COMMITTENTE:

PROGETTAZIONE:

U.O. INFRASTRUTTURE SUD

PROGETTO DEFINITIVO

LINEA SALERNO - PONTECAGNANO AEROPORTO COMPLETAMENTO METROPOLITANA DI SALERNO TRATTA ARECHI - PONTECAGNANO AEROPORTO

FABBRICATI VIAGGIATORI

Fermata di Pontecagnano - Sottopasso

Relazione di calcolo scatolare

SCALA:
-

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV.

NN1X 10 D 78 CL FV03B0 001 C

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Emissione Esecutiva	F.Durastanti	Sett-2020	G.Romano	Sett-2020	M.D'Avino	Sett-2020	D.Tiberti
		55		0.5		14.514	$\overline{}$	_Dic-2020
В	Emissione Esecutiva	F.Durastanti	Ott-2020	G.Romano	Ott-2020	M.D'Avino	Ott-2020	
	Emissione Esecutiva	F.Durastanti	Dic-2020	G.Romano	Dic-2020	M.D'Avino	Dic-2020	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
C	Emissione Esecutiva		DIC-2020	98	DIC-2020	\mathcal{O}	DIC-2020	EXE
				- / '		X//		
				•		/ X		₹ \$50
						_ ~		_ 3 2 A E
								Glace of
								5

NN1X.1.0.D.78.CL.FV.03.B.0.001.C

n. Elab.:

D 78

STAZIONE PONTECAGNANO Sottopasso: Relazione di calcolo scatolare COMMESSA LOTTO CODIFICA 10

NN1X

DOCUMENTO CL FV03B0 001 REV. FOGLIO

С

1 di 95

INDICE

1.	PREMESSA	3
2.	GEOMETRIA DELLA STRUTTURA	4
3.	PROGETTO NUOVO SOTTOPASSO	6
3.1.	NORMATIVA DI RIFERIMENTO	6
3.2.	UNITA' DI MISURA E SIMBOLOGIA	7
3.3.	GEOMETRIA	7
3.4.	MATERIALI	8
3.5.	INQUADRAMENTO GEOTECNICO	9
3.6.	INTERAZIONE TERRENO-STRUTTURA	10
3.7.	MODELLAZIONE ADOTTATA	11
3.8.	ANALISI DEI CARICHI	13
4.	VERIFICA REQUISITI S.T.I.	22
5.	COMBINAZIONI DI CARICO	24
6.	CARATTERISTICHE DELLE SOLLECITAZIONI	30
.6.1.	INVILUPPO SLU/SLV	30
.6.2.	INVILUPPO SLE (RARA)	34
.7.	VERIFICHE SLU/SLV/SLE	37
.7.1.	ARMATURE DI RIPARTIZIONE	43
.7.2.	RIEPILOGO E INCIDENZA ARMATURE	46
.8.	VERIFICHE GEOTECNICHE	47
.8.1.	BASE REACTION	47
.8.2.	VERIFICHE SLU IN CONDIZIONI DRENATE	52
.8.3.	VERIFICHE SLU IN CONDIZIONI NON DRENATE	60
.8.4.	VERIFICHE SLV IN CONDIZIONI DRENATE	66
.8.5.	VERIFICHE SLV IN CONDIZIONI NON DRENATE	74

STAZIONE PONTECAGNANO
Sottopasso: Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

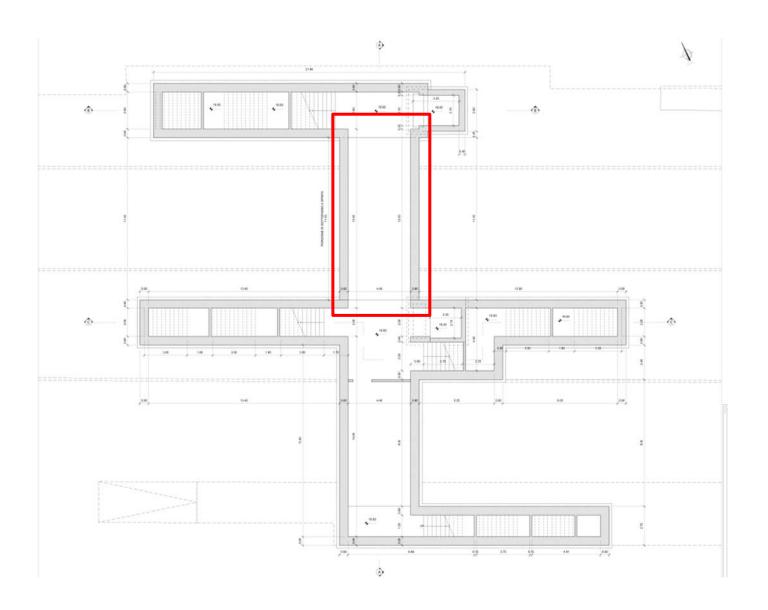
 NN1X
 10
 D 78
 CL FV03B0 001
 C
 2 di 95

.8.6.	TABELLA VERIFICHE GEOTECNICHE GEO	79
.8.7.	SOLLEVAMENTO PER GALLEGGIAMENTO UPL	79
.9.	OPERE DI VARO	80
9.1.	GEOMETRIA DELLA STRUTTURA E DATI DI INPUT	80
9.2.	DESCRIZIONE DELL'OPERA	80
9.3.	DIMENSIONAMENTO DELL'APPARATO DI SPINTA	82
9.3.1.	CONDIZIONI DI CALCOLO	82
9.3.2	DETERMINAZIONE DEI PESI E DELLE SPINTE	83
9.4.	VERIFICA GEOTECNICA	85
9.4.1.	SOLLECITAZIONI - SPINTA DEL MONOLITE	85
9.4.2	SPINTA PASSIVA	86
9.4.3	RESISTENZA ALLO SCORRIMENTO	86
9.4.4	CALCOLO COEFFICIENTE DI SICUREZZA	87
9.5.	VERIFICHE STRUTTURALI	88
9.5.1.	SOLLECITAZIONI MURO REGGISPINTA	88
9.5.1.	1. SOLLECITAZIONI MURO REGGISPINTA ARMATURE ORIZZONTALI	89
9.5.1.	2. SOLLECITAZIONI MURO REGGISPINTA ARMATURE VERTICALI	90
9.5.1.	3. VERIFICA DEL MURO REGGISPINTA	91
9.5.2	VERIFICA DELLA PLATEA DI VARO	93

STAZIONE PONTECAGNANO
Sottopasso: Relazione di calcolo scatolare

COMMESSA
LOTTO
NN1X
10

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

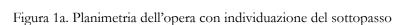

 NN1X
 10
 D 78
 CL FV03B0 001
 C
 3 di 95

1. PREMESSA

Nella presente relazione di calcolo è sviluppato il progetto, ai sensi delle norme attualmente vigenti NTC18, di un sottopasso lungo la linea ferroviaria "Napoli-Battipaglia" nella stazione di Pontecagnano alla progressiva 4+150.

Quanto riportato di seguito consentirà di verificare che il dimensionamento della struttura è stato effettuato nel rispetto dei requisiti di resistenza richiesti all'opera.

Si riportano di seguito una sezione longitudinale e una trasversale e uno stralcio planimetrico del sottopasso, volte ad individuare le grandezze impiegate nel dimensionamento:


STAZIONE PONTECAGNANO

Sottopasso: Relazione di calcolo scatolare

LINEA SALERNO - PONTECAGNANO AEROPORTO COMPLETAMENTO METROPOLITANA DI SALERNO TRATTA ARECHI - PONTECAGNANO AEROPORTO PROGETTO DEFINITIVO – FABBRICATI VIAGGIATORI

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NN1X 10 D 78 CL FV03B0 001 C 4 di 95

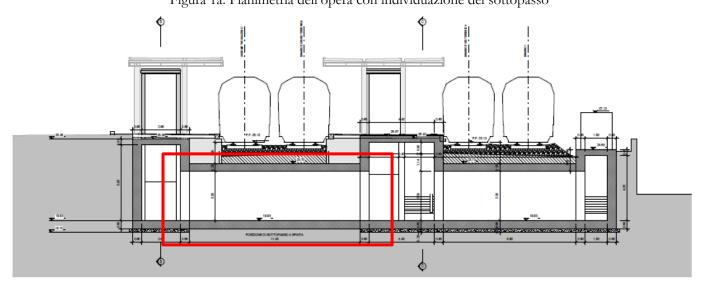


Figura 1b. Sezione trasversale dell'opera con individuazione del sottopasso

2. GEOMETRIA DELLA STRUTTURA

Il sottopasso si trova all'interno della stazione di Pontecagnano, al di sotto della linea ferroviaria ad una distanza fra piano ferro ed estradosso soletta pari ad H_{ric}, di cui spessore medio ballast più armamento pari a 0.80 m e la rimanente parte il rinterro. Esso ha dimensioni interne Lint×Hint, con piedritti di spessore Sp, soletta inferiore di spessore Sf e soletta superiore di spessore Ss. Nel seguito verrà esaminata una striscia di scatolare avente lunghezza di 1.00 m. Nella figura [Figura 2] sono riportate schematicamente la geometria dell'opera e la simbologia adottata.

Le caratteristiche geometriche hanno la seguente simbologia:

STAZIONE PONTECAGNANO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Sottopasso: Relazione di calcolo scatolare	NN1X	10	D 78	CL FV03B0 001	С	5 di 95

Spessore medio del ballast + armamento	H_b	[m]
Spessore traversina + rotaie (35 cm)	H _{th}	[m]
Larghezza traversina	L_{tk}	[m]
Spessore del rinterro	H_{r}	[m]
Larghezza totale del sottopasso	\mathbf{L}_{tot}	[m]
Larghezza utile del sottopasso	L_{int}	[m]
Spessore della soletta	Ss	[m]
Spessore piedritti	S_p	[m]
Spessore fondazione	S_{f}	[m]
Altezza libera del sottopasso	Hint	[m]
Altezza totale del sottopasso	H_{tot}	[m]
Larghezza striscia di calcolo	b	[m]

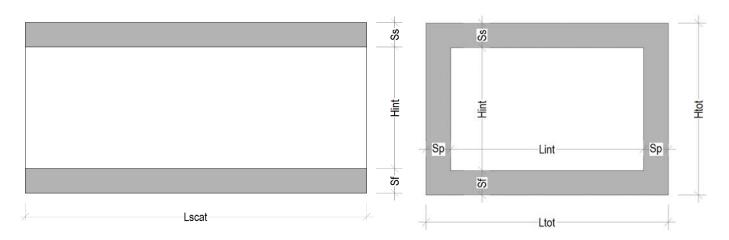


Figura 2. Simbologia adottata

STAZIONE PONTECAGNANO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
Sottopasso: Relazione di calcolo scatolare

NN1X 10 D 78 CL FV03B0 001 C 6 di 95

3. PROGETTO NUOVO SOTTOPASSO

Nel presente paragrafo si riportano i calcoli volti alla progettazione del sottopasso nel rispetto della norma attualmente vigente NTC18.

3.1. NORMATIVA DI RIFERIMENTO

Tutte le calcolazioni sono state eseguite nel rispetto delle normativa NTC18 attualmente vigente.. In particolare si è fatto riferimento:

-	L. n. 64 del 2/2/1974 -	Provvedimento per le costruzioni con particolari
		prescrizioni per le zone sismiche;
-	L. n. 1086 del 5/11/1971	Norme per la disciplina delle opere di conglomerato
		cementizio armato, normale e precompresso ed a struttura
		metallica;
-	D.M. 17.01.2018	Nuove Norme Tecniche per le Costruzioni;
-	Circolare 21 Gennaio 2019, n. 7	Istruzione per l'applicazione dell'Aggiornamento delle
		"Norme Tecniche per le Costruzioni" di cui al DM 17
		gennaio 2018;
-	RFI DTC INC PO SP IFS 001 A	Specifica per la progettazione e l'esecuzione dei ponti
		ferroviari e di altre opere minori sottobinario;
-	RFI DTC INC CS SP IFS 001 A	Specifica per la progettazione geotecnica delle opere civili
		ferroviarie;
-	EN 1992-1-1-1:2004	Eurocode 2: Design of concrete structures – Part 1-1:
		General rules and rules of building;
-	EN 1991-2-2003/AC:2010-1:2004	Eurocode 1-Parte 2
-	RFI DTC SI PS MA IFS 001 C	Manuale di progettazione delle opere civili - Parte II -
		Sezione 2 Ponti e Strutture;
-	RFI DTC SI MA IFS 001 D	Manuale di progettazione delle opere civili
-	RFI DTC SI SP IFS 001 C	Capitolato Generale Tecnico di Appalto delle Opere Civili;
-	EC08	Eurocodice 8;
-	Regolamento (UE) N.1299/2014	Specifiche tecniche di interoperabilità per il sottosistema
	del 18 novembre 2014 della	"infrastruttura" del sistema ferroviario dell'Unione Europea.
	Commissione Europea	

STAZIONE PONTECAGNANO Sottopasso: Relazione di calcolo scatolare
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NN1X
 10
 D 78
 CL FV03B0 001
 C
 7 di 95

3.2. <u>UNITA' DI MISURA E SIMBOLOGIA</u>

Si utilizza il Sistema Internazionale (SI):

Unità di misura principali

N (Newton) unità di forza
 m (metro) unità di lunghezza
 kg (kilogrammo) unità di massa
 s (secondo) unità di tempo

Unità di misura derivate da N

- (kiloNewton) 10^3 N

Si utilizzano i seguenti principali simboli con le relative unità di misura normalmente adottate:

γ	(gamma)	peso dell'unitàdi volume	(kN/m^3)
σ	(sigma)	tensione normale	(N/mm^2)
τ	(tau)	tensione tangenziale	(N / mm^2)
3	(epsilon)	deformazione	(m/m) -
ф	(fi)	angolo di resistenza	(° sessagesimali)

3.3. GEOMETRIA

Larghezza utile	Lint	4.40 m	luce interna scatolare
Altezza libera	Hint	3.30 m	altezza interna scatolare
Spessore piedritti	Sp	0.60 m	(consigliato: $Sp = Ss$)
Spessore soletta	Ss	0.50 m	(consigliato: $Ss = Lint/10+10cm$.)
Spessore fondazione	Sf	0.60 m	(consigliato: $Sf = Ss + 10cm$.)
Altezza ballast	Hb	0.80 m	
Rinterro (superiore)	Hr	0.40 m	
Lunghezza traversa	Ltb	2.4 0 m	
Altezza traversa	Htb	0.40 m	
Ricoprimento	Hric	1.20 m	Hb+Hr
Larghezza totale	Ltot	5.60 m	Lint+2xSPp
Altezza totale	Htot	4.40 m	Hint+SPs+SPf

LOTTO

COMMESSA

CODIFICA D 78

DOCUMENTO CL FV03B0 001 FOGLIO

8 di 95

STAZIONE PONTECAGNANO Sottopasso: Relazione di calcolo scatolare

3.4. MATERIALI

Per le opere in c.a. si adotta:

Calcestruzzo <u>C30/37</u> le cui caratteristiche principalisono:

- Resistenza cilindrica caratteristica: $f_{ck} = 30 \text{N/mm}^2$
- $f_{cd} = \alpha_{cc} f_{ck} / \gamma_m$, dove: Resistenza di calcolo a compressione semplice:
- $\alpha_{cc} = 0.85$ e $\gamma_{m} = 1.5$;
- $f_{cd} = 17 \text{ N/mm}^2$
- Resistenza di calcolo a trazione semplice: $f_{ctd} = f_{ctk} / \gamma_m$, dove:
- $\gamma_{\rm m} = 1.5;$
- $f_{ctd} = 1.35 \text{ N/mm}^2$.
- Modulo elastico: Ec= 32836 N/mm².
- Tolleranza di posa del copriferro = 10 mm;
- Classe di esposizione XA1
- Copriferro = 40 mm
- Condizioni ambientali: aggressive
- Apertura fessure limite: w1 = 0.2 mm

Acciaio da cemento armato normale **B450C** controllato in stabilimento. Le barre sono ad aderenza migliorata. Le caratteristiche meccaniche sono:

Tensione caratteristica di snervamento:

 $f_{vk} = 450 \text{ Nmm}^2$

Resistenza di calcolo dell'acciaio:

 $f_{vd} = f_{vk} / \gamma_s$ dove:

 $\gamma_{\rm s} = 1.15$

 $f_{vd} = 391 \text{ Nmm}^2$

Allungamento D1 > 12%

Es=206000 Nmm² Modulo di elasticità:

 $\geq 40\varphi$ Sovrapposizioni barre

STAZIONE PONTECAGNANO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
Sottopasso: Relazione di calcolo scatolare

NN1X 10 D 78 CL FV03B0 001 C 9 di 95

3.5. <u>INQUADRAMENTO GEOTECNICO</u>

Si riporta di seguito la stratigrafia in corrispondenza della zona di riferimento:

STAZIONE 3: Stazione di Pontecagnano

		1		
da pk	4+150			
a pk	4+410			
quota terreno	25.00 - 25.10	m s.l.m.		
quota progetto	25.10 - 25.30	m s.l.m.		
quota falda	8.50 - 9.00	m da p.c.		
Unità gastagnias	da	a		
Unità geotecnica	[m]	[m]		
R	0.00	0.50 - 1.00		
L1	0.50 - 1.00	7.50 - 8.50		
GS*	7.50 - 8.50	19.50 - 22.00		
S	19.50 - 22.00	30.50		
GS	30.50			
* lente di S da pk 4+300 a 15.00 m circa				

Categoria sottosuolo E

Per l'inquadramento geotecnico si fa riferimento alla relazione geotecnica, della quale si riportano i parametri

Lo strato significativo del profilo geotecnico è l'unità

la cui descrizione nella relazione geotecnica è:

Limo scarsa consistenza

geotecnici del terreno di fondazione, del rinterro e del rinfianco.

Peso specifico terrenoγt18.0 kN/m3angolo d'attrito terrenoφ25.0 [°]coesione efficace terrenoc'2.0 kN/m2coesione non drenata terrenocu70.0 kN/m2

I parametri geotecnici del rinterro e del terreno di rinfianco sono i seguenti:

Peso specifico rinterro	FERROVIARIO	γt	20.0 kN/m3	
angolo di attrito rinterro	Ø'	38.0 [°]	0.663 [rad]	
coesione rinterro		cu	0.0 kN/m2	
Peso specifico terreno di rinfia	γt	18.0 kN/m3		
angolo di attrito terreno di rin	fianco	Ø'	25.0 [°]	0.436 [rad]
coesione terreno di rinfianco		cu	0.0 kN/m2	

FALDA		
Quota falda dal p.c.	q_w	8.50 m
Peso specifico	γ_{w}	10.00 kN/m^3

STAZIONE PONTECAGNANO

Sottopasso: Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NN1X
 10
 D 78
 CL FV03B0 001
 C
 10 di 95

3.6. INTERAZIONE TERRENO-STRUTTURA

Per la determinazione della costante di sottofondo si può fare riferimento alle seguenti formulazioni assimilando il comportamento del terreno a quello di un mezzo elastico omogeneo:

•
$$s = B \cdot ct \cdot (q - \sigma v0) \cdot (1 - v^2) / E'_{op}$$

dove:

- -s = cedimento elastico totale;
- -B = lato minore della fondazione;
- ct = coefficiente adimensionale di forma ottenuto dalla interpolazione dei valori dei coefficienti proposti dal Bowles, 1960 (L = lato maggiore della fondazione):

ct =
$$0.853 + 0.534 \ln(L / B)$$
 rettangolare con L / B \leq 10 ct = $2 + 0.0089 (L / B)$ rettangolare con L / B \geq 10

- -q = pressione media agente sul terreno;
- $-\sigma v0$ = tensione litostatica verticale alla quota di posa della fondazione;
- -v = coefficiente di Poisson del terreno;
- $-E'_{op}$ = modulo elastico operativo del terreno sottostante.

Il valore della costante di sottofondo kw è valutato attraverso il rapporto tra il carico applicato ed il corrispondente cedimento pertanto, si ottiene:

•
$$kw = E'_{op} / [(1-v2) \cdot B \cdot ct]$$

Di seguito si riportano in forma tabellare i risultati delle valutazioni effettuate per il caso in esame, avendo considerato per E'op il valore minimo tra quelli indicati per l'Unità Geotecnica in esame ed una dimensione longitudinale della fondazione ritenuta potenzialmente collaborante nella diffusione dei carichi:

Unità stratigrafica

Descrizione unità stratigrafica

1) L1

Limo scarsa consistenza

Modulo elastico medio terreno	E'op	17000 kN/m^2	(il minore tra i valori proposti)
Coefficiente di Poisson medio terreno	ν	0.3	
Lato minore della fondazione	В	5.6 m	
Lato maggiore della fondazione	L	13.6 m	
Rapporto dei lati	L/B	2.4	
Coefficiente adimensionale	ct	1.327	
Costante di sottofondo	Kw	2514 kN/m^3	

STAZIONE PONTECAGNANO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Sottopasso: Relazione di calcolo scatolare	NN1X	10	D 78	CL FV03B0 001	С	11 di 95

3.7. MODELLAZIONE ADOTTATA

Il modello di calcolo attraverso il quale viene schematizzata la struttura è quello di telaio chiuso su letto di molle alla Winkler. Il programma di calcolo utilizzato è un programma ad elementi finiti, il Sap 2000. Le caratteristiche delle aste modellate con elementi frame sono le seguenti:

asta	base	altezza	descrizione
Asta 1	100 cm	60 cm	(soletta inferiore)
Aste 2, 4	100 cm	60 cm	(Piedritti)
Asta 3	100 cm	50 cm	(soletta superiore)

Le caratteristiche geometriche del modello e le coordinate dei nodi sono le seguenti:

Linterasse	5.00 m
Hinterasse	3.85 m
N.nodi	13
N.nodi sup	2
N.nodi inf	11
N.spazi inf	10

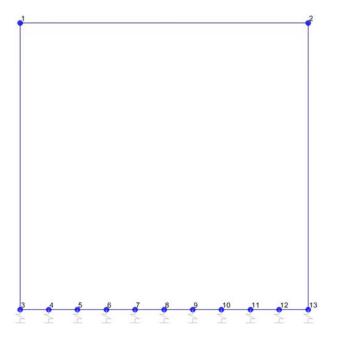


Figura 3. Numerazione nodi modello SAP

Nodo	X	Z
1	0.000	3.850
2	5.000	3.850
3	0.000	0.000
4	0.500	0.000
5	1.000	0.000
6	1.500	0.000
7	2.000	0.000
8	2.500	0.000
9	3.000	0.000
10	3.500	0.000
11	4.000	0.000
12	4.500	0.000
13	5.000	0.000

STAZIONE PONTECAGNANO

Sottopasso: Relazione di calcolo scatolare

LINEA SALERNO - PONTECAGNANO AEROPORTO COMPLETAMENTO METROPOLITANA DI SALERNO TRATTA ARECHI - PONTECAGNANO AEROPORTO PROGETTO DEFINITIVO – FABBRICATI VIAGGIATORI

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	•
NN1X	10	D 78	CL FV03B0 001	С	12 di 95	

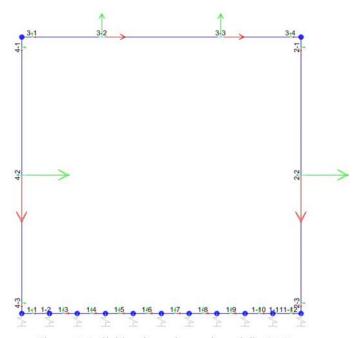


Figura 4: Individuazione elementi modello SAP

L'opera è stata considerata vincolata alla base mediante dei vincoli cedevoli in funzione delle caratteristiche elastiche del terreno di sottofondo.

La soletta inferiore viene divisa in 10 elementi per poter schematizzare, tramite le molle applicate, l'interazione terreno-struttura. Per la rigidezza delle molle, nel il caso in esame, si assume il valore del Modulo di reazione verticale desunto dai parametri della relazione geotecnica:

Rigidezza molle nodali SAP

ks		2514 kN/m^3
nodi centrali (6,7,8,9,10)		
Linfl		0.500 m
Kcentrale	ks x Linfl x 1	1257 kN/m
nodi intermedi (4,5,11,12)		
Linfl		0.500 m
Kintermedio	1,5 x ks x Linfl x 1	1886 kN/m
nodi estremità (3,13)		
Linfl		0.550 m
Kestremità	2,0 x ks x Linfl x 1	2766 kN/m

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Scatolare NN1X 10 D 78 CL FV03B0 001 C 13 di 95

STAZIONE PONTECAGNANO Sottopasso: Relazione di calcolo scatolare

3.8. <u>ANALISI DEI CARICHI</u>

Si riportano di seguito i carichi utilizzati per il calcolo delle sollecitazioni e le verifiche delle sezioni della struttura in esame.

Peso proprio della struttura (condizione DEAD)

Il peso proprio delle solette e dei piedritti viene calcolato automaticamente dal programma di calcolo utilizzato considerando per il calcestruzzo $\gamma = 25 \mathrm{kN/m3}$.

