ORDINE DEGLI INGEGNERI DELLA PROV. DI TRENTO dott.ing. ROBERTO BOSETTI INSCRIZIONE ALBO Nº 1027

autostrada del brennero

IL RESPONSABILE DEL PROCEDIMENTO dott. ing. Roberto Bosetti

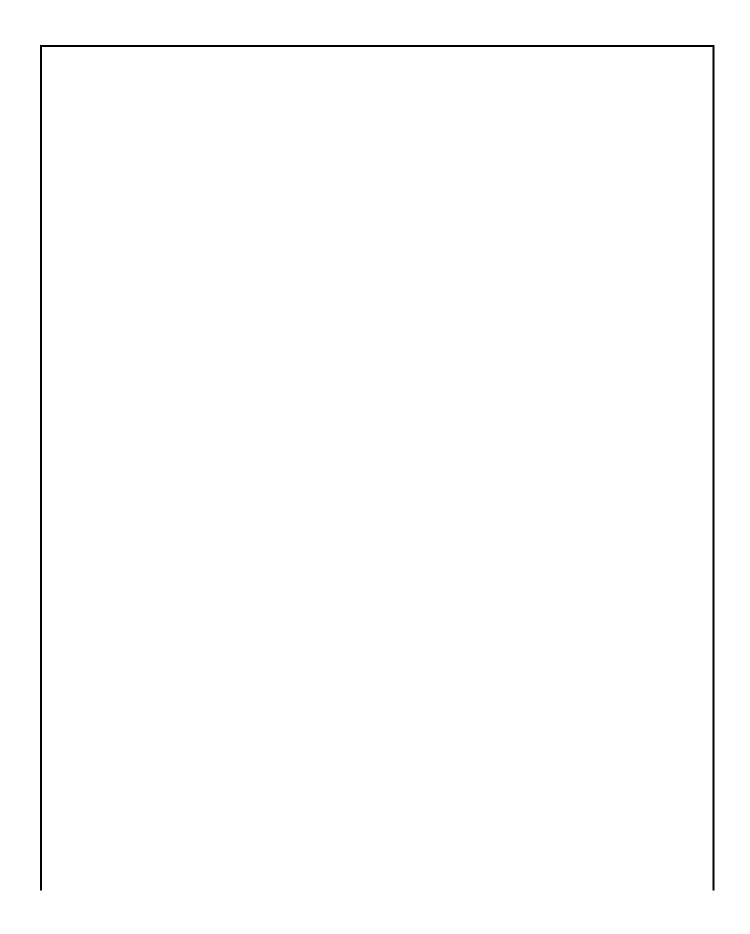
PROGETTO DEFINITIVO PER LA REALIZZAZIONE DELLA TERZA CORSIA NEL TRATTO COMPRESO TRA VERONA NORD (KM 223) E L'INTERSEZIONE CON L'AUTOSTRADA A1 (KM 314)

A1	LOTTO 2 - dal km 223+100 al km 230+717
4.18.1.	INTERVENTI SULLE OPERE D'ARTE Sottopasso ANAS nº8 "Tangenziale" (pr km 228+704) Relazione tecnica illustrativa e di calcolo

0	MAR. 2021	EMISSIONE	POLUZZI	M. ZINI	C. COSTA
REVISIONE:	DATA:	DESCRIZIONE:	REDAZIONE:	VERIFICA:	APPROVAZIONE:

DATA PROGETTO:

LUGLIO 2009


NUMERO PROGETTO:

31/09

DIREZIONE TECNICA GENERALE IL DIRETTORE TECNICO GENERALE E PROGETTISTA:

ORDINE DEGLI INGEGNERI DELLA PROV. DI BOLZANO Dett. Ing. CARLO COSTA Nr. 891 INGENIEURKAMMER DER PROVINZ BOZEN

AUTOSTRADA DEL BRENNERO S.P.A. CODIFICA DOCUMENTO FOGLIO A1 4 18 1 RELAZIONE CALCOLODOC 2 DI 162

INDICE

1	RELAZIONE ILLUSTRATIVA	8
1.1	ELEMENTI STRUTTURALI	12
1.1.1	IMPALCATO	12
1.1.2	APPOGGI	13
1.1.3	SPALLE	14
1.2	METODO DI CALCOLO	16
1.2.1	CRITERI E DEFINIZIONE DELL'AZIONE SISMICA	16
1.2.2	COMBINAZIONI DI CARICO	20
1.2.3	SISTEMA DI VINCOLAMENTO	23
1.2.4	VALUTAZIONE DELLE SPINTE DEL TERRENO	23
1.2.5	VERIFICHE DEGLI ELEMENTI STRUTTURALI	24
2	NORMATIVA DI RIFERIMENTO	25
2.1	OPERE IN C.A. E ACCIAIO	25
2.2	PRINCIAPLI NORME UNI	25
2.3	PRINCIPALI ISTRUZIONI CNR	26
2.4	NORME STRADALI	26
3	CARATTERISTICHE DEI MATERIALI	28
3.1	TABELLA RIASSUNTIVA CLASSI DI ESPOSIZIONE SECONDO	
	NORMATIVA UNI EN 206-1	28
3.2	CALCESTRUZZO PER MAGRONE	29
3.3	CALCESTRUZZO PER PALI DI FONDAZIONE	29
3.4	CALCESTRUZZO PER OPERE DI FONDAZIONE	29
3.5	CALCESTRUZZO PER OPERE DI ELEVAZIONE	30
3.6	CALCESTRUZZO PER SOLETTA IMPALCATO	30
3.7	ACCIAIO PER CEMENTO ARMATO	31
3.8	STRUTTURE METALLICHE	31
3.8.1	CARPENTERIA METALLICA	31

		AUTOSTRADA DEL BRENNERO S.P.A.	,
SOTTOPASSO ANAS N°8 "TANGENZIALE"		CODIFICA DOCUMENTO	FOGLIO 3 DI 162
(PR KM 228+704)		A1 4 18 1 RELAZIONE CALCOLO,DOC	3 51 102
3.8.2 PIOLI			31
3.9 COPRIFERRI			32
4 CODICI DI CALCOL	O		33
4.1 SAP 2000			33
4.2 ENG - SIGMAC			35
4.3 VCASLU			37
5 RELAZIONE DI CAL	COLO IMPA	LCATO	38
5.1 TRAVI IN ACCIAIO			38
5.1.1 CRITERI DI CALCOLO)		38
5.1.2 ANALISI DEI CARICHI			39
5.1.3 MODELLI DI CALCOLO	0		41
5.1.4 ANALISI STRUTTURAI	L E		42
5.1.4.1 Criteri generali			42
5.1.4.2 Calcolo delle Sollecit	azioni		42
5.1.5 VERIFICHE TRAVI PR	INCIPALI		44
5.1.5.1 Verifiche di resistenz	za (SLU)		44
5.1.5.1.1 Verifica delle travi			44
5.1.5.1.2 Verifica dei pannelli			51
5.1.5.1.3 Verifica dei pioli			53
5.2 SOLETTA			56
5.2.1 VERIFICHE IN DIREZI	ONE TRASVEF	RSALE	57
5.2.1.1 Fase provvisionale			57
5.2.1.2 Fase definitiva			63
5.2.1.2.1 Carichi permanenti			63
5.2.1.2.2 Carichi accidentali			66
5.2.1.3 Riepilogo delle sollec	itazioni massim	e e combinazione di carico	71
5.2.1.4 Verifiche di resistenz	za		72
5.2.1.5 Verifica in condizion	i eccezionali: ur	to di veicolo in svio	77
5.2.2 VERIFICHE IN DIREZI	ONE LONGITU	UDINALE	79
5.2.2.1 Verifiche di resistenz	za (SLu)		79
5.3 TRAVERSI			80
5.3.1 MODELLO DI CALCOI	.0		80

COTTODACCO ANAC NO UTANCENZIALEU		AUTOSTRADA DEL BRENNERO S.P.A.	
SOTTOPASSO ANAS N°8 "TANGENZIALE" (PR KM 228+704)		CODIFICA DOCUMENTO A1 4 18 1 RELAZIONE CALCOLO,DOC	FOGLIO 4 DI 162
	(TREE 220.701)		
5.3.2	5.3.2 VERIFICHE DI RESISTENZA		
6	RELAZIONE DI CALCOLO APPO	OGGI	83
6.1	AZIONI SUGLI APPOGGI		85
6.1.1	CARICHI STATICI		85
6.1.2	.2 SISMA 86		
7	7 RELAZIONE DI CALCOLO SPALLE 89		
7.1	SCHEMATIZZAZIONE DELLA S	TRUTTURA	89
7.1.1	SPALLA		89
7.1.2	IMPALCATO		91
7.1.3	CONVENZIONI SUI SEGNI		94
7.2	DATI PER ANALISI SISMICA		94
7.3	ELENCO DATI		95
7.3.1	3.1 DATI RELATIVI ALLE TRAVI		95
7.3.2	DATI RELATIVI ALLA SOLETTA FINITURE	, ALLA PAVIMENTAZIONE ED AL	LE 95
7.3.3	DATI RELATIVI AI CARICHI MOBIL	ī	95
7.3.4	DATI RELATIVI ALLE AZIONI SISMI		96
			, ,
7.3.5	DATI RELATIVI AGLI APPOGGI ED A	ALLA CURVATURA IMPALCATO	97
7.3.6	DATI RELATIVI AI BAGGIOLI		97
7.3.7	DATI RELATIVI ALLA SPALLA		98
7.3.8	DATI RELATIVI ALLA PLATEA DI FO	ONDAZIONE	98
7.3.9	DATI RELATIVI AL TERRENO		99
7.3.10	DATI RELATIVI ALLA PALIFICATA	DI FONDAZIONE	99
7.4	CASI DI CARICO E COMBINAZI	ONI	100
7.4.1	CARICHI ELEMENTARI		100
7.4.2	COMBINAZIONI DI CARICO		103
7.5	AZIONI		107
7.5.1	AZIONI TRASMESSE DALL'IMPALC	ATO	107
7.5.	•		107
7.5.	1.2 Carichi accidentali		107

SOTTO)PASS	O ANAS N°8 "TANGENZIALE"	AUTOSTRADA DEL BRENNERO S.P.A. CODIFICA DOCUMENTO	FOGLIO
50110	717100	(PR KM 228+704)	A1_4_18_1_RELAZIONE CALCOLODOC	5 DI 162
7.5.	.1.3	Azione di frenamento		108
7.5.	.1.4	Azione centrifuga		108
7.5.	.1.5	Azione del vento		108
7.5.	.1.6	Azione sismica		109
7.5.	.1.7	Azione di attrito		110
7.5.2	ΑZ	IONI RELATIVE ALLA SPALLA		110
7.5.	.2.1	Peso proprio		110
7.5.	.2.2	Spinta delle terre		111
7.5.	.2.2.1	Spinta del terreno di monte		111
7.5.	.2.2.2	Spinta relativa del sovraccarico sul t	errapieno	112
7.5.	.2.2.3	Spinta relativa al terreno di valle		114
7.5.	.2.2.4	Carico sulla platea fondazione		114
7.5.	.2.3	Azione del vento		114
7.5.	.2.4	Azione sismica		114
7.5.	2.4.1	Azioni inerziali		114
7.5.	.2.4.2	Spinta terre		115
7.6	SOI	LLECITAZIONI		117
7.6.1	SO	LLECITAZIONI MICROPALI DI F	ONDAZIONE	117
7.6.	.1.1	Stati limite ultimi Struttura: A1+M1		119
7.6.	.1.2	Stati limite ultimi Geotecnica: A2+N	11	121
7.6.	.1.3	Condizione sismica Struttura: A1+N	11	122
7.6.	.1.4	Condizione sismica Geotecnica: A2+	M1	124
7.6.2	SO	LLECITAZIONI FUSTO ESISTENT	E	126
7.6.	.2.1	Stati limite ultimi Struttura: A1+M1	l	126
7.6.	.2.2	Condizione sismica Struttura: A1+N	11	127
7.6.3	SO	LLECITAZIONI MURI DI RISVOL	го	127
7.6.	.3.1	Stati limite ultimi Struttura: A1+M1	l	128
7.6.	.3.2	Condizione sismica Struttura: A1+M	11	129
7.7	VEI	RIFICHE DEGLI ELEMENTI S	STRUTTURALI	131
7.7.1	VE	RIFICHE FUSTO ESISTENTE		131
7.7.	.1.1	Verifiche allo stato limite ultimo porizzontale)	er Presso-Flessione – Direzione 1 (armatu	ra 133
7.7.	.1.2	Verifiche allo stato limite ultimo p verticale)	per Presso-Flessione – Direzione 2 (armatu	ra 134
7.7	.1.3	Verifiche a taglio allo stato limite ul	timo	135

AUTOSTRADA DEL BRENNERO S.P.A. SOTTOPASSO ANAS N°8 "TANGENZIALE" CODIFICA DOCUMENTO FOGLIO 6 DI 162 (PR KM 228+704) A1 4 18 1 RELAZIONE CALCOLO,DOC 7.7.1.4 Verifiche slu (sisma) 136 VERIFICHE MURI DI RISVOLTO 7.7.2 139 7.7.2.1 Risvolto sinistro 139 7.7.2.2 Verifiche allo stato limite ultimo per Presso-Flessione - Direzione 1 (armatura orizzontale) 140 7.7.2.3 Verifiche allo stato limite ultimo per Presso-Flessione – Direzione 2 (armatura 141 verticale) 7.7.2.4 Verifiche a taglio allo stato limite ultimo 142 7.7.2.5 143 Verifiche slu (sisma) 7.7.3 RISVOLTO DESTRO 144 7.7.3.1 Verifiche allo stato limite ultimo per Presso-Flessione - PORZIONE ALTA -Direzione 1 (armatura orizzontale) 147 7.7.3.2 Verifiche allo stato limite ultimo per Presso-Flessione – PORZIONE ALTA -Direzione 2 (armatura verticale) 148 Verifiche allo stato limite ultimo per Presso-Flessione - PORZIONE BASSA -7.7.3.3 149 Direzione 1 (armatura orizzontale) 7.7.3.4 Verifiche allo stato limite ultimo per Presso-Flessione - PORZIONE BASSA -Direzione 2 (armatura verticale) 150 7.7.3.5 Verifiche a taglio allo stato limite ultimo 151 7.7.3.6 Verifiche in campo elastico (sisma) 152 7.7.4 VERIFICHE MICROPALI 152 7.7.4.1 Micropali di fondazione del paraghiaia 153 7.7.4.1.1 Geometria adottata per le verifiche 153 7.7.4.1.2 Verifiche a pressoflessione e taglio allo stato limite ultimo elastico 153 Verifiche a pressoflessione e taglio allo stato limite ultimo elastico - slv 154 7.7.4.1.3 7.7.4.2 Micropali di fondazione del risvolto destro 154 154 7.7.4.2.1 Geometria adottata per le verifiche 154 7.7.4.2.2 Verifiche a pressoflessione e taglio allo stato limite ultimo elastico 7.7.4.2.3 Verifiche a pressoflessione e taglio allo stato limite ultimo elastico - sly 155 7.7.4.3 Micropali di fondazione del risvolto sinistro 156 156 7.7.4.3.1 Geometria adottata per le verifiche 7.7.4.3.2 Verifiche a pressoflessione e taglio allo stato limite ultimo elastico 156 7.7.4.3.3 Verifiche a pressoflessione e taglio allo stato limite ultimo elastico - slv 156 7.7.4.4 157 Micropali del fusto nuovo 7.7.4.4.1 Geometria adottata per le verifiche 157 Verifiche a pressoflessione e taglio allo stato limite ultimo elastico 157 7.7.4.4.2 7.7.4.4.3 Verifiche a pressoflessione e taglio allo stato limite ultimo elastico - slv 158 7.7.4.5 Micropali del fusto esistente 158

SOTTOPASSO ANAS N°8 "TANGENZIALE" (PR KM 228+704) 7.7.4.5.1 Geometria adottata per le verifiche 7.7.4.5.2 Verifiche a pressoflessione e taglio allo stato limite ultimo elastico 7.7.4.5.3 Verifiche a pressoflessione e taglio allo stato limite ultimo elastico - slv 159				AUTOSTRADA DEL BRENNERO S.P.A	.
7.7.4.5.1 Geometria adottata per le verifiche 158 7.7.4.5.2 Verifiche a pressoflessione e taglio allo stato limite ultimo elastico 158 7.7.4.5.3 Verifiche a pressoflessione e taglio allo stato limite ultimo elastico - slv 159	SOT			CODIFICA DOCUMENTO	
 7.7.4.5.2 Verifiche a pressoflessione e taglio allo stato limite ultimo elastico 7.7.4.5.3 Verifiche a pressoflessione e taglio allo stato limite ultimo elastico - slv 159 			(PR KM 228+704)	AL4_18_1_RELAZIONE CALCOLODOC	7 DI 16
 7.7.4.5.2 Verifiche a pressoflessione e taglio allo stato limite ultimo elastico 7.7.4.5.3 Verifiche a pressoflessione e taglio allo stato limite ultimo elastico - slv 159 	,	7.7.4.5.1	Geometria adottata per le verificl	he	158
7.7.4.5.3 Verifiche a pressoflessione e taglio allo stato limite ultimo elastico - slv 159					
8 PORTANZA PALI 160	•	1.7.4.5.3			159
	8	POI	RTANZA PALI		160

SOTTOPASSO ANAS N°8 "TANGENZIALE"
(PR KM 228+704)

AUTOSTRADA	DEL	BRENNERO S.P.A.	
AUIUSINADA		DININININO 5.1.A.	

CODIFICA DOCUMENTO
A1 4 18 1 RELAZIONE CALCOLODOC

FOGLIO 8 DI 162

1 RELAZIONE ILLUSTRATIVA

Nell'ambito del progetto definitivo di adeguamento del tracciato A22 tra lo svincolo di Verona Nord (km 225+372) ed il sovrappasso della linea ferroviaria Verona-Mantova (km 230+163) è previsto l'intervento di allargamento del tratto autostradale in prossimità del ponte di sovrappasso alla tangenziale di Verona.

I già menzionati aspetti in ordine agli aumentati carichi accidentali (D.M. 14/01/2008), agli oneri connessi alla sismica (oneri assenti all'atto della costruzione originale dei manufatti) e a diffuse situazioni di degrado dei materiali (vedasi relazione generale), ha consigliato di prevedere la sostituzione integrale degli impalcati col rispetto dei vincoli di quote connessi al profilo dell'Autostrada e della sottopassante strada.

Il ponte presenta una campata struttura mista acciaio-calcestruzzo per ogni via di corsa (Nord e Sud), sostenute da spalle in c.c.a superficiali per la via sud e spalle a diaframmi per la via nord: oltre al rifacimento dell'impalcato si pone necessario il consolidamento delle spalle esistenti.

La demolizione è prevista in più fasi quasi tutte da effettuarsi in ore notturne e in concomitanza a sospensione del traffico. Le fasi sono essenzialmente il sezionamento longitudinale dell'impalcato in gruppi di travi (solitamente due) per procedere poi alla rimozione di tali gruppi in una o più notti.

Figura 1.1 Vista planimetrica stato di fatto

Il viadotto in progetto è a due carreggiate separate ed è costituito da una campata di luce 30.90m. Il progetto del nuovo impalcato permetterà un guadagno di franco minimo pari a 20.1cm.

AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO

A1_4_18_1_RELAZIONE CALCOLO DOC

FOGLIO 9 DI 162

L'intervento di allargamento comporta quattro fasi realizzative, durante le quali deve essere mantenuto il traffico, garantendo un minimo di n.2 corsie per senso di marcia:

- 1. realizzazione dei rilevati necessari per l'allargamento della sede autostradale (in entrambe le carreggiate), previo restringimento delle carreggiate (sia direzione Trento, sia direzione Modena) verso il centro dell'autostrada, occupando la corsia di emergenza come cantiere. Realizzazione della porzione di spalla via sud e dei muri di risvolto; varo delle travi e realizzazione dell'impalcato di progetto, temporaneamente collegato all'impalcato esistente via sud (direzione Modena);
- 2. fase temporanea necessaria per coordinarsi con gli interventi alle altre opere;
- 3. deviazione del traffico sulla via sud, occupando anche la parte dell'impalcato di progetto realizzato nella Fase 1. Demolizione dell'impalcato direzione Trento; realizzazione delle spalle in progetto previo consolidamento delle spalle esistenti tramite tiranti e micropali, con parziale demolizione della sommita'. Realizzazione dei muri di risvolto con parziale demolizione della sommita' di quelli esistenti. Varo delle travi e realizzazione dell'impalcato;
- 4. convogliamento del traffico sulla via nord (direzione Trento); demolizione dell'impalcato esistente rimasto in fase 1 direzione Modena; realizzazione delle spalle in progetto previo consolidamento delle spalle esistenti tramite tiranti (diaframmi) con parziale demolizione della sommita'. Varo delle travi e realizzazione della soletta di impalcato, collegata a quella realizzata in Fase 1.

AUTOSTRADA DEL BRENNERO S.P.A. SOTTOPASSO ANAS N°8 "TANGENZIALE" CODIFICA DOCUMENTO FOGLIO 10 di 162 (PR KM 228+704) A1_4_18_1_RELAZIONE CALCOLO.DOC Fase 1 Fase 2 Fase 3 Fase 4

AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO

A1_4_18_1_RELAZIONE CALCOLO.DOC

FOGLIO 11 DI 162

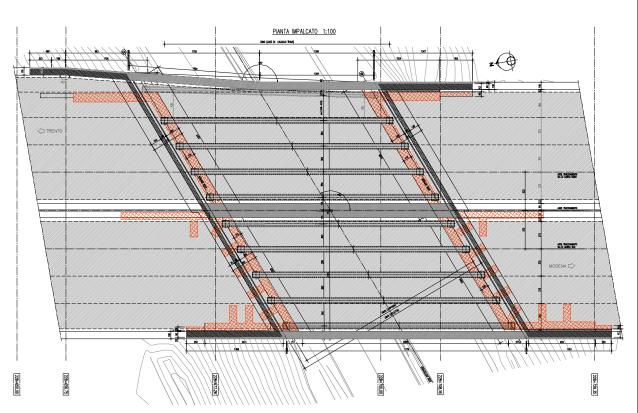


Figura 1.2 Pianta impalcato

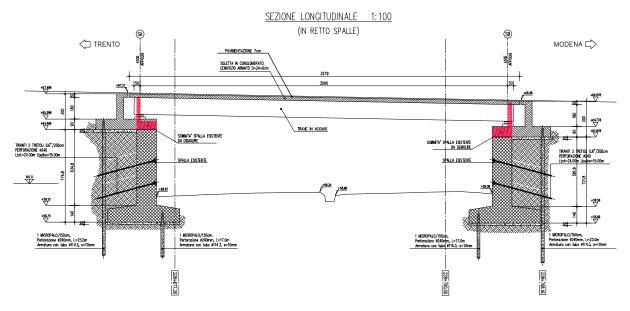


Figura 1.3 Sezione longitudinale

SOTTOPASSO ANAS N°8 "TANGENZIALE"	•
(PR KM 228+704)	

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	FOGLIO
Al_4_18_1_RELAZIONE CALCOLODOC	12 DI 162

1.1 ELEMENTI STRUTTURALI

1.1.1 IMPALCATO

Il ponte presenta due carreggiate separate, ciascuna a campata singola di luce L = 30.90m e retrotrave di 0.50m (+0.50m di sbalzo soletta).

Si prevede, per entrambe le vie di corsa, un impalcato continuo a struttura mista con travi in acciaio di altezza 140cm ed interasse 3.50m, e soletta superiore in conglomerato cementizio armato in lastre tralicciate di spessore complessivo 30cm. La larghezza totale della soletta dell'impalcato è pari a 17.51m, con un leggero allargamento verso Trento per la carreggiata Nord ottenuto con una "apertura" delle ultime 2 travi esterne (dovuto alla presenza della rampa di uscita): tale larghezza totale è dovuta alla somma delle larghezze di due cordoli (1.00m lato esterno, 0.90m lato interno) e ad una superficie carrabile totale di 15.61m (3*3.75+3.50+0.58+0.28m) oltre che dall'ingombro degli elementi di bordo. La pendenza trasversale della carreggiata ha un valore costante del 2.50%.

Le due vie di corsa presenta lo stesso numero di travi, pari a 5, con sbalzo massimo di 1.76m.

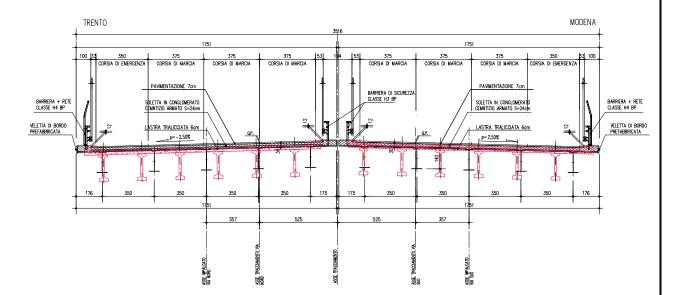


Figura 1.4 Sezione in retto impalcato

AUTOSTRADA DEL BRENNERO S.P.A.
CODIFICA DOCUMENTO

A1 4 18 1 RELAZIONE CALCOLO,DOC

FOGLIO 13 DI 162

1.1.2 APPOGGI

Si prevede che le spalle siano sede di isolatori elastomerici antisismici ad alta dissipazione con le caratteristiche riportate nelle tavole grafiche, realizzati mediante un cuscino di elastomero armato ad alto valore di smorzamento, vulcanizzato sopra e sotto ad una piastra di acciaio a cui va fissata mediante viti una o più piastre con funzione di ancoraggio.

Tele sistema di vincolamento consente di trasferire le azioni sismiche longitudinali trasmesse dall'impalcato alle sole spalle, in entità proporzionale alla rigidezza del dispositivo di appoggio.

I dispositivi previsti sono disposti sulle spalle e sulle pile con la logica seguente:

Direzione longitudinale e trasversale:

Spalla A: 5+5=10 isolatori elastomerici Spalla B: 5+5=10 isolatori elastomerici

I dispositivi saranno progettati affinché resistano all'azione di progetto allo stato limite ultimo, così come prescritto dalla nuova normativa sismica riportata nelle Nuove norme Tecniche, per un evento sismico con periodo di ritorno di circa 1900 anni (vita nomina Vn=100, coefficiente d'uso Cu=2).

SOTTOPASSO ANAS N°8 "TANGENZIALE] ''
(PR KM 228+704)	

AUTOSTRADA DEL BRENNERO S.P.A.
CODIFICA DOCUMENTO

A1 4 18 1 RELAZIONE CALCOLO.DOC

FOGLIO 14 DI 162

1.1.3 SPALLE

Le spalle in progetto (spalla A lato Trento e spalla B lato Modena) hanno una geometria particolare in quanto devono integrarsi con le strutture esistenti: tali strutture sono di due tipologie differenti, ed in specifico in corrispondenza dell'attuale via Sud sono spalle in c.a. con ciabatta superficiale, mentre in corrispondenza della via Nord sono diaframmi a "T", anche come muri di risvolto.

Si prevede quindi un consolidamento delle strutture in essere mediante micropali e tiranti, previa demolizione della sommità per consentire l'adattamento alle strutture in progetto.

A sostegno delle travi si realizzerà una platea superficiale su micropali in prossimità della spalla superficiale e direttamente innestata sulla sommità dei diaframmi preventivamente "scapitozzati" presso la via Nord: da tale platea spicca il paraghiaia in progetto (non è presente un fusto).

All'estremità delle spalle poste sotto la corsia Nord, per consentire l'allargamento degli impalcati, si prevede la realizzazione di porzioni di spalle in ca su micropali, ed i relativi risvolti. Le fondazioni di muri e spalle in progetto, impostati alla quota di quelle esitenti, sono di spessore 1.20m.

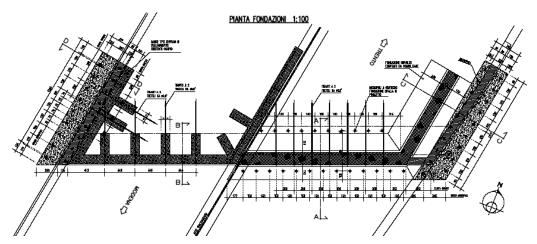
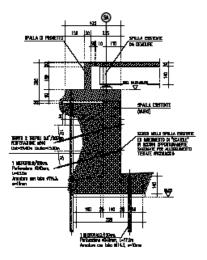
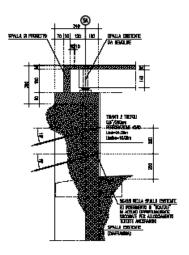


Figura 1.5 Spalle - Pianta delle fondazioni

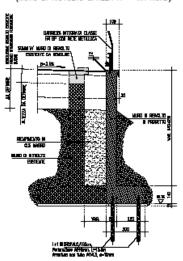
AUTOSTRADA DEL BRENNERO S.P.A.


CODIFICA DOCUMENTO

FOGLIO


A1_4_18_1_RELAZIONE CALCOLO,DOC

15 DI 162


SEZIONE A-A 1:100 (SPALLA A SU SPALLA ESISTENTE)

SEZIONE B-B 1:100 (SPALLA A SU DIAFRAMMA)

SEZIONE C-C 1:100 (MURO DI RISVOLTO SPALLA A - VIA NORD)

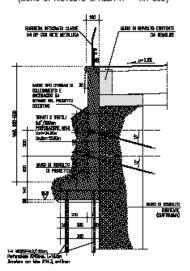


Figura 1.6 Spalle – Sezione trasversale spalla e muro di risvolto

AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO
Al 4 18 1 RELAZIONE CALCOLODOC

FOGLIO 16 DI 162

1.2 METODO DI CALCOLO

La sicurezza strutturale è verificata tramite il metodo semiprobabilistico agli stati limite, applicando il DM14/01/2008 "Norme Tecniche per le costruzioni" e relative Istruzioni.

In particolare viene verificata la sicurezza sia nei confronti degli stati limite ultimi (SLU) sia nei confronti degli stati limite di esercizio (SLE).

1.2.1 CRITERI E DEFINIZIONE DELL'AZIONE SISMICA

L'effetto dell'azione sismica di progetto sull'opera nel suo complesso, includendo il volume significativo di terreno, la struttura di fondazione, gli elementi strutturali e non, nonché gli impianti, deve rispettare gli stati limite ultimi e di esercizio definiti al § 3.2.1, i cui requisiti di sicurezza sono indicati nel § 7.1 della norma. Il rispetto degli stati limite si considera conseguito quando:

- nei confronti degli stati limite di esercizio siano rispettate le verifiche relative al solo Stato Limite di Danno;
- nei confronti degli stati limite ultimi siano rispettate le indicazioni progettuali e costruttive riportate nel § 7 e siano soddisfatte le verifiche relative al solo Stato Limite di salvaguardia della Vita.

Per Stato Limite di Danno (SLD) s'intende che l'opera, nel suo complesso, a seguito del terremoto, includendo gli elementi strutturali, quelli non strutturali, le apparecchiature rilevanti alla sua funzione, subisce danni tali da non provocare rischi agli utenti e non compromette significativamente la capacità di resistenza e di rigidezza nei confronti delle azioni verticali e orizzontali. Lo stato limite di esercizio comporta la verifica delle tensioni di lavoro, come riportato al § 4.1.2.2.5.

Per Stato Limite di salvaguardia della Vita (SLV) si intende che l'opera a seguito del terremoto subisce rotture e crolli dei componenti non strutturali e impiantistici e significativi danni di componenti strutturali, cui si associa una perdita significativa di rigidezza nei confronti delle azioni orizzontali (creazione di cerniere plastiche secondo il criterio della gerarchia delle resistenze), mantenendo ancora un margine di sicurezza (resistenza e rigidezza) nei confronti delle azioni verticali.

Gli stati limite, sia di esercizio sia ultimi, sono individuati riferendosi alle prestazioni che l'opera a realizzarsi deve assolvere durante un evento sismico; nel caso di specie per la funzione che l'opera deve espletare nella sua vita utile, è significativo calcolare lo Stato Limite di Danno (SLD) per l'esercizio e lo Stato Limite di Salvaguardia della Vita (SLV) per lo stato limite ultimo.

IMPALCATO

Per quanto riguarda l'azione sismica, i suoi effetti sull'impalcato vanno valutati a ponte "scarico" (per i carichi dovuti al transito dei mezzi $\psi_2 = 0$, come si desume dal punto 3.2.4 e Tab.5.1.VI delle NTC, data la scarsa probabilità di avere la contemporaneità dei due eventi).

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	

A1 4 18 1 RELAZIONE CALCOLO,DOC

FOGLIO 17 DI 162

I risultati relativi alla combinazione sismica non vengono riportati, essendo per l'impalcato più severa la condizione sotto l'azione dei carichi da traffico.

SPALLE

Nel paragrafo § 7.9 della NTC2008, specifico per i ponti, si legge: "La struttura del ponte deve essere concepita e dimensionata in modo tale che sotto l'azione sismica di progetto per lo SLV essa dia luogo alla formazione di un meccanismo dissipativo stabile, nel quale la dissipazione sia limitata alle spalle o ad appositi apparecchi dissipativi".... "Gli elementi ai quali non viene richiesta capacità dissipativa e devono, quindi, mantenere un comportamento sostanzialmente elastico sono: l'impalcato, gli apparecchi di appoggio, le strutture di fondazione ed il terreno da esse interessato, le spalle se sostengono l'impalcato attraverso appoggi mobili o deformabili. A tal fine si adotta il criterio della "gerarchia delle resistenze"...". A riguardo delle spalle quindi, nel calcolo allo SLV, dovendo la struttura mantenere durante l'evento sismico un comportamento elastico, vengono eseguite le verifiche alle tensioni di esercizio (§ 4.1.2.2.5), assumendo come limite delle tensioni di esercizio quelle adottate per la combinazione caratteristica (rara). Tale condizione inoltre, in accordo al punto § 7.10.6.1., consente di ritenere soddisfatte anche le verifiche nei confronti dello SLD. Per quanto riguarda invece la richiesta di adottare il criterio di gerarchia delle resistenze, per le spalle (e le pile) connesse all'impalcato con appoggi fissi, rimane da verificare che tali appoggi siano in grado di trasmettere forze orizzontali tali da produrre un momento flettente pari a γ_{Rd}·M_{Rd}, dove M_{Rd} è il momento resistente delle sezioni critiche. Nel caso in cui si utilizzi un coefficiente di struttura q=1 allora la normativa concede di utilizzare direttamente tali azioni (M_{Rd}) per il progetto degli apparecchi di appoggio. Il coefficiente di struttura adottato per la spalla SB dell'impalcato in progetto è stato assunto pari all'unità e le forze d'inerzia di progetto sono state determinate considerando un'accelerazione pari a ag S. Infatti, in accordo con il § 7.9.5.6.2., la spalla in progetto sostiene un terreno rigido naturale per più dell'80% dell'altezza e quindi si può considerare che essa si muova con il suolo.

Per la definizione dell'azione sismica, occorre definire il periodo di riferimento P_{VR} in funzione dello stato limite considerato.

La vita nominale (V_N) dell'opera è stata assunta pari a 100 anni.

La classe d'uso assunta è la *IV*.

Il periodo di riferimento (V_R) per l'azione sismica, data la vita nominale e la classe d'uso vale:

$$V_R = V_N \cdot C_n = 200$$
 anni

I valori di probabilità di superamento del periodo di riferimento P_{VR} , cui riferirsi per individuare l'azione sismica agente è:

$$P_{VR}(SLV) = 10\%$$

Il periodo di ritorno dell'azione sismica T_R espresso in anni, vale:

$$T_R (SLV) = -\frac{Vr}{\ln(1 - Pvr)} = 1898$$
anni

AUTOSTRADA	DEI	RDENNEDO	SDA
AUTUSTKADA		DREINERU	5.F.A.

CODIFICA DOCUMENTO
A1 4 18 1 RELAZIONE CALCOLODOC

FOGLIO 18 DI 162

Dato il valore del periodo di ritorno suddetto, tramite le tabelle riportate nell'Allegato B della norma, è possibile definire i valori di a_g , F_0 , T_c^* .

- a_g → accelerazione orizzontale massima del terreno su suolo di categoria C, espressa come frazione dell'accelerazione di gravità;
- $F_0 \rightarrow$ valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- T*_c → periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale;
- S → coefficiente che comprende l'effetto dell'amplificazione stratigrafica (Ss) e dell'amplificazione topografica (St);

L'opera ricade all'incirca alla Latitudine di 45°24'03 N e Longitudine 10°54'39 E, ad una quota di circa 64 m s m

I valori delle caratteristiche sismiche (a_g , F_0 , T^*_c) per lo Stato Limite di salvaguardia della Vita sono riportati di seguito:

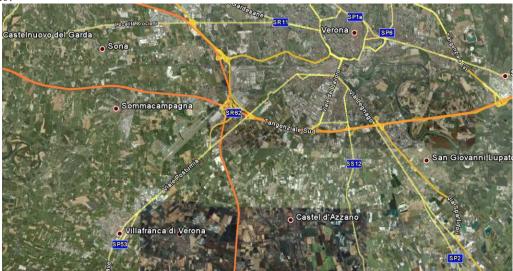


Figura 1.7 Tratto adeguamento del tracciato A22

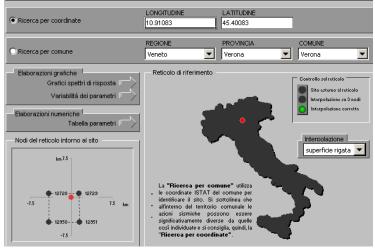


Figura 1.8 Individuazione coordinate Verona

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	FOGLIO
A1_4_18_1_RELAZIONE CALCOLODOC	19 DI 162

Valori dei parametri a_g, F_o, T_C* per i periodi di ritorno T_R associati a ciascuno SL sono:

SLATO LIMITE	T_R	a_g	Fo	T _C *
SLATO LIMITE	[anni]	[g]	[-]	[s]
SLO	120	0.063	2.553	0.273
SLD	201	0.077	2.612	0.272
SLV	1898	0.190	2.452	0.289
SLC	2475	0.210	2.438	0.291

Per le spalle il calcolo viene eseguito con il metodo <u>dell'analisi statica equivalente,</u> applicando come prescritto da normativa un'accelerazione pari ad $a_{\rm g}S$.

Il sottosuolo su cui insiste l'opera può essere inserito nella categoria "A".

Il valore del coefficiente di amplificazione stratigrafico risulta:

 S_S (SLV) \Rightarrow 1.00

 S_T (SLV) \Rightarrow 1.00

L'accelerazione massima è valutata con la relazione

$$a_{max}(SLV)=S \cdot a_g=S_s * S_T * \cdot a_g = 0.190g$$

Lo studio sismico delle opere facenti parte del tratto di intervento è stato impostato in maniera univoca, affidando a favore di sicurezza lo spettro della città di Verona (di cui si tiportano i parametri di seguito), risultando questo sempre più "gravoso" di quello specifico dell'opera.

Latitudine di 45.4351 e Longitudine 10.9988.

Valori dei parametri ag, Fo, TC* per i periodi di ritorno TR associati a ciascuno SL sono:

SLATO	T_R	a_{g}	F _o	T _C *
LIMITE	[anni]	[g]	[-]	[s]
SLO	120	0.087	2.443	0.263
SLD	201	0.111	2.409	0.271
SLV	1898	0.260	2.406	0.287
SLC	2475	0.286	2.381	0.290

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	

A1_4_18_1_RELAZIONE CALCOLO.DOC

FOGLIO 20 DI 162

1.2.2 COMBINAZIONI DI CARICO

Le combinazioni di carico, considerate ai fini delle verifiche, sono stabilite in modo da garantire la sicurezza in conformità a quanto prescritto al . 5.1.3.12 e 2.5.3 del D.M. 14/01/2008.

I carichi variabili sono stati suddivisi in carichi da traffico, vento e resistenza passiva dei vincoli; di conseguenza, le combinazioni sono state generate assumendo alternativamente ciascuno dei tre suddetti carichi come azione variabile di base.

Fra i carichi variabili si distinguono:

Q carichi da traffico

Q_T azioni termiche

Q_w azione del vento

Inoltre, come indicato nella tabella 5.1.IV, sono stati identificati tre gruppi di azioni caratteristiche, corrispondenti rispettivamente ai carichi verticali, alla forza di frenamento e alla forza centrifuga.

Ai fini delle verifiche degli stati limite si definiscono le seguenti combinazioni delle azioni:

1) – Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.1)

2) – Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili, da utilizzarsi nelle verifiche alle tensioni ammissibili di cui al § 2.7:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.2)

3) – Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.3)

4) – Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.4)

5) – Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E (v. § 3.2):

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.5)

6) – **Combinazione eccezionale**, impiegata per gli stati limite ultimi connessi alle azioni eccezionali di progetto Ad (v. § 3.6):

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.6)

Nelle combinazioni per SLE, si intende che vengono omessi i carichi Q_{kj} che danno un contributo favorevole ai fini delle verifiche e, se del caso, i carichi G_2 .

Gli stati limite ultimi delle opere interrate si riferiscono allo sviluppo di meccanismi di collasso, determinati dalla mobilitazione della resistenza del terreno, e al raggiungimento della resistenza degli elementi strutturali che compongono l'opera.

Le verifiche agli stati limite ultimi devono essere eseguiti in riferimento ai seguenti stati limite:

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	FOGLIO
A1 4 18 1 RELAZIONE CALCOLODOC	21 DI 162

- SLU di tipo geotecnico (GEO) e di equilibrio di corpo rigido (EQU): collasso per carico limite dell'insieme fondazione-terreno;
- SLU di tipo strutturale (STR): raggiungimento della resistenza negli elementi strutturali.

Le verifiche saranno condotte secondo l'approccio progettuale "Approccio 1", utilizzando i coefficienti parziali riportati nelle Tabelle 6.2.I e 5.1.V per i parametri geotecnici e le azioni, Tabella 6.2.II per i parametri del terreno, e Tabella 6.4.II e 6.4.III per i parametri di resitenza di strutture di fondazione su pali.

OPERE DI FONDAZIONE - PALI (CAP.6.4)

Approccio 1

Combinazione 1: (A1+M1+R1) (STR) Combinazione 2: (A2+M1+R2) (GEO)

Approccio 2

(A1+M1+R3) (Se verifica struttura γr non si considera)

OPERE DI FONDAZIONE – DIAFRAMMI (CAP.6.5)

Approccio 1

Combinazione 1: (A1+M1+R1) (STR) Combinazione 2: (A2+M2+R2) (GEO)

Approccio 2

(A1+M1+R3) (Se verifica struttura γr non si considera)

Tabella 6.2.I/5.1.V - Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

		Coefficiente	EQU ⁽¹⁾	A1	A2
		Coefficiente	EQU	STR	GEO
Conichi nommononti	favorevoli		0.90	1.00	1.00
Carichi permanenti	sfavorevoli	γG1	1.10	1.35	1.00
Carichi permanenti non strutturali ⁽²⁾	favorevoli		0.00	0.00	0.00
Carichi permanenti non strutturan	sfavorevoli	$\gamma_{ m G2}$	1.50	1.50	1.30
Carichi variabili da traffico	favorevoli		0.00	0.00	0.00
Carieni variabili da traffico	sfavorevoli	γ _Q	1.35	1.35	1.15
Carichi variabili	favorevoli		0.00	0.00	0.00
Cariciii variabiii	sfavorevoli	γ_{Qi}	1.50	1.50	1.30
Distargiani a pragallagitazioni di pragatta	favorevoli		0.90	1.00	1.00
Distorsioni e presollecitazioni di progetto	sfavorevoli	γ ε1	$1.00^{(3)}$	$1.00^{(4)}$	1.00
Ritiro e viscosità, Variazioni termiche,	favorevoli		0.00	0.00	0.00
Cedimenti vincolari	sfavorevoli	γ _{ε2} , γ _{e3} , γ _{e4}	1.20	1.20	1.00
(1) =	. 1 0 1 11 . 3		1		

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno: altrimenti si applicano i valori GEO.

Tabella 6.2.II - Coefficienti parziali per i parametri geotecnici del terreno

Tabella 0.2.11 - Coefficienti parziani per i parametri geotecinici dei terreno				
	GRANDEZZA ALLA	COEFFICIENTE		
PARAMETRO	QUALE APPLICARE IL	PARZIALE	(M1)	(M2)
	COEFFICIENTE PARZIALE	γ_{M}		
Tangente dell'angolo di	tan ϕ'_k	$\gamma_{\phi'}$	1.00	1.25
resistenza al taglio	·			
Coesione efficace	c' _k	$\gamma_{c'}$	1.00	1.25
Resistenza non drenata	c_{uk}	γ _{cu}	1.00	1.40
Peso dell'unità di volume	γ	γ_{γ}	1.00	1.00

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti

si potranno adottare coefficienti validi per le azioni permanenti. (3) 1.30 per instabilità in strutture con precompressione esterna.

^{(4) 1.20} per effetti locali

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	FOGLIO

A1_4_18_1_RELAZIONE CALCOLO,DOC

22 DI 162

Tabella 6.5.1 - Coefficienti parziali γ_R per le verifiche agli stati limite ultimi STR e GEO di muri di sostegno

1 111			
	COEFFICIENTE	COEFFICIENTE	COEFFICIENT
PARAMETRO	PARZIALE	PARZIALE	E PARZIALE
	(R1)	(R2)	(R3)
Capacità portante della fondazione	$\gamma_{\rm R} = 1.0$	$\gamma_{\rm R} = 1.0$	$\gamma_{\rm R} = 1.4$
Scorrimento	$\gamma_{\rm R} = 1.0$	$\gamma_R = 1.0$	$\gamma_{\rm R} = 1.1$
Resistenza del terreno a valle	$\gamma_{R} = 1.0$	$\gamma_{\rm R} = 1.0$	$y_{R} = 1.4$

Tab ella 6.4 II – Coefficienti parziali γ_k da applicare alle resistenze caratteristiche.

Resis tenza	Simbolo	F	Pali infissi		Pali trivellati			Pali ad elica continua		
	ΥR	(RI)	(R2)	(R3)	(R1)	(R2)	(R3)	(R1)	(R2)	(R3)
Base	Υь	1,0	1,45	1,15	1,0	1,7	1,35	1,0	1,6	1,3
Laterale in compressione	γ,	1,0	1,45	1,15	1,0	1,45	1,15	1,0	1,45	1,15
Totale (')	Y.	1,0	1,45	1,15	1,0	1,6	1,30	1,0	1,55	1,25
Laterale in trazione	Yn	1,0	1,6	1,25	1,0	1,6	1,25	1,0	1,6	1,25

⁽¹⁾ da applicare alle resistenze caratteristiche dedotte dai risultati di prove di carico di progetto.

