COMMITTENTE:

ALTA SORVEGLIANZA:

VISTO ATI BONIFICA

GENERAL CONTRACTOR:

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N. 443/01

PROGETTO DEFINITIVO

LINEA AV/AC VERONA - PADOVA
SUB TRATTA VERONA - VICENZA
1° LOTTO FUNZIONALE VERONA - BIVIO VICENZA

RELAZIONE

RUMORE: PROGETTO BARRIERE

RELAZIONI: RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

GENERAL C	ONTRACTOR	ITALFERR S.p.A.	
ATI bonifica	Consorzio IRICAV DUE II Direttore		SCALA:
Franco Persis Bucchetto iscritto all Ordina Hoghlingen p. s della Provincia di Proma sin 1864 a. S. a. A settore Civile e il Vibienta	Dott Ing Count Instance		-
Data:Marzo 20 8	Data: Marzo 2018		
30			

COMMESSA	#OT70	FASE	ENTE	TIPO DOC.	OPERA/DISCIPLINA	PROGR.	REV
I NOD	0 0	D	1 2	CL	I M 0 0 0 6	0 0 2	Α

н	TI bonif	ICQ			∬Firma	n al		Data
•					Ing. F. Be	elbello	Marzo 2018	
gettazi	ione				147-			
Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato
Α	EMISSIONE DEFINITIVA	R.Pieroncini	Marzo 2018	E. Serpi	Marzo 2018	L.Fieni hulle Flew	Marzo 2018	Ing T Bastianello
								INGEGREEN
								16240
								Data: Marze 2018
File:	: IN0D00DI2CLIM00060	02A.doc			E910000000	0009	n. Ela	ıb.:
				CIG: 332	0049F17			

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 CL IM0006 002 A 2 di 170

Linea AV/AC VERONA - PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 CL IM0006 002 A 3 di 170

INDICE

1	PREMES	SSA	8
2	RIFERIN	MENTI NORMATIVI	9
3	MATERI	IALI	10
4	COMBIN	NAZIONI	13
5 PF	CRITER RESTAZIO		LLE 15
,	5.1 VER	RIFICHE NEI CONFRONTI DEGLI STATI LIMITE ULTIMI (SLU)	15
	5.1.1	Azioni 15	
	5.1.2	Resistenze 16	
,	5.2 VER	RIFICHE NEI CONFRONTI DEGLI STATI LIMITE DI ESERCIZIO (SLE)	17
6	METOD	I DI DIMENSIONAMENTO E VERIFICA DELLE FONDAZIONI PROFONI	DE18
(6.1 VER	RIFICHE STRUTTURALI	18
	6.1.1	Verifiche agli stati limite ultimi (SLU) 18	
	6.1.2	Verifiche agli stati limite di esercizio (SLE) 22	
(6.2 VER	RIFICHE GEOTECNICHE	23
	6.2.1	Capacità portante di pali di medio e grande diametro 23	
	6.2.2	Capacità portante di micropali27	
	6.2.3	Verifiche agli stati limite ultimi (SLU) 30	
	6.2.4	Analisi di pali e micropali in condizioni di esercizio 32	
	6.2.5	Verifiche agli stati limite di esercizio (SLE) 33	
7	STRATI	GRAFIA E PARAMETRI GEOTECNICI	35
7	7.1 CAL	LCOLO DEL MODULO DI REAZIONE ORIZZONTALE DEL TERRENO	35
8	AZIONI	A TESTA PALO	39
9	PROGE	TTO GEOTECNICO DEI PALI	41
,	9.1 BAF	RRIERA H=4.95M - RILEVATO > 5m - SABBIA	41
	9.1.1	Verifiche strutturali: SLU:A1;M1;R1 41	
	9.1.2	Verifiche strutturali: SLE (Rara) 45	
	9.1.3	Verifiche geotecniche dei pali_TIPO A 47	

Linea AV/AC VERONA - PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. INOD 00 D I2 RG IM0006 005 A 4 di 170

9.2	BA	ARRIERA H=4.95M - RILEVATO > 5m - A	ARGILL	Α	49
9.	.2.1	Verifiche strutturali: SLU:A1;M1;R1	49		
9.	.2.2	Verifiche strutturali: SLE (Rara)	53		
9.	.2.3	Verifiche geotecniche dei pali_TIPO	В	55	
9.3	В	ARRIERA H=6.95M - RILEVATO > 5m - \$	SABBIA	L	57
9.	.3.1	Verifiche strutturali: SLU:A1;M1;R1	57		
9.	.3.2	Verifiche strutturali: SLE (Rara)	61		
9.	.3.3	Verifiche geotecniche dei pali_TIPO	С	63	
9.4	BA	ARRIERA H=6.95M – RILEVATO > 5m – A	ARGILL	Α	65
9.	.4.1	Verifiche strutturali: SLU:A1;M1;R1	65		
9.	.4.2	Verifiche strutturali: SLE (Rara)	69		
9.	.4.3	Verifiche geotecniche dei pali_TIPO	D	71	
9.5	BA	ARRIERA H=4.95M – RILEVATO 4m <h<< th=""><th>5m – S</th><th>ABBIA</th><th>73</th></h<<>	5m – S	ABBIA	73
9.	.5.1	Verifiche strutturali: SLU:A1;M1;R1	73		
9.	.5.2	Verifiche strutturali: SLE (Rara)	77		
9.	.5.3	Verifiche geotecniche dei pali_TIPO	E	79	
9.6	BA	ARRIERA H=4.95M – RILEVATO 4m <h<< th=""><th>5m – A</th><th>RGILLA</th><th>81</th></h<<>	5m – A	RGILLA	81
9.	.6.1	Verifiche strutturali: SLU:A1;M1;R1	81		
9.	.6.2	Verifiche strutturali: SLE (Rara)	85		
9.	.6.3	Verifiche geotecniche dei pali_TIPO	F	87	
9.7	В	ARRIERA H=6.95M – RILEVATO 4m <h<< th=""><th>5m – S</th><th>ABBIA</th><th>89</th></h<<>	5m – S	ABBIA	89
9.	.7.1	Verifiche strutturali: SLU:A1;M1;R1	89		
9.	.7.2	Verifiche strutturali: SLE (Rara)	93		
9.	.7.3	Verifiche geotecniche dei pali_TIPO	G	95	
9.8	BA	ARRIERA H=6.95M – RILEVATO 4m <h<< th=""><th>5m – A</th><th>RGILLA</th><th>97</th></h<<>	5m – A	RGILLA	97
9.	.8.1	Verifiche strutturali: SLU:A1;M1;R1	97		
9.	.8.2	Verifiche strutturali: SLE (Rara)	101		
9.	.8.3	Verifiche geotecniche dei pali TIPO	Н	103	

Linea AV/AC VERONA - PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 5 di 170

9.9	BAF	RRIERA H=4.95M – RILE	VATO H < 4m –	SABBI	A 1	05
9.9	.1	Verifiche strutturali: SL	.U:A1;M1;R1	105		
9.9	.2	Verifiche strutturali: SI	E (Rara)	109		
9.9	.3	Verifiche geotecniche	dei pali_TIPO	1111		
9.10	BAF	RRIERA H=4.95M – RILE	VATO H < 4m –	ARGILI	LA 1	13
9.1	0.1	Verifiche strutturali: SL	.U:A1;M1;R1	113		
9.1	0.2	Verifiche strutturali: SI	E (Rara)	117		
9.1	0.3	Verifiche geotecniche	dei pali_TIPO	L	119	
9.11	BAF	RRIERA H=6.95M – RILE	VATO < 4m - S	ABBIA	1	21
9.1	1.1	Verifiche strutturali: SL	.U:A1;M1;R1	121		
9.1	1.2	Verifiche strutturali: Sl	E (Rara)	125		
9.1	1.3	Verifiche geotecniche	dei pali_TIPO	M	127	
9.12	BAF	RRIERA H=6.95M – RILE	VATO < 4m – A	RGILLA	. 1	29
9.1	2.1	Verifiche strutturali: SI	.U:A1;M1;R1	129		
9.1	2.2	Verifiche strutturali: SL	E (Rara)	133		
9.1	2.3	Verifiche geotecniche	dei pali_TIPO	N	135	
10 VE	RIFIC	HE STRUTTURALI CO	ORDOLO SU P	ALI Er	rore. Il segnalibro non è defini	to.
10.1	Cor	dolo barriera H=4.95m			Errore. Il segnalibro non è defini	to.
10.	1.1	Verifica a Taglio	Errore. Il seg	nalibro	non è definito.	
10.	1.2	Verifica a Torsione	Errore. Il seg	nalibro	non è definito.	
10.	1.3	Verifica Combinata Ta	glio- Torsione	Errore	. Il segnalibro non è definito	
10.2	Cor	dolo barriera H=6.95m			Errore. Il segnalibro non è defini	to.
10.	2.1	Verifica a Taglio	Errore. Il seg	nalibro	non è definito.	
10.	2.2	Verifica a Torsione	Errore. Il seg	nalibro	non è definito.	
10.	2.3	Verifica Combinata Ta	glio- Torsione	Errore	. Il segnalibro non è definito	
11 PR	OGE	TTO GEOTECNICO DE	I MICROPALI		1:	37
11.1	BAF	RRIERA H=4.95M – RILE	VATO < 4m – A	RGILLA	. 1	37
11.	1.1	Verifiche strutturali: SL	_U:A1;M1;R1	137		

Linea AV/AC VERONA - PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO INOD	LOTTO 00	CODIFICA D I2 RG	DOCUMENTO IM0006 005	REV.	_{Рад.} 6 di 170

11.1.2 Verifiche geotecniche dei pali_TIPO O 139

11.3 BARRIERA H=6.95M – RILEVATO < 4m – ARGILLA
11.3.1 Verifiche strutturali: SLU:A1;M1;R1 141

11.3.2 Verifiche geotecniche dei pali_TIPO P 143

12 VERIFICHE STRUTTURALI CORDOLO SU COPPIA DI MICROPALIErrore. Il segnalibro non è definito.

12.1 Cordolo barriera H=4.95m Errore. Il segnalibro non è definito.

12.1.1 Verifica a Taglio Errore. Il segnalibro non è definito.

12.1.2 Verifica a Torsione Errore. Il segnalibro non è definito.

12.1.3 Verifica Combinata Taglio- Torsione Errore. Il segnalibro non è definito.

12.2 Cordolo barriera H=6.95m Errore. Il segnalibro non è definito.

Verifica a Taglio Errore. Il segnalibro non è definito.

12.2.2 Verifica a Torsione Errore. Il segnalibro non è definito.

12.2.3 Verifica Combinata Taglio-Torsione Errore. Il segnalibro non è definito.

13 TRAVI DI SCAVALCO IN ACCIAIO

12.2.1

145

13.1 PROGETTO GEOTECNICO DEI PALI

146

13.1.1 TRAVE DI SCAVALCO: TIPO D 146

13.1.2 TRAVE DI SCAVALCO: TIPO Z 154

13.2 PROGETTO GEOTECNICO DEI MICROPALI

162

13.2.1 TRAVE DI SCAVALCO: TIPO D 162

13.2.2 TRAVE DI SCAVALCO: TIPO Z 166

13.3 VERIFICA STRUTTURALE DEL CORDOLO IN C.A. 100X100 CM SU PALI Ø 800 Errore. Il segnalibro non è definito.

13.3.2 TIPOLOGICO Z: L=15,00m; H_{max,barriera}=4,95m **Errore. II segnalibro** non è definito.

13.4 VERIFICA STRUTTURALE DEL CORDOLO IN C.A. 100X600 CM SU MICROPALI Ø 250 Errore. Il segnalibro non è definito.

13.4.1 TIPOLOGICO D: L=12,00m; H_{max,barriera}=6,95m Errore. II segnalibro non è definito.

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 7 di 170

14 TRAVI DI SCAVALCO IN C.A.

170

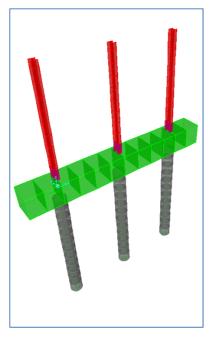
1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

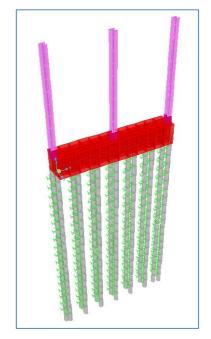
Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

DOCUMENTO PROGETTO LOTTO CODIFICA REV. IN₀D 00 D I2 RG IM0006 005 8 di 170

1 **PREMESSA**


La presente relazione tecnico-strutturale riguarda la progettazione delle opere di fondazione delle barriere antirumore dell'intero 1° Lotto Funzionale Verona-Bivio Vicenza, ricompreso tra le progressive pk. 0+000 e pk. 44+250, composto dall'unione dei sublotti: il primo (SL01) da Verona (pk. 0+000) a Montebello Vicentino (pk. 32+525) a Bivio Vicenza (pk. 44+250) al fine di consentire l'innesto della linea AV/AC sulla linea storica esistente. Il progetto prevede la realizzazione di fondazioni con cordoli in CLS su pali per le barriere del tracciato di progetto e su coppie di micropali per quelle situate sulla linea storica. Per la verifica delle fondazioni profonde sono stati eseguiti dei modelli agli elementi finiti


per determinare le sollecitazioni agenti.

Sono state utilizzate le stesse fondazioni per le seguenti altezze di barriere antirumore:

- H=5.75m e 6.75m (altezza montante 6,95m);
- H=2.75m, 3.95m e 4.75m (altezza montante 4,95m).

Pertanto il calcolo sarà eseguito per le altezze maggiori, ossia 6.95m e 4.95m, in modo da verificare in automatico anche le altezze minori.

Modello di calcolo per pali

Modello di calcolo per micropali

Inoltre, gli interventi saranno divisi per tipologia di terreno e per altezza del rilevato, così come specificato nei paragrafi successivi.

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 9 di 170

2 RIFERIMENTI NORMATIVI

La normativa di riferimento è la seguente:

• Norme Tecniche C.N.R. n. 10011-85 del 18/04/1985 - Costruzioni di acciaio - Istruzioni per il calcolo, l'esecuzione, il collaudo e la manutenzione e successive modificazioni ed integrazioni di cui alle CNR 10011-97 del 21/12/1997.

Norme Tecniche C.N.R. n. 10025-84 del 14/12/1984 - Istruzioni per il progetto, l'esecuzione ed il controllo delle strutture prefabbricate in conglomerato cementizio e per le strutture costruite con sistemi industrializzati di acciaio - Istruzioni per il calcolo, l'esecuzione, il collaudo e la manutenzione.

- D. M. del 14 gennaio 2008 Norme tecniche per le costruzioni
- Circ. Min. No 617 2 Febbraio 2009: Istruzioni per l'applicazione delle 'Nuove norme tecniche per le costruzioni'.
- UNI EN 1990: Criteri generali di progettazione strutturale.
- UNI EN 1991-1-1: Azioni in generale Pesi per unità di volume, pesi propri e sovraccarichi per gli edifici.
- UNI EN 1992-1-1: Progettazione delle strutture di calcestruzzo Regole generali e regole per gli edifici.
- **UNI EN 1993-1-1** Progettazione delle strutture di acciaio Regole generali e regole per gli edifici.
- UNI EN 1993-1-8 Progettazione delle strutture di acciaio Progettazione dei collegamenti.
- UNI EN 1993-1-9 Progettazione delle strutture di acciaio Fatica.
- UNI EN 1997-1 Progettazione geotecnica.

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 10 di 170

3 MATERIALI

Si riportano di seguito le principali caratteristiche dei materiali utilizzati per il progetto definitivo.

Calcestruzzo armato

MAGRONE C12/15

resistenza caratteristica cubica: $R_{ck} \ge 15.0$ MPa

resistenza caratteristica a compressione: $f_{ck} \ge 12.0$ MPa

Classe di esposizione -

PALI E MICROPALI DI FONDAZIONE C25/30

resistenza caratteristica cubica: $R_{ck} \ge 30.0$ MPa

resistenza caratteristica a compressione: $f_{ck} \ge 25.0$ MPa

Classe di esposizione XC2

PLINTI E CORDOLI DI FONDAZIONE C28/35

resistenza caratteristica cubica: $R_{ck} \ge 35.0$ MPa

resistenza caratteristica a compressione: $f_{ck} \ge 28.0$ MPa

Classe di esposizione XC2

ACCIAIO PER MICROPALI S355JR

Tensione caratteristica a rottura $f_{t,k}$ 510 N/mm² Tensione caratteristica di snervamento $f_{y,k}$ 355 N/mm² Resistenza di calcolo (γ =1,05) $f_{y,d}$ 338,1 N/mm²

ACCIAIO PER C.A. B450C

Tensione di snervamento: f_{y-nom} 450 N/mm² Tensione di rottura: f_{t-nom} 540 N/mm²

Linea AV/AC VERONA – PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 11 di 170

SALDATURE

- Le saldature dovranno essere eseguite e controllate nel rispetto della Istruzione FS 44/S Rev. A del 20.10.99.
- Le saldature si intendono continue (salvo diversa indicazione)
- Le saldature si intendono a cordone d'angolo (salvo diversa indicazione)
- Le saldature avranno il lato del cordone pari al minimo spessore da collegare (salvo diversa indicazione) in ogni caso nel rispetto della istruzione FS 44/s
- Al fine di evitare incroci di saldature prevedere degli slot di opportune dimensioni per far girare le saldature nello spessore.

PROVE SUI MATERIALI

Tutti i materiali impiegati relativi ai montanti e alle piastre dovranno essere certificati secondo quanto previsto dalla norma UNI EN 10204 punto 3.2 del prospetto I e forniti in modo che risultino, inequivocabilmente, prodotti qualificati ai sensi dell'allegato 8 delle norme tecniche del vigente D.M. del Ministero dei LL.PP. emanato in applicazione della L. 1086/71 e s.m. ed i.. Sui profili e lamiere si dovranno eseguire tutte le prove obbligatorie individuate dalle tabelle UNI EN 10025 corrispondenti (e 10210 per i tubi), dandone adeguata certificazione.

Il collaudo dei materiali può essere richiesto, oltre che presso i fornitori, alla presenza di un rappresentante di ITALFERR, anche presso l'officina del Costruttore, sempre che sia possibile inviare i saggi punzonati ad un laboratorio ufficiale o comunque tecnologico in possesso dei certificati di taratura delle macchine rilasciati da organismo ufficiale riconosciuto dallo Stato, e che le prove meccaniche e chimiche siano eseguite in presenza di un rappresentante di ITALFERR.

Per quanto riguarda tirafondi e bulloni, gli stessi devono essere forniti di un certificato di controllo secondo quanto previsto dalla norma UNI EN 10204 punto 3.1.b. ITALFERR si riserva di eseguire prove integrative (trazione, resilienza, durezza, ecc.) sui materiali approvvigionati.

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D 12 RG IM0006 005 A 12 di 170

CONTROLLO DEI MATERIALI LAVORATI

Prima della spedizione in opera, gli elementi costruiti dovranno essere sottoposti, oltre ai controlli previsti sulle saldature, ai controlli dimensionali e visivi, nonchè a quelli sul rivestimento in ragione del 30% degli elementi prodotti; tali controlli potranno essere estesi in funzione dell'esito dei controlli, fino al 100% degli elementi stessi.

Le tolleranze di tutti i materiali lavorati dovranno essere in linea con quelle previste nelle normative di riferimento dei singoli elementi costituenti.

CONTROLLO IN OPERA

Dopo il montaggio in opera saranno effettuate verifiche di posizionamento dei montanti e delle coppie di serraggio, in ragione del 30% degli elementi; tali controlli potranno essere estesi in funzione dell'esito dei controlli, fino al 100% degli elementi stessi. Infine saranno effettuati controlli sulla finitura del rivestimento.

Deve essere curata le verticalità dei montanti; è ammesso uno scostamento massimo di 5mm, misurato in sommità, sia nel senso trasversale che longitudinale della barriera.

Linea AV/AC VERONA – PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 13 di 170

4 COMBINAZIONI

Per le **verifiche di resistenza e deformabilità** sono state utilizzate le sollecitazioni derivanti dalle peggiori combinazioni tra peso proprio, carichi permanenti, pressione del vento + sovrapressioni aerodinamiche, comprensive degli effetti dinamici.

In accordo con quanto prescritto dal documento RFI/DIN/IC/009/239 "Prescrizioni Tecniche Integrative e provvisorie per la Progettazione di Barriere Antirumore" per velocità superiori o uguali a 200km/h (nel nostro caso si hanno velocità massime di 250 km/h), per la somma "pressione del vento + sovrapressione aerodinamica comprensiva degli effetti dinamici" è stato assunto il valore minimo 2500N/m².

Riportiamo nella seguente tabella le suddette combinazioni in termini di carichi elementari e coefficienti moltiplicativi.

Per la formulazione generale delle combinazioni di carico si rimanda a EN 1990-annex.A2, cap. A2.3, A2.4/.NTC-08 cap. 2.5.3.+ N.A.D.

Per le azioni variabili considerate si eseguiranno le permutazioni necessarie alla definizione di volta in volta dell'azione principale e delle secondarie.

Di seguito si riepilogano le combinazioni di carico utilizzate nelle verifiche.

S.L.U. - STR / GEO

Si considera, nell'ambito dello S.L.U. (STR) l'inviluppo le seguenti combinazioni.

$$E_{d} = \gamma_{G1} G_{k1} + \gamma_{G2} G_{k2} + \gamma_{q,1} Q_{k,1} + \gamma_{q,2} \psi_{0,2} Q_{k,2} + \gamma_{q,3} \psi_{0,3} Q_{k,3} + ... + \gamma_{q,n} \psi_{0,n} Q_{k,n}$$

S.L.E. - Caratteristica Rara

Si considera l'inviluppo delle seguenti combinazioni.

$$E_d = G_{k1} + G_{k2} + Q_{k,1} + \psi_{0,2} Q_{k,2} + \psi_{0,3} Q_{k,3} + ... + \psi_{0,n} Q_{k,n}$$

N.B.: La combinazione SLE Caratteristica (Rara) è considerata unica rappresentativa per la condizione di esercizio.

I coefficienti parziali per le azioni e quelli di combinazione sono riportati nel §5.1

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 14 di 170

Per la combinazione Frequente, è stato assunto un coefficiente Ψ_{11} pari a 0.5, ricavato dalla tabella - *Valori dei coefficienti di combinazione* ψ *delle azioni del DM2008*

Tabella 2.5.I - Valori dei coefficienti di combinazione

Categoria/Azione variabile	Ψ 0j	Ψıj	Ψ _{2j}
Categoria A Ambienti ad uso residenziale	0,7	0,5	0,3
Categoria B Uffici	0,7	0,5	0,3
Categoria C Ambienti suscettibili di affollamento	0,7	0,7	0,6
Categoria D Ambienti ad uso commerciale	0,7	0,7	0,6
Categoria E Biblioteche, archivi, magazzini e ambienti ad uso industriale	1,0	0,9	0,8
Categoria F Rimesse e parcheggi (per autoveicoli di peso ≤ 30 kN)	0,7	0,7	0,6
Categoria G Rimesse e parcheggi (per autoveicoli di peso > 30 kN)	0,7	0,5	0,3
Categoria H Coperture	0,0	0,0	0,0
Vento	0,6	0,2	0,0
Neve (a quota ≤ 1000 m s.1.m.)	0,5	0,2	0,0
Neve (a quota > 1000 m s.1.m.)	0,7	0,5	0,2
Variazioni termiche	0,6	0,5	0,0

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 15 di 170

5 CRITERI GENERALI DELLE VERIFICHE DELLA SICUREZZA E DELLE PRESTAZIONI

5.1 VERIFICHE NEI CONFRONTI DEGLI STATI LIMITE ULTIMI (SLU)

Secondo il D.M. 14/01/2008, per ogni Stato Limite Ultimo deve essere rispettata la condizione

$$E_d \leq R_d$$
 (1)

dove E_d è il valore di progetto dell'azione o dell'effetto dell'azione e R_d è il valore di progetto della resistenza del sistema geotecnico. Sia il valore di progetto dell'azione sia il valore di progetto della resistenza del sistema geotecnico dipendono, tra l'altro, dai valori caratteristici delle azioni E_k e delle resistenze R_k , fattorizzati con opportuni coefficienti di sicurezza parziali g.

La verifica della condizione (1) deve essere effettuata impiegando diverse combinazioni di gruppi di coefficienti parziali, rispettivamente definiti per le azioni (A1 e A2), per i parametri geotecnici (M1 e M2) e per le resistenze (R1, R2 e R3).

I diversi gruppi di coefficienti di sicurezza parziali sono scelti nell'ambito di due approcci progettuali distinti e alternativi.

Nel primo approccio progettuale (Approccio 1) sono previste due diverse combinazioni di gruppi di coefficienti: la prima combinazione è generalmente più severa nei confronti del dimensionamento strutturale delle opere a contatto con il terreno, mentre la seconda combinazione è generalmente più severa nei riguardi del dimensionamento geotecnico.

Nel secondo approccio progettuale (Approccio 2) è prevista un'unica combinazione di gruppi di coefficienti, da adottare sia nelle verifiche strutturali sia nelle verifiche geotecniche.

5.1.1 Azioni

I coefficienti parziali g_F relativi alle azioni sono indicati nella Tabella 5.1–1 - Coefficienti parziali per le azioni o per l'effetto delle azioni

, ripresa dalla Tabella 6.2.I del D.M. 2008.

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO L	отто 00	CODIFICA D I2 RG	DOCUMENTO IM0006 005	REV.	Pag. 16 di 170
------------	-------------------	---------------------	----------------------	------	-------------------

CARICHI	EFFETTO	γ _F EQU	γ _F (A1)	γ _F (A2)
Permanenti	Favorevole	0.9	1.0	1.0
remanent	Sfavorevole	1.1	1.3	1.0
Permanenti	Favorevole	0.0	0.0	0.0
non	Sfavorevole	1.5	1.5	1.3
Variabili	Favorevole	0.0	0.0	0.0
Variabili	Sfavorevole	1.5	1.5	1.3

Tabella 5.1–1 - Coefficienti parziali per le azioni o per l'effetto delle azioni

(1) Nel caso in cui i carichi permanenti non strutturali (ad es. i carichi permanenti portati) siano compiutamente definiti, si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

5.1.2 Resistenze

Il valore di progetto della resistenza R_d può essere determinato:

a) in modo analitico, con riferimento al valore caratteristico dei parametri geotecnici del terreno, diviso per il valore del coefficiente parziale di sicurezza g_M specificato nella successiva Tabella 5.1–2, ripresa dalla Tabella 6.2.II del D.M. 2008 e tenendo conto, ove necessario, dei coefficienti parziali g_R specifici per ciascun tipo di opera;

PARAMETRO	GRANDEZZA ALLA QUALE APPLICARE IL COEFFICIENTE PARZIALE	γм	(M1)	(M2)
Tangente dell'angolo di resistenza al taglio	tan φ' _k	$\gamma_{\phi'}$	1.0	1.25
Coesione efficace	C′ _k	γc′	1.0	1.25
Resistenza non drenata	CU _k	γси	1.0	1.40
Peso dell'unità di volume	g	γg	1.0	1.00

Tabella 5.1–3 – Coefficienti parziali per i parametri geotecnici del terreno

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. INOD 00 D I2 RG IM0006 005 A 17 di 170

- b) in modo analitico, con riferimento a correlazioni con i risultati di prove in sito, tenendo conto dei coefficienti parziali γ_R relativi a ciascun tipo di opera;
- c) sulla base di misure dirette su prototipi, tenendo conto dei coefficienti parziali γ_R specifici per ciascun tipo di opera.

Per le rocce, al valore caratteristico della resistenza a compressione uniassiale q_u deve essere applicato un coefficiente parziale g_{qu} =1.60.

Per gli ammassi rocciosi e per i terreni a struttura complessa, nella valutazione della resistenza caratteristica occorre tenere conto della natura e delle caratteristiche geometriche e di resistenza delle discontinuità strutturali.

5.2 VERIFICHE NEI CONFRONTI DEGLI STATI LIMITE DI ESERCIZIO (SLE)

Le opere e i sistemi geotecnici devono essere verificati nei confronti degli stati limite di esercizio. A tale scopo, il progetto deve esplicitare le prescrizioni relative agli spostamenti compatibili e le prestazioni attese per l'opera stessa.

Per ciascun stato limite di esercizio deve essere rispettata la condizione

$$E_d \leq C_d$$
 (2)

dove E_d è il valore di progetto dell'effetto dell'azione e C_d è il prescritto valore limite dell'effetto delle azioni. Quest'ultimo deve essere stabilito in funzione del comportamento della struttura in elevazione.

Linea AV/AC VERONA – PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 18 di 170

6 METODI DI DIMENSIONAMENTO E VERIFICA DELLE FONDAZIONI PROFONDE

6.1 VERIFICHE STRUTTURALI

6.1.1 Verifiche agli stati limite ultimi (SLU)

Le verifiche di resistenza agli SLU del palo e del cordolo di collegamento vengono effettuate per lo stato di sollecitazione di flessione semplice e per taglio.

Si considerano le caratteristiche geometriche della sezione e i legami costitutivi dei materiali. I legami costitutivi impiegati per le verifiche allo stato limite ultimo sono il legame parabola-rettangolo adottato per il calcestruzzo ed il legame elasto-plastico perfetto assunto per l'acciaio.

Verifica a Flessione

Per la valutazione della resistenza flessionale in presenza e in assenza di sforzo assiale delle sezioni di elementi longitudinali, si adottano le seguenti ipotesi:

- Conservazione delle sezioni piane;
- Perfetta aderenza tra acciaio e calcestruzzo;
- Deformazione iniziale dell'armatura di precompressione considerata nelle relazioni di congruenza della sezione;
- Resistenza a trazione del calcestruzzo nulla.

Le verifiche si eseguono confrontando la capacità in termini di resistenza, con la corrispondente domanda, secondo la relazione:

$$M_{Rd} = M_{Rd}(N_{Ed}) \ge M_{Ed}$$

Verifica a Taglio

La resistenza a taglio di elementi in calcestruzzo ad armatura lenta di sezione circolare è determinata con le espressioni previste al § 4.1.2.1.3 delle NTC08, riconducendosi ad una **sezione rettangolare equivalente** mediante uno dei seguenti metodi:

Clarke & Birjandi (1993) → vd. § 7.9.5.2.2 delle NTC08, formula (7.9.11);

Linea AV/AC VERONA - PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 19 di 170

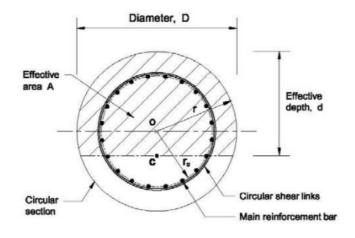
quadrato inscritto.

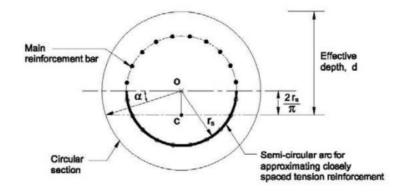
r Raggio della sezione circolare.

 r_s Raggio della parte confinata dall'armatura trasversale. $r_s = r - copr$.

 $\sin \alpha = \frac{(2 \text{ rs})}{(\pi \text{ r})}$.

 α α = arcsin (sin α).


Atot Area totale della sezione circolare. $A = \pi r^2$.


A Area della sezione rettangolare equivalente. $A = r^2 (\pi/2 + \alpha + \sin \alpha \cos \alpha)$.

b Larghezza equivalente. b = A/d.

h Altezza equivalente. [*] h = Atot/b

d Altezza utile equivalente. $d = r (1 + \sin \alpha)$.

Il Taglio resistente senza armatura a taglio si valuta con la seguente formula:

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titol

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

ATI bonifica

PROGETTO INOD	LOTTO 00	CODIFICA D I2 RG	DOCUMENTO IM0006 005	REV.	Pag. 20 di 170
IN0D	00	D I2 RG	IM0006 005	Α	20 di 170

$$V_{Rd} = max \left\{ \left[0.18 \cdot k \cdot (100 \cdot \rho_l \cdot f_{ck})^{1/3} \middle/ \gamma_c + 0.15 \cdot \sigma_{cp} \right] \cdot b_w \cdot d; \left(v_{min} + 0.15 \cdot \sigma_{cp} \right) \cdot b_w \cdot d \right\}$$

Dove:

 $k = 1 + (200/d)^{1/2} \le 2;$

$$v_{min} = 0.035 \cdot k^{3/2} \cdot f_{ck}^{1/2};$$

 $\rho_l = A_{sl}/b_w \cdot d \le 0.02$, è il rapporto geometrico di armatura longitudinale;

 $\sigma_{cp} = N_{Ed}/A_c \le 0.2 \cdot f_{cd}$, è la tensione media di compressione nella sezione;

 b_w , è la larghezza minima della sezione;

d, è l'altezza utile della sezione.

Qualora la sezione non fosse verificata senza armatura a taglio, dovrà essere prevista una specifica armatura a taglio, valutata sulla base di una adeguata schematizzazione a traliccio. Gli elementi resistenti dell'ideale traliccio sono: le armature trasversali, le armature longitudinali, il corrente compresso di calcestruzzo e i puntoni d'anima inclinati. Con riferimento all'armatura trasversale, la resistenza di progetto a "taglio trazione" si calcola con:

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot \frac{(ctg\alpha + cotg\vartheta)}{sin\alpha}$$

Con riferimento al calcestruzzo d'anima, la resistenza di progetto a "taglio compressione" si calcola con:

$$V_{Rcd} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot f'_{cd} \cdot \frac{(ctg\alpha + cotg\vartheta)}{(1 + cotg^2\vartheta)}$$

La resistenza di progetto a taglio della trave è la minore delle due sopra definite:

$$V_{Rd} = min(V_{Rsd}; V_{Rcd})$$

• Verifica a Torsione

Secondo il Decreto Ministeriale del 14 gennaio 2008 [NT2008] per la verifica di resistenza (SLU) si deve prevedere che :

$$M_{t_Rd} \ge M_{t_Ed}$$

In cui $M_{t_{-Ed}}$ è il valore di calcolo del momento torcente agente.

Linea AV/AC VERONA – PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 21 di 170

Con riferimento al calcestruzzo la resistenza si calcola con

$$T_{Red} = 2 \cdot \mathbf{A} \cdot \mathbf{t} \cdot \mathbf{f'_{ed}} \cdot \operatorname{ctg}\theta / (1 + \operatorname{ctg}^2\theta)$$
(4.1.27)

dove t è lo spessore della sezione cava; per sezioni piene $t = A_c/u$ dove A_c è l'area della sezione ed u è il suo perimetro; t deve essere assunta comunque ≥ 2 volte la distanza fra il bordo e il centro dell'armatura longitudinale.

Le armature longitudinali e trasversali del traliccio resistente devono essere poste entro lo spessore t del profilo periferico. Le barre longitudinali possono essere distribuite lungo detto profilo, ma comunque una barra deve essere presente su tutti i suoi spigoli.

