

ANAS S.p.A.

TDIREZIONE REGIONALE PER LA SICILIA

PA17/08

Affidamento a Contraente Generale dei "Lavori di ammodernamento del tratto Palermo - Lercara Friddi, lotto funzionale dal km 14,4 (km. 0,0 del Lotto 2) compreso il tratto di raccordo della rotatoria Bolognetta, al km 48,0 (km. 33,6 del Lotto 2 - Svincolo Manganaro incluso) compresi raccordi con le attuali SS n.189 e SS n.121

Bolognetta S.c.p.a.

- PERIZIA DI VARIANTE N.3 -

D'ANGELC MAURIZIO

Titolo elaborato:

OPERE D'ARTE - OPERE DI SOSTEGNO

Muro in gabbioni - Viabilità secondaria 10 OS144 Relazione geotecnica e di calcolo

Codice Unico Progetto (CUP): F41B03000230001

OPERA

ARGOMENTO

DOC. E PROG.

FASE

REVISIONE

Codice elaborato: PA17/08

6

CARTELLA:		FILE NAME:	NOTE:	PROT.				SCALA:	
		PV_OS144RC01_61_4137	1=1	4	1	3	7		-
5	•								
4									
3									
2									
1	EMISSIO	NE A SEGUITO ISTRUTTORIA ANAS		Maggio 2021	Q. 1	Napole	oni	S. Fortino	N. Behmann
0	PRIMA E	MISSIONE		Dicembre 2019	Q. 1	Napole	oni	S. Fortino	D. Tironi
REV.		DESCRIZION	E	DATA	R	EDAT	TO	VERIFICATO	APPROVATO

Progettisti:

F.A.C.E. S.r.I. - Società di ingegneria

ACTORY OF via Flaminia 71 - 00196 Roma RCHITECTURE tel: 06 32609519 e-mail: info@facesrl.com ENGINEERING pec: pec.facesrl@pec.com

Direttore Tecnico: ing. Antonio Ambrosi

Consulenti:

Direttore Tecnico: ing. Quintilio Napoleoni

II Geologo Dott. Geol. Gualtiero Bellomo

Il Coordinatore per la Sicurezza in fase di Esecuzione: Arch. Francesco Rondelli

Il Coordinatore per la Esecuzione dei Lavori arch. Francesco Rondelli Il Direttore dei Lavori: Ing. Sandro Favero

Il Direttore dei Lavori

ANAS S.p.A.

DATA:

PROTOCOLLO:

VISTO: IL RESPONSABILE DEL PROCEDIMENTO

CODICE PROGETTO

|O|4|1|0|C

Dott. Ing. Ettore de Cesbron de la Grennelais

PROGETTO ESECUTIVO DI VARIANTE N.3

OS144 – Muro in gabbioni VS10 dal km 1+280.7 al km 1+491.33 - Relazione Geotecnica e di Calcolo

INDICE

1	PR	REMES	SSA	2
2	NC	ORMA ⁻	ΓΙVA DI RIFERIMENTO	3
3	MA	ATERI	ALI	3
4	DE	SCRI	ZIONE DELL'OPERA	4
5	CA	ARATT	ERIZZAZIONE SISMICA DELL'AREA	5
	5.1	PERI	ODO DI RIFERIMENTO PER L'AZIONE SISMICA	5
	5.2	AZIO	NE SISMICA DI RIFERIMENTO	5
6	IN	QUAD	RAMENTO GEOLOGICO GEOMORFOLOGICO ED I DROGEOLOGICO	6
	6.1	INDA	GINI GEOGNOSTICHE	6
	6.1	1.1	Prove sismiche	7
	6.2	INQL	IADRAMENTO GEOLOGICO GEOMORFOLOGICO ED I DROGEOLOGICO	10
7	CA	ARATT	ERIZZAZIONE GEOTECNICA	11
	7.1	MOD	ELLO GEOTECNICO DI RIFERIMENTO	11
8	DE	FINIZ	IONE DELLA PORTATA DI PROGETTO	12
	8.1	APPL	ICAZIONE DELLE LINEE GUIDA DEL PROGETTO VAPI	12
	8.1	1.1	Determinazione del parametro CN	17
	8.1	1.2	Calcolo del coefficiente di deflusso	21
	8.1	1.3	Calcolo della portata di progetto	22
9	SC)FTW	ARE UTILIZZATI	23
	9.1	MET	ODOLOGIA DI CALCOLO SOFTWARE GEOSLOPE	23
	9.3		ODOLOGIA DI CALCOLO SOFTWARE HEC-RAS	
10	/	AZION	I DI CALCOLO	30
	10.1	ΑZ	ONI VARIABILI	30
	10.2	FA	LDA	30
11	F		TATI DELLE ANALISI	
	11.1		SULTATI MODELLAZIONE IDRAULICA	
	11.2	VE	RIFICA A TRASCINAMENTO DEI GABBIONI DEL RILEVATO	37
	11.3	VE	RIFICHE DI STABILITA' INTERVENTO	39
	11	.3.1	GENERALITA'	39
	11	.3.2	APPROCCIO NORMATIVO	39
	11	.3.3	RISULTATI DI CALCOLO	41
12		ALLEG	GATI FILE DI INPUT OUTPUT DEI MODELLI DI CALCOLO	44

PROGETTO ESECUTIVO DI VARIANTE N.3

OS144 - Muro in gabbioni VS10 dal km 1+280.7 al km 1+491.33 - Relazione Geotecnica e di Calcolo

1 PREMESSA

La presente relazione si riferisce all'opera di identificata, nel presente Progetto di Variante n.3, con la WBS OS144, costituita da un muro in gabbioni a protezione del rilevato in terra ubicato in prossimità del cavalcavia CV02, al km 3+0.79,43, lungo la Palermo-Lercara Friddi.

A seguito degli eventi alluvionali del Novembre 2018, l'area in esame è stata sede dell'esondazione del fiume Buffa-Mulinazzo, le quali acque sono arrivate a lambire la sede del rilevato stradale. L'integrazione progettuale della presente Variante predispone l'inserimento di un muro in gabbioni a protezione del rilevato stradale sede della viabilità secondaria VS10.

La nuova progettazione delle opere ha tenuto conto dell'altezza del battente idrico corrispondente all'esondazione del corso d'acqua per un tempo di ritorno di 300 anni. A tal fine è stata condotta la modellazione idraulica del tratto in oggetto con l'ausilio del codice di calcolo HEC-RAS 5.0.2.

Si provvederà a commentare dal punto di vista stratigrafico, fisico e meccanico i risultati delle prove di laboratorio geotecniche, delle prove in sito e dei sondaggi effettuati durante le campagne di indagine. Si provvederà altresì in questa sede a dar conto delle sollecitazioni stimate agire sull'opera.

Infine, si provvederà a dar conto della verifica di stabilità dell'opera e di tutte le altre verifiche di carattere geotecnico ed idraulico previste in normativa.

PROGETTO ESECUTIVO DI VARIANTE N.3

OS144 - Muro in gabbioni VS10 dal km 1+280.7 al km 1+491.33 - Relazione Geotecnica e di Calcolo

2 NORMATIVA DI RIFERIMENTO

Nel presente studio, si è fatto riferimento alla seguente normativa:

- D.M. 27/01/2018 "Aggiornamento delle Norme tecniche per le costruzioni".
- Circolare Consiglio Superiore dei LL.PP. n. 7 del 21 Gennaio 2019 "Istruzioni per l'applicazione dell'aggiornamento delle Norme Tecniche".

3 MATERIALI

Caratteristiche meccaniche rilevato in terra:

- $\gamma = 20 \text{ kN/mc}$;
- $\varphi = 38^{\circ}$;
- c = 0 kPa.

OS144 - Muro in gabbioni VS10 dal km 1+280.7 al km 1+491.33 - Relazione Geotecnica e di Calcolo

4 DESCRIZIONE DELL'OPERA

L'opera è il rilevato di approccio della viabilità secondaria 10 al cavalcavia CV02 ubicato alla progressiva +3.079.43 della viabilità principale.

L'opera è costituita da un rilevato in terra con paramenti inclinati 34°, di altezza massima di circa 13.0 m, al cui piede si prevede la messa in opera di gabbioni metallici di dimensioni 2x1x1 m per un'altezza massima di 4.0 m.

Per i dettagli geometrici e costruttivi si rimanda agli specifici elaborati grafici dell'opera in esame.

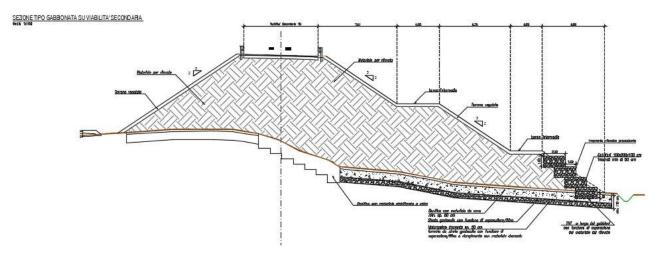


Figura 1 Sezione Tipo gabbionata OS144

PROGETTO ESECUTIVO DI VARIANTE N.3

OS144 - Muro in gabbioni VS10 dal km 1+280.7 al km 1+491.33 - Relazione Geotecnica e di Calcolo

5 CARATTERIZZAZIONE SISMICA DELL'AREA

5.1 PERIODO DI RIFERIMENTO PER L'AZIONE SISMICA

Come stabilito nel C.S.A. la progettazione delle strutture farà riferimento a:

• vita nominale: $V_N = 50$ anni

• classe d'uso:

da cui risulta:

• coefficiente d'uso: $C_U = 2.0$

• periodo di riferimento per l'azione sismica: $V_R = V_N \times C_U = 100$ anni

5.2 AZIONE SISMICA DI RIFERIMENTO

Il calcolo delle azioni sismiche, viene condotto nel rispetto della normativa vigente.

Le coordinate geografiche di riferimento (secondo sistema ED50) per l'opera in esame sono:

Longitudine: 13°.489

Latitudine: 37°.948

Per le analisi in condizioni sismiche, concordemente alle indicazioni della normativa vigente, è stato preso come riferimento lo stato limite di salvaguardia della vita (SLV) e, dunque, i seguenti parametri:

categoria di suolo

Coefficiente topografico
 T1

fattore di sitoS = 1.403

accelerazione orizzontale su sito di riferimento rigido: a_g = 0.202

massima accelerazione su sottosuolo tipo C
 a_{max} = 0.283 g

- coefficiente sismico orizzontale: $k_h = 0.108$

- coefficiente sismico verticale: $k_v = \pm 0.054$

Concordemente alle indicazioni di normativa i coefficienti di smorzamento sono stati posti pari a β = 0.38.

PROGETTO ESECUTIVO DI VARIANTE N.3

OS144 - Muro in gabbioni VS10 dal km 1+280.7 al km 1+491.33 - Relazione Geotecnica e di Calcolo

6 INQUADRAMENTO GEOLOGICO GEOMORFOLOGICO ED I DROGEOLOGICO

6.1 INDAGINI GEOGNOSTICHE

Le prove in sito ed i sondaggi effettuati nei pressi dell'opera sono riepilogati nelle seguente tabella e nella seguente figura.

				OS 144				
INDAGINI	CPT13	CPT14	CPT15	DPSH15	DPSH16	T1	MASW 1	MASW 2

Tabella 1 - INDAGINI IN CORRISPONDENZA DELL'OPERA

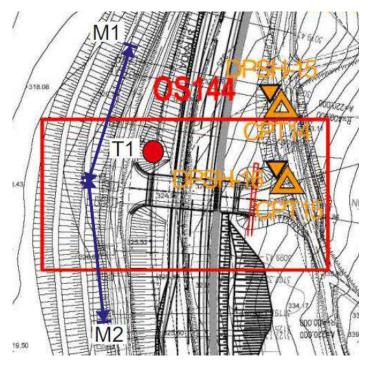


Figura 2 UBICAZIONE INDAGINI DI RIFERIMENTO

In totale sono stati eseguiti:

- n.3 prove penetrometriche CPT
- n.2 prove penetrometriche DPSH
- n.2 prove sismiche tipo MASW
- n.1 prova sismica tromografica;

PROGETTO ESECUTIVO DI VARIANTE N.3

OS144 - Muro in gabbioni VS10 dal km 1+280.7 al km 1+491.33 - Relazione Geotecnica e di Calcolo

6.1.1 Prove sismiche

Si riportano nel seguito i risultati delle prove sismiche effettuate, in termini di velocità delle onde di taglio misurate e di rigidezza a piccole deformazioni desunta dalle misure registrate nelle prove. Si ricorda che dalla velocità delle onde di taglio, come è noto, si può risalire direttamente alla valutazione della rigidezza al taglio dei terreni a piccole deformazioni Go secondo la relazione:

$$G_0 = \rho V_s^2$$

in cui ρ è la densità del materiale e Vs la velocità delle onde di taglio.

Il modulo di Young a piccole deformazioni può essere derivato mediante le relazioni elastiche, dal momento che l'ipotesi di comportamento linearmente elastico del materiale è sicuramente verificato per i livelli deformativi in questione.

$$E_0 = 2 (1 + v) G_0$$

in cui v è il modulo di Poisson del materiale.

