

AUTOSTRADA (A14): BOLOGNA-BARI-TARANTO

TRATTO: BOLOGNA BORGO PANIGALE - BOLOGNA SAN LAZZARO

POTENZIAMENTO IN SEDE DEL SISTEMA AUTOSTRADALE E TANGENZIALE DI BOLOGNA

"PASSANTE DI BOLOGNA"

PROGETTO DEFINITIVO

TANGENZIALE NORD E SUD

OPERE D'ARTE MAGGIORI

91T - VIADOTTO TANG, RAMPA INTERC, 14+376

RELAZIONE DI CALCOLO FONDAZIONI

IL PROGETTISTA SPECIALISTICO

Ing. Marco Pietro D'Angelantonio Ord. Ingg. Milano n.A20155

> RESPONSABILE GEOTECNICA ALL'APERTO

IL RESPONSABILE INTEGRAZIONE PRESTAZIONI SPECIALISTICHE Ing. Raffaele Rinaldesi Ord. Ingg. Macerata N. A1068 IL DIRETTORE TECNICO

Ing. Andrea Tanzi Ord. Ingg. Parma N. 1154

PROGETTAZIONE NUOVE OPERE AUTOSTRADALI

CODICE IDENTIFICATIVO											ORDINATORE
RIFERIMENT	O PROGETTO				RIFERIMENTO DIRETTO	PRIO	RIFERIMENTO ELABORATO				
Codice Commessa	Lotto, Sub-Prog, Cod. Appalto	Fase	Capitolo	Paragrafo	WBS	Parte d'opera	Tip.	Disciplina	Progressivo	Rev.	
111465	0000	PD	A2	009	ST91N	FND00	R	APE	0834	-2	SCALA -

		PROJECT MAN	IAGER:	SUPPORTO SPECIALISTICO:			REVISIONE
	spea						data
	opeu		Ing. Raffaele Rinaldesi			0	DICEMBRE 2017
	ENGINEERING	Or	rd. Ingg. Macerata N. A1068			1	SETTEMBRE 2019
	ENGINEERING					2	SETTEMBRE 2020
	A 47 43 -	REDATTO:		VERIFICATO:		3	-
L	Atlantia	NEDATIO.		VEIGITIOATO.		4	-

VISTO DEL COMMITTENTE

IL RESPONSABILE UNICO DEL PROCEDIMENTO Ing. Fabio Visintin

VISTO DEL CONCEDENTE

Ministero delle Infrastrutture e dei Trasporti dipartimento per le infrastrutture, gli affari generali ed il personale struttura di vigilanza sulle concessionarie autostradali

Sommario

1	INTROD	JZIONE	5
	1.1 DES	CRIZIONE DEI SISTEMI FONDAZIONALI	5
		RMATIVA DI RIFERIMENTO	
	1.3 CAF	ATTERISTICHE DEI MATERIALI	7
	1.3.1	Strutture di nuova realizzazione	7
	1.4 SOF	TWARE DI CALCOLO	8
	1.5 COI	NVENZIONI GENERALI	8
	1.5.1	Unità di misura	8
	1.5.2	Convenzioni di segno	8
2	CARATT	ERIZZAZIONE GEOTECNICA	9
3	CRITERI	DI VERIFICA E CALCOLO	11
	3.1 PRE	MESSA	11
	3.2 FON	IDAZIONI SUPERFICIALI	
	3.2.1	Verifiche agli stati limite ultimi (SLU)	
	3.2.2	Stima della capacità portante	
	3.2.3	Verifica a scorrimento	
	3.3 FON	IDAZIONI SU PALI	
	3.3.1	Verifiche agli stati limite ultimi (SLU)	
	3.3.2	Resistenza di pali soggetti a carichi assiali	
	3.3.3	Comportamento di pali in gruppo soggetti a carichi trasversali	
		UTAZIONE DEL TIRO SUI TIRANTI PASSIVII	
	3.5 POF	RTATA LIMITE PER GLI ANCORAGGI DELLE SPALLE	25
4	FONDAZ	IONE SPALLA – AMPLIAMENTO2 (NUOVA REALIZZAZIONE)	26
		ONI DI CALCOLO	
		DELLO DI CALCOLO	
		ALISI GEOTECNICA	
	4.3.1	Sollecitazioni di calcolo	
	4.3.2	Verifica geotecnica	
		ALISI STRUTTURALE	
	4.4.1	Sollecitazioni di calcolo	
	4.4.2	Verifica strutturale	36
5	FONDAZ	IONE PILA – AMPLIAMENTO 2 (NUOVA REALIZZAZIONE)	40
		ONI DI CALCOLO	
		DELLO DI CALCOLO	
		ALISI GEOTECNICA	
	5.3.1	Sollecitazioni di calcolo	
	5.3.2	Verifica geotecnica	
		ALISI STRUTTURALE	
	5.4.1	Sollecitazioni di calcolo	
	5.4.2	Verifica strutturale	
6		ONE SPALLA – STRUTTURA ORIGINARIA (ESISTENTE)	
		RVE CARATTERISTICHE TIRANTI-SPOSTAMENTI	
	6.1.1	Azioni agenti sui tiranti e in fondazione	
	6.1.2	Verifica dei micropali di ancoraggio passivo delle spalle	
7	EOND A7	IONE SPALLA – STRUTTURA ORIGINARIA (ESISTENTE)	57

7	'.1 VE	ERIFICA DI CAPACITÀ PORTANTE	57
7	'.2 VE	RIFICA A SCORRIMENTO	58
8	FONDA	ZIONE PILA – STRUTTURA ORIGINARIA (ESISTENTE)	59
8	3.1 AZ	ZIONI DI CALCOLO	60
8	3.2 M	ODELLO DI CALCOLO	63
8	3.3 AN	NALISI GEOTECNICA	67
	8.3.1	Sollecitazioni di calcolo	67
	8.3.2	Verifica geotecnica	68
8	8.4 AN	NALISI STRUTTURALE	71
	8.4.1	Sollecitazioni di calcolo	71
	8.4.2	Verifica strutturale	72
۵	ΛΝΛΙΙ	SI CECTECNICA DEI MILDI ANDATODI	73

Indice delle Tabelle e delle Figure

FIGURA 1-1. CONVENZIONI DI SEGNO - GROUP	
Tabella 2-1. Indagini geognostiche di riferimento	
Tabella 2-2. Caratterizzazione stratigrafico – geotecnica	
Tabella 2-3. Parametri medi caratteristici dei materiali Limo argilloso (A)	
Tabella 2-4. Parametri medi caratteristici dei materiali Limo argilloso (A')	
Tabella 2-5. Parametri medi caratteristici dei materiali Limo argilloso (A'')	
FIGURA 3-1. COEFFICIENTI PARZIALI PER LE AZIONI O PER L'EFFETTO DELLE AZIONI (TAB.6.2.I DELLE NTC2018)	
FIGURA 3-2. COEFFICIENTI PARZIALI PER I PARAMETRI GEOTECNICI DEL TERRENO (TAB.6.2.II DELLE NTC2018)	
Figura 3-3. Coefficienti parziali r_R per le verifiche agli stati limite ultimi di muri di sostegno (Tab.6.5.I delle NTC2018)	
FIGURA 3-4. FONDAZIONE EFFICACE EQUIVALENTE NEL CASO DI FONDAZIONE RETTANGOLARE	14
FIGURA 3-5. COEFFICIENTI PARZIALI Γ_R DA APPLICARE ALLE RESISTENZE CARATTERISTICHE A CARICO VERTICALE DEI PALI (TAB.6.4.II DELLE	
NTC2018)	
FIGURA 3-6. FATTORI DI CORRELAZIONE E PER LA DETERMINAZIONE DELLA RESISTENZA CARATTERISTICA IN FUNZIONE DEL NUMERO DI VER	
INDAGATE (TAB.6.4.IV DELLE NTC2018)	
FIGURA 3-7. TERRENI GRANULARI — T _{LIM} = F(N _{SPT}) (WRIGHT-REESE — 1977)	
Figura 3-8. Curve caratteristiche tiranti passivi	
TABELLA 4-1. SOLLECITAZIONI DI CALCOLO RISULTANTI NEL BARICENTRO DELLA FONDAZIONE EQUIVALENTE	
FIGURA 4-1. SPALLA - MODELLO DI CALCOLO PALIFICATA: VISTA TRIDIMENSIONALE	
FIGURA 4-2. SPALLA - MODELLO DI CALCOLO PALIFICATA: PIANO Y-Z	
FIGURA 4-3. CARATTERISTICHE GEOMETRICHE E MECCANICHE SEZIONE TRASVERSALE PALI	
Figura 4-4. Parametri dei pali in GROUP	
FIGURA 4-5. DISPOSIZIONE DEI PALI IN GROUP	
Figura 4-6. Spalla - Caratteristiche meccaniche terreno	
FIGURA 4-7. SOLLECITAZIONI ASSIALI NEI PALI PER COMBINAZIONE 9 (SLV)	
FIGURA 4-8. SOLLECITAZIONI ASSIALI NEI PALI PER COMBINAZIONE 10 (SLV)	
Figura 4-9. Riepilogo Stratigrafia per verifica carico limite	
FIGURA 4-10. VERIFICA A CAPACITÀ PORTANTE DEI PALI	
Figura 4-11. Determinazione della Capacità portante dei Pali	
FIGURA 4-12. MINIME SOLLECITAZIONI ASSIALI NEI PALI PER COMBINAZIONE 10 (SLV)	
FIGURA 4-13. MASSIME SOLLECITAZIONI FLETTENTI NEI PALI PER COMBINAZIONE 9 (SLV)	
FIGURA 4-14. MASSIME SOLLECITAZIONI DI TAGLIO NEI PALI PER COMBINAZIONE 9 (SLV)	
FIGURA 4-15. MASSIME SOLLECITAZIONI FLETTENTI NEI PALI PER COMBINAZIONE 16 (FREQ.)	
FIGURA 4-16. MINIME SOLLECITAZIONI ASSIALI NEI PALI PER COMBINAZIONE 16 (FREQ.)	
FIGURA 4-17. VERIFICA TENSO-FLESSIONE_SLU	
Figura 4-18. Metodo di Clarke e Birjandi - calcolo sezione rettangolare equivalente	
Figura 4-19. Verifica a Taglio	
FIGURA 4-20. VERIFICA TENSO-FLESSIONALE_SLE	39
Figura 5-1. Pila – Pianta fondazioni	_
Figura 5-2. Pila - Modello di calcolo palificata: vista tridimensionale	44
FIGURA 5-3. PILA - MODELLO DI CALCOLO PALIFICATA: PIANO Y-Z	44
Figura 5-4. Pila - Caratteristiche geometriche e meccaniche sezione trasversale micropali	45
FIGURA 5-5. PILA - PARAMETRI DEI MICROPALI IN GROUP	45
FIGURA 5-6. PILA - DISPOSIZIONE DEI MICROPALI IN GROUP	46
FIGURA 5-7. PILA - CARATTERISTICHE MECCANICHE TERRENO	47
Figura 5-8. Azioni assiali di calcolo sulla palificata - SLU	48
FIGURA 5-9. AZIONI ASSIALI DI CALCOLO SULLA PALIFICATA - SLV	48
FIGURA 5-8. AZIONI FLETTENTI DI CALCOLO SULLA PALIFICATA – SLV	51
FIGURA 5-8. AZIONI TAGLIANTI DI CALCOLO SULLA PALIFICATA – SLV	51
FIGURA 6-1. CURVE CARATTERISTICHE TIRANTI PASSIVI-SPALLA	54
Figura 5-1. Pila – Pianta fondazioni	59
FIGURA 5-2. PILA - MODELLO DI CALCOLO PALIFICATA: PIANO Y-X	63

FIGURA 5-3. PILA - MODELLO DI CALCOLO PALIFICATA: PIANO Y-Z	64
FIGURA 5-4. PILA - CARATTERISTICHE GEOMETRICHE E MECCANICHE SEZIONE TRASVERSALE PALI	64
FIGURA 5-5. PILA - PARAMETRI DEI PALI IN GROUP	65
FIGURA 5-6. PILA - DISPOSIZIONE DEI PALI IN GROUP	65
FIGURA 5-7. PILA - CARATTERISTICHE MECCANICHE TERRENO	66
FIGURA 5-8. AZIONI ASSIALI DI CALCOLO SULLA PALIFICATA - SLU	67
FIGURA 5-9. AZIONI ASSIALI DI CALCOLO SULLA PALIFICATA - SLV	
FIGURA 5-8. AZIONI FLETTENTI DI CALCOLO SULLA PALIFICATA – SLV	
FIGURA 5.8 AZIONI TAGUANTI DI CALCOLO SULLA BALIFICATA — SIV	

1 INTRODUZIONE

La presente relazione ha come obiettivo l'esposizione delle analisi svolte e dei principali risultati ottenuti relativamente al progetto del Viadotto Rampa Interconnessione, nell'ambito dei lavori di ampliamento della tangenziale di Bologna, nel tratto Borgo Panigale – Caselle.

L'opera è denominata 91T e ubicata indicativamente alla progressiva km 14+346.

In particolare, si riportano le verifiche strutturali e geotecniche delle opere fondazionali relative a:

Ampliamento 2: ampliamento di nuova realizzazione;
 Originaria: struttura esistente (di prima realizzazione).

La relazione di calcolo delle sovrastrutture e delle sottostrutture è il riferimento principale per:

- le caratteristiche generali dell'opera;
- le condizioni ambientali e le classi di esposizione dei materiali;
- le caratteristiche dei materiali, con particolare attenzione ai materiali delle strutture esistenti;
- la caratterizzazione sismica;
- i criteri generali e le metodologie di verifica;
- le combinazioni di calcolo e i coefficienti di combinazione;
- il calcolo delle sollecitazioni risultanti utilizzate per il progetto e la verifica dei sistemi fondazionali.

1.1 DESCRIZIONE DEI SISTEMI FONDAZIONALI

Le fondazioni sono così realizzate:

SPALLE: AMPLIAMENTO

Fondazione indiretta

Lunghezza pali: 28m Diametro: Ø1000mm

ORIGINARIA

Fondazione indiretta

Lunghezza pali: 14m

Diametro: pali tipo Franki Ø50cm

PILA: AMPLIAMENTO

Fondazione indiretta

Lunghezza micropali: 32m Diametro del perforo: Ø240mm

Armatura: Ø177.80mm – sp.10mm

<u>ORIGINARIA</u>

Fondazione indiretta

Lunghezza pali: 10m

Diametro: pali tipo Franki Ø50cm

Rinforzo con fondazione indiretta Lunghezza pali: 20m

Diametro: pali Ø50cm

MURI D'ALA: AMPLIAMENTO

Fondazione diretta

1.2 NORMATIVA DI RIFERIMENTO

Le analisi e le verifiche sono eseguite secondo il metodo semi-probabilistico agli Stati Limite, in accordo alle disposizioni previste dalle vigenti Normative italiana ed europea (Eurocodici).

In particolare, si fa riferimento alle seguenti norme:

- [1] D.M. 17/01/2018: "Aggiornamento delle Norme Tecniche per le Costruzioni" GU n°8 del 17/2/2018.
- [2] Circolare 21 gennaio 2019 n.7: "Istruzioni per l'applicazione dell'Aggiornamento delle Norme Tecniche per le Costruzioni" di cui al Decreto Ministeriale 17 gennaio 2018.
- [3] UNI EN 1990: Basi della progettazione strutturale.
- [4] UNI EN 1991-1-4: Azioni sulle strutture Azione del vento.
- [5] UNI EN 1991-1-5: Azioni sulle strutture Azioni termiche.
- [6] UNI EN 1991-1-6: Azioni sulle strutture Azioni in generale Azioni durante la costruzione.
- [7] UNI EN 1991-2: Azioni sulle strutture Carichi da traffico sui ponti.
- [8] UNI EN 1992: Progettazione delle strutture di calcestruzzo.
- [9] UNI EN 1992-1-1: Progettazione delle strutture di calcestruzzo Regole generali e regole per gli edifici.
- [10] UNI EN 1992-2: Progettazione delle strutture di calcestruzzo Ponti di calcestruzzo.
- [11] UNI EN 1993: Progettazione delle strutture in acciaio.
- [12] UNI EN 1993-1-1: Progettazione delle strutture di acciaio Regole generali e regole per gli edifici.
- [13] UNI EN 1993-2: Progettazione delle strutture di acciaio Ponti di acciaio.
- [14] UNI EN 1993-1-5: Progettazione delle strutture di acciaio Elementi strutturali a lastra.
- [15] UNI EN 1993-1-8: Progettazione delle strutture di acciaio Progettazione dei collegamenti.
- [16] UNI EN 1993-1-9: Progettazione delle strutture di acciaio Fatica.
- [17] UNI EN 1993-1-10: Progettazione delle strutture di acciaio Resilienza del materiale e proprietà attraverso lo spessore.
- [18] UNI EN 1993-1-11: Progettazione delle strutture di acciaio Progettazione di strutture con elementi tesi.
- [19] UNI EN 1994: Progettazione delle strutture composte acciaio-calcestruzzo.
- [20] UNI EN 1994-2: Progettazione delle strutture composte acciaio-calcestruzzo Ponti.
- [21] UNI EN 1997: Progettazione geotecnica.
- [22] UNI EN 1998: Progettazione delle strutture per la resistenza sismica.
- [23] UNI EN 1998-2: Progettazione delle strutture per la resistenza sismica Ponti.
- [24] UNI EN 1998-5:2005 Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici.
- [25] Ministero delle Infrastrutture e dei Trasporti Consiglio Superiore dei Lavori Pubblici Linee guida per la classificazione e gestione del rischio, la valutazione della sicurezza ed il monitoraggio dei ponti esistenti.
- [26] Autostrade per l'Italia Direzione sviluppo rete per l'Italia Ingegneria, Ambiente e Sicurezza Linee Guida per la redazione e verifica dei progetti di installazione delle barriere integrate (LG 03/2020).

 $f_{cd} = \alpha_{cc} f_{ck} / \gamma_c = 14.11MPa$

1.3 CARATTERISTICHE DEI MATERIALI

1.3.1 Strutture di nuova realizzazione

Calcestruzzo per pali/micropali: C25/30

Tensione caratteristica cubica R_{ck} = 30MPa

Tensione caratteristica cilindrica $f_{ck} = 0.83 \text{ x R}_{ck} = 24.90 \text{MPa}$

Tensione di compressione media $f_{cm} = f_{ck} + 8 = 32.90 MPa$

Tensione massima di compressione per combinazione rara 0.6 x f_{ck} = 14.94MPa

Tensione massima di compressione per combinazione frequente $0.45 \text{ x f}_{ck} = 11.20 \text{MPa}$

Resistenza di calcolo

Tensione media a trazione $f_{ctm} = 0.3 \text{ x } f_{ck}^{(2/3)} = 2.56 \text{MPa}$

Tensione caratteristica a trazione $f_{ctk} = 0.7 \text{ x } f_{ctm} = 1.79 \text{MPa}$ Resistenza di calcolo a trazione $f_{ctd} = f_{ctk} / y_c = 1.19 \text{MPa}$

Modulo elastico $E_{cm} = 22000 (f_{cm}/10)^{0.3} = 31447 MPa$

Micropali / ancoraggi passivi: carpenteria metallica

Acciaio in profili a sezione aperta laminati a caldo saldati:

Tipo EN 10025-2 S355 J2+N (per spessori nominali t > 40 mm)

Tipo EN 10025-2 S355 K2+N (per spessori nominali t > 40 mm)

Acciaio in profili a sezione aperta laminati a caldo non saldati:

Tipo EN 10025-2 S355 J0+N

Acciaio in profili a sezione cava:

Tipo EN 10210-1 S355 J0H+N

Acciaio per armatura lenta: barre nervate tipo B450C, controllate in stabilimento

f_{yk} ≥ 450.0 MPa

f_{tk} ≥ 540.0 MPa

Es = 210000MPa

 $u_{\rm S} = 0.3$

1.4 SOFTWARE DI CALCOLO

Il software di calcolo utilizzato per la determinazione delle sollecitazioni agenti sui pali / micropali è *Group for Windows – Version 2016*, Ensoft Inc.

Per le verifiche delle sezioni in c.a. si impiega il software di calcolo *VCASLU*, sviluppato dal Prof. Piero Gelfi. Il programma consente la verifica di sezioni in cemento armato normale e precompresso, soggette a pressoflessione o tenso-flessione retta o deviata, sia allo Stato Limite Ultimo che con il Metodo n e permette inoltre di tracciare il domino M-N.

Per l'elaborazione dei dati di input/output in generale e la creazione di tabelle riepilogative, si adottano procedure opportunamente implementate in fogli elettronici *Microsoft* ® *Office Excel 2016*. La descrizione delle modalità operative dei singoli fogli di calcolo verrà presentata di volta in volta.

1.5 CONVENZIONI GENERALI

1.5.1 Unità di misura

Salvo ove diversamente specificato, le unità di misura sono quelle relative al Sistema Internazionale, ovvero:

Lunghezze: [m]
Forze: [kN]
Tensioni: [MPa]

1.5.2 Convenzioni di segno

Per quanto riguarda le convenzioni di segno, si fa riferimento alla seguente figura.

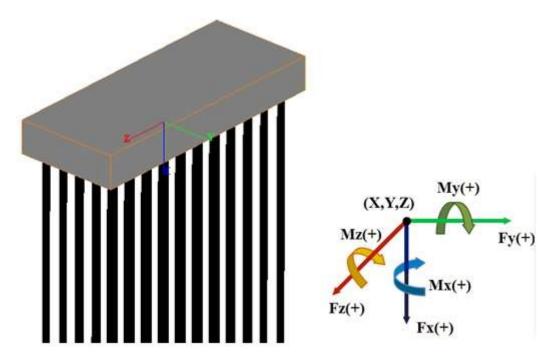


Figura 1-1. Convenzioni di segno - GROUP

2 CARATTERIZZAZIONE GEOTECNICA

Per quanto riguarda la caratterizzazione geotecnica completa del sito ove sorge l'opera in adeguamento, si rimanda alla specifica Relazione Geologica.

Si riporta nel seguito un breve richiamo alle indagini disponibili ed alla stratigrafia di riferimento.

La quota della falda è considerata, a favore di sicurezza, in corrispondenza della testa dei pali/micropali (intradosso soletta di fondazione).

Sigla sond./pozz./prova	Campagna di indagine	Progressiva (km)	Quota p.c. (m s.l.m.)	Lunghezza (m)	Strumentazione installata
Pz13	1999	14+200	35.00	3.50	-
PB17-DH	2016	14+288	35.50	50.00	DH
PB17Bis	2016	14+290	35.50	50.00	TA(47)

C (....) = cella piezometrica Casagrande (profondità cella);

TA (....) = piezometro a tubo aperto (tratto filtrante);

CH = tubo per misure Cross-hole; DH = tubo per misure Down-hole

Tabella 2-1. Indagini geognostiche di riferimento

Quota p.c. (m s.l.m.m.)	Profondità (m da p.c.)	Descrizione	Sigla	z _w (m da p.c.)	Parametri medi caratteristici
35.00	0.00 ÷ 3.00	Limo argilloso	Α	-	Tabella 2-3
	3.00 ÷ 15.00	Limo argilloso	A'	-	Tabella 2-4
	15.00 ÷ 35.00	Limo argilloso	Α"	-	Tabella 2-5

Tabella 2-2. Caratterizzazione stratigrafico – geotecnica

Descrizione	γ	c'	ф	E'	σ' _{pre}	CR	RR	C _v	Cu	Eu
Descrizione	(KN/m ³)	(KPa)	(°)	(MPa)	(MPa)	(-)	(-)	m/sec ²	(KPa)	(MPa)
Limo argilloso	19	0	26	5	0.4	0.18 ÷ 0.16	0.03÷0.04	3E-07	50 +3.3 z	20

Tabella 2-3. Parametri medi caratteristici dei materiali Limo argilloso (A)

Descrizione	γ	c'	ф	E'	σ'pre	CR	RR	Cv	Cu	Eu
Boomerone	(KN/m³)	(KPa)	(°)	(MPa)	(MPa)	(-)	(-)	m/sec ²	(KPa)	(MPa)
Limo argilloso	19	0	26	5	0.4	0.18 ÷ 0.16	0.03÷0.04	3E-07	60 +(z-3)	20

Tabella 2-4. Parametri medi caratteristici dei materiali Limo argilloso (A')

Descrizione	γ	c'	ф	E'	σ' _{pre}	CR	RR	Cv	Cu	Eu
Descrizione	(KN/m³)	(KPa)	(°)	(MPa)	(MPa)	(-)	(-)	m/sec ²	(KPa)	(MPa)
Limo argilloso	19	0	26	5+0.6(z- 15.0)	0.4	0.18 ÷ 0.16	0.03÷0.04	3E-07	72 +2(z- 15.0)	50
γ =	peso di vo	lume de	el te	rreno	CF	₹ =	angolo di re	sistenza a	al taglio	
c' =	coesione e	efficace			RF	₹ =	modulo di e	lasticità	_	
φ =	φ angolo an roototonza an tagno			C_{v}	=	coeff. di consolidazione verticale coesione non drenata			;	
Ë' =				Cu						
σ' _{pre} =	tensione d	i precor	nsol	id.	Eu	=	mod. di elasticità in condiz. non drer			drenate

Tabella 2-5. Parametri medi caratteristici dei materiali Limo argilloso (A")

Si fa presente che l'opera in esame e le opere 89T, 90T, 90bT, 92T e 93T sono limitrofe e ubicate presso l'interconnessione A13/A14. Ai fini della definizione dei coefficienti ξ_3 e ξ_4 per il calcolo della capacità portante di progetto dei pali/micropali della specifica opera, si sono considerate anche le prove geotecniche delle opere sopra citate.

Come indicato in Tabella 2-2 la stratigrafia è definita con riferimento ad un piano campagna posto a q.ta +35.00 m s.l.m.m..

Le fondazioni delle spalle risultano impostate intorno a q.ta +33.50 m s.l.m.m., vale a dire nell'ambito del primo strato limo argilloso (A): ne consegue che nelle analisi lo spessore dello strato A viene congruentemente ridotto.

La quota della falda è considerata, a favore di sicurezza, in corrispondenza della testa dei pali/micropali (intradosso soletta di fondazione).

3 CRITERI DI VERIFICA E CALCOLO

3.1 PREMESSA

Le verifiche contenute nel presente documento fanno riferimento a quanto prescritto per i sistemi fondazionali nelle NTC2018 e successiva Circolare Esplicativa.

Le verifiche, sia per le condizioni di esercizio che per quelle in presenza di un evento sismico, sono eseguite nei confronti degli Stati Limite Ultimi (SLU) riferiti allo sviluppo di meccanismi di collasso determinati dalla mobilitazione della resistenza del terreno e al raggiungimento della resistenza degli elementi strutturali che compongono la fondazione.

Per ogni stato limite ultimo deve essere rispettata la condizione:

 $E_d \le R_d$ (eq. 6.2.1 delle NTC2018)

dove

E_d valore di progetto dell'azione o dell'effetto dell'azione;

R_d valore di progetto della resistenza del sistema geotecnico.

3.2 FONDAZIONI SUPERFICIALI

3.2.1 Verifiche agli stati limite ultimi (SLU)

Nel caso di fondazione superficiale, l'opera è assimilabile ad un muro di sostegno.

Secondo quanto specificato al punto 6.5.3.1 delle NTC2018, nelle verifiche di sicurezza devono essere presi in considerazione tutti i meccanismi di stato limite ultimo, sia a breve sia a lungo termine.

Gli stati limite ultimi delle opere di sostegno si riferiscono allo sviluppo di meccanismi di collasso determinati dalla mobilitazione della resistenza del terreno e al raggiungimento della resistenza degli elementi strutturali che compongono le opere stesse.

Per i muri di sostegno devono essere effettuate le verifiche con riferimento almeno ai seguenti stati limite:

- SLU di tipo geotecnico (GEO)
 - o scorrimento sul piano di posa;
 - o collasso per carico limite del complesso fondazione-terreno;
 - o ribaltamento;
- SLU di tipo strutturale (STR)
 - o raggiungimento della resistenza negli elementi strutturali;

accertando che la condizione $E_d \le R_d$ sia soddisfatta per ogni stato limite considerato.

