

AUTOSTRADA (A14): BOLOGNA-BARI-TARANTO

TRATTO: BOLOGNA BORGO PANIGALE - BOLOGNA SAN LAZZARO

POTENZIAMENTO IN SEDE DEL SISTEMA AUTOSTRADALE E TANGENZIALE DI BOLOGNA

"PASSANTE DI BOLOGNA"

PROGETTO DEFINITIVO

A2 - TANGENZIALE NORD E SUD

OPERE D'ARTE MAGGIORI

109T- SOTTOVIA DIR. VIA SCANDELLARA 18+372

Relazione di Calcolo Impalcato e Spalle

IL PROGETTISTA SPECIALISTICO

Ing. Umberto Mele Ord. Ingg. Milano n.18641 RESPONSABILE STRUTTURE IL RESPONSABILE INTEGRAZIONE PRESTAZIONI SPECIALISTICHE

Ing. Raffaele Rinaldesi Ord. Ingg. Macerata N. A1068 IL DIRETTORE TECNICO

Ing. Andrea Tanzi Ord. Ingg. Parma N. 1154

PROGETTAZIONE NUOVE OPERE AUTOSTRADALI

CODICE IDENTIFICATIVO													
RIFERIMENT	TO PROGETTO				RIFERIMENTO DIRETTO	DRIO	RIFERIMENTO ELABORATO				1		
Codice Commessa	Lotto, Sub-Prog, Cod. Appalto	Fase	Capitolo	Paragrafo	WBS	Parte d'opera	Tlp.	Disciplina	Progressivo	Rev.	ı		
111465	0000	PD	A2	014	ST109	00000	R	STR	0935	-2	SCALA -		

	PROJECT MAN	IAGER:	SUPPORTO	SPECIALISTICO:		REVISIONE
spea					n.	data
		Ing. Raffaele Rinaldesi			0	DICEMBRE 2017
ENCINIEEDING	Or	d. Ingg. Macerata N. A1068			1	SETTEMBRE 2019
ENGINEERING					2	SETTEMBRE 2020
A . 1	REDATTO:		VERIFICATO:		3	-
gruppo Atlantia	NEDATIO.	-	-			-

VISTO DEL COMMITTENTE

IL RESPONSABILE UNICO DEL PROCEDIMENTO Ing. Fabio Visintin

VISTO DEL CONCEDENTE

Ministero delle Infrastrutture e dei Trasporti pipartimento per le infrastrutture, gli affari generali ed il personale struttura di vigilanza sulle concessionarie autostradali

Sommario

1	INTE	RODUZIONE	4
	1.1	CARATTERISTICHE GENERALI DELL'OPERA	5
	1.2	NORMATIVA DI RIFERIMENTO	8
	1.3	CONDIZIONI AMBIENTALI E CLASSI DI ESPOSIZIONE	10
	1.4	CARATTERISTICHE DEI MATERIALI	11
	1.4.1	1 Strutture di nuova realizzazione	11
	1.5	CARATTERISTICHE DEL TERRENO	14
	1.5.1	1 Terreno di rilevato	14
	1.5.2	2 Terreno di fondazione	14
	1.6	CARATTERIZZAZIONE SISMICA	16
	1.7	SOFTWARE DI CALCOLO	17
	1.8	CONVENZIONI GENERALI	18
	1.8.1	1 Unità di misura	18
2	IMP	OSTAZIONI GENERALI DELLE ANALISI STRUTTURALI	19
	2.1	ANALISI GLOBALE	
	2.1.1		
	2.1.2		
	2.2	ANALISI GLOBALE DELLE SOTTOSTRUTTURE	21
	2.2.1	1 Descrizione generale	21
	2.2.2	2 Sezioni di verifica	21
	2.2.3	3 Analisi delle condizioni statiche	21
	2.2.4	4 Analisi delle condizioni sismiche	22
	2.2.5	5 Metodologia di verifica	23
	2.3	ANALISI GLOBALE DELLE STRUTTURE ESISTENTI	
	2.4	COMBINAZIONI DELLE AZIONI	
	2.5	COEFFICIENTI PARZIALI DI SICUREZZA E COEFFICIENTI DI COMBINAZIONE	24
3	ANA	ALISI DEI CARICHI	27
	3.1	PREMESSA	27
	3.2	CARICHI AGENTI SULL'IMPALCATO IN FASE 1	27
	3.2.1	1 Peso proprio delle travi di impalcato	27
	3.2.2	Peso proprio della soletta in c.a	28
	3.3	CARICHI AGENTI SULL'IMPALCATO IN FASE 2	28
	3.3.1	1 Sovraccarichi permanenti	28
	3.3.2	2 Cedimenti vincolari	29
	3.3.3	3 Reologia calcestruzzo	29
	3.4	CARICHI AGENTI SULL'IMPALCATO IN FASE 3	30
	3.4.2	1 Variazioni termiche	30
	3.4.2	2 Azione del vento	31
	3.4.3	3 Azione variabili da traffico	31
	3.4.4	···	
	3.5	CARICHI AGENTI SULLE SPALLE	
	3.5.1	1 Carichi permanenti strutturali	36
	3.5.2		
	3.5.3	,	
	3.5.4	·	
	3.6	AZIONE SISMICA	
	3.7	CARICHI SU BARRIERE FOA	
	3.7.1		
			_

3.7	7.2	Vento	37
3.7	7.3	Pressione dinamica veicolare	37
3.7	7.4	Pressione dinamica da rimozione neve	38
4 AN	NALISI	IMPALCATO	39
4.1	COI	MBINAZIONI DI CARICO	39
4.2	SOL	LECITAZIONI AGENTI	48
4.2	2.1	Sollecitazioni caratteristiche impalcato nuovo	51
4.3	VER	IIFICA TRAVE IN C.A.P. DI II ALLARGO	51
4.3	3.1	Geometria trave in c.a.p. e soletta collaborante	51
4.3	3.2	Verifiche tensionali trave c.a.p. e soletta collaborante: sezione di mezzeria	55
4.3	3.3	Verifica agli SLU trave c.a.p. e soletta collaborante: sezione di mezzeria	
4.3	3.4	Verifica a taglio della trave in c.a.p	
4.3	3.5	Verifica connessione trave-soletta	
4.4	VER	IIFICA SOLETTA DI II ALLARGO	68
5 AN	NALISI	SPALLE	69
5.1	DES	CRIZIONE GENERALE	69
5.2	SPA	LLE AMPLIAMENTO 2 (NUOVA REALIZZAZIONE)	70
5.2	2.1	Geometria di verifica	70
5.2	2.2	Analisi dei carichi escluse azioni da impalcato	70
5.2	2.3	Analisi dei carichi azioni da impalcato	84
5.2	2.4	Combinazioni di carico per azioni sulla palificata	92
5.2	2.5	Analisi delle sollecitazioni per le verifiche strutturali	93
5.2	2.6	Muro frontale	93
5.2	2.7	Muro d'ala	103
5.2	2.8	Plinto di fondazione	109
5.2	2.9	Paraghiaia	
5.2	2.10	Orecchio	

Indice delle Tabelle e delle Figure

Figura 1-1. Localizzazione geografica dell'opera	4
FIGURA 2 PRIMO AMPLIAMENTO - INTERVENTO DI ADEGUAMENTO CORSIA LATO SUD	5
FIGURA 1. FIGURA 3: PRIMO AMPLIAMENTO – SEZIONE TIPO CORDOLO LATO SUD	6
Figura 4: Primo ampliamento - Intervento di adeguamento corsia lato Nord	6
FIGURA 5: ALLARGAMENTO NORD	7
Figura 6: allargamento sud	7
Figura 8: Classi di esposizione in relazione alle condizioni ambientali, in conformità alla EN 206-1	11
FIGURA 9: MODELLO FEM	19
Figura 10: modello FEM "estruso"	20
FIGURA 11: COEFFICIENTI PARZIALI PER LE AZIONI O PER L'EFFETTO DELLE AZIONI NELLE VERIFICHE SLU (TAB.2.6.I DELLE NTC2008)	24
FIGURA 12: COEFFICIENTI PARZIALI DI SICUREZZA PER LE COMBINAIZONI DI CARICO AGLI SLU (TAB.5.1.V DELLE NTC2008)	25
FIGURA 13: VALORI DEI COEFFICIENTI DI COMBINAZIONE (TAB.2.5.I DELLE NTC2008)	25
Figura 14: Coefficienti Ψ per le azioni variabili per ponti stradali e pedonali (Tab.5.1.VI delle NTC2008)	26
Figura 15: Schema di carico 1 (Fig.5.1.2 delle NTC2008)	32
FIGURA 16: INTENSITÀ DEI CARICHI QIK E QIK PER LE DIVERSE CORSIE (FIG.5.1.2 DELLE NTC2008)	32
FIGURA 17: DISPOSZIONE I.I	33
FIGURA 18: DISPOSZIONE I.II	33
FIGURA 19: DISPOSZIONE III.I	33
FIGURA 20: DISPOSZIONE III.II	34
FIGURA 3-12. VALORI CARATTERISTICI	35
FIGURA 3-13. SCHEMA DI CARICO 2 (FIGURA 5.1.2 DELLE NTC2008)	36
FIGURA 28: MOMENTI FLETTENTI DISPOSIZIONE CARICHI MOBILI I.12	48
FIGURA 29: MOMENTI FLETTENTI DISPOSIZIONE CARICHI MOBILI I.II2	49
FIGURA 30: MOMENTI FLETTENTI DISPOSIZIONE CARICHI MOBILI III.12	49
FIGURA 31: TAGLIO DISPOSIZIONE CARICHI MOBILI I.12	50
FIGURA 31: TAGLIO DISPOSIZIONE CARICHI MOBILI I.II2	50
FIGURA 31: TAGLIO DISPOSIZIONE CARICHI MOBILI III.12	50
TARELLA 5-1 CARATTERIZZAZIONE SPALLE	69

INTRODUZIONE 1

Nel presente elaborato si riporta una sintesi delle analisi svolte e dei principali risultati ottenuti relativamente ai calcoli statici del sottovia autostradale esistente della diramazione di via Scandellara nell'ambito dei lavori di ampliamento della tangenziale di Bologna, nel tratto Borgo Panigale - Caselle. L'opera è denominata 109T e ubicata indicativamente alla progressiva 18+372.

Figura 1-1. Localizzazione geografica dell'opera

1.1 CARATTERISTICHE GENERALI DELL'OPERA

La struttura originaria del ponte è stata realizzata negli anni '60 con tipologia strutturale costituita da due impalcati isostatici a solettone in c.a. dello spessore di 65 cm gettati in opera. L'impalcato si sviluppa in retto con una luce libera di 10 m (10.5 m la luce di calcolo da relazione originale). Ogni impalcato aveva una larghezza di 23.40 m. Del progetto originario sono disponibili la relazione di calcolo, il progetto del collaudo statico e un allegato con la costruzione delel superfici di influenza. Non sono disponibili tavole esecutive dell'opera.

Un primo intervento di ampliamento è stato realizzato nel 2004. L'ampliamento ha interessato soprattutto il lato sud della struttura (corsia direzione Rimini). Nell'ambito di questo intervento è stato realizzato un nuovo impalcato in aderenza a quello esistente per un allargamento di 2.5m. Sul cordolo laterale è stata montata una nuova barriera acustica.

L'ampliamento è stato realizzato affiancando all'impalcato esistente un nuovo impalcato composto da travi in c.a.p. completate da getto in opera. I muri d'ala delle spalle esistenti sono stati demoliti e poi sostituiti con le nuove spalle ed i nuovi muri d'ala.

Le spalle esistenti sono state stabilizzate lateralmente attraverso un esteso intervento di ancoraggio con cavi ad iniezione.

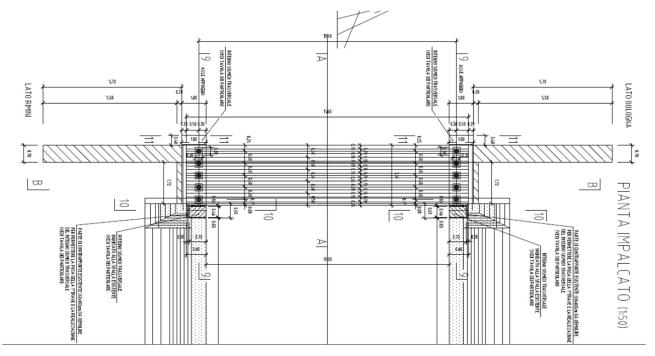


Figura 2 Primo ampliamento - Intervento di adeguamento corsia lato Sud

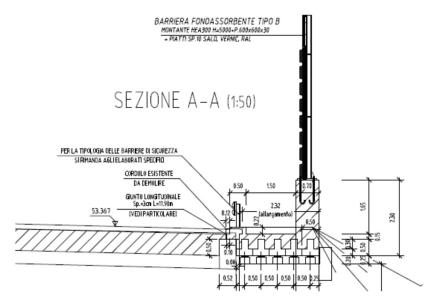


Figura 1. Figura 3: Primo ampliamento – Sezione tipo cordolo lato Sud

Per il lato a nord (direzione Bologna), l'intervento si è limitato ad una riprofilatura del cordolo laterale per l'inserimento della nuova barriera new jersey.

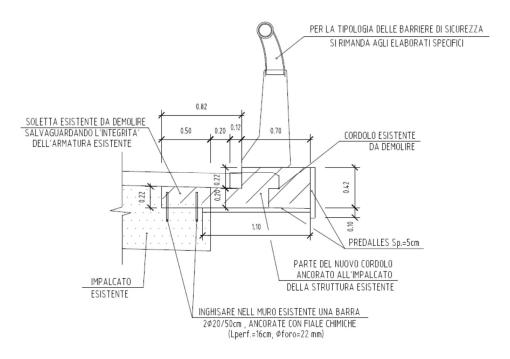


Figura 4: Primo ampliamento - Intervento di adeguamento corsia lato Nord

Il nuovo allargamento previsto in progetto sarà realizzato con struttura analoga al primo allargamento. Si ha quindi, sia a nord che a sud, un impalcato con travi prefabbricate a T rovescia disposte accostate con getto di completamento superiore. L'ampliamento lato nord ha larghezza di 9.41m mentre quello sud di circa 7.25m per tale ragione si sviluppano i calcoli solo relativamente all'ampliamento lato nord.

Le opere di fondazione, allo scopo di evitare cedimenti differenziali, prevedono l'utilizzo di micropali di diametro Φ 240mm armati con tubi Φ 168.3 spessore 10mm in acciaio S355.

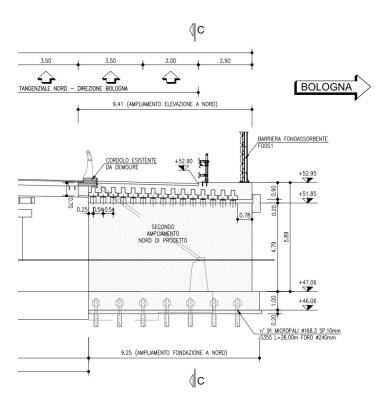


Figura 5: allargamento nord

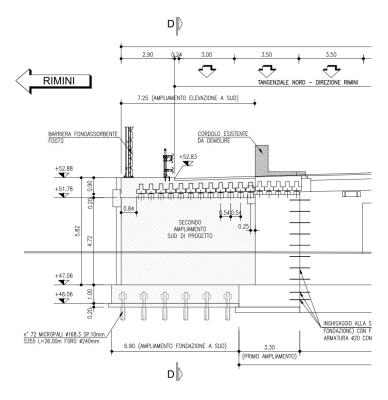


Figura 6: allargamento sud

1.2 NORMATIVA DI RIFERIMENTO

Le analisi e le verifiche sono eseguite secondo il metodo semi-probabilistico agli Stati Limite, in accordo alle disposizioni previste dalle vigenti Normative italiana ed europea (Eurocodici).

In particolare, si fa riferimento alle seguenti norme:

- D.M. 17/01/2018: "Aggiornamento delle Norme Tecniche per le Costruzioni" GU n°8 del 17/2/2018. [1]
- [2] Circolare 21 gennaio 2019 n.7: "Istruzioni per l'applicazione dell' Aggiornamento delle Norme Tecniche per le Costruzioni" di cui al Decreto Ministeriale 17 gennaio 2018.
- D.M. 14 gennaio 2008: Nuove norme tecniche per le costruzioni. [3]
- Circolare 2 febbraio 2009, n.617 Istruzioni per l'applicazione delle "Nuove Norme Tecniche per le [4] Costruzioni" di cui al Decreto Ministeriale 14 gennaio 2008.
- [5] UNI EN 1990: Basi della progettazione strutturale.
- UNI EN 1991-1-4: Azioni sulle strutture Azione del vento. [6]
- UNI EN 1991-1-5: Azioni sulle strutture Azioni termiche. [7]
- UNI EN 1991-1-6: Azioni sulle strutture Azioni in generale Azioni durante la costruzione. [8]
- [9] UNI EN 1991-2: Azioni sulle strutture – Carichi da traffico sui ponti.
- [10] UNI EN 1992: Progettazione delle strutture di calcestruzzo.
- [11] UNI EN 1992-1-1: Progettazione delle strutture di calcestruzzo – Regole generali e regole per gli edifici.
- [12] UNI EN 1992-2: Progettazione delle strutture di calcestruzzo – Ponti di calcestruzzo.
- [13] UNI EN 1993: Progettazione delle strutture in acciaio.
- [14] UNI EN 1993-1-1: Progettazione delle strutture di acciaio – Regole generali e regole per gli edifici.
- [15] UNI EN 1993-2: Progettazione delle strutture di acciaio – Ponti di acciaio.
- [16] UNI EN 1993-1-5: Progettazione delle strutture di acciaio – Elementi strutturali a lastra.
- UNI EN 1993-1-8: Progettazione delle strutture di acciaio Progettazione dei collegamenti. [17]
- [18] UNI EN 1993-1-9: Progettazione delle strutture di acciaio – Fatica.
- [19] UNI EN 1993-1-10: Progettazione delle strutture di acciaio – Resilienza del materiale e proprietà attraverso lo spessore.
- [20] UNI EN 1993-1-11: Progettazione delle strutture di acciaio – Progettazione di strutture con elementi tesi.
- [21] UNI EN 1994: Progettazione delle strutture composte acciaio-calcestruzzo.
- [22] UNI EN 1994-2: Progettazione delle strutture composte acciaio-calcestruzzo – Ponti.
- [23] UNI EN 1997: Progettazione geotecnica.
- [24] UNI EN 1998: Progettazione delle strutture per la resistenza sismica.
- [25] UNI EN 1998-2: Progettazione delle strutture per la resistenza sismica – Ponti.
- [26] UNI EN 1998-5:2005 Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici.
- [27] Ministero delle Infrastrutture e dei Trasporti - Consiglio Superiore dei Lavori Pubblici - Linee guida per la classificazione e gestione del rischio, la valutazione della sicurezza ed il monitoraggio dei ponti esistenti -
- [28] Autostrade per l'Italia - Direzione sviluppo rete per l'Italia - Ingegneria, Ambiente e Sicurezza -Linee Guida per la redazione e verifica dei progetti di installazione delle barriere integrate (LG 03/2020).

1.3 **CONDIZIONI AMBIENTALI E CLASSI DI ESPOSIZIONE**

Per l'opera in esame si prevede l'esposizione al seguente "range" di temperature:

Tmin = -15 °C

Tmax = 45 °C

Per l'umidità ambientale si assume:

RH = 80 %

Ai fini dell'individuazione di dettaglio delle proprietà dei materiali, si farà riferimento alle seguenti classi di esposizione, il cui significato è esplicitato nella tabella di seguito riportata:

soletta: XC4 XC2 fondazioni:

Le caratteristiche del calcestruzzo dovranno pertanto rispettare, oltre i requisiti di resistenza indicati al punto seguente, anche i criteri previsti dalla vigente normativa (EN 11104 e EN 206) per quanto riguarda l'esposizione alle classi indicate.

prospetto 4.1 Classi di esposizione in relazione alle condizioni ambientali, in conformità alla EN 206-1

Denominazione della classe	Descrizione dell'ambiente	Esempi informativi di situazioni a cui possono applicarsi le classi di esposizione
Nessun rischio	di corrosione o di attacco	
XO	Calcestruzzo privo di armatura o inserti metallici: tutte le esposizioni eccetto dove c'è geloidisgelo, abrasione o attacco chimico. Calcestruzzo con armatura o inserti metallici: molto asciutto.	Calcestruzzo all'interno di edifici con umidità dell'aria molto bassa
Corrosione inde	otta da carbonatazione	
XC1	Asciutto o permanentemente bagnato	Calcestruzzo all'interno di edifici con bassa umidità relativa Calcestruzzo costantemente immerso in acqua
XC2	Bagnato, raramente asciutto	Superfici di calcestruzzo a contatto con acqua per lungo tempo Molte fondazioni
XC3	Umidità moderata	Calcestruzzo all'interno di edifici con umidità dell'aria moderata oppure elevata Calcestruzzo esposto all'esterno protetto dalla pioggia
XC4	Ciclicamente bagnato e asciutto	Superfici di calcestruzzo soggette al contatto con acqua, non nella classe di esposizione XC2
Corrosione indo	tta da cloruri	
XD1	Umidità moderata	Superfici di calcestruzzo esposte ad atmosfera salina
XD2	Bagnato, raramente asciutto	Piscine Calcestruzzo esposto ad acque industriali contenenti cloruri
XD3	Ciclicamente bagnato e asciutto	Parti di ponti esposte a spruzzi contenenti cloruri Pavimentazioni Pavimentazioni di parcheggi
4 Corrosione indo	tta da cloruri presenti nell'acqua di mare	
XS1	Esposto a nebbia salina ma non in contatto diretto con acqua di mare	Strutture prossime oppure sulla costa
XS2	Permanentemente sommerso	Parti di strutture marine
XS3	Zone esposte alle onde, agli spruzzi oppure alle maree	Parti di strutture marine
Attacco di cicli	gelo/disgelo	
XF1	Moderata saturazione d'acqua, senza impiego di agente antigelo	Superfici verticali di calcestruzzo esposte alla pioggia e al gelo
XF2	Moderata saturazione d'acqua, con uso di agente antigelo	Superfici verticali di calcestruzzo di strutture stradali esposte al gelo e ad agenti antigelo
XF3	Elevata saturazione d'acqua, senza antigelo	Superfici orizzontali di calcestruzzo esposte alla pioggia e al gelo
XF4	Elevata saturazione d'acqua, con antigelo oppure acqua di mare	Strade e impalcati da ponte esposti agli agenti antigelo Superfici di calcestruzzo esposte direttamente ad agenti antigelo al gelo Zone di strutture marine soggette a spruzzi ed esposte al gelo
Attacco chimico		
XA1	Ambiente chimico debolmente aggressivo secondo il prospetto 2 della EN 206-1	Suoli naturali e acqua del terreno
XA2	Ambiente chimico moderatamente aggressivo secondo il prospetto 2 della EN 206-1	Suoli naturali e acqua del terreno
XA3	Ambiente chimico fortemente aggressivo secondo il prospetto 2 della EN 206-1	Suoli naturali e acqua del terreno

Figura 7: Classi di esposizione in relazione alle condizioni ambientali, in conformità alla EN 206-1

1.4 CARATTERISTICHE DEI MATERIALI

1.4.1 Strutture di nuova realizzazione

Calcestruzzo per fondazioni di spalle e muri: C30/37

Tensione caratteristica cubica $R_{ck} = 37MPa$ $f_{ck} = 0.83 \text{ x R}_{ck} = 30.71 \text{MPa}$ Tensione caratteristica cilindrica Tensione di compressione media $f_{cm} = f_{ck} + 8 = 38.71MPa$ Tensione massima di compressione per combinazione rara $0.6 x f_{ck} = 18.43 MPa$

Tensione massima di compressione per combinazione frequente $0.45 \times f_{ck} = 13.82MPa$

Resistenza di calcolo $f_{cd} = \alpha_{cc} f_{ck} / \gamma_c = 17.40 MPa$ $f_{ctm} = 0.3 \text{ x } f_{ck}^{(2/3)} = 2.94 MPa$ Tensione media a trazione

Tensione caratteristica a trazione $f_{ctk} = 0.7 x f_{ctm} = 2.06MPa$

Resistenza di calcolo a trazione $f_{ctd} = f_{ctk} / v_c = 1.37MPa$

Modulo elastico $E_{cm} = 22000(f_{cm}/10)^{0.3} = 33019 \text{ MPa}$

Calcestruzzo per elevazioni spalle: C35/45

 $R_{ck} = 45MPa$ Tensione caratteristica cubica

Tensione caratteristica cilindrica $f_{ck} = 0.83 \text{ x } R_{ck} = 37.35 \text{MPa}$

 $f_{cm} = f_{ck} + 8 = 45.35MPa$ Tensione di compressione media

Tensione massima di compressione per combinazione rara $0.6 x f_{ck} = 22.41MPa$

Tensione massima di compressione per combinazione frequente $0.45 \text{ x f}_{ck} = 16.81 \text{MPa}$

Resistenza di calcolo $f_{cd} = \alpha_{cc} f_{ck} / \gamma_c = 21.17 MPa$

Tensione media a trazione $f_{ctm} = 0.3 \text{ x } f_{ck}^{(2/3)} = 3.35 MPa$

 $f_{ctk} = 0.7 x f_{ctm} = 2.34MPa$ Tensione caratteristica a trazione

Resistenza di calcolo a trazione $f_{ctd} = f_{ctk} / \gamma_c = 1.56MPa$

Modulo elastico $E_{cm} = 22000(f_{cm}/10)^{0.3} = 34625MPa$

Calcestruzzo per solette in c.a., cordoli, baggioli e ritegni sismici: C35/45

 $R_{ck} = 45MPa$ Tensione caratteristica cubica

Tensione caratteristica cilindrica $f_{ck} = 0.83 \times R_{ck} = 37.35MPa$

Tensione di compressione media $f_{cm} = f_{ck} + 8 = 45.35MPa$

Tensione massima di compressione per combinazione rara $0.6 x f_{ck} = 22.41MPa$

Tensione massima di compressione per combinazione frequente $0.45 \text{ x f}_{ck} = 16.81 \text{MPa}$

Resistenza di calcolo $f_{cd} = \alpha_{cc} f_{ck} / \gamma_c = 21.17 MPa$

 $f_{ctm} = 0.3 \text{ x } f_{ck}^{(2/3)} = 3.35 MPa$ Tensione media a trazione

Tensione caratteristica a trazione $f_{ctk} = 0.7 \text{ x } f_{ctm} = 2.34 \text{MPa}$

Resistenza di calcolo a trazione $f_{ctd} = f_{ctk} / y_c = 1.56MPa$

Modulo elastico $E_{cm} = 22000(f_{cm}/10)^{0.3} = 34625MPa$

Calcestruzzo per travi c.a.p.: C45/55

Tensione caratteristica cubica $R_{ck} = 55MPa$

Tensione caratteristica cilindrica $f_{ck} = 0.83 \text{ x R}_{ck} = 45.65 \text{MPa}$

Tensione di compressione media $f_{cm} = f_{ck} + 8 = 53.65MPa$

Tensione massima di compressione per combinazione rara $0.6 \times f_{ck} = 27.39MPa$

Tensione massima di compressione per combinazione frequente $0.45 \text{ x f}_{ck} = 20.54 \text{MPa}$

Resistenza di calcolo $f_{cd} = \alpha_{cc} f_{ck} / \gamma_c = 25.87 MPa$

 $f_{ctm} = 0.3 \text{ x } f_{ck}^{(2/3)} = 3.83 MPa$ Tensione media a trazione

Tensione caratteristica a trazione $f_{ctk} = 0.7 \text{ x } f_{ctm} = 2.68 MPa$

 $f_{ctd} = f_{ctk} / \gamma_c = 1.79MPa$ Resistenza di calcolo a trazione

 $E_{cm} = 22000(f_{cm}/10)^{0.3} = 36416MPa$ Modulo elastico

Acciaio per armatura lenta: barre nervate tipo B450C, controllate in stabilimento

f_{yk} ≥ 450.0 MPa

f_{tk} ≥ 540.0 MPa

Es = 210000MPa

 $u_{\rm S} = 0.3$

Acciaio da precompressione aderente

f_{ptk} ≥ 1860.0 MPa

 $f_{p(1)k} \ge 1670.0 \text{ MPa}$

E_S = 205000MPa

 $u_{\rm S} = 0.3$

1.5 CARATTERISTICHE DEL TERRENO

1.5.1 Terreno di rilevato

Per il terreno di rilevato a tergo delle spalle, si considerano i seguenti parametri geotecnici:

 $\phi' = 35^{\circ}$ angolo d'attrito: coesione: c' = 0

peso proprio: $\gamma = 20kN/m^3$

1.5.2 Terreno di fondazione

Tabella II: Indagini geognostiche di riferimento

sigla sond./pozz./prova	campagna di indagine	0.0 progressiva (km)	quota p.c. (m s.l.m.)	lunghezza (m)	strumentazione installata	
CPT16	1999	18+325	48.80	15.00	-	
COT25	1984	18+340	48.60	25.00	-	
S52	1984	18+400	49.00	40.00	-	

C (....) = cella piezometrica Casagrande (profondità cella);

TA (....) = piezometro a tubo aperto (tratto filtrante);

CH = tubo per misure Cross-hole; DH = tubo per misure Down-hole

Tabella III: Caratterizzazione stratigrafico - geotecnica

Quota p.c. (m s.l.m.m.)	Profondità (m da p.c.)	descrizione	sigla	z _w (m da p.c.)	Parametri medi caratteristici
48.00	0.00 ÷ 3.00	Limo argilloso	Α	?	Tabella IV
	3.00 ÷ 10.00	Limo argilloso	A'	?	Tabella V
	10.00 ÷ 32.00	Limo argilloso	Α"	?	Tabella VI
	32.00 ÷ 40.00	Ghiaia e Sabbia	В	?	Tabella VII

Tabella IV: Parametri medi caratteristici dei materiali Limo argilloso (A)

Descrizione	γ	c'	ф	E'	σ'pre	CR	RR	Cv	Cu	Eu
	(KN/m ³)	(KPa)	(°)	(MPa)	(MPa)	(-)	(-)	m/sec ²	(KPa)	(MPa)
Limo argilloso	19	0	26	5	0.4	0.18 ÷ 0.16	0.03÷0.04	3E-07	50 +3.3 z	20

Tabella V: Parametri medi caratteristici dei materiali Limo argilloso (A')

Descrizione	γ	c'	ф	E'	σ' _{pre}	CR	RR	C _v	Cu	Eu
	(KN/m ³)	(KPa)	(°)	(MPa)	(MPa)	(-)	(-)	m/sec ²	(KPa)	(MPa)
Limo argilloso	19	0	26	5	0.4	0.18 ÷ 0.16	0.03÷0.04	3E-07	60 +(z- 3)	20

Tabella VI: Parametri medi caratteristici dei materiali Limo argilloso (A")

Descrizione	γ	c'	ф	E'	σ'pre	CR	RR	Cv	Cu	Eu
	(KN/m ³)	(KPa)	(°)	(MPa)	(MPa)	(-)	(-)	m/sec ²	(KPa)	(MPa)
Limo argilloso	19	0	26	50+0.6*(Z- 15)	0.4	0.18 ÷ 0.16	0.03÷0.04	3E-07	72 +2(z- 15)	50

Tabella VII: Parametri medi caratteristici dei materiali Ghiaia e Sabbia (B)

Descrizione	γ	c'	ф	E'	σ' _{pre}	CR	RR	Cv	Cu	Eu
	(KN/m ³)	(KPa)	(°)	(MPa)	(MPa)	(-)	(-)	m/sec ²	(KPa)	(MPa)
Ghiaia e sabbia	20	0	38	50						

γt	=peso di volume del terreno	CR	=angolo di resistenza al taglio
c'	=coesione efficace	RR	=modulo di elasticità
φ'	=angolo di resistenza al taglio	Cv	=coeff. di consolidazione verticale
E'	=modulo di elasticità	Cu	=coesione non drenata
σ'pre	=tensione di preconsolid	Eu	= mod di elasticità in condiz non drenate

CARATTERIZZAZIONE SISMICA

Come richiesto dalla Normativa vigente, la zona dove ricade l'opera in esame è stata considerata sismica con grado di sismicità calcolato sulla base di una caratterizzazione sismica riferita ai Comuni interessati dagli interventi di ampliamento.

Coordinate nel sistema ED50: LON: 11.386 LAT: 44.499

Sito in esame.

Classe: IV (Funzioni pubbliche o strategiche importanti)

Vita nominale: 50

Siti di riferimento

Sito 1 ID: 16730 Sito 2 ID: 16731 Sito 3 ID: 16952 Sito 4 ID: 16953

Parametri sismici

Categoria sottosuolo: D Categoria topografica: T1

Periodo di riferimento: 100 anni

Coefficiente Cu: 2

Stato Limite di Salvaguardia della Vita (SLV):

Probabilità di superamento:	10 %
T _R :	975 anni
ag:	$0.214 g = 2.099 m/s^2$
F ₀ :	2.433
Tc*:	0.315 s
S _S : coefficiente di amplificazione stratigrafica	1.60
S⊤: coefficiente di amplificazione topografica	1.00
$S = S_S \times S_T =$	1.60
β_m : coefficiente di riduzione a_g	1.00
a _{max}	3.358 m/s ²
kh: coefficiente sismico orizzontale	0.342
k _v : coefficiente sismico verticale	± 0.171

1.7 SOFTWARE DI CALCOLO

L'analisi FEM dell'impalcato è condotta con il software SAP2000 versione 15 prodotto dalla CSI Computer & Structures inc. L'accuratezza dei modelli e dei risultati è ampiamente dimostrata nei manuali a corredo del software.

È stata formulata dai produttori una serie completa di problemi e esempi progettati per testare i vari elementi e le funzionalità di analisi del programma. I risultati prodotti da SAP2000 sono stati confrontati con fonti indipendenti, ad esempio con i risultati eseguiti a mano, risultati teorici o pubblicati, o risultati ottenuti da altri programmi agli elementi finiti. Il confronto dei risultati è fornito sotto forma di tabella per ogni esempio.

Per i confronti sono previsti tre livelli di esito:

- esatto: Non c'è alcuna differenza tra i risultati ottenuti in SAP2000 e i risultati indipendenti entro la precisione del calcolo nel software e del calcolo indipendente;
- accettabile: il valore delle sollecitazioni o degli spostamenti ottenuti in SAP2000 non si differenzia per più del 5% dai risultati di confronto; per le tensioni interne il rapporto diventa del 10%;
- inaccettabile: i valori superano le soglie definite al punto precedente.

Negli esempi di confronto per gli elementi monodimensionali l'analisi ha condotto a risultati in molti casi esatti rispetto alle soluzioni indipendenti.

La precisione dei risultati ottenuti in SAP2000 per certe classi di esempi di strutture a telaio è dipesa dalla discretizzazione delle strutture stesse. In tali casi la precisione dei risultati aumenta all'aumentare della discretizzazione del modello. A corredo del software è fornita ampia documentazione in cui sono dettagliati tutti gli esempi e i risultati ottenuti.

Per le verifiche tensionali delle sezioni in c.a. si impiega il software di calcolo VcaSlu, sviluppato dal Prof. Piero Gelfi. Il programma consente la verifica di sezioni in cemento armato normale e precompresso, soggette a presso-flessione o tenso-flessione retta o deviata, sia allo Stato Limite Ultimo che con il Metodo n e permette inoltre di tracciare il domino M-N.