Peso specifico calcestruzzo armato	γcls	25 kN/m^3	
peso singolo piedritto	Pp	15.00 kN/m 7 cls x Sp)
peso soletta superiore	Pss	12.50 kN/m 7 cls x Ss	
peso fondazione	Psf	15.00 kN/m yels x Sf	-

Permanenti portati (condizione PERM)

- '				
peso specifico ballast	γb	18	kN/m^3	
altezza ballast	Hb	0.80	m	
peso ballast	Pb	14.40	kN/m	$\gamma b \times Hb$
peso specifico rinterro	γr	20.0	kN/m^3	
altezza rinterro	Hr	0.40	m	
peso rinterro	Pr	8.00	kN/m	$\gamma r \times Hr$
peso specifico massetto di protezione	γm	24	kN/m^3	
altezza massetto di protezione	Hm	0.05	m	
peso massetto di protezione	Pm	1.20	kN/m	$\gamma mx Hm$
Permanente totale	G2p	23.60	kN/m	Pb + Pr
Permanente nodi 1 e 2	G2P	7.08	kN	G2p x Sp / 2

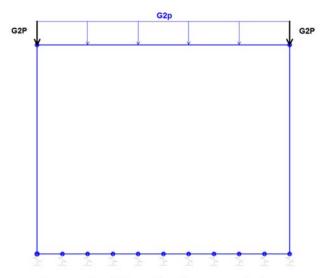


Figura 5. Condizione di carico PERM da SAP2000

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NN1X
 10
 D 78
 CL FV03B0 001
 C
 14 di 95

STAZIONE PONTECAGNANO
Sottopasso: Relazione di calcolo scatolare

Spinta del terreno (condizioni SPTSX e SPTD)	X)		
angolo di attrito rinterro	Ø'	25.0 [°]	0.436 [rad]
coefficiente spinta attiva ka	ka	0.406	(1 - senO) / (1 + senO)
coefficiente spinta riposo ko	ko	0.577	(1 - senO)
coefficiente spinta passiva kp	kp	2.464	(1 + senO) / (1 - senO)
Pressione estradosso soletta superiore	P1	13.63 kN/m^2	$ko \times (Pb + Pr + Pm)$
Pressione asse soletta superiore	P2	16.51 kN/m^2	$ko \times (Pb + Pr + Pm + \gamma r \times Ss / 2)$
Pressione asse soletta inferiore	Р3	60.97 kN/m^2	$ko \times [Pb + Pr + Pm + \gamma r \times (Ss + Hint + Sf / 2)]$
Pressione intradosso soletta inferiore	P4	64.44 kN/m^2	$ko \times (Pb + Pr + Pm + \gamma r \times Htot)$
Forza concentrata asse soletta superiore	F1	3.77 kN/m	(P1+ P2) / 2 x Ss / 2
Forza concentrata asse soletta inferiore	F2	18.81 kN/m	(P3+ P4) / 2 × Sf / 2

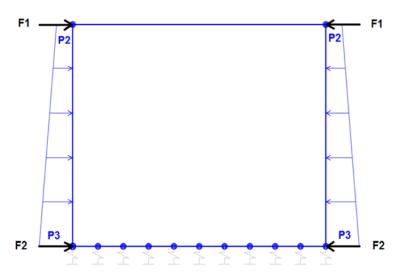


Figura 6. Condizione di carico SPTDX-SPTSX da SAP2000

I carichi concentrati nei nodi 1 e 3 (per la SPTSX) oppure 2 e 13 (per la SPTDX) rappresentano la parte di spinta del terreno esercitata su 1/2 spessore della soletta sup. e su 1/2 spessore della soletta inferiore.

Le due condizioni di carico SPTDX e SPTSX vengono applicate al modello con il loro valore al 100% (come visibile in figura 6 sopra). Lo sbilanciamento di tali condizioni (100% SPTSX e 60% SPTSX) viene tenuto in conto tramite opportuni coefficienti di combinazione, come è visibile in seguito al paragrafo § 5 - "Combinazioni di Carico" - del presente elaborato.

Carichi accidentali, ripartizione carichi verticali (condizione ACCM)

In funzione delle caratteristiche geometriche dell'opera risulta più sfavorevole il carico dovuto al treno LM 71 rispetto al carico dovuto al treno SW/2.

STAZIONE PONTECAGNANO
Sottopasso: Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NN1X
 10
 D 78
 CL FV03B0 001
 C
 15 di 95

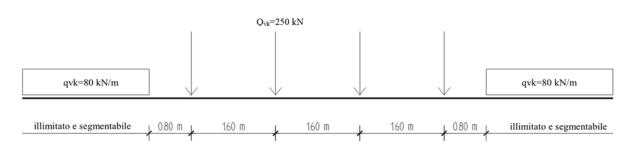


Figura 7. Treno LM71

Figura 8. Treno SW/2

Per il calcolo del coefficiente dinamico Φ si fa riferimento al paragrafo 1.4.2 "effetti dinamici" delle istruzioni per la progettazione e l'esecuzione dei ponti ferroviari.

poiché risulta:

H int < 5 m

L int < 8 m

Si ottiene considerando un ridotto standar manutentivo $\Phi 3 = 1.35$. In accordo al §5.2.2.2.3 NTC18 tale coefficiente dinamico nei casi di scatolari, con o senza solettone, aventi copertura h>1,0 può essere ridotto nella

$$\Phi_{rid} = \Phi - \frac{h - 1,00}{10} \ge 1,0$$

dove h, in metri, è l'altezza della copertura dall'estradosso della struttura alla faccia superiore delle traverse [Hric]. Per le strutture dotatate di una copertura maggiore di 2,50 m può assumersi un coefficiente di incremeento dinamico unitario.

STAZIONE PONTECAGNANO

Sottopasso: Relazione di calcolo scatolare

LINEA SALERNO - PONTECAGNANO AEROPORTO COMPLETAMENTO METROPOLITANA DI SALERNO TRATTA ARECHI - PONTECAGNANO AEROPORTO PROGETTO DEFINITIVO – FABBRICATI VIAGGIATORI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NN1X
 10
 D 78
 CL FV03B0 001
 C
 16 di 95

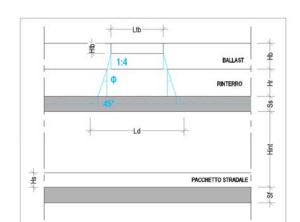


Figura 9. Schema modalità di diffusione dei carichi ferroviari

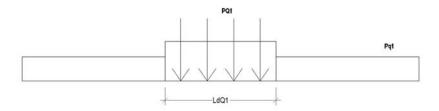


Figura 10. Carichi Treno LM71 su Ld

Sia per il calcolo delle sollecitazioni massime in mezzeria della soletta superiore che per quelle massime all'incastro con i piedritti di detta soletta, il carico dovuto al treno LM71 viene distribuito per tutta la larghezza LdQ1 del treno di carico.

Carichi accidentali, ripartizione carichi verticali (condizione ACCM)

Incremento dinamico	Ф3*	1.35	* valido per Hint<5m, Lint<8m
Incremento dinamico con ricoprimento	Ф3	1.33	Φ 3=1 per Hric >2,5m
Lunghezza caratteristica	Lφ	4.40 m	tab. 5.2.II - NTC2018
Coefficiente di adattamento	α	1.10	
Larghezza di diffusione nel ballast	Ldb	0.20 m	Diffusione 1:4 nel ballast
Larghezza di diffusione nel rinterro	Ldr	0.37 m	Diffusione secondo angolo attrito
Larghezza di diffusione nel cls	Ldc	0.50 m	Diffusione 45° nel cls
Larghezza trasv. di diffusione del carico	Ld	3.47 m	$Ltb + Ldb + Ldr + Ld\epsilon$
Carico distribuito per treno LM71	q1	80.00 kN/m	
Carico concentrato per treno LM71	Q1	250.00 kN	
N°. carichi concentrati per treno LM71	NQ1	4	
Larghezza applicazione carichi conc. Q1	LaQ1	6.40 m	
Larghezza distribuzione carichi conc. Q1	LdQ1	6.40 m	
Carico ripartito verticale per LM71 (q1)	Pq1	33.70 kN/m^2	$q1 \times \Phi 3 \times \alpha / Ld$
Carico ripartito verticale per LM71 (Q1)	PQ1	65.82 kN/m^2	Q1 x NQ1 x Φ 3 x α / (Ld x LdQ1)

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NN1X	10	D 78	CL FV03B0 001	С	17 di 95

STAZIONE PONTECAGNANO	
Sottopasso: Relazione di calcolo scatolare	

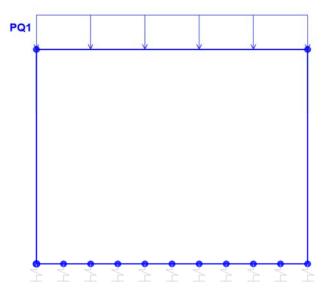


Figura 11. Condizione di carico ACCM da SAP2000

Spinta sui piedritti prodotta dal sovraccarico (condizioni SPACCSX e SPACCDX)

Carico distribuito per treno LM71	Sq1	14.63 kN/m^2 (q1 ×α / Ld) × Kο
Carico concentrato per treno LM71	SQ1	28.57 kN/m ² Q1 × NQ1 ×α / (Ld × LdQ1) × Kο
Spinta semispessore soletta superiore	Fq1sup	7.14 kN/m SPQ1 x SPs / 2
spinta semispessore soletta inferiore	Fq1inf	8.57 kN/m SPQ1 x SPi / 2

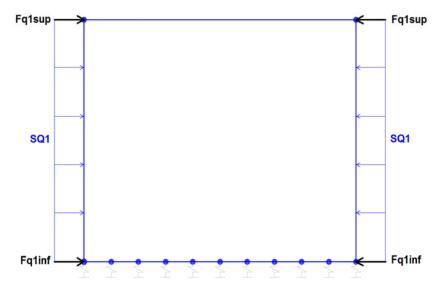


Figura 12. Condizione di carico SPACCSX e SPACCDX da SAP2000

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
NN1X	10	D 78	CL FV03B0 001	С	18 di 95	

STAZIONE PONTECAGNANO
Sottopasso: Relazione di calcolo scatolare

Frenatura e avviamento (condizione AVV)

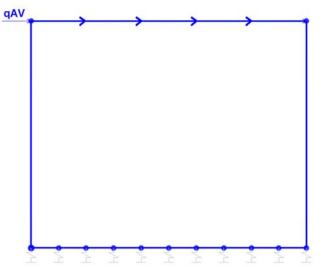


Figura 13. Condizione di carico AVV da SAP2000

Azioni termiche (condizione TERM)

Alla soletta superiore si applica una variazione termica uniforme pari a $\Delta t = \pm 15$ °C ed una variazione nello spessore tra estradosso ed intradosso pari a $\Delta t = \pm 5$ °C.

Variazione termica uniforme	∆Tunif	+-15.00 [°]	Sulla soletta superiore
Variazione termica differenziale	∆Tdiff	+-5.00 [°]	Sulla soletta superiore
	Gradiente	+-10.00 [°/m]	△ Tdiff / Ss

Ritiro igrometrico (condizione RITIRO)

Gli effetti del ritiro vanno valutati a "lungo termine" attraverso il calcolo dei coefficienti di ritiro finale ϵ cs (t , t0) e di viscosità ϕ (t , t0), come definiti nell'EUROCODICE 2- UNI EN 1992-1-1 Novembre 2005 e D. M. 17-01-2018.

I fenomeni di ritiro vengono considerati agenti solo sulla soletta di copertura ed applicati nel modello come una variazione termica uniforme equivalente agli effetti del ritiro:

Variazione termica uniforme equivalente ΔTritiro -[11.80°] Sulla soletta superiore

STAZIONE PONTECAGNANO

Sottopasso: Relazione di calcolo scatolare

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NN1X	10	D 78	CL FV03B0 001	С	19 di 95

CONDIZIONI DI CARICO SISMICHE

Per il calcolo dell'azione sismica si utilizza il metodo dell' analisi pseudostatica in cui l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico k. Le forze sismiche sono pertanto le seguenti:

Forza sismica orizzontale Fh=kh*W Forza sismica verticale Fv=kv*W

I valori dei coefficienti sismici orizzontale kh e verticale kv

kh = a max /g

 $kv = \pm 0,5 \times kh$

Con riferimento alla nuova classificazione sismica del territorio nazionale, ai fini del calcolo dell'azione sismica secondo il DM 17/01/2018 viene assegnata all'opera una vita nominale VN ed una classe d'uso Cu; segue un periodo di riferimento VR=VN *CU.

A seguito di tale assunzione si ottiene allo stato limite ultimo SLV in funzione della Latitudine e Longitudine del sito in esame un valore dell'accelerazione pari ad ag, il cui valore è di seguito riportato, come desunto anche dalla relazione geotecnica.

In assenza di analisi specifiche della risposta sismica locale, l'accelerazione massima per la determinazione delle forze di inerzia può essere valutata con la relazione:

amax = S * ag = Ss *St* ag

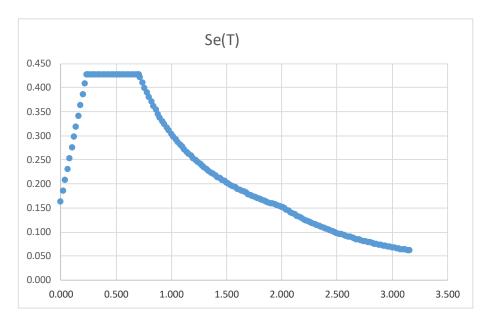
Le forze di inerzia sullo scatolare (masse di peso proprio soletta superiore e piedritti, rinterro e ballast, 20% treno di carico,..) sono pari alle masse moltiplicate per kh e kv ove: $kh = \beta MxSxag/g$ e kv = kh/2. Essendo lo scatolare non libero di subire spostamenti relativi rispetto al terreno, $\beta M = 1$.

vita nominale	$V_{ m N}$	75 anni
classe d'uso	CL	Ш
coefficiente d'uso	C_{U}	1.50
vita di riferimento = $C_U * V_N$	V_R	112.5 anni
probabilità di superamento nel periodo di riferimento	$P_{ m VR}$	10%
periodo di ritorno del sisma	T_R	1068 anni

Spettro di risposta in accelerazione della componente orizzontale

Coordinate del sito in oggetto:

Latitudine 40.64035 14.87364 Longitudine


STAZIONE PONTECAGNANO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Sottopasso: Relazione di calcolo scatolare	NN1X	10	D 78	CL FV03B0 001	С	20 di 95

Parametri sismici di progetto		
accelerazione massima orizzontale al bedrock	ago	0.102 g
fattore amplificazione massima spettro accelerazione	Fo	2.616 sec
periodo inizio tratto a velocità costante spettro acc. orizz.	T*c	0.449
categoria sottosuolo		E
categoria topografica		T1
amplificazione topografica	S_{T}	1.000
smorzamento viscoso convenzionale	ξ	5%
fattore di correzione per $\xi <> 5\%$	η	1.000

Tab.3.2.V	S_S	C_{C}	S_{S}	C_{C}
A	1.00	1.00		
В	1.20	1.29		
С	1.50	1.37		
D	1.80	1.87		
Е	1.60	1.58	1.60	1.58

coefficiente amplificazione stratigrafica	S_S	1.600
coefficiente di amplificazione	S	1.600
coefficiente categoria sottosuolo	C_{C}	1.584
periodo inizio tratto a accelerazione costante = Tc / 3	$\mathrm{T_{B}}$	0.237 sec
periodo inizio tratto a velocità costante = Cc * T*c	T_{C}	0.711 sec
periodo inizio tratto a spostamento costante = $4 * ag/g +1,6$	T_{D}	2.008 sec
accelerazione massima orizzontale al suolo = Ss x St x ag/g	ago,max	0.163 g

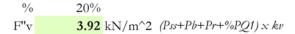
SPETTRO ORIZZONTALE ELASTICO SLV

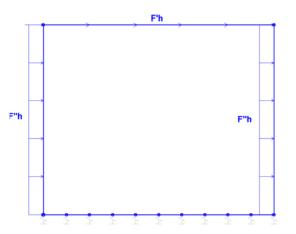
S S LINEA SALERNO - PONTECAGNANO AEROPORTO COMPLETAMENTO METROPOLITANA DI SALERNO TRATTA ARECHI - PONTECAGNANO AEROPORTO PROGETTO DEFINITIVO – FABBRICATI VIAGGIATORI

STAZIONE PONTECAGNANO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Sottopasso: Relazione di calcolo scatolare	NN1X	10	D 78	CL FV03B0 001	С	21 di 95

Accelerazioni per il calcolo delle forze di inerzia agenti sullo scatolare

Coefficiente di riduzione dell'acc max attesa al sito β 1.000 ao = kh = ago,max = S x ag/g valore PGA x scatolare av = ky = kh / 2 valore PGA x scatolare av = ky 0.0816 g


Forze di inerzia (condizione SismaH)


Forza di inerzia treno di carico - (%) Forza orizzontale sulla soletta di copertura Forza orizzontale su singolo piedritto

% 20% F'h 7.84 kN/m (Pss+Pb+Pr+%PQ1) x kh F''h 2.45 kN/m^2 Pp x kh

Forze di inerzia (condizione SismaV)

Forza di inerzia treno di carico - (%) Forza verticale sulla soletta di copertura

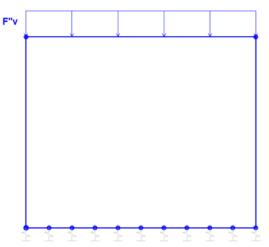


Figura 14. Condizione di carico SismaH e SismaV da SAP2000

Spinta sismica terreno - Teoria di WOOD (condizioni SPSDX e SPSSX)

Forza distribuita su uno solo dei piedritti qW 20.36 kN/m^2 (%PQ1+G2p+ $\gamma r \times Htot$) × (ago,max) Forza concentrata nodo superiore piedritto QWsup Forza concentrata nodo inferiore piedritto QWinf 6.11 kN $qW \times Sf / 2$

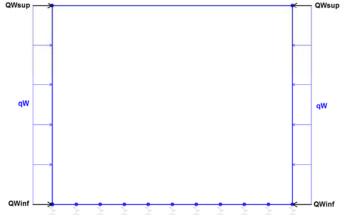
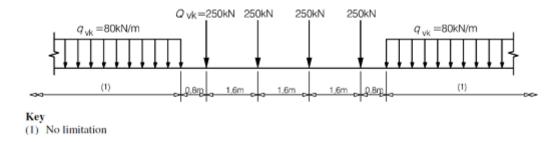


Figura 15. Condizione di carico SPSDX e SPSSX da SAP2000

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO


 NN1X
 10
 D 78
 CL FV03B0 001
 C
 22 di 95

STAZIONE PONTECAGNANO
Sottopasso: Relazione di calcolo scatolare

4. <u>VERIFICA REQUISITI S.T.I.</u>

Di seguito si effettua la valutazione del carico equivalente previsto dalle Specifiche Tecniche di Interoperabilita con cui si da evidenza che l'opera in esame è idonea a sostenere tale carico.

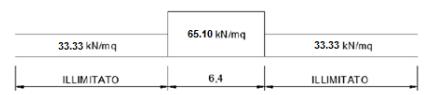
Il modello di carico LM71 citato dalle S.T.I. è definito nella norma EN 1991-2:2003/AC:2010.

Il carico equivalente si ricava dalla ripartizione trasversale e longitudinale dei carichi per effetto delle traverse e del ballast previsti dalla stessa norma EN 1991-2:2003/AC:2010.

Considerando i 4 carichi assiali da 250 kN e la relativa distribuzione longitudinale, il carico verticale equivalente a metro lineare agente alla quota della piattaforma ferroviaria (convenzionalmente a 70 cm dal piano del ferro) risulta pari a:

$$p = \frac{4 \times 250}{4 \times 1.60} = 156.25 \text{ kPa}$$

$$156.25 \text{ kN/m}$$


$$80 \text{ kN/m}$$

$$156.25 \text{ kN/m}$$

$$156.25 \text{ kN/m}$$

$$156.25 \text{ kN/m}$$

Considerando che la distribuzione trasversale dei carichi è su una larghezza massima di 3 m secondo quanto previsto da EN 1991 – 2:2003/AC:2010, si utilizza una larghezza di progetto pari a 2,40 m in quanto risulta cautelativo rispetto a quanto previsto dalla norma sopra citata. Si ricava, quindi, il carico equivalente unitario agente alla quota della piattaforma ferroviaria:

STAZIONE PONTECAGNANO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Sottopasso: Relazione di calcolo scatolare NN1X 10 D 78 CL FV03B0 001 C 23 di 95

A tali carichi si deve applicare il coefficiente α relativo alle categorie S.T.I. come indicato nella tabella 11 di seguito riportata:

Tabella 11 Fattore alfa (α) per la progettazione di strutture nuove							
Tipo di traffico	Valore minimo del fattore alfa (α)						
P1, P2, P3, P4	1,0						
P5	0,91						
P6	0,83						
P1520	Punto in sospeso						
P1600	1,1						
F1, F2, F3	1,0						
F4	0,91						
F1520	Punto in sospeso						
F1600	1,1						

Nel caso in esame, il coefficiente α è pari ad 1.0 perché le categorie di traffico sono P4 per il traffico passeggeri ed F2 per il traffico merci per cui alle opere si applicano i seguenti carichi equivalenti:

33.33 kN/mq	65.10 kN/mq	33.33 kN/mq
ILLIMITATO	6,4	ILLIMITATO

In conclusione nell'opera in oggetto la ripartizione del carico a quota del piano di regolamento è stata effettuata considerando una distribuzione in senso trasversale secondo una pendenza di 1 a 4 all'interno del ballast per cui risulta:

$$Ld = 2.4 + 0.40 / 4 * 2 = 2.60 m$$

anziché:

$$Ld= 3.0 + 0.40 / 4 * 2 = 3.20 m$$

come previsto dalla EN 1991 – 2:2003/AC:2010 che riuslterebbe meno gravoso.

Longitudinalmente invece i carichi assiali sono stati distribuiti uniformemente su 6.4 m.

A tali carichi è stato applicato un coefficiente α pari a 1.1 come indicato nel manuale di progettazione per cui in definitiva il carico considerato a quota della piattaforma ferroviaria è pari a:

-
$$q1 = 4*250/6.4/2.60 = 60.10 \text{ kN/m2}$$

$$-q2 = 80/2.60 = 30.77 \text{ kN/m}$$

a vantaggio di sicurezza rispetto ai carichi calcolati con riferimento alle STI.

STAZIONE PONTECAGNANO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
Sottopasso: Relazione di calcolo scatolare

NN1X 10 D 78 CL FV03B0 001 C 24 di 95

5. COMBINAZIONI DI CARICO

Gli effetti dei carichi verticali, dovuti alla presenza dei convogli, vengono sempre combinati con le altre azioni derivanti dal traffico ferroviario, adottando i coefficienti di cui alla Tabella 5.2.IV del DM 17/01/2018 di seguito riportata, In particolare, per ogni gruppo viene individuata una azione dominante che verrà considerata per intero; per le altre azioni, vengono definiti diversi coefficienti di combinazione. Ogni gruppo massimizza una particolare condizione alla quale la struttura dovrà essere verificata.

Tab. 5.2.III - Carichi mobili in funzione del numero di binari presenti sul ponte

Numero	Binari	Traffico	normale		
di binari	Carichi	caso a ⁽¹⁾	caso b ⁽¹⁾	Traffico pesante ⁽²⁾	
1	Primo	1,0 (LM 71"+"SW/0)	-	1,0 SW/2	
	Primo	1,0 (LM 71"+"SW/0)	-	1,0 SW/2	
2	secondo	1,0 (LM 71"+"SW/0)	-	1,0 (LM 71"+"SW/0)	
	Primo	1,0 (LM 71"+"SW/0)	0,75 (LM 71"+"SW/0)	1,0 SW/2	
- 2	secondo	1,0 (LM 71"+"SW/0)	0,75 (LM 71"+"SW/0)	1,0 (LM 71"+"SW/0)	
≥3	Altri	-	0,75 (LM 71"+"SW/0)	-	

⁽¹⁾ LM71 "+" SW/0 significa considerare il più sfavorevole fra i treni LM 71, SW/0

Tab. 5.2.IV -Valutazione dei carichi da traffico

Tab. 5.2.1V - vanuazione dei caricin da traffico											
TIPO DI CARICO	Azioni v	erticali		Azioni orizzont	ali						
Gruppi di carico	Carico verticale (1)	Treno scarico	Frenatura e avviamento	Centrifuga	Serpeggio	Commenti					
Gruppo 1	1,0	-	0,5 (0,0)	1,0 (0,0)	1,0 (0,0)	massima azione verticale e laterale					
Gruppo 2 (2)	-	1,0	0,0	1,0 (0,0)	1,0 (0,0)	stabilità laterale					
Gruppo 3 (2)	1,0 (0,5)	-	1,0	0,5 (0,0)	0,5 (0,0)	massima azione longitudinale					
Gruppo 4	0,8 (0,6;0,4)	-	0,8 (0,6;0,4)	0,8 (0,6;0,4)	0,8 (0,6;0,4)	Fessurazione					

⁽¹⁾ Includendo tutti i valori (F; a; etc..)

