

DIREZIONE CENTRALE PROGRAMMAZIONE PROGETTAZIONE

PA 12/09

CORRIDOIO PLURIMODALE TIRRENICO - NORD EUROPA
ITINERARIO AGRIGENTO - CALTANISSETTA - A19
S.S. N° 640 "DI PORTO EMPEDOCLE"
AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001
Dal km 44+000 allo svincolo con l'A19

PROGETTO ESECUTIVO

Contraente Generale:

OPERE IDRAULICHE OPERE IDRAULICHE SVINCOLI Svincolo Delia Sommatino Rampa 1

Tombino DN 1500 pr.0+175.51 - Relazione di calcolo

Codice Unico Progetto (CUP): F91B09000070001																					
Codice Elaborato:																					
PA12_09 - E 2 4 6 T O 2 3 9 T V 0 3 H C L 0 0 9					A	Scala -	i.														
F																				-	
Е																					
D																					
С																					
В																					
Α	Aprile 2011			Е	MISSI	ONE	\wedge			A. S.	ALVA	.GO	Α	. TUR	so		М.	LITI		P. P	AGLINI
REV.	DATA DESCRIZIONE TO			REDATTO VERIFICATO APP			۱PPR	TAVO	О	AUTO	RIZZATO										
Respons	Responsabile del procedimento: Ing. MASSIMILIANO FIRENZI																				
					1(MOH	1												
Il Consulante Consulan					oi lovorii																

Il Consulente Specialista: 5
OROME INGENTALIO Adriano
OROME INGENTALIO

RELAZIONE TECNICA E DI CALCOLO TOMBINI IDRAULICI

SOMMARIO

1	PREMESSA	2
2	NORMATIVA DI RIFERIMENTO	3
3	CALCOLI STRUTTURALI E MATERIALI IMPIEGATI	4
	3.1 PARAMETRI SISMICI CONSIDERATI	4
	3.2 PARAMETRI GEOTECNICI E SOVRACCARICHI	4
	3.3 CARATTERISTICHE DEI MATERIALI IMPIEGATI	4
	3.4 Criteri di durabilità: classe del calcestruzzo	5
	3.5 Combinazioni delle azioni sulla costruzione	5
	3.6 Durabilità	6
4	METODO DI CALCOLO	7
	4.1 VALUTAZIONE DEI RISULTATI E GIUDIZIO MOTIVATO SULLA LORO ACCETTABILITÀ.	8
5	ΓABULATI DI CALCOLO	9
	ALLEGATO 1: LEGENDA ALLEGATI	10
	ALLEGATO 2: MANUFATTO DI IMBOCCO1	18
	ALLEGATO 3: MANUFATTO INTERMEDIO2	25
	ALLEGATO 4: MANUFATTO DI SBOCCO	32

RELAZIONE TECNICA E DI CALCOLO TOMBINI IDRAULICI

1 PREMESSA

La presente relazione ha per oggetto il calcolo e la verifica dei manufatti in calcestruzzo armato gettati in opera connessi con la realizzazione del tombino DN1500 ARMCO progr. 0+175.51 (Svincolo Delia Sommatino – Rampa 1) previsto nell'ambito dell'adeguamento a quattro corsie dell'itinerario Agrigento – Caltanissetta - A19 / Strada Statale n° 640 "di Porto Empedocle" nel tratto dal km 44+000 allo svincolo con l'A19.

In osservanza delle Nuove Norme Tecniche per le Costruzioni di cui al DM 14/01/2008. La struttura è stata verificata in bassa duttilità, in Classe d'uso IV e per una vita nominale pari a 50 anni.

2 NORMATIVA DI RIFERIMENTO

La progettazione delle strutture suddette è stata condotta secondo i criteri della Scienza delle Costruzioni ed in accordo con la normativa vigente ed in particolare con:

- Legge 5.11.1971 n° 1086: "Disciplina delle opere in conglomerato cementizio armato, normale e precompresso ed a struttura metallica"
- Legge n° 64 del 2 febbraio 1974 "Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche"
- DM 14/01/2008 "Nuove norme tecniche per le costruzioni".
- Circolare 2 febbraio 2009, n. 617 Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni" di cui al decreto ministeriale 14 gennaio 2008.

RELAZIONE TECNICA E DI CALCOLO TOMBINI IDRAULICI

3 CALCOLI STRUTTURALI E MATERIALI IMPIEGATI

3.1 Parametri sismici considerati

Le coordinate geografiche dei manufatti e i relativi parametri sismici sono riportati nei relativi tabulati.

3.2 Parametri geotecnici e sovraccarichi

A vantaggio di sicurezza nei calcoli sono stati assunti i seguenti parametri geotecnici

 $\gamma = 2000 \text{ kg/cm}^3$

 $\phi = 30^{\circ}$

 $\mathbf{c} = 0 \text{ Kg/cm}^2$

Coeff. di Winkler: 5 kg/m³

Livello falda: P.C.

- γ peso dell'unità di volume naturale (g/cm³)
- φ angolo di attrito efficace (°)
- c coesione efficace (Kg/cm²)

A vantaggio di sicurezza è stato considerato un sovraccarico accidentale a quota piano campagna pari a 2000kg/m².

Per il calcolo delle spinte è stato adottato un coefficiente di spinta a riposo.

3.3 Caratteristiche dei materiali impiegati

Per quanto riguarda i materiali, si sono assunte dappertutto, nel calcolo, le seguenti caratteristiche:

- Calcestruzzo: classe C32/40 per le strutture in elevazione;
- Acciaio per c.a.: barre ad aderenza migliorata B450C controllato.

3.4 Criteri di durabilità: classe del calcestruzzo

Durabilità dell'opera

Il copriferro è la distanza tra la superficie esterna dell'armatura (inclusi staffe, collegamenti rinforzi superficiali se presenti) più prossima alla superficie del calcestruzzo e la superficie stessa del calcestruzzo. Il copriferro nominale, specificato sui disegni esecutivi, rappresenta la distanza minima che deve essere assicurata al fine di garantire la corretta trasmissione delle forze di aderenza ed un'adeguata protezione dell'acciaio contro la corrosione; in aggiunta va considerata una tolleranza costruttiva da aggiungere al copriferro minimo per tenere in conto gli eventuali scostamenti negativi. Il valore raccomandato è di 10mm, riducibile a 5mm se l'esecuzione dell'opera è sottoposta ad un sistema di assicurazione della qualità nel quale siano incluse le misure dei copriferri.

Scelte progettuali

I manufatti in esame si trovano ad una distanza dalla costa sufficiente da ritenere che non ci siano problemi d'esposizione a cloruri presenti nell'acqua di mare. La classe di esposizione quindi ricade nella categoria 6 "Ambienti chimici aggressivi":

• XA2 – Bagnato, raramente asciutto (Parti di strutture di contenimento liquidi, fondazioni).

E' stato assunto un copri ferro pari a 4 cm.

3.5 Combinazioni delle azioni sulla costruzione

Le azioni definite come al § 2.5.1 delle NTC 2008 sono state combinate in accordo a quanto definito al § 2.5.3. applicando i coefficienti di combinazione come di seguito definiti:

Categoria/Azione variabile	Ψ_{0j}	Ψ _{1j}	Ψ _{2j}
Categoria A Ambienti ad uso residenziale	0,7	0,5	0,3
Categoria B Uffici	0,7	0,5	0,3

RELAZIONE TECNICA E DI CALCOLO TOMBINI IDRAULICI

Categoria/Azione variabile	Ψ_{0j}	Ψ _{1j}	Ψ 2j
Categoria C Ambienti suscettibili di affollamento	0,7	0,7	0,6
Categoria D Ambienti ad uso commerciale	0,7	0,7	0,6
Categoria E Biblioteche, archivi, magazzini, ambienti uso industriale	1,0	0,9	0,8
Categoria F Rimesse e parcheggi (autoveicoli di peso ≤ 30 kN)	0,7	0,7	0,6
Categoria G Rimesse e parcheggi (autoveicoli di peso > 30 kN)	0,7	0,5	0,3
Categoria H Coperture	0,0	0,0	0,0
Vento	0,6	0,2	0,0
Neve (a quota $\leq 1000 \text{ m s.l.m.}$)	0,5	0,2	0,0
Neve (a quota > 1000 m s.l.m.)	0,7	0,5	0,2
Variazioni termiche	0,6	0,5	0,0

Tabella 2.5.I – Valori dei coefficienti di combinazione

I valori dei coefficienti parziali di sicurezza γ_{Gi} e γ_{Qj} utilizzati nei calcoli sono dati nelle NTC 2008 in § 2.6.1, Tab. 2.6.I.

3.6 Durabilità

Per garantire la durabilità della struttura sono state prese in considerazioni opportuni stati limite di esercizio (**SLE**) in funzione dell'uso e dell'ambiente in cui la struttura dovrà vivere limitando sia gli stati tensionali che nel caso delle opere in calcestruzzo anche l'ampiezza delle fessure. La definizione quantitativa delle prestazioni, la classe di esposizione e le verifiche sono riportati nel fascicolo delle elaborazioni numeriche allegate.

Inoltre per garantire la durabilità, così come tutte le prestazioni attese, è necessario che si ponga adeguata cura sia nell'esecuzione che nella manutenzione e gestione della struttura e si utilizzino tutti gli accorgimenti utili alla conservazione delle caratteristiche fisiche e dinamiche dei materiali e delle strutture La qualità dei materiali e le dimensioni degli elementi sono coerenti con tali obiettivi.

Durante le fasi di costruzione il direttore dei lavori implementerà severe procedure di controllo sulla qualità dei materiali, sulle metodologie di lavorazione e sulla conformità delle opere eseguite al progetto esecutivo nonché alle prescrizioni contenute nelle "Norme Tecniche per le Costruzioni" DM 14.01.2008. e relative Istruzioni.

4 METODO DI CALCOLO

Le analisi e le verifiche sono state condotte con il metodo degli stati limite (SLU ed SLE) utilizzando i coefficienti parziali della normativa di cui al DM 14.01.2008 come in dettaglio specificato negli allegati tabulati di calcolo.

L'analisi delle sollecitazioni è stata effettuata in campo elastico lineare, per l'analisi sismica si è effettuata un'analisi dinamica modale.

CODICE DI CALCOLO, SOLUTORE E AFFIDABILITA' DEI RISULTATI:

Come previsto al punto 10.2 delle norme tecniche di cui al D.M. 14.01.2008 l'affidabilità del codice utilizzato è stata verificata sia effettuando il raffronto tra casi prova di cui si conoscono i risultati esatti sia esaminando le indicazioni, la documentazione ed i test forniti dal produttore stesso.

La S.T.S. s.r.l. a riprova dell'affidabilità dei risultati ottenuti fornisce direttamente on-line i test sui casi prova. Il software è inoltre dotato di filtri e controlli di autodiagnostica che agiscono a vari livelli sia della definizione del modello che del calcolo vero e proprio. I controlli vengono visualizzati, sotto forma di tabulati, di videate a colori o finestre di messaggi.

In particolare il software è dotato dei seguenti filtri e controlli:

- Filtri per la congruenza geometrica del modello di calcolo generato
- Controlli a priori sulla presenza di elementi non connessi, interferenze, mesh non congruenti o non adeguate.
- Filtri sulla precisione numerica ottenuta, controlli su eventuali mal condizionamenti delle matrici, verifica dell'indice di condizionamento.

- Controlli sulla verifiche sezionali e sui limiti dimensionali per i vari elementi strutturali in funzione della normativa utilizzata.
- Controlli e verifiche sugli esecutivi prodotti.

4.1 Valutazione dei risultati e giudizio motivato sulla loro accettabilità

Il software utilizzato permette di modellare analiticamente il comportamento fisico della struttura utilizzando la libreria disponibile di elementi finiti.

Le funzioni di visualizzazione ed interrogazione sul modello permettono di controllare sia la coerenza geometrica che le azioni applicate rispetto alla realtà fisica.

Inoltre la visualizzazione ed interrogazione dei risultati ottenuti dall'analisi quali sollecitazioni, tensioni, deformazioni, spostamenti, reazioni vincolari hanno permesso un immediato controllo con i risultati ottenuti mediante schemi semplificati di cui è nota la soluzione in forma chiusa nell'ambito della Scienza delle Costruzioni.

Si è inoltre controllato che le reazioni vincolari diano valori in equilibrio con i carichi applicati, in particolare per i valori dei taglianti di base delle azioni sismiche si è provveduto a confrontarli con valori ottenuti da modelli SDOF semplificati.

Le sollecitazioni ottenute sulle travi per i carichi verticali direttamente agenti sono stati confrontati con semplici schemi a trave continua.

Per gli elementi inflessi di tipo bidimensionale si è provveduto a confrontare i valori ottenuti dall'analisi FEM con i valori di momento flettente ottenuti con gli schemi semplificati della Tecnica delle Costruzioni.

Si è inoltre verificato che tutte le funzioni di controllo ed autodiagnostica del software abbiano dato esito positivo.

5 TABULATI DI CALCOLO

Alla presente relazione sono allegati degli elaborati dedicati ai singoli manufatti in cui, tra l'altro, sono riportati di volta in volta i tabulati di calcolo relativi al singolo manufatto.

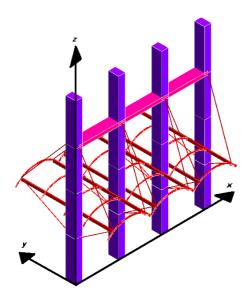
Si precisa che il software utilizzato, per quanto riguarda gli elementi bidimensionali, effettua le verifiche considerando presenti nelle sezioni di calcolo i minimi di armatura necessari al rispetto delle verifiche strutturali, salvo poi verificare l'effettiva presenza di un quantitativo maggiore di armatura.

Tutte le verifiche risultano soddisfatte

RELAZIONE TECNICA E DI CALCOLO TOMBINI IDRAULICI

ALLEGATO 1: LEGENDA ALLEGATI

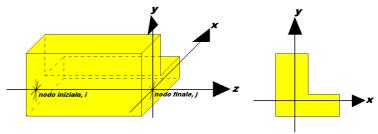
TABULATI DI CALCOLO


LEGENDA

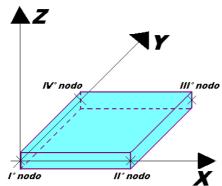
Sono illustrati con la presente i risultati dei calcoli che riguardano il progetto delle armature, la verifica delle tensioni di lavoro dei materiali e del terreno.

• SISTEMI DI RIFERIMENTO

1) SISTEMA GLOBALE DELLA STRUTTURA SPAZIALE


Il sistema di riferimento globale è costituito da una terna destra di assi cartesiani ortogonali (O-XYZ) dove l'asse Z rappresenta l'asse verticale rivolto verso l'alto. Le rotazioni sono considerate positive se concordi con gli assi vettori:

RELAZIONE TECNICA E DI CALCOLO TOMBINI IDRAULICI


2) SISTEMA LOCALE DELLE ASTE

Il sistema di riferimento locale delle aste, inclinate o meno, è costituito da una terna destra di assi cartesiani ortogonali che ha l'asse Z coincidente con l'asse longitudinale dell'asta ed orientamento dal nodo iniziale al nodo finale, gli assi X ed Y sono orientati come nell'archivio delle sezioni:

3) SISTEMA LOCALE DELL'ELEMENTO SHELL

Il sistema di riferimento locale dell'elemento shell è costituito da una terna destra di assi cartesiani ortogonali che ha l'asse X coincidente con la direzione fra il primo ed il secondo nodo di input, l'asse Y giacente nel piano dello shell e l'asse Z in direzione dello spessore:

• UNITÀ DI MISURA

Si adottano le seguenti unità di misura:

[lunghezze] = m

[forze] = kgf / daN

[tempo] = sec

 $[temperatura] = ^{\circ}C$

RELAZIONE TECNICA E DI CALCOLO TOMBINI IDRAULICI

• CONVENZIONI SUI SEGNI

I carichi agenti sono:

- 1) Carichi e momenti distribuiti lungo gli assi coordinati;
- 2) Forze e coppie nodali concentrate sui nodi.

Le forze distribuite sono da ritenersi positive se concordi con il sistema di riferimento locale dell'asta, quelle concentrate sono positive se concordi con il sistema di riferimento globale.

I gradi di libertà nodali sono gli omologhi agli enti forza, e quindi sono definiti positivi se concordi a questi ultimi.

• SPECIFICHE CAMPI TABELLA DI STAMPA

Si riporta di seguito la spiegazione delle sigle usate nella tabella di stampa dell'archivio shell.

Sezione N.ro : Numero identificativo dell'archivio sezioni (dal numero 601

in poi)

Spessore : Spessore dell'elemento

Base foro : Base di un eventuale foro sull'elemento (zero nel caso in cui

il foro non sia presente)

Altezza foro : Altezza di un eventuale foro sull'elemento (zero nel caso in

cui il foro non sia presente)

Codice : Codice identificativo della posizione del foro (1 = al)

centro; 0 = qualunque posizione)

Ascissa foro : Ascissa dello spigolo inferiore sinistro del foro

Ordinata : Ordinata dello spigolo inferiore sinistro del foro

foro

Tipo mater. : Numero di archivio dei materiali shell

RELAZIONE TECNICA E DI CALCOLO TOMBINI IDRAULICI

Tipo elem. : Schematizzazione dell'elemento a livello di calcolo:

0 = Lastra - Piastra

1 = Lastra 2 = Piastra

SPECIFICHE CAMPI TABELLA DI STAMPA

Si riporta appresso la spiegazione delle sigle usate nelle tabelle riassuntive dei criteri di progetto per le aste in elevazione, per quelle di fondazione, per i pilastri e per i setti.

