

COMUNI DI LESINA E SAN PAOLO DI CIVITATE

PROVINCIA DI FOGGIA

PROGETTO ATS ALEXINA

DITTA ATS Engineering s.r.l.

PROGETTO PER LA REALIZZAZIONE DI UN PARCO EOLICO

RICHIESTA DI AUTORIZZAZIONE UNICA

D.Lgs. 387/2003

PROCEDIMENTO UNICO AMBIENTALE (PUA)

Valutazione di Impatto Ambientale (V.I.A.)

D.Lgs. 152/2006 ss.mm.ii. (Art.27) "Norme in materia ambientale"

A23

PAGG. 125

Titolo dell'allegato:

RELAZIONE IDROLOGICA

1	EMISSIONE	13/01/2021
REV	DESCRIZIONE	DATA

CARATTERISTICHE GENERALI D'IMPIANTO

GENERATORE - Altezza mozzo: fino a 140 m.
Diametro rotore: fino a 180 m.
Potenza unitaria: fino a 6 MW.

IMPIANTO - Numero generatori: 10.
Potenza complessiva: fino a 60 MW.

Il proponente:

ATS Engineering s.r.l. P.zza Giovanni Paolo II, 8 71017 Torremaggiore (FG) 0882/393197 atseng@pec.it

Il progettista:

ATS Engineering s.r.l. P.zza Giovanni Paolo II, 8 71017 Torremaggiore (FG) 0882/393197 atseng@pec.it

Il tecnico:

Ing. Eugenio Di Gianvito atsing@atsing.eu

Sommario

PREMESSA	2
INQUADRAMENTO GEOLOGICO	
Unità dell' Avanfossa	
INQUADRAMENTO IDROGEOLOGICO	7
Idrostruttura del Gargano	7
Idrostruttura del Tavoliere	8
IDROLOGIA ED IDROGEOLOGIA	10
Idrologia superficiale	10
Acque sotteranee	
PERMEBILITÀ DEI LITOTIPI	12
Terreni permeabili per porosità intergranulare	13
Terreni permeabili per porosità intergranulare ed interstratale	13
Terreni impermeabili	13
Terreni permeabili per fessurazione e per carsismo	13
CONCLUSIONI	14

PREMESSA

La società ATS Engineering S.r.l. ha realizzato la seguente relazione idrogeologica per la realizzazione del parco eolico denominato "ATS Alexina" da realizzarsi nel comune di Lesina e San Paolo di Civitate ricadente all'interno del foglio IGM n° 155 della serie a 100.000 "San Severo"

Lo studio è stato finalizzato ad acquisire dati con l'obiettivo di individuare i liotipi presenti con le rispettive caratteristiche giaciturali; i fenomeni geomorfologici con specifico riguardo alla stabilità e all'azione dei corsi d'acqua e la idrogeolgia locale con particolare riguardo per l'infiltrazione e la circolazione delle acque nel sottosuolo.

INQUADRAMENTO GEOLOGICO

Nel territorio settentrionale della provincia di Foggia affiorano successioni carbonatiche e terrigene appartenenti a tre unità Stratigrafico-StrutturaIi:

- Catena;
- Avanfossa Appenninica;
- Avampaese Apulo-Garganico.

Il Settore più occidentale, Catena, è costituito da terreni di età compresa tra il Mesozoico ed il Pliocene, in contatto tettonico di sovrascorrimento con i termini del Miocene sup. dell'Avampaese deformato.

Tali terreni rappresentano una potente coltre di ricoprimento costituita da formazioni alquanto eterogenee come litologia, indicate in letteratura con il termine generico di "Alloctono". I dati provenienti da perforazioni Agip e sondaggi Sismici profondi evidenziano come tale coltre aumenti di spessore procedendo verso SW.

La parte centrale, Avanfossa Appenninica, è costituita da depositi pliopleistocenici poggianti in trasgressione sui calcari pre-pliocenici della Piattaforma Apula ribassati a gradonata verso SW da un sistema di faglie dirette a direzione appenninica.

Alcuni Autori interpretano tale area come bacino subsidente, compreso tra il paleomargine dell'Appennino e dell'Avampaese nel quale si sono deposti, a partire dal Pliocene Inf., sedimenti terrigeni.

L'area di Progetto ricade nei settori Nord dell'avanfossa Apula.

