

AUTOSTRADA (A14): BOLOGNA-BARI-TARANTO

TRATTO: BOLOGNA BORGO PANIGALE - BOLOGNA SAN LAZZARO

POTENZIAMENTO IN SEDE DEL SISTEMA AUTOSTRADALE E TANGENZIALE DI BOLOGNA

"PASSANTE DI BOLOGNA"

PROGETTO DEFINITIVO

TANGENZIALE NORD E SUD

OPERE D'ARTE MAGGIORI

93T - SOTTOVIA TANG.NORD RAMPA INTERC. 14+490

RELAZIONE DI CALCOLO FONDAZIONI

IL PROGETTISTA SPECIALISTICO

Ing. Marco Pietro D'Angelantonio Ord. Ingg. Milano n.A20155

RESPONSABILE GEOTECNICA ALL'APERTO

IL RESPONSABILE INTEGRAZIONE PRESTAZIONI SPECIALISTICHE

Ing. Raffaele Rinaldesi Ord. Ingg. Macerata N. A1068 IL DIRETTORE TECNICO

Ing. Andrea Tanzi Ord. Ingg. Parma N. 1154

PROGETTAZIONE NUOVE OPERE AUTOSTRADALI

CODICE IDENTIFICATIVO											ORDINATORE
RIFERIMENTO PROGETTO RIFERIMENTO DIRETTORIO RIFERIMENTO ELABORAT									MENTO ELABORATO		
Codice Commessa	Lotto, Sub-Prog, Cod. Appalto	Fase	Capitolo	Paragrafo	WBS	Parte d'opera	Tip.	Disciplina	Progressivo	Rev.	
111465	0000	PD	A2	ОРМ	SP93N	FND00	R	APE	0839	-2	SCALA -

	PROJECT MAN	AGER:	SUPPORTO SPECIALISTICO:			REVISIONE
spea					n.	data
opea		Ing. Raffaele Rinaldesi				DICEMBRE 2017
ENCINIEEDING	Or	d. Ingg. Macerata N. A1068				SETTEMBRE 2019
ENGINEERING						SETTEMBRE 2020
A = 1	REDATTO:	PEDATTO:			3	-
Atlantia	NEDATIO.		VERIFICATO:		4	-

VISTO DEL COMMITTENTE

IL RESPONSABILE UNICO DEL PROCEDIMENTO Ing. Fabio Visintin

VISTO DEL CONCEDENTE

Ministero delle Infrastrutture e dei Trasporti
DIPARTIMENTO PER LE INFRASTRUTTURE, GLI AFFARI GENERALI ED IL PERSONALE
STRUTTURA DI VIGLIANZA SULLE CONCESSIONARIE AUTOSTRADALI

Sommario

1	INT	RODUZIONE	4
	1.1	DESCRIZIONE DEI SISTEMI FONDAZIONALI	
	1.2	NORMATIVA DI RIFERIMENTO	
	1.3	CARATTERISTICHE DEI MATERIALI	
	1.3.	.1 Strutture di nuova realizzazione	<i>6</i>
	1.4	SOFTWARE DI CALCOLO	7
	1.5	CONVENZIONI GENERALI	7
	1.5.	.1 Unità di misura	7
	1.5.	.2 Convenzioni di segno	7
2	CAF	RATTERIZZAZIONE GEOTECNICA	8
3		TERI DI VERIFICA E CALCOLO	
	3.1	PREMESSA	10
	3.2	FONDAZIONI SUPERFICIALI.	
	3.2.		
	3.2. 3.2.	, ,	
	3.2. 3.2.		
	3.2. 3.3	FONDAZIONI SU PALI	
	3.3.		
	3.3.		
	3.3.	. 55	
	3.4	VALUTAZIONE DEL TIRO SUI TIRANTI PASSIVI	
	3.5	PORTATA LIMITE PER GLI ANCORAGGI DELLE SPALLE	
4	FON	NDAZIONE SPALLA - AMPLIAMENTO 2 (NUOVA REALIZZAZIONE)	
	4.1	AZIONI DI CALCOLO	
	4.2	MODELLO DI CALCOLO	
	4.3	ANALISI GEOTECNICA	
	4.3.		
	4.3.	, ,	
	4.4	ANALISI STRUTTURALE	
	4.4.		
	4.4.	.2 Verifica strutturale	36
5	ELE	VAZIONE SPALLA – STRUTTURA ORIGINARIA (ESISTENTE)	40
	5.1	CURVE CARATTERISTICHE TIRANTI – SPOSTAMENTI	
	5.1.	 	
	5.1.	.2 Verifica dei micropali di ancoraggio passivo delle spalle	42
6	FON	NDAZIONE SPALLA – STRUTTURA ORIGINARIA (ESISTENTE)	44
	6.1	VERIFICA DI CAPACITÀ PORTANTE	44
	6.2	VERIFICA A SCORRIMENTO	45
7	AN	ALISI GEOTECNICA MURO ANDATORE NORD LATO BOLOGNA - (NUOVA REALIZZAZIONE)	46
	7.1	AZIONI DI CALCOLO	46
	7.2	MODELLO DI CALCOLO	47
	7.3	ANALISI GEOTECNICA	51
	7.3.		
	<i>7.3.</i>		
	7.4	ANALISI STRUTTURALE	

8	ANALISI	GEOTECNICA MURO ANDATORE CARREGGIATA NORD LATO RIMINI - (NUOVA REALIZZAZIONE)	59
	7.4.2	Verifica strutturale	55
	7.4.1	Sollecitazioni di calcolo	54

Indice delle Tabelle e delle Figure

FIGURA 1-1. CONVENZIONI DI SEGNO - GROUP	
FIGURA 2-1. INDAGINI GEOGNOSTICHE DI RIFERIMENTO	
FIGURA 2-2. CARATTERIZZAZIONE STRATIGRAFICO - GEOTECNICA	
Figura 2-3. Parametri medi caratteristici dei materiali Limo Argilloso (A)	
Figura 2-4. Parametri medi caratteristici dei materiali Limo Argilloso (A')	
Figura 2-5. Parametri medi caratteristici dei materiali Limo Argilloso (A'')	9
FIGURA 3-1. COEFFICIENTI PARZIALI PER LE AZIONI O L'EFFETTO DELLE AZIONI (TAB.6.2.1 DELLE NTC2018)	
FIGURA 3-2. COEFFICIENTI PARZIALI PER I PARAMETRI GEOTECNICI DEL TERRENO (TAB.6.2.II DELLE NTC2018)	11
FIGURA 3-3. COEFFICIENTI PARZIALI Γ_R PER LE VERIFICHE AGLI STATI LIMITE ULTIMI STR E GEO DI MURI DI SOSTEGNO (TAB.6.5.I DELLE	
NTC2018)	
FIGURA 3-4. FONDAZIONE EFFICACE EQUIVALENTE NEL CASO DI FONDAZIONE RETTANGOLARE	
Figura 3-5. Coefficienti parziali r_R da applicare alle resistenze caratteristiche a carico verticale dei pali (Tab.6.4.II delle	
NTC2018)	
FIGURA 3-6. FATTORI DI CORRELAZIONE E PER LA DETERMINAZIONE DELLA RESISTENZA CARATTERISTICA IN FUNZIONE DEL NUMERO DI VEF	
INDAGATE (TAB.6.4.IV DELLE NTC2018)	
FIGURA 3-7. TERRENI GRANULARI — T _{LIM} = F(N _{SPT}) (WRIGHT-REESE — 1977)	
FIGURA 3-8. ESEMPIO DI CURVE CARATTERISTICHE TIRANTI PASSIVI	
TABELLA 4-1. SOLLECITAZIONI DI CALCOLO RISULTANTI NEL BARICENTRO DELLA PALIFICATA	
FIGURA 4-1. MODELLO DI CALCOLO PALIFICATA: VISTA TRIDIMENSIONALE	
FIGURA 4-2. MODELLO DI CALCOLO PALIFICATA: PIANO Y-Z	_
FIGURA 4-3. CARATTERISTICHE GEOMETRICHE E MECCANICHE SEZIONE TRASVERSALE PALI	
FIGURA 4-4. PARAMETRI DEI PALI IN GROUP	
FIGURA 4-5. DISPOSIZIONE DEI PALI IN GROUP	
FIGURA 4-6. CARATTERISTICHE MECCANICHE TERRENO	
FIGURA 4-7. MASSIMA SOLLECITAZIONE ASSIALE DI COMPRESSIONE (COMBINAZIONE 9)	
FIGURA 4-8. MASSIMA SOLLECITAZIONE ASSIALE DI TRAZIONE (COMBINAZIONE 10)	32
34	
Figura 4-9. Verifica a Capacità portante dei Pali	
FIGURA 4-10. MASSIME SOLLECITAZIONI FLESSIONALI (COMBINAZIONE 9)	
Figura 4-11. Massime sollecitazioni di taglio (Combinazione 9)	
FIGURA 4-12. VERIFICA TENSO-FLESSIONALE_SLV	
FIGURA 4-13. METODO DI CLARKE E BIRJANDI - CALCOLO SEZIONE RETTANGOLARE EQUIVALENTE.	
FIGURA 4-14. VERIFICA A TAGLIO	
FIGURA 5-1. CURVE CARATTERISTICHE TIRANTI PASSIVI-SPALLA	
TABELLA 7-1. SOLLECITAZIONI DI CALCOLO RISULTANTI NEL BARICENTRO DELLA PALIFICATA	
FIGURA 7-1. MODELLO DI CALCOLO PALIFICATA: VISTA TRIDIMENSIONALE	
FIGURA 7-2. MODELLO DI CALCOLO PALIFICATA: PIANO Y-Z	
FIGURA 7-3. CARATTERISTICHE GEOMETRICHE E MECCANICHE SEZIONE TRASVERSALE PALI	
FIGURA 7-4. PARAMETRI DEI PALI IN GROUP	
FIGURA 7-5. DISPOSIZIONE DEI PALI IN GROUP	
FIGURA 7-6. CARATTERISTICHE MECCANICHE TERRENO	
FIGURA 7-7. MASSIMA SOLLECITAZIONE ASSIALE DI COMPRESSIONE (COMBINAZIONE 21)	
FIGURA 7-8. MASSIMA SOLLECITAZIONE ASSIALE DI TRAZIONE (COMBINAZIONE 19)	
FIGURA 7-9. VERIFICA A CAPACITÀ PORTANTE DEI PALI	
FIGURA 7-10. DETERMINAZIONE DELLA CAPACITÀ PORTANTE DEI PALI	
FIGURA 7-11. MASSIME SOLLECITAZIONI FLESSIONALI (COMBINAZIONE 22)	
FIGURA 7-12. MASSIME SOLLECITAZIONI DI TAGLIO (COMBINAZIONE 20)	54

Figura 7-13. Verifica Tenso-flessionale SLU	55
FIGURA 7-14. METODO DI CLARKE E BIRJANDI - CALCOLO SEZIONE RETTANGOLARE EQUIVALENTE.	
FIGURA 7-15. VERIFICA A TAGLIO	

1 INTRODUZIONE

La presente relazione ha come obiettivo l'esposizione delle analisi svolte e dei principali risultati ottenuti relativamente al progetto del Sottovia Interconnessione 6 nell'ambito dei lavori di ampliamento della tangenziale di Bologna, nel tratto Borgo Panigale – Caselle. L'opera è denominata 93T e ubicata indicativamente alla progressiva 14+490.

In particolare, si riportano le verifiche strutturali e geotecniche delle opere fondazionali relative a:

Ampliamento 2: ampliamento di nuova realizzazione;
 Originaria: struttura esistente (di prima realizzazione).

La relazione di calcolo delle sovrastrutture e delle sottostrutture è il riferimento principale per:

- · le caratteristiche generali dell'opera;
- le condizioni ambientali e le classi di esposizione dei materiali;
- le caratteristiche dei materiali, con particolare attenzione ai materiali delle strutture esistenti;
- la caratterizzazione sismica;
- i criteri generali e le metodologie di verifica;
- le combinazioni di calcolo e i coefficienti di combinazione;
- il calcolo delle sollecitazioni risultanti utilizzate per il progetto e la verifica dei sistemi fondazionali.

1.1 DESCRIZIONE DEI SISTEMI FONDAZIONALI

Le fondazioni delle spalle sono così realizzate.

SPALLE: AMPLIAMENTO 2

Fondazione indiretta Lunghezza pali:

Lunghezza pali: 32m Diametro del perforo: Ø1000mm

ORIGINARIA

Fondazione indiretta (pali tipo FRANKI) Lunghezza pali 14m Diametro del perforo Ø500mm

MURO ANDATORE

LATO BOLOGNA: AMPLIAMENTO 2

Fondazione indiretta

Lunghezza pali: 30m Diametro del perforo: Ø1000mm

MURO ANDATORE

LATO RIMINI: AMPLIAMENTO 2

Fondazione diretta

1.2 NORMATIVA DI RIFERIMENTO

Le analisi e le verifiche sono eseguite secondo il metodo semi-probabilistico agli Stati Limite, in accordo alle disposizioni previste dalle vigenti Normative italiana ed europea (Eurocodici).

In particolare, si fa riferimento alle seguenti norme:

- [1] D.M. 17/01/2018: "Aggiornamento delle Norme Tecniche per le Costruzioni" GU n°8 del 17/2/2018.
- [2] Circolare 21 gennaio 2019 n.7: "Istruzioni per l'applicazione dell' Aggiornamento delle Norme Tecniche per le Costruzioni" di cui al Decreto Ministeriale 17 gennaio 2018.
- [3] UNI EN 1990: Basi della progettazione strutturale.
- [4] UNI EN 1991-1-4: Azioni sulle strutture Azione del vento.
- [5] UNI EN 1991-1-5: Azioni sulle strutture Azioni termiche.
- [6] UNI EN 1991-1-6: Azioni sulle strutture Azioni in generale Azioni durante la costruzione.
- [7] UNI EN 1991-2: Azioni sulle strutture Carichi da traffico sui ponti.
- [8] UNI EN 1992: Progettazione delle strutture di calcestruzzo.
- [9] UNI EN 1992-1-1: Progettazione delle strutture di calcestruzzo Regole generali e regole per gli edifici.
- [10] UNI EN 1992-2: Progettazione delle strutture di calcestruzzo Ponti di calcestruzzo.
- [11] UNI EN 1993: Progettazione delle strutture in acciaio.
- [12] UNI EN 1993-1-1: Progettazione delle strutture di acciaio Regole generali e regole per gli edifici.
- [13] UNI EN 1993-2: Progettazione delle strutture di acciaio Ponti di acciaio.
- [14] UNI EN 1993-1-5: Progettazione delle strutture di acciaio Elementi strutturali a lastra.
- [15] UNI EN 1993-1-8: Progettazione delle strutture di acciaio Progettazione dei collegamenti.
- [16] UNI EN 1993-1-9: Progettazione delle strutture di acciaio Fatica.
- [17] UNI EN 1993-1-10: Progettazione delle strutture di acciaio Resilienza del materiale e proprietà attraverso lo spessore.
- [18] UNI EN 1993-1-11: Progettazione delle strutture di acciaio Progettazione di strutture con elementi tesi.
- [19] UNI EN 1994: Progettazione delle strutture composte acciaio-calcestruzzo.
- [20] UNI EN 1994-2: Progettazione delle strutture composte acciaio-calcestruzzo Ponti.
- [21] UNI EN 1997: Progettazione geotecnica.
- [22] UNI EN 1998: Progettazione delle strutture per la resistenza sismica.
- [23] UNI EN 1998-2: Progettazione delle strutture per la resistenza sismica Ponti.
- [24] UNI EN 1998-5:2005 Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici.
- [25] Ministero delle Infrastrutture e dei Trasporti Consiglio Superiore dei Lavori Pubblici Linee guida per la classificazione e gestione del rischio, la valutazione della sicurezza ed il monitoraggio dei ponti esistenti.
- [26] Autostrade per l'Italia Direzione sviluppo rete per l'Italia Ingegneria, Ambiente e Sicurezza Linee Guida per la redazione e verifica dei progetti di installazione delle barriere integrate (LG 03/2020).

1.3 CARATTERISTICHE DEI MATERIALI

1.3.1 Strutture di nuova realizzazione

Calcestruzzo per pali, micropali: C25/30

Tensione caratteristica cubica R_{ck} = 30MPa

Tensione caratteristica cilindrica $f_{ck} = 0.83 \text{ x R}_{ck} = 24.90 \text{MPa}$

Tensione di compressione media $f_{cm} = f_{ck} + 8 = 32.90MPa$

Tensione massima di compressione per combinazione rara $0.6 \text{ x f}_{ck} = 14.94 \text{MPa}$

Tensione massima di compressione per combinazione frequente $0.45 \text{ x f}_{ck} = 11.20 \text{MPa}$

Resistenza di calcolo $f_{cd} = \alpha_{cc} f_{ck} / \gamma_c = 14.11 MPa$

Tensione media a trazione $f_{ctm} = 0.3 \text{ x } f_{ck}^{(2/3)} = 2.56 \text{MPa}$

Tensione caratteristica a trazione $f_{ctk} = 0.7 \text{ x } f_{ctm} = 1.79 \text{MPa}$

Resistenza di calcolo a trazione $f_{ctd} = f_{ctk} / \gamma_c = 1.19 MPa$

Modulo elastico $E_{cm} = 22000 \text{ x } (f_{cm}/10)^{0.3} = 31447 \text{MPa}$

Micropali / ancoraggi passivi: carpenteria metallica

Acciaio in profili a sezione aperta laminati a caldo saldati:

Tipo EN 10025-2 S355 J2+N (per spessori nominali t > 40 mm)

Tipo EN 10025-2 S355 K2+N (per spessori nominali t > 40 mm)

Acciaio in profili a sezione aperta laminati a caldo non saldati:

Tipo EN 10025-2 S355 J0+N

Acciaio in profili a sezione cava:

Tipo EN 10210-1 S355 J0H+N

Acciaio per armatura lenta: barre nervate tipo B450C, controllate in stabilimento

f_{yk} ≥ 450.0 MPa

f_{tk} ≥ 540.0 MPa

Es = 210000MPa

 $u_{\rm S} = 0.3$

1.4 SOFTWARE DI CALCOLO

Il software di calcolo utilizzato per la determinazione delle sollecitazioni agenti sui pali / micropali è *Group for Windows – Version 2016*, Ensoft Inc.

Per le verifiche delle sezioni in c.a. si impiega il software di calcolo *VcaSIu*, sviluppato dal Prof. Piero Gelfi. Il programma consente la verifica di sezioni in cemento armato normale e precompresso, soggette a presso-flessione o tenso-flessione retta o deviata, sia allo Stato Limite Ultimo che con il Metodo n e permette inoltre di tracciare il domino M-N.

Per l'elaborazione dei dati di input/output in generale e la creazione di tabelle riepilogative, si adottano procedure opportunamente implementate in fogli elettronici *Microsoft* [®] *Office Excel 2016*. La descrizione delle modalità operative dei singoli fogli di calcolo verrà presentata di volta in volta.

1.5 CONVENZIONI GENERALI

1.5.1 Unità di misura

Salvo ove diversamente specificato, le unità di misura sono quelle relative al Sistema Internazionale, ovvero:

Lunghezze: [m]
Forze: [kN]
Tensioni: [MPa]

1.5.2 Convenzioni di segno

Per quanto riguarda le convenzioni di segno, si fa riferimento alla seguente figura.

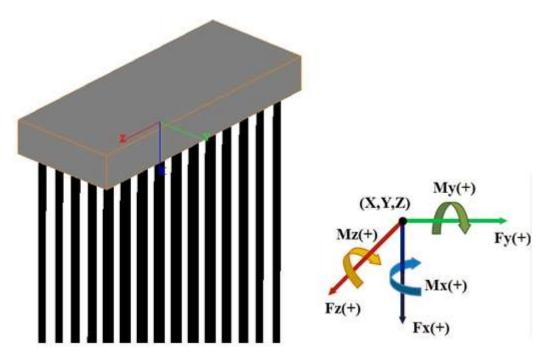


Figura 1-1. Convenzioni di segno - GROUP

2 CARATTERIZZAZIONE GEOTECNICA

Per quanto riguarda la caratterizzazione geotecnica completa del sito ove sorge l'opera in adeguamento, si rimanda alla specifica Relazione Geologica.

Si riporta nel seguito un breve richiamo alle indagini disponibili ed alla stratigrafia di riferimento.

La quota della falda è considerata, a favore di sicurezza, in corrispondenza della testa dei pali (intradosso soletta di fondazione).

3	sigla sond./pozz./prova	campagna di indagine	progressiva (km)	quota p.c. (m s.l.m.)	lunghezza (m)	strumentazione installata
	\$57	1984	14+570	36.00	45.00	-
	CPT106	2000	14+505	34.00	40.00	-

C (....) = cella piezometrica Casagrande (profondità cella);

Figura 2-1. Indagini geognostiche di riferimento

Quota p.c. (m s.l.m.m.)	Profondità (m da p.c.)	descrizione	sigla	z _w (m da p.c.)	Parametri medi caratteristici
35.00	0.00 ÷ 3.00	Limo argilloso	Α	ś	Tabella IV
	3.00 ÷ 15.00	Limo argilloso	A'	ś	Tabella V
	15.00 ÷ 35.00	Limo argilloso	Α"	ś	Tabella VI

Figura 2-2. Caratterizzazione stratigrafico - geotecnica

Descrizione	γ	c'	ф	E'	σ'_{pre}	CR	RR	Cv	Cu	E₀
	(KN/m³)	(KPa)	(°)	(MPa)	(MPa)	(-)	(-)	m/sec²	(KPa)	(MPa)
Limo argilloso	19	0	26	5	0.4	0.18 ÷ 0.16	0.03÷0.04	3E-07	50 +3.3 z	20

Figura 2-3. Parametri medi caratteristici dei materiali Limo Argilloso (A)

Descrizione	γ	C'	ф	E'	σ'_{pre}	CR	RR	Cv	Cu	Еυ
	(KN/m³)	(KPa)	(°)	(MPa)	(MPa)	(-)	(-)	m/sec²	(KPa)	(MPa)
Limo argilloso	19	0	26	5	0.4	0.18 ÷ 0.16	0.03÷0.04	3E-07	60 + (z-3)	20

Figura 2-4. Parametri medi caratteristici dei materiali Limo Argilloso (A')

TA (....) = piezometro a tubo aperto (tratto filtrante);

CH = tubo per misure Cross-hole; DH = tubo per misure Down-hole

Descrizione	γ	C'	ф	E'	σ'_{pre}	CR	RR	Cv	Сu	Eυ	
	(KN/m³)	(KPa)	(°)	(MPa)	(MPa)	(-)	(-)	m/sec²	(KPa)	(MPa)	
Limo argilloso	19	0	26	5+0.6(z- 15.0)	0.4	0.18 ÷ 0.16	0.03÷0.04	3E-07	72 +2(z- 15.0)	50	
γ ₁ =peso di volume del terreno c' =coesione efficace σ' =angolo di resistenza al taglio					CR RR Cv	=angolo di resistenza al taglio =modulo di elasticità					
φ' =angol E' =modu σ' _{pre} =tensio	glio	C _u E _u	=coeff. di consolidazione verticale =coesione non drenata = mod di elasticità in condizinon drenate								

Figura 2-5. Parametri medi caratteristici dei materiali Limo Argilloso (A")

Si fa presente che l'opera in esame e le opere 90T, 90bT, 91, 92T e 93T sono limitrofe e ubicate presso l'interconnessione A13/A14. Ai fini della definizione dei coefficienti ξ_3 e ξ_4 per il calcolo della capacità portante di progetto dei pali/micropali della specifica opera, si sono considerate anche le prove geotecniche delle opere sopra citate.

3 CRITERI DI VERIFICA E CALCOLO

3.1 PREMESSA

Le verifiche contenute nel presente documento fanno riferimento a quanto prescritto per i sistemi fondazionali nelle NTC2018 e successiva Circolare Esplicativa.

Le verifiche, sia per le condizioni di esercizio che per quelle in presenza di un evento sismico, sono eseguite nei confronti degli Stati Limite Ultimi (SLU) riferiti allo sviluppo di meccanismi di collasso determinati dalla mobilitazione della resistenza del terreno e al raggiungimento della resistenza degli elementi strutturali che compongono la fondazione.

Per ogni stato limite ultimo deve essere rispettata la condizione:

 $E_d \le R_d$ (eq. 6.2.1 delle NTC2018)

dove

E_d valore di progetto dell'azione o dell'effetto dell'azione;

R_d valore di progetto della resistenza del sistema geotecnico.

3.2 FONDAZIONI SUPERFICIALI

3.2.1 Verifiche agli stati limite ultimi (SLU)

Nel caso di fondazione superficiale, l'opera è assimilabile ad un muro di sostegno.

Secondo quanto specificato al punto 6.5.3.1 delle NTC2018, nelle verifiche di sicurezza devono essere presi in considerazione tutti i meccanismi di stato limite ultimo, sia a breve sia a lungo termine.

Gli stati limite ultimi delle opere di sostegno si riferiscono allo sviluppo di meccanismi di collasso determinati dalla mobilitazione della resistenza del terreno e al raggiungimento della resistenza degli elementi strutturali che compongono le opere stesse.