Le verifiche devono essere effettuate secondo l'Approccio 2, con la combinazione (A1+M1+R3), tenendo conto dei valori dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II e 6.5.I delle NTC2018.

Nella verifica a ribaltamento i coefficienti R3 della Tab.6.5.I delle NTC2018 si applicano agli effetti delle azioni stabilizzanti.

Tab. 6.2.I – Coefficienti parziali per le azioni o per l'effetto delle azioni

	Effetto	Coefficiente Parziale $\gamma_F \ (o \ \gamma_E)$	EQU	(A1)	(A2)
Carichi permanenti Gı	Favorevole	γ _{G1}	0,9	1,0	1,0
	Sfavorevole		1,1	1,3	1,0
Carichi permanenti G2(1)	Favorevole	Ϋ́c2	0,8	0,8	0,8
	Sfavorevole	*	1,5	1,5	1,3
Azioni variabili Q	Favorevole	γα	0,0	0,0	0,0
	Sfavorevole		1,5	1,5	1,3
	- k	L.	. 100	10 10 M	1

⁽¹⁾ Per i carichi permanenti G2 si applica quanto indicato alla Tabella 2.6.I. Per la spinta delle terre si fa riferimento ai coefficienti 😗

Figura 3-1. Coefficienti parziali per le azioni o per l'effetto delle azioni (Tab.6.2.I delle NTC2018)

Tab. 6.2.II – Coefficienti parziali per i parametri geotecnici del terreno

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale γ _M	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	tan φ' _k	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c′ _k	Υc	1,0	1,25
Resistenza non drenata	c _{uk}	γ _{cu}	1,0	1,4
Peso dell'unità di volume	γγ	γ_{γ}	1,0	1,0

Figura 3-2. Coefficienti parziali per i parametri geotecnici del terreno (Tab.6.2.II delle NTC2018)

Tab. 6.5.I - Coefficienti parziali γ_R per le verifiche agli stati limite ultimi di muri di sostegno

Verifica	Coefficiente parziale (R3)
Capacità portante della fondazione	$\gamma_R = 1.4$
Scorrimento	$\gamma_R = 1.1$
Ribaltamento	$\gamma_R = 1.15$
Resistenza del terreno a valle	$\gamma_R = 1.4$

Figura 3-3. Coefficienti parziali γ_R per le verifiche agli stati limite ultimi di muri di sostegno (Tab.6.5.I delle NTC2018)

3.2.2 Stima della capacità portante

In condizioni "drenate" (sforzi efficaci), la valutazione della capacità portante delle fondazioni superficiali viene condotta in accordo all'equazione:

$$\mathbf{q}_{\mathsf{lim}} = 0.5 \cdot \gamma_c \cdot B^{'} \cdot N_r \cdot s_r \cdot i_r \cdot b_r \cdot g_r + c^{'} \cdot N_c \cdot s_c \cdot d_c \cdot i_c \cdot b_c \cdot g_c + q^{'} \cdot N_a \cdot s_a \cdot d_a \cdot i_a \cdot b_a \cdot g_a$$

Le espressioni che forniscono i valori dei fattori di capacità portante (N) e dei fattori correttivi (s, i, b, g) sono riportate di seguito:

• Fattori di capacità portante:

$$N_{c} = (N_{q} - 1) \cdot \cot g(\varphi')$$

$$N\gamma = 2 \cdot (N_{q} + 1) \cdot tg(\varphi')$$

$$N_{q} = tg^{2} \left(45 + \frac{\varphi'}{2}\right) \cdot e^{\pi g(\varphi')}$$

• Fattori correttivi di forma:

$$\begin{aligned} \mathbf{S}_c = & 1 + \frac{\mathbf{N}_q}{\mathbf{N}c} \cdot \frac{B'}{L'} \\ \mathbf{S}_r = & 1 - 0.4 \cdot \frac{B'}{L'} \\ \mathbf{S}_q = & 1 + \frac{B'}{L'} \cdot tg(\varphi') \end{aligned}$$

• Fattori correttivi di profondità:

$$\begin{split} d_e &= d_q - \frac{(1 - d_q)}{Nc \ tg(\phi')} \\ d_q &= 1 + \left[2 \ (D/B') \ tg(\phi') (1 - \sin(\phi')^2 \ \right] \ per \ D/B' < 1 \\ d_\varphi &= 1 + \left[2 \ tg(\phi') \ (1 - \sin(\phi')^2 \ tg(D/B')^{-1} \ \right] \ per \ D/B' > 1 \end{split}$$

Fattori correttivi di inclinazione del carico:

$$\begin{split} & i_{c} = i_{q} - \left(\frac{(1 - i_{q})}{(N_{c} tg(\phi'))} \right) \\ & i_{y} = \left[1 - \frac{H}{(N + B'L'c' \cot g(\phi'))} \right]^{(m+1)} \\ & i_{q} = \left[1 - \frac{H}{(N + B'L'c' \cot g(\phi'))} \right]^{m} \\ & \text{dove} : m = \frac{[2 + (B'L')]}{[1 + (B'L')]} \end{split}$$

• Fattori correttivi di inclinazione fondazione:

$$\begin{split} b_{q} &= (1 \text{-} \alpha t g(\phi'))^{2} \\ b_{\gamma} &= (1 \text{-} \alpha t g(\phi'))^{2} \\ b_{c} &= b_{q} \text{-} [(1 \text{-} b_{q})/(N_{c} \ t g(\phi'))] \end{split}$$

• Fattori correttivi di inclinazione piano campagna:

$$g_q = (1-tg(\omega))^2$$

$$g_{+} = (1-tg(\omega))^2$$

$$g_{\varepsilon} = g_{\alpha} - [(1-g_{\alpha})/(N_{\varepsilon} tg(\varphi'))]$$

Le formule utilizzate si riferiscono alla fondazione efficace equivalente ovvero quella fondazione rispetto alla quale il carico verticale N risulta centrato. La fondazione equivalente è caratterizzata dalle dimensioni B' e L', valutate mediante i criteri riportati in Figura 3-4.

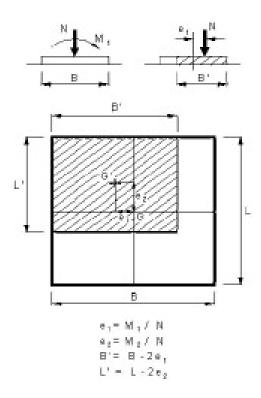


Figura 3-4. Fondazione efficace equivalente nel caso di fondazione rettangolare

Nelle analisi di capacità portante in termini di tensioni totali (condizioni "non drenate"), la resistenza del terreno è definita convenzionalmente mediante il parametro c_u. In questo caso, i fattori di capacità portante valgono:

- $N_V = 0.00$
- $N_c = 5.14$
- $N_q = 1.00$

e il carico limite è dato da:

 $q_{lim} = 5.14 \times c_u \times s_{c0} \times d_{c0} \times i_{c0} \times b_{c0} \times g_{c0} + q \times g_{q0}$

essendo q = γ x D la pressione totale agente sul piano di posa della fondazione, e avendo indicato con il pedice 0 i fattori correttivi per ϕ = 0 per i quali valgono le formulazioni sotto riportate.

- Fattori correttivi di forma:
 Valgono le stesse formulazioni utilizzate per le condizioni drenate
- Fattori correttivi di profondità (Vesic, 1975):

Valore di ø	d	l _c	d_q	d_{γ}
φ = 0 argilla satura in	$\frac{D}{B'} \le 1$	$1 + 0.4 \cdot \frac{D}{B'}$	Ť	1
condizioni non dre- nate	$\frac{D}{B'} > 1 \qquad 1 + 0$	$4 \cdot \arctan\left(\frac{D}{B'}\right)$		

• Fattori correttivi di inclinazione del carico (Vesic, 1975):

Terreno
$$i_c$$
 i_q i_y

$$\phi = 0$$

$$\text{argilla satura in } 1 - \frac{m \cdot H}{B' \cdot L \cdot c_u \cdot N_c}$$

$$1$$
 1 1 drenate

- Fattori correttivi di inclinazione fondazione:
 Date le condizioni al contorno delle opere, vengono considerati unitari.
- Fattori correttivi di inclinazione piano campagna:
 Date le condizioni al contorno delle opere, vengono considerati unitari.

3.2.3 Verifica a scorrimento

La verifica allo scorrimento viene condotta confrontando l'azione di taglio trasmessa in fondazione con l'azione di taglio resistente del terreno. Quest'ultima è valutata come:

 $T_{lim} = N \times tg\phi + c' \times B' \times L'$ in condizioni drenate

 $T_{lim} = c_u \times B' \times L'$ in condizioni non drenate

dove N è il carico assiale applicato nel baricentro della fondazione e ϕ l'angolo di attrito terreno – fondazione.

3.3 FONDAZIONI SU PALI

3.3.1 Verifiche agli stati limite ultimi (SLU)

Secondo quanto specificato al punto 6.4.3.1 delle NTC2018, nelle verifiche di sicurezza devono essere presi in considerazione tutti i meccanismi di stato limite ultimo, sia a breve sia a lungo termine.

Gli stati limite ultimi delle fondazioni su pali si riferiscono allo sviluppo di meccanismi di collasso determinati dalla mobilitazione della resistenza del terreno e al raggiungimento della resistenza degli elementi strutturali che compongono la fondazione stessa.

Le verifiche delle fondazioni su pali sono effettuate con riferimento ai seguenti stati limite, quando pertinenti:

- SLU di tipo geotecnico (GEO)
 - o collasso per carico limite della palificata nei riguardi dei carichi assiali;
 - o collasso per carico limite della palificata nei riguardi dei carichi trasversali;
 - collasso per carico limite di sfilamento nei riguardi dei carichi assiali di trazione;
- SLU di tipo strutturale (STR)
 - o raggiungimento della resistenza dei pali;
 - o raggiungimento della resistenza della struttura di collegamento dei pali;

accertando che la condizione $E_d \le R_d$ sia soddisfatta per ogni stato limite considerato.

Le verifiche devono essere effettuate, tenendo conto dei valori dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II e 6.4.II delle NTC2018, seguendo l'Approccio 2 (A1+M1+R3) previsto al punto 6.4.3.1 delle NTC2018.

Nelle verifiche effettuate con l'Approccio 2 che siano finalizzate al dimensionamento strutturale, il coefficiente yr non deve essere portato in conto.

Tab. 6.4.II – Coefficienti parziali γ_R da applicare alle resistenze caratteristiche a carico verticale dei pali

Resistenza	Simbolo	Pali infissi	Pali trivellati	Pali ad elica continua
	γ_{R}	(R3)	(R3)	(R3)
Base	γь	1,15	1,35	1,3
Laterale in compressione	γ_s	1,15	1,15	1,15
Totale (*)	γ	1,15	1,30	1,25
Laterale in trazione	γ_{st}	1,25	1,25	1,25

[&]quot; da applicare alle resistenze caratteristiche dedotte dai risultati di prove di carico di progetto.

Figura 3-5. Coefficienti parziali γ_R da applicare alle resistenze caratteristiche a carico verticale dei pali (Tab.6.4.II delle NTC2018)

3.3.2 Resistenza di pali soggetti a carichi assiali

La resistenza dei pali soggetti a carichi assiali è calcolata come prescritto al punto 6.4.3.1.1 delle NTC2018.

La resistenza caratteristica (Rk) del palo singolo può essere dedotta da:

- a) risultati di prove di carico statico di progetto su pali pilota;
- b) metodi di calcolo analitici, dove R_k è calcolata a partire dai valori caratteristici dei parametri geotecnici oppure con l'impiego di relazioni empiriche che utilizzino direttamente i risultati di prove in sito (prove penetrometriche, pressiometriche, ecc.);
- c) risultati da prove dinamiche di progetto, ad alto livello di deformazione, eseguite su pali pilota.

Nelle analisi condotte si è proceduto considerando l'approccio di tipo (b) e come di seguito descritto.

Con riferimento alle procedure analitiche che prevedano l'utilizzo dei parametri geotecnici o dei risultati di prove in sito, il valore caratteristico della resistenza a compressione e a trazione (R_{c,k} ovvero R_{t,k}) è ottenuto come:

$$R_{k} = min \left\{ \frac{R_{MEDIA}}{\xi_{3}}; \frac{R_{MIN}}{\xi_{4}} \right\}.$$

con

R_{MEDIA} e R_{MIN} le resistenze calcolate;

 ξ_3 e ξ_4 i fattori di correlazione funzione del numero n di verticali indagate riportati alla Tab.6.4.IV delle NTC2018.

Tab. 6.4.IV - Fattori di correlazione ξ per la determinazione della resistenza caratteristica in funzione del numero di verticali indagate

Numero di verticali indagate	1	2	3	4	5	7	≥ 10
ξ3	1,70	1,65	1,60	1,55	1,50	1,45	1,40
ξ_4	1,70	1,55	1,48	1,42	1,34	1,28	1,21

Figura 3-6. Fattori di correlazione ξ per la determinazione della resistenza caratteristica in funzione del numero di verticali indagate (Tab.6.4.IV delle NTC2018)

Il valore di progetto R_d della resistenza si ottiene a partire dal valore caratteristico R_k applicando i coefficienti parziali γ_R della Tabella 6.4.Il delle NTC2018 (vedi Figura 3-5).

I criteri utilizzati per la stima delle curve di capacità portante a compressione e trazione sono illustrati nel successivo paragrafo.

3.3.2.1 Stima della resistenza dei pali e micropali soggetti a carichi assiali

La portata limite (Q_{LIM}) è calcolata in riferimento alla seguente espressione:

$$Q_{LIM} = Q_{B,LIM} + Q_{L,LIM} = q_b \cdot A_B + \sum_i \pi \cdot D_i \cdot \Delta H_i \cdot \tau_{LIM,i}$$

compressione

$$Q_{LIM} = W + Q_{L,LIM} = \gamma'_{cls} \left(\sum_{i} \Delta H_{i} \right) \cdot A_{B} + \sum_{i} \pi \cdot D_{i} \cdot \Delta H_{i} \cdot \tau_{LIM,i}$$

trazione

dove:

Q_{B,LIM} = portata limite di base;

Q_{L,LIM} = portata limite laterale;

W = peso proprio del palo;

q_b = portata unitaria di base;

γ'cls = peso di volume sommerso del calcestruzzo armato;

 A_B = area di base;

D_i = diametro del concio i^{mo} di palo;

 ΔH_i = altezza del concio i^{mo} di palo;

T_{LIM,i} = attrito laterale unitario limite del concio i^{mo} di palo.

Portata di base

• Per terreni granulari:

 $q_b = 0.667 \times N_{SPT} \le 4MPa$

• Per terreni coesivi:

 $q_{lim} = 9 \times c_u + \sigma_{v0}$

dove:

c_u = coesione non drenata

 σ_{v0} = pressione geostatica verticale totale alla quota della base del palo

Portata laterale

• Per terreni granulari si ha:

 $T_{LIM} = min [k \times \sigma'_{v} \times tg\phi; T = f(N_{SPT})] < 150kPa$

dove:

k = 0.70 nel caso di compressione e k = 0.50 nel caso di trazione

 σ'_{v} = pressione geostatica verticale efficace

 φ = angolo di attrito

N_{SPT} = numero di colpi/piede in prova SPT

I valori di $\tau = f(N_{SPT})$ si possono desumere dalla Figura 3-7:

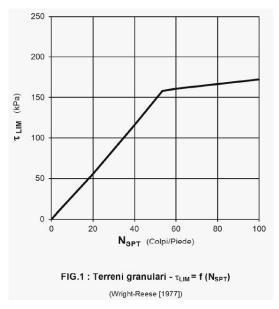


Figura 3-7. Terreni granulari – $\tau_{lim} = f(N_{SPT})$ (Wright-Reese – 1977)

Per terreni coesivi si ha:

 $T_{lim} = \alpha \times c_u < 150 \text{kPa}$

dove:

 α = coefficiente empirico di aderenza che dipende dal tipo di terreno, dalla resistenza al taglio non drenata del terreno indisturbato, dal metodo di costruzione del palo, dal tempo, dalla profondità, dal cedimento del palo.

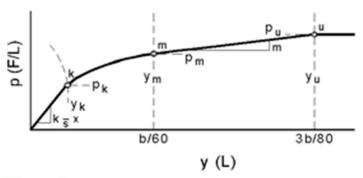
```
\alpha coefficiente riduttivo (= 0.9 per cu<=25 kPa; 0.8 per 25<cu<=50 kPa; 0.6 per 50<cu<=75 kPa; 0.4 per cu>75 kPa; AGI [1984]) cu coesione non drenata
```

3.3.3 Comportamento di pali in gruppo soggetti a carichi trasversali

Il comportamento di pali in gruppo soggetti a carichi trasversali è indagato mediante il programma di calcolo GROUP.

Il programma di calcolo permette di analizzare il comportamento di una palificata sottoposta a carichi orizzontali e verticali modellando l'interazione terreno struttura mediante curve p-y.

Le curve p-y che esprimono la resistenza del terreno in funzione della profondità e dello spostamento del palo, possono essere ricavate in relazione alla tipologia di terreni e alle proprietà meccaniche che li caratterizzano, in accordo alle procedure proposte da:


•	Reese, Cox e Koop (1975)	per sabbie
•	Welch e Reese (1975)	per argille tenere sotto falda
•	Reese, Cox e Koop (1975)	per argille dure sotto falda
•	Reese-Welch (1972)	per argille dure sopra falda

Il programma permette di scegliere tra uno dei modelli sopra esposti.

I metodi di calcolo sono descritti sinteticamente nelle pagine seguenti con riferimento sia a carichi statici sia a carichi ciclici.

Modello per sabbie Cox e Reese (1975)

1- calcolo di p = min(pu1;pu2)

$$\begin{aligned} \text{pu}_1 &= \gamma \cdot z \cdot \frac{\mathsf{K}_0 \cdot z \cdot \tan \phi \cdot \sin \beta}{\tan (\beta - \phi) \cdot \cos \alpha} \cdot \mathsf{A}_1 + \frac{\tan \beta}{\tan (\beta - \phi)} \cdot \left(\mathsf{D} \cdot \mathsf{A}_3 + z \cdot \tan \beta \cdot \tan \alpha \cdot \mathsf{A}_3^2 \right) + \\ &+ \gamma \cdot z \cdot \left[+ \mathsf{K}_0 \cdot z \cdot \tan \beta \cdot \left(\tan \phi \cdot \sin \beta - \tan \alpha \right) \cdot \mathsf{A}_1 - \mathsf{K}_3 \cdot \mathsf{D} \right] \\ \mathsf{pu}_2 &= \mathsf{K}_3 \cdot \mathsf{D} \cdot \gamma \cdot z \cdot \left(\tan^3 \beta - 1 \right) + \mathsf{K}_0 \cdot \mathsf{D} \cdot \tan \phi \cdot \tan^4 \beta \\ &= \mathsf{A}_1 \cdot \left(4 \cdot \mathsf{A}_2^3 - 3 \cdot \mathsf{A}_2^2 + 1 \right) \end{aligned}$$

$$A_2 = (\tan \beta \cdot \tan \delta) I(\tan \beta \cdot \tan \delta + 1)$$

dove:

pu resistenza laterale unitaria ultima

y spostamento orizzontale

y peso di volume efficace

z profondità da p.c.

Ko coefficiente di spinta a riposo

angolo di attrito

β 45+ φ/2

α 6/2

D diametro del palo

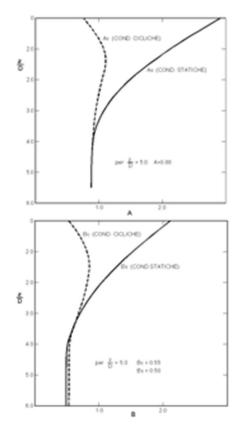
Ka tan2(45+6/2)

 δ inclinazione del piano campagna rispetto all'orizzontale

2- calcolo di p.= A. p.

3- calcolo di gn= Bi. p

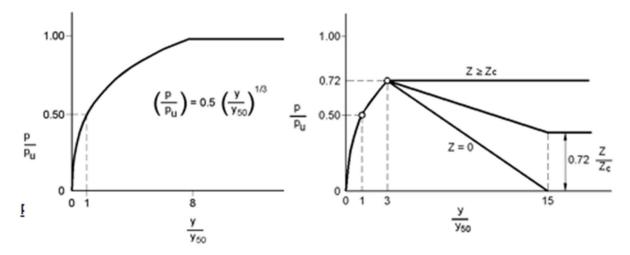
4- definizione del tratto iniziale della curva p-y


5- definizione del tratto parabolico della curva p-y

p=Cy1/n

dove:

n=pm/mym


 $C = p_m/(y_m)^{1/n}$

Modello Welch e Reese (1975) per argille tenere sotto falda

$$p_{u2} = 9 c_u D \alpha$$

$$\alpha = 1/(1+\tan\delta)$$

$$p_u = min (p_{u1}; p_{u2})$$

$$p/p_u = 0.5 (y/y_{50})^{1/3}$$

$$y_{50} = 2.5 \epsilon_{50} D$$

dove:

pu resistenza laterale unitaria ultima

σ' pressione geostatica verticale efficace alla quota z

c_u coesione non drenata

z profondità da p.c.

D diametro del palo

δ inclinazione del piano campagna rispetto all'orizzontale

y spostamento orizzontale

y₅₀ spostamento orizzontale per p=0.5 p_u

deformazione unitaria corrispondente ad una mobilitazione delle tensioni tangenziali pari al 50% della resistenza al taglio

per carichi ciclici

$$z_a = [6 c_u D] / [\gamma' D + 0.5 c_u] \alpha$$

γ' = peso di volume efficace

Modello Reese, Cox e Koop (1975) per argille dure sotto falda

 $p_{u1} = (3 c_u D + \sigma' D + 2.83 c_u z)$

$$p_{u2} = 11 c_u D \alpha$$

$$\alpha = 1/(1+\tan\delta)$$

 $p_0 = min (p_{01}; p_{02})$

resistenza laterale unitaria ultima D.

profondità da p.c. z

σ' pressione geostatica verticale efficace a

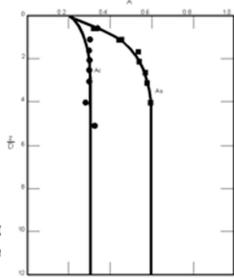
lla profondità z

coesione non drenata Cu

D diametro del palo

spostamento orizzontale ν

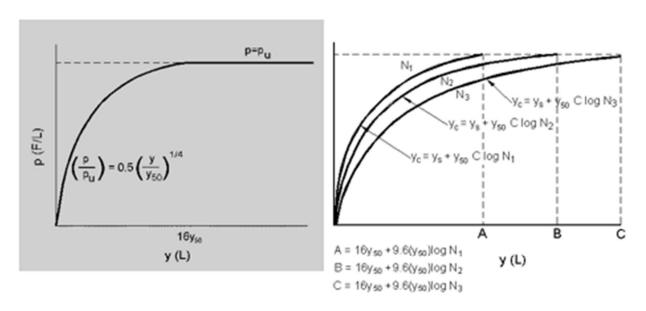
= 2.5 ε₅₀ D = spostamento orizzontale per p=0 **y**50


deformazione unitaria corrispondente ad una n 650

pari al 50% della resistenza al taglio

Ks pendenza del tratto iniziale della curva carichi statici

K_o pendenza del tratto iniziale della curva carichi ciclici


A٠ parametro empirico

Modello Welch-Reese (1972) e Reese-Welch () per argille dure sopra falda

Carichi statici Carichi ciclici

 $p_{u1} = [3c_u D + \gamma' D z + 2.83c_u z] \alpha$ $p_{u2} = 9 c_u D \alpha$

 $\alpha = 1/(1+\tan\delta)$

 $p_u = min (p_{u1}; p_{u2})$

dove:

pu resistenza laterale unitaria ultima

γ' peso di volume unitario

c_o coesione non drenata

z profondità da p.c.

D diametro del palo

δ inclinazione del piano campagna rispetto all'orizzontale

y spostamento orizzontale

y₅₀ spostamento orizzontale per p=0.5 p_ω (= 2.5 ε₅₀ D)

650 deformazione unitaria corrispondente ad una mobilitazione delle tensioni

tangenziali pari al 50% della resistenza al taglio

pendenza del tratto iniziale della curva

3.4 VALUTAZIONE DEL TIRO SUI TIRANTI PASSIVII

La valutazione del tiro agente sui tiranti passivi nelle varie combinazioni di carico viene eseguita applicando un metodo del tipo "a curve caratteristiche", tenendo conto dell'effettiva interazione tra spalla e tiranti, assicurando la congruenza degli spostamenti previsti.

Più nel dettaglio, ipotizzando di intervenire sul paramento della spalla con una tirantatura passiva realizzata con micropali, note:

- la tipologia e la tecnica di esecuzione dell'intervento di consolidamento;
- la natura e la caratterizzazione geotecnica dei terreni;

è possibile tracciare una curva di rigidezza della tirantatura sul piano δ_h-T, dove:

 δ_h = spostamento orizzontale della testa del micropalo (considerato "assiale" per micropali suborizzontali con deviazione fino a 15°÷20°);

T = tiro nei micropali di ancoraggio, al m di paramento.

Il massimo tiro disponibile per ciascun tirante è pari a:

$$T_{max} = R_{ad}$$

dove

Rad è la resistenza di progetto calcolata al paragrafo precedente

Per ottenere il valore massimo del tiro disponibile per ciascun metro di paramento è sufficiente dividere T_{max} per l'interasse dei micropali.

Successivamente, note le sollecitazioni agenti in fondazione per ogni combinazione di carico, è possibile determinare una curva di rigidezza della struttura nel modo di seguito descritto.

La spalla esistente, per effetto dei soli carichi permanenti, subisce una traslazione rigida orizzontale (δ_o) ed una rotazione rigida (θ_o) ; in questo caso, indicando con h_{tir} la distanza verticale tra l'intradosso della fondazione e la testa dei micropali, lo spostamento orizzontale della spalla in corrispondenza del punto di applicazione dei tiranti risulta:

$$\delta_{o,htir} = \delta_o + h_{tir} \tan (\theta_o)$$

Ipotizzando di realizzare i tiranti quando sulla struttura agiscono i soli carichi permanenti, per diverse combinazioni di carico di progetto (stato limite di esercizio, stato limite ultimo o sisma), è possibile costruire per punti le curve di rigidezza della fondazione in presenza di una generica tirantatura di consolidamento, disposta ad una specificata altezza da intradosso fondazione (h_{tir}).

Considerando infatti il caso in cui la spalla sia soggetta, ad esempio, alle sollecitazioni derivanti dal sisma, si possono calcolare i valori di sollecitazioni di taglio e momento agenti in fondazione, per ciascun i-esimo ipotetico valore T_i dell'azione agente nei tiranti disposti ad altezza h_{tir}.

Si avrà infatti:

$$\begin{split} N_i &= N \\ H_i &= H - T_i \\ M_i &= M - (h_{tir}T_i) \end{split}$$

dove N_i, H_i, M_i sono, per la condizione di carico in esame, i carichi effettivi per ogni metro di fondazione nella i-esima ipotesi di efficacia della tirantatura, mentre N, H ed M sono, per la condizione di carico in esame, i carichi effettivi per ogni metro di fondazione in assenza di tirantatura.

Tali sollecitazioni (N_i , H_i , M_i) danno luogo ad uno spostamento orizzontale (δ_i) e ad una rotazione della fondazione (θ_i). Per effetto di tali spostamenti, in corrispondenza del punto di applicazione dei tiranti, lo spostamento orizzontale della spalla risulterà pari a:

$$\delta_{i,htir} = \delta_i + h_{tir} \tan (\theta_i)$$

Sottraendo a tale valore dello spostamento il valore corrispondente alle condizioni di carico permanente, si ottiene:

 $\Delta \delta_{h,i} = \delta_{o,htir} - \delta_{i,h} tir$

La coppia di valori avente coordinate $(T_i, \Delta \delta_{h,i})$ rappresenta un punto della curva di rigidezza della fondazione.

