COMMITTENTE:

ALTA SORVEGLIANZA:

GENERAL CONTRACTOR:

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE **OBIETTIVO N. 443/01** LINEA AV/AC TORINO – VENEZIA Tratta VERONA – PADOVA Lotto funzionale Verona – Bivio Vicenza **PROGETTO ESECUTIVO** IN-INTERFERENZE VIARIE IN04 - NUOVO SOTTOPASSO CICLOPEDONALE AL km 2+369.14 **GENERALE**

Relazione di calcolo scatolare

	GENERAL CONT	RACTOR			D	IRETTORE LA	VORI		
IL PRC	GETTISTA INTEGRATORE	Consorzi	0					SCALA	
LCHERI FO	ROWN CONTROL MALAVENDA	Iricav I	Due	ina.	Luca Zaccaria			-	
tsorito	all of dine degli	ing. Paolo	CARMO1			egli ingegneri di	Ravenna n.A	1206	
ingegi	ngegneridi Venezia n. 4289 Data: Aprile 2021 Data: Aprile 2021								
Data:									
COM	COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV. FOGLIO								
I N	I N 1 7								
VISTO CONSORZIO IRICAV DUE									
						Firma		Data	
V	Consorzio	o IricA1	<i>D</i> ue		Luc	ca RANDOLFI			
Proge	ttazione:						l .		
Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	IL PROGETTISTA	
Α	EMISSIONE	CODING	28/02/21	S.Checchi	28/02/21	P. Luciani	28/02/21	Giuseppetabrizio Coppa	
,,			20,02,21		20,02,21		20,02,21	J. J. S.	
В	REVISIONE PER RECEPIMENTO ISTRUTTORIA	CODING	30/04/21	S.Checchi	30/04/21	P. Luciani	30/04/21	A\$476	
	ENTE VALIDATORE							Data: 30/04/21	
CIG. 8	3377957CD1	CL	JP: J41E	91000000	0009	F	ile: IN1711	EI2CLIN040X001B.DOC	
							and origine		

Cod. origine:

Progetto cofinanziato dalla Unione Europea

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica			
	Progetto	Lotto	Codifica	
	IN17	11	EI2CLIN040X001	В

INDICE

1	PRE	EMESSA	4
2	NOI	RMATIVA DI RIFERIMENTO	7
3	UNI	TÁ DI MISURA	8
4	CAF	RATTERISTICHE DEI MATERIALI	9
	4.1	Calcestruzzo	9
	4.2	Acciaio per armature ordinarie	9
	4.3	Copriferri	9
	4.4	Durabilità e prescrizioni sui materiali	10
5	PAF	RAMETRI SISMICI	11
6	CAF	RATTERIZZAZIONE GEOTECNICA	13
	6.1	RILEVATI E RINTERRI	13
	6.2	STRATIGRAFIA E PARAMETRI GEOTECNICI	13
	6.3	LIQUEFACIBILITA' DEI TERRENI	14
7	GE	DMETRIA DELLA STRUTTURA	15
8	ANA	ALISI DEI CARICHI	16
	8.1	Condizioni di carico	16
	8.1	.1 Peso proprio strutturale (PP)	16
	8.1	.2 Carichi permanenti portati (PERM)	16
	8.1	.3 Spinta del terreno (SPTSX e SPTDX)	17
	8.1	.4 Azioni della falda (SPTW)	18
	8.1	.5 Azioni termiche (TERM)	18
	8.1	.6 Ritiro (RITIRO)	18
	8.1	.7 Azioni variabili da traffico	19
	8.1	.8 Azioni sismiche	22
	8.2	COMBINAZIONI DI CARICO	24
9	CRI	TERI DI VERIFICA STRUTTURALI	31
	9.1	VERIFICA AGLI STATI LIMITE DI ESERCIZIO	31
	9.1	.1 Verifica a fessurazione	31
	9.1	2 Verifica delle tensioni in esercizio	32
	9.2	VERIFICA AGLI STATI LIMITE ULTIMI	33
	9.2	.1 Sollecitazioni flettenti	33
	9.2	.2 Sollecitazioni taglianti	33
10		DELLAZIONE STRUTTURALE	35
	10.1	Codice di calcolo	35
	10.2	Modello di calcolo	35
	10.3	Interazione terreno-struttura	36

GENERAL CONTRACTOR Consorzio IricAV Due Progetto IN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA ALTA SORVEGLIANZA ALTA SORVEGLIANZA ALTA SORVEGLIANZA B EI2CLIN040X001 B

11 ANALISI DELLE SOLLECITAZIONI	38
12 VERIFICHE DI DEFORMAZIONE E VIBRAZIONE	42
12.1 Inflessione nel piano verticale dell'impalcato	42
12.2 Stato limite di comfort dei passeggeri	42
13 VERIFICHE DI RESISTENZA ULTIMA E DI ESERCIZIO	43
13.1 Soletta superiore – sezione di mezzeria	44
13.2 Soletta superiore – sezione di incastro	49
13.3 Soletta inferiore – sezione di mezzeria	54
13.4 Soletta inferiore – sezione di incastro	59
13.5 Piedritti – sezione di incastro inferiore	64
13.6 Piedritti – sezione di incastro superiore	69
13.7 Piedritti – sezione mezzeria	74
14 VERIFICHE GEOTECNICHE	79
14.1 Verifica della capacità portante	79
14.2 Valutazione dei cedimenti	87
15 ALLEGATO: TABULATI DI CALCOLO	89
15.1 INPUT	89
15.2 OUTPUT	149
16 DICHIARAZIONE SECONDO NTC2008 (§ 10.2)	167

GENERAL CONTRACTOR Consorzio Iric/4V Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica			
	Progetto	Lotto	Codifica	
	IN17	11	EI2CLIN040X001	В

1 PREMESSA

La presente relazione afferisce ai calcoli e alle verifiche strutturali del sottopasso ciclopedonale denominato 'INO4' ubicato al km 2+396.14, nell'ambito della redazione dei documenti tecnici relativi alla progettazione esecutiva della Linea AV/AC Verona-Padova, Sub tratta Verona-Vicenza, 1° Sub Lotto Verona-Montebello Vicentino.

L'opera viene realizzata in due fasi principali: nella prima fase, viene realizzato un monolite a spinta sotto la futura linea AV/AC; nella seconda fase, viene realizzato un monolite gettato in opera adiacente al monolite a spinta per consentire l'attraversamento della linea AV, unitamente ai muri ad U di approccio alle due estremità del monolite.

La struttura scatolare ha dimensioni interne 3.00 x 3.10 m, con soletta di copertura di spessore 0.50 m, piedritti di spessore 0.50 m e soletta di fondazione di spessore 0.60 m. La distanza tra la quota del piano del ferro e l'estradosso della soletta superiore è pari a 0.80 m per la parte gettata in opera e 0.95 m per la parte posta in opera a spinta.

Il monolite, costituito da due manufatti strutturalmente indipendenti, presenta uno sviluppo longitudinale complessivo di circa 32.0 m dei quali 17.3 m posti in opera a spinta e 14.7 m gettati in opera. L'asse del sottopasso, inoltre, forma un angolo di 99.563 g rispetto all'asse di progetto della futura linea AC/AV.

Si individua nello stralcio planimetrico riportato a seguire l'ubicazione del sottovia in esame.

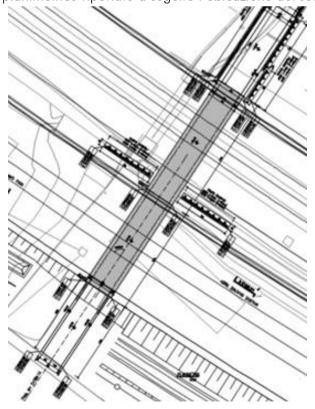


Figura 1.1: Stralcio planimetrico – Ubicazione Sottovia IN04

GENERAL CONTRACTOR Consorzio IricAV Due		1517	EVEGLIANZA CALFERR DELLO STATO ITALIANE	
	Progetto	Lotto	Codifica	
	IN17	11	EI2CLIN040X001	В

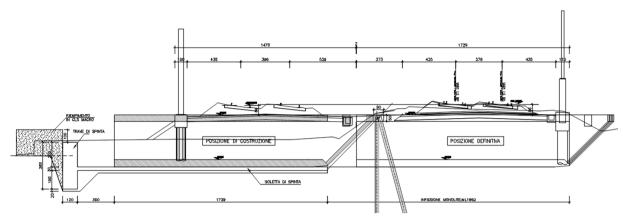


Figura 1.2: Sezione longitudinale Sottovia INO4 con monolite in posizione di varo

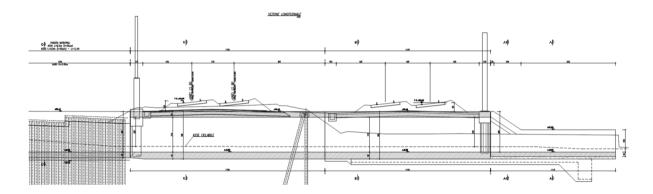


Figura 1.3: Sezione longitudinale Sottovia INO4 con struttura definitiva

Si riporta la sezione di calcolo:

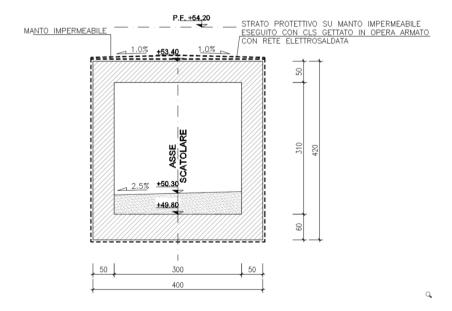


Figura 1.4: Sezione di calcolo Sottovia IN04

GENERAL CONTRACTOR Consorzio IricAV Due		1517	EVEGLIANZA CALFERR DELLO STATO ITALIANE	
	Progetto	Lotto	Codifica	
	IN17	11	EI2CLIN040X001	В

Le strutture sono state progettate coerentemente con quanto previsto dalla normativa "Norme Tecniche per le Costruzioni"- DM 14.1.2008 e Circolare n .617 "Istruzioni per l'applicazione delle Nuove norme tecniche per le costruzioni".

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica			
	Progetto	Lotto	Codifica	
	IN17	11	EI2CLIN040X001	В

2 NORMATIVA DI RIFERIMENTO

L'analisi dell'opera e le verifiche degli elementi strutturali sono state condotte in accordo con le disposizioni legislative in elenco e in particolare con le seguenti norme e circolari:

- Decreto Ministeriale del 14 gennaio 2008: "Norme Tecniche per le Costruzioni".
- Circolare M.LL.PP. n. 617 del 2 febbraio 2009: Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni di cui al Decreto Ministeriale del 14/01/2008".

Si è tenuto inoltre conto dei seguenti documenti:

- UNI EN 1990 Aprile 2006: Eurocodice: Criteri generali di progettazione strutturale.
- UNI EN 1991-1-1 Agosto 2004: Eurocodice 1 Parte 1-1: Azioni in generale Pesi per unità di volume, pesi propri e sovraccarichi variabili.
- UNI EN 1991-1-4 Luglio 2005: Eurocodice 1. Azioni sulle strutture. Parte 1-4: Azioni in generale Azioni del vento.
- UNI EN 1992-1-1 Novembre 2005: Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 1-1: Regole generali e regole per gli edifici.
- UNI EN 1992-2 Gennaio 2006: Eurocodice 2. Progettazione delle strutture di calcestruzzo. Parte 2: Ponti di calcestruzzo Progettazione e dettagli costruttivi.
- UNI-EN 1997-1 Febbraio 2005: Eurocodice 7. Progettazione geotecnica. Parte 1: Regole generali.
- UNI-EN 1998-1 Marzo 2005: Eurocodice 8: Progettazione delle strutture per la resistenza sismica. Parte 1: Regole generali, azioni sismiche e regole per gli edifici.
- UNI-EN 1998-5 Gennaio 2005: Eurocodice 8: Progettazione delle strutture per la resistenza sismica. Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici.
- Legge 5-11-1971 n° 1086: "Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso, ed a struttura metallica".
- Legge. 2 febbraio 1974, n. 64.: "Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche".
- UNI EN 206-1-2016: Calcestruzzo. "Specificazione, prestazione, produzione e conformità".
- UNI 11104:2016 "Calcestruzzo Specificazione, prestazione, produzione e conformità Specificazioni complementari per l'applicazione della EN 206".
- RFI DTC SI MA IFS 001 B Dicembre 2017: Manuale di progettazione delle opere civili.

GENERAL CONTRACTOR Consorzio Iric-AV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica			
	Progetto	Lotto	Codifica	
	IN17	11	EI2CLIN040X001	В

3 UNITÁ DI MISURA

Le unità di misura usate nella presente relazione sono:

• lunghezze [m]

• forze [kN]

• momenti [kNm]

• tensioni [MPa]

GENERAL CONTRACTOR Consorzio IricAV Due		11	RVEGLIANZA CALFERR DELLO STATO ITALIANE	
	Progetto	Lotto	Codifica	
	IN17	11	EI2CLIN040X001	В

4 CARATTERISTICHE DEI MATERIALI

4.1 CALCESTRUZZO

Per la realizzazione dello scatolare, si prevede l'utilizzo di calcestruzzo avente classe di resistenza $32/40~(R_{ck} \ge 40.00~N/mm^2)$ che presenta le seguenti caratteristiche:

Resistenza caratteristica a compressione (cilindrica)

 $f_{ck} = 0.83 \times R_{ck} = 33.20$ N/mm²

Resistenza media a compressione

 $f_{cm} = f_{ck} + 8 = 41.20$ N/mm²

Modulo elastico

 $E_{cm} = 22000 \times (f_{cm}/10)^{0.3} = 33643$ N/mm²

Resistenza di calcolo a compressione

 $f_{cd} = \alpha_{cc} \times f_{ck}/\gamma_c = 0.85^* f_{ck}/1.5 = 18.81$ N/mm²

Resistenza a trazione media

 $f_{ctm} = 0.30 \times f_{ck}^{2/3} = 3.10$ N/mm²

Resistenza a trazione

 $f_{ctk} = 0.7 \times f_{ctm} = 2.17 \qquad N/mm^2$

Resistenza a trazione di calcolo

 $f_{ctd} = f_{ctk} / \gamma_c = 1.45$ N/mm²

Resistenza a compressione (comb. Rara)

 $\sigma_{c} = 0.55 \times f_{ck} = 18.26$ N/mm²

Resistenza a compressione (comb. Quasi permanente)

 $\sigma_c = 0.40 \times f_{ck} = 13.28 \quad N/mm^2$

4.2 ACCIAIO PER ARMATURE ORDINARIE

Classe acciaio per armature ordinarie B450C

Tensione di snervamento caratteristica $f_{yk} \ge 450 \text{ MPa}$ Tensione caratteristica di rottura $f_t \ge 540 \text{ MPa}$ Modulo di elasticità $E_s = 210000 \text{ MPa}$

4.3 COPRIFERRI

Si riportano di seguito i copriferri nominali per le strutture in calcestruzzo armato:

Strutture di elevazione 5.0 cm Strutture di fondazione 5.0 cm

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica			
	Progetto	Lotto	Codifica	
	IN17	11	EI2CLIN040X001	В

4.4 DURABILITÀ E PRESCRIZIONI SUI MATERIALI

Per garantire la durabilità delle strutture in calcestruzzo armato ordinario, esposte all'azione dell'ambiente, si devono adottare i provvedimenti atti a limitare gli effetti di degrado indotti dall'attacco chimico, fisico e derivante dalla corrosione delle armature e dai cicli di gelo e disgelo.

Si adotta quanto segue:

Fondazione Classe di esposizione XC2 Elevazione Classe di esposizione XC4

GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Progetto IN17 Il EI2CLIN040X001 B

5 PARAMETRI SISMICI

Per la definizione dell'azione sismica occorre definire il periodo di riferimento P_{VR} in funzione dello stato limite considerato. La vita nominale (V_N) dell'opera è stata assunta pari a 100 anni. La classe d'uso assunta è la III. Il periodo di riferimento (V_R) per l'azione sismica, data la vita nominale e la classe d'uso, vale:

$$V_R = V_N \, x \, C_u = 100 \, x \, 1.5 \, = \, 150 \, \text{ anni.}$$

Il valore di probabilità di superamento del periodo di riferimento P_{VR} , cui riferirsi per individuare l'azione sismica agente, è:

$$P_{VR}$$
 (SLV)=10%.

Il periodo di ritorno dell'azione sismica T_R espresso in anni vale:

$$T_R (SLV) = -\frac{Vr}{\ln(1-Pvr)} = 1424 \text{ anni}$$

Dato il valore del periodo di ritorno suddetto, tramite le tabelle riportate nell'Allegato B della norma o tramite la mappatura messa a disposizione in rete dall'Istituto Nazionale di Geofisica e Vulcanologia (INGV), è possibile definire i valori di a_g, F₀, T*c:

 $a_g \rightarrow$ accelerazione orizzontale massima del terreno su suolo di categoria A, espressa come frazione dell'accelerazione di gravità;

 $F_0 \rightarrow \text{valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;}$

T*c → periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale;

 $S \rightarrow coefficiente$ che comprende l'effetto dell'amplificazione stratigrafica (S_s) e dell'amplificazione topografica (S_t);

Il calcolo viene eseguito con il metodo pseudostatico (N.T.C. par. 7.11.6). In queste condizioni l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.

Le spinte delle terre, considerando lo scatolare una struttura rigida e priva di spostamenti (NTC par. 7.11.6.2.1 e EC8-5 par.7.3.2.1), sono calcolate in regime di spinta a riposo, condizione che comporta il calcolo delle spinte in condizione sismica con l'incremento dinamico di spinta del terreno calcolato secondo la formula di Wood:

$$\Delta P_d = S a_g/g \gamma h_{tot}^2$$

L'azione sismica è rappresentata da un insieme di forze statiche orizzontali e verticali, date dal prodotto delle forze di gravità per le accelerazioni sismiche massime attese al suolo, considerando la componente verticale agente verso l'alto o verso il basso, in modo da produrre gli effetti più sfavorevoli.

I valori delle caratteristiche sismiche per lo SLV sono i seguenti:

Latitudine: 45.427072Longitudine: 11.048904 $a_g = 0.232;$ $F_0 = 2.434;$ $T^*c = 0.284 \text{ s.}$

GENERAL CONTRACTOR Consorzio IricAV Due		11	RVEGLIANZA TALFERR DELLO STATO ITALIANE	
	Progetto	Lotto	Codifica	
	IN17	11	EI2CLIN040X001	В

Il sottosuolo su cui insiste l'opera ricade in categoria sismica "C" e categoria topografica "T1". I coefficienti di amplificazione stratigrafica e topografica risultano quindi:

 $S_S = 1.36;$ $S_T = 1.0.$

Risulta quindi:

 $\begin{array}{ll} a_{max} & = 3.095 \text{ m/s}^2; \\ k_h & = 0.316; \\ k_v & = \pm 0.158. \end{array}$

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	ITALFERR.			
	Progetto Lotto Codifica				
	IN17 11 EI2CLIN040X00	1 B			

6 CARATTERIZZAZIONE GEOTECNICA

6.1 RILEVATI E RINTERRI

Sono riassunte nel prospetto riportato di seguito le caratteristiche del terreno dei rilevati ferroviari esistenti e di nuova progettazione (con γ pari al peso specifico del terreno; γ_{sat} pari al peso specifico saturo del terreno; c' pari alla coesione; ϕ' pari all'angolo di attrito; K_0 coefficiente di spinta a riposo):

Parametri del rilevato ferroviario					
γ γ _{sat} c' φ' k ₀					
(kN/m^3)	(kN/m³)	(kPa)	(°)	(-)	
20.00	20.00	0.0	38.0	0.384	

6.2 STRATIGRAFIA E PARAMETRI GEOTECNICI

Si riportano di seguito le caratteristiche geotecniche relative al terreno di fondazione della tratta in cui ricade il sottovia in esame, desunte dagli esiti delle indagini disponibili. Le formazioni indicate nei prospetti di seguito fanno riferimento alle unità geotecniche descritte nel seguente elenco:

- Unità 1 Riporto;
- Unità 2 Limi argillosi;
- Unità 4 Sabbie da debolmente limose a limose;
- Unità 6 Ghiaie, ghiaie con sabbie.

La quota rispetto alla quale è individuata la stratigrafia riportata a seguire, corrispondente a 51.21 m s.l.m. , è assunta coincidente col p.c. locale dell'opera in esame intercettato sulla linea.

Per quanto riguarda la falda di progetto, questa è assunta alla quota di 44.77 m s.l.m., ossia a circa 6.45 m dal p.c. Per ulteriori dettagli circa la posizione della falda di progetto si faccia riferimento alla relazione geotecnica della WBS INO4 in oggetto.

Tabella 1 Stratigrafia e valori caratteristici dei parametri geotecnici di calcolo

Strato	Formazione	S	γ	φ' _k	c' _k	C _{uk}	E'
		(m)	(kN/m^3)	(°)	(kPa)	(kPa)	(kN/m^2)
1	UG1	2.8	18	25	0	-	5000
2	UG6	17.0	19	39	0	-	50000
3	UG2	2.0	19	-	-	100	20000
4	UG4	8.2	19	37	0	-	150000

z_w Profondità della falda dal p.c. 6.45

LEGENDA

 $\gamma = \text{peso di volume naturale};$

 ϕ_{k}' = valore caratteristico dell'angolo di attrito;

 c_k' = valore caratteristico della resistenza al taglio in condizioni drenate;

 c_{uk} = valore caratteristico della coesione non drenata;

E' = modulo elastico del terreno.

Dato che lo spessore del terreno di riporto sotto l'opera, sulla base della stratigrafia sopra riportata, risulta pari a circa 80 cm, se ne prevede la totale asportazione ed il conseguente ripristino della quota con materiale selezionato da cava avente le stesse caratteristiche del rilevato ferroviario sopra presente.

Per i calcoli si assume un modulo di Young del terreno di fondazione del sottovia di 30 MPa.

6.3 LIQUEFACIBILITA' DEI TERRENI

Nell'area dell'opera in oggetto, le indagini a disposizione confermano l'assenza di situazioni potenzialmente critiche e/o di impatto progettuale, relativamente alla suscettibilità alla liquefazione dei terreni.

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
	Progetto	Lotto	Codifica	
	IN17	11	EI2CLIN040X001	В

7 GEOMETRIA DELLA STRUTTURA

Nel seguito sarà esaminata una striscia di scatolare avente lunghezza 1.00m. Si riportano di seguito le dimensioni geometriche della sezione in retto.

Spessore medio del ballast + armamento	H _b =	0.95 m
Spessore sovralzo in curva	$H_{sv} =$	0.00 m
Spessore sub-ballast	$H_{sb} =$	0.00 m
Spessore supercompattato	$H_{sc} =$	0.00 m
Spessore rinterro	$H_r =$	0.00 m
Spessore massetto impermeabilizzazione	$H_m =$	0.00 m
Larghezza totale dello scatolare	$L_{tot} =$	4.00 m
Larghezza utile dello scatolare	$L_{int} = $	3.00 m
Larghezza mensola di fondazione sinistra	$L_{msx} =$	0.00 m
Larghezza mensola di fondazione destra	$L_{mdx} = $	0.00 m
Spessore della soletta di copertura	$S_s =$	0.50 m
Spessore piedritti	$S_p =$	0.50 m
Spessore ritto centrale	$S_{pc} =$	0.00 m
Spessore della soletta di fondazione	$S_f =$	0.60 m
Altezza libera dello scatolare	$H_{\text{int}} =$	3.10 m
Altezza totale dello scatolare	$H_{tot} =$	4.20 m
Quota falda da intradosso fondazione	$H_{\scriptscriptstyle w} =$	-4.50 m
Larghezza striscia di calcolo	b =	1.00 m

Come detto in precedenza, l'asse del sottopasso, inoltre, forma un angolo di 99.563g rispetto all'asse di progetto della futura linea AC/AV

GENERAL CONTRACTOR Consorzio Iric/1/2 Due		ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
	Progetto	Lotto	Codifica		
	IN17	11	EI2CLIN040X001	В	

8 ANALISI DEI CARICHI

Nel seguente paragrafo si descrivono le condizioni di carico elementari assunte per l'analisi delle sollecitazioni e per le verifiche della struttura in esame. Tali condizioni di carico elementari saranno opportunamente combinate secondo quanto previsto dalla normativa vigente.

Per i materiali si assumono i seguenti pesi specifici:

calcestruzzo armato: $\gamma_{c.a.} = 25 \text{ kN/m}^3;$ sovrastruttura stradale: $\gamma_{ril} = 20 \text{ kN/m}^3;$ massicciata + armamento: $\gamma_b = 18 \text{ kN/m}^3.$

8.1 CONDIZIONI DI CARICO

8.1.1 Peso proprio strutturale (PP)

Il peso proprio delle solette e dei piedritti risulta:

 $\begin{array}{lll} \text{Peso soletta superiore} & P_{ss} = 25.00 \text{ x } 0.50 = & 12.50 \text{ kN/m} \\ \text{Peso soletta inferiore} & P_{si} = 25.00 \text{ x } 0.60 = & 15.00 \text{ kN/m} \\ \text{Peso piedritti} & P_{p} = 25.00 \text{ x } 0.50 = & 12.50 \text{ kN/m} \\ \text{Peso setto centrale} & P_{sc} = 25.00 \text{ x } 0.00 = & 0.00 \text{ kN/m} \\ \end{array}$

8.1.2 Carichi permanenti portati (PERM)

8.1.2.1 Soletta superiore

Ballast e armamento	0. m	X	18.00 kN/mc =	17.10 kN/mq
Sovralzo per linee in curva	0.00m	X	20.00 kN/mc =	0.00 kN/mq
Sub-ballast	0.m	X	20.00 kN/mc =	0.00 kN/mq
Supercompattato	0.00m	x	20.00 kN/mc =	0.00 kN/mq
Rinterro	0.00m	x	20.00 kN/mc =	0.00 kN/mq
Massetto impermeabilizzazione	0.00m	X	25.00 kN/mc =	0.00 kN/mq

Peso totale permanenti portati sulla soletta superiore:

$$P_{ps} = 17.10 \text{ kN/m}$$

Inoltre si considera, come carico concentrato nei nodi di connessione tra la soletta superiore e i piedritti, il carico permanente dovuto al peso della zona sovrastante la metà dello spessore del piedritto (la modellazione dello scatolare è stata fatta in asse piedritto):

Peso ricoprimento per metà spessore piedritto $P_{ps_p} = 4.28$ kN

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
	Progetto	Lotto	Codifica	
	IN17	11	EI2CLIN040X001	В

8.1.2.2 Soletta inferiore

Sulla soletta inferiore sono stati considerati i carichi permanenti relativi alla sovrastruttura ciclopedonale:

Spessore medio sovrastruttura ciclopedonale

Peso specifico sovrastruttura ciclopedonale

18.0 kN/m³

Peso sovrastruttura stradale

9.00 kN/m

8.1.3 Spinta del terreno (SPTSX e SPTDX)

La struttura è stata analizzata nella condizione di spinta a riposo.

 $K_0 = 0.384$

La pressione del terreno è stata calcolata come:

 $P = (P_b + h_{variabile}^* \gamma_{terreno piedritto})^* K_o$

al di sopra della falda

 $P = [P_b + \ h_{variabile} * (\gamma_{terreno_piedritto} - \gamma_w)] * \ K_o$

al di sotto della falda

per cui risulta quanto segue.

Pressione estradosso soletta superiore	$P_1 =$	6.57	kN/m
Pressione in asse soletta superiore	$P_2 =$	8.49	kN/m
Pressione in asse soletta inferiore	$P_3 =$	36.55	kN/m
Pressione intradosso soletta inferiore	$P_4 =$	38.86	kN/m

Inoltre sono stati considerati, come carichi concentrati nei nodi della copertura e della fondazione, i contributi delle spinte del terreno esercitate su metà spessore delle soletta di copertura e di fondazione.

Spinta semispessore soletta di copertura $P_{H.t.cop} = 1.88$ kN Spinta semispessore soletta di fondazione $P_{H.t.fond} = 11.31$ kN

Nella figura seguente si riportano i diagrammi di spinta del terreno agenti sui piedritti.

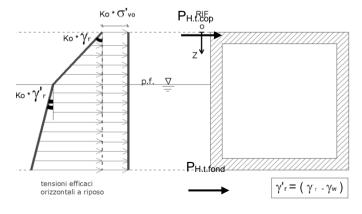


Figura 8.1: SPTSX

GENERAL CONTRACTOR Consorzio IricAV Due Progetto Lotto Codifica IN17 11 EI2CLIN040X001 B

8.1.4 Azioni della falda (SPTW)

La falda è posizionata al di sotto del piano di posa della fondazione e pertanto non interagisce con l'opera in esame.

8.1.5 Azioni termiche (TERM)

Sono stati considerati gli effetti dovuti alle variazioni termiche. In particolare, è stata considerata sulla soletta superiore una variazione termica uniforme di $\pm 15^{\circ}$ C ed una variazione termica nello spessore, tra estradosso ed intradosso, pari a $\Delta T_{v}=\pm 5^{\circ}$ C. Il valore applicato della variazione termica uniforme viene ridotto di 1/3 per considerare gli effetti viscosi del calcestruzzo, ed è quindi pari a $\pm 5^{\circ}$ C. Per il coefficiente di dilatazione termica si assume:

$$\alpha = 10 * 10^{-6} = 0.00001 °C^{-1}$$
.

8.1.6 Ritiro (RITIRO)

Il ritiro viene applicato mediante una variazione termica uniforme della copertura, in grado di produrre la stessa deformazione nel calcestruzzo.

I fenomeni di ritiro sono stati considerati agenti sulla sola soletta di copertura ed applicati nel modello come una variazione termica uniforme equivalente pari a:

$$\Delta T_{ritiro} = -8.77$$
 °C.

Di seguito i risultati delle analisi.

L'analisi delle sollecitazioni viene svolta per una striscia di larghezza unitaria, assumendo la dimensione convenzionale h_0 pari a $2 \times A_c/u$ ed un calcestruzzo 32/40.

Caratteristiche della sezione:

B = 1.00 m

H = 0.50 m

Caratteristiche del cls a tempo zero:

 f_{ck} = 33.20 N/mm² classe del cls

 $f_{cm} = f_{ck} + 8 = 41.20 \text{ N/mm}^2$ resistenza a compressione media

Deformazione da ritiro:

U.R. = 75 % umidità relativa $\varepsilon_{\rm ca}(t=\infty)=$ - 5. 08E-05 ritiro autogeno

 $\varepsilon_{cd}(t=\infty) = -1.88E-04$ ritiro per essiccamento

 $\epsilon_r = \epsilon_{ca} + \epsilon_{cd} = -2.46E-04$

Il ritiro viene considerato nel calcolo delle sollecitazioni come un'azione termica applicata alla soletta superiore di intensità pari a:

GENERAL CONTRACTOR Consorzio Iricav Due Consorzio Iricav Due Progetto IN17 ALTA SORVEGLIANZA Consorzio Iricav Due ALTA SORVEGLIANZA ALTA SORVEGLIANZA ALTA SORVEGLIANZA BILITAL FERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto IN17 11 El2CLIN040X001 B

$$\alpha \times \Delta T \times Ec = \epsilon r \times Ec / (1 + \phi)$$

$$\Delta T = \epsilon r / [\alpha \times (1 + \phi)] = -2.46E-04/[1.00E-05\times (1 + 2.13)] = -8.^{\circ}C$$
 I fenomeni di ritiro vengono considerati agenti solo sulla soletta di copertura.

8.1.7 Azioni variabili da traffico

8.1.7.1 Coefficiente di incremento dinamico

Per il calcolo del coefficiente dinamico Φ si è fatto riferimento al paragrafo 2.5.1.4.2.5 del MdP RFI DTC SI PS MA IFS 001 C, tenendo conto di quanto riportato nella Tabella 2.5.1.4.2.5.3-1. In particolare, poiché la struttura ha altezza libera < 5.0m e luce libera <8.0m, considerando la linea con elevato standard manutentivo, vale quanto segue:

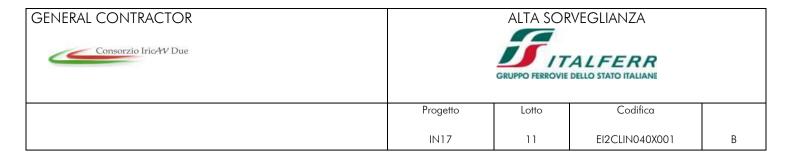
Lunghezza del trasverso	$L_{\text{soletta}} =$	3.00 m
Altezza dei piedritti	$H_{\text{int}} =$	3.10 m
Ricoprimento	$h_r =$	0.95 m
Lunghezza media	$L_m =$	3.07 m
Lunghezza caratteristica	$L_\Phi =$	3.99
Coeff. incremento dinamico	$\varnothing_2 =$	1.20

In accordo alla normativa tale coefficiente dinamico non verrà ridotto in quanto il ricoprimento è inferiore ad un metro.

8.1.7.2 Larghezza di diffusione

Il sovraccarico ferroviario è stato distribuito dalla rotaia alla quota del piano medio della soletta di copertura assumendo che detta diffusione avvenga con rapporto 4/1 lungo il ballast ed 1/1 nel massetto delle pendenze e nelle strutture in c.a., con un aumento dell'impronta di carico pari a:

$$\Delta_{\rm d} = 0.39$$
 m


La diffusione del carico in senso trasversale all'asse binario risulta dunque pari a:

$$L_d = 2.40 + 2 \Delta d = 3.18 \text{ m}$$

8.1.7.3 Treno LM71 (ACCM_LM71)

Carichi verticali sulla soletta superiore

Il treno LM71 viene schematizzato da 4 assi da 250 kN disposti ad interasse di 1,60 m e da un carico distribuito di 80 kN/m in entrambe le direzioni per una larghezza illimitata.

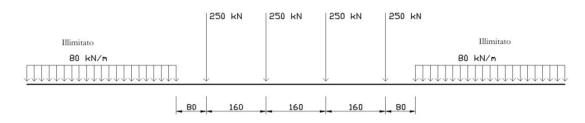


Figura 8.2: Treno LM71

La larghezza di diffusione in direzione longitudinale, considerando una larghezza della traversina pari a 0.30 m, risulta pari a:

$$L_{l} = 0.30 + 2 \times \Delta_{d} = 1.08 \text{ m}$$

Poiché la larghezza è minore dell'interasse degli assi (1.6m), le larghezze di diffusione dei singoli assi non si sovrappongono..

Si assume una lunghezza totale di diffusione dei quattro carichi concentrati:

$$L_1 = 5.58 \text{ m}.$$

Pertanto il carico ripartito dovuto al treno LM71 (considerando il coefficiente di adattamento α =1.1 ed il coefficiente dinamico Φ) risulta:

Carico ripartito prodotto dalle forze concentrate $P_{V,Q1,cop} = 74.57 \text{ kN/m}$ Carico ripartito prodotto dal carico distribuito $P_{V,Q2,cop} = 33.26 \text{ kN/m}$

Considerando che lo scatolare ha una larghezza inferiore a 6.40 m, il carico dovuto al treno LM71 viene distribuito per tutta la larghezza dello scatolare.

8.1.7.4 Treno SW/2 (ACCM_SW2)

Carichi verticali sulla soletta superiore

Tale carico schematizza gli effetti statici prodotti dal traffico ferroviario pesante. Viene schematizzato da un carico lineare uniformemente ripartito di valore pari a 150 kN/m (coefficiente α =1.0):

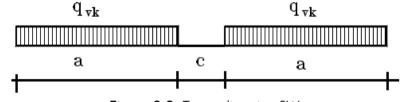


Figura 8.3: Treno di carico SW

Per la struttura scatolare in oggetto risulta:

$$q = q_{vk} / L_{d1} \times \phi = 56.69 \text{ kN/m}$$

Si considera il treno di carico SW/2 applicato su tutta la soletta superiore.

GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Progetto Lotto Codifica IN17 11 EI2CLIN040X001 B

8.1.7.5 Frenatura e avviamento (AVV e FREN)

Le forze di frenatura e di avviamento agiscono sulla sommità del binario nella direzione longitudinale.

Treno LM71

Avviamento $A_v = 33 \text{ kN/m}$

Carico distribuito su La:

 $q_{Av} = A_v \alpha / L_d = 11.43 \text{ kN/m}$

Treno SW/2

Frenatura $A_v = 35 \text{ kN/m}$

Carico distribuito su Ld:

 $q_{Av} = A_v \alpha / L_d = 10.39 \text{ kN/m}$

Inoltre sono state aggiunte, come carichi concentrati nei nodi della soletta di copertura, le seguenti forze:

Spinta semispessore soletta di copertura (avviamento) $Q_{aNODO} = 0.86 \text{ kN}$ Spinta semispessore soletta di copertura (frenatura) $Q_{fNODO} = 0.69 \text{ kN}$

Nel modello di calcolo si considera l'azione congruente al treno di carico verticale considerato. La spinta è applicata da sinistra verso destra per massimizzare gli effetti di sbilanciamento della struttura.

8.1.7.6 Spinta del sovraccarico sul rilevato (SPACCSX e SPACCDX)

Treno LM71

Si è considerata la sola spinta prodotta dal carico ripartito equivalente alle forze concentrate.

