COMMITTENTE:

PROGETTAZIONE:

U.O. INFRASTRUTTURE SUD

PROGETTO DEFINITIVO

LINEA SALERNO - PONTECAGNANO AEROPORTO COMPLETAMENTO METROPOLITANA DI SALERNO TRATTA ARECHI - PONTECAGNANO AEROPORTO

FABBRICATI VIAGGIATORI

Stazione di Pontecagnano

Relazione di calcolo muro di banchina

		SCALA:
		-

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV.

|N|N|1|X| | |1|0| |D| |7|8| |C|L| |F|V|0|3|0|0| |0|0|3| |A|

Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Emissione Esecutiva	F.Durastanti	Dic-2020	G.Romano	Dic-2020	M.D'Aving	Dic-2020	D.Tiberti
			/		K		
							= 2 - 3 S =
		-					rdine d
		F.Durastanti	F.Durastanti	Emissione Esecutiva F.Durastanti Dic-2020 G.Romanpr)	Emissione Esecutiva F.Durastanti Dic-2020 G.Romano Dic-2020	Emissione Esecutiva F.Durastanti Dic-2020 G.Romano Dic-2020 H.D'Avu	Emissione Esecutiva F.Durastanti Dic-2020 G.Romano Dic-2020 Dic-2020

NN1X.1.0.D.78.CL.FV.03.0.0.003.A

n. Elab.:

STAZIONE DI PONTECAGNANO Relazione di calcolo muro di banchina
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NN1X
 10
 D 78
 CL FV0300 003
 A
 1 di 64

INDICE

1	PREMI	ESSA	
2	DESCR	RIZIONE DELL'OPERA	
3	DOCUM	MENTI DI RIFERIMENTO	4
	3.1 DO 3.1.1 3.1.2	OCUMENTI REFERENZIATI Documenti di progetto Normativa e istruzioni	5 5
4	CARAT	TTERISTICHE DEI MATERIALI IMPIEGATI	
	4.1.1 4.1.2 4.2 AO 4.2.1	ALCESTRUZZO Calcestruzzo per fondazione e elevazione Calcestruzzo per riempimento micropali CCIAIO Acciaio per cemento armato. Acciaio armatura micropalo	6 6 7
5	INQUA	DRAMENTO GEOLOGICO – GEOTECNICO	
6		ATEGORIA DI SOTTOSUOLO AI FINI DEL CALCOLO DELL'AZIONE SISMICAICHE AGLI STATI LIMITE	
U		ERIFICHE GEOTECNICHE (SLU) IN CONDIZIONI STATICHE	
	6.1.1 6.1.2 6.1.3	Verifica a scorrimento	11 12 12
7	VERIF	ICHE GEOTECNICHE (SLV) IN CONDIZIONI SISMICHE	13
8	VERIF	ICHE GEOTECNICHE (SLE)	1
9		ICHE STRUTTURALI SLU	
1(9.1 CF 9.2 VF 9.3 VF	RITERI DI VERIFICA DELLE SEZIONI IN C.A ERIFICHE PER GLI STATI LIMITE ULTIMI A FLESSIONE - PRESSOFLESSIONE ERIFICA AGLI STATI LIMITE ULTIMI A TAGLIO	16 16 16
1,		ERIFICHE ALLE TENSIONI	
		ERIFICHE ALLE TENSIONI ERIFICHE A FESSURAZIONE	
11		SI DEI CARICHI DI PROGETTO	
		ESI PROPRI	
	11.1 CA	ARICHI PERMANENTI E VARIABILI	
	11.1.2	Recinzione	
	11.1.3	Carichi ferroviari	
	11.1.4	Carichi eccezionali - folla	
	11.2 AZ	ZIONE SISMICA	
	11.2.1	Classe d'uso	
	11.2.3	Periodo di riferimento	24
	11.2.4	Valutazione dei parametri di pericolosità sismica	24
	11.2.5	Caratterizzazione sismica del terreno	

STAZIONE DI PONTECAGNANO Relazione di calcolo muro di banchina

NN1X	10	D 78	CL FV0300 003	Α	2 di 64
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO

12	COMBIN	AZIONE DI CARICO	31
13	PROGET	TO E VERIFICA	34
1	13.1 DA	TI DI INPUT	34
1	13.2 CA	COLO DELLE SOLLECITAZIONI	37
	13.2.1	Forze verticali e inerziali	
	13.2.2	Spinte in condizione statica	39
	13.2.3	Spinte in condizione sismica+	40
	13.2.4	Spinte in condizione sismica	41
1	13.3 VEI	RIFICHE GEOTECNICHE	
	13.3.1	Verifica statica a ribaltamento, scorrimento e carico limite verticale in c. drenate	42
	13.3.2	Verifica sismica a ribaltamento, scorrimento e carico limite verticale in c. drenate	
	13.3.3	Verifica di stabilità globale in c. drenate	
	13.3.4	Verifica statica a ribaltamento, scorrimento e carico limite verticale in c. non drenate	
	13.3.5	Verifica sismica a ribaltamento, scorrimento e carico limite verticale in c. non drenate	
	13.3.6	Verifica di stabilità globale in c. non drenate	
1	13.4 VEI	RIFICHE STRUTTURALI	60
	13.4.1	Calcolo delle sollecitazioni	60
14		CA SLU	
15	VERIFIC	CA SLE – TENSIONE	63
16	VERIFIC	CA SLE – FESSURAZIONE	63
17	INCIDE	J7 A	64

LINEA SALERNO - PONTECAGNANO AEROPORTO COMPLETAMENTO METROPOLITANA DI SALERNO TRATTA ARECHI - PONTECAGNANO AEROPORTO PROGETTO DEFINITIVO – FABBRICATI VIAGGIATORI

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NN1X	10	D 78	CL FV0300 003	Α	3 di 64

1 PREMESSA

Il presente documento illustra il dimensionamento e le verifiche dei del muro di sostegno della nuova linea Salerno-Battipaglia, in corrispondenza della stazione di Pontecagnano.

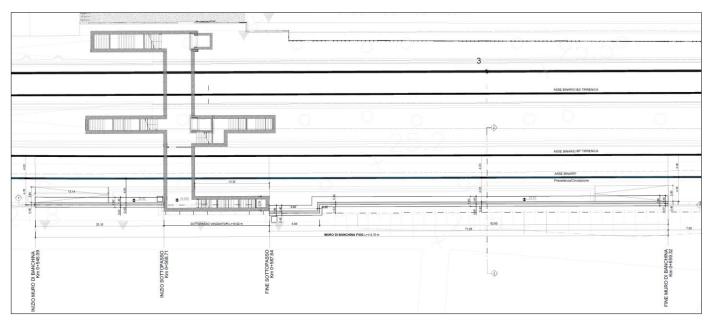


Figura 1 – Pianta muro di sostegno.

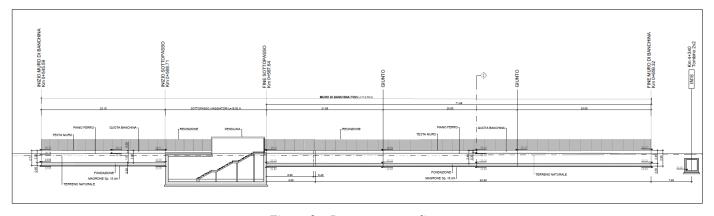


Figura 2 – Prospetto muro di sostegno.

LINEA SALERNO - PONTECAGNANO AEROPORTO COMPLETAMENTO METROPOLITANA DI SALERNO TRATTA ARECHI - PONTECAGNANO AEROPORTO PROGETTO DEFINITIVO – FABBRICATI VIAGGIATORI

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NN1X	10	D 78	CL FV0300 003	Α	4 di 64

2 DESCRIZIONE DELL'OPERA

L'opera oggetto di studio consiste in un muro di sostegno in corrispondenza della banchina di linea.

Il modello di calcolo è costituito da un muro con paramento di spessore pari a 0.40 m e altezza variabile tra 2.00 m e 2.45 m. La fondazione ha una larghezza e uno spessore pari rispettivamente a 1.80 m e 0.50 m.

Nel calcolo si considera il paramento fino all'altezza massima del rilevato, la restante parte di applica come carico concentrato in testa al muro, dato dal peso dello stesso.

Si riporta di seguito una sezione tipo rappresentante l'opera oggetto di studio.

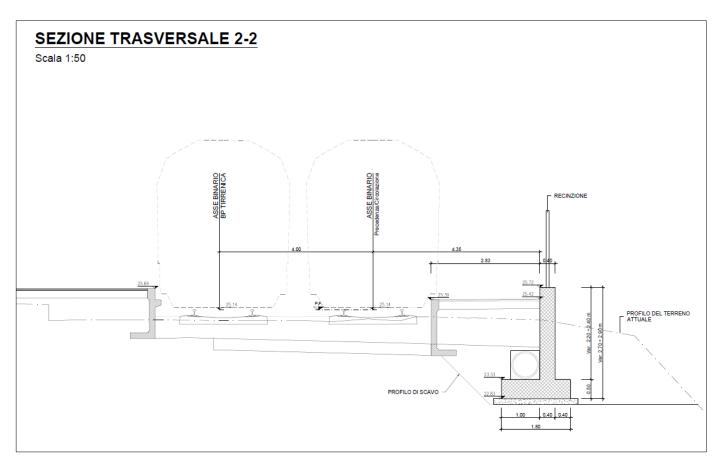


Figura 3 – Sezione tipo muro di sostegno.

LINEA SALERNO - PONTECAGNANO AEROPORTO COMPLETAMENTO METROPOLITANA DI SALERNO TRATTA ARECHI - PONTECAGNANO AEROPORTO PROGETTO DEFINITIVO – FABBRICATI VIAGGIATORI

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NN1X	10	D 78	CL FV0300 003	Α	5 di 64

3 DOCUMENTI DI RIFERIMENTO

3.1 DOCUMENTI REFERENZIATI

I documenti utilizzati come input per il presente documento sono i seguenti:

- 3.1.1 Documenti di progetto
 - NN1X10D78RHGE0600001 "PROGETTO DEFINITIVO GEOTECNICA Elaborati generali Relazione geotecnica generale Adeguamento PRG di Pontecagnano";
 - NNIX10D78L6GE0600001 ÷ NNIX10D78L6GE0600002 "PROGETTO DEFINITIVO GEOTECNICA Elaborati generali Profilo geotecnico linea Adeguamento PRG di Pontecagnano Tav. 1 ÷ 2".

3.1.2 Normativa e istruzioni

La progettazione è conforme alle normative vigenti.

- [N.1]. Norme Tecniche per le Costruzioni D.M. 17-01-18 (NTC-2018);
- [N.2]. Circolare n. 7 del 21 gennaio 2019 Istruzioni per l'Applicazione dell'aggiornamento delle Norme Tecniche per le Costruzioni di cui al Decreto Ministeriale 17 gennaio 2018;
- [N.3]. Regolamento (UE) N. 1299/2014 della Commissione del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema «infrastruttura» del sistema ferroviario dell'Unione europea, modificato dal Regolamento di esecuzione (UE) N° 2019/776 della Commissione del 16 maggio 2019
- [N.4]. Eurocodici EN 1991-2: 2003/AC:2010 Eurocodice 1 Parte 2
- [N.5]. RFI DTC SI MA IFS 001 D Dicembre 2019 Manuale di Progettazione delle Opere Civili

LINEA SALERNO - PONTECAGNANO AEROPORTO COMPLETAMENTO METROPOLITANA DI SALERNO TRATTA ARECHI - PONTECAGNANO AEROPORTO PROGETTO DEFINITIVO – FABBRICATI VIAGGIATORI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NN1X
 10
 D 78
 CL FV0300 003
 A
 6 di 64

4 CARATTERISTICHE DEI MATERIALI IMPIEGATI

I materiali utilizzati nella realizzazione delle strutture in funzione della utilizzazione sono descritti in seguito.

4.1 CALCESTRUZZO

111	C 1 .	C	7 .		
4.1.1	Calcestruzzo	per to	ndazione	e el	levazione

- classe di resistenza C32/40:

- Classe di esposizione XC4

- Copriferro 50 mm

- Resistenza cubica caratteristica a compressione

- $f_{ck} = 0.83 \cdot R_{ck} = 33.20 \text{ N/mm}^2$ Resistenza caratteristica a compressione;

- $f_{cd} = f_{ck} \cdot \alpha_{cc}/\gamma_c = 18.81 \text{ N/mm}^2$ Resistenza di calcolo a compressione del cls;

- $f_{ctm} = 0.30 \cdot f_{ck}^{(2/3)} = 3.10 \text{ N/mm}^2$ Resistenza media a trazione del cls;

- $f_{ctk} = 0.7 \cdot f_{ctm} = 2.17 \text{ N/mm}^2$ Resistenza caratteristica a trazione del cls;

- $f_{ctd} = f_{ctk}/\gamma_c = 1.44 \text{ N/mm}^2$ Resistenza di calcolo a trazione del cls.

 $f_{bk} = 2.25 \, \eta \cdot f_{ctk} = 4.88 \, \text{N/mm}^2$ Resistenza caratteristica tangenziale di aderenza del cls,

dove $\eta = 1.0$ per barre di diametro inferiore a 32 mm;

- $f_{bd} = f_{bk} / \gamma_c = 3.25 \text{ N/mm}^2$ Resistenza di calcolo di aderenza del cls.

- $f_{cm} = f_{ck} + 8 = 41.20 \text{ N/mm}^2$ Resistenza media cilindrica a compressione del cls;

- Ecm = $22000 \cdot [f_{cm}/10]^{0.3} = 33642.78 \text{ N/mm}^2$ Modulo elastico del calcestruzzo

- $\sigma_c < 0.55 \cdot f_{ck} = 18.26 \text{ N/mm}^2$ tensione massima di eserc. per il cls con comb. rara;

- $\sigma_c < 0.40 \cdot f_{ck} = 13.28 \text{ N/mm}^2$ tensione massima di eserc. per il cls con comb. quasi perm

4.1.2 Calcestruzzo per riempimento micropali

- classe di resistenza C25/30

- modulo elastico $E_c = 31.447 \text{ N/mm}^2$;

- resistenza caratteristica a compressione cilindrica $f_{ck} = 24,90 \text{ N/mm}^2$;

resistenza media a compressione cilindrica $f_{cm} = 32,90 \text{ N/mm}^2$;

- resistenza di calcolo a compressione $f_{cd} = 14,11 \text{ N/mm}^2$;

- resistenza a trazione (valore medio) $f_{ctm} = 2,56 \text{ N/mm}^2;$

resistenza caratteristica a trazione $f_{ctk} = 1,79 \text{ N/mm}^2$;

resistenza caratteristica a trazione per flessione $f_{cfk} = 2,15 \text{ N/mm}^2$;

resistenza di progetto a trazione $f_{ctd} = 1,19 \text{ N/mm}^2$.

STAZIONE DI PONTECAGNANO Relazione di calcolo muro di banchina

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NN1X
 10
 D 78
 CL FV0300 003
 A
 7 di 64

4.2 ACCIAIO

4.2.1 Acciaio per cemento armato

Si utilizzano barre ad aderenza migliorata in acciaio con le seguenti caratteristiche meccaniche:

– acciaio B450C

tensione caratteristica di snervamento $f_{yk} = 450 \text{ N/mm}^2$;

tensione caratteristica di rottura $f_{tk} = 540 \text{ N/mm}^2$;

- resistenza di calcolo a trazione $f_{yd} = 391,30 \text{ N/mm}^2$;

- modulo elastico $E_s = 206.000 \text{ N/mm}^2$.

- tensione massima di esercizio per l'acciai $\sigma_s < 0.75 \text{ f}_{yk} = 337,50 \text{ N/mm}^2$.

4.2.2 Acciaio armatura micropalo

tipologia S275JR:

Rapporto a/c max 0.50

Classe di Resistenza minima C25/30

Tipo di Cemento CEM III-V

Si dovrà inoltre garantire il seguente requisito: Viscosità Marsh: 10-30 sec (ugello di 13mm)

STAZIONE DI PONTECAGNANO Relazione di calcolo muro di banchina
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NN1X
 10
 D 78
 CL FV0300 003
 A
 8 di 64

5 INQUADRAMENTO GEOLOGICO – GEOTECNICO

Il modello geotecnico di calcolo è stato definito sulla base di quanto riportato nella relazione geotecnica: si riportano di seguito i terreni su cui poggia l'opera oggetto di studio, con i parametri fisici e meccanici ad essi assegnati. Da un'analisi dei dati a disposizione emerge che la stratigrafia del terreno sul quale verrà impostato il muro di sostegno è caratterizzato dai valori dei parametri di calcolo riportati.

L'opera analizzata ricade all'interno del terreno L1, le cui caratteristiche sono le seguenti:

	Peso di volume naturale	Angolo di resistenza al taglio	Coesione drenata	Coesione non drenata	Modulo di deformazione elastico a piccole deformazioni	Nspt caratteristico	Pe rme abilità	Modulo di deformabilità "operativo" per opere di sostegno e fondazioni E'=E ₀ /5
	γ	φ'	c'	Cu	$E_0^{(1)}$		k	E'
	$[kN/m^3]$	[°]	[kPa]	[kPa]	[MPa]	[colpi/30 cm]	[m/s]	[MPa]
Limo scarsa consistenza L1 ⁽⁵⁾	18	23	3	30	140	<10	3.5 E ⁻⁰⁶	25

La falda è considerata ad una profondità di 4.30 m da p.c.