Ai fini delle verifiche degli stati limite ultimi si definiscono le seguenti combinazioni:

1A) STR) $\Rightarrow \gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{O1} \cdot Q_{k1} + \sum_i \psi_{0i} \cdot Q_{ki} \Rightarrow \text{ (spinte } \Phi_d = \Phi_k)$

1B) GEO) micropali $\Rightarrow \gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{Q1} \cdot Q_{k1} + \sum_i \psi_{0i} \cdot Q_{ki} \Rightarrow \text{ (spinte } \Phi_d = \Phi_k)$

1B) GEO) diaframmi $\Rightarrow \gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{O1} \cdot Q_{k1} + \sum_i \psi_{0i} \cdot Q_{ki} \Rightarrow \text{(spinte } \Phi_d' = \tan^{-1}(\tan \Phi_k' / \gamma_{\Phi}))$

6) Eccezionale) \Rightarrow $G_1 + G_2 + \psi_{21} \cdot Q_{k1} + \sum_i \psi_{2i} \cdot Q_{ki}$

Ai fini delle verifiche degli stati limite di esercizio (fessurazione) si definiscono le seguenti combinazioni:

2) Rara) \Rightarrow $G_1 + G_2 + P + Q_{k1} + \sum_i \psi_{0i} \cdot Q_{ki}$

Ai fini delle verifiche degli stati limite di esercizio (fessurazione) si definiscono le seguenti combinazioni:

3) Frequente) $\Rightarrow \quad G_1 + G_2 + \psi_{11} \cdot Q_{k1} + \sum_i \psi_{2i} \cdot Q_{ki}$

4) Quasi permanente) \Rightarrow $G_1 + G_2 + \psi_{21} \cdot Q_{k1} + \sum_i \psi_{2i} \cdot Q_{ki}$

Per la <u>condizione sismica</u>, le combinazioni per gli stati limite ultimi da prendere in considerazione sono le seguenti:

5A) STR) \Rightarrow E+G₁+G₂+ $\sum_i \psi_{2i} \cdot Q_{ki}$ \Rightarrow (spinte Φ_d '= Φ_k ')

5B) GEO) diaframmi \Rightarrow E+G₁+G₂+ $\sum_i \psi_{2i} \cdot Q_{ki}$ \Rightarrow (spinte Φ_d '=tan⁻¹(tan Φ_k '/ γ_{Φ}))

(per i pali non c'è differenza di combinazione sismica STR da GEO)

Gli effetti dell'azione sismica saranno valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$G_1+G_2+\sum_i \psi_{2i}\cdot O_{ki}$$

I valori del coefficiente ψ_{2i} sono quelli riportati nella tabella 2.5.I della norma; la stessa propone nel caso di ponti, e più in generale per opere stradali, di assumere per i carichi dovuti al transito dei mezzi ψ_{2i} = 0.2 (condizione cautelativa). Data la natura dell'opera in progetto, così come previsto dalla norma, si assume ψ_{2i} = 0.00.

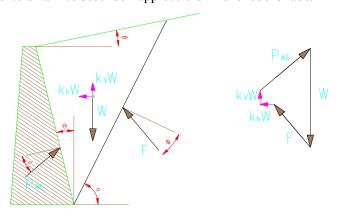
CODIFICA DOCUMENTO

A1_4_18_1_RELAZIONE CALCOLO DOC

FOGLIO 23 DI 162

1.2.3 SISTEMA DI VINCOLAMENTO

Il calcolo svolto nella condizione sismica è un'analisi statica equivalente, secondo quanto previsto dalla normativa di riferimento. Tale analisi è dipendente dalle caratteristiche dei dispositivi di isolamento ed in particolare dal valore della rigidezza orizzontale e dal coefficiente di smorzamento equivalente.


Le caratteristiche dei dispositivi ed in particolare i valori delle rigidezze orizzontali vengono considerate nel calcolo delle sollecitazioni degli elementi di sostegno dell'opera in condizioni sismiche in un'analisi di tipo statico equivalente al fine della valutazione delle azioni sismiche ed in condizioni di esercizio per la ripartizione delle forze orizzontali tra i diversi elementi di sostegno.

Le caratteristiche dei dispositivi di appoggio ed isolamento utilizzati per l'opera in oggetto, già descritte nella premessa, consentono la trasmissione delle azioni longitudinali alle sole spalle: l'azione sismica dell'impalcato viene ripartita proporzionalmente alla rigidezza del dispositivo, ma a favore di sicurezza si è applicato un coefficiente pari a 0.5 (superiore al valore trasmesso effettivamente dall'elastometro).

Le sollecitazioni in direzione trasversale si ripartiscono in parti uguali sulle strutture di sostegno, con coefficiente pari 0,5.

1.2.4 VALUTAZIONE DELLE SPINTE DEL TERRENO

Il calcolo delle spinte del terreno (per le strutture di sostegno – spalle) verrà svolto considerando uno schema di "spinta a riposo" in condizioni di esercizio. In condizioni sismiche, invece, si considererà lo schema di spinta attiva con incremento dinamico secondo l'approccio di Mononobe-Okabe.

$$E_d = 1/2 \gamma * (1 \pm kv) K H^2 + E_{ws}$$

H : altezza del muro Ews : spinta idrostatica

γ*: peso specifico del terreno

K : coefficiente di spinta del terreno (statico+dinamico)

 $\psi = \arctan (k_h/(1\pm k_v)) =$

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	Γ

A1_4_18_1_RELAZIONE CALCOLO,DOC

FOGLIO 24 DI 162

$$k_{AE} = \frac{\left[\cos^2\left(\phi - \theta - \psi\right)\right]}{\left[\cos\psi^*\cos^2\theta * \cos(\delta + \theta + \psi)^*(1 + ((\sin(\delta + \phi)^*\sin(\phi - \beta - \psi)/\cos(\delta + \theta + \psi)/\cos(\beta - \theta))^{1/2})^2\right]}$$

$$\Delta ed = P_{AE(kv)} - Sa$$

1.2.5 VERIFICHE DEGLI ELEMENTI STRUTTURALI

IMPALCATO

In particolare viene verificata la sicurezza sia nei confronti degli stati limite ultimi (SLU) sia nei confronti degli stati limite di esercizio (SLE), mentre, come specificato in precedenza, i risultati relativi alla combinazione sismica non vengono riportati, essendo per l'impalcato più severa la condizione sotto l'azione dei carichi da traffico.

SPALLE

Gli elementi di sostegno (spalle) sono progettati affinché, come richiesto dalla norma stessa al paragrafo 7.9.2., si mantengano in campo elastico sotto l'azione sismica allo stato limite ultimo: in questo modo si ottiene la garanzia che, anche a seguito di un evento sismico di eccezionale intensità, gli unici elementi che ne possono rimanere danneggiati sono i dispositivi di vincolamento, più facilmente sostituibili alla fine dell'evento sismico, mentre gli elementi strutturali costituenti l'opera mantengono integre le proprie capacità di resistenza (criterio della gerarchia delle resistenze). A tal fine le verifiche in condizioni sismiche vengono svolte controllando che i materiali si mantengano al di sotto di limiti tensionali che possono ritenersi i massimi, valori entro i quali il loro comportamento si mantiene sostanzialmente lineare elastico. Tali limiti tensionali massimi assunti sono riportati nel paragrafo specifico relativo alle caratteristiche dei materiali.

Anche i pali di fondazione devono essere progettati in modo da rimanere in campo elastico, secondo quanto richiesto dalla norma al paragrafo 7.9.2..

Per le verifiche degli elementi strutturali costituenti le spalle saranno quindi svolti due tipi di verifiche: allo stato limite ultimo per le condizioni di esercizio e di controllo del mantenimento del comportamento elastico dei materiali per le condizioni sismiche, nonché le verifiche a fessurazione per lo stato limite di esercizio.

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	

A1_4_18_1_RELAZIONE CALCOLO.DOC

FOGLIO 25 DI 162

2 NORMATIVA DI RIFERIMENTO

I calcoli sviluppati nel seguito sono svolti secondo il Metodo degli Stati Limite e nel rispetto della normativa vigente; in particolare si sono osservate le prescrizioni contenute nei seguenti documenti:

2.1 OPERE IN C.A. E ACCIAIO

D. M. Min. II. TT. del 14 gennaio 2008 – Norme tecniche per le costruzioni;

Circolare 2 febbraio 2009, n. 617 – Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni" di cui al D.M. 14 gennaio 2008;

Legge 5 novembre 1971 n. 1086 - Norme per la disciplina delle opere in conglomerato cementizio armato, normale e precompresso ed a struttura metallica;

Circ. Min. LL.PP.14 Febbraio 1974, n. 11951 – Applicazione della L. 5 novembre 1971, n. 1086";

Legge 2 febbario 1974 n. 64, recante provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche;

Linee guida sul calcestruzzo strutturale - Presidenza del Consiglio Superiore dei Lavori Pubblici - Servizio Tecnico Centrale.

2.2 PRINCIAPLI NORME UNI

UNI EN 1990 (Eurocodice 0) – Aprile 2006: "Criteri generali di progettazione strutturale";

UNI EN 1991-2-4 (Eurocodice 1) – Agosto 2004 – Azioni in generale: "Pesi per unità di volume, pesi propri e sovraccarichi per gli edifici";

UNI EN 1991-1-1 (Eurocodice 1) – Agosto 2004 – Azioni in generale- Parte 1-1: "Pesi per unità di volume, pesi propri e sovraccarichi per gli edifici";

UNI EN 1991-2 (Eurocodice 1) – Marzo 2005 – Azioni sulle strutture- Parte 2: "Carico da traffico sui ponti";

UNI EN 1992-1-1 (Eurocodice 2) – Novembre 2005: "Progettazione delle strutture di calcestruzzo – Parte 1-1: "Regole generali e regole per gli edifici";

UNI EN 1992-2 (Eurocodice 2) – Gennaio 2006: "Progettazione delle strutture di calcestruzzo – Parte 2: "Ponti in calcestruzzo - progettazione e dettagli costruttivi";

UNI EN 1993-1-1 (Eurocodice 3) – Ottobre 1993: "Progettazione delle strutture in acciaio – Parte 1-1: Regole generali e regole per gli edifici";

UNI EN 1997-1 (Eurocodice 7) – Febbraio 2005: "Progettazione geotecnica – Parte 1: Regole generali";

UNI EN 1998-1 (Eurocodice 8) – Marzo 2005: "Progettazione delle strutture per la resistenza sismica – Parte 1: Regole generali – Azioni sismiche e regole per gli edifici";

UNI EN 1998-2 (Eurocodice 8) – Febbraio 2006: "Progettazione delle strutture per la resistenza sismica – Parte 2: Ponti";

UNI ENV 1998-5 (Eurocodice 8) – Gennaio 2005: "Progettazione delle strutture per la resistenza sismica – Parte 2: Fondazioni, strutture di contenimento ed aspetti geotecnici".

AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO

A1 4 18 1 RELAZIONE CALCOLODOC

FOGLIO 26 DI 162

UNI EN 197-1 giugno 2001 – "Cemento: composizione, specificazioni e criteri di conformità per cementi comuni;

UNI EN 11104 marzo 2004 – "Calcestruzzo: specificazione, prestazione, produzione e conformità", Istruzioni complementari per l'applicazione delle EN 206-1;

UNI EN 206-1 ottobre 2006 – "Calcestruzzo: specificazione, prestazione, produzione e conformità".

2.3 PRINCIPALI ISTRUZIONI CNR

CNR 10011/97 – Costruzioni di acciaio. Istruzioni per il calcolo, l' esecuzione, il collaudo e la manutenzione;

CNR 10016/00 – Strutture composte di acciaio e calcestruzzo. Istruzioni per l'impiego nelle costruzioni;

CNR 10018/99 – Apparecchi di appoggio per le costruzioni. Istruzioni pr l'impiego;

CNR 10024/86 – Analisi mediante elaboratore: impostazione e redazione delle relazioni di calcolo.

Il progetto definitivo dell'opera in oggetto è stato sviluppato utilizzando le NTC2008, norma il cui utilizzo è consentito purché i lavori vengano iniziati entro marzo dell'anno 2023 (entro cioè 5 anni dall'entrata in vigore delle NTC2018 ai sensi dell'art. 2 comma 2). In fase di progettazione esecutiva l'opera sarà progettata ai sensi delle Norme Tecniche vigenti alla data in cui la progettazione esecutiva verrà svolta. Tuttavia, al fine di verificare l'idoneità delle opere progettate anche con le Norme Tecniche attualmente vigenti, è stato effettuato un confronto tra normative (NTC2008 e NTC2018) verificandone le principali differenze.

Nel caso in esame le verifiche preliminari condotte hanno evidenziato come l'utilizzo delle norme attualmente vigenti non comporti variazioni strutturali significative.

2.4 NORME STRADALI

- D.M. 5 novembre 2001 Norme funzionali e geometriche per la costruzione delle strade
- **D.M. 22 aprile 2004** Modifica del decreto 5 novembre 2001, n. 6792, recante "Norme funzionali e geometriche per la costruzione delle strade"
- D. Lgs 30 aprile 1992 n. 285- Nuovo codice della strada;
- D.P.R. 16 dicembre 1992 n. 495 Regolamento di esecuzione e di attuazione del nuovo codice della strada;
- **D.Lgs. 15 gennaio 2002 n. 9** Disposizioni integrative e correttive del nuovo codice della strada, a norma dell'articolo 1, comma 1, della L. 22 marzo 2001, n. 85.
- D.L. 20 giugno 2002 n. 121 Disposizioni urgenti per garantire la sicurezza nella circolazione stradale
- L. 1 agosto 2002 n. 168 Conversione in legge, con modificazioni, del D.L. 20 giugno 2002, n. 121, recante disposizioni urgenti per garantire la sicurezza nella circolazione stradale
- D.L. 27 giugno 2003 n. 151 Modifiche ed integrazioni al codice della strada
- **L. 1 agosto 2003 n. 214** Conversione in legge, con modificazioni, del D.L. 27 giugno 2003, n. 151, recante modifiche ed integrazioni al codice della strada
- **D.M. 30 novembre 1999 n. 557** Regolamento recante norme per la definizione delle caratteristiche tecniche delle piste ciclabili

AUTOSTRADA DEL BRENNERO S.P.A. CODIFICA DOCUMENTO

A1_4_18_1_RELAZIONE CALCOLO.DOC

FOGLIO 27 DI 162

Bollettino CNR n. 150 – Norme sull'arredo funzionale delle strade urbane.

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	FOGLIO
A1 4 18 1 RELAZIONE CALCOLO.DOC	28 di 162

3 CARATTERISTICHE DEI MATERIALI

Materiali come prescritti dal Decreto Ministeriale 14.01.2008 "Norme Tecniche per le Costruzioni".

3.1 TABELLA RIASSUNTIVA CLASSI DI ESPOSIZIONE SECONDO NORMATIVA UNI EN 206-1

Questa tabella e da compilarsi in funzione dell'opera da eseguire: associare ad ogni elemento progettuale (fondazione, elevazione......) .

Tab 2

Classi di e Classe di	sposizione ambie	mare secondo u			Conto -: 4-	I Bali	Conton de	Condi
Dasse di esposizione ambientale	Descrizione dell'ambiente di esposizione	Esempi di condizioni ambientali	UNI 9858	A/C massimo	Contenuto minimo di cemento	Rok minima	Contenuto minimo di aria	Copriferr minimo Mm
imbientale	esposizione				kg/m	N/mm²	апа %	Mm
	schio di corrosione o attac	co					, , ,	
XO	Molto secco	Cls per interni di editici con umidità dell'aria	1	-		C12/15	-	15
		molto bassa						
2 Corrosione de XC1	elle armature per effetto de		2a	0.65	1260	C20/25		120
AC1	Secco o permanentemente bagnato	Os per interni di edifici con umidità relativa bassa o immerso in acqua	Za .	60,0	200	CZWZS		20
XC2	Bagnato,raramente secco	Superfici in dis a contatto con acqua per lungo tempo es.	2a	0,60	280	C25/30		20
		fondazioni						
XC3	Umidità moderata	Os per interni con umidità relativa moderata o alta e ols all'esterno protetto dalla pioggia	5а	0,55	280	C30/37	-	30
XC4	Ciclicamente bagnato ed asciutto	Superfici in dis a contatto con l'acqua, non nella classe XC2.	4a,5b	0,50	300	C30/37	-	30
3 Corrosione de	elle armature per effetto de	i cloruri esclusi quelli pr	ovenienti c	pli,acora q	mare			
XD1	Umidità moderata	Superfici in als esposte	5a	0,55	300*	C30/37	-	30
XD2	Bagnato,raramente asciutto	a nebbia salina Piscine; ds esposto ad acque industriali	4a,5b	0,55	300	C30/37	-	30
XD3	Ciclicamente bagnato	contenenti doruri Parti di ponti esposte a	5c	0.45	320	C35/45		40
	ed asciutto	spruzzi contenenti doruri pavimentazioni di parcheggi						
4 Corrosione de	lle armature indotta da clo	ruri presenti nell'acqua	di mare					
X 51	Esposto alla nebbia salina ma non all'acqua di mare	Strutture prossime o sulla costa	4a,5b	0,50	300	C30/37		30
X 82	Permanentemente sommerso	Parti di strutture marine	5c	0,45	320	C35/45	-	40
XS3 5 Attacco dei ci	Zone esposte alle onde o alla marea cli di gelo/disgelo con o se	Parti di strutture marine	5c	0,45	340	C35/45		40
XF1	Moderata saturazione	Superfici verticali in ds	2Ь	0.55	1300	C30/37	1.	130
	d'acqua in assenza di sali disgelanti	esposte alla pioggia e al gelo		`				
XF2	Moderata saturazione d'acqua in presenza di sali disgelanti	Superfici verticali in ds di strutture stradali esposte al gelo e nebbia dei sali disgelanti	3,4b	0,55	300	C25/30	4,0 e aggregati resistenti al gelo <i>l</i> disgelo	30
XF3	Bevata saturazione d'acqua in assenza di sali disgelanti	Superfici orizzontali in ds esposte alla pioggia e al gelo	2b	0,50	320	C30/37	4,0 e aggregati resistenti al gelo/disgelo	30
XF4	Bevata saturazione d'acqua in presenza di sali disgelanti o acqua di mare	Strade e impalcati da ponte esposti ai sali disgelanti. Supertici in ds esposte direttamente a nebbia contenente sali disgelanti	3,4b	0,45	340	C30/37	4,0 e aggregati resistenti al gelo/disgelo	40
6 Attaccochimi			le-	10.55	1000	Loocher		Too
XA1	Ambiente chimico debolmente aggressivo (vd. prospetto 2 della EN 206)	-	5а	0,55	300	C30/37	-	30
XA2	Ambiente chimico moderatamente aggressivo (vd. prospetto 2 della EN 206)	-	4°, 56	0,50	320 cemento resistente ai solfati	C30/37	-	30
XA3	Ambiente chimico fortemente aggressivo (vd. prospetto 2 della EN 206)	-	5c	0,45	360 cemento resistente ai solfati	C35/45		40

AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO

A1 4 18 1 RELAZIONE CALCOLODOC

FOGLIO 29 DI 162

Conglomerato cementizio per elementi strutturali:

ELEMENTO	CLASSE DI ESPOSIZIONE	CLASSE DI RESISTENZA MINIMA (Mpa)	COPRIFERRO (mm)	CLASSE DI CONSISTENZA	CLASSE DI CONTENUTO IN CLORURI	DIMENSIONE MASSIMA NOMINALE DEGLI AGGREGATI (mm)
PALI Φ < 800mm PALI Φ >800mm	XC1	C25/30	60 70	S4	0.40	32
PLINTI	XC2	C25/30	50	S4	0.40	32
PILE, PULVINI ED ELEVAZIONE SPALLE	XC4+XD1+XF4	C32/40	50	S4	0.40	25
BAGGIOLI E RITEGNI	XC4+XD1+XF4	C35/45	40	S5	0.40	20
IMPALCATI GETTATI IN OPERA	XC4+XD3+XF4	C35/45	40	S4/S5	0.20	25
TRAVI PREFABBRICATE	XC4+XD3+XF4	C45/55	40	S4/S5	0.20	20/25
SOLETTE GETTATE IN OPERA	XC4+XD3+XF4	C35/45	50	S4/S5	0.20	25

3.2 CALCESTRUZZO PER MAGRONE

Per il magrone di sottofondazione si prevede l'utilizzo di calcestruzzo di classe Rck 15.

3.3 CALCESTRUZZO PER PALI DI FONDAZIONE

Per la realizzazione dei pali di fondazione in cemento armato delle spalle, si prevede l'utilizzo di calcestruzzo in classe $Rck \ge 30 \text{ N/mm}^2$, che presenta le seguenti caratteristiche:

Resistenza a compressione (cilindrica)	\rightarrow	$f_{ck} = 0.83*R_{ck} =$	24.90 N/mm ²
Resistenza di calcolo a compressione	\rightarrow	$f_{cd} = \alpha_{cc} * f_{ck} / \gamma_c = 0.85 * f_{ck} / 1.5 =$	14.16 N/mm^2
Resistenza di calcolo a compressione elastica	\rightarrow	$\sigma_c = 0.60 * f_{ck} =$	15.00 N/mm ²
Resistenza a trazione media	\rightarrow	$f_{ctm} = 0.30* f_{ck}^{2/3} =$	2.56 N/mm^2
Resistenza a trazione	\rightarrow	$f_{ctk} = 0.7* f_{ctm} =$	1.795 N/mm^2
Resistenza a trazione di calcolo	\rightarrow	$f_{ctd} = f_{ctk} / \gamma_c =$	1.197 N/mm^2
Resistenza di calcolo a trazione	\rightarrow	$\tau_c = 0.50 * f_{ctk} =$	0.900 N/mm^2

3.4 CALCESTRUZZO PER OPERE DI FONDAZIONE

Per la realizzazione della platea di fondazione in cemento armato delle spalle, si prevede l'utilizzo di calcestruzzo in classe $Rck \ge 30 \text{ N/mm}^2$, che presenta le seguenti caratteristiche:

Resistenza a compressione (cilindrica)	\rightarrow	$f_{ck} = 0.83 * R_{ck} =$	24.90 N/mm ²
Resistenza di calcolo a compressione	\rightarrow	$f_{cd} = \alpha_{cc} * f_{ck} / \gamma_c = 0.85 * f_{ck} / 1.5 =$	14.16 N/mm ²

SOTTOPASSO ANAS N°8 "TANGENZIALE"
(PR KM 228+704)

AUTOSTRADA DEL BRENNERO S.P.A.
CODIFICA DOCUMENTO

A1 4 18 1 RELAZIONE CALCOLO.DOC

FOGLIO 30 DI 162

Resistenza di calcolo a compressione elastica	\rightarrow	$\sigma_c = 0.60* f_{ck} =$	15.00 N/mm ²
Resistenza a trazione media	\rightarrow	$f_{ctm} = 0.30* f_{ck}^{2/3} =$	2.56 N/mm ²
Resistenza a trazione	\rightarrow	$f_{ctk} = 0.7* f_{ctm} =$	1.795 N/mm ²
Resistenza a trazione di calcolo	\rightarrow	$f_{ctd} = f_{ctk} / \gamma_c =$	1.197 N/mm ²
Resistenza di calcolo a trazione	\rightarrow	$\tau_c = 0.50 * f_{ctk} =$	0.900 N/mm^2

3.5 CALCESTRUZZO PER OPERE DI ELEVAZIONE

Per la realizzazione delle opere di elevazione in cemento armato delle spalle, si prevede l'utilizzo di calcestruzzo in classe $Rck \ge 40 \text{ N/mm}^2$, che presenta le seguenti caratteristiche:

Resistenza a compressione (cilindrica)	\rightarrow	$f_{ck} = 0.83*R_{ck} =$	33.20 N/mm ²
Resistenza di calcolo a compressione	\rightarrow	$f_{cd} = \alpha_{cc} * f_{ck}/\gamma_c = 0.85 * f_{ck}/1.5 =$	18.81 N/mm ²
Resistenza di calcolo a compressione elastica	\rightarrow	$\sigma_{\rm c} = 0.60 * f_{\rm ck} =$	19.92 N/mm ²
Resistenza a trazione media	\rightarrow	$f_{ctm} = 0.30* f_{ck}^{2/3} =$	3.10 N/mm^2
Resistenza a trazione	\rightarrow	$f_{ctk} = 0.7* f_{ctm} =$	2.169 N/mm^2
Resistenza a trazione di calcolo	\rightarrow	$f_{ctd} = f_{ctk} / \gamma_c =$	1.446 N/mm^2
Resistenza di calcolo a trazione	\rightarrow	$\tau_c = 0.50* f_{ctk} =$	$1.080\ N/mm^2$

^{*} La resistenza a taglio elastica è una tensione assunta dagli scriventi come limite superiore per la massima tensione sollecitante a taglio, nel caso di verifica sismica. Dovendo in tal caso la sezione rimanere in campo elastico e non essendoci da normativa una tensione elastica di riferimento, si è assunto che tale tensione sia assunta pari a: $f_{ctE} = 0.5 * f_{ctk}$.

3.6 CALCESTRUZZO PER SOLETTA IMPALCATO

Per la realizzazione della soletta d'impalcato in cemento armato, si prevede l'utilizzo di calcestruzzo in classe $Rck \ge 45 \text{ N/mm}^2$, che presenta le seguenti caratteristiche:

Resistenza a compressione (cilindrica)	\rightarrow	$f_{ck} = 0.83 * R_{ck} =$	37.35 N/mm ²
Resistenza di calcolo a compressione	\rightarrow	$f_{cd} = \alpha_{cc} * f_{ck} / \gamma_c = 0.85 * f_{ck} / 1.5 =$	21.16 N/mm ²
Resistenza di calcolo a compressione elastica	\rightarrow	$\sigma_c = 0.60 * f_{ck} =$	22.41 N/mm ²
Resistenza a trazione media	\rightarrow	$f_{ctm} = 0.30* f_{ck}^{2/3} =$	3.35 N/mm^2
Resistenza a trazione	\rightarrow	$f_{ctk} = 0.7* f_{ctm} =$	2.35 N/mm ²
Resistenza a trazione di calcolo	\rightarrow	$f_{ctd} = f_{ctk} / \gamma_c =$	1.56 N/mm^2

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	FOGLIO
A1_4_18_1_RELAZIONE CALCOLODOC	31 di 162

3.7 ACCIAIO PER CEMENTO ARMATO

Per le armature metalliche si adottano tondini in acciaio del tipo B450C controllato in stabilimento, che presentano le seguenti caratteristiche:

Proprietà	Requisito
Limite di snervamento f _y	≥450 MPa
Limite di rottura f _t	≥540 MPa
Allungamento totale al carico massimo A _{gt}	≥7%
Rapporto f_t/f_v	$1.13 \le R_{\rm m}/R_{\rm e} \le 1.35$
Rapporto f _{v misurato} / f _{v nom}	≤ 1,25

Tensione di snervamento caratteristica	\rightarrow $f_{yk} \ge$	450.00 N/mm ²
Tensione caratteristica a rottura	\rightarrow $f_{tk} \ge$	540.00 N/mm ²
Tensione di calcolo elastica	\rightarrow σ_c =0.80* f_{yk}	= 360.00 N/mm ²
Fattore di sicurezza acciaio	\rightarrow $\gamma_s =$	1.15
Resistenza a trazione di calcolo	\rightarrow $f_{yd} = f_{yk} / \gamma_s =$	391.30 N/mm ²

3.8 STRUTTURE METALLICHE

3.8.1 CARPENTERIA METALLICA

S355 (ex Fe 510)

Per $t \le 40$ mm:		acciaio S355J2 (UNI EN 10025)	
Tensione di snervamento	\rightarrow	$f_v \ge$	355.00 N/mm ²
Fattore di sicurezza acciaio	\rightarrow	$\gamma_{M0} =$	1.05
Resistenza di calcolo	\rightarrow	$f_d = f_y / \gamma_{M0}$	338.10 N/mm ²
Per $t \ge 40$ mm:		acciaio S335K2 (UNI EN 10025)	
Tensione di snervamento	\rightarrow	$f_y \ge$	335.00 N/mm ²
Fattore di sicurezza acciaio	\rightarrow	$\gamma_{M0} =$	1.05
Resistenza di calcolo	\rightarrow	$f_{\rm d} = f_{\rm y} / \gamma_{\rm M0}$	319.05 N/mm ²
Elementi principali composti per saldatura			

3.8.2 **PIOLI**

Secondo UNI EN ISO 13918

Pioli tipo Nelson (diametro ed altezza come da elaborati grafici):

Acciaio ex ST37-3K (S235J2G3+C450)

Tensione di snervamento	\rightarrow	$f_y \ge$	350.00 N/mm^2
Tensione di rottura	\rightarrow	$f_{t} \geq$	450.00 N/mm ²

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	FOGLIO
A1_4_18_1_RELAZIONE CALCOLODOC	32 DI 162

3.9 COPRIFERRI

Pile e Spalle - Si adottano copriferri pari a:

	Copriferro - c _{min} [mm]
FONDAZIONI	
Pali f < 800mm	60
Pali f≥ 800mm	70
Platea	50
ELEVAZIONE	
Fusti / Risvolti / Orecchie	50
Baggioli	40
Cordoli	40

Impalcato - Si adottano copriferri pari a:

	Copriferro - c _{min} [mm]
Soletta	40

AUTOSTRADA DEL BRENNERO S.P.A.
CODIFICA DOCUMENTO

A1_4_18_1_RELAZIONE CALCOLO,DOC

FOGLIO 33 DI 162

4 CODICI DI CALCOLO

4.1 SAP 2000

Nome software	N° revisione	Data revisione	Estensore	Data d'acquisto	Data validazione
SAP 2000	14.1.0	29 Luglio 2008	CSI	10.09.2009	(fare riferimento al produttore)

Il calcolo della struttura in esame viene condotto con il programma SAP 2000 (prodotto dalla CSI Computers and Structures, Inc. Berkeley, California, USA).

L' analisi strutturale e' condotta con il metodo degli spostamenti per la valutazione dello stato tensodeformativo indotto da carichi statici.

L' analisi strutturale viene effettuata con il metodo degli elementi finiti.

Gli elementi utilizzati per la modellazione dello schema statico della struttura sono i seguenti:

- Elemento tipo FRAME (trave)
- Elemento tipo SHELL (membrana o piastra quadrilatere)
- Elemento tipo PLANE (membrana o piastra da tre a nove nodi)
- Elemento tipo SOLID (solidi simmetrici)
- Elemento tipo ASOLID (solidi asimmetrici)
- Elemento tipo NLLINK (elementi con proprietà non lineari) che si dividono in :
 - 1. Elemento DAMPER (smorzatore)
 - 2. Elemento GAP (elemento resistente alla sola compressione)
 - 3. Elemento HOOK (elemento resistente alla sola trazione)
 - 4. Elemento ISOLATOR 1 (isolatore isteretico biassiale)
 - 5. Elemento ISOLATOR 2 (comportamento di gap nella direzione verticale e isolatore a frizione nelle due direzioni del taglio)

Il programma SAP 2000 applica il metodo degli elementi finiti a strutture di forma qualunque, comunque caricate e vincolate, nell' ambito del comportamento lineare delle stesse. Oltre all'analisi statica e dinamica delle strutture, il programma può svolgere l'analisi P-Delta e l'analisi delle strutture da ponte sottoposte all'azione di carichi mobili, costruendo le linee d'influenza ad essi relative. L'analisi sismica lineare o non lineare, infine, può essere svolta sottoponendo la struttura all'azione di uno spettro di risposta o a quella di un'accelerogramma reale (time history analysis).

SOTTOPASSO ANAS N°8 "TAN	NGENZIALE"
(PR KM 228+704)	

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	FOGLIO
A1 4 18 1 RELAZIONE CALCOLODOC	34 DI 162

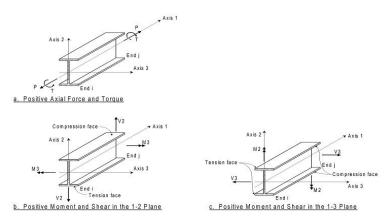


Figura 4.1 Elementi Frame – Convenzione sui segni

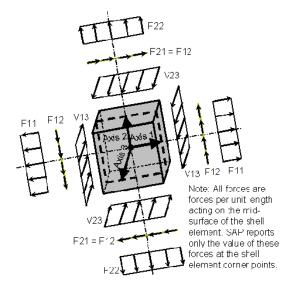


Figura 4.2 Elementi Shell – Convenzione sui segni

Per lo studio dell'impalcato si è fatto ricorso al modulo "bridge" utilizzato per il calcolo delle linee di influenza e delle sollecitazioni dovute ai carichi mobili.

AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO

A1 4 18 1 RELAZIONE CALCOLODOC

FOGLIO 35 DI 162

4.2 ENG - SIGMAC

Nome software	N° revisione	Data revisione	Estensore	Data d'acquisto	Data validazione
Eng	8.11	Dicembre 2008	SIGMAc Soft		(fare riferimento al produttore)

Il programma ENG (prodotto dalla SIGMAc Soft snc, Corso del Popolo n.46 30170 Venezia-Mestre) è uno strumento di semplice utilizzo, perché permette di risolvere le problematiche più ricorrenti del calcolo strutturale, senza dover eseguire sofisticate analisi agli elementi finiti per le quali il tempo per realizzare il modello, l'attenzione e l'impegno dell'utilizzatore devono essere adeguati; studia le seguenti tipologie strutturali:

TRSP: calcolo di telai

GRAT: calcolo di grigliati

TCONT: calcolo di travi continue

PREFLE: verifica sezioni in c.a. (livelli tensionali - rotture)

MURO: calcolo muri di sostegno

DIAF: calcolo di diaframmi - berlinesi - palanco late

TCAD: post-processore di verifica automatica delle aste in c.a.

STEEL: post-processore di verifica automatica delle aste in acciaio.

I moduli di calcolo del presente programma utilizzati per il dimensionamento delle strutture facenti parte della presente relazione, sono i seguenti:

TELAI

Il calcolo di alcune parti di struttura della spalla (paraghiaia) viene condotto con il modulo per strutture intelaiate piane.

Il programma esegue l'analisi in campo lineare di strutture piane composte da aste soggette a carichi statici con il metodo degli elementi finiti. Il programma consente la schematizzazione di giunzioni nodali tra le aste, comunque inclinate, ad incastro oppure a cerniera e permette di determinare l'inviluppo delle sollecitazioni dovute a diverse condizioni di carico visualizzando, asta per asta, l'andamento massimo e minimo del momento, del taglio, dello sforzo normale e, nel caso di aste su suolo elastico, della pressione agente sul terreno.

VERIFICA SEZ IN C.A.

La verifica delle sezioni facenti parte della presente relazione, viene condotta col modulo di verifica a pressoflessione deviata di sezioni in cemento armato di forma qualsiasi e comunque armate.

Il programma esegue le verifiche sia tensionali, sia agli stati limite ultimi, individuando il dominio di resistenza della sezione.

AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO

A1 4 18 1 RELAZIONE CALCOLO,DOC

FOGLIO 36 DI 162

La sezione è descritta da una poligonale individuata attraverso le coordinate dei vertici; le armature sono puntiformi e vengono individuate dalla posizione del baricentro e dall'area dell'acciaio. La verifica prevede tutti i tipi di sollecitazione longitudinale: compressione e trazione semplice, flessione retta e deviata, presso e tenso flessione retta, presso e tenso flessione deviata.

AUTOSTRADA DEL BRENNERO S.P.A. CODIFICA DOCUMENTO FOGLIO A14 18 1 RELAZIONE CALCOLODOC 37 DI 162

4.3 VCASLU

Il programma VcaSlu consente la verifica di sezioni in cemento armato normale e precompresso, soggette a
presso-flessione o tenso-flessione retta o deviata sia allo stato limite ultimo che con il metodo n.

SOTTOPASSO ANAS N°8 "TANGENZIALE"	,
(PR KM 228+704)	

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	FOGLIO
A1_4_18_1_RELAZIONE CALCOLODOC	38 di 162

5 RELAZIONE DI CALCOLO IMPALCATO

5.1 TRAVI IN ACCIAIO

5.1.1 CRITERI DI CALCOLO

Lo schema statico adottato è quello di trave su semplice appoggio ad asse rettilineo con luce pari a 30.40m.

L'analisi strutturale è condotta su una singola trave composta, sottoposta al peso proprio, ai sovraccarichi permanenti, alle distorsioni, al vento e all'aliquota dei carichi mobili che discende dalla ripartizione trasversale dei carichi.

I calcoli sono condotti con riferimento all'impalcato direzione Trento, in cui si trova la trave maggiormente cimentata.

La trave composta è discretizzata in conci di sezione costante, tenendo conto quindi delle variazioni geometriche e delle azioni concentrate.

La larghezza efficace della soletta è così definita (punto 4.3.2.3 delle NTC):

 $L_e = 30.40m$ $L_e/8 = 3.80m$ $b_{eff} = 0.10+2*1.70 = 3.50m$

Presso spalle: $\beta = (0.55+0.025*30.40/1.70) \approx 1$

 $b_{eff} = 0.10 + 2 * 1.70 = 3.50 m$

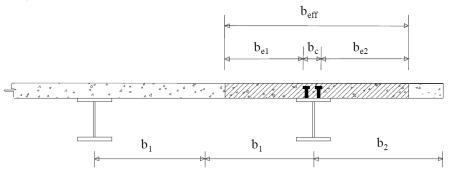


Figura 5.1 Definizione della larghezza efficace

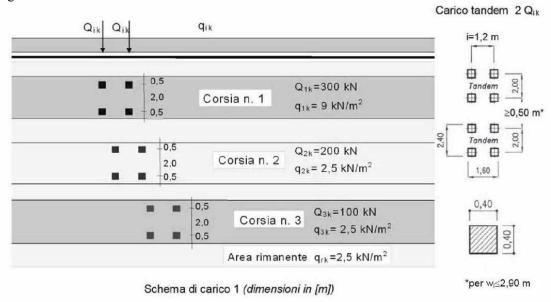
Per le verifiche di sicurezza alle tensioni, si considerano le seguenti quattro sezioni tipo:

- Sezione Tipo 1: proprietà inerziali della sola membratura metallica soggetta alle sollecitazioni dovute al peso proprio dell'acciaio e della soletta di calcestruzzo.
- Sezione Tipo 2: proprietà inerziali ideali della sezione mista con calcestruzzo omogeneizzato all'acciaio con coefficiente di omogeneizzazione n = 6. La sezione è utilizzata per le sollecitazioni prodotte dalle azioni di breve durata nelle regioni a momento flettente positivo.
- Sezione Tipo 3: proprietà inerziali ideali della sezione mista con calcestruzzo omogeneizzato all'acciaio con coefficiente di omogeneizzazione n = 18. La sezione è utilizzata per le sollecitazioni prodotte dai sovraccarichi permanenti e dal ritiro nelle regioni a momento flettente positivo.
- Sezione Tipo 4: proprietà inerziali della sezione costituita dalla membratura metallica e dalle barre di armatura con esclusione del calcestruzzo. La sezione è utilizzata nelle regioni a momento flettente negativo.

AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO

A1_4_18_1_RELAZIONE CALCOLO.DOC


FOGLIO 39 di 162

5.1.2 ANALISI DEI CARICHI							
Peso proprio della struttura (G ₁)							
Carpenteria metallica	3.00 kN/m ²	*	17.50 m			=	52.50 kN/m
Soletta	25 kN/m ³	*	0.30 m	*	17.50 m	= _	131.25 kN/m
Totale (G₁)							183.75 kN/m
Carichi permanenti (G 2)							
Pavimentazione stradale	3.00 kN/m ²	*	15.60 m			=	46.80 kN/m
Cordoli	25 kN/m ³	*	1.90 m	*	0.12 m	=	5.70 kN/m
Barriere, parapetti, velette Totale (G ₂)						-	7.50 kN/m 60.00 kN/m
Totale (G2)							00.00 KN/III
Ritiro (G)							
Dimensione fittizia $h_0 = 2A_0/u$	2.00	*	5.25 m	1	17.50 m	=	600 mm
Umidita' relativa							50% 37 N/mm²
Resistenza cilindrica caratt. f _{ck} Deformazione ε _{cd} essicamento							3.0E-04
Deformazione ε_{ca} autogeno							6.8E-05
-							
Deformazione ε_{cs} totale Coefficiente di viscosita' Φ							3.7E-04 2.0
Dist. baricentri G _{sol} e G _{mista} in testata							
Coeff. di omogeneizzazione a t_0 n_0							0.39 m 6
Coeff. di omogeneizzazione a t_{inf} n_r = n_0 (1+ Φ)							18
Modulo elastico acciaio E _s							210000 N/mm ²
Area soletta A _c			240 mm	*	17500 mm	=	4200000 mm ²
Forza di testata $N_r = \varepsilon_{cs} * E_s * A_c / n_r$						_	-18032 kN
Momento di testata M _r =N _r *e _r							7032.48 kNm
Variazioni termiche (Q)							
Coeff. di dilatazione termica α							1.00E-05 1/°C
Coeff. di omogeneizzazione a t ₀ n ₀							6
Modulo elastico acciaio E _s			200 mm	*	17500 mm	_	210000 N/mm ² 5250000 mm ²
Area soletta A _c Dist. baricentri G _{sol} e G _{mista} in testata			300 mm		17500 mm	_	0.19 m
Variazione termica positiva						-	10 °C
Forza di testata N_{dt} = α * E_s * A_c * $\Delta t/n_0$							18375 kN
Momento di testata M _{dt} =N _{dt} *e _{dt}						_	-3491.25 kNm
Variazione termica negativa Forza di testata N _{dt} = α *E _s * A _c * ∆t/n ₀							-5 °C -9188 kN
Momento di testata M _{dt} =N _{dt} *e _{dt}							-1745.63 kNm
Azione del vento (Q)							
Pressione del vento							2.50 kN/m ²
Risultante del vento	2.50 kN/m ²	*	4.50 m			=	11.25 kN/m
Momento del vento	11.25 kN/m	*	2.25 m			=	25.31 kNm/m
Carico vento su trave esterna	25.31 kNm/m	1	13.45 m		:	=	1.88 kN/m

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	FOGLIO
A1 4 18 1 RELAZIONE CALCOLO,DOC	40 di 162

Carichi mobili (Q)

Si considerano le azioni da traffico dello Schema di Carico 1, le cui caratteristiche sono riportate nella figura seguente:

La folla compatta, con valore di combinazione 2.50 kN/m² (Schema di Carico 5), non viene presa in considerazione perché non sono presenti né marciapiedi né piste ciclabili.

In senso trasversale i carichi sono stati distribuiti su corsie convenzionali di larghezza pari a 3.00m in modo tale da ottenere la distribuzione trasversale più gravosa per la singola trave (Figura 5.2).

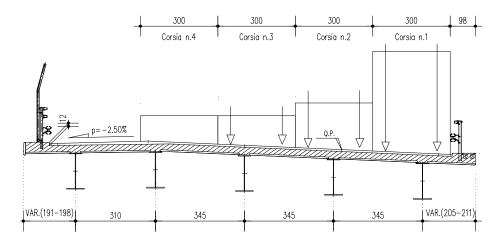


Figura 5.2 Distribuzione trasversale dei carichi da traffico

AUTOSTRADA DEI	BRENNERO S.P.A.
AUTOSTKADA DEI	DREITIERO S.I.A.

CODIFICA DOCUMENTO

A1 4 18 1 RELAZIONE CALCOLO.DOC

FOGLIO 41 DI 162

Baricentro travi (da trave esterna dx):

$$x_G = (13.45 + 10.35 + 6.90 + 3.45)/5 = 6.83 m$$

Eccentricità dei carichi di corsia:

Corsia n.1: $d_1 = (6.83+2.04)-0.98-1.50 = 6.39m$

Corsia n.2: $d_2 = 6.39-3.00 = 3.39 \text{m}$ Corsia n.3: $d_3 = 3.39-3.00 = 0.39 \text{m}$ Corsia n.4: $d_4 = 0.39-3.00 = -2.61 \text{m}$

Si considera una ripartizione dei carichi da traffico sulle travi alla Courbon; l'azione generata dalla generica forza di corsia F sulla trave maggiormente sollecitata (trave di bordo) vale:

 $\begin{array}{lll} & \text{Corsia n.1:} & \text{R}_1 = F_1/5 + F_1*6.39/(6.83^2 + 3.38^2 + 0.07^2 + 3.52^2 + 6.62^2)*6.83 = F_1(0.20 + 0.38) = 0.58 * F_1 \\ & \text{Corsia n.2:} & \text{R}_2 = F_2/5 + F_2*3.39/(6.83^2 + 3.38^2 + 0.07^2 + 3.52^2 + 6.62^2)*6.83 = F_2(0.20 + 0.20) = 0.40 * F_2 \\ & \text{Corsia n.3:} & \text{R}_3 = F_3/5 + F_3*0.39/(6.83^2 + 3.38^2 + 0.07^2 + 3.52^2 + 6.62^2)*6.83 = F_3(0.20 + 0.03) = 0.23 * F_3 \\ & \text{Corsia n.4:} & \text{R}_4 = F_4/5 - F_4*2.61/(6.83^2 + 3.38^2 + 0.07^2 + 3.52^2 + 6.62^2)*6.83 = F_4(0.20 - 0.15) = 0.05 * F_4 \\ & \text{Corsia n.4:} & \text{Cors$

Riepilogo dei carichi agenti sulla trave più sollecitata

Larghezza di influenza j = 3.75 m Peso proprio carpenteria metallica (G₁) $q_{G1} =$ 11.25 kN/m Peso proprio soletta (G 1) $q_{G1} =$ 28.13 kN/m Carichi permanenti (G 2) $q_{G1} =$ 12.86 kN/m Ritiro (G) Nr = -3864 kN Mr = 1507 kNm Variazione termica +10°C (Q) Nr = 3938 kN -748 kNm Azione del vento (Q) 1.88 kN/m

5.1.3 MODELLI DI CALCOLO

Nelle analisi strutturali si fa riferimento alla trave maggiormente sollecitata soggetta ai carichi individuati al paragrafo 5.1.2.

Le analisi sono eseguite per le fasi costruttive (varo e getto della soletta) e per le condizioni di esercizio della struttura a breve termine e a lungo termine. La larghezza collaborante della soletta per la definizione delle caratteristiche inerziali della sezione è stata valutata secondo le indicazioni della norma NTC punto 4.3.2.3. Per ulteriori dettagli si veda il paragrafo 5.1.1.