 $P_{H.Q.ritti} = (P_{V.Q1.cop} / \Phi) K_0 =$ 23.88 kN/m

Anche in questo caso, sono stati aggiunti, come carichi concentrati nei nodi della copertura e della fondazione per la spinta sul piedritto sinistro e per la spinta sul piedritto destro, le seguenti forze:

 $\begin{array}{lll} \text{Spinta semispessore soletta di copertura} & P_{\text{H.Q.cop}} = & 5.97 & \text{kN} \\ \text{Spinta semispessore soletta di fondazione} & P_{\text{H.Q.fond}} = & 7.17 & \text{kN} \\ \end{array}$

Treno SW/2

 $P_{H.Q.ritti} = (q_{sw/2} / \Phi) K_0 = 18.16 \text{ kN/m}$

Anche in questo caso, sono stati aggiunti, come carichi concentrati nei nodi della copertura e della fondazione, le seguenti forze:

Spinta semispessore soletta di copertura $P_{H.Q.cop} = 4.54$ kN Spinta semispessore soletta di fondazione $P_{H.Q.fond} = 5.45$ kN

8.1.7.7 Serpeggio (SERP)

La forza laterale indotta dal serpeggio si considera come una forza concentrata agente orizzontalmente, applicata alla sommità della rotaia più alta, perpendicolarmente all'asse del binario. Tale azione si applicherà sia in rettifilo che in curva. Il valore caratteristico di tale forza sarà assunto pari a a Q_{sk} =100 kN e la componente trasversale allo scatolare risulta:

GENERAL CONTRACTOR Consorzio IricAV Due Progetto Lotto Codifica IN17 11 EI2CLIN040X001 B

 $Q_{\perp}=100$ kN* sen $(0.00^{\circ})=0.00$ kN Considerando la diffusione del carico, si avrà: $q_{serp}=Q_{\perp}/(L_d*L_{tot})=0.00$ kN/m².

8.1.7.8 Sovraccarichi accidentali sulla soletta di fondazione (ACC_SOLINF)

Si applica un carico uniformemente distribuito pari a 5 kPa (folla compatta).

8.1.7.9 Forza centrifuga

Non presentando i binari un tracciato in curva in corrispondenza del sottovia, la forza centrifuga non è stata considerata.

8.1.7.10 Sghembo

Trattandosi di opere scatolari non si attendono deformazioni torsionali dell'impalcato e non è necessario alcun accorgimento nei confronti dello sghembo.

8.1.8 Azioni sismiche

8.1.8.1 Forze di inerzia:

Per il calcolo dell'azione sismica si è utilizzato il metodo dell'analisi pseudo-statica in cui l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico k.

Le forze sismiche sono pertanto le seguenti:

Forza sismica orizzontale $F_h = k_h \times W$ Forza sismica verticale $F_v = k_v \times W$

I valori dei coefficienti sismici orizzontale k_h e verticale k_v possono essere valutati mediante le espressioni:

$$\begin{aligned} k_h &= a_{max}/g \\ k_v &= \pm \ 0.5 \times k_h \end{aligned}$$

Gli effetti dell'azione sismica sono stati valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$G_1 + G_2 + \psi_{2j} Q_{kj}$$

Dove nel caso specifico si assumerà, per i carichi dovuti al transito dei convogli ferroviari, $\psi_{2\,i}=0.2$. Come massa del treno è stato considerato il carico uniformemente distribuito sulla copertura di intensità maggiore tra LM71 e SW/2.

Pertanto avremo che:

Massa associata al peso proprio copertura	$G_1 =$	12.50	kN/m
Massa associata al carico permanente	$G_2 =$	17.10	kN/m
Massa treno	$Q_k =$	74.57	kN/m
Massa associata al peso proprio piedritti	$G_3 =$	12.50	kN/m
Massa associata al peso del setto centrale	$G_4 =$	0.00	kN/m

8.1.8.2 Forze sismiche orizzontali (SISMA H)

Forza orizzontale sulla soletta. di copertura (carico orizzontale uniformemente distribuito applicato alla soletta di copertura):

$$F'_h = k_h (G_1 + G_2 + \psi_{2j} Q_{kj}) = 13.31 \text{ kN/m}$$

Forza orizzontale sui piedritti (carico orizzontale uniformemente distribuito applicato ai piedritti):

$$F''_h = k_h G_p = 3.74 \text{ kN/m}$$

8.1.8.3 Forze sismiche verticali (SISMA V)

Per la forza sismica verticale avremo analogamente (carico verticale uniformemente distribuito applicato alla soletta di copertura):

Forza verticale sulla soletta di copertura:

$$F'_{v} = k_{v} (G_1 + G_2 + \psi_{2j} Q_{kj}) = 6.65 \text{ kN/m}$$

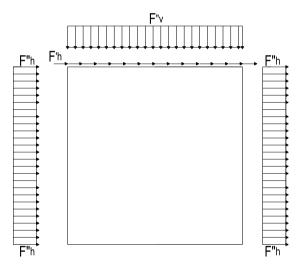


Figura 8.4: Forze sismiche agenti sulla struttura

8.1.8.4 Spinta delle terre in fase sismica (SPSDX e SPSSX)

Le spinte delle terre sono state determinate con la teoria di Wood, secondo la quale la risultante dell'incremento di spinta per effetto del sisma su una parete di altezza H viene determinata con la seguente espressione:

$$\Delta S_E = (a_{max}/g) \cdot \gamma \cdot H^2 = 105.5 \text{ kN/m}$$

con risultante applicata ad un'altezza pari ad H/2.

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
	Progetto	Lotto	Codifica	
	IN17	11	EI2CLIN040X001	В

Sisma proveniente da sinistra

Sisma proveniente da destra

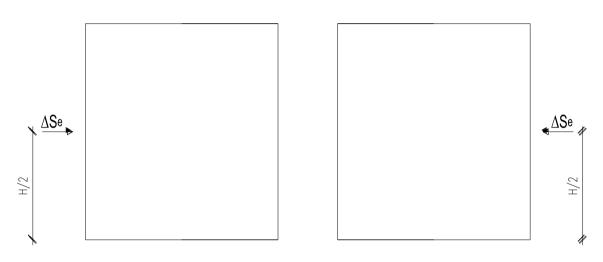


Figura 3.5: Spinta sismica del terreno secondo la teoria di Wood

Nel modello di calcolo si è applicato il valore della forza sismica per unità di superficie agente su un piedritto, pari a:

$$\Delta s_F = \Delta s_F / H = 25.1 \text{ kN/m}^2$$

8.2 COMBINAZIONI DI CARICO

Ai fini delle verifiche degli stati limite si è fatto riferimento alle seguenti combinazioni delle azioni.

Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:

$$G_1 \, + \, G_2 + \, P \, + \, Q_{k1} \, + \, \psi_{02} {\cdot} Q_{k2} \, + \, \psi_{03} {\cdot} Q_{k3} + \, \dots$$

Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione quasi permanente, generalmente impiegata per gli stati limite di esercizio (SLE) a lungo termine:

$$G_1 + G_2 + P + \, \psi_{21} \cdot Q_{k1} \, + \, \psi_{22} \cdot Q_{k2} \, + \, \psi_{23} \cdot Q_{k3} \, + \, \dots$$

Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:

$$E\,+\,G_1\,+\,G_2\,+\,P\,+\,\psi_{21}{\cdot}Q_{k1}\,+\,\psi_{22}{\cdot}Q_{k2}\,+\,\dots$$

Dove:

$$E = \pm 1.00 \text{ x } E_Y \pm 0.3 \text{ 0 x } E_Z \text{ oppure}$$
 $E = \pm 0.30 \text{ x } E_Y \pm 1.00 \text{ x } E_Z$

avendo indicato con E_Y e E_Z rispettivamente le componenti orizzontale e verticale dell'azione sismica. Gli effetti dei carichi verticali, dovuti alla presenza dei convogli, vengono sempre combinati con le altre azioni derivanti dal traffico ferroviario, adottando i coefficienti di cui alla Tabella 5.2.IV del DM

14/01/2008 di seguito riportata. In particolare, per ogni gruppo viene individuata una azione dominante che verrà considerata per intero; per le altre azioni, vengono definiti diversi coefficienti di combinazione. Ogni gruppo massimizza una particolare condizione alla quale la struttura dovrà essere verificata.

Tabella 5.2.IV – Valutazione dei carichi da traffico (da DM 14/01/2008)

TIPO DI CARICO	Azioni vertic	cali	Azioni orizzonto	ali		
Gruppo di carico	Carico Verticale (1)	Treno Scarico	Frenatura ed Avviamento	Centrifuga	Serpeggio	COMMENTI
Gruppo 1 (2)	1.0	-	0.5 (0.0)	1.0 (0.0)	1.0 (0.0)	massima azione verticale e laterale
Gruppo 2 (2)	1	1.0	0.0	1.0 (0.0)	1.0 (0.0)	stabilità laterale
Gruppo 3 (2)	1.0 (0.5)	ı	1.0	0.5 (0.0)	0.5 (0.0)	massima azione longitudinale
Gruppo 4	0.8 (0.6; 0.4)	-	0.8 (0.6; 0.4)	0.8 (0.6; 0.4)	0.8 (0.6; 0.4)	fessurazione
D.		Azione do	minante			

- (1) Includendo tutti i fattori ad essi relativi (Φ , α , ecc...)
- (2) La simultaneità di due o tre valori caratteristici interi (assunzione di diversi coefficienti pari ad 1), sebbene improbabile, è stata considerata come semplificazione per i gruppi di carico 1, 2, 3 senza che ciò abbia significative conseguenze progettuali.

Nelle tabelle sopra riportate è indicato un coefficiente per gli effetti a sfavore di sicurezza e, tra parentesi, un coefficiente, minore del precedente, per gli effetti a favore di sicurezza.

l coefficienti di amplificazione dei carichi γ e i coefficienti di combinazione ψ sono riportati nelle tabelle sequenti.

In particolare nel calcolo della struttura scatolare si è fatto riferimento alla combinazione A1 STR.

Di seguito viene riportata la Tabella 5.2.III delle NTC08 dove si mostrano i carichi mobili in funzione del numero di binari presenti:

Numero	Binari	Traffico	normale	T (0)
di binari	Carichi	caso a ⁽¹⁾	caso b(1)	Traffico pesante ⁽²⁾
1	Primo	1,0 (LM 71"+"SW/0)	-	1,0 SW/2
	Primo	1,0 (LM 71"+"SW/0)	-	1,0 SW/2
2	secondo	1,0 (LM 71"+"SW/0)	-	1,0 (LM 71"+"SW/0)
	Primo	1,0 (LM 71"+"SW/0)	0,75 (LM 71"+"SW/0)	1,0 SW/2
≥3	secondo	1,0 (LM 71"+"SW/0)	0,75 (LM 71"+"SW/0)	1,0 (LM 71"+"SW/0)
23	Altri	-	0,75 (LM 71"+"SW/0)	-

⁽¹⁾ LM71 ''+'' SW/0 significa considerare il più sfavorevole fra i treni LM 71, SW/0

Si ripota la Tabella 5.2.V delle NTC08 dei coefficienti parziali di sicurezza per le combinazioni di carico SLU:

Tabella 5.2.V – Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU, eccezionali e sismica (da DM 14/01/2008)

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO	Combinazione eccezionale	Combinazione Sismica
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00	1,00 1,00	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30	1,00 1,00	1,00 1,00
Ballast ⁽³⁾	favorevoli sfavorevoli	γв	0,90 1,50	1,00 1,50	1,00 1,30	1,00 1,00	1,00 1,00
Carichi variabili da traffico ⁽⁴⁾	favorevoli sfavorevoli	γQ	0,00 1,45	0,00 1,45	0,00 1,25	0,00 0,20 ⁽⁵⁾	0,00 0,20 ⁽⁵⁾
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30	0,00 1,00	0,00 0,00
Precompressione	favorevole sfavorevole	γP	0,90 1,00 ⁽⁶⁾	1,00 1,00 ⁽⁷⁾	1,00 1,00	1,00 1,00	1,00 1,00

- (1) Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.
- (2) Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.
- (3) Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente nelle verifiche.
- (4) Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr della Tab. 5.2.IV.
- (5) Aliquota di carico da traffico da considerare.

⁽²⁾Salvo i casi in cui sia esplicitamente escluso

GENERAL CONTRACTOR Consorzio IricAV Due		1517	EVEGLIANZA CALFERR DELLO STATO ITALIANE	
	Progetto	Lotto	Codifica	
	IN17	11	EI2CLIN040X001	В

- (6) 1,30 per instabilità in strutture con precompressione esterna
- (7) 1,20 per effetti locali

Si riporta la Tabella 5.2.VI delle NTC08 in cui sono espressi i coefficienti di combinazione delle azioni:

Tabella 5.2.VI - Coefficienti di combinazione ψ delle azioni (da DM 14/01/2008)

Tab. 5.2.VI - Coefficienti di combinazione Ψ delle azioni

Azioni		Ψο	ψ,	Ψ 2
Azioni singole	Carico sul rilevato a tergo delle	0,80	0,50	0,0
	spalle			
da traffico	Azioni aerodinamiche generate	0,80	0,50	0,0
	dal transito dei convogli			
	gr_1	0,80(2)	0,80(1)	0,0
Gruppi di	gr_2	0,80(2)	0,80(1)	-
carico	gr_3	0,80(2)	0,80(1)	0,0
	gr_4	1,00	1,00(1)	0,0
Azioni del vento	F_{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	T_{k}	0,60	0,60	0,50

⁽¹⁾0,80 se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

Nella combinazione sismica le azioni indotte dal traffico ferroviario sono combinate con un coefficiente $\psi_2=0.2$ (paragrafo 5.1.3.12 del DM 14/01/2008) coerentemente con l'aliquota di massa afferente ai carichi da traffico.

Si riportano di seguito le combinazioni delle azioni maggiormente significative per la determinazione delle sollecitazioni più gravose.

⁽²⁾Quando come azione di base venga assunta quella del vento, i coefficienti ψ₀ relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

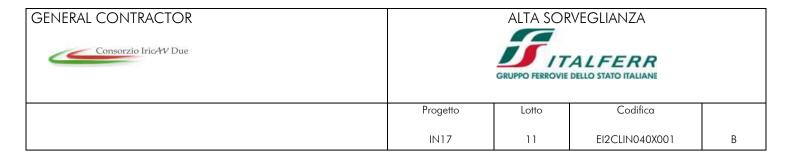


Tabella 2 Combinazioni di carico SLU (01-13)

	SLU01	SLU02	SLU03	SLU04	SLU05	SLU06	SLU07	SLU08	SLU09	SLU10	SLU11	SLU12	SLU13
PP	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1	1.35	1.35	1.35	1.35	1.35
PERM	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1	1.5	1.5	1.5	1.5	1.5
SPTSX	1	1	1	1.35	1.35	1.35	1.35	1.35	1.35	1	1	1	1
SPTDX	1	1	1	1	1.35	1.35	1	1	1	1.35	1.35	1.35	1
SPTW	1	1	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1
ACC_LM71	1.45	1.45	1.45	1.45	1.45	0	1.45	0	1.45	1.45	1.16	1.16	0
ACC_SW2	0	0	0	0	0	0	0	0	0	0	0	0	1.45
SPACCSX_LM71	1.45	0	0	1.45	1.45	1.45	1.45	1.45	1.45	0	1.16	1.16	0
SPACCDX_LM71	0	0	0	0	0	0	0	0	0	1.45	0	0	0
SPACCSX_SW2	0	0	0	0	0	0	0	0	0	0	0	0	1.45
SPACCDX_SW2	0	0	0	0	0	0	0	0	0	0	0	0	0
AVV_LM71	1.45	1.45	1.45	1.45	1.45	0	1.45	0	0	0	0	0	0
FREN_SW2	0	0	0	0	0	0	0	0	0	0	0	0	1.45
SERP	0	0	0	0	0	0	0	0	0	0	0	0	0
TERM	0	-0.9	0	0	0	0	-0.9	0	0.9	-0.9	-1.5	1.5	0
RITIRO	0	1.2	0	0	0	0	0	0	0	1.2	1.2	1.2	0
ACC_SOLINF	0	1.16	0	0	1.16	0	0	0	0	0	0	0	0
SISMA_H	0	0	0	0	0	0	0	0	0	0	0	0	0
SISMA_V	0	0	0	0	0	0	0	0	0	0	0	0	0
SPSSX	0	0	0	0	0	0	0	0	0	0	0	0	0
SPSDX	0	0	0	0	0	0	0	0	0	0	0	0	0

Tabella 3 Combinazioni di carico SLU (14-26)

	SLU14	SLU15	SLU16	SLU17	SLU18	SLU19	SLU20	SLU21	SLU22	SLU23	SLU24	SLU25	SLU26
PP	1.35	1.35	1.35	1.35	1.35	1.35	1	1.35	1.35	1.35	1.35	1.35	1.35
PERM	1.5	1.5	1.5	1.5	1.5	1.5	1	1.5	1.5	1.5	1.5	1.5	1.5
SPTSX	1	1	1.35	1.35	1.35	1.35	1.35	1.35	1	1	1	1.35	1.35
SPTDX	1	1	1	1.35	1.35	1	1	1	1.35	1.35	1.35	1	1
SPTW	1	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35
ACC_LM71	0	0	0	0	0	0	0	0	0	0	0	1.45	0
ACC_SW2	1.45	1.45	1.45	1.45	0	1.45	0	1.45	1.45	1.45	1.45	0	1.45
SPACCSX_LM71	0	0	0	0	0	0	0	0	0	0	0	1.45	0
SPACCDX_LM71	0	0	0	0	0	0	0	0	0	0	0	0	0
SPACCSX_SW2	0	0	1.45	1.45	1.45	1.45	1.45	1.45	0	1.16	1.16	0	1.45
SPACCDX_SW2	0	0	0	0	0	0	0	0	1.45	0	0	0	0
AVV_LM71	0	0	0	0	0	0	0	0	0	0	0	0	0
FREN_SW2	1.45	1.45	1.45	1.45	0	1.45	0	0	0	0	0	0.725	0.725
SERP	0	0	0	0	0	0	0	0	0	0	0	1.45	1.45
TERM	-0.9	0	0	0	0	-0.9	0	0.9	-0.9	-1.5	1.5	0	0
RITIRO	1.2	0	0	0	0	0	0	1.2	1.2	1.2	1.2	0	0
ACC_SOLINF	1.16	0	0	1.16	0	0	0	0	0	0	0	0	0
SISMA_H	0	0	0	0	0	0	0	0	0	0	0	0	0
SISMA_V	0	0	0	0	0	0	0	0	0	0	0	0	0
SPSSX	0	0	0	0	0	0	0	0	0	0	0	0	0
SPSDX	0	0	0	0	0	0	0	0	0	0	0	0	0

Tabella 4 Combinazioni di carico SLV (01-08)

	SLV01	SLV02	SLV03	SLV04	SLV05	SLV06	SLV07	SLV08
PP	1	1	1	1	1	1	1	1
PERM	1	1	1	1	1	1	1	1
SPTSX	1	1	1	1	1	1	1	1
SPTDX	1	1	1	1	1	1	1	1
SPTW	1	1	1	1	1	1	1	1
ACC_LM71	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
ACC_SW2	0	0	0	0	0	0	0	0
SPACCSX_LM71	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
SPACCDX_LM71	0	0	0	0	0	0	0	0
SPACCSX_SW2	0	0	0	0	0	0	0	0
SPACCDX_SW2	0	0	0	0	0	0	0	0
AVV_LM71	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
FREN_SW2	0	0	0	0	0	0	0	0
SERP	0	0	0	0	0	0	0	0
TERM	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5
RITIRO	1	1	1	1	1	1	1	1
ACC_SOLINF	0	0	0	0	0	0	0	0
SISMA_H	1	1	-1	-1	0.3	0.3	-0.3	-0.3
SISMA_V	0.3	-0.3	0.3	-0.3	1	-1	1	-1
SPSSX	1	1	0	0	0.3	0.3	0	0
SPSDX	0	0	1	1	0	0	0.3	0.3

Tabella 5 Combinazioni di carico SLV (09-16)

	SLV09	SLV10	SLV11	SLV12	SLV13	SLV14	SLV15	SLV16
PP	1	1	1	1	1	1	1	1
PERM	1	1	1	1	1	1	1	1
SPTSX	1	1	1	1	1	1	1	1
SPTDX	1	1	1	1	1	1	1	1
SPTW	1	1	1	1	1	1	1	1
ACC_LM71	0	0	0	0	0	0	0	0
ACC_SW2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
SPACCSX_LM71	0	0	0	0	0	0	0	0
SPACCDX_LM71	0	0	0	0	0	0	0	0
SPACCSX_SW2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
SPACCDX_SW2	0	0	0	0	0	0	0	0
AVV_LM71	0	0	0	0	0	0	0	0
FREN_SW2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
SERP	0	0	0	0	0	0	0	0
TERM	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5
RITIRO	1	1	1	1	1	1	1	1
ACC_SOLINF	0	0	0	0	0	0	0	0
SISMA_H	1	1	-1	-1	0.3	0.3	-0.3	-0.3
SISMA_V	0.3	-0.3	0.3	-0.3	1	-1	1	-1
SPSSX	1	1	0	0	0.3	0.3	0	0
SPSDX	0	0	1	1	0	0	0.3	0.3

Tabella 6 Combinazioni di carico SLE

	SLE_RARA01	SLE_RARA02	SLE_RARA03	SLE_RARA04	SLE_RARA05	SLE_RARA06	SLE_RARA07	SLE_RARA08	SLE_FREQ01	SLE_FREQ02	SLE_QPERM01
PP	1	1	1	1	1	1	1	1	1	1	1
PERM	1	1	1	1	1	1	1	1	1	1	1
SPTSX	1	1	1	1	1	1	1	1	1	1	1
SPTDX	1	1	0.8	1	1	0.8	0.8	0.8	0.8	0.8	1
SPTW	1	1	1	1	1	1	1	1	1	1	1
ACC_LM71	0.8	0.8	0.8	0	0	0	1	0	0.8	0	0
ACC_SW2	0	0	0	0.8	0.8	0.8	0	1	0	0.8	0
SPACCSX_LM71	0.8	0.8	0.8	0	0	0	1	0	0.8	0	0
SPACCDX_LM71	0.8	0.8	0	0	0	0	0	0	0	0	0
SPACCSX_SW2	0	0	0	0.8	0.8	0.8	0	1	0	0.8	0
SPACCDX_SW2	0	0	0	0.8	0.8	0	0	0	0	0	0
AVV_LM71	-0.8	0.8	0.8	0	0	0	0	0	0.4	0.4	0
FREN_SW2	0	0	0	-0.8	0.8	0.8	0.5	0.5	0	0	0
SERP	0	0	0	0	0	0	1	1	0.8	0.8	0
TERM	-0.6	0.6	-0.6	-0.6	0.6	-0.6	-0.6	-0.6	-0.5	-0.5	0
RITIRO	0	0	1	0	0	1	0	0	0	0	0
ACC_SOLINF	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0
SISMA_H	0	0	0	0	0	0	0	0	0	0	0
SISMA_V	0	0	0	0	0	0	0	0	0	0	0
SPSSX	0	0	0	0	0	0	0	0	0	0	0
SPSDX	0	0	0	0	0	0	0	0	0	0	0

9 CRITERI DI VERIFICA STRUTTURALI

Le verifiche di sicurezza strutturali sono state effettuate sulla base dei criteri definiti nelle vigenti norme tecniche - "Norme Tecniche per le Costruzioni"- DM 14.1.2008 -, tenendo inoltre conto delle integrazioni riportate nel "Manuale di progettazione delle opere civili".

In particolare vengono effettuate le verifiche agli stati limite di servizio, riguardanti gli stati tensionale e di fessurazione, ed allo stato limite ultimo. Le combinazioni di carico considerate ai fini delle verifiche sono quelle indicate nei precedenti paragrafi.

Si espongono di seguito i criteri di verifica adottati per le verifiche degli elementi strutturali in c.a..

9.1 VERIFICA AGLI STATI LIMITE DI ESERCIZIO

9.1.1 Verifica a fessurazione

Le verifiche a fessurazione sono eseguite adottando i criteri definiti nel paragrafo 4.1.2.2.4.5 del DM 14.1.2008, tenendo inoltre conto delle ulteriori prescrizioni riportate nel "Manuale di progettazione delle opere civili RFI".

Con riferimento alle classi di esposizione delle varie parti della struttura (si veda il paragrafo relativo alle caratteristiche dei materiali impiegati), alle corrispondenti condizioni ambientali ed alla sensibilità delle armature alla corrosione (armature sensibili per gli acciai da precompresso; poco sensibili per gli acciai ordinari), si individua lo stato limite di fessurazione per assicurare la funzionalità e la durata delle strutture, in accordo con il DM 14.1.2008:

Le verifiche a fessurazione sono eseguite adottando i criteri definiti nel paragrafo 4.1.2.2.4.5 del DM 14.1.2008.

Con riferimento alle classi di esposizione delle varie parti della struttura (si veda il paragrafo relativo alle caratteristiche dei materiali impiegati), alle corrispondenti condizioni ambientali ed alla sensibilità delle armature alla corrosione (armature sensibili per gli acciai da precompresso; poco sensibili per gli acciai ordinari), si individua lo stato limite di fessurazione per assicurare la funzionalità e la durata delle strutture, in accordo con il DM 14.1.2008:

Communit di	Condizioni	Combinazione	Armatura							
Gruppi di esigenze	ambientali	di azioni	Sensibile		Poco sensibile					
esigenze	amorentan	di azioni	Stato limite	Wd	Stato limite	Wd				
	Ordinarie	frequente	ap. fessure	$\leq w_2$	ap. fessure	≤ w ₃				
a	Ordinarie	quasi permanente	ap. fessure	$\leq \mathbf{w}_1$	ap. fessure	$\leq w_2$				
	Λ	frequente	ap. fessure	$\leq w_1$	ap. fessure	$\leq w_2$				
ь	Aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$				
	Malta agreeative	frequente	formazione fessure	-	ap. fessure	$\leq w_1$				
С	Molto aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$				

Figura 4.1: Criteri di scelta dello stato limite di fessurazione - Tabella 4.1.IV del DM 14.1.2008

Nella Tabella sopra riportata, $w_1=0.2$ mm, $w_2=0.3$ mm; $w_3=0.4$ mm.

GENERAL CONTRACTOR Consorzio IricAV Due Progetto IN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA ALTA SORVEGLIANZA ALTA SORVEGLIANZA 11 El2CLIN040X001 B

Più restrittivi risultano i limiti di apertura delle fessure riportati nel "Manuale di progettazione delle opere civili". L'apertura convenzionale delle fessure, calcolata con la combinazione caratteristica (rara) per gli SLE, deve risultare:

- a) δ_f ≤ w₁ per strutture in condizioni ambientali aggressive e molto aggressive, così come identificate nel par. 4.1.2.2.4.3 del DM 14.1.2008, per tutte le strutture a permanente contatto con il terreno e per le zone non ispezionabili di tutte le strutture;
- b) δ_f ≤ w₂ per strutture in condizioni ambientali ordinarie secondo il citato paragrafo del DM 14.1.2008.

Si assume pertanto per tutti gli elementi strutturali analizzati nel presente documento:

• Stato limite di fessurazione: $w_d \le w_1 = 0.2 \text{ mm}$ - combinazione di carico rara

In accordo con la normativa seguita, il valore di calcolo di apertura delle fessure w_d è dato da:

$$w_d = 1.7 w_m$$

dove w_m rappresenta l'ampiezza media delle fessure calcolata come prodotto della deformazione media delle barre d'armatura ϵ_{sm} per la distanza media tra le fessure Δ_{sm} :

$$w_m = \epsilon_{sm} \, \Delta_{sm}$$

Per il calcolo di ε_{sm} e Δ_{sm} vanno utilizzati i criteri consolidati riportati nella letteratura tecnica.

9.1.2 Verifica delle tensioni in esercizio

Valutate le azioni interne nelle varie parti della struttura, dovute alle combinazioni caratteristica e quasi permanente delle azioni, si calcolano le massime tensioni sia nel calcestruzzo sia nelle armature; si verifica che tali tensioni siano inferiori ai massimi valori consentiti, di seguito riportati. Le prescrizioni riportate di seguito fanno riferimento al par. 2.5.1.8.3.2.1 del "Manuale di progettazione delle opere civili".

La massima tensione di compressione del calcestruzzo σ c, deve rispettare la limitazione seguente:

 $\sigma_c < 0.55 \; f_{ck}$ per combinazione caratteristica (rara)

 $\sigma_c < 0.40 \; f_{ck}$ per combinazione quasi permanente.

Per l'acciaio ordinario, la tensione massima σ s per effetto delle azioni dovute alla combinazione caratteristica deve rispettare la limitazione seguente:

$$\sigma_{\rm s} < 0.75 \, \rm f_{\rm vk}$$

dove f_{vk} per armatura ordinaria è la tensione caratteristica di snervamento dell'acciaio.

9.2 VERIFICA AGLI STATI LIMITE ULTIMI

9.2.1 Sollecitazioni flettenti

La verifica di resistenza (SLU) è stata condotta attraverso il calcolo dei domini di interazione N-M, ovvero il luogo dei punti rappresentativi di sollecitazioni che portano in crisi la sezione di verifica secondo i criteri di resistenza da normativa.

Nel calcolo dei domini sono state mantenute le consuete ipotesi, tra cui:

- conservazione delle sezioni piane;
- legame costitutivo del calcestruzzo parabola-rettangolo non reagente a trazione, con plateaux ad una deformazione pari a 0.002 e a rottura pari a 0.0035 ($\sigma_{max} = 0.85 \times 0.83 \times R_{ck}/1.5$);
- legame costitutivo dell'armatura d'acciaio elastico-perfettamente plastico con deformazione limite di rottura a 0.01 ($\sigma_{max} = f_{vk} / 1.15$)

9.2.2 Sollecitazioni taglianti

La resistenza a taglio V_{Rd} di elementi sprovvisti di specifica armatura è stata calcolata sulla base della resistenza a trazione del calcestruzzo.

Con riferimento all'elemento fessurato da momento flettente, la resistenza al taglio si valuta con:

$$V_{Rd} = \left\{ 0.18 \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck})^{1/3} / \gamma_c + 0.15 \cdot \sigma_{cp} \right\} \cdot b_w \cdot d \ge (v_{min} + 0.15 \cdot \sigma_{cp}) \cdot b_w d$$

con:

$$\begin{array}{l} k = 1 \, + \, (200/d)^{1/2} \leq 2 \\ v_{min} = \, 0,035 k^{3/2} \, f_{ck}^{-1/2} \end{array}$$

e dove:

d è l'altezza utile della sezione (in mm);

 $\rho_1 = A_{sl}/(b_w \times d)$ è il rapporto geometrico di armatura longitudinale ($\leq 0,02$);

 $\sigma_{cp} = N_{Ed}/A_c$ è la tensione media di compressione nella sezione ($\leq 0,2 f_{cd}$);

b_w è la larghezza minima della sezione (in mm).

La resistenza a taglio V_{Rd} di elementi strutturali dotati di specifica armatura a taglio deve essere valutata sulla base di una adeguata schematizzazione a traliccio. Gli elementi resistenti dell'ideale traliccio sono: le armature trasversali, le armature longitudinali, il corrente compresso di calcestruzzo e i puntoni d'anima inclinati. L'inclinazione θ dei puntoni di calcestruzzo rispetto all'asse della trave deve rispettare i limiti seguenti:

GENERAL CONTRACTOR Consorzio Iric/AV Due Consorzio Iric/AV Due Progetto Lotto Codifica IN17 11 EI2CLIN040X001 B

La verifica di resistenza (SLU) si pone con:

 $V_{Rd} \ge V_{Ed}$

dove V_{Ed} è il valore di calcolo dello sforzo di taglio agente.

Con riferimento all'armatura trasversale, la resistenza di calcolo a "taglio trazione" è stata calcolata con:

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot \sin\alpha$$

Con riferimento al calcestruzzo d'anima, la resistenza di calcolo a "taglio compressione" è stata calcolata con:

$$V_{\text{Rcd}} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot f'_{\text{cd}} \cdot (\text{ctg}\alpha + \text{ctg}\theta) / (1 + \text{ctg}^2\theta)$$

La resistenza al taglio della trave è la minore delle due sopra definite:

$$V_{Rd} = min (V_{Rsd}, V_{Rcd})$$

In cui:

d è l'altezza utile della sezione;

b_w è la larghezza minima della sezione;

s_{cp} è la tensione media di compressione della sezione;

A_{sw} è l'area dell'armatura trasversale;

S è interasse tra due armature trasversali consecutive;

 θ è l'angolo di inclinazione dell'armatura trasversale rispetto all'asse della trave;

 f'_{cd} è la resistenza a compressione ridotta del calcestruzzo d'anima ($f'_{cd}=0.5f_{cd}$);

 α è un coefficiente maggiorativo, pari ad 1 per membrature non compresse.

GENERAL CONTRACTOR Consorzio Iric/4V Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica IN17 11 EI2CLIN040X001 B				
	Progetto	Lotto	Codifica		
	IN17	11	EI2CLIN040X001	В	

10 MODELLAZIONE STRUTTURALE

10.1 CODICE DI CALCOLO

L' analisi della struttura scatolare è stata condotta con un programma agli elementi finiti (STRAUS7) facendo riferimento agli assi baricentrici degli elementi schematizzati con elementi "beam" .

10.2 MODELLO DI CALCOLO

Le analisi sono state condotte per una striscia di struttura di lunghezza unitaria, implementando un modello di calcolo bidimensionale in condizioni di deformazione piana. La struttura è definita sulla base degli assi baricentrici degli elementi. La fondazione è schematizzata come una trave su suolo elastico alla Winkler non reagente a trazione, il calcolo della costante di sottofondo è riportata nel paragrafo 10.3.

Lo schema statico della struttura e la relativa numerazione dei nodi e delle aste sono riportati nelle seguenti figure.

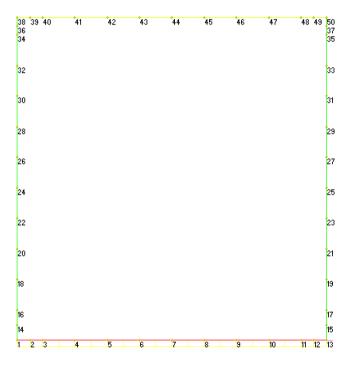


Figura 5.1: Modello F.E.M struttura - numerazione nodi

GENERAL CONTRACTOR Consorzio Iric/AV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
	Progetto	Lotto	Codifica	
	IN17	11	EI2CLIN040X001	В

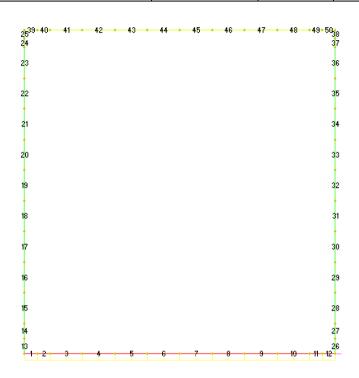


Figura 6: Modello F.E.M. struttura – numerazione aste

10.3 INTERAZIONE TERRENO-STRUTTURA

L'interazione struttura-terreno è simulata mediante l'applicazione sugli elementi interessati di un sistema di molle alla Winkler, definite assumendo cautelativamente un modulo di reazione verticale K_v pari a 20000 kN/m³: il calcolo della costante di Winkler è stato condotto applicando il procedimento proposto da Vesic e riportato da Bowles nel testo "Fondazioni", secondo la seguente formulazione:

$$k_s = \frac{E}{B(1 - \mu^2)I_sI_F}$$

dove:

E = modulo elastico medio dello spessore di terreno sottostante la fondazione;

B = larghezza della fondazione;

μ = coefficiente di Poisson del terreno di fondazione, assunto pari a 0.3.

Il valore del coefficiente di influenza $I_{\rm s}$ è stato calcolato attraverso la seguente equazione:

$$I_S = I_1 + \frac{1 - 2\mu}{1 - \mu} I_2$$

dove:

 I_1 e I_2 = coefficienti dipendenti dai rapporti H/B' e L/B;

H = spessore dello strato compressibile, pari a 5B;

B' = larghezza corrispondente al punto di calcolo assunto coincidente con il centro della fondazione, pari a B/2.

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
	Progetto	Lotto	Codifica	
	IN17	11	EI2CLIN040X001	В

Il valore del coefficiente di influenza IF è stato estrapolato in funzione dei valori dei rapporti L/B e D/B.

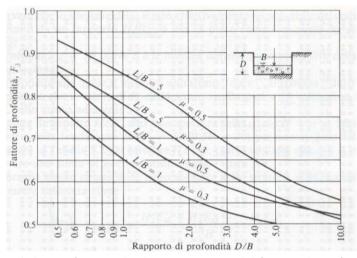


Figura 10.3: Grafico per la determinazione del fattore di profondità $F_{\mbox{\tiny S}}$

Le tabelle seguenti riportano le grandezze caratteristiche dell'opera.

