COMMITTENTE:

ALTA SORVEGLIANZA:

GENERAL CONTRACTOR:

GENERAL CONTRACTOR

Consorzio

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N. 443/01

TRATTA A.V. /A.C. TERZO VALICO DEI GIOVI PROGETTO DEFINITIVO

TRINCEA DI LINEA III VALICO - DA PK 39+500.00 A PK 40+794.00 WBS TR13 - Relazione idraulica

	CiV N. Meistro								
	COMMESSA LOTTO		C	E TIPO I		OPERA/DISC		PROGR.	REV.
Prog	gettazione:								
Rev	Descrizione	Redatto	Data	Verificato	Data	Progettista Integratore	Data	IL PROGETTIS	TA
A00	Prima Emissione	COCIV	08/06/20	COCIV	09/06/20	A. Mancarella	10/06/20	COCIE	Veloci
								Ordine Ingegneri Prov n. 6271 R	
		n.Elab.:				File:A301-0	(-D-CV-RI	-TR13-0X-001-A00	.DOC
								CUP: F81H92000	

DIRETTORE DEI LAVORI

Foglio 3 di 18

INDICE

1.	INTRODUZIONE	5
2.	DOCUMENTI DI RIFERIMENTO	6
2.1.	Normative, raccomandazioni, linee guida	6
2.2.	Riferimenti bibliografici	6
2.3.	Elaborati di progetto di riferimento	6
3.	DESCRIZIONE DELLE OPERE DI DRENAGGIO	7
4.	METODOLOGIA DI CALCOLO DELLE PORTATE	10
4.1.	Dati pluviometrici	10
4.2.	Calcolo delle portate di piena	12
5.	VERIFICA DEI COLLETTORI DI SMALTIMENTO	14

Foglio 4 di 18

Foglio 5 di 18

1. INTRODUZIONE

Il presente documento è stato redatto allo scopo di illustrare le modalità con le quali si intende procedere allo smaltimento delle acque meteoriche afferenti al tracciato ferroviario dal **km 39+500 al km 40+794**, nell'ambito del progetto della tratta a.v. /a.c. terzo valico dei Giovi, Milano-Genova.

In particolare all'interno della relazione:

- si riportano le indicazioni relative agli elaborati grafici di riferimento per una migliore comprensione del sistema di smaltimento;
- si descrive la modalità di smaltimento delle acque individuata;
- si procede alla determinazione delle portate di pioggia di progetto, calcolate per un tempo di ritorno di 100 anni e necessarie al dimensionamento della rete di smaltimento;
- si verificano i manufatti idraulici previsti per l'allontanamento delle acque di pioggia;
- si definiscono e si descrivono i ricettori finali delle acque di pioggia.

Si sottolinea che nella presente relazione verranno mantenute le denominazioni indicate dal progetto esecutivo approvato per quanto riguarda i bacini e i fossi di interesse.

Foglio 6 di 18

2. DOCUMENTI DI RIFERIMENTO

2.1. Normative, raccomandazioni, linee guida

- [1] Decreto Legislativo 3 aprile 2006, n. 152 (pubblicato nella G.U. 14 aprile 2006, S.O. n. 96/L) recante "Norme in materia ambientale".
- [2] Istruzioni relative alla normativa per le tubazioni. Decreto Min. Lav. Pubblici 12/12/85 Circ. M.LL.PP. n°27291.

2.2. Riferimenti bibliografici

[1] Da Deppo L., Datei C., 2004, Fognature, Libreria internazionale Cortina Padova