⁽²⁾Salvo i casi in cui sia esplicitamente escluso

⁽²⁾ La simultaneità di due o tre valori caratteristici interi (assunzione di diversi coefficienti pari ad 1.0), sebbene improbabile, è stata considerata come semplificazione per i gruppi di carico 1,2 e 3 senza che ciò abbia significative conseguenze proget-

I valori campiti in grigio rappresentano l'azione dominante

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NN1X
 10
 D 78
 CL FV03B0 001
 C
 25 di 95

STAZIONE PONTECAGNANO Sottopasso: Relazione di calcolo scatolare

Nelle tabelle sopra riportate è indicato un coefficiente per gli effetti a sfavore di sicurezza e, tra parentesi, un coefficiente, minore del precedente, per gli effetti a favore di sicurezza.

In fase di combinazione, ai fini delle verifiche degli SLU e SLE per la verifica delle tensioni, si sono considerati i soli Gruppo 1 e 3, mentre per la verifica a fessurazione è stato utilizzato il Gruppo 4. Nella tabella 5.2.III vengono riportati i carichi da utilizzare in caso di impalcati con due, tre o più binari caricati. I Gruppi definiscono le azioni che nelle diverse combinazioni sono generalmente definite come Qki. I coefficienti di amplificazione dei carichi g e i coefficienti di combinazione ysono riportati nelle tabelle seguenti.

In particolare nel calcolo della struttura scatolare si fa riferimento alla combinazione A1 STR.

Tab. 5.2.V - Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

22 1					
Coefficie	nte		EQU(1)	A1	A2
Azioni permanenti	favorevoli	YG1	0,90	1,00	1,00
	sfavorevoli		1,10	1,35	1,00
Azioni permanenti non	favorevoli	YG2	0,00	0,00	0,00
strutturali ⁽²⁾	sfavorevoli		1,50	1,50	1,30
Ballast ⁽³⁾	favorevoli	ΥВ	0,90	1,00	1,00
	sfavorevoli		1,50	1,50	1,30
Azioni variabili da traffi-	favorevoli	γο	0,00	0,00	0,00
CO ⁽⁴⁾	sfavorevoli		1,45	1,45	1,25
Azioni variabili	favorevoli	γQi	0,00	0,00	0,00
	sfavorevoli	~	1,50	1,50	1,30
Precompressione	favorevole	γP	0,90	1,00	1,00
	sfavorevo-		1,00(5)	1,00(6)	1,00
	le				
Ritiro, viscosità e cedi-	favorevole	γCe	0,00	0,00	0,00
menti non imposti appo-	sfavorevo-	d	1,20	1,20	1,00
sitamente	le				

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori della colonna A2.

 $\mathbf{Tab.}\ 5.2.\mathbf{VI}$ - Coefficienti di combinazione Ψ delle azioni

	ψο	ψ1	Ψ 2
Carico sul rilevato a tergo delle	0,80	0,50	0,0
spalle			
Azioni aerodinamiche generate	0,80	0,50	0,0
dal transito dei convogli			
gr_1	0,80(2)	0,80(1)	0,0
gr_2	0,80(2)	0,80(1)	-
gr_3	0,80(2)	0,80(1)	0,0
gr_4	1,00	1,00(1)	0,0
F_{Wk}	0,60	0,50	0,0
in fase di esecuzione	0,80	0,0	0,0
SLU e SLE	0,0	0,0	0,0
T_k	0,60	0,60	0,50
	spalle Azioni aerodinamiche generate dal transito dei convogli gr ₁ gr ₂ gr ₃ gr ₄ F _{Wk} in fase di esecuzione SLU e SLE		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

⁽¹⁾0,80 se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

⁽³⁾ Nel caso in cui l'intensità dei carichi permanenti non strutturali, o di una parte di essi (ad esempio carichi permanenti portati), sia ben definita in fase di progetto, per detti carichi o per la parte di essi nota si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

⁽⁹⁾ Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente nelle verifiche.

⁽⁴⁾ Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr della Tab. 5.2.IV.

^{(5) 1,30} per instabilità in strutture con precompressione esterna

^{(6) 1,20} per effetti locali

⁽³⁾ Quando come azione di base venga assunta quella del vento, i coefficienti ψ₀ relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

STAZIONE PONTECAGNANO
Sottopasso: Relazione di calcolo scatolare

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NN1X	10	D 78	CL FV03B0 001	С	26 di 95

Le azioni descritte nel paragrafo precedente ed utilizzate nelle combinazioni di carico vengono di seguito riassunte:

Peso proprio	DEAD
Carichi permanenti	PERM
Spinta del terreno sulla parete sinistra	SPTSX
Spinta del terrenno sulla parete destra	SPTDX
Carico Accidentale LM71	ACCM
Spinta del carico acc. (LM71) sulla parete Sx	SPACCSX
Spinta del carico acc. (LM71)Sulla parete Dx	SPACCDX
Avviamento e frenatura	AVV
Variazione termica sulla soletta superiore	ENV_TERM
Ritiro	RITIRO
Azione sismica orizzontale	Sisma H
Azione sismica Verticale	Sisma V
Incremento sismico della spinta sul terreno	SPSDX/SX

La 4 condizioni di carico termiche:

 Δ Tuniforme =±15°

 Δ Tdifferenziale = \pm 5°

e le loro 4 combinazioni sono state preventivamente inviluppate nella condizione ENV_TERM, la quale viene impiegata nelle successive combinazioni di carico per massimizzare gli effetti termici.

Si riportano di seguito le combinazioni allo SLU di carico ritenute più significative in base all'esperienza.

Combinazione fondamentale:

$$\gamma_{G1}\cdot G_1+\gamma_{G2}\cdot G_2+\gamma_{P}\cdot P+\gamma_{Q1}\cdot Q_{k1}+\gamma_{Q2}\cdot \psi_{02}\cdot Q_{k2}+\gamma_{Q3}\cdot \psi_{03}\cdot Q_{k3}+\dots$$

Nelle tabelle seguenti sono riportate le combinazioni di carico SLU, SLV e SLE utilizzate. Nelle combinazioni si tiene conto sia della spinta delle terre SPTSX al 100% e SPTDX al 100% che del loro sbilanciamento con SPTSX al 100% e SPTDX al 60%, sbilanciamento concorde con il verso di AVV e SISMAH per massimizzare le caratteristiche di sollecitazione. Lo sbilanciamento è tenuto in conto nelle combinazioni tramite i coefficienti evidenziati in rosso, corrispondenti ai coefficienti della spinta SPTDX moltiplicati per il coefficiente di combinazione 0,60.

STAZIONE PONTECAGNANO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Sottopasso: Relazione di calcolo scatolare NN1X 10 D 78 CL FV03B0 001 C 27 di 95

	Combinazioni di carico SLU (non sismiche)												
	1slu	2slu	3slu	4slu	5slu	6slu	7slu	8slu	9slu	10slu	11slu	12slu	13slu
DEAD	135	1.35	1.35	1.35	1.35	1.35	1.35	1	1.35	1.35	1.35	1.35	1.35
PERM	135	1.5	1.5	1.5	1.5	1.5	1.5	1	1.5	1.5	1.5	1.5	1.5
SPTSX	1	1	1	1	1.35	1.35	1	1	1	1.35	1.35	1.35	1.35
SPTDX	1	1	1	1.35	1.35	1.35	1.35	1.35	1.35	1	1	1	1
ACCM	1.45	1.45	1.45	1.45	1.45	0	1.45	0	1.45	1.45	1.16	1.16	1.015
SPACCSX	0	0	0	0	0	0	0	0	0	1.45	0	0	0
SPACCDX	135	0	0	1.45	1.45	1.45	1.45	1.45	1.45	0	1.16	1.16	1.015
AVV	135	1.45	1.45	1.45	1.45	0	1.45	0	0	0	0	0	1.45
ENV_TERM	0	-0.9	0	0	0	0	-0.9	0	0.9	-0.9	-1.5	1.5	0.9
RITIRO	0	1.2	0	0	0	0	0	0	1.2	1.2	1.2	1.2	1.2

	Combinazioni di carico SLU (non sismiche)												
	14slu	15slu	16slu	17slu	18slu	19slu	20slu	21slu	22slu	23slu	24slu	25slu	26slu
DEAD	135	1.35	1.35	1.35	1.35	1.35	1.35	1	1.35	1.35	1.35	1.35	1.35
PERM	135	1.5	1.5	1.5	1.5	1.5	1.5	1	1.5	1.5	1.5	1.5	1.5
SPTSX	1	1	1	1	1.35	1.35	1	1	1	1.35	1.35	1.35	1.35
SPTDX	0.6	0.6	0.6	0.81	0.81	0.81	0.81	0.81	0.81	0.6	0.6	0.6	0.6
ACCM	1.45	1.45	1.45	1.45	1.45	0	1.45	0	1.45	1.45	1.16	1.16	1.015
SPACCSX	0	0	0	0	0	0	0	0	0	1.45	0	0	0
SPACCDX	135	0	0	1.45	1.45	1.45	1.45	1.45	1.45	0	1.16	1.16	1.015
AVV	135	1.45	1.45	1.45	1.45	0	1.45	0	0	0	0	0	1.45
ENV_TERM	0	-0.9	0	0	0	0	-0.9	0	0.9	-0.9	-1.5	1.5	0.9
RITIRO	0	1.2	0	0	0	0	0	0	1.2	1.2	1.2	1.2	1.2

STAZIONE PONTECAGNANO

Sottopasso: Relazione di calcolo scatolare

COMMESSA LOTTO CODIFICA DOCUMENTO FOGLIO NN1X D 78 CL FV03B0 001 28 di 95

Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

dove:

E = $\pm 1.00 \text{ x E}_{Y} \pm 0.30 \text{x E}_{Z}$ oppure $E = \pm 0.30 \text{ x } E_{Y} \pm 1.00 \text{ x } E_{Z}$

	Combi	nazion	i di Cai	rico Sis	miche	SLV		
	sh1	sh2	sh3	sh4	sv1	sv2	sv3	sv4
DEAD	1	1	1	1	1	1	1	1
PERM	1	1	1	1	1	1	1	1
SPTSX	1	1	1	1	1	1	1	1
SPTDX	1	1	1	1	1	1	1	1
ACCM	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
SPACCSX	0	0	0	0	0	0	0	0
SPACCDX	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
AVV	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
ENV_TERM	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5
RITIRO	0	0	0	0	0	0	0	0
Sisma H	1	1	1	1	0.3	0.3	0.3	0.3
Sisma V	0.3	-0.3	0.3	-0.3	-1	1	-1	1
SPSDX	0	0	1	1	0	0	0.3	0.3
SPSSX	1	1	0	0	0.3	0.3	0	0

	Coml	oinazioi	ni di Ca	rico Sis	miche	SLV		
	sh5	sh6	sh7	sh8	sv5	sv6	sv7	sv8
DEAD	1	1	1	1	1	1	1	1
PERM	1	1	1	1	1	1	1	1
SPTSX	1	1	1	1	1	1	1	1
SPTDX	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
ACCM	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
SPACCSX	0	0	0	0	0	0	0	0
SPACCDX	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
AVV	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
ENV_TERM	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5
RITIRO	0	0	0	0	0	0	0	0
Sisma H	1	1	1	1	0.3	0.3	0.3	0.3
Sisma V	0.3	-0.3	0.3	-0.3	-1	1	-1	1
SPSDX	0	0	1	1	0	0	0.3	0.3
SPSSX	1	1	0	0	0.3	0.3	0	0

STAZIONE PONTECAGNANO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
Sottopasso: Relazione di calcolo scatolare

NN1X 10 D 78 CL FV03B0 001 C 29 di 95

Le combinazioni sismiche vanno eseguite in entrambe le direzioni pertanto le combinazioni SH vanno ripetute per Sisma H = -1 e le combinazioni SV per Sisma V = -0.3.

Si riportano infine,le combinazioni di carico agli stati limite di esercizio SLE ritenute più significative.

Combinazione rara

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$

Combinazioni di carico SLE						
	1sle	2sle	3sle	4sle	5sle	6sle
DEAD	1	1	1	1	1	1
PERM	1	1	1	1	1	1
SPTSX	1	1	1	1	1	1
SPTDX	0.8	0.8	0.8	0.48	0.48	0.48
ACCM	0.8	0.8	0.8	0.8	0.8	0.8
SPACCSX	0.8	0.8	0	0.8	0.8	0
SPACCDX	0.8	0.8	0.8	0.8	0.8	0.8
AVV	-0.8	0.8	-0.8	-0.8	0.8	-0.8
ENV_TERM	-0.6	0.6	-0.6	-0.6	0.6	-0.6
RITIRO	0	0	1	0	0	1

Oltre alle verifiche agli stati limite ultimi di tipo strutturale, sono prese in considerazione anche le verifiche agli stati limite ultimi di tipo geotecnico secondo l'approccio 2 (A1+M1+R3) di cui alle NTC2018, relative a condizioni di collasso per carico limite dell'insieme fondazione-terreno.

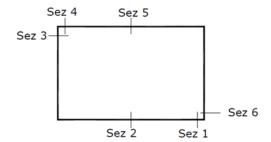
STAZIONE PONTECAGNANO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
Sottopasso: Relazione di calcolo scatolare

NN1X 10 D 78 CL FV03B0 001 C 30 di 95

6. CARATTERISTICHE DELLE SOLLECITAZIONI

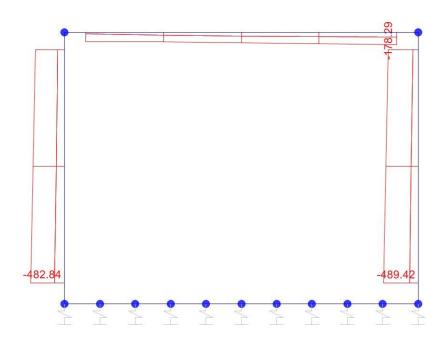
.6.1. Inviluppo SLU/SLV


Text	m	Text	Text	Text	KN	KN	KN-m
Frame	Station	OutputCase	CaseType	StepType	P	V2	M3
1	0.30	ENVELOPE SLU SLV	Combination	Max	0.0	340.4	292.
1	0.50	ENVELOPE SLU SLV	Combination	Max	0.0	344.5	223.
1	0.50	ENVELOPE SLU SLV	Combination	Max	0.0	277.8	223.
1	1.00	ENVELOPE SLU SLV	Combination	Max	0.0	287.9	97.
1	1.00	ENVELOPE SLU SLV	Combination	Max	0.0	213.4	97.
1	1.50	ENVELOPE SLU SLV	Combination	Max	0.0	223.5	39.
1	1.50	ENVELOPE SLU SLV	Combination	Max	0.0	168.5	39.
1	2.00	ENVELOPE SLU SLV	Combination	Max	0.0	178.6	-12.
1	2.00	ENVELOPE SLU SLV	Combination	Max	0.0	118.4	-12.
1	2.50	ENVELOPE SLU SLV	Combination	Max	0.0	128.5	-33.
1	2.50	ENVELOPE SLU SLV	Combination	Max	0.0	63.1	-33.
1	3.00	ENVELOPE SLU SLV	Combination	Max	0.0	73.2	9.
l	3.00	ENVELOPE SLU SLV	Combination	Max	0.0	36.0	9.
1	3.50	ENVELOPE SLU SLV	Combination	Max	0.0	43.5	59.
l	3.50	ENVELOPE SLU SLV	Combination	Max	0.0	5.7	59.
1	4.00	ENVELOPE SLU SLV	Combination	Max	0.0	13.2	113.
1	4.00	ENVELOPE SLU SLV	Combination	Max	0.0	-50.5	113.
1	4.50	ENVELOPE SLU SLV	Combination	Max	0.0	-43.0	198.
1	4.50	ENVELOPE SLU SLV	Combination	Max	0.0	-113.8	198.
1	4.70	ENVELOPE SLU SLV	Combination	Max	0.0	-110.8	265.
1		ENVELOPE SLU SLV			0.0	86.5	-69.
1		ENVELOPE SLU SLV			0.0	89.5	-94.
1	0.50	ENVELOPE SLU SLV	Combination	Min	0.0	25.3	-94.
1		ENVELOPE SLU SLV			0.0	32.8	-186.
1		ENVELOPE SLU SLV			0.0	-24.6	-186.
1	1.50	ENVELOPE SLU SLV	Combination	Min	0.0	-17.1	-223.
1		ENVELOPE SLU SLV			0.0	-50.8	-223.
1	2.00	ENVELOPE SLU SLV	Combination	Min	0.0	-43.3	-228.
1		ENVELOPE SLU SLV			0.0	-72.6	-228.
1	2.50	ENVELOPE SLU SLV	Combination	Min	0.0	-65.1	-227.
1		ENVELOPE SLU SLV			0.0	-110.4	-227.
1		ENVELOPE SLU SLV			0.0	-100.3	-242.
1		ENVELOPE SLU SLV			0.0	-161.5	-242.
1		ENVELOPE SLU SLV			0.0	-151.4	-245.
1		ENVELOPE SLU SLV			0.0	-208.3	-245.
1		ENVELOPE SLU SLV			0.0	-198.2	-216.
1		ENVELOPE SLU SLV			0.0	-277.3	-216.
1		ENVELOPE SLU SLV			0.0	-267.2	-130.
1		ENVELOPE SLU SLV			0.0	-339.9	-130.
1		ENVELOPE SLU SLV			0.0	-335.8	-130. -85.

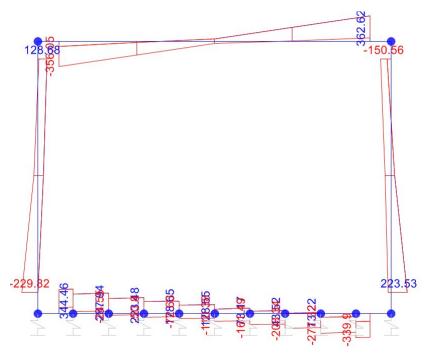
STAZIONE PONTECAGNANO
Sottopasso: Relazione di calcolo scatolare
NN1X

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	٠
NN1X	10	D 78	CL FV03B0 001	С	31 di 95	

2	0.25 ENVELOPE SLU SLV	Combination	Max	-70.0	-60.0	21.9
2	1.90 ENVELOPE SLU SLV	Combination	Max	-94.7	48.3	57.5
2	3.55 ENVELOPE SLU SLV	Combination	Max	-119.5	223.5	50.5
2	0.25 ENVELOPE SLU SLV	Combination	Min	-422.6	-150.6	-318.6
2	1.90 ENVELOPE SLU SLV	Combination	Min	-456.0	-91.1	-158.6
2	3.55 ENVELOPE SLU SLV	Combination	Min	-489.4	-43.6	-294.9
3	0.30 ENVELOPE SLU SLV	Combination	Max	-25.4	-70.2	28.2
3	1.40 ENVELOPE SLU SLV	Combination	Max	-40.5	-17.3	185.3
3	2.50 ENVELOPE SLU SLV	Combination	Max	-55.7	37.7	240.2
3	3.60 ENVELOPE SLU SLV	Combination	Max	-64.8	200.1	172.3
3	4.70 envelope slu slv	Combination	Max	-69.5	362.6	14.8
3	0.30 ENVELOPE SLU SLV	Combination	Min	-136.9	-356.0	-221.7
3	1.40 ENVELOPE SLU SLV	Combination	Min	-136.9	-193.6	-22.3
3	2.50 ENVELOPE SLU SLV	Combination	Min	-148.0	-31.1	33.7
3	3.60 ENVELOPE SLU SLV	Combination	Min	-163.1	8.6	-14.9
3	4.70 ENVELOPE SLU SLV	Combination	Min	-178.3	48.3	-233.4
4	0.25 ENVELOPE SLU SLV	Combination	Max	-95.5	128.7	302.4
4	1.90 ENVELOPE SLU SLV	Combination	Max	-120.2	81.0	152.9
4	3.55 ENVELOPE SLU SLV	Combination	Max	-144.9	1.8	319.1
4	0.25 ENVELOPE SLU SLV	Combination	Min	-416.0	13.0	-14.3
4	1.90 ENVELOPE SLU SLV	Combination	Min	-449.4	-54.6	-14.1
4	3.55 ENVELOPE SLU SLV	Combination	Min	-482.8	-229.8	-52.7



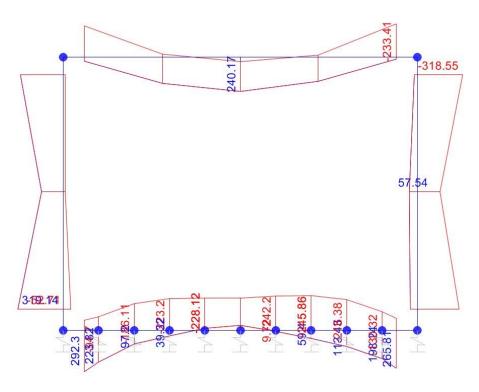
SEZIONE	P	V2	M3
01	0.0	344.5	292.3
02	0.0	0.0	245.9
03	-70.0	229.8	318.6
04	0.0	362.6	233.4
05	0.0	0.0	240.2
06	-119.5	229.8	319.1



STAZIONE PONTECAGNANO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Sottopasso: Relazione di calcolo scatolare NN1X 10 D 78 CL FV03B0 001 C 32 di 95

Diagrammi di inviluppo delle sollecitazioni: ENVELOPE SLU/SLV

Sforzo normale


Taglio

STAZIONE PONTECAGNANO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
Sottopasso: Relazione di calcolo scatolare

NN1X 10 D 78 CL FV03B0 001 C 33 di 95

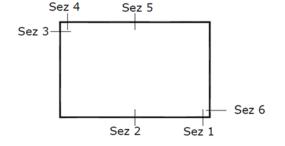
Momento Flettente

I valori V e M dei diagrammi corrispondono a quelli riportati nella tabella, mentre il valore dello sforzo normale P nei diagrammi (valore massimo) differisce da quello di verifica della tabella, pari a quello di compressione minimo.

STAZIONE PONTECAGNANO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Sottopasso: Relazione di calcolo scatolare NN1X 10 D 78 CL FV03B0 001 C 34 di 95

.6.2. Inviluppo SLE (rara)

Text	m	Text	Text	Text	KN	KN	KN-m
Frame	Station	OutputCase	CaseType	StepType	P	V2	M3
l	0.3	ENVELOPE SLERARA	Combination	Max	0.0	207.0	158.
l	0.5	ENVELOPE SLERARA	Combination	Max	0.0	210.0	117.
l	0.5	ENVELOPE SLERARA	Combination	Max	0.0	163.5	117.
<u>l</u>	1	ENVELOPE SLERARA	Combination	Max	0.0	171.0	33.
l	1	ENVELOPE SLERARA	Combination	Max	0.0	120.5	33.
l	1.5	ENVELOPE SLERARA	Combination	Max	0.0	128.0	-28.
l	1.5	ENVELOPE SLERARA	Combination	Max	0.0	91.7	-28.
l	2	ENVELOPE SLERARA	Combination	Max	0.0	99.1	-76.
1	2	ENVELOPE SLERARA	Combination	Max	0.0	60.1	-76.
1	2.5	ENVELOPE SLERARA	Combination	Max	0.0	67.6	-97.
l	2.5	ENVELOPE SLERARA	Combination	Max	0.0	25.8	-97.
l	3	ENVELOPE SLERARA	Combination	Max	0.0	33.3	-64.
l	3	ENVELOPE SLERARA	Combination	Max	0.0	-11.2	-64.
l	3.5	ENVELOPE SLERARA	Combination	Max	0.0	-3.7	-16.
l	3.5	ENVELOPE SLERARA	Combination	Max	0.0	-51.2	-16.
	4	ENVELOPE SLERARA	Combination	Max	0.0	-43.7	46.
	4	ENVELOPE SLERARA	Combination	Max	0.0	-119.3	46.
	4.5	ENVELOPE SLERARA	Combination	Max	0.0	-111.8	130.
l	4.5	ENVELOPE SLERARA	Combination	Max	0.0	-192.0	130.
l	4.7	ENVELOPE SLERARA	Combination	Max	0.0	-189.0	171.
l	0.3	ENVELOPE SLERARA			0.0	189.7	-12.
l	0.5	ENVELOPE SLERARA			0.0	192.7	-50.
[0.5	ENVELOPE SLERARA	Combination	Min	0.0	111.7	-50.
[1	ENVELOPE SLERARA	Combination	Min	0.0	119.2	-108.
l	1	ENVELOPE SLERARA			0.0	42.9	-108.
l	1.5	ENVELOPE SLERARA			0.0	50.4	-131.
l	1.5	ENVELOPE SLERARA			0.0	2.6	-131.
l	2	ENVELOPE SLERARA	Combination	Min	0.0	10.1	-134.
	2	ENVELOPE SLERARA			0.0	-34.6	-134.
l	2.5	ENVELOPE SLERARA			0.0	-27.1	-130.
-	2.5	ENVELOPE SLERARA			0.0	-68.9	-130.
	3	ENVELOPE SLERARA			0.0	-61.4	-145.
	3	ENVELOPE SLERARA			0.0	-100.4	-145.
	3.5	ENVELOPE SLERARA			0.0	-92.9	-141.
	3.5	ENVELOPE SLERARA			0.0	-129.0	-141.
	4	ENVELOPE SLERARA			0.0	-121.5	-117.
-	4	ENVELOPE SLERARA			0.0	-171.4	-117.
	4.5	ENVELOPE SLERARA			0.0	-163.9	-59.
<u>.</u> [4.5	ENVELOPE SLERARA			0.0	-209.5	-59.
<u>l</u>	4.7	ENVELOPE SLERARA			0.0	-209.5	-39. -21.