OS144 – Muro in gabbioni VS10 dal km 1+280.7 al km 1+491.33 - Relazione Geotecnica e di Calcolo

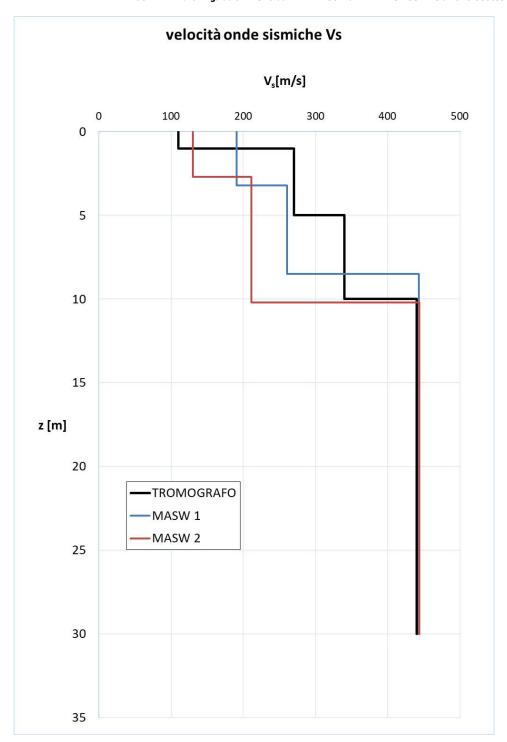


Figura 3. OS 144 - Velocità delle onde di taglio misurata nelle prove sismiche

OS144 – Muro in gabbioni VS10 dal km 1+280.7 al km 1+491.33 - Relazione Geotecnica e di Calcolo

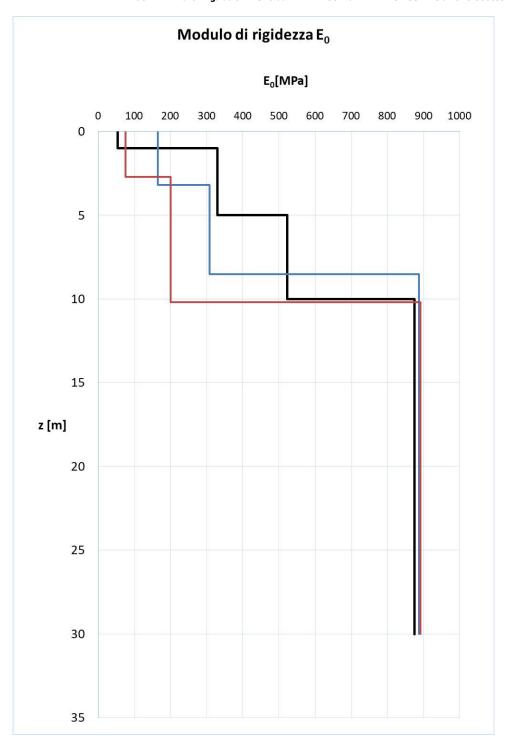


Figura 4. OS 144 - Modulo di rigidezza a piccole deformazioni

PROGETTO ESECUTIVO DI VARIANTE N.3

OS144 – Muro in gabbioni VS10 dal km 1+280.7 al km 1+491.33 - Relazione Geotecnica e di Calcolo

6.2 INQUADRAMENTO GEOLOGICO GEOMORFOLOGICO ED I DROGEOLOGICO

Per tale inquadramento si rimanda alla Relazione Geologica dell'opera in esame.

Con specifico riferimento a tale documento, alla relazione geotecnica generale, ed alle indagini effettuate nell'area, la stratigrafia di rifermento per le opere in esame risulta essere la seguente:

	Area (OS144)				
Profondità m. da p.c.	Litologia	Formazione			
0-10	Limi sabbiosi argillosi (alterati)	LSA			
>10	Argille limose grigie consistenti	AG			

PROGETTO ESECUTIVO DI VARIANTE N.3

OS144 - Muro in gabbioni VS10 dal km 1+280.7 al km 1+491.33 - Relazione Geotecnica e di Calcolo

7 CARATTERIZZAZIONE GEOTECNICA

7.1 MODELLO GEOTECNICO DI RIFERIMENTO

Come riportato nella Relazione Geotecnica Generale, sulla base del modello geologico e geotecnico di riferimento le unità stratigrafiche, presenti nell'area in esame, sono le seguenti:

- Unità LSA: limi sabbiosi argillosi moderatamente consistenti.
- Unità AG: argille limose grigie. Si tratta di argille limose grigie a struttura scagliettata con inclusi
 elementi lapidei, da consistenti a molto consistenti, talvolta con intercalati livelli sabbiosi e/o
 livelli, strati di argilliti a consistenza pseudo-litoide.

Per il dettaglio circa l'interpretazione delle prove e dei sondaggi effettuati in corrispondenza dell'opera si rimanda alla Relazione Geotecnica Generale.

Per quanto riguarda la stratigrafia di riferimento ed i parametri geotecnici delle formazioni interagenti con l'opera ci si riferirà a quanto segue:

OS144						
Profondità	Unità stratigrafica	γ	c'	arphi	Cu	E'
m	-	kN/mc	kPa	deg	kPa	MPa
10	LSA	20	7	26	100	20
inf	AG	20.5	20	26	400	100

Tabella 2 - PARAMETRI GEOTECNICI DI PROGETTO

PROGETTO ESECUTIVO DI VARIANTE N.3

OS144 - Muro in gabbioni VS10 dal km 1+280.7 al km 1+491.33 - Relazione Geotecnica e di Calcolo

8 DEFINIZIONE DELLA PORTATA DI PROGETTO

A seguito degli eventi alluvionali del novembre 2018, meglio descritti nella premessa del presente elaborato, vista la notevole vicinanza dell'opera in esame al torrente Buffa-Mulinazzo, i rilevati in terra rinforzata sono stati riprogettati e verificati tenendo in conto l'eventualità di un'esondazione del corso d'acqua per un evento straordinario corrispondente al deflusso di una portata di piena con tempo di ritorno Tr=300 anni.

Si riporta nel presente paragrafo la metodologia proposta per il calcolo di detta portata.

8.1 APPLICAZIONE DELLE LINEE GUIDA DEL PROGETTO VAPI

Con riferimento al bacino oggetto di studio, l'individuazione delle caratteristiche pluviometriche è stata determinata in conformità a quanto previsto dal progetto di valutazione Piene (VaPi) del gruppo Nazionale di Difesa dalle Catastrofi Idrogeologiche (GNDCI), mediante le procedure di regionalizzazione, secondo le procedure indicate nel rapporto della Regione Sicilia (Ferro e Carnozzo 1993).

La determinazione dell'altezza di pioggia (h), e le relative intensità (i) è stata condotta utilizzando il modello TCEV (Two Component Extreme Value Distribution).

La procedura gerarchica di regionalizzazione si articola in te livelli successivi in ognuno dei quali è possibile ritenere costanti alcuni parametri statistici.

Nel primo livello di regionalizzazione si ipotizza che il coefficiente di asimmetria teorico della serie dei massimi annuali delle piogge di assegnata durata t sia costante per l'intera regione Sicilia. L'intera regione si ritiene pertanto una zona pluviometricamente omogenea ed i valori dei parametri sono costanti ed indipendenti dalla durata t.

Il secondo livello di regionalizzazione prevede l'individuazione di sottozone omogenee (SZO) all'interno di quella individuata al primo livello. In tali zone risulta costante, oltre al coefficiente di asimmetria, anche il coefficiente di variazione della legge teorica. Al secondo livello di regionalizzazione la Sicilia è suddivisa in cinque sottozone pluviometricamente omogenee.

OS144 - Muro in gabbioni VS10 dal km 1+280.7 al km 1+491.33 - Relazione Geotecnica e di Calcolo

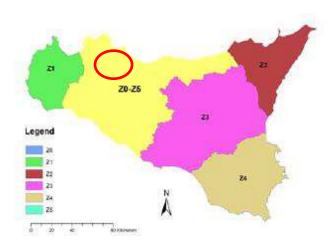


Figura 5 Sottozone pluviometricamente omogene regione Sicilia. Cerchiata in rosso l'area di interesse.

In ogni sottozona la variabile adimensionale h=h(t,T), valore dell'altezza di pioggia per fissata durata t e tempo di ritorno T rapportata alla media della legge TCEV, assume la seguente espressione:

$$K_T = a * \ln(T) + b$$

Dove:

 K_T : coefficiente adimensionale di crescita per ogni SZO fissato il tempo d ritorno;

a, b: parametri per le differenti SZO definiti nella tabella seguente.

Sottozona Parametro	Z_0 - Z_5	Z_1	Z_2	Z_3	Z_4
а	0.4485	0.4695	0.4799	0.5011	0.4946
b	0.5117	0.4889	0.4776	0.4545	0.4616

Tabella 4.2: Valori, per la regione Sicilia, dei coefficienti a e b per la definizione del fattore di crescita (Lo Conti et al., 2007).

Figura 6 Coefficienti a, b per la definizione del coefficiente di crescita. Cerchiata in rosso la zona di interesse.

Il terzo livello di regionalizzazione prevede, infine, la ricerca di relazioni regionali tra il parametro centrale della distribuzione di probabilità (μ) e le grandezze relative al sito di misura, dipendenti dai parametri geografici.

L'espressione della curva di probabilità pluviometria assume quindi la forma:

$$h(t,T) = K_T * \mu(t)$$

Dove:

h(t,T): è l'altezza di pioggia per assegnata durata t e tempo di ritorno T;

PROGETTO ESECUTIVO DI VARIANTE N.3

OS144 – Muro in gabbioni VS10 dal km 1+280.7 al km 1+491.33 - Relazione Geotecnica e di Calcolo

 $\mu(t)$: assume per le stazioni pluviografiche siciliane la seguente forma: $\mu(t) = a * t^n$, con a, n tabellati per ogni stazione pluviografica.

Nel presente caso, vista l'ubicazione dell'area oggetto del presente studio, sono stati utilizzati i valori di *a* ed *n* afferenti alla stazione pluviometrica di **Ciminna**.

L'espressione analitica della legge di probabilità pluviometrica, per il tempo di ritorno pari a 300 anni assume quindi la seguente forma:

$$h(t, T = 300) = 63.85 * t^{0.3529}$$

PROGETTO ESECUTIVO DI VARIANTE N.3

Tab. 5.III - Valori delle costanti a e n della (5.17) per le stazioni pluviografiche siciliane

Codice	Stazione	Bacino di appartenenza	8	n
1	Monforte S. Giorgio	Nicoto	35.9	0.3391
2	Milazzo	Tra Muio e Mela	30,3	0.2208
3	Castroreale	Longano	27.4	0.4470
4	Montalbano Elicona	Mazzarra	26.2	0.4255
5	Tindari	Tra Mazzarrà e Timeto	26.5	0.2977
6	S, Piero Patti	Timeto	28.3	0.3369
7	Capo d'Orlando	Tra Naso e Zappulla	20.5	0,2934
8	Tortorici	Zappulla	28,4	0.3347
9	Alcara Li Fusi	Rosmarino	23.2	0.7970
10	Sanfratello	Inganno	21.9	0.3723
11	S. Stefano di Camastra	S. Stefano	26,7	0.2560
12	Castelbuono	Pollina	25.6	0.3451
13	Isnello	Pollina	25.0	0,4109
14	Cefalù	Pollina	27.3	0.2827
15	Collesano	Roccella	28.1	0.3880
16	Caltavutoro	Imera Settentrionale	20.4	0.4252
17	Giota (Fattoria)	Torto	20,5	0.3147
18	Termini Imerese	Tra Torto e S. Leonardo	30.5	0.2635
19	Imbriaca	S. Leonardo	22.6	0.3567
20	Vicari	S. L.conardo	22.5	0,3205
31	Campofelice di Fitalia	S. Leonardo	22.9	0.2244
22	Mezzoiuso	S. Leonardo	20.6	0.3415

PROGETTO ESECUTIVO DI VARIANTE N.3

OS144 – Muro in gabbioni VS10 dal km 1+280.7 al km 1+491.33 - Relazione Geotecnica e di Calcolo

Codice	Stazione	Bacino di appartenenza	a	n
23	Sambuchi	S. Leonardo	19.5	0.3172
24	Caccamo	S. Leonardo	22.0	0.3414
25	Címinna	S. Leonardo	20.8	0.3529
26	Monumentale	S. Leonardo	29.3	0.2608
27	Turdiepi (Fattoria)	Eleuterio	21.6	0.3511
28	Lupo	Eleuterio	24.9	0.2819
29	Ficuzza	Eleuterio	22.2	0.3088
30	Ficuzza Bosco	Eleuterio	24.1	0.3792
31	Marineo	Eleuterio	27.4	0.2979
32	Risalaimi	Eleuterio	24.9	0.3272
33	Misilmeri	Eleuterio	21.0	0.3054
34	Pioppo	Oreto	27.4	0.4032
35	Altofonte	Oreto	25.0	0.3567
36	Romitello	Tra Oreto e Giancaldara	30.1	0.2972
37	S. Martino delle Scale	Tra Oreto e Giancaldara	28.2	0.3327
38	Montepellegrino	Tra Oreto e Giancaldara	29.5	0.2733
39	Partinico	Tra Oreto e Giancaldara	21.2	0.3120
40	Palermo Ist. Zoot.	Tra Oreto e Giancaldara	25.1	0.2928
41	Palermo Serv. Idr.	Tra Oreto e Giancaldara	28.7	0.3143
42	Palermo Oss. Astr.	Tra Oreto e Giancaldara	22.2	0.2687
43	Palermo Ist. Castel.	Tra Oreto e Giancaldara	23.2	0.3119
44	Isola delle femmine	Tra Oreto e Giancaldara	21.7	0.2968
45	Ginestra	Giancaldara	27.9	0.3874

Figura 7: Parametri a, n delle curve CPP per le differenti stazioni pluviometriche.

All'analisi pluviometrica segue la valutazione della portata al colmo di piena istantanea. Per tale valutazione ci si è riferiti al modello di regionalizzazione proposto dal VaPi Sicilia al terzo livello di

PROGETTO ESECUTIVO DI VARIANTE N.3

OS144 - Muro in gabbioni VS10 dal km 1+280.7 al km 1+491.33 - Relazione Geotecnica e di Calcolo

regionalizzazione, utilizzando come metodo di trasformazione afflussi-deflussi la formula razionale per la quale:

$$Q = \frac{\psi * I(t_c) * A}{3.6} [mc/s]$$

Dove:

ψ: Coefficiente di deflusso;

I(t_c): Intensità di precipitazione massima registrata in un intervallo orario pari al tempo di corrivazione del bacino;

A: Area del bacino.

L'area del bacino di pertinenza della zona di studio è stata posta pari a 56.3 km², coerentemente agli studi idrologici presentati nelle precedenti fasi progettuali, i cui contenuti sono stati verificati dallo scrivente a monte della redazione del presente elaborato.

Il tempo di corrivazione del bacino è stato ricavato utilizzando la metodologia indicata dal Vapi della regione Sicilia, per la quale:

$$t_c = 0.35\sqrt{A}$$

Nel caso in esame risulta pertanto:

$$t_c = 2.6 [h]$$

Il valore del coefficiente di deflusso è stato determinato mediante il metodo "Curve Number" proposto dal Soil Conservation Service (1972), metodologia indicata dai rapporti relativi al *P.A.I.* per il "Bacino idrografico del fiume Milicia (n.0.34)" "Area territoriale tra il bacino del fiume Milicia e il bacino del fiume San Leonardo (n.0.35)" "Area territoriale tra il bacino del fiume Milicia ed il bacino del fiume Eleuterio (n.0.36)" "Bacino idrografico del fiume San Leonardo (PA)" (2004 e successivi aggiornamenti). La metodologia completa viene illustrata nel seguente paragrafo.

8.1.1 Determinazione del parametro CN

Il metodo del Curve Number si basa sull'assunzione che il volume specifico (altezza) di pioggia netta (efficace) risulti legato al volume specifico (altezza) di pioggia lorda (effettiva) caduta nel medesimo intervallo temporale secondo la relazione:

PROGETTO ESECUTIVO DI VARIANTE N.3

OS144 - Muro in gabbioni VS10 dal km 1+280.7 al km 1+491.33 - Relazione Geotecnica e di Calcolo

$$P_{net} = \frac{(P - I_a)^2}{P - I_a + S} [mm]$$
 (1)

Dove:

- S: Massimo volume specifico di acqua che il terreno può trattenere in condizioni sature;
- I_a: Perdita iniziale, equivalente al valore limite di altezza di pioggia che può essere trattenuta dal terreno senza che si origini il deflusso.

