COMMITTENTE:

ALTA SORVEGLIANZA:

GENERAL CONTRACTOR:

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N. 443/01

LINEA A.V. /A.C. TORINO-VENEZIA Tratta VERONA-PADOVA Lotto funzionale Verona-Bivio Vicenza PROGETTO ESECUTIVO

PARTE GENERALE IDROLOGIA E IDRAULICA

GENERALE

RELAZIONE IDROLOGICA E IDRAULICA ATTRAVERSAMENTI SECONDARI
GENERAL CONTRACTOR DIRETTORE LAVORI

IL PRC	GETTISTA INTEGRATORE	Consorz	io					S	CALA	
iserino Iserino	MALAVENDA Majane degli Majane degli Majane degli Majane degli Majane degli Majane degli	Iricav ing. Paol Data: Ap	o Carmono	ı					-	
COM	MESSA LOTTO FA	SE ENTE	TIPO D	OC. OPER	a/disciplina	PROGR.	REV.	FOGLIO		
IN	N 1 7 1 0 E 1 2 R H D 0 0 0 0 2 B									
					VISTO CONSORZIO IRICAV DUE					
					Firma					
<	Consor	zio IricA	V Due		Luca	RANDOLFI	7	Aprile 202	:1	
Proge	ttazione:									
Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	IL PROGET	TISTA	
Α	PRIMA EMISSIONE	D. Ballin	Marzo	M. Faccioli	Marzo	S. Flora	Marzo	NET	RI DELLA SEL	
	T TAINWAY ENVIRONMENT		2021		2021		2021	IPROS	SILVANO FLORA	
		D. Ballin	Aprile	M. Faccioli	Aprile	S. Flora	Aprile	INGEGNERIA AMBIENTALE	FLORA N.2502	
В	REVISIONE GENERALE		2021		2021		2021	Data: Aprile 2021	N.2502 NO.000	
						1				

CIG. 8377957CD1

CUP: J41E91000000009

File: IN1710EI2RHID0000002B.DOCX
Cod. origine: IN1710EI2RHID0000002B

Progetto cofinanziato dalla Unione Europea

RELAZIONE IDROLOGICA E IDRAULICA ATTRAVERSAMENTI SECONDARI Progetto Lotto Codifica Documento IN17 10 EI2 RH ID0000 002

Rev. Foglio B 2 di 67

INDICE

1	PREM	ESSA	3
2	NORM	IATIVA E STANDARD DI RIFERIMENTO	4
3	DOCU	MENTI DI RIFERIMENTO	5
4	INQU/	ADRAMENTO TERRITORIALE	6
	4.1 C	Competenza della rete idrografica relativa agli attraversamenti secondari	7
5	ANALI	SI IDROLOGICA	9
	5.1 A	nalisi pluviometrica	9
	5.2 F	Parametri morfometrici dei bacini secondari	17
	5.3 C	Calcolo della portata di progetto per bacini secondari con superficie < 10 Km ²	20
	5.3.1	Determinazione del tempo di corrivazione	20
	5.3.2	Determinazione del coefficiente di deflusso	22
	5.3.3	Implementazione del metodo cinematico	26
	5.4 C	Calcolo dell'idrogramma di piena per bacini con superficie > 10 Km²	31
	5.4.1	Il modello di trasformazione afflussi-deflussi	31
	5.4.2	Litologia	34
	5.4.3	Uso del suolo	36
	5.4.4	Il Curve Number (CN)	36
	5.4.5	Implementazione del modello HEC-HMS	39
	5.5 C	Calcolo della portata massima per bacini secondari nella fase di cantierizzazione	43
6	CONC	LUSIONI	47
A	LLEGATI		50

GENERAL CONTRACTOR Consorzio IricAV Due			ITAL	FERR		
RELAZIONE IDROLOGICA E IDRAULICA	A ATTRAVERSAMENTI	Progetto	Lotto	Codifica Documento	Rev.	Foglio
SECONDARI		IN17	10	EI2 RH ID0000 002	В	3 di 67

1 PREMESSA

Lo scopo del seguente elaborato è quello di illustrare le risultanze dello studio idrologico in riguardo alla progettazione esecutiva della linea alta velocità Verona – Bivio Vicenza, 1° lotto funzionale compreso tra la progressiva pk.0+000 e pk. 44+250.

L'analisi idrologica, che ha lo scopo principale di definire le portate di progetto per le interferenze della linea A.V./A.C. con i reticoli idrografici principali, minori e secondari, è costituita dai seguenti punti:

- Reperimento della cartografia di base;
- Individuazione dei bacini imbriferi;
- Analisi morfometrica dei bacini;
- Raccolta ed analisi dei dati pluviometrici disponibili;
- Elaborazione delle curve di probabilità pluviometriche;
- Definizione degli idrogrammi o delle portate al colmo di progetto;
- Definizione delle portate al colmo in fase di cantierizzazione.

Il presente studio idrologico è stato redatto tenendo conto delle prescrizioni fornite da parte del Consorzio di Bonifica Alta Pianura Veneta (2016), derivanti dal quadro prescrittivo a seguito dell'approvazione del Progetto Definitivo e specificate nell'allegato 1 della Delibera Cipe con Delibera n.84 del 22.12.2017 e derivanti dalle istruttorie ITF relative al Progetto Definitivo (2018-2019).

La presente relazione tratta l'analisi idrologica relativa ai corsi d'acqua secondari. Lo studio dettagliato relativo l'analisi idrologica dei bacini per i corsi d'acqua principali è riportato nella relazione "RELAZIONE IDROLOGICA" (IN1710E12RHID0000001B)

GENERAL CONTRACTOR Consorzio Iric/AV Due	A STATE OF THE PARTY OF THE PAR	ITAL	ELIANZA FERR STATO ITALIANE		
RELAZIONE IDROLOGICA E IDRAULICA ATTRAVERSAMENTI	Progetto	Lotto	Codifica Documento	Rev.	Foglio
SECONDARI	IN17	10	EI2 RH ID0000 002	B	4 di 67

2 NORMATIVA E STANDARD DI RIFERIMENTO

- Decreto Ministeriale del 14 gennaio 2008: "Approvazione delle Nuove Norme Tecniche per le Costruzioni", G.U. n.29 del 04.2.2008, Supplemento Ordinario n.30.
- Presidenza del Consiglio dei ministri Dipartimento della Protezione Civile Commissario Delegato per l'Emergenza concernente gli eccezionali eventi meteorologici del 26 settembre 2007 che hanno colpito parte del territorio della Regione Veneto. OPCM n.3621 del 18/10/2007 – Analisi regionalizzata delle precipitazioni per l'individuazione di curve segnalatrici di possibilità pluviometrica di riferimento.
- Studio redatto da Nordest Ingegneria S.r.l. per Unione Veneta Bonifiche.
- Consorzio di Bonifica Alta Pianura Veneta Interferenze con la rete idrografica Ipotesi di Ubicazione Opere Idrauliche Per Smaltimento Acque Meteoriche del 28/04/2015.
- Consorzio di Bonifica Alta Pianura Veneta PIANO GENERALE DI BONIFICA E DI TUTELA DEL TERRITORIO
 L.R. 12/2009 ART. 23 D.G.R. 102/2010
- Direttiva Alluvioni 2007/60/CE, Piano di Gestione del Rischio Alluvioni, Distretto Idrografico delle Alpi.
- Piano Territoriale di Coordinamento e Pianificazione della Provincia di Verona approvato con deliberazione di Giunta Regionale n. 236 del 3 marzo 2015.
- RFI MANUALE DI PROGETTAZIONE DELLE OPERE CIVILI PARTE II SEZIONE 3 CORPO STRADALE,
 RFI DTC SI MA IFS 001 B del 22/12/2017
- RFI MANUALE DI PROGETTAZIONE DELLE OPERE CIVILI PARTE II SEZIONE 2 PONTI E STRUTTURE, RFI DTC SI MA IFS 001 B del 22/12/2017
- RFI CAPITOLATO GENERALE TECNICO DI APPALTO DELLE OPERE CIVILI PARTE II -SEZIONE 9 –
 OPERE DI DIFESA DELLA SEDE FERROVIARIA, RFI DTC SI MA IFS 001 B del 22/12/2017

GENERAL CONTRACTOR Consorzio IricAV Due		A STATE OF THE PARTY OF THE PAR	ITAL	FERR STATO ITALIANE		
RELAZIONE IDROLOGICA E IDRAULIC	A ATTRAVERSAMENTI	Progetto	Lotto	Codifica Documento	Rev.	Foglio
SECONDARI		IN17	10	EI2 RH ID0000 002	В	5 di 67

3 DOCUMENTI DI RIFERIMENTO

TITOLO DOCUMENTO	CODICE DOCUMENTO
RELAZIONE IDROLOGICA	IN1710EI2RHID0000001B
CARTA IDROGRAFICA DI INQUADRAMENTO E BACINI PRINCIPALI	IN1710EI2C2ID0000001B
	IN1710EI2C5ID0000001B
	IN1710EI2C5ID0000003B
	IN1710EI2C5ID0000004B
	IN1710EI2C5ID0000005B
CARTA DEI BACINI IDROGRAFICI	IN1710EI2C5ID0000006B IN1710EI2C5ID0000007B
	IN1710EI2C5ID0000007B
	IN1710EI2C5ID0000009B
	IN1710EI2C5ID0000010B
	IN1710EI2C5ID0000011B

GENERAL CONTRACTOR Consorzio IricAV Due	A STATE OF THE PARTY OF THE PAR	ITAL	ELIANZA FERR STATO ITALIANE		
RELAZIONE IDROLOGICA E IDRAULICA ATTRAVERSAMENTI	Progetto	Lotto	Codifica Documento	Rev.	Foglio
SECONDARI	IN17	10	EI2 RH ID0000 002		6 di 67

4 INQUADRAMENTO TERRITORIALE

La linea AV/AC in esame si sviluppa da Verona a Vicenza ed appartiene alla linea AV/AC Torino-Venezia tratta Verona-Padova, interessando una fascia territoriale che, dal punto di vista idrografico, può essere ricondotta a due tipologie fondamentali caratterizzanti la pianura alluvionale: quella cosiddetta dell'alta pianura e quella della bassa pianura. La zona dell'alta pianura, a ridosso delle colline, è caratterizzata da detriti pesanti, come ciottoli e ghiaia, cosicché l'acqua piovana invece di rimanere in superficie, penetra nel sottosuolo fino a che non incontra uno strato impermeabile dando origine a falde acquifere. La zona della bassa pianura è caratterizzata da strati impermeabili di detriti leggeri e fini, come argilla e sabbia. Nel punto d'incontro tra l'alta e la bassa pianura ha origine la fascia delle risorgive, ovvero fasce di terra in cui parte dell'acqua sotterranea riemerge e continua il suo ciclo in superficie. In particolare, la fascia veneta delle risorgive corre in direzione nord-est/sud-ovest, dal confine orientale di regione fino ai Colli Euganei dove si interrompe, per riprendere ad occidente del fiume Guà e proseguire fino al fiume Mincio, individuando così nel territorio le due fasce caratteristiche della pianura alluvionale.

Il reticolo idrografico è quindi costituito da corsi d'acqua caratterizzati da alvei ghiaiosi e portate elevate ed incisioni di minore importanza per il drenaggio delle acque meteoriche. Inoltre, è presente una vasta rete di distribuzione delle acque irrigue (fossi e scoli di bonifica) che rende l'assetto idrografico particolarmente complesso.

Nel dettaglio, il tracciato in progetto interseca da Verona fino a San Bonifacio il sistema idrografico del Fiume Adige che comprende i corsi d'acqua: Valpantena, Fibbio, Illasi, Prognolo e il torrente Alpone che chiude la serie delle interferenze principali in provincia di Verona. La linea ferroviaria in progetto prosegue da Montebello Vicentino fino a Vicenza intersecando il sistema idrografico del bacino Brenta-Bacchiglione, ovvero l'unione dei bacini idrografici dei fiumi Brenta, Bacchiglione e Gorzone. Le interferenze principali con il tracciato in direzione ovest-est sono il Rio Acquetta e il fiume Guà.

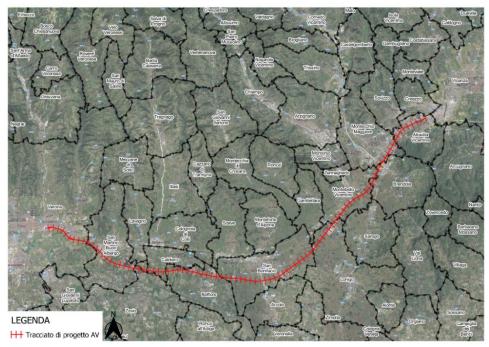


Figura 4-1 Inquadramento territoriale dell'intervento

4.1 Competenza della rete idrografica relativa agli attraversamenti secondari

Con riferimento agli attraversamenti secondari si riporta di seguito un elenco degli stessi con la competenza della rete idrografica interessata.

rogressiva	WBS di progetto	Corso d'acqua	Autorità competente	Tipologia
0+650	RI03	Fossa Morandina	Pubblico	Scolo
1+500	RI05	Scolo Orti	Privato	Scolo
2+365	IN03	Fosso Cercola	Consorzio APV	Scolo
4+046	IN07	Fossa Mattarana	Consorzio APV	Scolo
4+483	IN09	Fossa Zenobria	Consorzio APV	Irriguo
5+350	IN12	Fossa Rosella	Consorzio APV	Veicola le sorgive
5+900	IN14	Fossa Nuova	Consorzio APV	-
5+925	IN15	Fossa Roselletta	Consorzio APV	Irriguo
6+845	IN18	Fosso	privato	Veicola le sorgive
7+037	IN1A	Fosso	privato	Irriguo
7+183	IN19	Fossa Nuova	privato	Irriguo
7+272	IN1B	Fosso	privato	-
7+371	IN20	Fosso	privato	-
7+725	VI01A	Fosso	Consorzio APV	Veicola le sorgive
8+965	VI01B	Fossa Mariona	Consorzio APV	Bonifica
8+975	VI01B	Fossa Lendinara	Consorzio APV	Bonifica
9+294	VI01C	Fosso	privato	irriguo
9+447	VI01C	Fosso	Privato	-
10+223	IN1C	Fosso	Senza Autorità competente	-
10+338	IN1D	Fosso	Senza Autorità competente	-
10+586	IN84	Fosso	Senza Autorità competente	-
11+823	-	Fosso	Pubblico non demaniale	Bonifica
11+911	IN25	Fosso	Fosso pubblico non demaniale	Bonifica
12+131	IN26	Fosso	Fosso pubblico non demaniale	Irriguo
12+314	VI03	Canale Maestro	Consorzio APV	Irriguo
12+322	VI03	Scolo Sereghetta	Consorzio APV	Irriguo
12+402	IN27	Fosso	Senza Autorità competente	-
12+464	IN28	Fosso	Senza Autorità competente	
12+986	IN29	Fosso	Fosso pubblico non demaniale	Bonifica
13+189	IN30	Porcilana Sud	Consorzio APV	Misto
13+308	IN31	Porcilana Nord	Consorzio APV	Misto
13+978	IN32	Fosso	Fosso pubblico non demaniale	Bonifica
14+238	IN1F	Fosso	Fosso pubblico non demaniale	Bonifica
14+640	IN1G	Fosso	Senza Autorità competente	Bonifica
15+055	IN33	Fosso	Senza Autorità competente	-
15+549	IN34	Fosso	Fosso pubblico non demaniale	Bonifica
15+860	IN92	Fosso	-	-
16+178	IN1H	Fosso	Senza Autorità competente	-
16+200	IN78	Fosso	- John Start Competente	-
16+509	VI04	Scolo Dugale Fontana	Consorzio APV	Veicola le sorgive
16+590	IN1I	Fosso	-	-
16+815	IN36	Fosso (diramazione Ceresolo)	Fosso pubblico non demaniale	Bonifica
17+266	IN37	Fosso	Fosso pubblico non demaniale	Irriguo
17+200	IN37 IN38	Fosso (diramazione Ceresolo)	Fosso pubblico non demaniale	Misto
		Scolo Masera Nord	Consorzio APV	
17+638	IN39 IN1T			Irriguo
17+850	IN1 I IN1L	Fosso	Fosso pubblico non demaniale	Continuità irrigazione-bonifica Bonifica
18+203	IN1L IN40	Fosso Fossa Smania	Fosso pubblico non demaniale Consorzio APV	Bonifica

RELAZIONE IDROLOGICA E IDRAULICA ATTRAVERSAMENTI SECONDARI Progetto IN17 Lotto Co

Codifica Documento El2 RH ID0000 002 Rev. Foglio B 8 di 67

Progressiva	WBS	Corso d'acqua	Autorità competente	Tipologia
	di progetto			
18+706	IN41	Scolo Camuzzoni	Consorzio APV	Veicola le sorgive
19+065	IN43	Dugaletta di S.Bonifacio	Consorzio APV	-
19+451	IN1Vbis	Fosso	-	Continuità irrigazione-bonifica
19+531	IN44	Fosso	Consorzio APV	Irriguo
19+875	IN45	Fosso	Fosso pubblico non demaniale	Bonifica
20+883	VI05C	Fosso	Pubblico non demaniale	Bonifica
21+088	VI05C	Scolo Palù	Consorzio APV	Scolo
22+354	IN81	Scolo Biache	Consorzio APV	Bonifica
23+525	NV53	Scolo Dugaletta	Consorzio APV	Bonifica
23+987	IN1N	Fosso	Fosso pubblico non demaniale	Bonifica
24+285	IN1O	Fosso	Fosso pubblico non demaniale	Bonifica
24+368	IN49	Scolo Mazzoni	Consorzio APV	Bonifica
25+275	-	Scolo Dugaletta	Consorzio APV	Bonifica
25+912	IN85	Fosso	Fosso pubblico non demaniale	Scolo
26+125	IN86	Canale secondario	Fosso pubblico non demaniale	Scolo
26+506	IN50	Fosso	Senza Autorità competente	-
26+558	IN1Q	Fosso	Senza Autorità competente	-
26+668	IN1R	Fosso	Fosso pubblico non demaniale	Scolo
26+958	IN51	Scolo Preicardo	Consorzio APV	Bonifica
27+279	IN52	Scolo Conterno	Consorzio APV	Scolo
28+176	IN55	Canale	Senza Autorità competente	Scolo
30+435	IN1S	Fosso	Consorzio APV	-
31+634	IN56	Roggia Reguia	Consorzio APV	Scolo
32+130	IN58	Fosso	Fosso pubblico non demaniale	-
36+830	IN63	Roggia Signolo	Consorzio APV	-
37+950	IN64	Scolo Cavazza	Consorzio APV	-
38+590	IN65	Scolo Cavazza	Consorzio APV	-
42+500	IN68	Scolo Ferrovia Altavilla	-	-

GENERAL CONTRACTOR Consorzio IricAV Due		A STATE OF THE PARTY OF THE PAR	TAL	FERR STATO ITALIANE		
RELAZIONE IDROLOGICA E IDRAULIC	A ATTRAVERSAMENTI	Progetto	Lotto	Codifica Documento	Rev.	Foglio
SECONDARI		IN17	10	EI2 RH ID0000 002	В	9 di 67

5 ANALISI IDROLOGICA

Lo studio idrologico è finalizzato alla determinazione delle curve di possibilità pluviometrica con assegnato tempo di ritorno, a cui consegue poi la determinazione delle portate di progetto, tramite l'utilizzo di un modello di trasformazione afflussi-deflussi.

Per il progetto in essere sono previste due modalità di determinazione della portata di progetto, definite a seconda della dimensione del bacino idrografico analizzato:

- Per bacini secondari con superficie S < 10 km² è stato utilizzato il metodo cinematico-razionale;
- Per i bacini principali con superficie S di poco superiore a 10 km² è stato implementato il modello HEC-HMS.

La scelta del tempo di ritorno è legata sia a prescrizioni di RFI sia ad eventuali interventi legati a sviluppi urbanistici o di mitigazione del rischio idraulico che possono comportare in futuro un ridimensionamento totale della rete idrografica. Per quanto riguarda RFI il "Manuale di progettazione delle opere civili" descrive quanto segue: "la definizione del tempo di ritorno (Tr) dell'evento, che sarà differenziato a seconda del grado di importanza del corso d'acqua e della tipologia e importanza del progetto.

Al proposito, in sintonia con la suddivisione e le considerazioni precedentemente fatte, il tempo di ritorno dell'evento di progetto viene fissato in:

a) Attraversamenti di corsi d'acqua principali

Appartengono a questo gruppo tutti i corsi d'acqua a valenza regionale di notevole importanza e/o comunque con superficie del bacino sotteso superiore a 10 Kmq:

Tr = 300 anni

b) Attraversamenti di corsi d'acqua secondari

Appartengono a questo gruppo tutti i restanti corsi d'acqua minori a valenza locale (fossi, colatoi, torrenti, ecc.): Tr = 200 anni"

5.1 Analisi pluviometrica

La regione del Veneto è collocata alle medie latitudini e può essere inquadrata dal punto di vista climatico come una zona di transizione tra l'area continentale centro-europea e quella mediterranea. Di fatti questa zona è influenzata da diversi tipi di masse d'aria, che traggono origine talora dal mar Mediterraneo, altre volte dall'oceano Atlantico, dall'area continentale euro-asiatica, dall'Artide o dalla fascia intertropicale. Vi è pertanto una marcata stagionalità.

Il servizio di monitoraggio e di archiviazione dei dati sul clima in Veneto è svolto dall'Agenzia Regionale per la Prevenzione e Protezione Ambientale del Veneto (ARPAV).

La catena alpina influenza largamente il clima della regione; in particolare capitano intensificazioni delle precipitazioni nelle zone prealpine sopravento, comportando pertanto un aumento della piovosità nelle zone della pianura settentrionale e palesando un gradiente piuttosto marcato da sud a nord della pianura veneta, passando da circa 800 a 1'200 mm/anno.

GENERAL CONTRACTOR Consorzio IricAV Due			ITAL	FERR STATO ITALIANE		
RELAZIONE IDROLOGICA E IDRAULICA	A ATTRAVERSAMENTI	Progetto	Lotto	Codifica Documento	Rev.	Foglio
SECONDARI		IN17	10	El2 RH ID0000 002	В	10 di 67

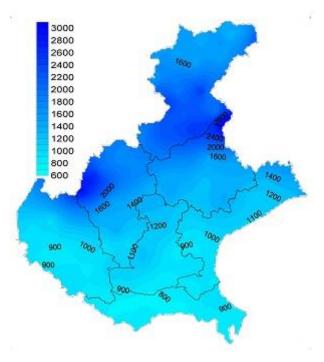


Figura 5-1 Precipitazioni medie annue in Veneto fonte: ARPAV 2019

Con riferimento all'ambito oggetto di studio, non sono disponibili osservazioni pluviometriche derivanti da pluviometri o pluviografi installati nei pressi della zona di progetto.

In questi casi, ovvero quando non si disponga di osservazioni pluviometriche in prossimità del sito di interesse, è possibile ricorrere a tecniche di analisi spaziale della frequenza degli eventi pluviometrici.

Tale classe di metodi si fonda sull'ipotesi che la distribuzione dei valori estremi di precipitazione entro una certa area presenti delle caratteristiche di omogeneità: in tal caso è accettabile studiare in maniera congiunta i valori di precipitazione misurati presso differenti stazioni ed estendere poi i risultati all'intera area di analisi.

Le possibili fonti dei dati pluviometrici di riferimento per il calcolo delle portate generate dall'infrastruttura ferroviaria di linea (rilevati e viadotti) e dalle opere accessorie (viabilità, piazzali, stazioni elettriche, etc...) sono tre.

La prima fonte è la più datata ed è la regionalizzazione effettuata dall'Autorità di Bacino dell'Alto Adriatico (Venezia) nel 1996. Autorità di bacino dei fiumi Isonzo, Tagliamento, Livenza, Piave, Brenta-Bacchiglione. Quaderno 1. Legge 183 del 18-05-1989 – art. 2.3. Studi finalizzati alla redazione dei piani di bacino. Dimensionamento delle opere idrauliche. Sono state utilizzate solo le durate (d) superiori all'ora. Qualche volta solo quelle maggiori di 24 ore. Nell'area del tracciato vi sono le stazioni dell'ex Servizio Idrografico Nazionale di Verona (d>1h; 1928-1989), Soave (d>24h; 1936-1986), Chiampo (d>1h; 1924-1990); Montecchio Maggiore(d>24h; 1932-1986), Zovencedo (d<1h; 1927-1990); Vicenza (d>1h; 1927-1990).

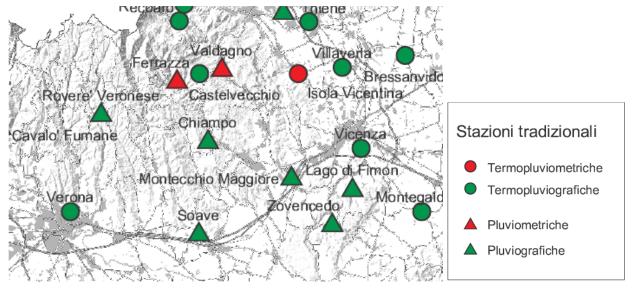


Figura 5-2 stazioni pluviometriche dell'ex Servizio Idrografico Nazionale (199x)

Nella pubblicazione del CNR "Distribuzione spazio temporale delle precipitazioni intense del triveneto" sono riportate i massimi annuali di ciascuna stazione per le varie durate. Per la durata di 1 ora e 3 ore, la precipitazione massima registrata della serie storica è rispettivamente la seguente: Verona, 1928÷1975, 43.6mm e 82.6mm; Zovoncedo, 1928÷1975, 50.5mm e 65.4mm; Chiampo, 1924÷1975, 78mm e 91mm; Vicenza, 1927÷1975, 80mm e 120mm

La seconda fonte è lo studio di regionalizzazione effettuato dalla società Nordest Ingegneria S.r.l. nel 2008 per conto del Commissario Allagamenti Venezia (OPCM 3621/2007) e quindi aggiornata per Unione Veneta Bonifiche nel 2011 (Bixio V. et Alii, Analisi regionalizzata delle precipitazioni per l'individuazione di curve segnalatrici di possibilità pluviometrica di riferimento). È la fonte del dimensionamento del PD (cfr. IN0D00D11ISID0002001CI, RELAZIONE SMALTIMENTO ACQUE DI PIATTAFORMA) cui si rimanda per dettagli. I dati elaborati sono quelli delle stazioni ArpaV a partire dal '90-91, ma alcune stazioni come Verona nord-Torricelle e Vicenza S. Agostino sono attive solo dal 2009 e quindi poco significative.

Lo studio ha prodotto l'elaborazione statistica a due parametri (h=a*t^n) e a tre parametri.

$$h = \frac{a}{(t+b)^c}t$$

GENERAL CONTRACTOR Consorzio IricAV Due		TAL.	FERR		
RELAZIONE IDROLOGICA E IDRAULICA ATTRAVERSAMENTI	Progetto	Lotto	Codifica Documento	Rev.	Foglio
SECONDARI	IN17	10	El2 RH ID0000 002	В	12 di 67



Figura 5-3 regioni pluviometriche nello Studio di regionalizzazione per l'Unione Veneta Bonifiche del 2011 (fonte del dimensionamento del PD)

La terza fonte è direttamente ArpaV, l'Agenzia regionale che si occupa tra le altre cose anche della rete di telemisura distribuita. ArpaV si occupa anche della validazione dei dati e della pubblicazione degli stessi. ArpaV nel suo sito (https://www.arpa.veneto.it/bollettini/storico/precmax/) fornisce, per la serie storica di tutte le sue stazioni pluviometriche, i massimi annuali per ciascuna durata e quindi l'analisi statistica secondo Gumbel. Sono analizzate sia le durate inferiori all'ora sia quelle superiori all'ora. Le serie storiche sono di circa 30 anni, con inizio dai primi anni '90 e con alcune eccezioni. Alla data odierna le serie storiche terminano al 2019. Le curve ArpaV arrivano fino a Tr=50 anni ma possono venire estrapolate a Tr=100 anni, con la necessaria prudenza legata al numero di anni della serie storica, etc.... Nella zona del tracciato vi sono le seguenti stazioni: Verona Parco Adige Nord – Torrcicelle (n. 452, attiva dal 2009), Buttapietra – Verona sud (n. 127, attiva dal 1991), Colognola ai Colli – Caldiero (n. 260 attiva dal 2004), Arcole - San Bonifacio (n. 123 attiva dal 1991), Lonigo – Montebello (n. 105 attiva dal 1990), Brendola – Montecchio Maggiore (n. 148 attiva dal 1991), Vicenza-S.Agostino (n. 451 attiva dal 2009).

GENERAL CONTRACTOR Consorzio IricAV Due		CONTRACTOR OF PERSON	ITAL	FERR		
RELAZIONE IDROLOGICA E IDRAULICA	A ATTRAVERSAMENTI	Progetto	Lotto	Codifica Documento	Rev.	Foglio
SECONDARI		IN17	10	EI2 RH ID0000 002	В	13 di 67

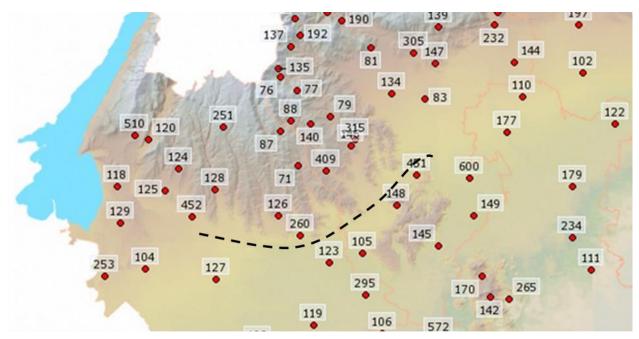


Figura 5-4 stazioni ArpaV

Per la durata di 1 ora e 3 ore, la precipitazione massima della serie storica ArpaV è rispettivamente la seguente: Verona nord (55.8mm il 20-08-2010; 63.0mm il 20-08-2010), Buttapietra (70.8mm il 01-07-2005; 72.4mm il 20-08-2005), Colognola ai Colli – Caldiero (62.6mm il 01-09-2018; 75.6mm il 01-09-2019) Arcole - San Bonifacio (60.6mm il 05-07-1992; 115.6mm il 04-09-2002), Lonigo – Montebello (76mm il 11-06-2000; 83.4mm il 11-06-2000), Brendola-Montecchio M. (60.0mm il 27-05-2018; 64.8mm il 24-05-2018), Vicenza-S.Agostino (47.2mm il 02-07-2019; 50.2mm il 29-07-2010).

In conclusione possiamo dedurre quanto segue:

- Le curve regionalizzate sono ottenute imponendo la stessa legge di variazione spaziale sia alle piogge brevi sia alle piogge di lunga durata. Non deve pertanto sorprendere né che l'altezza con un certo Tr e durata ottenuta dall'applicazione delle curve regionalizzate sia superata da un evento reale critico avvenuto nel passato in una stazione lì vicino né che l'applicazione della curva interpolante della stazione h=atⁿ fornisca altezze non sempre perfettamente coincidenti con quelle ricavate direttamente dalla retta di Gumbel a partire dai dati registrati;
- Delle tre fonti, riportate nel paragrafo precedente, è opportuno scegliere il riferimento più cautelativo con riferimento alla durata dell'evento critico per la singola opera da progettare:
 - Per le brevi durate (d<1 ora e fino a d=3ore), critiche per il dimensionamento del sistema di smaltimento di piattaforma, delle opere stradali, dei fossi di guardia, etc... le altezze di pioggia ottenute dalle elaborazioni ArpaV degli ultimi 30 anni sono significativamente maggiori (anche +10/15%) ed è quindi opportuno prenderle a riferimento;
 - Per le medie durate di pioggia (d > 3÷6 ore), critiche per il dimensionamento dei tombini della rete minore del consorzio di bonifica, le differenze tra le altezze di pioggia ottenute con il metodo regionalizzato del 2011 (a 2 o 3 parametri) e quelle ottenute con le curve ArpaV sono poco significative ma continua ad essere opportuno prendere a riferimento il valore maggiore (quasi sempre ArpaV).

GENERAL CONTRACTOR Consorzio IricAv Due		TA SORVEG	FERR		
RELAZIONE IDROLOGICA E IDRAULICA A	TTRAVERSAMENTI Prog	ogetto Lotto	Codifica Documento	Rev.	Foglio
SECONDARI	IN	N17 10	EI2 RH ID0000 002	В	14 di 67

Le stazioni di riferimento ARPAV utilizzate nel presente studio sono le seguenti:

- 1. Arcole
- 2. Brendola
- 3. Buttapietra
- 4. Chiampo
- 5. Colognola ai colli
- 6. Lonigo
- 7. Montecchia di Crosara
- 8. S. Agostino Vicenza
- 9. Trissino
- 10. Verona-Parco Adige Nord
- 11. 50% Buttapietra-50% Arcole (si rimanda alle pagine seguenti per la spiegazione di tale stazione)

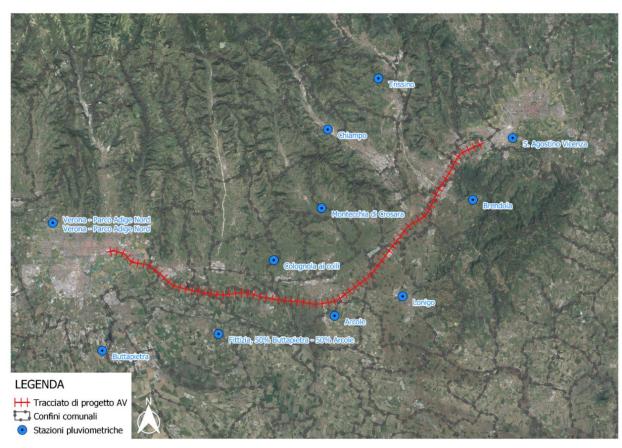


Figura 5-5 Stazioni pluviometriche di riferimento

Per ogni stazione sono stati ricavati i parametri delle curve di possibilità pluviometrica utilizzati successivamente per ricavare le altezze di precipitazione. In allegato sono presenti tutte le analisi dettagliate.