Per i muri di sostegno devono essere effettuate le verifiche con riferimento almeno ai seguenti stati limite:

- SLU di tipo geotecnico (GEO)
 - o scorrimento sul piano di posa;
 - o collasso per carico limite del complesso fondazione-terreno;
 - o ribaltamento;
- SLU di tipo strutturale (STR)
 - o raggiungimento della resistenza negli elementi strutturali;

accertando che la condizione $E_d \le R_d$ sia soddisfatta per ogni stato limite considerato.

Le verifiche devono essere effettuate secondo l'Approccio 2, con la combinazione (A1+M1+R3), tenendo conto dei valori dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II e 6.5.I delle NTC2018.

Nella verifica a ribaltamento i coefficienti R3 della Tab.6.5.I delle NTC2018 si applicano agli effetti delle azioni stabilizzanti.

Tab. 6.2.I - Coefficienti parziali per le azioni o per l'effetto delle azioni

	Effetto	Coefficiente Parziale γ_F (o γ_E)	EQU	(A1)	(A2)
Carichi permanenti G1	Favorevole	Ϋ́GI	0,9	1,0	1,0
	Sfavorevole	2	1,1	1,3	1,0
Carichi permanenti G2(1)	Favorevole	Ϋ́G2	0,8	0,8	0,8
	Sfavorevole	*	1,5	1,5	1,3
Azioni variabili Q	Favorevole	Υα	0,0	0,0	0,0
	Sfavorevole		1,5	1,5	1,3

[🕮] Per i carichi permanenti G2 si applica quanto indicato alla Tabella 2.6.I. Per la spinta delle terre si fa riferimento ai coefficienti γci

Figura 3-1. Coefficienti parziali per le azioni o l'effetto delle azioni (Tab.6.2.I delle NTC2018)

Tab. 6.2.II - Coefficienti parziali per i parametri geotecnici del terreno

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale γ _M	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	$ an {f \phi}'_k$	γ _φ	1,0	1,25
Coesione efficace	c′ _k	Υe	1,0	1,25
Resistenza non drenata	C _{uk}	γ _{cu}	1,0	1,4
Peso dell'unità di volume	γγ	γ_{ν}	1,0	1,0

Figura 3-2. Coefficienti parziali per i parametri geotecnici del terreno (Tab.6.2.II delle NTC2018)

Tab. 6.5.I - Coefficienti parziali γ_R per le verifiche agli stati limite ultimi di muri di sostegno

Verifica	Coefficiente parziale (R3)
Capacità portante della fondazione	$\gamma_R = 1.4$
Scorrimento	$\gamma_R = 1.1$
Riba <mark>l</mark> tamento	$\gamma_R = 1.15$
Resistenza del terreno a valle	$\gamma_R = 1.4$

Figura 3-3. Coefficienti parziali γ_R per le verifiche agli stati limite ultimi STR e GEO di muri di sostegno (Tab.6.5.I delle NTC2018)

3.2.2 Stima della capacità portante

In condizioni "drenate" (sforzi efficaci), la valutazione della capacità portante delle fondazioni superficiali viene condotta in accordo all'equazione:

$$\mathbf{q}_{\mathsf{lim}} = 0.5 \cdot \gamma_c \cdot \mathbf{B} \cdot N_r \cdot \mathbf{s}_r \cdot \mathbf{i}_r \cdot \mathbf{b}_r \cdot \mathbf{g}_r + \mathbf{c} \cdot N_c \cdot \mathbf{s}_c \cdot \mathbf{d}_c \cdot \mathbf{i}_c \cdot \mathbf{b}_c \cdot \mathbf{g}_o + \mathbf{q} \cdot N_a \cdot \mathbf{s}_a \cdot \mathbf{d}_a \cdot \mathbf{i}_a \cdot \mathbf{b}_a \cdot \mathbf{g}_a$$

Le espressioni che forniscono i valori dei fattori di capacità portante (N) e dei fattori correttivi (s, i, b, g) sono riportate di seguito:

Fattori di capacità portante:

$$N_{c} = (N_{q} - 1) \cdot \cot g(\varphi')$$

$$N\gamma = 2 \cdot (N_{q} + 1) \cdot tg(\varphi')$$

$$N_{q} = tg^{2} \left(45 + \frac{\varphi'}{2}\right) \cdot e^{\pi g(\varphi')}$$

Fattori correttivi di forma:

$$S_c = 1 + \frac{N_q}{Nc} \cdot \frac{B'}{L'}$$

$$S_r = 1 - 0.4 \cdot \frac{B'}{L'}$$

$$S_q = 1 + \frac{B'}{L'} \cdot tg(\varphi')$$

• Fattori correttivi di profondità:

$$\begin{split} d_c &= d_q - \frac{(1 - d_q)}{Nc \ tg(\phi')} \\ d_q &= 1 + \left[2 \ (D/B') \ tg(\phi') (1 - \sin(\phi')^2 \right] \ per \ D/B' < 1 \\ d_q &= 1 + \left[2 \ tg(\phi') \ (1 - \sin(\phi')^2 \ tg(D/B')^{-1} \right] \ per \ D/B' > 1 \end{split}$$

• Fattori correttivi di inclinazione del carico:

$$\begin{split} & i_{c} = i_{q} - \left(\frac{(1 - i_{q})}{(N_{c} t g(\phi'))} \right) \\ & i_{y} = \left[1 - \frac{H}{(N + B'L'c' \cot g(\phi'))} \right]^{(m+1)} \\ & i_{q} = \left[1 - \frac{H}{(N + B'L'c' \cot g(\phi'))} \right]^{m} \\ & \text{dove} : m = \frac{[2 + (B'L')]}{[1 + (B'L')]} \end{split}$$

• Fattori correttivi di inclinazione fondazione:

$$\begin{aligned} b_{q} &= (1 - \alpha t g(\phi^{t}))^{2} \\ b_{\gamma} &= (1 - \alpha t g(\phi^{t}))^{2} \\ b_{c} &= b_{o} - [(1 - b_{o})/(N_{c} t g(\phi^{t}))] \end{aligned}$$

• Fattori correttivi di inclinazione piano campagna:

$$g_q = (1-tg(\omega))^2$$

 $g_+ = (1-tg(\omega))^2$
 $g_c = g_q - [(1-g_q)/(N_c tg(\phi'))]$

Le formule utilizzate si riferiscono alla fondazione efficace equivalente ovvero quella fondazione rispetto alla quale il carico verticale N risulta centrato. La fondazione equivalente è caratterizzata dalle dimensioni B' e L', valutate mediante i criteri riportati in Figura 3-4.

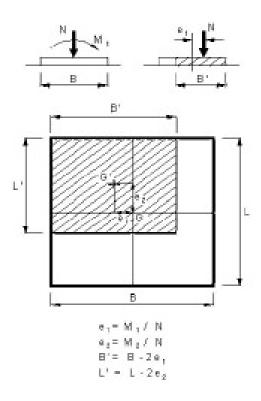


Figura 3-4. Fondazione efficace equivalente nel caso di fondazione rettangolare

Nelle analisi di capacità portante in termini di tensioni totali (condizioni "non drenate"), la resistenza del terreno è definita convenzionalmente mediante il parametro c_u. In questo caso, i fattori di capacità portante valgono:

- $N_V = 0.00$
- $N_c = 5.14$
- N_q = 1.00

e il carico limite è dato da:

 $q_{lim} = 5.14 \times c_u \times s_{c0} \times d_{c0} \times i_{c0} \times b_{c0} \times g_{c0} + q \times g_{q0}$

essendo q = γ x D la pressione totale agente sul piano di posa della fondazione, e avendo indicato con il pedice 0 i fattori correttivi per ϕ = 0 per i quali valgono le formulazioni sotto riportate.

• Fattori correttivi di forma:

Valgono le stesse formulazioni utilizzate per le condizioni drenate

• Fattori correttivi di profondità (Vesic, 1975):

Valore di ø		de	d_q	d_T
$\phi = 0$	$\frac{D}{-} \le 1$	1+0.4·D		
argilla sa- tura in	$\overline{B'} \le 1$	B'	1	1
non dre- nate	$\frac{D}{B'} > 1$	$1 + 0.4 \cdot \arctan\left(\frac{D}{B'}\right)$		

Fattori correttivi di inclinazione del carico (Vesic, 1975):

Terreno	1e	i_q	1 _f
φ = 0 argilla satura in condizioni non drenate	$1 - \frac{m \cdot H}{B'L \cdot c_u \cdot N_c}$	1	

Fattori correttivi di inclinazione fondazione:

Date le condizioni al contorno delle opere, vengono considerati unitari.

• Fattori correttivi di inclinazione piano campagna:

Date le condizioni al contorno delle opere, vengono considerati unitari.

3.2.3 Verifica a scorrimento

La verifica allo scorrimento viene condotta confrontando l'azione di taglio trasmessa in fondazione con l'azione di taglio resistente del terreno. Quest'ultima è valutata come:

 $T_{lim} = N \times tg\phi + c' \times B' \times L'$ in condizioni drenate

 $T_{lim} = c_u \times B' \times L'$ in condizioni non drenate

dove N è il carico assiale applicato nel baricentro della fondazione e ϕ l'angolo di attrito terreno – fondazione.

3.3 FONDAZIONI SU PALI

3.3.1 Verifiche agli stati limite ultimi (SLU)

Secondo quanto specificato al punto 6.4.3.1 delle NTC2018, nelle verifiche di sicurezza devono essere presi in considerazione tutti i meccanismi di stato limite ultimo, sia a breve sia a lungo termine.

Gli stati limite ultimi delle fondazioni su pali si riferiscono allo sviluppo di meccanismi di collasso determinati dalla mobilitazione della resistenza del terreno e al raggiungimento della resistenza degli elementi strutturali che compongono la fondazione stessa.

Le verifiche delle fondazioni su pali sono effettuate con riferimento ai seguenti stati limite, quando pertinenti:

- SLU di tipo geotecnico (GEO)
 - o collasso per carico limite della palificata nei riguardi dei carichi assiali;
 - o collasso per carico limite della palificata nei riguardi dei carichi trasversali;
 - o collasso per carico limite di sfilamento nei riguardi dei carichi assiali di trazione;
- SLU di tipo strutturale (STR)
 - o raggiungimento della resistenza dei pali;
 - o raggiungimento della resistenza della struttura di collegamento dei pali;

accertando che la condizione $E_d \le R_d$ sia soddisfatta per ogni stato limite considerato.

Le verifiche devono essere effettuate, tenendo conto dei valori dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II e 6.4.II delle NTC2018, seguendo l'Approccio 2 (A1+M1+R3) previsto al punto 6.4.3.1 delle NTC2018.

Nelle verifiche effettuate con l'approccio 2 che siano finalizzate al dimensionamento strutturale, il coefficiente y_R non deve essere portato in conto.

Tab. 6.4.II – Coefficienti parziali γ_R da applicare alle resistenze caratteristiche a carico verticale dei pali

Resistenza	Simbolo	Pali infissi	Pali trivellati	Pali ad elica continua
	γ_{R}	(R3)	(R3)	(R3)
Base	γь	1,15	1,35	1,3
Laterale in compressione	γs	1,15	1,15	1,15
Totale (*)	γ	1,15	1,30	1,25
Laterale in trazione	γ _{st}	1,25	1,25	1,25

[&]quot; da applicare alle resistenze caratteristiche dedotte dai risultati di prove di carico di progetto.

Figura 3-5. Coefficienti parziali γ_R da applicare alle resistenze caratteristiche a carico verticale dei pali (Tab.6.4.II delle NTC2018)

3.3.2 Resistenza di pali soggetti a carichi assiali

La resistenza dei pali soggetti a carichi assiali è calcolata come prescritto al punto 6.4.3.1.1 delle NTC2018.

La resistenza caratteristica (Rk) del palo singolo può essere dedotta da:

- a) risultati di prove di carico statico di progetto su pali pilota;
- b) metodi di calcolo analitici, dove R_k è calcolata a partire dai valori caratteristici dei parametri geotecnici oppure con l'impiego di relazioni empiriche che utilizzino direttamente i risultati di prove in sito (prove penetrometriche, pressiometriche, ecc.);
- c) risultati da prove dinamiche di progetto, ad alto livello di deformazione, eseguite su pali pilota.

Nelle analisi condotte si è proceduto considerando l'approccio di tipo (b) e come di seguito descritto.

Con riferimento alle procedure analitiche che prevedano l'utilizzo dei parametri geotecnici o dei risultati di prove in sito, il valore caratteristico della resistenza a compressione e a trazione (R_{c,k} ovvero R_{t,k}) è ottenuto come:

$$R_{k} = min \left\{ \frac{R_{MEDIA}}{\xi_{3}}; \frac{R_{MIN}}{\xi_{4}} \right\}.$$

con

RMEDIA e RMIN le resistenze calcolate;

 ξ_3 e ξ_4 i fattori di correlazione funzione del numero n di verticali indagate riportati alla Tab.6.4.IV delle NTC2018.

Tab. 6.4.IV - Fattori di correlazione ξ per la determinazione della resistenza caratteristica in funzione del numero di verticali indagate

Numero di verticali indagate	1	2	3	4	5	7	≥ 10
ξ3	1,70	1,65	1,60	1,55	1,50	1,45	1,40
ξ_4	1,70	1,55	1,48	1,42	1,34	1,28	1,21

Figura 3-6. Fattori di correlazione ξ per la determinazione della resistenza caratteristica in funzione del numero di verticali indagate (Tab.6.4.IV delle NTC2018)

Il valore di progetto R_d della resistenza si ottiene a partire dal valore caratteristico R_k applicando i coefficienti parziali γ_R della Tabella 6.4.Il delle NTC2018 (vedi Figura 3-5).

I criteri utilizzati per la stima delle curve di capacità portante a compressione e trazione sono illustrati nel successivo paragrafo.

3.3.2.1 Stima della resistenza dei pali e micropali soggetti a carichi assiali

La portata limite (QLIM) è calcolata in riferimento alla seguente espressione:

$$Q_{LIM} = Q_{B,LIM} + Q_{L,LIM} = q_b \cdot A_B + \sum_i \pi \cdot D_i \cdot \Delta H_i \cdot \tau_{LIM,i}$$

compressione

$$Q_{LIM} = W + Q_{L,LIM} = \gamma'_{cls} \left(\sum_{i} \Delta H_{i} \right) \cdot A_{B} + \sum_{i} \pi \cdot D_{i} \cdot \Delta H_{i} \cdot \tau_{LIM,i}$$

trazione

dove:

Q_{B,LIM} = portata limite di base;

Q_{L,LIM} = portata limite laterale;

W = peso proprio del palo;

q_b = portata unitaria di base;

γ'_{cls} = peso di volume sommerso del calcestruzzo armato;

 A_B = area di base;

D_i = diametro del concio i^{mo} di palo;

 ΔH_i = altezza del concio i^{mo} di palo;

T_{LIM,i} = attrito laterale unitario limite del concio i^{mo} di palo.

Portata di base

• Per terreni granulari:

 $q_b = 0.667 \times N_{SPT} \le 4MPa$

· Per terreni coesivi:

$$q_{lim} = 9 \times c_u + \sigma_{v0}$$

dove:

cu = coesione non drenata

 σ_{v0} = pressione geostatica verticale totale alla quota della base del palo

Portata laterale

Per terreni granulari si ha:

 $T_{LIM} = min [k \times \sigma'_{v} \times tg\phi; T = f(N_{SPT})] < 150kPa$

dove:

k = 0.70 nel caso di compressione e k = 0.50 nel caso di trazione

 σ'_v = pressione geostatica verticale efficace

φ = angolo di attrito

N_{SPT} = numero di colpi/piede in prova SPT

I valori di $\tau = f(N_{SPT})$ si possono desumere dalla Figura 3-7:

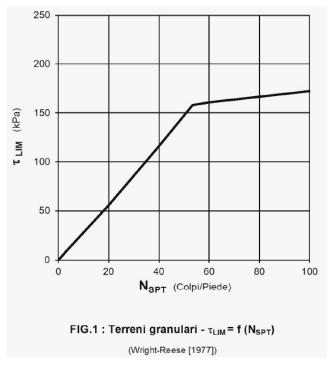


Figura 3-7. Terreni granulari – $\tau_{lim} = f(N_{SPT})$ (Wright-Reese – 1977)

Per terreni coesivi si ha:

 $T_{lim} = \alpha \times c_u < 150 \text{kPa}$

dove:

 α = coefficiente empirico di aderenza che dipende dal tipo di terreno, dalla resistenza al taglio non drenata del terreno indisturbato, dal metodo di costruzione del palo, dal tempo, dalla profondità, dal cedimento del palo.

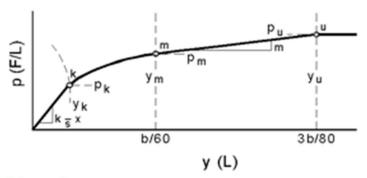
```
    α coefficiente riduttivo
    (= 0.9 per cu<=25 kPa; 0.8 per 25<cu<=50 kPa; 0.6 per 50<cu<=75 kPa; 0.4 per cu>75 kPa; AGI [1984])
    cu coesione non drenata
```

3.3.3 Comportamento di pali in gruppo soggetti a carichi trasversali

Il comportamento di pali in gruppo soggetti a carichi trasversali è indagato mediante il programma di calcolo GROUP.

Il programma di calcolo permette di analizzare il comportamento di una palificata sottoposta a carichi orizzontali e verticali modellando l'interazione terreno struttura mediante curve p-y.

Le curve p-y che esprimono la resistenza del terreno in funzione della profondità e dello spostamento del palo, possono essere ricavate in relazione alla tipologia di terreni e alle proprietà meccaniche che li caratterizzano, in accordo alle procedure proposte da:


Reese, Cox e Koop (1975) per sabbie
 Welch e Reese (1975) per argille tenere sotto falda
 Reese, Cox e Koop (1975) per argille dure sotto falda
 Reese–Welch (1972) per argille dure sopra falda

Il programma permette di scegliere tra uno dei modelli sopra esposti.

I metodi di calcolo sono descritti sinteticamente nelle pagine seguenti con riferimento sia a carichi statici sia a carichi ciclici.

Modello per sabbie Cox e Reese (1975)

1- calcolo di p = min(pu1;pu2)

$$\begin{aligned} \text{pu}_1 &= \gamma \cdot z \cdot \frac{\mathsf{K}_0 \cdot z \cdot \tan \phi \cdot \sin \beta}{\tan (\beta - \phi) \cdot \cos \alpha} \cdot \mathsf{A}_1 + \frac{\tan \beta}{\tan (\beta - \phi)} \cdot \left(\mathsf{D} \cdot \mathsf{A}_3 + z \cdot \tan \beta \cdot \tan \alpha \cdot \mathsf{A}_3^2 \right) + \\ &+ \gamma \cdot z \cdot \left[+ \mathsf{K}_0 \cdot z \cdot \tan \beta \cdot \left(\tan \phi \cdot \sin \beta - \tan \alpha \right) \cdot \mathsf{A}_1 - \mathsf{K}_3 \cdot \mathsf{D} \right] \\ \mathsf{pu}_2 &= \mathsf{K}_3 \cdot \mathsf{D} \cdot \gamma \cdot z \cdot \left(\tan^3 \beta - 1 \right) + \mathsf{K}_0 \cdot \mathsf{D} \cdot \tan \phi \cdot \tan^4 \beta \\ &= \mathsf{A}_1 \cdot \left(4 \cdot \mathsf{A}_2^3 - 3 \cdot \mathsf{A}_2^2 + 1 \right) \end{aligned}$$

$$A_2 = (\tan \beta \cdot \tan \delta) I(\tan \beta \cdot \tan \delta + 1)$$

dove:

pu resistenza laterale unitaria ultima

y spostamento orizzontale

y peso di volume efficace

z profondità da p.c.

Ko coefficiente di spinta a riposo

angolo di attrito

β 45+ φ/2

α 6/2

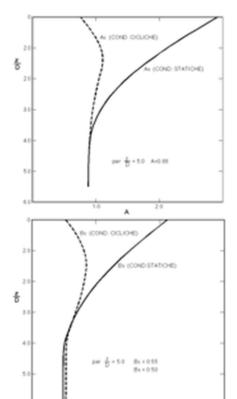
D diametro del palo

Ka tan2(45+6/2)

 δ inclinazione del piano campagna rispetto all'orizzontale

2- calcolo di p.= A. p.

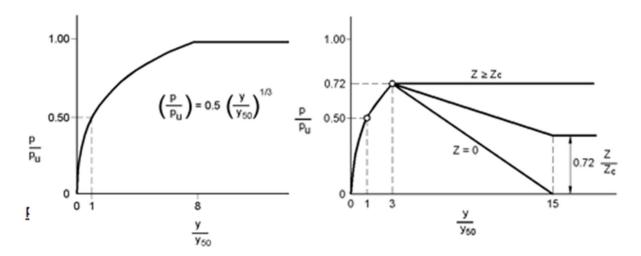
3- calcolo di gn= Bi. p


4- definizione del tratto iniziale della curva p-y

5- definizione del tratto parabolico della curva p-y p=Cy^{1/n}

dove:

n=pm/mym


 $C=p_m/(y_m)^{1/n}$

Modello Welch e Reese (1975) per argille tenere sotto falda

 $p_{u2} = 9 c_u D \alpha$

 $\alpha = 1/(1+\tan\delta)$

 $p_u = min (p_{u1}; p_{u2})$

 $p/p_u = 0.5 (y/y_{50})^{1/3}$

 $y_{50} = 2.5 \epsilon_{50} D$

dove:

pu resistenza laterale unitaria ultima

σ' pressione geostatica verticale efficace alla quota z

c_u coesione non drenata

z profondità da p.c.

D diametro del palo

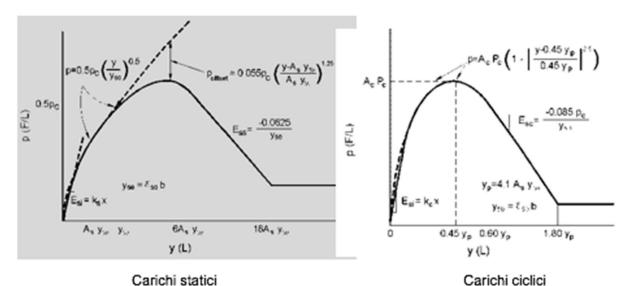
δ inclinazione del piano campagna rispetto all'orizzontale

y spostamento orizzontale

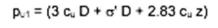
y₅₀ spostamento orizzontale per p=0.5 p_u

deformazione unitaria corrispondente ad una mobilitazione delle tensioni tangenziali pari al 50% della resistenza al taglio

per carichi ciclici


$$z_{\alpha} = [6 c_u D] / [\gamma' D + 0.5 c_u] \alpha$$

γ' = peso di volume efficace



Modello Reese, Cox e Koop (1975) per argille dure sotto falda

$$p_{u2} = 11 c_u D \alpha$$

 $\alpha = 1/(1+tan\delta)$

$$p_0 = min (p_{01}; p_{02})$$

resistenza laterale unitaria ultima

z profondità da p.c.

σ' pressione geostatica verticale efficace a

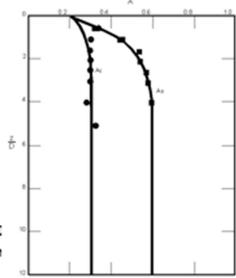
lla profondità z

c_u coesione non drenata

D diametro del palo

y spostamento orizzontale

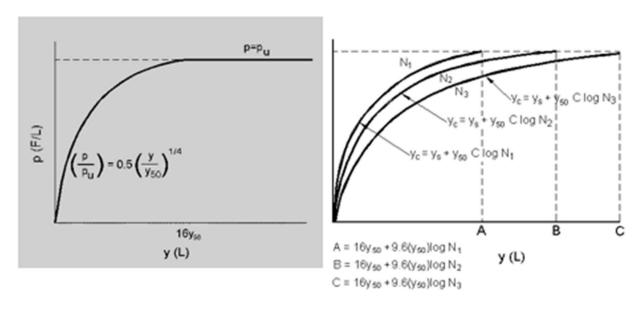
y₅₀ = 2.5 ε₅₀ D = spostamento orizzontale per p=0


 ϵ_{50} deformazione unitaria corrispondente ad una n

pari al 50% della resistenza al taglio

Ks pendenza del tratto iniziale della curva carichi statici

K_c pendenza del tratto iniziale della curva carichi ciclici


A parametro empirico

Modello Welch-Reese (1972) e Reese-Welch () per argille dure sopra falda

Carichi statici Carichi ciclici

 $p_{u1} = [3c_u D + \gamma' D z + 2.83c_u z] \alpha$

 $p_{u2} = 9 c_u D \alpha$

 $\alpha = 1/(1+\tan\delta)$

 $p_u = min (p_{u1}; p_{u2})$

dove:

pu resistenza laterale unitaria ultima

γ' peso di volume unitario

c_o coesione non drenata

z profondità da p.c.

D diametro del palo

δ inclinazione del piano campagna rispetto all'orizzontale

y spostamento orizzontale

y₅₀ spostamento orizzontale per p=0.5 p_ω (= 2.5 ε₅₀ D)

650 deformazione unitaria corrispondente ad una mobilitazione delle tensioni

tangenziali pari al 50% della resistenza al taglio

pendenza del tratto iniziale della curva

3.4 VALUTAZIONE DEL TIRO SUI TIRANTI PASSIVI

La valutazione del tiro agente sui tiranti passivi nelle varie combinazioni di carico viene eseguita applicando un metodo del tipo "a curve caratteristiche", tenendo conto dell'effettiva interazione tra spalla e tiranti, assicurando la congruenza degli spostamenti previsti.