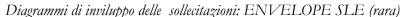


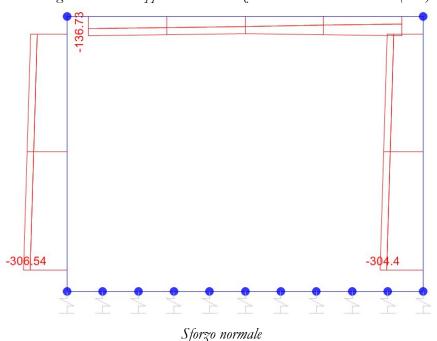
STAZIONE PONTECAGNANO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
Sottopasso: Relazione di calcolo scatolare

NN1X 10 D 78 CL FV03B0 001 C 35 di 95

2	0.25	ENVELOPE SLERARA Combination	Max	-208.4	-35.6	-66.1
2	1.9	ENVELOPE SLERARA Combination	Max	-233.1	33.2	-39.2
2	3.55	ENVELOPE SLERARA Combination	Max	-257.9	134.3	-25.3
2	0.25	ENVELOPE SLERARA Combination	Min	-254.9	-121.0	-192.6
2	1.9	ENVELOPE SLERARA Combination	Min	-279.7	-53.2	-68.4
2	3.55	ENVELOPE SLERARA Combination	Min	-304.4	22.5	-189.6
3	0.3	ENVELOPE SLERARA Combination	Max	-83.7	-173.1	-39.6
3	1.4	ENVELOPE SLERARA Combination	Max	-78.3	-75.4	97.0
3	2.5	ENVELOPE SLERARA Combination	Max	-69.9	22.2	140.7
3	3.6	ENVELOPE SLERARA Combination	Max	-61.6	119.8	111.6
3	4.7	ENVELOPE SLERARA Combination	Max	-53.2	217.5	-22.7
3	0.3	ENVELOPE SLERARA Combination	Min	-136.7	-219.6	-145.4
3	1.4	ENVELOPE SLERARA Combination	Min	-128.4	-122.0	42.5
3	2.5	ENVELOPE SLERARA Combination	Min	-120.0	-24.3	108.6
3	3.6	ENVELOPE SLERARA Combination	Min	-128.4	73.3	32.7
3	4.7	ENVELOPE SLERARA Combination	Min	-136.7	170.9	-152.9
4	0.25	ENVELOPE SLERARA Combination	Max	-210.5	119.3	189.6
4	1.9	ENVELOPE SLERARA Combination	Max	-235.2	52.5	65.6
4	3.55	ENVELOPE SLERARA Combination	Max	-260.0	-26.6	174.2
4	0.25	ENVELOPE SLERARA Combination	Min	-257.1	61.8	78.8
4	1.9	ENVELOPE SLERARA Combination	Min	-281.8	-23.7	32.8
4	3.55	ENVELOPE SLERARA Combination	Min	-306.5	-140.5	33.6


SEZIONE	P	V2	M3
01	0.0	210.0	171.7
02	0.0	0.0	145.0
03	-208.4	140.5	192.6
04	0.0	219.6	152.9
05	0.0	0.0	140.7
06	-257.9	140.5	189.6



 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NN1X
 10
 D 78
 CL FV03B0 001
 C
 36 di 95

STAZIONE PONTECAGNANO
Sottopasso: Relazione di calcolo scatolare

Momento Flettente

Il valore M dei diagrammi corrisponde a quello riportato nella tabella, mentre il valore dello sforzo normale P nei diagrammi (valore massimo) differisce da quello di verifica della tabella, pari a quello di compressione minimo.

STAZIONE PONTECAGNANO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
Sottopasso: Relazione di calcolo scatolare

NN1X 10 D 78 CL FV03B0 001 C 37 di 95

.7. VERIFICHE SLU/SLV/SLE

	Oggetto:			
	Scatolare sottopasso - Stazione di PONTECAGNANO			
	Sezione n°. 01			
	Dati di Input:			
В	Base sezione rettangolare	1000 mm	Geometria della Sez	ione:
Н	Altezza sezione rettangolare	600 mm	Н	
c'	Copriferro armatura sup. compressa	70 mm	As' o	.'
С	Copriferro armatura inf. Tesa	70 mm		
d	Altezza utile = H-c	530 mm		В
fck	Resistenza caratt. Cilindrica calcestruzzo	30 MPa		
fyk	Resistenza caratt. Snervamento acciaio	450 MPa	As o	;
Ned	Sforzo normale di calcolo [(+)Trazione]	0.0 kN		
Med	Momento flettente di calcolo [(+)]	292.3 kNm		
Ved	Taglio di calcolo [(+)]	344.5 kN		
Ted	Torsione di calcolo [(+)]	0 kNm		
Fi1	1° diametro armatura tesa	20		
Fi2	2° diametro armatura tesa			
n1	N°. Barre 1° armatura tesa	10 Armatura	tesa filante 3142 r	nmq
n2	N°. Barre 2° armatura tesa	Armatura	di raffittim. 0 r	nmq
As'	Armatura superiore compressa	3142 mmq		-
As	Armatura inferiore tesa	3142 mmq		
Fi Staffe	Diametro staffe	12 mm		
s. Staffe	Passo staffe	200 mm		
bracci	Numero Bracci staffe	2		
$\cot\theta$	(proiez.orizz.)/(proiez.vert.) puntone cls	2.5 [range: 1,	0-2,5]	
alpha	angolo staffe/piegati rispetto all'orizzontale	90.0°		
Asw	Area a taglio per unità di lunghezza	1131 mmq/m	11.31 cmq/m	
<r-f-p></r-f-p>	Combinaz. SLE (rara,frequente,qperm)	R	•	
Msle	Momento di esercizio [(+)]	171.7 kNm		
Nsle	Sforzo normale di esercizio [(+)Trazione]	0.0 kN		
wk-lim	Stato limite apertura fessure (Freq.Perm)	0.20 mm		
sigcR-lim	Tensione limite cls comb. Rara	0.60 fck		
sigcP-lim	Tensione limite cls comb. Quasi Perm.	0.45 fck		
0	Tensione limite acc. Comb. Rara	0.80 fyk		
O	Dati di Output:	,		
	SLU - Momento e Taglio resistenti			
<s-n></s-n>	Momento Ultimo resistente dissipativo <s n=""></s>	S	Coeff.Sfrutt.Max	66%
Mrd	Momento ultimo resistente	606 kNm	Coeff.Sfrutt.	48%
Vrd	Taglio ultimo resistente senza staffe	268 kN	Coeff.Sfrutt.	129%
Vrd	Taglio ultimo resistente	528 kN		65%
Trd	Momento torcente ultimo resistente	4 kNm	Coeff.Sfrutt.	
	SLE - Tensioni e ampiezza fessure			
Sigs-sup	Tensione barre superiori [(-)Compresso]	-29 Mpa	Coeff.Sfrutt.	8%
Sigs-inf	Tensione barre inferiori [(+)Teso]	116 Mpa	Coeff.Sfrutt.	32%
Sigc-sup	Tensione cls superiore [(-)Compresso]	-3 Mpa	Coeff.Sfrutt.	19%
Sigc-inf	Tensione cls inferiore [non reag.Trazione]	0 Mpa		
Mcr	Momento di prima fessurazione	200 kNm		
wk	Ampiezza di fessura	0.13 mm	Coeff.Sfrutt.	66%
	*			

Ampiezza di fessura

wk

LINEA SALERNO - PONTECAGNANO AEROPORTO COMPLETAMENTO METROPOLITANA DI SALERNO TRATTA ARECHI - PONTECAGNANO AEROPORTO PROGETTO DEFINITIVO – FABBRICATI VIAGGIATORI

STAZIONE PONTECAGNANO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
Sottopasso: Relazione di calcolo scatolare

NN1X 10 D 78 CL FV03B0 001 C 38 di 95

	Oggetto:				
	Scatolare sottopasso - Stazione di PONTECAGNANO				
	Sezione n°. 02				
	Dati di Input:				
В	Base sezione rettangolare	1000	mm	Geometria della Sezion	ne:
Н	Altezza sezione rettangolare	600	mm	Н	
c'	Copriferro armatura sup. compressa	70	mm	As' c'	
c	Copriferro armatura inf. Tesa	70	mm		
d	Altezza utile = H-c	530	mm		В
fck	Resistenza caratt. Cilindrica calcestruzzo	30	MPa		
fyk	Resistenza caratt. Snervamento acciaio	450	MPa	As c	
Ned	Sforzo normale di calcolo [(+)Trazione]	0.0	kN		
Med	Momento flettente di calcolo [(+)]	245.9	kNm		
Ved	Taglio di calcolo [(+)]	0.0	kN		
Ted	Torsione di calcolo [(+)]	0	kNm		
Fi1	1° diametro armatura tesa	20			
Fi2	2° diametro armatura tesa				
n1	N°. Barre 1° armatura tesa	10	Armatura	a tesa filante 3142 mm	nq
n2	N°. Barre 2° armatura tesa	0	Armatura	a di raffittim. 0 mm	nq
As'	Armatura superiore compressa	3142	mmq		-
As	Armatura inferiore tesa		mmq		
Fi Staffe	Diametro staffe	12	mm		
s. Staffe	Passo staffe	200	mm		
bracci	Numero Bracci staffe	2			
$\cot\theta$	(proiez.orizz.)/(proiez.vert.) puntone cls	2.5	[range: 1,	0-2,5]	
alpha	angolo staffe/piegati rispetto all'orizzontale	90.0°		•	
Asw	Area a taglio per unità di lunghezza	1131	mmq/m	11.31 cmq/m	
<r-f-p></r-f-p>	Combinaz. SLE (rara,frequente,qperm)	R	1/	p	
Msle	Momento di esercizio [(+)]	145.0	kNm		
Nsle	Sforzo normale di esercizio [(+)Trazione]	0.0			
wk-lim	Stato limite apertura fessure (Freq.Perm)	0.20			
	Tensione limite cls comb. Rara	0.60 fck			
0	Tensione limite els comb. Quasi Perm.	0.45 fck			
sigsR-lim	Tensione limite acc. Comb. Rara	0.80 fyk			
018014 11111	Dati di Output:	0.00 1911			
<s-n></s-n>	SLU - Momento e Taglio resistenti	S		Coeff.Sfrutt.Max	56%
	Momento Ultimo resistente dissipativo <s n=""></s>				
Mrd	Momento ultimo resistente		kNm	Coeff.Sfrutt.	41%
Vrd	Taglio ultimo resistente senza staffe	268		Coeff.Sfrutt.	0%
Vrd	Taglio ultimo resistente	528		Coeff.Sfrutt.	0%
Trd	Momento torcente ultimo resistente	4	kNm	Coeff.Sfrutt.	
C.	SLE - Tensioni e ampiezza fessure	24		C ((())	50 /
Sigs-sup	Tensione barre superiori [(-)Compresso]		Mpa	Coeff.Sfrutt.	7%
Sigs-inf	Tensione barre inferiori [(+)Teso]		Mpa	Coeff.Sfrutt.	27%
Sigc-sup	Tensione cls superiore [(-)Compresso]		Mpa	Coeff.Sfrutt.	16%
Sigc-inf	Tensione cls inferiore [non reag.Trazione]		Mpa		
Mcr	Momento di prima fessurazione	200	kNm		

0.11 mm

Coeff.Sfrutt.

Mcr

wk

Momento di prima fessurazione

Ampiezza di fessura

LINEA SALERNO - PONTECAGNANO AEROPORTO COMPLETAMENTO METROPOLITANA DI SALERNO TRATTA ARECHI - PONTECAGNANO AEROPORTO PROGETTO DEFINITIVO – FABBRICATI VIAGGIATORI

STAZIONE PONTECAGNANO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
Sottopasso: Relazione di calcolo scatolare

NN1X 10 D 78 CL FV03B0 001 C 39 di 95

	Oggetto:				
	Scatolare sottopasso - Stazione di PONTECAGNANO				
	Sezione n°. 03				
	Dati di Input:				
В	Base sezione rettangolare	1000	mm	Geometria della Sezione	<u>:</u> :
Н	Altezza sezione rettangolare	600	mm	Н	
c'	Copriferro armatura sup. compressa	70	mm	As' c'	
с	Copriferro armatura inf. Tesa	70	mm		
d	Altezza utile = $H-c$	530	mm		1
fck	Resistenza caratt. Cilindrica calcestruzzo	30	MPa		
fyk	Resistenza caratt. Snervamento acciaio	450	MPa	As c	
Ned	Sforzo normale di calcolo [(+)Trazione]	-70.0	kN	•	
Med	Momento flettente di calcolo [(+)]	318.6	kNm		
Ved	Taglio di calcolo [(+)]	229.8	kN		
Гed	Torsione di calcolo [(+)]	0	kNm		
Fi1	1° diametro armatura tesa	20			
Fi2	2° diametro armatura tesa				
n1	N°. Barre 1° armatura tesa	10	Armatura	tesa filante 3142 mm	q
n2	N°. Barre 2° armatura tesa	0	Armatura	di raffittim. 0 mme	q
As'	Armatura superiore compressa	3142	mmq		
As	Armatura inferiore tesa	3142	mmq		
Fi Staffe	Diametro staffe		mm		
s. Staffe	Passo staffe	150	mm		
oracci	Numero Bracci staffe				
$\cot \theta$	(proiez.orizz.)/(proiez.vert.) puntone cls	2.5	[range: 1,0	0-2,5]	
alpha	angolo staffe/piegati rispetto all'orizzontale	90.0°			
Asw	Area a taglio per unità di lunghezza	0	mmq/m	0.00 cmq/m	
<r-f-p></r-f-p>	9 1	R	_	ľ	
Msle	Momento di esercizio [(+)]	192.6	kNm		
Nsle	Sforzo normale di esercizio [(+)Trazione]	-208.4	kN		
wk-lim	Stato limite apertura fessure (Freq.Perm)	0.20			
igcR-lim	Tensione limite cls comb. Rara	0.60 fck			
sigcP-lim	Tensione limite els comb. Quasi Perm.	0.45 fck			
sigsR-lim	Tensione limite acc. Comb. Rara	0.80 fyk			
0-	Dati di Output:				
	SLU - Momento e Taglio resistenti				
<s-n></s-n>	Momento Ultimo resistente dissipativo <s n=""></s>	S		Coeff.Sfrutt.Max	83%
	Momento ultimo resistente dissipativo \(\frac{5}{1} \) N			Coeff.Sfrutt.	51%
Mrd Vad		277	kNm		
Vrd Vad	Taglio ultimo resistente senza staffe			Coeff Sfrutt	83%
Vrd Fad	Taglio ultimo resistente Momento torgento ultimo resistente	277	kNm	Coeff.Sfrutt. Coeff.Sfrutt.	83%
Trd	Momento torcente ultimo resistente	U	KINM	Coeff.Strutt.	
Pina	SLE - Tensioni e ampiezza fessure	20	Mas	Cooff Start	110
Sigs-sup	Tensione barre superiori [(-)Compresso]		Mpa	Coeff.Sfrutt.	11%
Sigs-inf	Tensione barre inferiori [(+)Teso]		Mpa	Coeff.Sfrutt.	28%
Sigc-sup	Tensione cls superiore [(-)Compresso]		Mpa	Coeff.Sfrutt.	22%
Sigc-inf	Tensione cls inferiore [non reag.Trazione]	0	Mpa		

223 kNm

0.11 mm

Coeff.Sfrutt.

Sigs-inf

Sigc-sup

Sigc-inf

Mcr

wk

Tensione barre inferiori [(+)Teso]

Momento di prima fessurazione

Ampiezza di fessura

Tensione cls superiore [(-)Compresso]

Tensione cls inferiore [non reag.Trazione]

LINEA SALERNO - PONTECAGNANO AEROPORTO COMPLETAMENTO METROPOLITANA DI SALERNO TRATTA ARECHI - PONTECAGNANO AEROPORTO PROGETTO DEFINITIVO – FABBRICATI VIAGGIATORI

STAZIONE PONTECAGNANO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Sottopasso: Relazione di calcolo scatolare

NN1X 10 D 78 CL FV03B0 001 C 40 di 95

	Oggetto:			
	Scatolare sottopasso - Stazione di PONTECAGNANO Sezione n°. 04)		
	Dati di Input:			
В	Base sezione rettangolare	1000 mm	Geometria della Sez	ione:
Н	Altezza sezione rettangolare	500 mm	Н	
c'	Copriferro armatura sup. compressa	70 mm	As' o	<u>'</u>
c	Copriferro armatura inf. Tesa	70 mm		
d	Altezza utile = H-c	430 mm		В
fck	Resistenza caratt. Cilindrica calcestruzzo	30 MPa		
fyk	Resistenza caratt. Snervamento acciaio	450 MPa	As o	:
Ned	Sforzo normale di calcolo [(+)Trazione]	0.0 kN		
Med	Momento flettente di calcolo [(+)]	233.4 kNm		
Ved	Taglio di calcolo [(+)]	362.6 kN		
Ted	Torsione di calcolo [(+)]	0 kNm		
Fi1	1° diametro armatura tesa	20		
Fi2	2° diametro armatura tesa			
n1	N°. Barre 1° armatura tesa	10 Armatura	a tesa filante 3142 r	nmq
n2	N°. Barre 2° armatura tesa	Armatura		nmq
As'	Armatura superiore compressa	3142 mmq		1
As	Armatura inferiore tesa	3142 mmq		
Fi Staffe	Diametro staffe	12 mm		
s. Staffe	Passo staffe	200 mm		
bracci	Numero Bracci staffe	2		
$\cot \theta$	(proiez.orizz.)/(proiez.vert.) puntone cls	2.5 [range: 1,	,0-2,5]	
alpha	angolo staffe/piegati rispetto all'orizzontale	90.0°		
Asw	Area a taglio per unità di lunghezza	1131 mmq/m	11.31 cmq/m	
<r-f-p></r-f-p>	Combinaz. SLE (rara,frequente,qperm)	R		
Msle	Momento di esercizio [(+)]	152.9 kNm		
Nsle	Sforzo normale di esercizio [(+)Trazione]	0.0 kN		
wk-lim	Stato limite apertura fessure (Freq.Perm)	0.20 mm		
sigcR-lim	Tensione limite cls comb. Rara	0.60 fck		
sigcP-lim	Tensione limite cls comb. Quasi Perm.	0.45 fck		
sigsR-lim	Tensione limite acc. Comb. Rara	0.80 fyk		
	Dati di Output:			
	SLU - Momento e Taglio resistenti			
<s-n></s-n>	Momento Ultimo resistente dissipativo <s n=""></s>	S	Coeff.Sfrutt.Max	85%
Mrd	Momento ultimo resistente	483 kNm	Coeff.Sfrutt.	48%
Vrd	Taglio ultimo resistente senza staffe	243 kN	Coeff.Sfrutt.	149%
Vrd	Taglio ultimo resistente	428 kN	Coeff.Sfrutt.	85%
Trd	Momento torcente ultimo resistente	3 kNm	Coeff.Sfrutt.	
	SLE - Tensioni e ampiezza fessure			
Sigs-sup	Tensione barre superiori [(-)Compresso]	-33 Mpa	Coeff.Sfrutt.	9%
0	THE	100 17	0 0000	2.01

129 Mpa

-4 Mpa

0 Mpa

142 kNm

0.14 mm

Coeff.Sfrutt.

Coeff.Sfrutt.

Coeff.Sfrutt.

36%

24%

Ampiezza di fessura

wk

LINEA SALERNO - PONTECAGNANO AEROPORTO COMPLETAMENTO METROPOLITANA DI SALERNO TRATTA ARECHI - PONTECAGNANO AEROPORTO PROGETTO DEFINITIVO – FABBRICATI VIAGGIATORI

62%

STAZIONE PONTECAGNANO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
Sottopasso: Relazione di calcolo scatolare

NN1X 10 D 78 CL FV03B0 001 C 41 di 95

	Oggetto:			
	Scatolare sottopasso - Stazione di PONTECAGNANO			
	Sezione n°. 05			
	Dati di Input:			
В	Base sezione rettangolare	1000 mm	Geometria della Sezion	ne:
Н	Altezza sezione rettangolare	500 mm	Н	
2'	Copriferro armatura sup. compressa	70 mm	As' c'	
2	Copriferro armatura inf. Tesa	70 mm		
d .	Altezza utile = H-c	430 mm		I
fck	Resistenza caratt. Cilindrica calcestruzzo	30 MP	a	
fyk	Resistenza caratt. Snervamento acciaio	450 MP	a As c	
Ned	Sforzo normale di calcolo [(+)Trazione]	0.0 kN		
Med	Momento flettente di calcolo [(+)]	240.2 kNr	n	
Ved	Taglio di calcolo [(+)]	0.0 kN		
Гed	Torsione di calcolo [(+)]	0 kNt	n	
Fi1	1° diametro armatura tesa	20		
₹i2	2° diametro armatura tesa			
n1	N°. Barre 1° armatura tesa	10 Arn	natura tesa filante 3142 mn	nq
n2	N°. Barre 2° armatura tesa	0 Arn	natura di raffittim. 0 mn	nq
As'	Armatura superiore compressa	3142 mm	q	
As	Armatura inferiore tesa	3142 mm	q	
Fi Staffe	Diametro staffe	12 mm		
. Staffe	Passo staffe	200 mm		
oracci	Numero Bracci staffe	2		
$\cot \theta$	(proiez.orizz.)/(proiez.vert.) puntone cls	2.5 [ran	ge: 1,0-2,5]	
ılpha	angolo staffe/piegati rispetto all'orizzontale	90.0°		
Asw	Area a taglio per unità di lunghezza	1131 mm	q/m 11.31 cmq/m	
<r-f-p></r-f-p>	Combinaz. SLE (rara,frequente,qperm)	R		
Msle	Momento di esercizio [(+)]	140.7 kNr	n	
Nsle	Sforzo normale di esercizio [(+)Trazione]	0.0 kN		
wk-lim	Stato limite apertura fessure (Freq.Perm)	0.20 mm		
igcR-lim		0.60 fck		
igcP-lim	Tensione limite cls comb. Quasi Perm.	0.45 fck		
_	Tensione limite acc. Comb. Rara	0.80 fyk		
5	Dati di Output:			
	SLU - Momento e Taglio resistenti			
<s-n></s-n>	Momento Ultimo resistente dissipativo <s n=""></s>	S	Coeff.Sfrutt.Max	62%
Mrd	Momento ultimo resistente	483 kNt		50%
Vrd	Taglio ultimo resistente senza staffe	243 kN	Coeff.Sfrutt.	0%
Vrd	Taglio ultimo resistente Taglio ultimo resistente	428 kN	Coeff.Sfrutt.	0%
Гrd	Momento torcente ultimo resistente	3 kNt		070
	SLE - Tensioni e ampiezza fessure	J KIVI	ii Cocii.oiiuu.	
Sigs-sup	Tensione barre superiori [(-)Compresso]	-30 Mp:	a Coeff.Sfrutt.	8%
Sigs-sup Sigs-inf	Tensione barre inferiori [(+)Teso]	119 Mps		33%
Sigc-sup	Tensione cls superiore [(-)Compresso]	-4 Mp:		22%
Sigc-sup Sigc-inf	Tensione dis superiore [-)Compresso] Tensione dis inferiore [non reag.Trazione]	0 Mp:		44 /
Mcr	Momento di prima fessurazione	142 kNr		
VI CI	wiomento di prima ressurazione	142 KINI	11	(20)

0.12 mm

Coeff.Sfrutt.

