COMMITTENTE:

PROGETTAZIONE:

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

PROGETTO DEFINITIVO

LINEA SALERNO - PONTECAGNANO AEROPORTO COMPLETAMENTO METROPOLITANA DI SALERNO TRATTA ARECHI - PONTECAGNANO AEROPORTO

OPERE D'ARTE MAGGIORI

VI-02 PONTE SUL FIUME PICENTINO RELAZIONE GEOTECNICA DI CALCOLO DELLE FONDAZIONI

SCALA:	
-	

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV.

N N 1 X 0 0 D 0 9 R B V I 0 2 0 3 0 0 1 A

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Emissione Esecutiva	A.Polastri	Sett.2020	F.Rotunno	Sett.2020	D(Ayino)	Sett.2020	A.Vijozzi
				100		V K		A. e delle sittozzi
								IR S.p., estione estione destar
								ALFER VILLE GO Ing. At N° A2
								IT Opere Cis Dott. I degli Ing
								U.O. Op

File: NN1X00D09RBVI0203001A.doc n. Elab.:

COMPLETAMENTO METROPOLITANA DI SALERNO TRATTA ARECHI - PONTECAGNANO AEROPORTO

RELAZIONE GEOTECNICA DI CALCOLO DELLE FONDAZIONI

COMMESSA LOTTO
NN1X 00

CODIFICA D 09 RB DOCUMENTO VI 02 03 001 REV.

FOGLIO 2 di 42

INDICE

1	GEN	NERALITÀ	4
	1.1	Premessa	4
	1.2	NORMATIVA DI RIFERIMENTO	7
	1.3	DOCUMENTI DI RIFERIMENTO	7
2	MA	TERIALI	8
	2.1	CALCESTRUZZO PER FONDAZIONI E PALI	8
	2.2	ACCIAIO B450C	9
3	INQ	UADRAMENTO GEOTECNICO	10
4	CAF	RICHI AGENTI	12
	4.1	SOLLECITAZIONI BASE PLINTO – SPALLA A	12
	4.2	SOLLECITAZIONI BASE PLINTO –SPALLA B	15
	4.3	SOLLECITAZIONI IN TESTA PALO – SPALLA B	15
5	CRI	TERI DI PROGETTAZIONE IN ACCORDO ALLE NTC2018	17
	5.1	STATI LIMITE ULTIMI (SLU)	17
	5.2	STATI LIMITE DI ESERCIZIO (SLE)	19
	5.3	VERIFICHE STATICHE	19
	5.3.	l Verifiche agli stati limite ultimi di tipo Geotecnico (SLU GEO)	20
6 A		ГОDI DI CALCOLO ADOTTATI PER LA VALUTAZIONE DEL COMPORTAMENTO DELLE FONDAZ	
	1.1.	l Resistenza caratteristica	24
	1.1.2	2 Resistenza di progetto	26
7	ME	ГОDI DI CALCOLO ADOTTATI PER LA VALUTAZIONE DEL COMPORTAMENTO DEL PALO SING	OLO 27
	7.1	RESISTENZA A COMPRESSIONE E TRAZIONE DEI MICROPALI	27
	7.1.	l Resistenza di calcolo di micropali	27

COMPLETAMENTO METROPOLITANA DI SALERNO TRATTA ARECHI - PONTECAGNANO AEROPORTO

RELAZIONE GEOTECNICA DI CALCOLO DELLE FONDAZIONI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NN1X
 00
 D 09 RB
 VI 02 03 001
 A
 3 di 42

	7.1.2	Resistenza caratteristica	29
	7.1.3	Resistenza di progetto	29
	7.1.4	Effetto gruppo	30
8	RESI	ISTENZA A CARICHI ASSIALI	32
	8.1	POZZO SPALLA A	32
	8.2	PALO SINGOLO SPALLA B	34
	8.3	PALIFICATA SPALLA B	36
9	ESIT	O DELLE VERIFICHE	37
	9.1	VERIFICHE SPALLA A	37
	9.2	VERIFICHE SPALLA B	42

ITALFERR GRUPPO FERROVIE DELLO STATO	LINEA SALERNO - PONTECAGNANO AEROPORTO COMPLETAMENTO METROPOLITANA DI SALERNO TRATTA ARECHI - PONTECAGNANO AEROPORTO						
RELAZIONE GEOTECNICA DI CALCOLO DELLE FONDAZIONI	COMMESSA NN1X	LOTTO 00	CODIFICA D 09 RB	DOCUMENTO VI 02 03 001	REV.	FOGLIO 4 di 42	

1 GENERALITÀ

1.1 Premessa

La presente relazione riporta le verifiche geotecniche delle fondazioni profonde delle spalle del viadotto VI 02.

Il viadotto è costuito da un'unica campata poggiante su due spalle, di seguito denominate spalla A (Lato Salerno) e spalla B (Lato Pontecagnao).

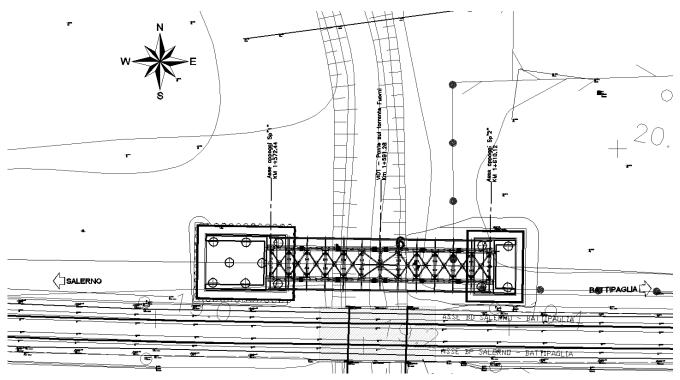


Figura 1. Stralcio planimetrico – ubicazione opera d'arte

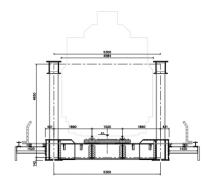


Figura 2. Sezione trasversale impalcato

GRUPPO FERROVIE DELLO STATO	LINEA SALERNO - PONTECAGNANO AEROPORTO COMPLETAMENTO METROPOLITANA DI SALERNO TRATTA ARECHI - PONTECAGNANO AEROPORTO					
RELAZIONE GEOTECNICA DI CALCOLO DELLE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
FONDAZIONI	NN1X	00	D 09 RB	VI 02 03 001		5 di 42

La spalla A è costituita da un pozzo circolare di diametro 9.6 m, profondo 16 m (misurati a partire dalla testa pozzo).

La spalla B è invece costituita da una palificata di 60 micropali aventi diametro 300 mm e lunghezza 20 m.

I micropali sono inclinati rispetto alla verticale di 15° gradi, al fine di costituire anche un valdio contrasto alle azioni longitudinali.

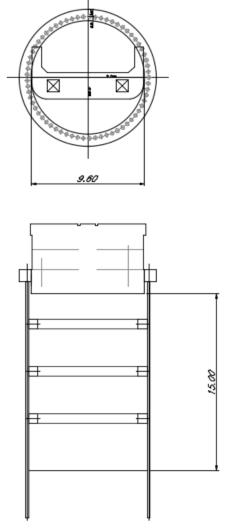


Figura 3. Spalla A – sezione e pianta

COMPLETAMENTO METROPOLITANA DI SALERNO TRATTA ARECHI - PONTECAGNANO AEROPORTO

RELAZIONE GEOTECNICA DI CALCOLO DELLE FONDAZIONI

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NN1X	00	D 09 RB	VI 02 03 001	Α	6 di 42

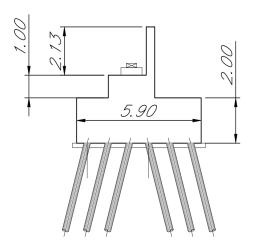


Figura 4. Spalla B – sezione

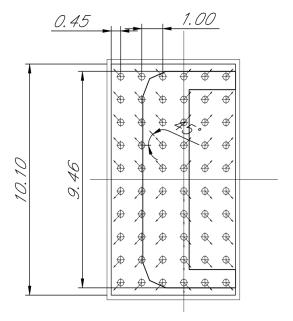


Figura 5. Spalla B – Pianta

	LINEA SALERNO - PONTECAGNANO AEROPORTO COMPLETAMENTO METROPOLITANA DI SALERNO TRATTA ARECHI - PONTECAGNANO AEROPORTO					
RELAZIONE GEOTECNICA DI CALCOLO DELLE FONDAZIONI	COMMESSA NN1X	LOTTO 00	CODIFICA D 09 RB	DOCUMENTO VI 02 03 001	REV.	FOGLIO 7 di 42

Si riepilogano nel seguito le caratteristiche principali delle fondazioni

		VI 02	
	SPALLA A	SPALL	A B
TIPOLOGIA	POZZO	TIPOLOGIA	PALIFICATA MICROPALI
L POZZO [m]	16	L PALI [m]	20
D POZZO [m]	10	D PALI [m]	0.3
		int. Pali [m]	0.9
		inclinazione pali direzione x [°]	15
		inclinazione pali direzione v ſ°1	15

1.2 Normativa di riferimento

Le analisi strutturali e le verifiche di sicurezza sono state effettuate in accordo con le prescrizioni contenute nelle seguenti normative.

- [N1] Legge 5/11/1971, n.1086 Norme per la disciplina delle opere di conglomerato cementizio armato normale e precompresso e a struttura metallica.
- [N2] D. M. Min. II. TT. del 17 gennaio 2018 (G.U. 20 febbraio 2018 n. 42) Aggiornamento delle "Norme tecniche per le costruzioni";
- [N3] CIRCOLARE 21 gennaio 2019, n. 7 C.S.LL.PP. (G.U. n. 35 del 11 febbraio 2019) Istruzioni per l'applicazione delle «Nuove norme tecniche per le costruzioni» di cui al decreto ministeriale 17 gennaio 2018.
- [N4] RFI DTC SICS MA IFS 001 C Manuale di Progettazione delle Opere Civili.
- [N5] RFI DTC SICS SP IFS 001 Capitolato generale tecnico di Appalto delle opere civili.
- [N6] Eurocodice EN 1997-1: Progettazione Geotecnica Parte 1: Regole generali.
- [N7] Eurocodice EN 1998-5: Progettazione delle strutture per la resistenza sismica Parte 5: Fondazione, strutture di contenimento ed aspetti geotecnici.
- [N8] Regolamento (UE) N° 1299/2014 della Commissione del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea, modificato dal Regolamento di esecuzione (UE) N° 776/2019 della Commissione del 16 maggio 2019.

