

## Direzione Progettazione e Realizzazione Lavori

Asse stradale di collegamento tra gli svincoli di Prato Est e Prato Ovest — "Declassata di Prato" Raddoppio di Viale Leonardo da Vinci nel tratto compreso tra Via Marx e Via Nenni mediante la realizzazione di un sottopasso

#### PROGETTO DEFINITIVO cop. FI463 PROGETTAZIONE: MANDATARIA: **RAGGRUPPAMENTO** ARGICALT. © POLITECNICA MATILDI+PARTNERS TEMPORANEO PROGETTISTI IL RESPONSABILE DELL'INTEGRAZIONE DELLE PRESTAZIONI IL PROGETTISTA: SPECIALISTICHE: GRUPPO DI PROGETTAZIONE: COORDINAMENTO PROGETTAZIONE, PROGETTAZIONE STRADALE, Ing. Andrea Renso - TECHNITAL Ordine Ingegneri Provincia di Verona n. A2413 GEOTECNICA ED OPERE IN SOTTERRANEO: Ing. Marcello Mancone - POLITECNICA ordine ingegneri Provincia di Firenze n.5723 IL GEOLOGO: Geol. Pietro Accolti Gil - POLITECNICA STUDIO DI IMPATTO AMBIENTALE: Ordine Geologi Regione Toscana nº 728 Arch. Paola Gabrielli - POLITECNICA ordine Architetti Provincia di Bologna n. 2921 IL COORDINATORE PER LA SICUREZZA IN FASE DI PROGETTAZIONE CANTIERIZZAZIONE E FASI ESECUTIVE: Ing. Marcello Mancone - POLITECNICA Ing. Alessio Gori - POLITECNICA ordine ingegneri Provincia di Firenze n.5723 ordine ingegneri Provincia di Firenze n.5969 IDROLOGIA ED IDRAULICA: VISTO: IL RESP. DEL PROCEDIMENTO: Ing. Alessandro Cecchelli - POLITECNICA ordine ingegneri Provincia di Grosseto n.760 Ing. Raffaele Franco Carso COLLABORATORI DI PROGETTO: Ing. Massimo Palermo - POLITECNICA Arch. Valentina laia - POLITECNICA Geom. Franco Mariotti - POLITECNICA PROTOCOLLO: DATA: Geom. Angela Pantiferi - POLITECNICA

# 02 - GEOLOGIA GEOTECNICA E SISMICA

02.4 — Geotecnica e sismica

Relazione geotecnica e sismica

| CODICE PF | ROGETTO  LIV. PROG. N. PROG. | NOME FILE<br>02.13_P00_GE00_G |         | PROGR. ELAB. 02.13 | REV.           |           | SCALA: |           |
|-----------|------------------------------|-------------------------------|---------|--------------------|----------------|-----------|--------|-----------|
| DPFI      | 10 D 1901                    | CODICE POOG                   | B       | -                  |                |           |        |           |
| D         |                              |                               |         |                    |                |           |        |           |
| С         |                              |                               |         |                    |                |           |        |           |
| В         | REVISIONE A SEGUITO DI ISTRI | JTTORIA ANAS                  | 03/2020 | POLITECNICA        | S. TRONCONI    | M.MAN     | ICONE  | A.RENSO   |
| А         | EMISSIONE                    |                               | 12/2019 | POLITECNICA        | S. TRONCONI    | M.MANCONE |        | A.RENSO   |
| REV.      | DESCRIZIONE                  |                               | DATA    | SOCIETA'           | REDATTO VERIFI |           | ICATO  | APPROVATO |



### **SOMMARIO**

| 1                                         | PREMESSA                                                                                                                         | 1              |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------|
| 2                                         | NORMATIVA E DOCUMENTI DI RIFERIMENTO                                                                                             | 2              |
| 3                                         | INDAGINI GEOGNOSTICHE                                                                                                            | 3              |
| 3.1<br>3.1.1<br>3.1.2                     | Campagna d'indagine Progetto Preliminare                                                                                         | 3              |
| 3.2<br>3.2.1<br>3.2.2<br>3.2.3            | Campagna d'indagine Progetto Definitivo Indagini in sito Indagini di laboratorio Indagini sismiche                               | 4<br>5         |
| 3.3                                       | Indagini di permeabilità                                                                                                         | 6              |
| 4                                         | CARATTERIZZAZIONE LITOSTRATIGRAFICA                                                                                              | 10             |
| 5                                         | LIVELLI PIEZOMETRICI                                                                                                             | 11             |
| 6                                         | CRITERI PER LA CARATTERIZZAZIONE GEOTECNICA                                                                                      | 13             |
| 6.1<br>6.1.1<br>6.1.2<br>6.1.3<br>6.1.3.1 | PARAMETRI GEOTECNICI DA PROVE IN SITO E LABORATORIO                                                                              | 13<br>14<br>19 |
| 6.1.4<br>6.1.5<br>6.1.6                   | DENSITÀ RELATIVA D <sub>R</sub> da prove SPTCARATTERISTICHE DI RESISTENZA AL TAGLIO DA PROVE SPTCARATTERISTICHE DI DEFORMABILITÀ | 31<br>34       |
| 6.1.6.1<br>6.1.6.2<br>6.1.7               |                                                                                                                                  | 48             |
| 6.2<br>6.3                                | Unità LS – Limi sabbiosi (compreso Riporto superficiale)  Unità SG e GS – sabbie ghiaiose e ghiaie sabbiose                      |                |
| 7                                         | PARAMETRI GEOTECNICI                                                                                                             | 57             |
| 8                                         | CARATTERIZZAZIONE SISMICA                                                                                                        | 58             |







| 8.1  | AZIONE SISMICA DI RIFERIMENTO                      | 61 |
|------|----------------------------------------------------|----|
|      | VERIFICHE DI LIQUEFAZIONEANALISI LIQUEFAZIONE      |    |
| 9    | VALUTAZIONE RESISTENZA BULBO DI FONDAZIONE TIRANTI | 64 |
| 10   | PORTANZA PALI                                      | 67 |
| 10.1 | CAPACITA' PORTANTE A CARICHI VERTICALI             | 68 |





### 1 PREMESSA

Il presente Progetto Definitivo sviluppa quanto previsto nello Studio di Fattibilità Tecnico Economica redatto da ANAS nel 2018 in virtù di una Convenzione stipulata con il Comune di Prato in data 20/10/2016 denominata "Progettazione del raddoppio e interramento del tratto stradale del "Soccorso" della strada denominata Declassata di Prato".

Il tratto di strada di via Leonardo da Vinci oggetto di progettazione ha uno sviluppo di circa 1000 m ed è compreso fra la rotatoria di via Nenni e la rotatoria di via Marx. Attualmente la sede stradale è in rilevato ad una quota di circa +5.50 m rispetto alle viabilità in affiancamento ed è composta da una corsia per senso di marcia.

Il progetto prevede l'uso di una piattaforma stradale di tipo "B" (D.M. 05/11/2001) a due corsie per senso di marcia con alcuni elementi di dimensione ridotta (vedere paragrafo 1.3 della "Relazione tecnica") e l'interramento del tracciato attraverso una galleria artificiale.

La sezione stradale è in scavo (con a sinistra e destra una paratia di pali), a meno del tratto finale di collegamento all'esistente, in cui sono previsti muri di sottoscarpa a destra e a sinistra di separazione alla viabilità esistente in affiancamento. Nei tratti con le rampe in affiancamento, la sede stradale di asse principale e le rampe, saranno separati da muri di sostegno.

Dall'asse principale si raggiungerà la rotatoria di via Nenni attraverso due rampe ("A" di ingresso in discesa e "B" di uscita in salita). Via Roma e via del Purgatorio (che ora attraversano via Leonardo da Vinci con un sottopasso) saranno ripristinate mediante tratti di viabilità a raso con la geometria attualmente presente, mentre via dell'Autostrada sarà realizzata in posizione leggermente traslata rispetto la posizione attuale per evitare l'interferenza con le palificate e (poiché attualmente sovradimensionata) avrà una sezione tipo più ridotta.



Figura 1 – Planimetria di progetto su ortofoto

Nella presente relazione vengono descritte ed approfondite le seguenti tematiche:

- Descrizione delle indagini geognostiche in sito e delle prove di laboratorio disponibili;
- Caratterizzazione stratigrafica e geotecnica dei terreni indagati;
- Definizione dei livelli piezometrici ai fini delle analisi geotecniche;
- Descrizione dei criteri utilizzati per la caratterizzazione geotecnica;
- Inquadramento sismico dell'area;
- Verifica a liquefazione.







### 2 NORMATIVA E DOCUMENTI DI RIFERIMENTO

La Normativa e la documentazione tecnica di riferimento è la seguente:

- D.M. 17 gennaio 2018: "Nuove Norme tecniche per le costruzioni"
- Circolare del 21 gennaio 2019 n°7: "Istruzioni per l'applicazione dell'Aggiornamento delle Norme tecniche per le costruzioni" di cui al DM 17/01/2018
- Raccomandazioni AGI giugno 1977 "Programmazione ed esecuzione delle indagini geotecniche"
- Raccomandazioni AGI giugno 1977 "Raccomandazione sui pali di fondazione"
- D.M. 11 Marzo 1988: "Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione"
- AGI, marzo 2005, "Aspetti geotecnici della progettazione in zona sismica, Linee Guida"
- UNI EN 1997-1:2005 Eurocodice 7, "Progettazione geotecnica Parte 1: Regole generali"
- UNI EN 1998-5:2005 Eurocodice 8, "Indicazioni progettuali per la resistenza sismica delle strutture
   Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici"







### 3 INDAGINI GEOGNOSTICHE

A supporto della progettazione sono state sono state eseguite due campagne d'indagine.

### 3.1 Campagna d'indagine Progetto Preliminare

### 3.1.1 Indagini in sito

A supporto della progettazione preliminare è stata eseguita tra Novembre 2011 e Gennaio 2012, una campagna d'indagine geognostica e sismica. Le prove eseguite sono le seguenti:

- n°3 sondaggi a carotaggio continuo denominati S1 S3 spinti ad una profondità compresa tra 20.0 m (S3) e
   30.0 m (S1 e S2). Durante l'esecuzione dei sondaggi, sono state eseguite le seguenti attività:
  - · rilievo stratigrafico;
  - n°9 prove penetrometriche dinamiche in foro di tipo SPT (Standard Penetration Test);
  - installazione di n°2 piezometri a tubo aperto per il monitoraggio della falda;
  - installazione di n°1 tubo per eseguire prove Down Hole.
  - n°8 prove penetrometriche dinamiche pesanti DPSH spinti sino a una profondità massima di 23.2 m.

Nelle tabelle seguenti si riporta un quadro riassuntivo delle indagini effettuate.

QUADRO RIASSUNTIVO SONDAGGI STRATIGRAFICI

| Codice | Profondità | SPT | Prelievo     | Attrezzatura |                |
|--------|------------|-----|--------------|--------------|----------------|
| 5045   | [m]        | n°  | Indisturbati | Disturbati   |                |
| S1     | 30         | 5   | -            | -            | Down Hole      |
| S2     | 30         | 4   | -            | -            | Piezometro 2'' |
| S3     | 20         | -   | -            | -            | Piezometro 2'' |
| тот.   | 80         | 9   | -            | -            |                |

QUADRO RIASSUNTIVO PROVE PENETROMETRICHE DINAMICHE PESANTI DPSH

| Codice | Profondità<br>[m] |
|--------|-------------------|
| DPSH1  | 20.0              |
| DPSH2  | 6.0               |
| DPSH3  | 5.20              |
| DPSH4  | 18.6              |







| DPSH5 | 23.4 |
|-------|------|
| DPSH6 | 21.2 |
| DPSH7 | 18.2 |
| DPSH8 | 6.0  |

Ai fini progettuali le prove penetrometriche pesanti DPSH, vengono riportate ma utilizzate per avere i valori indicativi del grado di addensamento delle unità presenti nel sottosuolo.

I certificati delle indagini geognostiche in sito, sono riportati nel documento di riferimento.

### 3.1.2 Indagini sismiche

È stata eseguita n°1 prova Down Hole all'interno dei fori di sondaggio S1 al fine di definire la velocità delle onde di taglio con la profondità e quindi di stimare la  $V_{s,30}$  per la determinazione della categoria sismica di sottosuolo. Nella tabella seguente si riportano i valori di  $V_{s,30}$  rilevati dalle prove eseguite e la corrispondente categoria sismica di sottosuolo.

Tabella 1 Indagini sismiche campagna del 2012

| Sigla prova             | S1DH |
|-------------------------|------|
| V <sub>s,30</sub> [m/s] | 384  |
| Categoria sottosuolo    | В    |

Sono state inoltre eseguite:

- n°2 linee sismiche a rifrazione tomografica
- n°1 prova HVSR (microtremori)

Ai fini progettuali tali indagini non vengono prese in considerazione in quanto non forniscono elementi aggiuntivi rispetto ai sondaggi a carotaggio continuo di maggiore attendibilità.

### 3.2 Campagna d'indagine Progetto Definitivo

### 3.2.1 Indagini in sito

A supporto della progettazione definitiva è stata eseguita nell'Ottobre 2018, una campagna d'indagine geognostica, di laboratorio e sismica, commissionata da ANAS S.p.A. alla ditta Tecnoin S.p.A. di Napoli. Le prove eseguite sono le seguenti:







- n°6 sondaggi a carotaggio continuo denominati S1 S7 spinti ad una profondità compresa tra 30.0 m (S2, S3, S4 e S6) e 35.0 m (S1 e S5). Durante l'esecuzione dei sondaggi, sono state eseguite le seguenti attività:
  - rilievo stratigrafico;
  - n°8 prelievi di campioni indisturbati;
  - n°25 prelievi di campioni disturbati di materiale incoerente;
  - n°33 prove penetrometriche dinamiche in foro di tipo SPT (Standard Penetration Test);
  - n°21 prove di permeabilità tipo Lefranc;
  - installazione di n°4 piezometri a tubo aperto per il monitoraggio della falda;
  - installazione di n°2 tubi per eseguire prove Down Hole.
  - n°1 sondaggio a carotaggio continuo denominato Pozzo (D=250 mm) spinto ad una profondità di 40.0 m, per eseguire una prova di pompaggio.

Nelle tabelle seguenti si riporta un quadro riassuntivo delle indagini effettuate.

**Prelievo Campioni SPT Profondità Codice Attrezzatura** [m]n° Indisturbati Disturbati **S1** 35 5 4 Down Hole S2 30 5 2 3 Piezometro 2" S3 30 5 2 3 Piezometro 2" S4 2 3 Piezometro 3" 30 5 S5 35 6 2 4 Down Hole S6 30 4 Piezometro 3" 4 Pozzo 40 Pozzo 6" TOT. 190 33 8 21

QUADRO RIASSUNTIVO SONDAGGI STRATIGRAFICI

I certificati delle indagini geognostiche in sito, sono riportati nel documento di riferimento.

Nella figura 2 è riportata l'ubicazione in pianta di tutte le indagini eseguite lungo il tracciato.

### 3.2.2 Indagini di laboratorio

Nel corso dell'esecuzione del sondaggio a carotaggio continuo sono stati prelevati dei campioni indisturbati e disturbati (vedi Tabella) sui quali si sono esequite le sequenti prove di laboratorio.

Sui campioni disturbati prelevati nelle unità incoerenti, sono state eseguite le seguenti prove di laboratorio:

- Apertura campione, descrizione geotecnica e prove speditive di consistenza
- Determinazione del contenuto naturale d'acqua







- · Peso specifico dell'unità di volume e dei grani
- Analisi granulometrica completa meccanica + sedimentazione
- Limiti di Atterberg

Sui campioni indisturbati prelevati nelle unità coesive, sono state invece eseguite le seguenti prove di laboratorio:

- Apertura campione, descrizione geotecnica e prove speditive di consistenza
- Determinazione del contenuto naturale d'acqua
- Peso specifico dell'unità di volume e dei grani
- Analisi granulometrica completa meccanica + sedimentazione
- · Limiti di Atterberg
- Determinazione della coesione efficace e dell'angolo d'attrito, mediante prova Triassiale TxCD e triassiale TxCIU;
- Espansione laterale libera ELL
- Prove edometriche

### 3.2.3 Indagini sismiche

In corrispondenza del nuovo asse viario, sono state eseguite n°2 prove Down Hole all'interno dei fori di sondaggio S1 e S5. Tutte le prove consentono di definire la velocità delle onde di taglio con la profondità e quindi di stimare la  $V_{s,30}$  per la determinazione della categoria sismica di sottosuolo. Nella tabella seguente si riportano i valori di  $V_{s,30}$  rilevati dalle prove eseguite e la corrispondente categoria sismica di sottosuolo.

Tabella 2 Indagini sismiche campagna del 2018

| Sigla prova             | S1DH | S5_DH |
|-------------------------|------|-------|
| V <sub>s,30</sub> [m/s] | 436  | 396   |
| Categoria sottosuolo    | В    | В     |
| Indagini vicine         | S1   | S5    |

### 3.3 Indagini di permeabilità

All'interno dei vari fori di sondaggio sono state eseguite prove di permeabilità tipo Lefranc e Slug Test.

| Codice | Profondità<br>[m] | Lefranc<br>n° | Slug Test |
|--------|-------------------|---------------|-----------|
| S1     | 35                | -             | -         |
| S2     | 30                | 4             | -         |
| S3     | 30                | 4             | -         |
| S4     | 30                | 4             | 1         |





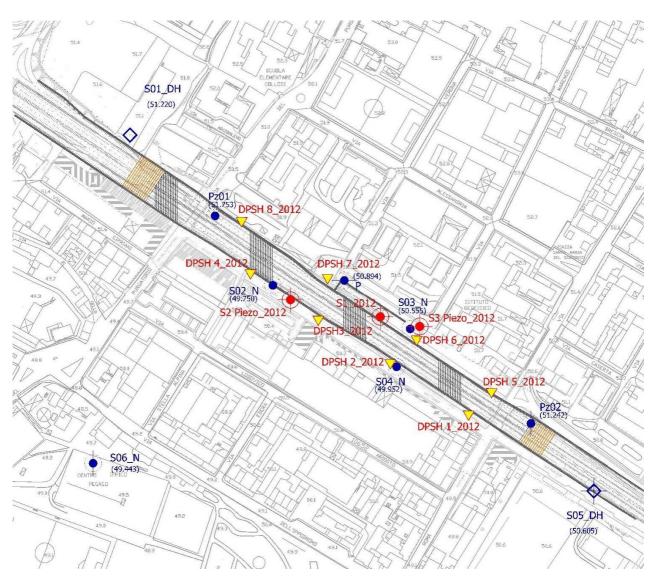


| S5    | 35  | -  | - |
|-------|-----|----|---|
| S6    | 30  | 4  | 1 |
| Pozzo | 40  | 5  | 1 |
| тот.  | 190 | 21 | 3 |

Tabella 3\_Laboratorio campagna geognostica del 2018

|       |                |       |          |                |                    |                             |         |             | Gr             | anulome        | etria          |                |              |       |          | Limi      | ti di Atte | rberg     |
|-------|----------------|-------|----------|----------------|--------------------|-----------------------------|---------|-------------|----------------|----------------|----------------|----------------|--------------|-------|----------|-----------|------------|-----------|
| Lotto | Sond.          | Camp. | tipo     | Prof.<br>[m]   | Unità<br>stratigr. | γ <sub>nat</sub><br>[kN/m³] | e<br>[] | D50<br>[mm] | G<br>[%]       | S<br>[%]       | L +A<br>[%]    | L<br>[%]       | A<br>[%]     | Σ [%] | W<br>[%] | LL<br>[%] | LP<br>[%]  | IP<br>[%] |
| ~     | ~              | ~     | ~        | ~              | ~                  | ~                           | ~       | ~           | ~              | ~              | ~              | ~              | ~            | ¥     | ~        | ~         | ~          | ~         |
| 2018  | S1_DH          | 1     | R        | 3,00           | GS                 |                             |         |             | 51,00          | 31,00          | 18,00          | 14,00          | 4,00         | 100,0 |          |           |            |           |
| 2018  | S1_DH          | 2     | R        | 9,00           | GS                 |                             |         |             | 58,00          | 29,00          | 13,00          | 9,50           | 3,50         | 100,0 |          |           |            |           |
| 2018  | S1_DH          | 3     | R        | 23,00          | LS                 | 20,35                       |         |             | 2,00           | 31,00          | 67,00          | 40,00          | 27,00        | 100,0 |          | 40,20     | 21,74      | 18,46     |
| 2018  | S1_DH          | 4     | R        | 30,00          | GS                 |                             |         |             | 54,00          | 31,00          | 15,00          | 9,00           | 6,00         | 100,0 |          |           |            |           |
| 2018  | S2 Pz          | 1     |          | 3.00           | LS                 | 19.21                       |         |             | 0.50           | 40.50          | 59.00          | 43,00          | 16.00        | 100.0 | 19,45    | 29,50     | 21,96      | 7,54      |
| 2018  | S2 Pz          | 2     | <u> </u> | 6.00           | GS                 | 19,77                       |         |             | 47.00          | 39,40          | 13,60          | 10,00          | 3,60         | 100,0 | 19,30    | 20,00     | 21,00      | 0,00      |
| 2018  | S2 Pz          | 1     | R        | 12.00          | GS                 | 10,11                       |         |             | 41.00          | 44.00          | 15.00          | 11.00          | 4.00         | 100.0 | 10,00    |           |            | 0.00      |
| 2018  | S2 Pz          | 2     | R        | 19,50          | GS                 |                             |         |             | 44,00          | 31,00          | 25,00          | 16,50          | 8,50         | 100,0 |          |           |            | 0,00      |
| 2018  | S2_Pz          | 3     | R        | 24,50          | GS                 |                             |         |             | 27,00          | 39,50          | 33,50          | 27,50          | 6,00         | 100,0 |          |           |            | 0,00      |
|       |                |       |          |                |                    |                             |         |             |                |                |                |                |              |       |          |           |            |           |
| 2018  | S3_Pz          | 1     |          | 4,00           | LS                 | 19,63                       |         |             | 2,50           | 37,00          | 60,50          | 38,00          | 22,50        | 100,0 | 14,30    | 35,25     | 22,25      | 13,00     |
| 2018  | S3_Pz          | 2     |          | 13,00          | LS                 | 20,10                       |         |             | 13,50          | 53,50          | 33,00          | 21,00          | 12,00        | 100,0 | 16,61    | 30,40     | 18,24      | 12,16     |
| 2018  | S3_Pz          |       | R        | 19,00<br>24,00 | GS                 | 20,75                       |         |             | 41,00          | 33,00          | 26,00<br>24,00 | 20,00          | 6,00         | 100,0 |          |           |            | -         |
| 2018  | S3_Pz<br>S3 Pz | 3     | R<br>R   | 27,00          | GS<br>GS           | 20,75                       |         |             | 43,00<br>38,00 | 33,00<br>45,00 | 17,00          | 16,00<br>14,00 | 8,00<br>3,00 | 100,0 |          |           |            |           |
| 2010  | 33_F2          | J     | п        | 27,00          | us                 |                             |         |             | 30,00          | 43,00          | 17,00          | 14,00          | 3,00         | 100,0 |          |           |            |           |
| 2018  | S4 Pz          | 1     | <u> </u> | 3.00           | LS                 | 19.87                       |         |             | 1.00           | 41,00          | 58,00          | 40,50          | 17,50        | 100,0 | 18,50    | 32,60     | 22,93      | 9.67      |
| 2018  | S4 Pz          | 2     | i        | 14.00          | GS                 | 20.08                       |         |             | 53.50          | 33,50          | 13.00          | 11,00          | 2,00         | 100,0 | 19,40    | 02,00     | LL,00      | 0,07      |
| 2018  | S4 Pz          | 1     | R        | 21.00          | GS                 | ,                           |         |             | 53.50          | 23.50          | 23,00          | 15,00          | 8.00         | 100.0 | ,        |           |            |           |
| 2018  | S4_Pz          | 2     | R        | 24,00          | GS                 |                             |         |             | 47,00          | 26,00          | 27,00          | 16,50          | 10,50        | 100,0 |          |           |            |           |
| 2018  | S4_Pz          | 3     | R        | 27,00          | GS                 |                             |         |             | 50,00          | 33,00          | 17,00          | 10,50          | 6,50         | 100,0 |          |           |            |           |
|       |                |       |          |                |                    |                             |         |             |                |                |                |                |              |       |          |           |            |           |
| 2018  | S5_DH          | 1     | I        | 2,00           | LS                 | 19,09                       |         |             | 0,00           | 35,50          | 64,50          | 41,50          | 23,00        | 100,0 | 18,30    | 31,60     | 22,08      | 9,52      |
| 2018  | S5_DH          | 2     |          | 9,50           | GS                 | 19,70                       |         |             | 47,00          | 31,00          | 22,00          | 15,50          | 6,50         | 100,0 | 20,67    |           |            | <b></b>   |
| 2018  | S5_DH          | 1     | R        | 15,00          | GS                 |                             |         |             | 46,00          | 31,00          | 23,00          | 19,00          | 4,00         | 100,0 |          |           |            | <b></b>   |
| 2018  | S5_DH<br>S5_DH | 3     | R<br>R   | 19,50<br>24,50 | GS<br>GS           |                             |         |             | 33,00          | 37,00<br>44.00 | 30,00          | 18,00          | 12,00        | 100,0 |          |           |            | l         |
| 2018  | S5_DH          | 4     | R        | 34,50          | GS                 |                             |         |             | 39.00          | 38,00          | 23,00          | 16.00          | 7.00         | 100,0 |          |           |            |           |
| 2010  | 33_011         | 4     | - 11     | 34,30          | do                 |                             |         |             | 39,00          | 30,00          | 23,00          | 10,00          | 7,00         | 100,0 |          |           |            |           |
| 2018  | S6 Pz          | 1     | R        | 5,00           | GS                 |                             |         |             | 57,50          | 29,50          | 13,00          | 9.00           | 4,00         | 100,0 |          |           |            |           |
| 2018  | S6 Pz          | 2     | R        | 17,00          | GS                 |                             |         |             | 67,50          | 20,50          | 12,00          | 8,50           | 3,50         | 100,0 |          |           |            |           |
| 2018  | S6_Pz          | 3     | R        | 24,00          | LS                 | 19,90                       |         |             | 3,50           | 31,50          | 65,00          | 43,00          | 22,00        | 100,0 | 17,70    | 41,00     | 25,11      | 15,89     |
| 2018  | S6_Pz          | 4     | R        | 27,00          | GS                 |                             |         |             | 56,50          | 29,50          | 14,00          | 8,00           | 6,00         | 100,0 |          |           |            |           |
|       |                |       |          |                |                    |                             |         |             |                |                |                |                |              |       |          |           |            |           |
| 2018  | P              | 1     | R        | 11,00          | GS                 |                             |         |             | 39,00          | 28,50          | 32,50          | 19,00          | 13,50        | 100,0 |          |           |            |           |
| 2018  | P              | 2     | R        | 22,00          | GS                 |                             |         |             | 53,50          | 23,00          | 23,50          | 12,50          | 11,00        | 100,0 |          |           |            | <b></b>   |
| 2018  | P P            | 3     | R        | 34,00          | GS                 |                             |         |             | 36,50          | 33,00          | 30,50          | 19,00          | 11,50        | 100,0 |          | 05.00     | 04.00      | 10.07     |
| 2018  | Р              | 4     | R        | 39,00          | GS                 |                             |         |             | 41,50          | 23,00          | 35,50          | 19,50          | 16,00        | 100,0 |          | 35,00     | 21,93      | 13,07     |