Il punto di incontro tra le curve di rigidezza della tirantatura, costituita da tiranti specificati ad interasse specificato, e la curva di rigidezza della fondazione, determinata come descritto sopra, verifica la congruenza degli spostamenti e indica il tiro a cui è soggetta la tirantatura nella specifica condizioni di carico analizzata.

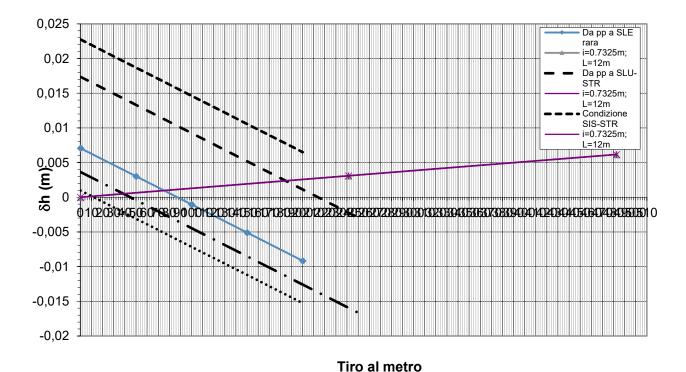


Figura 3-8. Curve caratteristiche tiranti passivi

3.5 PORTATA LIMITE PER GLI ANCORAGGI DELLE SPALLE

La verifica a sfilamento del tirante viene svolta in accordo a quanto riportato nel Paragrafo C6.6.2 delle Istruzioni per l'applicazione delle "Norme Tecniche per le costruzioni" di cui al D.M. 17 Gennaio 2018.

Il valore di calcolo della resistenza allo sfilamento dell'ancoraggio ($R_{\rm a,c}$) nel caso specifico, è stato dedotto con metodi analitici, a partire dai valori caratteristici dei parametri geotecnici (risultati di prove in sito e/o di laboratorio):

$$R_{\text{a.c}} = \pi \cdot D \cdot L \cdot \tau$$

dove:

 $D = \alpha \cdot \emptyset_{perf}$ diametro efficace ottenuto a seguito dell'iniezione (nel caso in esame è stato considerato un

valore di α pari a 1.0);

φ_{perf} diametro nominale della perforazione;

L lunghezza del bulbo di ancoraggio;

τ aderenza limite bulbo-terreno.

In base al § 6.6.2 della NTC la resistenza caratteristica allo sfilamento dell'ancoraggio è pari a:

$$R_{ak} = \frac{R_{a,c}}{\max(\xi_{a3}; \xi_{a4})}$$

dove:

 ξ_{a3} e ξ_{a4} sono desunti dalla tabella 6.6.III al § 6.6.2 della NTC.

Al valore caratteristico così ottenuto è stato quindi applicato il coefficiente γ_{Rap} =1.2 come da Tab.6.6.I del D.M. 17/01/2018, al fine di ottenere la resistenza a sfilamento di progetto con cui condurre le verifiche:

$$R_{ad} = \frac{R_{ak}}{\gamma_{Rap}}$$

Si sottolinea quanto già prescritto in sede di progetto definitivo e nella norma vigente ovvero la <u>necessità di conferma sperimentale con prove di trazione in sito nelle fasi di progetto (campo prove) e di collaudo</u>.

4 FONDAZIONE SPALLA – AMPLIAMENTO2 (NUOVA REALIZZAZIONE)

4.1 AZIONI DI CALCOLO

La seguente tabella riporta le sollecitazioni di calcolo agenti nel baricentro della palificata.

Il sistema di riferimento utilizzato coincide le convenzioni del software GROUP.

	DESCRIZIONE	COMBINAZIONE	Rx [kN]	Ry [kN]	Mz [kNm]
za	no traffico	1	16245	4489	1912
Massimizza zione compressio ne	traffico 1	2	17449	4489	2225
assi zio mp n	traffico 2a	3	17008	4618	761
S 8	traffico 2a config 2	4	16407	4618	605
2az	no traffico	5	12919	4489	-767
ssimizz ione azione	traffico 1	6	14124	4489	-454
Massimizzaz ione trazione	traffico 2a	7	13683	4618	-1918
Ž T	traffico 2a config 2	8	13081	4618	-2074
sisma	Traffico +	9	15353	8659	-20120
Sisı	traffico -	10	10841	8285	-24198
	no traffico	11	12919	3325	4118
Rara	traffico 1	12	13811	3325	4350
Ra	traffico 2a	13	13485	3421	3266
	neve dominante	14	13039	3421	3150
qu te	no traffico	15	12919	3204	4820
frequ	traffico 1	16	13485	3204	4967

Tabella 4-1. Sollecitazioni di calcolo risultanti nel baricentro della fondazione equivalente

4.2 MODELLO DI CALCOLO

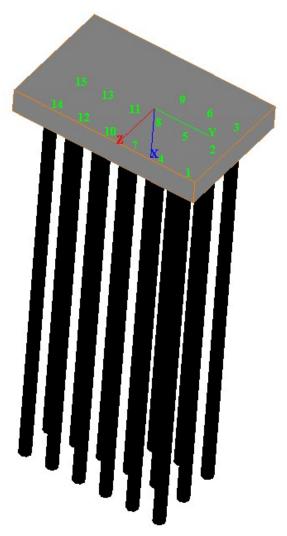


Figura 4-1. Spalla - Modello di calcolo palificata: vista tridimensionale

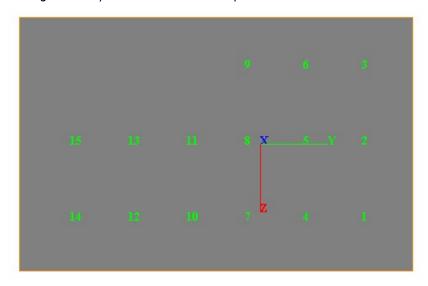


Figura 4-2. Spalla - Modello di calcolo palificata: piano y-z

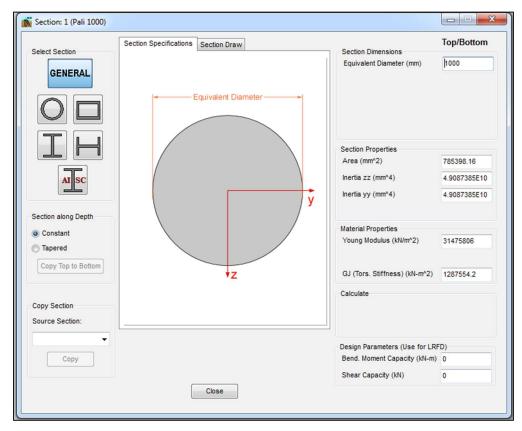


Figura 4-3. Caratteristiche geometriche e meccaniche sezione trasversale pali

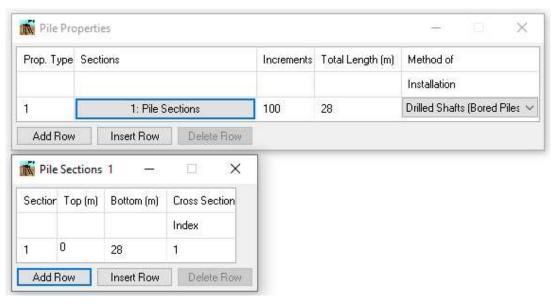
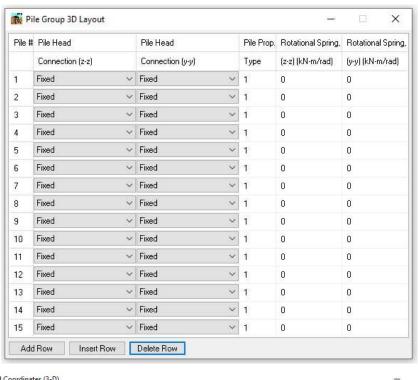



Figura 4-4. Parametri dei pali in GROUP

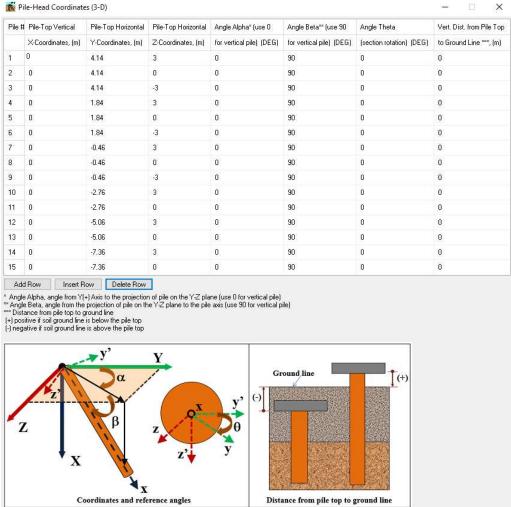
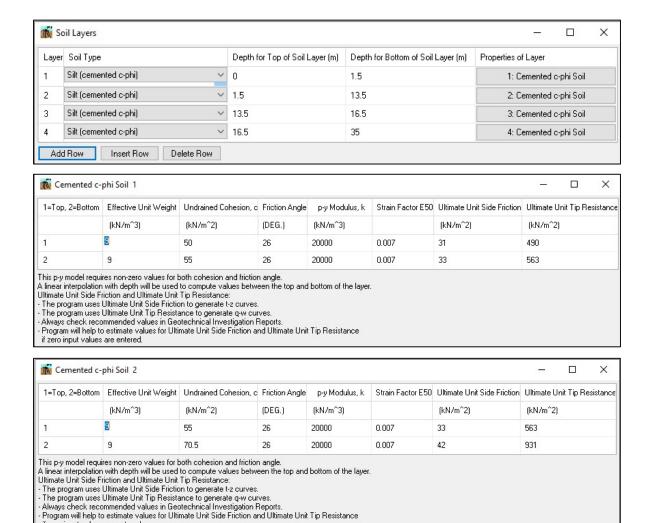
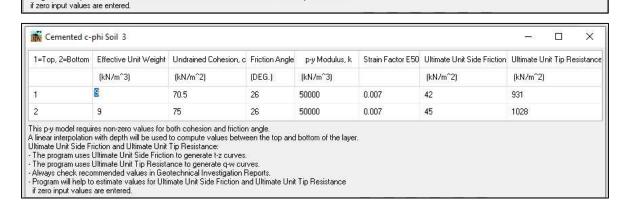




Figura 4-5. Disposizione dei pali in GROUP

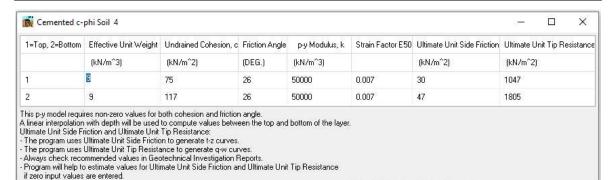


Figura 4-6. Spalla - Caratteristiche meccaniche terreno

4.3 ANALISI GEOTECNICA

4.3.1 Sollecitazioni di calcolo

I seguenti grafici riportano le massime azioni assiali, compressione e trazione, agenti per le combinazioni di calcolo significative.

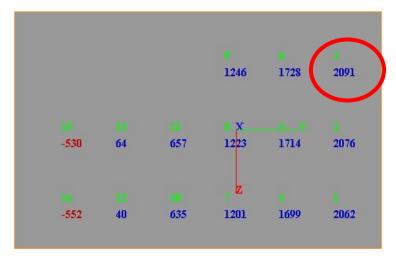


Figura 4-7. Sollecitazioni assiali nei pali per Combinazione 9 (SLV)

Figura 4-8. Sollecitazioni assiali nei pali per Combinazione 10 (SLV)

4.3.2 Verifica geotecnica

	Stratigrafia Terreno						
Strato Q _{INIZIALE} (m) Q _{FINALE} (m) Descrizione sigla N _{SPT}							
Α	0	1.5	Limo Argilloso	Α	0		
A'	1.5	13.5	Limo Argilloso	A'	0		
Α"	13.5	35	Limo Argilloso	Α"	0		

N.B.: La quota iniziale 0 coincide con la quota della Testa Pali./Micropali

Figura 4-9. Riepilogo Stratigrafia per verifica carico limite

Verifica Carico Limite Pali/Micropali								
Co	mbinazione	Pali Trivellati			n°lndagini	ξ3	ξ4	
					1	1.7	1.7	
	+ M1 + R3	R3			2	1.65	1.55	
Base		1.35			3	1.60	1.48	
	e Compressione	1.15			4	1.55	1.42	
Totale	e Trazione	1.30			5	1.50	1.34	
Laterale	e Trazione	1.25			7 ≥10	1.45 1.40	1.28 1.21	
					≥10	1.40	1.21	
		Caratter	ristiche Pali/ I	Micropal	i			
D Perfo	razione =	1.00	m	- F	Numero di	Verticali li	ndagate	
	razione =	28.0	m					
L Bulbo	=	28.0	m			5		
		Cara	atteristiche Te	erreno				
γ =		19.0	kN/m ³	.,,		18 A O2	۸"	
φ =		26.0	0	LIMO ARGILLOSO A, A', A"				
γ =		20.0	kN/m ³		GHIAIA E SABBIA B			
φ =		38	٥	- GRIAIA E SABBIA B				
		A	zioni di Calc	olo				
N _{Ed} Cor	mpressione =	2091	kN					
N _{Ed} Traz	zione =	824	kN					
		Res	istenza di Ca	lcolo				
N _{Rd} Cor	mpressione =	2467	kN					
N _{Rd} Tra:		1751	kN					
		<u> </u>						
		Fs	ito della Veri	fica				
				,				
			$N_{Rd} > N_{Ed}$					
N_{Rd}		N_{Ed}						
2467	>	2421						
1751	>	824						
La Verifica Risulta Soddisfatta								

Figura 4-10. Verifica a Capacità portante dei Pali

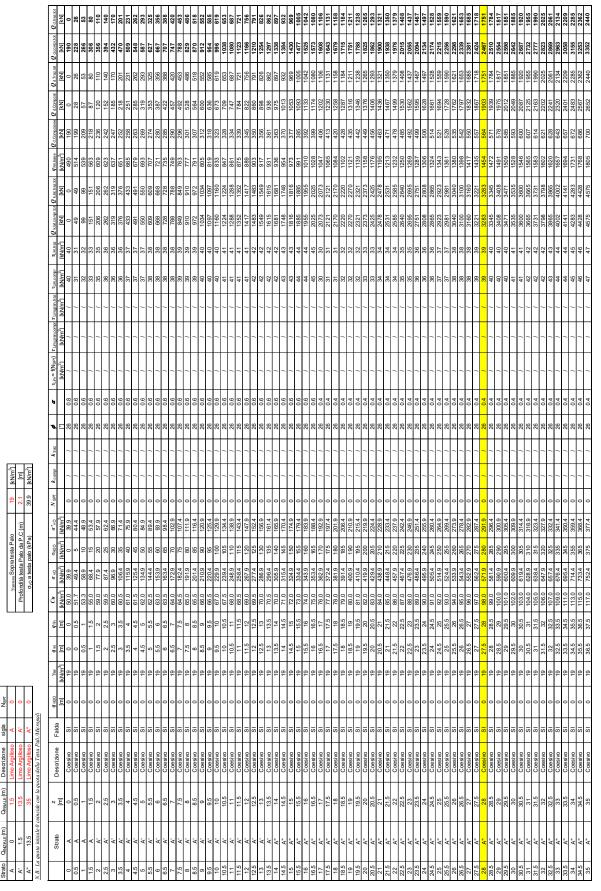


Figura 4-11. Determinazione della Capacità portante dei Pali

4.4 ANALISI STRUTTURALE

4.4.1 Sollecitazioni di calcolo

I seguenti grafici riportano le azioni assiali, flettenti e di taglio sulla testa del palo per le combinazioni SLU/SLV.

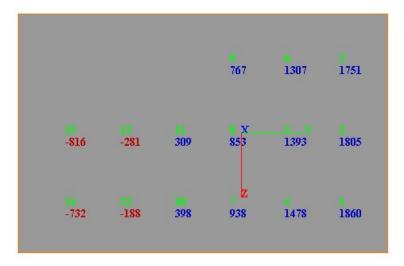


Figura 4-12. Minime sollecitazioni assiali nei pali per Combinazione 10 (SLV)

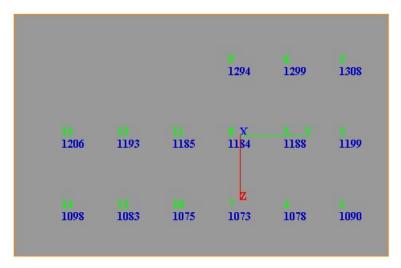


Figura 4-13. Massime sollecitazioni flettenti nei pali per Combinazione 9 (SLV)

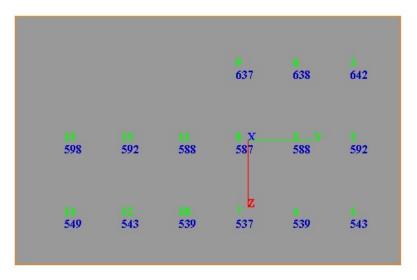


Figura 4-14. Massime sollecitazioni di taglio nei pali per Combinazione 9 (SLV)

Si riportano i grafici di azione assiale e momento flettente per la combinazione Frequente, necessari per il controllo della fessurazione nei pali.

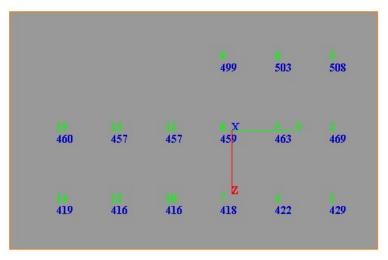


Figura 4-15. Massime sollecitazioni flettenti nei pali per Combinazione 16 (FREQ.)

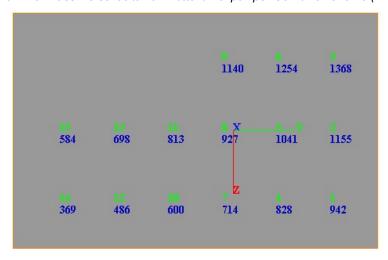


Figura 4-16. Minime sollecitazioni assiali nei pali per Combinazione 16 (FREQ.)

4.4.2 Verifica strutturale

Armatura disposta

Armatura verticale: 24Ø26Armatura a taglio: Ø12/15cm

Verifica a flessione

A favore di sicurezza, si considera la minima sollecitazione assiale e la massima sollecitazione flettente per la combinazione SLV.

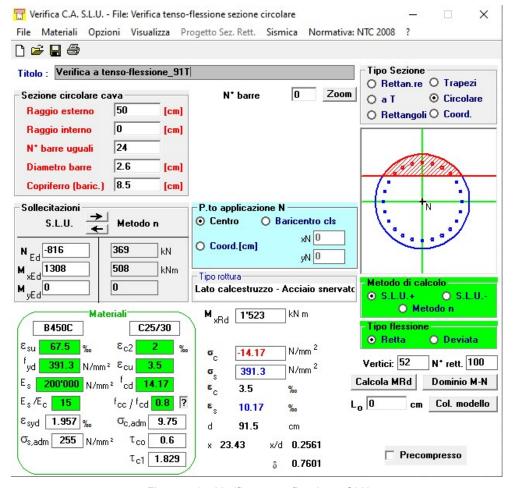


Figura 4-17. Verifica tenso-flessione_SLU

Verifica a taglio

Metodo di Clarke & Birjandi

r	500.00	mm	Raggio della sezione circolare.	
rs	412.00	mm	Raggio della parte confinata dall'armatura trasversale. $r_s = r$ - copr.	
sin a	0.525	-	$\sin \alpha = (2 r_s) / (\pi r).$	
α	0.552	rad	α = arcsin (sin α).	
A _{tot}	785398	mm²	Area totale della sezione circolare. $A = \pi r^2$.	
Α	642404	mm²	Area della sezione rettangolare equivalente. $A = r^2 (\pi/2 + \alpha + \sin \alpha \cos \alpha)$.	

Parametri della sezione rettangolare equivalente

b	843 mm	Larghezza equivalente. b = A/d.
h	932 mm	Altezza equivalente. [*] h = A _{tot} /b
d	762 mm	Altezza utile equivalente. $d = r (1 + \sin \alpha)$.

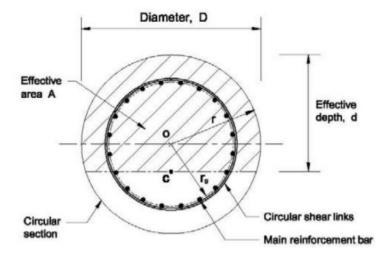


Figura 4-18. Metodo di Clarke e Birjandi - calcolo sezione rettangolare equivalente.

NTC. 2018					-li-							
4.1.2.3.5.2 - Elen	ienu con	armature t	rasversan r	esisteriti a ta	giio							
Rck [MPa] =	30	fo	ck [MPa] =	24.9		PALO CII	RCOLARE		AREA RE	ETTANGOL	ARE EQUI	VALENTE
fcd [MPa] =	14.11	(c.a. γ _c =1,	5)									
fctk [MPa] =	1.79					r	500	mm	raggio sez	ione circola	ire	
fctd [MPa] =	1.19	(c.a. γ _c =1,	5)			С	85	mm	copriferro			
fywd [MPa] =	391.30	(B450C γ _s :	=1,15)			r _s = r - c	415	mm	raggio sez	ione circola	re confinat	а
						sen α	0.528	-	$sen \alpha = (2r_s)$	s)/(π r)		
Verifica del congl	omerato					α	0.557	rad				
						A _{tot}	785398.2	mm2	Area totale	della sezio	one circola	re
H [mm] =	932	Altezza de	ella sezione			Α	644028	mm2	area della	sezione ret	tangolare e	quivalent
d [mm] =	764	Altezza ut	ilde della se	zione					A = r2(p/2-	+a+senaco	sa)	
b _w [mm] =	843	Larghezza	della mem	bratura resist	ente a taglio							
αc=	1	1 per N=0				AREA RE	TTANGOL	ARE E	QUIVALEN	NTE		
α=	90	inclinazion	ne armatura	1.570796								
θ=	21.8	inclinazion	ne fessura	0.380482		b	843	mm	larghezza	equivalente	b=A/d	
cotga=	6.13E-17					h	932	mm	altezza eq	uivalente h	=A _{tot} /b	
cotgq=	2.50	tra 1 e 2,5				d	764	mm	altezza uti	le equivaler	nte d=r(1+s	$en\alpha$)
V _{Rcd} [kN] =	1410.01	Resistenz	a a compre	ssione bielle								
		=0,9xbwxc	dxacxfcdx(d	otga+ctgq)/(+cotg2q)							
Verifica dell'accia	io											
Asw [mmq]=	226.08	φ12 2br	staffe									
s [mm]=	150		passo staf	e e								
V _{Rsd} [kN] =	1014.16	Resistenz	a armature	= 0,9dxAsw/s	$x(ct_{\alpha}+ctg_{\theta})sin_{\alpha}$							
V _{Rd} [kN] =	1014.16	Min. tra VI	Rcd eVRsd									
V _{Sdu} [kN] =	642.00	Sollecitazi	ione di prog	etto SLU								
	Verificato											

Figura 4-19. Verifica a Taglio

Verifica a fessurazione

A favore di sicurezza, si considera la minima sollecitazione assiale e la massima sollecitazione flettente per la combinazione SLE Frequente.

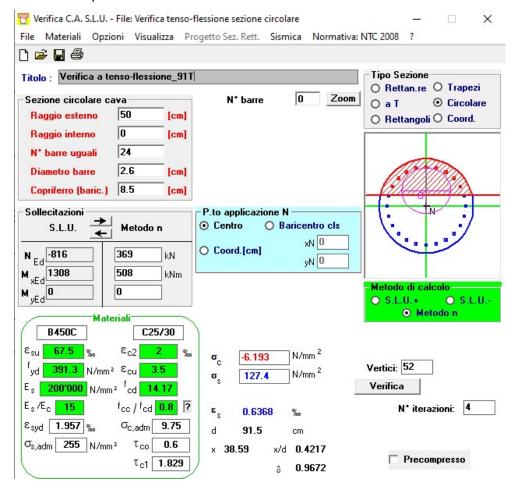


Figura 4-20. Verifica Tenso-flessionale_SLE

La verifica a Fessurazione si omette in quanto il tasso di sollecitazione dell'acciaio, per combinazione Frequente, è inferiore a 220 MPa, come specificato nella tabella C4.1.II delle NTC 2018.

5 FONDAZIONE PILA – AMPLIAMENTO 2 (NUOVA REALIZZAZIONE)

La palificata di fondazione della pila presenta le seguenti caratteristiche:

Lunghezza micropali: 32m
 Diametro del perforo: Ø240mm
 Armatura: Ø177.80mm – sp.10mm
 Numero file micropali in direzione trasversale 9
 Interasse micropali in direzione trasversale 0.80m
 Numero file micropali in direzione longitudinale 10
 Interasse micropali in direzione longitudinale 0.72m

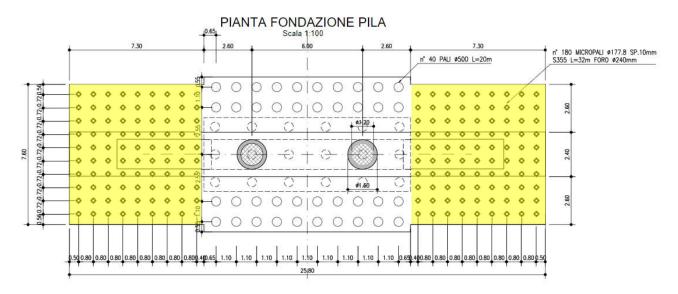


Figura 5-1. Pila – Pianta fondazioni

Dato che la pila presenta rigidezza nella direzione trasversale molto superiore rispetto a quella nella direzione longitudinale, le verifiche della palificata di fondazione sono condotte solo per le azioni agenti nella direzione longitudinale. Dato, inoltre, che l'interasse tra le file di micropali in direzione trasversale è costante (0.80m) l'analisi viene condotta su una larghezza di palificata pari all'interasse tra i micropali (0.80m).

5.1 AZIONI DI CALCOLO

I sequenti tabulati riportano l'analisi dei carichi e le sollecitazioni di calcolo agenti in fondazione.