IL PLIO-PLEISTOCENE DEL SOTTOSUOLO DEL BACINO PUGLIESE Ε []] ******* **a** © PLEISTOCENE SUP. - OLOCENE : SOLLEVAMENTO ALLOCTONO (CRETACEO - MIOCENE) AVAMPASS CALCARED (CRETACED - MIDGENE)

 $Fig. \ 1-Il \ Plio-Pleistocene \ del \ sottosuolo \ pugliese$

La parte centrale, Avanfossa Appenninica, è costituita da depositi pliopleistocenici poggianti in trasgressione sui calcari pre-pliocenici della Piattaforma Apula ribassati a gradonata verso SW da un sistema di faglie dirette a direzione appenninica.

Alcuni Autori interpretano tale area come bacino subsidente, compreso tra il paleomargine dell'Appennino e dell'Avampaese nel quale si sono deposti, a partire dal Pliocene Inf., sedimenti terrigeni.

Alla fine del Pliocene medio, per tutto il Pliocene superiore e parte del Pleistocene, una importante fase tettonica di abbassamento del substrato carbonatico provocò una estesa migrazione del bacino e della linea di costa verso NE.

Nello stesso tempo, dal margine della catena appenninica, in via di sollevamento, scivolarono per gravità verso il bacino, cospicue masse "alloctone".

Seguì poi, alla fine del Pleistocene inferiore, un generale sollevamento della regione, più pronunciato sul lato appenninico, determinando la migrazione del mare pleistocenico verso l'attuale linea di costa.

Unità dell' Avanfossa

La parte di Avanfossa Periadriatica che va a sud dell'allineamento dei pozzi per idrocarburi M. Rotaro 1, Colle d'Armi 1, San Severo 1, è nota In letteratura come Bacino Pugliese.

In tale parte dell'avanfossa si rinviene una spessa successione di età plio-pleistocenica prevalentemente argillosa, ben descritta dagli autori attraverso l'analisi di numerosi sondaggi perforati per ricerche di idrocarburi; verso il margine appenninico, potenti coltri alloctone si rinvengono in questi ultimi depositi.

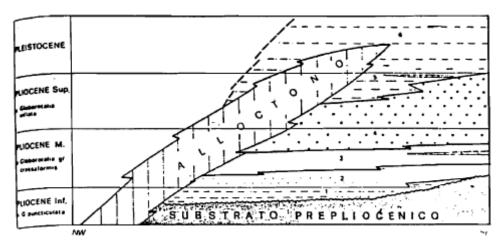


Fig. 2 – Successione litostratigrafica del bacino pugliese

La successione litostratigrafica del bacino pugliese comprende dal basso verso l'alto i seguenti intervalli stratigrafici:

- intervallo argilloso-marnoso di base;
- intervallo sabbioso-argilloso inferiore;
- intervallo prevalentemente argilloso/intermedio;
- intervallo sabbioso-argilloso superiore;
- intervallo prevalentemente argilloso superiore;
- argille e sabbie sommitali.

L'intervallo argilloso-marnoso di base è formato da argille-marnose per uno spessore di 100 m che in situazioni di paleoalto può essere notevolmente ridotto o assente. Questo intervallo, del Pliocene inferiore nella fascia interna, ringiovanisce verso l'esterno, includendo termini del Pliocene medio.

L'intervallo sabbioso-argilloso inferiore è rappresentato da intercalazioni sabbiose dapprima sottili e poi più spesse. Questi corpi mostrano una notevole irregolarità di sviluppo, inoltre gli intervalli sabbiosi si assottigliano verso NE.

Tale intervallo risulta assente a nord dell'allineamento M. Rotaro – Colle d'Armi 1- S. Severo le caratterizza così il bacino pugliese.

L'intervallo prevalentemente argilloso intermedio è formato da argille di mare poco profondo, Pliocene medio, cui segue l'intervallo sabbioso-argilloso superiore attribuito al Pliocene medio e superiore.

L'intervallo prevalentemente argilloso superiore è caratterizzato dalla presenza di irregolari intercalazioni sabbiose molto subordinate rispetto alla parte pelitica.

La successione termina con argille prevalenti, cui si intercalano, In modo irregolare e disordinatamente, sottili livelli di sabbie a luoghi ciottolose, a trend di carattere regressivo (argille e sabbie sommitali).