### Tabella 2\_Laboratorio campagna geognostica del 2018

|              |                |       |          |                |                    |                               | TX                    | CIU         |           | TX          | CD        | TxUU                    | ELL                     | Prova edometrica |              |              |           |            |
|--------------|----------------|-------|----------|----------------|--------------------|-------------------------------|-----------------------|-------------|-----------|-------------|-----------|-------------------------|-------------------------|------------------|--------------|--------------|-----------|------------|
| Lotto        | Sond.          | Camp. | tipo     | Prof.<br>[m]   | Unità<br>stratigr. | c <sub>u, f(z)</sub><br>[kPa] | φ <sub>u</sub><br>[°] | c'<br>[kPa] | φ'<br>[°] | c'<br>[kPa] | φ'<br>[°] | c <sub>u</sub><br>[kPa] | c <sub>u</sub><br>[kPa] | Eed<br>[MPa]     | σ'v<br>[kPa] | cv<br>[m2/s] | cα<br>[-] | k<br>[m/s] |
| ~            | ~              | ~     | ~        | ₩              | ~                  | ~                             | *                     | ~           | ~         | ~           | ~         | ~                       | ~                       | ~                | ~            | ~            | ~         | ~          |
| 2018         | S1_DH          | 1     | R        | 3,00           | GS                 |                               |                       |             |           |             |           |                         |                         |                  |              |              | ·         |            |
| 2018         | S1_DH          | 2     | R        | 9,00           | GS                 |                               |                       |             |           |             |           |                         |                         |                  |              |              |           |            |
| 2018         | S1_DH          | 3     | R        | 23,00          | LS                 |                               |                       |             |           |             |           |                         | 381,00                  |                  |              |              |           |            |
| 2018         | S1_DH          | 4     | R        | 30,00          | GS                 |                               |                       |             |           |             |           |                         |                         |                  |              |              |           |            |
|              |                |       |          |                |                    |                               |                       |             |           |             |           |                         |                         |                  |              |              |           |            |
| 2018         | S2_Pz          | 1     |          | 3,00           | LS                 |                               |                       |             |           |             |           |                         |                         | 3,46             |              | 4,80E-07     |           | 1,39E-09   |
| 2018         | S2_Pz<br>S2 Pz | 2     | _        | 6,00<br>12,00  | GS<br>GS           |                               |                       |             |           |             |           |                         |                         | 5,71             |              | 4,80E-05     |           | 8,40E-08   |
| 2018         | S2_Pz<br>S2_Pz | 1 2   | R<br>R   | 19,50          | GS                 |                               |                       |             |           |             |           |                         |                         |                  |              |              |           |            |
| 2018         | S2_P2          | 3     | R        | 24,50          | GS                 |                               |                       |             |           |             |           |                         |                         |                  |              |              |           | _          |
| 2010         | 32_F2          | 3     | п        | 24,50          | us                 |                               |                       |             |           |             |           |                         |                         |                  |              |              |           |            |
| 2018         | S3 Pz          | 1     | -        | 4,00           | LS                 |                               |                       |             |           | 25,69       | 30,60     |                         |                         | 5,52             |              | 1,20E-07     |           | 2,17E-10   |
| 2018         | S3_Pz          | 2     | <u> </u> | 13,00          | LS                 |                               |                       | 15,04       | 32,12     | 20,00       | 00,00     |                         |                         | 5,62             |              | 2,20E-07     |           | 3,92E-10   |
| 2018         | S3 Pz          | 1     | R        | 19,00          | GS                 |                               |                       | ,           | ,         |             |           |                         |                         | -,               |              | _,           |           | 0,000      |
| 2018         | S3 Pz          | 2     | R        | 24,00          | GS                 |                               |                       |             |           |             |           |                         |                         |                  |              |              |           |            |
| 2018         | S3 Pz          | 3     | R        | 27,00          | GS                 |                               |                       |             |           |             |           |                         |                         |                  |              |              |           |            |
|              | _              |       |          | ,              |                    |                               |                       |             |           |             |           |                         |                         |                  |              |              |           |            |
| 2018         | S4_Pz          | - 1   |          | 3,00           | LS                 |                               |                       |             |           | 16,02       | 32,94     |                         |                         | 3,94             |              | 4,40E-07     |           | 1,12E-09   |
| 2018         | S4_Pz          | 2     |          | 14,00          | GS                 |                               |                       |             |           |             |           |                         |                         |                  |              |              |           |            |
| 2018         | S4_Pz          | 1     | R        | 21,00          | GS                 |                               |                       |             |           |             |           |                         |                         |                  |              |              |           |            |
| 2018         | S4_Pz          | 2     | R        | 24,00          | GS                 |                               |                       |             |           |             |           |                         |                         |                  |              |              |           |            |
| 2018         | S4_Pz          | 3     | R        | 27,00          | GS                 |                               |                       |             |           |             |           |                         |                         |                  |              |              |           |            |
|              |                |       |          |                |                    |                               |                       |             |           |             |           |                         |                         |                  |              |              |           |            |
| 2018         | S5_DH          | 1     |          | 2,00           | LS                 |                               |                       |             |           | 27,16       | 22,19     |                         |                         | 3,64             |              | 4,4E-07      |           | 1,21E-09   |
| 2018         | S5_DH          | 2     |          | 9,50           | GS                 |                               |                       |             |           |             |           |                         |                         |                  |              |              |           |            |
| 2018         | S5_DH          | 2     | R<br>R   | 15,00<br>19.50 | GS                 |                               |                       |             |           |             |           |                         |                         |                  |              |              |           |            |
| 2018<br>2018 | S5_DH<br>S5_DH | 3     | R        | 24,50          | GS<br>GS           |                               |                       |             |           |             |           |                         |                         |                  |              |              |           |            |
| 2018         | S5_DH          | 4     | R        | 34,50          | GS                 |                               |                       |             |           |             |           |                         |                         |                  |              |              |           |            |
| 2010         | 33_DII         | -     | - 11     | 34,30          | as                 |                               |                       |             |           |             |           |                         |                         |                  |              |              |           |            |
| 2018         | S6 Pz          | 1     | R        | 5,00           | GS                 |                               |                       |             |           |             |           |                         |                         |                  |              |              |           |            |
| 2018         | S6 Pz          | 2     | R        | 17,00          | GS                 |                               |                       |             |           |             |           |                         |                         |                  |              |              |           |            |
| 2018         | S6 Pz          | 3     | R        | 24,00          | LS                 |                               |                       |             |           |             |           |                         | 112                     |                  |              |              |           |            |
| 2018         | S6 Pz          | 4     | R        | 27,00          | GS                 |                               |                       |             |           |             |           |                         |                         |                  |              |              |           |            |
|              |                |       |          |                |                    |                               |                       |             |           |             |           |                         |                         |                  |              |              |           |            |
| 2018         | Р              | 1     | R        | 11,00          | GS                 |                               |                       |             |           |             |           |                         |                         |                  |              |              |           |            |
| 2018         | Р              | 2     | R        | 22,00          | GS                 |                               |                       |             |           |             |           |                         |                         |                  |              |              |           |            |
| 2018         | Р              | 3     | R        | 34,00          | GS                 |                               |                       |             |           |             |           |                         |                         |                  |              |              |           |            |
| 2018         | Р              | 4     | R        | 39,00          | GS                 |                               |                       |             |           |             |           |                         |                         |                  |              |              |           |            |

Il sondaggio S06\_N viene riportato per completezza, ma non viene preso in esame nelle varie elaborazioni in quanto è fuori asse, come riscontrabile nella Planimetria ubicazione indagini, riportata in Figura 1.







### INDAGINI GEOGNOSTICHE E AMBIENTALI 2018

su Rilevato Esistente

Quota rilevata (s.l.m.)

#### Sn Piezo Sn\_DH Sondaggio a C.C. per Down-Hole Sondaggio a C.C. con Piezometro (00.00) Quota rilevata (s.l.m.) Sn\_N Sondaggio a C.C. con Piezometro Sondaggio a C.C. per Down Hole (00.00)Sondaggio a c.c. con Piezometro e Prova di Portata Prova penetrometrica dinamica pesante DPSH Quota rilevata (s.l.m.) (00.00) Pozzetto Ambientale eseguito Pz N

Figura 2 – Planimetria ubicazione indagini

(00.00)

INDAGINI GEOGNOSTICHE 2012



### 4 CARATTERIZZAZIONE LITOSTRATIGRAFICA

Sulla base delle indagini eseguite in sito quali sondaggi e suffragati dalle prove di laboratorio, è stato possibile ricostruire la successione stratigrafica lungo il tracciato in progetto.

In particolare sono distinguibili le seguenti unità geotecniche:

Unità R e LS – Limi sabbiosi: nella parte più superficiale, sino a una profondità massima di 4.0 - 5.0 m sono presenti limi sabbiosi che costituiscono anche le unità di Riporto più superficiali e che nella caratterizzazione di seguito esposta vengono considerate assieme.

**Unità GS/SG – Ghiaie sabbiose e sabbie ghiaiose:** si tratta di ghiaia in matrice sabbiosa e sabbie con ghiaia. Tale unità è stata riscontrata sino alle massime profondità investigate. In alcuni fori di sondaggi S1 e S6, è intercalata da una lente limo sabbiosa da -22.0 a -25.0 m da p.c..





### 5 LIVELLI PIEZOMETRICI

Nel corso degli anni sono stati fatti molti studi sulla falda pratese, con creazione di mappe piezometriche riferite a differenti periodi.

Nell'area urbana di Prato è noto che prima dell'industrializzazione degli anni '60 – '70, le acque venivano emunte mediante pompa manuale da pozzi scavati a mano profondi circa 5 m. L'unico dato disponibile che conferma che in passato la superficie piezometrica si trovava in prossimità del piano campagna, sono le letture piezometriche del pozzo Badie (46.5 m s.l.m.), ubicato a Sud-Est rispetto all'area di progetto, disponibili a partire dal 1959. Le letture fino al 1961 mostrano che la superficie piezometrica si trovava a circa 42 m.s.l.m. di quota, ovvero a circa 4.5 m da piano campagna.

Successivamente l'acquifero è stato intensamente sfruttato sia per emungimenti idropotabili sia per usi industriali, comportando un consistente abbassamento della superficie piezometrica che ha raggiunto il suo apice negli anni '80, portandola a quote inferiori a 5 m. s.l.m.. Vale a dire a circa -45.0 / -46.0 m rispetto al piano campagna.

Successivamente si è avuto un progressivo aumento della quota di falda. Questo è riscontrabile oltre che dai piezometri e pozzi di pubbliacque, anche dai piezometri installati nei fori di sondaggio eseguiti tra il 2012 e 2018, durante le campagne d'indagine del Progetto Preliminare e Definitivo. In particolare nella tabella seguente si riportano le letture effettuate.

| Sondaggio | Quota p.c. sondaggio<br>m.s.l.m. | Data misura | Quota falda da p.c. | Quota falda assoluta |
|-----------|----------------------------------|-------------|---------------------|----------------------|
|           |                                  |             | m da p.c.           | m.s.l.m.             |
| S2_2012   | 49,84                            | 10/02/2012  | 13,50               | 36,34                |
|           |                                  | 17/04/2013  | 11,45               | 38,39                |
|           |                                  | 13/02/2014  | 9,75                | 40,09                |
| S3_2013   | 50,68                            | 17/04/2013  | 12,14               | 38,54                |
|           |                                  | 13/02/2014  | 10,50               | 40,18                |
| S02_N     | 49,750                           | 07/11/2018  | 17,64               | 32,11                |
|           |                                  | 07/06/2019  | 19,96               | 29,79                |
|           |                                  | 29/11/2019  | 17,16               | 32,59                |
| S03_N     | 50,555                           | 13/11/2018  | 17,70               | 32,85                |
|           |                                  | 07/06/2019  | 20,74               | 29,81                |
|           |                                  | 29/11/2019  | piezometro rotto    |                      |
| S04_N     | 49,952                           | 11/11/2018  | 17,77               | 32,18                |
|           |                                  | 07/06/2019  | 20,20               | 29,75                |
|           |                                  | 29/11/2019  | 17,71               | 32,24                |
| S06_N     | 49,443                           | 26/10/2018  | 17,60               | 31,84                |
|           |                                  | 07/06/2019  | non accessibile     |                      |
|           |                                  | 29/11/2019  | non accessibile     |                      |
| Р         | 50,894                           | 21/11/2018  | 18,10               | 32,79                |
|           |                                  | 07/06/2019  | 21,03               | 29,86                |
|           |                                  | 29/11/2019  | 18,23               | 32,66                |

È possibile così stabilire che nel 02/2014 si sia registrato il maggior innalzamento della falda sino a quota 40.20 m s.l.m., pari a circa -10.0 / -10.5 m rispetto al piano campagna originario. Mentre negli anni successivi si è registrato nuovamente un progressivo abbassamento sino a quota 30.0 – 33.0 m s.l.m., vale a dire -17.0 / -20.0 m rispetto al piano campagna originario.





Pertanto ai fini progettuali si adotta una quota di falda pari a:

- Fase transitoria di cantiere: 40.20 m s.l.m.
- Fase finale in esercizio: 45.40 m s.l.m.







### 6 CRITERI PER LA CARATTERIZZAZIONE GEOTECNICA

La caratterizzazione geotecnica dei depositi presenti nell'area di studio, si basa su correlazioni di comune utilizzo in campo geotecnico a partire da:

- ✓ sondaggi geognostici con prelievo di campioni disturbati e indisturbati;
- ✓ prove penetrometriche dinamiche in foro di tipo SPT;
- ✓ prove di laboratorio geotecnico di classificazione sui campioni disturbati e indisturbati e di resistenza sui campioni indisturbati prelevati nei fori di sondaggio;
- ✓ prove sismiche Down Hole;
- ✓ prove di permeabilità Lefranc.

### 6.1 PARAMETRI GEOTECNICI DA PROVE IN SITO E LABORATORIO

Sulla base dei dati acquisiti dalle prove geognostiche in sito e laboratorio, nonché dalla loro interpretazione mediante correlazioni disponibili in letteratura, è possibile stimare alcuni parametri geotecnici per le unità stratigrafiche individuate, quali:

### ✓ Classificazione

La classificazione di questi terreni avverrà essenzialmente sui risultati delle seguenti prove di laboratorio:

- Pesi di volume naturale;
- Analisi granulometriche;
- Limiti di Atterberg;
- Contenuto d'acqua naturale.
- ✓ <u>Caratteristiche di resistenza al taglio:</u> coesione ed angolo d'attrito
- ✓ Modulo di deformabilità
- ✓ Permeabilità

### 6.1.1 PESO DI VOLUME NATURALE DEL TERRENO

Dalle analisi di laboratorio effettuate sui campioni prelevati, porta a considerare i seguenti valori del peso di volume:

- da p.c. a -5.0 m:  $\gamma = 19.5 \text{ kN/m}^3$
- da -5.0 m sino alle massime profondità:  $\gamma = 20.0 \text{ kN/m}^3$

Nella figura 2 è riportato il peso specifico delle due unità stratigrafiche.







### 6.1.2 ANALISI GRANULOMETRICHE E LIMITI DI ATTERBERG

Dalle analisi granulometriche effettuate sui campioni prelevati, si riscontra che:

- ✓ L'Unità LS ha una percentuale di Limi e Argille compresa tra 58% e 67%. La restante percentuale sono prevalentemente sabbie. La percentuale di ghiaia è praticamente assente (0 3%)
- ✓ L'Unità GS e SG ha una percentuale di ghiaie e sabbie compresa tra 65% e 85%. La restante percentuale sono limi e argille.

Nelle figure 3 e 4 sono riportate le analisi granulometriche delle varie unità in funzione della profondità.

I Limiti di Atterberg è stato possibile effettuarli solamente all'interno delle Unità LS. In particolare il Limiti Liquido è compreso tra 30 e 40%. Il Limiti Plastico tra il 22 e 25%. L'indice plastico tra 8 e 18%.

Nella figura 5 sono riportati i limiti in funzione della profondità.

Nella figura 6 invece la carta di plasticità di Casagrande.

Nella Figura 9 viene riportato l'andamento del numero di colpi ottenuto da prove SPT all'interno dei fori di sondaggio. Nelle Figure da 10 a 17 viene invece riportato l'andamento delle prove penetrometriche dinamiche pesanti eseguite.





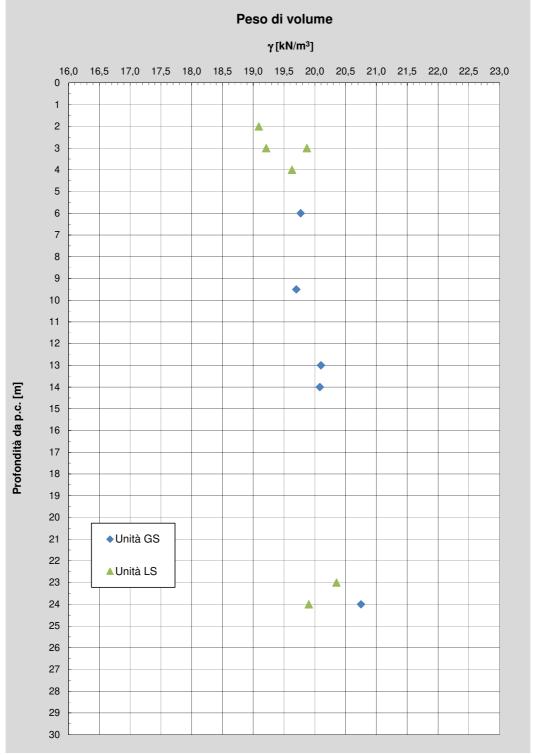



Figura 3 - Peso specifico Unità



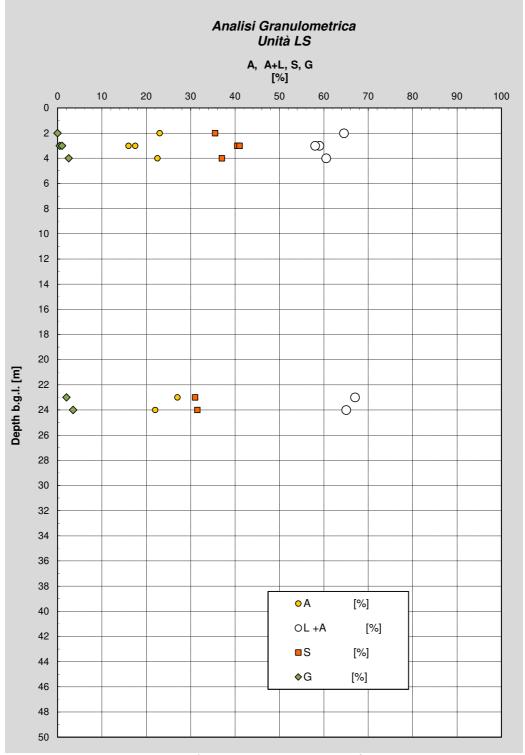



Figura 4 - Analisi granulometrica - Unità LS



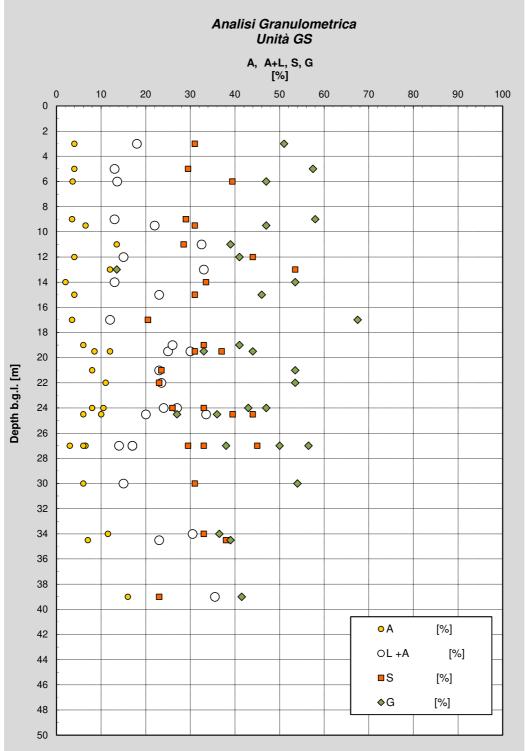



Figura 5 - Analisi granulometrica - Unità GS e SG



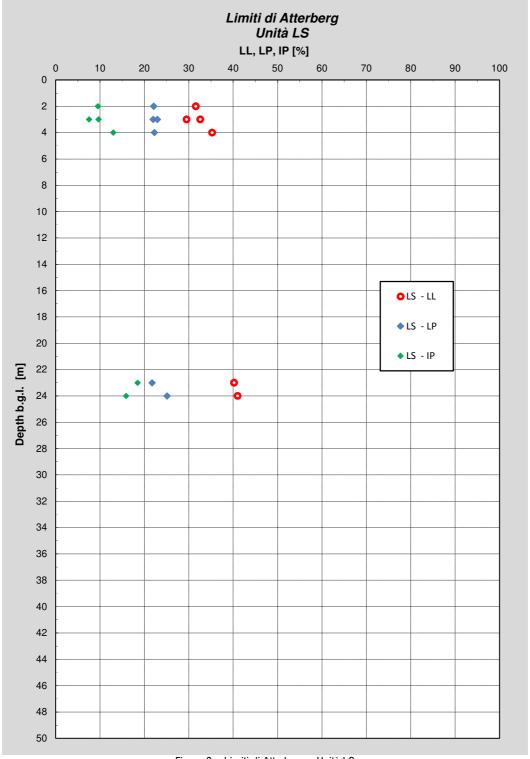



Figura 6 - Limiti di Atterberg - Unità LS



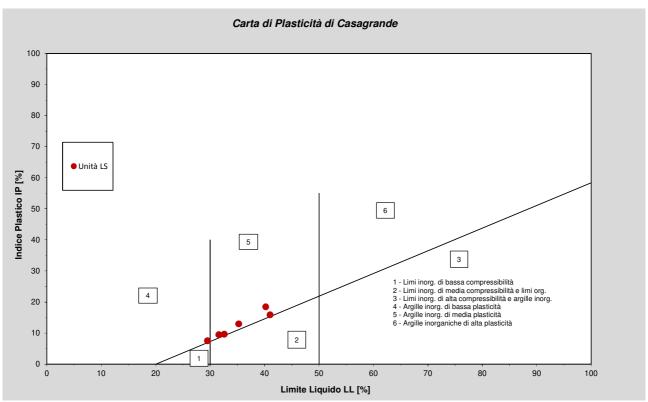



Figura 7 – Carta di plasticità di Casagrande – Unità LS

### 6.1.3 CARATTERISTICHE DI RESISTENZA AL TAGLIO PER UNITÀ COESIVE

Nel seguito si riassumono le caratteristiche di resistenza al taglio per le unità litostratigrafiche coesive costituenti l'Unità LS e presente nei primi metri di profondità d p.c. (max 5.0 m).

### 6.1.3.1 Angolo d'attrito nei terreni coesivi

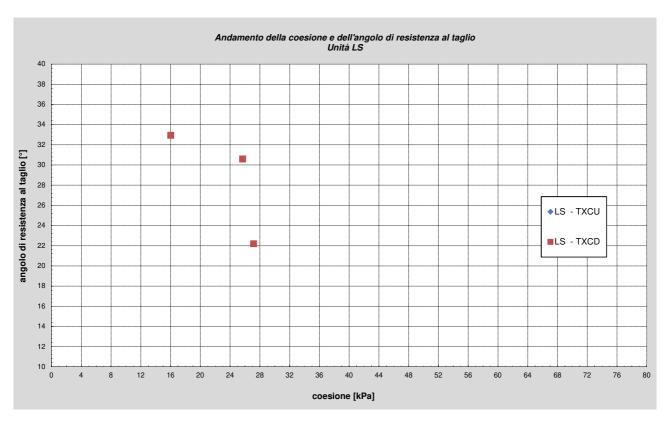
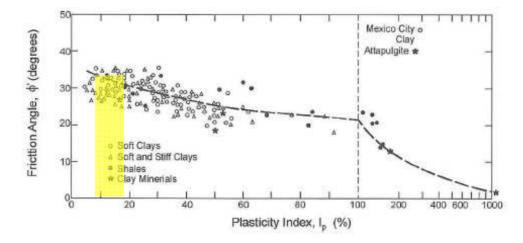
Per le unità coesive, l'angolo d'attrito e la coesione efficace è possibile determinarla mediante prove in laboratorio quali:

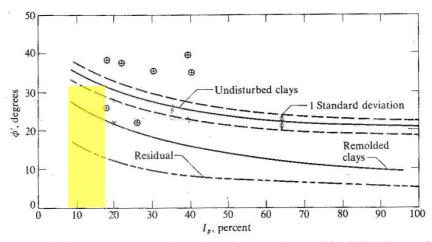
Prove Triassiali TxCIU e TxCD

Nella Figura 7 sono riportati ottenuti dalle suddette prove.







Figura 8 – Andamento coesione drenata e dell'angolo d'attrito

È possibile inoltre determinare l'angolo d'attrito, stimato a partire dai valori dell'indice plastico (Terzaghi, Peck, and Mesri, 1996)



Oppure tramite la correlazione di Ladd et al. [1977] o Kenney [1959].





Correlation between  $\phi'$  and plasticity index  $I_p$  for normally consolidated (including marine) clays. Approximately 80 percent of data falls within one standard deviation. Only a few extreme scatter values are shown [Data from several sources: Ladd et al. (1977), Bjerrum and Simons (1960), Kanja and Wolle (1977), Olsen et al. (1986).]

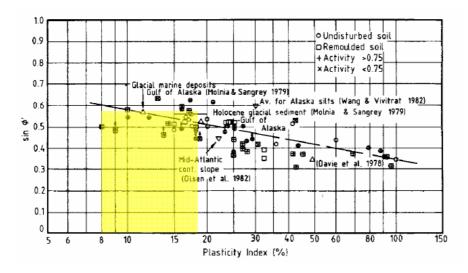



Figura 9: Correlazioni fra angolo di resistenza a taglio e indice plastico

Tutti grafici forniscono valori dell'angolo d'attrito simili e pari a 30° - 32°, coerentemente con quanto emerso dalle prove di laboratorio.