ANALISI D	EI CARICH	I AGENTI S	ULL'IMPALCATO E GRAVANTI SULL	A PILA						
n _{imp}	2,00	[-]	n° impalcati							
Carichi pe	rmanentis	strutturali								
<u> Travi esist</u>	1	2				va realizzaz				
γ	25,00	[kN/m ³]	peso proprio		γ	78,50	[kN/m ³]	peso prop	rio	
Α	0,56	[m ²]	area della sezione		Α	0,06	[m ²]	area della	sezione	
L	20,40	[m]	lunghezza		L	21,50	[m]	lunghezza		
n	4,00	[-]	n° travi		n	6,00	[-]	n° travi		
Pi	575	[kN]	carico su singolo appoggio impalca	to	Pi	309	[kN]	carico su s	ingolo appo	oggio impalcato
Р	1151	[kN]	carico su pila		P	619	[kN]	carico su p		
Soletta es	istanta				Calatta di	i nuova real	lizzaziona			
		[LNI /3]								
γ	25,00	[kN/m³]	peso proprio		γ	25,00	[kN/m³]	peso prop	10	
h	0,20	[m]	spessore		h	0,25	[m]	spessore		
В	10,51	[m]	larghezza		В	10,56	[m]	larghezza		
L	21,50	[m]	lunghezza		L	21,50	[m]	lunghezza		
n	1,00	[-]	n°		n	1,00	[-]	n°		
Pi	565	[kN]	carico su singolo appoggio impalca	to	Pi	710	[kN]	carico su s	ingolo appo	ggio impalcato
P	1130	[kN]	carico su pila		P	1419	[kN]	carico su p		
Cordoli										
γ	25,00	[kN/m ³]	peso proprio							
h	0,15	[m]	spessore							
В	0,70	[m]	larghezza							
L		[m]								
	21,50	[-]	lunghezza							
n	2,00	[-]	n°							
Pi	56	[kN]	carico su singolo appoggio impalca	to						
Р	113	[kN]	carico su pila							
Carichi pe	rmanenti ı	non struttu	rali							
	zione esist						uova realizz			
γ	22,00	[kN/m³]	peso proprio		γ	22,00		peso prop	rio	
h	0,20	[m]	spessore		h	0,11	[m]	spessore		
В	10,51	[m]	larghezza		В	9,16	[m]	larghezza		
L	21,50	[m]	lunghezza		L	21,50	[m]	lunghezza		
n	1,00	[-]	n°		n	1,00	[-]	n°		
Pi	497	[kN]	carico su singolo appoggio impalca	to	Pi	238	[kN]	carico su s	ingolo anno	ggio impalcato
P	994	[kN]	carico su pila		P	477	[kN]	carico su p		oolo impaicato
Caulal-! .			dam sustam							
Larichi va	riabili da ti	attico - tar	ndem system	Tab. 5.1.	II - Intensità de	i carichi Q _{ik} e q	10000		q _{ik} [kN	I/m21
w	19,67	[m]	larghezza totale impalcato	Carrie	Posizione Numero 1		Carico asse Q	k [KIN]		
nı	6,00	[-]	n° corsie convenzionali		Numero 1		300		9,0	
n _c	3,00	[-]	n° corsie convenzionali con traffico		Numero 2		200		2,5	
w _l	3,00	[m]	larghezza corsia convenzionale	Corsia	Numero 3		100		2,5	0 —
p _t	10,67	[m]	parte rimanente	Altre c	orsie		0,00		2,5	0

13,58

25,80

1,00

8759

Α

b

n P $[m^2]$

[m]

[-]

[kN]

area (sezione verticale)

lunghezza

n° elementi

carico su pila

aricini ve	iliavili ua ti	arrico - uni	formly distribu	teu loaus								
w	19,67	[m]	larghezza total	e impalcato								
n _l	6,00	[-]	n° corsie conve									
n _c	3,00	[-]	-	enzionali con traffi	,							
W _I	3,00	[m]		a convenzionale	,							
W _{rim}	10,67	[m]	parte rimanent									
**rim	10,07	Ling	parte minariem	i.e								
W ₁	3,00	[m]										
q ₁	9,00	[kN/m ²]										
W ₂	3,00	[m]										
q ₂	2,50	[kN/m ²]										
W ₃	3,00	[m]										
q ₃	2,50	[kN/m ²]										
W _{rim}	10,67	[m]										
q _{rim}	2,50	[kN/m ²]										
711111		[1014/111]										
L	21,50	[m]	lunghezza									
n	1,00	[-]	n°									
P_{i}	738	[kN]	carico su singo	lo appoggio impal	to							
Р	1477	[kN]	carico su pila									
NALISI	DEI CARICH	DIRETTAN	MENTE AGENTI	SULLA PILA								
arichi pe	ermanenti s	trutturali										
ulvino es	rictonto					Pulvino di	i nuova real	izzazione				
γ	25,00	[kN/m³]	peso proprio			γ	25,00	[kN/m ³]	peso propi	rio		
A	10,46	[m ²]		one (vista frontale)		A	16,27	[m ²]	area della			
b	1,60	[m]	larghezza	one (vista frontale		b	1,60	[m]	larghezza	sezione		
n	1,00	[-]	n° elementi			n	1,00	[-]	n° element	i		
	1,00	LI	ii ciciiiciici				1,00	L J	II Ciciliciii			
Р	418	[kN]	carico su pila			Р	651	[kN]	carico su p	ila		
usto esis	stente_					Fusto di n	nuova realiz	zazione				
γ	25,00	[kN/m ³]	peso proprio			γ	25,00	[kN/m ³]	peso propi	rio		
Ø	1,60	[m]	diametro			А	8,00	[m ²]	area (sezio	ne orizzont	tale)	
Н	5,70	[m]	altezza			Н	6,15	[m]	altezza			
n	2,00	[-]	n° elementi			n	2,00	[-]	n° element	i		
Р	573	[kN]	carico su pila			Р	2460	[kN]	carico su p	ila		
linto												
		3.	· .									
γ	25,00	[kN/m ²]	peso proprio									

SOLLECITAZ	ZIONI DI CA	LCOLO ALLA B	ASE DELLA I	PILA - SLU								
Carichi verti	cali da imp	alcato_										
6					P [kN]	(64)						
- Carichi pe					4431	(G1)						
		on strutturali affico (Tandem	Suctom)		1471 1200	(G2) (Q1-ts)						
		affico (Uniform		d Loads)	1477	(Q1-ts)						
- Cariciii ve	i ticali ua ti		ily Distribute	u Luaus)	1477	(Q1-uui)						
Carichi verti	cali agenti	direttamente sı	u pila									
- Carichi pe	rmanenti si	trutturali			12861	(G1)						
Cariahi warti	aali tatali a	conti in fondor	iono					v.C / v.O				
- Carichi pe		genti in fondaz	ione		17292	(G1)	x	γG / γQ 1,35	=	23345		
		on strutturali			1471	(G1) (G2)	X	1,35		1986		
		affico (Tandem	System)		1200	(Q1)	X	1,35	=	1620		
		affico (Uniform		d Loads)	1477	(Q1)	×	1,35	=	1993		
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , , , , , , , ,	,		(-4-)		,		28944	[kN]	
Carichi al m	etro lineare	per calcolo pa	<u>lificata</u>								- 1	
L	25,8	[m]										
P	1122	[kN/m]										
Г	1144	[KIN/III]										
SOLLECITAZIO	ONI DI CALC	OLO ALLA BASE	DELLA PILA -	SLV								
		razione di proget			el "plateau" :	sismico						
	0,212	pettro in accelera	azione di prog	etto)								
a _g F ₀	2,439	[g]										
S S	1,62	[-]										
η	1	[-]										
a*	0,838	[g]										
Nella tabella	cues o seiva											
		punto di applicazi	ione carichi ri:	spetto intradosso	o fondazione							
		ndizione sismica		petto intradosse	7101144210116							
y = forza di i												
M = momento	o ribaltante i	n corrispondenza	intradosso fo	ondazione								
Carichi da imp	palcato											
Carico	P [kN]	Fy [kN]	h [m]	Mz [kNm]								
(G1)	4431	7424	9,77	72528								
(G2)	1471	2464	9,77	24074								
(Q1-ts)	240	201	9,77	1964								
(Q1-udl)	295	495	9,77	4833								
Carichi su pila	1											
Carico	P [kN]	Fy [kN]	h [m]	Mz [kNm]								
(G1 - pulv.)	1069	895	8,95	8014								
(G1 - fusti)	573	480	5,45	2616								
(G1 - setti) (G1 - plinto)	2460 8759	2061 7337	5,68	11694 9538								
(OT - billing)	6/39	/55/	1,30	3330								
<u>Totale</u>	19298	21357		135263								
Castalat - Loo	las liser											
Carichi al met	tro lineare p	er calcolo palifica	ata_									
L	25,8	[m]										
	P [kN/m			Mz [kNm/m]								
tot.	748	828		5243								

5.2 MODELLO DI CALCOLO

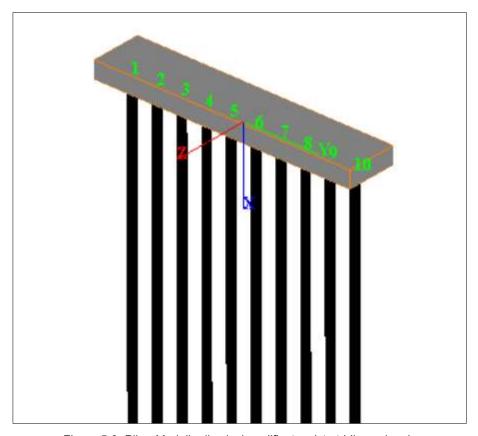


Figura 5-2. Pila - Modello di calcolo palificata: vista tridimensionale

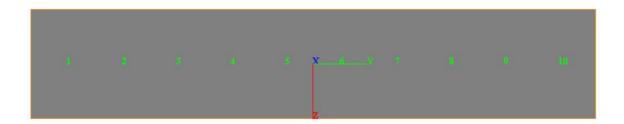


Figura 5-3. Pila - Modello di calcolo palificata: piano y-z

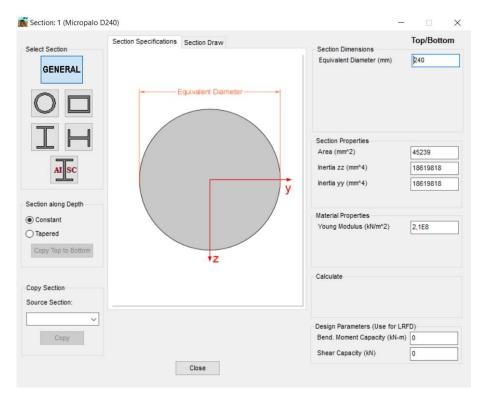


Figura 5-4. Pila - Caratteristiche geometriche e meccaniche sezione trasversale micropali

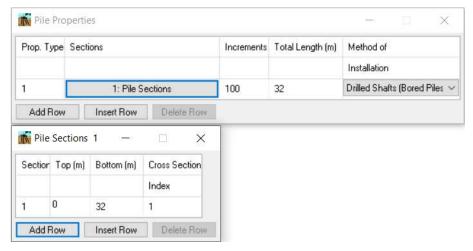


Figura 5-5. Pila - Parametri dei micropali in GROUP

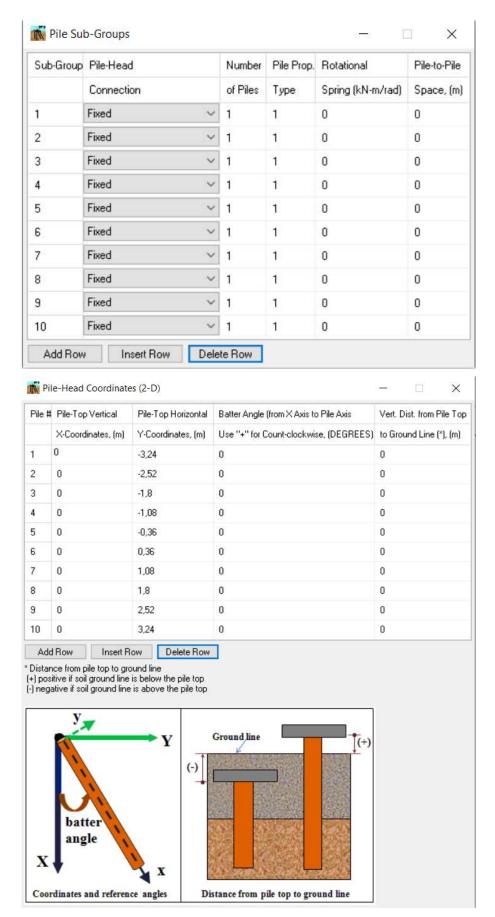


Figura 5-6. Pila - Disposizione dei micropali in GROUP

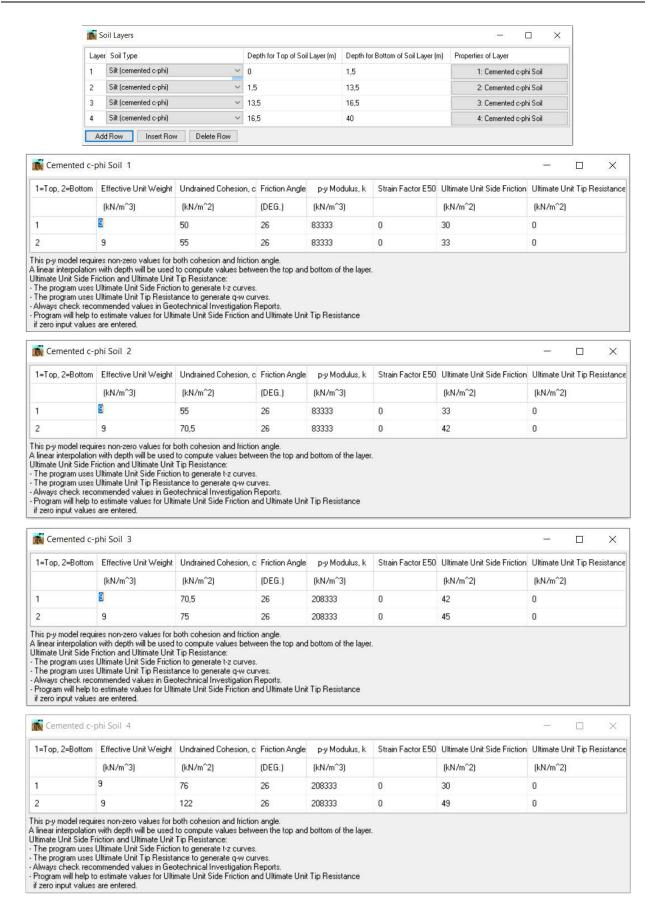


Figura 5-7. Pila - Caratteristiche meccaniche terreno

5.3 ANALISI GEOTECNICA

5.3.1 Sollecitazioni di calcolo

I seguenti grafici riportano le massime azioni assiali, compressione e trazione, agenti per le combinazioni di calcolo significative.

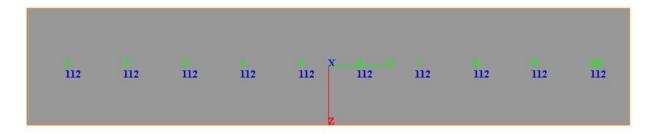


Figura 5-8. Azioni assiali di calcolo sulla palificata - SLU

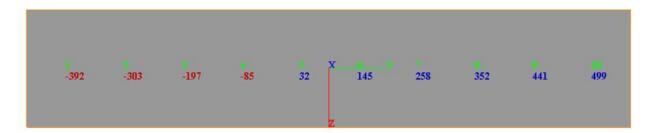


Figura 5-9. Azioni assiali di calcolo sulla palificata - SLV

5.3.2 Verifica geotecnica

Ve	erifica Cari	co Limite	Pali/M	1icropali		
0	Deli Teirelleti			n°Indagini	ξ3	ξ4
Combinazione	Pali Trivellati			1	1,7	1,7
A1 + M1 + R3	R3			2	1,65	1,55
Base	1,35			3	1,60	1,48
Laterale Compressione	1,15			4	1,55	1,42
Totale	1,30			5	1,50	1,34
Laterale Trazione	1,25			7	1,45	1,28
				≥10	1,40	1,21
	Caratte	ristiche Pali/ [Micropali	•		
D Perforazione =	0,24	m	- 1º	Numero di	Verticali I	ndagate
L Perforazione =	32,0	m				
L Bulbo =	32,0	m			5	
	Can	atteristiche Te	144 A4A A			
			rreno			
$\gamma = \frac{\gamma}{1 - \gamma}$	19,0	kN/m³	LIM	10 ARGILLO	SO A, A',	Α"
φ =	26,0	3				
γ =	20,0	kN/m³		GHIAIA E S	ABBIA B	
ϕ =	38					
		Azioni di Calco	olo			
N _{Ed} Compressione =	399	kN				
N _{Ed} Trazione =	314	kN				
	Ros	sistenza di Cal	lcolo			
N _{Rd} Compressione =	529	kN				
	486	kN				
N _{Rd} Trazione =	400	KIN				
		•. • • • • • •	<i>C</i> *			
	Es	sito della Verij	tica			
		$N_{Rd} > N_{Ed}$				
N_{Rd}	N_{Ed}					
529 >	421					
486 >	314					
	La Verific	a Risulta S	Soddisfa	atta		

1	N.B.: La guota interale il conscrate con la guota della Lesta Pall. Ad Cropadi				.		ŀ	ŀ	- 1-	ŀ	ŀ	ŀ	ļ	f	F	ı	-	-	-	-	г	-						ſ
	Strato		Descrizione		d HZO	*Nor	d in	t	-	1		-	Kompr	K traz	+	Ť	TLIM.	ě.		8 2	2 .	td QkJettraz	8		Qd,Comp,list	Od,Traz Jat O		2 d.traz.tot
		0	Coesivo	S	0	19	0	$^{+}$	_	+	+	_	-	1	-	+	KNV		+	+		0	+	0	0	0		0
	0,5 A	0,5	Coesivo	SI	0	19	0	H	-	Н	H	Н	,	/	Н	/ 9'0	/	/	31	31	12	12	H	0	7	9	7	9
	1 A	-	Coesivo	S	0	19	0,5	-	-	4	+	0	_	,	+	/ 9'0	_	\	32	32	24	24	_	0	14	13	44	13
	d, c	6,1	Coesivo	ī 0	0	6 0	- 4	6,1	-	+	+	0	,	, ,	+	0,6		1	33	35	8 8	36	0 0	0	20	61	1,7	96
	1	2 5	Coesivo	ō 07.	0	10	C- C	t	+	+	+	0		-	+	0,0			36	88	8 89	90	0 0	0	37	32	37	34
		. E	Coesivo	0	0	19	2.5	t	+-	+	+	0	,		+	0.0		,	36	8 8	3 12	77	0	0	44	2 14	2 4	4
	L	3.5	Coesivo	S	0	19	8	t	+-	H	H	0	_	_		/ 9'0	_	_	36	98	6	06	0	0	52	84	25	48
	L	4	Coesivo	S	0	19	3,5	t	┺	H	H	0	L	_	H	/ 9'0		_	37	37	104	104	0	0	09	22	09	22
	4,5 A	4,5	Coesivo	SI	0	19	4	Н	-	H	H	0	_	_	H	/ 9'0	_	_	37	37	118	118	0	0	89	63	89	63
		2	Coesivo	S	0	16	4,5	Н	ш	Н	Н	0	_	_	Н	/ 9'0		_	37	37	132	132		0	92	20	92	20
		5,5	Coesivo	S	0	19	2					0	/	/		/ 9'0	1	/	38	38	146	146	0	0	85	78	85	78
		9	Coesivo	S	0	19	5,5	Н	_			0	/	/		/ 9'0	1	1	38	38	160	160	0	0	93	98	93	98
No. No.	6,5 A'	6,5	Coesivo	S	0	19	9	_	_			0	_	/		/ 9'0	^	/	38	38	175	175	0	0	101	93	101	93
Note		7	Coesivo	S	0	19	6,5	+	_			0	_	,		/ 9'0	^	_	38	38	189	189	0	0	110	101	110	5
No. Company Company		7,5	Coesivo	S	0	19	7	+	-			0	_	_		/ 9'0	`	_	39	39	204	204	0	0	118	109	118	109
No. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		88	Coesivo	<u></u>	0	19	7,5	+	-	4	+	0		_	+	/ 9'0	1	1	39	33	218	218	0	0	127	117	127	117
No. Common Comm		8,5	Coesivo	<u>s</u>	0	19	20	+	-	+	+	0	,	,	+	0,6			38	38	233	233	0	0	135	124	135	124
No. Common Comm		6	Coesivo	<u></u>	0	19	8,5	+	-	4	1	0		_	+	/ 9'0			40	40	248	248	0	0	144	132	144	132
No. Common Comm		9,5	Coesivo	<u></u>	0	19	6	+	66,5	4,7 95	+	0	1	_	+	9'0	1	_	40	40	263	263	0	0	153	140	153	140
No. 1. 1. 1. 1. 1. 1. 1.		0 :	Coesivo	<u>s</u>	0	16	+	+	_	2 1	+	0	,	,	+	0,6	1	1	40	40	278	278	0	0	161	148	161	148
No. 1		10,5	Coesivo	<u>s</u>	0	19	+	+	_	_	+	0	,	,	+	0,6	1		4	4	294	282	0	0	170	157	170	157
No. 1. 1. 1. 1. 1. 1. 1.	1	=	Coesivo	+	0	19	+	+	_	7		0	,	,	+	0,6			41	41	309	306	0	0	179	165	179	165
No. 1. 1. 1. 1. 1. 1. 1.	A. A.	C'LL	Coesivo	+	0	6	+	$^{+}$	68,5	77,7	1	0		_	+	0,6	1	-	41	41	325	372	0	0	188	1/3	200	1/3
		71.	Coesivo	+		2 5	0,	1	08,0	2,2	+			,	+	0,0			4 4	14 0	0 PE	340	0		187	181	/61	10.0
	1	13	Coesivo	+	0	10	125	1	_	- 0	Ŧ				\dagger	0,0			42	42	320	370		0	215	108	245	100
	1	13.5	Coesivo	+	0	19	+	t	_	7	Ŧ.	0	,		t	0,0	-		42	42	388	388	0	0	225	207	225	207
Marie Mari		14	Coesivo	S	0	19	H	t	_	2	H	0	/	/	H	/ 9'0	_	1	42	42	404	404	0	0	234	215	234	215
		14,5	Coesivo	S	0	19	H	H	_	_	-	0	_	_		/ 9'0	1	1	43	43	420	420	0	0	243	224	243	224
		15	Coesivo	S	0	16	Н	Н	Ш	~	H	0	_	/		/ 9'0	/	_	43	43	436	436	0	0	253	232	253	232
		15,5	Coesivo	S	0	19	\dashv	\dashv	_	_	+	0	_	_	1	/ 9'0	^	^	44	4	452	452	0	0	262	241	262	241
		16	Coesivo	<u>s</u>	0	19	+	+	4	~	`	0	-	-	+	/ 9'0	1	1	44	44	469	469	0	0	272	250	272	220
A. T. S. Commento S. S. Commento S. S. Commento S. S. S. Commento S. S		16,5	Coesivo	<u></u>	0	19	+	+	4		Ì	0		_	+	/ 9'0		1	45	45	486	486	0	0	282	259	282	529
A. T. S. Commission S. S. Commission S. S. Commission S. S. Commission S. S. Commission S. S. Commission S. S. Commission S. S. Commission S. S. Commission S. S. Commission S. S. Commission S. S. Commission S. S. Commission S. S. Commission S. S. Commission S. S. Commission S. S. Commission S. S. S. Commission S. S. Commission		17	Coesivo	<u></u>	0	19	16,5	†	4	~	`	0	1	_	+	0,4	1	-	30	30	498	498	0	0	288	265	288	265
K CORRAY SI CORRAY SI CORRAY SI CORRAY SI CORRAY SI CORRAY SI CORRAY SI CORRAY SI CORRAY SI SI SI SI SI SI SI SI SI SI SI SI SI SI SI SI SI SI SI SI SI SI SI SI SI		17,5	Coesivo	<u></u>	0	10	17	$^{+}$	_	_	-	0		,	$^{+}$	0,4	1	-	31	33	203	206	0	0	282	272	295	272
		18	Coesivo	7 0	0	5 5	+	+	_		+	0		, ,	+	0,4			3	200	126	175	0	> <	302	2/8	302	2/8
K 105 Cossion S1 Go of the control G </td <td></td> <td>10,0</td> <td>Coesivo</td> <td>ō 0</td> <td>0</td> <td>2 0</td> <td>+</td> <td>+</td> <td>_</td> <td>-</td> <td>+</td> <td>0</td> <td></td> <td></td> <td>t</td> <td>0,4</td> <td>-</td> <td> </td> <td>32</td> <td>32 62</td> <td>222</td> <td>222</td> <td>0</td> <td>0</td> <td>346</td> <td>204</td> <td>316</td> <td>204</td>		10,0	Coesivo	ō 0	0	2 0	+	+	_	-	+	0			t	0,4	-		32	32 62	222	222	0	0	346	204	316	204
		19.5	Coesivo	5 0.	0	10	+	+	+	_	+	0		-	t	0,4			32	33 8	557	557	0 0	0 0	323	297	323	297
A 215 Consistion SSI 0 19 20 21 20 21 20 21 0 1 1 20 20 23 30 <t< td=""><td>L</td><td>20</td><td>Coesivo</td><td>S</td><td>0</td><td>10</td><td>╁</td><td>t</td><td>_</td><td>ļ.,</td><td>F</td><td>0</td><td></td><td>_</td><td>t</td><td>0,4</td><td> </td><td></td><td>33</td><td>33</td><td>269</td><td>269</td><td>0</td><td>0</td><td>330</td><td>304</td><td>330</td><td>304</td></t<>	L	20	Coesivo	S	0	10	╁	t	_	ļ.,	F	0		_	t	0,4			33	33	269	269	0	0	330	304	330	304
A 21 Coesino SI 0 19 21 22.22 22.21 22.22 0 1 1 1 1 1 2 1 2 1 2 1 2		20,5	Coesivo	S	0	19	H	H	_	ŀ	5 218,	0	L	-	H	0,4			33	33	582	582	0	0	337	310	337	310
K 215 Coesino SI 0 19 212 215 220 0 19 212 215 220 0 19 212 215 220 0 1 1 1 21 3 4 6 7 <		21	Coesivo	S	0	19	H	Н	_			0	_	_		0,4	_	_	34	¥	595	292	0	0	345	317	345	317
K 225 Coesivo SI 0 19 225 SSP 88.0 44.0 7		21,5	Coesivo	SI	0	19	Н	H	\perp			0 4	/	/		/ 5'0	1	/	34	34	209	209	0	0	352	324	352	324
K 225 Coesivo SI 0 19 225 2.25 861/1 411/1 225 0.44 1 4 1 35 35 634 0.44 1 4 35 35 634 0 19 325 245 80 440 22 2.25 80 440 22 2.25 80 440 22 2.25 80 440 22 2.24 80 440 22 80 440 80 440 22 80 440 80 440 22 80 440 80 440 80 80 440 80 440 80 80 440 80 440 80 440 80 440 80 80 440 80 440 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80		22	Coesivo	<u></u>	0	19	+	+	_			0	1	-	+	0,4	1	1	34	8 8	620	620	0	0	360	331	360	331
A 225 Common S1 S2 S2 S2 S2 S2 S2 S2 S2 S2 <th< td=""><td>1</td><td>2,25</td><td>Coesivo</td><td>70 0</td><td></td><td>5</td><td>+</td><td>+</td><td>_</td><td>1</td><td>1</td><td>0</td><td></td><td></td><td>$^{+}$</td><td>0,4</td><td> </td><td>- -</td><td>32</td><td>8 8</td><td>634</td><td>5 5</td><td>0</td><td>0</td><td>36/</td><td>338</td><td>367</td><td>338</td></th<>	1	2,25	Coesivo	70 0		5	+	+	_	1	1	0			$^{+}$	0,4		- -	32	8 8	634	5 5	0	0	36/	338	367	338
K 245 Coseivo SI 0 19 23.5 24 240.5 240.5 240.5 240.5 240.5 240.5 1 1 25.6 240.5 1 1 25.6 240.5 1 1 25.6 240.5 1 1 25.6 240.5 250.6 250.5 250.6 250.5 250.6 </td <td></td> <td>23.5</td> <td>Coesivo</td> <td>5 0.</td> <td>0</td> <td>10</td> <td>+</td> <td>+</td> <td>_</td> <td>+</td> <td>+</td> <td>0</td> <td></td> <td>-</td> <td>t</td> <td>0,4</td> <td> </td> <td> </td> <td>36</td> <td>8 %</td> <td>£ 999</td> <td>£ 099</td> <td>0 0</td> <td>0</td> <td>383</td> <td>352</td> <td>383</td> <td>352</td>		23.5	Coesivo	5 0.	0	10	+	+	_	+	+	0		-	t	0,4			36	8 %	£ 999	£ 099	0 0	0	383	352	383	352
K 245 Coselor SI 0 19 224 2.64 2.64 2.64 0 4 7 2.64 6 4 7 2.64 9 4 7 3.64 9 4 7 1 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 7 <t< td=""><td>L</td><td>24</td><td>Coesivo</td><td>ō 0.</td><td>٥</td><td>19</td><td>+</td><td>t</td><td>_</td><td>Ł</td><td>Ŧ</td><td>0</td><td></td><td>-</td><td>t</td><td>0.4</td><td> </td><td> </td><td>36</td><td>88</td><td>674</td><td>674</td><td>0</td><td>0</td><td>391</td><td>359</td><td>391</td><td>320</td></t<>	L	24	Coesivo	ō 0.	٥	19	+	t	_	Ł	Ŧ	0		-	t	0.4			36	88	674	674	0	0	391	359	391	320
K 255 Coseivo SI 0 19 24.5 25 65.0 60.4 7	L	24.5	Coesivo	, (7)	c	19	t	t	4	ŀ	F	0			t	0.4			36	98	688	688	c	c	388	367	388	367
A 265 Coesivo SI 0 19 2.5 2.6 10 1 2 3	L	25	Coesivo	S	0	19	+	t	_		F	0	L	t	t	0.4	ľ	ľ	37	37	701	701	0		407	374	407	374
A 286 Coesivo S1 0 19 25.5 286 287 288 0 4 7		25.5	Coesivo	S	0	19	H	t	┺	ŀ	5 263.	0	/	/	26	0,4			37	37	715	715	0	0	415	382	415	382
Av. 265 S Coselvo SI 0 19 265 257 267 27 0 1 26 26 257 270 0 1 1 26 3 74 744 74 1 26 26 437 30 437 270 0 1 1 26 270 1 1 26 0 4 1 26 440 </td <td></td> <td>26</td> <td>Coesivo</td> <td>S</td> <td>0</td> <td>19</td> <td>H</td> <td>t</td> <td>_</td> <td></td> <td>Ė</td> <td>0</td> <td>/</td> <td>/</td> <td>H</td> <td>0,4</td> <td>1</td> <td>1</td> <td>38</td> <td>38</td> <td>730</td> <td>730</td> <td>0</td> <td>0</td> <td>423</td> <td>389</td> <td>423</td> <td>389</td>		26	Coesivo	S	0	19	H	t	_		Ė	0	/	/	H	0,4	1	1	38	38	730	730	0	0	423	389	423	389
AV 275 Coesivo SI 0 19 27 275 SP 10 41 1 4 3 3 785 785 785 785 448 412 448 412 448 <th< td=""><td></td><td>26,5</td><td>Coesivo</td><td>SI</td><td>0</td><td>19</td><td>Н</td><td>Н</td><td></td><td></td><td>5 272,</td><td>0</td><td>/</td><td>/</td><td></td><td>/ /</td><td>/</td><td>/</td><td>38</td><td>38</td><td>744</td><td>744</td><td>0</td><td>0</td><td>431</td><td>397</td><td>431</td><td>397</td></th<>		26,5	Coesivo	SI	0	19	Н	Н			5 272,	0	/	/		/ /	/	/	38	38	744	744	0	0	431	397	431	397
A7 27.5 Coesivo SI 0 19 27.5 28.7 28.6 0 1 1 1 3 39 77.3 77.3 0 448 447 448 447 448 447 448 447 448 448 447 448 447 448 447 448 447 448 447 448 447 448 447 448		27	Coesivo	\dashv	0	19	\dashv	+	_		1	0	,	,	\dashv	0,4	1	-	38	38	758	758	0	0	440	404	440	404
A* 28 Coselvo SI 0 19 28 80 96 1		27,5	Coesivo	\dashv	0	19	+	+	_	_		0	_	_	+	0,4	\	_	39	33	773	773	0	0	448	412	448	412
A* 285 Coesivo SI 0 19 285 Zep 280 Tool 19 1 285 Zep 280 Tool 286 Zep 380 Tool 1 1 4 4 4 6 818 Rel 818 Rel </td <td></td> <td>28</td> <td>Coesivo</td> <td>+</td> <td>0</td> <td>19</td> <td>+</td> <td>+</td> <td>_</td> <td></td> <td>_ </td> <td>0</td> <td>1</td> <td>1</td> <td>+</td> <td>0,4</td> <td>1</td> <td>1</td> <td>38</td> <td>98</td> <td>788</td> <td>88/</td> <td>0</td> <td>0</td> <td>457</td> <td>420</td> <td>457</td> <td>420</td>		28	Coesivo	+	0	19	+	+	_		_	0	1	1	+	0,4	1	1	38	98	788	88/	0	0	457	420	457	420
A 225 Consiston SI 0 19 23 Consiston 19 29 25 101 69 7 7 7 7 7 7 7 4 40 40 60 61 83 843 444 483 444 <td></td> <td>0,02</td> <td>Coesivo</td> <td>+</td> <td></td> <td>2 2</td> <td>$^{+}$</td> <td>+</td> <td>_</td> <td>+</td> <td>1</td> <td></td> <td>1</td> <td>1</td> <td>+</td> <td>0,4</td> <td></td> <td>1</td> <td>40</td> <td>40</td> <td>9003</td> <td>910</td> <td>0</td> <td>0</td> <td>4400</td> <td>470</td> <td>462</td> <td>470</td>		0,02	Coesivo	+		2 2	$^{+}$	+	_	+	1		1	1	+	0,4		1	40	40	9003	910	0	0	4400	470	462	470
Ar 30 Coselor S1 0 19 295 30 100,2 10 1		29.5	Coesivo	+	0	19	+	+	_			0			+	0.4	,		40	4	833	833	0	0	483	444	483	3 4
A* 31 Coesivo SI 1 19 30 31 104,0 623,2 310 313,2 0 1 2 0 1 1 2 6 0 4 1 1 4 4 4 4 4 4 4 4 4 4 4 9 9 0 510 4 8 8 9 9 0 0 6 9 9 1 1 1 4 4 4 9 9 0 5 9 4 8 9 9 0 0 6 9 9 9 9 0 0 9 1 1 1 4 2 4 9 1 4 8 9 9 0 5 9 9 9 1 4 2 4 4 4 4 9 9 9 1 4 9 1		30	Coesivo	S	0	19	Н	Н	\perp		H	0	_	1		0,4	1	/	41	41	848	848	0	0	492	452	492	452
A* 32 Coesivo Si 2 19 31 32 106.0 642,2 320 322,2 0 / / / 26 0,4 / / / 26 0,4 / / / 42 0 91 01 01 0 0 0 0 0 0 0 0 0 0 0 0 0 0		31	Coesivo	S	+	16	Н	Н	ш			0	/	/		0,4	/	/	42	42	880	880	0	0	510	469	510	469
		32	Coesivo	S	2	19	Н	Н				0	/	- /		/ / /	1	/	42	42	912	912	0	0	529	486	529	486