Più nel dettaglio, ipotizzando di intervenire sul paramento della spalla con una tirantatura passiva realizzata con micropali, note:

- la tipologia e la tecnica di esecuzione dell'intervento di consolidamento;
- la natura e la caratterizzazione geotecnica dei terreni;

è possibile tracciare una curva di rigidezza della tirantatura sul piano δ_h-T, dove:

 δ_h = spostamento orizzontale della testa del micropalo (considerato "assiale" per micropali sub-orizzontali con deviazione fino a 15°÷20°);

T = tiro nei micropali di ancoraggio, al m di paramento.

Il massimo tiro disponibile per ciascun tirante è pari a:

$$T_{max} = R_{ad}$$

dove

Rad è la resistenza di progetto

Per ottenere il valore massimo del tiro disponibile per ciascun metro di paramento è sufficiente dividere T_{max} per l'interasse dei micropali.

Successivamente, note le sollecitazioni agenti in fondazione per ogni combinazione di carico, è possibile determinare una curva di rigidezza della struttura nel modo di seguito descritto.

La spalla esistente, per effetto dei soli carichi permanenti, subisce una traslazione rigida orizzontale (δ_o) ed una rotazione rigida (θ_o) ; in questo caso, indicando con h_{tir} la distanza verticale tra l'intradosso della fondazione e la testa dei micropali, lo spostamento orizzontale della spalla in corrispondenza del punto di applicazione dei tiranti risulta:

$$\delta_{o,htir} = \delta_o + h_{tir} \tan (\theta_o)$$

Ipotizzando di realizzare i tiranti quando sulla struttura agiscono i soli carichi permanenti, per diverse combinazioni di carico di progetto (stato limite di esercizio, stato limite ultimo o sisma), è possibile costruire per punti le curve di rigidezza della fondazione in presenza di una generica tirantatura di consolidamento, disposta ad una specificata altezza da intradosso fondazione (h_{tir}).

Considerando, infatti, il caso in cui la spalla sia soggetta, ad esempio, alle sollecitazioni derivanti dal sisma, si possono calcolare i valori di sollecitazioni di taglio e momento agenti in fondazione, per ciascun i-esimo ipotetico valore T_i dell'azione agente nei tiranti disposti ad altezza h_{tir}.

Si avrà infatti:

$$\begin{split} N_i &= N \\ H_i &= H - T_i \\ M_i &= M - (h_{tir}T_i) \end{split}$$

dove N_i, H_i, M_i sono, per la condizione di carico in esame, i carichi effettivi per ogni metro di fondazione nella i-esima ipotesi di efficacia della tirantatura, mentre N, H ed M sono, per la condizione di carico in esame, i carichi effettivi per ogni metro di fondazione in assenza di tirantatura.

Tali sollecitazioni (N_i , H_i , M_i) danno luogo ad uno spostamento orizzontale (δ_i) e ad una rotazione della fondazione (θ_i). Per effetto di tali spostamenti, in corrispondenza del punto di applicazione dei tiranti, lo spostamento orizzontale della spalla risulterà pari a:

$$\delta_{i,htir} = \delta_i + h_{tir} \tan (\theta_i)$$

Sottraendo a tale valore dello spostamento il valore corrispondente alle condizioni di carico permanente, si ottiene:

 $\Delta \delta_{h,i} = \delta_{o,htir} - \delta_{i,h} tir$

La coppia di valori avente coordinate $(T_i, \Delta \delta_{h,i})$ rappresenta un punto della curva di rigidezza della fondazione.

Il punto di incontro tra le curve di rigidezza della tirantatura, costituita da tiranti specificati ad interasse specificato, e la curva di rigidezza della fondazione, determinata come descritto sopra, verifica la congruenza degli spostamenti e indica il tiro a cui è soggetta la tirantatura nella specifica condizioni di carico analizzata.

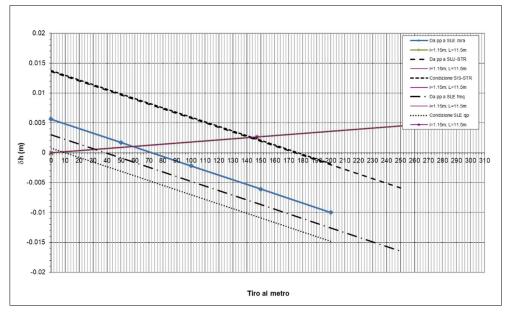


Figura 3-8. Esempio di curve caratteristiche tiranti passivi

3.5 PORTATA LIMITE PER GLI ANCORAGGI DELLE SPALLE

La verifica a sfilamento del tirante viene svolta in accordo a quanto riportato nel Paragrafo C6.6.2 delle Istruzioni per l'applicazione delle "Norme Tecniche per le costruzioni" di cui al D.M. 17 Gennaio 2018.

Il valore di calcolo della resistenza allo sfilamento dell'ancoraggio ($R_{\rm a,c}$) nel caso specifico, è stato dedotto con metodi analitici, a partire dai valori caratteristici dei parametri geotecnici (risultati di prove in sito e/o di laboratorio):

$$R_{\text{a.c}} = \pi \cdot D \cdot L \cdot \tau$$

dove:

 $D = \alpha \cdot \emptyset_{perf}$ diametro efficace ottenuto a seguito dell'iniezione (nel caso in esame è stato considerato un

valore di α pari a 1.0);

φ_{perf} diametro nominale della perforazione;

L lunghezza del bulbo di ancoraggio;

τ aderenza limite bulbo-terreno.

In base al § 6.6.2 della NTC la resistenza caratteristica allo sfilamento dell'ancoraggio è pari a:

$$R_{ak} = \frac{R_{a,c}}{\max(\xi_{a3}; \xi_{a4})}$$

dove:

ξa3 e ξa4 sono desunti dalla tabella 6.6.III al § 6.6.2 della NTC.

Al valore caratteristico così ottenuto è stato quindi applicato il coefficiente γ_{Rap} =1.2 come da Tab.6.6.I del D.M. 17/01/2018, al fine di ottenere la resistenza a sfilamento di progetto con cui condurre le verifiche:

$$R_{ad} = \frac{R_{ak}}{\gamma_{Rap}}$$

Si sottolinea quanto già prescritto in sede di progetto definitivo e nella norma vigente ovvero la <u>necessità di conferma sperimentale con prove di trazione in sito nelle fasi di progetto (campo prove) e di collaudo</u>.

FONDAZIONE SPALLA - AMPLIAMENTO 2 (NUOVA REALIZZAZIONE)

AZIONI DI CALCOLO

La seguente tabella riporta le sollecitazioni di calcolo agenti nel baricentro della palificata.

Il sistema di riferimento utilizzato coincide le convenzioni del software GROUP.

	DESCRIZIONE	COMBINAZIONE	Rx [kN]	Ry [kN]	Mz [kNm]	
e e	no traffico	1	20208	10018	-13956	
zzazio	traffico 1	2	22305	10018	-12288	
Massimizzazione compressione	traffico 2a	3	21564	10317	-15795	
Σ̈́	traffico 2a config 2	4	20461	10317	-16678	
ne	no traffico	5	16397	10018	-16027	
simizzazio trazione	traffico 1	6	18493	10018	-14350	
Massimizzazione trazione	traffico 2a	7	17753	10317	-17857	
Ž	traffico 2a config 2	8	16649	10317	-18740	
sisma	Traffico +	9	19570	17029	-53286	
sis	Traffico -	10	13821	16198	-57249	
	no traffico	11	16393	7421	-5465	
Rara	traffico 1	12	17946	7421	-4223	
Ra	traffico 2a	13	17397	7642	-6820	
	neve dominante	14	16580	7642	-7474	
ente	no traffico	15	16385	7142	-3910	
frequente	traffico 1	16	17389	7142	-3107	
asi nente	no traffico	17	16385	6528	-490	
quasi permanente	traffico 1	18	16696	6528	-242	

Tabella 4-1. Sollecitazioni di calcolo risultanti nel baricentro della palificata

4.2 MODELLO DI CALCOLO

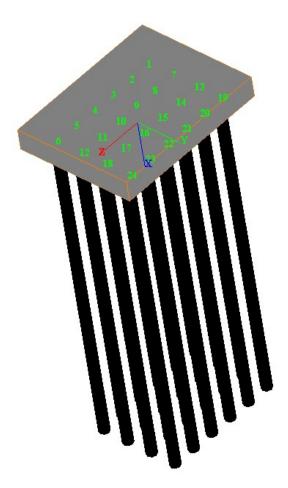


Figura 4-1. Modello di calcolo palificata: vista tridimensionale

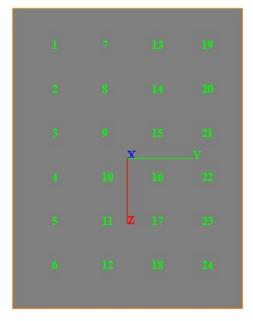


Figura 4-2. Modello di calcolo palificata: piano y-z

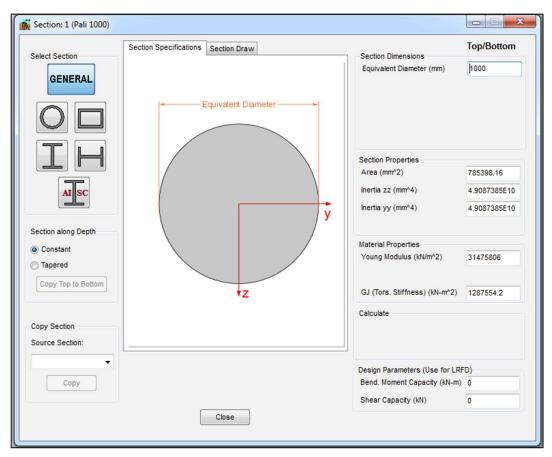
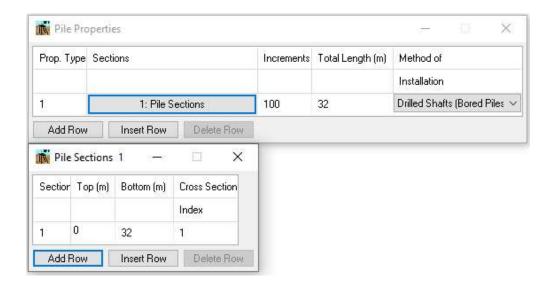



Figura 4-3. Caratteristiche geometriche e meccaniche sezione trasversale pali

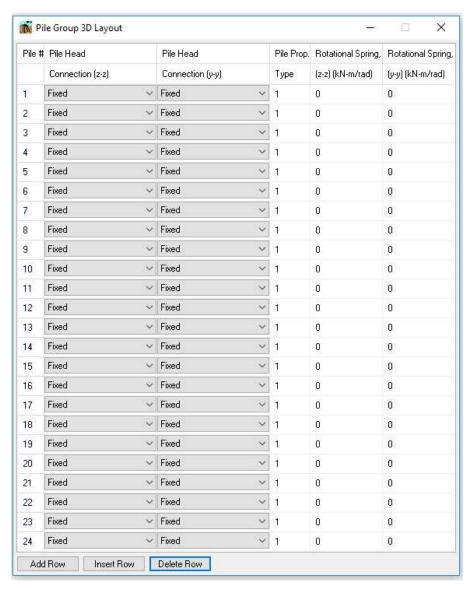


Figura 4-4. Parametri dei pali in GROUP

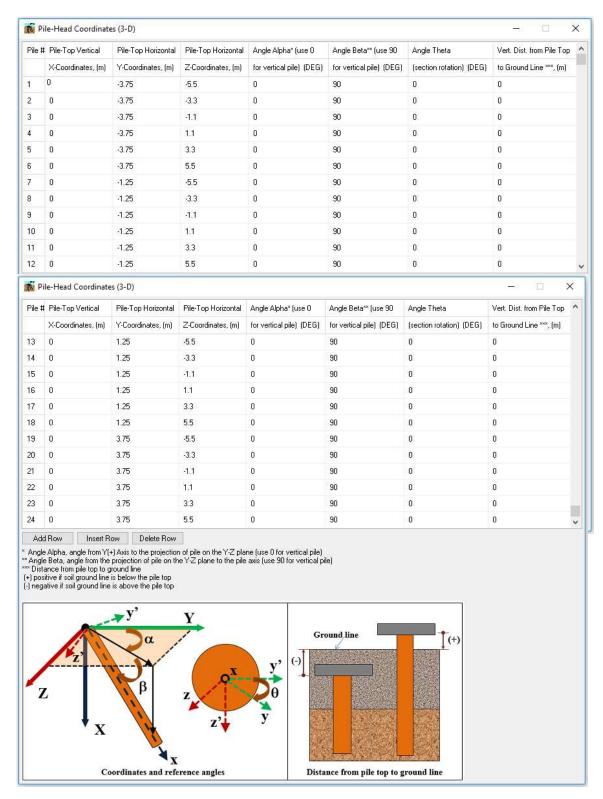
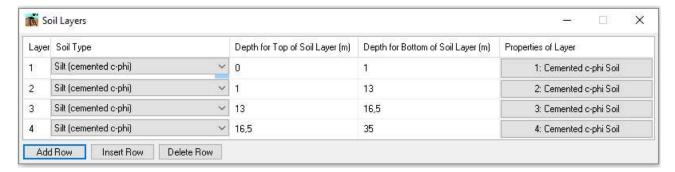
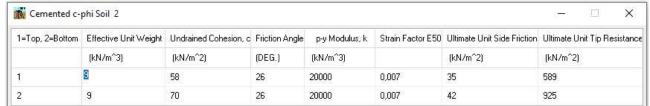



Figura 4-5. Disposizione dei pali in GROUP


Cemented c-	phi Soil 1						25	
1=Top, 2=Bottom	Effective Unit Weight	Undrained Cohesion, c	Friction Angle	p-y Modulus, k	Strain Factor E50	Ultimate Unit Side Friction	Ultimate Unit	t Tip Resistand
	(kN/m^3)	(kN/m^2)	(DEG.)	(kN/m^3)		(kN/m^2)	(kN/m^2)	
1	8	50	26	20000	0,007	30	498	
2	9	53,3	26	20000	0,007	32	547	

This p-y model requires non-zero values for both cohesion and friction angle.

A linear interpolation with depth will be used to compute values between the top and bottom of the layer. Ultimate Unit Side Friction and Ultimate Unit Tip Resistance:

The program uses Ultimate Unit Side Friction to generate t-z curves.
 The program uses Ultimate Unit Tip Resistance to generate q-w curves.
 Always check recommended values in Geotechnical Investigation Reports.

Program will help to estimate values for Ultimate Unit Side Friction and Ultimate Unit Tip Resistance if zero input values are entered.

This p-y model requires non-zero values for both cohesion and friction angle.

A linear interpolation with depth will be used to compute values between the top and bottom of the layer.

Ultimate Unit Side Friction and Ultimate Unit Tip Resistance:

- The program uses Ultimate Unit Side Friction to generate t-z curves.
 The program uses Ultimate Unit Tip Resistance to generate q-w curves.
 Always check recommended values in Geotechnical Investigation Reports.
- Program will help to estimate values for Ultimate Unit Side Friction and Ultimate Unit Tip Resistance if zero input values are entered.

Cemented c-	phi Soil 3						:0 	□ ×
1=Top, 2=Bottom	Effective Unit Weight	Undrained Cohesion, c	Friction Angle	p-y Modulus, k	Strain Factor E50	Ultimate Unit Side Friction	Ultimate Un	it Tip Resistance
	(kN/m^3)	(kN/m^2)	(DEG.)	(kN/m^3)		(kN/m^2)	(kN/m^2)	
1	8	68	26	20000	0,007	41	907	
2	9	75	26	20000	0,007	45	1037	

This p-y model requires non-zero values for both cohesion and friction angle.

A linear interpolation with depth will be used to compute values between the top and bottom of the layer. Ultimate Unit Side Friction and Ultimate Unit Tip Resistance:

- The program uses Ultimate Unit Side Friction to generate t-z curves. The program uses Ultimate Unit Tip Resistance to generate q-w curves. Always check recommended values in Geotechnical Investigation Reports.
- Program will help to estimate values for Ultimate Unit Side Friction and Ultimate Unit Tip Resistance

if zero input values are entered.

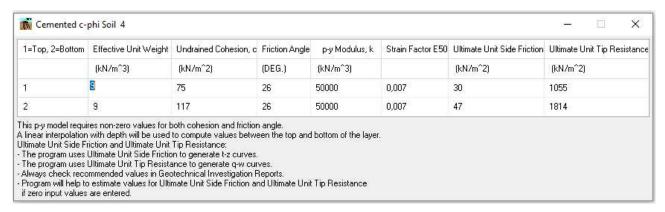


Figura 4-6. Caratteristiche meccaniche terreno

4.3 ANALISI GEOTECNICA

4.3.1 Sollecitazioni di calcolo

I seguenti grafici riportano le massime azioni assiali, compressione e trazione, agenti per le combinazioni di calcolo significative.

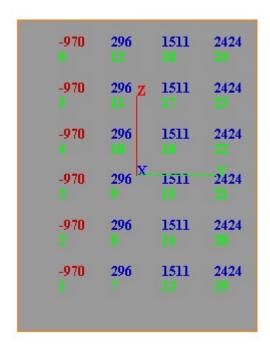


Figura 4-7. Massima sollecitazione assiale di compressione (Combinazione 9)

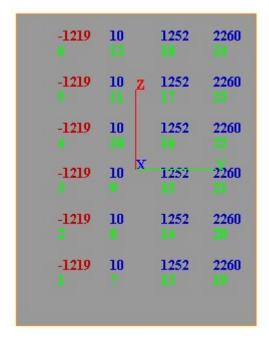


Figura 4-8. Massima sollecitazione assiale di trazione (Combinazione 10)

4.3.2 Verifica geotecnica

Ve	erifica Cario	co Limite	Pali/M	icropa	li	
APPROOCCIO 1	5 5 7 7 1 1 11			n°Indagini	ξ3	ξ4
Combinazione 1	Pali Trivellati			1	1,7	1,7
A1 + M1 + R3	R3			2	1,65	1,55
Base	1,35			3	1,60	1,48
Laterale Compression	€ 1,15			4	1,55	1,42
Totale	1,30			5	1,50	1,34
Laterale Trazione	1,25			7	1,45	1,28
				≥10	1,40	1,21
	Caratter	ristichePali/ M	icronali			
D Perforazione =	1,00	m	-c.opuu	Numero o	li Verticali	i Indagate
L Perforazione =	32,0	m		1.15.11010		aagato
L Bulbo =	32,0	m		=	5	
	Cara	tteristiche Ter	reno			
$ \gamma =$	19,0	kN/m³	1 11/4	O ARGILL		Δ' Δ''
ϕ =	26,0	0	LIIVI	O AITOILL	000 A, F	٦, ٨
$ \gamma =$	20,0	kN/m³	GHIAIA E SABBIA B			
ϕ =	38	0	OF IIAIA E GABBIA B			
			•			
		zioni di Calcol	lo	1		
N _{Ed} Compressione =	2424	kN				
N _{Ed} Trazione =	1219	kN				
		·	1			
	1	istenza di Calc	eolo	1		
N _{Rd} Compressione =	2827	kN				
N _{Rd} Trazione =	2027	kN				
	Ess	ito della Verifi	ca			
		$N_{Rd} > N_{Ed}$				
N. I	l N	INKQ - INEQ				
N _{Rd}	N _{Ed}					
2827 >	2801 1219					
2027 >		a Risulta S	oddisfa	tta		

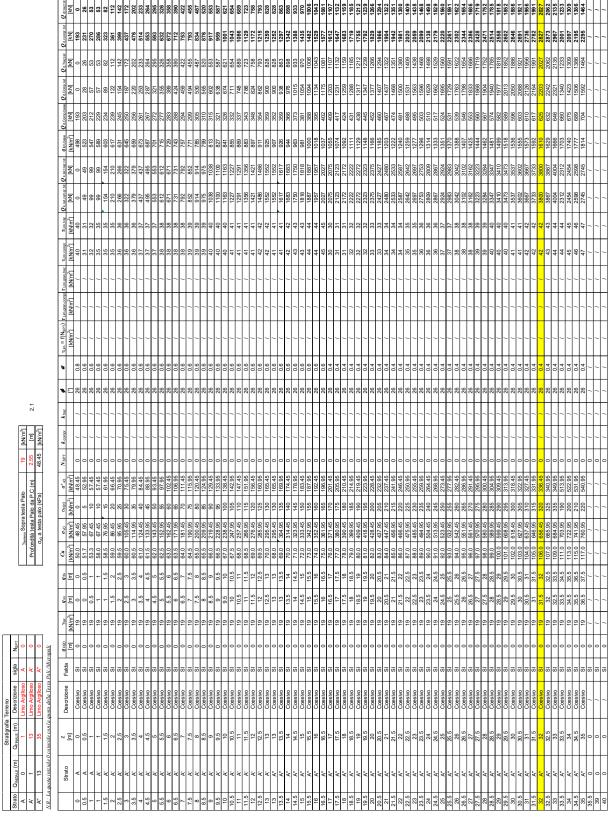


Figura 4-9. Verifica a Capacità portante dei Pali

4.4 ANALISI STRUTTURALE

4.4.1 Sollecitazioni di calcolo

I seguenti grafici riportano le massime azioni di taglio e flettenti sulla testa del palo.

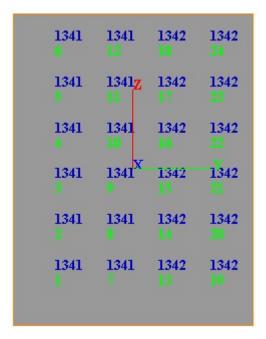


Figura 4-10. Massime sollecitazioni flessionali (Combinazione 9)

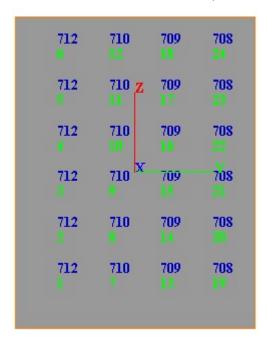


Figura 4-11. Massime sollecitazioni di taglio (Combinazione 9)

4.4.2 Verifica strutturale

- Verifica a flessione

I pali hanno un diametro pari a 100cm e sono armati con 28 barre Φ26.

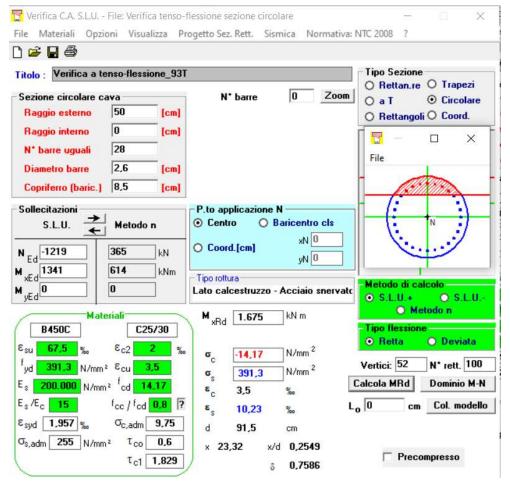


Figura 4-12. Verifica Tenso-flessionale_SLV

- Verifica a taglio

L'armatura trasversale del palo è: Φ12/15cm.

			METODO DI CLARKE & BIRJANDI
r	500	mm	raggio sezione circolare
С	85	mm	copriferro
$r_s = r - c$	415	mm	raggio sezione circolare confinata
sen α	0.528	-	$sen \alpha = (2r_s)/(\pi r)$
α	0.557	rad	
A _{tot}	785398.2	mm2	Area totale della sezione circolare
Α	644028	mm2	area della sezione rettangolare equivalente A = $r^2(\pi/2+a+sen\alpha\cos\alpha)$
		PARAN	/ETRI DELLA SEZIONE RETTANGOLARE EQUIVALENTE
b	843	mm	larghezza equivalente b=A/d
h	932	mm	altezza equivalente h=A _{tot} /b
d	764	mm	altezza utile equivalente d=r(1+sen α)

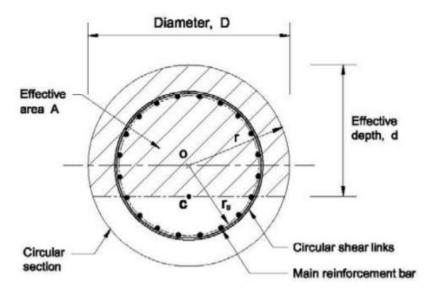


Figura 4-13. Metodo di Clarke e Birjandi - calcolo sezione rettangolare equivalente.

