COMMITTENTE:

ALTA SORVEGLIANZA:

GENERAL CONTRACTOR:

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE **OBIETTIVO N. 443/01**

LINEA AV/AC TORINO – VENEZIA Tratta VERONA – PADOVA Lotto funzionale Verona – Bivio Vicenza PROGETTO ESECUTIVO

GA – GALLERIE ARTIFICIALI

GA01 – GALLERIA ARTIFICIALE S. MARTINO

GA01A dal km 4+942,53 al Km 5+336,53

	GENERAL CO	ONTRACTOR			DIF	RETTORE LAV	ORI		
-	ogettista integratore	E Consorz	io					SCALA	
Scriff	Giovanni MALAVENDA o all'ordine degli peri di Venezia n. 4289	Iricav						-	
Data	N. 4289 TH That	Data:	o Carmon						
COM	amessa l'otto f	FASE ENTE	TIPO D	OC. OPER	A/DISCIPLINA	PROGR.	REV.	FOGLIO	
I N	1 1 7	E I 2	С	L G A	0 1 A	0 0	1 A	D -	
						VIS	to consc	DRZIO IRICAV DUE	
			110			Firma		Data	
	Consol	rzio IricA	v Due						
•									
Proge	ettazione:								
Proge	ettazione: Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	IL PROGETTIST	A
Rev.	Descrizione		Data			Approvato P. GALVANIN		IL PROGETTIST	A
Ŭ	T.	Redatto		Verificato	Data 30/04/21	1	Data 30/04/21	IL PROGETTIST	A A A A A A A A A A A A A A A A A A A
Rev.	Descrizione	Redatto R. CONFORTI	Data	Verificato L. ALFIERI		1		IL PROGETTIST	A MUANT
Rev.	Descrizione	Redatto R. CONFORTI	Data	Verificato L. ALFIERI		1		GEGNERI DE	MINANA Maria 1886 2178
Rev.	Descrizione	Redatto R. CONFORTI	Data	Verificato L. ALFIERI		1		IL PROGETTIST TT. NG Department of the program of t	MINANA Maria 1886 2178
Rev.	Descrizione	Redatto R. CONFORTI RConfoli	Data 30/04/21	Verificato L. ALFIERI	30/04/21	P. GALVANIN	30/04/21	LPIN AAIbSETON b) industriale n/A 2178	MANA 1217845

Progetto cofinanziato dalla Unione Europea

GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO

Progetto Lotto IN17 11

Codifica Documento El2 CL GA 01 A4 0014 Rev. A

Foglio 2 di 205

INDICE

1	INTF	RODUZIONE	5
2	DOC	CUMENTI DI RIFERIMENTO	7
	2.1	Riferimenti Normativi	7
	2.2	Documenti di progetto esecutivo	7
	2.3	Software di calcolo	9
3	MAT	ERIALI	10
4	CAR	ATTERIZZAZIONE GEOTECNICA E IDROGEOLOGICA	12
	4.1	Inquadramento generale	12
	4.2	Stratigrafia di riferimento per la tratta in esame	12
	4.3	Livelli di falda	14
	4.4	Parametri geotecnici per la tratta in esame	15
	4.5	Parametri geotecnici del terreno trattato	15
5	DES	CRIZIONE DELLE OPERE	16
	5.1	Aspetti generali	16
	5.2	Geometria delle opere di sostegno	19
	5.3	Schemi di calcolo	20
	5.3.1	Criteri di identificazione delle sezioni di calcolo	20
	5.3.2	2 Caratteristiche e quote di riferimento delle sezioni di calcolo	21
	5.3.3	B Fasi costruttive considerate	23
6	CRIT	FERI DI VERIFICA	25
	6.1	Criteri di dimensionamento e modellazione delle opere di sostegno	25
	6.1.1	Riferimenti normativi	25
	6.2	Modellazione delle sezioni e sistemi di vincolo	25
	6.2.1	Spinta del terreno in condizioni statiche	26
	6.2.2	2 Spinta del terreno in condizioni sismiche	26
	6.2.3	B Spinta dell'acqua	27
	6.2.4	Passaggio moduli di lungo termine	27
	6.3	Sovraccarico permanente in copertura	27
	6.4	Sovraccarico accidentale in copertura	27
	6.5	Combinazioni per la verifica agli SLU	27
7	VER	IFICHE SEZIONE TS2	29
	7.1	Fasi di calcolo	29
	7.2	Risultati di calcolo	32
	7.3	Verifiche geotecniche	38
	7.3.1	Spostamenti e stabilità del fondo scavo	38
	7.3.2	2 Verifiche deformazioni/cedimenti attesi	39
	7.3.3	Verifiche di capacità portante dei diaframmi	40
	7.3.4	Verifiche di stabilità globale	43

GENERAL CONTRACTOR

GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO

ProgettoLottoCodifica DocumentoRev.FoglioIN1711EI2 CL GA 01 A4 0014A3 di 205

	7.3.5	Verifiche di stabilità del fondo scavo al galleggiamento	44
	7.3.6	Verifiche di stabilità della struttura interna	46
	7.3.7	Stima delle portate entranti al variare dei coefficienti di permeabilità del tampone di fondo	48
8	VERIF	ICHE SEZIONE TS3	50
	8.1 I	Fasi di calcolo	50
	8.2 I	Risultati di calcolo	53
	8.3	/erifiche geotecniche	58
	8.3.1	Spostamenti e stabilità del fondo scavo	58
	8.3.2	Verifiche deformazioni/cedimenti attesi	58
	8.3.3	Verifiche di capacità portante dei diaframmi	59
	8.3.4	Verifiche di stabilità globale	62
	8.3.5	Verifiche di stabilità del fondo scavo al galleggiamento	64
	8.3.6	Verifiche di stabilità della struttura interna	65
	8.3.7	Stima delle portate entranti al variare dei coefficienti di permeabilità del tampone di fondo	67
9	VERIF	ICHE SEZIONE TS4	68
	9.1 I	asi di calcolo	68
	9.2 I	Risultati di calcolo	71
	9.3	/erifiche geotecniche	76
	9.3.1	Spostamenti e stabilità del fondo scavo	76
	9.3.2	Verifiche deformazioni/cedimenti attesi	
	9.3.3	Verifiche di capacità portante dei diaframmi	
	9.3.4	Verifiche di stabilità globale	80
	9.3.5	Verifiche di stabilità del fondo scavo al galleggiamento	82
	9.3.6	Verifiche di stabilità della struttura interna	83
	9.3.7	Stima delle portate entranti al variare dei coefficienti di permeabilità del tampone di fondo	85
1() VERIF	ICHE SEZIONE TA	86
	10.1 I	asi di calcolo	86
	10.2 I	Risultati di calcolo	89
	10.3	/erifiche geotecniche	94
	10.3.1	Spostamenti e stabilità del fondo scavo	94
	10.3.2	Verifiche deformazioni/cedimenti attesi	94
	10.3.3	Verifiche di capacità portante dei diaframmi	95
	10.3.4	Verifiche di stabilità globale	98
	10.3.5	Verifiche di stabilità del fondo scavo al galleggiamento	99
	10.3.6	Verifiche di stabilità della struttura interna	100
	10.3.7	Stima delle portate entranti al variare dei coefficienti di permeabilità del tampone di fondo	102
11	1 VERIF	ICHE STRUTTURALI DEI DIAFRAMMI	103
	11.1	Tipologia armatura 'Tipo 1' (Schema TS-1 e TS-2)	105
	11.1.1	Verifiche sollecitazioni flettenti	105
	11 1	1.1 Dimensionamento armatura longitudinale	106

GENERAL CONTRACTOR

ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE

GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO

ProgettoLottoCodifica DocumentoRev.FoglioIN1711EI2 CL GA 01 A4 0014A4 di 205

11.1.1.1.1 Pannello P1 (base pannello 5.45m)	106
11.1.1.1.2 Pannello S1 (base pannello 5.05m)	
11.1.1.1.3 Pannello P2 e S2 Pannelli primari e secondari (base pannello 2.	
11.1.2 Verifiche sollecitazioni taglianti	
11.1.2.1 Dimensionamento armatura trasversale	127
11.2 Tipologia armatura 'Tipo 2' (Schema TS-3 e TS-4)	136
11.2.1.1 Dimensionamento armatura longitudinale	136
11.2.1.1.1 Pannello P1 (base pannello 5.45m)	136
11.2.1.1.2 Pannello S1 (base pannello 5.0m)	145
11.2.1.1.3 Pannello P2 e S2 Pannelli primari e secondari (base pannello 2. 11.2.1.2 Verifiche sollecitazioni taglianti	
11.2.1.2.1 Dimensionamento armatura trasversale	
11.3.1.1 Dimensionamento armatura longitudinale	169
11.3.1.1.1 Pannello P1 (base pannello 5.45m)	170
11.3.1.1.2 Pannello S1 (base pannello 5.0m)	177
11.3.1.1.3 Pannello P2 e S2 Pannelli primari e secondari (base pannello 2. 11.3.1.2 Verifiche sollecitazioni taglianti	
11.3.1.2.1 Dimensionamento armatura trasversale	190 197
12.1 Inquadramento delle opere provvisionali della WBS GA01-A	197
12.2 Opera provvisionale A	197
12.2.1 Descrizione dell'opera	197
12.2.2 Modello di calcolo	199
12.2.3 Descrizione delle fasi di calcolo	200
12.2.4 Sintesi risultati allo SLE – Spostamenti	200
12.2.5 Sintesi risultati analisi strutturale	201
12.2.6 Verifiche allo SLU di tipo STR	202
12.2.7 Verifica allo SLU di tipo GEO	203
12.2.7.1 Verifica di stabilità globale	203
12.2.7.2 Verifica delle spinte a valle della paratia	204
13 GIUDIZIO DI ACCETTABILITA' DEI RISULTATI DELLE VERIFICHE STRUTTURALI	205

1 INTRODUZIONE

La presente relazione riporta il dimensionamento geotecnico e strutturale delle opere di sostegno del tratto di galleria artificiale S. Martino denominato GA01-A che si estende per circa 400m tra progressiva pk 4+932.53 e pk 5+336,53.

Essa è parte integrante del Progetto Esecutivo della Galleria artificiale GA01 San Martino Buon Albergo della Linea AV/AC Verona Padova, posta in corrispondenza del Primo Lotto Funzionale Verona – Bivio Vicenza, tra le progressive pk 4+942.53 e pk 6+842.53.

Lo scavo dell'opera è sostenuto da diaframmi in c.a. di spessore 1.0 m e lunghezza variabile in funzione della profondità di scavo fino ad un massimo di circa 17 m. La Galleria Artificiale è costituita da una struttura scatolare con solettone di copertura a travi prefabbricate con armatura lenta e getto di completamento in opera che appoggia su diaframmi in c.a. realizzati con l'ausilio di benna mordente e fanghi bentonitici. La modalità di realizzazione dell'intera struttura è di tipo 'Top-Down' nella quale il solettone di copertura è realizzato prima dello scavo tra paratie. Allo scopo di contrastare la sottospinta idraulica nelle fasi di scavo, è prevista la realizzazione di un consolidamento con colonne in jet grouting tra i due diaframmi nella zona compresa tra la quota di fondo scavo della galleria artificiale e il piede dei diaframmi. Al termine dello scavo sotto copertura è realizzata una struttura interna formata da solettone di fondo e contropareti al cui interno sono collocate le vie di corsa dei convogli ferroviari.

Nei capitoli successivi sono riportate le verifiche delle strutture di sostegno e impermeabilizzazione degli scavi con particolare riferimento ai seguenti aspetti:

- verifiche strutturali dei diaframmi di sostegno della copertura e delle pareti di scavo;
- verifiche geotecniche dei diaframmi (stabilità locale, globale, capacità portante, cedimento attesi in seguito allo scavo;
- verifica di stabilità del fondo scavo al galleggiamento in presenza del tampone di fondo e verifiche delle portate entranti all'interno dello scavo.

Maggiori dettagli in merito alle caratteristiche geometriche, le fasi costruttive, la tipologia di tampone di fondo proposto e agli schemi di calcolo utilizzati sono forniti nel §§ 5 e 6 della presente relazione.

Il presente documento è parte integrante della progettazione geotecnica e strutturale dell'intera galleria artificiale e deve essere consultato insieme al documento IN1711EI2RHGA0100001A 'Criteri di dimensionamento opere di sostegno degli scavi e tampone di fondo' che ne individua i requisiti, i criteri generali e gli approcci progettuali utilizzati per la progettazione. Approfondimenti specifici circa la correttezza dei modelli semplificati adottati per il dimensionamento geotecnico e strutturale delle sezioni tipo di scavo sono riportati nella relazione IN1711EI2RHGA0100002A.

GENERAL CONTRACTOR Consorzio IricAV Due		ITAL	GLIANZA SFERR STATO ITALIANE		
	Progetto	Lotto	Codifica Documento	Rev.	Foglio
GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO	IN17	11	EI2 CL GA 01 A4 0014	Α	6 di 205

Per quanto riguarda le verifiche relative al solettone di copertura (compresi cordoli di testa diaframmi), contropareti interne e solettone di fondo si rimanda agli elaborati specifici di progetto riportati al successivo § 2.2.

GENERAL CONTRACTOR		ALTA S	ORVE	SLIANZA		
Consorzio IricAV Due				FERR STATO ITALIANE		
GA01-A OPERE SOSTEGNO DEGLI S	CAVLE TAMPONE DI FONDO	Progetto	Lotto	Codifica Documento	Rev.	Foglio
GAUTA OF LINE SOSTEGNO DEGLIS	SCAVIL TAIVIF GIVE DI FONDO	IN17	11	EI2 CL GA 01 A4 0014	Α	7 di 205

2 DOCUMENTI DI RIFERIMENTO

2.1 Riferimenti Normativi

- [1] Decreto Ministeriale del 14 gennaio 2008 "Approvazione delle Nuove Norme Tecniche per le Costruzioni", G.U. n.29 del 04.2.2008, Supplemento Ordinario n.30.
- [2] Circolare 2 febbraio 2009, n. 617 "Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni" di cui al D.M. 14 gennaio 2008.
- [3] UNI 9614 "Misura delle vibrazioni negli edifici e criteri di valutazione del disturbo e successive revisioni".
- [4] UNI 9916 "Criteri di misura e valutazione degli effetti delle vibrazioni sugli edifici".
- [5] ISO 4866 "Vibrazioni meccaniche ed urti Vibrazioni di edifici Guida per la misura di vibrazioni e valutazioni dei loro effetti sugli edifici".
- [6] DIN 4150/3 "Eschütterungen im Bauwesen. Entwirklungen auf bauliche Anlagen".

2.2 Documenti di progetto esecutivo

2.2.1 Elaborati generali GA01

IN1711EI2ROGA0100001	Relazione generale
IN1711EI2ROGA0100002	Opere sostegno degli scavi e tampone di fondo - Relazione di confronto PD/PE
IN1711EI2RBGA0100001	Relazione geotecnica
IN1711EI2SPGA0102001	Specifiche tecniche campo prova jet grouting
IN1711EI2RHGA0100001	Relazione sui criteri di dimensionamento opere di sostegno degli scavi e impermeabilizzazione degli scavi
IN1711EI2RHGA0100002	Validazione del dimensionamento strutturale e geotecnico mediante analisi numeriche bidimensionali
IN1711EI2RHGA0100003	Opere di sostegno e scavo - Monitoraggio in corso d'opera GA01A, GA01B, GA01E - Relazione e specifica tecnica
IN1711EI2L6GA0100001	Planimetria di ubicazione delle indagini geognostiche e profilo geotecnico
IN1711EI2P8GA0100001	Planimetria generale di inquadramento diaframmi e tampone di fondo
IN1711EI2P7GA0100001	Planimetria generale di scavo: Macrofase 1
IN1711EI2P7GA0100002	Planimetria generale di scavo: Macrofase 2
IN1711EI2P7GA0100003	Planimetria generale di scavo: Macrofase 3
IN1711EI2P7GA0100004	Planimetria generale di scavo: Macrofase 4
IN1711EI2P7GA0100005	Planimetria generale di scavo: Macrofase 5
IN1711EI2P7GA0100006	Planimetria generale di scavo: Macrofase 6
IN1711EI2P7GA0100007	Planimetria generale di scavo: Macrofase 7
IN1711EI2P7GA0100008	Planimetria generale di scavo: Macrofase 8
IN1711EI2P9GA0101001	Pianta scavi TAV. 1
IN1711EI2P9GA0101002	Pianta scavi TAV. 2
IN1711EI2P9GA0101003	Pianta scavi TAV. 3
IN1711EI2P9GA0101004	Pianta scavi TAV. 4
IN1711EI2W9GA0101001	Sezioni di scavo Tav, 1
IN1711EI2W9GA0101002	Sezioni di scavo Tav, 2

GENERAL CONTRACTOR Consorzio IricAV Due			ITAL	GLIANZA FERR STATO ITALIANE		
CARA A OPERE SOSTECNO DECLIS	CAVILE TAMBONE DI FONDO	Progetto	Lotto	Codifica Documento	Rev.	Foglio
GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO		IN17	11	EI2 CL GA 01 A4 0014	Α	8 di 205

IN1711EI2W9GA0101003	Sezioni di scavo Tav, 3
IN1711EI2W9GA0101004	Sezioni di scavo Tav, 4
IN1711EI2W9GA0101005	Sezioni di scavo Tav, 5
IN1711EI2W9GA0101006	Sezioni di scavo Tav, 6
IN1711EI2W9GA0101007	Sezioni di scavo Tav, 7
IN1711EI2W9GA0101008	Sezioni di scavo Tav, 8
IN1711EI2W9GA0101009	Sezioni di scavo Tav, 9
IN1711EI2W9GA0101010	Sezioni di scavo Tav, 10
IN1711EI2W9GA0101011	Sezioni di scavo Tav, 11
IN1711EI2W9GA0101012	Sezioni di scavo Tav, 12
IN1711EI2PZGA0101001	Monitoraggio GA01A e GA01B - Planimetria e sezioni tipo
IN1711EI2PZGA0101002	Monitoraggio GA01E - Planimetria e sezioni tipo
IN1711EI2WAGA0101001	Sezioni tipo di scavo e riporto provvisorio - Dettagli esecutivi
IN1711EI24TGA0100015A	Tabella materiali

2.2.2 Elaborati opere di sostegno scavi GA01-A

IN1711EI2CLGA01A4001	Opere sostegno degli scavi e tampone di fondo -
	Relazione di calcolo
IN1711EI2CLGA01A4002	Relazione di calcolo soletta di copertura
IN1711EI2CLGA01A4003	Relazione di calcolo strutture interne
IN1711EI2PAGA01A0001	Diaframmi e tampone di fondo - Planimetria di
	tracciamento e profili longitudinali Tav. 1
IN1711EI2PAGA01A0002	Diaframmi e tampone di fondo - Planimetria di
IN1711EI2PAGA01A0003	tracciamento e profili longitudinali Tav. 2 Diaframmi e tampone di fondo - Planimetria di
IIVI7 I I E IZI AGAO IAOOOO	tracciamento e profili longitudinali Tav. 3
IN1711EI2PAGA01A0004	Diaframmi e tampone di fondo - Planimetria di
	tracciamento e profili longitudinali Tav. 4
IN1711EI2PAGA01A0005	Diaframmi e tampone di fondo - Planimetria di
IN 1474 4 FIOD A O A O A A O O O C	tracciamento e profili longitudinali Tav. 5
IN1711EI2PAGA01A0006	Diaframmi e tampone di fondo - Planimetria di tracciamento e profili longitudinali Tav. 6
IN1711EI2PAGA01A1001	Cordoli guida - Pianta scavi e planimetria di tracciamento
114777721217437401741001	Tav. 1
IN1711EI2PAGA01A1002	Cordoli guida - Pianta scavi e planimetria di tracciamento
	Tav. 2
IN1711EI2PAGA01A1003	Cordoli guida - Pianta scavi e planimetria di tracciamento Tav. 3
IN1711EI2WAGA01A0001	Fasi esecutive da pk 4+942,53 a pk 5+214,00
IN1711EI2WAGA01A0002	Fasi esecutive da pk 5+214,00 a pk 5+336,53
IN1711EI2WAGA01A4001	Diaframmi e tampone di fondo - Sezioni trasversali
	•
IN1711EI2PAGA01A1004	Opera provvisionale "A" - Planimetria, prospetto e sezioni
IN1711EI2BZGA01A1001	Opera provvisionale "A" - Armatura e dettagli
IN1711EI2BZGA01A4001	Diaframma primario doppio tipo TA - Armatura
IN1711EI2BZGA01A4002	Diaframma secondario doppio tipo TA - Armatura
IN1711EI2BZGA01A4003	Diaframma primario singolo tipo TA - Armatura
IN1711EI2BZGA01A4004	Diaframma secondario singolo tipo TA - Armatura

GENERAL CONTRACTOR		ALTA S	ORVE	GLIANZA		
Consorzio Iric/tV Due				FERR STATO ITALIANE		
CAO1 A OBERE SOSTECNO DECLIS	SCAVI E TAMBONE DI FONDO	Progetto	Lotto	Codifica Documento	Rev.	Foglio
GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO		IN17	11	EI2 CL GA 01 A4 0014	Α	9 di 205

IN1711EI2BZGA01A4005	Diaframma primario doppio tipo TS4 - Armatura
IN1711EI2BZGA01A4006	Diaframma secondario doppio tipo TS4 - Armatura
IN1711EI2BZGA01A4007	Diaframma primario singolo tipo TS4 - Armatura
IN1711EI2BZGA01A4008	Diaframma secondario singolo tipo TS4 - Armatura
IN1711EI2BZGA01A4009	Diaframma primario doppio tipo TS3 - Armatura
IN1711EI2BZGA01A4010	Diaframma secondario doppio tipo TS3 - Armatura
IN1711EI2BZGA01A4011	Diaframma primario singolo tipo TS3 - Armatura
IN1711EI2BZGA01A4012	Diaframma secondario singolo tipo TS3 - Armatura
IN1711EI2BZGA01A4013	Diaframma primario doppio tipo TS2 - Armatura
IN1711EI2BZGA01A4014	Diaframma secondario doppio tipo TS2 - Armatura
IN1711EI2BZGA01A4015	Diaframma primario singolo tipo TS2 - Armatura
IN1711EI2BZGA01A4016	Diaframma secondario singolo tipo TS2 - Armatura
IN1711EI2BZGA01A4017	Diaframma primario singolo nicchia QdT tipo TA/N1 - Armatura
IN1711EI2BZGA01A4018	Diaframma primario singolo nicchia QdT tipo TA/N2 - Armatura
IN1711EI2BZGA01A4019	Diaframma primario singolo nicchia QdT tipo TS4/N1 - Armatura
IN1711EI2BZGA01A4020	Diaframma primario singolo nicchia QdT tipo TS4/N2 - Armatura
IN1711EI2BZGA01A4021	Diaframma primario singolo nicchia QdT tipo TS2/N1 - Armatura
IN1711EI2BZGA01A4022	Diaframma primario singolo nicchia QdT tipo TS2/N2 - Armatura

2.3 Software di calcolo

Per eseguire le analisi numeriche riportate nella presente relazione sono stati impiegati i seguenti software:

- Software di calcolo agli elementi finiti (FEM) per il calcolo delle paratie e della stabilità globale: PARATIE PLUS 2020 (Versione 20.1.0) 12 della Harpaceas.
- Verifica delle Sezioni in c.a.: RC-Sec della Geostru Software di Reggio Calabria (Versione 2021.11)
- Software di calcolo alle differenze finite per il calcolo geotecnico: FLAC (Versione 8.0) della ITASCA

GENERAL CONTRACTOR Consorzio IricAV Due		ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
		Progetto	Lotto	Codifica Documento	Rev.	Foglio
GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO		IN17	11	El2 CL GA 01 A4 0014	A	10 di 205

3 MATERIALI

Si riportano di seguito le principali caratteristiche dei diversi materiali impiegati nell' opera in progetto, con l'indicazione dei valori di resistenza e deformabilità adottati nelle verifiche, nel rispetto delle indicazioni del DM 14/01/2008 e di quanto prescritto dal Capitolato Generale d'Appalto delle Opere Civili di RFI.

Diaframmi/Pali

-	Classe di esposizione ambientale (UNI EN 206)	XC2
-	Rapporto A/C max	0.60
-	Classe di resistenza	C25/30
-	Classe di consistenza	S4/S5
-	Copriferro	60 mm
-	Diametro massimo aggregati	32 mm

Solette di fondazione

-	Classe di esposizione ambientale (UNI EN 206)	XC2
-	Rapporto A/C max	0.60
-	Classe di resistenza	C30/37
-	Classe di consistenza	S4
-	Copriferro	40 mm
-	Diametro massimo aggregati	25 mm

Pareti di rifodera

-	Classe di esposizione ambientale (UNI EN 206)	XC3
-	Rapporto A/C max	0.55
-	Classe di resistenza	C30/37
-	Classe di consistenza	S4/S5
-	Copriferro	40 mm
-	Diametro massimo aggregati	25 mm

Trave di coronamento e soletta superiore

-	Classe di esposizione ambientale (UNI EN 206)	XC3
-	Rapporto A/C max	0.55
-	Classe di resistenza	C30/37
-	Classe di consistenza	S4/S5
-	Copriferro	40 mm
-	Diametro massimo aggregati	25 mm

Travi prefabbricate

-	Classe di esposizione ambientale (UNI EN 206)	XC3
-	Rapporto A/C max	0.45
-	Classe di resistenza	C35/45
-	Classe di consistenza	S5
-	Copriferro	40 mm
-	Diametro massimo aggregati	20 mm

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE
GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO	Progetto Lotto Codifica Documento Rev. Foglio

Acciaio

Armature per c.a. B450C
 Per carpenteria metallica opere provvisionali S355J0
 Per palancole provvisionali S355GP

4 CARATTERIZZAZIONE GEOTECNICA E IDROGEOLOGICA

4.1 Inquadramento generale

Per un quadro completo delle condizioni geotecniche ed idrogeologiche dell'opera si rimanda alla relazione IN1711EI2RHGA0100001A 'Criteri di dimensionamento opere di sostegno degli scavi e tampone di fondo' ed alla relazione IN1711EI2RBGA0100001A 'GA01 GALLERIA ARTIFICIALE S. MARTINO - Relazione Geotecnica'.

4.2 Stratigrafia di riferimento per la tratta in esame

Come descritto nei documenti sopra citati, per l'intero sviluppo della galleria artificiale sono state individuate diverse stratigrafie di riferimento per le verifiche strutturali e geotecniche associate a differenti schemi di scavo.

Per il tratto di galleria GA01-A estesa tra la progressiva pk 4+932.53 e pk 5+336,53 è stato possibile individuare 4 stratigrafie di riferimento riportate in Figura 1 e Tabella 1. I criteri utilizzati per la scelta della stratigrafia sono stati i seguenti:

- battente idrico tra il livello di falda di costruzione e quota di fondo scavo;
- variabilità nella successione delle unità geotecniche;
- scelta della sezione dove si ha il massimo ricoprimento tra copertura e piano campagna.

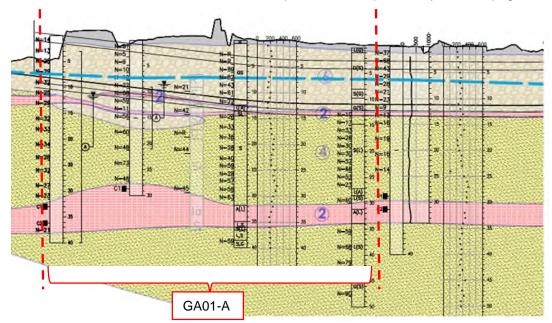


Figura 1 GA01-A estratto del profilo geotecnico

GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Consorzio IricAV Due

GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO

Progetto Lotto Codifica Documento Rev. Foglio
IN17 11 EI2 CL GA 01 A4 0014 A 13 di 205

Tabella 1 GA01-A Stratigrafie di progetto

QUOTA P	IANO CAMPAG	NA DI RIFERIMENTO:	47.66 m slm				
QUO	OTA FALDA DI	COSTRUZIONE:	40.43m slm, soggiacenza ≈7m dal p.c.				
Schema di calcolo			Quota superiore unità (m slm)	Spessore unità (m)	Quota inferiore unità (m slm)		
	Terreno 1	Riporti	47.66	2	45.66		
Terreno 6 Ghiaie con sabbie		45.66	11.5	34.16			
TS-2	Terreno 2 Limi argillosi superficiali		34.16	2	32.17		
(pk 5+325)	Terreno 4	Sabbie	32.16	16.5	15.66		
	Terreno 2	Limi argillosi profondi	15.66	15.66 5.5			
	Terreno 4	Sabbie	10.16	-	-		

QUOTA P	IANO CAMPAG	NA DI RIFERIMENTO:	47.93 m slm				
QUO	OTA FALDA DI	COSTRUZIONE:	40.43m slm, soggiacenza ≈7.5m dal p.c.				
Schema di calcolo			Quota superiore unità (m slm)	Spessore unità (m)	Quota inferiore unità (m slm)		
TS-3	Terreno 1	Riporti	47.93	1.50	46.43		
(pk 5+250)	O) Terreno 6 Ghiaie con sabbie		46.43	1.50	44.93		
Terreno 2 Limi argillosi superficiali Terreno 6 Ghiaie con sabbie		Limi argillosi superficiali	44.93	1.00	43.93		
		43.93	1.80	42.13			
	Terreno 2 Limi argillosi superficiali Terreno 6 Ghiaie con sabbie Terreno 4 Sabbie		42.13	1.00	41.13		
			41.13	1.50	39.63		
			39.63	12.00	27.63		
	Terreno 2	Limi argillosi profondi	27.63	8.00	19.63		
	Terreno 4	Sabbie	19.63	-	-		

QUOTA P	IANO CAMPAG	NA DI RIFERIMENTO:	49 m slm				
QUOTA FALDA DI COSTRUZIONE:			40.8m slm, soggiacenza ≈8.2m dal p.c.				
Schema di calcolo	Unità Descrizione		Quota superiore unità (m slm)	Spessore unità (m)	Quota inferiore unità (m slm)		
TS-4	Terreno 1	Riporti	49	2.5	46.5		
(pk 5+050	0 Terreno 6 Ghiaie con sabbie		46.5	10.8	35.7		
	Terreno 2	Limi argillosi superficiali	35.7	1.5	34.2		
	Terreno 6	Ghiaie con sabbie	34.2	1.5	32.7		
	Terreno 4	Sabbie	32.7	13.5	19.2		
	Terreno 2	Limi argillosi profondi	19.2	9.5	9.7		
	Terreno 4	Sabbie	9.7	-	-		

QUOTA P	IANO CAMPAG	NA DI RIFERIMENTO:	48.88 m slm				
QUOTA FALDA DI COSTRUZIONE:			41.22m slm, soggiacenza ≈7.6m dal p.c.				
Schema di calcolo	Unità Descrizione		Quota superiore unità (m slm)	Spessore unità (m)	Quota inferiore unità (m slm)		
TA	Terreno 1	Riporti	48.88	2	46.88		
(Pk 5+025)	(Pk 5+025) Terreno 6 Ghiaie con sabbie Terreno 2 Limi argillosi superficiali Terreno 6 Ghiaie con sabbie Terreno 4 Sabbie		46.88	11	35.88		
			35.88	1.5	34.38		
			34.38	2	32.38		
			32.38	14	18.38		
	Terreno 2	Limi argillosi profondi	18.38	8.5	9.88		
	Terreno 4	Sabbie	9.88	-	-		

4.3 Livelli di falda

I livelli di falda utilizzati nella progettazione delle opere sono stati definiti coerentemente con le misurazioni piezometriche effettuate tra aprile 2014 e febbraio 2018 e con quanto previsto nel PD (cfr. Relazione Idrogeologica progetto definitivo IN0D00DI2RHGE0002003A); dunque, i livelli della falda di riferimento, per il dimensionamento delle opere in fase transitoria, valgono:

- 1. quota della falda di riferimento in fase di costruzione: pari alla falda media "misurata" incrementata di 0.5 m;
- 2. quota della falda a breve termine: pari alla falda media "misurata" incrementata di 3.0 m. Tale livello è stato utilizzato per il dimensionamento del tampone in jet grouting e delle opere di sostegno a breve termine, cioè a scavi aperti in assenza di jet grouting;
- 3. quota della falda a lungo termine: pari alla falda media "misurata" incrementata di 4.5 m. Tale livello è stato utilizzato per il dimensionamento delle opere di sostegno a lungo termine.

In sede di PD, la progettazione della galleria artificiale è stata effettuata assumendo la falda di costruzione come quota di riferimento per il dimensionando opere di scavo e tampone di fondo.

Nel corso della presente fase di progettazione esecutiva, è stato ritenuto più vantaggioso modificare tale criterio progettuale dimensionando opere di sostegno a scavi aperti (in assenza delle strutture interne) e tampone di fondo sulla falda di breve termine. Questo comporta un certo incremento delle incidenze di armatura dei diaframmi dovuto al fatto che essi ora sono dimensionati per sopportare in fase di scavo, in assenza del solettone di fondo, una escursione della falda fino al livello di breve termine.

Lungo l'estensione della GA01-A la falda riferimento in fase di breve termine utilizzata per opere di scavo e tampone di fondo varia tra 43.7÷42.9m s.l.m circa. La profondità di tale falda da piano campagna si attesta quindi intorno ai 3.5-5.4.5m nel centrale e terminale GA01-B riducendosi progressivamente fino ad un valore pressoché nullo nel tratto di ingresso dell'opera.

I livelli di falda di breve termine nelle tratte in esame determinano un battente variabile tra 6 e 10m sul fondo scavo.

4.4 Parametri geotecnici per la tratta in esame

Parametri di riferimento per le stratigrafie individuate sono riassunti nella successiva tabella

Tabella 2: Parametri geotecnici caratteristici

Unità	Descrizione	γ	c'	φ'	k	Cu	G ₀	Evc	Eur
Descrizione	[kN/m ³]	[kPa]	[°]	[m/sec]	[kPa]	[MPa]	[MPa]	[MPa]	
1	Riporto	18-19	1	28 - 30	-	-		20	60
6	Ghiaie con sabbia	19-20	-	40 - 42	10 ⁻³ /10 ⁻⁴	-	120-180	125	200
4	Sabbie	19-20	-	36 - 40	10 ⁻⁴ /10 ⁻⁵	-	150-200	150	240
2	Limi argillosi*	19-20	5 -10	26 - 28	10 ⁻⁶ /10 ⁻⁷	100 - 150	80	20	32

^{*} i parametri si riferiscono allo strato limoso argilloso più superficiale di natura discontinua e riscontrabile a tratti al contatto tra sabbie e ghiaie

γ: Peso di volume

c': coesione efficace

φ: Angolo di resistenza al taglio

k: Permeabilità

Cu: Coesione non drenata G₀: Modulo di taglio iniziale

Evc: Modulo di Young di primo carico Eur: Modulo di Young di scarico/ricarico

4.5 Parametri geotecnici del terreno trattato

I parametri di riferimento per il terreno trattato con il tampone di fondo sono i seguenti:

Unità stratigrafiche 4 - 6 (materiali sabbiosi - ghiaiosi cfr.§4)

- modulo Ec50 del terreno consolidato Ec50 ≥ 2500 MPa

- coefficiente di Poisson v = 0.3.

- permeabilità $k < 5 \times 10-7 \text{ m/s (min.1 x } 10-6 \text{ m/s)}$

5 DESCRIZIONE DELLE OPERE

5.1 Aspetti generali

La galleria artificiale S. Martino è lunga 1900m ed è suddivisa in 5 differenti WBS riassunte nella successiva tabella.

Tabella	2	WES	CAC	۱1
Tabella	.3	WHA	(¬AI) 1

WBS	Progressiva inizio (m)	Progressiva fine (m)	Lunghezza (m)
GA01-A	4+942.53	5+336.53	393.91
GA01-B	5+336.53	5+856.53	549.50
GA01-C	5+856.53	6+184.03	297.43
GA01-D	6+184.03	6+241.33	57.36
GA01-E	6+241.33	6+842.53	602.24

Per tutte le WBS il sistema di opere di sostegno necessarie all'esecuzione degli scavi per la realizzazione della galleria artificiale (la cui disposizione planimetrica generale è rappresentata in Figura 2) è costituito principalmente da diaframmi in c.a. di spessore 1.0m. Lo scavo dei diaframmi è realizzato in presenza di fango stabilizzante con benna mordente e con una sequenza primari/secondari tale da minimizzare il numero dei giunti, così come rappresentato negli elaborati grafici di progetto. Considerato il battente della falda, per tutti i giunti è previsto l'impiego di palancole di spalla e giunto water stop tra un pannello e l'altro.

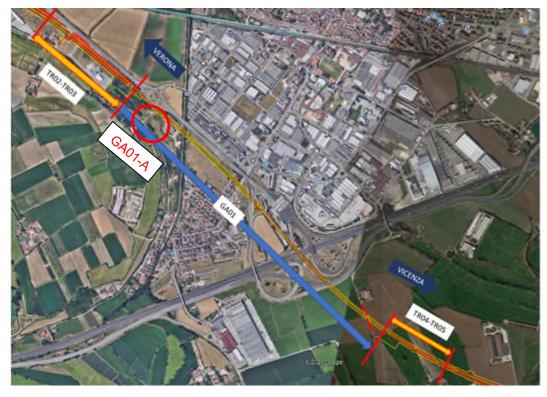


Figura 2 Planimetria di inquadramento galleria artificiale GA01 e trincee

Come brevemente accennato nel §1, la galleria artificiale è costituita da una struttura scatolare di luce interna tra diaframmi di 12m avente un ricoprimento variabile tra 1.0 e 4.0m. La necessità di predisporre impianti tecnologici e di sicurezza in apposite nicchie QdT (quadro di tratta) lungo lo sviluppo della galleria comporta un incremento della luce interna fino a 3.5m distanziando quindi i diaframmi fino a 15.50m. La copertura appoggia sui diaframmi in c.a. ed è costituita da travi prefabbricate di altezza 1.3m e soletta di completamento di spessore 0.25m realizzata in opera con armatura lenta. In corrispondenza delle nicchie tecnologiche, considerata la maggiore luce, l'altezza delle travi è pari a 1.50 m. La connessione tra diaframma e solaio di copertura è realizzata con una trave di coronamento di larghezza 2.05m ed altezza complessiva di 1m in cui sono posizionati i ferri di attesa sia per il collegamento con la copertura, sia per il collegamento con le contropareti. Le contropareti interne hanno uno spessore nominale di 0.8m, altezza 8.40m e spiccano dal solettone di fondo avente spessore di 1.0m.

Per il dimensionamento delle contropareti si è tenuto conto delle tolleranze esecutive dei diaframmi stimate pari a 10cm. Tale tolleranza è coerente con i requisiti del 'Capitolato Generale Tecnico di Appalto Parte II – Sezione 8 PARATIE DI PALI, DIAFRAMMI E PALANCOLATE' di RFI, Sezione 8.9.3. Per comodità, i requisiti RFI sono riproposti di seguito (Figura 3).

Tabella 8.9.1: Tolleranze

Tabena 6.5.1. Toneranze							
OGGETTO DEL CONTROLLO		DESCRIZIONE PARAMETRO DI CONTROLLO	UNITA' DI MISURA	PRECISIONE	VALORE NOMINALE	TOLLI	ERANZA
	1.1	Posizionamento planimetrico cordoli guida	mm	5	di progetto	20	
	1.2	Posizionamento altimetrico cordoli guida	mm	2	di progetto	20	
	1.3	Profondità "L" diaframma	mm	2	di progetto	+L/100	
1 - DIAFRAMMI	1.4	Verticalità diaframma (generico)	%	0.4	di progetto	0.5	
	1.5	Verticalità diaframma (realizzato con idrofresa)	%	0.4	di progetto	0.4	
	1.6	Copriferro armatura metallica	mm	1	60	-10	
	1.7	Passo di posizionamento distanziatori	mm	10	30	+100	
2 - PALANCOLATI	2.1	Posizionamento planimetrico palancolato	mm	5	di progetto	50	
	2.2	Profondità d'infissione palancolato	mm	5	di progetto	50	

Figura 3 Tolleranze costruttive RFI (Estratto Sez. 8.9.3)

La Figura 4 e Figura 5 mostrano una sezione traversale esplicativa dell'opera nella quale si possono apprezzare i livelli di falda di costruzione, di breve e lungo termine così come si possono osservare i diversi trattamenti jet-grouting previsti per la stabilizzazione del fondo scavo della galleria. Maggiori dettagli sulla funzionalità e criteri di dimensionamento dell'intervento jet grouting sono forniti nella relazione IN1711EI2RHGA0100001A.

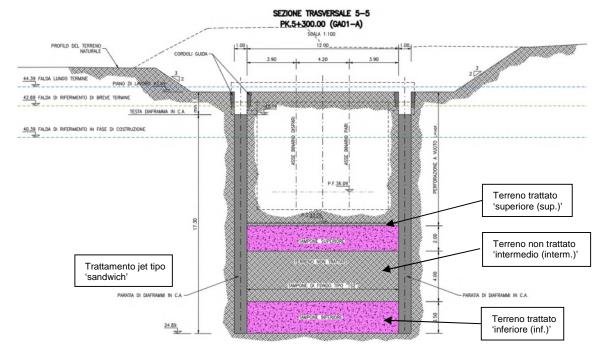


Figura 4 Sezione tipologica con trattamento jet tipo 'sandwich' con doppio strato

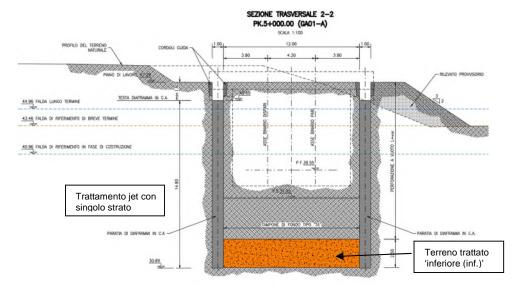


Figura 5 Sezione tipologica con trattamento jet compensato con singolo strato al piede dell'opera di sostegno Le caratteristiche dei singoli schemi di sostegno proposti per la GA01-A sono descritte nel §5.3 di seguito.

5.2 Geometria delle opere di sostegno

Nel seguito sono descritte sinteticamente le caratteristiche delle opere di sostegno sottoposte a verifica nei successivi paragrafi:

■ <u>Diaframmi Sezione di calcolo TS-2</u>

Con la sezione di calcolo TS-2 si identificano i seguenti diaframmi:

- Lunghezza diaframma: 17.3m da quota testa diaframma. Si identifica come 'quota testa diaframma' la quota di intradosso della trave di coronamento di altezza 1.0m sulla quale appoggia la soletta di copertura (vedi particolare esemplificativo in Figura 6).
- Lunghezza di infissione paratia: 8.5m
- Intervento di consolidamento: intervento jet-grouting 'sandwich' con doppio strato di geometria seguente:

Spessore terreno trattato superiore: 2.0m
 Spessore terreno non trattato intermedio: 4.0m
 Spessore terreno trattato inferiore: 2.5m

- Altezza di scavo: 8.40 m da testa paratia.

Diaframmi Sezione di calcolo TS3

Con la sezione di calcolo *TS-3* si identificano i seguenti diaframmi:

- Lunghezza diaframma: 16.8m da quota testa diaframma

- Lunghezza di infissione paratia: 8.0m

- Intervento di consolidamento: intervento jet-grouting 'sandwich' con doppio strato di geometria seguente:

Spessore terreno trattato superiore: 2.0m
 Spessore terreno non trattato intermedio: 3.5m
 Spessore terreno trattato inferiore: 2.5m

Altezza di scavo: 8.40 m da testa paratia.

Diaframmi Sezione di calcolo TS4

Con la sezione di calcolo TS-4 si identificano i seguenti diaframmi:

- Lunghezza diaframma: 15.8m da quota testa diaframma

Lunghezza di infissione paratia: 7.0m

- Intervento di consolidamento: intervento jet-grouting 'sandwich' con doppio strato di geometria seguente:

Spessore terreno trattato superiore: 1.5m
 Spessore terreno non trattato intermedio: 3.0m
 Spessore terreno trattato inferiore: 2.5m

- Altezza di scavo: 8.40 m da testa paratia.

Diaframmi Sezione di calcolo TA

Con la sezione di calcolo TA si identificano i seguenti diaframmi:

GENERAL CONTRACTOR Consorzio IricAV Due			ITAL	SLIANZA FERR STATO ITALIANE		
GA01-A OPERE SOSTEGNO DEGLI S	CAVLE TAMPONE DI FONDO	Progetto	Lotto	Codifica Documento	Rev.	Foglio
GAUTA OF EINE GOOTEGING BEGEFOR	CAVIE TAINI ONE DIT ONDO	IN17	11	EI2 CL GA 01 A4 0014	Α	20 di 205

- Lunghezza diaframma: 14.8m da quota testa diaframma

Lunghezza di infissione paratia: 6.0m

- Intervento di consolidamento: intervento jet-grouting 'sandwich' con singolo strato di geometria seguente:

Spessore terreno non trattato superiore: 3.0m
 Spessore terreno trattato inferiore: 2.5m

- Altezza di scavo: 8.40 m da testa paratia.

SEZIONE TRASVERSALE NODO DI COPERTURA

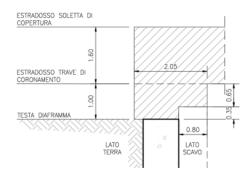


Figura 6 Sezione trasversale nodo di copertura

5.3 Schemi di calcolo

Il metodo di realizzazione previsto per il tratto GA01-A della galleria San Martino Buon Albergo è di tipo Top-Down nel quale lo scavo in sotterraneo della galleria avverrà dopo la realizzazione del solettone di copertura.

5.3.1 Criteri di identificazione delle sezioni di calcolo

Le sezioni di calcolo rappresentative del comportamento geotecnico e strutturale dal tratto di galleria in esame sono state selezionate sulla base dei seguenti criteri:

- individuazione del battente idraulico della galleria inteso come differenza di quota tra il livello di falda di costruzione ed il fondo scavo;
- dimensionamento del trattamento jet grouting necessario per la stabilità del fondo scavo;
- suddivisione del tratto di galleria in esame in tratti omogenei di trattamento jet;
- studio e risoluzione delle interferenze stradali presenti lungo il tracciato della galleria
 - per il tratto GA01-A in esame sono state riscontrate le seguenti interferenze:
 - Svincolo Autostradale NV51 alla progressiva pk 5+050 circa per il quale si è previsto un'opera provvisionale apposita denominata con 'Opera Provvisionale A'.
 - torrente Rossella WBS IN12 alla progressiva 5+286 circa.
 - La risoluzione di tale interferenza non ha comportato la necessità di identificare ulteriori schemi di calcolo o modifica dei criteri di verifica esposti al §6.
- analisi della variabilità del ricoprimento dell'opera ed individuazione della sezione di massimo ricoprimento.

5.3.2 Caratteristiche e quote di riferimento delle sezioni di calcolo

Gli schemi rappresentativi per il dimensionamento del tratto di galleria GA01-A sono riassunti nelle tabelle seguenti (Tabella 4 e Tabella 5).

In particolare, la Tabella 4 individua i tratti omogeni della galleria per i quali si prevede un intervento jet tipo 'sandwich' con doppio strato (acronimo 'TS') o jet compensato con singolo strato (acronimo 'TA'). Per ciascun tratto si è sviluppato un opportuno modello di calcolo descritto nel §5.3.3.

Tabella 4 Caratteristiche delle sezioni di calcolo

Sezioni di Battente riferimento idraulico (m)		Tipologia di intervento Dettagli intervento		Denominazione Modello
Progressiva Pk 5+325	≈10	Tampone 'sandwich' con doppio strato	Spessore trattato sup: 2m Spessore non trattato interm.: 4.0m Spessore trattato inf: 2.5m	TS2
Progressiva Pk 5+250	≈9	Tampone 'sandwich' con doppio strato	Spessore trattato sup: 2m Spessore non trattato interm.: 3.5m Spessore trattato inf: 2.5m	TS3
Progressiva Pk 5+150	≈8	Tampone 'sandwich' con doppio strato	Spessore trattato sup: 1.5m Spessore non trattato interm.: 3m Spessore trattato inf: 2.5m	TS4
Progressiva Pk 5+025	≈7	Tampone 'sandwich' con singolo strato	Spessore non trattato sup.: 3.5m Spessore trattato inf: 2.5m	TA

GENERAL CONTRACTOR

GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO

Progetto
IN17

Lotto
Codifica Documento
Rev. Foglio
1817

11

E12 CL GA 01 A4 0014

A 22 di 205

Tabella 5 Quote di riferimento delle sezioni di calcolo

									Dati tampo	ne di fondo						
	Quota piano campagna	Spessore ricoprimento copertura	Quota testa copertura	Quota testa paratia	Quota testa solaio di fondo	Quota fondo scavo	Quota falda costruzione	Battente idraulico su falda di costruzione	Spessore terreno trattato sup.	Quota base terreno trattato sup.	Spessore terreno trattato inter.	Quota base terreno trattato inf.	Spessore terreno trattato inf.	Quota piede paratia	Quota falda breve termine	Quota falda lungo termine
	mslm	m	mslm	mslm	mslm	m	mslm	m	m	m	m	m	m	m	m	m
Sez. TS2 (Pk 5+325)	47.66	3.3	44.40	41.80	34.40	33.40	40.43	7.0	2.0	31.40	4	27.40	2.5	24.90	42.93	44.43
Sez. TS3 (Pk 5+250)	47.93	2.7	45.26	42.66	35.26	34.26	40.43	6.2	2.0	32.26	3.5	28.76	2.5	26.26	42.93	44.43
Sez. TS4 (Pk 5+150)	49	2.6	46.41	43.81	36.41	35.41	40.80	5.4	1.5	33.91	3	30.91	2.5	28.41	43.30	44.80
Sez. TA (Pk 5+025)	48.88	1.0	47.86	45.26	37.86	36.86	41.22	4.4	0	36.86	3.5	33.36	2.5	30.86	43.72	45.22

5.3.3 Fasi costruttive considerate

Di seguito sono descritte brevemente la sequenza delle fasi salienti degli schemi di calcolo 'TS-2', 'TS-3', 'TS-4', 'TA' sviluppati per il progetto della GA01-A. Tale successione è identica per i vari schemi.

Tabella 6 Sequenza fasi costruttive assunte nella progettazione

		abella 6 Sequenza fasi costruttive assunte nella progettazione
No. Fase	Descrizione	
1	Condizioni iniziali	Modellazione della condizione esistente in termini di quota piano campagna, stratigrafia, regime e quota di falda, eventuali carichi preesistenti (La falda considerata da Fase 1 a Fase 10 è la falda di costruzione).
2	Scavo fino a piano di lavoro	Applicazione accidentale di cantiere di 20kPa a piano campagna e scavo con pendenza 2V:3H da piano campagna a quota piano lavoro (lungo la GA01-A il piano di lavoro varia tra 47.81 e 43.52m slm c.a. mantenendosi sempre al di sotto della falda di breve termine).
3	Esecuzione dei diaframmi	Realizzazione delle corree di guida. Scavo dei diaframmi, posa delle gabbie di armatura e getto del calcestruzzo.
4	Realizzazione jet-grouting'	Realizzazione intervento jet tipo 'sandwich' con doppio strato o singolo al di sotto della quota di fondo scavo della galleria artificiale (Figura 7)
5	Scavo fino a quota testa paratia	Approfondimento pre-scavo da quota piano di lavoro a quota testa paratia. Lungo la GA01-A la testa paratia varia tra 46.21 e 41.92m slm c.a.
6	Realizzazione trave di coronamento	Realizzazione trave di coronamento di altezza 1.0m e larghezza 2.05m
7	Costruzione solettone di copertura	Posa in opera della trave di prefabbricata. Predisposizione di tubi getto per la realizzazione futura della controparete interna. Getto di completamento della soletta di copertura di completamento e del nodo di connessione con i diaframmi.
8	Ripristino quota piano campagna	Ricoprimento al di sopra della copertura fino a quota piano campagna iniziale.
9	Carico accidentale	Applicazione accidentale di 20kPa a piano campagna e sul ricoprimento posato sulla copertura.
10	Scavo quota fondo scavo	Scavo fino a quota imposta soletta
11	Risalita falda a quota di breve termine	Innalzamento transitorio del livello di falda da quota falda di costruzione a quota breve termine. Tale innalzamento può avvenire causa evento meteorico improvviso.
12	Discesa falda a quota di breve costruzione	Esaurimento degli effetti dell'evento meteorico improvviso con conseguente abbassamento del livello di falda da quota di breve termine a quota di costruzione, livello che rappresenta le condizioni statiche quasi-permanenti in condizioni iniziali ad opere ultimate.
13	Costruzione solaio di fondo	Posa in opera dell'impermeabilizzazione e del massetto di fondazione. Posa delle gabbie di armatura del solaio di fondo ed attese delle contropareti inclusa. Getto del solaio di fondo.
14	Costruzione contropareti	Posa in opera dell'impermeabilizzazione e getto della contropareti interne.
15	Condizioni di lungo termine	Simulazione del degrado completo dell'intervento di jet-grouting realizzato precedentemente.
16	Condizioni di lungo termine	Simulazione delle condizioni di lungo termine. Innalzamento del livello di falda da quota falda di costruzione a quota lungo termine. Riduzione dei moduli elastici delle strutture da istantanei a quelli di lungo termine e raggiungimento condizioni quasi permanenti di lungo termine
17	Condizioni sismiche	Attivazione del carico sismico definito con il metodo pseudostatico.

Le condizioni di lungo termine della struttura sono state simulate assumendo che la falda risalga dalla quota di costruzione a quella di lungo termine. Tale condizione è stata suddivisa in due step di calcolo distinti per cogliere l'effetto della perdita dell'azione stabilizzante del tampone jet e simulare un decadimento dei parametri

GENERAL CONTRACTOR	ALTA	SORVE	GLIANZA		
Consorzio IricAV Due			LFERR LO STATO ITALIANI		
GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMI	PONE DI FONDO Progetto	Lotto	Codifica Documento	Rev.	Foglio
GAUTA OF EINE SOSTEGNO BEGEFSCAVIE TAMI	IN17	11	EI2 CL GA 01 A4 0014	Α	24 di 205

di resistenza del jet grouting a lungo termine. In condizioni di massima spinta della quota di falda, infine, è applicata l'azione sismica sui diaframmi. Si rimanda al §6.1 per i criteri assunti per l'interazione tra diaframmi e strutture interne nella condizione di lungo termine e applicazione dell'azione sismica.

Si rimanda al §7 e 8 per maggiori dettagli sulla modellazione delle singole sezioni di calcolo considerate ed i risultati delle analisi effettuate.

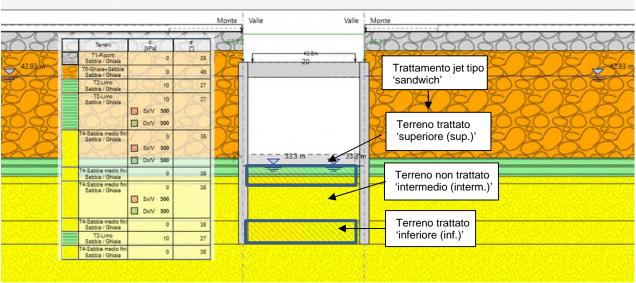


Figura 7 Sezione 'TS2' - Schema esemplificativo di una costruttiva definita nel modello di calcolo

6 CRITERI DI VERIFICA

6.1 Criteri di dimensionamento e modellazione delle opere di sostegno

6.1.1 Riferimenti normativi

Le verifiche sono condotte, in osservanza al D.M. del 14.01.2008 "Norme tecniche per le costruzioni", attraverso il metodo semiprobabilistico agli Stati Limite.

Il calcolo delle paratie viene eseguito in accordo con il § 6.5.3.1.2 delle NTC, per quanto riguarda la verifica nei confronti degli Stati Limite Ultimi e degli Stati Limite di Esercizio in condizioni statiche.