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due Consorzio IricAV Due Consorzio IricAV Due

RELAZIONE IDROLOGICA E IDRAULICA ATTRAVERSAMENTI Progetto Lotto Codifica Documento Rev. Foglio SECONDARI IN17 10 E12 RH ID0000 002 B 15 di 67

Tabella 5-1 Parametri delle curve segnalatrici di possibilità pluviometrica. Durata < 1 ora

STAZIONI	Tr	= 5	Tr=	: 10	Tr=	20	Tr=	50	Tr=	100	Tr=	200	Tr=	300
	а	n	а	n	а	n	а	n	а	n	а	n	а	n
Arcole	55,9	0,580	67,0	0,595	77,6	0,606	91,4	0,616	101,8	0,622	112,1	0,627	118,1	0,630
Brendola	52,1	0,502	60,7	0,505	68,9	0,508	79,6	0,510	87,6	0,512	95,6	0,513	100,3	0,513
Buttapietra	52,7	0,576	60,8	0,587	68,5	0,595	78,5	0,603	86,0	0,607	93,5	0,611	97,9	0,614
Colognola ai colli	49,2	0,508	57,7	0,518	65,9	0,525	76,5	0,533	84,5	0,537	92,4	0,541	97,0	0,542
Lonigo	54,7	0,556	65,5	0,563	75,9	0,567	89,4	0,572	99,5	0,574	109,6	0,576	115,4	0,577
Montecchia di Crosara	54,4	0,573	63,2	0,587	71,7	0,596	82,6	0,607	90,8	0,613	99,0	0,618	103,8	0,620
Vicenza S. Agostino	42,2	0,423	48,2	0,411	53,9	0,403	61,4	0,394	67,0	0,389	72,5	0,385	75,8	0,383
Verona-Parco Adige Nord	55,3	0,561	66,6	0,573	77,6	0,582	91,7	0,590	102,3	0,595	112,9	0,599	119,1	0,601

Tabella 5-2 Parametri delle curve segnalatrici di possibilità pluviometrica. Durata > 1ora

OT 4 710 NII	-	_	-	40	Tr= 20		_			400	-	000	Tr= 300	
STAZIONI	ır:	= 5	ır=	: 10	Ir=	20	i ra	= 50	Tr=	100	Ir=	200	Ir=	300
	а	n	а	n	а	n	а	n	а	n	а	n	а	n
Arcole	48,7	0,152	58,8	0,143	68,6	0,137	81,3	0,130	90,8	0,127	100,2	0,124	105,7	0,122
Brendola	42,4	0,265	49,5	0,260	56,2	0,257	65,0	0,2531	71,6	0,251	78,2	0,249	82,0	0,248
Buttapietra	47,1	0,148	55,4	0,141	63,4	0,136	73,8	0,131	81,6	0,129	89,4	0,126	93,9	0,125
Colognola ai colli	44,4	0,197	52,8	0,192	60,7	0,188	71,1	0,185	78,8	0,183	86,5	0,181	91,0	0,180
Lonigo	46,5	0,150	55,8	0,137	64,8	0,128	76,4	0,119	85,1	0,113	93,7	0,109	98,8	0,107
Montecchia di Crosara	44,1	0,202	51,4	0,197	58,3	0,194	67,4	0,190	74,2	0,188	80,9	0,186	84,9	0,185
Vicenza S. Agostino	34,0	0,357	39,2	0,360	44,2	0,363	50,7	0,366	55,5	0,367	60,3	0,368	63,1	0,369
Verona-Parco Adige Nord	45,1	0,180	53,3	0,174	61,2	0,170	71,4	0,165	79,1	0,163	86,7	0,161	91,2	0,160

Per la distribuzione spaziale delle piogge è stato utilizzato il metodo dei poligoni di Thiessen o topoieti. Tale rappresentazione ha il vantaggio di essere molto semplice nell'uso ma con risultati discreti nella distribuzione.

Una volta individuate le stazioni pluviometriche esse vengono collegate tramite una maglia triangolare. Tali assi delimitano una porzione di area che racchiude una sola stazione.

A tutta la superficie del topoieto si assegna la stessa precipitazione cumulata misurata nella stazione pluviometrica da esso contenuta.

Di seguito viene riporta la maglia dei topoieti con indicazione del tracciato di progetto.

GENERAL CONTRACTOR Consorzio IricAV Due		ITAL	FERR STATO ITALIANE		
RELAZIONE IDROLOGICA E IDRAULICA ATTRAVERSAMENTI	Progetto	Lotto	Codifica Documento	Rev.	Foglio
SECONDARI	IN17	10	EI2 RH ID0000 002	В	16 di 67

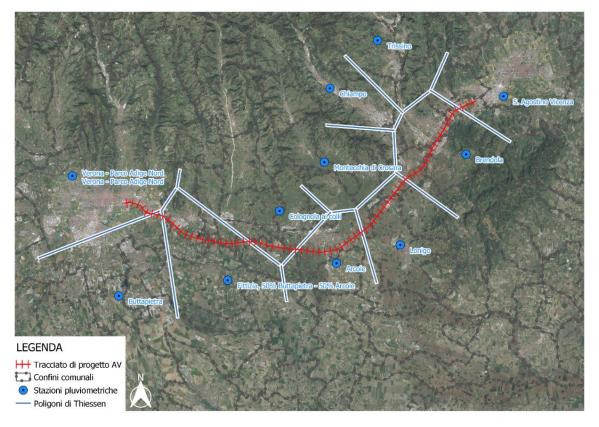


Figura 5-6 Distribuzione spaziale con poligoni di Thiessen e relative stazioni pluviometriche

Stazione ArpaV di riferimento secondo il metodo dei Poligoni di Tiessen	da pk (km)	a pk (km)
Verona Parco Adige Nord	0+000	3+050
Buttapietra (Verona sud)	3+050	4+105
Fittizia - 50% Stazione di Buttapietra (Verona sud) e 50% Stazione di Arcole	4+105	13+755
Colognola ai Colli	13+755	18+710
Arcole	18+710	26+010
Lonigo	26+010	32+975
Brendola	32+975	42+310
Vicenza	42+310	44+250

Figura 5-7 Progressive chilometriche di delimitazione delle singole subtratte omogenee dal punto di vista pluviometrico secondo il metodo dei Poligoni di Thiessen applicato alle stazioni ArpaV.

Come è possibile notare dall'elenco delle stazioni pluviometriche è stata inserita una stazione fittizia denominata 50% Buttapietra 50% Arcole. Questa stazione è stata creata perché una parte del tracciato era in parte scoperta da stazioni pluviometriche vicine. Per infittire le stazioni e rendere più attendibili i risultati è stata aggiunta tale stazione fittizia.

I risultati di tale stazione derivano da una media sulle altezze di pioggia ricavate dalle stazioni pluviometriche di Arcole e Buttapietra.

A parità di durata e per la stessa pioggia, l'intensità diminuisce al crescere della superficie interessata, è necessario nel calcolo del valore ragguagliato h (medio sull'estensione della superficie) porre in conto anche l'estensione dell'area attribuita a ciascuna stazione: il che comporta una riduzione della massima precipitazione del centro di osservazione.

GENERAL CONTRACTOR Consorzio IricAV Due		Carlot Company of the	ITAL	FERR STATO ITALIANE		
RELAZIONE IDROLOGICA E IDRAULICA	AATTRAVERSAMENTI	Progetto	Lotto	Codifica Documento	Rev.	Foglio
SECONDARI		IN17	10	EI2 RH ID0000 002	В	17 di 67

I valori a e n per bacini con tempi di corrivazione superiori all'ora sono stati modificati con le formule del Puppini (1932).

Puppini (1932) (durata t espressa in ore, area A in ettari):

$$a' = a \left[1 - 0,052 \frac{A}{100} + 0,002 \left(\frac{A}{100} \right)^2 \right]$$

$$n' = n + 0,0175 \frac{A}{100}$$

Le espressioni sono valide per aree non superiori a 1300 ha e per durate non superiori a 24 h.

Si presuppone che la curva segnalatrice di possibilità climatica sia stata derivata da osservazioni effettuate nel centro di scroscio.

5.2 Parametri morfometrici dei bacini secondari

La definizione del bacino idrografico in termini di estensione areale, conseguente la sua delimitazione, è condizionata dall'individuazione della sua sezione di chiusura. Per determinare tali parametri si è agito analizzando i dati del DTM con maglia 5 x 5 m forniti dal geoportale della regione Veneto.

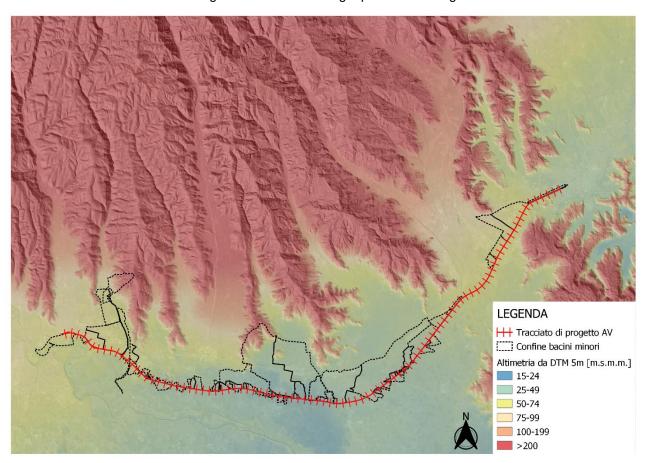


Figura 5-8 carta altimetrica con indicazione dei bacini minori

Analizzando le direzioni di flusso e le rispettive linee è possibile raggiungere al risultato finale, di seguito esposto. Le tabelle sotto riportate analizzano nel dettaglio le caratteristiche dei bacini secondari in particolare: l'area in chilometri quadrati del bacino (Area Bacino), le coordinate del baricentro del bacino (Coord. centroide bacino), altitudine minima (Zmin) – massima (Zmax) – media (Zmedia) del bacino e altitudine della sezione di chiusura

A DESCRIPTION OF THE PARTY OF T				
Progetto	Lotto	Codifica Documento	Rev.	Foglio 18 di 67
	GRUPPO FERRO	Progetto Lotto		Progetto Lotto Codifica Documento Rev.

(Zchiusura), lunghezza dell'asta individuata (Lasta) e relativa pendenza (j ASTA) ed infine pendenza media del bacino (j media Bacino).

Progres.	WBS di	Area	Coor. centr	oide bacino	Zmin bacino	Zmax bacino	Zmedia bacino	Zchiusura bacino	Lasta	jasta	jmedia bacino
	progetto										
-	-	(km²)	Х	Y	(m s.m.m.)	(m s.m.m.)	(m s.m.m.)	(m s.m.m.)	(m)	(m/m)	(m/m)
0+650	RI03	1,805	1657752,1	5032749,5	46,6	61,4	50,9	46,0	2657,4	0,0011	0,0260
1+500	RI05	0,149	1659652,6	5033016,5	44,3	55,8	46,2	44,9	627,9	0,0004	0,0750
2+365	IN03	1,195	1660447,0	5032951,7	47,1	62,0	57,2	-	-	-	0,0180
4+046	IN07	3,884	1661727,1	5033160,3	45,2	62,4	54,3	49,3	4110,7	0,0011	0,0200
4+483	IN09	0,114	1662214,3	5034363,9	48,5	59,8	53,9	48,5	5207,7	0,0013	0,0312
5+350	IN12	4,943	1661993,4	5035228,9	35,9	359,6	90,0	38,3	10973,7	0,0022	0,0840
5+900	IN14	-	-	-	-	-	-	-	-	-	-
5+925	IN15	0,571	1663211,4	5030914,6	43,4	53,1	45,7	44,5	2929,4	0,0009	0,0207
6+845	IN18	0,072	1663994,5	5030468,8	41,3	46,9	42,9	41,6	165,0	0,0107	0,0190
7+037	IN1A	0,025	1664222,4	5030250,2	41,2	43,0	42,0	41,7	214,2	0,0012	0,0147
7+183	IN19	0,770	1664115,8	5030615,6	40,5	52,1	43,5	40,6	4091,6	0,0016	0,0276
7+272	IN1B	0,027	1664400,3	5030260,8	40,9	41,8	41,3	41,0	275,0	0,0026	0,0096
7+371	IN20	0,076	1664475,5	5030313,9	41,1	42,6	41,8	41,3	449,2	0,0006	0,0082
7+725	VI01A	0,050	1664823,3	5029993,6	31,3	41,7	35,6	31,5	344,5	0,0018	0,0901
8+965	VI01B	0,707	1665340,4	5029686,7	30,7	33,7	32,3	29,9	1456,0	0,0010	0,0098
8+975	VI01B	0,052	1666248,5	5029743,9	28,6	31,3	29,5	28,7	374,0	0,0023	0,0500
9+294	VI01C	0,177	1666394,4	5029578,9	28,5	30,4	29,5	28,7	892,9	0,0012	0,0395
9+447	VI01C	0,170	1666667,2	5029451,4	27,7	31,2	29,2	28,0	731,8	0,0009	0,0350
10+223	IN1C	0,110	1667287,9	5029839,0	28,3	32,3	29,7	28,4	667,0	0,0028	0,0320
10+338	IN1D	0,231	1667533,6	5029800,1	28,2	36,6	30,7	28,4	668,1	0,0029	0,0380
10+586	IN84	0,435	1667912,7	5029801,3	28,1	38,7	30,3	28,3	746,1	0,0024	0,0480
11+823	-	0,033	1668893,8	5029357,3	27,3	28,9	28,3	27,7	240,6	0,0014	0,0276
11+911	IN25	0,141	1669125,8	5029653,8	26,9	31,5	29,4	27,2	865,0	0,0005	0,0300
12+131	IN26	0,158	1669302,0	5029549,0	26,1	32,7	27,9	26,1	603,1	0,0030	0,0415
12+314	VI03	-	-	-	-	-	-	-	-	-	-
12+322	VI03	0,020	1669596,3	5029659,1	24,7	30,3	27,1	25,5	1631,3	0,0008	0,3211
12+402	IN27	0,035	1669473,8	5029461,0	25,7	28,5	26,6	26,2	407,2	0,0001	0,0269
12+464	IN28	0,039	1669566,2	5029472,2	25,4	28,1	26,6	25,5	214,2	0,0021	0,0320
12+986	IN29	0,216	1669777,8	5029574,7	24,8	29,3	26,7	25,9	526,6	0,0005	0,0390
13+189	IN30	0,016	1670185,8	5029437,0	24,5	26,8	26,2	24,6	201,6	0,0028	0,0615
13+308	IN31	0,177	1670153,1	5029714,2	24,3	29,5	26,7	24,4	520,4	0,0008	0,0375
13+978	IN32	0,346	1670667,3	5029558,8	24,4	28,5	26,0	24,7	878,0	0,0007	0,0300
14+238	IN1F	0,078	1671301,8	5029618,3	23,6	26,3	24,9	24,4	373,5	0,0013	0,0347
14+640	IN1G	0,171	1671617,7	5029548,7	23,3	26,1	24,5	24,1	761,0	0,0002	0,0350
15+055	IN33	0,087	1672028,9	5029382,9	22,8	25,6	24,5	23,6	189,3	0,0019	0,0330
15+549	IN33	0,110	1672373,1	5029382,9	22,4	24,8	24,0	23,1	580,4	0,0019	0,0320
15+860	IN92	0,033	1672955,1	5028940,6	22,4	24,9	23,4	22,3	182,9	0,0002	0,0520
16+178	IN1H	0,033	1673130,8	5028902,9		24,9	23,4	22,3	352,0	0,0018	0,0339
	IN78	,		· ·	22,4	·	·		·		
16+200	IIN/8	0,049	1673136,3	5029116,1	22,5	25,0	23,4	22,9	198,7	0,0020	0,0322

RELAZIONE IDROLOGICA E IDRAULICA ATTRAVERSAMENTI SECONDARI

Progetto Lotto IN17 10 Codifica Documento El2 RH ID0000 002 Rev. Foglio B 19 di 67

Progres.	WBS	Area	Coor. centr	oide bacino	Zmin	Zmax	Zmedia	Zchiusura	Lasta	jasta	jmedia
	di				bacino	bacino	bacino	bacino			bacino
	progetto										
-	-	(km²)	Х	Υ	(m s.m.m.)	(m s.m.m.)	(m s.m.m.)	(m s.m.m.)	(m)	(m/m)	(m/m)
16+509	VI04	3,946	1671393,2	5030082,1	20,7	83,3	27,4	21,7	4699,3	0,0013	0,0538
16+590	IN1I	0,025	1673619,5	5028972,0	20,9	25,1	22,5	21,2	91,2	0,0014	0,0710
16+815	IN36	0,208	1673852,8	5028719,6	20,5	24,4	22,5	21,0	540,7	0,0026	0,0491
17+266	IN37	0,145	1674229,5	5028668,3	20,5	23,2	21,8	20,7	331,5	0,0008	0,0582
17+580	IN38	0,014	1674549,3	5028802,4	20,7	24,7	22,0	20,9	165,6	0,0011	0,0903
17+638	IN39	10,475	1673082,0	5029937,0	20,7	199,6	52,4	20,5	4759,4	0,0040	0,0800
17+850	IN1T	0,080	1674937,1	5028895,5	20,9	22,9	21,9	21,1	348,2	0,0004	0,0366
18+203	IN1L	0,041	1675146,5	5028801,4	21,0	22,7	22,0	21,1	290,0	0,0004	0,0415
18+641	IN40	0,794	1675276,6	5029314,5	20,3	33,1	22,3	20,6	1433,5	0,0007	0,0475
18+706	IN41	7,148	1675319,0	5029915,0	20,3	97,1	32,2	21,3	5760,6	0,0020	0,0660
19+065	IN43	1,532	1676504,8	5029340,3	20,6	34,1	23,7	20,9	2485,8	0,0020	0,0480
19+451	IN1Vbis	-7	1676454,0	5028653,6	21,3	22,6	22,1	21,6	203,9	0,0010	0,0445
19+531	IN44	0,068	1676615,2	5028686,2	21,1	23,1	22,4	21,2	258,4	0,0023	0,0330
19+875	IN45	0,151	1676988,7	5028642,6	21,3	24,3	22,6	21,4	345,4	0,0012	0,0362
20+883	VI05C	0,084	1677821,2	5028530,8	24,4	32,9	26,2	24,5	349,9	0,0009	0,0839
21+088	VI05C	4,658	1678150,2	5029791,9	21,6	41,4	29,0	22,3	4537,2	0,0015	0,0600
22+354	IN81	0,779	1679117,1	5028839,8	24,5	29,8	27,1	24,6	1075,7	0,0013	0,0393
23+525	NV53	10,613	1681444,6	5031092,7	24,8	46,9	31,2	24,7	8273,6	0,0015	0,0540
23+987	IN1N	0,125	1680876,6	5029216,9	26,6	30,1	28,9	27,1	530,1	0,0019	0,0351
24+285	IN10	0,049	1680958,2	5029409,5	26,7	29,7	28,6	26,9	319,4	0,0041	0,0414
24+368	IN49	0,083	1681439,9	5029445,3	26,8	29,5	28,5	27,1	500,5	0,0012	0,0411
25+275	=	0,741	1682196,8	5030203,7	26,1	30,6	28,4	26,2	2317,2	0,0011	0,0391
25+912	IN85	0,037	1682218,4	5030518,3	26,9	28,7	28,3	27,5	221,6	0,0031	0,0264
26+125	IN86	0,090	1682612,9	5030558,1	27,3	29,4	28,6	27,5	382,8	0,0031	0,0313
26+506	IN50	0,057	1682677,7	5030760,1	26,2	30,7	28,9	27,9	308,4	0,0014	0,0412
26+558	IN1Q	0,027	1682865,9	5030880,3	27,9	32,8	29,6	28,2	167,1	0,0024	0,0542
26+668	IN1R	0,036	1683008,9	5030925,4	28,2	31,2	29,5	28,5	142,3	0,0018	0,0368
26+958	IN51	0,709	1683056,8	5031749,0	27,8	39,5	31,1	28,6	1416,5	0,0022	0,0500
27+279	IN52	2,276	1684003,9	5032244,1	28,4	45,2	33,9	29,1	3886,7	0,0017	0,0520
28+176	IN55	0,739	1684704,8	5032571,7	30,2	45,4	33,6	30,5	1673,2	0,0015	0,0516
30+435	IN1S	0,690	1685287,0	5034369,7	34,8	49,8	39,6	34,9	1826,5	0,0024	0,0700
31+634	IN56	0,230	1686023,0	5034964,5	39,3	51,5	42,5	40,1	1484,6	0,0028	0,0987
32+130	IN58	0,157	1686539,9	5035599,8	41,0	58,5	45,9	41,8	1081,1	0,0030	0,1300
36+830	IN63	0,395	1689073,9	5038694,5	49,8	57,0	51,7	50,0	714,3	0,0083	0,0121
37+950	IN64	2,556	1689829,0	5039461,0	49,4	57,4	53,3	49,4	4670,0	0,0020	0,0120
38+590	IN65	1,679	1690546,0	5041008,0	52,4	73,1	61,5	-	-	-	0,0120
42+500	IN68	0,138	1693207,9	5043451,3	30,7	47,6	39,9	32,6	2870,4	0,0043	0,1360

Nota: Le WBS di progetto IN14 e VI03 non hanno un bacino idraulico di riferimento

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	
RELAZIONE IDROLOGICA E IDRAULICA ATTRAVERSAMENTI	Progetto Lotto Codifica Documento Rev. Fo	oglio
SECONDARI	IN17 10 EI2 RH ID0000 002 B 20	di 67

5.3 Calcolo della portata di progetto per bacini secondari con superficie < 10 Km²

La formula razionale, o metodo cinematico, determina la massima portata defluente alla sezione di chiusura come una parte della pioggia caduta su tutta l'area del bacino in un certo intervallo di tempo. Alla base di tale metodologia vi è l'assunzione di una pioggia costante nel tempo ed uniforme nello spazio avente una durata pari ad un valore critico per il bacino, chiamato tempo di corrivazione tc. Quest'ultimo è definito come il tempo che impiega la goccia d'acqua caduta nel punto idraulicamente più lontano del bacino a raggiungere la sezione di chiusura.

Se la durata della pioggia, t, è minore di tc, non tutto il bacino contribuirà contemporaneamente alla formazione del deflusso; alla fine della precipitazione tutte le parti più distanti del bacino non avranno ancora contribuito al deflusso nella sezione di controllo e quando questo avverrà (dopo un intervallo di tempo dato dalla differenza tra il tempo di corrivazione e la durata di precipitazione) le zone più vicine alla sezione di chiusura avranno cessato di impegnare la stessa. Viceversa, se la pioggia ha una durata maggiore di tc, tutto il bacino contribuirà contemporaneamente al deflusso alla sezione di chiusura per un intervallo di tempo pari a t-tc in cui la portata resterà costante e pari al valore massimo. Se invece si considera un tempo di precipitazione, t, pari al tempo di corrivazione del bacino, tc, si ottiene l'idrogramma di piena con massimo picco, e l'espressione analitica assume la seguente forma con Q [m³/s]:

$$Q = \frac{\varphi S h}{3.6 t_c} \tag{1}$$

dove:

 φ [-] = coefficiente di deflusso del bacino che tiene conto delle caratteristiche di permeabilità dei suoli ricadenti nel bacino

S [km²] = superficie del bacino

h [mm] = altezza di precipitazione

t_c [ore] = tempo di corrivazione

5.3.1 Determinazione del tempo di corrivazione

Per la stima del tempo di corrivazione è possibile utilizzare diverse formulazioni disponibili in letteratura, ognuna delle quali risulta valida per un determinato campo di definizione.

Nel progetto in essere, per i bacini secondari (superficie < 10 Km²) sono state utilizzate le relazioni di seguito riportate:

<u>Kirpich</u>, utilizzando dati di sei piccoli bacini americani di estensione inferiore a 0.43 Km², e successivamente Rowe e Thomas integrando con ulteriori misure, sono pervenuti alla seguente relazione:

$$t_c = 0.000325 \left(\frac{L}{\sqrt{i}}\right)^{0.77} \tag{2}$$

<u>Pezzoli</u>, sulla base di misure relative a piccoli bacini piemontesi di estensione inferiore a 20 Km² ha proposto la seguente espressione:

$$t_c = 0.055 \frac{L}{\sqrt{i}} \tag{3}$$

Ventura, valido per i bacini di estensione inferiore ai 40 km²:

$$t_c = 0.315\sqrt{S} \tag{5}$$

GENERAL CONTRACTOR Consorzio Iric/IV Due	A STATE OF THE PARTY OF THE PAR	ITAL	ELIANZA FERR STATO ITALIANE		
RELAZIONE IDROLOGICA E IDRAULICA ATTRAVERSAMENTI	Progetto	Lotto	Codifica Documento	Rev.	Foglio
SECONDARI	IN17	10	EI2 RH ID0000 002	B	21 di 67

Turazza:

$$t_c = 1.085\sqrt{S} \tag{6}$$

Nelle precedenti formule il tempo t_c , è espresso in [ore], la lunghezza dell'asta, L, in [km], la superficie del bacino, S, in [km²] e la pendenza dell'asta, i, in [m/m].

Le relazioni hanno una struttura empirica e derivano da interpretazioni e osservazioni, devono quindi essere utilizzate nel rispetto dei loro campi di validità.

Il tempo di corrivazione è stato scelto funzione dei parametri di definizione delle formule.

In questo studio, come consigliato dal manuale di progettazione RFI, per bacini con superficie < di 10Km² viene utilizzato il tempo di corrivazione dedotto dalla formulazione di Kirpich.

Di seguito si riporta la stima dei tempi di corrivazione relativa ai bacini secondari:

Progressiva	WBS	Tc	TC	Тс	Тс
	di progetto	Ventura	Pezzoli	Turazza	Kirpich
-	-	(ore)	(ore)	(ore)	(ore)
0+650	RI03	34,99	4,46	10,16	1,96
1+500	RI05	10,04	1,67	2,92	0,92
2+365	IN03	28,47	-	8,26	-
4+046	IN07	51,32	6,74	14,90	2,69
4+483	IN09	8,78	8,06	2,55	3,09
5+350	IN12	57,89	12,85	16,81	4,42
5+925	IN15	19,67	5,34	5,71	2,25
6+845	IN18	6,98	0,09	2,03	0,10
7+037	IN1A	4,13	0,34	1,20	0,27
7+183	IN19	22,84	5,58	6,63	2,33
7+272	IN1B	4,29	0,30	1,25	0,24
7+371	IN20	7,17	0,97	2,08	0,61
7+725	VI01A	5,83	0,45	1,69	0,33
8+965	VI01B	21,89	2,50	6,35	1,26
8+975	VI01B	5,96	0,43	1,73	0,32
9+294	VI01C	10,96	1,39	3,18	0,80
9+447	VI01C	10,72	1,34	3,11	0,78
10+223	IN1C	8,65	0,69	2,51	0,46
10+338	IN1D	12,53	0,68	3,64	0,46
10+586	IN84	17,17	0,83	4,98	0,54
11+823	-	4,75	0,36	1,38	0,28
11+911	IN25	9,78	2,04	2,84	1,07
12+131	IN26	10,35	0,61	3,01	0,42
12+322	VI03	3,72	3,13	1,08	1,49
12+402	IN27	4,87	1,84	1,41	0,99
12+464	IN28	5,12	0,25	1,49	0,22
12+986	IN29	12,10	1,26	3,51	0,74
13+189	IN30	3,34	0,21	0,97	0,19
13+308	IN31	10,95	1,01	3,18	0,62
13+978	IN32	15,31	1,83	4,45	0,99
14+238	IN1F	7,29	0,57	2,12	0,40
14+640	IN1G	10,76	3,33	3,13	1,56
15+055	IN33	7,70	0,24	2,23	0,21
15+549	IN34	8,64	2,32	2,51	1,18
15+860	IN92	4,76	0,24	1,38	0,20
16+178	IN1H	7,64	0,45	2,22	0,33

RELAZIONE IDROLOGICA E IDRAULICA ATTRAVERSAMENTI Progetto Lotto Codifica Documento Rev. Foglio SECONDARI IN17 10 E12 RH ID0000 002 B 22 di 67

Progressiva	WBS	Tc	TC	Tc	Тс
	di progetto	Ventura	Pezzoli	Turazza	Kirpich
-	-	(ore)	(ore)	(ore)	(ore)
16+200	IN78	5,76	0,25	1,67	0,21
16+509	VI04	51,73	7,09	15,02	2,80
16+590	IN1I	4,13	0,13	1,20	0,13
16+815	IN36	11,86	0,58	3,44	0,41
17+266	IN37	9,90	0,65	2,87	0,44
17+580	IN38	3,11	0,27	0,90	0,23
17+850	IN1T	7,38	0,99	2,14	0,61
18+203	IN1L	5,26	0,75	1,53	0,50
18+641	IN40	23,20	2,90	6,74	1,41
18+706	IN41	69,62	7,04	20,21	2,78
19+065	IN43	32,23	3,07	9,36	1,47
19+451	IN1Vbis	2,12	0,36	0,61	0,28
19+531	IN44	6,80	0,30	1,97	0,24
19+875	IN45	10,12	0,55	2,94	0,39
20+883	VI05C	7,54	0,65	2,19	0,45
21+088	VI05C	56,20	6,54	16,32	2,63
22+354	IN81	22,98	1,65	6,67	0,91
23+987	IN1N	9,22	0,67	2,68	0,45
24+285	IN1O	5,78	0,27	1,68	0,23
24+368	IN49	7,50	0,81	2,18	0,53
25+275	-	22,42	3,89	6,51	1,76
25+912	IN85	5,04	0,22	1,46	0,19
26+125	IN86	7,82	0,38	2,27	0,29
26+506	IN50	6,23	0,46	1,81	0,34
26+558	IN1Q	4,24	0,19	1,23	0,17
26+668	IN1R	4,92	0,18	1,43	0,17
26+958	IN51	21,92	1,67	6,36	0,92
27+279	IN52	39,28	5,25	11,41	2,22
28+176	IN55	22,39	2,37	6,50	1,20
30+435	IN1S	21,64	2,05	6,28	1,08
31+634	IN56	12,48	1,55	3,62	0,87
32+130	IN58	10,33	1,09	3,00	0,66
36+830	IN63	16,36	0,43	4,75	0,32
37+950	IN64	41,63	5,68	12,09	2,36
38+590	IN65	33,74	-	9,80	-
42+500	IN68	9,67	2,41	2,81	1,22

5.3.2 Determinazione del coefficiente di deflusso

Il coefficiente di deflusso è un parametro che esprime il rapporto tra il volume di precipitazione defluito dal bacino in un intervallo di tempo ed il volume di precipitazione affluito nel bacino idrografico nello stesso intervallo di tempo.

Il valore attribuito dipende quindi dalla tipologia dei suoli costituenti il bacino, in particolare i valori più bassi si riferiscono a terreni permeabili e superfici pianeggianti, mentre i valori più elevati a superfici pendenti e terreni impermeabili. In particolare, nel libro "Sistemazione dei corsi d'acqua" di Da Deppo, Datei e Salandin, la classificazione è la seguente:

Tabella 5-3 Tabella dei coeff di deflusso per varie tipologie (fonte: Sistemazione dei corsi d'acqua-Da Deppo, Date, Salandin)

TIPOLOGIA	φ
Superfici pavimentate	0,7 - 0,9
Strade di terra	0,4 - 0,6
Superfici erbose	0,1 - 0,7
Aree residenziali	0,3 - 0,7
Boschi	0,1 - 0,3
Terreni coltivati	0,2 - 0,6
Terreni incolti	0,3 - 0,7
Terreni argillosi o roccia	0,7 - 0,9

Per il progetto in essere per la determinazione del coefficiente di deflusso si è fatto riferimento all'uso del suolo delle aree interessate. Tale informazione è stata desunta dai dati contenuti nel Corine Land Cover (CLC) che prevede, al terzo livello gerarchico, una suddivisione in 44 classi di copertura del suolo. Per l'Italia attualmente sono presenti alcuni approfondimenti tematici al IV livello.

Il valore di ϕ_{TOT} dell'intero bacino si ottiene come media pesata dei valori stimati per le singole aree omogenee tramite la formulazione seguente:

$$\varphi_{tot} = \frac{\sum \varphi_i A_i}{A_{tot}} \tag{7}$$

dove:

 ϕ_{tot} = coefficiente di deflusso dell'intero bacino

φ_i = coefficiente di deflusso della i-esima zona omogenea

A_i = area della i-esima zona omogenea

A_{tot} = area totale dell'intero bacino

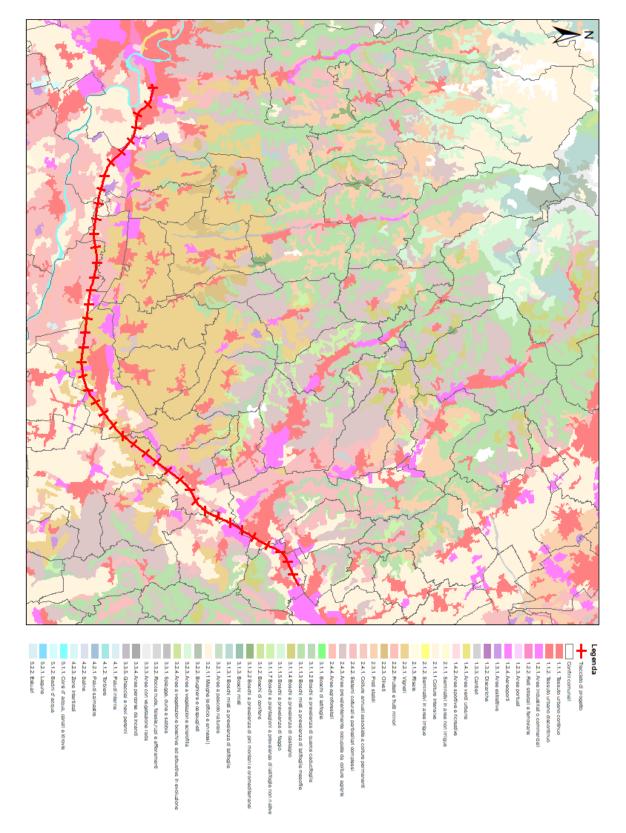


Figura 5-9 Inquadramento Corine Land Cover per l'estensione della linea ferroviaria in progetto

Di seguito verranno riportati i valori del coefficiente di deflusso ricavati per i bacini secondari:

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE

RELAZIONE IDROLOGICA E IDRAULICA ATTRAVERSAMENTI SECONDARI

Progetto Lotto Codifica Documento IN17 EI2 RH ID0000 002 10

Rev. Foglio 25 di 67 В

Progressiva	WBS	Coefficiente di
	di progetto	deflusso
		Фтот
-	-	-
0+650	RI03	0,58
1+500	RI05	0,51
2+365	IN03	0,60
4+046	IN07	0,31
4+483	IN09	0,55
5+350	IN12	0,22
5+925	IN15	0,69
6+845	IN18	0,57
7+037	IN1A	0,50
7+183	IN19	0,68
7+272	IN1B	0,50
7+371	IN20	0,50
7+725	VI01A	0,50
8+965	VI01B	0,50
8+975	VI01B	0,50
9+294	VI01C	0,50
9+447	VI01C	0,50
10+223	IN1C	0,50
10+338	IN1D	0,50
10+586	IN84	0,50
11+823	-	0,50
11+911	IN25	0,50
12+131	IN26	0,50
12+322	VI03	0,50
12+402	IN27	0,50
12+464	IN28	0,50
12+986	IN29	0,50
13+189	IN30	0,50
13+308	IN31	0,50
13+978	IN32	0,50
14+238	IN1F	0,50
14+640	IN1G	0,50
15+055	IN33	0,50
15+549	IN34	0,50
15+860	IN92	0,50
16+178	IN1H	0,50
16+200	IN78	0,50
16+509	VI04	0,50
16+590	IN1I	0,51
16+815	IN36	0,50
17+266	IN37	0,50
17+580	IN38	0,50
17+850	IN1T	0,50
18+203	IN1L	0,50
18+641	IN40	0,50
18+706	IN41	0,59
19+065	IN43	0,51
19+451	IN1Vbis	0,50
19+531	IN44	0,50
19+875	IN45	0,50
L	l	1

IN17

10

26 di 67

В

EI2 RH ID0000 002

Progressiva	WBS	Coefficiente di
	di progetto	deflusso
		Фтот
-	-	-
20+883	VI05C	0,50
21+088	VI05C	0,64
22+354	IN81	0,55
23+987	IN1N	0,50
24+285	IN1O	0,50
24+368	IN49	0,50
25+275	-	0,52
25+912	IN85	0,50
26+125	IN86	0,50
26+506	IN50	0,50
26+558	IN1Q	0,50
26+668	IN1R	0,50
26+958	IN51	0,53
27+279	IN52	0,52
28+176	IN55	0,59
30+435	IN1S	0,58
31+634	IN56	0,54
32+130	IN58	0,51
36+830	IN63	0,51
37+950	IN64	0,60
38+590	IN65	0,60
42+500	IN68	0,66

5.3.3 Implementazione del metodo cinematico

SECONDARI

Implementando i dati fin qui ricavati è possibile, tramite il metodo cinematico, ricavare i valori della portata idrologica relativi ai bacini secondari con superficie < 10 Km². A tali valori vanno sommate le portate di derivazione in testa (desunte dal progetto definitivo), nel caso il corso d'acqua derivi una parte di portata da altri corsi d'acqua, ed eventuali valori delle risorgive (riportate nel progetto definitivo), nel caso ci sia un contributo di quest'ultime all'idrografia in esame.