Crit.N.ro : Numero indicativo del criterio di progetto

Elem. : Tipo di elemento strutturale

%Rig.Tors. : Percentuale di rigidezza torsionale

Mod. E : Modulo di elasticità normale

Poisson : Coefficiente di Poisson

Sgmc : Tensione massima di esercizio del calcestruzzo

tauc0 : Tensione tangenziale minima tauc1 : Tensione tangenziale massima

Sgmf : Tensione massima di esercizio dell'acciaio

Om. : Coefficiente di omogeneizzazione

Gamma : Peso specifico del materiale

Copristaffa : Distanza tra il lembo esterno della staffa ed il lembo esterno della

sezione in calcestruzzo

Fi min. : Diametro minimo utilizzabile per le armature longitudinali

Fi st. : Diametro delle staffe

Lar. st. : Larghezza massima delle staffe

Psc : Passo di scansione per i diagrammi delle caratteristiche

Pos.pol. : Numero di posizioni delle armature per la verifica di sezioni

poligonali

Darm. : Passo di incremento dell'armatura per la verifica di sezioni

poligonali

Iteraz. : Numero massimo di iterazioni per la verifica di sezioni poligonali

Def. Tag. : Deformabilità a taglio (si, no)

%Scorr.Sta : Percentuale di scorrimento da far assorbire alle staffe

f.

P.max staffe : Passo massimo delle staffe

RELAZIONE TECNICA E DI CALCOLO TOMBINI IDRAULICI

P.min.staffe : Passo minimo delle staffe

tMt min. : Tensione di torsione minima al di sotto del quale non si arma a

torsione

Ferri parete : Presenza di ferri di parete a taglio

Ecc.lim. : Eccentricità M/N limite oltre la quale la verifica viene effettuata a

flessione pura

Tipo ver. : Tipo di verifica (0 = solo Mx; 1 = Mx e My separate; 2 = deviata)

Fl.rett. : Flessione retta forzata per sezioni dissimmetriche ma

simmetrizzabili (0 = no; 1 = si)

Den.X pos. : Denominatore della quantità q^*l^*l per determinare il momento Mx

minimo per la copertura del diagramma positivo

Den.X neg. : Denominatore della quantità q*l*l per determinare il momento Mx

minimo per la copertura del diagramma negativo

Den.Y pos. : Denominatore della quantità q*l*l per determinare il momento My

minimo per la copertura del diagramma positivo

Den.Y neg. : Denominatore della quantità q*l*l per determinare il momento My

minimo per la copertura del diagramma negativo

%Mag.car. : Percentuale di maggiorazione dei carichi statici della prima

combinazione di carico

Linear. : Coefficiente descrittivo del comportamento dell'asta:

1 = comportamento lineare sia a trazione che a compressione

2 = comportamento non lineare sia a trazione che a compressione.

3 = comportamento lineare solo a trazione.

4 = comportamento non lineare solo a trazione.

5 = comportamento lineare solo a compressione.

6 = comportamento non lineare solo a compressione.

Appesi : Flag di disposizione del carico sull'asta (1 = appeso, cioè applicato

all'intradosso; 0 = non appeso, cioè applicato all'estradosso)

Min. : Verifica minimo T/sigma (1 = si; 0 = no)

T/sigma

Verif.Alette : *Verifica alette travi di fondazione* (1 = si; 0 = no)

Kwinkl. : Costante di sottofondo del terreno

SPECIFICHE CAMPI TABELLA DI STAMPA

Si riporta di seguito la spiegazione delle sigle usate nella tabella di stampa dell'input piastre.

Piastra N.ro : Numero identificativo della piastra in esame

Filo 1 : Numero del filo fisso su cui è stato posto il primo spigolo

della piastra

Filo 2 : Numero del filo fisso su cui è stato posto il secondo spigolo

della piastra

Filo 3 : Numero del filo fisso su cui è stato posto il terzo spigolo

della piastra

Filo 4 : Numero del filo fisso su cui è stato posto il quarto spigolo

della piastra

Tipo carico : Numero di archivio delle tipologie di carico

Quota filo 1 : Quota dello spigolo della piastra inserito in corrispondenza

del primo filo fisso

Quota filo 2 : Quota dello spigolo della piastra inserito in corrispondenza

del secondo filo fisso

Quota filo 3 : Quota dello spigolo della piastra inserito in corrispondenza

del terzo filo fisso

Quota filo 4 : Quota dello spigolo della piastra inserito in corrispondenza

del quarto filo fisso

Tipo sezione : Numero identificativo della sezione della piastra

Spessore : Spessore della piastra

Kwinkler : Costante di Winkler del terreno su cui poggia la piastra

(zero nel caso di piastre in elevazione)

Tipo mater. : Numero di archivio dei materiali shell

• SPECIFICHE CAMPI TABELLA DI STAMPA

Si riporta appresso la spiegazione delle sigle usate nel tabulato di stampa dei carichi e vincoli nodali.

Filo : Numero identificativo del filo fisso

Quo N. : Numero identificativo della quota di riferimento secondo la

RELAZIONE TECNICA E DI CALCOLO TOMBINI IDRAULICI

codifica dell'input quote

D.Quo. : Delta quota, ovvero scostamento della quota del nodo dalla

quota di riferimento

P. Sis : Piano sismico di appartenenza del nodo in esame. È

possibile avere più piani sismici alla stessa quota di

impalcato

Codi : Codice sintetico identificativo del tipo di vincolo secondo la

codifica appresso riportata:

I = Incastro

A = Automatico

C = Cerniera sferica

E = Esplicito

Il vincolo di tipo 'A', cioè' automatico, corrisponde ad un tipo di vincolo scelto dal programma in funzione delle varie situazioni strutturali riscontrate. Per valutare quale tipo di vincolo è stato imposto da CDSWin in questi casi è necessario riferirsi ai dati delle successive colonne della

presente tabella di stampa

Tx, Ty, Tz : Valori delle rigidezze alla traslazione imposte al nodo in

esame. Il valore -1 indica per convenzione che quella particolare traslazione è impedita, mentre lo 0 indica che

non ha alcun vincolo

Rx, Ry, Rz : Valori delle rigidezze alla rotazione imposte al nodo in

esame. Il valore -1 indica per convenzione che quella particolare rotazione è impedita, mentre lo 0 indica che

non ha alcun vincolo

Fx, Fy, Fz : Valori delle forze concentrate applicate al nodo in esame

Mx, My, Mz : Valori delle coppie concentrate applicate al nodo in esame

• SPECIFICHE CAMPI TABELLE DI STAMPA SHELL

<u>SISTEMA DI RIFERIMENTO LOCALE</u> (s.r.l.): Il sistema di riferimento locale dell'elemento shell è così definito:

Origine : I° punto di inserimento dello shell

Asse 1 : Asse X nel s.r.l., definito dal punto origine e dal II° punto di

inserimento, nel verso di quest'ultimo

Piano12 : Piano XY nel s.r.l., definito dai punti origine, II° e III° di

RELAZIONE TECNICA E DI CALCOLO TOMBINI IDRAULICI

	inserimento
:	Asse Y nel s.r.l., ottenuto nel piano 12 con una rotazione
	antioraria di 90° dell'asse X intorno al punto origine, in

modo che l'asse I-II si sovrapponga all'asse I-III con un

angolo<180°

Asse 3 Asse Z nel s.r.l., ortogonale al piano 12, in modo da

formare una terna destra con gli assi 1 e 2

Le tensioni di lastra (S) sono costanti lungo lo spessore. Le tensioni di piastra (M) variano linearmente lungo lo spessore, annullandosi in corrispondenza del piano medio (diagramma emisimmetrico o "a farfalla"). I valori del tensore degli sforzi sono riferiti alla faccia positiva (superiore nel s.r.l.) di normale 3 (esempio: Xij tensione X agente sulla faccia di normale i e diretta lungo j).

Le altre grandezze descritte di seguito si riferiscono a ciascun nodo dell'elemento bidimensionale:

: numero dell'elemento bidimensionale **Shell Nro**

nodo N.ro : numero del nodo dell'elemento bidimensionale a cui sono

riferite le tensioni S di lastra e M piastra

: tensione normale di lastra **S11 S22** : tensione normale di lastra

S12 tensione tangenziale di lastra (S12 = S21)

M11 tensione normale di piastra sulla faccia positiva M22tensione normale di piastra sulla faccia positiva tensione tangenziale di piastra sulla faccia positiva M12

VERIFICHE A FESSURAZIONE

Asse 2

Si precisa che nel campo dei tabulati dedicato ai risultati della verifica a fessurazione, quando non si aprono fessure e quindi non esistono momenti flettenti agenti sugli elementi bidimensionali tali da causare apertura delle fessure, si leggeranno tutti valori pari a 0.

ALLEGATO 2: MANUFATTO DI IMBOCCO

TABULATI DI CALCOLO

DATI GENERALI DI STRUTTURA

DATI GENERALI	
Massima dimens. dir. X (m) 15,00 Massima dimens. dir. Y (m) 15,00	Altezza edificio (m) 6,00 Differenza temperatura(°C) 15
PARAMETRI	I SISMICI
Vita Nominale (Anni) 50 Longitudine Est (Grd) 13,91250 Categoria Suolo C Sistema Costruttivo Dir.1 C.A. Regolarita' in Altezza SI (KR=1) Direzione Sisma (Grd) 0	Classe d' Uso QUARTA Latitudine Nord (Grd) 37,42140 Coeff. Condiz. Topogr. 1,00000 Sistema Costruttivo Dir.2 C.A. Regolarita' in Pianta SI Sisma Verticale ASSENTE
PARAMETRI SPETTRO ELASTICO	O - SISMA S.L.O.
Probabilita' Pvr 0,81 Accelerazione Ag/g 0,03 Fo 2,51 Fattore Stratigrafia 'S' 1,50 Periodo TC (sec.) 0,43	Periodo di Ritorno Anni 60,00 Periodo T'c (sec.) 0,26 Fv 0,61 Periodo TB (sec.) 0,14 Periodo TD (sec.) 1,73
PARAMETRI SPETTRO ELASTICO	O - SISMA S.L.D.
Probabilita' Pvr 0,63 Accelerazione Ag/g 0,04 Fo 2,53 Fattore Stratigrafia 'S' 1,50 Periodo TC (sec.) 0,48	Periodo di Ritorno Anni 101,00 Periodo T'c (sec.) 0,31 Fv 0,67 Periodo TB (sec.) 0,16 Periodo TD (sec.) 1,75
PARAMETRI SPETTRO ELASTICO	O - SISMA S.L.V.
Probabilita' Pvr 0,10 Accelerazione Ag/g 0,08 Fo 2,67 Fattore Stratigrafia 'S' 1,50 Periodo TC (sec.) 0,65	Periodo di Ritorno Anni 949,00 Periodo T'c (sec.) 0,49 Fv 1,02 Periodo TB (sec.) 0,22 Periodo TD (sec.) 1,92
PARAMETRI SPETTRO ELASTICO	O - SISMA S.L.C.
Probabilita' Pvr 0,05 Accelerazione Ag/g 0,10 Fo 2,76 Fattore Stratigrafia 'S' 1,50 Periodo TC (sec.) 0,68	Periodo di Ritorno Anni 1950,00 Periodo T'c (sec.) 0,53 Fv 1,16 Periodo TB (sec.) 0,23 Periodo TD (sec.) 1,99
PARAMETRI SISTEMA C	OSTRUTTIVO C.A DIR. 1
Classe Duttilita' BASSA AlfaU/Alfa1 1,10 Fattore di struttura 'q' 1,50	Sotto-Sistema Strutturale Pareti Fattore riduttivo KW 0,50
PARAMETRI SISTEMA CO	OSTRUTTIVO C.A DIR. 2
Classe Duttilita' BASSA	Sotto-Sistema Strutturale Pareti

RELAZIONE TECNICA E DI CALCOLO TOMBINI IDRAULICI

AlfaU/Alfa1 Fattore di struttura 'q'	1,10 1,50	Fattore riduttivo KW	0,50
COEFFICIENTI :	DI SICUREZZ	ZA PARZIALI DEI MATERIALI	
Acciaio per CLS armato Legno per comb. eccez. Livello conoscenza A FRP Collasso Tipo 'A' FRP Collasso Tipo 'B' FRP Resist. Press/Fless FRP Resist. Confinamento	1,15 1,00 DEGUATO 1,10 1,25 1,00 1,10	Calcestruzzo CLS armato Legno per comb. fondament.: FRP Delaminazione Tipo 'A' FRP Delaminazione Tipo 'B' FRP Resist. Taglio/Torsione	1,50 1,50 1,20 1,50 1,20

COORDINATE E TIPOLOGIA FILI FISSI

Filo	Ascissa	Ordinata
N.ro	m	m
1 3	0,00	0,00 2,70

Filo	Ascissa	Ordinata
N.ro	m	m
2	2,30	0,00
4	2,30	2,70

QUOTE PIANI SISMICI ED INTERPIANI

Quota N.ro	Altezza m	Tipologia	Reg.T	Tamp. Alt.
0	0,00	Piano Terra		

Quota	Altezza	Tipologia	Irrec	Tamp
N.ro	m		XY	Alt.
1	2,30	Interpiano	SI	SI

VERIFICA PIASTRE

SPECIFICHE CAMPI TABELLA DI STAMPA

Si riporta di seguito la spiegazione delle sigle usate nella tabella di stampa della verifica degli elementi bidimensionali allo stato limite ultimo.

Quota N.ro

Quota a cui si trova l'elemento. Numero identificativo del macroelemento il cui perimetro è stato definito prima di Perim. N.ro

eseguire la verifica.

Nodo 3d N.ro: Numero del nodo relativo alla suddivisione del macroelemento in microelementi.

Nx: Sforzo sul piano dell'elemento bidimensionale

diretto come l'asse x del sistema locale. (Il sistema di riferimento locale e' quello

delle armature)

Ny

Txy

Sforzo sul piano dell'elemento bidimensionale diretto come l'asse y del sistema locale.
Sforzo tagliante sul piano dell'elemento con direzione y e agente sulla faccia di normale x del sistema locale. (Ovvero anche, per la simmetria della tensioni tangenziali sforzo tagliante sul

delle tensioni tangenziali, sforzo tagliante sul

piano dell'elemento con direzione x e agente sulla faccia di normale y del sistema locale)

: Momento flettente agente sulla sezione di normale x del sistema locale.Per le verifiche e' accoppiato Mx

RELAZIONE TECNICA E DI CALCOLO TOMBINI IDRAULICI

allo sforzo normale Nx.

Questo momento e' incrementato per tenere in conto

Му

il valore del momento torcente Mxy

: Momento flettente agente sulla sezione di normale y del sistema locale. Per le verifiche e' accoppiato allo sforzo normale Ny.

Questo momento e' incrementato per tenere in conto

îl valore del momento torcente Mxy

: Momento torcente con asse vettore x e agente sulla sezione di normale x(Ovvero anche, per la simmetria delle tensioni tangenziali momento torcente con asse vettore y e agente sulla sezione di normale y : Deformazione del calcestruzzo nella faccia di normale x *10000 (Es. .35% = 35) : Deformazione del calcestruzzo nella Mxy

εc x *10000

taccia di normale x *10000 (Es. .35% = 35): Deformazione del calcestruzzo nella faccia di normale attaccia εc y *10000

εf x *10000

εf y *10000

faccia di normale y *10000 (Es. .35% = 35)

Deformazione dell' acciaio nella
faccia di normale x *10000 (Es. 1% = 100)

Deformazione dell' acciaio nella
faccia di normale x *10000 (Es. 1% = 100)

Ax superiore : Area totale armatura superiore diretta lúngo x.

(Area totale e' l'area della presso-flessione piu' l'area per il taglio riportata dopo)

Ay superiore: Area totale armatura superiore diretta lungo y. Ax inferiore : Area totale armatura inferiore diretta lungo x.
Ay inferiore : Area totale armatura inferiore diretta lungo y.
Atag : Area per il taglio su ciascuna faccia per le due

direzioni

Tensione massima di contatto con il terreno.Abbassamento verticale del nodo in esame. Eta

: Forza punzonante sulla piastra Fpunz

: Armatura sufficiente da sola ad assorbire la Apunz

forza punzonante

Nel caso di stampa di riverifiche degli elementi con le armature effettivamente disposte sul disegno ferri le colonne delle ϵ vengono sostituite con:

Molt.: Moltiplicatore delle sollecitazioni che porta a

rottura la sezione, rispettivamente nelle direzioni X e Y : Posizione adimensionalizzata dell'asse neutro

x/d

rispettivamente nelle direzioni X e Y

VERIFICA PIASTRE

SPECIFICHE CAMPI TABELLA DI STAMPA

Si riporta di seguito la spiegazione delle sigle usate nella tabella di stampa delle verifiche agli stati limite di esercizio degli elementi bidimensionali.

Ouota

Perim.

Quota a cui si trova l'elemento. Numero identificativo del macroelemento il cui perimetro è stato definito prima di eseguire la verifica. Numero del nodo relativo alla suddivisione del macroelemento Nodo

in microelementi.

Indicatore della matrice di combinazione; la prima riga. individua la matrice delle combinazioni rare, la seconda Comb. Cari la matrice delle combinazioni frequenti, la terza quella

permanenti.

Fes lim Fessura limite espressa in mm.

Fessura di calcolo espressa in mm; se sull'elemento non si aprono fessure tutta la riga sara' nulla. Fess.

Distanza fra le fessure. Dist mm

Numero della combinazione ed in sequenza sollecitazioni per cui si è avuta la massima fessura. Combin

RELAZIONE TECNICA E DI CALCOLO TOMBINI IDRAULICI

Mf X	Momento flettente agente sulla sezione di normale x del sistema locale.(Il sistema di riferimento locale è quello delle armature)
N X	Sforzo sul piano dell'elemento bidimensionale diretto come l'asse x del sistema locale.
Mf Y	Momento flettente agente sulla sezione di normale y del sistema locale.(Il sistema di riferimento locale è quello delle armature)
N Y	Sforzo sul piano dell'elemento bidimensionale diretto come l'asse y del sistema locale.
Cos teta	Coseno dell'angolo teta tra l'armatura in direzione X e la direzione della tensione principale di trazione.
Sin teta Combina Carico	Seno dell'angolo teta.
σ lim σ cal	Valore della tensione limite in Kg/cmq. Valore della tensione di calcolo in Kg/cmq sulla faccia di
Conbin	normale x. Numero della combinazione ed in sequenza sollecitazioni per cui si è avuta la massima tensione.
Mf X	Momento flettente agente sulla sezione di normale x del sistema locale.(Il sistema di riferimento locale è quello delle armature)
N X	Sforzo sul piano dell'elemento bidimensionale diretto come l'asse x del sistema locale.
σ cal	Valore della tensione di calcolo in Kg/cmq sulla faccia di normale y.
Combin	Numero della combinazione ed in sequenza sollecitazioni per cui si è avuta la massima tensione.
Mf Y	Momento flettente agente sulla sezione di normale y del sistema locale.
N Y	Sforzo sul piano dell'elemento bidimensionale diretto come l'asse y del sistema locale.