5.1 CATEGORIA DI SOTTOSUOLO AI FINI DEL CALCOLO DELL'AZIONE SISMICA

La classificazione del sottosuolo si effettua in base alle condizioni stratigrafiche ed ai valori della velocità equivalente di propagazione delle onde di taglio, VS,eq (in m/s), definita dall'espressione:

$$V_{S,eq} = \frac{H}{\sum_{i=1}^{N} \frac{h_i}{V_{S,i}}}$$

Come riportato dettagliatamente nella relazione geologica, l'analisi dell'assetto stratigrafico e dei valori di VS,30 disponibili dalle prove sismiche Masw ha permesso di definire la categoria di sottosuolo come "C e E".

Nel seguito, a vantaggio di sicurezza, si assume l'intera area di progetto appartenente alla categoria di sottosuolo di fondazione "E" ovvero "Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le categorie C o D, con profondità del substrato non superiore a 30 m".

LINEA SALERNO - PONTECAGNANO AEROPORTO COMPLETAMENTO METROPOLITANA DI SALERNO TRATTA ARECHI - PONTECAGNANO AEROPORTO PROGETTO DEFINITIVO – FABBRICATI VIAGGIATORI

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NN1X	10	D 78	CL FV0300 003	Α	9 di 64

6 VERIFICHE AGLI STATI LIMITE

6.1 VERIFICHE GEOTECNICHE (SLU) IN CONDIZIONI STATICHE

Nelle verifiche di sicurezza si è preso in considerazione tutti i meccanismi di stato limite ultimo sia a breve termine sia a lungo termine. Gli stati limite ultimi delle opere di sostegno si riferiscono allo sviluppo di meccanismi di collasso determinati dalla mobilitazione della resistenza del terreno, e al raggiungimento della resistenza degli elementi strutturali che compongono le opere stesse.

Per i muri di sostegno su fondazione diretta si considerano i seguenti Stati Limite Ultimi:

SLU di tipo geotecnico (GEO)

- Scorrimento sul piano di posa;
- Collasso per carico limite del complesso fondazione-terreno;
- Ribaltamento:
- Stabilità globale del complesso opera di sostegno-terreno.

SLU di tipo strutturale (STR)

• Raggiungimento della resistenza negli elementi strutturali.

La verifica di stabilità globale del complesso opera di sostegno – terreno deve essere effettuata, analogamente a quanto previsto al §6.8 delle NTC2018, secondo l'Approccio 1 – Combinazione 2 (A2+M2+R2), tenendo conto dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II e 6.8.I delle NTC18.

Le rimanenti verifiche devono essere effettuate secondo l'Approccio 2 con la combinazione (A1+M1+R3), tenendo conto dei valori dei coefficienti parziali riportati nelle 6.2.I, 6.2.II, 6.4.II e 6.4.VI delle NTC18.

Il progetto e la verifica dei muri di sostegno sono stati effettuati con l'ausilio di fogli di calcolo nei quali vengono implementate tutte le caratteristiche geometriche dei muri insieme ai parametri di resistenza geotecnica.

Per ogni tipologia di muro di sostegno studiata, si è verificato che le caratteristiche geometriche siano tali che il muro possa essere considerato a mensola con suola lunga, così come previsto al §3.10.3.3. del Manuale di Progettazione delle Opere Civili (RFI DTC SI MA IFS 001 C).

Si è considerato, pertanto, che la spinta sull'opera di sostegno agisca sul piano verticale cd, assunto come il paramento virtuale del muro.

LINEA SALERNO - PONTECAGNANO AEROPORTO COMPLETAMENTO METROPOLITANA DI SALERNO TRATTA ARECHI - PONTECAGNANO AEROPORTO PROGETTO DEFINITIVO – FABBRICATI VIAGGIATORI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NN1X
 10
 D 78
 CL FV0300 003
 A
 10 di 64

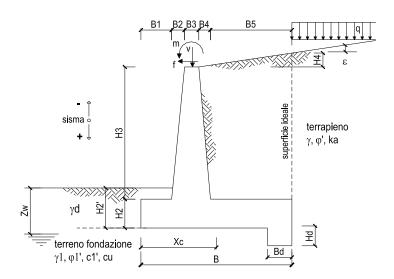


Figura 4 – Spinta sui muri di sostegno a mensola con suola lunga (caso a) e con suola corta (caso b).

Su tale paramento l'angolo di inclinazione δ della risultante della spinta (applicata ad 1/3 dell'altezza del paramento virtuale) si potrà assumere uguale all'angolo di inclinazione β del terrapieno, a meno che β non sia superiore all'angolo di resistenza al taglio del terreno φ ', nel qual caso si potrà assumere $\delta = \varphi$ '.

Il terreno al di sopra della suola (abcd) è stato considerato stabilizzante nelle verifiche, e ad esso sono da applicarsi le forze d'inerzia in fase sismica.

Inoltre nella verifica a scorrimento e a ribaltamento dei muri di sostegno viene trascurata la resistenza passiva antistante il muro.


Nel nostro caso l'angolo di attrito fondazione-terreno nelle verifiche a scorrimento è pari a $\phi'_{cv} = \arctan{(\tan{\phi'})}$

Le caratteristiche geometriche sono riportate sinteticamente nel seguente schema:

LINEA SALERNO - PONTECAGNANO AEROPORTO COMPLETAMENTO METROPOLITANA DI SALERNO TRATTA ARECHI - PONTECAGNANO AEROPORTO PROGETTO DEFINITIVO – FABBRICATI VIAGGIATORI

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NN1X	10	D 78	CL FV0300 003	Α	11 di 64

6.1.1 Verifica a scorrimento

La verifica dell'equilibrio allo stato limite di scorrimento viene condotta confrontando l'azione resistente R_h, pari al prodotto della risultante delle forze verticali per il coefficiente d'attrito con l'azione instabilizzante, pari alla risultante di tutte le componenti orizzontali delle forze agenti sul muro.

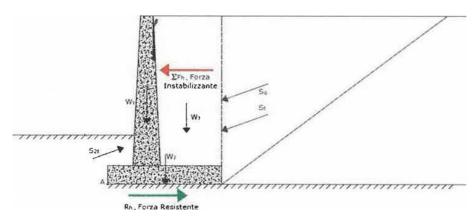


Figura 5 – Verifica a scorrimento.

In condizioni sismiche, ai fini del dimensionamento, si fa riferimento ad un sisma agente da monte verso valle del muro, in direzione orizzontale, dal basso verso l'alto e dall'alto verso il basso, in direzione verticale.

LINEA SALERNO - PONTECAGNANO AEROPORTO
COMPLETAMENTO METROPOLITANA DI SALERNO
TRATTA ARECHI - PONTECAGNANO AEROPORTO
PROCETTO DEFINITIVO - EARRRICATI VIACCIATORI

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NN1X	10	D 78	CL FV0300 003	Α	12 di 64

6.1.2 Verifica a ribaltamento

L'equilibrio allo stato limite è condotto confrontando il momento delle forze stabilizzanti e quello delle forze ribaltanti, entrambi rispetto all'estremo A di valle della fondazione.

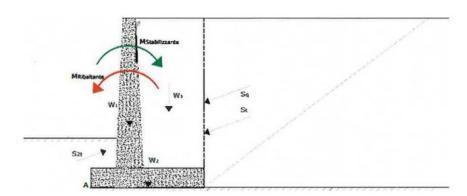


Figura 6 – Verifica a ribaltamento.

6.1.3 Verifica a carico limite della fondazione

Per il calcolo della capacità portante della fondazione si è fatto riferimento alla formula di Brinch-Hansen (1970) integrata dai coefficienti sismici di Paolucci e Pecker (1995), di seguito riportata:

$$q_{lim} = c\text{'}\ N_c\ s_c\ d_c\ i_c\ b_c\ g_c\ z_c + q\ N_q\ s_q\ d_q\ i_q\ b_q\ g_q\ z_q + 0.5\ \gamma\ B\ N\ s_\gamma\ d_\gamma\ i_\gamma\ b_\gamma\ g_\gamma\ z_\gamma$$

 $F_s = q_{lim} \, / \, q_{es}$

con $q_{es} = N / (B'*L')$ la pressione dovuta al carico verticale.

6.1.4 Verifica a stabilità globale

Per le verifiche di stabilità dei pendii naturali si ricorre, nell'ambito dei metodi all'equilibrio limite, ai cosiddetti metodi delle strisce, in particolare il metodo di Bishop. Si ipotizza una superficie cilindrica di scorrimento potenziale, S, si suddivide idealmente la porzione di terreno delimitato da questa e dalla superficie topografica in n conci e si analizza l'equilibrio limite di ciascun concio.

LINEA SALERNO - PONTECAGNANO AEROPORTO COMPLETAMENTO METROPOLITANA DI SALERNO TRATTA ARECHI - PONTECAGNANO AEROPORTO PROGETTO DEFINITIVO – FABBRICATI VIAGGIATORI

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NN1X	10	D 78	CL FV0300 003	Α	13 di 64

7 VERIFICHE GEOTECNICHE (SLV) IN CONDIZIONI SISMICHE

L'analisi della sicurezza dei muri di sostegno in condizioni sismiche può essere eseguita mediante i metodi pseudostatici e i metodi degli spostamenti.

Se la struttura può spostarsi, l'analisi pseudo-statica si esegue mediante i metodi dell'equilibrio limite. Il modello di calcolo deve comprendere l'opera di sostegno, il volume di terreno a tergo dell'opera, che si suppone in stato di equilibrio limite attivo, e gli eventuali sovraccarichi agenti sul volume suddetto.

Nell'analisi pseudo-statica, l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.

Nelle verifiche, i valori dei coefficienti sismici orizzontale kh e verticale kv possono essere valutati mediante le espressioni

$$k_h = \beta_m \frac{a_g}{g}$$

$$k_v = \pm 0.5 k_h$$

dove:

 β_m = coefficiente di riduzione dell'accelerazione massima attesa al sito;

 a_{max} = accelerazione orizzontale massima attesa al sito;

g = accelerazione di gravità.

In assenza di analisi specifiche della risposta sismica locale, l'accelerazione massima può essere valutata con la relazione

$$a_{max} = S \cdot a_q = (S_S \cdot S_T) \cdot a_q$$

dove:

S = coefficiente che comprende l'effetto dell'amplificazione stratigrafica (S_S) e dell'amplificazione topografica (S_T) di cui al paragrafo 3.2.3.2 delle NTC18.

Nella precedente espressione, il coefficiente di riduzione dell'accelerazione massima attesa al sito è pari a:

 $\beta_m = 0.38$ nelle verifiche allo stato limite ultimo (SLV)

 $\beta_m = 0.47$ nelle verifiche allo stato limite di esercizio (SLD)

Per muri non liberi di subire spostamenti relativi rispetto al terreno, il coefficiente βm assume valore unitario.

LINEA SALERNO - PONTECAGNANO AEROPORTO COMPLETAMENTO METROPOLITANA DI SALERNO TRATTA ARECHI - PONTECAGNANO AEROPORTO PROGETTO DEFINITIVO – FABBRICATI VIAGGIATORI

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NN1X	10	D 78	CL FV0300 003	Α	14 di 64

Nel caso di muri liberi di traslare o di ruotare intorno al piede, si può assumere che l'incremento di spinta dovuta al sisma agisca nello stesso punto di quella statica. Negli altri casi, in assenza di studi specifici, si deve assumere che tale incremento sia applicato a metà altezza del muro.

Lo stato limite di ribaltamento deve essere trattato impiegando coefficienti parziali unitari sulle azioni e sui parametri geotecnici (paragrafo 7.11.1 delle NTC18) e utilizzando valori di βm incrementati del 50% rispetto a quelli innanzi indicati e comunque non superiori all'unità.

In condizioni sismiche deve essere soddisfatta la verifica di stabilità del complesso muro – terreno con i criteri indicati al paragrafo 7.11.4 delle NTC2018.

Come indicato dal Manuale di Progettazione RFI al §3.10.3.1, i valori dei coefficienti sismici orizzontali e verticali, nelle verifiche allo stato limite ultimo, saranno assunti come definito al par. 7.11.6.2.1. delle NTC 2018 anche per i muri su pali, con l'avvertenza di sostituire le relazioni 7.11.6 e 7.11.7 delle stesse norme tecniche con le espressioni di seguito riportate:

$$k_h = 2 \cdot \beta_m \cdot S_T \cdot S_S \cdot \frac{a_g}{g} \qquad k_v = \frac{1}{2} \cdot k_h$$

Per opere particolari con terrapieno in falda occorre tener conto degli effetti, diversi in ragione della permeabilità, indotti dall'azione sismica sullo scheletro solido e sull'acqua interstiziale.

Spinta sismica

La teoria di Mononobe – Okabe fa uso del metodo dell'equilibrio limite e può essere considerata una estensione della teoria di Coulomb, in cui, alle usuali spinte al contorno del cuneo instabile di terreno, sono sommate anche le azioni inerziali orizzontali e verticali dovute all'accelerazione delle masse.

Le spinte Attiva e Passiva si calcolano come:

$$S_{a,t} = \frac{1}{2} \gamma \cdot k_{as} \cdot h^2 \cdot (1 \mp k_v)$$

Il coefficiente k_{as} è valutato, quindi, secondo tale formulazione, in cui i simboli usati sono:

 ϕ = angolo di attrito interno del terrapieno;

 ψ = angolo di inclinazione rispetto all'orizzontale della parete interessata del muro;

 β = angolo di inclinazione rispetto all'orizzontale del profilo del terrapieno;

 δ = angolo di attrito terrapieno – muro;

 θ = angolo di rotazione addizionale definito come segue.

STAZIONE DI PONTECAGNANO Relazione di calcolo muro di banchina

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NN1X	10	D 78	CL FV0300 003	Α	15 di 64

$$tan\theta = \frac{k_h}{1 \mp k_v}$$

Il coefficiente per stati di spinta attiva si divide in due casi:

$$\beta \leq \phi - \theta \rightarrow k_{as} = \frac{\sin^2(\psi + \phi - \theta)}{\cos\theta \cdot \sin^2\psi \cdot \sin(\psi - \theta - \delta) \left[1 + \sqrt{\frac{\sin(\phi + \delta) \cdot \sin(\phi - \beta - \theta)}{\sin(\psi - \theta - \delta) \cdot \sin(\psi + \beta)}}\right]^2}$$

$$\beta > \phi - \theta \to k_{as} = \frac{\sin^2(\psi + \phi - \theta)}{\cos\theta \cdot \sin^2\psi \cdot \sin(\psi - \theta - \delta)}$$

Il coefficiente per stati di spinta passiva è invece:

$$k_{ps} = \frac{\sin^2(\psi + \phi - \theta)}{\cos\theta \cdot \sin^2\psi \cdot \sin(\psi + \theta) \left[1 - \sqrt{\frac{\sin\phi \cdot \sin(\phi + \beta - \theta)}{\sin(\psi + \beta) \cdot \sin(\psi + \theta)}}\right]^2}$$

8 VERIFICHE GEOTECNICHE (SLE)

Per ciascun stato limite di esercizio deve essere rispettata la condizione [6.2.7] delle NTC 2018:

$$E_d \leq C_d$$

essendo E_d e C_d rispettivamente il valore di progetto dell'effetto delle azioni e il prescritto valore limite dell' effetto delle azioni (spostamenti, rotazioni, distorsioni, ecc.).

In particolare, dovranno essere valutati gli spostamenti delle opere di sostegno e del terreno circostante per verificarne la compatibilità con la funzionalità delle opere stesse e con la sicurezza e funzionalità dei manufatti adiacenti, anche a seguito di modifiche indotte sul regime delle pressioni interstiziali.

Per i lavori e le opere da realizzare in prossimità di linee ferroviarie già in esercizio, le verifiche agli SLE dovranno essere condotte assumendo come limite degli spostamenti indotti durante la costruzione sui binari in esercizio i valori limite dei difetti riferiti al secondo livello di qualità descritti nella specifica tecnica RFI TCAR ST AR 01 001 D "Standard di qualità geometrica del binario con velocità fino a 300 km/h" e relativi allegati.

Qualora vengano superati i limiti riferiti al primo livello di qualità, il progetto dovrà prevedere l'esecuzione di un monitoraggio del binario durante la costruzione al fine di controllare l'effettivo andamento delle deformazioni.

LINEA SALERNO - PONTECAGNANO AEROPORTO COMPLETAMENTO METROPOLITANA DI SALERNO TRATTA ARECHI - PONTECAGNANO AEROPORTO PROGETTO DEFINITIVO – FABBRICATI VIAGGIATORI

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NN1X	10	D 78	CL FV0300 003	Α	16 di 64

9 VERIFICHE STRUTTURALI SLU

Le verifiche sono condotte nel rispetto di quanto dichiarato nell'istruttoria RFI DTC INC PO SP IFS 001 A § 1.8.3. Le verifiche di resistenza delle sezioni sono eseguite secondo il metodo semiprobabilistico agli stati limite. I coefficienti di sicurezza adottati sono i seguenti:

- coefficiente parziale di sicurezza per il calcestruzzo: 1.50;
- coefficiente parziale di sicurezza per l'acciaio in barre: 1.15;

Il paragrafo in oggetto illustra nel dettaglio i criteri generali adottati per le verifiche strutturali e geotecniche condotte nel progetto. Ulteriori dettagli di carattere specifico, laddove impiegati, sono dichiarati e motivati nelle relative risultanze delle verifiche.

9.1 CRITERI DI VERIFICA DELLE SEZIONI IN C.A.

Per le sezioni in cemento armato si effettuano:

- verifiche per gli stati limite ultimi a presso-flessione;
- verifiche per gli stati limite ultimi a taglio;
- verifiche per gli stati limite di esercizio.