5.4 ANALISI STRUTTURALE

5.4.1 Sollecitazioni di calcolo

I seguenti grafici riportano le azioni di taglio e flettenti agenti per la combinazione sismica che risulta essere la più significativa ai fini del calcolo.

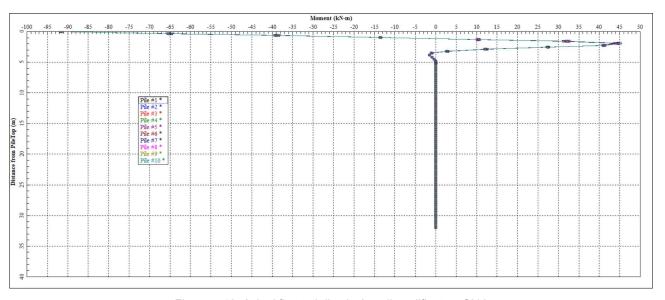


Figura 5-10. Azioni flettenti di calcolo sulla palificata – SLV

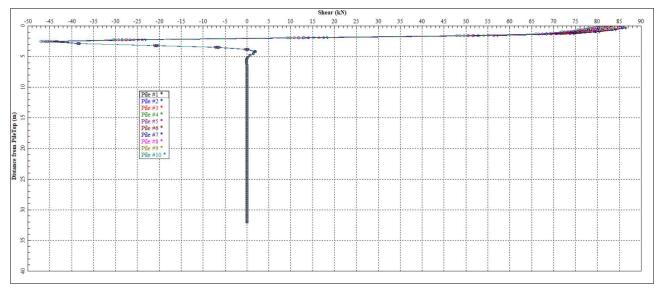


Figura 5-11. Azioni taglianti di calcolo sulla palificata – SLV

5.4.2 Verifica strutturale

DATI MATERIALE			
Acciaio S355 ex Fe510			
Modulo elastico:	E _s [MPa] =	210000	
Tensione ultima caratteristica:	f _u [MPa] =	510	
Tensione di snervamento caratteristica:	f _y [MPa] =	355	
Coefficiente di adattamento plastico:	ψ =	1,05	
Coefficiente di sicurezza sezioni trasversali (classe 1-2-3):	γ _{M0} =	1,05	
Coefficiente di sicurezza sezioni trasversali (classe 4):	γ _{M1} =	1,1	
Coefficiente di sicurezza all'instabilità:	γ _{M1} =	1,1	
Source di Ground La di Illiano de la Constantia.	pp [kg/m] =	41,38	
DATI GEOMETRICI TUBOLARE	βρ [κg/m] =	41,50	ļ
Classe profilo:		1	
Diametro esterno:	D [mm] =	177,8	
Spessore:	sp [mm] =	10	
Diametro interno:	d [mm] =	157,8	
Area:	$A [mm^2] =$	5271,6	
Area resistente a taglio:	$A_v = 2A/\pi \text{ [mm}^2\text{]} =$	3356,0	
momento statico	S* [mm ³] =	140950.9	
Equivalente area di taglio	A*=It/S* [mm ²] =	2642,0	
Momento di inerzia flessionale:	I [mm ⁴] =	18619818,1	
Momento di inerzia torsionale:	J [mm ⁴] =	37239636,3	
Modulo di resistenza elastico:	W _{el} [mm ³] =	209446,8	
Modulo di resistenza plastico:	W_{pl} [mm ³] =	281901,7	
Raggio giratore d'inerzia:	i [mm] =	59,4	
raggio giraci o a merzia.	, , , , , , , , , , , , , , , , , , , ,	00,4	
SOLLECITAZIONI			
Momento (valore di design):	M _{Sd} [KNm] =	74	
Taglio (valore di design):	V _{Sd} [KN] =	70	
Azione assiale (valore di design):	N _{Sd} [KN] =	400,8	
RESISTENZE DI PROGETTO (resistenza composta pressofles	sione+taglio)		
Momento plastico (flessione):	$M_{pl,Rd}$ [KNm] =	95,3	
Taglio plastico:	$V_{pl,Rd}$ [KN] =	655,1	
	ρ =	0,6	
Interazione flessione-taglio:		trascurabile	
Momento plastico (flessione+taglio):	$M_{pl,Rd}$ [KNm] =	95,3	
Azione assiale plastico:	$N_{pl,Rd}$ [KN] =	1782,3	
Momento plastico ridotto (pressoflessione+taglio):	$M_{N,Rd}$ [KNm] =	90,5	
VERIFICHE DI RESISTENZA SLU (sollecitazione composta pi	ressoflessione+taglio)		S_d/R_d (<1)
Verifica azione assiale	N_{Sd} < $N_{pl,Rd}$:	soddisfatta	0,22
Verifica taglio	V_{Sd} < $V_{pl,Rd}$:	soddisfatta	0,11
Verifica flessione	M_{Sd} < $M_{pl,Rd}$:	soddisfatta	0,77
Verifica flessione + taglio	M_{Sd} < $M_{pl,Rd}$:	soddisfatta	0,77
Verifica pressoflessione + taglio	M_{Sd} < $M_{N,Rd}$:	soddisfatta	0,81

6 ELEVAZIONE SPALLA – STRUTTURA ORIGINARIA (ESISTENTE)

Nel seguito si presentano le verifiche di resistenza e di ancoraggio dei tiranti passivi di nuova costruzione previsti come intervento di consolidamento delle spalle esistenti.

6.1 CURVE CARATTERISTICHE TIRANTI-SPOSTAMENTI

Come descritto nel paragrafo 3.4 sono state costruite, sulla base dei dati di input riportati nella relazione di calcolo delle sovrastrutture e delle sottostrutture, le curve tiro-spostamenti di seguito rappresentate.

Dim. fondazione	Dimensione T	rasversale	L=	11.72	m		
	Dimensione L	ongitudinale	B =	4.60	m		
Modulo del terreno	E =	75000	kPa	(modulo elastico	da adottare p	er terreno con	
				caratteristiche n	nigliorate da pr	esenza pali tipo	FRANKI)

Solleci	tazioni St	atica sol	o per	manenti			N (kN)	H (ki	V)	M	(kNm)		
N	=		908	KN/m			10640	396	8	10	0341		
Н	=		339	KN/m									
М	=		882	KN m/m			δν	δh			θ	δ	h _{tot,sta, pp}
В	=	1	1.72	m				7.30E	-03	1.7	4E-03		1.69E-02
	llecitazior	ու (al m)					N (kN)	H (kl	,		(kNm)		
N	=		908	KN/m			10640	449	4	13	3244		
Н	=		383	KN/m									
M	=		1130	KN m/m			δν	δh			θ	δh	ot,sta,pp+acc
В	II	1	1.72	m				8.27E	-03	2.2	3E-03		2.05E-02
90	llecitazior	ni (al m)	SI E	rara			N (kN)	H (ki	<u> </u>	1/1	(kNm)		
		<u>,, , , , , , , , , , , , , , , , , , ,</u>						,	,		. ,		
N	=			KN/m			11727	489	9	16	6141		
Н	=			KN/m									
М	=		1377	KN m/m			δν	δh			θ	δh	ot,sta,pp+acc
В	=	1	1.72	m				9.01E	-03	2.7	1E-03		2.39E-02
S	ollecitazio	ni (al m)	SLF	an			N (kN)	H (ki	N)	М	(kNm)		
N	=	T (GII 1117)		KN/m			10640	410	,		1115		
Н	=			KN/m			10010			•			
М	=			KN m/m			δν	δh			θ		$\delta h_{tot,sis}$
В	=	1	1.72					7.56E	-03	1.8	7E-03		1.78E-02
											00		0_ 0_
Da pp a SLE rara Tiro/m	Tiro (kN)	N (kN)	H (kN) M (kNm)	δΙ	<u> </u>	θ	Δh_{θ}	δh		Δδh _{tot,(sis-sta,r}		Δδh _{tot,(sis-sta,pp)}
0	0	11726.82	4899.4		9.016		2.71E-03	1.49E-02	2.39E		0.00E+0		0.00708
50	586	11726.82	4313.4		7.93		2.17E-03	1.19E-02	1.99E		-4.06E-0		0.00302
100	1172	11726.82	3727.4		6.86	E-03	1.63E-03	8.97E-03	1.58E	_	-8.12E-0		-0.00104
150	1758	11726.82	3141.4	14 6472.30	5.78	E-03	1.09E-03	5.99E-03	1.18E	-02	-1.22E-0)2	-0.00510
200	2344	11726.82	2555.4	14 3249.30	4.70E	E-03	5.46E-04	3.01E-03	7.71E	-03	-1.62E-0)2	-0.00916
Da pp a SLE freq													
Tiro/m	Tiro (kN)	N (kN)	H (kN) M (kNm)	δl	1	θ	Δh_{θ}	δh_t	ot	$\Delta\delta h_{tot,(sis-sta,p)}$	op+acc)	$\Delta\delta h_{tot,(sis\text{-sta,pp})}$
0	0	10639.62	4494	13243.81	8.27	-03	2.23E-03	1.22E-02	2.05E	-02	-3.43E-0)3	0.00365
50	586	10639.62	3908		7.19E		1.69E-03	9.27E-03	1.65E	_	-7.48E-0		-0.00041
100	1172	10639.62	3322		6.11		1.14E-03	6.29E-03	1.24E		-1.15E-0		-0.00446
150	1758	10639.62	2736		5.03E		6.01E-04	3.31E-03	8.34E		-1.56E-0		-0.00852
200	2344 2930	10639.62 10639.62	2150 1564		3.95E 2.88E		5.92E-05 -4.83E-04	3.25E-04 -2.66E-03	4.28E 2.21E	_	-1.97E-0		-0.01258 -0.01664
250													

=

11.72 m

_i B

Autostrada A14: Bologna – Bari - Taranto Tratto Bologna Borgo Panigale – Bologna San Lazzaro Potenziamento in sede del sistema autostradale e tangenziale di Bologna – "Passante di Bologna" – Progetto Definitivo

3.42E-02

Condizione SLE	qp													
Tiro/m	Tiro (kN)	N (kN)	H (kN)	M (kNm)	δł	ı	θ		Δh_{θ}	δh_{to}	ot	$\Delta\delta h_{tot,(sis-sta,p)}$	p+acc)	$\Delta\delta h_{tot,(sis-sta,pp)}$
0	0	10639.62	4108.2	3 11114.78	7.56E	-03	1.87E-03	1.	.03E-02	1.78E	-02	-6.10E-0	3	0.00097
50	586	10639.62	3522.2	3 7891.78	6.48E	E-03	1.33E-03	7.	.30E-03	1.38E	-02	-1.02E-0	2	-0.00308
100	1172	10639.62	2936.2	3 4668.78	5.40E	E-03	7.85E-04	4.	.32E-03	9.72E	-03	-1.42E-0	2	-0.00714
150	1758	10639.62	2350.2	3 1445.78	4.32E	E-03	2.43E-04	1.	.34E-03	5.66E	-03	-1.83E-0	2	-0.01120
200	2344	10639.62	1764.2	3 -1777.22	3.24E	E-03	-2.99E-04	-1.	.64E-03	1.60E	-03	-2.23E-0	2	-0.01526
S	ollecitazior	ni (al m)	SLU	STR			N (kN)		H (ki	V)	М	(kNm)		
N	=		930	KN/m			10905		661	4	2	23851		
Н	=		564	KN/m										
М	=		2035	KN m/m			δv		δh			θ	δh	tot,sta,pp+acc

Da pp a SLU-STR										
Tiro/m	Tiro (kN)	N (kN)	H (kN)	M (kNm)	δh	θ	Δh_{θ}	δh_{tot}	$\Delta\delta h_{tot,(sis\text{-sta,pp+acc})}$	$\Delta\delta h_{tot,(sis-sta,pp)}$
0	0	10904.69	6614.242	23850.92	1.22E-02	4.01E-03	2.21E-02	3.42E-02	1.03E-02	0.01736
50	586	10904.69	6028.242	20627.92	1.11E-02	3.47E-03	1.91E-02	3.02E-02	6.23E-03	0.01330
100	1172	10904.69	5442.242	17404.92	1.00E-02	2.93E-03	1.61E-02	2.61E-02	2.17E-03	0.00925
150	1758	10904.69	4856.242	14181.92	8.93E-03	2.38E-03	1.31E-02	2.20E-02	-1.89E-03	0.00519
200	2344	10904.69	4270.242	10958.92	7.85E-03	1.84E-03	1.01E-02	1.80E-02	-5.95E-03	0.00113
250	2930	10904.69	3684.242	7735.92	6.78E-03	1.30E-03	7.15E-03	1.39E-02	-1.00E-02	-0.00293

1.22E-02

4.01E-03

So	ollecitazioni	(al m) SIS	STR	N (kN)	H (kN)	M (kNm)	
N	=	969	KN/m	11358	7148	28612	
Н	=	610	KN/m				
М	=	2441	KN m/m	δν	δh	θ	$\delta h_{\text{tot,sis}}$
В	=	11.72	m		1.31E-02	4.81E-03	3.96E-02

Condizione SIS-S	STR									
Tiro/m	Tiro (kN)	N (kN)	H (kN)	M (kNm)	δh	θ	Δh_{θ}	δh_{tot}	$\Delta\delta h_{tot,(sis\text{-sta,pp+acc})}$	$\Delta\delta h_{tot,(sis\text{-sta},pp)}$
0	0	11357.94	7148.46	28612.00	1.31E-02	4.81E-03	2.65E-02	3.96E-02	1.57E-02	0.02275
50	586	11357.94	6562.46	25389.00	1.21E-02	4.27E-03	2.35E-02	3.56E-02	1.16E-02	0.01869
100	1172	11357.94	5976.46	22166.00	1.10E-02	3.73E-03	2.05E-02	3.15E-02	7.55E-03	0.01463
150	1758	11357.94	5390.46	18943.00	9.91E-03	3.19E-03	1.75E-02	2.74E-02	3.49E-03	0.01057
200	2344	11357.94	4804.46	15720.00	8.84E-03	2.64E-03	1.45E-02	2.34E-02	-5.64E-04	0.00651

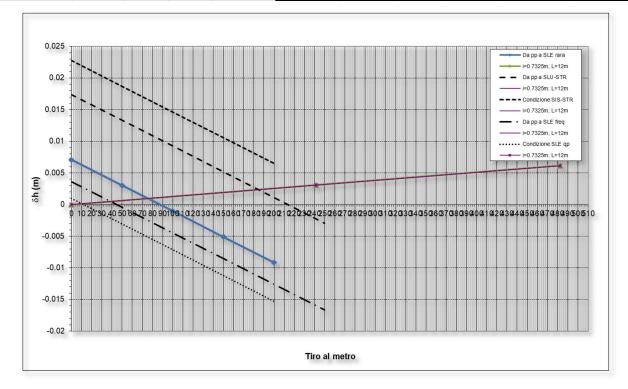


Figura 6-1. Curve caratteristiche tiranti passivi-spalla

6.1.1 Azioni agenti sui tiranti e in fondazione

Le azioni agenti nei tiranti e in fondazione, ridotte per effetto degli stessi tiranti, sono le seguenti:

Comb.	Tiro (kN/tirante)
SLE - RARA	55
SLE -FREQ.	28
SLE - Q-P	7
SLV	177
SLU	135

6.1.2 Verifica dei micropali di ancoraggio passivo delle spalle

Si riportano nel presente paragrafo le verifiche geotecniche e strutturali dei tiranti di ancoraggio della spalla esistente.

La verifica a sfilamento del tirante viene svolta in accordo a quanto riportato nel par. 3.5 con riferimento alla combinazione A1+M1+R3.

Il valore caratteristico della resistenza allo sfilamento dell'ancoraggio (Rak), nel caso specifico, è stato dedotto con metodi analitici a partire dai valori caratteristici dei parametri geotecnici.

In particolare, in accordo con quanto proposto da *Bustamante e Doix*, la resistenza di calcolo è stata valutata mediante la formula:

$$R_{ac} = \pi \cdot D \cdot L_A \cdot q_s$$

avendo assunto:

D = $\alpha \cdot \Phi_{perf}$ (diametro efficace ottenuto a seguito della perforazione);

 $\alpha = 1.0$;

 $\Phi_{perf} = 0.18 \text{ m} \text{ (diametro nominale di perforazione)};$

L_A = lunghezza del bulbo di ancoraggio del tirante;

q = 100 kPa (fattore di aderenza valutato cautelativamente sulla base della caratterizzazione geotecnica).

Per il caso in esame i coefficienti ξ_{a3} e ξ_{a4} sono stati assunti pari a 1.80.

Calcolata la resistenza caratteristica R_{ak} , la resistenza di progetto R_{ad} si ottiene fattorizzando i valori di R_{ak} mediante il coefficiente γ_{Rad} = 1.2 riportato in Tab.6.6.I del D.M. 17/01/2018 nell'ipotesi di tiranti permanenti.

La verifica strutturale del tirante viene svolta confrontando l'azione assiale con la massima azione assiale resistente offerta dalla sezione.

Capacità portante di un tirante (Bustamante e Doix)

$T_{eq,max}$	242	[tiro/m]	massima azione assia	le al metro	o lineare su tirante equivalente (Comb.14)
i	0.73	[m]	interasse tiranti		
α	15	[°]	inclinazione tiranti ne	l piano ver	ticale
β	5	[°]	inclinazione tiranti ris	petto pian	o orizzontale
T_{max}	184	[kN]	massima azione assia	le su tirant	re
d_{perf}	0.180	[m]	f_{yk}	355	[N/mm ²]
d_a	114.3	[mm]	γ_{s}	1.15	
Sa	10	[mm]			
A_a	3277	[mm ²]	T_{Rd_STR}	1011	[kN]
$lpha_{\sf d}$	1.00		ξ_{a3}	1.80	
L_{fond}	12.00	[m]	γ _{Ra,p}	1.20	
τ_{lim}	100	kN/m ²			
T_{Rcal_GEO}	679	[kN]	T_Rd	314	_ [kN]
T_{Rk_GEO}	377	[kN]	FS	1.71	(>1)
T_{Rd_GEO}	314	[kN]			_

7 FONDAZIONE SPALLA – STRUTTURA ORIGINARIA (ESISTENTE)

Nel seguito si presentano le verifiche di capacità portante della fondazione diretta delle spalle esistenti (struttura originaria).

