COMMITTENTE:

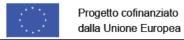
ALTA SORVEGLIANZA:

GENERAL CONTRACTOR:

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA **LEGGE OBIETTIVO N. 443/01**

LINEA A.V. /A.C. TORINO – VENEZIA Tratta MILANO – VERONA Lotto funzionale Brescia – Verona **PROGETTO ESECUTIVO**

VARIANTE AGLI IMPIANTI DI TRAZIONE ELETTRICA: ADOZIONE DEL SISTEMA 3kVcc LINEA PRIMARIA AT 132 kV ST/DT **CLASSIFICAZIONE FONDAZIONI**


GENERAL CONTRACTOR DIRETTORE LAVORI Consorzio IL PROGETTISTA INTEGRATORE SCALA: Consorzio Capav due Direttore de posorzio KARAGE MARCH (Ing. T. Taranta) Data: Data:

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV. **FOGLIO**

0 0 2 0 2 2 R Н 0 0 0 0 1 Ν В 3

1	CONSORZION				V	ISTO CONSORZ	io saturno	
Ì	CATLIDAM		Firma			Data		
	SATURNO Gigh Speed Railway Te						19/04/21	
Pro	gettazione :							
Rev	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	IL PROGETTISTA
	EMISSIONE	A.GEFFRI	19-04-21	M.DONNARUMMA	19/04/21	N.MANTA	19/04/21	
A	EIVIISSIONE		19-04-21		19/04/21		19/04/21	
								Data: 19/04/21

CIG. 751447334A File: INOR12EE2RHLP0000KB3A.docx Cod. origine: -

VISTO CONSORZIO SATURNO

 Progetto
 Lotto
 Codifica Documento
 Rev.
 Foglio

 INOR
 12
 EE2RHLP0000KB3
 A
 2 di 22

1	CL	LASSIFICAZIONE DELLE FONDAZIONI	3
	1.1	SCOPO DEL DOCUMENTO	3
	1.2	DOCUMENTI DI RIFERIMENTO DEL P.D.	3
	1.3	DOCUMENTI DI RIFERIMENTO GEOLOGIA ED IDROGEOLOGIA	3
	1.4	ANALISI QUALITATIVA RELATIVA A GEOLOGIA ED IDROGEOLOGIA	4
	1.5	DOCUMENTI DI RIFERIMENTO PER CLASSIFICAZIONE FONDAZIONI	5
	1.6	CLASSIFICAZIONE FONDAZIONI DEGLI ELETTRODOTTI	6
	1.6. 1.6.		7
2	CC	ONCLUSIONI	7
3	AL	LLEGATO 1 (FONDAZIONI SPECIALI)	7

Progetto	Lotto	Codifica Documento	Rev.	Foglio
INOR	12	EE2RHLP0000KB3	Α	3 di 22

1 CLASSIFICAZIONE DELLE FONDAZIONI

1.1 SCOPO DEL DOCUMENTO

Lo scopo del documento è la classificazione "preliminare" delle fondazioni, in funzione alle fonti disponibili relativamente alle caratteristiche geotecniche ed alla soggiacenza della falda nelle aree interessate dal seguente elettrodotto:

- LP04 Elettrodotto D.T. (su unica Palificata) 132 kV dalla sottostazione Terna di Lonato alla sottostazione AV/AC di Calcinato che si sviluppa nei comuni di Calcinato e Lonato
- LP05 Palo di Derivazione e Discesa Cavi del Cavidotto D.T. da Palo di Derivazione a Connessione a LP06 –
- Tratto Provvisorio
- I seguenti cavidotti, pur facendo parte del Sistema di Alimentazione AT, essendo privi di sostegni e relative fondazioni, non verranno trattati nel presente documento
 - LP06 Cavidotto D.T. da SSE AV/AC di Sona (km 143+975) a LP05B/LP08 Tratto Definitivo
 - LP07 Cavidotto D.T. da Cabina di Derivazione TERNA a SSE AV/AC Desenzano
 - LP08 Cavidotto D.T.da Cabina di Derivazione 220/132 TERNA a LP06

1.2 DOCUMENTI DI RIFERIMENTO DEL P.E.

Elettrodotto "Calcinato – Lonato"

IN0R12EE2C3LP0400KB1 - COROGRAFIA 1:25000

INOR12EE2P5LP0400KB1 - PLANIMETRIA 1:5000

INOR12EE2PXLP0400KB1- PROFILO ALTIMETRICO DA S.S.E. AC CALCINATO A SOSTEGNO N. 17

INOR12EE2PXLP0400KB2 - PROFILO ALTIMETRICO DAL SOSTEGNO 17 ALLA S.S. TERNA DI

LONATO

- Cavidotto (Provvisorio) entra-esce "Sona"

IN0R12EE2C3LP0500XB1 - COROGRAFIA 1:25000

INOR12EE2P5LP0500XB1 - PLANIMETRIA 1:5000

INOR12EE2F8LP0500XB1 - CAVIDOTTO DT ENTRA/ESCI DA ELETTRODOTTO RFI ESISTENTE

ALLA SSE AC SONA PROFILO ALTIMETRICO DELLA LINEA FS

(ESISTENTE) CON INSERIMENTO PALO DI DERIVAZIONE.

1.3 DOCUMENTI DI RIFERIMENTO GEOLOGIA ED IDROGEOLOGIA

Data l'impossibilità, in questa fase, di eseguire le indagini geognostiche opportune, si è attinto alle seguenti fonti per una valutazione qualitativa delle caratteristiche Geotecniche ed i livelli di soggiacenza delle falde nei siti dei Comuni interessati, in particolare:

- PGT (Piano del governo del Territorio) per i Comuni della Regione Lombardia
- PRC (Piano Regolatore Comunale) per i Comuni della Regione Veneto

Progetto	Lotto	Codifica Documento	Rev.	Foglio
INOR	12	EE2RHLP0000KB3	Α	4 di 22

I dati desunti dai siti, di cui sopra, sono congruenti con i risultati delle analisi svolte dal General Contractor per
 l'intera Opera e riportati nel documento IN05 00 DE2RGMD0000002 rev 0 del 29-05-2014 - RELAZIONE
 GENERALE DI TRATTA nei capitoli che trattano le tematiche in oggetto.