In affioramento, nel Tavoliere si trova quasi esclusivamente la parte alta della successione plio-pleistocenica.

Le unità stratigrafiche regressive sono rappresentate dalle Sabbie di Serra Capriola (= Sabbie di Monte Marano), in sinistra Fortore, e dai conglomerati di chiusura.

Depositi terrazzati quaternari, riferibili a più cicli sedimentari marini e/o a fasi continentali di alluvionamento, sono posti a quote via via decrescenti.

Per quanto riguarda l' "Alloctono" esso è costituito da un complesso di formazioni molto eterogenee come litologia ed età; il suo spessore cresce rapidamente verso SO. La base dell'alloctono è costituita da Argille varicolori che formano orizzonti plastici di sovrascorrimento di masse più coerenti. Seguono calcari e marne detritiche associate a calcari organogeni a briozoi e litotamni.

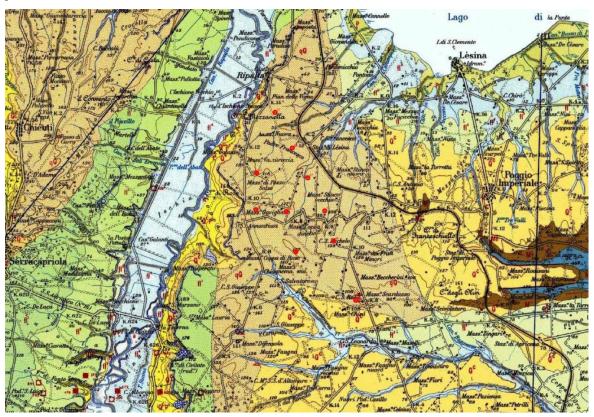


Fig 3 – Carta geologica con posizionamento degli aerogeneratori

INQUADRAMENTO IDROGEOLOGICO

I Calcari della Piattaforma carbonatica apula, affioranti al margine occidentale del Promontorio Garganico, sono sede di un acquifero carsico facente parte dell'Idrostruttura del Gargano.

Verso ovest i calcari risultano ribassati a gradinata e sono ricoperti da depositi clastici sabbiosi e ancor più argillosi di età plio-pleistocenica limitati più ad ovest dal fronte della Catena Appenninica. Tali depositi risultano acquiferi sia in corrispondenza dei termini fluvio-palustri della copertura alluvionale che delle lenti sabbiose e subordinatamente ciottolose intercalate alle argille grigio-azzurre.

I livelli acquiferi sia pliocenici che pleistocenici appartengono allo stesso dominio idrogeologico, noto con il nome di "Idrostruttura del Tavoliere".

Praticamente assente è invece la circolazione idrica sotterranea in corrispondenza dei terreni, per lo più impermeabili, della Catena Appenninica.

Idrostruttura del Gargano

Il settore occidentale dell' Idrostruttura, nella zona prospiciente il Tavoliere, ha caratteristiche analoghe a quelle dell'acquifero Murgiano (Maggiore, 1991), trattandosi di sequenze carbonati che coeve e litologicamente simili (Luperto Sinni et al., Op. cit.), affioranti in aree interessate da una stessa evoluzione sedimentaria, tettonica e morfologica. La zona di alimentazione corrisponde al ripiani a doline di S. Marco in L., dove la ricarica avviene In forma essenzialmente concentrata (Cotecchia & Magri, Op. cit.). La circolazione idrica è di norma in pressione anche dove calcari sono in affioramento, sia in corrispondenza dell'horst di Apricena, sia lungo tutta la fascia pedegarganica. La falda si intercetta al di sotto della quota del mare e risale stabilizzandosi tra 0 m e 10 m al di sopra della stessa, procedendo dalla costa verso l'interno.

Il deflusso della falda è diretto perpendicolarmente alla costa (Fig. 4).

e le acque fuoriescono attraverso scaturigini localizzate su fronti piuttosto estesi, in corrispondenza dei laghi di Lesina e Varano (portate medie complessive di 1100 I/s e 1400 I/s), nella parte settentrionale del promontorio, e nella zona di Manfredonia e Siponto (portata complessiva di 900 I/s), sul versante meridionale (fig. 5).