Sigc-inf

Mcr

wk

Momento di prima fessurazione

Ampiezza di fessura

Tensione cls inferiore [non reag.Trazione]

LINEA SALERNO - PONTECAGNANO AEROPORTO **COMPLETAMENTO METROPOLITANA DI SALERNO** TRATTA ARECHI - PONTECAGNANO AEROPORTO PROGETTO DEFINITIVO - FABBRICATI VIAGGIATORI

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO STAZIONE PONTECAGNANO Sottopasso: Relazione di calcolo scatolare NN1X D 78 CL FV03B0 001 42 di 95 10 С

	Oggetto:			
	Scatolare sottopasso - Stazione di PONTECAGNANO			
	Sezione n°. 06			
	Dati di Input:			
В	Base sezione rettangolare	1000 mm	Geometria della Sezione	e:
Н	Altezza sezione rettangolare	600 mm	Н	
e'	Copriferro armatura sup. compressa	70 mm	As' c'	
C	Copriferro armatura inf. Tesa	70 mm		
1	Altezza utile = $H-c$	530 mm		
fck	Resistenza caratt. Cilindrica calcestruzzo	30 MPa		
yk	Resistenza caratt. Snervamento acciaio	450 MPa	As c	
Ned	Sforzo normale di calcolo [(+)Trazione]	-119.5 kN		
Med	Momento flettente di calcolo [(+)]	319.1 kNm		
Ved	Taglio di calcolo [(+)]	229.8 kN		
Гed	Torsione di calcolo [(+)]	0 kNm		
Fi1	1° diametro armatura tesa	20		
Fi2	2° diametro armatura tesa	0		
n1	N°. Barre 1° armatura tesa	10 Armatura	tesa filante 3142 mm	q
12	N°. Barre 2° armatura tesa	0 Armatura	ı di raffittim. 0 mm	q
As'	Armatura superiore compressa	3142 mmq		•
As	Armatura inferiore tesa	3142 mmq		
i Staffe	Diametro staffe	0 mm		
. Staffe	Passo staffe	150 mm		
racci	Numero Bracci staffe	0		
otθ	(proiez.orizz.)/(proiez.vert.) puntone cls	2.5 [range: 1,0	0-2,5]	
lpha	angolo staffe/piegati rispetto all'orizzontale	90.0°	, 1	
Asw	Area a taglio per unità di lunghezza	0 mmq/m	0.00 cmq/m	
<r-f-p></r-f-p>		R	0.00 cmq/ m	
Msle	Momento di esercizio [(+)]	189.6 kNm		
Visic				
	Sforzo normale di esercizio [(+)Trazione]	-257.9 kN		
vk-lim	Stato limite apertura fessure (Freq.Perm)	0.20 mm		
_	Tensione limite els comb. Rara	0.60 fck		
igcP-lim	Tensione limite cls comb. Quasi Perm.	0.45 fck		
igsR-lim	Tensione limite acc. Comb. Rara	0.80 fyk		
	Dati di Output:			
	SLU - Momento e Taglio resistenti	_		
<s-n></s-n>	Momento Ultimo resistente dissipativo <s n=""></s>	S	Coeff.Sfrutt.Max	81
Mrd	Momento ultimo resistente	633 kNm	Coeff.Sfrutt.	50
/rd	Taglio ultimo resistente senza staffe	284 kN	Coeff.Sfrutt.	81
Vrd	Taglio ultimo resistente	284 kN	Coeff.Sfrutt.	81
Γrd	Momento torcente ultimo resistente	0 kNm	Coeff.Sfrutt.	
	SLE - Tensioni e ampiezza fessure			
Sigs-sup	Tensione barre superiori [(-)Compresso]	-40 Mpa	Coeff.Sfrutt.	11
Sigs-inf	Tensione barre inferiori [(+)Teso]	90 Mpa	Coeff.Sfrutt.	25
Sigc-sup	Tensione cls superiore [(-)Compresso]	-4 Mpa	Coeff.Sfrutt.	22

0 Mpa

Coeff.Sfrutt.

228 kNm

0.10 mm

STAZIONE PONTECAGNANO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Sottopasso: Relazione di calcolo scatolare NN1X 10 D 78 CL FV03B0 001 C 43 di 95

Si riportano i coefficienti di sfruttamento nelle sezioni notevoli per le verifiche SLU/SLV/SLE:

SINTESI VERIFICHE SEZIONI NOTEVOLI:								
SL	VERIF	SEZ01	SEZ02	SEZ03	SEZ04	SEZ05	SEZ06	
SLU	Med/Mrd	48%	41%	51%	48%	50%	50%	
SLU	Ved/Vrd	65%	0%	83%	85%	0%	81%	
SLE	(sigse/sigsr)s	8%	7%	11%	9%	8%	11%	
SLE	(sigse/sigsr)i	32%	27%	28%	36%	33%	25%	
SLE	(sigæ/sigar)s	19%	16%	22%	24%	22%	22%	
SLE	wk/wklim	66%	56%	56%	68%	62%	51%	
	MAX	66%	56%	83%	85%	62%	81%	
	MAX	85%						

I coefficienti di sfruttamento sono tutti inferiori all'unità e pertanto le verifiche risultano soddisfatte.

.7.1. ARMATURE DI RIPARTIZIONE

Le armature di ripartizione delle pareti e della soletta vengono dimensionate per sostenere gli effetti del ritiro igrometrico i quali generano una trazione pura per deformazioni impedite a causa della soletta inferiore gettata precedentemente e che può aver dissipato tali effetti.

La **&**ritiro induce nel calcestruzzo una tensione di trazione superiore alla sua resistenza a trazione, ne deriva la fessurazione e il trasferimento di tutta la trazione sull'acciaio teso. Per ottenere delle fessure uniformemente distribuite e non concentrate in alcuni punti con ampiezze macroscopiche, si applica un principio di non plasticizzazione delle armature. Per limitare l'ampiezza delle fessure, pur distribuite, che si ottengono applicando tale principio, si applica quanto previsto al § 7.3.2 dell'Eurocodice 2 - UNI EN 1992 1-1: "Aree minime di armatura", in particolare la formula (7.1):

STAZIONE PONTECAGNANO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
Sottopasso: Relazione di calcolo scatolare

NN1X 10 D 78 CL FV03B0 001 C 44 di 95

As,min $\cdot \sigma s = kc \cdot k \cdot fct,eff \cdot Act$

dove:

As,min è l'area minima di armatura nella zona tesa;

Act è l'area di calcestruzzo nella zona tesa. La zona tesa è quella parte della sezione che risulta in trazione subito dopo la formazione della prima fessura; è pari a tutta l'area della sezione per trazione pura, alla metà per flessione;

σs è la massima tensione ammessa nell'armatura subito dopo la formazione della fessura. Tale tensione può essere assunta pari alla tensione di snervamento fyk dell'armatura. Può essere però necessario fissare un valore minore per soddisfare i limiti di apertura delle fessure secondo il massimo diametro o la massima spaziatura tra le barre (vedere punto 7.3.3).

fct,eff è il valore medio della resistenza a trazione efficace del calcestruzzo al momento in cui si suppone insorgano le prime fessure;

fct,eff = fctm se la formazione delle fessure è prevista prima di 28d;

k è il coefficiente che tiene conto degli effetti di tensioni auto-equilibrate non uniformi, k=1

kc è il coefficiente che tiene conto del tipo di distribuzione delle tensioni all'interno della sezione subito prima della fessurazione e della variazione del braccio di leva; kc=1 per trazione, kc=0,4 per flessione, kc = $0.4 \cdot (1-\text{funz}(\sigma c))$ nel caso flessione combinata con sforzo normale.

base della sezione		1000 mm
altezza della sezione		500 mm
area sezione calcestruzzo	Act	500000 mm2
tensione di snervamento acciaio	fyk	450 Mpa
resist. Caratt. Cilindrica cls a compressione	fck	30 Mpa
tensione resistente cls a trazione	$fct,eff=0,3(fck)^{2/3}$	2.90 Mpa
coefficiente kc	kc	1.00
coefficiente k	k	1.00
area minima acciaio teso nella sezione	As,min	3218 mm2

P.to 7.3.3 EC2 1992:1-1): Dove è disposta l'armatura minima indicata al punto 7.3.2, le ampiezze delle fessure non dovrebbero essere eccessive se: per fessurazione causata principalmente da deformazioni impedite, il diametro delle barre non eccede quello dato nel prospetto 7.2N, dove la tensione nell'acciaio è quella che si ha subito dopo la fessurazione [cioè il termine σ s nell'espressione (7.1)];

STAZIONE PONTECAGNANO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
Sottopasso: Relazione di calcolo scatolare

NN1X 10 D 78 CL FV03B0 001 C 45 di 95

prospetto 7.2N Diametri massimi delle barre ϕ_s^* per il controllo della fessurazione¹⁾

Tensione nell'acciaio ²⁾	Diametro massimo delle barre [mm]				
[MPa]	$w_{k} = 0.4 \text{ mm}$	$w_{k} = 0.3 \text{ mm}$	$W_{k} = 0.2 \text{ mm}$		
160	40	32	25		
200	32	25	16		
240	20	16	12		
280	16	12	8		
320	12	10	6		
360	10	8	5		
400	8	6	4		
450	6	5			

I valori nel prospetto sono basati sulle seguenti assunzioni:

2) Sotto la combinazione di carico pertinente.

Il diametro massimo delle barre si raccomanda sia modificato come segue:

Trazione (la sezione è tutta tesa):

$$\phi_{s} = \phi^{*}_{s}(f_{\text{ct,eff}}/2,9) \ h_{cr}/(8(h-d))$$
 (7.7N)

dove:

 $\phi_{\rm s}$ è il diametro massimo "modificato" delle barre;

 ϕ^*_{s} è il diametro massimo dato nel prospetto 7.2N;

h è l'altezza totale della sezione;

h_{cr} è l'altezza della zona tesa subito prima della fessurazione, considerando i valori caratteristici della forza di precompressione e delle forze assiali sotto la combinazione di azioni quasi-permanente;

d è l'altezza utile valutata rispetto al baricentro dello strato più esterno di armatura ordinaria.

Se tutta la sezione è tesa *h-d* è la minima distanza tra il baricentro dello strato di armatura e il lembo esterno della sezione (considerare ciascun lembo se la barra non è disposta simmetricamente).

Verifica armatura trasversale:

vermen armatura trasversare.				
diametro barre trasversali	Φ trasv	16 mm	< Fs	Verifica soddisfatta
passo barre trasversali	passo	100 mm		
N.strati barre trasvers. (sup.+inf.+intermedi)	n.strati	2		
Area barre trasversali	As	4021 mm2		
stato tensionale barre dopo fessurazione	σs	360 mm2	< fyk	Verifica soddisfatta
ϕ barre da tabella 7.2N x σ s e wk=0,2mm	φ*s	6 mm		
altezza zona tesa prima della fessurazione	hcr	500 mm		
altezza totale sezione	h	500 mm		
copriferro (asse barre)	c	50 mm		
altezza utile sezione	d	450 mm		
diametro massimo modificato utilizzabile	φs	30 mm	(= Fs)	

c = 25 mm; $f_{\text{ct,eff}} = 2.9 \text{ MPa}$; $h_{\text{cr}} = 0.5$; (h - d) = 0.1 h; $k_1 = 0.8$; $k_2 = 0.5$; $k_c = 0.4$; k = 1.0; $k_1 = 0.4 \text{ e } k^2 = 1.0$.

STAZIONE PONTECAGNANO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Sottopasso: Relazione di calcolo scatolare NN1X 10 D 78 CL FV03B0 001 C 46 di 95

.7.2. RIEPILOGO E INCIDENZA ARMATURE

A seguire il riepilogo delle armature del tombino:

Pareti di spessore	60 cm	
con armatura principale esterna	F20 /100	3142 mm2
con armatura principale interna	F20 /100	3142 mm2
Soletta superiore di spessore	50 cm	
con armatura principale superiore	F20 /100	3142 mm2
con armatura principale inferiore	F20 /100	3142 mm2
Soletta inferiore di spessore	60 cm	
con armatura principale superiore	F20 /100	3142 mm2
con armatura principale inferiore	F20 /100	3142 mm2
T ' ' 1'	1.	

Le pareti non necessitano di armatura a taglio.

La soletta superiore necessita di armatura a taglio F12 /200 dir.princ. /500 dir.trasv. La soletta inferiore necessita di armatura a taglio F12 /200 dir.princ. /500 dir.trasv.

(Le armature a taglio sono state disposte ove non risultano soddisfatte le verifiche con Vrd senza armatura a taglio) Le armature di ripartizione sono:

	Armature di ripartizione:		Area: % Arm. prin		rıncıp	ıcıpale:	
Pareti	F16 /100	2 strati	4021.2 mm2	64%	di	6283 mm2	
Soletta superiore	F16 /100	2 strati	4021.2 mm2	64%	di	6283 mm2	
Soletta inferiore	F16 /100	2 strati	4021.2 mm2	64%	di	6283 mm2	

Incidenza armature:

0.60 m Spessore piedritti Sp Larghezza utile 4.40 m Spessore soletta $0.50 \, \text{m}$ Lint Altezza libera Spessore fondazione $0.60 \, \text{m}$ 3.30 m Hint Sf 0.07 m20% copriferro incidenza sovrapp.

Elem.	Ø1 sup/int [mm]	pass1 [mm]	Ø2 sup/int [mm]	pass2 [mm]	Ø3 inf/ext [mm]	pass3 [mm]	Ø4 inf/ext [mm]	pass4 [mm]	Øleg [mm]	Øleg pass1 [mm]	Øleg pass2 [mm]
piedritto	20	100	0	1000	20	100	0	1000	0	1000	1000
soletta	20	100	0	1000	20	100	0	1000	12	200	500
fondaz.	20	100	0	1000	20	100	0	1000	12	200	500
ripartiz.	16	100	X	2 strati							
Elem.	LØ [m]	Lleg [mm]	Vol [m3]	Peso [kg]	inad [kg/m3]	Inc%					
piedritto	5.18	0.66	2.0	307	155	29%					
soletta	6.18	0.56	2.8	399	143	19%					
fondaz.	6.38	0.66	3.4	417	124	20%					
ripartiz.			10.1	674	67	32%					
	TOTALE		10.1	2104	208	100%					

STAZIONE PONTECAGNANO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Sottopasso: Relazione di calcolo scatolare NN1X 10 D 78 CL FV03B0 001 C 47 di 95

.8. VERIFICHE GEOTECNICHE

.8.1. Base reaction

Le "base reaction" sono la risultante delle reazioni delle molle per ogni singola combinazione di carico:

TABLE: Base	Reactions		
OutputCase	GlobalFZ	GlobalFX	GlobalMY
Text	KN	KN	KN-m
SLU01	1016.88	113.40	81.71
SLU01	1016.88	113.40	81.71
SLU02	1016.88	-68.88	-265.17
SLU02	1016.88	-68.88	-265.17
SLU03	1016.88	-68.88	-265.17
SLU03	1016.88	-68.88	-265.17
SLU04	1016.88	173.50	168.06
SLU04	1016.88	173.50	168.06
SLU05	1016.88	113.40	81.71
SLU05	1016.88	113.40	81.71
SLU06	539.69	182.27	346.88
SLU06	539.69	182.27	346.88
SLU07	1016.88	173.50	168.06
SLU07	1016.88	173.50	168.06
SLU08	385.09	242.38	433.23
SLU08	385.09	242.38	433.23
SLU09	1016.88	242.38	433.23
SLU09	1016.88	242.38	433.23
SLU10	1016.88	-242.38	-433.23
SLU10	1016.88	-242.38	-433.23
SLU11	921.45	85.71	191.16
SLU11	921.45	85.71	191.16
SLU12	921.45	85.71	191.16
SLU12	921.45	85.71	191.16
SLU13	873.73	-1.39	-108.70
SLU13	873.73	-1.39	-108.70
SH1	456.79	-132.01	-346.45
SH1	456.79	-132.01	-346.45
SH2	445.03	-132.01	-346.45
SH2	445.03	-132.01	-346.45
SH3	456.79	47.16	-5.47
SH3	456.79	47.16	-5.47
SH4	445.03	47.16	-5.47
SH4	445.03	47.16	-5.47
SV1	431.31	-28.65	-96.05
SV1	431.31	-28.65	-96.05
SV2	470.51	-28.65	-96.05
SV2	470.51	-28.65	-96.05

STAZIONE PONTECAGNANO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
Sottopasso: Relazione di calcolo scatolare

NN1X 10 D 78 CL FV03B0 001 C 48 di 95

SV3	431.31	25.10	6.25
SV3	431.31	25.10	6.25
SV4	470.51	25.10	6.25
SV4	470.51	25.10	6.25
SLU14	1016.88	44.71	-16.97
SLU14	1016.88	44.71	-16.97
SLU15	1016.88	-137.57	-363.85
SLU15	1016.88	-137.57	-363.85
SLU16	1016.88	-137.57	-363.85
SLU16	1016.88	-137.57	-363.85
SLU17	1016.88	80.77	34.84
SLU17	1016.88	80.77	34.84
SLU18	1016.88	20.66	-51.51
SLU18	1016.88	20.66	-51.51
SLU19	539.69	89.54	213.66
SLU19	539.69	89.54	213.66
SLU20	1016.88	80.77	34.84
SLU20	1016.88	80.77	34.84
SLU21	385.09	149.64	300.01
SLU21	385.09	149.64	300.01
SLU22	1016.88	149.64	300.01
SLU22	1016.88	149.64	300.01
SLU23	1016.88	-311.07	-531.91
SLU23	1016.88	-311.07	-531.91
SLU24	921.45	17.02	92.47
SLU24	921.45	17.02	92.47
SLU25	921.45	17.02	92.47
SLU25	921.45	17.02	92.47
SLU26	873.73	-70.08	-207.38
SLU26	873.73	-70.08	-207.38
SH5	456.79	-200.70	-445.14
SH5	456.79	-200.70	-445.14
SH6	445.03	-200.70	-445.14
SH6	445.03	-200.70	-445.14
SH7	456.79	-21.53	-104.16
SH7	456.79	-21.53	-104.16
SH8	445.03	-21.53	-104.16
SH8	445.03	-21.53	-104.16
SV5	431.31	-97.35	-194.73
SV5	431.31	-97.35	-194.73
SV6	470.51	-97.35	-194.73
SV6	470.51	-97.35	-194.73
SV7	431.31	-43.59	-92.44
SV7	431.31	-43.59	-92.44
SV8	470.51	-43.59	-92.44
SV8	470.51	-43.59	-92.44
			•

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NN1X
 10
 D 78
 CL FV03B0 001
 C
 49 di 95

STAZIONE PONTECAGNANO
Sottopasso: Relazione di calcolo scatolare

Le terne di sollecitazioni N-H-M utilizzate nelle verifiche sono le seguenti, inviluppate per combinazioni SLU e per combinazioni SLV:

SLU	
Nmax	1016.88 kN/m
Nmin	385.09 kN/m
Hmax	311.07 kN/m
Mmax	531.91 kNm/m
SLV	
Nmax	470.51 kN/m
Nmin	431.31 kN/m
Hmax	200.70 kN/m
Mmax	445.14 kNm/m

Le terne di sollecitazioni sopra elencate sono utilizzate a seguire per le verifiche geotecniche GEO a carico limite e a scorrimento secondo l'approccio 2 (A1-M1-R3) di cui al punto 6.4.2.1 delle NTC2018.

STAZIONE PONTECAGNANO
Sottopasso: Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

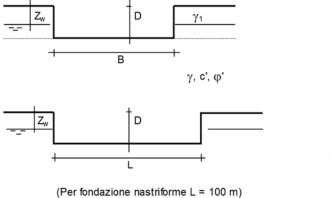
 NN1X
 10
 D 78
 CL FV03B0 001
 C
 50 di 95

Le caratteristiche geometriche e i coefficienti utilizzati nelle verifiche geotecniche vengono di seguito riportati:

D = Profondità del piano di appoggio

e_B = Eccentricità in direzione B (e_B = Mb/N)

 e_L = Eccentricità in direzione L (e_L = MI/N) (per fondazione nastriforme e_L = 0; L* = L)

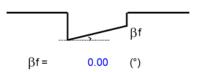

 B^* = Larghezza fittizia della fondazione (B^* = B - 2^*e_B)

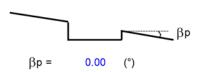
 L^* = Lunghezza fittizia della fondazione (L^* = L - 2^*e_L)

(per fondazione nastriforme le sollecitazioni agenti sono riferite all'unità di lunghezza)

coefficienti parziali

			azioni		proprietà del terreno		resist	enze
Metodo di calcolo		permanenti	temporanee variabili	tan φ'	c'	qlim	scorr	
	A1+M1+R1	0	1.30	1.50	1.00	1.00	1.00	1.00
Stato Limite Ultimo	A2+M2+R2	0	1.00	1.30	1.25	1.25	1.80	1.00
	SISMA	0	1.00	1.00	1.25	1.25	1.80	1.00
	A1+M1+R3	0	1.30	1.50	1.00	1.00	2.30	1.10
	SISMA	0	1.00	1.00	1.00	1.00	2.30	1.10
Tensioni Ammissibili		1.00	1.00	1.00	1.00	3.00	3.00	
Definiti dal Progettista		1.00	1.00	1.00	1.00	2.30	1.10	





B = 5.60 (m)

L = 100.00 (m)

D = 4.80 (m)

STAZIONE PONTECAGNANO

CODIFICA COMMESSA DOCUMENTO FOGLIO Sottopasso: Relazione di calcolo scatolare NN1X D 78 CL FV03B0 001 51 di 95

Per il caclolo del carico llimite si è utilizzata la formula trinomia, in termini di tensioni efficaci per le condizioni drenate e in termini di tensioni totali per le condizioni non dreante:

CONDIZIONI DRENATE (TENSIONI EFFICACI):

 $qlim = c' \cdot Nc \cdot sc \cdot dc \cdot ic \cdot bc \cdot gc + q \cdot Nq \cdot sq \cdot dq \cdot iq \cdot bq \cdot gq + 0, 5 \cdot \gamma \cdot B \cdot N\gamma \cdot s\gamma \cdot d\gamma \cdot i\gamma \cdot b\gamma \cdot g\gamma$

CONDIZIONI NON DRENATE (TENSIONI TOTALI):

 $qlim = c_u \cdot Nc \cdot sc \cdot dc \cdot ic \cdot bc \cdot gc + q \cdot Nq$

Le seguenti verifiche geotecniche sono distinguibili per:

- Verifiche per combinazioni in fase statica e verifiche per combinazione in fase sismica:
- Verifiche in condizioni drenate e verifiche in condizioni non drenate (in presenza di falda);
- Verifiche per sforzo normale minimo e verifiche per sforzo normale massimo.