7.1 VERIFICA DI CAPACITÀ PORTANTE

							сом	B. STR							Sismic	a - STR	
Azioni di calcolo	solo perm	no traffico	no traffico	Traffico 1 (a)	Traffico 1 (b)	Traffico 2a	Traffico 2a	Traffico 2a	Traffico 2a	no traffico	Traffico 1	Traffico 2a	Traffico 2a	Traffico +kv	Traffico +kv		Traffico -kv
AZIONI di Calcolo	(STR)	<u>(a)</u>	<u>(b)</u>			<u>(a)</u>	<u>(b)</u>	config 2 (a)	config 2 (b)				config 2	(max comp)	(max traz)	(max comp)	(max traz)
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
N _{Ed} [kN/m]	-	1139	1268	1374	1461	1307	1393	1204	1291	908	1101	1033	930	1004	969	881	847
V _{Ed} [kN/m]	-	390	413	404	419	392	407	388	403	388	395	383	379	370	368	358	356
M _{Ed} [kNm/m]	-	-954	-885	-909	-860	-980	-932	-989	-940	-957	-938	-1009	-1018	-1103	-1110	-1093	-1100
Verifica di capacità portante in condizioni	(DRENATE / N	NON DRENATE	<u>)</u>	NON DRENAT	E												
Dimensioni geometriche fondazione	D	3.18	3.18	3.18	3.18	3.18	3.18	3.18	3.18	3.18	3.18	3.18	3.18	3.18	3.18	3.18	3.18
binenson geometricie jonadzione	L	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
	В	4.60	4.60	4.60	4.60	4.60	4.60	4.60	4.60	4.60	4.60	4.60	4.60	4.60	4.60	4.60	4.60
	e _L	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	e _B	0.84	0.70	0.66	0.59	0.75	0.67	0.82	0.73	1.05	0.85	0.98	1.09	1.10	1.15	1.24	1.30
	L'	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
	B'	2.93	3.20	3.28	3.42	3.10	3.26	2.96	3.14	2.49	2.90	2.65	2.41	2.40	2.31	2.12	2.00
Parametri geotecnici terreno di fondazion	e																
Peso proprio dell'acqua	Υw	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Peso proprio terreno di riporto	Υı	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
Peso proprio terreno di fondazione	γ2	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19
Angolo d'attrito	φ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coesione efficace	c'	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coesione non drenata	Cu	303	303	303	303	303	303	303	303	303	303	303	303	303	303	303	303
Set di coefficienti parziali		M1	M1	M1	M1	M1	M1	M1	M1	M1	M1	M1	M1	M1	M1	M1	M1
Peso proprio terreno di riporto	γ' _{1_Mi}	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
Peso proprio terreno di fondazione	γ' _{2_Mi}	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
Angolo d'attrito fattorizzato	φ_м	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	φ_м	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Coesione efficace fattorizzata	c' Mi	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coesione non drenata fattorizzata	C _{u_Mi}	303	303	303	303	303	303	303	303	303	303	303	303	303	303	303	303
Fattori di capacità portante																	
	N _γ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	N _c	5.14	5.14	5.14	5.14	5.14	5.14	5.14	5.14	5.14	5.14	5.14	5.14	5.14	5.14	5.14	5.14
	N _q	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fattori di forma																	
(per forma rettangolare)	Sy	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
	Sc	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.00	1.01	1.01	1.00	1.00	1.00	1.00	1.00
	S _q	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fattori di profondità																	
	d _y	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	d _c	1.33	1.40	1.39	1.37	1.32	1.39	1.33	1.32	1.36	1.33	1.35	1.37	1.37	1.38	1.39	1.40
	d _q	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fattori di inclinazione del carico																	
	m _B	1.97	1.97	1.97	1.97	1.97	1.97	1.97	1.97	1.98	1.97	1.97	1.98	1.98	1.98	1.98	1.98
	m _L	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.02	1.03	1.03	1.02	1.02	1.02	1.02	1.02
	θ [*]	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90
	m	1.97	1.97	1.97	1.97	1.97	1.97	1.97	1.97	1.98	1.97	1.97	1.98	1.98	1.98	1.98	1.98
	i _v	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	le :																
Fattori di inclinazione del piano di posa	Iq.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
, accor, a. memuzione dei pidno di posa	b,	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	b _c	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fattori di inclinazione del piano campagn	b _q	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
, occor, ar memoratione dei piano campagn	g,	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	a a	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	g,	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Calcolo della capacità portante della fond			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
, portante della jona		2145	2249	2236	2211	2127	2239	2141	2123	2192	2147	2174	2201	2202	2214	2238	2253
Set di coefficienti parziali	q _{lim}	R3	R3	R3	R3	R3	R3	R3	R3	R3	R3	R3	R3	R3	R3	R3	R3
	ΥR	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.20	1.20	1.20	1.20
q = q _{lim} / γ _R	q q	1532	1607	1597	1579	1519	1599	1529	1517	1565	1534	1553	1572	1835	1845	1865	1878
Q = q x B' x L'	Q	448169	514726	523461	540374	471132	521680	452458	476609	390054	444227	411054	379308	440874	425874	395254	375715
	٩		314723	323-01	540574	471132	321000	432430	470003	330034		711034	3,3303	770074	423074	333234	3,3,13
FS = Q / (N _{Ed} x L') (>1)	FS	3.93	4.06	3.81	3.70	3,60	3.74	3.76	3.69	4.30	4.04	3.98	4.08	4.39	4.39	4.48	4.44
13 = Q/ (IVEd X L / (X L)																	

7.2 VERIFICA A SCORRIMENTO

		A1+M1+R3	
Carico	1	2	3
C1	1.00	1.00	1.00
C2	1.00	1.00	1.00
C3	1.35	1.00	1.00
C4a	0.00	0.00	0.00
C4b	1.35	0.20	0.20
C4c	0.00	0.00	0.00
C4d	0.00	0.00	0.00
C4e	0.00	0.00	0.00
C5	1.35	0.00	0.00
C6	1.35	1.00	1.00
C7	0.00	0.00	0.00
C8	-0.90	0.00	0.00
CS1 (-kv)	0.00	1.00	0.00
CS1 (+kv)	0.00	0.00	1.00
CS2 (-kv)	0.00	1.00	0.00
CS2 (+kv)	0.00	0.00	1.00
N _{Ed} [kN/m]	908	847	969
V _{Ed} [kN/m]	564	568	610
M _{Ed} [kN/m]	-2042	-2266	-2441
Comb.	M1	M1	M1

Verifica in presenza d	i tiranti passivi			
Azioni di calcolo decurt	tate del contribu	ito resistente off	ferto dal tirant	te passivo
h_tiranti [m]	5.5	da intradosso f	ondazione	
i_tiranti [m]	0.73			
n_tiranti	16			
	1	2	3	
T _{Ed} [tiro/m]	186	212	242	
V_ _{TEd} [kN/m]	186	212	242	
M_ _{TEd} [kNm/m]	1023	1166	1331	
N _{Ed} [kN/m]	908	847	969	Azioni di calcolo decurtate del
V _{Ed} [kN/m]	378	356	368	contributo resistente offerto dal
M _{Ed} [kN/m]	-1019	-1100	-1110	tirante passivo
Comb.	M1	M1	M1	
i_tiranti [m] 0.73 n_tiranti 16 1 2 3 T _{Ed} [tiro/m] 186 212 242 V_TEd [kN/m] 186 212 242 M_TEd [kNm/m] 1023 1166 1331 N _{Ed} [kN/m] 908 847 969 Azioni di calcolo decur contributo resistente di tirante passivo V _{Ed} [kN/m] -1019 -1100 -1110 tirante passivo Comb. M1 M1 M1 CONDIZIONI NON DRENATE Countributo resistente di tirante passivo Comb. M1 M1 M1 Condizioni Non Drenate Countributo resistente di tirante passivo Countributo resistente di tirante passivo Comb. M1 M1 M1 Comb. M2 M3 303 303 R _{Ed} [kN/m] 714 606 700 Y _R 1.10 1.00 1.00				
c _u [kN/m²]	303	303	303	
R _{Ed} [kN/m]	714	606	700	
Ϋ́R	1.10	1.00	1.00	
FS (≥1)	1.71	1.70	1.90	

8 FONDAZIONE PILA – STRUTTURA ORIGINARIA (ESISTENTE)

La palificata di fondazione della pila esistente è realizzata con pali tipo Franki aventi le seguenti caratteristiche:

•	Lunghezza pali	10m
•	Diametro	Ø500mm
•	Numero file pali in direzione trasversale	6
•	Interasse micropali in direzione trasversale	2.00m
•	Numero file micropali in direzione longitudinale	3
•	Interasse micropali in direzione longitudinale	1.50m

Il rinforzo strutturale della fondazione esistente è così costituito:

•	Lunghezza pali	20m
•	Diametro	Ø500mm
•	Numero file pali in direzione trasversale	10
•	Interasse pali in direzione trasversale	1.10m
•	Numero file micropali in direzione longitudinale	(2+2=) 4
•	Interasse micropali in direzione longitudinale	1.10m

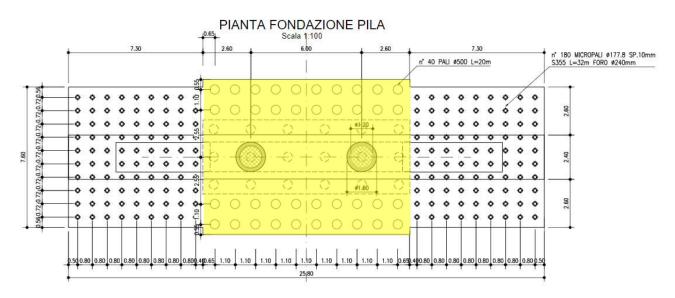


Figura 8-1. Pila – Pianta fondazioni

Dato che la pila presenta rigidezza nella direzione trasversale molto superiore rispetto a quella nella direzione longitudinale, le verifiche della palificata di fondazione sono condotte solo per le azioni agenti nella direzione longitudinale.

8.1 AZIONI DI CALCOLO

I seguenti tabulati riportano l'analisi dei carichi e le sollecitazioni di calcolo agenti in fondazione.

ANALISI L	JEI CAKICH	AGENIIS	OLL IIVIPALCATO E G	RAVANTI SULLA PILA	١						
n _{imp}	2,00	[-]	n° impalcati								
^arichi na	rmanenti	twitting!									
zaricni pe	rmanenti	strutturan									
ravi esist	enti					Travi nuo	va realizzaz	ione			
γ	25,00	[kN/m ³]	peso proprio			γ	78,50	[kN/m ³]	peso prop	io	
Α	0,56	[m ²]	area della sezione			Α	0,06	[m ²]	area della	sezione	
L	20,40	[m]	lunghezza			L	21,50	[m]	lunghezza		
n	4,00	[-]	n° travi			n	6,00	[-]	n° travi		
P _i	575	[kN]	carico su singolo ap	noggio impaleato		Pi	309	[kN]	carico su s	ingolo anno	oggio impalcato
P	1151	[kN]	carico su pila	poggio impaicato		P	619	[kN]	carico su p		Jegio impaicate
-	1131	[KIV]	carico su pila			, F	019	[KIN]	carico su p	iid	
Soletta es	<u>istente</u>					Soletta di	nuova real				
γ	25,00	[kN/m ³]	peso proprio			γ	25,00	[kN/m ³]	peso prop	rio	
h	0,20	[m]	spessore			h	0,25	[m]	spessore		
В	10,51	[m]	larghezza			В	10,56	[m]	larghezza		
L	21,50	[m]	lunghezza			L	21,50	[m]	lunghezza		
n	1,00	[-]	n°			n	1,00	[-]	n°		
p .	565	[kN]	carico su singolo ap	noggio impalante		Pi	710	[kN]	carico cu	ingolo ana	oggio impalent
P _i	1130	[kN]	carico su singolo ap	Poggio impaicato		P	1419	[kN]	carico su s		oggio impalcato
	1130	[KIV]	carico su pila				1415	[KIV]	carico su p	iia	
Cordoli											
γ	25,00	[kN/m ³]	peso proprio								
h	0,15	[m]	spessore								
В	0,70	[m]	larghezza								
Ĺ	21,50	[m]	lunghezza								
n	2,00	[-]	n°								
Pi	56	[kN]	carico su singolo ap	noggio impalcato							
P	113	[kN]	carico su pila	peggie impareate							
Carichi pe	rmanenti	non struttu	<u>rali</u>								
Pavimenta	azione esist	tente				Paviment	azione di nu	uova realizz	azione		
γ	22,00	[kN/m ³]	peso proprio			γ	22,00	[kN/m ³]	peso prop	io	
h	0,20	[m]	spessore			h	0,11	[m]	spessore		
В	10,51	[m]	larghezza			В	9,16	[m]	larghezza		
L	21,50	[m]	lunghezza			L	21,50	[m]	lunghezza		
n	1,00	[-]	n°			n	1,00	[-]	n°		
P _i	497	[kN]	carico su singolo am	noggio impalanto		Pi	238	[kN]	carico su a	ingolo ana	oggio impalest
P	994	[kN]	carico su singolo ap	Poggio impaicato		P	477	[kN]	carico su s		oggio impalcato
			,								
Carichi va	riabili da tı	raffico - tar	ndem system		Tab. 5.1.I	II - Intensità dei	i carichi Q _{ik} e q _i	ik per le diverse	corsie		
w	19,67	[m]	larghezza totale imp	palcato		Posizione		Carico asse Q	k [kN]	q _{ik} [kl	
n _l	6,00	[-]	n° corsie convenzio		Corsia i	Numero 1		300		9,0	
					Corsia l	Numero 2		200		2,5	50 —
n _c	3,00	[-]	n° corsie convenzio		Corsia l	Numero 3		100		2,5	50
***			LIDEGRATED CORCID COR	WENTIONALA							
w _l	3,00 10,67	[m]	parte rimanente	IVENZIONAIE	Altre co	orsie		0,00		2,5	50

arichi va	riabili da tr	affico - uni	iformly distributed	oads						
				3333						
w	19,67	[m]	larghezza totale im	palcato						
n _l	6,00	[-]	n° corsie convenzio	onali						
n _c	3,00	[-]	n° corsie convenzio	onali con traffico						
WI	3,00	[m]	larghezza corsia co	nvenzionale						
W _{rim}	10,67	[m]	parte rimanente							
W ₁	3,00	[m]								
q ₁	9,00	[kN/m ²]								
W ₂	3,00	[m]								
q ₂	2,50	[kN/m ²]								
W ₃	3,00	[m]								
q ₃	2,50	[kN/m ²]								
W _{rim}	10,67	[m]								
q _{rim}	2,50	[kN/m ²]								
L	21,50	[m]	lunghezza							
n	1,00	[-]	n°							
Pi	738	[kN]	carico su singolo a	opoggio impalcato						
Р	1477	[kN]	carico su pila							
NALISI F	DEI CARICH	I DIRFTTAN	ΛΕΝΤΕ AGENTI SULI	A PILA						
.,										
arichi pe	ermanenti s	trutturali								
ulvino es	sistente				Pulvino d	i nuova real	<u>izzazione</u>			
γ	25,00	[kN/m³]	peso proprio		γ	25,00	[kN/m³]	peso propr	io	
A	10,46	[m²]	area della sezione	(vista frontale)	A	16,27	[m ²]	area della		

ANALISI	DEI CARICH	I DIRETTAN	MENTE AGENTI SULLA PILA				
Carichi p	ermanenti s	trutturali					
<u>Pulvino e</u>	sistente			Pulvino di	nuova real	izzazione	
γ	25,00	[kN/m ³]	peso proprio	γ	25,00	[kN/m³]	peso proprio
Α	10,46	[m ²]	area della sezione (vista frontale)	A	16,27	[m ²]	area della sezione
b	1,60	[m]	larghezza	b	1,60	[m]	larghezza
n	1,00	[-]	n° elementi	n	1,00	[-]	n° elementi
Р	418	[kN]	carico su pila	P	651	[kN]	carico su pila
Fusto esi:	stente			Fusto di nu	uova realiza	zazione	
γ	25,00	[kN/m ³]	peso proprio	γ	25,00	[kN/m ³]	peso proprio
Ø	1,60	[m]	diametro	A	8,00	[m ²]	area (sezione orizzontale)
Н	5,70	[m]	altezza	Н	6,15	[m]	altezza
n	2,00	[-]	n° elementi	n	2,00	[-]	n° elementi
Р	573	[kN]	carico su pila	P	2460	[kN]	carico su pila
Plinto							
γ	25,00	[kN/m ³]	peso proprio				
Α	13,58	[m ²]	area (sezione verticale)				
b	25,80	[m]	lunghezza				
n	1,00	[-]	n° elementi				
P	8759	[kN]	carico su pila				

SOLLECITAZ	ZIONI DI CA	LCOLO ALLA B	ASE DELLA I	PILA - SLU								
Carichi verti	cali da imp	<u>alcato</u>										
0 111					P [kN]	(04)						
- Carichi pe					4431	(G1)						
		on strutturali	Custom		1471	(G2)						
		affico (Tandem affico (Uniform		d Loads)	1200 1477	(Q1-ts)						
- Cariciii vei	rticali da tra	arrico (Oniirorrii	ily Distribute	u Loaus)	14//	(Q1-udl)						
Carichi verti	cali agenti	direttamente sı	u pila									
- Carichi pe	rmanenti st	trutturali			12861	(G1)						
Caulabiauti	1: +-+-1: -											
- Carichi pe		genti in fondaz	<u>ione</u>		17292	(G1)	· · · · · · · · · · · · · · · · · · ·	γG / γQ 1,35		23345		
		on strutturali			1471	(G1) (G2)	X X	1,35	=	1986		
		affico (Tandem	System)		1200	(Q1)	x	1,35		1620		
		affico (Uniform		d Loads)	1477	(Q1)	X	1,35	=	1993		
505111 VC1			, 5.50115010			(41)	^	2,55		28944	[kN]	
Carichi al me	etro lineare	per calcolo pa	lificata									
L	25,8	[m]										
P	1122	[lcN1/ma]										
Р	1122	[kN/m]										
SOLLECITAZIO	ONI DI CALC	OLO ALLA BASE	DELLA PILA -	SLV								
		razione di proget			el "plateau" :	sismico						
		pettro in accelera	azione di prog	etto)								
a _g	0,212	[g]										
F ₀	2,439 1,62	[-]										
η	1,02	[-]										
a*	0,838	[g]										
Nella tabella : h = distanza v		punto di applicazi	ione carichi ri	spetto intradosso	n fondazione							
		ndizione sismica		specto intradosse	TOTIGAZIOTIC							
y = forza di i	•											
M = momento	o ribaltante i	n corrispondenza	intradosso fo	ondazione								
Pariahi da imr	naleata											
Carichi da imp Carico	P [kN]	Fy [kN]	h [m]	Mz [kNm]								
(G1)	4431	7424	9,77	72528								
(G2)	1471	2464	9,77	24074								
(Q1-ts)	240	201	9,77	1964								
(Q1-udl)	295	495	9,77	4833								
Carichi su pila	1											
Carico	P [kN]	Fy [kN]	h [m]	Mz [kNm]								
(G1 - pulv.)	1069	895	8,95	8014								
(G1 - fusti)	573	480	5,45	2616								
(G1 - setti)	2460	2061	5,68	11694								
(G1 - plinto)	8759	7337	1,30	9538								
<u>Totale</u>	19298	21357		135263								
Carichi al met	tro lineare pe	er calcolo palifica	<u>ita</u>									
L	25,8	[m]										
	25,5											
	P [kN/m			Mz [kNm/m]								
tot.	748	828		5243								

8.2 MODELLO DI CALCOLO

Il modello di calcolo considera sia le opere di fondazione esistenti che quelle di nuova realizzazione (rinforzo strutturale).

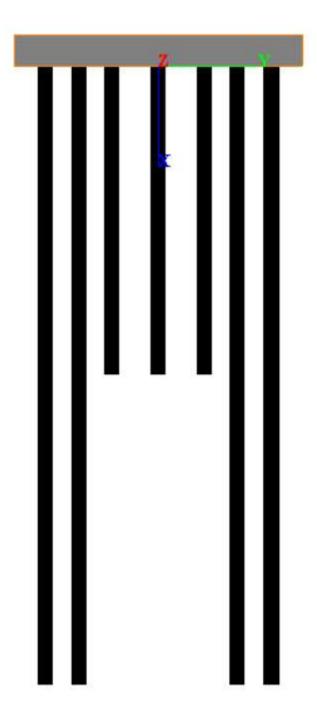


Figura 8-2. Pila - Modello di calcolo palificata: piano y-x

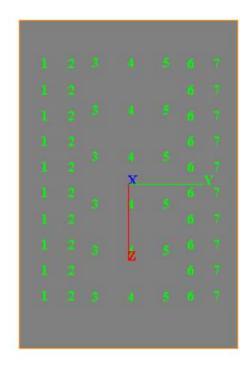


Figura 8-3. Pila - Modello di calcolo palificata: piano y-z

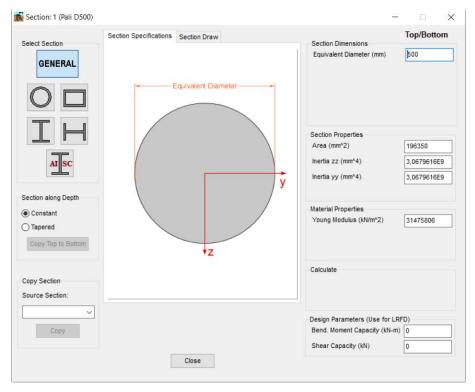


Figura 8-4. Pila - Caratteristiche geometriche e meccaniche sezione trasversale pali

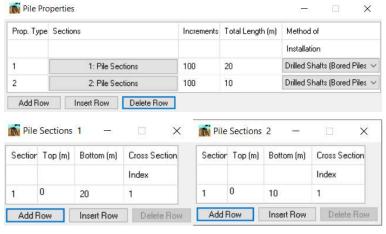


Figura 8-5. Pila - Parametri dei pali in GROUP

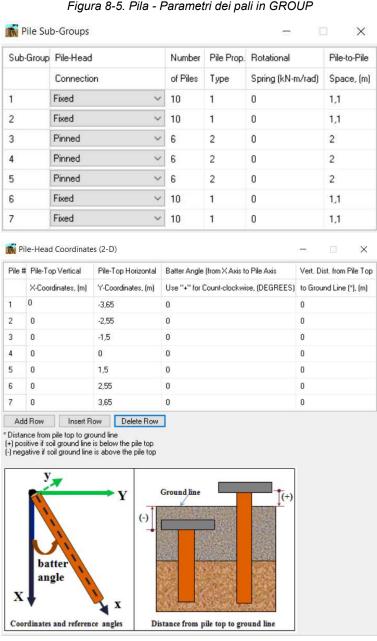


Figura 8-6. Pila - Disposizione dei pali in GROUP

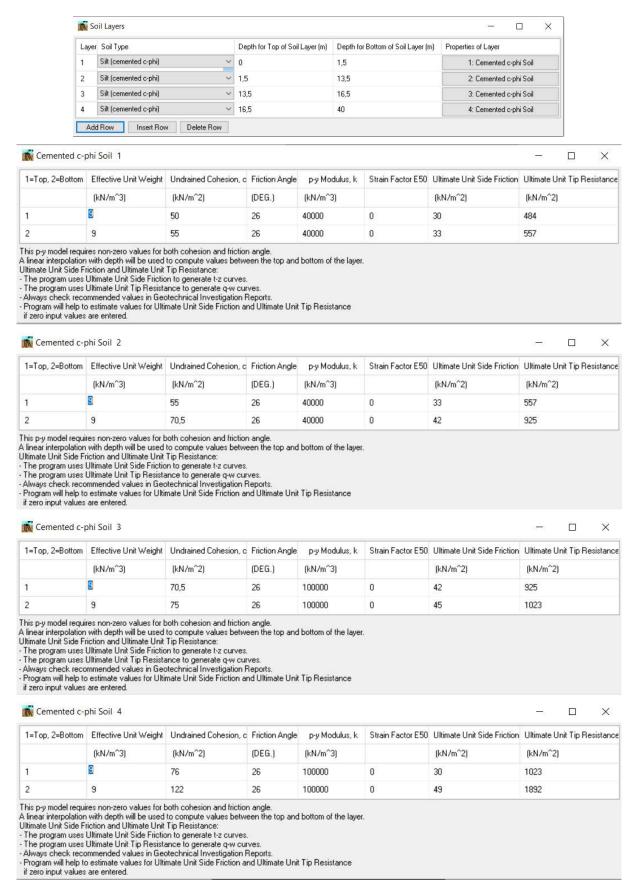


Figura 8-7. Pila - Caratteristiche meccaniche terreno

8.3 ANALISI GEOTECNICA

8.3.1 Sollecitazioni di calcolo

I seguenti grafici riportano le massime azioni assiali, compressione e trazione, agenti per le combinazioni di calcolo significative.

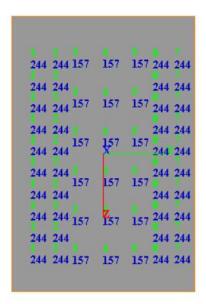


Figura 8-8. Azioni assiali di calcolo sulla palificata - SLU

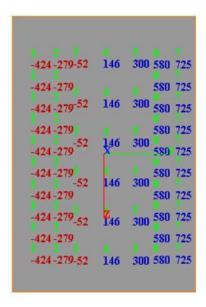


Figura 8-9. Azioni assiali di calcolo sulla palificata - SLV

8.3.2 Verifica geotecnica

O director	<u> </u>	, ;	26	40	55	20	82	9 5	116	147	162	178	194	210	226	243	259	276	293	308	343	361	378	395	413	431	448	466	484	203	170	553	566	579	592	605	633	647	199	675	689	704	734	749	764	779	795	811	827	8.50	875	892	606	926	943
Qd.comprisor	47	63	80	86	118	136	154	7/1	190	226	244	263	282	301	320	339	358	377	397	416	456	476	496	517	537	558	278	299	620	642	200	702	718	734	750	992	799	816	833	851	898	886	904	940	928	977	995	1014	1034	1020	1092	1112	1132	1152	1172
O d.Traz ist	<u> </u>	2 0	2 %	40	22	20	82	001	116	147	162	178	194	210	226	243	259	276	293	308	343	361	378	395	413	431	448	466	484	503	540	553	2999	579	265	902	633	647	199	675	689	704	734	749	764	677	795	811	827	850	875	892	606	926	943
Od. Comp. let	[N] C	2	20	44	09	92	95	601	126	159	176	194	211	228	246	264	282	300	318	330	373	392	411	430	449	468	487	202	526	546	200	601	615	629	643	658	688	203	718	734	749	765	797	814	830	847	864	1881	898	910	951	696	988	1006	1025
O d.Comp.base	47	ę ę	52	125	58	09	61	2 2	64	67	88	69	7.1	7.2	73	7.5	9/	2	6/	90	83	84	86	87	88	06	06	92	94	96	00	101	103	105	106	108	110	114	115	117	119	121	124	126	128	130	131	133	135	130	140	142	144	146	148
	484	100	533	222	603	617	631	0.45 C.45 C.45 C.45 C.45 C.45 C.45 C.45 C	629	687	701	715	729	743	757	77.1	785	662	813	827	855	869	883	897	911	925	930	949	296	986	1004	1041	1060	1078	1097	1115	1152	1171	1189	1208	1226	1245	1282	1300	1319	1337	1356	1374	1393	1411	1448	1467	1485	1504	1522
2 k.Jat. traz.tot	(N)	200	47	75	103	131	159	188	217	275	304	334	364	394	425	455	486	517	248	280	644	929	602	741	774	808	841	874	808	942	1013	1037	1061	1085	1110	1135	1186	1212	1239	1266	1293	1320	1375	1404	1432	1461	1490	1520	1550	1610	1641	1672	1704	1736	1768
Q Klat.compr.tot Q Klat.traz.tot	[N] C	2 2	47 67	75	103	131	159	188	217	275	304	334	364	394	425	455	486	217	548	580	644	929	602	741	774	808	841	874	806	942	4043	1037	1061	1085	1110	1135	1186	1212	1239	1266	1293	1320	1375	1404	1432	1461	1490	1520	1550	1610	1641	1672	1704	1736	1768
Thintee Q	40	3 9	3 6	33	32	36	36	8 8	37	37	38	38	38	38	39	39	33	9 5	40	40	41	41	41	42	42	42	42	43	43	4 4	45 4	3 8	31	31	32	32	33 82	8 8	¥	34	æ	32	£ %	8 8	38	37	37	38	88 88	8 8	30 68	40	40	40	14
*Um.compr	+	5 5	33	33	35	36	36	30	37	37	38	38	38	38	39	39	39	040	40	40	41	41	41	42	42	42	42	43	43	44	45 4	30	31	31	32	32	33	33	34	34	34	32	36	36	36	37	37	38	38	30	39	40	40	40	41
T. Lim, gran, traz	KIWIII /			ļ	_	/	,		,		_	/	/	/	/	_	_	1	1	, ,		_	/	/	/	/	/	,	,	,				/	/		, ,	_	_	/	,	,	, ,		_	/	_		-			,		_	,
7 Umgran.compr	KIWIII /			_	_	/	,		,			_	/	/	/	_	,			,		_	/	/	/	/	/	_	,	,				/	/		, ,		_	/	,	,	, ,		_	/		_						_	,
Tum = f(Nspr) r	T	,			_	1	,	, ,	,		_	/	1	/	/	,	,		,	, ,	,		/	/	1	1	1	,	/	,	, ,			/	/				_	1	/	,	, ,		_	/				, ,		,		,	,
ğ	80	0 0	0,0	9.0	9'0	9'0	9,0	0,0	9,0	0,0	9.0	9'0	9'0	9'0	9'0	9'0	9'0	9,0	9,0	9,0	0,0	9.0	9'0	9'0	9'0	9'0	9'0	9'0	9,0	9,0	0,0	0,0	0,4	0,4	0,4	0,4	0,4	0.4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	4, 0	0.4	0,4	0,4	0,4	0,4
9 . E	1.1	200	26	26	26	26	26	97	26	26	26	26	26	26	26	56	26	5 26	56	97	26	26	26	26	26	26	26	26	26	26	26	26	26	26	56	56	97	26	26	26	26	26	97	26	26	26	26	26	26	26	26	26	56	26	56
k traz	,			ŀ	_	1	,	,			_	_	1	/	/	_	,			, ,	, ,	,	1	/	1	,	/	,	,		,			1	/				_	1	,	,			_	1	_					,		,	,
kcompr	,				_	- /	,	, ,	,			/	/	/	/	_	,		,	,		,	/	/	/	/	/	\	/	, ,	,		. /	1	/	,	, ,		-	/	,	,	, ,		_	- /	_	,	-	, ,		-	_	,	,
NSPT	c	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	, 0	0	0	0	0
9,10	34.2	20.7	43.2	47.7	52,2	26,7	61,2	7,00	747	79.2	83.7	88,2	92,7	97,2	101,7	106,2	110,7	115,2	119,7	124,2	133.2	137.7	142,2	146,7	151,2	155,7	160,2	164,7	169,2	173,7	1007	187.2	191,7	196,2	200,7	205,2	214.2	218.7	223,2	227,7	232,2	236,7	241,2	250.2	254,7	259,2	263,7	268,2	272,7	211,2	286.2	290,7	295,2	299,7	304,2
0H20	+	o u	1	L	20	25	30	32	45	20	22	09	9	20	75	80	82	06	32	100	110	115	120	125	130	135	140	145	150	155	185	170	175	180	185	190	300	202	210	215	220	225	230	240	245	250	255	260	265	275	280	285	290	295	300
							91,2		110,2		138.7		157,7	167,2	176,7	1	- 1	2022	214,7	224,2		1	262,2	271,7	281,2	- 1		309,7	319,2	328,7			366,7	H			404,7		1					490.2	1	ı	518,7		537,7		- 1			- 1	604,2
Cu	1 0 0 S	2 2	53.3	55.0	29,0	29,5	0,09	0,00	61,0	62.0	62.5	63,0	63,5	64,0	64,5	65,0	65,5	0,99	66,5	67.5	680	68.5	0'69	69,5	70,0	70,5	20,0	71,0	72,0	73,0	o t	76.0	77,0	78,0	0'6/	80,0	81,0	83.0	84,0	85,0	86,0	87,0	88,0	0.06	91,0	92,0	93,0	94,0	92,0	90,0	086	99,0	100,0	101,0	102,0
d la		2	3 -	1.5	2	2,5	e .	3,5	4 4	5 6	5.5	9	6,5	7	7,5	8	8,5	5	9,5	10.5	11.5	11.5	12	12,5	13	13,5	14	14,5	15	15,5	18 2	4	17,5	18	18,5	19	2,00	20.5	21	21,5	22	22,5	23.5	24	24,5	52	25,5	56	26,5	27.5	28	28,5	58	29,5	30
d in		0	0.5	-	1,5	2	2,5	2	3,5	4.5	2	5,5	9	6,5	7	7,5	8	8,5	6	9,0	10.5	11	11,5	12	12,5	13	13,5	14	14,5	15	10,0	16.5	17	17,5	18	18,5	19.5	202	20,5	21	21,5	22	22,5	23.5	24	24,5	25	25,5	26	20,02	27.5	28	28,5	29	29,5
Yer Tubble 31	19	100	19	19	19	19	19	61.	10	19	19	19	19	19	19	19	19	61	13	9 0	10	19	19	19	19	19	19	19	19	19	40	19	19	19	19	19	19	19	19	19	19	19	5 pt	19	19	19	19	19	10	5 0	19	19	19	19	10
Ø HZO		0	0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	0	0	0 0		0	0	0	0	0
Falda	Ū,	5 0	5 0.	<u>0</u>	<u>s</u>	S	<u> </u>	7 0	75 O	5 5	5	S	S	S	S	S	<u>s</u>	<u> </u>	55 G	<u>n</u> 0	5 0.	S	S	S	SI	S	S	<u>s</u>	<u>s</u>	<u> </u>	5 0	5 00	S	S	S	<u> </u>	n 0	<u> </u>	S	S	<u>s</u>	<u> </u>	n 0	<u> </u>	<u>s</u>	S	S	50	<u> </u>	ō 0	5 00	S	S	<u>s</u>	<u>s</u>
Descrizione	Coesino	Coccino	Coesivo	Coesivo	Coesivo	Coesivo	Coesivo	Coesivo	Coesivo	Coesivo	Coesivo	Coesivo	Coesivo	Coesivo	Coesivo	Coesivo	Coesivo	Coestvo	Coesivo	Coesivo	Coesivo	Coesivo	Coesivo	Coesivo	Coesivo	Coesivo	Coesivo	Coesivo	Coesivo	Coesivo	Coccino	Coesivo	Coesivo	Coesivo	Coesivo	Coesivo	Coesivo	Coesivo	Coesivo	Coesivo	Coesivo	Coesivo	Coesivo	Coesivo	Coesivo	Coesivo	Coesivo	Coesivo	Coesivo	Coesino	Coesivo	Coesivo	Coesivo	Coesivo	Coesivo
z [iii		2	5 -	1.5	2	2,5	e .	3,5	4 4	5. 5	5,5	9	6,5	7	7,5	8	8,5	5	9,5	10.5	11	11.5	12	12,5	13	13,5	14	14,5	15	15,5	2 8 2	17	17,5	18	18,5	19	2,61	20.5	21	21,5	22	22,5	23.5	24	24,5	25	25,5	56	26,5	27.5	28 ,2	28,5	58	29,5	30
Strato	٥	<	< 4	Α.	*	Ą	Α.	×	× ×	< 4	: 4	*	۲	۶	Α.	¥	4	× :	Α.	× ×	.4	: 4	¥	.Y	Α.	Α.	Ψ.		-K	-K	ζ .	۷ 4					4 a	(#V	· •				-K - □	(¹ 4	- A	-W	-W		* *	∢ !<	۵.	-W	A	-\	-\alpha
	c	2	C -	. 12	2	2,5	e .	3,5	4 4	c)	5.5	9	6,5	7	7,5	80	8,5	ກູ	5,5	10	5 1	11.5	12	12,5	13	13,5	14	14,5	15	15,5	2 2	17	17,5	18	18,5	19	2,6	20.5	21	21,5	22	22,5	23.5	242	24,5	22	25,5	56	26,5	27 E	28.	28,5	53	29,5	30

