

Direzione Progettazione e Realizzazione Lavori

Asse stradale di collegamento tra gli svincoli di Prato Est e Prato Ovest — "Declassata di Prato" Raddoppio di Viale Leonardo da Vinci nel tratto compreso tra Via Marx e Via Nenni mediante la realizzazione di un sottopasso

PROGETTO DEFINITIVO cop. FI463 PROGETTAZIONE: MANDATARIA: **RAGGRUPPAMENTO** ARGICALT. © POLITECNICA MATILDI+PARTNERS TEMPORANEO PROGETTISTI IL RESPONSABILE DELL'INTEGRAZIONE DELLE PRESTAZIONI IL PROGETTISTA: SPECIALISTICHE: GRUPPO DI PROGETTAZIONE: COORDINAMENTO PROGETTAZIONE, PROGETTAZIONE STRADALE, Ing. Andrea Renso - TECHNITAL Ordine Ingegneri Provincia di Verona n. A2413 GEOTECNICA ED OPERE IN SOTTERRANEO: Ing. Marcello Mancone - POLITECNICA ordine ingegneri Provincia di Firenze n.5723 IL GEOLOGO: Geol. Pietro Accolti Gil - POLITECNICA STUDIO DI IMPATTO AMBIENTALE: Ordine Geologi Regione Toscana nº 728 Arch. Paola Gabrielli - POLITECNICA ordine Architetti Provincia di Bologna n. 2921 IL COORDINATORE PER LA SICUREZZA IN FASE DI PROGETTAZIONE CANTIERIZZAZIONE E FASI ESECUTIVE: Ing. Marcello Mancone - POLITECNICA ordine ingegneri Provincia di Firenze n.5723 Ing. Alessio Gori - POLITECNICA ordine ingegneri Provincia di Firenze n.5969 IDROLOGIA ED IDRAULICA: VISTO: IL RESP. DEL PROCEDIMENTO: Ing. Alessandro Cecchelli - POLITECNICA ordine ingegneri Provincia di Grosseto n.760 Ing. Raffaele Franco Carso COLLABORATORI DI PROGETTO: Ing. Massimo Palermo - POLITECNICA Arch. Valentina laia - POLITECNICA Geom. Franco Mariotti - POLITECNICA PROTOCOLLO: DATA: Geom. Angela Pantiferi - POLITECNICA

02 — GEOLOGIA, GEOTECNICA E SISMICA 02.01 — Indagini geognostiche e ambientali Relazione indagini geognostiche

CODICE PROGETTO PROGETTO LIV. PROG. N. PROG.		NOME FILE 02.04_P00_GE00_G	EO_RE03_/		PROGR. ELAB. 02.04	REV.		SCALA:
DPFI	10 D 1901	CODICE POOGEOOGEORE			3	A		_
D								
С								
В								
А	EMISSIONE		12/2019	POLITECNICA	S. TRONCONI	M.MAI	NCONE	A.RENSO
REV.	DESCRIZIONE		DATA	SOCIETA'	REDATTO	VERIF	ICATO	APPROVATO

OCUME

PROJECT:

Asse stradale di collegamento tra gli svincoli di Prato Est e Prato Ovest – Raddoppio di viale Leonardo da Vinci ("Declassata di Prato") nel tratto compreso tra Via Marx e Via Nenni mediante la realizzazione di un sottopasso. Progetto definitivo

LOCATION:

Viale Leonardo da Vinci - Comune di Prato (PO)

CLIENT: ANAS S.P.A.

OBJECT:

DOCUMENTAZIONE INDAGINI GEOGNOSTICHE

Tecno In Ref.: R.C. 160/18 Revision n.: 00 Date: dicembre 2018 Description: emissione Redacted by: Dr. ssa Geol. Gabriella Vadala'
Reviewed by: Dr. Geol. Giovanni Patricelli
Approved by: Dr. Geol. Lucio Amato
Document code: 160-18_GEOGNOSTICA

ANAS S.p.A. - Direzione Progettazione e Realizzazione Lavori Asse stradale di collegamento tra gli svincoli di Prato est e Prato ovest Raddoppio di viale Leonardo da Vinci ("Declassata di Prato") nel tratto compreso tra via Marx e via Nenni

Documentazione Indagini Geognostiche

INDICE

<u>1.</u>	PREMESSA	2
2.	RIFERIMENTI NORMATIVI	3
3.	SONDAGGI	3
4.	PROVE S.P.T.	6
<u>5.</u>	PRELIEVO DI CAMPIONI GEOTECNICI	8
6.	INSTALLAZIONE PIEZOMETRI A TUBO APERTO	9
<u>7.</u>	CONDIZIONAMENTO PERFORI PER PROVE DOWN-HOLE	10
8.	PROVE DI PERMEABILITA' LEFRANC	10
9.	PROVE SLUG TEST	13

ALLEGATI:

ALLEGATO 1: STRATIGRAFIE DEI SONDAGGI

ALLEGATO 2: DOCUMENTAZIONE FOTOGRAFICA DELLE INDAGINI (SONDAGGI)

ALLEGATO 3: PROVE LEFRANC

ALLEGATO 4: PROVE SLUG TEST

ALLEGATO 5: ANALISI CHIMICA ACQUA

ANAS S.p.A. - Direzione Progettazione e Realizzazione Lavori Asse stradale di collegamento tra gli svincoli di Prato est e Prato ovest Raddoppio di viale Leonardo da Vinci ("Declassata di Prato") nel tratto compreso tra via Marx e via Nenni

Documentazione Indagini Geognostiche

1. PREMESSA

Il presente elaborato "Documentazione indagini geognostiche" viene redatto per il Progetto definitivo di Raddoppio di Viale Leonardo Da Vinci ("Declassata di Prato") nel tratto compreso tra Via Marx e Via Nenni – Prato.

Nell'ambito del progetto summenzionato è stata effettuata una campagna di indagini geognostiche finalizzata alla determinazione delle caratteristiche geotecniche e alla definizione stratigrafica in chiave geolitologica.

La campagna di indagine geognostica è stata così articolata:

- n. 7 sondaggi geognostici verticali a carotaggio continuo finalizzati alla definizione della sequenza stratigrafica, di cui n. 2 condizionati per prova down hole, n.4 con tubo piezometrico da 3" e 2", e n.1 alesato a distruzione di nucleo sono al diametro di 250 mm per il condizionamento a pozzo con tubazione in PVC da 6";
- n. 33 prove penetrometriche SPT;
- n. 33 prelievi di campioni di cui n.8 indisturbati e n. 25 rimaneggiati, da sottoporre a prove di laboratorio geotecnico (cfr. "Documentazione prove di laboratorio geotecnico");
- n. 21 prove di permeabilità Lefranc
- n. 3 prove slug test
- georeferenziazione dei punti di indagine; per la visione di dettaglio si rimanda al documento Georeferenziazione delle indagini" ed alle monografie allegate
- n. 1 prelievi di campioni d'acqua (PA) dal pozzo "P" per l'esecuzione di analisi chimiche.

Sono state realizzate inoltre:

n. 2 down hole

per i cui dettagli si rimanda all'elaborato "Documentazione indagini geofisiche"

Le attività di cantiere si sono espletate nei mesi di ottobre e novembre 2018.

Tutte le indagini sono state effettuate nel rispetto delle disposizioni delle specifiche tecniche e del capitolato d'appalto ANAS, nonché delle norme AGI 1977/1994.

2. RIFERIMENTI NORMATIVI

Si riporta, di seguito, l'elenco della normativa di riferimento osservata:

- Norme Tecniche per le Costruzioni "Approvate con Decreto Ministeriale 17 gennaio 2018
- Allegati alle Norme Tecniche per le Costruzioni "Approvate con Decreto Ministeriale 14.01.2008"
- Raccomandazioni AGI (1977)
- Modalità Tecniche ANISG (1977)
- Capitolato speciale d'appalto ANAS

3. SONDAGGI

I sondaggi geognostici sono stati eseguiti in conformità alle norme del capitolato speciale d'appalto ANAS, alle Raccomandazioni AGI (1977) ed alle Modalità Tecniche ANISG (1977).

Di seguito la tabella riepilogativa dei sondaggi effettuati con indicazione del metodo di perforazione, della profondità raggiunta, della tipologia di installazione in foro, delle prove in sito e del prelievo di campioni.

Sigla ID	profondità (m dal p.c.)	SPT (n.)	Cl (n.)	CR (n.)	Lefranc (n.)	Down hole	Piezometro (diametro)	Pozzo (diametro)
S01_DH	35	5		4		Χ		
S02_N	30	5	2	3	4		2"	
S03_N	30	5	2	3	4		2"	
S04_N	30	5	2	3	4		3"	
S05_DH	35	6	2	4		Χ		
S06_N	30	7		4	4		3"	
Р	40	/		4	5			6"

Figura 3-1 – Scheda sintetica delle sondaggi

Al termine della campagna di indagine è stata eseguita la georeferenziazione dei punti di sondaggio tramite strumentazione topografica Leica.

Di seguito si riportano uno stralcio dell'elaborato "Planimetria Ubicazione indagini" a cui si rimanda per la visione di dettaglio della distribuzione delle indagini, ed una tabella con indicazione delle coordinate GAUSS-BOAGA.

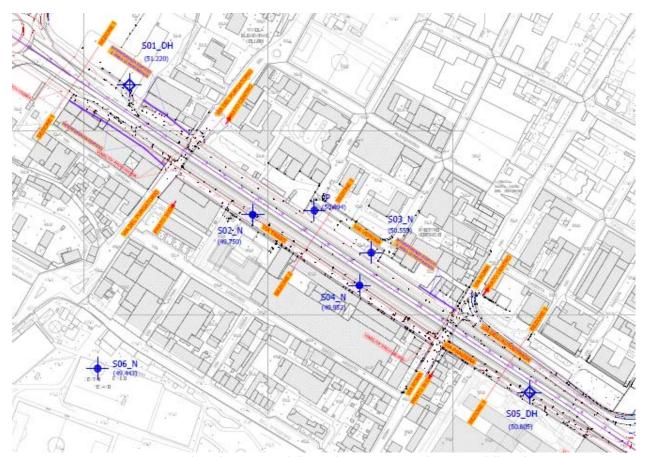


Figura 3-2 Stralcio planimetrico dell'area di interesse con ubicazione delle indagini

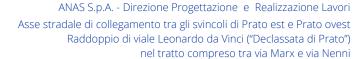
Sigla ID	Coordinata G.B. Nord	Coordinata G.B. Est	Quota assoluta p.c. (m s.l.m.)	Quota assoluta t.t. (m s.l.m.)
S01_DH	1667449.838	4859849.114	51.22	51.64
S02_N	1667583.428	4859708.672	49.75	49.57
S03_N	1667711.824	4859667.538	50.555	50.46
S04_N	1667699.063	4859632.078	49.952	49.84
S05_DH	1667883.47	4859516.087	50.605	50.65
S06_N	1667415.355	4859542.061	49.443	49.38
Р	1667650.172	4859713.295	50.894	51.04

p.c= piano campagna t.t.= testa tubo

Figura 3-3- Tabella Coordinate dei sondaggi

Figura 3-4- Strumentazione utilizzata per la georeferenziazione dei punti di sondaggio

Le attività di esecuzione dei sondaggi sono state eseguite da personale specializzato in perforazioni.


La squadra operativa è stata composta da n°1 sondatore, n° 1 aiuto sondatore e dal geologo, il quale ha provveduto alla stesura dei log stratigrafici.

I sondaggi a carotaggio continuo, sono stati eseguiti a rotazione con il metodo classico con sistema ad aste e carotiere. Tale perforazione avviene tramite aste di collegamento che vengono estratte dopo ogni manovra (tratto perforato) per recuperare dal carotiere, posto alla base della colonna di aste, il materiale carotato. Il raggiungimento di profondità maggiori avviene aggiungendo in superficie aste alla batteria. Le aste impiegate hanno diametro di 76.1 mm. Per stabilizzare le pareti del foro ed evitare che frani viene inserita la tubazione di rivestimento metallico provvisorio di diametro 127 mm.

Il carotiere utilizzato per i sondaggi in oggetto è stato il carotiere semplice T1, con diametro esterno 101 mm; per l'alesaggio del pozzo si è proceduto a distruzione di nucleo sino al diametro di 250 mm.

Le caratteristiche tecniche della sonda di perforazione "Massenza MI6", utilizzata per la realizzazione dei sondaggi sono riassunte di seguito:

- testa di rotazione KNM 6.8/8.0-120 rpm
- slitta di avanzamento 3.70 m
- centralina oleodinamica
- gommata
- argano idraulico
- freno blocca aste
- pompa a pistone
- doppia morsa

Le carote estratte nel corso della perforazione sono state sistemate in apposite cassette catalogatrici munite di scomparti divisori e coperchio apribile di dimensioni 5 m X 1 m, ed una volta scortecciate sono state fotografate.

Su ogni cassetta è stato indicato l'oggetto, il cantiere, la località, la profondità, la data e la sigla identificativa del sondaggio.

Il log stratigrafico di ogni singolo sondaggio è riportato nell'Allegato 1 – Stratigrafie dei sondaggi.

4. PROVE S.P.T.

Le prove SPT (Standard Penetration Test) sono state eseguite rispettando la normativa vigente (AGI, 1977) e le modalità esecutive del capitolato speciale d'appalto.

La prova consente di determinare la resistenza di un terreno alla penetrazione dinamica di un campionatore infisso a partire dal fondo di un foro di sondaggio.

La modalità esecutiva consiste nell'infissione nel terreno alla base del sondaggio di un campionatore per tre tratti consecutivi, di 150 mm ciascuno, annotando il numero di colpi necessario per la penetrazione, N1, N2, N3.

Per N1 = 50 colpi, e l'avanzamento dell'infissione è inferiore ai 150 mm, l'infissione viene sospesa. Per N1 < 50 colpi, la prova prosegue ed il campionatore viene infisso per un secondo tratto di 300 mm, contando separatamente il numero di colpi necessari all'avanzamento per la penetrazione dei primi e dei secondi 150 mm (N2 e N3), sino al limite di 100 colpi (N2 + N3 < 100 colpi). Se con N1 + N3 = 100 colpi non si raggiunge l'avanzamento di 300 mm, l'infissione viene sospesa e la prova si dovrà considerare conclusa.

Sono state eseguite complessivamente n° 33 prove con punta aperta; i risultati sono riportati nelle schede stratigrafiche allegate (ALL.1) e nella tabella riepilogativa seguente:

N.	Sigla ID	da (m dal p.c.)	a (m dal p.c.)	Colpi	N SPT
1	S01_DH	3.55	4.00	6/7/5	12
2	S01_DH	8.20	8.65	2/3/5	8
3	S01_DH	11.80	12.25	2/5/6	11
4	S01_DH	15.00	15.45	17/23/26	49
5	S01_DH	18.55	19.00	8/16/21	37
6	S02_N	1.50	1.95	2/3/5	8
7	S02_N	4.55	5.00	6/7/9	16
8	S02_N	9.20	9.65	10/13/17	30
9	S02_N	12.90	13.35	15/16/21	37

N.	Sigla ID	da (m dal p.c.)	a (m dal p.c.)	Colpi	N SPT
10	S02_N	18.00	18.45	7/9/10	19
11	S03_N	2.00	2.45	4/6/9	15
12	S03_N	7.55	8.00	5/8/16	24
13	S03_N	11.00	11.45	11/21/13	34
14	S03_N	15.00	15.45	1/3/4	7
15	S03_N	18.55	19.00	12/18/27	45
16	S04_N	5.00	5.45	3/4/4	8
17	S04_N	8.55	9.00	16/21/31	52
18	S04_N	12.00	12.45	5/19/21	40
19	S04_N	17.55	18.00	7/21/16	37
20	S04_N	19.55	20.00	27/32/36	68
21	S05_DH	4.00	4.45	3/2/5	7
22	S05_DH	6.00	6.45	7/7/9	16
23	S05_DH	11.55	12.00	15/21/18	39
24	S05_DH	14.55	15.00	8/11/16	27
25	S05_DH	18.00	18.45	21/25/33	58
26	S05_DH	21.55	22.00	14/17/25	42
27	S06_N	3.55	4.00	23/25/32	57
28	S06_N	5.55	6.00	20/22/29	51
29	S06_N	7.40	7.85	21/28/26	54
30	S06_N	10.00	10.45	19/24/31	55
31	S06_N	12.70	13.15	11/13/18	31
32	S06_N	16.00	16.45	10/13/22	35
33	S06_N	19.00	19.45	15/12/17	29

Figura 4-1- Prove SPT eseguite con relativo nº di colpi

La strumentazione impiegata per l'esecuzione delle prove SPT consiste in:

- Tubo campionatore apribile longitudinalmente: Ø est= 50.8 mm; Ø int= 35 mm L minima (escluso tagliente principale)>457 mm; L utile = 630 mm;
- Scarpa tagliente terminale (con rastremazione negli ultimi 19 mm) = 76 mm; il campionatore è munito di valvola a sfera alla sommità e aperture di scarico e sfiato;
- Massa battente di peso 63,5 kg che cade da 75 cm di altezza;
- Aste collegate al campionatore aventi peso per metro lineare 6.5 kg (±0.5 kg/ml). Le aste saranno diritte, ben avvitate in corrispondenza dei giunti e con flessione totale della batteria pronta per la prova < 1°/°°. La caduta del maglio deve essere libera; pertanto deve essere adottato un dispositivo di sganciamento.

5. PRELIEVO DI CAMPIONI GEOTECNICI

Durante l'esecuzione dei sondaggi sono stati prelevati campioni geotecnici indisturbati con campionatori Shelby e rimaneggiati,.

Il campionatore Shelby è un campionatore a pressione, in acciaio inox, a parete sottile con basso coefficiente di parete. Il campionatore in acciaio quindi, funge anche da contenitore del campione stesso. La base del campionatore è tagliente con un angolo di scarpa di circa 4-15°. Il campionamento avviene tramite infissione a pressione, senza rotazione, in un'unica manovra.

Tutti i campioni prelevati sono stati sottoposti ad analisi di laboratorio; per la visione di dettaglio dei risultati si rimanda all'elaborato "Documentazione prove di laboratorio geotecnico" ed ai certificati ad esso allegati.

Di seguito si riporta uno schema sintetico dei campioni prelevati.