In assenza di adeguate osservazioni utili il parametro I_a può essere calcolato come:

$$I_a = 0.2 * S$$
 (2)

La valutazione di S può invece essere ricondotta a quella dell'indice CN (Curve Number), secondo la seguente relazione:

$$S = 254 \left(\frac{100}{CN} - 1\right) [mm]$$
 (3)

Dove CN è un numero adimensionale, compreso fra 0 e 100, funzione della permeabilità della litologia superficiale, dell'uso del suolo e della condizione di saturazione del terreno prima dell'evento meteorico.

Il Soil Conservation Service (SCS), sulla base delle capacità di assorbimento del terreno, ha classificato i vari tipi di suolo n 4 gruppi (A,B,C,D) come indicato nella tabella che segue.

Tipo idrologico di suolo	Descrizione
A	Scarsa potenzialità di deflusso. Comprende sabbie profonde con scarsissimo limo e argilla; anche ghiaie profonde, molto permeabili.
В	Potenzialità di deflusso moderatamente bassa. Comprende la maggior parte dei suoli sabbiosi meno profondi che nel gruppo A, ma il gruppo nel suo insieme mantiene alte capacità di infiltrazione anche a saturazione
С	Potenzialità di deflusso moderatamente alta. Comprende suoli sottili e suoli contenenti considerevoli quantità di argilla e colloidi, anche se meno che nel gruppo D. Il gruppo ha scarsa capacità di infiltrazione a saturazione.
D	Potenzialità di deflusso molto alta. Comprende la maggior parte delle argille con alta capacità di rigonfiamento, ma anche suoli sottili con orizzonti pressoché impermeabili in vicinanza delle superfici.

Tabella 3: Metodo SCS-CN Classi di suolo

Per tali gruppi si riportano i valori del parametro CN corrispondenti a diverse tipologie di uso del suolo.

PROGETTO ESECUTIVO DI VARIANTE N.3

OS144 - Muro in gabbioni VS10 dal km 1+280.7 al km 1+491.33 - Relazione Geotecnica e di Calcolo

		Tipo idrolo	gico Suolo	,
Tipologia di Uso del Territorio	Α	В	С	D
Terreno coltivato				
in presenza di pratiche di conservazione del suolo	62	71	78	81
in assenza di pratiche di conservazione del suolo	72	81	88	91
Terreno a pascolo				
in cattive condizioni	68	79	86	89
in buone condizioni	39	61	74	80
Terreni boscosi o forestati				
in presenza di copertura rada e senza sottobosco	45	66	77	83
in presenza di copertura fitta e con sottobosco	25	55	70	77
Spazi aperti, prati rasati, parchi				
con copertura erbosa superiore al 75% dell'area	39	61	74	80
con copertura erbosacompreso tra il 50 ed il 75% dell'area	49	69	79	84
con copertura erbosa inferiore al 50% dell'area	68	79	86	89
Aree commerciali (area impermeabile 85%)	89	92	94	95
Distretti industriali (area impermeabile 72%)	81	88	91	93
Aree residenziali				
impermeabilità media 65%	77	85	90	92
impermeabilità media 38%	61	75	83	87
impermeabilità media 30%	57	72	81	86
impermeabilità media 25%	54	70	80	85
impermeabilità media 20%	51	68	79	84
impermeabilità media 12%	46	65	77	82
Parcheggi, tetti, autostrade	98	98	98	98
Strade				
pavimentate o asfaltate, dotate di drenaggio	98	98	98	98
con letto in ghiaia	76	85	89	91
battute in terra	72	82	87	89

Tabella 4: Metodo SCS-CN ;CN per diversi tipi di uso del suolo per condizioni di umidità iniziale media (Classe II)

I valori di CN riportati in tabella si riferiscono ad una condizione di umidità del suolo intermedia secondo la classifica AMC (Antecedent Moisture Condition). Si assume pertanto che il valore di CN vari in relazione alle condizioni di imbibimento all'atto della piena. Tale stato di imbibimento viene espresso, dalla classificazione AMC, in base ad un indice di altezza di pioggia corrispondente all'altezza cumulata dei 5 giorni precedenti all'evento che si intende considerare (API5).

Noto il valore di CN per le condizioni medie (ACM II), è possibile ricavare il corrispondente valore per le condizioni di interesse secondo le curve di seguito riportate.

CLASSE AMC	Altezza di pioggia nei 5 giorni precedenti (mm)		
CLASSE AWIC	Stagione di riposo	Stagione di crescita	
l - asciutta	< 12.7	< 35.5	
II - media	12.7 - 28.0	35.5 - 53.3	
III - umida	> 28.0	> 53.3	

Tabella 5: Definizione della classe di umidità in base all'indice API₅

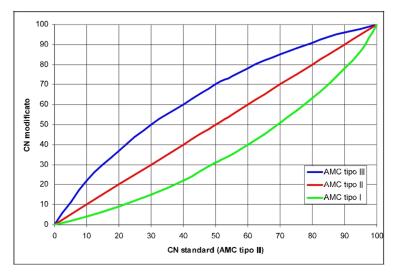


Figura 8: Curve di conversione dei valori di CN per le diverse condizioni iniziali

Secondo la metodologia sopra descritta, considerando le caratteristiche geologiche del bacino idrografico oggetto del presente studio (vedasi relazione Geologica Generale allegata al presente progetto), considerando una condizione di imbibimento del terreno media(classe AMC II) si è attribuito un valore di CN pari a 84.

I passaggi principali che hanno condotto all'attribuzione di tale valore del CN vengono di seguito riassunti:

- Superfici con terreni impermeabili pari al 70%
 GRUPPO D
- Tipologia di uso del suolo: Terreno coltivato in assenza di pratiche per la conservazione di suolo/Terreno a pascolo/ Spazi aperti
 CN= 84
- Classe AMC pari a II (media)
- CN modificato = 84

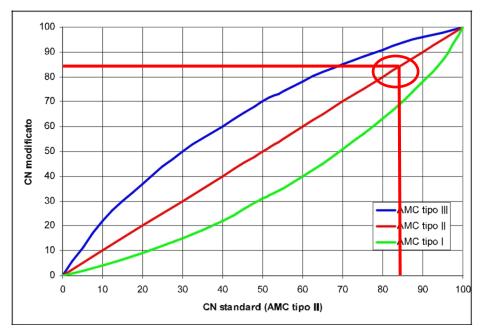


Figura 9: Procedura grafica per la stima di CN

Il valore di CN così ottenuto risulta in linea con i valori proposti dal rapporto relativo al P.A.I per l'area in esame.

8.1.2 Calcolo del coefficiente di deflusso

La determinazione della pioggia lorda è stata eseguita secondo la metodologia proposta dal VaPi Sicilia, come illustrato nel precedente paragrafo.

Il valore di pioggia lorda, per il tempo di ritorno pari a 300 anni, per il bacino in esame risulta pertanto:

$$h(t_c, T = 300) = 63.85 * 2.6^{0.3529} = 89.8[mm]$$

Utilizzando le relazioni (1), (2), (3) del paragrafo 8.1.1 si ottengono pertanto i seguenti valori:

$$S = 254 \left(\frac{100}{84} - 1 \right) = 48.4 [mm]$$

$$I_a = 0.2 * 48.4 = 9.7$$

$$I_a = 0.2 * 48.4 = 9.7$$

$$P_{net} = \frac{(89.8 - 9.7)^2}{89.8 - 9.7 + 48.4} = 49.9 [mm]$$

Il valore del coefficiente di deflusso è quindi calcolabile come rapporto tra la pioggia effettiva e la pioggia netta calcolata con il metodo SCS-CN e pertanto pari a:

PROGETTO ESECUTIVO DI VARIANTE N.3

OS144 – Muro in gabbioni VS10 dal km 1+280.7 al km 1+491.33 - Relazione Geotecnica e di Calcolo

$$\psi = \frac{P_{net}}{P} = \mathbf{0.56}$$

8.1.3 Calcolo della portata di progetto

La portata di progetto con tempo di ritorno trecentennale è quindi stata calcolata sulla base delle metodologie e dei risultati illustrati nei precedenti paragrafi. Applicando pertanto la formula razionale, utilizzando i coefficienti di deflusso calcolati con il metodo SCS, si ottiene per il bacino in esame:

$$Q=297 m^3/s$$

PROGETTO ESECUTIVO DI VARIANTE N.3

OS144 - Muro in gabbioni VS10 dal km 1+280.7 al km 1+491.33 - Relazione Geotecnica e di Calcolo

9 SOFTWARE UTILIZZATI

Il software utilizzato per il calcolo dell'opera in esame è di seguito indicato:

- Geoslope 2007 Geostudio, per la verifica di stabilità
- HEC-RAS 5.0.5 US Army Corps of Engineers

Per quanto riguarda i suddetti software/codici di calcolo si dichiara di aver condotto una valutazione di affidabilità e dell'idoneità al caso specifico di applicazione, attraverso verifiche alternative di controllo sui modelli realizzati ed una validazione critica dei risultati degli stessi mediante analisi semplificate tradizionali, nonché di aver esaminato la documentazione fornita dal produttore o dal distributore sulle modalità e procedure seguite per la validazione dei programmi.

9.1 METODOLOGIA DI CALCOLO SOFTWARE GEOSLOPE

Le verifiche di stabilità con i metodi dell'equilibrio limite rispondono a requisiti di semplicità e rapidità e sono correntemente impiegate, malgrado le loro limitazioni, nella pratica professionale e nella ricerca; ognuno dei metodi disponibili fornisce un'equazione finale che permette di determinare il coefficiente di sicurezza. [Tancredi, 1996].

Ogni metodo assume una serie di ipotesi semplificative così da poter rendere risolvibile il sistema di equazioni che, come vedremo, risulta essere staticamente indeterminato.

Alcuni di questi metodi sono stati risolti con metodo iterativo, vale a dire creando una procedura di calcolo che facilita la loro implementazione su macchina. Tra questi ci interessa maggiormente approfondire il metodo implementato dal programma di calcolo SLOPE/W, che è il metodo di Bishop (1955) e la sua semplificazione.

Le analisi di stabilità che adottano tali metodi sono quelle dell'equilibrio limite globale. Tale verifica si conduce esaminando un certo numero di possibili superfici di scivolamento per ricercare quella che rappresenta il rapporto minimo tra la resistenza a rottura disponibile e quella effettivamente mobilitata; il valore di questo rapporto costituisce il coefficiente di sicurezza del pendio. Scelta quindi una superficie di rottura si suddivide in conci la parte instabile, si studia dapprima l'equilibrio della singola striscia e poi si passa alla stabilità globale.

Dato l'elevato numero di incognite, ogni metodo assume delle ipotesi semplificative che rendono risolvibile il sistema e sono proprio tali ipotesi che differenziano un metodo dall'altro.

OS144 – Muro in gabbioni VS10 dal km 1+280.7 al km 1+491.33 - Relazione Geotecnica e di Calcolo

Esistono diverse formulazioni ascrivibili a diversi autori per il calcolo e la soluzione di problemi relativi alla stabilità dei pendii tramite metodi dell'equilibrio limite, tutti questi metodi si basano su ipotesi comuni, che sono:

- Il coefficiente di sicurezza è definito come il rapporto tra la resistenza al taglio lungo un'ipotetica superficie di scorrimento e lo sforzo di taglio mobilitato lungo la stessa superficie;
- La rottura avviene, per il raggiungimento della resistenza limite, contemporaneamente in tutti i punti della superficie di scorrimento.
- Il coefficiente di sicurezza è costante in tutti i punti della superficie di scorrimento.
- La resistenza al taglio è espressa dal criterio di Coulomb.

Nell'utilizzare tali metodi di calcolo si fa sempre riferimento a problemi piani nei quali, quindi, la superficie di scorrimento è rappresentata da una curva e si trascura ogni effetto dovuto alle sezioni adiacenti. Tali schematizzazioni sono giustificabili se le proprietà meccaniche dei terreni sono omogenee in direzione trasversale e quando l'estensione del pendio è predominante sulla dimensione trasversale.

In generale la massa di terreno compresa tra la superficie di scorrimento e la superficie del suolo viene suddivisa in conci e le forze che agiscono su ciascuna striscia possono essere calcolate imponendo le condizioni di equilibrio. L'equilibrio dell'intera massa è dato poi dalla composizione delle forze che agiscono su ciascuna striscia. [Tancredi, 1996]

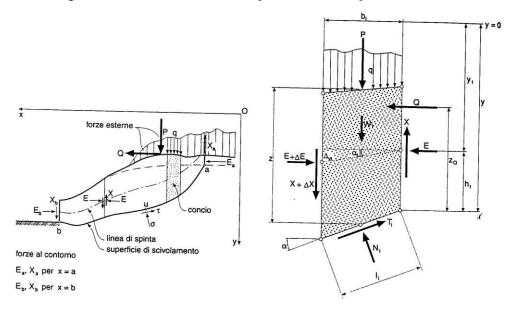


Figura 10: METODO DELLE STRISCE

PROGETTO ESECUTIVO DI VARIANTE N.3

OS144 – Muro in gabbioni VS10 dal km 1+280.7 al km 1+491.33 - Relazione Geotecnica e di Calcolo

Le forze agenti su ciascun concio sono, con riferimento alla figura precedente: Il peso W, l'azione tangenziale alla base T, l'azione normale efficace alla base N, la spinta dell'acqua sulla base U, gli sforzi tangenziali X e quelli normali E sulle superfici laterali (forze d'interfaccia).

Le condizioni di equilibrio di ciascun concio sono date dalle tre equazioni della statica, pertanto, ammettendo di suddividere il volume di terreno in esame in n conci, si hanno a disposizione 3n equazioni, mentre le incognite del problema risultano essere 5n-2 così composte:

- n valori per l'azione delle forze normali efficaci alla base.
- n-1 valori per ciascuna delle forze d'interfaccia (X ed E)
- n-1 valori per il punto di applicazione delle forze d'interfaccia in direzione orizzontale.
- n valori per il punto di applicazione degli sforzi normali efficaci alla base.
- 1 valore del coefficiente di sicurezza.