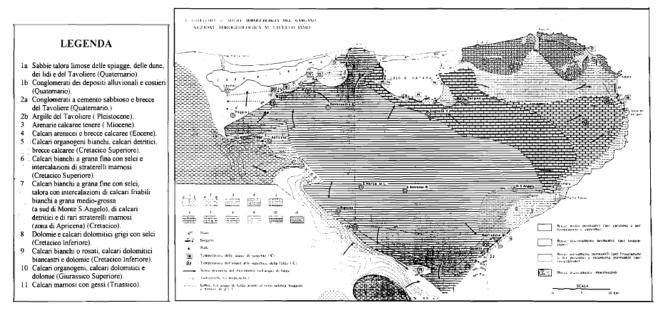


Fig. 4 - Carta idrogeologica del Gargano (da Cotecchia e magri, 1966)

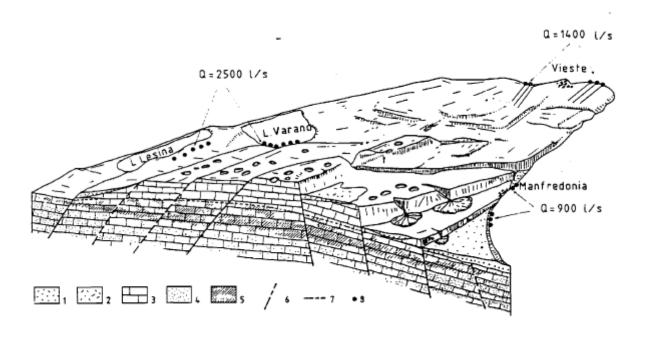


Fig. 5 – Veduta schematica d'assieme del massiccio garganico

Lo spartiacque sotterraneo è arretrato verso sud. La minore potenzialità idrica del versante meridionale è testimoniata dai minori apporti sorgivi e dai maggiori effetti dell'intrusione marina. Procedendo verso ovest, le formazioni carbonatiche risultano dislocate a profondità via via crescenti (graben d e 1 Tavoliere), fino a raggiungere, in corrispondenza del pozzo Agip "Torrente Tona 1", la profondità di 1607 m. rispetto al piano campagna (Agip, Op. cit.). I calcari mesozoici risultano dislocati da una serie di faglie distensive, ad andamento appenninico, vicarianti con la "faglia del Candelaro" che costituisce ad ovest il limite geologico dell'Idrostruttura del Gargano. Tale importante allineamento tettonico rappresenterebbe, secondo Cotecchia & Magri (Op. cit.), una via preferenziale di deflusso verso il mare sia per le acque di infiltrazione meteorica provenienti dal Gargano, sia per le acque provenienti dai calcari della Piattaforma Apula ribassati nell'area del Tavoliere.

Secondo il modello della circolazione idrica sotterranea proposto da Maggiore & Mongelli (Op. cit.) per spiegare il termalismo della Sorgente S.Nazario, le acque sotterranee, "connate", contenute nel calcari dolomitici fratturati e carsificati, sottostanti le successioni argillose plioceniche, risalgono verso l'horst garganico lungo le superfici di faglia; venendo a contatto con le acque di infiltrazione meteorica e di intrusione marina del promontorio, assumono caratteri chimici e termali intermedi.

Idrostruttura del Tavoliere

L' Idrostruttura risulta composta da due acquiferi sovrapposti, isolati idraulicamente tra di lo r o, corrispondenti ognuno alle sequenze deposizionali che si sono succedute in tale bacino.

Data l'indipendenza dei due acquiferi presenti, si è giunti a classificarli e denominarli con nomi di "Acquifero Pleistocenico" e di "Acquifero Pliocenico" (Tesi di Laurea Di Lella Nazario 1993).

Acquifero Pleistocenico.

La falda è localizzata nei materiali clastici alluvionali sovrastanti le argille grigio-azzurre del Pliocene superiore e del

Calabriano. Tale sistema idrologico assume caratteri diversi a seconda delle caratteristiche giaciturali e tessiturali dei vari livelli (Cotecchia, 1957). La falda, quasi ovunque multistrato (fig. 6) è libera sia nelle zone alte, ove giace a 20-30 m sotto il p.c., sia nel medio Tavoliere, ove le quote diminuiscono in direzione della costa e il tetto della falda si avvicina più alla superficie del suolo; nel basso Tavoliere invece si rinviene in pressione, al di sotto di formazioni argillose giallastre come citato da DiLonardo (1935): "Le acque artesiane del Tavoliere altro non sarebbero che le acque freatiche della media e alta pianura, le quali iniziano il loro corso forzato verso il mare sotto la coltre argillosa".