N.	Sigla ID	da (m dal p.c.)	a (m dal p.c.)	sigla
	-	· · · · · · · · · · · · · · · · · · ·	·	.
1	S01_DH	3.00	3.50	CR1
2	S01_DH	9.00	9.50	CR2
3	S01_DH	23.00	23.50	CR3
4	S01_DH	30.00	30.50	CR4
5	S02_N	3.00	3.50	CI1
6	S02_N	6.00	6.50	CI2
7	S02_N	12.00	13.00	CR1
8	S02_N	19.50	20.00	CR2
9	S02_N	24.50	25.00	CR3
10	S03_N	4.00	4.50	CI1
11	S03_N	13.00	13.50	CI2
12	S03_N	19.00	19.50	CR1
13	S03_N	24.00	24.50	CR2
14	S03_N	27.00	27.50	CR3
15	S04_N	3.00	3.50	CI1
16	S04_N	14.00	14.50	CI2
17	S04_N	21.00	21.60	CR1
18	S04_N	24.00	25.00	CR2
19	S04_N	27.00	27.50	CR3
20	S05_DH	2.00	2.50	CI1
21	S05_DH	9.50	10.00	CI2
22	S05_DH	15.00	15.50	CR1
23	S05_DH	19.50	20.00	CR2
24	S05_DH	24.50	25.00	CR3
25	S05_DH	34.50	35.00	CR4
23	ווט_כטכ	J 4 .J0	33.00	CINT

N.	Sigla ID	da (m dal p.c.)	a (m dal p.c.)	sigla
26	S06_N	5.00	5.50	CR1
27	S06_N	17.00	18.00	CR2
28	S06_N	24.00	25.00	CR3
29	S06_N	27.00	28.00	CR4
30	Р	11.00	12.00	CR1
31	Р	22.00	22.70	CR2
32	Р	34.00	35.00	CR3
33	Р	39.00	40.00	CR4

Figura 5-1- Scheda sintetica dei campioni prelevati

Tutti i campioni una volta estratti, sono stati opportunamente sigillati tramite paraffina sintetica.

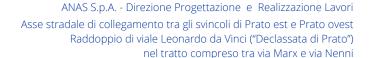
Infine, tutti i campioni sono stati catalogati con apposita etichetta riportando le seguenti informazioni: sigla identificativa del sondaggio, numero del campione, tipologia di prelievo, profondità del prelievo, committente, data, località, oggetto del lavoro.

6. INSTALLAZIONE PIEZOMETRI A TUBO APERTO

Sono stati installati n. 4 piezometri a tubo aperto in perfori effettuati a carotaggio continuo:

N.	Sigla Id	Profondità (m da lp.c.)	Falda (m dal p.c.)
1	S02_N	30	17.64
2	S03_N	30	17.70
3	S04_N	30	17.77
4	S06_N	30	17.60

Figura 6-1 – Scheda sintetica dei piezometri installati


La tubazione installata è costituita da tubi ciechi e filtranti in PVC del diametro di 3" con estremità filettate; il tratto filtrante ha finestrature trasversali di ampiezza 0,4-1,0 mm e spaziatura di 9 mm,.

Prima della posa in opera sono stati eseguiti i seguenti controlli:

- assenza di lesioni
- assenza di anomalie nei filetti di giunzione per non compromettere il buon accoppiamento dei tubi.

A valle dei controlli descritti, sono state effettuate le seguenti operazioni per la posa in opera:

- verifica della quota di fondo foro con scandaglio;
- lavaggio della perforazione con acqua pulita e immessa dal fondo;
- inserimento del tubo finestrato e cieco:
- realizzazione dello strato filtrante in ghiaietto per lo spessore richiesto;
- formazione del tappo impermeabile costituito da compactonite in pellets;

- estrazione del rivestimento del foro senza ausilio della rotazione;
- posa in opera di pozzetto di protezione a bocca foro.

Per la misura del livello di falda, è stata utilizzata una sonda freatimetrica costituita da un cavo graduato alla cui estremità è posizionato un puntale che emette un segnale acustico, a contatto con il pelo libero dell'acqua.

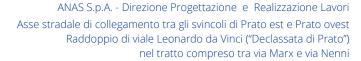
7. CONDIZIONAMENTO PERFORI PER PROVE DOWN-HOLE

Al termine dell'esecuzione di n.2 sondaggi, i fori sono stati condizionati con tubazioni in PVC DN80 e spessore 3 mm, per l'esecuzione di prove sismiche down-hole, per i risultati delle quali si rimanda all'elaborato "Documentazione indagine geofisiche".

Tutte le verticali sono state completate con pozzetti come da prospetto seguente:

ID sondaggio	Tipologia di pozzetto
S01_DH	funghetto
S05_DH	funghetto

Figura 7-1- Scheda sintetica dei sondaggi condizionati per down hole


Le modalità di installazione sono state le seguenti:

- controllo che i tubi non presentassero lesioni soprattutto nelle parti terminali;
- controllo che le estremità dei tubi non presentassero sbavature tali da compromettere il buon accoppiamento;
- verifica dell'efficienza del tubo per l'iniezione della miscela di cementazione;
- preparazione dei componenti per la realizzazione della miscela di cementazione;
- verifica quota fondo foro.
- inserimento dei tubi pre-assemblati ed al termine bloccarli con una cravatta a bocca foro
- inserimento del secondo spezzone pre-assemblato con giunzione al primo tramite avvitamento
- ripetizione delle operazioni fino a quota fondo foro.
- cementazione dal basso verso l'alto tramite tubicino di iniezione precedentemente inserito con miscela cementizia acqua cemento bentonite in rapporto 100,30,5 rispettivamente;
- estrazione del rivestimento di perforazione senza l'ausilio della rotazione ed eventuali rabbocchi
- posa in opera di pozzetto di protezione carrabile o fuori terra (funghetto)

8. PROVE DI PERMEABILITA' LEFRANC

Sono state eseguite n° 21 prove di permeabilità Lefranc.

Le prove di permeabilità Lefranc consistono nella misurazione della velocità di assorbimento di acqua, per immissione o estrazione, in un tratto di perforo opportunamente realizzato.

Esse possono essere eseguite a **carico idraulico costante**, misurando la quantità d'acqua immessa o estratta, o a **carico idraulico variabile**, misurando i livelli dell'acqua a intervalli di tempo progressivamente crescenti.

Le prove di permeabilità consentono di valutare il coefficiente di permeabilità K del tratto di prova.

Nel caso specifico la prova è stata effettuata a carico idraulico variabile.

In allegato (ALL.3)) sono fornite le schede di elaborazione nelle quali, oltre ai dati misurati in campagna, si riporta il calcolo della permeabilità.

Si è applicata la seguente formula:

$$k = \frac{A}{Cl(t_2 - t_1)} \cdot \ln \frac{h_1}{h_2}$$

dove:

- K=coefficiente di permeabilità (m/sec)
- A=area di base del foro (mg)
- h₁-h₂=altezza dell'acqua ai tempi t₁ e t₂ rispetto alla falda (se presente) o al fondo foro
- t₁-t₂=tempi corrispondenti ad h₁ e h₂
- Cl=coefficiente di forma

valori suggeriti per il coefficiente di forma:

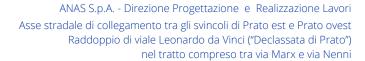
per L>d= L

per L<d=1*3.14*d+L

dove:

L= lunghezza tratto di prova d=diametro tratto di prova

Per la preparazione del tratto di prova si è proceduto come segue:


- perforazioni con carotiere fino alla quota di prova;
- rivestimento del foro fino alla quota raggiunta dalla perforazione, senza uso di fluido di circolazione almeno negli ultimi 100 cm di infissione;
- inserimento nella colonna di rivestimento di ghiaia lavata fino a creare uno spessore di 60 cm dal fondo foro;
- sollevamento della batteria di rivestimento di 50 cm, con solo tiro della sonda o comunque senza fluido di circolazione.

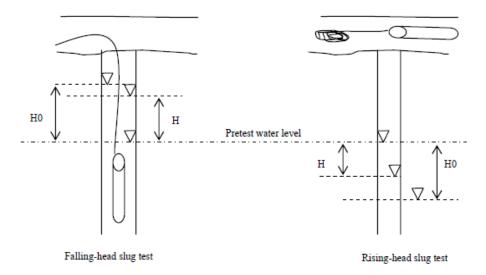
Di seguito si riporta una tabella riepilogativa delle prove eseguite e dei valori di "k" ottenuti:

N.	ID	N. Prova	Tratto di prova (da)	Tratto di prova (a)	K (m/s)	litologia
1	S02_N	LF1	7.50	8.50	5.80 E-05	Ghiaia con sabbia deb. limosa
2	S02_N	LF2	12.00	13.00	4.60 E-05	Sabbia con ghiaia deb. limosa
3	S02_N	LF3	18.00	19.00	1.40 E-05	Ghiaia con sabbia limosa
4	S02_N	LF4	22.50	23.50	3.20 E-05	Sabbia con limo e ghiaia
5	S03_N	LF1	7.50	8.50	5.10 E-05	Sabbia limosa ghiaiosa ed argillosa
6	S03_N	LF2	12.00	13.00	3.20 E-06	Sabbia ghiaiosa in abbondante matrice limosa ed argillosa
7	S03_N	LF3	18.00	19.00	1.30 E-05	Ghiaia con sabbia limosa deb. argillosa
8	S03_N	LF4	24.00	25.00	6.70 E-06	Ghiaia in abbondante matrice sabbiosa limosa ed argillosa
9	S04_N	LF1	6.00	7.00	3.60 E-05	Ghiaia con sabbia limosa argillosa
10	S04_N	LF2	10.50	11.50	2.40 E-05	Ghiaia con sabbia limosa e argillosa
11	S04_N	LF3	18.00	19.00	1.80 E-05	Ghiaia con sabbia limosa e argillosa
12	S04_N	LF4	24.00	25.00	5.20 E-05	Ghiaia con sabbia limosa e argillosa
13	S06_N	LF1	4.50	5.50	1.30 E-05	Sabbia con ghiaia deb. limosa
14	S06_N	LF2	10.50	11.50	2.30 E-05	Sabbia con ghiaia deb. limosa
15	S06_N	LF3	18.00	19.00	1.50 E-05	Sabbia con ghiaia deb. limosa
16	S06_N	LF4	22.50	23.50	3.20 E-05	Sabbia con ghiaia deb. limosa
17	Р	LF1	6.00	7.00	5.00 E-05	Ghiaia sabbiosa limosa ed argillosa
18	Р	LF2	12.00	13.00	4.10 E-06	Ghiaia in abbondante matrice sabbiosa limosa ed argillosa
19	Р	LF3	18.00	19.00	8.50 E-06	Ghiaia in abbondante matrice sabbiosa limosa ed argillosa
20	Р	LF4	24.00	25.00	1.10 E-05	Ghiaia in matrice sabbiosa limosa ed argillosa
21	Р	LF5	28.50	29.50	5.30 E-05	Ghiaia sabbiosa limosa ed argillosa

Figura 8-1– Scheda sintetica delle prove Lefranc

9. PROVE SLUG TEST

Sono state eseguite n° 3 prove Slug Test


Si definisce slug test una prova eseguita in maniera da produrre una istantanea variazione del livello statico in un pozzo o piezometro e misurare, in funzione del tempo, il conseguente recupero del livello originario.

Si tratta, perciò, di una prova a pozzo singolo, eseguita in regime transitorio, la cui finalità consiste nella determinazione della conducibilità idraulica dell'acquifero nelle immediate vicinanze del pozzo attivo.

La prova può essere eseguita nelle due seguenti modalità:

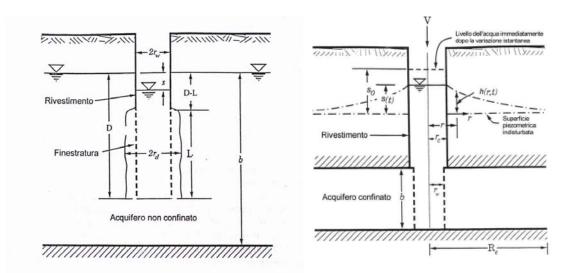
- test in declino o con carico decrescente, aumentando bruscamente il livello statico misurato nel pozzo attivo e monitorando il conseguente declino di livello che si crea per il flusso dal pozzo verso l'acquifero;
- test in risalita o con carico crescente, producendo una brusca diminuzione di livello e monitorando la conseguente risalita che si crea per il flusso dall'acquifero verso il pozzo.

La seconda modalità è la più utilizzata in relazione alla sua maggiore semplicità operativa ed alla maggiore affidabilità del risultato soprattutto in presenza di piezometri finestrati al di sopra della tavola d'acqua.

Le variazioni di livello all'interno del punto in cui si intende eseguire la prova possono essere generate:

- mediante l'introduzione e la rimozione di volumi noti di acqua (ad. es. mediante pompa);
- meccanicamente mediante l'introduzione ed il recupero manuale di corpi cilindri di volume noto detti, appunto, "slug".

Le variazioni di livello vengono misurate installando prima dell'inizio della prova, un piezometro elettrico, e/o effettuando verifiche manuali con il freatimetro.



Prima delle attività è opportuno acquisire tutte le informazioni possibili in merito al diametro, alla profondità di progetto ed alle modalità di realizzazione del piezometro (diametro perforazione, range di profondità di installazione e, quindi, lunghezza dei tubi filtro)

Le operazioni da svolgere in campo sono:

- verifica del diametro e della profondità reali
- misurazione del livello di falda statico mediante freatimetro
- installazione di piezometro elettrico
- induzione della variazione di livello freatico secondo una delle metodologie su esposte ai punti a e b
- acquisizione dei dati inerenti il livello della falda e verifiche manuali

Per l'elaborazione dei dati si fa riferimento a metodi riconosciuti in letteratura quali quello di Bouwer e Rice (1976) per acquiferi non confinati, e di Cooper, Bredehoeft e Papadopulos (1967) per acquiferi confinati.

In allegato (ALL.4) sono forniti i risultati sotto forma di tabelle e grafici, con indicazione delle formule di calcolo applicate.

Di seguito una tabella riepilogativa delle prove effettuate e dei risultati ottenuti.

N.	ID	N. Prova	Kr (m/s)
1	Р	SL1	4.28 E-04
2	S04_N	SL1	1.48 E-04
3	S06_N	SL1	1.35 E-04

ANAS S.p.A. - Direzione Progettazione e Realizzazione Lavori Asse stradale di collegamento tra gli svincoli di Prato est e Prato ovest Raddoppio di viale Leonardo da Vinci ("Declassata di Prato") nel tratto compreso tra via Marx e via Nenni

Documentazione Indagini Geognostiche

ALLEGATO 1: STRATIGRAFIE DEI SONDAGGI

ALLEGATO 1: STRATIGRAFIE DEI SONDAGGI

Progetto:Raddoppio di Viale Leonardo Da Vinci ("Declassata di Prato") nel tratto compreso tra Via Marx e Via Nenni

Località: Prato

ID sondaggio: S01_DH

Sistema di coordinate Gauss Boaga

Coord. EST: 1667449.838 Metodo di perforazione: carotaggio continuo Data esecuzione: Coord. NORD: 4859849.114

Quota p.c.: 51.22 m s.l.m.

Dislivello T.T.- P.C.: 0.42 m

Diam. min. (mm): 101 Diam. max. (mm): 152 Sonda: Massenza M.I.6 anas Legenda Campioni

27/10/2018-29/10/2018

Redattore: G. De Martino

Sondatore: L. Sanna

CI= campione indisturbato CR= campione rimaneggiato

Tecno In S.p.A. 80134 Napoli

20097 San Donato Milanese (MI) Prove in sito conc. Min. LL.PP. N° 53363 del 06.05.05

Legenda Down-Hole Legenda Piezometro carrabile ghiaietto carrabile funghetto tubo cieco funghetto miscela ternaria 📘 tubo fessurato miscela ternaria compactonite fondello tubo cieco

		æ			<u> </u>			ŧ.						1
()	Quota (m s.l.m.)	Profondità (m p.c.)	Litologia	Descrizione litologica	Spessore (m)	Slug Test	Lefranc	Tubo Down Hole 3"	Campioni geotecnici	SPT (N1,N2,N3)	Carotiere	Rivestimento	Piezometro tubo aperto	
	51.22 50.92 48.72		****	Terreno vegetale costituito da limo sabbioso, di colore marroncino chiaro, la parte superiore si presenta umificata, con apparati radicali. Limo sabbioso, di colore marroncino, asciutto, mediamente consistente.	2.20			SESTERES SUCESTU	3.00		I			
	40.72	2.00	0.0.0.0					HENESCHENESH HOLINGERICH	3.50 CR1	3.55 6/7/5 4.00				
			0.0.0.0.0.0					ANDICANDICANTALIAN	9.00 CR2 9.50	8.20 2/3/5 8.65				
			0. 0. 0. 0. 0.	Sabbia con ghiaia, limosa, di colore marroncino, poco addensata, talora moderatamente addensata, con clasti di natura carbonatica, eterometrici, arrotondati e talvolta sub-angolari; ha struttura pseudo-bandata, con lenti e bande prevalentemente limose o argillose di colore marrone scuro e beige.	19.50			STEATESTER STEATS		11.80 2/5/6 12.25				
		. o					ACTIVICATE OF THE PROPERTY OF		17/23/26 15.45		152 mm			
			0.0.0.0.0.					STATE OF THE STATES		18.55 8/16/21 19.00	1			
	29.22 26.62			Limo con sabbia e argilla, di colore marrone con bande beige e ocra, da mediamente consistente a consistente, con lenti limose e sabbiose, presenta struttura laminare.	2.60			SKS SSESSESSESSESSESSESSESSESSESSESSESSESS	23.00 CR3 23.50		ı			
			0.0.0.0.0.0.0	Ghiaia con sabbia limosa, di colore marroncino, da addensata a moderatamente o				SHERESHERES	20.00					
			0. 0. 0. 0. 0.	poco addensata, con clasti di natura carbonatica, eterometrici, arrotondati e talvolta sub-angolari.	10.40			Wichwen Wich	30.00 CR4 30.50					
	16.22	35.00	0.											

Progetto:Raddoppio di Viale Leonardo Da Vinci ("Declassata di Prato") nel tratto compreso tra Via Marx e Via Nenni Località: Prato

ID sondaggio: S02_N

Sistema di coordinate Gauss Boaga

Coord. EST: 1667583.428 Metodo di perforazione: carotaggio continuo Data ese Coord. NORD: 4859708.672 Diam. min. (mm): 101 Quota p.c.: 49.75 m s.l.m.