Larghezza	Profondità	Lunghezza	Modulo
fondazione - B	fondazione - D	fondazione - L	elastico - E _s
(m)	(m)	(m)	(kPa)
4	4.2	14.7	30000

D/B	L/B	H/B'
1.05	3.68	2.50

Н	μ
20.0	0.3

La tabella seguente riporta i parametri I_1 , I_2 , I_S e I_F .

I ₁	l ₂	Is	I _f
0.343	0.124	0.414	0.75

La tabella seguente riassume il valore calcolato della costante di sottofondo (k_s) e il valore assunto nei calcoli strutturali successivi.

k _s (daN/cm ³)	k _{s-assunto} (daN/cm ³)
2.6537	2.0000

GENERAL CONTRACTOR Consorzio Iric/W Due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
	Progetto	Lotto	Codifica	
	IN17	11	EI2CLIN040X001	В

11 ANALISI DELLE SOLLECITAZIONI

Nelle seguenti tabelle sono riportati i valori massimi delle caratteristiche delle sollecitazioni ricavati per le sezioni oggetto di verifica, indicate in figura.

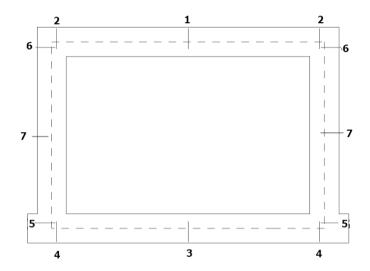


Figura 7: Sezioni di verifica

Di seguito è riportato l'inviluppo delle sollecitazioni flettenti e taglianti dello stato limite ultimo. Le unità di misura adottate nei diagrammi seguenti sono kN-m.

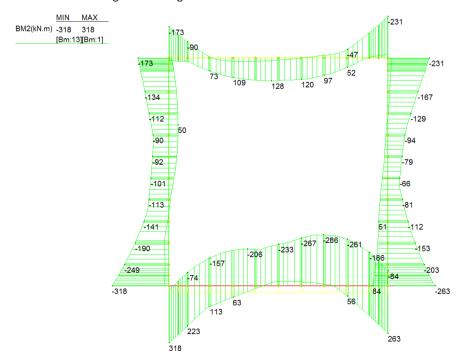


Figura 8: Inviluppo SLU/Sisma: Momenti flettenti

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
	Progetto	Lotto	Codifica	
	IN17	11	EI2CLIN040X001	В

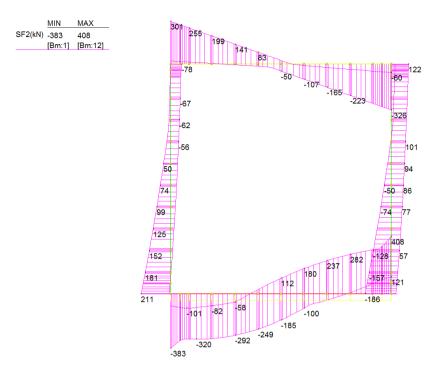


Figura 9: Inviluppo SLU/Sisma: sollecitazioni taglianti

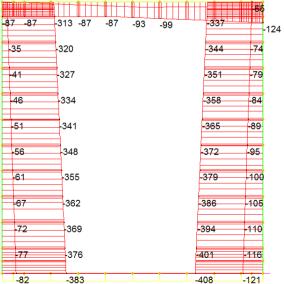


Figura 10: Inviluppo SLU/Sisma: sforzo normale

GENERAL CONTRACTOR Consorzio IricAV Due		ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
	Progetto	Lotto	Codifica		
	IN17	11	EI2CLIN040X001	В	

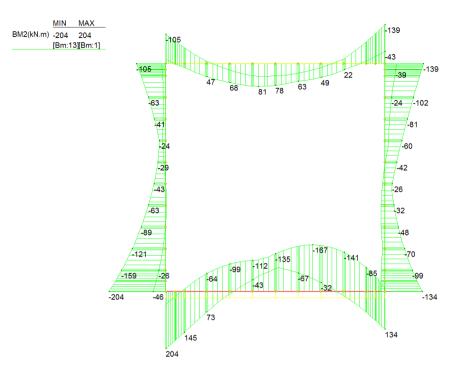


Figura 11: Inviluppo SLE Momenti flettenti

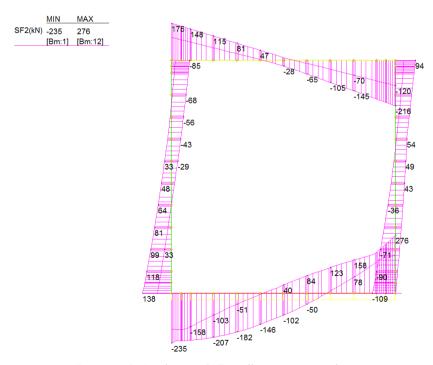
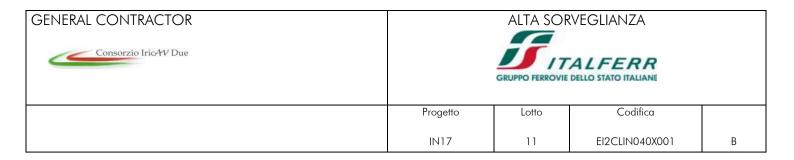


Figura 12: Inviluppo SLE: sollecitazioni taglianti

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
	Progetto	Lotto	Codifica	
	IN17	11	EI2CLIN040X001	В

Di seguito si riportano i valori delle sollecitazioni per tutte le combinazioni di carico relative a tutte le sezioni di verifica.


COP_MEZZ	N	Mx	Vy
	(KN)	(KNm)	(KNm)
SLU	48	128	223
SLV	49	42	65
SLE RARA	48	81	145
SLE FREQUENTE	46	69	122
SLE QUASI PERM.	29	17	30

COP_INC	N	Mx	Vy
	(KN)	(KNm)	(KNm)
SLU	51	-223	280
SLV	29	-50	82
SLE RARA	49	-139	184
SLE FREQUENTE	44	-91	156
SLE QUASI PERM.	29	-19	40

FOND_INC	N	Mx	Vy
	(KN)	(KNm)	(KNm)
SLU+	0	271	320
SLU-	0	-261	320
SLV-	0	106	127
SLE RARA+	0	175	221
SLE RARA-	0	-141	221
SLE FREQUENTE+	0	137	195
SLE FREQUENTE-	0	-118	195
SLE QUASI PERM.	0	30	90

FOND_MEZZ	N	Mx	Vy
	(KN)	(KNm)	(KNm)
SLU-	0	-286	316
SLU+	0	113	316
SLV	0	-55	106
SLE RARA	0	-167	207
SLE FREQUENTE	0	-143	181
SLE QUASI PERM.	0	51	68

PIEDR_PIEDE	N	Mx	Vy
	(KN)	(KNm)	(KNm)
SLU	72	-282	181
SLV	99	-108	96
SLE RARA	158	-181	118
SLE FREQUENTE	165	-146	103
SLE QUASI PERM.	98	-36	44

PIEDR_TESTA	N	Mx	Vy
	(KN)	(KNm)	(KNm)
SLU	30	-219	119
SLV	57	-56	69
SLE RARA	117	-132	88
SLE FREQUENTE	123	-111	58
SLE QUASI PERM.	56	-24	26

PIEDR_MEZZ	N	Mx	Vy
	(KN)	(KNm)	(KNm)
SLU	41	-141	125
SLU	41	51	125
SLV	68	-89	56
SLE RARA	127	-89	81
SLE FREQUENTE	133	-68	66
SLE QUASI PERM.	66	-5	21

12 VERIFICHE DI DEFORMAZIONE E VIBRAZIONE

12.1 INFLESSIONE NEL PIANO VERTICALE DELL'IMPALCATO

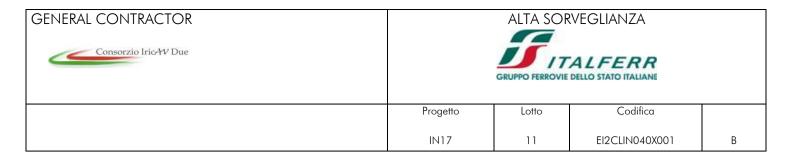
In base a quanto indicato nel paragrafo 1.7.4.3.4. del MpD 2017 FS, nonché nel D.M. 14.01.08 (paragrafo 5.2.3.2.2), considerando la presenza del treno di carico LM71, incrementato con il corrispondente coefficiente e con il coefficiente α e gli effetti della variazione di temperatura lineare, l'inflessione nel piano orizzontale dell'impalcato non deve produrre all'estremità dell'impalcato una variazione angolare maggiore di θ_{amm} = 0.001500 rad.

Per quanto riguarda le rotazioni attribuibili alla presenza del treno di carico LM71, esse sono valutate sui nodi estremi della soletta superiore e in corrispondenza del piedritto interno, se presente, depurate della rototraslazione rigida della struttura.

Nel caso in esame risulta:

 $\theta_{tot} = 0.000908 \text{ rad} << \theta_{amm} = 0.001500 \text{ rad}$

12.2 STATO LIMITE DI COMFORT DEI PASSEGGERI


L'inflessione verticale deve calcolarsi in asse al binario, considerando il modello di carico LM71 con il relativo incremento dinamico e con il coefficiente α .

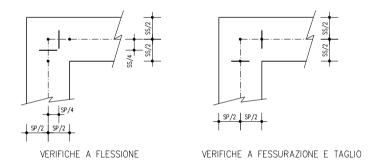
Freccia limite ammissibile (velocità del treno 120km/h < V < 250km/h):

$$\delta_{lim} = 1/1500 \times L = 2.00 \text{ mm}$$

Freccia massima dell'impalcato prodotta dal treno LM71:

 $\delta_{\text{max}} = 1.36 \text{ mm} < \delta_{\text{lim}}$

13 VERIFICHE DI RESISTENZA ULTIMA E DI ESERCIZIO


Si riassumono di seguito i risultati delle verifiche allo stato limite ultimo per le sollecitazioni di taglio e flessione, relative all'inviluppo delle combinazioni di carico. In particolare si riportano le sollecitazioni massime per tutte le sezioni di verifica e le combinazioni di carico più gravose (minimo coefficiente di sicurezza), sia per la verifica a flessione sia per la verifica a taglio.

Nelle verifiche della soletta di fondazione, cautelativamente, non si è tenuto in conto del contributo dello sforzo normale.

Le verifiche a flessione in corrispondenza dei nodi tra setti adiacenti sono effettuate rispettivamente:

- nella sezione ubicata a metà fra asse piedritto e sezione d'attacco piedritto-soletta nel caso delle verifiche della soletta;
- nella sezione ubicata a metà fra asse soletta e sezione d'attacco del piedritto nel caso delle verifiche del piedritto.

Le verifiche a fessurazione e a taglio sono eseguite nelle sezioni di attacco soletta-piedritto.

I calcoli di verifica sono effettuati con il metodo degli Stati Limite.

Si riporta di seguito l'armatura degli elementi strutturali nelle sezioni di mezzeria e di incastro.

Elemento	Sezione	Dimensioni [cm]		Flessione		Armatura a	Ripartitori
	Sezione	В	H	Lato terra	Lato interno	taglio	(esterni)
SOLETTA SUP.	INCASTRO	100	x 40	10φ20	10φ20 5φ20 φ10/20x40 ¢	φ16/20	
	MEZZERIA	100	100 X 40	5φ20	5φ20	φ10/20x40	φ16/20
PIEDRITTI	TESTA	100 x 60		5φ20	5φ20	9φ10/m²	φ16/20
	MEZZERIA		x 60	5φ20	5φ20	9φ10/m²	φ16/20
	PIEDE			10Ø20	5φ20	9φ10/m²	φ16/20
SOLETTA INF.	INCASTRO	100	v 70	10Ø20	5φ20	φ10/20x40	φ16/20
	MEZZERIA	100 x 70	5φ20	10Ø20	φ10/20x40	φ16/20	

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR PO FERROVIE DELLO STATO ITALIANE Codifica Progetto Lotto IN17 11 EI2CLIN040X001 В

13.1 SOLETTA SUPERIORE – SEZIONE DI MEZZERIA

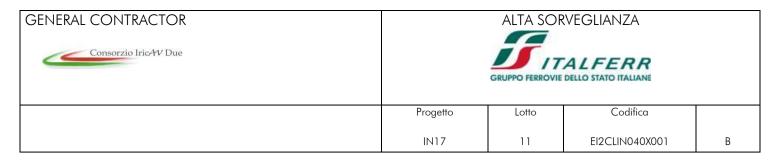
CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C32/40	
	Resis. compr. di progetto fcd:	18.813	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	33642.8	MPa
	Resis. media a trazione fctm:	3.099	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Frequenti:	199.20	daN/cm ²
	Ap.Fessure limite S.L.E. comb. Freque	enti: 0.200	mm
	Sc limite S.L.E. comb. Q.Permanenti:	0.00	Мра
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
ACCIAIO -	Tipo:	B450C	
710017110	Resist. caratt. snervam. fyk:	450.00	MPa
	Resist, caratt, rottura ftk:	450.00	MPa
	Resist. snerv. di progetto fyd:	391.30	MPa
	Resist. ultima di progetto ftd:	391.30	MPa
	Deform. ultima di progetto Epu:	0.068	4
	Modulo Elastico Ef	2000000	daN/cm²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	
	Coeff. Aderenza differito ß1*ß2 :	0.50	
	Sf limite S.L.E. Comb. Rare:	360.00	MPa
		333.33	

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Dominio: Classe Conglomerato:		Poligonale C32/40
N°vertice:	X [cm]	Y [cm]
1	100.0	50.0
2	100.0	0.0
3	0.0	0.0
4	0.0	50.0

DATI BARRE ISOLATE


N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	91.4	41.4	20
2	91.4	8.6	20
3	8.6	8.6	20
4	8.6	41.4	20

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.	Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.	Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.	Numero della barra finale cui si riferisce la generazione
NOD - ····	Noncon all bons on a set on a laboration of all all all and a contract of a set of all all all and a contract of a set of all all and a contract of a set of

Numero di barre generate equidistanti cui si riferisce la generazione Diametro in mm delle barre della generazione N°Barre

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	3	20

2 3 2 3 20

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo norma			ale [kN] applicato nel Baric. (+ se di compressione)		
Mx		Momento flettente [kNm] intorno all'a			
				mere il lembo sup. d	
Му		Momento flettente [kNm] intorno all'asse y princ. d'inerzia			
.,				mere il lembo destro	
Vy		Componente del Taglio [kN] parallela all'asse princ.d'inerzia			
Vx		Componente del Taglio [kN] parallela all'asse princ.d'inerzia x			
N°Comb.	N	Mx	My	Vv	Vx
			,	,	
1	48.00	128.00	0.00	0.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

42.00

49.00

Ν Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) Mx con verso positivo se tale da comprimere il lembo superiore della sezione Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) Му con verso positivo se tale da comprimere il lembo destro della sezione N°Comb. Ν Mx My 48.00 81.00 0.00 1

0.00

0.00

0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Ν Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo superiore della sezione Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) My con verso positivo se tale da comprimere il lembo destro della sezione N°Comb. Ν Mx My 1 46.00 69.00 (153.58) 0.00(0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)
Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)
con verso positivo se tale da comprimere il lembo superiore della sezione
My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)
con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My

1 29.00 17.00 (169.54) 0.00 (0.00)

RISULTATI DEL CALCOLO

2

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.6 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls. (positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	N	48.00	128.00	0.00	48.18	268.23	0.00	2.10	31.4(9.0)
2	N	49.00	42.00	0.00	49.08	268.38	0.00	6.39	31.4(9.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp, a es max (sistema rif, X.Y.O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.159	100.0	50.0	-0.00108	91.4	41.4	-0.01854	8.6	8.6
2	0.00350	0.159	100.0	50.0	-0.00108	91.4	41.4	-0.01854	8.6	8.6

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	а	b	С	x/d	C.Rid.
1	0.000000000	0.000532449	-0.023122433	0.159	0.700
2	0.000000000	0.000532248	-0.023112393	0.159	0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Sf min
Minima tensione (negativa se di trazione) nell'acciaio [Mpa]
Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)

As min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Sr min (sistema nr. X,Y,O)
Ac eff.
Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
As eff.
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. S 3.50 1 100.0 50.0 -123.1 8.6 8.6 1250 15.7

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff.

GENERAL CONTRACTOR Consorzio IricAV Due		1517	EVEGLIANZA CALFERR DELLO STATO ITALIANE	
	Progetto	Lotto	Codifica	
	IN17	11	EI2CLIN040X001	В

1 S 2.98 100.0 50.0 -103.3 8.6 8.6 1250 15.7

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

	La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctn
Ver.	Esito della verifica
e1	Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata
e2	Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata
k1	= 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]
kt	= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2]
k2	= 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]
k3	= 3.400 Coeff. in eq.(7.11) come da annessi nazionali
k4	= 0.425 Coeff. in eq.(7.11) come da annessi nazionali
Ø	Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]
Cf	Copriferro [mm] netto calcolato con riferimento alla barra più tesa
e sm - e cm	Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]
	Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.6)NTC]
sr max	Massima distanza tra le fessure [mm]
wk	Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi
Mx fess.	Componente momento di prima fessurazione intorno all'asse X [kNm]
My fess.	Componente momento di prima fessurazione intorno all'asse Y [kNm]

Comb.	Ver	e1	e2	K2	Ø	Cf	e sm - e cm s	r max	WK	Mx tess	My fess
1	S	-0.00067	0	0.500	20.0	76	0.00031 (0.00031)	529	0.164 (0.20)	153.58	0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max Y	c max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	0.73	100.0	50.0	-19.9	8.6	8.6	1200	15.7

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00013	0	0.500	20.0	76	0.00006 (0.00006)	518	0.031 (0.20)	169.54	0.00

SEZIONE				-	-
b _w	=	100	cm		
h	=	50	cm		
С	=	5	cm		
d	II	h-c	II	45	cm
MATERIALI				-	
$f_{y wd}$	=	391.30	MPa		
				•	
R _{ck}	=	40	MPa		
γc	=	1.5			
f _{ck}	=	0.83xR _{ck}	=	33.2	МРа
f _{cd}	=	$0.85xf_{ck}/\gamma_{c}$	=	18.81	MPa
ARMATURE	A TAGLIC)	1		
Ø _{st}	=	10			
braccia	=	5			
Ø _{st2}	=	0			
braccia	=	0		•	
passo	=	40	cm		
(A_{sw}/s)	=	9.817	cm ² / m		
α	=	90	0	(90° staffe	verticali)
ARMATURE		DINALI			
Ø _I	=	20			
Numero	=	5			
A _{sl}	=	15.708	cm ²]	
' 'SI		10.700	GIII		
TAGLIO AG	ENTE	V _{Ed} =	223	(KN)]
SFORZO NO	ORMALE	N _{ed} =	0	(KN)	
		α _c =	1.0000		-

ELEMENTI CON ARMATURA A TAGLIO

Calcolo di cot θ

 $\cot(\theta) = 4.85$ $\theta = 11.66$ °

ume $\vartheta = 21.8^{\circ}$

Armatura trasversale

 $V_{Rsd} = 388.96 (KN)$ $V_{Rcd} = 1313.69 (KN)$ $V_{Rd} = 389 (KN)$

 $min(V_{Rsd},\,VR_{cd})$

GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Progetto Lotto Codifica IN17 11 EI2CLIN040X001 B

13.2 SOLETTA SUPERIORE - SEZIONE DI INCASTRO

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

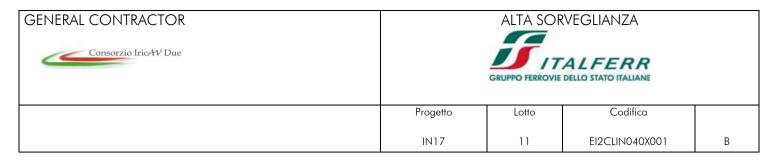
CALCESTRUZZO -C32/40 Classe: Resis. compr. di progetto fcd: 18.813 MPa Def.unit. max resistenza ec2: 0.0020 Def.unit. ultima ecu: 0.0035 Diagramma tensione-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 33642.8 MPa Resis. media a trazione fctm: 3.099 MPa Coeff. Omogen. S.L.E.: 15.00 Coeff. Omogen. S.L.E.: Sc limite S.L.E. comb. Frequenti: 15.00 199.20 daN/cm² Ap.Fessure limite S.L.E. comb. Frequenti: 0.200 mm Sc limite S.L.E. comb. Q.Permanenti: 0.00 Mpa Ap.Fess.limite S.L.E. comb. Q.Perm.: 0.200 mm ACCIAIO -Tipo: B450C Resist. caratt. snervam. fyk: 450.00 MPa Resist. caratt. rottura ftk: 450.00 MPa Resist. snerv. di progetto fyd: MPa 391.30 Resist, ultima di progetto ftd: 391.30 MPa Deform. ultima di progetto Epu: 0.068 Modulo Elastico Ef 2000000 daN/cm² Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza istantaneo ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50 Sf limite S.L.E. Comb. Rare: 360.00 MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo	Poligonale C32/40	
N°vertice:	X [cm]	Y [cm]
1	100.0	50.0
2	100.0	0.0
3	0.0	0.0
4	0.0	50.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	91.4	41.4	20
2	91.4	8.6	20
3	8.6	8.6	20
4	8.6	41.4	20


DATI GENERAZIONI LINEARI DI BARRE

N°Gen.Numero assegnato alla singola generazione lineare di barreN°Barra Ini.Numero della barra iniziale cui si riferisce la generazioneN°Barra Fin.Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	20

2 3 2 3 20

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx My Vy Vx		Momento flettent con verso positiv Momento flettent con verso positiv Componente del	te [kNm] intorno all'a vo se tale da compri te [kNm] intorno all'a vo se tale da compri Taglio [kN] parallela	ato nel Baric. (+ se di compressione) torno all'asse x princ. d'inerzia da comprimere il lembo sup. della sez. torno all'asse y princ. d'inerzia da comprimere il lembo destro della sez. I) parallela all'asse princ.d'inerzia y I) parallela all'asse princ.d'inerzia x		
N°Comb.	N	Mx	Му	Vy	Vx	
1	51.00	-184.00	0.00	0.00	0.00	

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

-50.00

29.00

Ν Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) Mx con verso positivo se tale da comprimere il lembo superiore della sezione Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) Му con verso positivo se tale da comprimere il lembo destro della sezione N°Comb. Ν Mx My 49.00 0.00 1 -107.00

0.00

0.00

0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Ν Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) Mx con verso positivo se tale da comprimere il lembo superiore della sezione Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) My con verso positivo se tale da comprimere il lembo destro della sezione N°Comb. Ν Mx My 1 44.00 -91.00 (-163.06) 0.00(0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)
Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)
con verso positivo se tale da comprimere il lembo superiore della sezione
My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)
con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My

1 29.00 -19.00 (-178.95) 0.00 (0.00)

RISULTATI DEL CALCOLO

2

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.6 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	N	51.00	-184.00	0.00	50.74	-477.05	0.00	2.59	31.4(9.0)
2	N	29.00	-50.00	0.00	28.89	-473.29	0.00	9.42	31.4(9.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.205	0.0	0.0	-0.00004	8.6	8.6	-0.01356	91.4	41.4
2	0.00350	0.203	0.0	0.0	-0.00008	8.6	8.6	-0.01372	91.4	41.4

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	а	b	С	x/d	C.Rid.
1	0.000000000	-0.000412168	0.003500000	0.205	0.700
2	0.000000000	-0.000415883	0.003500000	0.203	0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Minima tensione (negativa se di trazione) nell'acciaio [Mpa]
Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)

Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. S 3.58 1 100.0 0.0 -86.9 8.6 41.4 1150 31.4

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff.

GENERAL CONTRACTOR Consorzio Iric/IV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE						
	Progetto	Lotto 11	Codifica EI2CLIN040X001	В			

S 3.05 100.0 0.0 -73.5 54.6 41.4 1150 31.4 1

CO

COMBINA	AZIONI	FREQUEN	TI IN ESI	ERCIZIO) - API	ERTUI	RA FESS	SURE [§ 7	'.3.4 EC2]					
Ver. e1 e2 k1 kt k2 k3 k4 Ø Cf e sm - sr maz wk Mx fes	(68.	La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm Esito della verifica Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2] = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] = 0.5 per flessione; = (e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2] = 3.400 Coeff. in eq.(7.11) come da annessi nazionali = 0.425 Coeff. in eq.(7.11) come da annessi nazionali Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2] Copriferro [mm] netto calcolato con riferimento alla barra più tesa Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC] Massima distanza tra le fessure [mm] Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi Componente momento di prima fessurazione intorno all'asse X [kNm] Componente momento di prima fessurazione intorno all'asse Y [kNm]												
Comb.	Ver	e1		e2	k2					sm - e cm :	sr max	wk	Mx fess	My fess
1	S	-0.00049		0	0.500	20.0) 76	6	0.00022	2 (0.00022)	383	0.084 (0.20)	-163.06	0.00
COMBINA	AZIONI	QUASI PE	RMANEN	ITI IN E	SERCI	ZIO -	MASSIN	ME TENSI	ONI NORM	ALI ED APE	RTURA	FESSURE (NTC	C/EC2)	
N°Comb	Ver	Sc max	Xc max	Yc max	(5	Sf min	Xs min	Ys min	Ac eff.	As eff.				
1	S	0.65	0.0	0.0)	-12.4	91.4	41.4	1050	31.4				
COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]														
0	\/	-1		-0	LO.		· 0	r	_				My face	Mu faa-

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00008	0	0.500	20.0	76	0 00004 (0 00004)	372	0.014 (0.20)	-178 95	0.00

SEZIONE					-
		400			
b _w	=	100	cm		
h	=	50	cm		
С	=	5	cm		ı
d	=	h-c	=	45	cm
MATERIALI					
f _{y wd}	=	391.30	MPa		
				l	
R _{ck}	=	40	MPa		
γс	=	1.5			
f _{ck}	=	0.83xR _{ck}	=	33.2	MPa
f _{cd}	Ш	$0.85xf_{ck}/\gamma_{c}$	П	18.81	MPa
ARMATURE	A TAGLIC)			
Ø _{st}	=	10			
braccia	=	5			
ø _{st2}	=	0			
braccia	=	0			
passo	Ш	40	cm		
(A_{sw}/s)	=	9.817	cm ² / m		
α	=	90	0	(90° staffe	verticali)
					-
TAGLIO AG	ENTE	V _{Ed} =	280	(KN)	
SFORZO NO	ORMALE	N _{ed} =	0	(KN)	
		α _c =	1.0000		

ELEMENTI CON ARMATURA A TAGLIO

Calcolo di cot θ

 $\cot(\theta) = 4.85$ $\theta = 11.66$ °

IPOTESI 2	$\cot \vartheta > 2.5$	Si assume	$\vartheta = 21.8^{\circ}$
		OI GOOGITIC	0 - 21,0

Armatura trasversale

 $V_{Rsd} = 388.96 (KN)$ $V_{Rcd} = 1313.69 (KN)$ $V_{Rd} = 389 (KN)$

 $min(V_{Rsd}, VR_{cd})$

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR PO FERROVIE DELLO STATO ITALIANE Codifica Progetto Lotto EI2CLIN040X001 IN17 11 В

13.3 SOLETTA INFERIORE – SEZIONE DI MEZZERIA

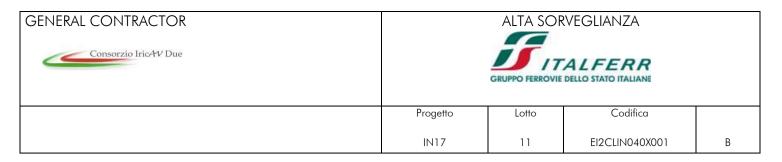
CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C32/40	
	Resis. compr. di progetto fcd:	18.813	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	33642.8	MPa
	Resis. media a trazione fctm:	3.099	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Frequenti:	199.20	daN/cm ²
	Ap.Fessure limite S.L.E. comb. Freque	nti: 0.200	mm
	Sc limite S.L.E. comb. Q.Permanenti:	0.00	Мра
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
ACCIAIO -	Tipo:	B450C	
710011110	Resist. caratt. snervam. fyk:	450.00	MPa
	Resist, caratt, rottura ftk:	450.00	MPa
	Resist. snerv. di progetto fyd:	391.30	MPa
	Resist. ultima di progetto ftd:	391.30	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2 :	1.00	
	Coeff. Aderenza differito ß1*ß2:	0.50	
	Sf limite S.L.E. Comb. Rare:	360.00	MPa
		******	-

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo	Poligonale C32/40	
N°vertice:	X [cm]	Y [cm]
1	100.0	60.0
2	100.0	0.0
3	0.0	0.0
4	0.0	60.0

DATI BARRE ISOLATE


N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	91.4	51.4	20
2	91.4	8.6	20
3	8.6	8.6	20
4	8.6	51.4	20

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.	Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.	Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.	Numero della barra finale cui si riferisce la generazione
NIOD	Normana di banna mananata amidiatanti avi ai difenia a la manana

Numero di barre generate equidistanti cui si riferisce la generazione Diametro in mm delle barre della generazione N°Barre

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	20

2 3 2 3 20

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx My Vy Vx		Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Momento flettente [kNm] intorno all'asse x princ. d'inerzia con verso positivo se tale da comprimere il lembo sup. della sez. Momento flettente [kNm] intorno all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro della sez. Componente del Taglio [kN] parallela all'asse princ.d'inerzia y Componente del Taglio [kN] parallela all'asse princ.d'inerzia x					
N°Comb.	N	Mx	My	Vy	Vx		
1	0.00	-286.00	0.00	0.00	0.00		
2	0.00	113.00	0.00	0.00	0.00		
3	0.00	-55.00	0.00	0.00	0.00		

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)
Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)
con verso positivo se tale da comprimere il lembo superiore della sezione
My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)
con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My

1 0.00 -167.00 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)
Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)
con verso positivo se tale da comprimere il lembo superiore della sezione
My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)
con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My

1 0.00 -143.00 (-224.62) 0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)
Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)
con verso positivo se tale da comprimere il lembo superiore della sezione
My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)
con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My

1 0.00 51.00 (213.63) 0.00 (0.00)

7.6 cm

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali:

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR PO FERROVIE DELLO STATO ITALIANE Codifica Progetto Lotto IN17 EI2CLIN040X001 В 11

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

S = combinazione verificata / N = combin. non verificata

N

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)
Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia Mχ Му N Res Sforzo normale resistente [kN] nel baricentro B sezione cls. (positivo se di compress.)

Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia Mx Res My Res Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My) Mis.Sic.

Verifica positiva se tale rapporto risulta >=1.000

Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC] As Tesa

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	N	0.00	-286.00	0.00	0.00	-591.23	0.00	2.07	31.4(9.2)
2	N	0.00	113.00	0.00	0.00	324.05	0.00	2.87	47.1(9.2)
3	N	0.00	-55.00	0.00	0.00	-591.23	0.00	10.75	31.4(9.2)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp, a es max (sistema rif, X.Y.O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.162	0.0	0.0	-0.00012	8.6	8.6	-0.01813	91.4	51.4
2	0.00350	0.138	100.0	60.0	-0.00074	91.4	51.4	-0.02186	8.6	8.6
3	0.00350	0.162	0.0	0.0	-0.00012	8.6	8.6	-0.01813	91.4	51.4

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45
C.Rid.	Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	а	D	С	x/d	C.Rid.
1	0.000000000	-0.000420734	0.003500000	0.162	0.700
2	0.000000000	0.000493328	-0.026099652	0.138	0.700
3	0.000000000	-0.000420734	0.003500000	0.162	0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione (negativa se di trazione) nell'acciaio [Mpa] Sf min

Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Xs min, Ys min Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb	Ver	Sc max	Xc max Y	c max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	3.83	100.0	0.0	-117.1	54.6	51.4	1450	31.4

ALTA SORVEGLIANZA GENERAL CONTRACTOR Consorzio IricAV Due ITALFERR O FERROVIE DELLO STATO ITALIANE Codifica Lotto Progetto IN17 11 EI2CLIN040X001 В

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max Y	c max	Sf min	Xs min	Ys min	Ac eff.	As eff.	
1	S	3.28	100.0	0.0	-100.2	54.6	51.4	1450	31.4	

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

		La sezione vi	ene assunta s	sempre fes	surata a	inche nel caso	in cui la trazione minima del calcestruzzo sia inferio	ore a fo	ctm	
Ver.		Esito della ve	rifica							
e1		Massima defe	lassima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata							
e2		Minima defor	/linima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata							
k1		= 0.8 per bar	= 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]							
kt		= 0.4 per co	mb. quasi per	manenti /	= 0.6 pe	r comb.freque	nti [cfr. eq.(7.9)EC2]			
k2		= 0.5 per fles	sione; =(e1 +	e2)/(2*e1)	per traz	ione eccentric	ca [eq.(7.13)EC2]			
k3		= 3.400 Coef	f. in eq.(7.11)	come da a	annessi r	nazionali				
k4		= 0.425 Coef	f. in eq.(7.11)	come da a	annessi r	nazionali				
Ø		Diametro [mr	n] equivalente	delle barr	e tese co	omprese nell'a	area efficace Ac eff [eq.(7.11)EC2]			
Cf		Copriferro [m	m] netto calco	lato con ri	feriment	o alla barra pi	ù tesa			
e sm -	e cm	Differenza tra	le deformazi	oni medie	di acciai	o e calcestruz	zo [(7.8)EC2 e (C4.1.7)NTC]			
		Tra parentesi	: valore minim	no = 0.6 Sr	max / Es	[(7.9)EC2 e	e (C4.1.8)NTC] `			
sr max	(anza tra le fes			. ,	, ,			
wk		Apertura fess	ure in mm cal	colata = s	r max*(e	sm - e cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi	í		
Mx fes	S.					intorno all'ass				
My fes	S.					intorno all'ass				
Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr max	wk	Mx fess	

76 COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max \	c max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	1.46	100.0	60.0	-69.9	8.6	8.6	1600	15.7

0.500 20.0

1

C----

S

1/--

-0.00063

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00043	0	0.500	20.0	76	0.00021 (0.00021)	605	0.127 (0.20)	213.63	0.00

My fess

0.00

0.00030 (0.00030) 415 0.125 (0.20) -224.62

SEZIONE				-	
b_w	=	100	cm		
h	=	60	cm		
С	=	5	cm		_
d	=	h-c	=	55	cm
MATERIALI					
$f_{y wd}$	=	391.30	MPa		
		1			
R _{ck}	=	40	MPa		
γ _c	=	1.5			
f _{ck}	=	0.83xR _{ck}	=	33.2	MPa
f _{cd}	=	$0.85xf_{ck}/\gamma_c$	=	18.81	MPa
ARMATURE	A TAGLIC		•		
Ø _{st}	=	10			
braccia	=	5			
Ø _{st2}	=	0			
braccia	=	0		•	
passo	=	40	cm		
(A_{sw}/s)	=	9.817	cm ² / m		
α	=	90	0	(90° staffe	verticali)
ARMATURE	LONGITU	DINALI			
Øl	=	20			
Numero	=	10		•	
A _{sl}	=	31.416	cm ²		
					7
TAGLIO AG		V _{Ed} =	316	(KN)	_
SFORZO NO	ORMALE	N _{ed} =	0	(KN)	J
		$\alpha_c =$	1.0000		

ELEMENTI CON ARMATURA A TAGLIO

Calcolo di cot θ

 $\cot(\theta) = 4.85$ $\theta = 11.66$ °

cot ϑ > 2,5	Si assume	ϑ = 21,8°
---------------------------	-----------	-----------

Armatura trasversale

 $V_{Rsd} = 475.40 (KN)$ $V_{Rcd} = 1605.62 (KN)$

 $V_{Rd} = 475 (KN)$ min(V_{Rsd} , VR_{cd})

GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Progetto Lotto Codifica IN17 11 EI2CLIN040X001 B

13.4 SOLETTA INFERIORE – SEZIONE DI INCASTRO

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -C32/40 Classe: Resis. compr. di progetto fcd: 18.813 MPa Def.unit. max resistenza ec2: 0.0020 Def.unit. ultima ecu: 0.0035 Diagramma tensione-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 33642.8 MPa Resis. media a trazione fctm: 3.099 MPa Coeff. Omogen. S.L.E.: 15.00 Coeff. Omogen. S.L.E.: Sc limite S.L.E. comb. Frequenti: 15.00 199.20 daN/cm² Ap.Fessure limite S.L.E. comb. Frequenti: 0.200 mm Sc limite S.L.E. comb. Q.Permanenti: 0.00 Mpa Ap.Fess.limite S.L.E. comb. Q.Perm.: 0.200 mm ACCIAIO -Tipo: B450C Resist. caratt. snervam. fyk: 450.00 MPa Resist. caratt. rottura ftk: 450.00 MPa Resist. snerv. di progetto fyd: MPa 391.30 Resist, ultima di progetto ftd: 391.30 MPa Deform. ultima di progetto Epu: 0.068 Modulo Elastico Ef 2000000 daN/cm² Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza istantaneo ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50 Sf limite S.L.E. Comb. Rare: 360.00 MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del De Classe Congle		Poligonale C32/40
N°vertice:	X [cm]	Y [cm]
1	100.0	60.0
2	100.0	0.0
3	0.0	0.0
4	0.0	60.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	91.4	51.4	20
2	91.4	8.6	20
3	8.6	8.6	20
4	8.6	51.4	20

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.Numero assegnato alla singola generazione lineare di barreN°Barra Ini.Numero della barra iniziale cui si riferisce la generazioneN°Barra Fin.Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	3	20

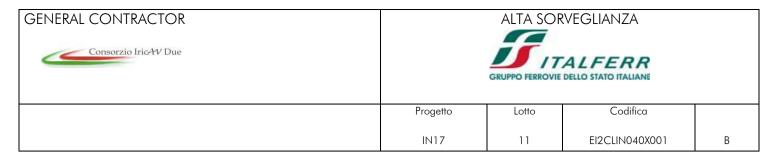
GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica			
	Progetto	Lotto	Codifica	
	IN17	11	EI2CLIN040X001	В

2 3 2 8 20

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baric. (+ se di compressi							
Mx		Momento flettent	e [kNm] intorno all'a	sse x princ. d'inerzi	а			
			o se tale da comprii					
Му			e [kNm] intorno all'a					
			o se tale da comprii					
Vy		Componente del Taglio [kN] parallela all'asse princ.d'inerzia y						
Vx		Componente del	Taglio [kN] parallela	a all'asse princ.d'ine	erzia x			
N°Comb.	N	Mx	My	Vy	Vx			
1	0.00	271.00	0.00	0.00	0.00			
2	0.00	-261.00	0.00	0.00	0.00			
3	0.00	106.00	0.00	0.00	0.00			

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA


N Mx My	 se di compressione) c. d'inerzia (tra parentesi M nbo superiore della sezione c. d'inerzia (tra parentesi M nbo destro della sezione 	,		
N°Comb.	N	Мх	Му	
1 2	0.00 0.00	175.00 -141.00	0.00 0.00	

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Momento con verso Momento	Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessura con verso positivo se tale da comprimere il lembo superiore della sezione Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessura con verso positivo se tale da comprimere il lembo destro della sezione					
N	Mx	My				
0.00	137.00 (224.62)	0.00 (0.00)				
	Momento con verso Momento con verso N	Momento flettente [kNm] intorno all'asse x con verso positivo se tale da comprimere il Momento flettente [kNm] intorno all'asse y con verso positivo se tale da comprimere il N Mx 0.00 137.00 (224.62)	Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom. con verso positivo se tale da comprimere il lembo superiore della sezione Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom. con verso positivo se tale da comprimere il lembo destro della sezione N Mx My 0.00 137.00 (224.62) 0.00 (0.00)			

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo norn	nale [kN] applicato nel Baricent	ro (+ se di compressione)	
Mx			princ. d'inerzia (tra parentesi Mo	m.Fessurazione)
Му	Momento fl	•	l lembo superiore della sezione princ. d'inerzia (tra parentesi Mo I lembo destro della sezione	m.Fessurazione)
N°Comb.	N	Mx	Му	
1	0.00	30 00 (224 62)	0.00 (0.00)	

RISULTATI DEL CALCOLO

As Tesa

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.6 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

S = combinazione verificata / N = combin. non verificata

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) Ν

Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Mx Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia N Res Sforzo normale resistente [kN] nel baricentro B sezione cls. (positivo se di compress.)

Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia Mx Res My Res Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My) Verifica positiva se tale rapporto risulta >=1.000

Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb N Res Mx Res My Res Mis.Sic. Ver Ν Mx My As Tesa Ν 0.00 271.00 0.00 0.00 591.23 0.00 2.18 31.4(9.2) 2 0.00 0.00 1.24 47.1(9.2) Ν 0.00 -261.00 0.00 -324.05 3 0.00 0.00 31.4(9.2) 0.00 106.00 0.00 591.23 5.58 N

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.162	100.0	60.0	-0.00012	91.4	51.4	-0.01813	8.6	8.6
2	0.00350	0.138	0.0	0.0	-0.00074	8.6	8.6	-0.02186	91.4	51.4
3	0.00350	0.162	100.0	60.0	-0.00012	91.4	51.4	-0.01813	8.6	8.6

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	а	b	С	x/d	C.Rid.
1	0.000000000	0.000420734	-0.021744058	0.162	0.700
2	0.000000000	-0.000493328	0.003500000	0.138	0.700
3	0.000000000	0.000420734	-0.021744058	0.162	0.700

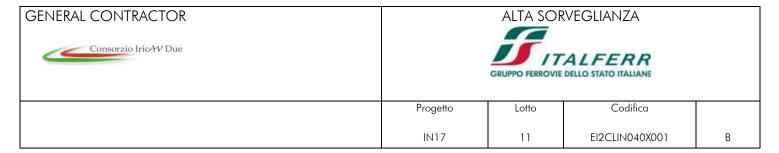
COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Sc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Xc max, Yc max Minima tensione (negativa se di trazione) nell'acciaio [Mpa] Sf min

Xs min, Ys min

Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)


GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Progetto Lotto Codifica IN17 11 EI2CLIN040X001 B

								11117	' '	ı	LIZCLINO	+UNUU I	D
Ac eff As eff								aderente alle l r l'apertura de					
N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.				
1 2	S S	4.01 4.03	100.0 0.0	60.0 0.0	-122.7 -193.1			1450 1600	31.4 15.7				
COMBIN	AZIONI	FREQUE	NTI IN ESI	ERCIZIO -	- MASSIN	IE TENSI	ONI NOR	MALI ED A	PERTURA F	ESSUR	E (NTC/EC2)		
N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.				
1 2	S S	3.14 3.37	100.0 0.0	60.0 0.0	-96.0 -161.6			1450 1600	31.4 15.7				
COMBIN	AZIONI	FREQUE	NTI IN ESI	ERCIZIO -	APERTU	RA FESS	SURE [§ 7	.3.4 EC2]					
Ver. e1 e2 k1 kt k2 k3 k4 Ø Cf e sm sr ma wk Mx fe	SS.	Esito de Massir Minima = 0.8 = 0.4 = 0.5 p = 3.40 = 0.42 Diame Coprife Differe Tra pa Massir Apertu Compo	della verifica ma deformazi a deformazi per barre ac per comb. or flessione 0 Coeff. in e tro [mm] eq erro [mm] nq erro [mm] na enza tra le d erentesi: vale ma distanza	zione unitarione unitarione unitarione unitarione unitario di aderenza quasi perma e; = (e1 + e2 eq. (7.11) co eq. (7.11) co eq. (7.11) co etto calcolate eformazioni pre minimo tra le fessun mm calconento di prin	ria di traziore i di trazione migliorata [anenti / = 0.)/(2*e1) per me da anne me da anne elle barre te i medie di a = 0.6 Smax ure [mm] lata = sr ma na fessuraz	ne nel calconel calconel calcoseq.(7.11)E 6 per comile trazione essi nazione sessi nazione ses compremento alla cciaio e calconel	estruzzo (traz C2] b. frequenti eccentrica aali ese nell'area barra più te elcestruzzo 9)EC2 e (C e_cm) [(7.4000)	azione -) valuta [cfr. eq.(7.9)] [eq.(7.13)] [eq.(7.13)] [eq.(7.13)] [fr. eq.(7.9)] [fr. eq.(7.9	tata in sezione ta in sezione EC2] 2] eff [eq.(7.11)E	e fessura fessurata GC2]		ctm	
Comb.	Ver	е	1	e2	k2 (Ø C	f	e	sm - e cm	sr max	wk	Mx fess	My fess
1 2	S N	-0.0006 -0.0009			.500 20. .500 20.				9 (0.00029) 3 (0.00048)	415 605	0.120 (0.20) 0.293 (0.20)	224.62 -213.63	0.00 0.00
COMBIN	AZIONI	QUASI PE	ERMANEN	ITI IN ESE	RCIZIO -	MASSI	ME TENSI	ONI NORM	ALI ED APE	RTURA	FESSURE (NTC	C/EC2)	

N°Comb	Ver	Sc max	Xc max \	c max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	0.69	100.0	60.0	-21.0	8.6	8.6	1450	31.4

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00013	0	0.500	20.0	76	0.00006 (0.00006)	415	0.026 (0.20)	224.62	0.00

					
SEZIONE				1	
b _w	=	100	cm		
h	=	60	cm		
С	=	5	cm		
d	=	h-c	=	55	cm
MATERIALI				_	
f _{y wd}	=	391.30	MPa		
R _{ck}	=	40	MPa		
γc	=	1.5			
f _{ck}	=	0.83xR _{ck}	=	33.2	МРа
f _{cd}	=	$0.85xf_{ck}/\gamma_{c}$	=	18.81	МРа
ARMATURE	A TAGLIC		ı		
ø _{st}	=	10			
braccia	=	5			
ø _{st2}	Ш	0			
braccia	=	0		•	
passo	=	40	cm		
(A_{sw}/s)	=	9.817	cm ² / m		
α	=	90	0	(90° staffe	verticali)
ARMATURE					
Øl	=	20			
Numero	=	10	2]	
A _{sI}	=	31.416	cm ²		
TAGLIO AG	ENTE	V _{Ed} =	320	(KN)]
SFORZO NO	ORMALE	N _{ed} =	0	(KN)	
		α _c =	1.0000	-	_

ELEMENTI CON ARMATURA A TAGLIO

Calcolo di cot θ

 $\cot(\theta) = 4.85$ $\theta = 11.66$ °

e $\vartheta = 21,8^{\circ}$
1

Armatura trasversale

 $V_{Rsd} = 475.40 (KN)$ $V_{Rcd} = 1605.62 (KN)$ $V_{Rd} = 475 (KN)$

 $min(V_{Rsd},\,VR_{cd})$

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR PO FERROVIE DELLO STATO ITALIANE Codifica Progetto Lotto EI2CLIN040X001 IN17 11 В

13.5 PIEDRITTI – SEZIONE DI INCASTRO INFERIORE

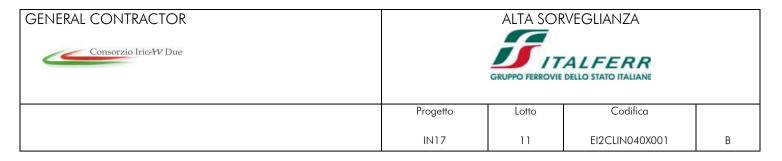
CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C32/40	MDa
	Resis. compr. di progetto fcd: Def unit, max resistenza ec2:	18.813 0.0020	MPa
	Def.unit. ultima ecu:	0.0025	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	33642.8	MPa
	Resis. media a trazione fctm:	3.099	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Frequenti:	199.20	daN/cm²
	Ap.Fessure limite S.L.E. comb. Freque		mm
	Sc limite S.L.E. comb. Q.Permanenti:	0.00	Мра
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.00	MPa
	Resist. caratt. rottura ftk:	450.00	MPa
	Resist. snerv. di progetto fyd:	391.30	MPa
	Resist. ultima di progetto ftd:	391.30	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	
	Coeff. Aderenza differito ß1*ß2:	0.50	
	Sf limite S.L.E. Comb. Rare:	360.00	MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del De Classe Congle		Poligonale C32/40
N°vertice:	X [cm]	Y [cm]
1	100.0	50.0
2	100.0	0.0
3	0.0	0.0
4	0.0	50.0

DATI BARRE ISOLATE


N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	91.4	41.4	20
2	91.4	8.6	20
3	8.6	8.6	20
4	8.6	41.4	20

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.	Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.	Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.	Numero della barra finale cui si riferisce la generazione
NOD - ····	Noncon all bons on a set on a laboration of all all all and a set of all all all all all all and a set of all all all all all all all all all al

Numero di barre generate equidistanti cui si riferisce la generazione Diametro in mm delle barre della generazione N°Barre

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	20

2 3 2 3 20

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx My Vy Vx		Momento flettent con verso positiv Momento flettent con verso positiv Componente del	kN] applicato nel Ba de [kNm] intorno all'a do se tale da compri de [kNm] intorno all'a do se tale da compri Taglio [kN] parallela Taglio [kN] parallela	sse x princ. d'inerzia mere il lembo sup. d isse y princ. d'inerzia mere il lembo destro a all'asse princ.d'ine	a lella sez. a o della sez. rzia y
N°Comb.	N	Mx	Му	Vy	Vx
1	72.00	282.00	0.00	0.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

108.00

99.00

Ν Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) Mx con verso positivo se tale da comprimere il lembo superiore della sezione Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) Му con verso positivo se tale da comprimere il lembo destro della sezione N°Comb. Ν Mx My 158.00 0.00 1 -181.00

0.00

0.00

0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Ν Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) Mx con verso positivo se tale da comprimere il lembo superiore della sezione Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) My con verso positivo se tale da comprimere il lembo destro della sezione N°Comb. Ν Mx My 1 165.00 -146.00 (-187.85) 0.00(0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)
Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)
con verso positivo se tale da comprimere il lembo superiore della sezione
My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)
con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My

1 98.00 -36.00 (-222.18) 0.00 (0.00)

RISULTATI DEL CALCOLO

2

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.6 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	N	72.00	282.00	0.00	72.16	282.34	0.00	1.00	15.7(9.0)
2	N	99.00	108.00	0.00	98.93	287.76	0.00	2.68	15.7(9.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform, unit, massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.108	100.0	50.0	-0.00009	95.0	45.0	-0.02880	5.0	5.0
2	0.00350	0.109	100.0	50.0	-0.00006	95.0	45.0	-0.02852	5.0	5.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	а	b	С	x/d	C.Rid.
1	0.000000000	0.000717873	-0.032393663	0.108	0.700
2	0.000000000	0.000711615	-0.032080770	0.109	0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Sf min
Minima tensione (negativa se di trazione) nell'acciaio [Mpa]
Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)

Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. S 1 5.18 100.0 0.0 -121.9 55.0 45.0 1100 31.4

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff.

GENERAL CONTRACTOR Consorzio IricAV Due		1517	EVEGLIANZA CALFERR DELLO STATO ITALIANE	
	Progetto	Lotto	Codifica	
	IN17	11	EI2CLIN040X001	В

S 4.23 100.0 0.0 -93.2 55.0 45.0 1 1050 31.4

COI

COMBINAZION	I FREQUEN	TI IN ESERCIZ	IO - APE	RTUR	A FESS	URE [§ 7	.3.4 EC2]					
	La sezio	La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm										
Ver.	Esito de	Esito della verifica										
e1		a deformazione										
e2		deformazione ur					ione -) valutat	a in sezione f	essurata			
k1		er barre ad ader										
kt		er comb. quasi p										
k2		er flessione; =(e1					eq.(7.13)EC2]					
k3		Coeff. in eq.(7.1										
k4 Ø		Coeff. in eq.(7.1					officers As a	# [o.a. /7 11\F	C01			
Ø Cf	Coprifor	o [mm] equivale ro [mm] netto ca	leclate con	riforim	e compres	se nen area	renicace Ac e	II [eq.(7.11)⊏	C2]			
e sm - e cm		za tra le deforma						/ 1 7\NTC1				
6 3iii - 6 Giii		entesi: valore mi						4.1.7)1110]				
sr max		a distanza tra le) LOL 0 (0						
wk		a fessure in mm			*(e sm -	e cm) [(7.8	3)EC2 e (C4.1	.7)NTC]. Valo	re limite t	tra parentesi		
Mx fess.		nente momento d						, .		•		
My fess.		nente momento d										
0 1 1/	4	•		~	01							
Comb. Ver	e1	e2	k2	Ø	Cf		е	sm - e cm s	sr max	wk	Mx fess	My fess
1 S	-0.00055	0	0.500	20.0	40		0.00028	(0.00028)	250	0.070 (0.20)	-187.85	0.00
COMBINAZIONI	I QUASI PER	RMANENTI IN	ESERCIZ	IO - I	MASSIN	IE TENSI	ONI NORMA	LI ED APEI	RTURA	FESSURE (NTC	(/EC2)	
											,	
N°Comb Ver	Sc max	Xc max Yc m	ax St	fmin	Xs min	Ys min	Ac eff.	As eff.				
1 S	1.10	100.0).0 -	15.8	5.0	45.0	900	31.4				
COMBINAZION	I QUASI PEF	RMANENTI IN	ESERCIZ	IO - A	PERTU	RA FESS	URE [§ 7.3.4	EC2]				

СО

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00010	0	0.500	20.0	40	0.00005 (0.00005)	233	0.011 (0.20)	-222.18	0.00

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	GRUPPO FERROVIE DELLO STATO ITALIANE					
	Progetto Lotto Codifica						
	IN17 11 EI2CLIN040X001 B						

SEZIONE				-	
b_w	=	100	cm		
h	=	50	cm		
С	=	5	cm		
d	=	h-c	=	45	cm
MATERIALI					
$f_{y \text{ wd}}$	=	391.30	MPa		
	•			1	
R _{ck}	=	40	MPa		
γс	=	1.5			
f _{ck}	=	0.83xR _{ck}	=	33.2	МРа
f _{cd}	=	$0.85xf_{ck}/\gamma_{c}$	=	18.81 MPa	
ARMATURE	A TAGLIC)	•		
ø _{st}	=	10			
braccia	=	3			
Ø _{st2}	=	0			
braccia	=	0		_	
passo	=	33	cm		
(A_{sw}/s)	=	7.140	cm ² / m		
α	=	90	0	(90° staffe	verticali)
					-
TAGLIO AG		V _{Ed} =	181	(KN)	
SFORZO NO	ORMALE	N _{ed} =	0	(KN)	
		$\alpha_c =$	1.0000		

ELEMENTI CON ARMATURA A TAGLIO

Calcolo di cot θ

 $\cot(\theta) = 5.72$ $\theta = 9.92$ °

ssume $\vartheta = 21.8^{\circ}$

Armatura trasversale

 $V_{Rsd} = 282.88 (KN)$ $V_{Rcd} = 1313.69 (KN)$ $V_{Rd} = 283 (KN)$

 $min(V_{Rsd}, VR_{cd})$

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR PO FERROVIE DELLO STATO ITALIANE Codifica Progetto Lotto EI2CLIN040X001 IN17 11 В

13.6 PIEDRITTI – SEZIONE DI INCASTRO SUPERIORE

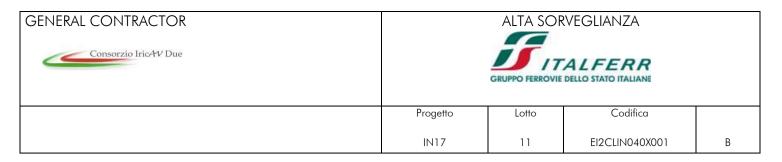
CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C32/40	
	Resis. compr. di progetto fcd:	18.813	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	33642.8	MPa
	Resis. media a trazione fctm:	3.099	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Frequenti:	199.20	daN/cm ²
	Ap.Fessure limite S.L.E. comb. Freque	nti: 0.200	mm
	Sc limite S.L.E. comb. Q.Permanenti:	0.00	Мра
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.00	MPa
	Resist, caratt, rottura ftk:	450.00	MPa
	Resist. snerv. di progetto fyd:	391.30	MPa
	Resist. ultima di progetto ftd:	391.30	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	
	Coeff. Aderenza differito ß1*ß2:	0.50	
	Sf limite S.L.E. Comb. Rare:	360.00	MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del De Classe Congle		Poligonale C32/40
N°vertice:	X [cm]	Y [cm]
1	100.0	50.0
2	100.0	0.0
3	0.0	0.0
4	0.0	50.0

DATI BARRE ISOLATE


N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	91.4	41.4	20
2	91.4	8.6	20
3	8.6	8.6	20
4	8.6	41.4	20

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.	Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.	Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.	Numero della barra finale cui si riferisce la generazione
NODama	Normana di banca mananata ancidistanti aci di diferiasa la norma

Numero di barre generate equidistanti cui si riferisce la generazione Diametro in mm delle barre della generazione N°Barre

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	3	20

2 3 2 3 20

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx My Vy		Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Momento flettente [kNm] intorno all'asse x princ. d'inerzia con verso positivo se tale da comprimere il lembo sup. della sez. Momento flettente [kNm] intorno all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro della sez. Componente del Taglio [kN] parallela all'asse princ.d'inerzia y					
Vx		Componente dei	ragilo [kiv] paralleli	a all'asse princ.d'ine	erzia x		
N°Comb.	N	Mx	Му	Vy	Vx		
1	30.00	-219.00	0.00	0.00	0.00		
2	57.00	-56.00	0.00	0.00	0.00		

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Ν Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) Mx con verso positivo se tale da comprimere il lembo superiore della sezione Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) Му con verso positivo se tale da comprimere il lembo destro della sezione N°Comb. Ν Mx My -132.00 0.00 1 117.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Ν Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo superiore della sezione Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) My con verso positivo se tale da comprimere il lembo destro della sezione N°Comb. Ν Mx My 1 123.00 -111.00 (-159.98) 0.00(0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)
Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)
con verso positivo se tale da comprimere il lembo superiore della sezione
My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)
con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My

1 56.00 -24.00 (-180.89) 0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.6 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia

My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia

N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	N	30.00	-219.00	0.00	30.10	-265.03	0.00	1.21	31.4(9.0)
2	N	57.00	-56.00	0.00	57.18	-269.81	0.00	4.82	31.4(9.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.158	0.0	0.0	-0.00111	8.6	8.6	-0.01871	91.4	41.4
2	0.00350	0.159	0.0	0.0	-0.00106	8.6	8.6	-0.01846	91.4	41.4

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	а	b	С	x/d	C.Rid.
1	0.000000000	-0.000536465	0.003500000	0.158	0.700
2	0.000000000	-0.000530441	0.003500000	0.159	0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Minima tensione (negativa se di trazione) nell'acciaio [Mpa]
Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)

Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. S 5.70 1 0.0 0.0 -188.3 91.4 41.4 1250 15.7

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff.

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
	Progetto	Lotto	Codifica	
	IN17	11	EI2CLIN040X001	В

1 S 4.78 0.0 0.0 -150.6 91.4 41.4 1200 15.7

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

		La sezione v	iene assunta	a sempre f	essurata	anche nel cas	so in cui la trazione minima del ca	alcestruz	zo sia inferiore a f	ctm		
Ver.		Esito della ve	erifica									
e1		Massima def	ormazione u	ınitaria di t	razione n	el calcestruzz	zo (trazione -) valutata in sezione	fessura	ta			
e2		Minima defor	linima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata									
k1		= 0.8 per ba	rre ad adere	nza miglio	rata [eq.(7.11)EC2]						
kt		= 0.4 per co	mb. quasi p	ermanenti	/ = 0.6 pe	er comb.frequ	enti [cfr. eq.(7.9)EC2]					
k2		= 0.5 per fles	sione; =(e1	+ e2)/(2*e	1) per tra	zione eccentr	ica [eq.(7.13)EC2]					
k3		= 3.400 Coef	f. in eq.(7.11	1) come da	annessi	nazionali						
k4		= 0.425 Coef	f. in eq.(7.11	1) come da	annessi	nazionali						
Ø		Diametro [mr	n] equivalen	te delle ba	rre tese	comprese nel	l'area efficace Ac eff [eq.(7.11)E0	[2]				
Cf		Copriferro [m	m] netto cal	colato con	riferimen	ito alla barra i	oiù tesa	-				
e sm	- e cm	Differenza tra	a le deforma	zioni medi	e di accia	io e calcestru	zzo [(7.8)EC2 e (C4.1.7)NTC]					
		Tra parentes	i: valore min	imo = 0.6	Smax / E	s [(7.9)EC2	e (C4.1.8)NTC]					
sr ma	ìΧ	Massima dis	tanza tra le f	essure [mi	m]							
wk		Apertura fess	sure in mm o	alcolata =	sr max*(e_sm - e_cm	[(7.8)EC2 e (C4.1.7)NTC]. Valor	re limite	tra parentesi			
Mx fe	SS.	Componente momento di prima fessurazione intorno all'asse X [kNm]										
My fe	SS.	Componente	momento d	i prima fes	surazione	e intorno all'a	sse Y [kNm]					
mb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess		
1	N	-0.00098	0	0.500	20.0	76	0.00045 (0.00045)	518	0.234 (0.20)	-159.98		

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max Y	c max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	1.01	100.0	0.0	-23.7	50.0	41.4	1150	15.7

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

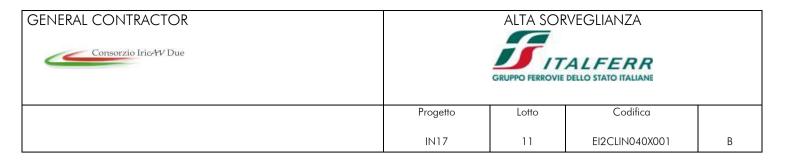
Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00016	0	0.500	20.0	76	0.00007 (0.00007)	507	0.036 (0.20)	-180.89	0.00

My fess

0.00

SEZIONE					
b_w	=	100	cm		
h	=	50	cm		
С	=	5	cm		
d	=	h-c	=	45	cm
MATERIALI					
f _{y wd}	=	391.30	MPa		
R _{ck}	=	40	MPa		
γс	=	1.5			
f _{ck}	=	0.83xR _{ck}	=	33.2	MPa
f _{cd}	=	$0.85xf_{ck}/\gamma_{c}$	Ш	18.81	MPa
ARMATURE	A TAGLIC		ı		
Ø _{st}	=	10			
braccia	=	3			
Ø _{st2}	=	0			
braccia	=	0			
passo	=	33	cm	,	
(A_{sw}/s)	=	7.140	cm ² / m		
α	=	90	0	(90° staffe	verticali)
ARMATURE	LONGITU	DINALI			
Ø _l	=	20			
Numero	=	10			
A _{sl}	=	31.416	cm ²		
					-
TAGLIO AG	ENTE	V _{Ed} =	119	(KN)	
SFORZO N	ORMALE	N _{ed} =	0	(KN)	
	<u> </u>	$\alpha_c =$	1.0000		

ELEMENTI CON ARMATURA A TAGLIO


Calcolo di cot θ

 $cot(\theta) = 5.72$ $\theta = 9.92$ °

	cot ୬ > 2,5	Si assume	ಳ = 21,8°
Armatura trasversale			

 $V_{Rsd} = 282.88 (KN)$ $V_{Rcd} = 1313.69 (KN)$ $V_{Rd} = 283 (KN)$

 $min(V_{Rsd},\,VR_{cd})$

13.7 PIEDRITTI – SEZIONE MEZZERIA

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -C32/40 Classe: Resis. compr. di progetto fcd: 18.813 MPa 0.0020 Def.unit. max resistenza ec2: Def.unit. ultima ecu: 0.0035 Parabola-Rettangolo Diagramma tensione-deformaz.: Modulo Elastico Normale Ec: 33642.8 MPa Resis. media a trazione fctm: 3.099 MPa Coeff. Omogen. S.L.E.: 15.00 Coeff. Omogen. S.L.E.: 15.00 Sc limite S.L.E. comb. Frequenti: 199.20 daN/cm² Ap.Fessure limite S.L.E. comb. Frequenti: 0.200 mm Sc limite S.L.E. comb. Q.Permanenti: 0.00 Mpa Ap.Fess.limite S.L.E. comb. Q.Perm.: 0.200 mm ACCIAIO -B450C Tipo: Resist. caratt. snervam. fyk: 450.00 MPa Resist, caratt, rottura ftk: 450.00 MPa Resist, snerv, di progetto fvd: 391.30 MPa Resist. ultima di progetto ftd: 391.30 MPa Deform. ultima di progetto Epu: 0.068 Modulo Elastico Ef 2000000 daN/cm² Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza istantaneo ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50 Sf limite S.L.E. Comb. Rare: 360.00 MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del De Classe Congle	Poligonale C32/40	
N°vertice:	X [cm]	Y [cm]
1	100.0	50.0
2	100.0	0.0
3	0.0	0.0
4	0.0	50.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	91.4	41.4	20
2	91.4	8.6	20
3	8.6	8.6	20
4	8.6	41.4	20

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.Numero assegnato alla singola generazione lineare di barreN°Barra Ini.Numero della barra iniziale cui si riferisce la generazioneN°Barra Fin.Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

 N° Gen. N° Barra Ini. N° Barra Fin. N° Barre \emptyset

GENERAL CONTRACTOR		ALTA SO	rveglianza		
Consorzio IricAV Due		GRUPPO FERROVIE DELLO STATO ITALIANE			
	Progetto	Lotto	Codifica		
	IN17	11	EI2CLIN040X001	В	

 1
 1
 4
 3
 20

 2
 3
 2
 3
 20

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baric. (+ se di compr							
Mx		Momento flettente [kNm] intorno all'asse x princ. d'inerzia					
		con verso positivo	se tale da comprim	nere il lembo sup. de	ella sez.		
My		Momento flettente	[kNm] intorno all'as	sse y princ. d'inerzia	l		
		con verso positivo	se tale da comprim	nere il lembo destro	della sez.		
Vy		Componente del Taglio [kN] parallela all'asse princ.d'inerzia y					
Vx	Componente del Taglio [kN] parallela all'asse princ.d'inerzia x						
N°Comb.	N	Mx	Му	Vy	Vx		
			•	•			

N°Comb.	N	Mx	My	Vy	Vx
1	41.00	-141.00	0.00	0.00	0.00
2	41.00	51.00	0.00	0.00	0.00
3	68.00	-89.00	0.00	0.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My 1 127.00 -89.00 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My 1 133.00 -68.00 (-173.89) 0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My
1 66.00 -5.00 (0.00) 0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

GENERAL CONTRACTOR Consorzio Iric/AV Due Consorzio Iric/AV Due Progetto IN17 IN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA ALTA SORVEGLIANZA B IN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA ALTA SORVEGLIANZA B IN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA B IN17 ALTA SORVEGLIANZA B IN17 ALTA SORVEGLIANZA B IN17 ALTA SORVEGLIANZA B IN17 B IN17 B IN17 B IN17 B IN17 B IN18 B IN1

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	N	41.00	-141.00	0.00	40.97	-266.95	0.00	1.89	31.4(9.0)
2	N	41.00	51.00	0.00	40.97	266.95	0.00	5.23	31.4(9.0)
3	N	68.00	-89.00	0.00	67.93	-271.71	0.00	3.05	31.4(9.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.158	0.0	0.0	-0.00109	8.6	8.6	-0.01861	91.4	41.4
2	0.00350	0.158	100.0	50.0	-0.00109	91.4	41.4	-0.01861	8.6	8.6
3	0.00350	0.160	0.0	0.0	-0.00104	8.6	8.6	-0.01836	91.4	41.4

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45
C.Rid.	Coeff. di riduz. momenti per sola flessione in travi continue

C. Na. Ooon. armaaz. momenta per cola necolone in travi continue

N°Comb	a	b	С	x/d	C.Rid.
1	0.000000000	-0.000534055	0.003500000	0.158	0.700
2	0.00000000	0.000534055	-0.023202754	0.158	0.700
3	0.000000000	-0.000528031	0.003500000	0.160	0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Sf min
Minima tensione (negativa se di trazione) nell'acciaio [Mpa]

Xs min, Ys min

Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)

Ac eff.

As eff.

As eff.

Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)

Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre

Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. 3.82 1 S 0.0 0.0 -111.9 70.7 41.4 1200 15.7

GENERAL CONTRACTOR Consorzio Iric/AV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica				
	Progetto	Lotto	Codifica		
	IN17 11 EI2CLIN040X001 B				

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max Yo	max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	2.89	0.0	0.0	-74.6	91.4	41.4	1150	15.7

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Ver.		La sezione vi Esito della ve		a sempre f	essurata	anche nel cas	so in cui la trazione minima del ca	alcestruz	zo sia inferiore a fo	ctm	
e1				ınitaria di t	razione n	el calcestruzz	zo (trazione -) valutata in sezione	fessurat	a		
e2							(trazione -) valutata in sezione f				
k1		= 0.8 per ba					,				
kt		= 0.4 per co	mb. quasi p	ermanenti	/ = 0.6 p	er comb.frequ	enti [cfr. eq.(7.9)EC2]				
k2		= 0.5 per fles	sione; =(e1	+ e2)/(2*e	1) per tra	zione eccentr	ica [eq.(7.13)EC2]				
k3		= 3.400 Coef	f. in eq.(7.1	1) come da	annessi	nazionali					
k4		= 0.425 Coef	f. in eq.(7.1	1) come da	annessi	nazionali					
Ø		Diametro [mr	n] equivaler	ite delle ba	rre tese	comprese nel	l'area efficace Ac eff [eq.(7.11)E0	C2]			
Cf		Copriferro [mm] netto calcolato con riferimento alla barra più tesa									
e sm	- e cm						ızzo [(7.8)EC2 e (C4.1.7)NTC]				
						s [(7.9)EC2	e (C4.1.8)NTC]				
sr ma	ax	Massima dist	tanza tra le f	essure [mi	m]						
wk) [(7.8)EC2 e (C4.1.7)NTC]. Valo	re limite	tra parentesi		
Mx fe				•		e intorno all'a					
My fe	ess.	Componente	momento d	i prima fes	surazion	e intorno all'a	sse Y [kNm]				
Comb.	Ver	e1 e2 k2 Ø Cf e sm - e cm sr max wk Mx fess My fess									
1	S	-0.00050 0 0.500 20.0 76 0.00022 (0.00022) 507 0.114 (0.20) -173.89 0.00									
COMBIN	IAZIONI	QUASI PERMA	NENTI IN	ESERCIZ	:IO - M	ASSIME TE	NSIONI NORMALI ED APEI	RTURA	FESSURE (NTC	C/EC2)	

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max Y	c max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	0.23	100.0	0.0	0.8	8.6	41.4		

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr max	wk	Mx fess	My fess
1	S	0.00000	0.00000					0.000 (0.20)	0.00	0.00

SEZIONE					
b_w	=	100	cm		
h	=	50	cm		
С	=	5	cm		
d	=	h-c	=	45	cm
					•
MATERIALI	T			Ī	
$f_{y wd}$	=	391.30	MPa		
R _{ck}	=	40	MPa		
γ _c	=	1.5			
f _{ck}	=	0.83xR _{ck}	=	33.2	MPa
f_{cd}	=	$0.85xf_{ck}/\gamma_{c}$	=	18.81	MPa
	-	•	-	-	•
ARMATURE	A TAGLIC)			
Øst	=	10			
braccia	=	3			
ø _{st2}	=	0			
braccia	=	0		_	
passo	=	33	cm		
(A_{sw}/s)	=	7.140	cm ² / m		
α	=	90	0	(90° staffe	verticali)
		-			7
TAGLIO AG		V _{Ed} =		(KN)	
SFORZO NO	DRMALE	N _{ed} =	0	(KN)]
		α _c =	1.0000		

ELEMENTI CON ARMATURA A TAGLIO

Calcolo di cot θ

 $\cot(\theta) = 5.72$ $\theta = 9.92$ °

cot ৩ > 2,5	Si assume	𝒩 = 21,8°
-------------	-----------	-----------

Armatura trasversale

 $V_{Rsd} = 282.88 (KN)$ $V_{Rcd} = 1313.69 (KN)$ $V_{Rd} = 283 (KN)$

 $min(V_{Rsd}, VR_{cd})$

14 VERIFICHE GEOTECNICHE

14.1 VERIFICA DELLA CAPACITÀ PORTANTE

La verifica a capacità portante del complesso fondazione – terreno è stata effettuata applicando la combinazione (A1+M1+R3) dell'Approccio 2, tenendo conto dei valori dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II e 6.4.I delle NTC2008. I coefficienti γ_R sono riportati nella seguente tabella 6.4.I delle NTC08):

Tab. 6.4.I – Coefficienti parziali γ_R per le verifiche agli stati limite ultimi di fondazioni superficiali

Verifica	Coefficiente
	parziale
	(R3)
Carico limite	$\gamma_R = 2.3$
Scorrimento	$\gamma_R = 1.1$

La pressione limite puo' essere calcolata in base alla formula generale di Brinch Hansen (1970):

$$q_{lim} = 0.5 \cdot \gamma \cdot BN_{\gamma} \cdot s_{\gamma} i_{\gamma} b_{\gamma} g_{\gamma} + q \cdot N_q s_q d_q i_q b_q g_q + c N_c s_c d_c i_c b_c g_c$$
 (valida in condizioni drenate)

$$q_{lim} = c_U N_c^* d_C^* i_C^* s_C^* b_C^* g_C^* + q$$

(valida in condizioni non drenate)

essendo

 $N_{q_r}N_{c_r}N_{\gamma}$ i fattori di capacità portante in condizioni drenate;

 N_c^* il fattore di capacità portante in condizioni non drenate;

 $s_{\gamma} s_{\alpha} s_{c}$ i fattori di forma della fondazione;

 $i_{\gamma} i_{\alpha} i_{c}$ i fattori correttivi per l'inclinazione del carico;

 $b_{\gamma} b_{\alpha} b_{c}$ i fattori correttivi per l'inclinazione della base della fondazione;

 $g_{\gamma} g_{\alpha} g_{c}$ i fattori correttivi per l'inclinazione del piano campagna;

 $d_{\gamma} d_{\alpha} d_{c}$ i fattori correttivi per la profondità del piano di posa;

 $d_C^* i_C^* s_C^* b_C^* g_C^*$ i fattori correttivi corrispondenti rispettivamente a quanto sopra esposto ma validi in condizioni non drenate.