Al fine di rappresentare il comportamento delle paratie durante le fasi di lavoro (scavi ed inserimento degli elementi di contrasto) è opportuno l'impiego di un metodo di calcolo iterativo atto a simulare l'interazione, in fase elasto-plastica, tra terreno e paratia. Per questo scopo si impiega il programma di calcolo "Paratie Ceas v. 7.0" che consente di studiare elementi strutturali tipo "beam" disposti su un letto di molle di tipo elasto-plastico in modo da tenere conto dell'interazione con il terreno e con gli eventuali puntoni intermedi.

6.2 Modellazione delle sezioni e sistemi di vincolo

La descrizione completa dei criteri di modellazione utilizzati per il calcolo delle opere di sostegno dell'intera galleria artificiale San Martino Buon Albergo è fornita nella relazione IN1711EI2RHGA0100001A dei criteri di dimensionamento delle opere di sostegno della GA01.

Per le ragioni indicate nella relazione sopra citata, i diaframmi previsti per il tratto GA01-A della galleria sono stati progettati assumendo due diversi schemi di vincolo del nodo diaframma-solettone di copertura:

- Vincolo di appoggio: la paratia è stata dimensionata lato scavo assumendo che ci sia un vincolo tipo 'cerniera' a quota asse copertura.
- Vincolo di incastro: Le sollecitazioni flettenti e taglianti dedotte da tale schema alla quota di testa paratia sono state utilizzate per dimensionare le armature lato terra della paratia. Sulla copertura sono applicati tutti i massimi carichi permanenti e variabili, al netto del peso proprio, le cui sollecitazioni sono affidate alle travi di copertura nella fase iniziale di getto in auto-portanza.

Come indicato nella relazione sui criteri di dimensionamento, per quantificare l'interazione tra diaframmi e struttura interna a lungo termine, si assume che la spinta delle terre possa essere ripartita in ragione del rapporto r tra le rigidezze degli elementi strutturali posti a contatto:

$$r = \frac{E_p I_p}{E_p I_p + E_c I_c}$$

dove:

E_p: modulo elastico della paratia;

l_p: momento inerzia della paratia;

GENERAL CONTRACTOR		ALTA S	ORVE	BLIANZA			
Consorzio IricAV Due				LFERR O STATO ITALIANI			
GA01-A OPERE SOSTEGNO DEGLIS	SCAVLE TAMPONE DI FONDO	Progetto	Lotto	Codifica Documento	Rev.	Foglio	
CAUTA OF ERE GOOTEONO DEGLE	DOAVIE TAME ONE DIT ONDO	IN17	11	EI2 CL GA 01 A4 0014	Α	26 di 205	l

Ec: modulo elastico della controparete;

l_c: momento di inerzia della controparete;

Tale criterio si applica a tutte le fasi di calcolo di lungo termine identificate come tali nella Tabella 6 di §5.3.3. Nel caso specifico in esame, il rapporto "r" sopra definito è stato determinato, a favore di sicurezza, considerando le diverse classi di calcestruzzo dei due elementi così come lo spessore minimo della controparete pari a 70 cm. Nella successiva tabella (Tabella 7) sono indicate le percentuali di ripartizione applicate alle sollecitazioni flettenti e taglianti tra diaframmi e contropareti nelle condizioni di lungo termine.

Tabella 7 Calcolo ripartizione tra controparete e diaframma

METODOLOGIA RIPARTIZIONE FODERA-	METODOLOGIA RIPARTIZIONE FODERA-DIAFRAMMA								
Calcolo sezione equivalente									
Spessore diaframma	S _d	1 m							
Classe CLS diaframma	fck_diaf	25 MPa							
Classe CLS controfodera	fck_fod	30 MPa							
Modulo Elastico Diaframma	E_diaf	3.15E+04 MPa							
Modulo Elastico Fodera	E_fod	3.43E+04 MPa							
Spessore controfodera	S _f	0.7 m							
Inerzia paratia	Idiaf	0.0833 m ⁴							
Inerzia diaframma	Ifod	0.0286 m ⁴							
Inerzia diaframma equivalente BT	Idiaf_eq	0.1145 m ⁴							
Spessore equivalente in parallelo BT	$S_{eq} = (S_d^3 + S_f^3)^{1/3}$	1.112 m							
Percentuali di ripartizione									
Partie	r paratie	72.8 %							
Controparete	r controparete	27.2 %							

6.2.1 Spinta del terreno in condizioni statiche

Noti i parametri di resistenza, è possibile definire il valore dei coefficienti di spinta in condizioni di equilibrio limite, come di seguito commentato; per la definizione della spinta dei terreni si rimanda alla relazione IN1711EI2RHGA0100001A.

6.2.2 Spinta del terreno in condizioni sismiche

Nel caso in cui le paratie possono considerarsi come una struttura "rigida", poco deformabile, per esempio in presenza di più ordini di tiranti/puntoni, in accordo con § E.9 dell'Eurocodice 8, l'incremento di spinta simico è calcolato secondo la teoria di Wood applicando la seguente pressione distribuita:

$$\Delta p = (a_g/g) \times S \times \gamma_t \times H$$

dove:

S= fattore suolo per sisma orizzontale (= S_S × S_T, Categoria C per il terreno)

a_g= accelerazione del suolo distinguendo tra fase sismica provvisoria (a fondo scavo) e definitiva (in esercizio) γ_t= peso specifico del terreno

H = altezza totale della paratia

I valori accelerazione sismica considerati nelle analisi sono i seguenti:

- Accelerazione sismica SLV: 0.339g

Accelerazione sismica SLD: 0.162g

6.2.3 Spinta dell'acqua

Il calcolo è stato condotto tenendo conto della presenza della falda, considerata alla quota di costruzione e successivamente innalzata alla quota breve termine per simulare gli effetti di un effetto meteorico improvviso e successivamente a quota di lungo termine. Vista la natura dei terreni interessati dall'opera si sono considerate condizioni di terreno pervio con i criteri indicati nella relazione IN1711EI2RHGA0100001A.

Le quote di falda considerate per la progettazione dei diaframmi del tratto GA01-A della galleria sono riportate in Tabella 5.

6.2.4 Passaggio moduli di lungo termine

Come ultimo step di calcolo nella progettazione delle paratie in esame, si è tenuto conto della riduzione dei moduli elastici degli elementi strutturali (paratie e strutture interne) dovute ad effetti viscosi. Tale riduzione si è assunta pari al 20% ($E_{LT} = 0.8xE_{BT}$).

6.3 Sovraccarico permanente in copertura

Nel caso della GA01-B si sono assunte le altezze di ricoprimento per i diversi modelli di calcolo, come indicato nella successiva tabella

 $p_r = \gamma \cdot D$

con:

γ: peso di volume del terreno

D: differenza di quota tra piano campagna a monte e testa paratia

Tabella 8 Calcolo ripartizione tra controparete e diaframma

Modello di calcolo	Altezza max di ricoprimento (m)	Sovraccarico p in copertura (kPa)
TS2	≈3.3	≈66
TS3	≈2.5	≈50
TS4	≈2	≈40
TA	≈1	≈20

6.4 Sovraccarico accidentale in copertura

Si è considerato un sovraccarico accidentale a monte della paratia pari a 20kPa posizionato a piano campagna ed anche sul ricoprimento disposto al di sopra del solettone di copertura una volta che questa è stata realizzata.

6.5 Combinazioni per la verifica agli SLU

Le combinazioni di carico agli stati limite considerate ai fini delle verifiche sono stabilite in modo da garantire la sicurezza in conformità a quanto prescritto nel Cap. 2 delle NTC 2008. Per i criteri genarli di applicazione

GENERAL CONTRACTOR		ALTA S	ORVE	GLIANZA		
Consorzio Iric/†V Due				LFERR O STATO ITALIANI		
GA01-A OPERE SOSTEGNO DEGLI S	SCAVLE TAMPONE DI FONDO	Progetto	Lotto	Codifica Documento	Rev.	Foglio
SACTA CI ENE SOCIEGINO DECEN	SOME TARM SINE DITIONED	IN17	11	EI2 CL GA 01 A4 0014	Α	28 di 205

dei coefficienti di sicurezza e delle combinazioni di calcolo definiti nei vari modelli si rimanda alla relazione IN1711EI2RHGA0100001A.

7 VERIFICHE SEZIONE TS2

I diaframmi dimensionati con tale sezione sono previsti da progressiva pk 5+251.53 alla pk 5+336.53 della GA01-A, per un'estensione complessiva di circa 85m. I diaframmi sono lunghi 17.3m con un'altezza di scavo di 8.40m da quota testa paratia. I parametri geotecnici caratteristici adottati per il dimensionamento dell'opera di sostegno, la stratigrafia di progetto e le ipotesi di falda sono state esposte nel §4 e 5.

7.1 Fasi di calcolo

Tale paragrafo descrive con maggior dettaglio le fasi costruttive brevemente presentate nella §5.3.3. Di seguito le fasi di calcolo e lo schema di scavo:

- Fase 0: start nihil;
- Fase 1: condizione geostatica:
 - o quota piano campagna a 47.66m slm;
 - o quota falda di costruzione a quota 40.43m slm a circa 7.2m da piano campagna;
- Fase 2: Scavo fino a piano di lavoro:
 - Scavo con pendenza 2V:3H da piano campagna a quota piano lavoro variabile tra 44.40 e 43.52m
 slm ed applicazione del carico accidentale di cantiere di 20kPa a quota piano campagna.
- Fase 3: Realizzazione diaframmi da piano di lavoro:
- > Fase 4: Realizzazione intervento jet tipo 'sandwich' con doppio strato al di sotto del piano di scavo:
 - L'intervento è così composto:
 - Spessore terreno trattato superiore: 2.0m
 - Spessore terreno non trattato intermedio: 4.0m
 - Spessore terreno trattato inferiore: 2.5m
 - L'intervento è stato modellato modificando i parametri geotecnici di base degli strati interessati di terreno considerando i seguenti parametri caratteristici:
 - valore di coesione c': 500kPa; rigidezza del terreno incrementata di 20 volte rispetto ai valori caratteristici;
- Fase 5: Approfondimento pre-scavo da quota piano di lavoro a quota testa paratia per la realizzazione del solettone di copertura
- Fase 6: Realizzazione del solettone di copertura:
 - Come descritto nel §6.2, il nodo di connessione tra diaframma è copertura è stato simulato sia come una 'cerniera' che 'pienamente incastrata'. La copertura è stata pertanto modellata in Paratia come elemento 'soletta' di spessore 1.6m.
- Fase 7: Posa in opera del ricoprimento al di sopra della copertura tale da stabilire la quota di piano campagna:
 - o Lo spessore di ricoprimento considerato lungo tale tratto è pari a 3.3m.
- Fase 8: Applicazione del carico accidentale di 20kPa a piano campagna

GENERAL CONTRACTOR		ALTA S	ORVE	GLIANZA		
Consorzio IricAV Due				LFERR O STATO ITALIANI		
GA01-A OPERE SOSTEGNO DEGLI SO	CAVILE TAMBONE DI FONDO	Progetto	Lotto	Codifica Documento	Rev.	Foglio
GAUT-A OPERE SUSTEGNO DEGLI SC	CAVI E TAIVIPONE DI FONDO	IN17	11	EI2 CL GA 01 A4 0014	Α	30 di 205

- Fase 9: Scavo della Galleria fino a quota di fondo scavo 33.3m, 10.2m circa al di sotto del piano di lavoro
 - In tale fase, la quota falda di valle tra le paratie è stata considerata cautelativamente a quota di fondo scavo.
- Fase 10: Risalita falda a quota di breve termine:
 - Innalzamento del livello di falda quota falda da quota falda di costruzione a quota breve termine. Con tale scenario si riproduce le condizioni di un innalzamento del livello di falda a causa evento meteorico improvviso (il §7.3.1 riporta la verifica della stabilità del fondo scavo nei confronti di tale evento).
- Fase 11: Discesa falda a quota di breve costruzione
 - Con tale fase, si assumono che gli effetti di un evento meteorico improvviso siano esauriti e che il livello di falda diminuisca alla quota di falda di costruzione.
- Fase 12: Costruzione del solettone di fondo:
 - o II solettone di fondo è stato modellato in Paratie con un elemento di tipo 'Puntone' alla quota dell'asse del solaio 33.90m.
- Fase 13: Costruzione delle contropareti interne di spessore 0.80m:
 - L'azione irrigidente della controparete interna è stata simulata calcolando una rigidezza equivalente tra diaframma e controparete assumendo che si comportino come elementi in parallelo' (Figura 8).

Calcolo sezione equivalente

Spessore diaframma	S _d	1 m
Classe CLS diaframma	fck_diaf	25 MP
Classe CLS controfodera	fck_fod	30 MP
Modulo Elastico Diaframma	E_diaf	3.15E+04 MP
Modulo Elastico Fodera	E_fod	3.43E+04 MP
Spessore controfodera	S _f	0.8 m
Inerzia paratia	Idiaf	0.0833 m ⁴
Inerzia diaframma	Ifod	0.0427 m ⁴
Inerzia diaframma equivalente BT	Idiaf_eq	0.1299 m ⁴
Spessore equivalente in parallelo BT	$s_{eq} = (s_d^3 + s_f^3)1/3$	1.16 m

Figura 8 Calcolo sezione equivalente diaframma-controparete interna

- Fase 14: Risalita della falda a quota di lungo termine con tampone jet grouting ancora attivo:
 - o In tale fase si simula la risalita della falda a quota di lungo termine 44.43m a monte ed a valle della paratia. L'azione irrigidente del tampone jet a valle è ancora considerata presente.
- > Fase 15: Quota di falda a quota di lungo termine e perdita dell'azione stabilizzante del tampone jet
 - In tale fase, parametri geotecnici dei terreni interessati dall'intervento jet vengono riportati ad i loro valori caratteristici di base
- > Fase 16: Riduzione dei moduli elastici delle strutture da istantanei a quelli di lungo termine
 - Come accennato al §6.2.4, la riduzione di rigidezza degli elementi strutturali causata da effetti viscosi è stata riducendo i moduli elastici degli elementi strutturali del 20%.

GENERAL CONTRACTOR Consorzio IricAV Due			ITA	ELIANZA LFERR O STATO ITALIANI		
GA01-A OPERE SOSTEGNO DEGLI S	SCAVI E TAMPONE DI FONDO	Progetto	Lotto	Codifica Documento	Rev.	Foglio
		IN17	11	EI2 CL GA 01 A4 0014	Α	31 di 205

- > Fase 17: Applicazione dell'azione sismica
 - Applicazione del sovraccarico sismico ottenuto applicando la teoria di Wood secondo quanto descritto al §6.2.2. Tale sovraccarico è stato applicato da quota testa a quota piede paratia.
 - $\Delta p = (a_g/g) \times S \times \gamma_t \times H = \approx 128 kPa$

Nelle figure seguenti si riportano delle immagini di alcuni step sviluppati nel modello di calcolo Paratie.

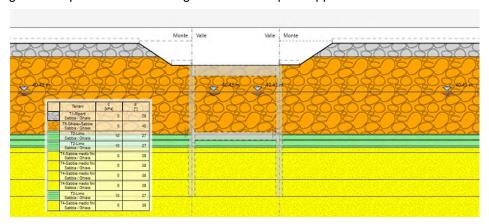


Figura 9 Fase 4-Realizzazione tampone jet tipo 'sandwich' con doppio stato

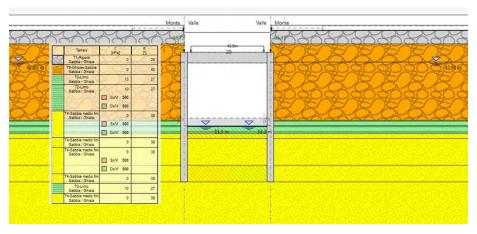


Figura 10 Fase 10-Scavo della Galleria fino a quota di fondo scavo e falda a quota falda di breve termine

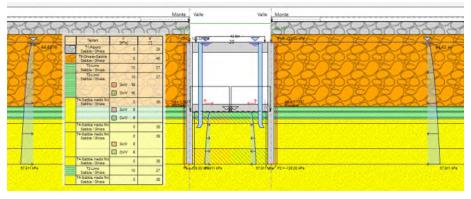


Figura 11 Fase 17-Applicazione azione sismica

GENERAL CONTRACTOR	A	ALTA SO	ORVE	GLIANZA		
Consorzio IricAV Due	-			LFERR O STATO ITALIANI		
GA01-A OPERE SOSTEGNO DEGLI SCAV	VI E TAMPONE DI FONDO	Progetto	Lotto	Codifica Documento	Rev.	Foglio
GAUTA OF EINE SOSTEGNO DEGELOCAV	VIE TAME ONE BIT ONBO	IN17	11	EI2 CL GA 01 A4 0014	Α	32 di 205

7.2 Risultati di calcolo

Di seguito sono schematizzati i risultati principali del dimensionamento della paratia di sostegno. La Tabella 9 riporta gli inviluppi delle sollecitazioni flettenti e taglianti al metro lineare di diaframma ottenute dai modelli sviluppati per la sezione 'TS-2'. I risultati dei modelli di copertura appoggiata ed incastrata alle paratie sono stati raggruppati secondo gli stati limite SLE-RARA, SLU A1+M1+R1 e SISMA-STR nel modo seguente:

- Condizioni di Breve Termine (BT):
 Tali condizioni identificano le fasi di costruzione della galleria artificiale dalle condizioni geostatiche (Fase 0) al raggiungimento della quota di fondo scavo con falda pari alla falda di breve termine (Fase 11)
- Condizioni di Lungo Termine (LT):
 Tali condizioni comprendono le fasi di calcolo nelle quali si completano le strutture definitive della galleria (Fase 12-Costruzione solaio di fondo) e si instaurano le condizioni di lungo termine (Fase 16-Riduzione dei moduli elastici delle strutture da istantanei a quelli di lungo termine).
- Condizioni Sismiche (SISMA STR):
 Tali condizioni identificano le sollecitazioni che si verificano al raggiungimento dello stato limite
 SISMA STR definito come richiesto dalla normativa vigente.

In Figura 12 e Figura 13 vengono riportati i diagrammi delle sollecitazioni flettenti e taglianti al metro lineare di paratia. Le verifiche a taglio sono eseguite per le combinazioni SLU e SLV. In ascissa sono indicate le azioni a metro lineare di pannello, mentre in ordinata è indicata la quota altimetrica.

GENERAL CONTRACTOR

GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO

ProgettoLottoCodifica DocumentoRev.IN1711E12 CL GA 01 A4 0014A

Foglio 33 di 205

Tabella 9 Sezione 'TS2' Sollecitazioni flettenti e taglianti di verifica

	SLS-rara								SLU (A1+M-	+R1)							
	Momento -	Caso copert	ura appoggiat	:a	Momento -	Nomento - Caso copertura incastrata Mo			Momento -	Momento - Caso copertura appoggiata				Momento - Caso copertura incastrata			
	Inv.BT (Diaf	r.)	Inv.LT (Fod+	Diafr.)	Inv.BT (Diaf	r.)	Inv.LT (Fod+	-Diafr.)	Inv.BT (Diaf	r.)	Inv.LT (Fod-	-Diafr.)	Inv.BT (Diaf	r.)	Inv.LT (Fod+	Diafr.)	
	Valore lato	Valore lato	Valore lato	Valore lato	Valore lato	Valore lato	Valore lato	Valore lato	Valore lato	Valore lato	Valore lato	Valore lato	Valore lato	Valore lato	Valore lato	Valore lato	
	Terra	Scavo	Terra	Scavo	Terra	Scavo	Terra	Scavo	Terra	Scavo	Terra	Scavo	Terra	Scavo	Terra	Scavo	
	(kN*m/m)	(kN*m/m)	(kN*m/m)	(kN*m/m)	(kN*m/m)	(kN*m/m)	(kN*m/m)	(kN*m/m)	(kN*m/m)	(kN*m/m)	(kN*m/m)	(kN*m/m)	(kN*m/m)	(kN*m/m)	(kN*m/m)	(kN*m/m)	
Sollecitazioni Flettenti																	
Quota asse copertura	17	0	18	0	1151	0	1200	0	22	0	23	0	1575	0	1702	0	
Quota intradosso copertura	7	191	7	219	836	0	860	0	10	248	10	285	1157	0	1241	0	
Testa diaframma	16	429	16	481	468	0	468	0	22	557	22	625	669	0	708	0	
Gabbia di armatura No.1	20	923	20	973	468	627	468	645	27	1199	27	1265	669	801	708	824	
Sovrapposizione Gabbia No.1-No.2	4	799	152	801	4	624	4	633	6	1039	197	1042	6	799	6	811	
Gabbia di armatura No.2	817	280	817	280	494	363	494	363	1062	364	1062	364	620	477	620	477	

	SISMA (STR	U)								
	Momento -	Caso copert	ura appoggia	ta	Momento - Caso copertura incastrata					
	Inv.BT (Dia	Inv.BT (Diafr.)		Inv.LT (Fod+Diafr.)		Inv.BT (Diafr.)		·Diafr.)		
Sollecitazioni Flettenti	Valore lato Terra (kN*m/m)	Scavo	Valore lato Terra (kN*m/m)	Valore lato Scavo (kN*m/m)	Terra	Valore lato Scavo (kN*m/m)	Terra	Valore lato Scavo (kN*m/m)		
Quota asse copertura	17	0	51	0	1151	0	1200	0		
Quota intradosso copertura	7	191	7	481	836	0	860	0		
Testa diaframma	16	429	16	1016	468	0	468	0		
Gabbia di armatura No.1	20	923	20	1628	468	627	468	645		
Sovrapposizione Gabbia No.1-No.2	4	799	1599	801	4	624	4	633		
Gabbia di armatura No.2	817	280	1888	280	494	363	494	363		

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Documento Rev. Foglio

IN17

11

EI2 CL GA 01 A4 0014

34 di 205

Α

	Inviluppo A1+M1+R1								Inviluppo SISMA STR								
	Taglio - C	aso copertu	ıra appoggi	ata	Taglio - Caso copertura incastrata				Taglio - Ca	aso coperti	ıra appogg	iata	Taglio - Caso copertura incastrata				
	Inv.BT (D	iafr.)	Inv.LT (Fo	d+Diafr.)	Inv.BT (Dia	afr.)	Inv.LT (Fo	d+Diafr.)	Inv.BT (Di	afr.)	Inv.LT (Fo	d+Diafr.)	Inv.BT (Di	afr.)	Inv.LT (Fo	d+Diafr.)	
Sollecitazioni Taglianti	Valore lato Terra (kN/m)	Valore lato Scavo (kN/m)	Valore lato Terra (kN/m)	Valore lato Scavo (kN/m)	Valore lato Terra (kN/m)	Valore lato Scavo (kN/m)	Valore lato Terra (kN/m)	Scavo	Valore lato Terra (kN/m)	Valore lato Scavo (kN/m)	Valore lato Terra (kN/m)	Valore lato Scavo (kN/m)	Valore lato Terra (kN/m)	Valore lato Scavo (kN/m)	Valore lato Terra (kN/m)	Valore lato Scavo (kN/m)	
Quota asse copertura	3:	1 345	33	390	21	533	23	3 590	24	266	102	706	16	401	92	911	
Quota intradosso copertura	12	2 330	12	368	12	513	12	2 564	. 9	254	9	624	. 9	385	9	827	
Testa diaframma	10	294	10	320	10	471	. 10	511	. 7	226	7	474	. 7	355	7	677	
Gabbia di aramtura No.1	237	7 294	319	320	61	471	123	3 511	183	226	683	474	- 54	355	480	677	
Quota estradosso solaio fondo	440	10	585	10	264	7	379	9 7	339	8	1262	. 8	210	5	1034	. 5	
Sovrapposizione gabbia No.1-2	472	2 12	657	12	295	8	45:	L 8	363	9	1385	9	234	. 6	1157	6	
Asse solaio fondo	540	5	733	202	365	5	528	3 172	416	4	1501	948	287	4	1274	903	
Quota intradosso solaio fondo	652	2 1	652	92	478	1	478	3 61	501	. 1	501	. 794	375	1	375	748	
Gabbia di aramtura No.2	696	6 445	733	445	570	342	. 570	342	535	343	1501	. 948	444	267	1274	903	

GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORV	ALFER	?R		
GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO	Progetto	Lotto	Codifica Documento	Rev.	Foglio
	IN17	11	EI2 CL GA 01 A4 0014	A	35 di 205

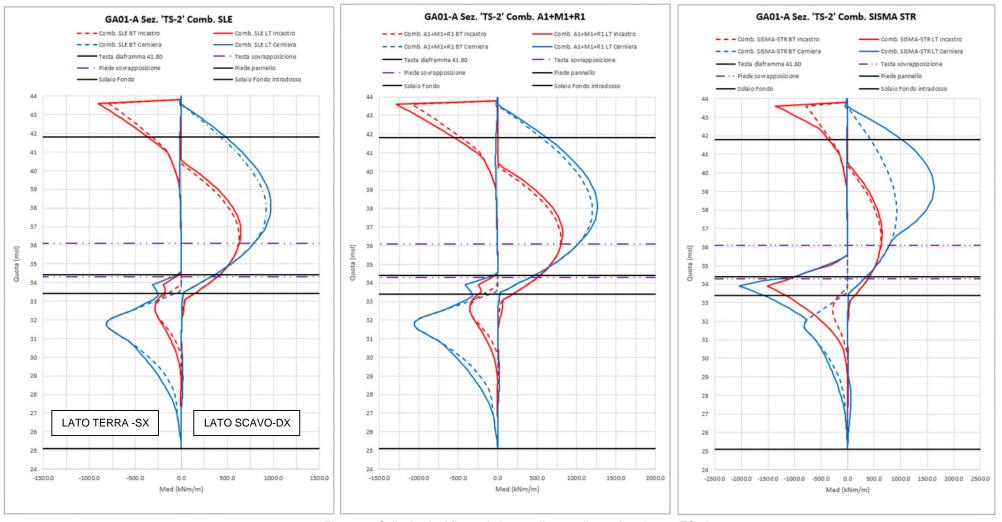


Figura 12 Sollecitazioni flettenti al metro lineare di paratia schema 'TS-2'

GENERAL CONTRACTOR	ALTA SORVEGLIANZA
Consorzio IricAV Due	GRUPPO FERROVIE DELLO STATO ITALIANE
GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO	ProgettoLottoCodifica DocumentoRev.FoglioIN1711EI2 CL GA 01 A4 0014A36 di 205

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE
GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO	Progetto Lotto Codifica Documento Rev. Foglio IN17 11 EI2 CL GA 01 A4 0014 A 37 di 205

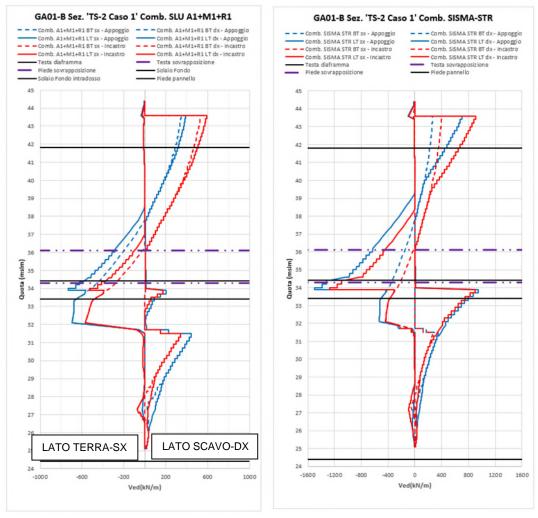


Figura 13 Sollecitazioni taglianti al metro lineare di paratia schema 'TS-2'

GENERAL CONTRACTOR		ALTA S	ORVE	BLIANZA		
Consorzio IricAV Due				LFERR O STATO ITALIANI		
GA01-A OPERE SOSTEGNO DEGLIS	SCAVLE TAMPONE DI FONDO	Progetto	Lotto	Codifica Documento	Rev.	Foglio
GAUTA OF ERE 303 LEGNO DEGLI (BCAVIL TAMPONE DITONDO	IN17	11	EI2 CL GA 01 A4 0014	Α	38 di 205

7.3 Verifiche geotecniche

7.3.1 Spostamenti e stabilità del fondo scavo

Come descritto nella relazione IN1711EI2RHGA0100001A dei criteri di dimensionamento delle opere di sostegno della GA01, la valutazione del corretto comportamento del modello di calcolo è basata sull'esame dei valori di spinta passiva mobilitata al piede della paratia. Il rapporto tra la risultante della spinta passiva e della spinta effettiva nel tratto infisso consente di valutare quanto la struttura disti dalla condizione limite. In combinazione SLU GEO tale rapporto deve essere maggiore o uguale a 1 affinché non sia violato il criterio di resistenza. I valori degli spostamenti dell'opera di sostegno e del terreno circostante devono essere compatibili con la funzionalità della struttura da realizzare e con la sicurezza e funzionalità dei manufatti adiacenti.

Nella tabella seguente sono riassunti i risultati di maggiore interesse sia allo SLE sia allo SLU, con riferimento agli spostamenti delle pareti e ai valori di mobilitazione della spinta passiva (Tabella 10).

Tabella 10 'TS2' Riassunto spostamento massimo laterale dei diaframmi e coefficienti di mobilitazione

Sezione di calcolo	Comb.	Spostamenti orizzontali u(mm)	%Sp (Scavo a quota fondo scavo)	%Sp (Condizione di lungo termine)
TC2	SLE RARA	6 (z=37.6m slm)	-	-
TS2 (copertura appoggiata)	SLU (A2+M2+R1)	=	17	35
	SLU Sisma-STR	=	-	80
TC2	SLE RARA	3 (z=36.4m slm)	-	-
TS2 (copertura incastrata)	SLU (A2+M2+R1)	=	15	36
	SLU Sisma-STR	-	-	82

7.3.2 Verifiche deformazioni/cedimenti attesi

Gli spostamenti orizzontali attesi dei diaframmi sono modesti, sia con schema di semplice appoggio che nel caso di incastro: è presumibile che lo spostamento reale sia intermedio tra i due estremi considerati.

In base a quanto esposto nella citata relazione relativa ai criteri di dimensionamento ed agli spostamenti orizzontali massimi calcolati, si possono determinare gli spostamenti verticali massimi S_{v,max} attesi a tergo della paratia e, in funzione dell'altezza di scavo H, una stima della loro distribuzione in funzione della distanza dall'opera di sostegno.

Lo spostamento verticale massimo calcolato nella sezione in analisi è pari a circa 4 mm ipotizzando lo spostamento in parete massimo pari a 5 mm per una altezza di scavo da testa copertura di circa 10 m: ne consegue una larghezza massima della conca di subsidenza di circa 15 m. Considerati lo spostamento orizzontale dei diaframmi modesti, il ciglio della Autostrada A4 è marginalmente interessato dai cedimenti indotti dallo scavo, che risultano trascurabili sotto la carreggiata autostradale posizionata a circa 15 m dal filo dello scavo.

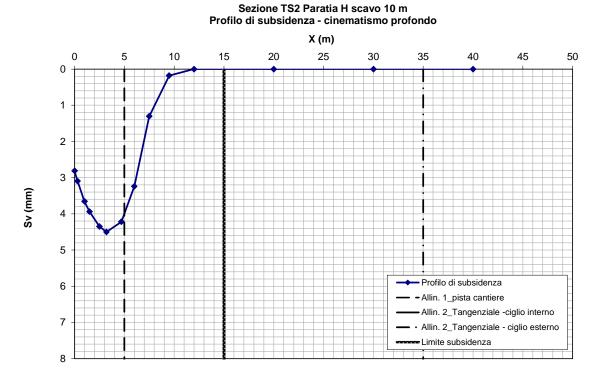


Figura 14 Diaframma TS-1- Analisi degli spostamenti attesi a piano campagna e della curva di subsidenza

7.3.3 Verifiche di capacità portante dei diaframmi

La verifica di capacità portante nella fase di breve termine (scavi aperti, massimo sovraccarico in copertura) è effettuata con i criteri riportati nella relazione IN1711EI2RHGA0100001A.

Di seguito si allegano:

- Stratigrafia e parametri di riferimento
- Curve di capacità portante in condizioni A1+M1+R3 e in condizioni di esercizio per la verifica della corretta ripartizione tra capacità portante di base e capacità portante laterale al fine della limitazione dei cedimenti attesi.

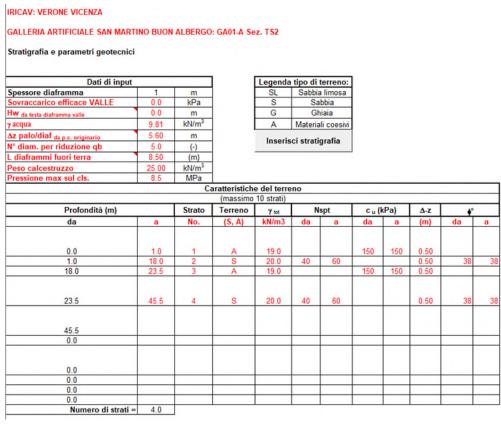
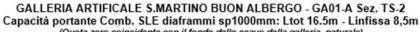


Figura 15 TS2 Capacità portante - Stratigrafia a e parametri di riferimento

Nelle tabelle seguenti si riassumono i valori di capacità portante a compressione (Rc,d) e a trazione (Rt,d), ottenuti dalla analisi, secondo l'approccio 2 (A1+M1+R3).

Tabella 11 Combinazione SLU: Sollecitazioni massime di compressione e trazione e valori limiti resistenti


Combinazione di carico - SLU	Q tot
Massima compressione, Ndc, max [kN]	1169 (SLU)

Si verifica, inoltre, che lo sforzo assiale massimo in esercizio sia inferiore della resistenza laterale di calcolo (Rc,s,lat) divisa per un fattore pari a 1.25.

GENERAL CONTRACTOR Consorzio IricAV Due		1	ITA	ELIANZA LFERR O STATO ITALIANI		
GA01-A OPERE SOSTEGNO DEGLI S	CAVILE TAMBONE DI FONDO	Progetto	Lotto	Codifica Documento	Rev.	Foglio
GAUT-A OPERE SOSTEGNO DEGLIS	SCAVI E TAMPONE DI FONDO	IN17	11	EI2 CL GA 01 A4 0014	Α	41 di 205

Tabella 12: Combinazione SLE: Sollecitazione massima di compressione

Combinazione di carico SLE	Qtot
Massima compressione, Ndc SLE, max [kN]	866 (SLE)

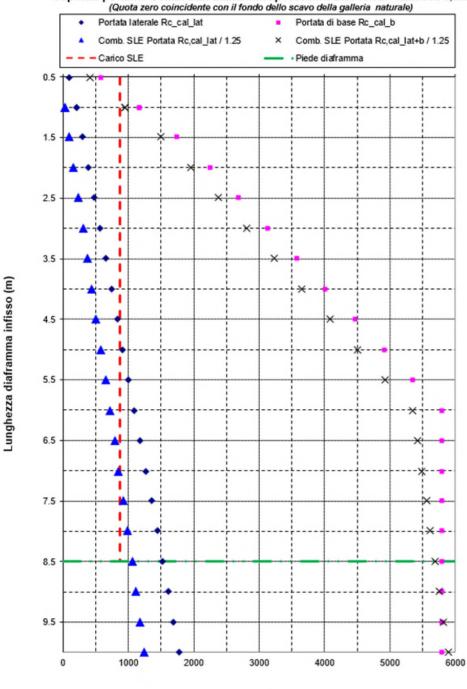


Figura 16 Sez. TS2 - Verifica capacità portante Comb. SLE

Portata (kN)

GALLERIA ARTIFICALE S.MARTINO BUON ALBERGO - GA01-A Sez. TS-2 Capacità portante Comb. A1+M1+R3 diafr. sp1000mm: Ltot 15.5m - Linf. 8,5m (Quota zero coincidente con il fondo dello scavo della galleria naturale)

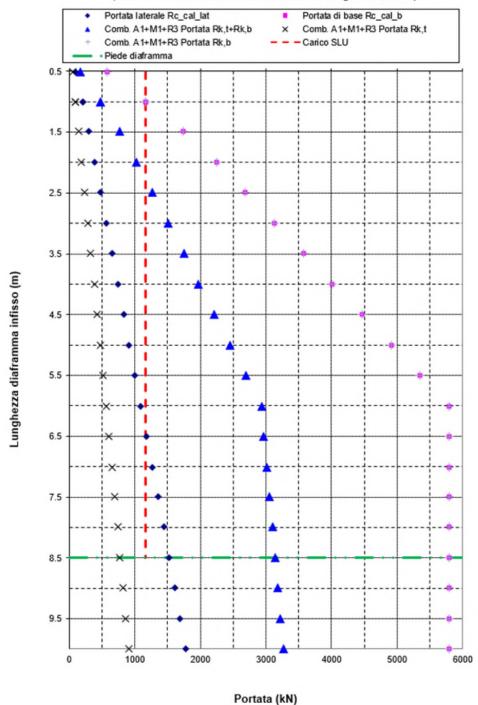


Figura 17 Sez. TS2 – Verifica capacità portante Comb. SLU (A1+M1+R3)

7.3.4 Verifiche di stabilità globale

Si riportano i risultati dell'analisi di stabilità globale della sezione di calcolo considerata agli step mostrati nella tabella seguente. Per l'analisi di stabilità è stato considerato un carico accidentale di cantiere pari a 10kPa. Le verifiche sono eseguite in accordo con il metodo di Janbu.

Tabella 13 Sezione TS1 Risultati stabilità globale

Comb.	Step	Coefficiente di sicurezza
	Fase 2 - Scavo quota piano di lavoro	1.17
A2+M2+R1	Fase 10 – Risalita falda da quota di costruzione a quota di breve termine	2.6

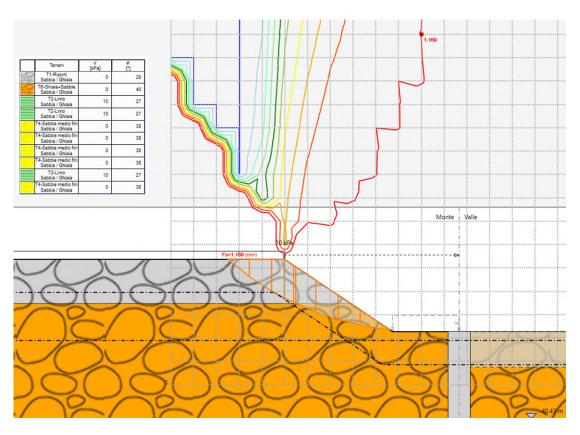


Figura 18 Fase 2-Stabilità scavo (Comb. A2+M2+R1)

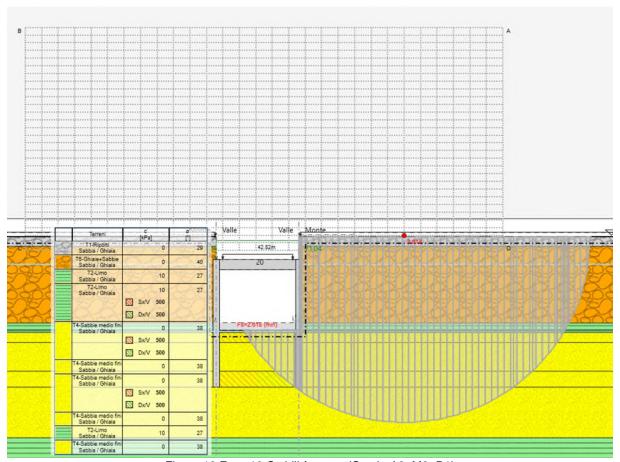


Figura 19 Fase 10-Stabilità scavo (Comb. A2+M2+R1)

7.3.5 Verifiche di stabilità del fondo scavo al galleggiamento

Per i criteri generali di verifica si rimanda alla relazione IN1711EI2RHGA0100001A relativa ai metodi di dimensionamento delle opere di sostegno della GA01.

Di seguito si riportano le verifiche di stabilità del tampone di fondo in jet grouting per le diverse tipologie analizzate. La quota di riferimento della falda considerata in tale verifica è pari alla quota della falda in fase di costruzione.

Per ulteriori considerazioni circa la validità del modello di calcolo - e la correttezza dei risultati ottenuti - si rimanda alla relazione IN1711E12RHGA0100002A nella quale sono esaminati i fattori di sicurezza al sollevamento, tenendo conto tramite modellazione numerica dei più complessi meccanismi di interazione terreno-struttura. In particolare, le analisi numeriche hanno mostrato che la soluzione progettuale appare robusta anche nei più gravosi scenari analizzati e che il metodo di calcolo semplificato, adottato nella presente relazione è idoneo a effettuare il dimensionamento delle opere.

Tabella 14 TS2 Verifica a galleggiamento tampone di fondo

GA01-B - V	GA01-B - VERIFICA TAMPONE DI FONDO - MAX BATTENTE 7.5m (TRATTO TS2)								
Zfalda	42.22 m s.l.m	Quota falda							
Zfs	32.1 m s.l.m	Quota fondo scavo							
Hw	10.12 m	Altezza falda a piano scavo							
Lmin	12 m	Dimensione minima in pianta del tampone							
Lmax	100 m	Dimensione massima in pianta del tampone							
Htf	2	Altezza terreno trattato sotto il fondo scavo							
Hte	4 m	Altezza intermedia terreno non trattato							
Hta	2.5 m	Altezza tampone di fondo inferiore							
Hinfission	8.5 m	Altezza infissione paratia							
γtn	20.0 kN/m3	Peso specifico terreno naturale							
γta	20.0 kN/m3	Peso specifico tampone							
fa	0.29 ()	Aderenza massima tampone paratia							
Hw	18.6 m	= Zfalda - Zfs +Hte+Hta altezza battente idraulico							
u Hw	182.7 kPa	pressione interstiziale in funzione del battente idraulico							
Sw	182.7 kPa	pressione intestiziale agente alla base del tampone							
Np	1300.0 kN/m	da calcolo Paratie							
σ p 1	152.94 kN/m2	Np/Hinfissione Valore medio pressione passiva mobilitata su jet							
σp1 σp2	152.94 kN/m2	valore medio sull'altezza del tampone letto in paratie							
σp2 σp3	21.25 kN/m2	valore geostatico a fondo scavo alla profondità media del tampone							
σp,calc	152.94 kN/m2	valore adottato nei calcoli							
fa	44.35 kN/m2	= σP * tan φ Aderenza massima tampone paratia							
Wt	12.0 m3	= Hta^2/6 W resistente flessione tampone per 1 m di larghezza							
α	0.99 (-)	= 1/(1+Lmin/Lmax)^2) coeff riduttivo momento per effetto piastra							
qtf	103.79 kN/m	= $8*\sigma p*Wt/(\alpha \times Lmin^2)$							
-	62.83 kN/m	=2*fa*Hinf/Lmin							
qta qt utile	62.83 kN/m	-2 1a 11111/L111111							
Pto	060 0 PM	- vto*(Uto+Utf)*I min Paca tarrana nor 1 matra di caziona							
Pte	960.0 kN	= γte*(Hte+Htf)*Lmin Peso terreno per 1 metro di sezione							
Pta	1080.0 kN	= γta*Hta*Lmin = Peso tampone per 1 m di sezione							
Sta	754.0 kN	= qt utile*Lmin = risultante pressione assorbita dall infissione per 1 m							
Sw	2191.9 kN	= Hw *10 * Lmin = sottospinta falda per 1 metro di sezione							
	-	nza vasca di aggottamento							
Wrib	0 kN								
	condo NTC 08								
0.9* St	2514.6 kN								
1.1*SW	2411.1 kN								
	Verificato								
St/Sw	1.04								

GENERAL CONTRACTOR	ALTA SO	ORVE	GLIANZA		
Consorzio IricAV Due			LFERR O STATO ITALIANI		
GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO	Progetto	Lotto	Codifica Documento	Rev.	Foglio
GAUTA OF LIVE SOSTEGING DEGLI SCAVI E TAINIFOINE DI FONDO	IN17	11	EI2 CL GA 01 A4 0014	Α	46 di 205

7.3.6 Verifiche di stabilità della struttura interna

Nelle tabelle delle pagine successive sono riportate le verifiche al sollevamento della struttura interna della galleria (intesa come manufatto ad U) per verificare l'entità delle azioni agenti alla testa dei diaframmi derivanti dall'equilibrio delle seguenti forze:

- Azioni stabilizzanti:
 - o Peso proprio manufatto ad U (armamento e opere di finitura ed escluse)
 - Peso della copertura e del rinterro considerando l'altezza minima di ricoprimento/rinterro lungo la tratta considerata
- Azioni instabilizzanti:
 - Sottospinta idraulica calcolata rispetto alla falda di lungo termine

IN17

11

EI2 CL GA 01 A4 0014

47 di 205

VERIFICA SOLLEVA	AMENTO STRUTTURA DEFIN	ΙΙΤΙVΔ
		JRA DEFINITIVA - TRATTO TS 2
CHOIN VEHILLE	100 LLEVALVILLATIO STATE TO	NA DETRICITOR TO TO LO
Quote falda e batt	tente	
Zfalda	44.43 m s.l.m	Quota falda lungo termine
Zfs	33.3 m s.l.m	Quota fondo scavo
Hw	11.13 m	Altezza falda lungo termine a piano scavo
Carichi struttura G	iA01	
Lmin	12 m	Luce netta tra paratie
S_diaf	1 m	Spessore diaframmi
S_Fondo	1 m	Spessore solettone di fondo
S_Fodera	0.8 m	Spessore controfodera
Lnet	10.4	Luce netta manufatto ad U
Atrave	0.72 m ²	Area cls trave prefabbricata
Asol_trave	0.25 m ²	Area cls soletta di completamento
γ cls	24 kN/m ³	Peso unità di voulume calcestruzzo
W trave	180.5 kN/m	Peso Trave prefabbricata
W sol_trave	65 kN/m	Peso soletta di completamento trave
H_t-diaf	1 m	Altezza trave di coronamento testa diaf.
B_t-diaf	2.1 m	Base trave di coronamento testa diaf.
H_c-trave	1.6 m	Altezza trave ripartizione trave prefabb.
B_c-trave	2.1 m	Base trave ripartizione trave prefabb.
W_c	262.08 kN/m	Peso trave di coronamento+codolo trave
W_fondo	288 kN/m	Peso solaio di fondo
H_fodera	7.4 m	Altezza netta controfodera fino a intradosso cordolo
W_fodera	284.16 kN/m	Peso controfodera
W_cls_tot	1079.69 kN/m	Peso complessivo manufatto ad U + trave + cordoli
H_ricMin	2.5 m	Altezza ricoprimento
γtn	18.5 kN/m3	Peso specifico terreno naturale
W_ter	675.25 kN/m	Peso ricoprimento
W_tot	1754.9 kN/m	
pw	111.3 kPa	
Sw	1335.6 kN/m	= Hw *10 * Lmin = sottospinta falda per 1 metro di sezione
0.9*W_d	1579.4 kN/m	
1.1*SW	1469.16	
St>Sw	Verificato	
St/Sw	1.075	
Calcala azione acc	siale testa diaframma (com	proceione positivo
	667.8 kN/m	• •
N_inst_diaf N_stab_cop	877 kN/m	Azione instabilizzante indotta falda sul piedritto Azione stabilizzante pesi propri sul piedritto
	,	i i i i i i i i i i i i i i i i i i i
1.3*N_inst_diaf	868.1 kN/m	
0.9*N_stab_cop	789.7 kN/m	
N_testaDiaf_SLE	210 kN/m	Azione assiale risultante sul piedritto SLE
N_testaDiaf_SLU	-78 kN/m	Azione assiale risultante sul piedritto SLU

Dalle verifiche si evince come nelle condizioni caratteristiche i diaframmi risultano in tutti i casi compressi. Nelle condizioni allo Stato Limite Ultimo, SLU, i diaframmi risultano sostanzialmente scarichi con azione assiale pressoché nulla. Per questa ragione, nella verifica strutturali dei diaframmi in tutte le condizioni di carico si è assunto un'azione assiale nulla agente lungo l'intera altezza stesso.

7.3.7 Stima delle portate entranti al variare dei coefficienti di permeabilità del tampone di fondo

Per i criteri generali di verifica si rimanda alla relazione generale IN1711EI2RHGA0100001A della GA01. Nelle tabelle seguenti sono riportate le velocità di efflusso nei vari strati di terreno, sotto la quota di fondo scavo.

Tabella 15 Verifica velocità di flusso all'interno dello scavo

	C: d-	Call Haite	Permeabi	Li	ΣLi	ΣLi	Ki	Li/Ki	(Li/Ki)/Σ Li/Ki	∆Hwi	v=K*i	
Layer	Side	Soil Unit	lity	(m)	(m)	(m)	(m/s)	(s)	(-)	(m)	(m/s)	Laye
1		T6-Falda] [5.58			1 005 03	F F0F (02	0.002	0.014	2 455 00	1
1		COSTR_Fondo Scavo		5.58			1.00E-03	5.58E+03	0.002	0.014	2.45E-06	1
2		T4-Sabbie*		1.50			1.00E-04	1.50E+04	0.005	0.037	2.45E-06	2
3		T4-Sabbie*		0.43	16.01		1.00E-04	4.30E+03	0.001	0.011	2.45E-06	3
4		T4-Sabbie	High	2.00			1.00E-04	2.00E+04	0.007	0.049	2.45E-06	4
5		T4-Sabbie		4.00			1.00E-04	4.00E+04	0.014	0.098	2.45E-06	5
6		T4-Sabbie		2.50			1.00E-04	2.50E+04	0.009	0.061	2.45E-06	6
6		T4-Sabbie		2.50			1.00E-06	2.50E+06	0.864	6.118	2.45E-06	6
5		T4-Sabbie-Jet sup	High	4.00			1.00E-04	4.00E+04	0.014	0.098	2.45E-06	5
4	downstream	T4-Sabbie-Jet sup		2.00		8.93	1.00E-05	2.00E+05	0.069	0.489	2.45E-06	4
2		T4-Sabbie* Jet	1 1	0.43			1 005 05	4 205 . 04	0.015	0.105	2 455 00	3
3		Fondo Scavo		0.43			1.00E-05	4.30E+04	0.015	0.105	2.45E-06	3
fini di tale	ini di tale calcolo, la presenza dello strato limoso è trasciabile							2.89E+06	1.00	7.08	2.45E-06	

La filtrazione all'interno dello scavo dovuta alla permeabilità del tampone di fondo determina la necessità di aggottare la portata entrante mediante pompe poste a fondo scavo. Assumendo un battente di falda a fondo scavo calcolato sulla falda di costruzione, si sono considerati due possibili scenari:

- Trattamento Ottimale: Tampone inferiore con permeabilità 5x10⁻⁷ m/s e tampone superiore 1x10⁻⁶ m/s
- 2) Trattamento Sub-ottimale con presenza di possibili difetti locali: Tampone inferiore con permeabilità 1x10⁻⁶ m/s e tampone superiore 1x10⁻⁵ m/s

Cautelativamente, si considera una permeabilità media del terreno non trattato a fondo scavo pari a 1x10⁻⁴ m/s. Le portate entranti al fondo scavo sono stimate nella tabella seguente (valori riferiti alla larghezza della trincea per 100 m di sviluppo).

Tabella 16 TS1 Stima portate entranti nello scavo al variare della permeabilità del tampone di fondo

Scenario	Permeabilità tampone 5x10 ⁻⁷ m/s	Permeabilità tampone 1x10 ⁻⁶ m/s	
Battente idraulico sopra quota falda	7.08	7.08	m
Ampiezza scavo	12	12	m
Sviluppo scavo	100	100	m
Superficie di efflusso	1200	1200	m ²
Portata in efflusso sul fondo scavo	1.12x10 ⁻³	2.94x10 ⁻³	m³/s per 100m
	1.1	2.9	l/s per 100m
Portata oraria da aggottare	4.04x10 ³	1.06x10 ⁴	I/h per 100m
	4	10	m ³ /h per 100m

Nel caso di trattamento ottimale del tampone di fondo, i valori di permeabilità del tampone di fondo nel range di variabilità previsto in progetto sono tali da assicurare in tutti i casi portate filtranti all'interno dello scavo molto

GENERAL CONTRACTOR		ALTA S	ORVE	SLIANZA		
Consorzio Iric/†V Due				LFERR O STATO ITALIANI		
GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO		Progetto	Lotto	Codifica Documento	Rev.	Foglio
		IN17	11	EI2 CL GA 01 A4 0014	Α	49 di 205

modeste. Sarà in ogni caso necessario prevedere pompe di aggottamento a fondo scavo per tenere conto anche di eventuali difetti locali nei giunti tra i pannelli di paratia e nel tampone stesso. Lo scenario 2) permette di individuare un limite superiore delle portate entranti e quindi del sistema di aggottamento che dovrà essere tale da allontanare circa 10 litri per secondo su una tratta di riferimento di 100m.

8 VERIFICHE SEZIONE TS3

I diaframmi dimensionati con tale sezione sono previsti da progressiva pk 5+154 alla pk 5+252 circa della GA01-A, per un'estensione complessiva di 100m circa. I diaframmi sono lunghi 16.8m con un'altezza di scavo di 8.40m da quota testa paratia. I parametri geotecnici caratteristici adottati per il dimensionamento dell'opera di sostegno, la stratigrafia di progetto e le ipotesi di falda sono state esposte nel §4 e 5.

8.1 Fasi di calcolo

Tale paragrafo descrive con maggior dettaglio le fasi costruttive brevemente presentate nella §5.3.3. Di seguito le fasi di calcolo e lo schema di scavo:

- Fase 0: start nihil;
- > Fase 1: condizione geostatica:
 - o quota piano campagna a 47.93m slm;
 - o quota falda di costruzione a 40.43m slm a circa 7.4m da piano campagna;
- Fase 2: Scavo fino a piano di lavoro:
 - Scavo con pendenza 2V:3H da piano campagna a quota piano lavoro variabile tra 44.40 e 44.96m
 slm ed applicazione del carico accidentale di cantiere di 20kPa a quota piano campagna.
- Fase 3: Realizzazione diaframmi da piano di lavoro:
- > Fase 4: Realizzazione intervento jet tipo 'sandwich' con doppio strato al di sotto del piano di scavo:
 - L'intervento è così composto:
 - Spessore terreno trattato superiore: 2.0m
 - Spessore terreno non trattato intermedio: 3.5m
 - Spessore terreno trattato inferiore: 2.5m
 - L'intervento è stato modellato modificando i parametri geotecnici di base degli strati interessati di terreno considerando i seguenti parametri caratteristici:
 - valore di coesione c': 500kPa; rigidezza del terreno incrementata di 20 volte rispetto ai valori caratteristici;
- Fase 5: Approfondimento pre-scavo da quota piano di lavoro a quota testa paratia per la realizzazione del solettone di copertura
- Fase 6: Realizzazione del solettone di copertura:
 - Come descritto nel §6.2, il nodo di connessione tra diaframma è copertura è stato simulato sia come una 'cerniera' che 'pienamente incastrata'. La copertura è stata pertanto modellata in Paratia come elemento 'soletta' di spessore 1.6m.
- Fase 7: Posa in opera del ricoprimento al di sopra della copertura tale da stabilire la quota di piano campagna:
 - o Lo spessore di ricoprimento considerato lungo tale tratto è pari a 2.7m.
- Fase 8: Applicazione del carico accidentale di 20kPa a piano campagna

- Fase 9: Scavo della Galleria fino a quota di fondo scavo 34.16m, 10.8m circa al di sotto del piano di lavoro
 - In tale fase, la quota falda di valle tra le paratie è stata considerata cautelativamente a quota di fondo scavo.
- > Fase 10: Risalita falda a quota di breve termine:
 - Innalzamento del livello di falda quota falda da quota falda di costruzione a quota breve termine. Con tale scenario si riproduce le condizioni di un innalzamento del livello di falda a causa evento meteorico improvviso (il §7.3.1 riporta la verifica della stabilità del fondo scavo nei confronti di tale evento).
- Fase 11: Discesa falda a quota di breve costruzione
 - Con tale fase, si assumono che gli effetti di un evento meteorico improvviso siano esauriti e che il livello di falda diminuisca alla quota di falda di costruzione.
- Fase 12: Costruzione del solettone di fondo:
 - o Il solettone di fondo è stato modellato in Paratie con un elemento di tipo 'Puntone' alla quota dell'asse del solaio 34.76m.
- Fase 13: Costruzione delle contropareti interne di spessore 0.80m:
 - L'azione irrigidente della controparete interna è stata simulata calcolando una rigidezza equivalente tra diaframma e controparete assumendo che si comportino come elementi in parallelo' (Figura 8 presentata in precedenza).
- Fase 14: Risalita della falda a quota di lungo termine con tampone jet grouting ancora attivo:
 - o In tale fase si simula la risalita della falda a quota di lungo termine 44.43m a monte ed a valle della paratia. In tale fase, l'azione irrigidente del tampone jet a valle è ancora considerata presente.
- > Fase 15: Quota di falda a quota di lungo termine e perdita dell'azione stabilizzante del tampone jet
 - o In tale fase, parametri geotecnici dei terreni interessati dall'intervento jet vengono riportati ad i loro valori caratteristici di base
- Fase 16: Riduzione dei moduli elastici delle strutture da istantanei a quelli di lungo termine
 - Come accennato al §6.2.4, la riduzione di rigidezza degli elementi strutturali causata da effetti viscosi è stata riducendo i moduli elastici degli elementi strutturali del 20%.
- > Fase 17: Applicazione dell'azione sismica
 - Applicazione del sovraccarico sismico ottenuto applicando la teoria di Wood secondo quanto descritto al §6.2.2. Tale sovraccarico è stato applicato da quota testa a quota piede paratia.
 - $\Delta p = (a_g/g) \times S \times y_t \times H = 124kPa$

Nelle figure seguenti si riportano delle immagini di alcuni step sviluppati nel modello di calcolo Paratie.