Profondità: 30 m

Dislivello T.T.- P.C.: -0.18 m

Review: 0

Redatto Sonda: Massenza M.I.6 NOTE: P

Diam. max. (mm): 127

CI= campione indisturbato CR= campione rimaneggiato

Legenda Campioni

anas

Tecno In S.p.A. 80134 Napoli

80134 Napoii 20097 San Donato Milanese (MI) Prove in sito conc. Min. LL.PP. N° 53363 del 06.05.05

L				Prove in	sito cond	c. Min. LL	PP.	N°	53363 del 06.	U5.U
secuzione: 018-07/11/2018 ore: L. Sanna ore: G. De Martino Piezometro		f s r	Lege carrabile funghetto miscela te compactor	rnaria	ghiaieti tubo ci	eco ssurato		<u> </u>	enda Down-Ho carrabile funghetto miscela ternar tubo cieco	
	_		1							-

Scala (m)	Quota (m s.l.m.)	Profondità (m p.c.)	Litologia	Descrizione litologica	Spessore (m)	Slug Test	Lefranc	Tubo Down Hole 3"	Campioni geotecnici	SPT (N1,N2,N3)	Carotiere	Rivestimento	Piezometro tubo aperto 2"	Livello di falda (m)
1 - 2 -	49.75 47.75	2.00	D A A A A A A A A A A A A A A A A A A A	Materiale di riporto costituito da limo sabbioso, di colore ocra-marroncino, con frammenti di materiali inerti, presenta clasti poligenici eterometrici arrotondati.	2.00					1.50 2/3/5		ı	0.2 1.0 2.0	
3				Limo sabbioso debolmente argilloso, di colore ocra-marroncino, poco consistente, presenta strutture pseudo-laminari.	2.00				3.00 CI1	1.95	ı	ı	3.0	
3 - 4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	45.75	4.00	$ \begin{array}{c} \begin{array}{cccccccccccccccccccccccccccccccc$	Sabbia ghiaiosa limosa, di colore marroncino con bande ocra e beige, varia tra	26.00		LF2		CI1 3.50 6.00 CI2 6.50 12.00 CR1 13.00 19.50 CR2 20.00 24.50 CR3	4.55 6/7/9 5.00 9.20 10/13/17 9.65 12.90 15/16/21 13.35 18.00 7/9/10 18.45	ı	127 mm		17.64
29 = 3	19.75	30.00	0.										30.0	

Progetto:Raddoppio di Viale Leonardo Da Vinci ("Declassata di Prato") nel tratto compreso tra Via Marx e Via Nenni Località: Prato

Sonda: Massenza M.I.6

ID sondaggio: S03_N

Sistema di coordinate Gauss Boaga

Coord. EST: 1667711.824 Metodo di perforazione: carotaggio continuo Data esecuzione: Coord. NORD: 4859667.538 Diam. min. (mm): 101 Quota p.c.: 50.56 m s.l.m. Diam. max. (mm): 127

Dislivello T.T.- P.C.: -0.1 m

anas Legenda Campioni CI= campione indisturbato CR= campione rimaneggiato

Tecno In S.p.A. 80134 Napoli

20097 San Donato Milanese (MI) Prove in sito conc. Min. LL.PP. N° 53363 del 06.05.05

Legenda Down-Hole Legenda Piezometro carrabile ghiaietto carrabile 12/11/2018-13/11/2018 funghetto tubo cieco funghetto Sondatore: L. Sanna miscela ternaria 📘 tubo fessurato miscela ternaria Redattore: G. De Martino compactonite fondello

Prof	ondità:	30 m	Review: 0 NOTE: Pie	ezometro	ائا	Compacio	TINC V	london	0	Ш	1	tubo cieco	——
Scala (m)			Descrizione litologica	Spessore (m)	Slug Test	Lefranc	Tubo Down Hole 3"	Campioni geotecnici	SPT (N1,N2,N3)	Carotiere	Rivestimento	Piezometro tubo aperto 2"	Livello di falda (m)
1 - 1 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3	50.56 50.26 46.85 45.66	3.70	Terreno vegetale costituito da limo sabbioso, di colore marroncir radicali. Materiale di riporto costituito da limo sabbioso, di colore ocra-ma frammenti di materiali inerti, presenta clasti poligenici eterometri. Limo sabbioso debolmente argilloso, di colore marroncino, da pomoderatamente consistente, asciutto. Sabbia con ghiaia limosa, di colore marroncino con bande ocra, bruno, varia tra addensata e moderatamente addensata, con live con clasti di natura carbonatica, eterometrici, arrotondati e talvol Presenta strutture pseudo-laminari e lenti argillose.	beige e marrone elli poco addensati,		LF2		4.00 CI1 4.50 13.00 CI2 13.50 19.00 CR1 19.50 24.00 CR2 24.50 27.00 CR3 27.50	2.00 4/6/9 2.45 7.55 5/8/16 8.00 11.00 11/21/13 11.45 15.00 1/3/4 15.45 18.55 12/18/27	semplice	127 mm	30.0	17.7

Progetto:Raddoppio di Viale Leonardo Da Vinci ("Declassata di Prato") nel tratto compreso tra Via Marx e Via Nenni

Sonda: Massenza M.I.6

Località: Prato

ID sondaggio: S04_N

Sistema di coordinate Gauss Boaga

Coord. EST: 1667699.063 Metodo di perforazione: carotaggio continuo Data esecuzione: Coord. NORD: 4859632.078 Diam. min. (mm): 101 Quota p.c.: 49.95 m s.l.m. Diam. max. (mm): 127

Dislivello T.T.- P.C.: -0.11 m Profondità: 30 m Review: 0 09/11/2018-11/11/2018 Sondatore: L. Sanna

Redattore: G. De Martino NOTE: Piezometro

anas

Legenda Campioni

CI= campione indisturbato CR= campione rimaneggiato

Tecno In S.p.A. 80134 Napoli

20097 San Donato Milanese (MI) Prove in sito conc. Min. LL.PP. N° 53363 del 06.05.05

-	Proid	maila:	30 m		Review. 0 NOTE. Flezonietto							_	_		—'
	Scala (m)	Quota (m s.l.m.)	Profondità (m p.c.)	Litologia	Descrizione litologica	Spessore (m)	Slug Test	Lefranc	Tubo Down Hole 3"	Campioni geotecnici	SPT (N1,N2,N3)	Carotiere	Rivestimento	Piezometro tubo aperto 3"	Livello di falda (m)
	0	49.95 48.65 45.65		P 4 4 A A A A A A A A A A A A A A A A A	Materiale di riporto costituito da limo sabbioso, di colore marrone, con frammenti di materiali inerti e rari clasti poligenici eterometrici. Limo con sabbia debolmente argilloso, di colore marroncino, da poco consistente a moderatamente consistente, asciutto.	3.00				3.00 CI1 3.50	5.00		l	7 0.2 1.0 2.0 3.0	
	5 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	19.95	30.00	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ghiaia con sabbia limosa, di colore marroncino con bande ocra, bruno e beige; varia tra addensata e moderatamente addensata, talvolta poco addensata, con clasti di natura carbonatica, eterometrici, arrotondati e talvolta sub-angolari. Presenta strutture pseudo-laminari e lenti limose-argillose.	25.70	SL1	LF2		21.00 CR1 21.60 24.00 CR2 25.00 27.00 CR3	5.00 3/4/4 5.45 8.55 16/21/31 9.00 12.00 5/19/21 12.45 17.55 7/21/16 18.00 19.55 27/32/36 20.00	semplice	127 mm	30.0	17.77 ¥

Progetto:Raddoppio di Viale Leonardo Da Vinci ("Declassata di Prato") nel tratto compreso tra Via Marx e Via Nenni Località: Prato

Diam. max. (mm): 127

Quota p.c.: 50.60 m s.l.m.

ID sondaggio: S05_DH

Sistema di coordinate Gauss Boaga

Coord. EST: 1667883.470 Metodo di perforazione: carotaggio continuo Data esecuzione: Coord. NORD: 4859516.087 Diam. min. (mm): 101

Dislivello T.T.- P.C.: 0.049 m Sonda: Massenza M.I.6 08/11/2018-09/11/2018

Sondatore: L. Sanna Redattore: G. De Martino

anas

Legenda Campioni

CI= campione indisturbato CR= campione rimaneggiato

Tecno In S.p.A. 80134 Napoli

20097 San Donato Milanese (MI) Prove in sito conc. Min. LL.PP. N° 53363 del 06.05.05

fondità	1. 00 111		Review: 0 NOTE: Down Hole								1	
Quota (m s.l.m.)	Profondità (m p.c.)	Litologia	Descrizione litologica	Spessore (m)	Slug Test	Lefranc	Tubo Down Hole 3"	Campioni geotecnici	SPT (N1,N2,N3)	Carotiere	Piezome tubo ape	etro ::
50.60		D A D A	Materiale di riporto costituito da limo sabbioso, di colore marrone, con frammenti di materiali inerti, con clasti poligenici eterometrici.	1.10			News News					
	0 1.10		Limo sabbioso debolmente argilloso, di colore marroncino con sfumature ocra, da poco a moderatamente consistente.	4.10			Kerkerkerkerker Kepangantopa	2.00 CI1 2.50	4.00 3/2/5 4.45	ı		
45.40	5.20	0.0.0.0.0.0.					ENEXESTENEME LOUNTEDAKTOR	9.50	6.00 7/7/9 6.45	ı		
		0.0.0.0.0					eateneareaten Koamkoamkoa	CI2 10.00	11.55 15/21/18 12.00	ı		
		.0.0.0.0.0.0.0					KAKKKATEN KAK KOKKTOTAKKOKA	15.00 CR1 15.50	14.55 8/11/16 15.00	plice		
		٥.٠٥. ٥.٠٥. ۵.٠٥.	Sabbia con ghiaia limosa, di colore marroncino con bande ocra e beige; varia tra addensata e moderatamente addensata, talvolta poco, con clasti di natura carbonatica, eterometrici, arrotondati e talvolta sub-angolari. Presenta strutture pseudo-laminari.	29.80			SHESSIENESHESESIEN Quantosancolatosan	19.50 CR2 20.00	18.00 21/25/33 18.45 21.55 14/17/25 22.00	ı		
		0.0.0.0.0.0.0.					nenenenenen Kapancenatora	24.50 CR3 25.00		ı		
		.0.0.0.0.0.0.0.					ૡૡ૱ૡૡ૱ૡૡ૱ૡૡ૱ૡૡ૱૱ૡૡ૱ ૱ૡૡ૱ૡૡ૱ૡૡ૱ૡૡ૱ૡૡ૱ૡૡ					
15.60	0 35.00	0.0.0.0.0					SIENERES TOTALGIALO	34.50 CR4				

Progetto:Raddoppio di Viale Leonardo Da Vinci ("Declassata di Prato") nel tratto compreso tra Via Marx e Via Nenni

Località: Prato

ID sondaggio: S06_N

Sistema di coordinate Gauss Boaga

Coord. EST: 1667415.355

Metodo di perforazione: carotaggio continuo Data esecuzione: Coord. NORD: 4859542.061 Diam. min. (mm): 101 Quota p.c.: 49.44 m s.l.m. Diam. max. (mm): 152 Dislivello T.T.- P.C.: -0.062 m Sonda: Massenza M.I.6 Profondità: 30 m

Review: 0

anas Legenda Campioni

25/10/2018-26/10/2018

Redattore: G. De Martino

Sondatore: L. Sanna

NOTE: Piezometro

CI= campione indisturbato CR= campione rimaneggiato

Tecno In S.p.A. 80134 Napoli

20097 San Donato Milanese (MI) Prove in sito conc. Min. LL.PP. N° 53363 del 06.05.05

Prolo	ndila:	30 m		Review. 0 NOTE. Flezoffield								_			П
Scala (m)	Quota (m s.l.m.)	Profondità (m p.c.)	Litologia	Descrizione litologica	Spessore (m)	Slug Test	Lefranc	Tubo Down Hole 3"	Campioni geotecnici	SPT (N1,N2,N3)	Carotiere	Rivestimento	Piezometro tubo aperto 3"	Livello di falda (m)	
0 1 1 2 1 3 4 1 5 1 1 1 1 1 1 1 1	949.44 48.94 46.44	0.00 0.50		Terreno vegetale costituito da limo sabbioso, di colore marroncino chiaro, la parte superiore si presenta umificata, con apparati radicali. Limo sabbioso, di colore marroncino, asciutto, mediamente consistente. Sabbia ghiaiosa limosa, di colore marroncino, presenta clasti e ciottoli di natura carbonatica, arrotondati, eterometrici; vi sono lenti con limi e argille prevalenti rispetto alla frazione sabbiosa.	2.50	BIIS	LF1	Tut Down I	5.00 CR1 5.50	3.55 23/25/32 4.00 5.55 20/22/29 6.00 7.40 21/28/26 7.85 10.00 19/24/31 10.45 12.70 11/13/18 13.15	semplice	152 mm Rivesti		Livello	-
16	24.44	23.50	0.0.0.0.0.0.0	Limo con sabbia argilloso, di colore marroncino con bande e striature ocra e beige; da mediamente consistente a consistente, plastico, asciutto, presenta struttura laminare. Sabbia ghiaiosa limosa, di colore marroncino, moderatamente addensata, presenta clasti di natura carbonatica, arrotondati talvolta sub-angolari, eterometrici.	1.50	SL1	LF3		17.00 CR2 18.00 24.00 CR3 25.00 27.00 CR4 28.00	19.00 15/12/17 19.45			30.0	17.6	

Progetto:Raddoppio di Viale Leonardo Da Vinci ("Declassata di Prato") nel tratto compreso tra Via Marx e Via Nenni Località: Prato

Dislivello T.T.- P.C.: m

ID sondaggio: P

Sistema di coordinate Gauss Boaga

Coord. EST: 1667650.172 Metodo di perforazione: carotaggio continuo Data esecuzione: Coord. NORD: 4859713.295 Diam. min. (mm): 101 Quota p.c.: 50.89 m s.l.m. Diam. max. (mm): 127

Sonda: Massenza M.I.6

anas Legenda Campioni

CI= campione indisturbato CR= campione rimaneggiato

Tecno In S.p.A. 80134 Napoli

20097 San Donato Milanese (MI) Prove in sito conc. Min. LL.PP. N° 53363 del 06.05.05

Legenda Down-Hole Legenda Piezometro carrabile ghiaietto carrabile 14/11/2018-15/11/2018 funghetto tubo cieco funghetto Sondatore: L. Sanna miscela ternaria 📘 tubo fessurato miscela ternaria Redattore: G. De Martino compactonite fondello

Profo	ndità:			Review: 0 NOTE:			compacto	onite	fondel	lo	Ц		tubo cieco	
Scala (m)	Quota (m s.l.m.)	Profondità (m p.c.)	Litologia	Descrizione litologica	Spessore (m)	Slug Test	Lefranc	Tubo Down Hole 3"	Campioni geotecnici	SPT (N1,N2,N3)	Carotiere	Rivestimento	Piezometro tubo aperto	Livello di falda (m)
0]	50.89 50.69	0.00 0.20	DAD	Terreno vegetale costituito da limo sabbioso, di colore marroncino.	0.20									+
3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -			D 4 D 4 D 4 D 4 D 4 D 4 D 4 D 4 D 4 D 4	Materiale di riporto costituito da limo sabbioso, di colore marroncino, con frammenti di materiali inerti (cemento, laterizi) e con clasti poligenici eterometrici a spigoli vivi e sub-arrotondati.	4.60						l	l		
5	46.09	4.80	· 0.:			-					ı	ı		
6 =			0.				LF1				ı	ı		
7 -			٠٥:								ı	ı		
8 = 9 = 9			·o.·								ı	ı		
10 =			0.								ı	ı		
11 -			٠٥:						11.00		ı	ı		
12			ю.:						CR1 12.00	-	ı	ı		
13			· o. ·				LF2				ı	ı		
14											ı	ı		
15											ı	ı		
16			٠٥. ٥.								ı	ı		
17 =			· o`.								ı	ı		
18			0.:				LF3				ı	ı		
19 =			· o. ·								semplice	127 mm		
21 =			٠٥.								sem	127		
22				Sabbia ghiaiosa limosa, di colore marroncino con bande ocra, beige e marrone bruno, varia tra addensata e moderatamente addensata, con livelli poco addensati,					22.00		ı	ı		
23 =			o.	con clasti di natura carbonatica, eterometrici, arrotondati e talvolta sub-angolari. Presenta strutture pseudo-laminari e lenti argillose.	35.20				22.70	-	ı	ı		
24			· o ·				LF4				ı	ı		
25 =							-1.5				ı	ı		
26			0.0.0.0.								ı	ı		
27			.0.								ı	ı		
28 -			٠٥.				LF5				ı	ı		
30 -			0.				LF5				ı	ı		
31			0.0.0.0.								ı	ı		
32 =			٠٥:								ı	ı		
33 =			0.								ı	ı		
34 =			0.						34.00 CR3		ı	ı		
35			0.						35.00	-				
36			0.:											
37			0.0.0											
38 = 39 = 39			.0.						39.00					
40	10.89	40.00	٠٠.						CR4					
									40.00					

Progetto:Raddoppio di Viale Leonardo Da Vinci ("Declassata di Prato") nel tratto compreso tra Via Marx e Via Nenni Località: Prato

ID sondaggio: P_dn

Sistema di coordinate Gauss Boaga Coord. EST: 1667650.172

Coord. NORD: 4859713.295

Metodo di perforazione: distruzione di nucleo Data esecuzione: Diam. min. (mm): 101 Quota p.c.: 50.89 m s.l.m. Diam. max. (mm): 250 Dislivello T.T.- P.C.: 0.14 m Sonda: Massenza M.I.6

anas Legenda Campioni

20/11/2018-21/11/2018

Redattore: G. De Martino

Sondatore: L. Sanna

CI= campione indisturbato CR= campione rimaneggiato

GEOSOLUTIONS

Tecno In S.p.A. 80134 Napoli

20097 San Donato Milanese (MI) Prove in sito conc. Min. LL.PP. N° 53363 del 06.05.05

Legenda Piezometro ghiaietto carrabile funghetto tubo cieco miscela ternaria 📘 tubo fessurato compactonite fondello

Legenda Down-Hole carrabile funghetto miscela ternaria

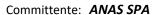
Profondità: 40	m	Review: 0 NOTE: Pozzo			compacto	nite	fondel	0		tubo cieco	
Scala (m) Quota (m s.l.m.) Profondità	(m p.c.) Litologia	Descrizione litologica	Spessore (m)	Slug Test	Lefranc	Tubo Down Hole 3"	Campioni geotecnici	SPT (N1,N2,N3)	Carotiere	Piezometro tubo aperto 6"	Livello di falda (m)
0		Sondaggio a distruzione di nucleo; per la descrizione stratigrafica si rimanda al sondaggio "P"	40.00	SL1						0.0 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	18.1

ANAS S.p.A. - Direzione Progettazione e Realizzazione Lavori Asse stradale di collegamento tra gli svincoli di Prato est e Prato ovest Raddoppio di viale Leonardo da Vinci ("Declassata di Prato") nel tratto compreso tra via Marx e via Nenni

Documentazione Indagini Geognostiche

ALLEGATO 2: DOCUMENTAZIONE FOTOGRAFICA

ALLEGATO 2: DOCUMENTAZIONE FOTOGRAFICA DELLE INDAGINI (SONDAGGI)


Committente: ANAS SPA

Commessa: Accordo quadro Gara DG37/16

Oggetto: Raddoppio di Viale Leonardo Da Vinci nel tratto compreso tra

Via Marx e Via Nenni. Progetto definitivo.

Reg.Com.: 160/18 Località: Prato

TECNO IN S.p.A.

Commessa: Accordo quadro Gara DG37/16

Oggetto: Raddoppio di Viale Leonardo Da Vinci nel tratto compreso

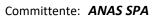
tra Via Marx e Via Nenni. Progetto definitivo.

80134 Napoli 20097 San Donato Milanese (MI)

Reg.Com.: 160/18 Località: Prato

DOCUMENTAZIONE FOTOGRAFICA

Postazione sulla verticale



Cassetta n° 1: da 0.00 m a 5.00 m

Oggetto: Raddoppio di Viale Leonardo Da Vinci nel tratto compreso

tra Via Marx e Via Nenni. Progetto definitivo.

Reg.Com.: 160/18

Località: Prato

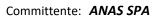
TECNO IN S.p.A.

80134 Napoli

20097 San Donato Milanese (MI)

DOCUMENTAZIONE FOTOGRAFICA

Cassetta n° 2: da 5.00 m a 10.00 m



Cassetta n° 3: da 10.00 m a 15.00 m

anas

TECNO IN S.p.A.

80134 Napoli

20097 San Donato Milanese (MI)

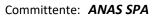
Commessa: Accordo quadro Gara DG37/16

Oggetto: Raddoppio di Viale Leonardo Da Vinci nel tratto compreso tra Via Marx e Via Nenni. Progetto definitivo.