Con riferimento alle staffe trasversali la resistenza si calcola con

$$T_{Rsd} = 2 \cdot A \cdot \frac{A_s}{s} \cdot f_{yd} \cdot ctg\theta \qquad (4.1.28)$$

Con riferimento all'armatura longitudinale la resistenza si calcola con

$$T_{Rld} = 2 \cdot A \cdot \frac{\sum A_l}{u_m} \cdot f_{yd} / ctg\theta$$
 (4.1.29)

dove si è posto

A area racchiusa dalla fibra media del profilo periferico;

A_s area delle staffe;

u... perimetro medio del nucleo resistente

s passo delle staffe;

 $\sum A_1$ area complessiva delle barre longitudinali.

L'inclinazione θ delle bielle compresse di calcestruzzo rispetto all'asse della trave deve rispettare i limiti seguenti

$$0.4 \le \text{ctg } \theta \le 2.5$$
 (4.1.30)

La resistenza alla torsione del cordolo è la minore delle tre sopra definite :

$$M_{t_{-Rd}} = \min(M_{t_{-Rcd}}, M_{t_{-Rsd}}, M_{t_{-Rsd}})$$

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 22 di 170

6.1.2 Verifiche agli stati limite di esercizio (SLE)

Dovrà essere verificato quanto segue:

4.1.2.2.4.1 Definizione degli stati limite di fessurazione

In ordine di severità decrescente si distinguono i seguenti stati limite:

- a) stato limite di decompressione nel quale, per la combinazione di azioni prescelta, la tensione normale è ovunque di compressione ed al più uguale a 0;
- stato limite di formazione delle fessure, nel quale, per la combinazione di azioni prescelta, la tensione normale di trazione nella fibra più sollecitata è:

$$\sigma_{t} = \frac{f_{\text{ctm}}}{1.2} \tag{4.1.37}$$

dove fctm è definito nel § 11.2.10.2;

c) stato limite di apertura delle fessure, nel quale, per la combinazione di azioni prescelta, il valore limite di apertura della fessura calcolato al livello considerato è pari ad uno dei seguenti valori nominali:

$$w_1 = 0.2 \text{ mm}$$

$$w_2 = 0.3 \text{ mm}$$

$$w_3 = 0.4 \text{ mm}$$

Lo stato limite di fessurazione deve essere fissato in funzione delle condizioni ambientali e della sensibilità delle armature alla corrosione, come descritto nel seguito.

La verifica dell'ampiezza di fessurazione può anche essere condotta senza calcolo diretto, limitando la tensione di trazione nell'armatura, valutata nella sezione parzializzata per la combinazione di carico pertinente, ad un massimo correlato al diametro delle barre ed alla loro spaziatura.

Tabella 4.1.III - Descrizione delle condizioni ambientali

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Tabella 4.1.IV - Criteri di scelta dello stato limite di fessurazione

Committee Conditions		Combinazione	Armatura					
Gruppi di esigenze	Condizioni ambientali	di azioni	Sensibile		Poco sensi	ibile		
esigenze	ашыентан	di azioni	Stato limite	$\mathbf{w_d}$	Stato limite	$\mathbf{w_d}$		
_	Ordinarie	frequente	ap. fessure	≤ w ₂	ap. fessure	≤ w ₃		
a	Ordinarie	Ordinarie	Oldinarie	quasi permanente	ap. fessure	$\leq w_1$	ap. fessure	$\leq \mathbf{w}_2$
b	Aggressing	frequente	ap. fessure	$\leq w_1$	ap. fessure	$\leq \mathbf{w}_2$		
В	Aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$		
_	Molto aggressive	frequente	formazione fessure	-	ap. fessure	$\leq w_1$		
С	Mono aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$		

Linea AV/AC VERONA - PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 23 di 170

4.1.2.2.5 Verifica delle tensioni di esercizio

Valutate le azioni interne nelle varie parti della struttura, dovute alle combinazioni caratteristica e quasi permanente delle azioni, si calcolano le massime tensioni sia nel calcestruzzo sia nelle armature; si deve verificare che tali tensioni siano inferiori ai massimi valori consentiti di seguito riportati.

4.1.2.2.5.1 Tensione massima di compressione del calcestruzzo nelle condizioni di esercizio

La massima tensione di compressione del calcestruzzo σ_e , deve rispettare la limitazione seguente:

 $\sigma_c < 0.60 \text{ f}_{ck} \text{ per combinazione caratteristica (rara)}$ (4.1.40) $\sigma_c < 0.45 \text{ f}_{ck} \text{ per combinazione quasi permanente.}$ (4.1.41)

Nel caso di elementi piani (solette, pareti, ...) gettati in opera con calcestruzzi ordinari e con spessori di calcestruzzo minori di 50 mm i valori limite sopra scritti vanno ridotti del 20%.

4.1.2.2.5.2 Tensione massima dell'acciaio in condizioni di esercizio

Per l'acciaio avente caratteristiche corrispondenti a quanto indicato al Cap. 11, la tensione massima, σ_s , per effetto delle azioni dovute alla combinazione caratteristica deve rispettare la limitazione seguente:

$$\sigma_s < 0.8 \text{ f}_{vk}$$
 (4.1.42)

La verifica in campo elastico (considerando la combinazione di carico rara) si esegue con riferimento al seguente criterio:

6.2 VERIFICHE GEOTECNICHE

6.2.1 Capacità portante di pali di medio e grande diametro

La portata limite (Q_{IM}) di un palo trivellato viene calcolata con riferimento all'equazione:

$$Q_{\scriptscriptstyle LIM} = Q_{\scriptscriptstyle B, LIM} + Q_{\scriptscriptstyle L, LIM} = q_{\scriptscriptstyle b} \cdot A_{\scriptscriptstyle B} + \sum_{\scriptscriptstyle i} \pi \cdot D_{\scriptscriptstyle i} \cdot \Delta H_{\scriptscriptstyle i} \cdot q_{\scriptscriptstyle s,i}$$

dove:

 $Q_{B,LIM}$ = portata limite di base; $Q_{L,LIM}$ = portata limite laterale; q_b = portata unitaria di base;

 A_B = area di base;

D_i = diametro del concio imo di palo;DHi = altezza del concio imo di palo;

 $t_{LIM,i}$ = attrito laterale unitario limite del concio imo di palo.

Linea AV/AC VERONA - PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 24 di 170

Per pali a sezione circolare, l'espressione di q_b cui si perviene è la seguente

$$q_b = N_c c + N_q q_L \tag{3}$$

dove c è la coesione e q_L il particolare valore della pressione sul piano orizzontale passante per la punta del palo; in pratica si assume $q_L = gL$ con L lunghezza del palo; N_c e N_q sono fattori adimensionali, funzioni dell'angolo d'attrito e del rapporto L/D. Tra N_c e N_q esiste la relazione

$$N_c = (N_q - 1) \cdot ctg \, \varphi \tag{4}$$

con f angolo d'attrito del terreno.

La resistenza laterale q_s alla generica profondità z viene valutata con l'espressione

$$q_s = q_a + \mu \cdot k \cdot \sigma_v \tag{5}$$

dove q_a è un termine di adesione indipendente dalla tensione normale, m = tg d è un coefficiente d'attrito terreno-palo, k è un coefficiente adimensionale che esprime il rapporto fra la tensione normale che agisce alla profondità z sulla superficie laterale del palo e la tensione verticale s_v alla stessa profondità.

Nella pratica progettuale il calcolo del carico limite viene condotto in maniera diversa per terreni incoerenti e per terreni coesivi saturi.

Nel seguito vengono illustrati i criteri di dimensionamento convenzionale, basati sulla definizione esplicita dei parametri di resistenza dei terreni.

Nel seguito vengono illustrati i criteri di dimensionamento convenzionale, basati sui risultati di prove penetrometriche standard SPT o sulla definizione esplicita dei parametri di resistenza dei terreni.

Portata unitaria di base

Terreni coesivi

In argille e limi saturi, in condizioni non drenate, il carico limite viene usualmente calcolato in termini di tensioni totali.

Per N_c è comunemente adottato il valore 9; per f_u =0 N_q =1.

La resistenza alla punta vale quindi

$$q_b = 9 \cdot c_u + \gamma \cdot L$$

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 25 di 170

Terreni granulari

Per la valutazione della resistenza alla punta Q_b di pali di medio diametro si fa riferimento allo schema di mezzo omogeneo ed isotropo e a meccanismi di rottura del terreno molto diversi tra loro. A seconda del meccanismo di rottura assunto, i valori di N_q per un dato valore dell'angolo d'attrito variano in un intervallo molto ampio. Per pali infissi di medio diametro, specie in terreni mediamente addensati ($f' \le 35^\circ$) è prevalso l'uso dei valori di N_q forniti dalla teoria di Berezantzev (1961, cfr. Figura 6-1).

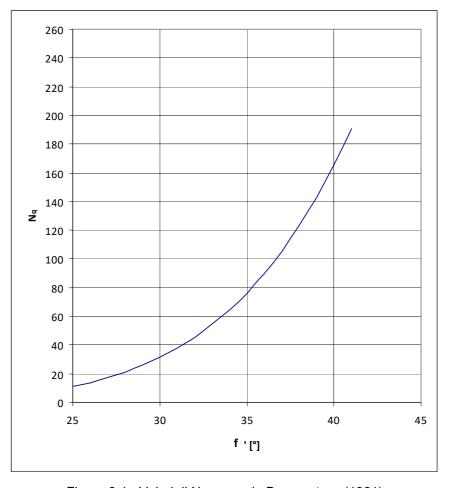


Figura 6-1 - Valori di Nq secondo Berezantzev (1961)

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 26 di 170

• Attrito laterale

Terreni coesivi

La resistenza laterale si calcola supponendo nullo il coefficiente d'attrito palo-terreno; si ottiene così l'espressione

$$q_s = q_a$$

L'adesione può essere valutata mediante i coefficienti riportati in Tabella 6.2–1 in funzione della coesione non drenata c_u .

М	ATERIALE	Cu (kPa)	qa (kPa)	qa max (kPa)
		≤ 25	cu	
	CI C	25÷50	0.85 cu	120
IS	CLS	50÷75	0.65 cu	120
FIS		≥ 75	0.50 cu	
li	PALI INFISSI	≤ 25	cu	
PAI		25÷50	0.80 cu	100
		50÷75	0.65 cu	100
		≥ 75	0.50 cu	
I		≤ 25	0.90 cu	
LLA	CLS	25÷50	0.80 cu	100
TRIVELLATI	CLS	50÷75	0.60 cu	100
H		≥ 75	0.40 cu	

Tabella 6.2–1 - Valori indicativi dell'adesione qa per pali in terreni coesivi

Terreni granulari

Per il calcolo della resistenza laterale q_s si assume q_a =0.

I valori di *k* variano in un campo molto ampio in funzione del tipo di terreno, del tipo di palo e delle modalità esecutive.

In linea orientativa si è fatto riferimento ai valori empirici di $k \in m$ riportati in Tabella 6.2–2.

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 27 di 170

TIPO DI PALO		Valori di k	Valori di m
	Acciaio	0.5÷1	tg 20°
BATTUTO	Calcestruzzo prefabbricato	1÷2	tg (3/4 φ')
	Calcestruzzo gettato in opera	1÷3	tg φ
TRIVELLATO		0.4÷0.7 *	tg φ'

Tabella 6.2-2 - Valori indicativi di k e m per terreni incoerenti

Nei calcoli è stato scelto k = 0.5.

6.2.2 Capacità portante di micropali

La portata limite (Q_{LIM}) di un palo trivellato viene calcolata secondo la teoria di Bustamante e Doix, con riferimento all'equazione:

$$Q_{LIM} = Q_{L,LIM} = A_B \cdot q_S = \pi \cdot D_S \cdot \Delta H_i \cdot q_S$$

dove:

Q_{L,LIM} = portata limite laterale;

A_B = area di base;

 D_S = ϕ D_d diametro efficace del concio -imo di palo;

φ = parametro amplificativo del diametro nominale del foro;

D_d = diametro nominale del concio -imo di palo;

DHi = altezza del concio imo di palo;

q_S = lunghezza unitaria ad attrito laterale all'interfaccia palo-terreno, i cui valori sono riportati in diagrammi distinti in base al tipo di terreno e in funzione della resistenza del terreno, espressa dal valore della pressione limite della prova pressiometrica o dalla resistenza alla penetrazione ricavata con prove SPT.

I valori di ϕ sono riportati in Tabella 6.2–3 e sono espressi in funzione del tipo di micropalo (I.G.U. o I.R.S.) e del tipo di terreno

^{*} Decrescente con la profondità

Linea AV/AC VERONA - PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

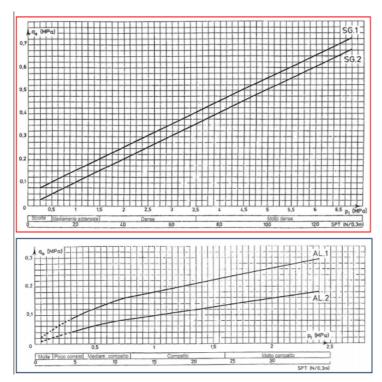
RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 28 di 170

Tine di berese	Coefficiente φ		Overatità esisiena di esisaala V
Tipo di terreno	IRS*	IGU**	Quantità minima di miscela V _I
Ghiaia	1.8	1.3 ÷ 1.4	1,5 V _s *
Ghiaia sabbiosa	1.6 ÷ 1.8	1.2 ÷ 1.4	1,5 V _s
Sabbia ghiaiosa	1.5 ÷ 1.6	1.2 ÷ 1.3	1,5 V _s
Sabbia grossolana	1.4 ÷ 1.5	1.1 ÷ 1.2	1,5 V _s
Sabbia media	1.4 ÷ 1.5	1.1 ÷ 1.2	1,5 V _s
Sabbia fine	1.4 ÷ 1.5	1.1 ÷ 1.2	1,5 V _s
Sabbia limosa	1.4 ÷ 1.5	1.1 ÷ 1.2	$\left\{ \begin{array}{c} 1.6 \div 1.8 \ V_s \ \text{per IRS} \\ \\ 1,5 \ V_s \ \text{per IGU} \end{array} \right.$
Limo	1.4 ÷ 1.6	1.1 ÷ 1.2	
Argilla	1.8 ÷ 2	1.2	$ \left\{ \begin{array}{l} 2,5 \div 3 \ V_s \ per \ IRS \\ \\ 1,5 \div 2 \ V_s \ per \ IGU \end{array} \right. $
Marna	1.8	1.1 ÷ 1.2	45.24
Marna calcarea	1.8	1.1 ÷ 1.2	$1.5 \div 2 \text{ V}_{\text{s}}$ per strati compatti
Arenaria alterata o fratturata	1.8	1.1 ÷ 1.2	$2\div 6~V_s$ o maggiore per strati fratturati
Roccia alterata o	1.2	1.1	$1.1 \div 1,5 \ V_{\scriptscriptstyle S}$ per strati poco fessurati
fratturata	1.2	1.1	$2\ V_s$ o superiori nel caso di roccia fratturata
V _s : Volume foro di perfo	razione		* : con p _i ≥ p ₁
IRS: Iniezione ripetuta se	elettiva		**: con 0,5 p _l < p _l < p _l

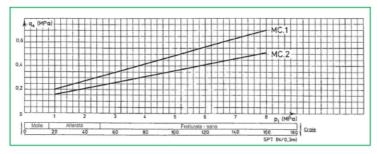
IGU: Iniezione globale unica

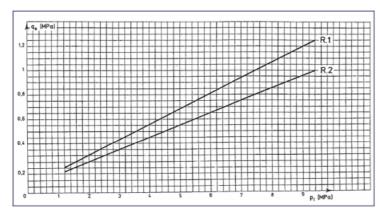
Tabella 6.2–3 - Valori del fattore amplificativo ϕ


Linea AV/AC VERONA - PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:


RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE


PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 29 di 170

VALORI DELLA RESISTENZA PER ATTRITO LATERALE q_s IN FUNZIONE DEL TIPO DI MICROPALO (I.G.U. O I.R.S.), DEL TIPO DI TERRENO E DEI DATI DI PROVA IN SITU DISPONIBILI

Tine di terrene	Curva di i	riferimento
Tipo di terreno	IRS*	IGU**
Ghiaia		
Ghiaia sabbiosa		
Sabbia ghiaiosa		
Sabbia grossolana	SG. 1	SG. 2
Sabbia media		
Sabbia fine		
Sabbia limosa		
Limo	AL. 1	AL. 2
Argilla	AL. I	AL. 2
Marna		
Marna calcarea	MC. 1	MC. 2
Arenaria alterata o fratturata		
Roccia alterata o fratturata	R. 1	R. 2
*: con p _i ≥ p _i **: con 0,5 p _i < p	< p ₁	

Tine di terrene	Curva di	riferimento
Tipo di terreno	IRS*	IGU**
Ghiaia		
Ghiaia sabbiosa		
Sabbia ghiaiosa		
Sabbia grossolana	SG. 1	SG. 2
Sabbia media		
Sabbia fine		
Sabbia limosa		
Limo	AL. 1	AL. 2
Argilla	AL. I	AL. 2
Marna		
Marna calcarea	MC. 1	MC. 2
Arenaria alterata o fratturata		
Roccia alterata o fratturata	R. 1	R. 2
*: con $p_i \ge p_i$ **: con 0,5 $p_i < p_i$	$p_i < p_i$	

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 30 di 170

6.2.3 Verifiche agli stati limite ultimi (SLU)

Verifica di capacità portante di pali e micropali

Le verifiche delle fondazioni su pali sono state effettuate con riferimento ai seguenti stati limite, come indicato nelle Nuove Norme Tecniche 2008 (§ 6.4.3.1):

- SLU di tipo geotecnico (GEO)
 - Collasso per carico limite del palo nei riguardi dei carichi assiali;
 - Collasso per carico limite di sfilamento nei riguardi dei carichi assiali di trazione;
- SLU di tipo strutturale (STR)
 - Raggiungimento della resistenza nei pali.

Tali verifiche sono state effettuate seguendo la Combinazione 2 dell'Approccio 1 (A2+M1+R2) tenendo conto dei valori dei coefficienti parziali riportati nella seguente tabella (cfr. Norme Tecniche 2008, Tab. 6.4.I e 6.4.II).

RESISTENZA	SIMBOLO	PALI TRIVELLATI			
RESISTENZA	γR	(R1)	(R2)	(R3)	
Base	γь	1.00	1.70	1.35	
Laterale in	γs	1.00	1.45	1.15	
Totale	γt	1.00	1.60	1.30	
Laterale in trazione	γst	1.00	1.60	1.25	

Tabella 6.2–4 – Coefficienti parziali da applicare alle resistenze caratteristiche

Il valore di progetto R_d della resistenza si ottiene a partire dal valore caratteristico R_k applicando i coefficienti g_R indicati nella tabella precedente.

La resistenza caratteristica R_k del palo (o micropalo) è stata dedotta con riferimento alle procedure analitiche descritte nei paragrafi precedenti. In particolare è stata calcolata una resistenza di calcolo minima ed una resistenza di calcolo media in funzione dei parametri geotecnici rispettivamente minimi e medi. Tali resistenze vengono a loro volta divise per un fattore di correlazione x riportato nella seguente tabella in funzione del numero delle verticali indagate.

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Linea AV/AC VERONA – PADOVA

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

ATI bonifica

PROGETTO INOD	LOTTO 00	CODIFICA D I2 RG	DOCUMENTO IM0006 005	REV.	_{Pag.} 31 di 170

NUMERO DI VERTICALI INDAGATE	1	2	3	4	5	7	≥10
ξ3	1.70	1.65	1.60	1.55	1.50	1.45	1.40
ξ4	1.70	1.55	1.48	1.42	1.34	1.28	1.21

Tabella 6.2–5 – Fattori di correlazione x per la determinazione della resistenza caratteristica in funzione del numero di verticali indagate

In definitiva, il valore della resistenza di calcolo è data dal minimo tra quella calcolata considerando i valori minimi dei parametri geotecnici e quella calcolata considerando quelli medi, come indicato nelle seguente formula:

$$R_{c,k} = Min \left\{ \frac{\left(R_{c,cal}\right)_{mean}}{\xi_3}; \frac{\left(R_{c,cal}\right)_{min}}{\xi_4} \right\}$$

$$R_{t,k} = Min\left\{ \frac{\left(R_{t,cal}\right)_{mean}}{\xi_3}; \frac{\left(R_{t,cal}\right)_{min}}{\xi_4} \right\}$$

La verifica di resistenza per pali soggetti a carichi assiali risulta soddisfatta se

$$E_d \leq R_d$$

con E_d azione di progetto ottenuto amplificando i carichi caratteristici agenti in fondazione con i coefficienti di amplificazione indicati dal D.M. 2008 per l'Approccio 1 Combinazione 2 e per l'Approccio 2.

In aggiunta alle verifiche richieste dalle NTC08 dovrà essere verificata la seguente relazione:

$$\frac{R_{c,cal,LAT}}{1.25} > N_{ag}$$

Dove $R_{c,cal,LAT}$ è la resistenza laterale di calcolo e N_{ag} è il carico agente sul palo determinato per la combinazione caratteristica (rara) impiegata per le verifiche agli stati limite di esercizio (SLE).

Verifica ai carichi trasversali

Per la verifica ai carichi trasversali del palo singolo si farà riferimento alla teoria di Broms (1965) in base alla quale per il calcolo del carico limite occorre distinguere i casi di palo

Linea AV/AC VERONA – PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO INOD	LOTTO 00	CODIFICA D I2 RG	DOCUMENTO IM0006 005	REV.	Pag. 32 di 170
---------------	-----------------	---------------------	----------------------	------	-------------------

libero di ruotare in testa ovvero vincolato alla quota del piano di campagna ad una struttura di fondazione che ne impedisca la rotazione.

Per pali relativamente corti e rigidi il valore del carico limite orizzontale dipende solo dalle caratteristiche geometriche del palo e dalla resistenza del terreno.

Per pali relativamente lunghi il valore limite del carico orizzontale dipende anche dalle caratteristiche di resistenza del palo, in quanto la rottura avviene con formazione di una cerniera plastica nel palo.

Per la verifica del palo singolo sottoposto ai carichi orizzontali si determinerà il valore caratteristico $R_{tr,cal}$ con i criteri descritti nel paragrafo precedente. Il valore di progetto $R_{tr,d}$ si otterrà dal valore $R_{tr,k}$ applicando i coefficienti parziali g_T riportati in Tabella 6.2–6 (cfr. anche Tabella 6.4.VI del D.M. 2008).

COEFFICIENTE PARZIALE	COEFFICIENTE PARZIALE	COEFFICIENTE PARZIALE
(R1)	(R2)	(R3)
g _T =1.0	g _T =1.6	g _T =1.3

Tabella 6.2–6 – Coefficienti parziali γT per le verifiche agli stati limite ultimi di pali soggetti a carichi trasversali

Nei casi in esame, si assume la condizione di palo vincolato con incastro in sommità.

6.2.4 Analisi di pali e micropali in condizioni di esercizio

La valutazione degli spostamenti orizzontali del palo e della rotazione in testa, effettuata ai fini delle verifiche di deformabilità, è stata condotta mediante l'ausilio del programma di calcolo agli elementi finiti "Sap2000" della Computer and Structures Inc., considerando il palo immerso nel terreno e soggetto all'azione dei carichi orizzontali e verticali derivanti dalla struttura in elevazione.

Il terreno è stato schematizzato mediante una distribuzione di molle di diversa rigidezza a seconda del tipo di terreno che il palo attraversa. In particolare, il palo è stato modellato con elementi di tipo "frame", prevedendo una discretizzazione delle aste pari a 50 cm; in ciascun nodo è stata applicata una molla con comportamento elastico lineare, con pari rigidezza nelle due direzioni ortogonali, così come illustrato nella figura seguente.

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 33 di 170

La base del palo è stata vincolata impedendo lo spostamento nella direzione parallela alle aste.

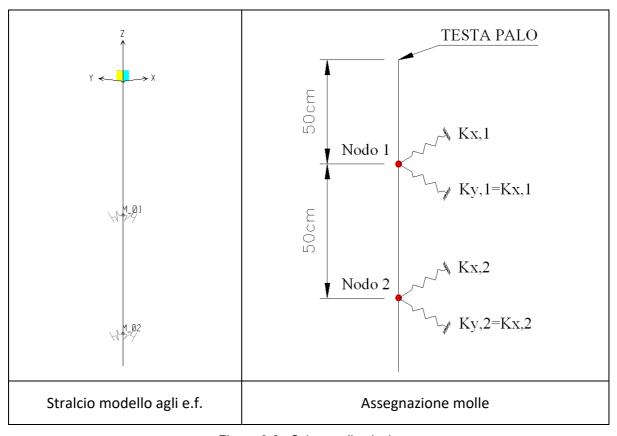


Figura 6-2 – Schema di calcolo

Per maggiori dettagli riguardanti l'individuazione della rigidezza orizzontale delle molle utilizzate nella modellazione agli elementi finiti, si rimanda a quanto esposto nel paragrafo 7.1.

In particolare, coerentemente con quanto esposto nel paragrafo sopra citato, il valore della rigidezza delle molle, nel caso di comportamento coesivo dei terreni, è costante con la profondità, mentre per terreni granulari è considerata variabile con la profondità.

6.2.5 Verifiche agli stati limite di esercizio (SLE)

Con riferimento alle disposizioni della norma UNI EN 1794-1, la deformazione elastica massima Δ_{max} sotto il carico trasversale di progetto per lo stato limite di esercizio in combinazione rara deve risultare:

Linea AV/AC VERONA - PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 34 di 170

$$\Delta_{max} \le \Delta_{amm} = \frac{H}{100}$$

in cui H è l'altezza del profilo.

Lo spostamento della testa montante Δ_{max} è valutato su uno schema statico di trave a mensola tramite la seguente relazione:

$$\Delta_{max} = \frac{p \cdot i \cdot (L - h_{irr})^4}{8 \cdot E \cdot J_y}$$

Lo spostamento totale è costituito da tre componenti; la traslazione della testa del palo, la rotazione della testa del palo e la traslazione del montante soggetto al carico del vento.

Linea AV/AC VERONA - PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 35 di 170

7 STRATIGRAFIA E PARAMETRI GEOTECNICI

Sono stati utilizzati, a favore di sicurezza, i seguenti parametri medi geotecnici dei terreni interessati all'installazione delle barriere antirumore:

MATERIALI IN SITO

Per i materiali di rilevato possono assumersi i seguenti parametri di resistenza (di progetto e/o caratteristici):

• SABBIE E GHIAIE

Angolo di attrito: $\varphi = 32$

Coesione: c = 0.00 [kPa]

Peso di Volume: $\gamma = 18.0 \text{ [kN/mc]}$

ARGILLE

Coesione: c = 40 [kPa]

Peso di Volume: $\gamma = 18.0 \text{ [kN/mc]}$

La falda si trova a piano campagna, pertanto interessa la fondazione delle barriere. Nel caso di rilevati alti, la falda non verrà considerata.

7.1 CALCOLO DEL MODULO DI REAZIONE ORIZZONTALE DEL TERRENO

Nel caso di terreni reali, la relazione tra la pressione sul terreno e lo spostamento indotto non è lineare, e la prima attinge un valore limite allorchè lo spostamento è sufficientemente elevato. Matlock & Reese (1956) sostengono l'adozione di un modulo crescente con la profondità, tenendo conto del cedimento e della non linearità del terreno. Per terreni granulari i moduli di reazione orizzontale iniziali (E_{si}) sono stati valutati in accordo alla seguente espressione:

$$E_{si} = k_{hi} \cdot z_{[kPa]}$$

essendo:

 k_{hi} = gradiente con la profondità del modulo di reazione orizzontale

z = profondità dal piano campagna originario.

Linea AV/AC VERONA – PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. INOD 00 D I2 RG IM0006 005 A 36 di 170

La determinazione più corretta del coefficiente di reazione orizzontale del terreno k_{hi} (kg/ml) può essere eseguita soltanto con prove di carico laterale a scala naturale o prove di carico su piastra.

Nel nostro caso, è possibile determinare tale parametro mediante correlazione empirica con le altre proprietà del terreno in esame.

In particolare per i terreni incoerenti, Terzaghi, nell'ipotesi che il modulo di elasticità dipenda dalla pressione litostatica e dalla densità della terra, suggerisce:

$$k_h = \frac{Ax \gamma}{1.35}$$

dove:

A = fattore adimensionale che dipende dallo stato di addensamento del terreno

 γ = peso dell'unità di volume di terreno di rilevato

Risultati analoghi si possono ottenere tramite la teoria di Vesic, esprimendo il modulo di sottofondo k_h in funzione dei parametri elastici della massa E_t e v_t con la relazione sequente:

$$k_{h} = \left(\frac{E_{t}}{D_{p}}\right) \times 12 \sqrt{\frac{E_{t} \times D^{4}}{E_{p}J_{p}}} \times \left(\frac{0.65}{1 - v_{t}^{2}}\right) \left[\frac{kN}{m^{3}}\right]$$

dove:

Sabbie e ghiaie palo φ800

E_t = 150[bar] modulo elastico longitudinale in condizioni non drenate

dipendente dallo strato litologico considerato;

 $v_t = 0.10$ coefficiente di Poisson;

 $\mathbf{E}_{\mathbf{p}} = 3.11769 \times 10^5 \, [\text{kg/cm}^2] \, \text{modulo elastico minimo del palo per R'}_{\text{ck}} = 300 \, \text{kg/cm}^2;$

 $J_p = (\pi x D_p^4)/64 \text{ [cm}^4]$ rigidezza del palo;

 $D_p = 80 \text{ [cm]}$ diametro del palo.

Le costanti elastiche utilizzate nel modello di calcolo sono state determinate, con la relazione precedente per cui si ha:

$$k_h = 0.837311 [kg/cm^3]$$

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Linea AV/AC VERONA – PADOVA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. IN₀D 00 D I2 RG IM0006 005 37 di 170

ATI bonifica

Sabbie e ghiaie palo \$600

Εt = 150[bar] modulo elastico longitudinale in condizioni non drenate

dipendente dallo strato litologico considerato;

= 0.10coefficiente di Poisson; v_t

 $E_p = 3.11769 \times 10^5 \, [kg/cm^2]$ modulo elastico minimo del palo per R'ck=300 kg/cm²;

 $= (\pi x D_p^4)/64 \text{ [cm}^4]$ $J_{\rm p}$ rigidezza del palo;

 $D_{\rm p}$ = 60 [cm]diametro del palo.

Le costanti elastiche utilizzate nel modello di calcolo sono state determinate, con la relazione precedente per cui si ha:

$$k_h = 1.1164 [kg/cm^3]$$

Nel caso di pali di fondazione posizionati in cresta ad una scarpata naturale o artificiale, i moduli di reazione orizzontali saranno ridotti di una quantità pari al rapporto tra il coefficiente di spinta passiva del terreno calcolato per un piano di campagna con inclinazione pari alla pendenza della scarpata e lo stesso parametro calcolato per un piano di campagna orizzontale.

In particolare, noto il coefficiente di spinta passiva nel caso di piano campagna orizzontale dalla formula:

$$K_p = \frac{1 + sen(\varphi)}{1 - sen(\varphi)}$$

e calcolando il coefficiente di spinta passiva nel caso di piano campagna con inclinazione w nel modo seguente:

$$K_{p_{-w}} = \frac{\cos(\omega) + \sqrt{\cos(\omega)^2 - \cos(\varphi)^2}}{\cos(\omega) - \sqrt{\cos(\omega)^2 - \cos(\varphi)^2}}$$

si ricava il coefficiente di riduzione delle molle orizzontali per la presenza della scarpata dal rapporto dei due coefficienti di spinta passiva appena descritti:

$$\eta = \frac{K_{p_{-}w}}{K_{p}}$$

Tale coefficiente di riduzione viene applicato fino ad una quota di 5 m dal piano di posa della fondazione. Per profondità superiori l'inclinazione della scarpata viene considerata ininfluente ai fini del calcolo della rigidezza delle molle orizzontali del terreno.

Linea AV/AC VERONA - PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

 PROGETTO
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 Pag.

 INOD
 00
 D I2 RG
 IM0006 005
 A
 38 di 170

A questo punto, nel caso di comportamento granulare del terreno, il valore della rigidezza K_{orizz} della molla orizzontale alla generica profondità z risulterà pari a

$$K_{orizz}(z) = \eta \cdot E(z) \cdot d = \eta \cdot k_{hi} \cdot z \cdot d \qquad \left[\frac{kN}{m}\right]$$

dove *d* è il diametro del palo o del micropalo di fondazione.

Nel caso di comportamento coesivo dei terreni, il modulo elastico del terreno è stato assunto costante con la profondità ed è stato calcolato, secondo la teoria di Skempton, con la seguente formula:

$$E_{coesivo} = (80 \div 320) \cdot c_u [kPa]$$

dove c_u rappresenta la coesione non drenata minima del terreno considerato. In questo caso il valore della rigidezza della molla è costante con la profondità ed è soggetto anch'esso alla riduzione dovuta all'eventuale inclinazione della scarpata.

Il valore della rigidezza della molla risulterà pari a

$$K_{orizz:coesivo} = \eta \cdot E_{coesivo} \cdot \Delta z \left[\frac{kN}{m} \right]$$

Argille

c_u = 40 [kPa] coesione non drenata minima ;

 $\mathbf{E}_{\mathbf{coesivo}} = 200 \, \mathbf{c}_{\mathbf{u}} = 8000 \, [\mathrm{kPa}]$ modulo elastico del terreno

Pertanto la costante elastica da applicare al fusto del palo per conci di 0.50 ml per i vari strati litologici è:

$$k_{hpalo} = 8000 \cdot 0.5 = 4000 [kN/m]$$

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 39 di 170

8 AZIONI A TESTA PALO

In condizioni statiche, le azioni agenti a testa palo sono:

- Azioni provenienti dalla struttura in elevazione in condizioni statiche (azioni alla base del montante), con i criteri descritti precedentemente;
- Peso proprio del cordolo di fondazione e dei pali.

Le combinazioni di carico delle azioni in fondazione sono uguali a quelle previste per la struttura in elevazione.

Il progetto tiene anche in considerazione la presenza della passerella metallica di ispezione, ancorata al cordolo esistente per uno sbalzo di 60cm.

Si riportano di seguito le sollecitazioni ottenute alla base dei montanti delle barriere per le combinazioni di carico riportate in §.4.