NTC 2018					
4.1.2.3.5.2 - Elementi con arma	ature trasvers	ali resistenti a	a taglio		
R _{ck} [MPa] =	30		f _{ck} [MPa] =	25	
f _{cd} [MPa] =	14.17	(c.a. γ _c =1.5)			
f _{ctk} [MPa] =	1.80				
f _{ctd} [MPa] =	1.20	(c.a. γ_c =1.5)			
f _{yw d} [MPa] =	391.30	(B450C γ _s =1.	15)		
Verifica del conglomerato					
H [mm] =	932	Altezza della s	sezione		
d [mm] =	764	Altezza utille o	della sezione		
b _w [mm] =	843	Larghezza de	lla membratura	resistente a ta	iglio
α_{c} =	1	1 per N=0			
α=	90	inclinazione a	rmatura	1.57079633	
θ=	21.8	inclinazione fe	essura	0.38048178	
$\cot g\alpha =$	6.1257E-17				
cotgθ =	2.50	tra 1 e 2.5			
V_{Rcd} [kN] =	1415.68	Resistenza a	compressione	bielle	
		=0.9 bw d α c	f'_{cd} (cotg α +ctg	θ) / (1+cotg2 θ)
Verifica dell'acciaio					
A_{sw} [mmq] =	226.19	Ø12 2br	area staffe		
s [mm] =	150		passo staffe		
V _{Rsd} [kN] =	1014.67	Resistenza ar	mature = 0.9 d	f _{ywd} A _{sw} /s (cto	α +ctg θ) sin α
\	4044.07	Ndia to a V	- \ /		
V_{Rd} [kN] =		Min. tra V _{Rcd} 6			
V _{Sdu} [kN] =		Sollecitazione	di progetto SL	U	
	Verificato				

Figura 4-14. Verifica a Taglio

La tabella seguente riepiloga i risultati delle verifiche sezionali condotte sul palo.

		Pali	di fondazi	one			
Caratteristiche me	ccaniche de	<u>i materiali</u>					
Calcestruzzo	C25/30	R _{ck} =	30	N/mm²	f _{ck} =	25	N/mm²
γ _c =	1.5	α _{cc} =	0.85		f _{cd} =	14.17	N/mm²
		E _c =	31476	N/mm²	f _{ctm} =	2.56	N/mm²
Acciaio	B450C	E _s =	200000	N/mm²	f _{yk} =	450	N/mm²
γ _s =	1.15	ε' _{se}	1.96		f _{yd} =	391.30	N/mm²
Caratteristiche ged	ometriche de	lla sezione					
R =	500	mm		n.	ø(mm)	A _s (mm²)]
c =	60	mm coprifer.		28	26	14866	
N _{Ed} positivo di com					Σ	14866	mm²
		-:: 4-11:			Δ.	14000	ШП
M _{Ed} positivo se tend y distanza dell'armat							
Vanifiala and Otati	Limita IIItima						
Verifiche agli Stati Flessione	<u>Limite Uitim</u>	<u> </u>					
	iono	posizione rispetto	N _{Ed}	M _{Ed}	V _{Ed}	M_{Rd}	M _{Rd}
Combinaz	ione	testa palo	[kN]	[kNm]	[kN]	[kNm]	M _{Ed}
SLU-9		0m	-1219.00	1341.00	712.00	1675.00	1.25
Tadio							
Taglio $\phi_{ ext{staffe}} =$	12	mm	α =	90	° inclinazione	e staffa	
		n° braccia	s =	150	mm passo	otana	
110 2		posizione rispetto	$V_{Rd,0}$	V _{Rd.s}	V _{Rd,c}	V_{Rd}	V _{Rd}
Combinaz	ione	testa palo	[kN]	[kN]	[kN]	[kN]	V _{Ed}
SLU-9		0m	358.30	1014.67	1415.68	1014.67	1.43
Verifiche agli Stati	Limite Eserc	<u>cizio</u>					
Comb. Rara		σ _{c,max} =	15.00	N/mm²			
		$\sigma_{s,max}$ =	360.00	N/mm²			
Comb. Quasi Pern	nanente	σ _{c,max} =	11.25	N/mm²			
		posizione rispetto	N _{Ed}	M _{Ed}	σο	σs	
Combinaz	ione	testa palo	[kN]	[kNm]	[MPa]	[MPa]	
RARA-13		0m	271.00	649.00	7.31	157.10	
QP-17		0m	399.00	567.00	6.43	125.70	
Varifiala II O - I	Limita F-						
		cizio - Fessurazione					
La verifica dell'am		curaziona à condattta	cenza calco	lo diretto se	condo quanto	specificato	
		Si fa riferimento a qu			•	4.III della Ci	rcolare
cap.4.1.2.2.4.5 del Esplicativa.		Si fa riferimento a qu			•		rcolare
cap.4.1.2.2.4.5 del Esplicativa.	le NTC2018.	Si fa riferimento a qu Ordinarie	anto prescri	armatura	lle C.4.II e C.		rcolare
cap.4.1.2.2.4.5 del Esplicativa. Condizio	le NTC2018.	Si fa riferimento a qu		tto nelle tabe	lle C.4.II e C.		rcolare
cap. 4.1. 2. 2. 4.5 del Esplicativa. Condizio Comb. Frequente	lle NTC2018. ni ambientali	Si fa riferimento a qui Ordinarie W _{lim} =	o.4	armatura	lle C.4.II e C.		rcolare
cap. 4.1.2.2.4.5 del Esplicativa. Condizio Comb. Frequente Combinaz	lle NTC2018. ni ambientali	Si fa riferimento a qui Ordinarie $W_{lim} = \sigma_s = 0$ posizione rispetto testa palo	0.4 220 N _{El} [kN]	armatura mm N/mm² M _{Ed} [kNm]	poco sensibil σ_{c} [MPa]	σ _s [MPa]	rcolare
cap. 4.1.2.2.4.5 del Esplicativa. Condizio Comb. Frequente Combinaz	ni ambientali	Si fa riferimento a qui Ordinarie $W_{lim} = \sigma_s = 0$ posizione rispetto testa palo Om	0.4 220 N _{E1} [kN] 365.00	armatura mm N/mm² M _{Ed} [kNm] 614.00	poco sensibi	le $\sigma_{ m s}$	rcolare
cap. 4.1.2.2.4.5 del Esplicativa. Condizio Comb. Frequente Combinaz	ni ambientali	Ordinarie Ordinarie W _{lim} = σ_s = posizione rispetto testa palo Om W _{lim} =	0.4 220 N _{Ed} [kN] 365.00	armatura mm N/mm² M _{Ed} [kNm] 614.00 mm	poco sensibil σ_{c} [MPa]	σ _s [MPa]	rcolare
cap. 4.1.2.2.4.5 del Esplicativa. Condizio Comb. Frequente Combinaz	ni ambientali	Si fa riferimento a qui Ordinarie $W_{lim} = \sigma_s = 0$ posizione rispetto testa palo 0 0 0 0 0 0 0	0.4 220 N _E ₁ [kN] 365.00 0.3 194	armatura mm N/mm² MEd [kNm] 614.00 mm N/mm²	poco sensibi	σ _s [MPa]	rcolare
cap. 4.1. 2. 2. 4.5 del Esplicativa. Condizio Comb. Frequente	ini ambientali ione nanente	Ordinarie Ordinarie W _{lim} = σ_s = posizione rispetto testa palo Om W _{lim} =	0.4 220 N _{Ed} [kN] 365.00	armatura mm N/mm² M _{Ed} [kNm] 614.00 mm	poco sensibil σ_{c} [MPa]	σ _s [MPa]	rcolare

5 ELEVAZIONE SPALLA – STRUTTURA ORIGINARIA (ESISTENTE)

Nel seguito si presentano le verifiche di resistenza e di ancoraggio dei tiranti passivi previsti come intervento di consolidamento delle spalle esistenti.

5.1 CURVE CARATTERISTICHE TIRANTI – SPOSTAMENTI

Come descritto nel paragrafo 3.4, sono state costruite, sulla base dei dati di input riportati nella relazione di calcolo delle sovrastrutture e delle sottostrutture, le curve tiro-spostamenti di seguito rappresentate.

Dim. fondazione	Dimensione T	rasversale	L=	13.38	m				
	ongitudinale.	B =	4.60	m					
Modulo del terreno	Modulo del terreno E =			(modulo elastico da adottare per terreno con					
caratteristiche migliorate da presenza pali tipo FRAN									

S	ollecitazioni Sta	atica solo per	manenti	N (kN)	H (kN)	M (kNm)	
N	=	735	KN/m	9828	3747	6902	
Н	=	280	KN/m				
M	=	516	KN m/m	δν	δh	θ	$\delta h_{\text{tot,sta, pp}}$
В	=	13.38	m		6.37E-03	1.01E-03	1.16E-02
	Sollecitazion	, 		N (kN)	H (kN)	M (kNm)	
Ν	=	817	KN/m	10936	4700	12164	
Н	=	351	KN/m				
M	=	909	KN m/m	δν	δh	θ	$\delta h_{\text{tot,sta,pp+acc}}$
В	=	13.38	m		7.99E-03	1.78E-03	1.72E-02
	Callasitanian	: /- \ C	4	NI /LNI)	11/14/1	NA (IsNina)	
	Sollecitazion	7		N (kN)	H (kN)	M (kNm)	
N	=		KN/m	9828	4294	9649	
Н	=	321	KN/m				
M	=	721	KN m/m	δν	δh	θ	$\delta h_{\text{tot,sta,pp+acc}}$
В	=	13.38	m		7.30E-03	1.41E-03	1.46E-02
					1		
	Sollecitazion	ni (al m) SLE	qp	N (kN)	H (kN)	M (kNm)	
N	Sollecitazion =		qp KN/m	N (kN) 9828	H (kN) 3893	M (kNm) 7635	
N H		735				` '	
	=	735 291	KN/m			` '	δh _{tot,sis}
Н	= =	735 291	KN/m KN/m KN m/m	9828	3893	7635	δh _{tot,sis} 1.24E-02

Da pp a SLE rara										
Tiro/m	Tiro (kN)	N (kN)	H (kN)	M (kNm)	δh	θ	Δh_{θ}	δh_{tot}	$\Delta\delta h_{tot,(sis\text{-sta,pp+acc})}$	$\Delta\delta h_{tot,(sis\text{-}sta,pp)}$
0	0	10935.92	4700.26	12163.98	7.99E-03	1.78E-03	9.25E-03	1.72E-02	0.00E+00	0.00562
50	690	10935.92	4010.26	8575.98	6.82E-03	1.25E-03	6.52E-03	1.33E-02	-3.90E-03	0.00172
100	1380	10935.92	3320.26	4987.98	5.64E-03	7.29E-04	3.79E-03	9.44E-03	-7.80E-03	-0.00218
150	2070	10935.92	2630.26	1399.98	4.47E-03	2.05E-04	1.06E-03	5.53E-03	-1.17E-02	-0.00608
200	2760	10935.92	1940.26	-2188.02	3.30E-03	-3.20E-04	-1.66E-03	1.63E-03	-1.56E-02	-0.00998
Do pp a SI E frog										

Da pp a SLE freq										
Tiro/m	Tiro (kN)	N (kN)	H (kN)	M (kNm)	δh	θ	Δh_{θ}	δh_{tot}	$\Delta\delta h_{\text{tot},(\text{sis-sta,pp+acc})}$	$\Delta\delta h_{\text{tot,(sis-sta,pp)}}$
0	0	9828.34	4294	9648.90	7.30E-03	1.41E-03	7.34E-03	1.46E-02	-2.60E-03	0.00302
50	690	9828.34	3604	6060.90	6.12E-03	8.86E-04	4.61E-03	1.07E-02	-6.50E-03	-0.00088
100	1380	9828.34	2914	2472.90	4.95E-03	3.62E-04	1.88E-03	6.83E-03	-1.04E-02	-0.00478
150	2070	9828.34	2224	-1115.10	3.78E-03	-1.63E-04	-8.48E-04	2.93E-03	-1.43E-02	-0.00869
200	2760	9828.34	1534	-4703.10	2.61E-03	-6.88E-04	-3.58E-03	-9.70E-04	-1.82E-02	-0.01259
250	3450	9828.34	844	-8291.10	1.43E-03	-1.21E-03	-6.30E-03	-4.87E-03	-2.21E-02	-0.01649

Condizione SLE o	lb									
Tiro/m	Tiro (kN)	N (kN)	H (kN)	M (kNm)	δh	θ	Δh_{θ}	δh_{tot}	$\Delta\delta h_{\text{tot,(sis-sta,pp+acc)}}$	$\Delta\delta h_{tot,(sis\text{-}sta,pp)}$
0	0	9828.34	3892.69	7634.69	6.62E-03	1.12E-03	5.81E-03	1.24E-02	-4.82E-03	0.00080
50	690	9828.34	3202.69	4046.69	5.44E-03	5.92E-04	3.08E-03	8.52E-03	-8.72E-03	-0.00310
100	1380	9828.34	2512.69	458.69	4.27E-03	6.71E-05	3.49E-04	4.62E-03	-1.26E-02	-0.00700
150	2070	9828.34	1822.69	-3129.31	3.10E-03	-4.58E-04	-2.38E-03	7.18E-04	-1.65E-02	-0.01090
200	2760	9828.34	1132.69	-6717.31	1.93E-03	-9.82E-04	-5.11E-03	-3.18E-03	-2.04E-02	-0.01480

Sc	ollecitazioni	(al m) SLU	STR	N (kN)	H (kN)	M (kNm)	
N	=	756	KN/m	10120	6345	18983	
Н	=	474	KN/m				
M	=	1419	KN m/m	δν	δh	θ	$\delta h_{\text{tot,sta,pp+acc}}$
В	=	13.38	m		1.08E-02	2.78E-03	2.52E-02

Da pp a SLU-STR										
Tiro/m	Tiro (kN)	N (kN)	H (kN)	M (kNm)	δh	θ	Δh_{θ}	δh_{tot}	$\Delta\delta h_{tot,(sis\text{-sta,pp+acc})}$	$\Delta\delta h_{tot,(sis-sta,pp)}$
0	0	10120.41	6345.356	18983.07	1.08E-02	2.78E-03	1.44E-02	2.52E-02	7.98E-03	0.01360
50	690	10120.41	5655.356	15395.07	9.61E-03	2.25E-03	1.17E-02	2.13E-02	4.08E-03	0.00970
100	1380	10120.41	4965.356	11807.07	8.44E-03	1.73E-03	8.98E-03	1.74E-02	1.79E-04	0.00580
150	2070	10120.41	4275.356	8219.07	7.27E-03	1.20E-03	6.25E-03	1.35E-02	-3.72E-03	0.00190
200	2760	10120.41	3585.356	4631.07	6.09E-03	6.77E-04	3.52E-03	9.61E-03	-7.62E-03	-0.00200
250	3450	10120.41	2895.356	1043.07	4.92E-03	1.53E-04	7.93E-04	5.71E-03	-1.15E-02	-0.00590

S	ollecitazioni	(al m) SIS	STR	N (kN)	H (kN)	M (kNm)	
N	=	775	KN/m	10372	6187	19552	
Н	=	462	KN/m				
M	=	1461	KN m/m	δν	δh	θ	$\delta h_{\text{tot,sis}}$
В	=	13.38	m		1.05E-02	2.86E-03	2.54E-02

Condizione SIS-S	STR									
Tiro/m	Tiro (kN)	N (kN)	H (kN)	M (kNm)	δh	θ	Δh_{θ}	δh_{tot}	$\Delta\delta h_{tot,(sis\text{-sta,pp+acc})}$	$\Delta \delta h_{tot,(sis\text{-sta,pp})}$
0	0	10371.56	6187.26	19551.89	1.05E-02	2.86E-03	1.49E-02	2.54E-02	8.14E-03	0.01377
50	690	10371.56	5497.26	15963.89	9.34E-03	2.33E-03	1.21E-02	2.15E-02	4.24E-03	0.00987
100	1380	10371.56	4807.26	12375.89	8.17E-03	1.81E-03	9.41E-03	1.76E-02	3.43E-04	0.00596
150	2070	10371.56	4117.26	8787.89	7.00E-03	1.29E-03	6.68E-03	1.37E-02	-3.56E-03	0.00206
200	2760	10371.56	3427.26	5199.89	5.82E-03	7.60E-04	3.95E-03	9.78E-03	-7.46E-03	-0.00184

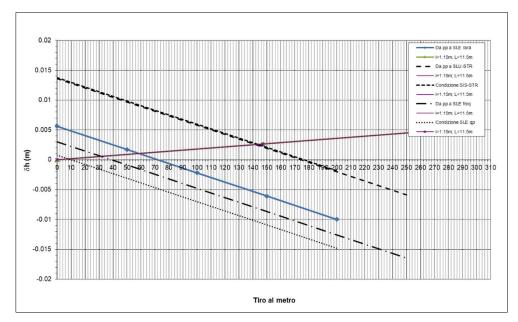


Figura 5-1. Curve caratteristiche tiranti passivi-spalla

5.1.1 Azioni agenti sui tiranti e in fondazione

Le azioni agenti nei tiranti e in fondazione, ridotte per effetto degli stessi tiranti, sono le seguenti:

Comb.	Tiro (kN/tirante)
SLE - RARA	59
SLE -FREQ.	31
SLE - Q-P	8
SLV	143
SLU	142

5.1.2 Verifica dei micropali di ancoraggio passivo delle spalle

Si riportano nel presente paragrafo le verifiche geotecniche e strutturali dei tiranti di ancoraggio della spalla esistente.

La verifica a sfilamento del tirante viene svolta in accordo a quanto riportato nel par. 3.5 con riferimento alla combinazione A1+M1+R3.

Il valore caratteristico della resistenza allo sfilamento dell'ancoraggio (Rak), nel caso specifico, è stato dedotto con metodi analitici a partire dai valori caratteristici dei parametri geotecnici.

In particolare, in accordo con quanto proposto da *Bustamante e Doix*, la resistenza di calcolo è stata valutata mediante la formula:

$$R_{ac} = \pi \cdot D \cdot L_A \cdot q_s$$

avendo assunto:

D = $\alpha \cdot \Phi_{perf}$ (diametro efficace ottenuto a seguito della perforazione);

 $\alpha = 1.0$;

 Φ_{perf} = 0.18 m (diametro nominale di perforazione);

L_A = lunghezza del bulbo di ancoraggio del tirante;

q = 100 kPa (fattore di aderenza valutato cautelativamente sulla base della caratterizzazione geotecnica).

Per il caso in esame i coefficienti ξ_{a3} e ξ_{a4} sono stati assunti pari a 1.60 (numero di profili di indagine \geq 5).

Calcolata la resistenza caratteristica R_{ak} , la resistenza di progetto R_{ad} si ottiene fattorizzando i valori di R_{ak} mediante il coefficiente γ_{Rad} = 1.2 riportato in Tab.6.6.I del D.M. 17/01/2018 nell'ipotesi di tiranti permanenti.

La verifica strutturale del tirante viene svolta confrontando l'azione assiale con la massima azione assiale resistente offerta dalla sezione.

Capacità portante di un tirante (Bustamante e Doix)

$T_{eq,max}$ i α β T_{max}	143 1.15 20 40 228	[tiro/m] [m] [°] [°] [kN]	massima azione assia interasse tiranti inclinazione tiranti ne inclinazione tiranti ris massima azione assia	el piano vei spetto pian	o orizzontale
$egin{aligned} & d_{perf} \ & d_{a} \ & s_{a} \end{aligned}$	0.180 114.3 10	[m] [mm] [mm]	f _{yk} γs	355 1.15	[N/mm²]
A_{a}	3277	[mm ²]	T_{Rd_STR}	1011	[kN]
$lpha_{ ext{d}}$ L $_{ ext{fond}}$ $ au_{ ext{lim}}$	1.00 11.50 100	[m] kN/m²	ξ _{a3} Υ _{Ra,p}	1.60 1.20	
T_{Rcal_GEO} T_{Rk_GEO} T_{Rd_GEO}	650 406 339	[kN] [kN] [kN]	T _{Rd} FS	339 1.48	[kN] (>1)

6 FONDAZIONE SPALLA – STRUTTURA ORIGINARIA (ESISTENTE)

Nel seguito si presentano le verifiche di capacità portante della fondazione diretta delle spalle esistenti (struttura originaria).

6.1 VERIFICA DI CAPACITÀ PORTANTE

						-		IB. STR								a - STR	
Azioni di calcolo	solo perm	no traffico	no traffico	Traffico 1 (a)	Traffico 1 (b)	Traffico 2a	Traffico 2a	Traffico 2a	Traffico 2a	no traffico	Traffico 1	Traffico 2a	Traffico 2a	Traffico +kv	Traffico +kv	Traffico -kv	Traffico -l
	(STR)	(a)	(<u>b)</u>	3	4	<u>(a)</u> 5	(b) 6	config 2 (a)	config 2 (b) 8	9	10	- 11	config 2	(max comp)	(max traz)	(max comp)	(max tra:
N _{Ed} [kN/m]	-	915	2 1035	1132	1209	1070	1147	980	1057	735	909	846	12 756	13 807	14 775	15 726	16 694
V _{Ed} [kN/m]	-	337	357	351	363	343	356	340	353	332	339	332	328	317	315	305	303
M _{Ed} [kNm/m]	-	-586	-508	-530	-479	-596	-546	-612	-561	-604	-580	-647	-657	-686	-694	-678	-686
							0.10										
Verifica di capacità portante in condizioni	(DRENATE / I	NON DRENATE	1	NON DRENATI													
Dimensioni geometriche fondazione	D	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20
	L	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
	В	4.60	4.60	4.60	4.60	4.60	4.60	4.60	4.60	4.60	4.60	4.60	4.60	4.60	4.60	4.60	4.60
	eL	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	e _B	0.64	0.49	0.47	0.40	0.56	0.48	0.62	0.53	0.82	0.64	0.76	0.87	0.85	0.90	0.93	0.99
	L'	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
	B'	3.32	3.62	3.66	3.81	3.49	3.65	3.35	3.54	2.96	3.32	3.07	2.86	2.90	2.81	2.73	2.62
Parametri geotecnici terreno di fondazioni																	
Peso proprio dell'acqua	γ _w	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Peso proprio terreno di riporto	γ,	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
Peso proprio terreno di fondazione	γ2	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19
Angolo d'attrito	φ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coesione efficace	c'	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coesione non drenata	Cu	256	256	256	256	256	256	256	256	256	256	256	256	256	256	256	256
Set di coefficienti parziali		M1	M1	M1	M1	M1	M1	M1	M1	M1	M1	M1	M1	M1	M1	M1	M1
Peso proprio terreno di riporto	γ' _{1_Mi}	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
Peso proprio terreno di fondazione	γ' _{2_Mi}	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
Angolo d'attrito fattorizzato	φ_м	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	φ_м	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Coesione efficace fattorizzata	c' _{Mi}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coesione non drenata fattorizzata	C _{u_Mi}	256	256	256	256	256	256	256	256	256	256	256	256	256	256	256	256
Fattori di capacità portante																	
	N _γ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	N _c	5.14	5.14	5.14	5.14	5.14	5.14	5.14	5.14	5.14	5.14	5.14	5.14	5.14	5.14	5.14	5.14
	Nq	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fattori di forma																	
(per forma rettangolare)	Sy	0.99	0.99	0.99	0.98	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
	Sc	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
	Sq	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fattori di profondità																	
	d _y	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	d _c	1.14	1.13	1.13	1.13	1.14	1.13	1.14	1.14	1.16	1.14	1.16	1.17	1.17	1.17	1.18	1.18
	d _q	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fattori di inclinazione del carico																	
	m _B	1.97	1.97	1.96	1.96	1.97	1.96	1.97	1.97	1.97	1.97	1.97	1.97	1.97	1.97	1.97	1.97
	m _L	1.03	1.03	1.04	1.04	1.03	1.04	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03
	θ [*]	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90
	m	1.97	1.97	1.96	1.96	1.97	1.96	1.97	1.97	1.97	1.97	1.97	1.97	1.97	1.97	1.97	1.97
	l _y	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	I _c	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	i _q	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fattori di inclinazione del piano di posa		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	b _v	1.00	1.00						1.00						1.00		
	b _c	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	bq	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fattori di inclinazione del piano campagno		4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.0-
	g _y	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	g _c	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	g _q	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Calcolo della capacità portante della fond			4522	4524	4545	4530	4524	4536	4535	4550	4522	4553	4555	4554	4574	4577	450-
Cat di an afficianti ancaiali	q _{lim}	1538 R3	1523 R3	1521 R3	1515 R3	1529 R3	1521 R3	1536 R3	1526 R3	1560 R3	1537 R3	1552 R3	1566 R3	1564 R3	1571 R3	1577 R3	1586 R3
Set di coefficienti parziali																	
	ΥR	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.20	1.20	1.20	1.20
q = q _{iim} / γ _R	q	1098	1088	1086	1082	1092	1087	1097	1090	1114	1098	1109	1119	1303	1309	1314	1322
Q = q x B' x L'	Q	364582	393584	398002	411909	380614	396431	367641	385740	329332	364823	340431	320251	377848	367575	358909	346562
FF = 0 / (N = +12) (-1)	rc	2.00	2.00	2.52	2.41	2.56	2.46	2.75	2.65	4.40	4.03	4.03	4 22	4.68	4.74	4.04	4.00
FS = Q / (N _{Ed} x L') (>1)	FS	3.98	3.80	3.52	3.41	3.56	3.46	3.75	3.65	4.48	4.02	4.02	4.23		4.74	4.94	4.99
		(>1)	(>1)	(>1)	(>1)	(>1)	(>1)	(>1)	(>1)	(>1)	(>1)	(>1)	(>1)	(>1)	(>1)	(>1)	(>1)

6.2 VERIFICA A SCORRIMENTO

		A1+M1+R3	
Carico	1	2	3
C1	1.00	1.00	1.00
C2	1.00	1.00	1.00
C3	1.35	1.00	1.00
C4a	0.00	0.00	0.00
C4b	1.35	0.20	0.20
C4c	0.00	0.00	0.00
C4d	0.00	0.00	0.00
C4e	0.00	0.00	0.00
C5	1.35	0.00	0.00
C6	1.35	1.00	1.00
C7	0.00	0.00	0.00
C8	-0.90	0.00	0.00
CS1 (-kv)	0.00	1.00	0.00
CS1 (+kv)	0.00	0.00	1.00
CS2 (-kv)	0.00	1.00	0.00
CS2 (+kv)	0.00	0.00	1.00
N _{Ed} [kN/m]	735	694	775
V _{Ed} [kN/m]	474	434	462
M _{Ed} [kN/m]	-1426	-1367	-1461
Comb.	M1	M1	M1

<u>Verifica in presenza d</u>	<u>i tiranti passivi</u>			
Azioni di calcolo decurt	ate del contribu	to resistente off	erto dal tirant	te passivo
h_tiranti [m]	5.2	da intradosso f	ondazione	
i_tiranti [m]	1.15			
n_tiranti	12			
	1	2	3	
T _{Ed} [tiro/m]	143	127	143	
V_ _{TEd} [kN/m]	147	131	147	
M_ _{TEd} [kNm/m]	767	681	767	
N _{Ed} [kN/m]	735	694	775	Azioni di calcolo decurtate del
V _{Ed} [kN/m]	327	303	315	contributo resistente offerto dal
M _{Ed} [kN/m]	-659	-686	-694	tirante passivo
Comb.	M1	M1	M1	
C	ONDIZIONI NON	DRENATE		
c _u [kN/m²]	256	256	256	
R _{Ed} [kN/m]	718	671	719	
γ _R	1.10	1.00	1.00	
FS (≥1)	2.00	2.22	2.28	

7 ANALISI GEOTECNICA MURO ANDATORE NORD LATO BOLOGNA - (NUOVA REALIZZAZIONE)

7.1 AZIONI DI CALCOLO

La seguente tabella riporta le sollecitazioni di calcolo agenti nel baricentro della palificata (per un concio di 2.20 m).