Come già accennato, dal bilancio fra le equazioni disponibili e il numero delle incognite risulta che si hanno 2n-2 incognite sovrabbondanti e quindi il problema risulta staticamente indeterminato, per riportarlo a staticamente determinato e rendere possibile la soluzione del sistema di equazioni che descrivono l'equilibrio della massa di terreno potenzialmente instabile, è necessario introdurre alcune ipotesi semplificative che consentono di ridurre il numero delle incognite del problema. La prima tra tutte, che risulta, tra le altre cose, comune a tutti i metodi, è quella di considerare centrata la forza agente alla base della striscia, il che è accettabile nel caso in cui i conci siano di larghezza limitata. Le altre ipotesi necessarie per risolvere il sistema di equazioni sono diverse caso per caso e sono queste stesse che caratterizzano un metodo da un altro. L'esistenza di molti metodi di calcolo porta alcune volte alla indeterminatezza della soluzione, è bene quindi sottolineare che da studi comparativi effettuati per indagare la risposta dei diversi metodi di calcolo, indicano che, quelli che soddisfano tutte le condizioni di equilibrio danno sostanzialmente gli stessi risultati in termini di coefficiente di sicurezza, o meglio che non differiscono tra loro più del 5%.[Duncan.1980].

OS144 - Muro in gabbioni VS10 dal km 1+280.7 al km 1+491.33 - Relazione Geotecnica e di Calcolo

9.3 METODOLOGIA DI CALCOLO SOFTWARE HEC-RAS

Il modello di simulazione HEC-RAS (River Analysis System) è stato inizialmente sviluppato dall'US Amy Corps of Engineers, Hydrologic Engineering Center per lo studio delle reti di canali aperti, attraverso la ricostruzione dei profili idraulici di moto permanente in regime subcritico e supercritico, operando nell'ipotesi di monodimensionalità del flusso.

La determinazione dei parametri fisici che descrivono il deflusso all'interno di una sezione d'alveo in HEC-RAS è basata sulle seguenti ipotesi semplificative:

- moto monodimensionale:
- moto gradualmente variato;
- distribuzione idrostatica delle pressioni in ciascuna sezione (linee di corrente rettilinee e parallele);
- alvei a debole pendenza (i < 1:10);
- perdite di carico continue mediamente costanti fra due sezioni trasversali adiacenti;
- sponde e fondo delle sezioni fisse (no erosione).

Sotto le predette ipotesi, le principali caratteristiche della corrente (livello idrico e velocità media) vengono calcolate a partire da una sezione alla successiva, posta a monte o a valle, a seconda che il regime sia rispettivamente supercritico o subcritico, risolvendo, con la procedura iterativa dello standard step method, l'equazione che esprime il bilancio di energia della corrente tra le medesime sezioni ():

$$z_1 + h_1 + \frac{\alpha_1 \cdot V_1^2}{2g} = z_2 + h_2 + \frac{\alpha_2 \cdot V_2^2}{2g} + \Delta H$$
 (1)

dove, indicando con i pedici 1e 2 le grandezze che si riferiscono alle due sezioni che individuano il volume di controllo:

- h1 e h2 sono le altezze idriche;
- z1 e z2 sono le quote del fondo alveo rispetto ad un riferimento prefissato; V1 e V2 sono le velocità medie;
- α1 e α2 sono i coefficienti di ragguaglio delle potenze cinetiche o coefficienti di Coriolis;
- ΔH è la perdita di carico tra le due sezioni.

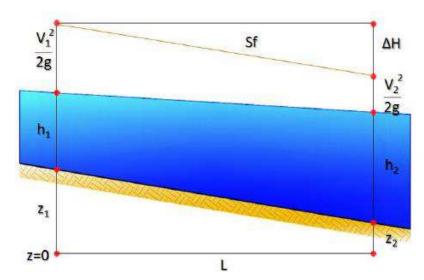


Figura 11: Conservazione dell'energia, schema di calcolo

L'equazione (1) esprime il ben noto principio per cui la variazione tra due sezioni dell'energia specifica della corrente è pari alle perdite distribuite, derivanti dagli attriti interni dovuti all'esistenza di strati a diversa velocità nell'interno della massa liquida, ed alle perdite localizzate, in genere dovute alla presenza di strutture in alveo che inizialmente producono un restringimento della corrente e un successivo allargamento con formazione di vortici.

La perdita di carico tra le due sezioni viene, infatti, valutata come la somma di due termini: una componente di attrito hf, dovuta alla scabrezza di fondo, calcolata per mezzo dell'equazione di Manning, e una componente h0 che rappresenta le perdite dovute a contrazioni ed espansioni della vena fluida, calcolata come frazione del carico cinetico:

$$\Delta H = h_f + h_0 = L \cdot \overline{S_f} + C \cdot \left| \frac{\alpha_2 \cdot V_2^2}{2g} - \frac{\alpha_1 \cdot V_1^2}{2g} \right|$$
 (2)

con Sf: cadente della linea dei carichi totali;

C: coefficiente di contrazione ed espansione.

HEC-RAS possiede quattro diverse modalità per la valutazione della cadente media S f :

- 1. Trasporto medio valutato tra le sezioni 1,2;
- 2. Media aritmetica della pendenza d'attrito valutata tra le sezioni 1,2;
- 3. Media geometrica della pendenza d'attrito valutata tra le sezioni 1,2;
- 4. Media armonica della pendenza d'attrito valutata tra le sezioni 1,2;

Il programma utilizza per default la prima delle quattro opzioni, a meno di indicazioni diverse da parte dell'utente. Il programma offre una quinta opzione che consente la selezione automatica della formula più idonea tra quelle illustrate in funzione del regime della corrente.

Il codice HEC-RAS suddivide l'area interessata dal moto in tre zone principali: zona golenale sinistra (LOB, left overbank), alveo ordinario (CH, channel), zona golenale destra (ROB, right

PROGETTO ESECUTIVO DI VARIANTE N.3

OS144 - Muro in gabbioni VS10 dal km 1+280.7 al km 1+491.33 - Relazione Geotecnica e di Calcolo

overbank). Per tener conto dell'andamento curvilineo dell'asse, la distanza di calcolo tra due sezioni viene ponderata rispetto alla frazione di portata che fluisce rispettivamente nelle tre zone. La lunghezza mediata del tratto viene quindi calcolata come:

$$L = \frac{L_{LOB} \cdot \overline{Q}_{LOB} + L_{CH} \cdot \overline{Q}_{CH} + L_{ROB} \cdot \overline{Q}_{ROB}}{\overline{Q}_{LOB} + \overline{Q}_{CH} + \overline{Q}_{ROB}}$$
(3)

Con:

LLOB,LCH,LROB : lunghezze del tratto relative rispettivamente all'area golenale sinistra, alveo ordinario e area golenale destra;

QLOB, QCH, QROB : portate medie attraverso la sezione rispettivamente in golena sinistra, alveo ordinario e golena destra.

Per illustrare lo standard step method utilizzato da HEC-RAS per la soluzione dell'equazione (1) si possono descrivere i passi necessari per il calcolo del profilo relativo a condizioni di moto subcritico con l'equazione dell'energia.

Si suppongano quindi due sezioni di cui si conosca la quota della superficie libera della sezione di valle; il problema che si vuole risolvere è la conoscenza della quota corrispondente alla sezione di monte.

Assumendo che la geometria delle sezioni sia nota, i termini incogniti dell'equazione sono h1, V1 e ΔH. V1 è desumibile direttamente dal valore di h1, per cui le incognite possono essere ridotte a due. Con due incognite è necessaria una seconda equazione, riguardante le perdite di energia ed espressa da he=hf+ho, per poter ottenere una soluzione. Stante la tipologia delle equazioni, la ricerca della soluzione sarà del tipo "trial and error", per successivi tentativi.

I passi attraverso cui avviene il calcolo sono i seguenti:

- Viene supposta una quota di pelo libero per la sezione di monte. Un primo tentativo può essere fatto imponendo la pendenza della linea dell'energia pari alla pendenza del tronco d'alveo; quindi, Δh=(Q/K)2 L, dove Δh rappresenta la variazione nella quota del pelo libero, Q è la portata, K il termine di trasporto e L la distanza dalla sezione a monte;
- Sulla base della quota di pelo libero assunta e della geometria della sezione, vengono determinati i termini cinetico e il trasporto totale per la sezione a monte;
- Con i valori calcolati del termine cinetico e di trasporto del passo 2, viene calcolato il valore di he;
- Con il valore calcolato di he, viene calcolata l'altezza di pelo libero della sezione a monte utilizzando l'equazione dell'energia;

Viene fatto un confronto fra il valore calcolato al passo 4 e il valore impostato al passo 1.
 Se la differenza non è inferiore a una prefissata tolleranza (di default pari a 3 mm), il ciclo riprende cambiando il valore al passo 1.

Questa tecnica richiede tempi di elaborazione brevissimi e non incontra problemi di convergenza nemmeno in presenza di discontinuità geometriche o idrauliche.

In corrispondenza di particolari situazioni localizzate, per le quali il moto non può, a rigore, essere considerato gradualmente variato, come avviene in corrispondenza di ponti, tombini, stramazzi, risalti idraulici ecc. (passaggio attraverso lo stato critico), per il calcolo dei profili idrici viene utilizzata l'equazione di bilancio della quantità di moto:

$$P_1 - P_2 + W_x - F_f = M_1 - M_2$$
 (4)

Dove:

- P1 e P2 sono le spinte agenti in corrispondenza delle sezioni 1 e 2;
- Wx è la componente della forza peso del volume di controllo nella direzione del moto; Ff è la forza resistente dovuta all'attrito;
- M2 e M1 sono i flussi della quantità di moto entranti ed uscenti dalle sezioni 2 e 1.

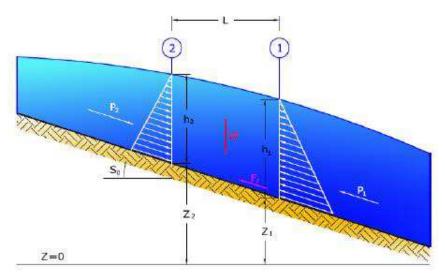


Figura 12: Conservazione della quantità di moto, schema di calcolo

Esplicitando i vari termini si ottiene la formula funzionale dell'equazione di conservazione della quantità di moto utilizzata da HEC-RAS:

$$\frac{\beta_2 \cdot Q_2^2}{g \cdot \Sigma_2} + \Sigma_2 \cdot h_2 + \left(\frac{\Sigma_1 + \Sigma_2}{2}\right) \cdot L \cdot S_0 - \left(\frac{\Sigma_1 + \Sigma_2}{2}\right) \cdot L \cdot \overline{S_f} = \frac{\beta_1 \cdot Q_1^2}{g \cdot \Sigma_1} + \Sigma_1 \cdot h_1$$

PROGETTO ESECUTIVO DI VARIANTE N.3

OS144 - Muro in gabbioni VS10 dal km 1+280.7 al km 1+491.33 - Relazione Geotecnica e di Calcolo

10 AZIONI DI CALCOLO

Per il progetto e la verifica delle opere sono state esaminate le varie azioni riportate nei paragrafi seguenti.

10.1 AZIONI VARIABILI

Sovraccarico uniforme indefinito

Nel caso specifico si terrà conto di un sovraccarico accidentale uniforme indefinito, dovuto al traffico stradale, pari a 20 kPa in condizioni statiche.

10.2 FALDA

Relativamente ai livelli di falda analizzati nelle verifiche di stabilità sono stati esaminati i seguenti casi:

- Condizione di piena (analisi statica), con quota del livello idrico pari a +320.9;
- Condizione di rapido svaso (analisi statica);
- Condizione di magra (analisi statica e sismica).

PROGETTO ESECUTIVO DI VARIANTE N.3

OS144 - Muro in gabbioni VS10 dal km 1+280.7 al km 1+491.33 - Relazione Geotecnica e di Calcolo

11 RISULTATI DELLE ANALISI

11.1 RISULTATI MODELLAZIONE IDRAULICA

In corrispondenza dell'opera OS144 sono state analizzate undici sezioni nel modello idraulico realizzato.

Sull'intero tratto è stato utilizzato un coefficiente di Manning pari a 0.03. per la determinazione della portata di progetto si veda il par. 8 della presente relazione.

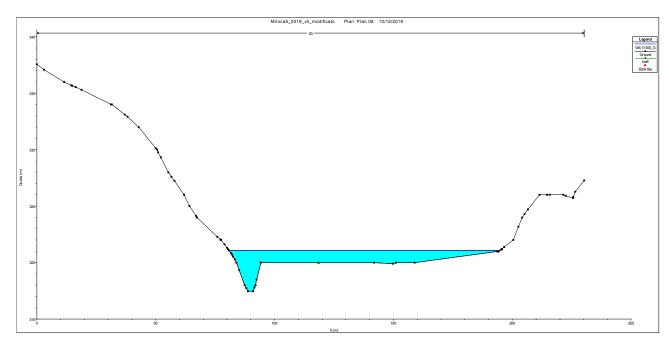


Figura 13: River station 4850.00 del modello idraulico del fiume Buffa-Mulinazzo con Tr 300 anni

PROGETTO ESECUTIVO DI VARIANTE N.3

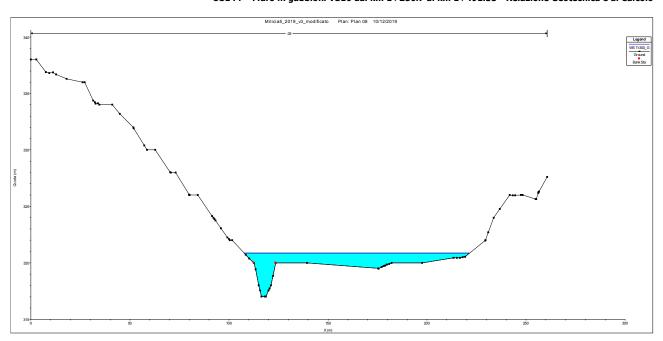


Figura 14: River station 4837.53 del modello idraulico del fiume Buffa-Mulinazzo con Tr 300 anni

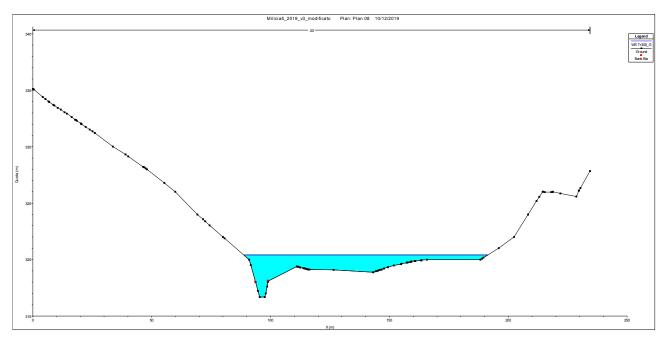


Figura 15: River station 4821.39 del modello idraulico del fiume Buffa-Mulinazzo con Tr 300 anni