La superficie piezometrica segue grosso modo l'andamento del substrato argilloso; le quote più elevate si riscontrano nelle parti più interne (alto Tavoliere) dove superano anche 250 m s.l.m., diminuendo sensibilmente In direzione della costa. La falda defluisce verso il mare in direzione SO-NE con gradienti elevati (3 %-8 %); in prossimità della costa, dove marcata è l'influenza dell'acqua marina, gradienti sono notevolmente più bassi (Maggiore, Op.cit.).

Gli spessori maggiori dell'acquifero, e quindi la maggior produttività, si osserva laddove il substrato argilloso impermeabile è più depresso e forma dei veri e propri impluvi. L'alimentazione è dovuta alle precipitazioni del luogo, anche se si ha un notevole ravvenamento da parte dei principali corsi d'acqua (Cervaro, Candelaro ecc.).

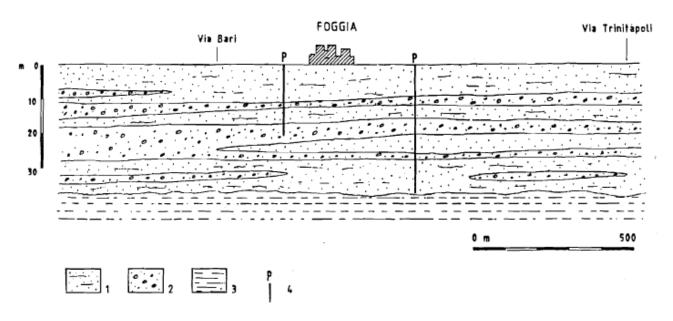


Fig. 6 – Sezione idrogeologica della zona di Foggia – Maggiore 1991

Acquifero Pliocenico.

L'acquifero pliocenico risulta localizzato in corrispondenza dei livelli sabbioso-limosi intercalati al depositi argillosi dell'unità delle argille grigio-azzurre plio-pleistoceniche. Le perforazioni, per lo sfruttamento di tali livelli, sono state spinte fino alla profondità di 500 m con risultati soddisfacenti, anche se spesso insorgono problemi di insabbiamento del pozzo e le portate sono modeste (2-3 l/s). Il livello statico è sempre a quota superiore al livello del mare e in qualche caso l'acqua trabocca dal pozzo per artesianità (Maggiore, Op.cit.).

IDROLOGIA ED IDROGEOLOGIA

Idrologia superficiale

L'area di studio, data la sua morfologia prevalentemente di tipo vallivo e la natura geolitologica delle formazioni affioranti, costituita essenzialmente da sedimenti di natura alluvionale, ghiaie, sabbie e limi, sovrapposte a litotipi calcareo brecciosi e sabbioso argillosi, è definita da un reticolo idrografico superficiale gerarchizzato dalla presenza di due corsi d'acqua principali rappresentati dal Fortore che sfocia nel Mar Adriatico, con assi di scorrimento in direzione S-N. Dai versanti laterali convergono una serie di canali, a carattere saltuario, che costituiscono il reticolo di drenaggio della valle del Fortore.

Di imporanza rilevante sono anche i torrenti che incidino in maniera importante le valli e che appartengono al bacino idrografico del lago di Lesina.

Acque sotteranee

L'acqua meteorica ricadente nel bacino di interesse, tra i più piovosi del tavoliere, in parte si infiltra occupando ed alimentando direttamente la falda superficiale (di modesta capacità) contenuta nelle formazioni sabbiose ed alluvionali terrazzate, in parte si concentra in piccoli fossi e scoline artificiali di drenaggio agricolo, confluendo presso le principali aste di drenaggio, attive queste ultime solo in caso di eventi meteorologici di importante consistenza pluviometrica.