Reg.Com.: 160/18 Località: Prato

DOCUMENTAZIONE FOTOGRAFICA

Cassetta n° 4: da 15.00 m a 20.00 m



Cassetta n° 5: da 20.00 m a 25.00 m



Oggetto: Raddoppio di Viale Leonardo Da Vinci nel tratto compreso

tra Via Marx e Via Nenni. Progetto definitivo.

Reg.Com.: 160/18 Località: Prato

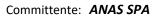
TECNO IN S.p.A.

80134 Napoli

20097 San Donato Milanese (MI)

DOCUMENTAZIONE FOTOGRAFICA

Cassetta n° 6: da 25.00 m a 30.00 m



Cassetta n° 7: da 30.00 m a 35.00 m

Oggetto: Raddoppio di Viale Leonardo Da Vinci nel tratto compreso

tra Via Marx e Via Nenni. Progetto definitivo.

Reg.Com.: 160/18 Località: Prato

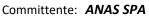
TECNO IN S.p.A.

80134 Napoli

20097 San Donato Milanese (MI)

DOCUMENTAZIONE FOTOGRAFICA

Chiusino


Committente: ANAS SPA

Commessa: Accordo quadro Gara DG37/16

Oggetto: Raddoppio di Viale Leonardo Da Vinci nel tratto compreso tra

Via Marx e Via Nenni. Progetto definitivo.

Reg.Com.: 160/18 Località: Prato

Oggetto: Raddoppio di Viale Leonardo Da Vinci nel tratto compreso

tra Via Marx e Via Nenni. Progetto definitivo.

Reg.Com.: 160/18

Località: Prato

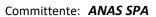
TECNO IN S.p.A.

80134 Napoli

20097 San Donato Milanese (MI)

DOCUMENTAZIONE FOTOGRAFICA

Postazione sulla verticale



Cassetta n° 1: da 0.00 m a 5.00 m

Oggetto: Raddoppio di Viale Leonardo Da Vinci nel tratto compreso

tra Via Marx e Via Nenni. Progetto definitivo.

Reg.Com.: 160/18 Località: Prato

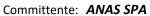
TECNO IN S.p.A.

80134 Napoli

20097 San Donato Milanese (MI)

DOCUMENTAZIONE FOTOGRAFICA

Cassetta n° 2: da 5.00 m a 10.00 m



Cassetta n° 3: da 10.00 m a 15.00 m

Oggetto: Raddoppio di Viale Leonardo Da Vinci nel tratto compreso

tra Via Marx e Via Nenni. Progetto definitivo.

Reg.Com.: 160/18

Località: Prato

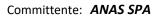
TECNO IN S.p.A.

80134 Napoli

20097 San Donato Milanese (MI)

DOCUMENTAZIONE FOTOGRAFICA

Cassetta n° 4: da 15.00 m a 20.00 m



Cassetta n° 5: da 20.00 m a 26.50 m

Oggetto: Raddoppio di Viale Leonardo Da Vinci nel tratto compreso

tra Via Marx e Via Nenni. Progetto definitivo.

Reg.Com.: 160/18 Località: Prato

TECNO IN S.p.A.

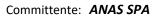
80134 Napoli

20097 San Donato Milanese (MI)

DOCUMENTAZIONE FOTOGRAFICA

Cassetta n° 6: da 26.50 m a 30.00 m

Chiusino


Committente: ANAS SPA

Commessa: Accordo quadro Gara DG37/16

Oggetto: Raddoppio di Viale Leonardo Da Vinci nel tratto compreso tra

Via Marx e Via Nenni. Progetto definitivo.

Reg.Com.: 160/18 Località: Prato

Oggetto: Raddoppio di Viale Leonardo Da Vinci nel tratto compreso

tra Via Marx e Via Nenni. Progetto definitivo.

Reg.Com.: 160/18

Località: Prato

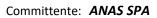
TECNO IN S.p.A.

80134 Napoli

20097 San Donato Milanese (MI)

DOCUMENTAZIONE FOTOGRAFICA

Postazione sulla verticale



Cassetta n° 1: da 0.00 m a 5.00 m

Oggetto: Raddoppio di Viale Leonardo Da Vinci nel tratto compreso

tra Via Marx e Via Nenni. Progetto definitivo.

Reg.Com.: 160/18 Località: Prato

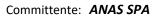
TECNO IN S.p.A.

80134 Napoli

20097 San Donato Milanese (MI)

DOCUMENTAZIONE FOTOGRAFICA

Cassetta n° 2: da 5.00 m a 10.00 m



Cassetta n° 3: da 10.00 m a 15.00 m

Oggetto: Raddoppio di Viale Leonardo Da Vinci nel tratto compreso

tra Via Marx e Via Nenni. Progetto definitivo.

Reg.Com.: 160/18 Località: Prato

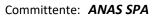
TECNO IN S.p.A.

80134 Napoli

20097 San Donato Milanese (MI)

DOCUMENTAZIONE FOTOGRAFICA

Cassetta n° 4: da 15.00 m a 20.00 m



Cassetta n° 5: da 20.00 m a 25.00 m

Oggetto: Raddoppio di Viale Leonardo Da Vinci nel tratto compreso

tra Via Marx e Via Nenni. Progetto definitivo.

Reg.Com.: 160/18

Località: Prato

TECNO IN S.p.A.

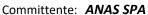
80134 Napoli

20097 San Donato Milanese (MI)

DOCUMENTAZIONE FOTOGRAFICA

Cassetta n° 6: da 25.00 m a 30.00 m

Chiusino


Committente: ANAS SPA

Commessa: Accordo quadro Gara DG37/16

Oggetto: Raddoppio di Viale Leonardo Da Vinci nel tratto compreso tra

Via Marx e Via Nenni. Progetto definitivo.

Reg.Com.: 160/18 Località: Prato

Oggetto: Raddoppio di Viale Leonardo Da Vinci nel tratto compreso

tra Via Marx e Via Nenni. Progetto definitivo.

Reg.Com.: 160/18

Località: Prato

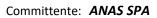
TECNO IN S.p.A.

80134 Napoli

20097 San Donato Milanese (MI)

DOCUMENTAZIONE FOTOGRAFICA

Postazione sulla verticale



Cassetta n° 1: da 0.00 m a 5.00 m

Oggetto: Raddoppio di Viale Leonardo Da Vinci nel tratto compreso

tra Via Marx e Via Nenni. Progetto definitivo.

Reg.Com.: 160/18

Località: Prato

TECNO IN S.p.A.

80134 Napoli 20097 San Donato Milanese (MI)

DOCUMENTAZIONE FOTOGRAFICA

Cassetta n° 2: da 5.00 m a 10.00 m

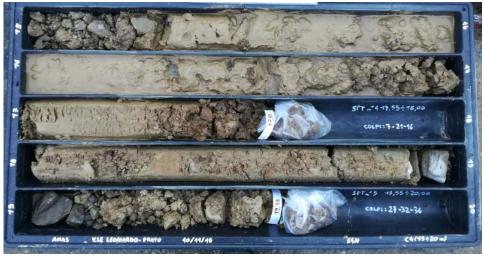
Cassetta n° 3: da 10.00 m a 15.00 m

Oggetto: Raddoppio di Viale Leonardo Da Vinci nel tratto compreso

tra Via Marx e Via Nenni. Progetto definitivo.

Reg.Com.: 160/18

Località: Prato



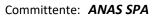
TECNO IN S.p.A.

80134 Napoli

20097 San Donato Milanese (MI)

DOCUMENTAZIONE FOTOGRAFICA

Cassetta n° 4: da 15.00 m a 20.00 m

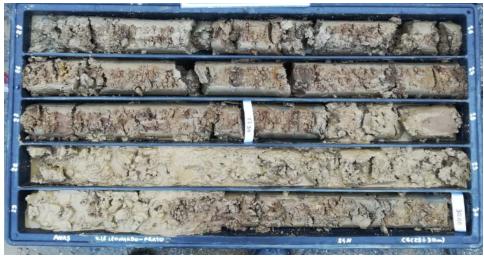


Cassetta n° 5: da 20.00 m a 25.00 m

Oggetto: Raddoppio di Viale Leonardo Da Vinci nel tratto compreso

tra Via Marx e Via Nenni. Progetto definitivo.

Reg.Com.: 160/18


Località: Prato

TECNO IN S.p.A.

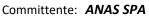
80134 Napoli

20097 San Donato Milanese (MI)

DOCUMENTAZIONE FOTOGRAFICA

Cassetta n° 6: da 25.00 m a 30.00 m

Chiusino


Committente: ANAS SPA

Commessa: Accordo quadro Gara DG37/16

Oggetto: Raddoppio di Viale Leonardo Da Vinci nel tratto compreso tra

Via Marx e Via Nenni. Progetto definitivo.

Reg.Com.: 160/18 Località: Prato

Oggetto: Raddoppio di Viale Leonardo Da Vinci nel tratto compreso

tra Via Marx e Via Nenni. Progetto definitivo.

Reg.Com.: 160/18

Località: Prato

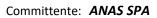
TECNO IN S.p.A.

80134 Napoli

20097 San Donato Milanese (MI)

DOCUMENTAZIONE FOTOGRAFICA

Postazione sulla verticale



Cassetta n° 1: da 0.00 m a 5.00 m

Oggetto: Raddoppio di Viale Leonardo Da Vinci nel tratto compreso

tra Via Marx e Via Nenni. Progetto definitivo.

Reg.Com.: 160/18 20097 San

Località: Prato

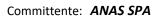
TECNO IN S.p.A.

80134 Napoli

20097 San Donato Milanese (MI)

DOCUMENTAZIONE FOTOGRAFICA

Cassetta n° 2: da 5.00 m a 10.00 m



Cassetta n° 3: da 10.00 m a 15.00 m

Oggetto: Raddoppio di Viale Leonardo Da Vinci nel tratto compreso

tra Via Marx e Via Nenni. Progetto definitivo.

Reg.Com.: 160/18

Località: Prato

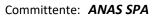
TECNO IN S.p.A.

80134 Napoli

20097 San Donato Milanese (MI)

DOCUMENTAZIONE FOTOGRAFICA

Cassetta n° 4: da 15.00 m a 20.00 m



Cassetta n° 5: da 20.00 m a 25.00 m

Oggetto: Raddoppio di Viale Leonardo Da Vinci nel tratto compreso

tra Via Marx e Via Nenni. Progetto definitivo.

Reg.Com.: 160/18

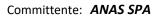
Località: Prato

TECNO IN S.p.A.

80134 Napoli 20097 San Donato Milanese (MI)

DOCUMENTAZIONE FOTOGRAFICA

Cassetta n° 6: da 25.00 m a 30.00 m



Cassetta n° 7: da 30.00 m a 35.00 m

TECNO IN S.p.A.

Commessa: Accordo quadro Gara DG37/16

Oggetto: Raddoppio di Viale Leonardo Da Vinci nel tratto compreso

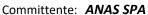
tra Via Marx e Via Nenni. Progetto definitivo.

80134 Napoli Reg.Com.: 160/18 20097 San Donato Milanese (MI)

Località: Prato

DOCUMENTAZIONE FOTOGRAFICA

Chiusino


Committente: ANAS SPA

Commessa: Accordo quadro Gara DG37/16

Oggetto: Raddoppio di Viale Leonardo Da Vinci nel tratto compreso tra

Via Marx e Via Nenni. Progetto definitivo.

Reg.Com.: 160/18 Località: Prato

Oggetto: Raddoppio di Viale Leonardo Da Vinci nel tratto compreso

tra Via Marx e Via Nenni. Progetto definitivo.

Reg.Com.: 160/18

Località: *Prato*

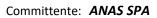
TECNO IN S.p.A.

80134 Napoli

20097 San Donato Milanese (MI)

DOCUMENTAZIONE FOTOGRAFICA

Postazione sulla verticale



Cassetta n° 1: da 0.00 m a 5.00 m

Oggetto: Raddoppio di Viale Leonardo Da Vinci nel tratto compreso

tra Via Marx e Via Nenni. Progetto definitivo.

Reg.Com.: 160/18

Località: Prato

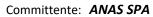
TECNO IN S.p.A.

80134 Napoli

20097 San Donato Milanese (MI)

DOCUMENTAZIONE FOTOGRAFICA

Cassetta n° 2: da 5.00 m a 10.00 m



Cassetta n° 3: da 10.00 m a 15.00 m

anas

TECNO IN S.p.A.

80134 Napoli

20097 San Donato Milanese (MI)

Commessa: Accordo quadro Gara DG37/16

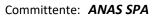
Oggetto: Raddoppio di Viale Leonardo Da Vinci nel tratto compreso tra Via Marx e Via Nenni. Progetto definitivo.

Reg.Com.: 160/18

Località: Prato

DOCUMENTAZIONE FOTOGRAFICA

Cassetta n° 4: da 15.00 m a 20.00 m



Cassetta n° 5: da 20.00 m a 25.00 m

Oggetto: Raddoppio di Viale Leonardo Da Vinci nel tratto compreso

tra Via Marx e Via Nenni. Progetto definitivo.

Reg.Com.: 160/18 Località: Prato

TECNO IN S.p.A.

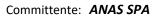
80134 Napoli

20097 San Donato Milanese (MI)

DOCUMENTAZIONE FOTOGRAFICA

Cassetta n° 6: da 25.00 m a 30.00 m

Chiusino


Committente: ANAS SPA

Commessa: Accordo quadro Gara DG37/16

Oggetto: Raddoppio di Viale Leonardo Da Vinci nel tratto compreso tra

Via Marx e Via Nenni. Progetto definitivo.

Reg.Com.: 160/18 Località: Prato

Oggetto: Raddoppio di Viale Leonardo Da Vinci nel tratto compreso

tra Via Marx e Via Nenni. Progetto definitivo.

Reg.Com.: 160/18

Località: Prato

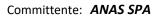
TECNO IN S.p.A.

80134 Napoli

20097 San Donato Milanese (MI)

DOCUMENTAZIONE FOTOGRAFICA

Postazione sulla verticale



Cassetta n° 1: da 0.00 m a 5.00 m

Oggetto: Raddoppio di Viale Leonardo Da Vinci nel tratto compreso

tra Via Marx e Via Nenni. Progetto definitivo.

Reg.Com.: 160/18

Località: Prato

TECNO IN S.p.A.

80134 Napoli

20097 San Donato Milanese (MI)

DOCUMENTAZIONE FOTOGRAFICA

Cassetta n° 2: da 5.00 m a 10.00 m

Cassetta n° 3: da 10.00 m a 15.00 m

Oggetto: Raddoppio di Viale Leonardo Da Vinci nel tratto compreso

tra Via Marx e Via Nenni. Progetto definitivo.

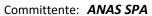
80134 Napoli Reg.Com.: 160/18 20097 San Donato Milanese (MI)

Località: Prato

DOCUMENTAZIONE FOTOGRAFICA

SONDAGGIO: P

Cassetta n° 4: da 15.00 m a 20.00 m


Cassetta n° 5: da 20.00 m a 25.00 m

TECNO IN S.p.A.

TECNO IN S.p.A.

80134 Napoli

20097 San Donato Milanese (MI)

Commessa: Accordo quadro Gara DG37/16

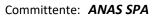
Oggetto: Raddoppio di Viale Leonardo Da Vinci nel tratto compreso tra Via Marx e Via Nenni. Progetto definitivo.

Reg.Com.: 160/18

Località: Prato

DOCUMENTAZIONE FOTOGRAFICA

Cassetta n° 6: da 25.00 m a 30.00 m



Cassetta n° 7: da 30.00 m a 35.00 m

TECNO IN S.p.A.

Commessa: Accordo quadro Gara DG37/16

Oggetto: Raddoppio di Viale Leonardo Da Vinci nel tratto compreso

tra Via Marx e Via Nenni. Progetto definitivo.

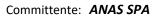
80134 Napoli Reg.Com.: 160/18 20097 San Donato Milanese (MI)

Località: Prato

DOCUMENTAZIONE FOTOGRAFICA

Cassetta n° 8: da 35.00 m a 40.00 m

Committente: ANAS SPA


Commessa: Accordo quadro Gara DG37/16

Oggetto: Raddoppio di Viale Leonardo Da Vinci nel tratto compreso tra

Via Marx e Via Nenni. Progetto definitivo.

Reg.Com.: 160/18 Località: Prato

SONDAGGIO: P_dn

nas TECNOIN

Commessa: Accordo quadro Gara DG37/16

Oggetto: Raddoppio di Viale Leonardo Da Vinci nel tratto compreso

tra Via Marx e Via Nenni. Progetto definitivo.

Reg.Com.: 160/18

Località: Prato

TECNO IN S.p.A.

80134 Napoli

20097 San Donato Milanese (MI)

DOCUMENTAZIONE FOTOGRAFICA

SONDAGGIO: P_dn

Postazione sulla verticale

Chiusino

ANAS S.p.A. - Direzione Progettazione e Realizzazione Lavori Asse stradale di collegamento tra gli svincoli di Prato est e Prato ovest Raddoppio di viale Leonardo da Vinci ("Declassata di Prato") nel tratto compreso tra via Marx e via Nenni

Documentazione Indagini Geognostiche

ALLEGATO 3: ELABORATI PROVE LEFRANC

ALLEGATO 3 - ELABORATI PROVE LEFRANC

Pagina	1 di	1
Reg.Com.	160\18	

COMMITTENTE ANAS S.p.A.

Sigla Perforo F

Data esecuzione 14-nov-18

Tratto in prova 6.00 7.00 m dal p.c.