Si riporta la verifica geotecnica dei <u>pali Ø500 di nuova realizzazione</u> (rinforzo strutturale alla fondazione esistente).

esisterite						-					
	Ve	erifica Car	ico Limite	Pali/N	⁄licropali						
0-	uala in a mi a ua	Dali Trii rallati			n°Indagini	ξ3	ξ4				
Co	mbinazione	Pali Trivellati			1	1,7	1,7				
A1	+ M1 + R3	R3			2	1,65	1,55				
Base		1,35			3	1,60	1,48				
	e Compressione	1,15			4	1,55	1,42				
Totale	_	1,30			5	1,50	1,34				
Lateral	e Trazione	1,25			7	1,45	1,28				
					≥10	1,40	1,21				
		Caratte	eristiche Pali/	Micropali	<u> </u>						
D Perfo	orazione =	0,50	m		Numero di	Verticali I	ndagate				
L Perfo	razione =	20,0	m				-				
L Bulbo) =	20,0	m			5					
			ratteristiche Te	erreno							
γ =		19,0	kN/m ³	LIM	O ARGILLO	SO A, A',	Α"				
φ =		26,0									
γ =		20,0	kN/m ³		GHIAIA E SABBIA B						
$\phi =$		38									
			Azioni di Calc	olo							
N _{Ed} Co	mpressione =	725	kN								
	zione =	424	kN								
	•										
		Re	esistenza di Ca	lcolo							
N _{Rd} Co	mpressione =	799	kN								
N _{Rd} Tra	zione =	633	kN								
		E	Esito della Veri	fica							
			$N_{Rd} > N_{Ed}$								
N_{Rd}		N_{Ed}									
799	>	784									
633	>	424									
		La Verifi	ca Risulta 🤄	Soddisfa	atta						

Si riporta la verifica geotecnica dei pali Franki Ø500 esistenti (rinforzo strutturale alla fondazione esistente).

	erifica Cari		`			
Combinazione	Pali Trivellati			n°Indagini	ξ3	ξ4
	Fall Trivellati			1	1,7	1,7
A1 + M1 + R3	R3			2	1,65	1,55
Base	1,35			3	1,60	1,48
Laterale Compression				4	1,55	1,42
Totale	1,30			5 7	1,50	1,34
Laterale Trazione	1,25			/ ≥10	1,45 1,40	1,28 1,21
				≥10	1,40	1,∠1
	Caratte	eristiche Pali/ [<u> </u>		
D Perforazione =	0,50	m	порин	Numero di	Verticali I	ndagate
L Perforazione =	10,0	m				
L Bulbo =	10,0	m			5	
	T T	ratteristiche Te	rreno			
γ =	19,0	kN/m³	LIM	10 ARGILLO	SO A. A'.	Α"
ϕ =	26,0	0				
γ =	20,0	kN/m³		GHIAIA E S	ABBIA B	
ϕ =	38					
		Azioni di Calco	nlo			
N _{Ed} Compressione =	300	4 <i>zioni ai Caico</i> kN	no			
	0	kN				
N _{Ed} Trazione =	ı	KIN				
	Re	esistenza di Ca	lcolo			
N _{Rd} Compressione =	416	kN				
N _{Rd} Trazione =	309	kN				
	E	sito della Veri	fica			
		$N_{Rd} > N_{Ed}$				
N _{Rd}	N _{Ed}					
416 >	329					
309 >	0					
	La Verific	ca Risulta S	Soddisfa	atta		

8.4 ANALISI STRUTTURALE

8.4.1 Sollecitazioni di calcolo

I seguenti grafici riportano le azioni di taglio e flettenti agenti per la combinazione sismica che risulta essere la più significativa ai fini del calcolo.

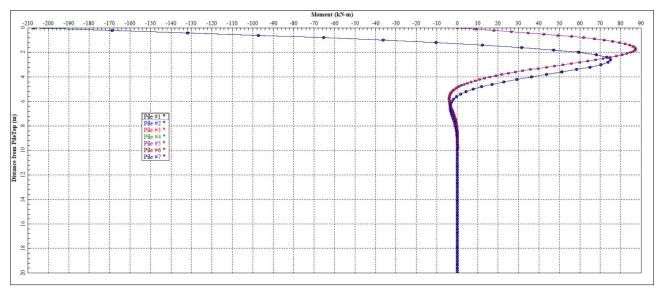
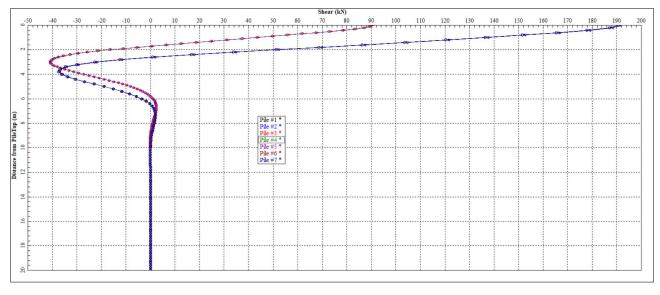
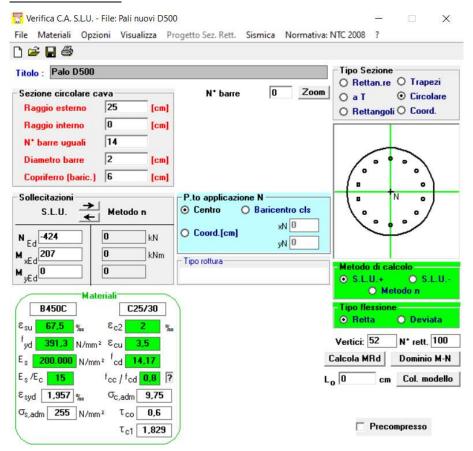
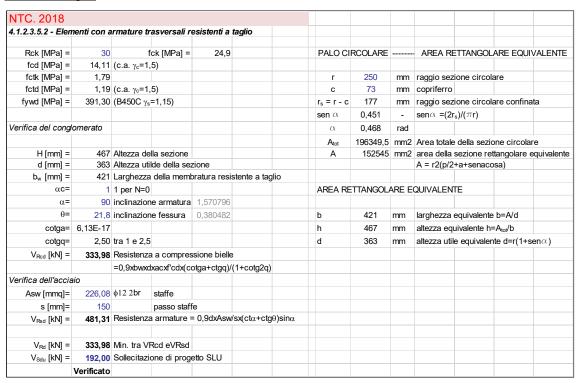


Figura 8-10. Azioni flettenti di calcolo sulla palificata – SLV




Figura 8-11. Azioni taglianti di calcolo sulla palificata – SLV

Autostrada A14: Bologna – Bari - Taranto Tratto Bologna Borgo Panigale – Bologna San Lazzaro Potenziamento in sede del sistema autostradale e tangenziale di Bologna – "Passante di Bologna" – Progetto Definitivo



8.4.2 Verifica strutturale

Verifica a flessione

Verifica a taglio

Autostrada A14: Bologna – Bari - Taranto Tratto Bologna Borgo Panigale – Bologna San Lazzaro Potenziamento in sede del sistema autostradale e tangenziale di Bologna – "Passante di Bologna" – Progetto Definitivo

9 ANALISI GEOTECNICA DEI MURI ANDATORI

I tabulati che seguono, riportano i risultati delle analisi e verifiche geotecniche condotte sui muri andatori a sostegno del rilevato di approccio al sottovia.

Per maggiori informazioni, si rimanda alla relazione di calcolo strutturale.

Commessa: Lotto 1 - Sottovia Tang. Nord Rampa Interconnessione 14+232 (sottovia 91T)

Argomento Allegato 1: Calcoli - Opere di sostegno
Sezione analizzata: Muri andatori LATO SUD - LATO BOLOGNA

VERIFICHE GEOTECNICHE E DI RESISTENZA STRUTTURALE

I seguenti paragrafi riportano le verifiche delle opere di sostegno su fondazione diretta.

CARATTERISTICHE DEI MATERIALI

Si riportano di seguito le caratteristiche dei materiali che compongono il muro di sostegno.

Fondazione/Dente di taglio

Calcestruzzo	R _{ck}	f _{ck}	Copriferro	Acciaio	f _{yk}	Classe di	Condizioni ambientali
	[N/mm²]	[N/mm²]	[mm]	Accidio	[N/mm²]	esposizione	Condizioni ambientan
C28/35	35	28	40	B450C	450	XC2	Ordinarie

Paramento

Calcostruzzo	R _{ck}	f _{ck}	Copriferro	Acciaio	f _{yk}	Classe di	Condizioni ambientali	
Calcestruzzo	[N/mm²]	[N/mm²]	[mm]	Acciaio	[N/mm²]	esposizione	Condizioni ambientali	
C28/35	35	28	35	B450C	450	XF2	Aggressive	

CARATTERISTICHE GEOMETRICHE

Si riportano di seguito le principali caratteristiche geometriche dei muro di sostegno.

	B1 _{medio} [m]	B2 _{medio} [m]	B3 [m]			
B [m]	(lato monte)	(paramento)	(lato valle)	H _{tot} [m]	H1 [m]	H2 [m]
7.00	3.00	1.00	3.00	7.75	1.00	6.75

ſ	Hzav [m] Hzav [m] B4 [m]		porzione di terreno		Dente di taglio		NO	
ı	(lato monte)	(lato valle)	(lato monte)	di rilevato ad andamento	H _{dente} [m]	B _{dente} [m]	H _{zav valle} [m]	Xg _{dente} [m]
	6.75	4.21	0.00	costante	0.00	0.00	0.00	0.00
								(rispetto O)
ſ	∐ cicurvia [m]	D [m]	a [m]	L [m]	e _L [m]	θ [°]	w [°]	e-t-t-

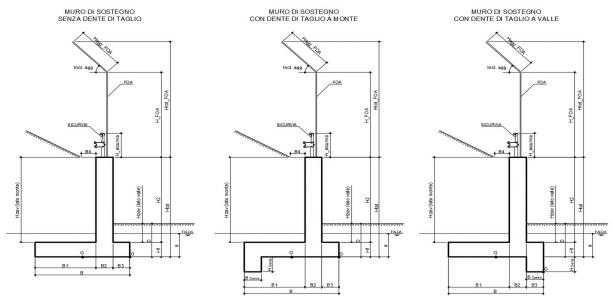


Figura 1 - Caratteristiche geotecniche del muro di sostegno per i diversi casi

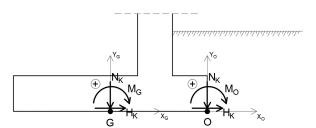


Figura 2 - Convenzione dei segni

Pagina 1

Commessa: Lotto 1 - Sottovia Tang. Nord Rampa Interconnessione 14+232 (sottovia 91T)

Argomento Allegato 1: Calcoli - Opere di sostegno
Sezione analizzata: Muri andatori LATO SUD - LATO BOLOGNA

ANALISI DEI CARICHI

(C1): Pesi propri - strutturali e non

Descrizione	γ [kN/m3]	N _k [kN/m]	x _o [m]	y _o [m]	M _o [kNm/m]	x _G [m]	y _G [m]	M _G [kNm/m]
Fondazione c.a.	25	175.00	-3.50	0.50	-612.50	0.00	0.50	0.00
Paramento c.a.	25	168.75	-3.50	4.38	-590.63	0.00	4.38	0.00
FOA		0.00	-3.50	0.00	0.00	0.00	0.00	0.00
Zavorra lato monte (costante)	20	405.00	-5.50	4.38	-2227.50	-2.00	4.38	-810.00
Zavorra lato monte (inclinato)	20	0.00	-6.00	7.75	0.00	-2.50	7.75	0.00
Zavorra lato valle	20	252.60	-1.50	3.11	-378.90	2.00	3.11	505.20
Dente di fondazione	25	0.00	0.00	0.00	0.00	3.50	0.00	0.00
Sicurvia		0.00	-3.50	8.75	0.00	0.00	8.75	0.00
Totale		1001			-3810			-305

(C2a): Spinta delle terre per verifiche geotecniche

MURO DI SOSTEGNO SENZA DENTE DI TAGLIO MURO DI SOSTEGNO CON DENTE DI TAGLIO A MONTE MURO DI SOSTEGNO CON DENTE DI TAGLIO A VALLE

Figura 3 - Spinta attiva delle terre in condizioni statiche per i diversi casi

Ribaltamento H_{SPINTA_ATT} [m] 7.75 - Componente attiva S_{ta} [kN/m] x_o [m] y_o [m] Comb. \mathbf{k}_{a} N_k [kN/m] H_k [kN/m] M_0 [kNm/m] 0.244 58.14 134.79 M1 146.80 -7.00 2.58 -58.79 H_{SPINTA_PASS} [m] - Componente passiva 0.00 Comb. p1 [kN/mq] | p2 [kN/mq] S_P [kN/m] N_k [kN/m] H_k [kN/m] x₀ [m] y_o [m] M_k [kN/m] **k**_p 1.89 0.00 0.00 M1 0.00 0.00 0.00 0.00 0.00 0.00

- Totale (componente attiva + passiva)

Comb.	S _t [kN/m]	N _k [kN/m]	H _k [kN/m]	M _o [kNm/m]
M1	146.80	58.14	134.79	-58.79

	Scorrimento								
- Componente attiva			H _{SPINTA_ATT} [m]	7.75]				
Comb.	S _{ta} [kN/m]	N _k [kN/m]	H _k [kN/m]	x _G [m]	y _G [m]	M _G [kNm/m]			
		-							

Comb.	Sta [KIV/III]	N _k [KN/m]	H _k [KIV/M]	x _G [m]	y _G [m]	IVIG [KIVITI/TI]	
M1	146.80	58.14	134.79	-3.50	2.58	144.71	
- Componente passiva			Henner nee [m]	0.00]		

(valutata unicamente per le verifiche a scorrimento) y_G [m] S_P [kN/m] N_k [kN/m] H_k [kN/m] M_k [kN/m] **x**_G [m] Comb. S1 [kN/mq] S2 [kN/mq] М1 1.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

- Totale (componente attiva + passiva)

Comb.	S _t [kN/m]	N _k [kN/m]	H _k [kN/m]	M _G [kNm/m]
N/1	1/6 80	59.1/1	12/170	1/// 71

Potenziamento sistema autostradale e tangenziale di Bologna

Commessa:

Lotto 1 - Sottovia Tang. Nord Rampa Interconnessione 14+232 (sottovia 91T)

Argomento
Sezione analizzata:

Allegato 1: Calcoli - Opere di sostegno Muri andatori LATO SUD - LATO BOLOGNA

Capacità portante

- Componente attiva

H _{SPINTA_ATT} [m]	7.75
-----------------------------	------

Comb.	S _{ta} [kN/m]	N _k [kN/m]	H _k [kN/m]	x _G [m]	y _G [m]	M _G [kNm/m]
M1	146.80	58.14	134.79	-3.50	2.58	144.71

- Componente passiva

H_{SPINTA_PASS} [m] 0.00

(valutata unicamente per le verifiche a scorrimento)

Comb.		S1 [kN/mq]	S2 [kN/mq]	S _P [kN/m]	N _k [kN/m]	H _k [kN/m]	x _G [m]	y _G [m]	M _k [kN/m]
M1	1.89	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

- Totale (componente attiva + passiva)

Comb.	S _t [kN/m]	N _k [kN/m]	H _k [kN/m]	M _o [kNm/m]
M1	146.80	58.14	134.79	144.71

(C2b): Spinta delle terre per verifiche strutturali

A favore di sicurezza, non si considera la componente verticale nelle verifiche strutturali della soletta di fondazione - Attenzione: è stato posto un coefficiente pari a 0 nel calcolo di Nk

H _{SPINTA}	[m]	7.75

Comb.	k ₀	S _{t0} [kN/m]	N _k [kN/m]	H _k [kN/m]	x _G [m]	y _G [m]	M _G [kNm/m]
M1	0.426	256.12	0.00	256.12	-3.50	2.58	661.65

(C3): Sovraccarico accidentale

q [kN/m²] 20



Figura 4 - Spinta dovuta al sovraccarico accidentale per i diversi casi

Componente verticale

N _k [kN/m]	x ₀ [m]	M _O [kNm/m]	x _G [m]	M _G [kNm/m]
60.00	-5.50	-330.00	-2.00	-120.00

Ribaltamento

- Componente orizzontale per verifiche geotecniche (a)

H _{SPINTA} [m]	7.75
-------------------------	------

Comb.	k _a	S _{qa} [kN/m]	N _k [kN/m]	H _k [kN/m]	х _о [m]	y _o [m]	M _o [kNm/m]
M1	0.244	37.88	15.00	34.79	-7.00	3.88	29.76

Scorrimento / Capacità portante

- Componente orizzontale per verifiche geotecniche (a)

H _{SPINTA} [m]	7.75
-------------------------	------

Comb.	S _{qa} [kN/m]	N _k [kN/m]	H _k [kN/m]	x _G [m]	y _G [m]	M _G [kNm/m]
M1	37.88	15.00	34.79	-3.50	3.88	82.28

Verifiche strutturali

Componente orizzontale per verifiche strutturali (b)

H _{SPINTA} [m]	7.75

Comb.	k ₀	S _{q0} [kN/m]	N _k [kN/m]	H _k [kN/m]	x _G [m]	y _G [m]	M _G [kNm/m]
M1	0.426	66.10	0.00	66.10	-3.50	3.88	256.12

Commessa: Lotto 1 - Sottovia Tang. Nord Rampa Interconnessione 14+232 (sottovia 91T)

Argomento Allegato 1: Calcoli - Opere di sostegno
Sezione analizzata: Muri andatori LATO SUD - LATO BOLOGNA

(C4): Urto veicolo in svio

(da piano stradale)

			,
H _k [kN]		H _{URTO} [m]	
82.28	come da Linee Guida ASPI	1.00	come da NTC2018

n° montanti	i _{mont.} [m]	L _{diff_muro} [m]	L _{concio} [m]	L _{diff} [m]	H _k [kN/m]	y _o [m]	M _o [kNm/m]
3.00	1.50	10.85	7.00	7.00	35.26	8.75	308.55
n° montanti	L _{diff_concio} [m]	L _{diff_parete} [m]	L _{concio} [m]	L _{diff} [m]	H _k [kN/m]	y _G [m]	M _G [kNm/m]

(C5): Azione del vento

H _{FOA} [m]	H _{FOA_agg.} [m]	Incl. agg. [°]	Verso	H _{VENTO} [m]	p [kN/m ²]
0.00	0.00	0	da strada	0.00	0.00

N _k [kN/m]	H _k [kN/m]	x _G [m]	y _G [m]	M _G [kNm/m]	x _o [m]	y _o [m]	M _o [kNm/m]
0.00	0.00	0.00	0.00	0.00	-3.50	0.00	0.00

(CS1): Forze inerzia legate a carichi strutturali e non

(dente di taglio: si considera unicamente il contributo verticale)

k _h	0.131

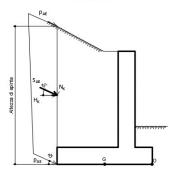
k_v 0.065

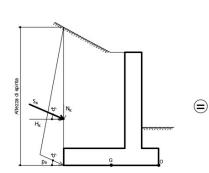
Sisma diretto verso l'alto: - kv

DISTRICTOR VEISOR GILLON INV								
Descrizione	N _k [kN/m]	H _k [kN/m]	х _о [m]	y _o [m]	M _o [kNm/m]	x _G [m]	y _G [m]	M _G [kNm/m]
Fondazione c.a.	-11.45	22.90	-3.50	0.50	51.53	0.00	0.50	11.45
Paramento c.a.	-11.04	22.08	-3.50	4.38	135.26	0.00	4.38	96.61
FOA	0.00	0.00	-3.50	0.00	0.00	0.00	0.00	0.00
Zavorra lato monte (costante)	-26.50	53.00	-5.50	4.38	377.62	-2.00	4.38	284.87
Zavorra lato monte (inclinato)	0.00	0.00	-6.00	7.75	0.00	-2.50	7.75	0.00
Zavorra lato valle	-16.53	0.00	-1.50	3.11	24.79	2.00	3.11	-33.06
Dente di fondazione	0.00	0.00	0.00	0.00	0.00	3.50	0.00	0.00
Sicurvia	0.00	0.00	-3.50	8.75	0.00	0.00	8.75	0.00
Totale	-66	98			589			360

Sisma diretto verso il basso: + kv

Sistila diffetto verso il passo. + kv								
Descrizione	N _k [kN/m]	H _k [kN/m]	x ₀ [m]	y _o [m]	M _o [kNm/m]	х _G [m]	y _G [m]	M _G [kNm/m]
Fondazione c.a.	11.45	22.90	-3.50	0.50	-28.63	0.00	0.50	11.45
Paramento c.a.	11.04	22.08	-3.50	4.38	57.97	0.00	4.38	96.61
FOA	0.00	0.00	-3.50	0.00	0.00	0.00	0.00	0.00
Zavorra lato monte (costante)	26.50	53.00	-5.50	4.38	86.12	-2.00	4.38	178.87
Zavorra lato monte (inclinato)	0.00	0.00	-6.00	7.75	0.00	-2.50	7.75	0.00
Zavorra lato valle	16.53	0.00	-1.50	3.11	-24.79	2.00	3.11	33.06
Dente di fondazione	0.00	0.00	0.00	0.00	0.00	3.50	0.00	0.00
Sicurvia	0.00	0.00	-3.50	8.75	0.00	0.00	8.75	0.00
Totale	66	98			91			320


(CS2): Spinta (dinamica) delle terre


La componente dinamica della spinta delle terre è calcolata in riferimento alla componente statica valutata, a favore di sicurezza, in regime di spinta attiva.