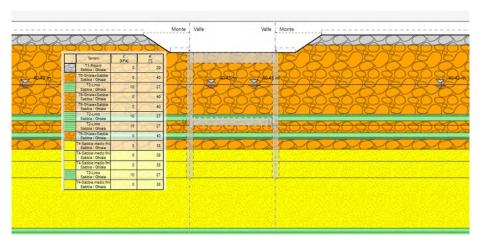


Figura 20 Fase 4 Realizzazione tampone jet tipo 'sandwich' con doppio stato

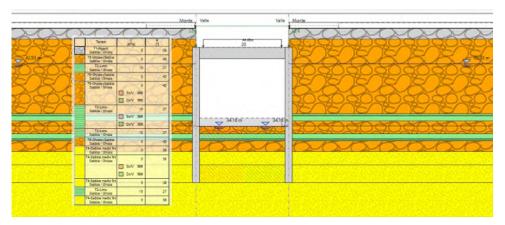


Figura 21 Fase 10 Scavo della Galleria fino a quota di fondo scavo e falda a quota falda di breve termine

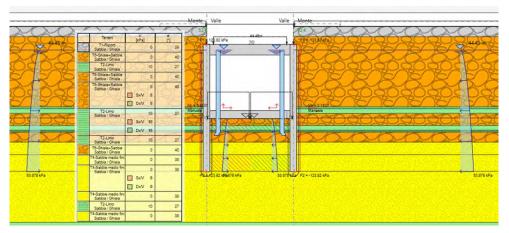


Figura 22 Fase 17 Applicazione azione sismica

GENERAL CONTRACTOR		ALTA SO	ORVE	GLIANZA		
Consorzio IricAV Due				LFERR O STATO ITALIAN		
GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO		Progetto	Lotto	Codifica Documento	Rev.	Foglio
		IN17	11	EI2 CL GA 01 A4 0014	Α	53 di 205

8.2 Risultati di calcolo

Di seguito sono schematizzati i risultati principali del dimensionamento della paratia di sostegno. La Tabella 17 riporta gli inviluppi delle sollecitazioni flettenti e taglianti al metro lineare di diaframma ottenute dai modelli sviluppati per la sezione 'TS-3'. I risultati dei modelli di copertura appoggiata ed incastrata alle paratie sono stati raggruppati secondo gli stati limite SLE-RARA, SLU A1+M1+R1 e SISMA-STR nel modo seguente:

- Condizioni di Breve Termine (BT):

 Tali condizioni identificano le fasi di costruzione della galleria artificiale dalle condizioni geostatiche (Fase 0) al raggiungimento della quota di fondo scavo con falda pari alla falda di breve termine (Fase 11)
- Condizioni di Lungo Termine (LT):
 Tali condizioni comprendono le fasi di calcolo nelle quali si completano le strutture definitive della galleria Fase 12-Costruzione solaio di fondo) e si instaurano le condizioni di lungo termine (Fase 16-Riduzione dei moduli elastici delle strutture da istantanei a quelli di lungo termine.
- Condizioni Sismiche (SISMA STR):
 Tali condizioni identificano le sollecitazioni che si verificano al raggiungimento dello stato limite
 SISMA STR definito come richiesto dalla normativa vigente.

In Figura 23 e Figura 24 vengono riportati i diagrammi delle sollecitazioni flettenti e taglianti al metro lineare di sviluppo di paratia. In ascissa sono indicate le azioni a metro lineare di pannello, mentre in ordinata è indicata la quota altimetrica.

GENERAL CONTRACTOR

GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO

ProgettoLottoCodifica DocumentoRev.IN1711EI2 CL GA 01 A4 0014A

Foglio

54 di 205

Tabella 17 Sezione 'TS3' Sollecitazioni flettenti e taglianti di verifica

	SLS-rara	.S-rara S						SLU (A1+M+R1)								
	Momento - C	Caso copertura	appoggiata		Momento - 0	Momento - Caso copertura incastrata			Momento - 0	aso copertura	appoggiata		Momento - Caso copertura incastrata			
	Inv.BT (Diafr.	ıv.BT (Diafr.) Ir		d+Diafr.) Inv.BT (Diafr.)		Inv.LT (Fod+Diafr.) Inv.BT (Diafr.)		.)	Inv.LT (Fod+Diafr.)		Inv.BT (Diafr.)		Inv.LT (Fod+Diafr.)			
Sollecitazioni Flettenti	Valore lato Terra (kN*m/m)	Valore lato Scavo (kN*m/m)	Valore lato Terra (kN*m/m)	Valore lato Scavo (kN*m/m)	Valore lato Terra (kN*m/m)	Valore lato Scavo (kN*m/m)	Valore lato Terra (kN*m/m)	Valore lato Scavo (kN*m/m)	Valore lato Terra (kN*m/m)	Valore lato Scavo (kN*m/m)	Valore lato Terra (kN*m/m)	Valore lato Scavo (kN*m/m)	Valore lato Terra (kN*m/m)	Valore lato Scavo (kN*m/m)	Valore lato Terra (kN*m/m)	Valore lato Scavo (kN*m/m)
Quota asse copertura	13	0	13	0	884	0	978	0	17	0	17	0	1224	0	1398	0
Quota intradosso copertura	7	141	7	168	639	0	701	0	9	183	9	218	894	0	1019	0
Testa diaframma	15	315	15	368	356	0	380	0	22	409	22	479	515	0	582	0
Gabbia di armatura No.1	19	648	19	723	356	434	380	483	27	843	27	940	515	554	582	615
Sovrapposizione Gabbia No.1-No.2	53	492	287	522	2	417	95	451	68	639	372	679	3	537	109	580
Gabbia di armatura No.2	586	19	586	19	346	150	346	150	762	24	762	24	431	204	431	204

	SISMA (STRU	J)						
	Momento -	Caso copertura	appoggiata		Momento - 0	Caso copertura	incastrata	
	Inv.BT (Diafr	Inv.BT (Diafr.)		Inv.LT (Fod+Diafr.)		Inv.BT (Diafr.)		Diafr.)
Sollecitazioni Flettenti	Valore lato Terra (kN*m/m)	Valore lato Scavo (kN*m/m)						
Quota asse copertura	13	0	45	0	884	0	1457	0
Quota intradosso copertura	7	141	7	423	639	0	842	0
Testa diaframma	15	315	15	893	356	0	380	0
Gabbia di armatura No.1	19	648	19	1409	356	434	380	866
Sovrapposizione Gabbia No.1-No.2	53	492	1673	522	2	417	1328	451
Gabbia di armatura No.2	586	19	2107	81	346	150	1701	150

	Inviluppo	nviluppo A1+M1+R1 In						Inviluppo SISMA STR								
	Taglio - Ca	aso copert	ura appoggi	ata	Taglio - C	aso copert	ura incastr	ata	Taglio - Ca	so coperti	ıra appogg	giata	Taglio - Caso copertura incastrata			
	Inv.BT (Di	afr.)	Inv.LT (Foo	l+Diafr.)	Inv.BT (Di	afr.)	Inv.LT (Fo	d+Diafr.)	Inv.BT (Di	afr.)	Inv.LT (Fo	d+Diafr.)	Inv.BT (Di	afr.)	Inv.LT (Fo	d+Diafr.)
Sollecitazioni Taglianti	Valore lato Terra (kN/m)	Valore lato Scavo (kN/m)	Valore lato Terra (kN/m)	Valore lato Scavo (kN/m)	Valore lato Terra (kN/m)	Valore lato Scavo (kN/m)	Valore lato Terra (kN/m)	lato Scavo	Valore lato Terra (kN/m)	Valore lato Scavo (kN/m)	Valore lato Terra (kN/m)	Valore lato Scavo (kN/m)	Valore lato Terra (kN/m)	Valore lato Scavo (kN/m)	Valore lato Terra (kN/m)	Valore lato Scavo (kN/m)
Quota asse copertura	24	313	24	313	18	3 421	. 18	3 484	18	197	88	621	. 14	313	81	. 805
Quota intradosso copertura	0	296	0	296	12	402	. 1	2 464	. 9	186	9	549	9	299	9	731
Testa diaframma	0	257	0	257	10	365	10	418	7	166	7	415	7	273	7	596
Gabbia di aramtura No.1	314	257	314	257	75	365	130) 418	170	166	648	415	64	273	467	596
Quota estradosso solaio fondo	606		606	C	336	5 0	41!	5 0	370	0	1059) (265	0	880	0
Sovrapposizione gabbia No.1-2	656		656	C	382	! 6	492	2 6	404	5	1361	. 5	300) 5	1157	5
Quota asse solaio fondo																
Quota intradosso solaio fondo	584	141	584	141	523	3 0	523	89	512	0	512	799	408	. 0	408	732
Gabbia di aramtura No.2	732	336	732	336	523	315	569	315	512	303	1479	920	408	246	1276	853

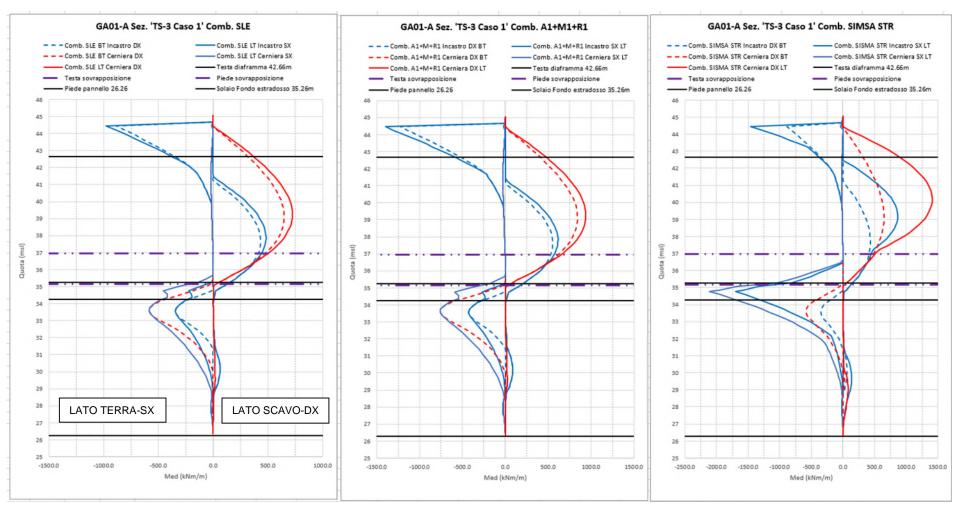


Figura 23 Sollecitazioni flettenti al metro lineare di paratia schema 'TS-3'

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE
GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO	Progetto Lotto Codifica Documento Rev. Foglio IN17 11 EI2 CL GA 01 A4 0014 A 57 di 205

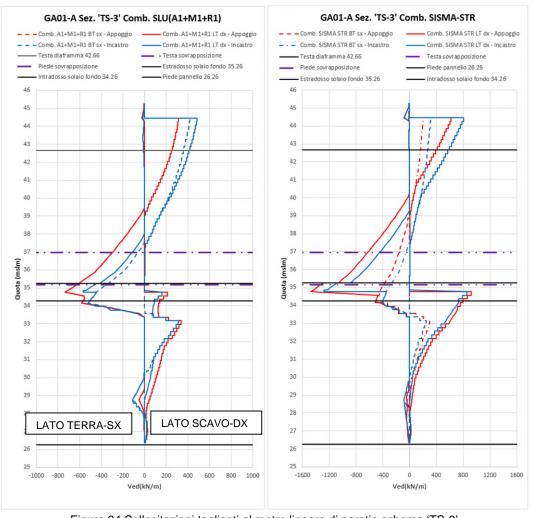


Figura 24 Sollecitazioni taglianti al metro lineare di paratia schema 'TS-3'

8.3 Verifiche geotecniche

8.3.1 Spostamenti e stabilità del fondo scavo

Come descritto nella relazione IN1711EI2RHGA0100001A dei criteri di dimensionamento delle opere di sostegno della GA01, la valutazione del corretto comportamento del modello di calcolo è basata sull'esame dei valori di spinta passiva mobilitata al piede della paratia. Il rapporto tra la risultante della spinta passiva e della spinta effettiva nel tratto infisso consente di valutare quanto la struttura disti dalla condizione limite. In combinazione SLU GEO tale rapporto deve essere maggiore o uguale a 1 affinché non sia violato il criterio di resistenza. I valori degli spostamenti dell'opera di sostegno e del terreno circostante devono essere compatibili con la funzionalità della struttura da realizzare e con la sicurezza e funzionalità dei manufatti adiacenti.

Nella tabella seguente sono riassunti i risultati di maggiore interesse sia allo SLE sia allo SLU, con riferimento agli spostamenti delle pareti e ai valori di mobilitazione della spinta passiva (Tabella 18).

Tabella 18 TS3 Riassunto spostamento massimo laterale dei diaframmi e coefficienti di mobilitazione

Sezione di calcolo	Comb.	Spostamenti orizzontali u(mm)	%Sp (Scavo a quota fondo scavo)	%Sp (Condizione di lungo termine)
TS3	SLE RARA	4 (z=37m)	-	-
	SLU (A2+M2+R1)	=	15	32
(copertura appoggiata)	SLU Sisma-STR	=	-	72
TC2	SLE RARA	2 (z=37.7m)	-	-
TS3	SLU (A2+M2+R1)	=	13	35
(copertura incastrata)	SLU Sisma-STR	=	-	77

8.3.2 Verifiche deformazioni/cedimenti attesi

Gli spostamenti orizzontali attesi dei diaframmi sono modesti, sia con schema di semplice appoggio che nel caso di incastro: è presumibile che lo spostamento reale sia intermedio tra i due estremi considerati. In base a quanto esposto nella citata relazione relativa ai criteri di dimensionamento ed agli spostamenti orizzontali massimi calcolati, si possono determinare gli spostamenti verticali massimi S_{v,max} attesi a tergo della paratia e, in funzione dell'altezza di scavo H, una stima della loro distribuzione in funzione della distanza dall'opera di sostegno.

Per i risultati dell'analisi di cedimento si rimanda alla sezione 'TS2' in quanto più gravosa.

8.3.3 Verifiche di capacità portante dei diaframmi

La verifica di capacità portante nella fase di breve termine (scavi aperti, massimo sovraccarico in copertura) è effettuata con i criteri riportati nella relazione IN1711EI2RHGA0100001A.

Di seguito si allegano:

- Stratigrafia e parametri di riferimento
- Curve di capacità portante in condizioni A1+M1+R3 e in condizioni di esercizio per la verifica della corretta ripartizione tra capacità portante di base e capacità portante laterale al fine della limitazione dei cedimenti attesi.

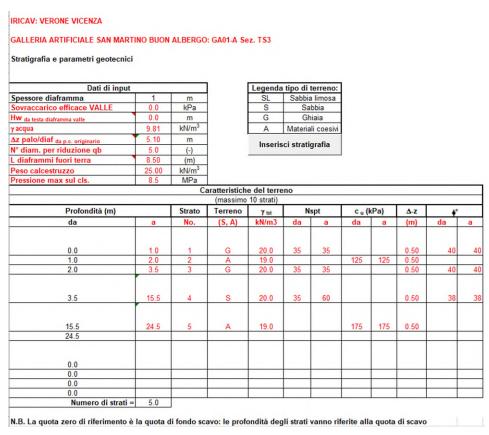


Figura 25 Sez. TS3 Capacità portante - Stratigrafia a e parametri di riferimento

Nelle tabelle seguenti si riassumono i valori di capacità portante a compressione (Rc,d) e a trazione (Rt,d), ottenuti dalla analisi, secondo l'approccio 2 (A1+M1+R3).

Tabella 19 Combinazione SLU: Sollecitazioni massime di compressione e trazione e valori limiti resistenti

Combinazione di carico - SLU	Q tot	
Massima compressione, Ndc, max [kN]	1060 (SLU)	

Si verifica, inoltre, che lo sforzo assiale massimo in esercizio sia inferiore della resistenza laterale di calcolo (Rc,s,lat) divisa per un fattore pari a 1.25.

GENERAL CONTRACTOR Consorzio IricAV Due			ITA	LFERR O STATO ITALIANI		
GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO		Progetto	Lotto	Codifica Documento	Rev.	Foglio
		IN17	11	FI2 CL GA 01 A4 0014	Α	60 di 205

Tabella 20: Combinazione SLE: Sollecitazione massima di compressione

Combinazione di carico SLE	Qtot
Massima compressione, Ndc SLE, max [kN]	783 (SLE)

GALLERIA ARTIFICALE S.MARTINO BUON ALBERGO - GA01-A Sez. TS-3 Capacità portante Comb. SLE diaframmi sp1000mm: Ltot 16.8m - Linfissa 8m (Quota zero coincidente con il fondo dello scavo della galleria naturale)

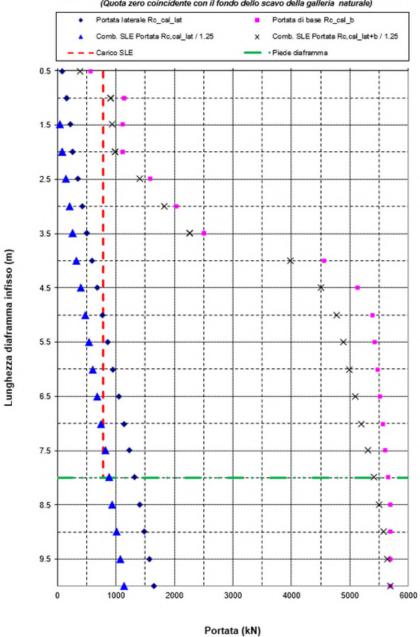


Figura 26 Sez. TS3 - Verifica capacità portante Comb. SLE

GALLERIA ARTIFICALE S.MARTINO BUON ALBERGO - GA01-A Sez. TS-3 Capacità portante Comb. A1+M1+R3 diafr. sp1000mm: Ltot 16.8m - Linfissa 8m (Quota zero coincidente con il fondo dello scavo della galleria naturale)

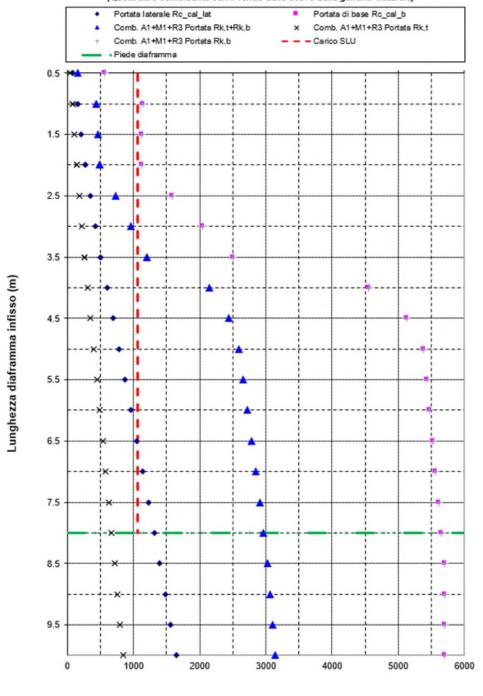


Figura 27 Sez. TS3 – Verifica capacità portante Comb. SLU (A1+M1+R3)

Portata (kN)

8.3.4 Verifiche di stabilità globale

Si riportano i risultati dell'analisi di stabilità globale della sezione di calcolo considerata agli step mostrati nella tabella seguente. Per l'analisi di stabilità è stato considerato un carico accidentale di cantiere pari a 10kPa. Le verifiche sono eseguite in accordo con il metodo di Janbu.

Tabella 21 Sezione TS2 Risultati stabilità globale

Comb.	Step	Coefficiente di sicurezza
	Fase 2 - Scavo quota piano di lavoro	1.12
A2+M2+R1	Fase 10 - Risalita falda a quota di breve termine	2.35

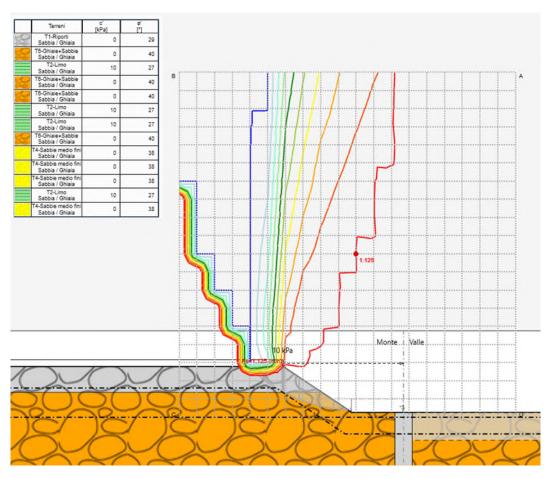


Figura 28 Fase 2 - Stabilità scavo (Comb. A2+M2+R1)

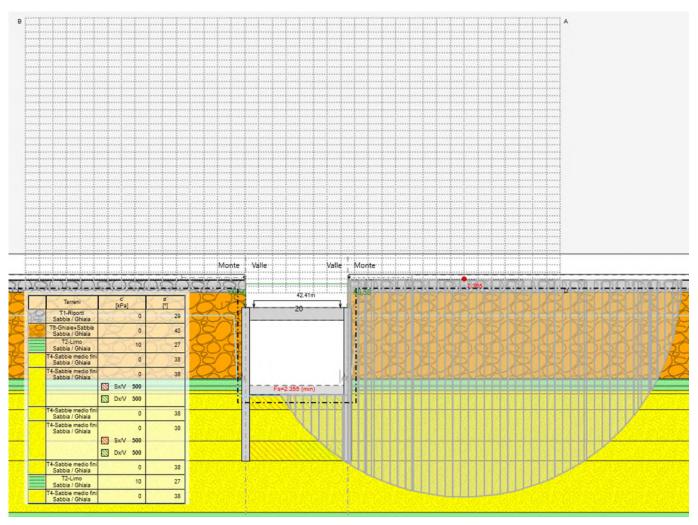


Figura 29 Fase 10 - Stabilità scavo (Comb. A2+M2+R1)

8.3.5 Verifiche di stabilità del fondo scavo al galleggiamento

Per i criteri generali di verifica si rimanda alla relazione IN1711EI2RHGA0100001A relativa ai metodi dimensionamento delle opere di sostegno della GA01. Circa la robustezza del dimensionamento effettuato con il metodo semplificato proposto si rimanda a quanto già espresso al precedente § 7.3.5. Di seguito si riportano le verifiche di stabilità del tampone di fondo in jet grouting per le diverse tipologie analizzate. La quota di riferimento della falda considerata in tale verifica è pari alla quota della falda in fase di costruzione.

Tabella 22 TS3 Verifica a galleggiamento tampone di fondo

VERIFICA	VERIFICA CON ATTRITO CON SCAVO REALE - TAMPONE IMPERMEABILE						
GAUI-A -	VERIFICA TAIVIPONE	DI FONDO - MAX BATTENTE 6.5m (TRATTO TS3)					
Zfalda	42.93 m s.l.m	Quota falda					
Zfs		•					
	34.22 m s.l.m	Quota fondo scavo					
Hw 	8.71 m	Altezza falda a piano scavo					
Lmin	12 m	Dimensione minima in pianta del tampone					
Lmax	100 m	Dimensione massima in pianta del tampone					
Htf	2	Altezza terreno trattato sotto il fondo scavo					
Hte	3.5 m	Altezza intermedia terreno non trattato					
Hta	2.5 m	Altezza tampone di fondo inferiore					
Hinfission	n 8.0 m	Altezza infissione paratia					
ortn	20.0 kN/m3	Peso specifico terreno naturale					
γtn	•	·					
γta	20.0 kN/m3	Peso specifico tampone					
fa	0.29 ()	Aderenza massima tampone paratia					
Hw	16.7 m	= Zfalda - Zfs +Hte+Hta altezza battente idraulico					
u_Hw	163.9 kPa	pressione interstiziale in funzione del battente idraulico					
Sw	163.9 kPa	pressione intestiziale agente alla base del tampone					
Np	900.0 kN/m	da calcolo Paratie					
σp1	112.50 kN/m2	Np/Hinfissione Valore medio pressione passiva mobilitata su jet					
σp2	112.50 kN/m2	valore medio sull'altezza del tampone letto in paratie					
σρ3	20.00 kN/m2	valore geostatico a fondo scavo alla profondità media del tampone					
σp,calc	112.50 kN/m2	valore adottato nei calcoli					
fa	32.63 kN/m2	$= \sigma P * tan \phi Aderenza massima tampone paratia$					
Wt	10.7 m3	= Hta^2/6 W resistente flessione tampone per 1 m di larghezza					
α	0.99 (-)	= 1/(1+Lmin/Lmax)^2) coeff riduttivo momento per effetto piastra					
qtf	67.63 kN/m	= $8*\sigma p*Wt/(\alpha \times Lmin^2)$					
qta	43.50 kN/m	=2*fa*Hinf/Lmin					
qt utile	43.50 kN/m	-2 1a 11111/L111111					
qualife	43.30 KN/III						
Pte	840.0 kN	= γte*(Hte+Htf)*Lmin Peso terreno per 1 metro di sezione					
Pta	1080.0 kN	= γta*Hta*Lmin = Peso tampone per 1 m di sezione					
Sta	522.0 kN	= qt utile*Lmin = risultante pressione assorbita dall infissione per 1 m					
Sw	1967.1 kN	= Hw *10 * Lmin = sottospinta falda per 1 metro di sezione					
Ribasso Io	ocale in corrisponder	nza vasca di aggottamento					
Wrib	0 kN						
Verifica s	econdo NTC 08						
0.9* St	2197.8 kN						
1.1*SW	2163.8 kN						
St>Sw	Verificato						
St/Sw	1.02						
0.9* St 1.1*SW St>Sw	2197.8 kN 2163.8 kN Verificato						

8.3.6 Verifiche di stabilità della struttura interna

Nelle tabelle delle pagine successive sono riportate le verifiche al sollevamento della struttura interna della galleria (intesa come manufatto ad U) per verificare l'entità delle azioni agenti alla testa dei diaframmi derivanti dall'equilibrio delle seguenti forze:

- Azioni stabilizzanti:
 - o Peso proprio manufatto ad U (armamento e opere di finitura ed escluse)
 - Peso della copertura e del rinterro considerando l'altezza minima di ricoprimento/rinterro lungo la tratta considerata
- Azioni instabilizzanti:
 - Sottospinta idraulica calcolata rispetto alla falda di lungo termine

GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO

| Progetto | Lotto | Codifica Documento | Rev. | Foglio | 66 di 205

| VERIFICA SOLLEVAMENTO STRUTTURA DEFINITIVA | GA01-A - VERIFICA SOLLEVAMENTO STRUTTURA DEFINITIVA - TRATTO TS 3

	SOLLEVAMENTO STR	UTTURA DEFINITIVA - TRATTO TS 3
Quote falda e batte	•	
Zfalda	44.43 m s.l.m	Quota falda lungo termine
Zfs	34.22 m s.l.m	Quota fondo scavo
Hw	10.21 m	Altezza falda lungo termine a piano scavo
Carichi struttura GA	A01	
Lmin	12 m	Luce netta tra paratie
S_diaf	1 m	Spessore diaframmi
S_Fondo	1 m	Spessore solettone di fondo
S_Fodera	0.8 m	Spessore controfodera
Lnet	10.4	Luce netta manufatto ad U
Atrave	0.72 m ²	Area cls trave prefabbricata
Asol_trave	0.25 m ²	Area cls soletta di completamento
γ cls	24 kN/m ³	Peso unità di voulume calcestruzzo
W trave	180.5 kN/m	Peso Trave prefabbricata
	•	·
W sol_trave	65 kN/m	Peso soletta di completamento trave
H_t-diaf	1 m	Altezza trave di coronamento testa diaf.
B_t-diaf	2.1 m	Base trave di coronamento testa diaf.
H_c-trave	1.6 m	Altezza trave ripartizione trave prefabb.
B_c-trave	2.1 m	Base trave ripartizione trave prefabb.
W_c	262.08 kN/m	Peso trave di coronamento+codolo trave
W_fondo	288 kN/m	Peso solaio di fondo
H_fodera	7.4 m	Altezza netta controfodera fino a intradosso cordolo
W_fodera	284.16 kN/m	Peso controfodera
W_cls_tot	1079.69 kN/m	Peso complessivo manufatto ad U + trave + cordoli
H_ricMin	2 m	Altezza ricoprimento
γtn	18.5 kN/m3	Peso specifico terreno naturale
W_ter	540.2 kN/m	Peso ricoprimento
W_tot	1619.9 kN/m	
pw	102.1 kPa	
Sw	1225.2 kN/m	= Hw *10 * Lmin = sottospinta falda per 1 metro di sezione
0.9*W_d	1457.9 kN/m	
1.1*SW	1347.72	
St>Sw	Verificato	
St/Sw	1.082	
		compressione positiva)
N_inst_diaf		Azione instabilizzante indotta falda sul piedritto
N_stab_cop	810 kN/m	Azione stabilizzante pesi propri sul piedritto
1.3*N_inst_diaf	796.4 kN/m	
0.9*N_stab_cop	729.0 kN/m	
N_testaDiaf_SLE	197 kN/m	Azione assiale risultante sul piedritto SLE
N tostaDiaf CIII	67 LN/m	Aziono assialo risultanto sul niodritto SUU
N_testaDiaf_SLU	-67 kN/m	Azione assiale risultante sul piedritto SLU

Dalle verifiche si evince come nelle condizioni caratteristiche i diaframmi risultano in tutti i casi compressi. Nelle condizioni allo Stato Limite Ultimo, SLU, i diaframmi risultano sostanzialmente scarichi con azione assiale pressoché nulla. Per questa ragione, nella verifica strutturali dei diaframmi in tutte le condizioni di carico si è assunto un'azione assiale nulla agente lungo l'intera altezza stesso.

GENERAL CONTRACTOR		ALTA SORVEGLIANZA							
Consorzio IricAV Due		GRUPPO FERROVIE DELLO STATO ITALIANI							
GA01-A OPERE SOSTEGNO DEGLIS	Progetto	Lotto	Codifica Documento	Rev.	Foglio				
GAUT-A OPERE SOSTEGNO DEGLIS	IN17	11	EI2 CL GA 01 A4 0014	Α	67 di 205				

8.3.7 Stima delle portate entranti al variare dei coefficienti di permeabilità del tampone di fondo

Per i criteri generali di verifica si rimanda alla relazione generale IN1711EI2RHGA0100001A della GA01.

Per tale sezione il battente idrico sulla falda di costruzione è minore di quello previsto per la porzione di galleria analizzata nella sezione di calcolo 'TS-2'. Pertanto, ai fini della stima delle portate entranti nello scavo, si rimanda ai risulti relativi alla 'TS-2' descritti nel §7.3.7.

9 VERIFICHE SEZIONE TS4

I diaframmi dimensionati con tale sezione sono previsti da progressiva pk 5+032 alla pk 5+152 circa della GA01-A, per un'estensione complessiva di 120m circa. I diaframmi sono lunghi 15.8m con un'altezza di scavo di 8.40m da quota testa paratia. I parametri geotecnici caratteristici adottati per il dimensionamento dell'opera di sostegno, la stratigrafia di progetto e le ipotesi di falda sono state esposte nel §4 e 5.

9.1 Fasi di calcolo

Tale paragrafo descrive con maggior dettaglio le fasi costruttive brevemente presentate nella §5.3.3. Di seguito le fasi di calcolo e lo schema di scavo:

- Fase 0: start nihil;
- > Fase 1: condizione geostatica:
 - o quota piano campagna a 49.0m slm;
 - o quota falda di costruzione a 40.8m slm a circa 8.2m da piano campagna;
- Fase 2: Scavo fino a piano di lavoro:
 - Scavo con pendenza 2V:3H da piano campagna a quota piano lavoro variabile tra 46.90 e 45.80m
 slm ed applicazione del carico accidentale di cantiere di 20kPa a quota piano campagna.
- Fase 3: Realizzazione diaframmi da piano di lavoro:
- > Fase 4: Realizzazione intervento jet tipo 'sandwich' con doppio strato al di sotto del piano di scavo:
 - L'intervento è così composto:
 - Spessore terreno trattato superiore: 1.5m
 - Spessore terreno non trattato intermedio: 3.0m
 - Spessore terreno trattato inferiore: 2.5m
 - L'intervento è stato modellato modificando i parametri geotecnici di base degli strati interessati di terreno considerando i seguenti parametri caratteristici:
 - valore di coesione c': 500kPa; rigidezza del terreno incrementata di 20 volte rispetto ai valori caratteristici;
- Fase 5: Approfondimento pre-scavo da quota piano di lavoro a quota testa paratia per la realizzazione del solettone di copertura
- Fase 6: Realizzazione del solettone di copertura:
 - Come descritto nel §6.2, il nodo di connessione tra diaframma è copertura è stato simulato sia come una 'cerniera' che 'pienamente incastrata'. La copertura è stata pertanto modellata in Paratia come elemento 'soletta' di spessore 1.6m.
- Fase 7: Posa in opera del ricoprimento al di sopra della copertura tale da stabilire la quota di piano campagna:
 - o Lo spessore di ricoprimento considerato lungo tale tratto è pari a 1.0m.
- Fase 8: Applicazione del carico accidentale di 20kPa a piano campagna

- Fase 9: Scavo della Galleria fino a quota di fondo scavo 35.31m, 10.3m circa al di sotto del piano di lavoro
 - In tale fase, la quota falda di valle tra le paratie è stata considerata cautelativamente a quota di fondo scavo.
- > Fase 10: Risalita falda a quota di breve termine:
 - Innalzamento del livello di falda quota falda da quota falda di costruzione a quota breve termine. Con tale scenario si riproduce le condizioni di un innalzamento del livello di falda a causa evento meteorico improvviso (il §7.3.1 riporta la verifica della stabilità del fondo scavo nei confronti di tale evento).
- Fase 11: Discesa falda a quota di breve costruzione
 - Con tale fase, si assumono che gli effetti di un evento meteorico improvviso siano esauriti e che il livello di falda diminuisca alla quota di falda di costruzione.
- Fase 12: Costruzione del solettone di fondo:
 - o Il solettone di fondo è stato modellato in Paratie con un elemento di tipo 'Puntone' alla quota dell'asse del solaio 35.91m.
- Fase 13: Costruzione delle contropareti interne di spessore 0.80m:
 - L'azione irrigidente della controparete interna è stata simulata calcolando una rigidezza equivalente tra diaframma e controparete assumendo che si comportino come elementi in parallelo' (Figura 8 presentata in precedenza).
- Fase 14: Risalita della falda a quota di lungo termine con tampone jet grouting ancora attivo:
 - o In tale fase si simula la risalita della falda a quota di lungo termine 44.8m a monte ed a valle della paratia. In tale fase, l'azione irrigidente del tampone jet a valle è ancora considerata presente.
- > Fase 15: Quota di falda a quota di lungo termine e perdita dell'azione stabilizzante del tampone jet
 - o In tale fase, parametri geotecnici dei terreni interessati dall'intervento jet vengono riportati ad i loro valori caratteristici di base
- Fase 16: Riduzione dei moduli elastici delle strutture da istantanei a quelli di lungo termine
 - Come accennato al §6.2.4, la riduzione di rigidezza degli elementi strutturali causata da effetti viscosi è stata riducendo i moduli elastici degli elementi strutturali del 20%.
- > Fase 17: Applicazione dell'azione sismica
 - Applicazione del sovraccarico sismico ottenuto applicando la teoria di Wood secondo quanto descritto al §6.2.2. Tale sovraccarico è stato applicato da quota testa a quota piede paratia.
 - $\Delta p = (a_g/g) \times S \times \gamma_t \times H = 118kPa$

Nelle figure seguenti si riportano delle immagini di alcuni step sviluppati nel modello di calcolo Paratie.

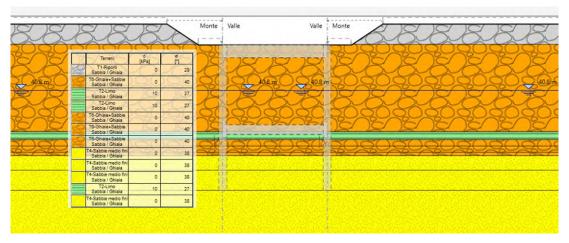


Figura 30 Fase 4 Realizzazione tampone jet tipo 'sandwich' con doppio stato

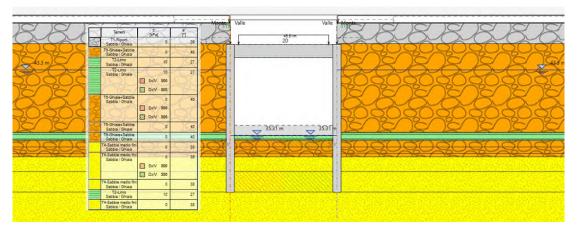


Figura 31 Fase 10 Scavo della Galleria fino a quota di fondo scavo 32.52m e falda a quota falda di breve termine

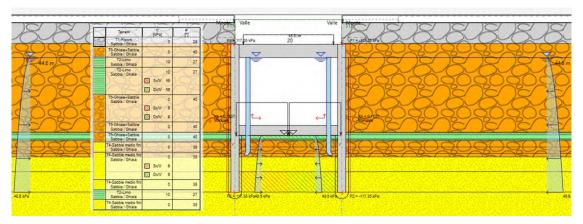


Figura 32 Fase 17 Applicazione azione sismica

GENERAL CONTRACTOR	ALTA S	SORVE	GLIANZA				
Consorzio IricAV Due	A CONTRACTOR OF THE CONTRACTOR	GRUPPO FERROVIE DELLO STATO ITALIANI Progetto Lotto Codifica Documento Rev.					
GA01-A OPERE SOSTEGNO DEGLI SCAVI E I	Progetto	Lotto	Codifica Documento	Rev.	Foglio		
GAUT-A OF EINE SOSTEGNO DEGEL SCAVIE I	IN17	11	EI2 CL GA 01 A4 0014	Α	71 di 205		

9.2 Risultati di calcolo

Di seguito sono schematizzati i risultati principali del dimensionamento della paratia di sostegno. La Tabella 23 riporta gli inviluppi delle sollecitazioni flettenti e taglianti al metro lineare di diaframma ottenute dai modelli sviluppati per la sezione 'TS-4'. I risultati dei modelli di copertura appoggiata ed incastrata alle paratie sono stati raggruppati secondo gli stati limite SLE-RARA, SLU A1+M1+R1 e SISMA-STR nel modo seguente:

- Condizioni di Breve Termine (BT):
 Tali condizioni identificano le fasi di costruzione della galleria artificiale dalle condizioni geostatiche (Fase 0) al raggiungimento della quota di fondo scavo con falda pari alla falda di breve termine (Fase 11)
- Condizioni di Lungo Termine (LT):
 Tali condizioni comprendono le fasi di calcolo nelle quali si completano le strutture definitive della galleria Fase 12-Costruzione solaio di fondo) e si instaurano le condizioni di lungo termine (Fase 16-Riduzione dei moduli elastici delle strutture da istantanei a quelli di lungo termine.
- Condizioni Sismiche (SISMA STR):
 Tali condizioni identificano le sollecitazioni che si verificano al raggiungimento dello stato limite
 SISMA STR definito come richiesto dalla normativa vigente.

In Figura 33 e Figura 34 vengono riportati i diagrammi delle sollecitazioni flettenti e taglianti al metro lineare di sviluppo di paratia. In ascissa sono indicate le azioni a metro lineare di pannello, mentre in ordinata è indicata la quota altimetrica

GENERAL CONTRACTOR

GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO

ProgettoLottoCodifica DocumentoRev.FoglioIN1711EI2 CL GA 01 A4 0014A72 di 205

Tabella 23 Sezione 'TS4' Sollecitazioni flettenti e taglianti di verifica

	SLS-rara								SLU (A1+M+	-R1)						
	Momento - Caso copertura appoggiata			Momento - Caso copertura incastrata			Momento - Caso copertura appoggiata				Momento - Caso copertura incastrata					
	Inv.BT (Diafr.)		Inv.LT (Fod+Diafr.)		Inv.BT (Diafr.)		Inv.LT (Fod+Diafr.)		Inv.BT (Diafr.)		Inv.LT (Fod+Diafr.)		Inv.BT (Diafr.)		Inv.LT (Fod+Diafr.)	
	Valore lato Terra	Valore lato Scavo	Valore lato		Valore lato Terra	Valore lato Scavo	Valore lato		Valore lato Terra	Valore lato Scavo	Valore lato	Valore lato Scavo	Valore lato Terra	Valore lato Scavo	Valore lato	Valore lato Scavo
Sollecitazioni Flettenti								(kN*m/m)		(kN*m/m)						(kN*m/m)
Quota asse copertura	15	0	15	0	905	0	973	0	20	0	20	0	1251	0	1390	0
Quota intradosso copertura	2	138	2	159	653	0	698	0	3	179	3	206	909	0	1012	0
Testa diaframma	3	311	3	354	366	0	384	0	4	404	4	460	523	0	579	0
Gabbia di armatura No.1	3	684	3	734	366	477	384	500	4	889	4	955	523	612	579	640
Sovrapposizione Gabbia No.1-No.2	1	581	168	589	1	467	1	473	2	756	218	766	2	602	2	610
Gabbia di armatura No.2	567	143	567	143	308	239	308	239	736	186	736	186	383	317	383	317

	SISMA (STR	U)							
	Momento -	Caso copertu	ra appoggiata	э	Momento -				
	Inv.BT (Diaf	r.)	Inv.LT (Fod+	-Diafr.)	Inv.BT (Diaf	r.)	Inv.LT (Fod+Diafr.)		
	Valore lato Terra			Valore lato Scavo	Valore lato Terra	Valore lato Scavo	Valore lato Terra	Valore lato Scavo	
Sollecitazioni Flettenti	(kN*m/m)	(kN*m/m)	(kN*m/m)	(kN*m/m)	(kN*m/m)	(kN*m/m)	(kN*m/m)	(kN*m/m)	
Quota asse copertura	15	0	45	0	905	0	1422	0	
Quota intradosso copertura	2	138	2	393	653	0	841	0	
Testa diaframma	3	311	3	838	366	0	384	0	
Gabbia di armatura No.1	3	684	3	1361	366	477	384	843	
Sovrapposizione Gabbia No.1-No.2	1	581	1388	589	1	467	1082	473	
Gabbia di armatura No.2	567	143	1771	143	308	239	1406	239	

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Documento Rev. Foglio

IN17

11

EI2 CL GA 01 A4 0014

73 di 205

Α

	Inviluppo A1+M1+R1					Inviluppo SISMA STR										
	Taglio - C	Taglio - Caso copertura appoggiata Taglio - Caso copertura incastrata				rata	Taglio - Caso copertura appoggiata				Taglio - Caso copertura incastrata					
	Inv.BT (Diafr.) Inv.LT (Fod+Diafr.)		Inv.BT (Diafr.) Inv.LT (Fod+Diafr.)		Inv.BT (Diafr.) Inv.LT		Inv.LT (Fo	Inv.LT (Fod+Diafr.)		Inv.BT (Diafr.)		Inv.LT (Fod+Diafr.)				
	Valore	Valore	Valore	Valore	Valore	Valore	Valore	Valore	Valore	Valore	Valore	Valore	Valore	Valore	Valore	Valore
	lato	lato	lato	lato	lato	lato	lato	lato	lato	lato	lato	lato	lato	lato	lato	lato
	sinistro	destro	sinistro	destro	sinistro	destro	sinistro	destro	sinistro	destro	sinistro	destro	sinistro	destro	sinistro	destro
	(kN/m)	(kN/m)	(kN/m)	(kN/m)	(kN/m)	(kN/m)	(kN/m)	(kN/m)	(kN/m)	(kN/m)	(kN/m)	(kN/m)	(kN/m)	(kN/m)	(kN/m)	(kN/m)
Quota asse copertura	30	255	30	286	18	439	18	485	23	197	90	580	14	325	78	761
Quota intradosso copertura	2	241	2	271	2	415	2	461	1	185	1	515	1	306	1	693
Testa diaframma	1	214	1	241	1	366	1	411	1	165	1	397	0	272	0	572
Gabbia di aramtura No.1	154	214	230	241	37	366	101	411	118	165	541	397	34	272	411	572
Quota estradosso solaio fondo	320	2	398	2	182	1	266	1	247	1	803	1	145	1	672	1
Sovrapposizione gabbia No.1-2	401	2	548	2	262	12	387	12	309	1	1205	1	207	4	1011	4
Quota asse solaio fondo	451	2	605	189	312	2	444	151	312	2	444	151	245	1	1110	743
Quota intradosso solaio fondo	451	2	605	189	312	2	444	151	347	1	1305	799	245	1	1110	743
Gabbia di aramtura No.2	555	305	605	305	449	216	449	216	427	235	1305	799	349	170	1110	743

GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO

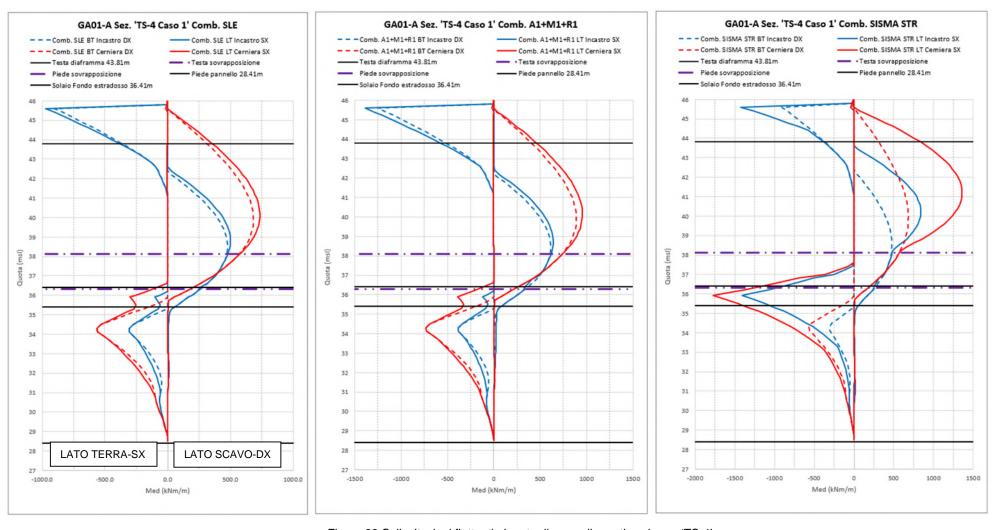


Figura 33 Sollecitazioni flettenti al metro lineare di paratia schema 'TS-4'

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE
GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO	Progetto Lotto Codifica Documento Rev. Foglio IN17 11 EI2 CL GA 01 A4 0014 A 75 di 205

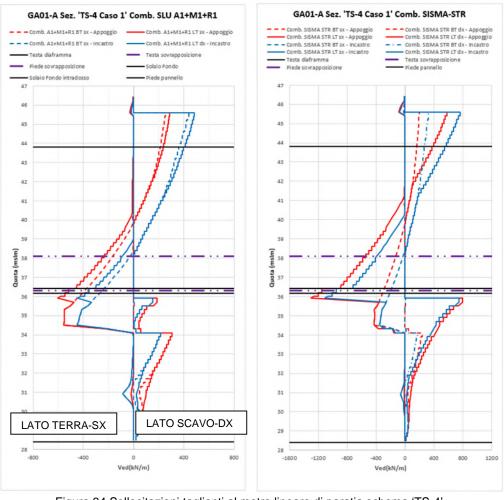


Figura 34 Sollecitazioni taglianti al metro lineare di paratia schema 'TS-4'

9.3 Verifiche geotecniche

9.3.1 Spostamenti e stabilità del fondo scavo

Come descritto nella relazione IN1711EI2RHGA0100001A dei criteri di dimensionamento delle opere di sostegno della GA01, la valutazione del corretto comportamento del modello di calcolo è basata sull'esame dei valori di spinta passiva mobilitata al piede della paratia. Il rapporto tra la risultante della spinta passiva e della spinta effettiva nel tratto infisso consente di valutare quanto la struttura disti dalla condizione limite. In combinazione SLU GEO tale rapporto deve essere maggiore o uguale a 1 affinché non sia violato il criterio di resistenza. I valori degli spostamenti dell'opera di sostegno e del terreno circostante devono essere compatibili con la funzionalità della struttura da realizzare e con la sicurezza e funzionalità dei manufatti adiacenti.

Nella tabella seguente sono riassunti i risultati di maggiore interesse sia allo SLE sia allo SLU, con riferimento agli spostamenti delle pareti e ai valori di mobilitazione della spinta passiva (Tabella 18).

Tabella 24 TS4 Riassunto spostamento massimo laterale dei diaframmi e coefficienti di mobilitazione

Sezione di calcolo	Comb.	Spostamenti orizzontali u(mm)	%Sp (Scavo a quota fondo scavo)	%Sp (Condizione di lungo termine)
TC4	SLE RARA	4 (z=36.9m)	-	-
TS4	SLU (A2+M2+R1)	=	15	34
(copertura appoggiata)	SLU Sisma-STR	=	-	75
TC 4	SLE RARA	3 (z=38.4m)	-	-
TS4	SLU (A2+M2+R1)	=	13	38
(copertura incastrata)	SLU Sisma-STR	-	-	80

9.3.2 Verifiche deformazioni/cedimenti attesi

Gli spostamenti orizzontali attesi dei diaframmi sono modesti, sia con schema di semplice appoggio che nel caso di incastro: è presumibile che lo spostamento reale sia intermedio tra i due estremi considerati. In base a quanto esposto nella citata relazione relativa ai criteri di dimensionamento ed agli spostamenti orizzontali massimi calcolati, si possono determinare gli spostamenti verticali massimi S_{v,max} attesi a tergo della paratia e, in funzione dell'altezza di scavo H, una stima della loro distribuzione in funzione della distanza dall'opera di sostegno.

Per i risultati dell'analisi di cedimento si rimanda alla sezione 'TS2' in quanto più gravosa.

9.3.3 Verifiche di capacità portante dei diaframmi

La verifica di capacità portante nella fase di breve termine (scavi aperti, massimo sovraccarico in copertura) è effettuata con i criteri riportati nella relazione IN1711EI2RHGA0100001A.

Di seguito si allegano:

- Stratigrafia e parametri di riferimento
- Curve di capacità portante in condizioni A1+M1+R3 e in condizioni di esercizio per la verifica della corretta ripartizione tra capacità portante di base e capacità portante laterale al fine della limitazione dei cedimenti attesi.

Stratigrafia e parametri geotecnio											
	.1										
Dati di input	t		1	Legenda	tipo di	terreno:					
Spessore diaframma	1	m	1	SL	Sabbia	limosa					
Sovraccarico efficace VALLE	0.0	kPa]	S	Sa	bbia					
HW da testa diaframma valle	0.0	m		G	Gh	iaia					
y acqua	9.81	kN/m ³]	Α	Materia	li coesivi					
Δz palo/diaf _{da p.c. originario}	5.20	m	1								
N° diam. per riduzione qb	5.0	(-)	1	Inseris	ci strati	grafia					
L diaframmi fuori terra	8.50	(m)	1								
Peso calcestruzzo	25.00	kN/m ³	1								
Pressione max sul cls.	8.5	MPa	1								
		C	aratteristich	e del terre	по						
			(massimo	10 strati)							
Profondità (m)		Strato	Terreno	Y tot	N:	spt	Cu(l	(Pa)	∆-z	♦°	
da	a	No.	(S, A)	kN/m3	da	a	da	a	(m)	da	a
0.0	1.0	1	A	19.0			125	125	0.50		
1.0	3.0	2	S	20.0	40	40			0.50	38	
3.0	6.5	3	G	20.0	40	40			0.50	40	
6.5	16.5	4	s	20.0	35	60			0.50	38	
								I	ı		

N.B. La quota zero di riferimento è la quota di fondo scavo: le profondità degli strati vanno riferite alla quota di scavo

Figura 35 Sez. TS4 Capacità portante - Stratigrafia a e parametri di riferimento

Nelle tabelle seguenti si riassumono i valori di capacità portante a compressione (Rc,d) e a trazione (Rt,d), ottenuti dalla analisi, secondo l'approccio 2 (A1+M1+R3).

Tabella 25 Combinazione SLU: Sollecitazioni massime di compressione e trazione e valori limiti resistenti

Combinazione di carico - SLU	Q tot
Massima compressione, Ndc, max [kN]	930 (SLU)

Si verifica, inoltre, che lo sforzo assiale massimo in esercizio sia inferiore della resistenza laterale di calcolo (Rc,s,lat) divisa per un fattore pari a 1.25.

GENERAL CONTRACTOR Consorzio IricAV Due			ITA	ELIANZA LFERR O STATO ITALIANI		
GA01-A OPERE SOSTEGNO DEGLI S	SCAVLE TAMPONE DI FONDO	Progetto	Lotto	Codifica Documento	Rev.	Foglio
GAUTA OPERE SOSTEGNO DEGLIS	SCAVI E TAMPONE DI PONDO	IN17	11	FI2 CL GA 01 A4 0014	Α	78 di 205

Tabella 26: Combinazione SLE: Sollecitazione massima di compressione

Combinazione di carico SLE	Qtot
Massima compressione, Ndc SLE, max [kN]	690 (SLE)

GALLERIA ARTICIALE S.MARTINO BUON ALBERGO - GA01-A Sez. TS-4 Capacità portante Comb. SLE diaframmi sp1000mm: Ltot 15.8m Linfissa 7.0m (Quota zero coincidente con il fondo dello scavo della galleria artificale)

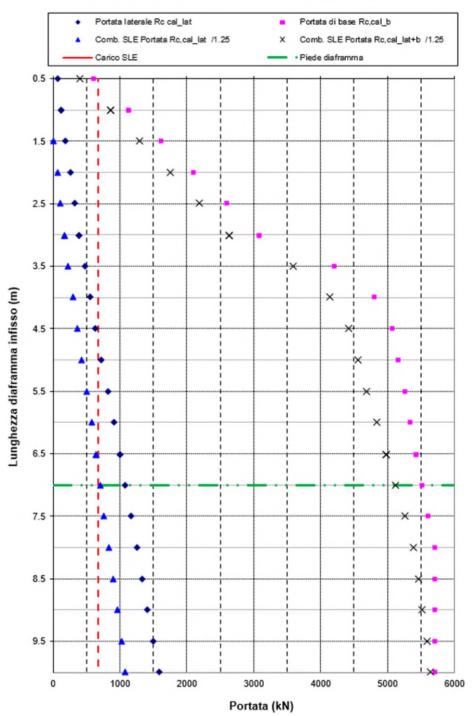


Figura 36 Sez. TS4 – Verifica capacità portante Comb. SLE

GALLERIA ARTICIALE S.MARTINO BUON ALBERGO - GA01-A Sez. TS-4 Capacità portante Comb. A1+M1+R3 diafr. sp1000mm: Ltot 15.8m Linfissa 7.0m (Quota zero coincidente con il fondo dello scavo della galleria artificiale)

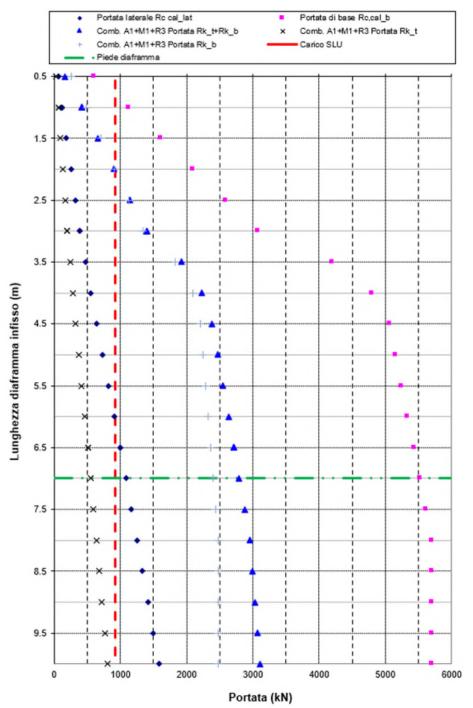


Figura 37 Sez. TS4 – Verifica capacità portante Comb. SLU (A1+M1+R3)

9.3.4 Verifiche di stabilità globale

Si riportano i risultati dell'analisi di stabilità globale della sezione di calcolo considerata agli step mostrati nella tabella seguente. Per l'analisi di stabilità è stato considerato un carico accidentale di cantiere pari a 10kPa. Le verifiche sono eseguite in accordo con il metodo di Janbu.