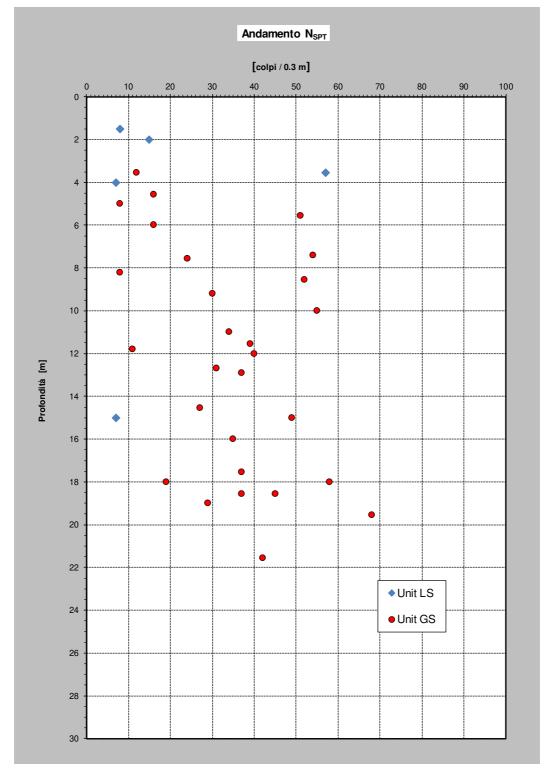



Figura 10 - Andamento N<sub>SPT</sub> eseguiti all'interno dei sondaggi



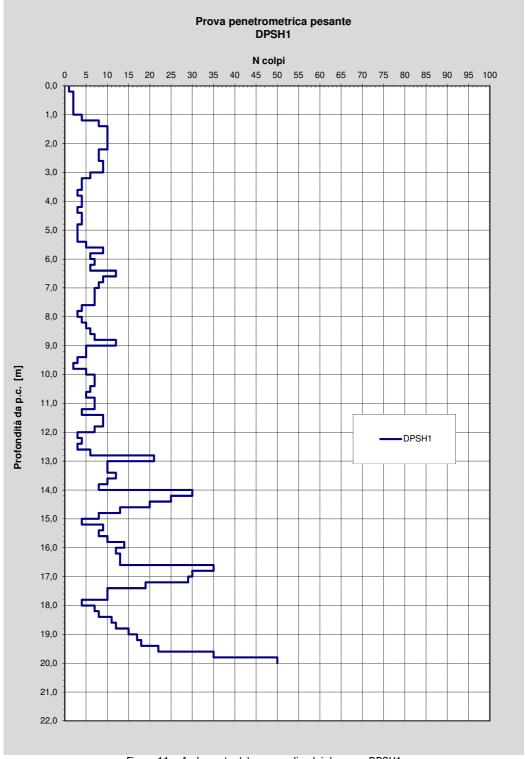



Figura 11 – Andamento del numero di colpi da prova DPSH1





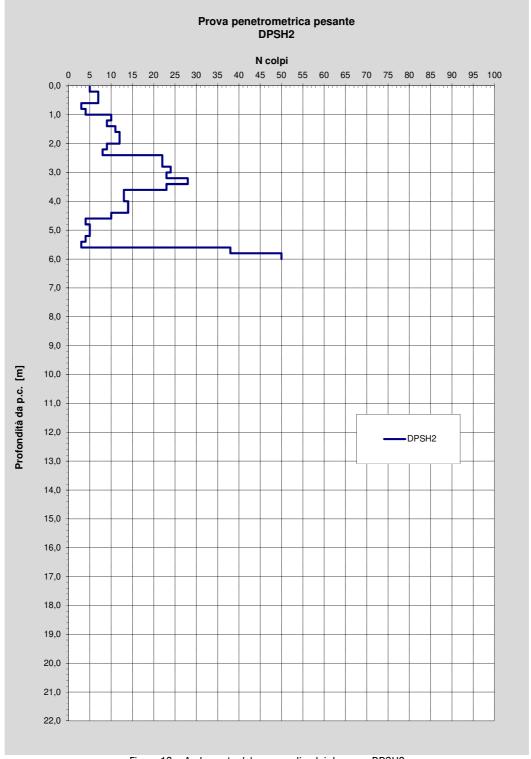



Figura 12 – Andamento del numero di colpi da prova DPSH2



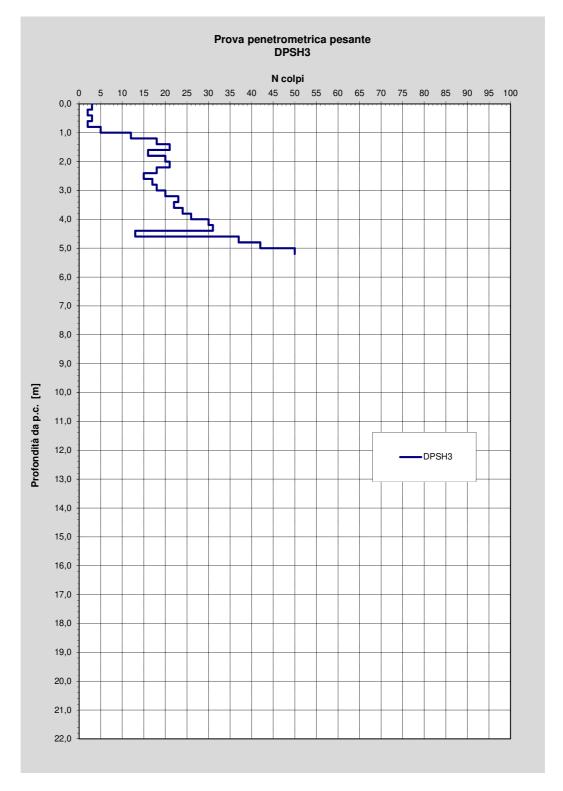



Figura 13 – Andamento del numero di colpi da prova DPSH3



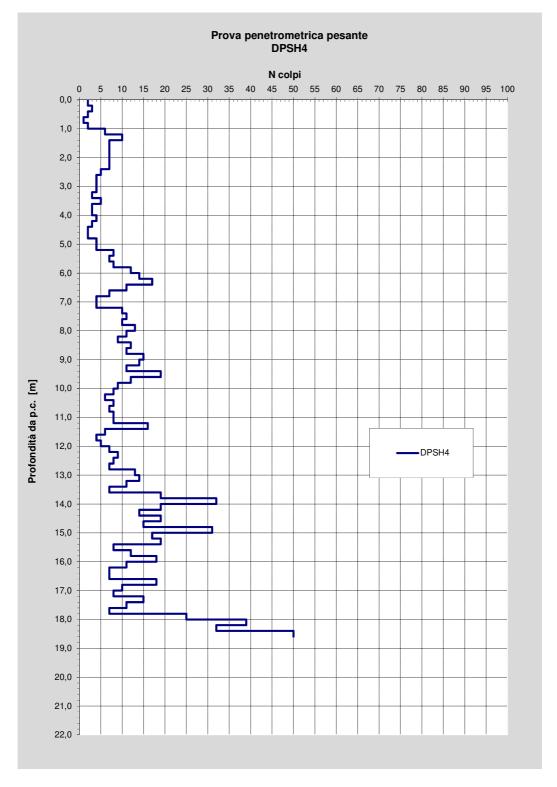



Figura 14 – Andamento del numero di colpi da prova DPSH4



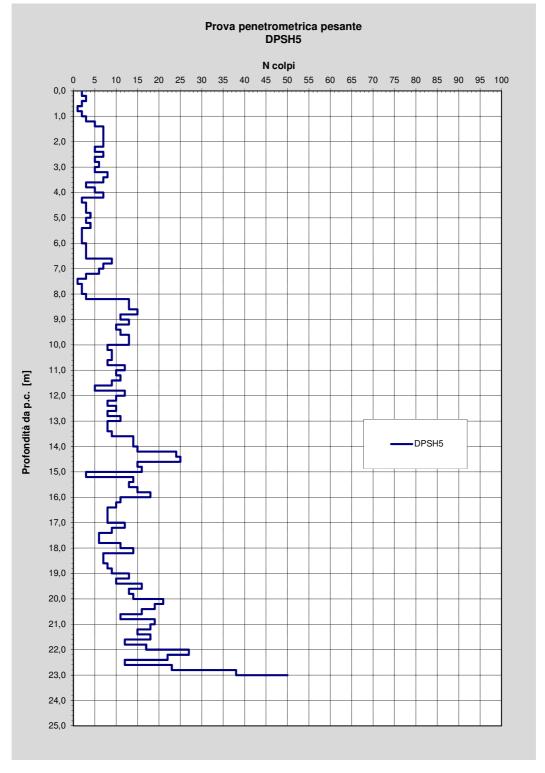



Figura 15 - Andamento del numero di colpi da prova DPSH5





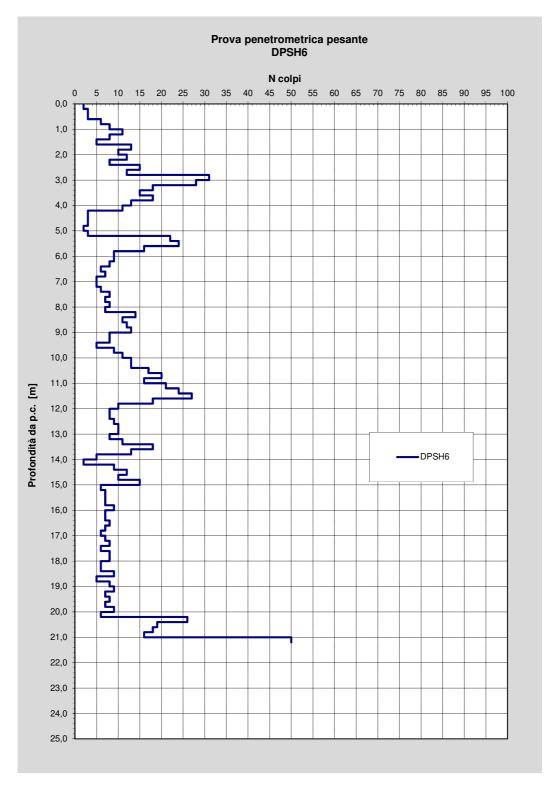



Figura 16 – Andamento del numero di colpi da prova DPSH6





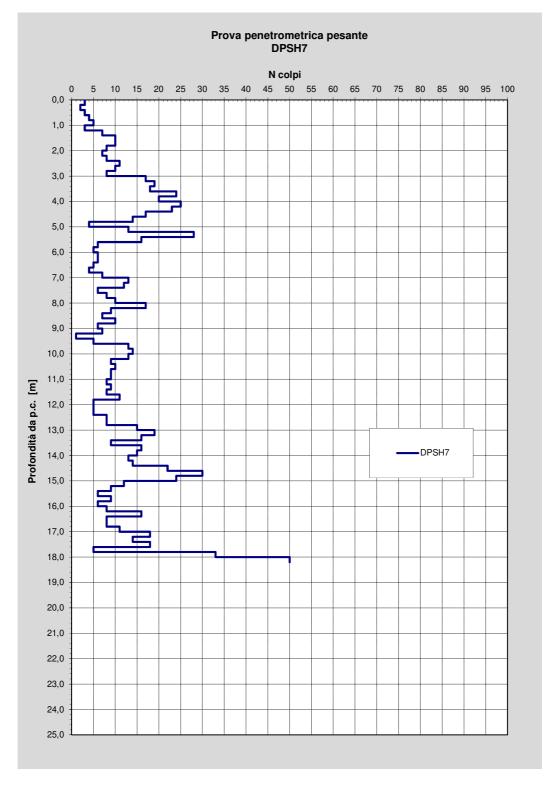



Figura 17 – Andamento del numero di colpi da prova DPSH7



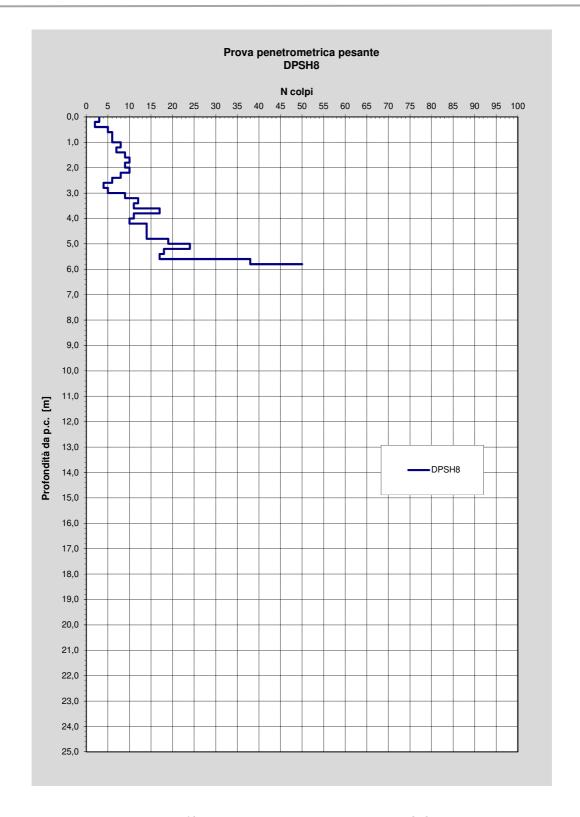



Figura 18 – Andamento del numero di colpi da prova DPSH8





### 6.1.4 DENSITÀ RELATIVA D<sub>R</sub> da prove SPT

La densità relativa  $(D_R)$  si riferisce alle unità incoerenti, nel caso in esame costituite da Ghiaie in matrice sabbiosa e Sabbie con ghiaie.

I valori di densità relativa  $D_R$  sono determinati in funzione del valore  $N_{SPT}$  e del tipo di terreno incoerente, secondo vari autori e di questo verrà preso il minimo.

### Correlazione di Skempton

In accordo a Skempton (1986), la densità relativa  $D_R$  può essere correlata al valore  $N_{SPT}$  con la seguente legge:

$$D_{r} = \left(\frac{1}{A + B \cdot \sigma_{VO}} \cdot N_{SPT}\right)^{0.5}$$

essendo:

A, B = costanti empiriche in funzione della granulometria del terreno

 $\sigma_{vo}$ ' = pressione verticale efficace esistente in sito alla quota della prova SPT (kg/cm<sup>2</sup>)

 $N_{SPT}$  = numero di colpi per 30 cm di infissione

 $D_r = densità relativa (%)$ 

| Tipo di materiale                        | Α         | В                                     |  |
|------------------------------------------|-----------|---------------------------------------|--|
| Sabbie fini normalmente<br>consolidate   | 27,5      | 27,5                                  |  |
| Sabbie grosse normalmente<br>consolidate | 43,3      | 21,7                                  |  |
| Sabbie sovraconsolidate                  | 27,5+43,3 | (21,7+27,5)· 1+2.(ko)sc<br>1+2.(ko)nc |  |

con

$$(k_o)_{nc}=1$$
-sin $\phi'=$  coefficiente di spinta a riposo per terreni normalmente consolidati  $(k_o)_{sc}=(k_o)_{nc}\cdot (OCR)^{0.5}=$  coefficiente di spinta a riposo per terreni sovraconsolidati

Nel caso in esame per determinare la D<sub>R</sub> viene considerato un terreno tipo:

- Unità LS Limi sabbiosi: Sabbie fini NC
- Unità SG/GS Sabbie ghiaiose e Ghiaie sabbiose: Sabbie grosse NC

### Correlazione di Gibbs e Holtz

In accordo a quanto indicato da Gibbs e Holtz (1957) la densità relativa  $D_R$  può essere correlata al valore  $N_{SPT}$  con la seguente espressione:

$$D_{R} = \sqrt{\frac{N_{SPT}}{(16 + 23 \cdot \sigma_{vo}')}}$$

essendo:







 $\sigma_{vo}$ ' = pressione verticale efficace esistente in sito alla quota della prova SPT (kg/cm<sup>2</sup>);

 $N_{SPT}$  = numero di colpi per 30 cm di infissione;

 $D_R$  = densità relativa (-)

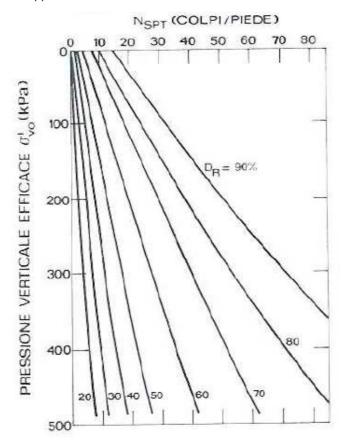



Grafico di Gibbs e Holtz [1957]

### Correlazione di Bazaraa

In accordo a quanto indicato da Bazaraa (1967) la densità relativa  $D_R$  può essere correlata al valore  $N_{SPT}$  con la seguente espressione:

$$D_{R} = \sqrt{\frac{N_{SPT}}{20 \cdot (1 + 4.1 \cdot \sigma_{vo}')}}$$
 per  $\sigma_{vo}' > 0.732 \text{ kg/cm}^2$ 

$$D_{R} = \sqrt{\frac{N_{SPT}}{20 \cdot (3.24 + 1.024 \cdot \sigma_{vo}')}} \quad \text{per } \sigma_{vo}' > 0.732 \text{ kg/cm}^2$$

essendo:

 $D_R$  = densità relativa (-).

 $\sigma_{vo}$ ' = pressione verticale efficace esistente in sito alla quota della prova SPT (kg/cm<sup>2</sup>);

 $N_{SPT}$  = numero di colpi per 30 cm di infissione.

Nella Figura 19 viene riportato il valore della Densità Relativa secondo le suddette correlazioni, mentre nella Figura 20 viene riportato un valore medio.





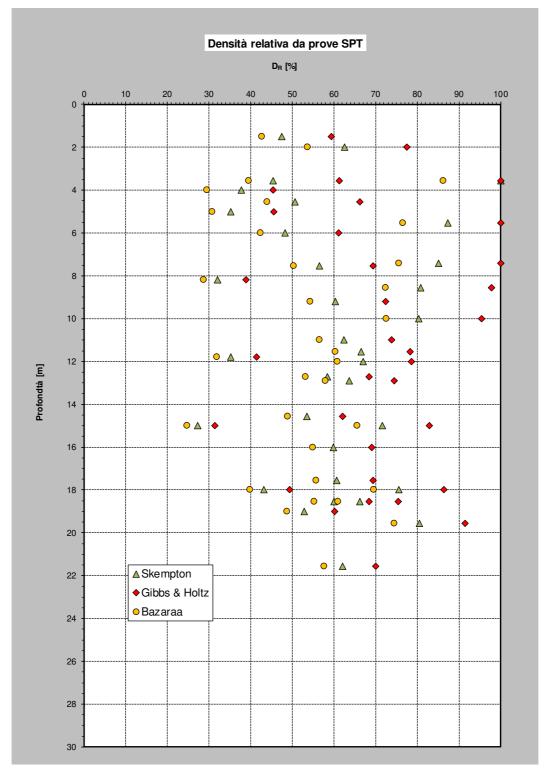



Figura 19 – Andamento della D<sub>R</sub> secondo le varie teorie di correlazione da prove SPT





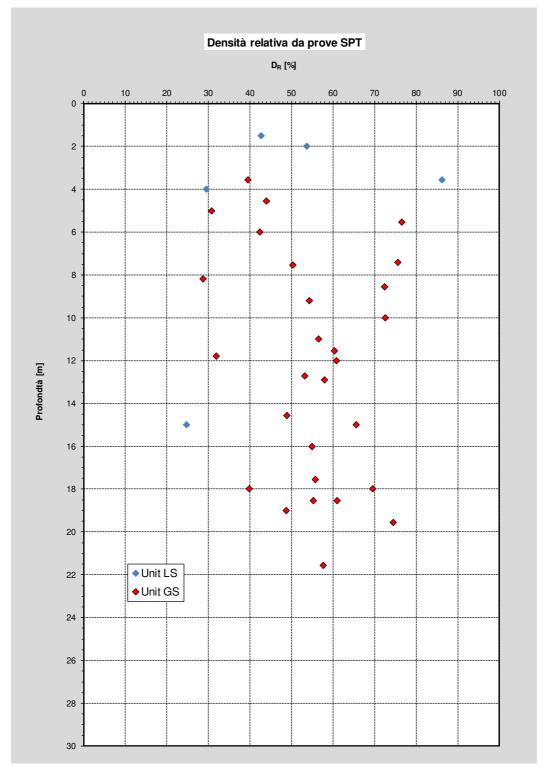
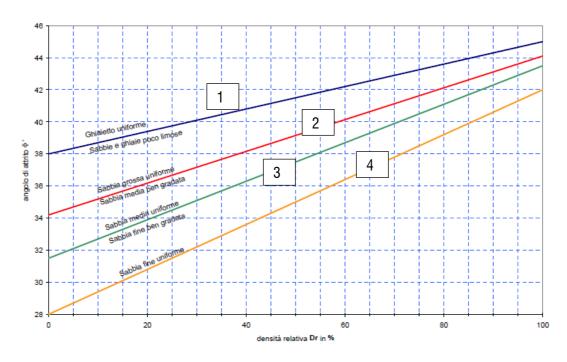



Figura 20 – Andamento della D<sub>R</sub> media da prove SPT

## 6.1.5 CARATTERISTICHE DI RESISTENZA AL TAGLIO DA PROVE SPT


Per la stima dell'angolo di resistenza al taglio dalle prove SPT sono state utilizzate le correlazioni di Schmertmann e Bolton, di seguito illustrate; è stato preso il valore minimo ottenuto dalle due correlazioni.





#### Correlazione di Schmertmann

Il valore dell'angolo di attrito di picco è determinato in funzione del tipo di terreno e della densità relativa secondo il grafico di Schmertmann (1977) riportato nella figura seguente.



Relazione fra angolo d'attrito efficace ( $\phi$ ') e Densità Relativa ( $D_R$ ) per diverse granulometrie (Schmertmann, 1977)

Da cui le relazioni sono:

$$arphi=38.5+0.108\cdot D_R$$
 valida per sabbia e ghiaia poco limosa e ghiaietto uniforme  $arphi=34.5+0.10\cdot D_R$  sabbia grossa—media uniformemente ben gradata  $arphi=31.5+0.115\cdot D_R$  sabbia medio-fine uniformemente ben gradata  $arphi=28.0+0.14\cdot D_R$  sabbia fine uniforme

essendo  $D_R$  = densità relativa

Nel caso in esame si è considerato:

- Per l'unità LS: correlazione valida per sabbia fine uniforme;
- Per l'unità SG/GS: correlazione valida per sabbia grossa-media uniformemente ben gradata.

#### Correlazione di Bolton

L'angolo di resistenza al taglio di picco  $\varphi$ ' è stato determinato in accordo al metodo proposto da Bolton (1986):

$$\begin{aligned} \phi' &= & \varphi_{cv} + m \cdot Dl \\ \text{DI} &= & D_r \cdot \left[ Q - In(p_f) \right] - 1 \end{aligned}$$







#### essendo:

φ'= angolo di attrito di picco

 $\phi_{cv}$ '= angolo di attrito a volume costante

DI = indice di dilatanza

Q= fattore che dipende dalla composizione minerealogica e dalla forma delle particelle di sabbia, valore consigliato =10

p<sub>f</sub>' = pressione efficace media a rottura (kPa)

m = costante empirica dipendente dalle condizioni di deformazione prevalenti (vedasi tabella seguente) (°).

Nel nostro caso si assume m = 3

 $D_r = densità relativa (-)$ 

Valori della costante empirica m secondo Bolton (1986)

| Condizioni di rottura                                                                                     | m |  |
|-----------------------------------------------------------------------------------------------------------|---|--|
| Tipo prova triassiale di compressione $(\sigma_2' = \sigma_3')$                                           | 3 |  |
| Tipo prova triassiale in estensione o di deformazione piana $(\sigma_2 \neq \sigma_3)$                    | 5 |  |
| $\sigma_2$ ' = tensione principale efficace intermedia $\sigma_3$ ' = tensione principale efficace minore |   |  |

I valori dell'angolo di attrito  $\phi_{cv}$ ' sono stati ricavati in base a quanto indicato nella tabella seguente (Youd, 1972; Stroud, 1988).

Valori dell'angolo di attrito φ'cy per sabbie silicee secondo quanto riportato in Stroud (1988) e Youd (1972)

|                             | Sabbie ben gradate      | Sabbie uniformi               |
|-----------------------------|-------------------------|-------------------------------|
| Sabbie a spigoli vivi       | φ <sub>cv</sub> ' = 38° | φ <sub>cv</sub> ' = 34°       |
| ibbie a spigoli arrotondati | φ <sub>cv</sub> ' = 33° | $\varphi_{\text{CV}}$ ' = 30° |

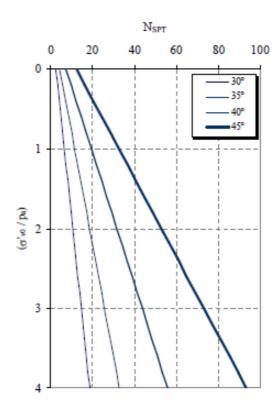
Nel caso specifico per la determinazione dell'angolo di attrito  $\varphi_{cv}$ ' si è assunto:

• Unità LS:  $\phi_{cv}$ ' = 30°

• Unità SG/GS:  $\phi_{cv}$ ' = 33°

# Correlazione di Kulhawy e Mayne

Il valore dell'angolo di attrito di picco è determinato secondo Kulhawy e Mayne [1980] mediante la seguente correlazione:


$$\varphi' = \arctan \left[ \frac{N_{SPT}}{12.2 + 20.3 \cdot \left( \frac{\sigma'_{v0}}{p_a} \right)} \right]^{0.34}$$

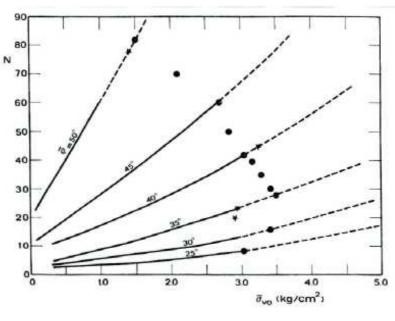
Tale formulazione è rappresentata nella seguente segunete.










Stima di o' da N<sub>SPT</sub> con Kulhawy e Mayne [1980]

### Correlazione di De Mello

Il valore dell'angolo di attrito di picco è determinato secondo la correlazione di De Mello (1971):

$$\Box$$
' (°) = 19 – 0.38  $\Box$  + 8.73 LN(N<sub>SPT</sub>)

e rappresentata nella figura seguente.



De Mello (1971)



Nella Figura 21 è riportato l'andamento dell'angolo d'attrito ottenuto da varie correlazioni dalle prove SPT.

Nella Figura 22 è riportato invece l'andamento dell'angolo d'attrito medio dalle prove SPT.

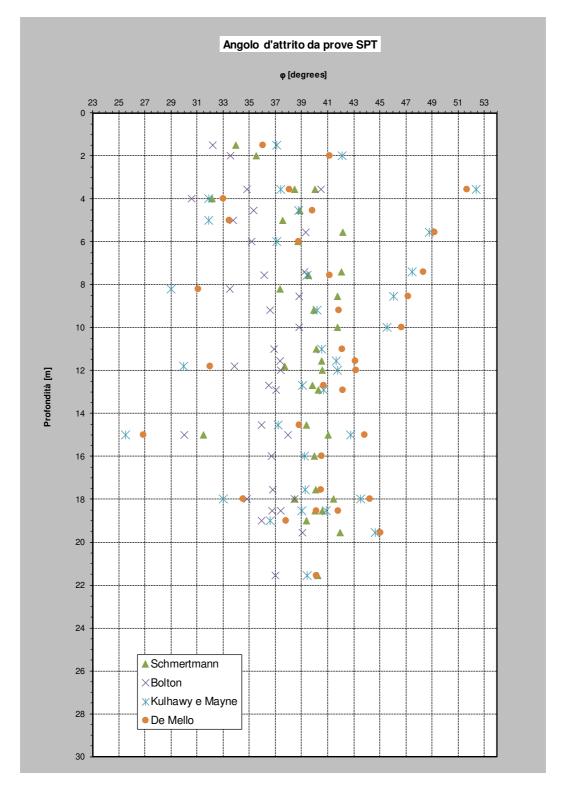



Figura 21 – Andamento angolo d'attrito secondo le varie teorie di correlazione da prove SPT







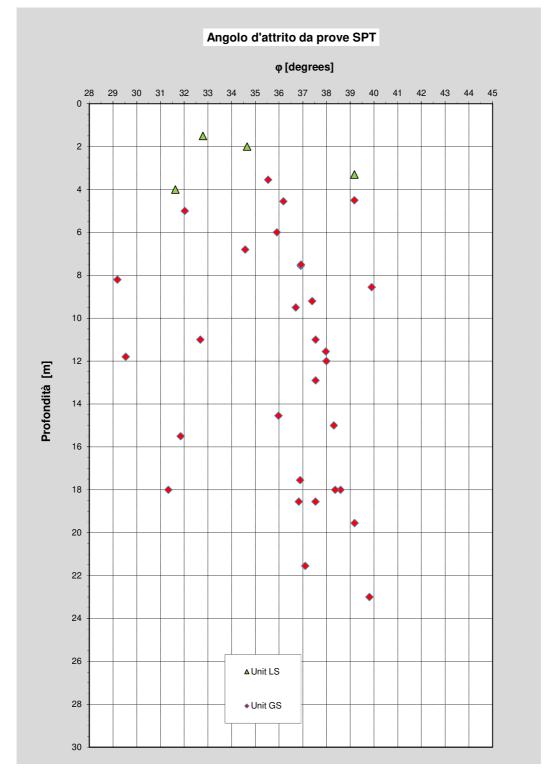



Figura 22 – Andamento angolo d'attrito medio da prove SPT



#### 6.1.6 CARATTERISTICHE DI DEFORMABILITÀ

La valutazione dei moduli di deformabilità confinati in condizioni drenate, è stata effettuata sulla base dei risultati delle prove:

- SPT
- Down Hole

#### 6.1.6.1 Moduli elastici iniziali

Il modulo di taglio iniziale (G<sub>0</sub>) e quello di Young iniziale (E<sub>0</sub>), associabili a piccole deformazioni, possono essere ricavati dai valori delle velocità delle onde di taglio (Vs) utilizzando le seguenti correlazioni:

$$G_o = \frac{\gamma_t}{9.81} \cdot (V_s)^2 \quad (kPa)$$

$$E_o = G_o \cdot 2 \cdot (1+v)$$

essendo:

 $\gamma_t$  = peso di volume naturale del terreno in assunto pari a 19 kN/m<sup>3</sup>

v = coefficiente di Poisson del terreno (assunto pari a 0.3)

v<sub>s</sub> = velocità delle onde di taglio in m/s

La velocità delle onde di taglio (v<sub>s</sub>) può essere ricavata direttamente dai risultati delle prove geofisiche in foro di sondaggio Down Hole o indirettamente, interpretando i risultati delle prove SPT attraverso la correlazione di Ohta e Goto (1978) o la correlazione di Yoshida e al. (1988).

#### Correlazione di Ohta e Goto (1978)

$$v_s = C \cdot (N_{60})^{0.171} \cdot (z)^{0.199} \cdot f_A \cdot f_G$$
 (m/s)

essendo:

C = 67.3

z = profondità dal p.c. in metri;

f<sub>A</sub> = coefficiente funzione dell'epoca geologica del deposito (vedasi Tabella)

f<sub>G</sub> = coefficiente funzione della composizione granulometrica (vedasi Tabella)

Relazione di Ohta e Goto, 1978 - Coefficiente f<sub>A</sub> (funzione dell'epoca geologica del deposito)

| fa | Olocene | Pleistocene |
|----|---------|-------------|
|    | 1.0     | 1.3         |







Relazione di Ohta e Goto, 1978 - Coefficiente fG (funzione della granulometrica del deposito)

| f <sub>G</sub> | Ghiaie | Sabbie<br>ghiaiose | Sabbie<br>grosse | Sabbie<br>medie | Sabbie fini |
|----------------|--------|--------------------|------------------|-----------------|-------------|
|                | 1.45   | 1.15               | 1.14             | 1.09            | 1.07        |

Nel caso in esame è stato assunto:

$$f_A = 1.3$$

 $f_G = 1.09$  per l'unità LS

 $f_G = 1.45$  per l'unità SG/GS

## Correlazione di Yoshida et al. (1988)

$$v_s = C \cdot (N_{SPT})^{0.25} \cdot (\sigma_v)^{0.14}$$
 (m/s)

essendo:

C = 49 per sabbie fini per l'unità LS

C = 60 per sabbie grosse con almeno il 50% di ghiaia, per l'unità SG/GS

 $\sigma_{vo}$ ' = pressione verticale efficace esistente in sito alla quota della prova.

Nelle Figure 12 e 13 è riportato l'andamento delle velocità di Compressione e Taglio desunto dalle due prove Down Hole.

Nelle Figure 14 e 15 è invece riportato l'andamento delle sole velocità di taglio Vs ottenute dalle letture dirette con Down Hole e quelle desunte dalle correlazioni di Otha & Goto e Yoshida.

Nelle Figure 16 e 17 è invece riportato l'andamento del Modulo Elastico Tangenziale  $G_0$  e del Modulo Elastico di Young  $E_0$  desunto da prove Down Hole.