STAZIONE PONTECAGNANO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
Sottopasso: Relazione di calcolo scatolare

NN1X 10 D 78 CL FV03B0 001 C 52 di 95

.8.2. Verifiche SLU in condizioni drenate

• SLU-Nmin:

AZIONI

		valori o	Valori di	
		permanenti temporanee		calcolo
N	[kN]	385.09		385.09
Mb	[kNm]	531.91		531.91
MI	[kNm]	0.00		0.00
Tb	[kN]	311.07		311.07
TI	[kN]	0.00		0.00
Н	[kN]	311.07	0.00	311.07

Peso unità di volume del terreno

 $\gamma_1 = 18.00 \text{ (kN/mc)}$ $\gamma = 18.00 \text{ (kN/mc)}$

Valori caratteristici di resistenza del terreno

c' = 5.00 (kN/mq) $\phi' = 25.00 (°)$

Valori di progetto

c' = 5.00 (kN/mq) $\phi' = 25.00 (°)$

Profondità della falda

Zw = 8.50 (m)

 $e_B = 1.38$ (m) $B^* = 2.84$ (m) $e_L = 0.00$ (m) $L^* = 1.00$ (m)

q : sovraccarico alla profondità D

q = 86.40 (kN/mq)

$\boldsymbol{\gamma}$: peso di volume del terreno di fondazione

 $\gamma = 14.61 \, (kN/mc)$

Nc, Nq, Nγ : coefficienti di capacità portante

Nq =
$$tan^2(45 + \phi'/2)^*e^{(\pi^*tg\phi')}$$

$$Nc = (Nq - 1)/tan_{0}'$$

$$N\gamma = 2*(Nq + 1)*tan_{\mathcal{O}}'$$

$$N_{\gamma} = 10.88$$

STAZIONE PONTECAGNANO

Sottopasso: Relazione di calcolo scatolare

COMMESSA CODIFICA LOTTO DOCUMENTO FOGLIO NN1X 10 D 78 CL FV03B0 001 С 53 di 95

s_c, s_q, s_v: fattori di forma

$$s_c = 1 + B*Nq / (L*Nc)$$

$$s_c = 1.00$$

$$s_q = 1 + B*tan_{0}' / L*$$

$$s_q = 1.00$$

$$s_v = 1 - 0.4*B* / L*$$

$$s_{v} = 1.00$$

ic, iq, iv: fattori di inclinazione del carico

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*) =$$

$$\theta$$
 = arctg(Tb/TI) =

$$m_1 = (2 + L^* / B^*) / (1 + L^* / B^*) =$$

0.00

$$m = 2.00$$
 (-)

$$i_q = (1 - H/(N + B*L* c' cotg_{Q'}))^m$$

$$i_c = i_q - (1 - i_q)/(Nq - 1)$$

 $i_{\alpha} =$

$$i_{\gamma} = (1 - H/(N + B*L* c' \cot g_{\phi}))^{(m+1)}$$

(m=2 nel caso di fondazione nastriforme e

 $m = (m_b sin^2 \theta + m_l cos^2 \theta)$ in tutti gli altri casi)

d_c, d_q, d_γ : fattori di profondità del piano di appoggio

per D/B*
$$\leq$$
 1; d_q = 1 +2 D tan _{ϕ} ' (1 - sen _{ϕ} ')² / B*
per D/B*> 1; d_q = 1 +(2 tan _{ϕ} ' (1 - sen _{ϕ} ')²) * arctan (D / B*)

$$d_q = 1.35$$

$$d_c = d_q - (1 - d_q) / (N_c tan_{\phi})$$

$$d_c = 1.36$$

$$d_{\gamma} = 1$$

$$d_{v} = 1.00$$

STAZIONE PONTECAGNANO

Sottopasso: Relazione di calcolo scatolare

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NN1X	10	D 78	CL FV03B0 001	С	54 di 95

$b_c,\,b_q,\,b_\gamma$: fattori di inclinazione base della fondazione

$$b_q = (1 - \beta_f \tan_{\phi}')^2$$

$$\beta_f + \beta_p =$$

$$\beta_f + \beta_p = 0.00$$
 $\beta_f + \beta_p < 45^\circ$

$$b_{q} = 1.00$$

$$b_c = b_q - (1 - b_q) / (N_c \tan_{\phi})$$

$$b_c = 1.00$$

$$b_{\gamma} = b_{q}$$

$$b_{v} = 1.00$$

g_c , g_q , g_γ : fattori di inclinazione piano di campagna

$$g_q = (1 - tan\beta_p)^2$$

$$\beta_f + \beta_p =$$

$$\beta_f + \beta_p < 45^\circ$$

$$g_{q} = 1.00$$

$$g_c = g_q - (1 - g_q) / (N_c tan_{\phi}')$$

$$g_c =$$

1.00

$$g_{y} = g_{q}$$

$$g_{y} = 1.00$$

Carico limite unitario

$$q_{lim} = 382.60 (kN/m^2)$$

Pressione massima agente

$$q = N / B^* L^*$$

$$q = 135.72 (kN/m^2)$$

DOCUMENTO

FOGLIO

CODIFICA

STAZIONE PONTECAGNANO

COMMESSA Sottopasso: Relazione di calcolo scatolare 10 D 78 CL FV03B0 001 С 55 di 95

LOTTO

Verifica di sicurezza capacità portante

 \geq q = 135.72 (kN/m²) 166.35 $q_{lim}/\gamma_R =$

VERIFICA A SCORRIMENTO

Carico agente

Hd = 311.07 (kN)

Azione Resistente

 $Sd = N tan(\phi') + c' B^* L^*$

Sd = 354.76 (kN)

Verifica di sicurezza allo scorrimento

Sd / γ_R = 322.51 Hd = 311.07 (kN) ≥

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NN1X
 10
 D 78
 CL FV03B0 001
 C
 56 di 95

• <u>SLU-Nmax:</u>

AZIONI

	valori (valori di input		
	permanenti	temporanee	calcolo	
N [kN]	1016.88		1016.88	
Mb [kNn	n] 531.91		531.91	
MI [kNm] 0.00		0.00	
Tb [kN]	311.07		311.07	
TI [kN]	0.00		0.00	
H [kN]	311.07	0.00	311.07	

Peso unità di volume del terreno

 $\gamma_1 = 18.00 \text{ (kN/mc)}$ $\gamma = 18.00 \text{ (kN/mc)}$

Valori caratteristici di resistenza del terreno

c' = 5.00 (kN/mq) $\phi' = 25.00 (°)$

Valori di progetto

c' = 5.00 (kN/mq) $\phi' = 25.00 (°)$

Profondità della falda

Zw = 8.50 (m)

 $e_B = 0.52$ (m) $B^* = 4.55$ (m) $e_L = 0.00$ (m) $L^* = 1.00$ (m)

q : sovraccarico alla profondità D

q = 86.40 (kN/mq)

γ : peso di volume del terreno di fondazione

 $\gamma = 14.61 \, (kN/mc)$

Nc, Nq, Nγ : coefficienti di capacità portante

Nq =
$$\tan^2(45 + \varphi'/2)^* e^{(\pi^* t g \varphi')}$$

$$Nc = (Nq - 1)/tan_{\theta}'$$

$$N\gamma = 2*(Nq + 1)*tan\phi'$$

$$N_{\gamma} = 10.88$$

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NN1X	10	D 78	CL FV03B0 001	С	57 di 95

s_c, s_q, s_v : fattori di forma

$$s_c = 1 + B*Nq / (L*Nc)$$

$$s_c = 1.00$$

$$s_q = 1 + B*tan_{\phi}' / L*$$

$$s_{a} = 1.00$$

$$s_v = 1 - 0.4*B* / L*$$

$$s_{v} = 1.00$$

i_c, i_q, i_y : fattori di inclinazione del carico

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*) =$$

$$\theta$$
 = arctg(Tb/TI) =

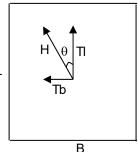
2.00

$$m_1 = (2 + L^* / B^*) / (1 + L^* / B^*)$$

 $i_q = (1 - H/(N + B*L* c' cotg_0'))^m$

$$i_a = 0.50$$

$$i_c = i_q - (1 - i_q)/(Nq - 1)$$


$$i_c = 0.48$$

$$i_{\gamma} = (1 - H/(N + B^*L^* c' \cot g_{\phi}'))^{(m+1)}$$

$$i_{\gamma} = 0.35$$

$m=(m_b sin^2 \theta + m_l cos^2 \theta)$ in tutti gli altri casi)

(m=2 nel caso di fondazione nastriforme e

d_c, d_q, d_y : fattori di profondità del piano di appoggio

per D/B*
$$\leq$$
 1; d_q = 1 +2 D tan _{ϕ} ' (1 - sen _{ϕ} ')² / B*
per D/B*> 1; d_q = 1 +(2 tan _{ϕ} ' (1 - sen _{ϕ} ')²) * arctan (D / B*)

$$d_{q} = 1.35$$

$$d_{c} = d_{q} - (1 - d_{q}) / (N_{c} \tan_{\phi})$$

$$d_c = 1.36$$

$$d_{\gamma} = 1$$

$$d_{v} = 1.00$$

STAZIONE PONTECAGNANO

Sottopasso: Relazione di calcolo scatolare

COMMESSA LOTTO CODIFICA DOCUMENTO FOGLIO D 78 CL FV03B0 001 58 di 95

$b_c,\,b_q,\,b_\gamma$: fattori di inclinazione base della fondazione

$$b_q = (1 - \beta_f \tan_{\phi}')^2$$

$$\beta_f + \beta_p =$$

$$\beta_f + \beta_p < 45^\circ$$

$$b_0 = 1.00$$

$$b_c = b_q - (1 - b_q) / (N_c \tan_{\phi}')$$

$$b_c = 1.00$$

$$b_{\gamma} = b_{q}$$

$$b_{v} = 1.00$$

g_c , g_q , g_γ : fattori di inclinazione piano di campagna

$$g_q = (1 - \tan \beta_p)^2$$

$$\beta_f + \beta_p =$$

$$\beta_f + \beta_p < 45^\circ$$

$$g_{q} = 1.00$$

$$g_c = g_q - (1 - g_q) / (N_c \tan_{\phi})$$

$$g_c =$$

1.00

$$g_{y} = g_{q}$$

$$g_{\gamma} = 1.00$$

Carico limite unitario

$$q_{lim} = 2967.67 (kN/m^2)$$

Pressione massima agente

$$q = N / B^* L^*$$

$$q = 223.30 (kN/m^2)$$

STAZIONE PONTECAGNANO

Sottopasso: Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NN1X
 10
 D 78
 CL FV03B0 001
 C
 59 di 95

Verifica di sicurezza capacità portante

 $q_{lim} / \gamma_R = 1290.29 \ge q = 223.30 (kN/m^2)$

VERIFICA A SCORRIMENTO

Carico agente

Hd = 311.07 (kN)

Azione Resistente

Sd = N tan(0) + c' B* L*

Sd = 848.64 (kN)

Verifica di sicurezza allo scorrimento

Sd / γ_R = 771.49 \geq Hd = 311.07 (kN)

STAZIONE PONTECAGNANO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Sottopasso: Relazione di calcolo scatolare	NN1X	10	D 78	CL FV03B0 001	С	60 di 95

.8.3. Verifiche SLU in condizioni non drenate

• <u>SLU-Nmin:</u>

AZIONI

		valori	Valori di	
		permanenti	temporanee	calcolo
N	[kN]	385.09	·	385.09
Mb	[kNm]	531.91		531.91
MI	[kNm]	0.00		0.00
Tb	[kN]	311.07		311.07
TI	[kN]	0.00		0.00
Н	[kN]	311.07	0.00	311.07

Peso unità di volume del terreno

 $\gamma_1 = 18.00 \text{ (kN/mc)}$ $\gamma = 18.00 \text{ (kN/mc)}$

Valore caratteristico di resistenza del terreno

 $c_u = 20.00 (kN/mq)$

 $e_B = 1.38$ (m)

 $e_L = 0.00$ (m)

Valore di progetto

 $c_u = 20.00 \text{ (kN/mq)}$

 $B^* = 2.84$ (m)

 $L^* = 1.00$ (m)

q : sovraccarico alla profondità D

q = 86.40 (kN/mq)

γ : peso di volume del terreno di fondazione

 $\gamma = 18.00 \, (kN/mc)$

Nc : coefficiente di capacità portante

 $Nc = 2 + \pi$

Nc = 5.14

s_c: fattori di forma

$$s_c = 1 + 0.2 B^* / L^*$$

$$s_c = 1.00$$

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NN1X	10	D 78	CL FV03B0 001	С	61 di 95

i_c: fattore di inclinazione del carico

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*) =$$

0.00

$$m_1 = (2 + L^* / B^*) / (1 + L^* / B^*) =$$

0.00

$$\theta$$
 = arctg(Tb/Tl) =

0.00

(°)

$$m = 2.00$$

(m=2 nel caso di fondazione nastriforme e m= $(m_b sin^2 \theta + m_l cos^2 \theta)$ in tutti gli altri casi)

$$i_c = (1 - m H / (B*L* c_u*Nc))$$

$$i_c = 0.72$$

per D/B*
$$\leq$$
 1; d_c = 1 + 0,4 D / B*

per D/B*> 1;
$$d_c = 1 + 0.4 \arctan (D / B^*)$$

$$d_c = 1.55$$

b_c: fattore di inclinazione base della fondazione

$$b_c = (1 - 2 \beta_f / (\pi + 2))$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$b_c = 1.00$$

g_c : fattore di inclinazione piano di campagna

$$g_c = (1 - 2 \beta_f / (\pi + 2))$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f$$
 + β_p < 45°

$$g_c = 1.00$$

Carico limite unitario

$$q_{lim} = 939.48 \quad (kN/m^2)$$

Pressione massima agente

$$q = N / B^* L^*$$

$$q = 135.72 (kN/m^2)$$

DOCUMENTO

FOGLIO

CODIFICA

STAZIONE PONTECAGNANO

COMMESSA Sottopasso: Relazione di calcolo scatolare NN1X 10 D 78 CL FV03B0 001 С 62 di 95

LOTTO

Verifica di sicurezza capacità portante

 \geq q = 135.72 (kN/m²) 408.47 $q_{lim}/\gamma_R =$

VERIFICA A SCORRIMENTO

Carico agente

Hd = 311.07 (kN)

Azione Resistente

 $Sd = cu B^* L^*$

Sd = 425.61 (kN)

Verifica di sicurezza allo scorrimento

(kN) Sd / γ_R = 386.92 ≥ Hd = 311.07

STAZIONE PONTECAGNANO

Sottopasso: Relazione di calcolo scatolare

COMMESSA LOTTO CODIFICA

NN1X 10 D 78

CL FV03B0 001 C 63 di 95

FOGLIO

DOCUMENTO

• <u>SLU-Nmax:</u>

AZIONI

		valori di input		Valori di
		permanenti	temporanee	calcolo
N	[kN]	1016.88		1016.88
Mb	[kNm]	531.91		531.91
MI	[kNm]	0.00		0.00
Tb	[kN]	311.07		311.07
TI	[kN]	0.00		0.00
Н	[kN]	311.07	0.00	311.07

Peso unità di volume del terreno

 $\gamma_1 = 18.00 \text{ (kN/mc)}$ $\gamma = 18.00 \text{ (kN/mc)}$

Valore caratteristico di resistenza del terreno

 $c_u = 20.00 (kN/mq)$

Valore di progetto c_u = 20.00 (kN/mq)

 $e_B = 0.52$ (m)

 $B^* = 4.55$ (m)

 $e_L = 0.00$ (m)

 $L^* = 1.00$ (m)

q : sovraccarico alla profondità D

q = 86.40 (kN/mq)

γ: peso di volume del terreno di fondazione

 $\gamma = 18.00 \, (kN/mc)$

Nc : coefficiente di capacità portante

 $Nc = 2 + \pi$

Nc = 5.14

s_c: fattori di forma

$$s_c = 1 + 0.2 B^* / L^*$$

$$s_c = 1.00$$

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NN1X	10	D 78	CL FV03B0 001	С	64 di 95

i_c: fattore di inclinazione del carico

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*) =$$

$$m_1 = (2 + L^* / B^*) / (1 + L^* / B^*) =$$

0.00

$$\theta = arctg(Tb/TI) =$$

(°)

(m=2 nel caso di fondazione nastriforme e $m=(m_b sin^2 \theta + m_l cos^2 \theta)$ in tutti gli altri casi)

$$i_c = (1 - m H / (B*L* c_u*Nc))$$

$$i_c = 0.82$$

per D/B*
$$\leq$$
 1; d_c = 1 + 0,4 D / B*

per D/B*> 1;
$$d_c = 1 + 0.4$$
 arctan (D / B*)

$$d_c = 1.55$$

b_c: fattore di inclinazione base della fondazione

$$b_c = (1 - 2 \beta_f / (\pi + 2))$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$b_c = 1.00$$

g_c: fattore di inclinazione piano di campagna

$$g_c = (1 - 2 \beta_f / (\pi + 2))$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$g_c =$$

1.00

Carico limite unitario

$$q_{lim} = 1067.26 \text{ (kN/m}^2)$$

Pressione massima agente

$$q = N / B^* L^*$$

$$q = 223.30 \text{ (kN/m}^2)$$

STAZIONE PONTECAGNANO

Sottopasso: Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NN1X
 10
 D 78
 CL FV03B0 001
 C
 65 di 95

Verifica di sicurezza capacità portante

 $q_{lim} / \gamma_R = 464.02 \ge q = 223.30 (kN/m^2)$

VERIFICA A SCORRIMENTO

Carico agente

Hd = 311.07 (kN)

Azione Resistente

 $Sd = cu B^* L^*$

Sd = 683.08 (kN)

Verifica di sicurezza allo scorrimento

Sd / γ_R = 620.98 ≥ Hd = 311.07 (kN)

STAZIONE PONTECAGNANO
Sottopasso: Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NN1X
 10
 D 78
 CL FV03B0 001
 C
 66 di 95

.8.4. Verifiche SLV in condizioni drenate

• SLV-Nmin:

AZIONI

		,		
		valori di input		Valori di
		permanenti	temporanee	calcolo
N	[kN]	431.31		431.31
Mb	[kNm]	445.14		445.14
MI	[kNm]	0.00		0.00
Tb	[kN]	200.70		200.70
TI	[kN]	0.00		0.00
Н	[kN]	200.70	0.00	200.70

Peso unità di volume del terreno

 $\gamma_1 = 18.00 \text{ (kN/mc)}$ $\gamma = 18.00 \text{ (kN/mc)}$

Valori caratteristici di resistenza del terreno

c' = 5.00 (kN/mq) c' = 5.00 (kN/mq) $\phi' = 25.00$ (°)

Valori di progetto

Profondità della falda

Zw = 8.50 (m)

 $e_B = 1.03$ (m) $B^* = 3.54$ (m) $e_L = 0.00$ (m) $L^* = 1.00$ (m)

q : sovraccarico alla profondità D

q = 86.40 (kN/mq)

γ : peso di volume del terreno di fondazione

 $\gamma = 14.61 \, (kN/mc)$

Nc, Nq, Nγ : coefficienti di capacità portante

Nq =
$$\tan^2(45 + \phi'/2)^*e^{(\pi^*tg\phi')}$$

$$Nc = (Nq - 1)/tan_{0}'$$

$$Nc = 20.72$$

$$N\gamma = 2*(Nq + 1)*tan_{\varphi}'$$

$$N_{\gamma} = 10.88$$

STAZIONE PONTECAGNANO

COMMESSA CODIFICA LOTTO DOCUMENTO Sottopasso: Relazione di calcolo scatolare NN1X 10 D 78 CL FV03B0 001

s_c, s_q, s_v: fattori di forma

$$s_c = 1 + B*Nq / (L*Nc)$$

$$s_c = 1.00$$

$$s_q = 1 + B*tan_{\Phi}' / L*$$

$$s_q = 1.00$$

$$s_v = 1 - 0.4*B* / L*$$

$$s_{v} = 1.00$$

i_c, i_q, i_v : fattori di inclinazione del carico

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*) =$$

0.00

 $\theta = arctg(Tb/TI) =$

0.00

2.00

(°)

FOGLIO

67 di 95

С

$$m_l = (2 + L^* / B^*) / (1 + L^* / B^*)$$

0.00

(m=2 nel caso di fondazione nastriforme e

 $m=(m_b sin^2\theta + m_l cos^2\theta)$ in tutti gli altri casi)

(-)

 $i_q = (1 - H/(N + B*L* c' cotg_{\mathcal{O}}'))^m$

$$i_a = 0.33$$

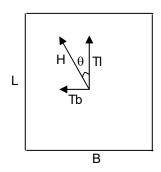
$$i_c = i_q - (1 - i_q)/(Nq - 1)$$

$$i_c = 0.31$$

$$i_{y} = (1 - H/(N + B*L* c' cotg_{0}'))^{(m+1)}$$

d_c , d_q , d_γ : fattori di profondità del piano di appoggio

per D/B*
$$\leq$$
 1; d_q = 1 +2 D tan _{ϕ} ' (1 - sen _{ϕ} ')² / B*
per D/B*> 1; d_q = 1 +(2 tan _{ϕ} ' (1 - sen _{ϕ} ')²) * arctan (D / B*)


$$d_{q} = 1.35$$

$$d_c = d_q - (1 - d_q) / (N_c tan_{\phi})$$

$$d_c = 1.36$$

$$d_{v} = 1$$

$$d_{v} = 1.00$$

STAZIONE PONTECAGNANO

Sottopasso: Relazione di calcolo scatolare

COMMESSA LOTTO CODIFICA DOCUMENTO FOGLIO D 78 CL FV03B0 001 68 di 95

$b_c,\,b_q,\,b_\gamma$: fattori di inclinazione base della fondazione

$$b_q = (1 - \beta_f \tan_{\phi}')^2$$

$$\beta_f + \beta_p =$$

0.00

$$\beta_f + \beta_p < 45^\circ$$

$$b_a = 1.00$$

$$b_c = b_q - (1 - b_q) / (N_c \tan_{\phi}')$$

$$b_c = 1.00$$

$$b_{y} = b_{q}$$

$$b_{v} = 1.00$$

$g_c,\,g_q,\,g_\gamma$: fattori di inclinazione piano di campagna

$$g_q = (1 - tan \beta_p)^2$$

$$\beta_f + \beta_p =$$

$$\beta_f + \beta_p < 45^\circ$$

$$g_{q} = 1.00$$

$$g_c = g_q - (1 - g_q) / (N_c tan_{\phi}')$$

$$g_c = 1.00$$

$$g_{y} = g_{q}$$

$$g_{\gamma} = 1.00$$

Carico limite unitario

$$q_{lim} = 1943.11 \quad (kN/m^2)$$

Pressione massima agente

$$q = N / B^* L^*$$

$$q = 121.98 (kN/m^2)$$

DOCUMENTO

FOGLIO

CODIFICA

STAZIONE PONTECAGNANO

COMMESSA Sottopasso: Relazione di calcolo scatolare NN1X 10 D 78 CL FV03B0 001 С 69 di 95

LOTTO

Verifica di sicurezza capacità portante

844.83 ≥ q = 121.98 (kN/m²) $q_{lim} / \gamma_R =$

VERIFICA A SCORRIMENTO

Carico agente

Hd = 200.70 (kN)

Azione Resistente

 $Sd = N tan(\phi') + c' B^* L^*$

Sd = 408.08 (kN)

Verifica di sicurezza allo scorrimento

(kN) $Sd/\gamma_R =$ 200.70 370.98 ≥ Hd =

STAZIONE PONTECAGNANO Sottopasso: Relazione di calcolo scatolare COMMESSA LOTTO CODIFICA NN1X

DOCUMENTO

FOGLIO

10 D 78 CL FV03B0 001 С 70 di 95

SLV-Nmax:

AZIONI

		_		
	valori o	valori di input		
	permanenti	temporanee	calcolo	
N [kN]	470.51		470.51	
Mb [kNn	n] 445.14		445.14	
MI [kNm	0.00		0.00	
Tb [kN]	200.70		200.70	
TI [kN]	0.00		0.00	
H [kN]	200.70	0.00	200.70	

Peso unità di volume del terreno

18.00 (kN/mc) 18.00 (kN/mc) γ

Valori caratteristici di resistenza del terreno

Valori di progetto 5.00 (kN/mq)5.00 (kN/mq) 25.00 (°) 25.00 (°)

Profondità della falda

8.50 (m)

B* = 0.95 3.71 (m) (m) $e_B =$ $e_L =$ 0.00 (m) L* = 1.00 (m)

q : sovraccarico alla profondità D

86.40 (kN/mq)q =

γ : peso di volume del terreno di fondazione

γ = 14.61 (kN/mc)

Nc, Nq, Nγ : coefficienti di capacità portante

Nq =
$$\tan^2(45 + \phi'/2)^*e^{(\pi^*tg_{\phi'})}$$

$$Nc = (Nq - 1)/tan_0'$$

$$Nc = 20.72$$

$$N_{\gamma} = 2*(Nq + 1)*tan_{\Omega}'$$

$$N_{\gamma} = 10.88$$

s_c, s_q, s_v: fattori di forma

$$s_c = 1 + B*Nq / (L*Nc)$$

$$s_c = 1.00$$

$$s_q = 1 + B*tan_{\Phi}' / L*$$

$$s_q = 1.00$$

$$s_v = 1 - 0.4*B* / L*$$

$$s_{v} = 1.00$$

i_c, i_q, i_v : fattori di inclinazione del carico

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*) =$$

0.00

 $\theta = arctg(Tb/TI) =$

0.00 (°)

2.00

$$m_l = (2 + L^* / B^*) / (1 + L^* / B^*)$$

0.00

(-)

 $i_q = (1 - H/(N + B*L* c' cotg_{\mathcal{O}}'))^m$

 $i_q =$ 0.37

 $i_c = i_q - (1 - i_q)/(Nq - 1)$

 $i_c = 0.35$

 $i_{y} = (1 - H/(N + B*L* c' cotg_{0}))^{(m+1)}$

i,, = 0.23

(m=2 nel caso di fondazione nastriforme e

 $m=(m_b sin^2\theta + m_l cos^2\theta)$ in tutti gli altri casi)

d_c , d_q , d_γ : fattori di profondità del piano di appoggio

per D/B*
$$\leq$$
 1; d_q = 1 +2 D tan _{ϕ} ' (1 - sen _{ϕ} ')² / B* per D/B*> 1; d_q = 1 +(2 tan _{ϕ} ' (1 - sen _{ϕ} ')²) * arctan (D / B*)

$$d_{q} = 1.35$$

$$d_{c} = d_{q} - (1 - d_{q}) / (N_{c} \tan_{\phi})$$

$$d_c = 1.36$$

$$d_{v} = 1$$

$$d_{v} = 1.00$$

STAZIONE PONTECAGNANO

Sottopasso: Relazione di calcolo scatolare

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NN1X	10	D 78	CL FV03B0 001	С	72 di 95

$b_c,\,b_q,\,b_\gamma$: fattori di inclinazione base della fondazione

$$b_q = (1 - \beta_f \tan_{\phi}')^2$$

$$\beta_f + \beta_p =$$

$$\beta_f + \beta_p < 45^\circ$$

$$b_a = 1.00$$

$$b_c = b_q - (1 - b_q) / (N_c \tan_{\theta}')$$

$$b_{y} = b_{q}$$

$$b_{v} = 1.00$$

g_c , g_q , g_γ : fattori di inclinazione piano di campagna

$$g_q = (1 - tan \beta_p)^2$$

$$\beta_f + \beta_p =$$

$$\beta_f + \beta_p < 45^\circ$$

$$g_{q} = 1.00$$

$$g_c = g_q - (1 - g_q) / (N_c tan_{\phi}')$$

$$g_c =$$

1.00

$$g_y = g_q$$

$$g_{\gamma} = 1.00$$

Carico limite unitario

$$q_{lim} = 2177.94$$
 (kN/m²)