Tabella 27 Sezione TS2 Risultati stabilità globale

Comb.	Step	Coefficiente di sicurezza
	Fase 2 - Scavo quota piano di lavoro	1.17
A2+M2+R1	Fase 10 - Risalita falda a quota di breve termine	2.35

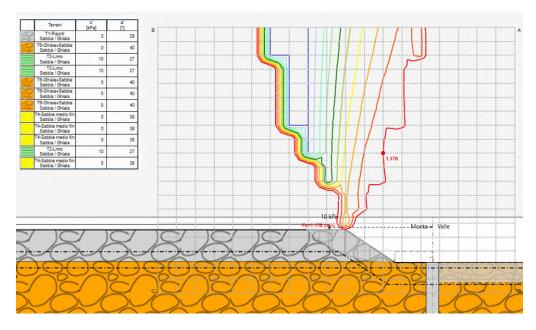


Figura 38 Fase 2 - Stabilità scavo (Comb. A2+M2+R1)

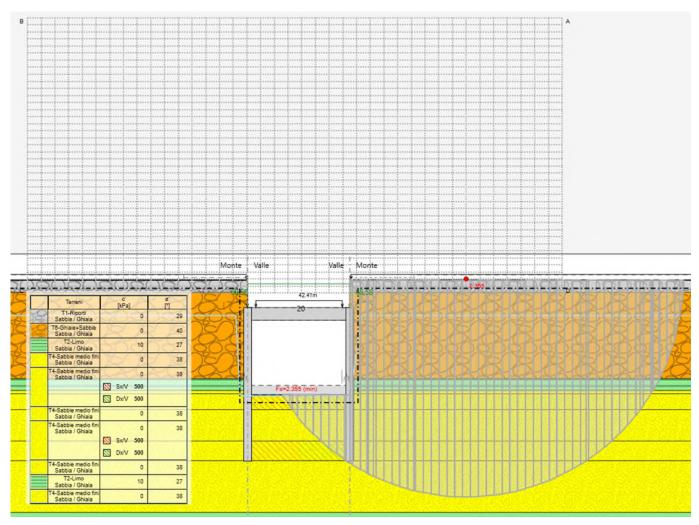


Figura 39 Fase 10 - Stabilità scavo (Comb. A2+M2+R1)

9.3.5 Verifiche di stabilità del fondo scavo al galleggiamento

Per i criteri generali di verifica si rimanda alla relazione IN1711EI2RHGA0100001A relativa ai metodi dimensionamento delle opere di sostegno della GA01. Circa la robustezza del dimensionamento effettuato con il metodo semplificato proposto si rimanda a quanto già espresso al precedente § 7.3.5. Di seguito si riportano le verifiche di stabilità del tampone di fondo in jet grouting per le diverse tipologie analizzate. La quota di riferimento della falda considerata in tale verifica è pari alla quota della falda in fase di costruzione.

Tabella 28 TS4 Verifica a galleggiamento tampone di fondo

VERIFICA	VERIFICA CON ATTRITO CON SCAVO REALE - TAMPONE IMPERMEABILE								
GA01 - V	ERIFICA TAMPONE DI	FONDO - MAX BATTENTE 5.5m (TRATTO TS4)							
		·							
Zfalda	43.4 m s.l.m	Quota falda							
Zfs	35.4 m s.l.m	Quota fondo scavo							
Hw	8 m	Altezza falda a piano scavo							
Lmin	12 m	Dimensione minima in pianta del tampone							
Lmax	100 m	Dimensione massima in pianta del tampone							
Htf	1.5	Altezza terreno trattato sotto il fondo scavo							
Hte	3 m	Altezza intermedia terreno non trattato							
Hta	2.5 m	Altezza tampone di fondo inferiore							
Hinfissio		Altezza infissione paratia							
γtn	20.0 kN/m3	Peso specifico terreno naturale							
γta	20.0 kN/m3	Peso specifico tampone							
fa	0.29 ()	Aderenza massima tampone paratia							
	()								
Hw	15.0 m	= Zfalda - Zfs +Hte+Hta altezza battente idraulico							
u_Hw	147.2 kPa	pressione interstiziale in funzione del battente idraulico							
Sw	147.2 kPa	pressione intestiziale agente alla base del tampone							
Np	900.0 kN/m	da calcolo Paratie							
σ p 1	128.57 kN/m2	Np/Hinfissione Valore medio pressione passiva mobilitata su jet							
σ p2	128.57 kN/m2	valore medio sull'altezza del tampone letto in paratie							
σp3	17.50 kN/m2	valore geostatico a fondo scavo alla profondità media del tampone							
σp,calc	128.57 kN/m2	valore adottato nei calcoli							
fa	37.29 kN/m2	= σp * tan φ Aderenza massima tampone paratia							
Wt	8.2 m3	= Hta^2/6 W resistente flessione tampone per 1 m di larghezza							
α	0.99 (-)	= 1/(1+Lmin/Lmax)^2) coeff riduttivo momento per effetto piastra							
qtf	59.17 kN/m	= $8*\sigma p*Wt/(\alpha \times Lmin^2)$							
qta	43.50 kN/m	=2*fa*Hinf/Lmin							
qt utile	43.50 kN/m	-2 10 11111/LI11111							
qualife	73.30 KIN/III								
Pte	720.0 kN	= γte*(Hte+Htf)*Lmin Peso terreno per 1 metro di sezione							
Pta	960.0 kN	= γta*Hta*Lmin = Peso tampone per 1 m di sezione							
Sta	522.0 kN	= qt utile*Lmin = risultante pressione assorbita dall infissione per 1 m							
Sw	1765.8 kN	= Hw *10 * Lmin = sottospinta falda per 1 metro di sezione							
JW	1703.8 KIV	- 11w 10 Litilii - soccospinta faida per 1 metro di sezione							
Ribassol	ocale in corrisponder	nza vasca di aggottamento							
Wrib	0 kN	nea vasca di aggottumento							
-	secondo NTC 08								
0.9* St	1981.8 kN								
1.1*SW	1942.4 kN								
St>Sw	Verificato								
	1.02								
St/Sw	1.02								

GENERAL CONTRACTOR	ALTA SORVEGLIANZA
Consorzio IricAV Due	GRUPPO FERROVIE DELLO STATO ITALIANE
GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO	Progetto Lotto Codifica Documento Rev. Foglio
GAUTA OF EINE GOGTEGING BEGEFGGAVIE TAINFOINE BIT ONDO	IN17 11 EI2 CL GA 01 A4 0014 A 83 di 205

9.3.6 Verifiche di stabilità della struttura interna

Nelle tabelle delle pagine successive sono riportate le verifiche al sollevamento della struttura interna della galleria (intesa come manufatto ad U) per verificare l'entità delle azioni agenti alla testa dei diaframmi derivanti dall'equilibrio delle seguenti forze:

- Azioni stabilizzanti:
 - o Peso proprio manufatto ad U (armamento e opere di finitura ed escluse)
 - Peso della copertura e del rinterro considerando l'altezza minima di ricoprimento/rinterro lungo la tratta considerata
- Azioni instabilizzanti:
 - o Sottospinta idraulica calcolata rispetto alla falda di lungo termine

IN17

11

EI2 CL GA 01 A4 0014

84 di 205

Α

GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO

VERIFICA SOLLEVAMENTO STRUTTURA DEFINITIVA GA01-A - VERIFICA SOLLEVAMENTO STRUTTURA DEFINITIVA - TRATTO TS 4 Quote falda e battente Zfalda 44.9 m s.l.m Quota falda lungo termine Zfs 35.4 m s.l.m Quota fondo scavo Hw 9.5 m Altezza falda lungo termine a piano scavo Carichi struttura GA01 Lmin 12 m Dimensione minima in pianta del tampone S_diaf 1 m Spessore diaframmi S Fondo Spessore solettone di fondo 1 m S_Fodera 0.8 m Spessore controfodera Lnet 10.4 Luce netta manufatto ad U 0.72 m² Atrave Area cls trave prefabbricata 0.25 m² Asol trave Area cls soletta di completamento γ cls 24 kN/m³ Peso unità di voulume calcestruzzo W trave 180.5 kN/m Peso Trave prefabbricata W sol_trave 65 kN/m Peso soletta di completamento trave H_t-diaf Altezza trave di coronamento testa diaf. 1 m B_t-diaf 2.1 m Base trave di coronamento testa diaf. H_c-trave 1.6 m Altezza trave ripartizione trave prefabb. B c-trave 2.1 m Base trave ripartizione trave prefabb. W_c 262.08 kN/m Peso trave di coronamento+codolo trave W_fondo 288 kN/m Peso solaio di fondo H_fodera 7.4 m Altezza netta controfodera fino a intradosso cordolo W_fodera 284.16 kN/m Peso controfodera W_cls_tot 1079.69 kN/m Peso complessivo manufatto ad U + trave + cordoli H ricMin 1.5 m Altezza ricoprimento 18.5 kN/m3 Peso specifico terreno naturale γtn W_ter 405.15 kN/m Peso ricoprimento W_tot 1484.8 kN/m 95 kPa wa Sw 1140.0 kN/m = Hw *10 * Lmin = sottospinta falda per 1 metro di sezione 0.9*W d 1336.4 kN/m 1.1*SW 1254 St>Sw Verificato St/Sw 1.066 Calcolo azione assiale testa diaframma (compressione positiva) 570 kN/m Azione instabilizzante indotta falda sul piedritto N inst diaf 742 kN/m Azione stabilizzante pesi propri sul piedritto N_stab_cop 1.3*N_inst_diaf 741.0 kN/m 0.9*N_stab_cop 668.2 kN/m N_testaDiaf_SLE 172 kN/m Azione assiale risultante sul piedritto SLE N testaDiaf SLU -73 kN/m Azione assiale risultante sul piedritto SLU

Dalle verifiche si evince come nelle condizioni caratteristiche i diaframmi risultano in tutti i casi compressi. Nelle condizioni allo Stato Limite Ultimo, SLU, i diaframmi risultano sostanzialmente scarichi con azione assiale pressoché nulla. Per questa ragione, nella verifica strutturali dei diaframmi in tutte le condizioni di carico si è assunto un'azione assiale nulla agente lungo l'intera altezza stesso.

GENERAL CONTRACTOR		ALTA S	ORVE	GLIANZA		
Consorzio Iric/W Due				LFERR O STATO ITALIANI		
CA01 A OBERE SOSTECNO DECLU	CARA A OPERE COCTECNO RECLI CCAVILE TAMBONE DI FONDO		Lotto	Codifica Documento	Rev.	Foglio
GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO		IN17	11	EI2 CL GA 01 A4 0014	Α	85 di 205

9.3.7 Stima delle portate entranti al variare dei coefficienti di permeabilità del tampone di fondo

Per i criteri generali di verifica si rimanda alla relazione generale IN1711EI2RHGA0100001A della GA01.

Per tale sezione il battente idrico sulla falda di costruzione è minore di quello previsto per la porzione di galleria analizzata nella sezione di calcolo 'TS-2'. Pertanto, ai fini della stima delle portate entranti nello scavo, si rimanda ai risulti relativi alla 'TS-2' descritti nel §7.3.7.

10 VERIFICHE SEZIONE TA

I diaframmi dimensionati con tale sezione sono previsti da progressiva pk 4+942 alla pk 5+032 circa della GA01-A, per un'estensione complessiva di 90m circa. I diaframmi sono lunghi 14.8m con un'altezza di scavo di 8.40m da quota testa paratia. I parametri geotecnici caratteristici adottati per il dimensionamento dell'opera di sostegno, la stratigrafia di progetto e le ipotesi di falda sono state esposte nel §4 e 5.

10.1 Fasi di calcolo

Tale paragrafo descrive con maggior dettaglio le fasi costruttive brevemente presentate nella §5.3.3. Di seguito le fasi di calcolo e lo schema di scavo:

- Fase 0: start nihil;
- Fase 1: condizione geostatica:
 - o quota piano campagna a 48.9m slm;
 - o quota falda di costruzione a 41.2m slm a circa 7.7m da piano campagna;
- Fase 2: Scavo fino a piano di lavoro:
 - Scavo con pendenza 2V:3H da piano campagna a quota piano lavoro variabile tra 47.80 e 47.30m
 slm ed applicazione del carico accidentale di cantiere di 20kPa a quota piano campagna.
- Fase 3: Realizzazione diaframmi da piano di lavoro:
- > Fase 4: Realizzazione intervento jet tipo 'sandwich' con strato singolo al di sotto del piano di scavo:
 - L'intervento è così composto:
 - Spessore terreno trattato superiore: assente
 - Spessore terreno non trattato intermedio: 3.5m
 - Spessore terreno trattato inferiore: 2.5m
 - L'intervento è stato modellato modificando i parametri geotecnici di base degli strati interessati di terreno considerando i seguenti parametri caratteristici:
 - valore di coesione c': 500kPa; rigidezza del terreno incrementata di 20 volte rispetto ai valori caratteristici;
- Fase 5: Approfondimento pre-scavo da quota piano di lavoro a quota testa paratia per la realizzazione del solettone di copertura
- Fase 6: Realizzazione del solettone di copertura:
 - Come descritto nel §6.2, il nodo di connessione tra diaframma è copertura è stato simulato sia come una 'cerniera' che 'pienamente incastrata'. La copertura è stata pertanto modellata in Paratia come elemento 'soletta' di spessore 1.6m.
- Fase 7: Posa in opera del ricoprimento al di sopra della copertura tale da stabilire la quota di piano campagna:
 - o Lo spessore di ricoprimento considerato lungo tale tratto è pari a 1.0m.
- Fase 8: Applicazione del carico accidentale di 20kPa a piano campagna

- Fase 9: Scavo della Galleria fino a quota di fondo scavo 36.76m, 10.8m circa al di sotto del piano di lavoro
 - In tale fase, la quota falda di valle tra le paratie è stata considerata cautelativamente a quota di fondo scavo.
- Fase 10: Risalita falda a quota di breve termine:
 - Innalzamento del livello di falda quota falda da quota falda di costruzione a quota breve termine. Con tale scenario si riproduce le condizioni di un innalzamento del livello di falda a causa evento meteorico improvviso (il §7.3.1 riporta la verifica della stabilità del fondo scavo nei confronti di tale evento).
- Fase 11: Discesa falda a quota di breve costruzione
 - Con tale fase, si assumono che gli effetti di un evento meteorico improvviso siano esauriti e che il livello di falda diminuisca alla quota di falda di costruzione.
- Fase 12: Costruzione del solettone di fondo:
 - o II solettone di fondo è stato modellato in Paratie con un elemento di tipo 'Puntone' alla quota dell'asse del solaio 37.36m.
- Fase 13: Costruzione delle contropareti interne di spessore 0.80m:
 - L'azione irrigidente della controparete interna è stata simulata calcolando una rigidezza equivalente tra diaframma e controparete assumendo che si comportino come elementi in parallelo' (Figura 8 presentata in precedenza).
- Fase 14: Risalita della falda a quota di lungo termine con tampone jet grouting ancora attivo:
 - o In tale fase si simula la risalita della falda a quota di lungo termine 45.22m a monte ed a valle della paratia. In tale fase, l'azione irrigidente del tampone jet a valle è ancora considerata presente.
- > Fase 15: Quota di falda a quota di lungo termine e perdita dell'azione stabilizzante del tampone jet
 - o In tale fase, parametri geotecnici dei terreni interessati dall'intervento jet vengono riportati ad i loro valori caratteristici di base
- > Fase 16: Riduzione dei moduli elastici delle strutture da istantanei a quelli di lungo termine
 - Come accennato al §6.2.4, la riduzione di rigidezza degli elementi strutturali causata da effetti viscosi è stata riducendo i moduli elastici degli elementi strutturali del 20%.
- > Fase 17: Applicazione dell'azione sismica
 - Applicazione del sovraccarico sismico ottenuto applicando la teoria di Wood secondo quanto descritto al §6.2.2. Tale sovraccarico è stato applicato da quota testa a quota piede paratia.
 - $\Delta p = (a_g/g) \times S \times y_t \times H = 110kPa$

Nelle figure seguenti si riportano delle immagini di alcuni step sviluppati nel modello di calcolo Paratie.

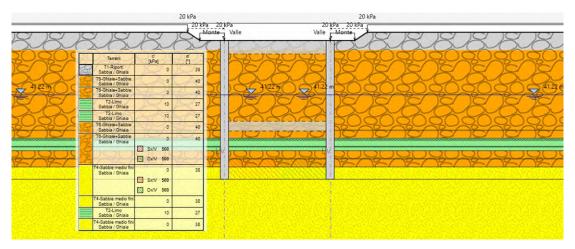


Figura 40 Fase 4 Realizzazione tampone jet tipo 'sandwich' con stato singolo

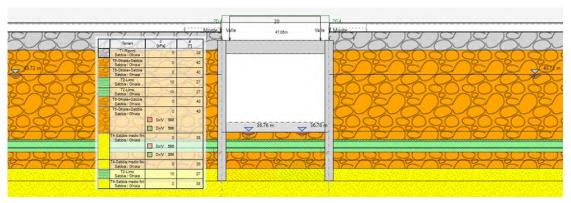


Figura 41 Fase 10 Scavo della Galleria fino a quota di fondo scavo 32.52m e falda a quota falda di breve termine

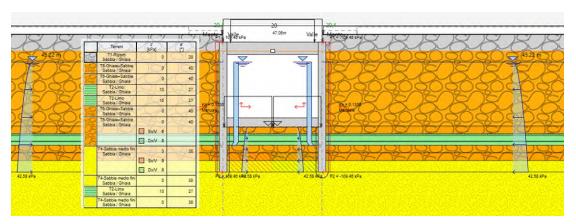


Figura 42 Fase 17 Applicazione azione sismica

GENERAL CONTRACTOR		ALTA S	ORVE	SLIANZA		
Consorzio IricAV Due				LFERR O STATO ITALIANI		
GAO1 A OPERE SOSTEGNO DEGLI SO	GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO		Lotto	Codifica Documento	Rev.	Foglio
GAUTA OFERE 303 LEGNO DEGLI 30	CAVIL TAMPONE DI FONDO	IN17	11	EI2 CL GA 01 A4 0014	Α	89 di 205

10.2 Risultati di calcolo

Di seguito sono schematizzati i risultati principali del dimensionamento della paratia di sostegno. La Tabella 29 riporta gli inviluppi delle sollecitazioni flettenti e taglianti al metro lineare di diaframma ottenute dai modelli sviluppati per la sezione 'TA'. I risultati dei modelli di copertura appoggiata ed incastrata alle paratie sono stati raggruppati secondo gli stati limite SLE-RARA, SLU A1+M1+R1 e SISMA-STR nel modo seguente:

- Condizioni di Breve Termine (BT):

 Tali condizioni identificano le fasi di costruzione della galleria artificiale dalle condizioni geostatiche (Fase 0) al raggiungimento della quota di fondo scavo con falda pari alla falda di breve termine (Fase 11)
- Condizioni di Lungo Termine (LT):
 Tali condizioni comprendono le fasi di calcolo nelle quali si completano le strutture definitive della galleria Fase 12-Costruzione solaio di fondo) e si instaurano le condizioni di lungo termine (Fase 16-Riduzione dei moduli elastici delle strutture da istantanei a quelli di lungo termine.
- Condizioni Sismiche (SISMA STR):
 Tali condizioni identificano le sollecitazioni che si verificano al raggiungimento dello stato limite
 SISMA STR definito come richiesto dalla normativa vigente.

In Figura 43 e Figura 44 vengono riportati i diagrammi delle sollecitazioni flettenti e taglianti al metro lineare di sviluppo di paratia. In ascissa sono indicate le azioni a metro lineare di pannello, mentre in ordinata è indicata la quota altimetrica.

GENERAL CONTRACTOR

Testa diaframma

Sovrapposizione Gabbia No.1-No.2

Gabbia di armatura No.2

GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO

0

356

904

316

Progetto Lotto Codifica Documento Rev. IN17 11 EI2 CL GA 01 A4 0014 Α

1175

440

0

321

1035

436

0

321

1035

436

Foglio

90 di 205

Tabella 29 Sezione 'TA' Sollecitazioni flettenti e taglianti di verifica SLU (A1+M+R1) SLS-rara Momento - Caso copertura appoggiata Momento - Caso copertura incastrata Momento - Caso copertura appoggiata Momento - Caso copertura incastrata Inv.LT (Fod+Diafr.) Inv.BT (Diafr.) Inv.LT (Fod+Diafr.) Inv.BT (Diafr.) Inv.LT (Fod+Diafr.) Inv.BT (Diafr.) Inv.LT (Fod+Diafr.) Inv.BT (Diafr.) Valore Valore Valore Valore Valore Valore Valore Valore Valore lato Valore lato Valore lato lato lato lato lato Valore lato Valore lato Valore lato Valore lato lato lato lato lato destro sinistro destro sinistro destro sinistro destro sinistro destro destro sinistro sinistro destro destro sinistro (kN*m/m) (kN*m/m) (kN*m/m) (kN*m/m) (kN*m/m) (kN*m/m (kN*m/m (kN*m/m (kN*m/n(kN*m/m)(kN*m/m) (kN*m/m) (kN*m/m (kN*m/m (kN*m/m (kN*m/m)))Sollecitazioni flettenti Quota asse copertura 14 0 14 1123 1142 18 18 0 1490 1515 0 0 0 0 0 0 Quota intradosso copertura 10 188 10 214 847 0 850 0 14 244 14 278 1129 0 1134 23 427 23 479 515 0 515 0 32 555 32 623 695 0 695 0 Gabbia di armatura No.1 31 1261 31 1275 515 910 515 910 43 1639 43 1657 695 1175 695 1175

799

335

0

462

1175

411

0

462

	SISMA (S	STRU)						
	Moment	to - Caso co	pertura ap	poggiata	Momento - C	aso copertura i	ncastrata	
	Inv.BT (E Valore	Diafr.) Valore	Inv.LT (F Valore	od+Diafr.) Valore	Inv.BT (Diafr.)	Inv.LT (Fod+E	Diafr.)
	lato sinistro (kN*m/r	lato destro	lato sinistro	lato destro	Valore lato sinistro (kN*m/m)	Valore lato destro (kN*m/m)	Valore lato sinistro (kN*m/m)	Valore lato destro (kN*m/m)
ollecitazioni flettenti)	1 (1.1.7	1 (1.1.7	1 (1.17 11.711	(KIV III)	(кі тіліт)	(KIV III)	(1117 1117)
Quota asse copertura	14	0	38	0	886	0	1287	0
uota intradosso copertura	10	188	10	402	670	0	806	0
esta diaframma	23	427	23	861	414	0	490	0
iabbia di armatura No.1	31	1261	821	1734	414	667	954	1081
ovrapposizione Gabbia No.1-No.2	0	904	447	858	0	595	638	799
iabbia di armatura No.2	356	316	304	338	203	245	249	335

0

356

904

338

0

249

799

335

0

249

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Documento Rev. Foglio

IN17

11

91 di 205

Α

EI2 CL GA 01 A4 0014

	Inviluppo	A1+M1+R1	Ĺ						Inviluppo	SISMA STE	₹					
	Taglio - Ca	aso coperti	ıra appoggi	ata	Taglio - Ca	so copertu	ıra incastra	ita	Taglio - Ca	aso coperti	ıra appogg	iata	Taglio - Ca	aso copert	ura incastra	ata
	Inv.BT (Di	afr.)	Inv.LT (Fo	d+Diafr.)	Inv.BT (Di	afr.)	Inv.LT (Fo	d+Diafr.)	Inv.BT (Di	afr.)	Inv.LT (Fo	d+Diafr.)	Inv.BT (Di	afr.)	Inv.LT (Fo	d+Diafr.)
	Valore lato Terra (kN/m)	Valore lato Scavo (kN/m)	Valore lato Terra (kN/m)	Valore lato Scavo (kN/m)	Valore lato Terra (kN/m)	Scavo	Valore lato Terra (kN/m)	Scavo	Valore lato Terra (kN/m)	Valore lato Scavo (kN/m)	Valore lato Terra (kN/m)	lato Scavo	Valore lato Terra (kN/m)	Valore lato Scavo (kN/m)	Valore lato Terra (kN/m)	Valore lato Scavo (kN/m)
Quota asse copertura	20	335	20	370	18	459	18	485	16	257	75	580	14	276	73	695
Quota intradosso copertura	17	322	17	357	17	445	17	471	. 13	248	13	519	13	265	13	634
Testa diaframma	16	303	16	336	16	426	16	452	11	. 233	11	420	11	250	11	. 533
Quota estradosso solaio fondo	161	. 9	296	9	38	5	182	5	124	. 7	736	7	15	4	839	4
Quota asse solaio fondo	227	11	427	11	104	6	267	6	175	9	1081	541	55	4	978	577
Quota intradosso solaio fondo	272	13	310	13	149	7	194	7	209	10	238	489	82	. 6	151	526
Gabbia di aramtura No.1	326	303	427	336	203	426	267	452	251	233	1081	541	115	250	978	577
Sovrapposizione gabbia No.1-2	517	19	517	19	419	16	419	16	398	15	398	402	257	12	324	438
Gabbia di aramtura No.2	631	344	631	344	540	256	540	256	485	265	485	265	302	159	417	199

GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO

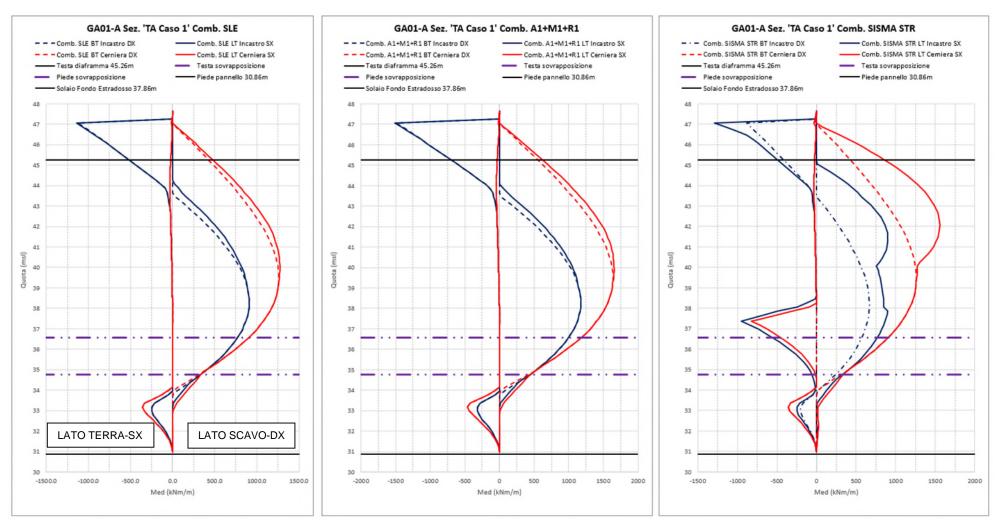


Figura 43 Sollecitazioni flettenti al metro lineare di paratia schema 'TA'

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE
GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO	Progetto Lotto Codifica Documento Rev. Foglio IN17 11 EI2 CL GA 01 A4 0014 A 93 di 205

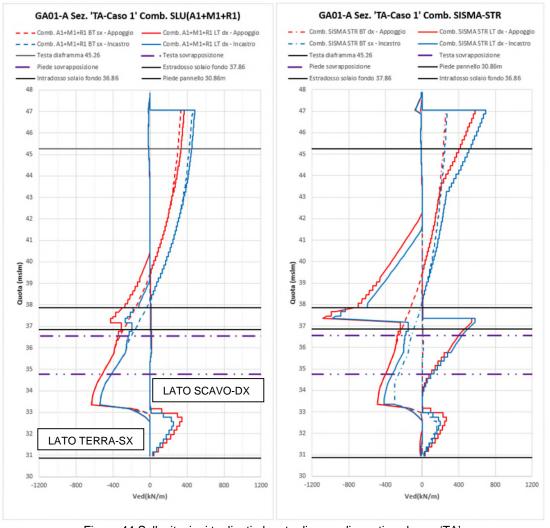


Figura 44 Sollecitazioni taglianti al metro lineare di paratia schema 'TA'

10.3 Verifiche geotecniche

10.3.1 Spostamenti e stabilità del fondo scavo

Come descritto nella relazione IN1711EI2RHGA0100001A dei criteri di dimensionamento delle opere di sostegno della GA01, la valutazione del corretto comportamento del modello di calcolo è basata sull'esame dei valori di spinta passiva mobilitata al piede della paratia. Il rapporto tra la risultante della spinta passiva e della spinta effettiva nel tratto infisso consente di valutare quanto la struttura disti dalla condizione limite. In combinazione SLU GEO tale rapporto deve essere maggiore o uguale a 1 affinché non sia violato il criterio di resistenza. I valori degli spostamenti dell'opera di sostegno e del terreno circostante devono essere compatibili con la funzionalità della struttura da realizzare e con la sicurezza e funzionalità dei manufatti adiacenti.

Nella tabella seguente sono riassunti i risultati di maggiore interesse sia allo SLE sia allo SLU, con riferimento agli spostamenti delle pareti e ai valori di mobilitazione della spinta passiva (Tabella 18).

Tabella 30 TS4 Riassunto spostamento massimo laterale dei diaframmi e coefficienti di mobilitazione

Sezione di calcolo	Comb.	Spostamenti Comb. orizzontali u(mm)		%Sp (Condizione di lungo termine)
TC 4	SLE RARA	10 (z=39.9m)	-	-
TS4 (copertura appoggiata)	SLU (A2+M2+R1)	-	16	60
	SLU Sisma-STR	-	-	87
TC 4	SLE RARA	6 (z=38.9m)	-	-
TS4 (copertura incastrata)	SLU (A2+M2+R1)	=	15	55
	SLU Sisma-STR	-	-	85

10.3.2 Verifiche deformazioni/cedimenti attesi

Gli spostamenti orizzontali attesi dei diaframmi sono modesti, sia con schema di semplice appoggio che nel caso di incastro: è presumibile che lo spostamento reale sia intermedio tra i due estremi considerati. In base a quanto esposto nella citata relazione relativa ai criteri di dimensionamento ed agli spostamenti orizzontali massimi calcolati, si possono determinare gli spostamenti verticali massimi S_{v,max} attesi a tergo della paratia e, in funzione dell'altezza di scavo H, una stima della loro distribuzione in funzione della distanza dall'opera di sostegno.

Per i risultati dell'analisi di cedimento si rimanda alla sezione 'TS2' in quanto più gravosa.

10.3.3 Verifiche di capacità portante dei diaframmi

La verifica di capacità portante nella fase di breve termine (scavi aperti, massimo sovraccarico in copertura) è effettuata con i criteri riportati nella relazione IN1711EI2RHGA0100001A.

Di seguito si allegano:

- Stratigrafia e parametri di riferimento
- Curve di capacità portante in condizioni A1+M1+R3 e in condizioni di esercizio per la verifica della corretta ripartizione tra capacità portante di base e capacità portante laterale al fine della limitazione dei cedimenti attesi.

IRICAV: VERONE VICENZA

GALLERIA ARTIFICIALE SAN MARTINO BUON ALBERGO: GA01-A Sez. TA

Stratigrafia e parametri geotecnici

Dati di input						
Spessore diaframma	1	m				
Sovraccarico efficace VALLE	0.0	kPa				
HW da testa diaframma valle	0.0	m				
γ acqua	10.00	kN/m ³				
∆z palo/diaf da p.c. originario	3.60	m				
N° diam. per riduzione qb	5.0	(-)				
L diaframmi fuori terra	8.50	(m)				
Peso calcestruzzo	25.00	kN/m ³				
Pressione max sul cls.	8.5	MPa				

Legenda tipo di terreno:				
SL	Sabbia limosa			
S	Sabbia			
G	Ghiaia			
Α	Materiali coesivi			
Inserisci stratigrafia				

T TOOGIOTIO TITUX OUT OTO	0.0	a									
_		Ca	aratteristich		no						
(massimo 10 strati)											
Profondità (m)		Strato	Terreno	γ tot	N	spt	c _u (l	(Pa)	∆-z	φ°	
da	а	No.	(S, A)	kN/m3	da	a	da	а	(m)	da	а
0.0	1.0	1	G	20.0	40	50			0.50	40	40
1.0	2.0	2	Α	19.0	10	10	125	125	0.50		
2.0	2.5	3	Α	19.0	10	10	125	125	0.50		
2.5	4.5	4	G	20.0	40	50			0.50	39	39
4.5	18.5	5	S	20.0	35	50			0.50	38	38
18.5	27.0	6	SL	19.0	25	25	125	125	0.50	39	39
27.0	47.0	7	s	20.0	40	65	125	125	0.50	39	39
47.0											
0.0											
0.0											
Numero di strati =	7.0		-								

N.B. La quota zero di riferimento è la quota di fondo scavo: le profondità degli strati vanno riferite alla quota di scavo

Figura 45 Sez. TA Capacità portante - Stratigrafia a e parametri di riferimento

Nelle tabelle seguenti si riassumono i valori di capacità portante a compressione (Rc,d) e a trazione (Rt,d), ottenuti dalla analisi, secondo l'approccio 2 (A1+M1+R3).

Tabella 31 Combinazione SLU: Sollecitazioni massime di compressione e trazione e valori limiti resistenti

Combinazione di carico - SLU	Q tot
Massima compressione, Ndc, max [kN]	760 (SLU)

Si verifica, inoltre, che lo sforzo assiale massimo in esercizio sia inferiore della resistenza laterale di calcolo (Rc,s,lat) divisa per un fattore pari a 1.25.

GENERAL CONTRACTOR Consorzio IricAV Due		1	ITA	ELIANZA LFERR O STATO ITALIANI		
GAO1 A OPERE SOSTEGNO DEGLI S	CAVLE TAMPONE DI FONDO	Progetto	Lotto	Codifica Documento	Rev.	Foglio
GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO		IN17	11	FI2 CL GA 01 A4 0014	Α	96 di 205

Tabella 32: Combinazione SLE: Sollecitazione massima di compressione

Combinazione di carico SLE	Qtot
Massima compressione, Ndc SLE, max [kN]	560 (SLE)

GALLERIA ARTIFICIALE S.MARTINO BUON ALBERGO GA01-A Sez. TA Capacità portante SLE diaframmi sp1000 mm: Ltot 14.8 m - Linfissa 6m (Quota zero coincidente con il fondo dello scavo della galleria artificale)

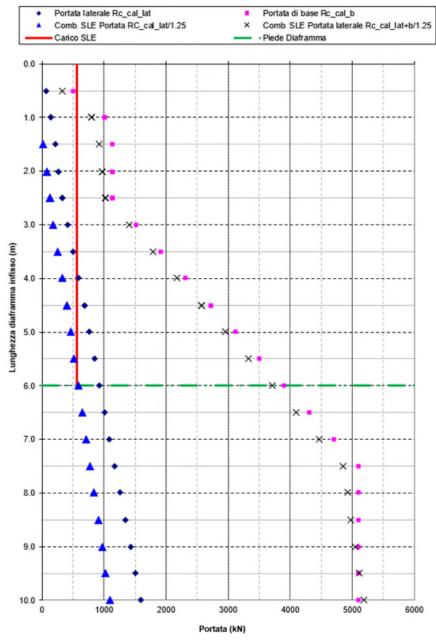


Figura 46 Sez. TA - Verifica capacità portante Comb. SLE

GALLERIA ARTIFICIALE S.MARTINO BUON ALBERGO GA01-A Sez. TA Capacità portante Comb. A1+M1+R3 diafr. sp1000 mm: Ltot 14.8 m - Linfissa 6m (Quota zero coincidente con il fondo dello scavo della galleria artificale)

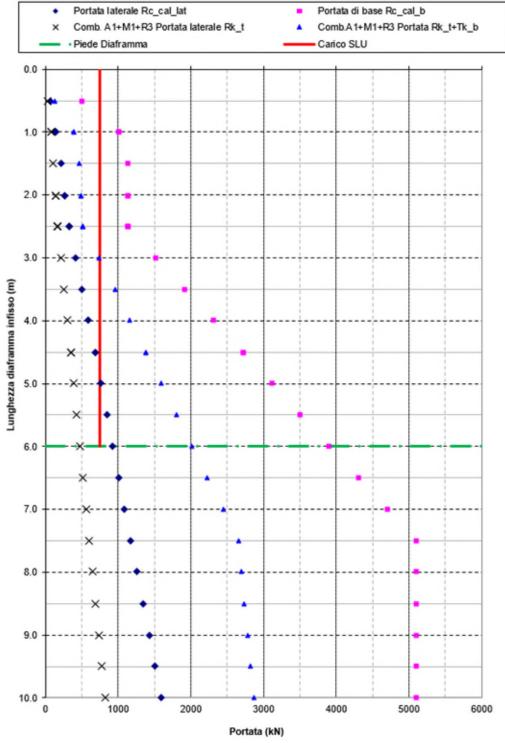


Figura 47 Sez. TS4 – Verifica capacità portante Comb. SLU (A1+M1+R3)

10.3.4 Verifiche di stabilità globale

Si riportano i risultati dell'analisi di stabilità globale della sezione di calcolo considerata agli step mostrati nella tabella seguente. Per l'analisi di stabilità è stato considerato un carico accidentale di cantiere pari a 10kPa. Le verifiche sono eseguite in accordo con il metodo di Janbu.

Tabella 33 Sezione TS2 Risultati stabilità globale

Comb.	Step	Coefficiente di sicurezza
Sez. TA	Fase 10 - Risalita falda a quota di breve termine	2.35

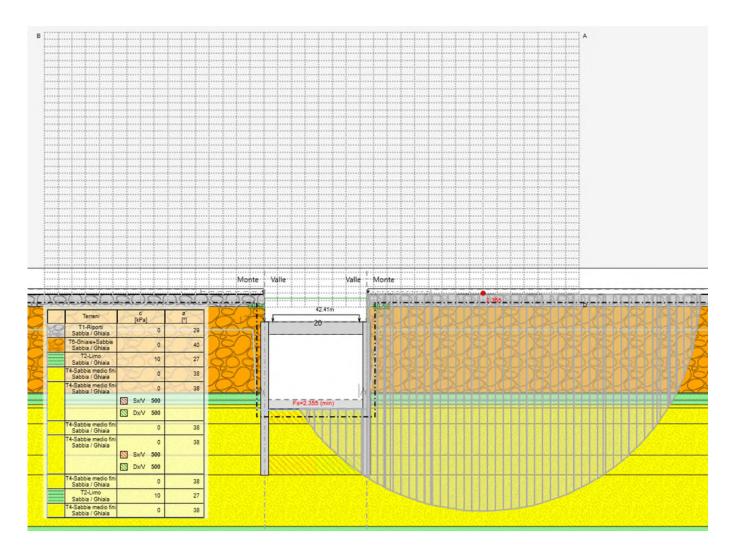


Figura 48 Fase 10 - Stabilità scavo (Comb. A2+M2+R1)

10.3.5 Verifiche di stabilità del fondo scavo al galleggiamento

Per i criteri generali di verifica si rimanda alla relazione IN1711EI2RHGA0100001A relativa ai metodi dimensionamento delle opere di sostegno della GA01. Circa la robustezza del dimensionamento effettuato con il metodo semplificato proposto si rimanda a quanto già espresso al precedente § 7.3.5. Di seguito si riportano le verifiche di stabilità del tampone di fondo in jet grouting per le diverse tipologie analizzate. La quota di riferimento della falda considerata in tale verifica è pari alla quota della falda in fase di costruzione.

Tabella 34 TA Verifica a galleggiamento tampone di fondo

	Tabella 3	4 TA Verifica a galleggiamento tampone di fondo
GA01-A -	VERIFICA TAMPONE	DI FONDO - MAX BATTENTE 4.5m (TRATTO TA)
	_	
Zfalda	43.72 m s.l.m	Quota falda
Zfs	36.86 m s.l.m	Quota fondo scavo
Hw	6.86 m	Altezza falda a piano scavo
Lmin	12 m	Dimensione minima in pianta del tampone
Lmax	100 m	Dimensione massima in pianta del tampone
Htf	o	Altezza terreno trattato sotto il fondo scavo
Hte	3.5 m	Altezza intermedia terreno non trattato
Hta	2.5 m	Altezza tampone di fondo inferiore
Hinfissio	n 6.0 m	Altezza infissione paratia
γtn	20.0 kN/m3	Peso specifico terreno naturale
γta	20.0 kN/m3	Peso specifico tampone
fa	0.29 ()	Aderenza massima tampone paratia
ļ	42.0	76.11. 76. 10. 10. 10. 10. 10. 10. 10. 10.
Hw	12.9 m	= Zfalda - Zfs +Hte+Hta altezza battente idraulico
u_Hw	126.2 kPa	pressione interstiziale in funzione del battente idraulico
Sw	126.2 kPa	pressione intestiziale agente alla base del tampone
Np	850.0 kN/m	da calcolo Paratie
σ p1	141.67 kN/m2	Np/Hinfissione Valore medio pressione passiva mobilitata su jet
σp2	141.67 kN/m2	valore medio sull'altezza del tampone letto in paratie
σр3	15.00 kN/m2	valore geostatico a fondo scavo alla profondità media del tampone
σp,calc	141.67 kN/m2	valore adottato nei calcoli
fa	41.08 kN/m2	$= \sigma p * tan \phi Aderenza massima tampone paratia$
Wt	6.0 m3	= Hta^2/6 W resistente flessione tampone per 1 m di larghezza
α	0.99 (-)	= 1/(1+Lmin/Lmax)^2) coeff riduttivo momento per effetto piastra
qtf	47.90 kN/m	= $8*\sigma p*Wt/(\alpha x Lmin^2)$
qta	41.08 kN/m	=2*fa*Hinf/Lmin
qt utile	41.08 kN/m	
Pte	840.0 kN	= γte*(Hte+Htf)*Lmin Peso terreno per 1 metro di sezione
Pta	600.0 kN	= γta*Hta*Lmin = Peso tampone per 1 m di sezione
Sta	493.0 kN	= qt utile*Lmin = risultante pressione assorbita dall infissione per 1 m
Sw	1513.9 kN	= Hw *10 * Lmin = sottospinta falda per 1 metro di sezione
		nza vasca di aggottamento
Wrib	0 kN	
	econdo NTC 08	
0.9* St	1739.7 kN	
1.1*SW	1665.3 kN	
St>Sw	Verificato	
St/Sw	1.04	

10.3.6 Verifiche di stabilità della struttura interna

Nelle tabelle delle pagine successive sono riportate le verifiche al sollevamento della struttura interna della galleria (intesa come manufatto ad U) per verificare l'entità delle azioni agenti alla testa dei diaframmi derivanti dall'equilibrio delle seguenti forze:

- Azioni stabilizzanti:
 - o Peso proprio manufatto ad U (armamento e opere di finitura ed escluse)
 - Peso della copertura e del rinterro considerando l'altezza minima di ricoprimento/rinterro lungo la tratta considerata
- Azioni instabilizzanti:
 - Sottospinta idraulica calcolata rispetto alla falda di lungo termine

IN17

11

EI2 CL GA 01 A4 0014

101 di 205

VERIFICA SOLLEVAM	ENTO STRUTTURA DE	FINITIVA
GA01-A - VERIFICA SO	OLLEVAMENTO STRU	TTURA DEFINITIVA - TRATTO TA
Quote falda e batten	te	
Zfalda	45.22 m s.l.m	Quota falda lungo termine
Zfs	36.86 m s.l.m	Quota fondo scavo
Hw	8.36 m	Altezza falda lungo termine a piano scavo
		- · · · · · · · · · · · · · · · · · · ·
Carichi struttura GA0	1	
Lmin	12 m	Dimensione minima in pianta del tampone
S_diaf	1 m	Spessore diaframmi
S_Fondo	1 m	Spessore solettone di fondo
S_Fodera	0.8 m	Spessore controfodera
Lnet	10.4	Luce netta manufatto ad U
Atrave	0.72 m ²	Area cls trave prefabbricata
Asol_trave	0.25 m ²	Area cls soletta di completamento
γ cls	24 kN/m ³	Peso unità di voulume calcestruzzo
T .	•	
W trave	180.5 kN/m	Peso Trave prefabbricata
W sol_trave	65 kN/m	Peso soletta di completamento trave
H_t-diaf	1 m	Altezza trave di coronamento testa diaf.
B_t-diaf	2.1 m	Base trave di coronamento testa diaf.
H_c-trave	1.6 m	Altezza trave ripartizione trave prefabb.
B_c-trave	2.1 m	Base trave ripartizione trave prefabb.
W_c	262.08 kN/m	Peso trave di coronamento+codolo trave
W_fondo	288 kN/m	Peso solaio di fondo
H_fodera	7.4 m	Altezza netta controfodera fino a intradosso cordolo
W_fodera	284.16 kN/m	Peso controfodera
W_cls_tot	1079.69 kN/m	Peso complessivo manufatto ad U + trave + cordoli
H_ricMin	0.75 m	Altezza ricoprimento
γtn	18.5 kN/m3	Peso specifico terreno naturale
W_ter	202.575 kN/m	Peso ricoprimento
W_tot	1282.3 kN/m	
pw	83.6 kPa	
Sw	1003.2 kN/m	= Hw *10 * Lmin = sottospinta falda per 1 metro di sezione
0.0****	44546121	
0.9*W_d	1154.0 kN/m	
1.1*SW	1103.52	
St>Sw	Verificato	
St/Sw	1.046	
Calcala adama di d	- ++- di-f (
		ompressione positiva)
N_inst_diaf	501.6 kN/m	Azione instabilizzante indotta falda sul piedritto
N_stab_cop	641 kN/m	Azione stabilizzante pesi propri sul piedritto
1 2*N inst -!:-f	CEO 4 LAL/	
1.3*N_inst_diaf	652.1 kN/m	
0.9*N_stab_cop	577.0 kN/m	
N testaDiaf SIE	140 kN/m	Azione assiale risultante sul niedritto SIE
N_testaDiaf_SLE	140 kN/m	Azione assiale risultante sul piedritto SLE
N testaDiaf SIII	-75 kN/m	Azione assiale risultante sul niedritto SIII
N_testaDiaf_SLU	-75 kN/m	Azione assiale risultante sul piedritto SLU

Dalle verifiche si evince come nelle condizioni caratteristiche i diaframmi risultano in tutti i casi compressi. Nelle condizioni allo Stato Limite Ultimo, SLU, i diaframmi risultano sostanzialmente scarichi con azione assiale pressoché nulla. Per questa ragione, nella verifica strutturali dei diaframmi in tutte le condizioni di carico si è assunto un'azione assiale nulla agente lungo l'intera altezza stesso.

GENERAL CONTRACTOR		ALTA SORVEGLIANZA					
Consorzio Iric/W Due				LFERR LO STATO ITALIANI			
GA01-A OPERE SOSTEGNO DEGLIS	Progetto	Lotto	Codifica Documento	Rev.	Foglio		
GAUTA OF EINE SOSTEGNO DEGET	IN17	11	EI2 CL GA 01 A4 0014	Α	102 di 205		

10.3.7 Stima delle portate entranti al variare dei coefficienti di permeabilità del tampone di fondo

Per i criteri generali di verifica si rimanda alla relazione generale IN1711EI2RHGA0100001A della GA01.

Per tale sezione il battente idrico sulla falda di costruzione è minore di quello previsto per la porzione di galleria analizzata nella sezione di calcolo 'TS-2'. Pertanto, ai fini della stima delle portate entranti nello scavo, si rimanda ai risulti relativi alla 'TS-2' descritti nel §7.3.7.

11 VERIFICHE STRUTTURALI DEI DIAFRAMMI

L'elevato battente idrico causato dalla presenza della falda presente a profondità ridotta da piano campagna ha reso necessario stabilizzare il fondo scavo della galleria con colonne di jet-grouting. Tale intervento è stato proposto per la quasi totalità dello scavo della galleria. Nei tratti di linea di avvicinamento alla galleria artificiale, lato Verona, e di sbocco della galleria, lato Vicenza, la limitata soggiacenza della falda dal piano campagna ha permesso di omettere la realizzazione del tampone di fondo o stabilizzare il fondo scavo con un sistema di pozzi di aggottamento posizionati all'esterno dello scavo tra paratie.

Gli interventi proposti per la realizzazione dell'opera sono riepilogati in Tabella 35 e sono descritti dettagliatamente nella relazione generale alla quale si rimanda. La tabella mostra anche come il profilo altimetrico della galleria è tale che l'altezza delle paratie di sostegno è sostanzialmente simmetrica rispetto al punto di minimo della corda molle imposta dalla livelletta ferroviaria.

Tabella 35 Riepilogo intervento di stabilizzazione del fondo scavo della galleria

Opera WBS	Tipologia di tampone di fondo/Schemi di calcolo	Spessore Tampone di Fondo (m)	Battente idrico (m)	Altezza Paratie (m)	Tipologia armatura omogenea
GA01-A	Sez. TA	3.5(nt*) +2.5 jet (inf.)	2.0 <h<sub>w<4.5</h<sub>	14.8	Tipo 3
	Sez. TS4	1.5jet(sup.) +3.0(nt*) +2.5jet(inf.)	4.5 <h<sub>w<7.0</h<sub>	15.8	Tipo 2
	Sez. TS3	2jet(sup.) +3.5(nt*) +2.5jet(inf.)	7.0 <h<sub>w<8.0</h<sub>	16.8	
	Sez. TS2	2jet(sup.) +4.0(nt*) +2.5 jet (inf.)	8 <h<sub>w<9.0</h<sub>	17.3	Tipo 1
GA01-B	Sez. TS1	2jet(sup.) +4.5(nt*) +2.5jet (inf.)	9 <h<sub>w<10</h<sub>	17.8	
	Sez. TS2	2jet(sup.) +4.0(nt*) +2.5 jet (inf.)	8 <h<sub>w<9.0</h<sub>	17.3	
GA01-C	Sez. Attrav. A4	Tampone pieno	7.0 <hw<8.0< td=""><td>20.5</td><td>Tipo 5</td></hw<8.0<>	20.5	Tipo 5
/E	Sez. TS4	1.5jet(sup.) +3.0(nt*) +2.5jet(inf.)	4.5 <h<sub>w<7.0</h<sub>	15.8	Tipo 2
	Sez. TA	3.5(nt*) +2.5 jet (inf.)	2.0 <h<sub>w<4.5</h<sub>	14.8	Tipo 3
	Tratto No.2	Assenza di tampone / Dewatering	H _w <2.0	15.8	Tipo 4

Limitatamente alla WBS oggetto della presente relazione, la Tabella 35 evidenzia che la GA01-A è interessata da interventi di consolidamento jet-grouting 'sandwich' con doppio strato di geometria seguente:

- Schema di calcolo 'TS-2':

Spessore terreno trattato superiore: 2.0m
 Spessore terreno non trattato intermedio: 4.0m
 Spessore terreno trattato inferiore: 2.5m
 Lunghezza paratie: 17.30m

- Schema di calcolo 'TS-3':

Spessore terreno trattato superiore: 2.0m
 Spessore terreno non trattato intermedio: 3.5m
 Spessore terreno trattato inferiore: 2.5m
 Lunghezza paratie: 16.80m

Schema di calcolo 'TS-4':

Spessore terreno trattato superiore: 1.5m
Spessore terreno non trattato intermedio: 3.0m
Spessore terreno trattato inferiore: 2.5m
Lunghezza paratie: 15.80m

- Schema di calcolo 'TA':

Spessore terreno non trattato superiore: 3.5m
 Spessore terreno trattato inferiore: 2.5m
 Lunghezza paratie: 14.80m

Le verifiche strutturali dei diaframmi sono state effettuate dividendo la galleria artificiale in gruppi omogeni di diaframmi in base alla tipologia di intervento di stabilizzazione del fondo proposto e limitando ad 1m la differenza di altezza di paratia tra i vari gruppi omogeni. Identificati tali gruppi, l'armatura è stata dimensionata effettuando l'inviluppo delle forze interne ottenute dagli schemi di calcolo sviluppati per ciascun gruppo omogeneo.

Ne risulta che la GA01-A è interessata da armature dei diaframmi 'Tipo 1' di lunghezza 17.8-17.3m, 'Tipo 2' lunghezza 16.80-15.80 e 'Tipo 3' lunghezza 14.8m. Tali armature sono state ottenute dall'inviluppo dei risultati dei corrispondenti schemi di calcolo indicati in tabella precedente. Si precisa che lo schema di calcolo 'TS-2' è rappresentativo non solo di una porzione della GA01-A, ma anche di una porzione della GA01-B. Quest'ultimo caso è trattato per esteso nella relazione di calcolo 'IN1711EI2CLGA01B4001A'.

Per maggiori dettagli in merito ai criteri di verifica adottati in combinazione SLE-RARA e SLU si rimanda alla relazione IN1711EI2GA010A 'Criteri di dimensionamento opere di sostegno degli scavi e tampone di fondo.

11.1 Tipologia armatura 'Tipo 1' (Schema TS-1 e TS-2)

11.1.1 Verifiche sollecitazioni flettenti

Nella tabella seguente si riassumono le massime sollecitazioni flettenti ottenute dall'inviluppo dei risultati degli schemi di calcolo 'TS-1' e 'TS-2' utilizzate per il dimensionamento dell'armatura 'Tipo 1'.

Le verifiche sono effettuate considerando i fili strutturali di seguito indicati:

- sollecitazioni testa diaframma riferite ad asse cordolo.
- in corrispondenza del solettone di fondo del manufatto a "U" interno, il picco delle sollecitazioni flettenti è valutato ad ¼ dello spessore dall'asse della soletta.

Tabella 36 Sollecitazioni flettenti dimensionanti

		Tabella	30 Sullecitazi	oni nettenti un	Hensionanii				
INVILUPPO TS-1_TS-2	SLS-rara	SLU							
Inv.BT (Diafr.)			Inv.LT (Fod+Diafr.)				Inv.LT (Fod+Diafr.)		
	Valore lato	Valore lato	Valore lato	Valore lato	Valore lato	Valore lato	Valore lato	Valore lato	
Sollecitazioni	Terra	Scavo	Terra	Scavo	Terra	Scavo	Terra	Scavo	
	(kN*m/m)	(kN*m/m)	(kN*m/m)	(kN*m/m)	(kN*m/m)	(kN*m/m)	(kN*m/m)	(kN*m/m)	
Asse copertura	1268	0	1345	0	1733	C	1900	0	
Intradosso copertura	921	254	964	254	1272	274	1385	486	
Testa diaframma	518	552	526	552	737	611	. 792	1024	
Gabbia 1	518	1059	526	1077	737	1282	792	1628	
Sovrapposizione	62	841	301	870	79	1093	1761	. 1131	
Gabbia 2	817	424	817	424	1062	556	2075	556	

11.1.1.1 Dimensionamento armatura longitudinale

Di seguito si riportano le tabelle con le sollecitazioni a flessione per le singole tipologie di diaframmi presenti. Per ognuno di essi è effettuato il dimensionamento dell'armatura longitudinale. Le verifiche sono state effettuate con il software di calcolo RC-Sec indicato al § 2.3.