LOCALITA' Prato Prova N° 1

materiale costituente il tratto in prova:

ghiaia sabbiosa limosa e argillosa	a
Profondità foro dal piano campagna (metri)	7.00
Livello statico falda dal p.c. (metri)	18.00
Profondità rivestimento dal p.c. (metri)	6.00
Sporgenza testa tubo di rivestimento dal p.c. (metri)	0.40
Diametro tubo di rivestimento interno (mm)	107
Altezza colonna d'acqua (metri)	7.40
Diametro tratto del foro in prova (mm)	127
Lunghezza tratto in prova (m)	1.00

					intervallo co	onsiderato
Tempi (sec)	Tempo (min)	Altezze H ₂ O rispetto al fondo foro (m)	Abbas.(m)	K (m/sec)	t ₁	t ₂
0	0	7.40	0.00	7.6E-05	0	15
15	0.25	6.76	0.64	6.9E-05	15	30
30	0.5	6.23	1.17	8.6E-05	30	60
60	1	5.08	2.32	5.6E-05	60	120
120	2	3.89	3.51	3.0E-05	120	300
300	5	2.54	4.86	3.3E-05	300	600
600	10	1.17	6.23	4.5E-05	600	900
900	15	0.40	7.00			
	· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·

Formula per il calcolo della permeabilità

$$k = \frac{A}{Cl(t_2 - t_1)} \cdot \ln \frac{h_1}{h_2}$$

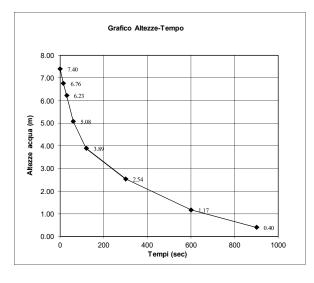
K=coefficiente di permeabilità (m/sec)

A=area di base del foro (mq)

h1-h2=altezza dell'acqua ai tempi t1 e t2 rispetto alla falda o al fondo foro

t1-t2=tempi corrispondenti ad h1 e h2

CI=coefficiente di forma


valori suggeriti:

per L>d= L

per L<d=2*3.14*d+L

L= lunghezza tratto di prova

d=diametro tratto di prova

K(m/s) = 5.0E-05

Si prende in considerazione il tratto della curva tra i 30 s e i 900 s

Pagina	1 di	1
Reg.Com.	160\18	

COMMITTENTE ANAS S.p.A. LOCALITA' Prato Sigla Perforo Prova N°

materiale costituente il tratto in prova: Data esecuzione 14-nov-18 Tratto in prova ghiaia in abbondante matrice sabbiosa 12.00 13.00 m dal p.c.

limosa e argillosa

Profondità foro dal piano campagna (metri) Livello statico falda dal p.c. (metri) 18.00 Profondità rivestimento dal p.c. (metri) 12.00 Sporgenza testa tubo di rivestimento dal p.c. (metri) Diametro tubo di rivestimento interno (mm) Altezza colonna d'acqua (metri)
Diametro tratto del foro in prova (mm) 127 Lunghezza tratto in prova (m)

					intervallo c	onsiderato
Tempi (sec)	Tempo (min)	Altezze H ₂ O rispetto al fondo foro (m)	Abbas.(m)	K (m/sec)	t ₁	$t_{\scriptscriptstyle 2}$
0	0	13.40	0.00	9.5E-06	0	15
15	0.25	13.25	0.15	3.2E-05	15	30
30	0.5	12.75	0.65	3.1E-05	30	60
60	1	11.85	1.55	1.4E-05	60	120
120	2	11.10	2.30	6.0E-06	120	300
300	5	10.20	3.20	4.6E-06	300	600
600	10	9.15	4.25	5.7E-06	600	900
900	15	8.00	5.40	4.4E-06	900	1200
1200	20	7.20	6.20	4.3E-06	1200	1500
1500	25	6.50	6.90	4.8E-06	1500	1800
1800	30	5.80	7.60	3.6E-06	1800	2700
2700	45	4.48	8.92	1.7E-06	2700	3600
3600	60	3.98	9.42			

Formula per il calcolo della permeabilità

$$k = \frac{A}{Cl(t_2 - t_1)} \cdot \ln \frac{h_1}{h_2}$$

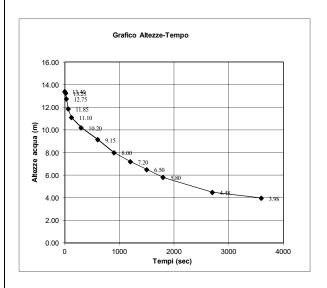
K=coefficiente di permeabilità (m/sec)

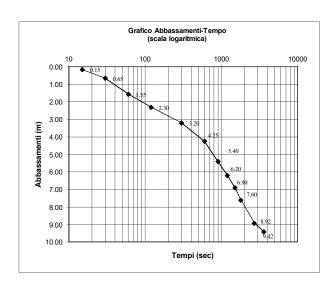
A=area di base del foro (mq)

h1-h2=altezza dell'acqua ai tempi t1 e t2 rispetto alla falda o al fondo foro

t1-t2=tempi corrispondenti ad h1 e h2

Cl=coefficiente di forma


valori suggeriti:


per L>d= L

per L<d=2*3.14*d+L

L= lunghezza tratto di prova

d=diametro tratto di prova

K(m/s) = 4.1E-06

Si prende in considerazione il tratto della curva tra i 600 s e i 2700 s

Pagina	1 di	1
Reg.Com.	160/18	

COMMITTENTE ANAS S.p.A.-Crotone

Sigla Perforo

Data esecuzione 14-nov-18

19.00 m dal p.c. Tratto in prova 18.00

LOCALITA' Prova N°

materiale costituente il tratto in prova: ghiaia in abbondante matrice sabbiosa

limosa e argillosa	I.
Profondità foro dal piano campagna (metri)	19.00
Livello statico falda dal p.c. (metri)	18.00
Profondità rivestimento dal p.c. (metri)	18.00
Sporgenza testa tubo di rivestimento dal p.c. (metri)	0.40
Diametro tubo di rivestimento interno (mm)	107
Altezza colonna d'acqua (metri)	19.40
Diametro tratto del foro in prova (mm)	127
Lunghezza tratto in prova (m)	1.00

					intervallo co	onsiderato
Tempi (sec)	Tempo (min)	Altezze H ₂ O rispetto alla falda(m)	Abbas.(m)	K (m/sec)	t ₁	t_2
0	0	18.40	0.00	8.3E-06	0	15
15	0.25	18.22	0.18	1.3E-05	15	30
30	0.5	17.94	0.46	2.2E-05	30	60
60	1	17.04	1.36	1.1E-05	60	120
120	2	16.18	2.22	7.0E-06	120	300
300	5	14.64	3.76	7.3E-06	300	600
600	10	12.32	6.08	7.6E-06	600	900
900	15	10.28	8.12	7.6E-06	900	1200
1200	20	8.58	9.82	1.1E-05	1200	1500
1500	25	6.66	11.74	1.1E-05	1500	1800
1800	30	5.16	13.24	5.6E-06	1800	2700
2700	45	3.48	14.92	4.3E-06	2700	3600
3600	60	2.56	15.84		3600	

Formula per il calcolo della permeabilità

$$k = \frac{A}{Cl(t_2 - t_1)} \cdot \ln \frac{h_1}{h_2}$$

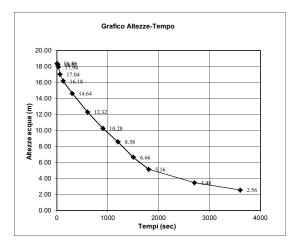
K=coefficiente di permeabilità (m/sec)

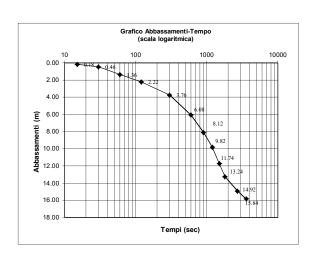
A=area di base del foro (mq)

h1-h2=altezza dell'acqua ai tempi t1 e t2 rispetto alla falda o al fondo foro

t1-t2=tempi corrispondenti ad h1 e h2

Cl=coefficiente di forma


valori suggeriti:


per L>d= L

per L<d=2*3.14*d+L

L= lunghezza tratto di prova

d=diametro tratto di prova

K(m/s) = 8.5E-06

Si prende in considerazione il tratto della curva tra i 600 s e i 1800 s

Pagina	1 di 1		
Reg.Com.	160/18		

COMMITTENTE ANAS S.p.A.-Crotone

Sigla Perforo

15-nov-18 Data esecuzione

25.00 m dal p.c. Tratto in prova 24.00

Prova N°

materiale costituente il tratto in prova:

ghiaia in matrice sabbiosa

limosa e argillosa	
Profondità foro dal piano campagna (metri)	25.00
Livello statico falda dal p.c. (metri)	18.00
Profondità rivestimento dal p.c. (metri)	24.00
Sporgenza testa tubo di rivestimento dal p.c. (metri)	0.40
Diametro tubo di rivestimento interno (mm)	107
Altezza colonna d'acqua (metri)	25.40
Diametro tratto del foro in prova (mm)	127
Lunghezza tratto in prova (m)	1.00

						intervallo considerato	
Tempi (sec)	Tempo (min)	Altezze H ₂ O rispetto alla falda(m)	Abbas.(m)	K (m/sec)	t ₁	t_2	
0	0	18.40	0.00	2.8E-05	0	15	
15	0.25	17.81	0.59	3.0E-05	15	30	
30	0.5	17.19	1.21	3.1E-05	30	60	
60	1	15.96	2.44	1.7E-05	60	120	
120	2	14.70	3.70	6.4E-06	120	300	
300	5	13.42	4.98	6.3E-06	300	600	
600	10	11.55	6.85	7.7E-06	600	900	
900	15	9.62	8.78	4.9E-06	900	1200	
1200	20	8.56	9.84	5.6E-06	1200	1500	
1500	25	7.50	10.90	6.8E-06	1500	1800	
1800	30	6.39	12.01	9.8E-06	1800	2700	
2700	45	3.18	15.22	2.9E-05	2700	3600	
3600	60	0.41	17.99		3600		

Formula per il calcolo della permeabilità

$$k = \frac{A}{Cl(t_2 - t_1)} \cdot \ln \frac{h_1}{h_2}$$

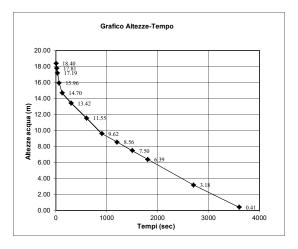
K=coefficiente di permeabilità (m/sec)

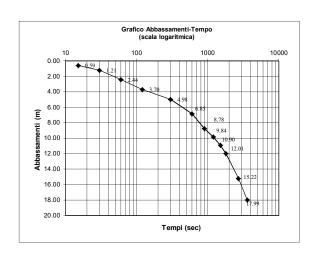
A=area di base del foro (mq)

h1-h2=altezza dell'acqua ai tempi t1 e t2 rispetto alla falda o

al fondo foro

t1-t2=tempi corrispondenti ad h1 e h2


Cl=coefficiente di forma


valori suggeriti: per L>d= L

per L<d=2*3.14*d+L

L= lunghezza tratto di prova

d=diametro tratto di prova

K(m/s) = 1.1E-05

Si prende in considerazione il tratto della curva tra i 600 s e i 2700 s

Pagina	1 di	1
Reg.Com.	160/18	

COMMITTENTE ANAS S.p.A.-Crotone LOCALITA' Sigla Perforo Prova N°

Data esecuzione 15-nov-18 Tratto in prova 29.50 m dal p.c. 28.50

materiale costituente il tratto in prova: ghiaia sabbiosa limosa e argillosa Profondità foro dal piano campagna (metri) Livello statico falda dal p.c. (metri) 18.00 Profondità rivestimento dal p.c. (metri) 28.50

Protonata rivestimento dal p.c. (metri)
Sporgenza testa tubo di rivestimento dal p.c. (metri) 0.40 107 Diametro tubo di rivestimento interno (mm) 29.90 Altezza colonna d'acqua (metri)
Diametro tratto del foro in prova (mm)
Lunghezza tratto in prova (m) 1.00

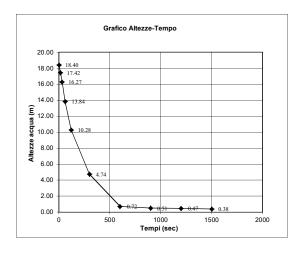
					intervallo considerato	
Tempi (sec)	Tempo (min)	Altezze H ₂ O rispetto alla falda(m)	Abbas.(m)	K (m/sec)	t ₁	t ₂
0	0	18.40	0.00	4.6E-05	0	15
15	0.25	17.42	0.98	5.8E-05	15	30
30	0.5	16.27	2.13	6.8E-05	30	60
60	1	13.84	4.56	6.3E-05	60	120
120	2	10.28	8.12	5.4E-05	120	300
300	5	4.74	13.66	8.0E-05	300	600
600	10	0.72	17.68	1.5E-05	600	900
900	15	0.51	17.89	3.4E-06	900	1200
1200	20	0.47	17.93	9.0E-06	1200	1500
1500	25	0.38	18.02		1500	

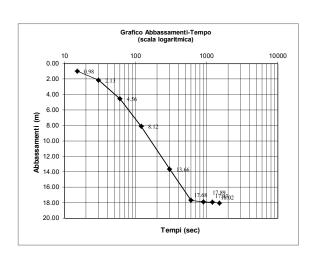
Formula per il calcolo della permeabilità

$$k = \frac{A}{Cl(t_2 - t_1)} \cdot \ln \frac{h_1}{h_2}$$

K=coefficiente di permeabilità (m/sec) A=area di base del foro (mq)

Prato


h1-h2=altezza dell'acqua ai tempi t1 e t2 rispetto alla falda o al fondo foro


t1-t2=tempi corrispondenti ad h1 e h2 Cl=coefficiente di forma

valori suggeriti: per L>d= L

per L<d=2*3.14*d+L

L= lunghezza tratto di prova d=diametro tratto di prova

K(m/s) = 5.3E-05

Si prende in considerazione il tratto della curva tra i 60 s e i 600 s

Pagina	1 di 1		
Reg.Com.	160\18		

COMMITTENTE ANAS S.p.A. Sigla Perforo S02_N

Data esecuzione 06-nov-18

Tratto in prova 7.50 8.50 m dal p.c.

LOCALITA' Prato Prova N° 1

materiale costituente il tratto in prova:

gniaia con sabbia di	eb. ilmosa
Profondità foro dal piano campagna (metri)	8.50
Livello statico falda dal p.c. (metri)	17.60
Profondità rivestimento dal p.c. (metri)	7.50
Sporgenza testa tubo di rivestimento dal p.c. (metri)	0.50
Diametro tubo di rivestimento interno (mm)	107
Altezza colonna d'acqua (metri)	9.00
Diametro tratto del foro in prova (mm)	127
Lunghezza tratto in prova (m)	1.00

intervallo considerato Altezze H₂O K (m/sec) rispetto al Tempi (sec) Tempo (min) Abbas.(m) $t_{\scriptscriptstyle 1}$ t_2 fondo foro (m) 7.9E-05 0 9.00 0.00 0 15 6.4E-05 0.25 15 8.20 0.80 15 30 9.3E-05 30 0.5 7.60 1.40 30 60 60 1 6.10 2.90 5.5E-05 60 120 3.3E-05 120 2 4.70 4.30 120 300 2.92 6.08 7.5E-05 300 600 300 5 600 10 0.50 8.50 6.8E-05 600 900 15 900 0.10 8.90

Formula per il calcolo della permeabilità

$$k = \frac{A}{Cl(t_2 - t_1)} \cdot \ln \frac{h_1}{h_2}$$

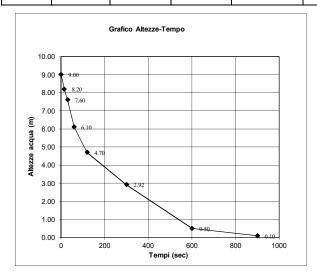
K=coefficiente di permeabilità (m/sec)

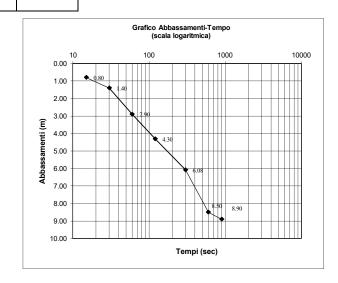
A=area di base del foro (mq)

h1-h2=altezza dell'acqua ai tempi t1 e t2 rispetto alla falda o al fondo foro

t1-t2=tempi corrispondenti ad h1 e h2

CI=coefficiente di forma


valori suggeriti:


per L>d= L

per L<d=2*3.14*d+L

L= lunghezza tratto di prova

d=diametro tratto di prova

K(m/s)= 5.8E-05

Si prende in considerazione il tratto della curva tra i 60 s e i 600 s

Pagina	1 di	1
Reg.Com.	160\18	

COMMITTENTE ANAS S.p.A. Sigla Perforo **S02_N**

Data esecuzione 06-nov-18

Tratto in prova 12.00 13.00 m dal p.c.

LOCALITA' Prato Prova N° 2

materiale costituente il tratto in prova: sabbia con ghiaia deb. limosa

	Sabbia con ginala deb. Illilosa
Profondità foro dal piano campagna (metri)	13.00
Livello statico falda dal p.c. (metri)	17.60
Profondità rivestimento dal p.c. (metri)	12.00
Sporgenza testa tubo di rivestimento dal p.c. (metri)	0.50
Diametro tubo di rivestimento interno (mm)	107
Altezza colonna d'acqua (metri)	13.50
Diametro tratto del foro in prova (mm)	127
Lunghezza tratto in prova (m)	1.00

intervallo considerato Altezze H₂O K (m/sec) rispetto al Tempi (sec) Tempo (min) Abbas.(m) $t_{\scriptscriptstyle 1}$ t_2 fondo foro (m) 7.9E-05 0 13.50 0.00 0 15 8.7E-05 0.25 12.30 1.20 15 30 8.4E-05 30 0.5 11.10 2.40 30 60 60 1 9.10 4.40 7.1E-05 60 120 1.7E-05 120 2 6.50 7.00 120 300 5.10 8.40 1.8E-05 300 600 300 5 600 10 3.35 10.15 2.4E-05 600 900 5.6E-05 900 15 1.88 11.62 900 1200 1200 20 0.50 13.00 5.1E-05 1200 1500 1500 25 0.15 13.35

Formula per il calcolo della permeabilità

$$k = \frac{A}{Cl(t_2 - t_1)} \cdot \ln \frac{h_1}{h_2}$$

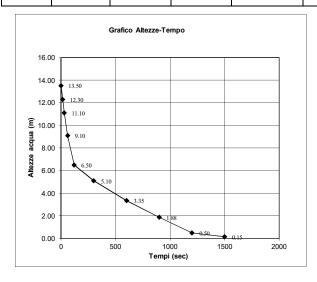
K=coefficiente di permeabilità (m/sec)

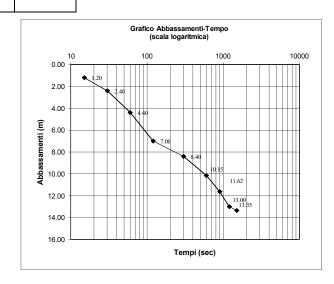
A=area di base del foro (mq)

h1-h2=altezza dell'acqua ai tempi t1 e t2 rispetto alla falda o al fondo foro

t1-t2=tempi corrispondenti ad h1 e h2

Cl=coefficiente di forma


valori suggeriti:


per L>d= L

per L<d=2*3.14*d+L

L= lunghezza tratto di prova

d=diametro tratto di prova

K(m/s) = 4.6E-05

Si prende in considerazione il tratto della curva tra i 30 s e i 1200 s

Pagina	1 di 1	
Reg.Com.	160/18	

COMMITTENTE ANAS S.p.A.-Crotone

S02_N Sigla Perforo

Data esecuzione 07-dic-18

19.00 m dal p.c. Tratto in prova 18.00

LOCALITA' Prato Prova N° 3

materiale costituente il tratto in prova:

gniaia con sabbia limosa	
Profondità foro dal piano campagna (metri)	19.00
Livello statico falda dal p.c. (metri)	17.60
Profondità rivestimento dal p.c. (metri)	18.00
Sporgenza testa tubo di rivestimento dal p.c. (metri)	0.50
Diametro tubo di rivestimento interno (mm)	107
Altezza colonna d'acqua (metri)	19.50
Diametro tratto del foro in prova (mm)	127
Lunghezza tratto in prova (m)	1.00

					intervallo co	onsiderato
Tempi (sec)	Tempo (min)	Altezze H ₂ O rispetto alla falda(m)	Abbas.(m)	K (m/sec)	t ₁	t ₂
0	0	18.10	0.00	2.2E-05	0	15
15	0.25	17.64	0.46	2.8E-05	15	30
30	0.5	17.07	1.03	2.4E-05	30	60
60	1	16.12	1.98	2.1E-05	60	120
120	2	14.56	3.54	9.7E-06	120	300
300	5	12.69	5.41	6.0E-06	300	600
600	10	11.01	7.09	1.2E-05	600	900
900	15	8.33	9.77	7.8E-06	900	1200
1200	20	6.93	11.17	1.3E-05	1200	1500
1500	25	5.09	13.01	2.4E-05	1500	1800
1800	30	2.89	15.21	1.2E-05	1800	2700
2700	45	1.21	16.89		2700	