PROGETTO ESECUTIVO DI VARIANTE N.3

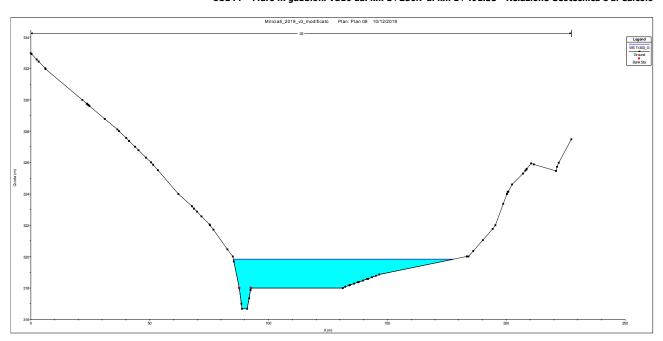


Figura 16: River station 4800.00 del modello idraulico del fiume Buffa-Mulinazzo con Tr 300 anni

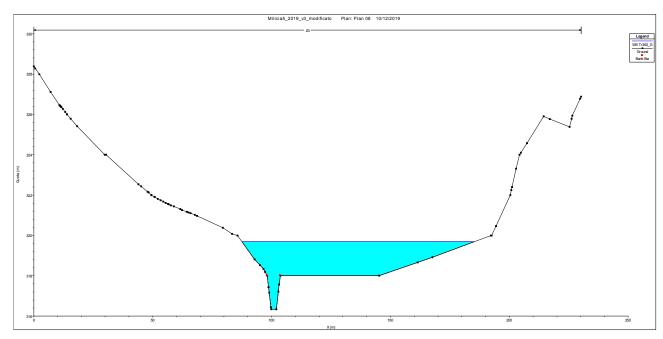


Figura 17: River station 4750.00 del modello idraulico del fiume Buffa-Mulinazzo con Tr 300 anni

PROGETTO ESECUTIVO DI VARIANTE N.3

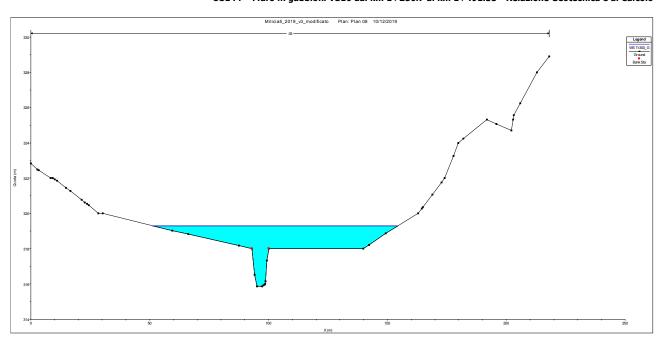


Figura 18: River station 4700.00 del modello idraulico del fiume Buffa-Mulinazzo con Tr 300 anni

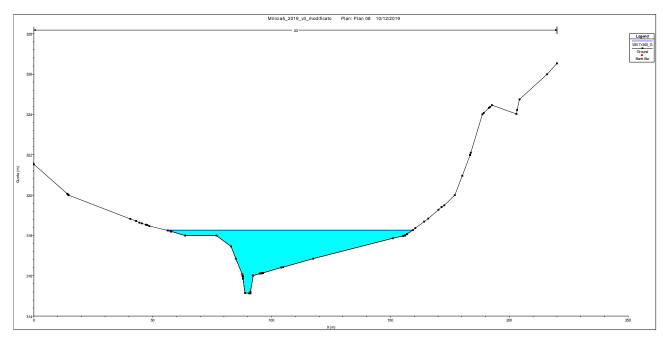


Figura 19: River station 4650.00 del modello idraulico del fiume Buffa-Mulinazzo con Tr 300 anni

PROGETTO ESECUTIVO DI VARIANTE N.3

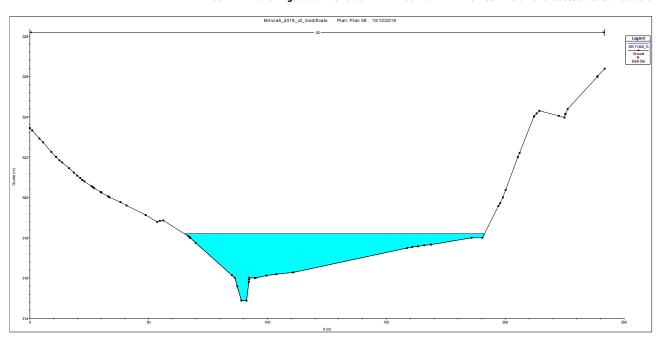


Figura 20: River station 4600.00 del modello idraulico del fiume Buffa-Mulinazzo con Tr 300 anni

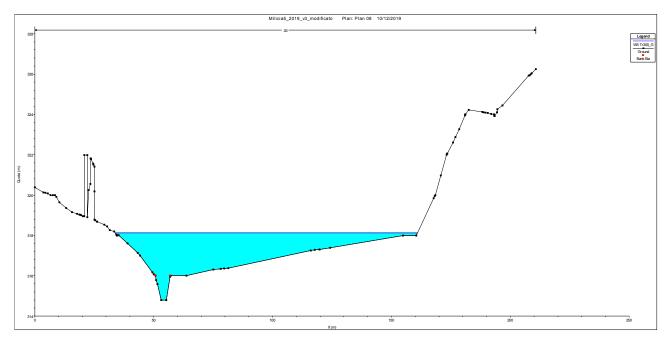


Figura 21: River station 4581.47 del modello idraulico del fiume Buffa-Mulinazzo con Tr 300 anni

PROGETTO ESECUTIVO DI VARIANTE N.3

OS144 - Muro in gabbioni VS10 dal km 1+280.7 al km 1+491.33 - Relazione Geotecnica e di Calcolo

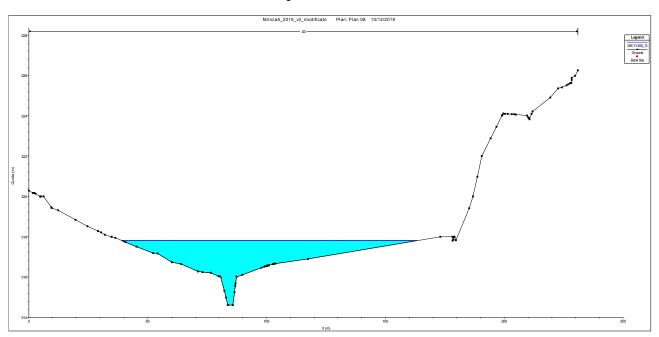


Figura 22: River station 4549.79 del modello idraulico del fiume Buffa-Mulinazzo con Tr 300 anni

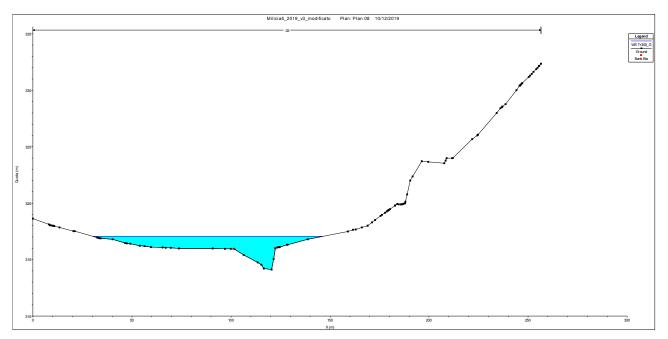


Figura 23: River station 4499.57 del modello idraulico del fiume Buffa-Mulinazzo con Tr 300 anni

Dalla modellazione risulta pertanto che la piena corrispondente al Tr di 300 anni provoca un esondazione dall'alveo ordinario, la cui area risulta interessare l'opera OS144.

Nelle verifiche di stabilità si considera pertanto l'altezza del livello idrico così determinata.

OS144 - Muro in gabbioni VS10 dal km 1+280.7 al km 1+491.33 - Relazione Geotecnica e di Calcolo

11.2 VERIFICA A TRASCINAMENTO DEI GABBIONI DEL RILEVATO

I risultati ottenuti dal modello idraulico hanno mostrato come l'opera OS144 è interessata dall'esondazione del torrente Buffa-Mulinazzo in occasione della piena con tempo di ritorno T=300 anni.

Alla luce di tali risultati si è ritenuto necessario procedere con la verifica a trascinamento dei gabbioni posti a protezione del rilevato.

Per la determinazione della velocità critica del materiale costituente i gabbioni si è fatto riferimento alla formulazione di Shields per la quale:

$$\tau_{cr} = \gamma R_H i$$

Dove:

 τ_{cr} : tensione critica di trascinamento

γ: peso specifico della massa liquida

R_H: raggio idraulico

i: pendenza del fondo

Secondo la formulazione di Gauckler-Strikler la stessa relazione può essere scritta come:

$$\tau_{cr} = \gamma \frac{v_{cr}^2}{K_s^2 R_H^{1/3}}$$

Considerato un materiale cui γ_s = 2600 kg/m³ la precedente equazione può scriversi come:

$$v_{cr} = 0.31 K_S R_H^{\frac{1}{6}} \sqrt{d}$$

Dove il coefficiente di scabrezza Ks assume valori compresi tra 25 e 35 m^{1/3}/s.

Nella verifica in esame sono stati considerati i seguenti valori tabellati.

Material	Allowable velocity [m/s]
Gabions 0.50m - d ₅₀ = 0.21 m	7.60
Reno mattress $0.17m - d_{50} = 0.10 m$	4.20
Reno mattress $0.23 \text{m} - d_{50} = 0.12 \text{ m}$	5.50
Reno mattress 0.30m - d ₅₀ = 0.15 m	6.40
MacMat R	1.50 - 3.00(*)

^{*} For duration less than 60 hours (Utah water research Laboratory)

Come mostrato nella tabella seguente, i risultati ottenuti dal modello di calcolo presentano una massima velocità, al di fuori dell'alveo in destra idraulica, pari a 5.25 m/s. L'intervento di progetto risulta pertanto verificato.

PROGETTO ESECUTIVO DI VARIANTE N.3

OS144 – Muro in gabbioni VS10 dal km 1+280.7 al km 1+491.33 - Relazione Geotecnica e di Calcolo

River Station	Portata (mc/s)	Quota fondo alveo (m)	Quota battente idrico (m)	Velocità fuori alveo in destra idraulica (m/s)
4850.00	297	317.47	320.89	2.36
4837.53	297	317.02	320.61	2.37
4821.39	297	316.68	320.05	2.94
4800.00	297	316.68	318.90	5.25
4750.00	297	316.33	319.69	2.20
4700.00	297	315.87	319.30	2.65
4650.00	297	315.13	317.72	4.31
4600.00	297	314.87	318.20	1.77
4581.47	297	314.80	318.13	1.84
4549.79	297	314.61	317.81	2.07
4499.57	297	314.13	316.68	1.87

Tabella 6 – Output modello HEC-RAS per le sezioni oggetto di sistemazione fluviale

PROGETTO ESECUTIVO DI VARIANTE N.3

OS144 - Muro in gabbioni VS10 dal km 1+280.7 al km 1+491.33 - Relazione Geotecnica e di Calcolo

11.3 VERIFICHE DI STABILITA' INTERVENTO

11.3.1 GENERALITA'

Come detto le verifiche di stabilità dell'intervento sono state eseguite con il codice di calcolo Slope/W della GeoSlope International Ltd adottando il criterio di verifica all'equilibrio limite globale. Le analisi di stabilità hanno investigato diversi scenari al fine di determinare i coefficienti di sicurezza in funzione dei possibili meccanismi di rottura ed in particolare:

- 1. Analisi statica in condizioni di magra;
- 2. Analisi sismica in condizioni di magra;
- 3. Analisi statica in condizioni di piena;
- 4. Analisi statica in condizioni di rapido svaso.

Come d'uso nei Metodi all'Equilibrio Limite Globale, tra le superfici generate viene individuata quella più critica.

Per tutti i casi analizzati è stato determinato il valore del coefficiente di sicurezza minimo (che è comunque risultato sempre maggiore del minimo di normativa) caratteristico della singola verifica di stabilità.

11.3.2 APPROCCIO NORMATIVO

Come detto, le verifiche di stabilità, nel seguito riportate, sono state eseguite seguendo i metodi dell'equilibrio limite globale secondo quanto prescritto dalle Norme Tecniche per le Costruzioni approvate con il D.M. 17 gennaio 2018 come suggerito ai punti §6.8 e §7.11.

Per tali opere deve essere verificata la condizione Ed <Rd in cui Ed è il valore di progetto delle azioni ed è pari a

 $E_d = \gamma_E E [F_k; X_k / \gamma_{M;a_d}]$

mentre Rd è il valore della resistenza del sistema geotecnico pari a

 $R_d = R/ \gamma R [\gamma_F Fk; Xk/ \gamma_M; ad]$

Con riferimento alle verifiche agli SLU la norma distingue la verifica statica da quella sismica, nello specifico gli approcci da adottare sono:

- Condizione statica: approccio 1, combinazione 2 A2+M2+R2, coefficiente γ_R = 1.1 (§6.8 delle NTC18);
- Condizione sismica: coefficienti parziali sulle azioni e sui parametri geotecnici pari a 1 e coefficiente γ_R = 1.2 (§7.11.1 e §7.11.4 delle NTC18).

PROGETTO ESECUTIVO DI VARIANTE N.3

OS144 - Muro in gabbioni VS10 dal km 1+280.7 al km 1+491.33 - Relazione Geotecnica e di Calcolo

Relativamente alla sola verifica statica i coefficienti correttivi delle azioni sono stati scelti secondo la tab. 6.2.I nel seguito riportata mentre per le resistenze va applicata la tab. 6.2.II relativa ai coefficienti correttivi dei parametri geotecnici.

Carichi	Effetto	Coefficiente	EQU	(A1)	(A2)
		parziale		STR	GEO
		γ _F Ο γ _E			
Permanenti	Favorevole	γ _{G1}	0.9	1.0	1.0
	Sfavorevole		1.1	1.3	1.0
Permanenti non strutturali	Favorevole	γ _{G2}	0.8	0.8	8.0
	Sfavorevole		1.5	1.5	1.3
Variabili	Favorevole	γQi	0.0	0.0	0.0
	Sfavorevole		1.5	1.5	1.3

Tabella 7: COEFFICIENTI PARZIALI PER LE AZIONI E PER L'EFFETTO DELLE AZIONI (TAB. 6.2.I DELLE NTC18)

Parametro	Grandezza alla quale applicare Il coefficiente parziale	Coefficiente parziale	(M1)	(M2)
Tangente dell'angolo di Resistenza al taglio	tan φ'	γφ	1.0	1.25
Coesione efficace	c'	γς	1.0	1.25
Resistenza non drenata	Cu	γcu	1.0	1.4
Peso dell'unità di volume	γ	γγ	1.0	1.0

Tabella 8: COEFFICIENTI PARZIALI PER I PARAMETRI GEOTECNICI DEL TERRENO (TAB. 6.2.II DELLE NTC18)

Nello specifico, per Ed si intende lo sforzo di taglio mobilitato lungo la superficie di scorrimento critica e per Rd la resistenza al taglio disponibile.