9.2 VERIFICHE PER GLI STATI LIMITE ULTIMI A FLESSIONE - PRESSOFLESSIONE

Allo stato limite ultimo, le verifiche a flessione o presso-flessione sono condotte confrontando (per le sezioni più significative) le resistenze ultime e le sollecitazioni massime agenti, valutando di conseguenza il corrispondente fattore di sicurezza.

9.3 VERIFICA AGLI STATI LIMITE ULTIMI A TAGLIO

La verifica allo stato limite ultimo per azioni di taglio è condotta secondo quanto prescritto dal DM17/01/2018, per elementi con armatura a taglio verticali.

Si fa, pertanto, riferimento ai seguenti valori della resistenza di calcolo:

- resistenza di calcolo dell'elemento privo di armatura a taglio:

$$V_{Rd} = \max \left\{ \left[0.18 \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck})^{1/3} / \gamma_c + 0.15 \cdot \sigma_{cp} \right] b_w \cdot d; \ (v_{\min} + 0.15 \cdot \sigma_{cp}) \cdot b_w d \right\}$$

- valore di progetto dello sforzo di taglio che può essere sopportato dall'armatura a taglio alla tensione di snervamento:

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot \sin \alpha$$

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NN1X
 10
 D 78
 CL FV0300 003
 A
 17 di 64

STAZIONE DI PONTECAGNANO Relazione di calcolo muro di banchina

- valore di progetto del massimo sforzo di taglio che può essere sopportato dall'elemento, limitato dalla rottura delle bielle compresse:

$$V_{Rcd} = 0.9 \cdot d \cdot b_w \cdot \alpha_c v \cdot f_{cd} (ctg\alpha + ctg\theta)/(1 + ctg^2 \theta)$$

Nelle espressioni precedenti, i simboli hanno i seguenti significati:

$$k = 1 + \sqrt{\frac{200}{d} \le 2} \text{ con d in mm};$$

$$\rho_1 = \frac{A_{sl}}{b_w \cdot d} \le 0.02;$$

A_{sl} è l'area dell'armatura tesa;

b_w è la larghezza minima della sezione in zona tesa;

$$\sigma_{\rm cp} = \frac{N_{Ed}}{A_c} < 0.2 \cdot f_{\rm cd} ;$$

N_{Ed} è la forza assiale nella sezione dovuta ai carichi;

A_c è l'area della sezione di calcestruzzo;

$$v_{\min} = 0.035 \cdot k^{3/2} \cdot f_{ck}^{1/2};$$

 $1 \le \cot \theta \le 2.5$ è l'inclinazione dei puntoni di calcestruzzo rispetto all'asse della trave;

A_{sw} è l'area della sezione trasversale dell'armatura a taglio;

s è il passo delle staffe;

f_{ywd} è la tensione di snervamento di progetto dell'armatura a taglio;

 $f'_{cd} = 0.5 \cdot f_{cd}$ è la resistenza ridotta a compressione del calcestruzzo d'anima;

 $\alpha_{cw} = 1$ è un coefficiente che tiene conto dell'interazione tra la tensione nel corrente compresso e qualsiasi tensione di compressione assiale.

LINEA SALERNO - PONTECAGNANO AEROPORTO COMPLETAMENTO METROPOLITANA DI SALERNO TRATTA ARECHI - PONTECAGNANO AEROPORTO PROGETTO DEFINITIVO – FABBRICATI VIAGGIATORI

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NN1X	10	D 78	CL FV0300 003	Α	18 di 64

10 VERIFICHE STRUTTURALI SLE

La verifica nei confronti degli Stati limite di esercizio, consiste nel controllare, con riferimento alle sollecitazioni di calcolo corrispondenti alle Combinazioni di Esercizio il tasso di Lavoro nei Materiali e l'ampiezza delle fessure attesa, secondo quanto di seguito specificato

10.1 VERIFICHE ALLE TENSIONI

La verifica delle tensioni in esercizio consiste nel controllare il rispetto dei limiti tensionali previsti per il calcestruzzo e per l'acciaio per ciascuna delle combinazioni di carico caratteristiche "Rara" e "Quasi Permanente"; i valori tensionali nei materiali sono valutati secondo le note teorie di analisi delle sezioni in c.a. in campo elastico e con calcestruzzo "non reagente" adottando come limiti di riferimento, trattandosi nel caso in specie di opere Ferroviarie, quelli indicati nel documento "Manuale di progettazione opere civili"

Strutture in c.a.

Tensioni di compressione del calcestruzzo

Devono essere rispettati i seguenti limiti per le tensioni di compressione nel calcestruzzo:

- per combinazione di carico caratteristica (rara): 0,55 f_{ok};
- per combinazioni di carico quasi permanente: 0,40 f_{ck};
- per spessori minori di 5 cm, le tensioni normali limite di esercizio sono ridotte del 30%.

Tensioni di trazione nell'acciaio

Per le armature ordinarie, la massima tensione di trazione sotto la combinazione di carico caratteristica (rara) non deve superare $0.75~f_{vk}$.

10.2 VERIFICHE A FESSURAZIONE

La verifica di fessurazione consiste nel controllare l'ampiezza dell'apertura delle fessure sotto combinazione di carico frequente e combinazione quasi permanente. Essendo la struttura a contatto col terreno si considerano condizioni ambientali aggressive; le armature di acciaio ordinario sono ritenute poco sensibili [NTC – Tabella 4.1.IV]

In relazione all'aggressività ambientale e alla sensibilità dell'acciaio, l'apertura limite delle fessure è riportato nel prospetto seguente:

STAZIONE DI PONTECAGNANO Relazione di calcolo muro di banchina
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NN1X
 10
 D 78
 CL FV0300 003
 A
 19 di 64

Commoni di			Armatura				
Gruppi di esigenza	Condizioni ambientali	Combinazione di azione	Sensibile	Poco sensibile			
esigeliza			Stato limite	wd	Stato limite	wd	
	Ordinarie	frequente	ap. fessure	\leq w ₂	ap. fessure	\leq w ₃	
a Ordinarie	Orumane	quasi permanente	ap. fessure	$\leq w_1$	ap. fessure	\leq w ₂	
h	Aggregive	frequente	ap. fessure	$\leq w_1$	ap. fessure	\leq w ₂	
b	Aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$	
Malta Agamasiya		frequente	formazione fessure	-	ap. fessure	\leq w ₁	
c	Molto Aggressive	Alolto Aggressive quasi permanente		-	ap. fessure	$\leq w_1$	

Tabella 4.1.III - Descrizione delle condizioni ambientali

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Tabella 1 – Criteri di scelta dello stato limite di fessurazione e condizioni ambientali.

Risultando:

w1 = 0.2 mm

w2 = 0.3 mm

w3 = 0.4 mm

Alle prescrizioni normative presenti in NTC si sostituiscono in tal caso quelle fornite dalle specifiche RFI (Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario – Requisiti concernenti la fessurazione per strutture in c.a., c.a.p. e miste acciaio-calcestruzzo) secondo cui la verifica nei confronti dello stato limite di apertura delle fessure va effettuata utilizzando le sollecitazioni derivanti dalla combinazione caratteristica (rara).

Per tutte le strutture a permanente contatto con il terreno e per le zone non ispezionabili di tutte le strutture, l'apertura convenzionale delle fessure dovrà risultare:

Combinazione Caratteristica (Rara)

$$\delta_f \leq w_1 = 0.2 \ mm$$

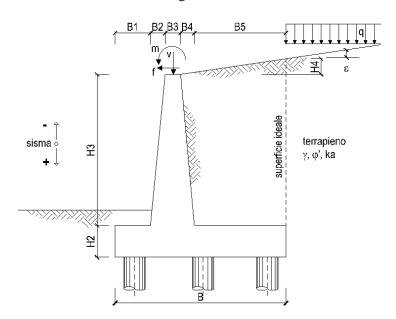
Riguardo infine il valore di calcolo delle fessure da confrontare con i valori limite fissati dalla norma, si è è utilizzata la procedura prevista al punto "C4.1.2.2.4.5 Verifica allo stato limite di fessurazione" della Circolare n.7/19.

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NN1X
 10
 D 78
 CL FV0300 003
 A
 20 di 64

STAZIONE DI PONTECAGNANO Relazione di calcolo muro di banchina

11 ANALISI DEI CARICHI DI PROGETTO


Nel seguente paragrafo si descrivono i carichi elementari che agiscono sulla struttura in oggetto. Tali azioni sono definite secondo le normative e sono utilizzate per la generazione delle combinazioni di carico nell'ambito delle verifiche di resistenza, in esercizio ed in presenza dell'evento sismico.

Tutti i carichi elementari si riferiscono all'unità di sviluppo del muro, pertanto sono tutti definiti rispetto all'unità di lunghezza.

11.1 PESI PROPRI

Il peso proprio del muro è calcolato in automatico dal foglio di calcolo elettronico.

I dati di input per i muri su fondazione diretta sono i seguenti:

Geometria del Muro			
Elevazione	H3 =	2.00	(m)
Aggetto Valle	B2 =	0.00	(m)
Spessore del Muro in Testa	B3 =	0.40	(m)
Aggetto monte	B4 =	0.00	(m)
Geometria della Fondazione			
Larghezza Fondazione	B =	1.80	(m)
Spessore Fondazione	H2 =	0.50	(m)
Suola Lato Valle	B1 =	0.40	(m)
Suola Lato Monte	B5 =	1.00	(m)
Altezza dente	Hd =	0.00	(m)
Larghezza dente	Bd =	0.00	(m)
Mezzeria Sezione	Xc =	0.90	(m)
Peso Specifico del Calcestruzzo	γcls =	25.00	(kN/m ³)

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NN1X	10	D 78	CL FV0300 003	Α	21 di 64

STAZIONE DI PONTECAGNANO Relazione di calcolo muro di banchina

11.1 CARICHI PERMANENTI E VARIABILI

11.1.1 Spinta del terreno

A tergo del muro agisce la spinta del terreno del rilevato.

La spinta in condizioni di esercizio viene calcolata con il coefficiente di spinta attiva ka.

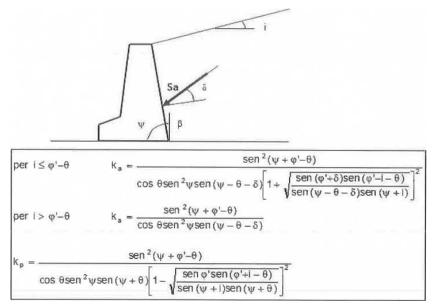


Figura 7 – Coefficiente di spinta attiva e passiva.

La spinta sull'opera di sostegno dovrà essere applicata sul piano verticale, assunto come paramento virtuale del muro, definito a partire dall'estremo a monte della scarpa di fondazione.

Su tale paramento l'angolo di inclinazione δ della risultante della spinta (applicata ad 1/3 dell'altezza del paramento virtuale) si potrà assumere uguale all'angolo di inclinazione β del terrapieno, a meno che β non sia superiore all'angolo di resistenza al taglio del terreno ϕ' , nel qual caso si assumerà $\delta = \phi'$.

<u>Dati Geotecnici</u>			valori caratteristici	valori di progetto		
			SLE	STR/GEO	EQU	
i ieno	Angolo di attrito del terrapieno	(°)	φ'	38.00	38.00	38.00
Dati	Peso Unità di Volume del terrapieno	(kN/m^3)	γ'	20.00	20.00	20.00
Ter	Angolo di attrito terreno-superficie ideale	(°)	δ	0.00	0.00	0.00

LINEA SALERNO - PONTECAGNANO AEROPORTO COMPLETAMENTO METROPOLITANA DI SALERNO TRATTA ARECHI - PONTECAGNANO AEROPORTO PROGETTO DEFINITIVO – FABBRICATI VIAGGIATORI

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NN1X	10	D 78	CL FV0300 003	Α	22 di 64

11.1.2 Carico permanente

I carichi permanenti applicati in testa al muro di sostegno sono il tratto di paramento non considerato in geometria, pari a 25*0.4*0.45 = 4.5 kN/m. Inoltre viene applicato il carico verticale generato dalla recinzione pari a 3 kN/m. In totale si ha un carico assiale di 7.5 kN/m.

11.1.3 Carichi ferroviari

La diffusione del carico ferroviario all'interno del rilevato ferroviario non intercetta l'opera in esame, pertanto non vengono applicati carichi ad essa associata.

11.1.4 Carichi eccezionali - folla

Si considera un carico generato dalla presenza della folla sulla banchina pari a 5 kPa.

11.2 AZIONE SISMICA

Con riferimento alla normativa vigente (NTC-2018), le azioni sismiche di progetto si definiscono a partire dalla "pericolosità sismica di base" del sito di costruzione. Essa costituisce l'elemento di conoscenza primario per la determinazione delle azioni sismiche.

La pericolosità sismica è definita in termini di accelerazione orizzontale massima attesa a_g in condizioni di campo libero su sito di riferimento rigido con superficie topografica orizzontale (di categoria A quale definita al § 3.2.2 del D.M. 2018), nonché di ordinate dello spettro di risposta elastico in accelerazione ad essa corrispondente Se(T), con riferimento a prefissate probabilità di eccedenza P_{VR} , come definite nel § 3.2.1 del D.M. 2018, nel periodo di riferimento V_R , come definito nel § 2.4 del D.M. 2018.

Le forme spettrali sono definite, per ciascuna delle probabilità di superamento nel periodo di riferimento P_{VR} , a partire dai valori dei seguenti parametri su sito di riferimento rigido orizzontale:

- ag accelerazione orizzontale massima al sito;
- F_o valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- T_c* periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

Gli spettri di risposta di progetto sono stati definiti per tutti gli stati limite considerati, e, note la latitudine e la longitudine del sito, si sono ricavati i valori dei parametri necessari alla definizione dell'azione sismica e quindi del relativo spettro di risposta. Più avanti sono indicati i valori di ag, F_o e T_c* necessari per la determinazione delle azioni sismiche.

11.2.1 Vita nominale

La vita nominale di un'opera strutturale V_N è intesa come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata. Per la definizione della Vita Nominale da assegnare ad ogni singolo manufatto facente parte di una infrastruttura ferroviaria si rimanda al "MANUALE DI PROGETTAZIONE DELLE OPERE CIVILI";

LINEA SALERNO - PONTECAGNANO AEROPORTO COMPLETAMENTO METROPOLITANA DI SALERNO TRATTA ARECHI - PONTECAGNANO AEROPORTO PROGETTO DEFINITIVO – FABBRICATI VIAGGIATORI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NN1X
 10
 D 78
 CL FV0300 003
 A
 23 di 64

TIPO DI COSTRUZIONE (1)	$ \begin{array}{c} \text{Vita Nominale} \\ [\ V_N\]^{(1)} \end{array} $
OPERE NUOVE SU INFRASTRUTTURE FERROVIARIE ESISTENTI OPERE NUOVE SU INFRASTRUTTURE FERROVIARIE PROGETTATE CON LE NORME VIGENTI PRIMA DEL DM 14/01/2008 A VELOCITA'	50
CONVENZIONALE (V<250 Km/h)	
ALTRE OPERE NUOVE A VELOCITÀ (V<250 km/h)	75
ALTRE OPERE NUOVE A VELOCITÀ (V≥250 Km/h)	100
OPERE DI GRANDI DIMENSIONI: PONTI E VIADOTTI CON CAMPATE DI LUCE MAGGIORE DI 150 m	$\geq 100^{(2)}$
(1) - La medesima V_N si applica anche ad apparecchi di appoggio, coprigiunti e impermeabilizzazione delle stesse operatione.	ere.

^{(2) -} Da definirsi per il singolo progetto a cura di RFI. (

Nel caso in esame si considera $V_N = 75$.

11.2.2 Classe d'uso

In presenza di azioni sismiche, con riferimento alle conseguenze di una interruzione di operatività o di un eventuale collasso, le costruzioni sono suddivise in classi d'uso così definite:

Classe I: Costruzioni con presenza solo occasionale di persone, edifici agricoli.

Classe II: Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe d'uso III o in Classe d'uso IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi conseguenze rilevanti.

Classe III: Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso.

Classe IV: Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie con attività particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al D.M. 5 novembre 2001, n. 6792, "Norme funzionali e geometriche per la costruzione delle strade", e di tipo C quando appartenenti ad itinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione,

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NN1X
 10
 D 78
 CL FV0300 003
 A
 24 di 64

STAZIONE DI PONTECAGNANO Relazione di calcolo muro di banchina

particolarmente dopo un evento sismico. Dighe connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica.

Nel caso in esame si considera $C_U = 1.5$.

11.2.3 Periodo di riferimento

Le azioni sismiche su ciascuna costruzione vengono valutate in relazione ad un periodo di riferimento V_R che si ricava, per ciascun tipo di costruzione, moltiplicandone la vita nominale V_N per il coefficiente d'uso C_U :

 $V_R = V_N \cdot C_U = 75 \cdot 1.50 = 112.5$ anni (periodo di riferimento).

11.2.4 Valutazione dei parametri di pericolosità sismica

Fissata la vita di riferimento V_R , i due parametri T_R e P_{VR} sono immediatamente esprimibili, l'uno in funzione dell'altro, mediante l'espressione:

	STATO LIMITE	P _{VR} : probabilità di superamento nel periodo di riferimento
SLE	SLO - Stato Limite di Operatività	81%
SLE	SLD - Stato Limite di Danno	63%
SLU	SLV - Stato Limite di salvaguardia della Vita	10%
SLU	SLC - Stato Limite di prevenzione del Collasso	5%

$$T_R = -\frac{V_R}{ln(I - P_{V_R})} = -\frac{Cu \cdot V_N}{ln(I - P_{V_R})}$$

da cui si ottiene:

Stati limite		Valori in anni del periodo di ritorno T _R al variare del periodo di riferimento V _R (anni)
SI E	SLO	68
SLE	SLD	113
SLU	SLV	1068
SLU	SLC	2193

Per il sito in esame, in base ai parametri precedentemente adottati, il periodo T_R in corrispondenza dello stato limite ultimo SLV è pari a $T_R = 1068$ anni.