I risultati ottenuti (Q complessiva) sono stati confrontati con i valori di portata massima riportati nel progetto definitivo e definiti come "..portata massima smaltibile nella nuova configurazione" (p.51 DOC IN0D02DI2RHID0002002E); quest'ultimi risultano essere l'unico parametro di confronto per valutare l'attendibilità dei valori calcolati: infatti il progetto definitivo, nel corso dell'iter approvativo, è stato sottoposto a verifica e approvazione da parte di tutti gli Enti interessati.

Dal confronto è emerso che per alcuni bacini è opportuno riportare il valore del progetto definitivo essendo quest'ultimo più cautelativo e a favore di sicurezza idraulica. Nello specifico, la scelta di utilizzare i valori del progetto definitivo è ricaduta in quei bacini dove la portata di calcolo risulta inferiore in termini di confronto. In alcuni casi dove la portata del progetto definitivo era troppo elevata e non giustificabile per il corso d'acqua in esame, la scelta del valore di portata di progetto è ricaduta nel valore ottenuto dall'analisi idrologica.

I risultati ottenuti sono i seguenti:

RELAZIONE IDROLOGICA E IDRAULICA ATTRAVERSAMENTI SECONDARI

Progetto IN17 Lotto Codifica Documento 10 EI2 RH ID0000 002 Rev. B Foglio 27 di 67

Progres.	WBS di progetto	Corso d'acqua	Autorità competente	Tipologia	Q idrologica	Q risorgiva	Q derivata	Q complessiva	Q MAX PD	Q PE	Direzione di deflusso
-	-	-	-	-	(m³/s)	(m³/s)	((m³/s)	(m³/s)	(m³/s)	(m³/s)	
0+650	RI03	Fossa Morandina	Pubblico	Scolo	13,43	-	-	13,43	-	13,43	NE
1+500	RI05	Scolo Orti	Privato	Scolo	2,45	0,15	-	2,60	18,80	2,60	S
2+365	IN03	Fosso Cercola	Consorzio APV	Scolo	2,87	-	-	2,87	-	2,87	S
4+046	IN07	Fossa Mattarana	Consorzio APV	Scolo	11,96	-	-	11,96	4,20	11,96	SO
4+483	IN09	Fossa Zenobria	Consorzio APV	Irriguo	0,59	0,45	-	1,04	2,10	2,10	SO
5+350	IN12	Fossa Rosella	Consorzio APV	Veicola le sorgive	7,48	3,50	25,00	35,98	42,70	42,70	S
5+900	IN14	Fossa Nuova	Consorzio APV	-	-	0,35	-	0,35	15,35	15,35	E
5+925	IN15	Fossa Roselletta	Consorzio APV	Irriguo	5,09	1,50	-	6,59	28,00	28,00	E
6+845	IN18	Fosso	privato	Veicola le sorgive	2,84	0,20	-	3,04	4,60	4,60	SO
7+037	IN1A	Fosso	privato ?	Irriguo	0,59	-	-	0,59	0,67	0,67	SE
7+183	IN19	Fossa Nuova	privato	Irriguo	6,54	0,35	-	6,89	10,74	10,74	SE
7+272	IN1B	Fosso	privato	-	0,66	-	-	0,66	2,00	2,00	SE
7+371	IN20	Fosso	privato	-	1,31	-	-	1,31	1,60	1,60	SE
7+725	VI01A	Fosso	Consorzio APV	Veicola le sorgive	1,08	0,75	-	1,83	1,60	1,83	NE
8+965	VI01B	Fossa Mariona	Consorzio APV	Bonifica	7,63	0,10	-	7,73	21,70	7,73	S
8+975	VI01B	Fossa Lendinara	Consorzio APV	Bonifica	1,15	0,50	-	1,65	5,20	5,20	S
9+294	VI01C	Fosso	privato	irriguo	2,76	0,10	-	2,86	-	2,86	SO
9+447	VI01C	Fosso	Privato	-	2,67	-	-	2,67	-	2,67	NO
10+223	IN1C	Fosso	Senza Autorità competente	-	2,11	-	-	2,11	0,54	2,11	S
10+338	IN1D	Fosso	Senza Autorità competente	-	4,44	-	-	4,44	0,42	4,44	S
10+586	IN84	Fosso	Senza Autorità competente	-	7,85	-	-	7,85	2,60	7,85	S
11+823	-	Fosso	Pubblico non demaniale	Bonifica	0,77	-	-	0,77	0,97	0,77	S
11+911	IN25	Fosso	Fosso pubblico non demaniale	Bonifica	1,75	-	-	1,75	1,45	1,75	S
12+131	IN26	Fosso	Fosso pubblico non demaniale	Irriguo	3,14	-	-	3,14	5,20	5,20	SE
12+314	VI03	Canale Maestro	Consorzio APV	Irriguo	-	-	2,60	2,60	8,11	2,60	N
12+322	VI03	Scolo Sereghetta	Consorzio APV	Irriguo	0,19	-	2,60	2,79	23,08	2,79	S

RELAZIONE IDROLOGICA E IDRAULICA ATTRAVERSAMENTI SECONDARI

Progetto IN17

Lotto 10

Codifica Documento EI2 RH ID0000 002

Rev. 28 di 67 В

Foglio

Progres.	WBS	Corso	Autorità	Tipologia	Q	Q	Q	Q	Q MAX	Q	Direzione
	di progetto	d'acqua	competente		idrologica	risorgiva	derivata	complessiva	PD	PE	di deflusso
-	-	-	-	-	(m³/s)	(m³/s)	((m³/s)	(m³/s)	(m³/s)	(m³/s)	
			Senza								
12+402	IN27	Fosso	Autorità	-	0,50	-	-	0,50	1,60	1,60	S
			competente								
			Senza								
12+464	IN28	Fosso	Autorità	-	0,99	-	-	0,99	1,20	1,20	S
			competente								
			Fosso								
12+986	IN29	Fosso	pubblico non	Bonifica	3,46	-	-	3,46	1,70	3,46	S
			demaniale								
12.100	INIOO	Porcilana	Consorzio	Mists	0.44	0.25		0.00	F 60	F 60	SE
13+189	IN30	Sud	APV	Misto	0,44	0,25	-	0,69	5,60	5,60	SE
12.200	INIO4	Porcilana	Consorzio	Mists	2.04	0.25		2.26	F 20	F 20	C.E.
13+308	IN31	Nord	APV	Misto	3,01	0,25	-	3,26	5,30	5,30	SE
			Fosso								
13+978	IN32	Fosso	pubblico non	Bonifica	4,71	-	-	4,71	2,90	4,71	SE
			demaniale								
			Fosso								
14+238	IN1F	Fosso	pubblico non	Bonifica	1,53	-	-	1,53	1,90	1,90	S
			demaniale								
			Senza								
14+640	IN1G	Fosso	Autorità	Bonifica	1,42	-	-	1,42	0,70	1,42	S
			competente								
			Senza								
15+055	IN33	Fosso	Autorità	-	3,84	-	-	3,84	2,60	3,84	SO
			competente								
			Fosso								
15+549	IN34	Fosso	pubblico non	Bonifica	1,15	-	-	1,15	1,23	1,23	NE
			demaniale								
15+860	IN92	Fosso	-	-	0,89	-	-	0,89	-	0,89	NE
			Senza								
16+178	IN1H	Fosso	Autorità	-	1,84	-	-	1,84	7,70	7,70	SO
			competente								
16+200	IN78	Fosso	-	-	1,28	-	-	1,28	-	1,28	S
		Scolo	Concernia	Veisele le							
16+509	VI04	Dugale	Consorzio APV	Veicola le	18,54	0,25	-	18,79	6,00	18,79	S
		Fontana	AFV	sorgive							
16+590	IN1I	Fosso	-	-	0,84	-	-	0,84	-	0,84	SO
		Fosso	Food								
16:015	INISE	(diramazio	Fosso	Ponifico	E 10	0.03		F 21	0.21	0.21	NE
16+815	IN36	ne	pubblico non	Bonifica	5,18	0,03	-	5,21	9,31	9,31	NE
		Ceresolo)	demaniale								
			Fosso								
17+266	IN37	Fosso	pubblico non	Irriguo	3,37	0,20	-	3,57	11,40	11,40	N
			demaniale								
		Fosso	Fosso								
17,500	INIOO	(diramazio		Mioto	0.50			0.59	1 27	1 27	c
17+580	IN38	ne	pubblico non demaniale	Misto	0,58	_	-	0,58	1,37	1,37	S
		Ceresolo)	uemaniale								
			Fosso	Continuità							
17+850	IN1T	Fosso	pubblico non	irrigazione	1,29	-	-	1,29	1,26	1,29	S
	I		demaniale	-bonifica							

10

RELAZIONE IDROLOGICA E IDRAULICA ATTRAVERSAMENTI SECONDARI

Progetto Lotto IN17

Codifica Documento EI2 RH ID0000 002

Rev. Foglio 29 di 67 В

Progres.	WBS di progetto	Corso d'acqua	Autorità competente	Tipologia	Q idrologica	Q risorgiva	Q derivata	Q complessiva	Q MAX PD	Q PE	Direzione di deflusso
-	-	-	-	-	(m³/s)	(m³/s)	((m³/s)	(m³/s)	(m³/s)	(m³/s)	
18+203	IN1L	Fosso	Fosso pubblico non demaniale	Bonifica	0,72	-	-	0,72	3,66	3,66	Е?
18+641	IN40	Fossa Smania	Consorzio APV	Bonifica	7,22	0,15	-	7,37	6,10	7,37	S
18+706	IN41	Scolo Camuzzoni	Consorzio APV	Veicola le sorgive	36,22	0,25	-	36,47	32,50	36,47	S
19+065	IN43	Dugaletta di S.Bonifacio	Consorzio APV	-	14,83	0,15	-	14,98	8,12	14,98	S
19+451	IN1Vbis	Fosso	-	Continuità irrigazione -bonifica	0,17	-	-	0,17	-	0,17	S
19+531	IN44	Fosso	Consorzio APV	Irriguo	1,80	0,25	-	2,05	8,86	8,86	SO
19+875	IN45	Fosso	Fosso pubblico non demaniale	Bonifica	3,34	0,20	-	3,54	10,36	3,54	SO
20+883	VI05C	Fosso	Pubblico non demaniale	Bonifica	1,77	ı	-	1,77	8,32	1,77	so
21+088	VI05C	Scolo Palù	Consorzio APV	Scolo	30,96	0,30	-	31,26	-	31,26	so
22+354	IN81	Scolo Biache	Consorzio APV	Bonifica	13,74	0,30	-	14,04	4,20	14,04	SO
23+987	IN1N	Fosso	Fosso pubblico non demaniale	Bonifica	2,62	-	-	2,62	1,00	2,62	0
24+285	IN1O	Fosso	Fosso pubblico non demaniale	Bonifica	1,33	-	-	1,33	1,93	1,93	SE
24+368	IN49	Scolo Mazzoni	Consorzio APV	Bonifica	1,64	0,20	-	1,84	4,10	4,10	0
25+275	-	Scolo Dugaletta	Consorzio APV	Bonifica	6,46	0,05	-	6,51	-	6,51	0
25+912	IN85	Fosso	Fosso pubblico non demaniale	Scolo	1,08	-	-	1,08	1,00	1,08	SE
26+125	IN86	Canale secondario	Fosso pubblico non demaniale	Scolo	2,32	-	-	2,32	10,30	10,30	0
26+506	IN50	Fosso	Senza Autorità competente	-	1,37	1	-	1,37	5,70	5,70	Ø
26+558	IN1Q	Fosso	Senza Autorità competente	-	0,85	-	-	0,85	4,00	4,00	S
26+668	IN1R	Fosso	Fosso pubblico non demaniale	Scolo	1,16	-	-	1,16	4,60	4,60	S
26+958	IN51	Scolo Preicardo	Consorzio APV	Bonifica	11,85	0,05	-	11,90	5,00	11,90	S

RELAZIONE IDROLOGICA E IDRAULICA ATTRAVERSAMENTI SECONDARI

Progetto Lotto C IN17 10 E

Codifica Documento El2 RH ID0000 002 Rev. Foglio B 30 di 67

Progres.	WBS	Corso	Autorità	Tipologia	Q	Q	Q	Q	Q MAX	Q	Direzione
	di	d'acqua	competente		idrologica	risorgiva	derivata	complessiva	PD	PE	di
	progetto										deflusso
-	-	-	-	-	(m³/s)	(m³/s)	((m³/s)	(m³/s)	(m³/s)	(m³/s)	
27+279	IN52	Scolo Conterno	Consorzio APV	Scolo	14,01	0,10	-	14,11	13,10	14,11	SO
28+176	IN55	Canale	Senza Autorità competente	Scolo	9,60	0,15	-	9,75	-	9,75	S
30+435	IN1S	Fosso	Consorzio APV	-	9,71	0,30	-	10,01	-	10,01	SE
31+634	IN56	Roggia Reguia	Consorzio APV	Scolo	3,92	-	-	3,92	26,17	26,17	S
32+130	IN58	Fosso	Fosso pubblico non demaniale	-	2,82	-	-	2,82	-	2,82	SO
36+830	IN63	Roggia Signolo	Consorzio APV	-	9,21	-	-	9,21	-	9,21	SE
37+950	IN64	Scolo Cavazza	Consorzio APV	-	17,38	-	-	17,38	-	17,38	SE
38+590	IN65	Scolo Cavazza	Consorzio APV	-	3,87	-	-	3,87	-	3,87	SO
42+500	IN68	Scolo Ferrovia Altavilla	-	-	1,40	-	-	1,40	-	1,40	NE

È evidente che la portata di progetto esecutivo è una portata teorica e prescinde da eventuali condizioni di esondazioni della rete di monte. Maggiori dettagli saranno specificati nella relazione idraulica.

5.4 Calcolo dell'idrogramma di piena per bacini con superficie > 10 Km²

5.4.1 Il modello di trasformazione afflussi-deflussi

La risposta idrologica di un bacino idrografico dipende da un insieme di processi di diversa natura che interessano gli elementi costitutivi del bacino stesso (stati versante e stati canale); essi possono essere riassunti nei seguenti:

- la produzione di deflusso efficace all'interno di ciascun elemento costitutivo del bacino;
- il trasporto della precipitazione efficace all'interno dello stato versante fino all'ingresso di questa nella rete idrografica;
- la propagazione dei deflussi efficaci lungo la rete canalizzata.

Il meccanismo che regola la produzione di deflusso efficace è governato da un bilancio del contenuto d'acqua che, in questa sede, verrà considerato alla scala del sottobacino; tale bilancio, nella sua formulazione più completa, tiene conto dell'evoluzione temporale dell'intensità di precipitazione, della frazione di precipitazione intercettata dalla vegetazione e che quindi non raggiunge la superficie del terreno, della frazione d'acqua che viene allontanata dal terreno per evaporazione e traspirazione delle piante, della frazione d'acqua che defluisce superficialmente e che quindi costituisce la risposta rapida del bacino, ed infine del flusso che si infiltra nel terreno e che in parte può contribuire alla risposta idrologica in tempi più lunghi ed in parte viene considerato perso poiché rimane legato alle particelle di terreno o contribuisce alla ricarica della falda.



Figura 5-10 Schema di trasformazione afflussi-deflussi

Lo ietogramma efficace rappresenta quindi la pioggia che, idealmente, contribuisce alla formazione della piena, la pioggia cioè che, tramite ruscellamento superficiale e scorrimento nei collettori, giunge nei tempi più brevi alla sezione di chiusura, formando così i valori elevati di portata. La parte restante dello ietogramma, che comunque rappresenta spesso un volume non indifferente della pioggia complessivamente caduta, produce la saturazione del terreno superficiale ed alimenta la falda sotterranea, oppure defluisce lentamente, attraverso moti filtranti negli strati superficiali del suolo, e raggiunge la sezione di chiusura del bacino dopo molto tempo, senza contribuire così alla formazione del picco dell'idrogramma di piena.

Il processo fisico di produzione dei deflussi può essere descritto da un modello che, attraverso le necessarie semplificazioni, sia in grado di coglierne i caratteri fondamentali e che, attraverso il valore assunto dai parametri, aderisca al particolare caso studio.

GENERAL CONTRACTOR Consorzio IricAV Due		ITAL	FERR		
RELAZIONE IDROLOGICA E IDRAULICA ATTRAVERSAMENTI	Progetto	Lotto	Codifica Documento	Rev.	Foglio
SECONDARI	IN17	10	El2 RH ID0000 002	В	32 di 67

La modellazione afflussi-deflussi permette di definire l'idrogramma di piena a partire dalla precipitazione insistente sul bacino d'interesse. Quest'ultima viene considerata come una variabile dipendente sia dalla coordinata temporale (t), sia dalla coordinata spaziale (s). La portata in corrispondenza della sezione di chiusura è invece una variabile dipendente solo dal tempo (t).

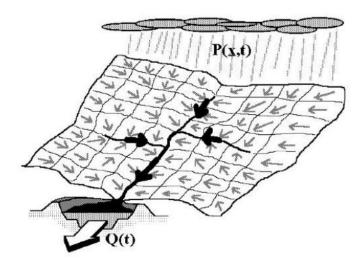


Figura 5-11 Schema di trasferimento di pioggia

La trasformazione da pioggia al suolo a portata nella sezione di chiusura avviene secondo una cascata di processi, ciascuno dei quali può essere rappresentato tramite un opportuno sotto-modello specializzato. In particolare, l'ingresso principale al modello sarà costituito da una serie di misure di pioggia, che sono state interpolate mediante un opportuno modello estimativo, in modo da ottenere l'andamento delle precipitazioni lorde al suolo nello spazio e nel tempo in termini di afflussi per unità di area (ovvero con dimensioni di portata per unità di area). La quota parte di tali precipitazioni che andrà in scorrimento superficiale (ed eventualmente anche in deflusso ipodermico, nei limiti precedentemente accennati), detta anche precipitazione efficace o deflusso efficace, verrà stimata con un opportuno modello di trasformazione afflussi – deflussi, che stimerà la produzione di deflusso q(s, t) idealmente in ciascun punto del bacino, avente questa ancora le dimensioni di una portata per unità di area. Infine, il processo di concentrazione dei deflussi superficiali nel reticolo idrografico e di trasferimento lungo questo sino alla sezione di chiusura verrà rappresentato tramite un opportuno modello di formazione dell'onda di piena.

In condizioni di piena alcuni termini che compaiono nel bilancio del contenuto d'acqua nel suolo diventano trascurabili. Possono essere trascurate le perdite per evapotraspirazione dal momento che si suppone che durante un evento di piena sia diverso da zero il termine di precipitazione in ingresso e possono anche essere trascurati i deflussi profondi perché caratterizzati da tempi di arrivo non confrontabili con i tempi caratteristici dell'evento.

Per tale ragione la definizione dello ietogramma netto, o efficace, a partire dallo ietogramma totale, può essere ottenuta più semplicemente attraverso il metodo Curve Number del Soil Conservation Center (SCS-CN).

Il metodo del Curve Number è empirico e basato su un'equazione che lega il volume specifico di pioggia netta al volume specifico di pioggia lorda caduta nel medesimo intervallo temporale.

Il CN è un parametro sintetico che esprime l'attitudine di una porzione di territorio a produrre deflusso diretto (superficiale) e varia da zero a cento. Più alto è il valore, maggiore è il deflusso prodotto a parità di precipitazione.

GENERAL CONTRACTOR Consorzio IricAV Due	CANADA CONTRACTOR OF THE CANADA	ITAL	FERR		
RELAZIONE IDROLOGICA E IDRAULICA ATTRAVERSAMENTI	Progetto	Lotto	Codifica Documento	Rev.	Foglio
SECONDARI	IN17	10	EI2 RH ID0000 002	В	33 di 67

Tale modello è concentrato nello spazio e nel tempo e si basa sulla semplificazione concettuale del processo idrologico. La sua formulazione deriva dall'equazione di bilancio fra i valori cumulati nel tempo dei principali termini dell'afflusso e quelli del deflusso.

Si ipotizza che durante l'intero evento preso in considerazione resti invariata la seguente relazione di proporzionalità tra le perdite per infiltrazione e il deflusso superficiale:

$$\frac{F}{S} = \frac{Q}{P - I_a} \tag{7}$$

dove

F = perdite effettive generate durante l'evento [mm];

S = massima capacità di ritenzione idrica del suolo [mm]

Q = pioggia netta cumulata [mm]

P = pioggia lorda cumulata [mm]

l_a = perdite iniziali dovute all'intercettazione, all'infiltrazione e alla saturazione delle depressioni superficiali [mm] Lo sviluppo successivo richiede la stima della portata massima adottando come forzante del bacino una pioggia netta desunta dal metodo del Curve Number introdotto dal Soil Conservation Service (SCS). Il volume specifico di pioggia netta Pe, dall'inizio dell'evento meteorico fino all'istante generico t è legato al volume specifico di pioggia lorda P, caduta nel medesimo intervallo temporale, dalla relazione:

$$P_e = \frac{(P - I_a)^2}{P - I_a + S}$$
 (8)

dove:

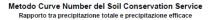
S = massimo volume specifico di acqua che il terreno può trattenere in condizioni di saturazione

la = perdita iniziale

La relazione (2) risulta valida solo nel caso in cui

$$P \ge I_a$$
 (9)

mentre nel caso in cui l'altezza di pioggia risulti minore di I_a si ha $P_e=0$.


I parametri S e I_a possono essere determinati attraverso operazioni di taratura, ma in maniera semplificata si adotta Ia = 0,2S verificata con buona approssimazione. Allo scopo di evitare di sovrastimare le perdite iniziali Ia, sono stati assunti valori massimi di 15 mm.

La valutazione di S (espresso in mm) può invece essere ricondotta a quella dell'indice CN, tramite la relazione seguente:

$$S = 25.4 \left(\frac{1000}{CN} - 10 \right) \tag{10}$$

Nelle figure seguenti si riportano alcuni abachi che in funzione del parametro P, da intendersi come altezza di precipitazione cumulata osservata fino a un dato momento, restituiscono rispettivamente la precipitazione efficace totale, il coefficiente di deflusso medio fino a quell'istante e il coefficiente di deflusso marginale o istantaneo, cioè la proporzione di precipitazione efficace che si genera in quello stadio dell'evento.

GENERAL CONTRACTOR Consorzio IricAV Due		CANCELL OF PERSON	ITAL	FERR STATO ITALIANE		
RELAZIONE IDROLOGICA E IDRAULIC	Progetto	Lotto	Codifica Documento	Rev.	Foglio	
SECONDARI		IN17	10	EI2 RH ID0000 002	В	34 di 67

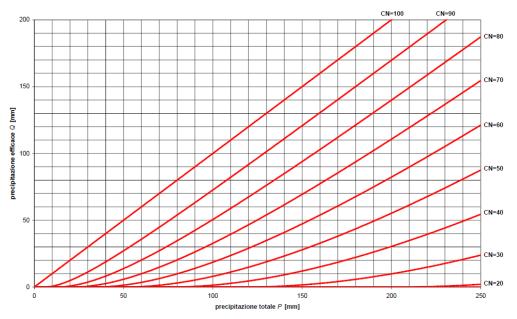


Figura 5-12 Valori di precipitazione efficace in funzione della precipitazione totale e del parametro CN secondo il metodo SCS

5.4.2 Litologia

Per definire l'attitudine di un suolo alla produzione di deflusso è necessario conoscere la classificazione litologica dello stesso. La carta litologica delle aree interessate è disponibile nel Geoportale della Regione Veneto, mentre la carta idrologica dei gruppi del suolo del Veneto è disponibile nel Geoporale ARPA Veneto.

Le classi litologiche sono riportate nella Tabella 5-4, con le quali sono state definite anche i tipi idrologici di suolo, mentre la Tabella 5-5 riporta la descrizione del tipo litologico di suolo per i gruppi A, B, C e D.

L'Agenzia Regionale per la Prevenzione e Protezione Ambientale del Veneto riporta la descrizione seguente: "il gruppo idrologico indica il potenziale comportamento dei suoli nel generare deflusso superficiale e raggruppa quindi suoli simili per comportamento idrologico, basandosi sul presupposto che in una data regione climatica, suoli simili per profondità, capacità di infiltrazione, tessitura, struttura e profondità della falda, producono una risposta simile allo scorrimento superficiale (runoff).

È molto richiesto nei modelli di bilancio idrologico di bacino che stimano la frazione di precipitazioni che si infiltra nel terreno rispetto a quella che defluisce superficialmente, per la previsione degli eventi di piena.

La classificazione prevede quattro gruppi idrologici principali (A, B, C e D) definiti prevalentemente in base alla permeabilità, espressa come conducibilità idraulica in condizioni di saturazione (K_{sat}). I suoli in classe A hanno permeabilità più alta e quindi potenziale di deflusso superficiale più basso, al limite opposto i suoli in classe D hanno permeabilità più bassa e conseguente potenziale di deflusso superficiale più alto.

Il metodo "Runoff Curve Number Method", messo a punto dal Soil Conservation Service USDA nel 1972 e da allora costantemente calibrato e aggiornato con nuovi dati, è molto utilizzato e prevede l'incrocio di informazioni relative all'uso del suolo, alle pratiche colturali e alle condizioni idrologiche dei suoli, sintetizzate appunto nel gruppo idrologico dei suoli.

La versione del metodo secondo USDA National Engineering Handbook (USDA-NRCS, 2009) prevede più parametri di input, tra cui la permeabilità dello strato meno permeabile e la profondità della falda e introduce le classi "duali" per quei suoli con falda naturale entro 60 centimetri ma che, essendo artificialmente drenati, presentano una falda più profonda. Alle quattro classi iniziali si sono quindi aggiunte tre classi duali (A/D, B/D, C/D) dove la prima lettera indica il gruppo idrologico del suolo in condizioni di drenaggio artificiale, la seconda in condizioni non drenate.

Ad ogni unità tipologica di suolo è stato attribuito un gruppo idrologico. L'estensione alle unità cartografiche, in presenza di tipologie di suolo diverse, è un valore medio ponderato, sulla base dei valori dei singoli suoli e della loro percentuale di presenza all'interno dell'unità cartografica."

Tabella 5-4 Accoppiamento classe litologica e tipo idrologico di suolo

Classe litologica	Descrizione	Tipo idrologico
1	Depositi alluvionali	A
2	Sabbie	А
5	Argille e Marne argillose	С
6	Marne	С
7	Siltiti Marnose	С
8	Arenarie e conglomerati	В
9	Argille, marne e calcari a componente argillosa prevalente	С

Tabella 5-5 Descrizione tipo idrologico di suolo

Tipo di suolo	Descrizione	
А	Scarsa potenzialità di deflusso. Comprende sabbie profonde con scarsissimo limo	
	e argille; anche ghiaie profonde molto permeabili.	
В	Potenzialità di deflusso moderatamente bassa. Comprende la maggior parte dei	
	suoli sabbiosi meno profondi che nel gruppo A. Il gruppo nel suo insieme mantiene	
	alte capacità di infiltrazione anche a saturazione.	
С	Potenzialità di deflusso moderatamente alta. Comprende suoli sottili e suoli	
	contenenti considerevoli quantità di argilla e colloidi anche se meno del gruppo D.	
	Il gruppo ha scarsa capacità di infiltrazione a saturazione.	
D	Potenzialità di deflusso molto alta. Comprende la maggior parte delle argille con	
	alta capacità di rigonfiamento, ma anche suoli sottili con orizzonti pressoché	
	impermeabili in superficie.	

I bacini idrografici d'interesse, appartenenti al 1° Lotto Funzionale Verona-Bivio Vicenza, ricadono principalmente nei gruppi A e B, nei quali è previsto rispettivamente un runoff potenziale basso e un runoff potenziale moderatamente basso, come riportato nella Figura 5-13.

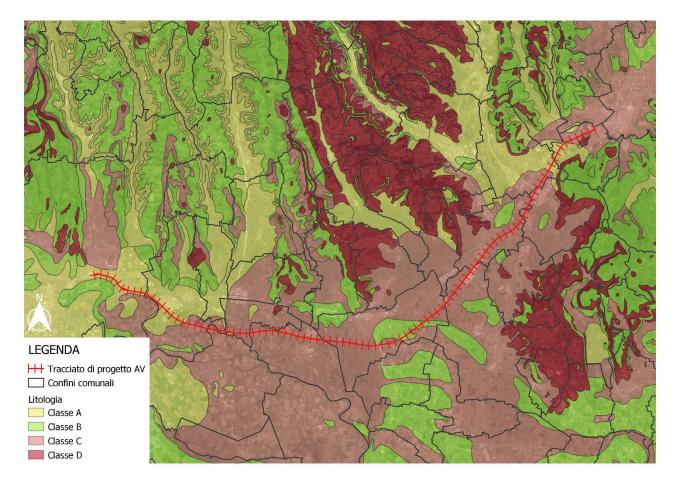


Figura 5-13 Carta dei gruppi idrologico del suolo lungo la nuova linea ferroviaria AV/AC

5.4.3 Uso del suolo

Per definire il CN è necessario conoscere, oltre alla litologia, anche l'uso del suolo delle aree interessate. Tale informazione può essere desunta dai dati contenuti nel Corine Land Cover (CLC), le cui caratteristiche principali sono state descritte nel paragrafo precedente, inoltre la Figura 5-9 riporta l'estratto della mappa del CLC nella zona d'interesse.

5.4.4 II Curve Number (CN)

Utilizzando i dati ricavati, riguardanti l'uso del suolo e la litologia, è possibile definire il Curve Number (CN) che è espresso tramite un numero adimensionale compreso tra 0 e 100.

Valori prossimi al 100 indicano la presenza di superfici e terreni impermeabili, mentre valori prossimi allo 0 indicano superfici e terreni completamente permeabili che assorbono totalmente il contributo di precipitazione.

Nella fattispecie esistono quattro gruppi che distinguono le tipologie di terreno sulla base delle capacità di assorbimento del terreno nudo a seguito di prolungato adacquamento: a ciascuno di essi corrisponde un determinato valore di CN. Per quanto riguarda l'influenza dello stato di imbibizione del suolo all'inizio dell'evento meteorico, il metodo individua tre classi caratterizzate da differenti condizioni iniziali (AMC - Antecedent Moisture Condition).

L'associazione tra il tipo idrologico di suolo e l'uso del suolo per ogni bacino è riportato nelle tabelle seguenti

GENERAL CONTRACTOR Consorzio IricAV Due	A STATE OF THE REAL PROPERTY AND ADDRESS OF THE PARTY AND ADDRESS OF TH	ITAL	FERR		
RELAZIONE IDROLOGICA E IDRAULICA ATTRAVERSAMENTI	Progetto	Lotto	Codifica Documento	Rev.	Foglio
SECONDARI	IN17	10	EI2 RH ID0000 002	В	37 di 67

Valori del parametro CN (adimensionale)	←Tipo	←Tipo idrologico Suolo →			
↓ Tipologia di Uso del Territorio	A	В	С	D	
Terreni coltivati, in presenza di pratiche di conservazione del suolo*	62*	71*	78*	81*	
Terreni coltivati, in assenza di pratiche di conservazione del suolo*	72*	81*	88*	91*	
Prati	≤30*	58*	71*	78*	
Boschi, in presenza di copertura rada e senza sottobosco*	45*	66*	77*	83*	
Boschi e foreste, in presenza di copertura fitta e con sottobosco*	25*	55*	70*	77*	
Spazi aperti con manto erboso superiore al 75% dell'area	39	61	74	80	
Spazi aperti con manto erboso compreso tra il 50 ed il 75% dell'area	49	69	79	84	
Spazi aperti con manto erboso inferiore al 50% dell'area	68	79	86	89	
Zone industriali (area impermeabile 72%)	81	88	91	93	
Zone commerciali e industriali (area impermeabile 85%)	89	92	94	95	
Zone residenziali, lotti fino a 500 m^2 (area impermeabile 65%)	77	85	90	92	
Zone residenziali, lotti di 500+1000 m^2 (area impermeabile 38%)	61	75	83	87	
Zone residenziali, lotti di 1000+1500 m^2 (area impermeabile 30%)	57	72	81	86	
Zone residenziali , lotti di 1500+2000 m² (area impermeabile 25%)	54	70	80	85	
Zone residenziali, lotti di 2000+5000 m^2 (area impermeabile 20%)	51	68	79	84	
Zone residenziali, lotti di 5000+10000 m^2 (area impermeabile 12%)	46	65	77	82	
Parcheggi, tetti, autostrade,	98	98	98	98	
Strade pavimentate o asfaltate, dotate di drenaggio	98	98	98	98	
Strade con letto in ghiaia	76	85	89	91	
Strade battute in terrra	72	82	87	89	

Figura 5-14 Valori caratteristici del parametro CNII, nelle zone urbanizzate ottenute, incrociando le caratteristiche di permeabilità del terreno con quelle di uso del suolo (* per i diversi tipi di coltura vegetale e coltivazione si rimanda alle tabelle seguenti)

Valori del parametro CN	←Tipo Idrologico Suolo →						
↓ Tipologia di Coltivazione	А	В	С	D			
Maggese nudo o arato a ritocchino	77	86	91	94			
Maggese residuo (almeno il 5%) in cattive/buone condizioni*	76/74	85/83	90/88	93/90			
Filari** a ritocchino in cattive/buone condizioni*	72/67	81/78	88/85	91/89			
Filari** per traverso in cattive/buone condizioni*	70/65	79/75	84/82	88/86			
Filari** per traverso e terrazzati in cattive/buone condizioni*	66/62	74/71	80/78	82/81			
Cereali*** a ritocchino in cattive/buone condizioni*	65/63	76/75	84/83	88/87			
Cereali*** per traverso in cattive/buone condizioni*	63/61	74/73	82/81	85/84			
Cereali*** per traverso e terrazzati in cattive/buone condizioni*	61/59	72/70	79/78	82/81			
Leguminose o prato a rotazione a ritocchino in cattive/buone condizioni*	66/58	77/72	85/81	89/85			
Leguminose o prato a rotazione per traverso in cattive/buone condizioni*	64/55	75/69	83/78	85/83			
Leguminose o prato a rotazione per traverso e terrazzato, in cattive/buone condizioni*	63/51	73/67	80/76	83/80			

^{*}condizioni dettate da: a) densità del manto vegetale, b) durata annuale della copertura, c) tipologia di rotazione, d) percentuale di copertura del terreno, e) grado di rugosità della superficie.

Figura 5-15 Valori caratteristici del valore CNII per tipologia di coltivazione

^{**}mais, vigneti, arboreti.

^{***}grano, sorgo.