2.3. Elaborati di progetto di riferimento

- [1] TRINCEA DALLA PK 39+500.0 ALLA PK 40+794.00 Relazione idrologica-idraulica da pk 39+500.00 a pk 40+794.00 IG51-03-E-CV-RI-TR13-0X-001
- [2] TRINCEA DALLA PK 39+500.0 ALLA PK 40+794.00 Planimetria idraulica di progetto da pk 39+500.00 a pk 40+200.00 IG51-03-E-CV-P7-TR13-0X-003
- [3] TRINCEA DALLA PK 39+500.0 ALLA PK 40+794.00 Planimetria idraulica di progetto da pk 40+200.00 a pk 40+794.00IG51-03-E-CV-P7-TR13-0X-004
- [4] TRINCEA DALLA PK 39+500.0 ALLA PK 40+794.00 Tombino viabilità NV26: Planimetria, sezione e pianta scavi IG51-03-E-CV-LZ-TR13-03-001
- [5] TRINCEA DALLA PK 39+500.0 ALLA PK 40+794.00 Particolari costruttivi idraulici IG51-03-E-CV-BZ-TR13-0X-004

Foglio 7 di 18

3. DESCRIZIONE DELLE OPERE DI DRENAGGIO

Il tratto in esame si sviluppa dal km 39+500 al km 40+794, ed è tutto realizzato in trincea tra muri di altezza pari a quella del piano campagna (la *Figura 1*) (Doc. A301-00-D-CV-BZ-INVU-00-002-A00).

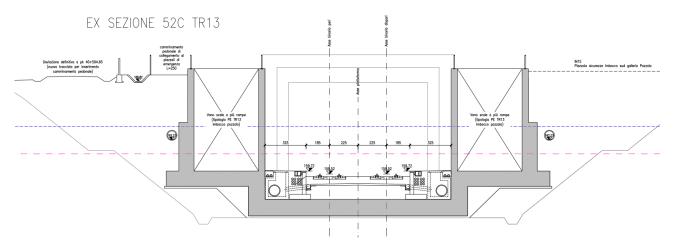


Figura 1: sezione tipo in corrispondenza del tratto di imbocco in trincea tra muri in corrispondenza della pk 40+368 – rampa d'accesso al piazzale INVU.

A presidio della piattaforma ferroviaria fino alla chilimetrica pk 40+315 saranno posizionate posizionate due canalette laterali rettangolari di dimensioni interne 0,50X0,50 aventi pendenza pari a quella dei binari, che nel tratto in esame risulta costante e pari all'1,2%.

Il primo tratto di tali canalette (Cc_T13_1a lato binario pari e Cc_T13_2a lato binario dispari) si sviluppa tra la pk 39+500 e la 40+200, in corrispondenza della quale, tramite un pozzetto di dimensioni 1,0x1,0m e una tubazioni in PEAD di diametro esterno 500 mm e interno 426 (Tp_T13_A lato binario pari e Tp_T13_B lato binario dispari)le portate verranno convogliate nel collettore in PEAD di diametro esterno 1200 mm interno 100 mm posizionato esternamente ai muri della tricea. Il secondo tratto di canalette (Cc_T13_1b lato binario pari e Cc_T13_2b lato binario dispari) poste a

presidio della piattaforma ferroviaria si sviluppa tra la pk 40+200 e la pk 40+315, in corrispondenza della quale tramite un pozzetto di dimensioni 1,0x1,0m le portate verranno convogliate nella tubazione in PEAD di diametro esterno 800 mm interno 678 mm posizionato lateralmente ai muri della tricea (Tp_T13_1-7 lato binario pari e Tp_T13_8-15 lato binario dispari).

A partire dalla pk 40+315 le canalette vengono sostituite da due tubazioni laterali circolari DN315 aventi, anch'esse, pendenza pari a quella dei binari (Tp_T13_1b lato binario pari e Tp_T13_2b lato

binario dispari) e che convoglieranno anch'esse le acque meteoriche in caduta sulla piattaforma ferroviaria, attraverso pozzetti di dimensioni interne 1,40x1,40, posti ogni 20m nelle tubazioni in Pead DN800 poste lateramente ai muri della trincea.

Tali tubazioni di raccolta DN800 proseguiranno poi internamente alla GA1M.