Le strutture di progetto avranno quindi i seguenti parametri sismici:

• vita nominale $V_N = 75$;

STAZIONE DI PONTECAGNANO Relazione di calcolo muro di banchina

NN1X	10	D 78	CL FV0300 003	Α	25 di 64
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO

- periodo di riferimento pari a $V_R = 112.5$;
- il periodo TR in corrispondenza dello SLV sarà pari a $T_R = 1068$ anni.

11.2.5 Caratterizzazione sismica del terreno

Categorie di Sottosuolo

Ai fini della definizione dell'azione sismica di progetto, si rende necessario valutare l'effetto della risposta sismica locale.

Per la definizione dell'azione sismica si può fare riferimento a un approccio semplificato, che si basa sull'individuazione delle categorie di sottosuolo di riferimento in accordo a quanto indicato nel § 3.2.2 delle NTC2018.

Si considera cautelativamente la Categoria E.

Condizioni topografiche

In condizioni topografiche superficiali semplici si può adottare la seguente classificazione:

Categoria	Caratteristiche della superficie topografica
T1	Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤15°
T2	Pendii con inclinazione media i > 15°
Т3	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media $15^{\circ} \le i \le 30^{\circ}$
T4	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i $> 30^{\circ}$

Le categorie topografiche appena definite si riferiscono a configurazioni geometriche prevalentemente bidimensionali, creste o dorsali allungate, e devono essere considerate nella definizione dell'azione sismica se di altezza maggiore di 30 m. L'area interessata risulta classificabile come T1.

Amplificazione Stratigrafica e Topografica

In riferimento a quanto indicato nel §3.2.3.2.1 delle NTC2018 per la definizione dello spettro elastico in accelerazione è necessario valutare il valore del coefficiente $S = S_S \cdot S_T$ e di C_C in base alla categoria di sottosuolo e alle condizioni topografiche; si fa riferimento nella valutazione dei coefficienti alle tabelle che sono riportate di seguito:

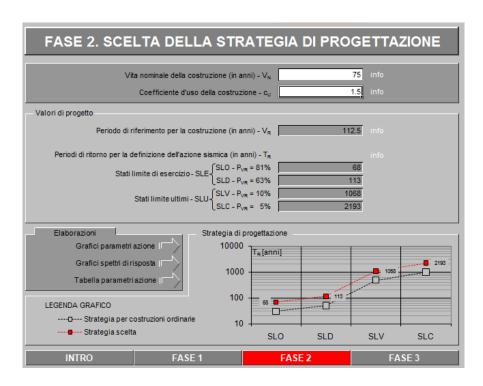
STAZIONE DI PONTECAGNANO Relazione di calcolo muro di banchina
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NN1X
 10
 D 78
 CL FV0300 003
 A
 26 di 64

Categoria sottosuolo	$\mathbf{S}_{\mathbf{S}}$	Cc
A	1.00	1.00
В	$1.00 \le 1.40 - 0.40 \cdot F_0 \cdot \frac{a_g}{g} \le 1.20$	$1.10 \cdot \left(T_C^*\right)^{-0.20}$
С	$1.00 \le 1.70 - 0.60 \cdot F_0 \cdot \frac{a_g}{g} \le 1.50$	$1.05 \cdot \left(T_C^*\right)^{-0.33}$
D	$0.90 \le 2.40 - 1.50 \cdot F_0 \cdot \frac{a_g}{g} \le 1.80$	$1.25 \cdot \left(T_C^*\right)^{-0.50}$
Е	$1.00 \le 2.00 - 1.10 \cdot F_0 \cdot \frac{a_g}{g} \le 1.60$	$1.15 \cdot \left(T_C^*\right)^{-0.40}$

Categoria Topografica	Ubicazione dell'opera dell'intervento	S_{T}
T1	-	1,0
Т2	T2 In corrispondenza della sommità del pendio	
Т3	In corrispondenza della cresta del rilievo	1,2
Т4	In corrispondenza della cresta del rilievo	1,4

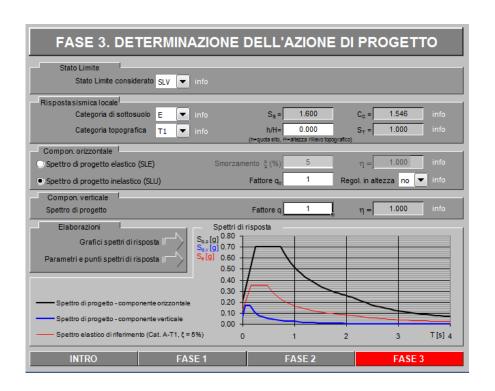
Il valore del coefficiente di amplificazione topografica è posto pari a $S_T=1$ I valori dei coefficienti di amplificazione stratigrafica sono pari a $S_S=1,600$ e $C_C=1,546$

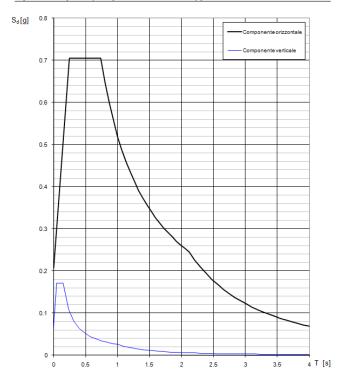

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NN1X
 10
 D 78
 CL FV0300 003
 A
 27 di 64

STAZIONE DI PONTECAGNANO Relazione di calcolo muro di banchina

Parametri sismici di calcolo





LINEA SALERNO - PONTECAGNANO AEROPORTO COMPLETAMENTO METROPOLITANA DI SALERNO TRATTA ARECHI - PONTECAGNANO AEROPORTO PROGETTO DEFINITIVO – FABBRICATI VIAGGIATORI

I	NN1X	10	D 78	CL FV0300 003	Δ	28 di 64
I	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO

Spettri di risposta (componenti orizz. e vert.) per lo stato limite: SLV

FOGLIO

29 di 64

STAZIONE DI PONTECAGNANO

Relazione di calcolo muro di banchina

COMMESSA LOTTO CODIFICA

DOCUMENTO

NN1X

10

D 78

CL FV0300 003

Parametri e punti dello spettro di risposta orizzontale per lo stato \$LV

arametri indipende STATO LIMITE	SLV	1		llo spettro T [s]	Se [g]
a.	0.130 g	1	Г	0.000	0.208
F.	2.710	1	T₽◀	0.246	0.705
To*	0.477 s	1	Tc◀	0.738	0.705
S-	1.600	1	Г	0.804	0.648
Co	1.546	1		0.870	0.598
S _T	1.000	1		0.935	0.556
q	0.800	1		1.001	0.520
		-	Г	1.067	0.488
				1.133	0.459
arametri dipenden	ıti			1.199	0.434
S	1.600]		1.265	0.412
η	1.250	1		1.330	0.391
T _o	0.246 s]		1.396	0.373
Tc	0.738 s]	Γ	1.462	0.356
To	2.121 s]		1.528	0.341
		-	Γ	1.594	0.327
				1.660	0.314
spressioni dei par	ametri dip	endenti		1.726	0.302
				1.791	0.291
S = S _R ·S _T		(NTC-08 Eq. 3.2.5)	Г	1.857	0.280
				1.923	0.271
$= \sqrt{10/(5+\xi)} \ge 0.55$; η	=1/q (N1	C-08 Eq. 3.2.6; §. 3.2.3.5)		1.989	0.262
				2.055	0.253
$T_B = T_C / 3$		(NTC-07 Eq. 3.2.8)	T₽◀	2.121	0.245
				2.210	0.226
c = C _c · T _c		(NTC-07 Eq. 3.2.7)		2.300	0.209
				2.389	0.193
$b = 4,0 \cdot a_g/g + 1,6$		(NTC-07 Eq. 3.2.9)		2.479	0.180
				2.568	0.167
				2.658	0.156
spressioni dello s	pettro di ri	sposta (NTC-08 Eq. 3.2.4)		2.747	0.146
	_			2.837	0.137
<t_t &="" (t)_a<="" td=""><td>C E T</td><td>1 (, T)</td><td>L</td><td>2.926</td><td>0.129</td></t_t>	C E T	1 (, T)	L	2.926	0.129
$\leq T < T_B$ $S_e(T) = a_g$	·3·η·Γ ₀ · <u>Τ</u>	+ n. E 1 - E 1	L	3.016	0.121
		. 0(2/2		3.105	0.114
$S \le T < T_C$ $S_c(T) = a_g$	·S·η·F _e			3.195	0.108
	/			3.284	0.102
$\mathbb{S}_{c} \leq T < T_{D} \mathbb{S}_{c}(T) = a_{g}$	$\cdot S \cdot n \cdot F_{-} \cdot \left(\frac{T_{c}}{2} \right)$	1	L	3.374	0.097
	T) ° - '	J		3.463	0.092
- T	a (T	(T _D)		3.553	0.087
$S_{\varepsilon}(T) = a_{\varepsilon}$	·δ·η·Ε	T ²		3.642	0.083
'		- ,		3.732	0.079
		he agli Stati Limite Ultimi è		3.821	0.076
•		elastico S,(T) sostituendo ŋ		3.911	0.072
on 1/q, dove q è il fattore :	dietruttura (N	TC-0982228)		4.000	0.069

Avendo calcolato i parametri con cui determinare l'azione sismica che andrà ad assoggettare la nostra struttura, si esegue ora la valutazione della forza effettiva che il sisma induce sulle barriere.

STAZIONE DI PONTECAGNANO Relazione di calcolo muro di banchina
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NN1X
 10
 D 78
 CL FV0300 003
 A
 30 di 64

	Accelerazione sismica	a _g /g	0.13	(-)			
	Coefficiente Amplificazione Stratigrafico	$S_{\mathbb{S}}$	1.6	(-)			
nici	Coefficiente Amplificazione Topografico	S_{T}	1	(-)		RIBALT	AMENTO
Sisr	Coefficiente di riduzione dell'accelerazione massima	β_{s}	0.38	(-)		β_{s}	0.57
Dati (Coefficiente sismico orizzontale	kh	0.07904	(-)		kh	0.11856
	Coefficiente sismico verticale	kv	0.0395	(-)	. L	kv	0.05928
	Muro libero di traslare o ruotare	•	si	O no			

_				STR/GEO	RIB	
	Coeff. di Spinta Attiva Statico	ka	0.238	0.238	0.238	
; =	Coeff. Di Spinta Attiva Sismica sisma +	kas+	0.277	0.277	0.298	
efficienti Spinta	Coeff. Di Spinta Attiva Sismica sisma -	kas-	0.281	0.281	0.306	
effic Spi	Coeff. Di Spinta Passiva	kp	2.283	2.283	2.283	
රි	Coeff. Di Spinta Passiva Sismica sisma +	kps+	2.164	2.164	2.104	
	Coeff. Di Spinta Passiva Sismica sisma -	kps-	2.153	2.153	2.080	

		valori caratteristici	valori di	progetto		
Carichi	<u>Agenti</u>			SLE - sisma	STR/GEO	EQU
Carichi oermanenti	Sovraccarico permanente Sovraccarico su zattera di monte	(kN/m ²)	qp	7.50	9.75	9.75
Carichi	Forza Orizzontale in Testa permanente	(kN/m)	fp	0.00	0.00	0.00
S TI	Forza Verticale in Testa permanente	(kN/m)	vp	1.00	1.00	1.00
	Momento in Testa permanente	(kNm/m)	mp	0.00	0.00	0.00
	Sovraccarico Accidentale in condizioni statiche	(kN/m^2)	q	5.00	7.25	7.25
Condizioni Statiche	Forza Orizzontale in Testa accidentale in condizioni statiche	(kN/m)	f	0.00	0.00	0.00
Statiche	Forza Verticale in Testa accidentale in condizioni statiche	(kN/m)	٧	0.00	0.00	0.00
S S	Momento in Testa accidentale in condizioni statiche	(kNm/m)	m	0.00	0.00	0.00
	Coefficienti di combinazione condizione frequen		1.00	condizione quasi permane	nte Ψ2	0.00
. <u>⊆</u> ø	Sovraccarico Accidentale in condizioni sismiche	(kN/m^2)	qs	1.00		
lizio	Forza Orizzontale in Testa accidentale in condizioni sismict	(kN/m)	fs	Q 00	4, 4	
Condizioni Sismiche	Forza Verticale in Testa accidentale in condizioni sismiche	(kN/m)	VS	0.00	• •	
0 0	Momento in Testa accidentale in condizioni sismiche	(kNm/m)	ms	0.00		

STAZIONE DI PONTECAGNANO Relazione di calcolo muro di banchina

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NN1X	10	D 78	CL FV0300 003	Α	31 di 64

12 COMBINAZIONE DI CARICO

Le combinazioni di carico prese in considerazione nelle verifiche sono state definite in base a quanto prescritto dalle NTC2018 al par.2.5.3:

Combinazione fondamentale, impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_P \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione caratteristica rara, impiegata per gli stati limite di esercizio (SLE) irreversibili, da utilizzarsi nelle verifiche delle tensioni d'esercizio:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} \dots;$$

Combinazione caratteristica frequente, impiegata per gli stati limite di esercizio (SLE) reversibili, da utilizzarsi nelle verifiche a fessurazione:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3}...$$
;

Combinazione quasi permanente, generalmente impiegata per gli effetti a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3}...$$

Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

Gli effetti dell'azione sismica vanno valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$G_1 + G_2 + \sum_j \psi_{2j} \cdot Q_{kj}$$

I valori dei coefficienti parziali di sicurezza γ_F , γ_M e γ_R (relativi alle resistenze dei pali soggetti a carichi assiali), nonché i coefficienti di combinazione ψ delle azioni sono dati dalle tabelle NTC2018 5.2.V, 5.2.VI, 6.2.II e 6.4.II che vengono riportate nel seguito. In particolare si segnala che i pesi propri dei pannelli sono stati considerati come carichi permanenti non strutturali compiutamente definiti, quindi sono stati adottati gli stessi coefficienti validi per i carichi permanenti; inoltre l'azione del vento ed aerodinamica verranno considerate come un'unica azione variabile.

STAZIONE DI PONTECAGNANO Relazione di calcolo muro di banchina

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NN1X
 10
 D 78
 CL FV0300 003
 A
 32 di 64

Tab. 5.2.V - Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

		0			
Coefficie	nte		EQU ⁽¹⁾	A1	A2
Azioni permanenti	favorevoli	YG1	0,90	1,00	1,00
	sfavorevoli		1,10	1,35	1,00
Azioni permanenti non	favorevoli	YG2	0,00	0,00	0,00
strutturali ⁽²⁾	sfavorevoli		1,50	1,50	1,30
Ballast ⁽³⁾	favorevoli	γв	0,90	1,00	1,00
	sfavorevoli		1,50	1,50	1,30
Azioni variabili da traffi-	favorevoli	γο	0,00	0,00	0,00
CO ⁽⁴⁾	sfavorevoli	~	1,45	1,45	1,25
Azioni variabili	favorevoli	γQi	0,00	0,00	0,00
	sfavorevoli		1,50	1,50	1,30
Precompressione	favorevole	γp	0,90	1,00	1,00
	sfavorevo-		1,00(5)	1,00%	1,00
	le				
Ritiro, viscosità e cedi-	favorevole	γCe	0,00	0,00	0,00
menti non imposti appo-	sfavorevo-	d	1,20	1,20	1,00
sitamente	le				

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori della colonna A2.

Tab. 5.2.VI - Coefficienti di combinazione Ψ delle azioni

Azioni		Ψ_0	Ψ_1	ψ 2
Azioni singole	Azioni singole Carico sul rilevato a tergo delle		0,50	0,0
	spalle			
da traffico	Azioni aerodinamiche generate	0,80	0,50	0,0
	dal transito dei convogli			
	gr_1	0,80(2)	0,80(1)	0,0
Gruppi di	gr_2	0,80(2)	0,80(1)	-
carico	gr_3	0,80(2)	0,80(1)	0,0
	gr_4	1,00	1,00(1)	0,0
Azioni del vento	F_{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	T_k	0,60	0,60	0,50

^{(1) 0,80} se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

Tab. 6.2.II – Coefficienti parziali per i parametri geotecnici del terreno

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale γ_{M}	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	$tan {\phi'}_k$	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c′ _k	γc	1,0	1,25
Resistenza non drenata	c _{uk}	Υ _{cu}	1,0	1,4
Peso dell'unità di volume	γγ	Υγ	1,0	1,0

⁽²⁾ Nel caso in cui l'intensità dei carichi permanenti non strutturali, o di una parte di essi (ad esempio carichi permanenti portati), sia ben definita in fase di progetto, per detti carichi o per la parte di essi nota si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

⁽i) Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente nelle verifiche.

⁶⁰ Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr della Tab. 5.2.IV.

^{(5) 1,30} per instabilità in strutture con precompressione esterna

^{© 1,20} per effetti locali

⁽²⁾ Quando come azione di base venga assunta quella del vento, i coefficienti ψ₀ relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

STAZIONE DI PONTECAGNANO Relazione di calcolo muro di banchina

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NN1X	10	D 78	CL FV0300 003	Α	33 di 64

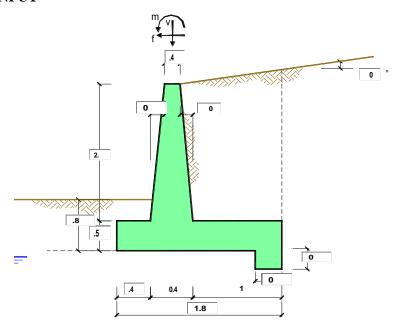
Tab. 6.4.II – Coefficienti parziali γ_R da applicare alle resistenze caratteristiche a carico verticale dei pali

Resistenza	Simbolo	Pali infissi	Pali trivellati	Pali ad elica continua
	γ_R	(R3)	(R3)	(R3)
Base	γь	1,15	1,35	1,3
Laterale in compressione	γs	1,15	1,15	1,15
Totale (*)	γ	1,15	1,30	1,25
Laterale in trazione	$\gamma_{\rm st}$	1,25	1,25	1,25

[🖱] da applicare alle resistenze caratteristiche dedotte dai risultati di prove di carico di progetto.