Valori del parametro CN	←Tipo Idrologico Suolo →					
↓ Copertura vegetale	Ą	В	C	D		
Zone U	mide					
Pascolo in cattive/discrete/buone condizioni ¹	68/49/39	79/69/61	86/79/74	89/84/80		
Pascolo per traverso in cattive/discrete/buone condizioni ¹	47/25/6	67/59/35	81/75/70	88/83/79		
Prato protetto dal pascolo e soggetto a fienagione	≤30	58	71	78		
Sterpaglia in cattive/discrete/buone condizioni ²	48/35/30	67/56/48	77/70/65	83/77/73		
Combinazione di bosco (50%) e prato (50%), ad es. frutteto, in cattive/discrete/buone condizioni ²	57/43/32	73/65/58	82/76/72	86/82/79		
Bosco in cattive/discrete/buone condizioni ³	45/36/25	66/60/55	77/73/70	83/79/77		
Zone Aride e	Semiaride					
Manto erboso in cattive/discrete/buone condizioni ⁴		80/71/62	87/81/74	93/89/85		
Macchia boschiva ⁵ in cattive/discrete/buone condizioni ⁴		66/48/30	74/57/41	79/63/48		
Cespugli ⁶ in cattive/discrete/buone condizioni ⁴ ,		75/58/41	85/73/61	89/80/71		
Macchia arbustiva ⁷ in cattive/discrete/buone condizioni ⁴		67/51/35	80/63/47	85/70/55		
Vegetazione desertica ⁸ in cattive/discrete/buone condizioni ⁴	63/55/49	77/72/68	85/81/79	88/86/84		

¹cattive condizioni: copertura inferiore al 50% e elevato sfruttamento; discrete condizioni: copertura tra il 50 e il 75% e modesto sfruttamento; buone condizioni: copertura superiore al 75% e sfruttamento saltuario.

Figura 5-16 Valori caratteristici del valore CN in base alla tipologia di zona

Il valore di CN dell'intero bacino si ottiene come media pesata dei valori stimati per le singole aree omogenee tramite la formulazione seguente:

$$CN_{tot} = \frac{\sum CN_i A_i}{A_{tot}} \tag{11}$$

dove:

CN_{tot} = CN dell'intero bacino

CN_i = CN della i-esima zona omogenea

A_i = area della i-esima zona omogenea

Atot = area totale dell'intero bacino

Per quanto riguarda le condizioni di saturazione del terreno antecedenti l'evento di precipitazione, il metodo SCS individua tre classi in relazione al valore assunto dall'altezza di pioggia caduta nei 5 giorni antecedenti l'evento meteorico. L'attribuzione della classe AMC (Antecedent Moisture Condition) si basa su criteri riportati nella Tabella 5-6.

Classe AMC	Stagione di riposo	Stagione di crescita
I	< 12.7 mm	< 35.6 mm
II	12.7 – 27.9 mm	35.6 – 53.3 mm
II	> 27.9 mm	> 53.3 mm

Tabella 5-6 Classi AMC (Antecedent Moisture Condition)

²cattive/discrete/buone condizioni: copertura inferiore al 50%, tra il 50 e il 75%, superiore al 75%.

³cattive condizioni: sottobosco soggetto a sfruttamento e distruzione per via degli incendi; discrete condizioni: sottobosco soggetto a sfruttamento, ma al riparo dagli incendi; buone condizioni: sottobosco protetto.

⁴cattive condizioni: copertura inferiore al 30%; discrete condizioni: copertura tra il 30 e il 70%; buone condizioni: copertura superiore al 70%.

GENERAL CONTRACTOR Consorzio IricAV Due		A STANSON PROPERTY OF THE PARTY	ITAL	FERR		
RELAZIONE IDROLOGICA E IDRAULICA	ATTRAVERSAMENTI	Progetto	Lotto	Codifica Documento	Rev.	Foglio
SECONDARI		IN17	10	EI2 RH ID0000 002	В	39 di 67

Nel caso di condizioni di imbibizione media (classe II) si utilizza il valore di CN individuato tramite la relazione (5), mentre, nel caso di condizioni antecedenti l'evento molto asciutte (classe I) o molto umide (classe III) si utilizzano rispettivamente le seguenti formulazioni:

$$CN(I) = \frac{4.2 \, CN(II)}{10 - 0.058 \, CN(II)} \tag{12}$$

$$CN(III) = \frac{23 CN(II)}{10 + 0.13 CN(II)}$$
(13)

dove

CN(II) = valore di CN calcolato con la relazione (11).

5.4.5 Implementazione del modello HEC-HMS

Il modello HEC-HMS permette di simulare la risposta di un bacino idrografico ad un assegnato evento di precipitazione.

Il codice di calcolo necessita di un'accurata descrizione della geometria dei bacini, dei sottobacini, del reticolo idrografico e delle caratteristiche fisiche del terreno, quali: litologia, uso del suolo e capacità d'infiltrazione.

La rappresentazione fisica del bacino avviene attraverso l'utilizzando di diversi elementi, quali: la creazione di sottobacini e delle aste fluviali, l'inserimento di laghi, serbatoi ecc.

La simulazione idrologica del software Hec-Hms viene definita dalla combinazione di tre moduli: Basin Model, Meteorologic Model e Control Specifications:

- Basin Model: data set per la rappresentazione fisica delle caratteristiche del bacino idrografico. Per la simulazione della trasformazione afflussi-deflussi i singoli elementi idrologici sono connessi in una rete ad albero. Gli elementi idrologici costituiscono i blocchi base dei modelli di bacino. Un elemento rappresenta un'entità fisica che contribuisce a determinare la risposta del bacino alle precipitazioni atmosferiche. Gli elementi disponibili in Hec-Hms sono: subbasin (sottobacino), reach (tratto di corso d'acqua), junction (punto di confluenza), reservoir (invaso), diversion (diramazione), source (sor-gente) e sink (pozzo).
- Meteorologic Model: calcola il deflusso in uscita da ogni sottobacino a partire dai dati sulle precipitazioni atmosferiche. I processi idrologici vengono distinti in tre categorie: perdite di bacino, trasformazioni afflussi-deflussi e deflussi di base. Una parte delle precipitazioni, che raggiunge la superficie del bacino idrografico, s'infiltra nel suolo e si trasforma in deflusso di base per il corso d'acqua, oppure rimane nel sottosuolo, unendosi alle acque sotterranee.
- Control Specifications: specificati la data, l'ora d'inizio e fine simulazione e l'intervallo temporale di calcolo, si analizza il fenomeno della trasformazione afflussi-deflussi. I risultati della simulazione idrologica possono variare da 1 minuto a 24 ore.

Le proprietà fisiche sono invece rappresentabili utilizzando diverse tipologie di modelli che tengono conto dell'infiltrazione della precipitazione nel terreno, del deflusso superficiale e del deflusso all'interno dei corpi idrici. Per il progetto in essere è stato implementato il modello SCS-CN con i parametri fino ad ora definiti. In particolare, è stato utilizzato il modello SCS-UH secondo cui si ottiene un idrogramma unitario adimensionale con picco unico, riportato nella Figura 5-17.

La portata viene espressa come il rapporto tra la portata di picco, per ogni istante t, e il tempo di picco:

$$Q_p = C \frac{A}{T_p} \tag{14}$$

dove

Qp = portata di picco

A = area del bacino

C = costante di conversione, pari a 2.08 nel SI

T_p = tempo di picco, è correlato alla durata dell'unità di eccesso di precipitazione

$$T_p = \frac{\Delta t}{2} + t_{lag} \tag{15}$$

dove:

Δt = durata dell'eccesso di precipitazione (ossia l'intervallo di calcolo)

t_{lag} = differenza di tempo tra il centro di massa dell'eccesso di precipitazione ed il picco dell'UH



Figura 5-17 Idrogramma unitario SCS

Il tempo di ritardo, definito in ore, può essere calcolato utilizzando i dati caratteristici del bacino con l'applicazione della formula di Mockus (SCS, 1972):

$$t_{lag} = 0.342 L^{0.8} s^{-0.5} \left(\frac{1000}{CN} - 9 \right)^{0.7}$$
 (16)

dove:

L = lunghezza dell'asta principale in km

s = pendenza media dell'asta principale in (%)

CN = Curve Number

Dall'analisi dell'uso del suolo e della litologia è stato possibile ricavare i valori di CN medio per i bacini oggetto di studio ed il relativo tempo di ritardo.

Progres.	WBS	Area	Zmin	Zmax	Zmedia	Zchiusura	Lasta	jasta	jmedia	CN	t _{lag}
	di		bacino	bacino	bacino	bacino			bacino	medio	
	progetto										
-	-	(km²)	(m s.m.m.)	(m s.m.m.)	(m s.m.m.)	(m s.m.m.)	(m)	(m/m)	(m/m)	-	(ore)
17+638	IN39	10,475	20,7	199,6	52,4	20,5	4759,4	0,0040	0,0800	78,21	1,07
23+525	NV53	10,613	24,8	46,9	31,2	24,7	8273,6	0,0015	0,0540	81,03	1,86

GENERAL CONTRACTOR Consorzio IricAV Due		EDITORIAL PROPERTY OF	ITAL	FERR STATO ITALIANE		
RELAZIONE IDROLOGICA E IDRAULIC	A ATTRAVERSAMENTI	Progetto	Lotto	Codifica Documento	Rev.	Foglio
SECONDARI		IN17	10	El2 RH ID0000 002	В	41 di 67

Implementando i dati ottenuti all'interno del programma è possibile ricavare l'idrogramma di piena in uscita dai bacini secondari per i vari tempi di pioggia.

Figura 5-18 Idrogramma di piena del bacino relativo alla WBS IN39 per un Tr di 300 anni

Figura 5-19 Idrogramma di piena del bacino relativo alla WBS NV53 per un Tr di 300 anni

Come è possibile verificare dai grafici sopra riportati il valore max di portata è dato dall'evento di pioggia con durata di 6 ore.

Si riporta di seguito la tabella riepilogativa con i dati caratteristici dei bacini oggetto di studio.

GENERAL CONTRACTOR Consorzio IricAV Due		EDITOR BUILDING TO SECURE	ITAL	FERR		
RELAZIONE IDROLOGICA E IDRAULIC	A ATTRAVERSAMENTI	Progetto	Lotto	Codifica Documento	Rev.	Foglio
SECONDARI		IN17	10	EI2 RH ID0000 002	В	42 di 67

Progres.	WBS	Corso	Autorità	Tipologia	Q	Q	Q	Q	Q MAX	Q	Direzione
	di	d'acqua	competente		idrologica	risorgiva	derivata	complessiva	PD	PE	di
	progetto										deflusso
-	-	-	-	-	(m³/s)	(m³/s)	(m³/s)	(m³/s)	(m³/s)	(m³/s)	
17+638	IN39	Scolo	Consorzio	Irriguo	26,90	0,25	-	27,15	11,70	27,15	SE
		Masera	APV								
		Nord									
23+525	NV53	Scolo	Consorzio	Bonifica	32,60	0,15	-	32,75	23,50	32,75	SO
		Dugaletta	APV								

È evidente che la portata di progetto esecutivo è una portata teorica e prescinde da eventuali condizioni di esondazioni della rete di monte. Maggiori dettagli saranno specificati nella relazione idraulica.

5.5 Calcolo della portata massima per bacini secondari nella fase di cantierizzazione

In fase di realizzazione degli attraversamenti secondari è necessario, in alcuni casi, intervenire con la costruzione di opere provvisionali, atte sia a garantire la continuità idraulica sia a garantire una sicurezza in fase di esecuzione. Tali opere provvisionali vengono dimensionate in base ad un tempo di ritorno che tiene conto della durata delle lavorazioni. In particolare in questa relazione viene indicato un valore di portata con tempo di ritorno pari ad un anno, legato alla durata media delle lavorazioni pari a circa 6/7 mesi. Per maggiori dettagli sulle lavorazioni e per un dettagliato studio dell'idrologia legata alla cantierizzazione si rimanda alla relazione idrologico e idraulica specifica per ogni attraversamento.

La scelta del tempo di ritorno è concorde con una direttiva di riferimento: "Direttiva contenente i criteri per la valutazione della compatibilità idraulica delle infrastrutture pubbliche e di interesse pubblico all'interno delle Fasce A e B", approvata con deliberazione del Comitato Istituzionale dell'Autorità di Bacino stessa n. 2 dell'11 maggio 1999 e aggiornata dalla Deliberazione n. 10 del 05/04/2006. Autorità di Bacino del Fiume Po".

In particolare la Direttiva riporta:" I calcoli idraulici per la definizione delle condizioni di deflusso vanno condotti con riferimento alle seguenti condizioni fisiche del corso d'acqua:

- assenza dell'opera (condizioni indisturbate),
- presenza dell'opera nella configurazione definitiva,
- fasi significative di costruzione dell'opera, tenendo in conto delle opere provvisionali eventualmente inserite, qualora comportino interazioni più severe con le condizioni di deflusso in piena rispetto alla condizione di opera realizzata.

Nell'ultimo caso il tempo di ritorno della piena da assumere per le valutazioni è quello la cui probabilità di essere raggiunta o superata una volta nel periodo temporale corrispondente alle fasi di costruzione non è superiore alla probabilità che ha la portata di progetto di essere raggiunta o superata una volta nel periodo di vita dell'opera".

Per il progetto in essere, sono previste due modalità di determinazione della portata:

- Per bacini secondari con superficie S < 10 km² è stato utilizzato il metodo cinematico-razionale;
- Per i bacini principali con superficie S di poco superiore a 10 km² è stato implementato il modello HEC-HMS.

L'unico parametro che differisce dalle precedenti simulazioni è la precipitazione; dalle tabelle riportate in allegato è possibile ricavare i parametri a e n delle curve di possibilità pluviometrica relativi ad un tempo di ritorno di un anno.

Si riportano di seguito i valori a e n ricavati:

Tabella 5-7 Parametri delle curve segnalatrici di possibilità pluviometrica. Durata < 1 ora

STAZIONI	Tr= 1 anno				
	а	n			
Arcole	16.9	0.439			
Brendola	17.1	0.388			
Buttapietra	21.4	0.423			
Colognola ai colli	21.4	0.423			
Lonigo	18.3	0.474			
Montecchia di Crosara	20.1	0.444			
Vicenza S. Agostino	19.5	0.422			
Verona-Parco Adige Nord	17.6	0.380			

Tabella 5-8 Parametri delle curve segnalatrici di possibilità pluviometrica. Durata > 1 ora

STAZIONI	Tr= 1 anno					
	a n					
Arcole	15.1	0.262				
Brendola	17.9	0.206				
Buttapietra	17.6	0.158				
Colognola ai colli	16.7	0.319				
Lonigo	15.0	0.245				
Montecchia di Crosara	17.6	0.216				
Vicenza S. Agostino	13.7	0.326				
Verona-Parco Adige Nord	15.2	0.243				

Implementando i dati relativi alle precipitazioni e i dati morfometrici ricavati nei paragrafi precedenti è possibile, sia con il metodo cinematico sia con modello HEC-HMS, ricavare i valori della portata idrologica per un tempo di ritorno pari a un anno. A tali valori vanno sommati i contributi di portata delle eventuali risorgive (valori di risorgiva già riportati nel progetto definitivo).

Progres.	WBS	Corso d'acqua	Autorità competente	Tipologia	Q	Q	Q	Direzione
	di				Idrolog.	Risorg.	Cant.	di
	progetto							deflusso
-	-	-	-	-	(m³/s)	(m³/s)	(m³/s)	-
0+650	RI03	Fossa Morandina	Pubblico	Scolo	2,50	-	2,50	NE
1+500	RI05	Scolo Orti	Privato	Scolo	0,39	0,15	0,54	S
2+365	IN03	Fosso Cercola	Consorzio APV	Scolo	0,60	-	0,60	S
4+046	IN07	Fossa Mattarana	Consorzio APV	Scolo	3,00	-	3,00	SO
4+483	IN09	Fossa Zenobria	Consorzio APV	Irriguo	0,11	0,45	0,56	SO
5+350	IN12	Fossa Rosella	Consorzio APV	Veicola le sorgive	1,48	3,50	4,98	S
5+900	IN14	Fossa Nuova	Consorzio APV	-	-	0,35	0,35	E
5+925	IN15	Fossa Roselletta	Consorzio APV	Irriguo	0,94	1,50	2,44	E
6+845	IN18	Fosso	privato	Veicola le sorgive	0,83	0,20	1,03	SO
7+037	IN1A	Fosso	privato?	Irriguo	0,14	-	0,14	SE
7+183	IN19	Fossa Nuova	privato	Irriguo	1,21	0,35	1,56	SE
7+272	IN1B	Fosso	privato	-	0,16	-	0,16	SE
7+371	IN20	Fosso	privato	-	0,27	-	0,27	SE
7+725	VI01A	Fosso	Consorzio APV	Veicola le sorgive	0,25	0,75	1,00	NE
8+965	VI01B	Fossa Mariona	Consorzio APV	Bonifica	1,34	0,10	1,44	S

GENERAL CONTRACTOR

RELAZIONE IDROLOGICA E IDRAULICA ATTRAVERSAMENTI SECONDARI

Progetto IN17 Lotto 10 Codifica Documento El2 RH ID0000 002 Rev. Foglio B 45 di 67

Progres.	WBS	Corso d'acqua	Autorità competente	Tipologia	Q	Q	Q	Direzione
	di				ldrolog.	Risorg.	Cant.	di
	progetto							deflusso
-	-	-	-	-	(m³/s)	(m³/s)	(m³/s)	-
8+975	VI01B	Fossa Lendinara	Consorzio APV	Bonifica	0,27	0,50	0,77	S
9+294	VI01C	Fosso	privato	irriguo	0,54	0,10	0,64	SO
9+447	VI01C	Fosso	Privato	-	0,52	-	0,52	NO
10+223	IN1C	Fosso	Senza Autorità competente	-	0,45	-	0,45	S
10+338	IN1D	Fosso	Senza Autorità competente	-	0,96	-	0,96	S
10+586	IN84	Fosso	Senza Autorità competente	-	1,64	-	1,64	S
11+823	-	Fosso	Pubblico non demaniale	Bonifica	0,18	-	0,18	S
11+911	IN25	Fosso	Fosso pubblico non demaniale	Bonifica	0,30	-	0,30	S
12+131	IN26	Fosso	Fosso pubblico non demaniale	Irriguo	0,69	-	0,69	SE
12+314	VI03	Canale Maestro	Consorzio APV	Irriguo	-	-	-	N
12+322	VI03	Scolo Sereghetta	Consorzio APV	Irriguo	0,03	-	0,03	S
12+402	IN27	Fosso	Senza Autorità competente	-	0,09	-	0,09	S
12+464	IN28	Fosso	Senza Autorità competente	-	0,25	-	0,25	S
12+986	IN29	Fosso	Fosso pubblico non demaniale	Bonifica	0,68	-	0,68	S
13+189	IN30	Porcilana Sud	Consorzio APV	Misto	0,11	0,25	0,36	SE
13+308	IN31	Porcilana Nord	Consorzio APV	Misto	0,62	0,25	0,87	SE
13+978	IN32	Fosso	Fosso pubblico non demaniale	Bonifica	0,98	-	0,98	SE
14+238	IN1F	Fosso	Fosso pubblico non demaniale	Bonifica	0,40	-	0,40	S
14+640	IN1G	Fosso	Senza Autorità competente	Bonifica	0,29	-	0,29	S
15+055	IN33	Fosso	Senza Autorità competente		0,59	-	0,59	SO
15+549	IN34	Fosso	Fosso pubblico non demaniale	Bonifica	0,23	-	0,23	NE
15+860	IN92	Fosso	-		0,25	-	0,25	NE
16+178	IN1H	Fosso	Senza Autorità competente	-	0,48	-	0,48	SO
16+200	IN78	Fosso	-	_	0,36	-	0,36	S
10.200		Scolo Dugale						
16+509	VI04	Fontana	Consorzio APV	Veicola le sorgive	4,08	0,25	4,33	S
16+590	IN1I	Fosso		_	0,25	-	0,25	SO
		Fosso (diramazione			0,20		0,20	
16+815	IN36	Ceresolo)	Fosso pubblico non demaniale	Bonifica	0,88	0,03	0,91	NE
17+266	IN37	Fosso	Fosso pubblico non demaniale	Irriguo	0,58	0,20	0,78	N
		Fosso (diramazione		945		5,=5		
17+580	IN38	Ceresolo)	Fosso pubblico non demaniale	Misto	0,09	-	0,09	S
17+638	IN39	Scolo Masera Nord	Consorzio APV	Irriguo	2,30	0,25	2,55	SE
				Continuità irrigazione-	,	-, -	,	
17+850	IN1T	Fosso	Fosso pubblico non demaniale	bonifica	0,32	-	0,32	S
18+203	IN1L	Fosso	Fosso pubblico non demaniale	Bonifica	0,18	-	0,18	E?
18+641	IN40	Fossa Smania	Consorzio APV	Bonifica	1,46	0,15	1,61	S
18+706	IN41	Scolo Camuzzoni	Consorzio APV	Veicola le sorgive	8,03	0,25	8,28	S
		Dugaletta di		1	-,	5,25	-,	
19+065	IN43	S.Bonifacio	Consorzio APV	-	2,59	0,15	2,74	S
		_		Continuità irrigazione-				
19+451	IN1Vbis	Fosso	-	bonifica	0,03	-	0,03	S
19+531	IN44	Fosso	Consorzio APV	Irriguo	0,35	0,25	0,60	SO
19+875	IN45	Fosso	Fosso pubblico non demaniale	Bonifica	0,60	0,20	0,80	SO
20+883	VI05C	Fosso	Pubblico non demaniale	Bonifica	0,31	-	0,31	SO
21+088	VI05C	Scolo Palù	Consorzio APV	Scolo	5,41	0,30	5,71	SO
22+354	IN81	Scolo Biache	Consorzio APV	Bonifica	2,10	0,30	2,40	SO
23+525	NV53	Scolo Dugaletta	Consorzio APV	Bonifica	1,80	0,15	1,95	SO
23+987	IN1N	Fosso	Fosso pubblico non demaniale	Bonifica	0,46	-	0,46	0
	l		Fosso pubblico non demaniale	Bonifica	0,26		0,26	SE

GENERAL CONTRACTOR

RELAZIONE IDROLOGICA E IDRAULICA ATTRAVERSAMENTI SECONDARI Progetto Lotto IN17 10 Codifica Documento El2 RH ID0000 002 Rev. Foglio B 46 di 67

Progres.	WBS	Corso d'acqua	Autorità competente	Tipologia	Q	Q	Q	Direzione
	di				ldrolog.	Risorg.	Cant.	di
	progetto							deflusso
-	-	-	-	-	(m³/s)	(m³/s)	(m³/s)	-
24+368	IN49	Scolo Mazzoni	Consorzio APV	Bonifica	0,28	0,20	0,48	0
25+275	-	Scolo Dugaletta	Consorzio APV	Bonifica	2,85	0,05	2,90	0
25+912	IN85	Fosso	Fosso pubblico non demaniale	Scolo	0,22	-	0,22	SE
26+125	IN86	Canale secondario	Fosso pubblico non demaniale	Scolo	0,44	-	0,44	0
26+506	IN50	Fosso	Senza Autorità competente	-	0,26	-	0,26	S
26+558	IN1Q	Fosso	Senza Autorità competente	-	0,17	-	0,17	S
26+668	IN1R	Fosso	Fosso pubblico non demaniale	Scolo	0,23	-	0,23	S
26+958	IN51	Scolo Preicardo	Consorzio APV	Bonifica	2,00	0,05	2,05	S
27+279	IN52	Scolo Conterno	Consorzio APV	Scolo	2,50	0,10	2,60	SO
28+176	IN55	Canale	Senza Autorità competente	Scolo	1,58	0,15	1,73	S
30+435	IN1S	Fosso	Consorzio APV	-	1,57	0,30	1,87	SE
31+634	IN56	Roggia Reguia	Consorzio APV	Scolo	0,67	-	0,67	S
32+130	IN58	Fosso	Fosso pubblico non demaniale	-	0,50	-	0,50	SO
36+830	IN63	Roggia Signolo	Consorzio APV	-	1,90	-	1,90	SE
37+950	IN64	Scolo Cavazza	Consorzio APV	-	3,84	-	3,84	SE
38+590	IN65	Scolo Cavazza	Consorzio APV	-	0,80	-	0,80	SO
42+500	IN68	Scolo Ferrovia Altavilla	-	-	0,32	-	0,32	NE

È evidente che la portata di cantierizzazione è una portata teorica e prescinde da eventuali condizioni legate alle modalità di realizzazione dell'opera. Per maggiori dettagli si rimanda alle relazioni idrologico idrauliche specifiche di ogni attraversamento.

GENERAL CONTRACTOR Consorzio IricAV Due	A STATE OF THE PARTY OF THE PARTY OF	ITAL	FERR		
RELAZIONE IDROLOGICA E IDRAULICA ATTRAVERSAMENTI	Progetto	Lotto	Codifica Documento	Rev.	Foglio
SECONDARI	IN17	10	EI2 RH ID0000 002	В	47 di 67

6 CONCLUSIONI

L'analisi idrologica sviluppata ha seguito i vari punti esposti nelle premesse:

- Reperimento della cartografia di base;
- Individuazione dei bacini imbriferi;
- Analisi morfometrica dei bacini;
- Raccolta ed analisi dei dati pluviometrici disponibili;
- Elaborazione delle curve di probabilità pluviometriche;
- Definizione delle portate al colmo in fase di cantierizzazione;
- Definizione degli idrogrammi o delle portate al colmo di progetto.

In particolare l'analisi si è sviluppata in due parti principali così come indicato nel manuale di progettazione RFI:

- Per bacini secondari con superficie S < 10 km² è stato utilizzato il metodo cinematico-razionale;
- Per i bacini principali con superficie S di poco superiore a 10 km² è stato implementato il modello HEC-HMS.

In entrambi i casi i risultati ottenuti (Q complessiva) sono stati confrontati con i valori di portata max riportati nel progetto definitivo e definiti come "..portata massima smaltibile nella nuova configurazione" (p.51 DOC IN0D02DI2RHID0002002E); quest'ultimi risultano essere l'unico parametro di confronto per valutare l'attendibilità dei valori calcolati, infatti il progetto definitivo, nel corso dell'iter approvativo, è stato sottoposto a verifica e approvazione da parte di tutti gli Enti interessati.

Si riporta per semplificazione i valori finale della portata per il progetto esecutivo:

Progressiva	WBS di progetto	Corso d'acqua	Autorità competente	Q PE	Tempo di ritorno	Direzione di deflusso
-	-	•	-	(m³/s)	-	-
0+650	RI03	Fossa Morandina	Pubblico	13,43	NE	200
1+500	RI05	Scolo Orti	Privato	2,60	S	200
2+365	IN03	Fosso Cercola	Consorzio APV	2,87	S	200
4+046	IN07	Fossa Mattarana	Consorzio APV	11,96	SO	200
4+483	IN09	Fossa Zenobria	Consorzio APV	2,10	SO	200
5+350	IN12	Fossa Rosella	Consorzio APV	42,70	S	200
5+900	IN14	Fossa Nuova	Consorzio APV	15,35	Е	200
5+925	IN15	Fossa Roselletta	Consorzio APV	28,00	E	200
6+845	IN18	Fosso	privato	4,60	SO	200
7+037	IN1A	Fosso	privato ?	0,67	SE	200
7+183	IN19	Fossa Nuova	privato	10,74	SE	200
7+272	IN1B	Fosso	privato	2,00	SE	200
7+371	IN20	Fosso	privato	1,60	SE	200
7+725	VI01A	Fosso	Consorzio APV	1,83	NE	200
8+965	VI01B	Fossa Mariona	Consorzio APV	7,73	S	200
8+975	VI01B	Fossa Lendinara	Consorzio APV	5,20	S	200
9+294	VI01C	Fosso	privato	2,86	SO	200
9+447	VI01C	Fosso	Privato	2,67	NO	200
10+223	IN1C	Fosso	Senza Autorità competente	2,11	S	200
10+338	IN1D	Fosso	Senza Autorità competente	4,44	S	200
10+586	IN84	Fosso	Senza Autorità competente	7,85	S	200
11+823	-	Fosso	Pubblico non demaniale	0,77	S	200

GENERAL CONTRACTOR

RELAZIONE IDROLOGICA E IDRAULICA ATTRAVERSAMENTI SECONDARI

Progetto IN17

Lotto 10

Codifica Documento EI2 RH ID0000 002

Rev. В

Foglio

48 di 67

Progressiva	WBS di progetto	Corso d'acqua	Autorità competente	Q PE	Tempo di ritorno	Direzione di deflusso
-	-	-	-	(m³/s)	-	-
11+911	IN25	Fosso	Fosso pubblico non demaniale	1,75	S	200
12+131	IN26	Fosso	Fosso pubblico non demaniale	5,20	SE	200
12+314	VI03	Canale Maestro	Consorzio APV	2,60	N	200
12+322	VI03	Scolo Sereghetta	Consorzio APV	2,79	S	200
12+402	IN27	Fosso	Senza Autorità competente	1,60	S	200
12+464	IN28	Fosso	Senza Autorità competente	1,20	S	200
12+986	IN29	Fosso	Fosso pubblico non demaniale	3,46	S	200
13+189	IN30	Porcilana Sud	Consorzio APV	5,60	SE	200
13+308	IN31	Porcilana Nord	Consorzio APV	5,30	SE	200
13+978	IN32	Fosso	Fosso pubblico non demaniale	4,71	SE	200
14+238	IN1F	Fosso	Fosso pubblico non demaniale	1,90	S	200
14+640	IN1G	Fosso	Senza Autorità competente	1,42	S	200
15+055	IN33	Fosso	Senza Autorità competente	3,84	SO	200
15+549	IN34	Fosso	Fosso pubblico non demaniale	1,23	NE	200
15+860	IN92	Fosso	-	0,89	NE	200
16+178	IN1H	Fosso	Senza Autorità competente	7,70	SO	200
16+200	IN78	Fosso	-	1,28	S	200
16+509	VI04	Scolo Dugale Fontana	Consorzio APV	18,79	S	200
16+590	IN1I	Fosso	-	0,84	SO	200
16+815	IN36	Fosso (diramazione Ceresolo)	Fosso pubblico non demaniale	9,31	NE	200
17+266	IN37	Fosso	Fosso pubblico non demaniale	11,40	N	200
17+580	IN38	Fosso (diramazione Ceresolo)	Fosso pubblico non demaniale	1,37	S	200
17+638	IN39	Scolo Masera Nord	Consorzio APV	27,15	SE	300
17+850	IN1T	Fosso	Fosso pubblico non demaniale	1,29	S	200
18+203	IN1L	Fosso	Fosso pubblico non demaniale	3,66	E?	200
18+641	IN40	Fossa Smania	Consorzio APV	7,37	S	200
18+706	IN41	Scolo Camuzzoni	Consorzio APV	36,47	S	200
19+065	IN43	Dugaletta di S.Bonifacio	Consorzio APV	14,98	S	200
19+451	IN1Vbis	Fosso	-	0,17	S	200
19+531	IN44	Fosso	Consorzio APV	8,86	SO	200
19+875	IN45	Fosso	Fosso pubblico non demaniale	3,54	SO	200
20+883	VI05C	Fosso	Pubblico non demaniale	1,77	SO	200
21+088	VI05C	Scolo Palù	Consorzio APV	31,26	SO	200
22+354	IN81	Scolo Biache	Consorzio APV	14,04	SO	200
23+525	NV53	Scolo Dugaletta	Consorzio APV	32,75	SO	300
23+987	IN1N	Fosso	Fosso pubblico non demaniale	2,62	0	200
24+285	IN1O	Fosso	Fosso pubblico non demaniale	1,93	SE	200
24+368	IN49	Scolo Mazzoni	Consorzio APV	4,10	0	200
25+275	-	Scolo Dugaletta	Consorzio APV	6,51	0	200
25+912	IN85	Fosso	Fosso pubblico non demaniale	1,08	SE	200
26+125	IN86	Canale secondario	Fosso pubblico non demaniale	10,30	0	200
26+506	IN50	Fosso	Senza Autorità competente	5,70	S	200
26+558	IN1Q	Fosso	Senza Autorità competente	4,00	S	200
26+668	IN1R	Fosso	Fosso pubblico non demaniale	4,60	S	200
26+958	IN51	Scolo Preicardo	Consorzio APV	11,90	S	200
27+279	IN52	Scolo Conterno	Consorzio APV	14,11	SO	200
28+176	IN55	Canale	Senza Autorità competente	9,75	S	200
30+435	IN1S	Fosso	Consorzio APV	10,01	SE	200
2300		Roggia Reguia	Consorzio APV	26,17	S	200
31+634	IN56					

GENERAL CONTRACTOR

RELAZIONE IDROLOGICA E IDRAULICA ATTRAVERSAMENTI Progetto Lotto Codifica Documento Rev. Foglio SECONDARI IN17 10 E12 RH ID0000 002 B 49 di 67

Progressiva	WBS	Corso d'acqua	Autorità competente	Q PE	Tempo	Direzione
	di progetto				di	di deflusso
					ritorno	
-	-	-	-	(m³/s)	-	-
36+830	IN63	Roggia Signolo	Consorzio APV	9,21	SE	200
37+950	IN64	Scolo Cavazza	Consorzio APV	17,38	SE	200
38+590	IN65	Scolo Cavazza	Consorzio APV	3,87	SO	200
42+500	IN68	Scolo Ferrovia Altavilla	-	1,40	NE	200