In condizioni drenate valgono le seguenti espressioni:

$$N_q = tg^2 (45 + \phi'/2) * e^{(\pi^* tg\phi')}$$

 $N_c = (N_q - 1)/tg\phi'$
 $N_y = 1.5(N_q - 1) * tg\phi'$

В

Progetto	Lotto	Codifica	
O			
IN17	11	EI2CLIN040X001	

$$i_{_{\mathcal{I}}} = \left[1 - \frac{H}{N + B' \cdot c \cdot \cot g \phi'}\right]^{m+1}$$

$$i_{_{q}} = i_{_{c}} = \left[1 - \frac{H}{N + B' \cdot c \cdot \cot g \phi'}\right]^{m}$$

$$d_q = 1 + 2tg \phi' \cdot (1 - \sin \phi')^2 \cdot \frac{D}{B'}$$

per D/B' ≤ 1

$$d_q = 1 + 2 \operatorname{tg} \phi' \cdot (1 - \sin \phi')^2 \cdot \operatorname{arctg} \left(\frac{D}{B'}\right)$$

per D/B' > 1

$$d_c = d_q - \frac{1 - d_q}{N_c t g \phi'}$$

$$s_{q} = 1 + (B/2) tg \phi'$$

$$s_r = 1 - 0.4B/4$$

$$s_c = 1 + \frac{Nq B}{NcL}$$

$$g_y = g_g = (1-0.5 \text{ tg}\beta)^5$$

$$g_c = 1 - \beta^{\circ}/147^{\circ}$$

$$\mathfrak{b}_{\mathfrak{q}}=e^{(-2\eta \iota_{\mathbb{S}^{\varphi}})}$$

$$b\gamma = e^{(-2.7\eta t_8\phi)}$$

ove
$$\beta+\eta \le 90^{\circ}e \ \beta \le \phi$$

In condizioni non drenate i fattori hanno le seguenti espressioni:

$$N_c^* = (2 + \pi)$$

$$s_c^* = 0.2 + \frac{B}{L}$$

$$i_c * = \left[1 - \frac{mH}{B'cuNc} \right] m$$

$$d_c^* = 0.4 + \frac{D}{R}$$

$$d_c* = 0.4 + \frac{tg^{-1D}}{B}$$

per
$$D/B > 1$$

$$g^*_c = \beta^\circ/147^\circ$$

$$b^*_c = n^{\circ}/147^{\circ}$$

GENERAL CONTRACTOR Consorzio Iric-AV Due Consorzio Iric-AV Due Progetto Lotto Codifica IN17 11 EI2CLIN040X001 B

Si sono indicate con:

q = γ^*D = pressione verticale totale agente alla quota di imposta della fondazione;

B' = larghezza efficace equivalente della fondazione;

 γ = peso di volume naturale del terreno;

 c_{υ} = coesione non drenata;

D = affondamento della fondazione;

H = carico orizzontale agente.

Per valutare gli effetti dell'eccentricità è necessario inserire nell'equazione della capacità due dimensioni L' e B' ridotte secondo le:

$$L' = L - 2e_x$$

$$B' = B - 2e_v$$

dove B e L sono le reali dimensioni della fondazione e ex e ey sono le eccentricità.

Si riporta di seguito la verifica per la condizione più gravosa.

L'azione complessiva trasmessa al terreno dalla fondazione nella condizione più gravosa è pari a circa 14930 kN per la struttura in esame.

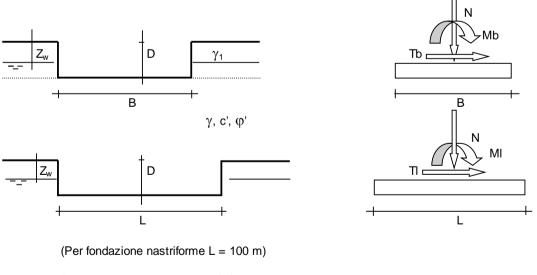
Fondazioni Dirette Verifica in tensioni efficaci

 $qlim = c' \cdot Nc \cdot sc \cdot dc \cdot ic \cdot bc \cdot gc + q \cdot Nq \cdot sq \cdot dq \cdot iq \cdot bq \cdot gq + 0, 5 \cdot \gamma \cdot B \cdot N\gamma \cdot s\gamma \cdot d\gamma \cdot i\gamma \cdot b\gamma \cdot g\gamma$

D = Profondità del piano di appoggio

 e_B = Eccentricità in direzione B (e_B = Mb/N)

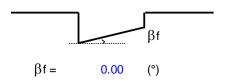
 e_L = Eccentricità in direzione L (e_L = MI/N) (per fondazione nastriforme e_L = 0; L^* = L)

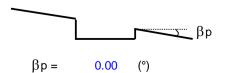

 B^* = Larghezza fittizia della fondazione (B^* = B - 2^*e_B)

 L^* = Lunghezza fittizia della fondazione (L^* = L - 2^*e_L)

(per fondazione nastriforme le sollecitazioni agenti sono riferite all'unità di lunghezza)

coefficienti parziali


	azioni		proprietà del terreno		resistenze	
Metodo di calcolo	permanenti	temporanee variabili	tan φ'	c'	qlim	scorr
Stato Oltimite Oltimate Oltimate Oltimate Oltimate Oliver	1.30	1.50	1.00	1.00	2.30	1.10
SISMA	1.00	1.00	1.00	1.00	2.30	1.10
Definiti dal Progettista X	1.00	1.00	1.00	1.00	2.30	1.10



B = 4.00 (m)

L = 14.70 (m)

D = 4.20 (m)

GENERAL CONTRACTOR

Progetto	Lotto	Codifica
IN17	11	EI2CLIN040X001

AZIONI

			AZIOITI	
		valori d	Valori di	
		permanenti	calcolo	
N	[kN]	12686		12686.10
Mb	[kNm]	7615		7614.60
MI	[kNm]	0.00		0.00
Tb	[kN]	3234		3234.00
П	[kN]	0.00		0.00
Н	[kN]	3234.00	0.00	3234.00

Peso unità di volume del terreno

 $\gamma_1 = 20.00 \text{ (kN/mc)}$ $\gamma = 20.00 \text{ (kN/mc)}$

Valori caratteristici di resistenza del terreno

c' = 0.00 (kN/mq) $\phi' = 38.00 (°)$

Valori di progetto

c' = 0.00 (kN/mq) $\phi' = 38.00 (°)$

Profondità della falda

Zw = 8.70 (m)

q : sovraccarico alla profondità D

q = 84.00 (kN/mq)

γ: peso di volume del terreno di fondazione

 $\gamma = 20.00 \text{ (kN/mc)}$

Nc, Nq, Ny: coefficienti di capacità portante

Nq =
$$tan^2(45 + \phi'/2)^*e^{(\pi^*tg\phi')}$$

$$Nq = 48.93$$

$$Nc = (Nq - 1)/tan\phi'$$

$$Nc = 61.35$$

$$N\gamma = 2*(Nq + 1)*tan\phi'$$

$$N\gamma = 78.02$$

GENERAL CONTRACTOR

Lotto	Codifica	
11	EI2CLIN040X001	
	Lotto 11	Lotto Codifica 11 EI2CLIN040X001

s_c, s_q, s_r: fattori di forma

$$s_c = 1 + B*Nq / (L*Nc)$$

$$s_c = 1.15$$

$$s_q = 1 + B*tan\phi' / L*$$

$$s_q = 1.15$$

$$s_{\nu} = 1 - 0.4*B* / L*$$

$$s_{v} = 0.92$$

$i_c,\,i_q,\,i_\gamma$: fattori di inclinazione del carico

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*) =$$

$$\theta = arctg(Tb/TI) = 90.00$$

(m=2 nel caso di fondazione nastriforme e

 $m=(m_b sin^2 \theta + m_l cos^2 \theta)$ in tutti gli altri casi)

В

$$m_1 = (2 + L^* / B^*) / (1 + L^* / B^*)$$

$$i_{\alpha} = (1 - H/(N + B^*L^* c' \cot g\phi'))^m$$

$$i_c = i_q - (1 - i_q)/(Nq - 1)$$

$$i_c = 0.57$$

$$i_{\nu} = (1 - H/(N + B^*L^* c' \cot g\phi'))^{(m+1)}$$

$$i_{v} = 0.43$$

d_c, d_q, d_γ : fattori di profondità del piano di appoggio

$$\begin{split} &\text{per D/B*} \!\! \leq 1; \; d_q = 1 \; + 2 \; D \; tan\phi' \; (1 \; - \; sen\phi')^2 \; / \; B^* \\ &\text{per D/B*} \!\! > 1; \; d_q = 1 \; + (2 \; tan\phi' \; (1 \; - \; sen\phi')^2) \; ^* \; arctan \; (D \; / \; B^*) \end{split}$$

$$d_{q} = 1.23$$

$$d_c = d_q - (1 - d_q) / (N_c \tan \varphi)$$

$$d_c = 1.23$$

$$d_{\gamma} = 1$$

$$d_{v} = 1.00$$

GENERAL CONTRACTOR

	GROFFO FERROVIE	DELLO SIAIO HALIANE	
Progetto	Lotto	Codifica	
IN17	11	EI2CLIN040X001	В

b_c , b_q , b_γ : fattori di inclinazione base della fondazione

$$b_{q} = (1 - \beta_{f} \tan \varphi')^{2}$$

$$\beta_f + \beta_p =$$

$$\beta_f + \beta_p < 45^\circ$$

$$b_0 = 1.00$$

$$b_c = b_q - (1 - b_q) / (N_c \tan \varphi)$$

$$b_c = 1.00$$

$$b_{\gamma} = b_{q}$$

$$b_{\gamma} = 1.00$$

$g_c,\,g_q,\,g_\gamma:\underline{fattori\ di\ inclinazione\ piano\ di\ campagna}$

$$g_q = (1 - tan\beta_p)^2$$

$$\beta_f + \beta_p =$$

$$\beta_f + \beta_p < 45^\circ$$

$$g_{q} = 1.00$$

$$g_c = g_q - (1 - g_q) / (N_c \tan \varphi')$$

$$g_c = 1.00$$

$$g_{\gamma} = g_{q}$$

$$g_{\gamma} = 1.00$$

Carico limite unitario

$$q_{lim} = 4245.94$$

Pressione massima agente

$$q = N / B^* L^*$$

$$(kN/m^2)$$

 (kN/m^2)

Verifica di sicurezza capacità portante

 $q_{lim}/\gamma_R = 1846.06 \ge q = 308.27 (kN/m^2)$

VERIFICA A SCORRIMENTO

Carico agente

Hd = 3234.00 (kN)

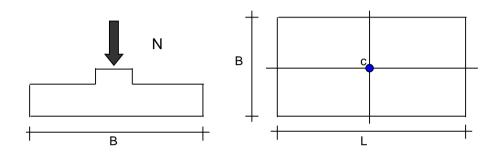
Azione Resistente

 $Sd = N tan(\phi') + c' B^* L^*$

Sd = 9911.47 (kN)

Verifica di sicurezza allo scorrimento

Sd / γ_R = 9010.43 ≥ **Hd** = 3234.00 (kN)



14.2 VALUTAZIONE DEI CEDIMENTI

Si esibisce di seguito il calcolo dei cedimenti in fondazione dell'opera in esame.

CEDIMENTI DI UNA FONDAZIONE RETTANGOLARE

LAVORO:

Formulazione Teorica (H.G. Poulos, E.H. Davis; 1974)

$$\Delta \sigma Z i = (q/2\pi)^*(tan^{-1}((L/2)(B/2))/(zR_3)) + ((L/2)(B/2)z)/R_3)(1/R_1^2 + 1/R_2^2))$$

$$\Delta\sigma x i = (q/2\pi)^*(tan^{-1}((L/2)(B/2))/(zR_3)) - ((L/2)(B/2)z)/R_3{R_1}^2))$$

$$\Delta \sigma y i = (q/2\pi)^*(tan^{-1}((L/2)(B/2))/(zR_3))-((L/2)(B/2)z)/R_3R_2^{-2}))$$

$$R1 = ((L/2)^2 + z^2)^{0.5}$$

$$R2 = ((B/2)^2 + z^2)^{0.5}$$

R3 =
$$((L/2)^2 + (B/2)^2 + z^2)^{0.5}$$

$$\delta_{\text{tot}} = \Sigma \delta_{i} = \Sigma (((\Delta \sigma z i - \nu i (\Delta \sigma x i + \Delta \sigma y i)) \Delta z i / E i)$$

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio Iric-AV Due Progetto IN17 11 EI2CLIN040X001 B

DATI DI INPUT:

B = 4.00 (m) (Larghezza della Fondazione)

L = 14.70 (m) (Lunghezza della Fondazione)

N = 8908 (kN) (Carico Verticale Agente)

q = 151.50 (kN/mq) (Pressione Agente (q = N/(B*L)))

ns = 4 (-) (numero strati) (massimo 6)

Strato	Litologia	Spessore	da z _i	a z _{i+1}	∆zi	E	ν	δci
(-)	(-)	(m)	(m)	(m)	(m)	(kN/m^2)	(-)	(cm)
1	RILEVATO FERROVIARIO	0.80	0.0	0.8	0.4	30000	0.30	0.24
2	UG6	17.00	0.8	17.8	0.4	50000	0.30	1.26
3	UG2	2.00	17.8	19.8	0.4	20000	0.30	0.09
4	UG4	8.20	19.8	28.0	0.4	150000	0.30	0.03
-			0.0	0.0	1.0			•
-			0.0	0.0	1.0			-

 δ_{ctot} = 1.62 (cm)

cedimento totale risulta essere pari a 1.62 cm.

15 ALLEGATO: TABULATI DI CALCOLO

15.1 INPUT

Straus7 MODEL	EXCHANGE	FILE		
TIMESTAMP:	12:48:06 pm,	30	marzo	2021
MODEL INFORM	IATION			
FileFormat	Straus7.2.4.6			
ModelName	Scatolare SL01			
Title				
Project				
Author				
Reference				
Comments				
UNITS				
LengthUnit	m			
MassUnit kg				
EnergyUnit	J			
PressureUnit	kPa			
ForceUnitkN				
TemperatureUnit	C			

GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Progetto Lotto Codifica IN17 11 EI2CLIN040X001 B

GROUP DEFIN	NITIONS				
Group 1	167116	80	\\Model		
Group 2	335564	7 0			
FREEDOM	CASE	DEFIN	IITIONS		
FreedomCase	2	0	0	Freedom Case 1	
DZ RX	RY				
LOAD CASE	DEFINI	TIONS			
LOAD CASE LoadCase	DEFINI 2		PP		
	2 -9.81E+	1	PP		
LoadCase	2	1	PP		
LoadCase Gravity 2	2 -9.81E+	1	PP PERM		
LoadCase Gravity 2 LCInclude	2 -9.81E+ 3	1			
LoadCase Gravity 2 LCInclude LoadCase	2 -9.81E+ 3	1			
LoadCase Gravity 2 LCInclude LoadCase LCInclude	2 -9.81E+ 3 3	1 -00 0	PERM		

GENERAL CONTRACTOR Consorzio Iric** Due		ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	
	Progetto Lotto	Codifica	
	IN17 11	EI2CLIN040X001	В

LoadCase	6	0	SPTW
LCInclude	3		
LoadCase	7	0	ACC_LM71
LCInclude	3		
LoadCase	8	0	ACC_SW2
LCInclude	3		
LoadCase	9	0	SPACCSX_LM71
LCInclude	3	-	
Lomorado	Ü		
LoadCase	10	0	SPACCDX_LM71
LCInclude	3		
LoadCase	11	0	SPACCSX_SW2
LCInclude	3		
LoadCase	12	0	SPACCDX_SW2
LCInclude	3		
LoadCase	13	0	AVV_LM71
LCInclude	3		
LoadCase	22	0	FREN_SW2
LCInclude	3		
LoadCase	14	0	SERP
LCInclude	3		

GENERAL CONTRACTOR Consorzio IricAty Due Consorzio IricAty Due Progetto Lotto Codifica IN17 11 EI2CLIN040X001 B

LoadCase	15	0	TERM
LCInclude	3		
LoadCase	16	0	RITIRO
LCInclude	3		
LoadCase	17	0	ACC_SOLINF
LCInclude	3		
LoadCase	18	2	SISMA_H
LCInclude	3		
LoadCase	19	2	SISMA_V
LCInclude	3		
LoadCase	20	0	SPSSX
LCInclude	3		
LoadCase	21	0	SPSDX
LCInclude	3		

/ LOAD CASE COMBINATIONS

LoadCaseCombination 23 SLU01

2 2 1.35E+00

3 2 1.50E+00

4 2 1.00E+00

GENERAL CONTRACTOR		ALTA SOF	RVEGLIANZA	
Consorzio IricAV Due			ALFERR DELLO STATO ITALIANE	
	Progetto	Lotto	Codifica	
	IN17	11	EI2CLIN040X001	В

5	2	1.00E+00
6	2	1.00E+00
7	2	1.45E+00
9	2	1.45E+00
13	2	1.45E+00

LoadC	aseCombina	tion	24	SLU02
LoadC	aseCombina	ition	24	SLU02
2	2	1.35E+0	00	
3	2	1.50E+0	00	
4	2	1.00E+0	00	
5	2	1.00E+0	00	
6	2	1.00E+0	00	
7	2	1.45E+0	00	
13	2	1.45E+0	00	
15	2	-9.00E-0)1	
16	2	1.20E+0	00	
17	2	1.16E+0	00	

LoadCaseCombination		ation	25	SLU03
2	2	1.35E+0	0	
3	2	1.50E+0	0	
4	2	1.00E+0	0	
5	2	1.00E+0	0	
6	2	1.35E+0	0	
7	2	1.45E+0	0	
13	2	1.45E+0	0	

LoadCaseCombination		26	SLU04	
2	2	1.35E-	+00	
3	2	1.50E-	+00	

GENERAL CONTRACTOR	ALTA S	ORVEGLIANZA	
Consorzio IricAV Due	CONTRACTOR OF THE CONTRACTOR O	TALFERR DVIE DELLO STATO ITALIANE	
	Progetto Lotto	Codifica	
	IN17 11	EI2CLIN040X001	В

4	2	1.35E+00
5	2	1.00E+00
6	2	1.35E+00
7	2	1.45E+00
9	2	1.45E+00
13	2	1.45E+00

LoadCa	LoadCaseCombination		27	SLU05
2	2	1.35E+0	00	
3	2	1.50E+0	00	
4	2	1.35E+0	00	
5	2	1.35E+0	00	
6	2	1.35E+0	00	
7	2	1.45E+0	00	
9	2	1.45E+0	00	
13	2	1.45E+0	00	
17	2	1.16E+0	00	

Load	LoadCaseCombination		28	SLU06
2	2	1.35E-	+00	
3	2	1.50E-	+00	
4	2	1.35E-	+00	
5	2	1.35E-	+00	
6	2	1.35E-	+00	
9	2	1.45E-	+00	

LoadCas	eCombina	ation	29	SLU0
2	2	1.35E+0	00	
3	2	1.50E+0	00	
4	2	1.35E+0	00	

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
	Progetto	Lotto	Codifica	
	IN17	11	EI2CLIN040X001	В

5	2	1.00E+00
6	2	1.35E+00
7	2	1.45E+00
9	2	1.45E+00
13	2	1.45E+00
15	2	-9.00E-01

LoadCaseCombination		ation	30	SLU08
2	2	1.00E+0	00	
3	2	1.00E+0	00	
4	2	1.35E+0	00	
5	2	1.00E+0	00	
6	2	1.35E+0	00	
9	2	1.45E+0	00	

LoadCa	LoadCaseCombination		31	SLU09
2	2	1.35E+0	00	
3	2	1.50E+0	00	
4	2	1.35E+0	00	
5	2	1.00E+0	00	
6	2	1.35E+0	00	
7	2	1.45E+0	00	
9	2	1.45E+0	00	
15	2	9.00E-0	1	
16	2	1.20E+0	00	

LoadCaseCombination		ination 32	SLU10
2	2	1.35E+00	
3	2	1.50E+00	
4	2	1.00E+00	

GENERAL CONTRACTOR Consorzio Iric/4V Due Consorzio Iric/4V Due Progetto IN17 ALTA SORVEGLIANZA Consorzio Iric/4V Due Codifica IN17 B EI2CLIN040X001 B

5	2	1.35E+00
6	2	1.35E+00
7	2	1.45E+00
10	2	1.45E+00
15	2	-9.00E-01
16	2	1.20E+00

LoadCa	aseComb	ination	33	SLU11
2	2	1.35E+	+00	
3	2	1.50E+	+00	
4	2	1.00E+	- 00	
5	2	1.35E+	- 00	
6	2	1.35E+	- 00	
7	2	1.45E+	- 00	
9	2	1.16E+	- 00	
15	2	-1.50E	+00	
16	2	1.20E+	⊦ 00	

LoadCas	LoadCaseCombination		34	SLU12
2	2	1.35E+0	0	
3	2	1.50E+0	0	
4	2	1.00E+0	0	
5	2	1.35E+0	0	
6	2	1.35E+0	0	
7	2	1.45E+0	0	
9	2	1.16E+0	0	
15	2	1.50E+0	0	
16	2	1.20E+0	0	

GENERAL CONTRACTOR	A	alta sor	VEGLIANZA	
Consorzio Iric/W Due	2405.400		ALFERR DELLO STATO ITALIANE	
	Progetto	Lotto	Codifica	
	IN17	11	EI2CLIN040X001	В

2	2	1.35E+00
3	2	1.50E+00
4	2	1.00E+00
5	2	1.00E+00
6	2	1.00E+00
8	2	1.45E+00
11	2	1.45E+00
22	2	1.45E+00

LoadCa	LoadCaseCombination		36	SLU14
2	2	1.35E+0	00	
3	2	1.50E+0	00	
4	2	1.00E+0	00	
5	2	1.00E+0	00	
6	2	1.00E+0	00	
8	2	1.45E+0	00	
22	2	1.45E+0	00	
15	2	-9.00E-0	01	
16	2	1.20E+0	00	
17	2	1.16E+0	00	

LoadCa	LoadCaseCombination		37	SLU15
2	2	1.35E+0	00	
3	2	1.50E+0	00	
4	2	1.00E+0	00	
5	2	1.00E+0	00	
6	2	1.35E+0	00	
8	2	1.45E+0	00	
22	2	1.45E+0	00	

GENERAL CONTRACTOR Consorzio Iric AV Due Consorzio Iric AV Due Progetto IN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA ALTA SORVEGLIANZA B EI2CLIN040X001 B

LoadCas	eCombina	ition	38	SLU16
2	2	1.35E+00	0	
3	2	1.50E+00	0	
4	2	1.35E+00	0	
5	2	1.00E+00	0	
6	2	1.35E+00	0	
8	2	1.45E+00	0	
11	2	1.45E+00	0	
22	2	1.45E+00	0	
LoadCas	eCombina	ition	39	SLU17
2	2	1.35E+00	0	
3	2	1.50E+00	0	
4	2	1.35E+00	0	
5	2	1.35E+00	0	
6	2	1.35E+00	0	
8	2	1.45E+00	0	
11	2	1.45E+00	0	
22	2	1.45E+00	0	
17	2	1.16E+00	0	
LoadCas	eCombina	ition	40	SLU18
2	2	1.35E+00	0	
3	2	1.50E+00	0	
4	2	1.35E+0	0	
5	2	1.35E+00	0	
6	2	1.35E+00	0	
11	2	1.45E+00	0	

GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Progetto Lotto Codifica IN17 11 EI2CLIN040X001 B

2	2	1.35E+00
3	2	1.50E+00
4	2	1.35E+00
5	2	1.00E+00
6	2	1.35E+00
8	2	1.45E+00
11	2	1.45E+00
22	2	1.45E+00
15	2	-9.00E-01

LoadCa	LoadCaseCombination		42	SLU20
2	2	1.00E+00)	
3	2	1.00E+00)	
4	2	1.35E+00)	
5	2	1.00E+00)	
6	2	1.35E+00)	
11	2	1.45E+00)	

LoadCas	eCombina	ation	43	SLU21
2	2	1.35E+0	0	
3	2	1.50E+0	0	
4	2	1.35E+0	0	
5	2	1.00E+0	0	
6	2	1.35E+0	0	
8	2	1.45E+0	0	
11	2	1.45E+0	0	
15	2	9.00E-01	l	
16	2	1.20E+0	0	

GENERAL CONTRACTOR		ALTA SOF	RVEGLIANZA	
Consorzio IricAV Due			ALFERR DELLO STATO ITALIANE	
	Progetto	Lotto	Codifica	
	IN17	11	EI2CLIN040X001	В

2	2	1.35E+00
3	2	1.50E+00
4	2	1.00E+00
5	2	1.35E+00
6	2	1.35E+00
8	2	1.45E+00
12	2	1.45E+00
15	2	-9.00E-01
16	2	1.20E+00

LoadCa	LoadCaseCombination		45	SLU23
2	2	1.35E+0	00	
3	2	1.50E+0	00	
4	2	1.00E+0	00	
5	2	1.35E+0	00	
6	2	1.35E+0	00	
8	2	1.45E+0	00	
11	2	1.16E+0	00	
15	2	-1.50E+	00	
16	2	1.20E+0	00	

LoadCa	seCombina	ation	46	SLU2
2	2	1.35E+0	00	
3	2	1.50E+0	00	
4	2	1.00E+0	00	
5	2	1.35E+0	00	
6	2	1.35E+0	00	
8	2	1.45E+0	00	
11	2	1.16E+0	00	
15	2	1.50E+0	00	

GENERAL CONTRACTOR Consorzio IricAV Due Progetto IN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA ALTA SORVEGLIANZA ALTA SORVEGLIANZA ALTA SORVEGLIANZA B EI2CLIN040X001 B

16 2 1.20E+00

LoadCas	eCombina	ation	69	SLU25
2	2	1.35E+0	0	
3	2	1.50E+0	0	
4	2	1.35E+0	0	
5	2	1.00E+0	0	
6	2	1.35E+0	0	
7	2	1.45E+0	0	
9	2	1.45E+0	0	
22	2	7.25E-01	I	
14	2	1.45E+0	0	
LoadCas	eCombina	ation	70	SLU26
LoadCas	eCombina 2	ation 1.35E+0		SLU26
			0	SLU26
2	2	1.35E+0	0	SLU26
2	2	1.35E+0 1.50E+0	0 0 0	SLU26
2 3 4	2 2 2	1.35E+0 1.50E+0 1.35E+0	0 0 0	SLU26
2 3 4 5	2 2 2 2	1.35E+0 1.50E+0 1.35E+0 1.00E+0	0 0 0 0	SLU26
2 3 4 5	2 2 2 2 2	1.35E+0 1.50E+0 1.35E+0 1.00E+0 1.35E+0	0 0 0 0 0	SLU26
2 3 4 5 6	2 2 2 2 2 2	1.35E+0 1.50E+0 1.35E+0 1.00E+0 1.35E+0 1.45E+0	0 0 0 0 0	SLU26
2 3 4 5 6 8 11	2 2 2 2 2 2 2 2	1.35E+0 1.50E+0 1.35E+0 1.00E+0 1.35E+0 1.45E+0	0 0 0 0 0	SLU26

2	2	1.00E+00
3	2	1.00E+00

1.00E+00

47

SLU_SISMA01

5 2 1.00E+00

2

4

LoadCaseCombination

GENERAL CONTRACTOR Consorzio Iric/AV Due Consorzio Iric/AV Due Progetto Lotto Codifica IN17 11 EI2CLIN040X001 B

6	2	1.00E+00
7	2	2.00E-01
9	2	2.00E-01
13	2	2.00E-01
15	2	-5.00E-01
16	2	1.00E+00
18	2	1.00E+00
19	2	3.00E-01
21	2	1.00E+00

LoadCaseCombination 48 SLU_SISMA02

2	2	1.00E+00
3	2	1.00E+00
4	2	1.00E+00
5	2	1.00E+00
6	2	1.00E+00
7	2	2.00E-01
9	2	2.00E-01
13	2	2.00E-01
15	2	-5.00E-01
16	2	1.00E+00
18	2	1.00E+00
19	2	-3.00E-01
21	2	1.00E+00

LoadCaseCombination 49 SLU_SISMA03

2 2 1.00E+00 3 2 1.00E+00 4 2 1.00E+00

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE
	Progetto Lotto Codifica
	IN17 11 EI2CLIN040X001 B

5	2	1.00E+00
6	2	1.00E+00
7	2	2.00E-01
9	2	2.00E-01
13	2	2.00E-01
15	2	-5.00E-01
16	2	1.00E+00
18	2	-1.00E+00
19	2	3.00E-01
20	2	1.00E+00

LoadCaseCombination		50	SLU_SISMA04	
2	2	1.00E+	-00	
3	2	1.00E+	-00	
4	2	1.00E+	-00	
5	2	1.00E+	-00	
6	2	1.00E+	-00	
7	2	2.00E-	01	
9	2	2.00E-	01	
13	2	2.00E-	01	
15	2	-5.00E	-01	
16	2	1.00E+	-00	
18	2	-1.00E	+00	
19	2	-3.00E	-01	
20	2	1.00E+	-00	

LoadCaseCombination 51 SLU_SISMA05

2 2 1.00E+00

3 2 1.00E+00

GENERAL CONTRACTOR Consorzio Iric-YV Due Consorzio Iric-YV Due Progetto Lotto Codifica IN17 11 EI2CLIN040X001 B

4	2	1.00E+00
5	2	1.00E+00
6	2	1.00E+00
7	2	2.00E-01
9	2	2.00E-01
13	2	2.00E-01
15	2	-5.00E-01
16	2	1.00E+00
18	2	3.00E-01
19	2	1.00E+00
21	2	3.00E-01

LoadCaseCombination

			0_0.0
2	2	1.00E+00	
3	2	1.00E+00	
4	2	1.00E+00	
5	2	1.00E+00	
6	2	1.00E+00	
7	2	2.00E-01	
9	2	2.00E-01	
13	2	2.00E-01	
15	2	-5.00E-01	
16	2	1.00E+00	
18	2	3.00E-01	
19	2	-1.00E+00	
21	2	3.00E-01	
	_	0.002 0.	

52

SLU_SISMA06

LoadCaseCombination 53 SLU_SISMA07

GENERAL CONTRACTOR Consorzio Iric/AV Due Consorzio Iric/AV Due Consorzio Iric/AV Due Progetto Lotto Codifica

IN17

11

EI2CLIN040X001

В

3	2	1.00E+00
4	2	1.00E+00
5	2	1.00E+00
6	2	1.00E+00
7	2	2.00E-01
9	2	2.00E-01
13	2	2.00E-01
15	2	-5.00E-01
16	2	1.00E+00
18	2	-3.00E-01
19	2	1.00E+00
20	2	3.00E-01

LoadCas	seCombina	ation	54	SLU_SISMA08
2	2	1.00E+0	0	
3	2	1.00E+0	0	
4	2	1.00E+0	0	
5	2	1.00E+0	0	
6	2	1.00E+0	0	
7	2	2.00E-01	l	
9	2	2.00E-01	l	
13	2	2.00E-01	l	
15	2	-5.00E-0	1	
16	2	1.00E+0	0	
18	2	-3.00E-0	1	
19	2	-1.00E+0	00	
20	2	3.00E-01	I	

GENERAL CONTRACTOR	ALTA SO	rveglianza	
Consorzio IricAV Due		TALFERR E DELLO STATO ITALIANE	
	Progetto Lotto	Codifica	
	IN17 11	FI2CLIN040X001	B

SLU_SISMA10

56

2	2	1.00E+00
3	2	1.00E+00
4	2	1.00E+00
5	2	1.00E+00
6	2	1.00E+00
8	2	2.00E-01
11	2	2.00E-01
22	2	2.00E-01
15	2	-5.00E-01
16	2	1.00E+00
18	2	1.00E+00
19	2	3.00E-01
21	2	1.00E+00

LoadCaseCombination

2	2	1.00E+00
3	2	1.00E+00
4	2	1.00E+00
5	2	1.00E+00
6	2	1.00E+00
8	2	2.00E-01
11	2	2.00E-01
22	2	2.00E-01
15	2	-5.00E-01
16	2	1.00E+00
18	2	1.00E+00
19	2	-3.00E-01
21	2	1.00E+00

GENERAL CONTRACTOR		ALTA SOF	RVEGLIANZA	
Consorzio IricAV Due			ALFERR DELLO STATO ITALIANE	
	Progetto	Lotto	Codifica	
	IN17	11	EI2CLIN040X001	В

LoadCa	seCombin	ation 57	SLU_SISMA11
2	2	1.00E+00	
3	2	1.00E+00	
4	2	1.00E+00	
5	2	1.00E+00	
6	2	1.00E+00	
8	2	2.00E-01	
11	2	2.00E-01	
22	2	2.00E-01	
15	2	-5.00E-01	
16	2	1.00E+00	
18	2	-1.00E+00	
19	2	3.00E-01	
20	2	1.00E+00	
LoadCa	seCombin	ation 58	SLU_SISMA12

LoadCas	seCombina	ation	58	SLU_SISMA1
2	2	1.00E+0)	
3	2	1.00E+0)	
4	2	1.00E+0)	
5	2	1.00E+0)	
6	2	1.00E+0)	
8	2	2.00E-01		
11	2	2.00E-01		
22	2	2.00E-01		
15	2	-5.00E-0	1	
16	2	1.00E+0	ס	
18	2	-1.00E+0	00	
19	2	-3.00E-0	1	
20	2	1.00E+0)	

GENERAL CONTRACTOR Consorzio Iric/W Due		11	RVEGLIANZA ALFERR DELLO STATO ITALIANE	
	Progetto	Lotto	Codifica	
	IN17	11	EI2CLIN040X001	В

LoadC	aseCombir	nation 59	SLU_SISMA13
2	2	1.00E+00	
3	2	1.00E+00	
4	2	1.00E+00	
5	2	1.00E+00	
6	2	1.00E+00	
8	2	2.00E-01	
11	2	2.00E-01	
22	2	2.00E-01	
15	2	-5.00E-01	
16	2	1.00E+00	
18	2	3.00E-01	
19	2	1.00E+00	
21	2	3.00E-01	
LoadC	aseCombir		SLU_SISMA14
LoadC 2	aseCombir 2		SLU_SISMA14
		nation 60	SLU_SISMA14
2	2	nation 60 1.00E+00	SLU_SISMA14
2	2	1.00E+00 1.00E+00	SLU_SISMA14
2 3 4	2 2 2	1.00E+00 1.00E+00 1.00E+00	SLU_SISMA14
2 3 4 5	2 2 2 2	1.00E+00 1.00E+00 1.00E+00 1.00E+00	SLU_SISMA14
2 3 4 5	2 2 2 2	1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00	SLU_SISMA14
2 3 4 5 6	2 2 2 2 2	1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 2.00E-01	SLU_SISMA14
2 3 4 5 6 8	2 2 2 2 2 2	1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 2.00E-01	SLU_SISMA14
2 3 4 5 6 8 11 22	2 2 2 2 2 2 2	1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 2.00E-01 2.00E-01	SLU_SISMA14
2 3 4 5 6 8 11 22 15	2 2 2 2 2 2 2 2	1.00E+00 1.00E+00 1.00E+00 1.00E+00 2.00E-01 2.00E-01 2.00E-01 -5.00E-01	SLU_SISMA14

GENERAL CONTRACTOR Consorzio IricAV Due Progetto IN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA ALTA SORVEGLIANZA ALTA SORVEGLIANZA ALTA SORVEGLIANZA B EI2CLIN040X001 B

21 2 3.00E-01

Load	CaseCombi	nation	61	SLU_SISMA15
2	2	1.00E+	.00	
3	2	1.00E+	00	
4	2	1.00E+	.00	
5	2	1.00E+	.00	
6	2	1.00E+	.00	
8	2	2.00E-0	01	
11	2	2.00E-0	01	
22	2	2.00E-0	01	
15	2	-5.00E-	-01	
16	2	1.00E+	00	
18	2	-3.00E-	-01	
19	2	1.00E+	00	
20	2	3.00E-0	01	

2	2	1.00E+00
3	2	1.00E+00
4	2	1.00E+00
5	2	1.00E+00
6	2	1.00E+00
8	2	2.00E-01
11	2	2.00E-01
22	2	2.00E-01
15	2	-5.00E-01
16	2	1.00E+00
18	2	-3.00E-01

62

SLU_SISMA16

LoadCaseCombination

GENERAL CONTRACTOR Consorzio IricAV Due		11	RVEGLIANZA CALFERR DELLO STATO ITALIANE	
	Progetto	Lotto	Codifica EI2CLIN040X001	В

19 2 -1.00E+00

20 2 3.00E-01

LoadCaseCombination 63	SLE_RARA01
------------------------	------------

2	2	1.00E+00
3	2	1.00E+00
4	2	1.00E+00
5	2	1.00E+00
6	2	1.00E+00
7	2	8.00E-01
9	2	8.00E-01
10	2	8.00E-01
13	2	-8.00E-01
15	2	-6.00E-01
17	2	8.00E-01

LoadCaseCombination	64	SLE_RARA02
---------------------	----	------------

2	2	1.00E+00
3	2	1.00E+00
4	2	1.00E+00
5	2	1.00E+00
6	2	1.00E+00
7	2	8.00E-01
9	2	8.00E-01
10	2	8.00E-01
13	2	8.00E-01
15	2	6.00E-01
17	2	8.00E-01

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due Progetto Lotto Codifica IN17 11 EI2CLIN040X001 B