Famiglia	Montante	Interasse montante [m]	altezza montante [m]	we [N/m²]	fw [N/m]	V [N]	M [Nm]	N [N/m]
2.95	HE 200 A	3.00	2.95	2500.00	7500.00	20625.00	28359.38	10700.0
3.95	HE 240 A	3.00	3.95	2500.00	7500.00	28125.00	52734.38	14820.0
4.95	HE 240 A	3.00	4.95	2500.00	7500.00	35625.00	84609.38	15520.0
5.95	HE 260 A	3.00	5.95	2500.00	7500.00	43125.00	123984.38	16370.0
6.95	HE 280 A	3.00	6.95	2500.00	7500.00	50625.00	170859.38	17300.0
ve:								
[N/m²]	pressione d	el vento agen	te sulle barrie	ere				
[N/m]	carichi del v	ento						
N]	sollecitazion	sollecitazioni di taglio (schema statico a mensola)						
[Nm]	sollecitazion	sollecitazioni di momento flettente (schema statico a mensola)						
[N/m]	sollecitazion	sollecitazioni di sforzo normale a ml, dovuto ai peso del montante e a quello dei pannelli (3,75m in cls i restar						

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 40 di 170

Famiglia	Montante	altezza montante [m]	V [N]	M [Nm]	N [N]
2.95	HE 200 A	2.95	20625	28359	32100
3.95	HE 240 A	3.95	28125	52734	44460
4.95	HE 240 A	4.95	35625	84609	46560
5.95	HE 260 A	5.95	43125	123984	49110
6.95	HE 280 A	6.95	50625	170859	51900

Sollecitazioni massime allo SLU-STR agenti sulle barriere

Famiglia	Montante	altezza montante [m]	V [N]	M [Nm]	N [N]
2.95	HE 200 A	2.95	30938	42539	41730
3.95	HE 240 A	3.95	42188	79102	57798
4.95	HE 240 A	4.95	53438	126914	60528
5.95	HE 260 A	5.95	64688	185977	63843
6.95	HE 280 A	6.95	75938	256289	67470

Sollecitazioni massime allo SLU-GEO agenti sulle barriere

Famiglia	Montante	altezza montante [m]	V [N]	M [Nm]	N [N]
2.95	HE 200 A	2.95	26813	36867	32100
3.95	HE 240 A	3.95	36563	68555	44460
4.95	HE 240 A	4.95	46313	109992	46560
5.95	HE 260 A	5.95	56063	161180	49110
6.95	HE 280 A	6.95	65813	222117	51900

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

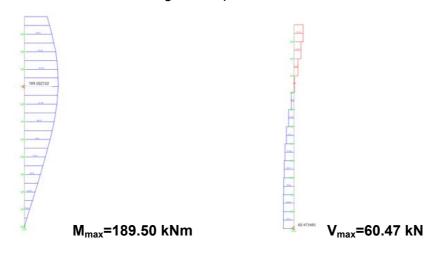
RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 41 di 170

9 PROGETTO GEOTECNICO DEI PALI

Analizzate le caratteristiche dei terreni e delle opere, la scelta è ricaduta su di un tipo di fondazione indiretta costituita da pali di diametro $\phi 800$ e $\phi 600$ al di sotto di ogni montante, sulla cui testa è posizionata un cordolo di dimensioni pari a m 1.0x1.0h.

La presenza della falda è stata considerata solo nel caso di rilevati con altezza inferiore ai 4m, in quanto le indagini preliminari hanno individuato la presenza di acqua alla quota del piano campagna.


9.1 BARRIERA H=4.95M - RILEVATO > 5m - SABBIA

Verifiche strutturali e geotecniche (Sabbia asciutta)

La determinazione delle sollecitazioni lungo il palo è stata effettuata mediante il software di calcolo Sap2000, considerando il palo immerso nel terreno e soggetto all'azione dei carichi orizzontali e verticali derivanti dalla struttura in elevazione. Il terreno è stato schematizzato mediante una distribuzione di molle di diversa rigidezza a seconda del tipo di terreno che il palo attraversa. Una volta note le sollecitazioni agenti è stata effettuata una verifica a pressoflessione della sezione circolare del palo in c.a. mediante l'utilizzo del software di calcolo VCA-SLU.

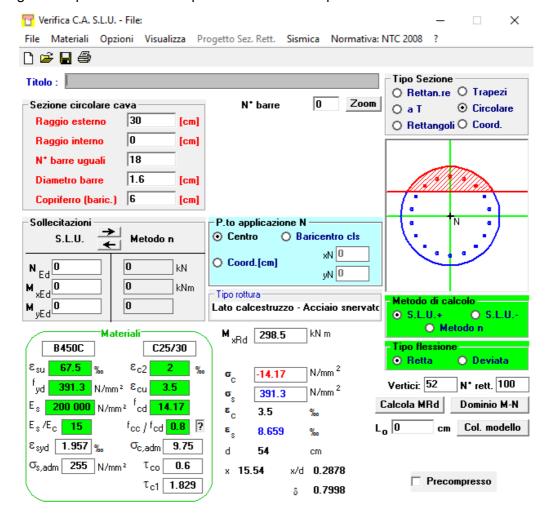
9.1.1 Verifiche strutturali: SLU:A1;M1;R1

Le sollecitazioni massime agenti sui pali risultano:

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:
RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. INOD 00 D I2 RG IM0006 005 A 42 di 170


I valori caratteristici delle azioni trasmesse al singolo palo di fondazione (si considerano le sollecitazioni del palo centrale, ossia quello più sollecitato), risultano:

		FUSTO		
	N (kN)	T (kN)	M (kNm)	Mmax (kNm)
STR	158.17	53.46	154.62	189.48
GEO	117.16	46.33	133.87	164.10
SLE	117.16	35.64	103.15	126.38

Il palo è lungo 6,00 m ed è armato con ferri longitudinali 18∮16 e staffe ∮12/20.

Verifica a flessione: Φ600

Di seguito si riporta la verifica a presso-flessione del palo:

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 43 di 170

	VERIFICA STRUTTURALE PALO-FLESSIONE							
N [kN]	158.17	(Combo str)						
T [kN]	53.46							
M [kN]	154.62							
Mmax [kNm]	189.48							
Armatura	18 Ø16							
M _{Rd} [kNm]	298.50							
M _{Ed} /M _{Rd}	0.63	<1	VERIFICA SODDISFATTA					

Verifica a taglio

Di seguito si riporta la verifica a taglio:

	VERIFICA STRUTTURALE PALO-TAGLIO						
N [kN]	172.48	(Combo str)					
V [kN]	15.22						
M [kN]	189.48						
Vmax [kN]	60.49						
Carattersitiche sezione re	ettangolare equiva	lente					
α (rad)	0.53						
b (mm)	505.56						
h (mm)	559.27						
d (mm)	452.79						
Materiali							
fck (Mpa)	25.00						
γς	1.50						
fcd (Mpa)	14.17						
fyk (Mpa)	450.00						
γs	1.15						
fyd (Mpa)	391.3						
Verifica senza armatura :	a taglio						
Asl (mm²)	3618.00	18 Ø16					
ρι (%)	0.02						

Linea AV/AC VERONA - PADOVA

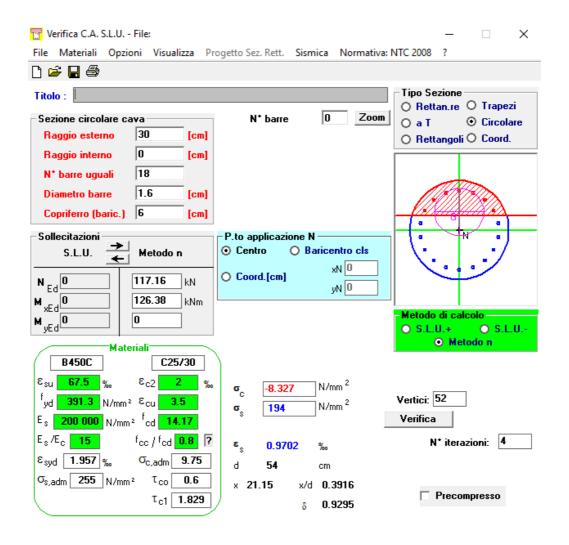
1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. INOD 00 D I2 RG IM0006 005 A 44 di 170

k vmin Vrd (kN)	1.44 0.30 203.97		
V _{Ed} /V _{Rd}	0.30	<1	VERIFICA SODDISFATTA
Verifica con armatura a t	taglio		
Asw (mm²)	226.00	2 Ø12	
s (mm)	200.00		
α (°)	90.00		
cotgθ	2.50		
cotgα	0.00		
оср (Мра)	0.61		
ας	1.04		
Vrcd (kN)	402.72		
Vrsd (kN)	524.88		
V _{Ed} /V _{Rd}	0.15	<1	VERIFICA SODDISFATTA


Linea AV/AC VERONA – PADOVA 1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA Titolo: RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag.

IM0006 005

45 di 170

9.1.2 Verifiche strutturali: SLE (Rara)

• Verifica tensionale

IN0D

00

D I2 RG

<u>VERIFICA TENSIONALE PALO</u>					
117.16	(Combo rara)				
35.64					
103.15					
126.38					
18 Ø16					
25					
	35.64 103.15 126.38 18 Ø16				

Linea AV/AC VERONA - PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 46 di 170

f _{yk} [N/mm ²]	450		
$\sigma_{cls,max}$ [N/mm ²]	8.33	$< \sigma_{cls,amm} [N/mm^2]$	VERIFICA SODDISFATTA
$\sigma_{acc,max}$ [N/mm ²]	194.00	$< \sigma_{acc,amm} [N/mm^2]$	VERIFICA SODDISFATTA

• Verifica a fessurazione

Dati	Verica fessurazione sezione circolare CIRCOLARE 2/02/2009 N°617 Par.C.4.1.2.2.4.6				
ϑ_{s}	194 N/mm²	Tensione massima armatura tesa sezione fessurata			
Rck	30.0 N/mm ²	Resistenza caratteristica cubica cls			
Фі	16 mm	Diametro barre longitudinali			
фѕ	12 mm	Diametro staffe o spirale			
n	18	Numero ferri longitudinali			
С	60 mm	Ricoprimento del calcestruzzo			
D	600 mm	Diametro			
k _t	0.4	kt=0,6 ;0,4 carichi breve durata/lunga durata			
k ₂	0.5	k2=0,5 ;1,0 caso flessione/trazione semplice			
k ₁	0.8	k1=0,8 ;1,6 barre aderenza migliorata/lisce			
w	0.4 mm	Valore limite apertura fessure			
Dati					
fck	24.9 N/mm ²	Resistenza caratteristica cilindrica cls			
i	77 mm	Interasse ferri longitudinali			
A_{Φ}	201 mm²	Area barra longitudinale			
E _s	210000.0 N/mm ²	Modulo elastico acciaio da c.a			
f_{ctm}	2.6 N/mm²	Resistenza a trazione media cls			
E _{cm}	31447.2 N/mm ²	Modulo elastico medio cls			
α_{e}	6.68	Rapporto Es/Ecm			
f_{cm}	32.9 N/mm²	Resistenza media cls			
$ ho_{ ext{eff}}$	0.0193	Rapporto area acciaio/area efficace			
ϵ_{sm1}	0.000638	Deformazione unitaria media barre di calcolo			

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	Pag.
IN0D	00	D I2 RG	IM0006 005	Α	47 di 170

ε _{sm2}	0.000554	Deformazione	unitaria media barre valore minimo	
ε _{sm}	0.000638	Deformazione unitaria media		
k ₃	3.4	Coefficiente		
k4	0.4	Coefficiente		
Δsmax	345.3 mm	Distanza massima tra le fessure		
\mathbf{w}_{d}	0.220 mm	Valore di calcolo apertura fessure		
w _d /w	0.55	<1	VERIFICA SODDISFATTA	

9.1.3 Verifiche geotecniche dei pali_TIPO A

• Verifiche della capacità portante

A favore di sicurezza nel calcolo della capacità portante dei pali, è sempre stata trascurata l'interazione terreno-struttura per il tratto di fusto del palo immerso nel rilevato, in quanto si è ritenuto che considerata la scarpa del rilevato stradale il terreno per tale altezza non offra resistenza passiva alle azioni prodotte dal palo.

	MEDIO	MINIMO	
Q _{Rm} [KN]	1199.82	1199.82	Valore di calcolo
Q _{Rk} [KN]	705.78	705.78	Valore caratteristico
Q _{Rd comp} [kN]	474.87	474.87	Valore di progetto a compressione
Q _{Rd traz} [kN]	483.52	483.52	Valore di progetto a trazione

PORTANZA IN COMPRESSIONE						
E _{c,d} [kN]	117.16	<	474.87	R _{c,d} [kN]		
$E_{c,d}/R_{c,d}$	24.67%	Verificato				

Dalle verifiche risulta che il palo in calcestruzzo armato della lunghezza prevista risulta idoneo ad accogliere tutti i carichi trasmessi dalle barriere.

• Verifiche ai carichi trasversali

VERIFICA BROMS TERRENI GRANULARI							
Terreno:				Sabbie e gh	iaie		
Falda:				NO			
Caratteristiche medie del terreno			_	Caratterist	iche minim	e del	terreno_
α	0	inclinazione rilevato		α		0	inclinazione rilevato

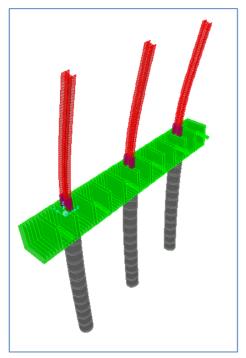
COMBO GEO A2+M1+R2	
H _{tr,d media}	128.12

Linea AV/AC VERONA - PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE


PROGETTO INOD		CODIFICA D I2 RG	DOCUMENTO IM0006 005	REV.	9.	
---------------	--	---------------------	----------------------	------	----	--

φ _{medio} [°]	32			φ _{min} [°]	32	
kp	3.25			kp	3.25	
$\gamma_{medio} [kN/m^3]$	18			γ _{min} [kN/m ³]	18	
Palo corto				Palo corto		
H1 [kN]	1898.08			H1 [kN]	1898.08	
Mmax [kNm]	7592.30	>My		Mmax [kNm]	7592.30	>My
Palo intermedio				Palo intermedio		
H2 [kN]	682.44			H2 [kN]	682.44	
İ						
Palo lungo			-	Palo lungo		
H3 [kN]	348.49			H3 [kN]	348.49	
H _{media} [kN]	348.49			H _{min} [kN]	348.49	
H _{tr,k media} [kN]	204.99			H _{tr,k min} [kN]	204.99	

[kN]		
$H_{tr,d\;min}\left[kN\right]$	128.12	
H _{RES} [kN]	128.12	
H _{ES} [kN]	46.33	
H _{ES} /H _{RES}	36.16%	
Verificato		

COMBO STR A1+M1+R3				
H _{tr,d media} [kN]	157.69			
$H_{tr,d\;min}\left[kN\right]$	157.69			
H _{RES} [kN]	157.69			
H _{ES} [kN]	53.46			
H _{ES} /H _{RES}	33.90%			
Verificato				

Verifica di deformabilità

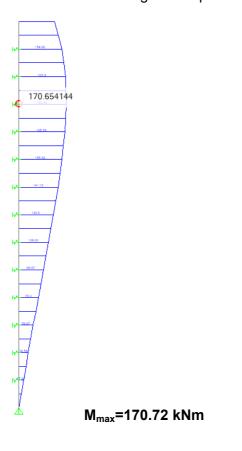
VERIFICA DI DEFORMABILITA'					
Spostamento testa montante da vento	1.88	cm			
Traslazione testa palo	0.623	cm			
Rotazione testa palo	0.00261	[rad]			
Rotazione testa palo	0.1495	[°]			
Spostamento testa montante da rotazione	1.50	cm			
Spostamento totale testa montante E _d	3.38	cm			
Spostamento ammissibile C _d = H/100	4.95	cm			
Verificato Ed <cd -="" cd="0.71</td" ed=""><td></td><td></td></cd>					

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 49 di 170


9.2 BARRIERA H=4.95M - RILEVATO > 5m - ARGILLA

Verifiche strutturali e geotecniche (Argilla)

La determinazione delle sollecitazioni lungo il palo è stata effettuata mediante il software di calcolo Sap2000, considerando il palo immerso nel terreno e soggetto all'azione dei carichi orizzontali e verticali derivanti dalla struttura in elevazione. Il terreno è stato schematizzato mediante una distribuzione di molle di diversa rigidezza a seconda del tipo di terreno che il palo attraversa. Una volta note le sollecitazioni agenti è stata effettuata una verifica a pressoflessione della sezione circolare del palo in c.a. mediante l'utilizzo del software di calcolo VCA-SLU.

9.2.1 Verifiche strutturali: SLU:A1;M1;R1

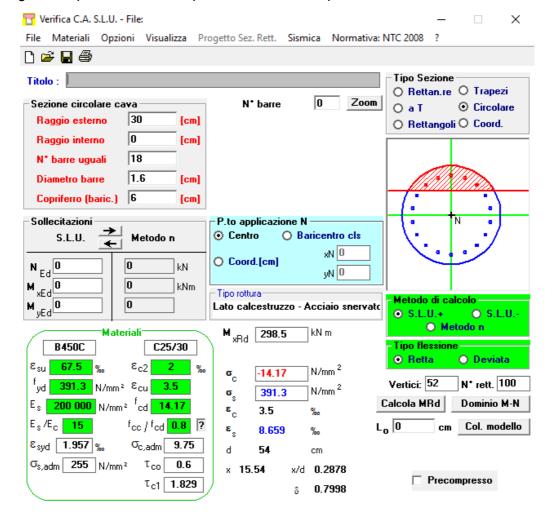
Le sollecitazioni massime agenti sui pali risultano:

V_{max}=53.44 kN

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo: RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 50 di 170


I valori caratteristici delle azioni trasmesse al singolo palo di fondazione (si considerano le sollecitazioni del palo centrale, ossia quello più sollecitato), risultano:

		FUSTO		
	N (kN)	T (kN)	M (kNm)	Mmax (kNm)
STR	158.69	53.44	154.66	170.72
GEO	117.55	46.31	133.91	147.85
SLE	117.55	35.63	103.18	113.88

Il palo è lungo 7,00 m ed è armato con ferri longitudinali 18∮16 e staffe ∮12/20.

Verifica a flessione: Φ600

Di seguito si riporta la verifica a presso-flessione del palo:

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 51 di 170

VERIFICA STRUTTURALE PALO-FLESSIONE						
N [kN]	158.17	(Combo str)				
T [kN]	53.46					
M [kN]	154.62					
Mmax [kNm]	189.48					
Armatura	18 Ø16					
M _{Rd} [kNm]	298.50					
M _{Ed} /M _{Rd}	0.63	<1	VERIFICA SODDISFATTA			

Verifica a taglio

Di seguito si riporta la verifica a taglio:

VERIFICA STRUTTURALE PALO-TAGLIO					
N [kN]	172.48	(Combo str)			
V [kN]	15.22				
M [kN]	189.48				
Vmax [kN]	60.49				
Carattersitiche sezione r	ettangolare equiva	lente			
α (rad)	0.53				
b (mm)	505.56				
h (mm)	559.27				
d (mm)	452.79				
Materiali					
fck (Mpa)	25.00				
γc	1.50				
fcd (Mpa)	14.17				
fyk (Mpa)	450.00				
γs	1.15				
fyd (Mpa)	391.3				
Verifica senza armatura	a taglio				
Asl (mm²)	3618.00	18 Ø16			
ρι (%)	0.02				

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

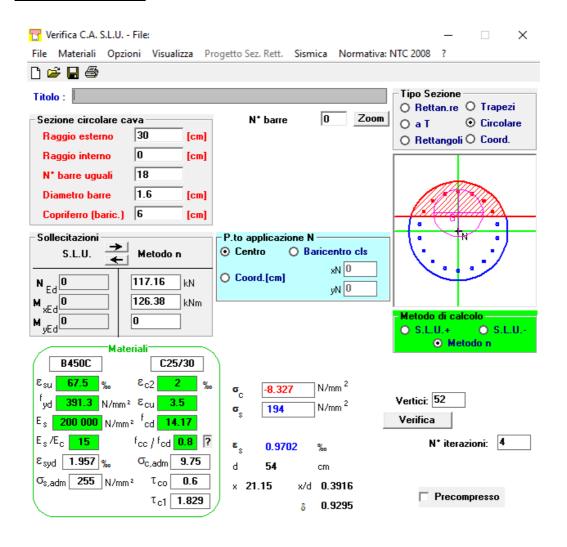
RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. INOD 00 D I2 RG IM0006 005 A 52 di 170

k	1.44		
vmin	0.30		
Vrd (kN)	203.97		
V _{Ed} /V _{Rd}	0.30	<1	VERIFICA SODDISFATTA
Verifica con armatura a	taglio		
Asw (mm ²)	226.00	2 Ø12	
s (mm)	200.00		
α (°)	90.00		
$cotg\theta$	2.50		
cotgα	0.00		
σср (Мра)	0.61		
ας	1.04		
Vrcd (kN)	402.72		
Vrsd (kN)	524.88		
V_{Ed}/V_{Rd}	0.15	<1	VERIFICA SODDISFATTA

Linea AV/AC VERONA – PADOVA 1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA Titolo: RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

DOCUMENTO


IM0006 005

REV.

53 di 170

9.2.2 Verifiche strutturali: SLE (Rara)

• Verifica tensionale

PROGETTO

IN0D

LOTTO

00

CODIFICA

D I2 RG

<u>VERIFICA TENSIONALE PALO</u>				
117.16	(Combo rara)			
35.64				
103.15				
126.38				
18 Ø16				
25				
	35.64 103.15 126.38 18 Ø16			

Linea AV/AC VERONA - PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 54 di 170

f _{yk} [N/mm ²]	450		
$\sigma_{cls,max}$ [N/mm ²]	8.33	$< \sigma_{cls,amm} [N/mm^2]$	VERIFICA SODDISFATTA
$\sigma_{acc,max}$ [N/mm ²]	194.00	$< \sigma_{acc,amm} [N/mm^2]$	VERIFICA SODDISFATTA

• Verifica a fessurazione

Dati	Verica fessurazione sezione circolare CIRCOLARE 2/02/2009 N°617 Par.C.4.1.2.2.4.6				
ϑ_{s}	194 N/mm²	Tensione massima armatura tesa sezione fessurata			
Rck	30.0 N/mm ²	Resistenza caratteristica cubica cls			
Фі	16 mm	Diametro barre longitudinali			
фѕ	12 mm	Diametro staffe o spirale			
n	18	Numero ferri longitudinali			
С	60 mm	Ricoprimento del calcestruzzo			
D	600 mm	Diametro			
k _t	0.4	kt=0,6 ;0,4 carichi breve durata/lunga durata			
k ₂	0.5	k2=0,5 ;1,0 caso flessione/trazione semplice			
k_1	0.8	k1=0,8 ;1,6 barre aderenza migliorata/lisce			
w	0.4 mm	Valore limite apertura fessure			
Dati					
fck	24.9 N/mm²	Resistenza caratteristica cilindrica cls			
i	77 mm	Interasse ferri longitudinali			
A_{φ}	201 mm²	Area barra longitudinale			
Es	210000.0 N/mm ²	Modulo elastico acciaio da c.a			
f _{ctm}	2.6 N/mm ²	Resistenza a trazione media cls			
E _{cm}	31447.2 N/mm ²	Modulo elastico medio cls			
α_{e}	6.68	Rapporto Es/Ecm			
f _{cm}	32.9 N/mm²	Resistenza media cls			
$ ho_{ ext{eff}}$	0.0193	Rapporto area acciaio/area efficace			
ϵ_{sm1}	0.000638	Deformazione unitaria media barre di calcolo			

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 55 di 170

w _d /w	0.220 11111	<1	VERIFICA SODDISFATTA	
	0.220 mm	Valore di calcolo apertura fessure		
Δsmax	345.3 mm	Distanza massima tra le fessure		
k4	0.4	Coefficiente		
k ₃	3.4	Coefficiente		
$\epsilon_{\sf sm}$	0.000638	Deformazione unitaria media		
ϵ_{sm2}	0.000554	Deformazione unitaria media barre valore minimo		

9.2.3 Verifiche geotecniche dei pali_TIPO B

• Verifiche della capacità portante

A favore di sicurezza nel calcolo della capacità portante dei pali, è sempre stata trascurata l'interazione terreno-struttura per il tratto di fusto del palo immerso nel rilevato, in quanto si è ritenuto che considerata la scarpa del rilevato stradale il terreno per tale altezza non offra resistenza passiva alle azioni prodotte dal palo.

	MEDIO	MINIMO	
Q _{Rm} [KN]	1199.82	1199.82	Valore di calcolo
Q _{Rk} [KN]	705.78	705.78	Valore caratteristico
Q _{Rd comp} [kN]	474.87	474.87	Valore di progetto a compressione
Q _{Rd traz} [kN]	483.52	483.52	Valore di progetto a trazione

PORTANZA IN COMPRESSIONE							
E _{c,d} [kN]	E _{c,d} [kN] 117.16 < 474.87 R _{c,d} [kN]						
$E_{c,d}/R_{c,d}$	24.67%	67% Verificato					

Dalle verifiche risulta che il palo in calcestruzzo armato della lunghezza prevista risulta idoneo ad accogliere tutti i carichi trasmessi dalle barriere.

• Verifiche ai carichi trasversali

VERIFICA BROMS TERRENI GRANULARI					
Terreno:				Sabbie e ghiaie	
Falda:		NO			
Caratteristiche medie del terreno			_	Caratteristiche minime del terreno	
α	0	inclinazione rilevato		α 0 inclinazione r	ilevato

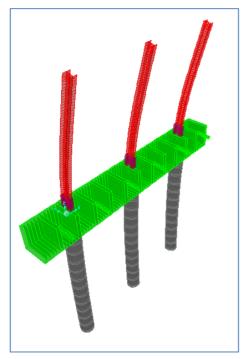
COMBO GEO A2+M1+R2		
H _{tr,d media}	128.12	

Linea AV/AC VERONA - PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE


PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	Pag.
IN0D	00	D I2 RG	IM0006 005	Α	56 di 170

φ _{medio} [°]	32			φ _{min} [°]	32	
kp	3.25			kp	3.25	
γ _{medio} [kN/m ³]	18			$\gamma_{min} [kN/m^3]$	18	
Palo corto			-	Palo corto		
H1 [kN]	1898.08			H1 [kN]	1898.08	
Mmax [kNm]	7592.30	>My		Mmax [kNm]	7592.30	>My
Palo intermedio			_	Palo intermedio		
H2 [kN]	682.44			H2 [kN]	682.44	
Palo lungo			-	<u>Palo lungo</u>		
H3 [kN]	348.49			H3 [kN]	348.49	
H _{media} [kN]	348.49			H _{min} [kN]	348.49	
H _{tr,k media} [kN]	204.99			H _{tr,k min} [kN]	204.99	
i itr,k media [KIV]	204.33		<u> </u>	T TT,K MIN [IXIV]	204.33	

[kN]		
H _{tr,d min} [kN]	128.12	
H _{RES} [kN]	128.12	
H _{ES} [kN]	46.33	
H _{ES} /H _{RES}	36.16%	
Verificato		

COMBO STR A1+M1+R3		
H _{tr,d media} [kN]	157.69	
$H_{tr,d min} [kN]$	157.69	
H _{RES} [kN]	157.69	
H _{ES} [kN]	53.46	
H _{ES} /H _{RES} 33.90%		
Verificato		

Verifica di deformabilità

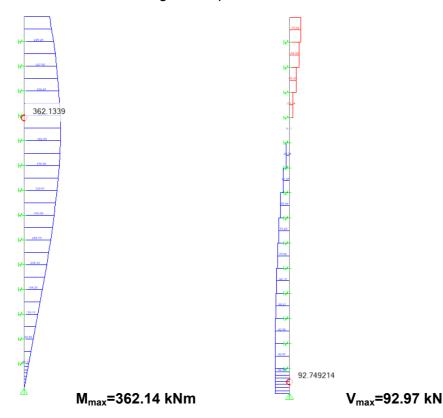
VERIFICA DI DEFORMABILITA'				
Spostamento testa montante da vento	1.88	cm		
Traslazione testa palo	0.623	cm		
Rotazione testa palo	0.00261	[rad]		
Rotazione testa palo	0.1495	[°]		
Spostamento testa montante da rotazione	1.50	cm		
Spostamento totale testa montante E _d	3.38	cm		
Spostamento ammissibile C _d = H/100	4.95	cm		
Verificato Ed <cd -="" cd="0.71</td" ed=""></cd>				

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO INOD	LOTTO 00	CODIFICA D I2 RG	DOCUMENTO IM0006 005	REV.	_{Pag.} 57 di 170
מטאוו	00	D IZ RG	COU DOUDINII	Α	57 di 170


9.3 BARRIERA H=6.95M - RILEVATO > 5m - SABBIA

Verifiche strutturali e geotecniche (Sabbia asciutta)

La determinazione delle sollecitazioni lungo il palo è stata effettuata mediante il software di calcolo Sap2000, considerando il palo immerso nel terreno e soggetto all'azione dei carichi orizzontali e verticali derivanti dalla struttura in elevazione. Il terreno è stato schematizzato mediante una distribuzione di molle di diversa rigidezza a seconda del tipo di terreno che il palo attraversa. Una volta note le sollecitazioni agenti è stata effettuata una verifica a pressoflessione della sezione circolare del palo in c.a. mediante l'utilizzo del software di calcolo VCA-SLU.

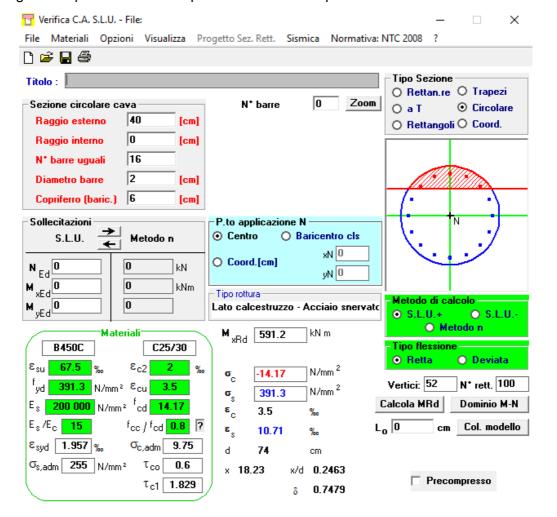
9.3.1 Verifiche strutturali: SLU:A1;M1;R1

Le sollecitazioni massime agenti sui pali risultano:

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

| Titolo: | RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 58 di 170


I valori caratteristici delle azioni trasmesse al singolo palo di fondazione (si considerano le sollecitazioni del palo centrale, ossia quello più sollecitato), risultano:

	TESTA PALO			FUSTO
	N (kN)	Mmax (kNm)		
STR	169.53	75.94	295.28	362.14
GEO	125.58	65.81	255.78	313.73
SLE	125.58	50.63	196.93	241.50

Il palo è lungo 7,00 m ed è armato con ferri longitudinali 16φ20 e staffe φ12/20.

Verifica a flessione: Φ800

Di seguito si riporta la verifica a presso-flessione del palo:

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 59 di 170

	VERIFICA STRUTTURALE PALO		
N [kN]	169.53	(Combo str)	
T [kN]	75.94		
M [kN]	295.28		
Mmax [kNm]	362.14		
Armatura	16 Ø20		
M _{Rd} [kNm]	591.20		
M_{Ed}/M_{Rd}	0.61	<1	VERIFICA SODDISFATTA

Verifica a taglio

Di seguito si riporta la verifica a taglio:

<u>VERIFICA STRUTTURALE PALO-TAGLIO</u>			
N [kN]	169.53	(Combo str)	
V [kN]	75.94		
M [kN]	295.28		
Vmax [kN]	92.97		
Carattersitiche sezione	rettangolare equiva	lente	
α (rad)	0.57		
b (mm)	674.22		
h (mm)	745.54		
d (mm)	616.45		
Materiali			
fck (Mpa)	25.00		
γc	1.50		
fcd (Mpa)	14.17		
fyk (Mpa)	450.00		
γs	1.15		
fyd (Mpa)	391.3		
Verifica senza armatura	a taglio		
Asl (mm²)	5024.00	16 Ø20	
ρι (%)	0.01		

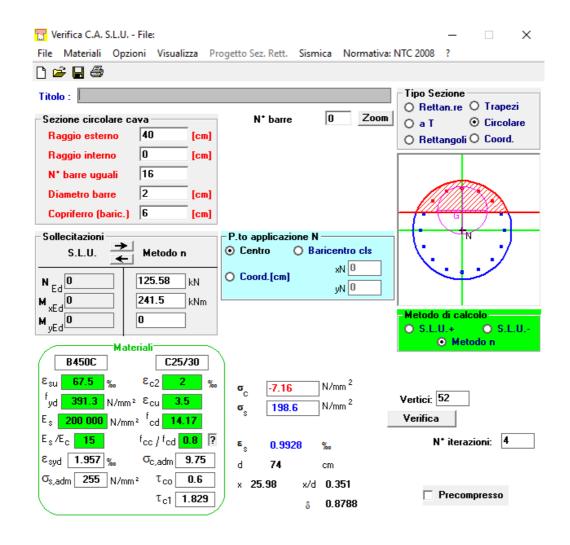
Linea AV/AC VERONA - PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. INOD 00 D I2 RG IM0006 005 A 60 di 170


k	1.32		
vmin	0.27		
Vrd (kN)	254.50		
V _{Ed} /V _{Rd}	0.37	<1	VERIFICA SODDISFATTA
Verifica con armatura a	taglio		
Asw (mm²)	226.00	2 Ø12	
s (mm)	200.00		
α (°)	90.00		
cotgθ	2.50		
cotgα	0.00		
σср (Мра)	0.34		
ας	1.02		
Vrcd (kN)	548.29		
Vrsd (kN)	935.40		
V _{Ed} /V _{Rd}	0.17	<1	VERIFICA SODDISFATTA

Linea AV/AC VERONA – PADOVA 1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA Titolo: RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. INOD 00 D I2 RG IM0006 005 A 61 di 170

9.3.2 Verifiche strutturali: SLE (Rara)

• Verifica tensionale

VERIFICA TENSIONALE PALO			
125.58	(Combo rara)		
50.63			
196.93			
241.50			
16 Ø20			
25			
	50.63 196.93 241.50 16 Ø20		

Linea AV/AC VERONA - PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. INOD 00 D I2 RG IM0006 005 A 62 di 170

f _{yk} [N/mm ²]	450		
$\sigma_{cls,max} [N/mm^2]$	7.16	$< \sigma_{cls,amm} [N/mm^2]$	VERIFICA SODDISFATTA
$\sigma_{acc,max}$ [N/mm ²]	198.60	$< \sigma_{acc,amm} [N/mm^2]$	VERIFICA SODDISFATTA

• Verifica a fessurazione

Dati	Verica fessurazione sezione circolare CIRCOLARE 2/02/2009 N°617 Par.C.4.1.2.2.4.6			
ϑ_{s}	199 N/mm²	Tensione massima armatura tesa sezione fessurata		
Rck	30.0 N/mm ²	Resistenza caratteristica cubica cls		
φι	20 mm	Diametro barre longitudinali		
фѕ	12 mm	Diametro staffe o spirale		
n	16	Numero ferri longitudinali		
С	60 mm	Ricoprimento del calcestruzzo		
D	800 mm	Diametro		
k _t	0.4	kt=0,6 ;0,4 carichi breve durata/lunga durata		
k ₂	0.5	k2=0,5 ;1,0 caso flessione/trazione semplice		
$ \mathbf{k}_1 $	0.8	k1=0,8 ;1,6 barre aderenza migliorata/lisce		
w	0.4 mm	Valore limite apertura fessure		
Dati				
fck	24.9 N/mm²	Resistenza caratteristica cilindrica cls		
i	125 mm	Interasse ferri longitudinali		
A_{ϕ}	314 mm²	Area barra longitudinale		
E _s	210000.0 N/mm ²	Modulo elastico acciaio da c.a		
f _{ctm}	2.6 N/mm²	Resistenza a trazione media cls		
E _{cm}	31447.2 N/mm ²	Modulo elastico medio cls		
α_{e}	6.68	Rapporto Es/Ecm		
f _{cm}	32.9 N/mm²	Resistenza media cls		
$ ho_{ m eff}$	0.0180	Rapporto area acciaio/area efficace		
ϵ_{sm1}	0.000642	Deformazione unitaria media barre di calcolo		

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. INOD 00 D I2 RG IM0006 005 A 63 di 170

w _d /w	0.63	<1	VERIFICA SODDISFATTA	
\mathbf{w}_{d}	0.252 mm	Valore di calcolo apertura fessure		
Δsmax	393.2 mm	Distanza massima tra le fessure		
k4	0.4	Coefficiente		
k ₃	3.4	Coefficiente		
$\epsilon_{\sf sm}$	0.000642	Deformazione unitaria media		
ϵ_{sm2}	0.000567	Deformazione	unitaria media barre valore minimo	

9.3.3 Verifiche geotecniche dei pali_TIPO C

• Verifiche della capacità portante

	MEDIO	MINIMO	
Q _{Rm} [KN]	3399.92	3399.92	Valore di calcolo
Q _{Rk} [KN]	1999.95	1999.95	Valore caratteristico
Q _{Rd comp} [kN]	1354.65	1354.65	Valore di progetto a compressione
Q _{Rd traz} [kN]	1337.93	1337.93	Valore di progetto a trazione

PORTANZA IN COMPRESSIONE						
E _{c,d} [kN]	125.18	125.18 < 1354.65 R _{c,d} [kN]				
$E_{c,d}/R_{c,d}$	9.24%	Verificato				

Dalle verifiche risulta che il palo in calcestruzzo armato della lunghezza prevista risulta idoneo ad accogliere tutti i carichi trasmessi dalle barriere.