Pressione massima agente

$$q = N / B^* L^*$$

$$q = 126.89 (kN/m2)$$

DOCUMENTO

FOGLIO

CODIFICA

STAZIONE PONTECAGNANO

COMMESSA Sottopasso: Relazione di calcolo scatolare NN1X 10 D 78 CL FV03B0 001 С 73 di 95

LOTTO

Verifica di sicurezza capacità portante

946.93 ≥ q = $126.89 \text{ (kN/m}^2\text{)}$ $q_{lim}/\gamma_R =$

VERIFICA A SCORRIMENTO

Carico agente

Hd = 200.70 (kN)

Azione Resistente

 $Sd = N tan(\phi') + c' B^* L^*$

Sd = 440.69 (kN)

Verifica di sicurezza allo scorrimento

 $Sd/\gamma_R =$ (kN) 200.70 400.63 ≥ Hd =

STAZIONE PONTECAGNANO Sottopasso: Relazione di calcolo scatolare COMMESSA LOTTO CODIFICA DOCUMENTO FOGLIO NN1X 10 D 78 CL FV03B0 001 С 74 di 95

.8.5. Verifiche SLV in condizioni non drenate

SLV-Nmin:

AZIONI

		valori	Valori di	
		permanenti	temporanee	calcolo
N	[kN]	431.31		431.31
Mb	[kNm]	445.14		445.14
MI	[kNm]	0.00		0.00
Tb	[kN]	200.70		200.70
П	[kN]	0.00		0.00
Н	[kN]	200.70	0.00	200.70

Peso unità di volume del terreno

18.00 (kN/mc) γ1 18.00 (kN/mc)

Valore caratteristico di resistenza del terreno

Valore di progetto 20.00 (kN/mq) 20.00 (kN/mq) c_{u} c_{u} 1.03 (m) В* 3.54 (m) e_B 0.00 (m) 1.00 e_L (m)

q : sovraccarico alla profondità D

86.40 (kN/mq) q =

γ : peso di volume del terreno di fondazione

18.00 (kN/mc) $\gamma =$

Nc : coefficiente di capacità portante

 $Nc = 2 + \pi$

Nc = 5.14

s_c: fattori di forma

$$s_c = 1 + 0.2 B^* / L^*$$

1.00 $s_c =$

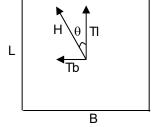
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NN1X	10	D 78	CL FV03B0 001	С	75 di 95

i_c: fattore di inclinazione del carico

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*) =$$

0.00

$$m_1 = (2 + L^* / B^*) / (1 + L^* / B^*) =$$


0.00

$$\theta$$
 = arctg(Tb/Tl) =

0.00

(°)

$$m = 2.00$$

(m=2 nel caso di fondazione nastriforme e $m=(m_b sin^2 \theta + m_l cos^2 \theta)$ in tutti gli altri casi)

$$i_c = (1 - m H / (B*L* c_u*Nc))$$

$$i_c = 0.85$$

d_c: fattore di profondità del piano di appoggio

per D/B*
$$\leq$$
 1; d_c = 1 + 0,4 D / B*

per D/B*> 1;
$$d_c = 1 + 0.4$$
 arctan (D / B*)

$$d_c = 1.55$$

b_c: fattore di inclinazione base della fondazione

$$b_c = (1 - 2 \beta_f / (\pi + 2))$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f$$
 + β_p < 45°

$$b_c = 1.00$$

g_c: fattore di inclinazione piano di campagna

$$g_c = (1 - 2 \beta_f / (\pi + 2))$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f$$
 + β_p < 45°

$$g_c = 1.00$$

Carico limite unitario

$$q_{lim} = 1102.96 \text{ (kN/m}^2)$$

Pressione massima agente

$$q = N / B^* L^*$$

$$q = 121.98 (kN/m^2)$$

DOCUMENTO

FOGLIO

CODIFICA

STAZIONE PONTECAGNANO

COMMESSA Sottopasso: Relazione di calcolo scatolare NN1X 10 D 78 CL FV03B0 001 С 76 di 95

LOTTO

Verifica di sicurezza capacità portante

 \geq q = 121.98 (kN/m²) 479.55 $q_{lim}/\gamma_R =$

VERIFICA A SCORRIMENTO

Carico agente

Hd = 200.70 (kN)

Azione Resistente

 $Sd = cu B^* L^*$

Sd = 530.38 (kN)

Verifica di sicurezza allo scorrimento

(kN) Sd / γ_R = 482.16 ≥ Hd = 200.70

STAZIONE PONTECAGNANO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
Sottopasso: Relazione di calcolo scatolare

NN1X 10 D 78 CL FV03B0 001 C 77 di 95

• SLV-Nmax:

AZIONI

		valori	di input	Valori di	
		permanenti	temporanee	calcolo	
N	[kN]	470.51		470.51	
Mb	[kNm]	445.14		445.14	
MI	[kNm]	0.00		0.00	
Tb	[kN]	200.70		200.70	
TI	[kN]	0.00		0.00	
Н	[kN]	200.70	0.00	200.70	

Peso unità di volume del terreno

 $\gamma_1 = 18.00 \text{ (kN/mc)}$ $\gamma = 18.00 \text{ (kN/mc)}$

Valore caratteristico di resistenza del terreno

 $c_u = 20.00 \quad (kN/mq)$

 $e_B = 0.95$ (m)

 $e_L = 0.00$ (m)

Valore di progetto

 $c_u = 20.00 (kN/mq)$

 $B^* = 3.71$ (m)

 $L^* = 1.00$ (m)

q : sovraccarico alla profondità D

q = 86.40 (kN/mq)

γ : peso di volume del terreno di fondazione

 $\gamma = 18.00 \, (kN/mc)$

Nc : coefficiente di capacità portante

 $Nc = 2 + \pi$

Nc = 5.14

s_c: fattori di forma

 $s_c = 1 + 0.2 B^* / L^*$

 $s_c = 1.00$

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NN1X	10	D 78	CL FV03B0 001	С	78 di 95

i_c: fattore di inclinazione del carico

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*) =$$

$$m_1 = (2 + L^* / B^*) / (1 + L^* / B^*) =$$

0.00

$$\theta$$
 = arctg(Tb/Tl) =

(°)

(m=2 nel caso di fondazione nastriforme e $m=(m_b sin^2 \theta + m_l cos^2 \theta)$ in tutti gli altri casi)

$$i_c = (1 - m H / (B*L* c_u*Nc))$$

$$i_c = 0.86$$

per D/B*
$$\leq$$
 1; d_c = 1 + 0,4 D / B*

per D/B*> 1;
$$d_c = 1 + 0.4$$
 arctan (D / B*)

$$d_c = 1.55$$

b_c: fattore di inclinazione base della fondazione

$$b_c = (1 - 2 \beta_f / (\pi + 2))$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$b_c = 1.00$$

g_c: fattore di inclinazione piano di campagna

$$g_c = (1 - 2 \beta_f / (\pi + 2))$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$g_c =$$

1.00

Carico limite unitario

$$q_{lim} = 1111.10 (kN/m^2)$$

Pressione massima agente

$$q = N / B^* L^*$$

$$q = 126.89 (kN/m^2)$$

STAZIONE PONTECAGNANO

Sottopasso: Relazione di calcolo scatolare

COMMESSA LOTTO CODIFICA

DOC

NN1X 10 D 78 CL FV

 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 D 78
 CL FV03B0 001
 C
 79 di 95

Verifica di sicurezza capacità portante

 $q_{lim} / \gamma_R = 483.09 \ge q = 126.89 (kN/m^2)$

VERIFICA A SCORRIMENTO

Carico agente

Hd = 200.70 (kN)

Azione Resistente

Sd = cu B* L*

Sd = 556.17 (kN)

Verifica di sicurezza allo scorrimento

Sd / γ_R = 505.61 \geq **Hd** = 200.70 (kN)

.8.6. Tabella verifiche geotecniche GEO

I coefficienti di sfruttamento che si ottengono per le verifiche geotecniche GEO sono i seguenti:

<u>VERIFICHE GEO</u>					
	Qlim	Scorr	Esito		
SLU-CD_Nmin	82%	96%	OK		
SLU-CD_Nmax	17%	40%	OK		
SLV-CD_Nmin	14%	54%	OK		
SLV-CD_Nmax	13%	50%	OK		
SLU-CND_Nmin	33%	80%	OK		
SLU-CND_Nmax	48%	50%	OK		
SLV-CND_Nmin	25%	42%	OK		
SLV-CND_Nmax	26%	40%	OK		

.8.7. Sollevamento per galleggiamento UPL

La quota della falda è al disotto del piano di imposta del sottopasso per cui non necessitano le verifiche di sollevamento per galleggiamento (UPL) di cui al punto 6.2.4.2 delle NTC 2018.

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NN1X
 10
 D 78
 CL FV03B0 001
 C
 80 di 95

STAZIONE PONTECAGNANO
Sottopasso: Relazione di calcolo scatolare

.9. OPERE DI VARO

9.1. <u>GEOMETRIA DELLA STRUTTURA E DATI DI INPUT</u>

Il sottopasso, nel rispetto dei tempi di chiusura dell'esercizio e nell'ottica di velocizzare i tempi di cantierizzazione, deve essere realizzato lontano dalla loro sede di progetto ed essere poi, portato in posizione attraverso un sistema di spinta oleodinamico.

Il monolite viene, quindi, costruito a lato del rilevato ferroviario e poi infisso mediante operazioni di spinta a vuoto. Esso poggia su una platea di varo che è collegata al muro reggispinta, per garantire la necessaria azione di contrasto dei manufatti durante le fasi di spinta.

Scopo del presente documento tecnico è quello di illustrare, i criteri di calcolo e le verifiche della platea di varo e del muro reggispinta da realizzare per poter poi infiggere il monolite.

9.2. <u>DESCRIZIONE DELL'OPERA</u>

La platea in c.a. ha dimensioni in pianta di 17.97 m x 6.05 m con spessore di 0.20 m e collegata al muro reggispinta che ha spessore del paramento di 1.00 m.

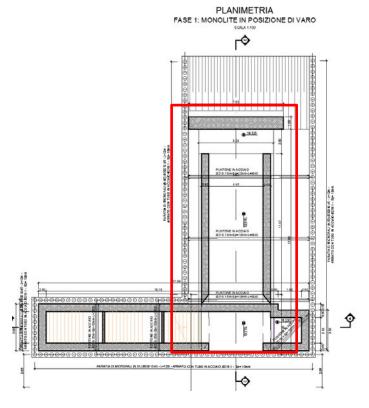


Figura 16a – Pianta monolite in posizione di varo

LINEA SALERNO - PONTECAGNANO AEROPORTO COMPLETAMENTO METROPOLITANA DI SALERNO TRATTA ARECHI - PONTECAGNANO AEROPORTO PROGETTO DEFINITIVO - FABBRICATI VIAGGIATORI

STAZIONE PONTECAGNANO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Sottopasso: Relazione di calcolo scatolare	NN1X	10	D 78	CL FV03B0 001	С	81 di 95

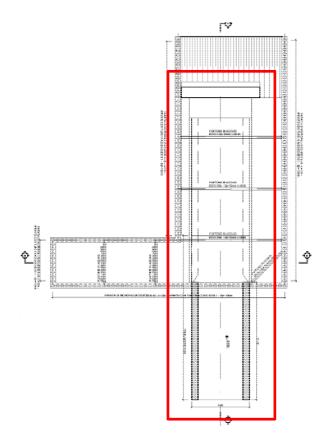


Figura 26b – Pianta monolite a varo ultimato

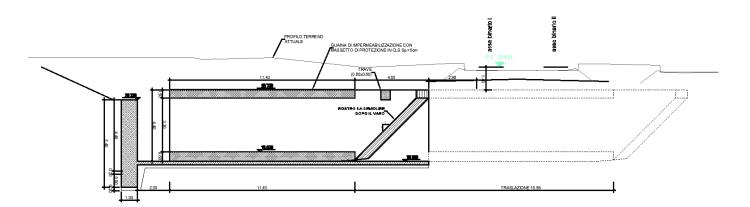


Figura 17a - Sezione longitudinale monolite in posizione di varo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NN1X	10	D 78	CL EV03B0 001	С	82 di 95

STAZIONE PONTECAGNANO Sottopasso: Relazione di calcolo scatolare

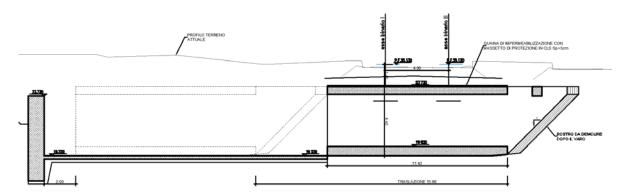


Figura 17b - Sezione longitudinale monolite a varo ultimato

9.3. DIMENSIONAMENTO DELL'APPARATO DI SPINTA

La struttura monolitica da infiggere viene gettata in opera al di sopra di una platea di varo armata.

L'infissione avviene tramite martinetti che contrastano su una parete, detta muro reggispinta, che a sua volta scarica e ripartisce tale azione sul terreno retrostante.

Nella fase iniziale la distanza tra la soletta di fondazione del monolite e la parete reggispinta dovrà essere, ove possibile, di almeno 2.00 m per consentire l'alloggiamento dei martinetti e della trave di ripartizione.

9.3.1. CONDIZIONI DI CALCOLO

Le condizioni di spinta considerate sono:

- 1) Al momento della spinta iniziale (distacco del manufatto dalla platea di varo fase 1);
- 2) Al momento della spinta massima (fine dell'infissione fase 2).

Sia per le <u>verifiche geotecniche</u> che per le <u>verifiche strutturali</u> si è considerato l'approccio 2 con combinazione: A1+M1+R3.

STAZIONE PONTECAGNANO

Sottopasso: Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NN1X
 10
 D 78
 CL FV03B0 001
 C
 83 di 95

9.3.2. DETERMINAZIONE DEI PESI E DELLE SPINTE

Per le analisi seguenti si fa riferimento alla seguente stratigrafia:

DATI GEOTECNICI		
TERRENO 1 - Riemp. a tergo del muro		
Spessore	h ₁	5.00 m
Peso specifico	γd1	18.00 kN/m^3
Angolo di attrito	Φ_1	25° 0.436 [rad]
Tangente angolo d'attrito	$tan(\Phi_1)$	0.466 [-]
Coesione drenata	C _{'1}	2.00 kN/m^2
Coeff. di spinta a riposo	k _{0,1}	0.577 [-] (1 - senO)
Coeff. di spinta passiva	$k_{p,1}$	2.46 [-]
TERRENO 2 - Terreno di fondazione		
Peso specifico	γ_{t}	18 kN/m³
Angolo di attrito	Φ	25 ° 0.436 [rad]
Tangente angolo di attrito	$tan(\Phi)$	0.466 [-]
Coesione dreanta	c'	$\frac{2}{kN/m^2}$
FALDA		
Quota falda dal p.c.	q_{w}	8.50 m
Peso specifico	$\gamma_{\sf w}$	10.00 kN/m^3

Tra la struttura del monolite ed il piano di scorrimento viene interposto un foglio di polietilene cerato al fine di evitare fenomeni di adesione. Con tale accorgimento si può valutare prudenzialmente che il valore della spinta per cui il monolite inizia la traslazione sia circa pari al peso della struttura (ciò equivale a fissare un coefficiente di attrito di primo stacco pari all'unità).

L'attrito di scorrimento, dopo la fase di primo stacco, scende a valori inferiori.

STAZIONE PONTECAGNANO

Sottopasso: Relazione di calcolo scatolare

LINEA SALERNO - PONTECAGNANO AEROPORTO COMPLETAMENTO METROPOLITANA DI SALERNO TRATTA ARECHI - PONTECAGNANO AEROPORTO PROGETTO DEFINITIVO – FABBRICATI VIAGGIATORI

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NN1X 10 D 78 CL FV03B0 001 C 84 di 95

Nella tabella seguente si riportano le carateristiche geometriche e il calcolo analitico dei pesi del monolite, della platea di varo e del muro reggispinta.

CARATTERISTICHE DELL'OPERA			
MONOLITE			
Lunghezza totale di spinta del monolite	Lsp	15.98 m	
Lunghezza totale dello scatolare	L	11.43 m	
Larghezza totale dello scatolare	Ltot	5.60 m	
Larghezza utile dello scatolare	Lint	4.40 m	
Altezza totale dello scatolare	Htot	4.40 m	
Altezza libera dello scatolare	Hint	3.30 m	
Spessore soletta superiore	Ss	0.50 m	
Spessore piedritti	Sp	0.60 m	
Numero piedritti	n	2.00 [-]	
Spessore soletta di fondazione	Sf	0.60 m	
Peso specifico calcestruzzo armato	γcls	25.00 kN/m3	
Peso totale soletta	Ps	800.10 kN	$\gamma els \times Ss \times Ls \times Ltot$
Peso totale piedritti	Pp	1131.57 kN	$\gamma cls \times Sp \times L \times Hint \times n$
Peso totale fondazione	Pf	960.12 kN	$\gamma els \times Sf \times Lsp \times Ltot$
Peso scatolare finale	Pscat	2892 kN	Ps + Pp + Pf
Lunghezza muri d'ala	Lmuri	0.00 m	
Altezza muri d'ala	Hmuri	4.40 m	A fav di sic si considerano alti quanto lo scatolare
Spessore muri d'ala	Smuri	0.60 m	
Numero muri d'ala	n	2.00 [-]	
Peso muri d'ala	Pmuri	0 kN	y els × Smuri × Lmuri × Hmuri
Peso totale monolite	Pmon	2892 kN	Pscat + Pmon
PLATEA			
Lunghezza platea di varo	Lu,pv	17.98 m	
Larghezza platea di varo	La,pv	6.05 m	
Altezza platea di varo	Hpv	0.20 m	
Peso platea di varo	Ppv	544 kN	γ cls \times Lu,pv \times La,pv \times Hpv
Altezza cordoli	Нсс	0.20 m	
Larghezza cordoli	Lcc	0.20 m	
Peso cordoli	Pcc	18 kN	γ els \times Lu, pv \times Lee \times Hee
Peso totale platea di varo	Ppv,tot	562 kN	Ppv + Pcc
MURO REGGISPINTA			
Altezza totale muro reggispinta	Hms	5.40 m	
Altezza muro reggispinta sopra la platea	Hms2	3.80 m	
Spessore muro reggispinta	Sms	1.00 m	
Lunghezza muro reggispinta	Lms	8.00 m	

STAZIONE PONTECAGNANO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
Sottopasso: Relazione di calcolo scatolare

NN1X 10 D 78 CL FV03B0 001 C 85 di 95

9.4. VERIFICA GEOTECNICA

Le verifiche geotecniche sono condotte utilizzando l'approccio 2 combinazione 1: A1+M1+R3.

9.4.1. SOLLECITAZIONI - SPINTA DEL MONOLITE

Una volta superata la platea di varo, la resistenza che si oppone allo scorrimento dovuto all'attrito alla base del manufatto vale Pmon * $tan(\phi)$, valore ottenuto considerando come coefficiente d'attrito clsterreno, la tangente dell'angolo d'attrito del terreno stesso.

Nella tabella che segue si riporta il calcolo analitico del peso del monolite nelle due fasi iniziali e finale.

Pmon	2892	kN			
$ an(\Phi)$	1.00	[-]			
Sin	2892	kN	$Pmon \times \mathbf{\phi}$		
Pmon	2892	kN			
q	0.00	kN/m2			
Pss	0.00	kN	$q \times L \times Lint$		
$tan(\Phi)$	0.466	[-]			
Sfin	1348	kN	$(Pmon + Pss)*tan(\Phi)$		
UOTO	NO				
P1	13.63	kN/m^	'LDa condizione di carico SPTDX/SX monolite		
P2	64.44	kN/m^	'LDa condizione di carico SPTDX/SX monolite		
SPlat	172	kN/m	(P2+P3)*Htot/2		
tan (Φ ')	0.466	[-]			
Slat,1	1280	kN	Splat \times tan(Φ ') \times Lsp		
Slat,2	1280	kN	Splat \times tan(Φ ') \times Lsp		
Fattr	2560	kN	Slat, 1 + Slat, 2		
FASE INIZIALE / FASE FINALE - Spinta totale di infissione					
S_{T1}	2892	kN	Sin		
S_{T2}	3908	kN	Sfin+Fattr		
γf	1.30	[-]			
0	E001	1 % 7	(ST1+ST2) x yf		
	$tan (\Phi)$ Sin Pmon q Pss $tan (\Phi)$ $Sfin$ /UOTO P1 $P2$ $SPlat$ $tan (\Phi')$ $Slat,1$ $Slat,2$ $Fattr$ $totale di infis$ S_{T1} S_{T2} γf	$\begin{array}{c cccc} \tan{(\Phi)} & 1.00 \\ \textbf{Sin} & \textbf{2892} \\ \hline & Q & 0.00 \\ & Q & 0$	tan (Φ) 1.00 [-] Sin 2892 kN Pmon 2892 kN q 0.00 kN/m2 Pss 0.00 kN tan (Φ) 0.466 [-] Sfin 1348 kN /UOTO NO P1 13.63 kN/m² P2 64.44 kN/m² SPlat 172 kN/m tan (Φ¹) 0.466 [-] Slat,1 1280 kN Slat,2 1280 kN Fattr 2560 kN totale di infissione ST1 2892 kN ST2 3908 kN γf 1.30 [-]		

STAZIONE PONTECAGNANO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
Sottopasso: Relazione di calcolo scatolare

NN1X 10 D 78 CL FV03B0 001 C 86 di 95

9.4.2. SPINTA PASSIVA

Il calcolo della spinta passiva opposta dal terreno a tergo del muro reggispinta viene effettuato considerando le caratteristiche di resistenza del terreno di riempimento.

Nella tabella seguente si riporta il calcolo della resistenza passiva del terreno.

CALCOLO DELLA RESISTENZA

RESISTENZA PASSIVA

Il calcolo della spinta passiva opposta dal terreno a tergo del muro reggispinta viene effettuato considerando le caratteristiche di resistenza del terreno di riempimento.

Nella tabella seguente si riporta il calcolo della resistenza passiva del terreno

Spinta passiva resistente	$R_{p,max}$	5444 kN
Press. dovuta alla spinta pass. alla base del mi	σ'_{p2}	245.8 kN/mq $2 \times c' \times (kp)^{0.5} + Kp \times (\sigma' v + q)$
Press. dovuta alla spinta pass. in testa al muro	σ'_{p1}	6.3 kN/mq $2 \times c' \times (kp)^{0.5} + Kp \times (\sigma'v+q)$
Tensione verticale intradosso murc z=5.40	$\sigma'_{v,4}$	97.2 kN/mq $[\gamma d1 \times b1 - \gamma w (z-qw)]*Kp$
Tensione verticale estradosso murc z=0.00	$\sigma'_{v,3}$	$0 \text{ kN/mq} [\gamma d1 \times h1 - \gamma w (z-qw)] *Kp$
Sovraccarico terreno	q	0 kN/mq

9.4.3. RESISTENZA ALLO SCORRIMENTO

Il contributo di resistenza allo scorrimento, offerto dalla platea di varo, si valuta come segue:

RESISTENZA ALLO SCORRIMENTO

Il contributo di resistenza allo scorrimento, of	iterto dalla pia	tea di varo, si	valuta come segue:	
FASE INIZIALE				
Peso monolite	Pmon	2892 kN		
Peso platea di varo	Ppv	562 kN		
Coefficiente di attrito	$tan(\Phi)$	0.466 [-]		
Contrib. alla resist. platea varo+monolite	Rmon+pv,in	1610 kN	$(Pmon + Ppv) \times tan(\mathbf{\Phi})$	
FASE FINALE				
Peso platea di varo	Ppv	562 kN		
Coefficiente di attrito	$tan(\Phi)$	0.466 [-]		
Coefficiente di attitto	tan(Ψ)	0.400 [-]		
Contrib. alla resist. platea varo	Rpv,fin	262 kN	$(Pmon + Ppv) \times tan(\mathbf{\Phi})$	

STAZIONE PONTECAGNANO
Sottopasso: Relazione di calcolo scatolare

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NN1X	10	D 78	CL FV03B0 001	С	87 di 95

9.4.4. CALCOLO COEFFICIENTE DI SICUREZZA

I valori risultanti dalle forze di reazione su cui si può fare affidamento nelle due fase per vincere le resistenze per attrito e far muovere il monolite e i corrispondenti coefficienti di sicurezza CS valgono:

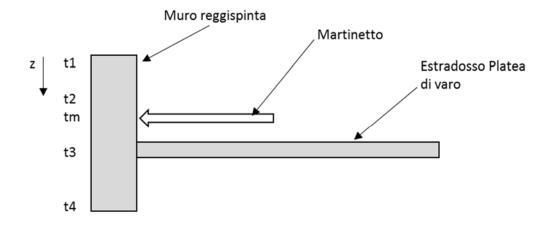
CALCOLO COEFFICIENTI DI SICUREZZA			
Spinta complessiva FASE INIZIALE	S _{T1}	3759 kN	
Spinta complessiva FASE FINALE	S_{T2}	5081 kN	
Contrib. platea di varo+monolite FASE INIZIALE	Rpv+mon	1610 kN	
Contrib. platea di varo FASE FINALE	R_{pv}	262 kN	
Resist. pass. FASE INIZIALE+FASE FINALE	$R_{p,max}$	5444 kN	
Coefficiente parziale di sicurezza	γ_{R1}	1.1	
VERIFICA FASE INIZIALE	c.s.	1.88 > 1.1	OK
VERIFICA FASE FINALE	C.S.	1.12 > 1.1	OK

La spinta resistente che può essere mobilitata è maggiore della spinta necessaria all'infissione del manufatto per entrambe le fasi.