Il sistema di riferimento utilizzato coincide le convenzioni del software GROUP.

		Rx [kN]	Ry [kN]	Mz [kNm]
1	STR_1	3938	-1491	3751
2	STR_2	4578	-1491	4520
3	STR_3	5356	-1491	2440
4	STR_4	3939	-1544	3880
5	STR_5	4580	-1544	4649
6	STR_6	5435	-1544	2359
7	ECC_1	3943	-969	1035
8	ECC_2	3984	-969	923
9	SLE_1_RARA	3940	-1118	2154
10	SLE_2_RARA	4096	-1118	1735
11	SLE_3_RARA	3940	-1153	2240
12	SLE_4_RARA	4149	-1153	1680
13	SLE_1_FREQ.	3942	-977	1134
14	SLE_2_FREQ.	3984	-977	1022
15	SLE_3_FREQ.	3942	-1080	1659
16	SLE_4_FREQ.	4099	-1080	1239
17	SLE_1_QP	3943	-969	1035
18	SLE_2_QP	3984	-969	923
19	SISM_1	3266	-2548	8765
20	SISM_2	3308	-2548	8653
21	SISM_3	4619	-2672	8599
22	SISM_4	4661	-2672	8487

Tabella 7-1. Sollecitazioni di calcolo risultanti nel baricentro della palificata

7.2 MODELLO DI CALCOLO

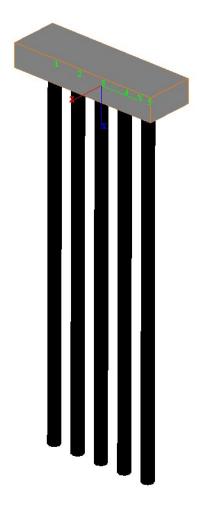


Figura 7-1. Modello di calcolo palificata: vista tridimensionale

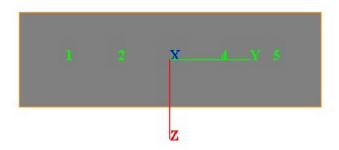


Figura 7-2. Modello di calcolo palificata: piano y-z

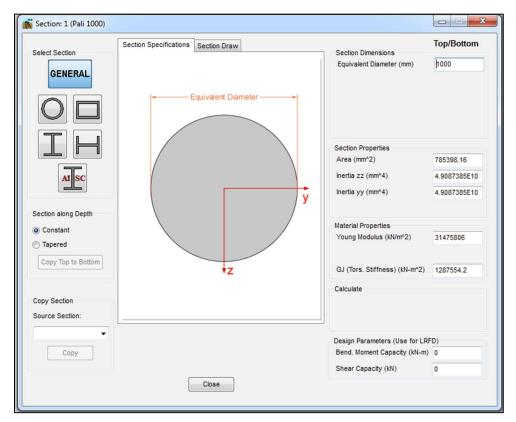


Figura 7-3. Caratteristiche geometriche e meccaniche sezione trasversale pali

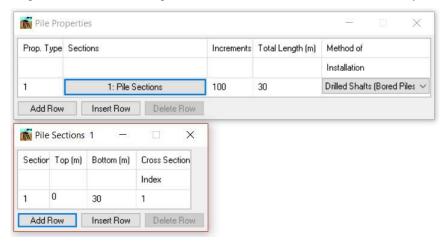
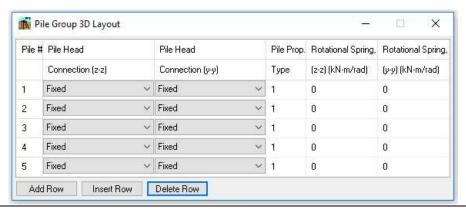



Figura 7-4. Parametri dei pali in GROUP

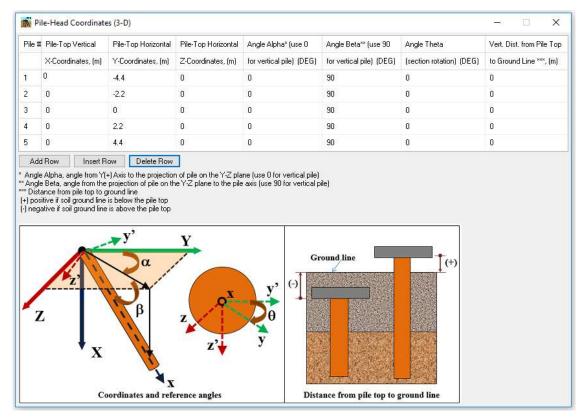
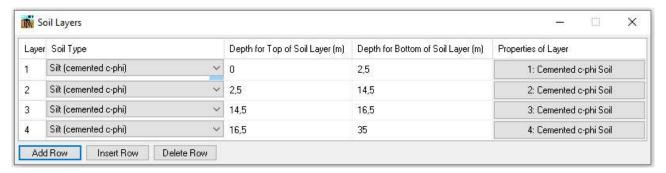
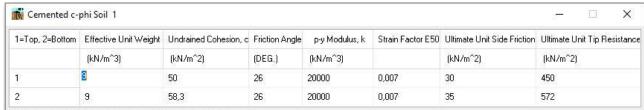
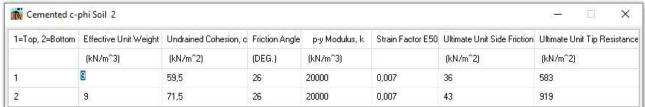




Figura 7-5. Disposizione dei pali in GROUP

This p-y model requires non-zero values for both cohesion and friction angle.

A linear interpolation with depth will be used to compute values between the top and bottom of the layer

A linear interpolator with open will be used to conjugate values between the Ultimate Unit Side Friction and Ultimate Unit Tip Resistance:


- The program uses Ultimate Unit Side Friction to generate t-z curves.

- The program uses Ultimate Unit Tip Resistance to generate q-w curves.

- Always check recommended values in Geotechnical Investigation Reports.

Program will help to estimate values for Ultimate Unit Side Friction and Ultimate Unit Tip Resistance

if zero input values are entered.

This p-y model requires non-zero values for both cohesion and friction angle.

A linear interpolation with depth will be used to compute values between the top and bottom of the layer Ultimate Unit Side Friction and Ultimate Unit Tip Resistance:

- The program uses Ultimate Unit Side Friction to generate t-z curves
- The program uses Ultimate Unit Tip Resistance to generate q-w curves.

 Always check recommended values in Geotechnical Investigation Reports.

 Program will help to estimate values for Ultimate Unit Side Friction and Ultimate Unit Tip Resistance

10910	acce a cont	morp to	~~~	0000
if zero	input s	values	are er	ntered.

Cemented c-	phi Soil 3						9=	\Box ×
1=Top, 2=Bottom	Effective Unit Weight	Undrained Cohesion, c	Friction Angle	p-y Modulus, k	Strain Factor E50	Ultimate Unit Side Friction	Ultimate Un	nit Tip Resistanc
	(kN/m^3)	(kN/m^2)	(DEG.)	(kN/m^3)		(kN/m^2)	(kN/m^2)	
1	8	71,5	26	20000	0,007	43	919	
2	9	75	26	20000	0,007	45	989	

This p-y model requires non-zero values for both cohesion and friction angle.

A linear interpolation with depth will be used to compute values between the top and bottom of the layer.

Ultimate Unit Side Friction and Ultimate Unit Tip Resistance:

- The program uses Ultimate Unit Side Friction to generate t-z curves.

- The program uses Ultimate Unit Tip Resistance to generate q-w curves.

Always check recommended values in Geotechnical Investigation Reports.

Program will help to estimate values for Ultimate Unit Side Friction and Ultimate Unit Tip Resistance

if zero input values are entered.

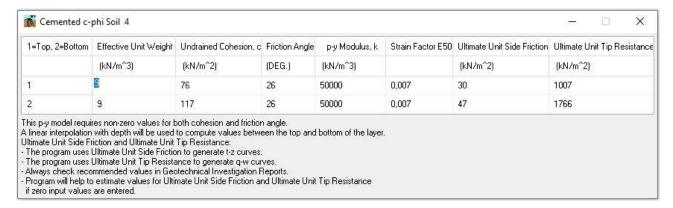


Figura 7-6. Caratteristiche meccaniche terreno

7.3 ANALISI GEOTECNICA

7.3.1 Sollecitazioni di calcolo

I seguenti grafici riportano le massime azioni assiali, compressione e trazione.

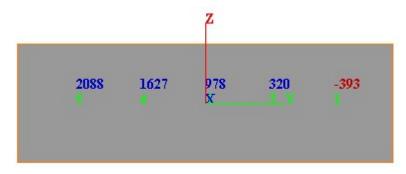


Figura 7-7. Massima sollecitazione assiale di compressione (Combinazione 21)

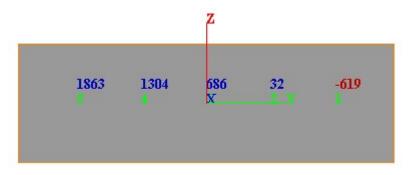


Figura 7-8. Massima sollecitazione assiale di trazione (Combinazione 19)

7.3.2 Verifica geotecnica

Ve	rifica Cario	co Limite I	Pali/M	icropal	İ	
APPROOCCIO 1	5 " - " " "			n°Indagini	ξ3	ξ4
Combinazione 1	Pali Trivellati			1	1.7	1.7
A1 + M1 + R3	R3			2	1.65	1.55
Base	1.35			3	1.60	1.48
Laterale Compression	1.15			4	1.55	1.42
Totale	1.30			5	1.50	1.34
Laterale Trazione	1.25			7	1.45	1.28
				≥10	1.40	1.21
	<u> </u>	· . 1 D 1:/34	• 1•			
D.D. (1	ristichePali/ M	icropali	Ta		1 1 1
D Perforazione =	1.00	m		Numero d	ı Verticali	Indagate
L Perforazione =	30.0	m		1	5	
L Bulbo =	30.0	m				
	Cano	utteristiche Ter	4040			
γ =	19.0	kN/m ³	reno			
$\phi =$	26.0	κιν/111 °	LIM	O ARGILLOSO A, A', A''		
$V = \frac{V}{V}$	20.0	kN/m ³				
$\phi =$	38	KIV/III ∘		GHIAIA E	Sabbia e	3
Ψ -	30					
	A	zioni di Calcol	<i>'o</i>			
N _{Ed} Compressione =	2088	kN				
N _{Ed} Trazione =	-619	kN				
	Res	istenza di Calc	rolo			
N _{Rd} Compressione =	2625	kN				
N _{Rd} Trazione =	1884	kN				
	Fs	ito della Verifi	ca			
		no ucuu reigi	<u> </u>			
		$N_{Rd} > N_{Ed}$				
N _{Rd}	N_{Ed}					
2625 >	2441					
1884 >	-619					
	La Verific	a Risulta S	oddisfa	tta		

Figura 7-9. Verifica a Capacità portante dei Pali

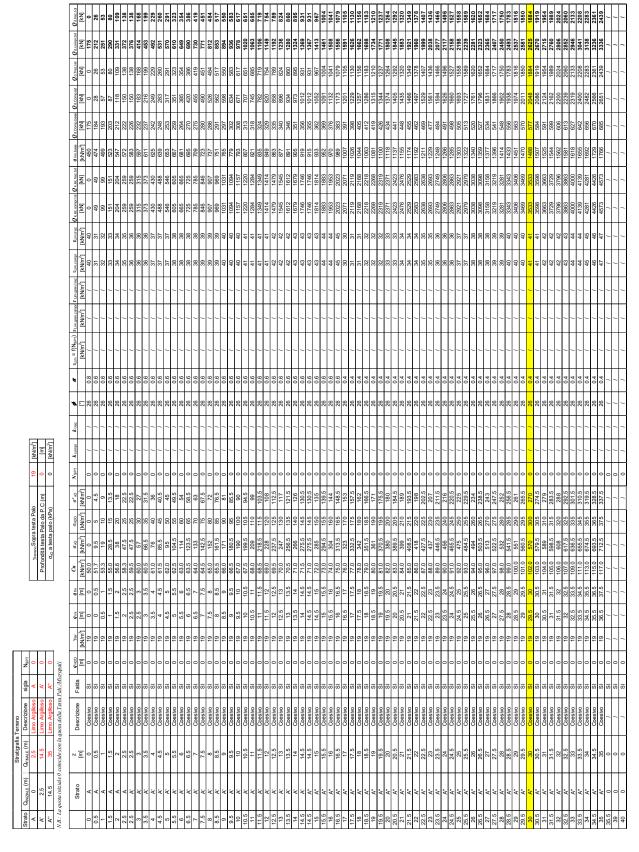


Figura 7-10. Determinazione della Capacità portante dei Pali

7.4 ANALISI STRUTTURALE

7.4.1 Sollecitazioni di calcolo

I seguenti grafici riportano le massime azioni di taglio e flettenti.

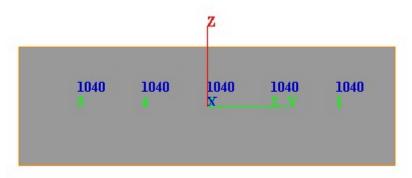


Figura 7-11. Massime sollecitazioni flessionali (Combinazione 22)

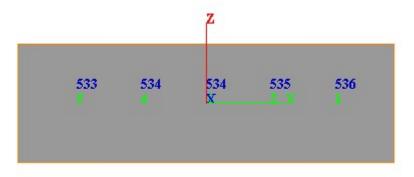


Figura 7-12. Massime sollecitazioni di taglio (Combinazione 20)

7.4.2 Verifica strutturale

- Verifica a flessione

I pali hanno un diametro pari a 100cm e sono armati con 22 barre Φ24.

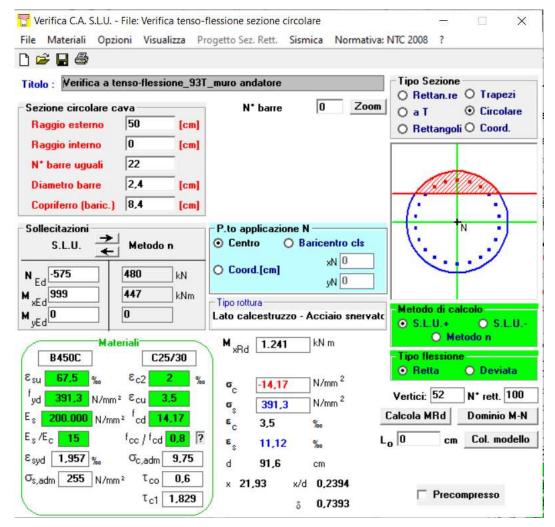


Figura 7-13. Verifica Tenso-flessionale_SLU

- Verifica a taglio

L'armatura trasversale del palo è: Φ12/15cm.

			METODO DI CLARKE & BIRJANDI
r	500	mm	raggio sezione circolare
С	84	mm	copriferro
$r_s = r - c$	416	mm	raggio sezione circolare confinata
sen α	0.530	-	$sen \alpha = (2r_s)/(\pi r)$
α	0.558	rad	
A _{tot}	785398.2	mm2	Area totale della sezione circolare
Α	644568	mm2	area della sezione rettangolare equivalente A = $r^2(\pi/2+a+sen\alpha\cos\alpha)$
		PARAM	METRI DELLA SEZIONE RETTANGOLARE EQUIVALENTE
b	843	mm	larghezza equivalente b=A/d
h	932	mm	altezza equivalente h=A _{tot} /b
d	765	mm	altezza utile equivalente d=r(1+sen α)

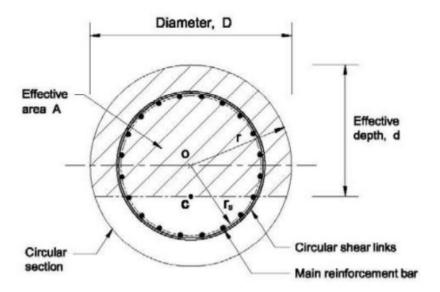


Figura 7-14. Metodo di Clarke e Birjandi - calcolo sezione rettangolare equivalente.

NTC 2018					
4.1.2.3.5.2 - Elementi con arma	ature trasvers	ali resistenti a	a taglio		
R _{ck} [MPa] =	30		f _{ck} [MPa] =	25	
f _{cd} [MPa] =	14.17	(c.a. γ _c =1.5)			
f _{ctk} [MPa] =	1.80				
f _{ctd} [MPa] =	1.20	(c.a. γ _c =1.5)			
f _{yw d} [MPa] =	391.30	(B450C γ _s =1.	15)		
Verifica del conglomerato					
H [mm] =	932	Altezza della s	sezione		
d [mm] =	765	Altezza utille o	della sezione		
b _w [mm] =	843	Larghezza de	lla membratura	resistente a ta	glio
α_{c} =	1	1 per N=0			
α=	90	inclinazione a	rmatura	1.57079633	
θ=	21.8	inclinazione fe	essura	0.38048178	
$\cot g\alpha =$	6.1257E-17				
cotgθ =	2.50	tra 1 e 2.5			
V_{Rcd} [kN] =	1416.87	Resistenza a	compressione	bielle	
		=0.9 bw d α c	f'_{cd} (cotg α +ctg	θ) / (1+cotg2θ)
Verifica dell'acciaio					
A_{sw} [mmq] =	226.19	Ø12 2br	area staffe		
s [mm] =	150		passo staffe		
V _{Rsd} [kN] =	1015.52	Resistenza ar	mature = 0.9 d	f _{ywd} A _{sw} /s (cto	α +ctg θ) sin α
\/ ===	404=	NA: A NA	- \ /		
V_{Rd} [kN] =		Min. tra V _{Rcd} 6		1.1	
V _{Sdu} [kN] =		Sollecitazione	di progetto SL	.U	
	Verificato				

Figura 7-15. Verifica a Taglio

La tabella seguente riepiloga i risultati delle verifiche sezionali condotte sul palo.

		Pali (di fondazi	one			
Caratteristiche me	ccaniche dei	materiali materiali					
Calcestruzzo	C25/30	R _{ck} =	30	N/mm²	f _{ck} =	25	N/mm²
γ _c =	1.5	α _{cc} =	0.85		f _{cd} =	14.17	N/mm²
		E _c =	31476	N/mm²	f _{ctm} =	2.56	N/mm²
		_			_		
Acciaio	B450C	E _s =	200000	N/mm²	f _{yk} =	450	N/mm²
γ _s =	1.15	ε' _{se}	1.96		f _{yd} =	391.30	N/mm²
Caratteristiche ged	ometriche de	lla sezione					
R=	500	mm		n.	ø(mm)	A _s (mm²)	Ī
c =	60	mm coprifer.		22	24	9953	
						-	
N _{Ed} positivo di com	pressione				Σ	9953	mm²
M _{Ed} positivo se tend	le le fibre infe	riori della sezione					
y distanza dell'armat	ura dal lembo	superiore					
V- 25-1- 12 0: 12	1 5 14 - 1 1101						
Verifiche agli Stati	Limite Ultimi						
Flessione			N	N4	\ \/	N.C.	N4
Combinaz	ione	posizione rispetto	NEd	Med	V _{Ed}	M _{Rd}	M _{Rd}
SLU-9		testa palo	[kN]	[kNm] 1040.00	[kN]	[kNm]	M _{Ed}
SLU-9		0m	-619.00	1040.00	536.00	1241.00	1.19
Taglio							
φ _{staffe} =	12	mm	α =	90	° inclinazione	e staffa	
n _b =	2	n° braccia	s =	150	mm passo		
	_	posizione rispetto	V _{Rd,0}	V _{Rd,s}	V _{Rd,c}	V_{Rd}	V _{Rd}
Combinaz	ione	testa palo	[kN]	[kN]	[kN]	[kN]	V _{Ed}
SLU-9		0m	313.58	1015.52	1416.87	1015.52	1.89
Verifiche agli Stati	Limite Eserc	<u>cizio</u>					
Comb. Rara		σ _{c,max} =	15.00	N/mm²			
		σ _{s,max} =	360.00	N/mm²			
Comb. Quasi Pern	nanente	σ _{c,max} =	11.25	N/mm²			
Combinaz	ione	posizione rispetto	NEd	Med	σ _c	σs	
DADA 10		testa palo	[kN]	[kNm]	[MPa]	[MPa]	
QP-17		0m	372.00	470.00 400.00	6.52	143.30	
Qr'-1 <i>1</i>		0m	513.00	400.00	5.52	101.60	
Verifiche adli Stati	Limite Eserc	izio - Fessurazione					
		surazione è condottta	senza calco	lo diretto se	condo quento	specificato :	al
		Si fa riferimento a qu			•	•	
Esplicativa.			,				
•		Ordinarie		armatura	poco sensibi	le	
·	ni ambientali			/ u			
·	ni ambientali	Ordinarie					
·	ni ambientali	W _{lim} =	0.4	mm			
Condizio	oni ambientali		0.4 227	mm N/mm²			
Comb. Frequente		W _{lim} =			σ _c	$\sigma_{\rm s}$	
Condizio		W _{lim} = σ _s =	227	N/mm²	σ _c [MPa]	σ _s [MPa]	
Condizion Comb. Frequente Combinaz		$W_{lim} = $ $\sigma_s = $ posizione rispetto	227 N _{Ed}	N/mm² M _{Ed}			
Condizion Comb. Frequente Combinaz	ione	w _{lim} = σ _s = posizione rispetto testa palo	227 N _{Ed} [kN]	N/mm² M _{Ed} [kNm]	[MPa]	[MPa]	
Condizion Comb. Frequente Combinaz FREQ-16	ione	$w_{lim} = \ \sigma_s = \ posizione rispetto testa palo \ 0m$	227 N _{Ed} [kN] 438.00	N/mm² M _{Ed} [kNm] 444.00	[MPa]	[MPa]	
Comb. Frequente Combinaz FREQ-16 Comb. Quasi pern	ione nanente	w _{lim} = σ_s = posizione rispetto testa palo 0m w _{lim} =	227 N _{Ed} [kN] 438.00 0.3	N/mm² M _{Ed} [kNm] 444.00 mm	[MPa]	[MPa]	
Condizion Comb. Frequente Combinaz FREQ-16	ione nanente	$\begin{aligned} w_{\text{lim}} &= \\ \sigma_s &= \\ \text{posizione rispetto} \\ \text{testa palo} \\ \\ \hline 0 \\ \text{m} \\ \\ \hline w_{\text{lim}} &= \\ \sigma_s &= \\ \end{aligned}$	227 N _{Ed} [kN] 438.00 0.3 204	N/mm² M _{Ed} [kNm] 444.00 mm N/mm²	[MPa] 6.15	[MPa] 126.20	

8 ANALISI GEOTECNICA MURO ANDATORE CARREGGIATA NORD LATO RIMINI - (NUOVA REALIZZAZIONE)

I tabulati che seguono, riportano i risultati delle analisi e verifiche geotecniche condotte sul muro andatore a sostegno del rilevato di approccio al sottovia.

Per maggiori informazioni, si rimanda alla relazione di calcolo strutturale.

Commessa: Lotto 1 - Sottovia Tang. Nord Rampa Interconnessione 14+490 (sottovia 93T)

Argomento Allegato 1: Calcoli - Opere di sostegno Sezione analizzata: Muri andatori LATO RIMINI NORD

VERIFICHE GEOTECNICHE E DI RESISTENZA STRUTTURALE

I seguenti paragrafi riportano le verifiche delle opere di sostegno su fondazione diretta.

CARATTERISTICHE DEI MATERIALI

Si riportano di seguito le caratteristiche dei materiali che compongono il muro di sostegno.