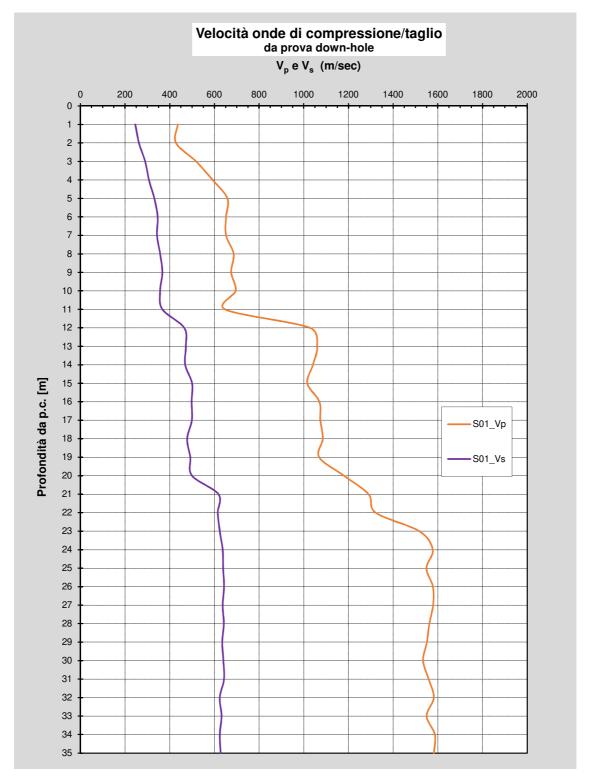



Figura 23 – Andamento delle Velocità di Compressione e Taglio da prova Down Hole nel sondaggio S1



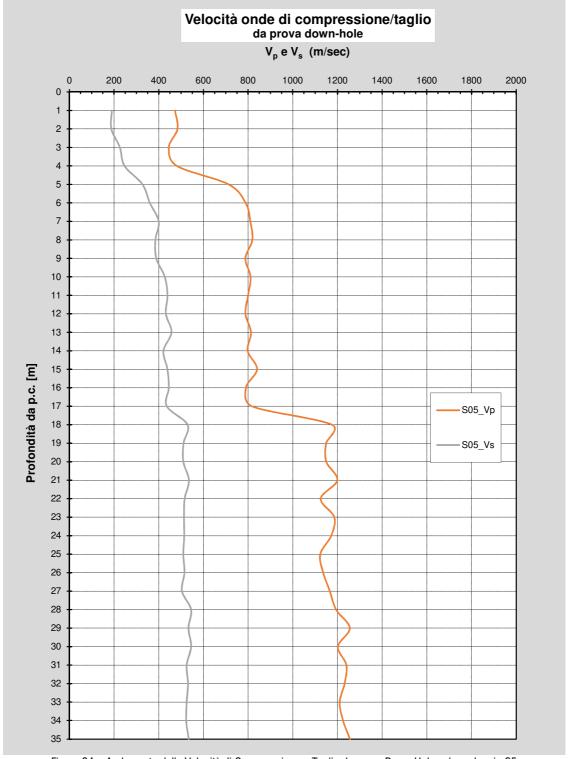



Figura 24 – Andamento delle Velocità di Compressione e Taglio da prova Down Hole nel sondaggio S5



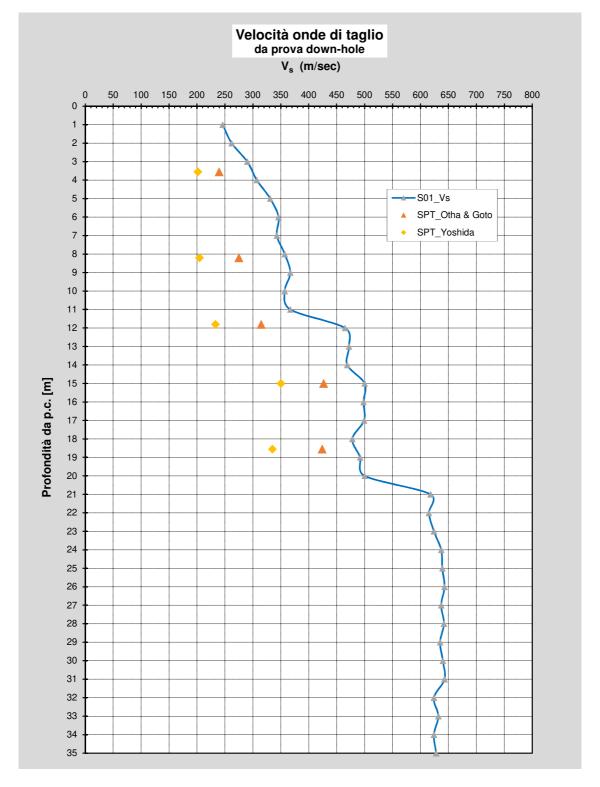



Figura 25 – Andamento delle Velocità di Taglio da prova Down Hole nel sondaggio S1 e correlazioni con SPT



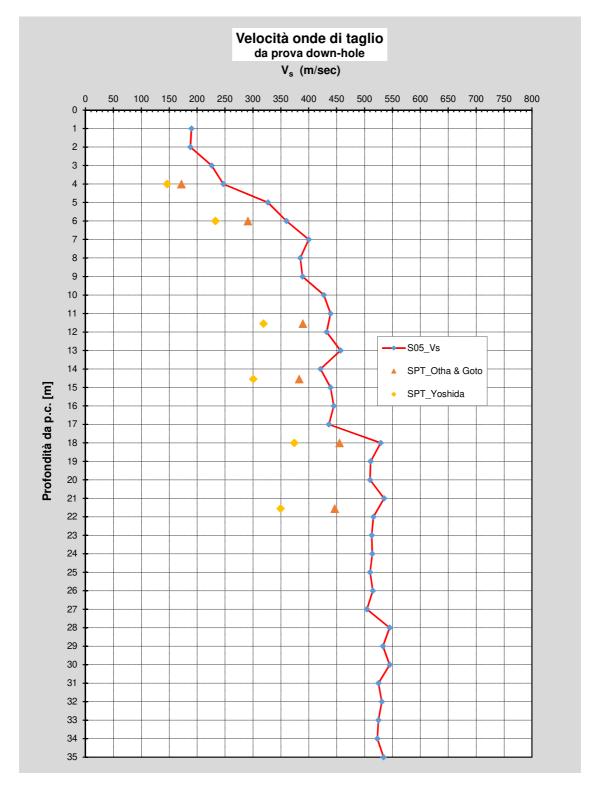



Figura 26 – Andamento delle Velocità di Taglio da prova Down Hole nel sondaggio S5 e correlazioni con SPT



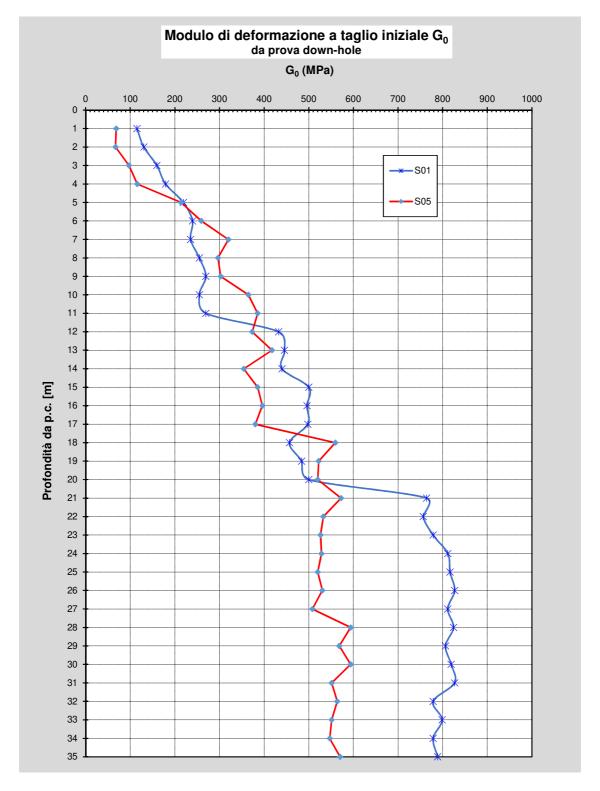



Figura 27 – Andamento del Modulo di Deformazione di Taglio G₀ da prove Down Hole



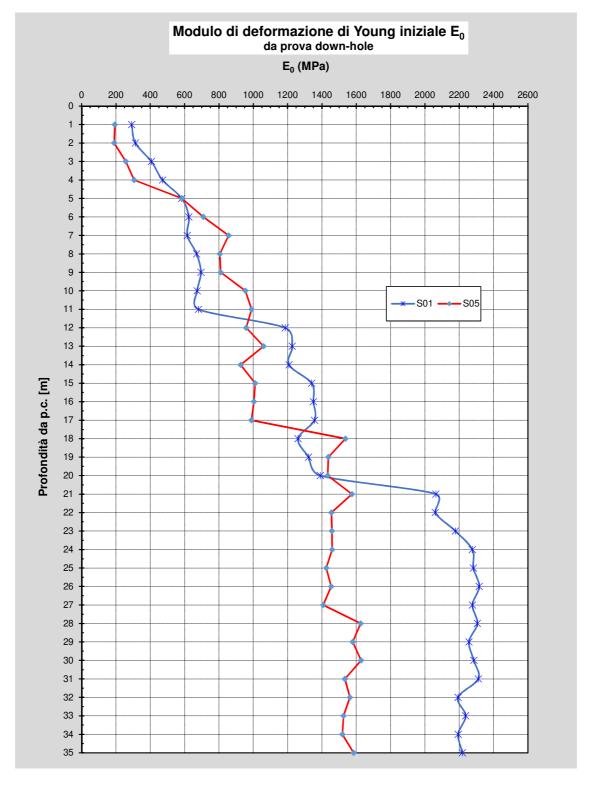



Figura 28 – Andamento del Modulo di Deformazione di Young  $E_0$  da prove Down Hole



## 6.1.6.2 Moduli elastici operativi

Il comportamento dei terreni a grana grossa risulta non lineare.

I moduli di deformazione risultano infatti funzione sia delle pressioni efficaci medie correnti p' sia del livello di deformazione indotto o del grado di mobilitazione della resistenza al taglio.

In relazione a quanto sopra la scelta dei moduli di deformazione per le analisi ingegneristiche viene a dipendere anche dal metodo di analisi adottato.

Nel caso di ricorso a <u>metodi di calcolo elastico-lineari o elastico-lineari-plastici</u>, per la stima dei moduli "operativi" da associare allo specifico problema al contorno verranno fatte le seguenti assunzioni "convenzionali":

- Nell'analisi di fronti di scavo sostenuti con opere di sostegno tipo paratie (tirantate e non) i moduli di Young "operativi" E<sub>op</sub> sono pari a circa (1/5 ÷ 1/10)·E<sub>0</sub>; il problema è infatti complessivamente di scarico; inoltre i coefficienti di sicurezza nei confronti della stabilità imposti dalla normativa vigente sono tali per cui normalmente le deformazioni indotte risultano relativamente contenute, dell'ordine di 1 x 10<sup>-3+5</sup> x 10<sup>-3</sup>.
- Nell'analisi di fondazioni profonde e dirette i moduli di Young "operativi" E<sub>op</sub> sono pari a circa 1/10·E<sub>o</sub>, ciò in considerazione del fatto che:
  - o gli spostamenti totali e differenziali ammissibili per l'opera sono molto contenuti (i cedimenti ammissibili sono infatti generalmente inferiori a 0.01·B, essendo B la dimensione minore della fondazione).
  - o da ciò deriva che, in base alla normativa vigente e alla pratica corrente, tale tipo di opere è caratterizzato infatti da coefficienti di sicurezza nei confronti della rottura per capacità portante generalmente superiori a  $2.5 \div 3$ .

I moduli elastici operativi possono essere desunti anche da correlazioni in bibliografia adottando le prove SPT.

### Correlazione di Jamiolkowski

Una stima dei moduli elastici "operativi", viene fatta utilizzando la correlazione proposta da Jamiolkowski et al. (1988), corrispondente a tensioni dell'ordine del 25% di quelle a rottura in funzione della densità relativa  $D_R$  e di  $N_{SPT}$ .

Per terreni NC: 
$$E'_{25} = (10.5 - 3.5D_R) \cdot N_{SPT}$$
 kg/cm<sup>2</sup>

Per terreni OC: 
$$E'_{25} = (52.5 - 35D_R) \cdot N_{SPT}$$
 kg/cm<sup>2</sup>

essendo:

 $E_{25}$ ' = modulo di Young secante cui corrisponde un grado di mobilitazione della resistenza ultima pari al 25%

D<sub>R</sub> = densità relativa espressa come frazione dell'unità

 $N_{SPT}$  = numero di colpi in prova SPT.

Nel caso in esame si adotta la correlazione proposta per terreni NC per le Unità LS e OC per le Unità GS/SG.





### Correlazione di D'Appolonia et al.

La correlazione di D'Appolonia (1970) determina il modulo elastico in funzione di N<sub>SPT</sub>, attraverso le seguenti correlazioni:

Per sabbie e ghiaia NC:  $E'=18.75+0.756 \cdot N_{SPT}$  MPa

Per sabbie OC:  $E' = 36.79 + 1.043 \cdot N_{SPT}$  MPa

Nel caso in esame si adotta la correlazione:

✓ Unità LS: per sabbie e ghiaie NC

✓ Unità SG/GS: per sabbie OC

Nella Figura 29 viene riportato l'andamento del modulo elastico in funzione della profondità, desunto dalle correlazioni di prove SPT per le diverse correlazioni.

Nella Figura 30 viene riportato il modulo elastico medio in funzione della profondità dalle correlazioni SPT.

Nelle Figure 31 e 32 è riportato il Modulo elastico desunto dalle prove Down Hole adottando un valore  $E_0$  / 10 oltre a quello desunto da correlazioni con SPT per le due prove Down Hole S1 e S5.

Dalla sovrapposizione si evince che i parametri elastici desunti dalle prove Down Hole forniscono un valore medio del modulo che ben approssima l'andamento incrementale con la profondità.



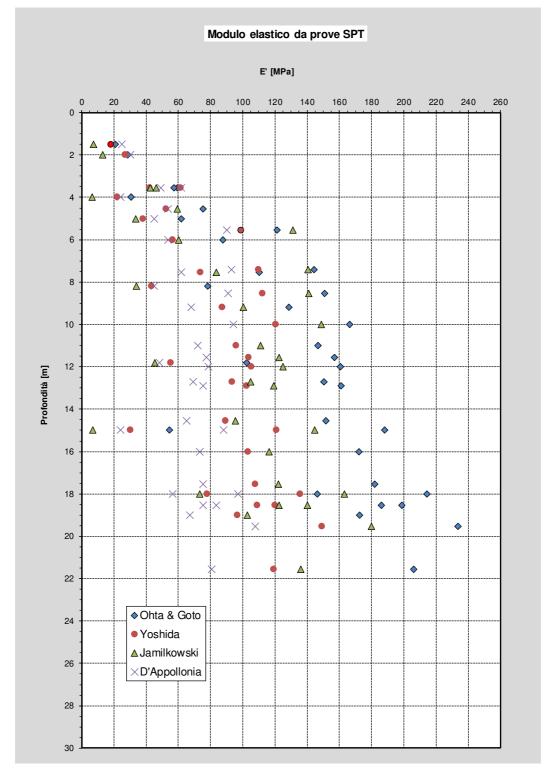



Figura 29 – Andamento del Modulo Elastico ottenuto dalle diverse correlazioni da prove SPT



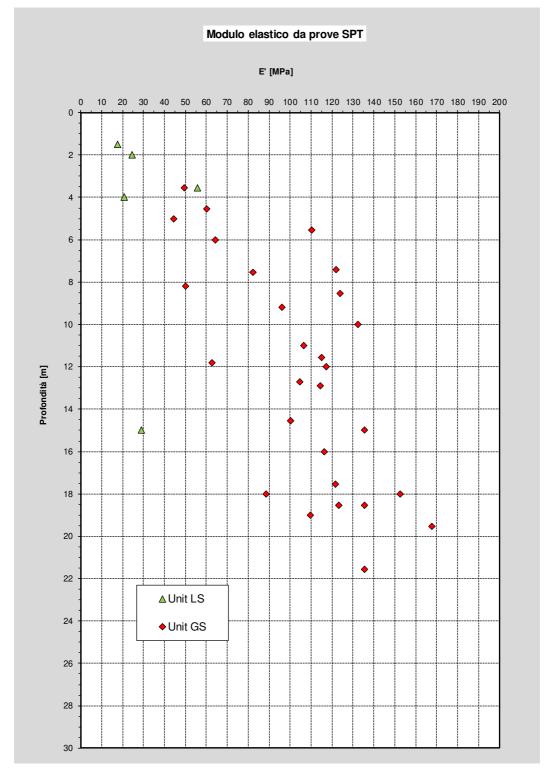



Figura 30 - Andamento del Modulo Elastico medio da prove SPT



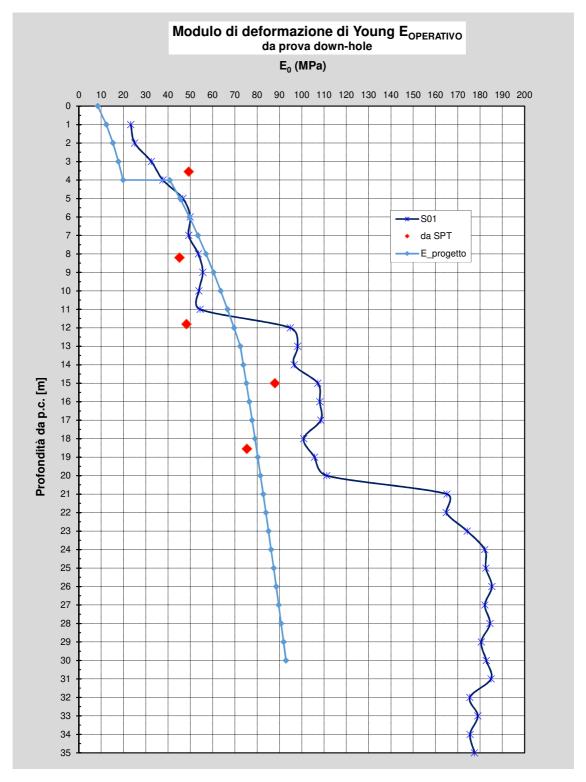



Figura 31 – Andamento del Modulo Elastico da prove SPT e Down Hole - da Sondaggio S1



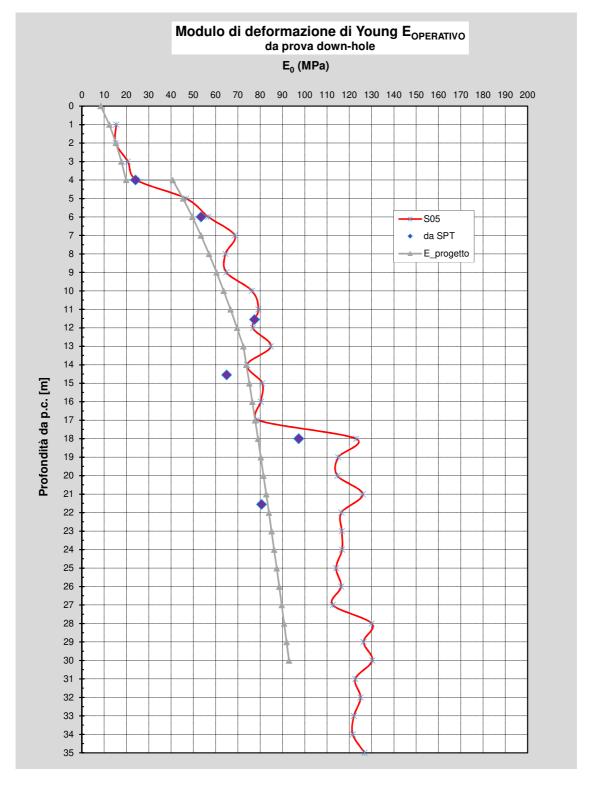



Figura 32 – Andamento del Modulo Elastico da prove SPT e Down Hole - da Sondaggio S5



### 6.1.7 PERMEABILITÀ

Per determinare la permeabilità dei terreni, sono state eseguite all'interno dei vari fori di sondaggio diverse prove tipo Lefranc oltre a prove di laboratorio quali edometriche, sui campioni indisturbati prelevati.

Nella Figura 21 viene riporto l'andamento della Permeabilità  $k_v$  in funzione della profondità. Le prove eseguite per loro natura sono prove puntuali, tanto più le prove edometriche. Per cui non sono rappresentative per valutare la reale permeabilità dell'acquifero che può essere anche di uno e/o due ordini di grandezza superiore.

Nella tabella seguente si riportano comunque i risultati delle indagini effettuate, da cui si evince che all'interno dell'Unità LS la permeabilità si attesta sui 10<sup>-9</sup> m/sec mentre all'interno delle unità SG/GS la permeabilità si attesta sui 10<sup>-5</sup> m/sec.



Figura 33 - Andamento della Permeabilità K,





Per avere un dato più attendibile sulla permeabilità delle unità incoerenti, sono state eseguite nei vari fori di sondaggio, n°3 prove Slug Test, a partire dalla quota di falda presente alla data della prova.

Pertanto si è determinato un K  $\approx 10^{-4}$  m/sec.

Per stimare la permeabilità orizzontale  $k_h$ , ci si basa su quanto proposto da Jamiolkowski et al. (1985) secondo quanto riportato nella tabella seguente.

| Nature of clay                                                                                                                          | $k_h/k_v$ |
|-----------------------------------------------------------------------------------------------------------------------------------------|-----------|
| No macrofabric, or only slightly developed macrofabric, essentially homogeneous deposits                                                | 1 to 1.5  |
| From fairly well- to well-developed macrofabric, e.g. sedimentary clays with discontinuous lenses and layers of more permeable material | 2 to 4    |
| Varved clays and other deposits containing<br>embedded and more or less continuous<br>permeable layers                                  | 3 to 15   |

## 6.2 Unità LS – Limi sabbiosi (compreso Riporto superficiale)

Si tratta di Limi argillosi sabbiosi e Limi sabbiosi argillosi. Tale unità è presente da piano campagna sino ad una profondità massima di circa 5.0 m ed è stata riscontrata in tutti i sondaggi a carotaggio continuo realizzati lungo il futuro asse stradale.

Sono stati prelevati diversi campioni indisturbati su cui sono state eseguite prove di laboratorio.

Dalle analisi granulometriche si evince che:

- percentuale di ghiaia da 0 a 2%;
- percentuale di sabbia da 30 a 40%;
- percentuale di limo + argilla da 60 a 70%.

Il peso di volume naturale va 19.0 a 20.0 kN/m<sup>3</sup>. Pertanto si adotta  $\gamma = 19.5$  kN/m<sup>3</sup>.

Il contenuto naturale d'acqua è compreso fra 14 e 20%. Il limite liquido è compreso tra 30 e 40%, il limite plastico è dell'ordine del 22%.

Nella carta di plasticità di Casagrande, il materiale si colloca nella zona delle argille inorganiche di media plasticità.

#### Resistenza

Dalle prove di laboratorio si è ottenuta una coesione drenata compresa fra 16 e 28 kPa ed un angolo di resistenza al taglio tra 22 e 33°.

Per quanto riguarda la resistenza al taglio non drenata non si hanno misure dirette.







### Parametri di deformabilità

I parametri di deformazione sono stati stimati dall'interpretazione dei risultati delle prove sismiche Down Hole e con le correlazioni SPT. Per l'unità in esame si stima:

 $Vs = 150 \div 200 \text{ m/s}$  velocità delle onde di taglio

 $Go = 50 \div 80 \text{ MPa}$  modulo di deformazione a taglio iniziale

 $Eo = 140 \div 220 \text{ MPa}$  modulo di deformazione elastico iniziale

Eoper.  $= 8 \div 20$  MPa modulo di deformazione elastico iniziale

## 6.3 Unità SG e GS – sabbie ghiaiose e ghiaie sabbiose

Si tratta di sabbia con ghiaia e ghiaia in matrice sabbiosa. Dal punto di vista geotecnico questa unità è sempre presente al di sotto delle unità coesive LS sino alle massime profondità investigate nel corso dei sondaggi geognostici.

In tale unità sono state eseguite prove SPT che hanno fornito valori compresi tra 10 (parte più superficiale) sino a 55 colpi, ad indicare un addensamento del materiale con la profondità. La densità relativa è generalmente compresa fra 40 e 70%.

#### Resistenza

Dall'interpretazione dei risultati delle prove SPT si sono ottenuti valori dell'angolo di resistenza al taglio tra 34 e 38°. Si assumerà i valori dei parametri di resistenza:

c' = 0 coesione drenata

 $\varphi = 36^{\circ}$  angolo di resistenza al taglio

#### Parametri di deformabilità

I parametri di deformazione sono stati stimati dall'interpretazione dei risultati delle prove sismiche Down Hole e con le correlazioni SPT. Per l'unità in esame si stima:

 $Vs = 250 \div 500 \text{ m/s}$  velocità delle onde di taglio

 $Go = 120 \div 500 \text{ MPa}$  modulo di deformazione a taglio iniziale

 $E_0 = 340 \div 1400 \text{ MPa}$  modulo di deformazione elastico iniziale

Eoper.  $= 40 \div 100 \text{ MPa}$  modulo di deformazione elastico iniziale







# 7 PARAMETRI GEOTECNICI

Di seguito si sintetizzano i parametri geotecnici di progetto per le unità indagate.

### Unità RIL - Rilevato stradale esistente

 $\gamma = 20.0 \text{ kN/m}^3$  peso di volume naturale

 $\varphi' = 35$  angolo di resistenza al taglio

c' = 0 - 2 kPa coesione drenata

 $E_{oper.} = 50 \text{ MPa}$  modulo di deformazione elastico

## Unità LS - Limi Sabbiosi da p.c. a -4.0/-5.0 m

 $\gamma = 19.5 \text{ kN/m}^3$  peso di volume naturale

 $\varphi' = 30$  angolo di resistenza al taglio

c' = 5 kPa coesione drenata

 $E_{oper.} = 8.5 \rightarrow 20 \text{ MPa}$  modulo di deformazione elastico

# Unità SG e GS – Sabbie ghiaiose e Ghiaie sabbiose da -4.0/-5.0 m sino alle massime profondità investigate

 $\gamma = 20.0 \text{ kN/m}^3$  peso di volume naturale

 $\varphi' = 36^{\circ}$  angolo di resistenza al taglio

c' = 0 kPa coesione drenata

 $E_{oper.} = 40 \rightarrow 90 \text{ MPa}$  modulo di deformazione elastico

La falda di progetto si assume a -4.50 m da p.c. (45.40 m s.l.m.) in fase finale e a -9.75 (40.20 m s.l.m.) in fase transitoria di cantiere.



# **8** CARATTERIZZAZIONE SISMICA

Secondo le NTC'18 le azioni sismiche di progetto si definiscono a partire dalla "pericolosità sismica di base" del sito di costruzione identificato in termini di coordinate geografiche latitudine, longitudine. La pericolosità sismica di base, da un punto di vista geografico, è definita non più secondo un numero discreto e finito di zone sismiche ciascuna caratterizzata da un prefissato valore di accelerazione di riferimento, ma è data per ogni punto di un reticolo di riferimento i cui 10751 nodi distano tra loro circa 10 km e coprono l'intero territorio nazionale. Differenze di approccio con le normative precedenti si ritrovano anche da un punto di vista temporale, in quanto la pericolosità non è più definita con riferimento ad un singolo valore del periodo di ritorno (TR = 475 anni), ma in corrispondenza di 9 valori (TR = 30, 50, 72, 101, 140, 201, 475, 975 e 2475 anni).

Le coordinate del sito per cui si è effettuata l'analisi sono le seguenti:

Latitudine: 43.867540Longitudine: 11.103807

Per definire la categoria di suolo sono state condotte n°2 prove Down Hole all'interno dei fori di sondaggio S1 e S5. Ai fini della definizione sismica delle V<sub>s30</sub> e quindi per la determinazione della Categoria di Suolo, vengono prese in considerazione:

✓ Down-hole S1-DH  $V_{s30} = 436 \text{ m/s}$ ✓ Down-hole S5-DH  $V_{s30} = 396 \text{ m/s}$ 

In accordo con le NTC'18 secondo quanto previsto nella Tabella 3.2. Il seguente la Categoria di Suolo è "B".