ALLEGATI

ANALISI DETTAGLIATA DEI DATI DELLE STAZIONI PLUVIOMETRICHE INTERESSATE

Stazione di Arcole per durate di pioggia < 1ora

STAZIONE PLUVIO BACINO : QUOTA:	GRAFICA DI	Ŀ				Arcole - 27 m s.l.m.	m																		
Anni di osservazione						28																			
	0.00	3 Ore	5		min	0.12	Ore	10		min	0.25	INTERVALL	O DI ORE 15		min	0.6) Ore	30		min	0.7	5 Ore	45		min
	0,00	, Ole			111111	0,17	Ole	10			0,23	Ole	13			0,5	Ole	30			0,7	JOIE	43		
Anı		h^2	FRQ	YTR	YTR^2	h(mm)	h^2	FRQ	YTR	YTR^2	h(mm)	h^2	FRQ	YTR	YTR^2	h(mm)	h^2	FRQ	YTR	YTR^2	h(mm)	h^2	FRQ	YTR	YTR^2
1 1992 2 1993	12,4 7,8	153,760 60,840	0,966	3,350 2,639	11,221 6,962	20,8 14,4	432,640 207,360	0,966	3,350 2,639	11,221 6,962	28,2 21,8	795,240 475,240	0,966	3,350 2,639	11,221 6,962	53,2 35,8	2830,240 1281,640	0,966	3,350 2,639	11,221 6,962	60,0 38,4	3600,000 1474,560	0,966	3,350 2,639	11,22 6,96
3 1994	10,6	112,360	0,897	2,215	4,904	18,0	324,000	0,897	2,215	4,904	24,0	576,000	0,897	2,215	4,904	33,0	1089,000	0,897	2,215	4,904	35,4	1253,160	0,897	2,215	4,90
4 1995 5 1996	9,0	81,000	0,862	1,908	3,639	16,6 16,4	275,560	0,862	1,908	3,639	21,8	475,240	0,862	1,908	3,639	30,2	912,040	0,862	1,908	3,639	31,2	973,440	0,862	1,908	3,63 2,77
6 1997	12,4 5.8	153,760 33,640	0,828 0,793	1,665 1,462	2,771 2,137	9,6	268,960 92,160	0,828	1,665 1,462	2,771 2,137	18,6 12.4	345,960 153,760	0,828	1,665 1,462	2,771 2,137	19,8 15,8	392,040 249,640	0,828	1,665 1,462	2,771 2,137	21,6 17,2	466,560 295,840	0,828	1,665 1,462	2,17
7 1998	10,4	108,160	0,759	1,286	1,655	18,2	331,240	0,759	1,286	1,655	24,4	595,360	0,759	1,286	1,655	43,4	1883,560	0,759	1,286	1,655	50,2	2520,040	0,759	1,286	1,65
8 1999 9 2000	10,8 13,0	116,640 169,000	0,724	1,131	1,279 0,980	20,0 20,4	400,000 416,160	0,724	1,131	1,279 0,980	21,4 26,8	457,960 718,240	0,724	1,131	1,279 0,980	27,8 38,2	772,840 1459,240	0,724	1,131	1,279 0,980	29,6 42,6	876,160 1814,760	0,724	1,131 0,990	1,27
10 2001	7,8	60,840	0,655	0,990	0,741	11,4	129,960	0,655	0,861	0,741	12,8	163,840	0,655	0,861	0,741	14,2	201,640	0,655	0,861	0,741	14,4	207,360	0,655	0,861	0,74
11 2002	13,8	190,440	0,621	0,740	0,548	26,0	676,000	0,621	0,740	0,548	35,8	1281,640	0,621	0,740	0,548	41,2	1697,440	0,621	0,740	0,548	45,8	2097,640	0,621	0,740	0,54
12 2003 13 2004	5,4 11,2	29,160 125,440	0,586 0,552	0,627	0,393	8,8 19,2	77,440 368,640	0,586 0,552	0,627	0,393	12,2 27,6	148,840 761,760	0,586 0,552	0,627	0,393 0,270	18,8 46,4	353,440 2152,960	0,586 0,552	0,627 0,520	0,393	22,4 52,8	501,760 2787,840	0,586 0,552	0,627	0,393
14 2005	16,4	268,960	0,532	0,320	0,270	26,8	718,240	0,532	0,320	0,270	32,8	1075,840	0,532	0,320	0,270	41,0	1681,000	0,532	0,320	0,270	46,8	2190,240	0,532	0,320	0,27
15 2006	8,8	77,440	0,483	0,317	0,101	14,8	219,040	0,483	0,317	0,101	18,0	324,000	0,483	0,317	0,101	28,0	784,000	0,483	0,317	0,101	33,8	1142,440	0,483	0,317	0,10
16 2007 17 2008	12,2 7.8	148,840 60,840	0,448	0,220 0,125	0,048	13,6 12.4	184,960 153,760	0,448	0,220	0,048	14,2 15.8	201,640 249,640	0,448	0,220	0,048	17,8 18,4	316,840 338,560	0,448	0,220	0,048	21,0 24,4	441,000 595,360	0,448	0,220	0,04
18 2009	6,4	40,960	0,379	0,031	0,016	10,4	108,160	0,379	0,031	0,016	12,6	158,760	0,379	0,123	0,016	14,8	219,040	0,379	0,123	0,016	15,0	225,000	0,379	0,031	0,00
19 2010	9,6	92,160	0,345	-0,063	0,004	16,4	268,960	0,345	-0,063	0,004	23,2	538,240	0,345	-0,063	0,004	40,4	1632,160	0,345	-0,063	0,004	45,4	2061,160	0,345	-0,063	0,00
20 2011 21 2012	14,2 5,4	201,640 29,160	0,310	-0,157 -0,253	0,025	20,2 8,0	408,040 64,000	0,310	-0,157	0,025	24,4 9.6	595,360	0,310	-0,157 -0,253	0,025	32,2	1036,840 153,760	0,310	-0,157 -0,253	0,025	41,2 14,4	1697,440	0,310	-0,157 -0,253	0,025
21 2012 2013	5,4	33,640	0,276	-0,253	0,064	8,0 11,0	121,000	0,276	-0,253 -0,352	0,064	9,6 16,4	92,160 268,960	0,276	-0,253	0,064	12,4 26,2	686,440	0,276	-0,253	0,064	31,0	207,360 961,000	0,276 0,241	-0,253 -0,352	0,06
23 2014	8,2	67,240	0,207	-0,455	0,207	13,4	179,560	0,207	-0,455	0,207	17,6	309,760	0,207	-0,455	0,207	22,2	492,840	0,207	-0,455	0,207	27,6	761,760	0,207	-0,455	0,207
24 2015	13,4	179,560	0,172	-0,564	0,318	18,6	345,960	0,172	-0,564	0,318	20,0	400,000	0,172	-0,564	0,318	21,6	466,560	0,172	-0,564	0,318	21,8	475,240	0,172	-0,564	0,318
25 2016 26 2017	8,6 10,6	73,960 112,360	0,138	-0,684 -0,819	0,467	14,8 20,6	219,040 424,360	0,138	-0,684 -0,819	0,467	20,2 31,0	408,040 961,000	0,138	-0,684 -0,819	0,467	29,8 40,2	888,040 1616,040	0,138	-0,684 -0,819	0,467	34,0 41,4	1156,000 1713,960	0,138	-0,684 -0,819	0,467
27 2018	7,6	57,760	0,069	-0,984	0,968	12,0	144,000	0,069	-0,984	0,968	15,8	249,640	0,069	-0,984	0,968	23,2	538,240	0,069	-0,984	0,968	25,4	645,160	0,069	-0,984	0,96
28 2019	10,8	116,640	0,034	-1,214	1,474	17,6	309,760	0,034	-1,214	1,474	23,2	538,240	0,034	-1,214	1,474	30,8	948,640	0,034	-1,214	1,474	38,0	1444,000	0,034	-1,214	1,474
29																									
31																									
32																									
33																									
35																									
36																									
37																									
38																									
40																									
41																									
42																									
43 44																									
45																									
TABELLA 2 - ELABO	ORAZIONIS	TATISTICHI	E - METOD	DI GUMB	EL																				
N=	28	3				28					28					2					2				
Moda	8,47					13,80					17,64					23,9					27,0	5			
Alpha	2,657	7				4,359					6,039					9,96)				11,26	1			
	_																								

N.B. i valori di Alpha e Moda sono dedotti da elaborazioni ARPAV

20,3 mm 23,6 mm 26,7 mm 30,8 mm 33,9 mm 36,9 mm

GENERAL CONTRACTOR Consorzio IricAV Due		the latest and the la	ITAL	FERR		
RELAZIONE IDROLOGICA E IDRAULICA	A ATTRAVERSAMENTI	Progetto	Lotto	Codifica Documento	Rev.	Foglio
SECONDARI		IN17	10	EI2 RH ID0000 002	В	51 di 67

Stazione di Arcole per durate di pioggia > 1ora

STAZIONE	PLUVIOG	RAFICA D	I:				Arcole																			
BACINO : OUOTA:							- 27 m s.l.m.:																			
Anni di osse	ryazione						27 m s.i.m. 28	m.																		
Timi di osse	i via.ionic	T					20						INTERVALL	O DLORE												_
				1					3				II. TIAC TITLE	6					12					24		
	Anno	h(mm)	h^2	FRQ	YTR	YTR^2	h(mm)	h^2	FRQ	YTR	YTR^2	h(mm)	h^2	FRQ	YTR	YTR^2	h(mm)	h^2	FRQ	YTR	YTR^2	h(mm)	h^2	FRQ	YTR	YTR^2
1	1992	60,6	3672,360	0,966	3,350	11,221	61,2	3745,440	0,966	3,350	11,221	61,2	3745,440	0,966	3,350	11,221	62,0	3844,000	0,966	3,350	11,221	66,2	4382,440	0,966	3,350	11,221
2	1993 1994	44,4 41,8	1971,360 1747,240	0,931	2,639 2,215	6,962 4,904	48,6 54,0	2361,960 2916,000	0,931	2,639	6,962 4,904	49,8 57,6	2480,040 3317,760	0,931	2,639 2,215	6,962 4,904	62,4 61,2	3893,760 3745,440	0,931	2,639 2,215	6,962 4,904	65,6 62,8	4303,360 3943,840	0,931	2,639 2,215	6,962 4,904
3	1995	31.4	985,960	0.862	1.908	3,639	31.6	998,560	0.862	1.908	3,639	35.8	1281,640	0.862	1.908	3,639	40.6	1648,360	0.862	1.908	3,639	40.6	1648,360	0.862	1,908	3,639
5	1996	21,8	475,240	0,828	1,665	2,771	29,8	888,040	0,828	1,665	2,771	38,2	1459,240	0,828	1,665	2,771	41,0	1681,000	0,828	1,665	2,771	43.2	1866,240	0,828	1,665	2,771
6	1997	18,4	338,560	0,793	1,462	2,137	19,6	384,160	0,793	1,462	2,137	37,2	1383,840	0,793	1,462	2,137	37,2	1383,840	0,793	1,462	2,137	39,2	1536,640	0,793	1,462	2,137
7	1998	54,6	2981,160	0,759	1,286	1,655	60,8	3696,640	0,759	1,286	1,655	62,4	3893,760	0,759	1,286	1,655	62,4	3893,760	0,759	1,286	1,655	76,2	5806,440	0,759	1,286	1,655
8	1999	30,8	948,640	0,724	1,131	1,279	33,6	1128,960	0,724	1,131	1,279	49,8	2480,040	0,724	1,131	1,279	62,8	3943,840	0,724	1,131	1,279		5387,560	0,724	1,131	1,279
9	2000	42,6	1814,760	0,690	0,990	0,980	46,6	2171,560	0,690	0,990	0,980	47,6	2265,760	0,690	0,990	0,980	53,2	2830,240	0,690	0,990	0,980	57,8	3340,840	0,690	0,990	0,980
10	2001	15,2	231,040	0,655	0,861	0,741	25,0	625,000	0,655	0,861	0,741	38,8	1505,440	0,655	0,861	0,741	54,8	3003,040	0,655	0,861	0,741	60,4	3648,160	0,655	0,861	0,741 0,548
11	2002 2003	53,8 23,6	2894,440 556,960	0,621	0,740	0,548	115,6 26,6	13363,360 707,560	0,621	0,740	0,548	122,6 28,2	15030,760 795,240	0,621	0,740	0,548	123,2 33,6	15178,240 1128,960	0,621	0,740	0,548	123,2 36,0	15178,240 1296,000	0,621	0,740	0,348
13	2003	55.4	3069,160	0,552	0,520	0,393	62,2	3868,840	0,580	0,520	0,393	74.4	5535,360	0,552	0,520	0,393	85.0	7225,000	0,552	0,520	0,393	89.4	7992,360	0,552	0,520	0,393
14	2005	51,4	2641,960	0,517	0,417	0,174	52,4	2745,760	0,517	0,417	0,174	66,4	4408,960	0,517	0,417	0,174	66,6	4435,560	0,517	0,417	0,174	71,4	5097,960	0,517	0,417	0,174
15	2006	34,0	1156,000	0,483	0,317	0,101	35,6	1267,360	0,483	0,317	0,101	43,8	1918,440	0,483	0,317	0,101	49,6	2460,160	0,483	0,317	0,101	52,8	2787,840	0,483	0,317	0,101
16	2007	23,2	538,240	0,448	0,220	0,048	40,8	1664,640	0,448	0,220	0,048	46,4	2152,960	0,448	0,220	0,048	46,4	2152,960	0,448	0,220	0,048	46,6	2171,560	0,448	0,220	0,048
17	2008	26,6	707,560	0,414	0,125	0,016	27,6	761,760	0,414	0,125	0,016	33,0	1089,000	0,414	0,125	0,016	33,0	1089,000	0,414	0,125	0,016	35,2	1239,040	0,414	0,125	0,016
18	2009	15,2	231,040	0,379	0,031	0,001	24,8	615,040	0,379	0,031	0,001	24,8	615,040	0,379	0,031	0,001	28,0	784,000	0,379	0,031	0,001	38,8	1505,440	0,379	0,031	0,001
19	2010	49,4	2440,360	0,345	-0,063	0,004	53,6	2872,960	0,345	-0,063	0,004	54,6	2981,160	0,345	-0,063	0,004	58,8	3457,440	0,345	-0,063	0,004	78,0	6084,000	0,345	-0,063	0,004
20	2011 2012	43,8 17.6	1918,440 309,760	0,310	-0,157 -0,253	0,025	51,4 26,8	2641,960 718,240	0,310	-0,157 -0,253	0,025	55,8 35,6	3113,640 1267,360	0,310	-0,157 -0,253	0,025	58,4 63,0	3410,560 3969,000	0,310	-0,157 -0,253	0,025	58,6 70.0	3433,960 4900,000	0,310	-0,157 -0,253	0,025
21	2012	34.4	1183,360	0,241	-0,253	0,124	38.0	1444,000	0,241	-0,253	0,124	40.2	1616,040	0,241	-0,253	0,124	55,0	3025,000	0,241	-0,352	0,124	67.0	4489,000	0,241	-0,352	0,124
23	2013	32.0	1024,000	0,207	-0,352	0,124	40.4	1632,160	0,207	-0,352	0,124	50,6	2560,360	0,207	-0,352	0,207	51,2	2621,440	0,207	-0,352	0,124	65,2	4251,040	0,207	-0,352	0,207
24	2015	21,8	475,240	0,172	-0,564	0,318	21,8	475,240	0,172	-0,564	0,318		852,640	0,172	-0,564	0,318	33,2	1102,240	0,172	-0,564	0,318	47,6	2265,760	0,172	-0,564	0,318
25	2016	36,0	1296,000	0,138	-0,684	0,467	38,4	1474,560	0,138	-0,684	0,467	40,2	1616,040	0,138	-0,684	0,467	45,4	2061,160	0,138	-0,684	0,467	58,0	3364,000	0,138	-0,684	0,467
26	2017	42,8	1831,840	0,103	-0,819	0,671	44,6	1989,160	0,103	-0,819	0,671	44,8	2007,040	0,103	-0,819	0,671	44,8	2007,040	0,103	-0,819	0,671	44,8	2007,040	0,103	-0,819	0,671
27	2018	25,4	645,160	0,069	-0,984	0,968	33,6	1128,960	0,069	-0,984	0,968	33,8	1142,440	0,069	-0,984	0,968	38,6	1489,960	0,069	-0,984	0,968	58,8	3457,440	0,069	-0,984	0,968
28	2019	41,6	1730,560	0,034	-1,214	1,474	46,8	2190,240	0,034	-1,214	1,474	65,2	4251,040	0,034	-1,214	1,474	71,8	5155,240	0,034	-1,214	1,474	72,4	5241,760	0,034	-1,214	1,474
29																										
30																										
32																										
33																										
34																										
35																										
36																										
37																										
38																										
39																										
40																										
41																										
42																										
44																										
45																										

TABELLA 2 - ELAF	TABELLA 2 - ELABORAZIONI STATISTICHE - METODO DI GUMBEL											
N=	28	28	28	28	28							
Moda	28,98	33,54	39,75	45,37	51,77							
Alpha	12,121	17,241	17,182	17,007	16,920							

Tempo di rit	torno	1 ora	3 ore	6 ore	12 ore	24 ore
5 anni	hmax=	47,2 mm	59,4 mm	65,5 mm	70,9 mm	77,1 mm
10 anni	hmax=	56,3 mm	72,3 mm	78,4 mm	83,6 mm	89,8 mm
20 anni	hmax=	65,0 mm	84,7 mm	90,8 mm	95,9 mm	102,0 mm
50 anni	hmax=	76,3 mm	100,8 mm	106,8 mm	111,7 mm	117,8 mm
100 anni	hmax=	84,7 mm	112,9 mm	118,8 mm	123,6 mm	129,6 mm
200 anni	hmax=	93,2 mm	124,8 mm	130,7 mm	135,4 mm	141,4 mm
300 anni	hmax=	98,1 mm	131,9 mm	137,7 mm	142,3 mm	148,2 mm

GENERAL CONTRACTOR Consorzio IricAV Due		ITAL	FERR STATO ITALIANE		
RELAZIONE IDROLOGICA E IDRAULICA ATT	RAVERSAMENTI Progetto	Lotto	Codifica Documento	Rev.	Foglio
SECONDARI	IN17	10	El2 RH ID0000 002	В	52 di 67

Stazione di Brendola per durate di pioggia < 1ora

STAZIONE	PLUVIOG	RAFICA DI	1				Brendola																			
BACINO: OUOTA:							- 80 m s.l.m.r	n.																		
Anni di osse	rvazione						28																			
													INTERVALI													
		0,08	Ore	5		min	0,17	Ore	10		min	0,25	Ore	15		min	0,50) Ore	30		min	0,75	Ore	45		min
	Anno	h(mm)	h^2	FRQ	YTR	YTR^2	h(mm)	h^2	FRQ	YTR	YTR^2	h(mm)	h^2	FRQ	YTR	YTR^2	h(mm)	h^2	FRQ	YTR	YTR^2	h(mm)	h^2	FRQ	YTR	YTR^2
1	1992 1993	10,0	100,000 46,240	0,966	3,350	11,221	18,4	338,560	0,966	3,350	11,221 6,962	24,4 9.8	595,360 96,040	0,966	3,350	11,221 6,962	32,4	1049,760 179,560	0,966	3,350	11,221 6,962	36,8 15,6	1354,240 243,360	0,966	3,350 2,639	11,221
2 3	1993	6,8 9,8	96,040	0,931	2,639 2,215	6,962 4,904	9,0 15,4	81,000 237,160	0,931	2,639 2,215	4,904	9,8 19,4	376,360	0,931	2,639 2,215	4,904	13,4 21,0	441,000	0,931	2,639 2,215	4,904	21,8	475,240	0,931	2,639	6,962 4,904
4	1995	16,2	262,440	0,862	1,908	3,639	22,4	501,760	0,862	1,908	3,639	27,4	750,760	0,862	1,908	3,639	32,2	1036,840	0,862	1,908	3,639	36,0	1296,000	0,862	1,908	3,639
5	1996	8,0	64,000	0,828	1,665	2,771	13,8	190,440	0,828	1,665	2,771	17,8	316,840	0,828	1,665	2,771	28,6	817,960	0,828	1,665	2,771	34,4	1183,360	0,828	1,665	2,771
6	1997	8,4	70,560	0,793	1,462	2,137	11,0	121,000	0,793	1,462	2,137	13,4	179,560	0,793	1,462	2,137	19,8	392,040	0,793	1,462	2,137	20,4	416,160	0,793	1,462	2,137
7	1998	8,4	70,560	0,759	1,286	1,655	13,2	174,240	0,759	1,286	1,655	16,4	268,960	0,759	1,286	1,655	21,2	449,440	0,759	1,286	1,655	27,6	761,760	0,759	1,286	1,655
8	1999	8,8	77,440	0,724	1,131	1,279	15,8	249,640	0,724	1,131	1,279	21,4	457,960	0,724	1,131	1,279	24,6	605,160	0,724	1,131	1,279	30,4	924,160	0,724	1,131	1,279
10	2000 2001	12,8 7,2	163,840 51,840	0,690 0,655	0,990	0,980 0,741	17,4 11.6	302,760 134,560	0,690	0,990	0,980 0,741	22,6 13,2	510,760 174,240	0,690 0,655	0,990	0,980 0,741	31,0 18.0	961,000 324,000	0,690 0,655	0,990	0,980	32,2 18.0	1036,840 324,000	0,690	0,990	0,980 0,741
11	2001	10.4	108,160	0,633	0,740	0,741	18.2	331,240	0,621	0,740	0,741		625,000	0,633	0,740	0,741	43.4	1883,560	0,633	0,740	0,741	52.0	2704,000	0,633	0,861	0,741
12	2002	14,6	213,160	0,586	0,627	0,393	28,6	817,960	0,586	0,627	0,393	35,2	1239,040	0,586	0,627	0,393	39,0	1521,000	0,586	0,627	0,393	39,2	1536,640	0,586	0,627	0,393
13	2004	15,6	243,360	0,552	0,520	0,270	30,8	948,640	0,552	0,520	0,270	35,0	1225,000	0,552	0,520	0,270	39,2	1536,640	0,552	0,520	0,270	39,8	1584,040	0,552	0,520	0,270
14	2005	12,4	153,760	0,517	0,417	0,174	23,2	538,240	0,517	0,417	0,174	30,6	936,360	0,517	0,417	0,174	36,0	1296,000	0,517	0,417	0,174	41,0	1681,000	0,517	0,417	0,174
15	2006	12,4	153,760	0,483	0,317	0,101	24,6	605,160	0,483	0,317	0,101	32,2	1036,840	0,483	0,317	0,101	46,0	2116,000	0,483	0,317	0,101	46,6	2171,560	0,483	0,317	0,101
16	2007	11,6	134,560	0,448	0,220	0,048	18,4	338,560	0,448	0,220	0,048		519,840	0,448	0,220	0,048	23,6	556,960	0,448	0,220	0,048	23,6	556,960	0,448	0,220	0,048
17	2008	17,0	289,000	0,414	0,125	0,016	30,6	936,360	0,414	0,125	0,016	33,6	1128,960	0,414	0,125	0,016	35,4	1253,160	0,414	0,125	0,016	35,4	1253,160	0,414	0,125	0,016
18	2009 2010	12,8 7,6	163,840	0,379	-0.063	0,001	23,0 13,4	529,000	0,379	-0,063	0,001	25,4 18,0	645,160 324,000	0,379	-0.063	0,001	28,8 27.8	829,440 772,840	0,379	0,031	0,001	32,8 35,4	1075,840 1253,160	0,379	-0,063	0,001
20	2010	6,6	57,760 43,560	0,343	-0,063	0,004	13,4	179,560 169,000	0,343	-0,063	0,004	15,6	243,360	0,343	-0,063	0,004	20,0	400,000	0,343	-0,063 -0,157	0,004	23,6	556,960	0,343	-0,063	0,004
21	2012	11,6	134,560	0,276	-0,253	0,064	18,2	331,240	0,276	-0,253	0,064	20,4	416,160	0,276	-0,253	0,064	24,0	576,000	0,276	-0,253	0,064	24,8	615,040	0,276	-0,253	0,064
22	2013	8,6	73,960	0,241	-0,352	0,124	14,8	219,040	0,241	-0,352	0,124	19,8	392,040	0,241	-0,352	0,124	20,8	432,640	0,241	-0,352	0,124	20,8	432,640	0,241	-0,352	0,124
23	2014	9,2	84,640	0,207	-0,455	0,207	16,0	256,000	0,207	-0,455	0,207	22,6	510,760	0,207	-0,455	0,207	39,2	1536,640	0,207	-0,455	0,207	50,8	2580,640	0,207	-0,455	0,207
24	2015	10,4	108,160	0,172	-0,564	0,318	15,2	231,040	0,172	-0,564	0,318	19,0	361,000	0,172	-0,564	0,318	22,6	510,760	0,172	-0,564	0,318	23,0	529,000	0,172	-0,564	0,318
25	2016	8,2	67,240	0,138	-0,684	0,467	15,4	237,160	0,138	-0,684	0,467	21,6	466,560	0,138	-0,684	0,467	32,6	1062,760	0,138	-0,684	0,467	33,2	1102,240	0,138	-0,684	0,467
26	2017	8,2 15.2	67,240	0,103	-0,819 -0,984	0,671	13,2	174,240	0,103	-0,819 -0,984	0,671	20,0 24,4	400,000	0,103	-0,819 -0,984	0,671	25,8	665,640	0,103	-0,819	0,671	26,6 52,6	707,560	0,103	-0,819 -0,984	0,671
27 28	2018 2019	15,2	231,040 201,640	0,069	-1,214	0,968	19,6 24.0	384,160 576,000	0,069	-1,214		28,4	595,360 806,560	0,069	-1,214		43,2 37.8	1866,240 1428,840	0,069	-0,984 -1,214	1,474	38.0	2766,760 1444,000	0,069	-1,214	0,968 1,474
29	2019	14,2	201,640	0,034	-1,214	1,474	24,0	370,000	0,034	-1,214	1,474	28,4	800,300	0,034	-1,214	1,474	37,8	1426,640	0,034	-1,214	1,474	38,0	1444,000	0,034	-1,214	1,4/4
30																										
31																										
32																										
33																										
34																										
35																										
36																										
37																										
38 39																										
40																										
41																										
42																										
43																										
44																										
45																										
TABELLA 2	- ELABOI	RAZIONI S	TATISTICHE	- METODO	DI GUMB	EL																				

TABELLA 2 - ELAB	BORAZIONI STATISTICHE - ME	TODO DI GUMBEL				
N=	28	28	28	28	28	
Moda	9,37	15,39	19,55	25,41	27,72	
Alpha	2,718	5,171	5,921	7,782	9,259	

Tempo di rit	torno	5 min	10 min	15 min	30 min	45 min
5 anni	hmax=	13,4 mm	23,1 mm	28,4 mm	37,1 mm	41,6 mm
10 anni	hmax=	15,5 mm	27,0 mm	32,9 mm	42,9 mm	48,6 mm
20 anni	hmax=	17,4 mm	30,7 mm	37,1 mm	48,5 mm	55,2 mm
50 anni	hmax=	20,0 mm	35,6 mm	42,7 mm	55,8 mm	63,8 mm
100 anni	hmax=	21,9 mm	39,2 mm	46,8 mm	61,2 mm	70,3 mm
200 anni	hmax=	23,8 mm	42,8 mm	50,9 mm	66,6 mm	76,8 mm
300 anni	hmax=	24,9 mm	44,9 mm	53,3 mm	69,8 mm	80,5 mm

GENERAL CONTRACTOR Consorzio IricAV Due			ITAL	FERR STATO ITALIANE		
RELAZIONE IDROLOGICA E IDRAULICA	A ATTRAVERSAMENTI	Progetto	Lotto	Codifica Documento	Rev.	Foglio
SECONDARI		IN17	10	EI2 RH ID0000 002	В	53 di 67

Stazione di Brendola per durate di pioggia > 1ora

STAZIONE I BACINO :	PLUVIOGE	RAFICA DI:	:				Brendola																			
QUOTA:							80 m s.l.m.r	n.																		
Anni di osser	vazione						28																			
				1					3				INTERVAL	LO DI ORE					12					24		
									-																	
	Anno	h(mm)	h^2	FRQ	YTR	YTR^2	h(mm)	h^2	FRQ	YTR	YTR^2	h(mm)	h^2	FRQ		YTR^2	h(mm)	h^2	FRQ	YTR	YTR^2	h(mm)	h^2	FRQ	YTR	YTR^2
1	1992 1993	39,8	1584,040	0,966	3,350	11,221	41,6	1730,560	0,966	3,350	11,221	62,0	3844,000	0,966	3,350	11,221	85,2	7259,040	0,966	3,350	11,221	115,6 44,4	13363,360	0,966	3,350	11,221
2 3	1993	19,0 23.0	361,000 529,000	0,931	2,639 2,215	6,962 4,904	27,4 32,8	750,760 1075,840	0,931	2,639 2,215	6,962 4,904	29,6 35,4	876,160 1253,160	0,931	2,639 2,215	6,962 4,904	42,8 55,8	1831,840 3113,640	0,931	2,639 2,215	6,962 4,904	60.4	1971,360 3648,160	0,931	2,639 2,215	6,962 4,904
4	1995	36,4	1324,960	0,862	1,908	3,639	36,8	1354,240	0,862	1,908	3,639	41,8	1747,240	0,862	1,908	3,639	56,8	3226,240	0,862	1,908	3,639	75,8	5745,640	0,862	1,908	3,639
5	1996	35,6	1267,360	0,828	1,665	2,771	47,8	2284,840	0,828	1,665	2,771	55,8	3113,640	0,828	1,665	2,771	58,8	3457,440	0,828	1,665	2,771	85,0	7225,000	0,828	1,665	2,771
6	1997	25,0	625,000	0,793	1,462	2,137	27,6	761,760	0,793	1,462	2,137	34,0	1156,000	0,793	1,462	2,137	49,8	2480,040	0,793	1,462	2,137	57,8	3340,840	0,793	1,462	2,137
7	1998 1999	31,0 33,6	961,000 1128,960	0,759	1,286	1,655 1,279	40,0 42.6	1600,000 1814,760	0,759	1,286	1,655	40,6 55,2	1648,360 3047,040	0,759 0,724	1,286	1,655 1,279	43,4 94.8	1883,560 8987,040	0,759 0,724	1,286	1,655 1,279	46,4 98.6	2152,960 9721,960	0,759 0,724	1,286	1,655 1,279
9	2000	32.2	1036,840	0,690	0.990	0.980	33.2	1102,240	0,724	0.990	0.980	33,2	1102.240	0,690	0.990	0.980	37.2	1383,840	0,690	0.990	0.980	49.4	2440,360	0,690	0.990	0,980
10	2001	18,2	331,240	0,655	0,861	0,741	23,8	566,440	0,655	0,861	0,741	42,0	1764,000	0,655	0,861	0,741	61,2	3745,440	0,655	0,861	0,741	71,2	5069,440	0,655	0,861	0,741
11	2002	58,6	3433,960	0,621	0,740	0,548	59,8	3576,040	0,621	0,740	0,548	59,8	3576,040	0,621	0,740	0,548	67,6	4569,760	0,621	0,740	0,548	74,8	5595,040	0,621	0,740	0,548
12	2003 2004	39,2 40,4	1536,640 1632,160	0,586	0,627 0.520	0,393	39,2 55,6	1536,640 3091,360	0,586	0,627	0,393	39,4 67.0	1552,360 4489,000	0,586 0,552	0,627	0,393	51,0 78,6	2601,000 6177,960	0,586 0,552	0,627	0,393	71,0 108.0	5041,000 11664.000	0,586 0,552	0,627	0,393 0,270
14	2004	43,8	1918,440	0,532	0,320	0,270	53.8	2894,440	0,532	0,320	0,270	59,0	3481,000	0,532	0,320	0,270	76,6	5867,560	0,532	0,320	0,270	133.0	17689,000	0,532	0,320	0,270
15	2006	47,4	2246,760	0,483	0,317	0,101	51,0	2601,000	0,483	0,317	0,101	82,4	6789,760	0,483	0,317	0,101	107,2	11491,840	0,483	0,317	0,101	112,0	12544,000	0,483	0,317	0,101
16	2007	28,0	784,000	0,448	0,220	0,048	53,4	2851,560	0,448	0,220	0,048	62,6	3918,760	0,448	0,220	0,048	72,6	5270,760	0,448	0,220	0,048	88,6	7849,960	0,448	0,220	0,048
17	2008	48,8	2381,440	0,414	0,125	0,016	66,0	4356,000	0,414	0,125	0,016	66,0	4356,000	0,414	0,125	0,016	66,0	4356,000	0,414	0,125	0,016	73,4	5387,560	0,414	0,125	0,016
18	2009 2010	33,8 36,6	1142,440 1339,560	0,379	-0,063	0,001	36,4 38,0	1324,960 1444,000	0,379	0,031 -0,063	0,001	42,8 60,8	1831,840 3696,640	0,379 0,345	0,031 -0,063	0,001	72,2 64,6	5212,840 4173,160	0,379	0,031 -0,063	0,001	84,2 70,6	7089,640 4984,360	0,379	-0,063	0,001
20	2011	25,8	665,640	0,343	-0,003	0,004	39,2	1536,640	0,343	-0,157	0,025	63,8	4070,440	0,343	-0,003	0,004	89,0	7921,000	0,310	-0,003	0,004	113,2	12814,240	0,343	-0,003	0,004
21	2012	25,0	625,000	0,276	-0,253	0,064	30,0	900,000	0,276	-0,253	0,064	48,4	2342,560	0,276	-0,253	0,064	91,0	8281,000	0,276	-0,253	0,064	99,4	9880,360	0,276	-0,253	0,064
22	2013	21,8	475,240	0,241	-0,352	0,124	48,6	2361,960	0,241	-0,352	0,124	80,4	6464,160	0,241	-0,352	0,124	100,6	10120,360	0,241	-0,352	0,124	106,2	11278,440	0,241	-0,352	0,124
23	2014	54,4	2959,360	0,207	-0,455	0,207	58,6	3433,960	0,207	-0,455	0,207	59,2	3504,640	0,207	-0,455	0,207	59,2	3504,640	0,207	-0,455	0,207	81,2	6593,440	0,207	-0,455	0,207
24	2015 2016	23,0 33,4	529,000 1115,560	0,172	-0,564 -0,684	0,318 0,467	25,0 36,6	625,000 1339,560	0,172	-0,564 -0,684	0,318 0,467	45,0 41,2	2025,000 1697,440	0,172 0,138	-0,564 -0,684	0,318	75,6 65,8	5715,360 4329,640	0,172 0,138	-0,564 -0,684	0,318 0,467	101,4 83,0	10281,960 6889,000	0,172	-0,564 -0,684	0,318 0,467
26	2017	26.6	707,560	0.103	-0,034	0,407	26.6	707,560	0,103	-0,819	0,407	29,6	876,160	0,103	-0,819	0,407	31,6	998,560	0,103	-0,819	0,407	53.0	2809,000	0.103	-0,819	0,671
27	2018	60,0	3600,000	0,069	-0,984	0,968	64,8	4199,040	0,069	-0,984	0,968	64,8	4199,040	0,069	-0,984	0,968	65,0	4225,000	0,069	-0,984	0,968	70,8	5012,640	0,069	-0,984	0,968
28	2019	38,0	1444,000	0,034	-1,214	1,474	48,2	2323,240	0,034	-1,214	1,474	50,8	2580,640	0,034	-1,214	1,474	54,0	2916,000	0,034	-1,214	1,474	62,4	3893,760	0,034	-1,214	1,474
29																										
31																										
32																										
33																										
34																										
35																										
36 37																										
38																										
39																										
40																										
41																										
42																										
43																										
45																										

TABELLA 2 - ELABOF	RAZIONI STATISTICHE - MI	ETODO DI GUMBEL				
N=	28	28	28	28	28	
Moda	29,54	36,49	45,01	57,94	70,79	
Alaha	10.221	11.074	12 141	17.02/	20.022	

Tempo di ri	itorno	1 ora	3 ore	6 ore	12 ore	24 ore
5 anni	hmax=	45,0 mm	53,1 mm	64,7 mm	83,5 mm	102,0 mm
10 anni	hmax=	52,8 mm	61,4 mm	74,6 mm	96,3 mm	117,7 mm
20 anni	hmax=	60,2 mm	69,4 mm	84,0 mm	108,5 mm	132,7 mm
50 anni	hmax=	69,9 mm	79,7 mm	96,3 mm	124,4 mm	152,1 mm
100 anni	hmax=	77,1 mm	87,4 mm	105,5 mm	136,3 mm	166,6 mm
200 anni	hmax=	84,3 mm	95,1 mm	114,6 mm	148,2 mm	181,1 mm
300 anni	hmax=	88 4 mm	99 6 mm	119 9 mm	155.1 mm	189 6 mm

GENERAL CONTRACTOR Consorzio IricAV Due			ITAL	FERR		
RELAZIONE IDROLOGICA E IDRAULICA	A ATTRAVERSAMENTI	Progetto	Lotto	Codifica Documento	Rev.	Foglio
SECONDARI		IN17	10	EI2 RH ID0000 002	В	54 di 67