S.L.U. - AZIONI S.L.V. -VERIFICA PIASTRE - QUOTA: 0 ELEMENTO: 1

10	Per	Nodo 3d	Nx	Ny	Txy	Mx	My	Mxy	εc x	гс у	r∥εf x	εf	y∥Ax	s Ay	s Ax	i∥Ay	i∥Atag	g∥ σt	∥ eta∥	Fpunz	
r	N.r	N.ro	∦ Kg/m	∦ Kg/m	∦ Kg/m	∥kgm/m	∥kgm/m	∥kgm/m	*100	000	*10	000	cm	q∥ cm	ıq∥ cm	q∥ cm	q∥ cmo	a∥kg/cı	mq mm	kg	c
	<u> </u>		JL		JL	JL	JL	JL	<u></u>		ـــــا										
0	1	1	962	-1305	674	188	180	-79	0	0	5	0	7,5	7,5	7,5	7,5	0,1	0,7	-1,5		
0	1	10	-4171	-4117	309	1522	77	23	1	0	7	0	0,9	0,9	7,5	7,5	0,0	0,7	-1,4		
0	1	16	1014	-635	749	193	385	23	0	0	5	3	7,5	0,9	7,5	7,5	0,1	0,7	-1,4		
0	1	17	-2820	-1333	503	1073	283	59	1	0	6	0	0,9	7,5	7,5	7,5	0,1	0,7	-1,4		
0	1	18	-4171	-4117	309	1522	77	-23	1	0	7	0	0,9	0,9	7,5	7,5	0,0	0,7	-1,4		
0	1	19	-2820	-1333	503	1073	283	-59	1	0	6	0	0,9	7,5	7,5	7,5	0,1	0,7	-1,4		

S.L.U. - AZIONI S.L.D. -VERIFICA PIASTRE - QUOTA: 0 ELEMENTO: 1

Qu	io Pe	r Nodo r N.r	3d∥	Nx	Ny	Txy	Mx	∥ My	Mxy	εc x	εc	y∥εf x∥	εf	y Ax	s Ay	s Ax	i∥Ay	i∥Ata	g∥ ot	et	a F	punz	11
N.	r N.	r∥ N.r	⊃ JL	Kg/m	∥ Kg/m JL	Kg/m	kgm/m 	∥kgm/m JL	∥kgm/m JL	*100	000	*100 	00	cm	q∥ cm 	.q∥ cm	.q∥ cm		q∥kg/c _JL	T_ md∥ mn	1 	kg	cmq
0) 1	:	1	962	-1060	674	188	-9	-60	0	0	5	0	7,5	7,5	7,5	7,5	0,1	0,7	-1,3			
0) 1	1		6355 1095	-3517 -632	158 383	1999 104	104 341	12 39	1	0	7 5					7,5 7,5	0,0		-1,3 -1,3			

RELAZIONE TECNICA E DI CALCOLO TOMBINI IDRAULICI

0 1 18 -6355 -3517 158 1999 104 -12 1 0 7 0 0,9 0,9 7,5 7,5 0,0 0,7 -1,3 0 1 19 -4343 -2645 340 1351 71 -25 1 0 5 0 0,9 7,5 7,5 7,5 0,1 0,7 -1,3	 0	1	17	-4343	-2645	340	1351	71	25	1	0	5	0	0,9	7,5	7,5	7,5	0,1	0,7	-1,3
0 1 19 -4343 -2645 340 1351 71 -25 1 0 5 0 0,9 7,5 7,5 7,5 0,1 0,7 -1,3	0	1	18	-6355	-3517	158	1999	104	-12	1	0	7	0	0,9	0,9	7,5	7,5	0,0	0,7	-1,3
	0	1	19	-4343	-2645	340	1351	71	-25	1	0	5	0	0,9	7,5	7,5	7,5	0,1	0,7	-1,3

S.L.E. - VERIFICA PIASTRE - QUOTA: 0 ELEMENTO: 1

								FESSU	RAZION	I				TENSI	ONI	D	IREZ	ZIONE 2	ζ	D	IREZ	IONE	Y
Quo N.r		Nodo N.ro		Fes lim	Fess mm	di	s Co m mb	MfX (t*m)	NX (t)	MfY (t*m)	NY (t)	cos teta	sin teta	Combina Carico		σ cal. Kg/cmq	Co mb	Mf (t*m)	N (t)	σ cal. Kg/cmq	Co mb	Mf (t*m)	N (t)
0	1	1 10	Rara Freq Perm Rara			0		0,2 0,2	0,6 0,6			0,000		RaraCls RaraFer PermCls RaraCls	3600 112,0	0,8 91 0,8 7,6	1 1 1 1	0,2 0,2 0,2 1,4	0,6 0,6 0,6 -4,3	0,4 3 0,4 0,9	1 1 1 1	0,1 0,1 0,1 0,1	-1,1 -1,1 -1,1 -2,9
0	1	16	Freq Perm Rara Freq	0,3	00,00	0	1	1,4 1,4	-4,3 -4,3	0,1	-2,9	0,000	0,000	RaraFer PermCls RaraCls RaraFer	3600 112,0	151 7,6 0,0 56	1 0 1	1,4 1,4 0,0 0,0	-4,3 -4,3 0,0 0,7	0,9 1,7 49	1 1 1	0,1 0,1 0,3 0,3	-2,9 -2,9 -0,6 -0,6
0	1	17	Perm Rara Freq Perm	0,3 (0,00	0	1	0,0	0,7 -2,9 -2,9	0,3	-0,6 -2,2	0,000	0,000	PermCls RaraCls RaraFer PermCls	112,0 150,0 3600	0,0 5,3 109 5,3	0 1 1	0,0 1,0 1,0	0,0 -2,9 -2,9 -2,9	1,7 0,8 6 0,8	1 1 1	0,3 0,1 0,1 0,1	-0,6 -2,2 -2,2 -2,2
0	1	18	Rara Freq Perm	0,4	0,00	0	1	1,4	-2,9 -4,3 -4,3	0,1	-2,9	0,000	0,000	RaraCls RaraFer PermCls	150,0 3600	7,6 151 7,6	1 1 1	1,4 1,4 1,4	-4,3 -4,3 -4,3	0,8 0,9 7 0,9	1 1 1	0,1 0,1 0,1	-2,2 -2,9 -2,9 -2,9
0	1	19	Rara Freq Perm	0,4	0,00	0	1	1,0	-2,9 -2,9	0,1	-2,2	0,000	0,000	RaraCls RaraFer PermCls	150,0 3600	5,3 109 5,3	1 1 1	1,0 1,0 1,0	-2,9 -2,9 -2,9	0,8 6 0,8	1 1 1	0,1 0,1 0,1	-2,2 -2,2 -2,2

S.L.U. - AZIONI S.L.V. -VERIFICA SHELLS - QUOTA: 1 ELEMENTO: 1

Gr.Q Gen N.ro N.r		Nx Kg/m	Ny Kg/m	Txy Kg/m	Mx kgm/m	My kgm/m	Mxy kgm/m	εc x *100	εс у 00	εf x *10		Ax s.	Ay s.	Ax i.	Ay i.	Atag. cmq	ot kg/cmq	eta mm
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 10 11 29	-1580 -4159 -1943 -2333 -3065 -3570	-761 1086 -4366 -3575 -28 -597	1666 131 0 869 26 0	13 2286 285 550 2055 -2102	135 846 2007 1613 562 -15	-33 -152 -2 298 263 0	0 3 0 1 3 3	0 1 3 3 1 0	0 14 1 5 13 14	1 10 14 12 13 0	3,8 4,3 3,8 3,9 4,3 5,3	3,8 4,3 4,3 4,3 3,8 4,0	3,8 5,4 4,0 3,9 5,4 4,3	3,8 4,8 5,0 4,8 4,0 3,8	3,0 3,0 3,0 3,0 3,0 3,0	0,74 0,69 0,71	-1,5 -1,5 -1,4 -1,4 -1,5 -1,4

S.L.U. - AZIONI S.L.V. -VERIFICA SHELLS - QUOTA: 1 ELEMENTO: 2

	Gen N.r	Nodo 3d N.ro	Nx Kg/m	Ny Kg/m	Txy Kg/m	Mx kgm/m	My kgm/m	Mxy kgm/m	εc x *100	ес у 00	εf x *10	εf y	Ax s.	Ay s.	Ax i.	Ay i.	Atag. cmq	σt kg/cmq	eta mm
1 1 1 1 1	2 2 2 2 2 2 2	2 6 29 35 36 37	787 -7769 -4312 -2925 -4312 -5371	-365 -442 -627 -1030 -627 -1899	1092 958 1181 0 1181	-248 -2293 -2010 435 -2010 180	-317 -870 -502 16 -502 246	101 255 213 -2 -213 0	1 4 3 1 3 0	1 2 1 0 1	8 14 14 2 14 0	6 18 9 0 9	3,9 4,8 5,1 3,8 5,1 3,8	3,9 3,9 3,8 4,0 3,8	3,8 4,3 4,3 4,0 4,3 4,0	3,8 3,8 3,8 4,0 3,8 4,0	3,0 3,0 3,0 3,0 3,0	0,74	-1,5 -1,5 -1,5 -1,4 -1,5 -1,4

S.L.U. - AZIONI S.L.V. -VERIFICA SHELLS - QUOTA: 1 ELEMENTO: 3

Gr.Q Gen N.ro N.r	Nodo 3d N.ro	Nx Kg/m	Ny Kg/m	Txy Kg/m	Mx kgm/m	My kgm/m	Mxy kgm/m	εc x *100	εс у 00	εf x *10	εf y	Ax s.	Ay s.	Ax i.	Ay i.	Atag. cmq	σt kg/cmq	eta mm
1 3 1 3 1 3 1 3 1 3 1 3	3 7 18 19 42 47	-1580 -4159 -1943 -2333 -3065 -3570	-761 1086 -4366 -3575 -28 -597	1666 131 0 869 26 0	-13 -2286 -285 -550 -2055 2102	-138 -846 -2007 -1613 -562 15	33 -152 2 -298 263 0	0 3 0 1 3 3	0 1 3 3 1 0	0 14 1 5 13 14	1 10 14 12 13 0	3,8 5,4 4,0 3,9 5,4 4,3	3,8 4,8 5,0 4,8 4,0 3,8	3,8 4,3 3,8 3,8 4,3 5,3	3,8 4,3 4,3 4,3 4,3 4,3 4,0	3,0 3,0 3,0 3,0 3,0	0,74 0,69 0,71	-1,5 -1,5 -1,4 -1,4 -1,5 -1,4

S.L.U. - AZIONI S.L.V. -VERIFICA SHELLS - QUOTA: 1 ELEMENTO: 4

Gr.Q N.ro	Gen N.r	Nodo 3d N.ro	Nx Kg/m	Ny Kg/m	Txy Kg/m	Mx kgm/m	My kgm/m	Mxy kgm/m	εc x *100	ες y	εf x *10	εf y	Ax s.	Ay s.	Ax i.	Ay i.	Atag. cmq	σt kg/cmq	eta mm
1 1 1 1 1	4 4 4 4 4	12 25 42	787 -7769 492 -4312 -4312 -8060	-365 -442 -1844 -627 -627 -1899	1092 958 0 1181 1181	248 2293 46 2010 2010	317 870 314 502 502 -246	-101 -255 0 -213 213	1 4 0 3 3	1 2 1 1 1 0	8 14 3 14 14 0	6 18 2 9 9	3,8 4,3 3,8 4,3 4,3	3,8 3,8 3,8 3,8 3,8 4,0	3,9 4,8 4,0 5,1 5,1 3,8	3,9 3,9 4,0 3,8 3,8	3,0 3,0 3,0 3,0 3,0	0,74	-1,5 -1,5 -1,4 -1,5 -1,5

RELAZIONE TECNICA E DI CALCOLO TOMBINI IDRAULICI

S.L.U. - AZIONI S.L.D. -VERIFICA SHELLS - QUOTA: 1 ELEMENTO: 1

	Gen N.r	Nodo 3d N.ro	Nx Kg/m	Ny Kg/m	Txy Kg/m	Mx kgm/m	My kgm/m	Mxy kgm/m	εc x *100	εс у 00	εf x *10		Ax s.	Ay s.	Ax i.	Ay i. cmq	Atag. cmq	σt kg/cmq	eta mm
1 1 1 1 1	1 1 1 1 1	1 5 10 11 29 31	-1580 -4159 -2745 -2333 -3065 -3570	-761 1086 -4366 -3575 -28 -597	1666 131 0 869 26 0	13 2286 369 550 2055 -2102	111 846 2007 1613 562 -15	-34 -152 0 298 263 0	0 2 0 1 4 6	0 2 2 2 1 0	0 14 1 5 42 76	0 50 13 12 12	3,8 4,3 3,8 3,9 4,3 5,3	3,8 4,3 4,3 4,3 4,3 4,0	3,8 5,4 4,0 3,9 5,4 4,3	3,8 4,8 5,0 4,8 4,0 3,8	3,0 3,0 3,0 3,0 3,0	0,67 0,67 0,67	-1,3 -1,3 -1,3 -1,3 -1,3

S.L.U. - AZIONI S.L.D. -VERIFICA SHELLS - QUOTA: 1 ELEMENTO: 2

Gr.Q Ger N.ro N.r		Nx Kg/m	Ny Kg/m	Txy Kg/m	Mx kgm/m	My kgm/m	Mxy kgm/m	εc x *100	εс у 00	εf x *100	εf y	Ax s.	Ay s. cmq	Ax i.	Ay i.	Atag. cmq	σt kg/cmq	eta mm
1 2 1 2 1 2 1 2 1 2 1 2	2 6 29 35 36 37	787 -7769 -4312 -2925 -4312 -8060	-365 -442 -627 -1030 -627 -1899	1092 958 1181 0 1181	-248 -2293 -2010 409 -2010 367	-317 -870 -502 16 -502 246	101 255 213 -1 -213 0	0 3 2 0 2	1 2 1 0 1 0	8 13 13 1 1 13 0	6 18 9 0 9	3,9 4,8 5,1 3,8 5,1 3,8	3,9 3,9 3,8 4,0 3,8 3,8	3,8 4,3 4,3 4,0 4,3 4,0	3,8 3,8 3,8 4,0 3,8 4,0	3,0 3,0 3,0 3,0 3,0	0,67	-1,3 -1,3 -1,3 -1,3 -1,3 -1,3

S.L.U. - AZIONI S.L.D. -VERIFICA SHELLS - QUOTA: 1 ELEMENTO: 3

Gr.Q Ge N.ro N.	en No .r N	do 3d .ro	Nx Kg/m	Ny Kg/m	Txy Kg/m	Mx kgm/m	My kgm/m	Mxy kgm/m	εc x *100	ες y	εf x *100	εf y	Ax s.	Ay s. cmq	Ax i.	Ay i.	Atag. cmq	σt kg/cmq	eta mm
1 1 1 1 1 1	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	7 18 19 42	-1580 -4159 -2745 -2333 -3065 -3570	-761 1086 -4366 -3575 -28 -597	1666 131 0 869 26 0	-13 -2286 -369 -550 -2055 2102	-113 -846 -2007 -1613 -562 15	34 -152 0 -298 263 0	0 2 0 1 4 6	0 2 2 2 1 0	0 14 1 5 42 76	0 50 13 12 12	3,8 5,4 4,0 3,9 5,4 4,3	3,8 4,8 5,0 4,8 4,0 3,8	3,8 4,3 3,8 3,8 4,3 5,3	3,8 4,3 4,3 4,3 4,3 4,0	3,0 3,0 3,0 3,0 3,0	0,67 0,67 0,67	-1,3 -1,3 -1,3 -1,3 -1,3

S.L.U. - AZIONI S.L.D. -VERIFICA SHELLS - QUOTA: 1 ELEMENTO: 4

Gr.Q Ge N.ro N		Nodo 3d N.ro	Nx Kg/m	Ny Kg/m	Txy Kg/m	Mx kgm/m	My kgm/m	Mxy kgm/m	εc x *100	εc y	εf x *10		Ax s.	Ay s. cmq	Ax i.	Ay i. cmq		σt kg/cmq	eta mm
1 1 1 1 1 1	4 4 4 4 4 4	12 25 42	787 -7769 492 -4312 -4312 -8060	-365 -442 -1844 -627 -627 -1899	1092 958 0 1181 1181	248 2293 46 2010 2010	317 870 314 502 502 -246	-101 -255 0 -213 213	0 3 0 2 2 0	1 2 0 1 1 0	8 13 3 13 13	6 18 2 9 9	3,8 4,3 3,8 4,3 4,3 4,0	3,8 3,8 3,8 3,8 3,8	3,9 4,8 4,0 5,1 5,1 3,8	3,9 3,9 4,0 3,8 3,8	3,0 3,0 3,0 3,0 3,0	0,67	-1,3 -1,3 -1,3 -1,3 -1,3 -1,3