Tab. 3.2.II - Categorie di sottosuolo che permettono l'utilizzo dell'approccio semplificato.

| Categoria | Caratteristiche della superficie topografica                                                                |
|-----------|-------------------------------------------------------------------------------------------------------------|
|           | Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde          |
| A         | di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteri-               |
|           | stiche meccaniche più scadenti con spessore massimo pari a 3 m.                                             |
|           | Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consi-       |
| В         | stenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da                |
|           | valori di velocità equivalente compresi tra 360 m/s e 800 m/s.                                              |
|           | Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consi-            |
| C         | stenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento del-               |
| C         | le proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra                  |
|           | 180 m/s e 360 m/s.                                                                                          |
|           | Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consi-       |
| D         | stenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento del-              |
| D         | le proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra                  |
|           | 100 e 180 m/s.                                                                                              |
| E         | Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le catego- |
| E         | rie C o D, con profondità del substrato non superiore a 30 m.                                               |





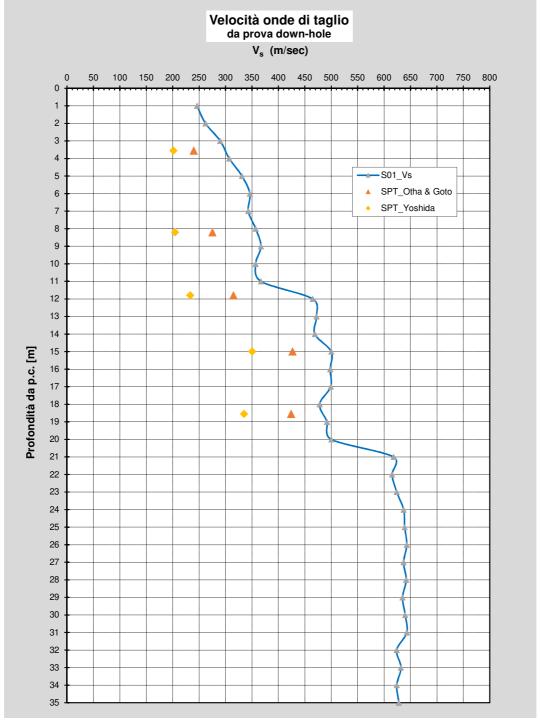



Figura 34 – Andamento onde di taglio Vs con la profondità – S01



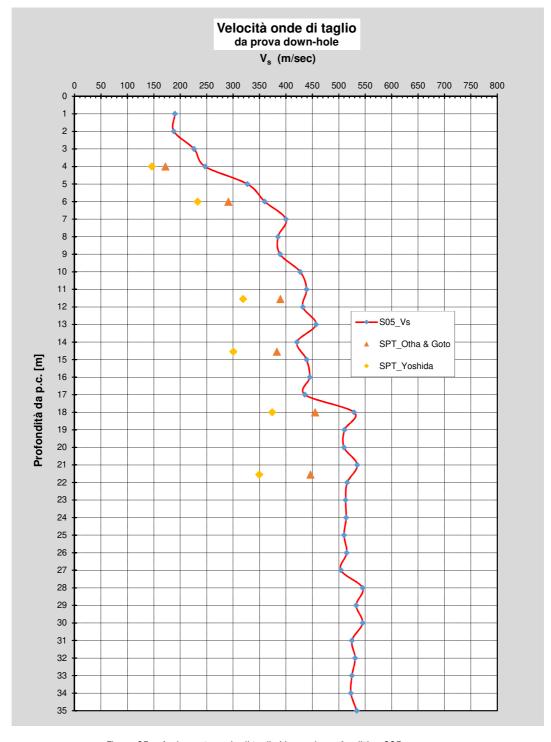



Figura 35 – Andamento onde di taglio Vs con la profondità – S05

La prova S5DH ha fornito un valore di Vs30 pari a 396 m/sec, molto prossimo al limite inferiore per classificare le unità interessate come Categoria di Suolo tipo C (Vs = 360 m/sec).

Pertanto cautelativamente ai fini progettuali, si adotterà una categoria di suolo tipo C. La scelta di considerare la categoria di suolo tipo C, deriva dal confronto tra la rielaborazione delle indagini effettuate in sito e le misure dirette con prove Down Hole. In particolare vista la presenza di unità prettamente incoerenti, dalla rielaborazione di tutte le prove SPT eseguite con le classiche formulazioni di letteratura, è possibile ottenere le velocità di taglio





(Vs). Dal raffronto è emerso che le Vs ottenute con le misure dirette Down Hole risultavano maggiori di quelle desunte dalle correlazioni, che portano invece a determinare una categoria di suolo tipo C (Vs < 360 m/sec). Onde per cui lo scrivente progettista, ha optato per utilizzare una categoria di suolo tipo C.

### 8.1 AZIONE SISMICA DI RIFERIMENTO

Ai fini progettuali per definire le azioni sulle strutture si adotta:

• vita nominale:  $V_N = 50$  anni

classe d'uso:

da cui risulta:

 $\bullet$  coefficiente d'uso:  $C_U = 2.0$ 

• periodo di riferimento per l'azione sismica:  $V_R = V_N \times C_U = 100$  anni

Per le analisi in condizioni sismiche è stato preso a riferimento lo stato limite di salvaguardia della vita (SLV) e dunque i seguenti parametri:

categoria di sottosuolo:

• Coefficiente topografico T1:  $S_t=1.00$ 

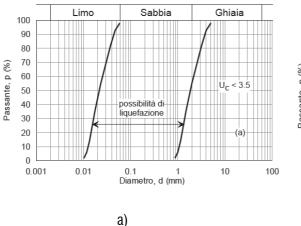
• fattore di sito:  $S_s = 1.440$ 

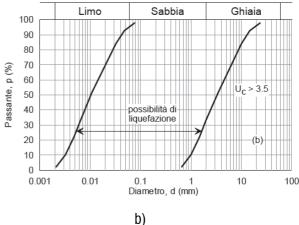
• accelerazione orizzontale su sito di riferimento rigido:  $a_g = 0.181 g$ 

• massima accelerazione  $a_{max} = 0.261 g$ 

### 8.2 VERIFICHE DI LIQUEFAZIONE

In terreni saturi sabbiosi sollecitati da azioni cicliche dinamiche, il termine liquefazione comprende una serie di fenomeni associati alla perdita di resistenza al taglio o ad accumulo di deformazioni plastiche. L'avvenuta liquefazione si manifesta attraverso la perdita di capacità portante e/o lo sviluppo di elevati cedimenti e rotazioni.


Le NTC'18 al paragrafo 7.11.3.4.2 affermano che la verifica alla liquefazione può essere omessa quando si manifesti una delle seguenti circostanze:


- 1. accelerazione massime attese al piano campagna in assenza di manufatti (condizioni di campo libero) minori di 0.1 g;
- 2. profondità media stagionale della falda superiore a 15 m dal piano campagna, per piano campagna suborizzontale e strutture con fondazioni superficiali;
- 3. depositi costituiti da sabbie pulite con resistenza penetrometrica normalizzata (N1) $_{60}$  > 30 oppure qc1N > 180 dove (N1) $_{60}$  è il valore della resistenza determinata in prove penetrometriche dinamiche (SPT) normalizzata ad una tensione efficace verticale di 100 kPa e qc<sub>1N</sub> è il valore della resistenza determinata in prove penetrometriche statiche (CPT) normalizzata ad una tensione efficace verticale di 100 kPa;





4. distribuzione granulometrica esterna alle zone indicate nel grafico a), nel caso di terreni con coefficiente di uniformità Uc < 3.5, e nel grafico b) nel caso di terreni con coefficiente di uniformità Uc > 3.5.





#### 8.2.1 ANALISI LIQUEFAZIONE

Tale capitolo è finalizzato alla stima dell'occorrenza dei fenomeni di liquefazione. La verifica a liquefazione è stata condotta adottando il programma LiqSVs v.2.0 - Software della GeoLogismiki.

Prato ricade nella zona sismogenetica 916. Pertanto la magnitudo di riferimento è pari a M=6.14. L'accelerazione massima orizzontale  $a_{max}=0.261$  g (Categoria di suolo tipo C e Cu=IV) e considerando cautelativamente una quota di falda pari a Dw=-9.50 m da p.c..

Per eseguire la verifica si sono utilizzate le prove Down Hole, in particolare la velocità delle Onde Vs.

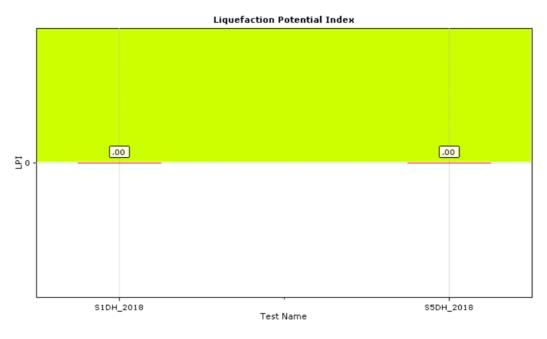



Figura 36 - Indice di Potenziale Liquefazione IPL





Si è determinato pertanto il valore di LPI che rappresenta Indice di Potenziale Liquefazione, che può essere così stimato:

LPI = 0 il rischio è molto basso

 $0 < LPI \le 5$  il rischio è basso

 $5 < LPI \le 15$  il rischio è elevato

LPI > 15 il rischio è estremamente elevato.

Dalle verifiche è risultato LPI = 0 per cui il potenziale di liquefazione è molto basso, come mostrano nella Figura 36.

In allegato sono riportati i report di calcolo.







# 9 VALUTAZIONE RESISTENZA BULBO DI FONDAZIONE TIRANTI

La valutazione del tiro ultimo caratteristico per lo sfilamento del bulbo di fondazione, è stata effettuata con riferimento agli abachi proposti da Bustamante e Doix, (1985), per la determinazione della resistenza ultima laterale dei micropali, mediante la seguente correlazione:

$$R_{\text{LIM}} = \pi \cdot D_s \cdot L_b \cdot s$$

In cui  $D_S = \alpha \cdot d$ , dove:

d è il diametro di perforazione che si considera da 0.18 m

 $\alpha$  è un coefficiente maggiorativo che tiene conto della natura del terreno e del metodo di iniezione I.R.S. o I.G.U.

s è la resistenza tangenziale limite  $= \tau_{lim}$ 

L<sub>b</sub> è la lunghezza del bulbo di fondazione.

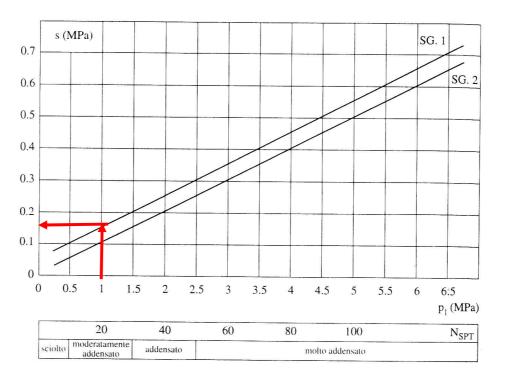
In accordo alla normativa vigente, la verifica di resistenza viene effettuata con riferimento alla combinazione (A1+M1+R3). Pertanto il valore di progetto della resistenza  $(R_d)$  si ottiene applicando il fattore parziale  $\gamma_R$  (Tab.6.6.I) di seguito funzione del tipo di tirante: permanente o provvisorio. Oltre al fattore di correlazione  $\xi$  che dipende dal numero di verticali utili indagate  $(NTC\ 2018-Tab.6.6.III)$ . Nel caso in esame di considera pari 1.60, pari a n°5 verticali d'indagine.

Tab. 6.6.I - Coefficienti parziali per la resistenza degli ancoraggi

|            | Simbolo | Coefficiente parziale |  |  |
|------------|---------|-----------------------|--|--|
| Temporanei | YR      | 1,1                   |  |  |
| Permanenti | ΥR      | 1,2                   |  |  |

Tab. 6.6.III - Fattori di correlazione per derivare la resistenza caratteristica dalle prove geotecniche, in funzione del numero n di profili di indagine

| Numero di profili di indag | jine 1 | 2    | 3    | 4    | ≥5   |
|----------------------------|--------|------|------|------|------|
| $\xi_{a3}$                 | 1,80   | 1,75 | 1,70 | 1,65 | 1,60 |
| ξ <sub>24</sub>            | 1,80   | 1,70 | 1,65 | 1,60 | 1,55 |


Da cui  $R_d = R_{LIM} / (\gamma_R \cdot \xi)$ . In tutti i casi dovrà risultare  $R_d > N_d$ .

Da cui la verifica a sfilamento della fondazione dell'ancoraggio si esegue confrontando la massima azione di progetto con la resistenza di progetto  $R_{ad}$ . In particolare si considera che la fondazione d'ancoraggio sia tutta all'interno dell'Unità SG e GS. Si considera un  $N_{SPT}$  di riferimento pari a 20. Dal grafico seguente si un valore di resistenza tangenziale  $s=150\ kPa$ .









# Valori del coefficiente $\alpha$ (Vs = Ls\* $\pi$ \*ds²/4)

| TERRENO                           | TERRENO Valori di α |           | Quantità mini<br>consi                     |              |
|-----------------------------------|---------------------|-----------|--------------------------------------------|--------------|
|                                   | IRS                 | IGU       | IRS                                        | IGU          |
| Ghiaia                            | 1,8                 | 1.3 - 1.4 | 1.5 Vs                                     | 1.5 Vs       |
| Ghiaia sabbiosa                   | 1.6 - 1.8           | 1.2 - 1.4 | 1.5 Vs                                     | 1.5 Vs       |
| sabbia ghiaiosa                   | 1.5 - 1.6           | 1.2 - 1.3 | 1.5 Vs                                     | 1.5 Vs       |
| Sabbia grossa                     | 1.4 - 1.5           | 1.1 - 1.2 | 1.5 Vs                                     | 1.5 Vs       |
| Sabbia media                      | 1.4 - 1.5           | 1.1 - 1.2 | 1.5 Vs 1.5 Vs                              |              |
| Sabbia fine                       | 1.4 - 1.5           | 1.1 -1.2  | 1.5 Vs                                     | 1.5 Vs       |
| Sabbia limosa                     | 1.4 - 1.5           | 1.1 - 1.2 | (1.5 - 2) Vs                               | 1.5 Vs       |
| Limo                              | 1.4 - 1.6           | 1.1 - 1.2 | 2 Vs                                       | 1.5 Vs       |
| Argilla                           | 1.8 - 2.0           | 1,2       | (2.5 - 3) Vs                               | (1.5 - 2) Vs |
| Marne                             | 1,8                 | 1.1 - 1.2 | (1.5 - 2) Vs per strati compatti           |              |
| Calcari marnosi                   | 1,8                 | 1.1 - 1.2 | (2 - 6) Vs o più per strati<br>fratturati  |              |
| Calcari alterati o<br>fratturati  | 1,8                 | 1.1 - 1.2 |                                            |              |
| Roccia alterata e/o<br>fratturata | 1,2                 | 1,1       | (1.1 - 1.5) Vs<br>fra<br>2 Vs o più per st | itturati;    |



Nella tabella seguente si riportano i valori delle resistenze limite relative alla lunghezza unitaria di bulbo ( $L_b = 1$  m).

| Litotipo | Ds<br>(m) | L <sub>b</sub> (m) | s<br>(kN/m²) | Tipologia<br>iniezione | α   | R <sub>LIM</sub><br>(kN/m) |
|----------|-----------|--------------------|--------------|------------------------|-----|----------------------------|
| SG / GS  | 0.18      | 1.0                | 150          | IRS                    | 1.5 | 127.23                     |

Da cui 
$$R_d = R_{LIM} / (\gamma_R \cdot \xi) = 127.23 / (1.1 \cdot 1.6) = 72.30 \text{ kN/m}$$

La fondazione dei tiranti (tratto attivo) sarà eseguita con iniezione di malta cementizia (ed additivi) ad alta pressione, con il metodo IRS (Iniezioni Ripetute e Selettive) attraverso valvole poste ad interasse  $\leq 0.75 \div 1.00$  m.



# **10 PORTANZA PALI**

I pali verranno eseguiti di diametro 1200 mm e secanti a interrasse 1.0 m. La tecnologia prevista potrà essere di tipo Cased Secant Piles (CSP) che consiste nell'eseguire pali trivellati mediante un'elica continua coassiale ad un rivestimento esterno oppure pali rivestiti a rotazione con impiego del tubo di rivestimento ("camicia metallica giuntata inserita a rotazione") per tutta la lunghezza del palo (senza l'impiego di fanghi bentonitici per il sostegno delle pareti del foro).

Le verifiche di capacità portante dei pali vengono condotte, in accordo con le NTC' 2018, con riferimento all'Approccio 2: A1+M1+R3. Il valore di progetto  $R_{cd}$  della resistenza si ottiene a partire dal valore caratteristico  $R_k$  applicando i coefficienti parziali  $\gamma_R$  della seguente tabella.

Tab. 6.4.II – Coefficienti parziali  $\gamma_R$  da applicare alle resistenze caratteristiche a carico verticale dei pali

| Resistenza               | Simbolo    | Pali<br>infissi | Pali<br>trivellati | Pali ad elica<br>continua |
|--------------------------|------------|-----------------|--------------------|---------------------------|
|                          | $\gamma_R$ | (R3)            | (R3)               | (R3)                      |
| Base                     | Υь         | 1,15            | 1,35               | 1,3                       |
| Laterale in compressione | $\gamma_s$ | 1,15            | 1,15               | 1,15                      |
| Totale (*)               | γ          | 1,15            | 1,30               | 1,25                      |
| Laterale in trazione     | Yst        | 1,25            | 1,25               | 1,25                      |

<sup>&</sup>lt;sup>(7)</sup>da applicare alle resistenze caratteristiche dedotte dai risultati di prove di carico di progetto.

Inoltre la resistenza caratteristica  $R_k$  del palo viene ricavata attraverso correlazioni empiriche che prevedono l'utilizzo di parametri geotecnici, il valore caratteristico della resistenza Rc,k (o Rt,k) sarà dato dal minore dei valori ottenuti applicando alle resistenze calcolate Rc,cal (o Rt,cal) i fattori di correzione ( $\xi$ ) riportati nella seguente tabella in funzione del numero di verticali d'indagine.

Ai fini della portanza si è assunto un valore del fattore di correzione ( $\xi_3$ ) <u>pari a 1.50, che considera un numero pari a 5 verticali d'indagine.</u>

$$R_{c,k} = Min \left\{ \frac{\left(R_{c,cal}\right)_{media}}{\xi_3}; \frac{\left(R_{c,cal}\right)_{min}}{\xi_4} \right\}$$

$$R_{t,k} = Min \left\{ \frac{\left(R_{t,cal}\right)_{modia}}{\xi_3}; \frac{\left(R_{t,cal}\right)_{min}}{\xi_4} \right\}$$

Tab. 6.4.IV - Fattori di correlazione ξ per la determinazione della resistenza caratteristica in funzione del numero di verticali indagate

| Numero di verticali indagate | 1    | 2    | 3    | 4    | 5    | 7    | ≥10  |
|------------------------------|------|------|------|------|------|------|------|
| ξ <sub>3</sub>               | 1,70 | 1,65 | 1,60 | 1,55 | 1,50 | 1,45 | 1,40 |
| ξ <sub>4</sub>               | 1,70 | 1,55 | 1,48 | 1,42 | 1,34 | 1,28 | 1,21 |

Coefficienti parziali da applicare alle resistenze caratteristiche

| Davista    | γR                | پې               | FS   |
|------------|-------------------|------------------|------|
| Resistenza | (R3 = trivellati) | (n indagini = 5) | (R3) |
| Base       | 1.35              | 1.50             | 2.03 |







| Laterale in compressione | 1.15 | 1.50 | 1.73 |
|--------------------------|------|------|------|
| Laterale in trazione     | 1.25 | 1.50 | 1.88 |

#### 10.1 CAPACITA' PORTANTE A CARICHI VERTICALI

La portata di progetto di un palo soggetto a sforzo normale di Compressione (eseguito con completa asportazione del terreno) "Q<sub>d</sub>" può essere espressa dalla seguente relazione:

$$Qd = Q_{II} / F_{SL} + Q_{bI} / F_{SB} - W'_{p}$$

La portata di progetto di un palo soggetto a sforzo normale di Trazione (eseguito con completa asportazione del terreno) " $Q_d$ " può essere espressa dalla seguente relazione:

$$Qd = Q_{II}/F_{SL} + W'_{p}$$

dove:

 $Q_{\parallel}$  = portata laterale limite

 $Q_{bl}$  = portata di base limite

W'<sub>p</sub> = peso efficace del palo (al netto del peso del terreno asportato)

 $F_{SL}$  = fattore di sicurezza per la portata laterale (=  $\gamma_s \cdot \xi_3$ )

 $F_{SB}$  = fattore di sicurezza per la portata di base (=  $\gamma_b \cdot \xi_3$ )

Per la valutazione della Portata Laterale Limite si opta per i seguenti criteri, valide per **Unità Incoerenti**.

La tensione tangenziale ultima lungo il fusto del palo, in accordo con [Burland, 1973], [Reese & O'Neill, 1988], [Chen & Kulhawy, 1994] e [O'Neill & Hassan, 1994], può essere valutata con riferimento alla seguente espressione:

$$\tau_{\text{III}} = \beta_{\text{i}} \cdot \, \sigma'_{\text{voi}} \leq \tau_{\text{III,max}}$$

dove:

- $\beta_i$  è il coefficiente empirico per lo strato i-esimo, moltiplicatore; il metodo alle tensioni efficaci " $\beta$ " è validato dai risultati di numerose prove di carico a rottura per terreni incoerenti
- $\sigma_{\text{Voi}}$  è la pressione verticale efficace media geostatica nello strato i-esimo calcolata a partire dal p.c. originario

 $\tau_{\text{IIi,max}}$  è la tensione tangenziale ultima massima attribuibile allo strato i-esimo

In accordo a Reese & O'Neill [1988] e a O'Neill & Hassan [1994] (vedi anche Jamiolkowski [2000]) al coefficiente empirico β possono essere assegnati i seguenti valori:

per i depositi ghiaioso-sabbiosi

$$1.0 \ge \beta = 1.5 - 0.245 \cdot (z)^{0.50} \ge 0.25$$







per i depositi limo sabbiosi

$$1.0 \ge \beta = 1.5 - 0.42 \cdot (z)^{0.34} \ge 0.25$$

essendo z la profondità a partire dal p.c. originario.

Nel caso in esame si assumerà la correlazione valida per depositi ghiaioso-sabbiosi per l'unità SG e GS e la correlazione valida per depositi limo sabbiosi per l'unità LS.

Inoltre, nel caso di pali trivellati, il valore di  $\tau_{max}$ è ricavabile dalle seguenti espressioni:

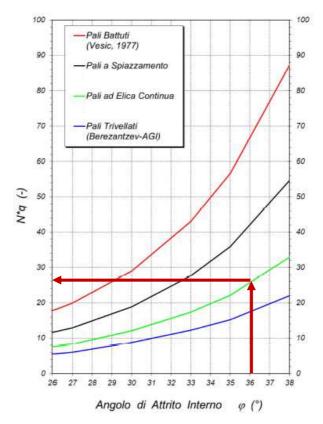
$$\begin{split} \tau_{smax} &= 3.0 \cdot N_{SPT} \text{ kPa} & \text{per } N_{SPT} \leq 53 & \text{Reese \& Wright [1977]} \\ \tau_{smax} &= 142 + 0.32 \cdot N_{SPT} \text{ kPa} & \text{per } N_{SPT} > 53 & \text{Reese \& Wright [1977]} \\ \text{dove } N_{SPT} &= n^{\circ} \text{ dei colpi} \end{split}$$

Per la valutazione della Portata di Base Limite è stata utilizzata la seguente relazione.

Nel caso dei pali trivellati di grande diametro con base in terreni sabbioso-ghiaiosi è prassi consolidata assumere il valore della portata unitaria corrispondente a cedimenti della base del palo pari al 5% del diametro; a tale portata viene attribuito il termine di portata critica  $(q_{b,crit})$ .

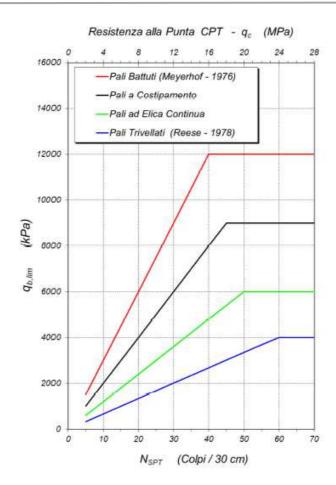
Per le opere in cui non vi sono a disposizione prove SPT, la portata di base è stata determinata in base alla seguente correlazione di Berezantzev in funzione dell'angolo di resistenza al taglio del terreno.

Il valore della portata unitaria di base critica è ricavabile dalla seguente espressione:


$$q_{b,crit} = N_q \cdot \sigma'_{v} \ \leq \ q_{b,crit}{}^{MAX}$$

dove:

Nq = moltiplicatore ricavabile dal grafico sottostante, pari a 25


 $\sigma'_{v}$  = tensione verticale efficace litostatica





Pertanto si considera un  $N_{SPT} = 30$  sino a circa 16.0 m di profondità e poi un  $N_{SPT} = 40$  per profondità maggiori. La pressione limite massima è ricavabile dal grafico sottostante.





Per determinare la portanza sia a compressione che a trazione si considera la sezione del palo suddivisa a metà. Per il tratto a monte si considera la tensione verticale efficace litostatica  $\sigma'_{\nu}$  a partire da piano campagna. Mentre per il tratto di palo a valle si considera la tensione verticale efficace litostatica  $\sigma'_{\nu}$  a partire da intradosso solettone di fondazione.

Per la portanza di base, valutata come contributo nella verifica a compressione, si considera la tensione verticale efficace litostatica  $\sigma'_{\nu}$  a partire da piano campagna.

Da cui la portanza complessiva a compressione e trazione è data dalla somma del valore di  $Q_d$  a compressione lato monte per un palo lungo 14.0 m e dal valore di  $Q_d$  a compressione lato valle per un palo lungo 7.0 m.