• Verifiche ai carichi trasversali

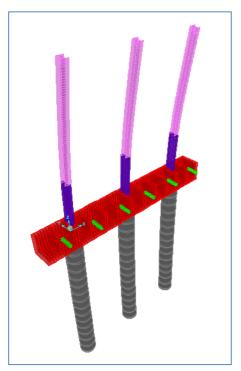
	VERIFICA BROMS TERRENI GRANULARI					
Terreno:				Sabbie e ghiaie		
Falda:				NO		
Caratteristiche medie del terreno				Caratteristiche n	ninime del te	rreno
α	0	inclinazione rilevato		α	0	inclinazione rilevato
φ _{medio} [°]	32			φ _{min} [°]	32	
kp	3.25			kp	3.25	
γ _{medio} [kN/m ³]	18			γ _{min} [kN/m ³]	18	

COMBO GEO A2+M1+R2				
H _{tr,d media} [kN]	222.39			
H _{tr,d min} [kN]	222.39			
H _{RES} [kN]	222.39			
H _{ES} [kN]	65.81			
H _{ES} /H _{RES} 29.59%				

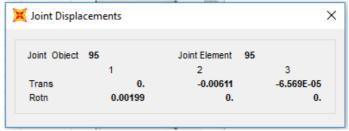
Linea AV/AC VERONA - PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:


RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D 12 RG 1M0006 005 A 64 di 170


Palo corto			_	Palo corto		
H1 [kN]	3444.66			H1 [kN]	3444.66	
Mmax [kNm]	#######	>My		Mmax [kNm]	#######	>My
Palo intermedio			_	Palo intermedio		
H2 [kN]	1232.68			H2 [kN]	1232.68	
Palo lungo			_	Palo lungo		
H3 [kN]	604.91			H3 [kN]	604.91	
H _{media} [kN]	604.91			H _{min} [kN]	604.91	
H _{tr,k media} [kN]	355.83			H _{tr,k min} [kN]	355.83	
H2 [kN] Palo lungo H3 [kN] H _{media} [kN]	604.91			H2 [kN] Palo lungo H3 [kN] H _{min} [kN]	604.91 604.91	

Verificato				
COMBO STR	R A1+M1+R3			
H _{tr,d media} [kN]	273.72			
H _{tr,d min} [kN]	273.72			
H _{RES} [kN]	273.72			
H _{ES} [kN]	75.94			
H _{ES} /H _{RES} 27.74%				
Verificato				

Verifica di deformabilità

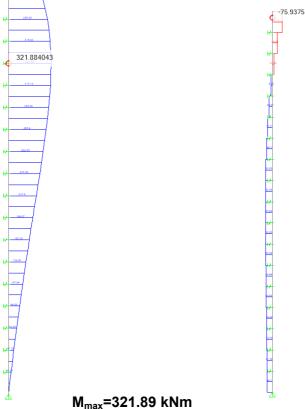
VERIFICA DI DEFORMABILITA'					
Spostamento testa montante da vento	3.57	cm			
Traslazione testa palo	0.611	cm			
Rotazione testa palo	0.00199	[rad]			
Rotazione testa palo	0.1140	[°]			
Spostamento testa montante da rotazione	1.54	cm			
Spostamento totale testa montante E _d	5.11	cm			
Spostamento ammissibile C _d = H/100	6.95	cm			
Verificato Ed <cd -="" cd="0.76</td" ed=""></cd>					

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. IN0D 00 D I2 RG IM0006 005 65 di 170


9.4 BARRIERA H=6.95M - RILEVATO > 5m - ARGILLA

Verifiche strutturali e geotecniche (Argilla)

La determinazione delle sollecitazioni lungo il palo è stata effettuata mediante il software di calcolo Sap2000, considerando il palo immerso nel terreno e soggetto all'azione dei carichi orizzontali e verticali derivanti dalla struttura in elevazione. Il terreno è stato schematizzato mediante una distribuzione di molle di diversa rigidezza a seconda del tipo di terreno che il palo attraversa. Una volta note le sollecitazioni agenti è stata effettuata una verifica a pressoflessione della sezione circolare del palo in c.a. mediante l'utilizzo del software di calcolo VCA-SLU.

9.4.1 Verifiche strutturali: SLU:A1;M1;R1

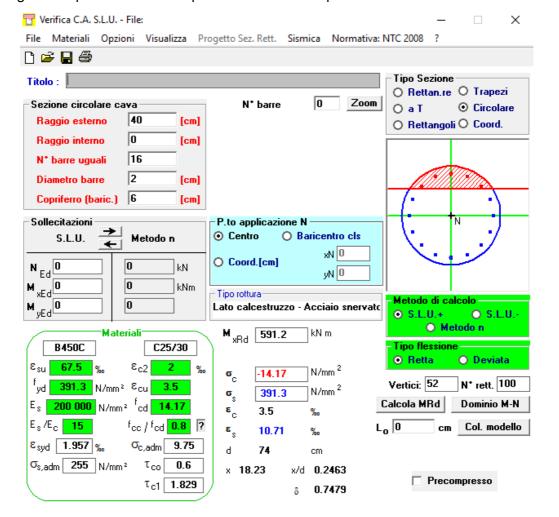
Le sollecitazioni massime agenti sui pali risultano:

V_{max}=75.94 kN

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo: | RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. INOD 00 D I2 RG IM0006 005 A 66 di 170


I valori caratteristici delle azioni trasmesse al singolo palo di fondazione (si considerano le sollecitazioni del palo centrale, ossia quello più sollecitato), risultano:

		FUSTO		
	N (kN)	T (kN)	Mmax (kNm)	
STR	170.01	75.94	295.28	321.89
GEO	125.93	65.81	255.78	278.85
SLE	125.93	50.63	196.93	214.66

Il palo è lungo 9,00 m ed è armato con ferri longitudinali 16φ20 e staffe φ12/20.

Verifica a flessione: Φ800

Di seguito si riporta la verifica a presso-flessione del palo:

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 67 di 170

	VERIFICA STRUTTURALE PALO					
N [kN]	170.01	(Combo str)				
T [kN]	75.94					
M [kN]	295.28					
Mmax [kNm]	321.89					
Armatura	16 Ø20					
M _{Rd} [kNm]	591.20					
M _{Ed} /M _{Rd}	0.54	<1	VERIFICA SODDISFATTA			

Verifica a taglio

Di seguito si riporta la verifica a taglio:

Di seguito si riporta	la vormoa a tagno.	
	<u>VERIFICA STRU</u>	JTTURALE PALO-TAGLIO
N [kN]	170.01	(Combo str)
V [kN]	75.94	
M [kN]	295.28	
Vmax [kN]	75.94	
Carattersitiche sezio	ne rettangolare equiv	alente
α (rad)	0.57	
b (mm)	674.22	
h (mm)	745.54	
d (mm)	616.45	
Materiali		
fck (Mpa)	25.00	
γc	1.50	
fcd (Mpa)	14.17	
fyk (Mpa)	450.00	
γs	1.15	
fyd (Mpa)	391.3	
Verifica senza armat	ura a taglio	
Asl (mm ²)	5024.00	16 Ø20

0.011.32

Linea AV/AC VERONA - PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

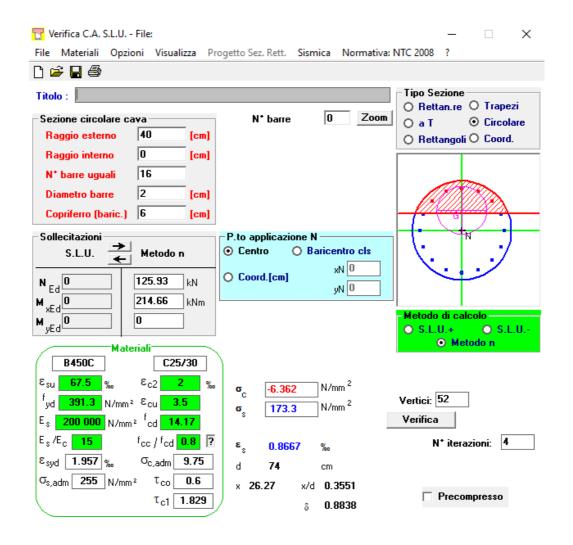
PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. INOD 00 D I2 RG IM0006 005 A 68 di 170

V_{Ed}/V_{Rd}	0.14	<1	VERIFICA SODDISFATTA
Vrsd (kN)	935.46		
Vrcd (kN)	548.29		
ας	1.02		
σср (Мра)	0.34		
cotgα	0.00		
$cotg\theta$	2.50		
α (°)	90.00		
s (mm)	200.00		
Asw (mm²)	226.00	2 Ø12	
Verifica con armatura a	taglio		
V_{Ed}/V_{Rd}	0.30	<1	VERIFICA SODDISFATTA
Vrd (kN)	254.56		
vmin	0.27		

Linea AV/AC VERONA – PADOVA 1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA Titolo: RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

DOCUMENTO

IM0006 005


REV.

Α

69 di 170

9.4.2 Verifiche strutturali: SLE (Rara)

Verifica tensionale

PROGETTO

IN0D

LOTTO

00

CODIFICA

D I2 RG

<u>VERIFICA TENSIONALE PALO</u>				
N [kN]	125.93	(Combo rara)		
T [kN]	50.63			
M [kN]	196.93			
Mmax [kNm]	214.66			
Armatura	16 Ø20			
f _{ck} [N/mm ²]	25			

Linea AV/AC VERONA - PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 70 di 170

f _{yk} [N/mm ²]	450		
$\sigma_{cls,max} [N/mm^2]$	6.36	$< \sigma_{cls,amm} [N/mm^2]$	VERIFICA SODDISFATTA
$\sigma_{acc,max}$ [N/mm ²]	173.30	$< \sigma_{acc,amm} [N/mm^2]$	VERIFICA SODDISFATTA

• Verifica a fessurazione

Dati	Verica fessurazione sezione circolare CIRCOLARE 2/02/2009 N°617 Par.C.4.1.2.2.4.6			
ϑ_{s}	173 N/mm²	Tensione massima armatura tesa sezione fessurata		
Rck	30.0 N/mm ²	Resistenza caratteristica cubica cls		
φι	20 mm	Diametro barre longitudinali		
фѕ	12 mm	Diametro staffe o spirale		
n	16	Numero ferri longitudinali		
С	60 mm	Ricoprimento del calcestruzzo		
D	800 mm	Diametro		
k _t	0.4	kt=0,6 ;0,4 carichi breve durata/lunga durata		
k ₂	0.5	k2=0,5 ;1,0 caso flessione/trazione semplice		
k_1	0.8	k1=0,8 ;1,6 barre aderenza migliorata/lisce		
w	0.4 mm	Valore limite apertura fessure		
Dati				
fck	24.9 N/mm²	Resistenza caratteristica cilindrica cls		
i	125 mm	Interasse ferri longitudinali		
A_{ϕ}	314 mm²	Area barra longitudinale		
E _s	210000.0 N/mm ²	Modulo elastico acciaio da c.a		
f _{ctm}	2.6 N/mm ²	Resistenza a trazione media cls		
E _{cm}	31447.2 N/mm ²	Modulo elastico medio cls		
$\alpha_{\rm e}$	6.68	Rapporto Es/Ecm		
f _{cm}	32.9 N/mm²	Resistenza media cls		
$ ho_{ m eff}$	0.0180	Rapporto area acciaio/area efficace		
ϵ_{sm1}	0.000522	Deformazione unitaria media barre di calcolo		

Linea AV/AC VERONA - PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA INOD 00 D I2 RG

DOCUMENTO REV. IM0006 005 A

Pag. **71 di 170**

w _d /w	0.51	<1	VERIFICA SODDISFATTA	
W_d	0.205 mm	Valore di calcolo apertura fessure		
Δsmax	393.2 mm	Distanza massima tra le fessure		
k4	0.4	Coefficiente		
k ₃	3.4	Coefficiente		
$\epsilon_{\sf sm}$	0.000522	Deformazione unitaria media		
ϵ_{sm2}	0.000495	Deformazione	unitaria media barre valore minimo	

9.4.3 Verifiche geotecniche dei pali_TIPO D

• Verifiche della capacità portante

	MEDIO	MINIMO	
Q _{Rm} [KN]	904.78	904.78	Valore di calcolo
Q _{Rk} [KN]	532.22	532.22	Valore caratteristico
Q _{Rd comp} [kN]	335.38	335.38	Valore di progetto a compressione
Q _{Rd traz} [kN]	445.74	445.74	Valore di progetto a trazione

PORTANZA IN COMPRESSIONE					
E _{c,d} [kN] 125.93 < 335.38 R _{c,d} [kN]					
$E_{c,d}/R_{c,d}$	37.55%	Verificato			

Dalle verifiche risulta che il palo in calcestruzzo armato della lunghezza prevista risulta idoneo ad accogliere tutti i carichi trasmessi dalle barriere.

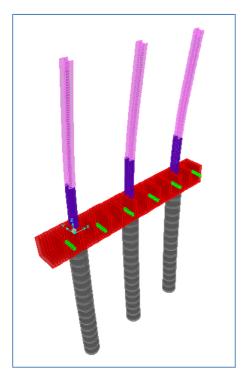
• Verifiche ai carichi trasversali

VERIFICA BROMS TERRENI COESIVI						
Terreno:	Argille					
Caratteristiche medie o	<u>lel terreno</u>		-	Caratteristiche mini	me del terreno	
Parametri del terreno				Parametri del terreno		
Cu _{media} [kPa]	40			Cu _{min} [kPa]	40	
Palo corto			-	Palo corto		
H1 [kN]	2246.40			H1 [kN]	2246.40	
Mmax [kNm]	11456.64	>My		Mmax [kNm]	11456.64	

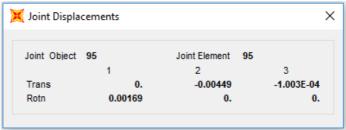
COMBO GEO A2+M1+R2			
H _{tr,d media} [kN]	201.88		
H _{tr,d min} [kN]	201.88		
H _{RES} [kN]	201.88		
H _{ES} [kN]	65.81		
H _{ES} /H _{RES} 32.60%			
Verificato			

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:


RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 72 di 170


Palo intermedio H2 [kN]	851.45	- Palo intermed	<u>dio</u> 851.45
Palo lungo H3 [kN]	549.11	Palo lungo H3 [kN]	549.11
H _{media} [kN] H _{tr,k media} [kN]	549.11 323.00	H _{min} [kN] H _{tr,k min} [kN]	549.11 323.00

COMBO STR A1+M1+R3			
H _{tr,d media} [kN] 248.46			
$H_{tr,d\;min}\left[kN\right]$	248.46		
H _{RES} [kN]	248.46		
H _{ES} [kN]	75.94		
H _{ES} /H _{RES} 30.56%			
Verificato			

• <u>Verifica di deformabilità</u>

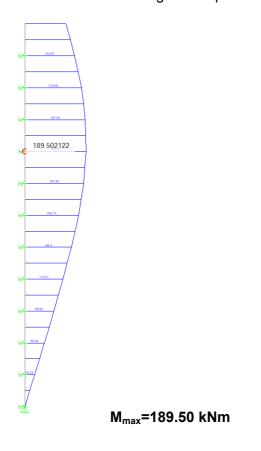
VERIFICA DI DEFORMABILITA'					
Spostamento testa montante da vento	3.57	cm			
Traslazione testa palo	0.449	cm			
Rotazione testa palo	0.00169	[rad]			
Rotazione testa palo	0.0968	[°]			
Spostamento testa montante da rotazione	1.31	cm			
Spostamento totale testa montante E _d	4.88	cm			
Spostamento ammissibile C _d = H/100	6.95	cm			
Verificato Ed <cd -="" cd="0.72</td" ed=""><td></td><td>·</td></cd>		·			

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 73 di 170


9.5 BARRIERA H=4.95M - RILEVATO 4m <H< 5m - SABBIA

Verifiche strutturali e geotecniche (Sabbia bagnata)

La determinazione delle sollecitazioni lungo il palo è stata effettuata mediante il software di calcolo Sap2000, considerando il palo immerso nel terreno e soggetto all'azione dei carichi orizzontali e verticali derivanti dalla struttura in elevazione. Il terreno è stato schematizzato mediante una distribuzione di molle di diversa rigidezza a seconda del tipo di terreno che il palo attraversa. Una volta note le sollecitazioni agenti è stata effettuata una verifica a pressoflessione della sezione circolare del palo in c.a. mediante l'utilizzo del software di calcolo VCA-SLU.

9.5.1 Verifiche strutturali: SLU:A1;M1;R1

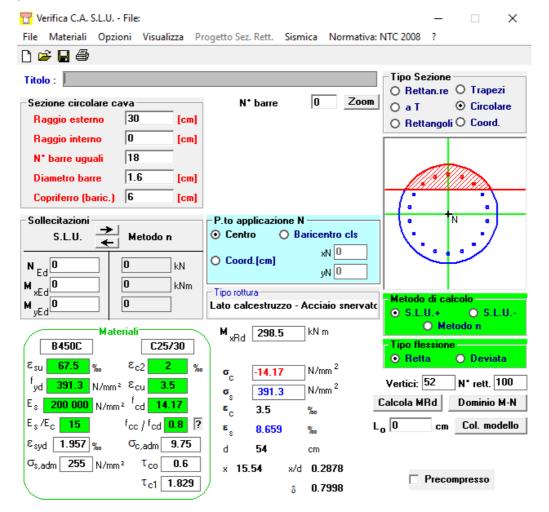
Le sollecitazioni massime agenti sui pali risultano:

V_{max}=60.47 kN

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

| Titolo: | RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 74 di 170


I valori caratteristici delle azioni trasmesse al singolo palo di fondazione (si considerano le sollecitazioni del palo centrale, ossia quello più sollecitato), risultano:

		TESTA PALO					
	N (kN)	M (kNm)	Mmax (kNm)				
STR	158.17	53.46	154.62	189.48			
GEO	117.16	46.33	133.87	164.10			
SLE	117.16	35.64	103.15	126.38			

Il palo è lungo 6,00 m ed è armato con ferri longitudinali 18∮16 e staffe ∮12/20.

Verifica a flessione: Φ600

Di seguito si riporta la verifica a presso-flessione del palo:

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 75 di 170

VERIFICA STRUTTURALE PALO-FLESSIONE						
N [kN]	158.17	(Combo str)				
T [kN]	53.46					
M [kN]	154.62					
Mmax [kNm]	189.48					
Armatura	18 Ø16					
M _{Rd} [kNm]	298.50					
M _{Ed} /M _{Rd}	0.63	<1	VERIFICA SODDISFATTA			

Verifica a taglio

Di seguito si riporta la verifica a taglio:

	VERIFICA STRUTTURALE PALO-TAGLIO						
N [kN]	172.48	(Combo str)					
V [kN]	15.22						
M [kN]	189.48						
Vmax [kN]	60.49						
Carattersitiche sezione re	ettangolare equiva	lente					
α (rad)	0.53						
b (mm)	505.56						
h (mm)	559.27						
d (mm)	452.79						
Materiali							
fck (Mpa)	25.00						
γς	1.50						
fcd (Mpa)	14.17						
fyk (Mpa)	450.00						
γs	1.15						
fyd (Mpa)	391.3						
Verifica senza armatura a taglio							
Asl (mm²)	3618.00	18 Ø16					
ρι (%)	0.02						

Linea AV/AC VERONA - PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

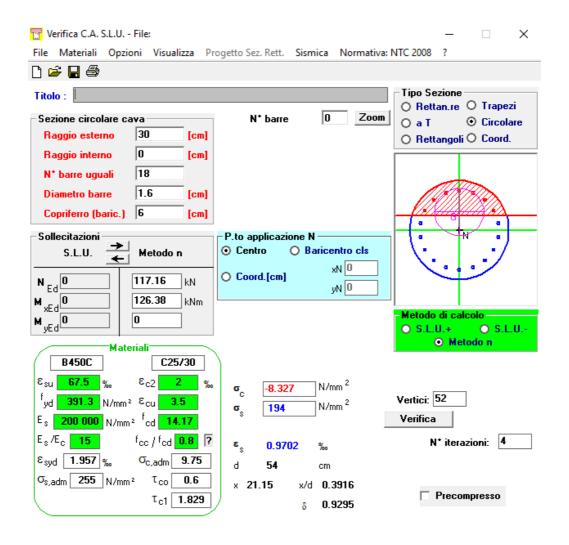
Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 76 di 170

k vmin Vrd (kN)	1.44 0.30 203.97		
V _{Ed} /V _{Rd}	0.30	<1	VERIFICA SODDISFATTA
Verifica con armatura a t	taglio		
Asw (mm ²)	226.00	2 Ø12	
s (mm)	200.00		
α (°)	90.00		
cotgθ	2.50		
cotga	0.00		
σср (Мра)	0.61		
ας	1.04		
Vrcd (kN)	402.72		
Vrsd (kN)	524.88		
V_{Ed}/V_{Rd}	0.15	<1	VERIFICA SODDISFATTA

Linea AV/AC VERONA – PADOVA 1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA Titolo: RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag.


IM0006 005

Α

77 di 170

9.5.2 Verifiche strutturali: SLE (Rara)

• Verifica tensionale

IN0D

00

D I2 RG

<u>VERIFICA TENSIONALE PALO</u>						
117.16	(Combo rara)					
35.64						
103.15						
126.38						
18 Ø16						
25						
	35.64 103.15 126.38 18 Ø16					

Linea AV/AC VERONA - PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 78 di 170

f _{yk} [N/mm²]	450		
$\sigma_{cls,max} [N/mm^2]$	8.33	$< \sigma_{cls,amm} [N/mm^2]$	VERIFICA SODDISFATTA
$\sigma_{acc,max}$ [N/mm ²]	194.00	$< \sigma_{acc,amm} [N/mm^2]$	VERIFICA SODDISFATTA

• Verifica a fessurazione

Dati	Verica fessurazione sezione circolare CIRCOLARE 2/02/2009 N°617 Par.C.4.1.2.2.4.6				
ϑ_{s}	194 N/mm²	Tensione massima armatura tesa sezione fessurata			
Rck	30.0 N/mm²	Resistenza caratteristica cubica cls			
φι	16 mm	Diametro barre longitudinali			
фѕ	12 mm	Diametro staffe o spirale			
n	18	Numero ferri longitudinali			
С	60 mm	Ricoprimento del calcestruzzo			
D	600 mm	Diametro			
k _t	0.4	kt=0,6 ;0,4 carichi breve durata/lunga durata			
k ₂	0.5	k2=0,5 ;1,0 caso flessione/trazione semplice			
k_1	0.8	k1=0,8 ;1,6 barre aderenza migliorata/lisce			
w	0.4 mm	Valore limite apertura fessure			
Dati					
fck	24.9 N/mm²	Resistenza caratteristica cilindrica cls			
i	77 mm	Interasse ferri longitudinali			
A_{ϕ}	201 mm²	Area barra longitudinale			
E _s	210000.0 N/mm²	Modulo elastico acciaio da c.a			
f _{ctm}	2.6 N/mm ²	Resistenza a trazione media cls			
E _{cm}	31447.2 N/mm ²	Modulo elastico medio cls			
α_{e}	6.68	Rapporto Es/Ecm			
f _{cm}	32.9 N/mm ²	Resistenza media cls			
$ ho_{ m eff}$	0.0193	Rapporto area acciaio/area efficace			
ϵ_{sm1}	0.000638	Deformazione unitaria media barre di calcolo			

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	Pag.
IN0D	00	D I2 RG	IM0006 005	Α	79 di 170

ϵ_{sm2}	0.000554	Deformazione	unitaria media barre valore minimo	
ϵ_{sm}	0.000638	Deformazione unitaria media		
k ₃	3.4	Coefficiente		
k4	0.4	Coefficiente		
Δsmax	345.3 mm	Distanza massima tra le fessure		
\mathbf{w}_{d}	0.220 mm	Valore di calcolo apertura fessure		
w _d /w	0.55	<1	VERIFICA SODDISFATTA	

9.5.3 Verifiche geotecniche dei pali_TIPO E

• Verifiche della capacità portante

A favore di sicurezza nel calcolo della capacità portante dei pali, è sempre stata trascurata l'interazione terreno-struttura per il tratto di fusto del palo immerso nel rilevato, in quanto si è ritenuto che considerata la scarpa del rilevato stradale il terreno per tale altezza non offra resistenza passiva alle azioni prodotte dal palo.

	MEDIO	MINIMO		
Q _{Rm} [KN]	1000.81	1000.81	Valore di calcolo	
Q _{Rk} [KN]	588.71	588.71	Valore caratteristico	
Q _{Rd comp} [kN]	394.13	394.13	Valore di progetto a compressione	
Q _{Rd traz} [kN]	410.36	410.36	Valore di progetto a trazione	

PORTANZA IN COMPRESSIONE							
E _{c,d} [kN]	E _{c,d} [kN] 117.16 < 394.13 R _{c,d} [kN]						
$E_{c,d}/R_{c,d}$	29.73%	Verificato					

Dalle verifiche risulta che il palo in calcestruzzo armato della lunghezza prevista risulta idoneo ad accogliere tutti i carichi trasmessi dalle barriere.

• Verifiche ai carichi trasversali

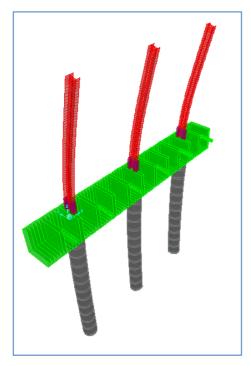
-						
VERIFICA BROMS TERRENI GRANULARI						
Terreno:		Sabbie e ghiaie				
Falda:				SI		
Caratteristiche m	edie del ter	rreno	_	Caratteristiche minime del terreno		
α	0	inclinazione rilevato		lpha 0 inclinazione rilevato		

COMBO GEO A2+M1+R2		
H _{tr,d media} [kN]	98.54	

Linea AV/AC VERONA - PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:


RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

φ _{medio} [°]	32			φ _{min} [°]	32	
kp	3.25			kp	3.25	
γ _{medio} [kN/m ³]	8.19			γ _{min} [kN/m ³]	8.19	
Palo corto				Palo corto		
H1 [kN]	863.62			H1 [kN]	863.62	
Mmax [kNm]	3454.50	>My		Mmax [kNm]	3454.50	>My
Palo intermedio			-	Palo intermedio		
H2 [kN]	337.62			H2 [kN]	337.62	
Palo lungo			-	Palo lungo		
H3 [kN]	268.03			H3 [kN]	268.03	
H _{media} [kN]	268.03			H _{min} [kN]	268.03	
H _{tr,k media} [kN]	157.67			H _{tr,k min} [kN]	157.67	

H _{tr,d min} [kN]	98.54		
H _{RES} [kN]	98.54		
H _{ES} [kN]	46.33		
H _{ES} /H _{RES}	47.02%		
Verificato			

COMBO STR A1+M1+R3				
$H_{tr,d\;media}\left[kN\right]$	121.28			
H _{tr,d min} [kN]	121.28			
H _{RES} [kN]	121.28			
H _{ES} [kN]	53.46			
H _{ES} /H _{RES} 44.08%				
Verificato				

<u>Verifica di deformabilità</u>

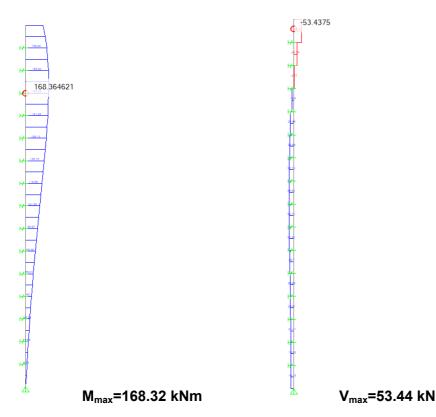
VERIFICA DI DEFORMABILITA'					
Spostamento testa montante da vento	1.88	cm			
Traslazione testa palo	0.623	cm			
Rotazione testa palo	0.00261	[rad]			
Rotazione testa palo	0.1495	[°]			
Spostamento testa montante da rotazione	1.50	cm			
Spostamento totale testa montante E _d	3.38	cm			
Spostamento ammissibile C _d = H/100	4.75	cm			
Verificato Ed <cd -="" cd="0.71</td" ed=""></cd>					

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 81 di 170


9.6 BARRIERA H=4.95M - RILEVATO 4m <H< 5m - ARGILLA

Verifiche strutturali e geotecniche (Argilla)

La determinazione delle sollecitazioni lungo il palo è stata effettuata mediante il software di calcolo Sap2000, considerando il palo immerso nel terreno e soggetto all'azione dei carichi orizzontali e verticali derivanti dalla struttura in elevazione. Il terreno è stato schematizzato mediante una distribuzione di molle di diversa rigidezza a seconda del tipo di terreno che il palo attraversa. Una volta note le sollecitazioni agenti è stata effettuata una verifica a pressoflessione della sezione circolare del palo in c.a. mediante l'utilizzo del software di calcolo VCA-SLU.

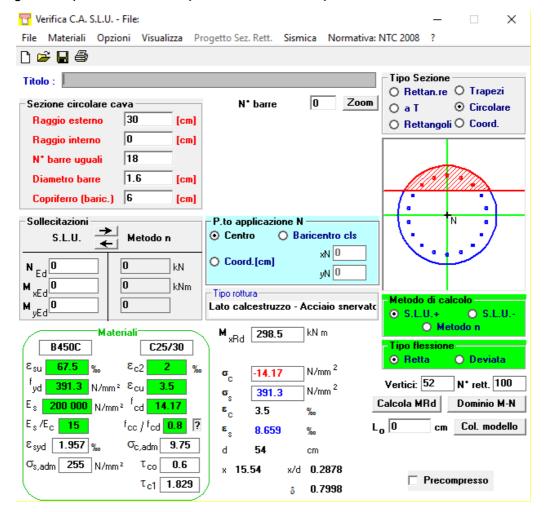
9.6.1 Verifiche strutturali: SLU:A1;M1;R1

Le sollecitazioni massime agenti sui pali risultano:

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo: RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 82 di 170


I valori caratteristici delle azioni trasmesse al singolo palo di fondazione (si considerano le sollecitazioni del palo centrale, ossia quello più sollecitato), risultano:

			FUSTO		
		N (kN)	T (kN)	M (kNm)	Mmax (kNm)
ST	R	159.31	53.44	154.66	168.32
GE	:0	118.00	46.31	133.91	145.76
SL	.E	118.00	35.63	103.18	112.28

Il palo è lungo 8,00 m ed è armato con ferri longitudinali 18∮16 e staffe ∮12/20.

Verifica a flessione: Φ600

Di seguito si riporta la verifica a presso-flessione del palo:

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. INOD 00 D I2 RG IM0006 005 A 83 di 170

	VERIFICA STRUTTURALE PALO			
N [kN]	159.31	(Combo str)		
T [kN]	53.44			
M [kN]	154.66			
Mmax [kNm]	168.32			
Armatura	18 Ø16			
M _{Rd} [kNm]	298.50			
M_{Ed}/M_{Rd}	0.56	<1	VERIFICA SODDISFATTA	

Verifica a taglio

Di seguito si riporta la verifica a taglio:

<u>VERIFICA STRUTTURALE PALO-TAGLIO</u>							
N [kN]	159.31	(Combo str)					
V [kN]	53.44						
M [kN]	154.66						
Vmax [kN]	53.44						
Carattersitiche sezione re	ettangolare equiva	lente					
α (rad)	0.53						
b (mm)	505.56						
h (mm)	559.27						
d (mm)	452.79						
Materiali							
fck (Mpa)	25.00						
γς	1.50						
fcd (Mpa)	14.17						
fyk (Mpa)	450.00						
γs	1.15						
fyd (Mpa)	391.3						
Verifica senza armatura a taglio							
Asl (mm²)	3618.00	18 Ø16					
ρι (%)	0.02						

Linea AV/AC VERONA - PADOVA

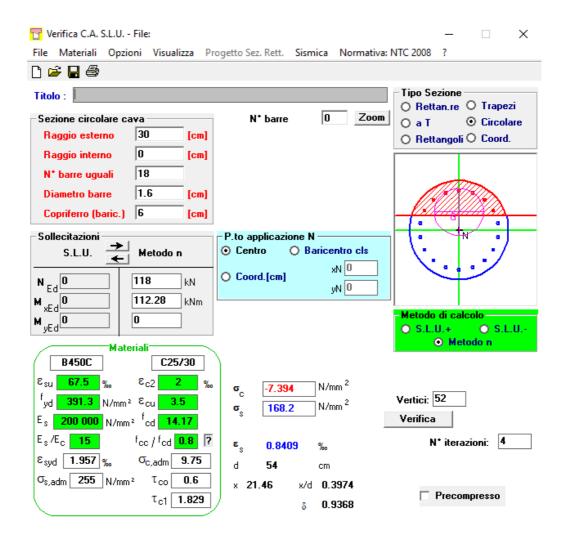
1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. INOD 00 D I2 RG IM0006 005 A 84 di 170

k	1.44		
vmin	0.30		
Vrd (kN)	202.37		
V _{Ed} /V _{Rd}	0.26	<1	VERIFICA SODDISFATTA
Verifica con armatura a	taglio		
Asw (mm ²)	226.00	2 Ø12	
s (mm)	200.00		
α (°)	90.00		
$cotg\theta$	2.50		
cotga	0.00		
σср (Мра)	0.56		
αc	1.04		
Vrcd (kN)	402.72		
Vrsd (kN)	523.22		
V_{Ed}/V_{Rd}	0.13	<1	VERIFICA SODDISFATTA


Linea AV/AC VERONA – PADOVA 1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA Titolo: RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag.