S.L.E. - VERIFICA SHELLS - QUOTA: 1 ELEMENTO: 1

								FESSU	RAZION	I.				TENS	IONI	D:	IREZIO	NE X		D	IREZ	IONE '	Y
		Nodo N.ro		Fes lim	Fess mm	di m	s Co m mb	MfX (t*m)	NX (t)	MfY (t*m)	NY (t)	cos teta	sin teta	Combina Carico	σ lim. Kg/cmq	σ cal. Kg/cmq	Co mb (t	Mf *m)	N (t)	σ cal. Kg/cmq	Co mb	Mf (t*m)	N (t)
1	1	1	Rara Freq Perm Rara			0			-1,1 -1,1			0,000		RaraCls RaraFer PermCls RaraCls	3600 112,0	0,8 6 0,8 26,4	1 -0, 1 -0, 1 -0, 1 1,	1 -	-1,1 -1,1 -1,1 -2,7	1,1 7 1,1 9,8	1	0,1 0,1 0,1 0,6	-0,8 -0,8 -0,8 0,7
1	1	10	Freq Perm Rara Freq	0,3	0,00	0	1	1,5	-2,7 -2,7 -1,9	0,6 0,6 1,4	0,7	0,000	0,000	RaraFer PermCls RaraCls RaraFer	3600 112,0 150,0	858 26,4 3,3	i i, 1 1, 1 0, 1 0,	5 - 5 - 3 -	-2,7 -2,7 -1,9 -1,9	464 9,8 23,2 693	1	0,6 0,6 1,4 1,4	0,7 0,7 -3,4 -3,4
1	1	11	Perm Rara Freq	0,3 (0,00	0	1	0,3	-1,9 -1,6	1,4	-3,4 -2,8	0,000	0,000	PermCls RaraCls RaraFer	112,0 150,0 3600	3,3 5,8 121	1 0, 1 0, 1 0,	3 - 4 - 4 -	-1,9 -1,6 -1,6	23,2 18,6 548	1 1 1	1,4 1,1 1,1	-3,4 -2,8 -2,8
1	1	29	Perm Rara Freq Perm	0,4 (0,00	0		1,4	-1,6 -2,0 -2.0	0,4	-0,1	0,000	0,000	PermCls RaraCls RaraFer PermCls	150,0 3600	5,8 24,0 807 24.0	$egin{array}{cccc} 1 & 0, \ 1 & 1, \ 1 & 1, \ 1 & 1, \ \end{array}$	4 -	-1,6 -2,0 -2,0 -2,0	18,6 6,9 260 6.9	1	1,1 0,4 0,4 0,4	-2,8 -0,1 -0,1
1	1	31	Rara Freq Perm	0,4 (0,00	0	1 -	1,4	-2,0 -2,3 -2,3	0,0	-0,5	0,000	0,000	RaraCls RaraFer PermCls	150,0 3600	24,0 24,4 804 24,4	1 -1, 1 -1, 1 -1,	4 -	-2,3 -2,3 -2,3	0,2	1	0,4 0,0 0,0 0,0	-0,1 -0,5 -0,5 -0,5

S.L.E. - VERIFICA SHELLS - QUOTA: 1 ELEMENTO: 2

RELAZIONE TECNICA E DI CALCOLO TOMBINI IDRAULICI

								FESSU	RAZION	I				TENS	IONI	DIR	EZIONE :	X	DIF	REZIONE	Y
		Nodo N.ro	Comb. Cari	Fes lim	Fess mm	di m		MfX (t*m)	NX (t)	MfY (t*m)	NY (t)	cos teta	sin teta	Combina Carico	σ lim. Kg/cmq	σ cal. C Kg/cmq m		N (t)	σ cal. (Kg/cmq r	Co Mf nb (t*m)	N (t)
1	2	2	Rara Freq Perm Rara			0		-0,2 -0,2				0,000		RaraCls RaraFer PermCls RaraCls	3600 112,0	2,9 1 173 1 2,9 1 25,1 1	-0,2 -0,2 -0,2 -1,5	0,5 0,5 0,5 -5,2	4,0 1 135 1 4,0 1 10,4 1	-0,2 -0,2 -0,2 -0,6	-0,3 -0,3 -0,3 -0,4
1	2	29	Freq Perm Rara	0,3	0,00	0	1	-1,5	-5,2	-0,6	-0,4	0,000	0,000	RaraFer PermCls RaraCls	3600 112,0 150,0	653 1 25,1 1 22,9 1	-1,5 -1,5 -1,3	-5,2 -5,2 -2,9	379 1 10,4 1 5,9 1	-0,6 -0,6 -0,3	-0,4 -0,4 -0,5
1	2	35	Freq Perm Rara Freq	0,3	0,00	0		-1,3		-0,3	-0,5	0,000	0,000	RaraFer PermCls RaraCls RaraFer	112,0 150,0	713 1 22,9 1 5,0 1 49 1	-1,3 -1,3 0,4 0,4	-2,9 -2,9 -2,9 -2,9	196 1 5,9 1 0,3 1 3 1	-0,3 -0,3 0,0	-0,5 -0,5 -0,8 -0,8
1	2	36	Perm Rara Freq Perm	0,3	0,00	0		0,4	-2,9 -2,9	0,0	-0,8 -0,5	0,000	0,000	PermCls RaraCls RaraFer PermCls	112,0 150,0 3600	5,0 1 22,9 1 713 1 22,9 1	0,4 -1,3 -1,3 -1,3	-2,9 -2,9 -2,9 -2,9	0,3 1 5,9 1 196 1 5,9 1	0,0 -0,3 -0,3	-0,8 -0,5 -0,5
1	2	37	Rara Freq Perm	0,4	0,00	0	1	0,2	-2,9 -5,4 -5,4	0,2	-1,3	0,000	0,000	RaraCls RaraFer PermCls	150,0 3600	3,3 1 24 1 3,3 1	0,2 0,2 0,2	-2,9 -5,4 -5,4 -5,4	2,1 1 17 1 2,1 1	-0,3 0,2 0,2 0,2	-0,5 -1,3 -1,3 -1,3

S.L.E. - VERIFICA SHELLS - QUOTA: 1 ELEMENTO: 3

								FESSU	RAZION	II		1		TENSI	ONI	I	DIREZI	ONE 2	ζ	I I	IREZI	ONE Y	ζ
		Nodo N.ro	Comb. Cari	Fes lim	Fess mm	di	is Co mm mb	MfX (t*m)	NX (t)	MfY (t*m)	NY (t)	cos teta	sin teta	Combina Carico	σ lim. Kg/cmq	σ cal. Kg/cmc	Co mb (Mf (t*m)	N (t)	σ cal. Kg/cmc	Co mb	Mf (t*m)	N (t)
1	3	3	Rara Freq Perm				1 1	0,0	0,0	-0,1 -0,1	-0,8 -0,8	0,000		RaraCls RaraFer PermCls	3600 112,0	0,7 5 0,7	1 (),1),1),1	-1,1 -1,1 -1,1	1,1 8 1,1	1 -0),1),1),1	-0,8 -0,8 -0,8
1	3	18	Rara Freq Perm Rara			0			-2,7 -2,7	-0,6 -0,6		0,000		RaraCls RaraFer PermCls RaraCls	3600 112,0	26,4 858 26,4 3,3	$\begin{array}{ccc} 1 & -1 \\ 1 & -1 \end{array}$	L,5 L,5 L,5	-2,7 -2,7 -2,7 -1,9	9,8 464 9,8 23,2	1 -0),6),6),6	0,7 0,7 0,7 -3,4
1	3	19	Freq Perm Rara	0,3	0,00		1 -	-0,3	-1,9	-1,4 -1,4	-3,4	0,000	0,000	RaraFer PermCls RaraCls	3600 112,0 150,0	31 3,3 5,8	1 -0 1 -0 1 -0),3),3),4	-1,9 -1,9 -1,6	693 23,2 18,6	1 -1 1 -1	1,4 1,4 1,1	-3,4 -3,4 -2,8
1	3	42	Freq Perm Rara	0,3	0,00		1 -	0,4	-1,6	-1,1 -1,1	-2,8	0,000	0,000	RaraFer PermCls RaraCls	150,0	121 5,8 24,0	1 -0 1 -1),4),4 L,4	-1,6 -1,6 -2,0	548 18,6 6,9	1 -0	1,1 1,1),4	-2,8 -2,8 -0,1
1	3	47	Freq Perm Rara Freq	0,3	0,00	-	1 -	1,4	-2,0 -2,0 -2,3	-0,4 -0,4	-0,1	0,000	0,000	RaraFer PermCls RaraCls RaraFer		807 24,0 24,4 804	$\begin{array}{ccc} 1 & -1 \\ 1 & 1 \end{array}$	L, 4 L, 4 L, 4	-2,0 -2,0 -2,3 -2,3	260 6,9 0,2	1 -0),4),4),0	-0,1 -0,1 -0,5 -0,5
			Perm						-2,3	0,0	-0,5	0,000		PermCls		24,4		1,4	-2,3	0,2		0,0	-0,5

S.L.E. - VERIFICA SHELLS - QUOTA: 1 ELEMENTO: 4

								FESSU	RAZION	I				TENS	IONI	D	IREZ	IONE 2	ζ	D	IREZ	ZIONE '	Y
			Comb. Cari	Fes lim	Fess mm		s Co m mb	MfX (t*m)	NX (t)	MfY (t*m)	NY (t)	cos teta	sin teta	Combina Carico	σ lim. Kg/cmq	σ cal. Kg/cmq	Co mb	Mf (t*m)	N (t)	σ cal. Kg/cmq		Mf (t*m)	N (t)
1	4	1	Rara Freq Perm			0	1 1	0,2 0,2	0,5 0,5			0,000		RaraCls RaraFer PermCls RaraCls	3600 112,0	2,9 173 2,9 25,1		0,2 0,2 0,2 1.5	0,5 0,5 0,5	4,0 135 4,0		0,2 0,2 0,2	-0,3 -0,3 -0,3
1	4	12	Rara Freq Perm Rara			0	1		-5,2 -5,2			0,000		RaraFer PermCls RaraCls	3600 112,0	653 25,1 0,6	1 1 1	1,5 1,5 1,5	-5,2 -5,2 -5,2 0,3	10,4 379 10,4 3,4	1 1 1	0,6 0,6 0,6 0,2	-0,4 -0,4 -0,4 -1,6
1	4	25	Freq Perm Rara Freq	0,3	0,00	0	1	0,0 0,0 1,3	0,3 0,3 -2,9	0,2	-1,6	0,000	0,000	RaraFer PermCls RaraCls RaraFer	112,0 150,0	51 0,6 22,9 713		0,0 0,0 1,3	0,3 0,3 -2,9 -2,9	44 3,4 5,9 196	1 1 1	0,2 0,2 0,3 0,3	-1,6 -1,6 -0,5 -0,5
1	4	42	Perm Rara Freq Perm	0,3 (0,00	0	1	1,3	-2,9 -2,9 -2.9	0,3	-0,5 -0,5	0,000	0,000	PermCls RaraCls RaraFer PermCls	112,0 150,0 3600	22,9 22,9 713 22,9	1 1 1 1	1,3 1,3 1,3	-2,9 -2,9 -2,9 -2,9	5,9 5,9 196 5,9	1 1 1 1	0,3 0,3 0,3	-0,5 -0,5 -0,5 -0,5

S.L.E. - VERIFICA SHELLS - QUOTA: 1 ELEMENTO: 4

							FESSUF	RAZION	I				TENSI	TENSIONI DIREZIONE X			X	DIREZIONE Y				
GrQ N.r	Gen N.r	Comb. Cari	Fes lim			Co mb		NX (t)	MfY (t*m)	NY (t)	cos teta	sin teta	Combina Carico			Co mb	Mf (t*m)	N (t)	σ cal. Kg/cmq	Co mb	Mf (t*m)	N (t)
1	4	Rara Freq Perm		0,00	0 1		~ / ~	-5,4 -5,4			0,000		RaraCls RaraFer PermCls		3,3 24 3,3		0,2	-5,4 -5,4 -5,4	2,1 17 2,1	ī -	-0,2 -0,2 -0,2	-1,3 -1,3 -1,3

RELAZIONE TECNICA E DI CALCOLO TOMBINI IDRAULICI

ALLEGATO 3: MANUFATTO INTERMEDIO

TABULATI DI CALCOLO

DATI GENERALI DI STRUTTURA

DATI GENERALI	DI STRUTTURA
Massima dimens. dir. X (m) 15,00 Massima dimens. dir. Y (m) 15,00	Altezza edificio (m) 6,00 Differenza temperatura(°C) 15
PARAMETR	I SISMICI
Vita Nominale (Anni) 50 Longitudine Est (Grd) 13,91250 Categoria Suolo C Sistema Costruttivo Dir.1 C.A. Regolarita' in Altezza SI (KR=1) Direzione Sisma (Grd) 0	Classe d' Uso Latitudine Nord (Grd) 37,42140 Coeff. Condiz. Topogr. 1,00000 Sistema Costruttivo Dir.2 C.A. Regolarita' in Pianta SI Sisma Verticale ASSENTE
PARAMETRI SPETTRO ELASTIC	O - SISMA S.L.O.
Probabilita' Pvr 0,81 Accelerazione Ag/g 0,03 Fo 2,51 Fattore Stratigrafia 'S' 1,50 Periodo TC (sec.) 0,43	Periodo di Ritorno Anni 60,00 Periodo T'c (sec.) 0,26 Fv 0,61 Periodo TB (sec.) 0,14 Periodo TD (sec.) 1,73 O - SISMA S.L.D.
PARAMETRI SPETTRO ELASTIC	O - SISMA S.L.D.
Probabilita' Pvr 0,63 Accelerazione Ag/g 0,04 Fo 2,53 Fattore Stratigrafia 'S' 1,50 Periodo TC (sec.) 0,48	Periodo di Ritorno Anni 101,00 Periodo T'c (sec.) 0,31 Fv 0,67 Periodo TB (sec.) 0,16 Periodo TD (sec.) 1,75
PARAMETRI SPETTRO ELASTIC	O - SISMA S.L.V.
Probabilita' Pvr 0,10 Accelerazione Ag/g 0,08 Fo 2,67 Fattore Stratigrafia 'S' 1,50 Periodo TC (sec.) 0,65	Periodo di Ritorno Anni 949,00 Periodo T'c (sec.) 0,49 Fv 1,02 Periodo TB (sec.) 0,22 Periodo TD (sec.) 1,92
PARAMETRI SPETTRO ELASTIC	O - SISMA S.L.C.
Probabilita' Pvr 0,05 Accelerazione Ag/g 0,10 Fo 2,76 Fattore Stratigrafia 'S' 1,50 Periodo TC (sec.) 0,68	Periodo di Ritorno Anni 1950,00 Periodo T'c (sec.) 0,53 Fv 1,16 Periodo TB (sec.) 0,23 Periodo TD (sec.) 1,99
PARAMETRI SISTEMA C	OSTRUTTIVO C.A DIR. 1
Classe Duttilita' BASSA AlfaU/Alfal 1,10 Fattore di struttura 'q' 1,50	Sotto-Sistema Strutturale Pareti Fattore riduttivo KW 0,50
PARAMETRI SISTEMA C	OSTRUTTIVO C.A DIR. 2
Classe Duttilita' BASSA AlfaU/Alfa1 1,10 Fattore di struttura 'q' 1,50	Sotto-Sistema Strutturale Pareti Fattore riduttivo KW 0,50

RELAZIONE TECNICA E DI CALCOLO TOMBINI IDRAULICI

COEFFICIENT	'I DI SICUREZ	ZA PARZIALI DEI MATERIALI	
Acciaio per CLS armato Legno per comb. eccez. Livello conoscenza FRP Collasso Tipo 'A' FRP Collasso Tipo 'B' FRP Resist. Press/Fless FRP Resist. Confinamento	1,15 1,00 ADEGUATO 1,10 1,25 1,00 1,10	Calcestruzzo CLS armato Legno per comb. fondament.: FRP Delaminazione Tipo 'A' FRP Delaminazione Tipo 'B' FRP Resist. Taglio/Torsione	1,50 1,50 1,20 1,50 1,20

COORDINATE E TIPOLOGIA FILI FISSI

Filo	Ascissa	Ordinata
N.ro	m	m
1 3	0,00	0,00 2,30

Filo	Ascissa	Ordinata
N.ro	m	m
2	3,30	0,00
4	3,30	2,30

QUOTE PIANI SISMICI ED INTERPIANI

Quota	Altezza	Tipologia	Reg.	Camp.
N.ro	m		XY	Alt.
0	0,00	Piano Terra		

Quota	Altezza	Tipologia	Irrec	Tamp
N.ro	m		XY	Alt.
1	2,50	Interpiano	SI	SI

VERIFICA PIASTRE

SPECIFICHE CAMPI TABELLA DI STAMPA

Si riporta di seguito la spiegazione delle sigle usate nella tabella di stampa della verifica degli elementi bidimensionali allo stato limite ultimo.

Quota N.ro

Quota a cui si trova l'elemento.Numero identificativo del macroelemento il cui perimetro è stato definito prima di Perim. N.ro

eseguire la verifica. Nodo 3d N.ro: Numero del nodo relativo alla suddivisione

del macroelemento in microelementi. Sforzo sul piano dell'elemento bidimensionale Nxdiretto come l'asse x del sistema locale. (Il sistema di riferimento locale e' quello

delle armature)

Ny

Txy

delle armature)
Sforzo sul piano dell'elemento bidimensionale diretto come l'asse y del sistema locale.
Sforzo tagliante sul piano dell'elemento con direzione y e agente sulla faccia di normale x del sistema locale. (Ovvero anche, per la simmetria delle tensioni tangenziali, sforzo tagliante sul piano dell'elemento con direzione x e agente sulla faccia di normale y del sistema locale)
Momento flettente agente sulla sezione di normale x del sistema locale. Per le verifiche e' accoppiato allo sforzo normale Nx.