SOTTOPASSO ANAS N°8 "TANGENZIALE"
(PR KM 228+704)

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	FOGLIO
A1_4_18_1_RELAZIONE CALCOLODOC	42 DI 162

5.1.4 ANALISI STRUTTURALE

5.1.4.1 Criteri generali

Il calcolo delle sollecitazioni è stato effettuato con riferimento alla trave maggiormente sollecitata, su un modello agli elementi finiti ottenuto discretizzando la struttura in conci di caratteristiche geometriche ed inerziali costanti.

Le analisi sono state eseguite per le seguenti condizioni di carico:

- a. Peso proprio della carpenteria metallica
- b. Peso proprio della soletta.
- c. Carichi permanenti.
- d. Ritiro.
- e. Variazione termica differenziale.
- f. Carichi mobili.
- g. Vento.

Ai fini delle verifiche di resistenza, per quanto riguarda la seconda condizione di carico, la soletta è stata considerata realizzata in un unico getto. Con tale ipotesi si sovrastimano le tensioni sulle travi metalliche e quindi si perviene ad una verifica conservativa della sicurezza.

5.1.4.2 Calcolo delle Sollecitazioni

М	=	1299.6 kNm
М	=	3249.0 kNm
М	=	1485.3 kNm
Nr	=	-3864.0 kN
Mr	=	1507.0 kNm
Nr	=	3937.5 kN
Mr	=	-748.1 kNm
М	=	217.4 kNm
Т	=	171.0 kN
Т	=	427.5 kN
Т	=	195.4 kN
Nr	=	-3864.0 kN
Mr	=	1507.0 kNm
Nr	=	3937.5 kN
Mr	=	-748.1 kNm
Т	=	28.6 kN
	M M Nr Mr Nr Mr T T T Nr Mr Mr	M = M = Mr

AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO

A1_4_18_1_RELAZIONE CALCOLO.DOC

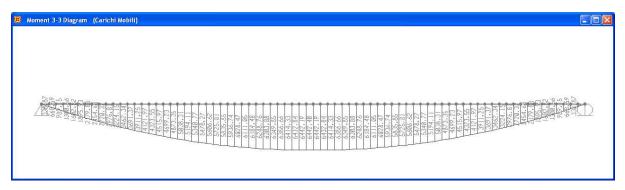


Figura 5.3 Carichi mobili - Momenti flettenti max e min

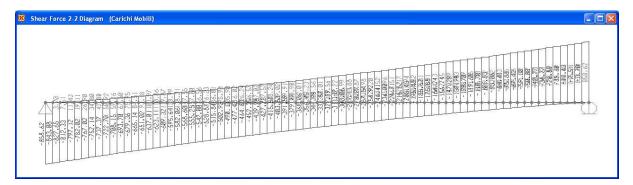


Figura 5.4 Carichi mobili - Tagli max e min

AUTOSTRADA DEL BRENNERO S.P.A.
CODIFICA DOCUMENTO

A1_4_18_1_RELAZIONE CALCOLO,DOC

FOGLIO 44 DI 162

5.1.5 VERIFICHE TRAVI PRINCIPALI

Le verifiche vengono eseguite nelle sezioni significative:

S1: sezione di mezzeria;

S2: sezione di spalla (SA);

5.1.5.1 Verifiche di resistenza (SLU)

Le verifiche sono condotte in base alla combinazione di carico fondamentale con i carichi mobili assunti come azione variabile dominante:

$$1.35*G_1 + 1.50*G_2 + 1.20*Q_{rit} + 1.20*Q_{ced} + 1.35*Q + 1.20*0.6*Q_T + 1.50*0.6*Q_w$$

5.1.5.1.1 Verifica delle travi

Metodo elastico (punto 4.3.4.2.1.1 delle NTC)

a) Variazione termica in soletta positiva (dT=+10°C)

SEZIONE S1. Campata Mmax (Unità di misura - Forze: N, Lunghezze: mm)

TRAVE METALLICA

Altezza totale della trave in acciaio: 1400 Spessore anima: 16

Ala inferiore : 800 x 40 Ala superiore : 600 x 40

SOLETTA SUPERIORE

Soletta: larghezza= 3500 spessore totale= 300 Coppella: appoggio sull'ala= 60 spessore= 60 Tensione da ritiro in soletta (1° fase): 4.30 Tensione da variazioni termiche (1° fase): -2.52

SOLETTA INFERIORE

Soletta: larghezza=0 spessore totale=0 Armatura 1: Aa=0 Y=0 Coppella: larghezza=0 spessore=0 Armatura 2: Aa=0 Y=0

Tensione da ritiro in soletta (1° fase): 0.00

CARATTERISTICHE GEOMETRICHE

		TRAVE IN ACCIAIO	TRAVE + SOL. INF.	TRAVE C	TRAVE COMPLETA		
			n= 18.0	n= 18.0	n= 6.0		
Quota baricentro		629.46	629.46	993.45	1246.43		
Area		7.7120E+04	7.7120E+04	1.2539E+05	2.2192E+05		
Momento d'inerzia		2.8585E+10	2.8585E+10	5.5387E+10	7.4353E+10		
Intradosso	W	4.5412E+07	4.5412E+07	5.5752E+07	5.9653E+07		
Attacco Anima-Piattabanda Inferiore	W	4.8493E+07	4.8493E+07	5.8091E+07	6.1631E+07		
	С	4.2642E-05	4.2642E-05	4.2642E-05	4.2642E-05		
Baricentro Trave Acciaio	С	4.8720E-05	4.8720E-05	4.8720E-05	4.8720E-05		
Baricentro Trave Completa	С		4.8720E-05	8.4011E-05	1.1127E-04		
Attacco Anima-Piattabanda Superiore	W	3.9128E+07	3.9128E+07	1.5110E+08	6.5470E+08		
	С	3.9385E-05	3.9385E-05	3.9385E-05	3.9385E-05		
Estradosso Trave Acciaio	W	3.7097E+07	3.7097E+07	1.3624E+08	4.8417E+08		
(b= 480.00)	С			1.0559E-06	1.3332E-06		
Estradosso Soletta Superiore	W			1.4110E+09	9.8358E+08		

AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO
A1_4_18_1_RELAZIONE CALCOLO,DOC

FOGLIO 45 DI 162

SOLLECITAZIONI

	Sforzo Normale	Taglio	Momento Flettente
Sezione reagente: trave in acciaio			
Peso travi in acciaio	0.000E+0	0.000E+0	1.755E+9
Prima precompressione	0.000E+0	0.000E+0	0.000E+0
Peso soletta inferiore	0.000E+0	0.000E+0	0.000E+0
Sezione reagente: trave in acciaio + soletta inferiore			
Peso soletta superiore	0.000E+0	0.000E+0	4.388E+9
Ritiro soletta inferiore (1^ quota)	0.000E+0	0.000E+0	0.000E+0
Sezione reagente: trave completa (fenomeni lenti)			
Seconda precompressione	0.000E+0	0.000E+0	0.000E+0
Carichi permanenti portati	0.000E+0	0.000E+0	2.235E+9
Ritiro soletta superiore	-4.632E+6	0.000E+0	1.812E+9
Ritiro soletta inferiore (2^ quota)	0.000E+0	0.000E+0	0.000E+0
Cedimenti appoggi	0.000E+0	0.000E+0	0.000E+0
Sezione reagente: trave completa (fenomeni veloci)			
Carichi mobili	0.000E+0	0.000E+0	8.694E+9
Effetti termici	2.837E+6	0.000E+0	-5.386E+8
Vento	0.000E+0	0.000E+0	1.953E+8

TENSIONI - (Fasi di costruzione)

_		Peso travi acciaio	1^ Prec.	Peso sol.	Totale Trave in	Peso sol. sup.	Ritiro sol.inf.	Totale trave in
				inf.	Acciaio		1^quota	acciaio +sol.inf.
Intradosso	σ	38.65	0.00	0.00	38.65	96.62	0.00	135.26
Attacco Anima-Piat.Inf.	σ	36.19	0.00	0.00	36.19	90.48	0.00	126.67
	τ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	σ_{id}	36.19	0.00	0.00	36.19	90.48	0.00	126.67
Baricentro Trave Acciaio	τ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Baricentro Trave di Acciaio più Soletta Inferiore	τ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Baricentro trave Completa	τ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Attacco Anima-Piat.Sup.	σ	-44.85	0.00	0.00	-44.85	-112.13	0.00	-156.98
	τ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	σ_{id}	44.85	0.00	0.00	44.85	112.13	0.00	156.98
Estradosso Trave Acciaio	σ	-47.31	0.00	0.00	-47.31	-118.27	0.00	-165.58
(b= 480.00)	τ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Estradosso Soletta	σ	0.00	0.00	0.00	0.00	0.00	0.00	0.00

TENSIONI - (Situazione finale)

		2^ Prec.	Carichi perm.	Ritiro sol.	Ritiro sol.inf.	Cedimenti appoggi	Carichi mobili	Effetti termici	Vento	Totale Trave
			portati	sup.	2^quota	55				compl.
Intradosso	σ	0.00	40.09	-4.44	0.00	0.00	145.74	3.75	3.27	328.12
Attacco Anima-Piat.Inf.	σ	0.00	38.47	-5.75	0.00	0.00	141.07	4.04	3.17	313.42
	τ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	σ_{id}	0.00	38.47	5.75	0.00	0.00	141.07	4.04	3.17	313.42
Baricentro Trave Acciaio	τ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Baricentro Trave di Acciaio più Soletta Inferiore	τ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Baricentro trave Completa	τ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Attacco Anima-Piat.Sup.	σ	0.00	-14.79	-48.93	0.00	0.00	-13.28	13.61	-0.30	-220.68
	τ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	σ_{id}	0.00	14.79	48.93	0.00	0.00	13.28	13.61	0.30	220.68
Estradosso Trave Acciaio	σ	0.00	-16.41	-50.24	0.00	0.00	-17.96	13.90	-0.40	-236.69
(b= 480.00)	τ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Estradosso Soletta	σ	0.00	-1.58	0.96	0.00	0.00	-8.84	0.16	-0.20	-10.46

AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO

A1 4 18 1 RELAZIONE CALCOLO,DOC

FOGLIO 46 DI 162

SEZIONE S2. Presso SA Tmax (Unità di misura - Forze: N, Lunghezze: mm)

TRAVE METALLICA

Altezza totale della trave in acciaio: 1400 Spessore anima: 20

Ala inferiore: 800 x 30 Ala superiore: 600 x 30

SOLETTA SUPERIORE

Armatura 1 Aa= 4396. Y= 1430. Armatura 2 Aa= 4396. Y= 1270. Tensione da ritiro in soletta (1° fase): 4.30 Tensione da variazioni termiche (1° fase): -2.52

SOLETTA INFERIORE

Soletta: larghezza= 0.00 spessore totale= 0.00 Armatura 1: Aa= 0 Y= 0 Coppella: larghezza= 0.00 spessore= 0.00 Armatura 2: Aa= 0 Y= 0

Tensione da ritiro in soletta (1° fase): 0.00

CARATTERISTICHE GEOMETRICHE

		TRAVE IN ACCIAIO	TRAVE + SOL. INF.	TRAVE C	OMPLETA
			n= 18.0	n= 18.0	n= 6.0
Quota baricentro		640.26	640.26	720.68	720.68
Area		6.8800E+04	6.8800E+04	7.7592E+04	7.7592E+04
Momento d'inerzia		2.3475E+10	2.3475E+10	2.7458E+10	2.7458E+10
Intradosso	W	3.6665E+07	3.6665E+07	3.8101E+07	3.8101E+07
Attacco Anima-Piattabanda Inferiore	W	3.8468E+07	3.8468E+07	3.9756E+07	3.9756E+07
	С	3.1962E-05	3.1962E-05	3.1962E-05	3.1962E-05
Baricentro Trave Acciaio	С	3.9894E-05	3.9894E-05	3.9894E-05	3.9894E-05
Baricentro Trave Completa	С		3.9894E-05	4.6233E-05	4.6233E-05
Attacco Anima-Piattabanda Superiore	W	3.2169E+07	3.2169E+07	4.2288E+07	4.2288E+07
	С	2.8552E-05	2.8552E-05	2.8552E-05	2.8552E-05
Estradosso Trave Acciaio	W	3.0899E+07	3.0899E+07	4.0421E+07	4.0421E+07
(b= 480.00)	С			4.1980E-07	4.1980E-07
Armatura 1 (Y= 1430.00)	W			3.8711E+07	3.8711E+07
Armatura 2 (Y= 1270.00)	W			4.9987E+07	4.9987E+07

SOLLECITAZIONI

	Sforzo Normale	Taglio	Momento Flettente
Sezione reagente: trave in acciaio			
Peso travi in acciaio	0.000E+0	2.309E+5	0.000E+0
Prima precompressione	0.000E+0	0.000E+0	0.000E+0
Peso soletta inferiore	0.000E+0	0.000E+0	0.000E+0
Sezione reagente: trave in acciaio + soletta inferiore			
Peso soletta superiore	0.000E+0	5.778E+5	0.000E+0
Ritiro soletta inferiore (1^ quota)	0.000E+0	0.000E+0	0.000E+0
Sezione reagente: trave completa (fenomeni lenti)			
Seconda precompressione	0.000E+0	0.000E+0	0.000E+0
Carichi permanenti portati	0.000E+0	2.925E+5	0.000E+0
Ritiro soletta superiore	-4.632E+6	0.000E+0	1.812E+9
Ritiro soletta inferiore (2^ quota)	0.000E+0	0.000E+0	0.000E+0
Cedimenti appoggi	0.000E+0	0.000E+0	0.000E+0
Sezione reagente: trave completa (fenomeni veloci)			
Carichi mobili	0.000E+0	1.160E+6	0.000E+0
Effetti termici	2.837E+6	0.000E+0	-5.386E+8
Vento	0.000E+0	2.574E+4	0.000E+0

AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO
Al 4 18 1 RELAZIONE CALCOLODOC

FOGLIO 47 DI 162

TENSIONI - (Fasi di costruzione)

·		Peso travi	1^	Peso	Totale	Peso	Ritiro	Totale
		acciaio	Prec.	sol.	Trave in	sol. sup.	sol.inf.	trave in
				inf.	Acciaio		1^quota	acciaio
								+sol.inf.
Intradosso	σ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Attacco Anima-Piat.Inf.	σ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	τ	7.38	0.00	0.00	7.38	18.47	0.00	25.85
	σ_{id}	12.78	0.00	0.00	12.78	31.99	0.00	44.77
Baricentro Trave Acciaio	τ	9.21	0.00	0.00	9.21	23.05	0.00	32.26
Baricentro Trave di Acciaio più Soletta Inferiore	τ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Baricentro trave Completa	τ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Attacco Anima-Piat.Sup.	σ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	τ	6.59	0.00	0.00	6.59	16.50	0.00	23.09
	σ_{id}	11.42	0.00	0.00	11.42	28.57	0.00	39.99
Estradosso Trave Acciaio	σ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
(b= 480.00)	τ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sol.Sup.: Arm.1	σ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sol.Sup.: Arm.2	σ	0.00	0.00	0.00	0.00	0.00	0.00	0.00

TENSIONI - (Situazione finale)

		2^ Prec.	Carichi perm. portati	Ritiro sol. sup.	Ritiro sol.inf. 2^quota	Cedimenti appoggi	Carichi mobili	Effetti termici	Vento	Totale Trave compl.
Intradosso	σ	0.00	0.00	-12.14	0.00	0.00	0.00	22.43	0.00	10.29
Attacco Anima-Piat.Inf.	σ	0.00	0.00	-14.12	0.00	0.00	0.00	23.01	0.00	8.90
	τ	0.00	9.35	0.00	0.00	0.00	37.06	0.00	0.82	73.08
	σ_{id}	0.00	16.19	14.12	0.00	0.00	64.20	23.01	1.42	126.89
Baricentro Trave Acciaio	τ	0.00	11.67	0.00	0.00	0.00	46.26	0.00	1.03	91.22
Baricentro Trave di Acciaio più Soletta Inferiore	τ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Baricentro trave Completa	τ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Attacco Anima-Piat.Sup.	σ	0.00	0.00	-102.55	0.00	0.00	0.00	49.30	0.00	-53.25
	τ	0.00	8.35	0.00	0.00	0.00	33.11	0.00	0.73	65.29
	σ_{id}	0.00	14.47	102.55	0.00	0.00	57.35	49.30	1.27	124.99
Estradosso Trave Acciaio	σ	0.00	0.00	-104.53	0.00	0.00	0.00	49.88	0.00	-54.64
(b= 480.00)	τ	0.00	0.12	0.00	0.00	0.00	0.49	0.00	0.01	0.62
Sol.Sup.: Arm.1	σ	0.00	0.00	-29.11	0.00	0.00	0.00	35.35	0.00	6.25
Sol.Sup.: Arm.2	σ	0.00	0.00	-18.55	0.00	0.00	0.00	32.21	0.00	13.67

AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO
A1 4 18 1 RELAZIONE CALCOLODOC

FOGLIO 48 DI 162

b) Variazione termica in soletta negativa (dT=-5°C)

SEZIONE S1. Campata Mmax (Unità di misura - Forze: N, Lunghezze: mm)

TRAVE METALLICA

Altezza totale della trave in acciaio: 1400 Spessore anima: 16

Ala inferiore: 800 x 40 Ala superiore: 600 x 40

SOLETTA SUPERIORE

Soletta: larghezza= 3500 spessore totale= 300 Coppella: appoggio sull'ala= 60 spessore= 60 Tensione da ritiro in soletta (1° fase): 4.30 Tensione da variazioni termiche (1° fase): 1.26

SOLETTA INFERIORE

Soletta: larghezza= 0 spessore totale= 0 Armatura 1: Aa= 0 Y= 0 Coppella: larghezza= 0 spessore= 0 Armatura 2: Aa= 0 Y= 0

Tensione da ritiro in soletta (1° fase): 0.00

CARATTERISTICHE GEOMETRICHE

•		TRAVE IN ACCIAIO	TRAVE + SOL. INF.	TRAVE C	OMPLETA
			n= 18.0	n= 18.0	n= 6.0
Quota baricentro		629.46	629.46	993.45	1246.43
Area		7.7120E+04	7.7120E+04	1.2539E+05	2.2192E+05
Momento d'inerzia		2.8585E+10	2.8585E+10	5.5387E+10	7.4353E+10
Intradosso	W	4.5412E+07	4.5412E+07	5.5752E+07	5.9653E+07
Attacco Anima-Piattabanda Inferiore	W	4.8493E+07	4.8493E+07	5.8091E+07	6.1631E+07
	С	4.2642E-05	4.2642E-05	4.2642E-05	4.2642E-05
Baricentro Trave Acciaio	С	4.8720E-05	4.8720E-05	4.8720E-05	4.8720E-05
Baricentro Trave Completa	С		4.8720E-05	8.4011E-05	1.1127E-04
Attacco Anima-Piattabanda Superiore	W	3.9128E+07	3.9128E+07	1.5110E+08	6.5470E+08
	С	3.9385E-05	3.9385E-05	3.9385E-05	3.9385E-05
Estradosso Trave Acciaio	W	3.7097E+07	3.7097E+07	1.3624E+08	4.8417E+08
(b= 480.00)	С			1.0559E-06	1.3332E-06
Estradosso Soletta Superiore	W			1.4110E+09	9.8358E+08

SOLLECITAZIONI

	Sforzo Normale	Taglio	Momento Flettente
Sezione reagente: trave in acciaio			
Peso travi in acciaio	0.000E+0	0.000E+0	1.755E+9
Prima precompressione	0.000E+0	0.000E+0	0.000E+0
Peso soletta inferiore	0.000E+0	0.000E+0	0.000E+0
Sezione reagente: trave in acciaio + soletta inferiore			
Peso soletta superiore	0.000E+0	0.000E+0	4.388E+9
Ritiro soletta inferiore (1^ quota)	0.000E+0	0.000E+0	0.000E+0
Sezione reagente: trave completa (fenomeni lenti)			
Seconda precompressione	0.000E+0	0.000E+0	0.000E+0
Carichi permanenti portati	0.000E+0	0.000E+0	2.235E+9
Ritiro soletta superiore	-4.632E+6	0.000E+0	1.812E+9
Ritiro soletta inferiore (2^ quota)	0.000E+0	0.000E+0	0.000E+0
Cedimenti appoggi	0.000E+0	0.000E+0	0.000E+0
Sezione reagente: trave completa (fenomeni veloci)			
Carichi mobili	0.000E+0	0.000E+0	8.694E+9
Effetti termici	-1.418E+6	0.000E+0	2.693E+8
Vento	0.000E+0	0.000E+0	1.953E+8

AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO
Al 4 18 1 RELAZIONE CALCOLODOC

FOGLIO 49 DI 162

TENSIONI - (Fasi di costruzione)

		Peso travi acciaio	1^ Prec.	Peso sol. inf.	Totale Trave in Acciaio	Peso sol. sup.	Ritiro sol.inf. 1^quota	Totale trave in acciaio +sol.inf.
Intradosso	σ	38.65	0.00	0.00	38.65	96.62	0.00	135.26
Attacco Anima-Piat.Inf.	σ	36.19	0.00	0.00	36.19	90.48	0.00	126.67
	τ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	σ_{id}	36.19	0.00	0.00	36.19	90.48	0.00	126.67
Baricentro Trave Acciaio	τ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Baricentro Trave di Acciaio più Soletta Inferiore	τ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Baricentro trave Completa	τ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Attacco Anima-Piat.Sup.	σ	-44.85	0.00	0.00	-44.85	-112.13	0.00	-156.98
	τ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	σ_{id}	44.85	0.00	0.00	44.85	112.13	0.00	156.98
Estradosso Trave Acciaio	σ	-47.31	0.00	0.00	-47.31	-118.27	0.00	-165.58
(b= 480.00)	τ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Estradosso Soletta	σ	0.00	0.00	0.00	0.00	0.00	0.00	0.00

TENSIONI - (Situazione finale)

		2^	Carichi	Ritiro	Ritiro	Cedimenti	Carichi	Effetti	Vento	Totale
		Prec.	perm. portati	sol. sup.	sol.inf. 2^quota	appoggi	mobili	termici		Trave compl.
Intradosso	σ	0.00	40.09	-4.44	0.00	0.00	145.74	-1.88	3.27	322.49
Attacco Anima-Piat.Inf.	σ	0.00	38.47	-5.75	0.00	0.00	141.07	-2.02	3.17	307.35
	τ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	σ_{id}	0.00	38.47	5.75	0.00	0.00	141.07	2.02	3.17	307.35
Baricentro Trave Acciaio	τ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Baricentro Trave di Acciaio più Soletta Inferiore	τ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Baricentro trave Completa	τ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Attacco Anima-Piat.Sup.	σ	0.00	-14.79	-48.93	0.00	0.00	-13.28	-6.80	-0.30	-241.09
	τ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	σ_{id}	0.00	14.79	48.93	0.00	0.00	13.28	6.80	0.30	241.09
Estradosso Trave Acciaio	σ	0.00	-16.41	-50.24	0.00	0.00	-17.96	-6.95	-0.40	-257.53
(b= 480.00)	τ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Estradosso Soletta	σ	0.00	-1.58	0.96	0.00	0.00	-8.84	-0.08	-0.20	-10.70

AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO
A1 4 18 1 RELAZIONE CALCOLODOC

FOGLIO 50 DI 162

SEZIONE S2. Presso SA Tmax (Unità di misura - Forze: N, Lunghezze: mm)

TRAVE METALLICA

Altezza totale della trave in acciaio: 1400 Spessore anima: 20

Ala inferiore : 800 x 30 Ala superiore : 600 x 30

SOLETTA SUPERIORE

Armatura 1 Aa= 4396. Y= 1430. Armatura 2 Aa= 4396. Y= 1270. Tensione da ritiro in soletta (1° fase): 4.30 Tensione da variazioni termiche (1° fase): 1.26

SOLETTA INFERIORE

Soletta: larghezza= 0.00 spessore totale= 0.00 Armatura 1: Aa= 0 Y= 0 Coppella: larghezza= 0.00 spessore= 0.00 Armatura 2: Aa= 0 Y= 0

Tensione da ritiro in soletta (1° fase): 0.00

CARATTERISTICHE GEOMETRICHE

		TRAVE IN ACCIAIO	TRAVE + SOL. INF.	TRAVE C	OMPLETA
			n= 18.0	n= 18.0	n= 6.0
Quota baricentro		640.26	640.26	720.68	720.68
Area		6.8800E+04	6.8800E+04	7.7592E+04	7.7592E+04
Momento d'inerzia		2.3475E+10	2.3475E+10	2.7458E+10	2.7458E+10
Intradosso	W	3.6665E+07	3.6665E+07	3.8101E+07	3.8101E+07
Attacco Anima-Piattabanda Inferiore	W	3.8468E+07	3.8468E+07	3.9756E+07	3.9756E+07
	С	3.1962E-05	3.1962E-05	3.1962E-05	3.1962E-05
Baricentro Trave Acciaio	С	3.9894E-05	3.9894E-05	3.9894E-05	3.9894E-05
Baricentro Trave Completa	С		3.9894E-05	4.6233E-05	4.6233E-05
Attacco Anima-Piattabanda Superiore	W	3.2169E+07	3.2169E+07	4.2288E+07	4.2288E+07
	С	2.8552E-05	2.8552E-05	2.8552E-05	2.8552E-05
Estradosso Trave Acciaio	W	3.0899E+07	3.0899E+07	4.0421E+07	4.0421E+07
(b= 480.00)	С			4.1980E-07	4.1980E-07
Armatura 1 (Y= 1430.00)	W			3.8711E+07	3.8711E+07
Armatura 2 (Y= 1270.00)	W			4.9987E+07	4.9987E+07

SOLLECITAZIONI

	Sforzo Normale	Taglio	Momento Flettente
Sezione reagente: trave in acciaio			
Peso travi in acciaio	0.000E+0	2.309E+5	0.000E+0
Prima precompressione	0.000E+0	0.000E+0	0.000E+0
Peso soletta inferiore	0.000E+0	0.000E+0	0.000E+0
Sezione reagente: trave in acciaio + soletta inferiore			
Peso soletta superiore	0.000E+0	5.778E+5	0.000E+0
Ritiro soletta inferiore (1^ quota)	0.000E+0	0.000E+0	0.000E+0
Sezione reagente: trave completa (fenomeni lenti)			
Seconda precompressione	0.000E+0	0.000E+0	0.000E+0
Carichi permanenti portati	0.000E+0	2.925E+5	0.000E+0
Ritiro soletta superiore	-4.632E+6	0.000E+0	1.812E+9
Ritiro soletta inferiore (2^ quota)	0.000E+0	0.000E+0	0.000E+0
Cedimenti appoggi	0.000E+0	0.000E+0	0.000E+0
Sezione reagente: trave completa (fenomeni veloci)			
Carichi mobili	0.000E+0	1.160E+6	0.000E+0
Effetti termici	-1.418E+6	0.000E+0	2.693E+8
Vento	0.000E+0	2.574E+4	0.000E+0

AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO
A1 4 18 1 RELAZIONE CALCOLODOC

FOGLIO 51 DI 162

TENSIONI - (Fasi di costruzione)

1							
	Peso travi	1^	Peso	Totale	Peso	Ritiro	Totale
	acciaio	Prec.	sol.	Trave in	sol. sup.	sol.inf.	trave in
			inf.	Acciaio		1^quota	acciaio
							+sol.inf.
σ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
σ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
τ	7.38	0.00	0.00	7.38	18.47	0.00	25.85
σ_{id}	12.78	0.00	0.00	12.78	31.99	0.00	44.77
τ	9.21	0.00	0.00	9.21	23.05	0.00	32.26
τ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
τ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
σ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
τ	6.59	0.00	0.00	6.59	16.50	0.00	23.09
σ_{id}	11.42	0.00	0.00	11.42	28.57	0.00	39.99
σ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
τ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
σ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
σ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	σ τ σid τ τ σ τ σ σ τ	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

TENSIONI - (Situazione finale)

		2^	Carichi	Ritiro	Ritiro	Cedimenti	Carichi	Effetti	Vento	Totale
		Prec.	perm.	sol.	sol.inf.	appoggi	mobili	termici		Trave
			portati	sup.	2^quota					compl.
Intradosso	σ	0.00	0.00	-12.14	0.00	0.00	0.00	-11.21	0.00	-23.35
Attacco Anima-Piat.Inf.	σ	0.00	0.00	-14.12	0.00	0.00	0.00	-11.51	0.00	-25.63
	τ	0.00	9.35	0.00	0.00	0.00	37.06	0.00	0.82	73.08
	σ_{id}	0.00	16.19	14.12	0.00	0.00	64.20	11.51	1.42	129.15
Baricentro Trave Acciaio	τ	0.00	11.67	0.00	0.00	0.00	46.26	0.00	1.03	91.22
Baricentro Trave di Acciaio più Soletta Inferiore	τ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Baricentro trave Completa	τ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Attacco Anima-Piat.Sup.	σ	0.00	0.00	-102.55	0.00	0.00	0.00	-24.65	0.00	-127.19
	τ	0.00	8.35	0.00	0.00	0.00	33.11	0.00	0.73	65.29
	σ_{id}	0.00	14.47	102.55	0.00	0.00	57.35	24.65	1.27	170.19
Estradosso Trave Acciaio	σ	0.00	0.00	-104.53	0.00	0.00	0.00	-24.94	0.00	-129.47
(b= 480.00)	τ	0.00	0.12	0.00	0.00	0.00	0.49	0.00	0.01	0.62
Sol.Sup.: Arm.1	σ	0.00	0.00	-29.11	0.00	0.00	0.00	-17.68	0.00	-46.78
Sol.Sup.: Arm.2	σ	0.00	0.00	-18.55	0.00	0.00	0.00	-16.11	0.00	-34.65

5.1.5.1.2 <u>Verifica dei pannelli</u>

Per quanto riguarda la stabilità dei pannelli di elementi in parete sottile le NTC rimandano a normative di comprovata validità (punto 4.2.4.1.3.4).

Le verifiche vengono svolte in accordo a quanto indicato nella CNR 10011 al punto 7.6.

In particolare la verifica risulta soddisfatta quando il rapporto σ cr/ σ id indicato nella penultima colonna è maggiore del fattore di sicurezza β x v, riportato nell'ultima colonna.

a) Variazione termica in soletta positiva (dT=+10°C)

AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO

A1 4 18 1 RELAZIONE CALCOLO.DOC

FOGLIO 52 DI 162

SEZIONE S1. Campata Mmax

STABILITA' DELL' ANIMA - VERIFICA ALL' IMBOZZAMENTO DEI PANNELLI

Acciaio tipo Fe 510

(Unità di misura - Forze: N, Lunghezze: mm) Altezza totale dell' anima= 1320.0, spessore= 16.0

Numero dei pannelli= 1 Geometria dei pannelli:

pannello 1320.0 x 3000.0

Tensioni nel piatto d'anima: σ_{sup} =-220.68 σ_{inf} = 313.42 τ = 0.00

1 4110101111	rer practe	u unimi	sup ==0.0	o om	· · · · · · ·	0.00				
Pannello	α	σ_1	σ_2	Ψ	σ di	σ	σ critica	σ	σ cr./σ id.	β*ν
					riferimento	critica	ridotta	ideale		
1	2.27	-220.68	313.42	-1.42	27.36	653.84	344.36	220.68	1.56	1.00

SEZIONE S2. Presso SA Tmax

STABILITA' DELL' ANIMA - VERIFICA ALL' IMBOZZAMENTO DEI PANNELLI

Acciaio tipo Fe 510

(Unità di misura - Forze: N, Lunghezze: mm) Altezza totale dell' anima= 1340.0, spessore= 20.0

Numero dei pannelli= 1 Geometria dei pannelli:

pannello 1340.0 x 3000.0

Tensioni nel piatto d'anima: $\sigma_{\text{sup}} = -53.25$ $\sigma_{\text{inf}} = 8.90$ $\tau = 65.29$

_				Sup	1111						
	Pannello	α	σ_1	σ_2	Ψ	σ di	σ	σ critica	σ	σ cr./σ id.	β*ν
						riferimento	critica	ridotta	ideale		
	1	2.24	-53.25	8.90	-0.17	41.48	337.96	311.53	124.99	2.49	1.00

AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO

FOGLIO

A1_4_18_1_RELAZIONE CALCOLO.DOC

53 DI 162

b) Variazione termica in soletta negativa (dT=-5°C)

SEZIONE S1. Campata Mmax

STABILITA' DELL' ANIMA - VERIFICA ALL' IMBOZZAMENTO DEI PANNELLI

Acciaio tipo Fe 510

(Unità di misura - Forze: N, Lunghezze: mm) Altezza totale dell' anima= 1320.0, spessore= 16.0

Numero dei pannelli= 1 Geometria dei pannelli:

pannello 1320.0 x 3000.0

Tensioni nel piatto d'anima: σ_{sup} =-241.09 σ_{inf} = 307.35 τ = 0.00

Pannello	α	σ ₁	σ ₂	Ψ	σ di riferimento	σ critica	σ critica ridotta	σ ideale	σ cr./σ id.	β*ν
1	2.27	-241.09	307.35	-1.27	27.36	653.84	344.36	241.09	1.43	1.00

SEZIONE S2. Presso SA Tmax

STABILITA' DELL' ANIMA - VERIFICA ALL' IMBOZZAMENTO DEI PANNELLI

Acciaio tipo Fe 510

(Unità di misura - Forze: N, Lunghezze: mm) Altezza totale dell' anima= 1340.0, spessore= 20.0

Numero dei pannelli= 1 Geometria dei pannelli:

pannello 1340.0 x 3000.0

Tensioni nel piatto d'anima: σ_{sup} =-127.19 σ_{inf} = -25.63 τ = 65.29

 	- 1		sup	- 1111						
Pannello	α	σ_1	σ_2	Ψ	σ di	σ	σ critica	σ	σ cr./σ id.	β*ν
					riferimento	critica	ridotta	ideale		
1	2.24	-127.19	-25.63	0.20	41.48	281.55	281.55	170.19	1.65	1.00

5.1.5.1.3 Verifica dei pioli

La collaborazione tra la trave metallica e la soletta è assicurata mediante pioli elettrosaldati all'ala della trave di acciaio. Per le verifiche si fa riferimento al punto 4.3.4.3.1 delle NTC.

Caratteristiche e limitazioni dimensionali

Pioli $\phi = 22$ mm, area $A_p = 380$ mm², altezza $h_p = 220$ mm

Caratteristiche geometriche della piolatura:

base collaborante $b_c = 260 \text{ mm}$

interasse trasversale (variabile) $i_t = 260/2 = 130 \text{ mm}$ (3 pioli nelle zone di appoggio)

= 260 mm (2 pioli nelle zone di campata)

AUTOSTRADA DE	EL BRENNERO S.P.A.	
AUTUSTKADA DI	el drenneru 3.f.a.	

CODIFICA DOCUMENTO

A1 4 18 1 RELAZIONE CALCOLO.DOC

FOGLIO **54 DI 162**

interasse longitudinale

$$i_1 = 200 \text{ mm}$$

Caratteristiche geometriche della soletta e della piattabanda:

$$h_c = 300 \text{mm}$$

$$d = 60 \text{mm}$$

$$t_s = 30 \text{mm}$$

$$b_s = 600 \text{mm}$$

Per le limitazioni dimensionali le NTC al punto 4.3.4.3.1.1 rimandano a normative di comprovata validità; si fa quindi riferimento alle limitazioni delle CNR10016.

I pioli previsti soddisfano le limitazioni dimensionali di seguito riportate.

Limitazioni inerenti il diametro dei connettori:

 $8mm \le \phi = 22mm \le 26mm$

$$6 \le h_c/\phi = 14 \le 15$$

$$t_{s}/\phi = 1.4 \ge 0.50$$

Limitazioni inerenti le distanze tra i connettori:

interasse trasversale

$$i_t \ge 5 \phi = 130mm$$

interasse longitudinale

$$7\phi = 154 \le i_1 = 200cm \le h_c = 300mm$$

$$(b_s-b_c)/2 = 170 \text{mm} \ge 2.5 * t_s = 75 \text{mm} \text{ e comunque} \ge 25.0 \text{mm}$$

Limitazioni inerenti l'altezza dei connettori:

$$h_p = 220mm \geq d + 0.6*t_c = 60 + 0.6*240 = 204mm$$

L'altezza efficace dei pioli è da assumersi pari a:

$$h'_p = 4 \phi = 88 \text{ mm}$$

Criteri di calcolo e sollecitazioni

I connettori sono dimensionati in base agli sforzi taglianti dovuti ai carichi permanenti ed ai sovraccarichi accidentali.

AUTOSTRADA	DEL	BRENNERO	S.P.A.

CODIFICA DOCUMENTO

A1 4 18 1 RELAZIONE CALCOLO,DOC

FOGLIO 55 DI 162

Per determinare il numero di connettori necessari nelle varie sezioni dell'impalcato si fa riferimento al valore della τ fornito dalle tabelle all'estradosso della trave d'acciaio nelle combinazioni di carico che producono il massimo taglio.

Tutte le sezioni (anche quelle nei pressi degli appoggi (e quindi tese superiormente), sede però generalmente dei massimi tagli), sono state prese in considerazione non parzializzate, in modo da determinare la massima τ , e quindi il massimo scorrimento fra trave e soletta.

Si riporta di seguito la verifica per la sezione significativa, vale a dire quella sulla spalla A.

A livello di sollecitazioni si è considerata la distribuzione dei carichi accidentali che massimizza lo sforzo di taglio.

Lo scorrimento in corrispondenza di una sezione generica per un tratto di lunghezza $\Delta x = 1$ m vale:

$$S = \tau * b * \Delta x$$

dove b è la larghezza convenzionale della piattabanda superiore, al netto dell'ingombro delle coppelle, sulla quale si valuta lo sforzo di scorrimento.

La resistenza di calcolo a taglio per il connettore ϕ =22mm, di altezza efficace $4*\phi$ =88mm, con un calcestruzzo di classe Rck= 45 (per il quale f_{ck} = 0.83*40.0 =37.35N/mm²), per un acciaio di tipo ST 37-3K risulta pari al minore dei due valori P_d così ricavati:

Crisi lato calcestruzzo:

$$P_{Rd,c} = 0.29\alpha d^2 (f_{ck}E_c)^{0.5} / \gamma_v = 0.29*1*22^2 (37.35*25000)^{0.5} / 1.25 = 108.5 \text{ kN}$$

Crisi lato acciaio:

$$P_{Rd,a} = 0.8 f_t (\pi d^2 / 4) / \gamma_v = 0.8*450*(3.14*22^2 / 4) / 1.25 = 109.5 \text{ kN}$$

essendo $\alpha = 1.0 \ (h_{sc}/d = 10 > 4)$

In presenza di azioni dinamiche (CNR-UNI 10016 - 2.2.1.5.): $P_{dinam.} = 0.8 * P_d = 86.8 \text{ kN}$

Verifiche delle piolature

Si prevede su ciascuna piattabanda superiore delle tre travi l'inserimento di 3 pioli/20 cm nelle zone presso le spalle e di 2 pioli/20cm nei tratti di campata.

L'indicazione dettagliata delle piolature prescritte è riportata nelle tavole grafiche; di seguito si riportano i calcoli della verifica della sezione di spalla.

Scorrimento: S = 955.2 kN

Pioli prescritti su ogni piattabanda : 3 / 0.20m → 15 pioli/m

Taglio su un piolo: $T = 955.2 / 15 = 63.7 \text{ kN} < P_{dinam}$

SOTTOPASSO ANAS N°8 "TANGENZIALE"	•
(PR KM 228+704)	

AUTOSTRADA DEL BRENNERO S.P.A.
CODIFICA DOCUMENTO

A1_4_18_1_RELAZIONE CALCOLO,DOC

FOGLIO 56 DI 162

5.2 SOLETTA

La realizzazione della soletta d'impalcato è prevista con il sistema costruttivo "a prédalles", armate con tralicci tipo Bausta (o similari), autoportanti nei confronti del getto in opera della soletta (s=6+24=30cm). La sezione trasversale dell'impalcato presenta larghezza complessiva di 17.50m circa, con superficie

pavimentata di 15.60m, cordolo laterale di 0.90m da un lato e 1.00m dall'altro, come schematizzato nella figura seguente:

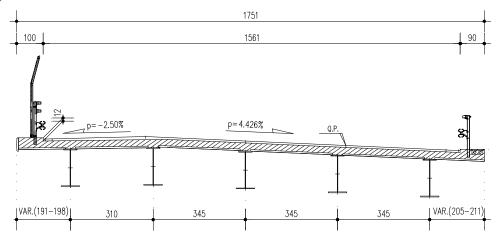


Figura 5.5 Sezione trasversale impalcato

Di seguito si eseguono le verifiche considerando il comportamento della soletta in senso trasversale.

Tali verifiche vengono condotte con riferimento a due fasi distinte:

-una prima fase, detta "provvisionale", in cui il getto integrativo è ancora in fase fluida e risultano efficaci le sole armature inserite nelle prédalles. Le azioni presenti sono costituite dal peso proprio delle lastre, dal getto integrativo e da un temporaneo sovraccarico accidentale dovuto al personale, ai piccoli mezzi d'opera e ad accumuli di conglomerato cementizio;

-una seconda fase, detta "definitiva", in cui nella soletta monolitica risultano efficaci sia le armature delle prédalles che quelle inserite in opera. Il calcolo delle sollecitazioni indotte dai carichi accidentali e permanenti verrà effettuato adottando una schematizzazione monodimensionale della sezione trasversale della soletta assumendo una striscia di larghezza unitaria. Lo schema statico adottato è quello di trave continua su cinque appoggi con sbalzi esterni.

CODIFICA DOCUMENTO
A1 4 18 1 RELAZIONE CALCOLODOC

FOGLIO 57 DI 162

5.2.1 VERIFICHE IN DIREZIONE TRASVERSALE

5.2.1.1 Fase provvisionale

Nella prima fase le prédalles hanno un comportamento schematizzabile a trave continua, soggetta al peso proprio, al getto integrativo ed al sovraccarico "di lavorazione" descritto nel precedente paragrafo. Le lastre non si sviluppano monoliticamente per tutta la larghezza dell'impalcato ma sono interrotte in corrispondenza delle piattabande delle travi principali; in tali zone risultano passanti solo le armature dei tralicci. In particolare sull'appoggio centrale la lastra tralicciata si interrompe completamente. Si prescrive quindi il getto della soletta dapprima nella fascia compresa fra le travi principali e dopo sugli sbalzi per scongiurare pericoli di ribalmento delle lastre.

Il calcolo delle sollecitazioni sugli sbalzi laterali e sulle campate centrali verrà condotto assumendo come luci di calcolo le lunghezze massime delle coppelle delle prédalles e detraendo da esse la misura della parte appoggiata (5cm).

Analisi dei carichi

1. Peso proprio prédalles

2. Getto integrativo

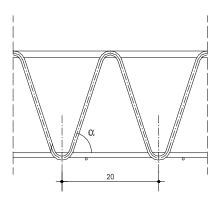
3. Sovraccarico

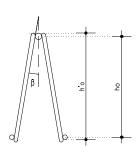
4. Veletta prefabbricata

$$g_1 = 1.35 * 0.06 * 25.00 = 2.03 \text{ kN/m}^2$$

$$g_2 = 1.35 * 0.24 * 25.00 = 8.10 \text{ kN/m}^2$$

$$g_3 = 1.50 * 1.00 = 1.50 \text{ kN/m}^2$$


$$g_4 = 1.50 * 1.25 = 2.00 \text{ kN/m}$$


Verifiche

Le verifiche vengono eseguite facendo riferimento allo Stato Limite Ultimo della sezione.

Si verifica che le tensioni sugli elementi metallici che costituiscono il traliccio siano inferiori alla tensione di calcolo (f_{yd} = 391 N/mm² per acciaio B450C) e che la stabilità degli elementi compressi risulti soddisfatta.

Di seguito si riporta una rappresentazione schematica del traliccio.

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	FOGLIO
A1_4_18_1_RELAZIONE CALCOLODOC	58 DI 162

Altezza totale del traliccio: h'o

Braccio della coppia resistente: $h_0 = h_{0^{\circ}} - \left(\phi_{cs} + \phi_{ci} \right) / 2$

1) Sbalzo

Si assume la seguente luce di calcolo:

 $l_c = 2.04 - 0.25 = 1.79 m$

Si considera lo schema di mensola incastrata.

Di seguito si riportano i carichi definiti in precedenza, i dati geometrici dei tralicci e il calcolo delle sollecitazioni e delle tensioni presenti nei singoli elementi dei tralicci.

	Caric	hi	
	peso proprio predalle	2.03	kN/mq
	getto integrativo	8.10	kN/mq
	sovraccarico	1.50	kN/mq
	veletta	2.00	kN/m
	Geometria	tralicci	
	larghezza lastra	2.4	m
	interasse tralicci	0.40	m
rr. dr	ø corrente superiore traliccio	16	mm
corr Sup	area correnti sup. / lastra	1206	mmq
	ø corrente inferiore traliccio	14	mm
	area corrente inf.	154	mmq
	area correnti inf. / lastra	1847	mmq
riore	momento di inerzia correnti inf.	1886	mmq x mmq
corr. Inferiore	raggio di inerzia correnti inf.	3.50	mm
corr.	lunghezza libera di inflessione	20	cm
	lambda correnti inf.	57.14	
	lambda correnti inf.	57	
	coeff. Omega	1.46	
riore	ø corrente inf. integrativo	5	mm
corr. Inferiore integrativo	area corrente inf. Integrativo	21	mmq
corr. int	numero correnti inf. Integrativi	0	num

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	FOGLIO
A1_4_18_1_RELAZIONE CALCOLODOC	59 DI 162

	area correnti inf. / lastra	0	mma
	momento di inerzia correnti inf.	36	mmq
			mmq x mmq
	raggio di inerzia correnti inf.	1.30	mmc
	lunghezza libera di inflessione	20	cm
	lamdba correnti inf.	153.85	
	lambda correnti inf.	154	
	coeff. Omega	5.06	
	altezza totale traliccio	16.50	cm
	altezza utile traliccio	15.00	cm
	ø staffa traliccio	10	mm
	area staffa	79	mmq
	area staffe / lastra	942	mmq
staffe	momento di inerzia staffa	491	mmq x mmq
Sts	raggio di inerzia staffa.	2.50	mmc
	lunghezza libera di inflessione	16.50	cm
	lambda staffe	66	
	coeff. Omega	1.64	
	alfa	1.1903	rad
	beta	0.2038	rad
	lunghezza sbalzo	1.79	m
	lunghezza del tratto gettato	1.79	m
	Sollecitazion	Sollecitazioni unitarie	
	M	22.21	kNm/m
	Т	22.82	kN/m
	Sollecitazioni sulla lastra		
	М	53.31	kNm/lastra
	Т	54.76	kN/lastra
	S staffe	60.23	kN/lastra
	Tensioni sugli elementi		
	Trazione sui correnti sup.	294.59	N/mmq
	1		

AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO FOGLIO
AL 4.18.1 RELAZIONE CALCOLODOC 60 DI 162

Compressione nei correnti inf.	280.89	N/mmq
Compressione nelle staffe	104.80	N/mmq

Le verifiche risultano soddisfatte, in quanto le tensioni ottenute sono inferiori a $f_{yd} = 391 \text{ N/mm}^2$.