Pertanto, la verifica di stabilità si ritiene superata se il coefficiente di sicurezza ottenuto dal calcolo (pari a Rd/Ed) risulterà superiore a

- 1,1 per le analisi statiche;
- 1,2 per le analisi sismiche.

OS144 - Muro in gabbioni VS10 dal km 1+280.7 al km 1+491.33 - Relazione Geotecnica e di Calcolo

11.3.3 RISULTATI DI CALCOLO

Come anticipato in precedenza per l'intervento in oggetto sono state eseguite n.4 analisi di stabilità:

- n.3 analisi statiche (magra, piena, svaso rapido);
- n.1 analisi sismica in condizioni di magra.

La tabella seguente mostra i risultati delle analisi condotte mentre nelle figure seguenti sono disponibili i modelli utilizzati ed è possibile ricavare l'andamento e l'estensione delle superfici critiche.

Stati Limite	Rd /Ed	Rd /Ed
Otati Ellinto	statico	Sismico
Condizione di magra	1.27	1.21
Condizione di piena	1.24	-
Condizione di svaso rapido	1.37	-

Tabella 9: RISULTATI ANALISI DI STABILITA'

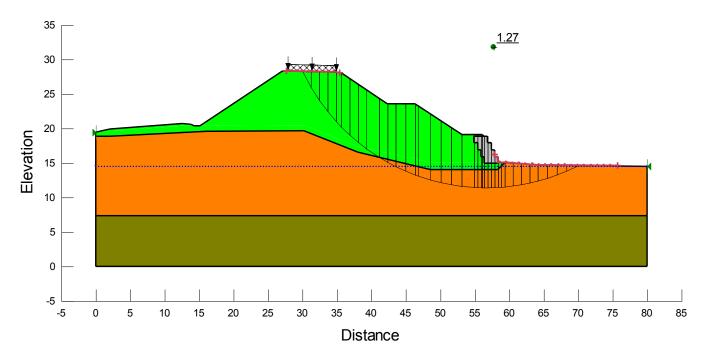


Figura 24: VERIFICA DI STABILITA' STATICA IN CONDIZIONI DI MAGRA

PROGETTO ESECUTIVO DI VARIANTE N.3

OS144 - Muro in gabbioni VS10 dal km 1+280.7 al km 1+491.33 - Relazione Geotecnica e di Calcolo

Figura 25: VERIFICA DI STABILITA' SISMICA IN CONDIZIONI DI MAGRA

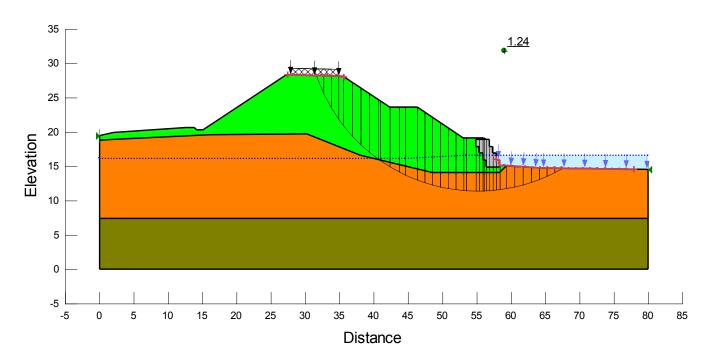
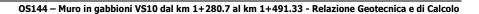



Figura 26: VERIFICA DI STABILITA' STATICA IN CONDIZIONI DI PIENA

PROGETTO ESECUTIVO DI VARIANTE N.3

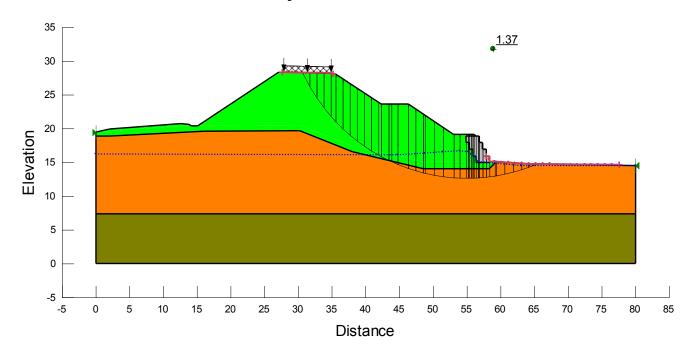


Figura 27: VERIFICA DI STABILITA' STATICA IN CONDIZIONI DI SVASO RAPIDO

Le superfici critiche, come è possibile verificare dalle immagini riportate, hanno teso ad indagare sull'accadimento di diversi fenomeni di rottura.

Tali verifiche risultano soddisfatte sia in condizioni statiche che sismiche.

PROGETTO ESECUTIVO DI VARIANTE N.3

OS144 – Muro in gabbioni VS10 dal km 1+280.7 al km 1+491.33 - Relazione Geotecnica e di Calcolo

12 ALLEGATI FILE DI INPUT OUTPUT DEI MODELLI DI CALCOLO

Magra_sisma

Report generated using GeoStudio 2007, version 7.17. Copyright © 1991-2010 GEO-SLOPE International Ltd.

File Information

Created By: Claudio Gravina Revision Number: 38

Last Edited By: Claudio Gravina

Date: 03/12/2019 Time: 18:40:59

File Name: Sez155_A_REV_sisma.gsz

Directory: W:\public\CMC-BLG-Dissesto idrologico Bolognetta\Calcoli\OS144\Stabilità\

Last Solved Date: 03/12/2019 Last Solved Time: 18:41:12

Project Settings

Length(L) Units: meters Time(t) Units: Seconds Force(F) Units: kN Pressure(p) Units: kPa Strength Units: kPa

Unit Weight of Water: 9.807 kN/m3

View: 2D

Analysis Settings

Magra_sisma

Kind: SLOPE/W

Method: Morgenstern-Price

Settings

Apply Phreatic Correction: No

Side Function

Interslice force function option: Half-Sine PWP Conditions Source: Piezometric Line with Ru

Slip Surface

Direction of movement: Left to Right

Use Passive Mode: No

Slip Surface Option: Entry and Exit Critical slip surfaces saved: 1

Optimize Critical Slip Surface Location: No

Tension Crack

Tension Crack Option: (none)

FOS Distribution

FOS Calculation Option: Constant

Advanced

Number of Slices: 30

Optimization Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 m

Optimization Maximum Iterations: 2000
Optimization Convergence Tolerance: 1e-007
Starting Optimization Points: 8
Ending Optimization Points: 16
Complete Passes per Insertion: 1

Driving Side Maximum Convex Angle: 5 ° Resisting Side Maximum Convex Angle: 1 °

Materials

Rilevato_sisma

Model: Mohr-Coulomb Unit Weight: 20 kN/m³ Cohesion: 0 kPa

Phi: 38 °

Phi-B: 0 °
Pore Water Pressure
Piezometric Line: 1
Include in PWP: No

Gabbioni_sisma

Model: Mohr-Coulomb Unit Weight: 16 kN/m³ Cohesion: 50 kPa

Phi: 45° Phi-B: 0°

Pore Water Pressure
Piezometric Line: 1
Include in PWP: No

AG_sisma

Model: Mohr-Coulomb Unit Weight: 20.5 kN/m³ Cohesion: 20 kPa

Phi: 26° Phi-B: 0°

Pore Water Pressure
Piezometric Line: 1
Include in PWP: No

LSA_sisma

Model: Mohr-Coulomb Unit Weight: 20 kN/m³ Cohesion: 7 kPa

Phi: 26° Phi-B: 0°

Pore Water Pressure
Piezometric Line: 1
Include in PWP: No

Slip Surface Entry and Exit

Left Projection: Range

Left-Zone Left Coordinate: (25.99915, 27.5526) m Left-Zone Right Coordinate: (35.291491, 28.11194) m

Left-Zone Increment: 10 Right Projection: Range

Right-Zone Left Coordinate: (57.88, 15.9) m

Right-Zone Right Coordinate: (79.499611, 14.526624) m

Right-Zone Increment: 20 Radius Increments: 10

Slip Surface Limits

Left Coordinate: (0, 19.45) m Right Coordinate: (80, 14.52) m

Piezometric Lines

Piezometric Line 1

Coordinates

X (m)	Y (m)	
0	14.516782	
80.018109	14.50965	

Surcharge Loads

Surcharge Load 1

Surcharge (Unit Weight): 20 kN/m³

Direction: Vertical

Coordinates

X (m) Y (m)	
27.84	29.31
34.84	29.13

Seismic Loads

Horz Seismic Load: 0.108 Vert Seismic Load: -0.054

Ignore seismic load in strength: No

Regions

	Material	Points	Area (m²)
Region 1	AG_sisma	1,41,42,31	591.2
Region 2	LSA_sisma	41,2,44,36,35,34,33,32,28,29,30,42	752.37276
Region 3	Rilevato_sisma	32,26,53,48,37,38,39,40,6,46,45,43,2,44,36,35,34,33	49.023102
Region 4	Rilevato_sisma	43,3,4,5,46,45	4.3076119
Region 5	Gabbioni_sisma	53,26,27,24,23,25,48	2
Region 6	Gabbioni_sisma	23,21,20,22,52,25	2
Region 7	Gabbioni_sisma	20,19,16,18,51,22	2
Region 8	Gabbioni_sisma	16,17,15,49,50,18	2
Region 9	Rilevato_sisma	6,7,8,9,10,11,12,47,14,15,49,50,18,51,22,52,25,48,37,38,39,40	259.60215
Region 10	Rilevato_sisma	32,26,27,28	0.4944

Points

	X (m)	Y (m)
Point 1	0	0
Point 2	0	18.83
Point 3	2.1	19.89
Point 4	12.6	20.68
Point 5	13.85	20.63
Point 6	15.133677	20.307292
Point 7	27.09	28.28
Point 8	27.84	28.31
Point 9	34.84	28.13
Point 10	35.59	28.1
Point 11	42.33	23.6
Point 12	46.33	23.6
Point 13	51.08	191
Point 14	56.08	19.1
Point 15	56.38	18.9

Point 16		
TOILLE	56.88	17.9
Point 17	56.88	18.9
Point 18	55.38	17.9
Point 19	57.38	17.9
Point 20	57.38	16.9
Point 21	57.88	16.9
Point 22	55.88	16.9
Point 23	57.88	15.9
Point 24	58.38	15.9
Point 25	56.38	15.9
Point 26	58.38	14.9
Point 27	58.38	15.11
Point 28	59.34	15.05
Point 29	64.14	14.729957
Point 30	80	14.52
Point 31	80	0
Point 32	58.38	14.08
Point 33	48.54	14.08
Point 34	38.1	16.55
Point 35	30.23	19.67
Point 36	16.02	19.53
Point 37	48.54	15.04
Point 38	38.04	17.34
Point 39	30.23	20.47
Point 40	16.02	20.33
Point 41	0	7.39
Point 42	80	7.39
Point 43	0	19.45
Point 44	2.1	18.85
Point 45	12.6	20.31
Point 46	14.237203	20.305345
Point 47	53.08	19.1
Point 48	56.38	15.04
Point 49	54.88	18.9
Point 50	54.88	17.9
Point 51	55.38	16.9
Point 52	55.88	15.9
Point 53	56.38	14.9

Critical Slip Surfaces

	Slip Surface	FOS	Center (m)	Radius (m)	Entry (m)	Exit (m)
1	645	1.21	(57.564 <i>,</i> 42.894)	33.254	(27.6816, 28.3037)	(75.0153, 14.586)

Slices of Slip Surface: 645

	Slip Surface	X (m)	Y (m)	PWP (kPa)	Base Normal Stress (kPa)	Frictional Strength (kPa)	Cohesiv Strengt (kPa)
1	645	27.76079	28.143605	-133.66289	1.3369089	1.0445077	0
2	645	28.71326	26.45126	-117.06612	24.833847	19.402328	0
3	645	30.45978	23.68664	-89.95469	51.904449	40.5522	0
4	645	32.2063	21.42294	-67.755235	76.727355	59.94598	0
5	645	33.95978	19.503285	-48.931038	100.26105	78.332516	0
6	645	35.215	18.27457	-36.88336	104.76332	81.850072	0
7	645	36.018125	17.56988	-29.973164	111.64886	87.229648	0
8	645	37.273125	16.56827	-20.15136	125.26832	61.097442	7
9	645	39.16615	15.22206	-6.9507174	130.96936	63.878023	7
10	645	41.28115	13.923665	5.780539	136.42654	63.720311	7
11	645	42.996665	13.00915	14.748038	146.2871	64.155889	7
12	645	44.33	12.39488	20.770509	161.36034	68.570245	7
13	645	45.663335	11.850015	26.112849	176.44101	73.319943	7
14	645	46.52072	11.527285	29.278348	184.25824	75.588743	7
15	645	47.62572	11.173665	32.744221	184.45207	73.99286	7
16	645	49.296665	10.69292	37.457278	183.84941	71.400215	7
17	645	50.81	10.34163	40.901441	181.66125	68.653147	7
18	645	52.323335	10.063823	43.624229	177.65124	65.369343	7
19	645	53.98	9.845409	45.764922	182.47423	66.677586	7
20	645	55.13	9.7294415	46.901806	187.9882	68.812432	7
21	645	55.63	9.6965215	47.223889	187.63769	68.484387	7
22	645	55.98	9.677183	47.413091	186.00351	67.595066	7
23	645	56.23	9.6663885	47.518351	185.617	67.35521	7
24	645	56.63	9.653336	47.647179	181.87616	65.467848	7
25	645	57.13	9.643041	47.745922	167.75567	58.532667	7
26	645	57.63	9.6402665	47.773904	153.01969	51.331801	7
27	645	58.13	9.645011	47.727099	137.66409	43.865203	7
28	645	58.593545	9.6558745	47.620351	125.95709	38.207382	7
29	645	59.073545	9.6745905	47.435796	126.69416	38.656887	7
30	645	60.14	9.748859	46.706708	127.16667	39.242946	7

31	645	61.74	9.9123065	45.101877	125.6409	39.281506	7
32	645	63.34	10.154715	42.723422	120.76031	38.061133	7
33	645	64.90797	10.469775	39.632472	113.52863	36.041566	7
34	645	66.443915	10.85656	35.837819	104.11915	33.303032	7
35	645	67.97986	11.32277	31.264337	91.531313	29.394169	7
36	645	69.515805	11.871995	25.876875	76.06986	24.480754	7
37	645	71.05175	12.508745	19.630946	58.188269	18.805663	7
38	645	72.587695	13.238685	12.470706	38.437212	12.664711	7
39	645	74.12364	14.068925	4.3273701	17.388403	6.3702914	7
40	645	74.95346	14.54805	-0.37213552	5.7335691	2.7964485	7

Magra

Report generated using GeoStudio 2007, version 7.17. Copyright © 1991-2010 GEO-SLOPE International Ltd.