Stazione di Buttapietra per durate di pioggia < 1 ora

STAZIONE BACINO:	PLUVIOGR	AFICA DI					Buttapietra	ı																		
QUOTA:							39 m s.l.m.n	n.																		
Anni di osser	vazione						27						INTERVALL	O DI ORE												\dashv
	į	0,08	Ore	5		min	0,17	Ore	10		min	0,25	Ore	15		min	0,5	0 Ore	30		min	0,75	Ore	45		min
	Anno	h(mm)	h^2	FRQ	YTR	YTR^2	h(mm)	h^2	FRO	YTR	YTR^2	h(mm)	h^2	FRO	YTR	YTR^2	h(mm)	h^2	FRO	YTR	YTR^2	h(mm)	h^2	FRO	YTR	YTR^2
1	1992	7,6	57,760	0,964	3,314	10,983	13,0	169,000	0,964	3,314	10,983	18,6	345,960	0,964	3,314	10,983	26,4	696,960	0,964	3,314	10,983	28,4	806,560	0,964	3,314	10,983
2 3	1993 1994	10,6 9.0	112,360 81,000	0,929	2,602 2,177	6,772 4,741	17,0 16,2	289,000 262,440	0,929	2,602	6,772 4,741	22,4 20.8	501,760 432,640	0,929	2,602 2,177	6,772 4,741	32,4 39,4	1049,760 1552,360	0,929	2,602 2,177	6,772 4,741	35,4 42.0	1253,160 1764,000	0,929	2,602	6,772 4,741
4	1995	11,0	121,000	0,857	1,870	3,496	17,4	302,760	0,857	1,870	3,496	22,6	510,760	0,857	1,870	3,496	33,0	1089,000	0,857	1,870	3,496	43,6	1900,960	0,857	1,870	3,496
5	1996 1997	11,0 10.4	121,000 108,160	0,821	1,626 1,422	2,644 2,023	20,8 17.8	432,640 316,840	0,821	1,626	2,644	26,2 23.0	686,440 529,000	0,821	1,626 1,422	2,644 2,023	35,4 34,4	1253,160 1183,360	0,821	1,626	2,644 2,023	38,8 45,4	1505,440 2061,160	0,821	1,626	2,644
7	1998	16,4	268,960	0,750	1,246	1,552	23,2	538,240	0,750	1,246	1,552	25,4	645,160	0,750	1,246	1,552	26,8	718,240	0,750	1,246	1,552	28,0	784,000	0,750	1,246	1,552
8	1999 2000	8,0 11.8	64,000 139,240	0,714	1,089 0.947	1,186	15,8 19,4	249,640	0,714	1,089	1,186	17,8 24.8	316,840	0,714	1,089	1,186 0.897	26,0 34,0	676,000	0,714	1,089	1,186 0,897	30,8 38.8	948,640	0,714	1,089	1,186
10	2000	6,8	46,240	0,679	0,947	0,897	12,0	376,360 144,000	0,643	0,947	0,897	24,8 14,8	615,040 219,040	0,643	0,947	0,897	26,0	1156,000 676,000	0,643	0,947	0,897	38,8	1505,440 1049,760	0,643	0,947	0,897 0,667
11	2002	8,0	64,000	0,607	0,695	0,483	13,8	190,440	0,607	0,695	0,483	16,0	256,000	0,607	0,695	0,483	28,6	817,960	0,607	0,695	0,483	34,2	1169,640	0,607	0,695	0,483
12	2003 2004	8,2 10,0	67,240 100,000	0,571	0,581	0,337 0,222	13,4 17,6	179,560 309,760	0,571 0,536	0,581	0,337 0,222	18,6 18,8	345,960 353,440	0,571 0,536	0,581	0,337 0,222	22,0 27,8	484,000 772,840	0,571	0,581	0,337 0,222	22,4 34,2	501,760 1169,640	0,571	0,581	0,337 0,222
14	2005	12,8	163,840	0,500	0,367	0,134	25,0	625,000	0,500	0,367	0,134	32,6	1062,760	0,500	0,367	0,134	51,2	2621,440	0,500	0,367	0,134	61,6	3794,560	0,500	0,367	0,134
15	2006 2007	10,0 7,2	100,000 51,840	0,464	0,265	0,070 0,027	14,0 13.0	196,000 169,000	0,464	0,265	0,070	17,6 17,6	309,760 309,760	0,464	0,265	0,070	19,2 22,2	368,640 492,840	0,464	0,265	0,070 0,027	20,2 22,4	408,040 501,760	0,464	0,265	0,070 0,027
17	2008	9,4	88,360	0,393	0,068	0,005	17,8	316,840	0,393	0,068	0,005	24,6	605,160	0,393	0,068	0,005	29,8	888,040	0,393	0,068	0,027	32,6	1062,760	0,393	0,068	0,005
18	2009	12,2	148,840	0,357	-0,029	0,001	22,6	510,760	0,357	-0,029	0,001	27,4	750,760	0,357	-0,029	0,001	33,4	1115,560	0,357	-0,029	0,001	33,4	1115,560	0,357	-0,029	0,001
19 20	2010 2011	8,0 8.8	64,000 77,440	0,321	-0,127 -0.225	0,016	15,8 16.0	249,640 256,000	0,321	-0,127 -0,225	0,016	23,0 22,6	529,000 510,760	0,321	-0,127 -0,225	0,016	33,2 35,0	1102,240 1225,000	0,321	-0,127 -0,225	0,016	33,8 41.0	1142,440 1681.000	0,321	-0,127 -0,225	0,016
21	2012	6,8	46,240	0,250	-0,327	0,107	10,2	104,040	0,250	-0,327	0,107	13,8	190,440	0,250	-0,327	0,107	16,8	282,240	0,250	-0,327	0,107	16,8	282,240	0,250	-0,327	0,107
22	2013 2014	7,4 8.4	54,760 70,560	0,214	-0,432 -0,544	0,187	12,8 14.8	163,840 219,040	0,214	-0,432 -0,544	0,187	14,0 19.0	196,000 361,000	0,214	-0,432 -0,544	0,187	22,4 26,6	501,760 707,560	0,214	-0,432 -0,544	0,187	26,8 29,6	718,240 876,160	0,214	-0,432 -0,544	0,187
24	2014	7,0	49,000	0,179	-0,544	0,443	13,6	184,960	0,179	-0,544	0,443		262,440	0,179	-0,544	0,443	22,6	510,760	0,179	-0,544	0,296	23,2	538,240	0,179	-0,544	0,443
25	2017	9,0	81,000	0,107	-0,804	0,646	16,8	282,240	0,107	-0,804	0,646	17,6	309,760	0,107	-0,804	0,646	19,4	376,360	0,107	-0,804	0,646	21,2	449,440	0,107	-0,804	0,646
26 27	2018 2019	11,4 12.6	129,960 158,760	0,071	-0,970 -1,204	0,942 1,449	19,8 19,2	392,040 368,640	0,071	-0,970 -1,204	0,942 1,449	27,6 25.2	761,760 635,040	0,071	-0,970 -1,204	0,942 1,449	37,8 29,2	1428,840 852,640	0,071	-0,970 -1,204	0,942 1,449	49,0 29.2	2401,000 852,640	0,071	-0,970 -1,204	0,942 1,449
28	2017	12,0	150,700	0,050	1,204	1,442	.,,_	300,040	0,050	-1,204	1,445	23,2	0.0,040	0,050	-1,204	1,142	-/,-	052,040	0,050	-1,204	1,442	27,2	0.52,040	0,050	-1,204	1,442
29																										
30 31																										
32																										
33 34																										
35																										
36																										
37 38																										
39																										
40																										
41 42																										
43																										
44 45																										
45																										

TABELLA 2 - ELABO	DRAZIONI STATISTICHE - MEI	ODO DI GUMBEL				
N=	27	27	27	27	27	
M oda	8,54	14,91	18,82	25,78	28,43	
Alpha	2,120	3,258	4,235	6,757	9,033	

Tempo di rit	orno	5 min	10 min	15 min	30 min	45 min
5 anni	hmax=	11,7 mm	19,8 mm	25,2 mm	35,9 mm	42,0 mm
10 anni	hmax=	13,3 mm	22,2 mm	28,4 mm	41,0 mm	48,8 mm
20 anni	hmax=	14,8 mm	24,6 mm	31,4 mm	45,8 mm	55,3 mm
50 anni	hmax=	16,8 mm	27,6 mm	35,3 mm	52,1 mm	63,7 mm
100 anni	hmax=	18,3 mm	29,9 mm	38,3 mm	56,9 mm	70,0 mm
200 anni	hmax=	19,8 mm	32,2 mm	41,2 mm	61,6 mm	76,3 mm
300 anni	hmax=	20,6 mm	33,5 mm	43,0 mm	64,3 mm	79,9 mm

GENERAL CONTRACTOR Consorzio IricAV Due			ITAL	FERR STATO ITALIANE		
RELAZIONE IDROLOGICA E IDRAULICA	AATTRAVERSAMENTI	Progetto	Lotto	Codifica Documento	Rev.	Foglio
SECONDARI		IN17	10	El2 RH ID0000 002	В	55 di 67

Stazione di Buttapietra per durate di pioggia > 1ora

												INTERVALI	O DI ORE												_
			1					3					6					12					24		
Anno	h(mm)	h^2	FRQ	YTR	YTR^2	h(mm)	h^2	FRQ	YTR	YTR^2	h(mm)	h^2	FRQ	YTR	YTR^2	h(mm)	h^2	FRO	YTR	YTR^2	h(mm)	h^2	FRQ	YTR	,
1 1992	30.2	912,040	0.964	3,314	10.983	47.0	2209.000	0.964	3,314	10.983	48.6	2361.960	0.964	3,314	10,983	51.6	2662,560	0.964	3,314	10.983	72,2	5212.840	0.964	3,314	
2 1993	36,6	1339,560	0,929	2,602	6,772	36,8	1354,240	0,929	2,602	6,772	36,8	1354,240	0,929	2,602	6,772	36,8	1354,240	0,929	2,602	6,772	45,2	2043,040	0,929	2,602	
3 1994	42,8	1831,840	0,893	2,177	4,741	42,8	1831,840	0,893	2,177	4,741	42,8	1831,840	0,893	2,177	4,741	59,8	3576,040	0,893	2,177	4,741	67,8	4596,840	0,893	2,177	
4 1995	51,2	2621,440	0,857	1,870	3,496	67,2	4515,840	0,857	1,870	3,496	67,2	4515,840	0,857	1,870	3,496	69,0	4761,000	0,857	1,870	3,496	72,0	5184,000	0,857	1,870	
5 1996	42,8	1831,840	0,821	1,626	2,644	49,4	2440,360	0,821	1,626	2,644	49,8	2480,040	0,821	1,626	2,644	49,8	2480,040	0,821	1,626	2,644	49,8	2480,040	0,821	1,626	
6 1997	52,8	2787,840	0,786	1,422	2,023	53,8	2894,440	0,786	1,422	2,023	53,8	2894,440	0,786	1,422	2,023	54,0	2916,000	0,786	1,422	2,023	54,0	2916,000	0,786	1,422	
7 1998	29,4	864,360	0,750	1,246	1,552	30,0	900,000	0,750	1,246	1,552	37,6	1413,760	0,750	1,246	1,552	41,4	1713,960	0,750	1,246	1,552	41,4	1713,960	0,750	1,246	
8 1999	35,2	1239,040	0,714	1,089	1,186	51,0	2601,000	0,714	1,089	1,186	57,2	3271,840	0,714	1,089	1,186	78,2	6115,240	0,714	1,089	1,186	80,8	6528,640	0,714	1,089	
9 2000	39,6	1568,160	0,679	0,947	0,897	47,0	2209,000	0,679	0,947	0,897	53,2	2830,240	0,679	0,947	0,897	60,2	3624,040	0,679	0,947	0,897	66,2	4382,440	0,679	0,947	
10 2001 11 2002	34,8 38,0	1211,040 1444,000	0,643	0,817	0,667	39,0 57,2	1521,000	0,643	0,817	0,667	41,8 62,4	1747,240 3893,760	0,643	0,817	0,667	43,2	1866,240 3918,760	0,643	0,817	0,667	50,6 63,8	2560,360 4070,440	0,643	0,817	
12 2002	22.8	519,840	0,607	0,593	0,483	22.8	3271,840 519,840	0,607	0,695	0,483	22.8	519,840	0,607	0,581	0,337	62,6 26.4	696,960	0,571	0,695	0,483	28.4	806,560	0,507	0,695	
13 2004	35.6	1267,360	0,571	0,381	0,222	42.0	1764.000	0,571	0,471	0,337	50.8	2580,640	0,571	0,381	0,337	61.4	3769,960	0,571	0,471	0,222	65.8	4329,640	0,571	0,381	
14 2005	70.8	5012,640	0,500	0,367	0,134	72.4	5241,760	0,500	0,367	0,134	94.2	8873,640	0,500	0,367	0,134	94,2	8873,640	0,500	0,367	0,134	94.6	8949.160	0,500	0,367	
15 2006	20.8	432,640	0,464	0,265	0,070	29.8	888,040	0,464	0,265	0,070	40.0	1600,000	0,464	0,265	0,070	47.6	2265,760	0,464	0,265	0,070	52,2	2724,840	0,464	0,265	
16 2007	22,4	501,760	0,429	0,166	0,027	22,6	510,760	0,429	0,166	0,027	23,4	547,560	0,429	0,166	0,027	37,4	1398,760	0,429	0,166	0,027	45,4	2061,160	0,429	0,166	
17 2008	43,6	1900,960	0,393	0,068	0,005	53,6	2872,960	0,393	0,068	0,005	54,2	2937,640	0,393	0,068	0,005	60,8	3696,640	0,393	0,068	0,005	62,0	3844,000	0,393	0,068	
18 2009	33,4	1115,560	0,357	-0,029	0,001	42,0	1764,000	0,357	-0,029	0,001	45,6	2079,360	0,357	-0,029	0,001	45,6	2079,360	0,357	-0,029	0,001	45,6	2079,360	0,357	-0,029	
19 2010	35,0	1225,000	0,321	-0,127	0,016	47,4	2246,760	0,321	-0,127	0,016	59,8	3576,040	0,321	-0,127	0,016	60,4	3648,160	0,321	-0,127	0,016	83,8	7022,440	0,321	-0,127	
20 2011	48,4	2342,560	0,286	-0,225	0,051	56,6	3203,560	0,286	-0,225	0,051	60,0	3600,000	0,286	-0,225	0,051	60,0	3600,000	0,286	-0,225	0,051	62,0	3844,000	0,286	-0,225	
21 2012	16,8	282,240	0,250	-0,327	0,107	25,4	645,160	0,250	-0,327	0,107	40,4	1632,160	0,250	-0,327	0,107	62,6	3918,760	0,250	-0,327	0,107	65,2	4251,040	0,250	-0,327	
22 2013	34,8	1211,040	0,214	-0,432	0,187	49,0	2401,000	0,214	-0,432	0,187	61,2	3745,440	0,214	-0,432	0,187	80,4	6464,160	0,214	-0,432	0,187	94,4	8911,360	0,214	-0,432	
23 2014	29,8	888,040	0,179	-0,544	0,296	34,8	1211,040	0,179	-0,544	0,296	35,0	1225,000	0,179	-0,544	0,296	36,8	1354,240	0,179	-0,544	0,296	48,8	2381,440	0,179	-0,544	
24 2016 25 2017	23,4 21.2	547,560 449,440	0,143	-0,666 -0,804	0,443 0,646	27,2 23,8	739,840 566,440	0,143	-0,666 -0,804	0,443	32,0 26,0	1024,000 676,000	0,143	-0,666 -0,804	0,443	41,8 26.2	1747,240 686,440	0,143	-0,666 -0,804	0,443	54,8 34.0	3003,040 1156,000	0,143	-0,666 -0,804	
26 2017	53.0	2809,000	0.071	-0,804	0,646	58.4	3410,560	0.071	-0,804	0,646	59.8	3576,040	0,107	-0,804	0,942	59.8	3576,040	0.071	-0,804	0,646	59.8	3576,040	0.071	-0,804	
27 2019	29.2	852,640	0.036	-1,204	1,449	39.8	1584.040	0.036	-1,204	1,449	44.4	1971,360	0,071	-1,204	1,449	51.2	2621,440	0.036	-0,970	1,449	59,6	3552,160	0.036	-1,204	
28 29 30 31 32 33 34 35 36 37 38 39 40 41 41 42 43 44																									

TABELLA 2 - ELABOI	RAZIONI STATISTICHE - MI	ETODO DI GUMBEL				
N=	27	27	27	27	27	
M oda	30,31	36,88	40,90	46,51	52,23	
Alpha	11,025	12,285	13,947	14,451	14,925	

Tempo di ri	torno	1 ora	3 ore	6 ore	12 ore	24 ore
5 anni	hmax=	46,8 mm	55,3 mm	61,8 mm	68,2 mm	74,6 mm
10 anni	hmax=	55,1 mm	64,5 mm 72,3 mm		79,0 mm	85,8 mm
20 anni	hmax=	63,1 mm	73,4 mm	82,3 mm	89,4 mm	96,6 mm
50 anni	hmax=	73,3 mm	84,8 mm	95,3 mm	102,9 mm	110,5 mm
100 anni	hmax=	81,0 mm	93,4 mm	105,1 mm	113,0 mm	120,9 mm
200 anni	hmax=	88,7 mm	101,9 mm	114,8 mm	123,0 mm	131,3 mm
300 anni	hmax=	93,2 mm	106,9 mm	120,4 mm	128,9 mm	137,3 mm

GENERAL CONTRACTOR Consorzio IricAV Due			ITAL	FERR		
RELAZIONE IDROLOGICA E IDRAULICA	A ATTRAVERSAMENTI	Progetto	Lotto	Codifica Documento	Rev.	Foglio
SECONDARI		IN17	10	EI2 RH ID0000 002	В	56 di 67

Stazione di Colognola ai colli per durate di pioggia < 1ora

		JVIOGR	AFICA DI	:				Colognola	ai Colli																		
BACIN QUOTA								- 34 m s.l.m.r	0																		
	osservazi	ione						16																			
														INTERVALL	O DI ORE												
			0,08	Ore	5		min	0,17	Ore	10		min	0,25	Ore	15		min	0,5	Ore	30		min	0,75	Ore	45		min
		.		1.40	EDO	1 mm	YTR^2		1.40	EDO	1 PPD	1000 to	h(mm)	140	EDO	1 mp	100040	14.	140	EDO	1 PPD	100040	17.	140	EDO	1 PPD	1000 to
	1 2	Anno 004	h(mm)	h^2 134,560	FRQ 0.941	YTR 2.803	7.857	h(mm) 18.2	h^2 331.240	FRQ 0.941	YTR 2.803	YTR^2 7.857	n(mm)	h^2 492.840	FRQ 0.941	YTR 2.803	YTR^2 7.857	h(mm) 28.6	h^2 817.960	FRQ 0.941	YTR 2.803	YTR^2 7.857	h(mm) 29,6	h^2 876.160	FRQ 0.941	YTR 2.803	YTR^2 7.857
		005	14,6	213,160	0,882	2,078	4,319	24,8	615,040	0,882	2,078	4,319	35,2	1239,040	0,882	2,078	4,319	40,2	1616,040	0,882	2,078	4,319	50,6	2560,360	0,882	2,078	4,319
	3 2	006	11,8	139,240	0,824	1,639	2,687	21,4	457,960	0,824	1,639	2,687	27,0	729,000	0,824	1,639	2,687	30,8	948,640	0,824	1,639	2,687	31,0	961,000	0,824	1,639	2,687
		007	6,8	46,240	0,765	1,316	1,731	11,2	125,440	0,765	1,316	1,731		249,640	0,765	1,316	1,731	29,8	888,040	0,765	1,316	1,731	34,6	1197,160	0,765	1,316	1,731
		800	7,0	49,000	0,706	1,055	1,112	12,0	144,000	0,706	1,055	1,112		237,160	0,706	1,055	1,112	19,4	376,360	0,706	1,055	1,112	20,0	400,000	0,706	1,055	1,112
		009	8,0 7,8	64,000 60,840	0,647 0,588	0,832	0,692 0,402	15,4 15,6	237,160 243,360	0,647 0,588	0,832	0,692		466,560 475,240	0,647	0,832	0,692 0,402	26,2 24,0	686,440 576,000	0,647	0,832	0,692 0,402	26,6 27,2	707,560 739,840	0,647	0,832	0,692 0,402
		011	8,8	77,440	0,588	0,453	0,402	11,0	121,000	0,588	0,654	0,402		139,240	0,529	0,654	0,402	13,2	174,240	0,529	0,654	0,402		231,040	0,588	0,654	0,402
		012	14,2	201,640	0,471	0,283	0,080	28.0	784,000	0,471	0,283	0,080		912,040	0,471	0,283	0,080	32,6	1062,760	0,471	0,283	0,080		1296,000	0,471	0,283	0,080
		013	9,4	88,360	0,412	0,120	0,014	11,4	129,960	0,412	0,120	0,014		207,360	0,412	0,120	0,014	20,2	408,040	0,412	0,120	0,014	22,8	519,840	0,412	0,120	0,014
		014	10,6	112,360	0,353	-0,041	0,002	20,8	432,640	0,353	-0,041	0,002		772,840	0,353	-0,041	0,002	32,0	1024,000	0,353	-0,041	0,002	36,0	1296,000	0,353	-0,041	0,002
		015	10,2	104,040	0,294	-0,202	0,041	13,0	169,000	0,294	-0,202	0,041		219,040	0,294	-0,202	0,041	21,6	466,560	0,294	-0,202	0,041	21,8	475,240	0,294	-0,202	0,041
		016	10,0 9,0	100,000 81,000	0,235	-0,369 -0,551	0,136	16,6 16,6	275,560 275,560	0,235	-0,369 -0,551	0,136		309,760 457,960	0,235	-0,369 -0,551	0,136	22,2 26,6	492,840 707,560	0,235	-0,369 -0,551	0,136 0,303	23,2 29,0	538,240 841,000	0,235	-0,369 -0,551	0,136
		017	10.0	100,000	0,176	-0,331	0,505	16,4	268,960	0,176	-0,331	0,503		432,640	0,176	-0,331	0,505	32.4	1049,760	0,176	-0,331	0,503	49,4	2440,360	0,176	-0,331	0,503
		019	13,0	169,000	0,059	-1,041	1,085	18,4	338,560	0,059	-1,041	1,085		529,000	0,059	-1,041	1,085	30,0	900,000	0,059	-1,041	1,085		1225,000	0,059	-1,041	1,085
	17						,										,					,					,
	18																										
	19																										
	20																										
	22																										
	23																										
	24																										
	25																										
	26																										
	27																										
	28 29																										
	30																										
	31																										
	32																										
	33																										
	34																										
	35																										
	36																										
	37 38																										
	39																										
	40																										
	41																										
	42																										
	43																										
	44																										
	45																										

TABELLA 2 - ELAB	ORAZIONI STATISTICHE - MET	ODO DI GUMBEL				
N=	16	16	16	16	16	
Moda	9,03	14,53	18,21	23,68	25,79	
Alpha	2,204	4,826	6,234	6,398	9,461	

Tempo di rit	torno	5 min	10 min	15 min	30 min	45 min
5 anni	hmax=	12,3 mm	21,8 mm	27,6 mm	33,3 mm	40,0 mm
10 anni	hmax=	14,0 mm	25,4 mm	32,2 mm	38,1 mm	47,1 mm
20 anni	hmax=	15,6 mm	28,9 mm	36,7 mm	42,7 mm	53,9 mm
50 anni	hmax=	17,6 mm	33,4 mm	42,5 mm	48,6 mm	62,7 mm
100 anni	hmax=	19,2 mm	36,7 mm	46,9 mm	53,1 mm	69,3 mm
200 anni	hmax=	20,7 mm	40,1 mm	51,2 mm	57,6 mm	75,9 mm
300 anni	hmax=	21,6 mm	42,0 mm	53,8 mm	60,2 mm	79,7 mm

GENERAL CONTRACTOR Consorzio IricAV Due			ITAL	FERR		
RELAZIONE IDROLOGICA E IDRAULICA	A ATTRAVERSAMENTI	Progetto	Lotto	Codifica Documento	Rev.	Foglio
SECONDARI		IN17	10	EI2 RH ID0000 002	В	57 di 67

Stazione di Colognola ai colli per durate di pioggia > 1ora

	NE PLUVIOG	RAFICA D	I:				Colognola	ai Colli																		
BACINO QUOTA:							- 34 m s.l.m.i																			
	servazione						34 m s.i.m.i 16	11.																		
													INTERVAL	O DI ORE												
				1					3					6					12					24		
	Anno	h(mm)	h^2	FRQ	YTR	YTR^2	h(mm)	h^2	FRQ	YTR	YTR^2	h(mm)	h^2	FRQ	YTR	YTR^2	h(mm)	h^2	FRQ	YTR	YTR^2	h(mm)	h^2	FRQ	YTR	YTR^2
	1 2004	32,6	1062,760	0,941	2,803	7,857	49,0	2401,000	0,941	2,803	7,857	56,8	3226,240	0,941	2,803	7,857	64,0	4096,000	0,941	2,803	7,857	66,0	4356,000	0,941	2,803	7,857
	2 2005 3 2006	55,2 31,4	3047,040 985,960	0,882	2,078 1,639	4,319 2,687	59,0 34,6	3481,000 1197,160	0,882 0,824	2,078 1,639	4,319 2,687	66,4 42,8	4408,960 1831,840	0,882 0,824	2,078 1,639	4,319 2,687	66,4 56,4	4408,960 3180,960	0,882	2,078 1,639	4,319 2,687	108,4 59,2	11750,560 3504,640	0,882 0,824	2,078 1,639	4,319 2,687
	4 2007	41.4	1713,960	0,765	1,316	1,731	41.4	1713,960	0,824	1,316	1,731		1713,960	0,765	1,316	1,731	41.6	1730,560	0,765	1,316	1,731		1866,240	0,765	1,316	1,731
	5 2008	20.0	400,000	0,706	1,055	1,112	20,8	432,640	0,706	1,055	1,112		1648,360	0,706	1,055	1,112		1866,240	0,706	1,055	1,112		1900,960	0,705	1,055	1,112
	6 2009	26,6	707,560	0,647	0,832	0,692	40.0	1600,000	0.647	0,832	0,692		1747,240	0,647	0,832	0,692	41,8	1747,240	0,647	0,832	0,692	41.8	1747,240	0,647	0,832	0,692
	7 2010	31.2	973,440	0,588	0,634	0,402	33.6	1128,960	0.588	0,634	0,402		1310,440	0,588	0,634	0,402	51,2	2621,440	0,588	0,634	0,402	51,2	2621,440	0,588	0,634	0,402
	8 2011	16,6	275,560	0,529	0,453	0,205	23,2	538,240	0,529	0,453	0,205		1253,160	0,529	0,453	0,205	48,8	2381,440	0,529	0,453	0,205	59,0	3481,000	0,529	0,453	0,205
	9 2012	36,4	1324,960	0,471	0,283	0,080	36,6	1339,560	0,471	0,283	0,080	36,6	1339,560	0,471	0,283	0,080	50,4	2540,160	0,471	0,283	0,080	54,6	2981,160	0,471	0,283	0,080
1	0 2013	24,6	605,160	0,412	0,120	0,014	33,4	1115,560	0,412	0,120	0,014		3819,240	0,412	0,120	0,014	80,2	6432,040	0,412	0,120	0,014	99,0	9801,000	0,412	0,120	0,014
1	1 2014	45,8	2097,640	0,353	-0,041	0,002	55,0	3025,000	0,353	-0,041	0,002		3091,360	0,353	-0,041	0,002	58,8	3457,440	0,353	-0,041	0,002		4651,240	0,353	-0,041	0,002
1	2 2015	21,8	475,240	0,294	-0,202	0,041	29,4	864,360	0,294	-0,202	0,041		2025,000	0,294	-0,202	0,041	47,6	2265,760	0,294	-0,202	0,041	74,6	5565,160	0,294	-0,202	0,041
1	3 2016	25,4	645,160	0,235	-0,369	0,136	30,8	948,640	0,235	-0,369	0,136		1814,760	0,235	-0,369	0,136		2061,160	0,235	-0,369	0,136	57,6	3317,760	0,235	-0,369	0,136
1	4 2017	35,0	1225,000	0,176	-0,551	0,303	35,8	1281,640	0,176	-0,551	0,303	36,0	1296,000	0,176	-0,551	0,303	38,6	1489,960	0,176	-0,551	0,303	42,4	1797,760	0,176	-0,551	0,303
1 1	5 2018	62,6	3918,760	0,118	-0,761	0,579	75,6	5715,360	0,118	-0,761	0,579		6021,760	0,118	-0,761	0,579	88,4	7814,560	0,118	-0,761	0,579		14641,000	0,118	-0,761	0,579 1.085
1 1	6 2019	37,0	1369,000	0,059	-1,041	1,085	54,8	3003,040	0,059	-1,041	1,085	56,0	3136,000	0,059	-1,041	1,085	56,0	3136,000	0,059	-1,041	1,085	60,8	3696,640	0,059	-1,041	1,085
1 1	8																									
	9																									
	20																									
	1																									
2	12																									
2	13																									
2	14																									
2	15																									
	26																									
	27																									
	18																									
	19																									
	01																									
	11																									
	12																									
	13																									
	14																									
	15																									
	16																									
	18																									
	18																									
	10																									
	10																									
	12																									
	13																									
	4																									
	15																									

TABELLA 2 - ELABO	RAZIONI STATISTICHE - ME	TODO DI GUMBEL				
N=	16	16	16	16	16	
M oda	27,90	33,81	42,19	48,12	54,01	
Alpha	12,255	13,680	12,165	13,774	23,529	

Temp	di ritorno		1 ora	3 ore	6 ore	12 ore	24 ore
5 au	ıni h	hmax=	46,3 mm	54,3 mm	60,4 mm	68,8 mm	89,3 mm
10 a	nni l			64,6 mm	69,6 mm	79,1 mm	107,0 mm
20 a	nni h	hmax=	64,3 mm	74,4 mm	78,3 mm	89,0 mm	123,9 mm
50 a	nni l	hmax=	75,7 mm	87,2 mm	89,7 mm	101,9 mm	145,8 mm
100:	unni h	hmax=	84,3 mm	96,7 mm	98,2 mm	111,5 mm	162,2 mm
200:		hmax=	92,8 mm	106,3 mm	106,6 mm	121,1 mm	178,6 mm
300:	nni h	hmax=	97,8 mm	111,8 mm	111,6 mm	126,7 mm	188,2 mm

GENERAL CONTRACTOR Consorzio IricAV Due			ITAL	FERR STATO ITALIANE		
RELAZIONE IDROLOGICA E IDRAULICA	AATTRAVERSAMENTI	Progetto	Lotto	Codifica Documento	Rev.	Foglio
SECONDARI		IN17	10	El2 RH ID0000 002	В	58 di 67

Stazione di Lonigo per durate di pioggia < 1ora

Name	STAZIONE BACINO:	PLUVIOG	RAFICA DI					Lonigo																			
Note 1975	QUOTA:								n.																		
March 100 10	Anni di osse	rvazione						29						INTERNALI	O DI ODE												
1 191 5.8 33.560 0.967 3.384 11.43 10.4 101.100 0.967 3.384 11.45 10.4 101.100 0.967 3.384 11.45 10.4 101.100 0.967 3.384 11.45 10.4 101.100 0.967 3.484 11.45 10.4 101.100 0.967 3.484 11.45 10.4 101.100 0.967 3.484 11.45 10.4 101.100 0.967 3.484 11.45 10.4 101.100 0.967 3.484 11.45 10.4 1			0,08	Ore	5		min	0,17	Ore	10		min	0,25				min	0,50) Ore	30		min	0,75	Ore	45		min
1 191 5.8 33.560 0.967 3.384 11.43 10.4 101.100 0.967 3.384 11.45 10.4 101.100 0.967 3.384 11.45 10.4 101.100 0.967 3.384 11.45 10.4 101.100 0.967 3.484 11.45 10.4 101.100 0.967 3.484 11.45 10.4 101.100 0.967 3.484 11.45 10.4 101.100 0.967 3.484 11.45 10.4 101.100 0.967 3.484 11.45 10.4 1		Anno	h(mm)	h^2	FRO	YTR	YTR^2	h(mm)	h^2	FRO	YTR	YTR^2	h(mm)	h^2	FRO	YTR	YTR^2	h(mm)	h^2	FRO	YTR	YTR^2	h(mm)	h^2	FRO	YTR	YTR^2
1933 9.2 84,600 0.900 2.250 5.064 12.0 144,000 0.900 2.250 5.064 13.5 13.0 0.000 2.250 5.064 13.5 13.5 10.0 0.000 2.250 5.064 13.5 13.5 10.0 0.000 2.250 5.064 13.5 13.5 10.0 0.000 2.250 5.064 13.5 13.5 10.0 0.000 2.250 5.064 13.5 13.5 10.0 0.000 2.250 13.5 13.5 13.5 10.0 0.000 2.250 13.5 13.5 13.5 10.0 0.000 2.250 13.5	1	1991	5,8	33,640	0,967	3,384	11,453	10,4	108,160	0,967	3,384	11,453	14,0	196,000	0,967	3,384	11,453	20,6	424,360	0,967	3,384	11,453	25,6	655,360	0,967	3,384	11,453
4 194 8.6 77.900 0.867 1.944 3.700 10.6 112.500 0.867 1.944 3.700 12.8 15.8 26 7.240 0.871 1.944 3.700 12.8 15.8 26 7.240 0.881 1.702 2.970 15.5 1.956 0.871 1.944 3.700 12.8 15.0 1.002 1	2																										7,149
\$ 1995 \$ \$2 67.340 \$0.831 \$1.702 \$2.97\$ \$1.52 \$213.140 \$0.833 \$1.702 \$2.97\$ \$1.66 \$2.34.05 \$0.833 \$1.702 \$2.97\$ \$1.66 \$2.34.05 \$0.833 \$1.702 \$2.97\$ \$1.67\$ \$1.675 \$	4																										3,780
7 1977 6.2 38.40 0.767 1.325 1.77 12.8 519.80 0.767 1.325 1.77 12.8 519.80 0.767 1.325 1.77 12.8 519.80 0.767 1.325 1.77 1.8 1.8 1.9 1.9 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	5	1995	8,2	67,240	0,833	1,702		15,2	231,040	0,833	1,702		20,6	424,360	0,833	1,702	2,897	32,2	1036,840	0,833	1,702	2,897	39,8	1584,040	0,833	1,702	2,897
8 1998 S.0 64,500 0.733 1,171 1,770 1,74 1,770 1,74 1,770 1,74 1,770 1,74 1,770 1,74 1,770 1,77 1,77 1,77 1,77 1,77 1,77 1,7	6																										2,250
9 1999 11,0 121,000 0,700 1,031 1,060 0,70 1,031 1,060 18,1 12,2 29,58,60 0,700 1,031 1,060 18,8 33,460 0,700 1,031 1,060 0,70 0,903 1,015 1,000 0,70 0,903 1,015 1,000 0,70 0,903 1,015 1,000 0,70 0,903 1,015 1,000 0,70 0,903 1,015 1,000 0,70 0,903 1,015 1,000 0,70 0,903 1,015 1,000 0,70 0,900 0,7	7																										1,757 1,370
10 2000 18,0 324,000 0,667 0,963 0,815 25,0 025,000 0,667 0,903 0,815 25,0 025,000 0,677 0,903 0,815 12,000 0,677 0,903 0,815 12,000 0,677 0,903 0,815 12,000 0,677 0,903 0,815 12,000 0,677 0,903 0,815 12,000 0,677 0,903 0,815 12,000 0,677 0,903 0,815 12,000 0,677 0,903 0,815 12,000 0,677 0,903 0,815 12,000 0,677 0,903 0,815 12,000 0,677 0,815	9																										1,063
12 2002 10,0 100,000 0,000 0,072 0,451 18,4 38.559 0,000 0,072 0,451 13,000 0,470 0,470 13,000 0,470 0,470 13,000 0,470 0,470 13,000 0,470 0,470 13,000 0,470 0,470 13,000 0,470 0,470 13,000 0,470 0,4	10																										0,815
13 2003	11																										0,614
14 2004 18,0 324,000 0.333 0.464 0.216 2.20 10.24,000 0.533 0.464 0.216 2.20 10.24,000 0.533 0.464 0.216 2.20 10.24 10.24 10.0 160,000 0.50 0.357 0.134 10.24 10.24 10.0 160,000 0.50 0.50 0.357 0.134 10.24 10.24 10.0 160,000 0.50 0.50 0.357 0.134 10.24 10.24 10.24 10.0 160,000 0.50 0.50 0.357 0.134 10.24 1	12																										0,451
15 2005	14																										0,320
17 2007 7.2 \$1,840 0.433 0.179 0.003 1.16 134,550 0.433 0.179 0.032 1.16 233, 0.179 0.032 1.16 233, 0.179 0.032 1.16 233, 0.179 0.032 1.16 233, 0.179 0.032 1.16 233, 0.179 0.032 1.16 233, 0.179 0.032 1.16 233, 0.179 0.032 1.170 0.032	15																										0,134
18 2008	16																										0,074
19 2009 10.6 112.360 0.367 -0.003 0.000 18.6 213.140 0.367 -0.003 0.000 2.8 718.240 0.337 -0.004 0.000 0.56 -0.003 0.000 0.233 -0.004 0.000 0.000 0.233 -0.004 0.000 0.0	17																										0,032
20 2010 8.2 67.240 0.333 -0.904 0.009 0.186 0.034 9.8 9.640 0.303 -0.186 0.004 11.2 125.440 0.303 -0.186 0.004 13.6 184.960 0.300 0.186 0.004 0.186 0.004 11.2 125.440 0.300 -0.186 0.004 13.6 184.960 0.300 0.186 0.004 14.0 0.006 0.005	18																										0,008
22 2011 5.0 3.5000 0.300 0.186 0.034 0.85 0.034 0.98 96.040 0.300 0.186 0.034 0.12 1.25 440 0.300 0.186 0.034 1.36 1.84 907 0.300 0.186 0.034 1.86 345,960 0.300 0.186 0.034 1.82 22 28.24 2013 1.00 10.0000 0.233 0.375 0.141 1.90 361,000 0.233 0.375 0.141 2.32 28.8240 0.233 0.375 0.141 3.30 1089,000 0.233 0.375 0.141 3.88 1.904 0.200 0.204 0.20																											0,000
22 2013	21																										0,034
24 2014 13.8 190.440 0.200 -0.476 0.252 5.36 645.160 0.200 -0.476 0.252 5.36 0.157 0.258 0.340 1.089.000 0.200 -0.476 0.258 0.258 0.157 0.258 0.340 1.089.00 0.200 -0.476 0.258 0.340 1.089 0.167 0.258 0.25	l 1																										0,078
29 2015 6.4 40.969 0.167 -0.583 0.340 9.6 92.169 0.167 -0.583 0.340 19.0 561,000 0.167 0.340 19.0 561,000 0.167 0.340 19.0 561,000 0.167 0.340 19.0 561,000 0.167 0.340 19.0 561,000 0.167 0.340 19.0 561,000 0.167 0.340 19.0 561,000 0.167 0.340 19.0 561,000 0.167 0.340 19.0 561,000 0.167 0.340 19.0 561,000 0.167 0.340 19.0 561,000 0.167 0.340 19.0 561,000 0.167 0.340 19.0 561,000 0.167 0.340 19.0 561,000 0.167 0.340 19.0 561,000 0.167 0.340 19.0 561,000 0.167 0.340 19.0 561,0																											0,141
20 2016 6.8 46.240 0,133 -0.701 0,049 1.134 179.560 0,133 -0.701 0,049 174 302.760 0,133 -0.701 0,049 1210 441,000 0,133 -0.701 0,049 22.6 556.960 0,133 -0.701 0,049 22 22 2017 8.6 73.960 0,103 -0.834 0,069 15.0 25.50																											0,226
28 2018 8.8 77.440 0.067 -0.996 0.092 15.8 249.640 0.067 -0.996 0.092 23.2 58.240 0.067 -0.996 0.092 44.2 1933.640 0.067 -0.996 0.092 46.2 2134.440 0.067 -0.996 0.092 2019 12.0 144.000 0.033 -1.224 1.498 19.2 368.640 0.033 -1.224 1.498 24.0 576.000 0.033 -1.224 1.498 25.8 665.640 0.033																											0,491
2019 12.0 144,000 0,033 -1,224 1,498 19.2 368,640 0,033 -1,224 1,498 24.0 576,000 0,033 -1,224 1,498 25.8 665,640 0,033 -1,224 1,498 26.4 696,960 0,033 -1,224 1,498 25.8 665,640 0,033 -1,224 1,498 26.4 696,960 0,033 -1,224	27	2017	8,6	73,960	0,100	-0,834	0,696	15,0	225,000	0,100	-0,834	0,696	19,0	361,000	0,100	-0,834	0,696	29,0	841,000	0,100	-0,834	0,696	32,0	1024,000	0,100	-0,834	0,696
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 45 46 46 46 46 46																											0,992
31 32 33 34 35 36 37 38 39 40 41 42 45 44 45 5 5 6 7 7 7 7 7 7 7 7 7		2019	12,0	144,000	0,033	-1,224	1,498	19,2	368,640	0,033	-1,224	1,498	24,0	576,000	0,033	-1,224	1,498	25,8	665,640	0,033	-1,224	1,498	26,4	696,960	0,033	-1,224	1,498
32 33 34 35 36 37 38 39 39 30 41 41 42 45 44 45 45 46 46 46 46	***																										
34 35 36 37 38 39 40 41 42 43 44 45 45 45 46 46 47 47 47 47 48 48 48 48																											
35 36 37 38 39 40 41 42 45 44 44 45 45 45 45	33																										
36 37 38 39 40 41 42 42 43 44 45 45 45 46 46 47 47 47 48 48 48 48 48																											
37 38 39 40 41 42 43 44 44 45 45 45 45 45																											
38 39 40 41 42 43 44 45 45 46 46 47 47 48 48 49 49 49 49 49 49																											
JO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																											
41 42 43 44 44 45 EABORAZIONISTATISTICHE- METODO DI GUMBEL	39																										
42 43 44 45 ABELIA 2 - ELABORAZIONISTATISTICHE- METODO DI GUMBEL																											
43 44 45 ABELIA 2 - ELABORAZIONISTATISTICHE - METODO DI GUMBEL																											
44 45 SABELLA 2 - ELABORAZIONI STATISTICHE - METODO DI GUMBEL.																											
ABELLA 2 - ELABORAZIONISTATISTICHE - METODO DI GUMBEL																											
	45																										
		- ELABOI			- METODO	DI GUMB	EL																				