Per l'analisi dei diaframmi si impiega il software di calcolo *Paratie Plus 2017* fornito da Harpaceas S.r.l., viale Richard, 1 – 20143, Milano. Paratie Plus 2017 è un codice agli elementi finiti che simula il problema di uno scavo sostenuto da diaframmi flessibili e permette di valutare il comportamento della parete di sostegno durante tutte le fasi intermedie e nella configurazione finale.

Per l'elaborazione dei dati di input/output in generale e la creazione di tabelle riepilogative, si adottano procedure opportunamente implementate in fogli elettronici Microsoft ® Office Excel 2016. La descrizione delle modalità operative dei singoli fogli di calcolo verranno presentate di volta in volta.

La verifica a mensola tozza del ritegno sismico trasversale è condotta con il programma IS Mensola. programma dedicato all'analisi di mensole tozze secondo l'Eurocodice 2, versione UNI EN 1992-1-1:2005 (6.2.2; 6.5; J.3). Il programma è prodotto e distribuito dalla Cdm Dolmen di Torino.

1.8 **CONVENZIONI GENERALI**

1.8.1 Unità di misura

Salvo ove diversamente specificato, le unità di misura sono quelle relative al Sistema Internazionale, ovvero:

Lunghezze: [m] Forze: [kN] Tensioni: [MPa]

Per quanto riguarda le convenzioni di segno, si considerano, in generale, positive le trazioni.

Convenzioni specifiche verranno riportate nel prosieguo della presente relazione.

Per quanto riguarda le azioni interne, salvo diversamente specificato, si indicherà con:

Fx: azione assiale;

Fy azione tagliante agente nel piano della sezione trasversale;

Mz momento flettente agente nel piano della sezione trasversale.

IMPOSTAZIONI GENERALI DELLE ANALISI STRUTTURALI

2.1 **ANALISI GLOBALE**

Le analisi strutturali, a causa della diversa tipologia strutturale degli allargamenti nord e sud considera entrambi gli allargamenti.

Si considera la platea originaria degli anni '60 modellata a graticcio, e l'allargamento oggetto del presente progetto esecutivo. Per quanto concerne la spalla, data la quasi simemtria delle due è stata considerata solo quella lato Rimini i risultati delal quale sono stati estesi alla spalla lato Bologna.

Modellazione strutturale

Per l'analisi strutturale è stato considerato in generale un modello ad elementi finiti che schematizza l'impalcato mediante un graticcio di travi dotate delle opportune inerzie in funzione della fase di carico.

In considerazione del giunto longitudinale presente in mezzeria della struttura originaria (spartitraffico autostradale) si è modellata metà dell'intero impalcato.

Il modello è quindi composto da tre porzioni tra loro connesse:

- l'impalcato originario modellato a graticcio;
- l'allargamento in progetto che presenta 15 travi longitudinali e 2 elementi laterali a modellare il cordolo della FOA e l'elemento a sbalzo tra impalcaot originario e allargamento in progetto.

Si riportano di seguito le immagini del modello analizzato:

- La prima mostra la struttura del modello, evidenziando lo schema dell'impalcato come graticcio di elementi "frame";
- La seconda riporta invece una vista estrusa del modello con la rappresentazione in verde delle travi dell'impalcato nuovo e in arancione di quelle che formano l'opera originale.

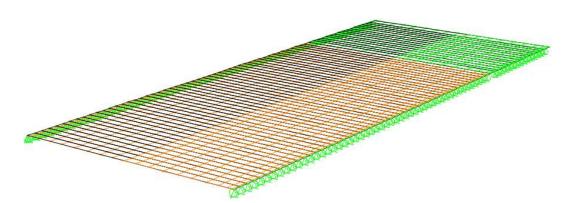


Figura 8: modello FEM

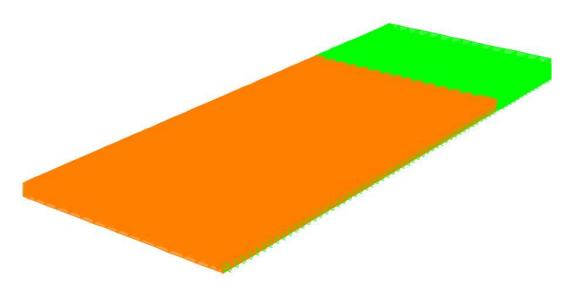


Figura 9: modello FEM "estruso"

2.1.2 Fasi di analisi

L'intervento di ampliamento strutturale sarà scandito da fasi di realizzazione costruttiva alle quali corrisponderanno anche fasi di analisi strutturale.

Le prime vanno ad indicare le modalità di realizzazione della struttura in ampliamento, mentre le seconde (basandosi sulle prime) definiscono le caratteristiche strutturali ed i carichi strutturali agenti.

Le caratteristiche geometrico - statiche delle sezioni reagenti di impalcato si differenziano in funzione delle fasi di costruzione.

Per la parte nuova (struttura a travi in c.a.p. accostate e soletta collaborante in opera) si terrà conto del succedersi delle seguenti 3 fasi di vita della struttura:

Fase 1

- posizionamento travi in c.a.p. accostata e getto della soletta collaborante in c.a.;
- sezione reagente: solo travi in c.a.p.;
- carichi agenti: peso proprio travi, peso proprio getto di completamento a fianco delle travi,
- peso proprio soletta.

Fase 2

- indurimento soletta gettata e solidarizzazione con le travi in c.a.p.;
- posa in opera/esecuzione di manto stradale, cordoli/marciapiedi, guardrail, parapetti, barriere fonoassorbenti (opere di arredo stradale);
- sezione reagente: travi in c.a.p + soletta collaborante;
- carichi agenti: sovraccarichi permanenti portati.

Fase 3

- vita in esercizio del ponte finito;
- sezione reagente: travi in c.a.p + soletta collaborante.

ANALISI GLOBALE DELLE SOTTOSTRUTTURE 2.2

2.2.1 Descrizione generale

Le sottostrutture appartenenti alla porzione di impalcato in ampliamento, spalle e pile (laddove presenti), sono considerate come corpi separati e verificate di conseguenza.

L'analisi è condotta con l'ausilio di modelli di calcolo ad elementi finiti ovvero fogli elettronici che tengano conto delle azioni derivanti dall'impalcato e agenti direttamente sul paramento e sulla fondazione. L'analisi è di tipo "bidimensionale": non si considerano, infatti, gli effetti prodotti dalle azioni agenti in direzione trasversale rispetto all'asse longitudinale dell'impalcato.

L'analisi determina le massime sollecitazioni allo spiccato della fondazione per la verifica del paramento o della pila. Determina, altresì, le sollecitazioni risultanti nel baricentro della plinto di fondazione con le quali condurre le verifiche strutturali e geotecniche degli elementi fondazionali (i risultati sono riassunti in un elaborato specifico).

L'analisi e la verifica strutturale del plinto di fondazione è condotta attraverso l'utilizzo di modelli di calcolo ad elementi finiti e/o fogli elettronici.

L'analisi e la verifica strutturale dei muri d'ala e del paraghiaia è condotta mediante modelli di calcolo locali.

Qualora le spalle di uno stesso ampliamento o dei due ampliamenti, se presenti, posseggano caratteristiche geometriche (estensione, altezza e spessore del paramento; estensione, larghezza e spessore della fondazione) e strutturali (tipologia strutturale del paramento e degli elementi fondazionali) simili, l'analisi verrà condotta su un'unica spalla, quella con le sopra citate "condizioni al contorno" più sfavorevoli. In favore di sicurezza, tale spalla verrà considerata come "fissa", ovvero atta a portare le sollecitazioni orizzontali derivanti dall'impalcato. La scelta di procedere con l'analisi di un'unica spalla è giustificata da tabelle di confronto e convalidata, se fosse necessario, da calcoli semplificati riportati in allegato. Lo stesso criterio verrà adottato per le pile appartenenti a due differenti allargamenti della stessa opera.

L'impalcato possiede la schema statico di una trave a singola campata in semplice appoggio. Le analisi strutturali delle spalle sono condotte separatamente dall'analisi della sovrastruttura.

2.2.2 Sezioni di verifica

Si considerano le seguenti sezioni di verifica:

- sezione di spiccato del paramento, coincidente convenzionalmente con l'estradosso della fondazione;
- sezione di spiccato del paraghiaia;
- sezioni di incastro del muro d'ala;
- sezioni di incastro delle mensole di fondazione.

2.2.3 Analisi delle condizioni statiche

L'analisi in condizioni statiche delle spalle e delle pile è condotta con riferimento ai contributi di carico valutati in accordo a quanto specificato nella norma UNI EN 1990 e nel cap.3 delle NTC2008.

Per la scelta dei coefficienti da adottare in fase di combinazione dei carichi, si fa riferimento a quanto esposto nel cap.2 delle NTC2008, in funzione della tipologia di carico e del tipo di combinazione di volta in volta in esame.

In particolare sono prese in esame le seguenti combinazioni:

- 1) Stato Limite Ultimo
- Combinazione STR
- Combinazione GEO
- 2) Stato Limite di Esercizio
- Combinazione Caratteristica o Rara

- Combinazione Frequente
- Combinazione Quasi Permanente

Per l'esame delle combinazioni di Stato Limite Ultimo prettamente geotecniche (GEO) si rimanda all'apposita relazione geotecnica della struttura in esame.

In tutti i casi, ai fini delle verifiche, sono elaborati gli inviluppi delle sollecitazioni volti a massimizzare/minimizzare le caratteristiche di sollecitazione di interesse, complete dei rispettivi valori concomitanti.

La spinta del terreno a tergo delle spalle è valutata in condizioni a riposo, gualora la struttura sia su fondazione profonda. Si considera, invece, la spinta attiva nel caso di spalla su fondazione diretta.

2.2.4 Analisi delle condizioni sismiche

Per lo studio del comportamento della pila in fase sismica, si procede ad effettuare un'analisi statica equivalente.

L'input sismico è definito in base a quanto richiesto dalla vigente normativa italiana, così come di seguito riportato.

La definizione dello spettro è dettata dalla scelta di alcuni parametri che descrivono la tipologia dell'opera in esame (vita nominale V_N legata al tipo di costruzione e classe d'uso C_U) e di altri che individuano la probabilità di superamento PvR di un determinato livello di intensità sismica in un assegnato periodo di tempo V_R, vita di riferimento. L'intensità sismica viene specificata in termini di periodo medio di ritorno T_R, definito a sua volta in funzione di PvR e VR.

In fase di verifica si è fatto riferimento allo Stato Limite Ultimo di Salvaguardia della Vita (SLU-SLV).

Di seguito si riportano i valori dei parametri sopra citati.

 $V_N = 50$ anni (opere ordinarie)

 $C_{U} = 2.0$ (classe IV)

 $P_{VR} = 10\%$ (Stato Limite Ultimo di Salvaguardia della Vita – SLU-SLV)

 $V_R = V_N \times C_U = 100 \text{ anni}$

 $T_R = 949 \text{ anni}$

L'azione sismica viene definita a partire dalla "pericolosità sismica di base" del sito della costruzione, specificata in termini di spettro di risposta elastico in accelerazione della componente orizzontale. I parametri locali di sito necessari per la costruzione delle forme spettrali risultano i seguenti:

- a_q = accelerazione orizzontale massima al suolo;
- F₀ = valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- T_C* = periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

L'amplificazione del moto sismico dipende, invece, dalla natura del terreno su cui poggia l'opera in esame.

Noti tutti i parametri sopra riportati, è possibile definire l'azione sismica in termini di spettro di risposta elastico in accelerazione.

Per il dimensionamento/verifica sia dell'elevazione che della fondazione delle pile si è optato per rimanere in campo elastico tramite l'assunzione di un coefficiente di struttura unitario (q = 1.0).

L'analisi strutturale della spalla in condizioni sismiche è eseguita un metodo pseudostatico, secondo quanto riportato al cap.7.11.6.2.1 delle NTC2008.

L'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico. Nelle verifiche allo stato limite ultimo, i valori dei coefficienti sismici orizzontale k_h e verticale k_v possono essere valutati mediante le seguenti espressioni:

 $k_h = \beta_m x a_{max} / g$

 $k_v = \pm 0.5 x k_h$

dove a_{max} è l'accelerazione orizzontale massima attesa al sito, valutata con la relazione:

$$a_{max} = S x a_{q} = S_{S} x S_{T} x a_{q}$$

con S coefficiente che comprende l'effetto dell'amplificazione stratigrafica (Ss) e dell'amplificazione topografica (S_T).

Per muri che non siano in grado di subire spostamenti relativi rispetto al terreno, il coefficiente di riduzione dell'accelerezione massima attesa al sito β_m può assumere valore unitario.

La componente dinamica delle spinta del terreno a tergo della spalla è valutata in condizioni attive secondo la formulazione di Mononobe-Okabe.

2.2.5 Metodologia di verifica

Le verifiche sono effettuate nell'ambito del metodo semiprobabilistico agli stati limite, secondo quanto specificato nelle normative prese a riferimento.

In particolare vengono effettuate le seguenti verifiche:

verifica a pressoflessione e taglio del paramento e del plinto di fondazione delle spalle.

2.3 ANALISI GLOBALE DELLE STRUTTURE ESISTENTI

Nei capitoli successivi si riportano l'analisi e le verifiche delle strutture in elevazione che riquardano l'ampliamento del sottovia oggetto della presente relaizone di calcolo.

Sono altresì riportate l'analisi e le verifiche strutturali della porzione di struttura in elevazione originaria del sottovia e di quella che ha realizzato il primo ampliamento.

Le caratteristiche meccaniche dei materiali ed il fattore di confidenza, dati di input per l'analisi della porzione esistente, sono definite al capitolo precedente della relazione di calcolo.

Per quanto riguarda la sovrastruttura, l'analisi è condotta in riferimento agli stati limite ultimi. Si valuta se la capacità resistente delle sezioni dei principali elementi strutturali (travi longitudinali, traversi e soletta in cemento armato) è sufficiente nei confronti delle sollecitazioni derivanti dai carichi di normativa.

Per quanto riguarda le sottostrutture, l'analisi è condotta in riferimento agli stati limite ultimi ed a quanto effettuato per le strutture di nuova realizzazione. L'analisi è di tipo "bidimensionale" e riquarda ciascuna delle sezioni trasversali "tipiche" della spalla: struttura originaria e struttura del primo ampliamento. Si valuta se la capacità resistente delle sezioni dei principali elementi strutturali (paramento e plinto di fondazione) è sufficiente nei confronti delle sollecitazioni derivanti dai carichi di normativa. Le verifiche strutturali e geotecniche sulle opere fondazionali indirette e le verifiche geotecniche sulle opere fondazionali dirette sono contenute in uno specifico elaborato di calcolo.

Qualora le verifiche non risultano soddisfatte, è presentato il progetto strutturale o geotecnico dell'intervento da eseguire.

2.4 **COMBINAZIONI DELLE AZIONI**

Ai fini delle verifiche degli stati limite si definiscono le seguenti combinazioni delle azioni (cap.2.5.3 delle NTC2008).

Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{O1} \cdot Q_{k1} + \gamma_{O2} \cdot \psi_{O2} \cdot Q_{k2} + \gamma_{O3} \cdot \psi_{O3} \cdot Q_{k3} + \dots$$

Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

- Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali di progetto:

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

COEFFICIENTI PARZIALI DI SICUREZZA E COEFFICIENTI DI COMBINAZIONE

I coefficienti parziali di sicurezza y_G e y_Q sono dati nelle tabelle 2.6.I e 5.1.V delle NTC2008.

Tabella 2.6.I – Coefficienti parziali per le azioni o per l'effetto delle azioni nelle verifiche SLU

		Coefficiente γ_F	EQU	A1 STR	A2 GEO
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,9 1,1	1,0 1,3	1,0 1,0
Carichi permanenti non strutturali ⁽¹⁾	favorevoli sfavorevoli	γ _{G2}	0,0 1,5	0,0 1,5	0,0 1,3
Carichi variabili	favorevoli sfavorevoli	γ _{Qi}	0,0 1,5	0,0 1,5	0,0 1,3

⁽¹⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare per essi gli stessi coefficienti validi per le azioni permanenti.

Figura 10: Coefficienti parziali per le azioni o per l'effetto delle azioni nelle verifiche SLU (Tab.2.6.I delle NTC2008)

Tabella 5.1.V - Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

					Y4
		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO
Carichi permanenti	favorevoli sfavorevoli	$\gamma_{\rm G1}$	0,90 1,10	1,00 1,35	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	$\gamma_{ m G2}$	0,00 1,50	0,00 1,50	0,00 1,30
Carichi variabili da traffico	favorevoli sfavorevoli	γο	0,00 1,35	0,00 1,35	0,00 1,15
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecitazioni di progetto	favorevoli sfavorevoli	γ ε1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Variazioni termiche, Cedimenti vincolari	favorevoli sfavorevoli	$\gamma_{\epsilon 2}, \gamma_{\epsilon 3}, \gamma_{\epsilon 4}$	0,00 1,20	0,00 1,20	0,00 1,00

Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.

Figura 11: Coefficienti parziali di sicurezza per le combinaizoni di carico agli SLU (Tab.5.1.V delle NTC2008) I valori dei coefficienti di combinazione ψ₀, ψ₁ e ψ₂ sono riportati nelle tabelle 2.5.I e 5.1.VI delle NTC2008.

Tabella 2.5.I – Valori dei coefficienti di combinazione

Categoria/Azione variabile	Ψ 0j	Ψ 1j	ψ_{2j}
Categoria A Ambienti ad uso residenziale	0,7	0,5	0,3
Categoria B Uffici	0,7	0,5	0,3
Categoria C Ambienti suscettibili di affollamento	0,7	0,7	0,6
Categoria D Ambienti ad uso commerciale	0,7	0,7	0,6
Categoria E Biblioteche, archivi, magazzini e ambienti ad uso industriale	1,0	0,9	0,8
Categoria F Rimesse e parcheggi (per autoveicoli di peso ≤ 30 kN)	0,7	0,7	0,6
Categoria G Rimesse e parcheggi (per autoveicoli di peso > 30 kN)	0,7	0,5	0,3
Categoria H Coperture	0,0	0,0	0,0
Vento	0,6	0,2	0,0
Neve (a quota \leq 1000 m s.l.m.)	0,5	0,2	0,0
Neve (a quota > 1000 m s.l.m.)	0,7	0,5	0,2
Variazioni termiche	0,6	0,5	0,0

Figura 12: Valori dei coefficienti di combinazione (Tab.2.5.I delle NTC2008)

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

^{(3) 1,30} per instabilità in strutture con precompressione esterna

^{(4) 1,20} per effetti locali

Tabella 5.1.VI - Coefficienti ψ per le azioni variabili per ponti stradali e pedonali

Azioni	Gruppo di azioni (Tabella 5.1.IV)	Coefficiente Ψ ₀ di combinazione	Coefficiente ψ ₁ (valori frequenti)	Coefficiente ψ 2 (valori quasi permanenti)
	Schema 1 (Carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (Carichi distribuiti	0,40	0,40	0,0
	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
Azioni da traffico	Schema 2	0,0	0,75	0,0
(Tabella 5.1.IV)	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)	()	0,75	0,0
	5	0,0	0,0	0,0
Vento q₅	Vento a ponte scarico SLU e SLE Esecuzione	0,6 0,8	0,2	0,0 0,0
	Vento a ponte carico	0,6		
	SLU e SLE	0,0	0,0	0,0
Neve q_5	esecuzione	0,8	0,6	0,5
Temperatura	T _k	0,6	0,6	0,5

Figura 13: Coefficienti ψ per le azioni variabili per ponti stradali e pedonali (Tab.5.1.VI delle NTC2008)

ANALISI DEI CARICHI 3

3.1 **PREMESSA**

Di seguito si riportano in dettaglio i vari contributi di carico considerati nell'analisi strutturale.

Per quanto riguarda i carichi agenti direttamente sull'impalcato, si specifica puntualmente il valore in riferimento alla fase di analisi trattata e della porzione di impalcato ineteressata (impalcato originario o porzione di impalcato di nuova realizzazione). Si riporta qui di seguito la descrizione sintetica della modellazione FEM dell'impalcato in oggetto.

	tipologia strutturale	modello FEM
impalcato originario	impalcato a piastra gettata in opera spessore 65 cm (da disegni progettuali originali)	a graticcio
allargamento in progetto	travi affiancate in cap sezione a Trovescia 50/20x50/20 con getto di completamento di 20 cm altezza finale impalcato 70 cm	a graticcio

CARICHI AGENTI SULL'IMPALCATO IN FASE 1

3.2.1 Peso proprio delle travi di impalcato

Il peso degli elementi strutturali è conteggiato in riferimento al loro peso specifico (vedi capitolo relativo alle "Caratteristiche dei materiali").

Il carico dovuto al peso proprio è stato inserito come carico esterno e non computato in automatico dal software.

Le sollecitazioni dovute al peso proprio dell'esistente che il modello FEM trasferisce anche sull'allargamento in progetto non sono considerate nella verifica dell'allargamento in quanto, all'atto pratico, già agenti totalmente sull'esistente.

La seguente tabella riporta i carichi unitari relativi alle diverse zone di impalcato.

	peso proprio struttura in fase finale			
	carico su modello FEM o "esterno"	tipo carico		
impalcato originario	FEM	su superficie tipo "one way" a caricare gli elementi beam longitudinali	25x0.65=16.25 kN/m ²	
allargamento in progetto	esterno	distribuito su trave in semplice appoggio	tr. cap = 0.16x25 = 4.0 kN/m getto = 0.19x25 = 4.75 kN/m	

Considerando per le travi dell'allargamento in progetto uno schema di semplice appoggio con luce di 10.60 m, escludendo a favore di sicurezza il retrotrave (di crica 40 cm) nel calcolo del momento flettente e includendolo nel calcolo del taglio all'appoggio, si ottengono i seguenti valori caratteristici di sollecitazione:

$$M_{max} = (4 + 4.75) \times 10.60^2 / 8 = 122.47 \text{ kNm}$$

 $T_{max} = (4 + 4.75) \times (10.60 + 2 \times 0.40) / 2 = 49.87 \text{ kN}$

3.2.2 Peso proprio della soletta in c.a.

Il peso proprio della soletta in c.a. gettata in opera (primo allargamento e allargamento in progetto) è funzione del peso specifico del calcestruzzo, pari a 25kN/m³, e dello spessore della soletta. Il carico distribuito è già definito nel paragrafo precedente.

3.3 **CARICHI AGENTI SULL'IMPALCATO IN FASE 2**

3.3.1 Sovraccarichi permanenti

I sovraccarichi permanenti comprendono il peso proprio della pavimentazione stradale (y = 22kN/m³) e il peso proprio dei cordoli in c.a. porta sicurvia. I carichi permanenti derivanti dall'installazione della barriera FOA sono trattati in un capitolo specifico. Lo spessore medio della pavimentazione è pari a 16 cm per il per l'allargamento in progetto. Per l'impalcato di primo impianto si uno spessore di circa 43 cm.

	pavimentazione			
	carico su modello FEM o "esterno"	tipo carico	valore	
impalcato originario	FEM	su superficie tipo "one way" a caricare gli elementi beam longitudinali	22x0.43=9.46 kN/m ²	
allargamento in progetto	FEM	su superficie tipo "one way" a caricare gli elementi beam longitudinali	22x0.16=3.52 kN/m ²	

Sullo schema di semplice appoggio si hanno le seguenti sollecitazioni caratteristiche sulle travi in progetto (interasse travi pari a 50 cm):

$$M_{max} = 0.5 \times 3.52 \times 10.60^2 / 8 = 24.7 \text{ kNm}$$

 $T_{max} = 0.5 \times 3.52 \times (10.60 + 2 \times 0.40) / 2 = 10.03 \text{ kN}$

Il cordolo in c.a. su cui si innestano il sicurvia e la FOA interessa le 3 travi esterne dell'allargamento in progetto (4 travi nel modello FEM in quanto è presente un elemento che modella la parte finale dell'implacato totaòmente gettata in opera). Presenta uno spessore di 34 cm per un carico pari a 25x0.34=8.5 kN/m². A questo valore bisogna sottrarre il peso della pavimentazione (inserito per semplicità su tutto il nuovo allargamento) ottenendo un carico di 8.5-3.52=4.98 kN/m².

	cordolo			
	carico su modello FEM o "esterno" tipo carico valore			
impalcato originario	assente	assente	assente	
allargamento in progetto	FEM (solo sulle 5 travi più esterne)	su superficie tipo "one way" a caricare gli elementi beam longitudinali	25x0.34-3.52=4.98 kN/m ²	

L'azione del sicurvia è rappresentata da un carico uniformemente distribuito pari a 1.50 kN/m e insiste sulla terza trave dell'allargamento in progetto contata a partire dall'esterno dell'impalcato.

	sicurvia			
	carico su modello FEM o "esterno"	tipo carico	valore	
impalcato originario	FEM (sull'elemento longitudinale su cui insiste)	distribuito su elemento	1.50 kN/m	
allargamento in progetto	FEM (sull'elemento longitudinale su cui insiste)	distribuito su elemento	1.50 kN/m	

3.3.2 Cedimenti vincolari

In considerazione dello schema di vincolo isostatico (appoggio-appoggio) dell'implacato non vengono considerate azioni indotte da cedimenti vincolari.

3.3.3 Reologia calcestruzzo

Gli effetti del ritiro e della viscosità del calcestruzzo sono stati considerati sia per il calcolo delle cadute di tensione sui trefoli delle travi in c.a.p., sia per il calcolo delle sollecitazioni derivanti dal ritiro differenziale trave-soletta e il conseguente dimensionamento del collegamento.

Per le calcolazioni relative agli effetti di ritiro e viscosità si è fatto riferimento alle indicazioni riportate sulle Norme tecniche per le Costruzioni (2008), sugli eurocodici (Appendice B EC 1992) e sulle normative CNR (10016-85).

Per le specifiche si rimanda ai paragrafi specifici riportati in seguito e relativi al dimensionamento dell'impalcato.

Si riportano i calcoli dei coefficienti di omogeneizzazione relativi all'azione del ritiro e all'azione del fluage.

calcolo del coefficiente n_{ritiro}

calcolo del coefficiente n_{perm}

UNI EN 1992-1-1:2005 - APPENDICE B					
n_0	6.2				
f _{ck}	35	N/mm ²			
f _{cm}	43	N/mm ²			
h ₀	600	mm			
RH	80	%			
t ₀	1	giorni			
t	18250	giorni			
β (t ₀)	0.9091				
β (f _{cm})	2.5620				
α_{1}	0.8658				
α_{2}	0.9597				
α_3	0.9022				
$arphi_{\mathrm{RH}}$	1.1970				
eta_{h}	1353.291				
φ_{0}	2.79				
$eta_{ m c}$ (t,t $_{ m o}$)	0.9788				
φ (t,t ₀)	2.73				
n _{ritiro}	15.7				
<i>ϕ</i> (∞,t₀)	2.78				

UNI EN 1992-1-1:2005 - APPENDICE B					
n_0	6.2				
f _{ck}	35	N/mm ²			
f _{cm}	43	N/mm ²			
h ₀	600	mm			
RH	80	%			
t _o	7	giorni			
t	18250	giorni			
β (t _o)	0.6346				
β (f _{cm})	2.5620				
α_{1}	0.8658				
α_2	0.9597				
α_3	0.9022				
$arphi_{\mathrm{RH}}$	1.1970				
eta_{h}	1353.291				
φ_{0}	1.95				
$eta_{ m c}$ (t,t $_{ m o}$)	0.9788				
φ (t,t ₀)	1.90				
n _{perm}	19.2				
<i>ϕ</i> (∞,t₀)	1.94				

3.4 CARICHI AGENTI SULL'IMPALCATO IN FASE 3

3.4.1 Variazioni termiche

Si fa riferimento ai criteri contenuti in EN 1991-1-5 / NTC2008 – cap.3.5, sia per quanto riguarda il calcolo del range di temperatura, sia per quanto riguarda l'approccio di calcolo. Per l'opera in esame si prevede l'esposizione al seguente "range" di temperature:

Tmin = -15 °C

Tmax = 45 °C

3.4.1.1 Variazioni termiche uniformi (Δt_N)

Si assume che le strutture dell'impalcato siano soggette alla dilatazione: ΔT = ± 15°. Il valore di calcolo per giunti e appoggi vale invece: $\Delta T = \pm 30^{\circ}$.

3.4.1.2 Variazioni termiche lineari ($\Delta t_{\rm M}$)

Si riportano le tabelle 6.1 e 6.2 tartte dall'EN 1991-1-5 relativa ai gradienti termici da utilizzre nei calcoli. Nel caso in oggetto, consoderando i valori di k_{sur} relativi a uno spessore di superficie pari a 100 mm, si ha:

- estradosso più caldo dell'intradosso → ∆T_{M,heat} = 15x0.7=10 °C
- intradosso più caldo dell'estradosso → $\Delta T_{M,cool}$ = 8x1=8 °C

Si assume a favore di sicurezza un unico valore del gradiente ΔT pari a $\pm 10^{\circ} C$.

Table 6.1: Recommended values of linear temperature difference component for different types of bridge decks for road, foot and railway bridges

Type of Deck	Top warmer than bottom	Bottom warmer than top $\Delta T_{\text{M,cool}}$ (°C)	
Type of Deck	ΔT _{M,heat} (°C)		
Type 1: Steel deck	18	13	
Type 2: Composite deck	15	18	
Type 3: Concrete deck: - concrete box girder - concrete beam - concrete slab	10 15 15	5 8 8	

NOTE 1: The values given in the table represent upper bound values of the linearly varying temperature difference component for representative sample of bridge geometries.

NOTE 2: The values given in the table are based on a depth of surfacing of 50 mm for road and railway bridges. For other depths of surfacing these values should be multiplied by the factor $k_{\rm Sur}$. Recommended values for the factor $k_{\rm Sur}$ is given in Table 6.2.

Table 6.2: Recommended values of k_{sur} to account for different surfacing thickness

	S	Road, to	oot and railway	briages		
Surface Thickness	Type 1		Type 2		Type 3	
	Top warmer than bottom	Bottom warmer than top	Top warmer than bottom	Bottom warmer than top	Top warmer than bottom	Bottom warmer than top
[mm]	k sur	k sur	k sur	k sur	k _{sur}	k sur
unsurfaced	0,7	0,9	0,9	1,0	0,8	1,1
water- proofed 1)	1,6	0,6	1,1	0,9	1,5	1,0
50	1,0	1,0	1,0	1,0	1,0	1,0
100	0,7	1,2	1,0	1,0	0,7	1,0
150	0,7	1,2	1,0	1,0	0,5	1,0
ballast (750 mm)	0,6	1,4	0,8	1,2	0,6	1,0

3.4.2 Azione del vento

L'azione del vento è trattata nel capitolo inerente alle reazioni al piede delle barriere FOA al quale si rimanda per le varie specifiche.

3.4.3 Azione variabili da traffico

3.4.3.1 Carichi mobili

Si seguono le disposizioni contenute in EN 1991-2 capp.4/5 / NTC2008 cap. 5.1.3.3.5, con riferimento a ponti di I categoria.

Per le verifiche globali e locali dell'impalcato, si considera lo Schema di Carico n.1 costituito da carichi concentrati su due assi in tandem (Qik), applicati su impronte di pneumatico di forma quadrata di lato pari a 0.40m, e da carichi uniformemente distribuiti (qik), come mostrato in figura.

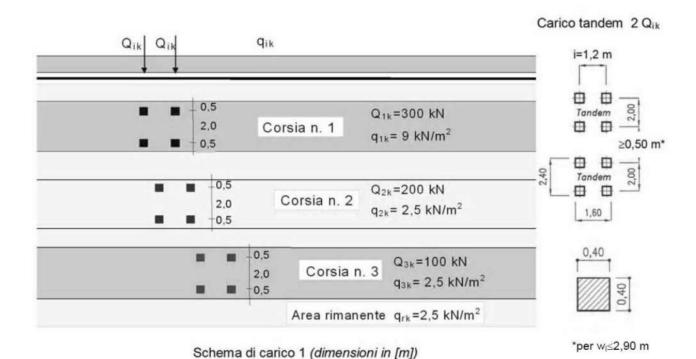


Figura 14: Schema di carico 1 (Fig.5.1.2 delle NTC2008)

Le intensità dei carichi Qik e qik per le diverse corsie vengono riassunti nella seguente tabella.

Tabella 5.1.II - Intensità dei carichi Qik e qik per le diverse corsie

Posizione	Carico asse Q _{ik} [kN]	$q_{ik}[kN/m^2]$	
Corsia Numero 1	300	9,00	
Corsia Numero 2	200	2,50	
Corsia Numero 3	100	2,50	
Altre corsie	0,00	2,50	

Figura 15: Intensità dei carichi Qik e qik per le diverse corsie (Fig.5.1.2 delle NTC2008)

Lo studio delle superfici di influenza viene finalizzato all'ottenimento delle seguenti sollecitazioni:

- massima e minima azione verticale su ciascun sostegno;
- massimo e minimo momento flettente longitudinale su tutte le sezioni di inizio e fine concio, sulle sezioni di attacco dei traversi e sulle sezioni di mezzeria campata e asse appoggi.

Le disposizioni trasversali di carico sulla carreggiata dell'impalcato sono riconducibili, in funzione della larghezza effettiva della carreggiata, alle configurazioni riportate nella figura seguente.Lo studio delle superfici di influenza viene finalizzato all'ottenimento delle seguenti sollecitazioni:

- massima e minima azione verticale su ciascun sostegno;
- massimo e minimo momento flettente longitudinale su tutte le sezioni di inizio e fine concio, sulle sezioni di attacco dei traversi e sulle sezioni di mezzeria campata e asse appoggi.

Le disposizioni trasversali di carico sulla carreggiata dell'impalcato sono riconducibili, in funzione della larghezza effettiva della carreggiata, alle configurazioni riportate nella figura seguente.

DISPOSIZIONE I.I

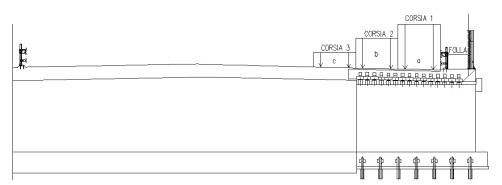


Figura 16: disposzione I.I

DISPOSIZIONE I.II

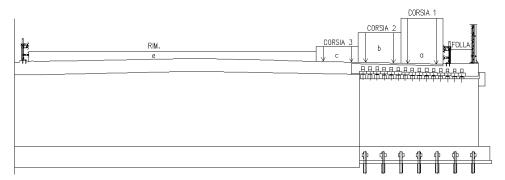


Figura 17: disposzione I.II

DISPOSIZIONE III.I

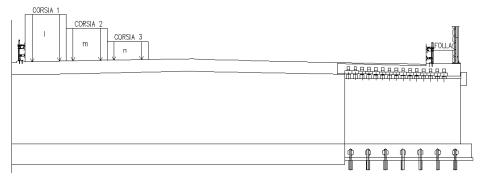


Figura 18: disposzione III.I

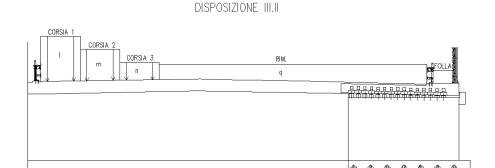


Figura 19: disposzione III.II

A ogni stesa di carico q_{ik} è associata una delle seguenti lettere: a, b, c, e, l, m, n, q. A ogni stesa q_{ik} sono associati i carichi tandem in 3 differenti posizioni (a massimizzare i tagli in corrispondenza delle due spalle e i momenti in mezzeria) denominati con la lettera che definisce la stesa a cui sono associati e un numero che ne definisce la posizione. Ad esempio la disposizione III.II presenta "n1" associata a "n" del valore relativo alla corsia 3, "m1" associato a "m" del valore relativo alla corsia 2 e "l1" associato a "l" del valore relativo alla corsia 1. Questo per la posizione 1. Lo stesso viene ripetuto per le posizioni 2 e 3. A ogni stesa relativa alla corsia 1, quindi nell'esempio della disposizione III.II relativa alla stesa "l", si associa un'azione "lf" di frenamento (definita nel paragrafo seguente). Tutte le singole azioni sono inserite separatamente come "load patterns" e poi combinate nei "load case" secondo la combinazione tipo 1 e la combinazione tipo 2a.