File Information

Created By: Claudio Gravina Revision Number: 39

Last Edited By: Claudio Gravina

Date: 03/12/2019 Time: 18:42:05

File Name: Sez155 A REV sisma.gsz

Directory: W:\public\CMC-BLG-Dissesto idrologico Bolognetta\Calcoli\OS144\Stabilità\

Last Solved Date: 03/12/2019 Last Solved Time: 18:42:14

Project Settings

Length(L) Units: meters Time(t) Units: Seconds Force(F) Units: kN Pressure(p) Units: kPa Strength Units: kPa

Unit Weight of Water: 9.807 kN/m3

View: 2D

Analysis Settings

Magra

Kind: SLOPE/W

Method: Morgenstern-Price

Settings

Apply Phreatic Correction: No

Side Function

Interslice force function option: Half-Sine PWP Conditions Source: Piezometric Line with Ru

Slip Surface

Direction of movement: Left to Right

Use Passive Mode: No

Slip Surface Option: Entry and Exit Critical slip surfaces saved: 1

Optimize Critical Slip Surface Location: No

Tension Crack

Tension Crack Option: (none)

FOS Distribution

FOS Calculation Option: Constant

Advanced

Number of Slices: 30

Optimization Tolerance: 0.01 Minimum Slip Surface Depth: 0.1 m Optimization Maximum Iterations: 2000
Optimization Convergence Tolerance: 1e-007
Starting Optimization Points: 8
Ending Optimization Points: 16
Complete Passes per Insertion: 1
Driving Side Maximum Convex Angle: 5 °
Resisting Side Maximum Convex Angle: 1 °

Materials

Rilevato

Model: Mohr-Coulomb
Unit Weight: 20 kN/m³
Cohesion: 0 kPa
Phi: 32 °
Phi-B: 0 °
Pore Water Pressure
Piezometric Line: 1
Include in PWP: No

Gabbioni

Model: Mohr-Coulomb
Unit Weight: 16 kN/m³
Cohesion: 40 kPa
Phi: 38.7 °
Phi-B: 0 °
Pore Water Pressure
Piezometric Line: 1
Include in PWP: No

LSA

Unit Weight: 20 kN/m³
Cohesion: 5.6 kPa
Phi: 21.3 °
Phi-B: 0 °
Pore Water Pressure
Piezometric Line: 1
Include in PWP: No

Model: Mohr-Coulomb

AG

Model: Mohr-Coulomb Unit Weight: 20.5 kN/m³ Cohesion: 16 kPa Phi: 21.3 ° Phi-B: 0 ° Pore Water Pressure Piezometric Line: 1 Include in PWP: No

Slip Surface Entry and Exit

Left Projection: Range

Left-Zone Left Coordinate: (27.700424, 28.304417) m Left-Zone Right Coordinate: (35.358418, 28.109263) m

Left-Zone Increment: 10 Right Projection: Range

Right-Zone Left Coordinate: (57.88, 16.247106) m Right-Zone Right Coordinate: (75.676216, 14.577239) m

Right-Zone Increment: 20 Radius Increments: 10

Slip Surface Limits

Left Coordinate: (0, 19.45) m Right Coordinate: (80, 14.52) m

Piezometric Lines

Piezometric Line 1

Coordinates

X (m)	Y (m)		
0	14.516782		
80.022035	14.501799		

Surcharge Loads

Surcharge Load 1

Surcharge (Unit Weight): 30 kN/m³

Direction: Vertical

Coordinates

X (m)	Y (m)
27.84	29.31
34.84	29.13

Regions

	Material	Points	Area (m²)
Region 1	AG	1,41,42,31	591.2
Region 2	LSA	41,2,44,36,35,34,33,32,28,29,30,42	752.37276

Region 3	Rilevato	32,26,53,48,37,38,39,40,6,46,45,43,2,44,36,35,34,33	49.023102
Region 4	Rilevato	43,3,4,5,46,45	4.3076119
Region 5	Gabbioni	53,26,27,24,23,25,48	2
Region 6	Gabbioni	23,21,20,22,52,25	2
Region 7	Gabbioni	20,19,16,18,51,22	2
Region 8	Gabbioni	16,17,15,49,50,18	2
Region 9	Rilevato	6,7,8,9,10,11,12,47,14,15,49,50,18,51,22,52,25,48,37,38,39,40	259.60215
Region 10	Rilevato	32,26,27,28	0.4944

Points

	X (m)	Y (m)
Point 1	0	0
Point 2	0	18.83
Point 3	2.1	19.89
Point 4	12.6	20.68
Point 5	13.85	20.63
Point 6	15.133677	20.307292
Point 7	27.09	28.28
Point 8	27.84	28.31
Point 9	34.84	28.13
Point 10	35.59	28.1
Point 11	42.33	23.6
Point 12	46.33	23.6
Point 13	51.08	191
Point 14	56.08	19.1
Point 15	56.38	18.9
Point 16	56.88	17.9
Point 17	56.88	18.9
Point 18	55.38	17.9
Point 19	57.38	17.9
Point 20	57.38	16.9
Point 21	57.88	16.9

Point 22	55.88	16.9
Point 23	57.88	15.9
Point 24	58.38	15.9
Point 25	56.38	15.9
Point 26	58.38	14.9
Point 27	58.38	15.11
Point 28	59.34	15.05
Point 29	64.14	14.729957
Point 30	80	14.52
Point 31	80	0
Point 32	58.38	14.08
Point 33	48.54	14.08
Point 34	38.1	16.55
Point 35	30.23	19.67
Point 36	16.02	19.53
Point 37	48.54	15.04
Point 38	38.04	17.34
Point 39	30.23	20.47
Point 40	16.02	20.33
Point 41	0	7.39
Point 42	80	7.39
Point 43	0	19.45
Point 44	2.1	18.85
Point 45	12.6	20.31
Point 46	14.237203	20.305345
Point 47	53.08	19.1
Point 48	56.38	15.04
Point 49	54.88	18.9
Point 50	54.88	17.9
Point 51	55.38	16.9
Point 52	55.88	15.9
Point 53	56.38	14.9

Critical Slip Surfaces

	Slip Surface	FOS	Center (m)	Radius (m)	Entry (m)	Exit (m)
1	854	1.27	(56.606, 40.893)	29.457	(29.9979, 28.2545)	(69.9926, 14.6525)

Slices of Slip Surface: 854

ces or s	Slip Surfa Slip Surface	X (m)	Y (m)	PWP (kPa)	Base Normal Stress (kPa)	Frictional Strength (kPa)	Cohesive Strength (kPa)
1	854	30.60312	27.112365	-123.58301	26.363266	16.473597	0
2	854	31.813655	25.024525	-103.10807	49.354183	30.839916	0
3	854	33.02419	23.26892	-85.892283	70.176601	43.851207	0
4	854	34.23473	21.75158	-71.013207	89.525082	55.94148	0
5	854	35.215	20.64791	-60.19261	86.214639	53.872886	0
6	854	36.205415	19.66035	-50.509631	95.335346	59.572136	0
7	854	37.436245	18.541205	-39.536312	102.34212	63.950455	0
8	854	38.667075	17.54061	-29.725706	108.51168	67.805622	0
9	854	40.199925	16.45198	-19.052467	115.01165	71.867256	0
10	854	41.72368	15.48102	-9.5331551	123.7026	48.229627	5.6
11	854	42.917935	14.81728	-3.0257988	132.2921	51.578536	5.6
12	854	44.2119	14.18103	3.2115246	148.48315	56.639038	5.6
13	854	45.623965	13.56963	9.2051529	166.14483	61.188223	5.6
14	854	46.530415	13.212885	12.701904	175.22818	63.366348	5.6
15	854	47.635415	12.850545	16.25325	175.20428	61.972416	5.6
16	854	49.296665	12.36726	20.989854	173.80912	59.581743	5.6
17	854	50.81	12.021445	24.378519	170.1294	56.825893	5.6
18	854	52.323335	11.758295	26.956085	163.76841	53.340898	5.6
19	854	53.98	11.566455	28.834598	165.90822	53.442772	5.6
20	854	55.13	11.473305	29.746567	169.14115	54.347678	5.6
21	854	55.63	11.45247	29.949534	167.35599	53.572538	5.6
22	854	55.98	11.442055	30.051208	164.54781	52.438035	5.6
23	854	56.23	11.43801	30.090209	163.35333	51.957118	5.6
24	854	56.63	11.43629	30.105988	158.02794	49.874684	5.6
25	854	57.13	11.440935	30.059251	141.17169	43.320932	5.6
26	854	57.63	11.454075	29.92991	123.67125	36.548222	5.6
27	854	58.13	11.47572	29.716168	105.55851	29.569693	5.6
28	854	58.59069	11.502895	29.450053	91.525308	24.202131	5.6
29	854	59.07069	11.53973	29.087236	90.676988	24.012841	5.6
30	854	59.94	11.630695	28.193469	88.179625	23.387625	5.6
31	854	61.14	11.792525	26.60489	83.171672	22.054467	5.6
32	854	62.34	12.00509	24.517557	76.178939	20.141931	5.6
33	854	63.54	12.269525	21.921818	67.273505	17.681884	5.6
34	854	64.834625	12.617005	18.512324	56.568851	14.83762	5.6
35	854	66.22387	13.05916	14.173603	44.003279	11.630105	5.6
36	854	67.613115	13.5791	9.0719298	29.758841	8.0654895	5.6

37	854	69.002365	14.181375	3.1626639	14.292645	4.3393982	5.6
38	854	69.84482	14.578105	-0.7296617	4.540218	1.770157	5.6

Piena

Report generated using GeoStudio 2007, version 7.17. Copyright © 1991-2010 GEO-SLOPE International Ltd.

File Information

Created By: Claudio Gravina Revision Number: 39

Last Edited By: Claudio Gravina

Date: 03/12/2019 Time: 18:42:05

File Name: Sez155_A_REV_sisma.gsz

Directory: W:\public\CMC-BLG-Dissesto idrologico Bolognetta\Calcoli\OS144\Stabilità\

Last Solved Date: 03/12/2019 Last Solved Time: 18:42:20

Project Settings

Length(L) Units: meters Time(t) Units: Seconds Force(F) Units: kN Pressure(p) Units: kPa Strength Units: kPa

Unit Weight of Water: 9.807 kN/m3

View: 2D

Analysis Settings

Piena

Kind: SLOPE/W

Method: Morgenstern-Price

Settings

Apply Phreatic Correction: No

Side Function

Interslice force function option: Half-Sine PWP Conditions Source: Piezometric Line with Ru

Slip Surface

Direction of movement: Left to Right

Use Passive Mode: No

Slip Surface Option: Entry and Exit Critical slip surfaces saved: 1

Optimize Critical Slip Surface Location: No

Tension Crack

Tension Crack Option: (none)

FOS Distribution

FOS Calculation Option: Constant

Advanced

Number of Slices: 30

Optimization Tolerance: 0.01 Minimum Slip Surface Depth: 0.1 m Optimization Maximum Iterations: 2000
Optimization Convergence Tolerance: 1e-007
Starting Optimization Points: 8
Ending Optimization Points: 16
Complete Passes per Insertion: 1
Driving Side Maximum Convex Angle: 5 °
Resisting Side Maximum Convex Angle: 1 °

Materials

Rilevato

Model: Mohr-Coulomb
Unit Weight: 20 kN/m³
Cohesion: 0 kPa
Phi: 32 °
Phi-B: 0 °
Pore Water Pressure
Piezometric Line: 1
Include in PWP: No

Gabbioni

Model: Mohr-Coulomb
Unit Weight: 16 kN/m³
Cohesion: 40 kPa
Phi: 38.7 °
Phi-B: 0 °
Pore Water Pressure
Piezometric Line: 1
Include in PWP: No

LSA

Unit Weight: 20 kN/m³
Cohesion: 5.6 kPa
Phi: 21.3 °
Phi-B: 0 °
Pore Water Pressure
Piezometric Line: 1
Include in PWP: No

Model: Mohr-Coulomb

AG

Model: Mohr-Coulomb Unit Weight: 20.5 kN/m³ Cohesion: 16 kPa Phi: 21.3 ° Phi-B: 0 ° Pore Water Pressure Piezometric Line: 1 Include in PWP: No

Slip Surface Entry and Exit

Left Projection: Range

Left-Zone Left Coordinate: (27.470275, 28.295211) m Left-Zone Right Coordinate: (35.703668, 28.024109) m

Left-Zone Increment: 10 Right Projection: Range

Right-Zone Left Coordinate: (57.88, 16.024306) m Right-Zone Right Coordinate: (77.942192, 14.547242) m

Right-Zone Increment: 20 Radius Increments: 10

Slip Surface Limits

Left Coordinate: (0, 19.45) m Right Coordinate: (80, 14.52) m

Piezometric Lines

Piezometric Line 1

Coordinates

X (m)	Y (m)
0	16.182967
44.620719	16.092797
53.461791	16.553243
79.998482	16.546976

Surcharge Loads

Surcharge Load 1

Surcharge (Unit Weight): 30 kN/m³

Direction: Vertical

Coordinates

X (m)	Y (m)
27.84	29.31
34.84	29.13

Regions

	Material	Points	Area (m²)
Region 1	AG	1,41,42,31	591.2

Region 2	LSA	41,2,44,36,35,34,33,32,28,29,30,42	752.37276
Region 3	Rilevato	32,26,53,48,37,38,39,40,6,46,45,43,2,44,36,35,34,33	49.023102
Region 4	Rilevato	43,3,4,5,46,45	4.3076119
Region 5	Gabbioni	53,26,27,24,23,25,48	2
Region 6	Gabbioni	23,21,20,22,52,25	2
Region 7	Gabbioni	20,19,16,18,51,22	2
Region 8	Gabbioni	16,17,15,49,50,18	2
Region 9	Rilevato	6,7,8,9,10,11,12,47,14,15,49,50,18,51,22,52,25,48,37,38,39,40	259.60215
Region 10	Rilevato	32,26,27,28	0.4944

Points

	X (m)	Y (m)
Point 1	0	0
Point 2	0	18.83
Point 3	2.1	19.89
Point 4	12.6	20.68
Point 5	13.85	20.63
Point 6	15.133677	20.307292
Point 7	27.09	28.28
Point 8	27.84	28.31
Point 9	34.84	28.13
Point 10	35.59	28.1
Point 11	42.33	23.6
Point 12	46.33	23.6
Point 13	51.08	191
Point 14	56.08	19.1
Point 15	56.38	18.9
Point 16	56.88	17.9
Point 17	56.88	18.9
Point 18	55.38	17.9
Point 19	57.38	17.9