1.3 Documenti di riferimento

I documenti che verranno richiamati nel seguito sono:

- Rif. [1] Relazione geotecnica generale
- Rif. [2] Impalcato Relazione di calcolo NN1X00D09CLVI0209001A
- Rif. [3] relazione di calcolo spalla A NN1X00D09CLVI0204001A
- Rif. [4] relazione di calcolo spalla B NN1X00D09CLVI0204002A

	LINEA SALERNO - PONTECAGNANO AEROPORTO						
ITALFERR GRUPPO FERROVIE DELLO STATO	COMPLETAMENTO METROPOLITANA DI SALERNO TRATTA ARECHI - PONTECAGNANO AEROPORTO						
RELAZIONE GEOTECNICA DI CALCOLO DELLE FONDAZIONI	COMMESSA NN1X	LOTTO 00	CODIFICA D 09 RB	DOCUMENTO VI 02 03 001	REV.	FOGLIO 8 di 42	

2 MATERIALI

2.1 Calcestruzzo per fondazioni e pali

Per le strutture in fondazione si adotta un calcestruzzo con le seguenti caratteristiche riportate in :

CLS FONDAZIONE - PALI C25/30								
Peso per unità di volume								
γ	25	kN/m³						
Resistenza a compressione								
R _{ck} =	30.00	MPa						
f _{ck} =	25	MPa						
f _{cm} =	33.00	MPa						
f _{cd} =	14.17	MPa						
f _{cu} =	12.04	MPa						
f _{ctm} =	2.56	MPa						
f _{ctk} =	1.80	MPa						
f _{ctd} =	1.20	MPa						
f _{cfm} =	3.08	MPa						
Res	sistenza a d	compression	ne					
$\sigma_{c,max} =$	15.0	MPa	comb rara					
$\sigma_{c,max} =$	11.3	MPa	comb qp					
Modulo ela	istico e coe	efficciente di	Poisson					
E _{cm} =	31475.81	MPa						
U _{fessurato} =	0.00							
$v_{\text{non fessurato}} = 0.20$								
(Grandezze d	deformative						
ε _{c4} =	0.07%							
ε _{cu} =	0.35%							

Tabella 1. Caratteristiche clacestruzzo fondazione e pali

TALFERR GRUPPO FERROVIE DELLO STATO	LINEA SALERNO - PONTECAGNANO AEROPORTO COMPLETAMENTO METROPOLITANA DI SALERNO TRATTA ARECHI - PONTECAGNANO AEROPORTO					
RELAZIONE GEOTECNICA DI CALCOLO DELLE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
FONDAZIONI	NN1X	00	D 09 RB	VI 02 03 001		9 di 42

2.2 Acciaio B450C

Si adotta acciaio tipo B450C come previsto al punto 11.3.2.1 delle NTC18 ([N2]), per il quale si possono assumere le seguenti caratteristiche:

ACCIAIC	ACCIAIO per ARMATURA					
Pe	eso per un	ità di volur	ne			
γ	78.5	kN/m3				
	Resistenza a trazione					
f _{yk} =	450.00	MPa				
f _{yd} =	391.30	MPa				
f _{tk} =	540.00	MPa				

Modulo elastico e coefficciente di Poisson						
E _{sm} =	210000	MPa				
υ =	0.30					
	Grandezz	e deformative				
$\varepsilon_{yd} =$	0.19%					
$\varepsilon_{\text{sud}} =$	6.75%	def. rottura di calcolo				

Tabella 2. Caratteristiche acciaio per armatura

TALFERR GRUPPO FERROVIE DELLO STATO	COMPLETA	AMENTO	METROPOL	NANO AEROPO LITANA DI SALE NANO AEROPO	RNO	
RELAZIONE GEOTECNICA DI CALCOLO DELLE FONDAZIONI	COMMESSA NN1X	LOTTO 00	CODIFICA D 09 RB	DOCUMENTO VI 02 03 001	REV.	FOGLIO 10 di 42

3 INQUADRAMENTO GEOTECNICO

Si rimanda alla Relazione geotecnica (Rif. [1]) la trattazione completa dei parametri geologici e geotecnici del terreno di fondazione.

Si riportano di seguito il sunto dei parametri di progetto in base ai quali sono state effettuate le verifiche di normativa e la stratigrafia di progetto, così come desunte dalle indicazioni della Relazione Geotecnica genreale.

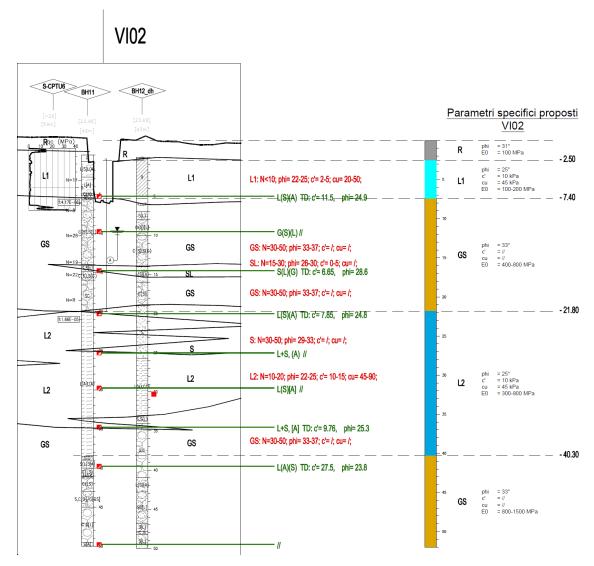


Tabella 3. Parametri geotecnici di progetto e stratigrafia di progetto

Per quanto riguarda la quota di falda, si sottolinea che i calcoli sono stati sviluppati ipotizzando, cautelativamente, che questa raggiunga la quota intradosso plinto.

TALFERR GRUPPO FERROVIE DELLO STATO	COMPLETA	AMENTO	METROPOL	NANO AEROPO LITANA DI SALE NANO AEROPO	RNO	
RELAZIONE GEOTECNICA DI CALCOLO DELLE FONDAZIONI	COMMESSA NN1X	LOTTO	CODIFICA D 09 RB	DOCUMENTO VI 02 03 001	REV.	FOGLIO

Si riporta di seguito la stratigrafia di progetto, definita con lo 0.0 ubicato a piano campagna

Strato 1 "R" (Incoerente) da .00 a 2.50 m

Strato 2 "L1" (Coesivo) da 2.50 a 7.40 m

Strato 3 "GS" (Incoerente) da 7.40 a 21.80 m

Strato 4 "L2" (Coesivo) da 21.80 a 50.00 m

4 CARICHI AGENTI

I carichi agenti sui pali di fondazione sono stati direttamente mutuati dal par 6.5.2 dei documenti(Rif. [3] e Rif. [4]). Per comodità di lettura si riportano di seguito.

4.1 Sollecitazioni base plinto – SPALLA A

Nelle seguenti tabelle si riportano i valori delle sollecitazioni a base plinto per ogni condizione massima e minima studiata.

Le azioni sono riportate secondo la seguente nomenclatura

- Fv =Forza verticale;
- Fl = Forza longitudinale;
- Ft = Forza trasversale;
- Msl = Momento stabilizzante, rispetto al piede anteriore della fondazione;
- Mrl = Momento ribaltante, rispetto al piede anteriore della fondazione;
- Mt =Momento trasversale, rispetto al baricentro della fondazione, riportato alla quota intradosso plinto;
- Ml =Momento longitudinale, rispetto al baricentro della fondazione, riportato alla quota intradosso plinto;

I valori di M tot e F tot sono ottenuti dalla composizione dei vettori di Ml-Mt e Fl-Ft, ovvero

$$M_{tot} = \sqrt{{M_l}^2 + {M_t}^2}$$

$$F_{tot} = \sqrt{{F_l}^2 + {F_t}^2}$$

Si riporta anche il sistema di riferimento adottato

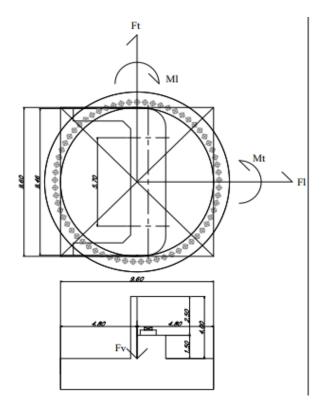


Figura 6. Sistema di riferimento per sollecitazioni testa pozzo

COMPLETAMENTO METROPOLITANA DI SALERNO TRATTA ARECHI - PONTECAGNANO AEROPORTO

RELAZIONE GEOTECNICA DI CALCOLO DELLE FONDAZIONI

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NN1X	00	D 09 RB	VI 02 03 001	Α	14 di 42

COMB. SLU											
Cond.	FV	MI	Mt	FI	Ft	Т	M tot	Ftot	Imp	Comb	Ind
-	[kN]	[kNm]	[kNm]	[kN]	[kN]	[kNm]	[kNm]	[kN]	•	-	-
MAX	19034	7384	6321	6007	1201	4105	9720	6126			
MIN	6918	-14622	-106	-2964	268	503	14622	2976			

COMB. SISMICA											
Cond.	FV	MI	Mt	FI	Ft	Т	M tot	Ftot	Imp	Comb	Ind
-	[kN]	[kNm]	[kNm]	[kN]	[kN]	[kNm]	[kNm]	[kN]	-	-	-
MAX	11919	12114	13161	7575	3353	8890	17888	8284			
MIN	7963	-16261	-13096	-5175	-3331	-8841	20879	6155			

Viadotto VIO2 - SPALLA FISSA

Spalla fissa montata su pozzo diametro 9.60m. Per il calcolo ipotesi plinto quadrato circoscritto a circonferenza con spessore s=0.001m, per calcolo sollecitazioni baricentrali al pozzo.

Spinta in condizione sismica calcolata con Wood+spinte i quiete, ipotesi di non spostamento del pozzo (fattore comportamento struttura q=1, terreno "E").

LEGENDA:

FI= forza longitudinale

Ft = forza trasversale

MI= momento longitudinale

Mt= Momento trasversale

Fv= forza verticale, positiva verso il basso

GRUPPO FERROVIE DELLO STATO	COMPLETA	AMENTO	METROPOL	NANO AEROPO LITANA DI SALE NANO AEROPO	ERNO	
RELAZIONE GEOTECNICA DI CALCOLO DELLE FONDAZIONI	COMMESSA NN1X	LOTTO 00	CODIFICA D 09 RB	DOCUMENTO VI 02 03 001	REV.	FOGLIO 15 di 42

4.2 Sollecitazioni base plinto –SPALLA B

Nelle seguenti tabelle si riportano i valori delle sollecitazioni a base plinto per ogni condizione massima e minima studiata:

				С	OMB.	SLU					
Cond.	FV	МІ	Mt	FI	Ft	Т	MsI	Mrl	Imp	Comb	Ind
-	[kN]	[kNm]	[kNm]	[kN]	[kN]	[kNm]	[kNm]	[kNm]	-	-	-
Fvmax	19541	7418	4355	2048	685	0	54318	4090	FVmax	SLU7	7
Fvmin	7763	2391	6754	1150	1021	0	22598	2088	FVmax	SLU6	6
Flmax	19512	7405	4657	2048	757	0	54246	4090	FVmax	SLU1	1
Flmin	7763	2391	6754	1150	1021	0	22598	2088	FVmax	SLU6	6
Mlmax	19541	7418	4355	2048	685	0	54318	4090	FVmax	SLU7	7
Mlmin	7763	2391	6754	1150	1021	0	22598	2088	FVmax	SLU6	6
Ftmax	14035	4778	6754	1503	1021	0	39316	2692	FVmax	SLU3	3
Ftmin	7763	2391	-2939	1150	-391	0	22598	2088	FVmin	SLU6	150
Mtmax	14035	4778	6754	1503	1021	0	39316	2692	FVmax	SLU3	3
Mtmin	10930	3979	-3167	1695	-245	0	31752	3487	Ftmin	SLU4	244
Np max	19512	7405	4657	2048	757	0	54246	4090	FVmax	SLU1	1
Np min	7763	2391	6754	1150	1021	0	22598	2088	FVmax	SLU6	6

	COMB. SISMICA										
Cond.	FV	MI	Mt	FI	Ft	Т	MsI	Mrl	Imp	Comb	Ind
ı	[kN]	[kNm]	[kNm]	[kN]	[kN]	[kNm]	[kNm]	[kNm]	-	-	-
Fvmax	12397	6805	4404	3925	962	0	34324	4152	FVmax	SIS9	9
Fvmin	8616	397	-4359	-1569	-951	0	24784	167	FVmin	SIS4	292
Flmax	12395	6804	4449	3925	973	0	34317	4152	FVmax	SIS1	1
Flmin	9462	690	4285	-1569	945	0	26985	167	FVmax	SIS3	3
Mlmax	12397	6805	4404	3925	962	0	34324	4152	FVmax	SIS9	9
Mlmin	8616	397	-4359	-1569	-951	0	24784	167	FVmin	SIS4	292
Ftmax	11050	4804	14511	2097	3146	0	30955	2758	Ftmax	SIS17	209
Ftmin	9917	2377	-14391	260	-3124	0	28035	1562	Ftmin	SIS20	500
Mtmax	11050	4804	14511	2097	3146	0	30955	2758	Ftmax	SIS17	209
Mtmin	9904	2371	-14418	260	-3113	0	28003	1562	Mtmax	SIS28	124
Np max	11384	4954	14349	2097	3145	0	31791	2758	FVmax	SIS17	17
Np min	10553	4667	14333	2097	3141	0	29625	2758	Mlmax	SIS22	70

4.3 Sollecitazioni in testa palo – SPALLA B

TALFERR GRUPPO FERROVIE DELLO STATO	COMPLET	AMENTO	METROPOL	NANO AEROPO LITANA DI SALE NANO AEROPO	ERNO	
RELAZIONE GEOTECNICA DI CALCOLO DELLE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
FONDAZIONI	NN1X	00	D 09 RB	VI 02 03 001		16 di 42

Si riportano di seguito le massime sollecitazioni agenti sui micropali, sia di compressione sia di trazione.