Mx

allo sforzo normale Nx. Questo momento e' incrementato per tenere in conto il valore del momento torcente Mxy

RELAZIONE TECNICA E DI CALCOLO TOMBINI IDRAULICI

: Momento flettente agente sulla sezione di normale y Му del sistema locale. Per le verifiche e' accoppiato allo sforzo normale Ny. Questo momento e' incrementato per tenere in conto il valore del momento torcente Mxy

: Momento torcente con asse vettore x e agente sulla sezione di normale x(Ovvero anche, per la simmetria delle tensioni tangenziali momento torcente con Mxy asse vettore y e agente sulla sezione di normale y : Deformazione del calcestruzzo nella faccia di normale x *10000 (Es. .35% = 35) εc x *10000 : Deformazione del calcestruzzo nella faccia di normale y *10000 (Es. .35% = 35) : Deformazione dell' acciaio nella faccia di normale x *10000 (Es. 1% = 100) εc y *10000 εf x *10000 Deformazione dell' acciaio nella faccia di normale x *10000 (Es.] εf v *10000 1% = 100) Ax superiore : Area totale armatura superiore diretta lungo x. (Area totale e' l'area della presso-flessione piu' l'area per il taglio riportata dopo)
Area totale armatura superiore diretta lungo y. Ay superiore : Area totale armatura inferiore diretta lungo y.
Area totale armatura inferiore diretta lungo y.
Area per il taglio su ciascuna faccia per le due Ax inferiore Ay inferiore Ataq direzioni Tensione massima di contatto con il terreno.Abbassamento verticale del nodo in esame. σt Eta Fpunz : Forza punzonante sulla piastra Apunz Armatura sufficiente da sola ad assorbire la

Nel caso di stampa di riverifiche degli elementi con le armature effettivamente disposte sul disegno ferri le colonne delle ϵ vengono sostituite con:

Molt.: Moltiplicatore delle sollecitazioni che porta a

rottura la sezione, rispettivamente nelle direzioni X e Y Posizione adimensionalizzata dell'asse neutro rispettivamente nelle direzioni X e Y

x/d

forza punzonante

VERIFICA PIASTRE

SPECIFICHE CAMPI TABELLA DI STAMPA

Si riporta di seguito la spiegazione delle sigle usate nella tabella di stampa delle verifiche agli stati limite di esercizio degli elementi bidimensionali.

Quota

Quota a cui si trova l'elemento. Numero identificativo del macroelemento il cui perimetro Perim.

è stato definito prima di eseguire la verifica.

Numero del nodo relativo alla suddivisione del macroelemento Nodo

in microelementi.

Indicatore della matrice di combinazione; la prima riga. Comb. individua la matrice delle combinazioni rare, la seconda la matrice delle combinazioni frequenti, la terza quella Cari

permanenti.

Fes lim Fessura limite espressa in mm.

Fessura di calcolo espressa in mm; se sull'elemento non si aprono fessure tutta la riga sara' nulla. Fess.

Distanza fra le fessure. Dist mm

Combin

Numero della combinazione ed in sequenza sollecitazioni per cui si è avuta la massima fessura.

Momento flettente agente sulla sezione di normale x del sistema locale.(Il sistema di riferimento locale è quello delle Mf X

armature)

RELAZIONE TECNICA E DI CALCOLO TOMBINI IDRAULICI

N	X	Sforzo sul piano dell'elemento bidimensionale diretto come l'asse x del sistema locale.
Mf	Y	Momento flettente agente sulla sezione di normale y del sistema locale.(Il sistema di riferimento locale è quello delle
N	Y	armature) Sforzo sul piano dell'elemento bidimensionale diretto come l'asse y del sistema locale.
		Coseno dell'angolo teta tra l'armatura in direzione X e la direzione della tensione principale di trazione.
Cor	n teta mbina cico	Seno dell'angolo teta. Indicatore della matrice di combinazione; la prima riga. individua la matrice delle combinazioni rare per la verifica della tensione sul cls, la seconda la matrice delle combinazioni rare per la verifica della tensione sull'acciaio, la terza la matrice delle combinazioni permanenti per la verifica della tensione sul cls.
	Lim	Valore della tensione limite in Kg/cmg.
σ	cal	Valore della tensione di calcolo in Kg/cmq sulla faccia di normale x.
Cor	nbin	Numero della combinazione ed in sequenza sollecitazioni per cui si è avuta la massima tensione.
Mf	X	Momento flettente agente sulla sezione di normale x del sistema locale.(Il sistema di riferimento locale è quello delle armature)
N	X	Sforzo sul piano dell'elemento bidimensionale diretto come l'asse x del sistema locale.
σ	cal	Valore della tensione di calcolo in Kg/cmq sulla faccia di normale y.
Cor	mbin	Numero della combinazione ed in sequenza sollecitazioni per cui si è avuta la massima tensione.
Mf	Y	Momento flettente agente sulla sezione di normale y del sistema locale.
N	Y	Sforzo sul piano dell'elemento bidimensionale diretto come l'asse y del sistema locale.

S.L.U. - AZIONI S.L.V. -VERIFICA PIASTRE - QUOTA: 0 ELEMENTO: 1

Qu	o∥Per	Nodo 3	l∥ Nx	Ny	Txy	Mx	My	Mxy	l εc x	εc :	ıπ y∥εf x	n—— c∥εf	y∥Ax	s∥Ay	s Ax	i∥Ay	i∥Ata	g∥ ot	eta	Fpunz	
N.	unz∥ r∥N.r	N.ro	∦ Kg/m	∦ Kg/m	∦ Kg/m	kgm/m	∥kgm/m	kgm/m	*100	000	*10	0000	∥ cm	q∥ cm	ıq∥ cm	q∥ cm	q∥ cm	q∥kg/c	mq mm	kg	∥ cmq
<u> </u>		ــــــــــــــــــــــــــــــــــــــ			ــــــال	JL	ــــــال	ــــــــــــــــــــــــــــــــــــــ	ــــــالـ												
0	1	9	-441	1571	472	337	331	55	0	0	3	9	0,9	0,9	7,5	7,5	0,1	0,6	-1,1		
0	1	13	-3726	-6483	203	91	1980	-14	0	1	0	7	0,9	0,9	7,5	7,5	0,0	0,6	-1,1		
0	1	14	-154	-3801	0	-170	-697	0	0	0	2	0	7,5	7,5	0,8	0,8	0,0	0,6	-1,1		
0	1	17	-486	-2593	325	-458	-607	-12	0	0	4	1	7,5	7,5	0,9	0,9	0,0	0,6	-1,1		
0	1	18	-1581	-4271	393	267	1459	30	0	1	0	6	0,9	0,9	7,5	7,5	0,1	0,6	-1,1		
0	1	19	-441	1571	472	337	331	-55	0	0	3	9	0,9	0,9	7,5	7,5	0,1	0,6	-1,1		

S.L.U. - AZIONI S.L.D. -VERIFICA PIASTRE - QUOTA: 0 ELEMENTO: 1

Quo	π π Per	Nodo 3	ı⊓ d∥ N×	∥ Ny	Txy	Mx	∥ My	Mxy	l ∥εc x	π ∥εc	n y∥εf ≥	η s εf	y∥Ax	s Ay	s Ax	i∥Ay	ı i∥Ata	g∥ ot	eta	Fpunz	11
N.r	nz N.r	N.ro	∦ Kg/m	∦ Kg/m	∥ Kg/m	∥kgm/m	kgm/m	kgm/m	*10	000	*10	0000	cm	ıq∥ cn	ıq∥ cm	ıq∥ cn	ıq∥ cm	q∥kg/c	mq mm	kg	cmq
<u> </u>	الـــــال								ـــــالـ												
0	1	9	-605	1571	231	370	331	0	0	0	3	9	0,9	0,9	7,5	7,5	0,1	0,6	-1,1		
0	1	13	-3313	-6483	99	111	1980	-7	0	1	0	6	0,9	0,9	7,5	7,5	0,0	0,6	-1,1		
0	1	14	-154	-3801	0	-170	-697	0	0	0	2	0	7,5	7,5	0,8	0,8	0,0	0,6	-1,1		
0	1	17	-506	-2569	159	-387	-552	-6	0	0	3	0	7,5	7,5	0,9	0,9	0,0	0,6	-1,1		
0	1	18	-3160	-4271	286	376	1459	119	0	1	0	6	0,9	0,9	7,5	7,5	0,1	0,6	-1,1		

RELAZIONE TECNICA E DI CALCOLO TOMBINI IDRAULICI

0 1 19 -605 1571 231 370 331 0 0 0 3 9 0,9 0,9 7,5 7,5 0,1 0,6 -1,1

S.L.E. - VERIFICA PIASTRE - QUOTA: 0 ELEMENTO: 1

								FESSU	RAZION	1I				TENSIONI	DIREZIONE X	DIREZIONE Y
		Nodo N.ro		Fes lim	Fess mm		Co mb	MfX (t*m)	NX (t)	MfY (t*m)	NY (t)	cos teta	sin teta	Combina o lim. Carico Kg/cmq	o cal. Co Mf N Kg/cmq mb (t*m) (t)	σ cal. Co Mf N Kg/cmq mb (t*m) (t)
0	1	9	Rara Freq 0 Perm 0 Rara			0	1		-0,4 -0,4	0,2 0,2	1,0	0,000		RaraCls 150,0 RaraFer 3600 PermCls 112,0 RaraCls 150.0	1,6 1 0,3 -0,4 54 1 0,3 -0,4 1,6 1 0,3 -0,4 0,9 1 0,1 -2,9	0,3 1 0,2 1,0 127 1 0,2 1,0 0,3 1 0,2 1,0 7,4 1 1,3 -4,4
0	1	14	Freq 0 Perm 0 Rara			0	1		-2,9 -2,9		$\begin{array}{c} -4 \ , 4 \\ -4 \ , 4 \end{array}$	0,000		RaraFer 3600 PermCls 112,0 RaraCls 150,0	0,9 1 0,1 -2,9 0,9 1 0,1 -2,9 1,1 1 -0,2 -0,2	140 1 1,3 -4,4 7,4 1 1,3 -4,4 3,0 1 -0,7 -3,8
0	1	17	Freq 0 Perm 0 Rara	,3 (0,00	0	1 -	0,2	-0,2 -0,2	-0,7	-3,8	0,000	0,000	RaraFer 3600 PermCls 112,0 RaraCls 150,0	41 1 -0,2 -0,2 1,1 1 -0,2 -0,2 1,9 1 -0,3 -0,5	21 1 -0,7 -3,8 3,0 1 -0,7 -3,8 2,2 1 -0,5 -2,5
0	1	18	Freq 0 Perm 0 Rara Freq 0	,3 (0,00	0	1 -	0,3	-0,5 -0,5 -2,2	-0,5	-2,5	0,000	0,000	RaraFer 3600 PermCls 112,0 RaraCls 150,0 RaraFer 3600	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19 1 -0,5 -2,5 2,2 1 -0,5 -2,5 5,3 1 1,0 -2,9 111 1 1,0 -2,9
0	1	19	Perm 0 Rara Freq 0),3 (),4 (0,00	0	1	0,2	-2,2 -0,4	1,0	-2,9 1,0	0,000	0,000	PermCls 112,0 RaraCls 150,0 RaraFer 3600	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5,3 1 1,0 -2,9 0,3 1 0,2 1,0 127 1 0,2 1,0
			Perm 0	,3 (0,00	0	1	0,3	-0,4	0,2	1,0	0,000	0,000	PermCls 112,0	1,6 1 0,3 -0,4	0,3 1 0,2 1,0

S.L.U. - AZIONI S.L.V. -VERIFICA SHELLS - QUOTA: 1 ELEMENTO: 1

Gr.Q Gen N.ro N.r		Nx Kg/m	Ny Kg/m	Txy Kg/m	Mx kgm/m	My kgm/m	Mxy kgm/m	εc x *10	εс у 000	εf x *10		Ax s.	Ay s.	Ax i.	Ay i.	Atag. cmq	σt kg/cmq	eta mm
1 1 1 1 1 1 1 1 1 1 1 1	6 9 20 22	-11334 -11334 745 -2334 -2334 -12036	-87 -87 -1086 669 669 -3595	1506 1506 0 1601 1601	2888 2888 20 1575 1575	1166 1166 161 311 311 -277	349 -349 1 123 -123 0	4 4 1 3 3 0	2 2 0 1 1 0	15 15 3 12 12	18 18 1 9 9	4,3 4,3 3,8 4,3 4,3	3,8 3,8 3,8 3,8 3,8	4,8 4,8 4,0 5,1 5,1 3,8	4,2 4,2 4,0 3,8 3,8 3,8	3,0 3,0 3,0 3,0 3,0	0,57	-1,1 -1,1 -1,1 -1,1 -1,1

S.L.U. - AZIONI S.L.V. -VERIFICA SHELLS - QUOTA: 1 ELEMENTO: 2

Gr.Q N.ro	Gen N.r	Nodo 3d N.ro	Nx Kg/m	Ny Kg/m	Txy Kg/m	Mx kgm/m	My kgm/m	Mxy kgm/m	εc x *100	εс у 00	εf x *10	εf y	Ax s.	Ay s.	Ax i.	Ay i.		σt kg/cmq	eta mm
1 1 1 1 1	2 2 2 2 2 2 2	15 22 25 27	-1498 -2517 -2311 -2919 -2311 -5164	-412 -3383 1054 -2103 1054 -1191	2313 0 296 0 296 0	-49 -358 -2012 1256 -2012 2245	-241 -1928 -791 799 -791 26	-91 0 -585 0 585 0	0 0 3 4 3 4	1 3 1 2 1 0	0 1 13 45 13 15	4 13 10 12 10 0	3,8 4,0 5,6 4,3 5,6 4,3	3,8 5,2 4,8 3,8 4,8 3,8	3,8 3,8 4,4 4,8 4,4 5,1	3,8 4,3 4,3 4,0 4,3 4,0	3,0 3,0 3,0 3,0 3,0	0,57 0,57	-1,1 -1,1 -1,1 -1,1 -1,1

S.L.U. - AZIONI S.L.V. -VERIFICA SHELLS - QUOTA: 1 ELEMENTO: 3

Gr.Q Ger N.ro N.r	Nodo 3d N.ro	Nx Kg/m	Ny Kg/m	Txy Kg/m	Mx kgm/m	My kgm/m	Mxy kgm/m	εc x *100	εс у 00	εf x *10	εf y	Ax s.	Ay s.	Ax i.	Ay i.	Atag. cmq	σt kg/cmq	eta mm
1 3 1 3 1 3 1 3 1 3 1 3		-11334 -11334 745 -2334 -2334 -8024	-87 -87 -1086 669 669 -3595	1506 1506 0 1601 1601	-2888 -2888 -20 -1575 -1575 674	-1166 -1166 -161 -311 -311 277	349 -349 -1 123 -123 -1	4 4 1 3 3	2 2 0 1 1 0	15 15 3 12 12	18 18 1 9 9	4,8 4,8 4,0 5,1 5,1 3,8	4,2 4,2 4,0 3,8 3,8	4,3 4,3 3,8 4,3 4,3 4,0	3,8 3,8 3,8 3,8 3,8	3,0 3,0 3,0 3,0 3,0	0,57	-1,1 -1,1 -1,1 -1,1 -1,1

S.L.U. - AZIONI S.L.V. -VERIFICA SHELLS - QUOTA: 1 ELEMENTO: 4

Gr.Q Gen N.ro N.r	Nodo 3d N.ro	Nx Kg/m	Ny Kg/m	Txy Kg/m	Mx kgm/m	My kgm/m	Mxy kgm/m	εc x *100	ες y	εf x *10	εf y	Ax s.	Ay s. cmq	Ax i.	Ay i.	Atag. cmq	σt kg/cmq	eta mm
1 4 1 4 1 4 1 4 1 4 1 4		-1498 -2517 -2311 -2311 -2919 -5164	-412 -3383 1054 1054 -2103 -1191	2313 0 296 296 0 0	-133 358 2012 2012 -1256 -2245	241 1928 791 791 -799 -26	91 0 585 -585 0	0 0 3 3 4 4	1 3 1 1 2 0	0 1 13 13 45 15	4 13 10 10 12 0	3,8 3,8 4,4 4,4 4,8 5,1	3,8 4,3 4,3 4,3 4,0 4,0	3,8 4,0 5,6 5,6 4,3 4,3	3,8 5,2 4,8 4,8 3,8	3,0 3,0 3,0 3,0 3,0	0,57 0,57	-1,1 -1,1 -1,1 -1,1 -1,1

S.L.U. - AZIONI S.L.D. -VERIFICA SHELLS - QUOTA: 1 ELEMENTO: 1

Gr.Q N.ro		Nodo 3d N.ro	Nx Kg/m	Ny Kg/m	Txy Kg/m	Mx kgm/m	My kgm/m	Mxy kgm/m	εc x *100	εc y	εf x *10		Ax s.	Ay s. cmq	Ax i.	Ay i. cmq		σt kg/cmq	eta mm
1 1 1 1 1	1 1 1 1 1	6 9 20 22	-11334 -11334 745 -2334 -2334 -12036	-87 -87 -1086 669 669 -3595	1506 1506 0 1601 1601	2888 2888 20 1575 1575	1166 1166 147 311 311 -277	349 -349 0 123 -123	3 3 1 3 3	2 2 0 1 1 0	14 14 3 31 31	18 18 0 9 9	4,3 4,3 3,8 4,3 4,3 4,0	3,8 3,8 3,8 3,8 4,0	4,8 4,8 4,0 5,1 5,1 3,8	4,2 4,2 4,0 3,8 3,8	3,0 3,0 3,0 3,0 3,0	0,57	-1,1 -1,1 -1,1 -1,1 -1,1