3.4.3.2 Azioni di frenatura

Per il calcolo delle azioni di frenatura, si fa riferimento a EN1991-2 cap.4.4.1(1) / NTC2008 cap.5.3.1.5.

Si ottiene un'azione di:

$$q_3 = 0.6 \times 600 + 0.10 \times 9 \times 3 \times 11.4 = 360 + 38.61 = 391 \text{ kN}$$

A ogni spalla si assegna il 50% quindi un'azione pari a 196 kN.

Il contributo agente sulle corsie di marcia lente verrà in ogni caso distribuito uniformemente sulle travi di competenza.

3.4.3.3 Azione centrifuga

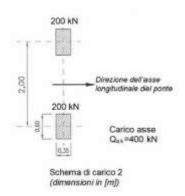
L'azione centrifuga non viene considerata essendo il tratto in rettilineo.

3.4.3.4 Gruppi di carico

Le azioni riconducibili ai carichi da traffico sono accorpate in gruppi di azioni sulla base di quanto riportato nella seguente tabella.

Tabella 5.1.IV - Valori caratteristici delle azioni dovute al traffico

	Carichi sulla carreggiata					Carichi su marciapiedi e piste ciclabili
Gruppo di azioni	Carichi verticali			Carichi orizzontali		Carichi verticali
	Modello principale (Schemi di carico 1, 2, 3, 4, 6)	Veicoli speciali	Folla (Schema di carico 5)	Frenatura q ₃	Forza centrifuga q4	Carico uniformement distribuito
1	Valore caratteristico			24- 3		Schema di carico 5 con valore di combinazione 2,5 kN/m ²
2 a	Valore frequente			Valore caratteristico		
2 b	Valore frequente				Valore caratteristico	
3 🖑						Schema di carico 5 con valore caratteristico 5,0 kN/m ²
4 (**)			Schema di carico 5 con valore caratteristico 5,0 kN/m ²			Schema di carico 5 con valore caratteristico 5,0 kN/m ²
5 (***)	Da definirsi per il singolo progetto	Valore caratteristico o nominale				


Figura 3-20. Valori caratteristici

Nel caso in esame si fa riferimento unicamente ai seguenti gruppi di azioni:

- Gruppo di azioni 1: si considera lo Schema di Carico 1 con il suo valore caratteristico;
- Gruppo di azioni 2a: si considera lo Schema di Carico 1 con il suo valore frequente (0.75 Q_{k,TS} + 0.4 Q_{k,UDL}) insieme alla frenatura in valore caratteristico.

3.4.3.5 Schemi di carico per verifiche locali

Per verifiche locali sugli elementi strutturali costituenti l'impalcato, si adotta lo "Schema di carico 2" previsto al punto 5.1.3.3.3 delle NTC2008 ("Schema di carico 2") costituito da un singolo asse applicato su specifiche impronte di pneumatico di forma rettangolare, di larghezza 0,60 m ed altezza 0,35 m, come mostrato nella figura seguente.

Figura 3-21. Schema di carico 2 (Figura 5.1.2 delle NTC2008)

Questo schema è considerato autonomamente con asse longitudinale nella posizione più gravosa. Qualora sia più gravoso si considererà il peso di una ingola ruota di 200 kN.

Nel progetto dell'impalcato è considerata una condizione di carico eccezionale nella quale alla forza orizzontale d'urto su sicurvia si associa un carico verticale isolato sulla sede stradale costituito dallo Schema di Carico 2, posizionato in adiacenza al sicurvia stesso e disposto nella posizione più gravosa (cap.5.1.3.10 delle NTC2008).

3.4.4 Resistenze parassite dei vincoli

La resistenze passive dei vincoli sono assunte pari al 5% degli scarichi permanenti.

3.5 CARICHI AGENTI SULLE SPALLE

3.5.1 Carichi permanenti strutturali

Il peso degli elementi strutturali è conteggiato in riferimento al peso specifico del calcestruzzo (γ_c = 25kN/m³).

3.5.2 Carichi permanenti non strutturali

Si considera come carico permanente non strutturale il peso proprio del terreno di zavorra disposto sulla retrozattera.

3.5.3 Spinta del terreno

La spinta del terreno di rilevato agente a tergo delle spalle è valutata tramite:

coefficiente di spinta a riposo: $k_0 = 1 - \sin \varphi$ nel caso di fondazione indirette: coefficiente di spinta attiva: $k_a = tan^2(45 - \phi'/2)$ nel caso di fondazione diretta.

Come meglio descritto nella relazione geotecnica, le verifiche di sicurezza della fondazione, strutturali e geotecniche, sono condotte mediante l'Approccio 2 di cui al punto 6.2.3 delle NTC2008. Tale approccio progettuale prevede un'unica combinazione di gruppi di coefficienti (A1+M1+R3) da adottare per azioni (A1), parametri geotecnici del terreno (M1) e fattori di sicurezza (R3). Nel prosieguo del presente elaborato, il valore dell'angolo d'attrito φ' è da intendersi, dunque, come caratteristico.

3.5.4 Sovraccarico accidentale

Si considera un sovraccarico accidentale agente a tergo delle spalle pari a:

 $a = 20kN/m^2$

Il sovraccarico spingente a tergo delle spalle è valutato tramite:

coefficiente di spinta a riposo: $k_0 = 1 - \sin \varphi$ nel caso di fondazione indirette; $k_a = tan^2(45 - \phi'/2)$ coefficiente di spinta attiva: nel caso di fondazione diretta.

AZIONE SISMICA 3.6

Per la definizione dei parametri sismici, il calcolo dell'azione sismica e le modalità di analisi sui diversi elementi strutturali che costituiscono l'opera (impalcato, spalle e pile), si rimanda ai capitoli precedenti.

Ai fini delle verifiche strutturali, si considera lo Stato Limite di Salvaguardia della Vita (SLV). Si considera, invece, lo Stato Limite di Danno (SLD) per la valutazione degli spostamenti e per il calcolo delle escursioni massime ammissibili in corrispondenza dei giunti e dispositivi di appoggio.

La componente sismica verticale non è considerata non essendo presenti elementi sensibili a tale sollecitazione.

CARICHI SU BARRIERE FOA 3.7

Di seguito sono specificati i carichi agenti sulle barriere FOA. La tabella riporta le sollecitazioni ai piedi dei montanti. Nei calcoli si considera un interasse di 3 m e un numero di montanti totale, calcolato a favore di sicurezza, pari a 4.

FOA TIPO 6 - H=6.50+5.50m (sollecitazioni per montanti tratto CORREI	FX	FY	FZ	MX	MY	MZ
	(kN)	(kN)	(kN)	(kNm)	(kNm)	(kNm)
1: Peso proprio strutturale		19.9				15.5
2: Peso proprio pannelli fonoassorbenti		31.3				27.9
3: Vento X+ (vento da ricettore verso fonte rumore)	-52.2	13.6				292.6
4: Vento X- (vento da fonte rumore verso ricettore)	53.0	-17.3				-326.8
5: Neve		7.0				15.3
6: Pressione dinamica veicolare	35.7	-11.7				-220.2
7: Pressione dinamica da rimozione neve	15.0	0.0				-22.5

Peso proprio strutturale

Si applica (sul modello FEM) sull'elemento estremo dell'allargamento in oggetto un carico uniformemente distribuito pari a:

$$q = (19.9+31.3) \times 4 / 10.6 = 19.3 \text{ kN/m}$$

3.7.2 Vento

A favore di sicurezza si applica sia nel caso di vento positivo che nel caso di vento negativo la condizione riportata in tabella come "Vento X-" presa di volta in volta con segno positivo o negativo a seconda della combinazione considerata.

Si applicano (sul modello FEM) sull'elemento estremo dell'allargamento in oggetto tre carichi distribuiti pari a:

$$q_{vert}$$
 = 17.3 x 4 / 10.6 = 6.53 kN/m
 q_{orizz} = 53 x 4 / 10.6 = 20 kN/m
 m = 326.8 x 4 / 10.6 = 123.32 kNm/m

3.7.3 Pressione dinamica veicolare

Si applicano (sul modello FEM) sull'elemento estremo dell'allargamento in oggetto tre carichi distribuiti pari a:

$$q_{vert}$$
 = 11.7 x 4 / 10.6 = 4.41 kN/m
 q_{orizz} = 35.7 x 4 / 10.6 = 13.47 kN/m
 m = 220.2 x 4 / 10.6 = 83.09 kNm/m

3.7.4 Pressione dinamica da rimozione neve

Si applicano (sul modello FEM) sull'elemento estremo dell'allargamento in oggetto due carichi distribuiti pari

 q_{orizz} = 15 x 4 / 10.6 = 5.67 kN/m $m = 22.5 \times 4 / 10.6 = 8.49 \text{ kNm/m}$

ANALISI IMPALCATO

I carichi analizzati nei paragrafi precedenti sono stati assegnati al modello in SAP2000, attribuendoli opportunamente agli elementi "frame" che schematizzano travi, traversi e soletta.

L'analisi strutturale dell'impalcato viene effettuata con riferimento alle rigidezze elastiche "uncracked".

In SAP2000 sono state puntualmente definite le combinazioni di carico, utilizzando gli adeguati coefficienti γ e Ψ . Sono state definite anche delle combinazioni inviluppo per ogni tipologia di combinazione, in modo da dare in output direttamente i valori massimi e minimi dell'azione tagliante V e del momento flettente M per ciascun elemento del modello.

COMBINAZIONI DI CARICO 4.1

Alle verifiche condotte sugli elementi si premettono le indicazioni dei "load cases" e delle "load combinations" inserite nel modello SAP2000 e utilizzate nel corso delle analisi dell'impalcato, al fine di una piena comprensione del proseguio della relazione. Le "load cases" sono combinazioni intermedie utili a definire casi di carico composti da differenti "load patterns" come accade per i carichi da traffico. Le "load combinations" sono le combinazioni di carico su cui si eseguono le verifiche nelle opportune fasi.

TABLE: Case - Static 1 - Load Assignments				
Case	LoadType	LoadName	LoadSF	
Text	Text	Text	Unitless	
new jersey	Load pattern	new jersey	1	
sicurvia	Load pattern	sicurvia	1	
FOA	Load pattern	FOA	1	
folla	Load pattern	folla	1	
temp unif	Load pattern	temp unif	1	
temp grad	Load pattern	temp grad	1	
ritiro	Load pattern	ritiro	1	
vento	Load pattern	vento	1	
pav. imp. orig.	Load pattern	pav. imp. orig.	1	
pav. imp. I all.	Load pattern	pav. imp. I all.	1	
pav. imp. II all.	Load pattern	pav. imp. II all.	1	
pp imp. orig.	Load pattern	pp imp. orig.	1	
pp imp. I all.	Load pattern	pp imp. I all.	1	
cordolo	Load pattern	cordolo	1	
pp II all. travi	Load pattern	pp II all. travi	1	
pp II all. getto	Load pattern	pp II all. getto	1	
a	Load pattern	a	1	
b	Load pattern	b	1	
С	Load pattern	С	1	
e	Load pattern	e	1	
1	Load pattern	1	1	
m	Load pattern	m	1	
n	Load pattern	n	1	
q	Load pattern	q	1	
a1	Load pattern	a1	1	

a2	Load pattern	a2	1
a3	Load pattern	a3	1
b1	Load pattern	b1	1
b2	Load pattern	b2	1
b3	Load pattern	b3	1
c1	Load pattern	c1	1
c2	Load pattern	c2	1
c3	Load pattern	c3	1
l1	Load pattern	l1	1
12	Load pattern	12	1
13	Load pattern	13	1
m1	Load pattern	m1	1
m2	Load pattern	m2	1
m3	Load pattern	m3	1
n1	Load pattern	n1	1
n2	Load pattern	n2	1
n3	Load pattern	n3	1
I.I 1	Load pattern	a	1
I.I 1	Load pattern	a1	1
I.I 1	Load pattern	b	1
I.I 1	Load pattern	b1	1
I.I 1	Load pattern	С	1
I.I 1	Load pattern	c1	1
I.I 1	Load pattern	folla	1
I.I 1	Load pattern	d	1
1.1 2	Load pattern	a	1
1.1 2	Load pattern	a2	1
1.1 2	Load pattern	b	1
1.1 2	Load pattern	b2	1
1.1 2	Load pattern	С	1
1.1 2	Load pattern	c2	1
1.1 2	Load pattern	folla	1
1.1 2	Load pattern	d	1
1.1 3	Load pattern	a	1
1.1 3	Load pattern	a3	1
1.1 3	Load pattern	b	1
1.1 3	Load pattern	b3	1
1.1 3	Load pattern	С	1
1.1 3	Load pattern	c3	1
1.1 3	Load pattern	d	1
1.1 3	Load pattern	folla	1
I.II 1	Load pattern	a	1
I.II 1	Load pattern	a1	1
I.II 1	Load pattern	b	1

I.II 1	Load pattern	b1	1
I.II 1	Load pattern	С	1
I.II 1	Load pattern	c1	1
I.II 1	Load pattern	d	1
I.II 1	Load pattern	e	1
I.II 1	Load pattern	folla	1
I.II 2	Load pattern	a	1
I.II 2	Load pattern	a2	1
1.11 2	Load pattern	b	1
I.II 2	Load pattern	b2	1
I.II 2	Load pattern	С	1
I.II 2	Load pattern	c2	1
I.II 2	Load pattern	d	1
I.II 2	Load pattern	e	1
I.II 2	Load pattern	folla	1
I.II 3	Load pattern	a	1
I.II 3	Load pattern	a3	1
I.II 3	Load pattern	b	1
I.II 3	Load pattern	b3	1
I.II 3	Load pattern	С	1
I.II 3	Load pattern	c3	1
I.II 3	Load pattern	d	1
I.II 3	Load pattern	e	1
I.II 3	Load pattern	folla	1
III.I 1	Load pattern	1	1
III.I 1	Load pattern	l1	1
III.I 1	Load pattern	m	1
III.I 1	Load pattern	m1	1
III.I 1	Load pattern	n	1
III.I 1	Load pattern	n1	1
III.I 1	Load pattern	p	1
III.I 1	Load pattern	folla	1
III.I 2	Load pattern	folla	1
III.I 2	Load pattern	1	1
III.I 2	Load pattern	12	1
III.I 2	Load pattern	m	1
III.I 2	Load pattern	m2	1
III.I 2	Load pattern	n	1
III.I 2	Load pattern	n2	1
III.I 2	Load pattern	p	1
III.I 3	Load pattern	folla	1
III.I 3	Load pattern	1	1
III.I 3	Load pattern	13	1
III.I 3	Load pattern	m	1
-			

III.I 3	III.I 3	Load pattern	m3	1
	III.I 3	Load pattern	n	1
	III.I 3	Load pattern	n3	1
	III.I 3	Load pattern	р	1
	III.II 1	Load pattern	folla	1
	III.II 1	Load pattern	1	1
III.II	III.II 1	Load pattern	l1	1
III.II 1	III.II 1	Load pattern	m	1
III.II 1	III.II 1	Load pattern	m1	1
III.II 1	III.II 1	Load pattern	n	1
III.II	III.II 1	Load pattern	n1	1
III.II 2	III.II 1	Load pattern	р	1
	III.II 1	Load pattern	q	1
	III.II 2	Load pattern	folla	1
	III.II 2	Load pattern	1	1
	III.II 2	Load pattern	12	1
	III.II 2	Load pattern	m	1
	III.II 2	Load pattern	m2	1
III.II 2	III.II 2	Load pattern	n	1
III.II 2	III.II 2	Load pattern	n2	1
III.II 3	III.II 2	Load pattern	р	1
III.II 3	III.II 2	Load pattern	q	1
III.II 3	III.II 3	Load pattern	folla	1
III.II 3	III.II 3	Load pattern	1	1
III.II 3	III.II 3	Load pattern	13	1
III.II 3	III.II 3	Load pattern	m	1
III.II 3	III.II 3	Load pattern	m3	1
III.II 3	III.II 3	Load pattern	n	1
III.II 3	III.II 3	Load pattern	n3	1
af Load pattern af 1 If Load pattern If 1 I.I 1-1 2a Load pattern a 0.4 I.I 1-1 2a Load pattern b 0.4 I.I 1-1 2a Load pattern b 0.75 I.I 1-1 2a Load pattern c 0.4 I.I 1-1 2a Load pattern c1 0.75 I.I 1-1 2a Load pattern d 0.4 I.I 1-1 2a Load pattern af 0.5 I.I 2-1 2a Load pattern a 0.4 I.I 2-1 2a Load pattern a 0.4 I.I 2-1 2a Load pattern a 0.75	III.II 3	Load pattern	р	1
If Load pattern If 1 I.I 1-1 2a Load pattern a 0.4 I.I 1-1 2a Load pattern b 0.4 I.I 1-1 2a Load pattern b 0.75 I.I 1-1 2a Load pattern c 0.4 I.I 1-1 2a Load pattern c1 0.75 I.I 1-1 2a Load pattern d 0.4 I.I 1-1 2a Load pattern af 0.5 I.I 2-1 2a Load pattern a 0.4 I.I 2-1 2a Load pattern a2 0.75	III.II 3	Load pattern	q	1
I.I 1-1 2a Load pattern a 0.4 I.I 1-1 2a Load pattern a1 0.75 I.I 1-1 2a Load pattern b 0.4 I.I 1-1 2a Load pattern b1 0.75 I.I 1-1 2a Load pattern c 0.4 I.I 1-1 2a Load pattern c1 0.75 I.I 1-1 2a Load pattern d 0.4 I.I 1-1 2a Load pattern af 0.5 I.I 2-1 2a Load pattern a 0.4 I.I 2-1 2a Load pattern a2 0.75	af	Load pattern	af	1
I.I 1-1 2a Load pattern a1 0.75 I.I 1-1 2a Load pattern b 0.4 I.I 1-1 2a Load pattern b1 0.75 I.I 1-1 2a Load pattern c 0.4 I.I 1-1 2a Load pattern d 0.4 I.I 1-1 2a Load pattern af 0.5 I.I 2-1 2a Load pattern a 0.4 I.I 2-1 2a Load pattern a2 0.75	lf	Load pattern	lf	1
I.I 1-1 2a Load pattern b 0.4 I.I 1-1 2a Load pattern b1 0.75 I.I 1-1 2a Load pattern c 0.4 I.I 1-1 2a Load pattern c1 0.75 I.I 1-1 2a Load pattern d 0.4 I.I 1-1 2a Load pattern af 0.5 I.I 2-1 2a Load pattern a 0.4 I.I 2-1 2a Load pattern a2 0.75	I.I 1-1 2a	Load pattern	a	0.4
I.I 1-1 2a Load pattern b1 0.75 I.I 1-1 2a Load pattern c 0.4 I.I 1-1 2a Load pattern c1 0.75 I.I 1-1 2a Load pattern d 0.4 I.I 1-1 2a Load pattern af 0.5 I.I 2-1 2a Load pattern a 0.4 I.I 2-1 2a Load pattern a2 0.75	I.I 1-1 2a	Load pattern	a1	0.75
I.I 1-1 2a Load pattern c 0.4 I.I 1-1 2a Load pattern c1 0.75 I.I 1-1 2a Load pattern d 0.4 I.I 1-1 2a Load pattern af 0.5 I.I 2-1 2a Load pattern a 0.4 I.I 2-1 2a Load pattern a2 0.75	I.I 1-1 2a	Load pattern	b	0.4
I.I 1-1 2a Load pattern c1 0.75 I.I 1-1 2a Load pattern d 0.4 I.I 1-1 2a Load pattern af 0.5 I.I 2-1 2a Load pattern a 0.4 I.I 2-1 2a Load pattern a2 0.75	I.I 1-1 2a	Load pattern	b1	0.75
I.I 1-1 2a Load pattern d 0.4 I.I 1-1 2a Load pattern af 0.5 I.I 2-1 2a Load pattern a 0.4 I.I 2-1 2a Load pattern a2 0.75	I.I 1-1 2a	Load pattern	С	0.4
I.I 1-1 2a Load pattern af 0.5 I.I 2-1 2a Load pattern a 0.4 I.I 2-1 2a Load pattern a2 0.75	I.I 1-1 2a	Load pattern	c1	0.75
I.I 2-1 2a Load pattern a 0.4 I.I 2-1 2a Load pattern a2 0.75	I.I 1-1 2a	Load pattern	d	0.4
I.I 2-1 2a Load pattern a2 0.75	I.I 1-1 2a	Load pattern	af	0.5
·	I.I 2-1 2a	Load pattern	a	0.4
I.I 2-1 2a Load pattern b 0.4	I.I 2-1 2a	Load pattern	a2	0.75
	I.I 2-1 2a	Load pattern	b	0.4

I.I 2-1 2a	Load pattern	b2	0.75
I.I 2-1 2a	Load pattern	С	0.4
I.I 2-1 2a	Load pattern	c2	0.75
I.I 2-1 2a	Load pattern	d	0.4
I.I 2-1 2a	Load pattern	af	0.5
I.I 3-1 2a	Load pattern	а	0.4
I.I 3-1 2a	Load pattern	a3	0.75
I.I 3-1 2a	Load pattern	b	0.4
I.I 3-1 2a	Load pattern	b3	0.75
I.I 3-1 2a	Load pattern	С	0.4
I.I 3-1 2a	Load pattern	c3	0.75
I.I 3-1 2a	Load pattern	d	0.4
I.I 3-1 2a	Load pattern	af	0.5
I.II 1-1 2a	Load pattern	а	0.4
I.II 1-1 2a	Load pattern	a1	0.75
I.II 1-1 2a	Load pattern	b	0.4
I.II 1-1 2a	Load pattern	b1	0.75
I.II 1-1 2a	Load pattern	С	0.4
I.II 1-1 2a	Load pattern	c1	0.75
I.II 1-1 2a	Load pattern	d	0.4
I.II 1-1 2a	Load pattern	e	0.4
I.II 1-1 2a	Load pattern	af	0.5
I.II 2-1 2a	Load pattern	a	0.4
I.II 2-1 2a	Load pattern	a2	0.75
I.II 2-1 2a	Load pattern	b	0.4
I.II 2-1 2a	Load pattern	b2	0.75
I.II 2-1 2a	Load pattern	С	0.4
I.II 2-1 2a	Load pattern	c2	0.75
I.II 2-1 2a	Load pattern	d	0.4
I.II 2-1 2a	Load pattern	е	0.4
I.II 2-1 2a	Load pattern	af	0.5
I.II 3-1 2a	Load pattern	а	0.4
I.II 3-1 2a	Load pattern	a3	0.75
I.II 3-1 2a	Load pattern	b	0.4
I.II 3-1 2a	Load pattern	b3	0.75
I.II 3-1 2a	Load pattern	С	0.4
I.II 3-1 2a	Load pattern	c3	0.75
I.II 3-1 2a	Load pattern	d	0.4
I.II 3-1 2a	Load pattern	е	0.4
I.II 3-1 2a	Load pattern	af	0.5
III.I 1-1 2a	Load pattern	1	0.4
III.I 1-1 2a	Load pattern	l1	0.75
III.I 1-1 2a	Load pattern	m	0.4
III.I 1-1 2a	Load pattern	m1	0.75

III.I 1-1 2a	Load pattern	n	0.4
III.I 1-1 2a	Load pattern	n1	0.75
III.I 1-1 2a	Load pattern	р	0.4
III.I 1-1 2a	Load pattern	lf	0.5
III.I 2-1 2a	Load pattern	I	0.4
III.I 2-1 2a	Load pattern	12	0.75
III.I 2-1 2a	Load pattern	m	0.4
III.I 2-1 2a	Load pattern	m2	0.75
III.I 2-1 2a	Load pattern	n	0.4
III.I 2-1 2a	Load pattern	n2	0.75
III.I 2-1 2a	Load pattern	р	0.4
III.I 2-1 2a	Load pattern	lf	0.5
III.I 3-1 2a	Load pattern	1	0.4
III.I 3-1 2a	Load pattern	l3	0.75
III.I 3-1 2a	Load pattern	m	0.4
III.I 3-1 2a	Load pattern	m3	0.75
III.I 3-1 2a	Load pattern	n	0.4
III.I 3-1 2a	Load pattern	n3	0.75
III.I 3-1 2a	Load pattern	р	0.4
III.I 3-1 2a	Load pattern	lf	0.5
res. par. vinc.	Load pattern	res. par. vinc.	1
III.II 1-1 2a	Load pattern	I	0.4
III.II 1-1 2a	Load pattern	l1	0.75
III.II 1-1 2a	Load pattern	m	0.4
III.II 1-1 2a	Load pattern	m1	0.75
III.II 1-1 2a	Load pattern	n	0.4
III.II 1-1 2a	Load pattern	n1	0.75
III.II 1-1 2a	Load pattern	р	0.4
III.II 1-1 2a	Load pattern	q	0.4
III.II 1-1 2a	Load pattern	lf	1
III.II 2-1 2a	Load pattern	1	0.4
III.II 2-1 2a	Load pattern	12	0.75
III.II 2-1 2a	Load pattern	m	0.4
III.II 2-1 2a	Load pattern	m2	0.75
III.II 2-1 2a	Load pattern	n	0.4
III.II 2-1 2a	Load pattern	n2	0.75
III.II 2-1 2a	Load pattern	р	0.4
III.II 2-1 2a	Load pattern	q	0.4
III.II 2-1 2a	Load pattern	lf	1
III.II 3-1 2a	Load pattern	I	0.4
III.II 3-1 2a	Load pattern	l3	0.75
III.II 3-1 2a	Load pattern	m	0.4
III.II 3-1 2a	Load pattern	m3	0.75
III.II 3-1 2a	Load pattern	n	0.4

III.II 3-1 2a	Load pattern	n3	0.75
III.II 3-1 2a	Load pattern	р	0.4
III.II 3-1 2a	Load pattern	q	0.4
III.II 3-1 2a	Load pattern	lf	1
press. din. veic.	Load pattern	press. din. veic.	1
neve	Load pattern	neve	1

TABLE: Combination Definit	ions			
ComboName	ComboType	CaseType	CaseName	ScaleFactor
Text	Text	Text	Text	Unitless
permanenti caratteristici	Linear Add	Linear Static	cordolo	1
permanenti caratteristici		Linear Static	FOA	1
permanenti caratteristici		Linear Static	new jersey	1
permanenti caratteristici		Linear Static	pav. imp. I all.	1
permanenti caratteristici		Linear Static	pav. imp. II all.	1
permanenti caratteristici		Linear Static	pav. imp. orig.	1
permanenti caratteristici		Linear Static	sicurvia	1
inv. mobili car. x SLU 1	Envelope	Linear Static	I.I 1	1
inv. mobili car. x SLU 1		Linear Static	1.1 2	1
inv. mobili car. x SLU 1		Linear Static	1.1 3	1
inv. mobili car. x SLU 1		Linear Static	I.II 1	1
inv. mobili car. x SLU 1		Linear Static	1.11 2	1
inv. mobili car. x SLU 1		Linear Static	I.II 3	1
inv. mobili car. x SLU 1		Linear Static	III.I 1	1
inv. mobili car. x SLU 1		Linear Static	III.I 2	1
inv. mobili car. x SLU 1		Linear Static	III.I 3	1
inv. mobili car. x SLU 1		Linear Static	III.II 1	1
inv. mobili car. x SLU 1		Linear Static	III.II 2	1
inv. mobili car. x SLU 1		Linear Static	III.II 3	1
pp caratt. imp. orig + I all.	Linear Add	Linear Static	pp imp. I all.	1
pp caratt. imp. orig + I all.		Linear Static Response	pp imp. orig. permanenti	1
SLU1 V+ no getto	Linear Add	Combo Response	caratteristici	1.5
SLU1 V+ no getto		Combo	inv. mobili car. x SLU 1	1.35
SLU1 V+ no getto		Linear Static Response	vento pp caratt. imp. orig + I	0.9
SLU1 V+ no getto		Combo	all.	1.35
SLU1 V+ no getto		Linear Static	pp II all. travi	1.35
SLU1 V+ no getto		Linear Static Response	res. par. vinc. permanenti	1.35
SLU1 V- no getto	Linear Add	Combo Response	caratteristici	1.5
SLU1 V- no getto		Combo	inv. mobili car. x SLU 1	1.35
SLU1 V- no getto		Linear Static	vento	-0.9
SLU1 V- no getto		Response	pp caratt. imp. orig + I	1.35

		Combo	all.	
CILIAN				4.25
SLU1 V- no getto		Linear Static	pp II all. travi	1.35
SLU1 V- no getto		Linear Static	res. par. vinc.	1.35
SLU1 V- no getto	- 1	Linear Static	press. din. veic.	1.35
inv. mobili car. x SLU 2a	Envelope	Linear Static	I.I 1-1 2a	1
inv. mobili car. x SLU 2a		Linear Static	I.I 2-1 2a	1
inv. mobili car. x SLU 2a		Linear Static	I.I 3-1 2a	1
inv. mobili car. x SLU 2a		Linear Static	I.II 1-1 2a	1
inv. mobili car. x SLU 2a		Linear Static	I.II 2-1 2a	1
inv. mobili car. x SLU 2a		Linear Static	I.II 3-1 2a	1
inv. mobili car. x SLU 2a		Linear Static	III.I 1-1 2a	1
inv. mobili car. x SLU 2a		Linear Static	III.I 2-1 2a	1
inv. mobili car. x SLU 2a		Linear Static	III.I 3-1 2a	1
SLU2a V+ no getto	Linear Add	Response Combo	permanenti caratteristici	1.5
SLOZA V THO getto	Lilleal Add	Response	caracteristici	1.5
SLU2a V+ no getto		Combo	inv. mobili car. x SLU 2a	1.35
SLU2a V+ no getto		Linear Static	vento	0.9
		Response	pp caratt. imp. orig + I	
SLU2a V+ no getto		Combo	all.	1.35
SLU2a V+ no getto		Linear Static	pp II all. travi	1.35
SLU2a V+ no getto		Linear Static	res. par. vinc.	1.35
SLU2a V- no getto	Linear Add	Response Combo	permanenti caratteristici	1.5
3LOZa V-110 getto	Lilleal Add	Response	caracteristici	1.5
SLU2a V- no getto		Combo	inv. mobili car. x SLU 2a	1.35
SLU2a V- no getto		Linear Static	vento	-0.9
		Response	pp caratt. imp. orig + I	
SLU2a V- no getto		Combo	all.	1.35
SLU2a V- no getto		Linear Static	pp II all. travi	1.35
SLU2a V- no getto		Linear Static	res. par. vinc.	1.35
SLU2a V- no getto		Linear Static	press. din. veic.	0.4
SLU inviluppo	Envelope	Response Combo	SLU1 V- no getto	1
SEO IIIVII appo	Livelope	Response	SLOT V- NO getto	1
SLU inviluppo		Combo	SLU1 V+ no getto	1
		Response		
SLU inviluppo		Combo	SLU2a V- no getto	1
SLU inviluppo		Response Combo	SLU2a V+ no getto	1
SEO IIIVII appo		Response	permanenti	_
RARA1 V+ no getto	Linear Add	Combo	caratteristici	1
		Response		
RARA1 V+ no getto		Combo	inv. mobili car. x SLU 1	1
RARA1 V+ no getto		Linear Static	vento	0.6
RARA1 V+ no getto		Response Combo	pp caratt. imp. orig + I all.	1
RARA1 V+ no getto		Linear Static	pp II all. travi	1
RARA1 V+ no getto		Linear Static		1
WAVAT AT 110 RELLO		Linear Static	res. par. vinc.	1

		Posnonso	normanonti	
RARA1 V- no getto	Linear Add	Response Combo	permanenti caratteristici	1
TO WALL V THO BELLO	ziireai 7taa	Response		_
RARA1 V- no getto		Combo	inv. mobili car. x SLU 1	1
RARA1 V- no getto		Linear Static	vento	-0.6
DADA4N/		Response	pp caratt. imp. orig + I	4
RARA1 V- no getto		Combo	all.	1
RARA1 V- no getto		Linear Static	pp II all. travi	1
RARA1 V- no getto		Linear Static	res. par. vinc.	1
RARA1 V- no getto		Linear Static Response	press. din. veic. permanenti	1
RARA2a V+ no getto	Linear Add	Combo	caratteristici	1
		Response		
RARA2a V+ no getto		Combo	inv. mobili car. x SLU 2a	1
RARA2a V+ no getto		Linear Static	vento	0.6
DADA2- 1/1		Response	pp caratt. imp. orig + l	4
RARA2a V+ no getto		Combo	all.	1
RARA2a V+ no getto		Linear Static	pp II all. travi	1
RARA2a V+ no getto		Linear Static Response	res. par. vinc. permanenti	1
RARA2a V- no getto	Linear Add	Combo	caratteristici	1
		Response		
RARA2a V- no getto		Combo	inv. mobili car. x SLU 2a	1
RARA2a V- no getto		Linear Static	vento	-0.6
DADA2a V. na catta		Response	pp caratt. imp. orig + I	1
RARA2a V- no getto		Combo	all.	1
RARA2a V- no getto		Linear Static	pp II all. travi	1
RARA2a V- no getto		Linear Static	res. par. vinc.	1
RARA2a V- no getto		Linear Static Response	press. din. veic. permanenti	0.4
FREQ V+ no getto	Linear Add	Combo	caratteristici	1
ū		Response		
FREQ V+ no getto		Combo	inv. mobili car. x SLU 2a	1
EREO VI no gotto		Response Combo	pp caratt. imp. orig + I all.	1
FREQ V+ no getto		Linear Static		1
FREQ V+ no getto		Linear Static	pp II all. travi	0.75
FREQ V+ no getto			res. par. vinc. folla	
FREQ V+ no getto		Linear Static Response	permanenti	0.75
FREQ V- no getto	Linear Add	Combo	caratteristici	1
_		Response		
FREQ V- no getto		Combo	inv. mobili car. x SLU 2a	1
FREQ V- no getto		Response Combo	pp caratt. imp. orig + I all.	1
FREQ V- no getto		Linear Static	pp II all. travi	1
FREQ V- no getto		Linear Static	res. par. vinc.	0.75
FREQ V- no getto		Linear Static	folla	0.75
FREQ V- no getto		Linear Static	press. din. veic.	0.73
TIVE A- 110 RELLO		Response	permanenti	0.4
Q.P. no getto	Linear Add	Combo	caratteristici	1

O.D. no gotto		Response	pp caratt. imp. orig + I	1
Q.P. no getto		Combo	all.	1
Q.P. no getto		Linear Static Response	pp II all. travi	1
RARA inviluppo	Envelope	Combo	RARA1 V- no getto	1
		Response		
RARA inviluppo		Combo	RARA1 V+ no getto	1
		Response		
RARA inviluppo		Combo	RARA2a V- no getto	1
		Response		
RARA inviluppo		Combo	RARA2a V+ no getto	1
		Response		
FREQ inviluppo	Envelope	Combo	FREQ V- no getto	1
		Response		
FREQ inviluppo		Combo	FREQ V+ no getto	1
			_	

4.2 **SOLLECITAZIONI AGENTI**

Nel seguito si riportano i diagrammi inviluppo delle sollecitazioni di alcuni casi di carico significativi relativi alle disposizioni dei carichi da traffico precedentemente illustrati.