Nella schematizzazione adottata, i micropali non reagiscono a taglio e pertanto gli sforzi taglianti sono da considerarsi nulli.

Lo stesso dicasi per i momenti flettenti agenti sui micropali.

Np max	Np min
689	-103
Np max	Np min
757	-360

Tabella 4. Sollecitazioni massime su micropali spalla B

GRUPPO FERROVIE DELLO STATO	LINEA SALERNO - PONTECAGNANO AEROPORTO COMPLETAMENTO METROPOLITANA DI SALERNO TRATTA ARECHI - PONTECAGNANO AEROPORTO					
RELAZIONE GEOTECNICA DI CALCOLO DELLE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
FONDAZIONI	NN1X	00	D 09 RB	VI 02 03 001		17 di 42

5 CRITERI DI PROGETTAZIONE IN ACCORDO ALLE NTC2018

In accordo con quanto definito nel paragrafo 6.2.4 delle NTC2018, devono essere svolte le seguenti verifiche di sicurezza e delle prestazioni attese:

- Verifiche agli Stati Limite Ultimi (SLU)
- Verifiche agli Stati Limite d'Esercizio (SLE)

5.1 Stati Limite Ultimi (SLU)

Per ogni <u>Stato Limite Ultimo (SLU)</u> la verifica è considerata soddisfatta se vale la seguente disuguaglianza:

 $E_d \leq R_d$

dove

- E_d valore di progetto dell'azione o dell'effetto dell'azione;
- R_d valore di progetto della resistenza.

L'azione e la corrispondente resistenza di progetto vanno determinate in accordo alle NTC2018 per gli approcci previsti al paragrafo 6.4.3.1. Sono previsti coefficienti parziali da applicarsi rispettivamente alle azioni (A1), ai parametri del terreno (M1) ed alle resistenze caratteristiche di calcolo (R3).

Per le verifiche in condizioni sismiche è previsto l'utilizzo della medesima combinazione in cui siano posti pari ad 1 i coefficienti parziali sulle azioni e sui parametri geotecnici (già pari ad 1 secondo il set M1) ed adottando i coefficienti parziali sulle resistenze come indicato per le combinazioni statiche laddove non diversamente specificato nel capitolo 7 sulla sismica.

I valori assunti dai coefficienti di sicurezza parziali di ciascun gruppo, "Azioni – Parametri geotecnici del terreno – Resistenze", sono riportati all'interno delle NTC2018, rispettivamente alle tabelle:

TALFERR GRUPPO FERROVIE DELLO STATO	LINEA SALERNO - PONTECAGNANO AEROPORTO COMPLETAMENTO METROPOLITANA DI SALERNO TRATTA ARECHI - PONTECAGNANO AEROPORTO					
RELAZIONE GEOTECNICA DI CALCOLO DELLE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
FONDAZIONI	NN1X	00	D 09 RB	VI 02 03 001		18 di 42

• A Tabella 6.2.I

Tab. 6.2.I – Coefficienti parziali per le azioni o per l'effetto delle azioni

	Effetto	Coefficiente Parziale γ_F (o γ_E)	EQU	(A1)	(A2)
Carichi permanenti G ₁	Favorevole	γ_{Gi}	0,9	1,0	1,0
	Sfavorevole		1,1	1,3	1,0
Carichi permanenti G ₂ (1)	Favorevole	Υ _{G2}	0,8	0,8	0,8
	Sfavorevole		1,5	1,5	1,3
Azioni variabili Q	Favorevole	Yα	0,0	0,0	0,0
	Sfavorevole		1,5	1,5	1,3

⁽I) Per i carichi permanenti G2 si applica quanto indicato alla Tabella 2.6.I. Per la spinta delle terre si fa riferimento ai coefficienti γ_{G1}

Figura 7. Coefficienti parziali sulle azioni (coefficienti A)

• M Tabella 6.2.II

Tab. 6.2.II – Coefficienti parziali per i parametri geotecnici del terreno

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale γ_{M}	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	$tan {\phi'}_k$	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c′ _k	Ye	1,0	1,25
Resistenza non drenata	c _{uk}	Υœ	1,0	1,4
Peso dell'unità di volume	γγ	Υγ	1,0	1,0

Figura 8. Coefficienti parziali sui parametri geotecnici (coefficienti \mathbf{M})

• R Tabella 6.4.II

 ${\bf Tab.~6.4.I-Coefficienti~parziali~\gamma_R~per~le~verifiche~agli~stati~limite~ultimi~di~fondazioni~superficiali$

Verifica	Coefficiente
	parziale
	(R3)
Carico limite	$\gamma_R = 2.3$
Scorrimento	$\gamma_R = 1.1$

Tab. 6.4.II – Coefficienti parziali γ_R da applicare alle resistenze caratteristiche a carico verticale dei pali

Resistenza	Simbolo	Pali infissi	Pali trivellati	Pali ad elica continua
	γ_{R}	(R3)	(R3)	(R3)
Base	γь	1,15	1,35	1,3
Laterale in compressione	γs	1,15	1,15	1,15
Totale (*)	γ	1,15	1,30	1,25
Laterale in trazione	γ_{st}	1,25	1,25	1,25

[&]quot; da applicare alle resistenze caratteristiche dedotte dai risultati di prove di carico di progetto.

Figura 9. Coefficienti parziali sulle resistenze (coefficienti R)

5.2 Stati Limite di Esercizio (SLE)

Per ogni <u>Stato Limite d'Esercizio (SLE)</u> la verifica è considerata soddisfatta se vale la seguente disuguaglianza:

 $E_d \leq C_d$

dove

- E_d valore di progetto dell'effetto dell'azione;
- C_d valore limite prescritto dell'effetto delle azioni.

All'interno del progetto devono essere quindi definite le prescrizioni relative agli spostamenti compatibili per l'opera e le prestazioni attese.

5.3 Verifiche statiche

Come riportato al paragrafo 6.4 delle NTC2018, le verifiche delle fondazioni devono essere effettuate con riferimento almeno ai seguenti stati limite, quando pertinenti:

- Stato limite ultimo di tipo Geotecnico (SLU GEO)
- Stato limite ultimo di tipo Strutturale (SLU STR) (non oggetto del presente documento)
- Stato limite di esercizio (SLE)

Le verifiche statiche GEO e STR devono essere svolte secondo l'Approccio 2, ovvero:

• Combinazione A1+M1+R3 (SLU STR e SLU GEO)

Con la sola esclusione delle verifiche di stabilità, non oggetto nel presente documento, per le quali si deve seguire l'Approccio 1 Combinazione 2 (A2+M2+R2).

5.3.1 Verifiche agli stati limite ultimi di tipo Geotecnico (SLU GEO)

Le verifiche di sicurezza agli SLU di tipo geotecnico sono, nel caso delle palificate:

- collasso per carico limite della palificata nei riguardi dei carichi assiali di compressione e di trazione;
- collasso per carico limite della palificata nei riguardi dei carichi orizzontali;
- stabilità globale.

Le verifiche di sicurezza agli <u>SLU di tipo geotecnico</u> sono, nel caso delle fondazioni superficiali:

- collasso per carico limite dell'insieme fondazione-terreno;
- collasso per scorrimento sul piano di posa
- stabilità globale.

Collasso per carico limite nei riguardi dei carichi assiali di compressione e di trazione

Ai fini della verifica nei confronti dei carichi assiali nel presente documento viene determinata, nel caso delle fondazioni su pali, la curva di resistenza di progetto del palo singolo, mediante l'utilizzo delle combinazioni di carico previste dalla Normativa, utilizzando l'approccio 2 (A1+M1+R3).

Tale azione dovrà poi essere confrontata dal progettista della fondazione con il valore dell'azione assiale massima (di compressione e di trazione) sul singolo palo, valutata mediante un'analisi che tenga anche conto dell'effetto gruppo, in modo da definire la lunghezza di progetto del palo.

Nel caso della fondazione a pozzo, viene fornito il criterio di dimensionamento generale, essendo la geometria di questa fondazione strettamente dipendente dai valori della sollecitazione agente e risultando difatti impossibile descriverne la resistenza attraverso un'unica curva di portanza

Stabilità globale

La stabilità globale non viene qui considerata in quanto la geometria del problema rende difficilmente probabili fenomeni di instabilità globale della fondazione.

GRUPPO FERROVIE DELLO STATO	COMPLETA	AMENTO	METROPOL	NANO AEROPO LITANA DI SALE NANO AEROPO	RNO	
RELAZIONE GEOTECNICA DI CALCOLO DELLE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
FONDAZIONI	NN1X	00	D 09 RB	VI 02 03 001		21 di 42

6 METODI DI CALCOLO ADOTTATI PER LA VALUTAZIONE DEL COMPORTAMENTO DELLE FONDAZIONI A POZZO

La fondazione a pozzo è una particolare fondazione profonda caratterizzata da elevata rigidezza, tale da poter esser considerata infinitamente rigida, in maniera che, sotto i carichi esterni, si possa trascurare l'inflessione della fondazione; ciò poiché la struttura si limita a ruotare rigidamente attorno a un punto O posto sotto la superficie del terreno. Il collasso del sistema pozzo-terreno avviene per superamento della resistenza limite del terreno stesso.

Sotto queste ipotesi semplificative, si adotta, per il dimensionamento della fondazione, il metodo di Jamiolkowski, che ipotizza la fondazione profonda e rigida, vincolata su terreno alla Winkler.

Il modulo di reazione orizzontale [kN/m³] è ipotizzato lineare con la profondità z:

$$k_h = m_h z$$

Dove

 m_h = coefficiente di variazione del modulo di reazione orizzontale [kN/m⁴], valutato secondo quanto suggerito in letteratura. Per i terreni in questione, si adotta m_h = 2000 kN/m⁴.