IM0006 005

85 di 170

9.6.2 Verifiche strutturali: SLE (Rara)

• Verifica tensionale

IN0D

00

D I2 RG

<u>VERIFICA TENSIONALE PALO</u>					
118.00	(Combo rara)				
35.63					
103.18					
112.28					
18 Ø16					
25					
	35.63 103.18 112.28 18 Ø16				

Linea AV/AC VERONA - PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. INOD 00 D I2 RG IM0006 005 A 86 di 170

f _{yk} [N/mm ²]	450		
$\sigma_{cls,max}$ [N/mm ²]	7.40	$< \sigma_{cls,amm} [N/mm^2]$	VERIFICA SODDISFATTA
$\sigma_{acc,max}$ [N/mm ²]	168.20	$< \sigma_{acc,amm} [N/mm^2]$	VERIFICA SODDISFATTA

• Verifica a fessurazione

Dati	<u>CIRC</u>	Verica fessurazione sezione circolare COLARE 2/02/2009 N°617 Par.C.4.1.2.2.4.6
ϑ_{s}	168 N/mm²	Tensione massima armatura tesa sezione fessurata
Rck	30.0 N/mm²	Resistenza caratteristica cubica cls
Фі	18 mm	Diametro barre longitudinali
фѕ	12 mm	Diametro staffe o spirale
n	16	Numero ferri longitudinali
С	60 mm	Ricoprimento del calcestruzzo
D	600 mm	Diametro
k _t	0.4	kt=0,6 ;0,4 carichi breve durata/lunga durata
k ₂	0.5	k2=0,5 ;1,0 caso flessione/trazione semplice
k_1	0.8	k1=0,8 ;1,6 barre aderenza migliorata/lisce
w	0.4 mm	Valore limite apertura fessure
Dati		
fck	24.9 N/mm²	Resistenza caratteristica cilindrica cls
i	86 mm	Interasse ferri longitudinali
A_{ϕ}	254 mm²	Area barra longitudinale
E _s	210000.0 N/mm²	Modulo elastico acciaio da c.a
f _{ctm}	2.6 N/mm²	Resistenza a trazione media cls
E _{cm}	31447.2 N/mm²	Modulo elastico medio cls
α_{e}	6.68	Rapporto Es/Ecm
f _{cm}	32.9 N/mm²	Resistenza media cls
$ ho_{ ext{eff}}$	0.0214	Rapporto area acciaio/area efficace
ϵ_{sm1}	0.000541	Deformazione unitaria media barre di calcolo

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

87 di 170

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. INOD 00 D I2 RG IM0006 005 A

w _d /w	0.47	<1	VERIFICA SODDISFATTA
\mathbf{W}_{d}	0.188 mm	Valore di calcolo apertura fessure	
Δsmax	346.7 mm	Distanza massima tra le fessure	
k4	0.4	Coefficiente	
k_3	3.4	Coefficiente	
$\epsilon_{\sf sm}$	0.000541	0.000541 Deformazione unitaria media	
ϵ_{sm2}	0.000481	Deformazione unitaria media barre valore minimo	

9.6.3 Verifiche geotecniche dei pali_TIPO F

• Verifiche della capacità portante

A favore di sicurezza nel calcolo della capacità portante dei pali, è sempre stata trascurata l'interazione terreno-struttura per il tratto di fusto del palo immerso nel rilevato, in quanto si è ritenuto che considerata la scarpa del rilevato stradale il terreno per tale altezza non offra resistenza passiva alle azioni prodotte dal palo.

	MEDIO	MINIMO	
Q _{Rm} [KN]	584.34	584.34	Valore di calcolo
Q _{Rk} [KN]	343.73	343.73	Valore caratteristico
Q _{Rd comp} [kN]	221.22	221.22	Valore di progetto a compressione
Q _{Rd traz} [kN]	271.38	271.38	Valore di progetto a trazione

PORTANZA IN COMPRESSIONE				
E _{c,d} [kN]	118.00	<	221.22	R _{c,d} [kN]
$E_{c,d}/R_{c,d}$	53.34%	Verificato		

Dalle verifiche risulta che il palo in calcestruzzo armato della lunghezza prevista risulta idoneo ad accogliere tutti i carichi trasmessi dalle barriere.

Verifiche ai carichi trasversali

VERIFICA BROMS TERRENI COESIVI			
Terreno:	Argille		
Caratteristiche medie del terreno			Caratteristiche minime del terreno

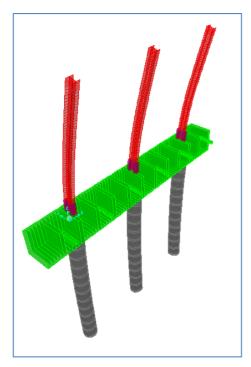
COMBO GEO A2+M1+R2

Linea AV/AC VERONA - PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE


PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. INOD 00 D I2 RG IM0006 005 A 88 di 170

Parametri del terreno				Parametri del terreno	
Cu _{media} [kPa]	40			Cu _{min} [kPa]	40
Palo corto			-	Palo corto	
H1 [kN]	1533.60			H1 [kN]	1533.60
Mmax [kNm]	6824.52	>My		Mmax [kNm]	6824.52
Palo intermedio			-	Palo intermedio	
H2 [kN]	588.67			H2 [kN]	588.67
Palo lungo			-	Palo lungo	
H3 [kN]	349.38			H3 [kN]	349.38
H _{media} [kN]	349.38			H _{min} [kN]	349.38
H _{tr,k media} [kN]	205.52			H _{tr,k min} [kN]	205.52

H _{tr,d media} [kN]	128.45	
H _{tr,d min} [kN]	128.45	
H _{RES} [kN]	128.45	
H _{ES} [kN]	46.31	
H _{ES} /H _{RES}	36.06%	
Verificato		

COMBO STR A1+M1+R3		
$H_{tr,d\;media}\left[kN\right]$	158.09	
$H_{tr,d min} [kN]$	158.09	
H _{RES} [kN]	158.09	
H _{ES} [kN]	53.44	
H _{ES} /H _{RES} 33.80%		
Verificato		

<u>Verifica di deformabilità</u>

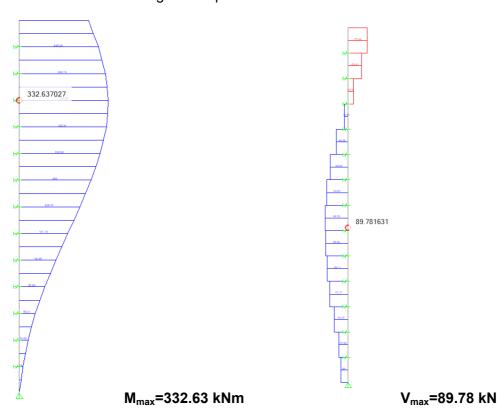
VERIFICA DI DEFORMABILITA'				
Spostamento testa montante da vento	1.88	cm		
Traslazione testa palo	0.513	cm		
Rotazione testa palo	0.00234	[rad]		
Rotazione testa palo	0.1341	[°]		
Spostamento testa montante da rotazione	1.35	cm		
Spostamento totale testa montante E _d	3.22	cm		
Spostamento ammissibile C _d = H/100 4.95 cm				
Verificato Ed <cd -="" cd="0.68</td" ed=""></cd>				

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 89 di 170


9.7 BARRIERA H=6.95M - RILEVATO 4m <H< 5m - SABBIA

Verifiche strutturali e geotecniche (Sabbia bagnata)

La determinazione delle sollecitazioni lungo il palo è stata effettuata mediante il software di calcolo Sap2000, considerando il palo immerso nel terreno e soggetto all'azione dei carichi orizzontali e verticali derivanti dalla struttura in elevazione. Il terreno è stato schematizzato mediante una distribuzione di molle di diversa rigidezza a seconda del tipo di terreno che il palo attraversa. Una volta note le sollecitazioni agenti è stata effettuata una verifica a pressoflessione della sezione circolare del palo in c.a. mediante l'utilizzo del software di calcolo VCA-SLU.

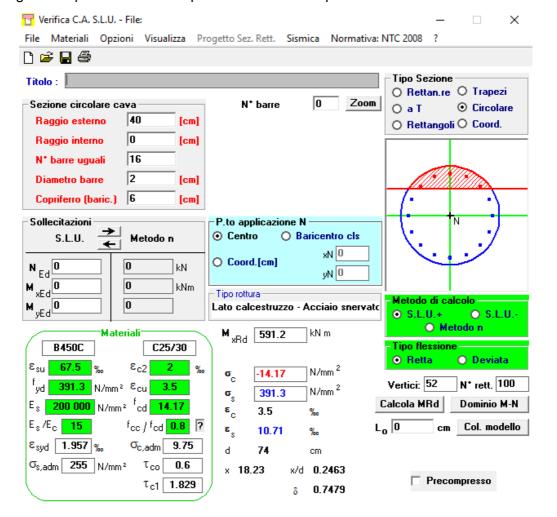
9.7.1 Verifiche strutturali: SLU:A1;M1;R1

Le sollecitazioni massime agenti sui pali risultano:

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo: | RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 90 di 170


I valori caratteristici delle azioni trasmesse al singolo palo di fondazione (si considerano le sollecitazioni del palo centrale, ossia quello più sollecitato), risultano:

	TESTA PALO			FUSTO
	N (kN) T (kN) M (kNm) Mmax (kN			
STR	166.67	75.94	295.28	332.59
GEO	123.46	65.81	255.78	288.13
SLE	123.46	50.63	196.93	221.80

Il palo è lungo 7,00 m ed è armato con ferri longitudinali 16φ20 e staffe φ12/20.

Verifica a flessione: Φ800

Di seguito si riporta la verifica a presso-flessione del palo:

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. INOD 00 D I2 RG IM0006 005 A 91 di 170

	VERIFICA	VERIFICA STRUTTURALE PALO		
N [kN]	166.67	(Combo str)		
T [kN]	75.94			
M [kN]	295.28			
Mmax [kNm]	332.59			
Armatura	16 Ø20			
M _{Rd} [kNm]	591.20			
M_{Ed}/M_{Rd}	0.56	<1	VERIFICA SODDISFATTA	

Verifica a taglio

Di seguito si riporta la verifica a taglio:

<u>VERIFICA STRUTTURALE PALO-TAGLIO</u>				
N [kN]	166.67	(Combo str)		
V [kN]	75.94			
M [kN]	295.28			
Vmax [kN]	89.78			
Carattersitiche sezione i	ettangolare equiv	alente		
α (rad)	0.57			
b (mm)	674.22			
h (mm)	745.54			
d (mm)	616.45			
Materiali				
fck (Mpa)	25.00			
γc	1.50			
fcd (Mpa)	14.17			
fyk (Mpa)	450.00			
γs	1.15			
fyd (Mpa)	391.3			
Verifica senza armatura a taglio				
Asl (mm²)	5024.00	16 Ø20		
ρι (%)	0.01			

Linea AV/AC VERONA - PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

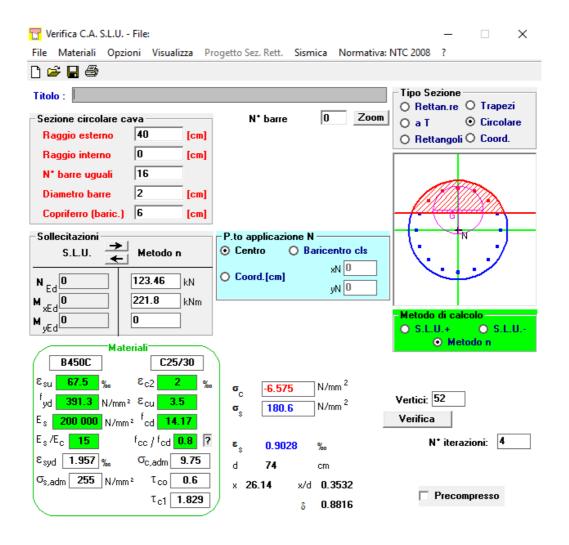
RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. INOD 00 D I2 RG IM0006 005 A 92 di 170

k vmin	1.32 0.27		
Vrd (kN) V _{Ed} /V _{Rd}	254.15 0.35	<1	VERIFICA SODDISFATTA
Verifica con armatura a	taglio		
Asw (mm²)	226.00	2 Ø12	
s (mm)	200.00		
α (°)	90.00		
cotgθ	2.50		
cotga	0.00		
σср (Мра)	0.33		
ας	1.02		
Vrcd (kN)	548.29		
Vrsd (kN)	935.03		
V _{Ed} /V _{Rd}	0.16	<1	VERIFICA SODDISFATTA

Linea AV/AC VERONA – PADOVA 1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA Titolo: RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

DOCUMENTO


IM0006 005

REV.

93 di 170

9.7.2 Verifiche strutturali: SLE (Rara)

Verifica tensionale

PROGETTO

IN0D

LOTTO

00

CODIFICA

D I2 RG

<u>VERIFICA TENSIONALE PALO</u>					
123.46	(Combo rara)				
50.63					
196.93					
221.80					
16 Ø20					
25					
	50.63 196.93 221.80 16 Ø20				

Linea AV/AC VERONA - PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. INOD 00 D I2 RG IM0006 005 A 94 di 170

f _{yk} [N/mm ²]	450		
$\sigma_{cls,max}$ [N/mm ²]	6.58	$< \sigma_{cls,amm} [N/mm^2]$	VERIFICA SODDISFATTA
$\sigma_{acc,max}$ [N/mm ²]	180.60	$< \sigma_{acc,amm} [N/mm^2]$	VERIFICA SODDISFATTA

Verifica a fessurazione

Dati	Verica fessurazione sezione circolare CIRCOLARE 2/02/2009 N°617 Par.C.4.1.2.2.4.6					
ϑ_{s}	181 N/mm²	Tensione massima armatura tesa sezione fessurata				
Rck	30.0 N/mm ²	Resistenza caratteristica cubica cls				
φι	20 mm	Diametro barre longitudinali				
фѕ	12 mm	Diametro staffe o spirale				
n	16	Numero ferri longitudinali				
С	60 mm	Ricoprimento del calcestruzzo				
D	800 mm	Diametro				
k _t	0.4	kt=0,6 ;0,4 carichi breve durata/lunga durata				
k ₂	0.5	k2=0,5 ;1,0 caso flessione/trazione semplice				
k_1	0.8	k1=0,8 ;1,6 barre aderenza migliorata/lisce				
w	0.4 mm	Valore limite apertura fessure				
Dati						
fck	24.9 N/mm²	Resistenza caratteristica cilindrica cls				
i	125 mm	Interasse ferri longitudinali				
A_{ϕ}	314 mm²	Area barra longitudinale				
E _s	210000.0 N/mm ²	Modulo elastico acciaio da c.a				
f _{ctm}	2.6 N/mm ²	Resistenza a trazione media cls				
E _{cm}	31447.2 N/mm ²	Modulo elastico medio cls				
α_{e}	6.68	Rapporto Es/Ecm				
f _{cm}	32.9 N/mm²	Resistenza media cls				
$ ho_{ m eff}$	0.0180	Rapporto area acciaio/area efficace				
ϵ_{sm1}	0.000556	Deformazione unitaria media barre di calcolo				

Linea AV/AC VERONA - PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 95 di 170

w _d /w	0.55	<1	VERIFICA SODDISFATTA			
W_d	0.219 mm	Valore di calcolo apertura fessure				
Δsmax	393.2 mm	Distanza massima tra le fessure				
k4	0.4	Coefficiente				
k_3	3.4	Coefficiente				
$\epsilon_{\sf sm}$	0.000556	Deformazione unitaria media				
ϵ_{sm2}	0.000516	Deformazione unitaria media barre valore minimo				

9.7.3 Verifiche geotecniche dei pali_TIPO G

• Verifiche della capacità portante

	MEDIO	MINIMO	
Q _{Rm} [KN]	2687.23	2687.23	Valore di calcolo
Q _{Rk} [KN]	1580.73	1580.73	Valore caratteristico
Q _{Rd comp} [kN]	1065.53	1065.53	Valore di progetto a compressione
Q _{Rd traz} [kN]	1075.92	1075.92	Valore di progetto a trazione

PORTANZA IN COMPRESSIONE						
E _{c,d} [kN] 123.46 < 1065.53 R _{c,d} [kN]						
$E_{c,d}/R_{c,d}$	11.59%	Verificato				

Dalle verifiche risulta che il palo in calcestruzzo armato della lunghezza prevista risulta idoneo ad accogliere tutti i carichi trasmessi dalle barriere.

• Verifiche ai carichi trasversali

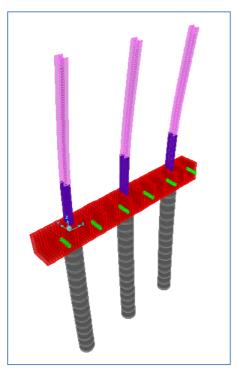
VERIFICA BROMS TERRENI GRANULARI								
Terreno:		Sabbie e ghiaie						
Falda:	Falda: SI							
Caratteristiche medie del terreno			-	Caratteristiche	minime del te	erreno erreno		
α	0	inclinazione rilevato		α	0	inclinazione rilevato		
φ _{medio} [°]	32			φ _{min} [°]	32			
kp	3.25			kp	3.25			
γ _{medio} [kN/m ³]	8.19			γ_{min} [kN/m 3]	8.19			

COMBO GEO A2+M1+R2				
H _{tr,d media} [kN]	171.05			
H _{tr,d min} [kN]	171.05			
H _{RES} [kN]	171.05			
H _{ES} [kN]	65.81			
H _{ES} /H _{RES}	38.48%			

Linea AV/AC VERONA - PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:


RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D 12 RG 1M0006 005 A 96 di 170

Palo corto			<u>-</u>	Palo corto		
H1 [kN]	1567.32			H1 [kN]	1567.32	
Mmax [kNm]	7314.15	>My		Mmax [kNm]	7314.15	>My
Palo intermedio			-	Palo intermedio		
H2 [kN]	606.90			H2 [kN]	606.90	
Palo lungo			_	Palo lungo		
H3 [kN]	465.26			H3 [kN]	465.26	
H _{media} [kN]	465.26			H _{min} [kN]	465.26	
H _{tr,k media} [kN]	273.68			H _{tr,k min} [kN]	273.68	
Пtr,k media [KIN]	2/3.08			Πtr,k min [KIN]	2/3.08	

Verificato				
COMBO STR	R A1+M1+R3			
H _{tr,d media} [kN]	210.53			
H _{tr,d min} [kN]	210.53			
H _{RES} [kN]	210.53			
H _{ES} [kN]	75.94			
H _{ES} /H _{RES} 36.07%				
Verificato				

Verifica di deformabilità

VERIFICA DI DEFORMABILITA'		
Spostamento testa montante da vento	3.57	cm
Traslazione testa palo	0.51	cm
Rotazione testa palo	0.00183	[rad]
Rotazione testa palo	0.1049	[°]
Spostamento testa montante da rotazione	1.42	cm
Spostamento totale testa montante E _d	4.99	cm
Spostamento ammissibile C _d = H/100	6.95	cm
Verificato Ed <cd -="" cd="0.74</td" ed=""><td></td><td></td></cd>		

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 97 di 170

9.8 BARRIERA H=6.95M – RILEVATO 4m <H< 5m – ARGILLA Verifiche strutturali e geotecniche (Argilla)

La determinazione delle sollecitazioni lungo il palo è stata effettuata mediante il software di calcolo Sap2000, considerando il palo immerso nel terreno e soggetto all'azione dei carichi orizzontali e verticali derivanti dalla struttura in elevazione. Il terreno è stato schematizzato mediante una distribuzione di molle di diversa rigidezza a seconda del tipo di terreno che il palo attraversa. Una volta note le sollecitazioni agenti è stata effettuata una verifica a pressoflessione della sezione circolare del palo in c.a. mediante l'utilizzo del software di calcolo VCA-SLU.

9.8.1 Verifiche strutturali: SLU:A1;M1;R1

Le sollecitazioni massime agenti sui pali risultano:

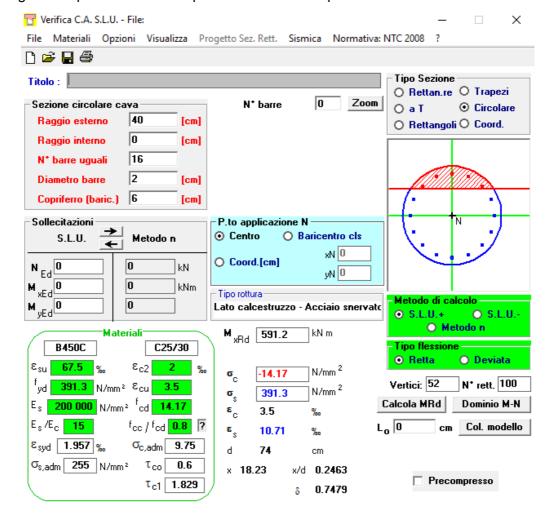
M_{max}=329.21 kNm

V_{max}=75.94 kN

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo: | RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 98 di 170


I valori caratteristici delle azioni trasmesse al singolo palo di fondazione (si considerano le sollecitazioni del palo centrale, ossia quello più sollecitato), risultano:

	TESTA PALO			FUSTO
	N (kN)	T (kN) M (kNm)		
STR	166.05	75.94	295.28	329.22
GEO	123.00	65.81	255.78	285.21
SLE	123.00	50.63	196.93	219.55

Il palo è lungo 9,00 m ed è armato con ferri longitudinali 16φ20 e staffe φ12/20.

Verifica a flessione: Φ800

Di seguito si riporta la verifica a presso-flessione del palo:

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. 99 di 170 IN0D 00 D I2 RG IM0006 005

	VERIFICA	VERIFICA STRUTTURALE PALO			
N [kN]	166.05	(Combo str)			
T [kN]	75.94				
M [kN]	295.28				
Mmax [kNm]	329.22				
Armatura	16 Ø20				
M _{Rd} [kNm]	591.20				
M _{Ed} /M _{Rd}	0.56	<1	VERIFICA SODDISFATTA		

<u>Verifica a taglio</u>

Di seguito si riporta la verifica a taglio:

VERIFICA STRUTTURALE PALO-TAGLIO				
N [kN]	166.05	(Combo str)		
V [kN]	75.94			
M [kN]	295.28			
Vmax [kN]	75.94			
Carattersitiche sezione r	ettangolare equiva	lente		
α (rad)	0.57			
b (mm)	674.22			
h (mm)	745.54			
d (mm)	616.45			
Materiali				
fck (Mpa)	25.00			
γc	1.50			
fcd (Mpa)	14.17			
fyk (Mpa)	450.00			
γs	1.15			
fyd (Mpa)	391.3			
Verifica senza armatura	a taglio			
Asl (mm²)	5024.00	16 Ø20		
ρι (%)	0.01			
k	1.32			

Linea AV/AC VERONA - PADOVA

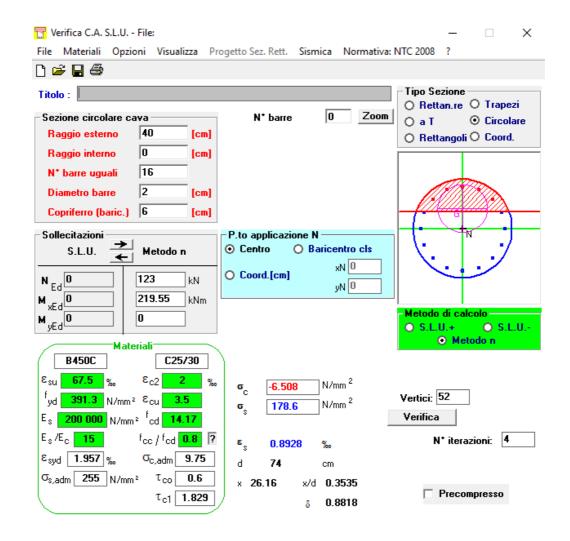
1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 100 di 170

vmin	0.27		
Vrd (kN)	254.07		
V_{Ed}/V_{Rd}	0.30	<1	VERIFICA SODDISFATTA
Verifica con armatura a	taglio		
Asw (mm ²)	226.00	2 Ø12	
s (mm)	200.00		
α (°)	90.00		
$cotg\theta$	2.50		
cotgα	0.00		
σср (Мра)	0.33		
αc	1.02		
Vrcd (kN)	548.29		
Vrsd (kN)	934.95		
V_{Ed}/V_{Rd}	0.14	<1	VERIFICA SODDISFATTA


Linea AV/AC VERONA – PADOVA 1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA Titolo: RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag.

IM0006 005

101 di 170

9.8.2 Verifiche strutturali: SLE (Rara)

Verifica tensionale

IN0D

00

D I2 RG

VERIFICA TENSIONALE PALO			
N [kN]	123.00	(Combo rara)	
T [kN]	50.63		
M [kN]	196.93		
Mmax [kNm]	219.55		
Armatura	16 Ø20		
f _{ck} [N/mm ²]	25		

Linea AV/AC VERONA - PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 102 di 170

f _{yk} [N/mm ²]	450		
$\sigma_{cls,max}$ [N/mm ²]	6.50	$< \sigma_{cls,amm} [N/mm^2]$	VERIFICA SODDISFATTA
$\sigma_{acc,max}$ [N/mm ²]	178.60	$< \sigma_{acc,amm} [N/mm^2]$	VERIFICA SODDISFATTA

Verifica a fessurazione

Dati	Verica fessurazione sezione circolare CIRCOLARE 2/02/2009 N°617 Par.C.4.1.2.2.4.6		
ϑ_{s}	179 N/mm²	Tensione massima armatura tesa sezione fessurata	
Rck	30.0 N/mm ²	Resistenza caratteristica cubica cls	
φι	20 mm	Diametro barre longitudinali	
фѕ	12 mm	Diametro staffe o spirale	
n	16	Numero ferri longitudinali	
С	60 mm	Ricoprimento del calcestruzzo	
D	800 mm	Diametro	
k _t	0.4	kt=0,6 ;0,4 carichi breve durata/lunga durata	
k ₂	0.5	k2=0,5 ;1,0 caso flessione/trazione semplice	
k_1	0.8	k1=0,8 ;1,6 barre aderenza migliorata/lisce	
w	0.4 mm	Valore limite apertura fessure	
Dati			
fck	24.9 N/mm²	Resistenza caratteristica cilindrica cls	
i	125 mm	Interasse ferri longitudinali	
A_{Φ}	314 mm²	Area barra longitudinale	
E _s	210000.0 N/mm ²	Modulo elastico acciaio da c.a	
f _{ctm}	2.6 N/mm²	Resistenza a trazione media cls	
E _{cm}	31447.2 N/mm ²	Modulo elastico medio cls	
α_{e}	6.68	Rapporto Es/Ecm	
f _{cm}	32.9 N/mm²	Resistenza media cls	
$ ho_{ ext{eff}}$	0.0180	Rapporto area acciaio/area efficace	
ϵ_{sm1}	0.000547	Deformazione unitaria media barre di calcolo	

Linea AV/AC VERONA - PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA INOD 00 D I2 RG

 $\begin{array}{ll} \text{DOCUMENTO} & \text{REV.} \\ \text{IM0006 005} & \text{A} \end{array}$

Pag. 103 di 170

w _d /w	0.54	<1	VERIFICA SODDISFATTA
W _d	0.215 mm	Valore di calcolo apertura fessure	
Δsmax	393.2 mm	Distanza massima tra le fessure	
k4	0.4	Coefficiente	
k ₃	3.4	Coefficiente	
ε _{sm}	0.000547	Deformazione unitaria media	
ϵ_{sm2}	0.000510	Deformazione	unitaria media barre valore minimo

9.8.3 Verifiche geotecniche dei pali_TIPO H

• Verifiche della capacità portante

	MEDIO	MINIMO	
Q _{Rm} [KN]	904.78	904.78	Valore di calcolo
Q _{Rk} [KN]	532.22	532.22	Valore caratteristico
Q _{Rd comp} [kN]	335.38	335.38	Valore di progetto a compressione
Q _{Rd traz} [kN]	445.74	445.74	Valore di progetto a trazione

PORTANZA IN COMPRESSIONE					
E _{c,d} [kN]	c _{cd} [kN] 123.00 < 335.38 R _{c,d} [kN]				
$E_{c,d}/R_{c,d}$	36.67%	Verificato			

Dalle verifiche risulta che il palo in calcestruzzo armato della lunghezza prevista risulta idoneo ad accogliere tutti i carichi trasmessi dalle barriere.

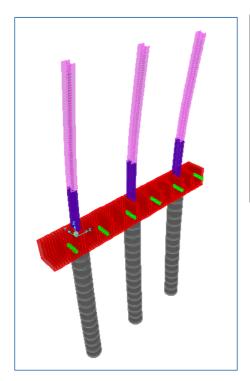
• Verifiche ai carichi trasversali

VERIFICA BROMS TERRENI COESIVI					
Terreno:		Argille			
Caratteristiche medie o	lel terreno		-	Caratteristiche min	nime del terreno
Parametri del terreno	Parametri del terreno			Parametri del terre	no
Cu _{media} [kPa]	40			Cu _{min} [kPa]	40
Palo corto			-	Palo corto	
H1 [kN]	2246.40			H1 [kN]	2246.40
Mmax [kNm]	#######	>My		Mmax [kNm]	#######

COMBO GEO A2+M1+R2				
H _{tr,d media} [kN]	201.88			
H _{tr,d min} [kN]	201.88			
H _{RES} [kN]	201.88			
H _{ES} [kN]	65.81			
H _{ES} /H _{RES} 32.60%				
Verificato				

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:


RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 104 di 170

Palo intermedio H2 [kN]	851.45	-	Palo intermedio H2 [kN]	851.45
Palo lungo		_	Palo lungo	
H3 [kN]	549.11		H3 [kN]	549.11
H _{media} [kN]	549.11		H _{min} [kN]	549.11
H _{tr,k media} [kN]	323.00		H _{tr,k min} [kN]	323.00

COMBO STR A1+M1+R3			
$H_{tr,d\;media}\left[kN\right]$	248.46		
$H_{tr,d\;min}\left[kN\right]$	248.46		
H _{RES} [kN]	248.46		
H _{ES} [kN]	75.94		
H _{ES} /H _{RES}	30.56%		
Verificato			

• <u>Verifica di deformabilità</u>

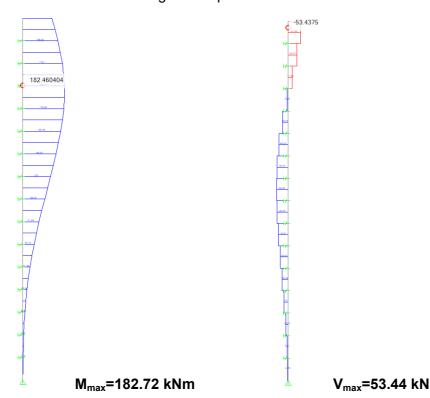
VERIFICA DI DEFORMABILITA'			
Spostamento testa montante da vento	3.57	cm	
Traslazione testa palo	0.593	cm	
Rotazione testa palo	0.00193	[rad]	
Rotazione testa palo	0.1106	[°]	
Spostamento testa montante da rotazione	1.50	cm	
Spostamento totale testa montante E _d	5.07	cm	
Spostamento ammissibile C _d = H/100	6.95	cm	
Verificato Ed <cd -="" cd="0.75</td" ed=""></cd>			

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 105 di 170


9.9 BARRIERA H=4.95M - RILEVATO H < 4m - SABBIA

Verifiche strutturali e geotecniche (Sabbia bagnata)

La determinazione delle sollecitazioni lungo il palo è stata effettuata mediante il software di calcolo Sap2000, considerando il palo immerso nel terreno e soggetto all'azione dei carichi orizzontali e verticali derivanti dalla struttura in elevazione. Il terreno è stato schematizzato mediante una distribuzione di molle di diversa rigidezza a seconda del tipo di terreno che il palo attraversa. Una volta note le sollecitazioni agenti è stata effettuata una verifica a pressoflessione della sezione circolare del palo in c.a. mediante l'utilizzo del software di calcolo VCA-SLU.

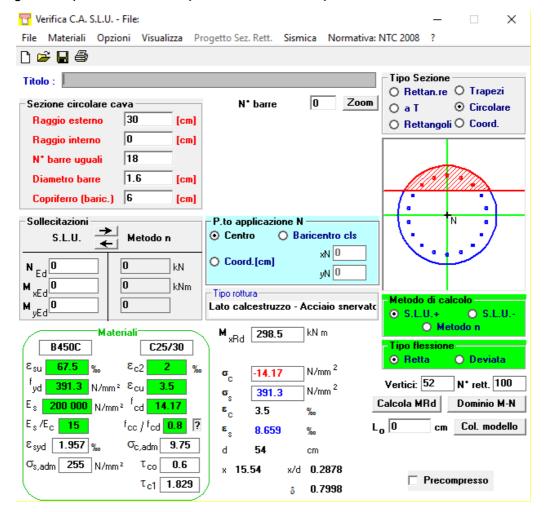
9.9.1 Verifiche strutturali: SLU:A1;M1;R1

Le sollecitazioni massime agenti sui pali risultano:

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo: RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 106 di 170


I valori caratteristici delle azioni trasmesse al singolo palo di fondazione (si considerano le sollecitazioni del palo centrale, ossia quello più sollecitato), risultano:

		TESTA PALO		
	N (kN) T (kN) M (kNm)			
STR	160.50	53.44	154.66	182.71
GEO	118.89	46.31	133.91	158.23
SLE	118.89	35.63	103.18	121.87

Il palo è lungo 8,00 m ed è armato con ferri longitudinali 18∮16 e staffe ∮12/20.