1.4 ANALISI QUALITATIVA RELATIVA A GEOLOGIA ED IDROGEOLOGIA

Elettrodotto "Calcinato-Lonato"

La tratta ubicata ad ovest del rilievo collinare di Lonato (sostegni da 1 a 21) presenta, in base ai dati disponibili, caratteristiche geotecniche discrete e soggiacenza della falda superiore a 10 m.

Per queste fondazioni assumeremo una portanza ammissibile del terreno pari a 1,0/2,0 daN/cm² in analogia a quanto riscontrato nella tratta TR-BS per l'elettrodotto di Chiari ove le caratteristiche geotecniche del terreno sono simili.

La tratta in corrispondenza del rilievo collinare di Lonato (sostegni dal 22 al 26A) è di difficile definizione in quanto pur potendo escludere una vera e propria falda è possibile la presenza di falde sospese di entità minore, lo stesso dicasi per le caratteristiche geotecniche che si possono presentare piuttosto variabili.

Per queste fondazioni assumeremo, conservativamente, una portanza pari a 1,0 daN/cm²

La tratta dal sostegno 27 al 35 (zona centrale) presenta invece caratteristiche di minor consistenza ed è interessata dalla presenza della falda d'acqua praticamente a livello del piano campagna. Queste condizioni sono state tenute presenti nella stima delle caratteristiche geotecniche ricavandone congrue riduzioni della capacità portante (con particolare riferimento alla zona dei sostegni 33 e 35).

Per questi sostegni è previsto l'impiego di fondazioni speciali.

Palo di Derivazione e Discesa Cavi del Cavidotto (Provvisorio): "Entra/Esce" Sona

La sopra citata tratta, presenta, in base ai dati disponibili, caratteristiche analoghe alla tratta compresa tra i sostegni 1 e 21 in Comune di Lonato.

Per queste fondazioni assumeremo una portanza del terreno pari a 1,0/2,0 daN/cm² in analogia a quanto riscontrato nella tratta TR-BS per l'elettrodotto di Chiari ove le caratteristiche geotecniche del terreno sono simili.

Progetto	Lotto	Codifica Documento	Rev.	Foglio
INOR	12	EE2RHLP0000KB3	Α	5 di 22

1.5 DOCUMENTI DI RIFERIMENTO PER CLASSIFICAZIONE FONDAZIONI

Le fondazioni indicate nelle tabelle seguenti, si riferiscono a quelle presenti nell'Unificazione RFI (calcolate non in presenza di Falda):

- RFI/TC.TE IT LP 025 - Ed. 09/2002 (Vol. Primo "Caratteristiche Generali - Vol.Secondo "relazioni di calcolo - Vol. Terzo elaborati grafici)

Elettrodotti A.T. 132-150 kV equipaggiati con sostegni a traliccio di tipo piramidale ad aste sciolte e bullonate in acciaio zincato e conduttore di fase in alluminio – acciaio Ø 31,5 mm di diametro.

- RFI/TC.TE IT LP 029 – Ed. 11/20022002 (Vol. Primo "Caratteristiche Generali – Vol.Secondo "relazioni di calcolo – Vol. Terzo elaborati grafici)

Elettrodotti A.T. 132-150 kV equipaggiati con sostegni monostelo in lamiera pressopiegata a sezione poligonale e con conduttore di fase in alluminio-acciaio Ø 31,5 mm di diametro.

- RFI/TC.TE IT LP 018 - Ed. 11/2001 (Vol. Primo "Caratteristiche Generali - Vol.Secondo "relazioni di calcolo - Vol. Terzo elaborati grafici)

Elettrodotti AT 132-150kV equipaggiati con sostegni a traliccio di tipo piramidale ad aste sciolte e bullonate in acciaio zincato e conduttore di fase in alluminio – acciaio Ø 22,8 mm di diametro.

. DI/TC TE IT LP/TE 165 – Ed. 11/1999 (Vol. Primo "Caratteristiche Generali – Vol.Secondo "relazioni di calcolo – Vol. Terzo elaborati grafici)

Elettrodotti A.T. 132 – 150 kV equipaggiati con sostegni monostelo in lamiera pressopiegata a sezione poligonale e con conduttore di fase Ø 22.8 mm.

Quelle dei sostegni di sottopasso TE* dell'unificazione ENEL già utilizzati nelle altre tratte dell'AV/AC sono riportate nei documenti di P.D. (calcolate anche in presenza di falda superficiale):

IN0500DE2SPLP0000K01 - SOSTEGNO TIPO "TE* SOTTOPASSO" S.T. CON FASI ORIZZONTALI FONDAZIONI (UNIFICATE ENEL) TIPO "CR" & "CS" - DIMENSIONI - VOLUMI - DETTAGLI ARMATURE

IN0500DE2SPLP0000K02 - SOSTEGNO TIPO "TE* SOTTOPASSO" S.T. CON FASI ORIZZONTALI - FONDAZIONI (UNIFICATE ENEL) TIPO "CR" & "CS" - TABELLE DI CORRISPONDENZA TRA: TIPO TERRENO / TIPO FONDAZIONE

Le Fondazioni Speciali sono state verificate assumendo dei parametri geotecnici preliminari, stimati in funzione delle caratteristiche note, da confermare successivamente con appropriate indagini geotecniche.