L'infiltrazione e la circolazione delle acque sotterranee nelle formazioni alluvionali può avvenire esclusivamente in forma diffusa per porosità di interstizi, andando ad alimentare la falda più superficiale contenuta nei depositi alluvionali. La capacità idrica di questa falda superficiale e di modesta entità, tanto che fino a pochi anni orsono, alla fine di un ciclo particolarmente prolungato di siccità che ha interessato l'intero comprensorio del Tavoliere, questa falda risultava essere completamente scomparsa, mentre nell'ultimo decennio essa sembra aver ripreso la sua capacità a seguito di una inversione del ciclo meteorologico e di ricarica.

La superficie piezometrica della falda ricalca, attenuandolo, il profilo topografico, con cadente mediamente pari all'1%.

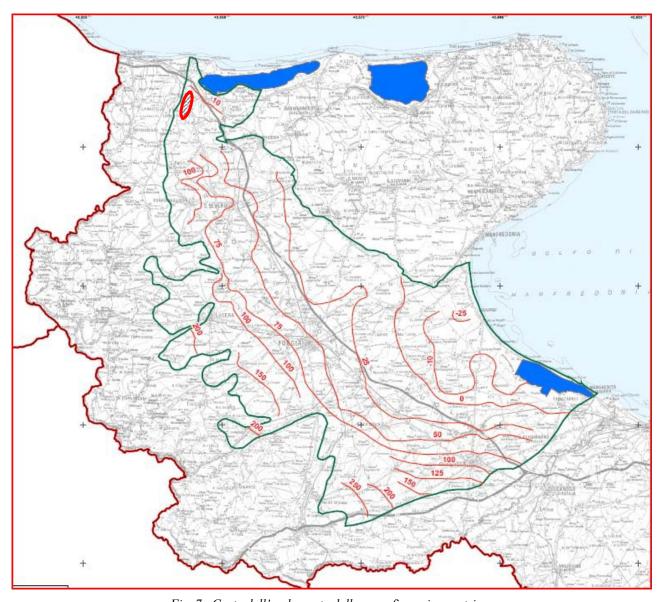


Fig. 7 - Carta dell'andamento della superficee piezometrica

PERMEBILITÀ DEI LITOTIPI

La localizzazione e l'estensione degli acquiferi, di solito definibili come di vetta, sono determinate dall'alternanza delle formazioni idrogeologiche permeabili e semipermeabili.

In base alla presenza di una serie di lembi marginali di sovrascorrimenti appenninici, la falda risulta essere assente ovvero di tipo localizzato, con bacino di alimentazione legato alla estensione dei corpi permeabili affioranti o indirettamente interconnessi con le aree di ricarica. Dal punto di vista idrogeologico nell'area in esame non si riesce a distinguere una vera e propria falda in s.s., ma piccoli lembi di falde sospese e spesso isolate che si manifestano generalmente con venute in corrispondenza degli alvei principali e/o in corrispondenza di sorgenti scaturite da soglia di permeabilità. Molto più spesso, queste venute di acqua hanno regime saltuario proprio in virtù del ridotto bacino di alimentazione. Il bacino di accumulo di queste falde sospese è essenzialmente riservato alle formazioni sabbiose e ghiaiose delle serie deposizionali oloceniche (alluvioni terrazzate e pleistoceniche, mentre le formazioni prevalentemente argillose o limo argillose appartenenti ai cicli deposizionali pliocenici e miocenici, portati a giorno dei sovrascorrimenti appenninici, assumono carattere idrogeologico di acquicludo).

Le acque impregnano i depositi delle sabbie e delle alluvioni terrazzate, aventi permeabilità primaria per porosità di interstizi, e sono rinvenibili a profondità variabili da poche decine di metri fino ai 70-100 m. dal p.c., in genere lungo le valli dei principali torrenti, come testimoniato da pozzi per attingimento presenti per uso agricolo nelle zone di fondovalle. Alla base di questi acquiferi sono sempre presenti componenti prevalentemente argillose appartenenti alle formazioni di dislocazione appenninica e subappenninica.