- P1 pannello primario di lunghezza L=5.45 m
- S1 pannello secondario di lunghezza L=5.05 m
- P2 e S2 Pannelli primari e secondari di lunghezza 2.5 m

Le gabbie di armatura sono riportate negli elaborati di progetto allegati alla presente relazione: le gabbie di armatura definite di seguito, si susseguono lungo l'altezza del diaframma, e si rendono necessarie considerato il limite sulla massima lunghezza trasportabile.

Le verifiche sono effettuate in accordo con il metodo semiprobabilistico agli stati limite ultimi secondo i criteri riportati nelle NTC 08 per le strutture in calcestruzzo armato.

11.1.1.1.1 Pannello P1 (base pannello 5.45m)

Tabella 37 Pannello P1 Sollecitazioni di progetto allo SLE e SLU

P1				I 5.45 m				
	SLS-rara		SLU					
	Inv.BT (Diafr.)		Inv.LT (Diafr.)		Inv.BT (Diafr.)		Inv.LT (Diafr.)	
	Valore lato Valore lato Terra Scavo (kN*m/m) (kN*m/m)		Valore lato Valore lato Terra Scavo (kN*m/m) (kN*m/m)		Valore lato Valore lato Terra Scavo (kN*m/m) (kN*m/m)		Valore lato Terra Scavo (kN*m/m) (kN*m/m)	
Testa diaframma	2822	3010	2865	3010	4019	3331	4319	5581
Gabbia 1	2822	5772	2865	5869	4019	6986	4319	8871
Sovrapposizione	336	4581	1642	4741	433	5957	9595	6164
Gabbia 2	4451	2312	4451	2312	5785	3029	11311	3029

Gabbia di armatura No. 1 (Lembo teso superiore lato terra, M<0)

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANI Progetto Lotto Codifica Documento Rev. Foglio

IN17

11

EI2 CL GA 01 A4 0014

107 di 205

Α

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

S = combinazione verificata / N = combin, non verificata

GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO

Sforzo normale assegnato [kN] nel baricentro B sezione cls. (positi vo se di compressione) Componente del momento assegnato [kNm] riferito all'asse xprinc, d'inerzia Mx N Res Sforzon ormale resistente [kN] nel baricentro B sezione ds.(positivose di compress.) MxRes Momento flettente resistente [kNm] riferito all'asse xprinc, d'inerzia Misura sicurezza = rapporto vettoriale tra (N r, Mx Res, My Res) e (N, Mx, My)

Verifica positiva se tale rapporto risulta >= 1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb Ver N Res Mx Res Ms. Sic. As Totale S 0.00 4320.00 0.00 -8373.98 1.94 486.0(163.5) 1

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARE ALLO STATO ULTIMO

Deform, unit. massima del calcestruzzo a compressione ec max Deform. unit. massima del calcestruzzo a compressione Ascissa in cm della fibra corrisp. a ec max(sistema rif. X.Y.O sez.) Xc max Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,Osez) es min Deform. unit. minima nell'acciaio (negativa se di trazione) Ascissa in cm della barra corrisp. a es min (sistema rif. X, Y,O sez.) Xs min Ys min Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) Deform, unit, massima nell'acciaio (positiva se di compress.) es max Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,Osez) Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.) Ys max

N°Comb ec max Xc max Yc max Xs min Ys min Xs max Ys max es min es max 0.00350 -272.5 0.00071 -259.5 8.9 -0.02525 259.5 91.6

COMB. RARE (S.L.E.) - SFORZIPER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parertesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. 0.00 -2900.00 0.00 1

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

S = comb. verificata/ N = comb. non verificata Sc max

Massima tensione (positiva se di compressione) nel calcestruzzo [MPa] Ascissa, Ordinata [cm] del punto corrisp, a Sc max(sistema rif. X,Y,O) Xc max, Yc max Minima tensione (negativa se di trazione) nell'acciaio [MPa] Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O) Ssmin Xs min, Ys min Aceff Area di calcestru zzo [cm²] in zon a tesa considerata aderente alle barre Area barre (cm²) in zona tesa con siderate efficaci per l'apertura delle fessure As eff.

N°Comb Ver Sc max Xc max Yc max Ss min Xs min Ys min Ac eff. As eff. 3.90 -272.5 0.0 -147.3 243.1 91.6 13299 259.8 S

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a form

Ver Esito della verifica

Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fe ssurata A2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

k1 = 0.8 perbarre ad aderenza migliorata [eq.(7.11)EC2]

= 0.4 per comb. quasi permanenti /= 0.6 per comb.frequenti [dr. eq.(7.9)EC2] = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2] kt

k2

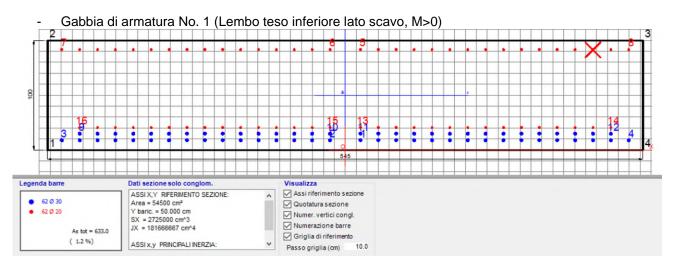
k3

= 3.400 Coeff. in eq.(7.11) come da anne ssi nazionali = 0.425 Coeff. in eq.(7.11) come da anne ssi nazionali **K4**

Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

Differenza tra le deformazioni medie di acciaio e alcestruzzo [j. 8)EC2 e (C4.1.7)NTC]
Tra parentesi: velore minimo = 0.6 Smax/Es [[7.9)EC2 e (C4.1.8)NTC]


Massima distanza tra le fessure [mm] srmax

Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi Mxfess. Componente momento di prima fessurazione intorno all'asse X [kNm]

Componente momento di prima fessurazione intorno all'asse Y [kNm] Myfess.

Comb. k2 wk Mx fess Ver Ø Cf Myfess 1 S -0.00083 0.00000 0.500 23.3 74 0.00044 (0.00044) 454 0.200 (990.00) -2922.97 0.00

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANI Progetto Lotto Codifica Documento Rev. Foglio GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO IN17 EI2 CL GA 01 A4 0014 108 di 205 11 Α

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin, non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls. (positi vo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse xprinc. d'inerzia N Res Sforzo normale resistente [kN] nel baricentro B sezione dis (positivo se di compress.)

MxRes Momento flettente resistente [kNm] riferito all'asse xprinc. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)
Verifica positiva se tale rapporto risulta ≈ 1,000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb Ver N Mk N Res Mx Res Ms. Sic. As Totale S 0.00 8900.00 1 0.00 15827.42 1.78 633.0(163.5)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

Deform, unit, massima del calcestruzzo a compressione ec max Deform, unit, massima del calcestruzzo a compressione Ascissa in cm della fibra corrisp, a ec max(sistema rif. X, Y,O sez.) Xc max Yc max Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,Osez.) Deform. unit. minima nell'acciaio (negativa se di trazione) es min Ascissa in cm della barra corrisp. a es min (sistema rif. X, Y, O sez.) Xs min Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y, O sez.) Ys min Deform, unit, massima nell'acciaio (positiva se di compress.) es max Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.) Xs max Ordinata in cm della barra corrisp. a es max (sistema rif. X, Y,O sez.) Ys max

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	-272.5	100.0	0.00241	13.9	91.6	-0.00828	13.9	8.9

COMB. RARE (S.L.E.) - SFORZIPER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intomo all'asse X di riferimento (tra parentesi Mom Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. N Mx My

1 0.00 5870.00 0.00

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = com b. non verificata

Sc max
Massima tensione (positiva se di compressione) nel calcestruzzo [MPa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp.a Sc max (sistema rif. X, Y, O)
Ss min
Minima tensione (negativa se di trazione) nell'acciaio [MPa]
Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp.a Ss min (sistema rif. X, Y, O)

Xs min, Ys min

Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistem a rif. X,Y,O)

Ac eff.

Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre

As eff.

Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb Ver Sc max Xc max Yc max Ss min Xs min Ys min Ac eff. As eff.

1 S 7.05 -272.5 100.0 -159.2 243.1 8.9 11514 532.5

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fes surata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

e 1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e 2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

kt = 0.4 per comb. quasi permanenti / = 0.6 per comb frequenti [cfr. eq.(7.9)EC2] k2 = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]

k3 = 3.400 Coeff, in eq.(7.11) come da annessi nazionali k4 = 0.425 Coeff, in eq.(7.11) come da annessi nazionali

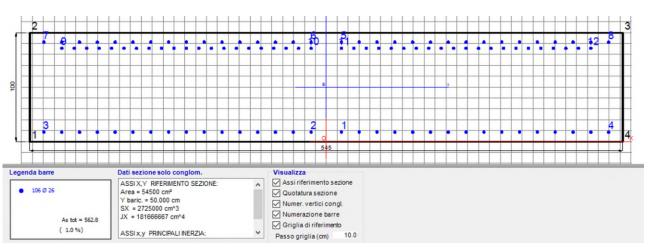
Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

e sm - e cm Differenza tra le deformazioni medie di acciaio e calcestruzzo [7.8]EC2 e (C4.1.7)NTC]

Tra parentesi: valore minimo = 0.6 Smax/ Es [(7.9)EC2 e (C4.1.8)NTC]

sr max Massima distanza tra le fessure [mm]


wk Apertura fessure in mm calcolata = sr max*(e_sm -e_cm) [7.8) EC2 e (C4.1.7) NTC]. Valore limite tra parentesi

Mxfess. Componente momento di prima fessurazione intorno all'asse X [kNm]
Myfess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Comb. Ver e2 k2 Ø Cf Mx fess Myfess e sm - e cm sr max 1 S -0.00093 0.00000 0.500 27.6 74 0.00058 (0.00048) 353 0.200 (990.00) 3204.61 0.00

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANS Progetto Lotto Codifica Documento Rev. Foglio GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO IN17 EI2 CL GA 01 A4 0014 110 di 205 11 Α

Gabbia di armatura No. 2 (Lembo teso superiore lato terra M<0)

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata
N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positiv

N Sforzo normale assegnato [kN] nel baricentro B sezione cls. (positivo se di compressione)
Mx Componente del momento assegnato [kNm] riferito al'asse x princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls. (positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito al'asse x princ. d'inerzia
Mis.Sic. Misura s icurezza = rapporto vettoriale tra (N r, Mx Res, My Res) e (N, Mx, My)
Verifica positiva se tale rapporto risulta >=1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

 N°Comb
 Ver
 N
 Mx
 N Res
 Mx Res
 Mis.Sic.
 As Totale

 1
 S
 0.00
 -11311.00
 0.00
 -12415.55
 1.10
 562.8(163.5)

METODO AGLI STATILIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

Deform. unit. massima del calcestruzzo a compressione Deform. unit. massima del calcestruzzo a compressione Xc max Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Yc max Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) es min Deform, unit, minima nell'acciaio (negativa se di trazione) Xs min Ascissa in cm della barra corrisp, a es min (sistem a rf. X, Y, O sez.) Ys min Ordinata in cm della barra corrisp. a es min (sistem a rif. X,Y,O sez.) es max Deform. unit. massima nell'acciaio (positiva se di compress.) Ascissa in cm della barra corrisp. a es max (sistem a ri. X, Y, O sez.) Xs max Ordinata in cm della barra corrisp. a es max (sistem a rif. X,Y,O sez.) Ys max

N°Comb	ec max	Xc max	Yomax	es min	Xs min	Y s min	es max	Xs max	Ys max
1	0.00350	-272.5	0.0	0.00159	-259.5	8.7	-0.01653	259.5	91.3

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

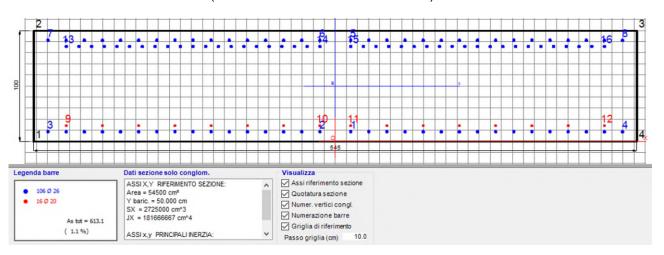
N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento fettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom Fessurazione)
con verso positi vo se tale da comprimere il lembo superiore della sezione

N°Comb. N Mx My 1 0.00 -4460.00 0.00

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANI Codifica Documento Progetto Lotto Rev. Foglio GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO IN17 11 EI2 CL GA 01 A4 0014 Α 111 di 205

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)


Ver S = comb. verificata/ N = comb. non verificata Massima tensione (positiva se di compressione) nel calcestruzzo [MPa] Ascissa, Ordinata [cm] del punto corrisp a Sc max (sistema rif. X, Y,O) Sc max Xc max, Yc max Ss min Minima tensione (negativa se di trazione) nell'acciaio [MPa] Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistem a rif. X,Y,O) Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure N°Comb Ver Sc max Xc max Yc max Ss min Xs min Ys min Ac eff. 1 S 5.45 -272.5 0.0 -153.7 243.1 91.3 12281 392.9

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Ver.		La sezion Esito della		a sempre f	essurata	anche nel cas	o in cui la trazione minima del c	alcestruzzo s	ia inferiore a	fctm	
e1			Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata								
e2			Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata								
k1			= 0.8 per barre ad ademnza migliorata (eg./7.11)EC21								
kt		= 0.4 per comb, quasi permanent /= 0.6 per comb requent [cfr. eq.(7.9)EC2]									
k2			= 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]								
k3			coeff. in eq.(7.1				a [eq.(1.13)EC2]				
k4		= 0.425 Coeff. In eq.(7.11) come da annessi nazionali									
Ø		Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]									
Cf		Copriferro [mm] netto calcolato con riferimento alla barra più tesa									
e sm	- e cm	Differenza	tra le deforma	zioni medi	e di accia	io e calcestruz	zo [(7.8)EC2 e (C4.1.7)NTC]				
							e (C4.1.8)NTC]				
srm	av		distanza tra le			1(1.0)202	(01.10)11101				
	u.v.						27 91EM - 104 1 71NTM Val-	a Enrice des			
wk							[7.8] EC2 e (C4.1.7) NT C]. Valo	re limite tra p	arentesi		
Mxfe			nte momento								
Myfe	ess.	Compone	nte momento	di prima fes	surazione	intorno all'as	se Y [kNm]				
Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mxfess	Myfess
1	S	-0.00088	0.00000	0.500	26.0	74	0.00048 (0.00046)	390 0.18	7 (990.00)	-3094.54	0.00

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANI Progetto Lotto Codifica Documento Rev. Foglio GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO IN17 EI2 CL GA 01 A4 0014 Α 112 di 205 11

Gabbia di armatura No. 2 (Lembo teso inferiore lato scavo M>0)

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

S = combinazione verificata / N = combin, non verificata Ver Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) Mx Componente del momento assegnato [kNm] riferito all'asse xprinc. d'inerzia N Res Sforzo normale resistente [kN] nel baricentro B sezione ds.(positivo se di compress.) MxRes Momento flettente resistente [kNm] riferito all'asse xprinc. d'inerzia

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r, Mx Res, My Res) e (N, Mx, My)

Verifica positiva se tale rapporto risulta >= 1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb	Ver	N	IVIX	N Kes	Mx Kes	IVIS. Sic.	As lotale
1	S	0.00	3030.00	0.00	7427.44	2.45	613.1(163.5)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform, unit, massima del calcestruzzo a compressione
	Deform, unit, massima del calcestruzzo a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X, Y, O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform, unit, minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X, Y, O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y, O sez.)
es max	Deform, unit, massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	-272.5	100.0	0.00102	13.9	91.3	-0.02248	13.9	8.7

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)
M×	Momento flettente [kNm] intomo all'asse X di riferimento (tra parentesi Mom Fessurazione)
	con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx	My
1	0.00	2320.00	0.00

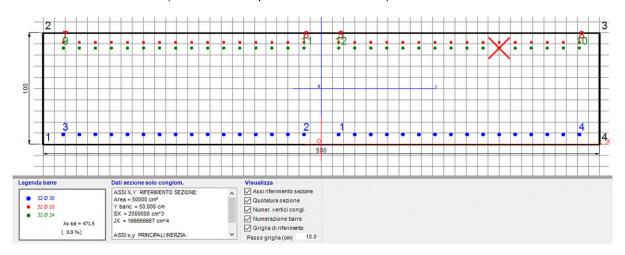
GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANI Progetto Lotto Codifica Documento Rev. Foglio GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO IN17 EI2 CL GA 01 A4 0014 Α 113 di 205 11

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata Sc max Massima tensione (positiva se di compressione) nel calcestruzzo [MPa] Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp.a Sc max (sistema rif. X, Y,O) Ss min Minima tensione (negativa se di trazione) nell'acciaio [MPa] Xs min, Ys min Ascissa, Ordinata [cm] della barra comsp. a Ss min (sistema rif. X,Y,O) Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure N°Comb Ver Sc max Xc max Yc max Ssmin Xsmin Ysmin Aceff. As eff. 1 S 3.06 -272.5 100.0 -132.1 243.1 8.7 13402 2202

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Myfes Comb.	Ver	Compone e1	nte momento d					r max	wk	Mxfess	Myfess
Myfes	S.	Compone									
		Compone									
wk Mxfes			essure in mm o nte momento d				(7.8) EC2 e (C4.1.7) NT C]. Valo	re iimite	ra parentesi		
sr max	X		distanza tra le				7 9/EC2 - /C4 1 7/ATC1 1/-1-	n Emile			
						[(7.9)EC2	e (C4.1.8)NTC]				
e sm -	e cm	Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] Tra parentesi: valore minimo = 0.6 Smax/Es = [(7.9)EC2 e (C4.1.8)NTC]									
Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa											
Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]											
k4 = 0.425 Coeff, in eq.(7.11) come da annessi nazionali						nazionali					
k3			oeff. in eq.(7.1				w loddi inchesel				
k2							a [eq.(7.13)EC2]				
kt		= 0.6 percame ad adelenza migliorata (eq.(7.11) ECZ) = 0.4 percomb. quasipermanenti /= 0.6 percomb frequenti [cfr. eq.(7.9) EC2]									
e2 k1		Mínim a deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata = 0.8 per barre ad aderenza migliorata (eg.(7.11) EC2)									
e1		Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata									
Ver.		Esito della	Esto della verifica								
		La sezion	e viene assunt	sempre fe	essurata a	anche nel caso	in cui la trazione minima del c	alcestru	zzo sia inferiore a f	fctm	



11.1.1.1.2 Pannello S1 (base pannello 5.05m)

Tabella 38 Pannello P1 Sollecitazioni di progetto allo SLE e SLU

S1	I 5.00 m										
	SLS-rara		SLU								
	Inv.BT (Diafr.)		Inv.LT (Fod+Dia	fr.)	Inv.BT (Diafr.)		Inv.LT (Fod+Dia	fr.)			
	Valore lato	Valore lato									
	Terra	Scavo	Terra	Scavo	Terra	Scavo	Terra	Scavo			
	(kN*m/m)	(kN*m/m)	(kN*m/m)	(kN*m/m)	(kN*m/m)	(kN*m/m)	(kN*m/m)	(kN*m/m)			
Testa diaframma*	2589	2762	2629	2762	3687	3056	3962	5120			
Gabbia 1	2589	5295	2629	5385	3687	6409	3962	8138			
Sovrapposizione	308	4203	1506	4350	397	5465	8803	5656			
Gabbia 2	4083	2121	4083	2121	5308	2779	10375	2779			

Gabbia di armatura No. 1 (Lembo teso superiore lato terra M<0)

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver	S = combinazione verificata / N = combin. non verificata
N	Sforzo normale assegnato [kN] nel baricentro B sezione cls. (positivo se di compressione)
Mx	Componente del momento assegnato [kNm] riferito all'asse x princ, d'inerzia
N Res	Sforzo normale resistente [kN] nel barcentro B sezione da (positivo se di compress.)
MxRes	Momento flettente resistente [kNm] riferito all'asse xprinc, d'inerzia
Mis.Sic.	Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)
	Verifica positiva se tale rapporto risulta >=1.000
As Totale	Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb	Ver	N	Mx	N Res	Mx Res	Ms. Sic.	As Totale
1	S	0.00	4000.00	0.00	-7915.44	1.98	471.5(150.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform, unit. massima del calcestruzzo a compressione
	Deform, unit, massima del calcestruzzo a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X, Y, O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform, unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp, a es min (sistema rif. X, Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y, O sez.)
es max	Deform, unit, massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp, a es max (sistema rif. X,Y,O sez)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	-250.0	0.0	0.00071	-231.9	8.9	-0.02524	231.9	91.6

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Mx Momento flettente [kNm] intomo all'asse X di riferimento fira parentesi Mom Fessurazione) con verso positivo se tale da comprimere il lembo superiore della sezione N°Comb N Mx My 1 0.00 -2650.00 0.00

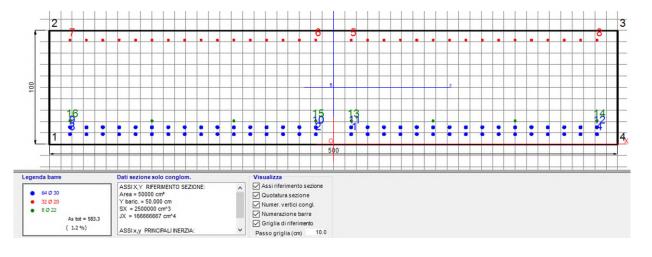
COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

S = comb. verificata/ N = comb. non verificata Massima tensione (positiva se di compressione) nel calcestruzzo [MPa]
Ascissa, Ordinata [cm] del punto corrisp a So max (sistema rif. X, Y,O)
Minima tensione (negativa se di trazione) nell'acciaio [MPa] Sc max Xc max, Yc max Ss min Minima tensione (negativa se di trazione) nelli acciaio (Mra) Ascissa, Ordinata (cm) della barra comisp. a Ss min (sistema afi. X,Y,O) Area di calcustruzzo (cm²) in zona tesa considerata aderente alle barre Area barre (cm²) in zona tesa considerate efficaci per l'aperura delle fessure Xs min. Ys min As eff. N°Comb Ver Sc max Xc max Yc max Ss min Xs min Ys min Ac eff. As eff. -2500 00 -1419 2175 916 12134 2453 1 S 3.78

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fes surata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fotm Esito della verifica Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata Minima deformazione unitana di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2] = 0.4 per comb. quasi permanenti /= 0.6 per comb bequenti (cf. eq.(7.9)EC2] = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2] = 3.400 Coeff. in eq.(7.11) come da amnessi nazionali kt k2 k3 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali k4 = U.4.2 Loeft in eq.(7.11) come de annesso nazionali.

Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2].


Copriferro [mm] netto calcolato con riferimento alla barra più tesa.

Differenza tra le deformazioni medie di acciaio e calcestruzzo [f7.8)EC2 e (C4.1.7)NTC].

Tra parentesiz valore minimo = 0,6 Smax / Es [f7.9)EC2 e (C4.1.8)NTC].

Massima distanza tra le fessure [mm] Ø e sm - e cm srmax Apertura fessure in mm calcolata = sr max"(e_sm -e_cm) [7.8) EC2 e (C4.1.7)NT C]. Valore limite tra parentesi Componente momento di prima fessurazione inforno all'assex Y [NNn] Componente momento di prima fessurazione inforno all'assex Y [NNn] wk Mxfess Myfess k2 Ø Cf wk Mxfess Myfess Comb. e sm - e cm sr max 0.500 22.2 0.00043 (0.00043) 438 0.187 (990.00) -2709.90 S -0.00080 0.00000 74 0.00

Gabbia di armatura No. 1 (Lembo teso inferiore lato scavo M>0)

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANI Progetto Lotto Codifica Documento Rev. Foglio GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO

IN17

11

EI2 CL GA 01 A4 0014

Α

116 di 205

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) Componente del momento assegnato [kNm] riferito all'asse xprinc, d'inerzia Mx N Res Storzonormale resistente [kN] nel barcentro B sezione dis (positivo se di compress.)

MxRes Momento flettente resistente [kNm] riferito all'asse xprinc. d'inerzia Msura sicurezza = rapporto vettoriale tra (N r, Mx Res, My Res) e (N, Mx, My) Mis Sin

Verifica positiva se tale rapporto risulta >=1 000

Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa] As Totale

Ms. Sic. N°Comb Ver N Res As Totale N Mr Mr Res S 0.00 8138.00 0.00 14585.81 1.79 583.3(150.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

Deform, unit, massima del calcestruzzo a compressione ec max Deform, unit, massima del calcestruzzo a compressione Xc max Ascissa in cm della fibra corrisp. a ec max (sistema rif. X, Y,O sez.) Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y, O sez.) es min Deform. unit. minima nell'acciaio (negativa se ditrazione) Ascissa in cm della barra corrisp. a es min (sistema rif. X, Y,O sez.) Xs min Ordinata in cm della barra corrisp, a es min (sistema rif. X,Y,O sez.) Ys min Deform, unit, massima nell'acciaio (positiva se di compress.) es max Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.) Xs max Ys max Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb ec max Xc max Yc max es max Xs max 0.00350 -250.0100.0 0.00237 15.6 -0.00872 8.9 91.6 156

COMB. RARE (S.L.E.) - SFORZIPER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Momento flettente [kNm] intomo all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb Mx Mv 1 0.00 5400 00 0.00

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max Massima tensione (positiva se di compressione) nel calcestruzzo [MPa] Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp.a Sc max (sistema rif. X, Y,O) Se min Minima tensione (negativa se di trazione) nell'acciaio [MPa] Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O) Xs min, Ys min Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Ac eff Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb Ver Sc max Xc max Yc max Ss min Xs min Ys min As eff. Ac eff. S -250.0 100.0 -157.1 217.5 8.9 1 6.93 10563 4828

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fotm

Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2 k1 Minim a deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

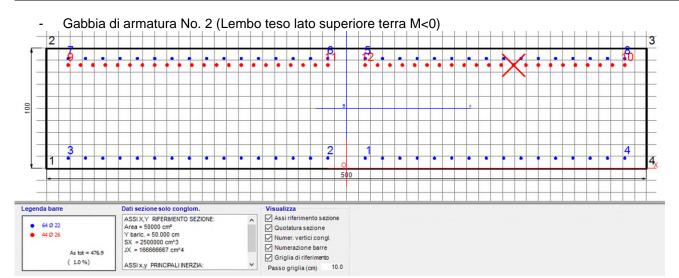
= 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

= 0.4 per comb, quasi permanent (= 0.6 per comb frequent) [cfr. eq.(7.9)EC2] = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2] = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k2

k3 k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2] Copriferro [mm] netto calcolato con riferimento alla barra più tesa 0 e sm - e cm

Differenza tra le deformazioni medie di accia o e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]
Tra parentesi: valore minimo = 0.6 Smax/Es [(7.9)EC2 e (C4.1.8)NTC]


Massima distanza tra le fessure [mm] sr max

Apertura fessure in mm calcolata = sr max*(e_sm -e_cm) [(7.8)EC2 e (C4.1.7)NT C]. Valore limite tra parentesi

Mxfess Componente momento di prima fessurazione intorno all'asse X [kNm] Componente momento di prima fessurazione intorno all'asse Y [kNm] Myfess.

Comb. e2 k2 Ø Cf e sm - e cm sr max Mx fess Myfess S -0.00091 0.00000 0.500 29.3 74 0.00057 (0.00047) 361 0.205 (990.00) 2967.83

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANI Progetto Lotto Codifica Documento Rev. Foglio GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO IN17 EI2 CL GA 01 A4 0014 117 di 205 11 Α

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione dis,(positivo se di compressione)
Mx Componente del momento assegnato [kNm] riferito all'asse xprino, d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione dis,(positivo se di compress.)

N Kes Sorzo normale resistente [kN] nel barcentro B sezione dis(positivo se di compres MxRes Momento flettente resistente [kNm] riferito all'asse xprinc. d'inerzia

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >= 1,000
As Totale Area totale barre longitudinali [cm²], [Tra parentesi il valore minimo di normativa]

N°Comb N Res Mx Res Ms. Sic. Ver N Mc As Totale -10375.00 0.00 -1118080 1 S 0.00 1.08 476.9(150.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARE ALLO STATO ULTIMO

ec max	Deform, unit, massima del calcestruzzo a compressione
	Deform, unit, massima del calcestruzzo a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max(sistema rif. X, Y,O sez.)
Yc max	Ordinata in cmdella fibra corrisp, a ec max (sistema rif. X,Y, Osez)
es min	Deform, unit, minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X, Y, O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y, O sez.)
es max	Deform, unit, massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	-250.0	0.0	0.00172	-231.9	8.6	-0.01541	231.9	91.5

COMB. RARE (S.L.E.) - SFORZIPER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)
Mx Momento fettente [kN] intorno all'asse X di riferimento tra parentes

Momento flettente [kNm] intomo all'asse X di riferimento (tra parentesi Mom Fessurazione)

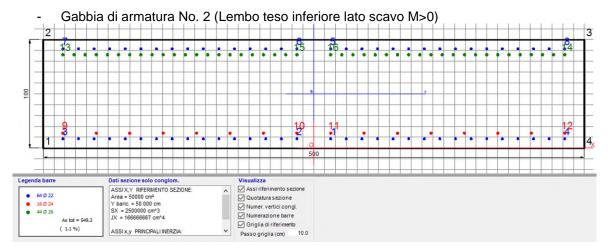
con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. N Mx My 1 0.00 -4100.00 0.00

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANS Progetto Lotto Codifica Documento Rev. Foglio GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO 118 di 205 IN17 11 EI2 CL GA 01 A4 0014 Α

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

S = comb, verificata/ N = comb, non verificata Massima tensione (positiva se di compressione) nel calcestruzzo [MPa] Sc max Ascissa, Ordinata [cm] del punto corrisp.a Sc max (sistema rif. X, Y,O) Xc max, Yc max Minima tensione (negativa se di trazione) nell'acciaio [MPa] Ascissa, Ordinata [cm] della barra corrisp, a Ss min (sistema rif. X,Y,O) Ss min Xs min, Ys min Ac ef Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure N°Comb Ver Sc max Xo max Yo max As eff Ssmin Xsmin Ysmin Aceff. S 5.54 -250.0 0.0 -148.4 217.5 91.4 11220 378.4 1


COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fotm Esito della verifica e1 e2 k1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata =0.8 per barre ad aderenza migliorata [eq.(7.11)EC2] = 0.4 per comb. quasi permanenti / =0.6 per comb.frequenti [cfr. eq.(7.9)EC2] kt k2 k3 = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2] = 3.400 Coeff. in eq.(7.11) come da annessi nazionali 1/4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2] Ø Opinierro [min] retto calcolato con riferimento alla barra più tesa

Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]

Tra parentesi: valore minimo = 0,6 Smax/Es [(7.9)EC2 e (C4.1.8)NTC] Cf e sm - e cm sr max Massima distanza tra le fessure [mm] Apertura fessure in mm calcolata = sr max*(e_sm-e_cm) [(7.8) EC2 e (C4.1.7)NT C]. Valore limite tra parentesi wk Mxfess Componente momento di prima fessurazione intorno all'asse X [kNm] Myfess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Comb. Ver e1 e2 k2 Ø Cf esm-ecmsrmax wk Mxfess Myfess 1 S -0.00085 0.00000 0.500 25.2 74 0.00047 (0.00045) 379 0.176 (990.00) -2836.00 0.00

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata N Sforzo normale assegnato [kM] nel baricentro B sezione cis.(positivo se di compressione) Mx Componente del momento assegnato [kMn] riferito all'assex xprinc. dinerzia N Res Siorzo normale resistente [kM] nel baricentro B sezione dis.(positivo se di compress.) Mx Res Momento flettente resistente [kMn] riferito all'assex xprinc. dinerzia Mis.Sic. Msura sicurezza = rapporto vettoriale tra (N r./Mx Res.My Res) e (N,Mx,My) Verifica positiva se tale rapporto risulta >= 1,000 Are a totale barre longitudinali (cm²). [Tra parentesi il valore minimo di normativa]

N°Comb Ver N Mx N Res Mx Res Ms.Sic. As Totale
1 S 0.00 2780.00 0.00 6520.12 2.35 572.4(150.0)

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANS Progetto Lotto Codifica Documento Rev. Foglio GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO

IN17

11

EI2 CL GA 01 A4 0014

119 di 205

Α

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform, unit, massima del calcestruzzo a compressione
	Deform, unit, massima del calcestruzzo a compressione
Xc max	Ascissa in cm della fibra corrisp, a ec max(sistema rif. X, Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp, a ec max (sistema rif. X,Y, O sez.)
es min	Deform, unit, minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X, Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,Osez.)
es max	Deform, unit, massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X, Y, O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	-250.0	100.0	0.00104	15.6	91.4	A 02259	156	86

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

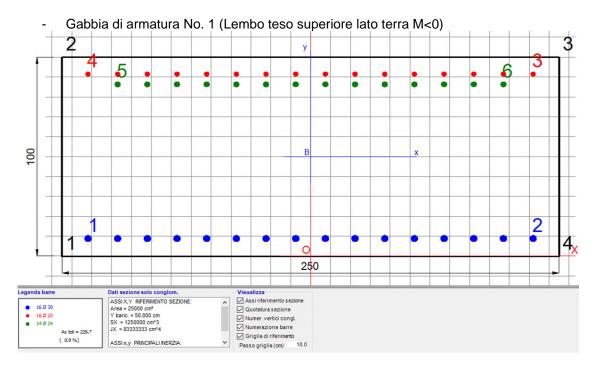
N°Comb 1 0.00 2130.00 0.00

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

S = comb. verificata/ N = comb. non verificata Ver

Sc max Massima tensione (positiva se di compressione) nel calcestruzzo [MPa] Xc max, Yc max As cissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X, Y,O) Minima tensione (negativa se di trazione) nell'acciaio [MPa]
Ascissa, Ordinata [cm] della barra comsp. a Ss min (sistema rif. X,Y,O) Ss min Xs min, Ys min Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre As eff Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb Ver Sc max Xc max Yc max Ssmin Xsmin Ysmin As eff. 1 3.13 -250.0 100.0 -140.0 217.5 8.6 12376 194.0


COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fotm Esito della verifica e1 e2 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata = 0.8 per barre ad aderen za migliorata [eq.(7.11) EC2] = 0.4 per comb. quasi permanent /= 0.6 per comb frequenti [cfr. eq.(7.9)EC2] = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2] kt k2 k3 k4 = 3.400 Coeff. in eq.(7.11) come da annessi nazionali = 0.425 Coeff. in eq.(7.11) come da annessi nazionali Diametro [mm] equivalente delle barre tese comprese nell'area efficace Aceff [eq.(7.11)EC2] Copriferro [mm] netto calcolato con riferimento alla barra più tesa Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] 0 Tra parentesi: valore minimo = 0.6 Smax/Es [(7.9)EC2 e (C4.1.8)NTC] Massima distanza tra le fessure [mm] sr max Apertura fessure in mm calcolata = sr max*(e_sm -e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi Mxfess Componente momento di prima fessurazione intorno all'asse X [kNm] Componente momento di prima fessurazione intorno all'asse Y [kNm] Myfess.

Ver k2 Cf Mxfess Myfess e sm - e cm sr max S -0.00079 0.00000 0.500 22.7 75 0.00042 (0.00042) 501 0.200 (990.00) 2686.69

11.1.1.1.3 Pannello P2 e S2 Pannelli primari e secondari (base pannello 2.5 m)

P2-S2 2.50 m SLU SLS-rara Inv.BT (Diafr.) Inv.LT (Fod+Diafr.) Inv.BT (Diafr.) Inv.LT (Fod+Diafr.) Valore lato Scavo Scavo Terra Scavo Scavo Terra (kN*m/m) Terra (kN*m/m) Terra (kN*m/m) (kN*m/m) (kN*m/m) (kN*m/m) (kN*m/m) (kN*m/m)Testa diaframma 1294 1381 1314 1381 1843 1981 2560 1528 Gabbia 1 1294 2648 1314 2692 1843 3205 1981 4069 Sovrapposizione 154 2102 753 2175 199 2733 4401 2828 Gabbia 2 2042 1060 2042 1060 2654 1390 5598 1390

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata N Shorzo nomale assegnato [kN] nel baricentro B sezione cls. (positivo se di compressione) Mx Componente del momento assegnato [kN] niferito all'asse x princ. dinerzia N Res Shorzo normale resistente [kN] nel baricentro B sezione dis (positivo se di compress.) Mx Res Momento fettente resistente [kN] riferito all'asse x princ. dinerzia Msura sicurezza = rapporto vetoriale tra (N r, Mx Res, My Res) e (N,Mx,My) Verifica positiva se tale rapporto risulta >= 1,000 Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb	Ver	N	Mx	N Res	Mx Res	Ms. Sc.	As Totale
1	S	980.00	-1990.00	980.02	-4084.58	2.05	226.7(75.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max Deform. unit. massima del calcestruzzo a compressione Deform. unit. massima del calcestruzzo a compressione Xc max Ascissa in cm della fibra corrisp. a ec max (sistema rif. X, Y, O sez.) Yc max Ordinata in cm della fibra corrisp. a ec max (sistema rif. X, Y, O sez.) Deform. unit. minima nell'acciaio (negativa se ditrazione) Xs min Ascissa in cm della barra corrisp. a es min (sistema rif. X, Y, O sez.) Ys min Ordinata in cm della barra corrisp. a es min (sistema rif. X, Y, O sez.) Deform. unit. massima nell'acciaio (positiva se di compress.) Xs max Ascissa in cm della barra corrisp. a es max (sistema rif. X, Y, O sez.) Ys max Ordinata in cm della barra corrisp. a es max (sistema rif. X, Y, O sez.)

N°Comb	ec max	Xc max	Yo max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	-125.0	0.0	0.00089	-111.9	8.9	-0.02339	111.9	91.6

COMB. RARE (S.L.E.) - SFORZIPER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)
Momento flettente [kNm] intorno all'asse X di riferimento tra parentesi Mom Fessurazione) con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. -1320.00 0.00

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

S = comb. verificata/ N = comb. non verificata Ver

Sc max Massima tensione (positiva se di compressione) nel calcestruzzo [MPa] Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp.a Sc max (sistema rif. X, Y,O) Ss min Minima tensione (negativa se di trazione) nell'acciaio [MPa] Ascissa, Ordinata [cm] della barra comsp. a Ss min (sistem a rif. X,Y,O) Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Xs min, Ys min Ac eff. As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb Ver Sc max Xc max Yc max Ss min Xs min Ys min Ac eff. As eff. S 3.86 -125.0 0.0 -151.4 -97.0 91.6 6027

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fotm Ver. Esito della verifica

e1 e2 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata k1

= 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

kt k2 = 0.4 per comb. quasi permanent / = 0.6 per comb frequent [cf. eq.(7.9)EC2] = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2] = 3.400 Coeff, in eq.(7.11) come da annessi nazionali

k3

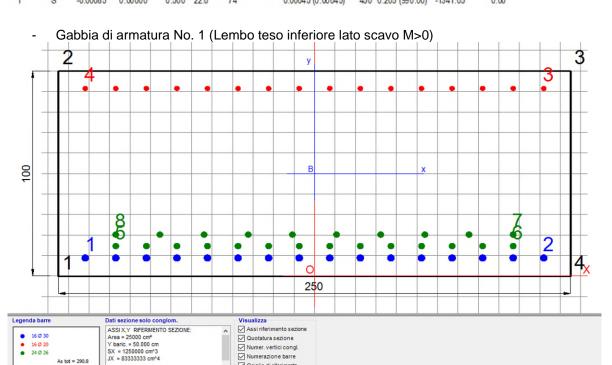
= 0.425 Coeff. in eq.(7.11) come da annessi nazionali k4 Ø

Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2] Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] e sm - e cm

Tra parentesi: valore minimo = 0.6 Smax/Es [(7.9)EC2 e (C4.1.8)NTC]

Massima distanza tra le fessure [mm] sr max


As tot = 290.8

ASSI x,y PRINCIPALI INERZIA:

wk Mxfess Apentura fessure in mm calcolata = sr max*(e_sm -e_cm) [(7.8) EC2 e (C4.1.7) NT C]. Valore limite tra parentesi Componente momento di prima fessurazione intorno all'asse X [kNm]

Myfess. Componente momento di prima fes surazione intorno all'asse Y [kNm]

Comb. Ver e2 k2 Ø Cf wk Mxfess My fess e1 e sm - e cm sr max -0.00085 0.00000 0.500 22.0 74 0.00045 (0.00045) 450 0.205 (990.00) -1341.05 S 0.00

Numerazione barre

Griglia di riferimento

Passo griglia (cm)

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANI Progetto Lotto Codifica Documento Rev. Foglio GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO

IN17

11

EI2 CL GA 01 A4 0014

122 di 205

Α

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

S = combinazione verificata / N = combin. non verificata Ver

Sforzo nomale assegnato [kN] nel bancentro B sezione cls.(positivo se di compressione) Mx Componente del momento assegnato [kNm] riferito all'asse xprinc. d'inerzia N Res Sforzo normale resistente [kN] nel baricentro B sezione ds.(positivo se di compress.)

MxRes Momento flettente resistente [kNm] riferito all'asse xprinc. d'inerzia Mis Sic

Misura sicurezza = rapporto vettoriale tra (N r, Mx Res, My Res) e (N, Mx, My) Verifica positiva se tale rapporto risulta >= 1.000

Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa] As Totale

N°Comb N Res Mx Res Ms. Sic. As Totale Ver Mx S 0.00 4070 00 0.00 7198 51 1 1.77 290.8(75.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max Deform, unit, massima del calcestruzzo a compressione Deform, unit, massima del calcestruzzo a compressione Ascissa in cm della fibra corrisp. a ec max(sistema rif. X, Y,O sez.) Xc max Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,Osez.) Yc max es min Deform, unit. minima nell'acciaio (negativa se di trazione) Xs min Ascissa in cm della barra corrisp, a es min (sistema rif. X, Y,O sez.) Ys min Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) es max Deform, unit, massima nell'acciaio (positiva se di compress.) Ascissa in cm della barra corrisp, a es max (sistema rif. X,Y,O sez.) Xs max Ordinata in cm della barra corrisp, a es max (sistema rif. X,Y,O sez.) Ys max

N°Comb ec max Xc max Yc max es min Xs min Ys min es max Xs max Ys max 0.00350 100.0 0.00237 -125.0111.9 91.6 -0.00878-111.9 8.9

COMB. RARE (S.LE.) - SFORZIPER OGNI COMBINAZIONE ASSEGNATA

N M× Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Momento flettente [kNm] intomo all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb N Mx Mv 0.00 0.00 2700.00 1

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Massima tensione (positiva se di compressione) nel calcestruzzo [MPa] Sc max Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp.a Sc max (sistema rif. X, Y,O) Ss min Minima tensione (negativa se di trazione) nell'acciaio [MPa] Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistem a rif. X,Y,O) Xs min, Ys min Area di calcestruzzo [cm²] in zona tesa considerata aderente alle bi As off Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb Ver Sc max Xc max Yc max Ss min Xs min Ys min Ac eff. As eff S 2405 1 7.03 -125 0 100 0 -161 1 97 0 89 5282

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fes surata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fotm

Esito della verifica Ver.

Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata Minim a deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

e2 k1

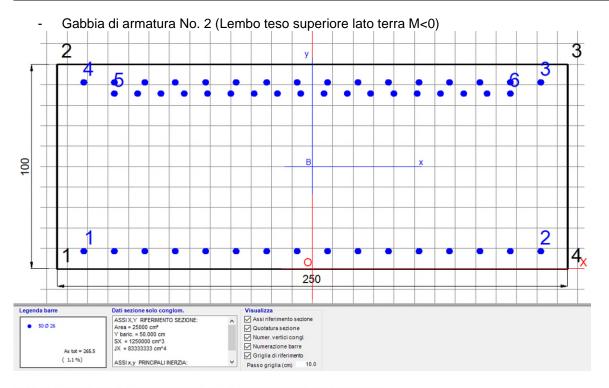
= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] k2 k3 = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2] = 3.400 Coeff. in eq.(7.11) come da annessi nazionali

= 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Aceff [eq.(7.11)EC2]

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] e sm - e cm


Tra parentesi: valore minimo = 0.6 Smax/Es [(7.9)EC2 e (C4.1.8)NTC]

st max Massima distanza tra le fessure [mm]

Apertura fessure in mm calcolata = sr max*(e sm -e cm) (7.8) EC2 e (C4.1.7) NTC1. Valore limite tra parentesi

Mxfess Componente momento di prima fessurazione intorno all'asse X [kNm] Myfess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Ø Cf Ver e2 k2 Mx fess My fess Comb. e1 e sm - e cm sr max -0.00094 0.00000 0.00059 (0.00048) 355 0.209 (990.00) 1470.95 1 S 0.500 27.7 74 0.00

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)
Mx Componente del momento assegnato [kNm] riferito all'asse xprinc. dinerzia
N Res Sforzo normale recidente [kN] nel baricentro B sezione de (nocitivo se di compress.)

N Res Storzo normale resistente [kN] nel baricentro B sezione dis (positivo se di compress.)

MixRes Momento flettente resistente [kNm] riferito all'asse xprinc. d'inerzia

Mis.Sic. Misura sicurezza = rapporto vetoriale tra (N r,Mx Res,My Res) e (N,Mx,My)
Verifica positiva se tale rapporto risulta >=1,000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb Ver N Mk N Res Mx Res Ms.Sic. As Totale
1 S 0.00 -5600.00 0.00 -5728.56 1.02 265.5 (75.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max Deform, unit, massima del calcestruzzo a compressione Deform, unit, massima del calcestruzzo a compressione Ascissa in cm della fibra corrisp. a ec max(sistema rif. X, Y,O sez.) Xc max Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Yc max Deform, unit. minima nell'acciaio (negativa se ditrazione) es min Ascissa in cm della barra corrisp. a es min (sistema rif. X, Y,O sez.) Xs min Ys min Ordinata in cm della barra corrisp, a es min (sistema rif. X,Y,O sez.) es max Deform, unit. massima nell'acciaio (positiva se di compress.) Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez) Xs max Ys max Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

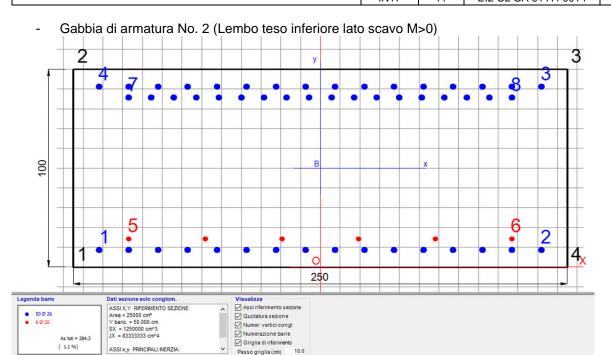
N°Comb	ec max	Xc max	Yo max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	-125.0	0.0	0.00154	-111.9	8.7	-0.01709	111.9	91.3

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)
Mx Momento fiettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. N Mx My 1 0.00 -2050.00 0.00


GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANI Codifica Documento Progetto Lotto Rev. Foglio GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO IN17 EI2 CL GA 01 A4 0014 Α 124 di 205 11

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata Sc max Massima tensione (positiva se di compressione) nel calcestruzzo [MPa] Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp.a Sc max (sistema rif. X, Y,O) Ss min Minima tensione (negativa se di trazione) nell'acciaio [MPa] Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp, a Ss min (sistem a rif. X,Y,O) Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre As eff. Area barre [cm2] in zona tesa considerate efficaci per l'apertura delle fessure N°Comb Ver Sc max Xc max Yc max Ss min Xs min Ys min Ac eff. As eff. 5.37 -125.00.0 -152.4 -97.0 91.3 5633 180,5 1 S

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

1	S	-0.00087	0.00000	0.500	26.0	74	0.00047 (0.00046)	390	0.184 (990.00)	-1429.26	0.00
Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mxfess	Myfess
Myfe			nte momento d								
Mxfe	ess.		nte momento o					-	partition		
wk	47					sm-e cm)	[7.8] EC2 e (C4.1.7) NT C]. Valo	re limite	tra parentesi		
sr ma	ax		distanza tra le			1(1.3)5021	e (O4. ID)(41 O)				
e sm	- e cm						zo [(7.8)EC2 e (C4.1.7)NTC] e (C4.1.8)NTC]				
Cf			[mm] netto ca								
Ø							area efficace Ac eff [eq.(7,11)E	C2]			
k4			coeff. in eq.(7.1								
k3		= 3,400 C	oeff. in eq.(7.1	1) come da	annessi	nazionali					
k2							ca [eq.(7.13)EC2]				
kt							enti [cfr. eq.(7.9)EC2]				
k1			barre ad adere				lummarie tenatoria si acmorie i	ve exitte			
e2							(trazione -) valutata in sezione f				
Ver.		Esito della	e Technique	unitaria di t	V2 TO 80 8	al colosofenza	o (trazione -) valutata in sezione	- famue	to.		
11			A Marie Account	a sempre R	essurata	anche nei cas	o in cui la trazione minima del c	aicestu	zzo sa intenore a	term	

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse xprinc. d'inerzia N Res Sforzo normale resistente [kN] nel baricentro B sezione da (positivo se di compress.)

MxRes Momento flettente resistente [kNm] riferito all'asse xprinc. d'inerzia

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r, Mc Res, My Res) e (N, Mx, My)

Verifica positiva se tale rapporto risulta >=1,000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb Ver N Mx N Res Mx Res Ms. Sic. As Totale 1 S 0.00 1390.00 0.00 3501.83 2.52 284.3(75.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max
Deform. unit. massima del calcestruzzo a compressione
Deform. unit. massima del calcestruzzo a compressione
Xc max
Ascissa in cm della fibra corrisp. a ec max (sistema rif. X, Y, O sez.)
Vc max
Ordinata in cm della fibra corrisp. a ec max (sistema rif. X, Y, O sez.)
Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min
Ascissa in cm della barra corrisp. a es min (sistema rif. X, Y, O sez.)
Ys min
Ordinata in cm della barra corrisp. a es min (sistema rif. X, Y, O sez.)
es max
Deform. unit. massima nell'acciaio (positiva se di compress.)

Xs max Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb ec max Xc max Yo max es min Xs min Ys min es max Xs max Ys max 1 0.00350 -125.0 100.0 0.00100 111.9 91.3 -0.02277-111.9 8.7

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANI Codifica Documento Progetto Lotto Rev. Foglio GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO IN17 11 EI2 CL GA 01 A4 0014 Α 126 di 205

COMB. RARE (S.L.E.) - SFORZIPER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intomo all'asse X di riferimento (tra parentesi Mom Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. N Mx My 1 0.00 1100.00 0.00

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max Massima tensione (positiva se di compressione) nel calcestruzzo [MPa]
Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a. Sc max (sistema rif. X, Y,O)
Ss min Mrima tensione (negativa se di trazione) nell'acciaio [MPa]
Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp, a. Ss min (sistema rif. X, Y,O)
Are eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
As eff. Area barre [cm²] in zona tesa considerata efficaci per l'apertura delle fessure

N°Comb Ver Sc max Xc max Yc max Ss min Xs min Ys min Ac eff. As eff.

1 S 3.10 -125.0 100.0 -132.1 97.0 8.7 5979 103.8

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

wk Ma	fess.					sm - e_cm) (7.	8) EC2 e (C4.1.7) NT C]. Valore limite tra pa X [kNm]	rentesi	
	max	Tra parentes		no = 0.6 S	max/Es	(7.9) EC2 e (C			
Cf	m - e cm					o alla barra più ti	esa [(7.8)EC2 e (C4.1.7)NTC]		
Ø							a efficace Ac eff [eq.(7.11)EC2]		
k4		= 0.425 Coef					CO		
k3		= 3,400 Coef	f. in eq.(7.11)	come da a	annessi r	nazionali	•		
k2						one eccentrica			
kt		= 0.8 perba					fcfr. eq.(7.9)EC21		
e2 k1						and the second of the second	zione -) valutata in sezione fessurata		
e1							azione -) valutata in sezione fessurata		
Ve	r.	Esito della ve		sempre les	surata a	inche nei caso in	cui la trazione minima del calcestruzzo sia	interiore a i	Cim

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr	max	wk	Mxfess	Myfess
1	S	-0.00075	0.00000	0.500	24.7	74	0.00040 (0.00040)	493	0.195 (990.00)	1360.44	0.00

11.1.2 Verifiche sollecitazioni taglianti

Nella tabella seguente si riassume le massime sollecitazioni taglianti ottenute dall'inviluppo dei risultati degli schemi di calcolo 'TS-1' e 'TS-2' utilizzati per il dimensionamento dell'armatura 'Tipo 1'.

Le verifiche sono effettuate considerando i fili strutturali di seguito indicati:

- sollecitazioni testa diaframma riferite ad asse cordolo.
- in corrispondenza del solettone di fondo del manufatto a "U" interno, il picco delle sollecitazioni taglianti è valutato ad ¼ dello spessore dall'asse della soletta.

Tabella 39 Sollecitazioni taglianti dimensionanti

INVILUPPO TS-1_TS-2	Inviluppo A1+M1+R1	1			SLU			
	Inv.BT (Diafr.)	ı	nv.LT (Diafr.)		Inv.BT (Diafr.)		Inv.LT (Diafr.)	
Sollecitazioni taglianti	Valore lato Valo Terra (kN/m) (kN/		/alore lato Terra kN/m)	Valore lato Scavo (kN/m)	Valore lato Terra (kN/m)	Scavo	Valore lato Terra (kN/m)	Valore lato Scavo (kN/m)
Asse copertura	34	587	40	658	26	442	113	981
Intradosso copertura	17	564	17	628	13	425	13	891
Testa diaframma	10	514	10	568	7	389	7	729
Gabbia 1	263	514	328	568	202	389	715	729
Sovrapposizione	567	18	703	18	436	13	1417	13
Estradosso solaio Fondo	614	18	759	18	472	13	1495	13
Asse Solaio fondo	696	5	861	212	535	4	1637	958
Sezione 1/4 da estradosso	631	10	782	106	486	7	1527	479
Intradosso solaio fondo	773	1	773	163	594	1	594	827
Gabbia 2	787	445	861	445	605	343	1637	958

11.1.2.1 Dimensionamento armatura trasversale

Per il dimensionamento dell'armatura resistente a taglio si è proceduto armando il pannello soggetto alla sollecitazione maggiore (pannello P1 L=5.45 m) L'armatura così dimensionata è valida per ogni pannello, unica differenza è il passaggio da 2 gabbie (8 bracci resistenti a taglio) per i pannelli di tipo P1 e S1 a 1 gabbia (4 bracci resistenti a taglio) per i pannelli di tipo P2 e S2. Le verifiche sono effettuate in accordo con il metodo semiprobabilistico agli stati limite ultimi secondo i criteri riportati nelle NTC 08 per le strutture in calcestruzzo armato.