Per tutte le fondazioni a piedini separati impiegabili per i sostegni tralicciati, è prevista la trave di collegamento degli stessi come richiesto dalle norme per zona sismica.

ProgettoLottoCodifica DocumentoRev.FoglioINOR12EE2RHLP0000KB3A6 di 22

1.6 CLASSIFICAZIONE FONDAZIONI DEGLI ELETTRODOTTI

1.6.1 Elettrodotto: Calcinato – Lonato

		aono: Carcinato – Lor		
Picch. N°	Tipo Palo Fond.	Tipo di Terreno	Tipo Fondaz./N° Disegno	Note
1	TAD90+6	1,0 /2,0 daN/cm ²	PF520S/PF390N – ULP/4015	Con travetta colleg. Fond
1A	TAD90+9	1,0 /2,0 daN/cm ²	PF520S/PF390N - ULP/4015	Con travetta colleg. Fond
2	TAD90+15	1,0 /2,0 daN/cm ²	PF520S/PF390N – ULP/4015	Con travetta colleg. Fond
3	PND15+3	1,0 /2,0 daN/cm ²	ULP2879/ULP2867	
4	PND8+12	1,0 /2,0 daN/cm ²	ULP2785/ULP2773	
5	PND8+6	1,0 /2,0 daN/cm ²	ULP2781/ULP2769	
6	PND8+6	1,0 /2,0 daN/cm ²	ULP2781/ULP2769	
7	TND8+15+2	1,0 /2,0 daN/cm ²	PF320S/PF230N – ULP/4015	Con travetta colleg. Fond
8	PND8+3	1,0 /2,0 daN/cm ²	ULP2779/ULP2767	
9	PND2+3	1,0 /2,0 daN/cm ²	ULP2679/ULP2667	
10	PND8+3	1,0 /2,0 daN/cm ²	ULP2779/ULP2767	
11	PND8+6	1,0 /2,0 daN/cm ²	ULP2781/ULP2769	
12	PND8+6	1,0 /2,0 daN/cm ²	ULP2781/ULP2769	
13	PND8+6	1,0 /2,0 daN/cm ²	ULP2781/ULP2769	
13A	TAD90+15+2	1,0 /2,0 daN/cm ²	PF520S/PF390N – ULP/4015	Con travetta colleg. Fond
14	TAD90+15+2	1,0 /2,0 daN/cm ²	PF520S/PF390N - ULP/4015	Con travetta colleg. Fond
15	PND8+3	1,0 /2,0 daN/cm ²	ULP2779/ULP2767	
16	PAD60+6	1,0 /2,0 daN/cm ²	ULP3069	
17	PND8+3	1,0 /2,0 daN/cm ²	ULP2779/ULP2767	
18	PND2+3	1,0 /2,0 daN/cm ²	ULP2679/ULP2667	
19	PND2+6	1,0 /2,0 daN/cm ²	ULP2681/ULP2669	
20	PND8+3	1,0 /2,0 daN/cm ²	ULP2779/ULP2767	
21	PAD30+3	1,0 /2,0 daN/cm ²	ULP2979/ULP2967	
22	PND2+3	1,0 daN/cm ²	ULP2679	Possibile presenza di falda
23	PND8-3	1,0 daN/cm ²	ULP2775	Possibile presenza di falda
24	PND2-3	1,0 daN/cm ²	ULP2675	Possibile presenza di falda
25	PAD30+3	1,0 daN/cm ²	ULP2979	Possibile presenza di falda
26	TE*+12+1	1,0 daN/cm ²	204/230_Col 288/43-	Con travetta colleg. Fond
			IN0500DE2SPLP0000K0151	Possibile presenza di falc
26A	TE*+12+1	1,0 daN/cm²	204/230_Col 288/43-	Con travetta colleg. Fond
		,	IN0500DE2SPLP0000K01	Possibile presenza di falc
27	TE*+12+1	1,0 daN/cm ²	204/230_Col 288/43-	Con travetta colleg. Fond
21	112+12+1	1,0 datveni		_
			IN0500DE2SPLP0000K01	Presenza di falda superfic
27A	TE*+12+1	1,0 daN/cm²	204/230_Col 288/43-	Con travetta colleg. Fond
			IN0500DE2SPLP0000K01	Presenza di falda superfi
28	PAD30+3	Caratteristiche geotecniche	ALLEGATO 1	Presenza di falda superfic
		Scadenti	FONDAZ. SPEC 31	•
29	TAD90+9	Caratteristiche geotecniche	ALLEGATO 1	Presenza di falda superfic
29	TAD 50+5			Tresenza di faida superne
		Scadenti	FONDAZ. SPEC 34	
30	PND8+3	Caratteristiche geotecniche	ALLEGATO 1	Presenza di falda superfic
		Scadenti	FONDAZ. SPEC 32	
31	PAD60	Caratteristiche geotecniche	ALLEGATO 1	Presenza di falda superfi
		Scadenti	FONDAZ. SPEC 33	_
31A	PND8	Caratteristiche geotecniche	ALLEGATO 1	Presenza di falda superfi
		Scadenti	FONDAZ. SPEC 32	•
32	PAD60	Caratteristiche geotecniche	ALLEGATO 1	Presenza di falda superfi
		Scadenti	FONDAZ. SPEC 33	r
33	PAD60+6	Caratteristiche geotecniche	ALLEGATO 1	Presenza di falda superfi
	1120010			- 10001124 of falou supoffic
34	TAD90+3	Scadenti Caratteristiche geotecniche	FONDAZ. SPEC 33 ALLEGATO 1	Con travetta colleg. Fond
54	1 AD70+3			
25	TAD00:0	Scadenti	FONDAZ. SPEC 34	Presenza di falda superfic
35	TAD90±0	Caratteristiche geotecniche	ALLEGATO 1	Con travetta colleg. Fond
		Scadenti	FONDAZ. SPEC 34	Presenza di falda superfi

Progetto	Lotto	Codifica Documento	Rev.	Foglio
INOR	12	EE2RHLP0000KB3	Α	7 di 22

1.6.2 Cavidotto (Provvisorio): Entra/Esce Sona

Picch. N°	Tipo Palo	Tipo di Terreno	Tipo Fondaz./N° Disegno	Note
1	TA90+6-1	1,0 /2,0 daN/cm ²	PF360S/PF270N – ULP/4015	Con travetta colleg. Fond.