Capacità portante D = 1200 mm a compressione – lato monte

| Lp<br>m | Q11<br>kn | Qb1<br>kn | Wp<br>kn | Qu<br>kn | Qd<br>kn |
|---------|-----------|-----------|----------|----------|----------|
| .00     | 0.        | 880.      | 0.       | 880.     | 451.     |
| .50     | 56.       | 1005.     | 3.       | 1058.    | 545.     |
| 1.00    | 112.      | 1131.     | 6.       | 1237.    | 639.     |
| 1.50    | 176.      | 1131.     | 9.       | 1297.    | 672.     |
| 2.00    | 253.      | 2015.     | 12.      | 2255.    | 1167.    |
| 2.50    | 339.      | 2898.     | 16.      | 3222.    | 1667.    |
| 3.00    | 427.      | 3040.     | 19.      | 3448.    | 1787.    |
| 3.50    | 516.      | 3181.     | 22.      | 3675.    | 1908.    |
| 4.00    | 607.      | 3322.     | 25.      | 3905.    | 2030.    |







| 4.50         | 700.  | 3393. | 28.  | 4065. | 2117. |
|--------------|-------|-------|------|-------|-------|
| 5.00         | 794.  | 3393. | 31.  | 4155. | 2168. |
| 5.50         | 888.  | 3393. | 34.  | 4247. | 2219. |
| 6.00         | 982.  | 3393. | 37.  | 4338. | 2270. |
| 6.50         | 1076. | 3393. | 40.  | 4429. | 2322. |
| 7.00         | 1171. | 3393. | 44.  | 4520. | 2373. |
| 7.50         | 1265. | 3393. | 47.  | 4611. | 2424. |
| 8.00         | 1359. | 3393. | 50.  | 4702. | 2476. |
| 8.50         | 1453. | 3393. | 53.  | 4793. | 2527. |
| 9.00         | 1548. | 3393. | 56.  | 4885. | 2579. |
| 9.50         | 1642. | 3393. | 59.  | 4976. | 2630. |
| 10.00        | 1736. | 3393. | 62.  | 5067. | 2681. |
| 10.50        | 1830. | 3393. | 65.  | 5158. | 2733. |
| 11.00        | 1925. | 3393. | 68.  | 5249. | 2784. |
| 11.50        | 2019. | 3393. | 72.  | 5340. | 2835. |
| 12.00        | 2113. | 3393. | 75.  | 5431. | 2887. |
| 12.50        | 2207. | 3393. | 78.  | 5523. | 2938. |
| 13.00        | 2303. | 3393. | 81.  | 5615. | 2990. |
| 13.50        | 2400. | 3959. | 84.  | 6274. | 3333. |
| <b>14.00</b> | 2498. | 4524. | 87.  | 6935. | 3677. |
| 14.50        | 2595. | 4524. | 90.  | 7028. | 3730. |
| 15.00        | 2691. | 4524. | 93.  | 7122. | 3782. |
| 15.50        | 2786. | 4524. | 96.  | 7214. | 3834. |
| 16.00        | 2880. | 4524. | 100. | 7305. | 3885. |
| 16.50        | 2973. | 4524. | 103. | 7394. | 3936. |
| 17.00        | 3065. | 4524. | 106. | 7483. | 3986. |
| 17.50        | 3155. | 4524. | 109. | 7571. | 4035. |
| 18.00        | 3244. | 4524. | 112. | 7656. | 4083. |
| 18.50        | 3332. | 4524. | 115. | 7741. | 4131. |
| 19.00        | 3418. | 4524. | 118. | 7824. | 4178. |
| 19.50        | 3502. | 4524. | 121. | 7905. | 4223. |
| 20.00        | 3585. | 4524. | 124. | 7984. | 4268. |

# Capacità portante D = 1200 mm a compressione – lato valle

| Lp<br>m | Q11<br>kn | Qb1<br>kn | Wp<br>kn | Qu<br>kn | Qd<br>kn    |
|---------|-----------|-----------|----------|----------|-------------|
| .00     | 0.        | 0.        | 0.       | 0.       | 0.          |
| .50     | 2.        | 0.        | 0.       | 2.       | 1.          |
| 1.00    | 6.        | 0.        | 0.       | 6.       | 4.          |
| 1.50    | 14.       | 0.        | 0.       | 14.      | 8.          |
| 2.00    | 25.       | 0.        | 0.       | 25.      | 14.         |
| 2.50    | 38.       | 0.        | 0.       | 38.      | 22.         |
| 3.00    | 54.       | 0.        | 0.       | 54.      | 31.         |
| 3.50    | 72.       | 0.        | 0.       | 72.      | 42.         |
| 4.00    | 92.       | 0.        | 0.       | 92.      | 53.         |
| 4.50    | 114.      | 0.        | 0.       | 114.     | 66.         |
| 5.00    | 139.      | 0.        | 0.       | 139.     | 80.         |
| 5.50    | 165.      | 0.        | 0.       | 165.     | 95.         |
| 6.00    | 193.      | 0.        | 0.       | 193.     | 111.        |
| 6.50    | 222.      | 0.        | 0.       | 222.     | 128.        |
| 7.00    | 253.      | 0.        | 0.       | 253.     | <b>146.</b> |
| 7.50    | 285.      | 0.        | 0.       | 285.     | 164.        |
| 8.00    | 318.      | 0.        | 0.       | 318.     | 184.        |
| 8.50    | 352.      | 0.        | 0.       | 352.     | 203.        |
| 9.00    | 387.      | 0.        | 0.       | 387.     | 224.        |





| 9.50  | 423. | 0. | 0. | 423. | 244. |
|-------|------|----|----|------|------|
| 10.00 | 459. | 0. | 0. | 459. | 265. |

# Capacità portante D = 1200 mm a trazione – lato monte

| Lp    | Q11   | Qb1 | Wp    | Qu    | Qd    |
|-------|-------|-----|-------|-------|-------|
| m     | kn    | kn  | kN    | kN    | kn    |
|       |       |     |       |       |       |
| .00   | 0.    | 0.  | 0.    | 0.    | 0.    |
| . 50  | 56.   | 0.  | -3.   | 59.   | 33.   |
| 1.00  | 112.  | 0.  | -6.   | 119.  | 66.   |
| 1.50  | 176.  | 0.  | -9.   | 185.  | 103.  |
| 2.00  | 253.  | 0.  | -12.  | 265.  | 147.  |
| 2.50  | 339.  | 0.  | -16.  | 355.  | 196.  |
| 3.00  | 427.  | 0.  | -19.  | 445.  | 246.  |
| 3.50  | 516.  | 0.  | -22.  | 538.  | 296.  |
| 4.00  | 607.  | 0.  | -25.  | 632.  | 348.  |
| 4.50  | 700.  | 0.  | -28.  | 728.  | 400.  |
| 5.00  | 794.  | 0.  | -31.  | 825.  | 453.  |
| 5.50  | 888.  | 0.  | -34.  | 922.  | 506.  |
| 6.00  | 982.  | 0.  | -37.  | 1019. | 560.  |
| 6.50  | 1076. | 0.  | -40.  | 1117. | 613.  |
| 7.00  | 1171. | 0.  | -44.  | 1214. | 666.  |
| 7.50  | 1265. | 0.  | -47.  | 1311. | 719.  |
| 8.00  | 1359. | 0.  | -50.  | 1409. | 773.  |
| 8.50  | 1453. | 0.  | -53.  | 1506. | 826.  |
| 9.00  | 1548. | 0.  | -56.  | 1604. | 879.  |
| 9.50  | 1642. | 0.  | -59.  | 1701. | 932.  |
| 10.00 | 1736. | 0.  | -62.  | 1798. | 986.  |
| 10.50 | 1830. | 0.  | -65.  | 1896. | 1039. |
| 11.00 | 1925. | 0.  | -68.  | 1993. | 1092. |
| 11.50 | 2019. | 0.  | -72.  | 2090. | 1145. |
| 12.00 | 2113. | 0.  | -75.  | 2188. | 1199. |
| 12.50 | 2207. | 0.  | -78.  | 2285. | 1252. |
| 13.00 | 2303. | 0.  | -81.  | 2384. | 1306. |
| 13.50 | 2400. | 0.  | -84.  | 2484. | 1361. |
| 14.00 | 2498. | 0.  | -87.  | 2585. | 1416. |
| 14.50 | 2595. | 0.  | -90.  | 2685. | 1470. |
| 15.00 | 2691. | 0.  | -93.  | 2784. | 1525. |
| 15.50 | 2786. | 0.  | -96.  | 2882. | 1578. |
| 16.00 | 2880. | 0.  | -100. | 2980. | 1632. |
| 16.50 | 2973. | 0.  | -103. | 3076. | 1684. |
| 17.00 | 3065. | 0.  | -106. | 3171. | 1736. |
| 17.50 | 3155. | 0.  | -109. | 3264. | 1787. |
| 18.00 | 3244. | 0.  | -112. | 3356. | 1838. |
| 18.50 | 3332. | 0.  | -115. | 3447. | 1887. |
| 19.00 | 3418. | 0.  | -118. | 3536. | 1936. |
| 19.50 | 3502. | 0.  | -121. | 3624. | 1984. |
| 20.00 | 3585. | 0.  | -124. | 3709. | 2031. |
|       |       |     |       |       |       |

# Capacità portante D = 1200 mm a trazione – lato valle

| Lp | Q11 | Qb1 | Wp | Qu | Qd |
|----|-----|-----|----|----|----|
| m  | kN  | kN  | kN | kN | kn |







| .00   | 0.   | 0. | 0. | 0.   | 0.          |
|-------|------|----|----|------|-------------|
| .50   | 2.   | 0. | 0. | 2.   | 1.          |
| 1.00  | 6.   | 0. | 0. | 6.   | 3.          |
| 1.50  | 14.  | 0. | 0. | 14.  | 8.          |
| 2.00  | 25.  | 0. | 0. | 25.  | 13.         |
| 2.50  | 38.  | 0. | 0. | 38.  | 20.         |
| 3.00  | 54.  | 0. | 0. | 54.  | 29.         |
| 3.50  | 72.  | 0. | 0. | 72.  | 38.         |
| 4.00  | 92.  | 0. | 0. | 92.  | 49.         |
| 4.50  | 114. | 0. | 0. | 114. | 61.         |
| 5.00  | 139. | 0. | 0. | 139. | 74.         |
| 5.50  | 165. | 0. | 0. | 165. | 88.         |
| 6.00  | 193. | 0. | 0. | 193. | 102.        |
| 6.50  | 222. | 0. | 0. | 222. | 118.        |
| 7.00  | 253. | 0. | 0. | 253. | <b>134.</b> |
| 7.50  | 285. | 0. | 0. | 285. | 151.        |
| 8.00  | 318. | 0. | 0. | 318. | 169.        |
| 8.50  | 352. | 0. | 0. | 352. | 187.        |
| 9.00  | 387. | 0. | 0. | 387. | 206.        |
| 9.50  | 423. | 0. | 0. | 423. | 225.        |
| 10.00 | 459. | 0. | 0. | 459. | 244.        |
|       |      |    |    |      |             |

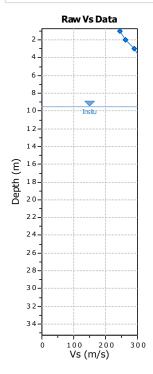
Da cui risulta che la Capacità portante per un palo D = 1200 mm e lunghezza 14.0 m è:

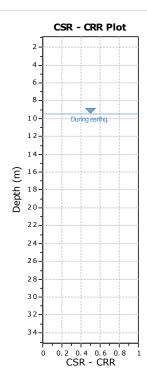
• **Compressione**:  $Q_d = 3677 + 146 = 3823 \text{ kN}$ 

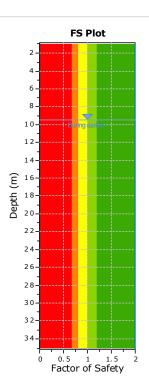
• **Trazione**:  $Q_d = 1416 + 134 = 1550 \text{ kN}$ 

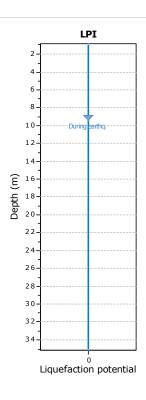


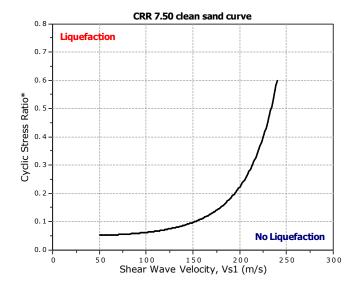
# **V<sub>s</sub> BASED LIQUEFACTION ANALYSIS REPORT**

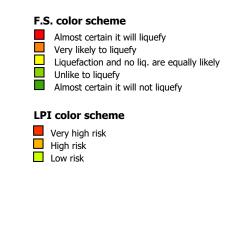

Project title : V<sub>s</sub> Name: S1DH\_2018


Location:


#### :: Input parameters and analysis properties ::


Anal ysis method: Kayen et al. 2013 G.W.T. (in-situ): 9.50 m


G.W.T. (in-situ): 9.50 m
G.W.T. (earthq.): 9.50 m
Earthquake magnitude M
Peak ground acceleration: 0.26 g
Eq. external load: 0.00 kPa

















| :: Field inp         | ut data ::                             |                         |                           |                           |                |
|----------------------|----------------------------------------|-------------------------|---------------------------|---------------------------|----------------|
| Test<br>Depth<br>(m) | V <sub>s</sub> Field<br>Value<br>(m/s) | Fines<br>Content<br>(%) | Unit<br>Weight<br>(kN/m³) | Infl.<br>Thickness<br>(m) | Can<br>Liquefy |
| 1.00                 | 246.00                                 | 10.00                   | 19.50                     | 0.00                      | Yes            |
| 2.00                 | 262.00                                 | 10.00                   | 19.50                     | 0.00                      | Yes            |
| 3.00                 | 290.00                                 | 10.00                   | 19.50                     | 0.00                      | Yes            |
| 4.00                 | 307.00                                 | 10.00                   | 19.50                     | 0.00                      | Yes            |
| 5.00                 | 331.00                                 | 10.00                   | 19.50                     | 0.00                      | Yes            |
| 6.00                 | 346.00                                 | 10.00                   | 19.50                     | 0.00                      | Yes            |
| 7.00                 | 343.00                                 | 10.00                   | 19.50                     | 0.00                      | Yes            |
| 8.00                 | 357.00                                 | 10.00                   | 19.50                     | 0.00                      | Yes            |
| 9.00                 | 367.00                                 | 10.00                   | 19.50                     | 0.00                      | Yes            |
| 10.00                | 357.00                                 | 10.00                   | 19.50                     | 0.00                      | Yes            |
| 11.00                | 367.00                                 | 10.00                   | 19.50                     | 0.00                      | Yes            |
| 12.00                | 465.00                                 | 10.00                   | 19.50                     | 0.00                      | Yes            |
| 13.00                | 472.00                                 | 10.00                   | 19.50                     | 0.00                      | Yes            |
| 14.00                | 469.00                                 | 10.00                   | 19.50                     | 0.00                      | Yes            |
|                      |                                        |                         | 19.50                     | 0.00                      | Yes            |
| 15.00                | 500.00                                 | 10.00                   |                           |                           | Yes            |
| 16.00                | 498.00                                 | 10.00                   | 19.50                     | 0.00                      |                |
| 17.00                | 499.00                                 | 10.00                   | 19.50                     | 0.00                      | Yes            |
| 18.00                | 478.00                                 | 10.00                   | 19.50                     | 0.00                      | Yes            |
| 19.00                | 492.00                                 | 10.00                   | 19.50                     | 0.00                      | Yes            |
| 20.00                | 500.00                                 | 10.00                   | 19.50                     | 0.00                      | Yes            |
| 21.00                | 618.00                                 | 10.00                   | 19.50                     | 0.00                      | Yes            |
| 22.00                | 615.00                                 | 10.00                   | 19.50                     | 0.00                      | Yes            |
| 23.00                | 624.00                                 | 10.00                   | 19.50                     | 0.00                      | Yes            |
| 24.00                | 637.00                                 | 10.00                   | 19.50                     | 0.00                      | Yes            |
| 25.00                | 639.00                                 | 10.00                   | 19.50                     | 0.00                      | Yes            |
| 26.00                | 643.00                                 | 10.00                   | 19.50                     | 0.00                      | Yes            |
| 27.00                | 637.00                                 | 10.00                   | 19.50                     | 0.00                      | Yes            |
| 28.00                | 642.00                                 | 10.00                   | 19.50                     | 0.00                      | Yes            |
| 29.00                | 635.00                                 | 10.00                   | 19.50                     | 0.00                      | Yes            |
| 30.00                | 640.00                                 | 10.00                   | 19.50                     | 0.00                      | Yes            |
| 31.00                | 643.00                                 | 10.00                   | 19.50                     | 0.00                      | Yes            |
| 32.00                | 624.00                                 | 10.00                   | 19.50                     | 0.00                      | Yes            |
| 33.00                | 632.00                                 | 10.00                   | 19.50                     | 0.00                      | Yes            |
| 34.00                | 624.00                                 | 10.00                   | 19.50                     | 0.00                      | Yes            |
|                      |                                        |                         |                           |                           |                |
| 35.00                | 628.00                                 | 10.00                   | 19.50                     | 0.00                      | Yes            |

Depth: Depth at which test was performed (m) Vs Field Value: Measured shear waves velocity (m/s) Fines Content: Fines content at test depth (%) Unit weight at test depth (kN/m³) Unit Weight:

Infl. Thickness:

Thickness of the soil layer to be considered in settlements analysis (m)
User defined switch for excluding/including test depth from the analysis procedure Can Liquefy:

| :: Cyclic    | Resistanc                              | ce Ratio (CR              | R) calcul               | ation dat   | :a ::                     |                 |                          |                    |
|--------------|----------------------------------------|---------------------------|-------------------------|-------------|---------------------------|-----------------|--------------------------|--------------------|
| Depth<br>(m) | V <sub>s</sub> Field<br>Value<br>(m/s) | Unit<br>Weight<br>(kN/m³) | σ <sub>ν</sub><br>(kPa) | u。<br>(kPa) | σ' <sub>vo</sub><br>(kPa) | Norm.<br>Factor | V <sub>s1</sub><br>(m/s) | CRR <sub>7.5</sub> |
| 1.00         | 246.00                                 | 19.50                     | 19.50                   | 0.00        | 19.50                     | 1.51            | 371.41                   | 4.000              |
| 2.00         | 262.00                                 | 19.50                     | 39.00                   | 0.00        | 39.00                     | 1.27            | 332.63                   | 3 4.000            |

| Depth<br>(m) | V₅ Field<br>Value<br>(m/s) | Unit<br>Weight<br>(kN/m³) | σ <sub>ν</sub><br>(kPa) | u。<br>(kPa) | σ' <sub>vo</sub><br>(kPa) | Norm.<br>Factor | V <sub>s1</sub><br>(m/s) | CRR <sub>7.5</sub> |
|--------------|----------------------------|---------------------------|-------------------------|-------------|---------------------------|-----------------|--------------------------|--------------------|
| 3.00         | 290.00                     | 19.50                     | 58.50                   | 0.00        | 58.50                     | 1.15            | 332.69                   | 4.000              |
| 4.00         | 307.00                     | 19.50                     | 78.00                   | 0.00        | 78.00                     | 1.07            | 327.75                   | 4.000              |
| 5.00         | 331.00                     | 19.50                     | 97.50                   | 0.00        | 97.50                     | 1.01            | 334.20                   | 4.000              |
| 6.00         | 346.00                     | 19.50                     | 117.00                  | 0.00        | 117.00                    | 0.96            | 333.78                   | 4.000              |
| 7.00         | 343.00                     | 19.50                     | 136.50                  | 0.00        | 136.50                    | 0.93            | 318.38                   | 4.000              |
| 8.00         | 357.00                     | 19.50                     | 156.00                  | 0.00        | 156.00                    | 0.90            | 320.49                   | 4.000              |
| 9.00         | 367.00                     | 19.50                     | 175.50                  | 0.00        | 175.50                    | 0.87            | 319.91                   | 4.000              |
| 10.00        | 357.00                     | 19.50                     | 195.00                  | 4.91        | 190.09                    | 0.85            | 305.04                   | 4.000              |
| 11.00        | 367.00                     | 19.50                     | 214.50                  | 14.71       | 199.78                    | 0.84            | 309.71                   | 4.000              |
| 12.00        | 465.00                     | 19.50                     | 234.00                  | 24.52       | 209.47                    | 0.83            | 387.79                   | 4.000              |
| 13.00        | 472.00                     | 19.50                     | 253.50                  | 34.34       | 219.16                    | 0.82            | 389.20                   | 4.000              |
| 14.00        | 469.00                     | 19.50                     | 273.00                  | 44.15       | 228.85                    | 0.82            | 382.57                   | 4.000              |
| 15.00        | 500.00                     | 19.50                     | 292.50                  | 53.95       | 238.54                    | 0.81            | 403.65                   | 4.000              |
| 16.00        | 498.00                     | 19.50                     | 312.00                  | 63.77       | 248.24                    | 0.80            | 398.05                   | 4.000              |
| 17.00        | 499.00                     | 19.50                     | 331.50                  | 73.58       | 257.93                    | 0.79            | 395.05                   | 4.000              |
| 18.00        | 478.00                     | 19.50                     | 351.00                  | 83.39       | 267.62                    | 0.78            | 374.96                   | 4.000              |
| 19.00        | 492.00                     | 19.50                     | 370.50                  | 93.19       | 277.31                    | 0.78            | 382.52                   | 4.000              |
| 20.00        | 500.00                     | 19.50                     | 390.00                  | 103.00      | 287.00                    | 0.77            | 385.42                   | 4.000              |
| 21.00        | 618.00                     | 19.50                     | 409.50                  | 112.81      | 296.69                    | 0.76            | 472.44                   | 4.000              |
| 22.00        | 615.00                     | 19.50                     | 429.00                  | 122.63      | 306.38                    | 0.76            | 466.38                   | 4.000              |
| 23.00        | 624.00                     | 19.50                     | 448.50                  | 132.44      | 316.06                    | 0.75            | 469.54                   | 4.000              |
| 24.00        | 637.00                     | 19.50                     | 468.00                  | 142.25      | 325.75                    | 0.75            | 475.71                   | 4.000              |
| 25.00        | 639.00                     | 19.50                     | 487.50                  | 152.06      | 335.44                    | 0.74            | 473.72                   | 4.000              |
| 26.00        | 643.00                     | 19.50                     | 507.00                  | 161.87      | 345.13                    | 0.74            | 473.31                   | 4.000              |
| 27.00        | 637.00                     | 19.50                     | 526.50                  | 171.68      | 354.82                    | 0.73            | 465.66                   | 4.000              |
| 28.00        | 642.00                     | 19.50                     | 546.00                  | 181.49      | 364.51                    | 0.73            | 466.16                   | 4.000              |
| 29.00        | 635.00                     | 19.50                     | 565.50                  | 191.29      | 374.20                    | 0.72            | 458.06                   | 4.000              |
| 30.00        | 640.00                     | 19.50                     | 585.00                  | 201.10      | 383.89                    | 0.72            | 458.73                   | 4.000              |
| 31.00        | 643.00                     | 19.50                     | 604.50                  | 210.91      | 393.58                    | 0.71            | 458.02                   | 4.000              |
| 32.00        | 624.00                     | 19.50                     | 624.00                  | 220.72      | 403.27                    | 0.71            | 441.79                   | 4.000              |
| 33.00        | 632.00                     | 19.50                     | 643.50                  | 230.53      | 412.96                    | 0.70            | 444.80                   | 4.000              |
| 34.00        | 624.00                     | 19.50                     | 663.00                  | 240.34      | 422.65                    | 0.70            | 436.63                   | 4.000              |
| 35.00        | 628.00                     | 19.50                     | 682.50                  | 250.16      | 432.35                    | 0.70            | 436.95                   | 4.000              |

 $\begin{array}{lll} \sigma_{v} \colon & & \text{Total stress during SPT test (kPa)} \\ u_{o} \colon & & \text{Water pore pressure during SPT test (kPa)} \\ \sigma'_{vo} \colon & & \text{Effective overburden pressure during SPT test (kPa)} \\ \text{Norm. Factor:} & & \text{overburden-stress correction factor} \end{array}$ 

V<sub>S1</sub>: Overburden-stress corrected shear wave velocity

CRR<sub>7.5</sub>: Cyclic resistance ratio for M=7.5

| :: Cyclic    | Stress Ratio              | calculati                  | on (CSR                    | fully adj                    | usted a        | nd norm | nalized) :: |      |                          |        |       |       |   |
|--------------|---------------------------|----------------------------|----------------------------|------------------------------|----------------|---------|-------------|------|--------------------------|--------|-------|-------|---|
| Depth<br>(m) | Unit<br>Weight<br>(kN/m³) | σ <sub>y,eq</sub><br>(kPa) | u <sub>o,eq</sub><br>(kPa) | σ' <sub>vo,eq</sub><br>(kPa) | r <sub>d</sub> | α       | CSR         | MSF  | CSR <sub>eq, M=7.5</sub> | Ksigma | CSR*  | FS    |   |
| 1.00         | 19.50                     | 19.50                      | 0.00                       | 19.50                        | 1.00           | 1.00    | 0.169       | 1.31 | 0.129                    | 1.00   | 0.129 | 2.000 | • |
| 2.00         | 19.50                     | 39.00                      | 0.00                       | 39.00                        | 1.00           | 1.00    | 0.169       | 1.31 | 0.129                    | 1.00   | 0.129 | 2.000 | • |
| 3.00         | 19.50                     | 58.50                      | 0.00                       | 58.50                        | 1.00           | 1.00    | 0.169       | 1.31 | 0.129                    | 1.00   | 0.129 | 2.000 | • |
| 4.00         | 19.50                     | 78.00                      | 0.00                       | 78.00                        | 1.00           | 1.00    | 0.169       | 1.31 | 0.129                    | 1.00   | 0.129 | 2.000 | • |

| epth<br>(m) | Unit<br>Weight<br>(kN/m³) | σ <sub>v,eq</sub><br>(kPa) | u <sub>գeq</sub><br>(kPa) | σ' <sub>vo,eq</sub><br>(kPa) | r <sub>d</sub> | α    | CSR   | MSF  | CSR <sub>eq, M=7.5</sub> | Ksigma | CSR*  | FS    |   |
|-------------|---------------------------|----------------------------|---------------------------|------------------------------|----------------|------|-------|------|--------------------------|--------|-------|-------|---|
| 5.00        | 19.50                     | 97.50                      | 0.00                      | 97.50                        | 1.00           | 1.00 | 0.169 | 1.31 | 0.129                    | 1.00   | 0.129 | 2.000 | • |
| 6.00        | 19.50                     | 117.00                     | 0.00                      | 117.00                       | 1.00           | 1.00 | 0.169 | 1.31 | 0.129                    | 1.00   | 0.129 | 2.000 | • |
| 7.00        | 19.50                     | 136.50                     | 0.00                      | 136.50                       | 1.00           | 1.00 | 0.169 | 1.31 | 0.129                    | 1.00   | 0.129 | 2.000 | • |
| 8.00        | 19.50                     | 156.00                     | 0.00                      | 156.00                       | 1.00           | 1.00 | 0.169 | 1.31 | 0.129                    | 1.00   | 0.129 | 2.000 | • |
| 9.00        | 19.50                     | 175.50                     | 0.00                      | 175.50                       | 1.00           | 1.00 | 0.169 | 1.31 | 0.129                    | 1.00   | 0.129 | 2.000 | • |
| 10.00       | 19.50                     | 195.00                     | 4.91                      | 190.09                       | 1.00           | 1.00 | 0.173 | 1.31 | 0.132                    | 1.00   | 0.132 | 2.000 | • |
| 11.00       | 19.50                     | 214.50                     | 14.71                     | 199.78                       | 1.00           | 1.00 | 0.181 | 1.31 | 0.138                    | 1.00   | 0.138 | 2.000 | • |
| 12.00       | 19.50                     | 234.00                     | 24.52                     | 209.47                       | 1.00           | 1.00 | 0.189 | 1.31 | 0.144                    | 1.00   | 0.144 | 2.000 | • |
| 13.00       | 19.50                     | 253.50                     | 34.34                     | 219.16                       | 1.00           | 1.00 | 0.195 | 1.31 | 0.149                    | 1.00   | 0.149 | 2.000 | • |
| 14.00       | 19.50                     | 273.00                     | 44.15                     | 228.85                       | 1.00           | 1.00 | 0.202 | 1.31 | 0.154                    | 1.00   | 0.154 | 2.000 | • |
| 15.00       | 19.50                     | 292.50                     | 53.95                     | 238.54                       | 1.00           | 1.00 | 0.207 | 1.31 | 0.158                    | 1.00   | 0.158 | 2.000 | • |
| 16.00       | 19.50                     | 312.00                     | 63.77                     | 248.24                       | 1.00           | 1.00 | 0.212 | 1.31 | 0.162                    | 1.00   | 0.162 | 2.000 | • |
| 17.00       | 19.50                     | 331.50                     | 73.58                     | 257.93                       | 1.00           | 1.00 | 0.217 | 1.31 | 0.165                    | 1.00   | 0.165 | 2.000 | • |
| 18.00       | 19.50                     | 351.00                     | 83.39                     | 267.62                       | 1.00           | 1.00 | 0.222 | 1.31 | 0.169                    | 1.00   | 0.169 | 2.000 | • |
| 19.00       | 19.50                     | 370.50                     | 93.19                     | 277.31                       | 1.00           | 1.00 | 0.226 | 1.31 | 0.172                    | 1.00   | 0.172 | 2.000 | • |
| 20.00       | 19.50                     | 390.00                     | 103.00                    | 287.00                       | 1.00           | 1.00 | 0.230 | 1.31 | 0.175                    | 1.00   | 0.175 | 2.000 | • |
| 21.00       | 19.50                     | 409.50                     | 112.81                    | 296.69                       | 1.00           | 1.00 | 0.233 | 1.31 | 0.178                    | 1.00   | 0.178 | 2.000 | • |
| 22.00       | 19.50                     | 429.00                     | 122.63                    | 306.38                       | 1.00           | 1.00 | 0.237 | 1.31 | 0.180                    | 1.00   | 0.180 | 2.000 | • |
| 23.00       | 19.50                     | 448.50                     | 132.44                    | 316.06                       | 1.00           | 1.00 | 0.240 | 1.31 | 0.183                    | 1.00   | 0.183 | 2.000 | • |
| 24.00       | 19.50                     | 468.00                     | 142.25                    | 325.75                       | 1.00           | 1.00 | 0.243 | 1.31 | 0.185                    | 1.00   | 0.185 | 2.000 | • |
| 25.00       | 19.50                     | 487.50                     | 152.06                    | 335.44                       | 1.00           | 1.00 | 0.246 | 1.31 | 0.187                    | 1.00   | 0.187 | 2.000 | • |
| 26.00       | 19.50                     | 507.00                     | 161.87                    | 345.13                       | 1.00           | 1.00 | 0.249 | 1.31 | 0.189                    | 1.00   | 0.189 | 2.000 | • |
| 27.00       | 19.50                     | 526.50                     | 171.68                    | 354.82                       | 1.00           | 1.00 | 0.251 | 1.31 | 0.191                    | 1.00   | 0.191 | 2.000 | • |
| 28.00       | 19.50                     | 546.00                     | 181.49                    | 364.51                       | 1.00           | 1.00 | 0.253 | 1.31 | 0.193                    | 1.00   | 0.193 | 2.000 | • |
| 29.00       | 19.50                     | 565.50                     | 191.29                    | 374.20                       | 1.00           | 1.00 | 0.256 | 1.31 | 0.195                    | 1.00   | 0.195 | 2.000 | • |
| 30.00       | 19.50                     | 585.00                     | 201.10                    | 383.89                       | 1.00           | 1.00 | 0.258 | 1.31 | 0.196                    | 1.00   | 0.196 | 2.000 | • |
| 31.00       | 19.50                     | 604.50                     | 210.91                    | 393.58                       | 1.00           | 1.00 | 0.260 | 1.31 | 0.198                    | 1.00   | 0.198 | 2.000 | • |
| 32.00       | 19.50                     | 624.00                     | 220.72                    | 403.27                       | 1.00           | 1.00 | 0.262 | 1.31 | 0.199                    | 1.00   | 0.199 | 2.000 | • |
| 33.00       | 19.50                     | 643.50                     | 230.53                    | 412.96                       | 1.00           | 1.00 | 0.264 | 1.31 | 0.201                    | 1.00   | 0.201 | 2.000 | • |
| 34.00       | 19.50                     | 663.00                     | 240.34                    | 422.65                       | 1.00           | 1.00 | 0.265 | 1.31 | 0.202                    | 1.00   | 0.202 | 2.000 | • |
| 35.00       | 19.50                     | 682.50                     | 250.16                    | 432.35                       | 1.00           | 1.00 | 0.267 | 1.31 | 0.203                    | 1.00   | 0.203 | 2.000 | • |