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NN1X
 10
 D 78
 CL FV03B0 001
 C
 88 di 95

STAZIONE PONTECAGNANO
Sottopasso: Relazione di calcolo scatolare


9.5. VERIFICHE STRUTTURALI

Le verifiche strutturali nei confronti dello SLU sono condotte utilizzando l'approccio 1 combinazione 1: A1+M1+R1.

9.5.1. SOLLECITAZIONI MURO REGGISPINTA

Il procedimento utilizzato per il calcolo delle spinte è lo stesso già mostrato nei paragrafi precedenti, utilizzando i valori caratteristici dei parametri di resistenza dei terreni M1.

Si riportano i calcoli:

t1= in testa al muro reggispinta

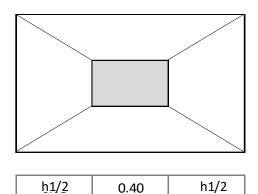
t2= in corrispondenza del martinetto

tm=interasse martinetto

t3= in corrispondenza della platea di v

t4= alla base del muro reggispinta

	$\sigma'v$	σ'p	z
	[kN/m2]	[kN/m2]	[m]
t1	0	6.3	0.00
t2	61.2	157.1	3.40
tm	64.8	165.9	3.60
t3	72	183.7	4.00
t4	97.2	245.8	5.40


COMMESSA LOTTO CODIFICA STAZIONE PONTECAGNANO Sottopasso: Relazione di calcolo scatolare

REV. DOCUMENTO FOGLIO NN1X 10 D 78 CL FV03B0 001 89 di 95

9.5.1.1. SOLLECITAZIONI MURO REGGISPINTA ARMATURE ORIZZONTALI

Si considera la spinta passiva agente in corrispondenza del martinetto e si distribuisce su una fascia di carico pari alle dimensioni della piastra del martinetto, di 0.40x0.40 m, più la distribuzione del carico stesso a 45° nello spessore del muro reggispinta, pari a 1.00 m.

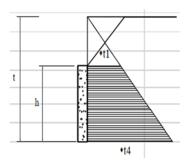
CALCOLO SOLLECITAZIONI MURO REGGISPINTA ARMATURE ORIZZONTALI

Il calcolo delle armature orizzontali è stato svolto considerando il comportamento del muro reggispinta come una mensola, la cui lunghezza è pari alla distanza tra la fine della fascia di distribuzione del carico sopra descitta e l'estremità laterale del muro stesso.

0.40 + h1

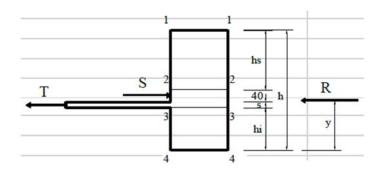
Si riportano i calcoli effettuati:

Larghezza piastra martinetto	Lm	0.40 m	
Altezza piastra martinetto	Hm	0.40 m	
Interasse martinetti	im	4.50 m	
Fascia di diffusione martinetto	fa	1.40 m	
Sbalzo di calcolo	1	1.05 m	(Lms/2) - (fa/2)
Carico distribuito dovuto alla spinta	qp	635 kN/m	$S_{T,d}$ / L_{ms}
Coefficiente moltiplicativo dei carichi	$\gamma_{ m SLU}$	1.3 [-]	
Momento ultimo agente sul muro reggispinta	Mslu	350 kNm	$\gamma_{SLU} \times \sigma' p \times fa \times l^2 / 2$
Taglio ultimo agente sul muro reggispinta	Vslu	667 kN	$\gamma_{SLU} \times \sigma' p \times fa \times l$
Momento in esercizio sul muro reggispinta	Msle	269 kNm	$\sigma'p \times fa \times l^2 / 2$


STAZIONE PONTECAGNANO

Sottopasso: Relazione di calcolo scatolare

COMMESSA LOTTO CODIFICA REV. DOCUMENTO FOGLIO NN1X 10 D 78 CL FV03B0 001 С 90 di 95


9.5.1.2. SOLLECITAZIONI MURO REGGISPINTA ARMATURE VERTICALI

Per il calcolo dell'armatura verticale si assume la configurazione seguente:

Al fine di valutare le sollecitazioni nelle sezioni critiche della parete di spinta si fa riferimento al seguente schema di calcolo. Di seguito si valutano il valor medio della reazione del terreno, le pressioni in testa e al piede del muro e il momento di verifica nella sezione 2 e 3. Le verifiche saranno condotte considerando, quindi, le sollecitazioni al metro lineare di muro. Si riportano le formule utilizzate nella verifica:

$$Ry + T (hi + s/2) - S (hi + s + 0.40) = 0$$

$$R \cdot y = \left[\frac{1}{2} \cdot \sigma_{t1} \cdot h^2 + \frac{1}{6} \cdot \left(\sigma_{t4} - \sigma_{t1}\right) \cdot h^2\right] \cdot b$$

Spessore soletta	Hpv	0.20 m	
Altezza muro reggispinta	Hms	5.40 m	
Distanza testa muro-filo piastra martinetto	hs	3.40 m	H_{mi2} - s_2
Distanza base muro-intradosso platea di varo	hi	1.40 m	H-hi-s-s2

STAZIONE PONTECAGNANO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Sottopasso: Relazione di calcolo scatolare	NN1X	10	D 78	CL FV03B0 001	С	91 di 95

VALORI TENSIONALI			
Tensioni verticali in testa al muro	z=0.0	$\sigma'_{v,t1}$	$0 \qquad \qquad [\gamma d1 \times b1 - \gamma w (z-qw)] * Kp$
Tensioni in testa al muro		$\sigma_{\text{p,t1}}$	6.3 kN/m ² $2 \times c' \times (kp)^{0.5} + Kp \times (\sigma'v+q)$
Tensioni verticali alla base del mur	z=5.4	$\sigma'_{v,t4}$	97.2 $ [\gamma d1 \times b1 - \gamma w (z-qw)] *Kp $
Tensioni alla base del muro		$\sigma_{\text{p,t4}}$	245.8 kN/m ² $2 \times c' \times (kp)^{0.5} + Kp \times (\sigma'v+q)$
Tensioni verticali sez.2	z=3.4	$\sigma'_{\text{v,t2}}$	61.2 $ [\gamma d1 \times b1 - \gamma w (z-qw)] *Kp $
Tensioni sez.2		$\sigma_{\text{p,t2}}$	157.1 kN/m ² $2 \times c' \times (kp)^{0.5} + Kp \times (\sigma'v+q)$
Tensioni verticali sez.3	z=4.0	$\sigma'_{\text{v,t3}}$	72 $ [\gamma d1 \times b1 - \gamma w (z-qw)] *Kp $
Tensioni sez.3		$\sigma_{\text{p,t3}}$	183.7 kN/m ² $2 \times c' \times (kp)^{0.5} + Kp \times (\sigma'v+q)$
Coefficiente moltiplicativo dei carichi		γ_{q}	1.3 [-]
SEZIONE 2			
Momento ultimo di calcolo agente		$M_{\rm slu2}$	424.86 kNm/m $1/2 \times \sigma_{tt} \times h_s^2 + 1/6 \times (\sigma_{t2} - \sigma_{tt}) \times h_s^2 \times \gamma q$
Taglio ultimo di calolo agente		$V_{\rm slu2}$	361.00 kN/m $\sigma_{tt} \times h_s + 1/2 \times (\sigma_{t2} - \sigma_{tt}) \times h_s$
Momento di esercizio agente		M_{sle2}	326.82 kNm/m $1/2 \times \sigma_{tt} \times h_s^2 + 1/6 \times (\sigma_{t2} - \sigma_{tt}) \times h_s^2$
SEZIONE 3			
Momento ultimo di calcolo agente		$\mathrm{M}_{\mathrm{slu}3}$	562.13 kNm/m $1/2 \times \sigma_{i3} \times h_i^2 + 1/3 \times (\sigma_{i4} - \sigma_{i3}) \times hi^2 \times \gamma q$
Taglio ultimo di calolo agente		V_{slu3}	523.69 kN/m $\sigma_{i\beta} \times hi + 1/2 \times (\sigma_{i\beta} - \sigma_{i\beta}) \times hi$
Momento di esercizio agente		${ m M}_{ m sle3}$	432.41 kNm/m $1/2 \times \sigma_{i3} \times hi^{2} + 1/6 \times (\sigma_{i4} - \sigma_{i3}) \times hi^{2}$

9.5.1.3. VERIFICA DEL MURO REGGISPINTA

Si riportano una tabella riassuntiva delle caratteristiche geometriche della sezione di calcolo, le armature e le verifiche allo SLU e allo SLE:

VERIFICHE STRUTTURALI DEL MURO REGGISPINTA					
ARMATURA VERTICALE					
Armatura principale esterna	F20 /100	3142 mm2	12		
Armatura principale interna	F20 /100	3142 mm ²	12		
Copriferro armatura sup. compressa	c'	60 mm	1		
Copriferro armatura inf. Tesa	c	60 mm	l		
Sollecitazioni di calcolo					
Sforzo normale di calcolo [(+)Trazione] - SLU	Ned	0 kN			
Momento flettente di calcolo [(+)] - SLU	Med	562 kNn	m		
Taglio di calcolo [(+)] - SLU	Ved	524 kN			
Momento flettente di calcolo [(+)] - SLE RARA	Med	432 kNn	m		

Momento di prima fessurazione

Ampiezza di fessura

LINEA SALERNO - PONTECAGNANO AEROPORTO COMPLETAMENTO METROPOLITANA DI SALERNO TRATTA ARECHI - PONTECAGNANO AEROPORTO PROGETTO DEFINITIVO – FABBRICATI VIAGGIATORI

STAZIONE PONTECAGNANO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Sottopasso: Relazione di calcolo scatolare	NN1X	10	D 78	CL FV03B0 001	С	92 di 95

Dati di Output:			
SLU - Momento e Taglio resistenti			
Momento Ultimo resistente dissipativo <s n=""></s>	<s-n></s-n>	S	Coeff.Sfrutt.
Momento ultimo resistente	Mrd	1107 kNm	51%
Taglio ultimo resistente senza staffe	Vrd	291 kN	180%
Taglio ultimo resistente	Vrd	749 kN	70%
Momento torcente ultimo resistente	Trd	7 kNm	
SLE - Tensioni e ampiezza fessure			
Tensione barre superiori [(-)Compresso]	Sigs-sup	-37 Mpa	10%
Tensione barre inferiori [(+)Teso]	Sigs-inf	159 Mpa	44%
Tensione cls superiore [(-)Compresso]	Sigc-sup	-3 Mpa	22%
Tensione cls inferiore [non reag.Trazione]	Sigc-inf	0 Mpa	
Momento di prima fessurazione	Mcr	473 kNm	
Ampiezza di fessura	wk	0.18 mm	90%
•		Coeff.Sfrutt.Max	90%
			OK
ARMATURA ORIZZONTALE			
Armatura principale esterna	F16 /100	2815 mm2	
Armatura principale interna	F16 /100	2815 mm2	
Copriferro armatura sup. compressa	•	40 mm	
Copinello allitatata sap. compressa		TO 111111	
		40 mm	
Copriferro armatura inf. Tesa			
Copriferro armatura inf. Tesa Sollecitazioni di calcolo	Ned		
Copriferro armatura inf. Tesa Sollecitazioni di calcolo Sforzo normale di calcolo [(+)Trazione] - SLU	Ned Med	40 mm	
Copriferro armatura inf. Tesa Sollecitazioni di calcolo Sforzo normale di calcolo [(+)Trazione] - SLU Momento flettente di calcolo [(+)] - SLU		40 mm 0 kN	
Copriferro armatura inf. Tesa Sollecitazioni di calcolo Sforzo normale di calcolo [(+)Trazione] - SLU Momento flettente di calcolo [(+)] - SLU Taglio di calcolo [(+)] - SLU	Med	40 mm 0 kN 350 kNm	
Copriferro armatura inf. Tesa Sollecitazioni di calcolo Sforzo normale di calcolo [(+)Trazione] - SLU Momento flettente di calcolo [(+)] - SLU Taglio di calcolo [(+)] - SLU Momento flettente di calcolo [(+)] - SLE RARA	Med Ved	40 mm 0 kN 350 kNm 667 kN	
Copriferro armatura inf. Tesa Sollecitazioni di calcolo Sforzo normale di calcolo [(+)Trazione] - SLU Momento flettente di calcolo [(+)] - SLU Taglio di calcolo [(+)] - SLU Momento flettente di calcolo [(+)] - SLE RARA Dati di Output:	Med Ved	40 mm 0 kN 350 kNm 667 kN	
Copriferro armatura inf. Tesa Sollecitazioni di calcolo Sforzo normale di calcolo [(+)Trazione] - SLU Momento flettente di calcolo [(+)] - SLU Taglio di calcolo [(+)] - SLU Momento flettente di calcolo [(+)] - SLE RARA Dati di Output: SLU - Momento e Taglio resistenti	Med Ved Med	40 mm 0 kN 350 kNm 667 kN 269 kNm	
Copriferro armatura inf. Tesa Sollecitazioni di calcolo Sforzo normale di calcolo [(+)Trazione] - SLU Momento flettente di calcolo [(+)] - SLU Taglio di calcolo [(+)] - SLU Momento flettente di calcolo [(+)] - SLE RARA Dati di Output: SLU - Momento e Taglio resistenti Momento Ultimo resistente dissipativo <s n=""></s>	Med Ved Med	40 mm 0 kN 350 kNm 667 kN 269 kNm	Coeff.Sfrutt.
Copriferro armatura inf. Tesa Sollecitazioni di calcolo Sforzo normale di calcolo [(+)Trazione] - SLU Momento flettente di calcolo [(+)] - SLU Taglio di calcolo [(+)] - SLU Momento flettente di calcolo [(+)] - SLE RARA Dati di Output: SLU - Momento e Taglio resistenti Momento Ultimo resistente dissipativo <s n=""> Momento ultimo resistente</s>	Med Ved Med <s-n> Mrd</s-n>	40 mm 0 kN 350 kNm 667 kN 269 kNm	35%
Copriferro armatura inf. Tesa Sollecitazioni di calcolo Sforzo normale di calcolo [(+)Trazione] - SLU Momento flettente di calcolo [(+)] - SLU Taglio di calcolo [(+)] - SLU Momento flettente di calcolo [(+)] - SLE RARA Dati di Output: SLU - Momento e Taglio resistenti Momento Ultimo resistente dissipativo <s n=""> Momento ultimo resistente Taglio ultimo resistente senza staffe</s>	Med Ved Med <s-n> Mrd Vrd</s-n>	40 mm 0 kN 350 kNm 667 kN 269 kNm	35% 164%
Copriferro armatura inf. Tesa Sollecitazioni di calcolo Sforzo normale di calcolo [(+)Trazione] - SLU Momento flettente di calcolo [(+)] - SLU Taglio di calcolo [(+)] - SLU Momento flettente di calcolo [(+)] - SLE RARA Dati di Output: SLU - Momento e Taglio resistenti Momento Ultimo resistente dissipativo <s n=""> Momento ultimo resistente Taglio ultimo resistente senza staffe Taglio ultimo resistente</s>	Med Ved Med <s-n> Mrd Vrd Vrd</s-n>	40 mm 0 kN 350 kNm 667 kN 269 kNm	35%
Copriferro armatura inf. Tesa Sollecitazioni di calcolo Sforzo normale di calcolo [(+)Trazione] - SLU Momento flettente di calcolo [(+)] - SLU Taglio di calcolo [(+)] - SLU Momento flettente di calcolo [(+)] - SLE RARA Dati di Output: SLU - Momento e Taglio resistenti Momento Ultimo resistente dissipativo <s n=""> Momento ultimo resistente Taglio ultimo resistente Taglio ultimo resistente Momento torcente ultimo resistente</s>	Med Ved Med <s-n> Mrd Vrd</s-n>	40 mm 0 kN 350 kNm 667 kN 269 kNm	35% 164%
Copriferro armatura inf. Tesa Sollecitazioni di calcolo Sforzo normale di calcolo [(+)Trazione] - SLU Momento flettente di calcolo [(+)] - SLU Taglio di calcolo [(+)] - SLU Momento flettente di calcolo [(+)] - SLE RARA Dati di Output: SLU - Momento e Taglio resistenti Momento Ultimo resistente dissipativo <s n=""> Momento ultimo resistente Taglio ultimo resistente senza staffe Taglio ultimo resistente Momento torcente ultimo resistente SLE - Tensioni e ampiezza fessure</s>	Med Ved Med <s-n> Mrd Vrd Vrd Trd</s-n>	40 mm 0 kN 350 kNm 667 kN 269 kNm 8 1006 kNm 407 kN 750 kN 10 kNm	35% 164% 89%
Copriferro armatura inf. Tesa Sollecitazioni di calcolo Sforzo normale di calcolo [(+)Trazione] - SLU Momento flettente di calcolo [(+)] - SLU Taglio di calcolo [(+)] - SLU Momento flettente di calcolo [(+)] - SLE RARA Dati di Output: SLU - Momento e Taglio resistenti Momento Ultimo resistente dissipativo <s n=""> Momento ultimo resistente Taglio ultimo resistente senza staffe Taglio ultimo resistente Momento torcente ultimo resistente SLE - Tensioni e ampiezza fessure Tensione barre superiori [(-)Compresso]</s>	Med Ved Med <s-n> Mrd Vrd Vrd Trd Sigs-sup</s-n>	40 mm 0 kN 350 kNm 667 kN 269 kNm S 1006 kNm 407 kN 750 kN 10 kNm	35% 164% 89%
Copriferro armatura inf. Tesa Sollecitazioni di calcolo Sforzo normale di calcolo [(+)Trazione] - SLU Momento flettente di calcolo [(+)] - SLU Taglio di calcolo [(+)] - SLU Momento flettente di calcolo [(+)] - SLE RARA Dati di Output: SLU - Momento e Taglio resistenti Momento Ultimo resistente dissipativo <s n=""> Momento ultimo resistente Taglio ultimo resistente Taglio ultimo resistente Momento torcente ultimo resistente SLE - Tensioni e ampiezza fessure Tensione barre superiori [(-)Compresso] Tensione barre inferiori [(+)Teso]</s>	Med Ved Med <s-n> Mrd Vrd Vrd Trd Sigs-sup Sigs-inf</s-n>	40 mm 0 kN 350 kNm 667 kN 269 kNm S 1006 kNm 407 kN 750 kN 10 kNm -20 Mpa 109 Mpa	35% 164% 89% 5% 30%
Copriferro armatura inf. Tesa Sollecitazioni di calcolo Sforzo normale di calcolo [(+)Trazione] - SLU Momento flettente di calcolo [(+)] - SLU Taglio di calcolo [(+)] - SLU Momento flettente di calcolo [(+)] - SLE RARA Dati di Output: SLU - Momento e Taglio resistenti Momento Ultimo resistente dissipativo <s n=""> Momento ultimo resistente Taglio ultimo resistente Taglio ultimo resistente Momento torcente ultimo resistente SLE - Tensioni e ampiezza fessure</s>	Med Ved Med <s-n> Mrd Vrd Vrd Trd Sigs-sup</s-n>	40 mm 0 kN 350 kNm 667 kN 269 kNm S 1006 kNm 407 kN 750 kN 10 kNm	35% 164% 89%

Mcr

wk

639 kNm

62% 89% OK

 $0.12 \ \text{mm}$

STAZIONE PONTECAGNANO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
Sottopasso: Relazione di calcolo scatolare

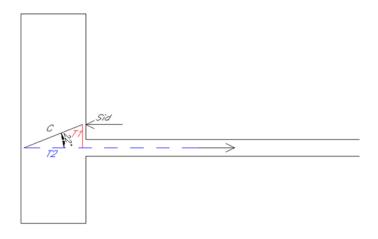
NN1X 10 D 78 CL FV03B0 001 C 93 di 95

Riepilogo armature muro reggispinta:

Elemento	Armatura	Armatura	Armatura
strutturale	Verticale	Orizzontale	a taglio
Sezione Sp.=100cm	Φ 16/10 sup. e inf.	Φ 20/10 sup. e inf.	Ф 12/200/500

9.5.2. VERIFICA DELLA PLATEA DI VARO

Il calcolo della platea di varo è effettuato nell'ipotesi che l'armatura longitudinale nella stessa sia in grado di assorbire l'azione di attrito trasmessa dal monolite in fase di spinta.


In direzione trasversale si dispone in soletta armatura di ripartizione sia all'estradosso che all'intradosso della soletta pari a circa il 25% dell'armatura longitudinale principale.

Lo sforzo di trazione agente sulla platea di varo varia linearmente dal valore massimo calcolato nella sezione di attacco al muro reggispinta sino al valore nullo all'estremità opposta.

La platea di varo è soggetta ad azioni taglianti trascurabili, pertanto la relativa verifica a taglio viene omessa.

L'azione di spinta applicata dai martinetti $S_{ED,T2}$ e la corrispettiva azione di tiro impressa dalla soletta di varo $N_{EK,T2}$ vengono riportati nella tabrella nella pagina successiva.

Il muro reggispinta è quindi sottoposto ad un regime di sforzi le cui risultanti di trazione e compressione si esplicano come in figura a seguire:

Il corrente teso inferiore (T2) sottopone a trazione le barre di armatura della soletta di varo.

STAZIONE PONTECAGNANO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Sottopasso: Relazione di calcolo scatolare NN1X 10 D 78 CL FV03B0 001 C 94 di 95

Si riporta la verifica delle armature longitudinali e trasversali della platea di varo:

CALCOLO DELLA FORZA DI TRAZIONE			
Sforzo di trazione agente sulla platea al metro	S _{Ek,T2}	478.0 kN/m	
Forza di trazione agente nella soletta di varo	$N_{Ek,T2}$	2891.8 kN	
Coefficiente moltiplicativo dei carichi	γsιυ	1.5 [-]	
Sforzo assiale di progetto	$S_{Ed,T2}$	717.0 kN/m	
ARMATURA LONGITUDINALE			
Resistenza caratteristica dell'acciaoio d'armatura	f_{yk}	450 N/mm2	
Coefficiente di sicurezza	γ_{s}	1.15 [-]	
Resistenza di progetto dell'acciaio d'armatura	f_{yd}	391.3 N/mm2	
Diametro armatura longitudinale	ϕ_{long}	16 [-]	
Passo barre armatura longitudinale	p_1	150 mm	
Numero strati armature	n	2 [-]	
Numero barre in direzione longitudinale	n_1	13.3333 [-]	
Area minima di armatura resistente necessaria	$A_{s,min}$	1832.3 mm2/m	
Area totale di armatura longitudinale	$A_{s,eff}$	2680.8 mm2/m	
Coefficiente di sicurezza	C.S.	1.46 [-]	OK
ARMATURA TRASVERSALE			
Resistenza caratteristica dell'acciaoio d'armatura	f_{yk}	450 N/mm2	
Coefficiente di sicurezza	γ_{s}	1.15 [-]	
Resistenza di progetto dell'acciaio d'armatura	f_{yd}	391.3 N/mm2	
Diametro armatura longitudinale	ϕ_{long}	12 [-]	
Passo barre armatura longitudinale	p ₂	300 mm	
Numero strati armature	n	2 [-]	
Numero barre in direzione longitudinale	n_2	6.66667 [-]	
Area minima di armatura resistente necessaria	$A_{s,min}$	670.2 mm2/m	
Area totale di armatura trasversale	$A_{s,eff}$	754.0 mm2/m	
Coefficiente di sicurezza	C.S.	1.1 [-]	OK

Riepilogo armature platea di varo:

Elemento	Armatura	Armatura	Armatura	
strutturale	Longitudinale	Trasversale	a taglio	
Sezione	Ф16/15 sup. e inf.	Φ 12/30 sup. e inf.		
Sp.=20cm	Ψ10/13 sup. e iii.	Ψ 12/30 sup. e iiii.	-	

STAZIONE PONTECAGNANO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
Sottopasso: Relazione di calcolo scatolare

NN1X 10 D 78 CL FV03B0 001 C 95 di 95