2 CONCLUSIONI

In fase di Progettazione Esecutiva, la suddetta classificazione delle fondazioni potrà essere confermata o modificata in tutto o in parte, in base alle risultanze delle Indagini Geotecniche, Idrogeologiche e Sismiche e in base ai valori di carico sulle fondazioni risultanti dalle verifiche dei sostegni operate per le effettive condizioni di utilizzo.

I criteri di verifica saranno quelli indicati nel documento INOR12EE2RHLP0000KB1 (RELAZIONE TECNICO-DESCRITTIVA E ARCHITETTURA DI SISTEMA)

3 ALLEGATO 1 (FONDAZIONI SPECIALI)

Il presente Allegato riporta un dimensionamento preliminare tipologico, delle fondazioni speciali da realizzare in corrispondenza dei sostegni da 28 a 35 a seguito delle considerazioni svolte ai paragrafi precedenti.

Quanto di seguito esposto, si basa sui dati del precedente trecciato dell'elettrodotto, tipologicamente ancora valido per il nuovo tracciato, scaturito dalle richieste della CdS.

Il progetto delle fondazioni in questione prevede l'impiego dei seguenti materiali.

CALCESTRUZZO STRUTTURALE

CLASSE DI RESISTENZA DI PROGETTO

Fondazioni C25/30

CLASSE DI ESPOSIZIONE AMBIENTALE (UNI 11104:2004)

Fondazioni, strutture immerse in terreni non aggressivi bagnati XC2

Limiti: Rapporto max. A/C = 0.60 Dosaggio cemento 300 kg/m^3 Diametro max. aggregato = 30 mm

ARMATURE

Ad aderenza migliorata in acciaio classe B450C

Ricoprimento per plinti e teste 40 mm

Ricoprimento per trivellate di grande diametro 50 mm

Interferro minimo 40 mm

COMPOSIZIONE DELLA MISCELA

- Cemento tipo CEM II A/M 32,5 con il dosaggio minimo indicato sopra
- Inerti di tipo alluvionale o da frantumazione, esenti da impurità nocive, con curva di distribuzione compresa nel fuso granulometrico di Fuller
- Acqua

Progetto	Lotto	Codifica Documento	Rev.	Foglio
INOR	12	EE2RHLP0000KB3	Α	8 di 22

CLASSE DI CONSISTENZA

Strutture con percentuale armature medio alta.

Miscela a consistenza fluida di classe S4 (Slump 160-210 mm)

Carichi in fondazione

I carichi agenti sulle fondazioni sono stati determinati in funzione dell'impiego effettivo dei sostegni e considerando le azioni sui conduttori previste dalla norma CEI 11-4 Ed. 2011 e sono riassunti nella tabella seguente.

La verifica strutturale delle fondazioni è svolta in accordo alle norma NTC 2008.

I valori sono i massimi considerati per la verifica del sostegno e quindi vengono assegnati alla tipologia "STR" con set di coefficienti A1.

CARICHI SULLE FONDAZIONI unità daN e daNm

Pk	sostegno	Loading	V	Tx	Ту	ST	T_R	Mx	Му	SM
31	PAD30+6	C1AXA	20939	526	17488	18014	17496	426222,9	12082,5	438305,4
32	PND8+3	C1AXA	15553	0	8318	8318	8318	190902,6	0	190902,6
32	PND8+3	C4X1A	14032	7706	311	8017	7712	7840,6	195436	203276,5
33	PAD60+6	C1AXA	27841	111	25899	26010	25899	640519,2	2766,9	643286,1
33	PAD60+6	C3X1A	29722	607	25031	25638	25038	647085,1	14041,6	661126,7
34	TAD90+3					0				0

Le combinazioni di set di coefficienti impiegabili per le verifiche sono quindi

 $Approccio\ 1\ combinazione\ 1\ A1+\ M1\ +R1$

Approccio 2 A1 + M1 + R3

Nel seguito è impiegato l'Approccio 2, risultato più oneroso.

Coefficienti parziali R3 di resistenza globale per pali di fondazione:

Resistenza di base impiegata singolarmente g = 1,35

Resistenza laterale in compressione impiegata singolarmente g = 1,15

Resistenza globale in compressione q = 1,30

Resistenza laterale del fusto in trazione g = 1,25

Resistenza alle azioni trasversali g = 1,30

Si prevede l'impiego di pali trivellati di grande diametro

(1,20 m per i picchetti 31 e 32 e 1,50 m per il picchetto 33).