A partire dalla pk 40+787 circa è prevista l'inversione della falda del sub-ballast, che a sua volta invertirà la direzione di deflusso delle acque sulla piattaforma ferroviaria; pertanto, mentre prima l'acqua defluiva dal centro dei binari verso l'esterno, con l'inversione della falda l'acqua caduta sulla piattaforma ferroviaria verrà convogliata verso il centro dei binari, dove è previsto il posizionamento di una canaletta rettangolare grigliata (Cc_TR13_5), in cls di dimensioni interne 0,40x0,36; mentre le tubazioni DN315 verranno interrotte.

Le canalette interne alla galleria GA1M allontaneranno le acque verso la TR14 ove è previsto il recapito finale delle acque all'interno di un laghetto limitrofo alla linea ferroviaria.

SCHEMA IDRAULICO TR13

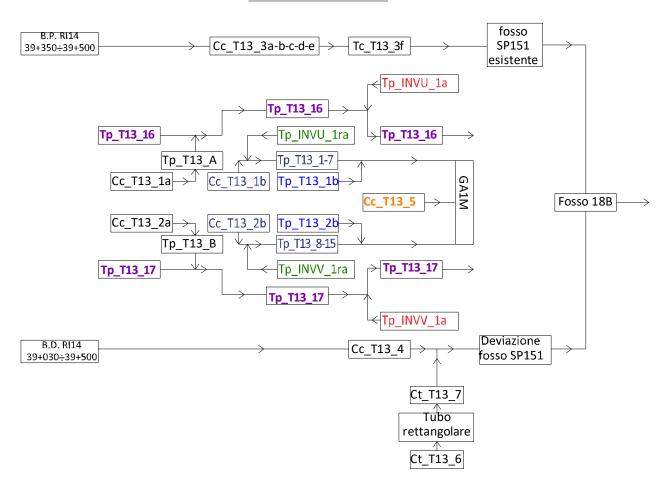


Figura 2: Schema idraulico dello smaltimento acque in corrispondenza della WBS TR13.

Foglio 9 di 18

Per quanto riguarda la zona esterna ai binari è previsto il posizionamento di fossi di guardia in calcestruzzo trapezi 0,50X0,50 in testa alle trincee (Cc_TR13_3a-b-c-d-e lato binario pari e Cc_TR13_4 lato binario dispari); tali manufatti proseguiranno anche in testa ai muri previsti. Si veda in merito la *Figura 1*. Come evidenziato nelle sezioni trasversali (Doc. A301-00-D-CV-W9-INVU-00-001-A00), i fossi in testa ai muri, anche in virtù dei rimodellamenti effettuati nella fascia immediatamente adiacente ai muri stessi, non riceveranno contributi di portata dai bacini esterni.

Tuttavia si consideri che tali manufatti riceveranno un contributo di portata direttamente dalla WBS RI14 in corrispondenza della pk 39+500 dal momento che nell'ultimo tratto della RI14 stessa non sono presenti recapiti utili.

Il fosso di guardia lato binario pari (Cc_T13_3a-b-c-d-e) recapiterà l'esigua portata drenata in una tubazione in cls D800 (Tc_T13_3f) che permetterà il passaggio al di sotto dello stradello di servizio e che quindi conferirà quanto raccolto nell sistema di smaltimento delle acque esistente, secondo quanto indicato nella Relazione idrologica-idraulica del progetto esecutivo (Doc. IG51-03-E-CV-RI-TR13-0X-001).

Il fosso di guardia lato binario dispari (Cc_T13_4) è stato dimensionato in modo da poter ricevere un contributo di portata relativo al tratto di TR13 proveniente da una fascia contribuente che si sviluppa per tutta la lunghezza della WBS e per una larghezza di 10 metri. Tale fosso di guradia recapiterà le acque nel fosso della SP151 riprofilato secondo quanto previsto nel progetto esecutivo. In particolare il suddetto tratto di fosso della SP151 avrà forma trapezia 1,10x1,10 (Ct_T13_6 e Ct_T13_7) immettendosi poi a sud est in un tombino scatolare 3.5x3.5m, dal quale si realizzerà un tombino circolare D1500 interno che devierà le acque verso il lato nord dell'infrastruttura e le invierà ad un fosso che si ricongiungerà più a valle con l'attuale corso del fosso 18B. Per maggiori dettagli in merito a tale deviazione si faccia riferimento agli elaborati di progetto esecutivo:

- IG51-02-E-CV-RO-GA1M-0X-009 "Galleria Artificiale Pozzolo dal Km 40+794,00 al Km 42+778,80
- Studio deviazione fossi 18B e SP151",
- IG51-02-E-CV-PZ-GA1M-0X-002 "Galleria Artificiale Pozzolo dal Km 40+794,00 al Km 42+778,80
- Planimetria e sezioni fossi 18B e Sp151 stato progetto".