Tab. 6.4.VI - Coefficiente parziale γ_T per le verifiche agli stati limite ultimi di pali soggetti a carichi trasversali

,, ,	
Coefficiente parziale (R3)	
$\gamma_T = 1.3$	


 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NN1X
 10
 D 78
 CL FV0300 003
 A
 34 di 64

STAZIONE DI PONTECAGNANO Relazione di calcolo muro di banchina

13 PROGETTO E VERIFICA

13.1 DATI DI INPUT

Geometria del Muro

<u> </u>			
Elevazione	H3 =	2.00	(m)
Aggetto Valle	B2 =	0.00	(m)
Spessore del Muro in Testa	B3 =	0.40	(m)
Aggetto monte	B4 =	0.00	(m)

Geometria della Fondazione

Larghezza Fondazione	В	=	1.80	(m)
Spessore Fondazione	H2	=	0.50	(m)
Suola Lato Valle	B1	=	0.40	(m)
Suola Lato Monte	B5	=	1.00	(m)
Altezza dente	Hd	=	0.00	(m)
Larghezza dente	Bd	=	0.00	(m)
Mezzeria Sezione	Xc	=	0.90	(m)

Peso Specifico del Calcestruzzo	γcls =	25.00	(kN/m ³)
---------------------------------	--------	-------	----------------------

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NN1X
 10
 D 78
 CL FV0300 003
 A
 35 di 64

STAZIONE DI PONTECAGNANO Relazione di calcolo muro di banchina

<u>Dati geotecnici e carichi agenti – Condizione statica e sismica</u>

						valori caratteristici		valori di	progetto
Dati Geotecnici			SLE			STR/GEO	EQU		
Dati Terrapieno	Angolo di attrito del terrapieno		(°)		φ'	38.00		38.00	38.00
Dati	Peso Unità di Volume del terrapieno		(kN/m^3)		γ'	20.00		20.00	20.00
	Angolo di attrito terreno-superficie ideale		(°)		δ	0.00		0.00	0.00
Dati Terreno Fondazione	Condizioni			● d	renate	e 🔘 Non Dre	nate		
ıdaz	Coesione Terreno di Fondazione		(kPa)		c1'	3.00		3.00	3.00
For	Angolo di attrito del Terreno di Fondazione		(°)		φ1'	23.00		23.00	23.00
oue	Peso Unità di Volume del Terreno di Fondazione		(kN/m^3)		γ1	18.00		18.00	18.00
erre	Peso Unità di Volume del Rinterro della Fondazione		(kN/m^3)		γd	18.00		18.00	18.00
ıti T	Profondità "Significativa" (n.b.: consigliata H = 2*B)		(m)		Hs	6.00			
Da	Modulo di deformazione		(kN/m ²)		Е	10000			
	Accelerazione sismica				a _g /g	0.13	(-)	7	
	Coefficiente Amplificazione Stratigrafico				S _S	1.6	(-) (-)		
ici	Coefficiente Amplificazione Topografico				S _T	1.0	(-)	RIBALTA	MENTO
Jati Sismici	Coefficiente di riduzione dell'accelerazione massima				βs	0.38	(-)	β_{s}	0.57
ati S	Coefficiente sismico orizzontale				kh	0.07904	(-)	kh	0.11856
Ď	Coefficiente sismico verticale				kv	0.0395	(-)	kv	0.05928
	Muro libero di traslare o ruotare				•	si 🔘 no			
						STR/GE	0	– RI	В
	Coeff. di Spinta Attiva Statico	ka	0.238			0.238		0.238	
ti di	Coeff. Di Spinta Attiva Sismica sisma +	kas+	0.277			0.277		0.298	
Coefficienti di Spinta	Coeff. Di Spinta Attiva Sismica sisma -	kas-	0.281			0.281		0.306	
əffic Spi	Coeff. Di Spinta Passiva	kp	2.283			2.283		2.283	
Ö	Coeff. Di Spinta Passiva Sismica sisma +	kps+	2.164			2.164		2.104	
	Coeff. Di Spinta Passiva Sismica sisma -	kps-	2.153			2.153		2.080	

				valori caratteristici	valori di progetto	
Carichi Agenti			SLE - sisma	STR/GEO	EQU	
Carichi permanenti	Sowaccarico permanente Sowaccarico su zattera di monte	(kN/m ²)	qp	7.50	9.75	9.75
	Forza Orizzontale in Testa permanente	(kN/m)	fp	0.00	0.00	0.00
	Forza Verticale in Testa permanente	(kN/m)	vp	1.00	1.00	1.00
	Momento in Testa permanente	(kNm/m)	mp	0.00	0.00	0.00
Condizioni Statiche	Sovraccarico Accidentale in condizioni statiche	(kN/m^2)	q	5.00	7.25	7.25
	Forza Orizzontale in Testa accidentale in condizioni statiche	(kN/m)	f	0.00	0.00	0.00
	Forza Verticale in Testa accidentale in condizioni statiche	(kN/m)	V	0.00	0.00	0.00
	Momento in Testa accidentale in condizioni statiche	(kNm/m)	m	0.00	0.00	0.00
	Coefficienti di combinazione condizione frequen	ite Ψ1	1.00	condizione quasi permane	ente Ψ2	0.00
Condizioni Sismiche	Sovraccarico Accidentale in condizioni sismiche	(kN/m^2)	qs	1.00		
	Forza Orizzontale in Testa accidentale in condizioni sismict	(kN/m)	fs	Q 00	4, 4	
	Forza Verticale in Testa accidentale in condizioni sismiche	≪ (kN/m)	VS	0.00	4 4	
	Momento in Testa accidentale in condizioni sismiche	(kNm/m)	ms	0.00		

REV.

FOGLIO

36 di 64

STAZIONE DI PONTECAGNANO
Relazione di calcolo muro di banchina
COMMESSA LOTTO CODIFICA DOCUMENTO
NN1X 10 D 78 CL FV0300 003

CARATTERISTICHE DEI MATERIALI STRUTTURALI

<u>Calcestruzzo</u>					<u>Ac</u>	<u>ciaio</u>				
classe cls C32/40	•				tipo	di acciai	0	B450C ▼]	
Rck		40	(MP	a)						
fck		32	(MP	a)	fyk	=		450	(MPa)	
fcm		40	(MP	a)						
Ec		33346	(MP	a)	γs	=		1.15	i	
α_{cc}		0.85								
γc		1.50			fyd	= fyk /γs	/ γE =	391.30	(MPa)	
$f_{cd} = \alpha_{cc} * f_{ck} / \gamma c$		18.13	(MP	a)	Es	=	210000) (MPa))	
$f_{ctm} = 0.30^* f_{ck}^{2/3}$		3.02	(MP	a)	εγς	=	0.19%			
Tensioni limite (tensioni condizioni statiche Gc F	19.2 360	<u>nissibili)</u> Mpa Mpa			СО	efficiente o	omogeneizza.	zione acciaio	n = 15	
					<u>Co</u>	<u>priferro</u>	(distanza as	se armatura-b	oordo)	
condizioni sismiche σ _c	19.2	Мра			C =		7.00	(cm)		
oc of	360	Мра			0 -		7.00	(6111)		
		•			Co	priferro n	ninimo di no	ormativa	(ricoprimento armat	tura)
					C _{mi}	n =	4.00	(cm)		
Valore limite di aperte	ıra dell	e fessure			<u>Int</u>	erferro tra	ı <u>I e II stra</u> ı	<u>to</u>		
Frequente	w	1	0.2	mm	i _{I-II}		5.00	(cm)		
Quasi Permanente	w	1	0.2	mm						

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NN1X
 10
 D 78
 CL FV0300 003
 A
 37 di 64

STAZIONE DI PONTECAGNANO Relazione di calcolo muro di banchina

13.2 CALCOLO DELLE SOLLECITAZIONI

13.2.1 Forze verticali e inerziali

		VEDT	
FΟ	RZE.	VERT	ICALI

- Peso del Mur	o (Pm)		SLE	STR/GEO	EQU/RIB
Pm1 =	(B2*H3*γcls)/2	(kN/m)	0.00	0.00	0.00
Pm2 =	(B3*H3*γcls)	(kN/m)	20.00	20.00	20.00
Pm3 =	(B4*H3*γcls)/2	(kN/m)	0.00	0.00	0.00
Pm4 =	(B*H2*γcls)	(kN/m)	22.50	22.50	22.50
Pm5 =	(Bd*Hd*γcIs)	(kN/m)	0.00	0.00	0.00
Pm =	Pm1 + Pm2 + Pm3 + Pm4 + Pm5	(kN/m)	42.50	42.50	42.50
- Peso del terre Pt1 = Pt2 = Pt3 = Sovr = Pt =	eno e sovr. perm. sulla scarpa di monte del muro (Pt) (B5*H3*γ') (0,5*(B4+B5)*H4*γ') (B4*H3*γ')/2 qp * (B4+B5) Pt1 + Pt2 + Pt3 + Sovr	(kN/m) (kN/m) (kN/m) (kN/m) (kN/m)	40.00 0.00 0.00 7.50 47.50	40.00 0.00 0.00 9.75 49.75	40.00 0.00 0.00 9.75 49.75
- Sovraccarico	accidentale sulla scarpa di monte del muro				
Sovr acc. Stat	q * (B4+B5)	(kN/m)	5	7.25	
Sovr acc. Sism	qs * (B4+B5)	(kN/m)	1		

MOMENTI DELLE FORZE VERT. RISPETTO AL PIEDE DI VALLE DEL MURO

- Muro (Mm)			SLE	STR/GEO	EQU/RIB
Mm1 = `	Pm1*(B1+2/3 B2)	(kNm/m)	0.00	0.00	0.00
Mm2 =	Pm2*(B1+B2+0,5*B3)	(kNm/m)	12.00	12.00	12.00
Mm3 =	Pm3*(B1+B2+B3+1/3 B4)	(kNm/m)	0.00	0.00	0.00
Mm4 =	Pm4*(B/2)	(kNm/m)	20.25	20.25	20.25
Mm5 =	Pm5*(B - Bd/2)	(kNm/m)	0.00	0.00	0.00
Mm =	Mm1 + Mm2 + Mm3 + Mm4 + Mm5	(kNm/m)	32.25	32.25	32.25
•	sovr. perm. sulla scarpa di monte del muro				
Mt1 =	Pt1*(B1+B2+B3+B4+0,5*B5)	(kNm/m)	52.00	52.00	52.00
Mt2 =	Pt2*(B1+B2+B3+2/3*(B4+B5))	(kNm/m)	0.00	0.00	0.00
Mt3 =	Pt3*(B1+B2+B3+2/3*B4)	(kNm/m)	0.00	0.00	0.00
Msovr =	Sovr*(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	9.75	12.68	12.68
Mt =	Mt1 + Mt2 + Mt3 + Msovr	(kNm/m)	61.75	64.68	64.68
- Sovraccarico	accidentale sulla scarpa di monte del muro				
Sovr acc. Stat	*(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	6.5	9.425	
Sovr acc. Sism	1 *(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	1.3		

STAZIONE DI PONTECAGNANO Relazione di calcolo muro di banchina
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NN1X
 10
 D 78
 CL FV0300 003
 A
 38 di 64

INERZIA DEL	MURO E DEL TERRAPIENO			
- Inerzia orizzo	ntale e verticale del muro (Ps)			
Ps h=	Pm*kh	(kN/m)	3.36	5.04
Ps v=	Pm*kv	(kN/m)	1.68	2.52
- Inerzia orizzo	ntale e verticale del terrapieno a tergo del muro (Pts)			
Ptsh =	Pt*kh	(kN/m)	3.93	5.90
Ptsv =	Pt*kv	(kN/m)	1.97	2.95
	rizzontale di momento dovuto all'inerzia del muro (MF	•		
MPs1 h=	kh*Pm1*(H2+H3/3)	(kNm/m)	0.00	0.00
MPs2 h=	kh*Pm2*(H2 + H3/2)	(kNm/m)	2.37	3.56
MPs3 h=	kh*Pm3*(H2+H3/3)	(kNm/m)	0.00	0.00
MPs4 h=	kh*Pm4*(H2/2)	(kNm/m)	0.44	0.67
MPs5 h=	-kh*Pm5*(Hd/2)	(kNm/m)	0.00	0.00
MPs h=	MPs1+MPs2+MPs3+MPs4+MPs5	(kNm/m)	2.82	4.22
	erticale di momento dovuto all'inerzia del muro (MPs	,	0.00	0.00
MPs1 v=	kv*Pm1*(B1+2/3*B2)	(kNm/m)	0.00	0.00
MPs2 v=	kv*Pm2*(B1+B2+B3/2)	(kNm/m)	0.47	0.71
MPs3 v=	kv*Pm3*(B1+B2+B3+B4/3)	(kNm/m)	0.00	0.00
MPs4 v=	kv*Pm4*(B/2)	(kNm/m)	0.80	1.20
MPs5 v=	kv*Pm5*(B-Bd/2)	(kNm/m)	0.00	0.00
MPs v=	MPs1+MPs2+MPs3+MPs4+MPs5	(kNm/m)	1.27	1.91
- Incremento o	rizzontale di momento dovuto all'inerzia del terrapieno	n (MPts h)		
MPts1 h=	kh*Pt1*(H2 + H3/2)	(kNm/m)	4.74	7.11
MPts2 h=	kh*Pt2*(H2 + H3 + H4/3)	(kNm/m)	0.00	0.00
MPts3 h=	kh*Pt3*(H2+H3*2/3)	(kNm/m)	0.00	0.00
MPts h=	MPts1 + MPts2 + MPts3	(kNm/m)	4.74	7.11
MIF (S II—	WIF (ST + WIF (SZ + WIF (SS	(KINIII/III)	4.74	7.11
- Incremento ve	erticale di momento dovuto all'inerzia del terrapieno (I	MPts v)		
MPts1 ∨=	kv*Pt1*((H2 + H3/2) - (B - B5/2)*0.5)	(kNm/m)	2.06	3.08
MPts2 ∨=	kv*Pt2*((H2 + H3 + H4/3) - (B - B5/3)*0.5)	(kNm/m)	0.00	0.00
MPts3 ∨=	kv*Pt3*((H2+H3*2/3)-(B1+B2+B3+2/3*B4)*0.5)	(kNm/m)	0.00	0.00
MPts v=	MPts1 + MPts2 + MPts3	(kNm/m)	2.06	3.08
		(,		0.00

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NN1X
 10
 D 78
 CL FV0300 003
 A
 39 di 64

STAZIONE DI PONTECAGNANO Relazione di calcolo muro di banchina

13.2.2 Spinte in condizione statica

	TERRENO E DEL SOVRACCARICO condizione statica		SLE	STR/GEO	EQU/RIB
St =	0,5*γ'*(H2+H3+H4+Hd)²*ka	(kN/m)	14.87	19.33	19.33
Sq perm =	q*(H2+H3+H4+Hd)*ka	(kN/m)	4.46	5.80	5.80
Sq acc =	q*(H2+H3+H4+Hd)*ka	(kN/m)	2.97	4.31	4.31
- Componente	orizzontale condizione statica				
Sth =	St*cosδ	(kN/m)	14.87	19.33	19.33
Sqh perm =	Sq perm*cosδ	(kN/m)	4.46	5.80	5.80
Sqh acc =	Sq acc*cosδ	(kN/m)	2.97	4.31	4.31
- Componente	verticale condizione statica				
Stv =	St*senδ	(kN/m)	0.00	0.00	0.00
Sqv perm=	Sq perm*senδ	(kN/m)	0.00	0.00	0.00
Sqv acc =	Sq acc*senδ	(kN/m)	0.00	0.00	0.00
- Spinta passiv	a sul dente				
Sp=½*g1'*Hd2	* ½*γ ₁ '*Hd ² *kp+(2*c ₁ '*kp ^{0.5} +γ1'*kp*H2')*Hd	(kN/m)	0.00	0.00	0.00

MOMENTI DE	LLA SPINTA DEL TERRENO E DEL SOVRAC	CCARICO	SLE	STR/GEO	EQU/RIB
MSt1 =	Sth*((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	12.39	16.11	16.11
MSt2 =	Stv*B	(kNm/m)	0.00	0.00	0.00
MSq1 perm=	Sqh perm*((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	5.58	7.25	7.25
MSq1 acc =	Sqh acc*((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	3.72	5.39	5.39
MSq2 perm=	Sqv perm*B	(kNm/m)	0.00	0.00	0.00
MSq2 acc =	Sqv acc*B	(kNm/m)	0.00	0.00	0.00
$MSp = \gamma 1'*F$	Hd ³ *kp/3+(2*c1'*kp ^{0.5} +γ1'*kp*H2')*Hd ² /2	(kNm/m)	0.00	0.00	0.00
MOMENTI DO	VUTI ALLE FORZE ESTERNE				
Mfext1 =	mp + m	(kNm/m)	0.00	0.00	0.00
Mfext2 =	(fp + f)*(H3 + H2)	(kNm/m)	0.00	0.00	0.00
Mfext3 =	$(vp+v)^*(B1 +B2 + B3/2)$	(kNm/m)	0.60	0.60	0.60