2)

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	FOGLIO
A1_4_18_1_RELAZIONE CALCOLO,DOC	61 DI 162

Campata

Si assume la seguente luce di calcolo:

$$l_c = 3.45 - 0.50 = 2.95$$

Si considera lo schema di trave doppiamente appoggiata.

Nel calcolo, a favore di sicurezza, non viene considerata la presenza dello sbalzo laterale, ovvero non si considera il contributo favorevole dovuto al momento negativo indotto dallo sbalzo stesso.

Di seguito si riportano i carichi definiti in precedenza, i dati geometrici dei tralicci e il calcolo delle sollecitazioni e delle tensioni presenti nei singoli elementi dei tralicci.

	Carichi		
·=	peso proprio predalle	2.03	kN/mq
Carichi	getto integrativo	8.10	kN/mq
	sovraccarico	1.50	kN/mq
	Geometria tra	alicci	
	numero di tralicci nella lastra	6	m
	ø corrente superiore traliccio	16	mm
	area corrente sup.	201	mmq
riore	area correnti sup. / lastra	1206	mmq
Supe	momento di inerzia corrente sup.	3217	mmq x mmq
ante (raggio di inerzia corrente sup.	4.00	mm
Corrente Superiore	lunghezza libera di inflessione	20	cm
<u> </u>	lambda correnti sup.	50	
	coeff. Omega	1.34	
മ	ø corrente inferiore traliccio	14	mm
Corrente Inferiore	area corrente inf.	154	mmq
te In	numero di ferri inf. aggiuntivi	0	
orren	ø ferri inf. aggiuntivi	20	mm
ŏ	area ferri aggiuntivi	314	mmq
	altezza totale traliccio	16.50	cm
	altezza utile traliccio	15.00	cm
	ø staffa traliccio	10	mm
staffe	area staffa	79	mmq
O)	area staffe / lastra	942	mmq

AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO FOGLIO

A1 4 18 1 RELAZIONE CALCOLODOC 62 DI 162

	,		
	momento di inerzia staffa	491	mmq x mmq
	raggio di inerzia correnti inf.	2.50	mmc
	lunghezza libera di inflessione	16.50	cm
	lambda staffe	66	
	coeff. Omega	1.64	
	alfa	1.19	rad
	beta	0.2038	rad
	larghezza piattabanda	0	m
	lunghezza sbalzo	0	m
	lunghezza campata	2.95	m
	Momento indotto dagli sbalzi	0.00	kNm/m
	Sollecitazioni unitarie		
	M=	12.65	kNm/m
	T=	17	KN/m
	Sollecitazioni sulla lastra		
	larghezza lastra	2.40	m
	M=	30.36	kNm/lastra
	T=	41.17	kN/lastra
	S staffe	45.28	kN/lastra
	Tensioni sugli elementi		
	Trazione sui correnti inf.	109.58	N/mmq
	Compressione nei correnti sup.	224.84	N/mmq
	Compressione nelle staffe	78.79	N/mmq
·			

Le verifiche risultano soddisfatte, in quanto le tensioni ottenute sono inferiori a $f_{yd} = 391 \ N/mm^2$.

SOTTOPASSO ANAS N°8 "TANGENZIALE"
(PR KM 228+704)

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	FOGLIO
A1_4_18_1_RELAZIONE CALCOLODOC	63 di 162

5.2.1.2 Fase definitiva

Il calcolo delle sollecitazioni e le verifiche delle armature relativi alla fase definitiva sono eseguiti trascurando la "storia" dei carichi e la conseguente evoluzione delle tensioni dovuta alla costruzione per fasi della struttura, in quanto il calcolo viene eseguito allo Stato Limite Ultimo. Per le sezioni sollecitate da momento negativo si trascura la presenza dei ferri del traliccio delle prédalles in quanto già dalla fase provvisionale ereditano delle tensioni elevate e all'applicazione dei rimanenti carichi permanenti e dei carichi mobili raggiungono tensioni prossime allo snervamento. Assegnando alle armature della fase definitiva anche le sollecitazioni di quella provvisionale, si opera ad evidente favore di sicurezza.

5.2.1.2.1 Carichi permanenti

La valutazione delle sollecitazioni è stata fatta considerando lo schema statico di trave continua su cinque appoggi con sbalzi esterni, come indicato nelle figure seguenti. Le luci di calcolo sono riferite all'asse verticale delle travi metalliche. I momenti flettenti sono assunti positivi se tendono le fibre inferiori.

Si considera la pavimentazione estesa ad una larghezza di 15.60m.

1) Pesi strutturali

Peso proprio prédalles: $g_{1'} = 0.06 * 25.00 = 1.50 \text{ kN/m}^2$ Getto integrativo sbalzo: $g_{1''} = 0.24 * 25.00 = 6.00 \text{ kN/m}^2$

2) Pesi permanenti portati

Cordoli: $g_2 = 0.12 * 25.00 = 3.00 \text{ kN/m}^2$

Elemento di bordo: $P_1 = 1.25 \, \text{kN/m}$ Barriera integrata: $P_2 = 4.00 \, \text{kN/m}$ Barriera: $P_3 = 1.50 \, \text{kN/m}$ Pavimentazione: $p_3 = 3.00 \, \text{kN/m}^2$

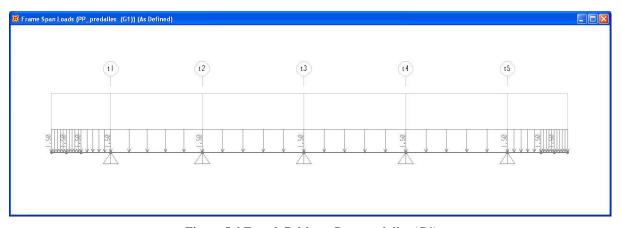


Figura 5.6 Fase definitiva – Peso predalles (G1)

AUTOSTRADA DEL BRENNERO S.P.A. CODIFICA DOCUMENTO

A1 4 18 1 RELAZIONE CALCOLO.DOC

FOGLIO 64 DI 162

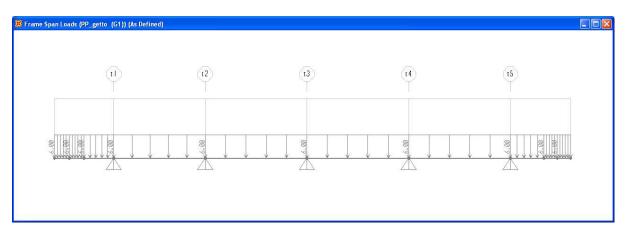


Figura 5.7 Fase definitiva – Peso getto integrativo (G1)

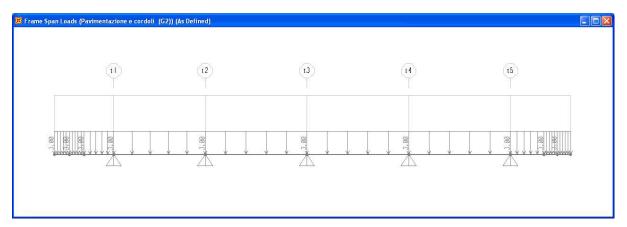


Figura 5.8 Fase definitiva – Pavimentazione e cordoli (G2)

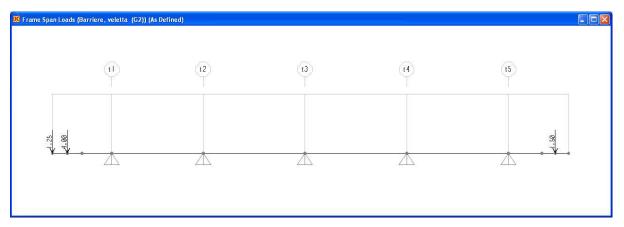


Figura 5.9 Fase definitiva – Barriere e veletta (G2)

AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO

FOGLIO 65 DI 162

A1_4_18_1_RELAZIONE CALCOLO.DOC

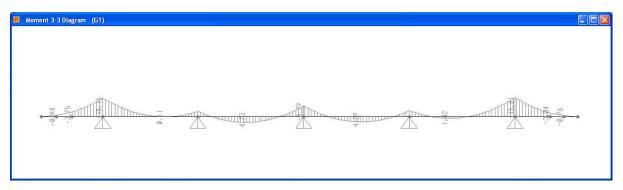


Figura 5.10 Fase definitiva – Pesi propri (G1) - Momento flettente

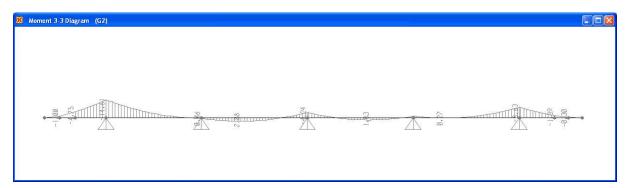


Figura 5.11 Fase definitiva – Permanenti (G2) - Momento flettente

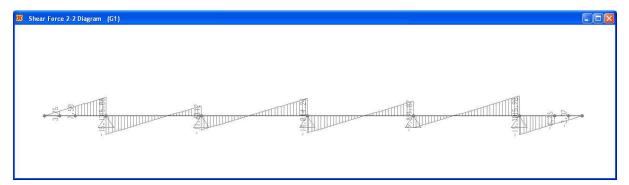


Figura 5.12 Fase definitiva – Pesi propri (G1) - Taglio

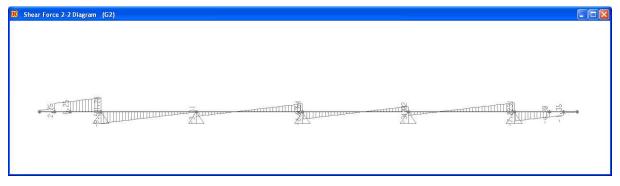


Figura 5.13 Fase definitiva – Permanenti (G2) - Taglio

SOTTOPASSO ANAS N°8 "TANGENZIALE"
(PR KM 228+704)

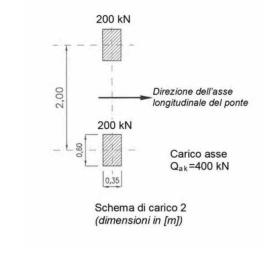
AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	F

A1_4_18_1_RELAZIONE CALCOLO.DOC

FOGLIO 66 DI 162

5.2.1.2.2 Carichi accidentali

Gli effetti dei carichi accidentali sono valutati disponendo q_1 (carichi mobili più gravosi) e q_8 (urto di veicolo in svio), definiti nel punti 5.1 delle NTC sui ponti stradali, nelle posizioni più sfavorevoli per il calcolo dei massimi momenti positivi e negativi e delle massime sollecitazioni taglianti. Gli effetti dinamici sono compresi nei valori considerati.


1) Sbalzo sx

- Carichi mobili più gravosi (q₁):

Si considerano gli Schemi di Carico 1 e 2 al fine di valutare quale dei due sia maggiormente gravoso.

Mentre il primo (valido sia per verifiche globali sia per verifiche locali) va disposto in asse corsia, il secondo (valido per verifiche locali) va considerato nella posizione più gravosa.

Il carico dello Schema di Carico 2 viene disposto con la prima ruota in adiacenza al cordolo come illustrato nella seguente figura:

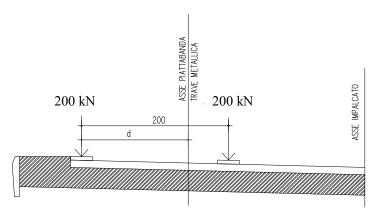


Figura 5.14 Disposizione dello Schema di Carico 2

AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO FOGLIO
AI 4 18 1 RELAZIONE CALCOLODOC 67 DI 162

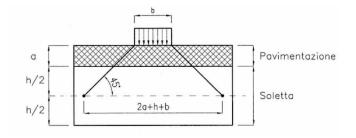


Figura 5.15 Diffusione dei carichi concentrati nella soletta

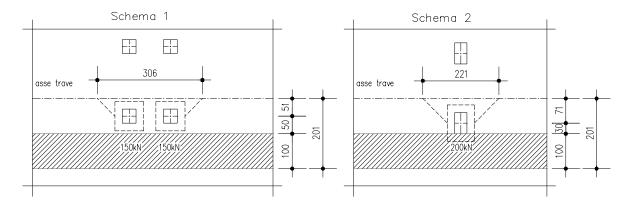


Figura 5.16 Base resistente

Schema 1

Si assume come base resistente l'ingombro longitudinale (1.20 m) del carico diffuso verticalmente a 45° sino al piano medio della soletta aumentato del doppio della distanza del carico più esterno dalla sezione di incastro (asse piattabanda), ipotizzando anche in questo caso una sua diffusione (nel piano della soletta) a 45° verso quest'ultima.

Per il calcolo della base resistente al momento massimo si veda la Figura 5.16.

B = 1.20 + 0.40 + 2*0.07 + 0.30 + 2*(2.01 - 1.00 - 0.50) = 3.06m

 $M_{q1} = 300/3.06 * 0.51 + 9.00*1.01^2/2 = -55 \text{ kNm/m}$

Per il calcolo della base resistente al taglio massimo le impronte si dispongono radenti all'asse trave:

 $B=1.20+0.40+2*0.07+0.30+0.40+0.40\approx2.80m$

 $T_{q1} = 300/2.80 + 9.00 * 0.3 = 110 \text{ kN/m}$

Schema 2

Si assume come base resistente l'ingombro longitudinale (0.35 m) del carico diffuso verticalmente a 45° sino al piano medio della soletta aumentato del doppio della distanza del carico più esterno dalla sezione di incastro (asse piattabanda), ipotizzando anche in questo caso una sua diffusione (nel piano della soletta) a 45° verso quest'ultima.

Per il calcolo della base resistente al momento massimo si veda la Figura 5.16.

B = 0.35 + 2*0.07 + 0.30 + 2*(2.01 - 1.00 - 0.30) = 2.21m

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	FOGLIO
A1_4_18_1_RELAZIONE CALCOLO.DOC	68 di 162

$$M_{q1} = 200/2.21*0.71 = -65 \text{ kNm/m}$$

Per il calcolo della base resistente al taglio massimo le impronte si dispongono radenti all'asse trave:

$$B = 0.35 + 2*0.07 + 0.30 + 0.60 + 0.60 \approx 1.95 m$$

$$T_{q1} = 200 \ / 1.95 \ = 102.6 \ kN/m$$

2) Sbalzo dx

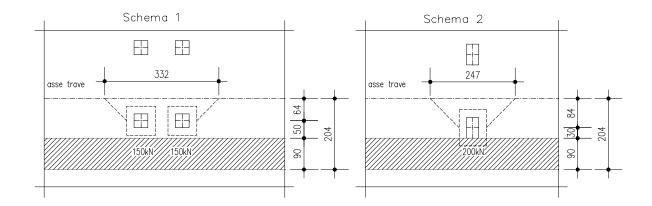


Figura 5.17 Base resistente

Schema 1

Si assume come base resistente l'ingombro longitudinale (1.20 m) del carico diffuso verticalmente a 45° sino al piano medio della soletta aumentato del doppio della distanza del carico più esterno dalla sezione di incastro (asse piattabanda), ipotizzando anche in questo caso una sua diffusione (nel piano della soletta) a 45° verso quest'ultima.

Per il calcolo della base resistente al momento massimo si veda la Figura 5.16.

$$B = 1.20 + 0.40 + 2*0.07 + 0.30 + 2*(2.04 - 0.90 - 0.50) = 3.32m$$

$$M_{q1} = 300/3.32 * 0.64 + 9.00*1.14^2/2 = -64 \text{ kNm/m}$$

Per il calcolo della base resistente al taglio massimo le impronte si dispongono radenti all'asse trave:

$$B=1.20+0.40+2*0.07+0.30+0.40+0.40\approx2.80m$$

$$T_{q1} = 300/2.80 + 9.00 * 0.3 = 110 \text{ kN/m}$$

Schema 2

Si assume come base resistente l'ingombro longitudinale (0.35 m) del carico diffuso verticalmente a 45° sino al piano medio della soletta aumentato del doppio della distanza del carico più esterno dalla sezione di incastro (asse piattabanda), ipotizzando anche in questo caso una sua diffusione (nel piano della soletta) a 45° verso quest'ultima.

Per il calcolo della base resistente al momento massimo si veda la Figura 5.16.

$$B = 0.35 + 2*0.07 + 0.30 + 2*(2.04 - 0.90 - 0.30) = 2.47m$$

CODIFICA DOCUMENTO

A1 4 18 1 RELAZIONE CALCOLO,DOC

FOGLIO 69 DI 162

 $M_{a1} = 200/2.47 * 0.84 = -68 \text{ kNm/m}$

Per il calcolo della base resistente al taglio massimo le impronte si dispongono radenti all'asse trave:

$$B = 0.35 + 2*0.07 + 0.30 + 0.60 + 0.60 \approx 1.95 m$$

$$T_{q1} = 200 / 1.95 = 102.6 \text{ kN/m}$$

- Urto di veicolo in svio (q₈):

La forza orizzontale equivalente di collisione è assunta pari a 100 kN e viene considerata distribuita su 0,50 m ed applicata ad una quota h, misurata dal piano viario, pari alla minore delle dimensioni h1, h2, dove h1 = (altezza della barriera - <math>0,10m), h2 = 1,00m (punto 3.6.3.3.2 delle NTC).

$$B = 0.50+2*0.07+0.30+2*(2.01-1.00) = 2.96 \text{ m}$$

Le sollecitazioni massime valgono:

$$M_{a8} = 100/2.96*(1.00+0.07+0.15) = -41.2 \text{ kNm/m}$$

$$N_{g8} = 100 / 2.96 = 33.8 \text{ kN/m}$$

3) Campata e appoggio

- Carichi mobili più gravosi (q₁):

Si considera lo Schema di Carico 1 formato dalla prima e seconda corsia disposte affiancate; con la teoria delle linee di influenza si costruiscono i diagrammi delle sollecitazioni massime e minime generate dal carico agente in tutte le possibili posizioni sulla sede stradale.

Si assume come base resistente per il calcolo del carico equivalente, l'ingombro longitudinale del carico, diffuso a 45° sino al piano medio della soletta, aumentato di metà della luce di calcolo della campata su cui insiste il carico stesso.

$$B = 1.20 + 0.40 + 2 *0.07 + 0.30 + 3.45/2 \approx 3.75 \text{ m}$$

Carico equivalente corsia n.1:

$$P_{eq} = 300 / 3.75 = 80 \text{ kN/m}$$

Il carico viene diffuso nella soletta:

 $p_{eq} = 80/(0.40+2*0.07+0.30) = 95 \text{ kN/m}$ (per metro di larghezza di soletta)

 $q_{eq.} = 9.00 \text{ kN/m}$

Carico equivalente corsia n.2:

$$P_{eq.} = 200 / 3.75 = 54 \text{ kN/m}$$

Il carico viene diffuso nella soletta:

 $p_{eq} = 54/(0.40+2*0.07+0.30) = 65 \text{ kN/m}$ (per metro di larghezza di soletta)

$$q_{eq.} = 2.50 \text{ kN/m}$$

Si riportano di seguito i diagrammi delle sollecitazioni; si nota che per gli sbalzi si deve comunque fare riferimento al punto precedente.

AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO

A1_4_18_1_RELAZIONE CALCOLO,DOC

FOGLIO 70 DI 162

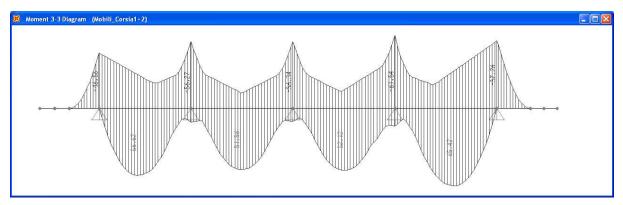


Figura 5.18 Fase definitiva – Carichi mobili (Q) - Momenti flettenti max e min

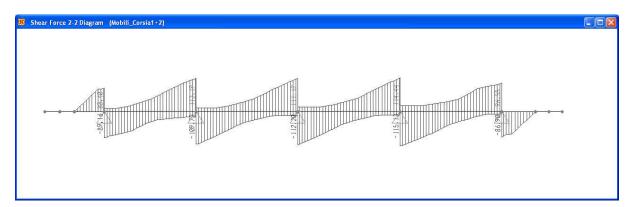


Figura 5.19 Fase definitiva – Carichi mobili (Q) – Tagli max e min

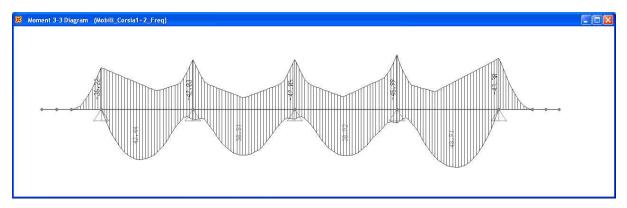


Figura 5.20 Fase definitiva - Carichi mobili (Q) per combinazione frequente - Momenti flettenti max e min

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	FOGLIO
A1_4_18_1_RELAZIONE CALCOLODOC	71 di 162

5.2.1.3 Riepilogo delle sollecitazioni massime e combinazione di carico

Nelle seguenti tabelle si riportano le sollecitazioni nelle sezioni significative, che sono oggetto di verifica.

Sezione campata (t4 - t5)

	Momento flettente
Carichi	M (kNm)
Peso proprio predalles+getto (G 1)	1.4
Carichi permanenti (G ₂)	0.6
Mobili (Q)	65.3
Combinazioni	
Fondamentale SLU	90.9
Frequente SLE	51

Sezione appoggio t4

	Momento flettente	Taglio
Carichi	M (kNm)	T (kN)
Peso proprio predalles+getto (G ₁)	-5.1	9.9
Carichi permanenti (G ₂)	-1.3	3.1
Mobili (Q)	-61.5	115.0
Combinazioni		
Fondamentale SLU	-91.9	173.3
Frequente SLE	-52.4	100.0

Sezione sbalzo sx

	Momento flettente	Taglio	Sforzo assiale
Carichi	M (kNm)	T (kN)	N (kN)
Peso proprio predalles+getto (G 1)	-15.2	15	-
Carichi permanenti (G ₂)	-14.6	11.3	-
Urto di veicolo (q8)	-41.2	-	33.8
Mobili (Q)	-65	110	-
Combinazioni			-
Fondamentale SLU	-130.2	185.7	-
Frequente SLE	-78.6	108.8	-
Eccezionale SLU	-136.0	136.3	33.8

Sezione sbalzo dx

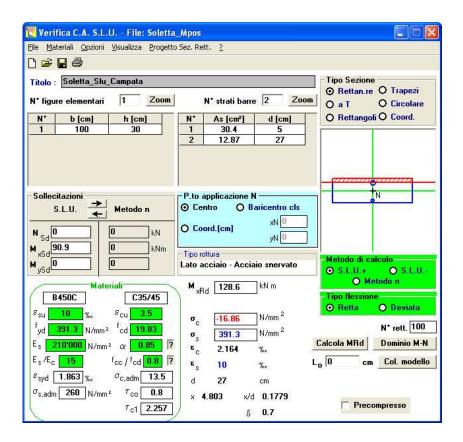
	Momento flettente	Taglio	Sforzo assiale
Carichi	M (kNm)	T (kN)	N (kN)
Peso proprio predalles+getto (G ₁)	-15.6	15.3	-
Carichi permanenti (G ₂)	-8.6	7.6	-
Urto di veicolo (q8)	-41.2	-	33.8
Mobili (Q)	-68	110	-
Combinazioni			-
Fondamentale SLU	-125.8	180.6	-
Frequente SLE	-75.2	105.4	-
Eccezionale SLU	-133.4	132.9	33.8

SOTTOPASSO ANAS N°8 "TANGENZIALE"
(PR KM 228+704)

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	FOGLIO
A1_4_18_1_RELAZIONE CALCOLO.DOC	72 di 162

5.2.1.4 Verifiche di resistenza

Le verifiche di resistenza vengono condotte col metodo agli Stati Limite Ultimi utilizzando le sollecitazioni della combinazione fondamentale:

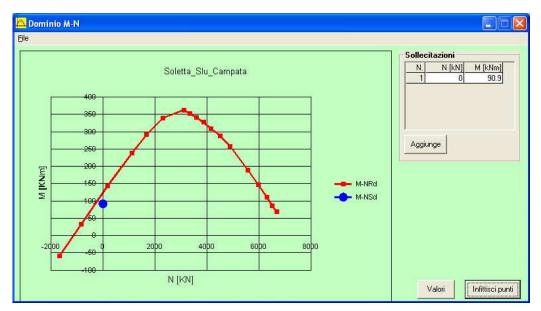

$$1.35*G_1 + 1.50*G_2 + 1.35*Q$$

Le verifiche vengono eseguite trascurando la presenza dei ferri del traliccio, considerando come armature efficaci sia i ferri inferiori integrativi inseriti nelle predalle sia i ferri in opera.

Quanto segue fa riferimento ad una sezione di verifica di base unitaria ed altezza pari allo spessore complessivo della soletta, compresa la predalle.

Verifica a flessione nella sezione di campata (t4 - t5) (Momento positivo max)

Larghezza b (cm)	100
Altezza h (cm)	30
Armatura Estradosso	$1\Phi 22/12.5$ " (A _s '=30.40cm ²)
Copriferro armatura superiore (cm)	5.00cm
Armatura Intradosso	$1\Phi16/40$ "+ $1\Phi20/40$ " (A _s =12.87cm ²)
Copriferro armatura inferiore (cm)	3.00cm



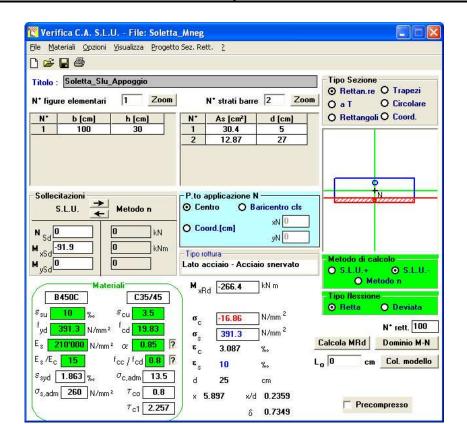
AUTOSTRADA DEL BRENNERO S.P.A.

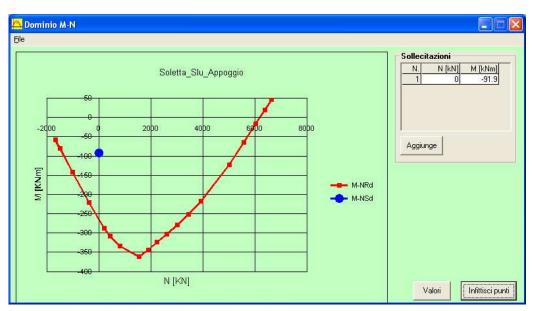
CODIFICA DOCUMENTO

A1 4 18 1 RELAZIONE CALCOLODOC

FOGLIO 73 DI 162

La verifica risulta soddisfatta in quanto il momento flettente sollecitante è inferiore al momento ultimo: $M_{\text{Ed}} < M_{\text{Rd}}$

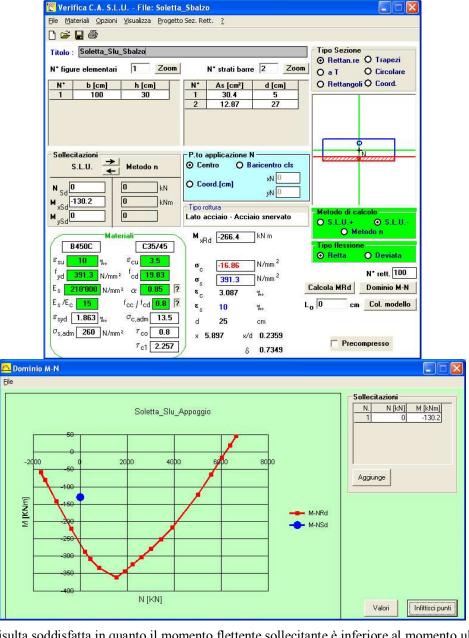

Verifica a flessione nella sezione in asse trave t4 (Momento negativo min)


Larghezza b (cm)	100
Altezza h (cm)	30
Armatura Estradosso	$1\Phi 22/12.5$ " (A _s '=30.40cm ²)
Copriferro armatura superiore (cm)	5.00cm
Armatura Intradosso	$1\Phi 16/40$ "+ $1\Phi 20/40$ " (A _s =12.87cm ²)
Copriferro armatura inferiore (cm)	3.00cm

AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO
A1 4 18 1 RELAZIONE CALCOLODOC

FOGLIO 74 DI 162



La verifica risulta soddisfatta in quanto il momento flettente sollecitante è inferiore al momento ultimo: $M_{Ed} < M_{Rd}$

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	FOGLIO
AL 4-18-1 RELAZIONE CALCOLODOC	75 di 162

Verifica a flessione nella sezione in asse trave t1 (sbalzo)

Larghezza b (cm)	100
Altezza h (cm)	30
Armatura Estradosso	$1\Phi 22/12.5$ " (A _s '=30.40cm ²)
Copriferro armatura superiore (cm)	5.00cm
Armatura Intradosso	$1\Phi16/40$ "+ $1\Phi20/40$ " (A _s =12.87cm ²)
Copriferro armatura inferiore (cm)	3.00cm

La verifica risulta soddisfatta in quanto il momento flettente sollecitante è inferiore al momento ultimo: $M_{Ed}\!<\!M_{Rd}$

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	FOGLIO
A1_4_18_1_RELAZIONE CALCOLO,DOC	76 di 162

Verifica a taglio nella sezione in asse trave t4

Si riportano di seguito i calcoli di verifica dello stato limite ultimo per sollecitazioni taglianti:

V_{Ed}	173.3	kN
N_{Ed}	0	kN
f _{ck}	37.35	N/mm ²
γ_c =	1.5	
f _{cd}	21.2	
bw	1000	mm
h	300	mm
d	260	mm
Asl	3040	mm^2
hol	0.012	
σ cp	0.0	N/mm ²
k	1.88	
vmin	0.5501	
	206.24	kN
	143.02	kN
Vrd	206.2	kN

La verifica risulta soddisfatta in quanto il taglio sollecitante è inferiore al taglio ultimo:

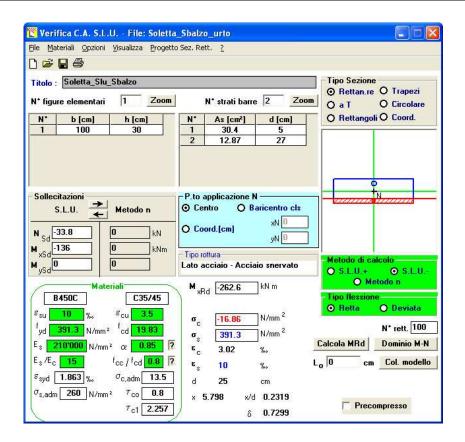
 $V_{Ed} \!< V_{Rd}$

Verifica a taglio nella sezione in asse trave t1 (sbalzo)

V_{Ed}	185.7	kN
N_{Ed}	0	kN
f _{ck}	37.35	N/mm ²
γ_{c} =	1.5	
f _{cd}	21.2	
bw	1000	mm
h	300	mm
d	260	mm
Asl	3040	mm^2
hol	0.012	
σ cp	0.0	N/mm ²
k	1.88	
vmin	0.5501	
	206.24	kN
	143.02	kN
Vrd	206.2	kN

La verifica risulta soddisfatta in quanto il taglio sollecitante è inferiore al taglio ultimo:

 $V_{Ed}\!< V_{Rd}$

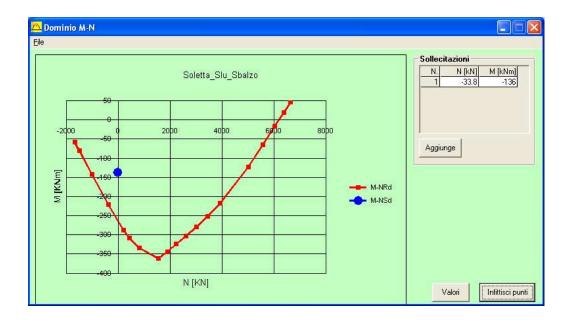

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	FOGLIO
A1 4 18 1 RELAZIONE CALCOLO,DOC	77 di 162

5.2.1.5 Verifica in condizioni eccezionali: urto di veicolo in svio

Viene considerata una condizione di carico eccezionale (slu) nella quale alla forza orizzontale d'urto su sicurvia si associa un carico verticale isolato sulla sede stradale costituito dal Secondo Schema di Carico, posizionato in adiacenza al sicurvia stesso.

Verifica a tensoflessione nella sezione in asse trave t1 (sbalzo)

Larghezza b (cm)	100
Altezza h (cm)	30
Armatura Estradosso	$1\Phi 22/12.5$ " (A _s '=30.40cm ²)
Copriferro armatura superiore (cm)	5.00cm
Armatura Intradosso	$1\Phi16/40$ "+ $1\Phi20/40$ " (A _s =12.87cm ²)
Copriferro armatura inferiore (cm)	3.00cm



AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO

A1 4 18 1 RELAZIONE CALCOLODOC

FOGLIO 78 DI 162

La verifica risulta soddisfatta in quanto il punto rappresentante lo stato di sollecitazione è interno al dominio di sicurezza.

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	FOGLIO
A1 A 18 1 DELAZIONE CALCOLODOC	79 DI 162

5.2.2 VERIFICHE IN DIREZIONE LONGITUDINALE

Verifiche di resistenza (SLu) 5.2.2.1

Si rimanda al paragrafo 5.1.5.1, dove sono riportate le verifiche delle sezioni miste acciao-cls dell'impalcato.

In particolare si nota che la tensione massima del calcestruzzo è sempre inferiore alla tensione limite f_{cd} = 21.16 N/mm^2 , a cui corrisponde la deformazione al limite elastico per un calcestruzzo di classe R_{ck} 45.				
Armatura longitud	nale prevista in soletta :			
estradosso 1Φ20/2	,,			
ntradosso 1Φ20/2	,,			

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	F

A1_4_18_1_RELAZIONE CALCOLO,DOC

FOGLIO 80 DI 162

5.3 TRAVERSI

5.3.1 MODELLO DI CALCOLO

Il traverso viene considerato come una trave continua su cinque appoggi elastici la cui rigidezza simula la presenza delle travi principali. Il traverso è sovrastato da una porzione di soletta su cui insistono i carichi mobili previsti dalle NTC. A favore di sicurezza di assume una larghezza di soletta molto piccola (pari a 10cm), affidando di fatto tutto l'onere di ripartizione al traverso. Il collegamento traverso-soletta è dato da elementi rigidi in corrispondenza delle travi principali (Figura 5.21).

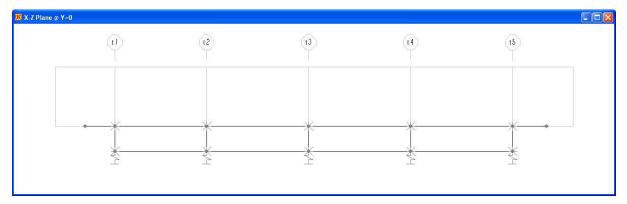


Figura 5.21 Schema di calcolo dei traversi

La rigidezza della singola trave principale è determinata calcolando la forza che genera l'abbassamento unitario in mezzeria della campata centrale (si veda la seguente figura) e vale k = 20000 kN/m.

In corrispondenza di tale sezione si ottiene infatti la rigidezza minima, la quale genera le sollecitazioni massime nel traverso.

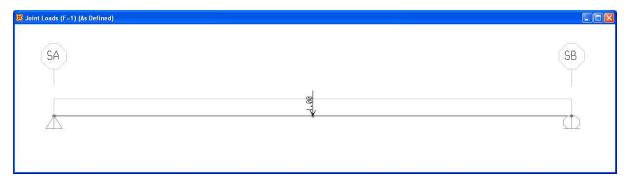


Figura 5.22 Calcolo della rigidezza di una trave principale

Caratteristiche traverso: Altezza totale della trave in acciaio: 700

Ala superiore : 250x 20 Spessore anima: 16

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	

A1_4_18_1_RELAZIONE CALCOLO,DOC

FOGLIO 81 DI 162

Ala inferiore: 250x 20

Interasse traversi: i = 6.00m

Ai fini del calcolo delle sollecitazioni sui traversi si considerano i seguenti carichi mobili:

Schema di carico 1:

Corsia 1: carico tandem 2 x $Q_{1k} = 2 x 300 \text{ kN}$

carico uniforme $q_{1k} = 6.00*9.00 = 54 \text{ kN/m}$

Corsia 2: carico tandem 2 x $Q_{2k} = 2 \times 200 \text{ kN}$

carico uniforme $q_{2k} = 6.00*2.50 = 15 \text{ kN/m}$

Si considera sia la corsia 1 presa singolarmente sia entrambe le corsie affiancate.

Si riportano di seguito le sollecitazioni massime e minime ottenute (generate dalle corsie affiancate):

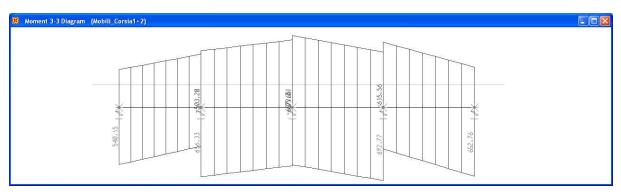


Figura 5.23 Traverso - Diagramma dei momenti flettenti max e min

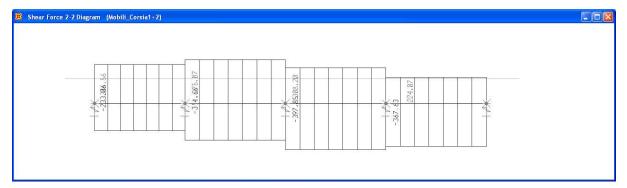


Figura 5.24 Traverso - Diagramma dei tagli max e min

5.3.2 VERIFICHE DI RESISTENZA

La verifica di resistenza si esegue con il metodo elastico (punto 4.3.3.2 delle NTC):

Sollecitazioni massime allo stato limite ultimo:

$$M = 1.35*693 = 936 \text{ kN/m}$$

$$T = 1.35*397 = 536 \text{ kN}$$

AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO

A1_4_18_1_RELAZIONE CALCOLO DOC

FOGLIO 82 DI 162

Modulo di resistenza della sezione:

 $W = 4400 \text{ cm}^3$

Verifica di resistenza allo stato limite ultimo:

 $\sigma = 936000000/4400000 = 213 \text{ N/mm}^2$

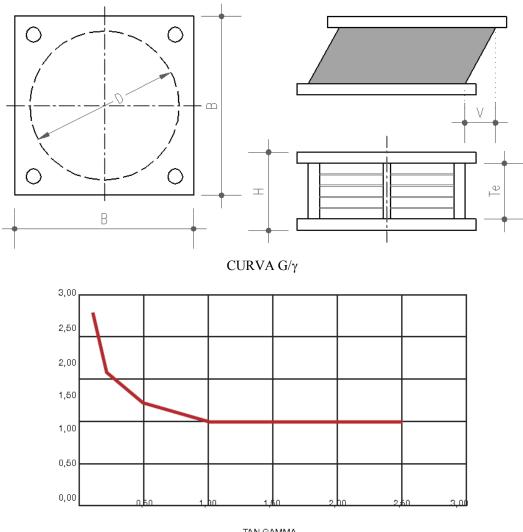
 $\tau = 536000/(700*16) = 48 \text{ N/mm}^2$

 $\sigma_{id} = (213^2 + 3*48^2)^{1/2} = 228 \ N/mm^2 < 338 \ N/mm^2$

SOTTOPASSO ANAS N°8 "TANGENZIALE"
(PR KM 228+704)

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	FOGLIO

A1_4_18_1_RELAZIONE CALCOLO,DOC


83 DI 162

6 RELAZIONE DI CALCOLO APPOGGI

Per effettuare i calcoli di verifica si farà riferimento ad appoggi tipo HDRB della ditta "ALGA" precisando che tale riferimento è solo indicativo, in quanto questi apparecchi sono ormai prodotti dalle principali ditte del settore.

Le caratteristiche dimensionali e meccaniche degli apparecchi previsti sono descritte negli schemi e tabelle successive.

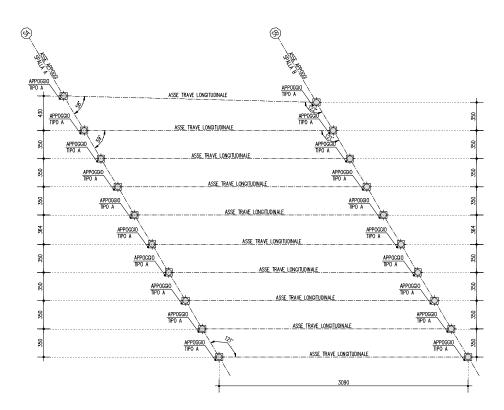
SCHEMA APPARECCHI DI APPOGGIO ELASTOMERICI

TAN GAMMA

Variazione relativa della rigidezza in funzione della deformazione tangenziale Relative variation of stiffness as a function of shear strain (shear deformation)

AUTOSTRADA	DEL	BRENNERO S.P.A.	
AUTUSTRADA	\ I) F ₂ I.	DREININGRU S.E.A.	

CODIFICA DOCUMENTO


A1_4_18_1_RELAZIONE CALCOLO,DOC

FOGLIO 84 DI 162

Caratteristiche fisico-meccaniche delle me	ossle		Mescola / d	Compound	
Pubber compound objects, mechanical characteristic		Normale nd / Normal nd	Morbida / Soft	Normale / Normal	Dura / Hard
Durezza / Hardness	Shore A3	50±3	40±3	60±3	75±3
Resistenza a lottura / Tensile strength	N/mm²	20	20	20	18
Allungamento a rottura / Tensile strain	%	600	750	600	500
Modulo di elasticità G / G Modulus	N/mm²	0,9	0,4	0,8	1,4
Smorzamento viscoso equivalente del solo elastomero / Equivalent viscous damping	%	4	10	10	16
Smorzamento viscoso equivalente dell'intero isolatore / Equivalent viscous damping	%	30<	10	10	16
Isolatore corrispondente / Corresponding Isolator		LRN	LRS / HDS	HDN	HDH

Per l'opera in progetto si prevede il seguente chema di disposizione degli appoggi, con isolatori sismici elatomerici ad alta dissipazione di caratteristiche riportate di seguito:

SCHEMA E CARATTERISTICHE APPARECCHI DI APPOGGIO 1:200

AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO

FOGLIO

A1 4 18 1 RELAZIONE CALCOLO.DOC

85 di 162

Si prevede l'impiego di un dispositivo tipo HDH D350 B400

CARATTERISTICHE APPARECCHI DI APPOGGIO

Carico verticale max (SLU)	Deformazion e max	Dimensioni			
$F_{z}(kN)$	V (mm)	D (mm)	H (mm)	B (mm)	T _e (mm)
3500	170	350	198	400	84

APPOGGI TIPO A

DATI APPARECCHI DI APPOGGIO	
DISPOSITIVI DI APPOGGIO SU SPALLA	
Tipo di appoggio	HDH D350
Spostamento orizzontale massimo in sisma (S.L.U.)	150 mm
Coefficiente di smorzamento equivalente (ξ)	0.16 mm
Diametro gomma (ØD)	350 mm
Altezza totale (H)	198 mm
Piastra di base (Z)	400 mm
Modulo di elasticità G (per scorrimento del 100%)	1.4 MPa

CARATTERISTICHE FISICO MECCANICHE HDRB

Durezza	Resistenza a rottura	Allungamento a rottura	Modulo G (scorrimento 100%)	Smorzamento viscoso equivalente
Shore A3	N/mm ²	%	N/mm ²	%
75 ± 3	18	500	1.4	16

6.1 AZIONI SUGLI APPOGGI

Si effettua il dimensionamento per gli appoggi della via nord.

N. travi n = 5

Luce di calcolo L = 30.90m

Retrotrave R = (0.50 m di acciaio, 1.00 di soletta)

Larghezza impalcato B = 17.51m

6.1.1 CARICHI STATICI

Dalla relazione di calcolo dell'impalcato risulta che il carico massimo sull'appoggio più caricato è:

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	FOGLIO
A1_4_18_1_RELAZIONE CALCOLODOC	86 di 162

CARICO VERTICALE - Algasim HDRB

CARICHI	SLE		γ	SLU	
Peso proprio struttura (G ₁)	171.00	kN	1.35	230.85	kN
Peso proprio soletta (G ₁)	427.50	kN	1.35	577.13	kN
Carichi permanenti (G ₂)	195.40	kN	1.5	293.10	kN
Carichi mobili (Q)	858.62	kN	1.35	1159.14	kN
TOTALE	1652.52	kN		2260.21	kN

 V_{max}

<

6.1.2 SISMA

Il calcolo che segue ha un carattere orientativo, in linea con le premesse convenute di seguire la normativa precedente (D.M. 14/01/08); tuttavia è stato effettuato con lo scopo di vedere l'adeguatezza del sistema di vincolo previsto, anche con riferimento alle normative tuttore in fase sperimentale.

L'elastomero che realizza questi apparecchi ha un comportamento non lineare diventando più deformabile (minor modulo G) ad elevati scorrimenti (γ può superare il 100%).

Pertanto l'individuazione delle grandezze che intervengono nei calcoli ad interpretare il funzionamento in fase sismica, fra loro collegate da legami non lineari, parte da ipotesi di tentativo essenzialmente sul periodo proprio del sistema, o sulle deformazioni di scorrimento.