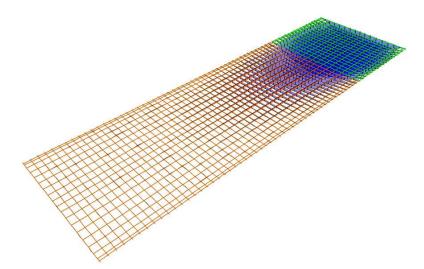


Figura 22: momenti flettenti disposizione carichi mobili I.12

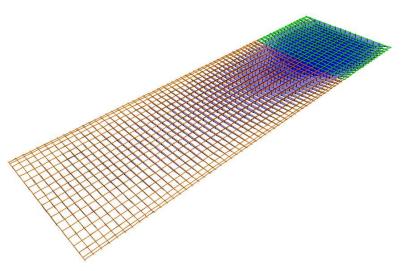


Figura 23: momenti flettenti disposizione carichi mobili I.II2

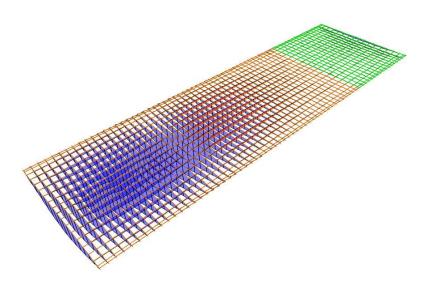


Figura 24: momenti flettenti disposizione carichi mobili III.12

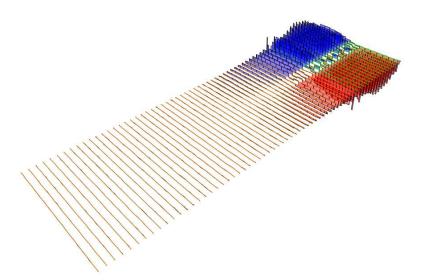


Figura 25: taglio disposizione carichi mobili I.I2

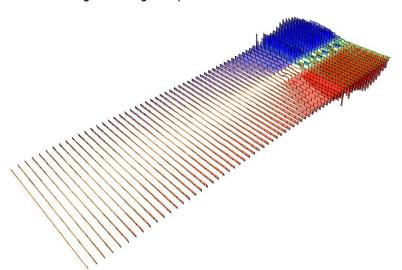


Figura 26: taglio disposizione carichi mobili I.II2

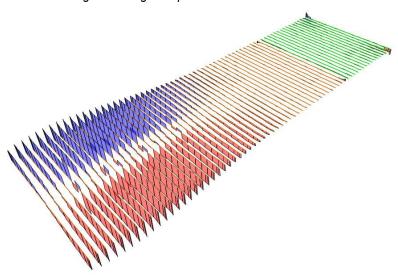


Figura 27: taglio disposizione carichi mobili III.12

4.2.1 Sollecitazioni caratteristiche impalcato nuovo

Nel presente paragrafo si riportano le sollecitazioni caratteristiche taglianti e flettenti relative alle travi che compongono la parte nuova di impalcato. Per quanto riguarda i momenti flettenti si riportano le sollecitazioni per l'elemento 1109 a cui compete il amssimo momento dovuto alle azioni da traffico e l'elemento 1464-4 per a cui compete il massimo momento divuto ai permanenti. Si riportano le combianzioni di carico relative ai permenenti caratteristici e ai mobili in combinazione rara (inviluppi), valori che trovano riscontro nei tabulati di verifica (il vento va considerato con il segno concorde al segno del momento dovuto ai mobili).

TABLE: El	ABLE: Element Forces - Frames									
Frame	Station	OutputCase	CaseType	StepType	Р	V2	V3	Т	M2	М3
Text	m	Text	Text	Text	KN	KN	KN	KN-m	KN-m	KN-m
1109	0	vento	LinStatic		-1.11	-0.394	-0.193	1.0022	-0.2122	-19.0371
1109	0.3	vento	LinStatic		-1.11	-0.394	-0.193	1.0022	-0.1544	-18.9189
1109	0.6	vento	LinStatic		-1.11	-0.394	-0.193	1.0022	-0.0966	-18.8007
1109	0	permanenti caratteristici	Combination		0	0.511	0	-0.1131	0	39.7569
1109	0.3	permanenti caratteristici	Combination		0	1.039	0	-0.1131	0	39.5244
1109	0.6	permanenti caratteristici	Combination		0	1.567	0	-0.1131	0	39.1334
1109	0	inv. mobili car. x SLU 1	Combination	Max	0	4.028	0	1.2973	0	199.6759
1109	0.3	inv. mobili car. x SLU 1	Combination	Max	0	5.378	0	1.2973	0	203.7383
1109	0.6	inv. mobili car. x SLU 1	Combination	Max	0	6.728	0	1.2973	0	207.3957
1109	0	inv. mobili car. x SLU 1	Combination	Min	0	-14.256	0	-0.5746	0	1.3936
1109	0.3	inv. mobili car. x SLU 1	Combination	Min	0	-12.906	0	-0.5746	0	1.3804
1109	0.6	inv. mobili car. x SLU 1	Combination	Min	0	-11.556	0	-0.5746	0	1.3672
1496	0	vento	LinStatic		3.59	0.995	-0.279	-7.8221	-0.3211	66.1973
1496	0.3	vento	LinStatic		3.59	0.995	-0.279	-7.8221	-0.2374	65.8987
1496	0.6	vento	LinStatic		3.59	0.995	-0.279	-7.8221	-0.1536	65.6001
1496	0	permanenti caratteristici	Combination		0	-0.128	0	-1.4201	0	80.7297
1496	0.3	permanenti caratteristici	Combination		0	1.415	0	-1.4201	0	80.5366
1496	0.6	permanenti caratteristici	Combination		0	2.958	0	-1.4201	0	79.8808
1496	0	inv. mobili car. x SLU 1	Combination	Max	0	2.636	0	3.411	0	101.4142
1496	0.3	inv. mobili car. x SLU 1	Combination	Max	0	3.089	0	3.411	0	100.5554
1496	0.6	inv. mobili car. x SLU 1	Combination	Max	0	3.543	0	3.411	0	99.5606
1496	0	inv. mobili car. x SLU 1	Combination	Min	0	-1.303	0	-1.1004	0	7.4977
1496	0.3	inv. mobili car. x SLU 1	Combination	Min	0	-0.85	0	-1.1004	0	7.53
1496	0.6	inv. mobili car. x SLU 1	Combination	Min	0	-0.396	0	-1.1004	0	7.4262

Elemento 1109 $M_{perm} = 39.8 \text{ kNm}$

 $M_{\text{mobili+vento}}$ = 19 + 207.4 = 226.4 kNm

Elemento 1496 $M_{perm} = 80.7 \text{ kNm}$

 $M_{\text{mobili+vento}} = 66.2 + 101.4 = 167.6 \text{ kNm}$

4.3 VERIFICA TRAVE IN C.A.P. DI II ALLARGO

Nel presente capitolo vengono riportate le caratteristiche dei materiali e quelle geometriche della trave in c.a.p. e della soletta, analizzate nel seguito della relazione.

4.3.1 Geometria trave in c.a.p. e soletta collaborante

Materiali

Calcestruzzo trave c.a.p.		C45/55	
Classe di esposizione		XC3	
Copriferro minimo netto	c =	25	mm
Resistenza cubica caratteristica	R _{ck} =	55	MPa
Resistenza cilindrica caratteristica	f _{ck} =	45	MPa

$\gamma_{\rm c}$ =	1.50		
α cc=	0.85		
f _{cm} =	53.00	MPa	
f _{ctm} =	3.80	MPa	
f _{ctk} =	2.66	MPa	
f _{ctd} =	1.77	MPa	
f _{cfm} =	4.55	MPa	
f _{cfk} =	3.19	MPa	
f _{cd} =	25.50	MPa	
	1.00		
f_{bk} =2,25 η f_{ctk} =	5.98	MPa	
${ m f_{bd}}$ = ${ m f_{bk}}$ / ${ m \gamma_c}$ =	3.99	MPa	
$f_{bd,red} = f_{bd} / 1,5 =$	2.66	MPa	
E _{cm} =	36283	MPa	
	$\alpha_{cc} = f_{cm} = f_{ctm} = f_{ctk} = f_{ctd} = f_{ctd} = f_{cfk} = f_{cfk} = f_{cd} = f_{bk} = 2,25 \gamma f_{ctk} = f_{bd} = f_{bk} / \gamma_c = f_{bd,red} = f_{bd} / 1,5 = f_{bd,red} = f_{bd,red} = f_{bd,red} = f_{bd,red} + f_{bd,red} = f_{bd,red} + f_{bd,red} = f_{bd,red} + f_{bd,red} = f_{bd,red} + f_{bd,$	$\alpha_{cc} = 0.85$ $f_{cm} = 53.00$ $f_{ctm} = 3.80$ $f_{ctk} = 2.66$ $f_{ctd} = 1.77$ $f_{cfm} = 4.55$ $f_{cfk} = 3.19$ $f_{cd} = 25.50$ 1.00 $f_{bk} = 2,25 f_{ctk} = 5.98$ $f_{bd} = f_{bk} / \gamma_c = 3.99$ $f_{bd,red} = f_{bd} / 1,5 = 2.66$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Tensioni iniziali nel cls (NTC2008 4.1.8.1.4)

All'atto della precompressione le tensioni di compressione non debbono superare il valore:

 σc < 0,70 fckj (fckj = resistenza caratteristica del cls all'atto del tiro)

fckj = 35.00 MPa σc < 24.50 MPa

Calcestruzzo soletta collaborante		C35/45	
Classe di esposizione		хсз	
Copriferro minimo netto	c =	25	mm
Resistenza cubica caratteristica Resistenza cilindrica caratteristica	R _{ck} = f _{ck} =	45 35	MPa MPa
			IVIFA
γ_c è il coefficiente parziale di sicurezza relativo al calcestruzzo	γ _c =	1.50	
α_{cc} è il coefficiente riduttivo per le resistenze di lunga durata	α _{cc} =	0.85	
Resistenza media a compressione $f_{cm} = f_{ck} + 8$ (11.2.2)	f _{cm} =	43.00	MPa
Resistenza media a traz. semplice f _{ctm} =0,30f _{ck} ^{2/3} (11.2.10.2)	f _{ctm} =	3.21	MPa MD-
Resistenza caratt. a traz. semplice f _{ctk} =0,7 f _{ctm} (11.2.10.2)	f _{ctk} = f _{ctd} =	2.25 1.50	MPa MPa
Resistenza di progetto a traz. semplice f_{ctk}/γ_c (4.1.2.1.2)			
Resistenza media a traz. per flessione f _{cfm} =1,2f _{ctm} (11.2.10.2)	f _{cfm} =	3.85	MPa MPa
Resistenza caratt. a traz. per flessione f _{cfk} =0,7 f _{cfm} (11.2.10.2)	f _{cfk} =	2.70	
Resistenza di calcolo a comp. $f_{cd} = \alpha_{cc} f_{ck} / \gamma_c$ (4.1.2.1.1)	$f_{cd} =$	19.83	MPa
η = 1 per barre di diametro minore uguale a 32mm	f 0.05 f	1.00	
Tensione tangenziale caratt. di aderenza acciaio-cls (4.1.8)	$f_{\rm bk}$ =2,25 η $f_{\rm ctk}$ =	5.06	MPa
Tensione tangenziale di calcolo di aderenza acciaio-cls (4.1.7)	f_{bd} = f_{bk} / γ_c =	3.37	MPa
	$f_{bd,red} = f_{bd} / 1,5 =$	2.25	MPa
Tensione tangenziale di calcolo in zona tesa o in presenza di barre molto addensate			
Modulo elastico E_{cm} =22000 $[f_{cm}/10]^{0.3}$ (11.2.10.3)	E _{cm} =	34077	MPa
Acciaio ordinario		B450C	
Tensione di snervamento caratteristica	f _{y,k} =	450	MPa
Tensione di rottura caratteristica	$f_{t,k}$ =	540	MPa
γ_S è il coefficiente parziale di sicurezza relativo all'acciaio	$\gamma_{\rm s}$ =	1.15	
Tensione di snervamento di progetto $f_{yd} = f_{yk}/\gamma_s$ (4.1.6)	f _{v,d} =	391.3	MPa
Modulo elastico	E _s =	210000	MPa

autostrade per l'italia

Autostrada A14: Bologna – Bari - Taranto Tratto Borgo Panigale - Caselle Potenziamento del sistema autostradale e tangenziale di Bologna – Lotto 3 – Sottovia Diramazione via Scandellara

Coefficiente di dilatazione termica lineare

 α_{s} =

1.2E-05

1/C°

Acciaio da precompresso (NTC2008 tab 11.3.VII)

t _{ptk} =	1860.00	MPa	tensione caratteristica di rottura
$f_{p(1)k} =$	1670.00	MPa	tensione carr. all'1% di def. totale

Le tensioni iniziali all'atto della tesatura dei cavi devono rispettare le più restrittive delle seguenti limitazioni (4.1.8.1.5):

 $\begin{aligned} & \sigma spi < 0.90 \; f_{p(1)k} = & 1503.00 & MPa \\ & \sigma spi < 0.80 \; f_{ptk} = & 1488.00 & MPa \end{aligned}$

Tensione massima dell'acciao in condizione di esercizio (4.1.2.2.5.2) σs = 0,8 $f_{p(1)k}$ = 1336.00 MPa

Resistenza di calcolo (4.1.2.1.1.3)

 $fyd = f_{p(1)k} / 1,15 =$ 1452.17 MPa

Tensioni di esercizio nel cls a cadute avvenute (NTC2008 4.1.8.1.3)

 σc < 0,60 fck per combinazione caratteristica (rara) σc < 0,45 fck per combinazione quasi permanente

Travi in precompresso	C45/55	σc = σc =	27.00 20.25	MPa MPa	comb. caratt. comb. quasi perm.
Soletta in opera	C35/45	σc = σc =	21.00 15.75	MPa MPa	comb. caratt.

Caratteristiche geometriche trave in cap

Trave in c.a.p.

B inf =	0.50	m	base ala inferiore
H _{inf} =	0.20	m	altezza ala inferiore
B _{sup} =	0.20	m	base anima
H _{sup} =	0.30	m	altezza anima
H _{tot} =	0.50	m	altezza totale trave
A trave =	0.16	mq	area trave
yG _{trave} =	0.194	m	baricentro da intradosso trave
JG _{trave} =	0.00313	m ⁴	momento di inerzia
p =	4.00	kN/m	peso a metro della trave in c.a.p
L _{calcolo} =	10.60	m	luce di calcolo trave

Trefoli

Ap = area singolo trefolo

Al = area singolo livello di tefoli

y = posizione livelli trefoli da intradosso trave

t = tensione di precompressione

T = carico di precompressione

Livello	n° trefoli	y [m]	Ap [mmq]	Al[mmq]	t [MPa]	T [kN]
1	4	0.05	139	556	1270	706.12
2	4	0.100	139	556	1270	706.12
3	0	0.15	139	0	1270	0.00
4	0	0.45	139	0	1270	0.00

тот	8	0.075		1112		1412.24
yG _{trefoli} =	0.075	m	baricentro da i	ntradosso trave		
G _{trefoli} =	0.0000070	m4	momento di in	erzia		
rmatura lenta si	u trave c.a.p.					
Livello	n° barre	y [m]	As [mmq]	Al[mmq]	J [m4]	φ [mm]
1	6	0.05	201	1206	0.000008	16
2	4	0.15	201	804	0.000000	16
3	2	0.32	79	157	0.000006	10
4	2	0.48	79	157	0.000019	10
5	0	0	0	0	0.000000	_ 0
тот	14	0.132		2325	0.000033	
G _{barre} =	0.132	m		ntradosso trave		
G _{barre} =	0.000033	m4	momento di in	erzia		
rave c.a.p. + tre	foli + barre c.a.					
trave =	0.16	mq	area trave c.a.	р		
trefoli =	0.001112	mq	area trefoli			
barre ca =	0.002324779	mq	area barre c.a			
G _{trave} =	0.194	m	baricentro trav	e da intradosso s	sezione	
G _{trefoli} =	0.075	m	baricentro trefe	oli da intradosso	sezione	
G _{barre ca} =	0.132	m		e c.a. da intrado		
trefoli =	6		•	enizzazione trefo		
ca =	0		•	enizzazione arma		
trav+tref+ca =	0.166672	mq		•	ti + barre omogeni	
G _{trav+tref+ca} =	0.189	m		•	nizzati + barre om	•
G _{trav+tref+ca} =	0.00322	m4			oli omogenizzati +	barre om.
S _{trav+tref+ca} =	0.311	m		entro - fibra supe		
trav+tref =	0.189	m		entro - fibra inferi		
trefoli =	0.139			entro - trefoli prim	no livello	
Vs _{trav+tref} =	0.01036	m3		tente superiore		
/i _{trav+tref} =	0.01705	m3	momento resis		- EU-	
/ _{trefoli} =	0.02318	m3		tente trefoli prim		
trefoli =	-0.114	m	eccentricità tre	foli rispetto bario	entro trave	
oletta collabora	nte					
inf =	0.30	m				
I _{inf} =	0.30	m				
sup =	0.50	m				
sup =	0.20	m				
sol =	0.19	mq				
G _{sol} =	0.482	m		ntradosso trave		
G _{sol} =	0.004	m4	momento di in	erzia		
=	4.75	kN/m	peso a metro			
rave c.a.p + tref	oli + barre c.a. + sol	etta				
I _{tot} =	0.70	m	altezza totale t	rave + soletta		
=	0.9392		coeff. di omog	enizzazione cls s	oletta -> cls trave	
tot =	0.3451	mq	area trave + tr	efoli + soletta om	ogenizzata	
G _{tot} =	0.340	m	baricentro trav	e + trefoli + solet	ta omogenizzata	
G _{tot} =	0.01433	m4	momento inerz	zia trave + trefoli	+ soletta omogeni:	zzata
s _{soletta} =	0.360	m	distanza barice	entro - fibra supe	riore soletta	
			distanza barice			

yi _{trave} =	0.340	m	distanza baricentro - fibra inferiore trave
y _{trefoli} =	0.290	m	distanza baricentro - primo livello di trefoli
Ws soletta =	0.040	m3	momento resistente fibra superiore soletta
Ws trave =	0.090	m3	momento resistente fibra superiore trave
Wi _{trave} =	0.042	m3	momento resistente fibra inferiore trave
W _{trefoli} =	0.049	m3	momento resistente trefoli primo livello
e _{trefoli} =	-0.265	m	eccentricità trefoli rispetto baricentro trave + soletta

4.3.2 Verifiche tensionali trave c.a.p. e soletta collaborante: sezione di mezzeria

Nel presente paragrafo si riportano le verifiche tensionali relative alla trave in c.a.p. e alla soletta collaborante in opera, effettuate nella sezione di mezzeria, dove si sviluppano le massime sollecitazioni flettenti.

Per ciascuna fase di carico si sono calcolate le tensioni all'intradosso e all'estradosso della trave a all'intradosso e estradosso della soletta. Si sono riportati altresì i limiti tensionali ammissibili per ciascuna configurazione al fine di stabilire l'accettabilità dei risultati ottenuti.

Come è possibile notare dalle calcolazioni sotto riportate, le verifiche sono soddisfatte in tutte le fasi di carico, per cui la configurazione geometrica di trave, soletta e trefoli risulta essere congrua rispetto alle sollecitazioni di calcolo.

Si riporta la verifica relativa alle due travi che hanno presentato le sollecitazioni maggiori generate rispettivamente dai carichi permanenti portati e da quelli variabili (carichi mobili e vento). Come era lecito supporre, la trave maggiormente sollecitata dai pesi permanenti si trova a lato della carreggiata dove gravano le barriere FOA, con relativo cordolo, e il marciapiede (elemento 1496), mentre, a risentire dell'azione dei mobili, sono quelle travi che si avvicinano al centro della corsia, e, in particolare, l'elemento

Si premette tuttavia, al fine delle analisi, il calcolo del ritiro differenziale che interessa la soletta seguendo le indicazioni prescritte al paragrafo 11.2.10.6 delle Normative Tecniche del 2008.

Ritiro differenziale soletta (NTC2008 11.2.10.6)

Tabella 11.2.Va - Valori di Eco

	Defo	Deformazione da ritiro per essiccamento (in ‰)						
\mathbf{f}_{ck}	Umidità Relativa (in %)							
	20	40	60	80	90	100		
20	-0,62	-0,58	-0,49	-0,30	-0,17	+0,00		
40	-0,48	-0,46	-0,38	-0,24	-0,13	+0,00		
60	-0,38	-0,36	-0,30	-0,19	-0,10	+0,00		
80	-0.30	-0.28	-0.24	-0.15	-0.07	+0.00		

Tabella 11.2.Vb – Valori di kh

\mathbf{h}_{0} (mm)	$\mathbf{k_h}$
100	1,0
200	0,85
300	0,75
≥500	0,70

Ac =	0.19	mq	area soletta in opera
u =	0.50	m	perimetro esposto all'aria
h0 =	760.00	mm	dimensione fittiza ho = 2Ac / u
kh =	0.70		
UR =	80	%	umidità relativa
= 003	0.00026		deformazione da ritiro per essicamento
εcd.inf =	0.0001785		deformazione da ritiro per essicamento a tempo inf.

Autostrada A14: Bologna - Bari - Taranto Tratto Borgo Panigale - Caselle

Potenziamento del sistema autostradale e tangenziale di Bologna -Lotto 3 - Sottovia Diramazione via Scandellara

Assumendo che all'atto del getto della soletta, la trave in cap abbia già scontato il 50% del ritiro, segue che il ritiro differenziale agente sulla sezione è la metà di quello appena calcolato, ossia:

εcd,diff = 0.000089 ritiro differenziale trave-soletta

Al fine di considrare gli effetti della viscosità del calcestruzzo per azioni di lunga durata, è possibile considerare un valore fittizio del modulo del elasticità del cls fornito dalla (CNR 10016-85 3.3.1.4)

$Ec^* = Ec / (1 + \phi t)$		dove φt :	= φinf (1-e ^{-t})	Cautelativamente si usa φt = φinf
φinf =	1.33		coeff. di visc	osità Vedi "cadute di tensione)
Ec* =	14625385	kN/mq	modulo elas	tico soletta ridotto
Nr =	248.010	kN	azione da rit	iro
e =	0.141	m	distanza bar	icentro soletta - baricentro trave+soletta
Mr =	35.04	kNm	momento da	ritiro su singola trave

ELEMENTO 1109 (MASSIMI VARIABILI)

Cadute di tensione

autostrade per l'italia

Caduta di tensione per rilassamento (NTC2008 11.3.3.3)

σ pi =	1270.00	MPa	tensione iniziale del cavo
ρ 1000 =	2.50		perdita per rilassamento a 1000 ore (classe 2)
fpk =	1860.00	MPa	resistenza caratteristica dell'acciaio da precompressione
μ = σ pi / fpk =	0.68		
t =	500000	ore	tempo dalla messa in tensione
Δσpr / σpi =	0.036		
$\Delta \sigma pr =$	45.90	MPa	caduta di tensione per rilassamento

Caduta di tensione per deformazione elastica del calcestruzzo

T =	1412.24	kN	tiro iniziale del cavo equivalente
A _{trefoli} =	0.001112	mq	area trefoli
A _{trave} =	0.16	mq	area trave c.a.p.
JG _{trave} =	0.00313	m4	momento inerzia trave c.a.p.
e _{trefoli} =	-0.119	m	eccentricità cavo equivalente rispetto baricentro trave
k =	1.72		(1 + e^2 / JGtrave x Atrave)
n =	6		coeff. di omogenizzazione trefoli-cls
Δσ p =	85.06	MPa	caduta di tensione per deformazione elastica

Caduta di tensione per ritiro (NTC2008 11.2.10.6)

es =	0.00026		contrazione da ritiro
Ep =	206000	MPa	modulo elastico trefoli
Δσp =	52.53		caduta di tensione per ritiro

Caduta di tensione per fenomeni viscosi (NTC2008 11.2.10.7)

Tabella 11.2.VI – Valori di $\phi(\infty, t_0)$. Atmosfera con umidità relativa di circa il 75%

t_0	$h_0 \le 75 \text{ mm}$	$h_0 = 150$	$h_0 = 300$	$h_0 \ge 600$
3 giorni	3,5	3,2	3,0	2,8
7 giorni	2,9	2,7	2,5	2,3
15 giorni	2,6	2,4	2,2	2,1
30 giorni	2,3	2,1	1,9	1,8
≥ 60giorni	2,0	1,8	1,7	1,6

11

RE Tabella 11.2.VII - Valori di $\phi(\infty, t_0)$. Atmosfera con umidità relativa di circa il 55%

t ₀	h ₀ ≤ 75 mm	$h_0 = 150$	$h_0 = 300$	$h_0 \ge 600$
3 giorni	4,5	4,0	3,6	3,3
7 giorni	3.7	3.3	3.0	2.8

Ac =	0.16	mq	area della sezione in calcestruzzo
u =	0.50	m	perimetro della sezione di cls esposto all'aria dimensione fittizia ho = 2Ac /
$h_0 =$	640	mm	u
UR =	75	%	
to =	30	giorni	
ϕ (inf,to) =	1.33		coeff. di viscosità
n =	6		coeff, di omogenizzazione trefoli-cls

Tensioni ai lembi della trave dovute a pesi propri + carichi permanenti + precompressione

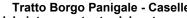
	Δσ _{inf.trave} [MPa]	Δσ _{sup.trave} [MPa]	
Pp + prec	14.62	-1.64	
Soletta	-3.91	6.44	
Permanenti	-0.95	0.44	
	9.76	5.24	_
Ht =	0.50	m	altezza totale trave
yG _{trefoli} =	0.075	m	baricentro trefoli da intradosso sezione
σc,el =	9.08	MPa	tensione del cls a quota cavo equivalente
			dovuto a pp+perm+precompressione
Δσρ =	72.49	MPa	caduta di tensione dovuta alla viscosità = ϕ x n x σ c,el
Cadute di tensione totali			
Rilassamento		45.90	MPa
Def. elastica		85.06	MPa
Ritiro		52.53	MPa
Viscosità		72.49	_ MPa
TOT		255.99	MPa

UNI EN 1992-1-1:2005 (5.10.6)

Interdipendenza fra ritiro, viscosità e rilassamento dell'acciaio armonico

$\Delta_{sp,c+s+r}$ =	157.85	MPa	Variazione di tensione nelle armature dovuta a viscosità, ritiro e rilassamento
Tot. perdite istantanee		85.06	MPa
Tot. perdite differite		157.85	MPa
		242.91	MPa
Corrispondenti al		19.13	% del tiro iniziale

Si ipotizza l'applicazione delle cadute di tensione in tre step successivi come dallo schema seguente:


Caduta	%	e [m]	N [kN]	M [kNm]	
1	60	-0.114	-162.07	18.48	solo trave
II	30	-0.265	-81.04	21.50	trave + soletta

III .	10	-0.265	-27.01	7.17	_ trave + soletta		
	100		-270.12	47.14			
Dismile we sewettewistished	4	- I lette					
Riepilogo caratteristiche t	rave e trav	e+soletta					
A _{trav+tref} =	0.167	mq	area trave + tr	efoli omogenizza	ati		
Ws _{trav+tref} =	0.010	m3	momento resi	stente fibra supe	eriore trave		
Wi _{trav+tref} =	0.017	m3		stente fibra inferi			
W _{trefoli} =	0.023	m3	momento resi	stente trefoli prin	no livello		
	0.045						
A tot =	0.345	mq		efoli + soletta or	· ·		
Ws soletta =	0.040	m3		stente fibra supe			
Wi soletta =	0.090	m4		stente fibra inferi			
Ws trave =	0.090	m3		stente fibra supe			
Wi _{trave} =	0.042	m3		stente fibra infer			
W _{trefoli} =	0.049	m3	momento resi	stente trefoli prin	no livello		
SEZIONE DI MEZZERIA							
INCREMENTI TENSIONAL							
Carico	M	N	Δσ inf.trave	Δσ _{sup.trave}	Δσ _{trefoli}		
	[kNm]	[kN]	[MPa]	[MPa]	[MPa]		
Pp trave	56.18	-	-	-	-		
Precompress.	-160.99	1412.24	-	-	-		
Pp + prec	-104.81	1412.24	 14.62	-1.64	1270.00		
Cadute I	18.48	-162.07	-2.06	0.81	-145.75		
Soletta	66.71	0.00	-3.91	6.44	17.27		
Cadute II	21.50	-81.04	-0.75	0.00	-72.87		
Permanenti	39.80	0.00	-0.95	0.44	4.84		
Ritiro diff.	35.04	248.01	-0.11	1.11	8.57		
Cadute III	7.17	-27.01	-0.25	0.00	-24.29		
Mobili (QPERM)	0.00	0.00	0.00	0.00	0.00		
Mobili (RARA)	226.40	0.00	-5.38	2.52	27.52		
,							
TENSIONI TOTALI TRAVE							
Carico	M	N	σ _{inf.trave}	σ _{inf.limite}	σ _{sup.trave}	σ _{sup.limite}	σ _{trefoli}
	[kNm]	[kN]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]
Pp + prec	-104.81	1412.24	14.62	24.50	-1.64	24.50	1270.00
Cadute I	18.48	-162.07	12.57	20.25	-0.83	20.25	1124.25
Soletta	66.71	0.00	8.65	20.25	5.61	20.25	1141.52
Cadute II	21.50	-81.04	7.91	20.25	5.61	20.25	1068.65
Permanenti	39.80	0.00	6.96	20.25	6.06	20.25	1073.49
Ritiro diff.	35.04	248.01	6.85	20.25	7.16	20.25	1082.06
Cadute III	7.17	-27.01	6.60	20.25	7.17	20.25	1057.77
Mobili (QPERM)	0.00	0.00	6.60	20.25	7.17	20.25	1057.77
Mobili (RARA)	226.40	0.00	1.22	-1.77	9.69	27.00	1085.29
INCREMENTI TENSIONAL SOLETTA	I						
Carico	М	N	Δσ _{inf.soletta}	$\Delta\sigma$ sup.soletta			
Carrot	[kNm]	[kN]	[MPa]	[MPa]			
Pp + prec	-104.81	1412.24	-	-			
Cadute I	18.48	-162.07	-	-			
Soletta	66.71	0.00	-	-			
Cadute II	21.50	-81.04	0.00	0.30			
Permanenti	39.80	0.00	0.44	1.00			
Ritiro diff.	35.04	248.01	-0.20	0.29			
Cadute III	7.17	-27.01	0.00	0.10			

Autostrada A14: Bologna - Bari - Taranto Tratto Borgo Panigale - Caselle

autostrade per l'italia Potenziamento del sistema autostradale e tangenziale di Bologna – Lotto 3 - Sottovia Diramazione via Scandellara

Mobili (QPERM)	0.00	0.00	0.00	0.00
Mobili (RARA)	226.40	0.00	2.52	5.68

TENSIONI TOTALI SOLETTA

Carico	M [kNm]	N [kN]	σ _{inf.soletta} [MPa]	σ _{sup.soletta} [MPa]	σ _{sup.limite} [MPa]
Pp + prec	-104.81	1412.24	-	-	-
Cadute I	18.48	-162.07	-	-	-
Soletta	66.71	0.00	-	-	-
Cadute II	21.50	-81.04	0.00	0.30	15.75
Permanenti	39.80	0.00	0.45	1.30	15.75
Ritiro diff.	35.04	248.01	0.25	1.60	15.75
Cadute III	7.17	-27.01	0.25	1.70	15.75
Mobili (QPERM)	0.00	0.00	0.25	1.70	15.75
Mobili (RARA)	226.40	0.00	2.78	7.38	21.00

ELEMENTO 1496 (MASSIMI PERMANENTI PORTATI)

Cadute di tensione

Caduta di tensione per rilassamento (NTC2008 11.3.3.3)

σ pi =	1200.00	MPa	tensione iniziale del cavo
ρ 1000 =	2.50		perdita per rilassamento a 1000 ore (classe 2)
fpk =	1860.00	MPa	resistenza caratteristica dell'acciaio da precompressione
$\mu = \sigma pi / fpk =$	0.65		
t =	500000	ore	tempo dalla messa in tensione
Δσpr / σpi =	0.031		
$\Delta \sigma pr =$	36.70	MPa	caduta di tensione per rilassamento

Caduta di tensione per deformazione elastica del calcestruzzo

T =	1334.40	kN	tiro iniziale del cavo equivalente
A _{trefoli} =	0.001112	mq	area trefoli
A _{trave} =	0.16	mq	area trave c.a.p.
JG _{trave} =	0.00313	m4	momento inerzia trave c.a.p.
e _{trefoli} =	-0.119	m	eccentricità cavo equivalente rispetto baricentro trave
k =	1.72		(1 + e^2 / JGtrave x Atrave)
n =	6		coeff. di omogenizzazione trefoli-cls
$\Delta \sigma p =$	80.37	MPa	caduta di tensione per deformazione elastica

Caduta di tensione per ritiro (NTC2008 11.2.10.6)

es =	0.00026		contrazione da ritiro
Ep =	206000	MPa	modulo elastico trefoli
$\Delta \sigma p =$	52.53		caduta di tensione per ritiro

Caduta di tensione per fenomeni viscosi (NTC2008 11.2.10.7)

Tabella 11.2.VI – Valori di $\phi(\infty, t_0)$. Atmosfera con umidità relativa di circa il 75%

t_0	$h_0 \le 75 \text{ mm}$	$h_0 = 150$	$h_0 = 300$	$h_0 \ge 600$
3 giorni	3,5	3,2	3,0	2,8
7 giorni	2,9	2,7	2,5	2,3
15 giorni	2,6	2,4	2,2	2,1
30 giorni	2,3	2,1	1,9	1,8
≥ 60giorni	2,0	1,8	1,7	1,6

Tabella 11.2.VII - Valori di $\phi(\infty, t_0)$. Atmosfera con umidità relativa di circa il 55%

11

RE

t _o	$h_0 \le 75 \text{ mm}$	$h_0 = 150$	$h_0 = 300$	$h_0 \ge 600$
giorni	4,5	4,0	3,6	3,3
giorni	3,7	3,3	3,0	2,8
5 giorni	3,3	3,0	2,7	2,5
30 giorni	2,9	2,6	2,3	2,2

Ac =	0.16	mq	area della sezione in calcestruzzo
u =	0.50	m	perimetro della sezione di cls esposto all'aria dimensione fittizia ho = 2Ac /
$h_0 =$	640	mm	u
UR =	75	%	
to =	30	giorni	
ϕ (inf,to) =	1.33		coeff. di viscosità
n =	6		coeff. di omogenizzazione trefoli-cls

Tensioni ai lembi della trave dovute a pesi propri + carichi permanenti + precompressione