Point 20	57.38	16.9
Point 21	57.88	16.9
Point 22	55.88	16.9
Point 23	57.88	15.9
Point 24	58.38	15.9
Point 25	56.38	15.9
Point 26	58.38	14.9
Point 27	58.38	15.11
Point 28	59.34	15.05
Point 29	64.14	14.729957
Point 30	80	14.52
Point 31	80	0
Point 32	58.38	14.08
Point 33	48.54	14.08
Point 34	38.1	16.55
Point 35	30.23	19.67
Point 36	16.02	19.53
Point 37	48.54	15.04
Point 38	38.04	17.34
Point 39	30.23	20.47
Point 40	16.02	20.33
Point 41	0	7.39
Point 42	80	7.39
Point 43	0	19.45
Point 44	2.1	18.85
Point 45	12.6	20.31
Point 46	14.237203	20.305345
Point 47	53.08	19.1
Point 48	56.38	15.04
Point 49	54.88	18.9
Point 50	54.88	17.9
Point 51	55.38	16.9
Point 52	55.88	15.9
Point 53	56.38	14.9

Critical Slip Surfaces

	Slip Surface	FOS	Center (m)	Radius (m)	Entry (m)	Exit (m)
1	1273	1.24	(55.125,	24.876	(31.5985,	(67.448,

36.296) 28.2133) 14.6862)

Slices of Slip Surface: 1273

	Slip Surface	X (m)	Y (m)	PWP (kPa)	Base Normal Stress (kPa)	Frictional Strength (kPa)	Cohesive Strength (kPa)
1	1273	32.138785	26.892695	-105.6675	24.284077	15.174375	0
2	1273	33.21927	24.56334	-82.843753	48.93108	30.575532	0
3	1273	34.299755	22.725565	-64.841786	70.687804	44.170642	0
4	1273	35.215	21.395405	-51.816203	71.018397	44.37722	0
5	1273	36.21891	20.15754	-39.696623	82.905181	51.804907	0
6	1273	37.47673	18.78684	-26.278775	93.100058	58.175373	0
7	1273	38.73455	17.60151	-14.679395	101.85788	63.647867	0
8	1273	39.981475	16.57551	-4.6420525	109.45652	68.396026	0
9	1273	40.75038	15.994085	1.0447742	114.01053	70.588837	0
10	1273	41.615635	15.424845	6.6101698	122.69063	45.257879	5.6
11	1273	43.027745	14.57385	14.92755	134.80121	46.736788	5.6
12	1273	44.173105	13.965725	20.869461	150.3556	50.484534	5.6
13	1273	45.47536	13.386205	26.980295	167.51819	54.793434	5.6
14	1273	46.8825	12.83213	33.132684	179.82411	57.192598	5.6
15	1273	47.9875	12.472505	37.223999	180.60215	55.900806	5.6
16	1273	49.1075	12.165445	40.807481	180.1992	54.346561	5.6
17	1273	50.2425	11.91029	43.889219	178.38013	52.435817	5.6
18	1273	51.3775	11.710155	46.431922	174.86985	50.075856	5.6
19	1273	52.5125	11.5637	48.447624	169.40109	47.157784	5.6
20	1273	53.270895	11.48948	49.561689	167.41011	45.947181	5.6
21	1273	54.170895	11.44798	50.065739	173.30231	48.047932	5.6
22	1273	55.13	11.420795	50.33	174.41	48.37677	5.6
23	1273	55.63	11.425915	50.279642	172.04256	47.473378	5.6
24	1273	55.98	11.43443	50.195335	168.73028	46.214844	5.6
25	1273	56.23	11.44454	50.093857	167.1649	45.644091	5.6
26	1273	56.63	11.46636	49.880469	161.09639	43.361275	5.6
27	1273	57.13	11.501725	49.532336	142.9614	36.426471	5.6
28	1273	57.63	11.547245	49.083244	125.63814	29.847507	5.6
29	1273	58.13	11.60297	48.53596	117.97969	27.074978	5.6
30	1273	58.86	11.706295	47.521633	105.48806	22.600164	5.6
31	1273	59.94	11.897605	45.643031	100.83849	21.519812	5.6
32	1273	61.14	12.16557	43.012231	93.246803	19.585641	5.6
33	1273	62.34	12.49703	39.758934	83.154429	16.919197	5.6
34	1273	63.54	12.89468	35.856389	70.781963	13.616912	5.6

35	1273	64.69133	13.340185	31.484785	57.367587	10.091283	5.6
36	1273	65.793995	13.831785	26.660845	43.680532	6.6356987	5.6
37	1273	66.89666	14.3899	21.184948	28.945066	3.0255438	5.6

Svaso

Report generated using GeoStudio 2007, version 7.17. Copyright © 1991-2010 GEO-SLOPE International Ltd.

File Information

Created By: Claudio Gravina Revision Number: 41

Last Edited By: Claudio Gravina

Date: 03/12/2019 Time: 18:55:26

File Name: Sez155_A_REV_sisma.gsz

Directory: W:\public\CMC-BLG-Dissesto idrologico Bolognetta\Calcoli\OS144\Stabilità\

Last Solved Date: 03/12/2019 Last Solved Time: 18:55:34

Project Settings

Length(L) Units: meters Time(t) Units: Seconds Force(F) Units: kN Pressure(p) Units: kPa Strength Units: kPa

Unit Weight of Water: 9.807 kN/m3

View: 2D

Analysis Settings

Svaso

Kind: SLOPE/W

Method: Morgenstern-Price

Settings

Apply Phreatic Correction: No

Side Function

Interslice force function option: Half-Sine PWP Conditions Source: Piezometric Line with Ru

Slip Surface

Direction of movement: Left to Right

Use Passive Mode: No

Slip Surface Option: Entry and Exit Critical slip surfaces saved: 1

Optimize Critical Slip Surface Location: No

Tension Crack

Tension Crack Option: (none)

FOS Distribution

FOS Calculation Option: Constant

Advanced

Number of Slices: 30

Optimization Tolerance: 0.01 Minimum Slip Surface Depth: 0.1 m Optimization Maximum Iterations: 2000 Optimization Convergence Tolerance: 1e-007 Starting Optimization Points: 8

Ending Optimization Points: 16 Complete Passes per Insertion: 1

Driving Side Maximum Convex Angle: 5 ° Resisting Side Maximum Convex Angle: 1 °

Materials

Rilevato

Model: Mohr-Coulomb Unit Weight: 20 kN/m³ Cohesion: 0 kPa

Phi: 32 ° Phi-B: 0 °

Pore Water Pressure Include in PWP: No

Gabbioni

Model: Mohr-Coulomb Unit Weight: 16 kN/m³ Cohesion: 40 kPa Phi: 38.7 ° Phi-B: 0 °

Pore Water Pressure Include in PWP: No

LSA

Model: Mohr-Coulomb Unit Weight: 20 kN/m³ Cohesion: 5.6 kPa

Phi: 21.3 ° Phi-B: 0 °

Pore Water Pressure Include in PWP: No

AG

Model: Mohr-Coulomb Unit Weight: 20.5 kN/m³ Cohesion: 16 kPa

Phi: 21.3 ° Phi-B: 0 °

Pore Water Pressure Include in PWP: No

Slip Surface Entry and Exit

Left Projection: Range

Left-Zone Left Coordinate: (27.673461, 28.303338) m Left-Zone Right Coordinate: (35.165825, 28.116967) m Left-Zone Increment: 10 Right Projection: Range

Right-Zone Left Coordinate: (57.88, 15.9) m

Right-Zone Right Coordinate: (77.622464, 14.551474) m

Right-Zone Increment: 20 Radius Increments: 10

Slip Surface Limits

Left Coordinate: (0, 19.45) m Right Coordinate: (80, 14.52) m

Piezometric Lines

Piezometric Line 1

Coordinates

X (m)	Y (m)
0	16.223958
44.764725	16.065504
48.808277	16.322102
51.504055	16.537816
53.98447	16.683295
55.247152	16.548887
55.657949	16.200561
56.057388	15.723506
56.708607	15.100684
63.14	14.52
80.029885	14.521427

Surcharge Loads

Surcharge Load 1

Surcharge (Unit Weight): 30 kN/m³

Direction: Vertical

Coordinates

X (m)	Y (m)
27.84	29.31
34.84	29.13

Regions

	Material	Points	Area (m²)
Region 1	AG	1,41,42,31	591.2
Region 2	LSA	41,2,44,36,35,34,33,32,28,29,30,42	752.37276
Region 3	Rilevato	32,26,53,48,37,38,39,40,6,46,45,43,2,44,36,35,34,33	49.023102
Region 4	Rilevato	43,3,4,5,46,45	4.3076119
Region 5	Gabbioni	53,26,27,24,23,25,48	2
Region 6	Gabbioni	23,21,20,22,52,25	2
Region 7	Gabbioni	20,19,16,18,51,22	2
Region 8	Gabbioni	16,17,15,49,50,18	2
Region 9	Rilevato	6,7,8,9,10,11,12,47,14,15,49,50,18,51,22,52,25,48,37,38,39,40	259.60215
Region 10	Rilevato	32,26,27,28	0.4944

Points

	X (m)	Y (m)
Point 1	0	0
Point 2	0	18.83
Point 3	2.1	19.89
Point 4	12.6	20.68
Point 5	13.85	20.63
Point 6	15.133677	20.307292
Point 7	27.09	28.28
Point 8	27.84	28.31
Point 9	34.84	28.13
Point 10	35.59	28.1
Point 11	42.33	23.6
Point 12	46.33	23.6
Point 13	51.08	191
Point 14	56.08	19.1
Point 15	56.38	18.9

Point 16	56.88	17.9
Point 17	56.88	18.9
Point 18	55.38	17.9
Point 19	57.38	17.9
Point 20	57.38	16.9
Point 21	57.88	16.9
Point 22	55.88	16.9
Point 23	57.88	15.9
Point 24	58.38	15.9
Point 25	56.38	15.9
Point 26	58.38	14.9
Point 27	58.38	15.11
Point 28	59.34	15.05
Point 29	64.14	14.729957
Point 30	80	14.52
Point 31	80	0
Point 32	58.38	14.08
Point 33	48.54	14.08
Point 34	38.1	16.55
Point 35	30.23	19.67
Point 36	16.02	19.53
Point 37	48.54	15.04
Point 38	38.04	17.34
Point 39	30.23	20.47
Point 40	16.02	20.33
Point 41	0	7.39
Point 42	80	7.39
Point 43	0	19.45
Point 44	2.1	18.85
Point 45	12.6	20.31
Point 46	14.237203	20.305345
Point 47	53.08	19.1
Point 48	56.38	15.04
Point 49	54.88	18.9
Point 50	54.88	17.9
Point 51	55.38	16.9
Point 52	55.88	15.9
Point 53	56.38	14.9

Critical Slip Surfaces

	Slip Surface	FOS	Center (m)	Radius (m)	Entry (m)	Exit (m)
1	1019	1.37	(55.01, 39.468)	26.806	(30.6704, 28.2372)	(65.2958, 14.7147)

Slices of Slip Surface: 1019

	Slip Surface	X (m)	Y (m)	PWP (kPa)	Base Normal Stress (kPa)	Frictional Strength (kPa)	Cohesive Strength (kPa)
1	1019	31.19162	27.22342	0	25.490195	15.928042	0
2	1019	32.234015	25.367765	0	45.750878	28.588322	0
3	1019	33.27641	23.802835	0	63.808495	39.871973	0
4	1019	34.318805	22.446225	0	80.414739	50.248706	0
5	1019	35.215	21.40182	0	75.761157	47.340825	0
6	1019	36.111875	20.471785	0	84.272315	52.659187	0
7	1019	37.15562	19.48632	0	90.212511	56.371033	0
8	1019	38.199365	18.599635	0	95.563405	59.714643	0
9	1019	39.24311	17.799525	0	100.44135	62.762723	0
10	1019	40.286855	17.07666	0	104.91893	65.560621	0
11	1019	41.36478	16.404545	0	109.11204	68.180772	0
12	1019	42.125415	15.963425	0	111.92683	69.939647	0
13	1019	42.888145	15.5682	0	120.22492	75.124867	0
14	1019	43.644875	15.19215	0	130.73237	50.97042	5.6
15	1019	44.30409	14.89847	0	139.18562	54.266207	5.6
16	1019	45.54736	14.402315	0	155.30508	60.550921	5.6
17	1019	46.8825	13.931035	0	166.41788	64.883619	5.6
18	1019	47.9875	13.605185	0	166.99447	65.108422	5.6
19	1019	48.67414	13.42254	0	166.86333	65.057296	5.6
20	1019	49.482225	13.24783	0	165.64611	64.582719	5.6
21	1019	50.830115	12.99933	0	161.88733	63.117234	5.6
22	1019	52.29203	12.812565	0	154.23744	60.134666	5.6
23	1019	53.532235	12.70725	0	151.32785	59.000263	5.6
24	1019	54.432235	12.672625	0	155.6705	60.693393	5.6
25	1019	55.063575	12.66334	0	153.41301	59.813232	5.6
26	1019	55.313575	12.66446	0	154.06849	60.068793	5.6
27	1019	55.518975	12.66785	0	149.90696	58.446281	5.6
28	1019	55.768975	12.673635	0	150.31055	58.603634	5.6
29	1019	55.894805	12.67727	0	145.85452	56.866302	5.6
30	1019	55.9835	12.680445	0	145.93278	56.896815	5.6

31	1019	56.068695	12.683575	0	146.00308	56.924221	5.6
32	1019	56.23	12.690855	0	143.75421	56.047425	5.6
33	1019	56.544305	12.70711	0	136.77184	53.325112	5.6
34	1019	56.794305	12.72225	0	136.63302	53.270988	5.6
35	1019	57.13	12.747805	0	117.43894	45.787528	5.6
36	1019	57.63	12.792195	0	97.56852	38.040376	5.6
37	1019	58.13	12.84605	0	77.183739	30.092682	5.6
38	1019	58.7751	12.931405	0	60.176995	23.46203	5.6
39	1019	59.2551	13.00108	0	57.449435	22.398599	5.6
40	1019	59.973335	13.13407	0	52.393812	20.427494	5.6
41	1019	61.24	13.404825	0	42.19523	16.451233	5.6
42	1019	62.506665	13.74076	0	30.293039	11.810762	5.6
43	1019	63.64	14.09537	0	18.642173	7.2682794	5.6
44	1019	64.477315	14.392785	0	10.019661	3.9065027	5.6
45	1019	65.055235	14.6174	0	4.3205212	1.6845008	5.6