Fondazione/Dente di taglio

Calcestruzzo	R _{ck}	f _{ck}	Copriferro	Acciaio	f _{yk}	Classe di	Condizioni ambientali	
Carcestrazzo	[N/mm²]	[N/mm²]	[mm]	Accidio	[N/mm²]	esposizione	Condizioni ambientan	
C28/35	35	28	35	B450C	450	XC2	Ordinarie	

Paramento

Calcestruzzo	R _{ck}	f _{ck}	Copriferro	Acciaio	f _{yk}	Classe di	Condizioni ambientali	
Calcesti uzzo	[N/mm²]	[N/mm²]	[mm]	Acciaio	[N/mm²]	esposizione	Condizioni ambientali	
C28/35	35	28	35	B450C	450	XF2	Aggressive	

CARATTERISTICHE GEOMETRICHE

Si riportano di seguito le principali caratteristiche geometriche dei muro di sostegno.

		B1 _{medio} [m]	B2 _{medio} [m]	B3 [m]			
ſ	B [m]	(lato monte)	(paramento)	(lato valle)	H _{tot} [m]	H1 [m]	H2 [m]
ſ	7.00	4.10	0.80	2.10	7.34	1.20	6.14

Hzav [m]	Hzav [m]	B4 [m]	porzione di terreno		Dente di taglio		NO
(lato monte)	(lato valle)	(lato monte)	di rilevato ad andamento	H _{dente} [m]	B _{dente} [m]	H _{zav valle} [m]	Xg _{dente} [m]
6.14	3.50	0.00	costante	0.00	0.00	0.00	0.00
							(rispetto (1)

	D [m]	a [m]	L [m]	e _L [m]	θ [°]	w [°]	
H_sicurvia [m]	(capacità	(capacità	(capacità	(capacità	(capacità	(capacità	Falda
	portante)	portante)	portante)	portante)	portante)	portante)	
1.00	1.20	0.00	9.05	0.00	90.00	0.00	SI

Azioni delle FOA - Barriera antifonica H = 6m - condizioni di bordo

Descrizione	N _k [kN/m]	H _k [kN/m]	M _k [kNm/m]						
p.p. strut. + p.p. pannelli	8.03	0.00	1.84						
Pressione dinamica veicolare	-0.37	-6.52	-20.02						
Vento	-0.89	-15.60	-47.85						

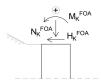


Figura 1 - Convenzione dei segni carichi FOA

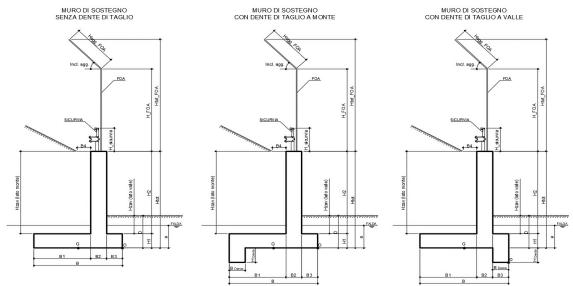


Figura 2 - Caratteristiche geotecniche del muro di sostegno per i diversi casi

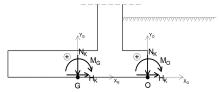


Figura 3 - Convenzione dei segni

Commessa: Lotto 1 - Sottovia Tang. Nord Rampa Interconnessione 14+490 (sottovia 93T)

Allegato 1: Calcoli - Opere di sostegno Argomento Sezione analizzata: Muri andatori LATO RIMINI NORD

ANALISI DEI CARICHI

(C1): Pesi propri - strutturali e non

Descrizione	γ [kN/m3]	N _k [kN/m]	x ₀ [m]	y _o [m]	M _o [kNm/m]	x _G [m]	y _G [m]	M _G [kNm/m]
Fondazione c.a.	25	210.00	-3.50	0.60	-735.00	0.00	0.60	0.00
Paramento c.a.	25	122.80	-2.50	4.27	-307.00	1.00	4.27	122.80
FOA		8.03	-2.50	7.34	-21.92	1.00	7.34	6.19
Zavorra lato monte (costante)	20	503.48	-4.95	4.27	-2492.23	-1.45	4.27	-730.05
Zavorra lato monte (inclinato)	20	0.00	-5.63	7.34	0.00	-2.13	7.34	0.00
Zavorra lato valle	20	147.00	-1.05	2.95	-154.35	2.45	2.95	360.15
Dente di fondazione	25	0.00	0.00	0.00	0.00	3.50	0.00	0.00
Sicurvia		0.00	-2.50	8.34	0.00	1.00	8.34	0.00
Totale		991			-3710			-241

(C2a): Spinta delle terre per verifiche geotecniche

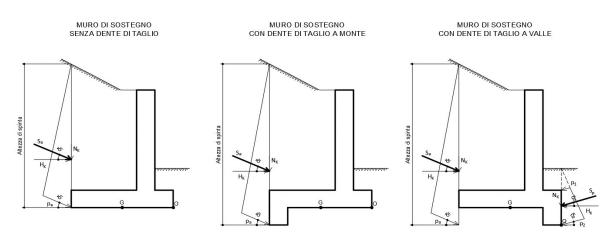


Figura 4 - Spinta attiva delle terre in condizioni statiche per i diversi casi

· gate · Spinia attra della circa in condition statuta per l'artes cas									
Ribaltamento									
- Componente attiva			H _{SPINTA_ATT} [m]	7.34					
Comb.	k _a	S _{ta} [kN/m]	N _k [kN/m]	H _k [kN/m]	x ₀ [m]	y _o [m]	M _o [kNm/m]		
M1	0.244	131.68	52.15	120.91	-7.00	2.45	-69.26		
- Componente passiva H _{SPINTA_PASS} [m] 0.00									
Comb.	k _p	p1 [kN/mq]	p2 [kN/mq]	S _P [kN/m]	N _k [kN/m]	H _k [kN/m]	х _о [m]	y _o [m]	M _k [kN/m]
M1	1.89	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

- Totale (componente attiva + passiva)

M1

131.68

Comb.	S _t [kN/m]	N _k [kN/m]	H _k [kN/m]	M _o [kNm/m]
M1	131.68	52.15	120.91	-69.26

Comb.	St [KIV/III]	N _k [KN/m]	H _k [KN/M]	IVIO [KIVITI/ ITI]						
M1	131.68	52.15	120.91	-69.26						
			-							
Scorrimento										
- Componente attiva			H _{SPINTA_ATT} [m]	7.34						
Comb.	S _{ta} [kN/m]	N _k [kN/m]	H _k [kN/m]	x _G [m]	y _G [m]	M _G [kNm/m]				
M1	131.68	52.15	120.91	-3.50	2.45	113.28				
		-								
- Componente passiva			H _{SPINTA_PASS} [m]	0.00						
(valutata unicamente per le	verifiche a scorrim	iento)		•						
Comb.	k _p	S1 [kN/mq]	S2 [kN/mq]	S _P [kN/m]	N _k [kN/m]	H _k [kN/m]	x _G [m]	y _G [m]	M _k [kN/m]	
M1	1.89	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	

113.28

120.91

52.15

Cliente:

Potenziamento sistema autostradale e tangenziale di Bologna

Commessa: Argomento Lotto 1 - Sottovia Tang. Nord Rampa Interconnessione 14+490 (sottovia 93T)

Argomento
Sezione analizzata:

Allegato 1: Calcoli - Opere di sostegno Muri andatori LATO RIMINI NORD

Capacità portante

- Componente attiva

H _{SPINTA ATT} [m]	7.34
-----------------------------	------

Comb.	S _{ta} [kN/m]	N _k [kN/m]	H _k [kN/m]	x _G [m]	y _G [m]	M _G [kNm/m]
M1	131.68	52.15	120.91	-3.50	2.45	113.28

- Componente passiva

H_{SPINTA_PASS} [m] 0.00

(valutata unicamente per le verifiche a scorrimento)

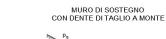
Comb.	k _p	S1 [kN/mq]	S2 [kN/mq]	S _P [kN/m]	N _k [kN/m]	H _k [kN/m]	x _G [m]	y _G [m]	M _k [kN/m]
M1	1.89	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

- Totale (componente attiva + passiva)

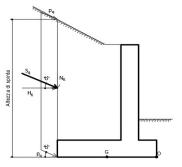
Comb.	S _t [kN/m]	N _k [kN/m]	H _k [kN/m]	M _o [kNm/m]
M1	131.68	52.15	120.91	113.28

(C2b): Spinta delle terre per verifiche strutturali

A favore di sicurezza, non si considera la componente verticale nelle verifiche strutturali della soletta di fondazione - Attenzione: è stato posto un coefficiente pari a 0 nel calcolo di Nk


H _{SPINTA} [m]	7.34

Comb.	k _o	S _{to} [kN/m]	N _k [kN/m]	H _k [kN/m]	x _G [m]	y _G [m]	M _G [kNm/m]
M1	0.426	229.74	0.00	229.74	-3.50	2.45	562.09


(C3): Sovraccarico accidentale

q [kN/m²] 20

MURO DI SOSTEGNO SENZA DENTE DI TAGLIO

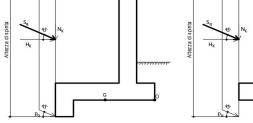


Figura 5 - Spinta dovuta al sovraccarico accidentale per i diversi casi

Componente verticale

componente verticule				
N _k [kN/m]	х _о [m]	M _o [kNm/m]	x _G [m]	M _G [kNm/m]
82.00	-4 95	-405 90	-1 //5	-118 90

Ribaltamento

- Componente orizzontale per verifiche geotecniche (a)

H _{SPINTA} [m]	7.34

Comb.	k _a	S _{qa} [kN/m]	N _k [kN/m]	H _k [kN/m]	x ₀ [m]	y _o [m]	M _o [kNm/m]
M1	0.244	35.88	14.21	32.94	-7.00	3.67	21.43

Scorrimento / Capacità portante

- Componente orizzontale per verifiche geotecniche (a)

Hanner [m]	7 34
I ISPINITA [III]	7.34

Comb.	S _{qa} [kN/m]	N _k [kN/m]	H _k [kN/m]	x _G [m]	y _G [m]	M _G [kNm/m]
M1	35.88	14.21	32.94	-3.50	3.67	71.17

Verifiche strutturali

Componente orizzontale per verifiche strutturali (b)

H _{SPINTA} [m]	7.34

Comb.	k _o	S _{q0} [kN/m]	N _k [kN/m]	H _k [kN/m]	x _G [m]	y _G [m]	M _G [kNm/m]
M1	0.426	62.60	0.00	62.60	-3.50	3.67	229.74

Commessa: Lotto 1 - Sottovia Tang. Nord Rampa Interconnessione 14+490 (sottovia 93T)

Argomento Allegato 1: Calcoli - Opere di sostegno Sezione analizzata: Muri andatori LATO RIMINI NORD

Verifiche geotecniche e strutturali

Componente FOA - pressione dinamica traffico veicolare

a. (1a./ 1							
N _k [kN/m]	H _k [kN/m]	х _о [m]	y _o [m]	M _o [kNm/m]	x _G [m]	y _G [m]	M _G [kNm/m]
-0.37	6.52	-2.50	7.34	68.80	1.00	7.34	67.51

(C4): Urto veicolo in svio

		(da piano stradale,)
H _k [kN]		H _{URTO} [m]	
82.28	come da Linee Guida ASPI	1.00	come da NTC2018

n° montanti	i _{mont.} [m]	L _{diff_muro} [m]	L _{concio} [m]	L _{diff} [m]	H _k [kN/m]	y _o [m]	M _o [kNm/m]
3.00	1.50	10.44	9.05	9.05	27.28	8.34	227.47
n° montanti	L _{diff_concio} [m]	L _{diff_parete} [m]	L _{concio} [m]	L _{diff} [m]	H _k [kN/m]	y _G [m]	M _G [kNm/m]
3.00	1.50	10.44	9.05	9.05	27.28	8.34	227.47

(C5): Azione del vento

H _{FOA} [m]	H _{FOA agg.} [m]	Incl. agg. [°]	Verso	H _{VENTO} [m]	p [kN/m²]
6.00	0.00	0	da strada	6.00	2.16

N _k [kN/m]	H _k [kN/m]	x _G [m]	y _G [m]	M _G [kNm/m]	x ₀ [m]	y _o [m]	M _o [kNm/m]
-0.89	15.60	1.00	7.34	161.46	-2.50	7.34	164.58

(CS1): Forze inerzia legate a carichi strutturali e non

(dente di taglio: si considera unicamente il contributo verticale)

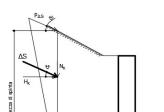
k_v 0.065

Sisma diretto verso l'alto: - kv

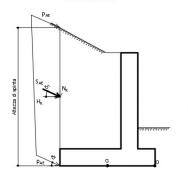
JISTHA GITELLO VETSO I ALLO KV		Sistria directed versor tales. KV							
Descrizione	N _k [kN/m]	H _k [kN/m]	х _о [m]	y _o [m]	M _o [kNm/m]	х _G [m]	y _G [m]	M _G [kNm/m]	
Fondazione c.a.	-13.74	27.48	-3.50	0.60	64.58	0.00	0.60	16.49	
Paramento c.a.	-8.03	16.07	-2.50	4.27	88.71	1.00	4.27	60.58	
FOA	-0.53	1.05	-2.50	7.34	9.03	1.00	7.34	7.19	
Zavorra lato monte (costante)	-32.94	65.89	-4.95	4.27	444.40	-1.45	4.27	329.10	
Zavorra lato monte (inclinato)	0.00	0.00	-5.63	7.34	0.00	-2.13	7.34	0.00	
Zavorra lato valle	-9.62	0.00	-1.05	2.95	10.10	2.45	2.95	-23.56	
Dente di fondazione	0.00	0.00	0.00	0.00	0.00	3.50	0.00	0.00	
Sicurvia	0.00	0.00	-2.50	8.34	0.00	1.00	8.34	0.00	
Totale	-65	110			617			390	

Sisma diretto verso il basso: + kv

Descrizione	N _k [kN/m]	H _k [kN/m]	х _о [m]	y _o [m]	M _o [kNm/m]	х _G [m]	y _G [m]	M _G [kNm/m]
Fondazione c.a.	13.74	27.48	-3.50	0.60	-31.60	0.00	0.60	16.49
Paramento c.a.	8.03	16.07	-2.50	4.27	48.53	1.00	4.27	76.65
FOA	0.53	1.05	-2.50	7.34	6.40	1.00	7.34	8.24
Zavorra lato monte (costante)	32.94	65.89	-4.95	4.27	118.27	-1.45	4.27	233.57
Zavorra lato monte (inclinato)	0.00	0.00	-5.63	7.34	0.00	-2.13	7.34	0.00
Zavorra lato valle	9.62	0.00	-1.05	2.95	-10.10	2.45	2.95	23.56
Dente di fondazione	0.00	0.00	0.00	0.00	0.00	3.50	0.00	0.00
Sicurvia	0.00	0.00	-2.50	8.34	0.00	1.00	8.34	0.00
Totale	65	110			131			359


(CS2): Spinta (dinamica) delle terre

La componente dinamica della spinta delle terre è calcolata in riferimento alla componente statica valutata, a favore di sicurezza, in regime di spinta attiva.


 \odot

SPINTA TOTALE DELLE TERRE IN CONDIZIONI DINAMICHE REGIME DI SPINTA ATTIVA- METODO PSEUDO-STATICO DI MONONOBE OKABE

SPINTA DINAMICA DELLE TERRE REGIME DI SPINTA ATTIVA

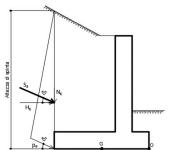


Figura 6 - Spinta attiva delle terre in condizioni dinamiche - Metodo pseudo-statico di Mononobe Okabe

Commessa: Lotto 1 - Sottovia Tang. Nord Rampa Interconnessione 14+490 (sottovia 93T)

Argomento Allegato 1: Calcoli - Opere di sostegno Sezione analizzata: Muri andatori LATO RIMINI NORD

Ribaltamento

Sisma diretto verso l'alto: - kv

Comb.	k _{a_sism}	S _a [kN/m]	k _{AE}	S _{AE} [kN/m]	ΔS [kN/m]
M1	0.24	131.68	0.400	194.46	62.78
Comb.	N _k [kN/m]	H _k [kN/m]	х _о [m]	y _o [m]	M _o [kNm/m]
M1	24.87	57.65	-7.00	3.67	37.50

Sisma diretto verso il basso: + kv

Comb.	k _{a_sism}	S _a [kN/m]	k _{AE}	S _{AE} [kN/m]	ΔS [kN/m]
M1	0.24	131.68	0.366	216.53	84.85
Comb.	N _k [kN/m]	H _k [kN/m]	х _о [m]	y _o [m]	M _o [kNm/m]
M1	33.61	77.91	-7.00	3.67	50.68

Scorrimento

Sisma diretto verso l'alto: - kv

DIDITIO OTI CELLO VEIDO I C	1101 111				
Comb.	k _{a_sism}	S _a [kN/m]	k _{AE}	S _{AE} [kN/m]	ΔS [kN/m]
M1	0.24	131.68	0.335	168.73	37.05
Comb.	N _k [kN/m]	H _k [kN/m]	x _G [m]	y _G [m]	M _G [kNm/m]
M1	14.68	34.02	-3.50	3.67	73.49

Sisma diretto verso il basso: + kv

Comb.	k _{a_sism}	S _a [kN/m]	k _{AE}	S _{AE} [kN/m]	ΔS [kN/m]
M1	0.24	131.68	0.322	185.01	53.33
Comb.	N _k [kN/m]	H _k [kN/m]	x _G [m]	y _G [m]	M _G [kNm/m]
M1	21.12	48.97	-3.50	3.67	105.78

Capacità portante

Sisma diretto verso l'alto: - kv

Comb.	k _{a_sism}	S _a [kN/m]	k _{AE}	S _{AE} [kN/m]	ΔS [kN/m]
M1	0.24	131.68	0.335	168.73	37.05
Comb.	N _k [kN/m]	H _k [kN/m]	x _G [m]	y _G [m]	M _G [kNm/m]
M1	14.68	34.02	-3.50	3.67	73.49

Sisma diretto verso il basso: + kv

Comb.	k _{a_sism}	S _a [kN/m]	k _{AE}	S _{AE} [kN/m]	ΔS [kN/m]
M1	0.24	131.68	0.322	185.01	53.33
Comb.	N _k [kN/m]	H _k [kN/m]	x _G [m]	y _G [m]	M _G [kNm/m]
M1	21.12	48.97	-3.50	3.67	105.78

Verifiche strutturali

Sisma diretto verso l'alto: - kv

Comb.	k _{a_sism}	S _a [kN/m]	k _{AE}	S _{AE} [kN/m]	ΔS [kN/m]
M1	0.24	131.68	0.335	168.73	37.05
Comb.	N _k [kN/m]	H _k [kN/m]	x _G [m]	y _G [m]	M _G [kNm/m]
M1	0.00	37.05	-3.50	3.67	135.98

Sisma diretto verso il basso: + kv

Comb.	k _{a_sism}	S _a [kN/m]	k _{AE}	S _{AE} [kN/m]	ΔS [kN/m]
M1	0.24	131.68	0.322	185.01	53.33
Comb.	N _k [kN/m]	H _k [kN/m]	x _G [m]	y _G [m]	M _G [kNm/m]
M1	0.00	53.33	-3.50	3.67	195.72

Pagina 5

Commessa: Lotto 1 - Sottovia Tang. Nord Rampa Interconnessione 14+490 (sottovia 93T)

Argomento Allegato 1: Calcoli - Opere di sostegno
Sezione analizzata: Muri andatori LATO RIMINI NORD

PARAMETRI GEOTECNICI DEL TERRENO

Terreno sping	gente	7
Parametro	M1	
$\gamma [kN/m^3]$	20	peso specifico
φ' [°]	35.00	angolo d'attrito interno
φ' [rad]	0.61	
δ_{es} [°]	23.33	angolo d'attrito terreno-muro in condizioni di esercizio (=2/3φ')
δ _{es} [rad]	0.41	
δ _{sism} [°]	23.33	angolo d'attrito terreno-muro in condizioni sismiche (=2/3φ')
δ_{sism} [rad]	0.41	
β[°]	0.00	angolo che la parete forma con la verticale
β [rad]	0.00	
i [°]	0.00	inclinazione del terrapieno rispetto all'orizzontale
i [rad]	0.00	
\mathbf{k}_{0}	0.426	
k _{a_es}	0.244	condizioni di esercizio
k _{a_sism}	0.244	condizioni sismiche

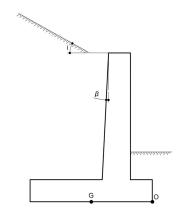


Figura 7 - Inclinazione del terreno e del paramento

Terreno di fondazione		(terreno di riporto con caratteristiche migliorate - sarà da prevedersi la rimozione dello
Parametro	M1	strato più superficiale relativo al deposito b _{nN}
γ' [kN/m3]	9	peso specifico sommerso
φ' [°]	26.00	angolo d'attrito interno
φ' [rad]	0.45	<u> </u>
δ_{es} [°]	13.00	angolo d'attrito terreno-muro in condizioni di esercizio (=1/2φ')
δ_{es} [rad]	0.23	
δ _{sism} [°]	13.00	angolo d'attrito terreno-muro in condizioni sismiche (=1/2ф')
δ_{sism} [rad]	0.23	
c' [kN/m²]	0.00	coesione efficace
c _u [kN/m ²]	50.00	resistenza non drenata
β[°]	0.00	
β [rad]	0.00	
i [°]	0.00	
i [rad]	0.00	
k _{p_es}	3.787	condizioni di esercizio
k _{p_es} (*)	1.893	si considera aliquota 50% della resistenza passiva del terreno antistante il muro

Commessa: Lotto 1 - Sottovia Tang. Nord Rampa Interconnessione 14+490 (sottovia 93T)

Allegato 1: Calcoli - Opere di sostegno Argomento Muri andatori LATO RIMINI NORD Sezione analizzata:

COEFFICIENTI SISMICI

Località: Opera 93T

VN 50 Vita nominale: anni Classe d'uso: IV

CU 2

Periodo di riferimento per azione

VR 100 anni sismica:

Parametri sismici: Stato limite Pv_R [anni] T_R [anni] a_g [g] T_C* [sec] F₀ 0.1 949 0.212 0.309

Categoria di sottosuolo: D Т1 Categoria topografica:

Accelerazione massima attesa al sito

Stato limite	T _R [anni]	S _S	S _T	a _{max} [g]	a _g [m/s2]
SLV	949	1.62	1.00	0.344	3.378

Coefficiente di riduzione dell'accelerazione massima attesa al

	STR/GEO	RIB
β	0.38	0.57

β incrementato del 50% per verifica a ribaltamento (NTC2018 7.11.6.2.1)

Coefficiente sismico orizzontale Coefficiente sismico verticale

k _h	0.131	0.196
k _v	0.065	0.098

Calcolo coefficiente sismico con teoria Mononobe-Okabe:

Sisma diretto verso l'alto: - kv

	[°]	[rad]	[°]	[rad]
θ	7.97	0.14	12.28	0.21
$\delta_{\text{sism_M1}}$	23.33	0.41	23.33	0.41
β	0.00	0.00	0.00	0.00
ψ	90.00	1.57	90.00	1.57
ф' _d - М1	35.00	0.61	35.00	0.61

$\beta \leq (\phi'_d - \theta)$	k _{AE} - M1	0.335
$\beta > (\phi'_d - \theta)$	k _{AE} - M1	0.94

0.400
1.071

NAE IVII	0.5 1
k _{AE} - M1	0.335

_		
	0.400	

Sisma diretto verso il basso: + kv

	[°]	[rad]	[°]	[rad]
θ	7.00	0.12	10.13	0.18
$\delta_{\text{sism_M1}}$	23.33	0.41	23.33	0.41
β	0.00	0.00	0.00	0.00
ψ	90.00	1.57	90.00	1.57
տ'₄ - M1	35.00	0.61	35.00	0.61

$\beta \leq (\varphi'_d - \theta)$	k _{AE} - M1	0.32
β > (d', - θ)	k M1	0.91

0.366
1.002

k - M1	0.322

0.366

Commessa: Lotto 1 - Sottovia Tang. Nord Rampa Interconnessione 14+490 (sottovia 93T)

Allegato 1: Calcoli - Opere di sostegno Argomento Muri andatori LATO RIMINI NORD Sezione analizzata:

VERIFICHE GEOTECNICHE

Calcolo delle sollecitazioni caratteristiche nel punto O

A1+M	1+R3

A1+M1+R3

A1+M1+R3

C1 C3 - componente verticale C2a N [kN/m] M [kNm/m] N [kN/m] M [kNm/m] N [kN/m] H [kN/m] H [kN/m] 991 -3710 52 121 82 C3 - componente orizzontale (a) C3 - FOA H [kN/m] M [kNm/m] N [kN/m] N [kN/m] N [kN/m] H [kN/m] M [kNm/m] 21 69 0 14 33 0 CS1 (-kV) C5 N [kN/m] H [kN/m] M [kNm/m] N [kN/m] M [kNm/m] N [kN/m] H [kN/m] 16 165 -65 110 925 CS2 (-kV) CS2 (+kV) M [kNm/m] N [kN/m] M [kNm/m] N [kN/m] H [kN/m] H [kN/m] 34 78

A1+M1+R3

VERIFICA A RIBALTAMENTO (A1 + M1 + R3)