Formula per il calcolo della permeabilità

$$k = \frac{A}{Cl(t_2 - t_1)} \cdot \ln \frac{h_1}{h_2}$$

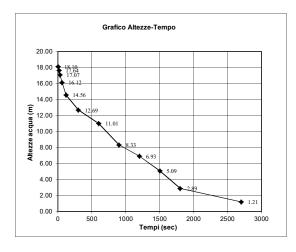
K=coefficiente di permeabilità (m/sec)

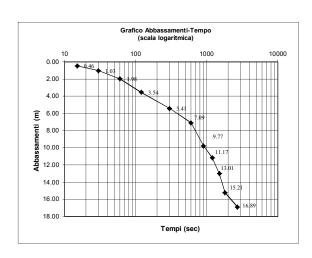
A=area di base del foro (mq)

h1-h2=altezza dell'acqua ai tempi t1 e t2 rispetto alla falda o

al fondo foro

t1-t2=tempi corrispondenti ad h1 e h2


Cl=coefficiente di forma


valori suggeriti: per L>d= L

per L<d=2*3.14*d+L

L= lunghezza tratto di prova

d=diametro tratto di prova

K(m/s) = 1.4E-05

Si prende in considerazione il tratto della curva tra i 600 s e i 1800 s

Pagina	1 di 1	
Reg.Com.	160/18	

COMMITTENTE ANAS S.p.A.-Crotone

Sigla Perforo S02_N

07-dic-18 Data esecuzione

23.50 m dal p.c. Tratto in prova 22.50

LOCALITA' Prato Prova N° 4

materiale costituente il tratto in prova:

	sabbia con limo e gniaia	
Profondità foro dal piano campagna (metri)		23.50
Livello statico falda dal p.c. (metri)		17.60
Profondità rivestimento dal p.c. (metri)		22.50
Sporgenza testa tubo di rivestimento dal p.c. (metri)		0.50
Diametro tubo di rivestimento interno (mm)		107
Altezza colonna d'acqua (metri)		24.00
Diametro tratto del foro in prova (mm)		127
Lunghezza tratto in prova (m)		1.00

					intervallo co	onsiderato
Tempi (sec)	Tempo (min)	Altezze H ₂ O rispetto alla falda(m)	Abbas.(m)	K (m/sec)	t ₁	t_2
0	0	18.10	0.00	3.5E-05	0	15
15	0.25	17.36	0.74	3.7E-05	15	30
30	0.5	16.61	1.49	3.7E-05	30	60
60	1	15.23	2.87	1.9E-05	60	120
120	2	13.90	4.20	1.3E-05	120	300
300	5	11.59	6.51	1.5E-05	300	600
600	10	8.12	9.98	2.5E-05	600	900
900	15	4.47	13.63	5.4E-05	900	1200
1200	20	1.24	16.86	3.3E-05	1200	1500
1500	25	0.57	17.53	9.1E-06	1500	1800
1800	30	0.46	17.64		1800	

Formula per il calcolo della permeabilità

$$k = \frac{A}{Cl(t_2 - t_1)} \cdot \ln \frac{h_1}{h_2}$$

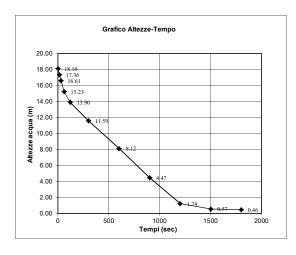
K=coefficiente di permeabilità (m/sec)

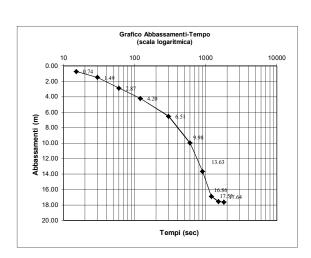
A=area di base del foro (mq)

h1-h2=altezza dell'acqua ai tempi t1 e t2 rispetto alla falda o

al fondo foro

t1-t2=tempi corrispondenti ad h1 e h2


Cl=coefficiente di forma


valori suggeriti: per L>d= L

per L<d=2*3.14*d+L

L= lunghezza tratto di prova

d=diametro tratto di prova

K(m/s) = 3.2E-05

Si prende in considerazione il tratto della curva tra i 300 s e i 1200 s

Pagina	1 di 1		
Reg.Com.	160/18		

COMMITTENTE ANAS S.p.A. Sigla Perforo S03_N

Data esecuzione 12-nov-18 Tratto in prova 7.50 8.50 m dal p.c. LOCALITA' Prato Prova N°

materiale costituente il tratto in prova: sabbia limosa ghiaiosa ed argillosa

	Sabbia ililiosa gilialosa eu argiliosa
Profondità foro dal piano campagna (metri)	8.50
Livello statico falda dal p.c. (metri)	17.70
Profondità rivestimento dal p.c. (metri)	7.50
Sporgenza testa tubo di rivestimento dal p.c. (metri)	0.50
Diametro tubo di rivestimento interno (mm)	107
Altezza colonna d'acqua (metri)	9.00
Diametro tratto del foro in prova (mm)	127
Lunghezza tratto in prova (m)	1.00

					intervallo co	onsiderato
Tempi (sec)	Tempo (min)	Altezze H ₂ O rispetto al fondo foro (m)	Abbas.(m)	K (m/sec)	t ₁	t ₂
0	0	9.00	0.00	7.0E-05	0	15
15	0.25	8.28	0.72	6.5E-05	15	30
30	0.5	7.67	1.33	7.2E-05	30	60
60	1	6.46	2.54	5.2E-05	60	120
120	2	5.06	3.94	3.1E-05	120	300
300	5	3.27	5.73	2.6E-05	300	600
600	10	1.77	7.23	5.3E-05	600	900
900	15	0.50	8.50	5.7E-05	900	1200
1200	20	0.13	8.87		1200	

Formula per il calcolo della permeabilità

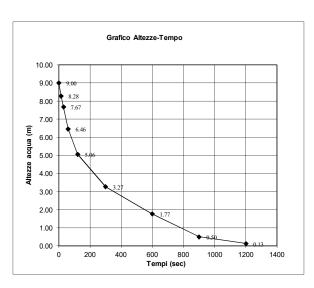
$$k = \frac{A}{Cl(t_2 - t_1)} \cdot \ln \frac{h_1}{h_2}$$

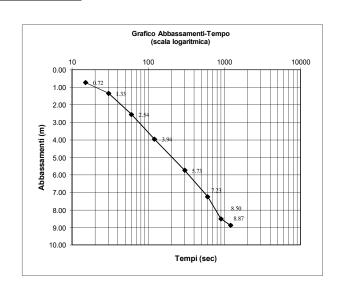
K=coefficiente di permeabilità (m/sec)

A=area di base del foro (mq)

h1-h2=altezza dell'acqua ai tempi t1 e t2 rispetto alla falda o al fondo foro

t1-t2=tempi corrispondenti ad h1 e h2


CI=coefficiente di forma


valori suggeriti:

per L>d= L

per L<d=2*3.14*d+L L= lunghezza tratto di prova

d=diametro tratto di prova

K(m/s) = 5.1E-05

Si prende in considerazione il tratto della curva tra i 15 s e i 900 s

Pagina	1 di 1		
Reg.Com.	160/18		

COMMITTENTEANAS S.p.A.LOCALITA'PratoSigla Perforo\$03_NProva N°2

Data esecuzione 12-nov-18 materiale costituente il tratto in prova: sabbia ghiaiosa in abbondante matrice limosa

	ed argillosa
Profondità foro dal piano campagna (metri)	13.00
Livello statico falda dal p.c. (metri)	17 70
Profondità rivestimento dal p.c. (metri)	10.00
Chargen to take tube di rivectimente del n.e. (metri)	0.50
Diametro tubo di rivestimento interno (mm)	407
Altezza colonna d'acqua (metri)	12.50
Diametro tratto del foro in prova (mm)	407
Lunghezza tratto in prova (m)	4.00

					intervallo co	onsiderato
Tempi (sec)	Tempo (min)	Altezze H ₂ O rispetto al fondo foro (m)	Abbas.(m)	K (m/sec)	t ₁	t ₂
0	0	13.50	0.00	1.9E-05	0	15
15	0.25	13.20	0.30	1.5E-05	15	30
30	0.5	12.96	0.54	1.6E-05	30	60
60	1	12.48	1.02	1.5E-05	60	120
120	2	11.61	1.89	8.5E-06	120	300
300	5	10.29	3.21	6.9E-06	300	600
600	10	8.74	4.76	6.1E-06	600	900
900	15	7.57	5.93	2.6E-06	900	1200
1200	20	7.12	6.38	2.5E-06	1200	1500
1500	25	6.71	6.79	1.9E-06	1500	1800
1800	30	6.41	7.09	1.2E-06	1800	2700
2700	45	5.88	7.62	9.7E-07	2700	3600
3600	60	5.49	8.01		3600	

Formula per il calcolo della permeabilità

$$k = \frac{A}{Cl(t_2 - t_1)} \cdot \ln \frac{h_1}{h_2}$$

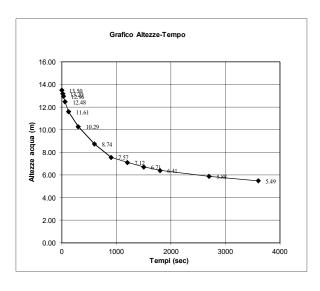
K=coefficiente di permeabilità (m/sec)

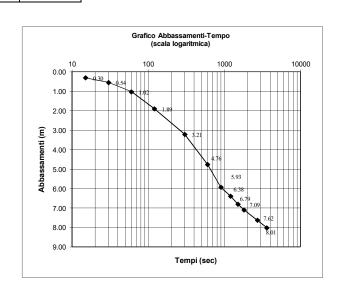
A=area di base del foro (mq)

h1-h2=altezza dell'acqua ai tempi t1 e t2 rispetto alla falda o al fondo foro

t1-t2=tempi corrispondenti ad h1 e h2

Cl=coefficiente di forma


valori suggeriti:


per L>d= L

per L<d=2*3.14*d+L

L= lunghezza tratto di prova

d=diametro tratto di prova

K(m/s) = 3.2E-06

Si prende in considerazione il tratto della curva tra i 300 s e i 2700 s

Pagina	1 di 1		
Reg.Com.	160/18		

COMMITTENTE ANAS S.p.A.-Crotone

Sigla Perforo S03_N

Data esecuzione 13-nov-18

Tratto in prova 18.00 19.00 m dal p.c.

LOCALITA' Prato Prova N° **3**

materiale costituente il tratto in prova: ghiaia con sabbia limosa deb. argillosa

	ghiaia con sabbia limosa deb. argillosa	
Profondità foro dal piano campagna (metri)		19.00
Livello statico falda dal p.c. (metri)		17.70
Profondità rivestimento dal p.c. (metri)		18.00
Sporgenza testa tubo di rivestimento dal p.c. (metri)		0.50
Diametro tubo di rivestimento interno (mm)		107
Altezza colonna d'acqua (metri)		19.50
Diametro tratto del foro in prova (mm)		127
Lunghezza tratto in prova (m)		1.00

					intervallo co	onsiderato
Tempi (sec)	Tempo (min)	Altezze H ₂ O rispetto alla falda(m)	Abbas.(m)	K (m/sec)	t ₁	t ₂
0	0	18.20	0.00	2.1E-05	0	15
15	0.25	17.75	0.45	2.6E-05	15	30
30	0.5	17.22	0.98	2.3E-05	30	60
60	1	16.29	1.91	2.4E-05	60	120
120	2	14.57	3.63	7.8E-06	120	300
300	5	13.05	5.15	6.9E-06	300	600
600	10	11.08	7.12	1.2E-05	600	900
900	15	8.32	9.88	7.4E-06	900	1200
1200	20	6.99	11.21	1.4E-05	1200	1500
1500	25	5.04	13.16	2.3E-05	1500	1800
1800	30	2.93	15.27	9.6E-06	1800	2700
2700	45	1.48	16.72	1.5E-05	2700	3600
3600	60	0.52	17.68		3600	
				1	I	

Formula per il calcolo della permeabilità

$$k = \frac{A}{Cl(t_2 - t_1)} \cdot \ln \frac{h_1}{h_2}$$

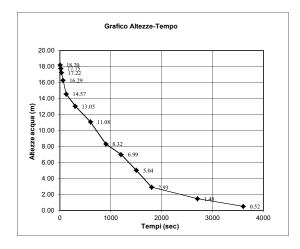
K=coefficiente di permeabilità (m/sec)

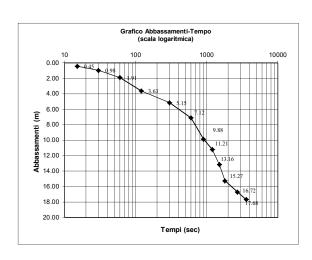
A=area di base del foro (mq)

h1-h2=altezza dell'acqua ai tempi t1 e t2 rispetto alla falda o

al fondo foro

t1-t2=tempi corrispondenti ad h1 e h2


Cl=coefficiente di forma


valori suggeriti: per L>d= L

per L<d=2*3.14*d+L

L= lunghezza tratto di prova

d=diametro tratto di prova

K(m/s) = 1.3E-05

Si prende in considerazione il tratto della curva tra i 60 s e i 1500 s

Pagina	1 di	1
Reg.Com.	160/18	

COMMITTENTE ANAS S.p.A.-Crotone

S03_N Sigla Perforo

Data esecuzione 13-nov-18

25.00 m dal p.c. Tratto in prova 24.00

LOCALITA'

Prova N°

materiale costituente il tratto in prova: ghiaia in abbondante matrice sabbiosa limosa

deb. argillosa	
Profondità foro dal piano campagna (metri)	25.00
Livello statico falda dal p.c. (metri)	17.70
Profondità rivestimento dal p.c. (metri)	24.00
Sporgenza testa tubo di rivestimento dal p.c. (metri)	0.50
Diametro tubo di rivestimento interno (mm)	107
Altezza colonna d'acqua (metri)	25.50
Diametro tratto del foro in prova (mm)	127
Lunghezza tratto in prova (m)	1.00

					intervallo co	onsiderato
Tempi (sec)	Tempo (min)	Altezze H ₂ O rispetto alla falda(m)	Abbas.(m)	K (m/sec)	t ₁	t ₂
0	0	18.20	0.00	1.4E-05	0	15
15	0.25	17.91	0.29	9.5E-06	15	30
30	0.5	17.71	0.49	1.2E-05	30	60
60	1	17.20	1.00	9.9E-06	60	120
120	2	16.41	1.79	6.7E-06	120	300
300	5	14.92	3.28	7.4E-06	300	600
600	10	12.51	5.69	5.5E-06	600	900
900	15	10.97	7.23	5.3E-06	900	1200
1200	20	9.67	8.53	5.8E-06	1200	1500
1500	25	8.42	9.78	6.7E-06	1500	1800
1800	30	7.18	11.02	6.1E-06	1800	2700
2700	45	4.64	13.56	9.3E-06	2700	3600
3600	60	2.39	15.81		3600	

Formula per il calcolo della permeabilità

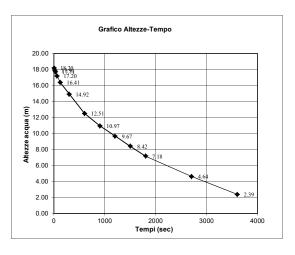
$$k = \frac{A}{Cl(t_2 - t_1)} \cdot \ln \frac{h_1}{h_2}$$

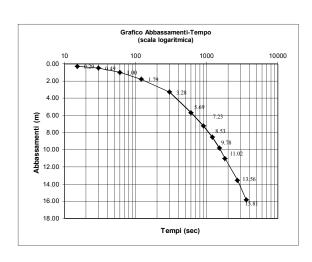
K=coefficiente di permeabilità (m/sec)

A=area di base del foro (mq)

h1-h2=altezza dell'acqua ai tempi t1 e t2 rispetto alla falda o

al fondo foro


t1-t2=tempi corrispondenti ad h1 e h2


Cl=coefficiente di forma

valori suggeriti: per L>d= L

per L<d=2*3.14*d+L

L= lunghezza tratto di prova d=diametro tratto di prova

K(m/s) = 6.7E-06

Si prende in considerazione il tratto della curva tra i 900 s e i 2700 s

I	Pagina	1 di 1	
I	Reg.Com.	160/18	

COMMITTENTE ANAS S.p.A. LOCALITA' Sigla Perforo S04_N Prova N°

Data esecuzione 10-nov-18

Tratto in prova 6.00 7.00 m dal p.c.

materiale costituente il tratto in prova: ghiaia con sabbia limosa argillosa

1

Prato

	ghiaia con sabbia limosa argillosa
Profondità foro dal piano campagna (metri)	7.00
Livello statico falda dal p.c. (metri)	17.70
Profondità rivestimento dal p.c. (metri)	6.00
Sporgenza testa tubo di rivestimento dal p.c. (metri)	0.50
Diametro tubo di rivestimento interno (mm)	107
Altezza colonna d'acqua (metri)	7.50
Diametro tratto del foro in prova (mm)	127
Lunghezza tratto in prova (m)	1.00

					intervallo co	onsiderato
Tempi (sec)	Tempo (min)	Altezze H ₂ O rispetto al fondo foro (m)	Abbas.(m)	K (m/sec)	t ₁	t_2
0	0	7.50	0.00	6.4E-05	0	15
15	0.25	6.95	0.55	5.9E-05	15	30
30	0.5	6.48	1.02	5.7E-05	30	60
60	1	5.66	1.84	4.0E-05	60	120
120	2	4.69	2.81	1.6E-05	120	300
300	5	3.74	3.76	1.7E-05	300	600
600	10	2.48	5.02	2.4E-05	600	900
900	15	1.39	6.11	4.3E-05	900	1200
1200	20	0.50	7.00	2.9E-05	1200	1500
1500	25	0.25	7.25		1500	

Formula per il calcolo della permeabilità

$$k = \frac{A}{Cl(t_2 - t_1)} \cdot \ln \frac{h_1}{h_2}$$

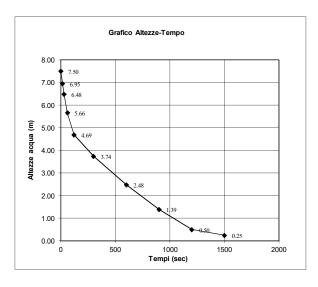
K=coefficiente di permeabilità (m/sec)

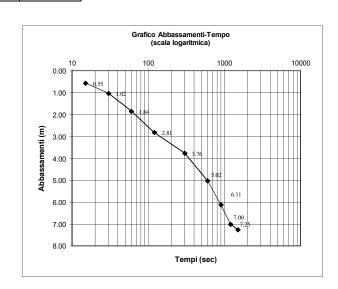
A=area di base del foro (mq)

h1-h2=altezza dell'acqua ai tempi t1 e t2 rispetto alla falda o al fondo foro

t1-t2=tempi corrispondenti ad h1 e h2

Cl=coefficiente di forma


valori suggeriti:


per L>d= L

per L<d=2*3.14*d+L

L= lunghezza tratto di prova

d=diametro tratto di prova

K(m/s) = 3.6E-05

Si prende in considerazione il tratto della curva tra i 15 s e i 1200 s

Pagina	1 di 1		
Reg.Com.	160/18		

COMMITTENTE ANAS S.p.A.
Sigla Perforo S04_N

Data esecuzione 10-nov-18

Tratto in prova 10.50 11.50 m dal p.c.