Lo smorzamento equivalente per questo tipo di appoggio è pari a:

$$\xi = 0.16 = 16\%$$

Avremo quindi

$$\eta = \sqrt{(10/(5+\xi))} = 1.392$$

Secondo quanto detto in precedenza ipotizziamo, per lo svolgimento dei calcoli, uno scorrimento dell'appoggio pari a:

$$\gamma_{\rm sis} = 100\%$$
 \Rightarrow $G_{100\%} = 1.4 \text{ N/mm}^2$

Le rigidezze degli appoggi saranno pari a:

K_i = rigidezza del singolo appoggio = 1.60 kN/mm

 $K = rigidezza totale degli appoggi = K_i * 2 * 5 = 16.00 kN/mm$

La massa dell'impalcato è pari a:

CARICHI	SLE		Luce calcolo	Massa	
Peso proprio struttura (G ₁)	52.50	kN/m	31.90	1674.75	kN
Peso proprio soletta (G ₁)	131.25	kN/m	32.90	4318.13	kN
Carichi permanenti (G ₂)	60.00	kN/m	32.90	1974.00	kN

AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO
A1 4 18 1 RELAZIONE CALCOLODOC

FOGLIO 87 DI 162

TOTALE 243.75 kN/m 7966.88 kN

Il periodo proprio dell'impalcato sarà quindi pari a:

$$T = 2*\pi*\sqrt{(M/K)} = 1.402 \text{ s}$$

Parametri e punti dello spettro di risposta orizzontale per lo stato limiteSLV

Parametri indipendenti

STATO LIMITE	SLV
a _a	0.190 g
Fo	2.452
T _C *	0.289 s
S _S	1.000
C _C	1.000
S _T	1.000
q	1.000

Parametri dipendenti

S	1.000
η	1.000
T _B	0.096 s
T _C	0.289 s
T_D	2.360 s

Espressioni dei parametri dipendenti

$$S = S_{\!S} \cdot S_T \tag{NTC-08 Eq. 3.2.5}$$

$$\eta = \sqrt{10/(5+\xi)} \ge 0.55; \ \eta = 1/q$$
 (NTC-08 Eq. 3.2.6; §. 3.2.3.5)

$$T_{B} = T_{C} / 3 \tag{NTC-07 Eq. 3.2.8} \label{eq:ntc-07}$$

$$T_{C} = C_{C} \cdot T_{C}^{*} \tag{NTC-07 Eq. 3.2.7} \label{eq:ntc-07}$$

$$T_D = 4,0 \cdot a_g \ / \ g + 1,6 \tag{NTC-07 Eq. 3.2.9} \label{eq:ntc-07}$$

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 &\leq T < T_B \\ & T_B \leq T < T_C \\ & T_C \leq T < T_D \\ & T_D \leq T \end{split} \quad \begin{aligned} S_c(T) &= a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ & S_c(T) = a_g \cdot S \cdot \eta \cdot F_o \\ & S_c(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ & T_D \leq T \end{aligned} \quad \begin{aligned} S_c(T) &= a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C T_D}{T^2} \right) \end{aligned}$$

Lo spettro di progetto $S_a(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_e(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

T [s] Se [a]

	I [S]	Se [g]		
	0.000	0.190		
T _B ◀	0.096	0.466		
T _C ◀	0.289	0.466		
	0.388	0.347		
	0.486	0.277		
	0.585	0.230		
	0.684	0.197		
	0.782	0.172		
	0.881	0.153		
	0.980	0.138		
	1.078	0.125		
	1.177	0.114		
	1.275	0.106		
	1.374	0.098		
	1.473	0.091		
	1.571	0.086		
	1.670	0.081		
	1.769	0.076		
	1.867 1.966	0.072 0.069		
		_		
	2.064 2.163	0.065 0.062		
	2.262	0.060		
T _D ◀	2.360	0.057		
٠, ۵	2.438	0.053		
	2.516	0.050		
	2.595	0.047		
	2.673	0.045		
	2.751	0.042		
	2.829	0.040		
	2.907	0.038		
	2.985	0.038		
	3.063	0.038		
	3.141	0.038		
	3.219	0.038		
	3.297	0.038		
	3.375	0.038		
	3.453	0.038		
	3.532	0.038		
	3.610	0.038		
	3.688	0.038		
	3.766	0.038		
	3.844	0.038		
	3.922	0.038		
	4.000	0.038		

Spettro di risposta Elastico

 $S_e =$ 0.0962 g (da spettro specifico di zona)

AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO

A1_4_18_1_RELAZIONE CALCOLO,DOC

FOGLIO 88 DI 162

La forza sismica complessiva è quindi pari a

 $F_{sis} = M*S_e$

766.23 kN

Forza sismica sul singolo appoggio

 $F_{sis,i} =$

76.62 kN

Lo spostamento e lo scorrimento angolare dovuto a questa forza sarà pari a

 $\Delta L_{sis} = F_{sis,i} / K_i =$

47.89

<

 S_{max}

 γ_{sis}

 $\gamma_{sis,calc} = \Delta L_{sis} / T_e =$

57.01%

<

Come si nota l'entità dello scorrimento calcolato coincide sostanzialmente con il valore ipotizzato inizialmente, il che assicura sulla correttezza dei calcoli effettuati.

mm

SOTTOPASSO ANAS N°8 "TANGENZIALE"
(PR KM 228+704)

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	

A1_4_18_1_RELAZIONE CALCOLO,DOC

FOGLIO 89 DI 162

7 RELAZIONE DI CALCOLO SPALLE

Nel documento verrà affrontato il calcolo delle sollecitazioni trasmesse agli elementi di sostegno dell'opera. In particolare nel seguito verranno svolti i calcoli relativi alla spalla B, validi anche per la spalla A.

7.1 SCHEMATIZZAZIONE DELLA STRUTTURA

Per la valutazione delle sollecitazioni sulle strutture facenti parte della spalla si è fatto ricorso ad un modello di calcolo con l'elaboratore, utilizzando il programma di calcolo agli elementi finiti Sap2000 della CSI. Si sono implementati i singoli elementi strutturali come di seguito descritto.

7.1.1 SPALLA

La spalla è l'elemento principale di verifica: è quindi stata implementata come struttura ogni sua parte.

Micropali

I micropali sono schematizzati come elementi frame di rigidezza equivalente al palo in oggetto (modulo elastico relativo al materiale, area relativa all'elemento) immerso in un suolo elastico alla Winkler; la schematizzazione del terreno viene quindi fatta tramite "line spring", molle linari nelle 2 direzioni principali dell'elemento.

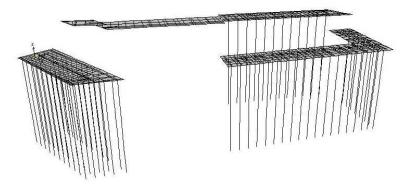


Figura 7.1 Schema 3D micropali

Fondazioni esistente e di nuova costruzione

Le fondazioni a platea di cui è costituita la spalla (fondazione esistente del risvolto sinistro e di parte del fusto, nuove fondazioni del risvolto destro e del paraghiaia) sono state schematizzate come reticolo di frame. La dimensione di tali frame è quella pari all'interasse fra gli stessi elementi del reticolo per la base mentre l'altezza è quella della platea stessa. Gli elementi shell sopra a tale reticolo, che riprendono la forma della platea, sono serviti solo per l'introduzione dei carichi di superficie quindi ad essi sono stati conferiti rigidezza e peso nulli.

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	FOGLIO
A1_4_18_1_RELAZIONE CALCOLO.DOC	90 di 162

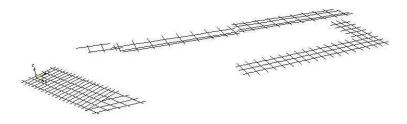


Figura 7.2 Schema fondazioni

Elevazione

I muri di risvolto e il muro paraghiaia sono stati schematizzati come elementi shell.

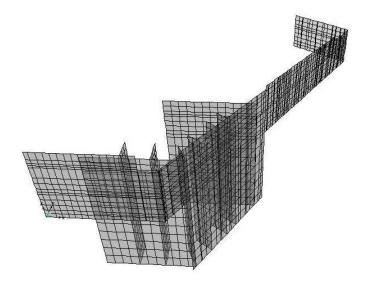


Figura 7.3 Schema elevazione

<u>Tiranti</u>

I tiranti sono elementi frame di lunghezza unitaria il cui tiro è stato introdotto come - ΔT appositamente calcolato basandosi sulla geometria e sul materiale adottati per tali elementi.

Elementi accessori

Gli altri elementi (frames) introdotti nel modello relativamente alla spalla sono quelli denominati "rigidi" funzionali ad una corretta schematizzazione della struttura e dotati di peso nullo, modulo elastico elevato e area elevata. Si tratta degli elementi di schematizzazione di: barriere, appoggi e altri frames funzionali alla corretta schematizzazione del modello.

AUTOSTRADA DEL BRENNERO S.P.A.
CODIFICA DOCUMENTO

A1 4 18 1 RELAZIONE CALCOLO,DOC

FOGLIO 91 DI 162

7.1.2 IMPALCATO

Per la struttura della spalla l'impalcato rappresenta un carico che deve essere correttamente trasmesso alla struttura sottostante. Per tale motivo si sono implementati degli elementi fittizi di ausilio denominati: appoggi, traversi (T.C1, T.C2 e T.Cordolo) e barriera.

Per quanto riguarda gli appoggi si tratta di elementi tipo "frame" con sezione fittizia circolare (0,01m di diametro) e costituiti da un materiale fittizio "nullo" caratterizzato da un peso specifico nullo e modulo elastico basso. L'elevata deformabilità dell'elemento appoggio ha consentito il trasferimento del carico da parte dell'impalcato, rispetto alla struttura delle spalle e delle pile, in modo differenziale, tenendo conto anche della deformazione trasversale dell'impalcato stesso determinata dai carichi sull'impalcato.

I traversi sono stati funzionali all'introduzione dei carichi mobili da ponte. Si tratta di elementi tipo "frame" con sezione fittizia circolare (1m di diametro) e materiale "rigido" caratterizzato da un peso specifico nullo e modulo elastico molto elevato. Il peso proprio è stato introdotto direttamente con i carichi e l'alto modulo associato all'elevata sezione ha consentito un trasferimento totale del carico alla sottostruttura.

La barriera infine ha permesso l'introduzione dell'azione del vento. Anch'essa è stata schematizzata ad elemento "frame", con sezione circolare (diametro 10m) e materiale "rigido". Il peso proprio di tali elementi è stato attribuito come peso proprio direttamente sul traverso e il tipo di materiale e la sezione hanno permesso un completo trasferimento del carico del vento sull'impalcato data la scarsa deformabilità dell'elemento.

TABLE: Material Properties 02 - Basic Mechanical Properties							
Material	UnitWeight	UnitMass	E1	G12	U12	A1	
Text	KN/m3	KN-s2/m4	KN/m2	KN/m2	Unitless	1/C	
4000Psi	23.563	2.4028	24855578.28	10356490.95	0.2	0.0000099	
A615Gr60	76.973	7.849	199947978.8			0.0000117	
A992Fy50	76.973	7.849	199947978.8	76903068.77	0.3	0.0000117	
C20/25	25	2.5493	30200000	12583333.33	0.2	0.000001	
C35/45	25	2.5493	34625000	14427083.33	0.2	0.000001	
ElevazionePesoNullo	0	0	33019000	13757916.67	0.2	0.000001	
Nullo	0	0	10000	4545.45	0.1	0.000001	
PlateaBeam	0	0	33019000	13757916.67	0.2	0.000001	
PlateaShell	3750	382.39	33019000	13757916.67	0.2	0.000001	
Rigido	0	0	10000000000	4166666667	0.2	0.000001	
S275	78.5	8.0048	210000000	80769230.77	0.3	0.0000117	
S355	78.5	8.0048	210000000	80769230.77	0.3	0.0000117	
Tirante	0	0	98066.5	44575.68	0.1	1	

TABLE: Area Section Properties						
Section	Material	MatAngle	AreaType	Type	Thickness	BendThick
Text	Text	Degrees	Text	Text	m	m
Parag.Orizz	C35/45	0	Shell	Shell-Thick	0.3	0.3
Paraghiaia	C35/45	0	Shell	Shell-Thick	0.5	0.5
ParaghiaiaNullo	ElevazionePesoNullo	0	Shell	Shell-Thick	0.5	0.5
Parete80	C35/45	0	Shell	Shell-Thick	0.8	0.8
PareteNulla	ElevazionePesoNullo	0	Shell	Shell-Thick	0.8	0.8
PlaetaBassa	PlateaShell	0	Shell	Shell-Thin	0.01	0.01
PlateaAlta	PlateaShell	0	Shell	Shell-Thin	0.01	0.01

AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO FOGLIO

AL 4.18.1 RELAZIONE CALCOLODOC 92 DI 162

TABLE: Frame Section Properties 01 - General							
SectionName	Material	Shape	t3	t2			
Text	Text	Text	m	m			
Appoggio	Nullo	Circle	0.01				
BarrieraAntiRumore	Rigido	Circle	10				
Palo1000-L20	C20/25	Circle	1				
Palo1000-L25	C20/25	Circle	1				
Palo1000-L30	C20/25	Circle	1				
Rigido	Rigido	Circle	10				
S1.1	PlateaBeam	Rectangular	1.5	1.5			
S1.2	PlateaBeam	Rectangular	1.5	1.15			
S1.3	PlateaBeam	Rectangular	1.5	1.75			
S1.4	PlateaBeam	Rectangular	1.5	1.25			
S1.5	PlateaBeam	Rectangular	1.5	1.5			
S1.6	PlateaBeam	Rectangular	1.5	2.05			
S2.1	PlateaBeam	Rectangular	1.5	1.5			
S2.2	PlateaBeam	Rectangular	1.5	1.75			
S2.3	PlateaBeam	Rectangular	1.5	3			
S2.4	PlateaBeam	Rectangular	1.5	1			
S3.1	PlateaBeam	Rectangular	1.5	1.5			
S3.2	PlateaBeam	Rectangular	1.5	1.86			
S3.3	PlateaBeam	Rectangular	1.5	1.5			
S3.4	PlateaBeam	Rectangular	1.5	1.25			
SpallaEsistente	Rigido	Circle	10				
T.C1	Rigido	Circle	1				
T.C2	Rigido	Circle	1				
T.Cordolo	Rigido	Circle	1				
Tirante	Tirante	General	0.0113	0.0113			
_NULLO	Nullo	General	0.05	0.05			

AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO

A1_4_18_1_RELAZIONE CALCOLO,DOC

FOGLIO 93 DI 162

SCHEMA GENERALE DEL MODELLO

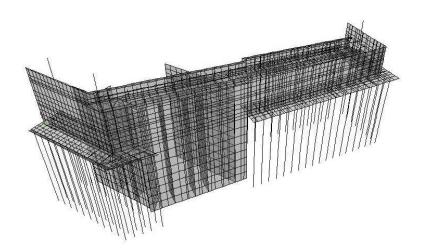
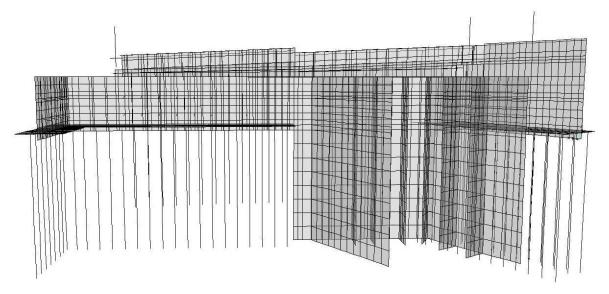
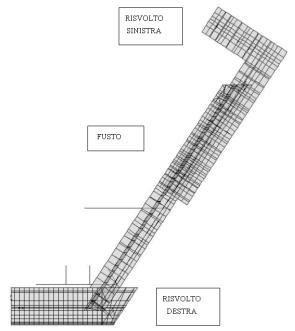


Figura 7.4 Schema 3D




Figura 7.5 Prospetto Spalla

CODIFICA DOCUMENTO A1 4 18 1 RELAZIONE CALCOLO.DOC FOGLIO

94 di 162

7.1.3 **CONVENZIONI SUI SEGNI**

Il sistema di riferimento globale è costituito dagli assi X, Y con l'asse X parallelo all'asse del ponte. In direzione longitudinale X, si considerano positive le azioni che hanno effetto destabilizzante nei confronti della spalla.

7.2 DATI PER ANALISI SISMICA

L'analisi sismica è stata condotta secondo il metodo dell'Analisi Statica Equivalente.

Come si è gia ripetuto la struttura della spalla deve conservare sotto l'azione sismica un comportamento elastico, quindi senza innesco di sistemi dissipativi (cerniere plastiche stabili). Le verifiche sismiche delle spalle da ponte possono essere eseguite applicando l'azione sismica (azione statica equivalente) indipendentemente nelle due direzioni orizzontali, rispettivamente trasversale e longitudinale e combinandole successivamente tra di loro.

Gli effetti massimi generati dalle due componenti sismiche ai fini delle verifiche di resistenza allo SLU, possono essere ottenuti utilizzando come azione di progetto:

$$\gamma_I \times E + G_k + P_k$$

Le combinazioni delle azioni dovute alle due componenti orizzontali sono ottenute utilizzando come azione di progetto (§ 7.3.5), la combinazione più sfavorevole tra:

$$E_L = A_{EL} + 0.30 A_{ET}$$

$$E_T = A_{ET} + 0.30 A_{EL}$$

Per il calcolo delle forze d'inerzia agenti sulla spalla, vengono considerati i contributi di tutte le sue parti nonché del terreno imbarcato.

SOTTOPASSO ANAS N°8 "TANGENZIALE"
(PR KM 228+704)

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	FOGLIO
A1_4_18_1_RELAZIONE CALCOLO.DOC	95 di 162

7.3 ELENCO DATI

7.3.1 DATI RELATIVI ALLE TRAVI

numero travi		10
lunghezza travi	(m)	16.78
peso singola trave	(kN/m)	7.93
interasse travi	(m)	3.55
altezza trave	(m)	1.00
interasse giunti	(m)	17.74
Interasse appoggi (campata): L	(m)	15.78
Lunghezza di afferenza carichi permanenti Impalcato	(m)	8.39

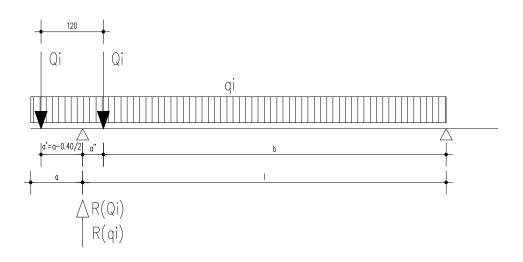
7.3.2 DATI RELATIVI ALLA SOLETTA, ALLA PAVIMENTAZIONE ED ALLE FINITURE

laugh agga galatta (tatala da catama valatta a actama valatta)	(***)	35.16
larghezza soletta (totale da esterno veletta a esterno veletta)	(m)	
spessore soletta	(m)	0.30
larghezza cordolo n.1 sx - esterno -	(m)	1.00
larghezza cordolo n.2 sx - interno -	(m)	0.90
larghezza cordolo n.1 dx - esterno -	(m)	1.00
larghezza cordolo n.2 dx - interno -	(m)	0.90
altezza cordoli	(m)	0.12
peso aggiuntivo (barriere di sicurezza/antirumore, velette, polifore,)		
cordolo n.1 sx - esterno	(kN/m)	4.00
cordolo n.2 sx - interno	(kN/m)	2.00
cordolo n.3 dx - esterno	(kN/m)	2.00
cordolo n.4 dx - interno	(kN/m)	4.00
altezza barriere (per calcolo vento)	(m)	3.00
Coefficienti per trave continua a più campate		
ζ (str)		1.00
ζ (perm)		1.00
spessore pavimentazione	(m)	0.07
peso pavimentazione	(kN/m^2)	3.00
peso parimentazione	(111/111)	2.00
Coefficienti per trave continua a più campate		
ζ (perm)		1.00

7.3.3 DATI RELATIVI AI CARICHI MOBILI

numero colonne di carico		10
larghezza colonne di carico	(m)	3.00

 $\zeta(F)$


AUTOSTRADA DEL BRENNERO S.P.A.
CODIFICA DOCUMENTO

A1_4_18_1_RELAZIONE CALCOLO.DOC

FOGLIO 96 di 162

1.00

Lunghezza colonna Qi per sovraccarico terrapieno	(m)	2.20
larghezza colonna q _{1F} su cordolo n.1 sx - esterno -	(m)	0.00
larghezza colonna q _{1F} su cordolo n.2 sx - interno -	(m)	0.00
larghezza colonna q_{1F} su cordolo $n.1 dx$ - esterno -	(m)	0.00
larghezza colonna q_{1F} su cordolo $\ n.2 \ dx$ - interno -	(m)	0.00
Dati per reazione appoggio trave semplicemente appoggiata		
Qi (carico concentrato) - valore unitario	(kN)	100.00
qi (carico distribuito) - valore unitario	(kN/m^2)	1.00
Retrotrave: a	(m)	0.50
Interasse appoggi (campata): L	(m)	15.78
Distanza asse 1° ruota-asse appoggio: a'	(m)	0.30
Coefficienti per trave continua a più campate		
ζ(Q)		1.00
$\zeta(q)$		1.00

7.3.4 DATI RELATIVI ALLE AZIONI SISMICHE

Paramentri spettrali (D.M. 14/01/2008 - par. 3.2.3.1)

1 /	
Comune	Verona
Latitudine	45.4351
Longitudine	10.9988
Vita nominale dell'opera	100
Coefficiente d'uso	2
Periodo di riferimento	200
Categoria del suolo - A B C D E -	\mathbf{A}
Coefficienti di amplificazione topografica - T1 T2 T3 T4 -	T1

	AUTOSTRADA DEL BRENNER	O S.P.A.	
SOTTOPASSO ANAS N°8 "TANGENZIALE"	CODIFICA DOCUMENTO		GLIO
(PR KM 228+704)	A1_4_18_1_RELAZIONE CALCOLO.DO	oc 97	DI 162
Quota baricentro impalcato rispetto intradosso travi	(m)	1.10	
Stato limite ultimo di salvaguardia della vita SLV			
	T_R	1898	
Accelerazione orizzontale massima sul sito di riferimento rig	rido a _g /g	0.260	
	F_0	2.406	
	T' _c	0.287	
coefficiente funzione della capacità dell'opera di subire spost		4.00	
cadute di resistenza	$eta_{ m m}$	1.00	
coefficiente di amplificazione stratigrafica coefficiente di amplificazione topografica	$egin{array}{c} \mathbf{S}_{\mathbf{S}} \ \mathbf{S}_{T} \end{array}$	1.00 1.0	
accelerazione orizzontale massima del sito = $S_S * S_T * a_g =$	$a_{ m max}/{ m g}$	0.260	
coefficiente sismico orizzontale = $a_{max}/g * \beta_m =$	$rac{a_{ ext{max}'}g}{k_{ ext{h}}}$	0.260	
considerare spinta verticale (si/no)	11	no	
coefficiente sismico verticale = $0.5 k_h$ =	k_{v+-} "+-"	0.000	
Squilibrio sisma longitudinale (mettere Si/No):		no	
7.3.5 DATI RELATIVI AGLI APPOGGI ED AL			
7.3.5 DATI RELATIVI AGLI APPOGGI ED AL raggio di curvatura impalcato - zero se rettilineo -	(m)	1405.00	
7.3.5 DATI RELATIVI AGLI APPOGGI ED AL raggio di curvatura impalcato - zero se rettilineo - altezza appoggio		1405.00 0.20	
7.3.5 DATI RELATIVI AGLI APPOGGI ED AL raggio di curvatura impalcato - zero se rettilineo -	(m)	1405.00	
7.3.5 DATI RELATIVI AGLI APPOGGI ED AL raggio di curvatura impalcato - zero se rettilineo - altezza appoggio Tipo di appoggio Appoggio fisso solo su spalla = 1 Appoggio mobile su questa spalla = 0 Appoggi fissi multipli - coeff. Di afferenza = C Appoggi in Neoprene = N Dispositivi dissipativi = D	(m)	1405.00 0.20	
7.3.5 DATI RELATIVI AGLI APPOGGI ED AL raggio di curvatura impalcato - zero se rettilineo - altezza appoggio	(m) (m)	1405.00 0.20	
7.3.5 DATI RELATIVI AGLI APPOGGI ED AL raggio di curvatura impalcato - zero se rettilineo - altezza appoggio Tipo di appoggio Appoggio fisso solo su spalla = 1 Appoggio mobile su questa spalla = 0 Appoggi fissi multipli - coeff. Di afferenza = C Appoggi in Neoprene = N Dispositivi dissipativi = D Dati per Frenatura Lunghezza zona caricata per frenatura L (vedi cap. 5.1.3.5 D Categoria di Ponte (mettere 1 o 2):	(m) (m)	1405.00 0.20 N	
7.3.5 DATI RELATIVI AGLI APPOGGI ED AL raggio di curvatura impalcato - zero se rettilineo - altezza appoggio Tipo di appoggio Appoggio fisso solo su spalla = 1 Appoggio mobile su questa spalla = 0 Appoggi fissi multipli - coeff. Di afferenza = C Appoggi in Neoprene = N Dispositivi dissipativi = D Dati per Frenatura Lunghezza zona caricata per frenatura L (vedi cap. 5.1.3.5 D Categoria di Ponte (mettere 1 o 2): Squilibrio di frenatura (mettere Si/No):	(m) (m)	1405.00 0.20 N	
7.3.5 DATI RELATIVI AGLI APPOGGI ED AL raggio di curvatura impalcato - zero se rettilineo - altezza appoggio Tipo di appoggio Appoggio fisso solo su spalla = 1 Appoggio mobile su questa spalla = 0 Appoggi fissi multipli - coeff. Di afferenza = C Appoggi in Neoprene = N Dispositivi dissipativi = D Dati per Frenatura Lunghezza zona caricata per frenatura L (vedi cap. 5.1.3.5 D Categoria di Ponte (mettere 1 o 2): Squilibrio di frenatura (mettere Si/No): Dati per Attrito sugli appoggi	(m) (m)	1405.00 0.20 N 15.78 1 si	
7.3.5 DATI RELATIVI AGLI APPOGGI ED AL raggio di curvatura impalcato - zero se rettilineo - altezza appoggio Tipo di appoggio Appoggio fisso solo su spalla = 1 Appoggio mobile su questa spalla = 0 Appoggi fissi multipli - coeff. Di afferenza = C Appoggi in Neoprene = N Dispositivi dissipativi = D Dati per Frenatura Lunghezza zona caricata per frenatura L (vedi cap. 5.1.3.5 D Categoria di Ponte (mettere 1 o 2): Squilibrio di frenatura (mettere Si/No): Dati per Attrito sugli appoggi Coefficiente d'attrito sugli appoggi in % sui carichi permane	(m) (m) 9M 2008) (m)	1405.00 0.20 N 15.78 1 si	
7.3.5 DATI RELATIVI AGLI APPOGGI ED AL raggio di curvatura impalcato - zero se rettilineo - altezza appoggio Tipo di appoggio Appoggio fisso solo su spalla = 1 Appoggio mobile su questa spalla = 0 Appoggi fissi multipli - coeff. Di afferenza = C Appoggi in Neoprene = N Dispositivi dissipativi = D Dati per Frenatura Lunghezza zona caricata per frenatura L (vedi cap. 5.1.3.5 D Categoria di Ponte (mettere 1 o 2): Squilibrio di frenatura (mettere Si/No): Dati per Attrito sugli appoggi	(m) (m)	1405.00 0.20 N 15.78 1 si	
raggio di curvatura impalcato - zero se rettilineo - altezza appoggio Tipo di appoggio Appoggio fisso solo su spalla = 1 Appoggio mobile su questa spalla = 0 Appoggi fissi multipli - coeff. Di afferenza = C Appoggi in Neoprene = N Dispositivi dissipativi = D Dati per Frenatura Lunghezza zona caricata per frenatura L (vedi cap. 5.1.3.5 D Categoria di Ponte (mettere 1 o 2): Squilibrio di frenatura (mettere Si/No): Dati per Attrito sugli appoggi Coefficiente d'attrito sugli appoggi in % sui carichi permane	(m) (m) 9M 2008) (m)	1405.00 0.20 N 15.78 1 si	
raggio di curvatura impalcato - zero se rettilineo - altezza appoggio Tipo di appoggio Appoggio fisso solo su spalla = 1 Appoggio mobile su questa spalla = 0 Appoggi fissi multipli - coeff. Di afferenza = C Appoggi in Neoprene = N Dispositivi dissipativi = D Dati per Frenatura Lunghezza zona caricata per frenatura L (vedi cap. 5.1.3.5 D Categoria di Ponte (mettere 1 o 2): Squilibrio di frenatura (mettere Si/No): Dati per Attrito sugli appoggi Coefficiente d'attrito sugli appoggi in % sui carichi permane Delta T per calcolo appoggi Neoprene/Dissipativi	(m) (m) 9M 2008) (m)	1405.00 0.20 N 15.78 1 si	
 7.3.5 DATI RELATIVI AGLI APPOGGI ED AL raggio di curvatura impalcato - zero se rettilineo - altezza appoggio Tipo di appoggio Appoggio fisso solo su spalla = 1 Appoggio mobile su questa spalla = 0 Appoggi fissi multipli - coeff. Di afferenza = C Appoggi in Neoprene = N Dispositivi dissipativi = D Dati per Frenatura Lunghezza zona caricata per frenatura L (vedi cap. 5.1.3.5 D Categoria di Ponte (mettere 1 o 2): Squilibrio di frenatura (mettere Si/No): Dati per Attrito sugli appoggi Coefficiente d'attrito sugli appoggi in % sui carichi permane Delta T per calcolo appoggi Neoprene/Dissipativi 7.3.6 DATI RELATIVI AI BAGGIOLI 	(m) (m) 9M 2008) (m)	1405.00 0.20 N 15.78 1 si 0.06 40	
 7.3.5 DATI RELATIVI AGLI APPOGGI ED AL raggio di curvatura impalcato - zero se rettilineo - altezza appoggio Tipo di appoggio Appoggio fisso solo su spalla = 1 Appoggio mobile su questa spalla = 0 Appoggi fissi multipli - coeff. Di afferenza = C Appoggi in Neoprene = N Dispositivi dissipativi = D Dati per Frenatura Lunghezza zona caricata per frenatura L (vedi cap. 5.1.3.5 D Categoria di Ponte (mettere 1 o 2): Squilibrio di frenatura (mettere Si/No): Dati per Attrito sugli appoggi Coefficiente d'attrito sugli appoggi in % sui carichi permane Delta T per calcolo appoggi Neoprene/Dissipativi 7.3.6 DATI RELATIVI AI BAGGIOLI numero baggioli 	(m) (m) oM 2008) (m)	1405.00 0.20 N 15.78 1 si 0.06 40	
 7.3.5 DATI RELATIVI AGLI APPOGGI ED AL raggio di curvatura impalcato - zero se rettilineo - altezza appoggio Tipo di appoggio Appoggio fisso solo su spalla = 1 Appoggio mobile su questa spalla = 0 Appoggi fissi multipli - coeff. Di afferenza = C Appoggi in Neoprene = N Dispositivi dissipativi = D Dati per Frenatura Lunghezza zona caricata per frenatura L (vedi cap. 5.1.3.5 D Categoria di Ponte (mettere 1 o 2): Squilibrio di frenatura (mettere Si/No): Dati per Attrito sugli appoggi Coefficiente d'attrito sugli appoggi in % sui carichi permane Delta T per calcolo appoggi Neoprene/Dissipativi 7.3.6 DATI RELATIVI AI BAGGIOLI numero baggioli altezza baggioli 	(m) (m) (M) 2008) (m) (m) (m)	1405.00 0.20 N 15.78 1 si 0.06 40	

ı

SOTTOPASSO ANAS N°8 "TANGENZIALE"
(PR KM 228+704)

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	FOGLIO
A1_4_18_1_RELAZIONE CALCOLO,DOC	98 di 162

altezza paraghiaia spessore paraghiaia distanza asse paraghiaia da filo anteriore fusto lunghezza paraghiaia iusto altezza fusto spessore fusto lunghezza fusto iisvolto di sx altezza risvolto sx lunghezza risvolto sx spessore risvolto sx altezza orecchia sx lunghezza orecchia sx spessore orecchia sx	(m)	1.70 0.50 0.00 42.80 0.00 0.00 0.00 5.00 10.40 1.00
distanza asse paraghiaia da filo anteriore fusto lunghezza paraghiaia fusto altezza fusto spessore fusto lunghezza fusto fisvolto di sx altezza risvolto sx lunghezza risvolto sx spessore risvolto sx altezza orecchia sx lunghezza orecchia sx spessore orecchia sx	(m) (m) (m) (m) (m) (m) (m) (m)	0.00 42.80 0.00 0.00 0.00 5.00 10.40
lunghezza paraghiaia fusto altezza fusto spessore fusto lunghezza fusto fisvolto di sx altezza risvolto sx lunghezza risvolto sx spessore risvolto sx altezza orecchia sx lunghezza orecchia sx spessore orecchia sx	(m) (m) (m) (m) (m) (m) (m) (m) (m)	42.80 0.00 0.00 0.00 5.00 10.40
altezza fusto spessore fusto lunghezza fusto tisvolto di sx altezza risvolto sx lunghezza risvolto sx spessore risvolto sx altezza orecchia sx lunghezza orecchia sx spessore orecchia sx	(m) (m) (m) (m) (m) (m) (m)	0.00 0.00 0.00 5.00 10.40
altezza fusto spessore fusto lunghezza fusto cisvolto di sx altezza risvolto sx lunghezza risvolto sx spessore risvolto sx altezza orecchia sx lunghezza orecchia sx spessore orecchia sx	(m) (m) (m) (m) (m) (m)	0.00 0.00 5.00 10.40
spessore fusto lunghezza fusto lisvolto di sx altezza risvolto sx lunghezza risvolto sx spessore risvolto sx altezza orecchia sx lunghezza orecchia sx spessore orecchia sx	(m) (m) (m) (m) (m) (m)	0.00 0.00 5.00 10.40
lunghezza fusto cisvolto di sx altezza risvolto sx lunghezza risvolto sx spessore risvolto sx altezza orecchia sx lunghezza orecchia sx spessore orecchia sx	(m) (m) (m) (m) (m)	0.00 5.00 10.40
altezza risvolto sx lunghezza risvolto sx spessore risvolto sx altezza orecchia sx lunghezza orecchia sx spessore orecchia sx	(m) (m) (m) (m)	5.00 10.40
altezza risvolto sx lunghezza risvolto sx spessore risvolto sx altezza orecchia sx lunghezza orecchia sx spessore orecchia sx	(m) (m) (m)	10.40
lunghezza risvolto sx spessore risvolto sx altezza orecchia sx lunghezza orecchia sx spessore orecchia sx	(m) (m) (m)	10.40
spessore risvolto sx altezza orecchia sx lunghezza orecchia sx spessore orecchia sx	(m) (m)	
altezza orecchia sx lunghezza orecchia sx spessore orecchia sx	(m)	1.00
lunghezza orecchia sx spessore orecchia sx	` ′	
spessore orecchia sx	(m)	0.00
•	(111)	0.00
isvalta di dy	(m)	0.00
isvoito ut ux		
altezza risvolto dx	(m)	8.61
lunghezza risvolto dx	(m)	13.90
spessore risvolto dx	(m)	0.80
altezza orecchia sx	(m)	0.00
lunghezza orecchia sx	(m)	0.00
spessore orecchia sx	(m)	0.00
zione longitudinale aggiuntiva - tiranti -	(kN)	300.00
uota di app.ne azione long. aggiuntiva da intradosso fondazione	(m)	2.00
3.8 DATI RELATIVI ALLA PLATEA DI FONDAZIONE		
Tusto		
inghezza platea di fondazione	(m)	41.50
urghezza platea di fondazione	(m)	3.80
pessore platea	(m)	1.33
iabatta posteriore (per terreno imbarcato)	(m)	1.10
isvolto di sx		
inghezza platea di fondazione	(m)	12.70
urghezza platea di fondazione	(m)	4.60
pessore platea	(m)	1.05
iabatta posteriore (per terreno imbarcato)	(m)	1.90

SOTTOPASSO ANAS N°8 "TANGENZIALE"	AUTOSTRADA DI CODIFICA	DOCUMENTO	O S.P.A.	FOGLIO		
(PR KM 228+704)	A1_4_18_1_RELAZ	ZONE CALCOLO,D	OC	99 di 16		
larghezza platea di fondazione		(m)	5.60			
spessore platea		(m)	1.20			
ciabatta posteriore (per terreno imbarcato)		(m)	2.70			
7.3.9 DATI RELATIVI AL TERRENO						
peso specifico terreno	γ	(kN/m^3)	19.00			
angolo di attrito interno terreno di monte	ф	(°)	35.00			
angolo di attrito terreno-muro	δ	(°)	0.00			
inclinazione muro rispetto alla verticale θ	θ	(°)	0.00			
inclinazione terrapieno rispetto all'orizzontale β	β	(°)	0.00			
altezza a filo anteriore fondazione del terreno di valle		(m)	0.00			
altezza a filo elevazione del terreno di valle		(m)	0.00			
altezza a filo elevazione del terreno alle testate		(m)	0.00			
altezza a filo posteriore fondazione del terreno alle testate		(m)	0.00			
angolo di attrito interno del terreno a valle		(°)	30.00			
DATI RELATIVI AL SOVRACCARICO						
Altezza spalla per diffusione		(m)	1.70			
Angolo di diffusione		(°)	30			
Carico Qi (su impronta 3.00x2.20m)		kN	1200.00			
Carico qi (su impronta 3.00x2.20m)		kN	92.40			
Carico Totale		kN	1292.40			
Larghezza totale colonne+diffusione		(m)	9.98			
Lunghezza totale colonne Qi+diffusione		(m)	3.18			
Carico accidentale sul terrapieno ad impalcato carico		(kN/m^2)	9.00			
Carico accidentale sul terrapieno ad impalcato scarico		(kN/m^2)	40.70			
7.3.10 DATI RELATIVI ALLA PALIFICATA D	I FONDAZIONE					
Paraghiaia numero micropali			12			
diametro esterno perforazione micropali		(m)	0.24			
lunghezza micropali		(m)	13.80			
Risvolto di sx numero micropali			26			
diametro esterno perforazione micropali		(m)	0.24			
lunghezza micropali		(m)	13.80			
Risvolto di dx						
numero micropali diametro esterno perforazione micropali		(1)	38			
grameiro esierno perforazione micropali		(m)	0.24			

AUTOSTRADA DEL BRENNERO S.P.A.
CODIFICA DOCUMENTO

A1_4_18_1_RELAZIONE CALCOLO.DOC

FOGLIO 100 DI 162

7.4 CASI DI CARICO E COMBINAZIONI

7.4.1 CARICHI ELEMENTARI

TABLE: Load Pattern Definitions			
LoadPat	DesignType	SelfWtMult	AutoLoad
Text	Text	Unitless	Text
A1.a) Spalla Peso Proprio	DEAD	1	
A1.b) Tiranti	DEAD	0	
A2.a) Spinta della Terra M1	DEAD	0	
A2.b) Spinta della Terra M2	DEAD	0	
A2.c) Spinta della TerraSismica M1	DEAD	0	
A3.a) Spalla Perm.	DEAD	0	
A2.d) Spinta della TerraSismica M2	DEAD	0	
B1) Impalcato Peso Proprio	DEAD	0	
B2) Impalcato Perm.	DEAD	0	
C1a) Acc.1 Imp. Tandem	LIVE	0	
C2a) Acc.1 Imp. Distribuito	LIVE	0	
C1b) Acc.2 Imp. Tandem	LIVE	0	
C2b) Acc.2 Imp. Distribuito	LIVE	0	
C3a1) Folla 1 Marc.Lato Acc.	LIVE	0	
C3a2) Folla 1 Marc.Centro	LIVE	0	
C3a3) Folla 1 Marc.Lato Opposto	LIVE	0	
C3b1) Folla 2 Marc.Lato Acc.	LIVE	0	
C3b2) Folla 2 Marc.Centro	LIVE	0	
C3b3) Folla 2 Marc.Lato Opposto	LIVE	0	
Da) Acc.Ril+Carico M1	LIVE	0	
Db) Acc.Ril+Carico M2	LIVE	0	
Ea) Acc.Ril+Scarico M1	LIVE	0	
Eb) Acc.Ril+Scarico M2	LIVE	0	
F1) Frenatura 1	LIVE	0	
F2) Frenatura 2	LIVE	0	
G1) Azione Centrifuga 1	LIVE	0	
G2) Azione Centrifuga 2	LIVE	0	
H1) VENTO+y Imp.carico	WIND	0	None
H2) VENTO-y Imp.carico	WIND		None
I1) VENTO+y Imp.scarico	WIND	0	None
I2) VENTO-y Imp.scarico	WIND	0	None
L1) Vento +y Spalla	WIND		None
L2) Vento -y Spalla	WIND		None
L3) Neve	LIVE	0	
M1a) SismaX Spalla	QUAKE	0	None
M1b) SismaX Terra Imbarcata	QUAKE		None
M2a+) XTERRA V+ M1	QUAKE		None
M2a-) X TERRA V- M1	QUAKE		None
M2b+) X TERRA V+ M2	QUAKE		None
M2b-) X TERRA V- M2	QUAKE		None
M3) SISMA X IMP.	QUAKE		None
N1a) SismaY Spalla	QUAKE		None
N1bsx) SismaY Terra Imbarcata	QUAKE		None
N1bdx) SismaY Terra Imbarcata	QUAKE		None
N2a+) Y TERRA V+ M1	QUAKE		None
N2a-) Y TERRA V- M1	QUAKE		None
N2b+) Y TERRA V+ M2	QUAKE		None
N2b-) Y TERRA V- M2	QUAKE		None
N3) SISMA Y IMP.	QUAKE		None
O1) SISMA V SPALLA	QUAKE		None
O2a) V TERRA V+	QUAKE		None
O2b) V TERRA V-	QUAKE		None
O3) SISMA V IMP.	QUAKE		None
P1) Attrito Imp.Struttura	DEAD	0	1 10110
P2) Attrito Imp.Portati	DEAD	0	
1 2) Attito imp.i oitati	BLAD	U	

AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO FOGLIO

AL 4.18 1 RELAZIONE CALCOLODOC 101 DI 162

TABLE: Load Case Definitions	
Case	DesignType
Text	Text
A1) Spalla Peso Proprio+Tiranti	DEAD
A2a) Spinta della Terra M1	DEAD
A2b) Spinta della Terra M2	DEAD
A2c) Spinta della TerraSismica M1	DEAD
A2d) Spinta della TerraSismica M2	DEAD
A3) Spalla Perm.	DEAD
B1) Imp. Peso Proprio	DEAD
B2) Impalcato Perm.	DEAD
C1a) Acc.1 Imp.Tandem	LIVE
C2a) Acc.1 Imp.Distribuito	LIVE
C1b) Acc.2 Imp. Tandem	LIVE
C2b) Acc.2 Imp. Paridem	LIVE
C3a) Folla 1	LIVE
C3b) Folla 2	LIVE
Da) Acc. Ril+Carico M1	LIVE
Db) Acc. Ril+Carico M2	LIVE
,	
Ea) Acc. Ril+Scarico M1	LIVE
Eb) Acc.Ril+Scarico M2	LIVE
F1) Frenatura 1	LIVE
F2) Frenatura 2	LIVE
G1) Azione Centrifuga 1	LIVE
G2) Azione Centrifuga 2	LIVE
H1) Vento+ Ponte Carico	WIND
H2) Vento- Ponte Carico	WIND
I1) Vento+ Ponte scarico	WIND
I2) Vento- Ponte scarico	WIND
L1) Vento+ Spalla	WIND
L2) Vento- Spalla	WIND
L3) Neve	LIVE
Ma+) Sisma Longitudinale M1 V+	QUAKE
Ma-) Sisma Longitudinale M1 V-	QUAKE
M1b) SismaX Terra Imbarcata	QUAKE
Mb+) Sisma Longitudinale M2 V+	QUAKE
Mb-) Sisma Longitudinale M2 V-	QUAKE
M3) SISMA X IMP.	QUAKE
Na+) Sisma Trasversale M1 V+	QUAKE
Na-) Sisma Trasversale M1 V-	QUAKE
N1bsx) SismaY Terra Imbarcata	QUAKE
N1bdx) SismaY Terra Imbarcata	QUAKE
Nb+) Sisma Trasversale M2 V+	QUAKE
Nb-) Sisma Trasversale M2 V-	QUAKE
N3) SISMA Y IMP.	QUAKE
Oa) Sisma Verticale V+	QUAKE
Ob) Sisma Verticale V-	QUAKE
O3) SISMA V IMP.	QUAKE
P1) Attrito Imp.Struttura	DEAD
P2) Attrito Imp.Portati	
	DEAD
MODAL	OTHER

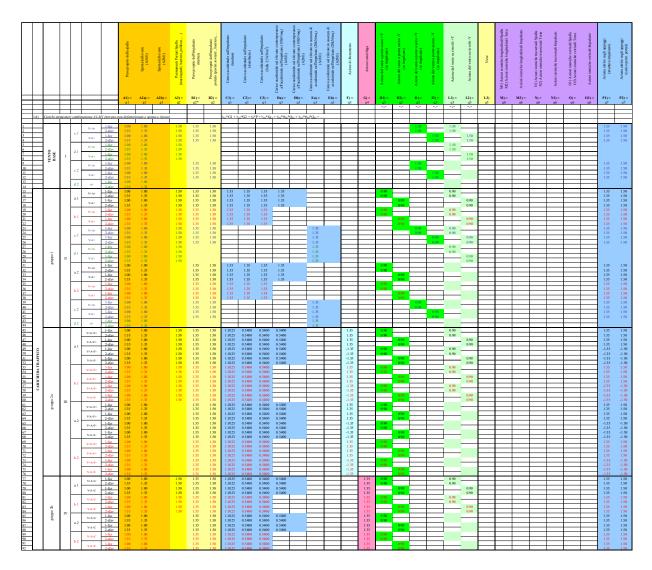
AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO

FOGLIO 102 DI 162

A1_4_18_1	RELAZIONE CALCOLO,DOC

TABLE: Case - Static 1 - Load As	signments		
Case	LoadType	LoadName	LoadSF
Text	Text	Text	Unitless
A1) Spalla Peso Proprio+Tiranti	-	A1.a) Spalla Peso Proprio	1
A1) Spalla Peso Proprio+Tiranti	Load pattern	,	1
A2a) Spinta della Terra M1		A2.a) Spinta della Terra M1 A2.b) Spinta della Terra M2	1
A2b) Spinta della Terra M2 A2c) Spinta della TerraSismica M1	-	A2.c) Spinta della TerraSismica M1	1
A2d) Spinta della TerraSismica M2		A2.d) Spinta della TerraSismica M2	1
A3) Spalla Perm.	-	A3.a) Spalla Perm.	1
B1) Imp. Peso Proprio	· · · · · · · · · · · · · · · · · · ·	B1) Impalcato Peso Proprio	1
B2) Impalcato Perm.		B2) Impalcato Perm.	1
C1a) Acc.1 Imp.Tandem		C1a) Acc.1 Imp. Tandem	1
C2a) Acc.1 Imp.Distribuito		C2a) Acc.1 Imp. Distribuito	1
C1b) Acc.2 Imp. Tandem	<u> </u>	C1b) Acc.2 Imp. Tandem	1
C2b) Acc.2 Imp. Distribuito	-	C2b) Acc.2 Imp. Distribuito	1
C3a) Folla 1	Load pattern	C3a1) Folla 1 Marc.Lato Acc.	1
C3a) Folla 1	Load pattern	C3a2) Folla 1 Marc.Centro	1
C3a) Folla 1	Load pattern	C3a3) Folla 1 Marc.Lato Opposto	1
C3b) Folla 2	Load pattern	C3a2) Folla 1 Marc.Centro	1
C3b) Folla 2	Load pattern	C3b2) Folla 2 Marc.Centro	1
C3b) Folla 2	Load pattern	C3b3) Folla 2 Marc.Lato Opposto	1
Da) Acc. Ril+Carico M1	Load pattern	Da) Acc.Ril+Carico M1	1
Db) Acc.Ril+Carico M2	Load pattern	Db) Acc.Ril+Carico M2	1
Ea) Acc. Ril+Scarico M1	-	Ea) Acc.Ril+Scarico M1	1
Eb) Acc.Ril+Scarico M2		Eb) Acc.Ril+Scarico M2	1
F1) Frenatura 1	· · · · · · · · · · · · · · · · · · ·	F1) Frenatura 1	1
F2) Frenatura 2	-	F2) Frenatura 2	1
G1) Azione Centrifuga 1	· · · · · · · · · · · · · · · · · · ·	G1) Azione Centrifuga 1	1
G2) Azione Centrifuga 2		G2) Azione Centrifuga 2	1
H1) Vento+ Ponte Carico	-	H1) VENTO+y Imp.carico	1
H2) Vento- Ponte Carico I1) Vento+ Ponte scarico	· · · · · · · · · · · · · · · · · · ·	H2) VENTO-y Imp. carico	1
12) Vento- Ponte scarico	· · · · · · · · · · · · · · · · · · ·	I1) VENTO+y Imp.scarico I2) VENTO-y Imp.scarico	1
L1) Vento+ Spalla	-	L1) Vento +y Spalla	1
L2) Vento- Spalla		L2) Vento -y Spalla	1
L3) Neve	Load pattern	, , ,	1
Ma+) Sisma Longitudinale M1 V+	· · · · · · · · · · · · · · · · · · ·	M1a) SismaX Spalla	1
Ma+) Sisma Longitudinale M1 V+	· · · · · · · · · · · · · · · · · · ·	M2a+) X TERRA V+ M1	1
Ma-) Sisma Longitudinale M1 V-	-	M1a) SismaX Spalla	1
Ma-) Sisma Longitudinale M1 V-		M2a-) X TERRA V- M1	1
M1b) SismaX Terra Imbarcata	· · · · · · · · · · · · · · · · · · ·	M1b) SismaX Terra Imbarcata	1
Mb+) Sisma Longitudinale M2 V+	Load pattern	M1a) SismaX Spalla	1
Mb+) Sisma Longitudinale M2 V+	Load pattern	M2b+) X TERRA V+ M2	1
Mb-) Sisma Longitudinale M2 V-	Load pattern	M1a) SismaX Spalla	1
Mb-) Sisma Longitudinale M2 V-	Load pattern	M2b-) X TERRA V- M2	1
M3) SISMA X IMP.	Load pattern	M3) SISMA XIMP.	1
Na+) Sisma Trasversale M1 V+	Load pattern	N1a) SismaY Spalla	1
Na+) Sisma Trasversale M1 V+	Load pattern	N2a+) Y TERRA V+ M1	1
Na-) Sisma Trasversale M1 V-	· · · · · · · · · · · · · · · · · · ·	N1a) SismaY Spalla	1
Na-) Sisma Trasversale M1 V-		N2a-) Y TERRA V- M1	1
N1bsx) SismaY Terra Imbarcata		N1bsx) SismaY Terra Imbarcata	1
N1bdx) SismaY Terra Imbarcata	· · · · · · · · · · · · · · · · · · ·	N1bdx) SismaY Terra Imbarcata	1
Nb+) Sisma Trasversale M2 V+		N1a) SismaY Spalla	1
Nb+) Sisma Trasversale M2 V+		N2b+) Y TERRA V+ M2	1
Nb-) Sisma Trasversale M2 V-		N1a) SismaY Spalla	1
Nb-) Sisma Trasversale M2 V-		N2b-) Y TERRA V- M2	1
N3) SISMA Y IMP.		N3) SISMA Y IMP.	1
Oa) Sisma Verticale V+		O1) SISMA V SPALLA	1
Oa) Sisma Verticale V+		O2a) V TERRA V+	1
Ob) Sisma Verticale V- Ob) Sisma Verticale V-		O1) SISMA V SPALLA	1
DAN JISHIA VEHILAIE V-	Luau pattern	O2b) V TERRA V-	
·	Load nattern	O3) SISMA V/ IMP	1
O3) SISMA V IMP. P1) Attrito Imp.Struttura	-	O3) SISMA V IMP. P1) Attrito Imp. Struttura	1


AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO
A1 4 18 1 RELAZIONE CALCOLODOC

FOGLIO 103 DI 162

7.4.2 COMBINAZIONI DI CARICO

1A) <u>Carichi elementari combinazione A1-M1 (terreno non defattorizzato e spinta a riposo)</u> $\gamma_{G1}*G1+\gamma_{G2}*G2+\gamma_{P}*P+\gamma_{Q1}*Q_{k1}+\gamma_{Q2}*\psi_{02}*Q_{k2}+\gamma_{Q3}*\psi_{03}*Q_{k3}+.....$

AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO

FOGLIO 104 DI 162

A1_4_18_1_RELAZIONE CALCOLO.DOC

1B) <u>Carichi elementari combinazione A2-M1 (terreno non defattorizzato e spinta a riposo)</u> $\gamma_{G1}*G1+\gamma_{G2}*G2+\gamma_{P}*P+\gamma_{Q1}*Q_{k1}+\gamma_{Q2}*\psi_{2}*Q_{k2}+\gamma_{Q3}*\psi_{3}*Q_{k3}+.....$

						Pes o proprio de la spalla	Spirita della torne (AIMI)	Spirm delle terre (A2M1)	Pemianenti Poetai Spal la (marciopiodi, barri ne, polificon,)	Resproprio dell'impaltato struttera	R so proprio de ll'impa k ato pertoto (per in so vas six., berrires	Carico accidentale sulfimpolicito (tandem)	Carico accidentale suffringulcino (dismbutio)	Carios accidentale sulfinipalcino (folla 2.5 kNm ²)	Can on accidentable sall rif eva to contemporaneo all'accidentable sall impalicato (10kN)mq) (A1M1)	Cari co ac cidentale sal ri evato e entemporaneo all'accidentale sall'impal caso (10kNimq) (A2M1)	-	Carico accidenta le sul ni entro in assenta di accidental es ull'impubato (20kN/mq) (A2M1)	Azione di fensmento	Azione centrifiga	Azione delivento a ponte carico + Y (su impalcato)	Axione del verto a ponte carico -V (ou impalcano)	Azione del verco a porte scarico +Y (su impulcato)	Azione del vento a pente scarico -V (su impelcato)	Azione del vento su risvolti+Y	Azione del vento su rievolti - Y	New	MI) Azioni si smiche longitudinili Spalla M2) Azioni sis miche longitudirali Torra	Azioni siemiche longicudimi i Impalcato	N1) Azioni siemiche tras versali Spalla N2) Azioni siemiche tras versali Tem	Azioni sismiche tras er sali Impalcato	O1) Az bai s smiche venicali Spilla O2) Azioni sismiche venticali Terra	Azioni sismiche veticali Impalcato	Azione amrito sugli appoggi (stauttara impalca to)	Axione strrito sugli appaggi (carico perm, portati)
Ħ	+					Al)= gl	A2a) = g1	A2b) = gl	A3) = g2	BI) = g2*	B2) = g2	Cl)= ql	C2) = gl	(3)= gl	Da) = ql	Db) = gl	Ea)= ql	Eb)= ql	F) = q3	G) = 04	HI) = Ø	H2) = q5	11) = qS	12) = q5	L1)= Ø	1.2) = qS	L3) q5	M) = q6	M3) = q6	N)= q6	N3) = g6	0)= q6	O3) = 96	P1) = q7	P2) = q7
1B) Ca	richi element	ari comi	i naz ione	e A2-MI (terre	то поп аер	attorizzato e	spinta a rip	maso)		gG1*G1+	gG2*G2+	gP*P + gQ1	*Ok1+ gQ	2*y2*Q12 -	gQ3*y3*Q	3+																			
1 2	-		e.I	V+A+ V-A+	1-fav 1-fav	1.00		1.00	1.30 1.30	1.00	1.30 1.30												1.30	1.30	1.30	1.30								1.00	1.30 1.30
4	VENTO	1	d.1	V-A+	1-fav 1-fav	1.00		1.00	1.30																1.30	1.30									
5	3 2 3		e.2	V-A+	1-fav	1.00 1.00		1.00		1.00 1.00	1.30 1.30												1.30	1.30										1.00 1.00	1.30 1.30
7 8	_	+	d.2 a.1	V+A+	1-fav 1-fav	1.00		1.00	1.30	1.00	1.30	1.15	1.15	1.15		1.15					0.78				0.78									1.00	1.30
9 10			b.1	V-A+ V+A+	1-fav 1-fav	1.00		1.00	1.30 1.30	1.00 1.00	1.30 1.30	1.15	1.15	1.15		1.15					0.78	0.78			0.78	0.78								1.00	1.30 1.30
12			e.I	V-A+ V-A+ V-A+	1-fav 1-fav	1.00 1.00 1.00		1.00 1.00 1.00	1.30 1.30 1.30	1.00 1.00 1.00	1.30 1.30 1.30	1.15	1.15	1.15				1.15				0.78	0.78	0.78	0.78	0.78								1.00 1.00 1.00	1.30 1.30 1.30
14	1 oddr		d.1	V-A+	1-fav	1.00		1.00	1.30	1.00	1.30							1.15						0.78	0.78	0.78								1.00	1.30
16 17	drug	"	a.2		1-fav	1.00		1.00	1.30	1.00	1.30	1.15 1.15	1.15	1.15		1.15 1.15		1.15			0.78	0.78				0.78								1.00	1.30 1.30
18			b.2	V-A+	1-fav 1-fav	1.00		1.00		1.00	1.30 1.30	1.15 1.15	1.15	1.15 1.15	_						0.78	0.78												1.00	1.30 1.30
20			e.2	V-A+	1-fav 1-fav	1.00		1.00		1.00	1.30	-	-	-				1.15					0.78	0.78										1.00	1.30 1.30
22 2	. —	╁	4.2	A* V*A+F*	1-fav 1-fav	1.00		1.00	1.30	1.00	1.30	0.8625	0.4600	0.4600		0.4600		1.15	1.15		0.78				0.78									1.00	1.30
24	uppo 2a		a.l	V-A+F+ V+A+F-	1-fav 1-fav	1.00		1.00	1.30 1.30	1.00	1.30	0.8625 0.8625	0.4600 0.4600	0.4600		0.4600			1.15 -1.15		0.78	0.78			0.78	0.78								1.00 -1.00	1.30 -1.30
26	5			V-A+F+	1-fav 1-fav	1.00		1.00	1.30 1.30	1.00 1.00	1.30 1.30	0.8625 0.8625	0.4600 0.4600	0.4600		0.4600			-1.15 1.15		0.78	0.78			0.78	0.78								-1.00 1.00	-1.30 1.30
29	20 2		b.1	V-A+F+ V+A+F-	1-fav 1-fav	1.00		1.00 1.00	1.30 1.30	1.00 1.00	1.30 1.30	0.8625 0.8625	0.4600 0.4600	0.4600					1.15 -1.15		0.78	0.78			0.78	0.78								1.00 -1.00	1.30 -1.30
31	addnii	Ш		V-A+F+	1-fav 1-fav	1.00		1.00 1.00 1.00	1.30	1.00 1.00 1.00	1.30 1.30 1.30	0.8625 0.8625 0.8625	0.4600 0.4600 0.4600	0.4600	-	0.4600			-1.15 1.15 1.15		0.78	0.78				0.78								-1.00 1.00 1.00	-1.30 1.30 1.30
33			a.2	V-A+F+ V+A+F-	1-fav	1.00 1.00 1.00		1.00		1.00	1.30	0.8625 0.8625 0.8625	0.4600 0.4600	0.4600 0.4600		0.4600			-1.15 -1.15		0.78	0.78												-1.00 -1.00	-1.30 -1.30
35				V-A+F+ V-A+F+	1-fav 1-fav	1.00		1.00		1.00 1.00 1.00	1.30 1.30 1.30	0.8625 0.8625 0.8625	0.4600 0.4600	0.4600 0.4600		0.4600			1.15 1.15		0.78	0.78												1.00	1.30 1.30
37			b.2	V-A+F+	1-fav 1-fav	1.00		1.00		1.00	1.30	0.8625 0.8625 0.8625	0.4600 0.4600 0.4600	0.4600					-1.15 -1.15 -1.15		0.78	0.78												-1.00 -1.00	-1.30 -1.30
10		T	a.l	V-A+C V-A+C	1-fav 1-fav	1.00		1.00	1.30 1.30	1.00	1.30	0.8625 0.8625	0.4600	0.4600		0.4600			-1.23	1.15	0.78	0.78			0.78	0.78								1.00	1.30
41	Ippo 2b	I	b.1	V-A+C V-A+C	1-fav 1-fav	1.00		1.00	1.30	1.00	1.30 1.30	0.8625 0.8625	0.4600	0.4600						1.15	0.78	0.78			0.78	0.78								1.00	1.30
43 44	grung	IV	a.2	V-A+C V-A+C	1-fav 1-fav	1.00		1.00		1.00	1.30	0.8625 0.8625	0.4600 0.4600	0.4600 0.4600		0.4600 0.4600				1.15	0.78	0.78												1.00	1.30
45 46			b.2	V-A+C V-A+C	1-fav 1-fav	1.00		1.00		1.00	1.30	0.8625 0.8625	0.4600 0.4600							1.15	0.78	0.78												1.00	1.30

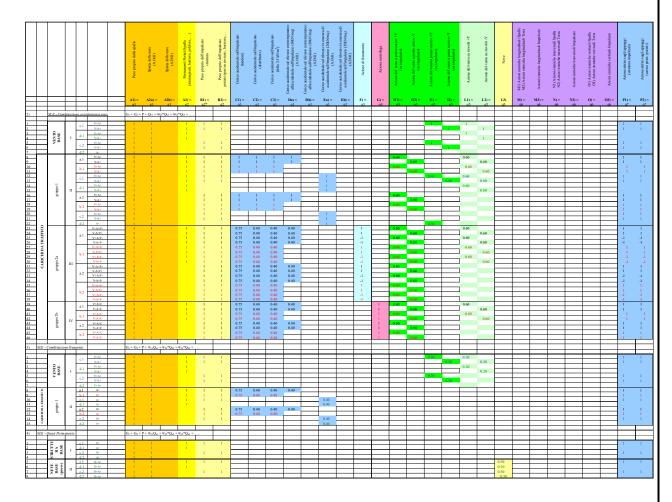
AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO

A1 4 18 1 RELAZIONE CALCOLO.DOC

FOGLIO 105 DI 162

2) <u>SLE - Combinazione caratteristica rara</u>


 $G_1 + G_2 + P + Q_{k1} + \psi_{02} * Q_{k2} + \psi_{03} * Q_{k3} + \ldots..$

3) <u>SLE - Combinazione frequente</u>

 $G_1 + G_2 + P + \psi_{11}Q_{k1} + \psi_{22}*Q_{k2} + \psi_{23}*Q_{k3} + \ldots .$

4) <u>SLE - Quasi Permanente</u>

 $G_1 + G_2 + P + \psi_{21}Q_{k1} + \psi_{22} * Q_{k2} + \psi_{23} * Q_{k3} + \ldots .$

AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO

A1_4_18_1_RELAZIONE CALCOLO.DOC

FOGLIO 106 DI 162

5A) <u>Carichi elementari combinazione sismica (terreno non defattorizzato e spinta attiva)</u> (A1M1) $E + G_1 + G_2 + P + \psi_{21}Q_{k1} + \psi_{22}*Q_{k2} + \psi_{23}*Q_{k3} + \dots$

<u>Carichi elementari combinazione sismica (terreno non defattorizzato e spinta</u> <u>attiva)</u> (A2M1)

5B) attiva)

 $E + G_1 + G_2 + P + \psi_{21}Q_{k1} + \psi_{22}*Q_{k2} + \psi_{23}*Q_{k3} + \ldots$

				Peso propeio della spal la	Spinta del le terre (A1M1)	Spintos del le terre (A2MI)	Pom atoté Poratí Spalla (mateipiodi, barriore, polífore,)	Peso proprio dell'impolicato struttura	Peso proprio dell'impalcato pertito (pertito (pertito (pertito (pertito))).	Caric o a ceidenta le sal l'impoleato (tardent)	Carico accidentale sul l'impolcato (di stribuito)	Caric o accidenta le sul l'impale ato (folla 2.5 kN/m²)	Carico a codenta le sal raleva Doutem porm a l'accidenta le sall'impoloxe (10kN/mq) (A1M1)	Carico accidentale sul ribevato contom ponna alfaccidentale sull impolsaro (10kN/mq) (A2M1)	Curios accidentale sal riberato in a ssenza e accidental e sull'impulsato (20kN/mq) (A1MI)	Cari co accidentale sul riberno i nassenza d accidental e sull'impikato (20kN/mg) (A2MI)	Azione di frenamento	Azione centrifiga	Azione del vento a pente carios +Y (su impulcato)	Azi one del vento a ponte carico -V (su im pulcato)	Azione del vento a ponte scarico +Y (su impakato)	Aziona del vento a pento scarico - Y (su im palcato)	Azione del vento su rievolii + Y	Azione del vento su risvolti -Y	Neve	MI) Azioni sismiche bongitudinali Sprik M2) Azioni sismiche bongitudini li Terra	Azioni si smiche longitudina i Impalcato	NI) Azioni simiche traversali Spalla N2) Azioni semiche traversali Terra	Az ioni sismiche trasversa li Impoleato	OI) Azioni siemishe verticali Spalla O2) Azioni siemishe verticali Term	Azioni siomiche verticali Impakato	Azione attrito sugli appaggi (snumra impikato)	Azione amito sugli appaggi (carioo pem. pertati)
				A1) =	A2a) =	A2b) =	A3) =	B1) = e2*	B2) = o?	CI)=	(2) = al	(3) = al	Da) =	Db) =	Ea) =	Eb) =	F) =	G) =	HI) =	H2) =	II) = oS	12) = oS	L1) = a5	1.2) = oS	13) oS	M) = 05	M3) = o6	N) =	N3) = 06	O) = O5	O3) =	P1) = o7	P2) = o7
5A) (Carichi elementari comb	inazione sism	ica (terreno n	on defattor	izzato e spin	ta attiva)		(AIMI)			E + G ₁ + G	+ P + W ₂₁ 6) ₁₁ + ¥ ₂₂ *(₁₂ + Ψ ₂₃ *Q ₄	+			(N.B. Per P	onti in zona	urbana di i			DM2008 p	ar.5.1.3.8/3	2.4)								=
2		e.1	X+++ X+-+ V++	1					4																	1.00	1.00 1.00 1.00 1.00	0.30 -0.30	0.30 -0.30 0.30 -0.30	0.30	0.30 0.30 -0.30 -0.30	1,	1
5	Sisma Longitudinale X+		X+ X+++	i	i.		1	i i	i.																	1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00	-0.30 0.30	-0.30	-0.30 0.30	-0.30	1	1
7		d.1	X+-+ X++-		- 1																					1.00		-0.30 0.30		0.30 -0.30			
9			X+ X-++ X+	+	_			1	- 1																		-1.00 -1.00	-0.30 -0.30 -0.30	0.30	0.30 0.30	0.30	4	-1
11 12	Sisma Longitudinale	e.1	X-+- X	i	i			i i	1																	-1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00	-1.00 -1.00 -1.00 -1.00	0.30	0.30 -0.30 0.30 -0.30	-0.30 -0.30	0.30 0.30 -0.30 -0.30	4	-1 -1
13	Sisma Longitudinale X-	d.1	X-++ X+	- 1	- 1																					-1.00 -1.00		0.30 -0.30		0.30 0.30			
15 16			X-+- X		_		_																			-1.00 -1.00	0.70	-0.30	1.00	-0.30 -0.30	0.20		
17 18 19 20 21		e.1	Y-++ Y++-	1	1																					0.30 -0.30 0.30 -0.30 -0.30 -0.30 -0.30	0.30 -0.30 0.30 -0.30	0.30 0.	1.00 1.00 1.00 1.00	0.30 0.	0.30 0.30 -0.30 -0.30	4	4
20	Sisma Trasversale Y+	-	Y-+- Y+++	1	1		1	1	1																	-0.30 0.30	-0.30	1.00 1.00	1.00	-0.30 0.30	-0.30	-1	-1
22		4.1	Y-++ Y++-	1	1																					-0.30 0.30		1.00		0.30 -0.30			
25 26			Y+++ Y+++	_	\pm		т	T	7																		0.30	-1.00 -1.00	-1.00 -1.00	0.30	0.30	1	1
27 28	Sisma Trasversale Y-	c.1	Y+ Y	i	1			1	1																	0.30 -0.30 0.30 -0.30 0.30 -0.30 0.30	0.30 -0.30 0.30 -0.30	-1.00 -1.00	-1.00 -1.00 -1.00 -1.00	-0.30 -0.30	0.30 0.30 -0.30 -0.30	4	1 4
29 30	Sisina Trasversale 1-	4.1	Y+++ Y-+	-1	- 1																					0.30 -0.30		-1.00 -1.00		0.30 0.30			
32			Y+ Y				_		-																		0.20	-1.00 -1.00	0.30	-0.30 -0.30	1.00		
34 35		e.1	V-++ V+-+																							0.30 -0.30 0.30 -0.30 0.30 -0.30 0.30	0.30 -0.30 0.30 -0.30	0.30	0.30 0.30 -0.30 -0.30	1.00	1.00 1.00 1.00 1.00	4	4
36 37	Sisma Verticale V+		V+ V+++	1	1		1	1	1																	-0.30 0.30	-0.30	-0.30 0.30	-0.30	1.00 1.00	1.00	-1	-1
38		4.1	V-++ V+-+	- 1	- 1																					-0.30 0.30		0.30 -0.30		1.00			
41			V-+- V-+-	_	\pm		T	1	7																		0.30	0.30	0.30	-1.00 -1.00	-1.00 -1.00	1	1 1
43	Sisma Verticale V-	e.1	V+ V	i	1			1	1																	0.30	0.30 -0.30 0.30 -0.30	-0.30 -0.30	0.30 0.30 -0.30 -0.30	-1.00 -1.00	-1.00 -1.00 -1.00 -1.00	1	1
45 46	Some ventane v-	4.1	V++- V-+-	1	1																					0.30 -0.30 0.30 -0.30 -0.30 -0.30 -0.30		0.30		-1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00			
48			V+ V																							0.30 -0.30		-0.30 -0.30		-1.00 -1.00			\blacksquare
5B) (Corichi elementari comb	inorione sism	ico (terreno n	on defottor	irrato e spin	ta ativo)		(A2M1)			E+G ₁ +G	+ P + W ₂₁) ₁₁ + V ₂₂ *(12 + V21*Q	+			(N.B. Per P	onti in zona	urbana di i	nteso traffic	o V ₂₁ = 0.2	DM2008 p	par 5.1.3.8/3	2.4)								=
2		e.1	X+++ X+-+	1		-1		1	-1																	1.00 1.00	1.00 1.00 1.00 1.00	0.30 -0.30	0.30 -0.30 0.30 -0.30	0.30 0.30	0.30 0.30 -0.30 -0.30	1 -	1
4	Sisma Longitudinale X+		X++- X+	1		- 1	1	1	1																	1.00	1.00 1.00	0.30 -0.30	0.30 -0.30	-0.30 -0.30	-0.30 -0.30	1	1
6 7	Α+	4.1	X+++ X+++																							1.00 1.00 1.00 1.00 1.00 1.00 1.00		-0.30 -0.30		0.30			
8		-	X+ X-++	÷		÷	-	-	-																		-1.00	-0.30 0.30	0.30	-0.30	0.30	-1	-1
10		e.1	X-+- X-+-	1		1	1	1	1																	-1.00 -1.00	-1.00 -1.00 -1.00 -1.00	-0.30 0.30	0.30 -0.30 0.30 -0.30	0.30 -0.30	0.30 0.30 -0.30 -0.30	41 41	-1 -1
13	Sisma Longitudinale X-		X	1					1																	-1.00 -1.00	-1.00	0.30	-0.30	0.30	-0.30	-1	-1
14 15 16		d.1	X-+- X																							-1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00		0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30		0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30			
17 18		e.1	Y+++ Y-++	1		1	-	- 1	- 1																	0.30 -0.30	0.30 -0.30 0.30 -0.30	1.00 1.00	1.00 1.00 1.00 1.00	0.30 0.30	0.30 0.30 -0.30 -0.30	4	1 -1
19 20	Sisma Trasversale Y+		Y++- Y-+-			1		1	1																	0.30 -0.30 0.30 -0.30 0.30 -0.30 0.30	0.30 -0.30	1.00	1.00	-0.30 -0.30	-0.30 -0.30	4	-1 -1
22	17	4.1	Y-++ Y++-																							-0.30 -0.30 0.30		1.00		0.30			
24 25		1	Y-+- Y+-+	+		-		1	1																		0.30	1.00 -1.00	-1.00	-0.30 0.30	0.30	1	1
26 27		e.1	Y+ Y+	1		1		1	1																	0.30 -0.30 0.30 -0.30 0.30 -0.30 0.30 -0.30	0.30 -0.30 0.30 -0.30	-1.00 -1.00	-1.00 -1.00 -1.00 -1.00	0.30 -0.30	0.30 0.30 -0.30 -0.30	1	-1 -1
29 30	Sisma Trasversale Y-		Y Y+-+ Y+					1	1																	-0.30 0.30 -0.30	-6.30	-1.00 -1.00	-1.00	0.30 0.30	-0.30	-1	-1
31 32		4.1	Y+ Y			1																				0.30		-1.00 -1.00		-0.30 -0.30			
33	·	e.1	V+++ V-++	1		1		1	1																	0.30 -0.30 0.30 -0.30 0.30 -0.30 0.30 -0.30	0.30 -0.30 0.30 -0.30	0.30	0.30 0.30 -0.30 -0.30	1.00	1.00 1.00 1.00 1.00	4	-1 -1
35 36	Sisma Verticale V+	<u> </u>	V+++ V-++					1	1																	-0.30 -0.30	-0.30 -0.30	-0.30 -0.30	-0.30 -0.30	1.00	1.00	-1	-4
37 38 39		4.1	V-++ V+-+																							-0.30 0.30		0.30		1.00			
40 41		1-	V+ V++-			-		1	1																	-0.30 0.30	0.30	-0.30 0.30	0.30	1.00 -1.00	-1.00	1	1
42 43 44		e.1	V-+- V+																							0.30 -0.30 0.30 -0.30 0.30 -0.30 0.30	0.30 -0.30 0.30 -0.30	-0.30	0.30 0.30 -0.30 -0.30	-1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00	-1.00 -1.00 -1.00 -1.00	1	1
45 46	Sisma Verticale V-		V V-+-					,	- 1																	0.30	-0.30	0.30	-0.30	-1.00 -1.00	-1.00		-1
		4.1	1/4																							0.30		-0.30		-1.00			

SOTTOPASSO ANAS N°8 "TANGENZIALE"
(PR KM 228+704)

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	FOGLIO
Al_4_18_1_RELAZIONE CALCOLO,DOC	107 di 162

7.5 AZIONI

7.5.1 AZIONI TRASMESSE DALL'IMPALCATO

7.5.1.1 Carichi permanenti

CARICHI PERMANENTI	(g2)		totale		sull'appoggio			sul traverso di testata
travi		kN	1330.65	kN	665.33		kN/m	18.92
soletta		kN	4678.04	kN	2212.44		kN/m	62.93
Struttura Impalcato (P.str.imp)	(g2.1)					B1)	kN/m	81.85
cordolo esterno sx	(g2.2)	kN	53.22	kN	25.17	B2)	kN/m	25.17
cordolo interno sx	(g2.2)	kN	47.90	kN	22.65	B2)	kN/m	22.65
cordolo esterno dx	(g2.2)	kN	53.22	kN	25.17	B2)	kN/m	25.17
cordolo interno dx	(g2.2)	kN	47.90	kN	22.65	B2)	kN/m	22.65
pavimentazione	(g2.2)	kN	1668.98	kN	789.33	B2)	kN/m	22.45
pesi aggiunti cordolo esterno sx	(g2.2)	kN	70.96	kN	33.56	B2)	kN	33.56
pesi aggiunti cordolo interno sx	(g2.2)	kN	35.48	kN	16.78	B2)	kN	16.78
pesi aggiunti cordolo esterno dx	(g2.2)		35.48	kN	16.78	B2)	kN	16.78
pesi aggiunti cordolo interno dx	(g2.2)		70.96	kN	33.56	B2)	kN	33.56

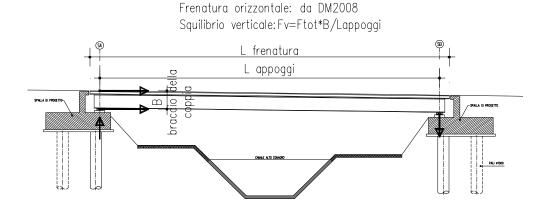
7.5.1.2 Carichi accidentali

Le colonne dei carichi mobili vengono disposte, a partire da quella di entità massima, in adiacenza al cordolo più esterno: si considerano quindi due condizioni di carico limite:

- 1. Cordolo esterno lato risvolto di sinistra
- 2. Cordolo esterno lato risvolto di destra

Le reazioni sulla spalla dovute ad ogni singola colonna di carico, compresa la folla sui marciapiedi, e la reazione totale sono le seguenti:

CARICHI ACCIDENTALI	(q1)		sul traverso di testata		
Reazioni dovute ad ogni singola colonna			$Q_{ik}(q1.1)$		q_{ik} (q1.2)
1° Colonna $Q_{1k}(4*150.00 \text{ kN}), q_{1k}(9.00 \text{ kN/m}^2)$	$(Q_k * \zeta_Q, q_k * \zeta_q)$	kN	294.30	kN/m	75.58
2° Colonna Q_{2k} (4*100.00 kN), q_{2k} (2.50 kN/m ²)	$(Q_k * \zeta_Q, q_k * \zeta_q)$	kN	196.20	kN/m	20.99
3° Colonna Q_{3k} (4*50.00 kN), q_{3k} (2.50 kN/m ²)	$(Q_k * \zeta_Q, q_k * \zeta_q)$	kN	98.10	kN/m	20.99
4° Colonna q _{4k} (2.50 kN/m ²)	$(q_k * \zeta_q)$	kN	-	kN/m	20.99
5° Colonna q_{5k} (2.50 kN/m ²)	$(q_k * \zeta_q)$	kN	-	kN/m	20.99
6° Colonna q_{6k} (2.50 kN/m ²)	$(q_k * \zeta_q)$	kN	-	kN/m	20.99
7° Colonna q _{7k} (2.50 kN/m ²)	$(q_k * \zeta_q)$	kN	-	kN/m	20.99
8° Colonna q_{8k} (2.50 kN/m ²)	$(q_k * \zeta_q)$	kN	-	kN/m	20.99
9° Colonna q _{9k} (2.50 kN/m ²)	$(q_k * \zeta_q)$	kN	-	kN/m	20.99
10° Colonna q _{10k} (2.50 kN/m ²)	$(q_k * \zeta_q)$	kN	-	kN/m	20.99
Totale Accidentali			588.59		264.53


AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	FOGLIO
A1_4_18_1_RELAZIONE CALCOLO,DOC	108 di 162

Folla cordoli			Q_{Fik}
Folla cordolo n.1 sx - esterno - $(5.00*0.5)$ kN/m ²	$(q_k*\zeta_F)$	kN/m	0.00
Folla cordolo n.2 sx - interno - (5.00*0.5) kN/m ²	$(q_k*\zeta_F)$	kN/m	0.00
Folla cordolo n.1 dx - esterno - $(5.00*0.5)$ kN/m ²	$(q_k * \zeta_F)$	kN/m	0.00
Folla cordolo n 2 dx - interno - (5 00*0 5) kN/m ²	$(a_{l}*\zeta_{E})$	kN/m	0.00

7.5.1.3 Azione di frenamento

AZIONE DI FRENAMENTO Lunghezza della zona caricata L	m	15.78	Tipo di appoggio Appoggio Fisso solo su	forza applicata a quota appoggio ed in	kN
Categoria di Ponte (mettere 1 o 2):		1	questa Spalla	corrisp. ruote corsia n.1 (+X)	201.30
Frenatura totale (cap.5.1.3.5 DM2008)	kN	402.61			18.75
Squilibrio di frenatura (mettere Si/No):		si		Squilibrio applicato a quota appoggio ed in corrisp. ruote corsia n.1 (+Z)	

L'impalcato trasmette questa azione alla spalla tramite gli appoggi. Tale azione genera uno squilibrio verticale schematizzato nel disegno seguente:

7.5.1.4 Azione centrifuga

AZIONE CENTRIFUGA	(q4)				
raggio di curvatura	m	1405.00			
Reazioni dovute ad ogni singola colonna		Q_{ik}			$Qv_{ik} \\$
1° Colonna Q _{1k} (4*150.00 kN)	kN	294.30	$Q_{v,1k}$	kN	8.38
2° Colonna Q _{2k} (4*100.00 kN)	kN	196.20	$Q_{v,2k}$	kN	5.59
3° Colonna Q _{3k} (4*50.00 kN)	kN	98.10	$Q_{v,3k}$	kN	2.79

Agente a quota pavimetazione.

7.5.1.5 Azione del vento

Come prescritto nel § 5.1.3.7 (Azioni di Neve, Vento: q5) del D.M. del 14.01.2008 (Norme tecniche per le costruzioni), per le azioni da neve e vento vale quanto specificato al Cap. 3.

AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO

A1_4_18_1_RELAZIONE CALCOLO,DOC

FOGLIO 109 DI 162

L'azione del vento può essere convenzionalmente assimilata ad un carico orizzontale statico, diretto ortogonalmente all'asse del ponte e/o diretto nelle direzioni più sfavorevoli per alcuni dei suoi elementi (ad es. le pile). Tale azione si considera agente sulla proiezione nel piano verticale delle superfici direttamente investite. L'azione del vento può essere valutata come azione dinamica mediante una analisi dell'interazione vento-struttura.

La superficie dei carichi transitanti sul ponte esposta al vento si assimila ad una parete rettangolare continua dell'altezza di 3 m a partire dal piano stradale.

Il carico neve si considera non concomitante con i carichi da traffico, salvo che per ponti coperti

La pressione del vento è data dall'espressione:

$$p = q_b c_e c_p c_d (3.3.2)$$

dove

q_b è la pressione cinetica di riferimento di cui al § 3.3.6;

ce è il coefficiente di esposizione di cui al § 3.3.7;

- c_p è il coefficiente di forma (o coefficiente aerodinamico), funzione della tipologia e della geometria della costruzione e del suo orientamento rispetto alla direzione del vento. Il suo valore può essere ricavato da dati suffragati da opportuna documentazione o da prove sperimentali in galleria del vento;
- cdè il coefficiente dinamico con cui si tiene conto degli effetti riduttivi associati alla non contemporaneità delle massime pressioni locali e degli effetti amplificativi dovuti alle vibrazioni strutturali. Indicazioni per la sua valutazione sono riportate al § 3.3.8.

Si è fatta una prima analisi confrontanto la pressione cinetica determinata con i criteri del DM del 14/01/2008, considerando un coefficiente di forma relativo alle travi ad anima piena e reticolari multiple (§ 3.3.10.4.2), con i criteri suggeriti dalle "Istruzioni per la valutazione delle azioni e degli effetti del vento sulle costruzioni" emanate dal CNR del 17 gennaio 2008. Da tale confronto sono risultate pressioni del vento inferiori a quelle indicate nel DM 4 maggio 1990 (aggiornamento delle norme tecniche per la progettazione, la esecuzione e il collaudo dei ponti stradali), pertanto, a favore di sicurezza, si assume un carico pari a 2.50 kN/m².

AZIONE DEL VENTO (D.M. 14/01/2008) (q5)

Pressione Vento kN/m² 2.50
Lung. di afferenza vento Impalcato m 8.39
Azione vento afferente alla spalla kN/m 20.98

 $F_{v,scarico}$ (kN/m) 20.98

7.5.1.6 Azione sismica

Le azioni che l'impalcato trasferisce alla spalla dipendono dalle caratteristiche dei dispositivi stessi ed in particolare dal valore della loro rigidezza orizzontale.

SOTTOPASSO ANAS N°8 "TANGENZIALE"
(PR KM 228+704)

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	FOGLIO
A1_4_18_1_RELAZIONE CALCOLO,DOC	110 di 162

Azioni orizzontali trasmesse alla spalla in condizione sismica:

AZIONE SISMICA	(q6) kh kv		0.260 0.000	Tipo di appoggio Appoggio Neoprene		sul traverso di testata
				N		F _{sl} (kN/m)
Sisma totale in senso longitudinale	F_{sl}	kN	2104.12	Quota di sisma Long. afferente alla spalla	(+X)	59.84
agente a quota appoggi con braccio:	h_{Fsl}	m	1.20		Squilibrio (+Z)	4.55
Squilibrio sisma longitudinale			si		•	
				0.5		
						$F_{st}(kN/m)$
Sisma totale in senso trasversale	F_{st}	kN	1052.06	Quota di sisma Trasv. afferente alla spalla	(+Y)	29.92
agente sopra quota appoggi:	h_{Fst}	m	1.20	Calcola Coefficiente afferenza e scrivi		
				0.5		
						$F_{sv}(kN/m)$
Sisma totale verticale	F_{sv}	kN	0.00		(+Z)	0.00

7.5.1.7 Azione di attrito

Azioni orizzontali longitudinali al ponte trasmesse alla spalla per attrito in funzione del tipo di appoggi:

AZIONE DI ATTRITO	(q7)	
Attrito (Struttura Impalcato)	Tipo di appoggio Appoggio Fisso solo su questa Spalla	(q7.1) kN (+X) 18.79
	1	
Attrito (Permanenti portati Impalcato)		(q7.2) kN (+X) 6.59

7.5.2 AZIONI RELATIVE ALLA SPALLA

7.5.2.1 Peso proprio

Avendo effettuato l'implemetazione con un modello di calcolo che schematizza gli elementi strutturali sia in termini di geometria, sia in termini di rigidezza, il peso proprio degli elementi costituenti la spalla è applicator in automatic dal programma di calcolo, assumendo come peso specific dell'elemento calcestrutto il valore:

$$\gamma_{cls} = 25.0 \text{ kN/m}^2$$

SOTTOPASSO ANAS N°8 "TANGENZIALE"
(PR KM 228+704)

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	FOGLIO
A1_4_18_1_RELAZIONE CALCOLODOC	111 di 162

7.5.2.2 Spinta delle terre

7.5.2.2.1 Spinta del terreno di monte

Si prevede un riempimento con terreno di buona qualità, con strati drenanti a ridosso della spalla.

Si assumono quindi i parametri geotecnici indicati nella tabella riportata di seguito.

Il diagramma delle pressioni è triangolare con valore massimo alla base:

PINTA DELLE TERRE			
pinta del terreno a monte		127/ 3	10.00
eso di volume	γ	kN/m ³	19.00
ngolo di attrito A1+M1	ϕ_{A1+M1}		35.00
ngolo di attrito A2+M2	ϕ_{A2+M2}	0	29.26
COMBINAZIONE A1-M1			
Coefficiente di spinta a riposo PALLA	$k_r = 1$ - sen ϕ =		0.426
ltezza totale della spalla+ 1/2 fondazione	$H_{tot} =$	m	3.61
ressione massima alla base	$p_1 =$	kN/m^2	29.25
pinta massima	$S_1 =$	kN/m	-52.79
gente alla quota da intradosso fondazione	$h_1 =$	m	1.203
ltezza totale della spalla+ 1/2 fondazione	$H_{tot} =$	m	5.67
ressione massima alla base	$p_1 =$	kN/m^2	45.90
pinta massima	$S_1 =$	kN/m	-130.01
gente alla quota da intradosso fondazione	$h_1 =$	m	1.888
ltezza totale della spalla+ 1/2 fondazione	$H_{tot} =$	m	9.81
ressione massima alla base	$p_1 =$	kN/m^2	79.48
pinta massima	$S_1 =$	kN/m	-389.85
gente alla quota da intradosso fondazione	$h_1 =$	m	3.270
COMBINAZIONE A2-M2			
Coefficiente di spinta a riposo PALLA	$k_r = 1 - sen \phi =$		0.511
ltezza totale della spalla+ 1/2 fondazione	$H_{tot} =$	m	3.61
ressione massima alla base	$p_2 =$	kN/m	35.07
pinta massima	$S_2 =$	kN	-63.30
gente alla quota da intradosso fondazione	h ₂ =	m	1.203
ltezza totale della spalla+ 1/2 fondazione	$H_{tot} =$	m	5.67
ressione massima alla base	$p_1 =$	kN/m^2	55.03
pinta massima	$S_1 =$	kN/m	-155.88
gente alla quota da intradosso fondazione	$h_1 =$	m	1.888
ltezza totale della spalla+ 1/2 fondazione	$H_{tot} =$	m	9.81
ressione massima alla base	$p_1 =$	kN/m^2	95.30
pinta massima	$S_1 =$	kN/m	-467.44

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	FOGLIO
A1_4_18_1_RELAZIONE CALCOLODOC	112 DI 162

agente alla quota da intradosso fondazione

 $h_1 = n$

3.270

7.5.2.2.2 Spinta relativa del sovraccarico sul terrapieno

Secondo quanto indicato nella Circolare 2 febbraio 2009, n. 617 (Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni" di cui al D.M. 14 gennaio 2008) § C5.1.3.3.7.1 (Carichi verticali da traffico su rilevati e su terrapieni adiacenti al ponte), ai fini del calcolo delle spalle, dei muri d'ala e delle altre parti del ponte a contatto con il terreno, sul rilevato o sul terrapieno si può considerare applicato lo schema di carico 1, in cui per semplicità, i carichi tandem possono essere sostituiti da carichi uniformemente distribuiti equivalenti, applicati su una superficie rettangolare larga 3,0 m e lunga 2,20 m. In un rilevato correttamente consolidato, si può assumere una diffusione del carico con angolo di 30°. Ai fini del calcolo delle spalle, dei muri d'ala e dei muri laterali, i carichi orizzontali da traffico sui rilevati o sui terrapieni possono essere considerati assenti.

Si è quindi assunto un carico uniforme medio individuato come somma dei carichi dello schema 1, diffusi con un angolo di 30° fino a metà altezza del fusto spalla, pensati applicati in sommità spalla

SPINTA RELATIVA AL SOVRACCARICO SUL TERRAPIENO

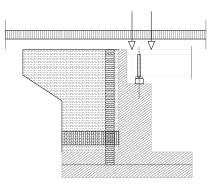
Si considerano due condizioni di carico sul terrapieno

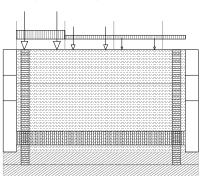
sovraccarico concomitante con impalcato carico		kN/m^2	9.00
sovraccarico concomitante con impalcato scarico		kN/m ²	40.70
COMBINAZIONE A1-M1			
pressione concomitante con impalcato carico	$p_{2a} =$	kN/m^2	3.84
pressione concomitante con impalcato scarico	$p_{2b} =$	kN/m^2	17.35
Spinta concomitante con impalcato carico	$S_{2a} =$	kN	-487.12
Spinta concomitante con impalcato scarico	$S_{2b} =$	kN	-2202.76
agente alla quota da intradosso fondazione	$h_1 =$	m	1.81
COMBINAZIONE A2-M2			
pressione concomitante con impalcato carico	$p_{2a} =$	kN/m^2	4.60
pressione concomitante con impalcato scarico	$p_{2b} =$	kN/m^2	20.81
Spinta concomitante con impalcato carico	$S_{2a} =$	kN	-584.07
Spinta concomitante con impalcato scarico	$S_{2b} =$	kN	-2641.13
agente alla quota da intradosso fondazione	$h_1 =$	m	1.81

Il diagramma delle pressioni, considerando la spinta riposo, è rettangolare.

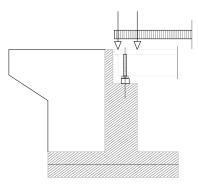
Si sono considerate le seguenti 4 combinazioni relative il sovraccarico (vedasi anche schema grafico):

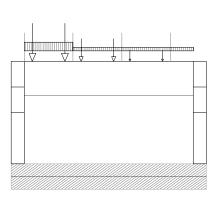
	a	Carichi rilevato ed impalcato contemporaneamente (strutt.+pavim.)
	b	Carichi solo impalcato
I	c	Carichi solo rilevato + Permanenti portati (Impalcato: struttura+pavimentazione)
	d	Assenza di impalcato

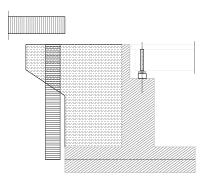

AUTOSTRADA DEL BRENNERO S.P.A.

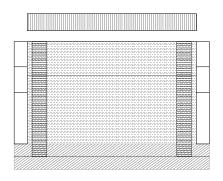

CODIFICA DOCUMENTO

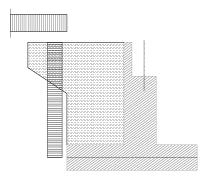
A1_4_18_1_RELAZIONE CALCOLO,DOC

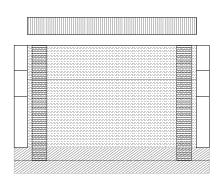

FOGLIO 113 DI 162


a) Carichi rilevato ed impalcato contemporaneamente (strutt.+pavim.)




b) Carichi solo impalcato




c) Carichi solo rilevato + Permanenti portati (Impalcato: struttura+pavimentazione)

d) Assenza di impalcato

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	FOGLIO
A1_4_18_1_RELAZIONE CALCOLODOC	114 di 162

7.5.2.2.3 Spinta relativa al terreno di valle

Prudenzialmente non si tiene conto del contributo alla stabilità offerto dalla spinta del terreno di valle.