	Δσ _{inf.trave} [MPa]	Δσ _{sup.trave} [MPa]	
Pp + prec	13.63	-1.26	
Soletta	-3.91	6.44	
Permanenti	-1.92	0.90	_
	7.80	6.08	
Ht =	0.50	m	altezza totale trave
yG _{trefoli} =	0.075	m	baricentro trefoli da intradosso sezione
σc,el =	7.55	MPa	tensione del cls a quota cavo equivalente
			dovuto a pp+perm+precompressione
Δσρ =	60.22	MPa	caduta di tensione dovuta alla viscosità = φ x n x σc,el
Cadute di tensione totali			
Rilassamento		36.70	MPa
Def. elastica		80.37	MPa
Ritiro		52.53	MPa
Viscosità		60.22	MPa
TOT		229.82	MPa

UNI EN 1992-1-1:2005 (5.10.6)

Interdipendenza fra ritiro, viscosità e rilassamento dell'acciaio armonico

$\Delta_{\mathrm{sp,c+s+r}}$ =	138.87	MPa	Variazione di tensione nelle armature dovuta a viscosità, ritiro e rilassamento
Tot. perdite istantanee		80.37	MPa
Tot. perdite differite		138.87	MPa
		219.25	MPa
Corrispondenti al		18.27	% del tiro iniziale

Si ipotizza l'applicazione delle cadute di tensione in tre step successivi come dallo schema seguente:

Caduta	%	e [m]	N [kN]	M [kNm]	
I	60	-0.114	-146.28	16.68	solo trave
II	30	-0.265	-73.14	19.40	trave + soletta
III	10	-0.265	-24.38	6.47	trave + soletta
	100		-243.80	42.55	

Riepilogo caratteristiche	trave e	trave+soletta
---------------------------	---------	---------------

A _{trav+tref} =	0.167	mq	area trave + tr	refoli omogenizzat	İ		
Ws _{trav+tref} =	0.010	m3	momento resi	stente fibra superi	ore trave		
Wi _{trav+tref} =	0.017	m3	momento resi	stente fibra inferio	re trave		
W _{trefoli} =	0.023	m3	momento resi	stente trefoli primo	livello		
A tot =	0.345	mq		refoli + soletta omo	•		
Ws _{soletta} =	0.040	m3	momento resis	stente fibra superi	ore soletta		
Wi _{soletta} =	0.090	m4	momento resis	stente fibra inferio	re soletta		
Ws _{trave} =	0.090	m3	momento resis	stente fibra superi	ore trave		
Wi _{trave} =	0.042	m3	momento resi	stente fibra inferio	re trave		
W _{trefoli} =	0.049	m3	momento resi	stente trefoli primo	livello		
SEZIONE DI MEZZERIA							
INCREMENTI TENSIONALI							
Carico	М	N	$\Delta\sigma_{ ext{inf.trave}}$	$\Delta\sigma$ sup.trave	$\Delta\sigma$ trefoli		
	[kNm]	[kN]	[MPa]	[MPa]	[MPa]		
Pp trave	56.18	_	_	_	_		
Precompress.	-152.12	1334.40	<u>-</u>	_	_		
Pp + prec	-95.94	1334.40	 13.63	-1.26	1200.00		
Cadute I	16.68	-146.28	-1.86	0.73	-131.55		
Soletta	66.71	0.00	-3.91	6.44	17.27		
Cadute II	19.40	-73.14	-0.67	0.00	-65.77		
Permanenti	80.70	0.00	-1.92	0.90	9.81		
Ritiro diff.	35.04	248.01	-0.11	1.11	8.57		
Cadute III	6.47	-24.38	-0.22	0.00	-21.92		
Mobili (QPERM)	0.00	0.00	0.00	0.00	0.00		
Mobili (RARA)	167.60	0.00	-3.98	1.87	20.38		
TENSIONI TOTALI TRAVE							
Carico	M	N	σ inf.trave	σ inf.limite	σ sup.trave	σ sup.limite	σ _{trefoli}
	[kNm]	[kN]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]
Pp + prec	-95.94	1334.40	13.63	24.50	-1.26	24.50	1200.00
Cadute I	16.68	-146.28	11.78	20.25	-0.52	20.25	1068.45
Soletta	66.71	0.00	7.86	20.25	5.92	20.25	1085.72
Cadute II	19.40	-73.14	7.19	20.25	5.92	20.25	1019.95
Permanenti	80.70	0.00	5.28	20.25	6.82	20.25	1029.76
Ritiro diff.	35.04	248.01	5.16	20.25	7.93	20.25	1038.33
Cadute III	6.47	-24.38	4.94	20.25	7.93	20.25	1016.41
Mobili (QPERM)	0.00	0.00	4.94	20.25	7.93	20.25	1016.41
Mobili (RARA)	167.60	0.00	0.96	-1.77	9.80	27.00	1036.78
INCREMENTI TENSIONALI							
SOLETTA	М	N.	۸	٨σ			
Carico	[kNm]	N [kN]	Δσ _{inf.soletta} [MPa]	$\Delta \sigma_{ ext{ sup.soletta}} \ [ext{MPa}]$			
	[KIVIII]	[1014]	[Wii G]	[ivii a]			
Pp + prec	-95.94	1334.40	-	-			
Cadute I	16.68	-146.28	-	-			
Soletta	66.71	0.00	-	-			
Cadute II	19.40	-73.14	0.00	0.28			
Permanenti	80.70	0.00	0.90	2.03			
Ritiro diff.	35.04	248.01	-0.20	0.29			
Cadute III	6.47	-24.38	0.00	0.09			
Mobili (QPERM)	0.00	0.00	0.00	0.00			
Mobili (RARA)	167.60	0.00	1 87	1 21			

167.60

0.00

1.87

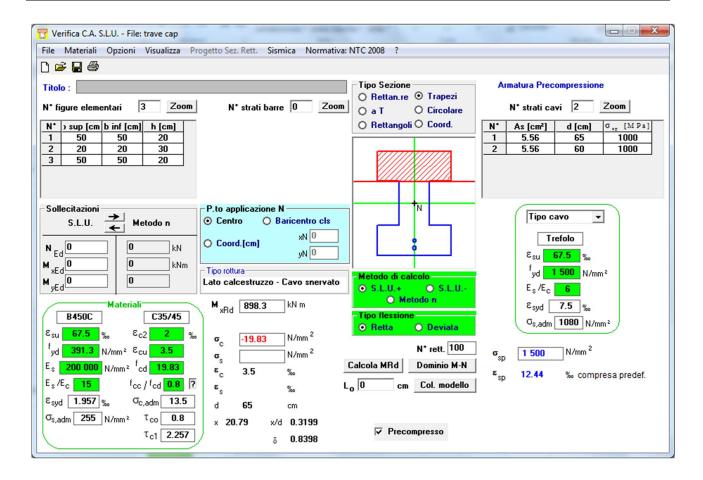
4.21

Mobili (RARA)

TENSIONI TOTALI SOLETTA					
Carico	M	N	σ _{inf.soletta}	σ _{sup.soletta}	$\sigma_{\text{sup.limite}}$
	[kNm]	[kN]	[MPa]	[MPa]	[MPa]
Pp + prec	-95.94	1334.40	-	-	-
Cadute I	16.68	-146.28	-	-	-
Soletta	66.71	0.00	-	-	-
Cadute II	19.40	-73.14	0.00	0.28	15.75
Permanenti	80.70	0.00	0.90	2.30	15.75
Ritiro diff.	35.04	248.01	0.71	2.59	15.75
Cadute III	6.47	-24.38	0.71	2.69	15.75
Mobili (QPERM)	0.00	0.00	0.71	2.69	15.75
Mobili (RARA)	167.60	0.00	2.58	6.89	21.00

4.3.3 Verifica agli SLU trave c.a.p. e soletta collaborante: sezione di mezzeria

Si riporta la verifica SLU dell'impalcato oggetto di analisi.


Come è evidente dal form sotto riportato, il momento resistente risulta essere maggiore del momento sollecitante qui riportato, ottenuto avendo preso in considerazione tutte le sollecitazioni massime agenti sulle travi d'impalcato, e pari a Msd = 573.3 kNm.

Si noti che cautelativamente è stato utilizzato il calcestruzzo della sezione composta pari a quello della soletta in opera.

SEZIONE DI MEZZERIA VERIFICA AGLI SLU		
Carico	М	
	[kNm]	
Pp trave	56.18	
Precompress.	-160.99	_
Pp + prec	-104.81	
Cadute I	18.48	
Soletta	66.71	
Cadute II	21.50	
Permanenti	39.80	
Ritiro diff.	35.04	
Cadute III	7.17	
Mobili (QPERM)	0.00	
Mobili (RARA)	226.40	
γ_{G1} =	1.35	Coefficiente combinazione SLU carichi strutturali
$\gamma_{G2} =$	1.50	Coefficiente combinazione SLU carichi permanenti portati non strutturali
$\gamma_Q =$	1.35	Coefficiente combinazione SLU carichi da traffico
γ_{ϵ} =	1.20	Coefficiente combinazione SLU ritiro
$M_{Sd,SLU} =$	573.30	kNm
$M_{Rd,SLU} =$	898.30	kNm
M _{Sd,SLU} =	573.30	kNm < 898.30 kNm = M _{Rd,SLU}
Sd,SLU	0.0.00	WRd,SLU

La verifica risulta essere soddisfatta

Come si può notare, il momento resistente della sezione formata da trave+soletta collaborante in opera risulta essere maggiore del momento sollecitante Msd = 573.3 kNm: la verifica è quindi soddisfatta.

4.3.4 Verifica a taglio della trave in c.a.p.

Nel presente paragrafo si riportano le verifiche a taglio dell'impalcato in prima e seconda fase.

In prima fase la resistenza è fornita dalla sola trave a cui è applicato il peso proprio della stessa e il peso proprio della soletta e del getto di completamente presente ai lati dalle travi.

In seconda fase la sezione resistente è data da trave+soletta ed i carichi portati, oltre a quelli di prima fase, contemplano anche i permanenti portati e i sovraccarichi variabili.

In entrambe le fasi, è stata considerata reagente una sezione rettangolare con base pari allo spessore dell'anima della trave in c.a.p. Dato che la verifica è stata eseguita all'appoggio, ossia in una zona in cui la precompressione non è ancora attiva, è stata utilizzata la formulazione valida per elementi in c.a. non precompressi. Per la verifica della staffatura si è poi fatto riferimento al metodo del "traliccio variabile. Per tutte le specifiche si vedano comunque i calcoli di seguito riportati.

I FASE

Il taglio caratteristivo massimo agente in prima fase è calcolato al paragrafo 3.2.1 della presente relazione e vale:

$$T_{\text{max}} = (4 + 4.75) \times (10.60 + 2 \times 0.40) / 2 = 49.87 \text{ kN}$$

A SLU si ha:

$$V_{sd} = 49.87 \times 1.35 = 67.32 \text{ kN}$$

Disponendo 1010/10 cm a 2 bracci cm si ha un taglio resistente pari a:

 V_{Rd} = 27.66 daN/cm² x 20 cm x 46 cm = 16247.2 daN = 162.47 kN > 67.32 kN

$f_{ck} \\$	35	MPa
h	500	mm
С	40	mm
d	460	mm
k	1.66	
	0.44	MPa
V _{min}	4.43	daN/cm²
V _{min} A _{sl,sup}	4.43 226	daN/cm²
Asl,sup	226	mm²
Asl,sup Asl,inf	226 3770	mm²

PI	0.002	
V	0.41	MPa
V _{Rd}	4.08	daN/cm²
θ	45	0
$ctg\theta$	1.00	ok
A_{sw}	157	mm^2
S	100	mm
α	90	•
$ctg\alpha$	6E-17	
f_{yd}	391	MPa
	254469	N
V_{Rsd}	2.77	MPa
	27.66	daN/cm²
	410550	N
V_{Rcd}	4.46	MPa
	44.63	daN/cm²
	2.77	MPa
V _{Rd}	27.66	daN/cm²

senza armatura a taglio

con armatura a taglio

II E III FASE

Nella combinazione di inviluppo degli SLU si ha un taglio massimo di 1028.37 kN

$$V_{sd}$$
 = 49.87 x 1.35 + 1028.37 = 67.32 + 1028.37 = 1095.57 kN = 109557 daN

Disponendo 1016/10 cm a 2 bracci cm si ha un taglio resistente pari a:

 $V_{Rd} = 38.65 \text{ daN/cm}^2 \text{ x } 66 \text{ cm x } 50 \text{ cm} = 127545 \text{ daN} = 1275.45 \text{ kN} > 1095.57 \text{ kN}$

f_{ck}	35	MPa
h	700	mm
С	40	mm
d	660	mm
k	1.55	
.,	0.40	MPa
V _{min}	0.40 4.00	MPa daN/cm²
V min Asl,sup		
	4.00	daN/cm²

0.000

 ρ_1

,,	0.00	MPa
V _{Rd}	0.00	daN/cm²
θ	30	0
$ctg\theta$	1.73	ok
A_{sw}	402	mm^2
S	100	mm
α	90	•
$ctg\alpha$	6E-17	
$f_{yd} \\$	391	MPa
	1618906	N
V_{Rsd}	4.91	MPa
	49.06	daN/cm²
	1275331	N
V_{Rcd}	3.86	MPa
	38.65	daN/cm²
V	2 96	MDa

senza armatura a taglio

con armatura a taglio

38.65 daN/cm²

4.3.5 Verifica connessione trave-soletta

La verifica della connessione trave-soletta viene effettuata considerando quali sollecitazioni di calcolo lo scorrimento dovuto al taglio più lo scorrimento dovuto al ritiro differenziale trave/soletta calcolato ai paragrafi precedenti e amplificata con l'opportuno coeff. agli SLU. Lo scorrimento dovuto al taglio viene determinato con la formulazione di Jourawski come di seguito esplicitato.

La resistenza della connessione viene calcolata seguendo il procedimento proposto dall'Eurocodice 2 relativamente all' "Azione tagliante nell'interfaccia tra calcestruzzi gettati in tempi diversi" e riportato al paragrafo UNI EN 1992-1-1:2005 (6.2.5).

Dato che oltre alla soletta vera e propria (getto di 20 cm posta al di sopra delle travi in c.a.p.), è presente anche un getto di completamento ai lati delle travi, la resistenza di progetto è stata calcolata come somma di due contributi.

Il primo contributo è relativo alla resistenza dell'interfaccia trave-soletta che si realizza all'estradosso della trave e da cui fuoriescono le armature di connessione.

Il secondo contributo è dato dalla resistenza all'interfaccia tra trave e soletta che si realizza sulle pareti laterali dell'anima delle travi in cap.

Come si può notare dalla calcolazioni di seguito riportate, i due contributi, oltre che per la presenza o meno di armature di connessione, si differenziano per un diverso coefficiente d'attrito tra le superfici di trave e soletta. Nel primo caso si ha infatti una superficie "libera" classificabile come "liscia, mentre nel secondo caso, dato che il contatto avviene con le pareti laterali della trave prefabbricata, ossia con getti "contro cassero" si ha una superficie di contatto classificabile come "molto liscia. Si tenga presente che, a favore di sicurezza è stato adottato il taglio sollecitante massimo, indipendentemente dal segno.

Verifica connessione trave - soletta - SEZIONE DI APPOGGIO

$\tau = (T \times S) / (J \times b)$			Tensione tangenziale tra trave in cap e soletta in opera
yG =	0.340	m	Baricentro sezione omogenizzata
S =	0.02344	m3	Momento statico della trave in cap (o della soletta) rispetto all'asse baricentrico della sez. omogenizzata
J =	0.0143	m4	Momento d'inerzia della sezione omogenizzata
b =	0.20	m	larghezza della nervatura di contatto Taglio massimo in
T =	1028.37	kN	esercizio
			dovuto ai permanenti portati + variabili
$\gamma t =$	1.00		Coeff. di sic. SLU (il carico sopra riportato è già SLU)
T _{SLU} =	1028.37	kN	Taglio massimo SLU (per. portati + variabili)
$FT_{SLU} = T_{SLU}xS/J =$	1682.88	kN/m	Sforzo di scorrimento dovuto al taglio
Nr =	248.01	kN	Sforzo di scorrimento da ritiro differenziale
γr =	1.20		Coeff. di sicurezza SLU per ritiro
Nr- _{SLU} =	297.61	kN	Sforzo di scorrimento SLU da ritiro differenziale
S _{TOT} =	1980.49	kN	Scorrimento totale SLU (taglio + ritiro differenziale)

UNI EN 1992-1-1:2005 (6.2.5)

Azione tagliante nell'interfaccia tra calcestruzzi gettati in tempi diversi

Resistenza di progetto a taglio all'interfaccia - Lato superiore anima trave

 V_{Rdi} = c f_{ctd} + μ σ_{n} + ρ f_{yd} (μ sin α + cos α) < 0.5 ν f_{cd}

c =	0.20	superficie molto liscia (getto su cassero)
		c = 0,025 a c = 0,10 μ =
μ =	0.60	0,5

$C = \mu = $ $f_{ctd} = $ $f_{yd} = $ $\sigma_n = $ $\phi \text{ staffa} = $ $p \text{ staffa} = $ $b \text{ staffa} = $ $A_s = $ $A_i = $ $\rho = As / Ai$ $\alpha = $ $v = $ $V_{Rdi} = $	0.10 0.50 1.50 391.30 0.00 0 200 2 0.00 1300.00 0.000000 90 0.60	MPa MPa MPa mm mm mmq / mmq /		c = 0,0 superfi c = 0,2 superfi c = 0,4 superfi c = 0,5 Resiste Tensio Diame Passo Numer Area d Area d	0 μ = 0,6	sassero scorrevole o sup. libera) za almeno pari a 3mm/40mm) razione semplice acciaio faccia delle staffe ffe versa l'interfaccia
$\mu = f_{ctd} = f_{yd} = \sigma_n = \phi \text{ staffa} = \phi = $	1.50 391.30 0.00 0 200 2 0.00 1300.00 0.000000	MPa MPa mm mm mmq /		c = 0,0 superfi c = 0,2 superfi c = 0,4 superfi c = 0,5 Resiste Tensio Diame Passo Numer Area d Area d	$25 \text{ a c} = 0.10 \ \mu = 0.00 \ \text{cie}$ liscia (getto su consideration of the liscia of the lisci	sassero scorrevole o sup. libera) za almeno pari a 3mm/40mm) razione semplice acciaio faccia delle staffe ffe versa l'interfaccia
$\mu = f_{ctd} = f_{yd} = \sigma_n = \phi$ $\phi \text{ staffa} = \phi$ $\phi \text{ staffa} = \phi$ $\phi \text{ staffa} = \phi$ $\Delta_s = \Delta_s = \Delta_s = \phi$ $\phi = \Delta_s / \Delta_s$	1.50 391.30 0.00 0 200 2 0.00 1300.00 0.000000	MPa MPa mm mm mmq /		c = 0,0 superfi c = 0,2 superfi c = 0,4 superfi c = 0,5 Resiste Tensio Tensio Diame Passo Numer Area d Area d	$25 \text{ a c} = 0.10 \ \mu = 0.00 \ \text{cie}$ liscia (getto su consideration of the liscia (getto su consideration of the liscia (getto su consideration of the liscia (scabrez of the liscia	sassero scorrevole o sup. libera) za almeno pari a 3mm/40mm) razione semplice acciaio faccia delle staffe ffe versa l'interfaccia
Ectd = Fyd = 5n = 5 staffa = As = A _s =	1.50 391.30 0.00 0 200 2 0.00 1300.00	MPa MPa mm mm		c = 0,0 superfi c = 0,2 superfi c = 0,4 superfi c = 0,5 Resiste Tensio Tensio Diame Passo Numer Area d	$25 \text{ a c} = 0.10 \ \mu = 0.5$ cie liscia (getto su con $0 \ \mu = 0.6$ cie scabra (scabrezo $0 \ \mu = 0.7$ cie dentata $0 \ \mu = 0.9$ enza di progetto a trans di snervamento ne normale all'intere cro singolo braccio delle staffe o di bracci delle staffa armatura che attra	sassero scorrevole o sup. libera) za almeno pari a 3mm/40mm) razione semplice acciaio faccia delle staffe
.: ctd = .: yd =	1.50 391.30 0.00 0 200 2	MPa MPa mm mm		c = 0,0 superfi c = 0,2 superfi c = 0,4 superfi c = 0,5 Resiste Tensio Tensio Diame Passo Numer Area d	$25 \text{ a c} = 0.10 \ \mu = 0.5$ cie liscia (getto su con $0 \ \mu = 0.6$ cie scabra (scabrezo $0 \ \mu = 0.7$ cie dentata $0 \ \mu = 0.9$ enza di progetto a trans di snervamento ne normale all'intere cro singolo braccio delle staffe o di bracci delle staffa armatura che attra	sassero scorrevole o sup. libera) za almeno pari a 3mm/40mm) razione semplice acciaio faccia delle staffe
$ \begin{aligned} \mathbf{f}_{ctd} &= \\ \mathbf{f}_{vd} &= \\ \mathbf{\sigma}_{n} &= \\ \mathbf{\phi}_{staffa} &= \\ \mathbf{D}_{staffa} &= \\ \mathbf$	1.50 391.30 0.00 0 200 2	MPa MPa mm mm		c = 0,0 superfii c = 0,2 superfii c = 0,4 superfii c = 0,5 Resiste Tensio Tensio Diame Passo Numer	25 a c = 0,10 μ = 0 cie liscia (getto su c 0μ = 0,6 cie scabra (scabrez 0μ = 0,7 cie dentata 0μ = 0,9 enza di progetto a tiene di snervamento ne normale all'interitro singolo braccio delle staffe o di bracci delle staffe	sassero scorrevole o sup. libera) za almeno pari a 3mm/40mm) razione semplice acciaio faccia delle staffe
$\mu = \begin{cases} f_{ctd} = \\ f_{yd} = \\ \sigma_n = \\ \phi \text{ staffa} = \\ \rho \text{ staffa} = \end{cases}$	1.50 391.30 0.00 0	MPa MPa mm		c = 0,0 superfi c = 0,2 superfi c = 0,4 superfi c = 0,5 Resiste Tensio Diame Passo	25 a c = 0,10 μ = 0 cie liscia (getto su c 0μ = 0,6 cie scabra (scabrez 0μ = 0,7 cie dentata 0μ = 0,9 enza di progetto a tine di snervamento ne normale all'interito singolo braccio delle staffe	sassero scorrevole o sup. libera) za almeno pari a 3mm/40mm) razione semplice acciaio faccia delle staffe
μ = f_{ctd} = f_{yd} = σ_n = ϕ staffa =	1.50 391.30 0.00 0	MPa MPa mm		c = 0,0 superfi c = 0,2 superfi c = 0,4 superfi c = 0,5 Resiste Tensio Diame	25 a c = 0,10 μ = 0 cie liscia (getto su c 0μ = 0,6 cie scabra (scabrez 0μ = 0,7 cie dentata 0μ = 0,9 enza di progetto a tine di snervamento ne normale all'intertro singolo braccio di	sassero scorrevole o sup. libera) za almeno pari a 3mm/40mm) razione semplice acciaio faccia
μ = f _{ctd} = f _{yd} = σ _n =	1.50 391.30 0.00	MPa MPa		c = 0,0 superfii c = 0,2 superfii c = 0,4 superfii c = 0,5 Resiste Tensio Tensio	25 a c = 0,10 μ = 0 cie liscia (getto su c 0μ = 0,6 cie scabra (scabrez 0μ = 0,7 cie dentata 0μ = 0,9 enza di progetto a tine di snervamento ne normale all'inter	sassero scorrevole o sup. libera) za almeno pari a 3mm/40mm) razione semplice acciaio faccia
μ = f_{ctd} =	1.50 391.30			c = 0,0 superfii c = 0,2 superfii c = 0,4 superfii c = 0,5 Resiste	25 a c = 0,10 μ = 0 cie liscia (getto su c 0 μ = 0,6 cie scabra (scabrez 0 μ = 0,7 cie dentata 0 μ = 0,9 enza di progetto a tr ne di snervamento	sassero scorrevole o sup. libera) za almeno pari a 3mm/40mm) razione semplice acciaio
μ =	0.50	MPa		c = 0,0 superfi c = 0,2 superfi c = 0,4 superfi c = 0,5	25 a c = 0,10 μ = 0. cie liscia (getto su consideration) μ = 0,6 cie scabra (scabrezon μ = 0,7 cie dentata 0 μ = 0,9	5 cassero scorrevole o sup. libera) za almeno pari a 3mm/40mm)
				c = 0.0 superfi $c = 0.2$ superfi $c = 0.4$ superfi	25 a c = 0,10 μ = 0 cie liscia (getto su c 0 μ = 0,6 cie scabra (scabrez 0 μ = 0,7 cie dentata	5 cassero scorrevole o sup. libera)
				c = 0,0 superfi c = 0,2 superfi c = 0,4	25 a c = 0,10 μ = 0 cie liscia (getto su c 0 μ = 0,6 cie scabra (scabrez 0 μ = 0,7	5 cassero scorrevole o sup. libera)
				c = 0,0 superfi c = 0,2 superfi	25 a c = 0,10 μ = 0 cie liscia (getto su c 0 μ = 0,6 cie scabra (scabrez	5 cassero scorrevole o sup. libera)
				c = 0,0 superfi c = 0,2	25 a c = 0,10 μ = 0 cie liscia (getto su c $0~\mu$ = 0,6	5 cassero scorrevole o sup. libera)
				c = 0,0 superfi	25 a c = 0,10 μ = 0 cie liscia (getto su c	5
				c = 0,0	25 a c = 0,10 μ = 0	5
						•
•	rogetto a taglio all'inte $σ_n + ρ f_{yd}$ (μ sin $α + cos$			a trave +	estradosso ala tra	ve
V _{Rd} =	1800.16	kN/m		Resiste	enza a metro	
V _{Rdi} =	9.00	MPa		<	5.12	MPa
ν =	0.516			Coeff r	iduttivo della resiste	enza
α =	90	o			zione armature (45	
ρ = As / Ai	0.037061	0				0
A _i =	200.00	mmq/	mm	Area d	el giunto	
3.39	75	18	1	254		
2.20	passo	diam	n°	054		
ferri aggiuntivi ri	ispetto all'armatura a t		•			
A _s =		2120066	mmq /	/ mm	Area di armatura	che attraversa l'interfaccia
b _{staffa} =		2			staffe	
р staπа —		.00			Numero di bracci	
Ψ staffa = p _{staffa} =		100	mm		Passo delle staffe	
o _n – φ _{staffa} =	(16	mm			braccio delle staffe
_{lyd} – σ _n =		0.00	MPa		Tensione normale	
F _{ctd} = F _{yd} =		1.50 91.30	MPa MPa		Tensione di snerv	getto a trazione semplice
f _	,	1.50	MDo		Posistanza di pro	rotto o traziono complico
					$c = 0.50 \mu = 0.9$	
					superficie dentata	
					$c = 0.40 \mu = 0.7$	
						(scabrezza almeno pari a 3mm/40
					superficie liscia (g c = 0,20 μ = 0,6	

1994.89

 $V_{Rd-TOT} =$

kN/m

1980.49

 $= S_{TOT}$

autostrade per l'italia

Autostrada A14: Bologna – Bari - Taranto Tratto Borgo Panigale - Caselle Potenziamento del sistema autostradale e tangenziale di Bologna – Lotto 3 – Sottovia Diramazione via Scandellara

4.4 VERIFICA SOLETTA DI II ALLARGO

In virtù del fatto che il getto della soletta collaborante prevede il completo riempimento degli spazi esistenti tra un trave prefabbricata e l'altra, realizzando di fatto una soletta piena, le verifiche locali della soletta stessa non risultano essere significative.

autostrade per l'italia

Autostrada A14: Bologna – Bari - Taranto Tratto Borgo Panigale - Caselle Potenziamento del sistema autostradale e tangenziale di Bologna – Lotto 3 – Sottovia Diramazione via Scandellara

5 ANALISI SPALLE

5.1 DESCRIZIONE GENERALE

Le spalle del viadotto esistenti (appartenenti al blocco "ORIGINARIO" e all' "AMPLIAMENTO 1") e di nuova realizzazione ("AMPLIAMENTO 2") sono calcolate indipendentemente e in base alle sollecitazioni agenti sull'impalcato e direttamente sulle spalle stesse (in particolare, la spinta del terreno ed il sovraccarico accidentale spingente, in condizioni statiche e sismiche).

Tabella 5-1. Caratterizzazione spalle

Spalla	Tipologia
ORIGINARIA	a gravità
AMPLIAMENTO 1	mensola in c.a.
AMPLIAMENTO 2	mensola in c.a.

Le spalle presentano rigidezza nella direzione trasversale molto superiore rispetto a quella nella direzione longitudinale. A fronte di quanto appena esposto, si conducono le verifiche solo per le azioni agenti nella direzione longitudinale e per metro di lunghezza considerando il paramento frontale e il muro d'ala come indipendenti e combinando le sollecitazioni nelle due direzioni della platea.

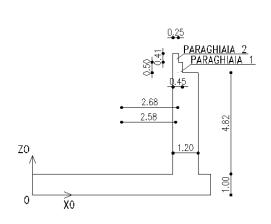
5.2 SPALLE AMPLIAMENTO 2 (NUOVA REALIZZAZIONE)

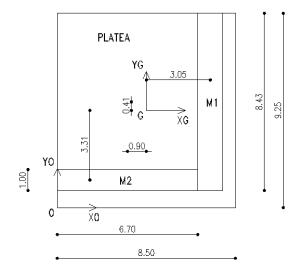
Secondo quanto esposto nei precedenti capitoli, in favore di sicurezza, la verifica è condotta unicamente per la spalla della carreggiata nord.

5.2.1 Geometria di verifica

Le dimensioni di calcolo adottate per le spalle dell'allargamento 2 sono dettagliate nei paragrafi successivi dedicati all'analisi dei carichi.

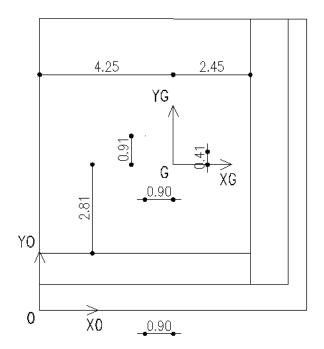
5.2.2 Analisi dei carichi escluse azioni da impalcato


5.2.2.1 Peso proprio strutture in c.a.


Si riportano le azioni agenti al baricentro G della platea di fondazione. Il sistema di riferimento ha origine alla quota di intradosso della platea. Le strutture in c.a. sono state suddivise in elementi semplici secondo gli schemi grafici rappresentati nelle figure.

PLATEA			M1			M2		
В	8.50	m	В	1.2	m	В	6.7	m
Н	9.25	m	Н	8.43	m	Н	1	m
spessore	1.00	m	altezza	4.82	m	altezza	6.09	m
α	0	0	α	0	0	α	0	0
b _{//x}	0	m	b _{//x}	3.05	m	b _{//x}	0.9	m
b _{//y}	0	m	b _{//y}	0.41	m	b _{//y}	3.31	m
$F_{x,G}$	0	kN	$F_{x,G}$	0	kN	$F_{x,G}$	0	kN
$F_{y,G}$	0	kN	$F_{y,G}$	0	kN	$F_{\gamma,G}$	0	kN
F _{z,G}	-1965.625	kN	$F_{z,G}$	-1219	kN	F _{z,G}	-1020	kN
$M_{x,G}$	0	kNm	$M_{x,G}$	-500	kNm	$M_{x,G}$	3376	kNm
$M_{y,G}$	0	kNm	$M_{y,G}$	3718	kNm	$M_{y,G}$	-918	kNm
$M_{z,G}$	0	kNm	$M_{z,G}$	0	kNm	$M_{z,G}$	0	kNm
PARAGHIAIA 1			PARAGHIAIA 2					
В	0.45	m	В	0.25	m			
Н	8.43	m	Н	8.43	m			
altezza	0.45	m	altezza	0.4	m			
α	0	•	α	0	•			
b _{//x}	2.68	m	b//x	2.58	m			
b _{//y}	0.41	m	b _{//y}	0.41	m			
_								
F _{x,G}	0	kN	F _{x,G}	0	kN			
F _{x,G} F _{y,G}	0 0	kN kN	F _{x,G} F _{y,G}	0	kN kN			
		kN						
$F_{y,G}$	0	kN	F _{y,G}	0	kN			
F _{y,G} F _{z,G}	0 -43	kN kN kNm	F _{y,G} F _{z,G}	0 -21	kN kN			
$\begin{aligned} F_{\gamma,G} \\ F_{z,G} \\ M_{x,G} \end{aligned}$	0 -43 -17	kN kN kNm	$F_{y,G}$ $F_{z,G}$ $M_{x,G}$	0 -21 -9	kN kN kNm			

RIS. SIST. RIF. E	BARICENTRO F	PALIFICATA	
F _{x,G}	0	kN	
F _{y,G}	0	kN	
F _{z,G}	-4268	kN	
$M_{x,G}$	2851	kNm	
$M_{y,G}$	2969	kNm	
$M_{z,G}$	0	kNm	



5.2.2.2 Spinta statica del terreno

Sulla base della geometria e dei parametri del terreno riportati di seguito si mostrano i calcoli dettagliati della spinta statica del terreno (con coefficiente di spinta a riposo). Nelle combinazioni di carico il contributo del carico verticale del terreno (a favore di sicurezza) è computato con un coefficiente di combinazione diverso da quello delle spinte orizzontali (a sfavore di sicurezza) e quindi le risultanti al baricentro della platea dovute ai due contributi sono calcolate separate.

PARAME	TRI		
φ '	35	0	
c'	0	kPa	
γ	20	kN/m³	
k_0	0.4264		
H ₀	0	m	sommità
H ₁	0.85	m	quota di spiccato del paraghiaia
H ₂	6.09	m	quota di spiccato del muro

Нз	7.09	m	base platea di fondazione
σ h,0	0.00	kN/m²	, , , , , , , , , , , , , , , , , , ,
σ h,1	7.25	kN/m²	
σ _{h,2}	51.94	kN/m²	
σ h,3	60.47	kN/m²	

RISULTANTE MURO M1 (ORTOGONALE AL MURO)

L	7.43	m		
N _{base}	-1219	kN (pp)	-164	kN/m
M_{base}	2385	kNm	321	kNm/n
T_{base}	1175	kN	158	kN/m
α	0	•		
T_x	1175	kN		
Ty	0	kN	da portare in G	
M_{x}	2385	kNm	da portare in c	
M_{y}	0	kNm		
d_{x}	2.45	m		
d_{y}	0.41	m		
d_z	1	m		

RISULTANTE PLATEA (ORTOGONALE AL LATO)

		•	•
L	9.25	m	
M_{base}	380	kNm	
T_{base}	520	kN	
α	0	•	
T _x	520	kN	
T_y	0	kN	da portare in G solo
M_{x}	380	kNm	lungo y
M_{y}	0	kNm	
d_{x}	4.25	m	
d_{y}	0	m	
dz	0	m	

RIS. SIST. RIF. BARICENTRO PALIFICATA SENZA N

F _{x,G}	1695	kN
F _{y,G}	-870	kN
F _{z,G}	0	kN
$M_{x,G}$	3635	kNm
M _{y,G}	2941	kNm
M _{z,G}	301	kNm

RIS. SIST. RIF. BARICENTRO PALIFICATA SOLO N							
$F_{x,G}$	0	kN					
F _{y,G}	0	kN					
F _{z,G}	-6063	kN					
$M_{x,G}$	-5518	kNm					
$M_{y,G}$	-5457	kNm					
M- c	0	kNm					

RISULTANTE MURO M2 (ORTOGONALE AL MURO)

L	5.50	m	
N_{base}	-1020	kN (pp)	-185 kN/m
M_{base}	1766	kNm	321 kNm/m
T_{base}	870	kN	158 kN/m
α	0	0	
T _x	0	kN	
Ty	-870	kN	4
M_{x}	0	kNm	da portare in G
M_y	1766	kNm	
d_{x}	0.9	m	•
d_y	2.81	m	
dz	1	m	

TERRENO SOPRA PLATEA

AREA	49.8	m ²	
N	-6063.3258	kN	
d_{x}	0.9	m	
d _y	0.91	m	da portare in G
dz	1.00	m	0

5.2.2.3 Sovraccarico

Si considera un sovraccarico di 20 kN/m². Per la geometria si rimanda al paragrafo precedente.