LoadC	aseCombin	ation 65	SLE_RARA03
2	2	1.00E+00	
3	2	1.00E+00	
4	2	1.00E+00	
5	2	8.00E-01	
6	2	1.00E+00	
7	2	8.00E-01	
9	2	8.00E-01	
13	2	8.00E-01	
15	2	-6.00E-01	
16	2	1.00E+00	
17	2	8.00E-01	
LoadC			
LuauC	aseCombin	ation 66	SLE_RARA04
LUAUC	aseCombin	ation 66	SLE_RARA04
2	aseCombina 2	1.00E+00	SLE_RARA04
			SLE_RARA04
2	2	1.00E+00	SLE_RARA04
2	2	1.00E+00 1.00E+00	SLE_RARA04
2 3 4	2 2 2	1.00E+00 1.00E+00 1.00E+00	SLE_RARA04
2 3 4 5	2 2 2 2	1.00E+00 1.00E+00 1.00E+00 1.00E+00	SLE_RARA04
2 3 4 5	2 2 2 2 2	1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00	SLE_RARA04
2 3 4 5 6	2 2 2 2 2 2	1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 8.00E-01	SLE_RARA04
2 3 4 5 6 8 11	2 2 2 2 2 2 2	1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 8.00E-01	SLE_RARA04
2 3 4 5 6 8 11	2 2 2 2 2 2 2 2	1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 8.00E-01 8.00E-01	SLE_RARA04
2 3 4 5 6 8 11 12 22	2 2 2 2 2 2 2 2 2	1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 8.00E-01 8.00E-01 -8.00E-01	SLE_RARA04
2 3 4 5 6 8 11 12 22 15	2 2 2 2 2 2 2 2 2 2	1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 8.00E-01 8.00E-01 -8.00E-01 -6.00E-01	SLE_RARA04

67

SLE_RARA05

LoadCaseCombination

GENERAL CONTRACTOR	A	alta sor	VEGLIANZA	
Consorzio IricAV Due	100000		ALFERR DELLO STATO ITALIANE	
	Progetto	Lotto	Codifica	
	IN17	11	EI2CLIN040X001	В

3	2	1.00E+00
4	2	1.00E+00
5	2	1.00E+00
6	2	1.00E+00
8	2	8.00E-01
11	2	8.00E-01
12	2	8.00E-01
22	2	8.00E-01
15	2	6.00E-01
17	2	8.00E-01

LoadCaseCombination

LoadCaseCombination

			_
2	2	1.00E+00	
3	2	1.00E+00	
4	2	1.00E+00	
5	2	8.00E-01	
6	2	1.00E+00	
8	2	8.00E-01	
11	2	8.00E-01	
22	2	8.00E-01	
15	2	-6.00E-01	
16	2	1.00E+00	
17	2	8.00E-01	

68 SLE_RARA06

SLE_RARA07

2	2	1.00E+00
3	2	1.00E+00
4	2	1.00E+00
5	2	8.00E-01

71

GENERAL CONTRACTOR		ALTA SOF	RVEGLIANZA	
Consorzio Iric4V Due			ALFERR DELLO STATO ITALIANE	
	Progetto	Lotto	Codifica	
	IN17	11	FI2CLINI040X001	B

6	2	1.00E+00
7	2	1.00E+00
9	2	1.00E+00
14	2	1.00E+00
22	2	5.00E-01
15	2	-6.00E-01
17	2	8.00E-01

LoadCas	seCombina	ation	72	SLE_RARA08
2	2	1.00E+0	0	
3	2	1.00E+0	0	
4	2	1.00E+0	0	
5	2	8.00E-0	I	
6	2	1.00E+0	0	
8	2	1.00E+0	0	
11	2	1.00E+0	0	
14	2	1.00E+0	0	
22	2	5.00E-0	I	
15	2	-6.00E-0	1	

8.00E-01

17

2

LoadCaseCombination

2	2	1.00E+00	
3	2	1.00E+00	
4	2	1.00E+00	
5	2	1.00E+00	
6	2	1.00F+00	

73

SLE_QPERM01

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	
	Progetto Lotto Codifica	
	IN17 11 EI2CLIN040X001	В

SLE_FREQ01

LoadCas	secombina	ation 74	SLE_FREQUI
2	2	1.00E+00	
3	2	1.00E+00	
4	2	1.00E+00	
5	2	8.00E-01	
6	2	1.00E+00	
7	2	8.00E-01	
8	2	0.00E+00	
9	2	8.00E-01	
10	2	0.00E+00	
11	2	0.00E+00	
12	2	0.00E+00	
13	2	4.00E-01	
22	2	0.00E+00	
14	2	8.00E-01	
15	2	-5.00E-01	
16	2	0.00E+00	
17	2	8.00E-01	
18	2	0.00E+00	
19	2	0.00E+00	
20	2	0.00E+00	
21	2	0.00E+00	
LoadCas	seCombina	ation 75	SLE_FREQ02
2	2	1.00E+00	
3	2	1.00E+00	
4	2	1.00E+00	
5	2	8.00E-01	

6

2

1.00E+00

LoadCaseCombination

74

GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Progetto Lotto Codifica IN17 11 EI2CLIN040X001 B

8 2 8.00E-01 9 2 0.00E+00	
9 2 0.00E+00	
10 2 0.00E+00	
11 2 8.00E-01	
12 2 0.00E+00	
13 2 4.00E-01	
22 2 0.00E+00	
14 2 8.00E-01	
15 2 -5.00E-01	
16 2 0.00E+00	
17 2 8.00E-01	
18 2 0.00E+00	
19 2 0.00E+00	
20 2 0.00E+00	
21 2 0.00E+00	

/	COORDINATE	SYSTEM DEFINIT	ONS	
	CoordSys1	Global XYZ	GlobalXYZ	

NODE COORDINATES

Node	1	0	-1.75E+00	0.00E+000.00E+00
Node	2	0	-1 63F+00	0.00E+000.00E+00

GENERAL CONTRACTOR

	GRUPPO FERROVIE	DELLO STATO ITALIANE	
Progetto	Lotto	Codifica	
IN17	11	EI2CLIN040X001	В

Node	3	0	-1.50E+00	0.00E+000.00E+00
Node	4	0	-1.13E+00	0.00E+000.00E+00
Node	5	0	-7.50E-010.00E+0	00.00E+00
Node	6	0	-3.75E-010.00E+0	00.00E+00
Node	7	0	0.00E+000.00E+0	00.00E+00
Node	8	0	3.75E-01 0.00E+0	00.00E+00
Node	9	0	7.50E-01 0.00E+0	00.00E+00
Node	10	0	1.13E+000.00E+0	00.00E+00
Node	11	0	1.50E+000.00E+0	00.00E+00
Node	12	0	1.63E+000.00E+0	00.00E+00
Node	13	0	1.75E+000.00E+0	00.00E+00
Node	14	0	-1.75E+00	1.50E-01 0.00E+00
Node	15	0	1.75E+001.50E-01	0.00E+00
Node	16	0	-1.75E+00	3.00E-01 0.00E+00
Node	17	0	1.75E+003.00E-01	0.00E+00
Node	18	0	-1.75E+00	6.44E-01 0.00E+00
Node	19	0	1.75E+006.44E-01	0.00E+00
Node	20	0	-1.75E+00	9.89E-01 0.00E+00
Node	21	0	1.75E+009.89E-01	0.00E+00
Node	22	0	-1.75E+00	1.33E+000.00E+00
Node	23	0	1.75E+001.33E+0	00.00E+00
Node	24	0	-1.75E+00	1.68E+000.00E+00
Node	25	0	1.75E+001.68E+0	00.00E+00
Node	26	0	-1.75E+00	2.02E+000.00E+00
Node	27	0	1.75E+002.02E+0	00.00E+00
Node	28	0	-1.75E+00	2.37E+000.00E+00
Node	29	0	1.75E+002.37E+0	00.00E+00
Node	30	0	-1.75E+00	2.71E+000.00E+00
Node	31	0	1.75E+002.71E+0	00.00E+00
Node	32	0	-1.75E+00	3.06E+000.00E+00

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due Progetto Codifica

IN17

11

EI2CLIN040X001

В

Node	33	0	1.75E+003.06E+	1.75E+003.06E+000.00E+00		
Node	34	0	-1.75E+00	3.40E+000.00E+00		
Node	35	0	1.75E+003.40E+	-000.00E+00		
Node	36	0	-1.75E+00	3.53E+000.00E+00		
Node	37	0	1.75E+003.53E+	-000.00E+00		
Node	38	0	-1.75E+00	3.65E+000.00E+00		
Node	39	0	-1.63E+00	3.65E+000.00E+00		
Node	40	0	-1.50E+00	3.65E+000.00E+00		
Node	41	0	-1.13E+00	3.65E+000.00E+00		
Node	42	0	-7.50E-013.65E+	-000.00E+00		
Node	43	0	-3.75E-013.65E+000.00E+00			
Node	44	0	0.00E+003.65E+	-000.00E+00		
Node	45	0	3.75E-01 3.65E+	-000.00E+00		
Node	46	0	7.50E-01 3.65E+	-000.00E+00		
Node	47	0	1.13E+003.65E+	-000.00E+00		
Node	48	0	1.50E+003.65E+	-000.00E+00		
Node	49	0	1.63E+003.65E+000.00E+00			
Node	50	0	1.75E+003.65E+	-000.00E+00		

1

BEAM ELEMENTS

Beam	1	0	2	2	1	2
Beam	2	0	2	2	2	3
Beam	3	0	2	2	3	4
Beam	4	0	2	2	4	5
Beam	5	0	2	2	5	6
Beam	6	0	2	2	6	7
Beam	7	0	2	2	7	8

GENERAL CONTRACTOR Consorzio IricAty Due Consorzio IricAty Due Progetto Lotto Codifica IN17 11 EI2CLIN040X001 B

Beam	8	0	2	2	8	9
Beam	9	0	2	2	9	10
Beam	10	0	2	2	10	11
Beam	11	0	2	2	11	12
Beam	12	0	2	2	12	13
Beam	13	0	2	3	1	14
Beam	14	0	2	3	14	16
Beam	15	0	2	3	16	18
Beam	16	0	2	3	18	20
Beam	17	0	2	3	20	22
Beam	18	0	2	3	22	24
Beam	19	0	2	3	24	26
Beam	20	0	2	3	26	28
Beam	21	0	2	3	28	30
Beam	22	0	2	3	30	32
Beam	23	0	2	3	32	34
Beam	24	0	2	3	34	36
Beam	25	0	2	3	36	38
Beam	26	0	2	3	15	13
Beam	27	0	2	3	17	15
Beam	28	0	2	3	19	17
Beam	29	0	2	3	21	19
Beam	30	0	2	3	23	21
Beam	31	0	2	3	25	23
Beam	32	0	2	3	27	25
Beam	33	0	2	3	29	27
Beam	34	0	2	3	31	29
Beam	35	0	2	3	33	31
Beam	36	0	2	3	35	33
Beam	37	0	2	3	37	35

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Lotto Codifica Progetto IN17 EI2CLIN040X001 В Beam Beam Beam Beam Beam

	Beam	50	0	2	4	49	50
/							

NODE **RESTRAINTS** (ROTATION AS RADIAN) Freedom Case NdFreedom DX NdFreedom DX

BEAM SUPPORTS Freedom Case **BmSupport** 0.00E+00 2.00E+04 **BmSupport** 0.00E+00 2.00E+04 **BmSupport** 0.00E+00 2.00E+04 **BmSupport** 0.00E+00 2.00E+04 **BmSupport** 0.00E+00 2.00E+04

0.00E+00 2.00E+04

BmSupport

Beam

Beam

Beam

Beam

Beam

Beam

Beam

GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Progetto Lotto Codifica IN17 11 EI2CLIN040X001 B

BmSupport	2	7	0.00E+00 2.00E+04
BmSupport	2	8	0.00E+00 2.00E+04
BmSupport	2	9	0.00E+00 2.00E+04
BmSupport	2	10	0.00E+00 2.00E+04
BmSupport	2	11	0.00E+00 2.00E+04
BmSupport	2	12	0.00E+00 2.00E+04

NODE FORCES

PERM

NdForce 3 38 0.00E+00-4.28E+00 0.00E+00

NdForce 3 50 0.00E+00-4.28E+00 0.00E+00

BEAM GLOBAL DISTRIBUTED LOADS

0.00E+000.00E+00

0.00E+000.00E+00

BmDistLoadG

7

3

/ PERM

BmDistLoadG 3 Υ -9.00E+00 -9.00E+00 0.00E+000.00E+00 1 0.00E+000.00E+00 BmDistLoadG 3 2 -9.00E+00 -9.00E+00 0.00E+000.00E+00 0.00E+000.00E+00 BmDistLoadG 3 3 Υ -9.00E+00 -9.00E+00 0.00E+000.00E+00 0.00E+000.00E+00 BmDistLoadG 3 -9.00E+00 -9.00E+00 0.00E+000.00E+00 0.00E+000.00E+00BmDistLoadG -9.00E+00 -9.00E+00 0.00E+000.00E+00 0.00E+000.00E+00 BmDistLoadG 3 -9.00E+00 -9.00E+00 0.00E+000.00E+00

-9.00E+00

-9.00E+00

0.00E+000.00E+00

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due Progetto Lotto Codifica IN17 11 F12C LINI040X001 B

					IN17	11	EI2CLIN040X001	В
BmDistLoadG	3	8	Y	1	-9.00E+00	-9.00E+00	0.00E+000.00E+0	0
0.00E+000.00E+0	00							
BmDistLoadG	3	9	Υ	1	-9.00E+00	-9.00E+00	0.00E+000.00E+0	0
0.00E+000.00E+0	00							
BmDistLoadG	3	10	Υ	1	-9.00E+00	-9.00E+00	0.00E+000.00E+0	0
0.00E+000.00E+0	00							
BmDistLoadG	3	11	Υ	1	-9.00E+00	-9.00E+00	0.00E+000.00E+0	0
0.00E+000.00E+0	00							
BmDistLoadG	3	12	Υ	1	-9.00E+00	-9.00E+00	0.00E+000.00E+0	0
0.00E+000.00E+0	00							
BmDistLoadG	3	39	Υ	1	-1.71E+01	-1.71E+01	0.00E+000.00E+0	0
0.00E+000.00E+0	00							
BmDistLoadG	3	40	Υ	1	-1.71E+01	-1.71E+01	0.00E+000.00E+0	0
0.00E+000.00E+0	00							
BmDistLoadG	3	41	Υ	1	-1.71E+01	-1.71E+01	0.00E+000.00E+0	0
0.00E+000.00E+0	00							
BmDistLoadG	3	42	Υ	1	-1.71E+01	-1.71E+01	0.00E+000.00E+0	0
0.00E+000.00E+0	00							
BmDistLoadG	3	43	Υ	1	-1.71E+01	-1.71E+01	0.00E+000.00E+0	0
0.00E+000.00E+0	00							
BmDistLoadG	3	44	Υ	1	-1.71E+01	-1.71E+01	0.00E+000.00E+0	0
0.00E+000.00E+0	00							
BmDistLoadG	3	45	Υ	1	-1.71E+01	-1.71E+01	0.00E+000.00E+0	0
0.00E+000.00E+0	00							
BmDistLoadG	3	46	Υ	1	-1.71E+01	-1.71E+01	0.00E+000.00E+0	0
0.00E+000.00E+0	00							
BmDistLoadG	3	47	Υ	1	-1.71E+01	-1.71E+01	0.00E+000.00E+0	0
0.00E+000.00E+0	00							
BmDistLoadG	3	48	Υ	1	-1.71E+01	-1.71E+01	0.00E+000.00E+0	0
0.00E+000.00E+0	00							
BmDistLoadG	3	49	Υ	1	-1.71E+01	-1.71E+01	0.00E+000.00E+0	0
0.00E+000.00E+0	00							

GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Progetto Lotto Codifica IN17 11 EI2CLIN040X001 B

BmDistLoadG 3 50 Y 1 -1.71E+01 -1.71E+01 0.00E+000.00E+00 0.00E+00

NODE FORCES

/ SPTSX

NdForce 4 1 1.13E+010.00E+000.00E+00

NdForce 4 38 1.88E+000.00E+000.00E+00

-_____

BEAM GLOBAL DISTRIBUTED LOADS

/ SPTSX

BmDistLoadG	4	13	Х	2	3.66E+013.54E+010.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	4	14	Х	2	3.54E+013.42E+010.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	4	15	Х	2	3.42E+013.16E+010.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	4	16	Х	2	3.16E+012.89E+010.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	4	17	Х	2	2.89E+012.63E+010.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	4	18	Х	2	2.63E+012.37E+010.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	4	19	Х	2	2.37E+012.10E+010.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	4	20	Х	2	2.10E+011.84E+010.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	4	21	Х	2	1.84E+011.57E+010.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	4	22	Х	2	1.57E+011.31E+010.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	4	23	Х	2	1.31E+011.04E+010.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	4	24	Х	2	1.04E+019.45E+000.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	4	25	Х	2	9.45E+008.49E+000.00E+000.00E+000.00E+000.00E+00

GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Consorzio IricAV Due Progetto Consorzio IricAV Due Consorzio IricAV Due Consorzio IricAV Due Progetto Consorzio IricAV Due Progetto Consorzio IricAV Due Consorzio IricAV Due

IN17

11

EI2CLIN040X001

В

/ SPTDX

NdForce 5 13 -1.13E+01 0.00E+000.00E+00

NdForce 5 50 -1.88E+00 0.00E+000.00E+00

						_
BEAM GLOBA	L DISTRIBUTED	LOADS				
SPTDX						
BmDistLoadG 0.00E+00 0.00E+0	5 26 00	X	2	-3.54E+01	-3.66E+01	0.00E+000.00E
BmDistLoadG 0.00E+000.00E+0	5 27 00	X	2	-3.42E+01	-3.54E+01	0.00E+000.00E
BmDistLoadG 0.00E+000.00E+0	5 28 00	X	2	-3.16E+01	-3.42E+01	0.00E+000.00B
BmDistLoadG 0.00E+00 0.00E+0	5 29	X	2	-2.89E+01	-3.16E+01	0.00E+000.00I
BmDistLoadG 0.00E+00 0.00E+0	5 30	Х	2	-2.63E+01	-2.89E+01	0.00E+000.00l
BmDistLoadG 0.00E+000.00E+0	5 31	X	2	-2.37E+01	-2.63E+01	0.00E+000.00I
BmDistLoadG 0.00E+000.00E+0	5 32	X	2	-2.10E+01	-2.37E+01	0.00E+000.00l
BmDistLoadG	5 33	X	2	-1.84E+01	-2.10E+01	0.00E+000.00
0.00E+00 0.00E+0 BmDistLoadG	5 34	Х	2	-1.57E+01	-1.84E+01	0.00E+000.00
0.00E+00 0.00E+0 BmDistLoadG	5 35	X	2	-1.31E+01	-1.57E+01	0.00E+000.00
0.00E+00 0.00E+0	5 36	X	2	-1.04E+01	-1.31E+01	0.00E+000.00
0.00E+000.00E+0	5 37 00	X	2	-9.45E+00	-1.04E+01	0.00E+000.00

GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Progetto Lotto Codifica IN17 11 EI2CLIN040X001 B

BmDistLoadG 5 38 X 2 -8.49E+00 -9.45E+00 0.00E+000.00E+00 0.00E+00

NODE FORCES

/ SPTW

NdForce 6 1 0.00E+000.00E+000.00E+00

NdForce 6 13 0.00E+000.00E+000.00E+00

BEAM GLOBAL DISTRIBUTED LOADS

/ SPTW

BmDistLoadG	6	1	Υ	1	0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	6	2	Υ	1	0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	6	3	Υ	1	0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	6	4	Υ	1	0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	6	5	Υ	1	0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	6	6	Υ	1	0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	6	7	Υ	1	0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	6	8	Υ	1	0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	6	9	Υ	1	0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	6	10	Υ	1	0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	6	11	Υ	1	0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	6	12	Υ	1	0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	6	13	Χ	2	0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	6	14	Χ	2	0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	6	15	Χ	2	0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	6	16	Χ	2	0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	6	17	Х	2	0.00E+000.00E+000.00E+000.00E+000.00E+00

GENERAL CONTRACTOR Consorzio Iric/4V Due Consorzio Iric/4V Due Progetto IN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA ALTA SORVEGLIANZA B EI2CLIN040X001 B

BmDistLoadG	6	18	Χ	2	0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	6	19	Χ	2	0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	6	20	Χ	2	0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	6	21	Χ	2	0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	6	22	Χ	2	0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	6	23	Χ	2	0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	6	24	Χ	2	0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	6	25	Χ	2	0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	6	26	Χ	2	0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	6	27	Χ	2	0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	6	28	Χ	2	0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	6	29	Χ	2	0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	6	30	Χ	2	0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	6	31	Χ	2	0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	6	32	Χ	2	0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	6	33	Χ	2	0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	6	34	Χ	2	0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	6	35	Χ	2	0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	6	36	Χ	2	0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	6	37	Χ	2	0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	6	38	Х	2	0.00E+000.00E+000.00E+000.00E+000.00E+00

BEAM GLOBAL DISTRIBUTED LOADS

/ ACC_LM71

BmDistLoadG 7 39 Y 1 -7.46E+01 -7.46E+01 0.00E+000.00E+00

0.00E+000.00E+00

BmDistLoadG 7 40 Y 1 -7.46E+01 -7.46E+01 0.00E+000.00E+00

0.00E+000.00E+00

GENERAL CONT	RACTOR					ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE					
Consorzio	DiricAV Due										
						Progetto	Lotto	Codifica			
						IN17	11	EI2CLIN040X001	В		
	BmDistLoadG	7	41	Υ	1	-7.46E+01	-7.46E+01	0.00E+000.00E+00			
	0.00E+000.00E+	-00									
	BmDistLoadG	7	42	Υ	1	-7.46E+01	-7.46E+01	0.00E+000.00E+00			
	0.00E+000.00E+	-00									
	BmDistLoadG	7	43	Υ	1	-7.46E+01	-7.46E+01	0.00E+000.00E+00			
	0.00E+000.00E+	-00									
	BmDistLoadG	7	44	Υ	1	-7.46E+01	-7.46E+01	0.00E+000.00E+00			
	0.00E+000.00E+	-00									
	BmDistLoadG	7	45	Υ	1	-7.46E+01	-7.46E+01	0.00E+000.00E+00			
	0.00E+000.00E+	-00									
	BmDistLoadG	7	46	Υ	1	-7.46E+01	-7.46E+01	0.00E+000.00E+00			
	0.00E+000.00E+	-00									
	BmDistLoadG	7	47	Υ	1	-7.46E+01	-7.46E+01	0.00E+000.00E+00			
	0.00E+000.00E+	-00									
	BmDistLoadG	7	48	Υ	1	-7.46E+01	-7.46E+01	0.00E+000.00E+00			
	0.00E+000.00E+	-00									
	BmDistLoadG	7	49	Υ	1	-7.46E+01	-7.46E+01	0.00E+000.00E+00			
	0.00E+000.00E+	-00									
	BmDistLoadG	7	50	Υ	1	-7.46E+01	-7.46E+01	0.00E+000.00E+00			
	0.00E+000.00E+	-00									
/											
/	BEAM GLOBA	AL DISTE	RIBUTED	LOAD	os						
/	ACC_SW2										
	BmDistLoadG	8	39	Υ	1	-5.67E+01	-5.67E+01	0.00E+000.00E+00			
	0.00E+000.00E+	-00									
	BmDistLoadG	8	40	Υ	1	-5.67E+01	-5.67E+01	0.00E+000.00E+00			
	0.00E+000.00E+	-00									

8 41 Y 1 -5.67E+01 -5.67E+01 0.00E+000.00E+00

BmDistLoadG

0.00E+000.00E+00

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR PO FERROVIE DELLO STATO ITALIANE Codifica Progetto Lotto IN17 EI2CLIN040X001 В 11 BmDistLoadG 8 42 -5.67E+01 -5.67E+01 0.00E+000.00E+00 0.00E+000.00E+00 BmDistLoadG 0.00E+000.00E+00 8 43 -5.67E+01 -5.67E+01 0.00E+000.00E+00 0.00E+000.00E+00 BmDistLoadG -5.67E+01 -5.67E+01 44 0.00E+000.00E+00 BmDistLoadG 8 Υ -5.67E+01 0.00E+000.00E+00 45 1 -5.67E+01 0.00E+000.00E+00 BmDistLoadG 8 46 Υ -5.67E+01 -5.67E+01 0.00E+000.00E+00 1 0.00E+000.00E+00 BmDistLoadG 8 47 -5.67E+01 -5.67E+01 0.00E+000.00E+00 Υ 1 0.00E+000.00E+00 BmDistLoadG -5.67E+01 -5.67E+01 0.00E+000.00E+00 8 48 0.00E+000.00E+00 BmDistLoadG 8 49 -5.67E+01 -5.67E+01 0.00E+000.00E+00 0.00E+000.00E+00 BmDistLoadG 8 50 -5.67E+01 -5.67E+01 0.00E+000.00E+00 0.00E+000.00E+00 NODE FORCES SPACCSX_LM71 NdForce 9 1 7.17E+000.00E+000.00E+00 NdForce 9 38 5.97E+000.00E+000.00E+00 BEAM GLOBAL DISTRIBUTED LOADS SPACCSX_LM71 BmDistLoadG 9 Χ 2.39E+012.39E+010.00E+000.00E+000.00E+000.00E+0013 1

BmDistLoadG

9

14

Χ

2.39E+012.39E+010.00E+000.00E+000.00E+000.00E+00

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Lotto Codifica Progetto IN17 11 EI2CLIN040X001 В

BmDistLoadG	9	15	Χ	1	2.39E+012.39E+010.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	9	16	Х	1	2.39E+012.39E+010.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	9	17	Х	1	2.39E+012.39E+010.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	9	18	Х	1	2.39E+012.39E+010.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	9	19	Х	1	2.39E+012.39E+010.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	9	20	Х	1	2.39E+012.39E+010.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	9	21	Х	1	2.39E+012.39E+010.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	9	22	Х	1	2.39E+012.39E+010.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	9	23	Х	1	2.39E+012.39E+010.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	9	24	X	1	2.39E+012.39E+010.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	9	25	Х	1	2.39E+012.39E+010.00E+000.00E+000.00E+000.00E+00

NODE FORCES

SPACCDX_LM71

NdForce 10

0.00E+000.00E+00

0.00E+000.00E+00 NdForce 10 13 -7.17E+00 -5.97E+00

50

BEAM GLOBAL DISTRIBUTED LOADS SPACCDX_LM71 ${\bf BmDistLoadG}$ 10 26 Χ -2.39E+01 -2.39E+01 0.00E+000.00E+000.00E+000.00E+00 BmDistLoadG 10 27 Χ -2.39E+01 -2.39E+01 0.00E+000.00E+000.00E+000.00E+00 Χ 0.00E+000.00E+00 BmDistLoadG 10 28 1 -2.39E+01 -2.39E+01 0.00E+000.00E+00 Χ 0.00E+000.00E+00BmDistLoadG 10 29 1 -2.39E+01 -2.39E+01

0.00E+000.00E+00

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due TALFERR PO FERROVIE DELLO STATO ITALIANE Codifica Progetto Lotto IN17 EI2CLIN040X001 В 11 BmDistLoadG 10 30 Χ -2.39E+01 -2.39E+01 0.00E+000.00E+00 0.00E+000.00E+00 BmDistLoadG 0.00E+000.00E+00 10 31 Χ 1 -2.39E+01 -2.39E+01 0.00E+000.00E+00 0.00E+000.00E+00 BmDistLoadG 10 32 Χ -2.39E+01 -2.39E+01 0.00E+000.00E+00 BmDistLoadG 10 33 Χ -2.39E+01 0.00E+000.00E+00 1 -2.39E+01 0.00E+000.00E+00 BmDistLoadG 10 34 Χ -2.39E+01 -2.39E+01 0.00E+000.00E+00 1 0.00E+000.00E+00 BmDistLoadG 10 35 Χ -2.39E+01 -2.39E+01 0.00E+000.00E+00 1 0.00E+000.00E+00 BmDistLoadG -2.39E+01 0.00E+000.00E+00 10 36 Χ -2.39E+01 0.00E+000.00E+00 BmDistLoadG 10 37 Χ -2.39E+01 -2.39E+01 0.00E+000.00E+00 0.00E+000.00E+00 BmDistLoadG 10 38 Χ -2.39E+01 -2.39E+01 0.00E+000.00E+00 0.00E+000.00E+00 NODE FORCES SPACCSX_SW2 NdForce 11 1 5.45E+000.00E+000.00E+00 NdForce 11 38 4.54E+000.00E+000.00E+00 GLOBAL DISTRIBUTED BEAM LOADS SPACCSX_SW2 BmDistLoadG Χ 1.82E+011.82E+010.00E+000.00E+000.00E+000.00E+0011 13 1

BmDistLoadG

11

14

Χ

1.82E+011.82E+010.00E+000.00E+000.00E+000.00E+00

GENERAL CONTRACTOR Consorzio IricAV Due Progetto IN17 ALTA SORVEGLIANZA Consorzio IricAV Due ALTA SORVEGLIANZA ALTA SORVEGLIANZA ALTA SORVEGLIANZA Frogetto IN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA Frogetto IN17 ALTA SORVEGLIANZA B ALTA SORVEGLIANZA Frogetto IN17 ALTA SORVEGLIANZA Frogetto IN17 ALTA SORVEGLIANZA B ALTA SORVEGLIANZA FROGETO IN17 ALTA SORVEGLIANZA B ALTA SORVEGLIANZA FROGETO IN17 ALTA SORVEGLIANZA B ALTA SORVEGLIANZA FROGETO IN17 ALTA SORVEGLIANZA B ALTA SORVEGLIANZA B ALTA SORVEGLIANZA FROGETO IN17 ALTA SORVEGLIANZA B ALTA SORVEGLIANZA

BmDistLoadG	11	15	X	1	1.82E+011.82E+010.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	11	16	Х	1	1.82E+011.82E+010.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	11	17	Х	1	1.82E+011.82E+010.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	11	18	X	1	1.82E+011.82E+010.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	11	19	Х	1	1.82E+011.82E+010.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	11	20	Х	1	1.82E+011.82E+010.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	11	21	Х	1	1.82E+011.82E+010.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	11	22	X	1	1.82E+011.82E+010.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	11	23	Х	1	1.82E+011.82E+010.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	11	24	X	1	1.82E+011.82E+010.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	11	25	Х	1	1.82E+011.82E+010.00E+000.00E+000.00E+000.00E+00

NODE FORCES

SPACCDX_SW2

NdForce 12 13 -5.45E+00 0.00E+000.00E+00

NdForce 12 50 -4.54E+00 0.00E+000.00E+00

BEAM GLOBAL DISTRIBUTED LOADS

SPACCDX_SW2

BmDistLoadG 12 26 X 1 -1.82E+01 -1.82E+01 0.00E+000.00E+00

0.00E+000.00E+00

BmDistLoadG 12 27 X 1 -1.82E+01 -1.82E+01 0.00E+00 0.00E+00

0.00E+000.00E+00

BmDistLoadG 12 28 X 1 -1.82E+01 -1.82E+01 0.00E+00 0.00E+00

0.00E+000.00E+00

BmDistLoadG 12 29 X 1 -1.82E+01 -1.82E+01 0.00E+000.00E+00

0.00E+000.00E+00

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Codifica Lotto IN17 11 EI2CLIN040X001 В 12 30 Χ -1.82E+01 -1.82E+01 0.00E+000.00E+00 BmDistLoadG 0.00E+000.00E+00 BmDistLoadG 12 31 Χ -1.82E+01 -1.82E+01 0.00E+000.00E+00 1 0.00E+000.00E+00 BmDistLoadG -1.82E+01 -1.82E+01 0.00E+000.00E+00 12 32 Χ 0.00E+000.00E+00 BmDistLoadG 12 0.00E+000.00E+00 33 Χ -1.82E+01 -1.82E+01 1 0.00E+000.00E+00 BmDistLoadG 12 34 Χ 1 -1.82E+01 -1.82E+01 0.00E+000.00E+00 0.00E+000.00E+00 BmDistLoadG -1.82E+01 0.00E+000.00E+00 12 35 Χ -1.82E+01 1 0.00E+000.00E+00 BmDistLoadG 36 -1.82E+01 -1.82E+01 0.00E+000.00E+00 12 Χ 0.00E+000.00E+00 BmDistLoadG 12 37 Χ -1.82E+01 -1.82E+01 0.00E+000.00E+00 0.00E+000.00E+00 BmDistLoadG 12 38 Χ -1.82E+01 -1.82E+01 0.00E+000.00E+00 0.00E+000.00E+00 CLOBAL DISTRIBUTED IOVDS

BEAM GLOBAL	L DISTRIE	BUTED	LOADS			
AVV_LM71						
BmDistLoadG	13	39	X	1	1.14E+011.14E+010.00E+000.00E+000.00E+000.00E+00	
BmDistLoadG	13	40	X	1	1.14E+011.14E+010.00E+000.00E+000.00E+000.00E+00	
BmDistLoadG	13	41	X	1	1.14E+011.14E+010.00E+000.00E+000.00E+000.00E+00	
BmDistLoadG	13	42	X	1	1.14E+011.14E+010.00E+000.00E+000.00E+000.00E+00	
BmDistLoadG	13	43	X	1	1.14E+011.14E+010.00E+000.00E+000.00E+000.00E+00	
BmDistLoadG	13	44	X	1	1.14E+011.14E+010.00E+000.00E+000.00E+000.00E+00	
BmDistLoadG	13	45	X	1	1.14E+011.14E+010.00E+000.00E+000.00E+000.00E+00	
BmDistLoadG	13	46	Χ	1	1.14E+011.14E+010.00E+000.00E+000.00E+000.00E+00	
BmDistLoadG	13	47	Χ	1	1.14E+011.14E+010.00E+000.00E+000.00E+000.00E+00	

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due TALFERR O FERROVIE DELLO STATO ITALIANE Codifica Progetto Lotto EI2CLIN040X001 IN17 11 **BmDistLoadG** 13 48 Χ 1.14E+011.14E+010.00E+000.00E+000.00E+000.00E+00 BmDistLoadG 13 49 Χ 1.14E+011.14E+010.00E+000.00E+000.00E+000.00E+00 **BmDistLoadG** 13 50 Χ 1.14E+011.14E+010.00E+000.00E+000.00E+000.00E+00 GLOBAL DISTRIBUTED LOADS BEAM FREN SW2 BmDistLoadG 22 Χ 1.10E+011.10E+010.00E+000.00E+000.00E+000.00E+00 39 1 **BmDistLoadG** 22 40 X 1.10E+011.10E+010.00E+000.00E+000.00E+000.00E+00 **BmDistLoadG** X 1.10E+011.10E+010.00E+000.00E+000.00E+000.00E+00 22 41 1 BmDistLoadG 1.10E+011.10E+010.00E+000.00E+000.00E+000.00E+00 22 42 Χ BmDistLoadG 22 43 Х 1 1.10E+011.10E+010.00E+000.00E+000.00E+000.00E+00 BmDistLoadG 1.10E+011.10E+010.00E+000.00E+000.00E+000.00E+00 22 44 BmDistLoadG Х 1.10E+011.10E+010.00E+000.00E+000.00E+000.00E+00 22 45 1 BmDistLoadG 22 46 Χ 1.10E+011.10E+010.00E+000.00E+000.00E+000.00E+00 1.10E+011.10E+010.00E+000.00E+000.00E+000.00E+00 **BmDistLoadG** 22 47 X 1 BmDistLoadG 22 48 1.10E+011.10E+010.00E+000.00E+000.00E+000.00E+00 BmDistLoadG 1.10E+011.10E+010.00E+000.00E+000.00E+000.00E+00 22 49 Χ 1 BmDistLoadG 22 50 Χ 1.10E+011.10E+010.00E+000.00E+000.00E+000.00E+00 **BEAM** GLOBAL DISTRIBUTED LOADS **SERP BmDistLoadG** 14 39 Χ 1 0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00**BmDistLoadG** Χ 0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00 14 40 1 **BmDistLoadG** 14 41 Х 0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00**BmDistLoadG** 14 42 Χ 0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00

BmDistLoadG

BmDistLoadG

14

14

43

44

Χ

Χ

1

1

0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00

0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00

В

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR PO FERROVIE DELLO STATO ITALIANE Codifica Progetto Lotto IN17 11 EI2CLIN040X001 В BmDistLoadG Χ 0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+0014 45 1 BmDistLoadG Х 0.00E+000.00E+000.00E+000.00E+000.00E+00 14 46 1 BmDistLoadG Χ 0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+0014 47 1 BmDistLoadG 14 48 Χ 1 0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00 ${\bf BmDistLoadG}$ Χ $0.00E+00\,0.00E+00\,0.00E+00\,0.00E+00\,0.00E+00\,0.00E+00$ 14 49 1 BmDistLoadG 14 50 Χ 1 0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00