Foglio 10 di 18

4. METODOLOGIA DI CALCOLO DELLE PORTATE

4.1. Dati pluviometrici

In fase di progettazione definitiva è stato svolto uno studio idrologico ("*Relazione reticolo di drenaggio dei tratti all'aperto dal km 36+585 a termine intervento*" A301_00_D_CV_RG_ID0001_003) finalizzato alla determinazione dei parametrici pluviometrici intensi spazializzati a tratti omogenei della linea A.C.

L'analisi delle condizioni pluviometriche del territorio in esame si è basata sui dati pubblicati negli Annali Idrologici del Servizio Idrografico Min. LL.PP. Per la tratta di Linea che si sviluppa esclusivamente nel versante padano sono stati acquisiti i dati relativi a 11 stazioni di monitoraggio pluviometrico.

Codice stazione	Denominazione	Bacino idrografico	Bacino Periodo di misura		Numero dati di		ate UTM
		.	Anno inizio	Anno fine	osservazione	Est	Nord
1564	Alessandria	Tanaro	1950	1985	23	467349	4974054
1602	Lavezze-Lago	Tanaro	1951	1986	34	488321	4931399
1604	Lavagnina C.Le	Tanaro	1950	1986	35	481721	4938819
1605	Gavi C.Le	Tanaro	1932	1968	32	484389	4948069
1617	Val Noci Diga	Scrivia	1956	1986	28	502890	4927686
1621	Scoffera	Scrivia	1953	1989	27	509517	4925841
1629	Isola Del Cantone	Scrivia	1952	1986	31	496274	4944349
1642	Tortona	Scrivia	1943	1986	32	489711	4972128
1649	Montemarzino	Curone	1952	1986	29	498921	4966565
1655	Varzi	Staffora	1953	1986	29	516048	4964733
1661	Voghera	Staffora	1951	1986	35	500238	4981377

Tabella 1: Caratteristiche delle stazioni pluviometriche considerate per la parte di territorio compresa nel bacino padano.

Per la quasi totalità delle stazioni pluviometriche sono stati messi a disposizione dati di misura a partire dagli anni '50 fino ad oltre la metà degli anni '80, con un campione significativo dal punto di vista statistico, in termini di estensione.

Le serie storiche dei dati di pioggia per durate di 1, 3, 6, 12 e 24 ore sono state sottoposte a regionalizzazione determinando i valori di precipitazione corrispondenti a tempi di ritorno di 10, 20, 50, 100, 200 e 500 anni.

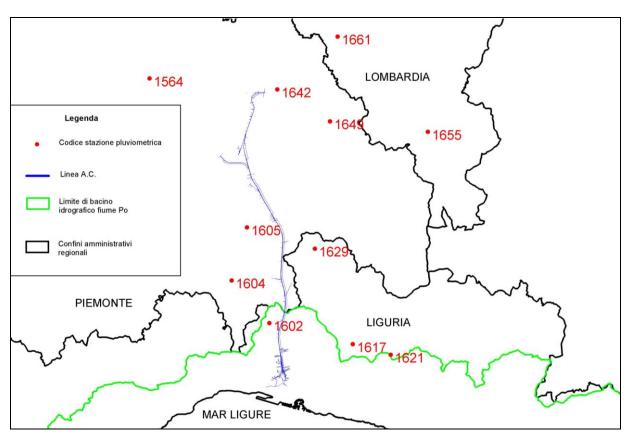


Figura 3: Ubicazione delle stazioni pluviometriche considerate nel bacino padano.