L'infinita rigidezza è verificata se si rispetta la condizione di Silin e Zavrijev:

$$\frac{2.5}{h} \ge \sqrt[5]{\frac{m_h D}{E_p J_p}}$$

Con

h = profondità del pozzo [m]

D = diametro del pozzo [m]

 J_p = momento d'inerzia pari a $\pi D^4/64$ [m⁴]

 $E_p = modulo di elasticità del pozzo [N/m^2]$

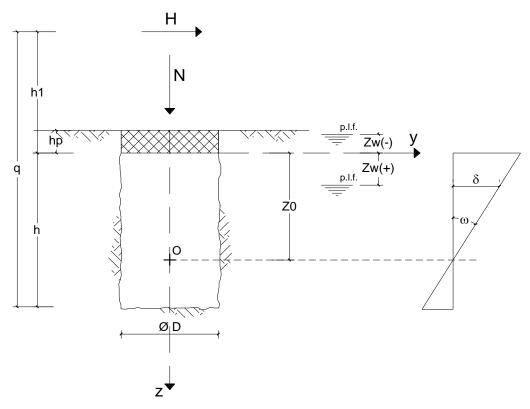


Figura 10. Schema fondazione a pozzo

Dette N, H, M, le sollecitazioni a testa plinto, e detta h_p l'altezza del plinto, si definiscono i carichi agenti a testa pozzo. Lo sforzo normale N_t , il taglio H_t e il momento flettente M_t , risultano pari a:

$$\begin{split} N_t &= N + P_{plinto} \\ H_t &= \sqrt{H_x^2 + H_y^2} \\ M_t &= \sqrt{\left(M_x + H_y * h_p\right)^2 + \left(M_y + H_x * h_p\right)^2} \end{split}$$

Le sollecitazioni lungo il fusto del pozzo presuppongono la conoscenza del centro di rotazione O, la cui profondità, misurata dalla testa del pozzo con asse z crescente in profondità, risulta pari a

$$z_0 = \frac{\beta Dh^2 * (4q - h) + 6w_p D}{2\beta Dh * (3q - h)}$$

In cui

 β è un coefficiente adimensionale rapporto dei moduli di reazione orizzontali e verticali alla base del pozzo $\beta = k_h/k_v$, con k_v modulo di reazione verticale preso pari a 5000 kN/m³

w_p è il modulo di resistenza del pozzo [m³]

COMPLETAMENTO METROPOLITANA DI SALERNO TRATTA ARECHI - PONTECAGNANO AEROPORTO

RELAZIONE GEOTECNICA DI CALCOLO DELLE FONDAZIONI

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NN1X	00	D 09 RB	VI 02 03 001	Α	23 di 42

 h_1 è la distanza della quota di applicazione di H_t rispetto alla testa del pozzo [m]

q è la somma di h e h₁ [m]

La rotazione del pozzo è espressa tramite

$$\omega = \arctan\left(\frac{6H}{R_n m_h h}\right)$$

In cui R_p [m³]

$$R_p = \frac{\beta Dh^3 + 18Dw_p}{2\beta * (3q - h)}$$

Lo spostamento orizzontale ha dunque il seguente andamento in funzione della profondità z:

$$\delta_h(z) = (z_0 - z) * tan\omega$$

Le sollecitazioni risultano dunque pari a

$$N = N_t + A_{pozzo} * \gamma_{cls} * (h - z)$$

$$M = H * (h_p + z * \left(1 - \left(\frac{Dz^2}{2R_ph}\right)\right) * (2z_0 - z))$$

$$T = H * \left(1 - \left(\frac{Dz^2}{R_ph}\right)\right) * (3z_0 - 2z)$$

Da cui le tensioni orizzontali agenti lungo il fusto sono ottenute tramite

$$\sigma_h(z) = \left(\frac{6H}{R_p h} z(z_0 - z)\right)$$

La massima pressione orizzontale si ottiene a profondità z₀/2 e risulta pari a

$$\sigma_h\left(\frac{z_0}{2}\right) = \left(\frac{3H}{2R_p h} z_o^2\right)$$

Le tensioni orizzontali vanno confrontate con le tensioni passive limite, pari a

$$\sigma_p(z) = k_p * \sigma'_v(z) + 2c' \sqrt{k_p}$$

Dove k_p, coefficiente di spinta passiva, risulta pari a

$$k_p = \frac{1 + \sin\varphi'}{1 - \sin\varphi'}$$

Le pressioni verticali massime e minime alla base risultano pari a

$$\sigma_{zbase} = \frac{N_{base}}{A_{pozzo}} \pm \frac{3Dh}{\beta R_p}$$

1.1.1 Resistenza caratteristica

La valutazione della resistenza caratteristica R_k alla base del pozzo di fondazione, è stata condotta seguendo i criteri generali di progetto indicati per le fondazioni superficiali. La resistenza caratteristica (R_k) può essere determinata in accordo all'equazione del carico limite per fondazioni dirette:

$$R_k = q_{lim} = 0.5 \, \gamma \, B' N_{\gamma} \, F_{\gamma} + c' N_c \, F_c + q N_q F_q$$

nella quale:

 γ = peso specifico del terreno

B' = base della fondazione equivalente

c' = coesione efficace dello strato di base

q = sovraccarico laterale valutato come tensione verticale alla profondità della base del pozzo

 N_c , N_q , N_γ = fattori di capacità portante, dipendenti dall'angolo di resistenza al taglio φ ';

 F_c , F_q , F_γ = fattori correttivi dipendenti dalla forma della fondazione, dalla profondità del piano di posa, dall'inclinazione del carico, dall'inclinazione della fondazione e dall'inclinazione del piano campagna.

Le espressioni che forniscono i valori dei fattori di capacità portante e dei fattori correttivi sono riportate in Tabella 5

Tabella 5. Fattori correttivi e di capacità portante

$\overline{}$				
= 45 0	Nc	$(N_q-1) \cot_{\varphi}'$		
fattori di capacità portante	N _y	$2(N_q+1) tan_{\varphi}$		Vesic (1970)
200	Nq	tan²(45+ _φ '/2) e ^{π tan} φ'		Prandtl (1921) Reissner (1924)
	forma			
	Sc	1+0.2 k _P (B'/L')		Meyerhof (1963)
	S ₇	1+0.1 k _P (B'/L')		•
	Sq	1+0.1 k _P (B'/L')		•
	approfondimento			
	d _c	d_q -[(1- d_q)/(N_c tan $_{\phi}$ ')]		De Beer e Ladanyi (1961)
	d _q	1+[2 (D/B') tan _o ' (1-sin _o ') ²]	per D/B' < 1	Brinch-Hansen (1970) e
		1+[2 tan _φ ' (1-sin _φ ') ² tan ⁻¹ (D/B')]	per D/B'>1	Vesic (1973)
Ę.	inclinazione carico			
Ę	i _e	i_q -[(1- i_q)/(N_c tan ϕ ')]		Vesic (1970)
8	i,	[1-(H/(N+B'L' c' cot\phi'))](m+1)		•
fattori correttivi	iq	[1-(H/(N+B'L' c' coto'))] ^m		•
T _E		m= [2+(B'/L')]/[1+(B'/L')]		
	inclinazione fondazione			
	b _q	(1-α tan _φ ') ²		Brinch-Hansen (1970)
	b ₇	(1-α tan _φ ')²		•
	b _c	b _q -[(1-b _q)/(N _c tan _φ ')]		•
	inclinazione piano campagna			
	99	(1-tan _⊕) ²		Brinch-Hansen (1970)
	$\mathbf{g}_{_{7}}$	(1-tan _⊕) ²		•
	g _c	g_q -[(1- g_q)/(N_c tan ϕ ')]		

Le formule utilizzate si riferiscono alla fondazione efficace equivalente, ovvero quella fondazione rispetto alla quale il carico verticale N risulta centrato; la fondazione equivalente è caratterizzata dalle dimensioni B' e L' valutate sulla base dei criteri proposti da Meyerhof e schematizzati in Figura 11.

Figura 11. Fondazione efficace

Le valutazioni della resistenza caratteristica R_k con le equazioni sopra riportate sono condotte con riferimento ai valori dei carichi trasversali e verticali trasmessi dalla struttura in elevazione. I valori di B' ed L' sono calcolati con riferimento ai momenti trasmessi alla base del pozzo di fondazione, ottenuti tenendo conto dei momenti di trasporto dovuti al carico orizzontale. I valori dei carichi verticali agenti alla base, inoltre, sono comprensivi del peso del pozzo di fondazione e del peso del ricoprimento di terreno h_{ter} , preso pari a 1.5m.

1.1.2 Resistenza di progetto

Il valore della resistenza di progetto è determinato applicando al valore caratteristico della resistenza il coefficiente parziale γ_R secondo la seguente espressione:

$$R_d = \frac{R_k}{\gamma_R}$$

Dove γ_R è il coefficiente parziale sulle resistenze secondo quanto riportato in Figura 9, mentre la resistenza R_k è calcolata come prodotto tra il carico limite e l'area del pozzo:

$$R_k = q_{lim} * A_{pozzo}$$

ITALFERR GRUPPO FERROVIE DELLO STATO	LINEA SALERNO - PONTECAGNANO AEROPORTO COMPLETAMENTO METROPOLITANA DI SALERNO TRATTA ARECHI - PONTECAGNANO AEROPORTO					
RELAZIONE GEOTECNICA DI CALCOLO DELLE FONDAZIONI	COMMESSA NN1X	LOTTO 00	CODIFICA D 09 RB	DOCUMENTO VI 02 03 001	REV.	FOGLIO 27 di 42

7 METODI DI CALCOLO ADOTTATI PER LA VALUTAZIONE DEL COMPORTAMENTO DEL PALO SINGOLO

7.1 Resistenza a compressione e trazione dei micropali

La resistenza di progetto a compressione (o trazione) del palo singolo $R_{c,d}$ (o $R_{t,d}$), da confrontare con la massima azione di compressione (o trazione) agente in testa al palo E_d , è stata valutata in base alle seguenti espressioni:

$$R_{c,d} = \frac{R_{c,k}}{\gamma_{R}} = \min \left\{ \frac{\left(R_{c;cal}\right)_{media}}{\xi_{3}}; \frac{\left(R_{c;cal}\right)_{\min}}{\xi_{4}} \right\} / \gamma_{R} \qquad \text{Resistenza di progetto a compressione}$$

$$R_{t,d} = \frac{R_{t,k}}{\gamma_R} = \min \left\{ \frac{\left(R_{t;cal}\right)_{media}}{\xi_3}; \frac{\left(R_{t;cal}\right)_{\min}}{\xi_4} \right\} / \gamma_R \quad \text{Resistenza di progetto a trazione}$$

dove

 $R_{c,cal}$ e $R_{t,cal}$ resistenza di calcolo del palo singolo, rispettivamente a compressione e a trazione, determinate ad una data profondità secondo quanto descritto al paragrafo 7.1.1;

 ξ_3, ξ_4 fattori di correlazione per la determinazione della resistenza caratteristica del palo in funzione del numero di verticali indagate, valutati secondo quanto indicato al paragrafo 7.1.2;

 $R_{c,k}$ e $R_{t,k}$ resistenza caratteristica del palo singolo rispettivamente a compressione e a trazione ad una data profondità, calcolate secondo quanto descritto al paragrafo 7.1.2;

 γ_R coefficienti parziali da applicarsi alle resistenze caratteristiche in funzione dell'approccio considerato, valutati secondo quanto indicato al paragrafo 7.1.3.

7.1.1 Resistenza di calcolo di micropali

La resistenza di calcolo $R_{c,cal}$ a compressione del micropalo viene definita riferendosi unicamente al contributo della resistenza laterale:

 $R_{c,cal} = Q_{lat, ult}$

dove:

Q lat = $\pi D\alpha tL$

Portata limite per attrito laterale

con:

L = lunghezza efficace del micropalo

 τ = tensione tangenziale ultima lungo il fusto del palo, calcolata come riportato di seguito;

α= coefficiente moltiplicativo del diametro, funzione della tipologia di iniezione del palo

D = diametro del micropalo

Il contributo della di resistenza laterale è stato calcolato in funzione del tipo di terreno attraversato sulla scorta delle indicazioni fornite da Bustamante e Doix (198), riassunete nel seguente abaco.

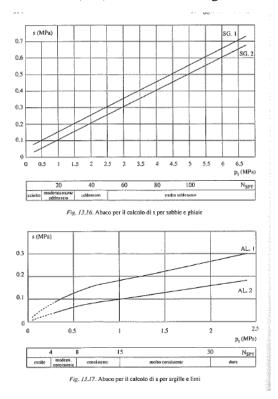


Figura 12. Abachi di Bustamante e Doix per la definzione della tensione tangenziale limite sui micropali

Cautelativamente, vista la tipologia di terreni attraversati si è posto

 $\tau_{ult} = 130 \text{ kPa}$

Il parametro a è stato invece cautelativamente posto pari a

 $\alpha = 1.1$

Il peso del palo, in accordo con quanto riportato al paragrafo 6.4.3 delle NTC2018, deve essere incluso tra le azioni permanenti di cui alla Tabella 6.2.I delle stesse NTC2018. Nella condizione di resistenza a compressione va assunto come carico permanente svaforevole, mentre nella condizione di calcolo di resistenza a trazione va assunto come azione permanente favorevole.