COLONNA	LITOTIPI	UNITA'	ETA'	PERMEABILITA'		UNITA'
STRATIGRAFICA	PREVALENTI	LITOSTRATIGRAFICHE		TIPO	GRADO	IDROGEOLOGICHE
	Limi argillosi e sabbie siltose	Depositi lacustri	Olocene		Da poco permeabile ad impermeabile	Acquitardo
	Ghiaie e sabbie stratificate da poco a mediamente addensate con lenti limose	Depositi marini e alluvionali, terrazzati e non	Olocene- Pleistocene medio superiore	Primaria .	Mediamente permeabile	Acquifero alluvionale
	Limi argillosi con intercalazioni di sabbie	Argille Subappennine	Pleistocene inferiore	(porosită d'interststizi)	Impermeabile Poco permeabile	Acquicludo Acquifero sabbioso
	Calcarenti a grana grossolana, tenere, porose "Tufo calcareo"	Calcarenite di Gravina	-Pliocene medio	\ \frac{1}{1}		
	Calcari detritico- organogeni	Calcareniti bioclastiche e Calcari massicci di scogliera	Miocene superiore	'	Da poco a mediamente permeabile	Acquifero carsico
	Calcari e dolomie, stratificati e fratturati, a luoghi, carsificati	Calcari delle Murge	Cretaceo inferiore- Giura superiore	Secondaria (fessurazione e/o carsismo)	Da mediamente permeabile a molto permeabile	·

Fig. 8 – Serie idrogeologica dell'Unità dell'Avanfossa appenninica – Di Lella

Sulla scorta di una stima indiretta del grado di permeabilità di ciascuna unità della locale serie litostratigrafica, basata sulla osservazione e correlazione di parametri diversi (fessurazione, grado di addensamento, granulometria predominante, cadenti piezometriche, ecc..), le condizioni idrogeologiche delle rocce presenti nel territorio di San Severo risultano quelle schematizzate in Tabella 1.

TAB	FΙ	ΙA	N°1

FORMAZIONE	PERMEABILITÀ	LITOLOGIA	FALDA	
Alluvioni e depositi marini sabbiosi	per porosità intergranulare e interstratale	Sabbioso limosa sciolta incoerente parzialmente coerente e ghiaie	superficiale	
Argille e limi sabbiosi grigio azzurri	porosità solo di tipo interstiziale (impermeabili)	sciolta coerente	assente	
Basamento Calcareo mesozoico	permeabile per fessurazione e carsismo	lapidea	falda profonda	

Il grado di permeabilità risulta variabile localmente, in relazione ai fattori più disparati quali: assortimento granulometrico, incisività di fenomenologie paracarsiche, struttura e diagenesi del deposito. In particolare le facies della argille plioceniche grigio azzurre sono da ritenersi dotate di scarsa permeabilità e rappresentano il letto della falda superficiale posizionata in corrispondenza delle formazioni alluvionali e sabbiose sovrastanti.

I calcari sono invece dotati di permeabilità secondaria per fessurazione e carsismo.

In base ai criteri litologici descritti ed alle osservazioni di campagna, i terreni affioranti possono essere così classificati secondo il tipo di permeabilità.

Terreni permeabili per porosità intergranulare

A questa categoria sono correlabili le rocce sciolte di natura sabbiosalimosa inerenti all'area in esame, attribuibili ai "Depositi alluvionali e marini terrazzati".

Tali depositi hanno medie capacità di contenimento e di trasmissione idrica e pertanto svolgono, assieme alla componente calcarenitica

Terreni permeabili per porosità intergranulare ed interstratale

A questa categoria sono correlabili i depositi sciolti di natura calcarenitica sabbiosa e ghiaiosa. La porosità efficace di tali rocce risulta non trascurabile, difatti, sono considerate mediamente permeabili e svolgono il ruolo idrostrutturale di acquifero superficiale, vale a dire, di contenitore della falda superficiale pleistocenico, attribuibile alle unità basali delle "Sabbie e ghiaie di deposizione marina".

Permeabilità: Primaria, per porosità, e definita da un Coefficiente di Conducibilità variabile tra 1,0×10-3 e 1,0×10-5 cm/sec, in funzione delle componenti lenticolari argillose presenti localmente in interstrato.

Terreni impermeabili

I terreni riconducibili alla formazione delle Argille grigio azzurre plioceniche, poiché dotate esclusivamente di porosità di tipo interstiziale, hanno grande capacità di contenimento idrico e, al contrario, la trasmissività risulta essere nulla. Sono attribuibili queste caratteristiche idrogeologiche alle unità argillose plioceniche.

Il ruolo idrostrutturale cui assurgono le rocce argillose in oggetto risulta essere quello di acquicludo e di base impermeabile per l'acquifero superiore.