Si sono pertanto ottenuti i valori di a e n, caratteristici delle curve di possibilità pluviometrica, per il tempo di ritorno di 100 anni. Si riportano di seguito i valori di tali parametri per durate inferiori all'ora e per tempi di ritorno 10, 20, 50, 100, 200 e 500 anni nella tratta dal km 33+200 al km 43+500.

	a_10	n_10	a_20	n_20	a_50	n_50	a_100	n_100	a_200	n_200	a_500	n_500
0.25 (ora)	52.63	0.335	62.87	0.333	76.26	0.328	86.25	0.324	96.08	0.321	109.15	0.317
0.50 (ora)	53.17	0.335	63.47	0.333	76.88	0.328	86.95	0.324	96.84	0.321	110.02	0.317
1 (ora)	53.33	0.337	63.68	0.334	77.14	0.329	87.28	0.325	97.23	0.322	110.47	0.318

Tabella 2: Parametri a e n di durate inferiori all'ora per tempi di ritorno 10,20,50,100,200,500 anni nella tratta dal km 33+200 al km 43+500.

La curva di possibilità pluviometrica caratteristica della zona in esame per TR=100 anni diventa pertanto:

$$I = 87.28 \times t^{0.325-1}$$
.

Note le curve di possibilità pluviometrica, si sono infine calcolate le portate al colmo utilizzando la formula di Turazza.

Foglio 12 di 18

4.2. Calcolo delle portate di piena

Per la determinazione dei valori delle portate di piena sono stati impiegati modelli matematici ed empirici idonei ad interpretare la fenomenologia afflusso pluviometrico - deflusso superficiale.

La valutazione del tempo di corrivazione dei bacini in oggetto, inteso come tempo che intercorre fra l'inizio dell'intumescenza (ammesso coincidente con l'inizio della precipitazione) e il momento in cui l'intero bacino contribuisce al deflusso sulla sezione di chiusura, è stata eseguita con riferimento alla formula di Pezzoli:

$$\tau = 0.055 \frac{L}{i^{0.5}}$$
 [h]

con: L = lunghezza dell'asta del bacino [km];

i = pendenza dell'asta.

La valutazione della portata di piena di progetto è stata effettuata con riferimento a modelli matematici cinematici di tipo puntuale e con specifico riferimento alla Formula razionale di Turazza. Tale formula fornisce la seguente espressione per il valore della portata di picco:

$$Q = \frac{C \cdot I \cdot A}{3.60}$$

Essendo: Q = portata al colmo in m³/s;

C = coefficiente di deflusso;

I = intensità di pioggia critica in mm/ora, ovvero della pioggia di durata pari al tempo di corrivazione del bacino in esame e Tr = 100 anni (come da prescrizioni RFI);

 $A = superficie in km^2$.

Il coefficiente di deflusso C della formula del Turazza è stato posto pari a:

- 1 per piattaforma stradale e ferroviaria;
- 0,7 sulle scarpate delle trincee e dei rilevati;
- 0,25, adottato in analogia al valore utilizzato nel progetto definitivo approvato, per il bacino esterno alla piattaforma dal momento che lo stesso risulta essere essenzialmente rappresentato da campi coltivati pianeggianti e da un terreno caratterizzato da un'elevata permeabilità.