Tabella 40 Inviluppo sollecitazioni taglianti dimensionanti

INVILUPPO TS-1_TS-2			
	Inviluppo A1+I	M1+R1 / SISMA STR	
Calla sitari ani taglianti	Valore lato	Valore lato Scavo	
Sollecitazioni taglianti	Terra (kN/m)	(kN/m)	
Testa diaframma	1	0	729
Sezione 1/4 da estradosso	152	7	479

Di seguito si riportano le resistenze per i vari passi utilizzati. Nel dettaglio si valuta la resistenza a taglio delle staffe nelle seguenti condizioni:

- 1. Armatura trasversale composta da nr. 4 braccia φ14, passo 25cm
- 2. Armatura trasversale composta da nr. 4 braccia \$14\$, passo 15cm
- 3. Armatura trasversale composta da nr. 4 braccia \(\phi 14, \text{ passo 10cm} \)

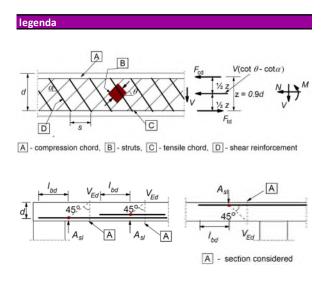
Caso 1: 4 braccia \(\phi 14, \text{ passo 25cm} \)

verifica a taglio di una sezione rettangolare secondo EN 1992-1-1:2004:E

geometria				
sezione trasversale				
base	В	=	545	cm
altezza	Н	=	100	cm
copriferro (asse armatura long.)	С	=	11.4	cm
altezza utile	d	=	88.6	cm
braccio coppia interna	Z	=	79.8	cm
armatura a taglio				
numero braccia	n	=	8	
diametro	φ	=	14	mm
passo	S	=	25	cm
inclinazione	α	=	90	0
area	A_{sw}	=	12.32	cm ²
armatura longitudinale tesa				
numero barre	n_1	=	30	
diametro	ϕ_1	=	24	mm
numero barre	n_2	=	32	
diametro	ϕ_2	=	20	mm
area totale	Ası	=	236.2	cm^2

materiali				
calcestruzzo				
resistenza caratt. cilindrica a 28 gg.	f_{ck}	=	24.9	MPa
coeff. parziale di sicurezza	γс	=	1.5	
coeff. effetti a lungo termine	α_{cc}	=	0.85	
tensione di calcolo	fcd	=	14.1	MPa
coeff. riduzione resistenza bielle	ν	=	0.540	
tensione di calcolo bielle	νf_{cd}	=	7.6	MPa
acciaio				
tensione caratt. di snervamento	fyk	=	450.0	MPa
coeff. parziale di sicurezza	γs	=	1.15	
tensione di snervamento di calcolo	fyd	=	391.3	MPa

sollecitazioni e verifiche				
taglio	VEd	=	0	kN
azione assiale	N_{Ed}	=	0	kN
resistenza elemento non armato	V_{Rdc}	=	1511.1	kN
resistenza armatura a taglio	V_{Rds}	=	2662.6	kN
resistenza bielle calcestruzzo	V_{Rdmax}	=	######	kN
inclinazione bielle calcestruzzo	θ	=	30.0	0
sezione			duttile	
traslazione armatura long.	aı	=	88.6	cm


A - section considered

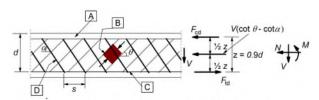
Caso 2: 4 braccia \(\phi 14, \text{ passo 15cm} \)

verifica a taglio di una sezione rettangolare secondo EN 1992-1-1:2004:E

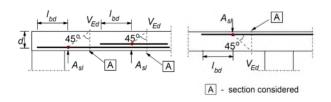
geometria				
sezione trasversale				
base	В	=	545	cm
altezza	Н	=	100	cm
copriferro (asse armatura long.)	С	=	11.4	cm
altezza utile	d	=	88.6	cm
braccio coppia interna	Z	=	79.8	cm
armatura a taglio				
numero braccia	n	=	8	
diametro	ф	=	14	mm
passo	S	=	15	cm
inclinazione	α	=	90	۰
area	A_{sw}	=	12.32	cm ²
armatura longitudinale tesa				
numero barre	n_1	=	30	
diametro	ϕ_1	=	24	mm
numero barre	n_2	=	32	
diametro	ϕ_2	=	20	mm
area totale	Ası	=	236.2	cm ²

materiali				
calcestruzzo				
resistenza caratt. cilindrica a 28 gg.	fck	=	24.9	MPa
coeff. parziale di sicurezza	γс	=	1.5	
coeff. effetti a lungo termine	αcc	=	0.85	
tensione di calcolo	f_{cd}	=	14.1	MPa
coeff. riduzione resistenza bielle	ν	=	0.540	
tensione di calcolo bielle	νf_{cd}	=	7.6	MPa
acciaio				
tensione caratt. di snervamento	f_{yk}	=	450.0	MPa
coeff. parziale di sicurezza	γs	=	1.15	
tensione di snervamento di calcolo	fyd	=	391.3	MPa

sollecitazioni e verifiche				
taglio	V_{Ed}	=	0	kN
azione assiale	N_{Ed}	=	0	kN
resistenza elemento non armato	VRdc	=	1511.1	kN
resistenza armatura a taglio	VRds	=	4437.7	kN
resistenza bielle calcestruzzo	V_{Rdmax}	=	######	kN
inclinazione bielle calcestruzzo	θ	=	30.0	•
sezione			duttile	
traslazione armatura long.	aı	_	88.6	cm


Caso 3: 4 braccia \(\phi 14, \text{ passo 10cm} \)

verifica a taglio di una sezione rettangolare secondo EN 1992-1-1:2004:E


geometria				
sezione trasversale				
base	В	=	545	cm
altezza	Н	=	100	cm
copriferro (asse armatura long.)	С	=	11.4	cm
altezza utile	d	=	88.6	cm
braccio coppia interna	Z	=	79.8	cm
armatura a taglio				
numero braccia	n	=	8	
diametro	φ	=	14	mm
passo	S	=	10	cm
inclinazione	α	=	90	0
area	A_{sw}	=	12.32	cm ²
armatura longitudinale tesa				
numero barre	n_1	=	30	
diametro	ϕ_1	=	24	mm
numero barre	n_2	=	32	
diametro	ϕ_2	=	20	mm
area totale	Ası	=	236.2	cm ²

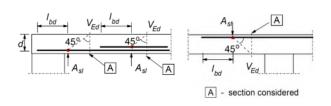
materiali				
calcestruzzo				
resistenza caratt. cilindrica a 28 gg.	f_{ck}	=	24.9	MPa
coeff. parziale di sicurezza	γс	=	1.5	
coeff. effetti a lungo termine	α_{cc}	=	0.85	
tensione di calcolo	f_{cd}	=	14.1	MPa
coeff. riduzione resistenza bielle	ν	=	0.540	
tensione di calcolo bielle	νf_{cd}	=	7.6	MPa
acciaio				
tensione caratt. di snervamento	fyk	=	450.0	MPa
coeff. parziale di sicurezza	γs	=	1.15	
tensione di snervamento di calcolo	fyd	=	391.3	MPa

legenda

A - compression chord, B - struts, C - tensile chord, D - shear reinforcement

sollecitazioni e verifiche				
taglio	VEd	=	0	kN
azione assiale	N _{Ed}	=	0	kN
resistenza elemento non armato	VRdc	=	1511.1	kN
resistenza armatura a taglio	V_{Rds}	=	6656.6	kN
resistenza bielle calcestruzzo	V_{Rdmax}	=	######	kN
inclinazione bielle calcestruzzo	θ	=	30.0	•
sezione			duttile	
traslazione armatura long.	aı	=	88.6	cm

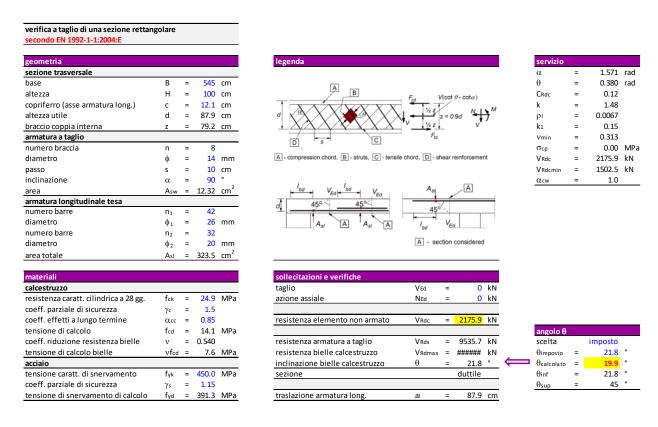
4. Caso 3A: 4 braccia ϕ 14, passo 10cm (θ =25°)


verifica a taglio di una sezione rettangolare secondo EN 1992-1-1:2004:E

geometria				
sezione trasversale				
base	В	=	545	cm
altezza	Н	=	100	cm
copriferro (asse armatura long.)	С	=	11.4	cm
altezza utile	d	=	88.6	cm
braccio coppia interna	Z	=	79.8	cm
armatura a taglio				
numero braccia	n	=	8	
diametro	ф	=	14	mm
passo	S	=	10	cm
inclinazione	α	=	90	0
area	Asw	=	12.32	cm ²
armatura longitudinale tesa				
numero barre	n_1	=	30	
diametro	ϕ_1	=	24	mm
numero barre	n_2	=	32	
diametro	ϕ_2	=	20	mm
area totale	Ası	=	236.2	cm ²

acceptable				
materiali calcestruzzo				
resistenza caratt. cilindrica a 28 gg.	fck	=	24.9	MPa
coeff. parziale di sicurezza	γс	=	1.5	
coeff. effetti a lungo termine	α_{cc}	=	0.85	
tensione di calcolo	f_{cd}	=	14.1	MPa
coeff. riduzione resistenza bielle	ν	=	0.540	
tensione di calcolo bielle	νf_{cd}	=	7.6	MPa
acciaio				
tensione caratt. di snervamento	fyk	=	450.0	MPa
coeff. parziale di sicurezza	γs	=	1.15	
tensione di snervamento di calcolo	fyd	=	391.3	MPa

legenda A B $V(\cot \theta - \cot \alpha)$ $V(\cot \theta - \cot \alpha)$


A - compression chord, B - struts, C - tensile chord, D - shear reinforcement

sollecitazioni e verifiche				
taglio	V_{Ed}	=	0	kN
azione assiale	N_{Ed}	=	0	kN
resistenza elemento non armato	V_{Rdc}	=	1511.1	kN
resistenza armatura a taglio	V_{Rds}	=	8241.7	kN
resistenza bielle calcestruzzo	V_{Rdmax}	=	######	kN
inclinazione bielle calcestruzzo	θ	=	25.0	•
sezione			duttile	
traslazione armatura long.	aı	=	88.6	cm

5. Caso 3B: 4 braccia ϕ 14, passo 10cm (θ =21°)

A partire dalle resistenze di calcolo sopra definite, le resistenze calcolate a metro lineare per il caso in esame sono:

- 4 braccia ∮14 passo 25cm: Vrds/L= 488.6 kN/m
- 4 braccia φ14 passo 10: Vrds/L= 1221.4 kN/m
- 4 braccia φ14 passo 10 (θ=25°): Vrds/L= 1512.2 kN/m
- 4 braccia φ14 passo 10 (θ=21°): Vrds/L= 1750 kN/m

I diagrammi del taglio resistente a metro lineare così calcolato sono confrontati con le sollecitazioni di taglio a metro lineare determinate dal programma Paratie, in modo da verificare la resistenza a taglio lungo tutta l'altezza dei diaframmi, come riportato nelle seguenti immagini,



Figura 49 Diaframma TS-1- Diagramma azioni taglianti e resistenti allo SLU - valori in kN/m

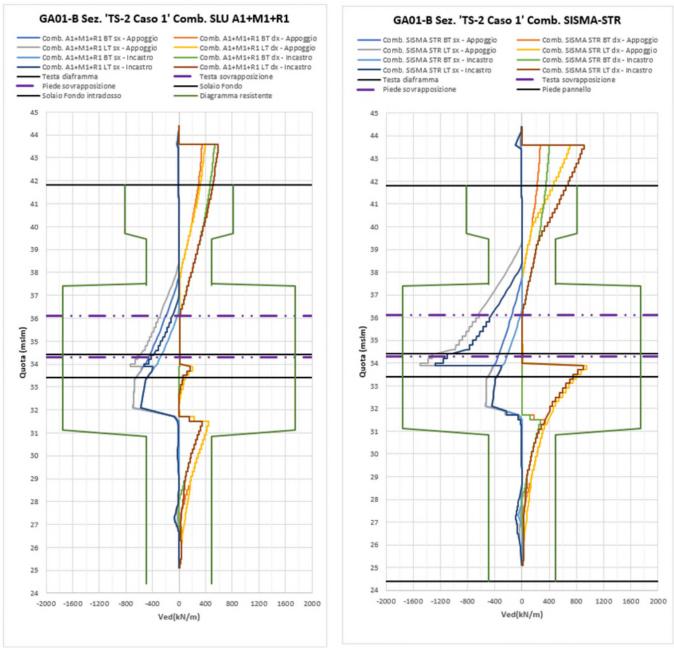


Figura 50 Diaframma TS-2-Caso 1- Diagramma azioni taglianti e resistenti allo SLU - valori in kN/m

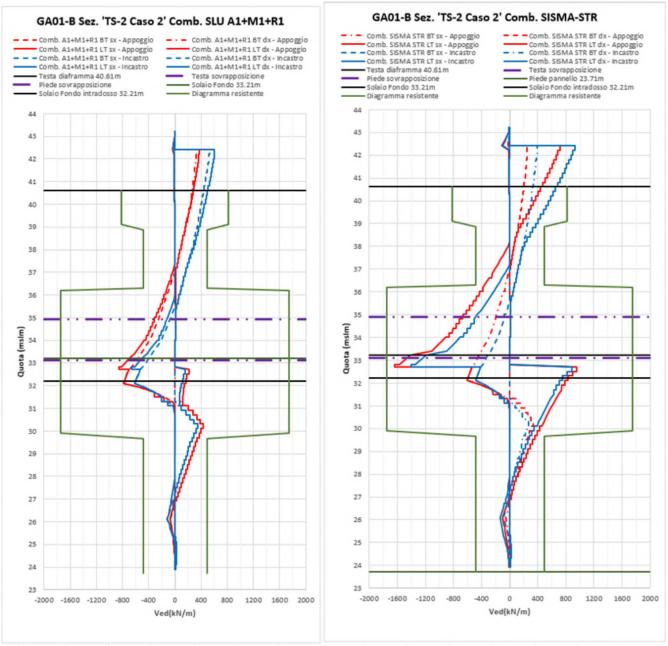


Figura 51 Diaframma TS-2-Caso 2- Diagramma azioni taglianti e resistenti allo SLU - valori in kN/m

11.2 Tipologia armatura 'Tipo 2' (Schema TS-3 e TS-4)

Nella tabella seguente si riassumono le massime sollecitazioni flettenti ottenute dall'inviluppo dei risultati degli schemi di calcolo 'TS-3' e 'TS-4' utilizzate per il dimensionamento dell'armatura 'Tipo 2'.

Le verifiche sono effettuate considerando i fili strutturali di seguito indicati:

- sollecitazioni testa diaframma riferite ad asse cordolo.
- in corrispondenza del solettone di fondo del manufatto a "U" interno, il picco delle sollecitazioni flettenti è valutato ad ¼ dello spessore dall'asse della soletta.

INVILUPPO TS-4 / TS-3 SLS-rara Inv.BT (Diafr.) Inv.LT (Diafr.) nv.BT (Diafr.) Inv.LT Diafr.) Valore lato Valore lato Valore lato Valore lato Valore lato Valore lato Terra Valore lato Scavo Valore lato Sollecitazioni Terra Scavo Scavo Terra Scavo (kN*m/m) (kN*m/m) Terra (kN*m/m) (kN*m/m) (kN*m/m) (kN*m/m) (kN*m/m) (kN*m/m) 0 978 0 1457 Asse copertura 905 1251 Intradosso copertura 653 141 701 168 909 183 1019 423 384 Testa diaframma* 366 315 368 523 409 582 893 Gabbia 1 366 684 384 734 523 889 582 1409 589 766 Sovrapposizione 53 581 287 68 756 1673 Gabbia 2 762 317 2107

Tabella 41 Sollecitazioni flettenti dimensionanti

11.2.1.1 Dimensionamento armatura longitudinale

Di seguito si riportano le tabelle con le sollecitazioni a flessione per le singole tipologie di diaframmi presenti. Per ognuno di essi è effettuato il dimensionamento dell'armatura longitudinale. Le verifiche sono state effettuate con il software di calcolo RC-Sec indicato al § 2.3.

- P1 pannello primario di lunghezza L=5.45 m
- S1 pannello secondario di lunghezza L=5.05 m
- P2 e S2 Pannelli primari e secondari di lunghezza 2.5 m

Le gabbie di armatura sono riportate negli elaborati di progetto allegati alla presente relazione: le gabbie di armatura definite di seguito, si susseguono lungo l'altezza del diaframma, e si rendono necessarie considerato il limite sulla massima lunghezza trasportabile.

Le verifiche sono effettuate in accordo con il metodo semiprobabilistico agli stati limite ultimi secondo i criteri riportati nelle NTC 08 per le strutture in calcestruzzo armato.

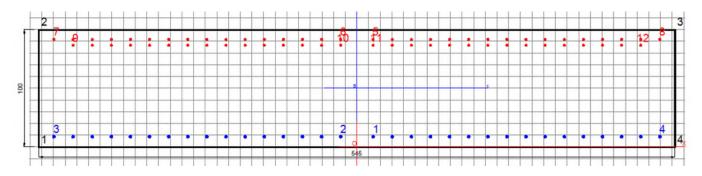
11.2.1.1.1 Pannello P1 (base pannello 5.45m)

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANS Progetto Lotto Codifica Documento Rev. Foglio GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO

Tabella 42 Pannello P1 Sollecitazioni di progetto allo SLE e SLU

P1	7, 333				l	5.45	m				
	SLS-rara					SLU	SLU				
	Inv.BT (Diafr.)		Inv.LT (Fod+Diafr.)			Inv.BT (Diafr.)		Inv.LT (Fod+Diafr.)			
	Valore lato	Valore lato	Valore lete Town		Valera lata Canca	Valore lato	Valore lato	Valore lato	Valore lato		
	Terra	Scavo	Valore lato Terra (kN*m/m)	(kN*m/m)	Valore lato Scavo	Terra (kN*m/m	Scavo	Terra	Scavo		
	(kN*m/m)	(kN*m/m)	(KIN-III/III)		(KIN-M/M)	rema (kiv m/m)	(kN*m/m)	(kN*m/m)	(kN*m/m)		
Testa diaframma	1997	1717		2094	2007	2852	2231	3170	4866		
Gabbia 1	1997	3726		2094	4003	2852	4845	3170	7679		
Sovrapposizione	287	3167	1	1563	3209	371	4119	9117	4173		
Gabbia 2	3194	1303	3	194	1303	4151	1729	11484	1729		

IN17


11

EI2 CL GA 01 A4 0014

137 di 205

Α

Gabbia di armatura No. 1 (Lembo teso superiore lato terra, M<0)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: Interferro netto minimo barre longitudinali: 3.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin, non verificata Sforzo normale assegnato [kN] nel bañcentro B sezione dis (positivo se di compressione) Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia N Res Storzo normale resistente [kN] nel baricentro B sezione cls. (positivo se di compress.) Momento flettente resistente [kNm] riferito all'asse xprinc. d'inerzia MxRes Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r, Mx Res, My Res) e (N,Mx,My) Verifica positiva se tale rapporto risulta >= 1.000 As Totale

Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb N Mk N Res Mx Res Ms. Sic. As Totale 1 S 0.00 -3170.00 0.00 -6417.14 2.02 364.7(163.5)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

Deform, unit, massima del calcestruzzo a compressione ec max Deform, unit, massima del calcestruzzo a compressione Xc max Ascissa in cm della fibra corrisp. a ec max (sistema rif. X, Y, O sez.) Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Yc max Deform, unit. minima nell'acciaio (negativa se di trazione) es min Xs min Asassa in cm della barra corrisp. a es min (sistema rif. X,Y,Osez.) Ys min Ordinata in cm della barra corrisp. a es min (sistema rif. X.Y.O sez.) Deform, unit. massima nell'acciaio (positiva se di compress.) es max Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.) Xs max Ordinata in cm della barra corrisp. a es max (sistem a rif. X,Y,O sez.) Ys max

N°Comb	ec max	Xc max	Yo max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	-272.5	0.0	0.00042	-259.5	8.7	-0.02890	259.5	91.6

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANS Progetto Lotto Codifica Documento Rev. Foglio GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO IN17 EI2 CL GA 01 A4 0014 138 di 205 11 Α

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) N

Mx Momento flettente [kNm] intomo all'asse X di riferimento (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

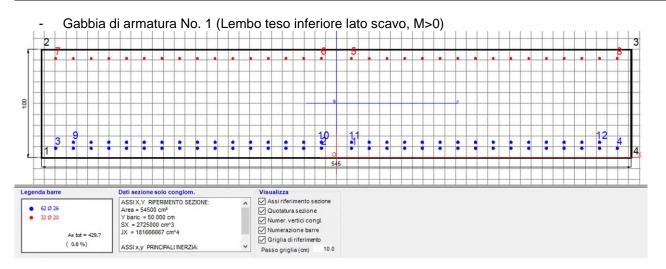
N°Comb. 0.00 -2100.00 0.00

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Massima tensione (positiva se di compressione) nel calcestruzzo [MPa] Sc max Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X, Y,O) Ss min Minima tensione (negativa se di trazione) nell'acciaio [MPa] Ascissa, Ordinata [cm] della barra corrisp. a Ssimin (sistema rif. X,Y,O) Xs min. Ys min Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb Ver Sc max Xc max Yc max Ssmin Xsmin Ysmin Aceff. As eff. -272.5 0.0 -137.7 243.1 91.6 13553 1 3.20 1948


COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fotm Ver Esito della vertica Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2 Mnima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2] = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] k1 kt k2 k3 k4 = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2] = 3.400 Coeff. in eq.(7.11) come da amessi nazionali = 0.425 Coeff. in eq.(7.11) come da amessi nazionali Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2] Ø Copriferro [mm] netto calcolato con riferimento alla barra più tesa Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]
Tra parentesi: valore minimo = 0.6 Smax/Es [7.9)EC2 e (C4.1.8)NTC] esm-ecm Massima distanza tra le fessure [mm] sr max Apertura fessure in min calcolata = sr max*(e_sm -e_cm) [[7.8]EC2 e (C4.1.7)NTC]. Valore limite tra parentesi Componente momento di prima fessurazione intorno all'asse X [kNm]

wk Mxfess.

Myfess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Ver k2 wk Mx fess My fess Comb. e2 esm - ecm sr max e1 1 S -0.00077 0.00000 0.500 20.0 74 0.00041 (0.00041) 488 0.200 (990.00) -2786.97 0.00

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copiferro netto minimo barre longitudinali: 7.4 cm Interferro netto minimo barre longitudinali: 3.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione dis (positivo se di compressione)
Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione dis (positivo se di compress.)

MxRes Momento flettente resistente [kNm] riferito all'asse xiprino d'inerzia Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r, Mx Res, My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1,000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb	Ver	N	Mc	N Res	Mx Res	Ms. Sic.	As Totale
1	S	0.00	7680.00	0.00	10518.56	1.37	429.7(163.5)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max Deform, unit, massima del calcestruzzo a compressione Deform, unit, massima del calcestruzzo a compressione Xc max Ascissa in cm della fibra corrisp. a ec max (sistema rif. X, Y, O sez.) Yc max Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) es min Deform, unit. minima nell'acciaio (negativa se di trazione) Ascissa in cm della barra corrisp, a es min (sistema rif. X,Y,O sez.) Xs min Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) Ys min es max Deform unit massima nell'acciaio (positiva se di compressi) Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,Osez.) Xs max Ys max Ordinata in cm della barra corrisp. a es max (sistem a rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yo max	es mn	Xs mn	Ysmn	es max	Xs max	Ys max
1	0.00350	-272.5	100.0	0.00160	13.9	91.6	-0.01716	13.9	8.7

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da com primere il lembo superiore della sezione

N°Comb. N Mx My 1 0.00 4010.00 0.00

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANI Codifica Documento Progetto Lotto Rev. Foglio GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO IN17 EI2 CL GA 01 A4 0014 Α 140 di 205 11

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

N°Comb Ver Sc max Xc max Yc max

Myfess.

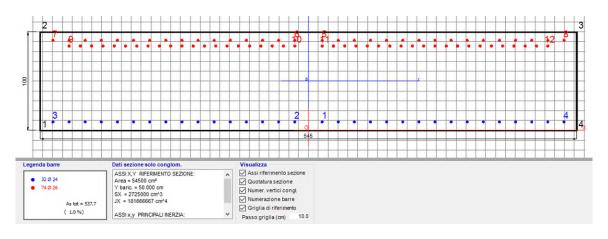
Sc max
Massima tensione (positiva se di compressione) nel calcestruzzo [MPa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X, Y, O)
Ss min
Minima tensione (negativa se di trazione) nell'acciaio [MPa]
Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X, Y, O)

Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
As eff. Area barre [cm²] in zona tesa considerata aderente alle barre

1 S 5.41 -272.5 100.0 -161.9 243.1 8.7 12663 329.2

Componente momento di prima fessurazione intorno all'asse Y [kNm]

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]


	La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fotm
Ver.	Esto della verifica
e1	Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata
e2	Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata
k1	= 0.8 per barre ad aderenza migliorata [eq. (7.11) EC2]
kt.	= 0.4 per comb. quasi permanent / = 0.6 per comb.frequent [cfr. eq. (7.9) EC2]
k2	= 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]
k3	= 3.400 Coeff. in eq.(7.11) come da amessi nazionali
k4	= 0.425 Coeff. in eq.(7.11) come da amessi nazionali
0	Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq. (7.11) EC2]
Cf	Copriferro [mm] netto calculato con riferimento alla barra più tesa
e sm - e cm	Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]
	Tra parentesi: valore minimo = 0.6 Smax / Es [7.9) EC2 e (C4.1.8) NTC]
sr max	Massima distanza tra le fessure [mm]
wk	Apertura fessure in mm calcolata = sr max*(e_sm -e_cm) [(7.8)EC2 e (CA.1.7)NTC]. Valore limite tra parentesi
Mxfess.	Componente momento di prima fessurazione intorno all'asse X [kNm]

Ssmin Xsmin Ysmin Aceff.

Comb. Ver e1 e2 k2 Ø Cf esm-ecmsrmax wk Mx fess My fess
1 S -0.00093 0.00000 0.500 26.0 74 0.00049 (0.00049) 422 0.200 (990.00) 2947.31 0.00

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANI Progetto Lotto Codifica Documento Rev. Foglio GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO IN17 EI2 CL GA 01 A4 0014 141 di 205 11 Α

Gabbia di armatura No. 2 (Lembo teso superiore lato terra M<0)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.4 cm Interferro netto minimo barre longitudinali: 3.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata
N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)
Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)
MxRes Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
Mis.Sic, Misura sicurezza = rapporto vettoriale tra (N r, Mx Res, My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >= 1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb	Ver	N	Mc	N Res	Mx Res	Ms. Sic.	As Totale
1	S	0.00	-11490.00	0.00	-12396.70	1.08	537.7(163.5)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform, unit, massima del calcestruzzo a compressione
	Deform, unit, massima del calcestruzzo a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X, Y, O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform, unit, minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,Osez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform, unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,Osez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistem a rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Ye max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	-272.5	0.0	0.00170	-259.5	8.6	-0.01560	259.5	91.3

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANS Progetto Lotto Codifica Documento Rev. Foglio GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO IN17 EI2 CL GA 01 A4 0014 142 di 205 11 Α

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intomo all'asse X di riferimento (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. N Mx My 1 0.00 -3200.00 0.00

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

 Ver
 S = comb. verificata/ N = comb. non verificata

 Sc max
 Massima tensione (positiva se di compressione) nel calcestruzzo [MPa]

 Xc max, Yc max
 Ascissa, Ordinata (cm] del punto corrisp. a. Sc. max (sistema rif. X, Y, O)

 Ss min
 Minima tensione (negativa se di trazione) nell'acciaio [MPa]

 Xs min, Ys min
 Ascissa, Ordinata [cm] della barra corrisp. a. Ss. min (sistema rif. X, Y, O)

 Ac efi.
 Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre

 As efi.
 Area bare [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb Ver Sc max Xc max Yc max Ss min Xs min Ys min Ac eff. As eff.

1 S 3.98 -272.5 0.0 -110.5 243.1 91.3 12281 392.9

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fotm

Ver. Esito della verifica
e1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata
e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata
k1 = 0.8 per baire ad aderenza migliorata [eq.(7.11)EC2]
kt = 0.4 per comb. quasi permanenti /= 0.6 per comb. frequenti [cfr. eq.(7.9)EC2]

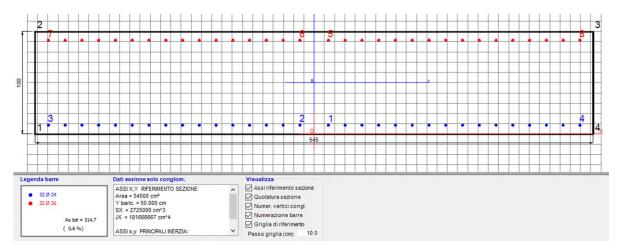
kt = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq. (7.9)EC2] k2 = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq. (7.13)EC2]

k3 = 3.400 Coeff. in eq.(7.11) come da amessi nazionali k4 = 0.425 Coeff. in eq.(7.11) come da amessi nazionali

Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]

Cf Copriferro [mm] netto calcidato con riferimento alla barra più tesa

e sm - e cm Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]


Tra parentesi: valore minimo = 0.6 Smax / Es [7.9] EC2 e (CA.1.8) NTC] sr max Massima distanza tra le fessure [mm]

wk Apertura fessure in mm calcolata = sr max*(e_sm -e_cm) [[7.8]EC2 e (C4.1.7]NTC]. Valore limite tra parentesi

Mxfess. Componente momento di prima fessurazione intorno all'asse X [kNm]
Myfess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Comb. Ver e1 e2 k2 Ø Cf esm-ecmsrmax wk Mx fess My fess
1 S -0.00063 0.00000 0.500 26.0 74 0.00033 (0.00033) 390 0.129 (990.00) -3074.29 0.00

- Gabbia di armatura No. 2 (Lembo teso inferiore lato scavo M>0)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.4 cm Interferro netto minimo barre longitudinali: 13.8 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)
Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)
MxRes Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r, Mx Res, My Res) e (N, Mx, My)

Verifica positiva se tale rapporto risulta >= 1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

 N°Comb
 Ver
 N
 Mx
 N Res
 Mx Res
 Ms. Sic.
 As Totale

 1
 S
 0.00
 1780.00
 0.00
 4961.64
 2.79
 314.7(163.5)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform, unit, massima del calcestruzzo a compressione
	Deform, unit, massima del calcestruzzo a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X, Y, O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform, unit, minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform, unit, massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X, Y, O sez.)
Ys max	Ordinata in cm della barra corriso, a es max (sistem a rif. X.Y.O sez.)

N°Comb	ec max	Xc max	Ye max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	-272.5	100.0	0 00005	139	91.3	-0.03276	13.9	86

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. N Mx My 1 0.00 1320.00 0.00

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max

Massima tensione (positiva se di compressione) nel calcestruzzo [MPa]

Xc max, Yc max

Ascissa, Ordinata [cm] del punto corrisp, a. Sc max (sistema rif. X, Y,O)

Ss min

Minima tensione (negativa se di trazione) nell'acciaio [MPa]

Ascissa, Ordinata [cm] della barra corrisp, a. a Ss min (sistema rif. X, Y,O)

Ac eff.

Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre

Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

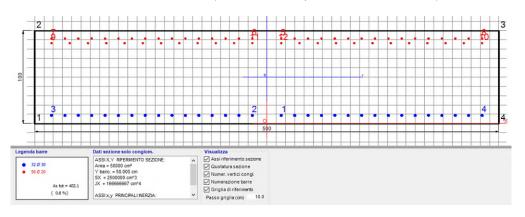
N°Comb Ver Scmax Xcmax Ycmax Ssmin Xsmin Ysmin Aceff. Aseff.

1 S 2.17 -272.5 100.0 -108.5 243.1 8.6 11880 144.8

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a form Ver Esto della vertica e1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata = 0.8 per baire ad aderenza migliorata [eq.(7.11)EC2] = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] k1 kt k2 = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2] k3 = 3,400 Coeff. in eq.(7.11) come da amessi nazionali k4 = 0.425 Coeff. in eq.(7.11) come da amessi nazionali 0 Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2] CF Copriferro [mm] netto calculato con riferimento alla barra più tesa Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] e sm - e cm Tra parentesi: valore minimo = 0.6 Smax / Es [7.9) EC2 e (C4.1.8) NTC] Massima distanza tra le fessure [mm] sr max Apertura fessure in mm calcolata = sr max*(e_sm -e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi Mxfess. Componente momento di prima fessurazione intorno all'asse X [kNm]

Myfess. Componente momento di prima fessurazione intorno all'asse X [xNm]


Myfess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Comb. Ver e1 e2 k2 Ø Cf esm-ecmsrmax wk Mx fess My fess
1 S -0.00061 0.00000 0.500 24.0 74 0.00033 (0.00033) 586 0.191 (990.00) 2724.12 0.00

11.2.1.1.2 Pannello S1 (base pannello 5.0m)

Pannello secondario	SLS-rara					SLU			
S1	Inv.BT (Diafr.)		Inv.LT (Fod+Diafr.)			Inv.BT (Diafr.)		Inv.LT (Fod+Dia	fr.)
	Valore lato Terra (kN*m/m)	Valore lato Scavo (kN*m/m)	Valore lato Terra (kN*m/m)			Valore lato Terra (kN*m/m)	Valore lato Scavo (kN*m/m)	Valore lato Terra (kN*m/m)	Valore lato Scavo (kN*m/m)
Testa diaframma*	1832	1575	15	921	1842	2617	2047	2908	4464
Gabbia 1	1832	3419	15	321	3672	2617	4445	2908	7045
Sovrapposizione	263	2906	14	134	2944	341	3779	8364	3829
Gabbia 2	2931	1195	25	931	1195	3808	1586	10536	1586

Gabbia di armatura No. 1 (Lembo teso superiore lato terra, M<0)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copiferro netto minimo barre longitudinali: 7.4 cm Interferro netto minimo barre longitudinali: 3.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

 Ver
 S = combinazione verificata / N = combin. non verificata

 N
 Sforzo normale assegnato [kN] nel baricentro B sezione cis (positivo se di compressione)

 Mx
 Componente del momento assegnato [kNm] rifierio all'assex xprinc. d'inerzia

 N Res
 Sforzo normale resistente [kN] nel baricentro B sezione cis (positivo se di compress.)

 Mx Res
 Momento fettente resistente [kNm] rifierio all'assex xprinc. d'inerzia

 Mis Sic.
 Misura sicurezza = rapporto vettoriale tra (N r, Mx Res, My Res) e (N,Mx,My)

 Verifica positiva se tale rapporto risulta >=1,000

 Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb	Ver	N	Mc	N Res	Mx Res	Ms. Sic.	As Totale
1	9	0.00	2920.00	0.00	-5815 97	1 00	402 1(150.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max Deform. unit. massima del calcestruzzo a compressione Deform. unit. massima del calcestruzzo a compressione Xc max Ascissa in cm della fibra corrisp. a ec max (sistema rif. X, Y, O sez.) Yc max Ordinata in cm della fibra corrisp. a ec max (sistema rif. X, Y, O sez.) es min Deform. unit. minima nell'acciaio (negativa se di trazione) Xs min Ascissa in cm della barra corrisp. a es min (sistema rif. X, Y, O sez.) Ys min Ordinata in cm della barra corrisp. a es min (sistema rif. X, Y, O sez.) es max Ascissa in cm della barra corrisp. a es max (sistema rif. X, Y, O sez.) Ys max Ascissa in cm della barra corrisp. a em xx (sistema rif. X, Y, O sez.) Ordinata in cm della barra corrisp. a em xx (sistema rif. X, Y, O sez.) Ordinata in cm della barra corrisp. a em xx (sistema rif. X, Y, O sez.)

N°Comb	ec max	Xc max	Yo max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	-250.0	0.0	0.00029	-231.9	8.9	-0.02952	231.9	91.6

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANI Progetto Lotto Codifica Documento Rev. Foglio GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO IN17 EI2 CL GA 01 A4 0014 146 di 205 11 Α

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intomo all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. 1 0.00 -1950.00 0.00

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Area di calcestruzzo (cm²) in zona tesa considerata aderente alle barre

3.08 -250.0 0.0 -140.2 217.5 91.6 12387 175.9

S = comb. verificata/ N = comb. non verificata Massima tensione (positiva se di compressione) nel calcestruzzo [MPa] Ascissa, Ordinata [cm] del punto corisp. a Sc max (sistema rif. X, Y,O) Minima tensione (negativa se di trazione) nell'acciaio [MPa] Sc max Xc max, Yc max Se min Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Ss m in (sistema rif. X, Y,O)

As eff. Area baire [cm²] in zona tesa considerate efficaci per l'apertura delle fessure N°Comb Ver Scmax Xcmax Ycmax Ssmin Xsmin Ysmin Aceff. Aseff.

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fotm

Ver e1

Ac eff.

S

1

Esito della verifica Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2] = 0.4 per comb. quasi permanenti / = 0.6 per comb. frequenti [cfr. eq.(7.9)EC2] e2 k1

kt

k2

k3 k4

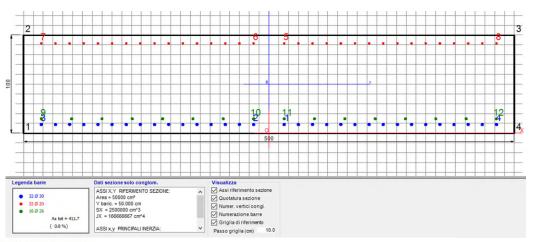
= 0.5 per fessione; =(e1 + e2)(2'e1) per trazione eccentrica [eq.(7.13)EC2] = 3.400 Coeff. in eq.(7.11) come da armessi nazionali = 0.425 Coeff. in eq.(7.11) come da armessi nazionali Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff. [eq.(7.11)EC2]

Cf

Copriferro [mm] netto calcidato con riferimento alla barra più tesa
Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]
Tra parentesi: valore minimo = 0.6 Smax / Es [7.9)EC2 e (C4.1.8)NTC] e sm - e cm

sr max

Massima distanza tra le fessure [mm]


Apertura fessure in mm calcolata = sr max*(e_sm -e_cm) §7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi wk Mxfess.

Componente momento di prima fessurazione intorno all'asse X [kNm] Myfess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Comb. Ver e2 k2 Ø Cf esm - ecm sr max wk Mx fess My fess -0.00079 0.00000 0.500 20.0 74 0.00042 (0.00042) 491 0.200 (990.00) -2603.99

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANI Progetto Lotto Codifica Documento Rev. Foglio GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO IN17 EI2 CL GA 01 A4 0014 147 di 205 11 Α

Gabbia di armatura No. 1 (Lembo teso inferiore lato scavo, M>0)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.4 cm Interferro netto minimo barre longitudinali: 3.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata
N Sinzo normale assegnato [kN] nel baricentro B sezione cis (positivo se di compressione)
Mx Componente del momento assegnato [kNm] rifierito all'asse x princ. dinerzia
N Res Sinzo normale resistente [kNm] rifierito all'asse x princ. dinerzia
MxRes Momento fiettente resistente [kNm] rifierito all'asse xprinc. dinerzia
Mis Sic. Msura sicurezza = rapporto vettoriale tra (N r, Mx Res, My Res) e (NMx, My)
Verifica positiva se tale rapporto risulta >= 1,000
As Totale
Area totale barre longitudinali [cm]. [Tra parentesi il valore minimo di normativa]

 N°Comb
 Ver
 N
 Mx
 N Res
 Mx Res
 Ms. Sic.
 As Totale

 1
 S
 0.00
 7050.00
 0.00
 10047.02
 1.43
 411.7(150.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max Deform, unit, massima del calcestruzzo a compressione Debrm, unit, massima del calcestruzzo a compressione Xc max Ascissa in cm della fibra corrisp. a ec max (sistema rif. X, Y, O sez.) Yc max Ordinata in cm della fibra corrisp. a ec max (sistema rif. X, Y, O sez.) es min Deform, unit, minima nell'acciaio (negativa se di trazione) Xs min Asossa in cm della barra corrisp, a es min (sistema rif. X, Y, O sez.) Ys min Ordinata in cm della barra corrisp. a es min (sistema rif. X, Y, O sez.) es max Deform, unit, massima nell'acciaio (positiva se d' compress.) Xs max Asoissa in cm della barra corrisp, a es max (sistema rif. X, Y, O sez.) Ys max Ordinata in cm della barra corrisp, a es max (sistema rif. X, Y, O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	-250.0	100.0	0.00161	15.6	91.6	-0.01697	15.6	8.9

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. N Mx My 1 0.00 3680.00 0.00

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANI Progetto Lotto Codifica Documento Rev. Foglio GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO IN17 EI2 CL GA 01 A4 0014 148 di 205 11 Α

0.00046 (0.00046) 434 0.199 (990.00) 2747.22

0.00

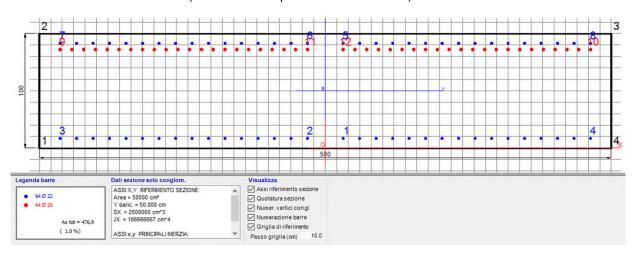
COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata Massima tensione (positiva se di compressione) nel calcestruzzo [MPa] Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X, Y,O) Sc max Xc max, Yc max Minima tensione (negativa se di trazione) nell'acciaio [MPa] Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X, Y, O) Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Ac eff. As eff. Area baire [cm²] in zona tesa considerate efficaci per l'apertura delle fessure N°Comb Ver Scmax Xcmax Ycmax Ssmin Xsmin Ysmin 5.24 -250.0 100.0 -152.7 217.5 8.9 11612 311.1 1 S

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

-0.00088 0.00000 0.500 28.8 74

S


La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fotm Ver Esto della vertica Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata = 0.8 per bare ad aderenza migliorata [eq.(7.11) EC2] e2 k1 = 0.4 per comb. quasi permanent / = 0.6 per comb.frequent [cfr. eq. (7.9)EC2] kt k2 k3 k4 = 0.5 per flessione: =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2] = 3 400 Coeff. in eq.(7.11) come da amessi nazionali = 0.425 Coeff. in eq.(7.11) come da amessi nazionali Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2] Copriferro [mm] netto calcidato con riferimento alla barra più tesa
Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]
Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC] Cf e sm - e cm Massima distanza tra le fessure [mm]

Apertura fessure in mm calcolata = sr max*(e_sm -e_cm) {(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Componente momento di prima fessurazione intorno all'asse X [kNm] sr max wk Mxfess. Componente momento di prima fessurazione intorno all'asse Y [kNm] Myfess. Ø Cf wk Mx fess My fess Comb. Ver e2 k2 esm - ecm sr max

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANI Progetto Lotto Codifica Documento Rev. Foglio GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO IN17 EI2 CL GA 01 A4 0014 149 di 205 11 Α

Gabbia di armatura No. 2 (Lembo teso superiore lato terra M<0)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copiferro netto minimo barre longitudinali: 7.4 cm Interferro netto minimo barre longitudinali: 3.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin, non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione dis (positivo se di compressione)
Mix Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
N Res Slorzo normale resistente [kN] nel baricentro B sezione dis (positivo se di compress.)
Mix Res Momento flettente resistente [kNm] riferito al'asse x princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r, Mx Res, My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb	Ver	N	Mk	N Res	Mx Res	Ms. Sic.	As Totale
1	S	0.00	-10540.00	0.00	-11186.93	1.06	476.9(150.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

Deform, unit, massima del calcestruzzo a compressione Deform, unit, massima del calcestruzzo a compressione Ascissa in cm della fibra corrisp. a ec max (sistema rif. X. Y.O. sez.) Xc max Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Yc max es min Deform. unit. minima nell'acciaio (negativa se di trazione) Xs min Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,Osez.) Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) Ys min Deform, unit, massima nell'acciaio (positiva se di compress.) es max Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,Osez) Xs max Ordinata in cm della barra corrisp. a es max (sistem a rif. X,Y,O sez.) Ys max

N°Comb	ec max	Xc max	YC max	es mn	Xs mn	Ysmin	es max	Xs max	Ys max
1	0.00350	-250.0	0.0	0.00174	-231.9	8.5	-0.01548	231.9	91.5

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da com primere il lembo superiore della sezione

N°Comb.	N	Mx	My
1	0.00	-2950.00	0.00

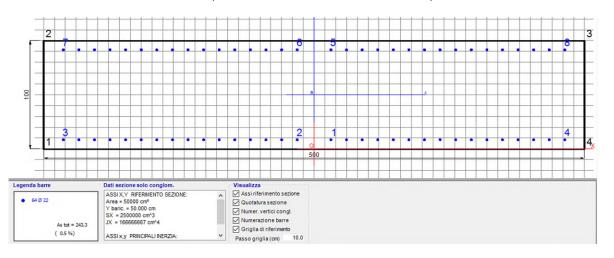
GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANI Progetto Lotto Codifica Documento Rev. Foglio GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO IN17 11 EI2 CL GA 01 A4 0014 Α 150 di 205

0.00034 (0.00034) 383 0.130 (990.00) -2798.48

0.00

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

S = comb. verificata/ N = comb. non verificata Massima tensiore (positiva se di compressione) nel calcestruzzo [MPa]
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X, Y, O) Sc max Xc max, Yc max Ss min Minima tensione (negativa se di trazione) nell'acciaio [MPa] Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O) Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Xs min, Ys min Ac eff. As eff. Area barre [cm²] in zora tesa considerate efficaci per l'apertura delle fessure N°Comb Ver Sc max Xc max Yc max Ssmin Xsmin Ysmin Aceff. 4.07 -250.0 0.0 -113.6 217.5 91.5 11193 S 355.3


COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

S -0.00065 0.00000 0.500 24.5 74

Ver.	La sezione vi Esto della ve		sempre fe	ssurata a	nche nel caso	n cui la trazione minima del calcestruzzo sia	inferiore at	fctm	
e1			taria di tra	zione ne	Calcestrizzo (trazione -) valutata in sezione fessurata			
e2						azione -) valutata in sezione fessurata			
k1	=0.8 perbar					and it is a second resident			
kt						ti [cfr. eq.(7.9)EC2]			
k2						[eq.(7.13)EC2]			
k3	= 3 400 Coeff					[64](7.13)[CC2]			
k4	= 0.425 Coeff								
Ø						A (7.11) F.CO			
						ea efficace Ac eff [eq.(7.11) EC2]			
Cf	Copriferro [m	m] netto calc	dato con r	feriment	o alla barra più	tesa			
e sm - e cm	Differenza tra	le deformaz	ioni medie	di acciai	o e calcestruzzo	o [(7.8)EC2 e (C4.1.7)NTC]			
	Tra parentes	: valore minir	no = 0.6 S	max/Es	(7.9)EC2 e	C4.1.8)NTC1			
sr max	Massima dist				8.10/2.22				
wk					em -e cm) P	7.8) EC2 e (C4.1.7)NTC]. Valore limite tra pa	ra nfaci		
Mxfess.					intorno all'asse		Circon		
Myfess.					intorno all'asse				
Myless.	Componente	momento di	prima ress	urazione	Intorno allasse	T [KINM]			
Comb. Ver	e1	e2	k2	Ø	Cf	esm - ecm sr max	wk	Mx fess	My fess

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANS Progetto Lotto Codifica Documento Rev. Foglio GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO IN17 EI2 CL GA 01 A4 0014 151 di 205 11 Α

Gabbia di armatura No. 2 (Lembo teso inferiore lato scavo M>0)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.4 cm Interferro netto minimo barre longitudinali: 12.2 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin, non verificata Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positi vo se di compressione) Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Sforzo normale resistente [kNi] nel baricentro B sezione cls. (positivo se di compress.) Momento fiettente resistente [kNm] riferito all'asse x Mx N Res **MxRes** Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r, Mx Res, My Res) e (N, Mx, My) Verifica positiva se tale rapporto risulta >= 1,000 As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb Ver Mk N Res Mx Res Ms.Sic. As Totale S 0.00 1600.00 0.00 4191.77 2.62 243.3(150.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max Deform, unit, massima del calcestruzzo a compressione Deform, unit, massima del calcestruzzo a compressione Ascissa in cm della fibra corrisp. a ec max (sistema rif. X, Y, O sez.)
Ordinata in cm della fibra corrisp. a ec max (sistema rif. X, Y, O sez.) Xc max Yc max es min Deform, unit. minima nell'acciaio (negativa se di trazione) Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) Xs min Ys min Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) Deform, unit, massima nell'acciaio (positiva se di compress.) es max Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.) Xs max Ys max Ordinata in cm della barra corrisp. a es max (sistem a rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	-250.0	100.0	-0.00003	15.6	91.5	-0.03451	15.6	8.5

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Mx

Momento flettente [kNm] intomo all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. N Mx My 0.00 1200.00 0.00

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANI Progetto Lotto Codifica Documento Rev. Foglio GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO IN17 EI2 CL GA 01 A4 0014 152 di 205 11 Α

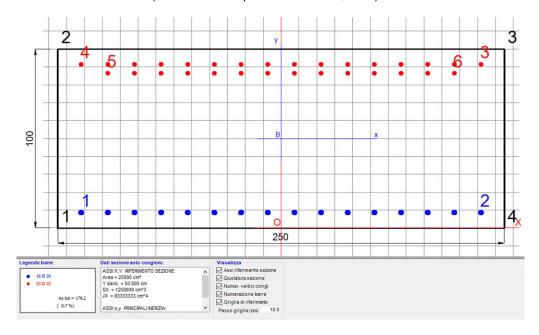
0.00

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata Sc max Massima tensione (positiva se di compressione) nel calcestruzzo [MPa] Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp, a Sc max (sistema rif. X.Y.O) Minima tensione (negativa se di trazione) nell'acciaio [MPa] Ss min Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Ss m in (sistema rif. X.Y.O) Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre As eff. Area baire [cm²] in zora tesa considerate efficaci per l'apertura delle fessure N°Comb Ver Sc max Xc max Yc max Ssmin Xsmin Ysmin Aceff. 2.28 -250.0 100.0 -117.0 217.5 8.5 10313 1 S 121.6

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fotm Ver. Esito della verifica Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in seziore fessurata e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata k1 = 0.8 per bare ad aderenza migliorata [eq.(7.11)EC2] = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] kt k2 = 0.5 per flessione; =(e1 + e2)/(2°e1) per trazione eccentrica [eq.(7.13)EC2] = 3.400 Coeff. in eq.(7.11) come da amessi nazionali k3 k4 = 0.425 Coeff. in eq.(7.11) come da amessi nazionali Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq. (7.11) EC2] Ø Copriferro [mm] retto calcidato con riferimento alla barra più tesa


Differenza tra le deformazioni medie di accidio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]

Tra parentesi: valore minimo = 0.5 Smax/Es [7.9)EC2 e (C4.1.8)NTC] Cf ė sm - e cm srmax Massima distanza tra le fessure [mm] Apertura fessure in mm calcolata = sr max*(e_sm -e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi Mxfess. Componente momento di prima fessurazione intorno all'asse X [kNm] Myfess. Componente momento di prima fessurazione intorno all'asse Y [kNm] Comb. e2 k2 Ø Cf esm - ecm sr max wk Mx fess My fess 0.00035 (0.00035) 569 0.200 (990.00) 2455.12 1 S -0.00066 0.00000 0.500 22.0 74

11.2.1.1.3 Pannello P2 e S2 Pannelli primari e secondari (base pannello 2.5 m)

P2-S2		I 2.50 m									
	SLS-rara				SLU						
	Inv.BT (Diafr.)		Inv.LT (Fod+Diafr.)			Inv.BT (Diafr.)		Inv.LT (Fod+Dia	fr.)		
	Valore lato Terra	Valore lato Scavo	Valore lato Terra			Valore lato	Valore lato Scavo	Valore lato Terra	Valore lato Scavo		
	(kN*m/m)	(kN*m/m)	(kN*m/m)	(kN*m/m)		Terra (kN*m/m)	(kN*m/m)	(kN*m/m)	(kN*m/m)		
Testa diaframma*	916	788		961	921	1308	1023	1454	2232		
Gabbia 1	916	1709		961	1836	1308	2223	1454	3523		
Sovrapposizione	132	1453		717	1472	170	1890	4182	1914		
Gabbia 2	1465	598	1	1465	598	1904	793	5268	793		

Gabbia di armatura No. 1 (Lembo teso superiore lato terra, M<0)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni as segnate

Copriferro netto minimo barre longitudinali: 7.4 cm Interferro netto minimo barre longitudinali: 3.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata N Sitrzo normale assegnato [kN] nel baricentro B sezone els (positivo se di compressione) Mx Componente del momento assegnato [kNn] riérito all'asse x princ. d'inercis N Res Sitrzo normale resistente [kN] nel baricentro B sezione els (positivo se di compress.) MxRes Momento fettente resistente [kNn] rifierito all'asse x princ. d'inercia Missic. Misura sicurezza rasporto vebtroiale tra (kn. MxRes, My Res) e (NMx, My) Verifica positiva se tale rapporto risulta >= 1,000 Area totale barre longitudinali [cm²]. [l'ra parentesi il valore minimo di normativa]

N°Comb Ver N Mk N Res Mx Res As Totale Ms. Sic. 0.00 -1460.00 0.00 -3101.32 S 2.12 179.2(75.0) 1

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max

Deform, unit, massima del calcestruzzo a compressione
Deform, unit, massima del calcestruzzo a compressione
Xc max

Ascissa in cm della fibra corrisp, a ec max (sistema rfi, X,Y,O sez.)
Yc max

Ordinata in cm della fibra corrisp, a ec max (sistema rfi, X,Y,O sez.)
Deform, unit, minima nell'acciaio (negativa se di trazione)
Xs min

Ascissa in cm della barra corrisp, a es min (sistema rfi, X,Y,O sez.)
Deform, unit, massima nell'acciaio (positiva se di compress.)
Xs max

Ascissa in cm della barra corrisp, a es min (sistema rfi, X,Y,O sez.)
Ys max

Ordinata in cm della barra corrisp, a es max (sistema rfi, X,Y,O sez.)

N-Camb	ec max	Ac max	rc max	es min	As min	YS min	es max	As max	rs max
1	0.00350	-125.0	0.0	0.00047	-111.9	8.7	-0.02836	111.9	91.6

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANI Progetto Lotto Codifica Documento Rev. Foglio GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO IN17 EI2 CL GA 01 A4 0014 154 di 205 11 Α

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Momento flettente [kNm] intomo all'asse X di riferimento (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. N My My 1 0.00 -1000.00 0.00

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

S = comb. verificata/ N = comb. non verificata

Sc max Massima tensione (positiva se di compressione) nel calcestruzzo [MPa] Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X, Y, O) Minima tensione (negativa se di trazione) nell'acciaio [MPa] Xc max, Yc max Ss min Ascissa, Ordinata [cm] della barra corrisp. a Ss m in (sistem a rif. X, Y,O) Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Area barre [cm²] in zora tesa considerate efficaci per l'apertura delle fessure As eff.

N°Comb Ver Scmax Xcmax Ycmax Ssmin Xsmin Ysmin Aceff. Aseff. 3.22 -125.0 0.0 -135.4 -97.0 91.6

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fotm

Esto della vertica

Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata Mnima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2

= 0.8 per barre ad aderen za migliorata [eq.(7.11) EC2]

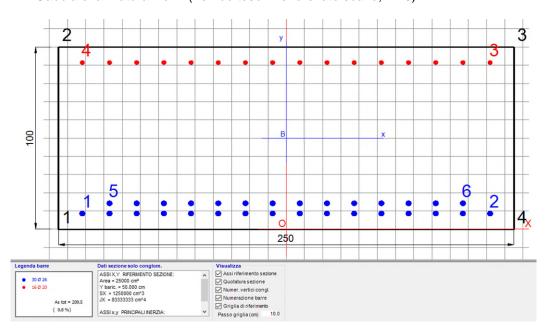
= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq. (7.9)EC2] = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq. (7.13)EC2] kt k2

k3 = 3.400 Coeff. in eq.(7.11) come da amessi nazionali = 0.425 Coeff. in eq.(7.11) come da amessi nazionali

k4 Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]

Cf

Copriferro [mm] netto calculato con riferimento alla barra più tesa Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] esm-ecm


Tra parentesi: valore minimo = 0.5 Smax / Es [(7.9) EC2 e (C4.1.8) NTC]

srmax Massima distanza tra le fessure [mm]

Apertura fessure in mm calcolata = sr max1e_sm -e_cm) [(7.8) EC2 e (C4.1.7 [NTC]. Valore limite tra parentesi

Myfess Componente momento di prima fessurazione intorno all'asse X [kNm] Componente momento di prima fessurazione intorno all'asse Y [kNm] Myfess.