 $\sigma_{\!_{V,eq}} {:} \hspace{1cm} \text{Total overburden pressure at test point, during earthquake (kPa)}$ 

 $\begin{array}{ll} u_{\text{o,eq}} \colon & \text{Water pressure at test point, during earthquake (kPa)} \\ \sigma_{\text{vo,eq}} \colon & \text{Effective overburden pressure, during earthquake (kPa)} \end{array}$ 

 $r_d$ : Nonlinear shear mass factor

a: Improvement factor due to stone columns

 $\begin{array}{lll} \text{CSR:} & \text{Cydic Stress Ratio} \\ \text{MSF:} & \text{Magnitude Scaling Factor} \\ \text{CSR}_{\text{eq,M=7.5:}} & \text{CSR adjusted for M=7.5} \\ \text{K}_{\text{sigma:}} & \text{Effective overburden stress factor} \\ \text{CSR}^*: & \text{CSR fully adjusted (user FS applied)}^{***} \end{array}$ 

FS: Calculated factor of safety against soil liquefaction

\*\*\* User FS: 1.00

| :: Liquef    | action p | otential a | accordin | g to Iwasaki :   | :    |
|--------------|----------|------------|----------|------------------|------|
| Depth<br>(m) | FS       | F          | wz       | Thickness<br>(m) | IL   |
| 1.00         | 2.000    | 0.00       | 9.50     | 1.00             | 0.00 |
| 2.00         | 2.000    | 0.00       | 9.00     | 1.00             | 0.00 |

| Depth | FS    | F    | wz   | Thickness | $\boldsymbol{I}_{L}$ |
|-------|-------|------|------|-----------|----------------------|
| (m)   |       |      |      | (m)       |                      |
| 3.00  | 2.000 | 0.00 | 8.50 | 1.00      | 0.00                 |
| 4.00  | 2.000 | 0.00 | 8.00 | 1.00      | 0.00                 |
| 5.00  | 2.000 | 0.00 | 7.50 | 1.00      | 0.00                 |
| 6.00  | 2.000 | 0.00 | 7.00 | 1.00      | 0.00                 |
| 7.00  | 2.000 | 0.00 | 6.50 | 1.00      | 0.00                 |
| 8.00  | 2.000 | 0.00 | 6.00 | 1.00      | 0.00                 |
| 9.00  | 2.000 | 0.00 | 5.50 | 1.00      | 0.00                 |
| 10.00 | 2.000 | 0.00 | 5.00 | 1.00      | 0.00                 |
| 11.00 | 2.000 | 0.00 | 4.50 | 1.00      | 0.00                 |
| 12.00 | 2.000 | 0.00 | 4.00 | 1.00      | 0.00                 |
| 13.00 | 2.000 | 0.00 | 3.50 | 1.00      | 0.00                 |
| 14.00 | 2.000 | 0.00 | 3.00 | 1.00      | 0.00                 |
| 15.00 | 2.000 | 0.00 | 2.50 | 1.00      | 0.00                 |
| 16.00 | 2.000 | 0.00 | 2.00 | 1.00      | 0.00                 |
| 17.00 | 2.000 | 0.00 | 1.50 | 1.00      | 0.00                 |
| 18.00 | 2.000 | 0.00 | 1.00 | 1.00      | 0.00                 |
| 19.00 | 2.000 | 0.00 | 0.50 | 1.00      | 0.00                 |
| 20.00 | 2.000 | 0.00 | 0.00 | 1.00      | 0.00                 |
| 21.00 | 2.000 | 0.00 | 0.00 | 0.00      | 0.00                 |
| 22.00 | 2.000 | 0.00 | 0.00 | 0.00      | 0.00                 |
| 23.00 | 2.000 | 0.00 | 0.00 | 0.00      | 0.00                 |
| 24.00 | 2.000 | 0.00 | 0.00 | 0.00      | 0.00                 |
| 25.00 | 2.000 | 0.00 | 0.00 | 0.00      | 0.00                 |
| 26.00 | 2.000 | 0.00 | 0.00 | 0.00      | 0.00                 |
| 27.00 | 2.000 | 0.00 | 0.00 | 0.00      | 0.00                 |
| 28.00 | 2.000 | 0.00 | 0.00 | 0.00      | 0.00                 |
| 29.00 | 2.000 | 0.00 | 0.00 | 0.00      | 0.00                 |
| 30.00 | 2.000 | 0.00 | 0.00 | 0.00      | 0.00                 |
| 31.00 | 2.000 | 0.00 | 0.00 | 0.00      | 0.00                 |
| 32.00 | 2.000 | 0.00 | 0.00 | 0.00      | 0.00                 |
| 33.00 | 2.000 | 0.00 | 0.00 | 0.00      | 0.00                 |
| 34.00 | 2.000 | 0.00 | 0.00 | 0.00      | 0.00                 |
| 35.00 | 2.000 | 0.00 | 0.00 | 0.00      | 0.00                 |

Overall potential  $I_L$ : 0.00

 $I_{\scriptscriptstyle L}$  > 15 - Liquefaction certain

| :: Vertica   | al settlen                  | nents estin                        | nation f | or dry s | ands ::                   |      |      |      |             |                |                        |           |            |
|--------------|-----------------------------|------------------------------------|----------|----------|---------------------------|------|------|------|-------------|----------------|------------------------|-----------|------------|
| Depth<br>(m) | V <sub>s1,cs</sub><br>(m/s) | (N <sub>1</sub> ) <sub>60,cs</sub> | Tav      | p        | G <sub>max</sub><br>(MPa) | α    | b    | Y    | <b>ε</b> 15 | N <sub>c</sub> | ε <sub>Νc</sub><br>(%) | Δh<br>(m) | ΔS<br>(cm) |
| 1.00         | 410.29                      | 50                                 | 0.00     | 0.00     | 0.00                      | 0.00 | 0.00 | 0.00 | 0.00        | 0.00           | 0.00                   | 0.00      | 0.000      |
| 2.00         | 357.23                      | 50                                 | 0.00     | 0.00     | 0.00                      | 0.00 | 0.00 | 0.00 | 0.00        | 0.00           | 0.00                   | 0.00      | 0.000      |
| 3.00         | 357.30                      | 50                                 | 0.00     | 0.00     | 0.00                      | 0.00 | 0.00 | 0.00 | 0.00        | 0.00           | 0.00                   | 0.00      | 0.000      |
| 4.00         | 350.85                      | 50                                 | 0.00     | 0.00     | 0.00                      | 0.00 | 0.00 | 0.00 | 0.00        | 0.00           | 0.00                   | 0.00      | 0.000      |
| 5.00         | 359.29                      | 50                                 | 0.00     | 0.00     | 0.00                      | 0.00 | 0.00 | 0.00 | 0.00        | 0.00           | 0.00                   | 0.00      | 0.000      |

 $<sup>\</sup>begin{split} &I_L = 0.00 \text{ - No liquefaction} \\ &I_L \text{ between } 0.00 \text{ and } 5 \text{ - Liquefaction not probable} \\ &I_L \text{ between } 5 \text{ and } 15 \text{ - Liquefaction probable} \end{split}$ 

| :: Vertica   | al settlen                  | nents estim                        | nation f | or dry sa | ands ::                   |      |      |      |             |                |                        |           |            |
|--------------|-----------------------------|------------------------------------|----------|-----------|---------------------------|------|------|------|-------------|----------------|------------------------|-----------|------------|
| Depth<br>(m) | V <sub>s1,cs</sub><br>(m/s) | (N <sub>1</sub> ) <sub>60,cs</sub> | Tav      | р         | G <sub>max</sub><br>(MPa) | α    | b    | Y    | <b>ε</b> 15 | N <sub>c</sub> | ε <sub>Νc</sub><br>(%) | Δh<br>(m) | ΔS<br>(cm) |
| 6.00         | 358.73                      | 50                                 | 0.00     | 0.00      | 0.00                      | 0.00 | 0.00 | 0.00 | 0.00        | 0.00           | 0.00                   | 0.00      | 0.000      |
| 7.00         | 338.78                      | 50                                 | 0.00     | 0.00      | 0.00                      | 0.00 | 0.00 | 0.00 | 0.00        | 0.00           | 0.00                   | 0.00      | 0.000      |
| 8.00         | 341.48                      | 50                                 | 0.00     | 0.00      | 0.00                      | 0.00 | 0.00 | 0.00 | 0.00        | 0.00           | 0.00                   | 0.00      | 0.000      |
| 9.00         | 340.73                      | 50                                 | 0.00     | 0.00      | 0.00                      | 0.00 | 0.00 | 0.00 | 0.00        | 0.00           | 0.00                   | 0.00      | 0.000      |

Cumulative settlemetns: 0.000

#### **Abbreviations**

 $\begin{array}{ll} V_{\text{s1,cs}} \text{.} & \text{Normalized shear wave velocity dean sand equivalent} \\ (N_1)_{60,cs} \text{.} & \text{Estimated normalized corrected dean sand SPT} \end{array}$ 

T<sub>av</sub>: Average cyclic shear stress

p: Average stress

G<sub>max</sub>: Maximum shear modulus (MPa) a, b: Shear strain formula variables γ: Average shear strain

 $\epsilon_{15}$ : Volumetric strain after 15 cycles

N<sub>c</sub>: Number of cycles

 $\epsilon_{Nc}$ : Volumetric strain for number of cycles  $N_c$  (%)

 $\Delta h$ : Thickness of soil layer (cm)  $\Delta S$ : Settlement of soil layer (cm)

| Depth | $V_{s1,cs}$ | O               | ٠                     | Δh   | _         |
|-------|-------------|-----------------|-----------------------|------|-----------|
| (m)   | (m/s)       | <b>q</b> t1N,cs | e <sub>v</sub><br>(%) | (m)  | s<br>(cm) |
| 10.00 | 321.98      | 1199.60         | 0.00                  | 0.00 | 0.000     |
| 11.00 | 327.81      | 1296.53         | 0.00                  | 0.00 | 0.000     |
| 12.00 | 434.09      | 4372.23         | 0.00                  | 0.00 | 0.000     |
| 13.00 | 436.18      | 4464.25         | 0.00                  | 0.00 | 0.000     |
| 14.00 | 426.41      | 4047.10         | 0.00                  | 0.00 | 0.000     |
| 15.00 | 457.98      | 5513.49         | 0.00                  | 0.00 | 0.000     |
| 16.00 | 449.45      | 5082.55         | 0.00                  | 0.00 | 0.000     |
| 17.00 | 444.92      | 4864.55         | 0.00                  | 0.00 | 0.000     |
| 18.00 | 415.37      | 3612.58         | 0.00                  | 0.00 | 0.000     |
| 19.00 | 426.33      | 4044.08         | 0.00                  | 0.00 | 0.000     |
| 20.00 | 430.58      | 4221.44         | 0.00                  | 0.00 | 0.000     |
| 21.00 | 572.40      | 14478.48        | 0.00                  | 0.00 | 0.000     |
| 22.00 | 561.57      | 13328.83        | 0.00                  | 0.00 | 0.000     |
| 23.00 | 567.19      | 13916.73        | 0.00                  | 0.00 | 0.000     |
| 24.00 | 578.33      | 15139.01        | 0.00                  | 0.00 | 0.000     |
| 25.00 | 574.72      | 14734.46        | 0.00                  | 0.00 | 0.000     |
| 26.00 | 573.97      | 14651.16        | 0.00                  | 0.00 | 0.000     |
| 27.00 | 560.28      | 13197.06        | 0.00                  | 0.00 | 0.000     |
| 28.00 | 561.17      | 13288.59        | 0.00                  | 0.00 | 0.000     |
| 29.00 | 546.94      | 11889.38        | 0.00                  | 0.00 | 0.000     |
| 30.00 | 548.10      | 11998.93        | 0.00                  | 0.00 | 0.000     |
| 31.00 | 546.85      | 11881.60        | 0.00                  | 0.00 | 0.000     |
| 32.00 | 519.13      | 9485.35         | 0.00                  | 0.00 | 0.000     |
| 33.00 | 524.20      | 9893.13         | 0.00                  | 0.00 | 0.000     |
| 34.00 | 510.54      | 8824.71         | 0.00                  | 0.00 | 0.000     |
| 35.00 | 511.06      | 8863.92         | 0.00                  | 0.00 | 0.000     |

#### 

**Cumulative settlements: 0.000** 

### **Abbreviations**

 $V_{\text{s1,cs}} : \qquad \text{Normalized shear wave velocity clean sand equivalent} \\ q_{\text{t1N,cs}} : \qquad \text{Estimated normalized corrected clean sand cone resitance}$ 

 $\begin{array}{ll} e_v \colon & \text{Post liquefaction volumetric strain (\%)} \\ \Delta h \colon & \text{Thickness of soil layer to be considered (m)} \end{array}$ 

s: Estimated settlement (cm)

| :: Latera    | al displace                 | ements est                         | timation              | for satu    | ırated s              | ands :: |           |  |  |
|--------------|-----------------------------|------------------------------------|-----------------------|-------------|-----------------------|---------|-----------|--|--|
| Depth<br>(m) | V <sub>s1,cs</sub><br>(m/s) | (N <sub>1</sub> ) <sub>60,cs</sub> | D <sub>r</sub><br>(%) | Ymax<br>(%) | d <sub>z</sub><br>(m) | LDI     | LD<br>(m) |  |  |
| 1.00         | 410.29                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |  |  |
| 2.00         | 357.23                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |  |  |
| 3.00         | 357.30                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |  |  |
| 4.00         | 350.85                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |  |  |
| 5.00         | 359.29                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |  |  |
| 6.00         | 358.73                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |  |  |
| 7.00         | 338.78                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |  |  |
| 8.00         | 341.48                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |  |  |
| 9.00         | 340.73                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |  |  |
| 10.00        | 321.98                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |  |  |
| 11.00        | 327.81                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |  |  |
| 12.00        | 434.09                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |  |  |
| 13.00        | 436.18                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |  |  |
| 14.00        | 426.41                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |  |  |
| 15.00        | 457.98                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |  |  |
| 16.00        | 449.45                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |  |  |
| 17.00        | 444.92                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |  |  |
| 18.00        | 415.37                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |  |  |
| 19.00        | 426.33                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |  |  |
| 20.00        | 430.58                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |  |  |
| 21.00        | 572.40                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |  |  |
| 22.00        | 561.57                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |  |  |
| 23.00        | 567.19                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |  |  |
| 24.00        | 578.33                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |  |  |
| 25.00        | 574.72                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |  |  |
| 26.00        | 573.97                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |  |  |
| 27.00        | 560.28                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |  |  |
| 28.00        | 561.17                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |  |  |
| 29.00        | 546.94                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |  |  |
| 30.00        | 548.10                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |  |  |
| 31.00        | 546.85                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |  |  |
| 32.00        | 519.13                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |  |  |
| 33.00        | 524.20                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |  |  |
| 34.00        | 510.54                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |  |  |
| 35.00        | 511.06                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |  |  |

:: Lateral displacements estimation for saturated sands ::

Cumulative lateral displacements: 0.00

# **Abbreviations**

 $\begin{array}{ll} V_{s1,cs} \colon & \text{Normalized shear wave velocity clean sand equivalent} \\ (N_1)_{60,cs} \colon & \text{Estimated normalized corrected clean sand SPT} \end{array}$ 

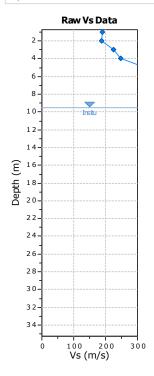
D<sub>r</sub>: Relative density (%)

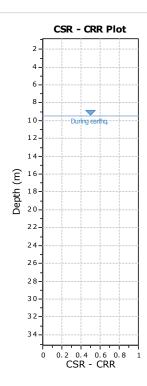
 $Y_{\text{max}}$ : Maximum amplitude of cyclic shear strain (%)  $d_z$ : Soil layer thickness (m)

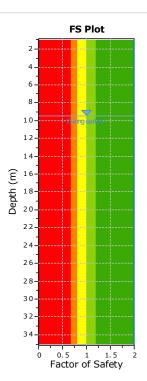
d<sub>z</sub>: Soil layer thickness (m) LDI: Lateral displacement index (m) LD: Actual estimated displacement (m)

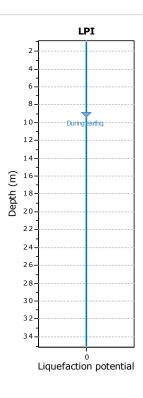


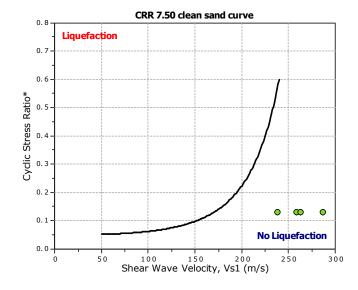
# **V<sub>s</sub> BASED LIQUEFACTION ANALYSIS REPORT**

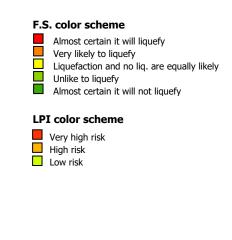

Project title : V<sub>s</sub> Name: S5DH\_2018

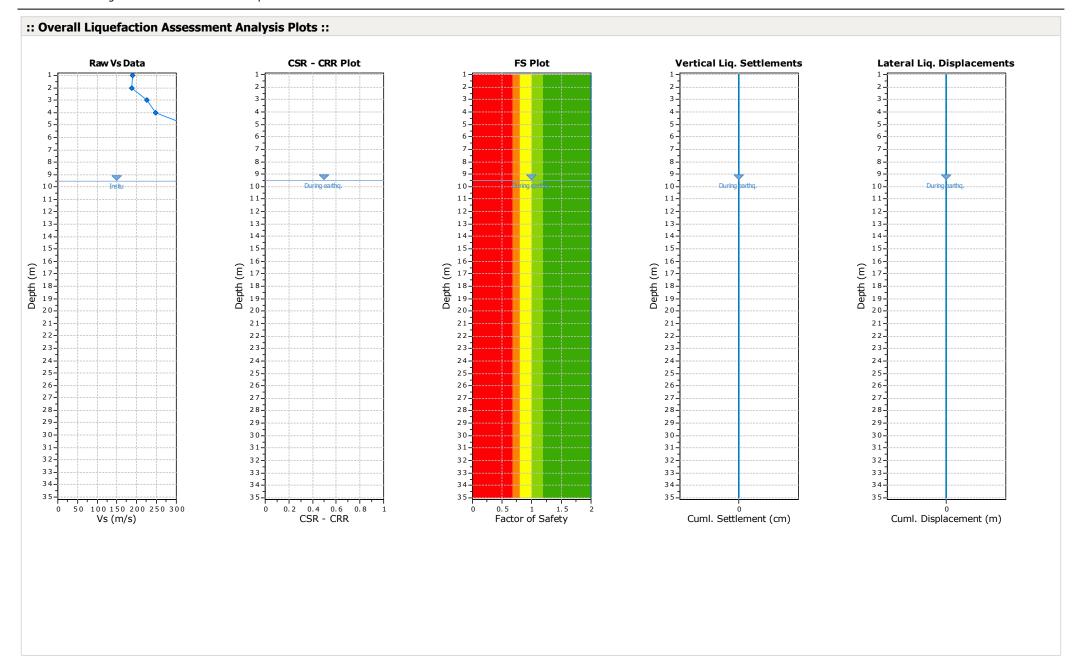

Location:


#### :: Input parameters and analysis properties ::


Anal ysis method: Kayen et al. 2013 G.W.T. (in-situ): 9.50 m G.W.T. (earthq.): 9.50 m


Earthquake magnitude M<sub>w</sub>: 6.14 Peak ground acceleration: 0.26 g Eq. external load: 0.00 kPa














| :: Field inp         | out data ::                            |                         |                           |                           |                |
|----------------------|----------------------------------------|-------------------------|---------------------------|---------------------------|----------------|
| Test<br>Depth<br>(m) | V <sub>s</sub> Field<br>Value<br>(m/s) | Fines<br>Content<br>(%) | Unit<br>Weight<br>(kN/m³) | Infl.<br>Thickness<br>(m) | Can<br>Liquefy |
| 1.00                 | 190.00                                 | 20.00                   | 19.50                     | 0.00                      | Yes            |
| 2.00                 | 188.00                                 | 20.00                   | 19.50                     | 0.00                      | Yes            |
| 3.00                 | 226.00                                 | 20.00                   | 19.50                     | 0.00                      | Yes            |
| 4.00                 | 247.00                                 | 20.00                   | 19.50                     | 0.00                      | Yes            |
| 5.00                 | 327.00                                 | 20.00                   | 19.50                     | 0.00                      | Yes            |
| 6.00                 | 360.00                                 | 20.00                   | 19.50                     | 0.00                      | Yes            |
| 7.00                 | 400.00                                 | 20.00                   | 19.50                     | 0.00                      | Yes            |
| 8.00                 | 385.00                                 | 20.00                   | 19.50                     | 0.00                      | Yes            |
| 9.00                 | 389.00                                 | 20.00                   | 19.50                     | 0.00                      | Yes            |
| 10.00                | 427.00                                 | 20.00                   | 19.50                     | 0.00                      | Yes            |
| 11.00                | 439.00                                 | 20.00                   | 19.50                     | 0.00                      | Yes            |
| 12.00                | 432.00                                 | 20.00                   | 19.50                     | 0.00                      | Yes            |
| 13.00                | 457.00                                 | 20.00                   | 19.50                     | 0.00                      | Yes            |
|                      | 421.00                                 |                         |                           |                           |                |
| 14.00                |                                        | 20.00                   | 19.50                     | 0.00                      | Yes            |
| 15.00                | 439.00                                 | 20.00                   | 19.50                     | 0.00                      | Yes            |
| 16.00                | 445.00                                 | 20.00                   | 19.50                     | 0.00                      | Yes            |
| 17.00                | 436.00                                 | 20.00                   | 19.50                     | 0.00                      | Yes            |
| 18.00                | 529.00                                 | 20.00                   | 19.50                     | 0.00                      | Yes            |
| 19.00                | 511.00                                 | 20.00                   | 19.50                     | 0.00                      | Yes            |
| 20.00                | 510.00                                 | 20.00                   | 19.50                     | 0.00                      | Yes            |
| 21.00                | 535.00                                 | 20.00                   | 19.50                     | 0.00                      | Yes            |
| 22.00                | 516.00                                 | 20.00                   | 19.50                     | 0.00                      | Yes            |
| 23.00                | 513.00                                 | 20.00                   | 19.50                     | 0.00                      | Yes            |
| 24.00                | 514.00                                 | 20.00                   | 19.50                     | 0.00                      | Yes            |
| 25.00                | 510.00                                 | 20.00                   | 19.50                     | 0.00                      | Yes            |
| 26.00                | 515.00                                 | 20.00                   | 19.50                     | 0.00                      | Yes            |
| 27.00                | 504.00                                 | 20.00                   | 19.50                     | 0.00                      | Yes            |
| 28.00                | 545.00                                 | 20.00                   | 19.50                     | 0.00                      | Yes            |
| 29.00                | 533.00                                 | 20.00                   | 19.50                     | 0.00                      | Yes            |
| 30.00                | 545.00                                 | 20.00                   | 19.50                     | 0.00                      | Yes            |
| 31.00                | 525.00                                 | 20.00                   | 19.50                     | 0.00                      | Yes            |
| 32.00                | 531.00                                 | 20.00                   | 19.50                     | 0.00                      | Yes            |
| 33.00                | 525.00                                 | 20.00                   | 19.50                     | 0.00                      | Yes            |
| 34.00                | 523.00                                 | 20.00                   | 19.50                     | 0.00                      | Yes            |
| 35.00                | 534.00                                 | 20.00                   | 19.50                     | 0.00                      | Yes            |
| 33.00                | JJ 1.00                                | 20.00                   | 15.50                     | 0.00                      | 163            |

Depth: Depth at which test was performed (m) Vs Field Value: Measured shear waves velocity (m/s) Fines Content: Fines content at test depth (%) Unit weight at test depth (kN/m³) Unit Weight:

Infl. Thickness:

Thickness of the soil layer to be considered in settlements analysis (m)
User defined switch for excluding/including test depth from the analysis procedure Can Liquefy:

| :: Cyclic    | Resistan                   | ce Ratio (CR              | R) calcul               | ation dat   | :a ::                     |                 |                          |                    |
|--------------|----------------------------|---------------------------|-------------------------|-------------|---------------------------|-----------------|--------------------------|--------------------|
| Depth<br>(m) | V₅ Field<br>Value<br>(m/s) | Unit<br>Weight<br>(kN/m³) | σ <sub>ν</sub><br>(kPa) | u。<br>(kPa) | σ' <sub>vo</sub><br>(kPa) | Norm.<br>Factor | V <sub>s1</sub><br>(m/s) | CRR <sub>7.5</sub> |
| 1.00         | 190.00                     | 19.50                     | 19.50                   | 0.00        | 19.50                     | 1.51            | 286.86                   | 5 4.000            |
| 2.00         | 188.00                     | 19.50                     | 39.00                   | 0.00        | 39.00                     | 1.27            | 238.68                   | 3 4.000            |

| :: Cyclic    | Resistan                               | ce Ratio (CF              | RR) calcu               | lation da   | ta ::                     |                 |                          |                    |  |
|--------------|----------------------------------------|---------------------------|-------------------------|-------------|---------------------------|-----------------|--------------------------|--------------------|--|
| Depth<br>(m) | V <sub>s</sub> Field<br>Value<br>(m/s) | Unit<br>Weight<br>(kN/m³) | σ <sub>ν</sub><br>(kPa) | u。<br>(kPa) | σ' <sub>vo</sub><br>(kPa) | Norm.<br>Factor | V <sub>s1</sub><br>(m/s) | CRR <sub>7.5</sub> |  |
| 3.00         | 226.00                                 | 19.50                     | 58.50                   | 0.00        | 58.50                     | 1.15            | 259.27                   | 4.000              |  |
| 4.00         | 247.00                                 | 19.50                     | 78.00                   | 0.00        | 78.00                     | 1.07            | 263.70                   | 4.000              |  |
| 5.00         | 327.00                                 | 19.50                     | 97.50                   | 0.00        | 97.50                     | 1.01            | 330.16                   | 4.000              |  |
| 6.00         | 360.00                                 | 19.50                     | 117.00                  | 0.00        | 117.00                    | 0.96            | 347.28                   | 4.000              |  |
| 7.00         | 400.00                                 | 19.50                     | 136.50                  | 0.00        | 136.50                    | 0.93            | 371.28                   | 4.000              |  |
| 8.00         | 385.00                                 | 19.50                     | 156.00                  | 0.00        | 156.00                    | 0.90            | 345.63                   | 4.000              |  |
| 9.00         | 389.00                                 | 19.50                     | 175.50                  | 0.00        | 175.50                    | 0.87            | 339.09                   | 4.000              |  |
| 10.00        | 427.00                                 | 19.50                     | 195.00                  | 4.91        | 190.09                    | 0.85            | 364.85                   | 4.000              |  |
| 11.00        | 439.00                                 | 19.50                     | 214.50                  | 14.71       | 199.78                    | 0.84            | 370.47                   | 4.000              |  |
| 12.00        | 432.00                                 | 19.50                     | 234.00                  | 24.52       | 209.47                    | 0.83            | 360.27                   | 4.000              |  |
| 13.00        | 457.00                                 | 19.50                     | 253.50                  | 34.34       | 219.16                    | 0.82            | 376.84                   | 4.000              |  |
| 14.00        | 421.00                                 | 19.50                     | 273.00                  | 44.15       | 228.85                    | 0.82            | 343.42                   | 4.000              |  |
| 15.00        | 439.00                                 | 19.50                     | 292.50                  | 53.95       | 238.54                    | 0.81            | 354.41                   | 4.000              |  |
| 16.00        | 445.00                                 | 19.50                     | 312.00                  | 63.77       | 248.24                    | 0.80            | 355.69                   | 4.000              |  |
| 17.00        | 436.00                                 | 19.50                     | 331.50                  | 73.58       | 257.93                    | 0.79            | 345.18                   | 4.000              |  |
| 18.00        | 529.00                                 | 19.50                     | 351.00                  | 83.39       | 267.62                    | 0.78            | 414.96                   | 4.000              |  |
| 19.00        | 511.00                                 | 19.50                     | 370.50                  | 93.19       | 277.31                    | 0.78            | 397.29                   | 4.000              |  |
| 20.00        | 510.00                                 | 19.50                     | 390.00                  | 103.00      | 287.00                    | 0.77            | 393.13                   | 4.000              |  |
| 21.00        | 535.00                                 | 19.50                     | 409.50                  | 112.81      | 296.69                    | 0.76            | 408.99                   | 4.000              |  |
| 22.00        | 516.00                                 | 19.50                     | 429.00                  | 122.63      | 306.38                    | 0.76            | 391.31                   | 4.000              |  |
| 23.00        | 513.00                                 | 19.50                     | 448.50                  | 132.44      | 316.06                    | 0.75            | 386.01                   | 4.000              |  |
| 24.00        | 514.00                                 | 19.50                     | 468.00                  | 142.25      | 325.75                    | 0.75            | 383.86                   | 4.000              |  |
| 25.00        | 510.00                                 | 19.50                     | 487.50                  | 152.06      | 335.44                    | 0.74            | 378.09                   | 4.000              |  |
| 26.00        | 515.00                                 | 19.50                     | 507.00                  | 161.87      | 345.13                    | 0.74            | 379.09                   | 4.000              |  |
| 27.00        | 504.00                                 | 19.50                     | 526.50                  | 171.68      | 354.82                    | 0.73            | 368.43                   | 4.000              |  |
| 28.00        | 545.00                                 | 19.50                     | 546.00                  | 181.49      | 364.51                    | 0.73            | 395.73                   | 4.000              |  |
| 29.00        | 533.00                                 | 19.50                     | 565.50                  | 191.29      | 374.20                    | 0.72            | 384.48                   | 4.000              |  |
| 30.00        | 545.00                                 | 19.50                     | 585.00                  | 201.10      | 383.89                    | 0.72            | 390.64                   | 4.000              |  |
| 31.00        | 525.00                                 | 19.50                     | 604.50                  | 210.91      | 393.58                    | 0.71            | 373.96                   | 4.000              |  |
| 32.00        | 531.00                                 | 19.50                     | 624.00                  | 220.72      | 403.27                    | 0.71            | 375.94                   | 4.000              |  |
| 33.00        | 525.00                                 | 19.50                     | 643.50                  | 230.53      | 412.96                    | 0.70            | 369.50                   | 4.000              |  |
| 34.00        | 523.00                                 | 19.50                     | 663.00                  | 240.34      | 422.65                    | 0.70            | 365.96                   | 4.000              |  |
| 35.00        | 534.00                                 | 19.50                     | 682.50                  | 250.16      | 432.35                    | 0.70            | 371.55                   | 4.000              |  |