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NN1X
 10
 D 78
 CL FV0300 003
 A
 40 di 64

STAZIONE DI PONTECAGNANO Relazione di calcolo muro di banchina

13.2.3 Spinte in condizione sismica+

SPINTE DEL TERRE - Spinta condizione si	NO E DEL SOVRACCARICO smica +		SLE	STR/GEO	EQU/RIB
Sst1 stat = $0.5*\gamma'$	(H2+H3+H4+Hd) ^{2*} ka	(kN/m)	14.87	14.87	14.87
Sst1 sism = $0.5*\gamma$	(1+kv)*(H2+H3+H4+Hd) ^{2*} kas ⁺ -Sst1 stat	(kN/m)	3.16	3.16	4.86
Ssq1 perm= qp*(H	2+H3+H4+Hd)*kas ⁺	(kN/m)	5.20	5.20	5.59
Ssq1 acc = qs*(H	2+H3+H4+Hd)*kas ⁺	(kN/m)	0.69	0.69	0.74
- Componente orizzon	tale condizione sismica +				
Sst1h stat = Sst1	stat*cosδ	(kN/m)	14.87	14.87	14.87
Sst1h sism = Sst1	sism*cos∂	(kN/m)	3.16	3.16	4.86
Ssq1h perm= Ssq1	perm*cosδ	(kN/m)	5.20	5.20	5.59
Ssq1h acc= Ssq1	acc*cosδ	(kN/m)	0.69	0.69	0.74
- Componente vertical	e condizione sismica +				
Sst1v stat = Sst1	stat*senδ	(kN/m)	0.00	0.00	0.00
Sst1v sism = Sst1	sism*sen δ	(kN/m)	0.00	0.00	0.00
Ssq1v perm= Ssq1	perm*senδ	(kN/m)	0.00	0.00	0.00
Ssq1v acc= Ssq1	acc*senδ	(kN/m)	0.00	0.00	0.00
- Spinta passiva sul d	ente				
$Sp=\frac{1}{2}*\gamma_1'(1+kv) Hd^2*k$	os ⁺ +(2*c ₁ '*kps ^{+0.5} +γ1' (1+kv) kps ⁺ *H2')*Hd	(kN/m)	0.00	0.00	0.00

MOMENTI DELLA SPINTA DEL TERRENO E DEL SOVRACCARICO - Condizione sismica +		SLE	STR/GEO	EQU/RIB	
MSst1 stat = MSst1 sism= MSst2 stat = MSst2 sism = MSsq1 = MSsq2 = MSp =	Sst1h stat * ((H2+H3+H4+hd)/3-hd) Sst1h sism* ((H2+H3+H4+Hd)/3-Hd) Sst1v stat* B Sst1v sism* B Ssq1h * ((H2+H3+H4+Hd)/2-Hd) Ssq1v * B γ ₁ '*Hd ³ *kps ⁺ /3+(2*c1'*kps ^{+0.5} +γ1'*kps ^{+*} H2')*Hd ² /2	(kNm/m) (kNm/m) (kNm/m) (kNm/m) (kNm/m) (kNm/m)	12.39 2.63 0.00 0.00 7.37 0.00 0.00	12.39 2.63 0.00 0.00 7.37 0.00 0.00	12.39 4.05 0.00 0.00 7.91 0.00 0.00
MOMENTI DO Mfext1 = Mfext2 = Mfext3 =	mp+ms (fp+fs)*(H3 + H2) (vp+vs)*(B1 +B2 + B3/2)	(kNm/m) (kNm/m) (kNm/m)		0.00 0.00 0.60	

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NN1X
 10
 D 78
 CL FV0300 003
 A
 41 di 64

STAZIONE DI PONTECAGNANO Relazione di calcolo muro di banchina

13.2.4 Spinte in condizione sismica-

	_			
SPINTE DEL TERRENO E DEL SOVRACCARICO - Spinta condizione sismica -		SLE	STR/GEO	EQU/RIB
Sst1 stat = $0.5*\gamma*(H2+H3+H4+Hd)^2*ka$	(kN/m)	14.87	14.87	14.87
Sst1 sism = $0.5^*\gamma'^*(1-kv)^*(H2+H3+H4+Hd)^{2*}kas^Sst1$ stat	(kN/m)	2.00	2.00	3.15
Ssq1 perm= qp*(H2+H3+H4+Hd)*kas ⁻	(kN/m)	5.27	5.27	5.74
$Ssq1 \ acc = qs*(H2+H3+H4+Hd)*kas^{-}$	(kN/m)	0.70	0.70	0.77
- Componente orizzontale condizione sismica -				
Sst1h stat = Sst1 stat* $\cos \delta$	(kN/m)	14.87	14.87	14.87
Sst1h sism = Sst1 sism* $\cos \delta$	(kN/m)	2.00	2.00	3.15
Ssq1h perm= Ssq1 perm*cosδ	(kN/m)	5.27	5.27	5.74
Ssq1h acc= Ssq1 acc*cosδ	(kN/m)	0.70	0.70	0.77
- Componente verticale condizione sismica -				
Sst1v stat = Sst1 stat*sen δ	(kN/m)	0.00	0.00	0.00
Sst1v sism = Sst1 sism*sen δ	(kN/m)	0.00	0.00	0.00
Ssq1v perm= Ssq1 perm*senδ	(kN/m)	0.00	0.00	0.00
Ssq1v acc= Ssq1 acc*senδ	(kN/m)	0.00	0.00	0.00
- Spinta passiva sul dente				
Sp= $\frac{1}{2}$ * γ_1 '(1-kv) Hd ² *kps ⁻ +(2*c ₁ '*kps ^{-0.5} + γ 1' (1-kv) kps ^{-*} H2')*Hd	(kN/m)	0.00	0.00	0.00
	<u>-</u>	,	.	
MOMENTI DELLA SPINTA DEL TERRENO E DEL SOVRACCARICO - Condizione sismica -		SLE	STR/GEO	EQU/RIB
	<u> </u>		L	

MOMENTI DELLA SPINTA DEL TERRENO E DEL SOVRACCARICO - Condizione sismica -		СО	SLE	STR/GEO	EQU/RIB
MSst1 stat = MSst1 sism= MSst2 stat = MSst2 sism = MSsq1 = MSsq2 = MSp =	Sst1h sism* ((H2+H3+H4+Hd)/3-Hd) Sst1v stat* B	(kNm/m) (kNm/m) (kNm/m) (kNm/m) (kNm/m) (kNm/m)	12.39 1.66 0.00 0.00 7.46 0.00 0.00	12.39 1.66 0.00 0.00 7.46 0.00 0.00	12.39 2.62 0.00 0.00 8.14 0.00
MOMENTI DO Mfext1 = Mfext2 = Mfext3 =	mp+ms (fp+fs)*(H3 + H2) (vp+vs)*(B1 +B2 + B3/2)	(kNm/m) (kNm/m) (kNm/m)		0.00 0.00 0.60	

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NN1X
 10
 D 78
 CL FV0300 003
 A
 42 di 64

15.14

12.24 (kNm/m)

STAZIONE DI PONTECAGNANO Relazione di calcolo muro di banchina

Μ

Xc*N - MM

13.3 VERIFICHE GEOTECNICHE

13.3.1 Verifica statica a ribaltamento, scorrimento e carico limite verticale in c. drenate

VERIFICA ALLO SCORRIMENTO (STR/GEO)

Risultante forze verticali (N) N = Pm + Pt + v	+ Stv + Sqv perm + Sqv acc	93.25	(kN/m)	
Risultante forze orizzontali (T T = Sth + Sqh +	•	29.44	(kN/m)	
Coefficiente di attrito alla bas $f = tg\phi 1'$	e (f)	0.42	(-)	
Fs scorr.	(N*f + Sp) / T	1.34	>	1.1
VERIFICA AL RIBALTAM	<u>ENTO</u>			
Momento stabilizzante (Ms) Ms = Mm + Mt +	Mfext3	97.53	(kNm/m)	
Momento ribaltante (Mr) Mr = MSt + MSq	+ Mfext1+ Mfext2 + MSp	28.74	(kNm/m)	
Fs ribaltamento	Ms / Mr	3.39	>	1.15
VERIFICA CARICO LIMI	TE DELLA FONDAZIONE (STR/GEO)			
Risultante forze verticali (N) N = Pm + Pt + v	+ Stv + Sqv (+ Sovr acc)	Nmin 93.25	Nmax 100.50	(kN/m)
Risultante forze orizzontali (T T = Sth + Sqh +	•	29.44	29.44	(kN/m)
Risultante dei momenti risper $MM = \Sigma M$	tto al piede di valle (MM)	68.78	78.21	(kNm/m)
Momento rispetto al baricent	ro della fondazione (M)			,

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

2.05

Nmax

FOGLIO

43 di 64

1.4

STAZIONE DI PONTECAGNANO

Relazione di calcolo muro di banchina

COMMESSA LOTTO CODIFICA

NN1X 10 D 78

CL FV0300 003

Fondazione Nastriforme

FS carico limite

qlim = c'Nc*ic + q_0 *Nq*iq + 0.5* γ 1*B*N γ *i γ

FO	Nmin	2.03	>	4.4
qlim	(carico limite unitario)	128.25	132.12	(kN/m ²)
(fondazione na	striforme m = 2)			
$i\gamma = (1 - T/(N +$	B*c'cotgφ')) ^{m+1}	0.37	0.37	(-)
ic = iq - (1 - iq)	÷	0.45	0.45	(-)
iq = (1 - T/(N +	$B^*c'\cot(q\phi'))^m$ (1 in cond. nd)	0.51	0.54	(-)
I valori di ic, iq	e iγ sono stati valutati con le espressioni suggerite da Vesic (1975)			
$N\gamma = 2^*(Nq + 1$)*tg(φ') (0 in cond. nd)	8.20		(-)
Nc = (Nq - 1)/t		18.05		(-)
$Nq = tg^2(45 + c)$	$p'/2)^*e^{(\pi^*tg(\phi'))}$ (1 in cond. nd)	8.66		(-)
I valori di Nc, N	q e Ng sono stati valutati con le espressioni suggerite da Vesic (197	(5)		
B*= B - 2e	larghezza equivalente	1.48	1.56	(m)
e = M / N	eccentricità	0.16	0.12	(m)
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante	14.40		(kN/m^2)
γ1	peso unità di volume terreno fondaz.	18.00	(kN/m ³)	
φ1′	angolo di attrito terreno di fondaz.	23.00		(°)
c1'	coesione terreno di fondaz.	3.00		(kPa)
q = 0 110 10	. 404 .4 . 6,6 1. =			

F = qlim*B*/N

Nmin

Nmax

FOGLIO

44 di 64

STAZIONE DI PONTECAGNANO
Relazione di calcolo muro di banchina

COMMESSA
LOTTO
CODIFICA
DOCUMENTO
NN1X
10
D 78
CL FV0300 003

13.3.2 Verifica sismica a ribaltamento, scorrimento e carico limite verticale in c. drenate

Sismica+

VERIFICA ALLO SCORRIMENTO

Risultante forze verticali (N)

Risultante forze verticali (N)

N	=	Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	94.65	(kN/m)						
Risu T	Itante forz =	e orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh	31.21	(kN/m)						
Coeff f	ficiente di =	attrito alla base (f) tgφ1'	0.42	(-)						
Fs	=	(N*f + Sp) / T	1.29	>	1					
	VERIFICA AL RIBALTAMENTO									
Ms	=	ilizzante (Ms) Mm + Mt + Mfext3	97.53	(kNm/m)						
Mom Mr	ento ribali =	tante (Mr) MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts	30.70	(kNm/m)						
Fr	=	Ms / Mr	3.18	>	1					
<u>VER</u>	VERIFICA A CARICO LIMITE DELLA FONDAZIONE									

N	=	Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv + (Sovr acc)	94.65	95.65	(kN/m)
Risu	ıltante forz	e orizzontali (T)			
Т	=	Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp	31.21		(kN/m)
Risu	ıltante dei	momenti rispetto al piede di valle (MM)			
MM	=	Σ M	67.98	69.28	(kNm/m)
Mon	nento rispe	etto al baricentro della fondazione (M)			
М	=	Xc*N - MM	17.20	16.80	(kNm/m)

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

COMMESSA LOTTO CODIFICA DOCUMENTO FOGLIO STAZIONE DI PONTECAGNANO Relazione di calcolo muro di banchina NN1X D 78 CL FV0300 003 45 di 64

Fondazione Nastriforme

FS carico limite

qlim = c'Nc*ic + q_0 *Nq*iq + 0.5* γ 1*B*N γ *i γ

ES carico li	mito	E – alim*R*/N	Nmin	1.84	>	1 2
qlim	(carico limite	unitario)		121.32	122.47	(kN/m^2)
(fondazione nas	striforme m = 2	2)				
$i\gamma = (1 - T/(N +$	B*c'cotgφ')) ^{m+1}			0.35	0.35	(-)
ic = iq - (1 - iq)	•	(1 iii cond. na)		0.43	0.43	(-)
iq = (1 - T/(N +	•	valutati con le espressioni suggeri (1 in cond. nd)	te da vesic (1975)	0.49	0.50	(-)
	, 5(1)		to do Vasia (1075)			()
Nc = (Nq - 1)/tc $N\gamma = 2*(Nq + 1)$	• ()	$(2+\pi \text{ in cond. nd})$ (0 in cond. nd)		18.05 8.20		(-) (-)
$Nq = tg^2(45 + q)$. ,	(1 in cond. nd)		8.66		(-)
l valori di Nc, N	lq e Ng sono s	tati valutati con le espressioni sug	gerite da Vesic (197	75)		
B*= B - 2e	larghezza ed	quivalente		1.44	1.45	(m)
e = M / N	eccentricità			0.18	0.18	(m)
$q_0 = \gamma d^*H2'$	sovraccarico	stabilizzante		14.40		(kN/m^2)
γ1	peso unità di	volume terreno fondaz.		18.00		(kN/m ³)
φ1′	angolo di attr	ito terreno di fondaz.		23.00		(°)
c1'	coesione terr	eno di fondaz.		3.00		(kN/mq)

F = qlim*B*/N

Nmax

1.85

1.2

STAZIONE DI PONTECAGNANO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
Relazione di calcolo muro di banchina

NN1X 10 D 78 CL FV0300 003 A 46 di 64

Sismica-

VERIFICA ALLO SCORRIMENTO

Fs	=	(N*f + Sp) / T	1.23	>	1
Coeff f	ficiente di =	attrito alla base (f) tgφ1'	0.42	(-)	
Risul T	tante forz =	e orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh	30.12	(kN/m)	
Risul N	tante forz =	e verticali (N) Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	87.35	(kN/m)	

Fr	=	Ms / Mr	2.47	>	1
	ento ribali =	tante (Mr) MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts	39.48	(kNm/m)	
Mom Ms		ilizzante (Ms) Mm + Mt + Mfext3	97.53	(kNm/m)	
<u>VER</u>	IFICA AI	L RIBALTAMENTO			

VERIFICA A CARICO LIMITE DELLA FONDAZIONE

Risu	ltante forz	e verticali (N)	Nmin	Nmax		
Ν	=	Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	87.35	88.35	(kN/m)	
Risu	Itante forz	e orizzontali (T)				
Т	=	Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp	30.12		(kN/m)	
Risu	Itante dei	momenti rispetto al piede di valle (MM)				
MM	=	Σ M	62.20	63.50	(kNm/m)	
Mom	ento rispe	etto al baricentro della fondazione (M)				
М	=	Xc*N - MM	16.42	16.02	(kNm/m)	

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

1.91

Nmax

1.2

STAZIONE DI PONTECAGNANO

Relazione di calcolo muro di banchina

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

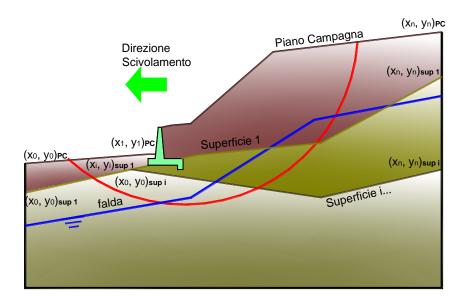
NN1X 10 D 78 CL FV0300 003 A 47 di 64

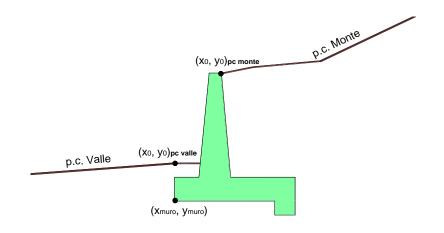
Fondazione Nastriforme

FS carico limite

qlim = c'Nc*ic + q_0 *Nq*iq + 0.5* γ 1*B*N γ *i γ

FS carico li	mite F – alim*R*/ N	Nmin	1.90	>	1 2					
qlim	(carico limite unitario)		116.30	117.55	(kN/m^2)					
(fondazione nastriforme m = 2)										
$i\gamma = (1 - T/(N +$	B*c'cotgφ')) ^{m+1}		0.33	0.33	(-)					
iq = (1 - T/(N + ic = iq - (1 - iq))	,		0.48 0.41	0.48 0.41	(-) (-)					
•	e iγ sono stati valutati con le espressioni suggerite da	Vesic (1975)	0.40	0.40	()					
$N\gamma = 2^*(Nq + 1)$	*tg(φ') (0 in cond. nd)		8.20		(-)					
Nc = (Nq - 1)/tg	$g(\phi)$ (2+ π in cond. nd)		18.05		(-)					
$Nq = tg^2(45 + q)$	$(1/2)^*e^{(\pi^*tg(\phi'))}$ (1 in cond. nd)		8.66		(-)					
I valori di Nc, Nq e Ng sono stati valutati con le espressioni suggerite da Vesic (1975)										
B*= B - 2e	larghezza equivalente		1.42	1.44	(m)					
e = M / N	eccentricità		0.19	0.18	(m)					
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante		14.40		(kN/m^2)					
γ1	peso unità di volume terreno fondaz.		18.00		(kN/m^3)					
c1 ' φ1'	coesione terreno di fondaz. angolo di attrito terreno di fondaz.		23.00		(kN/mq) (°)					
-41			3.00		(I+NI/)					