7.1.2 Resistenza caratteristica

La resistenza caratteristica a compressione $R_{c,k}$ e la resistenza caratteristica a trazione $R_{t,k}$ del palo singolo sono state determinate a partire dalle resistenze di calcolo ottenute con metodi che utilizzano i parametri geotecnici; in accordo con quanto definito nel paragrafo 6.4.3.1.1 delle NTC2018 risulta pertanto:

$$R_{c,k} = Min \left\{ \frac{\left(R_{c,cal}\right)_{media}}{\xi_3}; \frac{\left(R_{c,cal}\right)_{\min}}{\xi_4} \right\}$$

$$R_{t,k} = Min \left\{ \frac{\left(R_{t,cal}\right)_{media}}{\xi_3}; \frac{\left(R_{t,cal}\right)_{min}}{\xi_4} \right\}$$

essendo:

 $R_{c,k}$ e $R_{t,k}$ resistenza caratteristica rispettivamente a compressione e a trazione del palo singolo ad una data profondità;

 $R_{c,cal}$ e $R_{t,cal}$ resistenza di calcolo rispettivamente a compressione e a trazione determinate ad una data profondità;

 $\left(R_{c,cal}\right)_{media}$ e $\left(R_{t,cal}\right)_{media}$ resistenza di calcolo media ad una data profondità;

 $(R_{c,cal})_{min}$ e $(R_{t,cal})_{min}$ resistenza di calcolo minima ad una data profondità;

 ξ_3, ξ_4 fattori di correlazione in funzione del numero di verticali indagate, in accordo a quanto indicato nel paragrafo 6.4.3.1 delle NTC2018, Tab. 6.4.IV.

Nel caso in esame si è assunto: ξ_3 , =1.7 e ξ_4 = 1.7.

7.1.3 Resistenza di progetto

I valori della resistenza di progetto a compressione $R_{c,d}$ e della resistenza di progetto a trazione $R_{t,d}$ sono determinati applicando al valore caratteristico della resistenza i coefficienti parziali γ_R secondo le seguenti espressioni:

$$R_{c,d} = \frac{R_{c,k}}{\gamma_R}$$

$$R_{t,d} = \frac{R_{t,k}}{\gamma_R}$$

essendo:

COMPLETAMENTO METROPOLITANA DI SALERNO TRATTA ARECHI - PONTECAGNANO AEROPORTO

RELAZIONE GEOTECNICA DI CALCOLO DELLE FONDAZIONI

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NN1X	00	D 09 RB	VI 02 03 001	Α	30 di 42

 $R_{c,d}$ e $R_{t,d}$ resistenza di progetto del palo singolo, rispettivamente a compressione e a trazione;

 $R_{c,k}$ e $R_{t,k}$ resistenza caratteristica del palo singolo, rispettivamente a compressione e a trazione;

 γ_R coefficienti parziali da applicarsi alle resistenze caratteristiche in funzione dell'approccio considerato e della tipologia esecutiva del palo (vedi la Tabella 6 in cui sono riportati i fattori parziali relativi a pali trivellati).

Tabella 6. Coefficienti parziali alle resistenze caratteristiche

	Pali trivellati
Resistenza \ γ_R	R_3
Base	1.35
Laterale - compressione	1.15
Laterale - trazione	1.25

7.1.4 Effetto gruppo

Il carico limite verticale di una palificata viene valutato come:

$$R_{\text{d},G} = N \cdot E \, \cdot \, R_{\text{d, singolo palo}}$$

La resistenza a carico verticale della palificata è data dal prodotto della resistenza del palo singolo per il numero N di pali del gruppo e per il fattore E di efficienza della palificata.

L'esperienza (Vesic, 1968) ha mostrato che per palificate in terreni incoerenti, l'efficienza risulta non minore dell'unità, quindi si può assumere E = 1 (per terreni incoerenti).

Per palificate in terreni coesivi (qui applicato anche per terreni stratificati), invece, l'efficienza risulta minore dell'unità e può essere valutata ad esempio con la formulazione empirica di Converse Labarre, di seguito esplicitata.

$$E = 1 - (\Phi / 90) \cdot [(n - 1) \cdot m + (m - 1) \cdot n] / (m \cdot n)$$

Dove:

E = efficienza della palificata

N = numero di pali per fila

M= numero di file

 $\Phi = \operatorname{arctg} (D/i) \operatorname{con} D = \operatorname{diametro pali}, i = \operatorname{interasse pali}.$

Le verifiche di capacità portante della fondazione saranno effettuate sia con riferimento al palo singolo (riferendosi alla resistenza di progetto del singolo palo, e confrontandola con il massimo carico agente tra tutti i pali della palificata) sia con riferimento all'intera palificata, confrontando il carico totale verticale massimo agente alla base del plinto con il carico limite della palificata calcolato come

Qpalif = n x(Qd) x E

In cui Qd è il carico limite del singolo palo, n il numero di pali nella palificata ed E l'efficienza.

GRUPPO FERROVIE DELLO STATO	COMPLET	AMENTO	METROPOL	NANO AEROPO LITANA DI SALE NANO AEROPO	RNO	
RELAZIONE GEOTECNICA DI CALCOLO DELLE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
FONDAZIONI	NN1X	00	D 09 RB	VI 02 03 001		32 di 42

8 RESISTENZA A CARICHI ASSIALI

8.1 Pozzo spalla A

Si riportano nel seguito le verifiche della fondazione a pozzo della spalla A.

Si sottolinea che nel modello di calcolo non si è tenuto conto della resistenza del terreno antistante il pozzo per le profondità comprese tra la testa del pozzo e la quota di fondo alveo.

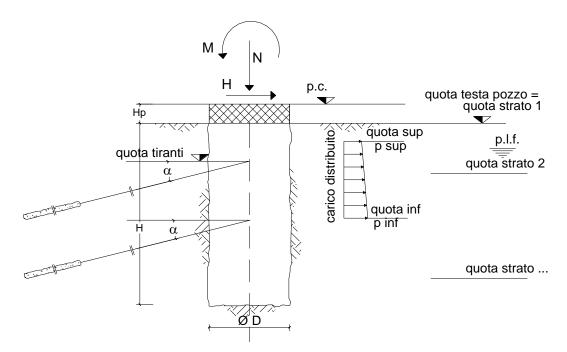
Questa prescrizione cautelativa è stata sviluppata ipotizzando che per i primi 3.4 m (appunto la differenza di quota tra testa pozzo e fondo alveo) sul pozzo agisse una spinta orizzontale crescente con la profondtà pari a

$$q(z) = k_0 \gamma' z$$

in cui k₀ è il coefficiente di spinta a riposo del terreno

Si sottolinea ai fini di una più agevole lettura delle ipotesi di calcolo che la quota di testa pozzo è posta a 4.0 m dal piano campagna. Considerando anche i 3.4 m di terreno compresi tra testa pozzo e fondo alveo è possibile affermare che di fatto il tratto reagente di pozzo interagisce unicamente con lo strato di ghiaie.

I calcoli sono stati sviluppati per tutte le e combinazioni di carico riportate nel paragrafo 4.1.


COMPLETAMENTO METROPOLITANA DI SALERNO TRATTA ARECHI - PONTECAGNANO AEROPORTO

RELAZIONE GEOTECNICA DI CALCOLO DELLE FONDAZIONI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NN1X
 00
 D 09 RB
 VI 02 03 001
 A
 33 di 42

opera: VI02

parametri geotecnici caratteristici fusto

strati terreno	quote (m)	descrizione	γ (kN/m³)	γ _{sat} (kN/m³)	φ (°)	c' (kPa)	cu (kPa)	k _h (kN/m³)	n _h (kN/m ⁴)
p.c.=strato 1	0.00		0.0	0.0	0	0	0	0	0
✓ strato 2	-3.40		18.0	18.0	33	0	0	0	2000
strato 3									
strato 4									
strato 5									
strato 6								Į.	

parametri geotecnici caratteristici base

descrizione	γ	γsat	φ	С	cu	k_v
descrizione	(kN/m ³)	(kN/m ³)	(°)	(kPa)	(kPa)	(kN/m^3)
	18.0	18.0	33	0		5000

|--|

geometria pozzo

Altezza pozzo	16.00	(m)
diametro pozzo	9.60	(m)
inerzia pozzo	416.92	(m ⁴)
modulo elastico cls	3.00E+07	(kN/m^2)
peso specifico cls	25	(kN/m^3)
EI	1.25E+13	(kN m ²)
spessore plinto Hp	0	(m)
peso plinto	0	(kN)

tiranti	quote (m)	EA/L (kN/m²)	α (°)	N _{in} (kN/m)
☐ Tirante 1				
☐ Tirante 2				
☐ Tirante 3				

☑ carichi	quota sup. (m)	p sup (kN/m)	quota inf. (m)	p inf (kN/m)
	0	0	-3.4	293.76

				co	efficienti p	arziali		
			az	ioni	propri	resistenze		
			permanenti	temporanee variabili	tan φ'	Ċ	Cu	qlim
Ultimo	A1+M1+R1	0	1.30	1.50	1.00	1.00	1.00	1.00
	A2+M2+R2	0	1.00	1.30	1.25	1.25	1.40	1.80
Stato Limite	SISMA	0	1.00	1.00	1.25	1.25	1.40	1.80
to L	A1+M1+R3	0	1.30	1.50	1.00	1.00	1.00	2.30
Sta	SISMA	0	1.00	1.00	1.00	1.00	1.00	2.30
Tensioni Ammissibili		1.00	1.00	1.00	1.00	1.00	3.00	
Definiti d	Definiti dal Progettista		1.00	1.00	1.00	1.00	1.00	2.30

Figura 13. Ipotesi di calcolo pozzo Spalla A

8.2 Palo singolo spalla B

Si riporta nel seguito il calcolo della resistenza di progetto del micropalo della spalla B.