Comb. Ver e1 e2 k2 Ø Cf esm - ecm sr max wk Mx fess My fess -0.00076 0.00000 0.500 20.0 74 0.00041 (0.00041) 474 0.192 (990.00) -1292.68 1 S 0.00 Gabbia di armatura No. 1 (Lembo teso inferiore lato scavo, M>0)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.4 cm Interferro netto minimo barre longitudinali: 3.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione venficata / N = combin. non verificata
N Sforzo normale assegnato [kN] nel baricentro B secione cis (positivo se di compressione)
Mix Componente del momento assegnato [kNm] rifento all'assex xprinc. dinerzia
N Res Sforzo normale resistente [kNm] nel baricentro B seczione dis, positivo se di compress.)
Mix Res Momento fettente resistente [kNm] rifento all'assex xprinc. d'inerzia
Missio. Missio estima rapporto ventina la ta (k k. Mr. Res. My Res) e (N.Mx, My)
Verifica positiva se tale rapporto naulta = 1.000
As Totale Area totale barre (onglaudinalii [cm]). [Tra parentes il valore minimo di normativa]

 N°Comb
 Ver
 N
 Mx
 N Res
 Mx Res
 Ms. Sic.
 As Totale

 1
 S
 0.00
 3530.00
 0.00
 5084.74
 1.44
 209.5(75.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max

Deform, unit, massima del calcestruzzo a compressione
Deform, unit, massima del calcestruzzo a compressione
Ascissa in cm della fibra corrisp, a ec max (sistema rif. X, Y, O sez.)
Yc max
Ordinata in cm della fibra corrisp, a ec max (sistema rif. X, Y, O sez.)
Sc min
Deform, unit, minima nell'acciaio (negativa se di trazione)
Ys min
Odinata in cm della barra corrisp, a es min (sistema rif. X, Y, O sez.)
Odinata in cm della barra corrisp, a es min (sistema rif. X, Y, O sez.)
Ys max
Ordinata in cm della barra corrisp, a es max (sistema rif. X, Y, O sez.)
Ys max
Ordinata in cm della barra corrisp, a es max (sistema rif. X, Y, O sez.)

 N°Comb
 ec max
 Xc max
 Yc max
 es min
 Xs min
 Ys min
 es max
 Xs max
 Ys max

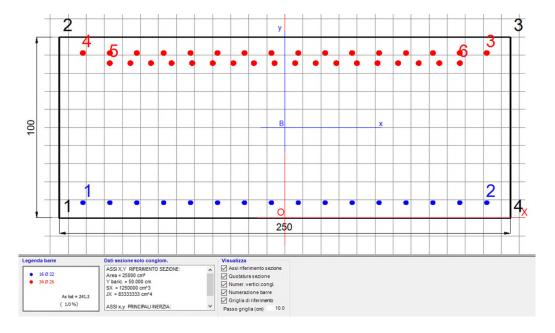
 1
 0.00350
 -125.0
 100.0
 0.00166
 111.9
 91.6
 -0.01654
 -111.9
 8.7

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)
Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)
con verso positivo se tale da com primere il lembo superiore della sezione

N°Comb. N Mx My 1 0.00 1850.00 0.00

0.00


COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

S = comb. verificata/ N = comb. non verificata Massima tensione (postiva se di compressione) nel calcestruzzo (MPa). Ascissa, Odinata (cm) del punto corrisp. a Sc max (sistema rif. X, Y,O). Minima tensione (negativa se di trazione) nell'acciaio (MPa). Sc max Хс так, Үс так Se min Accissa, Ordinata [cm] della barra comisp. a Semin (sistema rif. X,Y,O)
Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
Area bare [cm²] in zona tesa considerate efficaci per l'apertura delle fessure Xs min, Ys min As eff. N°Comb Ver Scmax Xcmax Ycmax Ssmin Xsmin Ysmin Aceff. Aseff. 1 S 5.30 -125.0 100.0 -154.3 97.0 8.7 5807 159.3

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a form Esto della vertica Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata Minima deformazione unitana ditrazione nel calcestruzzo (trazione -) valutata in sezione fessuratz = 0.8 per bare ad aderenza migliorata [eq. (7.11)EC2] = 0.4 per comb. quasi permanent / = 0.6 per comb. frequent [cf., eq.(7.9)EC2] = 0.5 per fessione; =(e1 + e2)(2'e1) per trazione eccertrica [eq.(7.13)EC2] = 3.400 Coeff. in eq.(7.11) come da amessi nazionali = 0.425 Coeff. in eq.(7.11) come da amessi nazionali kt k2 k3 k4 Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]
Copriferro [mm] netto calcidato con riferimento alla barra più tesa
Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] 0 Cf e sm - e cm The parentless is dependent in the deal occurred to the parentless of the parentless wk Mxfess. Componente momento di prima fessurazione intorno all'asse X [kNm] Componente momento di prima fessurazione intorno all'asse Y [kNm] Comb. Ver e1 e2 k2 Ø Cf esm - ecm sr max wk Mx fess My fess -0.00088 0.00000 0.500 26.0 74 0.00046 (0.00046) 413 0.191 (990,00) 1370.18 1 5

Gabbia di armatura No. 2 (Lembo teso superiore lato terra M<0)

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANS Progetto Lotto Codifica Documento Rev. Foglio GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO

IN17

11

EI2 CL GA 01 A4 0014

157 di 205

Α

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 3.0 cm Interferro netto minimo barre longitudinali:

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

S = combinazione verificata / N = combin, non verificata
Sibrzo normale assegnato [kN] nel baricentro B sezione cis (positivo se di compressione)
Componente del momento assegnato [kNm] riferito all'assex yprinc, dinerzia
Sibrzo normale resistente [kN] nel baricentro B sezione dis (positivo se di compress.)
Momento fettente resistente [kNm] riferito al assex xprinc di nerzia
Misura sicurezza = rapporto vetoriale tra (N r, Mx Res, My Res) e (NMx, My) Mx N Res MxRes Mis Sic. Verifica positiva se tale rapporto risulta >= 1.000 As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N N Res N°Comb Ver Mk Mx Res Ms.Sic. As Totale 0.00 -5270.00 -5706.37 0.00 1.08 241.3(75.0) 1 S

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

Deform, unit, massima del calcestruzzo a compressione Deform, unit, massima del calcestruzzo a compressione Accisca in cm della fibra corrisp. a ec max (sistema rif. X, Y, O sez.)
Ordinata in cm della fibra corrisp. a ec max (sistema rif. X, Y, O sez.)
Deform. unit. minima ndi acciaio (negativa se di trazione)
Ascissa in cm della barra corrisp. a es min (sistema rif. X, Y, O sez.) Xc max Yc max es min Xs min Ys min Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) Deform, unit, massima nell'acciaio (positi va se di compress.)
Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.) Ys max

N°Comb ec max Xc max Yc max Xs min es max 0.0 0.00177 -111.9 1 0.00350 -125.0 8.5 -0.01513 111.9 91.3

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intomo all'asse X di riferimento (tra parentesi Mom. Fessurazione)

con verso positivo se tale da com primere il lembo superiore della sezione

N°Comb. N Mx Mv -1470.00 0.00 0.00 1

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

S = comb. verificata/ N = comb. non verificata Massima tensione (positiva se di compressione) nel calcestruzzo [MPa] Sc max Xc max. Yc max Ascissa, Ordinata (cm) del punto corrisp, a Sc max (sistema rif. X.Y.O) Minima tensione (negativa se di trazione) nell'acciaio [MPa] Ascissa, Ordinata [cm] della barra corrisp. a Ssimin (sistema nif. X,Y,O) Xs min, Ys min Acef Area di calcestruzzo form²1 in zona tesa considerata aderente alle bar Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb Ver Scmax Xcmax Ycmax Ssmin Xsmin Ysmin Aceff. Aseff S 4.00 -125.0 0.0 -109.9 -97.0 91.3 5633 180.5

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fotm Esito della verifica

Ver

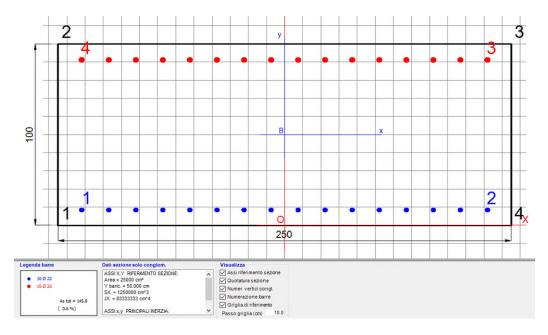
Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e1 e2 k1 kt k2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata = 0.8 per baire ad aderenza migliorata [eq.(7.11)EC2] = 0.4 per comb, quasi permanenti / = 0.6 per comb.frequenti [cf., eq.(7.9)EC2]

= 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2] = 3.400 Coeff, in eq.(7.11) come da amessi nazionali = 0.425 Coeff, in eq.(7.11) come da amessi nazionali

k3 k4

Dametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2] Copriferro [mm] netto calcidato con riferimento alla barra più tesa Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] Ø e sm - e cm

Tra parentesi: valore minimo = 0.5 Smax / Es [7.9) EC2 e (CA.1.8) NTC] Massima distanza tra le fessure [mm] sr max


Apertura fessure in mm calcolata = sr max*[e sm -e cm) [7,8]EC2 e (C4,1,7]NTC1, Valore limite tra parentesi

Componente momento di prima fessurazione intorno all'asse X [kNm] Componente momento di prima fessurazione intorno all'asse Y [kNm] Mxfess. Myfess.

k2 Ø esm - ecm sr max wk Mx fess S -0.00063 0.00000 0.500 26.0 74 0.00033 (0.00033) 390 0.128 (990.00) -1409.09 9 1

- Gabbia di armatura No. 2 (Lembo teso inferiore lato scavo M>0)

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANI Codifica Documento Progetto Lotto Rev. Foglio GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO IN17 EI2 CL GA 01 A4 0014 159 di 205 11 Α

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.4 cm Interferro netto minimo barre longitudinali: 12.3 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ, d'inerzia N Res Storzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

MxRes Momento flettente resistente [kNm] riferito all'asse xprinc. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r, Mx Res, My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Totale Area totale barre longitudinali [cm²], [Tra parentesi il valore minimo di normativa]

N°Comb Ver N Mk N Res Mx Res Ms. Sic. As Totale 1 S 0.00 800.00 0.00 2096.65 2.62 145.8(75.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform, unit, massima del calcestruzzo a compressione
	Deform, unit, massima del calcestruzzo a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X, Y, O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform, unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,Osez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform, unit, massima nelfacciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,Osez.)
Ys max	Ordinata in cm della barra corriso, a es max (sistem a rif. X.Y.O.sez.)

N°Comb	ec max	Xc max	Ye max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	-125.0	100.0	-0.00005	111.9	91.3	-0.03381	-111.9	8.5

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intomo all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. N Mx My 1 0.00 600.00 0.00

GENERAL CONTRACTOR		ALTA S	ORVE	SLIANZA		
Consorzio Iric/W Due				LFERR O STATO ITALIANI		
GA01-A OPERE SOSTEGNO DEGLI S	SCAVI E TAMBONE DI FONDO	Progetto	Lotto	Codifica Documento	Rev.	Foglio
GAUTA OF LINE 303 FEGINO DEGLIS	BOAVIL TAINFONE DI FONDO	IN17	11	EI2 CL GA 01 A4 0014	Α	160 di 205

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver			S = com	b. verificata/	N = comb.	non verific	cata		
Sc ma	X.		Massim	a tensione (p	ostva se d	i compres	sione) nel c	alcestruzzo	[MPa]
Xc ma	ж, Үс п	nax	Ascissa	Ordinata [c	m] del punto	corisp. a	Sc max (s	istema rif. X,	Y,O)
Ss mir	n		Minima	tensione (ne	gativa se di	trazione)	nell'acciaio	[MPa]	
Xs mir	n, Ys m	in	Ascissa	Ordinata [c	m] della bar	ra corrisp.	a Ssmin (stemanf. X	(Y,O)
Ac eff.			Area di	calcestruzzo	[cm²] in zon	na tesa co	n siderata a	derente alle	barre
As eff.			Area ba	re [cm²] in z	ona tesa co	nsiderate	efficad per	l'apertura de	lle fessure
N°Comb	Ver	Sc max	Xc max	Yo max	Ss min	Xs min	Ys min	Ac eff.	As eff.
1	S	2.20	-125.0	100.0	-117.0	97.0	8.5	5266	60.8

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

			a sempre f	essurata a	anche nel caso	o in cui la trazione minima del co	alcestru	zzo sia inferiore a f	ctm	
Ver.	Esito della									
e1	Massima	deformazione i	intaria di t	razione ne	el calcestruzzo	(trazione -) valutata in sezione	fessure	ita		
e2	Minima de	eformazione un	itaria di tra	zione nel	calcestruzzo (trazione -) valutata in sezione fe	es su rata			
k1	=0.8 per	barre ad aders	nza miglior	rata [eq.(i	7.11)EC2					
kt	= 0.4 pe	r comb. quasi p	permanenti	/ = 0.6 pc	er comb freque	nti [cfr. eq.(7.9)EC2]				
k2						a [eq.(7.13)EC2]				
k3		ceff. in eq.(7.1				to forth motors				
k4		coeff. in eq.(7.1								
Ø						area efficace Ac eff [eq.(7.11)E(21			
Cf						and the second s	CE			
		[mm] netto ca								
e sm - e cm						zo [(7.8)EC2 e (C4.1.7)NTC] e (C4.1.8)NTC]				
sr max	Massima	distanza tra le	fessure [m	m]						
wk	Apertura f	essure in mm	calcolata =	sr max*(e	sm -e cm)	[7.8] EC2 e (C4.1.7]NTC]. Valo	re limite	tra parentesi		
Mxfess.		nte momento d								
Myfess.		nte momento d								
,	-									
Comb. Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	rmax	wk	Mx fess	My fess
1 S	-0.00065	0.00000	0.500	22.0	74	0.00035 (0.00035)	575	0.200 (990.00)	1244.47	0.00

11.2.1.2 Verifiche sollecitazioni taglianti

Nella tabella seguente si riassume le massime sollecitazioni taglianti ottenute dall'inviluppo dei risultati degli schemi di calcolo 'TS-3' e 'TS-4' utilizzati per il dimensionamento dell'armatura 'Tipo 2'.

Le verifiche sono effettuate considerando i fili strutturali di seguito indicati:

- sollecitazioni testa diaframma riferite ad asse cordolo.
- in corrispondenza del solettone di fondo del manufatto a "U" interno, il picco delle sollecitazioni taglianti è valutato ad ¼ dello spessore dall'asse della soletta.

Tabella 43 Sollecitazioni taglianti dimensionanti

INVILUPPO TS-3_TS-4	-3_TS-4 Inviluppo A1+M1+R1 In					Inviluppo SISMA STR					
	Inv.BT (Diaf	r.)		Inv.LT (Diafr.)			r.)	Inv.LT (Diafr.)			
Sollecitazioni	Valore lato Terra (kN/m)	Valore lato Scavo (kN/m)		Valore lato Terra (kN/m)	Valore lato Scavo (kN/m)	Valore lato Terra (kN/m)	Valore lato Scavo (kN/m)	Valore lato Terra (kN/m)	Valore lato Scavo (kN/m)		
Asse copertura	30		439	30	485	23	325	90	805		
Intradosso copertura	16		415	16	464	12	306	12	731		
Testa diaframma	11		366	11	418	8	273	8	596		
Gabbia 1	314		366	314	418	170	273	648	596		
Sovrapposizione	606		2	606	2	370	1	1168	1		
Estradosso solaio Fondo	656		12	656	12	404	5	1361	5		
Asse Solaio fondo	476		2	605	189	366	2	1319	801		
Sezione 1/4 da estradosso	437		2	558	95	336	2	1243	401		
Intradosso solaio fondo	584		141	605	189	512	1	1305	799		
Gabbia 2	732		336	732	336	512	303	1479	920		

11.2.1.2.1 Dimensionamento armatura trasversale

Per il dimensionamento dell'armatura resistente a taglio si è proceduto armando il pannello soggetto alla sollecitazione maggiore (pannello P1 L=5.45 m) L'armatura così dimensionata è valida per ogni pannello, unica differenza è il passaggio da 2 gabbie (8 bracci resistenti a taglio) per i pannelli di tipo P1 e S1 a 1 gabbia (4 bracci resistenti a taglio) per i pannelli di tipo P2 e S2. Le verifiche sono effettuate in accordo con il metodo semiprobabilistico agli stati limite ultimi secondo i criteri riportati nelle NTC 08 per le strutture in calcestruzzo armato.

Tabella 44 Inviluppo sollecitazioni taglianti dimensionanti

INVILUPPO TS-3_TS-4	Inviluppo A1+M1+R1 / SISMA STR					
Sollecitazioni taglianti	Valore lato Terra (kN/m)	Valore lato Scavo (kN/m)				
Testa diaframma	11	596				
Sezione 1/4 da estradosso	1243	401				

Di seguito si riportano le resistenze per i vari passi utilizzati. Nel dettaglio si valuta la resistenza a taglio delle staffe nelle seguenti condizioni:

- 1. Armatura trasversale composta da nr. 8 braccia φ14, passo 25cm
- 2. Armatura trasversale composta da nr. 8 braccia φ14, passo 15cm
- 3. Armatura trasversale composta da nr. 8 braccia φ14, passo 10cm

Caso 1: 8 braccia \(\phi 14, \text{ passo 25cm} \)

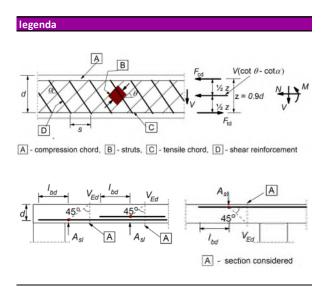
verifica a taglio di una sezione rettangolare secondo EN 1992-1-1:2004:E

geometria				
sezione trasversale				
base	В	=	545	cm
altezza	Н	=	100	cm
copriferro (asse armatura long.)	С	=	11.4	cm
altezza utile	d	=	88.6	cm
braccio coppia interna	Z	=	79.8	cm
armatura a taglio				
numero braccia	n	=	8	
diametro	ф	=	14	mm
passo	S	=	25	cm
inclinazione	α	=	90	0
area	A_{sw}	=	12.32	cm ²
armatura longitudinale tesa				
numero barre	n_1	=	30	
diametro	ϕ_1	=	24	mm
numero barre	n_2	=	32	
diametro	ϕ_2	=	20	mm
area totale	Ası	=	236.2	cm^2

materiali				
calcestruzzo				
resistenza caratt. cilindrica a 28 gg.	f_{ck}	=	24.9	MPa
coeff. parziale di sicurezza	γс	=	1.5	
coeff. effetti a lungo termine	α_{cc}	=	0.85	
tensione di calcolo	fcd	=	14.1	MPa
coeff. riduzione resistenza bielle	ν	=	0.540	
tensione di calcolo bielle	νf_{cd}	=	7.6	MPa
acciaio				
tensione caratt. di snervamento	fyk	=	450.0	MPa
coeff. parziale di sicurezza	γs	=	1.15	
tensione di snervamento di calcolo	fyd	=	391.3	MPa

legenda A B $V(\cot \theta - \cot \alpha)$ $V(\cot \theta$

- Hardward and a confidence				
sollecitazioni e verifiche				
taglio	V_{Ed}	=	0	kN
azione assiale	N_{Ed}	=	0	kN
resistenza elemento non armato	V_{Rdc}	=	1511.1	kN
resistenza armatura a taglio	V_{Rds}	=	2662.6	kN
resistenza bielle calcestruzzo	V_{Rdmax}	=	######	kN
inclinazione bielle calcestruzzo	θ	=	30.0	۰
sezione			duttile	
	•			
traslazione armatura long.	aı	=	88.6	cm


A - section considered

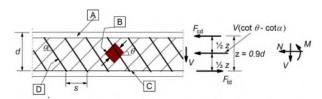
Caso 2: 8 braccia \(\phi 14, \text{ passo 15cm} \)

verifica a taglio di una sezione rettangolare secondo EN 1992-1-1:2004:E

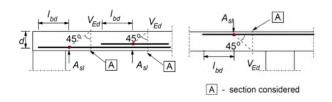
geometria				
sezione trasversale				
base	В	=	545	cm
altezza	Н	=	100	cm
copriferro (asse armatura long.)	С	=	11.4	cm
altezza utile	d	=	88.6	cm
braccio coppia interna	Z	=	79.8	cm
armatura a taglio				
numero braccia	n	=	8	
diametro	φ	=	14	mm
passo	S	=	15	cm
inclinazione	α	=	90	۰
area	A_{sw}	=	12.32	cm ²
armatura longitudinale tesa				
numero barre	n_1	=	30	
diametro	ϕ_1	=	24	mm
numero barre	n_2	=	32	
diametro	ϕ_2	=	20	mm
area totale	Ası	=	236.2	cm ²

materiali				
calcestruzzo				
resistenza caratt. cilindrica a 28 gg.	fck	=	24.9	MPa
coeff. parziale di sicurezza	γс	=	1.5	
coeff. effetti a lungo termine	α cc	=	0.85	
tensione di calcolo	f_{cd}	=	14.1	MPa
coeff. riduzione resistenza bielle	ν	=	0.540	
tensione di calcolo bielle	νf_{cd}	=	7.6	MPa
acciaio				
tensione caratt. di snervamento	fyk	=	450.0	MPa
coeff. parziale di sicurezza	γs	=	1.15	
tensione di snervamento di calcolo	fyd	=	391.3	MPa

sollecitazioni e verifiche				
taglio	V_{Ed}	=	0	kN
azione assiale	N_{Ed}	=	0	kN
resistenza elemento non armato	VRdc	=	1511.1	kN
resistenza armatura a taglio	VRds	=	4437.7	kN
resistenza armatura a tagno	• Itas			••••
resistenza bielle calcestruzzo	VRdmax	=	######	kN
•		=		kN
resistenza bielle calcestruzzo	VRdmax	=	######	
resistenza bielle calcestruzzo inclinazione bielle calcestruzzo	VRdmax	=	30.0	


Caso 3: 8 braccia \(\psi 14, \text{ passo 10cm} \)

verifica a taglio di una sezione rettangolare secondo EN 1992-1-1:2004:E

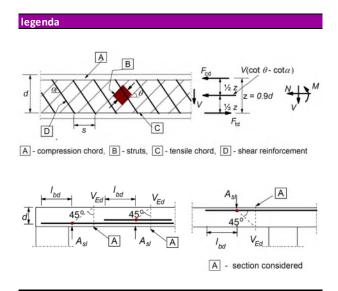

geometria				
sezione trasversale				
base	В	=	545	cm
altezza	Н	=	100	cm
copriferro (asse armatura long.)	С	=	11.4	cm
altezza utile	d	=	88.6	cm
braccio coppia interna	Z	=	79.8	cm
armatura a taglio				
numero braccia	n	=	8	
diametro	φ	=	14	mm
passo	S	=	10	cm
inclinazione	α	=	90	0
area	A_{sw}	=	12.32	cm ²
armatura longitudinale tesa				
numero barre	n_1	=	30	
diametro	ϕ_1	=	24	mm
numero barre	n_2	=	32	
diametro	ϕ_2	=	20	mm
area totale	Ası	=	236.2	cm ²

materiali				
calcestruzzo				
resistenza caratt. cilindrica a 28 gg.	f_{ck}	=	24.9	MPa
coeff. parziale di sicurezza	γс	=	1.5	
coeff. effetti a lungo termine	α_{cc}	=	0.85	
tensione di calcolo	f_{cd}	=	14.1	MPa
coeff. riduzione resistenza bielle	ν	=	0.540	
tensione di calcolo bielle	νf_{cd}	=	7.6	MPa
acciaio				
tensione caratt. di snervamento	fyk	=	450.0	MPa
coeff. parziale di sicurezza	γs	=	1.15	
tensione di snervamento di calcolo	fyd	=	391.3	MPa

legenda

A - compression chord, B - struts, C - tensile chord, D - shear reinforcement

sollecitazioni e verifiche				
taglio	VEd	=	0	kN
azione assiale	N_{Ed}	=	0	kN
resistenza elemento non armato	VRdc	=	1511.1	kN
resistenza armatura a taglio	V_{Rds}	=	6656.6	kN
resistenza bielle calcestruzzo	V_{Rdmax}	=	######	kN
inclinazione bielle calcestruzzo	θ	=	30.0	•
sezione			duttile	
traslazione armatura long.	aı	=	88.6	cm



4. Caso 3A: 8 braccia ϕ 14, passo 10cm (θ =25°)

verifica a taglio di una sezione rettangolare secondo EN 1992-1-1:2004:E

geometria				
sezione trasversale	·			•
base	В	=	545	cm
altezza	Н	=	100	cm
copriferro (asse armatura long.)	С	=	11.4	cm
altezza utile	d	=	88.6	cm
braccio coppia interna	Z	=	79.8	cm
armatura a taglio				
numero braccia	n	=	8	
diametro	ф	=	14	mm
passo	S	=	10	cm
inclinazione	α	=	90	•
area	Asw	=	12.32	cm ²
armatura longitudinale tesa				
numero barre	n_1	=	30	
diametro	ϕ_1	=	24	mm
numero barre	n_2	=	32	
diametro	ϕ_2	=	20	mm
area totale	AsI	=	236.2	cm ²

materiali				
calcestruzzo				
resistenza caratt. cilindrica a 28 gg.	f_{ck}	=	24.9	MPa
coeff. parziale di sicurezza	γс	=	1.5	
coeff. effetti a lungo termine	α_{cc}	=	0.85	
tensione di calcolo	f_{cd}	=	14.1	MPa
coeff. riduzione resistenza bielle	ν	=	0.540	
tensione di calcolo bielle	νf_{cd}	=	7.6	MPa
acciaio				
tensione caratt. di snervamento	fyk	=	450.0	MPa
coeff. parziale di sicurezza	γ_{S}	=	1.15	
tensione di snervamento di calcolo	fyd	=	391.3	MPa

sollecitazioni e verifiche				
taglio	VEd	=	0	kN
azione assiale	N _{Ed}	=	0	kN
resistenza elemento non armato	VRdc	=	1511.1	kN
resistenza armatura a taglio	V_{Rds}	=	8241.7	kN
resistenza bielle calcestruzzo	V_{Rdmax}	=	######	kN
inclinazione bielle calcestruzzo	θ	=	25.0	0
sezione			duttile	
			•	
traslazione armatura long.	aı	=	88.6	cm

A partire dalle resistenze di calcolo sopra definite, le resistenze calcolate a metro lineare per il caso in esame sono:

- 8 braccia φ14 passo 25cm: Vrds/L= 2662/5.45 = 488.6 kN/m
- 8 braccia φ14 passo 15cm: Vrds/L= 4437/5.45 = 814.3 kN/m
- 8 braccia φ14 passo 10: Vrds/L= 6656/5.45 = 1221.4 kN/m
- 8 braccia φ14 passo 10 (θ=25°): Vrds/L= 8241/5.45 = 1512.2 kN/m

I diagrammi del taglio resistente a metro lineare così calcolato sono stati confrontati con le sollecitazioni di taglio a metro lineare determinate dal programma Paratie, in modo da verificare la resistenza a taglio lungo tutta l'altezza dei diaframmi, come riportato nelle seguenti immagini.

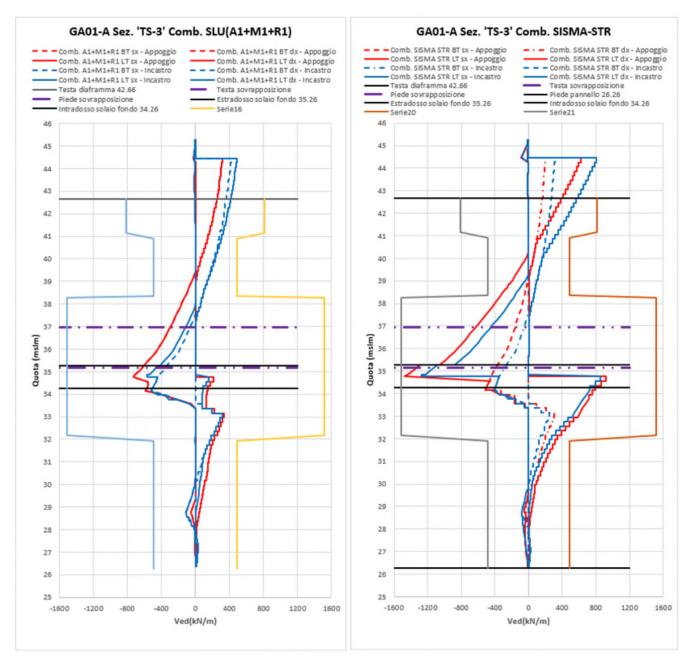


Figura 52 Diaframma TS-3- Diagramma azioni taglianti e resistenti allo SLU - valori in kN/m

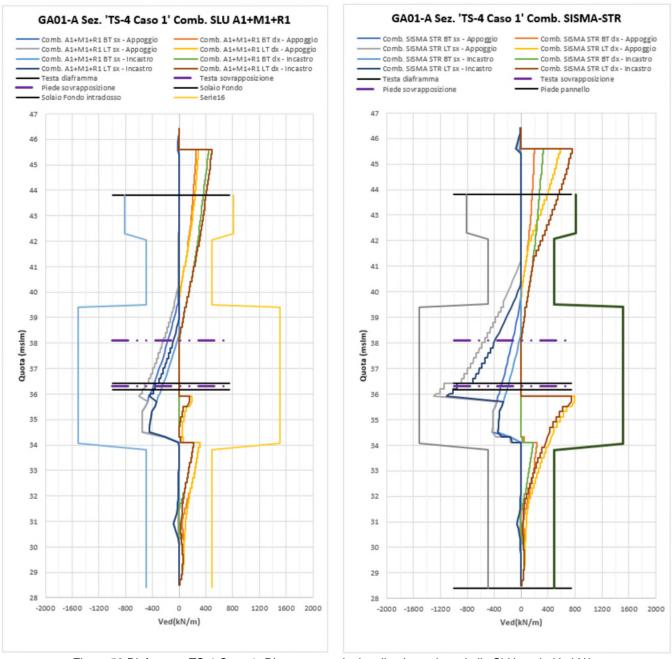


Figura 53 Diaframma TS-4-Caso 1- Diagramma azioni taglianti e resistenti allo SLU - valori in kN/m

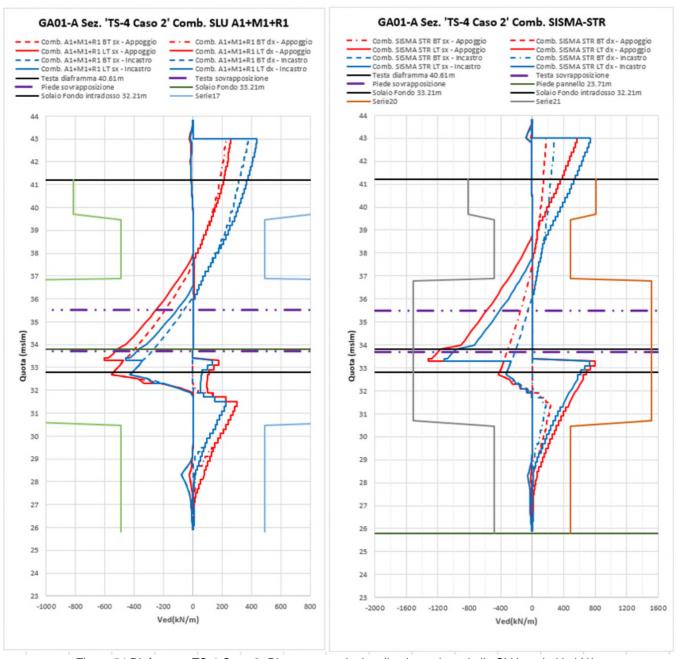


Figura 54 Diaframma TS-4-Caso 2- Diagramma azioni taglianti e resistenti allo SLU - valori in kN/m

11.3 Tipologia armatura 'Tipo 3' (Schema TA)

Nella tabella seguente si riassumono le massime sollecitazioni flettenti ottenute dall'inviluppo dei risultati degli schemi di calcolo 'TA' utilizzati per il dimensionamento dell'armatura 'Tipo 3'.

Le verifiche sono effettuate considerando i fili strutturali di seguito indicati:

- sollecitazioni testa diaframma riferite ad asse cordolo.
- in corrispondenza del solettone di fondo del manufatto a "U" interno, il picco delle sollecitazioni flettenti è valutato ad ¼ dello spessore dall'asse della soletta.

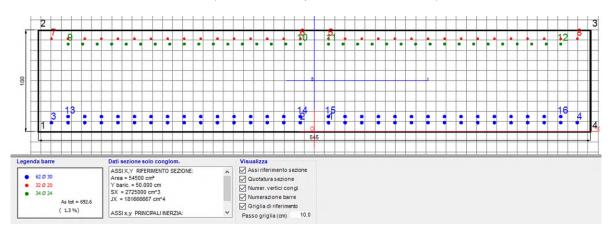
INVILUPPO TA SLS-rara lnv.BT (Diafr.) Inv.LT (Diafr.) lnv.BT (Diafr.) Inv.LT Diafr.) Valore lato Valore lato Valore lato Valore lato Valore lato Valore lato Scavo Valore lato Scavo Scavo Sollecitazioni Terra Scavo Terra (kN°m/m) (kN°m/m) Terra (kN°m/m) (kN°m/m) (kN°m/m) (kN*m/m) (kN°m/m) (kN*m/m) Asse copertura 1123 0 1142 1490 1515 Intradosso copertura 847 188 850 214 1129 244 1134 402 515 427 515 479 695 555 695 861 Testa diaframma' 1275 1734 Gabbia 1 515 1261 515 695 1639 1092 Sovrapposizione Ω 904 3 904 0 1175 729 1175 Gabbia 2 356 335 356 338 462 436 462 440

Tabella 45 Sollecitazioni flettenti dimensionanti

11.3.1.1 Dimensionamento armatura longitudinale

Di seguito si riportano le tabelle con le sollecitazioni a flessione per le singole tipologie di diaframmi presenti. Per ognuno di essi è effettuato il dimensionamento dell'armatura longitudinale. Le verifiche sono state effettuate con il software di calcolo RC-Sec indicato al § 2.3.

- P1 pannello primario di lunghezza L=5.45 m
- S1 pannello secondario di lunghezza L=5.05 m
- P2 e S2 Pannelli primari e secondari di lunghezza 2.5 m


Le gabbie di armatura sono riportate negli elaborati di progetto allegati alla presente relazione: le gabbie di armatura definite di seguito, si susseguono lungo l'altezza del diaframma, e si rendono necessarie considerato il limite sulla massima lunghezza trasportabile.

Le verifiche sono effettuate in accordo con il metodo semiprobabilistico agli stati limite ultimi secondo i criteri riportati nelle NTC 08 per le strutture in calcestruzzo armato.

11.3.1.1.1 Pannello P1 (base pannello 5.45m)

P1			1		5.45	m		
	SLS-rara				SLU			
	Inv.BT (Diafr.)	Inv.LT (Fod-	+Diafr.)		Inv.BT (Diafr.)		Inv.LT (Fod+Dia	fr.)
	Terra Scav	ore lato vo (kN*m/m)	Terra Valore la (kN*m/n		Valore lato Terra (kN*m/m)	Scavo	Terra	Valore lato Scavo (kN*m/m)
Testa diaframma*	2806	2327	2806	2612	3790	3025	3790	4695
Gabbia 1	2806	6871	2806	6947	3790	8934	5949	9452
Sovrapposizione	0	4924	18	4924	0	6404	3976	6404
Gabbia 2	1943	1823	1943	1844	2521	2375	2521	2400

Gabbia di armatura No. 1 (Lembo teso superiore lato terra, M<0)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.4 cm Interferro netto minimo barre longitudinali: 3.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

 Ver
 S = combinazione verificata / N = combin, non verificata

 N
 Sforzo normale assegnato [kN] nel baricentro B sezione cls (positi vo se di compressione)

 Mx
 Componente del momento assegnato [kN] riferito all'assex princ. d'inerzia

 N Res
 Storzo normale resistente [kN] nel baricentro B sezione cls (positivo se di compress.)

 MxRes
 Momento flettente resistente [kN] riferito all'assex princ. d'Inerzia

 Mis Sic.
 Misura sicurezza = rapporto vitariale tra (N r, Mx Res, My Res) e (NMx,My)

 Verifica positiva se tale rapporto risulta >= 1,000

 As Totale
 Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb	Ver	N	Mk	N Res	Mx Res	Ms. Sic.	As Totale
1	S	0.00	4700.00	0.00	13663,74	2.91	692.6(163.5)
2	S	0.00	-3890.00	0.00	-8347.59	2.15	692 6(163.5)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform, unit, massima del calcestruzzo a compressione
	Deform, unit, massima del calcestruzzo a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X, Y, O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform, unit, minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform, unit, massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,Osez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistem a rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ysmn	es max	Xs max	Ys max
1	0.00350	-272.5	100.0	0.00182	13.9	91.5	-0.01447	13.9	8.9
2	0.00350	-272.5	0.0	0.00104	-259.5	8.9	-0.02182	259.5	91.5

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANI Progetto Lotto Codifica Documento Rev. Foglio GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO IN17 EI2 CL GA 01 A4 0014 171 di 205 11 Α

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Momento flettente [kNm] intomo all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. N Mx My 0.00

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

S = comb. verificata/ N = comb. non verificata Ver

S = como, venicas n n = como, non venicas Massima tensione (positiva se di compressione) nel calcestruzzo (MPa) Ascissa, Odinata (cni) del punto corrisp, a St. max (sistema rf. X, Y,O) Minima tensione (negativa se di trazione) nell'acciaio (MPa) Ascissa, Ordinata (cni) della barra corrisp, a Ss min (sistema rf. X,Y,O) Sc max Xc max, Yc max Ss min Xs min, Ys min Area di calcestruzzo (cm²) in zona tesa considerata aderente alle barre Aceff. As eff. Area baire [cm²] in zona tesa considerate efficaci per l'apertura delle fessure N°Comb Ver Scmax Xcmax Ycmax Ssmin Xsmin Ysmin Aceff. Aseff.

1 S 3.54 -272.5 0.0 -146.3 243.1 91.5 13642 254.3

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia intenore a fotm	
Esto della vertica	

Ver. Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

k1

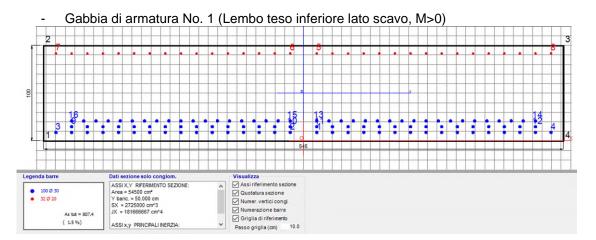
= 0.8 per based and ereman a migliorata [eq.(7.11)EC2] = 0.4 per comb. quasi permanent / = 0.6 per comb. frequent (cf. eq.(7.9)EC2] = 0.5 per flessione; = (e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2] kt k2

k3

= 3.400 Coeff. in eq.(7.11) come da amessi nazionali = 0.425 Coeff. in eq.(7.11) come da amessi nazionali

Ø

Diametro [mm] equivalente delle barre tese comprese nell'area eficace Ac eff [eq.(7.11)EC2]
Copriferro [mm] netto calculato con riferimento alla barra più tesa
Differenza tra le deformazioni medie di acciaio e calcestruzzo [[7.8]EC2 e (C4.1.7)NTC]


Tra parentesi: valore minimo = 0.6 Smax / Es [7.9) EC2 e (C4.1.6) NTC]

Massima distanza tra le fessure [mm]

Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [[7.8]EC2 e (C4,1.7]NTC]. Valore limite tra parentesi Wk Mxfess.

Componente momento di prima fessurazione intorno all'asse X [kNm] Componente momento di prima fessurazione intorno all'asse Y [kNm] Myfess.

Comb. Ver e2 k2 Ø Cf esm - ecm sr max wk Mx fess My fess S -0.00082 0.00000 0.500 22.2 75 0.00044 (0.00044) 458 0.201 (990.00) -3001.37

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Coorife no netto minimo barre longitudinali: 7.4 cm Interferro netto minimo barre longitudinali:

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

S = combinazione verificata / N = combin, non verificata
Sforzo normale assegnato [kN] nel baricentro B sezione cls (positivo se di compressione)
Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Componente de momento assegnato (univingianto au asse xpnnt. Ginetzia Sforzo nomale residente [ki,N] enle baricentro B sezione dis (positivo se di compress.) Momento fiettente resistente [k,Nn] riferito all'asse xprinc. di nerzia Misura sicurezza - rapporto vetoriale tra (N r,Mx Res,My Res) e (NMx,My) Vesfica positiva se talle rapporto riulta x=100.0 Area totale barre longitudinali [cm]. [Tra parentesi il valore minimo di nomativa] N Res MxRes Mis.Sic.

As Totale

N°Comb N Ms. Sic. 0.00 9500.00 0.00 19359.82 2.04 807.4(163.5)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

Deform, unit, massima del calcestruzzo a compressione Deform, unit, massima del calcestruzzo a compressione Ascissa in cm della fibra corrisp, a ec max (sistema rif. X, Y,O sez.) Xc max Ye max Ordinata in cm della fibra corrisp. a ec max (sistema rif. X.Y.O sez.) Deform, unit. minima nell'accario (negativa se ditrazione)
Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Odinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) Ys min Deform, unit, massima nell'acceio (positiva se di compress.) Ascissa in cm della barra corrisp, a es max (sistema rif, X,Y,O sez.) Ordinata in cm della barra corrisp, a es max (sistema rif, X,Y,O sez.) es max Xs max

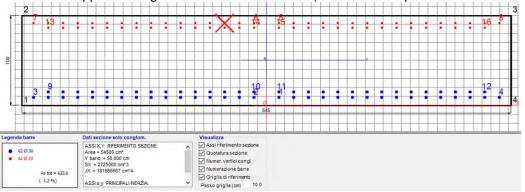
N°Comb	ec max	Xc max	Yo max	es min	Xs mn	Ysmn	es max	Xs max	Ys max
1	0.00350	-272.5	100.0	0.00273	13.9	91.6	-0.00490	13.9	8.9

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Mx Momento flettente [kNm] intomo all'asse X di riferimento (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. N Mx Mv 0.00 7000.00 1 0.00

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANI Progetto Lotto Codifica Documento Rev. Foglio GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO IN17 EI2 CL GA 01 A4 0014 173 di 205 11 Α


COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

| Ver | S = comb. verificata/ N = comb. non verificata | N = comb. non veri

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb. Ver e1 e2 k2 Ø Cf esm-ecmsrmax wk Mx fess My fess
1 S -0.00091 0.00000 0.500 30.0 74 0.00054 (0.00047) 381 0.200 (990.00) 3364.68 0.00

Sovrapposizione gabbia di armatura No. 1-2 (Lembo teso superiore lato terra M<0)

RISULTATI DEL CALCOLO

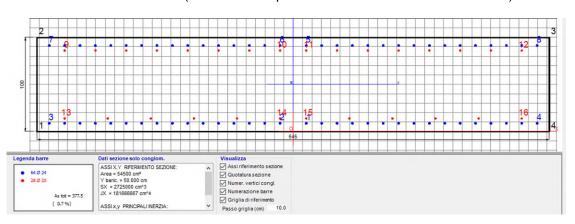
Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.4 cm Interferro netto minimo barre longitudinali: 3.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata N Strzo normale assegnato (kN) nel baricentro Bescione dis (positivo se di compressione) Mx Componente del momento assegnato (kN) niferito all'asse x princ. d'inercia N Res Strzo normale resistente (kN) nel baricentro Bescione dis (positivo se di compress.) Mischia. Mischia del manuel del m

 N°Comb
 Ver
 N
 Mx
 N Res
 Mx Res
 Ms. Sic.
 As Totale


 1
 S
 0.00
 -6000.00
 0.00
 -6623.83
 1.10
 633.0(163.5)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max Deform, unit, massima del calcestruzzo a compressione Deform, unit, massima del calcestruzzo a compressione Xc max Acsissa in no della fibra corrisp, a ec max (sistema rif. X,Y,O sez.) ve min Deform, unit, minima nell'accisio (negativa se di trazione). Ys min Acsissa in ome della barra corrisp, a es min (sistema rif. X,Y,O sez.) ve max Deform, unit, minima nell'accisio (negativa se di trazione). Ys min Odinata in cm della barra corrisp, a es min (sistema rif. X,Y,O sez.) ve max Deform, unit, massima nell'accisio (positiva se di compress.) Xs max Acsissa in ome della barra corrisp, a es max (sistema rif. X,Y,O sez.) Ys max Ordinata in cm della barra corrisp, a es max (sistema rif. X,Y,O sez.)

N° Comb	ec max	Xc max	YC max	es mn	As min	YS min	es max	As max	Ys max
1	0.00350	-272.5	0.0	0.00088	-259.5	8.9	-0.02346	259.5	91.5

Gabbia di armatura No. 2 (Lembo teso superiore lato terra M<0 e lato scavo M>0)

Ma Cia

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: Interferro netto minimo barre longitudinali: 3.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

S = combinazione verificata / N = combin. non verificata Sforzo normale assegnato (NN) nel baricento B sezione dis (positivo se di compressione) Componente del momento assegnato (NNm) rifierito all'assex princo. dinerzia Sforzo normale resistente (NN) nel baricentro B sezione dis (positivo se di compress.) N Mx N Res MxRes Momento flettente resistente [kNm] riferito all'asse xprino, d'inerzia Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r, Mx Res, My Res) e (N, Mx, My) As Totale

Verifica positiva se tale rapporto risulta >= 1 000
Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N COM	ver	IN	IVIK	IN Nes	IVIX Nes	IVIS. OIG.	AS TOTALE
1	S	0.00	2400.00	0.00	6173.87	2.57	377.5(163.5)
2	S	0.00	-2520.00	0.00	-6526.80	2.59	377.5(163.5)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max Deform, unit, massima del calcestruzzo a compressione Detom. unit. massima del calcesaruzo a compressione Defom. unit. massima del calcesaruzo a compressione (No ez.) Defom. unit. massima del calcesaruzo a compressione (No ez.) Odrianta in cm della fibra corrisp. a en max (sistema rif. X,Y,O ez.) Deform. unit. minima nell'acciaio (negativa se di trazione). Ascissa in cm della barra corrisp. a en sim (sistema rif. X,Y,O ez.) Odrianta in cm della barra corrisp. a en sim (sistema rif. X,Y,O ez.) Defom. unit. massima nell'acciaio (positiva se di compress.) Xc max Yc max es min Xs min Ys min es max Ascissa in cm della barra corisp. a es max (sistema rif. X.Y.O sez.) Xs max Ys max Ordinata in cm della barra corrisp. a es max (sistem a rif. X,Y,O sez.) Ye may Ve may se min Ye min

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	-272.5	100.0	0.00060	13.9	91.3	-0.02695	13.9	8.6
2	0.00350	-272.5	0.0	0.00064	-259.5	8.6	-0.02683	259.5	91.3

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)
M×	Momento flettente [kNm] intomo all'asse X di riferimento (tra parentesi Mom. Fessurazione)
	con verso positivo se tale da com primere il lembo superiore della sezione

N°Comb.	N	Mx	My
1	0.00	1850.00	0.00
2	0.00	-1950.00	0.00

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANI Progetto Lotto Codifica Documento Rev. Foglio GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO

IN17

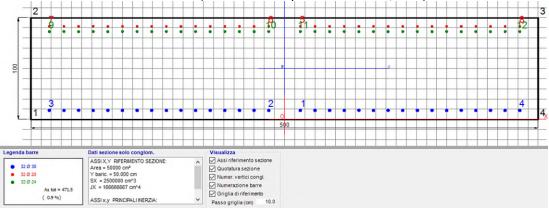
11

EI2 CL GA 01 A4 0014

Α

176 di 205

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)


S = comb. verificata/ N = comb. non verificata Sc max Massima tensione (positiva se di compressione) nel calcestruzzo [MPa] Xc max, Yc max Ss min Ascissa, Ordinata [cm] del punto corrisp, a Sc max (sistema rif. X, Y,O) Minima tensione (negativa se di trazione) nell'acciaio [MPa] Ascissa, Ordinata [cm] della barra corrisp, a Sa min (sistema rif. XY,O)
Area di calcestruzzo [cm²] in zona tesa considerata adrembe alle barre
Area bare [cm²] in zona tesa considerate efficaci per l'apertura delle fessure Xs min, Ys min As eff. N°Comb Ver Scmax Xcmax Ycmax Ssmin Xsmin Ysmin Aceff. Aseff. 2.83 -272.5 100.0 -125.2 243.1 8.6 12990 2.94 -272.5 0.0 -124.8 243.1 91.3 13645 182.5 195.0 S

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Ver. e1 e2 k1 kt k2 k3 k4 Ø Cf e sm wk Mxfs	ı-ecm ax	Esito delli Massima Minima di = 0.8 per = 0.4 per = 0.5 per = 3.400 C = 0.425 C Diametro Copriferro Differenzo Tra paren Massima Apertura	e verifica deformazione un barre ad adere romazione un barre ad adere roma de la contra del contra de la contra del contra de la contra del contra de la contra del contra de la contra del contra de la contra de la contra de la contra del contra del contra del contra del contra del contra de	untaria di tra itaria di tra itaria di tra inza miglio permanenti + e2)/(2'e 1) come da 1) come da todato con izioni medi imo = 0.6 fessure [m calcolata =	razione nel zione nel rata [eq.17 /= 0,6 per 1) per traz a amessi i ametse o riferimen e di accia Smax / Ei m] sr max*(e	el calcestruzzo (accestruzzo (accestruzzo (7.11) EC2) er comb freque cione eccentrio nazionali nazionali omprese nell'i to alla barra pio e calcestruz e (87.9) EC2 (e_sm -e_cm)	zo [(7.8)EC2 e (C4.1.7)NTC] e (C4.1.8)NTC] [(7.8)EC2 e (C4.1.7)NTC], Valo	fessurat es surat	s ta	fetm	
Myf			nte momento d nte momento d								
Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	rmax	wk	Mx fess	My fess
1	S	-0.00070	0.00000	0.500	23.0	74	0.00038 (0.00038)	531	0.199 (990.00)	2787.48	0.00
2	S	-0.00070	0.00000	0.500	22.8	75	0.00037 (0.00037)	526	0.197 (990.00)	-2799.47	0.00

11.3.1.1.2 Pannello S1 (base pannello 5.0m)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: Interferro netto minimo barre longitudinali: 3.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

S = combinazione verificata / N = combin. non verificata S = combinatione venticata / N = combin. Non venticata
Sforzo nomale assegnato [kN] nel baricento B sezione cls (positivo se di compressione)
Componente del momento assegnato [kNm] riferito all'assex princ. d'inerzia
Sforzo nomale resistente [kN] nel baricentro B sezione cls (positivo se di compress.)
Momento fistente resistente (kNm) riferito al fasex princ. d'inerzia
Misura sicurezza = rapporto vettoriale tra (N r. Mx Res, My Res) e (NMx, My) Mx

Mis.Sic

Verifica positiva se tale rapporto risulta ≫1,000 Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa] As Totale

N°Comb Ver N Mk N Res Mx Res Ms. Sic. As Totale 0.00 -3500.00 0.00 -7915.44 2.26 471.5(150.0) S

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max Deform, unit. massima del calcestruzzo a compressione Deform, unit, massima del calcestruzzo a compressione Xc max Yc max Ascissa in ordella fibra corrisp, a ec max (sistema rf. X, Y, O sez.)
Ordinata in cm della fibra corrisp, a ec max (sistema rf. X, Y, O sez.)
Deform. unit. minima nell'acciaio (negativa se di trazione) es min Deform, unit, minima nell'acciairo (negativa se di trazione).
Asossa in cmi della barra corrisp, a es min (sistema nf. X,Y,O sez.).
Ordinata in cm della barra corrisp, a es min (sistema nf. X,Y,O sez.).
Deform, unit, massima nell'acciairo (positiva se di compress.).
Ascissa in cmi della barra corrisp, a es max (sistema nf. X,Y,O sez.).
Ordinata in cm della barra corrisp, a es max (sistema nf. X,Y,O sez.). Xs min Ys min Ys max

N°Comb ec max Yc max Xs min Ys min Xs max Ys max es max 0.00350 -250.0 0.0 0.00071 -231.9 8.9 -0.02524 231.9 91.6

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Storzo normale (kM) applicato nel Barcentro (+ se di compressione) Momento flettente [kNm] intomo all'asse X di riferimento (tra parentesi Mom. Fessurazione) con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. Mx 0.00 -2600.00 0.00

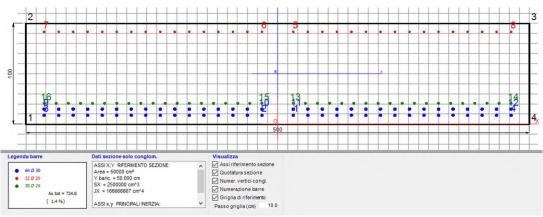
GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANI Progetto Lotto Codifica Documento Rev. Foglio GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO IN17 EI2 CL GA 01 A4 0014 178 di 205 11 Α

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata
Sc max
Mascima tensione (positiva se di compressione) nel calcestruzzo [MPa]
Xc max, Yc max
Ss min Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X, Y, O)
Minima tensione (negativa se di trazione) nell'accisio [MPa]
Xs min, Ys min Ac eff.
Asceff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
Area barre [cm²] in zona tesa considerata aderente alle barre
Area barre [cm²] in zona tesa considerata aderente alle barre
Xc max Yc max Ss min Xs min Ys min Ac eff. As eff.

1 S 3.71 -250.0 0.0 -139.2 217.5 91.6 12134 245.3

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]


La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo dia inferiore a fotm

Ver. Esto della vertica
e1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata
e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata
e1 0.8 per bare ad aderenza migliorata [eq.(7.11)EC2]
k1 = 0.8 per comb, quasi permanen i = 0.6 per comb fequenti [dr. eq.(7.9)EC2]
e2 = 0.5 per fessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]
k3 = 3.400 Coeff. in eq.(7.11) come da armessi nazionali
k4 = 0.425 Coeff. in eq.(7.11) come da armessi nazionali
g2 Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]
Cd Copriterro [mm] netto calcidato con riferimento alla barra più tesa
e sm - e cm
g1 Differenza tra le deformazioni medie di accisio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]
Tra parentesi: vidore minimo = 0.5 Smax / Es (7.9)EC2 e (C4.1.8)NTC]
sr max
Massima distanza tra le fessura [mm]
Mxfess.
Componente momento di prima fessurazione intorno all'asse X [kNm]
Combo. Ver e1 e2 k2 Ø Cf e sm - e cms r max wk Mx.

Comb. Ver e1 e2 k2 Ø Cf esm-ecmsrmax wk Mx fess My fess
1 S -0.00079 0.00000 0.500 22.2 74 0.00042 (0.00042) 438 0.183 (990.00) -2709.90 0.00

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANI Progetto Lotto Codifica Documento Rev. Foglio GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO IN17 EI2 CL GA 01 A4 0014 179 di 205 11 Α

Gabbia di armatura No. 1 (Lembo teso superiore lato scavo, M>0)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.4 cm Interferro netto minimo barre longitudinali: 3.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

 Ver
 S = combinazione verificata / N = combin, non verificata

 N
 Sforzo normale assegnato [kN] nel baricentro B sezione cis (positi vo se di compressione)

 Mx
 Componente del momento assegnato [kNm] riferito all'asse x princ. dinerzia

 N Res
 Sforzo normale resistente [kNm] niferito all'asse x princ. dinerzia

 MxRes
 Momento fiettente resistente [kNm] riferito all'asse x princ. dinerzia

 Mis-Sic.
 Mis-si sicurezza - rapporto verbinale tra (N y Mx Res, My Res) e (NMx, My)

 Verifica positiva se tale rapporto risulta >=1 000

 As Totale
 Area totale barre longitu dinali [cm]. [Tra parentesi il valore minimo di normativa]

 N°Comb
 Ver
 N
 Mx
 N Res
 Mx Res
 Ms. Sic.
 As Totale

 1
 S
 0.00
 8700.00
 0.00
 17557.32
 2.02
 724.6(150.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max
Deform, unit, massima del calcestruzzo a compressione
Deform, unit, massima del calcestruzzo a compressione
Xc max
Yc max
Ordinata in cm della fibra corrisp, a ec max (sistema rif. X,Y,O sez.)
Deform, unit, minima nell'accialo (negativa se di trazione)
Xs min
Ascissa in cm della tarra corrisp, a es min (sistema rif. X,Y,O sez.)
Ys min
Ordinata in cm della barra corrisp, a es min (sistema rif. X,Y,O sez.)
es max
Ordinata in cm della barra corrisp, a es mix (sistema rif. X,Y,O sez.)
Xs max
Ascissa in cm della barra corrisp, a es max (sistema rif. X,Y,O sez.)
Ys max
Ordinata in cm della barra corrisp, a es max (sistema rif. X,Y,O sez.)