Verifica a flessione: Φ600

Di seguito si riporta la verifica a presso-flessione del palo:

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 107 di 170

<u>VERIFICA STRUTTURALE PALO</u>				
N [kN]	160.50	(Combo str)		
T [kN]	53.44			
M [kN]	154.66			
Mmax [kNm]	182.71			
Armatura	18 Ø16			
M _{Rd} [kNm]	298.50			
M _{Ed} /M _{Rd}	0.61	<1	VERIFICA SODDISFATTA	

• Verifica a taglio

Di seguito si riporta la verifica a taglio:

VERIFICA STRUTTURALE PALO-TAGLIO			
N [kN]	160.50	(Combo str)	
V [kN]	53.44		
M [kN]	154.66		
Vmax [kN]	53.44		
Carattersitiche sezione re	ettangolare equival	ente	
α (rad)	0.53		
b (mm)	505.56		
h (mm)	559.27		
d (mm)	452.79		
Materiali			
fck (Mpa)	25.00		
ус	1.50		
fcd (Mpa)	14.17		
fyk (Mpa)	450.00		
γs	1.15		
fyd (Mpa)	391.3		
Verifica senza armatura a taglio			
		19 016	
Asl (mm²)	3618.00	19 MTP	
ρι (%)	0.02		

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

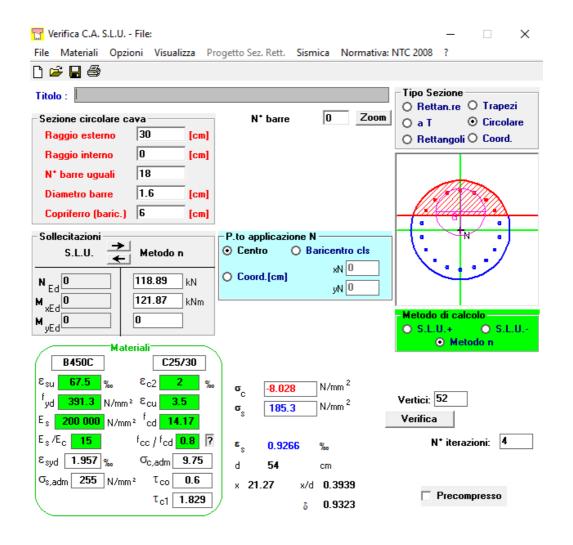
Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 108 di 170

k vmin	1.44 0.30				
Vrd (kN)	202.51				
V _{Ed} /V _{Rd}	0.26	<1	VERIFICA SODDISFATTA		
Verifica con armatura a	Verifica con armatura a taglio				
Asw (mm ²)	226.00	2 Ø12			
s (mm)	200.00				
α (°)	90.00				
cotgθ	2.50				
cotga	0.00				
σср (Мра)	0.57				
ας	1.04				
Vrcd (kN)	402.72				
Vrsd (kN)	523.37				
V_{Ed}/V_{Rd}	0.13	<1	VERIFICA SODDISFATTA		

Linea AV/AC VERONA – PADOVA 1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA Titolo: RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag.


IM0006 005

Α

109 di 170

9.9.2 Verifiche strutturali: SLE (Rara)

• Verifica tensionale

IN0D

00

D I2 RG

<u>VERIFICA TENSIONALE PALO</u>			
118.89	(Combo rara)		
35.63			
103.18			
121.87			
18 Ø16			
25			
	35.63 103.18 121.87 18 Ø16		

Linea AV/AC VERONA - PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 110 di 170

f _{yk} [N/mm ²]	450		
$\sigma_{cls,max}$ [N/mm ²]	8.00	$< \sigma_{cls,amm} [N/mm^2]$	VERIFICA SODDISFATTA
$\sigma_{acc,max}$ [N/mm ²]	185.30	$< \sigma_{acc,amm} [N/mm^2]$	VERIFICA SODDISFATTA

Verifica a fessurazione

Dati	Verica fessurazione sezione circolare CIRCOLARE 2/02/2009 N°617 Par.C.4.1.2.2.4.6			
ϑ_{s}	185 N/mm²	Tensione massima armatura tesa sezione fessurata		
Rck	30.0 N/mm ²	Resistenza caratteristica cubica cls		
Фі	16 mm	Diametro barre longitudinali		
фѕ	12 mm	Diametro staffe o spirale		
n	18	Numero ferri longitudinali		
С	60 mm	Ricoprimento del calcestruzzo		
D	600 mm	Diametro		
k_{t}	0.4	kt=0,6 ;0,4 carichi breve durata/lunga durata		
k_2	0.5	k2=0,5 ;1,0 caso flessione/trazione semplice		
k_1	0.8	k1=0,8 ;1,6 barre aderenza migliorata/lisce		
w	0.4 mm	Valore limite apertura fessure		
Dati				
fck	24.9 N/mm²	Resistenza caratteristica cilindrica cls		
i	77 mm	Interasse ferri longitudinali		
A_{φ}	201 mm²	Area barra longitudinale		
E_s	210000.0 N/mm ²	Modulo elastico acciaio da c.a		
f_{ctm}	2.6 N/mm²	Resistenza a trazione media cls		
E _{cm}	31447.2 N/mm²	Modulo elastico medio cls		
$lpha_e$	6.68	Rapporto Es/Ecm		
f_{cm}	32.9 N/mm²	Resistenza media cls		
$ ho_{\text{eff}}$	0.0193	Rapporto area acciaio/area efficace		
ϵ_{sm1}	0.000597	Deformazione unitaria media barre di calcolo		

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 111 di 170

w _d /w	0.52	Valore di calcolo apertura fessure <1 VERIFICA SODDISFATTA		
Δ3111αλ	0.206 mm	•		
Δsmax	345.3 mm	Distanza massima tra le fessure		
k4	0.4	Coefficiente		
k ₃	3.4	Coefficiente		
ϵ_{sm}	0.000597	Deformazione unitaria media		
ϵ_{sm2}	0.000529	Deformazione	unitaria media barre valore minimo	

9.9.3 Verifiche geotecniche dei pali_TIPO I

• Verifiche della capacità portante

A favore di sicurezza nel calcolo della capacità portante dei pali, è sempre stata trascurata l'interazione terreno-struttura per il tratto di fusto del palo immerso nel rilevato, in quanto si è ritenuto che considerata la scarpa del rilevato stradale il terreno per tale altezza non offra resistenza passiva alle azioni prodotte dal palo.

	MEDIO	MINIMO	
Q _{Rm} [KN]	890.15	890.15	Valore di calcolo
Q _{Rk} [KN]	523.62	523.62	Valore caratteristico
Q _{Rd comp} [kN]	345.28	345.28	Valore di progetto a compressione
Q _{Rd traz} [kN]	383.81	383.81	Valore di progetto a trazione

PORTANZA IN COMPRESSIONE					
E _{c,d} [kN] 118.89 < 345.28 R _{c,d} [kN]					
$E_{c,d}/R_{c,d}$	34.43%	Verificato			

Dalle verifiche risulta che il palo in calcestruzzo armato della lunghezza prevista risulta idoneo ad accogliere tutti i carichi trasmessi dalle barriere.

• Verifiche ai carichi trasversali

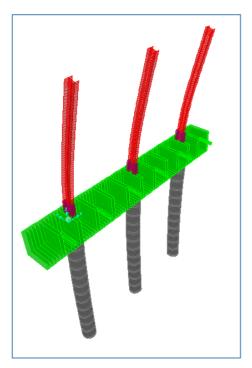
VERIFICA BROMS TERRENI GRANULARI		
Terreno:	Sabbie e ghiaie	

Linea AV/AC VERONA - PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE


PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1100D 00 D I2 RG IM0006 005 A 112 di 170

5.14.						
Falda:				SI		
Caratteristiche me	edie del ter	<u>reno</u>	-	Caratteristiche m	<u>inime del t</u>	<u>erreno</u>
α	0	inclinazione rilevato		α	0	inclinazione rilevato
φ _{medio} [°]	32			φ _{min} [°]	32	
kp	3.25			kp	3.25	
γ _{medio} [kN/m ³]	8.19			γ _{min} [kN/m ³]	8.19	
Palo corto				Palo corto		
H1 [kN]	1535.33			H1 [kN]	1535.33	
Mmax [kNm]	8188.44	>My		Mmax [kNm]	8188.44	>My
Palo intermedio			-	Palo intermedio		
H2 [kN]	549.09			H2 [kN]	549.09	
Palo lungo				Palo lungo		
H3 [kN]	268.03		-	H3 [kN]	268.03	
I I J [KIV]	200.03			I IIJ [KIV]	200.03	
H _{media} [kN]	268.03			H _{min} [kN]	268.03	
H _{tr,k media} [kN]	157.67			H _{tr,k min} [kN]	157.67	

СОМВО GEO	A2+M1+R2	
H _{tr,d media} [kN]	98.54	
H _{tr,d min} [kN]	98.54	
H _{RES} [kN]	98.54	
H _{ES} [kN]	46.31	
H _{ES} /H _{RES}	47.00%	
Verificato		

COMBO STR A1+M1+R3			
H _{tr,d media} [kN]	121.28		
$H_{tr,dmin}[kN]$	121.28		
H _{RES} [kN]	121.28		
H _{ES} [kN]	53.44		
H _{ES} /H _{RES} 44.06%			
Verificato			

Verifica di deformabilità

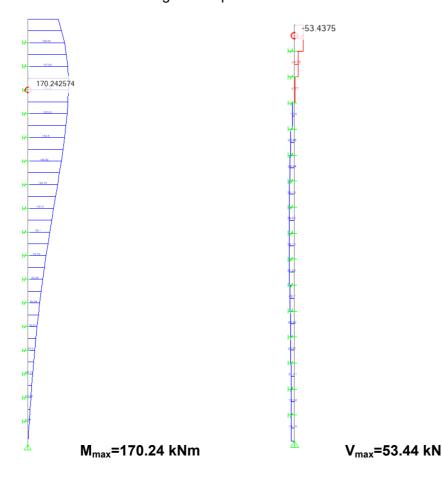
VERIFICA DI DEFORMABILITA'				
Spostamento testa montante da vento	1.07	cm		
Traslazione testa palo	0.499	cm		
Rotazione testa palo	0.00235	[rad]		
Rotazione testa palo	0.1346	[°]		
Spostamento testa montante da rotazione	1.35	cm		
Spostamento totale testa montante E _d	2.42	cm		
Spostamento ammissibile C _d = H/100	4.95	cm		
Verificato Ed <cd -="" cd="0.51</td" ed=""><td></td><td></td></cd>				
X Joint Displacements		×		

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1113 di 170


9.10 BARRIERA H=4.95M - RILEVATO H < 4m - ARGILLA

Verifiche strutturali e geotecniche (Argilla)

La determinazione delle sollecitazioni lungo il palo è stata effettuata mediante il software di calcolo Sap2000, considerando il palo immerso nel terreno e soggetto all'azione dei carichi orizzontali e verticali derivanti dalla struttura in elevazione. Il terreno è stato schematizzato mediante una distribuzione di molle di diversa rigidezza a seconda del tipo di terreno che il palo attraversa. Una volta note le sollecitazioni agenti è stata effettuata una verifica a pressoflessione della sezione circolare del palo in c.a. mediante l'utilizzo del software di calcolo VCA-SLU.

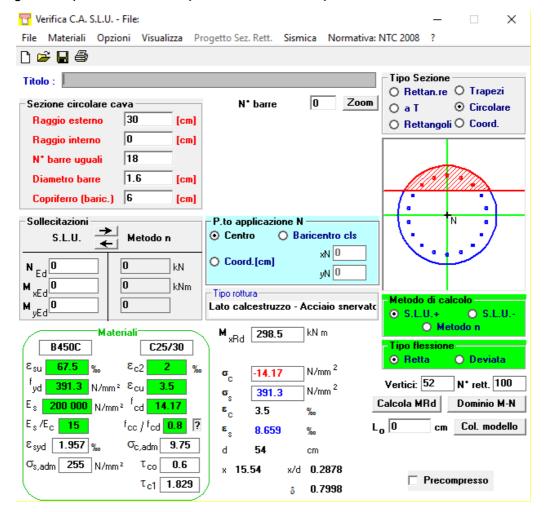
9.10.1 Verifiche strutturali: SLU:A1;M1;R1

Le sollecitazioni massime agenti sui pali risultano:

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

| Titolo: | RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 114 di 170


I valori caratteristici delle azioni trasmesse al singolo palo di fondazione (si considerano le sollecitazioni del palo centrale, ossia quello più sollecitato), risultano:

	TESTA PALO			FUSTO
	N (kN)	Mmax (kNm)		
STR	159.79	53.44	154.66	147.40
GEO	118.37	46.31	133.91	113.54
SLE	118.37	35.63	103.18	147.40

Il palo è lungo 8,00 m ed è armato con ferri longitudinali 18∮16 e staffe ∮12/20.

Verifica a flessione: Φ600

Di seguito si riporta la verifica a presso-flessione del palo:

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 115 di 170

	VERIFICA	VERIFICA STRUTTURALE PALO				
N [kN]	159.79	(Combo str)				
T [kN]	53.44					
M [kN]	154.66					
Mmax [kNm]	170.21					
Armatura	18 Ø16					
M _{Rd} [kNm]	298.50					
M _{Ed} /M _{Rd}	0.57	<1	VERIFICA SODDISFATTA			

Verifica a taglio

Di seguito si riporta la verifica a taglio:

<u>VERIFICA STRUTTURALE PALO-TAGLIO</u>				
N [kN]	159.79	(Combo str)		
V [kN]	53.44			
M [kN]	154.66			
Vmax [kN]	53.44			
Carattersitiche sezione re	ettangolare equiva	lente		
α (rad)	0.53			
b (mm)	505.56			
h (mm)	559.27			
d (mm)	452.79			
Materiali				
fck (Mpa)	25.00			
γς	1.50			
fcd (Mpa)	14.17			
fyk (Mpa)	450.00			
γs	1.15			
fyd (Mpa)	391.3			
Verifica senza armatura	a taglio			
Asl (mm²)	3618.00	18 Ø16		
ρι (%)	0.02	•		

Linea AV/AC VERONA - PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 110 di 170

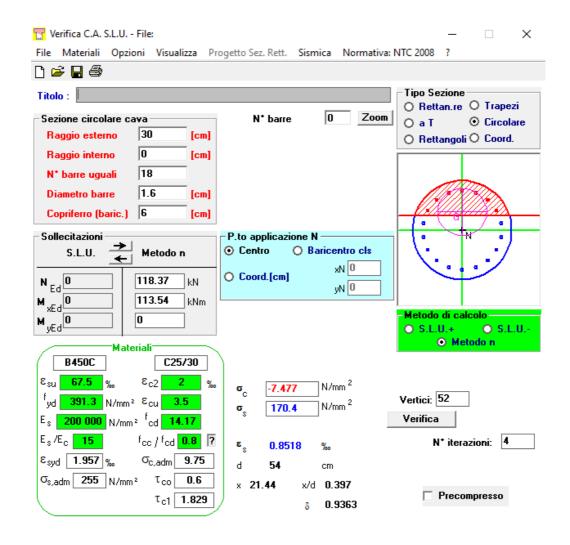
k vmin Vrd (kN)	1.44 0.30 202.43		
V _{Ed} /V _{Rd}	0.26	<1	VERIFICA SODDISFATTA
Verifica con armatura a t	taglio		
Asw (mm ²)	226.00	2 Ø12	
s (mm)	200.00		
α (°)	90.00		
cotgθ	2.50		
cotga	0.00		
σср (Мра)	0.57		
ας	1.04		
Vrcd (kN)	402.72		
Vrsd (kN)	523.28		
V _{Ed} /V _{Rd}	0.13	<1	VERIFICA SODDISFATTA

Linea AV/AC VERONA – PADOVA 1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA Titolo: RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

DOCUMENTO

IM0006 005

REV.


Α

Pag.

117 di 170

9.10.2 Verifiche strutturali: SLE (Rara)

• Verifica tensionale

PROGETTO

IN0D

LOTTO

00

CODIFICA

D I2 RG

<u>VERIFICA TENSIONALE PALO</u>					
118.37	(Combo rara)				
35.63					
103.18					
113.54					
18 Ø16					
25					
	35.63 103.18 113.54 18 Ø16				

Linea AV/AC VERONA - PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 118 di 170

f _{yk} [N/mm ²]	450		
$\sigma_{cls,max}$ [N/mm ²]	7.47	$< \sigma_{cls,amm} [N/mm^2]$	VERIFICA SODDISFATTA
$\sigma_{acc,max}$ [N/mm ²]	170.40	$< \sigma_{acc,amm} [N/mm^2]$	VERIFICA SODDISFATTA

• Verifica a fessurazione

Dati	Verica fessurazione sezione circolare CIRCOLARE 2/02/2009 N°617 Par.C.4.1.2.2.4.6			
ϑ_{s}	170 N/mm²	Tensione massima armatura tesa sezione fessurata		
Rck	30.0 N/mm ²	Resistenza caratteristica cubica cls		
$ \Phi_1 $	16 mm	Diametro barre longitudinali		
$ \phi_s $	12 mm	Diametro staffe o spirale		
n	18	Numero ferri longitudinali		
С	60 mm	Ricoprimento del calcestruzzo		
D	600 mm	Diametro		
k _t	0.4	kt=0,6 ;0,4 carichi breve durata/lunga durata		
k ₂	0.5	k2=0,5 ;1,0 caso flessione/trazione semplice		
$ \mathbf{k}_1 $	0.8	k1=0,8 ;1,6 barre aderenza migliorata/lisce		
w	0.4 mm	Valore limite apertura fessure		
Dati				
fck	24.9 N/mm²	Resistenza caratteristica cilindrica cls		
i	77 mm	Interasse ferri longitudinali		
A_{ϕ}	201 mm²	Area barra longitudinale		
E _s	210000.0 N/mm ²	Modulo elastico acciaio da c.a		
f _{ctm}	2.6 N/mm ²	Resistenza a trazione media cls		
E _{cm}	31447.2 N/mm ²	Modulo elastico medio cls		
α_{e}	6.68	Rapporto Es/Ecm		
f _{cm}	32.9 N/mm²	Resistenza media cls		
$ ho_{ m eff}$	0.0193	Rapporto area acciaio/area efficace		
ϵ_{sm1}	0.000526	Deformazione unitaria media barre di calcolo		

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 119 di 170

ϵ_{sm2}	0.000487	Deformazione unitaria media barre valore minimo		
ε _{sm}	0.000526	Deformazione unitaria media		
k ₃	3.4	Coefficiente		
k4	0.4	Coefficiente		
Δsmax	345.3 mm	Distanza massima tra le fessure		
W _d	0.182 mm	Valore di calcolo apertura fessure		
w _d /w	0.45	<1	VERIFICA SODDISFATTA	

9.10.3 Verifiche geotecniche dei pali_TIPO L

• Verifiche della capacità portante

A favore di sicurezza nel calcolo della capacità portante dei pali, è sempre stata trascurata l'interazione terreno-struttura per il tratto di fusto del palo immerso nel rilevato, in quanto si è ritenuto che considerata la scarpa del rilevato stradale il terreno per tale altezza non offra resistenza passiva alle azioni prodotte dal palo.

	MEDIO	MINIMO	
Q _{Rm} [KN]	644.65	644.65	Valore di calcolo
Q _{Rk} [KN]	379.21	379.21	Valore caratteristico
Q _{Rd comp} [kN]	243.71	243.71	Valore di progetto a compressione
Q _{Rd traz} [kN]	300.62	300.62	Valore di progetto a trazione

PORTANZA IN COMPRESSIONE					
E _{c,d} [kN]	118.37	118.37 < 243.71 R _{c,d} [kN]			
$E_{c,d}/R_{c,d}$	48.57%	Verificato			

Dalle verifiche risulta che il palo in calcestruzzo armato della lunghezza prevista risulta idoneo ad accogliere tutti i carichi trasmessi dalle barriere.

Verifiche ai carichi trasversali

VERIFICA BROMS TERRENI COESIVI			
Terreno:	Argille		
Caratteristiche medie de	l terreno		Caratteristiche minime del terreno

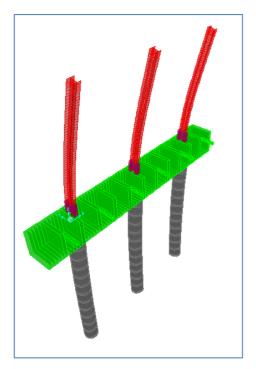
COMBO GEO A2+M1+R2

Linea AV/AC VERONA - PADOVA

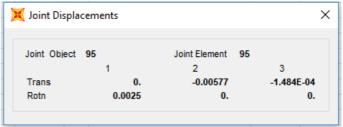
1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE


PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 120 di 170

Parametri del terreno			ĺ	Parametri del terreno	
Cu _{media} [kPa]	40			Cu _{min} [kPa]	40
Palo corto			-	Palo corto	
H1 [kN]	1749.60			H1 [kN]	1749.60
Mmax [kNm]	8660.52	>My		Mmax [kNm]	8660.52
Palo intermedio			_	Palo intermedio	
H2 [kN]	670.83			H2 [kN]	670.83
Palo lungo			_	Palo lungo	
H3 [kN]	349.38			H3 [kN]	349.38
H _{media} [kN]	349.38			H _{min} [kN]	349.38
H _{tr,k media} [kN]	205.52			H _{tr,k min} [kN]	205.52


H _{tr,d media} [kN]	128.45	
H _{tr,d min} [kN]	128.45	
H _{RES} [kN]	128.45	
H _{ES} [kN]	46.31	
H _{ES} /H _{RES}	36.06%	
Verificato		

COMBO STR A1+M1+R3				
H _{tr,d media} [kN] 158.09				
H _{tr,d min} [kN] 158.09				
H _{RES} [kN]	158.09			
H _{ES} [kN]	53.44			
H _{ES} /H _{RES} 33.80%				
Verificato				

Verifica di deformabilità

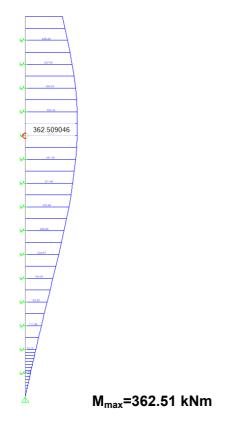
VERIFICA DI DEFORMABILITA'				
Spostamento testa montante da vento	1.88	cm		
Traslazione testa palo	0.577	cm		
Rotazione testa palo	0.0025	[rad]		
Rotazione testa palo	0.1432	[°]		
Spostamento testa montante da rotazione	1.44	cm		
Spostamento totale testa montante E _d	3.31	cm		
Spostamento ammissibile $C_d = H/100$ 4.95				
Verificato Ed <cd -="" cd="0.70</td" ed=""></cd>				

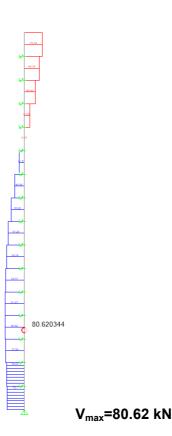
1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 121 di 170


9.11 BARRIERA H=6.95M - RILEVATO < 4m - SABBIA


Verifiche strutturali e geotecniche (Sabbia bagnata)

La determinazione delle sollecitazioni lungo il palo è stata effettuata mediante il software di calcolo Sap2000, considerando il palo immerso nel terreno e soggetto all'azione dei carichi orizzontali e verticali derivanti dalla struttura in elevazione. Il terreno è stato schematizzato mediante una distribuzione di molle di diversa rigidezza a seconda del tipo di terreno che il palo attraversa. Una volta note le sollecitazioni agenti è stata effettuata una verifica a pressoflessione della sezione circolare del palo in c.a. mediante l'utilizzo del software di calcolo VCA-SLU.

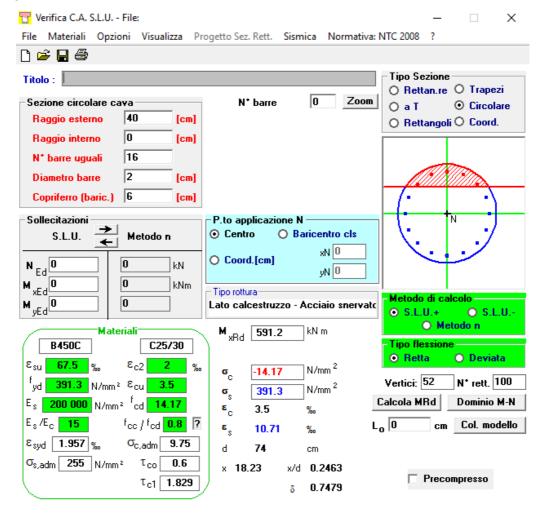
9.11.1 Verifiche strutturali: SLU:A1;M1;R1

Le sollecitazioni massime agenti sui pali risultano:

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:
RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 122 di 170


I valori caratteristici delle azioni trasmesse al singolo palo di fondazione (si considerano le sollecitazioni del palo centrale, ossia quello più sollecitato), risultano:

	TESTA PALO			FUSTO
	N (kN) T (kN) M (kNm)			Mmax (kNm)
STR	169.79	75.94	295.28	362.50
GEO	125.77	65.81	255.78	314.06
SLE	125.77	50.63	196.93	241.73

Il palo è lungo 8,00 m ed è armato con ferri longitudinali 16φ20 e staffe φ12/20.

Verifica a flessione: Φ800

Di seguito si riporta la verifica a presso-flessione del palo:

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 123 di 170

VERIFICA STRUTTURALE PALO				
N [kN]	169.79	(Combo str)		
T [kN]	75.94			
M [kN]	295.28			
Mmax [kNm]	362.50			
Armatura	18 Ø16			
M _{Rd} [kNm]	591.20			
M _{Ed} /M _{Rd}	0.61	<1	VERIFICA SODDISFATTA	

Verifica a taglio

Di seguito si riporta la verifica a taglio:

	VERIFICA STRUTTURALE PALO-TAGLIO					
N [kN]	169.79	(Combo str)				
V [kN]	75.94					
M [kN]	295.28					
Vmax [kN]	80.62					
Carattersitiche sezione re	ettangolare equiva	lente				
α (rad)	0.57					
b (mm)	674.22					
h (mm)	745.54					
d (mm)	616.45					
Materiali						
fck (Mpa)	25.00					
γc	1.50					
fcd (Mpa)	14.17					
fyk (Mpa)	450.00					
γs	1.15					
fyd (Mpa)	391.3					
Verifica senza armatura	a taglio					
Asl (mm²)	3618.00	18 Ø16				
ρι (%)	0.01					

Linea AV/AC VERONA - PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

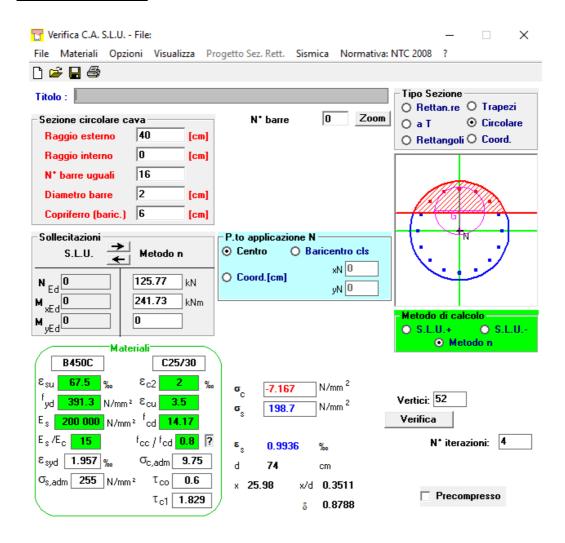
Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 124 di 170

k	1.32		
vmin	0.27		
Vrd (kN)	189.19		
V _{Ed} /V _{Rd}	0.43	<1	VERIFICA SODDISFATTA
Verifica con armatura a t	taglio		
Asw (mm ²)	226.00	2 Ø12	
s (mm)	200.00		
α (°)	90.00		
cotgθ	2.50		
cotgα	0.00		
оср (Мра)	0.34		
ας	1.02		
Vrcd (kN)	548.29		
Vrsd (kN)	935.43		
V _{Ed} /V _{Rd}	0.15	<1	VERIFICA SODDISFATTA

Linea AV/AC VERONA – PADOVA 1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA Titolo: RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag.


IM0006 005

Α

125 di 170

9.11.2 Verifiche strutturali: SLE (Rara)

• Verifica tensionale

IN0D

00

D I2 RG

VERIFICA TENSIONALE PALO				
125.77	(Combo rara)			
50.63				
196.93				
241.73				
18 Ø16				
25				
	50.63 196.93 241.73 18 Ø16			

Linea AV/AC VERONA - PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 126 di 170

f _{yk} [N/mm²]	450		
$\sigma_{cls,max}$ [N/mm ²]	7.17	$< \sigma_{cls,amm} [N/mm^2]$	VERIFICA SODDISFATTA
$\sigma_{acc,max}$ [N/mm ²]	198.70	$< \sigma_{acc,amm} [N/mm^2]$	VERIFICA SODDISFATTA

• Verifica a fessurazione

Dati	Verica fessurazione sezione circolare CIRCOLARE 2/02/2009 N°617 Par.C.4.1.2.2.4.6			
ϑ_{s}	199 N/mm²	Tensione massima armatura tesa sezione fessurata		
Rck	30.0 N/mm ²	Resistenza caratteristica cubica cls		
φι	20 mm	Diametro barre longitudinali		
фѕ	12 mm	Diametro staffe o spirale		
n	16	Numero ferri longitudinali		
С	60 mm	Ricoprimento del calcestruzzo		
D	800 mm	Diametro		
k _t	0.4	kt=0,6 ;0,4 carichi breve durata/lunga durata		
k ₂	0.5	k2=0,5 ;1,0 caso flessione/trazione semplice		
k_1	0.8	k1=0,8 ;1,6 barre aderenza migliorata/lisce		
w	0.4 mm	Valore limite apertura fessure		
Dati				
fck	24.9 N/mm²	Resistenza caratteristica cilindrica cls		
i	125 mm	Interasse ferri longitudinali		
A_{ϕ}	314 mm²	Area barra longitudinale		
E _s	210000.0 N/mm ²	Modulo elastico acciaio da c.a		
f _{ctm}	2.6 N/mm ²	Resistenza a trazione media cls		
E _{cm}	31447.2 N/mm ²	Modulo elastico medio cls		
α_{e}	6.68	Rapporto Es/Ecm		
f _{cm}	32.9 N/mm²	Resistenza media cls		
$ ho_{ m eff}$	0.0180	Rapporto area acciaio/area efficace		
ϵ_{sm1}	0.000642	Deformazione unitaria media barre di calcolo		

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 127 di 170

w _d /w	0.63	<1	VERIFICA SODDISFATTA	
\mathbf{W}_{d}	0.253 mm	Valore di calcolo apertura fessure		
Δsmax	393.2 mm	Distanza massima tra le fessure		
k4	0.4	Coefficiente		
k ₃	3.4	Coefficiente		
$\epsilon_{\sf sm}$	0.000642	Deformazione unitaria media		
ϵ_{sm2}	0.000568	Deformazione unitaria media barre valore minimo		

9.11.3 Verifiche geotecniche dei pali_TIPO M

• Verifiche della capacità portante

	MEDIO	MINIMO	
Q _{Rm} [KN]	1513.89	1513.89	Valore di calcolo
Q _{Rk} [KN]	890.52	890.52	Valore caratteristico
Q _{Rd comp} [kN]	586.01	586.01	Valore di progetto a compressione
Q _{Rd traz} [kN]	657.11	657.11	Valore di progetto a trazione

PORTANZA IN COMPRESSIONE						
E _{c,d} [kN]	E _{c,d} [kN] 125.77 < 586.01 R _{c,d} [kN]					
E _{c,d} /R _{c,d} 21.46% Verificato						

Dalle verifiche risulta che il palo in calcestruzzo armato della lunghezza prevista risulta idoneo ad accogliere tutti i carichi trasmessi dalle barriere.

• Verifiche ai carichi trasversali

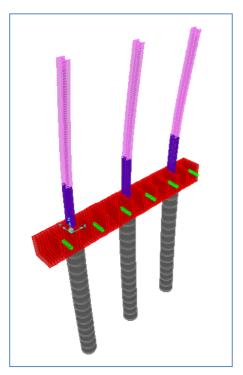
VERIFICA BROMS TERRENI GRANULARI						
Terreno:		Sabbie e ghiaie				
Falda:		SI				
Caratteristiche medie del terreno			_	Caratteristiche	minime del te	erreno
α	0	inclinazione rilevato		α	0	inclinazione rilevato
φ _{medio} [°]	32			φ _{min} [°]	32	
kp	3.25			kp	3.25	
γ _{medio} [kN/m ³]	8.19			γ _{min} [kN/m ³]	8.19	

COMBO GEO A2+M1+R2		
H _{tr,d media} [kN]	171.05	
H _{tr,d min} [kN]	171.05	
H _{RES} [kN]	171.05	
H _{ES} [kN]	65.81	
H _{ES} /H _{RES}	38.47%	

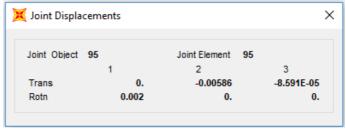
Linea AV/AC VERONA - PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:


RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 128 di 170


Palo corto			_	Palo corto		
H1 [kN]	2047.11			H1 [kN]	2047.11	
Mmax [kNm]	10917.92	>My		Mmax [kNm]	10917.92	>My
Palo intermedio			-	Palo intermedio		
H2 [kN]	756.27			H2 [kN]	756.27	
Palo lungo			-	Palo lungo		
H3 [kN]	465.26			H3 [kN]	465.26	
H _{media} [kN]	465.26			H _{min} [kN]	465.26	
H _{tr,k media} [kN]	273.68			H _{tr,k min} [kN]	273.68	

Verificato			
COMBO STR	COMBO STR A1+M1+R3		
H _{tr,d media} [kN]	210.53		
H _{tr,d min} [kN]	210.53		
H _{RES} [kN]	210.53		
H _{ES} [kN]	75.94		
H _{ES} /H _{RES}	36.07%		
Verificato			

Verifica di deformabilità

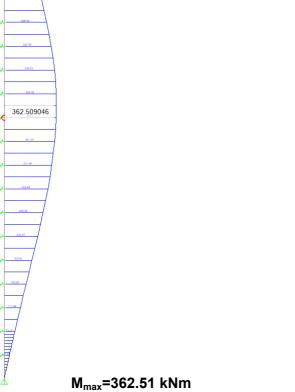
VERIFICA DI DEFORMABILITA'				
Spostamento testa montante da vento	3.57	cm		
Traslazione testa palo	0.586	cm		
Rotazione testa palo	0.002	[rad]		
Rotazione testa palo	0.1146	[°]		
Spostamento testa montante da rotazione	1.55	cm		
Spostamento totale testa montante E _d	5.12	cm		
Spostamento ammissibile C _d = H/100	6.95	cm		
Verificato Ed <cd -="" cd="0.76</td" ed=""></cd>				

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 129 di 170


9.12 BARRIERA H=6.95M - RILEVATO < 4m - ARGILLA

Verifiche strutturali e geotecniche (Argilla)

La determinazione delle sollecitazioni lungo il palo è stata effettuata mediante il software di calcolo Sap2000, considerando il palo immerso nel terreno e soggetto all'azione dei carichi orizzontali e verticali derivanti dalla struttura in elevazione. Il terreno è stato schematizzato mediante una distribuzione di molle di diversa rigidezza a seconda del tipo di terreno che il palo attraversa. Una volta note le sollecitazioni agenti è stata effettuata una verifica a pressoflessione della sezione circolare del palo in c.a. mediante l'utilizzo del software di calcolo VCA-SLU.