Come è possibile notare si trova

Q_{d,COMP} = 1378.8 (carico di progetto a compressione)

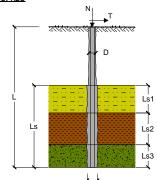
 $Q_{d,TRAZ} = 1268.5$ (carico di progetto a trazione)

COMPLETAMENTO METROPOLITANA DI SALERNO TRATTA ARECHI - PONTECAGNANO AEROPORTO

RELAZIONE GEOTECNICA DI CALCOLO DELLE FONDAZIONI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NN1X
 00
 D 09 RB
 VI 02 03 001
 A
 35 di 42


CAPACITA' PORTANTE DI UN MICROPALO

OPERA: VI02

DATI DI INPUT:

Sollecitazioni Agenti:

	Permanenti	Temporanee	Calcolo
N (kN)	757.00	0.00	984.10
T (kN)	0.00	0.00	0.00

	coefficienti parziali	ienti parziali azioni resistenza				za laterale
	Metodo di calcolo		permanenti	variabili		
Wetodo di Calcolo			γ̈́Ġ	γο	γs	γs traz
	A1+M1+R1	0	1.30	1.50	1.00	1.00
SLU	A2+M1+R2	0	1.00	1.30	1.45	1.60
ß	A1+M1+R3	•	1.30	1.50	1.15	1.25
	SISMA		1.00	1.00	1.15	1.25
DM88		0	1.00	1.00	1.00	1.00
definiti d	al progettista	0	1.10	1.20	1.30	1.30

n	1	02	3	0	5 ()	7	≥10 ○	DM88	prog.
ξ3	1.70	1.65	1.60	1.55	1.50	1.45	1.40	1.00	1.00
ξ4	1.70	1.55	1.48	1.42	1.34	1.28	1.21	1.00	1.00

(m)

1378.77 (kN)

Caratteristiche del micropalo:

Diametro di perforazione del micropalo (D): 0.3

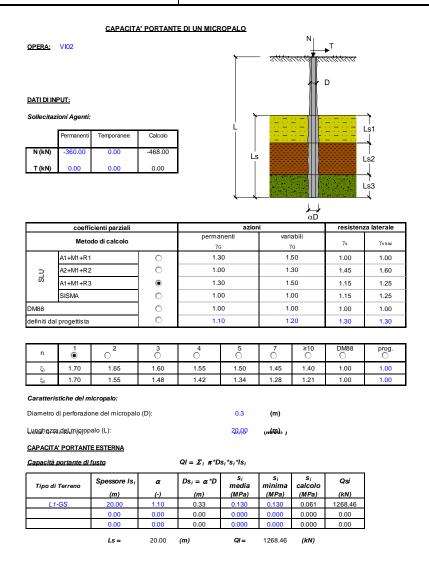
Ls=

CAPACITA PORTANTE ESTERNA 20.00 (m

20.00 (m)

Capacità portante di fusto

 $QI = \Sigma_i \pi^*Ds_i^*s_i^*ls_i$


Tipo di Terreno	Spessore Is _i (m)	α (-)	$Ds_i = \alpha *D$ (m)	s _i media (MPa)	s _i minima (MPa)	s _i calcolo (MPa)	Qsi (kN)
L1-GS	20.00	1.10	0.33	0.130	0.130	0.066	1378.77
	0.00	0.00	0.00	0.000	0.000	0.000	0.00
	0.00	0.00	0.00	0.000	0.000	0.000	0.00

COMPLETAMENTO METROPOLITANA DI SALERNO TRATTA ARECHI - PONTECAGNANO AEROPORTO

RELAZIONE GEOTECNICA DI CALCOLO DELLE FONDAZIONI

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NN1X	00	D 09 RB	VI 02 03 001	Α	36 di 42

8.3 Palificata spalla B

Si riporta nel seguito il calcolo della resistenza di progetto della palificata della spalla A calcolatata come

 $Q_{palif} = nxQdxE$

in cui n è il numero di pali ed E l'efficienza della palificata.

nel presente caso E = 0.68

Si trova pertanto

 $Q_{palif,d} = 60x1378.8x \ 0.68 = 56255 \ kN$

TALFERR GRUPPO FERROVIE DELLO STATO	COMPLETA	AMENTO	METROPOL	NANO AEROPO LITANA DI SALE NANO AEROPO	RNO	
RELAZIONE GEOTECNICA DI CALCOLO DELLE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
FONDAZIONI	NN1X	00	D 09 RB	VI 02 03 001		37 di 42

9 ESITO DELLE VERIFICHE

9.1 Verifiche spalla A

Si riportano nel seguito le verifiche effettuate nelle 4 conbinazioni di carico riportate al par 4.1. Le verifiche risultano sempre soddisfatte.

