11.018.18	8,114.71 8,176.54	1,673.68 1,694.97	5,409.80 5,451.03	1,249.01 1,264.91
B1	13.10	D		1.20	10.00	39.00	161.50		0.5		0.00	0.00	0.00	65.39	0.38	24.65	223.93	1,840.92	65.39	1,840.92	162.00	50.40		8,114.48	1.13	9,177.26	11,018.18	8,176.54	1,894.97	5,451.03	1,280.89
B1	13.30	D		1.20	10.00	39.00	162.50		0.5		0.00	0.00	0.00	65.79	0.38	24.80	225.63	1,890.38	65.79	1,890.38	163.00	50.40		8,215.28	1.13	9,291.26	11,181.64	8,300.60	1,737.93	5,533.73	1,296.96
B1	13.40	D	S	1.20	10.00	39.00	163.50	0.50		50 0.81	0.00	0.00	0.00	66.20	0.38	24.96	227.33	1,915.34	66.20	1,915.34	164.00	50.40	61.00	8,265.68	1.13	9,348.27	11,263.60	8,362.82	1,759.59	5,575.22	1,313.13
B1	13.50	D	S	1.20	10.00	39.00	164.50		0.5		0.00	0.00	0.00	66.60	0.38	25.11	229.02	1,940.44	66.60	1,940.44	165.00	50.40		0,010.00	1.13	9,405.27	11,345.71	8,425.19	1,781.38	5,616.79	1,329.39
B1	13.60	D		1.20	10.00	39.00	165.50		0.5		0.00	0.00	0.00	67.01	0.38	25.26	230.72	1,965.71	67.01	1,965.71	166.00	50.40		-,	1.13	9,462.27	11,427.98	8,487.68	1,803.28	5,658.45	1,345.73
B1	13.70 13.80	D D		1.20	10.00	39.00 39.00	166.50 167.50	0.00	0.5	0.01	0.00	0.00	0.00	67.41 67.82	0.38	25.41 25.57	232.42	1,991.12 2,016.69	67.41 67.82	1,991.12 2,016.69	167.00 168.00	50.40 50.40		8,416.88 8,467.28	1.13	9,519.27 9,576.27	11,510.39 11,592.96	8,550.31 8,613.07	1,825.31 1,847.46	5,700.20 5,742.04	1,362.17 1,378.70
B1	13.90	D	5	1.20	10.00	39.00	168.50	0.50	_	50 0.81	0.00	0.00	0.00	68.22	0.38	25.72	235.81	2,010.07	68.22	2,018.87	169.00	50.40			1.13	9,633.27	11,675.68	8,675.96	1,869.73	5,783.97	1,395.32
B1	14.00	D	S	1.20	10.00	39.00	169.50		0.5		0.00	0.00	0.00	68.63	0.38	25.87	237.50	2,042.41	68.63	2,068.28	170.00	50.40			1.13	9,690.28	11,758.56	8,738.98	1,892.13	5,825.99	1,412.04
B1	14.10	D		1.20	10.00	39.00	170.50		0.5		0.00	0.00	0.00	69.03	0.38	26.03	239.20	2,094.31	69.03	2,094.31	171.00	50.40	-	8,618.49	1.13	9,747.28	11,841.58	8,802.14	1,914.65	5,868.09	1,428.84
B1	14.20	D	S	1.20	10.00	39.00	171.50	0.50	_	50 0.81	0.00	0.00	0.00	69.44	0.38	26.18	240.90	2,120.48	69.44	2,120.48	172.00	50.40		-,	1.13	9,804.28	11,924.76	8,865.43	1,937.28	5,910.29	1,445.74
B1	14.30	D	S	1.20	10.00	39.00	172.50	0.50	_	50 0.81	0.00	0.00	0.00	69.84	0.38	26.33	242.59	2,146.82	69.84	2,146.82	173.00	50.40			1.13	9,861.28	12,008.10	8,928.85	1,960.05	5,952.57	1,462.72
B1	14.40	D	S	1.20	10.00	39.00	173.50	0.50		50 0.81	0.00	0.00	0.00	70.25	0.38	26.48	244.29	2,173.30	70.25	2,173.30	174.00	50.40			1.13	9,918.28	12,091.58	8,992.41	1,982.93	5,994.94	1,479.80
B1	14.50	D	5	1.20	10.00	39.00 39.00	174.50 175.50	0.50	_		0.00	0.00	0.00	70.65	0.38	26.64	245.99	2,199.93 2,226.72	70.65	2,199.93 2,226.72	175.00	50.40 50.40			1.13	9,975.28	12,175.22 12,259.01	9,056.10 9,119.92	2,005.93 2,029.06	6,037.40 6,079.95	1,496.97
B1	14.60	D	3	1.20	10.00	39.00	176.50	0.50	, 0.0	50 0.81	0.00	0.00	0.00	71.06 71.46	0.38	26.79 26.94	247.68 249.38	2,226.72	71.06 71.46	2,226.72	176.00 177.00	50.40		8,870.49	1.13	10,032.29	12,259.01	9,119.92	2,029.06	6,079.95	1,514.22 1,531.57
B1	14.80	D	S	1.20	10.00	39.00	177.50	0.50		50 0.81	0.00	0.00	0.00	71.40	0.38	27.09	251.08	2,280.76	71.87	2,280.76	178.00	50.40			1.13	10,067.27	12,427.05	9.247.96	2,075.68	6,165.31	1,549.02
B1	14.90	D	S	1.20	10.00	39.00	178.50	0.00	0.5		0.00	0.00	0.00	72.27	0.38	27.25	252.77	2,308.00	72.27	2,308.00	179.00	50.40			1.13	10,203.29	12,511.29	9,312.18	2,099.18	6,208.12	1,566.55
B1	15.00	D	S	1.20	10.00	39.00	179.50	0.50	0.5	50 0.81	0.00	0.00	0.00	72.68	0.38	27.40	254.47	2,335.40	72.68	2,335.40	180.00	50.40	61.00	9,072.09	1.13	10,260.29	12,595.69	9,376.53	2,122.79	6,251.02	1,584.17