9.12.1 Verifiche strutturali: SLU:A1;M1;R1

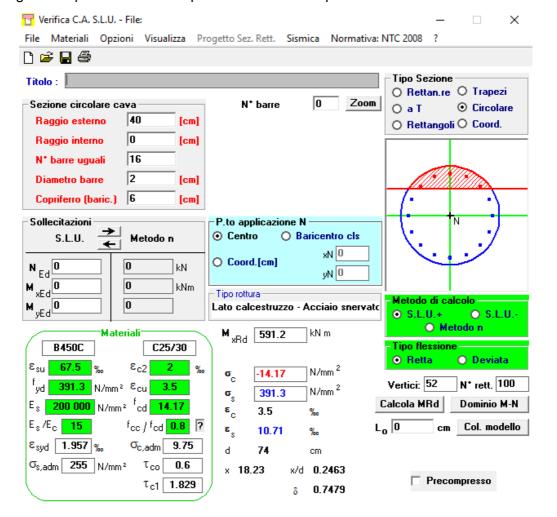
Le sollecitazioni massime agenti sui pali risultano:

V_{max}=75.94 kN

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:
RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 130 di 170


I valori caratteristici delle azioni trasmesse al singolo palo di fondazione (si considerano le sollecitazioni del palo centrale, ossia quello più sollecitato), risultano:

	TESTA PALO			FUSTO
	N (kN)	Mmax (kNm)		
STR	170.24	75.94	295.28	329.42
GEO	126.10	65.81	255.78	285.38
SLE	126.10	50.63	196.93	219.68

Il palo è lungo 10,00 m ed è armato con ferri longitudinali 16φ20 e staffe φ12/20.

Verifica a flessione: Φ800

Di seguito si riporta la verifica a presso-flessione del palo:

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 131 di 170

	VERIFICA	VERIFICA STRUTTURALE PALO		
N [kN]	170.24	(Combo str)		
T [kN]	75.94			
M [kN]	295.28			
Mmax [kNm]	329.42			
Armatura	16 Ø20			
M _{Rd} [kNm]	591.20			
M_{Ed}/M_{Rd}	0.56	<1	VERIFICA SODDISFATTA	

Verifica a taglio

Di seguito si riporta la verifica a taglio:

	VERIFICA STRUTTURALE PALO-TAGLIO				
N [kN]	170.24	(Combo str)			
V [kN]	75.94				
M [kN]	295.28				
Vmax [kN]	75.94				
Carattersitiche sezione re	ettangolare equiva	lente			
α (rad)	0.57				
b (mm)	674.22				
h (mm)	745.54				
d (mm)	616.45				
Materiali					
fck (Mpa)	25.00				
γς	1.50				
fcd (Mpa)	14.17				
fyk (Mpa)	450.00				
γs	1.15				
fyd (Mpa)	391.3				
Verifica senza armatura	Verifica senza armatura a taglio				
Asl (mm²)	5024.00	16 Ø20			
ρl (%)	0.01	10 920			
P' (/0)	0.01	ļ			

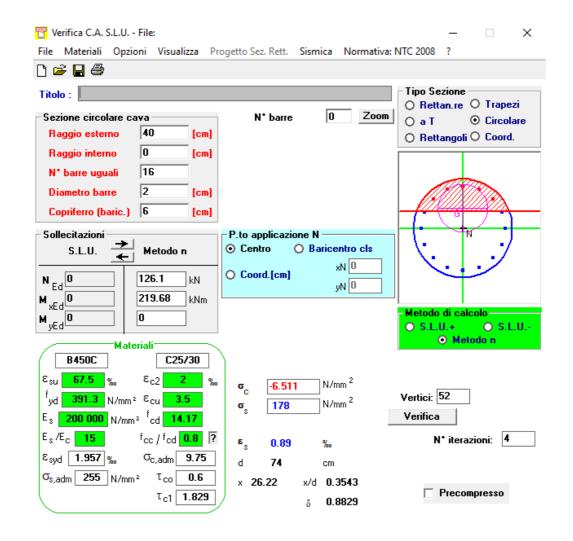
Linea AV/AC VERONA - PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 132 di 170


k	1.32		
vmin	0.27		
Vrd (kN)	254.59		
V _{Ed} /V _{Rd}	0.30	<1	VERIFICA SODDISFATTA
Verifica con armatura a t	taglio		
Asw (mm ²)	226.00	2 Ø12	
s (mm)	200.00		
α (°)	90.00		
cotgθ	2.50		
cotgα	0.00		
σср (Мра)	0.34		
ας	1.02		
Vrcd (kN)	548.29		
Vrsd (kN)	935.49		
V _{Ed} /V _{Rd}	0.14	<1	VERIFICA SODDISFATTA

Linea AV/AC VERONA - PADOVA 1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA Titolo: RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE **PROGETTO** LOTTO CODIFICA DOCUMENTO REV. Pag. IN0D 00 D I2 RG IM0006 005 133 di 170 Α

9.12.2 Verifiche strutturali: SLE (Rara)

• Verifica tensionale

VERIFICA TENSIONALE PALO			
126.10	(Combo rara)		
50.63			
196.93			
219.68			
16 Ø20			
25			
	50.63 196.93 219.68 16 Ø20		

Linea AV/AC VERONA - PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 134 di 170

f _{yk} [N/mm ²]	450		
$\sigma_{cls,max}$ [N/mm ²]	6.51	$< \sigma_{cls,amm} [N/mm^2]$	VERIFICA SODDISFATTA
$\sigma_{acc,max}$ [N/mm ²]	178.00	$< \sigma_{acc,amm} [N/mm^2]$	VERIFICA SODDISFATTA

• Verifica a fessurazione

Dati	Verica fessurazione sezione circolare CIRCOLARE 2/02/2009 N°617 Par.C.4.1.2.2.4.6			
ϑ_{s}	178 N/mm²	Tensione massima armatura tesa sezione fessurata		
Rck	30.0 N/mm ²	Resistenza caratteristica cubica cls		
φι	20 mm	Diametro barre longitudinali		
фѕ	12 mm	Diametro staffe o spirale		
n	16	Numero ferri longitudinali		
С	60 mm	Ricoprimento del calcestruzzo		
D	800 mm	Diametro		
k _t	0.4	kt=0,6 ;0,4 carichi breve durata/lunga durata		
k ₂	0.5	k2=0,5 ;1,0 caso flessione/trazione semplice		
k_1	0.8	k1=0,8 ;1,6 barre aderenza migliorata/lisce		
w	0.4 mm	Valore limite apertura fessure		
Dati				
fck	24.9 N/mm²	Resistenza caratteristica cilindrica cls		
i	125 mm	Interasse ferri longitudinali		
A_{φ}	314 mm²	Area barra longitudinale		
E _s	210000.0 N/mm ²	Modulo elastico acciaio da c.a		
f _{ctm}	2.6 N/mm ²	Resistenza a trazione media cls		
E _{cm}	31447.2 N/mm ²	Modulo elastico medio cls		
α_{e}	6.68	Rapporto Es/Ecm		
f _{cm}	32.9 N/mm²	Resistenza media cls		
$ ho_{ m eff}$	0.0180	Rapporto area acciaio/area efficace		
ϵ_{sm1}	0.000544	Deformazione unitaria media barre di calcolo		

Linea AV/AC VERONA - PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA INOD 00 D I2 RG

 $\begin{array}{ll} \text{DOCUMENTO} & \text{REV.} \\ \text{IM0006 005} & \text{A} \end{array}$

Pag. 135 di 170

w _d /w	0.54	<1	VERIFICA SODDISFATTA
W _d	0.214 mm	Valore di calcolo apertura fessure	
Δsmax	393.2 mm	Distanza mass	ima tra le fessure
k4	0.4	Coefficiente	
k_3	3.4	Coefficiente	
$\epsilon_{\sf sm}$	0.000544	Deformazione	unitaria media
ϵ_{sm2}	0.000509	Deformazione	unitaria media barre valore minimo

9.12.3 Verifiche geotecniche dei pali_TIPO N

• Verifiche della capacità portante

	MEDIO	MINIMO	
Q _{Rm} [KN]	985.20	985.20	Valore di calcolo
Q _{Rk} [KN]	579.53	579.53	Valore caratteristico
Q _{Rd comp} [kN]	364.49	364.49	Valore di progetto a compressione
Q _{Rd traz} [kN]	487.87	487.87	Valore di progetto a trazione

PORTANZA IN COMPRESSIONE				
E _{c,d} [kN] 126.10 < 364.49 R _{c,d} [kN]				R _{c,d} [kN]
$E_{c,d}/R_{c,d}$	34.60%		Verificato	

Dalle verifiche risulta che il palo in calcestruzzo armato della lunghezza prevista risulta idoneo ad accogliere tutti i carichi trasmessi dalle barriere.

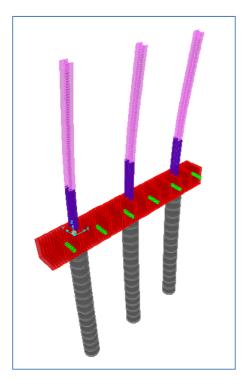
• Verifiche ai carichi trasversali

VERIFICA BROMS TERRENI COESIVI					
Terreno:	Argille				
Caratteristiche medie o	lel terreno		_	Caratteristiche mir	nime del terreno
Parametri del terreno	Parametri del terreno			no	
Cu _{media} [kPa]	40			Cu _{min} [kPa]	40
Palo corto			_	Palo corto	
H1 [kN]	2534.40			H1 [kN]	2534.40
Mmax [kNm]	#######	>My		Mmax [kNm]	#######

COMBO GEO A2+M1+R2		
H _{tr,d media} [kN]	201.88	
H _{tr,d min} [kN]	201.88	
H _{RES} [kN]	201.88	
H _{ES} [kN]	65.81	
H _{ES} /H _{RES} 32.60%		
Verificato		

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:


RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 136 di 170

Palo intermedio H2 [kN]	958.74	_	<u>intermedio</u> kN]	958.74
Palo lungo	F40 11		lungo	F40 11
H3 [kN]	549.11	H3 [KINJ	549.11
H _{media} [kN]	549.11	H _{min}	[kN]	549.11
H _{tr,k media} [kN]	323.00	H _{tr,k}	_{min} [kN]	323.00

COMBO STR A1+M1+R3			
H _{tr,d media} [kN] 248.46			
H _{tr,d min} [kN]	248.46		
H _{RES} [kN]	248.46		
H _{ES} [kN]	75.94		
H _{ES} /H _{RES} 30.56%			
Verificato			

• Verifica di deformabilità

VERIFICA DI DEFORMABILITA'				
Spostamento testa montante da vento	3.57	cm		
Traslazione testa palo	0.595	cm		
Rotazione testa palo	0.00197	[rad]		
Rotazione testa palo	0.1129	[°]		
Spostamento testa montante da rotazione	1.53	cm		
Spostamento totale testa montante E _d	5.10	cm		
Spostamento ammissibile $C_d = H/100$	6.95	cm		
Verificato Ed <cd -="" cd="0.76</td" ed=""><td></td><td></td></cd>				

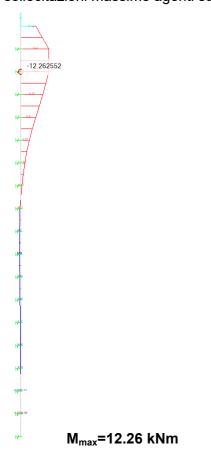
1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 137 di 170

10 PROGETTO GEOTECNICO DEI MICROPALI


10.1 BARRIERA H=4.95M - RILEVATO < 4m - ARGILLA

Verifiche strutturali e geotecniche (Argilla)

La determinazione delle sollecitazioni lungo il palo è stata effettuata mediante il software di calcolo Sap2000, considerando il palo immerso nel terreno e soggetto all'azione dei carichi orizzontali e verticali derivanti dalla struttura in elevazione. Il terreno è stato schematizzato mediante una distribuzione di molle di diversa rigidezza a seconda del tipo di terreno che il palo attraversa. Una volta note le sollecitazioni agenti è stata effettuata una verifica a pressoflessione della sezione circolare del palo in c.a. mediante l'utilizzo del software di calcolo VCA-SLU.

10.1.1 Verifiche strutturali: SLU:A1;M1;R1

Le sollecitazioni massime agenti sui pali risultano:

V_{max}=11.34 kN

Linea AV/AC VERONA - PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 138 di 170

I valori caratteristici delle azioni trasmesse al singolo palo di fondazione (si considerano le sollecitazioni del palo centrale, ossia quello più sollecitato), risultano:

Vento VERSO strada (verso MONTE)				
SOLLECITAZIONI TESTA PALO LATO ESTERNO				
P4 STR GEO SLE				
N [kN]	-44.47	-40.13	-27.98	
T [kN]	-11.30	-9.80	-7.54	
M [kNm]	12.21	10.59	8.14	

Vento DA strada (verso VALLE)				
SOLLECITAZIONI TESTA PALO LATO ESTERNO				
P4 STR GEO SLE				
N [kN]	121.43	103.66	82.62	
T [kN]	11.30	9.79	7.53	
M [kNm]	-12.22	-10.59	-8.14	

SOLLECITAZIONI TESTA PALO LATO STRADA					
Р3	STR	GEO	SLE		
N [kN]	120.35	102.74	81.88		
T [kN]	-11.34	-9.83	-7.56		
M [kNm]	12.20	10.57	8.13		

SOLLECITAZIONI TESTA PALO LATO STRADA				
Р3	STR	GEO	SLE	
N [kN]	-45.35	-40.87	-28.59	
T [kN]	11.35	9.83	7.56	
M [kNm]	-12.20	-10.57	-8.13	

Il palo ha sezione Φ 250, è lungo 9,00 m ed è armato con un'armatura tubolare Φ 139.7 sp.10mm.

	VERIFICA STRUTT	URALE MICROPAL	<u>0</u>	
N [kN]	121.43	(Combo str)		
T [kN]	11.30			
M [kN]	12.21			
Mmax [kNm]	12.27			
CANNA MICROPALO				
Armatura	Ф 139.7 - Sp 10		ACCIAIO S355	
Фest [mm]	139.70		f _{yk} [N/mm²]	355
Фint [mm]	119.70		γмо	1.05
sp [mm]	10.00			
A [mm ²]	4075		M _{pl} [kNm]	41.72
W _{pl} [cm ³]	123.39			
VERIFICA A FLESSIONE, T	AGLIO, SFORZO NORM	ALE		
N _{pl,Rd} [kN]	1377.62			
n	0.09			

Linea AV/AC VERONA - PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

ROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	Pag.
IN0D	00	D I2 RG	IM0006 005	Α	139 di 170

$M_{Ed}/M_{N,y,Rd}$	0.32	<1	VERIFICA SODDISFATTA
M _{y,N V,Rd} [kNm]	38.04		
ρ	0.00	.0.0	
V _{Ed} /V _{c,Rd}	0.02	<0.5	TAGLIO TRASCURABILE
V _{c,Rd} [kN]	506.35		
A_v [mm ²]=2A/p	2594.00		

10.1.2 Verifiche geotecniche dei pali_TIPO O

• Verifiche della capacità portante

	MEDIO	MINIMO	
Q _{Rm} [KN]	1158.36	1158.36	Valore di calcolo
Q _{Rk} [KN]	681.39	681.39	Valore caratteristico
Q _{Rd comp} [kN]	469.92	469.92	Valore di progetto a compressione
Q _{Rd traz} [kN]	425.87	425.87	Valore di progetto a trazione

PORTANZA IN COMPRESSIONE				
E _{c,d} [kN]	103.66	<	469.92	R _{c,d} [kN]
$E_{c,d}/R_{c,d}$	22.06%		Verificato	

PORTANZA IN TRAZIONE				
E _{t,d} [kN]	40.87	<	425.87	R _{t,d} [kN]
Q_{Ed}/Q_{Rd}	9.60%	Verificato		

Dalle verifiche risulta che il palo in calcestruzzo armato della lunghezza prevista risulta idoneo ad accogliere tutti i carichi trasmessi dalle barriere.

• Verifiche ai carichi trasversali

VERIFICA BROMS TERRENI COESIVI				
Terreno: Argille				
Caratteristiche medie del terreno		-	Caratteristiche minime del terre	<u>no</u>
Parametri del terreno			Parametri del terreno	
Cu _{media} [kPa]	40		Cu _{min} [kPa] 40	

COMBO GEO A2+M1+R2		
H _{tr,d media} [kN]	46.67	
H _{tr,d min} [kN]	46.67	

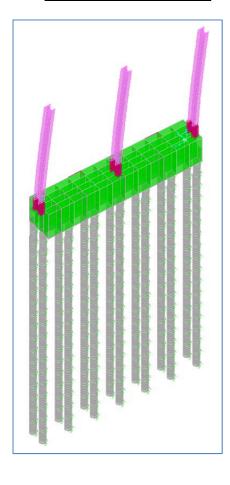
Linea AV/AC VERONA - PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 140 di 170


Palo corto		
H1 [kN]	776.25	
Mmax [kNm]	3638.67	>My
Palo intermedio		
H2 [kN]	313.47	
Palo lungo		
H3 [kN]	126.94	
H _{media} [kN]	126.94	
H _{tr,k media} [kN]	74.67	

-	Palo corto	
	H1 [kN]	776.25
	Mmax [kNm]	3638.67
-	Palo intermedio	
	H2 [kN]	313.47
-	Palo lungo	
	H3 [kN]	126.94
	H _{min} [kN]	126.94
	H _{tr,k min} [kN]	74.67

H _{RES} [kN]	46.67	
H _{ES} [kN]	9.79	
H _{ES} /H _{RES} 20.98%		
Verificato		

COMBO STR A1+M1+R3		
$H_{tr,d\ media}\ [kN]$	57.44	
H _{tr,d min} [kN]	57.44	
H _{RES} [kN]	57.44	
H _{ES} [kN]	11.30	
H _{ES} /H _{RES} 19.67%		
Verificato		

• Verifica di deformabilità

VERIFICA DI DEFORMABILITA'						
Spostamento testa montante da vento	1.29	cm				
Traslazione testa palo	0.337	cm				
Rotazione testa palo	0.00312	[rad]				
Rotazione testa palo	0.1788	[°]				
Spostamento testa montante da rotazione	1.79	cm				
Spostamento totale testa montante E _d	3.09	cm				
Spostamento ammissibile $C_d = H/100$ 4.95						
Verificato Ed <cd -="" cd="0.65</td" ed=""><td></td><td></td></cd>						

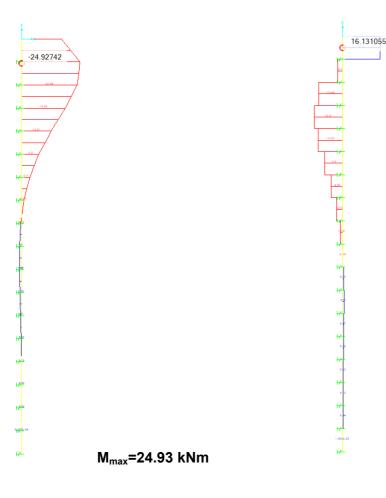
1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	Pag.
IN0D	00	D I2 RG	IM0006 005	Α	141 di 170

V_{max}=16.13 kN


10.3 BARRIERA H=6.95M - RILEVATO < 4m - ARGILLA

Verifiche strutturali e geotecniche (Argilla)

La determinazione delle sollecitazioni lungo il palo è stata effettuata mediante il software di calcolo Sap2000, considerando il palo immerso nel terreno e soggetto all'azione dei carichi orizzontali e verticali derivanti dalla struttura in elevazione. Il terreno è stato schematizzato mediante una distribuzione di molle di diversa rigidezza a seconda del tipo di terreno che il palo attraversa. Una volta note le sollecitazioni agenti è stata effettuata una verifica a pressoflessione della sezione circolare del palo in c.a. mediante l'utilizzo del software di calcolo VCA-SLU.

10.3.1 Verifiche strutturali: SLU:A1;M1;R1

Le sollecitazioni massime agenti sui pali risultano:

Linea AV/AC VERONA - PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 142 di 170

I valori caratteristici delle azioni trasmesse al singolo palo di fondazione (si considerano le sollecitazioni del palo centrale, ossia quello più sollecitato), risultano:

Vento VERSO strada (verso MONTE)						
SOLLECITAZIONI TESTA PALO LATO ESTERNO						
P4 STR GEO SLE						
N [kN]	-115.96	-102.17	-75.55			
T [kN]	-16.06	-13.92	-10.71			
M [kNm]	25.03	21.69	16.69			

Vento DA strada (verso VALLE)						
SOLLECITAZIONI TESTA PALO LATO ESTERNO						
P4 STR GEO SLE						
N [kN] 188.54 161.73 127.45						
T [kN] 16.05 13.91 10.70						
M [kNm]	-25.04	-21.70	-16.69			

SOLLECITAZIONI TESTA PALO LATO STRADA						
P3 STR GEO SLE						
N [kN]	187.77	161.09	126.92			
T [kN]	-16.13	-13.98	-10.75			
M [kNm]	25.00	21.67	16.67			

SOLLECITAZIONI TESTA PALO LATO STRADA						
Р3	P3 STR GEO SLE					
N [kN]	-116.27	-102.41	-75.78			
T [kN]	16.13	13.98	10.75			
M [kNm]	-25.00	-21.66	-16.66			

Il palo ha sezione Φ 250, è lungo 9,00 m ed è armato con un'armatura tubolare Φ 139.7 sp.10mm.

VERIFICA STRUTTURALE MICROPALO - VENTO							
N [kN]	188.54	(Combo str)					
T [kN]	16.05						
M [kN]	25.03						
Mmax [kNm]	25.04						
CANNA MICROPALO							
Armatura	Ф 139.7 - Sp 10	ACCIAIO S355					
Фest [mm]	139.70	f _{yk} [N/mm²]	355				
Фint [mm]	119.70	У мо	1.05				
sp [mm]	10.00						
A [mm²]	4075	M _{pl} [kNm]	41.72				
W _{pl} [cm ³]	123.39						
VERIFICA A FLESSIONE,	TAGLIO, SFORZO NORM	<u>IALE</u>					
N _{pl,Rd} [kN]	1377.62						
n	0.14						
A_v [mm ²]=2A/p	2594.00						

Linea AV/AC VERONA - PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

ROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	Pag.
IN0D	00	D I2 RG	IM0006 005	Α	143 di 170

V _{c,Rd} [kN]	506.35		
$V_{Ed}/V_{c,Rd}$	0.03	<0.5	TAGLIO TRASCURABILE
ρ	0.00		
M _{y,N V,Rd} [kNm]	36.01		
$M_{Ed}/M_{N,y,Rd}$	0.70	<1	VERIFICA SODDISFATTA

10.3.2 Verifiche geotecniche dei pali_TIPO P

• Verifiche della capacità portante

	MEDIO	MINIMO	
Q _{Rm} [KN]	1158.36	1158.36	Valore di calcolo
Q _{Rk} [KN]	681.39	681.39	Valore caratteristico
Q _{Rd comp} [kN]	469.92	469.92	Valore di progetto a compressione
Q _{Rd traz} [kN]	425.87	425.87	Valore di progetto a trazione

PORTANZA IN COMPRESSIONE						
E _{c,d} [kN]	161.73	<	469.92	R _{c,d} [kN]		
$E_{c,d}/R_{c,d}$	34.42%	Verificato				

PORTANZA IN TRAZIONE						
E _{t,d} [kN]	102.41	<	425.87	R _{t,d} [kN]		
Q_{Ed}/Q_{Rd}	24.05%	Verificato				

Dalle verifiche risulta che il palo in calcestruzzo armato della lunghezza prevista risulta idoneo ad accogliere tutti i carichi trasmessi dalle barriere.

• Verifiche ai carichi trasversali

VERIFICA BROMS TERRENI COESIVI				
Terreno:	Argille			
Caratteristiche medie de	el terreno		Caratteristiche minime del terreno	
Parametri del terreno			Parametri del terreno	
Cu _{media} [kPa]	40		Cu _{min} [kPa]	40
Palo corto		-	Palo corto	

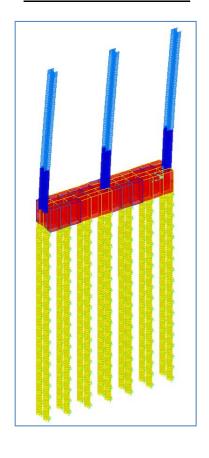
COMBO GEO A2+M1+R2		
H _{tr,d media} [kN]	46.67	
H _{tr,d min} [kN]	46.67	
H _{RES} [kN]	46.67	
H _{ES} [kN]	13.91	

Linea AV/AC VERONA - PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE


PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 144 di 170

H1 [kN]	776.25			H1 [kN]	776.25
Mmax [kNm]	3638.67	>My		Mmax [kNm]	3638.67
Palo intermedio			-	Palo intermedio	
H2 [kN]	313.47			H2 [kN]	313.47
Palo lungo			_	Palo lungo	
H3 [kN]	126.94			H3 [kN]	126.94
H _{media} [kN]	126.94			H _{min} [kN]	126.94
H _{tr,k media} [kN]	74.67			H _{tr,k min} [kN]	74.67

H _{ES} /H _{RES}	29.81%
Verif	icato

COMBO STR A1+M1+R3		
$H_{tr,d \; media} \left[kN \right]$	57.44	
H _{tr,d min} [kN]	57.44	
H _{RES} [kN]	57.44	
H _{ES} [kN]	16.05	
H _{ES} /H _{RES}	27.95%	
Verificato		

Verifica di deformabilità

VERIFICA DI DEFORMABILITA'		
Spostamento testa montante da vento	1.66	cm
Traslazione testa palo	0.54	cm
Rotazione testa palo	0.0052	[rad]
Rotazione testa palo	0.2979	[°]
Spostamento testa montante da rotazione	3.77	cm
Spostamento totale testa montante E _d	5.97	cm
Spostamento ammissibile C _d = H/100	6.95	cm
Verificato Fd <cd -="" cd="0.88</td" fd=""><td></td><td><u> </u></td></cd>		<u> </u>

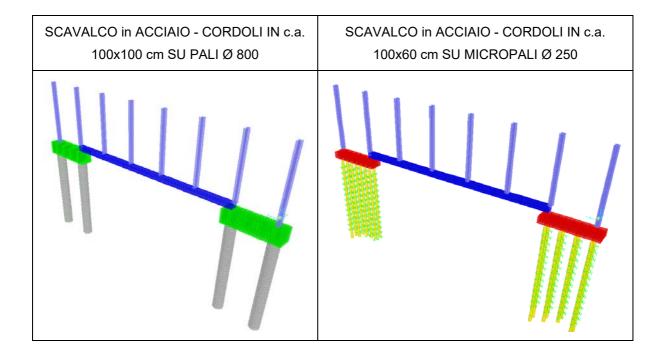
Linea AV/AC VERONA – PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 145 di 170


11 TRAVI DI SCAVALCO IN ACCIAIO

Le fondazioni delle travi di scavalco in acciaio vengono realizzate mediante cordolo di fondazione su pali trivellati in c.a. di diametro Ø600 per la linea di progetto e micropali di diametro Ø250, per la linea storica.

Le sollecitazioni scaricanti sulla fondazione dello scavalco sono quindi lo sforzo normale, il taglio ed i momenti Mx, My e Mz dello scavalco stesso, sommato allo scarico dello sforzo normale, taglio e momento di un montante singolo. La ripartizione delle sollecitazioni sui vari pali e sul cordolo di collegamento è stata verificata attraverso un modello agli elementi finiti realizzato con il programma di calcolo SAP2000.

Il terreno è stato schematizzato mediante una distribuzione di molle di diversa rigidezza a seconda del tipo di terreno che il palo attraversa. Il modello di calcolo agli elementi finiti è stato realizzato mediante l'ausilio del programma di calcolo "Sap2000" della Computer and Structures Inc.

Di seguito si riportano le verifiche strutturali e geotecniche effettuate sulle travi di scavalco in acciaio.

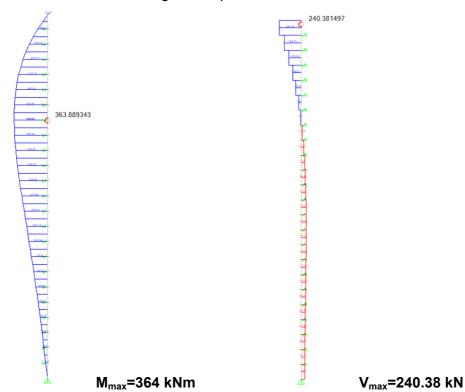
1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 146 di 170

11.1 PROGETTO GEOTECNICO DEI PALI


Il progetto geotecnico dei pali di seguito riportato, riguarda il caso più gravoso di rilevato basso composto da terreno argilloso.

11.1.1 TRAVE DI SCAVALCO: TIPO D Verifiche strutturali e geotecniche

La determinazione delle sollecitazioni lungo il palo è stata effettuata mediante il software di calcolo Sap2000, considerando il palo immerso nel terreno e soggetto all'azione dei carichi orizzontali e verticali derivanti dalla struttura in elevazione. Il terreno è stato schematizzato mediante una distribuzione di molle di diversa rigidezza a seconda del tipo di terreno che il palo attraversa. Una volta note le sollecitazioni agenti è stata effettuata una verifica a pressoflessione della sezione circolare del palo in c.a. mediante l'utilizzo del software di calcolo VCA-SLU.

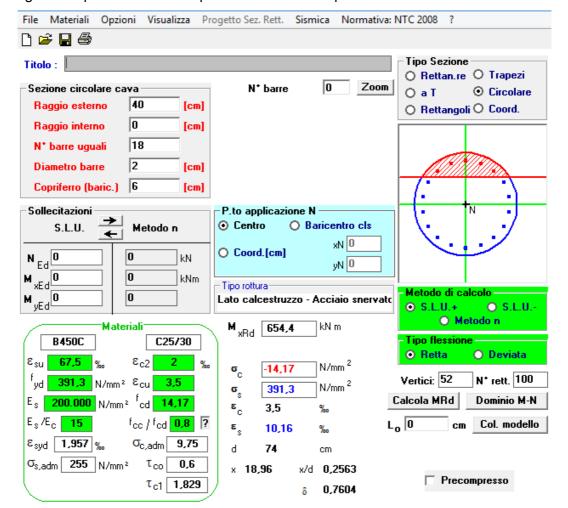
• Verifiche strutturali: SLU:A1;M1;R1

Le sollecitazioni massime agenti sui pali risultano:

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:
RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 147 di 170


I valori caratteristici delle azioni trasmesse al singolo palo di fondazione (si considerano le sollecitazioni del palo centrale, ossia quello più sollecitato), risultano:

	TESTA PALO			FUSTO
	N (kN)	Mmax (kNm)		
STR	478,79	240,38	107,21	364,06
GEO	403,30	208,33	92,92	364,06
SLE	331,45	160,25	71,47	315,51

Il palo è lungo 12,00 m ed è armato con ferri longitudinali 18φ20 e staffe φ12/20.