Carico	SLU-1	SLU-2	SISM-1	SISM-2	ECC
C1	1.00	1.00	1.00	1.00	1.00
C2a	1.30	1.30	1.00	1.00	1.00
C3 - vert.	0.00	0.00	0.20	0.20	0.00
C3 - oriz. (a)	1.50	1.13	0.20	0.20	0.20
C3 - FOA	1.50	1.13	0.20	0.20	0.20
C4	0.00	0.00	0.00	0.00	1.00
C5	0.90	1.50	0.00	0.00	0.00
CS1 (-kV)	0.00	0.00	1.00	0.00	0.00
CS1 (+kV)	0.00	0.00	0.00	1.00	0.00
CS2 (-kV)	0.00	0.00	1.00	0.00	0.00
CS2 (+kV)	0.00	0.00	0.00	1.00	0.00

M _{stab} [kNm/m]	-3710	-3710	-3792	-3792	-3710
M _{rib} [kNm/m]	193	259	912	197	176
γ _R	1.15	1.15	1.00	1.00	1.15
FS (≥1)	16.68	12.47	4.16	19.28	18.31

(C1): Pesi propri - strutturali e non

(C2a): Spinta delle terre per verifiche geotecniche

H [kN/m] M [kNm/m]

H [kN/m] M [kNm/m]

-406

227

M [kNm/m]

197

0

C4

27

CS1 (+kV)

H [kN/m]

110

(C3): Sovraccarico accidentale

(C4): Urto veicolo in svio (C5): Azione del vento

(CS1): Forze inerzia legate a carichi strutturali e non

(CS2): Spinta (dinamica) delle terre

Commessa: Lotto 1 - Sottovia Tang. Nord Rampa Interconnessione 14+490 (sottovia 93T)

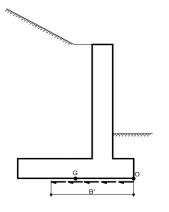
Argomento Allegato 1: Calcoli - Opere di sostegno Sezione analizzata: Muri andatori LATO RIMINI NORD

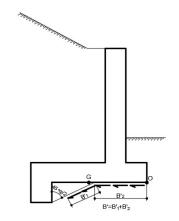
·

Calcolo delle sollecitazioni caratteristiche nel punto O

A1+M1+R3

A1+M1+R3


A1+M1+R3


A1+M1+R3

C1				C2a		C3 - c	omponente ve	rticale
N [kN/m]	H [kN/m]	M [kNm/m]	N [kN/m]	H [kN/m]	M [kNm/m]	N [kN/m]	H [kN/m]	M [kNm/m]
991	0	-241	52	121	113	82	0	-119
C3 - com	ponente orizzo	ontale (a)		C3 - FOA			C4	-
N [kN/m]	H [kN/m]	M [kNm/m]	N [kN/m]	H [kN/m]	M [kNm/m]	N [kN/m]	H [kN/m]	M [kNm/m]
14	33	71	0	7	69	0	27	227
	C5			CS1 (-kV)			CS1 (+kV)	-
N [kN/m]	H [kN/m]	M [kNm/m]	N [kN/m]	H [kN/m]	M [kNm/m]	N [kN/m]	H [kN/m]	M [kNm/m]
-1	16	161	-65	110	390	65	110	359
	CS2 (-kV)			CS2 (+kV)				-
N [kN/m]	H [kN/m]	M [kNm/m]	N [kN/m]	H [kN/m]	M [kNm/m]			
15	34	73	21	49	106			

VERIFICA A SCORRIMENTO

MURO DI SOSTEGNO SENZA DENTE DI TAGLIO MURO DI SOSTEGNO CON DENTE DI TAGLIO A MONTE MURO DI SOSTEGNO CON DENTE DI TAGLIO A VALLE

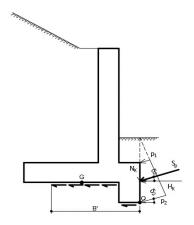


Figura 8 - Resistenza a scorrimento considerata per i diversi casi

Carico	SLU-1-A1	SLU-2-A1	SISM-1-A1	SISM-2-A1	ECC-A1
C1	1.00	1.00	1.00	1.00	1.00
C2a	1.30	1.30	1.00	1.00	1.00
C3 - vert.	0.00	0.00	0.20	0.20	0.00
C3 - oriz. (a)	1.50	1.13	0.20	0.20	0.20
C3 - FOA	1.50	1.13	0.20	0.20	0.20
C4	0.00	0.00	0.00	0.00	1.00
C5	0.90	1.50	0.00	0.00	0.00
CS1 (-kV)	0.00	0.00	1.00	0.00	0.00
CS1 (+kV)	0.00	0.00	0.00	1.00	0.00
CS2 (-kV)	0.00	0.00	1.00	0.00	0.00
CS2 (+kV)	0.00	0.00	0.00	1.00	0.00
	SLU-1-A1	SLU-2-A1	SISM-1-A1	SISM-2-A1	ECC-A1
N _{Ed} [kN/m]	1079	1073	1012	1149	1046
H _{Ed} [kN/m]	230	225	273	288	156
M _{Ed} [kNm/m]	262	306	340	341	128
Comb.	M1	M1	M1	M1	M1
φ' [°]	26	26	26	26	26
tanφ'	0.49	0.49	0.49	0.49	0.49
c' [kN/m ²]	0.00	0.00	0.00	0.00	0.00
c _u [kN/m ²]	50.00	50.00	50.00	50.00	50.00
B' [m]	6.52	6.43	6.33	6.41	6.76
R _{Ed} [kN/m]	326	321	316	320	338
Ϋ́R	1.10	1.10	1.00	1.00	1.10
FS (≥1)	1.29	1.30	1.16	1.11	1.97

(C1): Pesi propri - strutturali e non

(C2a): Spinta delle terre per verifiche geotecniche

(C3): Sovraccarico accidentale

(C4): Urto veicolo in svio

(C5): Azione del vento

(CS1): Forze inerzia legate a carichi strutturali e non

(CS2): Spinta (dinamica) delle terre

Cliente:

Potenziamento sistema autostradale e tangenziale di Bologna Lotto 1 - Sottovia Tang. Nord Rampa Interconnessione 14+490 (sottovia 93T) Allegato 1: Calcoli - Opere di sostegno Muri andatori LATO RIMINI NORD Commessa:

Argomento Sezione analizzata:

(C3): Sovraccarico accidentale (C4): Urto veicolo in svio (C5): Azione del vento (CS1): Forze inerzia legate a carichi strutturali e non (CS2): Spinta (dinamica) delle terre Azioni di calcolo Dimensioni geometriche fondazione Parametri geotecnici terreno di fondazione Peso proprio del terreno di riporto Peso proprio dell'acqua Peso som Terreno di riporto Peso som Terreno di riporto Peso d'attrito Coesione efficace Set di coefficienti parziali Peso proprio - Terreno di riporto Peso som Terreno di riporto Ya Peso som Terreno di fondazione Angolo d'attrito fattorizzato	Carico C1 C2a C3 - vert. C3 - oriz. (a) C3 - FOA C4 C5 CS1 (-kV) CS1 (+kV) CS2 (-kV) CS2 (-kV) CS2 (-kV) CD Comb. N _{Ed} [kN/m] N _{Ed} [kN/m] D [m] a [m] L [m] B [m] e _L [m] e _B [m] L' [m] B' [m] ione Y ₁ [kN/m³] Y _w [kN/m³] y' ₁ [kN/m³]	\$LU-1-A1 1.00 1.30 0.00 1.50 1.50 0.00 0.00 0.00 0.00 5LU-1-A1 1079 260 230 1.20 0.00 9.05 7.00 0.24 9.05 6.52	SLU-2-A1 1.30 1.50 1.50 1.50 0.00 0.00 0.00 0.00 SLU-2-A1 1499 9 230 1.20 0.00 9.05 7.00 0.00 0.00 9.05 6.99	\$LU-3-A1 1.00 1.30 0.00 1.13 1.13 0.00 1.50 0.00 0.00 0.00 \$LU-3-A1 1073 305 225 1.20 0.00 9.05 7.00 0.00 0.28 9.05 6.43	SLU-4-A1 1.30 1.30 1.30 1.13 1.13 1.13 0.00 1.50 0.00 0.00 0.00 0.00 SLU-4-A1 1463 99 225 1.20 0.00 9.05 7.00 0.00 0.07 9.05	\$ISM-1-A1 1.00 1.00 0.20 0.20 0.20 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	\$ISM-2-A1 1.00 1.00 0.20 0.20 0.00 0.00 1.00 1.00 5ISM-2-A1 1149 341 288 1.20 0.00 9.05 7.00 0.00 0.00	ECC-1-A1 1.00 1.00 0.00 0.20 1.00 0.00 0.00 0.00 0.00 0.00 1.00	ECC-2-A1 1.00 1.00 0.20 0.20 0.20 1.00 0.00 0.0
(C2a): Spinta terre - verifiche geo (C3): Sovraccarico accidentale (C4): Urto veicolo in svio (C5): Azione del vento (C51): Forze inerzia legate a carichi strutturali e non (CS2): Spinta (dinamica) delle terre Azioni di calcolo Parametri geotecnici terreno di fondazione Peso proprio del terreno di riporto Peso proprio dell'acqua Peso som Terreno di riporto Peso som Terreno di riporto Peso proprio - Terreno di riporto Peso proprio - Terreno di riporto Peso som Terreno di riporto Peso som Terreno di riporto Peso proprio - Terreno di riporto Peso proprio - Terreno di riporto Peso som Terreno di riporto Peso som Terreno di riporto Peso proprio - Terreno di riporto Peso proprio - Terreno di riporto Peso som Terreno di riporto	C2a C3 - vert. C3 - oriz. (a) C3 - FOA C4 C5 C5 CS1 (-kV) CS2 (-kV) CS2 (-kV) CDB. N _{Ed} [kN/m] N _{Ed} [kN/m] D [m] a [m] L [m] B [m] e _L [m] e _B [m] L' [m] B' [m] ione y ₁ [kN/m ³] y _w [kN/m ³]	1.30 0.00 1.50 1.50 0.00 0.90 0.00 0.00 0.00 0.00 SLU-1-A1 1079 260 230 1.20 0.00 9.05 7.00 0.00 0.24 9.05 6.52	1.30 1.50 1.50 1.50 1.50 0.00 0.00 0.00 0.0	1.30 0.00 1.13 1.13 1.13 1.13 0.00 1.50 0.00 0.00 0.00 0.00 0.00 SLU-3-A1 1073 305 225 1.20 0.00 9.05 7.00 0.00 0.28 9.05	1.30 1.13 1.13 1.13 1.13 1.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00	1.00 0.20 0.20 0.20 0.00 0.00 1.00 0.00 1.00 0.00 SISM-1-A1 1012 340 273 1.20 0.00 9.05 7.00 0.00	1.00 0.20 0.20 0.20 0.00 0.00 1.00	1.00 0.00 0.20 0.20 1.00 0.00 0.00 0.00	1.00 0.20 0.20 0.20 1.00 0.00 0.00 0.00
C(24): Urto veicolo in svio (C5): Azione del vento (C5): Azione del vento (C51): Forze inerzia legate a carichi strutturali e non (C52): Spinta (dinamica) delle terre Azioni di calcolo Dimensioni geometriche fondazione Perso proprio del terreno di riporto Peso proprio del terreno di riporto Peso som Terreno di riporto Peso som Terreno di riporto Peso proprio - Terreno di riporto Peso proprio - Terreno di riporto Peso proprio - Terreno di riporto Peso som Terreno di riporto Peso som Terreno di riporto Peso proprio - Terreno di riporto Peso proprio - Terreno di riporto Peso som Terreno di riporto Peso som Terreno di riporto Peso proprio - Terreno di riporto Peso proprio - Terreno di riporto Peso som Terreno di fondazione	C3 - vert. C3 - oriz. (a) C3 - FOA C4 C5 C51 (-kV) C52 (-kV) C52 (-kV) C52 (-kV) C92 (-kV) C93 (-kV) C94 (-kV) C95 (-kV) C96 (-kV) C97 (-kV) D [m] D	0.00 1.50 0.00 0.00 0.00 0.00 0.00 0.00	1.50 1.50 1.50 0.00 0.90 0.00 0.00 0.00 0.00 SLU-2-A1 1499 9 230 1.20 0.00 9.05 7.00 0.00 0.01 9.05	0.00 1.13 1.13 0.00 1.50 0.00 0.00 0.00 0.00 0.00 SLU-3-A1 1073 305 225 1.20 0.00 9.05 7.00 0.00 0.28 9.05	1.13 1.13 1.13 1.13 0.00 1.50 0.00 0.00 0.00 0.00 0.00 SLU-4-A1 1463 99 225 1.20 0.00 9.05 7.00 0.00 0.07 9.05	0.20 0.20 0.20 0.00 0.00 1.00 0.00 1.00 0.00 1.01 273 1.20 0.00 9.05 7.00 0.00	0.20 0.20 0.20 0.00 0.00 0.00 1.00	0.00 0.20 0.20 1.00 0.00 0.00 0.00 0.00	0.20 0.20 0.20 1.00 0.00 0.00 0.00 0.00
C3): Sovraccarico accidentale C4): Urto veicolo in svio C5): Azione del vento C51): Forze inerzia legate a carichi trutturali e non C52): Spinta (dinamica) delle terre Azioni di calcolo Dimensioni geometriche fondazione Parametri geotecnici terreno di fondazione Perso proprio del terreno di riporto Perso som Terreno di riporto Perso som Terreno di fondazione Angolo d'attrito Perso som Terreno di riporto Perso proprio - Terreno di riporto Perso som Terreno di fondazione Perso proprio - Terreno di riporto Perso som Terreno di fondazione Perso proprio - Terreno di riporto Perso som Terreno di fondazione Persone	C3 - oriz. (a) C3 - FOA C4 C5 C51 (-kV) C52 (-kV) C52 (-kV) C52 (-kV) C b b b b b b b b b b b b b b b b b b	1.50 1.50 0.00 0.90 0.00 0.00 0.00 0.00 0.00 0	1.50 1.50 0.00 0.90 0.00 0.00 0.00 0.00 0.00 1.20 0.00 9.05 7.00 0.00 9.05	1.13 1.13 0.00 1.50 0.00 0.00 0.00 0.00 SLU-3-A1 1073 305 225 1.20 0.00 9.05 7.00 0.00 0.28 9.05	1.13 1.13 0.00 1.50 0.00 0.00 0.00 0.00 SLU-4-A1 1463 99 225 1.20 0.00 9.05 7.00 0.00 0.07 9.05	0.20 0.20 0.00 0.00 1.00 0.00 1.00 0.00 SISM-1-A1 1012 340 273 1.20 0.00 9.05 7.00 0.00	0.20 0.20 0.00 0.00 0.00 1.00 1.00 1.00 SISM-2-A1 1149 341 288 1.20 0.00 9.05 7.00 0.00	0.20 0.20 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.046 1.28 1.56 1.20 0.00 9.05 7.00	0.20 0.20 1.00 0.00 0.00 0.00 0.00 0.00
C4): Urto veicolo in svio C5): Azione del vento C51): Forze inerzia legate a carichi trutturali e non C52): Spinta (dinamica) delle terre Azioni di calcolo Parametri geotecnici terreno di fondazione Dimensioni geometriche fondazione Desco proprio del terreno di riporto Desco proprio del terreno di riporto Desco som Terreno di riporto Desco som Terreno di riporto Desco proprio - Terreno di riporto Desco som Terreno di riporto Desco som Terreno di riporto Desco proprio - Terreno di riporto	C3 - FOA C4 C5 CS1 (-kV) CS1 (+kV) CS2 (+kV) CS2 (+kV) Comb. N _{Ed} [kN/m] M _{Ed} [kN/m] D [m] a [m] L [m] B [m] e _L [m] e _B [m] L' [m] B' [m] ione y ₁ [kN/m³] y _w [kN/m³]	1.50 0.00 0.90 0.00 0.00 0.00 0.00 0.00 SLU-1-A1 1079 260 230 1.20 0.00 9.05 7.00 0.00 0.24 9.05 6.52	1.50 0.00 0.90 0.00 0.00 0.00 0.00 0.00 SLU-2-A1 1499 9 230 1.20 0.00 9.05 7.00 0.00 0.01 9.05	1.13 0.00 1.50 0.00 0.00 0.00 0.00 0.00 SLU-3-A1 1073 305 225 1.20 0.00 9.05 7.00 0.00	1.13 0.00 1.50 0.00 0.00 0.00 0.00 0.00 5LU-4-A1 1463 99 225 1.20 0.00 9.05 7.00 0.00	0.20 0.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 SISM-1-A1 1012 340 273 1.20 0.00 9.05 7.00 0.00	0.20 0.00 0.00 0.00 1.00 1.00 1.00 SISM-2-A1 1149 341 288 1.20 0.00 9.05 7.00 0.00	0.20 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.046 1.28 1.56 1.20 0.00 9.05 7.00	0.20 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ECC-2-A1 1063 104 156 1.20 0.00 9.05 7.00 0.00
C4): Urto veicolo in svio C5): Azione del vento C51): Forze inerzia legate a carichi itrutturali e non C52): Spinta (dinamica) delle terre Azioni di calcolo Dimensioni geometriche fondazione Parametri geotecnici terreno di fondazione Perso proprio dell'arcqua Perso som Terreno di fondazione Perso som Terreno di fondazione Perso som Terreno di riporto Perso proprio - Terreno di riporto Perso som Terreno di fondazione Perso som Terreno di fondazione Perso som Terreno di riporto Perso som Terreno di fondazione	C4 C5 CS1 (-kV) CS1 (+kV) CS2 (-kV) CS2 (+kV) Comb. N _{Ea} [kN/m] M _{Ed} [kN/m] D [m] a [m] L [m] B [m] e _L [m] e _B [m] L' [m] B' [m] ione y ₁ [kN/m³] y _w [kN/m³]	0.00 0.90 0.00 0.00 0.00 0.00 0.00 SLU-1-A1 1079 260 230 1.20 0.00 9.05 7.00 0.00 0.24 9.05 6.52	0.00 0.90 0.00 0.00 0.00 0.00 0.00 0.00	0.00 1.50 0.00 0.00 0.00 0.00 0.00 0.00	0.00 1.50 0.00 0.00 0.00 0.00 0.00 SLU-4-A1 1463 99 225 1.20 0.00 9.05 7.00 0.00 0.07 9.05	0.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 SISM-1-A1 1012 340 273 1.20 0.00 9.05 7.00 0.00	0.00 0.00 1.00 0.00 1.00 1.00 1.00 SISM-2-A1 1149 341 288 1.20 0.00 9.05 7.00	1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.046 1.28 1.56 1.20 0.00 9.05 7.00	1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ECC-2-A1 1063 104 156 1.20 0.00 9.05 7.00 0.00
CS): Azione del vento CS1): Forze inerzia legate a carichi strutturali e non CS2): Spinta (dinamica) delle terre Azioni di calcolo Dimensioni geometriche fondazione Parametri geotecnici terreno di fondazio Peso proprio del terreno di riporto Peso som Terreno di riporto Peso som Terreno di riporto Peso som Terreno di riporto Peso proprio - Terreno di riporto Peso proprio - Terreno di riporto Peso som Terreno di fondazione	C5 CS1 (-kV) CS1 (+kV) CS2 (-kV) CS2 (-kV) CS2 (+kV) Comb. N _{Ed} [kN/m] N _{Ed} [kN/m] D [m] a [m] L [m] B [m] e _L [m] e _B [m] L' [m] B' [m] ione y ₁ [kN/m³] y _w [kN/m³]	0.90 0.00 0.00 0.00 0.00 0.00 0.00 SLU-1-A1 1079 260 230 1.20 0.00 9.05 7.00 0.24 9.05 6.52	0.90 0.00 0.00 0.00 0.00 0.00 0.00 SLU-2-A1 1499 9 230 1.20 0.00 9.05 7.00 0.00 0.01	1.50 0.00 0.00 0.00 0.00 0.00 0.00 SLU-3-A1 1073 305 225 1.20 0.00 9.05 7.00 0.00 0.28 9.05	1.50 0.00 0.00 0.00 0.00 0.00 0.00 SLU-4-A1 1463 99 225 1.20 0.00 9.05 7.00 0.00 0.07 9.05	0.00 1.00 0.00 1.00 0.00 0.00 SISM-1-A1 1012 340 273 1.20 0.00 9.05 7.00	0.00 0.00 1.00 0.00 1.00 1.00 SISM-2-A1 1149 341 288 1.20 0.00 9.05 7.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 ECC-1-A1 1046 128 156 1.20 0.00 9.05 7.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 ECC-2-A1 1063 104 156 1.20 0.00 9.05 7.00 0.00
CS1): Forze inerzia legate a carichi itrutturali e non CS2): Spinta (dinamica) delle terre Azioni di calcolo Dimensioni geometriche fondazione Parametri geotecnici terreno di fondazione Peso proprio del terreno di riporto Peso som Terreno di riporto Peso som Terreno di riporto Peso proprio - Terreno di riporto Peso proprio - Terreno di riporto Peso som Terreno di riporto Peso proprio - Terreno di riporto Peso som Terreno di fondazione	CS1 (-kV) CS1 (+kV) CS2 (-kV) CS2 (-kV) CS2 (-kV) Comb. N _{Ed} [kN/m] M _{Ed} [kN/m] D [m] a [m] L [m] B [m] e _L [m] e _B [m] L' [m] B' [m] ione y ₁ [kN/m³] y _w [kN/m³]	0.00 0.00 0.00 0.00 0.00 SLU-1-A1 1079 260 230 1.20 0.00 9.05 7.00 0.00 0.24 9.05 6.52	0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.499 9 230 1.20 0.00 9.05 7.00 0.00 0.01 9.05	0.00 0.00 0.00 0.00 0.00 0.00 SLU-3-A1 1073 305 225 1.20 0.00 9.05 7.00 0.00 0.28 9.05	0.00 0.00 0.00 0.00 0.00 0.00 0.00 5LU-4-A1 1463 99 225 1.20 0.00 9.05 7.00 0.00 0.07 9.05	1.00 0.00 1.00 0.00 SISM-1-A1 1012 340 273 1.20 0.00 9.05 7.00 0.00	0.00 1.00 0.00 1.00 1.00 SISM-2-A1 1149 341 288 1.20 0.00 9.05 7.00 0.00	0.00 0.00 0.00 0.00 0.00 ECC-1-A1 1046 128 156 1.20 0.00 9.05 7.00	0.00 0.00 0.00 0.00 0.00 1063 104 156 1.20 0.00 9.05 7.00
Parametri geotecnici terreno di fondazione Parametri geotecnici terreno di fondazione Perso proprio del terreno di riporto Peso som Terreno di fondazione Peso som Terreno di fondazione Peso proprio del terreno di riporto Peso som Terreno di riporto Peso som Terreno di riporto Peso proprio - Terreno di riporto Peso som Terreno di fondazione	CS1 (+kV) CS2 (-kV) CS2 (-kV) CS2 (+kV) Comb. N _{Ed} [kN/m] N _{Ed} [kN/m] D [m] a [m] t [m] B [m] e _L [m] e _B [m] t'[m] B'[m] ione y ₁ [kN/m ³] y _w [kN/m ³]	0.00 0.00 0.00 0.00 SLU-1-A1 1079 260 230 1.20 0.00 9.05 7.00 0.00 0.24 9.05 6.52	0.00 0.00 0.00 0.00 0.00 1499 9 230 1.20 0.00 9.05 7.00 0.00 0.01 9.05	0.00 0.00 0.00 0.00 0.00 SLU-3-A1 1073 305 225 1.20 0.00 9.05 7.00 0.00 0.28 9.05	0.00 0.00 0.00 0.00 SLU-4-A1 1463 99 225 1.20 0.00 9.05 7.00 0.00 0.07 9.05	0.00 1.00 0.00 0.00 SISM-1-A1 1012 340 273 1.20 0.00 9.05 7.00 0.00	1.00 0.00 1.00 1.00 SISM-2-A1 1149 341 288 1.20 0.00 9.05 7.00 0.00	0.00 0.00 0.00 0.00 0.00 ECC-1-A1 1046 128 156 1.20 0.00 9.05 7.00	0.00 0.00 0.00 1063 104 156 1.20 0.00 9.05 7.00
CS2): Spinta (dinamica) delle terre Azioni di calcolo Dimensioni geometriche fondazione Parametri geotecnici terreno di fondazione Desco proprio del terreno di riporto Peso proprio dell'acqua Peso som Terreno di riporto Peso som Terreno di fondazione Angolo d'attrito Desco proprio - Terreno di riporto Peso som Terreno di fondazione Peso proprio - Terreno di riporto Peso som Terreno di fondazione Peso som Terreno di fondazione Peso proprio - Terreno di fondazione Peso som Terreno di fondazione	CS2 (-kV) CS2 (+kV) Comb. N _{Ed} [kN/m] N _{Ed} [kN/m] D [m] a [m] L [m] B [m] e_L [m] e_B [m] b' [m] B' [m] ione \(\gamma_1 [kN/m^3] \)	0.00 0.00 SLU-1-A1 1079 260 230 1.20 0.00 9.05 7.00 0.00 0.24 9.05 6.52	0.00 0.00 0.00 SLU-2-A1 1499 9 230 1.20 0.00 9.05 7.00 0.00 0.01 9.05	0.00 0.00 0.00 SLU-3-A1 1073 305 225 1.20 0.00 9.05 7.00 0.00 0.28 9.05	0.00 0.00 0.00 SLU-4-A1 1463 99 225 1.20 0.00 9.05 7.00 0.00 0.07 9.05	1.00 0.00 SISM-1-A1 1012 340 273 1.20 0.00 9.05 7.00 0.00	0.00 1.00 1.00 SISM-2-A1 1149 341 288 1.20 0.00 9.05 7.00 0.00	0.00 0.00 0.00 ECC-1-A1 1046 128 156 1.20 0.00 9.05 7.00	0.00 0.00 1063 104 156 1.20 0.00 9.05 7.00
Parametri geotecnici terreno di fondazione Perametri geotecnici terreno di fondazione Peso proprio del terreno di riporto Peso som Terreno di fondazione Angolo d'attrito Peso som Terreno di riporto Peso proprio - Terreno di riporto Peso som Terreno di fondazione Angolo d'attrito Peso som Terreno di riporto Peso proprio - Terreno di riporto Peso som Terreno di riporto Peso proprio - Terreno di riporto Peso proprio - Terreno di riporto Peso som Terreno di fondazione	CS2 (+kV) Comb. N _{Ed} [kN/m] M _{Ed} [kN/m] V _{Ed} [kN/m] D [m] a [m] L [m] B [m] e _L [m] e _B [m] L' [m] B' [m] ione y ₁ [kN/m³] y _w [kN/m³]	\$LU-1-A1 1079 260 230 1.20 0.00 9.05 7.00 0.00 0.24 9.05 6.52	0.00 SLU-2-A1 1499 9 230 1.20 0.00 9.05 7.00 0.00 0.01 9.05	0.00 SLU-3-A1 1073 305 225 1.20 0.00 9.05 7.00 0.00 0.28 9.05	0.00 SLU-4-A1 1463 99 225 1.20 0.00 9.05 7.00 0.00 0.07 9.05	0.00 SISM-1-A1 1012 340 273 1.20 0.00 9.05 7.00 0.00	1.00 SISM-2-A1 1149 341 288 1.20 0.00 9.05 7.00 0.00	0.00 ECC-1-A1 1046 128 156 1.20 0.00 9.05 7.00	0.00 ECC-2-A1 1063 104 156 1.20 0.00 9.05 7.00 0.00
Parametri geotecnici terreno di fondazione Perso proprio del terreno di riporto Peso proprio dell'acqua Peso som Terreno di fondazione Peso som Terreno di fondazione Peso proprio - Terreno di fondazione Peso som Terreno di fondazione Peso proprio - Terreno di riporto Peso som Terreno di riporto Peso proprio - Terreno di riporto Peso proprio - Terreno di riporto Peso som Terreno di fondazione	N _{Ed} [kN/m] N _{Ed} [kN/m] V _{Ed} [kN/m] D [m] a [m] L [m] B [m] e _L [m] e _B [m] L' [m] B' [m] ione γ ₁ [kN/m³]	1079 260 230 1.20 0.00 9.05 7.00 0.00 0.24 9.05 6.52	1499 9 230 1.20 0.00 9.05 7.00 0.00 0.01 9.05	1073 305 225 1.20 0.00 9.05 7.00 0.00 0.28 9.05	1463 99 225 1.20 0.00 9.05 7.00 0.00 0.07 9.05	1012 340 273 1.20 0.00 9.05 7.00 0.00	1149 341 288 1.20 0.00 9.05 7.00 0.00	1046 128 156 1.20 0.00 9.05 7.00	1063 104 156 1.20 0.00 9.05 7.00 0.00
Parametri geotecnici terreno di fondazione Peso proprio del terreno di riporto Peso proprio del terreno di riporto Peso som Terreno di riporto Peso som Terreno di fondazione Peso som Terreno di fondazione Peso proprio - Terreno di riporto Peso som Terreno di riporto Peso som Terreno di riporto Peso som Terreno di riporto Peso proprio - Terreno di riporto Peso som Terreno di fondazione	N _{Ed} [kN/m] N _{Ed} [kN/m] V _{Ed} [kN/m] D [m] a [m] L [m] B [m] e _L [m] e _B [m] L' [m] B' [m] ione γ ₁ [kN/m³]	1079 260 230 1.20 0.00 9.05 7.00 0.00 0.24 9.05 6.52	1499 9 230 1.20 0.00 9.05 7.00 0.00 0.01 9.05	1073 305 225 1.20 0.00 9.05 7.00 0.00 0.28 9.05	1463 99 225 1.20 0.00 9.05 7.00 0.00 0.07 9.05	1012 340 273 1.20 0.00 9.05 7.00 0.00	1149 341 288 1.20 0.00 9.05 7.00 0.00	1046 128 156 1.20 0.00 9.05 7.00	1063 104 156 1.20 0.00 9.05 7.00 0.00
Parametri geotecnici terreno di fondazione Parametri geotecnici terreno di fondazione Peso proprio del terreno di riporto Peso proprio dell'acqua Peso som Terreno di riporto Peso som Terreno di fondazione Peso proprio - Terreno di riporto Peso som Terreno di riporto Peso som Terreno di fondazione	D [m] a [m] L [m] e _L [m] B' [m] B' [m] y _{(k} [kN/m ³] y _{(k} [kN/m ³]	260 230 1.20 0.00 9.05 7.00 0.00 0.24 9.05 6.52	9 230 1.20 0.00 9.05 7.00 0.00 0.01 9.05	305 225 1.20 0.00 9.05 7.00 0.00 0.28 9.05	99 225 1.20 0.00 9.05 7.00 0.00 0.07 9.05	340 273 1.20 0.00 9.05 7.00 0.00	341 288 1.20 0.00 9.05 7.00 0.00	128 156 1.20 0.00 9.05 7.00	1.20 0.00 9.05 7.00 0.00
Parametri geotecnici terreno di fondazione Perso proprio del terreno di riporto Peso som Terreno di fondazione Peso som Terreno di fondazione Peso proprio dell'acqua Peso som Terreno di fondazione Peso som Terreno di fondazione Peso proprio - Terreno di riporto Peso proprio - Terreno di riporto Peso som Terreno di riporto Peso som Terreno di fondazione	D [m] a [m] L [m] B [m] e _L [m] e _B [m] L'[m] B' [m] γ ₁ [kN/m³] γ _w [kN/m³]	1.20 0.00 9.05 7.00 0.00 0.24 9.05 6.52	1.20 0.00 9.05 7.00 0.00 0.01 9.05	1.20 0.00 9.05 7.00 0.00 0.28 9.05	1.20 0.00 9.05 7.00 0.00 0.07 9.05	1.20 0.00 9.05 7.00 0.00	1.20 0.00 9.05 7.00 0.00	1.20 0.00 9.05 7.00	1.20 0.00 9.05 7.00 0.00
Parametri geotecnici terreno di fondazione Peso proprio del terreno di riporto Peso som Terreno di riporto Peso som Terreno di fondazione Peso som Terreno di fondazione Peso proprio - Terreno di riporto Peso som Terreno di fondazione Peso proprio - Terreno di riporto Peso som Terreno di riporto Peso proprio - Terreno di riporto Peso som Terreno di fondazione	D [m] a [m] L [m] B [m] e _L [m] e _B [m] L'[m] B' [m] ione y ₁ [kN/m³]	1.20 0.00 9.05 7.00 0.00 0.24 9.05 6.52	1.20 0.00 9.05 7.00 0.00 0.01 9.05	1.20 0.00 9.05 7.00 0.00 0.28 9.05	1.20 0.00 9.05 7.00 0.00 0.07 9.05	1.20 0.00 9.05 7.00 0.00	1.20 0.00 9.05 7.00 0.00	1.20 0.00 9.05 7.00	1.20 0.00 9.05 7.00 0.00
Parametri geotecnici terreno di fondazione deso proprio del terreno di riporto del seso proprio dell'acqua deso som Terreno di riporto deso som Terreno di fondazione del sosom Terreno di fondazione del sosom Terreno di fondazione del sosome efficace de di coefficienti parziali deso proprio - Terreno di riporto deso som Terreno di fondazione del sosom Terreno di fondazione del sosom Terreno di fondazione del sosom Terreno di fondazione del sosomo di dattrito fattorizzato del coesione efficace fattorizzata del coesione efficace fattorizzata del coesione del sosomo di coesione efficace fattorizzata del coesione del coesione di coesione di coesione di coesione di coesione del coesione del coesione di coesione	a [m] L [m] B [m] e _L [m] e _B [m] L' [m] B' [m] ione \[\gamma_1 [kN/m^3] \] \[\gamma_w [kN/m^3] \]	0.00 9.05 7.00 0.00 0.24 9.05 6.52	0.00 9.05 7.00 0.00 0.01 9.05	0.00 9.05 7.00 0.00 0.28 9.05	0.00 9.05 7.00 0.00 0.07 9.05	0.00 9.05 7.00 0.00	0.00 9.05 7.00 0.00	0.00 9.05 7.00	0.00 9.05 7.00 0.00
eso proprio del terreno di riporto eso proprio dell'acqua eso som Terreno di riporto eso som Terreno di fondazione ngolo d'attrito oesione efficace et di coefficienti parziali eso proprio - Terreno di riporto eso som Terreno di fondazione ngolo d'attrito fattorizzato oesione efficace (c'	L [m] B [m] e _L [m] e _B [m] L' [m] B' [m] ione γ ₁ [kN/m³]	9.05 7.00 0.00 0.24 9.05 6.52	9.05 7.00 0.00 0.01 9.05	9.05 7.00 0.00 0.28 9.05	9.05 7.00 0.00 0.07 9.05	9.05 7.00 0.00	9.05 7.00 0.00	9.05 7.00	9.05 7.00 0.00
Peso proprio del terreno di riporto Peso proprio dell'acqua Peso som Terreno di riporto Peso som Terreno di fondazione Peso som Terreno di fondazione Peso som Terreno di riporto Peso proprio - Terreno di riporto Peso som Terreno di fondazione	B [m] e _L [m] e _B [m] L' [m] B' [m] ione γ ₁ [kN/m ³] γ _w [kN/m ³]	7.00 0.00 0.24 9.05 6.52	7.00 0.00 0.01 9.05	7.00 0.00 0.28 9.05	7.00 0.00 0.07 9.05	7.00 0.00	7.00 0.00	7.00	7.00 0.00
Peso proprio del terreno di riporto Peso proprio dell'acqua Peso som Terreno di riporto Peso som Terreno di fondazione Peso som Terreno di fondazione Peso som Terreno di riporto Peso proprio - Terreno di riporto Peso som Terreno di fondazione	e _L [m] e _B [m] L' [m] B' [m] ione γ ₁ [kN/m ³] γ _w [kN/m ³]	0.00 0.24 9.05 6.52	0.00 0.01 9.05	0.00 0.28 9.05	0.00 0.07 9.05	0.00	0.00		0.00
eso proprio del terreno di riporto eso proprio dell'acqua eso som Terreno di riporto eso som Terreno di fondazione ingolo d'attrito oesione efficace et di coefficienti parziali eso proprio - Terreno di riporto eso som Terreno di fondazione y agnolo d'attrito fattorizzato oesione efficace fattorizzata c'	e _B [m] L' [m] B' [m] ione γ ₁ [kN/m ³] γ _w [kN/m ³]	0.24 9.05 6.52	0.01 9.05	0.28 9.05	0.07 9.05			0.00	
reso proprio del terreno di riporto reso proprio dell'acqua reso som Terreno di riporto reso som Terreno di fondazione reso som Terreno di fondazione reso som Terreno di riporto reso som Terreno di riporto reso proprio - Terreno di riporto reso som Terreno di fondazione	L'[m] B'[m] ione γ ₁ [kN/m³] γ _w [kN/m³]	9.05 6.52 20	9.05	9.05	9.05	0.34			
Peso proprio del terreno di riporto Peso proprio dell'acqua Peso som Terreno di riporto Peso som Terreno di fondazione Peso som Terreno di fondazione Peso som Terreno di riporto Peso proprio - Terreno di riporto Peso som Terreno di fondazione	B' [m] ione $\gamma_1[kN/m^3]$ $\gamma_w[kN/m^3]$	6.52					0.30	0.12	0.10
Peso proprio del terreno di riporto Peso proprio dell'acqua Peso som Terreno di riporto Peso som Terreno di fondazione Peso som Terreno di fondazione Peso som Terreno di riporto Peso proprio - Terreno di riporto Peso som Terreno di fondazione	ione $\gamma_1[kN/m^3]$ $\gamma_w[kN/m^3]$	20	6.99	6.43		9.05	9.05	9.05	9.05
reso proprio del terreno di riporto reso proprio dell'acqua reso som Terreno di riporto reso som Terreno di fondazione reso som Terreno di fondazione reso som Terreno di riporto reso som Terreno di riporto reso proprio - Terreno di riporto reso som Terreno di fondazione	$\gamma_1[kN/m^3]$ $\gamma_w[kN/m^3]$				6.87	6.33	6.41	6.76	6.80
reso proprio dell'acqua reso som Terreno di riporto reso som Terreno di fondazione reso som Terreno di fondazione reso som Terreno di fondazione reso proprio - Terreno di riporto reso som Terreno di fondazione reso proprio dell'acqua reso som Terreno di fondazione reso proprio - Terreno di fondazione reso som Terreno di fondazione	$\gamma_w[kN/m^3]$								
eso som Terreno di riporto eso som Terreno di fondazione y ingolo d'attrito oesione efficace et di coefficienti parziali eso proprio - Terreno di riporto eso som Terreno di fondazione y ingolo d'attrito fattorizzato oesione efficace fattorizzata c'		0.01	20	20	20	20	20	20	20
reso som Terreno di fondazione y congolo d'attrito coesione efficace det di coefficienti parziali reso proprio - Terreno di riporto y coesione Terreno di fondazione y congolo d'attrito fattorizzato coesione efficace fattorizzata c'	v!. [kN/m³1	9.81	9.81	9.81	9.81	9.81	9.81	9.81	9.81
angolo d'attrito doesione efficace et di coefficienti parziali eso proprio - Terreno di riporto eso som Terreno di fondazione ungolo d'attrito fattorizzato doesione efficace fattorizzata c'	Y 1 [NIN/III]	10.19	10.19	10.19	10.19	10.19	10.19	10.19	10.19
coesione efficace et di coefficienti parziali leso proprio - Terreno di riporto leso som Terreno di fondazione lungolo d'attrito fattorizzato coesione efficace fattorizzata coesione efficace fattorizzata	γ'2 [kN/m3]	9	9	9	9	9	9	9	9
tet di coefficienti parziali deso proprio - Terreno di riporto deso som Terreno di fondazione vangolo d'attrito fattorizzato coesione efficace fattorizzata coesione vangolo d'attrito fattorizzata	φ' [°]	26	26	26	26	26	26	26	26
Peso proprio - Terreno di riporto Y1 Peso som Terreno di fondazione Y2 Angolo d'attrito fattorizzato Coesione efficace fattorizzata C'	c' [kN/m ²]	0	0	0	0	0	0	0	0
Peso som Terreno di fondazione $\frac{1}{\sqrt{2}}$ Angolo d'attrito fattorizzato $\frac{1}{\sqrt{2}}$ Coesione efficace fattorizzata $\frac{1}{\sqrt{2}}$		M1	M1	M1	M1	M1	M1	M1	M1
Angolo d'attrito fattorizzato Coesione efficace fattorizzata C	_{1 Mi} [kN/m ³]	20	20	20	20	20	20	20	20
Coesione efficace fattorizzata c'	_{2 Mi} [kN/m ³]	9	9	9	9	9	9	9	9
Coesione efficace fattorizzata c'	φ'_ _{Mi} [°]	26	26	26	26	26	26	26	26
	φ'_ _{Mi} [rad]	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
attori di capacità portante	c'_ _{Mi} [kN/m²]	0	0	0	0	0	0	0	0
	N _ν	12.54	12.54	12.54	12.54	12.54	12.54	12.54	12.54
<u> </u>	N _c	22.25	22.25	22.25	22.25	22.25	22.25	22.25	22.25
	N _q	11.85	11.85	11.85	11.85	11.85	11.85	11.85	11.85
attori di forma	, ,			•					
per forma rettangolare)	e 1	0.71	0.69	0.72	0.70	0.72	0.72	0.70	0.70
	S _γ	1.38	1.41	1.38	1.40	1.37	1.38	1.40	1.40
<u> </u>	S _c	1.35	1.41	1.35	1.40	1.34	1.35	1.40	1.40
	Sq	2.33	1 2.50	1 2.55	1 2.5,	2.57	2.55	2.30	1.57
attori di profondità per φ'>0)	d _ν	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
- 1 -/	d _γ	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06
<u> </u>	d _q	1.06	1.05	1.06	1.05	1.06	1.06	1.05	1.05
	q	2.00	1 2.03	1 2.00	1 2.05	2.00	2.00	2.00	1.03
attori di inclinazione del carico		4.55	1	4.50		1.55		, = 1	
per c'>0 e φ'>0)	m _B	1.58	1.56	1.58	1.57	1.59	1.59	1.57	1.57
<u> </u>	m _L	1.42	1.44	1.42	1.43	1.41	1.41	1.43	1.43
<u> </u>	θ [°]	90.00	90	90	90	90	90	90	90
<u> </u>	m i	1.58	1.56	1.58	1.57	1.59	1.59	1.57	1.57
<u> </u>	i _γ	0.54	0.65	0.54	0.65	0.44	0.47	0.66	0.66
<u> </u>	i _c	0.65	0.75 0.77	0.66 0.69	0.75 0.77	0.57 0.61	0.60 0.63	0.75 0.78	0.76