Permeabilità: Acquicludo, è definita da un Coefficiente di Conducibilità molto basso 1,0×10-5 e 1,0×10-7 cm/sec. Risulta comunque essere contenitore di una modesta falda discontinua in corrispondenza di livelli prevalentemente sabbioso fini, posti a quote prossime ai 300-500 m. dal p.c. rappresentante la cosiddetta Falda intermedia Pliocenica, rinvenibile esclusivamente ed in maniera discontinua nei territori dell'alto Tavoliere (sud di Torremaggiore, Sud di S.Severo, Nord di Lucera).

Terreni permeabili per fessurazione e per carsismo

Sono rappresentati dai calcari del cretaceo. Più che un acquifero vero e proprio sfruttabile, in questa zona dove il basamento carbonatico è posto a quote elevate, rappresentano acque connate legate a bacini di accumulo petrolifero e gassoso. La presenza di fratture, piani di stratificazione, e condotti carsici dovuti all'allargamento di fratture e giunti di strato, costituiscono una rete fessurativa che conferisce all'ammasso roccioso un'elevata permeabilità che varia sia

verticalmente che lateralmente al variare del grado di fratturazione e della natura litologica della roccia cretacea (Calcarea e calcareodolomitica).

L'elevata capacità di contenimento e di circolazione idrica, e l'elevata porosità efficace, rendono i calcari in oggetto idonei a svolgere il ruolo idrostrutturale di acquifero inferiore, ovvero di contenitore per la falda carsica profonda, direttamente collegate, come bacino di alimentazione, con la circolazione delle acque appartenenti all'idrostruttura profonda del tavoliere e della fascia pedegarganica.

Permeabilità: Primaria, per fessurazione e carsismo, e definita da un Coefficiente di Conducibilità Idraulica variabile tra 1,0×10-6 e 1,0×10-2

cm/sec, con valori medi dell'ordine di 1,0×10-3 cm/sec, in funzione del grado di fatturazione e fessurazione del basamento carbonatico.

CONCLUSIONI

La presente relazione riferisce sulla situazione geologica e idrogeologica di un sito ubicato in agro Lesina e San Paolo di Civitate (FG) sul quale è prevista la costruzione di un impianto per la produzione di energia elettrica da fonte eolica, delle relative opere di connessione e distribuzione.

Morfologicamente l'area risulta pianeggiante, su gradoni di terrazzi fluviali; la formazione litologica affiorante presenta una permeabilità per porosità interstiziale primaria, di conseguenza le acque meteoriche permeano senza produrre fenomeni di ruscellamento particolarmente significativi, comunque mitigata e risolta mediante la presenza di diffusi solchi di drenaggio agricolo (scoline) che drenano le acque verso le principali linee di impluvio.

Per ciò che concerne l'aspetto idrologico, non si evidenziano problematiche legate a fenomeni di affioramento di falda in quanto le caratteristiche litostratigrafiche delle unità litologiche presenti conferiscono alle stesse alta permeabilità tanto che le acque si infiltrano e permeano sino a collocarsi nella falda freatica per cui non si ravvisano problematiche d'interferenza tra il programma di progetto proposto e le acque di scorrimento sotterranee.

Per quanto attiene agli aspetti idrogeologici, è stata rilevata una falda idrica superficiale che circola nelle formazioni pleistoceniche, (acquifero pleistocenico), di modesta potenzialità e spessore, la cui piezometrica si attesta ad una profondità non inferiore a circa 40-50 m dal p.c., poggiante direttamente sulle formazioni prevalentemente argille plioceniche che rappresentano la base dell'acquifero, e anch'esse sede di una falda discontinua più profonda 500-800 m. dal. p.c.

Data la profondità di impostazione di questa prima falda, > 40-50 m. dal p.c., non è possibile alcun interessamento ed interferenza con le strutture che si intende realizzare per la costituzione del parco eolico in oggetto, consentendo di esprimere una valutazione sicuramente positiva circa l'idoneità del sito individuato ad accogliere le opere in progetto, anche in caso di utilizzo di fondazioni profonde su palo.

Allo stato attuale infatti non esistono motivi ostativi alla realizzazione del progetto riconducibili ad alterazioni o modificazioni nella stabilità d'insieme delle aree in conseguenza all'installazione delle torri eoliche.