$\sigma_{min} = 398.90 (kN/m^2)$ $VERIFICHE GEOTECNICHE$ $Capacità portante limite$ $q_{lim} = c^{N}_{csc} + qN_{qsq} + 0.5yBNysy$ $q_{lim} = c_{u}N_{c}sc + q$ $q = 66.80 (kN/m^2)$ $N_{q} = 26.09 (\cdot)$ $N_{p} = 38.64 (\cdot)$ $N_{r} = 35.19 (\cdot)$ $sc = 1 + (B/L)^{*}(Nq/Nc)$ $sq = 1 + (B/L)^{*}(Nq/Nc)$ $sq = 1 + (B/L)^{*}(Ag/Nc)$ $Sq = 1 + (B/L)^{*}(Ag/Nc)$ $DC = 2(R-e)$ $AB = \sqrt{R^2 - e^2}$ $AB = \frac{L^*}{CD} = \frac{L^*}{B^*}$	N _b =	47986.92	(kN)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	M _b =	9039.09	(kNm)	
Pressioni verticali alla base del pozzo $\sigma_{max} = (N_b \cdot N_w) / \Lambda_b + (3DH) / (\beta R)$ $\sigma_{min} = (N_b \cdot N_w) / \Lambda_b + (3DH) / (\beta R)$ $\sigma_{min} = (N_b \cdot N_w) / \Lambda_b - (3DH) / (\beta R)$ $\sigma_{min} = = 607.03 (eN/m^2)$ VERIFICHE GEOTECNICHE Capacità portante limite $q_{im} = c \cdot N_{viv} + q N_{viv} + 0.5 y B N y s y$ $q_{im} = c \cdot N_{viv} + q N_{viv} + 0.5 y B N y s y$ $q_{im} = c \cdot N_{viv} + q N_{viv} + 0.5 y B N y s y$ $q_{im} = c \cdot N_{viv} + q N_{viv} + 0.5 y B N y s y$ $q_{im} = c \cdot N_{viv} + q N_{viv} + 0.5 y B N y s y$ $q_{im} = c \cdot N_{viv} + q N_{viv} + 0.5 y B N y s y$ $q_{im} = c \cdot N_{viv} + q N_{viv} + 0.5 y B N y s y$ $q_{im} = c \cdot N_{viv} + q N_{viv} + 0.5 y B N y s y$ $q_{im} = c \cdot N_{viv} + q N_{viv} + 0.5 y B N y s y$ $q_{im} = c \cdot N_{viv} + q N_{viv} + 0.5 y B N y s y$ $q_{im} = 0.66.80 (kN/m^2)$ $N_b = 38.64 (i)$ $N_i = 35.19 (i)$ $s_i = 1 + (B_i L_i^{-1} V (N_i N_i N_i)$ $s_i = 1 + (B_i L_i^{-1} V (N_i N_i N_i)$ $s_i = 1 + (B_i L_i^{-1} V (N_i N_i N_i)$ $s_i = 1 + (B_i L_i^{-1} V (N_i N_i N_i)$ $h' = 1 + (B_i L_i^{-1} V (N_i N_$	Sottospint	a idrostatica	alla base del pozzo	
$σ_{max} = (N_2 N_w) / A_b + (3DH) / (βR)$ $σ_{min} = (N_b N_w) / A_b + (3DH) / (βR)$ $σ_{min} = (80, N_w) / A_b + (3DH) / (βR)$ $σ_{min} = 807.03 (kN/m^2)$ $σ_{min} = 398.90 (kN/m^2)$ VERIFICHE GEOTECNICHE Capacità portante limite $q_{im} = c^* N_{exc} + q N_{qua} + 0.5 y BN y s y$ $q_{im} = c_i N_{exc} + q N_{qua} + 0$	$N_w =$	11581.17	(kN)	
$σ_{min} = (N_D \cdot N_m) / A_D \cdot (3DH) / (βR)$ $σ_{min} = 607.03 (kN/m^2)$ $σ_{min} = 398.90 (kN/m^2)$ VERIFICHE GEOTECNICHE Capacità portante limite $q_{lim} = c'N_{csc} + qN_{quq} + 0.5 yBNysy$ $q_{lim} = c_M v_{csc} + qN_{quq} + 0.5 yBNysy$ $q_{lim} = c_M v_{csc} + qN_{quq} + 0.5 yBNysy$ $q = 66.80 (kN/m^2)$ $N_0 = 38.64 (\cdot)$ $N_1 = 35.19 (\cdot)$ $sc = 1 + (B/L)'(kqNc)$ $sq = 1 + (B/L)'tang(j)$ $sy = 1 - 0.4'(B/L)$ DC=2(R-e) $h' = R - e$ h'	Pressioni v	erticali alla l	base del pozzo	
$σ_{zmax} = 607.03$ (kN/m²) $σ_{zmin} = 398.90$ (kN/m²) VERIFICHE GEOTECNICHE Capacità portante limite $q_{lim} = c^*N_{zsc} + qN_{quay} + 0.5 y BN y s y q lim = c^*N_{zsc} + qN_{quay} + 0.5 y BN y s y q lim = c^*N_{zsc} + q q q = 66.80$ (kN/m²) $N_q = 26.09$ (·) $N_c = 38.64$ (·) $N_t = 35.19$ (·) $Sc = 1 + (B/L)^*(NqNc)$ $Sq = 1 + (B/L)^*(Nq$	$\sigma_{zmax} = (N_t$	-N _w)/A _b + (3DH) / (βR)	
$\sigma_{min} = 398.90 (kN/m^2)$ VERIFICHE GEOTECNICHE Capacità portante limite $q_{lim} = c^*N_{csc} + qN_{qsq} + 0.5yBNysy \\ q_{lim} = 36.864 (r)$ $N_{lim} = 36.864 (r)$ $N_{lim} = 0.96 (r)$ $N_{lim} = $	$\sigma_{zmin} = (N_b)$	-N _w)/A _b - (3	DH) / (βR)	
VERIFICHE GEOTECNICHE Capacità portante limite $q_{lim} = c^*N_{csc} + qN_{qsq} + 0.5yBNysy$ $q_{lim} = c^*N_{csc} + qN_{qsq} + 0.5yBNysy$ $q = 66.80 \text{ (kN/m}^2)$ $N_1 = 26.09 \text{ (·)}$ $N_2 = 38.64 \text{ (·)}$ $N_1 = 35.19 \text{ (·)}$ $SC = 1 + (B/L)^*(Nq/Nc)$ $SQ = 1 + (B/L)^*(Nq/Nc)$	σ _{zmax} =	607.03	(kN/m²)	
Capacità portante limite $q_{lim} = c^*N_{cac} + qN_{qaq} + 0.5yBNysy$ $q_{lim} = c_uN_c + c + q$ $q_{lim} = c_uN_c + c + q$ $q = 66.80 (kN/m^2)$ $N_0 = 26.09 (\cdot)$ $N_1 = 38.64 (\cdot)$ $N_2 = 38.64 (\cdot)$ $N_1 = 35.19 (\cdot)$ $SC = 1 + (B/L)^*(Nq/Nc)$ $SC = 1 + (B/L)^*(apl())$	$\sigma_{zmin} =$	398.90	(kN/m²)	
$\begin{aligned} q_{im} &= c^{i}N_{csc} + qN_{qqq} + 0.5yBNysy\\ q_{im} &= c_{i}N_{c}sc + q\\ q &= 66.80 (kN/m^2)\\ N_{q} &= 26.09 (\cdot)\\ N_{c} &= 38.64 (\cdot)\\ N_{r} &= 35.19 (\cdot)\\ sc &= 1 + (B/L)^{r}(Nq/Nc)\\ sq &= 1 + (B/L)^{r}(nq/nc)\\ sy &= 1 \cdot 0.4^{r}(B/L) \end{aligned}$ $DC=2(R-e)$ $AB &= \sqrt{R^2 - e^2}$ $AB &= \frac{L^*}{B^*}$ $D' &= R - e$ $B^* L^* &= A^* = 2\left(R^2 \cos^{-1}\left(\frac{R - h'}{R}\right) - (R - h')\sqrt{(2Rh' - h'^2)}\right)$ $e &= 0.19 (m)$ $h' &= 4.61 (m)$ $A^* &= 68.77 (m^2)$ $L^* &= 8.46 (m)$ $B^* &= 8.13 (m)$ $B^*/L^* &= 0.96 (m)$ $sc &= 1.649 (\cdot)\\ sq &= 1.624 (\cdot)\\ sq &= 1.624 (\cdot)\\ sq &= 3535.57 (kN/m^2)$ $Storzo \ Verticale \ limite \ nel \ terreno$ $N_{lm} &= 243129.02 (kN)$ $Storzo \ Verticale \ massimo \ nel \ terreno$ $N_{lm} &= 243129.02 (kN)$ $Storzo \ Verticale \ massimo \ nel \ terreno$ $N_{lm} &= 243129.02 (kN)$ $Storzo \ Verticale \ massimo \ nel \ terreno$ $N_{lm} &= 243129.02 (kN)$ $Storzo \ Verticale \ massimo \ nel \ terreno$ $N_{lm} &= 36405.75 (kN)$	VERIFICHE	GEOTECNIC	CHE	
$q_{1m} = c_u N_c sc + q$ $q = 66.80 (kN/m^2)$ $N_q = 26.09 (\cdot)$ $N_c = 38.64 (\cdot)$ $N_r = 35.19 (\cdot)$ $sc = 1 + (B/L)^*(Nq/Nc)$ $sq = 1 + (B/L)^*tang(j)$ $s\gamma = 1 - 0.4^*(B/L)$ $DC = 2(R - e)$ $B^* - CD = B^*$ $h' = R - e$ $B^* - L^* = A^* = 2\left(R^2 \cos^{-1}\left(\frac{R - h'}{R}\right) - (R - h')\sqrt{2Rh' - h'^2}\right)\right)$ $e = 0.19 (m)$ $h' = 4.61 (m)$ $A^* = 68.77 (m^2)$ $L^* = 8.46 (m)$ $B^* = 8.13 (m)$ $B^*/L^* = 0.96 (m)$ $sc = 1.649 (\cdot)$ $sq = 1.624 (\cdot)$ $s\gamma = 0.615 (\cdot)$ $q_{lm} = 3535.57 (kN/m^2)$ Sforzo Verticale limite nel terreno $N_{lm} = q_{lm}^*A^*$ $N_{lm} = 243129.02 (kN)$ Sforzo Verticale massimo nel terreno $N_b \cdot N_w = 36405.75 (kN)$	Capacità p	ortante limit	е	
$\begin{array}{llllllllllllllllllllllllllllllllllll$			0,5yBNysy	
$N_{q} = 26.09 (\cdot)$ $N_{c} = 38.64 (\cdot)$ $N_{r} = 35.19 (\cdot)$ $sc = 1 + (B/L)^{*}(Nq/Nc)$ $sq = 1 + (B/L)^{*}(nq/Nc)$ $sy = 1 \cdot 0.4^{*}(B/L)$ $DC = 2(R \cdot e)$ $AB = \sqrt{R^{2} - e^{2}}$ $AB = \frac{L^{*}}{B^{*}}$ $h' = R - e$ $B^{*} L^{*} = A^{*} = 2\left(R^{2} \cos^{-1}\left(\frac{R - h'}{R}\right) - (R - h')\sqrt{(2Rh - h'^{2})}\right)$ $e = 0.19 (m)$ $h' = 4.61 (m)$ $A^{*} = 68.77 (m^{2})$ $L^{*} = 8.46 (m)$ $B^{*} = 8.13 (m)$ $B^{*}/L^{*} = 0.96 (m)$ $sc = 1.649 (\cdot)$ $sq = 1.624 (\cdot)$ $s\gamma = 0.615 (\cdot)$ $q_{im} = 3535.57 (k N/m^{2})$ Sforzo Verticale limite nel terreno $N_{lm} = q_{im}^{*}A^{*}$ $N_{lm} = 243129.02 (kN)$ Sforzo Verticale massimo nel terreno $N_{b} \cdot N_{lw} = 36405.75 (kN)$			(kN/m²)	_
$N_{c} = 38.64 (\cdot)$ $N_{r} = 35.19 (\cdot)$ $sc = 1 + (B/L)^{r}(Nq/Nc)$ $sq = 1 + (B/L)^{t}tang(j)$ $sy = 1 - 0.4^{r}(B/L)$ $DC = 2(R - e)$ $AB = \sqrt{R^{2} - e^{2}}$ $AB = \frac{L^{*}}{B^{*}}$ $h' = R - e$ $B^{*}L^{*} = A^{*} = 2\left(R^{2}\cos^{-1}\left(\frac{R - h'}{R}\right) - (R - h')\sqrt{(2Rh' - h')^{2}}\right)\right)$ $e = 0.19 (m)$ $h' = 4.61 (m)$ $A^{*} = 68.77 (m^{2})$ $L^{*} = 8.46 (m)$ $B^{*} = 8.13 (m)$ $B^{*}/L^{*} = 0.96 (m)$ $sc = 1.649 (\cdot)$ $sq = 1.624 (\cdot)$ $sy = 0.615 (\cdot)$ $q_{im} = 3535.57 (kN/m^{2})$ Sforzo Verticale limite nel terreno $N_{lm} = q_{im}^{*}A^{*}$ $N_{lm} = 243129.02 (kN)$ Sforzo Verticale massimo nel terreno $N_{b} = 36405.75 (kN)$		26.09	(-)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$				D
$ sc = 1 + (B/L)^*(Nq/Nc) \\ sq = 1 + (B/L)^*tang(f) \\ s\gamma = 1 \cdot 0.4^*(B/L) $ $ DC - 2(R \cdot e) \\ AB = \sqrt{R^2 - e^2} \\ AB = \frac{L^*}{CD} = \frac{L^*}{B^*} $ $ h' = R - e \\ B^* \cdot L^* = A^* = 2 \left(R^2 \cos^{-1} \left(\frac{R - h'}{R} \right) - (R - h') \sqrt{(2Rh' - h'^2)} \right) $ $ e = 0.19 (m) \\ h' = 4.61 (m) \\ A^* = 68.77 (m^2) \\ L^* = 8.46 (m) \\ B^* = 8.13 (m) \\ B^*/L^* = 0.96 (m) \\ sc = 1.649 (\cdot) \\ sq = 1.624 (\cdot) \\ s\gamma = 0.615 (\cdot) \\ q_{im} = 3535.57 (kN/m^2) $ $ Storzo Verticale limite nel terreno $ $ N_{lm} = 243129.02 (kN) $ $ Storzo Verticale massimo nel terreno $ $ N_{lm} = 243129.02 (kN) $ $ Storzo Verticale massimo nel terreno $ $ N_{lm} = 36405.75 (kN) $				
$\begin{array}{llllllllllllllllllllllllllllllllllll$				N _b
$S\gamma = 1 \cdot 0.4^{*}(B/L)$ $DC = 2(R \cdot e)$ $AB = \sqrt{R^{2} - e^{2}}$ $AB = \sqrt{R^{2} - e^{2}}$ $AB = \frac{L^{*}}{CD} = \frac{L^{*}}{B^{*}}$ $h' = R - e$ $B^{*} \cdot L^{*} = A^{*} = 2\left(R^{2} \cos^{-1}\left(\frac{R - h'}{R}\right) - (R - h')\sqrt{(2Rh' - h'^{2})}\right)$ $e = 0.19 (m)$ $h' = 4.61 (m)$ $A^{*} = 68.77 (m^{2})$ $L^{*} = 8.46 (m)$ $B^{*} = 8.13 (m)$ $B^{*}/L^{*} = 0.96 (m)$ $sc = 1.649 (\cdot)$ $sq = 1.624 (\cdot)$ $s\gamma = 0.615 (\cdot)$ $q_{im} = 3535.57 (kN/m^{2})$ Sforzo Verticale limite nel terreno $N_{lm} = q_{im}^{*}A^{*}$ $N_{lm} = 243129.02 (kN)$ Sforzo Verticale massimo nel terreno $N_{b} \cdot N_{w} = 36405.75 (kN)$				
$DC=2(R-e)$ $AB = \sqrt{R^2 - e^2}$ $AB = \frac{L^*}{CD} = \frac{L^*}{B^*}$ $h' = R - e$ $B^* - L^* = A^* = 2\left(R^2 \cos^{-1}\left(\frac{R - h'}{R}\right) - (R - h')\sqrt{(2Rh - h'^2)}\right)$ $e = 0.19 (m)$ $h' = 4.61 (m)$ $A^* = 68.77 (m^2)$ $L^* = 8.46 (m)$ $B^* = 8.13 (m)$ $B^*/L^* = 0.96 (m)$ $sc = 1.649 (\cdot)$ $sq = 1.624 (\cdot)$ $sq = 1.624 (\cdot)$ $sq = 1.624 (\cdot)$ $sq = 0.615 (\cdot)$ $q_{im} = 3535.57 (kN/m^2)$ Sforzo Verticale limite nel terreno $N_{lm} = q_{im}^*A^*$ $N_{lm} = 243129.02 (kN)$ Sforzo Verticale massimo nel terreno $N_b \cdot N_w = 36405.75 (kN)$,,,,	T DC
e = 0.19 (m) h' = 4.61 (m) A* = 68.77 (m²) L* = 8.46 (m) B* = 8.13 (m) B*/L* = 0.96 (m) sc = 1.649 (·) sq = 1.624 (·) sy = 0.615 (·) q _{im} = 3535.57 (kN/m²) Sforzo Verticale limite nel terreno N _{im} = Q _{im} *A* N _{im} = 243129.02 (kN) Sforzo Verticale massimo nel terreno N _b -N _w = 36405.75 (kN)	$\frac{AB}{CD} = \frac{L^*}{B^*}$ $h' = R - e$ $R^* L^* = A^*$	-3 B ² aas ⁻	1(R−h') (p k) ((2pk k²))	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	D L = A	= 2 K COS	(R)-(K-11)(2K1-11)	
$A^* = 68.77 (m^2) \\ L^* = 8.46 (m) \\ B^* = 8.13 (m) \\ B^*/L^* = 0.96 (m) \\ sc = 1.649 (\cdot) \\ sq = 1.624 (\cdot) \\ sy = 0.615 (\cdot) \\ q_{im} = 3535.57 (kN/m^2) \\ \textbf{Sforzo Verticale limite nel terreno} \\ N_{lim} = 2_{im}^*A^* \\ N_{lim} = 243129.02 (kN) \\ \textbf{Sforzo Verticale massimo nel terreno} \\ N_b \cdot N_{w} = 36405.75 (kN) \\ \end{array}$	e =	0.19	(m)	·
$\begin{array}{llllllllllllllllllllllllllllllllllll$	h' =	4.61	(m)	
B* = 8.13 (m) B*/L* = 0.96 (m) sc = 1.649 (·) sq = 1.624 (·) sy = 0.615 (·) q _{lim} = 3535.57 (kN/m²) Sforzo Verticale limite nel terreno N _{lim} = q _{lim} *A* N _{lim} = 243129.02 (kN) Sforzo Verticale massimo nel terreno N _b .+N _w = 36405.75 (kN)	A* =	68.77	(m ²)	
$B^*/L^* = 0.96$ (m) sc = 1.649 (·) sq = 1.624 (·) $s_{Y} = 0.615$ (·) $q_{lim} = 3535.57$ (kN/m²) Sforzo Verticale limite nel terreno $N_{lim} = q_{lim}^*A^*$ $N_{lim} = 243129.02$ (kN) Sforzo Verticale massimo nel terreno $N_b \cdot N_w = 36405.75$ (kN)	L* =	8.46	(m)	
SC = 1.649 (-) SQ = 1.624 (-) SY = 0.615 (-) $Q_{lim} = 3535.57$ (kN/m²) Sforzo Verticale limite nel terreno $N_{lim} = Q_{lim}^*A^*$ $N_{lim} = 243129.02$ (kN) Sforzo Verticale massimo nel terreno $N_b \cdot N_w = 36405.75$ (kN)	B* =	8.13	(m)	
sq = 1.624 (-) $s\gamma = 0.615$ (-) $q_{lim} = 3535.57$ (kN/m²) Sforzo Verticale limite nel terreno $N_{lim} = q_{lim}^*A^*$ $N_{lim} = 243129.02$ (kN) Sforzo Verticale massimo nel terreno $N_b \cdot N_w = 36405.75$ (kN)	B*/L* =	0.96	(m)	
Sy = 0.615 (-) Q _{lim} = 3535.57 (kN/m²) Sforzo Verticale limite nel terreno N _{lim} = Q _{lim} *A* N _{lim} = 243129.02 (kN) Sforzo Verticale massimo nel terreno N _b -N _w = 36405.75 (kN)	sc =	1.649	(-)	
$\begin{aligned} \mathbf{q}_{im} &= & 3535.57 & (\text{kN/m}^2) \\ \textbf{Sforzo Verticale limite nel terreno} \\ N_{lm} &= & \mathbf{q}_{im}^* A^* \\ N_{lm} &= & 243129.02 & (\text{kN}) \\ \textbf{Sforzo Verticale massimo nel terreno} \\ N_b \cdot N_w &= & 36405.75 & (\text{kN}) \end{aligned}$	sq =	1.624	(-)	
Sforzo Verticale limite nel terreno $N_{lim} = q_{lim}^* A^*$ $N_{lim} = 243129.02 \qquad (kN)$ Sforzo Verticale massimo nel terreno $N_b \cdot N_w = 36405.75 \qquad (kN)$	sγ=	0.615	(-)	
$N_{lim} = q_{lim}^* A^*$ $N_{lim} = 243129.02 (kN)$ Sforzo Verticale massimo nel terreno $N_b \cdot N_w = 36405.75 (kN)$	q _{lim} =	3535.57	(kN/m²)	
$N_{lm} = 243129.02$ (kN) Sforzo Verticale massimo nel terreno N_b - $N_w = 36405.75$ (kN)	Sforzo Ver	ticale limite	nel terreno	
Sforzo Verticale massimo nel terreno $N_{b} \cdot N_{w} = -36405.75 \qquad (kN) \label{eq:Nb}$	N _{lim} = q _{lim} */	٨*		
$N_0 - N_w = 36405.75$ (kN)	N _{lim} =	243129.02	(kN)	
	Sforzo Ver	ticale massir	no nel terreno	
Coefficiente di Sicurezza	$N_b - N_w =$	36405.75	(kN)	