La lunghezza effettiva dei pali è di 12,00 m

Progetto	Lotto	Codifica Documento	Rev.	Foglio
INOR	12	EE2RHLP0000KB3	Α	9 di 22

Portata del singolo palo

Caratterizzazione del suolo e valutazione della capacità portante dei pali

Suolo generalmente incoerente sommerso (ipotesi per dimensionamento)

Strato 1 dal piano campagna a -9,00 m sabbie limose sciolte con presenza di ghiaia e ciottoli

SPT medio N = 8 colpi/30 cm

Aderenza laterale al fusto $f = N/80 = 0.10 \text{ daN/cm}^2$

Strato 2 da quota -9,00 m a -16,00 m ghiaie sabbiose mediamente addensate

SPT medio N = 20 colpi/30 cm picchetti 31 e 32

SPT medio N = 16 colpi/30 cm picchetto 33

Aderenza laterale al fusto $f = 20/80 = 0.25 \text{ daN/cm}^2$

Aderenza laterale al fusto $f = 16/80 = 0,20 \text{ daN/cm}^2$

Suolo alla punta angolo d'attrito $f = 30^{\circ}$

Diametro 1,20 m L/d = 10 $Nq^* = 6$ (raccomandazioni AGI per pali di grande diametro)

Diametro 1,50 m L/d = 8 $Nq^* = 5$ (raccomandazioni AGI per pali di grande diametro)

 $g' = 1000 \text{ daN/m}^3$ Peso efficace suolo sommerso

 $g' = 1500 \text{ daN/m}^3$ Peso efficace calcestruzzo sommerso

PALO DIAMETRO 1,20 m

Portata laterale del fusto

 $Q_{LC} = (120 * \pi*600) * 0,10 + (120 * \pi*600) * 0,25 = 79128 daN$

Portata di punta (profondità 15,0 m)

 $Q_P = 11304 * 6 * 0,001 * 1500 = 101736 daN$

Portata fattorizzata globale in compressione $Q_C = 139126 \text{ daN}$

Portata fattorizzata in trazione $Q_T = 63302 \text{ daN}$

PALO DIAMETRO 1,50 m

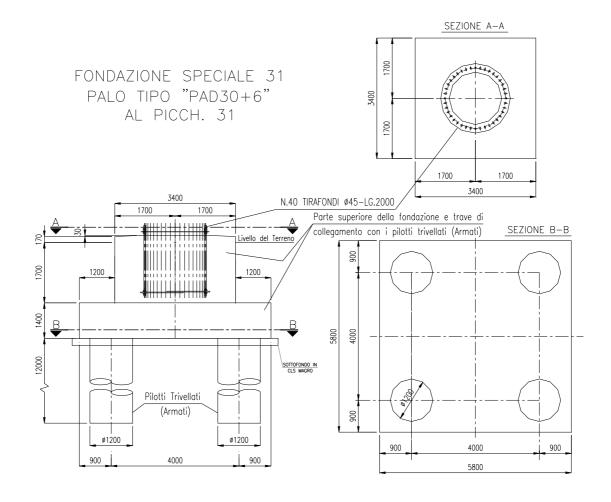
Portata laterale del fusto

 $Q_{LC} = (150 * \pi *600) * 0.10 + (150 * \pi *600) * 0.20 = 84780 \text{ daN}$

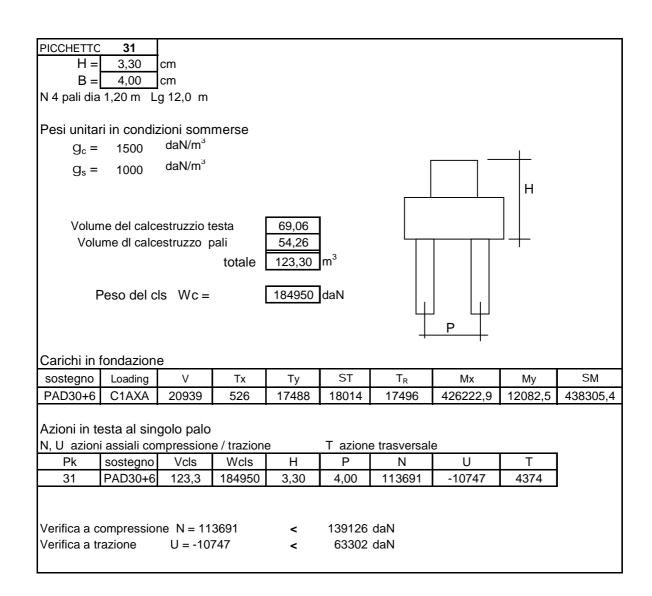
Portata di punta (profondità 15,0 m)

 $Q_P = 17662 *5 * 0,001 * 1500 = 132469 daN$

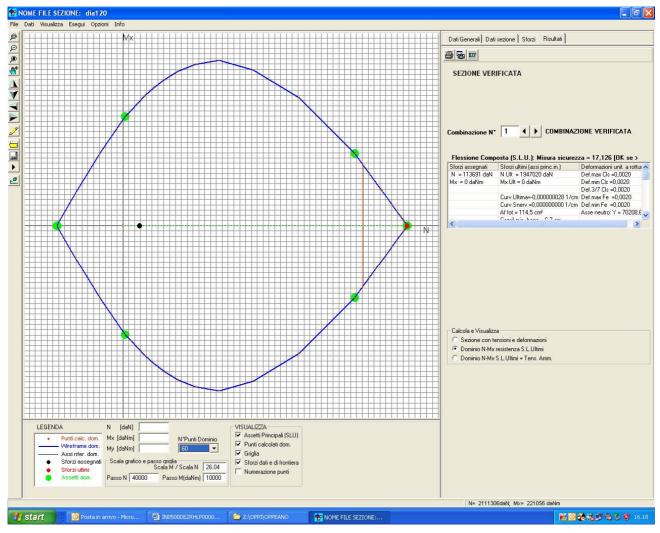
Portata fattorizzata globale in compressione $Q_C = 167115 \text{ daN}$


Portata fattorizzata in trazione $Q_T = 67824 \text{ daN}$

ProgettoLottoCodifica DocumentoRev.FoglioINOR12EE2RHLP0000KB3A10 di 22



Progetto	Lotto	Codifica Documento	Rev.	Foglio
INOR	12	EE2RHLP0000KB3	Α	11 di 22



Progetto	Lotto	Codifica Docum
INOR	12	EE2RHLP0000K

odifica Documento Rev. Foglio E2RHLP0000KB3 A 12 di 22

Verifica delle azioni trasversali

Dominio di rottura della sezione Armatura principale del palo 20 dia 27; staffe 2 spirali controverse dia 10