SPINTA TOTALE DELLE TERRE IN CONDIZIONI DINAMICHE REGIME DI SPINTA ATTIVA - METODO P SE UDO-STATICO DI MONONOBE OKABE

SPINTA DELLE TERRE IN CONDIZIONI STATICHE REGIME DI SPINTA ATTIVA

SPINTA DINAMICA DELLE TERRE REGIME DI SPINTA ATTIVA

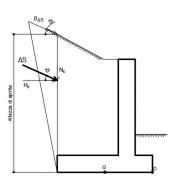


Figura 5 - Spinta attiva delle terre in condizioni dinamiche - Metodo pseudo-statico di Mononobe Okabe

	Ribaltamento	

 \odot

Sisma diretto verso l'alto: - kv

SISTING WILL COLOUR WAY								
Comb.	k _{a_sism}	S _a [kN/m]	k _{AE}	S _{AE} [kN/m]	ΔS [kN/m]			
M1	0.24	146.80	0.400	216.79	69.99			
Comb.	N _k [kN/m]	H _k [kN/m]	х _о [m]	y _o [m]	M _o [kNm/m]			
M1	27.72	64.27	-7.00	3.88	54.98			

Commessa: Lotto 1 - Sottovia Tang. Nord Rampa Interconnessione 14+232 (sottovia 91T)

Argomento Allegato 1: Calcoli - Opere di sostegno
Sezione analizzata: Muri andatori LATO SUD - LATO BOLOGNA

·

Sisma diretto verso il basso: + kv

Comb.	k _{a_sism}	S _a [kN/m]	k _{AE}	S _{AE} [kN/m]	ΔS [kN/m]
M1	0.24	146.80	0.366	241.40	94.60
Comb.	N _k [kN/m]	H _k [kN/m]	х _о [m]	y _o [m]	M _o [kNm/m]
M1	37.47	86.86	-7.00	3.88	74.31

Scorrimento

Sisma diretto verso l'alto: - kv

Comb.	k _{a_sism}	S _a [kN/m]	k _{AE}	S _{AE} [kN/m]	ΔS [kN/m]
M1	0.24	146.80	0.335	188.10	41.31
Comb.	N _k [kN/m]	H _k [kN/m]	x _G [m]	y _G [m]	M _G [kNm/m]
M1	16.36	37.93	-3.50	3.88	89.71

Sisma diretto verso il basso: + kv

Comb.	k _{a_sism}	S _a [kN/m]	k _{AE}	S _{AE} [kN/m]	ΔS [kN/m]
M1	0.24	146.80	0.322	206.25	59.45
Comb.	N _k [kN/m]	H _k [kN/m]	x _G [m]	y _G [m]	M _G [kNm/m]
M1	23.55	54.59	-3.50	3.88	129.12

Capacità portante

Sisma diretto verso l'alto: - kv

Comb.	k _{a_sism}	S _a [kN/m]	k _{AE}	S _{AE} [kN/m]	ΔS [kN/m]
M1	0.24	146.80	0.335	188.10	41.31
Comb.	N _k [kN/m]	H _k [kN/m]	x _G [m]	y _G [m]	M _G [kNm/m]
M1	16.36	37.93	-3.50	3.88	89.71

Sisma diretto verso il basso: + kv

Comb.	k _{a_sism}	S _a [kN/m]	k _{AE}	S _{AE} [kN/m]	ΔS [kN/m]
M1	0.24	146.80	0.322	206.25	59.45
Comb.	N _k [kN/m]	H _k [kN/m]	x _G [m]	y _G [m]	M _G [kNm/m]
M1	23.55	54.59	-3.50	3.88	129.12

Verifiche strutturali

Sisma diretto verso l'alto: - kv

Comb.	k _{a_sism}	S _a [kN/m]	k _{AE}	S _{AE} [kN/m]	ΔS [kN/m]
M1	0.24	146.80	0.335	188.10	41.31
Comb.	N _k [kN/m]	H _k [kN/m]	x _G [m]	y _G [m]	M _G [kNm/m]
M1	0.00	41.31	-3.50	3.88	160.06

Sisma diretto verso il basso: + kv

Comb.	k _{a_sism}	S _a [kN/m]	k _{AE}	S _{AE} [kN/m]	ΔS [kN/m]
M1	0.24	146.80	0.322	206.25	59.45
Comb.	N _k [kN/m]	H _k [kN/m]	x _G [m]	y _G [m]	M _G [kNm/m]
M1	0.00	59.45	-3.50	3.88	230.38

Potenziamento sistema autostradale e tangenziale di Bologna Lotto 1 - Sottovia Tang. Nord Rampa Interconnessione 14+232 (sottovia 91T) Commessa:

Argomento Allegato 1: Calcoli - Opere di sostegno Sezione analizzata: Muri andatori LATO SUD - LATO BOLOGNA

PARAMETRI GEOTECNICI DEL TERRENO

Terreno sping	gente	7
Parametro	M1	
$\gamma [kN/m^3]$	20	peso specifico
φ' [°]	35.00	angolo d'attrito interno
φ' [rad]	0.61	
δ_{es} [°]	23.33	angolo d'attrito terreno-muro in condizioni di esercizio (=2/3φ')
δ _{es} [rad]	0.41	
δ _{sism} [°]	23.33	angolo d'attrito terreno-muro in condizioni sismiche (=2/3φ')
δ_{sism} [rad]	0.41	
β[°]	0.00	angolo che la parete forma con la verticale
β [rad]	0.00	
i [°]	0.00	inclinazione del terrapieno rispetto all'orizzontale
i [rad]	0.00	
\mathbf{k}_{0}	0.426	
k _{a_es}	0.244	condizioni di esercizio
k _{a_sism}	0.244	condizioni sismiche

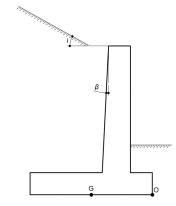


Figura 6 - Inclinazione del terreno e del paramento

Terreno di fond	lazione	(terreno di riporto con caratteristiche migliorate - sarà da prevedersi la rimozione dello
Parametro	M1	strato più superficiale relativo al deposito b _{nN}
γ' [kN/m3]	9	peso specifico sommerso
φ' [°]	26.00	angolo d'attrito interno
φ' [rad]	0.45	
δ_{es} [°]	13.00	angolo d'attrito terreno-muro in condizioni di esercizio (=1/2φ')
δ_{es} [rad]	0.23	
δ_{sism} [°]	13.00	angolo d'attrito terreno-muro in condizioni sismiche (=1/2ф')
δ_{sism} [rad]	0.23	
c' [kN/m ²]	0.00	coesione efficace
c _u [kN/m ²]	50.00	resistenza non drenata
β[°]	0.00	
β [rad]	0.00	
i [°]	0.00	
i [rad]	0.00	
k _{p_es}	3.787	condizioni di esercizio
k _{p es} (*)	1.893	si considera aliquota 50% della resistenza passiva del terreno antistante il muro

Commessa: Lotto 1 - Sottovia Tang. Nord Rampa Interconnessione 14+232 (sottovia 91T)

Argomento Allegato 1: Calcoli - Opere di sostegno
Sezione analizzata: Muri andatori LATO SUD - LATO BOLOGNA

COEFFICIENTI SISMICI

Località: Opera 91T

Vita nominale: VN 50 anni Classe d'uso: IV

CU 2

Periodo di riferimento per azione sismica:

VR 100 anni

Parametri sismici:

Stato limite	Pv _R [anni]	T _R [anni]	a _g [g]	T _C * [sec]	F ₀
SLV	0.1	949	0.212	0.309	2.439

Categoria di sottosuolo: D
Categoria topografica: T1

Accelerazione massima attesa al sito

Stato limite	T _R [anni]	Ss	S _T	a _{max} [g]	a _g [m/s2]
SLV	949	1.62	1.00	0.344	3.378

Coefficiente di riduzione dell'accelerazione massima attesa al ...

	STR/GEO	RIB
β	0.38	0.57

β incrementato del 50% per verifica a ribaltamento (NTC2018 7.11.6.2.1)

Coefficiente sismico orizzontale Coefficiente sismico verticale

k _h	0.131	0.196
k _v	0.065	0.098

Calcolo coefficiente sismico con teoria Mononobe-Okabe:

Sisma diretto verso l'alto: - kv

	[°]	[rad]	[°]	[rad]
θ	7.97	0.14	12.28	0.21
$\delta_{\text{sism_M1}}$	23.33	0.41	23.33	0.41
β	0.00	0.00	0.00	0.00
ψ	90.00	1.57	90.00	1.57
φ' _d - M1	35.00	0.61	35.00	0.61

$\beta \le (\varphi'_d - \theta)$	k _{AE} - M1	0.335
0 > (±! 0)	l. N44	0.04

0.400
1 071

k M1	0.335

0.400	

<u>Sisma diretto verso il basso: + kv</u>

	[°]	[rad]	[°]	[rad]
θ	7.00	0.12	10.13	0.18
$\delta_{\text{sism_M1}}$	23.33	0.41	23.33	0.41
β	0.00	0.00	0.00	0.00
ψ	90.00	1.57	90.00	1.57
φ' _d - M1	35.00	0.61	35.00	0.61

$\beta \leq (\varphi'_d - \theta)$	k _{AE} - M1	0.32
$\beta > (\varphi'_d - \theta)$	k _{AE} - M1	0.91

0.366	
1.002	

k_{AE} - M1 0.322

0.366

Commessa: Lotto 1 - Sottovia Tang. Nord Rampa Interconnessione 14+232 (sottovia 91T)

Allegato 1: Calcoli - Opere di sostegno Argomento Muri andatori LATO SUD - LATO BOLOGNA Sezione analizzata:

VERIFICHE GEOTECNICHE

Calcolo delle sollecitazioni caratteristiche nel punto O

37

A1+M1+R3

A1+M1+R3

C1 C2a C3 - componente verticale N [kN/m] M [kNm/m] N [kN/m] M [kNm/m] N [kN/m] H [kN/m] M [kNm/m] H [kN/m] H [kN/m] 1001 0 -3810 58 135 -59 60 0 C3 - componente orizzontale (a) C4 C5 H [kN/m] M [kNm/m] N [kN/m] H [kN/m] M [kNm/m] N [kN/m] H [kN/m] M [kNm/m] N [kN/m] 30 35 309 0 0 15 35 0 CS1 (+kV) CS2 (-kV) CS1 (-kV) N [kN/m] N [kN/m] M [kNm/m] M [kNm/m] N [kN/m] H [kN/m] H [kN/m] H [kN/m] -66 98 884 66 98 136 28 64 CS2 (+kV) N [kN/m] M [kNm/m] H [kN/m]

A1+M1+R3

A1+M1+R3

VEDIFICA A DIDALTARADATA	/A4 - B44 - B3\
VERIFICA A RIBALTAMENTO	(A1 + IVI1 + K3)

87

Carico	SLU-1	SLU-2	SISM-1	SISM-2	ECC
C1	1.00	1.00	1.00	1.00	1.00
C2a	1.30	1.30	1.00	1.00	1.00
C3 - vert.	0.00	0.00	0.20	0.20	0.00
C3 - oriz. (a)	1.50	1.13	0.20	0.20	0.20
C4	0.00	0.00	0.00	0.00	1.00
C5	0.90	1.50	0.00	0.00	0.00
CS1 (-kV)	0.00	0.00	1.00	0.00	0.00
CS1 (+kV)	0.00	0.00	0.00	1.00	0.00
CS2 (-kV)	0.00	0.00	1.00	0.00	0.00
CS2 (+kV)	0.00	0.00	0.00	1.00	0.00

FS (≥1)	ver.	ver.	4.37	24.61	12.95
γ_{R}	1.15	1.15	1.00	1.00	1.15
M _{rib} [kNm/m]	-32	-43	886	157	256
M _{stab} [kNm/m]	-3810	-3810	-3876	-3876	-3810

(C1): Pesi propri - strutturali e non

(C2a): Spinta delle terre per verifiche geotecniche

-330

0

M [kNm/m]

(C3): Sovraccarico accidentale

(C4): Urto veicolo in svio (C5): Azione del vento

(CS1): Forze inerzia legate a carichi strutturali e non

(CS2): Spinta (dinamica) delle terre

55

Commessa: Lotto 1 - Sottovia Tang. Nord Rampa Interconnessione 14+232 (sottovia 91T)

Allegato 1: Calcoli - Opere di sostegno Argomento Muri andatori LATO SUD - LATO BOLOGNA Sezione analizzata:

Calcolo delle sollecitazioni caratteristiche nel punto O

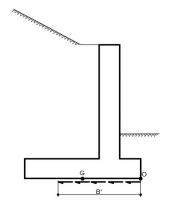
A1+M1+R3

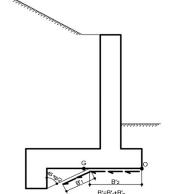
A1+M1+R3

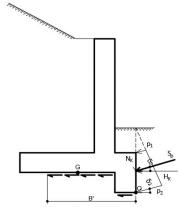
A1+M1+R3

C2a C3 - componente verticale N [kN/m] N [kN/m] H [kN/m] M [kNm/m] N [kN/m] H [kN/m] M [kNm/m] H [kN/m] M [kNm/m] 1001 -305 135 145 60 0 -120 0 58 C4 C5 C3 - componente orizzontale (a) N [kN/m] H [kN/m] M [kNm/m] N [kN/m] H [kN/m] M [kNm/m] N [kN/m] H [kN/m] M [kNm/m] 35 82 35 309 0 0 0 CS1 (-kV) CS1 (+kV) CS2 (-kV) N [kN/m] H [kN/m] M [kNm/m] N [kN/m] H [kN/m] M [kNm/m] N [kN/m] H [kN/m] M [kNm/m] 98 360 98 38 320 -66 66 CS2 (+kV) M [kNm/m]

N [kN/m] H [kN/m] A1+M1+R3 24


MURO DI SOSTEGNO


SENZA DENTE DI TAGLIO


VERIFICA A SCORRIMENTO MURO DI SOSTEGNO

129

CON DENTE DI TAGLIO A MONTE CON DENTE DI TAGLIO A VALLE

MURO DI SOSTEGNO

Figura 7 - Resistenza a scorrimento considerata per i diversi casi

Carico	SLU-1-A1	SLU-2-A1	SISM-1-A1	SISM-2-A1	ECC-A1
C1	1.00	1.00	1.00	1.00	1.00
C2a	1.30	1.30	1.00	1.00	1.00
C3 - vert.	0.00	0.00	0.20	0.20	0.00
C3 - oriz. (a)	1.50	1.13	0.20	0.20	0.20
C4	0.00	0.00	0.00	0.00	1.00
C5	0.90	1.50	0.00	0.00	0.00
CS1 (-kV)	0.00	0.00	1.00	0.00	0.00
CS1 (+kV)	0.00	0.00	0.00	1.00	0.00
CS2 (-kV)	0.00	0.00	1.00	0.00	0.00
CS2 (+kV)	0.00	0.00	0.00	1.00	0.00
	SLU-1-A1	SLU-2-A1	SISM-1-A1	SISM-2-A1	ECC-A1
N _{Ed} [kN/m]	1099	1094	1025	1164	1062
H _{Ed} [kN/m]	227	214	278	294	177
M _{Ed} [kNm/m]	7	-24	282	281	165
Comb.	M1	M1	M1	M1	M1
φ' [°]	26	26	26	26	26
tanφ'	0.49	0.49	0.49	0.49	0.49
c' [kN/m ²]	0.00	0.00	0.00	0.00	0.00
c _u [kN/m ²]	50.00	50.00	50.00	50.00	50.00
B' [m]	6.99	6.96	6.45	6.52	6.69
R _{Ed} [kN/m]	349	348	323	326	334
γ_{R}	1.10	1.10	1.00	1.00	1.10
FS (≥1)	1.40	1.47	1.16	1.11	1.72

- (C1): Pesi propri strutturali e non
- (C2a): Spinta delle terre per verifiche geotecniche
- (C3): Sovraccarico accidentale
- (C4): Urto veicolo in svio
- (C5): Azione del vento
- (CS1): Forze inerzia legate a carichi strutturali e non
- (CS2): Spinta (dinamica) delle terre

Commessa:

Potenziamento sistema autostradale e tangenziale di Bologna Lotto 1 - Sottovia Tang. Nord Rampa Interconnessione 14+232 (sottovia 91T) Allegato 1: Calcoli - Opere di sostegno Muri andatori LATO SUD - LATO BOLOGNA Argomento Sezione analizzata:

	,	VFRIFICΔ CΛ	PACITA' POF	TANTE IN CO	יואטוצוטאי ר	RENATE			
C1): Pesi propri - strutturali e non	Carico C1	1.00	SLU-2-A1 1.30	SLU-3-A1 1.00	SLU-4-A1 1.30	SISM-1-A1 1.00	SISM-2-A1 1.00	1.00	1.00
C2a): Spinta terre - verifiche geo	C2a	1.30	1.30	1.30	1.30	1.00	1.00	1.00	1.00
	C3 - vert.	0.00	1.50	0.00	1.13	0.20	0.20	0.00	0.20
C3): Sovraccarico accidentale	C3 - oriz. (a)	1.50	1.50	1.13	1.13	0.20	0.20	0.20	0.20
C4): Urto veicolo in svio	C4	0.00	0.00	0.00	0.00	0.00	0.00	1.00	1.00
C5): Azione del vento	C5	0.90	0.90	1.50	1.50	0.00	0.00	0.00	0.00
CS1): Forze inerzia legate a carichi	CS1 (-kV)	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00
trutturali e non	CS1 (+kV)	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
CC2). C-1-4- (-1)1) d-11- 4	CS2 (-kV)	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00
CS2): Spinta (dinamica) delle terre	CS2 (+kV)	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
zioni di calcolo									
	Comb.	SLU-1-A1	SLU-2-A1	SLU-3-A1	SLU-4-A1	SISM-1-A1	SISM-2-A1	ECC-1-A1	ECC-2-A1
	N _{Ed} [kN/m]	1099	1490	1094	1462	1025	1164	1062	1074
	M _{Ed} [kNm/m]	7	-265	-24	-251	282	281	165	141
	V _{Ed} [kN/m]	227	227	214	214	278	294	177	177
imensioni geometriche fondazione									
	D [m]	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20
	a [m]	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	L [m]	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00
	B [m]	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00
	e _L [m]	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	e _B [m]	0.01	0.18	0.02	0.17	0.27	0.24	0.16	0.13
	L' [m]	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00
	B' [m]	6.99	6.64	6.96	6.66	6.45	6.52	6.69	6.74
arametri geotecnici terreno di fondo	azione								
eso proprio del terreno di riporto	$\gamma_1[kN/m^3]$	20	20	20	20	20	20	20	20
eso proprio dell'acqua	$\gamma_w[kN/m^3]$	9.81	9.81	9.81	9.81	9.81	9.81	9.81	9.81
eso som Terreno di riporto	γ _w [kN/m ³]	10.19	10.19	10.19	10.19	10.19	10.19	10.19	10.19
eso som Terreno di fondazione	γ'2 [kN/m3]	9	9	9	9	9	9	9	9
ngolo d'attrito	φ'[°]	26	26	26	26	26	26	26	26
oesione efficace	c' [kN/m ²]	0	0	0	0	0	0	0	0
et di coefficienti parziali	C [KIN/III]	M1	M1	M1	M1	M1	M1	M1	M1
eso proprio - Terreno di riporto	[1.51/3]	20	20	20	20	20	20	20	20
	γ _{1_Mi} [kN/m ³]								
eso som Terreno di fondazione	γ _{2 Mi} [kN/m ³]	9	9	9	9	9	9	9	9
ngolo d'attrito fattorizzato	φ'_ _{Mi} [°]	26	26	26	26	26	26	26	26
	φ'_ _{Mi} [rad]	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
oesione efficace fattorizzata	c'_ _{Mi} [kN/m²]	0	0	0	0	0	0	0	0
attori di capacità portante			40.54	40.54	40.54	40.54	40.54	42.54	40.54
	N _γ	12.54	12.54	12.54	12.54	12.54	12.54	12.54	12.54
	N _c	22.25 11.85	22.25 11.85	22.25 11.85	22.25 11.85	22.25 11.85	22.25 11.85	22.25 11.85	22.25 11.85
	1 q	11.05	11.05	11.05	11.05	11.05	11.05	11.05	11.05
attori di forma									
per forma rettangolare)	Sγ	0.60	0.62	0.60	0.62	0.63	0.63	0.62	0.61
	S _c	1.53	1.51	1.53	1.51	1.49	1.50	1.51	1.51
	Sq	1.49	1.46	1.48	1.46	1.45	1.45	1.47	1.47
attori di profondità									
per φ'>0)	d _ν	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	d _c	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06
	d _q	1.05	1.06	1.05	1.06	1.06	1.06	1.06	1.05
attori di inclinazione del carico								<u></u>	
	m _B	1.50	1.51	1.50	1.51	1.52	1.52	1.51	1.51
per c'>0 e ω'>0)		2.00		2.55					
per c'>0 e φ'>0)		1 50	1 40	1 50	1 40	1 42	1 42	1 49	1 // 0
per c'>0 e φ'>0)	m _L	1.50	1.49	1.50	1.49	1.48	1.48 90	1.49	1.49
per c'>0 e φ'>0)	m _L θ [°]	90.00	90	90	90	90	90	90	90
per c'>0 e φ'>0)	m _L								

0.72

0.78

0.79

0.62

0.64

0.76

0.71

Pagina 10

0.76

Commessa:

Lotto 1 - Sottovia Tang. Nord Rampa Interconnessione 14+232 (sottovia 91T) Allegato 1: Calcoli - Opere di sostegno Muri andatori LATO SUD - LATO BOLOGNA Argomento Sezione analizzata:

Fattori di inclinazione del piano di posa

b _γ	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
b _c	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
b _q	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Fattori di inclinazione del piano campagna

w [°]	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
gγ	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
g _c	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
gq	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Calcolo della capacità portante della fondazione superficiale

	q _{lim} [kN/m²]	447	495	458	502	373	392	482	485
Set di coefficienti parziali		R3							
	γ_{R}	1.40	1.40	1.40	1.40	1.20	1.20	1.40	1.40
$q = q_{lim} / \gamma_R$	q [kN/m²]	319	354	327	359	311	326	344	346
Q = q x B' x L'	Q [kN]	15627	16457	15915	16712	14049	14881	16112	16334

FS = Q / (N _{Ed} x L') (>1)	FS	2.03	1.58	2.08	1.63	1.96	1.83	2.17	2.17
		(>1)	(>1)	(>1)	(>1)	(>1)	(>1)	(>1)	(>1)
	Comb.	SLU-1-A1	SLU-2-A1	SLU-3-A1	SLU-4-A1	SISM-1-A1	SISM-2-A1	FCC-1-A1	FCC-2-A1

Potenziamento sistema autostradale e tangenziale di Bologna Lotto 1 - Sottovia Tang. Nord Rampa Interconnessione 14+232 (sottovia 91T) Allegato 1: Calcoli - Opere di sostegno Commessa:

Argomento Sezione analizzata: Muri andatori LATO SUD - LATO BOLOGNA

VENI	FICA CAPAC	IIA PORTAN	ITE IN COND	IZIONI NON	DRENATE			
Carico	SLU-1-A1	SLU-2-A1	SLU-3-A1	SLU-4-A1	SISM-1-A1	SISM-2-A1	ECC-1-A1	ECC-2-A1
C1	1.00	1.30	1.00	1.30	1.00	1.00	1.00	1.00
C2a	1.30	1.30	1.30	1.30	1.00	1.00	1.00	1.00
C3 - vert.	0.00	1.50	0.00	1.13	0.20	0.20	0.00	0.20
C3 - oriz. (a)	1.50	1.50	1.13	1.13	0.20	0.20	0.20	0.20
C4	0.00	0.00	0.00	0.00	0.00	0.00	1.00	1.00
C5	0.90	0.90	1.50	1.50	0.00	0.00	0.00	0.00
								0.00
								0.00
_ , ,								0.00
CS2 (+kV)	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
Comb.	SLU-1-A1	SLU-2-A1	SLU-3-A1	SLU-4-A1	SISM-1-A1	SISM-2-A1	ECC-1-A1	ECC-2-A1
								1074
								141
V _{Ed} [kN/m]	227	227	214	214	278	294	177	177
D [m]	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20
L [m]	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00
B [m]	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00
e _L [m]	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
e _B [m]	0.01	0.18	0.02	0.17	0.27	0.24	0.16	0.13
L' [m]	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00
B' [m]	6.99	6.64	6.96	6.66	6.45	6.52	6.69	6.74
azione								
γ ₁ [kN/m ³]	20	20	20	20	20	20	20	20
γ'2 [kN/m3]	9	9	9	9	9	9	9	9
φ'[°]	26	26	26	26	26	26	26	26
c' [kN/m²]	0	0	0	0	0	0	0	0
	50	50	50	50	50	50	50	50
50 [,]					.			M1
ν _{4 λα} [kN/m ³]	20	20	20	20	20	20	20	20
	9		9	9		9	9	9
					<u> </u>			26
								0.45
_					!			0.43
c _{u_Mi} [kN/m]	50	50	50	50	50	50	50	50
N _γ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
N _c	5.14	5.14	5.14	5.14	5.14	5.14	5.14	5.14
N _q	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
ş	0.60	0.62	0.60	0.62	0.63	0.63	0.62	0.61
								1.19
					 			1.13
						-	1	
								1.00
-								1.07
d _q	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
m _B	1.50	1.51	1.50	1.51	1.52	1.52	1.51	1.51
	1.50	1.49	1.50	1.49	1.48	1.48	1.49	1.49
l m₁ i								
θ [°]		90	90	J 90	90	90	J 90	90
θ [°]	90	90 1.51	90 1.50	90 1.51	90 1.52	90 1.52	90 1.51	90 1.51
θ [°]	90 1.50	1.51	1.50	1.51	1.52	1.52	1.51	1.51
θ [°]	90							
	C1 C2a C3 - vert. C3 - oriz. (a) C4 C5 CS1 (-kV) CS1 (+kV) CS2 (-kV) CS2 (-kV) CS2 (-kV) D [m] L [m] B [m] L [m] B [m] L' [m] B' [m] zzione V1 [kN/m3] y'2 [kN/m3] y'2 [kN/m3] y'2 [kN/m3] y'1 [kN/m3] y'2 [kN/m3] c'_m [xN/m3]	C1	C1	C1 1.00 1.30 1.00 C2a 1.30 1.30 1.30 C3 - vert. 0.00 1.50 0.00 C3 - oriz. (a) 1.50 1.50 1.13 C4 0.00 0.00 0.00 0.00 C5 0.90 0.90 1.50 CS1 (-kV) 0.00 0.00 0.00 0.00 CS2 (+kV) 0.00 0.00 0.00 0.00 D [m] 1.20 1.20 1.20 1.20 L [m] 7.00 7.00 7.00 7.00 7.00 7.00	C1 1.00 1.30 1.30 1.30 C2a 1.30 1.30 1.30 1.30 C3 - vert. 0.00 1.50 0.00 1.13 C4 0.00 0.00 0.00 0.00 C51 (-kV) 0.00 0.00 0.00 0.00 C51 (+kV) 0.00 0.00 0.00 0.00 C51 (+kV) 0.00 0.00 0.00 0.00 C52 (+kV) 0.00 0.00 0.00 0.00 Meg [km/m] 1099 1490 1094 1462 Meg [km/m] 1	C1 1.00 1.30 1.00 1.30 1.00 1.00 C2a 1.30 1.30 1.00 1.30 1.00 1.30 1.30 1.00 1.0	C1 1.00 1.30 1.00 1.30 1.00 1.00 C2a 1.30 1.30 1.30 1.30 1.00 1.00 C3 - vert. 0.00 1.50 0.00 1.13 0.20 0.20 C3 - vert. 0.00 0.00 0.00 0.00 0.00 0.00 C4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 C5 0.90 0.90 1.50 1.50 0.00 0.00 0.00 CS1(+kV) 0.00 0.00 0.00 0.00 0.00 0.00 1.00 CS2(+kV) 0.00 0.00 0.00 0.00 0.00 1.00 0.00 CS2(+kV) 0.00 0.00 0.00 0.00 0.00 0.00 1.00 Comb. SU-1-A1 SU-2-A1 SU-3-A1 SIW-3-A1 SISM-4-A1 SISM-4-A1 SISM-4-A1 SISM-4-A1 SISM-4-A1 SISM-4-A1 SISM-4-A1 SISM-4-A1 <t< td=""><td> C1</td></t<>	C1

Commessa: Lotto 1 - Sottovia Tang. Nord Rampa Interconnessione 14+232 (sottovia 91T)

Argomento Allegato 1: Calcoli - Opere di sostegno
Sezione analizzata: Muri andatori LATO SUD - LATO BOLOGNA

Fattori di inclinazione di	el piano di posa
----------------------------	------------------

b _γ	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
b _c	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
b _q	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Fattori di inclinazione del piano campagna

w [°]	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
gγ	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
g _c	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
g _q	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Calcolo della capacità portante della fondazione superficiale

	q _{lim} [kN/m ²]	355	352	355	353	349	348	355	355
Set di coefficienti parziali		R3							
	γ_R	1.4	1.4	1.4	1.4	1.2	1.2	1.4	1.4
$q = q_{lim} / \gamma_R$	q [kN/m²]	253	252	254	252	290	290	253	254
Q = q x B' x L'	Q [kN]	12395	11700	12348	11743	13115	13242	11860	11957

FS = Q / (N _{Ed} x L') (>1)	FS	1.61	1.12	1.61	1.15	1.83	1.63	1.59	1.59
_		(>1)	(>1)	(>1)	(>1)	(>1)	(>1)	(>1)	(>1)
	Comb.	SLU-1-A1	SLU-2-A1	SLU-3-A1	SLU-4-A1	SISM-1-A1	SISM-2-A1	ECC-1-A1	ECC-2-A1