TABELLA 2 - ELAF	BORAZIONI STATISTICHE - MEI	TODO DI GUMBEL				
N=	29	29	29	29	29	
Moda	8,13	13,48	17,10	23,14	26,42	
Alpha	3,129	5,214	6,410	9,852	11,614	

Tempo di rit	orno	5 min	10 min	15 min	30 min	45 min
5 anni	hmax=	12,8 mm	21,3 mm	26,7 mm	37,9 mm	43,8 mm
10 anni	hmax=	15,2 mm	25,2 mm	31,5 mm	45,3 mm	52,6 mm
20 anni	hmax=	17,4 mm	29,0 mm	36,1 mm	52,4 mm	60,9 mm
50 anni	hmax=	20,3 mm	33,8 mm	42,1 mm	61,6 mm	71,7 mm
100 anni	hmax=	22,5 mm	37,5 mm	46,6 mm	68,5 mm	79,8 mm
200 anni	hmax=	24,7 mm	41,1 mm	51,0 mm	75,3 mm	87,9 mm
300 anni	hmax=	26,0 mm	43,2 mm	53,7 mm	79,3 mm	92,6 mm

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE
RELAZIONE IDROLOGICA E IDRAULICA ATTRAVERSAMENTI	Progetto Lotto Codifica Documento Rev. Foglio
SECONDARI	IN17 10 EI2 RH ID0000 002 B 59 di 67

Stazione di Lonigo per durate di pioggia > 1ora

STAZIONE BACINO:	PLUVIOG	RAFICA DI	1				Lonigo																			
QUOTA:							- 29 m s.l.m.n	ı																		
Anni di osse	rvazione						29						INTERVALI	O DLORE												
				1					3					6					12					24		
	Anno	h(mm)	h^2	FRQ	YTR	YTR^2	h(mm)	h^2	FRQ	YTR	YTR^2	h(mm)	h^2	FRQ	YTR	YTR^2	h(mm)	h^2	FRQ	YTR	YTR^2	h(mm)	h^2	FRQ	YTR	YTR^2
1	1991	31,2	973,440	0,967	3,384	11,453	40,0	1600,000	0,967	3,384	11,453	40,2	1616,040	0,967	3,384	11,453	46,4	2152,960	0,967	3,384	11,453	53,6	2872,960	0,967	3,384	11,453
2	1992 1993	30,0 37,8	900,000 1428,840	0,933	2,674 2,250	7,149 5,064	32,2 61,4	1036,840 3769,960	0,933	2,674	7,149 5,064	32,4 67,8	1049,760 4596,840	0,933	2,674 2,250	7,149 5,064	49,0 80,6	2401,000 6496,360	0,933	2,674 2,250	7,149 5,064	72,6 84.6	5270,760 7157,160	0,933	2,674 2,250	7,149 5,064
4	1994	28,2	795,240	0,867	1,944	3,780	36,8	1354,240	0,867	1,944	3,780	49,8	2480,040	0,867	1,944	3,780	63,6	4044,960	0,867	1,944	3,780	66,4	4408,960	0,867	1,944	3,780
5	1995	43,8	1918,440	0,833	1,702	2,897	49,0	2401,000	0,833	1,702	2,897	49,0	2401,000	0,833	1,702	2,897	74,0	5476,000	0,833	1,702	2,897	90,8	8244,640	0,833	1,702	2,897
6	1996 1997	34,4 22,8	1183,360 519,840	0,800 0,767	1,500 1,325	2,250 1,757	39,2 24,2	1536,640 585,640	0,800	1,500 1,325	2,250 1,757	41,2 34,0	1697,440 1156,000	0,800 0,767	1,500 1,325	2,250 1,757	42,6 34.0	1814,760 1156,000	0,800	1,500 1,325	2,250 1,757	61,0 37,4	3721,000 1398,760	0,800	1,500 1,325	2,250 1,757
8	1997	22,8	484,000	0,787	1,323	1,370	22,0	484,000	0,787	1,171	1,370	25,2	635,040	0,787	1,171	1,370	32,4	1049,760	0,787	1,171	1,370	32,8	1075,840	0,787	1,171	1,370
9	1999	25,8	665,640	0,700	1,031	1,063	33,0	1089,000	0,700	1,031	1,063	40,2	1616,040	0,700	1,031	1,063	62,4	3893,760	0,700	1,031	1,063	64,8	4199,040	0,700	1,031	1,063
10	2000	76,0	5776,000	0,667	0,903	0,815	83,4	6955,560	0,667	0,903	0,815	83,4	6955,560	0,667	0,903	0,815	85,2	7259,040	0,667	0,903	0,815	88,0	7744,000	0,667	0,903	0,815
11	2001	18,8 37.2	353,440 1383,840	0,633	0,784	0,614	30,6	936,360	0,633	0,784	0,614	41,6 45,6	1730,560	0,633	0,784 0.672	0,614	56,2	3158,440	0,633	0,784	0,614	64,6 52.8	4173,160 2787,840	0,633	0,784	0,614
12	2002 2003	16,0	256,000	0,600 0,567	0,672	0,451	45,6 19,2	2079,360 368,640	0,600	0,672	0,451	45,6 21,8	2079,360 475,240	0,600 0,567	0,566	0,451	46,0 29,2	2116,000 852,640	0,600	0,672	0,451	37,8	1428,840	0,600	0,566	0,451
14	2003	57,4	3294,760	0,533	0,464	0,320	66,0	4356,000	0,533	0,464	0,320	71,2	5069,440	0,533	0,464	0,320	79,2	6272,640	0,533	0,464	0,320	81,2	6593,440	0,533	0,464	0,320
15	2005	50,8	2580,640	0,500	0,367	0,134	61,4	3769,960	0,500	0,367	0,134	91,2	8317,440	0,500	0,367	0,134	91,2	8317,440	0,500	0,367	0,134	95,2	9063,040	0,500	0,367	0,134
16	2006	44,4	1971,360	0,467	0,272	0,074	45,6	2079,360	0,467	0,272	0,074	45,6	2079,360	0,467	0,272	0,074	47,2	2227,840	0,467	0,272	0,074	52,8	2787,840	0,467	0,272	0,074
17	2007 2008	36,8 53,4	1354,240 2851,560	0,433	0,179	0,032	44,8 54,4	2007,040 2959,360	0,433	0,179	0,032	44,8 54,4	2007,040 2959,360	0,433	0,179	0,032	44,8 54.4	2007,040 2959,360	0,433	0,179	0,032	53,4 54.4	2851,560 2959,360	0,433	0,179	0,032
19	2008	37,4	1398,760	0,367	-0,003	0,000	38,6	1489,960	0,460	-0,003	0,008	38,6	1489,960	0,400	-0,003	0,000	41,8	1747,240	0,367	-0,003	0,000	48.0	2304,000	0,367	-0,003	0,008
20	2010	30,2	912,040	0,333	-0,094	0,009	31,6	998,560	0,333	-0,094	0,009	46,8	2190,240	0,333	-0,094	0,009	49,8	2480,040	0,333	-0,094	0,009	53,2	2830,240	0,333	-0,094	0,009
21	2011	24,2	585,640	0,300	-0,186	0,034	41,6	1730,560	0,300	-0,186	0,034	43,4	1883,560	0,300	-0,186	0,034	43,8	1918,440	0,300	-0,186	0,034	51,4	2641,960	0,300	-0,186	0,034
22 23	2012 2013	15,6 36.0	243,360	0,267	-0,279	0,078	29,0	841,000	0,267	-0,279	0,078	42,2	1780,840	0,267	-0,279	0,078	74,6	5565,160	0,267	-0,279	0,078	82,4	6789,760	0,267	-0,279	0,078
23	2013	48.8	1296,000 2381,440	0,233	-0,375 -0,476	0,141	36,0 56.0	1296,000 3136,000	0,233	-0,375 -0,476	0,141	39,0 58.0	1521,000 3364,000	0,233	-0,375 -0,476	0,141	50,4 58.2	2540,160 3387,240	0,233	-0,375 -0,476	0,141	58,8 69,0	3457,440 4761,000	0,233	-0,375 -0,476	0,141 0,226
25	2015	19,0	361,000	0,167	-0,583	0,340	19,0	361,000	0,167	-0,583	0,340	28,8	829,440	0,167	-0,583	0,340	33,0	1089,000	0,167	-0,583	0,340	55,8	3113,640	0,167	-0,583	0,340
26	2016	24,6	605,160	0,133	-0,701	0,491	46,0	2116,000	0,133	-0,701	0,491	48,0	2304,000	0,133	-0,701	0,491	48,2	2323,240	0,133	-0,701	0,491	57,2	3271,840	0,133	-0,701	0,491
27	2017	34,0	1156,000	0,100	-0,834	0,696	35,0	1225,000	0,100	-0,834	0,696	35,6	1267,360	0,100	-0,834	0,696	36,8	1354,240	0,100	-0,834	0,696	37,2	1383,840	0,100	-0,834	0,696
28 29	2018 2019	47,0 27,4	2209,000 750,760	0,067	-0,996 -1,224	0,992 1,498	47,2 33,8	2227,840 1142,440	0,067	-0,996 -1,224	0,992 1,498	47,2 37,6	2227,840 1413,760	0,067	-0,996 -1,224	0,992 1,498	54,6 41.4	2981,160 1713,960	0,067	-0,996 -1,224	0,992 1,498	56,6 46,6	3203,560 2171,560	0,067	-0,996 -1,224	0,992 1,498
30	2019	27,4	750,700	0,033	-1,224	1,490	33,6	1142,440	0,055	-1,224	1,490	37,0	1413,700	0,033	-1,224	1,490	41,4	1713,900	0,055	-1,224	1,490	40,0	2171,500	0,033	-1,224	1,490
31																										
32																										
33																										
34 35																										
36																										
37																										
38																										
39																										
40																										
42																										
43																										
44																										
45																										
TABELIA 2	- ELABO	RAZIONIS	TATISTICHE	- METODO	DI GUMB	EL																				
N=		29					29					29					29	9				29				
M - J -																										

TABELLA 2 - ELAI	BORAZIONI STATISTICHE - ME	TODO DI GUMBEL				
N=	29	29	29	29	29	
Moda	28,31	34,49	38,94	45,56	52,78	
Alpha	12,438	13,245	14,085	14,970	14,903	

Tempo di ri	torno	1 ora	3 ore	6 ore	12 ore	24 ore
5 anni	hmax=	47,0 mm	54,4 mm	60,1 mm	68,0 mm	75,1 mm
10 anni	hmax=	56,3 mm	64,3 mm	70,6 mm	79,2 mm	86,3 mm
20 anni	hmax=	65,3 mm	73,8 mm	80,8 mm	90,0 mm	97,0 mm
50 anni	hmax=	76,8 mm	86,2 mm	93,9 mm	104,0 mm	110,9 mm
100 anni	hmax=	85,5 mm	95,4 mm	103,7 mm	114,4 mm	121,3 mm
200 anni	hmax=	94,2 mm	104,6 mm	113,5 mm	124,8 mm	131,7 mm
300 anni	hmax=	99,2 mm	110,0 mm	119,3 mm	130,9 mm	137,8 mm

Stazione di Montecchia di Crosara per durate di pioggia < 1 ora

	E PLUVIO	GRAFICA D	I:				Montecchia	a di Crosara																		
BACINO:																										
QUOTA:							51 m s.l.m.n	n.																		
Anni di oss	ervazione						26																			
													INTERVALL													
		0,0	8 Ore	5		min	0,17	Ore	10		min	0,25	Ore	15		min	0,50	Ore .	30		min	0,75	Ore	45		min
-	Ani 1992	no h(mm) 8.8	h^2 77,440	FRQ 0,963	YTR 3,277	YTR^2 10,739	h(mm) 17.0	h^2 289,000	FRQ 0.963	YTR 3,277	YTR^2 10,739	h(mm) 20.4	h^2 416,160	FRQ 0.963	YTR 3,277	YTR^2 10,739	h(mm) 24.8	h^2 615,040	FRQ 0.963	YTR 3,277	YTR^2 10,739	h(mm) 27.6	h^2 761,760	FRQ 0.963	YTR 3,277	YTR^2 10,739
1 1	1992	7,2	51,840	0,963	2,564	6,576	11,4	129,960	0,963	2,564	6,576	12,8	163,840	0,963	2,564	6,576	15,0	225,000	0,963	2,564	6,576	15,8	249,640	0,963	2,564	6,576
3	1994	10,4	108,160	0,889	2,139	4,575	19,8	392,040	0,889	2,139	4,575	27,0	729,000	0,889	2,139	4,575	44,6	1989,160	0,889	2,139	4,575	46,2	2134,440	0,889	2,139	4,575
4	1995	10.4	108,160	0,852	1,830	3,351	20.2	408,040	0,852	1,830	3,351	26,8	718,240	0,852	1.830	3,351	44.0	1936,000	0.852	1,830	3,351	55.0	3025,000	0.852	1,830	3,351
5	1996	9,2	84,640	0,815	1,586	2,515	15,6	243,360	0,815	1,586	2,515		492,840	0,815	1,586	2,515	36,6	1339,560	0,815	1,586	2,515	43,2	1866,240	0,815	1,586	2,515
6	1997	7,4	54,760	0,778	1,381	1,907	12,8	163,840	0,778	1,381	1,907	16,4	268,960	0,778	1,381	1,907	26,2	686,440	0,778	1,381	1,907	34,8	1211,040	0,778	1,381	1,907
7	1998	10,4	108,160	0,741	1,204	1,449	18,6	345,960	0,741	1,204	1,449	22,8	519,840	0,741	1,204	1,449	30,6	936,360	0,741	1,204	1,449	32,8	1075,840	0,741	1,204	1,449
8	1999	13,6	184,960	0,704	1,046	1,094	20,4	416,160	0,704	1,046	1,094	26,4	696,960	0,704	1,046	1,094	29,2	852,640	0,704	1,046	1,094	37,0	1369,000	0,704	1,046	1,094
9	2000	10,6	112,360	0,667	0,903	0,815	20,0	400,000	0,667	0,903	0,815	28,4	806,560	0,667	0,903	0,815	46,8	2190,240	0,667	0,903	0,815	54,8	3003,040	0,667	0,903	0,815
10	2001	9,0	81,000	0,630	0,771	0,594	12,6	158,760	0,630	0,771	0,594		207,360	0,630	0,771	0,594	22,8	519,840	0,630	0,771	0,594	25,0	625,000	0,630	0,771	0,594
11		12,4	153,760	0,593	0,648	0,420	20,4	416,160	0,593	0,648	0,420		665,640	0,593	0,648	0,420	33,0	1089,000	0,593	0,648	0,420	34,8	1211,040	0,593	0,648	0,420
12	2003	5,8	33,640	0,556	0,531	0,282	10,0	100,000	0,556	0,531	0,282		153,760	0,556	0,531	0,282	18,0	324,000	0,556	0,531	0,282	25,8	665,640	0,556	0,531	0,282
13		8,2	67,240	0,519	0,420	0,177	15,0	225,000	0,519	0,420	0,177	20,0	400,000	0,519	0,420	0,177	25,6	655,360	0,519	0,420	0,177	33,4	1115,560	0,519	0,420	0,177
14		10,0 10.2	100,000 104,040	0,481	0,313	0,098 0,044	18,8 16,8	353,440 282,240	0,481	0,313	0,098 0,044	28,4 21.8	806,560 475,240	0,481	0,313	0,098	38,6 27,2	1489,960 739,840	0,481	0,313	0,098	42,2 28,2	1780,840 795,240	0,481	0,313	0,098 0,044
16		8.0	64,000	0.407	0,210	0,012	14.0	196,000	0,444	0,108	0,044	15,2	231,040	0,444	0,210	0,044	17.6	309,760	0,444	0,210	0,044	23,2	538,240	0,444	0,210	0,044
17		13,6	184,960	0.370	0,007	0,000	20.2	408,040	0,370	0,007	0.000	23,2	538,240	0,370	0.007	0.000	29,6	876,160	0,370	0,007	0.000	30.4	924.160	0,370	0.007	0.000
18		11,6	134,560	0,333	-0,094	0,009	20,6	424,360	0,333	-0,094	0,009		852,640	0,333	-0,094	0,009	37,6	1413,760	0,333	-0,094	0,009	38,4	1474,560	0,333	-0.094	0,009
19	2010	8,0	64,000	0,296	-0,196	0,038	14.6	213,160	0,296	-0,196	0,038	19,0	361,000	0,296	-0,196	0,038	21,8	475,240	0,296	-0,196	0,038	23,6	556,960	0,296	-0,196	0,038
20		8,6	73,960	0,259	-0,300	0,090	16,4	268,960	0,259	-0,300	0,090	24,0	576,000	0,259	-0,300	0,090	38,8	1505,440	0,259	-0,300	0,090	43,0	1849,000	0,259	-0,300	0,090
21	2012	15,0	225,000	0,222	-0,408	0,167	23,2	538,240	0,222	-0,408	0,167	26,8	718,240	0,222	-0,408	0,167	30,8	948,640	0,222	-0,408	0,167	35,0	1225,000	0,222	-0,408	0,167
22	2013	8,6	73,960	0,185	-0,523	0,273	11,0	121,000	0,185	-0,523	0,273	13,4	179,560	0,185	-0,523	0,273	20,6	424,360	0,185	-0,523	0,273	22,2	492,840	0,185	-0,523	0,273
23		13,2	174,240	0,148	-0,647	0,418	25,4	645,160	0,148	-0,647	0,418	31,8	1011,240	0,148	-0,647	0,418	36,2	1310,440	0,148	-0,647	0,418	36,4	1324,960	0,148	-0,647	0,418
24		12,2	148,840	0,111	-0,787	0,620	18,6	345,960	0,111	-0,787	0,620	26,0	676,000	0,111	-0,787	0,620	37,6	1413,760	0,111	-0,787	0,620	40,0	1600,000	0,111	-0,787	0,620
25		10,6	112,360	0,074	-0,957	0,915	19,4	376,360	0,074	-0,957	0,915	21,4	457,960	0,074	-0,957	0,915	26,2	686,440	0,074	-0,957	0,915	29,2	852,640	0,074	-0,957	0,915
26	2017	7,8	60,840	0,037	-1,193	1,422	13,8	190,440	0,037	-1,193	1,422	16,6	275,560	0,037	-1,193	1,422	21,0	441,000	0,037	-1,193	1,422	24,2	585,640	0,037	-1,193	1,422
27																										
28																										
29																										
30																										
31																										
32																										
33																										
34 35																										
36																										
37																										
39																										
40																										
41	1																									
42																										
43																										
44																										
45																										

TABELLA 2 - ELAB	ORAZIONI STATISTICHE - MET	ODO DI GUMBEL				
N=	26	26	26	26	26	
Moda	8,94	15,32	19,35	25,83	29,29	
Alpha	2.047	3.489	5.023	7.893	8.726	

Tempo di ri	torno	5 min	10 min	15 min	30 min	45 min
5 anni	hmax=	12,0 mm	20,6 mm	26,9 mm	37,7 mm	42,4 mm
10 anni	hmax=	13,5 mm	23,2 mm	30,7 mm	43,6 mm	48,9 mm
20 anni	hmax=	15,0 mm	25,7 mm	34,3 mm	49,3 mm	55,2 mm
50 anni	hmax=	16,9 mm	28,9 mm	38,9 mm	56,6 mm	63,3 mm
100 anni	hmax=	18,4 mm	31,4 mm	42,5 mm	62,1 mm	69,4 mm
200 anni	hmax=	19,8 mm	33,8 mm	46,0 mm	67,6 mm	75,5 mm
300 anni	hmax=	20,6 mm	35,2 mm	48,0 mm	70,8 mm	79,0 mm

Stazione di Montecchia di Crosara per durate di pioggia > 1 ora

		OGRAFICA I	DI:				Montecchia	di Crosara																		
BACINO							-																			
QUOTA:							51 m s.l.m.n	L																		
Anni di os	servazione						26																			
		_		1					3				INTERVALI						12					24		
														6					12					24		
	Anno	h(mm)	h^2	FRQ	YTR	YTR^2	h(mm)	h^2	FRQ	YTR	YTR^2	h(mm)	h^2	FRQ	YTR	YTR^2	h(mm)	h^2	FRQ	YTR	YTR^2	h(mm)	h^2	FRQ	YTR	YTR^2
	1 1992		829,440	0.963	3,277	10,739	38.2	1459.240	0.963	3,277	10,739	52.4	2745.760	0,963	3,277	10,739	58.8	3457,440	0.963	3,277	10,739	94.2	8873,640	0.963	3,277	10,739
	2 1993	16,8	282,240	0,926	2,564	6,576	24,2	585,640	0,926	2,564	6,576	26,8	718,240	0,926	2,564	6,576	29,8	888,040	0,926	2,564	6,576	34,6	1197,160	0,926	2,564	6,576
	3 1994	46,2	2134,440	0,889	2,139	4,575	46,2	2134,440	0,889	2,139	4,575	46,2	2134,440	0,889	2,139	4,575	50,2	2520,040	0,889	2,139	4,575	79,4	6304,360	0,889	2,139	4,575
	4 1995		3819,240	0,852	1,830	3,351	78,4	6146,560	0,852	1,830	3,351	82,6	6822,760	0,852	1,830	3,351	96,2	9254,440	0,852	1,830	3,351	108,6	11793,960	0,852	1,830	3,351
	5 1996		2246,760	0,815	1,586	2,515	56,8	3226,240	0,815	1,586	2,515	59,8	3576,040	0,815	1,586	2,515	61,6	3794,560	0,815	1,586	2,515	61,8	3819,240	0,815	1,586	2,515
	6 1997 7 1998		1489,960 1183,360	0,778	1,381	1,907	45,6 37,4	2079,360	0,778	1,381	1,907	46,0	2116,000	0,778	1,381	1,907	46,0 41.4	2116,000	0,778	1,381	1,907	57,2 60,2	3271,840	0,778	1,381	1,907
	7 1998 8 1999		1183,360	0,741	1,204	1,449 1,094	67,8	1398,760 4596,840	0,741 0,704	1,204	1,449 1,094	39,6 67,8	1568,160 4596,840	0,741	1,204	1,449 1,094	41,4 82,4	1713,960 6789,760	0,741	1,204	1,449 1,094	86,4	3624,040 7464,960	0,741	1,204	1,449 1,094
	9 2000		3091,360	0,667	0,903	0,815	67,0	4489,000	0,764	0,903	0,815	70,6	4984,360	0,764	0,903	0,815	74,0	5476,000	0,667	0,903	0,815	79,2	6272,640	0,764	0,903	0,815
1 ,	0 2001	25.2	635,040	0,630	0,771	0,594	28.4	806,560	0,630	0,771	0,594		2171.560	0,630	0,771	0,594	64.8	4199,040	0,630	0,771	0,513	78.0	6084,000	0,630	0,771	0,594
			1398,760	0,593	0,648	0,420	59,6	3552,160	0,593	0,648	0,420	60,0	3600,000	0,593	0,648	0,420	61,4	3769,960	0,593	0,648	0,420	65,6	4303,360	0,593	0,648	0,420
1	2 2003	30,0	900,000	0,556	0,531	0,282	40,0	1600,000	0,556	0,531	0,282	41,6	1730,560	0,556	0,531	0,282	44,8	2007,040	0,556	0,531	0,282	48,6	2361,960	0,556	0,531	0,282
1	3 2004	37,8	1428,840	0,519	0,420	0,177	58,0	3364,000	0,519	0,420	0,177	67,6	4569,760	0,519	0,420	0,177	75,8	5745,640	0,519	0,420	0,177	97,8	9564,840	0,519	0,420	0,177
1			1849,000	0,481	0,313	0,098	48,6	2361,960	0,481	0,313	0,098		2724,840	0,481	0,313	0,098	55,8	3113,640	0,481	0,313	0,098	78,4	6146,560	0,481	0,313	0,098
1 1			829,440	0,444	0,210	0,044	30,0	900,000	0,444	0,210	0,044	53,8	2894,440	0,444	0,210	0,044	74,6	5565,160	0,444	0,210	0,044	82,6	6822,760	0,444	0,210	0,044
1 1			625,000	0,407	0,108	0,012	25,2	635,040	0,407	0,108	0,012	25,4	645,160	0,407	0,108	0,012	29,6	876,160	0,407	0,108	0,012	40,4	1632,160	0,407	0,108	0,012
			924,160 1474,560	0,370 0,333	0,007 -0,094	0,000	30,4 39,6	924,160 1568,160	0,370	0,007 -0,094	0,000	38,8 39,6	1505,440 1568,160	0,370	0,007 -0,094	0,000	45,0 39,6	2025,000 1568,160	0,370	0,007 -0,094	0,000	50,0 45,8	2500,000 2097,640	0,370	0,007 -0,094	0,000
			605,160	0,333	-0,094	0,009	26.6	707,560	0,333	-0,094	0,009	39,0	1521.000	0,333	-0,094	0.038	46,6	2171.560	0,333	-0,094	0.038	60.2	3624,040	0,333	-0,094	0,009
			2079,360	0,259	-0,300	0,090	52,2	2724,840	0,259	-0,300	0,090	52,2	2724,840	0,259	-0,300	0,090	60,4	3648,160	0,259	-0,300	0,090	75,0	5625,000	0,259	-0,300	0,090
			1225,000	0,222	-0,408	0,167	36,0	1296,000	0,222	-0,408	0,167	36,0	1296,000	0,222	-0,408	0,167	59,6	3552,160	0,222	-0,408	0,167	65,4	4277,160	0,222	-0,408	0,167
1 2	2 2013	22,2	492,840	0,185	-0,523	0,273	32,0	1024,000	0,185	-0,523	0,273	55,4	3069,160	0,185	-0,523	0,273	76,4	5836,960	0,185	-0,523	0,273	85,0	7225,000	0,185	-0,523	0,273
1 2			1324,960	0,148	-0,647	0,418	41,4	1713,960	0,148	-0,647	0,418	55,0	3025,000	0,148	-0,647	0,418	61,8	3819,240	0,148	-0,647	0,418	75,6	5715,360	0,148	-0,647	0,418
1 2			1616,040	0,111	-0,787	0,620	41,2	1697,440	0,111	-0,787	0,620		1918,440	0,111	-0,787	0,620	58,6	3433,960	0,111	-0,787	0,620		9880,360	0,111	-0,787	0,620
1 2			912,040	0,074	-0,957	0,915	32,0	1024,000	0,074	-0,957	0,915	36,0	1296,000	0,074	-0,957	0,915	49,4	2440,360	0,074	-0,957	0,915	59,2	3504,640	0,074	-0,957	0,915
1 3		25,6	655,360	0,037	-1,193	1,422	31,0	961,000	0,037	-1,193	1,422	45,8	2097,640	0,037	-1,193	1,422	46,4	2152,960	0,037	-1,193	1,422	66,2	4382,440	0,037	-1,193	1,422
1 2																										
1 3																										
1 3	3																									
3																										
3	5																									
3																										
3																										
3																										
3																										
1 4																										
1 4																										
1 2																										
1 4																										
4																										

TABELLA 2 - ELABOI	RAZIONI STATISTICHE -	METODO DI GUMBEL				
N=	26	26	26	26	26	
Moda	30,73	35,93	42,84	49,71	61,59	
Alpha	9,398	12,987	12,063	14,347	16,863	

Tempo di ri	torno	1 ora	3 ore	6 ore	12 ore	24 ore
5 anni	hmax=	44,8 mm	55,4 mm	60,9 mm	71,2 mm	86,9 mm
10 anni	hmax=	51,9 mm	65,2 mm	70,0 mm	82,0 mm	99,5 mm
20 anni hmax=		58,6 mm	74,5 mm	78,7 mm	92,3 mm	111,7 mm
50 anni	hmax=	67,4 mm	86,6 mm	89,9 mm	105,7 mm	127,4 mm
100 anni	hmax=	74,0 mm	95,7 mm	98,3 mm	115,7 mm	139,2 mm
200 anni	hmax=	80,5 mm	104,7 mm	106,7 mm	125,7 mm	150,9 mm
300 anni	hmax=	84,3 mm	110,0 mm	111,6 mm	131,5 mm	157,7 mm

GENERAL CONTRACTOR Consorzio IricAV Due		ITAL	FERR STATO ITALIANE		
RELAZIONE IDROLOGICA E IDRAULICA ATTRA	ERSAMENTI Progetto	Lotto	Codifica Documento	Rev.	Foglio
SECONDARI	IN17	10	EI2 RH ID0000 002	В	62 di 67