Azione massima sul singolo palo T = 4374 daN

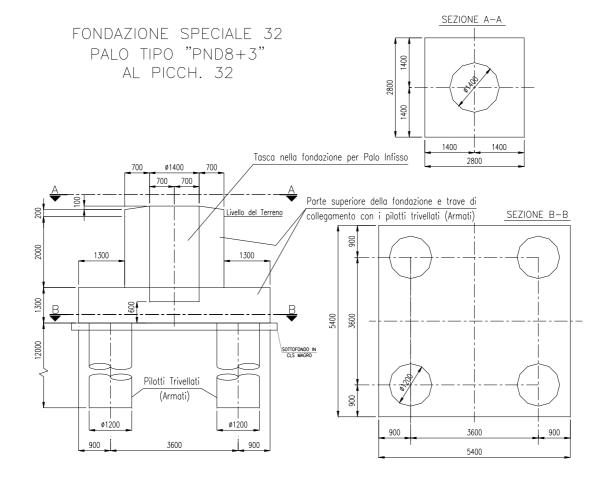
Myield = 238670 daNm

Capacità portante ultima in condizioni di pressoflessione valutata secondo la teoria di Broms

Tipo di palo lungo a testa libera in suolo incoerente (k sottofondo crescente linearmente con la profondità) $T_u = [1.51*(M^2_{yield}*g*D*K_p)^{0.333} =] \ / \ 1.3 = 66465 \ daN > 4374$

 $g = 1000 \text{ daN/m}^3$ peso del suolo

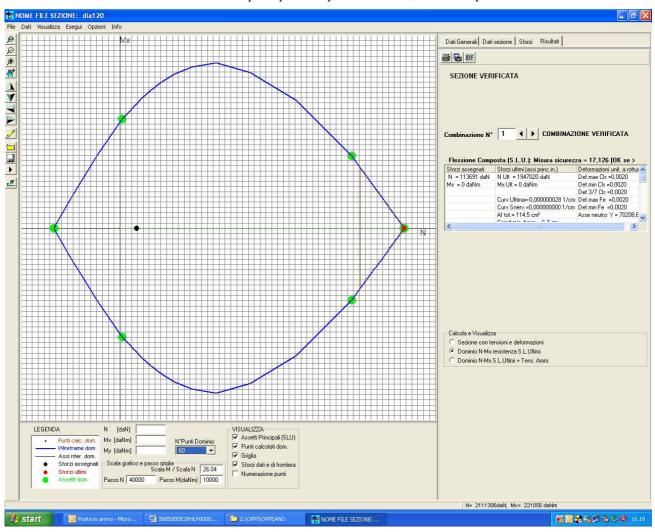
 $K_p = 2,75$ coefficiente di spinta


D = 120 cm

Progetto	Lotto	Codifica Documento	Rev.	Foglio
INOR	12	EE2RHLP0000KB3	Α	13 di 22

Progetto	Lotto	Codifica Documento	Rev.	Foglio	
INOR	12	EE2RHLP0000KB3	Α	14 di 22	

H = B = N 4 pali dia		cm cm g 12,0 m							
Pesi unita g _c = g _s =		zioni som daN/m³ daN/m³	merse					 1	
	me del calce ume dl calce			55,16 109,42 123,30	m³]	
F	Peso del c	ls Wc=		164100	daN	4			
						+	' +		
Carichi in	fondazion	e				+			
Carichi in sostegno	Loading	V	Tx	Ту	ST	T _R	Mx	Му	SM
	Loading C1AXA		Tx 0	Ty 8318	8318	T _R 8318	+	My 0	SM 190902,6
sostegno PND8+3 PND8+3	Loading C1AXA C4X1A	V 15553 14032	0 7706	-			Mx		
sostegno PND8+3 PND8+3 Azioni in to	Loading C1AXA C4X1A esta al sing	V 15553 14032 golo palo	0 7706	8318 311	8318 8017	8318 7712	Mx 190902,6 7840,6	0	190902,6
sostegno PND8+3 PND8+3 Azioni in to	Loading C1AXA C4X1A esta al singi	V 15553 14032 golo palo npression	0 7706 e / trazion	8318 311	8318 8017 T azione	8318 7712 e trasversal	Mx 190902,6 7840,6	0 195436	190902,6
sostegno PND8+3 PND8+3 Azioni in to	Loading C1AXA C4X1A esta al sing	V 15553 14032 golo palo mpression Vcls	0 7706	8318 311 e H	8318 8017 T azione	8318 7712	Mx 190902,6 7840,6	0	190902,6
sostegno PND8+3 PND8+3 Azioni in to N, U azion	Loading C1AXA C4X1A esta al sine i assiali cor sostegno	V 15553 14032 golo palo npression	0 7706 e / traziono Wcls	8318 311	8318 8017 T azione	8318 7712 e trasversal	Mx 190902,6 7840,6	0 195436	190902,6



Progetto	Lotto	Codifica Documento	Rev.	Foglio
INOR	12	EE2RHLP0000KB3	Α	15 di 22

Dominio di rottura della sezione Armatura principale del palo 20 dia 27; staffe 2 spirali controverse dia 10