Commessa: Lotto 1 - Sottovia Tang. Nord Rampa Interconnessione 14+490 (sottovia 93T)

Argomento Allegato 1: Calcoli - Opere di sostegno
Sezione analizzata: Muri andatori LATO RIMINI NORD

Fattori di inclinazione del piano di posa

	b _γ	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Γ	b _c	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Γ	b _q	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Fattori di inclinazione del piano campagna

w [°]	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
g _γ	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
g _c	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
g _q	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Calcolo della capacità portante della fondazione superficiale

	q _{lim} [kN/m²]	419	495	421	492	359	379	494	498
Set di coefficienti parziali		R3							
	γ_{R}	1.40	1.40	1.40	1.40	1.20	1.20	1.40	1.40
$q = q_{lim} / \gamma_R$	q [kN/m²]	299	354	300	351	299	316	353	356
Q = q x B' x L'	Q [kN]	17643	22372	17485	21826	17130	18302	21571	21900

FS = Q / (N _{Ed} x L') (>1)	FS	1.81	1.65	1.80	1.65	1.87	1.76	2.28	2.28
		(>1)	(>1)	(>1)	(>1)	(>1)	(>1)	(>1)	(>1)
	Comb.	SLU-1-A1	SLU-2-A1	SLU-3-A1	SLU-4-A1	SISM-1-A1	SISM-2-A1	FCC-1-A1	FCC-2-A1

Cliente:

Potenziamento sistema autostradale e tangenziale di Bologna Lotto 1 - Sottovia Tang. Nord Rampa Interconnessione 14+490 (sottovia 93T) Allegato 1: Calcoli - Opere di sostegno Commessa:

Argomento Sezione analizzata: Muri andatori LATO RIMINI NORD

	Carico	SLU-1-A1	SLU-2-A1	SLU-3-A1	SLU-4-A1	SISM-1-A1	SISM-2-A1	ECC-1-A1	ECC-2-A1
(C1): Pesi propri - strutturali e non	C1	1.00	1.30	1.00	1.30	1.00	1.00	1.00	1.00
(C2a): Spinta terre - verifiche geo	C2a	1.30	1.30	1.30	1.30	1.00	1.00	1.00	1.00
	C3 - vert.	0.00	1.50	0.00	1.13	0.20	0.20	0.00	0.20
(C3): Sovraccarico accidentale	C3 - oriz. (a)	1.50	1.50	1.13	1.13	0.20	0.20	0.20	0.20
	C3 - FOA	1.50	1.50	1.13	1.13	0.20	0.20	0.20	0.20
C4): Urto veicolo in svio	C4	0.00	0.00	0.00	0.00	0.00	0.00	1.00	1.00
C5): Azione del vento	C5	0.90	0.90	1.50	1.50	0.00	0.00	0.00	0.00
CS1): Forze inerzia legate a carichi strutturali e non	CS1 (-kV) CS1 (+kV)	0.00	0.00	0.00	0.00	1.00 0.00	0.00 1.00	0.00	0.00
Strutturan e non	CS1 (+kV) CS2 (-kV)	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00
CS2): Spinta (dinamica) delle terre	CS2 (+kV)	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
Azioni di calcolo									
	Comb.	SLU-1-A1	SLU-2-A1	SLU-3-A1	SLU-4-A1	SISM-1-A1	SISM-2-A1	ECC-1-A1	ECC-2-A1
	N _{Ed} [kN/m]	1079	1499 9	1073	1463 99	1012	1149	1046	1063
	M _{Ed} [kNm/m]	260	230	305 225	225	340 273	341 288	128 156	104
	V _{Ed} [kN/m]	230	230	225	225	2/3	288	156	156
Dimensioni geometriche fondazione	:								
-	D [m]	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20
	L [m]	9.05	9.05	9.05	9.05	9.05	9.05	9.05	9.05
	B [m]	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00
	e _L [m]	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	e _B [m]	0.24	0.01	0.28	0.07	0.34	0.30	0.12	0.10
	L' [m]	9.05	9.05	9.05	9.05	9.05	9.05	9.05	9.05
	B' [m]	6.52	6.99	6.43	6.87	6.33	6.41	6.76	6.80
Parametri geotecnici terreno di fond	laziona								
Peso proprio del terreno di riporto	γ ₁ [kN/m ³]	20	20	20	20	20	20	20	20
Peso som Terreno di fondazione	γ ₁ [kN/m] γ'2 [kN/m3]	9	9	9	9	9	9	9	9
Angolo d'attrito	φ'[°]	26	26	26	26	26	26	26	26
•	c' [kN/m²]	0	0	0	0	0	0	0	0
Coesione efficace	1	50	50	50	50	50	50	50	50
Coesione non drenata	c _u [kN/m²]	M1	M1	M1	M1	M1	M1	M1	M1
Set di coefficienti parziali Peso proprio del terreno di riporto	[1.51/3]	20	20	20	20	20	20	20	20
Peso som Terreno di fondazione	γ _{1_Mi} [kN/m ³]	9	9	9	9	9	9	9	9
reso som: - Terreno di Tondazione	γ _{2_Mi} [kN/m ³]					26			
Angolo d'attrito fattorizzato	φ'_Mi [°]	26	26	26	26		26	26 0.45	26
	φ'_Mi [rad]	0.45	0.45	0.45	0.45	0.45	0.45		0.45
Coesione efficace fattorizzata	c'_Mi [kN/m²]	0	0	0	0	0	0	0	0
Coesione non drenata fattorizzata	c _{u_Mi} [kN/m ²]	50	50	50	50	50	50	50	50
Fattori di capacità portante									
attori ai capacita portaine	N _ν	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	N _c	5.14	5.14	5.14	5.14	5.14	5.14	5.14	5.14
	N _a	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
		2.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fattori di forma									
per forma rettangolare)	sγ	0.71	0.69	0.72	0.70	0.72	0.72	0.70	0.70
	s _c	1.14	1.15	1.14	1.15	1.14	1.14	1.15	1.15
	Sq	1.35	1.38	1.35	1.37	1.34	1.35	1.36	1.37
Fattori di profondità	ا ہے ا	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
per φ'=0)	dγ	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	d _c	1.07	1.07	1.07	1.07	1.08	1.07	1.07	1.07
	d _q	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
attori di inclinazione del carico									
per φ'=0)	m _B	1.58	1.56	1.58	1.57	1.59	1.59	1.57	1.57
pc. 4 -0)	m _L	1.42	1.44	1.42	1.43	1.41	1.41	1.43	1.43
	θ[°]	90	90	90	90	90	90	90	90
	m m	1.58	1.56	1.58	1.57	1.59	1.59	1.57	1.57
	iγ	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	i _c	0.98	0.98	0.98	0.98	0.97	0.97	0.98	0.98
	i _q	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	'q	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Commessa: Lotto 1 - Sottovia Tang. Nord Rampa Interconnessione 14+490 (sottovia 93T)

Argomento Allegato 1: Calcoli - Opere di sostegno Sezione analizzata: Muri andatori LATO RIMINI NORD

Fattori di inclinazione del piano di po	sa								
	b _γ	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	b _c	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

b _c	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
p ^d	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Fattori di inclinazione del piano camp	agna								
	w [°]	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	gγ	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	gc	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	g_q	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Calcolo della capacità portante della fondazione superficiale												
	q _{lim} [kN/m ²]	339	342	339	341	337	337	343	343			
Set di coefficienti parziali		R3										
	γ_R	1.4	1.4	1.4	1.4	1.2	1.2	1.4	1.4			
$q = q_{lim} / \gamma_R$	q [kN/m²]	242	244	242	244	281	281	245	245			
Q = q x B' x L'	Q [kN]	14304	15446	14104	15154	16087	16281	14982	15100			

FS = Q / (N _{Ed} x L') (>1)	FS	1.46	1.14	1.45	1.14	1.76	1.57	1.58	1.57
		(>1)	(>1)	(>1)	(>1)	(>1)	(>1)	(>1)	(>1)
	Comb.	SLU-1-A1	SLU-2-A1	SLU-3-A1	SLU-4-A1	SISM-1-A1	SISM-2-A1	ECC-1-A1	ECC-2-A1