PARAMETRI φ 35 ° c' 0 kPa 20 kN/m² 0.4264 k_0 sommità $H_{0} \\$ 0 m H_1 0.85 m quota di spiccato del paraghiaia H_2 6.09 m quota di spiccato del muro 7.09 m base platea di fondazione Нз 8.53 kN/m² $\sigma_{h,0}$ 8.53 kN/m² $\sigma_{\text{h,1}}$ $8.53 \ kN/m^2$ $8.53 \ kN/m^2$ **σ**h.3

RISULTANTE MURO M1 (ORTOGONALE AL MURO)

L	7.43	m			
N _{base}	0	kN			
M_{base}	588	kNm	7	79	kNm/m
T_{base}	193	kN	2	26	kN/m
α	0	0			
T _x	193	kN			
Ту	0	kN	da portare in G		
M_{x}	588	kNm	da portare in d		
M_{y}	0	kNm			
d_{x}	2.45	m			
d_{y}	0.41	m			
d_z	1	m			

RISULTANTE PLATEA (ORTOGONALE AL LATO)

L	9.25	m	
M_{base}	39	kNm	
T_{base}	79	kN	
α	0	0	
T _x	79	kN	
Ty	0	kN	da portare in G solo
M_{x}	39	kNm	lungo y
M_{y}	0	kNm	
d_{x}	4.25	m	
d_{y}	0	m	
d_z	0	m	

RIS. SIST. RIF. BARICENTRO PALIFICATA SENZA N

F _{x,G}	272	kN
F _{y,G}	-143	kN
F _{z,G}	0	kN
$M_{x,G}$	770	kNm

RISULTANTE MURO M2 (ORTOGONALE AL MURO)

L	5.50	m			
N_{base}	0	kN		0	
M_{base}	435	kNm	7	79	kNm/m
T _{base}	143	kN	2	26	kN/m
α	0	•			
T _x	0	kN			
Ty	-143	kN	dat ! C		
M_{x}	0	kNm	da portare in G		
M_{y}	435	kNm			
d_{x}	0.9	m	•		
d_{y}	2.81	m			
d_z	1	m			

TERRENO SOPRA PLATEA

AREA	49.8	m^2	
N	-995.62	kN	
d _x	0.9	m	
d _y	0.91	m	da portare in G
dz	1.00	m	"" 6

autostrade per l'italia

Autostrada A14: Bologna – Bari - Taranto Tratto Borgo Panigale - Caselle Potenziamento del sistema autostradale e tangenziale di Bologna – Lotto 3 – Sottovia Diramazione via Scandellara

M _{y,G}	628	kNm
$M_{z,G}$	49	kNm

RIS. SIST. RIF. BARIO	CENTRO PA	ALIFICATA SOLO N
F _{x,G}	0	kN
$F_{y,G}$	0	kN
F _{z,G}	-996	kN
M _{x,G}	-906	kNm
M _{y,G}	-896	kNm
$M_{z,G}$	0	kNm

5.2.2.4 Spinta del terreno in condizioni sismiche – sisma verso l'alto direzione x

SISMA VERSO L'ALTO $a_g/g \qquad \qquad \textbf{0.2140} \\ S_S \qquad \qquad \textbf{1.60}$

 S_T 1.00 β_m 1

 $\begin{array}{ccc} a_{max} & 3.36 & m/s^2 \\ k_h & 0.3424 & \\ |k_V| & 0.1712 & \end{array}$

 $\begin{array}{ccc} \alpha & & \textbf{90} & ° \\ \varphi - \theta & & 0.2191 \\ k_{AE} & & 0.5966 \end{array}$

 $\begin{array}{cc} k_a & 0.2710 \\ k_a/k_0 & 0.6355 \end{array}$

MURO M1		MURO M2		PLATEA
S _{AE}	1179 kN	Sae	-789 kN	S_AE
$P_{AE,x}$	747 kN	$P_{AE,x}$	0 kN	$P_{AE,x}$

330 kN $P_{\mathsf{AE},\mathsf{y}}$ 0 kN $P_{AE,y}$ -553 kN $P_{AE,y}$ 0 kN $S_{\mathsf{AE},x}$ 1179 kN $S_{\mathsf{AE},x}$ 0 kN $S_{\mathsf{AE},x}$ 1742 kN 0 kN $S_{\mathsf{AE},\mathsf{y}}$ 0 kN -789 kN $S_{\mathsf{AE},\mathsf{y}}$ $S_{\mathsf{AE},\mathsf{y}}$ $S_{\mathsf{AE},x}\text{-}\mathsf{P}_{\mathsf{AE},x}$ 433 kN $S_{\mathsf{AE},x}\text{-}\mathsf{P}_{\mathsf{AE},x}$ 0 kN $S_{\mathsf{AE},x}\text{-}P_{\mathsf{AE},x}$ 1412 kN $S_{\mathsf{AE},y}\text{-}P_{\mathsf{AE},y}$ -236 kN $S_{\mathsf{AE},y}\text{-}\mathsf{P}_{\mathsf{AE},y}$ 0 kN $S_{\mathsf{AE},y}\text{-}P_{\mathsf{AE},y}$ 0 kN 1317 kNm 0 kNm 706 kNm M_{base} M_{base} M_{base} 0 kN 433 kN 1412 kN T_{base} T_{base} $\mathsf{T}_{\mathsf{base}}$ T_{x}

433 kN 0 kN 1412 kN T_x T_x 0 kN 0 kN 0 kN T_y T_y T_y 706 kNm M_x 0 kNm M_x 0 kNm M_x Му 1317 kNm M_y 0 kNm Му 0 kNm

RIS. SIST. RIF. B	ARICENTRO I	PALIFICATA	
F _{x,G}	1844	kN	
F _{y,G}	0	kN	
_	0	LNI	

1742 kN

M _{x,G}	706	kNm
M _{y,G}	1749	kNm
M _{z,G}	-177	kNm

5.2.2.5 Spinta del terreno in condizioni sismiche – sisma verso il basso direzione x

a _g /g	0.2140
S_{S}	1.60
S_{T}	1.00
β_{m}	1

SISMA VERSO IL BASSO

3.36 m/s² a_{max} 0.3424 $|k_v|$ 0.1712 0.2844 rad θ

0 ° β 0 ° δ 35 ° ф 90 ° α φ - θ 0.3264

0.4711 k_{AE} 0.2710 k_{a} k_a/k_0 0.6355

MURO M1			MURO M2			PLATEA		
S_AE	1316	kN	S_AE	-880	kN	S_AE	1944	kN
$P_{AE,x}$	747	kN	$P_{AE,x}$	0	kN	$P_{AE,x}$	330	kN
$P_{AE,y}$	0	kN	$P_{AE,y}$	-553	kN	$P_{AE,y}$	0	kN
$S_{AE,x}$	1316	kN	$S_{AE,x}$	0	kN	$S_{AE,x}$	1944	kN
$S_{AE,y}$	0	kN	$S_{AE,y}$	-880	kN	$S_{AE,y}$	0	kN
$S_{AE,x}$ - $P_{AE,x}$	569	kN	$S_{AE,x}$ - $P_{AE,x}$	0	kN	$S_{AE,x}$ - $P_{AE,x}$	1614	kN
$S_{AE,y}$ - $P_{AE,y}$	0	kN	$S_{AE,y}$ - $P_{AE,y}$	-327	kN	$S_{AE,y}$ - $P_{AE,y}$	0	kN
M_{base}	1733	kNm	M_{base}	0	kNm	M_{base}	807	kNm
T_base	569	kN	T_base	0	kN	T_base	1614	kN
Tx	569	kN	T _x	0	kN	T _x	1614	kN
T _y	0	kN	T _y	0	kN	T _y	0	kN
M_x	0	kNm	M_x	0	kNm	M_x	807	kNm
My	1733	kNm	M_y	0	kNm	M_y	0	kNm

RIS. SIST. RIF. BARICENTRO PALIFICATA						
F _{x,G}	2183	kN				
F _{y,G}	0	kN				
F _{z,G}	0	kN				
$M_{x,G}$	807	kNm				
$M_{y,G}$	2302	kNm				
M _{z.G}	-233	kNm				

5.2.2.6 Spinta del terreno in condizioni sismiche – sisma verso l'alto direzione y

SISMA VERSO L'ALTO

a _g /g	0.2140
Ss	1.60
St	1.00

β_{m}	1	
a _{max}	3.36	m/s²
\mathbf{k}_{h}	0.3424	
k _v	0.1712	
θ	0.3918	rad
β	0	0
δ	0	۰
ф	35	•
α	90	•
φ - θ	0.2191	
k _{AE}	0.5966	
ka	0.2710	
k_a/k_0	0.6355	

MURO M1			MURO M2			PLATEA		
S _{AE}	1179	kN	S _{AE}	-789	kN	SAE	1742	kN
$P_{AE,x}$	747	kN	$P_{AE,x}$	0	kN	$P_{AE,x}$	330	kN
$P_{AE,y}$	0	kN	$P_{AE,y}$	-553	kN	$P_{AE,y}$	0	kN
S _{AE,x}	1179	kN	S _{AE,x}	0	kN	S _{AE,x}	1742	kN
$S_{AE,y}$	0	kN	$S_{AE,y}$	-789	kN	S _{AE,y}	0	kN
$S_{AE,x}$ - $P_{AE,x}$	433	kN	$S_{AE,x}$ - $P_{AE,x}$	0	kN	$S_{AE,x}$ - $P_{AE,x}$	1412	kN
$S_{AE,y}\text{-}P_{AE,y}$	0	kN	$S_{AE,y}$ - $P_{AE,y}$	-236	kN	$S_{AE,y}$ - $P_{AE,y}$	0	kN
M_{base}	0	kNm	M_{base}	718	kNm	M_{base}	0	kNm
T_{base}	0	kN	T_{base}	236	kN	T_{base}	0	kN
Tx	0	kN	T _x	0	kN	T _x	0	kN
Ty	0	kN	T _y	-236	kN	T _y	0	kN
M_{x}	0	kNm	M _x	718	kNm	M _x	0	kNm
M_{y}	0	kNm	M_y	0	kNm	M_y	0	kNm

RIS. SIST. RIF.	BARICENTRO	PALIFICATA
F _{x,G}	0	kN
F _{y,G}	-236	kN
F _{z,G}	0	kN
$M_{x,G}$	954	kNm
$M_{y,G}$	0	kNm
$M_{z,G}$	212	kNm

5.2.2.7 Spinta del terreno in condizioni sismiche – sisma verso il basso direzione y

SISMA VERSO IL BASSO							
a _g /g	0.2140						
Ss	1.60						
S_{T}	1.00						
β_{m}	1						
a _{max}	3.36	m/s ²					
k_h	0.3424						
k _v	0.1712						
θ	0.2844	rad					
β	0	•					
δ	0	•					
ф	35	0					
α	90	0					
φ - θ	0.3264						

k AE	0.4711							
k _a	0.2710							
k _a /k ₀	0.6355							
MURO M1			MURO M2			PLATEA		
		LAI		990	LAI		1944	LAI
SAE	1316		Sae	-880		SAE		
$P_{AE,x}$	747	kN	P _{AE,x}	0	kN	$P_{AE,x}$	330	kN
$P_{AE,y}$	0	kN	$P_{AE,y}$	-553	kN	$P_{AE,y}$	0	kN
$S_{AE,x}$	1316	kN	S _{AE,x}	0	kN	$S_{AE,x}$	1944	kN
S _{AE,y}	0	kN	S _{AE,y}	-880	kN	S _{AE,y}	0	kN
$S_{AE,x}\text{-}P_{AE,x}$	569	kN	$S_{AE,x}$ - $P_{AE,x}$	0	kN	$S_{AE,x}$ - $P_{AE,x}$	1614	kN
$S_{AE,y}\text{-}P_{AE,y}$	0	kN	$S_{AE,y}$ - $P_{AE,y}$	-327	kN	$S_{AE,y}$ - $P_{AE,y}$	0	kN
M_{base}	0	kNm	M_{base}	996	kNm	M_{base}	0	kNm
T_{base}	0	kN	T_{base}	327	kN	T_{base}	0	kN
T _x	0	kN	T _x	0	kN	T _x	0	kN
Ty	0	kN	Ty	-327	kN	T _y	0	kN
M_{x}	0	kNm	M_x	996	kNm	M_x	0	kNm
M_{y}	0	kNm	M_y	0	kNm	M_y	0	kNm

RIS. SIST. RIF.	BARICENTRO I	PALIFICATA
F _{x,G}	0	kN
$F_{y,G}$	-327	kN
F _{z,G}	0	kN
$M_{x,G}$	1323	kNm
M _{y,G}	0	kNm
$M_{z,G}$	294	kNm

5.2.2.8 Inerzie sismiche verticali delle strutture in c.a. – sisma verso l'alto

Per la geometria si rimanda al paragrafo relativo al peso proprio delle strutture in c.a.

SISMA VERSO L'ALTO 0.2140 a_g/g 1.60 \boldsymbol{S}_{S} 1.00 S_{T} 1 β_{m} 3.36 m/s² 0.3424 \mathbf{k}_{h} 0.1712 $|k_v|$ 0.3918 rad θ 0 ° β 0 • δ 35 ° ф 90 ° α 0.2191 φ - φ 0.5966 k_{AE} 0.2710 k_{a}

 k_a/k_0

PLATEA	M1	M2

0.6355

В	8.50	m	В	1.2	m	В	6.7	m
Н	9.25	m	Н	8.43	m	Н	1	m
spessore	1.00	m	altezza	4.82	m	altezza	6.09	m
α	0	•	α	0	0	α	0	•
b//x	0	m	b _{//x}	3.05	m	b//x	0.9	m
b//y	0	m	b _{//y}	0.41	m	b _{//y}	3.31	m
F _{x,G}	0	kN	$F_{x,G}$	0	kN	$F_{x,G}$	0	kN
$F_{y,G}$	0	kN	$F_{y,G}$	0	kN	$F_{y,G}$	0	kN
$F_{z,G}$	673	kN	F _{z,G}	417	kN	F _{z,G}	349	kN
$M_{x,G}$	0	kNm	$M_{x,G}$	171	kNm	$M_{x,G}$	-1156	kNm
$M_{y,G}$	0	kNm	$M_{y,G}$	-1273	kNm	$M_{y,G}$	314	kNm
$M_{z,G}$	0	kNm	$M_{z,G}$	0	kNm	$M_{z,G}$	0	kNm
PARAGHIAIA 1			PARAGHIAIA 2					
PARAGHIAIA 1 B	0.45	m	PARAGHIAIA 2 B	0.25	m			
	0.45 8.43	m m		0.25 8.43				
В		m	В		m			
В Н	8.43	m	B H	8.43	m			
B H altezza	8.43 0.45	m m	B H altezza	8.43 0.4	m m			
B H altezza α	8.43 0.45 0	m m •	$\mbox{\ensuremath{B}}$ H altezza $\mbox{\ensuremath{\alpha}}$	8.43 0.4 0	m m •			
B H altezza α $b_{\text{f/x}}$	8.43 0.45 0 2.68	m m · m	B H altezza α $b_{\text{J/x}}$	8.43 0.4 0 2.58	m m •			
$\mbox{\ensuremath{B}}$ $\mbox{\ensuremath{H}}$ altezza $\mbox{\ensuremath{\alpha}}$ $\mbox{\ensuremath{b}}_{\mbox{\ensuremath{/}}\mbox{\ensuremath{x}}}$ $\mbox{\ensuremath{b}}_{\mbox{\ensuremath{/}}\mbox{\ensuremath{x}}}$	8.43 0.45 0 2.68 0.41	m m · m	B H altezza α b _{//x} b _{//y}	8.43 0.4 0 2.58 0.41	m m • m			
B H altezza α $b_{\slash\hspace{-0.05cm} B}$ $b_{\slash\hspace{-0.05cm} J/y}$ $F_{x,G}$	8.43 0.45 0 2.68 0.41 0	m m m m kN	B H altezza α $b_{\slash\hspace{-0.05cm} B}$ $b_{\slash\hspace{-0.05cm} B}$ c	8.43 0.4 0 2.58 0.41	m m m m kN			
B H altezza α $b_{\text{J/x}}$ $b_{\text{J/y}}$ $F_{\text{x,G}}$ $F_{\text{y,G}}$	8.43 0.45 0 2.68 0.41 0	m m m m kN	B H altezza α $b_{\mbox{\scriptsize I}/\mbox{\scriptsize V}}$ $b_{\mbox{\scriptsize I}/\mbox{\scriptsize V}}$ $f_{\mbox{\scriptsize V},\mbox{\scriptsize G}}$ $f_{\mbox{\scriptsize V},\mbox{\scriptsize G}}$	8.43 0.4 0 2.58 0.41 0	m m m m kN			
B H altezza α $b_{\slash\hspace{-0.05cm} B}$	8.43 0.45 0 2.68 0.41 0 0 15	m m m m kN kN	B H altezza α $b_{\slash\hspace{-0.05cm} B}$	8.43 0.4 0 2.58 0.41 0 0	m m m kN kN kN kN			

RIS. SIST. RIF.	BARICENTRO F	PALIFICATA
F _{x,G}	0	kN
F _{y,G}	0	kN
F _{z,G}	1455	kN
$M_{x,G}$	-979	kNm
$M_{y,G}$	-1000	kNm
$M_{z,G}$	0	kNm

5.2.2.9 Inerzie sismiche verticali delle strutture in c.a. – sisma verso il basso

Per la geometria si rimanda al paragrafo relativo al peso proprio delle strutture in c.a.

SISMA VERSO IL BASSO						
a _g /g	0.2140					
Ss	1.60					
S _T	1.00					
β_{m}	1					
a _{max}	3.36	m/s²				
k h	0.3424					

$ k_v $	0.1712							
θ	0.2844							
β	0							
δ	0 35							
φ α	90							
φ - θ	0.3264							
k _{AE}	0.4711							
k _a	0.2710							
k_a/k_0	0.6355							
PLATEA			M1			M2		
В	8.50	m	В	1.2	m	В	6.7	m
Н	9.25	m	Н	8.43		Н	1	m
spessore	1.00		altezza	4.82		altezza	6.09	
α	0		α	0	0	α		۰
b _{//x}		m	b _{//x}	3.05	m	b//x	0.9	
b _{//y}		m	b _{//y}	0.41		b//y	3.31	
F _{x,G}		kN	F _{x,G}	0	kN	F _{x,G}		kN
F _{y,G}		kN	F _{y,G}	0	kN	F _{y,G}		kN
F _{z,G}	-673		F _{z,G}	-417		F _{z,G}	-349	
M _{x,G}		kNm	M _{x,G}		kNm	M _{x,G}	1156	
M _{y,G}				1273			-314	
	0		M _{y,G}			M _{y,G}		
M _{z,G}		kNm	M _{z,G}		kNm	$M_{z,G}$	U	kNm
PARAGHIAIA :			PARAGHIAIA 2					
В	0.45		В	0.25				
H	8.43		H	8.43				
altezza	0.45		altezza	0.4				
α	0		α	0				
b//x	2.68		b//x	2.58				
b _{//y}	0.41		b//y	0.41				
$F_{x,G}$		kN	$F_{x,G}$	0	kN			
$F_{y,G}$	0	kN	$F_{y,G}$	0	kN			
$F_{z,G}$	-15	kN	$F_{z,G}$	-1	kN			
$M_{x,G}$	-6	kNm	$M_{x,G}$	0	kNm			
$M_{y,G}$	39	kNm	$M_{y,G}$	2	kNm			
$M_{z,G}$	0	kNm	$M_{z,G}$	0	kNm			
RIS. SIST. RIF.	RARICENTRO I	ΡΔΙΙΕΙΟΔΤΔ						
F _{x,G}		kN						
F _{y,G}	0	kN						
F _{z,G}	-364							
M _{x,G}	1150	kNm						

-274 kNm

0 kNm

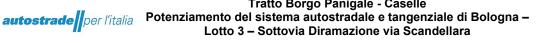
M_{y,G}

 $M_{z,\mathsf{G}}$

5.2.2.10 Inerzie sismiche orizzontali delle strutture in c.a. sisma direzione x

PARAMETRI								
a _g /g	0.2140							
Ss	1.60							
S _T	1.00							
eta_{m}	2 26							
a _{max}	3.30	m/s ²						
PLATEA			M1			M2		
В	8.50	m	В	1.2	m	В	6.7	m
Н	9.25	m	Н	8.43	m	Н	1	m
spessore	1.00	m	altezza	4.82	m	altezza	6.09	m
α	0	۰	α	0	0	α	0	•
b _{//x}	0	m	b _{//x}	3.05	m	b//x	0.9	m
b _{//y}	0	m	b _{//y}	0.41	m	b _{//y}	3.31	m
$F_{x,G}$	230	kN	$F_{x,G}$	143	kN	$F_{x,G}$	120	kN
$F_{y,G}$	0	kN	$F_{y,G}$	0	kN	$F_{y,G}$	0	kN
Peso	673	kN	Peso	417	kN	Peso	349	kN
$M_{x,G}$	0	kNm	$M_{x,G}$	0	kNm	$M_{x,G}$	0	kNm
$M_{y,G}$	115	kNm	$M_{y,G}$	487	kNm	$M_{y,G}$	484	kNm
$M_{z,G}$	0	kNm	$M_{z,G}$	-59	kNm	$M_{z,G}$	396	kNm
PARAGHIAIA 1			PARAGHIAIA 2					
В	0.45	m	В	0.25	m			
Н	8.43	m	Н	8.43	m			
altezza	0.45	m	altezza	0.4	m			
α	0	0	α	C	°			
b _{//x}	2.68	m	b _{//x}	2.58	m			
b _{//y}	0.41	m	b _{//y}	0.41	. m			
$F_{x,G}$	5	kN	$F_{x,G}$	2	kN			
$F_{y,G}$	0	kN	$F_{y,G}$	C) kN			
Peso	15	kN	Peso	7	kN			
$M_{x,G}$	0	kNm	$M_{x,G}$	C) kNm			
$M_{y,G}$	37	kNm	$M_{y,G}$	19	kNm			
$M_{z,G}$	-2	kNm	$M_{z,G}$	-1	. kNm			

RIS. SIST. RIF. BARICENTRO PALIFICATA							
F _{x,G}	500	kN					
$F_{y,G}$	0	kN					
F _{z,G}	0	kN					
$M_{x,G}$	0	kNm					
$M_{y,G}$	1142	kNm					
$M_{z,G}$	334	kNm					


5.2.2.11 Inerzie sismiche orizzontali delle strutture in c.a. sisma direzione y

PARAMETRI								
a _g /g	0.2140							
S_S	1.60							
S_T	1.00							
eta_{m}	1							
a _{max}	3.36	m/s ²						
PLATEA			M1			M2		
В	8.50	m	В	1.2	m	В	6.7	m
Н	9.25	m	Н	8.43	m	Н	1	m
spessore	1.00	m	altezza	4.82	m	altezza	6.09	m
α	0	0	α	0	0	α	0	0
b _{//x}	0	m	b _{//x}	3.05	m	b _{//x}	0.9	m
b//y	0	m	b _{//y}	0.41	m	b _{//y}	3.31	m
F _{x,G}	0	kN	$F_{x,G}$	0	kN	$F_{x,G}$	0	kN
$F_{y,G}$	-230	kN	F _{y,G}	-143	kN	$F_{y,G}$	-120	kN
Peso	673	kN	Peso	417	kN	Peso	349	kN
$M_{x,G}$	115	kNm	$M_{x,G}$	487	kNm	$M_{x,G}$	484	kNm
$M_{y,G}$	0	kNm	$M_{y,G}$	0	kNm	$M_{y,G}$	0	kNm
$M_{z,G}$	0	kNm	$M_{z,G}$	-436	kNm	$M_{z,G}$	108	kNm
PARAGHIAIA 1			PARAGHIAIA 2					
В	0.45	m	В	0.25	i m			
Н	8.43	m	Н	8.43	B m			
altezza	0.45	m	altezza	0.4	ł m			
α	0	0	α	(°			
b//x	2.68	m	b//x	2.58	B m			
b//y	0.41	m	b _{//y}	0.41	l m			
F _{x,G}	0	kN	$F_{x,G}$	() kN			
$F_{y,G}$	-5	kN	F _{y,G}	-2	2 kN			
Peso	15	kN	Peso	7	kN			
$M_{x,G}$	37	kNm	$M_{x,G}$	19) kNm			
$M_{y,G}$	0	kNm	$M_{y,G}$	() kNm			
$M_{z,G}$	-13	kNm	$M_{z,G}$	-6	5 kNm			

RIS. SIST. RIF. BARIO	ENTRO	PALIFICATA
F _{x,G}	0	kN
F _{y,G}	-500	kN
F _{z,G}	0	kN
M _{x,G}	1142	kNm
M _{y,G}	0	kNm
M _{z,G}	-348	kNm

Autostrada A14: Bologna – Bari - Taranto Tratto Borgo Panigale - Caselle

5.2.2.12 Inerzie sismica del terreno di ricoprimento della spalla

PARAMETRI

a _g /g	0.2140	
Ss	1.60	
S_{T}	1.00	
β_{m}	1	
3	3.36	m/s²

TERRENO SOPRA PLATEA

AREA	49.8	m²
peso	6063.3258	kN
d_{x}	0.9	m
d_{y}	0.91	m
d_z	1.00	m

SISMA DIR. X VERSO L'ALTO

RIS. SIST. RIF. BARICENTRO PALIFICATA			
$F_{x,G}$	2076	kN	
$F_{y,G}$	0	kN	
$F_{z,G}$	2076	kN	
$M_{x,G}$	1889	kNm	
$M_{y,G}$	10266	kNm	
$M_{z,G}$	-1889	kNm	

SISMA DIR. X VERSO IL BASSO

RIS. SIST. RIF. BARICENTRO PALIFICATA				
F _{x,G}	2076	kN		
$F_{y,G}$	0	kN		
$F_{z,G}$	-2076	kN		
$M_{x,G}$	-1889	kNm		
$M_{\gamma,G}$	6529	kNm		
$M_{z,G}$	-1889	kNm		

SISMA DIR. Y VERSO L'ALTO

RIS. SIST. RIF. BARICENTRO PALIFICATA			
F _{x,G}	0	kN	
F _{y,G}	-2076	kN	
F _{z,G}	2076	kN	
$M_{x,G}$	10287	kNm	
M _{y,G}	1868	kNm	

$M_{z,G}$	1868	kNm

SISMA DIR. Y VERSO IL BASSO

RIS. SIST. RIF. BARICENTRO PALIFICATA				
F _{x,G}	0	kN		
F _{y,G}	-2076	kN		
F _{z,G}	-2076	kN		
$M_{x,G}$	6509	kNm		
M _{y,G}	-1868	kNm		
$M_{z,G}$	1868	kNm		

5.2.2.13 Azioni trasmesse dalle FOA solidali alla spalla

Questo paragrafo riporta le azioni trasmesse alla spalla dalle barriere fonoassorbenti solidali alla stessa. Per quanto concerne le azioni trasmesse dalle barriere solidali all'impalcato si deve fare riferimento al paragrafo relativo alle azioni trasmesse dall'impalcato. Nel sistema di riferimento locale delle barriere con origine alla base del singolo montante e che vede l'asse y verticale e diretto verso l'alto, l'asse x parallelo alla direzione principale delle barriere e verso positivo diretto verso l'esterno del ponte e l'asse z a formare la terna, si hanno le seguenti sollecitazioni trasmesse alla base del montante (interasse montanti di 3 m):

FOA TIPO 6 - H=6.50+5.50m (sollecitazioni per montanti tratto CORRE	FX	FY	FZ	MX	MY	MZ
	(kN)	(kN)	(kN)	(kNm)	(kNm)	(kNm)
1: Peso proprio strutturale		19.9				15.5
2: Peso proprio pannelli fonoassorbenti		31.3				27.9
3: Vento X+ (vento da ricettore verso fonte rumore)	-52.2	13.6				292.6
4: Vento X- (vento da fonte rumore verso ricettore)	53.0	-17.3				-326.8
5: Neve		7.0				15.3
6: Pressione dinamica veicolare	35.7	-11.7				-220.2
7: Pressione dinamica da rimozione neve	15.0	0.0				-22.5
8: Sisma						
	interasse mo	ntanti	3	m		
	L		7.9	m		

FOA PP		
$F_{x,G}$	0	kN
F _{y,G}	0	kN
$F_{z,G}$	-134	kN
$M_{x,G}$	285	kNm
$M_{y,G}$	-120	kNm
$M_{z,G}$	0	kNm

FOA VENTO -Y		
$F_{x,G}$	0	kN
$F_{y,G}$	-193	kN
$F_{z,G}$	63	kN
$M_{x,G}$	2345	kNm
$M_{y,G}$	57	kNm
$M_{z,G}$	173	kNm

PRESSIONE DINAMICA VEICOLARE		
F _{x,G}	0	kN
F _{y,G}	-130	kN
F _{z,G}	43	kN
$M_{x,G}$	1579	kNm
$M_{Y,G}$	38	kNm
$M_{z,G}$	117	kNm

PRESSIONE DINAMICA DA RIMOZIONE NEVE			
F _{x,G}	0	kN	
F _{y,G}	-55	kN	
F _{z,G}	0	kN	
M _{x,G}	468	kNm	
$M_{y,G}$	0	kNm	
$M_{z,G}$	49	kNm	

5.2.3 Analisi dei carichi azioni da impalcato

Le azioni trasmesse dall'impalcato sono calcolate su uno schema semplificato e successivamente verificate con quanto ottenuto con il modello agli elementi finiti. Nel modello FEM eventuali reazioni di trazione sono comunque considerate nel computo delle risultanti anche se i vincoli nella realtà non le esplicano. Questo vale solo nel computo delle azioni agenti sulla palificata. Sarà successiva cura controllare che nelle combinazioni SLU/SLV, SLD o SLE nessun vincolo vada in trazione.

5.2.3.1 Peso proprio travi in fase finale

L'azione dovuta al peso proprio delle travi in cap e del getto di completamento è pari a 8.75 kN/m per ogni trave.

```
tr. cap = 0.16x25 = 4.0 kN/m
getto = 0.19x25 = 4.75 \text{ kN/m}
```

pp travi		
q	8.75	kN/m
i	0.5	m
q'	17.5	kN/m²
L	11.4	m
sviluppo appoggi	7.5	m
Nris	-748	kN
dx	2.75	m
dy	1.13	m

RIS. SIST. RIF. BARICENTE	O PALIFICATA	
F _{x,G}	0 kN	

F _{y,G}	0	kN
F _{z,G}	-748	kN
$M_{x,G}$	-845	kNm
M _{y,G}	2057	kNm
$M_{z,G}$	0	kNm

5.2.3.2 Pavimentazione

pavimentazione

q'	4.62	kN/m²
L	11.4	m
sviluppo appoggi	7.5	m
Nris	-198	kN
dx	2.75	m
dy	1.13	m

RIS. SIST. RIF. BARI	CENTRO PALIFIC	CATA
F _{x,G}	0	kN
F _{y,G}	0	kN
F _{z,G}	-198	kN
$M_{x,G}$	-223	kNm
$M_{y,G}$	543	kNm
M _{z,G}	0	kNm

5.2.3.3 Cordolo

cordolo

q'	0.42	kN/m ²
Larghezza	2.5	m
L	11.4	m
Nris	-5.99	kN
dx	2.75	m
dy	2.81	m

RIS. SIST. RIF. BARICENTRO PALIFICATA			
F _{x,G}	0	kN	
F _{y,G}	0	kN	
F _{z,G}	-6	kN	
M _{x,G}	17	kNm	
$M_{y,G}$	16	kNm	
$M_{z,G}$	0	kNm	

5.2.3.4 Sicurvia

sicurvia

q'	1.5	kN/m
L	11.4	m
Nris	8.55	kN
dx	2.75	m
dy	0.96	m

RIS. SIST. RIF. BARICENTRO PALIFICATA			
F _{x,G}	0	kN	
F _{y,G}	0	kN	
F _{z,G}	-9	kN	
M _{x,G}	8	kNm	
M _{y,G}	24	kNm	
M _{z,G}	0	kNm	

5.2.3.5 Azioni trasmesse dalle FOA

Per quanto concerne il vento, considerata l'altezza della barriera fonoassorbente pari a 6.50 m, e considerato che tale altezza risulta superiore ai 3 m che da normativa si considerano come ingombro dei veicoli in transito sull'impalcato. Nel presente ambito del calcolo delle azioni agenti sulle spalle si considerano le risultanti del vento tabellate nel paragrafo relativo ale FOA solidali alla spalla e qui richiamate (per la definizione del sistema di riferimento si faccia riferimento a quanto riportato nel paragrafo precedente). Lo spessore dell'impalcato è assunto pari a 100 cm (valore cautelativo).