Azione massima sul singolo palo T = 2080 daN

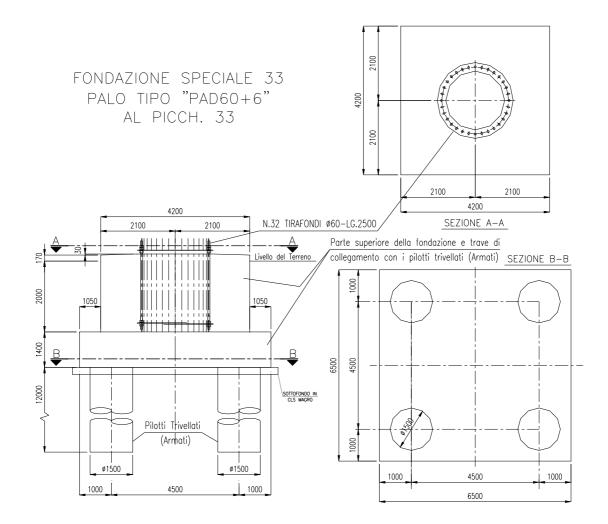
Myield = 227333 daNm

Capacità portante ultima in condizioni di pressoflessione valutata secondo la teoria di Broms

Tipo di palo lungo a testa libera in suolo incoerente (k sottofondo crescente linearmente con la profondità) $T_u = [1,51*(M^2_{yield}*g*D*K_p)^{0.333} =] \ / \ 1,3 = 63714 \ daN > 4374$

 $g = 1000 \text{ daN/m}^3$ peso del suolo

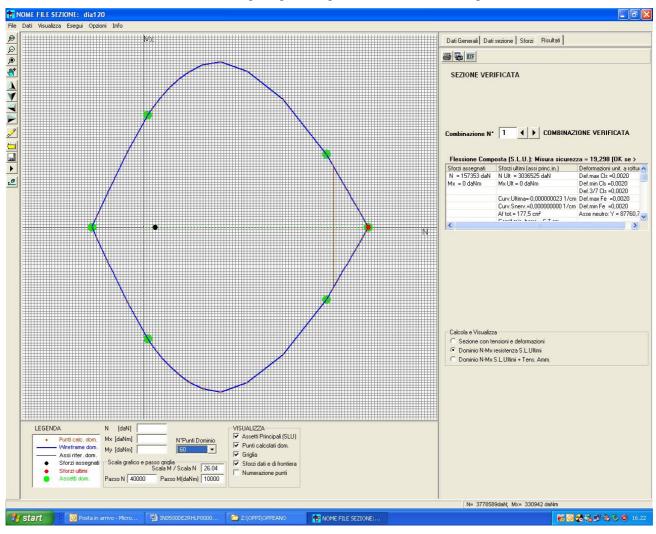
 $K_p = 2,75$ coefficiente di spinta


D = 120 cm

ProgettoLottoCodifica DocumentoRev.FoglioINOR12EE2RHLP0000KB3A16 di 22

Progetto	Lotto	Codifica Documento	Rev.	Foglio
INOR	12	EE2RHLP0000KB3	Α	17 di 22

PICCHETTO H = B = N 4 pali dia	3,60 4,50	cm cm g 12,0 m							
Pesi unitai g _c = g _s =	ri in condiz 1500 1000	zioni somi daN/m³ daN/m³	merse						
	ne del calce ime di calce			97,96 84,78 182,74	m³				
F	Peso del c	s Wc=		274050	daN		P		
Carichi in	fondazion								
sostegno	Loading	V	Tx	Ту	ST	T _R	Mx	Му	SM
PAD60+6	C1AXA	27841	111	25899	26010	25899	640519,2	2766,9	643286,1
PAD60+6	C3X1A	29722	607	25031	25638	25038	647085,1	14041,6	661126,7
Azioni in te N, U azion			e / trazion	۵	T azione	e trasversale	ے		
Pk	sostegno	Vcls	Wcls	Н	P	N	U	Т	
33	PAD60+6	182,7	274050	3,60	4,50	157353	-6407	6475	
33	PAD60+6	182,7	274050	3,60	4,50	159657	-7771	6260	
\/orifice c.o.	ompressior	ne N = 15	0657	<	167115	daN			



Progetto	Lotto	Codifica Documento
INOR	12	EE2RHLP0000KB3

ca Documento Rev. Foglio HLP0000KB3 A 18 di 22

Dominio di rottura della sezione Armatura principale del palo 30 dia 27; staffe 2 spirali controverse dia 10

Azione massima sul singolo palo T = 6475 daN

Myield = 464232 daNm

Capacità portante ultima in condizioni di pressoflessione valutata secondo la teoria di Broms

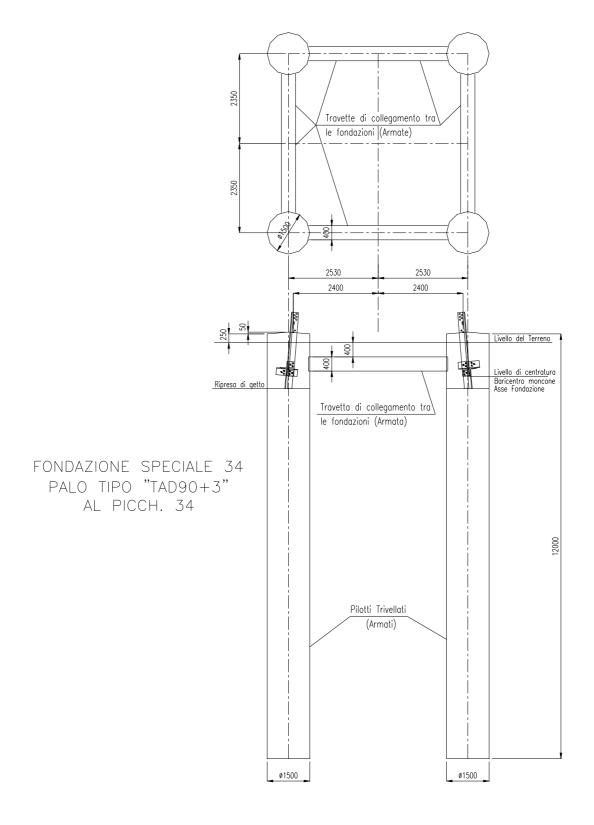
Tipo di palo lungo a testa libera in suolo incoerente (k sottofondo crescente linearmente con la profondità) $T_u = [1,51*(M^2_{yield}*g*D*K_p)^{0,333} =] \ / \ 1,3 = 101251 \ daN > 4374$