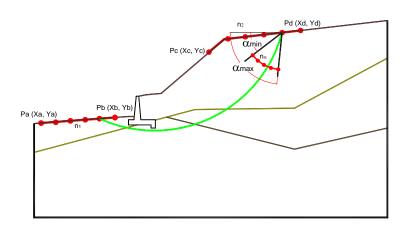

F = qlim*B*/N

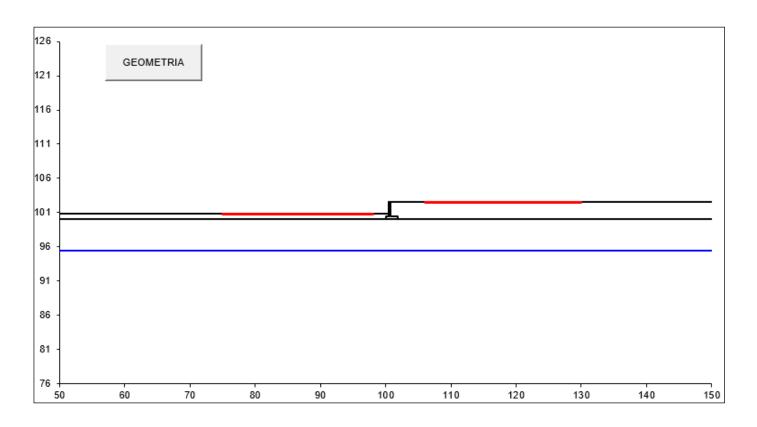

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO	NN1Y	10	D 78	CL EV0300 003	Δ	18 di 61	
COMMERCIA LOTTO CODICION DOCUMENTO DEL COLIO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	

STAZIONE DI PONTECAGNANO Relazione di calcolo muro di banchina

13.3.3 Verifica di stabilità globale in c. drenate

	γ [kN/m³]	ф [°]	c [kPa]	Descrizione
materiale 1	19.00	32.01	0	Rilevato ferroviario
materiale 2	18.00	18.76	2.40	L1

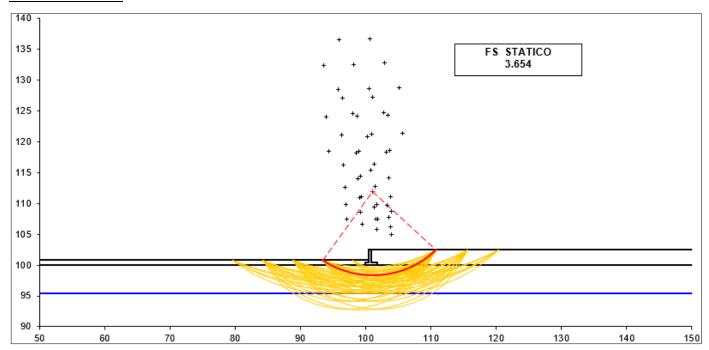



 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

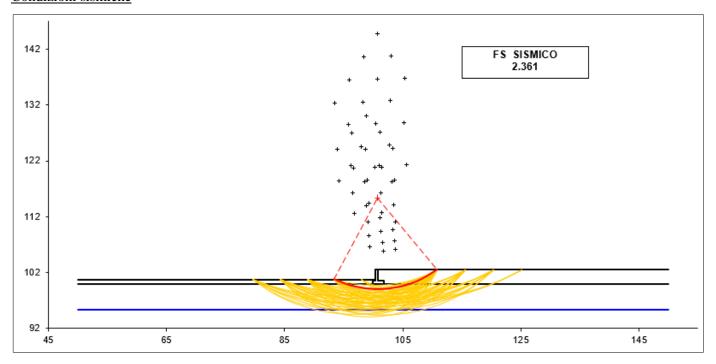
 NN1X
 10
 D 78
 CL FV0300 003
 A
 49 di 64

STAZIONE DI PONTECAGNANO Relazione di calcolo muro di banchina

	p.c. va	c. valle		p.c. monte			superficie 1			su	perfic	ie 2		su	perfic	ie 3			
		materiale 1		-			mater	riale 2			mater	iale 3			mater	riale 4	<mark>;∵</mark> da		
	х	у		х	у		х	у		×	(У			x	у		х	у
0	100.000	100.800	0	100.800	102.500	0	50.000	100.000	0				0				0	50.000	95.400
1	50.000	100.800	1	150.000	102.500	1	150.000	100.000	1				1				1	150.000	95.400



STAZIONE DI PONTECAGNANO Relazione di calcolo muro di banchina


 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NN1X
 10
 D 78
 CL FV0300 003
 A
 50 di 64

Condizioni statiche

Condizioni sismiche

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NN1X
 10
 D 78
 CL FV0300 003
 A
 51 di 64

15.14

12.24 (kNm/m)

STAZIONE DI PONTECAGNANO Relazione di calcolo muro di banchina

13.3.4 Verifica statica a ribaltamento, scorrimento e carico limite verticale in c. non drenate

VERIFICA ALLO SCORRIMENTO (STR/GEO)

Risultante fo	ze verticali (N) Pm + Pt + v + Stv + Sqv perm + Sqv acc	93.25	(kN/m)	
Risultante fo	ze orizzontali (T) Sth + Sqh + f	29.44	(kN/m)	
Coefficiente f =	di attrito alla base (f) tgφ1'	0.42	(-)	
Fs scor	. (N*f + Sp) / T	1.34	>	1.1
VERIFICA	AL RIBALTAMENTO			
Momento sta Ms =	bilizzante (Ms) Mm + Mt + Mfext3	97.53	(kNm/m)	
Momento rib	altante (Mr) MSt + MSq + Mfext1+ Mfext2 + MSp	28.74	(kNm/m)	
Fs ribalt	amento Ms / Mr	3.39	>	1.15
VERIFICA	CARICO LIMITE DELLA FONDAZIONE (STR/GEO)			
Risultante fo	rze verticali (N) Pm + Pt + v + Stv + Sqv (+ Sovr acc)	Nmin 93.25	Nmax 100.50	(kN/m)
Risultante fo	rze orizzontali (T) Sth + Sqh + f - Sp	29.44	29.44	(kN/m)
Risultante de MM =	i momenti rispetto al piede di valle (MM) $\Sigma {\rm M}$	68.78	78.21	(kNm/m)

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Momento rispetto al baricentro della fondazione (M)

Xc*N - MM

STAZIONE DI PONTECAGNANO Relazione di calcolo muro di banchina
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NN1X
 10
 D 78
 CL FV0300 003
 A
 52 di 64

2.03

Nmax

Fondazione Nastriforme

qlim = c'Nc*ic + q_0 *Nq*iq + 0.5* γ 1*B*N γ *i γ

FS carico li	mite F = qlim*B*/ N	Nmin	2.04	>	1.4		
qlim	(carico limite unitario)		128.74	130.82	(kN/m^2)		
(fondazione nastriforme m = 2)							
iq = (1 - T/(N + ic = (1 - m T / (ic = (1 - T/(N + ic =	B* cu*Nc))		1.00 0.74 	1.00 0.75	(-) (-)		
l valori di ic, iq e i γ sono stati valutati con le espressioni suggerite da Vesic (1975)							
$Nq = tg^{2}(45 + q)$ $Nc = (Nq - 1)/tq$ $N\gamma = 2*(Nq + 1)$	$g(\varphi')$ (2+ π in cond. nd)		1.00 5.14 0.00		(-) (-) (-)		
I valori di Nc, N	q e Ng sono stati valutati con le espressioni suggerit	te da Vesic (197	75)				
e = M / N B*= B - 2e	eccentricità larghezza equivalente		0.16 1.48	0.12 1.56	(m) (m)		
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante		14.40		(kN/m^2)		
γ1	peso unità di volume terreno fondaz.		18.00		(kN/m ³)		
cu	res. al taglio nd terreno di fondaz.		30.00		(kPa)		
q = 0.110 10	. 40 . 41 . 4. 5,5 / . 2 / . /						

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NN1X
 10
 D 78
 CL FV0300 003
 A
 53 di 64

17.20

16.80 (kNm/m)

STAZIONE DI PONTECAGNANO Relazione di calcolo muro di banchina

13.3.5 Verifica sismica a ribaltamento, scorrimento e carico limite verticale in c. non drenate Sismica+

VERIFICA ALLO SCORRIMENTO

Risultante forze verticali (N)

N	=	Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	94.65	(kN/m)	
Risul T	tante forz	e orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh	31.21	(kN/m)	
-			31.21	(KIVIII)	
_		attrito alla base (f)	0.40	()	
f	=	tgφ1'	0.42	(-)	
Fs	=	(N*f + Sp) / T	1.29	>	1
VER	IFICA AL	RIBALTAMENTO			
Mom	ento stabi	lizzante (Ms)			
Ms	=	Mm + Mt + Mfext3	97.53	(kNm/m)	
Mom	ento ribalt	ante (Mr)			
Mr	=	MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts	30.70	(kNm/m)	
Fr	=	Ms / Mr	3.18	>	1
VER	IFICAA	CARICO LIMITE DELLA FONDAZIONE			
Risul	tante forze	e verticali (N)	Nmin	Nmax	
N	=	Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv + (Sovr acc)	94.65	95.65	(kN/m)
Risul	tante forze	e orizzontali (T)			
Т	=	Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp	31.2	21	(kN/m)
Risul	tante dei ı	momenti rispetto al piede di valle (MM)			
MM	=	Σ M	67.98	69.28	(kNm/m)

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Momento rispetto al baricentro della fondazione (M)

Xc*N - MM

COMMESSA LOTTO CODIFICA DOCUMENTO FOGLIO STAZIONE DI PONTECAGNANO Relazione di calcolo muro di banchina NN1X D 78 CL FV0300 003 54 di 64

Fondazione Nastriforme

FS carico limite

qlim = c'Nc*ic + q_0 *Nq*iq + 0.5* γ 1*B*N γ *i γ

ES carico li	mite	F – alim*R*/ N	Nmin	1.90	>	1 2	
qlim	(carico limite	unitario)		125.19	125.56	(kN/m ²)	
(fondazione nastriforme m = 2)							
iq = (1 - T/(N + ic) = (1 - m T / (ic) = (1 - T/(N + ic))	B* cu*Nc))	(1 in cond. nd)		1.00 0.72 	1.00 0.72	(-) (-)	
l valori di ic, iq e i γ sono stati valutati con le espressioni suggerite da Vesic (1975)							
$Nq = tg^{2}(45 + \varphi Nc = (Nq - 1)/tg N\gamma = 2*(Nq + 1)$	g (φ')	(1 in cond. nd) (2+ π in cond. nd) (0 in cond. nd)		1.00 5.14 0.00		(-) (-) (-)	
I valori di Nc, Nq e Ng sono stati valutati con le espressioni suggerite da Vesic (1975)							
e = M / N B*= B - 2e	eccentricità larghezza ec	quivalente		0.18 1.44	0.18 1.45	(m) (m)	
$q_0 = \gamma d^*H2'$	sovraccarico	stabilizzante		14.40		(kN/m^2)	
γ1	peso unità di	volume terreno fondaz.		18.00		(kN/m ³)	
cu	res. al taglio	nd terreno di fondaz.		30.00		(kN/mq)	
•		, , , , , , , , , , , , , , , , , , ,					

F = qlim*B*/N

Nmax

1.90

1.2

LOTTO CODIFICA COMMESSA DOCUMENTO FOGLIO STAZIONE DI PONTECAGNANO Relazione di calcolo muro di banchina NN1X D 78 CL FV0300 003 55 di 64

Sismica-

VERIFICA ALLO SCORRIMENTO

Fs	=	(N*f + Sp) / T	1.23	>	1
f	=	tgφ1'	0.42	(-)	
Coeff	iciente d	i attrito alla base (f)			
Т	=	Sst1h + Ssq1h + fp + fs +Ps h + Ptsh	30.12	(kN/m)	
Risul	tante for	ze orizzontali (T)			
N	=	Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	87.35	(kN/m)	
Risul	tante for	ze verticali (N)			

EDIEICA AL DIDALTAMENTO

Fr	=	Ms / Mr	2.47	>	1
	nento ribal =	tante (Mr) MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts	39.48	(kNm/m)	
	nento stab =	oilizzante (Ms) Mm + Mt + Mfext3	97.53	(kNm/m)	
<u>VEI</u>	RIFICAA	L RIBALTAMENTO			

VERIFICA A CARICO LIMITE DELLA FONDAZIONE

Risultante forz	e verticali (N)	Nmin	Nmax		
N =	Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	87.35	88.35	(kN/m)	
Risultante forz	e orizzontali (T)				
T =	Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp	30.12		(kN/m)	
Risultante dei	momenti rispetto al piede di valle (MM)				
MM =	Σ M	62.20	63.50	(kNm/m)	
Momento rispe	etto al baricentro della fondazione (M)				
M =	Xc*N - MM	16.42	16.02	(kNm/m)	

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

2.06

Nmax

1.2

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NN1X
 10
 D 78
 CL FV0300 003
 A
 56 di 64

Fondazione Nastriforme

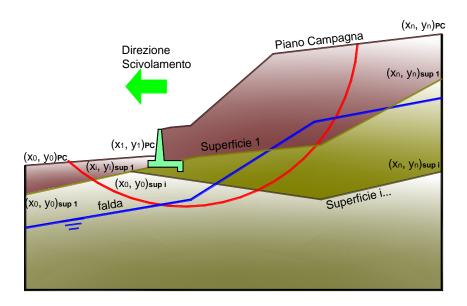
FS carico limite

STAZIONE DI PONTECAGNANO Relazione di calcolo muro di banchina

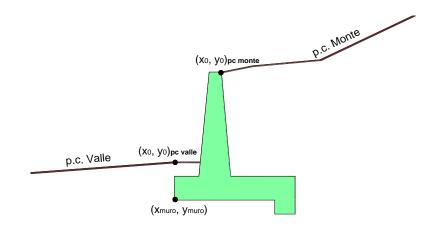
qlim = c'Nc*ic + q_0 *Nq*iq + 0.5* γ 1*B*N γ *i γ

FS carico li	mita	F - alim*R*/N	Nmin	2.06	>	1 2	
qlim	(carico limite	unitario)		126.34	126.73	(kN/m ²)	
(fondazione nastriforme m = 2)							
iq = (1 - T/(N + ic = (1 - m T / (ic = (1 - T/(N + ic =	(B* cu*Nc))	(1 in cond. nd)		1.00 0.73 	1.00 0.73	(-) (-)	
I valori di ic, iq	e iγ sono stati	valutati con le espressioni suggeri	ite da Vesic (1975)				
$Nq = tg^{2}(45 + q)$ $Nc = (Nq - 1)/tg$ $N\gamma = 2*(Nq + 1)$	g(φ')	(1 in cond. nd) (2+ π in cond. nd) (0 in cond. nd)		1.00 5.14 0.00		(-) (-) (-)	
I valori di Nc, Nq e Ng sono stati valutati con le espressioni suggerite da Vesic (1975)							
e = M / N B*= B - 2e	eccentricità larghezza ec	uivalente		0.19 1.42	0.18 1.44	(m) (m)	
$q_0 = \gamma d^*H2'$	sovraccarico	stabilizzante		14.40		(kN/m^2)	
γ1	peso unità di	volume terreno fondaz.	18.00		(kN/m ³)		
cu	res. al taglio	nd terreno di fondaz.		30.00		(kN/mq)	

F = qlim*B*/N



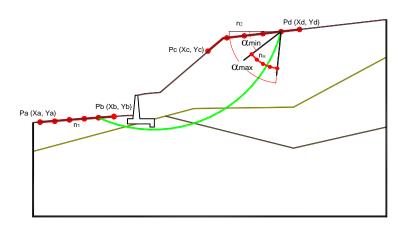
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

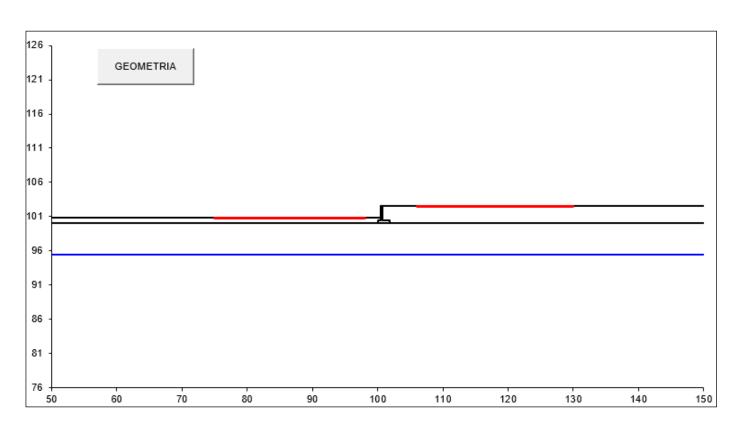

 NN1X
 10
 D 78
 CL FV0300 003
 A
 57 di 64

STAZIONE DI PONTECAGNANO Relazione di calcolo muro di banchina

13.3.6 Verifica di stabilità globale in c. non drenate

	γ [kN/m³]	ф [°]	c [kPa]	Descrizione
materiale 1	19.00	32.01	0	Rilevato ferroviario
materiale 2	18.00	18.76	2.40	L1