7.5.2.2.4 <u>Carico sulla platea fondazione</u>

SI TIEE I			
altezza totale della spalla	$H_{tot} =$	m	1.70
pressione sulla fondazione - Terra	$p_t =$	kN/m^2	32.30
pressione sulla fondazione - Sovraccarico (a) RISVOLTO SX	$p_Q =$	kN/m ²	9.00
altezza totale della spalla	$H_{tot} =$	m	5.00
pressione sulla fondazione - Terra	$p_t =$	kN/m^2	95.00
pressione sulla fondazione - Sovraccarico (a) RISVOLTO DX	$p_Q =$	kN/m ²	9.00
altezza totale della spalla	$H_{tot} =$	m	8.61
pressione sulla fondazione - Terra	$p_t =$	kN/m^2	163.59
pressione sulla fondazione - Sovraccarico (a)	$p_Q =$	kN/m^2	9.00

7.5.2.3 Azione del vento

L'azione del vento sulla spalla da inserire nel modello si ottiene dalla formula seguente

$$q_{v} = L \cdot p_{v} \cdot \xi_{str}$$

Dove:

Lunghezza spalla investita dal vento (m)	L	11.69
Pressione del vento (kN/m²)	$p_v =$	250
Azione del vento sulla spalla (kN/m)	$q_v =$	29.23

7.5.2.4 Azione sismica

7.5.2.4.1 <u>Azioni inerziali</u>

L'inerzia del complesso spalla e terreno imbarcato si articola con i seguenti contributi elementari:

Paraghiaia

Fusto

Muri di risvolto

Orecchie

Fondazione

Inerzia terreno imbarcato

SPALLA

SOTTOPASSO ANAS N°8 "TANGENZIALE" (PR KM 228+704)	AUTOSTRADA DEL BRENNERO S.P.A. CODIFICA DOCUMENTO A1_4_18_1_RELAZIONE CALCOLODOC	FOGLIO 115 DI 162
Pressione applicata sul fusto Momento in asse platea RISVOLTO SX	$S_{iT} = \gamma * Bpost * k_h = kN/m^2$ 5.43 $M_{iTi} = kNm/m$ 14.00	
Pressione applicata sul risvolto Momento in asse platea RISVOLTO DX	$S_{iT} = \gamma * Bpost * k_h = kN/m^2$ 9.39 $M_{iTi} = kNm/m$ 141.96	
Pressione applicata sul risvolto Momento in asse platea	$S_{iT} = \gamma * Bpost * k_h = kN/m^2$ 13.34 $M_{iTi} = kNm/m$ 563.29	
Incremento di spinta del terreno		
coefficiente di spinta attiva (M1) coefficiente di spinta attiva (M2)	$k_a = tg^2 (45^\circ - \phi/2) =$ 0.271 $k_a = tg^2 (45^\circ - \phi/2) =$ 0.343	

7.5.2.4.2 Spinta terre

Le spinte delle terre sono calcolate in regime di spinta attiva; per il calcolo delle spinte sismiche in tali condizioni così come riportato nel $\S 7.11.6.2.1$ del D.M., la spinta totale di progetto E_d può essere calcolato come:

$$S_{t} = 1/2 \times \gamma \times \left. h_{tot}^{-2} \right. \times k$$

dove il coefficiente di spinta del terreno è calcolato mediante la formula di Mononobe e Okabe.

Il punto di applicazione della spinta attiva è posto ad h_{tot} /3, mentre quello di applicazione della sovraspinta dinamica ad h_{tot} /2, con " h_{tot} " altezza del paramento su cui agisce la spinta delle terre.

La spinta delle terre vale:

Spinta	Terreno	Sismico
CDALL	4	

SPALLA			
altezza totale della spalla+ 1/2 fondazione	$H_{tot} =$	m	3.61
(M1) pressione sismica massima alla base	$p_{1s}(M1) =$	kN/m^2	18.59
(M1) spinta totale	$S_{1s}(M1) =$	kN/m	33.55
(M2) pressione sismica massima alla base	$p_{1s}(M2) =$	kN/m^2	23.56
(M2) spinta totale	$S_{1s}(M2) =$	kN/m	42.52
agente alla quota da intradosso fondazione	$h_{1s} =$	m	1.203
RISVOLTO SX			
altezza totale della spalla+ 1/2 fondazione	$H_{tot} =$	m	5.53
(M1) pressione sismica massima alla base	$p_{1s}(M1) =$	kN/m^2	28.45
(M1) spinta totale	$S_{1s}(M1) =$	kN/m	78.59
(M2) pressione sismica massima alla base	$p_{1s}(M2) =$	kN/m^2	36.05
(M2) spinta totale	$S_{1s}(M2) =$	kN/m	99.60
agente alla quota da intradosso fondazione	$h_{1s} =$	m	1.842
RISVOLTO DX			
altezza totale della spalla+ 1/2 fondazione	$H_{tot} =$	m	9.81
(M1) pressione sismica massima alla base	$p_{1s}(M1) =$	kN/m^2	50.51
(M1) spinta totale	$S_{1s}(M1) =$	kN/m	247.75
(M2) pressione sismica massima alla base	$p_{1s}(M2) =$	kN/m^2	64.01
· · · · · -	* ' '		

	AUTOSTRADA DE	AUTOSTRADA DEL BRENNERO S.P.A.		
SOTTOPASSO ANAS N°8 "TANGENZIALE"	CODIFICA DOCUMENTO			FOGLIO
(PR KM 228+704)	A1_4_18_1_RELAZI	ONE CALCOLO.DOC		116 di 162
(M2) spinta totale	$S_{1s}(M2) =$	kN/m	313.99	
agente alla quota da intradosso fondazione	$h_{ls} =$	m	3.270	
L'incremento sismico delle spinte dovute al terren	o risulta:			
1) SPALLA Approccio 1 - combinazione M1				
ipprocess i communicatione nii	pd	kN/m^2	30.386	
	Ed =	kN/m	54.846	
altezza muro+ 1/2 fondazione	H =	m	3.61	
incremento di spinta sismico	Dpd = pd - p1s =	kN/m^2	11.798	
Approccio 1 - combinazione M2				
	pd	kN/m^2	37.170	
	Ed =	kN/m	67.093	
altezza muro+ 1/2 fondazione	H =	m	3.61	
incremento di spinta sismico	Dpd = pd - p1s =	kN/m ²	13.614	
2) RISVOLTO SX Approccio 1 - combinazione M1				
	pd	kN/m^2	47.683	
	Ed =	kN/m	135.061	l
altezza risvolto sx+ 1/2 fondazione	H =	m	5.67	
incremento di spinta sismico	Dpd = pd - p1s =	kN/m ²	19.235	
Approccio 1 - combinazione M2				
	pd	kN/m^2	58.330	
1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	Ed =	kN/m	165.219)
altezza risvolto sx+ 1/2 fondazione	H=	m	5.67	
incremento di spinta sismico	Dpd = pd - p1s =	kN/m²	22.277	
3) RISVOLTO DX Approccio 1 - combinazione M1				
	pd	kN/m^2	82.571	
1	Ed =	kN/m	405.011	Į.
altezza risvolto sx+ 1/2 fondazione	H=	m	9.81	
incremento di spinta sismico	Dpd = pd - p1s =	kN/m ²	32.061	
Approccio 1 - combinazione M2		2	101 004	
	pd Ed =	kN/m ²	101.009	
	LA -	r/N/m	445 44	,

altezza risvolto sx+ 1/2 fondazione

incremento di spinta sismico

Ed =

H =

Dpd = pd - p1s =

kN/m

 kN/m^2

495.447

9.81

36.995

SOTTOPASSO ANAS N°8 "TANGENZIALE"	•
(PR KM 228+704)	

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	FOGLIO
A1_4_18_1_RELAZIONE CALCOLO.DOC	117 di 162

7.6 SOLLECITAZIONI

Le sollecitazioni afferenti ai vari elementi strutturali si sono estrapolate dal programma di calcolo: si riportano di seguito le tabelle riassuntive delle sollecitazioni massime afferent ai singoli elementi strutturali, per le combinazioni di carico significative (vedasi capitolo 6.4.1.2).

7.6.1 SOLLECITAZIONI MICROPALI DI FONDAZIONE

Si riporta di seguito lo schema della numerazione dei pali individuata nel programma di calcolo.

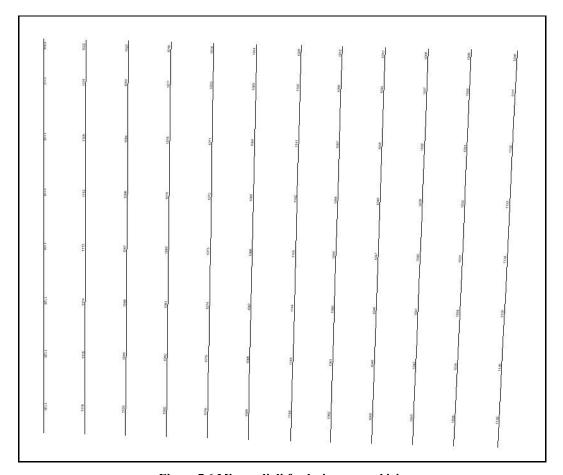


Figura 7.6 Micropali di fondazione paraghiaia

AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO

FOGLIO 118 DI 162

Al 4 18 1 RELAZIONE CALCOLODOC 118

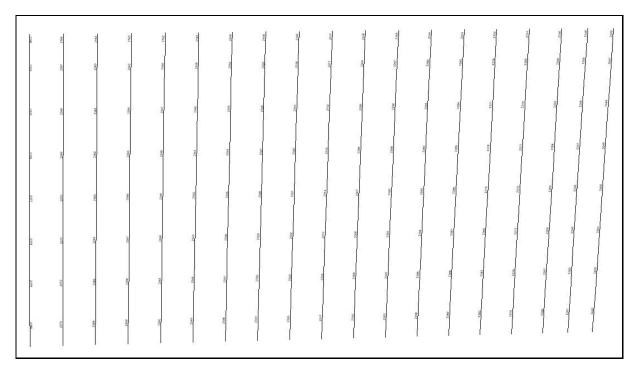


Figura 7.7 Micropali del Fusto.

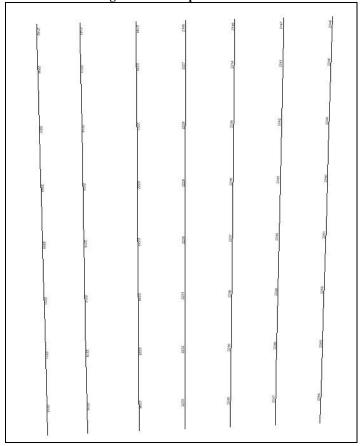


Figura 7.8 Micropali del Risvolto sinistro.

AUTOSTRADA DEL BRENNERO S.P.A. CODIFICA DOCUMENTO FOGLIO AL 4.18.1 RELAZIONE CALCOLODOC 119 DI 162

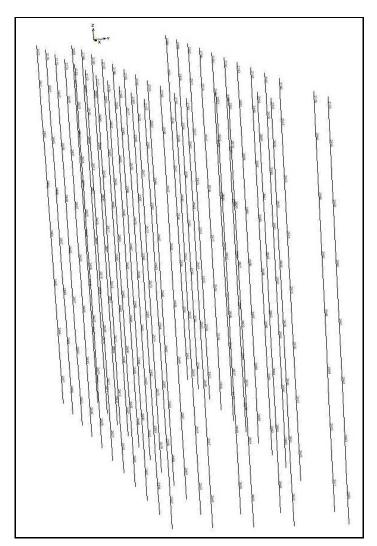


Figura 7.9 Micropali del Risvolto destro.

7.6.1.1 Stati limite ultimi Struttura: A1+M1

Fondazione paraghiaia

N	M	descrizione	elemento
-144.65	15.05	M2max	1131
-140.83	61.78	M2min	1026
-144.60	15.06	M3max	1131
-140.78	61.84	M3min	1026
-34.15	19.80	Pmin Comp.	1024
-236.80	0.00	Pmax Comp.	1139
-144.60	15.06	smax	1131
-140.78	61.84	smin	1026

Massimo sforzo di taglio ottenuto per quadratura:

elemento	1026	1026
V3	-88.18	-88.05
V2	-53.01	-52.93

AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO
Al 4 18 1 RELAZIONE CALCOLODOC

FOGLIO 120 DI 162

Fondazione fusto nuovo

N	M	descrizione	elemento
-259.94	22.67	M2max	2168
-263.75	5.18	M2min	2388
-260.23	22.80	M3max	2168
-264.04	5.21	M3min	2388
-82.02	4.20	Pmin Comp.	2179
-282.21	0.00	Pmax Comp.	2394
-257.73	22.71	smax	2168
-264.04	5.21	smin	2388

Massimo sforzo di taglio ottenuto per quadratura:

V2	32.71	32.46
V3	13.43	13.54
elemento	2168	2168
quadratura V2+V3	35.36	35.17

Fondazione fusto esistente

N	M	descrizione	elemento
-223.86	67.47	M2max	2149
-227.70	16.11	M2min	2255
-223.96	67.51	M3max	2149
-227.80	16.12	M3min	2255
-69.45	10.50	Pmin Comp.	2166
-259.12	0.00	Pmax Comp.	2261
-223.96	67.51	smax	2149
-227.80	16.12	smin	2255

Massimo sforzo di taglio ottenuto per quadratura:

V2	86.14	86.04
V3	69.45	69.48
elemento	2149	2149
quadratura V2+V3	110.65	110.59

Risvolto sinistro

N	M	descrizione	elemento
-205.69	69.65	M2max	2142
-209.53	16.56	M2min	2206
-126.89	71.12	M3max	2148
-130.73	16.80	M3min	2248
-76.22	40.06	Pmin Comp.	2148
-239.29	0.00	Pmax Comp.	2212
-170.82	70.56	smax	2144
-209.60	16.57	smin	2206

Massimo sforzo di taglio ottenuto per quadratura:

V2	101.07	90.28
V3	55.43	69.03
elemento	2148	2142
quadratura V2+V3	115.27	113.64

Risvolto destro

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	FOGLIO
Al_4_18_1_RELAZIONE CALCOLO,DOC	121 DI 162

N	M	descrizione	elemento
-702.60	40.72	M2max	2177
-706.42	9.61	M2min	2451
-358.02	25.61	M3max	2170
-361.84	5.91	M3min	2402
-164.79	9.98	Pmin Comp.	2192
-750.28	0.00	Pmax Comp.	2541
-703.20	40.72	smax	2177
-707.02	9.61	smin	2451

Massimo sforzo di taglio ottenuto per quadratura:

V2	32.98	32.74
V3	22.89	56.48
elemento	2170	2177
quadratura V2+V3	40.15	65.28

 $Fondazione\ risvolto\ destro-massimo\ N\ per\ la\ verifica\ a\ punzonamento$

N	M	descrizione	elemento
-750.28	0.00	Pmax Comp.	2541

7.6.1.2 Stati limite ultimi Geotecnica: A2+M1

Fondazione paraghiaia

N	M	descrizione	elemento
-92.09	16.57	M2max	1131
-89.26	67.98	M2min	1026
-92.09	16.57	M3max	1131
-89.26	67.98	M3min	1026
-28.42	25.84	Pmin Comp.	1024
-173.53	0.00	Pmax Comp.	1139
-80.64	16.29	smax	1131
-89.26	67.98	smin	1026

Fondazione fusto nuovo

N	M	descrizione	elemento
-218.76	22.00	M2max	2168
-116.59	7.42	M2min	2178
-217.17	22.05	M3max	2168
-220.00	5.11	M3min	2388
-87.57	5.11	Pmin Comp.	2179
-235.05	0.00	Pmax Comp.	2394
-217.17	22.05	smax	2168
-221.59	5.11	smin	2388

Fondazione fusto esistente

N	M	descrizione	elemento
-174.55	78.06	M2max	2149
-177.40	18.58	M2min	2255
-174.55	78.06	M3max	2149
-177.40	18.58	M3min	2255
-78.18	14.52	Pmin Comp.	2166

AUTOSTRADA DEL BRENNERO S.P.A.		
CODIFICA DOCUMENTO	FOGLIO	
A1_4_18_1_RELAZIONE CALCOLODOC	122 DI 162	

-200.74	0.00	Pmax Comp.	2261
-174.55	78.06	smax	2149
-177.40	18.58	smin	2255

Risvolto sinistro

N	M	descrizione	elemento
-158.23	81.11	M2max	2142
-161.08	19.24	M2min	2206
-94.75	83.76	M3max	2148
-97.59	19.79	M3min	2248
-72.93	62.04	Pmin Comp.	2148
-183.11	0.00	Pmax Comp.	2212
-141.91	81.77	smax	2143
-161.08	19.24	smin	2206

Risvolto destro

N	M	descrizione	elemento
-537.56	42.30	M2max	2177
-423.59	36.22	M2min	853
-287.90	25.13	M3max	2170
-203.15	19.01	M3min	869
-119.85	9.89	Pmin Comp.	2180
-559.00	0.00	Pmax Comp.	2457
-537.56	42.30	smax	2177
-423.59	36.22	smin	853

7.6.1.3 Condizione sismica Struttura: A1+M1

Fondazione paraghiaia

N	M	descrizione	elemento
-119.56	66.94	M2max	1026
-18.85	84.10	M2min	1026
-119.56	66.94	M3max	1026
-18.85	84.10	M3min	1026
-0.04	28.97	Pmin Comp.	1024
-137.28	0.00	Pmax Comp.	1036
-119.56	66.94	smax	1026
-18.85	84.10	smin	1026

N	M	descrizione	elemento
-17.02	13.25	M2max	2168
-14.98	4.58	M2min	2178
-73.68	10.45	M3max	2168
45.37	9.06	M3min	2168
55.69	10.27	Pmax Traz.	2167
-89.96	0.00	Pmax Comp.	2394
-17.02	13.25	smax	2168
-56.73	2.56	smin	2633

AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO
Al 4 18 1 RELAZIONE CALCOLODOC

FOGLIO 123 DI 162

Massimo sforzo di taglio ottenuto per quadratura:

V2	-123.44	-123.44
V3	-66.03	-66.03
elemento	1026	1026
quadratura V2+V3	139.99	139.99

Fondazione fusto nuovo

N	M	descrizione	elemento
-17.02	13.25	M2max	2168
-14.98	4.58	M2min	2178
-73.68	10.45	M3max	2168
45.37	9.06	M3min	2168
55.69	10.27	Pmax Traz.	2167
-89.96	0.00	Pmax Comp.	2394
-17.02	13.25	smax	2168
-56.73	2.56	smin	2633

Massimo sforzo di taglio ottenuto per quadratura:

V2	16.41	12.63
V3	2.40	15.58
elemento	2168	2168
quadratura V2+V3	16.58	20.06

Fondazione fusto nuovo – massimo N per la verifica a punzonamento

N	M	descrizione	elemento
-89.96	0	Pmax Comp.	2394

Fondazione fusto esistente

N	M	descrizione	elemento
-95.86	88.04	M2max	2150
-32.73	82.70	M2min	2149
-95.42	88.08	M3max	2149
-32.73	82.70	M3min	2149
18.26	10.36	Pmax Traz.	2166
-118.72	0.00	Pmax Comp.	2296
-95.42	88.08	smax	2149
-32.73	82.70	smin	2149

Massimo sforzo di taglio ottenuto per quadratura:

7.70	110.50	110.22
V2	118.50	118.33
V3	81.21	81.45
elemento	2149	2150
quadratura V2+V3	143.65	143.65

Fondazione fusto nuovo – massimo N per la verifica a punzonamento

_	The state of the s				
	N	M	descrizione	elemento	
	-118.72	0	Pmax Comp.	2296	

AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO
Al 4 18 1 RELAZIONE CALCOLODOC

FOGLIO 124 DI 162

Risvolto sinistro

N	M	descrizione	elemento
33.99	87.84	M2max	2148
-40.11	86.39	M2min	2142
-51.10	88.04	M3max	2143
-25.04	88.97	M3min	2148
38.44	50.34	Pmax Traz.	2148
-92.94	0.00	Pmax Comp.	2254
33.99	87.84	smax	2148
-40.11	86.39	smin	2142

Massimo sforzo di taglio ottenuto per quadratura:

V2	-144.24	110.81
V3	-9.94	90.09
elemento	2148	2148
quadratura V2+V3	144.59	142.81

Fondazione risvolto sinistro – massimo N per la verifica a punzonamento

N	M	descrizione	elemento
-92.94	0.00	Pmax Comp.	2254

Risvolto destro

N	M	descrizione	elemento
-104.98	21.45	M2max	2200
-187.78	20.71	M2min	853
-92.52	11.35	M3max	2170
-98.74	12.46	M3min	869
36.04	7.84	Pmax Traz.	2169
-416.62	0.00	Pmax Comp.	2541
-71.44	21.66	smax	2177
-189.99	20.70	smin	853

Massimo sforzo di taglio ottenuto per quadratura:

V2	16.44	12.57
V3	7.77	30.69
elemento	2170	2177
quadratura V2+V3	106.17	168.86

Fondazione risvolto destro– massimo N per la verifica a punzonamento

N	M	descrizione	elemento
-416.62	0.00	Pmax Comp.	2541

7.6.1.4 Condizione sismica Geotecnica: A2+M1

Fondazione paraghiaia

N	M	descrizione	elemento
-114.84	50.64	M2max	1026
-14.13	100.42	M2min	1026
-114.84	50.64	M3max	1026
-14.13	100.42	M3min	1026

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	FOGLIO
Al_4_18_1_RELAZIONE CALCOLO,DOC	125 di 162

4.15	34.11	Pmax Traz.	1024
-132.60	0.00	Pmax Comp.	1036
-96.42	50.10	smax	1026

Fondazione fusto nuovo

N	M	descrizione	elemento
-27.40	15.48	M2max	2168
-20.07	5.21	M2min	2178
-84.06	12.93	M3max	2168
-86.88	3.05	M3min	2388
45.00	10.03	Pmax Traz.	2167
-100.34	0.00	Pmax Comp.	2394
-27.40	15.48	smax	2168
-30.22	3.60	smin	2388

Fondazione fusto esistente

N	M	descrizione	elemento
-100.22	107.58	M2max	2149
-37.53	63.20	M2min	2149
-100.22	107.58	M3max	2149
-37.53	63.20	M3min	2149
10.89	6.95	Pmax Traz.	2166
-122.21	0.00	Pmax Comp.	2296
-100.22	107.58	smax	2149
-37.53	63.20	smin	2149

Risvolto sinistro

N	M	descrizione	elemento
37.83	107.79	M2max	2148
-42.69	66.27	M2min	2142
-30.21	108.25	M3max	2144
-21.19	69.46	M3min	2148
42.29	62.96	Pmax Traz.	2148
-90.86	0.00	Pmax Comp.	2212
37.83	107.79	smax	2148
-42.69	66.27	smin	2142

Risvolto destro

N	M	descrizione	elemento
-78.52	27.48	M2max	2177
-175.64	25.79	M2min	853
-102.42	14.32	M3max	2170
-98.26	14.63	M3min	869
25.92	8.25	Pmax Traz.	2169
-394.26	0.00	Pmax Comp.	2541
-79.65	27.53	smax	2177
-177.85	25.78	smin	853

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	FOGLIO
A1 4 18 1 RELAZIONE CALCOLO,DOC	126 DI 162

7.6.2 SOLLECITAZIONI FUSTO ESISTENTE

Si riporta di seguito lo schema della numerazione degli elementi shell individuati nel programma di calcolo.

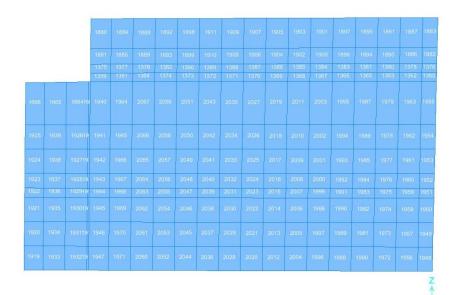


Figura 7.10 Fusto esitente.

7.6.2.1 Stati limite ultimi Struttura: A1+M1

Direzione 1

N	M	descrizione	elem.
-1335.1	326.1	M1max	2218
79.0	-132.0	M1min	91
321.7	114.6	F1max Traz.	1742
-1639.0	39.6	F1max Comp.	2219

Direzione 2

N	M	descrizione	elem.
-682.0	412.7	M2max	2347
-705.5	-228.0	M2min	97
422.0	70.8	F2max Traz.	87
-2334.8	309.1	F2max Comp.	2219

Sollecitazione di taglio

	V_{13}	V_{23}
max	402.0	398.46
min	-374.43	-351.88
max v.ass	402.0	398.46

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	FOGLIO
A1_4_18_1_RELAZIONE CALCOLODOC	127 di 162

7.6.2.2 Condizione sismica Struttura: A1+M1

Direzione 1

N	M	descrizione	elem.
-348.0	397.6	M1max	92
-778.5	-263.6	M1min	1742
386.0	140.0	F1max Traz.	2347
-1256.8	81.2	F1max Comp.	2219

Direzione 2

N	M	descrizione	elem.
-59.0	328.6	M2max	2351
-705.5	-228	M2min	2353
175.2	35.8	F2max Traz.	87
-1393.9	227.2	F2max Comp.	2219

Sollecitazione di taglio

	V_{13}	V_{23}
max	403.94	367.30
min	-331.1	-292.5
max_v.ass	403.94	367.30

7.6.3 SOLLECITAZIONI MURI DI RISVOLTO

Si riporta di seguito lo schema della numerazione degli elementi shell individuati nel programma di calcolo.

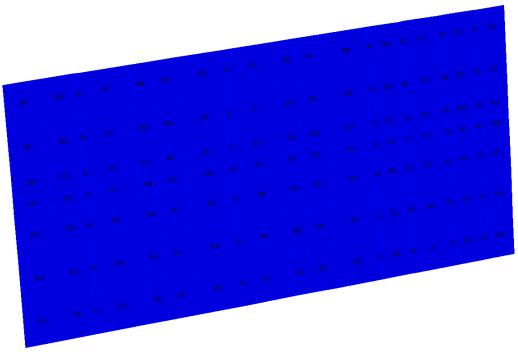


Figura 7.11 Risvolto sinistro esistente.

AUTOSTRADA DEL BRENNERO S.P.A.		
CODIFICA DOCUMENTO	FOGLIO	
A1 A 19 1 DELAZIONE CALCOLODOC	128 DI 162	

A1_4_18_1_RELAZIONE CALCOLO,DOC

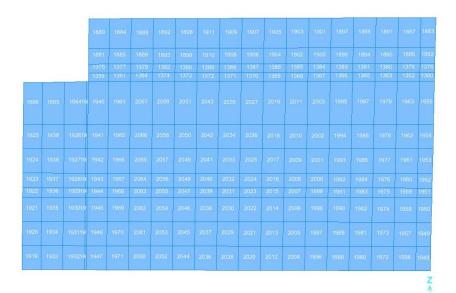


Figura 7.12 Risvolto destro di nuova costruzione.

7.6.3.1 Stati limite ultimi Struttura: A1+M1

Risvolto di Sinistra

Direzione 1

N	M	descrizione	elem.
8.7	240.6	M1max	337
16.0	-84.5	M1min	355
253.4	-16.0	F1max Traz.	346
-91.6	77.8	F1max Comp.	335

Direzione 2

N	M	descrizione	elem.
-376.6	254.3	M2max	338
-210.4	-65.8	M2min	422
179.2	85.9	F2max Traz.	283
-535.8	212.0	F2max Comp.	332

Sollecitazione di taglio

	V_{13}	V_{23}
max	204.21	290.29
min	-258.28	-133.46
max_v.ass	258.28	290.30

Risvolto di Destra

Direzione 1 – porzione alta

N M descrizione elem

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	FOGLIO
A1_4_18_1_RELAZIONE CALCOLO,DOC	129 di 162

217.2	102.9	M1max	2047
47.7	-238.9	M1min	1974
385.2	11.0	F1max Traz.	2065
-67.5	59.0	F1max Comp.	1883

Direzione 2 – porzione alta

N	M	descrizione	elem.
-308.3	417.7	M2max	1883
-44.6	-467.4	M2min	1948
405.7	107.5	F2max Traz.	2060
-405.4	-189.7	F2max Comp.	1981

Sollecitazione di taglio – po<u>rziona alta</u>

V_{13}	207.11	6.15
V_{23}	-109.81	-225.16
elemento	2039	2001

Direzione 1 – porzione bass<u>a</u>

N	M	descrizione	elem.
541.3	250.8	M1max	1914
451.3	-601.1	M1min	1361
1704.8	-216.6	F1max Traz.	1666
-76.5	-83.1	F1max Comp.	1884

Direzione 2 – porzione bassa

N	M	descrizione	elem.
459.1	160.2	M2max	1933
-573.5	-634.6	M2min	1361
1297.7	23.3	F2max Traz.	1919
-578.3	-628.6	F2max Comp.	1361

Sollecitazione di taglio – po<u>rziona bassa</u>

V_{13}	37.90	-8.78
V_{23}	28.17	-101.06
elemento	1941	1971

7.6.3.2 Condizione sismica Struttura: A1+M1

Risvolto di Sinistra

Direzione 1

N	M	descrizione	elem.
2.3	264.9	M1max	337
43.4	-128.7	M1min	384
163.5	67.3	F1max Traz.	346
-72.1	108.9	F1max Comp.	335

Direzione 2

	N	M	descrizione	elem.
-1	46.1	278.4	M2max	243

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	FOGLIO
Al_4_18_1_RELAZIONE CALCOLODOC	130 рі 162

	-127.0	-98.4	M2min	410
Ī	49.8	49.6	F2max Traz.	283
Ī	-382.1	117.2	F2max Comp.	133

Sollecitazione di taglio

	V_{13}	V_{23}
	163.7	281.0
max	1	7
min	-271.8	-177.3
max_v.ass	271.80	281.07

Risvolto di Destra

Direzione 1 – porzione alta

N	M	descrizione	elem.
0.0	141.1	M1max	1956
-5.8	-221.5	M1min	2031
209.4	55.0	F1max Traz.	2059
-51.5	-7.1	F1max Comp.	2052

Direzione 2 – porziona alta

N	M	descrizione	elem.
-304.3	614.3	M2max	1956
-104.5	-539.2	M2min	1883
132.4	136.7	F2max Traz.	1892
-395.3	-47.1	F2max Comp.	1981

Sollecitazione di taglio – porziona alta

V_{13}	187.02	-16.89
V_{23}	95.66	-183.77
elemento	2038	1977

Direzione 1 – porzione bassa

N	M	descrizione	elem.
167.1	353.2	M1max	1361
91.1	-305.5	M1min	1361
555.2	152.8	F1max Traz.	1939
-242.4	153.7	F1max Comp.	1919

Direzione 2 – porzione bassa

N	M	descrizione	elem.
132.2	377.0	M2max	1884
-430.3	-369.5	M2min	1377
317.6	7.8	F2max Traz.	1919
-650.5	-54.5	F2max Comp.	1919

Sollecitazione di taglio – po<u>rziona bassa</u>

V_{13}	228.42	193.64
V_{23}	42.16	-152.57
elemento	1920	1919

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	FOGLIO
A1 A 18 1 DELAZIONE CALCOLODOC	131 di 162

7.7 VERIFICHE DEGLI ELEMENTI STRUTTURALI

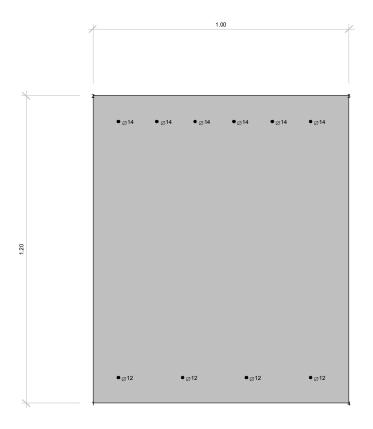
Di seguito si riportano le verifiche degli elementi ritenuti più significativi e per le Combinazioni di carico risultate più critiche.

I calcoli di verifica sono effettuati con il metodo degli Stati Limite, applicando il combinato D.M.14.01.2008 con l'UNI EN 1992 (Eurocodice 2); risultano i seguenti tipi di verifiche:

- 1) Verifiche agli Stati Limite Ultimi (Approccio 1, combinazione 1 A1M1): Ed \leq Rd Presso-Flessione Taglio
- Verifiche delle azioni Sismiche (Approccio 1, combinazione 1 A1M1): si verifica che le massime tensioni presenti nel calcestruzzo siano inferiori a σ_c < 0.60 f_{ck} e quelle dell'acciaio σ_s < 0.80 f_{yk}

Presso-Flessione Taglio

7.7.1 VERIFICHE FUSTO ESISTENTE


Caratteristiche geometriche della sezione – Direzione 1 (armatura orizzontale):

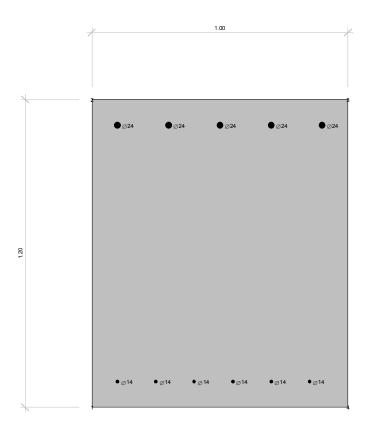
Larghezza b (cm)	100.0	
Altezza h (cm)	120.0	
Armatura tesa – lato contro terra (cm²)	6Φ14/m	= 9.24
Copriferro c (cm)	9.00	
Armatura compressa – lato non contro terra (cm²)	4Φ12/m	= 6.79
Copriferro armatura compressa c' (cm)	9.00	

AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO
A1_4_18_1_RELAZIONE CALCOLO,DOC

FOGLIO 132 DI 162

Caratteristiche geometriche della sezione - Direzione 2 (armatura verticale):


Larghezza b (cm)	100.0	
Altezza h (cm)	120.0	
Armatura tesa – lato contro terra (cm²)	5Φ24/m	= 22.62
Copriferro c (cm)	9.00	
Armatura compressa – lato non contro terra (cm²)	6Φ14/m	= 9.24
Copriferro armatura compressa c' (cm)	9.00	

AUTOSTRADA DEL BRENNERO S.P.A.

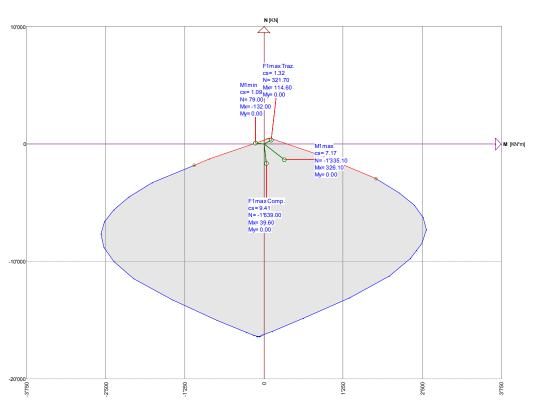
CODIFICA DOCUMENTO

A1_4_18_1_RELAZIONE CALCOLO,DOC

FOGLIO 133 DI 162

7.7.1.1 Verifiche allo stato limite ultimo per Presso-Flessione – Direzione 1 (armatura orizzontale)

Sollecitazio	oni Resistenti (M,N):					
Piano	Soll. Minima	Def. Limite		Soll. Massima	Def. Limite	
N	-16226.64	-0.0035 (sez)		355.05	0.01 (arm)	
Mx	-188.12	0.01 (arm)		378.45	0.01 (arm)	
My	-249.84	0.01 (arm)		223.41	0.01 (arm)	
Sollecitazio	oni di progetto:					
Comb	Desc.	N	Ecc. X	Ecc. Y	Mx	My
1	M1max	-1335.10	0.00	0.00	326.10	0.00
2	M1min	79.00	0.00	0.00	-132.00	0.00
3	F1max Traz.	321.70	0.00	0.00	114.60	0.00
4	F1max Comp.	-1639.00	0.00	0.00	39.60	0.00
Verifiche:						
	Comb	Coeff. di	sicurezza	Mat. lin	mitazione	
	1		7.1740		sezione	
	2		1.0882		armatura	
	3		1.3197		armatura	
	4		9.4068		sezione	


AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO

A1_4_18_1_RELAZIONE CALCOLO,DOC

FOGLIO 134 di 162

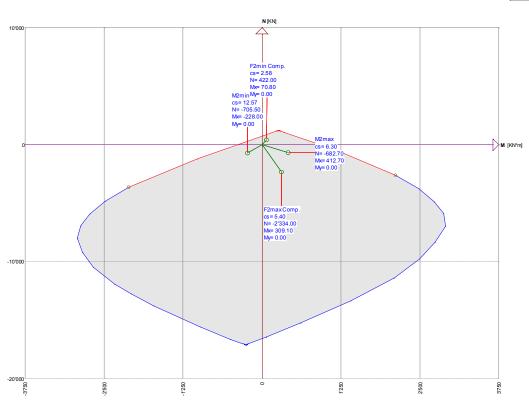
Piano per asse N

7.7.1.2 Verifiche allo stato limite ultimo per Presso-Flessione – Direzione 2 (armatura verticale)

Sollecitazioni Resistenti (M,N):

Pian	o Soll. Minima	Def. Lin	nite	Soll. Massima		Def. Limite		
N	-16592.24	-0.0035 (-0.0035 (sez)		0.0035 (sez) 724.49		0.01 (arm)	
Mx	-381.20	0.01 (ar	m)	919.55		0.01 (arm)		
My	-519.36	0.01 (ar	m)	503.08		0.01 (arm)		
Solled	citazioni di progetto:							
Comb	Desc.	N	Ecc. X	Ecc. Y	Mx	My		
1	M2max	-682.70	0.00	0.00	412.70	0.00		
2	M2min	-705.50	0.00	0.00	-228.00	0.00		
3	F2min Comp.	422.00	0.00	0.00	70.80	0.00		
4	F2max Comp.	-2334.00	0.00	0.00	309.10	0.00		

Verifiche:


Comb	Coeff. di sicurezza	Mat. limitazione
1	6.3026	sezione
2	12.5659	sezione
3	2.5779	armatura
4	5.3983	sezione

AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO
A1_4_18_1_RELAZIONE CALCOLODOC

FOGLIO 135 DI 162

Piano per asse N

7.7.1.3 Verifiche a taglio allo stato limite ultimo

V_{Ed}	402.00	kN
N_{Ed}	960	kN
Rck	30	N/mm ²
f _{ck}	24.9	N/mm ²
γ _c =	1.5	
f_{cd}	14.1	
b _w	1000	mm
h	1200	mm
С	90	mm
d	1110	mm
f	14	mm
n°	6	
A _{sl}	923.16	mm ²
hol	0.001	
σ_{cp}	0.8	N/mm ²
k	1.4245	
V _{min}	0.2969	
	375.05	kN
	462.79	kN
V_{rd}	462.79	kN

AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO

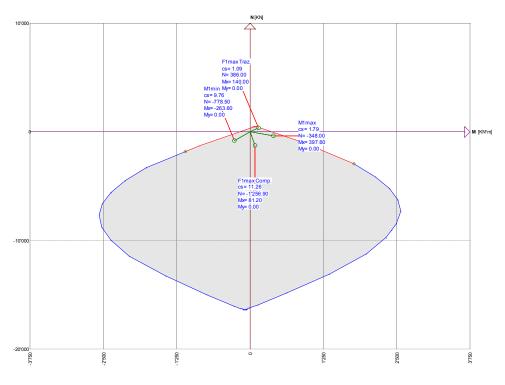
A1_4_18_1_RELAZIONE CALCOLO,DOC

FOGLIO 136 DI 162

SEZIONE VERIFICATA A TAGLIO

7.7.1.4 Verifiche slu (sisma)

Piano	Soll. Minima	Def. Limite	Soll. Massima	Def. Limite
N	-16226.64	-0.0035 (sez)	355.05	0.01 (arm)
Mx	-188.12	0.01 (arm)	378.45	0.01 (arm)
My	-249.84	0.01 (arm)	223.41	0.01 (arm)


Sollecitazioni di progetto – Direzione 1:

Comb	Desc.	N	Ecc. X	Ecc. Y	Mx	My
1	M1max	-348.00	0.00	0.00	397.60	0.00
2	M1min	-778.50	0.00	0.00	-263.60	0.00
3	F1max Traz.	386.00	0.00	0.00	140.00	0.00
4	F1max Comp.	-1256.90	0.00	0.00	81.20	0.00

Verifiche – Direzione 1:

Mat. limitazione	Coeff. di sicurezza	Comb
armatura	1.7907	1
sezione	9.7648	2
armatura	1.0919	3
sezione	11.2589	4

Piano per asse N

AUTOSTRADA DEL BRENNERO S.P.A.