Foglio 13 di 18

WBS	Posizione	TRATTO	pk inizio	pk fine	Semi-larghezza piattaforma ferroviaria	Sup.	Pendenza	Tempo di ingresso in rete (o tempo di di ruscellamento)	Lunghezza tubazione	Velocità (di percorrenza)	Tempo di percorrenza	Tempo di corrivazione	intensità di pioggia	Coeff. di deflusso	Portata di calcolo
					B/2	Α	i	te	L	V_{p}	tρ	tc	ic	၁	Ø
			[m]	[m]	[m]	[md]	[%]	[s]	[m]	[w/s]	[s]	[s]	[m/h]	[-]	[s/ɔm]
		Cc_T13_1a	39500	40200	7,35	5145	12	1265	200	4	175	1440	161,99	1,00	0,23
		Tp_INVU_1a	40445	40418		780	5	300	42	1,32	31,82	331,82	436,33	1,00	60'0
		Tp_T13_16	39500	40794											0,33
	J.	Cc_T13_1b	40200	40315	7,35	845,25	12	208	115	2,5	46	254	522,78	1,00	0,12
<u> </u>	Lato Binario	Tp_T13_1b	40315	40787	7,35	144,55	12	36	20	1,21	16	52	1528,42	1,00	90'0
	<u> </u>	Tp_INVU_1ra	40357	40338		740	2	300	18	1,32	14	314	453,24	1,00	60'0
		Tp_T13_1-7	40315	40787		5054,45	12	300	472	2,87	164	464	347,72	1,00	0,49
		Cc_T13_3	39500	40795	7	9065	12	2341	1295	2,09	620	2960	99,60	1,00	0,25
		Tc_T13_3f													0,25
TR13		Cc_T13_2a	39500	40200	7,35	5145,00	12,00	1265,24	700,00	4,00	175,00	1440,24	161,99	1,00	0,23
		Tp_INVV_1a	40445	40418		780,00	2,00	300,000	42,00	1,32	31,82	331,82	436,33	1,00	60'0
		Tp_T13_17	39500	40794											0,33
	oironio oto	Cc_T13_2b	40200	40795	7,35	845,25	12	207,86	115,00	2,50	46,00	253,86	522,78	1,00	0,12
j	Dispari	Tp_T13_2b	40315	40787	7,35	144,55	12	35,55	19,67	1,21	16,25	51,80	1528,42	1,00	90'0
		Tp_INVV_1ra	40357	40338		740	2	300,000	18,00	1,32	13,64	313,64	453,24	1,00	60'0
		Tp_T13_8-15	40315	40787		5054,45	12	300,00	472,00	2,87	164,46	464,46	347,72	1,00	0,49
		Cc_T13_4	39500	40795	7	9065	12	2340,69	1295,00	2,09	619,62	2960,31	99,60	1,00	0,25
<u>a</u>	Centro piattaforma	Cc_T13_5	40788	40794	7,35	88,2	12	11	9	1,01	9	17	3270,31	1,00	80'0

Tabella 3: Calcolo delle portate afferente ai vari tratti di canalette.

Foglio 14 di 18

5. VERIFICA DEI COLLETTORI DI SMALTIMENTO

I valori di portata di progetto sono stati utilizzati per la verifica idraulica delle sezioni dei fossi di guardia e delle canalette. È' stata condotta una verifica in moto uniforme utilizzando la formula di *Chezy*:

$$Q = \chi \cdot \Omega \sqrt{Ri}$$

Dove: Ω è la sezione bagnata [m²];

i è la pendenza [m/m];

R è il raggio idraulico [m];

 χ è dato dalla formula $\chi = K \cdot R^{1/6}$ dove K è il coefficiente di *Gaukler-Strickler*.

Il coefficiente di scabrezza di Strickler è stato assunto pari a:

- 80 m^{1/3}/s per i manufatti in calcestruzzo;
- 40 m^{1/3}/s per i canali in terra.
- 105 m^{1/3}/s per le tubazioni in PEAD

Verifica canalette rettangolari

Per le canalette a sezione rettangolare 0.5mx0.5m, poste esternamente alla linea, (Cc_T13_1b; Cc_T13_2b), e per la canaletta al centro della piattaforma (Cc_T13_5;) la portata massima convogliata è 0.12mc/s. Nella figura seguente si riportano i parametri idraulici della verifca di dette canalette.