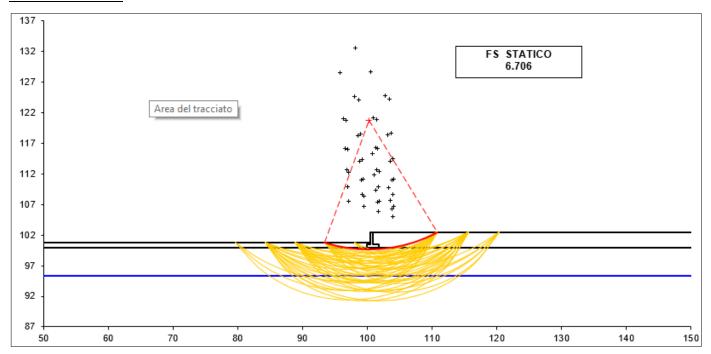



STAZIONE DI PONTECAGNANO Relazione di calcolo muro di banchina

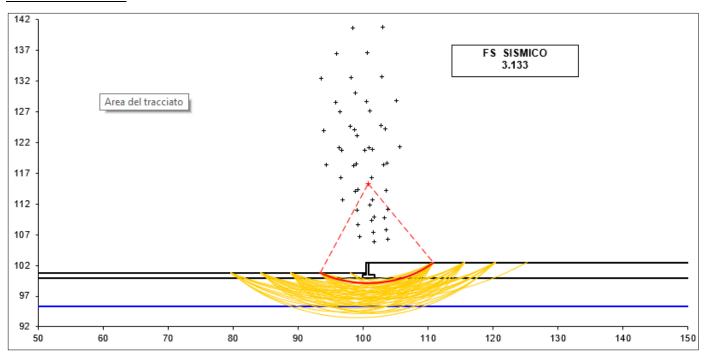
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NN1X
 10
 D 78
 CL FV0300 003
 A
 58 di 64

	p.c. va	lle		p.c. mo	nte		superfic	ie 1		superfic	ie 2		superfic	cie 3			
		materiale 1		•			mater	riale 2		mate	riale 3		mate	riale 4		Ç 'da	
	х	у		х	У		х	у		х	У		х	у		х	у
0	100.000	100.800	0	100.800	102.500	0	50.000	100.000	0			0			0	50.000	95.400
1	50.000	100.800	1	150.000	102.500	1	150.000	100.000	1			1			1	150.000	95.400



 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO


 NN1X
 10
 D 78
 CL FV0300 003
 A
 59 di 64

STAZIONE DI PONTECAGNANO Relazione di calcolo muro di banchina

Condizioni statiche

Condizioni sismiche

D 78

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

CL FV0300 003

60 di 64

STAZIONE DI PONTECAGNANO Relazione di calcolo muro di banchina

13.4 VERIFICHE STRUTTURALI

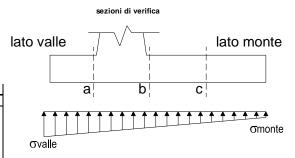
13.4.1 Calcolo delle sollecitazioni

Verifica allo Stato Limite Ultimo

NN1X

10

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

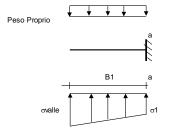

Reazione del terreno

ovalle = N / A + M / Wgg

omonte = N / A - M / Wgg

 $A = 1.0^{\circ}B$ = 1.80 (m^2) $Wgg = 1.0^{\circ}B^2/6$ = 0.54 (m^3)

	N	М	σvalle	σmonte
caso	[kN]	[kNm]	[kN/m ²]	[kN/m ²]
statico	93.25	15.14	79.85	23.76
	100.50	12.24	78.51	33.16
sisma+	94.65	17.20	84.43	20.73
зізпіат	95.65	16.80	84.25	22.03
sisma-	87.35	16.42	78.94	18.12
	88.35	16.02	78.76	19.42



Mensola Lato Valle

Peso Proprio. PP = 12.50 (kN

 $\begin{aligned} Ma &= \ \sigma 1^*B1^2/2 + (\text{ovalle} - \sigma 1)^*B1^2/3 - PP^*B1^2/2^*(1\pm kv) \\ Va &= \ \sigma 1^*B1 + (\text{ovalle} - \sigma 1)^*B1/2 - PP^*B1^*(1\pm kv) \end{aligned}$

	σvalle	σ1	Ma	Va
caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN]
statico	79.85	67.39	5.06	24.45
	78.51	68.43	5.01	24.39
	84.43	70.28	5.34	29.99
sisma+	84.25	70.42	5.37	29.88
sisma-	78.94	65.43	4.99	27.73
	78 76	65 57	4 95	27.62

B5 - B5/2

b-c

Stv+Sta

Peso del Terrapieno

Mensola Lato Monte

PP	=	12.50	(kN/m ²)	peso proprio soletta fondazione
PD	=	0.00	(kN/m)	peso proprio dente

			•	•	
		Nmin	N max stat	N max sism	
pm	=	49.75	57.00	50.75	(kN/m ²)
pvb	=	49.75	57.00	50.75	(kN/m^2)
nuc	_	10.75	57.00	50.75	(kN/m²)

$$\label{eq:mbeta} \begin{split} Mb &= (\sigma_{monte} - (pvb + PP)^*(1\pm kv))^*B5^2/2 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1\pm kv)^*B5^2/3 + \\ &- (Stv + Sqv)^*B5 - PD^*(1\pm kv)^*(B5 - Bd/2) - PD^*kh^*(Hd + H2/2) + Msp + Sp^*H2/2 \end{split}$$

 $\label{eq:main_month} \begin{tabular}{ll} $Mc = (\sigma_{month}^*(pwc+PP)^*(1\pm ky)^*(B5/2)^2/2 + (\sigma 2c - \sigma_{month})^*(B5/2)^2/6 - (pm-pwc)^*(1\pm ky)^*(B5/2)^2/3 + (Stv+Sqv)^*(B5/2)-PD^*(1\pm ky)^*(B5/2-Bd/2)-PD^*kh^*(Hd+H2/2)+Msp+Sp^*H2/2 \\ \end{tabular}$

 $Vb = (\sigma_{monte} - (pvb + PP)^*(1 \pm kv))^*B5 + (\sigma 2b - \sigma_{monte})^*B5/2 - (pm - pvb))^*(1 \pm kv)^*B5/2 - (Stv + Sqv) - PD^*(1 \pm kv)$

 $Vc = (\sigma_{monte} - (pvc + PP)^*(1 \pm kv))^*(B5/2) + (\sigma 2c - \sigma_{monte})^*(B5/2)/2 - (pm-pvc)^*(1 \pm kv)^*(B5/2)/2 - (Stv + Sqv) - PD^*(1 \pm kv)$

	omonte	σ2b	Mb	Vb	σ 2c	Мс	Vc
caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN]	[kN/m ²]	[kNm]	[kN]
statico	23.76	54.92	-14.05	-22.91	39.34	-4.16	-15.35
Statico	33.16	58.35	-13.97	-23.74	45.76	-4.02	-15.02
aiama.	20.73	56.12	-16.09	-26.29	38.42	-4.76	-17.57
sisma+	22.03	56.59	-16.10	-26.44	39.31	-4.75	-17.54
sisma-	18.12	51.91	-15.20	-24.78	35.01	-4.50	-16.61
SiSIIId-	19.42	52.38	-15.17	-24.85	35.90	-4.48	-16.55

STAZIONE DI PONTECAGNANO Relazione di calcolo muro di banchina COMMESSA LOTTO CODIFICA DOCUMENTO FOGLIO NN1X D 78 CL FV0300 003 61 di 64

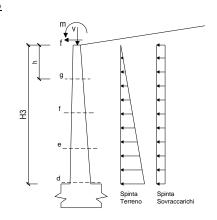
CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

Mt stat = $\frac{1}{2} \text{Ka}_{\text{orizz.}}^{*} \gamma^{*} (1 \pm kv)^{*} h^{2*} h/3$

 $Mt \; sism = \frac{1}{2} * \gamma * (Kas_{orizz.}*(1\pm kv)-Ka_{orizz.})*h^2*h/2 \quad o *h/3$

= $\frac{1}{2}$ Ka_{orizz}*q*h² $M_{ext} = m+f^*h$ $M_{inerzia} = \Sigma P m_i^* b_i^* kh$


 $N_{ext} = v$

 $N_{pp+inerzia} = \Sigma Pm_i^*(1\pm kv)$

Vt stat = $\frac{1}{2}$ Ka_{orizz.}* γ *(1±kv)*h²

 $Vt \ sism = \frac{1}{2} * \gamma * (Kas_{orizz.} * (1\pm kv) - Ka_{orizz.}) * h^{2}$

 $\begin{array}{lll} Vq & = Ka_{orizz}^*q^*h \\ V_{ext} & = f \\ V_{inerzia} & = \Sigma Pm_i^*kh \end{array}$

condizione statica

			-					
sezione	h	Mt	Mq	M _{ext}	M _{tot}	N _{ext}	N _{pp}	N _{tot}
30210110	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	2.00	8.25	8.09	0.00	16.33	1.00	20.00	21.00
e-e	1.50	3.48	4.55	0.00	8.03	1.00	15.00	16.00
f-f	1.00	1.03	2.02	0.00	3.05	1.00	10.00	11.00
g-g	0.50	0.13	0.51	0.00	0.63	1.00	5.00	6.00

sezione	h	Vt	Vq	$V_{\rm ext}$	V_{tot}
36210116	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	2.00	12.37	8.09	0.00	20.46
e-e	1.50	6.96	6.07	0.00	13.02
f-f	1.00	3.09	4.04	0.00	7.14
g-g	0.50	0.77	2.02	0.00	2.80

condizione sismica +

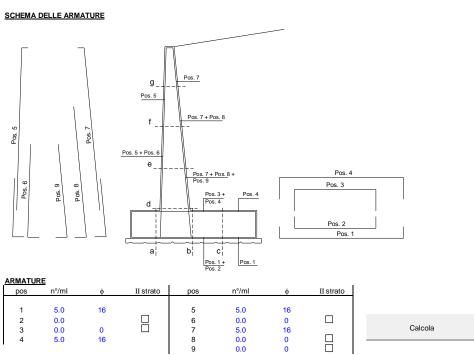
sezione	h	Mt stat	Mt sism	Mq	M _{ext}	M _{inerzia}	M _{tot}	N _{ext}	N _{pp+inerzia}	N _{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	2.00	6.34	1.35	4.72	0.00	1.58	13.99	1.00	20.79	21.79
е-е	1.50	2.68	0.57	2.65	0.00	0.89	6.79	1.00	15.59	16.59
f-f	1.00	0.79	0.17	1.18	0.00	0.40	2.54	1.00	10.40	11.40
g-g	0.50	0.10	0.02	0.29	0.00	0.10	0.51	1.00	5.20	6.20

sezione	h	Vt stat	Vt sism	Vq	V _{ext}	V _{inerzia}	V _{tot}
	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	2.00	9.52	2.02	4.72	0.00	1.58	17.83
e-e	1.50	5.35	1.14	3.54	0.00	1.19	11.21
f-f	1.00	2.38	0.51	2.36	0.00	0.79	6.03
g-g	0.50	0.59	0.13	1.18	0.00	0.40	2.30

condizione sismica -

	CONDIZIONE SISTNICA -										
sezione	h	Mt _{stat}	Mt sism	Mq	M _{ext}	M _{inerzia}	M _{tot}	N _{ext}	N _{pp+inerzia}	N_{tot}	
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]	
d-d	2.00	6.34	0.85	4.78	0.00	1.58	13.55	1.00	19.21	20.21	
e-e	1.50	2.68	0.36	2.69	0.00	0.89	6.61	1.00	14.41	15.41	
f-f	1.00	0.79	0.11	1.19	0.00	0.40	2.49	1.00	9.60	10.60	
g-g	0.50	0.10	0.01	0.30	0.00	0.10	0.51	1.00	4.80	5.80	

sezione	h	Vt stat	Vt sism	Vq	V_{ext}	V _{inerzia}	V_{tot}
	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	2.00	9.52	1.28	4.78	0.00	1.58	17.15
е-е	1.50	5.35	0.72	3.58	0.00	1.19	10.84
f-f	1.00	2.38	0.32	2.39	0.00	0.79	5.88
g-g	0.50	0.59	0.08	1.19	0.00	0.40	2.26


 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NN1X
 10
 D 78
 CL FV0300 003
 A
 62 di 64

STAZIONE DI PONTECAGNANO Relazione di calcolo muro di banchina

14 VERIFICA SLU

•

Sez.	M	N	h	Af	A'f	Mu
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(kNm)
a - a	5.37	0.00	0.50	10.05	10.05	173.00
b - b	-16.10	0.00	0.50	10.05	10.05	173.00
C - C	-4.76	0.00	0.50	10.05	10.05	173.00
d - d	16.33	21.00	0.40	10.05	10.05	136.62
e -e	8.03	16.00	0.40	10.05	10.05	135.91
f - f	3.05	11.00	0.40	10.05	10.05	135.21
g - g	0.63	6.00	0.40	10.05	10.05	134.51

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

Sez.	V_{Ed}	h	V_{rd}	ø staffe	i orizz.	i vert.	θ	V_{Rsd}	
(-)	(kN)	(m)	(kN)	(mm)	(cm)	(cm)	(°)	(kN)	- =
a - a	29.99	0.50	185.72	12	20	20	21.8	1070.43	Armatura a taglio non necessaria
b - b	26.44	0.50	185.72	12	20	20	21.8	1070.43	Armatura a taglio non necessaria
c - c	17.57	0.50	185.72	12	20	20	21.8	1070.43	Armatura a taglio non necessaria
d - d	20.46	0.40	157.57	12	20	20	21.8	821.49	Armatura a taglio non necessaria
e -e	13.02	0.40	156.95	12	20	20	21.8	821.49	Armatura a taglio non necessaria
f - f	7.14	0.40	156.33	12	20	20	21.8	821.49	Armatura a taglio non necessaria
g - g	2.80	0.40	155.71	12	20	20	21.8	821.49	Armatura a taglio non necessaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NN1X
 10
 D 78
 CL FV0300 003
 A
 63 di 64

STAZIONE DI PONTECAGNANO Relazione di calcolo muro di banchina

15 VERIFICA SLE – TENSIONE

Condizione Statica

••••							
Sez.	М	N	h	Af	A'f	σα	σf
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)
a - a	4.18	0.00	0.50	10.05	10.05	0.20	10.52
b - b	-9.96	0.00	0.50	10.05	10.05	0.48	25.08
c - c	-2.87	0.00	0.50	10.05	10.05	0.14	7.24
d - d	12.29	21.00	0.40	10.05	10.05	0.91	30.17
е -е	6.02	16.00	0.40	10.05	10.05	0.44	12.04
f - f	2.28	11.00	0.40	10.05	10.05	0.15	2.46
g - g	0.47	6.00	0.40	10.05	10.05	0.03	-0.05

Condizione Sismica

Sez.	М	N	h	Af	A'f	σc	σf
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)
a - a	5.34	0.00	0.50	10.05	10.05	0.26	13.44
b - b	-14.93	0.00	0.50	10.05	10.05	0.72	37.61
C - C	-4.47	0.00	0.50	10.05	10.05	0.22	11.25
d - d	13.99	20.21	0.40	10.05	10.05	1.04	36.16
e -e	6.79	15.41	0.40	10.05	10.05	0.50	14.81
f - f	2.54	10.60	0.40	10.05	10.05	0.17	3.37
g - g	0.51	5.80	0.40	10.05	10.05	0.03	-0.02

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

16 VERIFICA SLE – FESSURAZIONE

Sez.	M	N	h	Af	A'f	σc	σf	wk	\mathbf{w}_{amm}
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)
a - a	4.18	0.00	0.50	10.05	10.05	0.20	10.52	0.017	0.200
b - b	-9.96	0.00	0.50	10.05	10.05	0.48	25.08	0.041	0.200
c - c	-2.87	0.00	0.50	10.05	10.05	0.14	7.24	0.012	0.200
d - d	12.29	21.00	0.40	10.05	10.05	0.91	30.17	0.041	0.200
e -e	6.02	16.00	0.40	10.05	10.05	0.44	12.04	0.016	0.200
f - f	2.28	11.00	0.40	10.05	10.05	0.15	2.46	0.003	0.200
g - g	0.47	6.00	0.40	10.05	10.05	0.03	-0.05	0.000	0.200

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

condizione Quasi Permanente

_	Sez.	М	N	h	Af	A'f	σc	σf	wk	\mathbf{w}_{amm}
	(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)
	a - a	3.71	0.00	0.50	10.05	10.05	0.18	9.34	0.015	0.200
	b - b	-7.79	0.00	0.50	10.05	10.05	0.38	19.63	0.032	0.200
	C - C	-2.17	0.00	0.50	10.05	10.05	0.11	5.47	0.009	0.200
	d - d	9.91	21.00	0.40	10.05	10.05	0.73	22.35	0.030	0.200
	е -е	4.68	16.00	0.40	10.05	10.05	0.33	7.75	0.010	0.200
	f - f	1.69	11.00	0.40	10.05	10.05	0.11	0.94	0.001	0.200
	a - a	0.32	6.00	0.40	10.05	10.05	0.00	_	-	0.200

0.200 sez. compressa

STAZIONE DI PONTECAGNANO

Relazione di calcolo muro di banchina

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NN1X 10 D 78 CL FV0300 003 A 64 di 64

17 INCIDENZA

INCIDENZA		
Elevazione	60	kg/m ³
Fondazione	50	kg/m³