FOA TIPO 6 - H=6.50+5.50m (sollecitazioni per montanti tratto CORREI	FX FX	FY	FZ	MX	MY	MZ
	(kN)	(kN)	(kN)	(kNm)	(kNm)	(kNm)
1: Peso proprio strutturale		19.9				15.5
2: Peso proprio pannelli fonoassorbenti		31.3				27.9
3: Vento X+ (vento da ricettore verso fonte rumore)	-52.2	13.6				292.6
4: Vento X- (vento da fonte rumore verso ricettore)	53.0	-17.3				-326.8
5: Neve		7.0				15.3
6: Pressione dinamica veicolare	35.7	-11.7				-220.2
7: Pressione dinamica da rimozione neve	15.0	0.0				-22.5
8: Sisma						
	interasse mo	ntanti	3	m		
	L		7.9	m		

L'azione dei carichi trasmessi dalle FOA è considerata con le seguenti eccentricità rispetto al baricentro G della platea:

dx	2.75	m
dy	2.81	m
dz	7.09	m

FOA pp strutturale

2.75	m
2.81	m
7.09	m
-19.9	kN
15.5	kNm
0	kN
7	
-69.65	kN
54.25	kNm
0	kN
	2.81 7.09 -19.9 15.5 0 7 -69.65 54.25

RIS. SIS	Г. RIF. BARICENTRO PALIF	ICATA
F _{x,G}	0	kN
F _{y,G}	0	kN
F _{z,G}	-70	kN

$M_{x,G}$	250	kNm
$M_{y,G}$	192	kNm
$M_{z,G}$	0	kNm

FOA pp pannelli

dx	2.75	m
dy	2.81	m
dz	7.09	m
N_{montante}	-31.3	kN
M _{montante} (Mx)	27.9	kNm
T (Fy)	0	kN
n° montanti	7	
N	-109.55	kN
Mx	97.65	kNm
Fy	0	kN

RIS. SIST. RIF. BARICENTRO PAL	IFIC	ATA
F _{x,G}	0	kN
F _{y,G}	0	kN
F _{z,G} -1	10	kN
M _{x,G} 4	05	kNm
M _{y,G} 3	01	kNm
M _z G	0	kNm

FOA vento negativo

2.75	m
2.81	m
7.09	m
-17.3	kN
-326.8	kNm
-53	kN
7	
-60.55	kN
-1143.8	kNm
-185.5	kN
	7.09 -17.3 -326.8 -53

RIS. SIST. RIF. BARIC	ENTRO PALIFIC	ATA
$F_{x,G}$	0	kN
F _{y,G}	-186	kN
F _{z,G}	-61	kN
$M_{x,G}$	2629	kNm
$M_{\gamma,G}$	0	kNm
$M_{z,G}$	-510	kNm

FOA pressione dinamica veicolare

dx	2.75	m
dy	2.81	m
dz	7.09	m
N_{montante}	-11.7	kN
M _{montante} (Mx)	-220.2	kNm
T (Fy)	-35.7	kN
n° montanti	7	
N	-40.95	kN

Mx	-770.7	kNm
Fy	-124.95	kN

RIS. SIST. RIF. BARIO	CENTRO PALIFIC	ATA
F _{x,G}	0	kN
F _{y,G}	-125	kN
F _{z,G}	-41	kN
$M_{x,G}$	1772	kNm
$M_{y,G}$	0	kNm
$M_{z,G}$	-344	kNm

FOA pressione dinamica da rimozione neve

dx	2.75	m
dy	2.81	m
dz	7.09	m
N_{montante}	0	kN
M _{montante} (Mx)	-22.5	kNm
T (Fy)	-15	kN
n° montanti	7	
N	0	kN
Mx	-78.75	kNm
Fy	-52.5	kN

RIS. SIST. RIF. BARI	ICENTRO PALIFIC	CATA
F _{x,G}	0	kN
F _{y,G}	-53	kN
F _{z,G}	0	kN
$M_{x,G}$	451	kNm
$M_{y,G}$	0	kNm
$M_{z,G}$	-144	kNm

5.2.3.6 Vento su profilo impalcato

L'azione del vento agente sulla FOA deve essere incrementata della quota agente sul profilo dell'impalcato. La forza risultante viene considerata solo nel calcolo dell'azione tagliante non considerando a favore di sicurezza la quota di momento che andrebbe a scaricare la risultante del vento agente sulla FOA.

vento su profilo impalcato

ax	2.75	m
dy	2.81	m
dz	7.09	m
q	-4	kN/m²
L	14.3	m

RIS. SIST. RIF. BARICENTRO PALIFICATA		
F _{x,G}	0	kN
F _{y,G}	-29	kN
F _{z,G}	0	kN
$M_{x,G}$	203	kNm
$M_{y,G}$	0	kNm

M _{z,G} -79 kNm	
--------------------------	--

5.2.3.7 Frenamento

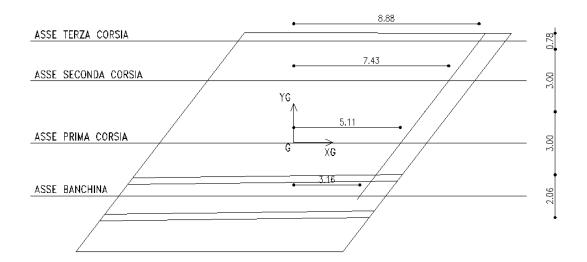
L'azione di frenamento è pari a:

$$q_3 = 0.6 \times 600 + 0.10 \times 9 \times 3 \times 11.4 = 360 + 38.61 = 391 \text{ kN}$$

frenamento		
dx	3.35	m
dy	0	m
dz	5.94	m
Fx	391	kN

RIS. SIST. RIF. BARICENTRO PALIFICATA		
F _{x,G}	391	kN
F _{y,G}	0	kN
F _{z,G}	0	kN
M _{x,G}	0	kNm
M _{y,G}	2323	kNm
$M_{z,G}$	0	kNm

5.2.3.8 Resistenze parassite dei vincoli


Le resistenze parassirte dei vincoli sono calcolate consderando il 5% delle azioni permanenti caratteristiche.

RIS. SIST. RIF. BARICENTRO PALIFICATA		
F _{x,G}	57.0	kN
$F_{y,G}$	0	kN
F _{z,G}	0	kN
$M_{x,G}$	338.6	kNm
M _{y,G}	0	kNm
$M_{z,G}$	0	kNm

5.2.3.9 Carichi da traffico

Per la spalla la maggior azione ribaltante si ha nello schema di stese di carico rappresentnato nella figura seguente. Tale schema è peggiorativo solo per la spalla e non per le travi di impalcato.

folla su banchina

dx	3.16	m
dy	2.53	m
dz	5.94	m
q	2.5	kN/m ²
larghezza	2.5	kN
L	11.4	m

RIS. SIST. RIF. BARICENTRO PALIFICATA		
F _{x,G}	0	kN
F _{y,G}	0	kN
F _{z,G}	-36	kN
$M_{x,G}$	90	kNm
M _{y,G}	113	kNm
$M_{z,G}$	0	kNm

q1k		
dx	3.35	m
dy	0.19	m
dz	5.94	m
q	9	kN/m²
larghezza	3	kN
L	11.4	m

RIS. SIST. RIF. BARICENTRO PALIFICATA			
F _{x,G}	0	kN	
$F_{\gamma,G}$	0	kN	
F _{z,G}	-154	kN	
$M_{x,G}$	29	kNm	
$M_{y,G}$	516	kNm	
$M_{z,G}$	0	kNm	

q2k		
dx	3.35	m
dy	3.16	m
dz	5.94	m
q	2.5	kN/m ²
larghezza	3	kN
L	11.4	m

DIS SIST DIE DADIS	CENTRO DALIEI	
RIS. SIST. RIF. BARICENTRO PALIFICATA		
$F_{x,G}$	0	kN
F _{y,G}	0	kN
F _{z,G}	-43	kN
M _{x,G}	-135	kNm
M _{y,G}	143	kNm
$M_{z,G}$	0	kNm

Q1k		
dx	3.35	m
dy	0.19	m
dz	5.94	m
Q1k	600	kN

RIS. SIST. RIF. BARICENTRO PALIFICATA		
F _{x,G}	0	kN
$F_{y,G}$	0	kN
F _{z,G}	-600	kN
$M_{x,G}$	114	kNm
M _{y,G}	2010	kNm
$M_{z,G}$	0	kNm

Q2k		
dx	3.35	m
dy	3.16	m
dz	5.94	m
Q1k	400	kN

RIS. SIST. RIF. BARICENTRO PALIFICATA		
$F_{x,G}$	0	kN
F _{y,G}	0	kN
F _{z,G}	-400	kN
M _{x,G}	1264	kNm
M _{y,G}	1340	kNm
$M_{z,G}$	0	kNm

5.2.3.10 Azione sismica

PARAMETRI

a _g /g	0.2140
S_S	1.60
S_{T}	1.00
ß,	1

a _{max}	3.36	m/s²
massa	1139	kN
dx	3.35	m
dy	0	m
dz	5.94	m
F	390	kN

RIS. SIST. RIF. BARICENTRO PALIFICATA									
F _{x,G}	390	kN							
F _{y,G}	-390	kN							
F _{z,G}	0	kN							
$M_{x,G}$	2317	kNm							
M _{y,G}	2317	kNm							
$M_{z,G}$	0	kNm							

5.2.4 Combinazioni di carico per azioni sulla palificata

Si riportano i coefficienti di combinazione e le combinazioni di carico di base. A queste mostrate si aggiunge la combinazione 17 quasi permanente,

	Azioni di Calcolo prese in Considerazione in fase di Analisi - Azioni Ca	ratteristiche	e Coefficienti di	Combina	zione Uti	lizzati		
Nome	Descrizione			γ	ψ0	ψ1	ψ2	ψ sis
C1	Carichi permanenti - strutturali e non	G1	fav/sfav	1/1.35	1	1	1	١
C2	Zavorra stabilizzante a tergo spalla	G1	fav	1	١	١	١	١
C3	Spinta delle terre - riposo	G1	Sfav	1.35	1	1	1	\
C4a	Carichi variabili da traffico - Sovraccarico accidentale verticale su spalla	Qk	fav	0	0.75	0.75	0.2	0.2
C4b	Carichi variabili da traffico - Sovraccarico spingente su spalla	Qk	sfav	1.35	0.75	0.75	0.2	0.2
C4c	Carichi variabili da traffico - Carico tandem su impalcato - configurazione 1	Qk	fav/sfav	0/1.35	0.75	0.75	0.2	0.2
C4d	Carichi variabili da traffico - Carico tandem su impalcato - configurazione 2	Qk	0	0/1.35	0.75	0.75	0.2	0.2
C4e	Carichi variabili da traffico - Carico distribuito su impalcato	Qk	fav/sfav	0/1.35	0.4	0.4	0.2	0.2
C5	Frenatura	Qk	sfav	1.35	0	0	0	0
C6	Resistenza passiva dei vincoli	Qk	sfav	1.35	1	1	1	١
C7	Neve	Qk	sfav	1.5	0	0	0	0
C8	<u>Vento</u>	Qk	sfav	1.5	0.6	0	0	0
CS1 (-kv)	Forze inerzia legate a carichi strutturali e non (+kh / -kv)	G1sis	sfav	1	١	١	١	١
CS1 (+kv)	Forze inerzia legate a carichi strutturali e non (+kh / +kv)	G1sis	sfav	1	1	1	1	1
CS2 (-kv)	Spinta (dinamica) delle terre - attiva (-kv)	G1sis terre	sfav	1	1	1	1	\
CS2 (+kv)	Spinta (dinamica) delle terre - attiva (-+v)	G1sis terre	sfav	1	١	١	١	1

	Massimizzazione compressione			sione	Massimizzazione trazione			sismica Rara				frequente				
DESCRIZIONE	no traffico	traffico 1	traffico 2a	traffico 2a config 2	no traffic o	traffico 1	traffico 2a	traffico 2a config 2	Traffico +	<u>Traffico -</u>	no traffico	traffico 1	traffico 2a	traffico 2a config 2	no traffico	traffico 1
N° COMBINAZIONE	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
C1	1.35	1.35	1.35	1.35	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
C2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
C3	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
C4a	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C4b	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	0.20	0.20	1.00	1.00	1.00	1.00	0.75	0.75
C4c	0.00	1.35	1.01	0.00	0.00	1.35	1.01	0.00	0.20	0.20	0.00	1.00	0.75	0.00	0.00	0.75
C4d	0.00	0.00	0.00	1.01	0.00	0.00	0.00	1.01	0.00	0.00	0.00	0.00	0.00	0.75	0.00	0.00
C4e	0.00	1.35	1.01	1.01	0.00	1.35	1.01	1.01	0.20	0.20	0.00	1.00	0.40	0.40	0.00	0.40
C5	0.00	0.00	1.35	1.35	0.00	0.00	1.35	1.35	0.00	0.00	0.00	0.00	1.00	1.00	0.00	0.00
C6	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
C7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C8	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.00	0.00	0.60	0.60	0.60	0.60	0.00	0.00
CS1 (-kv)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
CS1 (+kv)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CS2 (-kv)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
CS2 (+kv)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Sulla base dei coefficienti esposti nelle tabelle e dei carichi caratteristici definiti nei capitoli e paragrafi precedenti, massimizzando le sollecitazioni F_x, F_z, M_x e M_y e minimizzando F_y, F_z, M_x e M_y, si ottengono le seguenti combinazioni di carico al baricentro palificata.

		COMPINIAZIONII STATICHE SI II										
			COMBINAZIONI STATICHE SLU									
F _{x,G}	kN	2732	2996	2996	2732	2996						
F _{y,G}	kN	-1962	-1962	-1962	-1962	-1962						
F _{z,G}	kN	-15156	-14752	-14750	-11601	-12813						
M _{x,G}	kNm	13987	13557	13554	11308	12596						
M _{y,G}	kNm	12933	13148	13139	5428	11054						
$M_{z,G}$	kNm	-378	-378	-378	-378	-378						

		COMBINAZIONI SISMICHE SLV							
F _{x,G}	kN	6955	3624	6617	3523				
F _{y,G}	kN	-2159	-4192	-2132	-4101				
F _{z,G}	kN	-14907	-14907	-7690	-7690				
M _{x,G}	kNm	6688	13727	9260	16111				
$M_{y,G}$	kNm	15848	7559	19427	11525				
$M_{z,G}$	kNm	-1132	1344	-1095	1297				

		COMBINAZIONI RARE		сомв.	COMB. Q.P.	
Fx	,G kN	2024	2415	1956	1956	1695
Fy	,G kN	-1409	-1409	-977	-977	-870
Fz	,g kN	-12799	-12431	-11605	-12433	-11683
M	_{k,G} kNm	8362	8081	1781	2772	822
M	y,G kNm	8159	9249	3936	6712	3729
М	z,G kNm	-237	-237	143	143	127

5.2.5 Analisi delle sollecitazioni per le verifiche strutturali

Le verifiche strutturali del muro frontale, del muro d'ala, del plinto di fondazione e del paraghiaia sono condotte su un modello piano, di larghezza unitaria per i muri e la platea e di largehzza pari a 3 m per il paraghiaia.

5.2.6 Muro frontale

5.2.6.1 Muro frontale – azioni da impalcato

SOLLECITAZIONI ALLO SPICCATO DEL MURO azioni da impalcato s.r. impalcato - su larghezza di 1 m										
F_x F_y F_z M_x M_y										
	[kN]	[kN]	[kN]	[kNm]	[kNm]					
permanenti impalcato	0	0	-126	38	0					
Q_{ik}	0	0	-300	90	0					
q_{ik}	0	0	-51	15	0					
frenamento	130	0	0	0	650					
vento	0	0	0	0	0					
res. par. vinc.	57	0	0	0	284					

sisma x	52	0	0	0	259
sisma y	0	0	0	0	0

sollecitazioni alla base s.r. muro fror	ntale - si	u larghe:	zza di 1 m
	V _x	N	M _y
	[kN]	[kN]	[kNm]
permanenti impalcato	0	-126	0
Q _{ik}	0	-300	0
q_{ik}	0	-51	0
frenamento	130	0	650
vento	0	0	0
res. par. vinc.	57	0	284
sisma x	52	0	259

5.2.6.2 Muro frontale – azioni dirette su spalla

Si riportano le sollecitazioni agenti allo spiccato del muro frontale, su 1m di larghezza, dovute alle azioni agenti direttamente sul muro:

sollecitazioni alla base s.r. muro frontal	e - su la	arghezz	a di 1 m
	V _x	N	My
	[kN]	[kN]	[kNm]
permanenti spalla	0	-158	3
statica k ₀	147	0	287
sovraccarico k ₀	50	0	147
inerzia sismica Fx	54	0	158
inerzia sismica Fz	0	-27	0
sismica M.O parte statica	147	0	287
sismica M.O parte sismica	77	0	225
sovraccarico sismico k ₀	10	0	29

5.2.6.3 Muro frontale – combinazioni di carico

Si riportano diseguito i coefficienti di combinazione utilizzati nelle verifiche.

sollecitazioni alla base s.r. muro	frontale - sı	ı larghezza	a di 1 m								
	Vx	N	My	SLU1	SLU2	Q.P.	SLV X	SLV Z	RARA1	RARA2	FREQ1
	[kN]	[kN]	[kNm]								
permanenti impalcato	0	-126	0	1.50	1.50	1.00	1.00	1.00	1.00	1.00	1.00
Qik	0	-300	0	1.01	1.35	0.00	0.15	0.15	1.00	0.75	0.75
qik	0	-51	0	0.54	1.35	0.00	0.08	0.08	1.00	0.40	0.40
frenamento	130	0	650	1.35	0.00	0.00	0.20	0.20	0.00	0.00	0.00
vento	0	0	0	0.90	0.90	0.00	0.00	0.00	0.00	0.00	0.00
res. par. vinc.	57	0	284	1.35	1.35	1.00	1.00	1.00	1.00	1.00	1.00
sisma x	52	0	259	0.00	0.00	0.00	1.00	0.30	0.00	0.00	0.00
sollecitazioni alla base s.r. muro	frontale - su	ı larghezza	a di 1 m								
	Vx	N	My	SLU1	SLU2	Q.P.	SLV X	SLV Z	RARA1	RARA2	FREQ1
	[kN]	[kN]	[kNm]								
permanenti spalla	0	-158	3	1.50	1.50	1.00	1.00	1.00	1.00	1.00	1.00
statica k0	147	0	287	1.35	1.35	1.00	0.00	0.00	1.00	1.00	1.00
sovraccarico k0	50	0	147	1.50	1.50	0.00	0.00	0.00	1.00	1.00	1.00
inerzia sismica Fx	54	0	158	0.00	0.00	0.00	1.00	0.30	0.00	0.00	0.00
inerzia sismica Fz	0	-27	0	0.00	0.00	0.00	0.30	1.00	0.00	0.00	0.00
sismica M.O parte statica	147	0	287	0.00	0.00	0.00	1.00	1.00	0.00	0.00	0.00
sismica M.O parte sismica	77	0	225	0.00	0.00	0.00	1.00	0.30	0.00	0.00	0.00
sovraccarico sismico k0	10	0	29	0.00	0.00	0.00	1.00	1.00	0.00	0.00	0.00

Si ottengono le seguenti sollecitazioni alla base del muro frontale:

	Vx	N	Му
	[kN]	[kN]	[kNm]
SLU1	526	-757	1875
SLU2	350	-900	997
QP	204	-284	575
SLV X	423	-341	1377
SLV Z	295	-360	927
RARA1	254	-635	722
RARA2	254	-529	722
FREQ1	254	-529	722

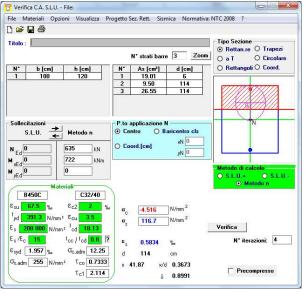
5.2.6.4 Muro frontale – verifiche a pressoflessione

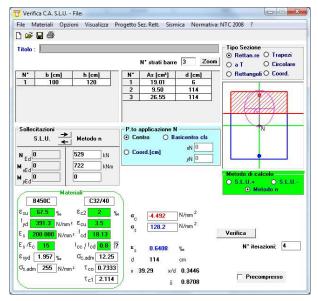
Si riportano le verifiche a pressoflessione disponendi 1026/20+1022/40 lato terra e 1022/20 lato valle con un fattore di sicurezza minimo di 1.04 nella combinazione SLU1:

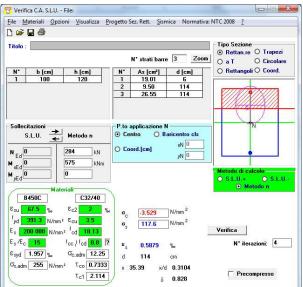
5.2.6.5 Muro frontale – verifiche a taglio

Il massimo taglio agente risulta pari a 526 kN pari a una tensione tangenziale pari a 52600/(114x100)=4.61 daN/cm². Il valore di v_{min} è pari a 3.35 daN/cm², quinde deve essere predisposta un'armatura a taglio. La sezione risulta verificata con un'armatura formata da spilli Φ 12/20x40 con un coefficiente di sicurezza pari a 1.08:

f_{ck}	32	MPa
		IVIPa
h	1200	mm
С	60	mm
d	1140	mm
k	1.42	
	0.33	MPa
V _{min}		
	3.35	daN/cm²
$A_{sl,sup}$	2655	mm²


AsI,inf 1901 mm² bw 1000 mm ρ1 0.002 VRd 0.33 MPa 3.33 daN/cm² θ 45 ° ctgθ 1.00 ok Asw 565 mm² s 400 mm α 90 ° ctgα 6E-17 The standard of the
ρ1 0.002 V _{Rd} 0.33 MPa 3.33 daN/cm² θ 45 ° ctgθ 1.00 ok A _{sw} 565 mm² s 400 mm α 90 ° ctgα 6E-17 MPa fyd 391 MPa 567577 N V _{Rsd} 0.50 MPa 4.98 daN/cm² V _{Rcd} 4.08 MPa 40.80 daN/cm²
V _{Rd} 0.33 MPa 3.33 daN/cm² θ 45 ° ctgθ 1.00 ok A _{Sw} 565 mm² s 400 mm α 90 ° ctgα 6E-17 MPa fyd 391 MPa 567577 N V _{Rsd} 0.50 MPa 4.98 daN/cm² V _{Rcd} 4.08 MPa 40.80 daN/cm²
V _{Rd} 3.33 daN/cm² θ 45 ° ctgθ 1.00 ok A _{sw} 565 mm² s 400 mm α 90 ° ctgα 6Ε-17 f _{yd} 391 MPa 567577 N V _{Rsd} 0.50 MPa 4.98 daN/cm² 4651200 N V _{Rcd} 4.08 MPa 40.80 daN/cm²
3.33 daN/cm² 3.45 ° ctgθ 1.00 ok Asw 565 mm² 400 mm α 90 ° ctgα 6Ε-17 fyd 391 MPa 567577 N V _{Rsd} 0.50 MPa 4.98 daN/cm² 4651200 N V _{Rcd} 4.08 MPa 40.80 daN/cm²
ttgθ 1.00 ok Assw 565 mm² 400 mm x 90 ° ttgα 6E-17 yd 391 MPa 567577 N V _{Rsd} 0.50 MPa 4.98 daN/cm² 4651200 N V _{Rcd} 4.08 MPa 40.80 daN/cm²
Asw 565 mm² 400 mm α 90 ° ctgα 6E-17 yd 391 MPa 567577 N V _{Rsd} 0.50 MPa 4.98 daN/cm² 4651200 N V _{Rcd} 4.08 MPa 40.80 daN/cm²
s 400 mm α 90 ° ctgα 6E-17 f _{yd} 391 MPa 567577 N V _{Rsd} 0.50 MPa 4.98 daN/cm² 4651200 N V _{Rcd} 4.08 MPa 40.80 daN/cm²
α 90 ° ctgα 6E-17 f _{yd} 391 MPa 567577 N V _{Rsd} 0.50 MPa 4.98 daN/cm² 4651200 N V _{Rcd} 4.08 MPa 40.80 daN/cm²
ctgα 6E-17 fyd 391 MPa 567577 N V _{Rsd} 0.50 MPa 4.98 daN/cm² 4651200 N V _{Rcd} 4.08 MPa 40.80 daN/cm²
Fyd 391 MPa 567577 N V _{Rsd} 0.50 MPa 4.98 daN/cm² 4651200 N V _{Rcd} 4.08 MPa 40.80 daN/cm²
567577 N V _{Rsd} 0.50 MPa 4.98 daN/cm² 4651200 N V _{Rcd} 4.08 MPa 40.80 daN/cm²
V _{Rsd} 0.50 MPa 4.98 daN/cm ² 4651200 N V _{Rcd} 4.08 MPa 40.80 daN/cm ²
$\begin{array}{ccccc} & 4.98 & \text{daN/cm}^2 \\ & 4651200 & \text{N} \\ & \text{V}_{\text{Rcd}} & 4.08 & \text{MPa} \\ & & 40.80 & \text{daN/cm}^2 \end{array}$
4651200 N V _{Rcd} 4.08 MPa 40.80 daN/cm ²
V _{Rcd} 4.08 MPa 40.80 daN/cm ²
40.80 daN/cm²
0.50 MPa con
V _{Rd} 4.98 daN/cm ²


5.2.6.6 Muro frontale – verifiche in esercizio

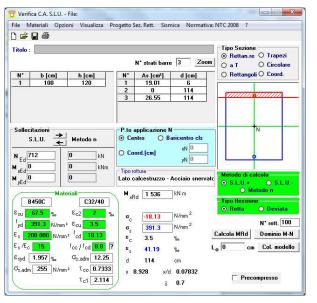

Le limitazioni delle tensioni in esercizio nel cls e nell'acciaio sono verificate essendo inferiori ai limiti normativi pari a -20 MPa in combinazione rara e -14.9 MPa in combinazione quasi permanente per il cls e a 313 MPa in combinazione rara per l'acciaio (di seguito le combinazioni rara1, rara2 e q.p. nell'ordine):

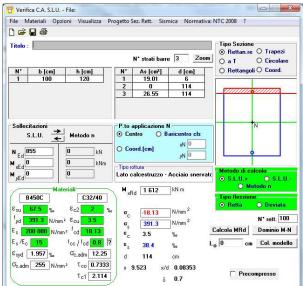
La verifica a fessurazione qui di seguito riportata è soddisfatta con un'apertura delle fessure pari a 0.14 mm in combinazione frequente e 0.13 mm in combinazione quasi permanente. Nella tabella seguente gli sforzi normali di compressione sono negativi.

RMN RNN RNN Cm Cm Cm Cm MPa MPa	codice elemento	comb.	cls	Nd	Md	Vd	В	Н	d	ď'	fck	fyk	Es	fcd	fyd	εsy
muro frontele an 3 -284 575 0 100 120 114.00 5.0 32 450 200000 18.13 301.30 0.106	codice elemento	COIID.	CIS	[kN]	[kNm]	[kN]	[cm]	[cm]	[cm]	[cm]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	%
muro frontale gp 3 -284 575 0 100 120 114.00 6.0 32 450 200000 18.13 391.30 0.196	muro frontale	freq	3	-529	722	0	100	120	114.00	6.0	32	450	200000	18.13	391.30	0.196
	muro frontale	qp	3	-284	575	0	100	120	114.00	6.0	32	450	200000	18.13	391.30	0.196

		Armatura longitudinale												
codice elemento	Armatura sup. [mm] [cm²]								Armatura inf. [mm] [cm²]					
codice elemento	n	ф	n	φ	n	ф	A's	n	φ	n	ф	n	ф	As
muro frontale	5	22	0	8	0	8	19.00	5	26	2.5	22	0	8	36.03
muro frontale	5	22	0	8	0	8	19.00	5	26	2.5	22	0	8	36.03

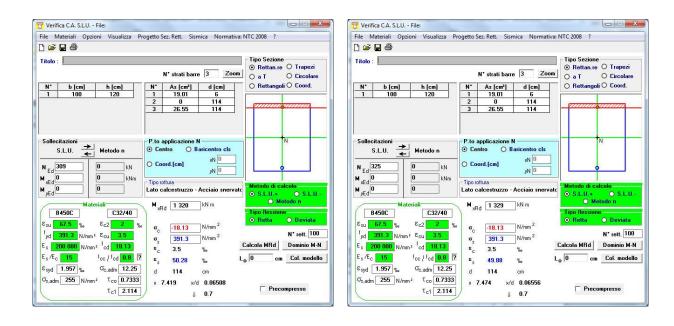
			vc sle									
codice elemento	е	e'	yc sie	σc	σs	sr,max		hc,eff	kt	op.eff	sm-ccm	wk
codice elemento	[mm]	[mm]	[cm]	[MPa]	[MPa]	[mm]	αe	[mm]	KL.	pp,en	inog-meg	[mm]
muro frontale	1905	825	39.26	4	122	388	6.00	150	0.4	0.0240	0.0004	0.14
muro frontale	2565	1485	35.37	3	112	388	6.00	150	0.4	0.0240	0.0003	0.13

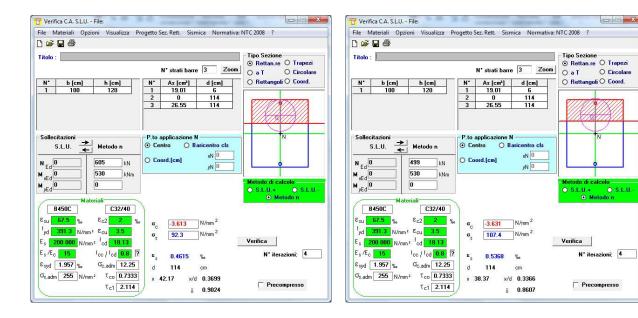


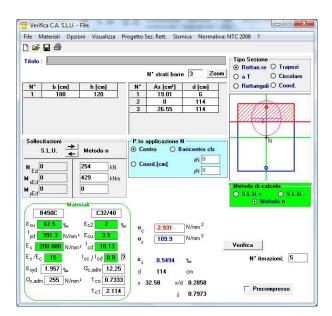

5.2.6.7 Muro frontale – verifica a 1.00 m dallo spiccato

Questo paragrafo riporta in forma sintetica il calcolo dell'armatura a pressoflessione necessaria a una distanza pari a 1m dallo spiccato del muro. Le sollecitazioni agenti a quella quota sono qui riportate.

	Vx	N	Му
	[kN]	[kN]	[kNm]
SLU1	480	-712	1433
SLU2	304	-855	731
QP	179	-254	429
SLV X	386	-309	1053
SLV Z	265	-325	703
RARA1	220	-605	530
RARA2	220	-499	530
FREQ1	220	-499	530


Si conduce la verifica con 1\psi_26/20 lato terra e 1\psi_22/20 lato valle:




Nelle combinazioni rara1 e 2, freq1 e qp si ha quanto segue:

autostrade per l'italia

Autostrada A14: Bologna – Bari - Taranto Tratto Borgo Panigale - Caselle Potenziamento del sistema autostradale e tangenziale di Bologna – Lotto 3 – Sottovia Diramazione via Scandellara

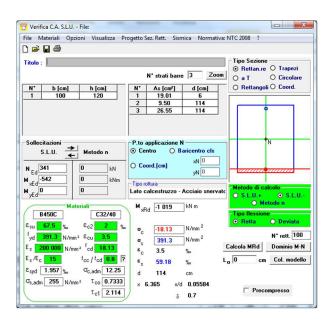
La verifica a fessurazione è qui riportata:

codice elemento	comb.	cle	Nd	Md	Vd	В	Н	d	ď'	fck	fyk	Es	fcd	fyd	εSy
codice elemento	COITID.	cls	[kN]	[kNm]	[kN]	[cm]	[cm]	[cm]	[cm]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	%
muro frontale	freq	3	-499	530	0	100	120	114.00	6.0	32	450	200000	18.13	391.30	0.196
muro frontale	qp	3	-254	429	0	100	120	114.00	6.0	32	450	200000	18.13	391.30	0.196

		Armatura longitudinale												
codice elemento		Α	rmatura	sup. [n	nm] [cm²	2]	Armatura inf. [mm] [cm²]							
codice elemento	n	ф	n	ф	n	ф	A's	n	ф	n	ф	n	ф	As
muro frontale	5	22	0	8	0	8	19.00	5	26	0	22	0	8	26.53
muro frontale	5	22	0	8	0	8	19.00	5	26	0	22	0	8	26.53

				vc sle									
ſ	codice elemento	е	e'	ye sie	σc	σS	sr,max	a A	hc,eff	l/t	op.eff	gsm-gcm	w k
	codice elemento	[mm]	[mm]	[cm]	[MPa]	[MPa]	[mm]	αе	[mm]	N.	ρp,en	SIIFCIII	[mm]
ſ	muro frontale	1602	522	38.36	3	102	454	6.00	150	0.4	0.0177	0.0003	0.14
ı	muro frontale	2229	1149	32.56	3	105	454	6.00	150	0.4	0.0177	0.0003	0.14

5.2.6.8 Muro frontale – verifica "contro-terra"


Si riporta di seguito la verifica strutturale dell'elevazione considerando l'azione sismica trasmessa dall'impalcato agente "controterra". In questo caso, mediante un tampone in neoprene, l'azione sismica longitudinale dell'impalcato è trasferita al paraghiaia e quindi all'elevazione della spalla. Si ottiene la combinazione di carico riprtata al fondo della seguente tabella:

autostrade per l'italia

Autostrada A14: Bologna – Bari - Taranto Tratto Borgo Panigale - Caselle Potenziamento del sistema autostradale e tangenziale di Bologna – Lotto 3 – Sottovia Diramazione via Scandellara

sollecitazioni alla base s.r. murc				CIVIV	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	N.	
	Vx	N	My	SLV X	Vx	N	My
	[kN]	[kN]	[kNm]		[kN]	[kN]	[kNm]
permanenti impalcato	0	-126	0	1.00	0	-126	0
Qik	0	-300	0	0.15	0	-45	0
qik	0	-51	0	0.08	0	-4	0
frenamento	-130	0	-650	0.20	-26	0	-130
vento	0	0	0	0.00	0	0	0
res. par. vinc.	-57	0	-284	1.00	-57	0	-284
sisma x	-52	0	-259	1.00	-52	0	-259
sollecitazioni alla base s.r. murc				GIVIV			
	Vx	N	My	SLV X	Vx	N	My
	[kN]	[kN]	[kNm]		[kN]	[kN]	[kNm]
permanenti spalla	0	-158	3	1.00	0	-158	3
statica k0	147	0	287	0.00	0	0	0
sovraccarico k0	50	0	147	0.00	0	0	0
inerzia sismica Fx	-54	0	-158	1.00	-54	0	-158
inerzia sismica Fz	0	-27	0	0.30	0	-8	0
sismica M.O parte statica	147	0	287	1.00	147	0	287
sismica M.O parte sismica	0	0	0	1.00	0	0	0
sovraccarico sismico k0	0	0	0	1.00	0	0	0
					Vx	N	My
					[kN]	[kN]	[kNm]
					-42	-341	-542

5.2.7 Muro d'ala

5.2.7.1 Muro d'ala – azioni

sollecitazioni alla base s.r. muro d'ala - su larghezza di 1 m										
	V _x	N	My							
	[kN]	[kN]	[kNm]							
pp muro	0	-152	0							
FOA pp	0	-20	43							
FOA vento	-28	-9	350							
FOA press. din. veic.	-19	-6	236							
statica k ₀	158	0	306							
sovraccarico k ₀	52	0	158							
inerzia sismica Fx	49	0	149							
inerzia sismica Fz	0	-25	0							
sismica M.O parte statica	158	0	306							
sismica M.O parte sismica	78	0	237							
sovraccarico sismico k ₀	10	0	32							

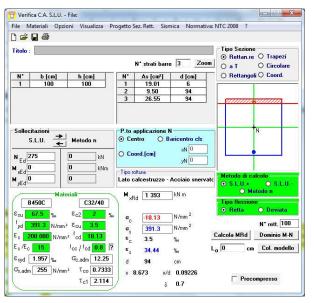
5.2.7.2 Muro d'ala – combinazioni di carico

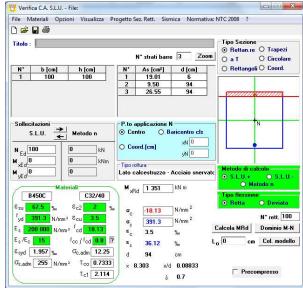
Si riportano diseguito i coefficienti di combinazione utilizzati nelle verifiche.