Figura 14. Verifica pozzo combinazione 1 – SLU MAX

≥ 2.3

Fs = 6.68

COMPLETAMENTO METROPOLITANA DI SALERNO TRATTA ARECHI - PONTECAGNANO AEROPORTO

RELAZIONE GEOTECNICA DI CALCOLO DELLE **FONDAZIONI**

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NN1X	00	D 09 RB	VI 02 03 001	Α	39 di 42

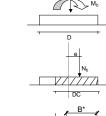
Sollecitazioni alla base del pozzo

N_b = 35870.92 (kN) 3390.73 (kNm)

Sottospinta idrostatica alla base del pozzo

N_w = 11581.17 (kN)

Pressioni verticali alla base del pozzo


 $\sigma_{zmax} = (N_b - N_w) / A_b + (3DH) / (\beta R)$ $\sigma_{zmin} = (N_b - N_w) / A_b - (3DH) / (\beta R)$ $\sigma_{zmax} = 374.61$ (kN/m²)

296.54 (kN/m²)

VERIFICHE GEOTECNICHE

Capacità portante limite

$q_{lim} = c'N_{csc} + qN_{qsq} + 0.5\gamma BN\gamma s\gamma$ $q_{lim} = c_uN_c sc + q$				
q =	66.80	(kN/m²)		
$N_q =$	26.09	(-)		
N _c =	38.64	(-)		
$N_{\gamma} =$	35.19	(-)		
sc =	1 + (B/L)*(Nq	/Nc)		
sq=	1 + (B/L)*tan	g(j')		
sγ =	1 - 0,4*(B/L)			

DC=2(R-e) $AB = \sqrt{R^2 - e^2}$

 $\frac{AB}{CD} = \frac{L^*}{B^*}$

 $B^{\star} \cdot L^{\star} = A^{\star} = 2 \left(R^{2} \cos^{-1} \left(\frac{R - h'}{R} \right) - \left(R - h' \right) \sqrt{2Rh' - h'^{2}} \right)$

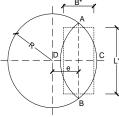
(m²) L* = 8.48 (m) B* = 8.32 1.662 sc = (-) sq = 1.637 0.608 (-) 3564.35 (kN/m²)

Sforzo Verticale limite nel terreno

 $N_{lim} = q_{lim}^* A^*$

 $N_{lim} = 251527.58$ (kN)

Sforzo Verticale massimo nel terreno


 $N_b - N_w = 24289.75$

Coefficiente di Sicurezza $F_s = N_{lim} / (N_b - N_w)$

10.36

Figura 15. Verifica pozzo combinazione 2 – SLU MIN

Collogitatio	oni alla bao	e del pozzo	
N _b =	40871.92	(kN)	
M _b =	11361.21	(kNm)	
MP -	11001.21	(KIAII)	
Sottospinta	idrostatica	alla base del pozzo	
$N_w =$	11581.17	(kN)	
Pressioni ve	erticali alla	base del pozzo	
$\sigma_{zmax} = (N_b - N_b $	-N _w)/A _b +	(3DH) / (βR)	
$\sigma_{zmin} = (N_b -$	N _w)/A _b - (3	3DH) / (βR)	
$\sigma_{zmax} =$	535.47	(kN/m²)	
$\sigma_{zmin} =$	273.87	(kN/m²)	
VERIFICHE			
Capacità po	ortante limi	te	
$q_{lim} = c'N_{cs}$ $q_{lim} = c_uN_c$		+ 0,5γBNγsγ	(Brinch-Hansen)
q =	66.80	(kN/m²)	M _b
N _q =	26.09	(-)	
	38.64		
N _c =		(-)	. D
$N_{\gamma} =$ $sc = 1$	35.19 + (B/L)*(No	(-) n/No)	e N _b
	+ (B/L)*tan		
	- 0,4*(B/L)	307	T DC
			<u>B*</u>
DC=2(R-e)			A 1
$AB = \sqrt{R^2 - R^2}$	- e ²		
$\frac{AB}{CD} = \frac{L^*}{B^*}$			PDC
CD B*			L*
h'= R - e	((D W) (T	
$B^* \cdot L^* = A^*$	= 2 R ² cos	$-1\left(\frac{R-h'}{R}\right) - \left(R-h'\right)\sqrt{2Rh'-h'^2}$	B
			₩ 8
e =	0.28	(m)	
h' =	4.52	(m)	
A* =	67.05	(m ²)	
L* =	8.43	(m)	
B* =	7.95	(m)	
B*/L* =	0.94	(m)	
sc =	1.637	(-)	
sc = sq =	1.637 1.613		
	1.613	(-)	
$sq = s\gamma = s\gamma = s\gamma$	1.613	(·) (·) (·)	
$sq =$ $s\gamma =$ $q_{lim} =$	1.613 0.623 3508.04	(·) (·) (·)	
$sq =$ $s\gamma =$ $q_{lim} =$	1.613 0.623 3508.04	(-) (-) (-) (kN/m²)	
$sq =$ $s\gamma =$ $q_{lim} =$ $\textit{Sforzo Vert}$ $N_{lim} = q_{lim} ^* A$	1.613 0.623 3508.04	(-) (-) (-) (kN/m²)	
$\begin{split} sq &= \\ s\gamma &= \\ q_{lim} &= \\ \textbf{Sforzo Vert} \\ N_{lim} &= q_{lim} ^* A \\ N_{lim} &= \end{split}$	1.613 0.623 3508.04 ticale limite *	(-) (-) (-) (kN/m²) • nel terreno	
$\begin{split} sq &= \\ s\gamma &= \\ q_{lim} &= \\ Sforzo \ \textit{Vert} \\ N_{lim} &= q_{lim} ^* A \\ N_{lim} &= \\ Sforzo \ \textit{Vert} \end{split}$	1.613 0.623 3508.04 ticale limite * 235208.10	(-) (-) (kN/m²) (nel terreno (kN)	
$\begin{split} sq &= \\ s\gamma &= \\ q_{lim} &= \\ \textbf{Sforzo Vert} \\ N_{lim} &= q_{lim} ^* A \\ N_{lim} &= \\ \textbf{Sforzo Vert} \\ N_b - N_w &= \\ \end{split}$	1.613 0.623 3508.04 * 235208.10 ticale massi 29290.75	(-) (-) (-) (kN/m²) enel terreno (kN) imo nel terreno (kN)	
$\begin{split} sq &= \\ s\gamma &= \\ q_{lim} &= \\ Sforzo \ \textit{Vert} \\ N_{lim} &= q_{lim} ^* A \\ N_{lim} &= \\ Sforzo \ \textit{Vert} \end{split}$	1.613 0.623 3508.04 ticale limite * 235208.10 ticale massi 29290.75 e di Sicurez	(-) (-) (-) (kN/m²) enel terreno (kN) imo nel terreno (kN)	

Figura 16. Verifica pozzo combinazione 3 – SIS-MAX

8.03

≥ 2.3

N _b =	oni alla base 36915.92	(kN)	
M _b =	7586.90	(kNm)	
		alla base del pozzo	
N _w =	11581.17	(kN)	
Pressioni v	verticali alla	base del pozzo	
$\sigma_{zmax} = (N_t)$	-N _w)/A _b + ('3DH) / (βR)	
$\sigma_{zmin} = (N_b)$	-N _w)/A _b - (3	DH) / (βR)	
$\sigma_{zmax} =$	437.36	(kN/m ²)	
$\sigma_{zmin} =$	262.67	(kN/m ²)	
VERIFICHE	GEOTECNI	CHE	
Capacità p	ortante limit	e	
		· 0,5 yBNy s y	(Brinch-Hansen)
$q_{lim} = c_u N$			N _b
q =	66.80	(kN/m²)	M_b
$N_q =$	26.09	(-)	
N _c =	38.64	(-)	D
$N_{\gamma} =$	35.19	(-)	e
	1 + (B/L)*(Nq.		N _b
	1 + (B/L)*tanç	9(i')	
Sγ =	1 - 0,4*(B/L)		DC T
DC=2(R-e)			B* A
$AB = \sqrt{R^2}$	- 2		
	- e-		P
$\frac{AB}{CD} = \frac{L^*}{B^*}$			
h'= R – e	,	()	
B*·L* = A*	$=2\left(R^2\cos^2\theta\right)$	$1\left(\frac{R-h'}{R}\right)-\left(R-h'\right)\sqrt{\left(2Rh'-h'^2\right)}$	
			В
e =	0.21	(m)	
h' =	4.59	(m)	
A* =	68.44	(m ²)	
L* =	8.45	(m)	
B* =	8.10	(m)	
B*/L* =	0.96	(m)	
sc =	1.647	(-)	
sq=	1.622	(-)	
	0.617	(-)	
	3530.30		
	ticale limite	nel terreno	
$N_{lim} = q_{lim} * A$	*		
$N_{lim} =$	241605.23	(kN)	
Sforzo Ver	ticale massii	mo nel terreno	
N_b - N_w =	25334.75	(kN)	
Coefficient	te di Sicurez	za	
F _s = N _{lim} / (N ₅ - N _w)		

Figura 17. Verifica pozzo combinazione 4 – SIS-MIN

Fs = 9.54 ≥ 2.3

9.2 Verifiche spalla B

Si riporta di seguito le verifiche dei micropali relative alle 4 condizioni citate al paragrafo 4.2

La verifica a compresisone è soddisfatta risultando

Ed<Rd

818 kN< 1378.8 kN

La verifica a trazione è soddisfatta risultando

Ed<Rd

405 kN< 1268.5 kN

La verifica globale della palificata risulta parimenti soddisfatta essendo

Ed<Rd

19541 kN< 56255 kN