 $\begin{array}{lll} \sigma_{v} \colon & & \text{Total stress during SPT test (kPa)} \\ u_{o} \colon & & \text{Water pore pressure during SPT test (kPa)} \\ \sigma'_{vo} \colon & & \text{Effective overburden pressure during SPT test (kPa)} \end{array}$ 

Norm. Factor: overburden-stress correction factor

V<sub>S1</sub>: Overburden-stress corrected shear wave velocity

CRR<sub>7.5</sub>: Cyclic resistance ratio for M=7.5

| :: Cyclic    | Stress Ratio              | calculati                 | on (CSR                    | fully adj                    | usted a        | nd norm | nalized) :: |      |                          |        |       |       |   |
|--------------|---------------------------|---------------------------|----------------------------|------------------------------|----------------|---------|-------------|------|--------------------------|--------|-------|-------|---|
| Depth<br>(m) | Unit<br>Weight<br>(kN/m³) | σ <sub>γeq</sub><br>(kPa) | u <sub>o,eq</sub><br>(kPa) | σ' <sub>vo,eq</sub><br>(kPa) | r <sub>d</sub> | α       | CSR         | MSF  | CSR <sub>eq, M=7.5</sub> | Ksigma | CSR*  | FS    |   |
| 1.00         | 19.50                     | 19.50                     | 0.00                       | 19.50                        | 1.00           | 1.00    | 0.169       | 1.31 | 0.129                    | 1.00   | 0.129 | 2.000 | • |
| 2.00         | 19.50                     | 39.00                     | 0.00                       | 39.00                        | 1.00           | 1.00    | 0.169       | 1.31 | 0.129                    | 1.00   | 0.129 | 2.000 | • |
| 3.00         | 19.50                     | 58.50                     | 0.00                       | 58.50                        | 1.00           | 1.00    | 0.169       | 1.31 | 0.129                    | 1.00   | 0.129 | 2.000 | • |
| 4.00         | 19.50                     | 78.00                     | 0.00                       | 78.00                        | 1.00           | 1.00    | 0.169       | 1.31 | 0.129                    | 1.00   | 0.129 | 2.000 | • |

| epth<br>(m) | Unit<br>Weight<br>(kN/m³) | σ <sub>v,eq</sub><br>(kPa) | u <sub>դeq</sub><br>(kPa) | σ' <sub>vo,eq</sub><br>(kPa) | r <sub>d</sub> | α    | CSR   | MSF  | <b>CSR</b> <sub>eq, M=7.5</sub> | Ksigma | CSR*  | FS    |   |
|-------------|---------------------------|----------------------------|---------------------------|------------------------------|----------------|------|-------|------|---------------------------------|--------|-------|-------|---|
| 5.00        | 19.50                     | 97.50                      | 0.00                      | 97.50                        | 1.00           | 1.00 | 0.169 | 1.31 | 0.129                           | 1.00   | 0.129 | 2.000 | • |
| 6.00        | 19.50                     | 117.00                     | 0.00                      | 117.00                       | 1.00           | 1.00 | 0.169 | 1.31 | 0.129                           | 1.00   | 0.129 | 2.000 | • |
| 7.00        | 19.50                     | 136.50                     | 0.00                      | 136.50                       | 1.00           | 1.00 | 0.169 | 1.31 | 0.129                           | 1.00   | 0.129 | 2.000 | • |
| 8.00        | 19.50                     | 156.00                     | 0.00                      | 156.00                       | 1.00           | 1.00 | 0.169 | 1.31 | 0.129                           | 1.00   | 0.129 | 2.000 | • |
| 9.00        | 19.50                     | 175.50                     | 0.00                      | 175.50                       | 1.00           | 1.00 | 0.169 | 1.31 | 0.129                           | 1.00   | 0.129 | 2.000 | • |
| 10.00       | 19.50                     | 195.00                     | 4.91                      | 190.09                       | 1.00           | 1.00 | 0.173 | 1.31 | 0.132                           | 1.00   | 0.132 | 2.000 | • |
| 11.00       | 19.50                     | 214.50                     | 14.71                     | 199.78                       | 1.00           | 1.00 | 0.181 | 1.31 | 0.138                           | 1.00   | 0.138 | 2.000 | • |
| 12.00       | 19.50                     | 234.00                     | 24.52                     | 209.47                       | 1.00           | 1.00 | 0.189 | 1.31 | 0.144                           | 1.00   | 0.144 | 2.000 | • |
| 13.00       | 19.50                     | 253.50                     | 34.34                     | 219.16                       | 1.00           | 1.00 | 0.195 | 1.31 | 0.149                           | 1.00   | 0.149 | 2.000 | • |
| 14.00       | 19.50                     | 273.00                     | 44.15                     | 228.85                       | 1.00           | 1.00 | 0.201 | 1.31 | 0.153                           | 1.00   | 0.153 | 2.000 | • |
| 15.00       | 19.50                     | 292.50                     | 53.95                     | 238.54                       | 1.00           | 1.00 | 0.207 | 1.31 | 0.158                           | 1.00   | 0.158 | 2.000 | • |
| 16.00       | 19.50                     | 312.00                     | 63.77                     | 248.24                       | 1.00           | 1.00 | 0.212 | 1.31 | 0.162                           | 1.00   | 0.162 | 2.000 | • |
| 17.00       | 19.50                     | 331.50                     | 73.58                     | 257.93                       | 1.00           | 1.00 | 0.217 | 1.31 | 0.165                           | 1.00   | 0.165 | 2.000 | • |
| 18.00       | 19.50                     | 351.00                     | 83.39                     | 267.62                       | 1.00           | 1.00 | 0.221 | 1.31 | 0.168                           | 1.00   | 0.168 | 2.000 | • |
| 19.00       | 19.50                     | 370.50                     | 93.19                     | 277.31                       | 1.00           | 1.00 | 0.225 | 1.31 | 0.172                           | 1.00   | 0.172 | 2.000 | • |
| 20.00       | 19.50                     | 390.00                     | 103.00                    | 287.00                       | 1.00           | 1.00 | 0.229 | 1.31 | 0.174                           | 1.00   | 0.174 | 2.000 | • |
| 21.00       | 19.50                     | 409.50                     | 112.81                    | 296.69                       | 1.00           | 1.00 | 0.233 | 1.31 | 0.177                           | 1.00   | 0.177 | 2.000 | • |
| 22.00       | 19.50                     | 429.00                     | 122.63                    | 306.38                       | 1.00           | 1.00 | 0.236 | 1.31 | 0.180                           | 1.00   | 0.180 | 2.000 | • |
| 23.00       | 19.50                     | 448.50                     | 132.44                    | 316.06                       | 1.00           | 1.00 | 0.239 | 1.31 | 0.182                           | 1.00   | 0.182 | 2.000 | • |
| 24.00       | 19.50                     | 468.00                     | 142.25                    | 325.75                       | 1.00           | 1.00 | 0.242 | 1.31 | 0.184                           | 1.00   | 0.184 | 2.000 | • |
| 25.00       | 19.50                     | 487.50                     | 152.06                    | 335.44                       | 0.99           | 1.00 | 0.244 | 1.31 | 0.186                           | 1.00   | 0.186 | 2.000 | • |
| 26.00       | 19.50                     | 507.00                     | 161.87                    | 345.13                       | 0.99           | 1.00 | 0.247 | 1.31 | 0.188                           | 1.00   | 0.188 | 2.000 | • |
| 27.00       | 19.50                     | 526.50                     | 171.68                    | 354.82                       | 0.99           | 1.00 | 0.249 | 1.31 | 0.190                           | 1.00   | 0.190 | 2.000 | • |
| 28.00       | 19.50                     | 546.00                     | 181.49                    | 364.51                       | 0.99           | 1.00 | 0.252 | 1.31 | 0.192                           | 1.00   | 0.192 | 2.000 | • |
| 29.00       | 19.50                     | 565.50                     | 191.29                    | 374.20                       | 0.99           | 1.00 | 0.254 | 1.31 | 0.193                           | 1.00   | 0.193 | 2.000 | • |
| 30.00       | 19.50                     | 585.00                     | 201.10                    | 383.89                       | 0.99           | 1.00 | 0.256 | 1.31 | 0.195                           | 1.00   | 0.195 | 2.000 | • |
| 31.00       | 19.50                     | 604.50                     | 210.91                    | 393.58                       | 0.99           | 1.00 | 0.258 | 1.31 | 0.196                           | 1.00   | 0.196 | 2.000 | • |
| 32.00       | 19.50                     | 624.00                     | 220.72                    | 403.27                       | 0.99           | 1.00 | 0.260 | 1.31 | 0.198                           | 1.00   | 0.198 | 2.000 | • |
| 33.00       | 19.50                     | 643.50                     | 230.53                    | 412.96                       | 0.99           | 1.00 | 0.262 | 1.31 | 0.199                           | 1.00   | 0.199 | 2.000 | • |
| 34.00       | 19.50                     | 663.00                     | 240.34                    |                              | 0.99           | 1.00 | 0.263 | 1.31 | 0.201                           | 1.00   | 0.201 | 2.000 | • |
| 35.00       | 19.50                     | 682.50                     | 250.16                    | 432.35                       | 0.99           | 1.00 | 0.265 | 1.31 | 0.202                           | 1.00   | 0.202 | 2.000 | • |

 $\sigma_{\!_{V,eq}} {:} \hspace{1cm} \text{Total overburden pressure at test point, during earthquake (kPa)}$ 

 $\begin{array}{ll} u_{\text{o,eq}} \colon & \text{Water pressure at test point, during earthquake (kPa)} \\ \sigma_{\text{vo,eq}} \colon & \text{Effective overburden pressure, during earthquake (kPa)} \end{array}$ 

 $r_d$ : Nonlinear shear mass factor

a: Improvement factor due to stone columns

 $\begin{array}{lll} \text{CSR:} & \text{Cydic Stress Ratio} \\ \text{MSF:} & \text{Magnitude Scaling Factor} \\ \text{CSR}_{\text{eq,M=7.5}} & \text{CSR adjusted for M=7.5} \\ \text{K}_{\text{sigma}} & \text{Effective overburden stress factor} \\ \text{CSR*:} & \text{CSR fully adjusted (user FS applied)}^{***} \end{array}$ 

FS: Calculated factor of safety against soil liquefaction

\*\*\* User FS: 1.00

| :: Liquef    | action p | otential a | accordin | g to Iwasaki :   | :    |
|--------------|----------|------------|----------|------------------|------|
| Depth<br>(m) | FS       | F          | wz       | Thickness<br>(m) | IL   |
| 1.00         | 2.000    | 0.00       | 9.50     | 1.00             | 0.00 |
| 2.00         | 2.000    | 0.00       | 9.00     | 1.00             | 0.00 |

| Depth | FS    | F    | wz   | Thickness | $\mathbf{I}_{L}$ |
|-------|-------|------|------|-----------|------------------|
| (m)   |       |      |      | (m)       |                  |
| 3.00  | 2.000 | 0.00 | 8.50 | 1.00      | 0.00             |
| 4.00  | 2.000 | 0.00 | 8.00 | 1.00      | 0.00             |
| 5.00  | 2.000 | 0.00 | 7.50 | 1.00      | 0.00             |
| 6.00  | 2.000 | 0.00 | 7.00 | 1.00      | 0.00             |
| 7.00  | 2.000 | 0.00 | 6.50 | 1.00      | 0.00             |
| 8.00  | 2.000 | 0.00 | 6.00 | 1.00      | 0.00             |
| 9.00  | 2.000 | 0.00 | 5.50 | 1.00      | 0.00             |
| 10.00 | 2.000 | 0.00 | 5.00 | 1.00      | 0.00             |
| 11.00 | 2.000 | 0.00 | 4.50 | 1.00      | 0.00             |
| 12.00 | 2.000 | 0.00 | 4.00 | 1.00      | 0.00             |
| 13.00 | 2.000 | 0.00 | 3.50 | 1.00      | 0.00             |
| 14.00 | 2.000 | 0.00 | 3.00 | 1.00      | 0.00             |
| 15.00 | 2.000 | 0.00 | 2.50 | 1.00      | 0.00             |
| 16.00 | 2.000 | 0.00 | 2.00 | 1.00      | 0.00             |
| 17.00 | 2.000 | 0.00 | 1.50 | 1.00      | 0.00             |
| 18.00 | 2.000 | 0.00 | 1.00 | 1.00      | 0.00             |
| 19.00 | 2.000 | 0.00 | 0.50 | 1.00      | 0.00             |
| 20.00 | 2.000 | 0.00 | 0.00 | 1.00      | 0.00             |
| 21.00 | 2.000 | 0.00 | 0.00 | 0.00      | 0.00             |
| 22.00 | 2.000 | 0.00 | 0.00 | 0.00      | 0.00             |
| 23.00 | 2.000 | 0.00 | 0.00 | 0.00      | 0.00             |
| 24.00 | 2.000 | 0.00 | 0.00 | 0.00      | 0.00             |
| 25.00 | 2.000 | 0.00 | 0.00 | 0.00      | 0.00             |
| 26.00 | 2.000 | 0.00 | 0.00 | 0.00      | 0.00             |
| 27.00 | 2.000 | 0.00 | 0.00 | 0.00      | 0.00             |
| 28.00 | 2.000 | 0.00 | 0.00 | 0.00      | 0.00             |
| 29.00 | 2.000 | 0.00 | 0.00 | 0.00      | 0.00             |
| 30.00 | 2.000 | 0.00 | 0.00 | 0.00      | 0.00             |
| 31.00 | 2.000 | 0.00 | 0.00 | 0.00      | 0.00             |
| 32.00 | 2.000 | 0.00 | 0.00 | 0.00      | 0.00             |
| 33.00 | 2.000 | 0.00 | 0.00 | 0.00      | 0.00             |
| 34.00 | 2.000 | 0.00 | 0.00 | 0.00      | 0.00             |
| 35.00 | 2.000 | 0.00 | 0.00 | 0.00      | 0.00             |

Overall potential  $I_L$ : 0.00

 $I_{\scriptscriptstyle L}$  > 15 - Liquefaction certain

| :: Vertic    | al settlen                  | nents estin                        | nation f | or dry s | ands ::                   |      |      |      |             |                |                        |           |            |
|--------------|-----------------------------|------------------------------------|----------|----------|---------------------------|------|------|------|-------------|----------------|------------------------|-----------|------------|
| Depth<br>(m) | V <sub>s1,cs</sub><br>(m/s) | (N <sub>1</sub> ) <sub>60,cs</sub> | Tav      | p        | G <sub>max</sub><br>(MPa) | α    | b    | Y    | <b>ε</b> 15 | N <sub>c</sub> | ε <sub>Νc</sub><br>(%) | Δh<br>(m) | ΔS<br>(cm) |
| 1.00         | 325.60                      | 50                                 | 0.00     | 0.00     | 0.00                      | 0.00 | 0.00 | 0.00 | 0.00        | 0.00           | 0.00                   | 0.00      | 0.000      |
| 2.00         | 255.27                      | 50                                 | 0.00     | 0.00     | 0.00                      | 0.00 | 0.00 | 0.00 | 0.00        | 0.00           | 0.00                   | 0.00      | 0.000      |
| 3.00         | 283.70                      | 50                                 | 0.00     | 0.00     | 0.00                      | 0.00 | 0.00 | 0.00 | 0.00        | 0.00           | 0.00                   | 0.00      | 0.000      |
| 4.00         | 290.12                      | 50                                 | 0.00     | 0.00     | 0.00                      | 0.00 | 0.00 | 0.00 | 0.00        | 0.00           | 0.00                   | 0.00      | 0.000      |
| 5.00         | 401.65                      | 50                                 | 0.00     | 0.00     | 0.00                      | 0.00 | 0.00 | 0.00 | 0.00        | 0.00           | 0.00                   | 0.00      | 0.000      |

 $<sup>\</sup>begin{split} &I_L = 0.00 \text{ - No liquefaction} \\ &I_L \text{ between } 0.00 \text{ and } 5 \text{ - Liquefaction not probable} \\ &I_L \text{ between } 5 \text{ and } 15 \text{ - Liquefaction probable} \end{split}$ 

| :: Vertica   | al settlen                  | nents estim                        | nation f | or dry sa | ands ::                   |      |      |      |                 |                |                        |           |            |
|--------------|-----------------------------|------------------------------------|----------|-----------|---------------------------|------|------|------|-----------------|----------------|------------------------|-----------|------------|
| Depth<br>(m) | V <sub>s1,cs</sub><br>(m/s) | (N <sub>1</sub> ) <sub>60,cs</sub> | Tav      | р         | G <sub>max</sub><br>(MPa) | α    | b    | Y    | ε <sub>15</sub> | N <sub>c</sub> | ε <sub>Νc</sub><br>(%) | Δh<br>(m) | ΔS<br>(cm) |
| 6.00         | 435.72                      | 50                                 | 0.00     | 0.00      | 0.00                      | 0.00 | 0.00 | 0.00 | 0.00            | 0.00           | 0.00                   | 0.00      | 0.000      |
| 7.00         | 487.76                      | 50                                 | 0.00     | 0.00      | 0.00                      | 0.00 | 0.00 | 0.00 | 0.00            | 0.00           | 0.00                   | 0.00      | 0.000      |
| 8.00         | 432.32                      | 50                                 | 0.00     | 0.00      | 0.00                      | 0.00 | 0.00 | 0.00 | 0.00            | 0.00           | 0.00                   | 0.00      | 0.000      |
| 9.00         | 419.10                      | 50                                 | 0.00     | 0.00      | 0.00                      | 0.00 | 0.00 | 0.00 | 0.00            | 0.00           | 0.00                   | 0.00      | 0.000      |

Cumulative settlemetns: 0.000

#### **Abbreviations**

 $\begin{array}{ll} V_{\text{s1,cs}} \colon & \text{Normalized shear wave velocity dean sand equivalent} \\ (N_1)_{60,\text{cs}} \colon & \text{Estimated normalized corrected dean sand SPT} \end{array}$ 

T<sub>av</sub>: Average cyclic shear stress

p: Average stress

G<sub>max</sub>: Maximum shear modulus (MPa) a, b: Shear strain formula variables γ: Average shear strain

 $\epsilon_{15}$ : Volumetric strain after 15 cycles

N<sub>c</sub>: Number of cycles

 $\epsilon_{Nc}$ : Volumetric strain for number of cycles  $N_c$  (%)

 $\Delta h$ : Thickness of soil layer (cm)  $\Delta S$ : Settlement of soil layer (cm)

| :: Vertica   | al settlem                  | nents estima    | tion for sa           | aturated s | sands ::  |
|--------------|-----------------------------|-----------------|-----------------------|------------|-----------|
| Depth<br>(m) | V <sub>s1,cs</sub><br>(m/s) | <b>q</b> t1N,cs | e <sub>v</sub><br>(%) | Δh<br>(m)  | s<br>(cm) |
| 10.00        | 473.29                      | 6357.34         | 0.00                  | 0.00       | 0.000     |
| 11.00        | 485.91                      | 7123.94         | 0.00                  | 0.00       | 0.000     |
| 12.00        | 463.23                      | 5792.71         | 0.00                  | 0.00       | 0.000     |
| 13.00        | 500.55                      | 8101.27         | 0.00                  | 0.00       | 0.000     |
| 14.00        | 427.81                      | 4105.00         | 0.00                  | 0.00       | 0.000     |
| 15.00        | 450.62                      | 5140.32         | 0.00                  | 0.00       | 0.000     |
| 16.00        | 453.36                      | 5276.87         | 0.00                  | 0.00       | 0.000     |
| 17.00        | 431.39                      | 4256.02         | 0.00                  | 0.00       | 0.000     |
| 18.00        | 596.73                      | 17336.97        | 0.00                  | 0.00       | 0.000     |
| 19.00        | 550.30                      | 12209.19        | 0.00                  | 0.00       | 0.000     |
| 20.00        | 539.82                      | 11234.47        | 0.00                  | 0.00       | 0.000     |
| 21.00        | 580.66                      | 15404.31        | 0.00                  | 0.00       | 0.000     |
| 22.00        | 535.30                      | 10832.98        | 0.00                  | 0.00       | 0.000     |
| 23.00        | 522.36                      | 9743.34         | 0.00                  | 0.00       | 0.000     |
| 24.00        | 517.16                      | 9330.58         | 0.00                  | 0.00       | 0.000     |
| 25.00        | 503.48                      | 8308.41         | 0.00                  | 0.00       | 0.000     |
| 26.00        | 505.82                      | 8477.15         | 0.00                  | 0.00       | 0.000     |
| 27.00        | 481.30                      | 6835.94         | 0.00                  | 0.00       | 0.000     |
| 28.00        | 546.35                      | 11833.96        | 0.00                  | 0.00       | 0.000     |
| 29.00        | 518.67                      | 9448.92         | 0.00                  | 0.00       | 0.000     |
| 30.00        | 533.65                      | 10688.96        | 0.00                  | 0.00       | 0.000     |
| 31.00        | 493.90                      | 7645.04         | 0.00                  | 0.00       | 0.000     |
| 32.00        | 498.48                      | 7956.86         | 0.00                  | 0.00       | 0.000     |
| 33.00        | 483.70                      | 6984.98         | 0.00                  | 0.00       | 0.000     |
| 34.00        | 475.76                      | 6502.17         | 0.00                  | 0.00       | 0.000     |
| 35.00        | 488.36                      | 7280.69         | 0.00                  | 0.00       | 0.000     |

# :: Vertical settlements estimation for saturated sands :: Depth $V_{s1,cs}$ $q_{t1N,cs}$ $e_v$ $\Delta h$ s (m) (m/s) (0/6) (m) (cm)

**Cumulative settlements: 0.000** 

### **Abbreviations**

 $V_{\text{s1,cs}} : \qquad \text{Normalized shear wave velocity clean sand equivalent} \\ q_{\text{t1N,cs}} : \qquad \text{Estimated normalized corrected clean sand cone resitance}$ 

 $\begin{array}{ll} e_v \colon & \text{Post liquefaction volumetric strain (\%)} \\ \Delta h \colon & \text{Thickness of soil layer to be considered (m)} \end{array}$ 

s: Estimated settlement (cm)

| :: Latera    | l displace                  | ements est                         | timation              | for satu    | ırated s              | ands :: |           |
|--------------|-----------------------------|------------------------------------|-----------------------|-------------|-----------------------|---------|-----------|
| Depth<br>(m) | V <sub>s1,cs</sub><br>(m/s) | (N <sub>1</sub> ) <sub>60,cs</sub> | D <sub>r</sub><br>(%) | Ymax<br>(%) | d <sub>z</sub><br>(m) | LDI     | LD<br>(m) |
| 1.00         | 325.60                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |
| 2.00         | 255.27                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |
| 3.00         | 283.70                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |
| 4.00         | 290.12                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |
| 5.00         | 401.65                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |
| 6.00         | 435.72                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |
| 7.00         | 487.76                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |
| 8.00         | 432.32                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |
| 9.00         | 419.10                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |
| 10.00        | 473.29                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |
| 11.00        | 485.91                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |
| 12.00        | 463.23                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |
| 13.00        | 500.55                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |
|              |                             |                                    |                       |             |                       |         |           |
| 14.00        | 427.81                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |
| 15.00        | 450.62                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |
| 16.00        | 453.36                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |
| 17.00        | 431.39                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |
| 18.00        | 596.73                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |
| 19.00        | 550.30                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |
| 20.00        | 539.82                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |
| 21.00        | 580.66                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |
| 22.00        | 535.30                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |
| 23.00        | 522.36                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |
| 24.00        | 517.16                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |
| 25.00        | 503.48                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |
| 26.00        | 505.82                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |
| 27.00        | 481.30                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |
| 28.00        | 546.35                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |
| 29.00        | 518.67                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |
| 30.00        | 533.65                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |
| 31.00        | 493.90                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |
| 32.00        | 498.48                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |
| 33.00        | 483.70                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |
| 34.00        | 475.76                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |
| 35.00        | 488.36                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |
| 33.00        | 100.30                      | 50                                 | 100.00                | 0.00        | 0.00                  | 0.000   | 0.00      |

:: Lateral displacements estimation for saturated sands ::

Cumulative lateral displacements: 0.00

# **Abbreviations**

 $\begin{array}{ll} V_{\text{s1,cs}} \colon & \text{Normalized shear wave velocity clean sand equivalent} \\ (N_1)_{60,cs} \colon & \text{Estimated normalized corrected clean sand SPT} \end{array}$ 

D<sub>r</sub>: Relative density (%)

 $Y_{\text{max}}$ : Maximum amplitude of cyclic shear strain (%)  $d_z$ : Soil layer thickness (m)

d<sub>z</sub>: Soil layer thickness (m) LDI: Lateral displacement index (m) LD: Actual estimated displacement (m)

#### References

- Ronald D. Andrus, Hossein Hayati, Nisha P. Mohanan, 2009. Correcting Liquefaction Resistance for Aged Sands Using Measured to Estimated Velocity Ratio, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 135, No. 6, June 1
- Boulanger, R.W. and Idriss, I. M., 2014. CPT AND SPT BASED LIQUEFACTION TRIGGERING PROCEDURES. DEPARTMENT OF CIVIL & ENVIRONMENTAL ENGINEERING COLLEGE OF ENGINEERING UNIVERSITY OF CALIFORNIA AT DAVIS
- Dipl.-Ing. Heinz J. Priebe, Vibro Replacement to Prevent Earthquake Induced Liquefaction, Proceedings of the Geotechnique-Colloquium at Darmstadt, Germany, on March 19th, 1998 (also published in Ground Engineering, September 1998), Technical paper 12-57E
- Robertson, P.K. and Cabal, K.L., 2007, Guide to Cone Penetration Testing for Geotechnical Engineering. Available at no cost at http://www.geologismiki.gr/
- Youd, T.L., Idriss, I.M., Andrus, R.D., Arango, I., Castro, G., Christian, J.T., Dobry, R., Finn, W.D.L., Harder, L.F., Hynes, M.E., Ishihara, K., Koester, J., Liao, S., Marcuson III, W.F., Martin, G.R., Mitchell, J.K., Moriwaki, Y., Power, M.S., Robertson, P.K., Seed, R., and Stokoe, K.H., Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshop on Evaluation of Liquefaction Resistance of Soils, ASCE, Journal of Geotechnical & Geoenvironmental Engineering, Vol. 127, October, pp 817-833
- Zhang, G., Robertson. P.K., Brachman, R., 2002, Estimating Liquefaction Induced Ground Settlements from the CPT, Canadian Geotechnical Journal, 39: pp 1168-1180
- Zhang, G., Robertson. P.K., Brachman, R., 2004, Estimating Liquefaction Induced Lateral Displacements using the SPT and CPT, ASCE, Journal of Geotechnical & Geoenvironmental Engineering, Vol. 130, No. 8, 861-871
- Pradel, D., 1998, Procedure to Evaluate Earthquake-Induced Settlements in Dry Sandy Soils, ASCE, Journal of Geotechnical & Geoenvironmental Engineering, Vol. 124, No. 4, 364-368
- R. Kayen, R. E. S. Moss, E. M. Thompson, R. B. Seed, K. O. Cetin, A. Der Kiureghian, Y. Tanaka, K. Tokimatsu, 2013. Shear-Wave Velocity—Based Probabilistic and Deterministic Assessment of Seismic Soil Liquefaction Potential, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 139, No. 3, March 1