NODE TEMPERATURES

/ TERM

NdTemp	15	38	Fixed	0	1.50E+01
NdTemp	15	39	Fixed	0	1.50E+01
NdTemp	15	40	Fixed	0	1.50E+01
NdTemp	15	41	Fixed	0	1.50E+01
NdTemp	15	42	Fixed	0	1.50E+01
NdTemp	15	43	Fixed	0	1.50E+01
NdTemp	15	44	Fixed	0	1.50E+01
NdTemp	15	45	Fixed	0	1.50E+01
NdTemp	15	46	Fixed	0	1.50E+01
NdTemp	15	47	Fixed	0	1.50E+01
NdTemp	15	48	Fixed	0	1.50E+01
NdTemp	15	49	Fixed	0	1.50E+01
NdTemp	15	50	Fixed	0	1.50E+01

NODE TEMPERATURES

/ RITIRO

NdTemp 16 38 Fixed 0 -1.12E+01

NdTemp 16 39 Fixed 0 -1.12E+01

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due GRUPPO FERROVIE DELLO STATO ITALIANE

Progetto	Lotto	Codifica	
IN17	11	EI2CLIN040X001	В

NdTemp	16	40	Fixed	0	-1.12E+01
NdTemp	16	41	Fixed	0	-1.12E+01
NdTemp	16	42	Fixed	0	-1.12E+01
NdTemp	16	43	Fixed	0	-1.12E+01
NdTemp	16	44	Fixed	0	-1.12E+01
NdTemp	16	45	Fixed	0	-1.12E+01
NdTemp	16	46	Fixed	0	-1.12E+01
NdTemp	16	47	Fixed	0	-1.12E+01
NdTemp	16	48	Fixed	0	-1.12E+01
NdTemp	16	49	Fixed	0	-1.12E+01
NdTemp	16	50	Fixed	0	-1.12E+01

/	BEAM GLO	BAL DISTR	IBUTED	LOADS	3			
/	ACC_SOLINF							
	BmDistLoadG	17	1	Υ	1	-5.00E+00	-5.00E+00	0.00E+000.00E+00
	0.00E+000.00I	E+00						
	BmDistLoadG	17	2	Υ	1	-5.00E+00	-5.00E+00	0.00E+000.00E+00
	0.00E+000.00I	E+00						
	BmDistLoadG	17	3	Υ	1	-5.00E+00	-5.00E+00	0.00E+000.00E+00
	0.00E+000.00I	E+00						
	BmDistLoadG	17	4	Υ	1	-5.00E+00	-5.00E+00	0.00E+000.00E+00
	0.00E+000.00B	E+00						
	BmDistLoadG	17	5	Υ	1	-5.00E+00	-5.00E+00	0.00E+000.00E+00
	0.00E+000.00B	E+00						
	BmDistLoadG	17	6	Υ	1	-5.00E+00	-5.00E+00	0.00E+000.00E+00
	0.00E+000.00I	E+00						
	BmDistLoadG	17	7	Υ	1	-5.00E+00	-5.00E+00	0.00E+000.00E+00
	0.00E+000.00I	E+00						
	BmDistLoadG	17	8	Υ	1	-5.00E+00	-5.00E+00	0.00E+000.00E+00
	0.00E+000.00E	E+00						

Cons	ONTRACTOR OOTZIO Iric/AV Due					ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
						Progetto	Lotto	Codifica		
						IN17	11	EI2CLIN040X001		
	BmDistLoadG	17	9	Y	1	-5.00E+00	-5.00E+00	0.00E+000.00E+00)	
	0.00E+000.00E+	-00								
	BmDistLoadG	17	10	Υ	1	-5.00E+00	-5.00E+00	0.00E+000.00E+00)	
	0.00E+000.00E+	-00								
	BmDistLoadG	17	11	Υ	1	-5.00E+00	-5.00E+00	0.00E+000.00E+00)	
	0.00E+000.00E+	-00								
	BmDistLoadG	17	12	Υ	1	-5.00E+00	-5.00E+00	0.00E+000.00E+00)	
	0.00E+000.00E+	00								
/										
/		AL DISTF	RIBUTED	LOAD	os					
/	SISMA_H				os					
		AL DISTF	13	LOAD	os 1	3.74E+003.74E	E+000.00E+000.	00E+00 0.00E+00 0.00E+00)	
	SISMA_H							00E+00 0.00E+00 0.00E+00		
	SISMA_H BmDistLoadG	18	13	X	1	3.74E+003.74E	E+000.00E+000.)	
	SISMA_H BmDistLoadG BmDistLoadG	18 18	13 14	X X	1	3.74E+003.74E 3.74E+003.74E	E+000.00E+000. E+000.00E+000.	00E+000.00E+000.00E+00)	
	SISMA_H BmDistLoadG BmDistLoadG BmDistLoadG	18 18 18	13 14 15	x x x	1 1 1	3.74E+003.74E 3.74E+003.74E 3.74E+003.74E	E+000.00E+000. E+000.00E+000. E+000.00E+000.	00E+000.00E+000.00E+00)	
	SISMA_H BmDistLoadG BmDistLoadG BmDistLoadG BmDistLoadG	18 18 18	13 14 15 16	x x x	1 1 1	3.74E+003.74E 3.74E+003.74E 3.74E+003.74E	E+000.00E+000. E+000.00E+000. E+000.00E+000.	00E+000.00E+000.00E+00 00E+000.00E+000.00E+00))	
	SISMA_H BmDistLoadG BmDistLoadG BmDistLoadG BmDistLoadG BmDistLoadG	18 18 18 18	13 14 15 16 17	x x x x	1 1 1 1	3.74E+003.74E 3.74E+003.74E 3.74E+003.74E 3.74E+003.74E	E+000.00E+000. E+000.00E+000. E+000.00E+000. E+000.00E+000.	00E+00 0.00E+00 0.00E+00 00E+00 0.00E+00 0.00E+00 00E+00 0.00E+00 0.00E+00)	
	SISMA_H BmDistLoadG BmDistLoadG BmDistLoadG BmDistLoadG BmDistLoadG BmDistLoadG	18 18 18 18 18	13 14 15 16 17	x x x x x	1 1 1 1 1	3.74E+003.74E 3.74E+003.74E 3.74E+003.74E 3.74E+003.74E 3.74E+003.74E	E+000.00E+000. E+000.00E+000. E+000.00E+000. E+000.00E+000. E+000.00E+000.	00E+00 0.00E+00 0.00E+00 00E+00 0.00E+00 0.00E+00 00E+00 0.00E+00 0.00E+00 00E+00 0.00E+00 0.00E+00)	
	SISMA_H BmDistLoadG BmDistLoadG BmDistLoadG BmDistLoadG BmDistLoadG BmDistLoadG BmDistLoadG	18 18 18 18 18	13 14 15 16 17 18	x x x x x	1 1 1 1 1	3.74E+003.74E 3.74E+003.74E 3.74E+003.74E 3.74E+003.74E 3.74E+003.74E 3.74E+003.74E	E+000.00E+000. E+000.00E+000. E+000.00E+000. E+000.00E+000. E+000.00E+000.	00E+00 0.00E+00 0.00E+00 00E+00 0.00E+00 0.00E+00 00E+00 0.00E+00 0.00E+00 00E+00 0.00E+00 0.00E+00 00E+00 0.00E+00 0.00E+00		
	SISMA_H BmDistLoadG BmDistLoadG BmDistLoadG BmDistLoadG BmDistLoadG BmDistLoadG BmDistLoadG BmDistLoadG	18 18 18 18 18 18	13 14 15 16 17 18 19 20	x x x x x x	1 1 1 1 1 1	3.74E+003.74E 3.74E+003.74E 3.74E+003.74E 3.74E+003.74E 3.74E+003.74E 3.74E+003.74E	E+000.00E+000. E+000.00E+000. E+000.00E+000. E+000.00E+000. E+000.00E+000. E+000.00E+000.	00E+00 0.00E+00 0.00E+00 00E+00 0.00E+00 0.00E+00 00E+00 0.00E+00 0.00E+00 00E+00 0.00E+00 0.00E+00 00E+00 0.00E+00 0.00E+00 00E+00 0.00E+00 0.00E+00		
	SISMA_H BmDistLoadG BmDistLoadG BmDistLoadG BmDistLoadG BmDistLoadG BmDistLoadG BmDistLoadG BmDistLoadG BmDistLoadG	18 18 18 18 18 18 18	13 14 15 16 17 18 19 20 21	x x x x x x	1 1 1 1 1 1	3.74E+003.74E 3.74E+003.74E 3.74E+003.74E 3.74E+003.74E 3.74E+003.74E 3.74E+003.74E 3.74E+003.74E	E+000.00E+000. E+000.00E+000. E+000.00E+000. E+000.00E+000. E+000.00E+000. E+000.00E+000. E+000.00E+000.	00E+00 0.00E+00 0.00E+00 00E+00 0.00E+00 0.00E+00 00E+00 0.00E+00 0.00E+00 00E+00 0.00E+00 0.00E+00 00E+00 0.00E+00 0.00E+00 00E+00 0.00E+00 0.00E+00 00E+00 0.00E+00 0.00E+00		
	SISMA_H BmDistLoadG BmDistLoadG	18 18 18 18 18 18 18	13 14 15 16 17 18 19 20 21 22	x x x x x x x	1 1 1 1 1 1 1	3.74E+003.74E 3.74E+003.74E 3.74E+003.74E 3.74E+003.74E 3.74E+003.74E 3.74E+003.74E 3.74E+003.74E 3.74E+003.74E	E+000.00E+000. E+000.00E+000. E+000.00E+000. E+000.00E+000. E+000.00E+000. E+000.00E+000. E+000.00E+000. E+000.00E+000.	00E+00 0.00E+00 0.00E+00 00E+00 0.00E+00 0.00E+00 00E+00 0.00E+00 0.00E+00 00E+00 0.00E+00 0.00E+00 00E+00 0.00E+00 0.00E+00 00E+00 0.00E+00 0.00E+00 00E+00 0.00E+00 0.00E+00		

 ${\bf BmDistLoadG}$

 ${\bf BmDistLoadG}$

 ${\bf BmDistLoadG}$

 ${\bf BmDistLoadG}$

BmDistLoadG

18

18

18

18

18

26

27

28

29

Χ

Χ

Χ

1

1

3.74E+003.74E+000.00E+000.00E+000.00E+000.00E+00

 $3.74{E} + 00\,3.74{E} + 00\,0.00{E} + 00\,0.00{E} + 00\,0.00{E} + 00\,0.00{E} + 00\,0$

3.74E+003.74E+000.00E+000.00E+000.00E+000.00E+00

 $3.74{E} + 00\,3.74{E} + 00\,0.00{E} + 00\,0.00{E} + 00\,0.00{E} + 00\,0.00{E} + 00\,0$

3.74E+003.74E+000.00E+000.00E+000.00E+000.00E+00

GENERAL CONTRACTOR Consorzio Iric/4V Due Consorzio Iric/4V Due Progetto IN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA ALTA SORVEGLIANZA B EI2CLIN040X001 B

BmDistLoadG	18	31	X	1	3.74E+003.74E+000.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	18	32	X	1	3.74E+003.74E+000.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	18	33	X	1	3.74E+003.74E+000.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	18	34	X	1	3.74E+003.74E+000.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	18	35	X	1	3.74E+003.74E+000.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	18	36	X	1	3.74E+003.74E+000.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	18	37	X	1	3.74E+003.74E+000.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	18	38	Χ	1	3.74E+003.74E+000.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	18	39	X	1	1.33E+011.33E+010.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	18	40	X	1	1.33E+011.33E+010.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	18	41	Χ	1	1.33E+011.33E+010.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	18	42	Χ	1	1.33E+011.33E+010.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	18	43	Χ	1	1.33E+011.33E+010.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	18	44	X	1	1.33E+011.33E+010.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	18	45	X	1	1.33E+011.33E+010.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	18	46	X	1	1.33E+011.33E+010.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	18	47	X	1	1.33E+011.33E+010.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	18	48	X	1	1.33E+011.33E+010.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	18	49	Х	1	1.33E+011.33E+010.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	18	50	Х	1	1.33E+011.33E+010.00E+000.00E+000.00E+000.00E+00

BEAM GLOBAL DISTRIBUTED LOADS SISMA_V BmDistLoadG 19 39 -6.65E+00 -6.65E+00 0.00E+000.00E+00 0.00E+000.00E+00 BmDistLoadG 19 40 -6.65E+00 -6.65E+00 0.00E+000.00E+000.00E+000.00E+00 0.00E+000.00E+00 19 41 Υ -6.65E+00 -6.65E+00 BmDistLoadG 1 0.00E+000.00E+00

GENERAL CON	TRACTOR						ALTA SORV	EGLIANZA	
Consorz	zio IricAV Due						GRUPPO FERROVIE DE	LFERR	
						Progetto	Lotto	Codifica	
						IN17	11	EI2CLIN040X001	В
	BmDistLoadG	19	42	Y	1	-6.65E+00	-6.65E+00	0.00E+000.00E+00	0
	0.00E+000.00E+	- 00							
	BmDistLoadG 0.00E+000.00E+	19 +00	43	Y	1	-6.65E+00	-6.65E+00	0.00E+000.00E+00	0
	BmDistLoadG 0.00E+000.00E+	19 +00	44	Υ	1	-6.65E+00	-6.65E+00	0.00E+000.00E+00	0
	BmDistLoadG 0.00E+000.00E+	19	45	Υ	1	-6.65E+00	-6.65E+00	0.00E+000.00E+00	0
	BmDistLoadG 0.00E+000.00E+	19 +00	46	Y	1	-6.65E+00	-6.65E+00	0.00E+000.00E+00	0
	BmDistLoadG	19	47	Υ	1	-6.65E+00	-6.65E+00	0.00E+000.00E+0	0
	0.00E+000.00E+	+00							
	BmDistLoadG	19	48	Υ	1	-6.65E+00	-6.65E+00	0.00E+000.00E+00)
	0.00E+000.00E+	+ 00							
	BmDistLoadG 0.00E+000.00E+	19 -00	49	Υ	1	-6.65E+00	-6.65E+00	0.00E+000.00E+00	0
	BmDistLoadG	19	50	Y	1	-6.65E+00	-6.65E+00	0.00E+000.00E+0	า
	0.00E+000.00E+		00	,	·	0.002100	0.002100	0.0021000.00210	S
/									
/	BEAM GLOBA	AL DISTI	RIBUTED	LOAI	os				
/	SPSSX								
	BmDistLoadG	20	13	Χ	1	2.51E+012.51	E+010.00E+000.0	00E+000.00E+000.00E+00)
	BmDistLoadG	20	14	Χ	1	2.51E+012.51	E+010.00E+000.0	00E+000.00E+000.00E+00	0
	BmDistLoadG	20	15	Χ	1	2.51E+012.51I	E+010.00E+000.0	00E+000.00E+000.00E+00	ס
	BmDistLoadG	20	16	Χ	1	2.51E+012.51I	E+010.00E+000.0	00E+000.00E+000.00E+00	0
	BmDistLoadG	20	17	Х	1	2.51E+012.51I	E+010.00E+000.0	00E+000.00E+000.00E+00	0
	BmDistLoadG	20	18	Х	1	2.51E+012.51	E+010.00E+000.0	00E+000.00E+000.00E+00	0
	5 5								

2.51E+012.51E+010.00E+000.00E+000.00E+000.00E+00

2.51E+012.51E+010.00E+000.00E+000.00E+000.00E+00

2.51E+012.51E+010.00E+000.00E+000.00E+000.00E+00

BmDistLoadG

 ${\bf BmDistLoadG}$

BmDistLoadG

20

20

20

19

20

21

Χ

Χ

1

GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Progetto Lotto Codifica IN17 11 EI2CLIN040X001 B

BmDistLoadG	20	22	Χ	1	2.51E+012.51E+010.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	20	23	X	1	2.51E+012.51E+010.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	20	24	X	1	2.51E+012.51E+010.00E+000.00E+000.00E+000.00E+00
BmDistLoadG	20	25	X	1	2.51E+012.51E+010.00E+000.00E+000.00E+000.00E+00

/	BEAM GLOBAL	. DISTRIB	LITED	LOADS				
, ,	SPSDX	DIOTAL	0125	LONDO				
	BmDistLoadG	21	26	X	1	-2.51E+01	-2.51E+01	0.00E+000.00E+00
	0.00E+000.00E+0	0						
	BmDistLoadG	21	27	Χ	1	-2.51E+01	-2.51E+01	0.00E+000.00E+00
	0.00E+000.00E+0	0						
	BmDistLoadG	21	28	X	1	-2.51E+01	-2.51E+01	0.00E+000.00E+00
	0.00E+000.00E+0	0						
	BmDistLoadG	21	29	X	1	-2.51E+01	-2.51E+01	0.00E+000.00E+00
	0.00E+000.00E+0	0						
	BmDistLoadG	21	30	X	1	-2.51E+01	-2.51E+01	0.00E+000.00E+00
	0.00E+000.00E+0	0						
	BmDistLoadG	21	31	Χ	1	-2.51E+01	-2.51E+01	0.00E+000.00E+00
	0.00E+000.00E+0	0						
	BmDistLoadG	21	32	X	1	-2.51E+01	-2.51E+01	0.00E+000.00E+00
	0.00E+000.00E+0	0						
	BmDistLoadG	21	33	X	1	-2.51E+01	-2.51E+01	0.00E+000.00E+00
	0.00E+000.00E+0	0						
	BmDistLoadG	21	34	X	1	-2.51E+01	-2.51E+01	0.00E+000.00E+00
	0.00E+000.00E+0	0						
	BmDistLoadG	21	35	X	1	-2.51E+01	-2.51E+01	0.00E+000.00E+00
	0.00E+000.00E+0	0						
	BmDistLoadG	21	36	Х	1	-2.51E+01	-2.51E+01	0.00E+000.00E+00
	0.00E+000.00E+0	0						

GENERAL CONTRACTOR

				1
Progetto	Lotto	Codifica		l
_				l
IN17	11	EI2CLIN040X001	В	l

BmDistLoadG 21 37 X 1 -2.51E+01 -2.51E+01 0.00E+00 0.00E+00

0.00E+000.00E+00

BmDistLoadG 21 38 X 1 -2.51E+01 -2.51E+01 0.00E+00 0.00E+00

0.00E+000.00E+00

BEAM PROPERTIES

BeamProp 2 3355647 Fondazione

MaterialName Concrete: Compressive Strength fc = 32 MPa - Modified

Modulus 3.36E+07

ShearMod 1.29E+07

Poisson 1.50E-01

UsePoisson TRUE

Density 2.50E+03

Expansion 1.00E-05

ThermalCond 1.37E+00

SpecificHeat 8.80E+02

InstantAlpha FALSE

Area 6.00E-01

MomentI11 1.80E-02

Momentl22 5.00E-02

MomentJ 1.00E-01

SectionType SolidRect

B 1.00E+00

D 6.00E-01

CT FALSE

TimeDependentMod Elastic

UseMomCurv FALSE

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAty Due GRUPPO FERROVIE DELLO STATO ITALIANE

Progetto	Lotto	Codifica	
IN17	11	EI2CLIN040X001	В

NonLinType Elasticplastic

Hardening Isotropic

BeamProp 3 16711680 piedritti

MaterialName Rck = 350 - Modified

Modulus 3.36E+07

ShearMod 1.29E+07

Poisson 1.50E-01

UsePoisson TRUE

Density 2.50E+03

Expansion 1.00E-05

ThermalCond 1.37E+00

SpecificHeat 8.80E+02

InstantAlpha FALSE

Area 5.00E-01

MomentI11 1.04E-02

Momentl22 4.17E-02

MomentJ 1.00E-01

SectionType SolidRect

B 1.00E+00

D 5.00E-01

CT FALSE

TimeDependentMod Elastic

UseMomCurv FALSE

NonLinType Elasticplastic

Hardening Isotropic

BeamProp 4 3407846 soletta

MaterialName Rck = 350 - Modified

GENERAL CONTRACTOR Consorzio Iric/1/V Due Consorzio Iric/1/V Due Progetto IN17 Lotto Codifica IN17 IN1 EI2CLIN040X001 B

Modulus 3.36E+07

ShearMod 1.29E+07

Poisson 1.50E-01

UsePoisson TRUE

Density 2.50E+03

Expansion 1.00E-05

ThermalCond 1.37E+00

SpecificHeat 8.80E+02

InstantAlpha FALSE

Area 5.00E-01

MomentI11 1.04E-02

Momentl22 4.17E-02

MomentJ 1.00E-01

SectionType SolidRect

B 1.00E+00

D 5.00E-01

CT FALSE

TimeDependentMod Elastic

UseMomCurv FALSE

NonLinType Elasticplastic

Hardening Isotropic

LINEAR STATIC SOLVER DATA

LoadFreedomSetLSA 2 OF

 $2 \qquad \qquad 3 \qquad \qquad 4 \qquad \qquad 5 \qquad \qquad 6 \qquad \qquad 7 \qquad \qquad 8 \qquad \qquad 9$

10 11 12 13 22 14 15 16

GENERAL CONTRACTOR Consorzio Iric AV Due Consorzio Iric AV Due Progetto IN17 ALTA SORVEGLIANZA GRUPPO FERROVIE DELLO STATO ITALIANE Progetto IN17 I EI2CLIN040X001 B

17 18 19 20 21 LINEAR BUCKLING SOLVER DATA BuckNumModes 4 BuckShift 0.00E+00 LOAD INFLUENCE SOLVER DATA LoadFreedomSetLIA 2 OF NATURAL FREQUENCY SOLVER DATA FreqNumModes4 FreqShift 0.00E+00 FreqIncludeNSMass 22 **FALSE** FreqModeParticipation 0.00E+000.00E+000.00E+00

GENERAL CONTRACTOR Consorzio IricAtV Due Consorzio IricAtV Due Progetto Lotto Codifica IN17 11 EI2CLIN040X001 B

0.00E+000.00E+000.00E+00 0.00E+000.00E+000.00E+00 HEAT SOLVER DATA LoadSetHeat 22 HeatTempLoadCase HeatNonlinear **FALSE GENERAL** SOLVER DATA SolverTempDependence None SolverLoadCaseTempDependence 0 SolverActiveStage 0 SturmCheck **FALSE** SolverFreedomCase 2 ModalLoadType BaseAcceleration

GENERAL CONTRACTOR Consorzio Iric/At/ Due Consorzio Iric/At/ Due Progetto Lotto Codifica IN17 11 EI2CLIN040X001 B

ModalNodeReactType Element

DampingType Rayleigh

RayleighFactors Frequency

1.00E+001.00E+011.00E+001.00E+011.00E-02 1.00E-02

NonLinearGeometry TRUE

NonLinearMaterial TRUE

IncludeCreep FALSE

SolverDefaultsGeneral

SolDefMatrixZeroDiag 1.00E-20

SolDefConjGradTol 1.00E-05

SolDefMaxConjGradIter 5000

SolDefMaxNumWarnings 10

SolDefWindowState 3

SolDefReducedLogFile TRUE

SolDefDoResidualsCheck FALSE

SolDefSuppressAllSingularities FALSE

SolverDefaultsElements

SolDefMinDimension 1.00E-09

SolDefMinInternalAngle 1.50E+01

SolDefZeroPointForce 1.00E-06

SolDefZeroDiagonal 1.00E-20

GENERAL CONTRACTOR Consorzio Iric-11/ Due Consorzio Iric-11/ Due Consorzio Iric-11/ Due Progetto Lotto Codifica IN17 11 EI2CLIN040X001 B

SolDefBeamMass Lumped

SolDefPlateMass Lumped

SolDefBrickMass Lumped

SolDefBeamLoads Consistent

SolDefPlateLoads Consistent

SolDefBeamSlices 5

SolDefIncludeLinkReactions TRUE

SolverDefaultsDrilling

SolDefZeroTrans 1.00E-08

SolDefZeroRot 1.00E-06

SolDrillStiffMult 1.00E-04

SolDrillZeroEig 1.00E-06

SolDefMaxNormalsAngle 5.00E+00

SolDefForceDrillingCheck FALSE

SolverDefaultsIteration

SolDefZeroDisp 1.00E-08

SolDefDispNormTol1.00E-04

SolDefResidualsNormTol 1.00E-03

SolDefNonlinIterLimit 20

SolDefAddIterations TRUE

SolDefMaxUpdateInterval 5

SolDefMaxDispChange 1.00E+00

SolDefMaxResidualChange 1.00E-01

SolDefFormStiffnessMatrix 0

SolDefFormHeatStiffnessMatrix 2

SolDefHeatConvergenceTol 1.00E-05

SolDefHeatRelaxationFactor 6.67E-01

GENERAL CONTRACTOR Consorzio IricAV Due Progetto Lotto Codifica IN17 11 EI2CLIN040X001 B

SolDefNonlinHeatIterLimit 20

SolverDefaultsSubSteps

SolDefSubStepping0

SolDefMinLoadReductionFactor 1.00E-01

SolDefMaxRot 3.00E+01

SolDefMaxDispRatio 1.00E-01

SolDefMinArcLength 1.00E-03

SolDefMaxFibreInc 1.00E-02

SolDefSaveSubIncrements FALSE

SolDefDynamicAutoSteppingMode 0

SolDefMinTimeStep 1.00E-03

SolDefConsiderTableSteps FALSE

SolDefSingleShotRestart FALSE

SolDefAutoAssignPathDiv FALSE

SolverDefaultsNonlinear

SolDefIncludeKG TRUE

SolDefAutoScaleKgTRUE

 ${\sf SolDefIgnoreCompressiveBeamKg} \qquad {\sf FALSE}$

SolDefBeamKgType Simplified

SolDefFiniteStrainDefinition Nominal

SolDefBeamLength Initial

SolDefRatioMNL 5.00E-01

SolDefZeroContactFactor 1.00E-06

SolDefSlidingFriction 1.00E-15

SolDefStickingFriction 1.00E+00

SolDefFrictionCutoffStrain 1.00E-05

GENERAL CONTRACTOR

Progetto	Lotto	Codifica	
IN17	11	EI2CLIN040X001	В

SolDefScaleSupports TRUE

SolverDefaultsCreep

SolDefTimeStepParam 5.00E-01

SolDefMinViscoUnits 3

SolDefMaxViscoUnits 6

SolDefCurveFitTime 1.00E+04

SolDefCurveFitTimeUnit d

SolDefSpacingBias 5.00E-01

SolDefDoInstantNTA TRUE

SolverDefaultsEigenvalue

SolDefZeroFreq 1.00E-06

SolDefZeroBuckEigenvalue 1.00E-10

SolDefExpandWorkingSetBy 6

SolDefEiglterLimit 20

SolDefEiglterTol 1.00E-05

SolDefEigAutoShift FALSE

Solver Defaults Dynamics

SolDefWilsonTheta 1.37E+00

SolDefNewmarkBeta 5.00E-01

SolDefTransientMethod Newmark

SolDefExcludeMassComponents

SolDefIncludeRotMass TRUE

GENERAL CONTRACTOR Consorzio IricAV Due		ALTA SORVEGLIANZA TALFERA GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica		
	Progetto	Lotto	Codifica	
	IN17	11	EI2CLIN040X001	В

/ RESULT OPTIONS

ResultOptions

ResOptsRotationUnit Degrees

ResOptsHRADisplacement Total

ResOptsHRAVelocity Total

ResOptsHRAAcceleration Relative

ResOptsBeamForceMoment Principal

ResOptsStageDisplacement BirthStage

GENERAL CONTRACTOR Consorzio Iricaty Due Progetto IN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA ALTA SORVEGLIANZA ALTA SORVEGLIANZA ALTA SORVEGLIANZA BEIZCLIN040X001 B

15.2 OUTPUT

Model: IN04

Result type: Beam force/moment

Freedom case: 1: Freedom

Result cases:

76: SLU [Absolute Envelope 2]

77: SLV [Absolute Envelope 3]

78: SLER [Absolute Envelope 4]

79: SLEF [Absolute Envelope 5]

80: SLEQP [Absolute Envelope 6]

Bending Moment 2

Groups: All

Properties: All

Shear Force 2

	(kN)	(kN.m)	(kN)			
Bear	n 1: End 1: 76	: SLU [Absolute	Envelope 2]	383	318	0
Bear	n 1: End 1: 77	: SLV [Absolute	Envelope 3]	144	125	0
Bear	n 1: End 1: 78	: SLER [Absolut	te Envelope 4]	235	204	0
Bear	n 1: End 1: 79	: SLEF [Absolut	e Envelope 5]	201	167	0
Bear	n 1: End 1: 80	: SLEQP [Absol	ute Envelope 6]	108	46	0
Bear	n 1: End 2: 76	: SLU [Absolute	Envelope 2]	331	271	0
Bear	m 1: End 2: 77	: SLV [Absolute	Envelope 3]	136	106	0
Bear	n 1: End 2: 78	: SLER [Absolut	te Envelope 4]	224	175	0
Bear	n 1: End 2: 79	: SLEF [Absolut	e Envelope 5]	199	137	0
Bear	n 1: End 2: 80	: SLEQP [Absol	ute Envelope 6]	99	30	0
Bear	n 2: End 1: 76	: SLU [Absolute	Envelope 2]	331	271	0
Bear	m 2: End 1: 77	: SLV [Absolute	Envelope 3]	136	106	0

Axial Force

GENERAL CONTRACTOR alta sorveglianza Consorzio IricAV Due TALFERR O FERROVIE DELLO STATO ITALIANE Codifica Progetto Lotto EI2CLIN040X001 IN17 В Beam 2: End 1: 78: SLER [Absolute Envelope 4] Beam 2: End 1: 79: SLEF [Absolute Envelope 5] Beam 2: End 1: 80: SLEQP [Absolute Envelope 6] Beam 2: End 2: 76: SLU [Absolute Envelope 2] Beam 2: End 2: 77: SLV [Absolute Envelope 3] Beam 2: End 2: 78: SLER [Absolute Envelope 4] Beam 2: End 2: 79: SLEF [Absolute Envelope 5] Beam 2: End 2: 80: SLEQP [Absolute Envelope 6] Beam 3: End 1: 76: SLU [Absolute Envelope 2] Beam 3: End 1: 77: SLV [Absolute Envelope 3] Beam 3: End 1: 78: SLER [Absolute Envelope 4] Beam 3: End 1: 79: SLEF [Absolute Envelope 5] Beam 3: End 1: 80: SLEQP [Absolute Envelope 6] Beam 3: End 2: 76: SLU [Absolute Envelope 2] Beam 3: End 2: 77: SLV [Absolute Envelope 3] Beam 3: End 2: 78: SLER [Absolute Envelope 4] Beam 3: End 2: 79: SLEF [Absolute Envelope 5] Beam 3: End 2: 80: SLEQP [Absolute Envelope 6] Beam 4: End 1: 76: SLU [Absolute Envelope 2] Beam 4: End 1: 77: SLV [Absolute Envelope 3] Beam 4: End 1: 78: SLER [Absolute Envelope 4] Beam 4: End 1: 79: SLEF [Absolute Envelope 5] Beam 4: End 1: 80: SLEQP [Absolute Envelope 6] Beam 4: End 2: 76: SLU [Absolute Envelope 2] Beam 4: End 2: 77: SLV [Absolute Envelope 3] Beam 4: End 2: 78: SLER [Absolute Envelope 4] Beam 4: End 2: 79: SLEF [Absolute Envelope 5]

Beam 4: End 2: 80: SLEQP [Absolute Envelope 6]

Beam 5: End 1: 76: SLU [Absolute Envelope 2]

Beam 5: End 1: 77: SLV [Absolute Envelope 3]

GENERAL CONTRACTOR alta sorveglianza Consorzio IricAV Due TALFERR O FERROVIE DELLO STATO ITALIANE Codifica Progetto Lotto EI2CLIN040X001 IN17 В Beam 5: End 1: 78: SLER [Absolute Envelope 4] Beam 5: End 1: 79: SLEF [Absolute Envelope 5] Beam 5: End 1: 80: SLEQP [Absolute Envelope 6] Beam 5: End 2: 76: SLU [Absolute Envelope 2] Beam 5: End 2: 77: SLV [Absolute Envelope 3] Beam 5: End 2: 78: SLER [Absolute Envelope 4] Beam 5: End 2: 79: SLEF [Absolute Envelope 5] Beam 5: End 2: 80: SLEQP [Absolute Envelope 6] Beam 6: End 1: 76: SLU [Absolute Envelope 2] Beam 6: End 1: 77: SLV [Absolute Envelope 3] Beam 6: End 1: 78: SLER [Absolute Envelope 4] Beam 6: End 1: 79: SLEF [Absolute Envelope 5] Beam 6: End 1: 80: SLEQP [Absolute Envelope 6] Beam 6: End 2: 76: SLU [Absolute Envelope 2] Beam 6: End 2: 77: SLV [Absolute Envelope 3] Beam 6: End 2: 78: SLER [Absolute Envelope 4] Beam 6: End 2: 79: SLEF [Absolute Envelope 5] Beam 6: End 2: 80: SLEQP [Absolute Envelope 6] Beam 7: End 1: 76: SLU [Absolute Envelope 2] Beam 7: End 1: 77: SLV [Absolute Envelope 3] Beam 7: End 1: 78: SLER [Absolute Envelope 4] Beam 7: End 1: 79: SLEF [Absolute Envelope 5]

Beam 7: End 1: 80: SLEQP [Absolute Envelope 6]

Beam 7: End 2: 76: SLU [Absolute Envelope 2]

Beam 7: End 2: 77: SLV [Absolute Envelope 3]

Beam 7: End 2: 78: SLER [Absolute Envelope 4]

Beam 7: End 2: 79: SLEF [Absolute Envelope 5]

Beam 7: End 2: 80: SLEQP [Absolute Envelope 6]

Beam 8: End 1: 76: SLU [Absolute Envelope 2]

Beam 8: End 1: 77: SLV [Absolute Envelope 3]

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due Progetto IN17 Beam 8: End 1: 78: SLER [Absolute Envelope 4] ALTA SORVEGLIANZA ALTA SORVEGLIANZA ALTA SORVEGLIANZA BALTA SORVEGLIANZA ALTA SORVEGLIANZA BELLO STATO ITALIANE Progetto IN17 11 El2CLIN040X001 B

	IIN 17	11	EIZCLI
Beam 8: End 1: 78: SLER [Absolute Envelo	ppe 4] 84	162	0
Beam 8: End 1: 79: SLEF [Absolute Envelo	ppe 5] 32	140	0
Beam 8: End 1: 80: SLEQP [Absolute Enve	elope 6] 22	47	0
Beam 8: End 2: 76: SLU [Absolute Envelop	e 2] 237	286	0
Beam 8: End 2: 77: SLV [Absolute Envelop	e 3] 50	46	0
Beam 8: End 2: 78: SLER [Absolute Envelo	ppe 4] 123	166	0
Beam 8: End 2: 79: SLEF [Absolute Envelo	pe 5] 28	141	0
Beam 8: End 2: 80: SLEQP [Absolute Enve	elope 6] 45	35	0
Beam 9: End 1: 76: SLU [Absolute Envelop	pe 2] 237	286	0
Beam 9: End 1: 77: SLV [Absolute Envelop	e 3] 50	46	0
Beam 9: End 1: 78: SLER [Absolute Envelo	ppe 4] 123	166	0
Beam 9: End 1: 79: SLEF [Absolute Envelo	pe 5] 28	141	0
Beam 9: End 1: 80: SLEQP [Absolute Enve	elope 6] 45	35	0
Beam 9: End 2: 76: SLU [Absolute Envelop	pe 2] 282	261	0
Beam 9: End 2: 77: SLV [Absolute Envelop	e 3] 83	23	0
Beam 9: End 2: 78: SLER [Absolute Envelo	ppe 4] 158	141	0
Beam 9: End 2: 79: SLEF [Absolute Envelo	ppe 5] 97	118	0
Beam 9: End 2: 80: SLEQP [Absolute Enve	elope 6] 68	13	0
Beam 10: End 1: 76: SLU [Absolute Envelo	pe 2] 282	261	0
Beam 10: End 1: 77: SLV [Absolute Envelo	pe 3] 83	23	0
Beam 10: End 1: 78: SLER [Absolute Enve	lope 4] 158	141	0
Beam 10: End 1: 79: SLEF [Absolute Enve	lope 5] 97	118	0
Beam 10: End 1: 80: SLEQP [Absolute Env	velope 6] 68	13	0
Beam 10: End 2: 76: SLU [Absolute Envelo	ppe 2] 314	186	0
Beam 10: End 2: 77: SLV [Absolute Envelo	pe 3] 121	44	0
Beam 10: End 2: 78: SLER [Absolute Enve	lope 4] 196	85	0
Beam 10: End 2: 79: SLEF [Absolute Enve	lope 5] 174	68	0
Beam 10: End 2: 80: SLEQP [Absolute Env	velope 6] 90	16	0
Beam 11: End 1: 76: SLU [Absolute Envelo	ppe 2] 314	186	0
Beam 11: End 1: 77: SLV [Absolute Envelo	pe 3] 121	44	0

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due Progetto Lotto Codifica IN17 11 EI2CLIN040X001 B