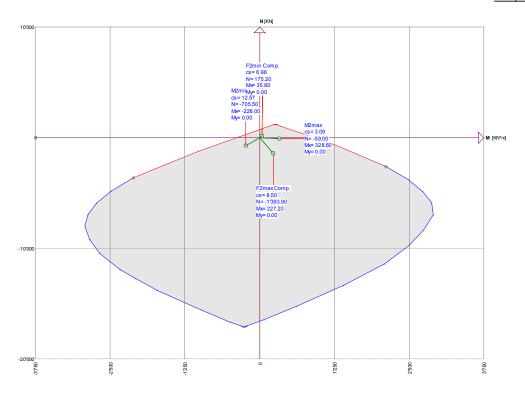
CODIFICA DOCUMENTO

A1_4_18_1_RELAZIONE CALCOLO,DOC

FOGLIO 137 DI 162

Sollecitazioni Resistenti (M,N) – Direzione 2:

Piano	Soll. Minima	Def. Limite	Soll. Massima	Def. Limite
N	-16592.24	-0.0035 (sez)	724.49	0.01 (arm)
Mx	-381.20	0.01 (arm)	919.55	0.01 (arm)
My	-519.36	0.01 (arm)	503.08	0.01 (arm)


Sollecitazioni di progetto – Direzione 2:

Comb	Desc.	N	Ecc. X	Ecc. Y	Mx	My
1	M2max	-59.00	0.00	0.00	328.60	0.00
2	M2min	-705.50	0.00	0.00	-228.00	0.00
3	F2min Comp.	175.20	0.00	0.00	35.80	0.00
4	F2max Comp.	-1393.90	0.00	0.00	227.20	0.00

Verifiche – Direzione 2:

Comb	Coeff. di sicurezza	Mat. limitazione
1	3.0945	armatura
2	12.5659	sezione
3	6.9772	armatura
4	8.4998	sezione

Piano per asse N

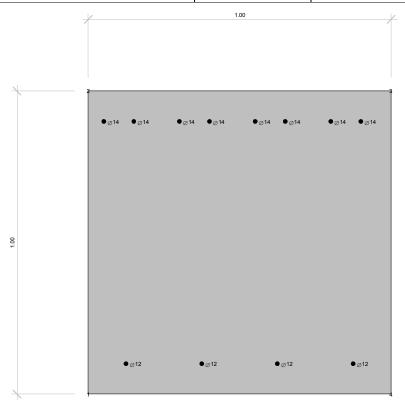
Verifica a taglio ultimo:

V_{Ed}	403.94	kN
N_{Ed}	985	kN
Rck	30	N/mm ²
f _{ck}	24.9	N/mm ²
γ_{c} =	1.5	
f _{cd}	14.1	
b _w	1000	mm

AUTOSTRADA DEL BRENNERO S.P.A.			
CODIFICA DOCUMENTO	FOGLIO		
Al_4_18_1_RELAZIONE CALCOLO,DOC	138 di 162		

h	1200	mm	
С	90	mm	
d	1110	mm	
f	14	mm	
n°	6		
A _{sl}	923.16	mm ²	
ρ I	0.001		
$\sigma_{\sf cp}$	0.8	N/mm ²	
k	1.4245		
V _{min}	0.2969		
	378.52	kN	
	466.26	kN	
V_{rd}	466.26	kN	
SEZIONE VERIFICATA A TAGLIO			

SOTTOPASSO ANAS N°8 "TANGENZIALE"
(PR KM 228+704)

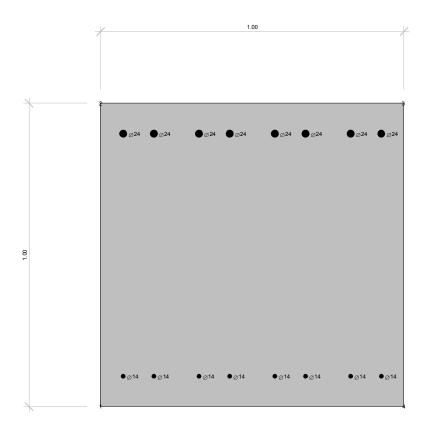

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	FOGLIO
A1_4_18_1_RELAZIONE CALCOLO.DOC	139 di 162

7.7.2 VERIFICHE MURI DI RISVOLTO

7.7.2.1 Risvolto sinistro

Caratteristiche geometriche della sezione – Direzione 1 (armatura orizzontale):

Larghezza b (cm)	100.0	
Altezza h (cm)	100.0	
Armatura tesa – lato contro terra (cm²)	8Ф14/m	= 12.32
Copriferro c (cm)	9.00	
Armatura compressa – lato non contro terra (cm²)	4Φ12/m	= 4.52
Copriferro armatura compressa c' (cm)	9.00	

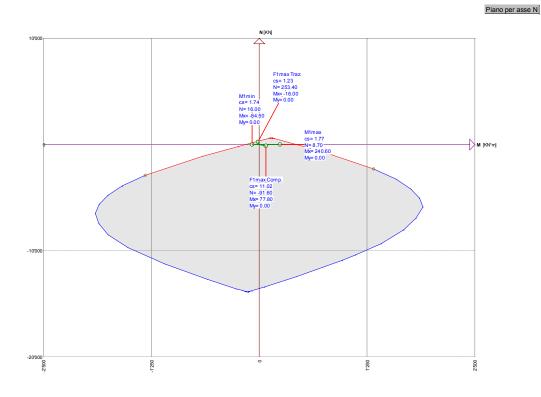

Caratteristiche geometriche della sezione - Direzione 2 (armatura verticale):

Larghezza b (cm)	100.0	
Altezza h (cm)	100.0	
Armatura tesa – lato contro terra (cm²)	8Ф24/m	= 36.19
Copriferro c (cm)	9.00	
Armatura compressa – lato non contro terra (cm²)	8Ф14/m	= 12.32
Copriferro armatura compressa c' (cm)	9.00	

AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO
AL 4_18_1_RELAZIONE CALCOLODOC

FOGLIO 140 DI 162


7.7.2.2 Verifiche allo stato limite ultimo per Presso-Flessione – Direzione 1 (armatura orizzontale)

Piano	oni Resistenti (M,N): Soll. Minima	Def. Limite		Soll. Massima	Def. Limite	
N	-13566.93	-0.0035 (sez)		354.04	0.01 (arm)	
Mx	-159.34	0.01 (arm)		433.88	0.01 (arm)	
My	-299.91	0.01 (arm)		277.66	0.01 (arm)	
Sollecitazio	oni di progetto:					
Comb	Desc.	N	Ecc. X	Ecc. Y	Mx	My
1	M1max	8.70	0.00	0.00	240.60	0.00
2	M1min	16.00	0.00	0.00	-84.50	0.00
3	F1max Traz.	253.40	0.00	0.00	-16.00	0.00
4	F1max Comp.	-91.60	0.00	0.00	77.80	0.00
Verifiche:						
	Comb	Coeff. di	sicurezza	Mat. lin	nitazione	
	1	1.7744			armatura	
	2	1.7374			armatura	
	3		1.2253		armatura	
	4		11.0243		armatura	

AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO A1_4_18_1_RELAZIONE CALCOLO,DOC FOGLIO

141 di 162

7.7.2.3 Verifiche allo stato limite ultimo per Presso-Flessione – Direzione 2 (armatura verticale)

Soll. Massima

963.79

Def. Limite

0.01 (arm)

Sollecitazioni I	Resistenti (M,N):
Piano	Soll. Minima

-14155.45

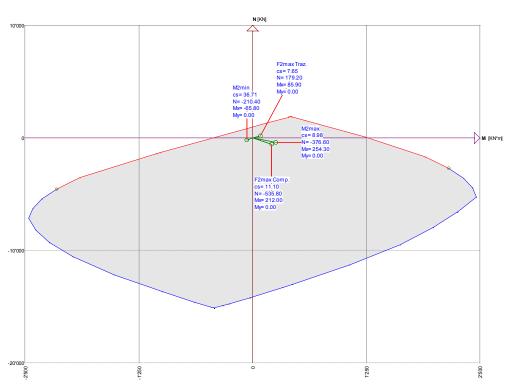
Mx	-433.70	0.01 (ar	rm)	1267.91		0.01 (arm)
My	-740.53	-0.0035 (sez)		740.53		-0.0035 (sez)
Solled	citazioni di progetto:					
Comb	Desc.	N	Ecc. X	Ecc. Y	Mx	My
1	M2max	-376.60	0.00	0.00	254.30	0.00
2	M2min	-210.40	0.00	0.00	-65.80	0.00
3	F2max Traz.	179.20	0.00	0.00	85.90	0.00
4	F2max Comp.	-535.80	0.00	0.00	212.00	0.00

Def. Limite

-0.0035 (sez)

Verifiche:

N


Comb	Coeff. di sicurezza	Mat. limitazione
1	8.9788	sezione
2	36.7077	sezione
3	7.6532	armatura
4	11.1019	sezione

AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO A1_4_18_1_RELAZIONE CALCOLO.DOC FOGLIO

142 di 162

7.7.2.4 Verifiche a taglio allo stato limite ultimo

V _{Ed}	290.29	kN	
N_{Ed}	260	kN	
Rck	30	N/mm ²	
f _{ck}	24.9	N/mm ²	
γ _c =	1.5		
f_{cd}	14.1		
b _w	1000	mm	
h	1000	mm	
С	90	mm	
d	910	mm	
f	14	mm	
n°	6		
A _{sl}	923.16	mm ²	
hol	0.001		
$\sigma_{\sf cp}$	0.3	N/mm ²	
k	1.4688		
V _{min}	0.3109		
	253.93	kN	
	318.41	kN	
V_{rd}	318.41	kN	
SEZIONE VERIFICATA A TAGLIO			

AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO

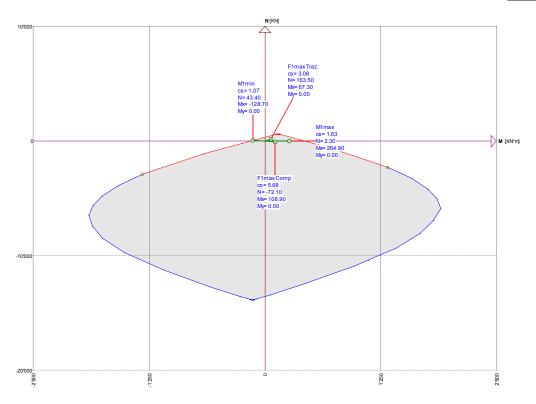
A1_4_18_1_RELAZIONE CALCOLO.DOC

FOGLIO 143 DI 162

7.7.2.5 Verifiche slu (sisma)

Sollecitazioni Resistenti (M,N) – Direzione 1:

Piano	Soll. Minima	Def. Limite	Soll. Massima	Def. Limite
N	-13566.93	-0.0035 (sez)	354.04	0.01 (arm)
Mx	-159.34	0.01 (arm)	433.88	0.01 (arm)
My	-299.91	0.01 (arm)	277.66	0.01 (arm)


Sollecitazioni di progetto – Direzione 1:

Comb	Desc.	N	Ecc. X	Ecc. Y	Mx	My
1	M1max	2.30	0.00	0.00	264.90	0.00
2	M1min	43.40	0.00	0.00	-128.70	0.00
3	F1max Traz.	163.50	0.00	0.00	67.30	0.00
4	F1max Comp.	-72.10	0.00	0.00	108.90	0.00

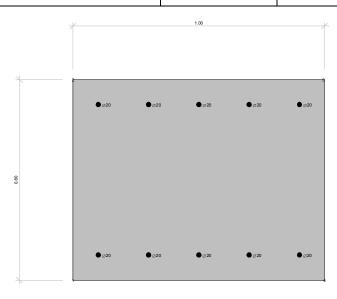
Verifiche – Direzione 1:

Comb	Coeff. di sicurezza	Mat. limitazione
1	1.6315	armatura
2	1.0748	armatura
3	3.0792	armatura
4	5.6761	armatura

Piano per asse N

Verifica a taglio slu:

V_{Ed}	281.00	kN
N_{Ed}	40	kN
Rck	30	N/mm ²


AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	FOGLIO
A1_4_18_1_RELAZIONE CALCOLODOC	144 di 162

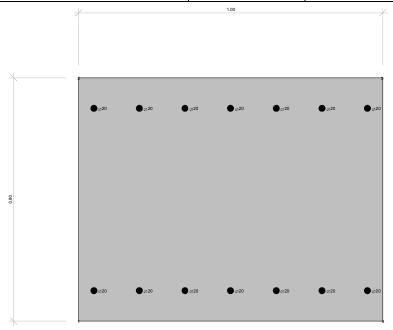
f_{ck}	24.9	N/mm ²		
γ _c =	1.5			
f_{cd}	14.1			
b _w	1000	mm		
h	1000	mm		
С	90	mm		
d	910	mm		
f	14	mm		
n°	6			
A_{sl}	923.16	mm ²		
hol	0.001			
σ_{cp}	0.0	N/mm ²		
k	1.4688			
V _{min}	0.3109			
	223.90	kN		
	288.38	kN		
V_{rd}	288.38	kN		
SEZIONE VERIFICATA A TAGLIO				

7.7.3 RISVOLTO DESTRO

Caratteristiche geometriche della sezione – Direzione 1 (armatura orizzontale) – porzione alta:

Larghezza b (cm)	100.0	
Altezza h (cm)	80.0	
Armatura tesa – lato contro terra (cm²)	1Φ20/20	= 15.70
Copriferro c (cm)	9.00	
Armatura compressa – lato non contro terra (cm²)	1Φ20/20	= 15.70
Copriferro armatura compressa c' (cm)	9.00	

AUTOSTRADA DEL BRENNERO S.P.A.

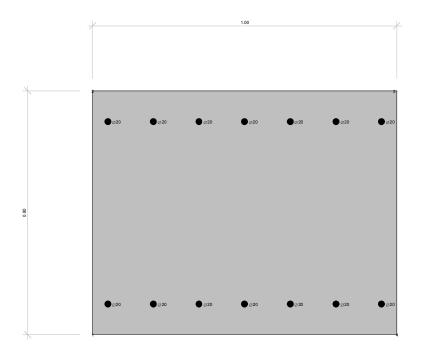

CODIFICA DOCUMENTO

A1_4_18_1_RELAZIONE CALCOLO,DOC

FOGLIO 145 DI 162

Caratteristiche geometriche della sezione - Direzione 2 (armatura verticale) – porziona alta:

Larghezza b (cm)	100.0	
Altezza h (cm)	80.0	
Armatura tesa – lato contro terra (cm²)	1Φ20/15	= 20.93
Copriferro c (cm)	9.00	
Armatura compressa – lato non contro terra (cm²)	1Φ20/15	= 20.93
Copriferro armatura compressa c' (cm)	9.00	

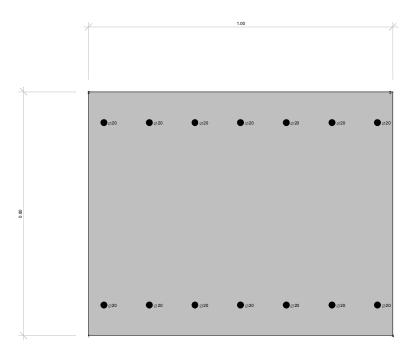

Caratteristiche geometriche della sezione – Direzione 1 (armatura orizzontale) – porzione bassa:

Larghezza b (cm)	100.0	
Altezza h (cm)	80.0	
Armatura tesa – lato contro terra (cm²)	1Φ20/15	= 20.93
Copriferro c (cm)	9.00	
Armatura compressa – lato non contro terra (cm²)	1Φ20/15	= 20.93
Copriferro armatura compressa c' (cm)	9.00	

AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO
A1_4_18_1_RELAZIONE CALCOLODOC

FOGLIO 146 DI 162


Caratteristiche geometriche della sezione - Direzione 2 (armatura verticale) – porziona bassa:

Larghezza b (cm)	100.0	
Altezza h (cm)	80.0	
Armatura tesa – lato contro terra (cm²)	1Φ20/15	= 20.93
Copriferro c (cm)	9.00	
Armatura compressa – lato non contro terra (cm²)	1Φ20/15	= 20.93
Copriferro armatura compressa c' (cm)	9.00	

AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO
A1_4_18_1_RELAZIONE CALCOLO,DOC

FOGLIO 147 DI 162

7.7.3.1 Verifiche allo stato limite ultimo per Presso-Flessione – PORZIONE ALTA - Direzione 1 (armatura orizzontale)

Sollecitazioni	Resistenti ((M,N)):
----------------	--------------	-------	----

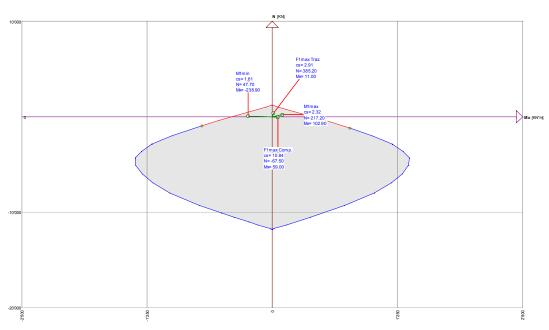
0.01 (arm)
0.01 (arm)
0.01 (arm)

Sollecitazioni di progetto:

Comb	Desc.	N	Ecc. X	Ecc. Y	Mx	My
1	M1max	217.20	0.00	0.00	102.90	0.00
2	M1min	47.70	0.00	0.00	-238.90	0.00
3	F1max Traz.	385.20	0.00	0.00	11.00	0.00
4	F1max Comp.	-67.50	0.00	0.00	59.00	0.00

Verifiche:

Comb	Coeff. di sicurezza	Mat. limitazione
1	2.3170	armatura
2	1.6054	armatura
3	2.9140	armatura
4	10.8401	armatura


AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO

A1 4 18 1 RELAZIONE CALCOLODOC

FOGLIO 148 DI 162

My costante= 0.00 [KN*m]

7.7.3.2 Verifiche allo stato limite ultimo per Presso-Flessione – PORZIONE ALTA - Direzione 2 (armatura verticale)

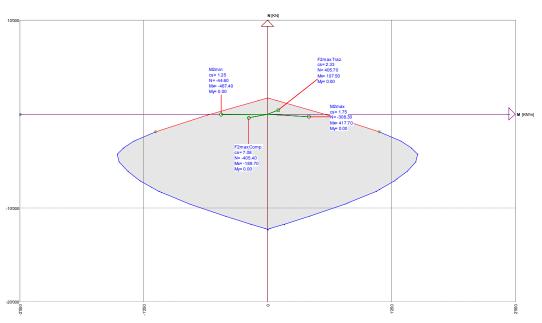
Sollecitazioni Resistenti (M,N):

Soll. Massima	Def. Limite
1721.05	0.01 (arm)
566.84	0.01 (arm)
719.03	0.01 (arm)
	1721.05 566.84

Sollecitazioni di progetto:

Comb	Desc.	N	Ecc. X	Ecc. Y	Mx	My
1	M2max	-308.30	0.00	0.00	417.70	0.00
2	M2min	-44.60	0.00	0.00	-467.40	0.00
3	F2max Traz.	405.70	0.00	0.00	107.50	0.00
4	F2max Comp.	-405.40	0.00	0.00	-189.70	0.00

Verifiche:


Comb	Coeff. di sicurezza	Mat. limitazione
1	1.7454	armatura
2	1.2529	armatura
3	2.3268	armatura
4	7.0830	sezione

AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO A1_4_18_1_RELAZIONE CALCOLO.DOC FOGLIO

149 di 162

7.7.3.3 Verifiche allo stato limite ultimo per Presso-Flessione – PORZIONE BASSA - Direzione 1 (armatura orizzontale)

Sollecitazioni Resistenti (M,N):

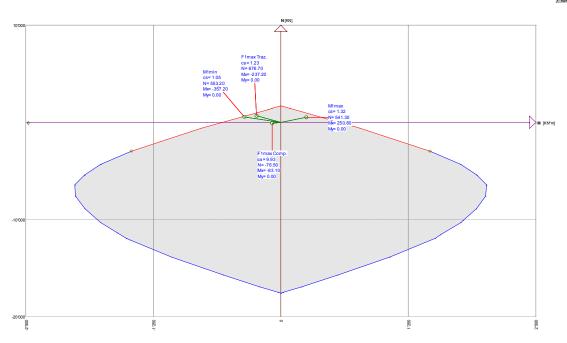
Piano	Soll. Minima	Def. Limite	Soll. Massima	Def. Limite
N	-17594.80	-0.0035 (sez)	1721.05	0.01 (arm)
Mx	-574.68	0.01 (arm)	574.68	0.01 (arm)
My	-752.30	0.01 (arm)	752.30	0.01 (arm)

Sollecitazioni di progetto:

Comb	Desc.	N	Ecc. X	Ecc. Y	Mx	My
1	M1max	541.30	0.00	0.00	250.80	0.00
2	M1min	553.20	0.00	0.00	-357.20	0.00
3	F1max Traz.	676.70	0.00	0.00	-237.20	0.00
4	F1max Comp.	-76.50	0.00	0.00	-83.10	0.00

Verifiche:

Comb	Coeff. di sicurezza	Mat. limitazione
1	1.3199	armatura
2	1.0528	armatura
3	1.2281	armatura
4	9.9285	sezione


AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO

A1_4_18_1_RELAZIONE CALCOLO.DOC

FOGLIO 150 DI 162

Piano per asse N

7.7.3.4 Verifiche allo stato limite ultimo per Presso-Flessione – PORZIONE BASSA - Direzione 2 (armatura verticale)

Soll. Massima

1721.05

0.00

-306.20

Def. Limite

0.01 (arm)

0.00

Sollecitazioni Resistenti (M,N):

F2max Comp.

Soll. Minima

-17594.80

Mx My	-574.68 -752.30	0.01 (ar 0.01 (ar	· ·	574.68 752.30		0.01 (arm) 0.01 (arm)
,	tazioni di progetto:	0.01 (ai	iii)	732.30		0.01 (am)
Comb	Desc.	N	Ecc. X	Ecc. Y	Mx	My
1	M2max	459.10	0.00	0.00	160.20	0.00
2	M2min	-302.10	0.00	0.00	-462.80	0.00
3	F2max Traz.	1297.70	0.00	0.00	23.30	0.00

Def. Limite

-0.0035 (sez)

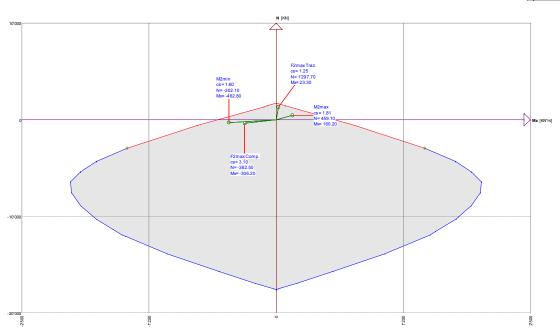
-382.50

Verifiche:

Piano

N

Comb	Coeff. di sicurezza	Mat. limitazione
1	1.8143	armatura
2	1.5973	armatura
3	1.2513	armatura
4	3.0963	sezione


0.00

AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO A1_4_18_1_RELAZIONE CALCOLO.DOC FOGLIO

151 DI 162

7.7.3.5 Verifiche a taglio allo stato limite ultimo

elemento	2001	
V _{max} =	225.16	kN/m

V_{Ed}	225.16	kN
N_{Ed}	0	kN
Rck	40	N/mm ²
f_{ck}	33.2	N/mm ²
γ _c =	1.5	
f _{cd}	18.8	
b _w	1000	mm
h	800	mm
С	80	mm
d	720	mm
f	20	mm
n°	6	
A _{sl}	1027.00	mm ²
hol	0.001	
$\sigma_{\sf cp}$	0.0	N/mm ²
k	1.5270	
V _{min}	0.3806	
	221.56	kN
	274.00	kN
V_{rd}	274.00	kN

SEZIONE VERIFICATA A TAGLIO

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	FOGLIO
Al_4_18_1_RELAZIONE CALCOLO,DOC	152 di 162

7.7.3.6 Verifiche in campo elastico (sisma)

Parametri di sollecitazione per la verifica a pressoflessione in campo elastico – Porzione alta - Direzione 1:

N Comb.	N	Ecc. X	Ecc. Y	Mx	My
1	0.00	0.00	0.00	141.10	0.00
2	-5.80	0.00	0.00	-221.50	0.00
3	209.40	0.00	0.00	55.00	0.00
4	-51.50	0.00	0.00	-7.10	0.00

Tensioni massime nei materiali – Porzione alta - Direzione 1:

comb.	σ max	σ min	σs max	σ s min
1	-2.59	0.00	139.40	-13.42
2	-4.07	0.00	216.98	-21.36
3	-0.39	0.00	124.43	12.77
4	-0.12	0.00	-0.23	-1.59

Parametri di sollecitazione per la verifica a pressoflessione in campo elastico – Porzione bassa - Direzione 2:

N Comb.	N	Ecc. X	Ecc. Y	Mx	My
1	-236.70	0.00	0.00	373.90	0.00
2	259.10	0.00	0.00	-353.10	0.00
3	555.20	0.00	0.00	152.80	0.00
4	-242.40	0.00	0.00	153.70	0.00

Tensioni massime nei materiali – Porzione bassa - Direzione 2:

comb.	σ max	σ min	σs max	σ s min
1	-5.94	0.00	214.95	-45.65
2	-5.28	0.00	311.55	-23.38
3	-1.01	0.00	240.66	21.36
4	-2.41	0.00	58.68	-22.61

Verifica a taglio in campo elastico (massimo taglio in direzione 1 e 2):

Larghezza b (cm)	100.00
Altezza h (cm)	80.00
copriferro baricentro armatura tesa (cm)	10.00
sezione reagente a taglio (cm ²)	6300
T (kN)	228.42
$\tau_{\rm c} ({\rm N/mm}^2)$	0.36

7.7.4 VERIFICHE MICROPALI

Le verifiche strutturali a SLU (pressoflessione e taglio) dei micropali vengono svolte in campo elastico e tenendo conto del solo contributo del tubo in acciaio secondo la seguente formula prevista dalla normativa:

$$\sigma_{x,Ed}^{2} + \sigma_{z,Ed}^{2} - \sigma_{z,Ed} \cdot \sigma_{x,Ed} + 3 \cdot \tau_{Ed}^{2} \leq \left(\frac{f_{yk}}{\gamma_{M0}}\right)^{2}$$

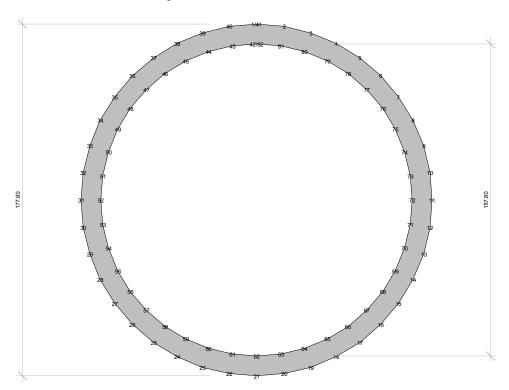
Per le verifiche utilizzano i seguenti dati:

Micropali del fusto esistente e del risvolto sinistro:

Diametro palo - perforazione	ф=	24,00	cm	
Area palo	$A_p=$	$\pi \phi^2 / 4 =$	452.16	cm ²
Armatura - tubo Fe510	A _a =	φ177.8mm	8130	mm ²
Spessore - tubo	s=	16	mm	

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	FOGLIO
A1_4_18_1_RELAZIONE CALCOLO.DOC	153 di 162

Micropali risvolto destro, paraghiaia e fusto nuovo:


Diametro palo - perforazione	ф=	24,00	cm	
Area palo	$A_p=$	$\pi \phi^2 / 4 =$	452.16	cm ²
Armatura – tubo (Fe510)	A _a =	φ177.8mm	5270	mm ²
Modulo di resistenza - tubo	W=	209000	mm ³	
Spessore - tubo	s=	10	mm	

7.7.4.1 Micropali di fondazione del paraghiaia

7.7.4.1.1 Geometria adottata per le verifiche

-140.78

61.84

7.7.4.1.2 <u>Verifiche a pressoflessione e taglio allo stato limite ultimo elastico</u>

M	T	descrizione	elemento	σ_{max}	σ_{min}	$ au_{ ext{max}}$	σ _{ideale}
15.05	12.73	M2max	1131	44.56	-99.45	4.83	99.81
61.78	102.75	M2min	1026	268.88	-322.32	38.99	329.32
15.06	12.74	M3max	1131	44.64	-99.52	4.83	99.87
61.84	102.85	M3min	1026	269.18	-322.60	39.03	329.61
19.80	33.10	Pmin Comp.	1024	88.24	-101.20	12.56	103.52
0.00	0.00	Pmax Comp.	1139	-44.93	-44.93	0.00	44.93
14.71	102.85	smax	1131	45.74	-95.00	39.03	116.60
61.84	102.75	smin	1026	269.18	-322.60	38.99	329.60
	15.05 61.78 15.06 61.84 19.80 0.00 14.71	15.05 12.73 61.78 102.75 15.06 12.74 61.84 102.85 19.80 33.10 0.00 0.00 14.71 102.85	15.05 12.73 M2max 61.78 102.75 M2min 15.06 12.74 M3max 61.84 102.85 M3min 19.80 33.10 Pmin Comp. 0.00 0.00 Pmax Comp. 14.71 102.85 smax	15.05 12.73 M2max 1131 61.78 102.75 M2min 1026 15.06 12.74 M3max 1131 61.84 102.85 M3min 1026 19.80 33.10 Pmin Comp. 1024 0.00 0.00 Pmax Comp. 1139 14.71 102.85 smax 1131	15.05 12.73 M2max 1131 44.56 61.78 102.75 M2min 1026 268.88 15.06 12.74 M3max 1131 44.64 61.84 102.85 M3min 1026 269.18 19.80 33.10 Pmin Comp. 1024 88.24 0.00 0.00 Pmax Comp. 1139 -44.93 14.71 102.85 smax 1131 45.74	15.05 12.73 M2max 1131 44.56 -99.45 61.78 102.75 M2min 1026 268.88 -322.32 15.06 12.74 M3max 1131 44.64 -99.52 61.84 102.85 M3min 1026 269.18 -322.60 19.80 33.10 Pmin Comp. 1024 88.24 -101.20 0.00 0.00 Pmax Comp. 1139 -44.93 -44.93 14.71 102.85 smax 1131 45.74 -95.00	15.05 12.73 M2max 1131 44.56 -99.45 4.83 61.78 102.75 M2min 1026 268.88 -322.32 38.99 15.06 12.74 M3max 1131 44.64 -99.52 4.83 61.84 102.85 M3min 1026 269.18 -322.60 39.03 19.80 33.10 Pmin Comp. 1024 88.24 -101.20 12.56 0.00 0.00 Pmax Comp. 1139 -44.93 -44.93 0.00 14.71 102.85 smax 1131 45.74 -95.00 39.03

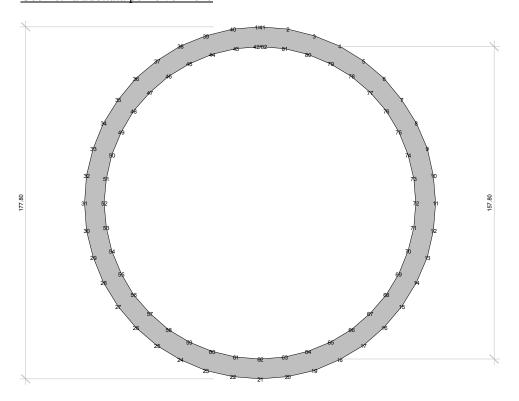
1026

269.18 -322.60

39.03 329.61

102.85 **V2max**

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	FOGLIO
A1_4_18_1_RELAZIONE CALCOLO.DOC	154 DI 162


4.40.00		100	1000	• 60 00		• • • • •	222 22	
-140.83	61.78	102.75 V3 1	max 1026	1 268.88	-322.32	38.99	329.32	

7.7.4.1.3 <u>Verifiche a pressoflessione e taglio allo stato limite ultimo elastico - slv</u>

N	M	T	descrizione	elemento	σ_{max}	σ_{min}	$ au_{ m max}$	σ _{ideale}
-119.56	66.94	111.66	M2max	1026	-22.37	-23.01	42.38	76.92
-18.85	84.10	139.84	M2min	1026	-3.17	-3.98	53.07	92.01
-119.56	66.94	111.66	M3max	1026	-22.37	-23.01	42.38	76.92
-18.85	84.10	139.84	M3min	1026	-3.17	-3.98	53.07	92.01
-0.04	28.97	48.72	Pmin Comp.	1024	0.13	-0.15	18.49	32.02
-137.28	0.00	0.28	Pmax Comp.	1036	-26.05	-26.05	0.11	26.05
-101.14	66.40	139.99	smax	1026	-18.87	-19.51	53.13	94.06
-18.85	84.10	139.99	smin	1026	-3.17	-3.98	53.13	92.11
	_					•	•	
-19.42	14.14	139.99	V2max	1026	63.99	-71.36	53.13	116.44
-19.42	14.14	139.99	V3max	1026	63.99	-71.36	53.13	116.44

7.7.4.2 Micropali di fondazione del risvolto destro

7.7.4.2.1 Geometria adottata per le verifiche

7.7.4.2.2 <u>Verifiche a pressoflessione e taglio allo stato limite ultimo elastico</u>

N	M	T	descrizione	elemento	σ_{max}	σ_{min}	τ_{max}	σ_{ideale}
-702.60	40.72	65.28	M2max	2177	328.15	-61.51	24.78	330.94

AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO

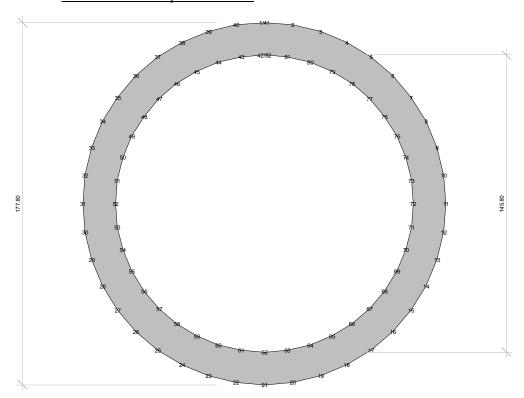
A1 4 18 1 RELAZIONE CALCOLODOC

FOGLIO 155 DI 162

-706.42	9.61	8.44	M2min	2451	180.01	88.08	3.20	180.10
-358.02	25.61	40.15	M3max	2170	190.48	-54.60	15.24	192.30
-361.84	5.91	5.49	M3min	2402	96.94	40.38	2.08	97.00
-164.79	9.98	14.83	Pmin Comp.	2192	79.00	-16.46	5.63	79.60
-750.28	0.00	0.00	Pmax Comp.	2541	142.37	142.37	0.00	142.37
-703.20	40.72	40.15	smax	2177	328.27	-61.41	15.24	329.33
-707.02	9.61	65.28	smin	2451	180.12	88.20	24.78	185.16

-358.02	25.61	40.15	V2max	2170	54.60	-190.48	15.24	192.30
-702.60	40.72	65.28	V3max	2177	61.51	-328.15	24.78	330.94

7.7.4.2.3 <u>Verifiche a pressoflessione e taglio allo stato limite ultimo elastico - slv</u>


N	M	T	descrizione	elemento	σ_{max}	σ_{min}	$ au_{max}$	σ _{ideale}
-104.98	21.45	32.42	M2max	2200	82.70	-122.54	12.30	124.38
-187.78	20.71	31.25	M2min	853	63.44	-134.70	11.86	136.26
-92.52	11.35	18.21	M3max	2170	36.76	-71.88	6.91	72.87
-98.74	12.46	18.89	M3min	869	40.87	-78.34	7.17	79.32
36.04	7.84	10.32	Pmax Traz.	2169	44.34	-30.66	3.92	44.86
-416.62	0.00	0.28	Pmax Comp.	2541	-79.05	-79.05	0.11	79.05
-71.44	21.66	18.18	smax	2177	90.06	-117.17	6.90	117.78
-189.99	20.70	33.17	smin	853	62.97	-135.08	12.59	136.82
02.10	2.01	10.10	***	0170	0.02	27.21	(00	20.01

-93.10	2.01	18.18	V2max	2170	-8.03	-27.31	6.90	29.81
-70.89	4.58	33.17	V3max	2177	8.46	-35.36	12.59	41.54

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	FOGLIO
A1_4_18_1_RELAZIONE CALCOLO,DOC	156 DI 162

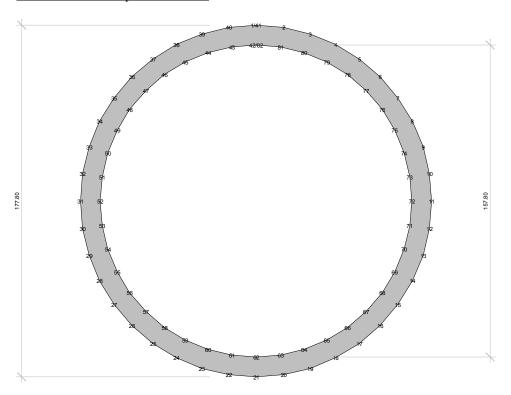
7.7.4.3 Micropali di fondazione del risvolto sinistro

7.7.4.3.1 Geometria adottata per le verifiche

7.7.4.3.2 <u>Verifiche a pressoflessione e taglio allo stato limite ultimo elastico</u>

N		М	Т	descrizione	elemento	σ _{max}	σ_{\min}	$ au_{ m max}$	σ _{ideale}
-2	05.69	69.65	113.64		2142	187.04	-237.64	27.96	242.52
-2	09.53	16.56	13.84	M2min	2206	24.70	-76.25	3.40	76.47
-1	26.89	71.12	115.27	M3max	2148	201.23	-232.45	28.36	237.58
-1	30.73	16.80	14.28	M3min	2248	35.13	-67.29	3.51	67.56
_	76.22	40.06	64.98	Pmin Comp.	2148	112.76	-131.51	15.98	134.39
-2	39.29	0.00	0.00	Pmax Comp.	2212	-29.43	-29.43	0.00	29.43
-1	26.89	71.12	115.27	smax	2148	201.23	-232.45	28.36	237.58
-2	09.60	16.57	113.64	smin	2206	24.72	-76.28	27.96	90.36
-1	26.89	71.12	115.27	V2max	2148	201.23	-232.45	28.36	237.58
-2	05 69	69.65	113 64	V3max	2142	187 04	-237 64	27 96	242 52

7.7.4.3.3 <u>Verifiche a pressoflessione e taglio allo stato limite ultimo elastico - slv</u>


N	M	T	descrizione	elemento	σ_{max}	σ_{min}	τ_{max}	σ _{ideale}
33.99	87.84	142.66	M2max	2148	271.98	-263.62	35.10	278.69
-40.11	86.39	139.94	M2min	2142	258.46	-268.32	34.43	274.87
-51.10	88.04	143.08	M3max	2143	262.13	-274.70	35.20	281.38
-25.04	88.97	144.44	M3min	2148	268.18	-274.34	35.53	281.16

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	FOGLIO
A1_4_18_1_RELAZIONE CALCOLO.DOC	157 di 162

38.44	50.34	83.32	Pmax Traz.	2148	158.20	-148.75	20.50	162.14
-92.94	0.00	0.28	Pmax Comp.	2254	-11.43	-11.43	0.07	11.43
33.99	87.84	144.59	smax	2148	271.98	-263.62	35.57	278.87
-40.11	86.39	142.81	smin	2142	258.46	-268.32	35.13	275.14
								,
-25.62	14.56	144.59	V2max	2148	41.24	-47.54	35.57	77.82
33.40	14.35	142.81	V3max	2148	47.86	-39.64	35.13	77.41

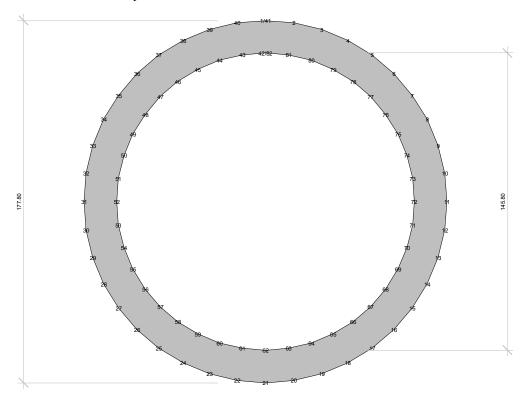
7.7.4.4 Micropali del fusto nuovo

7.7.4.4.1 Geometria adottata per le verifiche

7.7.4.4.2 <u>Verifiche a pressoflessione e taglio allo stato limite ultimo elastico</u>

N	M	T	descrizione	elemento	σ_{max}	σ_{min}	$ au_{ ext{max}}$	σ _{ideale}
-259.94	22.67	35.17	M2max	2168	59.16	-157.81	13.35	159.49
-263.75	5.18	4.92	M2min	2388	-25.27	-74.82	1.87	74.89
-260.23	22.80	35.36	M3max	2168	59.69	-158.45	13.42	160.15
-264.04	5.21	4.95	M3min	2388	-25.19	-75.01	1.88	75.08
-82.02	4.20	7.22	Pmin Comp.	2179	4.55	-35.68	2.74	35.99
-282.21	0.00	0.00	Pmax Comp.	2394	-53.55	-53.55	0.00	53.55
-257.73	22.71	35.36	smax	2168	59.74	-157.55	13.42	159.26
-264.04	5.21	35.17	smin	2388	-25.19	-75.01	13.35	78.49

-260.23	22.80	35.36	V2max	2168	59.69	-158.45	13.42	160.15
-259.94	22.67	35.17	V3max	2168	59.16	-157.81	13.35	159.49


AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	FOGLIO
A1 4 18 1 RELAZIONE CALCOLODOC	158 DI 162

7.7.4.4.3 <u>Verifiche a pressoflessione e taglio allo stato limite ultimo elastico - slv</u>

N	M	T	descrizione	elemento	σ_{max}	σ_{min}	$ au_{ ext{max}}$	σ _{ideale}
-17.02	13.25	19.91	M2max	2168	60.15	-66.61	7.56	67.88
-14.98	4.58	7.16	M2min	2178	19.07	-24.76	2.72	25.20
-73.68	10.45	16.56	M3max	2168	36.00	-63.96	6.28	64.88
45.37	9.06	12.14	M3min	2168	51.97	-34.75	4.61	52.58
55.69	10.27	14.05	Pmax Traz.	2167	59.70	-38.56	5.33	60.41
-89.96	0.00	0.28	Pmax Comp.	2394	-17.07	-17.07	0.11	17.07
-14.92	13.17	16.58	smax	2168	60.18	-65.84	6.29	66.73
-56.73	2.56	20.06	smin	2633	1.48	-23.02	7.61	26.53
-74.26	1.94	16.58	V2max	2168	-4.81	-23.37	6.29	25.79
-17.60	2.98	20.06	V3max	2168	10.93	-17.61	7.61	22.00

7.7.4.5 Micropali del fusto esistente

7.7.4.5.1 Geometria adottata per le verifiche

7.7.4.5.2 <u>Verifiche a pressoflessione e taglio allo stato limite ultimo elastico</u>

N	M	T	descrizione	elemento	σ_{max}	σ_{min}	$ au_{ ext{max}}$	σ _{ideale}
-223.86	67.47	110.59	M2max	2149	195.89	-250.95	27.21	255.34
-227.70	16.11	13.31	M2min	2255	25.33	-81.34	3.28	81.54

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	FOGLIO
A1_4_18_1_RELAZIONE CALCOLODOC	159 DI 162

-223.96	67.51	110.65	M3max	2149	196.00	-251.10	27.22	255.48
-227.80	16.12	13.32	M3min	2255	25.35	-81.39	3.28	81.59
-69.45	10.50	17.63	Pmin Comp.	2166	26.23	-43.31	4.34	43.96
-259.12	0.00	0.00	Pmax Comp.	2261	-31.87	-31.87	0.00	31.87
-223.96	67.51	110.65	smax	2149	196.00	-251.10	27.22	255.48
-227.80	16.12	110.59	smin	2255	25.35	-81.39	27.21	94.05
-223.96	67.51	110.65	V2max	2149	196.00	-251.10	27.22	255.48
-223.86	67.47	110.59	V3max	2149	195.89	-250.95	27.21	255.34

7.7.4.5.3 <u>Verifiche a pressoflessione e taglio allo stato limite ultimo elastico - slv</u>

N	M	T	descrizione	elemento	σ_{max}	σ_{min}	$ au_{ ext{max}}$	σ _{ideale}
-95.86	88.04	143.50	M2max	2150	279.75	-303.33	35.30	309.43
-32.73	82.70	134.24	M2min	2149	269.83	-277.88	33.02	283.70
-95.42	88.08	143.50	M3max	2149	279.91	-303.38	35.30	309.48
-32.73	82.70	134.24	M3min	2149	269.83	-277.88	33.02	283.70
18.26	10.36	17.66	Pmax Traz.	2166	36.56	-32.06	4.35	37.32
-118.72	0.00	0.28	Pmax Comp.	2296	-14.60	-14.60	0.07	14.60
-95.42	88.08	143.65	smax	2149	279.91	-303.38	35.34	309.49
-32.73	82.70	143.65	smin	2149	269.83	-277.88	35.34	284.54
-96.00	14.14	143.65	V2max	2149	35.00	-58.61	35.34	84.75
-96.44	14.10	143.65	V3max	2150	34.84	-58.56	35.34	84.71

AUTOSTRADA DEL BRENNERO S.P.A.	
CODIFICA DOCUMENTO	FOGLIO
A1_4_18_1_RELAZIONE CALCOLODOC	160 di 162

8 PORTANZA PALI

Di seguito si riportano le verifiche delle sezioni più significative e per le Combinazioni di carico risultate più critiche.

I calcoli di verifica sono effettuati con il metodo degli Stati Limite, applicando il combinato D.M.14.01.2008 con l'UNI EN 1992 (Eurocodice 2); risultano i seguenti tipi di verifiche:

- 1. Verifiche agli Stati Limite Ultimi (Approccio 1, combinazione 2 A2M1).
- 2. Verifiche delle azioni Sismiche (Approccio 1, combinazione 2 A2M1).

Si prevede una lunghezza dei micropali di fondazione del paraghiaia e di consolidamento del fusto esistente pari a L=20.00m, mentre per il fusto di nuova costruzione e per la fondazione dei risvolti la lunghezza è prevista di 14.00m.

Si assumono i seguenti parametri del terreno: da quota 0.00m a quota -30.00m scisto alterato

Peso di volume γ _t	20 kN/m ³
Angolo di attrito Φ	35
Coesione c	0 N/mm ²
qs,lim	160 kPa
qb,lim	6000 kPa

Si riportano di seguito i massimi valori degli sforzi assiali sui micropali della spalla per le combinazioni di carico più significative.

Micropali con perforazione \$\phi240\text{mm}, L=23.00\text{m}.

Risvolto destro - SLU

N (kN)	M (kNm)	descrizione	elemento
-559.00	0.00	Pmax Comp.	2457

Risvolto destro - SLV

N (kN)	M (kNm)	descrizione	elemento
-394.26	0.00	Pmax Comp.	2541

Si esegue la verifica di portanza relative ai pali sotto al risvolto destro per la combinazione SLU, che risulta essere la più gravosa. La tabella di verifica è riportata di seguito e fa riferimento alla caratterizzazione del terreno riportata nella "Relazione geologica, idrogeologica e geotecnica" e nel "Profilo geotecnico longitudinale".

AUTOSTRADA DEL BRENNERO S.P.A.

CODIFICA DOCUMENTO

A1 4 18 1 RELAZIONE CALCOLO.DOC

FOGLIO 161 DI 162

CAPACITA' PORTANTE DI UN PALO COMPRESSO (D.M. 14.01.2008) LAVORO: TANGENZIALE - APPROCCIO 1 - COMBINAZIONE 2

II carico limite di progetto viene determinato come: Rcd = Rbd + Rsd - Wp

in cui: Rbd = Rbk / γb: Resistenza alla punta di progetto Resistenza laterale di progetto Resistenza laterale di trazione di progetto Resistenza alla punta caratteristica Resistenza laterale caratteristica Rsd = Rsk / γ s: Rsdt = Rsk / γ st: Rsdt = Rsh / ζ st: Rbk = Rsm / ζ : Rbm = Qb: Resistenza media alla punta Resistenza media laterale peso proprio del palo alleggerito

PORTANZA UNITARIA ALLA PUNTA

Terreni granulari (c = 0, ♦ <> 0)

In accordo alla teoria di Berenzantsev^(*): qb = Nq* x _g'v con: Nq*: Nq*: coefficiente di capacità portante corrispondente all'insorgere delle prime deformazioni plastiche (ced. = 0,06 - 0,10 D)

Nq* è dato dal grafico a destra riportato:

In ogni caso viene assunto per qb il valore limite di qb,lim.

Terreni coesivi (c<>0)

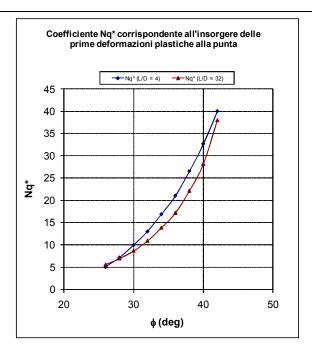
Il calcolo viene svolto in termini di tensioni totali La resistenza alla punta viene espressa come:

RESISTENZA LATERALE UNITAKuA Terreni granulari (c = 0, ∳ <> 0) qs = Ktanδ σV con: K assunto pari a 1 - sen f tanδ = tan∳

In ogni caso non viene superato il valore limite di ql,lim.

Terreni coesivi (c<>0)

 α variabile in funzione di cu secondo la seguente tabella (AGI - 1984) $qs = \alpha cu$


cu (kPa) α <=25 0.9

In ogni caso non viene superato il valore limite di ql,lim.

CARATTERISTICHE GEOMETRICHE	unita	
Diametro palo	m	0.24
Superficie resistente alla punta	mq	0.05
Superficie laterale per lunghezza unitaria	mq	0.75
peso specifico del palo	kN/m ³	25.00
1		

STRATIGRAFIA DI PROGETTO (DA Q.T.P.)

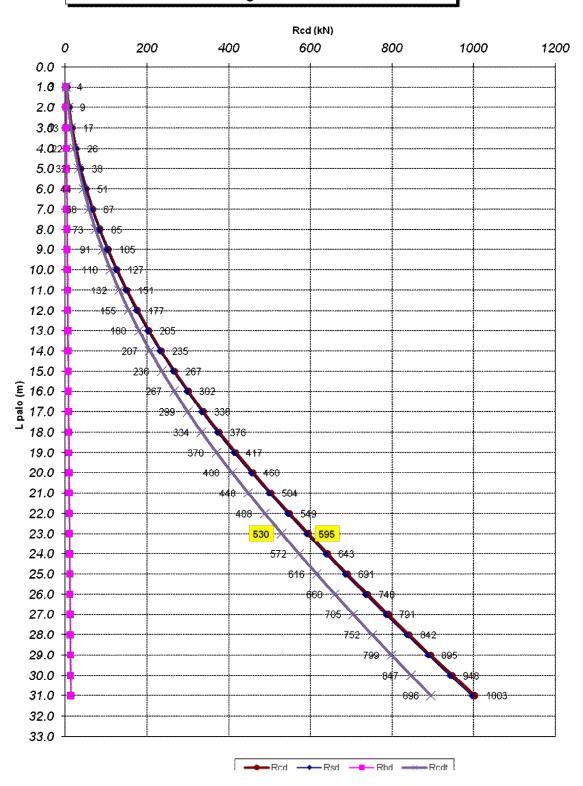
n.	DESCRIZIONE	DA	Α
1	Rilevato	0.0	-0.5
2	CC - Substrato	-0.5	in giù
3			
4			

FALDA	unità	
Quota livello falda da q.t.p.	m	20.00
,	-	

SOVRACCARICO A Q.T.P.		
Tensione totale in testa palo	kN/m2	20.0
Tensione efficace in testa palo		20.0

COEFFICIENTI DI SICUREZZA

coefficiente y b	1.45
coefficiente γs	1.45
coefficiente γst	1.60
coefficiente ζ	1.50


CODIFICA DOCUMENTO

A1_4_18_1_RELAZIONE CALCOLO DOC

FOGLIO

162 di 162

Diagramma del carico limite del palo in funzione della lunghezza