LOCALITA' Prato Prova N° 2

materiale costituente il tratto in prova: ghiaia con sabbia limosa argillosa

grilaia con sabbia i	iiiiosa argiiiosa
Profondità foro dal piano campagna (metri)	11.50
Livello statico falda dal p.c. (metri)	17.70
Profondità rivestimento dal p.c. (metri)	10.50
Sporgenza testa tubo di rivestimento dal p.c. (metri)	0.50
Diametro tubo di rivestimento interno (mm)	107
Altezza colonna d'acqua (metri)	12.00
Diametro tratto del foro in prova (mm)	127
Lunghezza tratto in prova (m)	1.00

					intervallo co	onsiderato
Tempi (sec)	Tempo (min)	Altezze H ₂ O rispetto al fondo foro (m)	Abbas.(m)	K (m/sec)	t ₁	t ₂
0	0	12.00	0.00	2.8E-05	0	15
15	0.25	11.61	0.39	2.7E-05	15	30
30	0.5	11.25	0.75	1.3E-05	30	60
60	1	10.90	1.10	2.4E-05	60	120
120	2	9.75	2.25	1.3E-05	120	300
300	5	8.05	3.95	9.6E-06	300	600
600	10	6.42	5.58	1.7E-05	600	900
900	15	4.25	7.75	2.5E-05	900	1200
1200	20	2.35	9.65	3.8E-05	1200	1500
1500	25	0.95	11.05	1.7E-05	1500	1800
1800	30	0.64	11.36	1.3E-05	1800	2700
2700	45	0.25	11.75	3.6E-05	2700	3600
3600	60	0.02	11.98		3600	

Formula per il calcolo della permeabilità

$$k = \frac{A}{Cl(t_2 - t_1)} \cdot \ln \frac{h_1}{h_2}$$

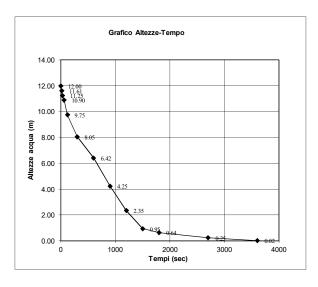
K=coefficiente di permeabilità (m/sec)

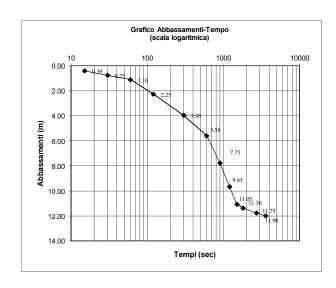
A=area di base del foro (mq)

h1-h2=altezza dell'acqua ai tempi t1 e t2 rispetto alla falda o al fondo foro

t1-t2=tempi corrispondenti ad h1 e h2

CI=coefficiente di forma


valori suggeriti:


per L>d= L

per L<d=2*3.14*d+L

L= lunghezza tratto di prova

d=diametro tratto di prova

K(m/s) = 2.4E-05

Si prende in considerazione il tratto della curva tra i 600 s e i 1500 s

Pagina	1 di 1		
Reg.Com.	160/18		

COMMITTENTE ANAS S.p.A.-Crotone

Sigla Perforo S04_N

Data esecuzione 10-nov-18

19.00 m dal p.c. Tratto in prova 18.00

LOCALITA' Prato Prova N° 3

materiale costituente il tratto in prova:

ghiaia con sabbia limosa argillosa	
Profondità foro dal piano campagna (metri)	19.00
Livello statico falda dal p.c. (metri)	17.70
Profondità rivestimento dal p.c. (metri)	18.00
Sporgenza testa tubo di rivestimento dal p.c. (metri)	0.50
Diametro tubo di rivestimento interno (mm)	107
Altezza colonna d'acqua (metri)	19.50
Diametro tratto del foro in prova (mm)	127
Lunghezza tratto in prova (m)	1.00

					intervallo co	onsiderato
Tempi (sec)	Tempo (min)	Altezze H ₂ O rispetto alla falda(m)	Abbas.(m)	K (m/sec)	t ₁	$t_{\scriptscriptstyle 2}$
0	0	18.20	0.00	1.9E-05	0	15
15	0.25	17.80	0.41	1.5E-05	15	30
30	0.5	17.48	0.72	1.7E-05	30	60
60	1	16.78	1.43	1.3E-05	60	120
120	2	15.76	2.45	1.8E-05	120	300
300	5	12.18	6.02	2.5E-05	300	600
600	10	6.78	11.42	2.0E-05	600	900
900	15	4.24	13.96	2.2E-05	900	1200
1200	20	2.50	15.70	3.5E-06	1200	1500
1500	25	2.30	15.90	1.3E-05	1500	1800
1800	30	1.70	16.50	2.7E-06	1800	2700
2700	45	1.40	16.80	2.2E-06	2700	3600
3600	60	1.20	17.00		3600	
				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	

Formula per il calcolo della permeabilità

$$k = \frac{A}{Cl(t_2 - t_1)} \cdot \ln \frac{h_1}{h_2}$$

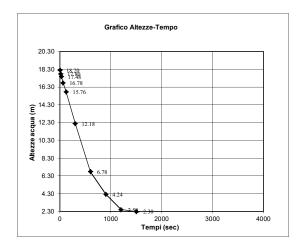
K=coefficiente di permeabilità (m/sec)

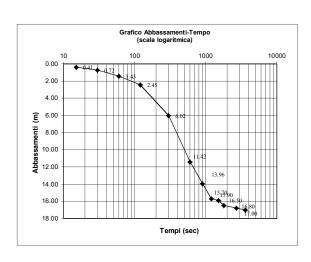
A=area di base del foro (mq)

h1-h2=altezza dell'acqua ai tempi t1 e t2 rispetto alla falda o

al fondo foro

t1-t2=tempi corrispondenti ad h1 e h2


Cl=coefficiente di forma


valori suggeriti:

per L>d= L per L<d=2*3.14*d+L

L= lunghezza tratto di prova

d=diametro tratto di prova

K(m/s) = 1.8E-05

Si prende in considerazione il tratto della curva tra i 300 s e i 1200 s

Pagina	1 di 1		
Reg.Com.	160/18		

COMMITTENTE ANAS S.p.A.-Crotone

Sigla Perforo S04_N

Data esecuzione 10-nov-18

23.50 m dal p.c. Tratto in prova 22.50

LOCALITA' Prato Prova N° 4

materiale costituente il tratto in prova:

ghiaia con sabbia limosa argillosa	
Profondità foro dal piano campagna (metri)	23.50
Livello statico falda dal p.c. (metri)	17.70
Profondità rivestimento dal p.c. (metri)	22.50
Sporgenza testa tubo di rivestimento dal p.c. (metri)	0.50
Diametro tubo di rivestimento interno (mm)	107
Altezza colonna d'acqua (metri)	24.00
Diametro tratto del foro in prova (mm)	127
Lunghezza tratto in prova (m)	1.00

					intervallo co	onsiderato
Tempi (sec)	Tempo (min)	Altezze H ₂ O rispetto alla falda(m)	Abbas.(m)	K (m/sec)	t ₁	$t_{\scriptscriptstyle 2}$
0	0	18.20	0.00	5.0E-05	0	15
15	0.25	17.15	1.05	5.9E-05	15	30
30	0.5	15.99	2.21	7.1E-05	30	60
60	1	13.50	4.70	6.3E-05	60	120
120	2	10.00	8.20	2.8E-05	120	300
300	5	6.69	11.51	5.6E-05	300	600
600	10	1.78	16.42	4.1E-05	600	900
900	15	0.67	17.53	9.9E-06	900	1200
1200	20	0.53	17.67	5.1E-06	1200	1500
1500	25	0.47	17.73		1500	
						•

Formula per il calcolo della permeabilità

$$k = \frac{A}{Cl(t_2 - t_1)} \cdot \ln \frac{h_1}{h_2}$$

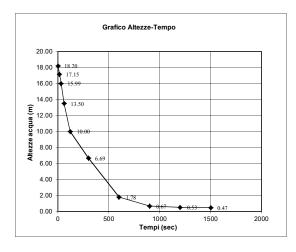
K=coefficiente di permeabilità (m/sec)

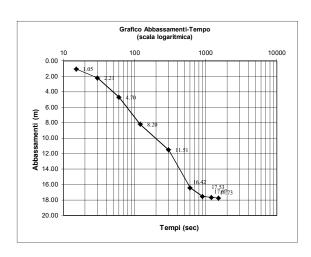
A=area di base del foro (mq)

h1-h2=altezza dell'acqua ai tempi t1 e t2 rispetto alla falda o

al fondo foro

t1-t2=tempi corrispondenti ad h1 e h2


Cl=coefficiente di forma


valori suggeriti:

per L>d= L per L<d=2*3.14*d+L

L= lunghezza tratto di prova

d=diametro tratto di prova

K(m/s) = 5.2E-05

Si prende in considerazione il tratto della curva tra i 30 s e i 600 s

Pagina	1 di 1		
Reg.Com.	160/18		

COMMITTENTE ANAS S.p.A. Sigla Perforo S06_N

Data esecuzione 25-ott-18

Tratto in prova 4.50 5.50 m dal p.c.

LOCALITA' Prato Prova N° 1

materiale costituente il tratto in prova:

S S S S S S S S S S S S S S S S S S S	sabbia con gniaia deb. ilmosa
Profondità foro dal piano campagna (metri)	5.50
Livello statico falda dal p.c. (metri)	17.60
Profondità rivestimento dal p.c. (metri)	4.50
Sporgenza testa tubo di rivestimento dal p.c. (metri)	0.45
Diametro tubo di rivestimento interno (mm)	107
Altezza colonna d'acqua (metri)	5.95
Diametro tratto del foro in prova (mm)	127
Lunghezza tratto in prova (m)	1.00

					intervallo co	onsiderato
Tempi (sec)	Tempo (min)	Altezze H ₂ O rispetto al fondo foro (m)	Abbas.(m)	K (m/sec)	t ₁	t ₂
0	0	5.95	0.00	7.1E-06	0	15
15	0.25	5.90	0.05	5.7E-06	15	30
30	0.5	5.86	0.09	5.8E-06	30	60
60	1	5.78	0.17	6.3E-06	60	120
120	2	5.61	0.34	3.5E-06	120	300
300	5	5.34	0.61	1.3E-05	300	600
600	10	3.91	2.04	1.0E-05	600	900
900	15	3.07	2.88	9.7E-06	900	1200
1200	20	2.44	3.51	1.1E-05	1200	1500
1500	25	1.87	4.08	1.1E-05	1500	1800
1800	30	1.44	4.52	2.0E-05	1800	2700
2700	45	0.34	5.61	2.7E-05	2700	3600
3600	60	0.05	5.90			

Formula per il calcolo della permeabilità

$$k = \frac{A}{Cl(t_2 - t_1)} \cdot \ln \frac{h_1}{h_2}$$

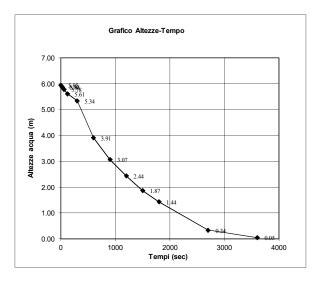
K=coefficiente di permeabilità (m/sec)

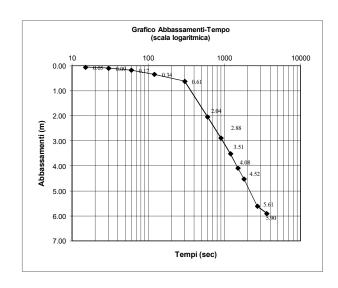
A=area di base del foro (mq)

h1-h2=altezza dell'acqua ai tempi t1 e t2 rispetto alla falda o al fondo foro

t1-t2=tempi corrispondenti ad h1 e h2

CI=coefficiente di forma


valori suggeriti:


per L>d= L

per L<d=2*3.14*d+L

L= lunghezza tratto di prova

d=diametro tratto di prova

K(m/s) = 1.3E-05

Si prende in considerazione il tratto della curva tra i 120 s e i 2700 s

Pagina		1 di 1		
Reg.	.Com.	160/18		

COMMITTENTE ANAS S.p.A. Sigla Perforo **S06_N**

 Data esecuzione
 25-ott-18

 Tratto in prova
 10.50
 11.50 m dal p.c.

LOCALITA' Prato Prova N° 2

materiale costituente il tratto in prova:

Sabbia con griata del	o. Ilmosa
Profondità foro dal piano campagna (metri)	11.50
Livello statico falda dal p.c. (metri)	17.60
Profondità rivestimento dal p.c. (metri)	10.50
Sporgenza testa tubo di rivestimento dal p.c. (metri)	0.45
Diametro tubo di rivestimento interno (mm)	107
Altezza colonna d'acqua (metri)	11.95
Diametro tratto del foro in prova (mm)	127
Lunghezza tratto in prova (m)	1.00

					intervallo co	onsiderato
Tempi (sec)	Tempo (min)	Altezze H ₂ O rispetto al fondo foro (m)	Abbas.(m)	K (m/sec)	t ₁	t ₂
0	0	11.95	0.00	8.5E-06	0	15
15	0.25	11.83	0.12	2.1E-05	15	30
30	0.5	11.54	0.41	1.6E-05	30	60
60	1	11.11	0.84	1.4E-05	60	120
120	2	10.38	1.57	1.1E-05	120	300
300	5	8.87	3.08	1.7E-05	300	600
600	10	5.92	6.03	2.4E-05	600	900
900	15	3.33	8.62	2.0E-05	900	1200
1200	20	2.08	9.87	3.1E-05	1200	1500
1500	25	1.01	10.94	3.4E-05	1500	1800
1800	30	0.45	11.50	2.0E-05	1800	2700
2700	45	0.11	11.84		2700	

Formula per il calcolo della permeabilità

$$k = \frac{A}{Cl(t_2 - t_1)} \cdot \ln \frac{h_1}{h_2}$$

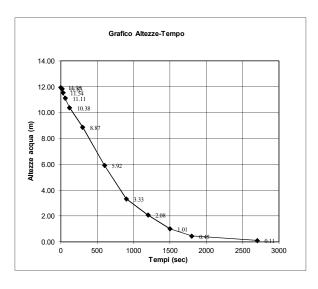
K=coefficiente di permeabilità (m/sec)

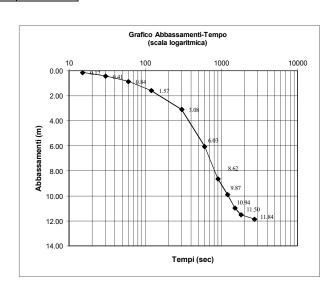
A=area di base del foro (mq)

h1-h2=altezza dell'acqua ai tempi t1 e t2 rispetto alla falda o al fondo foro

t1-t2=tempi corrispondenti ad h1 e h2

Cl=coefficiente di forma


valori suggeriti:


per L>d= L

per L<d=2*3.14*d+L

L= lunghezza tratto di prova

d=diametro tratto di prova

K(m/s)= 2.3E-05

Si prende in considerazione il tratto della curva tra i 120 s e i 1500 s

Pagina	1 di 1		
Reg.Com.	160/18		

COMMITTENTE ANAS S.p.A.-Crotone

Sigla Perforo S06_N

Data esecuzione 25-ott-18

Tratto in prova 18.00 19.00 m dal p.c.

LOCALITA' Prato Prova N° 3

materiale costituente il tratto in prova:

sabbia con ghiaia deb. limosa

sabbia con gniaia deb. ilmosa	
Profondità foro dal piano campagna (metri)	19.00
Livello statico falda dal p.c. (metri)	17.60
Profondità rivestimento dal p.c. (metri)	18.00
Sporgenza testa tubo di rivestimento dal p.c. (metri)	0.45
Diametro tubo di rivestimento interno (mm)	107
Altezza colonna d'acqua (metri)	19.45
Diametro tratto del foro in prova (mm)	127
Lunghezza tratto in prova (m)	1.00

		intervallo co	onsiderato			
Tempi (sec)	Tempo (min)	Altezze H ₂ O rispetto alla falda(m)	Abbas.(m)	K (m/sec)	t ₁	$t_{\scriptscriptstyle 2}$
0	0	18.05	0.00	1.9E-05	0	15
15	0.25	17.65	0.40	2.3E-05	15	30
30	0.5	17.17	0.88	2.6E-05	30	60
60	1	16.16	1.89	2.4E-05	60	120
120	2	14.45	3.60	9.6E-06	120	300
300	5	12.61	5.44	5.6E-06	300	600
600	10	11.04	7.01	1.2E-05	600	900
900	15	8.23	9.82	7.6E-06	900	1200
1200	20	6.87	11.18	1.5E-05	1200	1500
1500	25	4.85	13.20	2.5E-05	1500	1800
1800	30	2.66	15.39	1.7E-05	1800	2700
2700	45	0.80	17.25	8.1E-06	2700	3600
3600	60	0.45	17.60		3600	

Formula per il calcolo della permeabilità

$$k = \frac{A}{Cl(t_2 - t_1)} \cdot \ln \frac{h_1}{h_2}$$

K=coefficiente di permeabilità (m/sec)

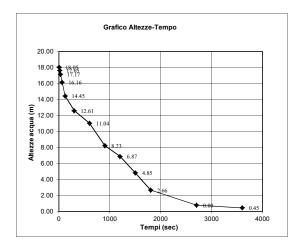
A=area di base del foro (mq)