0.00

1

 N°Comb
 ec max
 Xc max
 Yc max
 es min
 Xs min
 Ys min
 es max
 Xs max
 Ys max

 1
 0.00350
 -250.0
 100.0
 0.00268
 15.6
 91.6
 -0.00542
 15.6
 8.9

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

8700.00

N Sibrzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx Momento flettente [daNm] intorno all'asse X di riferimento delle coordinate
con verso positivo se tale da comprimere il lembo sup. della sez.
Vy Componente del Taglio [kN] parallela all'asse Y di riferimento delle coordinate

N°Comb. N Mx Vy

0.00

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANI Codifica Documento Progetto Lotto Rev. Foglio GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO IN17 11 EI2 CL GA 01 A4 0014 Α 180 di 205

0.00055 (0.00047) 367 0.203 (990.00) 3103.43

My fess

0.00

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb, verificata/ N = comb, non verificata
Sc max
Xc max, Yc max
Ss min
Xs min, Ys min
Ac eff.
As efs.

N° Comb
Ver Sc max
S = comb, verificata/ N = comb, non verificata
Massima tensione (positiva se di compressione) nel calcestruzzo [MPa]
Xs min, Ys min
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X, Y, O)
Minima tensione (negativa se di trazione) nell'acciaio [MPa]
Ascissa, Ordinata [cm] della barra corrisp. a Sc min (sistema rif. X, Y, O)
Area di calcestruzzo [cm²] in zona tesa considerata adrente alle barre
Area bare [cm²] in zona tesa considerate efficaci per fapertura delle fessure

N° Comb
Ver Sc max
Xc max Yc max
Ss min Xs min Ys min
Ac eff.
As eff.

1 S 7.87 -250.0 100.0 -155.1 217.5 8.9 10211 452.4

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

S -0,00091 0.00000 0.500 30.0 74

1

					sempre fe	surata a	anche nel caso in	cui la trazione minima del calcestruzzo sa in	feriore a f	ctm			
	Ver.		Esito della ve										
	e1		Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata										
	e2		Minima defor	mazone unit	ana di trazi	one nel	calcestruzzo (tra	zione -) valutata in se zione fessurata					
	k1		= 0.8 perba	re ad aderen	za migliora	ta Jeq.(7	.11)EC2						
	kt		= 0 A per co	omb, quasi pe	rmanent /	= 0.6 pe	r comb frequent	[cfr. eq.(7.9)EC2]					
	k2												
	k3		= 0.5 per flessione; =(e1 + e2)(2'e1) per trazione eccentrica [eq.(7.13)EC2] = 3.400 Coeff. in eq.(7.11) come da armessi nazionali										
	44		= 0.425 Coeff, in eq.(7.11) come da amessi nazionali										
	Ø		Diametro (mm) equivalente delle barre tese comprese nell'area efficace Ac eff (eq.(7.11)EC2)										
	Cf		Copriferro [mm] netto calcidato con riferimento alla barra più tesa										
	e sm	-ecm	Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.6)EC2 e (C4.1.7)NTC] Tra parentesi: valore minimo = 0.6 Smax / Es (7.9)EC2 e (C4.1.8)NTC]										
	sr ma	ax	Massima distanza tra le fessure [mm]										
	wk		Apertura fessure in mm calcolata = sr max*(e_sm -e_cm) (7.8) EC2 e (C4.1.7 NTC). Valore limite tra parentesi										
	Mxfe	255.	Componente momento di prima fessurazione intorno all'asse X [kNm]										
	Myfess.		Componente	momento di	prima fess	urazione	intorno all'asse	Y [kNm]					
C	omb.	Ver	e1	e2	k2	Ø	Cf	esm - ecm sr max	wk	Mx fess			

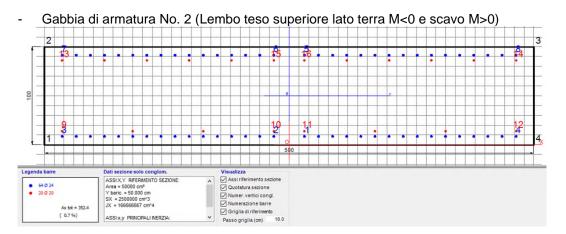
- Sovrapposizione gabbia di armatura No. 1-2 (Lembo teso superiore lato terra, M<0)

2 177

18 10 19 1

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata
N Sforzo normale assegnato [kN] nel baricentro B sezione cls (positivo se di compressione)
Mx Componente del momento assegnato [kNm] rifierito all'assex xprinc. d'inerzia
N Res Storzo normale resistente [kNm] rifierito all'assex xprinc. d'inerzia
Mis.Sic. Momento fiettente resistente [kNm] rifierito all'assex xprinc. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vetoriale tra (R. Vit. Res. My Res) e (NMx, My)
Verifica positiva se tale rapporto risulta >=1,000
As Totale
Are atotale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]


 N°Comb
 Ver
 N
 Mx
 N Res
 Mx Res
 Ms. Sic.
 As Totale

 1
 S
 0.00
 -5460.00
 0.00
 -7233.15
 1.32
 825.4(150.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max Deform. unit. massima del calcestruzzo a compressione Deform. unit. massima del calcestruzzo a compressione Xc max Ascissa in cm della fibra corrisp. a ec max (sistema rif. X, Y, O sez.) Yc max Ordinata in cm della fibra corrisp. a ec max (sistema rif. X, Y, O sez.) es min Deform. unit. minima nell'acciaio (negativa se di trazione) Xs min Ascissa in cm della barra corrisp. a es min (sistema rif. X, Y, O sez.) Ys min Ordinata in cm della barra corrisp. a es min (sistema rif. X, Y, O sez.) es max Deform. unit. massima nell'acciaio (positiva se di compress). Xs max Ascissa in cm della barra corrisp. a es max (sistema rif. X, Y, O sez.) Ys max Ordinata in cm della barra corrisp. a es max (sistema rif. X, Y, O sez.)

N°Comb ec max Xc max Ye max es min Xs min Ys min es max Xs max Ys max 0.00350 -250.0 0.0 0.00131 -231.9 8.9 -0.01907 231.9 91.6

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni as segnate

Coprife no netto minimo barre longitudinali: 74 cm Interferro netto minimo barre longitudinali:

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

ASSIX, Y PRINCIPALI INERZIA

S = combinazione verificata / N = combin. non verificata
Sforzo normale assegnato [kN] nel baricantro Bisezione cis (positivo se di compressione)
Componente del momento assegnato [kNm] rifento all'asse x princ. dinerzia
Sforzo normale resistente [kNm] nifento all'asse x princ. dinerzia
Momento fiettente resistente [kNm] rifento all'asse x princ. dinerzia
Misura sicurezza = rapporto vetoriale tra (N t, Mt Res, My Res) e (N,Mx,My)
Verifica positiva se talle rapporto nisuta x = 10.00
Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa] N Res MxRes Mis.Sic

As Totale

N Ms. Sic. As Totale 0.00 2210.00 0.00 5754.99 2.60 352.4(150.0) -6119.45 2 0.00 -2350.00 0.00 2.60 352.4(150.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

Deform, unit. massima del calcestruzzo a compressione ec max Deform, unit, massima del calcestruzzo a compressione Ascissa in cm della fibra corrisp. a ec max (sistema rf. X, Y, O sez.)
Ordinata in cm della fibra corrisp. a ec max (sistema rf. X, Y, O sez.)
Deform, unit, minima nelfacciós (negativa se ditrazione)
Ascissa in cm della barra corrisp. a es min (sistema rf. X, Y, O sez.) Xc max Yc max es min Xs min Ys min Ordinata in cm della barra corriso, a es min (sistema rif. X.Y.O sez.) es max Xs max Ys max Deform, unit. massima nell'acciaio (positiva se di compress.) Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es mn	Xs min	Ysmin	es max	Xs max	Ys max
1	0.00350	-250.0	100.0	0.00057	15.6	91.4	-0.02761	15.6	8.6
2	0.00350	-250.0	0.0	0.00061	-231.9	8.6	-0.02726	231.9	91.4

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Mx Momento flettente [kNm] intomo all'asse X di riferimento (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx	My
1	0.00	1700.00	0.00
2	0.00	-1800.00	0.00

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANI Progetto Lotto Codifica Documento Rev. Foglio GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO IN17 EI2 CL GA 01 A4 0014 183 di 205 11 Α

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb., verificata/ N = comb. non verificata Massima tensione (postiva se di compressione) nel calcestruzzo [MPa]
Ascissa, Odinata [cm] del punto corrisp, a Sc max (sistema rif. X, Y,O)
Minima tensione (negativa se di trazione) nell'acciaio [MPa] Sc max Xc max, Yc max Ss min Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Ss m in (sistem a rif. X, Y, O) Area di calcestruzzo (cm²) in zona tesa considerata aderente alle barre Ac eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure N°Comb Ver Somax Xomax Yomax Somin Xomin Yomin Aceff. -250.0 100.0 -122.5 217.5 8.6 11438 -250.0 0.0 -122.0 217.5 91.4 11771 2.78 169.9 2.90

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

-0.00069 0.00000

-0.00069 0.00000

S

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fotm Esto della verifica Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata Minima deformazione unitaria di trazione nel cabestruzzo (trazione -) valutata in sezione essurata
= 0.8 per bare ad aderenza migliorata [eq.(7.11)EC2]
= 0.4 per comb. quasi permanent [= 0.6 per comb.frequent [cfr. eq.(7.9)EC2]
= 0.5 per fessione; =(e1 + e2)(2 e1) per trazione eccentrica [eq.(7.13)EC2]
= 3.400 Coeff. in eq.(7.11) come da amessi nazionali
= 0.425 Coeff. in eq.(7.11) come da amessi nazionali e2 k1 kt k2 k4 = U.42 Coeff. in eq.(7,11) come da amesion nazional.

Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff. [eq.(7,11)EC2]

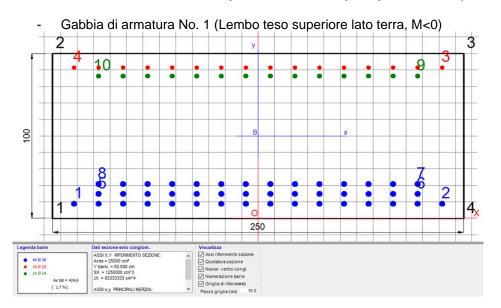
Copriferro [mm] netto calcidato con riferimento alla barra più tesa

Differenza tra le deformazioni medie di acciaio e calciestruzzo ([7,8)EC2 e (C4.1,7)NTC]

Tra parentesit videre minimo = 0.5 Smax/ Es [7,9]EC2 e (C4.1,5)NTC]

Masaima distanza tra le fessure [mm] e sm - e cm er max Apertura fessure in min calculate as max*[e_sm -e_cm] [7.8]EC2 e (C4,1.7]NTC]. Valore limite tra parentesi.
Componente momento di prima fessurazione intorno all'asse X [kNm] Mxfess. Myfess. Componente momento di prima fessurazione intorno all'asse Y [kNm] Comb. Ver wk Mx fess My fess

0.500 23.3 74 0.500 23.0 74


esm - ecm sr max

0,00037 (0,00037) 518 0,191 (990,00) 2571,29

0.00037 (0.00037) 504 0.185 (990.00) -2584.02

0.00

11.3.1.1.3 Pannello P2 e S2 Pannelli primari e secondari (base pannello 2.5 m)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni as segnate

Copifeiro netto minimo barre longitudinali: 30 cm Interferro netto minimo barre longitudinali:

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver N Mx N Res MxRes S = combinazione verificata / N = combin. non verificata
Sforzo normale assegnato [kN] nel baricentro B sezione cis (positivo se di compressione)
Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
Sforzo normale resistente [kN] el baricertro B sezione dis (positivo se di compress.)
Momento fiettente resistente [kNm] riferito all'asse x princ. d'Inerzia Misura sicurezza - rapporto verinale tra (N. KR es, My Res) e (N,Mx,My)

Verfica positiva se tale rapporto risulta >=1,000

Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa] Mis.Sic. As Totale

N°Comb	Ver	N	Mx	N Res	Mx Res	Ms. Sic.	As Totale
1	S	0.00	4070.00	0.00	9001.40	2.21	424.6(75.0)
2	S	980.00	-1800.00	979.82	-4348.84	2.46	424.6(75.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max Deform, unit, massima del calcestruzzo a compressione Debm. unit. massima del calcestruzzo a compressione Debm. unit. massima del calcestruzzo a compressione Ascissa in cim della fibra corrisp, a ec max (sistema rif. X, Y, O sez.) Ordinata in cim della fibra corrisp, a ec max (sistema rif. X, Y, O sez.) Debm. unit. minima nell'acciaio (negativa se di trazione) Ascissa in cim della barra corrisp, a es min (sistema rif. X, Y, O sez.) Ordinata in cim della barra corrisp, a es min (sistema rif. X, Y, O sez.) Xc max Yc max es min Xs min Ys min es max Deform, unit. massima nell'acciaio (positiva se di compress.) Ascissa in cm della barra corrisp, a es max (sistema rif. X,Y,O sez.)
Ordinata in cm della barra corrisp, a es max (sistema rif. X,Y,O sez.) Xs max

N°Comb	ec max	Xc max	Yc max	es mn	Xs mn	Ysmin	es max	Xs max	Ys max	
1	0.00350	-125.0	100.0	0.00244	111.9	91.6	-0.00800	-111.9	8.9	
2	0.00350	-125.0	0.0	0.00147	-1119	89	-0.01739	1119	91.6	

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N M×	Momento flette	e [k N] applicaton el Baricentro (: ente [k N m] intom o all'asse X di itivose tale da com primere il lei	iferimento (tra parentesi Mom. Fessurazione)
N°Comb.	N	Mx	My
1	0.00	-1300.00	0.00

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANI Progetto Lotto Codifica Documento Rev. Foglio GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO IN17 EI2 CL GA 01 A4 0014 185 di 205 11 Α

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max

Massima tensione (positiva se di compressione) nel calcestruzzo [MPa]

Xc max, Yc max

Sc min Minima tensione (negativa se di trazione) nel Cacideo [MPa]

Xs min, Ys min Acef.

Ace ef.

Area di calcestruzzo [cm] della barra corrisp. a Sc min (sistema rif. X, Y, O)

Area di calcestruzzo [cm] della barra corrisp. a Ss min (sistema rif. X, Y, O)

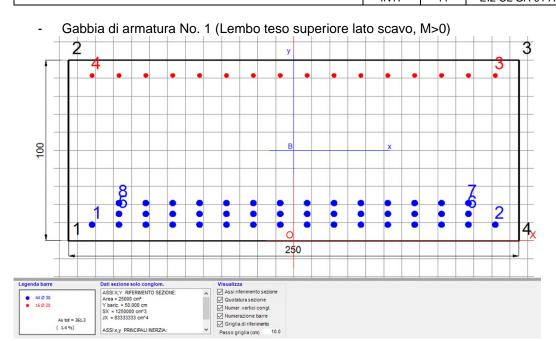
Area di calcestruzzo [cm] in zona tesa considerata aderente alle barra

Area barre [cm] in zona tesa considerate effica o per la pertura delle fessure

N° Comb Ver Sc max

Xc max Yc max

Ss min Xs min Ys min Ac eff.


As eff.

1 S 3.47 -125.0 0.0 -150.5 -97.0 91.6 6181 113.6

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fotm
Esto della verfica
e1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata
e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata
k1 =0.8 per bare a di aderenza migliorata [eq.(7.11)EC2]
k1 =0.4 per combo, quasi permanenta /= 0.6 per combi-frequenti [cf. eq.(7.9)EC2]
k2 =0.5 per fessione; =(e1 + e2)(/2*e1) per trazione eccentrica [eq.(7.13)EC2]
k3 =3.400 Coeff. in eq.(7.11) come di a amressi nazionali
k4 =0.425 Coeff. in eq.(7.11) come di a amressi nazionali
Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]
Cf
copriferro [mm] netto calcidato con riferimento alla barra più tesa
Ø Differenza tra le deformazioni mode di aciola ce calcestruzzo [(7.6)EC2 e (C4.1.7)NTC]
Tra parentesi: vidore minimo =0.6 Smax / Es [7.9)EC2 e (C4.1.8)NTC]
Massima distanza tra le fessure [mm]
Myress. Componente momento di prima fessurazione intorno all'asse X [kNm]
Componente momento di prima fessurazione intorno all'asse X [kNm]

Comb. Ver e1 e2 k2 Ø Cf esm-ecmsrmax wk Mx fess My fess
1 S -0.00085 0.0000 0.500 22.0 74 0.00045 (0.00045) 456 0.206 (990.00) -1398.29 0.00

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Conferro netto minimo barre longitudinali: Interferro netto minimo barre longitudinali: 3.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

S = combinazione verificata / N = combin. non verificata S = combinazione vernicata I/N = combin. non vernicata
Sforzo normale assegnato [kil/N le barcento B sezione dia (positivo se di compressione)
Componente del momento assegnato [ki/Nm] riferito all'asse x princ. d'inerzia
Sforzo normale resistente [ki/N] nel barcentro B sezione dia (positivo se di compress.)
Momento fetture resistente (ki/Nm) riferito all'asse x princ. d'inerzia
Misura sicurezza = rapporto vettoriale ra (N r, Mx Res, My Res) e (N,Mx, My) N Res MxRes Mis.Sic. Verifica positiva se tale rapporto risulta >= 1.000 Area totale barre longitudinali [cm²], [Tra parentesi il valore minimo di normativa] As Totale

N°Comb Ms. Sic. As Totale 0,00 4400.00 0.00 8713.61 1.98 361.3(75.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

Deform, unit, massima del calcestruzzo a compressione ec max Deform, unit, massima del calcestruzzo a compressione Deform, unit, massima del calcestruzzo a compressione Ascissa in cm della fibra corrisp. a ec max (sistema rif. X, Y, O sez.) Ordinata in cm della fibra corrisp. a ec max (sistema rif. X, Y, O sez.) Deform. unit, minima nell'acciaio (negativa se di Itrazione) Ascissa in cm della barra corrisp. a es min (sistema rif. X, Y, O sez.) Ordinata in cm della barra corrisp. a es min (sistema rif. X, Y, O sez.) Deform. unit, massima nell'acciaio (positiva se di compress.) Ascissa in cm della barra corrisp. a es max (sistema rif. X, Y, O sez.) Ordinata in cm della barra corrisp. a es max (sistema rif. X, Y, O sez.) Ordinata in cm della barra corrisp. a es max (sistema rif. X, Y, O sez.) Xc max Yc max es min Xs min Ys min es max Xs max Ys max

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	-125.0	100.0	0.00267	111.9	91.6	-0.00545	-111.9	8.9
2	0.00350	-125.0	0.0	0.00127	-111.9	8.9	-0.01948	111.9	91.6

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Mx

Momento flettente [kNm] intomo all'asse X di riferimento (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb Mx 1 0.00 3190.00 0.00

ALTA SORVEGLIANZA GENERAL CONTRACTOR Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANI Progetto Lotto Codifica Documento Rev. Foglio GA01-A OPERE SOSTEGNO DEGLI SCAVI E TAMPONE DI FONDO IN17 EI2 CL GA 01 A4 0014 187 di 205 11 Α

0.00

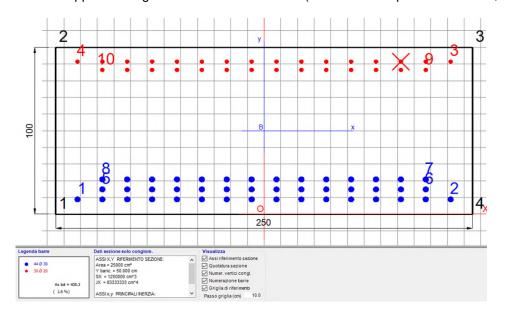
COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb, verificata/ N = comb, non verificata
Sc max
Nassima tensione (podiva se di compressione) nel calcestruzzo [MPa]
Xc max, Yc max
Ss min
Xs min, Ys min
Ac eff.
Ac eff.
As eff.

N°Comb Ver Sc max

Xc max Yc max
S = comb, verificata/ N = comb, non verificata
As eff.
S = comb, verificata/ N = comb, non verificata
As eff.

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]


S

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fotm Esto della verifica Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata = 0.8 per bare ad aderenza migliorata [eq.(7.11)EC2] = 0.4 per comb. quasi permanenti = 0.6 per comb. frequenti [cf. eq.(7.9)EC2] = 0.5 per fessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2] = 3.400 Coeff. in eq.(7.11) come dia amnessi nazionali = 0.425 Coeff. in eq Esto della vertica e1 e2 k1 k3 Cf Massima distanza tra le tessure [mm]

Apertura fessure in mm calcolata = sr max*(e_sm -e_cm) {7.8}EC2 e (C4.1.7)NTC]. Valore limite tra parentesi sr max wk Mxfess. Componente momento di prima fessurazione intorno all'asse X [kNm] Componente momento di prima fessurazione intorno all'asse Y [kNm] Comb. Ver k2 Ø Cf e2 esm - ecm sr max wk Mx fess My fess

-0.00092 0.00000 0.500 30,0 74 0.00055 (0.00047) 374 0.200 (990.00) 1543.78

- Sovrapposizione gabbia di armatura No. 1-2 (Lembo teso superiore lato terra, M<0)

RISULTATI DEL CALCOLO

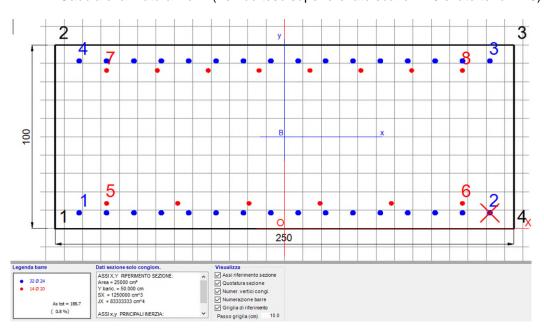
Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.4 cm Interferro netto minimo barre longitudinali: 3.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata /N = combin. non verificata
N Slorzo normale assignato [kN] nel baricentro B sectione dis (positivo se di compressione)
Mx Componente del momento assignato [kNm] riferito all'asse x princ. dinerzia
N Res Slorzo normale resistente [kN] nel baricentro B sectione dis (positivo se di compress)
MxRes Momento flettente resistente [kNm] riferito all'asse x princ. dinerzia
Missic. Missic arraporto tettoriale tra (N r. Mx Res. My Res) e (NMx, My)
Verifica postiva se talle resporto risulta ==1 000
As Totale Area totale barrei longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

 N°Comb
 Ver
 N
 Mx
 N Res
 Mx Res
 Ms. Sic.
 As Totale


 1
 S
 0.00
 -2750.00
 0.00
 -3479.95
 1.27
 405.3(75.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max Deform, unit, massima del calcestruzzo a compressione Deform, unit, massima del calcestruzzo a compressione Xc max Accises in cm della fibra corrisp, a e cm x (sistema rif, X,Y,O sez.) Yc max Ordinata in cm della fibra corrisp, a e cm ax (sistema rif, X,Y,O sez.) Deform, unit, minima nell'acciaio (negativa se di trazione) Xs min Accises in cm della barra corrisp, a es min (sistema rif, X,Y,O sez.) Ys min Ordinata in cm della barra corrisp, a es min (sistema rif, X,Y,O sez.) Deform, unit, massima nell'acciaio (positiva se d'compress.) Ascissa in cm della barra corrisp, a es max (sistema rif, X,Y,O sez.) Ys max Ordinata in cm della barra corrisp, a es max (sistema rif, X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	-125.0	0.0	0.00133	-111.9	8.9	-0.01884	111.9	91.6

Gabbia di armatura No. 2 (Lembo teso superiore lato scavo M>0 e lato terra M<0)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni as segnate

Copiferro netto minimo barre longitudinali: 7.4 cm Interferro netto minimo barre longitudinali: 3.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata N Slorzo normale assegnato [kN] nel baricentro B sezione cls (positivo se di compressione) Mx Componente del momento assegnato [kNm] riferito all'asses xprinc. dinerzia N Res Slorzo normale resistente [kNm] nel baricentro Bescione dia (positivo se di compress.) MXRes Momento fettente resistente [kNm] riferito all'asse xprinc. dinerzia Mission. Maura sicurezza = resporto vetoriale tra (N r, Nk Res, My Res) e (NMx, My) Verifica postituta se talle resporto insulta = 1,000.

As Totale Area totale barre longitudinali [cm]. [Tra parentes il valore minimo di normativa]

N°Comb	Ver	N	Mk	N Res	Mx Res	Ms. Sic.	As Totale
1	S	0.00	1120.00	0.00	3070.81	2.74	188.7(75.0)
2	S	0.00	-1160.00	0.00	-3253.80	2.81	188.7(75.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max

Deform, unit. massima del calcestruzzo a compressione
Deform, unit. massima del calcestruzzo a compressione
Xc max
Accissa in cm della fibra corrisp, a ec max (sistema rif. X,Y,O sez.)
Ordinata in cm della fibra corrisp, a ec max (sistema rif. X,Y,O sez.)
Deform, unit. minima nell'accisio (negativa se di trazione)
Xs min
Ys min
Odinata in cm della barra corrisp, a es min (sistema rif. X,Y,O sez.)
Deform, unit. massima nell'accisio (positiva se di compress.)
Xs max
Accissa in cm della barra corrisp, a es mix (sistema rif. X,Y,O sez.)
Vs max
Ordinata in cm della barra corrisp, a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	-125.0	100.0	0.00069	111.9	91.4	-0.02634	-111.9	8.6
2	0.00350	-125.0	0.0	0.00073	-1119	8.6	-0.02593	1119	91.4

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Siorzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento fiettente [kNm] intomo all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da com primere il lembo superiore della sezione

N°Comb.	N	Mx	My
1	0.00	850.00	0.00
2	0.00	-900 00	0.00

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver			S = comb	. verificata/	N = comb	non verifi	cata						
Sc m	ax		Massima	tensione (c	ostvase	di compre	ssione) nel	calcestruzzo	[MPa]				
	ax Yon	nav.						sistema rif. X					
Ss m							nell'acciaio		11,01				
	in. Ys m	in						sistem a rif.	(YO)				
Ace								derente alle					
Ase								l'apertura de					
N°Comb	Ver	Sc max	Xc max	Yc max	Ssmin	Xs min	Ys min	Ac eff.	As eff.				
1	S	2.71	-125.0	100.0	-115.3	97.0	8.6	5961	91.2				
2	S	2.82	-125.0	0.0	-115.3	-97.0	91.4	6118	97.5				
COMBIN	AZION	RAREIN	ESERCIZI	O - APER	TURA FE	SSURE	[§ 7.3.4 E	C2]					
Ver.			one viene a ella vertica	ssunta sem	pre tessur	ata anche	nei caso in	cui la trazion	e minima del d	caices	uzzo sia inferiore a	tctm	
e1					a di barrica		an burnen /tw	rices Audi	tata in sezione	familia	eta		
e2									ta in sezione i				
k1			er barre ad					Jule - J value	ad in Scaulic	Cosula	a		
kt								[cfr. eq.(7.9)	EC21				
k2								eq.(7.13)EC					
k3			Coeff, in e					eq.(r.ro)Lo	-1				
k4			Coeff, in e										
Ø								affrans An	eff [eq.(7.11)E	C21			
Cf							barra più te		ca led (1.11)	CL			
_	-ecm								C4.1.7)NTC1				
	Com							4.1.8)NTC]	O4.1.7/141Oj				
srm	e v		na distanza				,						
wk						x'e sm -	e cm) (7.6	B)EC2 e (C4	1.7 NTCL Valo	re limit	e tra parentesi		
Mxfe	224						o all'asse X		,				
Myfe							o all'asse Y						
Comb.	Ver	e'	1	e2	k2 6	o c	f		sm - e cm s	r max	wk	Mx fess	My fess
													, 1000
1	S	-0,00065	0.000	00 0.	500 23.	0 74	4	0.0003	5 (0.00035)	508	0.176 (990.00)	1298.28	0.00
2	S	-0.00065	0.000	00 0.	500 22.	8 74	4	0.0003	5 (0.00035)	495	0.171 (990.00)	-1304.67	0.00

11.3.1.2 Verifiche sollecitazioni taglianti

Nella tabella seguente si riassume le massime sollecitazioni taglianti ottenute dall'inviluppo dei risultati degli schemi di calcolo 'TA' utilizzati per il dimensionamento dell'armatura 'Tipo 3'.

Le verifiche sono effettuate considerando i fili strutturali di seguito indicati:

- sollecitazioni testa diaframma riferite ad asse cordolo.
- in corrispondenza del solettone di fondo del manufatto a "U" interno, il picco delle sollecitazioni taglianti è valutato ad ¼ dello spessore dall'asse della soletta.

INVILUPPO TA-Caso 1-Caso2 Inviluppo A1+M1+R1 Inv.BT (Diafr.) SLU Inv.LT (Diafr.) lnv.BT (Diafr.) Inv.LT (Diafr.) Valore lato Valore lato Valore lato Valore lato Valore lato Scavo Valore lato Terra Valore lato Valore lato Scavo Scavo Scave Terra (kN/m) (kN/m) (kN/m) Terra (kN/m) Terra (kN/m) (kN/m) (kN/m) (kN/m) Asse copertura Intradosso copertura 18 445 18 47 400 18 634 Testa diafram 28 426 28 452 28 357 28 533 177 296 124 839 Gabbia 1 11 427 175 577 Sovrapposizione Estradosso solaio Fondo 272 13 325 209 10 238 526 427 577 Asse Solaio fondo 426 251 250 1081 326 Sezione 1/4 da estradosso 245 273 219 357 Intradosso solaio fondo 517 517 398 Gabbia 2

Tabella 46 Sollecitazioni taglianti dimensionanti

11.3.1.2.1 Dimensionamento armatura trasversale

Per il dimensionamento dell'armatura resistente a taglio si è proceduto armando il pannello soggetto alla sollecitazione maggiore (pannello P1 L=5.45 m) L'armatura così dimensionata è valida per ogni pannello, unica differenza è il passaggio da 2 gabbie (8 bracci resistenti a taglio) per i pannelli di tipo P1 e S1 a 1 gabbia (8 bracci resistenti a taglio) per i pannelli di tipo P2 e S2. Le verifiche sono effettuate in accordo con il metodo

GENERAL CONTRACTOR		ALTA S	ORVE	SLIANZA		
Consorzio Iric/tV Due				LFERR O STATO ITALIANI		
GA01-A OPERE SOSTEGNO DEGLI S	SCAVLE TAMPONE DI FONDO	Progetto	Lotto	Codifica Documento	Rev.	Foglio
GAUTA OF LINE 303 TEGINO DEGLIS	BCAVIL TAINII GINE DI FOINDO	IN17	11	EI2 CL GA 01 A4 0014	Α	191 di 205

semiprobabilistico agli stati limite ultimi secondo i criteri riportati nelle NTC 08 per le strutture in calcestruzzo armato.

Tabella 47 Inviluppo sollecitazioni taglianti dimensionanti

INVILUPPO TA-Caso 1-Caso2		
	Inviluppo A1+M1+R1 / SISMA STR	
Calla sitaria ni taglianti	Valore lato Valore lato Scavo	
Sollecitazioni taglianti	Terra (kN/m) (kN/m)	
Testa diaframma	28	533
Sezione 1/4 da estradosso	960	378

Di seguito si riportano le resistenze per i vari passi utilizzati. Nel dettaglio si valuta la resistenza a taglio delle staffe nelle seguenti condizioni:

- 5. Armatura trasversale composta da nr. 8 braccia ϕ 14, passo 25cm
- 6. Armatura trasversale composta da nr. 8 braccia ϕ 14, passo 15cm

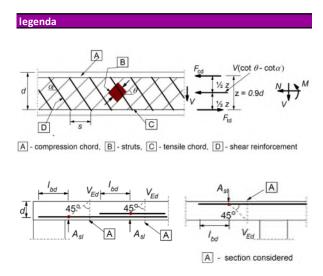
Caso 1: 8 braccia \(\phi 14, \text{ passo 25cm} \)

verifica a taglio di una sezione rettangolare secondo EN 1992-1-1:2004:E

geometria				
sezione trasversale				
base	В	=	545	cm
altezza	Н	=	100	cm
copriferro (asse armatura long.)	С	=	11.4	cm
altezza utile	d	=	88.6	cm
braccio coppia interna	Z	=	79.8	cm
armatura a taglio				
numero braccia	n	=	8	
diametro	φ	=	14	mm
passo	S	=	25	cm
inclinazione	α	=	90	•
area	A_{sw}	=	12.32	cm ²
armatura longitudinale tesa				
numero barre	n_1	=	30	
diametro	ϕ_1	=	24	mm
numero barre	n_2	=	32	
diametro	ϕ_2	=	20	mm
area totale	Ası	=	236.2	cm ²

materiali				
calcestruzzo				
resistenza caratt. cilindrica a 28 gg.	f_{ck}	=	24.9	MPa
coeff. parziale di sicurezza	γс	=	1.5	
coeff. effetti a lungo termine	α_{cc}	=	0.85	
tensione di calcolo	fcd	=	14.1	MPa
coeff. riduzione resistenza bielle	ν	=	0.540	
tensione di calcolo bielle	νf_{cd}	=	7.6	MPa
acciaio				
tensione caratt. di snervamento	fyk	=	450.0	MPa
coeff. parziale di sicurezza	γs	=	1.15	
tensione di snervamento di calcolo	fyd	=	391.3	MPa

sollecitazioni e verifiche				
taglio	VEd	=	0	kN
azione assiale	N_{Ed}	=	0	kN
resistenza elemento non armato	V_{Rdc}	=	1511.1	kN
resistenza armatura a taglio	V_{Rds}	=	2662.6	kN
resistenza bielle calcestruzzo	V_{Rdmax}	=	######	kN
inclinazione bielle calcestruzzo	θ	=	30.0	٥
sezione			duttile	
traslazione armatura long.	aı	=	88.6	cm


A - section considered

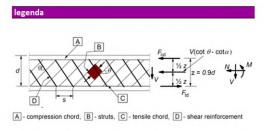
Caso 2: 8 braccia \(\phi 14, \text{ passo 15cm} \)

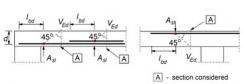
verifica a taglio di una sezione rettangolare secondo EN 1992-1-1:2004:E

geometria				
sezione trasversale				
base	В	=	545	cm
altezza	Н	=	100	cm
copriferro (asse armatura long.)	С	=	11.4	cm
altezza utile	d	=	88.6	cm
braccio coppia interna	Z	=	79.8	cm
armatura a taglio				
numero braccia	n	=	8	
diametro	φ	=	14	mm
passo	S	=	15	cm
inclinazione	α	=	90	•
area	A_{sw}	=	12.32	cm ²
armatura longitudinale tesa				
numero barre	n_1	=	30	
diametro	ϕ_1	=	24	mm
numero barre	n_2	=	32	
diametro	ϕ_2	=	20	mm
area totale	Ası	=	236.2	cm ²

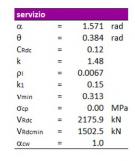
materiali				
calcestruzzo				
resistenza caratt. cilindrica a 28 gg.	fck	=	24.9	MPa
coeff. parziale di sicurezza	γс	=	1.5	
coeff. effetti a lungo termine	αcc	=	0.85	
tensione di calcolo	f_{cd}	=	14.1	MPa
coeff. riduzione resistenza bielle	ν	=	0.540	
tensione di calcolo bielle	νf_{cd}	=	7.6	MPa
acciaio				
tensione caratt. di snervamento	f_{yk}	=	450.0	MPa
coeff. parziale di sicurezza	γs	=	1.15	
tensione di snervamento di calcolo	fyd	=	391.3	MPa

sollecitazioni e verifiche				
taglio	V_{Ed}	=	0	kN
azione assiale	N_{Ed}	=	0	kN
resistenza elemento non armato	VRdc	=	1511.1	kN
resistenza armatura a taglio	VRds	=	4437.7	kN
resistenza bielle calcestruzzo	V_{Rdmax}	=	######	kN
inclinazione bielle calcestruzzo	θ	=	30.0	•
sezione			duttile	


- Caso 2: 8 braccia ϕ 14, passo 15cm (θ =22°)



MPa


fyd

tensione di snervamento di calcolo

sollecitazioni e verifiche				
taglio	VEd	=	0	kN
azione assiale	NEd	=	0	kN
resistenza elemento non armato	VRdc	=	2175.9	kN
resistenza armatura a taglio	VRds	=	6293.8	kN
resistenza bielle calcestruzzo	VRdmax	=	######	kN
inclinazione bielle calcestruzzo	θ	=	22.0	0
sezione			duttile	
traslazione armatura long.	aı	=	87.9	cm

A partire dalle resistenze di calcolo sopra definite, le resistenze calcolate a metro lineare per il caso in esame sono:

- 8 braccia φ14 passo 25cm: Vrds/L= 2662/5.45= 488.6 kN/m
- 8 braccia φ14 passo 15cm: Vrds/L= 4437/5.45 = 814.3 kN/m
- 8 braccia ϕ 14 passo 15cm (θ =22°): Vrds/L= 6656/5.45 = 1221.4 kN/m

I diagrammi del taglio resistente a metro lineare così calcolato sono stati confrontati con le sollecitazioni di taglio a metro lineare determinate dal programma Paratie, in modo da verificare la resistenza a taglio lungo tutta l'altezza dei diaframmi, come riportato nelle seguenti immagini,

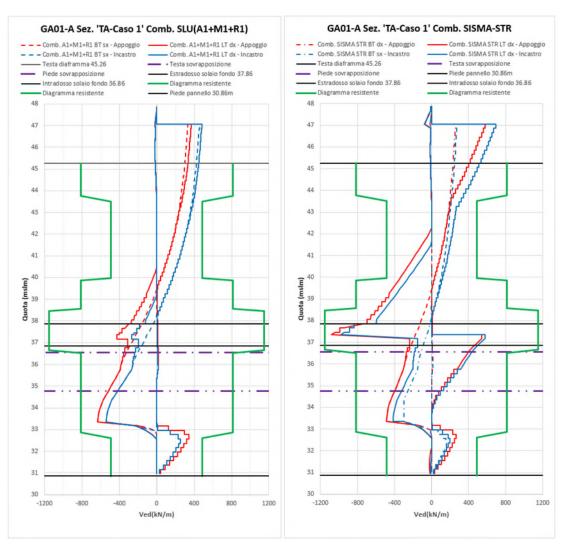


Figura 55 Diaframma TA-Caso 1- Diagramma azioni taglianti e resistenti allo SLU - valori in kN/m

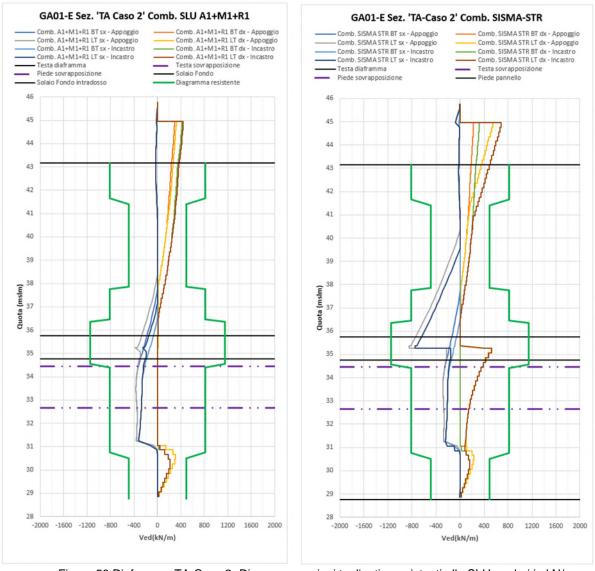


Figura 56 Diaframma TA-Caso 2- Diagramma azioni taglianti e resistenti allo SLU - valori in kN/m

12 OPERE PROVVISIONALI DI PRESIDIO

12.1 Inquadramento delle opere provvisionali della WBS GA01-A

Per la realizzazione degli scavi necessari alla realizzazione della galleria artificiale GA01-A è prevista un'opera di sostegno a presidio delle preesistenze che si pongono in adiacenza all'impronta planimetrica della galleria stessa. Tale opera consente di limitare le deformazioni conseguenti agli scavi della galleria e al fine di garantire la funzionalità anche durante tutte le fasi di lavorazione.

Di seguito si riporta una tabella riassuntiva con l'indicazione delle principali caratteristiche geometriche delle opere da realizzare nella tratta in esame:

Tabella 48 Sollecitazioni flettenti dimensionanti

Opera	Tipologia di opera	PkInizio	PkFine	Altezza max	Opere a tergo
Provvisionale		[km]	[km]	scavo [m]	[-]
A	Paratia di pali	5+035	5+090	4.50	Rotatoria

Per la realizzazione delle opere in oggetto è stato considerato il quadro geotecnico e stratigrafico definito al § 4 del presente documento. Nel caso dell'Opera Provvisionale A la quota di falda di breve termine si trova al di sotto prevista per la realizzazione della soletta di copertura della GA01-A.

L'opera è da intendersi come provvisionale; pertanto, le analisi sismiche non vengono eseguite in quanto essa hanno durata prevista in progetto inferiore a 2 anni.

12.2 Opera provvisionale A

12.2.1 Descrizione dell'opera

L'opera provvisionale A è realizzata tramite una paratia di pali di diametro 600 mm posti a passo 0.80 m: essa è realizzata in fregio alla rotatoria esistente sul raccordo autostradale Verona Est in corrispondenza di Viale del Lavoro in prossimità dell'abitato di San Martino Buon Albergo. Al fine di poter realizzare l'opera provvisionale in oggetto necessaria per sostenere lo scavo di sbancamento per la realizzazione della galleria artificiale, la rotatoria dovrà essere riconfigurata come indicato in rosso nello stralcio planimetrico seguente.

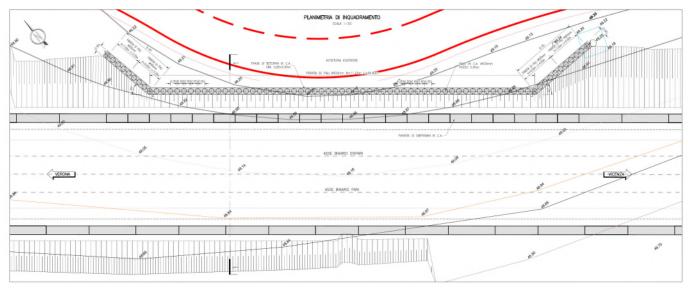


Figura 57 Planimetria di inquadramento – Opera Provvisionale A

Sono di seguito riportate le principali caratteristiche della struttura e del modello sviluppato per le analisi di verifica dell'opera. La sezione tipo di verifica è riportata nella figura successiva.

Tabella 49 Riassunto caratteristiche geometriche e sovraccarichi – Opera Provvisionale A.

RIASSUNTO CARATTERISTICHE GEOMETRICE E SOVRACCARICHI – OPERA PROVV. A.					
Tipologia di struttura di sostegno	Paratia di pali φ 600 mm - passo 800mm				
Altezza totale paratia (compresa trave coronamento)	9.00+0.80 = 9.80 m				
Altezza totale scavo	4.50 m				
Inclinazione piano campagna monte/valle	0°/0°				
Sovraccarichi permanenti monte/valle 0/0 kPa					
Sovraccarichi variabili monte/valle	20 kPa/0				

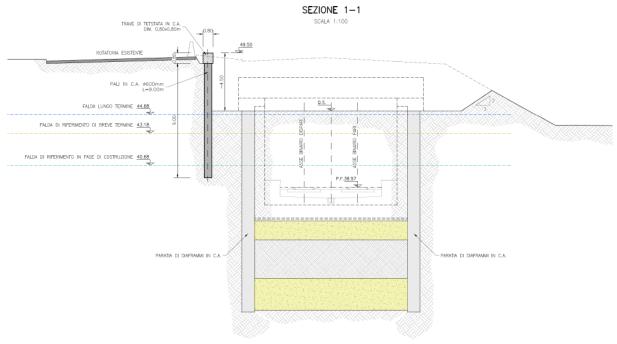


Figura 58 Sezione trasversale in corrispondenza opera provvisionale A

12.2.2 Modello di calcolo

La figura seguente riporta la stratigrafia e il modello di calcolo sviluppato con ParatiePlus 2020.

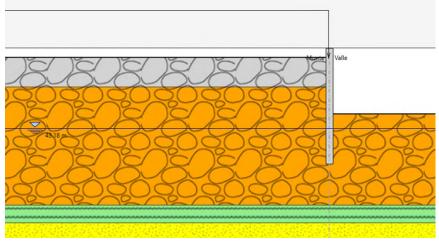


Figura 59 Modello di calcolo implementato nel software Paratie Plus 2020

La stratigrafia e i parametri geotecnici adottati nelle elaborazioni sono riportati nella figura seguente. In particolare, si è fatto riferimento alla successione stratigrafica riportata nel profilo geotecnico generale di cui al § 2.2..

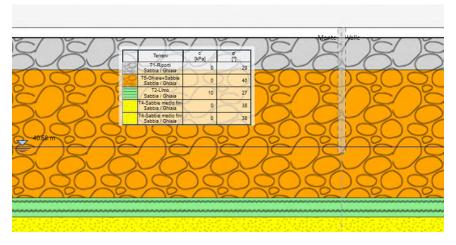


Figura 60 Stratigrafia di calcolo adottata nel modello

I coefficienti di spinta corrispondenti allo stato attivo e passivo sono valutati dal programma di calcolo a partire dai parametri geotecnici riportati al \S 4. In particolare, i coefficienti di spinta attiva (ka) sono calcolati secondo la formulazione di Coulomb, considerando un angolo di attrito terreno/calcestruzzo (δ) pari a 2/3 ϕ '; i coefficienti di spinta passiva (kp) sono calcolati secondo la formulazione di Lancellotta (2007), considerando un angolo di attrito terreno/calcestruzzo (d) pari a 2/3 ϕ '.

12.2.3 Descrizione delle fasi di calcolo

Le fasi di calcolo considerate nelle elaborazioni sono le seguenti:

- fase 0 fase geostatica iniziale
 - tutte le unità geotecniche in condizioni drenate;
- fase 1 realizzazione della paratia di pali F600/0.8 m
 - o realizzazione cordolo di sommità
 - o applicazione sovraccarico accidentale a monte della paratia
- fase 2 scavo a -4.5 m
- fase 3 innalzamento della falda dal livello di costruzione a quello di breve termine

12.2.4 Sintesi risultati allo SLE – Spostamenti

Nel seguito vengono riportati i risultati delle elaborazioni in termini di deformata della paratia (Combinazione SLE rara), per la fase di calcolo 2.

Il massimo spostamento a testa palo è pari a circa 37 mm; con riferimento alle indicazioni contenute nella relazione IN1711EI2RHGA0100001A relativa ai criteri generali di dimensionamento delle opere è possibile stimare per il cinematismo a sbalzo in questione un cedimento massimo a tergo paratia dell'ordine di:

$$\frac{S_{v,\text{max}}}{S_{w,\text{max}}} = 0.64$$

GENERAL CONTRACTOR		ALTA SORVEGLIANZA				
Consorzio IricAV Due				LFERR O STATO ITALIANI		
GA01-A OPERE SOSTEGNO DEGLI S	CAVILE TAMBONE DI FONDO	Progetto	Lotto	Codifica Documento	Rev.	Foglio
GAUTA OFERE SUSTEGNO DEGLIS	CAVIE TAINFONE DI FONDO	IN17	11	EI2 CL GA 01 A4 0014	Α	201 di 205

Da cui si ottiene un cedimento massimo Sv,max a piano campagna dell'ordine dei 20 mm circa, valore che si ritiene compatibile con il carattere provvisorio della viabilità interferita a tergo dei pali.

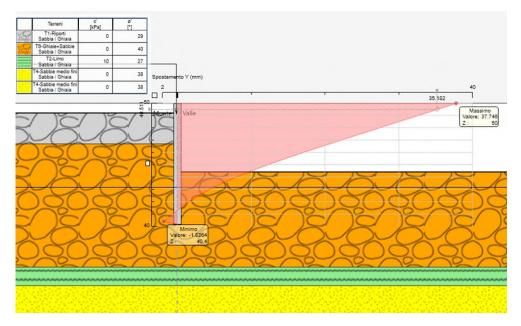


Figura 61 Spostamenti della paratia in condizione SLE – falda di breve termine

12.2.5 Sintesi risultati analisi strutturale

Nella seguente si riassumono i valori massimi di azione tagliante e flettente sul singolo palo, mentre nelle figure successive sono riportati i risultati delle elaborazioni in termini di:

- Azione flettente (SLU in approccio 1 Combinazione 1);
- Azione tagliante (SLU in approccio 1 Combinazione 1);

Si ricorda che le sollecitazioni riportate in tabella corrispondono a quelle risultanti dal calcolo tramite ParatiePlus moltiplicate per l'interasse dei pali.

Tabella 50 SLU A1+M1+R1: Sollecitazioni agenti sul singolo palo

Fase	M SLE [kNm]	M SLU [kNm]	V [kN]
3	177	232	120

Le immagini seguenti riportano le massime sollecitazioni allo SLU sul palo (momento flettente +taglio), nella fase di calcolo finale.

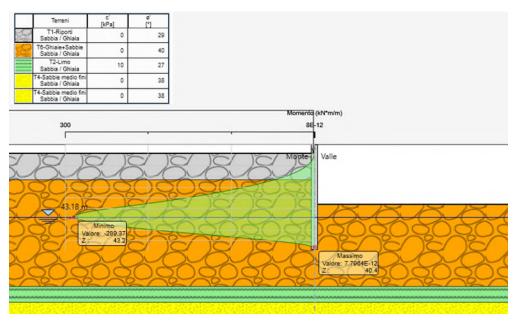


Figura 62 Sollecitazioni flettenti SLU A1+M1+R1 – falda di breve termine

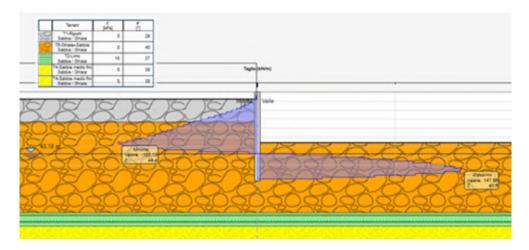
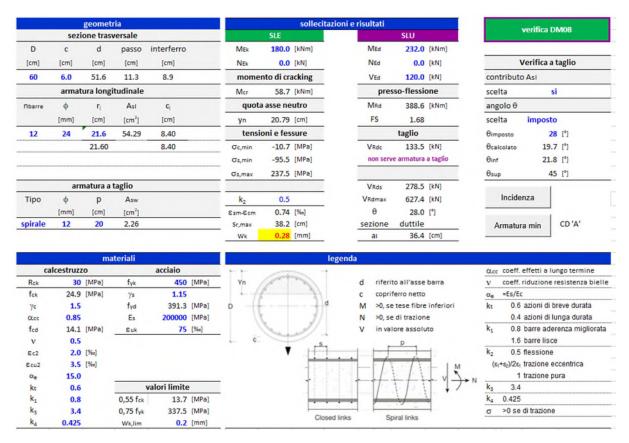


Figura 63 Sollecitazioni taglianti SLU A1+M1+R1 – falda di breve termine

12.2.6 Verifiche allo SLU di tipo STR

Di seguito si riportano le verifiche strutturali dei pali della palificata.


Verifica flessionale e tagliante

Nella seguente tabella si riassume l'armatura longitudinale e trasversale prevista.

Tabella 51 Armatura pali

	Lunghezza gabbia	Armatura	Armatura
	[m]	longitudinale	trasversale
GABBIA 1	9.30	12Ф24	Spirale Φ12/200mm

12.2.7 Verifica allo SLU di tipo GEO

12.2.7.1 Verifica di stabilità globale

La verifica di stabilità globale dell'opera provvisionale deve essere condotta in accordo all'approccio 1, Combinazione 2 (A2+M2+R1). Nella figura seguente è riportato il risultato delle verifiche in accordo con il metodo di Janbu. L'analisi di stabilità risulta essere soddisfatta con un coefficiente di sicurezza di 3.1.

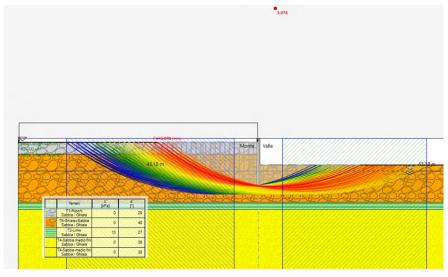


Figura 64 Opera Provvisionale A - risultati stabilità globale Comb. A2+M2+R1

12.2.7.2 Verifica delle spinte a valle della paratia

La verifica delle spinte a valle della paratia è condotta in accordo all'Approccio 1, Combinazione 2 (A2+M2+R1). Nella seguente figura si mostrano la risultante delle spinte agenti sulla paratia relativi all'ultima fase di calcolo (Fase 2), in particolare deve risultare che la spinta mobilitata a valle (Spinta reale efficace), moltiplicata per il coefficiente gF = 1.0, sia inferiore alla resistenza del terreno (Massima spinta ammissibile) corrispondente alla spinta passiva divisa per il coefficiente di resistenza gR = 1.0).

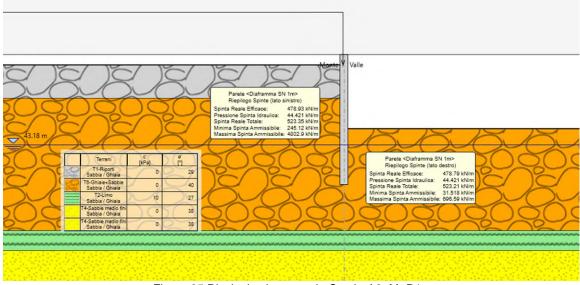


Figura 65 Risultati spinte paratia Comb. A2+M+R1

13 GIUDIZIO DI ACCETTABILITA' DEI RISULTATI DELLE VERIFICHE STRUTTURALI

In accordo con le indicazioni contenute nel capitolo 10 delle NTC 2008, a commento delle verifiche riportate nei precedenti capitoli si precisa quanto segue:

- le verifiche degli elementi strutturali, laddove eseguite con programmi di calcolo automatico, sono state effettuante mediante l'utilizzo di codici di riconosciuta affidabilità ed impiego in ambito nazionale: tali codici contengono adeguata documentazione, nonché numerosi test di verifica e validazione circa l'affidabilità dei risultati ottenuti;
- i file di input e output dei programmi, riportati nella presente relazione e nell'apposito allegato, sono stati sottoposti a verifica mediante:
 - controllo dei dati inseriti in merito a caratteristiche dei materiali, carichi e parametri di resistenza e deformabilità dei terreni, condizioni di vincolo imposte e coerenza con gli schemi statici rappresentati negli elaborati di progetto, nonché della successione delle fasi costruttive imposte nel progetto stesso;
 - valutazione delle reazioni ai vincoli e verifica equilibrio globale della struttura analizzata;
 - analisi speditiva dei risultati per confronto con schemi di calcolo semplificati, oppure con i risultati ed i dimensionamenti già svolti in sede di Progetto Definitivo: questi ultimi, in particolare, hanno costituito un primario riferimento per il dimensionamento delle opere e la valutazione dei risultati, nonché per la comprensione/ elaborazione del giudizio di accettabilità in presenza di eventuali scostamenti, qualora osservati a motivo delle diverse ipotesi di carico/vincolo e sequenze operative imposte;
 - o analisi comparativa eseguita con altri approcci numerici e di calcolo (cfr. doc. IN1711EI2RHGA0100002A).