Verifica a flessione: Φ800

Di seguito si riporta la verifica a presso-flessione del palo:

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 148 di 170

	<u>VERIFICA STRUTTURALE PALO</u>				
N [kN]	478,79	(Combo str)			
T [kN]	240,38				
M [kN]	107,21				
Mmax [kNm]	364,06				
Armatura	18 Ø20				
M _{Rd} [kNm]	654,40				
M_{Ed}/M_{Rd}	0,56	<1	VERIFICA SODDISFATTA		

Verifica a taglio

Di seguito si riporta la verifica a taglio:

<u>VERIFICA ST</u>	TRUTTURALE PALO-TAGLIO
N [kN]	478,79 (Combo str)
V [kN]	240,38
M [kN]	107,21
Vmax [kN]	240,38
Carattersitiche sezione rettangolare equi	ivalente
α (rad)	0,57
b (mm)	674,22
h (mm)	745,54
d (mm)	616,45
Materiali	
fck (Mpa)	25,00
γς	1,50
fcd (Mpa)	14,17
fyk (Mpa)	450,00
γs	1,15
fyd (Mpa)	391,3
Verifica senza armatura a taglio	
Asl (mm²)	5655,00 18 Ø20
ρι (%)	0,01
k	1,32

Linea AV/AC VERONA - PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

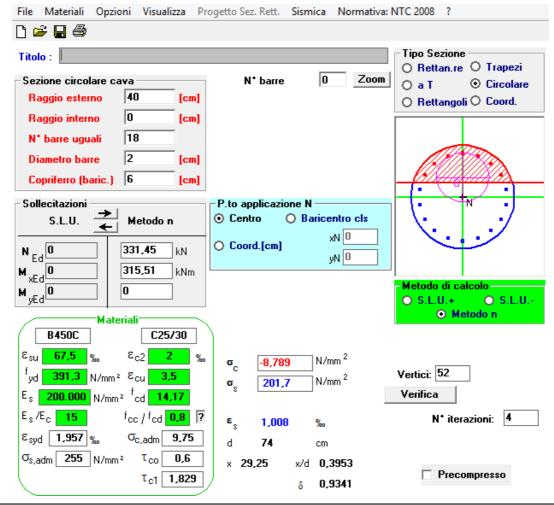
PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	Pag.
IN0D	00	D I2 RG	IM0006 005	Α	149 di 170

vmin	0,27		
Vrd (kN)	322,18		
V_{Ed}/V_{Rd}	0,75	<1	VERIFICA SODDISFATTA
Verifica con armatura a taglio			
Asw (mm²)	226,00	2 Ø12	
s (mm)	200,00		
α (°)	90,00		
cotgθ	2,50		
cotga	0,00		
σср (Мра)	0,95		
ας	1,07		
Vrcd (kN)	548,29		
Vrsd (kN)	975,08		
V _{Ed} /V _{Rd}	0,44	<1	VERIFICA SODDISFATTA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE


PROGETTO LOTTO CODIFICA INOD 00 D I2 RG

DOCUMENTO REV. IM0006 005 A

Pag. 150 di 170

• Verifiche strutturali: SLE (Rara)

Verifica tensionale

VERIFICA TENSIONALE PALO					
N [kN]	331,45	(Combo rara)			
T [kN]	160,25				
M [kN]	71,47				
Mmax [kNm]	315,51				
Armatura	18 Ø20				
f _{ck} [N/mm ²]	25				
$f_{yk} [N/mm^2]$ $\sigma_{cls,max} [N/mm^2]$	450				
$\sigma_{cls,max}$ [N/mm ²]	8,79	$< \sigma_{cls,amm} [N/mm^2]$	VERIFICA SODDISFATTA		

Linea AV/AC VERONA - PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 151 di 170

Verifica a fessurazione

Dati	Verica fessurazione sezione circolare CIRCOLARE 2/02/2009 N°617 Par.C.4.1.2.2.4.6			
ϑ_{s}	202 N/mm²	Tensione massima armatura tesa sezione fessurata		
Rck	30,0 N/mm ²	Resistenza caratteristica cubica cls		
Фі	20 mm	Diametro barre longitudinali		
фѕ	12 mm	Diametro staffe o spirale		
n	18	Numero ferri longitudinali		
С	60 mm	Ricoprimento del calcestruzzo		
D	800 mm	Diametro		
k_{t}	0,4	kt=0,6 ;0,4 carichi breve durata/lunga durata		
k_2	0,5	k2=0,5 ;1,0 caso flessione/trazione semplice		
k_1	0,8	k1=0,8 ;1,6 barre aderenza migliorata/lisce		
w	0,3 mm	Valore limite apertura fessure		
Dati				
fck	24,9 N/mm²	Resistenza caratteristica cilindrica cls		
i	111 mm	Interasse ferri longitudinali		
A_{Φ}	314 mm²	Area barra longitudinale		
E _s	210000,0 N/mm²	Modulo elastico acciaio da c.a		
f_{ctm}	2,6 N/mm²	Resistenza a trazione media cls		
E _{cm}	31447,2 N/mm ²	Modulo elastico medio cls		
$\alpha_{\rm e}$	6,68	Rapporto Es/Ecm		
f_{cm}	32,9 N/mm²	Resistenza media cls		
$ ho_{ m eff}$	0,0202	Rapporto area acciaio/area efficace		
ε _{sm1}	0,000687	Deformazione unitaria media barre di calcolo		
€ _{sm2}	0,000576	Deformazione unitaria media barre valore minimo		
ε _{sm}	0,000687	Deformazione unitaria media		
k ₃	3,4	Coefficiente		

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOC INOD 00 D I2 RG IMO

DOCUMENTO REV. IM0006 005 A

Pag. 152 di 170

k4	0,4	Coefficiente		
Δsmax	372,2 mm	Distanza mass	ima tra le fessure	
W_d	0,256 mm	Valore di calcolo apertura fessure		
w _d /w	0.64	<1	VERIFICA SODDISFATTA	

Verifiche geotecniche dei pali TIPO Q

Verifiche della capacità portante

	MEDIO	MINIMO	
Q _{Rm} [KN]	1146,05	1146,05	Valore di calcolo
Q _{Rk} [KN]	674,15	674,15	Valore caratteristico
Q _{Rd comp} [kN]	422,71	422,71	Valore di progetto a compressione
Q _{Rd traz} [kN]	572,14	572,14	Valore di progetto a trazione

PORTANZA IN COMPRESSIONE					
E _{c,d} [kN]	403,30	<	422,71	R _{c,d} [kN]	
$E_{c,d}/R_{c,d}$	95,41%	Verificato			

Dalle verifiche risulta che il palo in calcestruzzo armato della lunghezza prevista risulta idoneo ad accogliere tutti i carichi trasmessi dalle barriere.

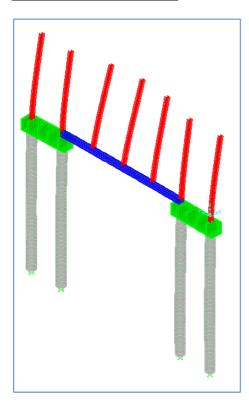
Verifiche ai carichi trasversali

VERIFICA BROMS TERRENI COESIVI						
Terreno:				Argille		
Caratteristiche medie del terreno			-	Caratteristiche minime del terreno		
Parametri del terreno				Parametri del terreno		
Cu _{media} [kPa]	40			Cu _{min} [kPa] 40		
Palo corto			-	Palo corto		
H1 [kN]	3110,40			H1 [kN] 3110,40		
Mmax [kNm]	#######	>Му		Mmax [kNm] #######		
Palo intermedio			_	Palo intermedio		
H2 [kN]	1186,45			H2 [kN] 1186,45		
Palo lungo			_	Palo lungo		
H3 [kN]	588,91			H3 [kN] 588,91		
I		,	l I	I		

COMBO GEO A2+M1+R2				
$H_{tr,d media} [kN]$	216,51			
$H_{tr,d\;min}\left[kN\right]$	216,51			
H _{RES} [kN]	216,51			
H _{ES} [kN]	208,33			
H _{ES} /H _{RES} 96,22%				
Verificato				

COMBO STR A1+M1+R3				
$H_{tr,d \; media} \left[kN \right]$	266,47			
H _{tr,d min} [kN]	266,47			
H _{RES} [kN]	266,47			
H _{ES} [kN]	240,38			
H _{ES} /H _{RES}	90,21%			

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA


Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 153 di 170

H _{media} [kN]	588,91	H _{min} [kN]	588,91	Verificato
$H_{tr,kmedia}$ [kN]	346,42	H _{tr,k min} [kN]	346,42	

Verifica di deformabilità

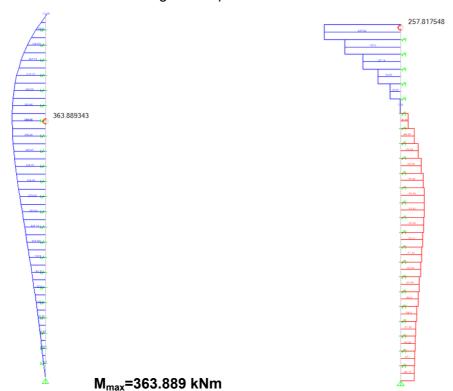
VERIFICA DI DEFORMABILITA'						
Spostamento testa montante da vento	0,80	cm				
Traslazione testa palo	0,657	cm				
Rotazione testa palo	0,0021	[rad]				
Rotazione testa palo	0,1203	[°]				
Spostamento testa montante da rotazione	1,25	cm				
Spostamento totale testa montante E _d	2,04	cm				
Spostamento ammissibile $C_d = H/100$ 4,95						
Verificato Ed <cd -="" cd="0,41</td" ed=""><td></td><td colspan="5"></td></cd>						

Joint Object	201	Joint Element	201
	1	2	3
Trans	0,00657	-8,138E-05	-4,144E-04
Rotn	-2,514E-05	6,431E-04	-0,0021

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE


PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 154 di 170

11.1.2 TRAVE DI SCAVALCO: TIPO Z Verifiche strutturali e geotecniche

La determinazione delle sollecitazioni lungo il palo è stata effettuata mediante il software di calcolo Sap2000, considerando il palo immerso nel terreno e soggetto all'azione dei carichi orizzontali e verticali derivanti dalla struttura in elevazione. Il terreno è stato schematizzato mediante una distribuzione di molle di diversa rigidezza a seconda del tipo di terreno che il palo attraversa. Una volta note le sollecitazioni agenti è stata effettuata una verifica a pressoflessione della sezione circolare del palo in c.a. mediante l'utilizzo del software di calcolo VCA-SLU.

Verifiche strutturali: SLU:A1;M1;R1

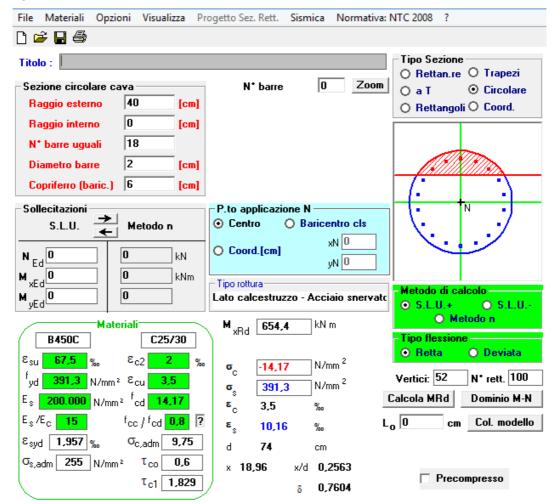
Le sollecitazioni massime agenti sui pali risultano:

V_{max}=75.94 kN

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:
RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 155 di 170


I valori caratteristici delle azioni trasmesse al singolo palo di fondazione (si considerano le sollecitazioni del palo centrale, ossia quello più sollecitato), risultano:

		FUSTO		
	N (kN)	Mmax (kNm)		
STR	399,65	60,39	418,95	548,15
GEO	341,23	46,45	322,27	475,06
SLE	474,38	59,64	513,22	365,43

Il palo è lungo 12,00 m ed è armato con ferri longitudinali 18φ20 e staffe φ12/20.

Verifica a flessione: Φ800

Di seguito si riporta la verifica a presso-flessione del palo:

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 156 di 170

VERIFICA STRUTTURALE PALO						
N [kN]	399,65 (Com	bo str)				
T [kN]	60,39					
M [kN]	418,95					
Mmax [kNm]	548,15					
Armatura	18 Ø20					
M _{Rd} [kNm]	654,40					
M _{Ed} /M _{Rd}	0,84	:1	VERIFICA SODDISFATTA			

Verifica a taglio

Di seguito si riporta la verifica a taglio:

VI	VERIFICA STRUTTURALE PALO-TAGLIO						
N [kN]	399,65 (Combo str)						
V [kN]	60,39						
M [kN]	418,95						
Vmax [kN]	257,82						
Carattersitiche sezione rettange	lare equivalente						
α (rad)	0,57						
b (mm)	674,22						
h (mm)	745,54						
d (mm)	616,45						
Materiali							
fck (Mpa)	25,00						
γς	1,50						
fcd (Mpa)	14,17						
fyk (Mpa)	450,00						
γs	1,15						
fyd (Mpa)	391,3						
Verifica senza armatura a taglio	Verifica senza armatura a taglio						
Asl (mm²)	5655,00 18 Ø20						
ρι (%)	0,01						
k	1,32						

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

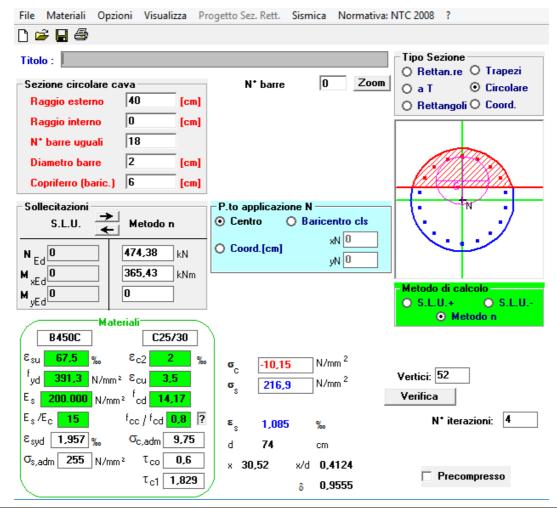
Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	Pag.
IN0D	00	D I2 RG	IM0006 005	Α	157 di 170

vmin	0,27		
Vrd (kN)	312,37		
V _{Ed} /V _{Rd}	0,83	<1	VERIFICA SODDISFATTA
Verifica con armatura a taglio			
Asw (mm²)	226,00	2 Ø12	
s (mm)	200,00		
α (°)	90,00		
cotgθ	2,50		
cotgα	0,00		
оср (Мра)	0,80		
ας	1,06		
Vrcd (kN)	548,29		
Vrsd (kN)	964,93		
V_{Ed}/V_{Rd}	0,47	<1	VERIFICA SODDISFATTA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA


Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 158 di 170

• Verifiche strutturali: SLE (Rara)

Verifica tensionale

VERIFICA TENSIONALE PALO					
N [kN]	474,38	(Combo rara)			
T [kN]	59,64				
M [kN]	513,22				
Mmax [kNm]	365,43				
Armatura	18 Ø20				
$f_{ck} [N/mm^2]$	25				
$f_{yk} [N/mm^2]$ $\sigma_{cls,max} [N/mm^2]$	450				
$\sigma_{cls,max}$ [N/mm ²]	10,15	$< \sigma_{cls,amm} [N/mm^2]$	VERIFICA SODDISFATTA		

Linea AV/AC VERONA - PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO **IN0D** 00 D I2 RG IM0006 005

Pag. 159 di 170

 $\sigma_{acc,max}$ [N/mm²]

216,90 < $\sigma_{acc,amm}$ [N/mm²] **VERIFICA SODDISFATTA**

REV.

Α

Verifica a fessurazione

Dati	Verica fessurazione sezione circolare CIRCOLARE 2/02/2009 N°617 Par.C.4.1.2.2.4.6				
ϑ_{s}	217 N/mm²	Tensione massima armatura tesa sezione fessurata			
Rck	30,0 N/mm ²	Resistenza caratteristica cubica cls			
Фі	20 mm	Diametro barre longitudinali			
фѕ	12 mm	Diametro staffe o spirale			
n	18	Numero ferri longitudinali			
С	60 mm	Ricoprimento del calcestruzzo			
D	800 mm	Diametro			
k_t	0,4	kt=0,6 ;0,4 carichi breve durata/lunga durata			
k ₂	0,5	k2=0,5 ;1,0 caso flessione/trazione semplice			
k ₁	0,8	k1=0,8 ;1,6 barre aderenza migliorata/lisce			
W	0,3 mm	Valore limite apertura fessure			
Dati					
fck	24,9 N/mm²	Resistenza caratteristica cilindrica cls			
i	111 mm	Interasse ferri longitudinali			
A_{Φ}	314 mm²	Area barra longitudinale			
E _s	210000,0 N/mm²	Modulo elastico acciaio da c.a			
f_{ctm}	2,6 N/mm²	Resistenza a trazione media cls			
E _{cm}	31447,2 N/mm²	Modulo elastico medio cls			
$\alpha_{\rm e}$	6,68	Rapporto Es/Ecm			
f _{cm}	32,9 N/mm²	Resistenza media cls			
ρ _{eff}	0,0202	Rapporto area acciaio/area efficace			
ε _{sm1}	0,000759	Deformazione unitaria media barre di calcolo			
$\varepsilon_{\rm sm2}$	0,000620	Deformazione unitaria media barre valore minimo			
$\varepsilon_{\rm sm}$	0,000759	Deformazione unitaria media			
k ₃	3,4	Coefficiente			

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Pag.

160 di 170

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. INOD 00 D I2 RG IM0006 005 A

w _d /w	0.71	<1	VERIFICA SODDISFATTA	
W _d	0,283 mm	Valore di calcolo apertura fessure		
Δsmax	372,2 mm	Distanza massima tra le fessure		
k4	0,4	Coefficiente		

Verifiche geotecniche dei pali TIPO Q

Verifiche della capacità portante

	MEDIO	MINIMO	
Q _{Rm} [KN]	1065,63	1065,63	Valore di calcolo
Q _{Rk} [KN]	626,84	626,84	Valore caratteristico
Q _{Rd comp} [kN]	393,60	393,60	Valore di progetto a compressione
Q _{Rd traz} [kN]	530,01	530,01	Valore di progetto a trazione

PORTANZA IN COMPRESSIONE						
E _{c,d} [kN]	341,23	<	393,60	R _{c,d} [kN]		
$E_{c,d}/R_{c,d}$	86,69%	Verificato				

Dalle verifiche risulta che il palo in calcestruzzo armato della lunghezza prevista risulta idoneo ad accogliere tutti i carichi trasmessi dalle barriere.

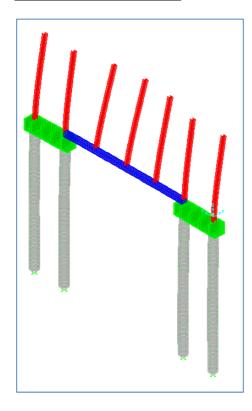
Verifiche ai carichi trasversali

VERIFICA BROMS TERRENI COESIVI					
Terreno:	Argille				
Caratteristiche medie del terreno			-	Caratteristiche minime del terreno	
Parametri del terreno				Parametri del terreno	
Cu _{media} [kPa]	40			Cu _{min} [kPa] 40	
Palo corto			-	Palo corto	
H1 [kN]	2822,40			H1 [kN] 2822,40	
Mmax [kNm]	#######	>My		Mmax [kNm] #######	
Palo intermedio			_	Palo intermedio	
H2 [kN]	1076,08			H2 [kN] 1076,08	
Palo lungo				Palo lungo	
H3 [kN]	588,91			H3 [kN] 588,91	
	•				
I			l	1	

COMBO GEO A2+M1+R2					
H _{tr,d media} [kN]	216,51				
H _{tr,d min} [kN]	216,51				
H _{RES} [kN]	216,51				
H _{ES} [kN]	46,45				
H _{ES} /H _{RES}	21,45%				
Verificato					

COMBO STR A1+M1+R3					
$H_{tr,d\;media}\left[kN\right]$	266,47				
H _{tr,d min} [kN]	266,47				
H _{RES} [kN]	266,47				
H _{ES} [kN]	60,39				
H _{ES} /H _{RES}	22,66%				

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA


Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 161 di 170

H _{media} [kN]	588,91	$H_{min}\left[kN\right]$	588,91		Verificato
$H_{tr,k \text{ media}}$ [kN]	346,42	$H_{tr,k\;min}\;[kN]$	346,42		

Verifica di deformabilità

VERIFICA DI DEFORMABILITA'						
Spostamento testa montante da vento	3,57	cm				
Traslazione testa palo	0,665	cm				
Rotazione testa palo	0,001357	[rad]				
Rotazione testa palo	0,0778	[°]				
Spostamento testa montante da rotazione	1,05	cm				
Spostamento totale testa montante E _d	4,62	cm				
Spostamento ammissibile C _d = H/100	6,95	cm				
Verificato Ed <cd -="" cd="0,68</td" ed=""></cd>						

Joint Object	201	Joint Element	201	
	1	2		3
Trans	0,00665	-5,018E-05		-4,242E-04
Rotn	-1,585E-05	8,165E-04		-0,00178

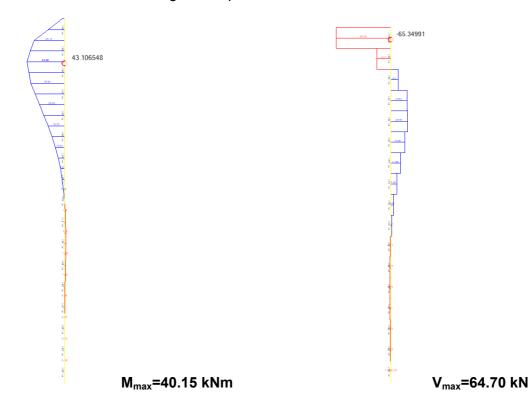
1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 162 di 170

11.2 PROGETTO GEOTECNICO DEI MICROPALI


Il progetto geotecnico dei pali di seguito riportato, riguarda il caso più gravoso di rilevato basso composto da terreno argilloso.

11.2.1 TRAVE DI SCAVALCO: TIPO D Verifiche strutturali e geotecniche

La determinazione delle sollecitazioni lungo il palo è stata effettuata mediante il software di calcolo Sap2000, considerando il palo immerso nel terreno e soggetto all'azione dei carichi orizzontali e verticali derivanti dalla struttura in elevazione. Il terreno è stato schematizzato mediante una distribuzione di molle di diversa rigidezza a seconda del tipo di terreno che il palo attraversa. Una volta note le sollecitazioni agenti è stata effettuata una verifica a pressoflessione della sezione circolare del palo in c.a. mediante l'utilizzo del software di calcolo VCA-SLU.

• Verifiche strutturali: SLU:A1;M1;R1

Le sollecitazioni massime agenti sui pali risultano:

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 163 di 170

I valori caratteristici delle azioni trasmesse al singolo palo di fondazione (si considerano le sollecitazioni del palo centrale, ossia quello più sollecitato), risultano:

Vento VERSO strada (verso MONTE)						
SOLLECITAZIONI TESTA PALO LATO ESTERNO						
P2	STR	GEO	SLE			
N [kN]	-305.662	-263.617	-205.133			
T [kN]	42.422	36.762	28.285			
M [kNm]	-40.1488	-34.7985	-26.7628			

Vento DA strada (verso VALLE)							
SOLLECITAZIONI TESTA PALO LATO ESTERNO							
P2	STR	GEO	SLE				
N [kN]	231.459	201.888	152.948				
T [kN]	-41.893	-36.31	-27.925				
M [kNm]	40.6006	35.1843	27.0701				

SOLLECITAZIONI TESTA PALO LATO STRADA						
P1	STR	GEO	SLE			
N [kN]	147.183	130.064	95.485			
T [kN]	64.699	56.076	43.128			
M [kNm]	-35.6783	-30.9176	-23.7893			

SOLLECITAZIONI TESTA PALO LATO STRADA						
P1	STR	GEO	SLE			
N [kN]	-412.62	-355.099	-277.717			
T [kN]	-65.35	-56.632	-43.571			
M [kNm]	35.1225	30.4431	23.4112			

Il palo ha sezione Φ 250, è lungo 10,00 m ed è armato con un'armatura tubolare Φ 177.8 sp.12,5mm.

VERIFICA STRUTTURALE MICROPALO						
N [kN]	231.46	(Combo str)				
T [kN]	42.42					
M [kN]	40.60					
Mmax [kNm]	43.77					
CANNA MICROPALO						
Armatura	Ф 177.8 - Sp 12.5		ACCIAIO S355			
Фest [mm]	177.80		f_{yk} [N/mm ²]	355		
Фint [mm]	152.80		Y mo	1.05		
sp [mm]	12.50					
A [mm²]	6491		M _{pl} [kNm]	84.80		
W _{pl} [cm ³]	250.82					
VERIFICA A FLESSIONE,	raglio, sforzo norm <i>i</i>	<u>ALE</u>				
N _{pl,Rd} [kN]	2194.68					
n	0.11					
A_v [mm ²]=2A/p	4132.50					

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO INOD		CODIFICA D I2 RG	DOCUMENTO IM0006 005	REV.	
IN0D	00	D I2 RG	IM0006 005	Α	164 di 170

V _{c,Rd} [kN]	806.66		
$V_{Ed}/V_{c,Rd}$	0.05	<0.5	TAGLIO TRASCURABILE
ρ	0.00		
$M_{y,N V,Rd}[kNm]$	84.80		
$M_{Ed}/M_{N,y,Rd}$	0.52	<1	VERIFICA SODDISFATTA

Verifiche geotecniche dei pali TIPO R

Verifiche della capacità portante

	MEDIO	MINIMO	
Q _{Rm} [KN]	1287.07	1287.07	Valore di calcolo
Q _{Rk} [KN]	757.10	757.10	Valore caratteristico
Q _{Rd comp} [kN]	522.14	522.14	Valore di progetto a compressione
Q _{Rd traz} [kN]	473.19	473.19	Valore di progetto a trazione

	PORTANZA IN COMPRESSIONE						
E _{c,d} [kN]	201.89	<	522.14	$R_{c,d}[kN]$			
$E_{c,d}/R_{c,d}$	38.67%	Verificato					

PORTANZA IN TRAZIONE						
E _{t,d} [kN]	355.10	<	473.19	R _{t,d} [kN]		
Q_{Ed}/Q_{Rd}	75.04%	Verificato				

Dalle verifiche risulta che il palo in calcestruzzo armato della lunghezza prevista risulta idoneo ad accogliere tutti i carichi trasmessi dalle barriere.

Verifiche ai carichi trasversali

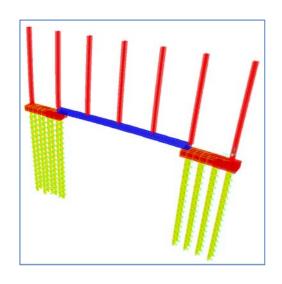
VERIFICA BROMS TERRENI COESIVI						
Terreno:				Argille		
Caratteristiche medie de	terreno			Caratteristiche minin	ne del terreno	
Parametri del terreno				Parametri del terreno)	
Cu _{media} [kPa]	40			Cu _{min} [kPa]	40	
Palo corto				Palo corto		
H1 [kN]	866.25			H1 [kN]	866.25	
Mmax [kNm]	4493.67	>My		Mmax [kNm]	4493.67	

COMBO GEO A2+M1+R2				
$H_{tr,d\;media}\left[kN\right]$	69.62			
H _{tr,d min} [kN]	69.62			
H _{RES} [kN]	69.62			
H _{ES} [kN]	56.08			
H _{ES} /H _{RES} 80.55%				
Verificato				

Linea AV/AC VERONA - PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:


RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 165 di 170

Palo intermedio H2 [kN]	358.89	- -	alo intermedio 12 [kN]	358.89
Palo lungo			alo lungo	
H3 [kN]	189.35	1-1-	13 [kN]	189.35
H _{media} [kN] H _{tr,k media} [kN]	189.35 111.38		I _{min} [kN] I _{tr,k min} [kN]	189.35 111.38

COMBO STR A1+M1+R3			
H _{tr,d media} [kN]	85.68		
H _{tr,d min} [kN]	85.68		
H _{RES} [kN]	85.68		
H _{ES} [kN]	64.70		
H _{ES} /H _{RES} 75.51%			
Verificato			

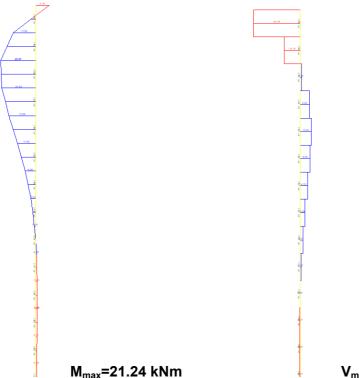
Verifica di deformabilità

VERIFICA DI DEFORMABILITA'					
Spostamento testa montante da vento	1.96	cm			
Traslazione testa palo	0.407	cm			
Rotazione testa palo	0.00179	[rad]			
Rotazione testa palo	0.1026	[°]			
Spostamento testa montante da rotazione	1.35	cm			
Spostamento totale testa montante E _d	3.72	cm			
Spostamento ammissibile C _d = H/100	6.95	cm			
Verificato Ed <cd -="" cd="0.54</td" ed=""><td></td><td></td></cd>					

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE


PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 166 di 170

11.2.2 TRAVE DI SCAVALCO: TIPO Z Verifiche strutturali e geotecniche

La determinazione delle sollecitazioni lungo il palo è stata effettuata mediante il software di calcolo Sap2000, considerando il palo immerso nel terreno e soggetto all'azione dei carichi orizzontali e verticali derivanti dalla struttura in elevazione. Il terreno è stato schematizzato mediante una distribuzione di molle di diversa rigidezza a seconda del tipo di terreno che il palo attraversa. Una volta note le sollecitazioni agenti è stata effettuata una verifica a pressoflessione della sezione circolare del palo in c.a. mediante l'utilizzo del software di calcolo VCA-SLU.

• Verifiche strutturali: SLU:A1;M1;R1

Le sollecitazioni massime agenti sui pali risultano:

V_{max}=43.04 kN

Linea AV/AC VERONA - PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 167 di 170

I valori caratteristici delle azioni trasmesse al singolo palo di fondazione (si considerano le sollecitazioni del palo centrale, ossia quello più sollecitato), risultano:

Vento VERSO strada (verso MONTE)						
SOLLECITAZIONI TESTA PALO LATO ESTERNO						
P2	STR	GEO	SLE			
N [kN]	-164.861	-141.694	-111.156			
T [kN]	27.905	24.182	18.606			
M [kNm]	-17.2429	-14.9461	-11.4928			

Vento DA strada (verso VALLE)						
SOLLECITAZIONI TESTA PALO LATO ESTERNO						
P2 STR GEO SLE						
N [kN]	95.362	83.833	62.327			
T [kN]	-27.415	-23.762	-18.274			
M [kNm]	17.661	15.3039	11.7764			

SOLLECITAZIONI TESTA PALO LATO STRADA						
P1	STR GEO SLE					
N [kN]	11.868	12.444	5.64			
T [kN]	42.436	36.781	28.287			
M [kNm]	-14.0985	-12.2159	-9.402			

SOLLECITAZIONI TESTA PALO LATO STRADA						
P1	STR	GEO	SLE			
N [kN]	-258.678	-222.03	-174.724			
T [kN]	-43.039	-37.297	-28.696			
M [kNm]	13.5843	11.7759	9.0532			

Il palo ha sezione Φ 250, è lungo 10,00 m ed è armato con un'armatura tubolare Φ 177.8 sp.12,5mm.

	VERIFICA STRUTTU	JRALE MICROPALO	<u>)</u>	
N [kN]	95.36	(Combo str)		
T [kN]	27.91			
M [kN]	17.66			
Mmax [kNm]	21.24			
CANNA MICROPALO				
Armatura	Ф 177.8 - Sp 12.5		ACCIAIO S355	
Фest [mm]	177.80		f_{yk} [N/mm 2]	355
Фint [mm]	152.80		ү мо	1.05
sp [mm]	12.50			
A [mm²]	6491		M _{pl} [kNm]	84.80
W _{pl} [cm ³]	250.82			
VERIFICA A FLESSIONE, 7	TAGLIO, SFORZO NORMA	<u>ALE</u>		
N _{pl,Rd} [kN]	2194.68			
n	0.04			
A_v [mm ²]=2A/p	4132.50			

Linea AV/AC VERONA – PADOVA

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO INOD		CODIFICA D I2 RG	DOCUMENTO IM0006 005	REV.	_{Pag.} 168 di 170
---------------	--	---------------------	----------------------	------	-------------------------------

V _{c,Rd} [kN]	806.66		
$V_{Ed}/V_{c,Rd}$	0.03	<0.5	TAGLIO TRASCURABILE
ρ	0.00		
M _{y,N V,Rd} [kNm]	84.80		
$M_{Ed}/M_{N,y,Rd}$	0.25	<1	VERIFICA SODDISFATTA

Verifiche geotecniche dei pali TIPO R

Verifiche della capacità portante

	MEDIO	MINIMO	
Q _{Rm} [KN]	1287.07	1287.07	Valore di calcolo
Q _{Rk} [KN]	757.10	757.10	Valore caratteristico
Q _{Rd comp} [kN]	522.14	522.14	Valore di progetto a compressione
Q _{Rd traz} [kN]	473.19	473.19	Valore di progetto a trazione

PORTANZA IN COMPRESSIONE					
E _{c,d} [kN] 83.83 < 522.14 R _{c,d} [kN]					
E _{c,d} /R _{c,d} 16.06% Verificato					

PORTANZA IN TRAZIONE					
E _{t,d} [kN] 222.03 < 473.19 R _{t,d} [kN]					
Q _{Ed} /Q _{Rd} 46.92% Verificato					

Dalle verifiche risulta che il palo in calcestruzzo armato della lunghezza prevista risulta idoneo ad accogliere tutti i carichi trasmessi dalle barriere.

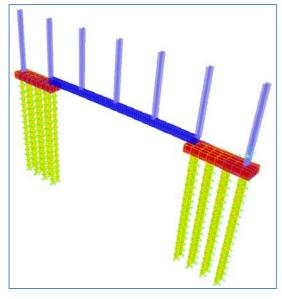
Verifiche ai carichi trasversali

VERIFICA BROMS TERRENI COESIVI					
Terreno:				Argille	
Caratteristiche medie de	terreno		-	Caratteristiche minir	ne del terreno
Parametri del terreno				Parametri del terreno	0
Cu _{media} [kPa]	40			Cu _{min} [kPa]	40
Palo corto				Palo corto	
H1 [kN]	866.25			H1 [kN]	866.25
Mmax [kNm]	4493.67	>My		Mmax [kNm]	4493.67

COMBO GEO A2+M1+R2				
H _{tr,d media} [kN] 69.62				
$H_{tr,d\;min}\left[kN\right]$	69.62			
H _{RES} [kN]	69.62			
H _{ES} [kN]	36.78			
H _{ES} /H _{RES} 52.83%				
Verificato				

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:


RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO INOD	00 00	CODIFICA D I2 RG	DOCUMENTO IM0006 005	REV.	
---------------	----------	---------------------	----------------------	------	--

Palo intermedio H2 [kN]	358.89		alo intermedio 2 [kN]	358.89
Palo lungo H3 [kN]	189.35	- -	alo lungo 3 [kN]	189.35
H _{media} [kN] H _{tr,k media} [kN]	189.35 111.38		_{min} [kN] _{tr,k min} [kN]	189.35 111.38

COMBO STR A1+M1+R3			
H _{tr,d media} [kN]	85.68		
H _{tr,d min} [kN]	85.68		
H _{RES} [kN]	85.68		
H _{ES} [kN]	42.44		
H _{ES} /H _{RES}	49.53%		
Verificato			

Verifica di deformabilità

<u>VERIFICA DI DEFORMABILITA'</u>					
Spostamento testa montante da vento	0.32	cm			
Traslazione testa palo	0.409	cm			
Rotazione testa palo	0.0008399	[rad]			
Rotazione testa palo	0.0481	[°]			
Spostamento testa montante da rotazione	0.47	cm			
Spostamento totale testa montante E _d	1.20	cm			
Spostamento ammissibile C _d = H/100	4.95	cm			
Verificato Ed <cd -="" cd="0.24</td" ed=""></cd>					

1° LOTTO FUNZIONALE VERONA – BIVIO VICENZA

Titolo:

RELAZIONE DI CALCOLO: PARTE IN FONDAZIONE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 D I2 RG IM0006 005 A 170 di 170

12 TRAVI DI SCAVALCO IN C.A.

Le fondazioni di tali elementi strutturali vengono realizzate mediante cordolo di fondazione su pali trivellati in c.a. di diametro Ø800 o micropali Ø250.

Le sollecitazioni scaricanti sulla fondazione dello scavalco sono quindi lo sforzo normale, il taglio ed i momenti Mx, My e Mz dello scavalco stesso, sommato allo scarico dello sforzo normale, taglio e momento di un montante singolo.

La ripartizione delle sollecitazioni sui vari pali e sul cordolo di collegamento è stata verificata attraverso un modello agli elementi finiti realizzato con il programma di calcolo SAP2000.

Il terreno è stato schematizzato mediante una distribuzione di molle di diversa rigidezza a seconda del tipo di terreno che il palo attraversa.

Il modello di calcolo agli elementi finiti è stato realizzato mediante l'ausilio del programma di calcolo "Sap2000" della Computer and Structures Inc.

Il dimensionamento del sistema di fondazione delle travi di scavalco in CLS è stato eseguito per la tipologia H (L=12,00m), nel caso di barriera H=6,95m, rilevato basso composto da terreno argilloso; tali condizioni riportano alle stesse considerazioni già effettuate nel caso di trave di scalvalco tipo D, pertanto si rimanda ai paragrafi § 13.1.1 e 13.1.1 per le verifiche di pali e micropali.