S.L.U. - AZIONI S.L.D. -VERIFICA SHELLS - QUOTA: 1 ELEMENTO: 2

Gr.Q Gen N.ro N.r		Nx Kg/m	Ny Kg/m	Txy Kg/m	Mx kgm/m	My kgm/m	Mxy kgm/m	εc x *10	εс у 000	εf x *10		Ax s.	Ay s.	Ax i.	Ay i. cmq		σt kg/cmq	eta mm
1 2 1 2 1 2 1 2 1 2 1 2	22 25	-1498 -2517 -2311 -2919 -2311 -5164	-412 -3383 1054 -2103 1054 -1191	2313 0 296 0 296 0	-49 -358 -2012 1256 -2012 2245	-241 -1928 -791 799 -791 26	-91 0 -585 0 585 0	0 0 2 1 2 2	0 6 1 1 1 0	0 1 13 9 13 14	4 89 10 11 10 0	3,8 4,0 5,6 4,3 5,6 4,3	3,8 5,2 4,8 3,8 4,8 3,8	3,8 3,8 4,4 4,8 4,4 5,1	3,8 4,3 4,3 4,0 4,3 4,0	3,0 3,0 3,0 3,0 3,0	0,57 0,57	-1,1 -1,1 -1,1 -1,1 -1,1 -1,1

S.L.U. - AZIONI S.L.D. -VERIFICA SHELLS - QUOTA: 1 ELEMENTO: 3

Gr.Q N.ro			Nx Kg/m	Ny Kg/m	Txy Kg/m	Mx kgm/m	My kgm/m	Mxy kgm/m	εc x *100	εc y	εf x *10		Ax s. cmq	Ay s. cmq	Ax i.	Ay i. cmq	Atag. cmq	σt kg/cmq	eta mm
1 1 1 1 1	3 3 3 3 3 3 3	7 8 19 27 31 33	-11334 -11334 745 -2334 -2334 -12036	-87 -87 -1086 669 669 -3595	1506 1506 0 1601 1601	-2888 -2888 -20 -1575 -1575 922	-1166 -1166 -147 -311 -311 277	349 -349 0 123 -123	3 3 1 3 3	2 2 0 1 1 0	14 14 3 31 31	18 18 0 9 9	4,8 4,8 4,0 5,1 5,1 3,8	4,2 4,2 4,0 3,8 3,8 3,8	4,3 4,3 3,8 4,3 4,3 4,0	3,8 3,8 3,8 3,8 3,8	3,0 3,0 3,0 3,0 3,0	0,57	-1,1 -1,1 -1,1 -1,1 -1,1

S.L.U. - AZIONI S.L.D. -VERIFICA SHELLS - QUOTA: 1 ELEMENTO: 4

	Q Gen N.r		Nx Kg/m	Ny Kg/m	Txy Kg/m	Mx kgm/m	My kgm/m	Mxy kgm/m	εc x *10	εс у 00	εf x *10	εf y	Ax s. cmq	Ay s.	Ax i.	Ay i. cmq	Atag. cmq	σt kg/cmq	eta mm
1 1 1 1 1 1	4 4 4 4 4	20 31	-1498 -2517 -2311 -2311 -2919 -5164	-412 -3383 1054 1054 -2103 -1191	2313 0 296 296 0 0	-133 358 2012 2012 -1256 -2245	241 1928 791 791 -799 -26	91 0 585 -585 0 0	0 0 2 2 1 2	0 6 1 1 1 0	0 1 13 13 9 14	4 89 10 10 11 0	3,8 3,8 4,4 4,4 4,8 5,1	3,8 4,3 4,3 4,0 4,0	3,8 4,0 5,6 5,6 4,3 4,3	3,8 5,2 4,8 4,8 3,8	3,0 3,0 3,0 3,0 3,0	0,57 0,57	-1,1 -1,1 -1,1 -1,1 -1,1

S.L.E. - VERIFICA SHELLS - QUOTA: 1 ELEMENTO: 1

								FESSU	RAZION	I				TENSIONI	DIREZIO	NE X	DIREZ	IONE Y
		Nodo N.ro	Comb. Cari	Fes lim	Fess mm	di m	s Co m mb	MfX (t*m)	NX (t)	MfY (t*m)	NY (t)	cos teta	sin teta	Combina o lim. Carico Kg/cmq	σ cal. Co Kg/cmq mb (t	Mf N *m) (t)	σ cal. Co Kg/cmq mb	Mf (t*m) N (t)
1	1	5	Rara Freq Perm Rara			0	1	1,9 1,9	-7,6 -7,6			0,000		RaraCls 150,0 RaraFer 3600 PermCls 112,0 RaraCls 150,0	30,9 1 1, 735 1 1, 30,9 1 1, 30,9 1 1,	9 -7,6 9 -7,6	542 1 14,0 1	0,8 -0,1 0,8 -0,1 0,8 -0,1 0,8 -0,1
1	1	9	Freq Perm Rara	0,3 (0,00	0	_	1,9	-7,6 -7,6	0,8	-0,1	0,000	0,000	RaraFer 3600 PermCls 112,0 RaraCls 150,0	735 1 1, 30,9 1 1, 0,0 0 0,	9 -7,6 9 -7,6 0 0,0	542 1 14,0 1 1,7 1	0,8 -0,1 0,8 -0,1 0,1 -1,1
1	1	20	Freq Perm Rara Freq	0,3 (0,00	0	1		0,4 0,4 -1,5	0,1	0,4	0,000	0,000	RaraFer 3600 PermCls 112,0 RaraCls 150,0 RaraFer 3600	55 1 0, 0,0 0 0, 18,3 1 1, 617 1 1,	0 0,0 0 -1,5 0 -1,5	1,7 1 3,5 1 187 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1	1	22	Perm Rara Freq Perm	0,4 (0,00	0	1	1,0	-1,5 -1,5 -1,5	0,2 0,2 0,2	0,4	0,000	0,000	PermCls 112,0 RaraCls 150,0 RaraFer 3600 PermCls 112,0	18,3 1 1, 18,3 1 1, 617 1 1, 18,3 1 1,	0 -1,5 0 -1,5	3,5 1 187 1	0,2 0,4 0,2 0,4 0,2 0,4 0,2 0,4
1	1	23	Rara Freq Perm	0,4 (0,00	0	1 -	0,6	-8,0	-0,2	-2,4	0,000	0,000	RaraCls 150,0 RaraFer 3600 PermCls 112,0	6,9 1 -0, 48 1 -0, 6,9 1 -0,	6 -8,0 6 -8,0	2,0 1 - 14 1 -	0,2 -2,4 0,2 -2,4 0,2 -2,4

S.L.E. - VERIFICA SHELLS - QUOTA: 1 ELEMENTO: 2

				FESS	SURAZI	ONI			7	TENSIONI	T	DI	REZIO	ONE X	$\neg \neg$	DIRE	ZION	ΕΥ	
II	 	 	 	 				т		Т		Т				-т	Т		

RELAZIONE TECNICA E DI CALCOLO TOMBINI IDRAULICI

			Comb. Cari	Fes lim			s Co m mb		NX (t)	MfY (t*m)	NY (t)	cos	sin teta	Combina o lim.				N (t)	σ cal. (N (t)
1	2	2	Rara	0 4 0			1	0 0	1 0	0 2	0 2	0,000	0 000	RaraCls 150,0 RaraFer 3600	0,7	1	0,1	-1,0	2,7 1 85 1	-0,2 -0,2	-0,3
1	2	15	Freq Perm Rara			0	1		-1,0 -1,0	-0,2 -0,2	-0,3 -0,3	0,000		PermCls 112,0 RaraCls 150,0	0,7	1	0,1	-1,0 -1,0 -1,8	2,7 1 22,6 1	-0,2 -0,2 -1,3	-0,3 -0,3 -2,6
H			Freq Perm			0			-1,8 -1,8	-1,3 -1,3	-2,6 -2,6	0,000		RaraFer 3600 PermCls 112,0	37 3,3		-0,2 -0,2	-1,8 -1,8	718 1 22,6 1	-1,3 -1,3	-2,6 -2,6
1	2	22	Rara Freq						-1,5	-0,5	0,7	0,000		RaraCls 150,0 RaraFer 3600	23,7 830	1 .	-1,3 -1,3	-1,5 -1,5	9,3 1 444 1	-0,5 -0,5	0,7 0,7
1	2	25	Perm Rara		,				-1,5	-0,5	0,7	0,000		PermCls 112,0 RaraCls 150,0	23,7	1 .	-1,3 0,8	-1,5 -1,9	9,3 1 8,9 1	-0,5 0,5	0,7 -1,6
١.		0.5	Freq Perm			0			-1,9 -1,9	0,5 0,5	-1,6 -1,6	0,000 0,000		RaraFer 3600 PermCls 112,0	434 14,3	1	0,8	-1,9 -1,9	244 1 8,9 1	0,5	-1,6 -1,6
1	2	27	Rara			0			-1,5	-0,5	0,7	0,000		RaraCls 150,0 RaraFer 3600	23,7 830	1 .	-1,3 -1,3	-1,5 -1,5	9,3 1 444 1	-0,5 -0,5	0,7
1	2	29	Rara		,	0	1 -		-1,5	-0,5	0,7	0,000	•	PermCls 112,0 RaraCls 150,0 RaraFer 3600	23,7 25,5 783	1 .	-1,3 1,5	-1,5 -3,4 -3,4	9,3 1 0,4 1	-0,5 0,0	-0,9
			Freq Perm			0	1		-3,4 -3,4	0,0	-0,9 -0,9	0,000		RaraFer 3600 PermCls 112,0	25,5	1	1,5 1,5	-3,4	0,4 1	0,0	-0,9 -0,9

S.L.E. - VERIFICA SHELLS - QUOTA: 1 ELEMENTO: 3

								FESSU	RAZION	I				TENSIONI	DIREZIONE X	DIREZIONE Y
		Nodo N.ro		Fes lim	Fess mm		s Co m mb	MfX (t*m)	NX (t)	MfY (t*m)	NY (t)	cos teta	sin teta	Combina o lim. Carico Kg/cmq	g cal. Co Mf N Kg/cmq mb (t*m) (t)	σ cal. Co Mf N Kg/cmq mb (t*m) (t)
1	3	7	Rara Freq Perm Rara			0						0,000		RaraCls 150,0 RaraFer 3600 PermCls 112,0 RaraCls 150.0	30,9 1 -1,9 -7,6 735 1 -1,9 -7,6 30,9 1 -1,9 -7,6 30,9 1 -1,9 -7,6	14,0 1 -0,8 -0,1 542 1 -0,8 -0,1 14,0 1 -0,8 -0,1 14,0 1 -0,8 -0,1
1	3	19	Freq Perm Rara	0,3	0,00	0		-1,9	-7,6	-0,8	-0,1	0,000	0,000	RaraFer 3600 PermCls 112,0 RaraCls 150,0 RaraFer 3600	735 1 -1,9 -7,6 30,9 1 -1,9 -7,6 0,0 0 0,0 0,0	542 1 -0,8 -0,1 14,0 1 -0,8 -0,1 1,7 1 -0,1 -1,1
1	3	27	Freq Perm Rara Freq	0,3	0,00	0			0,4	-0,1 -0,2	0,4	0,000	0,000	PermCls 112,0 RaraCls 150,0 RaraFer 3600	0,0 0 0,0 0,0 18,3 1 -1,0 -1,5 617 1 -1,0 -1,5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1	3	31	Perm Rara Freq	0,4	0,00	0	1	-1,0	-1,5	-0,2 -0,2	0,4	0,000	0,000	PermCls 112,0 RaraCls 150,0 RaraFer 3600	18,3 1 -1,0 -1,5 18,3 1 -1,0 -1,5 617 1 -1,0 -1,5	3,5 1 -0,2 0,4 3,5 1 -0,2 0,4 187 1 -0,2 0,4
1	3	33	Perm Rara Freq Perm	0,4	0,00	0	1 1	0,6	-1,5 -8,0 -8,0		-2,4	0,000 0,000 0,000	0,000	PermCls 112,0 RaraCls 150,0 RaraFer 3600 PermCls 112,0	18,3 1 -1,0 -1,5 6,9 1 0,6 -8,0 48 1 0,6 -8,0 6,9 1 0,6 -8,0	3,5 1 -0,2 0,4 2,0 1 0,2 -2,4 14 1 0,2 -2,4 2,0 1 0,2 -2,4

S.L.E. - VERIFICA SHELLS - QUOTA: 1 ELEMENTO: 4

								FESSU	RAZION	I		1		TENS	IONI	D	IREZ	IONE 2	K	D	IRE	ZIONE Y	Y
GrQ N.r	Gen N.r	Nodo N.ro	Comb. Cari	Fes lim	Fess mm	di:	s Co m mb	MfX (t*m)	NX (t)	MfY (t*m)	NY (t)	cos teta	sin teta	Combina Carico	σ lim. Kg/cmq	σ cal. Kg/cmq	Co mb	Mf (t*m)	N (t)	σ cal. Kg/cmq	Co mb	Mf (t*m)	N (t)
1	4	1	Rara Freq Perm			0			-1,0 -1,0			0,000 0,000		RaraCls RaraFer PermCls	3600 112,0	0,9 6 0,9	1 -	0,1 0,1 0,1	-1,0 -1,0 -1,0	2,7 85 2,7		0,2 0,2 0,2	-0,3 -0,3 -0,3
1	4	20	Rara Freq Perm			0			-1,8 -1,8			0,000		RaraCls RaraFer PermCls RaraCls	3600 112,0	3,3 37 3,3	1 1 1	0,2 0,2 0,2	-1,8 -1,8 -1,8	22,6 718 22,6	1 1 1	1,3	-2,6 -2,6 -2,6
1	4	31	Rara Freq Perm			0	1		-1,5 -1,5	0,5 0,5		0,000		RaraFer PermCls RaraCls	3600 112,0	23,7 830 23,7 23.7	1	1,3	-1,5 -1,5 -1,5	9,3 444 9,3 9,3	1	0,5 0,5 0,5	0,7 0,7 0,7 0,7
1	4	35	Rara Freq Perm Rara			0	1		-1,5 -1,5	0,5 0,5		0,000		RaraCls RaraFer PermCls RaraCls	3600 112,0	830 23,7 14,3	1 1 1 _	1,3 1,3 1,3 0,8	-1,5 -1,5 -1,5 -1,9	9,3 444 9,3 8,9	1 1 1	0,5 0,5 0,5	0,7 0,7 -1,6
	· ·		Freq Perm		0,00	0						0,000		RaraFer PermCls	3600	434 14,3	1 -	0,8	-1,9 -1,9	244 8,9	1 -	0,5 -0,5 -0,5	-1,6 -1,6 -1,6

S.L.E. - VERIFICA SHELLS - QUOTA: 1 ELEMENTO: 4

							FE	SSUR	AZION	Ι				TENS	IONI	D:	IREZ	ZIONE 2	K	D	IREZ	ZIONE '	Y
GrÇ N.r		Nodo N.ro	Comb. Cari					fX *m)	NX (t)	MfY (t*m)	NY (t)	cos teta	sin teta	Combina Carico	σ lim. Kg/cmq	σ cal. Kg/cmq	Co mb	Mf (t*m)	N (t)	σ cal. Kg/cmq	Co mb	Mf (t*m)	N (t)
1	4		Rara Freq Perm	0,4 0	0,00	0 1 0 1	-1, -1,	5 – 5 –	3,4 3,4	0,0	-0,9 -0,9	0,000	0,000	RaraCls RaraFer PermCls	150,0 3600 112,0	25,5 783 25,5	1 - 1 - 1 -	1,5 1,5 1,5	-3,4 -3,4 -3,4	0,4 3 0,4	1 1 1	0,0 0,0 0,0	-0,9 -0,9 -0,9

RELAZIONE TECNICA E DI CALCOLO TOMBINI IDRAULICI

PROGETTO ESECUTIVO

ALLEGATO 4: MANUFATTO DI SBOCCO

TABULATI DI CALCOLO

DATI GENERALI DI STRUTTURA

DATI GENERALI	DI STRUTTURA
Massima dimens. dir. X (m) 15,00 Massima dimens. dir. Y (m) 15,00	Altezza edificio (m) 6,00 Differenza temperatura(°C) 15
PARAMETR	I SISMICI
Vita Nominale (Anni) 50 Longitudine Est (Grd) 13,91250 Categoria Suolo C Sistema Costruttivo Dir.1 C.A. Regolarita' in Altezza SI (KR=1) Direzione Sisma (Grd) 0	Classe d' Uso QUARTA Latitudine Nord (Grd) 37,42140 Coeff. Condiz. Topogr. 1,00000 Sistema Costruttivo Dir.2 C.A. Regolarita' in Pianta SI Sisma Verticale ASSENTE
PARAMETRI SPETTRO ELASTIC	CO - SISMA S.L.O.
Probabilita' Pvr 0,81 Accelerazione Ag/g 0,03 Fo 2,51 Fattore Stratigrafia 'S' 1,50 Periodo TC (sec.) 0,43	Periodo di Ritorno Anni 60,00 Periodo T'c (sec.) 0,26 Fv 0,61 Periodo TB (sec.) 0,14 Periodo TD (sec.) 1,73
PARAMETRI SPETTRO ELASTIC	CO - SISMA S.L.D.
Probabilita' Pvr 0,63 Accelerazione Ag/g 0,04 Fo 2,53 Fattore Stratigrafia 'S' 1,50 Periodo TC (sec.) 0,48	Periodo di Ritorno Anni 101,00 Periodo T'c (sec.) 0,31 Fv 0,67 Periodo TB (sec.) 0,16 Periodo TD (sec.) 1,75
PARAMETRI SPETTRO ELASTIC	CO - SISMA S.L.V.
Probabilita' Pvr 0,10 Accelerazione Ag/g 0,08 Fo 2,67 Fattore Stratigrafia 'S' 1,50 Periodo TC (sec.) 0,65	Periodo di Ritorno Anni 949,00 Periodo T'c (sec.) 0,49 Fv 1,02 Periodo TB (sec.) 0,22 Periodo TD (sec.) 1,92
PARAMETRI SPETTRO ELASTIC	CO - SISMA S.L.C.
Probabilita' Pvr 0,05 Accelerazione Ag/g 0,10 Fo 2,76 Fattore Stratigrafia 'S' 1,50 Periodo TC (sec.) 0,68	Periodo di Ritorno Anni 1950,00 Periodo T'c (sec.) 0,53 Fv 1,16 Periodo TB (sec.) 0,23 Periodo TD (sec.) 1,99
PARAMETRI SISTEMA C	OSTRUTTIVO C. A DIR. 1
Classe Duttilita' BASSA AlfaU/Alfal 1,10 Fattore di struttura 'q' 1,50	Sotto-Sistema Strutturale Pareti Fattore riduttivo KW 0,50
PARAMETRI SISTEMA C	OSTRUTTIVO C.A DIR. 2
Classe Duttilita' BASSA	Sotto-Sistema Strutturale Pareti

RELAZIONE TECNICA E DI CALCOLO TOMBINI IDRAULICI

AlfaU/Alfa1 Fattore di struttura 'q'	1,10 1,50	Fattore riduttivo KW	0,50
COEFFICIENTI	DI SICUREZZ	ZA PARZIALI DEI MATERIALI	
Acciaio per CLS armato Legno per comb. eccez. Livello conoscenza A FRP Collasso Tipo 'A' FRP Collasso Tipo 'B' FRP Resist. Press/Fless FRP Resist. Confinamento	1,15 1,00 DEGUATO 1,10 1,25 1,00 1,10	Calcestruzzo CLS armato Legno per comb. fondament.: FRP Delaminazione Tipo 'A' FRP Delaminazione Tipo 'B' FRP Resist. Taglio/Torsione	1,50 1,50 1,20 1,50 1,20

COORDINATE E TIPOLOGIA FILI FISSI

Filo	Ascissa	Ordinata
N.ro	m	m
1 3	0,00	0,00 4,20

Filo	Ascissa	Ordinata
N.ro	m	m
2	7,65	0,00
4	7,65	4,20

QUOTE PIANI SISMICI ED INTERPIANI

Quota N.ro	Altezza m	Tipologia	Reg.T	Camp. Alt.
0	0,00	Piano Terra		

Quota	Altezza	Tipologia	Irre	Tamp
N.ro	m		XY	Alt.
1	2,70	Interpiano	SI	SI

VERIFICA PIASTRE

SPECIFICHE CAMPI TABELLA DI STAMPA

Si riporta di seguito la spiegazione delle sigle usate nella tabella di stampa della verifica degli elementi bidimensionali allo stato limite ultimo.