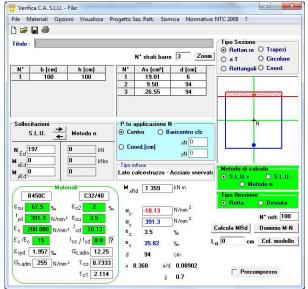
sollecitazioni alla base s.r. muro	d'ala - su la	rghezza di	1 m						
	Vy	N	Mx	SLU1	Q.P.	SLV Y	SLV Z	RARA1	FREQ1
	[kN]	[kN]	[kNm]						
pp muro	0	-152	0	1.50	1.00	1.00	1.00	1.00	1.00
FOA pp	0	-20	43	1.50	1.00	1.00	1.00	1.00	1.00
FOA vento	-28	-9	350	0.90	0.00	0.00	0.00	0.00	0.00
FOA press. din. veic.	-19	-6	236	1.35	0.00	0.00	0.00	1.00	0.00
statica k ₀	158	0	306	1.35	1.00	0.00	0.00	1.00	1.00
sovraccarico k ₀	52	0	158	1.50	0.00	0.00	0.00	1.00	1.00
inerzia sismica Fx	49	0	149	0.00	0.00	1.00	0.30	0.00	0.00
inerzia sismica Fz	0	-25	0	0.00	0.00	0.30	1.00	0.00	0.00
sismica M.O parte statica	158	0	306	0.00	0.00	1.00	1.00	0.00	0.00
sismica M.O parte sismica	78	0	237	0.00	0.00	1.00	0.30	0.00	0.00
sovraccarico sismico k ₀	10	0	32	0.00	0.00	1.00	1.00	0.00	0.00

Si ottengono le seguenti sollecitazioni alla base del muro frontale:

	Vx	N	Му
	[kN]	[kN]	[kNm]
SLU1	240	-275	1347
QP	158	-172	348


Tratto Borgo Panigale - Caselle Potenziamento del sistema autostradale e tangenziale di Bologna -Lotto 3 - Sottovia Diramazione via Scandellara




SLV Y	295	-180	766
SLV Z	207	-197	496
RARA1	191	-178	742
FREQ1	210	-172	506

5.2.7.3 Muro d'ala – verifiche a pressoflessione

Si riportano le verifiche a pressoflessione disponendo 1\psi_26/20+1\psi_22/40 lato terra e 1\psi_22/20 lato valle con un fattore di sicurezza minimo di 1.03 nella combinazione SLU1:

5.2.7.4 Muro d'ala – verifiche a taglio

Il massimo taglio agente risulta pari a 295 kN pari a una tensione tangenziale pari a 29500/(94x100)=3.14 daN/cm². Il valore di v_{min} è pari a 3.50 daN/cm², non è quindi necessaria armatura a taglio appositamente dimensionata. Viene comunque predisposta un'armatura composta da $1 \pm 10/40x40$ e un coefficiente di sicurezza di 1.36:

f_{ck}	32	MPa
h	1000	mm
С	60	mm
d	940	mm
k	1.46	
.,	0.35	MPa
V _{min}	3.50	daN/cm²
$A_{\text{sl,sup}}$	2655	mm^2
$A_{sl,inf}$	1901	mm²
b_{w}	1000	mm
ρ_1	0.003	
	0.37	MPa
V_{Rd}	0.37	IVIPa
	3.65	daN/cm²
θ	22	0
$ctg\theta$	2.48	ok
$\boldsymbol{A}_{\text{sw}}$	196	mm^2
S	400	mm
α	90	o
$ctg\alpha$	6E-17	
f_{yd}	391	MPa
	402203	N
V_{Rsd}	0.43	MPa
	4.28	daN/cm²
	2664154	N
V_{Rcd}	2.83	MPa
	28.34	daN/cm²
	0.43	MPa
V_{Rd}	4.28	daN/cm²
- 114	4.28	daN/cm ²

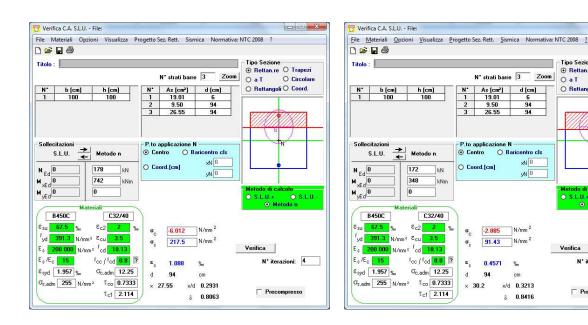
Rettan.re O Trapezi
 a T O Circolare

O S.L.U.+ O S.L.U.

⊙ Metodo n

O Rettangoli O Coord.

OaT


Zoom

xN 0

yN 0

5.2.7.5 Muro d'ala – verifiche in esercizio

Le limitazioni delle tensioni in esercizio nel cls e nell'acciaio sono verificate essendo inferiori ai limiti normativi pari a -20 MPa in combinazione rara e -14.9 MPa in combinazione quasi permanente per il cls e a 313 MPa in combinazione rara per l'acciaio (di seguito le combinazioni rara, e q.p. nell'ordine):

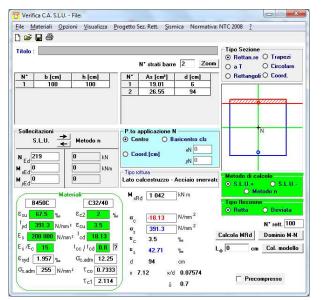
La verifica a fessurazione qui di seguito riportata è soddisfatta con un'apertura delle fessure pari a 0.16 mm in combinazione frequente e 0.10 mm in combinazione quasi permanente. Nella tabella seguente gli sforzi normali di compressione sono negativi.

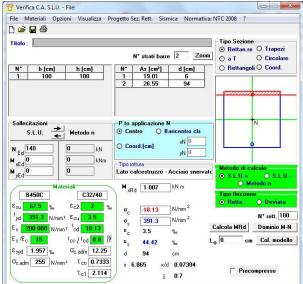
codice elemento	comb.	comb. cls	Nd	Md	Vd	В	Н	d	ď'	fck	fyk	Es	fcd	fyd	εSy
codice elemento	COIID.	CIS	[kN]	[kNm]	[kN]	[cm]	[cm]	[cm]	[cm]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	%
muro d'ala	freq	3	-172	506	0	100	100	94.00	6.0	32	450	200000	18.13	391.30	0.196
muro d'ala	qp	3	-172	348	0	100	100	94.00	6.0	32	450	200000	18.13	391.30	0.196

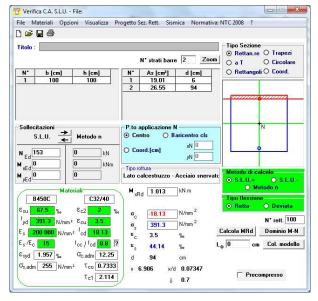
		Armatura longitudinale												
codice elemento	Armatura sup. [mm] [cm²] Armatura inf. [mm] [cm²]										2]			
codice elemento	n	ф	n	ф	n	ф	A's	n	ф	n	ф	n	ф	As
muro d'ala	5	22	0	8	0	8	19.00	5	26	2.5	22	0	8	36.03
muro d'ala	5	22	0	8	0	8	19.00	5	26	2.5	22	0	8	36.03

			vc sle									
codice elemento	е	e'	you	σc	σS	sr,max	0	hc,eff	kt	op.eff	ssm-scm	wk
codice elemento	[mm]	[mm]	[cm]	[MPa]	[MPa]	[mm]	αе	[mm]	KL	ρp,en	HIJSTINGS	[mm]
muro d'ala	3382	2502	28.55	4	134	388	6.00	150	0.4	0.0240	0.0004	0.16
muro d'ala	2463	1583	30.19	3	86	388	6.00	150	0.4	0.0240	0.0003	0.10

5.2.7.6 Muro d'ala – verifica a 1.50 m dallo spiccato

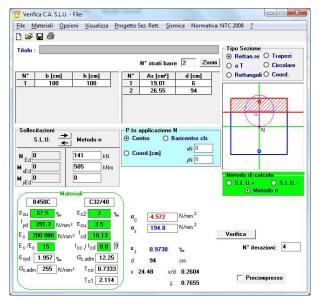

Questo paragrafo riporta in forma sintetica il calcolo dell'armatura a pressoflessione necessaria a una distanza pari a 1m dallo spiccato del muro. Le sollecitazioni agenti a quella quota sono qui riportate.

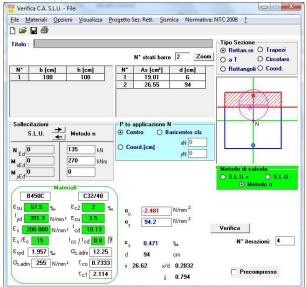

	Vx	N	Му
	[kN]	[kN]	[kNm]
SLU1	129	-219	1017
QP	90	-135	180
SLV Y	213	-140	462
SLV Z	132	-153	277

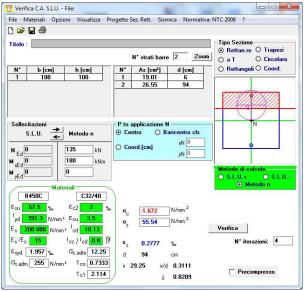


RARA1	110	-141	505
FREQ1	129	-135	270

La sezione è verificata con 1\psi 26/20 lato terra e 1\psi 22/20 lato impalcato:






Nelle combinazioni rara1, freq1 e qp si ha quanto segue:

La verifica a fessurazione è qui riportata:

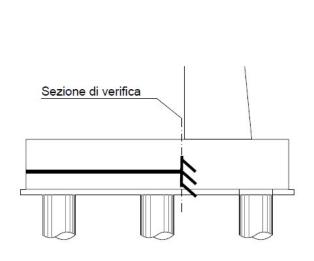
ſ	codice elemento	comb.	cls	Nd	Md	Vd	В	Н	d	ď'	fck	fyk	Es	fcd	fyd	εSy
	codice elemento con	COITID.	CIS	[kN]	[kNm]	[kN]	[cm]	[cm]	[cm]	[cm]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	%
ſ	muro d'ala	freq	3	-135	270	0	100	100	94.00	6.0	32	450	200000	18.13	391.30	0.196
ſ	muro d'ala	qp	3	-135	180	0	100	100	94.00	6.0	32	450	200000	18.13	391.30	0.196

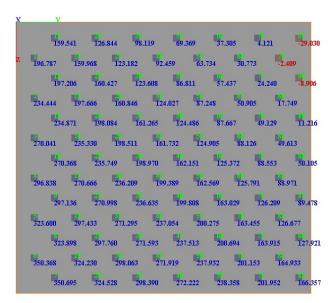
		Armatura longitudinale												
codice elemento		Α	rmatura	sup. [n	nm] [cm²	2]	Armatura inf. [mm] [cm²]							
codice elemento	n	ф	n	ф	n	ф	A's	n	ф	n	ф	n	ф	As
muro d'ala	5	22	0	8	0	8	19.00	5	26	0	22	0	8	26.53
muro d'ala	5	22	0	8	0	8	19.00	5	26	0	22	0	8	26.53

			vc sle									
codice elemento	е	e'	y c sie	σc	σs	sr,max	0	hc,eff	kt	op,eff	εsm-εcm	wk
	[mm]	[mm]	[cm]	[MPa]	[MPa]	[mm]	αe	[mm]	Kt	рр,еп	1110341163	[mm]
muro d'ala	2440	1560	26.60	2	89	454	6.00	150	0.4	0.0177	0.0003	0.12
muro d'ala	1773	893	29.23	2	52	454	6.00	150	0.4	0.0177	0.0002	0.07

autostrade per l'italia

Autostrada A14: Bologna – Bari - Taranto Tratto Borgo Panigale - Caselle Potenziamento del sistema autostradale e tangenziale di Bologna – Lotto 3 – Sottovia Diramazione via Scandellara

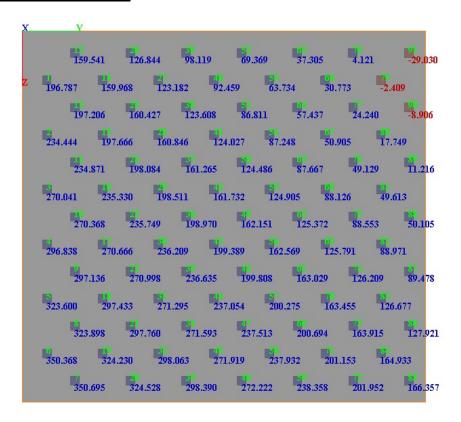



5.2.8 Plinto di fondazione

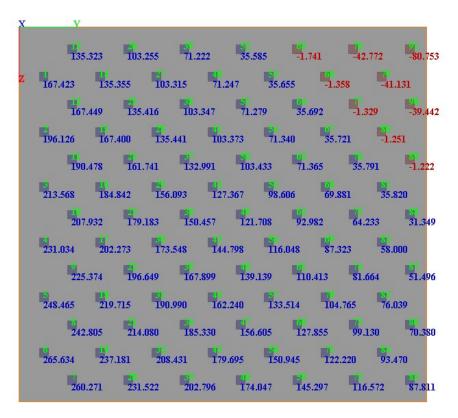
Per la ripartizione delle azioni sui micropali si è ricorsi all'utilizzo del software Group v2016: definita la geometria della fondazione si sono inserite quindi nel programma le azioni già combinate rispetto al baricentro della palificata, e questo ha restituito le sollecitazioni agenti sui singoli pali.

Si riporta un'immagine del modello costruito con la relativa numerazione dei pali a cui si fa riferimento nel seguito, in sede di verifica con le indicazioni delle azioni nei micropali relative all'inviluppo delle massime compressioni in combinazione sismica. Il sistema di riferimento indicato è diverso da quello riportato nei paragrafi precedenti, la conversione deve considerare che l'allineamento 7-85 è in linea al muro frontale e l'allineamento 1-6 è in linea al muro d'ala.

In considerazione della larghezza del plinto a valle e a monte rispetto all'altezza della platea, si ipotizza realisticamente, in entrambe le direzioni, un comportamento della fondazione riconducibile a quello di un plinto snello. Si verifica quindi la sezione d'incastro della platea di fondazione con il paramento frontale. Si assume un comportamento a mensola ipotizzando che i micropali agiscano solamente con una forza e non come vincoli. I carichi sono dati dal riempimento della spalla, dal peso proprio del plinto nonché dalla reazione dei pali e dalle inerzie verticali in combinaizione sismica. L'entità dell'azione distribuita è quantificata, per ciascuna combinazione di carico, mediando i valori delle reazione lungo gli allineamenti ortogonali alla direzione di verifica e diffondendoli sull'area di competenza. A favore di sicurezza si considerano per ciascuna combinazione gli inviluppi massimi. La diffusione avviene per ciascun micropalo su un'area rettangolare di $0.63 \times 0.64 \, \text{m}$.

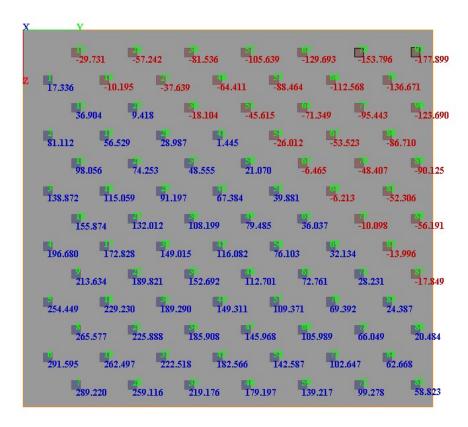


Si riportano di seguito gli inviluppi delle sollecitazioni.

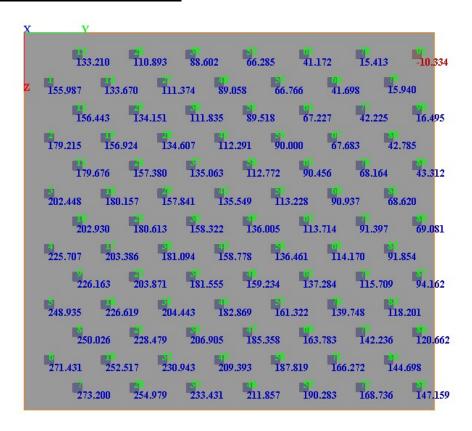


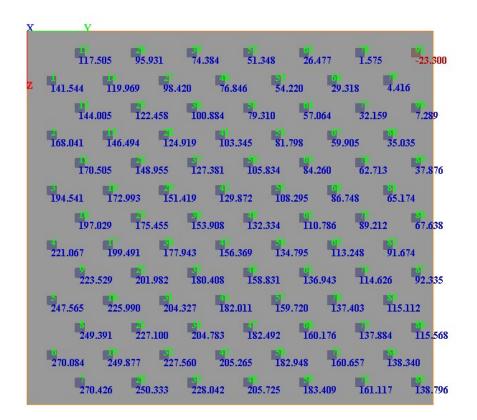
INVILUPPO MASSIMO COMBO SLU

INVILUPPO MINIMO COMBO SLU

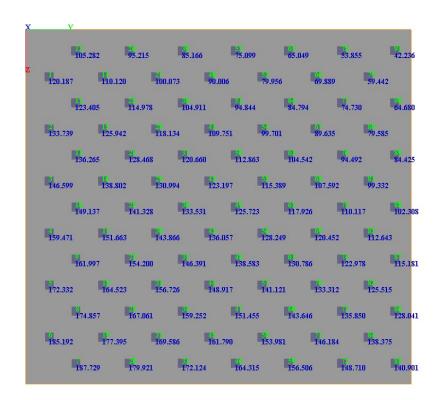


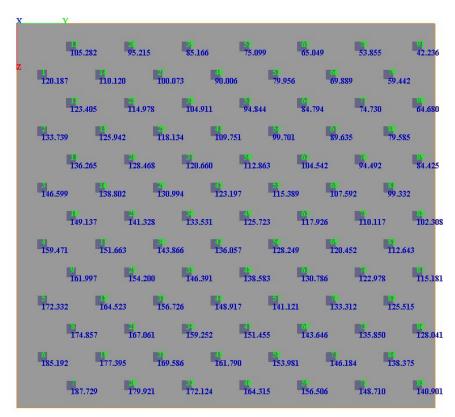
INVILUPPO MASSIMO COMBO SLV


INVILUPPO MINIMO COMBO SLV

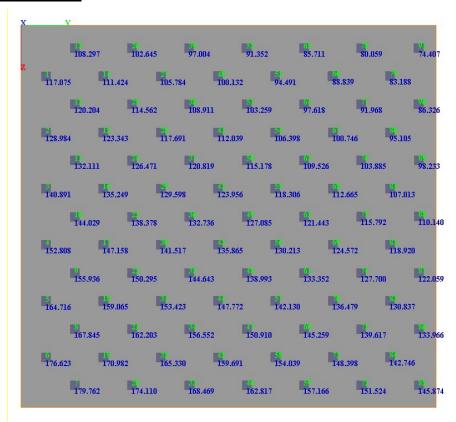


INVILUPPO MASSIMO COMBO SLE-RARA


INVILUPPO MINIMO COMBO SLE-RARA



INVILUPPO MASSIMO COMBO SLE-FREQ



INVILUPPO MINIMO COMBO SLE-FREQ

COMBO SLE-QUASI PERM

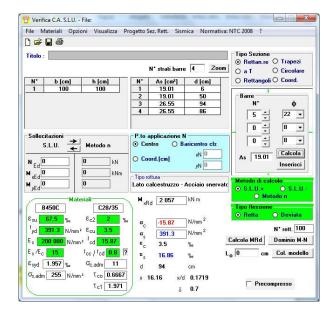
Il calcolo è eseguito soddisfando l'equilibrio al nodo tra le azioni derivanti dal muro frontale e le azioni trasmesse dalla platea di valle (quindi solo gli allineamenti 7-85 e 6-84). Le azioni sul muro frontale sono qui ricapitolate:

	Vx	N	Му
	[kN]	[kN]	[kNm]
SLU1	526	-757	1875
SLU2	350	-900	997
QP	204	-284	575
SLV X	423	-341	1377
SLV Z	295	-360	927
RARA1	254	-635	722
RARA2	254	-529	722
FREQ1	254	-529	722

I bracci tra gli allineamenti 7-85, 6-84, tra asse muro e filo muro, il peso del plinto a valle e il braccio rispetto al filo muro sono:

b₇₋₈₅ 1.3 m

 b_{6-84} 0.68 m



b_{muro}	0.6	m
peso plinto	45	kN
b_{plinto}	0.9	m

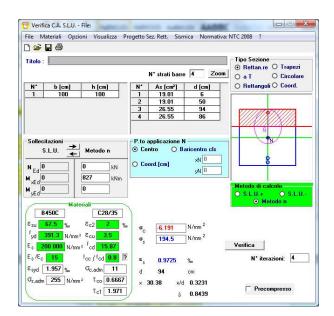
Si ottengono le seguenti sollecitazioni nella sezione di verifica della platea (dato che la sollecitazione tagliante non può essere redistribuita nel calcolo delle sollecitazioni taglianti agenti si assume il massimo del taglio e non il valore medio di tabella):

	Vx	Му
	[kN]	[kNm]
SLU1	559	-1985
SLU2	702	-1192
QP	/	-535
SLV X	154	-1159
SLV Z	135	-720
RARA1	/	-819
RARA2	/	-756
FREQ1		-827

La sezione risulta verificata disponendo superiormente 1 \$\phi\$26/10, 1 \$\phi\$22/20 intermedi e inferiormente 1 \$\phi\$22/20

A taglio si ha una tensione tangenziale di 70200/(100x94) = 7.47 daN/cm². La verifica è soddisfatta predisponendo un'armatura composta da 1 + 14/20x40 con un coefficiente di sicurezza di 1.08.

f_{ck}	28	MPa
h	1000	mm



С	60	mm
d	940	mm
k	1.46	
	0.33	MPa
V _{min}	3.27	daN/cm²
A _{sl,sup}	5309	mm²
$A_{\text{sl,inf}}$	1901	mm²
b _w	1000	mm
ρ_1	0.006	
.,	0.44	MPa
V _{Rd}	4.40	daN/cm²
θ	40	0
$ctg\theta$	1.19	ok
$A_{sw} \\$	770	mm^2
S	400	mm
α	90	•
$ctg\alpha$	6E-17	
f_{yd}	391	MPa
	759150	N
V_{Rsd}	0.81	MPa
	8.08	daN/cm²
	3304818	N
V_{Rcd}	3.52	MPa
V_{Rcd}	3.52 35.16	MPa daN/cm²
V _{Rcd}		

Le verifiche in esercizio sono soddisfatte come mostra il limitato stato tensionale in combinazione rara con una tensione massima nel cls di circa 6.2 N/mm² e di 194.5 N/mm² lato acciaio.

A fessurazione si ha quanto segue:

codice elemento	comb.	cls	Nd	Md	Vd	В	Н	d	ď'	fck	fyk	Es	fcd	fyd	εsy
codice elemento	COIIID.	CIS	[kN]	[kNm]	[kN]	[cm]	[cm]	[cm]	[cm]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	%
fondazione	freq	3	0	827	0	100	100	94.00	6.0	28	450	200000	15.87	391.30	0.196
fondazione	qp	3	0	535	0	100	100	94.00	6.0	28	450	200000	15.87	391.30	0.196

		Armatura longitudinale												
codice elemento		Α	rmatura	sup. [n	nm] [cm²	2]	Armatura inf. [mm] [cm²]							
codice elemento	n	ф	n	ф	n	ф	A's	n	ф	n	ф	n	ф	As
fondazione	5	22	0	8	0	8	19.00	10	26	0	22	0	8	53.07
fondazione	5	22	0	8	0	8	19.00	10	26	0	22	0	8	53.07

			vc sle									
codice elemento	е	e'	y c sie	σc	σs	sr,max	0	hc,eff	l#	op.eff	εsm-εcm	wk
	[mm]	[mm]	[cm]	[MPa]	[MPa] [n	[mm]	αе	[mm]	N.	ρp,eπ	ESTIFECITI	[mm]
fondazione	-8269560	-8270440	29.77	5	174	329	6.00	150	0.4	0.0354	0.0007	0.22
fondazione	-5349560	-5350440	29.77	3	112	329	6.00	150	0.4	0.0354	0.0004	0.12

5.2.9 Paraghiaia

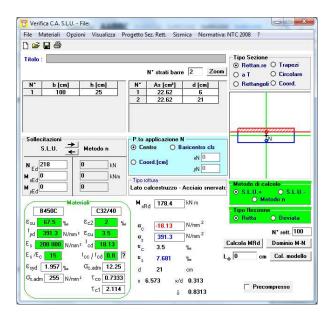
Per il calcolo dei muri paraghiaia si deve considerare un'azione orizzontale longitudinale di frenamento, applicata alla testa del muro paraghiaia (vedi Figura C5.1.1), di valore caratteristico pari al 60% del carico asse Q1k. Pertanto, in ponti di 1a categoria si considererà un carico orizzontale di 180 kN, concomitante con un carico verticale di 300 kN. Entrambe le azioni sono distribuite a 45° fino alla base del paramento su una larghezza a favore di Si hanno i seguenti casi di carico caratteristici.

sollecitazioni alla base s.r. paraghiaia	- su lar	ghezza	di 1 m
	V _x	N	M_y
	[kN]	[kN]	[kNm]
permanenti spalla	0	-10	0
statica k ₀	4	0	1
sovraccarico k ₀	9	0	4
inerzia sismica Fx	3	0	2
inerzia sismica Fz	0	-2	0

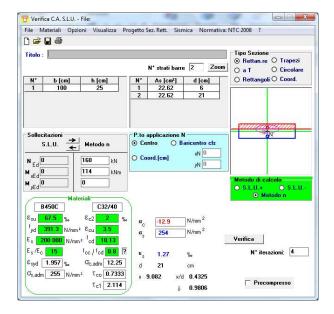
sismica M.O parte statica	4	0	1
sismica M.O parte sismica	14	0	7
sovraccarico sismico k ₀	2	0	1
Q1k	0	-150	19
frenamento	90	0	90

Le combinaizoni di carico sono qui di seguito illustrate:

sollecitazioni alla base s.r. parag	hiaia - su la	ghezza di	1 m								
	Vx	N	My	SLU1	SLU2	Q.P.	SLV X	SLV Z	RARA1	RARA2	FREQ1
	[kN]	[kN]	[kNm]								
permanenti spalla	0	-10	0	1.50	1.50	1.00	1.00	1.00	1.00	1.00	1.00
statica k0	4	0	1	1.35	1.35	1.00	0.00	0.00	1.00	1.00	1.00
sovraccarico k0	9	0	4	1.50	1.50	0.00	0.00	0.00	1.00	1.00	1.00
inerzia sismica Fx	3	0	2	0.00	0.00	0.00	1.00	0.30	0.00	0.00	0.00
inerzia sismica Fz	0	-2	0	0.00	0.00	0.00	0.30	1.00	0.00	0.00	0.00
sismica M.O parte statica	4	0	1	0.00	0.00	0.00	1.00	1.00	0.00	0.00	0.00
sismica M.O parte sismica	14	0	7	0.00	0.00	0.00	1.00	0.30	0.00	0.00	0.00
sovraccarico sismico k0	2	0	1	0.00	0.00	0.00	1.00	1.00	0.00	0.00	0.00
Q1k	0	-150	19	1.35	0.00	0.00	0.20	0.20	1.00	0.00	0.00
frenamento	90	0	90	1.35	0.00	0.00	0.20	0.20	1.00	0.00	0.00


Le verifiche sono condotte sui seguenti sistemi di sollecitazione.

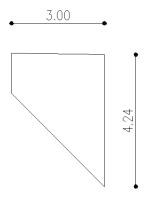
	Vx	N	Му
	[kN]	[kN]	[kNm]
SLU1	140	-218	155
SLU2	19	-15	8
QP	4	-10	1
SLV X	41	-40	33
SLV Z	29	-42	27
RARA1	103	-160	114
RARA2	13	-10	6
FREQ1	13	-10	6


Si predispone un'armatura di 1\psi 24/20 sia lato terra che lato impalcato per tenere conto del doppio segno dell'azione:

In esercizio l'unica combinazione dimensionante è la rara1 che soddisfa i requisiti di limitazione tensionale lato cls e acciaio. La verifica a fessurazione si ritiene soddisfatta denza dover eseguire il calcolo dato il valore molto limitato delle sollecitazioni agenti.

A taglio si dispongono $1 \oplus 12/20x20$ con uan tensione resistente di 9.96 daN/cm² a fronte di una tensione sollecitante di 14000/(100x19)=7.37 daN/cm².

f_{ck}	32	MPa
h	250	mm
С	60	mm
d	190	mm
k	2.00	



	0.56	MPa
V _{min}	5.60	daN/cm²
A _{sl,sup}	2262	mm²
$A_{sl,inf}$	2262	mm²
$b_{w} \\$	1000	mm
ρ1	0.012	
	0.81	MPa
V _{Rd}	8.08	daN/cm²
θ	45	0
$ctg\theta$	1.00	ok
$A_{sw} \\$	565	mm²
S	200	mm
α	90	o
$ctg\alpha$	6E-17	
$f_{yd} \\$	391	MPa
	189192	N
V_{Rsd}	1.00	MPa
	9.96	daN/cm²
	775200	N
V_{Rcd}	4.08	MPa
	40.80	daN/cm²
	1.00	MPa
V_{Rd}	9.96	daN/cm²

5.2.10 Orecchio

Si considera l'orecchio sollecitato dalla spinta del terreno, dalla spinta del sovraccarico accidentale e dalla spinta del vento sulla FOA. La verifica è condotta su schema statico di mensola (orizzontale) incastrata al paramento verticale della spalla. Per semplicità, a favore di sicurezza, si considerano le spinte agenti su una superfcie rettangolare di dimensioni pari a 3.00x4.24 m.

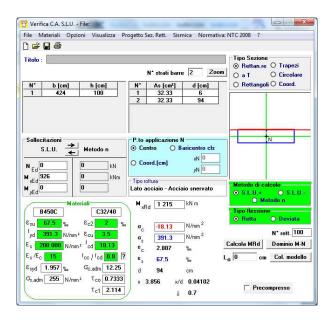
Spinta statica del terreno $S = 0.4264 \times 20 \times 4.24^2 / 2 \times 3.00 = 230 \text{ kN}$

 $M = 230 \times 3.0 / 2 = 345 \text{ kNm}$

Vento FOA S = 53 x 2 = 106 kN

 $M = 106 \times 3.0 / 2 = 159 \text{ kNm}$

Sovraccarico S = 0.4264 x 20 x 4.24 x 3.0 = 109 kN


 $M = 109 \times 3.0 / 2 = 164 \text{ kNm}$

Si considera la seguente combinazione di SLU:

$$V = 1.35 \times 230 + 1.5 \times 106 + 1.35 \times 109 = 617 \text{ kN}$$

$$M = 1.35 \times 345 + 1.5 \times 159 + 1.35 \times 164 = 926 \text{ kNm}$$

La sezione risulta verificata con 1\psi 14/20 su entrambi i lati.

Lo sforzo tagliante su 1m di larghezza vale 617 / 4.24 = 146 kN per una tensione di 14600/(100x94)=1.55 daN/cm^2 valore inferiore al v_{min} pari a 3.50 daN/cm^2 , non è necessaria armatura a taglio.

f_{ck}	32	MPa
h	1000	mm
С	60	mm
d	940	mm
k	1.46	
	0.35	MPa
V _{min}	3.50	daN/cm²

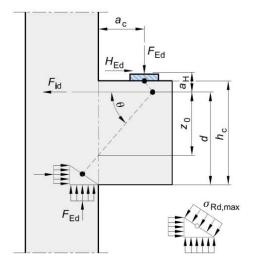
autostrade per l'italia

Autostrada A14: Bologna – Bari - Taranto Tratto Borgo Panigale - Caselle Potenziamento del sistema autostradale e tangenziale di Bologna – Lotto 3 – Sottovia Diramazione via Scandellara

5.2.11 Ritegno trasversale

Avendo l'impalcato appoggi in neoprene si prevede la realizzazione sulle spalle di ritegni trasversali sulla porzione in ampliamento atto a sopportare le azioni orizzontali eventualmente agenti, in particolare l'azione sismica.

Dall'analisi dei carichi dell'impalcato sulla spalla si deduce una forza sismica trasversale prelativa a metà impalcato di è pari a 390 KN. Tale forza agirà su ognuna delle spalle.


Il ritegno sarà costituito da un elemento in c.a. gettato in opera e collegato strutturalmente al pulvino. La verifica viene condotta secondo quanto previsto dall'Eurocodice 2, versione: UNI EN 1992-1-1:2005 (6.2.2; 6.5; J.3).

Ove non indicate le unità di misura si intendono:

- Forze [daN]
- Pressioni [daN/cm²]
- Lunghezze [cm]
- Deformazioni [%]

Calcestruzzo Mensola:	Acciaio:
	Tipo = B450C
Classe = C32/40	E = 2100000 daN/cmq
f _{ck} = 332.00 daN/cmq	f _{yk} = 4 500.00 daN/cmq
γ _c = 1.5	f _{tk} = 5 175.00 daN/cmq
$\alpha_{\rm cc}$ = 0.85	ε _{yd} = 0.19 %
f _{cd} = 188.13 daN/cmq	ε _{ud} = 6.75 %
ε _{c,2} = 0.02 %	$\gamma_{s} = 1.15$
ε _{cu,2} = 0.04 %	f _{yd} = 3 913.04 daN/cmq
•	f _{ud} = 3 913.04 daN/cmq


Si riporta uno schema della simbologia adottata

- Controlli -	- Conseguenze -
(1) 1 < tgØ <= 2.5	condizione necessaria per poter applicare questo modello
(2) a _c <= 0.5 h _c	staffe orizzontali in misura:
	Aso $>= k_1$ Afp
	(Aso = area staffe orizzontali, Afp = area ferri principali, k_1 = 0.25)
(3) a _c > 0.5 h _c	staffe verticali in misura:
	Asv \geq k ₂ Fed/f _{yd}
	(Asv = area staffe verticali, $k_2 = 0.5$)
$\sigma_{\rm cls} < f_{\rm cd}$	verifica puntone
σ _{acc} < f _{yd}	verifica tirante
σcls-piattina < f _{cd}	verifica cls sotto la piattina di carico

Si riportano la geometria e i dati di calcolo:

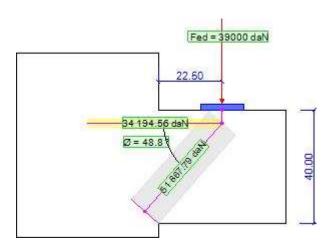
- Hs = 50 (larghezza pilastro superiore)
- Hi = 50 (larghezza pilastro inferiore)
- F = 45 (sbalzo mensola)
- a_c = 22.5 (distanza forza applicata dal filo interno del pilastro superiore)
- S1 = 40 (altezza mensola principale)
- S2 = 0 (altezza rastremazione mensola)
- B = 120 (profondità della mensola e dei pilastri)
- Piattina di carico: spessore = 2 cm, larghezza = 15 cm

Afp = 18.8cm² (area acciaio ferro principale)

Aso = 1cm² (area staffe orizzontali presenti nell'altezza (h_c) della mensola)

Asv = 1cm² (area staffe verticali)

 $Ac = 4800 \text{ cm}^2$ (area cls per verifica al taglio)


Si riporta la verifica della mensola:

Simboli:

Fed = forza verticale [daN]; Hed = forza orizzontale [daN]; Fp = puntone [daN]; Ft = tirante [daN]

Sest.1 (Caso 1)

Verificato

- $F_{ed} = 39000 \text{ daN}$
- $-H_{ed} = 0 daN$
- Fp = 51867.8 daN (puntone)
- Ft = 34194.6 daN (tirante)
- Vrd = 21861.3 daN

- $-1 < tg \emptyset <= 2.5 (1 < 1.1 <= 2.5)$ Verificato
- σ_{cls} < fcd' (34 < 188.1) **Verificato**
- $\sigma_{\text{cls-pattina}}$ < fcd' (21.7 < 188.1) **Verificato**
- σ_{acc} < fyd (1814.1 < 3913) **Verificato**
- staffe verticali = Asv >= k2 Fed/f (9 >= 5) Verificato