	IN17	11	EI2CLIN
Beam 11: End 1: 78: SLER [Absolute Envelope 4]	196	85	0
Beam 11: End 1: 79: SLEF [Absolute Envelope 5]	174	68	0
Beam 11: End 1: 80: SLEQP [Absolute Envelope 6	6] 90	16	0
Beam 11: End 2: 76: SLU [Absolute Envelope 2]	340	214	0
Beam 11: End 2: 77: SLV [Absolute Envelope 3]	139	60	0
Beam 11: End 2: 78: SLER [Absolute Envelope 4]	235	103	0
Beam 11: End 2: 79: SLEF [Absolute Envelope 5]	208	39	0
Beam 11: End 2: 80: SLEQP [Absolute Envelope 6	6] 99	30	0
Beam 12: End 1: 76: SLU [Absolute Envelope 2]	340	214	0
Beam 12: End 1: 77: SLV [Absolute Envelope 3]	139	60	0
Beam 12: End 1: 78: SLER [Absolute Envelope 4]	235	103	0
Beam 12: End 1: 79: SLEF [Absolute Envelope 5]	208	39	0
Beam 12: End 1: 80: SLEQP [Absolute Envelope 6	6] 99	30	0
Beam 12: End 2: 76: SLU [Absolute Envelope 2]	408	263	0
Beam 12: End 2: 77: SLV [Absolute Envelope 3]	157	79	0
Beam 12: End 2: 78: SLER [Absolute Envelope 4]	276	134	0
Beam 12: End 2: 79: SLEF [Absolute Envelope 5]	243	5	0
Beam 12: End 2: 80: SLEQP [Absolute Envelope 6	6] 108	46	0
Beam 13: End 1: 76: SLU [Absolute Envelope 2]	211	318	383
Beam 13: End 1: 77: SLV [Absolute Envelope 3]	118	125	144
Beam 13: End 1: 78: SLER [Absolute Envelope 4]	138	204	235
Beam 13: End 1: 79: SLEF [Absolute Envelope 5]	122	167	201
Beam 13: End 1: 80: SLEQP [Absolute Envelope 6	56	46	108
Beam 13: End 2: 76: SLU [Absolute Envelope 2]	196	282	380
Beam 13: End 2: 77: SLV [Absolute Envelope 3]	107	108	142
Beam 13: End 2: 78: SLER [Absolute Envelope 4]	127	181	233
Beam 13: End 2: 79: SLEF [Absolute Envelope 5]	113	146	198
Beam 13: End 2: 80: SLEQP [Absolute Envelope 6	50	36	106
Beam 14: End 1: 76: SLU [Absolute Envelope 2]	196	282	380
Beam 14: End 1: 77: SLV [Absolute Envelope 3]	107	108	142

GENERAL CONTRACTOR alta sorveglianza Consorzio IricAV Due TALFERR O FERROVIE DELLO STATO ITALIANE Codifica Progetto Lotto EI2CLIN040X001 IN17 В Beam 14: End 1: 78: SLER [Absolute Envelope 4] Beam 14: End 1: 79: SLEF [Absolute Envelope 5] Beam 14: End 1: 80: SLEQP [Absolute Envelope 6] Beam 14: End 2: 76: SLU [Absolute Envelope 2] Beam 14: End 2: 77: SLV [Absolute Envelope 3] Beam 14: End 2: 78: SLER [Absolute Envelope 4] Beam 14: End 2: 79: SLEF [Absolute Envelope 5] Beam 14: End 2: 80: SLEQP [Absolute Envelope 6] Beam 15: End 1: 76: SLU [Absolute Envelope 2] Beam 15: End 1: 77: SLV [Absolute Envelope 3] Beam 15: End 1: 78: SLER [Absolute Envelope 4] Beam 15: End 1: 79: SLEF [Absolute Envelope 5] Beam 15: End 1: 80: SLEQP [Absolute Envelope 6] Beam 15: End 2: 76: SLU [Absolute Envelope 2] Beam 15: End 2: 77: SLV [Absolute Envelope 3] Beam 15: End 2: 78: SLER [Absolute Envelope 4] Beam 15: End 2: 79: SLEF [Absolute Envelope 5] Beam 15: End 2: 80: SLEQP [Absolute Envelope 6] Beam 16: End 1: 76: SLU [Absolute Envelope 2] Beam 16: End 1: 77: SLV [Absolute Envelope 3] Beam 16: End 1: 78: SLER [Absolute Envelope 4] Beam 16: End 1: 79: SLEF [Absolute Envelope 5] Beam 16: End 1: 80: SLEQP [Absolute Envelope 6] Beam 16: End 2: 76: SLU [Absolute Envelope 2] Beam 16: End 2: 77: SLV [Absolute Envelope 3] Beam 16: End 2: 78: SLER [Absolute Envelope 4]

Beam 16: End 2: 79: SLEF [Absolute Envelope 5]

Beam 16: End 2: 80: SLEQP [Absolute Envelope 6]

Beam 17: End 1: 76: SLU [Absolute Envelope 2]

Beam 17: End 1: 77: SLV [Absolute Envelope 3]

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due Progetto IN17 Beam 17: End 1: 78: SLER [Absolute Envelope 4] Beam 17: Fnd 1: 79: SLER [Absolute Envelope 5] Beam 17: Fnd 1: 79: SLEE [Absolute Envelope 5] Beam 17: Fnd 1: 79: SLEE [Absolute Envelope 5] Beam 17: Fnd 1: 79: SLEE [Absolute Envelope 5] Beam 17: Fnd 1: 79: SLEE [Absolute Envelope 5] Beam 17: Fnd 1: 79: SLEE [Absolute Envelope 5]

	IN17		El2CLI
Beam 17: End 1: 78: SLER [Absolute Envelo	pe 4] 81	89	220
Beam 17: End 1: 79: SLEF [Absolute Envelo	pe 5] 66	68	185
Beam 17: End 1: 80: SLEQP [Absolute Enve	lope 6] 21	5	93
Beam 17: End 2: 76: SLU [Absolute Envelop	e 2] 99	113	355
Beam 17: End 2: 77: SLV [Absolute Envelope	e 3] 43	27	123
Beam 17: End 2: 78: SLER [Absolute Envelo	pe 4] 64	63	214
Beam 17: End 2: 79: SLEF [Absolute Envelo	pe 5] 49	47	180
Beam 17: End 2: 80: SLEQP [Absolute Enve	lope 6] 12	1	87
Beam 18: End 1: 76: SLU [Absolute Envelop	e 2] 99	113	355
Beam 18: End 1: 77: SLV [Absolute Envelop	e 3] 43	27	123
Beam 18: End 1: 78: SLER [Absolute Envelo	pe 4] 64	63	214
Beam 18: End 1: 79: SLEF [Absolute Envelo	pe 5] 49	47	180
Beam 18: End 1: 80: SLEQP [Absolute Enve	lope 6] 12	1	87
Beam 18: End 2: 76: SLU [Absolute Envelop	e 2] 74	101	348
Beam 18: End 2: 77: SLV [Absolute Envelope	e 3] 31	17	118
Beam 18: End 2: 78: SLER [Absolute Envelo	pe 4] 48	43	209
Beam 18: End 2: 79: SLEF [Absolute Envelo	pe 5] 33	32	175
Beam 18: End 2: 80: SLEQP [Absolute Enve	lope 6] 3	3	82
Beam 19: End 1: 76: SLU [Absolute Envelop	e 2] 74	101	348
Beam 19: End 1: 77: SLV [Absolute Envelop	e 3] 31	17	118
Beam 19: End 1: 78: SLER [Absolute Envelo	pe 4] 48	43	209
Beam 19: End 1: 79: SLEF [Absolute Envelo	pe 5] 33	32	175
Beam 19: End 1: 80: SLEQP [Absolute Enve	lope 6] 3	3	82
Beam 19: End 2: 76: SLU [Absolute Envelop	e 2] 50	92	341
Beam 19: End 2: 77: SLV [Absolute Envelope	e 3] 19	19	113
Beam 19: End 2: 78: SLER [Absolute Envelo	pe 4] 33	29	204
Beam 19: End 2: 79: SLEF [Absolute Envelo	pe 5] 18	23	170
Beam 19: End 2: 80: SLEQP [Absolute Enve	lope 6] 5	3	77
Beam 20: End 1: 76: SLU [Absolute Envelop	e 2] 50	92	341
Beam 20: End 1: 77: SLV [Absolute Envelope	e 3] 19	19	113

GENERAL CONTRACTOR alta sorveglianza Consorzio IricAV Due TALFERR O FERROVIE DELLO STATO ITALIANE Codifica Progetto Lotto EI2CLIN040X001 IN17 В Beam 20: End 1: 78: SLER [Absolute Envelope 4] Beam 20: End 1: 79: SLEF [Absolute Envelope 5] Beam 20: End 1: 80: SLEQP [Absolute Envelope 6] Beam 20: End 2: 76: SLU [Absolute Envelope 2] Beam 20: End 2: 77: SLV [Absolute Envelope 3] Beam 20: End 2: 78: SLER [Absolute Envelope 4] Beam 20: End 2: 79: SLEF [Absolute Envelope 5] Beam 20: End 2: 80: SLEQP [Absolute Envelope 6] Beam 21: End 1: 76: SLU [Absolute Envelope 2] Beam 21: End 1: 77: SLV [Absolute Envelope 3] Beam 21: End 1: 78: SLER [Absolute Envelope 4] Beam 21: End 1: 79: SLEF [Absolute Envelope 5] Beam 21: End 1: 80: SLEQP [Absolute Envelope 6] Beam 21: End 2: 76: SLU [Absolute Envelope 2] Beam 21: End 2: 77: SLV [Absolute Envelope 3] Beam 21: End 2: 78: SLER [Absolute Envelope 4] Beam 21: End 2: 79: SLEF [Absolute Envelope 5] Beam 21: End 2: 80: SLEQP [Absolute Envelope 6] Beam 22: End 1: 76: SLU [Absolute Envelope 2] Beam 22: End 1: 77: SLV [Absolute Envelope 3] Beam 22: End 1: 78: SLER [Absolute Envelope 4] Beam 22: End 1: 79: SLEF [Absolute Envelope 5] Beam 22: End 1: 80: SLEQP [Absolute Envelope 6] Beam 22: End 2: 76: SLU [Absolute Envelope 2] Beam 22: End 2: 77: SLV [Absolute Envelope 3] Beam 22: End 2: 78: SLER [Absolute Envelope 4] Beam 22: End 2: 79: SLEF [Absolute Envelope 5]

Beam 22: End 2: 80: SLEQP [Absolute Envelope 6]

Beam 23: End 1: 76: SLU [Absolute Envelope 2]

Beam 23: End 1: 77: SLV [Absolute Envelope 3]

	11417		LIZCLII
Beam 23: End 1: 78: SLER [Absolute Envelope 4]	68	63	188
Beam 23: End 1: 79: SLEF [Absolute Envelope 5]	21	25	154
Beam 23: End 1: 80: SLEQP [Absolute Envelope	6] 22	12	61
Beam 23: End 2: 76: SLU [Absolute Envelope 2]	71	159	313
Beam 23: End 2: 77: SLV [Absolute Envelope 3]	59	28	92
Beam 23: End 2: 78: SLER [Absolute Envelope 4]	79	89	183
Beam 23: End 2: 79: SLEF [Absolute Envelope 5]	32	35	149
Beam 23: End 2: 80: SLEQP [Absolute Envelope	6] 26	21	56
Beam 24: End 1: 76: SLU [Absolute Envelope 2]	71	159	313
Beam 24: End 1: 77: SLV [Absolute Envelope 3]	59	28	92
Beam 24: End 1: 78: SLER [Absolute Envelope 4]	79	89	183
Beam 24: End 1: 79: SLEF [Absolute Envelope 5]	32	35	149
Beam 24: End 1: 80: SLEQP [Absolute Envelope	6] 26	21	56
Beam 24: End 2: 76: SLU [Absolute Envelope 2]	74	166	311
Beam 24: End 2: 77: SLV [Absolute Envelope 3]	62	34	91
Beam 24: End 2: 78: SLER [Absolute Envelope 4]	82	97	182
Beam 24: End 2: 79: SLEF [Absolute Envelope 5]	35	38	147
Beam 24: End 2: 80: SLEQP [Absolute Envelope	6] 27	24	54
Beam 25: End 1: 76: SLU [Absolute Envelope 2]	74	166	311
Beam 25: End 1: 77: SLV [Absolute Envelope 3]	62	34	91
Beam 25: End 1: 78: SLER [Absolute Envelope 4]	82	97	182
Beam 25: End 1: 79: SLEF [Absolute Envelope 5]	35	38	147
Beam 25: End 1: 80: SLEQP [Absolute Envelope	6] 27	24	54
Beam 25: End 2: 76: SLU [Absolute Envelope 2]	78	173	309
Beam 25: End 2: 77: SLV [Absolute Envelope 3]	66	40	89
Beam 25: End 2: 78: SLER [Absolute Envelope 4]	85	105	180
Beam 25: End 2: 79: SLEF [Absolute Envelope 5]	38	41	146
Beam 25: End 2: 80: SLEQP [Absolute Envelope	6] 28	26	53
Beam 26: End 1: 76: SLU [Absolute Envelope 2]	171	232	404
Beam 26: End 1: 77: SLV [Absolute Envelope 3]	81	66	155

GENERAL CONTRACTOR Consorzio IricAV Due Progetto Lotto Codifica IN17 11 EI2CLIN040X001 B Beam 26: End 1: 78: SLER [Absolute Envelope 4] 100 116 273 Beam 26: End 1: 79: SLEF [Absolute Envelope 5] 11 6 240

		I	1
Doom 26, End 1, 70, SLED [Absolute Envelope 4]	100	116	272
Beam 26: End 1: 78: SLER [Absolute Envelope 4]	100	116	273
Beam 26: End 1: 79: SLEF [Absolute Envelope 5]	11	6	240
Beam 26: End 1: 80: SLEQP [Absolute Envelope 6]	50	36	106
Beam 26: End 2: 76: SLU [Absolute Envelope 2]	186	263	408
Beam 26: End 2: 77: SLV [Absolute Envelope 3]	91	79	157
Beam 26: End 2: 78: SLER [Absolute Envelope 4]	109	134	276
Beam 26: End 2: 79: SLEF [Absolute Envelope 5]	16	5	243
Beam 26: End 2: 80: SLEQP [Absolute Envelope 6]	56	46	108
Beam 27: End 1: 76: SLU [Absolute Envelope 2]	157	203	401
Beam 27: End 1: 77: SLV [Absolute Envelope 3]	71	55	152
Beam 27: End 1: 78: SLER [Absolute Envelope 4]	90	99	271
Beam 27: End 1: 79: SLEF [Absolute Envelope 5]	6	6	238
Beam 27: End 1: 80: SLEQP [Absolute Envelope 6]	44	28	103
Beam 27: End 2: 76: SLU [Absolute Envelope 2]	171	232	404
Beam 27: End 2: 77: SLV [Absolute Envelope 3]	81	66	155
Beam 27: End 2: 78: SLER [Absolute Envelope 4]	100	116	273
Beam 27: End 2: 79: SLEF [Absolute Envelope 5]	11	6	240
Beam 27: End 2: 80: SLEQP [Absolute Envelope 6]	50	36	106
Beam 28: End 1: 76: SLU [Absolute Envelope 2]	128	153	394
Beam 28: End 1: 77: SLV [Absolute Envelope 3]	52	37	147
Beam 28: End 1: 78: SLER [Absolute Envelope 4]	71	70	265
Beam 28: End 1: 79: SLEF [Absolute Envelope 5]	11	4	232
Beam 28: End 1: 80: SLEQP [Absolute Envelope 6]	32	15	98
Beam 28: End 2: 76: SLU [Absolute Envelope 2]	157	203	401
Beam 28: End 2: 77: SLV [Absolute Envelope 3]	71	55	152
Beam 28: End 2: 78: SLER [Absolute Envelope 4]	90	99	271
Beam 28: End 2: 79: SLEF [Absolute Envelope 5]	6	6	238
Beam 28: End 2: 80: SLEQP [Absolute Envelope 6]	44	28	103
Beam 29: End 1: 76: SLU [Absolute Envelope 2]	101	112	386
Beam 29: End 1: 77: SLV [Absolute Envelope 3]	35	22	142

	11917	1.1	EIZCLII
Beam 29: End 1: 78: SLER [Absolute Envelo	ppe 4] 53	48	260
Beam 29: End 1: 79: SLEF [Absolute Envelo	pe 5] 20	1	227
Beam 29: End 1: 80: SLEQP [Absolute Enve	elope 6] 21	5	93
Beam 29: End 2: 76: SLU [Absolute Envelop	e 2] 128	153	394
Beam 29: End 2: 77: SLV [Absolute Envelop	e 3] 52	37	147
Beam 29: End 2: 78: SLER [Absolute Envelo	ppe 4] 71	70	265
Beam 29: End 2: 79: SLEF [Absolute Envelo	pe 5] 11	4	232
Beam 29: End 2: 80: SLEQP [Absolute Enve	elope 6] 32	15	98
Beam 30: End 1: 76: SLU [Absolute Envelop	e 2] 77	81	379
Beam 30: End 1: 77: SLV [Absolute Envelop	e 3] 23	19	136
Beam 30: End 1: 78: SLER [Absolute Envelo	ppe 4] 36	32	255
Beam 30: End 1: 79: SLEF [Absolute Envelo	pe 5] 27	10	222
Beam 30: End 1: 80: SLEQP [Absolute Enve	elope 6] 12	1	87
Beam 30: End 2: 76: SLU [Absolute Envelop	e 2] 101	112	386
Beam 30: End 2: 77: SLV [Absolute Envelop	e 3] 35	22	142
Beam 30: End 2: 78: SLER [Absolute Envelo	ppe 4] 53	48	260
Beam 30: End 2: 79: SLEF [Absolute Envelo	pe 5] 20	1	227
Beam 30: End 2: 80: SLEQP [Absolute Enve	elope 6] 21	5	93
Beam 31: End 1: 76: SLU [Absolute Envelop	e 2] 86	66	372
Beam 31: End 1: 77: SLV [Absolute Envelop	e 3] 13	22	131
Beam 31: End 1: 78: SLER [Absolute Envelo	ppe 4] 43	26	250
Beam 31: End 1: 79: SLEF [Absolute Envelo	pe 5] 34	21	217
Beam 31: End 1: 80: SLEQP [Absolute Enve	elope 6] 3	3	82
Beam 31: End 2: 76: SLU [Absolute Envelop	e 2] 77	81	379
Beam 31: End 2: 77: SLV [Absolute Envelop	e 3] 23	19	136
Beam 31: End 2: 78: SLER [Absolute Envelo	ppe 4] 36	32	255
Beam 31: End 2: 79: SLEF [Absolute Envelo	pe 5] 27	10	222
Beam 31: End 2: 80: SLEQP [Absolute Enve	elope 6] 12	1	87
Beam 32: End 1: 76: SLU [Absolute Envelop	e 2] 94	79	365
Beam 32: End 1: 77: SLV [Absolute Envelop	e 3] 18	19	126

	IN17	11	El2CLI
Beam 32: End 1: 78: SLER [Absolute Envelope 4]	49	42	244
Beam 32: End 1: 79: SLEF [Absolute Envelope 5]	41	34	212
Beam 32: End 1: 80: SLEQP [Absolute Envelope 6]	5	3	77
Beam 32: End 2: 76: SLU [Absolute Envelope 2]	86	66	372
Beam 32: End 2: 77: SLV [Absolute Envelope 3]	13	22	131
Beam 32: End 2: 78: SLER [Absolute Envelope 4]	43	26	250
Beam 32: End 2: 79: SLEF [Absolute Envelope 5]	34	21	217
Beam 32: End 2: 80: SLEQP [Absolute Envelope 6]	3	3	82
Beam 33: End 1: 76: SLU [Absolute Envelope 2]	101	94	358
Beam 33: End 1: 77: SLV [Absolute Envelope 3]	32	15	121
Beam 33: End 1: 78: SLER [Absolute Envelope 4]	54	60	239
Beam 33: End 1: 79: SLEF [Absolute Envelope 5]	46	49	206
Beam 33: End 1: 80: SLEQP [Absolute Envelope 6]	11	0	72
Beam 33: End 2: 76: SLU [Absolute Envelope 2]	94	79	365
Beam 33: End 2: 77: SLV [Absolute Envelope 3]	18	19	126
Beam 33: End 2: 78: SLER [Absolute Envelope 4]	49	42	244
Beam 33: End 2: 79: SLEF [Absolute Envelope 5]	41	34	212
Beam 33: End 2: 80: SLEQP [Absolute Envelope 6]	5	3	77
Beam 34: End 1: 76: SLU [Absolute Envelope 2]	108	129	351
Beam 34: End 1: 77: SLV [Absolute Envelope 3]	45	21	115
Beam 34: End 1: 78: SLER [Absolute Envelope 4]	65	81	234
Beam 34: End 1: 79: SLEF [Absolute Envelope 5]	51	67	201
Beam 34: End 1: 80: SLEQP [Absolute Envelope 6]	17	5	66
Beam 34: End 2: 76: SLU [Absolute Envelope 2]	101	94	358
Beam 34: End 2: 77: SLV [Absolute Envelope 3]	32	15	121
Beam 34: End 2: 78: SLER [Absolute Envelope 4]	54	60	239
Beam 34: End 2: 79: SLEF [Absolute Envelope 5]	46	49	206
Beam 34: End 2: 80: SLEQP [Absolute Envelope 6]	11	0	72
Beam 35: End 1: 76: SLU [Absolute Envelope 2]	114	167	344
Beam 35: End 1: 77: SLV [Absolute Envelope 3]	58	31	110

GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Progetto IN17 11 El2CLIN040X001 B Beam 35: End 1: 78: SLER [Absolute Envelope 4] 77 102 229

Beam 35: End 1: 78: SLER [Absolute Envelope 4]	77	102	229
Beam 35: End 1: 79: SLEF [Absolute Envelope 5]	54	85	196
Beam 35: End 1: 80: SLEQP [Absolute Envelope 6]	22	12	61
Beam 35: End 2: 76: SLU [Absolute Envelope 2]	108	129	351
Beam 35: End 2: 77: SLV [Absolute Envelope 3]	45	21	115
Beam 35: End 2: 78: SLER [Absolute Envelope 4]	65	81	234
Beam 35: End 2: 79: SLEF [Absolute Envelope 5]	51	67	201
Beam 35: End 2: 80: SLEQP [Absolute Envelope 6]	17	5	66
Beam 36: End 1: 76: SLU [Absolute Envelope 2]	119	208	337
Beam 36: End 1: 77: SLV [Absolute Envelope 3]	69	49	105
Beam 36: End 1: 78: SLER [Absolute Envelope 4]	88	125	224
Beam 36: End 1: 79: SLEF [Absolute Envelope 5]	58	105	191
Beam 36: End 1: 80: SLEQP [Absolute Envelope 6]	26	21	56
Beam 36: End 2: 76: SLU [Absolute Envelope 2]	114	167	344
Beam 36: End 2: 77: SLV [Absolute Envelope 3]	58	31	110
Beam 36: End 2: 78: SLER [Absolute Envelope 4]	77	102	229
Beam 36: End 2: 79: SLEF [Absolute Envelope 5]	54	85	196
Beam 36: End 2: 80: SLEQP [Absolute Envelope 6]	22	12	61
Beam 37: End 1: 76: SLU [Absolute Envelope 2]	121	219	335
Beam 37: End 1: 77: SLV [Absolute Envelope 3]	72	56	103
Beam 37: End 1: 78: SLER [Absolute Envelope 4]	91	132	222
Beam 37: End 1: 79: SLEF [Absolute Envelope 5]	58	111	189
Beam 37: End 1: 80: SLEQP [Absolute Envelope 6]	27	24	54
Beam 37: End 2: 76: SLU [Absolute Envelope 2]	119	208	337
Beam 37: End 2: 77: SLV [Absolute Envelope 3]	69	49	105
Beam 37: End 2: 78: SLER [Absolute Envelope 4]	88	125	224
Beam 37: End 2: 79: SLEF [Absolute Envelope 5]	58	105	191
Beam 37: End 2: 80: SLEQP [Absolute Envelope 6]	26	21	56
Beam 38: End 1: 76: SLU [Absolute Envelope 2]	122	231	333
Beam 38: End 1: 77: SLV [Absolute Envelope 3]	75	63	102

GENERAL CONTRACTOR alta sorveglianza Consorzio IricAV Due TALFERR O FERROVIE DELLO STATO ITALIANE Codifica Progetto Lotto EI2CLIN040X001 IN17 В Beam 38: End 1: 78: SLER [Absolute Envelope 4] Beam 38: End 1: 79: SLEF [Absolute Envelope 5] Beam 38: End 1: 80: SLEQP [Absolute Envelope 6] Beam 38: End 2: 76: SLU [Absolute Envelope 2] Beam 38: End 2: 77: SLV [Absolute Envelope 3] Beam 38: End 2: 78: SLER [Absolute Envelope 4] Beam 38: End 2: 79: SLEF [Absolute Envelope 5] Beam 38: End 2: 80: SLEQP [Absolute Envelope 6] Beam 39: End 1: 76: SLU [Absolute Envelope 2] Beam 39: End 1: 77: SLV [Absolute Envelope 3] Beam 39: End 1: 78: SLER [Absolute Envelope 4] Beam 39: End 1: 79: SLEF [Absolute Envelope 5] Beam 39: End 1: 80: SLEQP [Absolute Envelope 6] Beam 39: End 2: 76: SLU [Absolute Envelope 2] Beam 39: End 2: 77: SLV [Absolute Envelope 3] Beam 39: End 2: 78: SLER [Absolute Envelope 4] Beam 39: End 2: 79: SLEF [Absolute Envelope 5] Beam 39: End 2: 80: SLEQP [Absolute Envelope 6] Beam 40: End 1: 76: SLU [Absolute Envelope 2] Beam 40: End 1: 77: SLV [Absolute Envelope 3] Beam 40: End 1: 78: SLER [Absolute Envelope 4] Beam 40: End 1: 79: SLEF [Absolute Envelope 5] Beam 40: End 1: 80: SLEQP [Absolute Envelope 6] Beam 40: End 2: 76: SLU [Absolute Envelope 2] Beam 40: End 2: 77: SLV [Absolute Envelope 3] Beam 40: End 2: 78: SLER [Absolute Envelope 4]

Beam 40: End 2: 79: SLEF [Absolute Envelope 5]

Beam 40: End 2: 80: SLEQP [Absolute Envelope 6]

Beam 41: End 1: 76: SLU [Absolute Envelope 2]

Beam 41: End 1: 77: SLV [Absolute Envelope 3]

GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Consorzio IricAV Due Progetto IN17 Lotto Codifica IN17 Beam 41: End 1: 78: SLER [Absolute Envelope 4] Beam 41: End 1: 79: SLEF [Absolute Envelope 5] Beam 41: End 1: 80: SLEQP [Absolute Envelope 6] Beam 41: End 1: 80: SLEQP [Absolute Envelope 6] ALTA SORVEGLIANZA ALTA SORVEGLIANZA Progetto IN17 11 El2CLIN040X001 B

Deem 44. Find 4. 70. CLED [Absolute Envisions 4]	4.40	F.7	07
Beam 41: End 1: 78: SLER [Absolute Envelope 4]	148	57	87
Beam 41: End 1: 79: SLEF [Absolute Envelope 5]	114	3	44
Beam 41: End 1: 80: SLEQP [Absolute Envelope 6]	40	13	29
Beam 41: End 2: 76: SLU [Absolute Envelope 2]	199	73	87
Beam 41: End 2: 77: SLV [Absolute Envelope 3]	53	25	61
Beam 41: End 2: 78: SLER [Absolute Envelope 4]	115	47	84
Beam 41: End 2: 79: SLEF [Absolute Envelope 5]	80	33	46
Beam 41: End 2: 80: SLEQP [Absolute Envelope 6]	30	0	29
Beam 42: End 1: 76: SLU [Absolute Envelope 2]	199	73	87
Beam 42: End 1: 77: SLV [Absolute Envelope 3]	53	25	61
Beam 42: End 1: 78: SLER [Absolute Envelope 4]	115	47	84
Beam 42: End 1: 79: SLEF [Absolute Envelope 5]	80	33	46
Beam 42: End 1: 80: SLEQP [Absolute Envelope 6]	30	0	29
Beam 42: End 2: 76: SLU [Absolute Envelope 2]	141	109	87
Beam 42: End 2: 77: SLV [Absolute Envelope 3]	36	35	57
Beam 42: End 2: 78: SLER [Absolute Envelope 4]	81	68	80
Beam 42: End 2: 79: SLEF [Absolute Envelope 5]	46	57	48
Beam 42: End 2: 80: SLEQP [Absolute Envelope 6]	20	9	29
Beam 43: End 1: 76: SLU [Absolute Envelope 2]	141	109	87
Beam 43: End 1: 77: SLV [Absolute Envelope 3]	36	35	57
Beam 43: End 1: 78: SLER [Absolute Envelope 4]	81	68	80
Beam 43: End 1: 79: SLEF [Absolute Envelope 5]	46	57	48
Beam 43: End 1: 80: SLEQP [Absolute Envelope 6]	20	9	29
Beam 43: End 2: 76: SLU [Absolute Envelope 2]	83	124	87
Beam 43: End 2: 77: SLV [Absolute Envelope 3]	19	42	53
Beam 43: End 2: 78: SLER [Absolute Envelope 4]	47	80	78
Beam 43: End 2: 79: SLEF [Absolute Envelope 5]	13	68	50
Beam 43: End 2: 80: SLEQP [Absolute Envelope 6]	10	15	29
Beam 44: End 1: 76: SLU [Absolute Envelope 2]	83	124	87
Beam 44: End 1: 77: SLV [Absolute Envelope 3]	19	42	53

GENERAL CONTRACTOR Consorzio Iric-AV Due Progetto Lotto Codifica IN17 11 EI2CLIN040X001 B Beam 44: End 1: 78: SLER [Absolute Envelope 4] 47 80 78

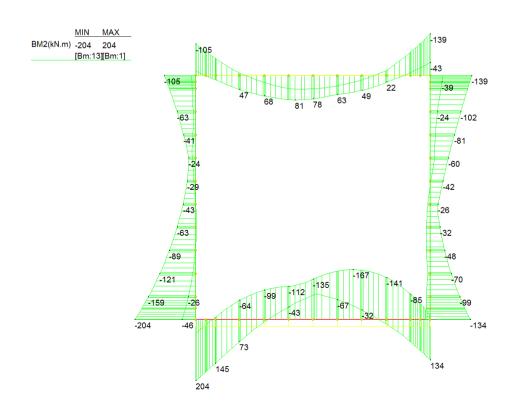
	· ·		
Beam 44: End 1: 78: SLER [Absolute Env	velope 4] 47	80	78
Beam 44: End 1: 79: SLEF [Absolute Env	relope 5] 13	68	50
Beam 44: End 1: 80: SLEQP [Absolute End	nvelope 6] 10	15	29
Beam 44: End 2: 76: SLU [Absolute Enve	lope 2] 50	126	93
Beam 44: End 2: 77: SLV [Absolute Enve	lope 3] 15	42	49
Beam 44: End 2: 78: SLER [Absolute Env	velope 4] 28	78	82
Beam 44: End 2: 79: SLEF [Absolute Env	relope 5] 21	66	52
Beam 44: End 2: 80: SLEQP [Absolute End	nvelope 6] 0	17	29
Beam 45: End 1: 76: SLU [Absolute Enve	lope 2] 50	126	93
Beam 45: End 1: 77: SLV [Absolute Enve	lope 3] 15	42	49
Beam 45: End 1: 78: SLER [Absolute Env	velope 4] 28	78	82
Beam 45: End 1: 79: SLEF [Absolute Env	relope 5] 21	66	52
Beam 45: End 1: 80: SLEQP [Absolute End	nvelope 6] 0	17	29
Beam 45: End 2: 76: SLU [Absolute Enve	lope 2] 107	120	99
Beam 45: End 2: 77: SLV [Absolute Enve	lope 3] 32	37	55
Beam 45: End 2: 78: SLER [Absolute Env	/elope 4] 65	63	86
Beam 45: End 2: 79: SLEF [Absolute Env	relope 5] 55	52	53
Beam 45: End 2: 80: SLEQP [Absolute End	nvelope 6] 10	15	29
Beam 46: End 1: 76: SLU [Absolute Enve	lope 2] 107	120	99
Beam 46: End 1: 77: SLV [Absolute Enve	lope 3] 32	37	55
Beam 46: End 1: 78: SLER [Absolute Env	velope 4] 65	63	86
Beam 46: End 1: 79: SLEF [Absolute Env	relope 5] 55	52	53
Beam 46: End 1: 80: SLEQP [Absolute E	nvelope 6] 10	15	29
Beam 46: End 2: 76: SLU [Absolute Enve	lope 2] 165	97	105
Beam 46: End 2: 77: SLV [Absolute Enve	lope 3] 49	26	61
Beam 46: End 2: 78: SLER [Absolute Env	/elope 4] 105	49	89
Beam 46: End 2: 79: SLEF [Absolute Env	relope 5] 88	25	55
Beam 46: End 2: 80: SLEQP [Absolute End	nvelope 6] 20	9	29
Beam 47: End 1: 76: SLU [Absolute Enve	elope 2] 165	97	105
Beam 47: End 1: 77: SLV [Absolute Enve	lope 3] 49	26	61

	· · · · · · · · · · · · · · · · · · ·		
Beam 47: End 1: 78: SLER [Absolute Envelope 4]	105	49	89
Beam 47: End 1: 79: SLEF [Absolute Envelope 5]	88	25	55
Beam 47: End 1: 80: SLEQP [Absolute Envelope 6	6] 20	9	29
Beam 47: End 2: 76: SLU [Absolute Envelope 2]	223	52	112
Beam 47: End 2: 77: SLV [Absolute Envelope 3]	65	11	66
Beam 47: End 2: 78: SLER [Absolute Envelope 4]	145	22	93
Beam 47: End 2: 79: SLEF [Absolute Envelope 5]	122	15	57
Beam 47: End 2: 80: SLEQP [Absolute Envelope 6	6] 30	0	29
Beam 48: End 1: 76: SLU [Absolute Envelope 2]	223	52	112
Beam 48: End 1: 77: SLV [Absolute Envelope 3]	65	11	66
Beam 48: End 1: 78: SLER [Absolute Envelope 4]	145	22	93
Beam 48: End 1: 79: SLEF [Absolute Envelope 5]	122	15	57
Beam 48: End 1: 80: SLEQP [Absolute Envelope 6	6] 30	0	29
Beam 48: End 2: 76: SLU [Absolute Envelope 2]	280	140	118
Beam 48: End 2: 77: SLV [Absolute Envelope 3]	82	37	72
Beam 48: End 2: 78: SLER [Absolute Envelope 4]	184	79	96
Beam 48: End 2: 79: SLEF [Absolute Envelope 5]	156	66	59
Beam 48: End 2: 80: SLEQP [Absolute Envelope 6	6] 40	13	29
Beam 49: End 1: 76: SLU [Absolute Envelope 2]	280	140	118
Beam 49: End 1: 77: SLV [Absolute Envelope 3]	82	37	72
Beam 49: End 1: 78: SLER [Absolute Envelope 4]	184	79	96
Beam 49: End 1: 79: SLEF [Absolute Envelope 5]	156	66	59
Beam 49: End 1: 80: SLEQP [Absolute Envelope 6	6] 40	13	29
Beam 49: End 2: 76: SLU [Absolute Envelope 2]	303	184	121
Beam 49: End 2: 77: SLV [Absolute Envelope 3]	90	50	74
Beam 49: End 2: 78: SLER [Absolute Envelope 4]	200	107	98
Beam 49: End 2: 79: SLEF [Absolute Envelope 5]	169	91	59
Beam 49: End 2: 80: SLEQP [Absolute Envelope 6	6] 44	19	29
Beam 50: End 1: 76: SLU [Absolute Envelope 2]	303	184	121
Beam 50: End 1: 77: SLV [Absolute Envelope 3]	90	50	74

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
	Progetto	Lotto	Codifica	
	IN17	11	EI2CLIN040X001	В
Beam 50: End 1: 78: SLER [Absolute Envelope 4]	200	107	98	
Beam 50: End 1: 79: SLEF [Absolute Envelope 5]	169	91	59	
Beam 50: End 1: 80: SLEQP [Absolute Envelope 6]	44	19	29	
Beam 50: End 2: 76: SLU [Absolute Envelope 2]	326	231	124	
Beam 50: End 2: 77: SLV [Absolute Envelope 3]	97	63	77	
Beam 50: End 2: 78: SLER [Absolute Envelope 4]	216	139	99	

Beam 50: End 2: 79: SLEF [Absolute Envelope 5]

Beam 50: End 2: 80: SLEQP [Absolute Envelope 6]



16 DICHIARAZIONE SECONDO NTC2008 (§ 10.2)

Nel presente paragrafo si procede al controllo dei risultati derivanti dal modello di calcolo verificando che il momento agente sulla soletta superiore in condizione SLE corrisponda al valore che si ottiene dal calcolo di una trave su 2 appoggi, considerando un vincolo di semi-incastro alle due estremità (in modo tale da meglio rappresentare il vincolo fra soletta superiore ed i piedritti della struttura).

Sollecitazioni soletta superiore			
Peso proprio	10.00	kN/m	
Permanenti	14.40	kN/m	
Accidentale	76.40	kN/m	
L soletta	3.50	m	
MEd-	-127.6	kNm	
MEd+	91.2	kNm	

Sollecitazioni soletta superiore modello di calcolo			
Med-	-139	kNm	
Med+	81	kNm	