DATI GEOMETRICI

● Rettangolare
SEZIONE: ○ Trapezia
○ Circolare

LARGHEZZA: 0.5 m

RISULTATI

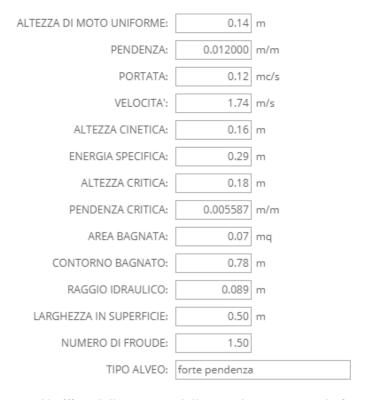


Figura 7: Verifica della portata delle canalette rettangolari

Foglio 16 di 18

Verifica fossi di guardia trapezi

Per i fossi di guardia a sezione trapezia, posti al di sopra della trincea, (Cc_T13_3; Cc_T13_4), la portata massima convogliata è 0.25mc/s. Nella figura seguente si riportano i parametri idraulici della verifca dei suddetti fossi.

Figura 8: Verifica della portata dei fossi di guardia trapezi

Verifica tubazioni

Per i collettori DN1200 (Tp_T13_16; Tp_T13_17), la massima portata tra quelle calcolate è 0.338mc/s, imponendo un grado di riempimento massimo del 70%, si ottiene che la capacità di portata della tubazione, di gran lunga superiore a quella in essa convogliata.

Calcolo portata di una condotta circolare a pelo libero

Formula di Chezy con coefficiente di scabrezza di Gauckler-Strickler

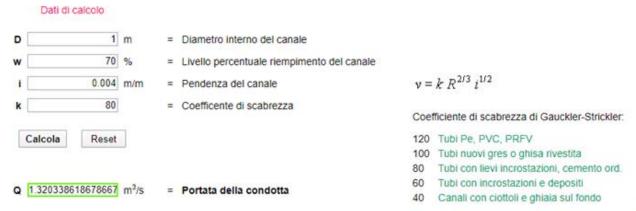


Figura 9: Verifica della portata della Condotta DN1200

Per le tubazioni DN800 (Tp_T13_1-7; Tp_T13_8-15; Tp_T13_f), la massima portata tra quelle calcolate è 0.09mc/s, imponendo un grado di riempimento massimo del 70%, si ottiene che la capacità di portata della tubazione, di gran lunga superiore a quella in essa convogliata.

Calcolo portata di una condotta circolare a pelo libero

Formula di Chezy con coefficiente di scabrezza di Gauckler-Strickler

Dati di calcolo 0.678 m = Diametro interno del canale = Livello percentuale riempimento del canale $v = k R^{2/3} i^{1/2}$ 0.012 m/m = Pendenza del canale = Coefficente di scabrezza Coefficiente di scabrezza di Gauckler-Strickler. Calcola 120 Tubi Pe, PVC, PRFV Reset 100 Tubi nuovi gres o ghisa rivestita Tubi con lievi incrostazioni, cemento ord. Tubi con incrostazioni e depositi Q 0.811319314616445 m3/s = Portata della condotta 40 Canali con ciottoli e ghiaia sul fondo

Figura 10: Verifica della portata della Condotta DN800

Per le tubazioni DN315 (Tp_T13_1b; Tp_T13_2b), la massima portata tra quelle calcolate è 0.06mc/s, imponendo un grado di riempimento massimo del 70%, si ottiene che la capacità di portata della tubazione, superiore a quella in essa convogliata.

Calcolo portata di una condotta circolare a pelo libero

Formula di Chezy con coefficiente di scabrezza di Gauckler-Strickler

Dati di calcolo 0.2776 m = Diametro interno del canale 70 % = Livello percentuale riempimento del canale $v = k R^{2/3} i^{1/2}$ 0.012 m/m = Pendenza del canale 80 = Coefficente di scabrezza Coefficiente di scabrezza di Gauckler-Strickler. Calcola Reset 120 Tubi Pe, PVC, PRFV 100 Tubi nuovi gres o ghisa rivestita 80 Tubi con lievi incrostazioni, cemento ord. 60 Tubi con incrostazioni e depositi Q 0.074994812226063 m3/s = Portata della condotta Canali con ciottoli e ghiaia sul fondo

Figura 11: Verifica della portata della Condotta DN315