con

 $g = 1000 \text{ daN/m}^3$ peso del suolo

 $K_p = 2,75$ coefficiente di spinta

D = 150 cm



Progetto Lotto Codifica Documento INOR 12 EE2RHLP0000KB3

Rev. Foglio A 19 di 22

ProgettoLottoCodifica DocumentoRev.FoglioINOR12EE2RHLP0000KB3A20 di 22

PICCHETTC 34

N 1 palo dia 1,50 m Lg 11,75 m interrata per ciscun piede

Pesi unitari in condizioni sommerse

 $g_c = 1500 \text{ daN/m}^3$

 $g_s = 1000 \text{ daN/m}^3$

Volume del calcestruzzo palo Volume della trave

21,20 m³ 0,56 m³ 21,76 m³

Peso del cls Wc =

32640 daN

Carichi sulle fondazioni.

E' incluso il coefficiente parziale di sicurezza

I carichi dovuti al sisma sono risultati inferiori a quelli statici riportati.

Carichi in fondazione

sostegno	Loading	С	Tx	Ту	Tr
TAD90+3	S18-1a1	98458	8898	10196	13533
TAD90+3	S18-1a1	-89539	9024	8434	12352

Azioni in testa al singolo palo

N azione assiale T azione trasversale

Pk	sostegno	Vcls	Wcls	Ν	Т
34	TAD90+3	21,8	32640	131098	13533
34	TAD90+3	21,8	32640	-56899	12352

Verifica a compressione N = 131098 < 167115 daN Verifica a trazione U = -56899 < 67824 daN

Dominio di rottura della sezione Armatura principale del palo 30 dia 27; staffe 2 spirali controverse dia 10 Dominio di rottura identico a quello del caso precedente

Verifica alle azioni trasversali

Azione massima sul singolo palo T = 13533 daN

Myield = 432655 daNm

Capacità portante ultima in condizioni di pressoflessione valutata secondo la teoria di Broms

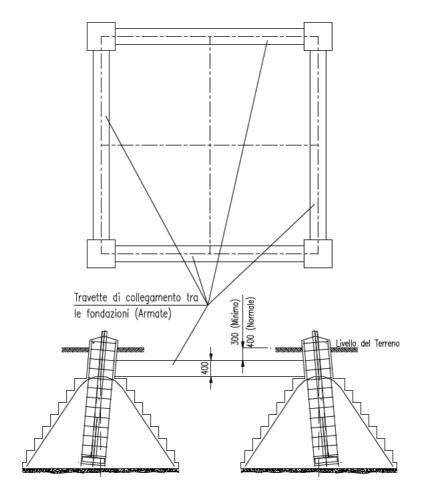
Tipo di palo lungo a testa libera in suolo incoerente (k sottofondo crescente linearmente con la profondità)

 $T_u = [1.51 * (M^2_{yield} * g * D * K_p)^{0.333} =] / 1.3 = 105351 daN > 13533$

 $g = 1000 \text{ daN/m}^3$ peso del suolo

 $K_p = 2,75$ coefficiente di spinta

D = 150 cm



 Progetto
 Lotto
 Codifica Documento
 Rev.
 Foglio

 INOR
 12
 EE2RHLP0000KB3
 A
 21 di 22

TRAVETTE DI COLLEGAMENTO TRA FONDAZIONI A PIEDINI SEPARATI

Tutte le fondazioni a piedini separati andranno collegate tra loro con travette di collegamento in CLS armate (solo sostegni tralicciati)., Secondo le Specifiche ed i criteri in seguito descritti.

DISEGNO TIPOLOGICO

VARIABILITA' SPAZIALE DEL MOTO SISMICO

In conformità ai paragrafi 3.2.5.1 e 7.2.5.1 del DM 14 / 01 / 2008, per tener conto della variabilità spaziale del moto sismico ed evitare spostamenti relativi eccessivi tra i piedini e critici per la struttura in elevazione, si sono previste travi di collegamento degli stessi. Il citato decreto ne prevede l'impiego per zone di classe 1, 2 e 3 in presenza di suoli tipo B, C e D.

Progetto	Lotto	Codifica Documento	Rev.	Foglio
INOR	12	EE2RHLP0000KB3	Α	22 di 22

Criteri di progettazione

N_{Ed} Valore dell'azione verticale massima al piede

Azione assiale F nella trave $+/-0.3~N_{Ed}~(a_{max}/g)~$ per suolo di tipo B

+/- 0,4 $N_{Ed}\ (a_{max}\,/g)$ per suolo di tipo $\,C\,$

 $+/-0.6 N_{Ed} (a_{max}/g)$ per suolo di tipo D

 a_{max} è l'accelerazione massima attesa al sito = $a_g * S$ (a_g parametro di rischio sismico per suolo tipo A)

Esempio

Per suolo tipo C in condizione SLV (stato limite di salvaguardia della vita) nei comuni di Calcinato e Lonato si ha

 $a_g/g = 0.156 \quad e \quad S = 1.5 \quad \mbox{ per cui } \qquad F = +/-\ 0.4 \ N_{Ed} \ (a_{max} \ /g) = +/-\ 0.094 \ * \ N_{Ed} \ (a_{max} \ /g) = +/- 0.094 \ (a_{$

A favore di sicurezza si può assumere $F = 10\% N_{Ed}$