Quota N.ro

Quota a cui si trova l'elemento. Numero identificativo del macroelemento il Perim. N.ro

cui perimetro è stato definito prima di

eseguire la verifica. Nodo 3d N.ro: Numero del nodo relativo alla suddivisione

Nx

del macroelemento in microelementi.
Sforzo sul piano dell'elemento bidimensionale
diretto come l'asse x del sistema locale.
(Il sistema di riferimento locale e' quello

delle armature)

: Sforzo sul piano dell'elemento bidimensionale Ny

Txy

diretto come l'asse y del sistema locale.

Sforzo tagliante sul piano dell'elemento con direzione y e agente sulla faccia di normale x del sistema locale. (Ovvero anche, per la simmetria delle tensioni tangenziali, sforzo tagliante sul

piano dell'elemento con direzione x e agente sulla faccia di normale y del sistema locale) : Momento flettente agente sulla sezione di normale x Mx

RELAZIONE TECNICA E DI CALCOLO TOMBINI IDRAULICI

del sistema locale.Per le verifiche e' accoppiato allo sforzo normale Nx. Questo momento e' incrementato per tenere in conto il valore del momento torcente Mxy : Momento flettente agente sulla sezione di normale y

del sistema locale. Per le verifiche e' accoppiato allo sforzo normale Ny.

Ouesto momento e' incrementato per tenere in conto il valore del momento torcente Mxy

: Momento torcente con asse vettore x e agente sulla sezione di normale x(Ovvero anche, per la simmetria delle tensioni tangenziali momento torcente con Mxy

asse vettore y e agente sulla sezione di normale y
: Deformazione del calcestruzzo nella
faccia di normale x *10000 (Es. .35% = 35)

εc x *10000 εc y *10000 .35% = 35)εf x *10000

 Faccia di normale x *10000 (Es. .35% = 35)
 Deformazione del calcestruzzo nella faccia di normale y *10000 (Es. .35% = 35)
 Deformazione dell' acciaio nella faccia di normale x *10000 (Es. 1% = 100)
 Deformazione dell' acciaio nella faccia di normale x *10000 (Es. 1% = 100) εf y *10000

Area totale armatura superiore diretta lungo x.
(Area totale e' l'area della presso-flessione
piu' l'area per il taglio riportata dopo) Ax superiore :

Area totale armatura superiore diretta lungo y. Ay superiore : Ax inferiore : Area totale armatura inferiore diretta lungo x. Ay inferiore : Area totale armatura inferiore diretta lungo y. Atag

: Area per il taglio su ciascuna faccia per le due direzioni

Tensione massima di contatto con il terreno. Eta : Abbassamento verticale del nodo in esame.

Forza punzonante sulla piastra Fpunz

: Armatura sufficiente da sola ad assorbire la Apunz

forza punzonante

Nel caso di stampa di riverifiche degli elementi con le armature effettivamente disposte sul disegno ferri le colonne delle ϵ vengono sostituite con:

Molt.: Moltiplicatore delle sollecitazioni che porta a

rottura la sezione, rispettivamente nelle direzioni X e Y

: Posizione adimensionalizzata dell'asse neutro x/d

rispettivamente nelle direzioni X e Y

VERIFICA PIASTRE

Му

SPECIFICHE CAMPI TABELLA DI STAMPA

Si riporta di seguito la spiegazione delle sigle usate nella tabella di stampa delle verifiche agli stati limite di esercizio degli elementi bidimensionali.

Quota

Perim.

Quota a cui si trova l'elemento. Numero identificativo del macroelemento il cui perimetro è stato definito prima di eseguire la verifica. Numero del noto relativo alla suddivisione del macroelemento Nodo

in microelementi.

Indicatore della matrice di combinazione; la prima riga. individua la matrice delle combinazioni rare, la seconda la matrice delle combinazioni frequenti, la terza quella Comb. Cari

permanenti. Fessura limite

Fes lim espressa in mm. Fessura di calcolo espressa in mm; se sull'elemento non si aprono fessure tutta la riga sara' nulla. Fess.

Distanza fra le fessure. Dist mm

Combin Numero della combinazione ed in sequenza sollecitazioni per

RELAZIONE TECNICA E DI CALCOLO TOMBINI IDRAULICI

Mf X	cui si è avuta la massima fessura. Momento flettente agente sulla sezione di normale x del sistema locale.(Il sistema di riferimento locale è quello delle
	armature)
N X	Sforzo sul piano dell'elemento bidimensionale diretto come l'asse x del sistema locale.
Mf Y	Momento flettente agente sulla sezione di normale y del sistema locale.(Il sistema di riferimento locale è quello delle
N Y	armature) Sforzo sul piano dell'elemento bidimensionale diretto come l'asse y del sistema locale.
Cos teta	Coseno dell'angolo teta tra l'armatura in direzione X e la direzione della tensione principale di trazione.
Sin teta	Seno dell'angolo teta.
Combina	Indicatore della matrice di combinazione; la prima riga.
Carico	indicatore deria matrice di combinazioni ra prima riga:
Carico	individua la matrice delle combinazioni rare per la verifica
	della tensione sul cls, la seconda la matrice delle combinazioni
	rare per la verifica della tensione sull'acciaio, la terza la matrice delle combinazioni permanenti per la verifica della
	tensione sul cls.
σlim	Valore della tensione limite in Kg/cmq.
σ cal	Valore della tensione di calcolo in Kg/cmg sulla faccia di
o cai	normale x.
Conbin	Numero della combinazione ed in sequenza sollecitazioni per
COIDIII	
3.4.C 3.7	cui si è avuta la massima tensione.
Mf X	Momento flettente agente sulla sezione di normale x del sistema
	locale.(Il sistema di riferimento locale è quello delle
	armature)
N X	Sforzo sul piano dell'elemento bidimensionale diretto come
	l'asse x del sistema locale.
σ cal	Valore della tensione di calcolo in Kg/cmg sulla faccia di
o cai	normale y.
Combin	Numero della combinazione ed in sequenza sollecitazioni per
COMBIN	Numero della combinazione ed in sequenza soffectazioni per
	cui si è avuta la massima tensione.
Mf Y	Momento flettente agente sulla sezione di normale y del sistema
	locale.
N Y	Sforzo sul piano dell'elemento bidimensionale diretto come
	l'asse y del sistema locale.

S.L.U. - AZIONI S.L.V. -VERIFICA PIASTRE - QUOTA: 0 ELEMENTO: 1

uo	Per 1	Nodo 3	d∥ Nx	Ny Ny	Txy	Mx	My	Mxy	∥εc x	εc :	y∥εf ≥	¢∥εf	y∥Ax	s Ay	s Ax	i∥Ay	i∥Atag	ŋ∥ σt	eta	Fpunz	
.r	[N".r	N.ro	∦ Kg/m	∦ Kg/m	∦ Kg/m	kgm/m	kgm/m	kgm/m	*100	000	*10	0000	cm	ıd∥ cm	d∥ cw	d∥ cw	d∥ cwo	ı∥kg/c	mq mm	kg	cn
					JL	.,		.J	<u></u>									<u></u>			
0	1	1	393	-3010	1095	-534	-8	105	1	0	8	0	7,5	7,5	1,0	7,5	0,1	0,8	-1,5		
0	1	31	-2479	-8819	843	1113	243	382	1	0	7	0	0,9	7,5	7,5	7,5	0,1	0,7	-1,5		
0	1	37	-1922	-2642	2631	-752	-1028	-405	1	1	4	5	7,5	7,5	1,2	1,2	0,3	0,5	-0,9		
0	1	38	-2614	-1234	823	866	676	631	1	1	4	5	7,5	7,5	7,5	7,5	0,1	0,3	-0,7		
0	1	39	-3932	-944	324	-89	-437	143	0	0	0	3	7,5	7,5	7,5	0,9	0,0	0,3	-0,7		
0	1	40	-2614	-1234	823	866	676	-631	1	1	4	5	7,5	7,5	7,5	7,5	0,1	0,3	-0,7		
0	1	41	-4814	412	787	2746	853	-138	2	1	10	12	1,5	0,9	7,5	7,5	0,1	0,2	-0,5		
0	1	42	-6724	388	378	3937	831	0	3	1	14	12	1,4	0,9	7,5	7,5	0,0	0,2	-0,5		
0	1	43	-4814	412	787	2746	853	138	2	1	10	12	1,5	0,9	7,5	7,5	0,1	0,2	-0,5		

S.L.U. - AZIONI S.L.D. -VERIFICA PIASTRE - QUOTA: 0 ELEMENTO: 1

ſ			 		Т			T	7			 1				7	7/		1	7			T
Ī	Quo	Per	Nodo	3d	Nx	Ny	Txy	∥ Mx	∥ My	Mxy kgm/m	∥εc x	εc y	ef x∥εf	y∥Ax	s∥Ay s	s ax	i∥Ay i	Atag	∥ σt	∥ ∈	eta∥	Fpunz	
	N.r	N.r	N.ro		Kg/m ∥	Kg/m	Kg/m	∥kgm/m	$\ kgm/m$	∥kgm/m	*100	000	*10000) cr	mq∥ cmo	q∥ cmo	a∥ cmq	[∥ cmq	kg/cm	nq∥ n	nm	kg	∥ cmq

RELAZIONE TECNICA E DI CALCOLO TOMBINI IDRAULICI

<u> </u>	JL	JL														L	L			 	
0	1	1	393	-2800	1095	-534	-27	98	0	0	8	0	7,5	7,5	1,0	7,5	0,1	0,8	-1,5		
0	1	31	-3321	-8819	772	1287	243	375	1	0	7	0	0,9	7,5	7,5	7,5	0,1	0,7	-1,5		
0	1	37	-2003	-2727	2631	-734	-1000	-344	0	1	3	5	7,5	7,5	1,2	1,2	0,3	0,5	-0,9		
0	1	38	-3938	-1186	714	1045	-634	457	0	0	2	5	7,5	7,5	7,5	7,5	0,1	0,3	-0,7		
0	1	39	-3899	-903	154	-6	-346	68	0	0	0	2	7,5	7,5	7,5	0,9	0,0	0,3	-0,7		
0	1	40	-3938	-1186	714	1045	-634	-457	0	0	2	5	7,5	7,5	7,5	7,5	0,1	0,3	-0,7		
0	1	41	-4814	412	748	2746	853	-138	1	1	9	12	1,5	0,9	7,5	7,5	0,1	0,2	-0,4		
0	1	42	-6724	388	180	3937	831	0	2	1	14	12	1,4	0,9	7,5	7,5	0,0	0,2	-0,4		
0	1	43	-4814	412	748	2746	853	138	1	1	9	12	1,5	0,9	7,5	7,5	0,1	0,2	-0,4		
<u> </u>																				 	

S.L.E. - VERIFICA PIASTRE - QUOTA: 0 ELEMENTO: 1

								FESSUE	RAZION	I				TENSION	NI	DIRE	ZIONE Z	ζ	DIR	EZIONE	Y
			Comb. Cari		Fess mm			MfX (t*m)	NX (t)	MfY (t*m)	NY (t)	cos teta	sin teta	Combina o Carico Ko	lim. g/cmq	σ cal. Co Kg/cmq mb		N (t)	σ cal. Co		N (t)
0	1	1	Rara Freq Perm			0		-0,3 -0,3	0,1 0,1		-2,6 -2,6	0,000		RaraCls 15 RaraFer 5 PermCls 11	3600	1,7 1 93 1 1,7 1	-0,3 -0,3 -0,3	0,1 0,1 0,1	0,7 1 6 1 0,7 1	0,1 0,1 0,1	-2,6 -2,6 -2,6
0	1	31	Rara Freq Perm	0,4 (0,00	0	1	1,0	-2,3 -2,3	0,2	-6,0 -6,0	0,000	0,000	RaraCls 15		5,6 1 150 1 5,6 1	1,0	-2,3 -2,3 -2,3	2,1 1 16 1 2,1 1	-0,4 -0,4 -0,4	-6,0 -6,0 -6,0
0	1	37	Rara Freq Perm	0,4 (0,00	0	1 -	-0,7 -	-2,1	-1,0	-2,8 -2,8	0,000	0,000	RaraCls 15	50,0 3600	4,0 1 88 1	-0,7 -0,7 -0,7	-2,1 -2,1 -2,1	5,5 1 121 1 5,5 1	-1,0 -1,0 -1,0	-2,8 -2,8 -2,8
0	1	38	Rara Freq Perm	0,4 (0,00	0	1	0,6	-2,1 -2,7 -2,7	0,4	-1,2 -1,2	0,000	0,000	RaraCls 15	50,0 3600 12.0	3,0 1 38 1	0,6 0,6 0,6	-2,7 -2,7 -2,7	3,7 1 111 1 3,7 1	-0,6 -0,6 -0,6	-1,2 -1,2 -1,2
0	1	39	Rara Freq	0,4 (0,00	0	1	0,0	0,0	-0,3	-0,9	0,000	0,000	RaraCls 15	50,0 3600	3,0 1 1,1 1 9 1	0,1	-4,0 -4,0	1,4 1 27 1	-0,3 -0,3	-0,9 -0,9
0	1	40	Perm Rara Freq	0,4 (0,00	0	1		-2,7	0,4	-0,9 -1,2	0,000	0,000		50,0 3600	1,1 1 3,0 1 38 1	0,1 0,6 0,6	-4,0 -2,7 -2,7	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-0,3 -0,6 -0,6	-0,9 -1,2 -1,2
0	1	41	Perm Rara Freq	0,4 (0,00	0	1	1,8	-2,7 -3,3	0,5	-1,2 0,2	0,000	0,000	RaraFer	50,0 3600	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0,6 1,8 1,8	-2,7 -3,3 -3,3	3,7 1 3,0 1 155 1	-0,6 0,5 0,5	-1,2 0,2 0,2
0	1	42	Perm Rara Freq		•	0			-3,3 -4,6	0,5 0,6	0,2	0,000	•	PermCls 11 RaraCls 15 RaraFer	12,0 50,0 3600	11,1 1 16,6 1 540 1	1,8 2,8 2,8	-3,3 -4,6 -4,6	3,0 1 3,4 1 177 1	0,5 0,6 0,6	0,2 0,1 0,1
0	1	43	Perm Rara Freq	0,3	0,00	0	1		-4,6	0,6	0,1	0,000	. ,	RaraCls 15	12,0 50,0 3600	16,6 1 11,1 1 348 1	2,8 1,8	-4,6 -3,3 -3,3	3,4 1 3,0 1 155 1	0,6 0,5 0,5	0,1 0,2 0,2
			Perm			ŏ	i	1,8	-3,3	0,5	0,2	0,000		PermCls 11		11,1 1	1,8	-3,3	3,0 1	0,5	0,2

S.L.U. - AZIONI S.L.V. -VERIFICA SHELLS - QUOTA: 1 ELEMENTO: 1

Gr.Q N.ro	Gen N.r	Nodo 3d N.ro	Nx Kg/m	Ny Kg/m	Txy Kg/m	Mx kgm/m	My kgm/m	Mxy kgm/m	εc x *10	εc y	εf x *100	εf y 00	Ax s.	Ay s.	Ax i.	Ay i. cmq	Atag. cmq	σt kg/cmq	eta mm
1 1 1 1	1 1 1	1 2 30 45	778 778 -12354 8884	1291 1291 -4799 -390	1356 1356 470 198	-405 -405 179 -665	-315 -315 1462 -114	184 -184 0 -68	0 0 0 2	0 0 1 0	2 2 0 6	2 2 2 0	5,0 5,0 5,1 5,0	5,0 5,0 5,1 5,0	5,0 5,0 5,1 5,0	5,0 5,0 5,1 5,0	0,2 0,2 0,1 0,0	0,76 0,76 0,74	-1,5 -1,5 -1,5 -1,5