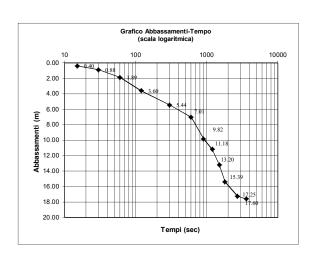
h1-h2=altezza dell'acqua ai tempi t1 e t2 rispetto alla falda o

al fondo foro

t1-t2=tempi corrispondenti ad h1 e h2

Cl=coefficiente di forma


valori suggeriti:


per L>d= L

per L<d=2*3.14*d+L

L= lunghezza tratto di prova

d=diametro tratto di prova

K(m/s) = 1.5E-05

Si prende in considerazione il tratto della curva tra i 600 s e i 1800 s

Pagina	1 di 1		
Reg.Com.	160/18		

COMMITTENTE ANAS S.p.A.-Crotone

Sigla Perforo S06_N

26-ott-18 Data esecuzione

23.50 m dal p.c. Tratto in prova 22.50

LOCALITA' Prato Prova N° 4

materiale costituente il tratto in prova:

sabbia con ghiaia deb. limosa	
Profondità foro dal piano campagna (metri)	23.50
Livello statico falda dal p.c. (metri)	17.60
Profondità rivestimento dal p.c. (metri)	22.50
Sporgenza testa tubo di rivestimento dal p.c. (metri)	0.45
Diametro tubo di rivestimento interno (mm)	107
Altezza colonna d'acqua (metri)	23.95
Diametro tratto del foro in prova (mm)	127
Lunghezza tratto in prova (m)	1.00

		intervallo co	onsiderato			
Tempi (sec)	Tempo (min)	Altezze H ₂ O rispetto alla falda(m)	Abbas.(m)	K (m/sec)	t ₁	t_2
0	0	18.05	0.00	3.4E-05	0	15
15	0.25	17.34	0.71	3.8E-05	15	30
30	0.5	16.57	1.48	3.5E-05	30	60
60	1	15.26	2.79	1.8E-05	60	120
120	2	14.04	4.01	1.2E-05	120	300
300	5	11.80	6.25	1.5E-05	300	600
600	10	8.28	9.77	2.5E-05	600	900
900	15	4.56	13.49	5.3E-05	900	1200
1200	20	1.29	16.76	3.4E-05	1200	1500
1500	25	0.57	17.48	9.1E-06	1500	1800
1800	30	0.46	17.59	1.3E-06	1800	2700
2700	45	0.42	17.63		2700	

Formula per il calcolo della permeabilità

$$k = \frac{A}{Cl(t_2 - t_1)} \cdot \ln \frac{h_1}{h_2}$$

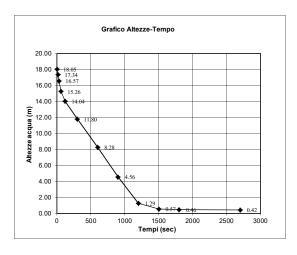
K=coefficiente di permeabilità (m/sec)

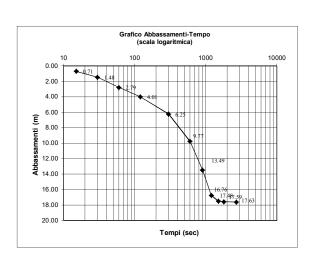
A=area di base del foro (mq)

h1-h2=altezza dell'acqua ai tempi t1 e t2 rispetto alla falda o

al fondo foro

t1-t2=tempi corrispondenti ad h1 e h2


Cl=coefficiente di forma


valori suggeriti: per L>d= L

per L<d=2*3.14*d+L

L= lunghezza tratto di prova

d=diametro tratto di prova

K(m/s) = 3.2E-05

Si prende in considerazione il tratto della curva tra i 300 s e i 1200 s

ANAS S.p.A. - Direzione Progettazione e Realizzazione Lavori Asse stradale di collegamento tra gli svincoli di Prato est e Prato ovest Raddoppio di viale Leonardo da Vinci ("Declassata di Prato") nel tratto compreso tra via Marx e via Nenni

Documentazione Indagini Geognostiche

ALLEGATO 4: ELABORATI SLUG TEST

ALLEGATO 4 - ELABORATI PROVE SLUG TEST

ELABORAZIONE SLUG TEST

(Bouwer & Rice 1976-acquifero non confinato e pozzi a parziale penetrazione)

COMMITTENTE ANAS S.p.A. Sigla Perforo

LOCALITA' Data prova

Prato 18/12/18

2.141003199

Kr = {[r _w ² ln (R _e /r _d)] / 2L} m=
		anna E
II. 111.5	-27,-	
\$		<u> </u>
Rivestim	ento D.	L
_	D	
Finest	ratura $2r_d$ I	
	111111	

4.28E-04	(m/s)	livello statico falda (m)	18.67
$R_e =$	Raggio effettivo (dista	anza oltre la quale la perturbazion	e e' dissipata)
$r_{\rm w} =$	Raggio piezometro (n	1)	0.0762
D =	Distanza piezometrica	a-fondo foro (m)	21.33
A =	Coefficiente per il cal	colo di "ln Re/rd"	5.7
B =	Coefficiente per il cal	colo di "ln Re/rd"	1
b =	Distanza piezometrica	-impermeabile (m)	100
$r_d =$	Raggio zona perturbat	ta (m)	0.125
L =	Lunghezza tubo fessu	rato (m)	21.33
$m = (\ln s_0/s) / t$			0.003231912
$s_0 =$	Abbassamento prodot	to al tempo t ₀ (m)	0.220
S =	Abbassamento prodot	to al tempo t (m)	0.012
t =	Tempo con abbassame	ento s (s)	900

Tempo (s)	Livello falda (m)	e a (t ()	D) E(() (()		2111100017
0	18.450		Cu	rva di risalita	
5	18.473	18.400			
10	18.489	18.450			
15	18.513				
20	18.528	18.500	15 - 11		
25	18.544	18.550	livello si	tatico falda	
30	18.559	18.500 (m) 18.550 (m) 18.600 (m) 18.600			
35	18.567	18.600			
40	18.583	18.650	K		-
45	18.591	18.700			
50	18.595	0 2	100 200 300	400 500 600 700	800 900 1000
55	18.598			Tempo t (secondi)	
60	18.598	Tempo (s)	Livello falda (m)	Tempo (s)	Livello falda (m)
70	18.602	720	18.654	. , ,	
75	18.606	780	18.655		
80	18.610	840	18.656		
85	18.610	900	18.658		
90	18.614				
95	18.614				
100	18.614				
105	18.614				
110	18.614				
115	18.618				
120	18.618				
180	18.625				
240	18.630				
300	18.634				
360	18.638				
420	18.641				
480	18.644				
540	18.646				
600	18.649				
660	18.650				1

 $\ln R_c/r_d = \{ [1.1/\ln(D/r_d)] + [((A+B) \ln ((b-D)/r_d))/(L/r_d)] \}^{-1}$

ELABORAZIONE SLUG TEST

(Bouwer & Rice 1976-acquifero non confinato e pozzi a parziale penetrazione)

COMMITTENTE ANAS S.p.A. Sigla Perforo **S04_N**

LOCALITA' Data prova

(m/s)

1.48E-04

Prato 18/12/18

17.64

7111:1115	11-7/11	7//	William	->////
\frac{\frac{1}{2}}		-2r _w +	† +L	\\
Rivestiment	·	* 1		
Finestratu	ıra	$-2r_d$		b

$R_e =$	Raggio effettivo (distanza oltre la quale la perturbazio	ne e' dissipata)
$r_{\rm w} =$	Raggio piezometro (m)	0.0381
D =	Distanza piezometrica-fondo foro (m)	21.33
A =	Coefficiente per il calcolo di "ln Re/rd"	5.7
B =	Coefficiente per il calcolo di "ln Re/rd"	1
b =	Distanza piezometrica-impermeabile (m)	100
$r_d =$	Raggio zona perturbata (m)	0.076
L=	Lunghezza tubo fessurato (m)	21.33
$m = (\ln s_0/s) / t$	t	0.003459461
$s_0 =$	Abbassamento prodotto al tempo $t_0(m)$	0.225
s =	Abbassamento prodotto al tempo t (m)	0.010
t =	Tempo con abbassamento s (s)	900
$\ln R_e/r_d = \{[1.1/\ln(D/e^2)]\}$	(r_d)] + $[((A+B) ln ((b-D)/r_d))/(L/r_d)]$ ⁻¹	2.771126561

livello statico falda (m

Tempo (s)	Livello falda (m)	migia ([iiii(B)]]] + [((A+B) in ((b-D)/r ₀		2.7/1126561
0	17.419	1	Cu	rva di risalita	
5	17.443	17.400			
10	17.462	17.450			
15	17.483		livell	o statico falda	
20	17.501	17.500			
25	17.513	17.500 17.550 17.600 17.600			
30	17.528	oll vello			
35	17.538	17.600	K		• • •
40	17.554	17.650			
45	17.563	17.700			
50	17.565	0	100 200 300	400 500 600 700	800 900 1000
55	17.569			Tempo t (secondi)	
60	17.571	Tempo (s)	Livello falda (m)	Tempo (s)	Livello falda (m)
70	17.572	720	17.624		
75	17.579	780	17.628		
80	17.583	840	17.627		
85	17.580	900	17.629		
90	17.583				
95	17.584				
100	17.586				
105	17.586				
110	17.586				
115	17.589				
120	17.591				
180	17.594				
240	17.603				
300	17.603				
360	17.609				
420	17.612				
480	17.608				
540	17.617				
600	17.618				
660	17.622				

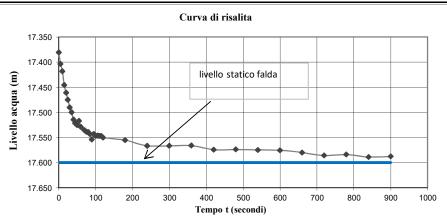
ELABORAZIONE SLUG TEST

(Bouwer & Rice 1976-acquifero non confinato e pozzi a parziale penetrazione)

COMMITTENTE ANAS S.p.A. Sigla Perforo **S06_N**

LOCALITA' Data prova Prato 18/12/18

17.60


$Kr = \left\{ \left[r_w^2 \ln \left(R_e / r_d \right) \right] / 2L \right\} m =$		1.35E-04	(m/s)
	$R_e =$		Raggio effettivo
	$r_{\rm w} =$		Raggio piezome
+-2r _w +	D=		Distanza piezom
¥ + V; + + ¥	A =		Coefficiente per
Rivestimento	B =		Coefficiente per
	b =		Distanza piezom
	$r_d =$	_	Raggio zona per

$R_e =$	Raggio effettivo (distanza oltre la quale la perturbazione e' dissip	pata)
$r_{\rm w} =$	Raggio piezometro (m)	0.0381
D =	Distanza piezometrica-fondo foro (m)	21.33
A =	Coefficiente per il calcolo di "ln Re/rd"	5.7
B =	Coefficiente per il calcolo di "ln Re/rd"	1
b =	Distanza piezometrica-impermeabile (m)	100
$r_d =$	Raggio zona perturbata (m)	0.076
L =	Lunghezza tubo fessurato (m)	21.33
$m = (\ln s_0/s) / t$		0.003137914
$s_0 =$	Abbassamento prodotto al tempo $t_0(m)$	0.219
s =	Abbassamento prodotto al tempo t (m)	0.013
t =	Tempo con abbassamento s (s)	900
$\ln R_{\rm e}/r_{\rm d} = \{[1.1/\ln(D/r_{\rm d})]\}$	(a)] + $[((A+B) ln ((b-D)/r_d))/(L/r_d)]$ } ⁻¹	2.771126561

livello statico falda (n

Tempo (s)	Livello falda (m)
0	17.381
5	17.403
10	17.418
15	17.445
20	17.461
25	17.475
30	17.490
35	17.500
40	17.514
45	17.521
50	17.525
55	17.517
60	17.529
70	17.535
75	17.538
80	17.539

Acquifero non confinato

60	17.529	Tempo (s)	Livello falda (m)	Tempo (s)	Livello falda (m)
70	17.535	720	17.586		
75	17.538	780	17.584		
80	17.539	840	17.589		
85	17.543	900	17.587		
90	17.554				
95	17.543				
100	17.547				
105	17.546				
110	17.547				
115	17.547				
120	17.550				
180	17.555				
240	17.566				
300	17.567				
360	17.566				
420	17.574				
480	17.574				
540	17.575				
600	17.575				
660	17.580				

ANAS S.p.A. - Direzione Progettazione e Realizzazione Lavori Asse stradale di collegamento tra gli svincoli di Prato est e Prato ovest Raddoppio di viale Leonardo da Vinci ("Declassata di Prato") nel tratto compreso tra via Marx e via Nenni

Documentazione Indagini Geognostiche
ALLEGATO 5: ANALISI CHIMICA ACQUA

ALLEGATO 5 – ANALISI CHIMICA ACQUA

Natura S.r.I.
Sede Legale e Laboratorio di analisi:
Via Gioacchino Rossini, 16
80026 Casoria (NA)
Tel 081/5737038 Fax 081/5739776
P.IVA 02887711212
E-Maii: natura@naturasrl.it
Sito internet: www.naturasrl.it

SISTEMA GESTIONE QUALITÀ IN CONFORMITÀ CON LA NORMA UNI EN ISO 9001:2008

LAB N° 0562

RAPPORTO DI PROVA N. 18LA17498	DEL 13/12/2018
--------------------------------	----------------

COMMITTENTE: TECNO IN SPA

INDIRIZZO COMMITTENTE: II Trav. Strettola S.Anna alle Paludi, 11 80127 NAPOLI ()

PARTITA IVA E/O COD. FISCALE: 05016170630

UBICAZIONE CAMPIONAMENTO: CANTIERE ANAS - PRATO

PUNTO DI CAMPIONAMENTO: PA

DESCRIZIONE CAMPIONE:

ACQUE SOTTERRANEE

ACQUE SOTTERRANEE

CAMPIONAMENTO A CURA DI: A CURA DEL CLIENTE**

PROCEDURA/PIANO DI CAMPIONAMENTO: CAMPIONE CONSEGNATO DAL CLIENTE**

DATA RICEZIONE CAMPIONE: 03/12/2018

DATA ACCETTAZIONE CAMPIONE: 03/12/2018

N° ACCETTAZIONE CAMPIONE: 18LA17498

ORA ACCETTAZIONE CAMPIONE: 12.30

DATA INIZIO PROVA: 03/12/2018 **DATA FINE PROVA**: 12/12/2018

Parametro Metodo	U.M.	Risultato	Limiti
IDROCARBURI C6-C10 EPA 5030C 2003 + EPA 8015D 2003	μg/L	< 50	
COBALTO EPA 6020B 2014	µg/L	< 1	50
CROMO TOTALE EPA 6020B 2014	µg/L	< 2,5	50
ARSENICO EPA 6020B 2014	µg/L	< 2,5	10
CADMIO EPA 6020B 2014	μg/L	<1	5
MERCURIO EPA 6020B 2014	μg/L	0,23	1
NICHEL EPA 6020B 2014	μg/L	< 2	20
PIOMBO EPA 6020B 2014	µg/L	< 1,0	10
RAME EPA 6020B 2014	μg/L	< 5	1000
ZINCO EPA 6020B 2014	μg/L	186	3000
IDROCARBURI TOTALI (espressi come n-esano) ISPRA Man 123:2015 met.A + UNI EN ISO 9377-2 :2002	μg/L	105	350
INDENOPIRENE EPA 3510C 1996 + EPA 8270D 2014	μg/L	< 0,01	0,1
DIBENZO(a,h)ANTRACENE EPA 3510C 1996 + EPA 8270D 2014	μg/L	< 0,005	0,01
CRISENE EPA 3510C 1996 + EPA 8270D 2014	μg/L	< 0,01	5
BENZO(a)ANTRACENE EPA 3510C 1996 + EPA 8270D 2014	μg/L	< 0,01	0,1
PIRENE EPA 3510C 1996 + EPA 8270D 2014	μg/L	< 0,01	50
SOMMATORIA IPA (da calcolo) EPA 3510C 1996 + EPA 8270D 2014	μg/L	< 0,01	0,1
BENZO(a)PIRENE EPA 3510C 1996 + EPA 8270D 2014	μg/L	< 0,005	0,01
BENZO(b)FLUORANTENE EPA 3510C 1996 + EPA 8270D 2014	μg/L	< 0,01	0,1

Natura S.r.I.

Sede Legale e Laboratorio di analisi:
Via Gioacchino Rossini, 16
80026 Casoria (NA)
Tel 081/5737038 Fax 081/5739776
P.IVA 02887711212
E-Mail: natura@naturasrl.it
Sito internet: www.naturasrl.it

SISTEMA GESTIONE QUALITÀ IN CONFORMITÀ CON LA NORMA UNI EN ISO 9001:2008

LAB N° 0562

SEGUE RAPPORTO DI PROVA N. 18LA17498	DEL 13/12/2018		
Parametro Metodo	U.M.	Risultato	Limiti
BENZO(g,h,i)PERILENE EPA 3510C 1996 + EPA 8270D 2014	μg/L	< 0,005	0,01
BENZO(k)FLUORANTENE EPA 3510C 1996 + EPA 8270D 2014	μg/L	< 0,005	0,05
BENZENE EPA 5030C 2003 + EPA 8260C 2006	μg/L	< 0,1	1
ETILBENZENE EPA 5030C 2003 + EPA 8260C 2006	μg/L	< 0,5	50
STIRENE EPA 5030C 2003 + EPA 8260C 2006	μg/L	< 0,5	25
TOLUENE EPA 5030C 2003 + EPA 8260C 2006	μg/L	< 0,5	15
XILENE EPA 5030C 2003 + EPA 8260C 2006	μg/L	< 0,5	10
NITRITI APAT CNR IRSA 4020 Man 29 2003	μg/L	▶ 770	500
SOLFATI APAT CNR IRSA 4020 Man 29 2003	mg/L	69	250
FLUORURI APAT CNR IRSA 4020 Man 29 2003	μg/L	60	1500
CROMO ESAVALENTE APAT CNR IRSA 3150 C Man 29 2003	mg/L	< 0,003	0,005
CIANURI M.U. 2251:08	μg/L	< 20	50
*AMIANTO <i>M.I.NA031</i>	mg/L	< 100	

[▶] Parametro NON CONFORME

Ove applicabile, se il recupero del singolo analita è compreso tra l'80% ed il 120%, non si utilizza il fattore di correzione nel calcolo della concentrazione.

Limiti:

Limite 1: D.Lgs. nº 152/2006 Tab. 2 All. 5 Parte Quarta - Concentrazione soglia nelle acque sotterranee

Legenda:

U.M. = unità di misura nd = non determinabile U (se presente) = incertezza LR (se presente) = limite di rilevabilità

Pareri ed interpretazioni non oggetto dell'accreditamento Accredia

SUPERAMENTI

Limite 1: D.Lgs. n° 152/2006 Tab. 2 All. 5 Parte Quarta - Concentrazione soglia nelle acque sotterranee

SUPERAMENTI rispetto al Limite 1:

Parametro	U.M.	Valore	Limite	
NITRITI	μg/L	770	500	

NON CONFORME rispetto al Limite 1

► Parametro NON CONFORME

^{(*):} PROVA NON ACCREDITATA ACCREDIA.

^{(**):} Campionamento escluso dall'accreditamento.

Natura S.r.I.
Sede Legale e Laboratorio di analisi:
Via Gioacchino Rossini, 16
80026 Casoria (NA)
Tel 081/5/37038 Fax 081/5/39776
P.IVA 02887711212
E-Mail: natura@naturasrl.it
Sito internet: www.naturasrl.it

SISTEMA GESTIONE QUALITÀ IN CONFORMITÀ CON LA NORMA UNI EN ISO 9001:2008

DOTT.

LAB N° 0562

FRANCESO Responsabile di laboratorio
CHIMICO Pott Francesco Troisi
N. 1714

SEGUE RAPPORTO DI PROVA N. 18LA17498

DEL 13/12/2018

I risultati del presente rapporto di prova si devono intendere riferiti esclusivamente al campione sottoposto a prova Il presente rapporto di prova non può essere riprodotto parzialmente se non previa approvazione scritta da parte di guesta Laboratorio.

Pagina 3 di 3