Stazione di Quinto Vicentino per durate di pioggia < 1ora

STAZIONE	PLUVIOG	RAFICA DI	:				Quinto Vi	centino																		
BACINO : OUOTA:							- 34 m s.l.m.:																			
Anni di osse	rvazione						34 m s.i.m. 25	III.																		
													INTERVALL	O DI ORE												
		0,08	Ore	5		min	0,17	Ore	10		min	0,25		15		min	0,50) Ore	30		min	0,75	5 Ore	45		min
		17	140	EDO	ımn	1mp.40	14 1	140	EDO	LEED	1777040	14.	140	EDO	LED	1777040	14)	140	EDO	1 PPD	1mp.40	17. 3	140	EDO	TED	100040
1	Anno 1992	h(mm)	h^2 51.840	FRQ 0.962	YTR 3,239	YTR^2 10.488	h(mm) 14.2	h^2 201.640	FRQ 0.962	YTR 3,239	YTR^2 10.488	h(mm) 19.2	h^2 368,640	FRQ 0.962	YTR 3,239	YTR^2 10.488	h(mm) 28.4	h^2 806,560	FRQ 0.962	YTR 3,239	YTR^2 10.488	h(mm) 35,8	h^2 1281.640	FRQ 0.962	YTR 3,239	YTR^2 10.488
2	1993	8,4	70,560	0,923	2,525	6,377	15.0	225,000	0,923	2,525	6,377	20,4	416,160	0,923	2,525	6,377	30,0	900,000	0.923	2,525	6,377	34.8	1211.040	0,923	2,525	6,377
3	1994	13,0	169,000	0,885	2,099	4,405	22,2	492,840	0,885	2,099	4,405		912,040	0,885	2,099	4,405	37,4	1398,760	0,885	2,099	4,405	54,6	2981,160	0,885	2,099	4,405
4	1995	11,4	129,960	0,846	1,789	3,202	15,0	225,000	0,846	1,789	3,202	17,4	302,760	0,846	1,789	3,202	23,4	547,560	0,846	1,789	3,202	25,4	645,160	0,846	1,789	3,202
5	1996	8,2	67,240	0,808	1,544	2,383	14,8	219,040	0,808	1,544	2,383	19,8	392,040	0,808	1,544	2,383	24,0	576,000	0,808	1,544	2,383	26,8	718,240	0,808	1,544	2,383
6	1997	8,0	64,000	0,769	1,338	1,790	15,4	237,160	0,769	1,338	1,790		345,960	0,769	1,338	1,790	23,6	556,960	0,769	1,338	1,790	23,8	566,440	0,769	1,338	1,790
7	1998	10,6	112,360	0,731	1,159	1,344	19,8	392,040	0,731	1,159	1,344		625,000	0,731	1,159	1,344	34,4	1183,360	0,731	1,159	1,344	36,2	1310,440	0,731	1,159	1,344
8	1999	10,0	100,000	0,692	1,000	1,001	17,0	289,000	0,692	1,000	1,001		492,840	0,692	1,000	1,001	37,6	1413,760	0,692	1,000	1,001	44,0	1936,000	0,692	1,000	1,001
9	2000	7,6	57,760	0,654	0,856	0,733	11,0	121,000	0,654	0,856	0,733		139,240	0,654	0,856	0,733	15,8	249,640	0,654	0,856	0,733	22,2	492,840	0,654	0,856	0,733 0,522
10	2001 2002	6,0 17.2	36,000 295,840	0,615 0,577	0,723	0,522 0,357	7,8 22.8	60,840 519,840	0,615	0,723	0,522		81,000 665,640	0,615	0,723	0,522 0,357	13,8 27,0	190,440 729,000	0,615	0,723	0,522 0,357	15,6 28,6	243,360 817,960	0,615 0,577	0,723	0,522
11	2002	7.2	51.840	0,577	0,398	0,337	13.8	190,440	0,577	0,398	0,337		243,360	0,577	0,398	0,337	15.8	249,640	0,577	0,398	0,337		249,640	0,577	0,398	0,337
13	2003	9,6	92,160	0,500	0,367	0,134	18.6	345,960	0,500	0,367	0,134		576,000	0,500	0,367	0,134	31,0	961,000	0,500	0,367	0,134	34.4	1183,360	0,500	0,367	0,134
14	2005	10.8	116,640	0.462	0.257	0.066	18.6	345,960	0.462	0,257	0.066		729,000	0.462	0,257	0.066	41,8	1747,240	0.462	0,257	0.066	47.6	2265,760	0.462	0,257	0.066
15	2006	7.0	49,000	0.423	0,151	0.023	12.0	144,000	0.423	0,151	0,023		190,440	0,423	0.151	0,023	18,4	338,560	0.423	0,151	0,023	23.8	566,440	0.423	0,151	0,023
16	2007	10,4	108,160	0,385	0,046	0,002	18,6	345,960	0,385	0,046	0,002		655,360	0,385	0,046	0,002	32,6	1062,760	0,385	0,046	0,002	35,4	1253,160	0,385	0,046	0,002
17	2008	8,2	67,240	0,346	-0,059	0,003	11,8	139,240	0,346	-0,059	0,003	14,4	207,360	0,346	-0,059	0,003	20,4	416,160	0,346	-0,059	0,003	25,6	655,360	0,346	-0,059	0,003
18	2009	8,2	67,240	0,308	-0,164	0,027	16,0	256,000	0,308	-0,164	0,027	21,0	441,000	0,308	-0,164	0,027	34,6	1197,160	0,308	-0,164	0,027	39,6	1568,160	0,308	-0,164	0,027
19	2010	7,6	57,760	0,269	-0,272	0,074	13,6	184,960	0,269	-0,272	0,074		368,640	0,269	-0,272	0,074	32,0	1024,000	0,269	-0,272	0,074	41,6	1730,560	0,269	-0,272	0,074
20	2011	9,4	88,360	0,231	-0,383	0,147	13,0	169,000	0,231	-0,383	0,147		243,360	0,231	-0,383	0,147	19,0	361,000	0,231	-0,383	0,147	21,0	441,000	0,231	-0,383	0,147
21	2012	11,0	121,000	0,192	-0,500	0,250	21,4	457,960	0,192	-0,500	0,250		864,360	0,192	-0,500	0,250	39,0	1521,000	0,192	-0,500	0,250	41,4	1713,960	0,192	-0,500	0,250
22	2013	9,6	92,160	0,154	-0,627	0,393	15,6	243,360	0,154	-0,627	0,393		416,160	0,154	-0,627	0,393	25,0	625,000	0,154	-0,627	0,393	25,6	655,360	0,154	-0,627	0,393
23	2014	8,0	64,000	0,115	-0,770	0,593	13,8	190,440	0,115	-0,770	0,593		338,560	0,115	-0,770	0,593	32,6	1062,760	0,115	-0,770	0,593	38,6	1489,960	0,115	-0,770	0,593 0,887
24	2015 2016	9,4 8,4	88,360 70,560	0,077	-0,942 -1,181	0,887 1,395	12,4 16,6	153,760 275,560	0,077	-0,942 -1,181	0,887	13,6 21,6	184,960 466,560	0,077	-0,942 -1,181	0,887 1,395	18,4 28,4	338,560 806,560	0,077	-0,942 -1,181	0,887 1,395	19,2 32,8	368,640 1075,840	0,077	-0,942 -1,181	1,395
26	2010	0,4	70,500	0,036	-1,101	1,393	10,0	275,500	0,038	-1,101	1,393	21,0	400,500	0,036	-1,101	1,393	20,4	800,000	0,036	-1,101	1,393	32,6	1075,640	0,038	-1,101	1,393
27																										
28																										
29																										
30																										
31																										
32																										
33																										
34																										
35																										
36																										
37																										
38																										
39																										
40																										
41																										
42																										
43																										
44																										
45																										

TABELLA 2 - ELABO	RAZIONI STATISTICHE - ME	TODO DI GUMBEL				
N=	25	25	25	25	25	
Moda	8,19	13,90	17,37	23,57	26,80	
Alpha	2.079	3,263	4.871	7.163	9.058	

Tempo di rit	torno	5 min	10 min	15 min	30 min	45 min
5 anni	hmax=	11,3 mm	18,8 mm	24,7 mm	34,3 mm	40,4 mm
10 anni	hmax=	12,9 mm	21,2 mm	28,3 mm	39,7 mm	47,2 mm
20 anni	hmax=	14,4 mm	23,6 mm	31,8 mm	44,8 mm	53,7 mm
50 anni	hmax=	16,3 mm	26,6 mm	36,4 mm	51,5 mm	62,1 mm
100 anni	hmax=	17,8 mm	28,9 mm	39,8 mm	56,5 mm	68,5 mm
200 anni	hmax=	19,2 mm	31,2 mm	43,2 mm	61,5 mm	74,8 mm
300 anni	hmax=	20.0 mm	32.5 mm	45.1 mm	64.4 mm	78.4 mm

GENERAL CONTRACTOR Consorzio IricAV Due			ITAL	FERR STATO ITALIANE		
RELAZIONE IDROLOGICA E IDRAULICA	A ATTRAVERSAMENTI	Progetto	Lotto	Codifica Documento	Rev.	Foglio
SECONDARI		IN17	10	El2 RH ID0000 002	В	63 di 67

Stazione di Quinto Vicentino per durate di pioggia > 1ora

STAZIONE BACINO:	EPLUVIOG	RAFICA DI	I:				Quinto Vic	entino																		
QUOTA:							34 m s.l.m.r	n.																		
Anni di osse	ervazione						25																			
				1					3				INTERVAL	LO DI ORE					12					24		
	Anno	h(mm)	h^2	FRQ	YTR	YTR^2	h(mm)	h^2	FRQ	YTR	YTR^2	h(mm)	h^2	FRQ	YTR	YTR^2	h(mm)	h^2	FRQ	YTR	YTR^2	h(mm)	h^2	FRQ	YTR	YTR^2
1	1992	39,6	1568,160	0,962	3,239	10,488	50,0	2500,000	0,962	3,239	10,488	50,6	2560,360	0,962	3,239	10,488	62,2	3868,840	0,962	3,239	10,488	83,4	6955,560	0,962	3,239	10,488
2 3	1993 1994	35,8 57,0	1281,640 3249,000	0,923	2,525 2,099	6,377 4,405	37,6 63,2	1413,760 3994,240	0,923	2,525	6,377 4,405	39,4 71,4	1552,360 5097,960	0,923	2,525 2,099	6,377 4,405	41,8 71,4	1747,240 5097,960	0,923	2,525 2,099	6,377 4,405	41,8 72,0	1747,240 5184,000	0,923	2,525 2,099	6,377 4,405
4	1995	31,8	1011,240	0,846	1,789	3,202	41,4	1713,960	0,846	1,789	3,202	44,4	1971,360	0,846	1,789	3,202	53,2	2830,240	0,846	1,789	3,202	93,8	8798,440	0,846	1,789	3,202
5	1996	27,6	761,760	0,808	1,544	2,383	44,0	1936,000	0,808	1,544	2,383	52,4	2745,760	0,808	1,544	2,383	56,0	3136,000	0,808	1,544	2,383	58,6	3433,960	0,808	1,544	2,383
6 7	1997 1998	27,0 36,2	729,000 1310,440	0,769	1,338	1,790 1,344	34,8 62,8	1211,040 3943,840	0,769 0,731	1,338	1,790 1,344	40,0 63,6	1600,000 4044,960	0,769	1,338	1,790 1,344	51,0 63,6	2601,000 4044,960	0,769	1,338 1,159	1,790 1,344	60,6 100,6	3672,360 10120,360	0,769	1,338	1,790
8	1999	46.8	2190,240	0,692	1,000	1,001	47.4	2246,760	0,692	1,000	1,001	63,8	4070,440	0,692	1,000	1,001	69,6	4844,160	0,692	1,000	1,001	70.8	5012.640	0,692	1,000	1,001
9	2000	22,8	519,840	0,654	0,856	0,733	27,6	761,760	0,654	0,856	0,733	32,2	1036,840	0,654	0,856	0,733	48,0	2304,000	0,654	0,856	0,733	56,8	3226,240	0,654	0,856	0,733
10	2001	17,2	295,840	0,615	0,723	0,522	30,0	900,000	0,615	0,723	0,522	41,6	1730,560	0,615	0,723	0,522	48,6	2361,960	0,615	0,723	0,522	52,6	2766,760	0,615	0,723	0,522
11	2002 2003	29,2 15,8	852,640 249,640	0,577	0,598	0,357	43,0	1849,000 998,560	0,577 0,538	0,598	0,357	59,4 44.0	3528,360 1936,000	0,577	0,598	0,357	69,8 63,2	4872,040 3994,240	0,577	0,598	0,357	91,0 85,2	8281,000 7259,040	0,577	0,598	0,357
12	2003	39.8	1584,040	0,538	0,480	0,230	31,6 66.0	4356,000	0,538	0,480	0,230	76.2	5806,440	0,538	0,480	0,230	63,2 81.0	6561,000	0,538	0,480	0,230	85,2 81.8	6691,240	0,538	0,480	0,230
14	2005	51,4	2641,960	0,462	0,257	0,066	53,2	2830,240	0,462	0,257	0,066	53,2	2830,240	0,462	0,257	0,066	99,4	9880,360	0,462	0,257	0,066	114,4	13087,360	0,462	0,257	0,066
15	2006	29,6	876,160	0,423	0,151	0,023	40,6	1648,360	0,423	0,151	0,023	73,2	5358,240	0,423	0,151	0,023	111,2	12365,440	0,423	0,151	0,023	115,2	13271,040	0,423	0,151	0,023
16	2007	37,4	1398,760	0,385	0,046	0,002	40,0	1600,000	0,385	0,046	0,002	41,0	1681,000	0,385	0,046	0,002	65,4	4277,160	0,385	0,046	0,002	65,6	4303,360	0,385	0,046	0,002
17	2008 2009	25,8 39,6	665,640 1568,160	0,346	-0,059 -0,164	0,003	32,8 43,0	1075,840 1849,000	0,346	-0,059 -0,164	0,003	33,0 44,4	1089,000 1971,360	0,346	-0,059 -0,164	0,003	46,4 66,6	2152,960 4435,560	0,346	-0,059 -0,164	0,003	57,6 81,0	3317,760 6561,000	0,346	-0,059 -0,164	0,003
19	2010	45,2	2043,040	0,269	-0,272	0,074	60,0	3600,000	0,269	-0,272	0,074	66,8	4462,240	0,269	-0,272	0,074	73,6	5416,960	0,269	-0,272	0,074	78,4	6146,560	0,269	-0,272	0,074
20	2011	21,6	466,560	0,231	-0,383	0,147	27,4	750,760	0,231	-0,383	0,147	52,4	2745,760	0,231	-0,383	0,147	71,0	5041,000	0,231	-0,383	0,147	86,8	7534,240	0,231	-0,383	0,147
21	2012	41,8	1747,240	0,192	-0,500	0,250	47,4	2246,760	0,192	-0,500	0,250	52,2	2724,840	0,192	-0,500	0,250	92,8	8611,840	0,192	-0,500	0,250	97,8	9564,840	0,192	-0,500	0,250
22	2013 2014	26,2 41.0	686,440 1681,000	0,154	-0,627 -0,770	0,393	28,8 50.0	829,440 2500,000	0,154	-0,627 -0,770	0,393	55,6 50,6	3091,360 2560,360	0,154	-0,627 -0,770	0,393	75,6 50.6	5715,360 2560,360	0,154	-0,627 -0,770	0,393	78,0 70.8	6084,000 5012,640	0,154	-0,627 -0,770	0,393
24	2014	22.8	519,840	0,077	-0,770	0,393	42.8	1831,840	0,113	-0,770	0,393	69.2	4788,640	0.077	-0,770	0,393	74.4	5535,360	0,113	-0,770	0,887	90.6	8208,360	0,113	-0,770	0,393
25 26 26 27 28 29 30 31 32 33 34 43 35 36 37 38 39 44 44 44 45	2016	34,2	1169,640	0,038	-1,181	1,395	44,2	1953,640	0,038	-1,181	1,395	49,8	2480,040	0,038	-1,181	1,395	55,2	3047,040	0,038	-1,181	1,395	76,0	5776,000	0,038	-1,181	1,395
N=	2 - ELABOI	25		- METODO	DI GUMB	EL	25					25					25					25				
Moda		28,74					38,21					46,81					58,40					69,66				
Alpha		9,398	3				10,121					11,186	í				15,175					16,556	5			
																- 1										
Tempo di ri		1 ora					3 ore					6 ore					12 ore					24 ore				
5 anni 10 anni									63,7 mn	1				81,2 mm	1				94,5 mn	n						

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVE	LFERR		
RELAZIONE IDROLOGICA E IDRAULICA ATTRAVERSAMENTI	Progetto Lotto	Codifica Documento	Rev.	Foglio
SECONDARI	IN17 10	EI2 RH ID0000 002	В	64 di 67

Stazione di Vicenza S. Agostino per durate di pioggia < 1ora

	EPLUVIOG	RAFICA DI					Vicenza - S	ant'Agostino																		
BACINO: QUOTA:							- 29 m s.l.m.r																			
Anni di oss	ervazione						29 m s.i.m.i 11	IL.																		
													INTERVALL	O DI ORE												
		0,08	Ore	5		min	0,17	Ore	10		min	0,25	Ore	15		min	0,50) Ore	30		min	0,75	Ore	45		min
	Anno	h(mm)	h^2	FRQ	YTR	YTR^2	h(mm)	h^2	FRQ	YTR	YTR^2	h(mm)	h^2	FRQ	YTR	YTR^2	h(mm)	h^2	FRQ	YTR	YTR^2	h(mm)	h^2	FRQ	YTR	YTR^2
1	2009	12,0	144,000	0,917	2,442 1,702	5,962	21,2	449,440	0,917	2,442	5,962	27,6	761,760	0,917	2,442 1,702	5,962	32,4	1049,760	0,917	2,442	5,962	32,4	1049,760	0,917	2,442	5,962 2,897
1 2	2010 2011	14,8 9,6	219,040 92,160	0,855	1,702	2,897 1,552	22,6 15,6	510,760 243,360	0,833 0,750	1,702 1,246	2,897 1,552	27,0 20,4	729,000 416,160	0,833	1,702	2,897 1,552	32,4 25,8	1049,760 665,640	0,833	1,702 1,246	2,897 1,552	32,6 27,0	1062,760 729,000	0,833 0,750	1,702 1,246	1,552
1 4	2012	9,6	92,160	0,667	0,903	0,815	14,4	207,360	0,667	0,903	0,815	20,2	408,040	0,667	0,903	0,815	27,4	750,760	0,667	0,903	0,815		817,960	0,667	0,903	0,815
5	2013	12,0	144,000	0,583	0,618	0,382	13,0	169,000	0,583	0,618	0,382	13,8	190,440	0,583	0,618	0,382	16,8	282,240	0,583	0,618	0,382	17,4	302,760	0,583	0,618	0,382
6	2014	14,0	196,000	0,500	0,367	0,134	22,6	510,760	0,500	0,367	0,134	28,0	784,000	0,500	0,367	0,134	32,2	1036,840	0,500	0,367	0,134	34,4	1183,360	0,500	0,367	0,134
7	2015	7,2	51,840	0,417	0,133	0,018	12,2	148,840	0,417	0,133	0,018		262,440	0,417	0,133	0,018	26,2	686,440	0,417	0,133	0,018		841,000	0,417	0,133	0,018
8	2016	6,0	36,000	0,333	-0,094	0,009	10,4	108,160	0,333	-0,094	0,009	14,6	213,160	0,333	-0,094	0,009	20,0	400,000	0,333	-0,094	0,009	21,0	441,000	0,333	-0,094	0,009
100	2017 2018	7,0 9,2	49,000 84,640	0,250	-0,327 -0,583	0,107	10,4 16,4	108,160 268,960	0,250	-0,327 -0,583	0,107	12,0 19,8	144,000 392,040	0,250	-0,327 -0,583	0,107 0,340	14,4 24,2	207,360 585,640	0,250	-0,327 -0,583	0,107	16,0 26,8	256,000 718,240	0,250 0,167	-0,327 -0,583	0,107 0,340
11	2018	10.6	112,360	0,167	-0,585	0,340	20.6	424,360	0,167	-0,910	0,340	25,4	645,160	0,167	-0,910	0,340	36,8	1354,240	0,167	-0,583	0,340		1989,160	0,083	-0,383	0,840
12		10,0				0,022										0,02					0,02					0,020
13																										
14																										
15																										
17																										
18																										
19																										
20																										
21																										
22																										
23																										
24																										
26																										
27																										
28																										
29																										
30																										
31																										
32																										
34																										
35																										
36																										
37																										
38																										
39																										
40																										
41																										
42																										
43																										
45																										
		•																								

TABELLA 2 - ELAI	BORAZIONI STATISTICHE - ME	TODO DI GUMBEL				
N=	11	11	11	11	11	
Moda	8,78	13,98	17,57	22,77	24,15	
Alpha	2,990	4,746	5,928	6,439	6,394	

Tempo di rit	torno	5 min	10 min	15 min	30 min	45 min
5 anni	hmax=	13,3 mm	21,1 mm	26,5 mm	32,4 mm	33,7 mm
10 anni	hmax=	15,5 mm	24,7 mm	30,9 mm	37,3 mm	38,5 mm
20 anni	hmax=	17,7 mm	28,1 mm	35,2 mm	41,9 mm	43,1 mm
50 anni	hmax=	20,4 mm	32,5 mm	40,7 mm	47,9 mm	49,1 mm
100 anni	hmax=	22,5 mm	35,8 mm	44,8 mm	52,4 mm	53,6 mm
200 anni	hmax=	24,6 mm	39,1 mm	49,0 mm	56,9 mm	58,0 mm
300 anni	hmax=	25,8 mm	41,0 mm	51,4 mm	59,5 mm	60,6 mm

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE
RELAZIONE IDROLOGICA E IDRAULICA ATTRAVERSAM	TI Progetto Lotto Codifica Documento Rev. Foglio
SECONDARI	IN17 10 EI2 RH ID0000 002 B 65 di 67

Stazione di Vicenza S. Agostino per durate di pioggia > 1ora

	E PLUVIOG	RAFICA DI					Vicenza - S	ant'Agostino																		$\overline{}$
QUOTA:							- 29 m s.l.m.r	n.																		
Anni di os:	servazione						11																			
				1					3				INTERVAL	LO DI ORE					12					24		
				•										0					12					24		
	Anno	h(mm)	h^2	FRQ	YTR	YTR^2	h(mm)	h^2	FRQ	YTR	YTR^2	h(mm)	h^2	FRQ		YTR^2	h(mm)	h^2	FRQ	YTR	YTR^2	h(mm)	h^2	FRQ	YTR	YTR^2
	1 2009 2 2010	32,4 34,6	1049,760 1197,160	0,917	2,442 1,702	5,962 2,897	33,2 50,2	1102,240 2520,040	0,917	2,442 1,702	5,962 2,897	37,6 55,0	1413,760 3025,000	0,917	2,442 1,702	5,962 2,897	70,4 73,0	4956,160 5329,000	0,917	2,442 1,702	5,962 2,897	89,8 93,4	8064,040 8723,560	0,917	2,442 1,702	5,962 2,897
	3 2011	27,2	739,840	0,750	1,246	1,552	30,0	900,000	0,750	1,246	1,552	47,0	2209,000	0,750	1,246	1,552		4251,040	0,750	1,246	1,552		6528,640	0,750	1,246	1,552
	4 2012	29,2	852,640	0,667	0,903	0,815	31,0	961,000	0,667	0,903	0,815	46,4	2152,960	0,667	0,903	0,815	90,0	8100,000	0,667	0,903	0,815		9564,840	0,667	0,903	0,815
	5 2013 6 2014	19,6 35,0	384,160 1225,000	0,583	0,618 0,367	0,382 0,134	47,0 47,2	2209,000 2227,840	0,583	0,618	0,382 0,134	83,6 52,6	6988,960 2766,760	0,583	0,618	0,382		12499,240 3003,040	0,583	0,618	0,382		13456,000 6855,840	0,583	0,618	0,382 0,134
	7 2015	29,0	841,000	0,300	0,367	0,134	35,8	1281,640	0,300	0,367	0,134	62,8	3943,840	0,300	0,367	0,018		4761,000	0,300	0,367	0,134		5806,440	0,300	0,367	0,134
	8 2016	21,0	441,000	0,333	-0,094	0,009	38,2	1459,240	0,333	-0,094	0,009	47,0	2209,000	0,333	-0,094	0,009	55,0	3025,000	0,333	-0,094	0,009	78,8	6209,440	0,333	-0,094	0,009
1 :	9 2017	16,6	275,560	0,250	-0,327	0,107	17,4	302,760	0,250	-0,327	0,107	20,4	416,160	0,250	-0,327	0,107		718,240	0,250	-0,327	0,107		2500,000	0,250	-0,327	0,107
10	0 2018 1 2019	27,8 47,2	772,840 2227,840	0,167	-0,583 -0,910	0,340 0,829	38,2 48,0	1459,240 2304,000	0,167	-0,583 -0,910	0,340 0,829	46,0 48,0	2116,000 2304,000	0,167	-0,583 -0,910	0,340		2246,760 2323,240	0,167	-0,583 -0,910	0,340		5299,840 5446,440	0,167	-0,583 -0,910	0,340 0,829
1	2	47,2	2227,040	0,003	-0,910	0,029	46,0	2304,000	0,003	-0,910	0,029	40,0	2304,000	0,003	-0,910	0,029	40,2	2323,240	0,003	-0,910	0,029	73,0	3440,440	0,083	-0,910	0,029
1:	3																									
14	4																									
1:	5																									
1 1	7																									
13	8																									
19																										
2 2																										
2:																										
2																										
2																										
2:																										
2																										
2	8																									
25																										
31																										
3																										
3.	3																									
3																										
3:																										
3:																										
3																										
3	9																									
4	-																									
4	*I																									
4:	~																									
4	-																									
4:	5																									

TABELLA 2 - ELAB	BORAZIONI STATISTICHE - METOI	DO DI GUMBEL				
N=	11	11	11	11	11	
Moda	24,87	32,96	42,04	53,49	74,68	
Alnha	6 309	9.794	16313	23.256	17 361	

Tempo di rit	orno	1 ora	3 ore	6 ore	12 ore	24 ore
5 anni	hmax=	34,3 mm	47,7 mm	66,5 mm	88,4 mm	100,7 mm
10 anni	hmax=	39,1 mm	55,0 mm	78,8 mm	105,8 mm	113,7 mm
20 anni	hmax=	43,6 mm	62,1 mm	90,5 mm	122,6 mm	126,2 mm
50 anni	hmax=	49,5 mm	71,2 mm	105,7 mm	144,2 mm	142,4 mm
100 anni	hmax=	53,9 mm	78,0 mm	117,1 mm	160,5 mm	154,5 mm
200 anni	hmax=	58,3 mm	84,8 mm	128,4 mm	176,6 mm	166,6 mm
300 anni	hmax=	60.8 mm	88.8 mm	135.1 mm	186.1 mm	173.7 mm

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		
RELAZIONE IDROLOGICA E IDRAULICA ATTRA	SAMENTI Progetto Lotto Codifica Do	ocumento Rev.	Foglio
SECONDARI	IN17 10 EI2 RH ID	0000 002 B	66 di 67

Stazione di Verona Parco Adige Nord per durate di pioggia < 1ora

STAZIONE	PLUVIOGE	RAFICA D	I:				Verona - P	arco Adige No	rd																	
BACINO : QUOTA:							- 67 m s.l.m.i	n.																		
Anni di osse	rvazione						11						INTERVALL	ODLORE												
		0,00	8 Ore	5		min	0,17	Ore	10		min	0,25		15		min	0,50	Ore	30)	min	0,75	Ore	45		min
	Anno	h(mm)	h^2	FRQ	YTR	YTR^2	h(mm)	h^2	FRQ	YTR	YTR^2	h(mm)	h^2	FRQ	YTR	YTR^2	h(mm)	h^2	FRQ	YTR	YTR^2	h(mm)	h^2	FRQ	YTR	YTR^2
1	2009	12,6	158,760	0,917	2,442	5,962	20,0	400,000	0,917	2,442	5,962	26,2	686,440	0,917	2,442	5,962	30,0	900,000	0,917	2,442	5,962	31,4	985,960	0,917	2,442	5,962
2 3	2010 2011	9,8 8,4	96,040 70,560	0,833 0,750	1,702 1,246	2,897 1,552	19,0 13.6	361,000 184,960	0,833 0,750	1,702 1,246	2,897 1,552	27,0 14.0	729,000 196,000	0,833	1,702 1,246	2,897 1,552	43,4 18,4	1883,560 338,560	0,833	1,702 1,246	2,897 1,552	52,8 24,4	2787,840 595,360	0,833	1,702 1,246	2,897 1,552
4	2012	14,8	219,040	0,667	0,903	0,815	25,6	655,360	0,667	0,903	0,815	30,8	948,640	0,667	0,903	0,815	34,2	1169,640	0,667	0,903	0,815	34,4	1183,360	0,667	0,903	0,815
5	2013 2014	8,6 8,2	73,960 67,240	0,583 0,500	0,618	0,382 0,134	13,4 14,4	179,560 207,360	0,583	0,618	0,382		302,760 331,240	0,583	0,618	0,382	24,8 30,0	615,040 900,000	0,583	0,618	0,382 0,134		1062,760 1413,760	0,583	0,618	0,382 0,134
7	2015	8,0	64,000	0,417	0,133	0,018	9,2	84,640	0,417	0,133	0,018	12,0	144,000	0,417	0,133	0,018	17,8	316,840	0,417	0,133	0,018	21,8	475,240	0,417	0,133	0,018
8	2016 2017	8,4 6,8	70,560 46,240	0,333	-0,094 -0,327	0,009	14,6 9,2	213,160 84,640	0,333	-0,094 -0,327	0,009		338,560 104,040	0,333	-0,094 -0,327	0,009	27,0 13,6	729,000 184,960	0,333	-0,094 -0,327	0,009	30,4 15,8	924,160 249,640	0,333	-0,094 -0,327	0,009
10	2018	12,0	144,000	0,167	-0,583	0,340	23,4	547,560	0,167	-0,583	0,340	30,2	912,040	0,167	-0,583	0,340	41,4	1713,960	0,167	-0,583	0,340	45,6	2079,360	0,167	-0,583	0,340
11	2019	9,2	84,640	0,083	-0,910	0,829	16,8	282,240	0,083	-0,910	0,829	18,2	331,240	0,083	-0,910	0,829	23,6	556,960	0,083	-0,910	0,829	26,6	707,560	0,083	-0,910	0,829
13																										
14																										
16																										
17																										
19																										
20 21																										
22																										
23 24																										
24 25																										
26 27																										
27																										
29																										
30 31																										
32																										
33 34																										
35																										
36																										
37 38																										
39																										
40 41																										
42																										
43																										
45																										

TABELLA 2 - ELABO	DRAZIONI STATISTICHE - MEI	ODO DI GUMBEL				
N=	11	11	11	11	11	
Moda	8,52	13,68	16,69	22,99	26,94	
Alpha	2,532	5,580	7,553	9,862	10,929	

Tempo di rit	torno	5 min	10 min	15 min	30 min	45 min
5 anni	hmax=	12,3 mm	22,0 mm	28,0 mm	37,8 mm	43,3 mm
10 anni	hmax=	14,2 mm	26,2 mm	33,7 mm	45,2 mm	51,5 mm
20 anni	hmax=	16,0 mm	30,3 mm	39,1 mm	52,3 mm	59,4 mm
50 anni	hmax=	18,4 mm	35,5 mm	46,2 mm	61,5 mm	69,6 mm
100 anni	hmax=	20,2 mm	39,3 mm	51,4 mm	68,4 mm	77,2 mm
200 anni	hmax=	21,9 mm	43,2 mm	56,7 mm	75,2 mm	84,8 mm
300 anni	hmax=	23,0 mm	45,5 mm	59,8 mm	79,2 mm	89,3 mm

GENERAL CONTRACTOR Consorzio IricAV Due		ITAL	FERR STATO ITALIANE		
RELAZIONE IDROLOGICA E IDRAULICA ATTRA	ERSAMENTI Progetto	Lotto	Codifica Documento	Rev.	Foglio
SECONDARI	IN17	10	EI2 RH ID0000 002	В	67 di 67

Stazione di Verona Parco Adige Nord per durate di pioggia > 1ora

STAZIONE	PLUVIOGE	RAFICA DI	l:				Verona - P	arco Adige No	rd																	
BACINO: QUOTA:							- 67 m s.l.m.i	n.																		
Anni di osse	rvazione						11						INTERVALL	o prope												
				1					3				INTERVALL	6					12					24		
		h(mm)	h^2	EDO	ımn	100040	h(mm)	h^2	EDO	1 PPD	1777040	h(mm)	140	EDO	LED	1777040	17. 3	140	EDO	LED	100040	h(mm)	140	EDO	LED	100040
1	Anno 2009	n(mm)	1024,000	FRQ 0,917	YTR 2,442	YTR^2 5,962	n(mm) 32,2	1036,840	FRQ 0,917	YTR 2,442	YTR^2 5,962	n(mm) 32,2	h^2 1036,840	FRQ 0,917	YTR 2,442	YTR^2 5,962	h(mm) 32,2	h^2 1036,840	FRQ 0,917	YTR 2,442	YTR^2 5,962	40,2	h^2 1616,040	FRQ 0,917	YTR 2,442	YTR^2 5,962
2	2010 2011	55,8 33,4	3113,640 1115,560	0,833 0,750	1,702 1,246	2,897 1,552	63,0 43,8	3969,000 1918,440	0,833 0,750	1,702 1,246	2,897 1,552	64,4 50,0	4147,360 2500,000	0,833	1,702 1,246	2,897 1,552	64,4 61,8	4147,360 3819,240	0,833	1,702 1,246	2,897 1,552	75,6 73,4	5715,360 5387,560	0,833 0,750	1,702 1,246	2,897 1,552
4	2011	34,8	1211,040	0,750	0,903	0,815	35,2	1239,040	0,750	0,903	0,815		1730,560	0,750	0,903	0,815	61,6	3794,560	0,750	0,903	0,815	71,4	5097,960	0,750	0,903	0,815
5	2013 2014	36,0 38,0	1296,000 1444,000	0,583	0,618	0,382 0,134	39,2 57,2	1536,640 3271,840	0,583	0,618	0,382		1831,840 3271,840	0,583 0,500	0,618	0,382	67,2 59,6	4515,840 3552,160	0,583	0,618	0,382	80,8 64,0	6528,640 4096,000	0,583	0,618	0,382 0,134
7	2014	25,4	645,160	0,300	0,367	0,134	52,8	2787,840	0,300	0,367	0,134		4569,760	0,300	0,367	0,134	69,0	4761,000	0,300	0,367	0,134	86,6	7499,560	0,300	0,367	0,134
8	2016 2017	32,2 16,6	1036,840 275,560	0,333	-0,094 -0,327	0,009	35,6 18.8	1267,360 353,440	0,333	-0,094 -0,327	0,009		1616,040 441,000	0,333	-0,094 -0,327	0,009	42,0 28.2	1764,000 795,240	0,333	-0,094 -0,327	0,009 0,107	52,0 35,6	2704,000 1267,360	0,333	-0,094 -0,327	0,009 0,107
10	2018	47,2	2227,840	0,167	-0,583	0,340	50,0	2500,000	0,167	-0,583	0,340	50,2	2520,040	0,167	-0,583	0,340	50,2	2520,040	0,167	-0,583	0,340	74,4	5535,360	0,167	-0,583	0,340
11	2019	27,4	750,760	0,083	-0,910	0,829	36,4	1324,960	0,083	-0,910	0,829	42,4	1797,760	0,083	-0,910	0,829	51,8	2683,240	0,083	-0,910	0,829	56,4	3180,960	0,083	-0,910	0,829
13																										
14																										
16																										
17																										
19																										
20 21																										
22																										
23 24																										
25																										
26 27																										
28																										
29 30																										
31																										
32 33																										
34																										
35 36																										
37																										
38																										
40																										
41																										
43																										
44 45																										
43																										

TABELLA 2 - ELABO	DRAZIONI STATISTICH	IE - METODO DI GUMBEL				
N=	11	11	11	11	11	
Moda	29,28	35,94	39,62	46,57	56,42	
Alpha	10,741	13,228	14,265	14,728	17,241	

Tempo di ri	torno	1 ora	3 ore	6 ore	12 ore	24 ore
5 anni	hmax=	45,4 mm	55,8 mm	61,0 mm	68,7 mm	82,3 mm
10 anni	hmax=	53,5 mm	65,7 mm	71,7 mm	79,7 mm	95,2 mm
20 anni	hmax=	61,2 mm	75,2 mm	82,0 mm	90,3 mm	107,6 mm
50 anni	hmax=	71,2 mm	87,6 mm	95,3 mm	104,0 mm	123,7 mm
100 anni	hmax=	78,7 mm	96,8 mm	105,2 mm	114,3 mm	135,7 mm
200 anni	hmax=	86,2 mm	106,0 mm	115,2 mm	124,6 mm	147,7 mm
300 anni	hmax=	90,5 mm	111,4 mm	121,0 mm	130,6 mm	154,7 mm