S.L.U. - AZIONI S.L.V. -VERIFICA SHELLS - QUOTA: 1 ELEMENTO: 2

Gr.Q N.ro	1	Nodo 3d N.ro	Nx Kg/m	Ny Kg/m	Txy Kg/m	Mx kgm/m	My kgm/m	Mxy kgm/m	εc x *100	εc y	εf x *100		Ax s.	Ay s. cmq	Ax i.	Ay i. cmq	Atag. cmq	σt kg/cmq	eta mm
1 1 1 1	2 2 2 2 2	17	5203 -1611 -3383 -11551 -17641	3463 -1192 1339 -3992 -1267	2231 2436 1186 4438 7369	-1110 -449 -1161 -78 -4005	-1376 -656 -311 -959 -780	-545 278 76 -371 -221	1 0 1 0 2	1 0 0 1 1	6 1 2 0 5	6 1 2 1 2	5,0 5,0 5,0 5,0	5,0 5,0 5,0 5,0	5,0 5,0 5,0 5,0	5,0 5,0 5,0 5,0	0,3 0,3 0,2 0,6 0,9	0,76	-1,5 -0,7 -0,5 -1,3 -0,5

S.L.U. - AZIONI S.L.V. -VERIFICA SHELLS - QUOTA: 1 ELEMENTO: 3

Gr.Q N.ro	Gen N.r	Nodo 3d N.ro	Nx Kg/m	Ny Kg/m	Txy Kg/m	Mx kgm/m	My kgm/m	Mxy kgm/m	εc x *10	εc y	εf x *100	εf y	Ax s.	Ay s.	Ax i.	Ay i.	Atag. cmq	σt kg/cmq	eta mm
1 1 1	3 3 3	3 25 42 47	505 -5856 651 -2565	1525 2725 -2487 -1166	2744 851 0 711	96 -4940 -740 2046	-417 -1558 -4010 1684	122 620 0 1295	0 4 1 2	1 2 8 4	3 16 14 11	11 15 86 44	4,8 7,5 5,0 5,3	4,8 5,8 7,6 5,3	4,8 5,7 4,8 6,0	4,8 5,3 5,8 6,0	4,0 4,0 4,0 4,0	0,26 0,24	-0,5 -0,5 -0,5 -0,5

RELAZIONE TECNICA E DI CALCOLO TOMBINI IDRAULICI

1	3	49	-2565	-1166	711	2046	1684	-1295	2	4	11	44	5,3	5,3	6,0	6,0	4,0	-0,	,5	
---	---	----	-------	-------	-----	------	------	-------	---	---	----	----	-----	-----	-----	-----	-----	-----	----	--

S.L.U. - AZIONI S.L.V. -VERIFICA SHELLS - QUOTA: 1 ELEMENTO: 4

Gr.Q Gen N.ro N.r		Nx Kg/m	Ny Kg/m	Txy Kg/m	Mx kgm/m	My kgm/m	Mxy kgm/m	εc x *100	εс у 00	εf x *100		Ax s. cmq	Ay s.	Ax i.	Ay i. cmq	Atag. cmq	σt kg/cmq	eta mm
1 4 1 4 1 4 1 4 1 4 1 4	22 23 25	5203 -17641 -1611 -3383 -8476 -11551	3463 -1267 -1192 1339 765 -3992	2231 7369 2436 1186 1182 4438	1110 4005 449 1161 2974 78	1376 780 656 311 480 959	545 221 -278 -76 -180 371	1 2 0 1 2 0	1 0 0 0 1	6 5 1 2 5 0	6 2 1 2 2 1	5,0 5,0 5,0 5,0 5,0	5,0 5,0 5,0 5,0 5,0	5,0 5,0 5,0 5,0 5,0	5,0 5,0 5,0 5,0 5,0	0,3 0,9 0,3 0,2 0,2	0,76	-1,5 -0,5 -0,7 -0,5 -0,5 -1,3

S.L.U. - AZIONI S.L.D. -VERIFICA SHELLS - QUOTA: 1 ELEMENTO: 1

Gr.Q N.ro	Gen N.r	Nodo 3d N.ro	Nx Kg/m	Ny Kg/m	Txy Kg/m	Mx kgm/m	My kgm/m	Mxy kgm/m	εc x *100	εc y	εf x *100	εf y 00	Ax s.	Ay s.	Ax i.	Ay i.	Atag. cmq	σt kg/cmq	eta mm
1 1 1 1	1 1 1 1	1 2 30 45	778 778 -12354 8884	1291 1291 -4799 -409	1221 1221 224 94	-405 -405 179 -665	-315 -315 1462 -79	184 -184 0 -32	0 0 0 2	0 0 1 0	2 2 0 6	2 2 2 0	5,0 5,0 5,1 5,0	5,0 5,0 5,1 5,0	5,0 5,0 5,1 5,0	5,0 5,0 5,1 5,0	0,2 0,2 0,1 0,0	0,76 0,76 0,74	-1,5 -1,5 -1,5 -1,5

S.L.U. - AZIONI S.L.D. -VERIFICA SHELLS - QUOTA: 1 ELEMENTO: 2

Gr.Q Ge N.ro N.		odo 3d N.ro	Nx Kg/m	Ny Kg/m	Txy Kg/m	Mx kgm/m	My kgm/m	Mxy kgm/m	εc x ε *1000		εf x εf y *10000	Ax s.	Ay s. cmq	Ax i.	Ay i.	Atag. cmq	σt kg/cmq	eta mm
1 2 1 2 1 2 1 2 1 2	2 2 2 2 2 2	11 14 -	5203 -1611 -3383 -11551 -17641	3463 -1192 1339 -6230 -1267	2231 2436 1186 4438 7369	-1110 -449 -1161 -78 -4005	-1376 -656 -311 -1205 -780	-545 278 76 -440 -221	0 0 0 0 2	1 0 0 0 0	6 6 1 1 2 2 0 1 4 2	5,0 5,0 5,0 5,0	5,0 5,0 5,0 5,0 5,0	5,0 5,0 5,0 5,0 5,0	5,0 5,0 5,0 5,0 5,0	0,3 0,3 0,2 0,6 0,9	0,76	-1,5 -0,7 -0,4 -1,3 -0,4

S.L.U. - AZIONI S.L.D. -VERIFICA SHELLS - QUOTA: 1 ELEMENTO: 3

Gr.Q N.rc		Nodo 3d N.ro	Nx Kg/m	Ny Kg/m	Txy Kg/m	Mx kgm/m	My kgm/m	Mxy kgm/m	εc x *100	εc y	εf x *10		Ax s.	Ay s.	Ax i.	Ay i.		σt kg/cmq	eta mm
1 1 1 1	3 3 3 3	3 25 42 47 49	505 -5856 651 -2565 -2565	1525 2725 -2487 -1166 -1166	2744 851 0 711 711	96 -4940 -740 2046 2046	-417 -1558 -4010 1684 1684	122 620 0 1295 -1295	0 4 1 2 2	0 1 2 1 1	3 37 14 26 26	11 15 14 10 10	4,8 7,5 5,0 5,3 5,3	4,8 5,8 7,6 5,3	4,8 5,7 4,8 6,0 6,0	4,8 5,3 5,8 6,0 6,0	4,0 4,0 4,0 4,0 4,0	0,22	-0,4 -0,4 -0,4 -0,4 -0,4

S.L.U. - AZIONI S.L.D. -VERIFICA SHELLS - QUOTA: 1 ELEMENTO: 4

Gr.Q G N.ro N			Nx Kg/m	Ny Kg/m	Txy Kg/m	Mx kgm/m	My kgm/m	Mxy kgm/m	εc x *100	εс у 00	εf x *100	εf y	Ax s.	Ay s.	Ax i.	Ay i.	Atag. cmq	ot kg/cmq	eta mm
1 1 1 1 1 1	4 4 4 4 4	22 23 25	5203 -17641 -1611 -3383 -8476 -11551	3463 -1267 -1192 1339 765 -6230	2231 7369 2436 1186 1182 4438	1110 4005 449 1161 2974 78	1376 780 656 311 480 1205	545 221 -278 -76 -180 440	0 2 0 0 1	1 0 0 0 0 0	6 4 1 2 5	6 2 1 2 2 2	5,0 5,0 5,0 5,0 5,0	5,0 5,0 5,0 5,0 5,0	5,0 5,0 5,0 5,0 5,0	5,0 5,0 5,0 5,0 5,0	0,3 0,9 0,3 0,2 0,2	0,76	-1,5 -0,4 -0,7 -0,4 -0,4 -1,3

S.L.E. - VERIFICA SHELLS - QUOTA: 1 ELEMENTO: 1

								FESSU	RAZIO	1I			TENS	TENSIONI			DIREZIONE X				DIREZIONE Y			
		Nodo N.ro	Comb. Cari	Fes lim	Fess mm		s Co n mk		NX (t)	MfY (t*m)	NY (t)	cos teta	sin teta	Combina Carico	σ lim. Kg/cmq	σ cal. Kg/cmq	Co mb	Mf (t*m)	N (t)	σ cal. Kg/cmc	Co		N (t)	
1	1	1	Rara Freq Perm			0	1	-0,3	0,5 0,5	-0,2 -0,2	0,9	0,000		RaraCls RaraFer PermCls	3600	2,8 193	1 -	-0,3 -0,3	0,5	2,0 194	1 .	-0,2 -0,2	0,9	
1	1	2	Rara Freq	0,4	0,00	0	1	-0,3 -0,3	0,5	-0,2	0,9	0,000	0,000	RaraCls RaraFer	150,0 3600	2,8 2,8 193	1 - 1 -	-0,3 -0,3 -0,3	0,5	2,0 2,0 194	1 .	-0,2 -0,2 -0,2	0,9 0,9 0,9	
1	1	30	Perm Rara Freq		. ,	0	1	-0,3 0.1	0,5 -8.4	1.0	0,9	0,000		PermCls RaraCls RaraFer	150,0	2,8 2,5 21	1 - 1 1	-0,3 0,1 0,1	0,5 -8,4 -8,4	2,0 9,9 252	1 · 1 1	-0,2 1,0 1,0	0,9 -3,4 -3,4	
			Perm			ŏ	ī	0,1	-8,4	1,0	-3,4	0,000		PermCls		2,5	ī	0,1	-8,4	9,9	ī	1,0	-3,	

RELAZIONE TECNICA E DI CALCOLO TOMBINI IDRAULICI

	1	1	Rara								RaraCls 150,0							
- 11											RaraFer 3600							
1			Perm 0,3 0,00	0	1	-0,4	6,5	0,0	-0,4	0,000 0,000	PermCls 112,0	0,0	0	0,0	0,0	0,3 1	0,0	-0,4

S.L.E. - VERIFICA SHELLS - QUOTA: 1 ELEMENTO: 2

								FESSU	RAZION	ΙΙ				TENSIONI	DIREZIONE	Х	DIREZIONE Y	
		Nodo N.ro		Fes lim	Fess mm		s Co m mb	MfX (t*m)	NX (t)	MfY (t*m)	NY (t)	cos teta	sin teta	Combina σ lim. Carico Kg/cmq	σ cal. Co Mf Kg/cmq mb (t*m		σ cal. Co Mf N Kg/cmq mb (t*m) (t	:)
1	2	2	Rara Freq Perm			0		-0,7 -0,7	3,3	-0,9 -0,9		0,000		RaraCls 150,0 RaraFer 3600 PermCls 112,0	6,1 1 -0,7 677 1 -0,7 6,1 1 -0,7	3,3 3,3 3,3	8,8 1 -0,9 2,4 692 1 -0,9 2,4 8,8 1 -0,9 2,4	4
	2	10	Rara Freq Perm Rara			0						0,000		RaraCls 150,0 RaraFer 3600 PermCls 112,0 RaraCls 150,0	2,8 1 -0,3 67 1 -0,3 2,8 1 -0,3 7,3 1 -0,7	-1,0 -1,0 -1,0 -2,2	4,6 1 -0,5 -1, 140 1 -0,5 -1, 4,6 1 -0,5 -1, 1,9 1 -0,2 0,	1
	2	14	Freq Perm Rara	0,3	0,00	0				-0,2 -0,2	0,9	0,000	0,000	RaraFer 3600 PermCls 112,0 RaraCls 150,0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-2,2 -2,2 -7,4	193 1 -0,2 0,1 1,9 1 -0,2 0,1 6,6 1 -0,8 -4,1	9 2
1	2	17	Freq Perm Rara Freq	0,3	0,00	0	1 -	-0,1		-0,8	-4,2	0,000	0,000	RaraFer 3600 PermCls 112,0 RaraCls 150,0 RaraFer 3600	25 1 0,4 3,2 1 0,4 23,0 1 -2,6 409 1 -2,6	-7,4 -7,4 -11,7 -11,7	93 1 -0,8 -4, 6,6 1 -0,8 -4, 5,3 1 -0,5 -0, 186 1 -0,5 -0,	2
<u> </u>			Perm			ŏ			-11,7			0,000		PermCls 112,0	23,0 1 -2,6	-11,7	5,3 1 -0,5 -0,5	

S.L.E. - VERIFICA SHELLS - QUOTA: 1 ELEMENTO: 3

								FESSU	RAZION	Ί				TENSIC	ONI	DI	IREZI	ONE X		Γ	IREZ	IONE Y	· ·
		Nodo N.ro	Comb. Cari	Fes lim	Fess mm		s Co n mb	MfX (t*m)	NX (t)	MfY (t*m)	NY (t)	cos teta	sin teta	Combina c Carico K			Co mb (Mf t*m)	N (t)	σ cal. Kg/cmc		Mf (t*m)	N (t)
1	3	3 25	Rara Freq Perm Rara			0		0,0	0,3	-0,3 -0,3		0,000 0,000		RaraCls 1 RaraFer PermCls 1 RaraCls 1	3600 L12,0	0,1 1 27 1 0,1 1 24,4 1		,0,0	0,3 0,3 0,3 -3,8	1,5 117 1,5	1 -	0,3 0,3 0,3	1,1 1,1 1,1 1,8
1	3	42	Freq Perm Rara			0				-1,0 -1,0		0,000			3600 L12,0	701 1 24,4 1 4,0 1	1 -3 1 -3 1 -0	, 3	-3,8 -3,8 -3,8	7,4 353 7,4 21,1	1 -	1,0 1,0 1,0 2,8	1,8 1,8 -2,3
1	3	47	Freq Perm Rara Freq	0,3	00,00	0		-0,5 -0,5		-2,8	-2,3	0,000	0,000	PermCls 1 RaraCls 1		148 1 4,0 1 10,2 1 288 1		, 5	0,3 0,3 -1,6 -1,6	645 21,1 8,4 245		2,8 2,8 1,1	-2,3 -2,3 -1,1 -1,1
1	3	49	Perm Rara Freq Perm	0,3 (0,00	0	1	1,3	-1,6 -1,6 -1,6	1,1	-1,1 -1,1	0,000	0,000	PermCls 1 RaraCls 1	112,0 150,0 3600	10,2 1 10,2 1 288 1 10,2 1	$egin{array}{ccc} 1 & 1 \ 1 & 1 \ 1 & 1 \end{array}$,3 ,3 ,3	-1,6 -1,6 -1,6 -1,6	8,4 8,4 245 8,4	1 1 1	1,1 1,1 1,1	-1,1 -1,1 -1,1 -1,1

S.L.E. - VERIFICA SHELLS - QUOTA: 1 ELEMENTO: 4

								FESSU.	RAZION	Ι				TENS	IONI	D	IREZ	IONE 2	X	D	IREZ	IONE Y	Y.
			Comb. Cari	Fes lim	Fess mm	di m		MfX (t*m)	NX (t)	MfY (t*m)	NY (t)	cos teta	sin teta	Combina Carico	σ lim. Kg/cmq	σ cal. Kg/cmq	Co	Mf (t*m)	N (t)	σ cal. Kg/cmq	Co mb	Mf (t*m)	N (t)
1	4	1	Rara Freq Perm Rara			0	1	0,7 0,7	3,3 3,3	0,9 0,9	2,4 2,4	0,000		RaraCls RaraFer PermCls RaraCls	3600 112,0	6,1 677 6,1 23,0	1	0,7 0,7 0,7 2,6	3,3 3,3 3,3 -11,7	8,8 692 8,8 5,3	1	0,9 0,9 0,9 0,5	2,4 2,4 2,4 -0,9
1	4	22	Freq Perm Rara	0,3	00,00	0		2,6	-11,7 -11,7	0,5	-0,9	0,000 0,000	0,000	RaraFer PermCls RaraCls	3600 112,0 150,0	409 23,0 2,8	1 1 1	2,6 2,6 0,3	-11,7 -11,7 -1,0	186 5,3 4,6	1 1 1	0,5 0,5 0,5	-0,9 -0,9 -1,1
1	4	23	Freq Perm Rara Freq	0,3	00,00	0	_	0,3	-1,0 -1,0 -2,2		-1,1	0,000	0,000	RaraFer PermCls RaraCls RaraFer	112,0 150,0	67 2,8 7,3 204	1	0,3 0,3 0,7	-1,0 -1,0 -2,2 -2,2	140 4,6 1,9 193	1 1 1	0,5 0,5 0,2	-1,1 -1,1 0,9 0,9
1	4	25	Perm Rara Freq	0,3 (0,00	0	1	0,7	-2,2 -5,6	0,2	0,9	0,000	0,000	PermCls RaraCls RaraFer	112,0 150,0 3600	7,3 19,0 542	1 1 1	0,7 2,0 2,0	-2,2 -5,6 -5,6	1,9 3,2 206		0,2 0,3 0,3	0,9 0,5 0,5
1	4	26	Perm Rara Freq Perm	0,4	0,00	0	1	0,1	-5,6 -7,4 -7,4			0,000	0,000	PermCls RaraCls RaraFer PermCls	150,0 3600	19,0 3,7 28 3,7	1 -	2,0 0,5 0,5 0,5	-5,6 -7,4 -7,4 -7,4	3,2 6,6 93 6,6	1	0,3 0,8 0,8 0,8	0,5 -4,2 -4,2 -4,2