

AUTOSTRADA (A14): BOLOGNA-BARI-TARANTO

TRATTO: BOLOGNA BORGO PANIGALE - BOLOGNA SAN LAZZARO

POTENZIAMENTO IN SEDE DEL SISTEMA AUTOSTRADALE E TANGENZIALE DI BOLOGNA

"PASSANTE DI BOLOGNA"

PROGETTO DEFINITIVO

TANGENZIALE NORD E SUD

OPERE D'ARTE MAGGIORI

122T - I°SOTTOVIA VIA ROBERTO VIGHI 20+565

RELAZIONE DI CALCOLO FONDAZIONI

IL PROGETTISTA SPECIALISTICO

Ing. Marco Pietro D'Angelantonio Ord. Ingg. Milano n.A20155

RESPONSABILE GEOTECNICA ALL'APERTO

IL RESPONSABILE INTEGRAZIONE
PRESTAZIONI SPECIALISTICHE

Ing. Raffaele Rinaldesi Ord. Ingg. Macerata N. A1068 IL DIRETTORE TECNICO

Ing. Andrea Tanzi Ord. Ingg. Parma N. 1154

PROGETTAZIONE NUOVE OPERE AUTOSTRADALI

					CODICE IDENTIFICA	TIVO					ORDINATORE
RIFERIMENT	O PROGETTO				RIFERIMENTO DIRETTO	ORIO		RIFERIN	MENTO ELABORATO		
Codice Commessa	Lotto, Sub-Prog, Cod. Appalto	Fase	Capitolo	Paragrafo	WBS	Parte d'opera	Tip.	Disciplina	Progressivo	Rev.	
111465	0000	PD	A2	O19	ST122	FND00	R	APE	0878	-2	SCALA -

	PROJECT MAN	IAGER:	SUPPORTO	SPECIALISTICO:		REVISIONE
spea					n.	data
opou		Ing. Raffaele Rinaldesi			0	DICEMBRE 2017
ENGINEERING	l Oi	rd. Ingg. Macerata N. A1068			1	SETTEMBRE 2019
ENGINEERING		<u> </u>			2	SETTEMBRE 2020
A 47 47 -	REDATTO:		VERIFICATO:		3	-
Atlantia Atlantia	REBATTO.		VEI III IOATO.		4	-

VISTO DEL COMMITTENTE

IL RESPONSABILE UNICO DEL PROCEDIMENTO Ing. Fabio Visintin

VISTO DEL CONCEDENTE

Ministero delle Infrastrutture e dei Trasporti DIPARTIMENTO PER LE INFRASTRUTTURE, GLI AFFARI GENERALI ED IL PERSONALE STRUTTURA DI VIGILANZA SULLE CONCESSIONARIE AUTOSTRADALI

Sommario

1	INT	TRODUZIONE	3
	1.1	DESCRIZIONE DEI SISTEMI FONDAZIONALI	3
	1.2	NORMATIVA DI RIFERIMENTO	4
	1.3	CARATTERISTICHE DEI MATERIALI	5
	1.3.	.1 Strutture di nuova realizzazione	5
	1.4	SOFTWARE DI CALCOLO	6
	1.5	CONVENZIONI GENERALI	
	1.5.		
	1.5.	.2 Convenzioni di segno	<i>6</i>
2		RATTERIZZAZIONE GEOTECNICA	
3	CRI	ITERI DI VERIFICA E CALCOLO	9
	3.1	PREMESSA	g
	3.2	FONDAZIONI SUPERFICIALI	9
	3.2.	.1 Verifiche agli stati limite ultimi (SLU)	9
	3.2.	.2 Stima della capacità portante	
	3.2.		
	3.3		
	3.3.	, ,	
	3.3.	, 55	
	3.3.		
	3.4	VALUTAZIONE DEL TIRO SUI TIRANTI PASSIVII	
	3.5	PORTATA LIMITE PER GLI ANCORAGGI DELLE SPALLE	
4	FON	NDAZIONE SPALLA - AMPLIAMENTO 2 (NUOVA REALIZZAZIONE)	25
	4.1	AZIONI DI CALCOLO	
	4.2	MODELLO DI CALCOLO	26
	4.3	ANALISI GEOTECNICA	
	4.3.		
	4.3.	- , 3	
	4.4		
	4.4.		
	4.4.	•	
5	ELE	EVAZIONE SPALLA – STRUTTURA ORIGINARIA (ESISTENTE)	39
	5.1	CURVE CARATTERISTICHE TIRANTI-SPOSTAMENTI	
	5.1.	- · y · · · · · y · · · · · ·	
	5.1.	, , , , , , , , , , , , , , , , , , , ,	
6	FON	NDAZIONE SPALLA – STRUTTURA ORIGINARIA (ESISTENTE)	43
	6.1	VERIFICA DI CAPACITÀ PORTANTE	43
	6.2	VERIFICA A SCORRIMENTO	44
7	ANA	ALISI GEOTECNICA MURI ANDATORI - (NUOVA REALIZZAZIONE)	45

Indice delle Tabelle e delle Figure

FIGURA 1-1. CONVENZIONI DI SEGNO - GROUP	6
Tabella 2-1. Indagini geognostiche di riferimento	7
Tabella 2-2. Caratterizzazione stratigrafico – geotecnica	7
Tabella 2-3. Parametri medi caratteristici dei materiali Limo argilloso (A)	7
Tabella 2-4. Parametri medi caratteristici dei materiali Limo argilloso (A')	7
Tabella 2-5. Parametri medi caratteristici dei materiali Ghiaia e Sabbia (B)	
FIGURA 3-1. COEFFICIENTI PARZIALI PER LE AZIONI O L'EFFETTO DELLE AZIONI (TAB.6.2.I DELLE NTC2018)	10
FIGURA 3-2. COEFFICIENTI PARZIALI PER I PARAMETRI GEOTECNICI DEL TERRENO (TAB.6.2.II DELLE NTC2018)	10
Figura 3-3. Coefficienti parziali r_R per le verifiche agli stati limite ultimi STR e GEO di muri di sostegno (Tab.6.5.I delle	
NTC2018)	10
FIGURA 3-4. FONDAZIONE EFFICACE EQUIVALENTE NEL CASO DI FONDAZIONE RETTANGOLARE	12
FIGURA 3-5. COEFFICIENTI PARZIALI FR DA APPLICARE ALLE RESISTENZE CARATTERISTICHE A CARICO VERTICALE DEI PALI (TAB.6.4.II DELLE	
NTC2018)	
Figura 3-6. Fattori di correlazione e per la determinazione della resistenza caratteristica in funzione del numero di verti	
INDAGATE (TAB.6.4.IV DELLE NTC2018)	
FIGURA 3-7. TERRENI GRANULARI — T _{IIM} = F(N _{SPT}) (WRIGHT-REESE — 1977)	17
Figura 3-8. Curve caratteristiche tiranti passivi	23
TABELLA 4-1. SOLLECITAZIONI DI CALCOLO RISULTANTI NEL BARICENTRO DELLA PALIFICATA	25
FIGURA 4-1. MODELLO DI CALCOLO PALIFICATA: VISTA TRIDIMENSIONALE	
FIGURA 4-2. MODELLO DI CALCOLO PALIFICATA: PIANO Y-Z	26
FIGURA 4-3. CARATTERISTICHE GEOMETRICHE E MECCANICHE SEZIONE TRASVERSALE PALI	
FIGURA 4-4. PARAMETRI DEI PALI IN GROUP	
FIGURA 4-5. DISPOSIZIONE DEI PALI IN GROUP	
FIGURA 4-6. CARATTERISTICHE MECCANICHE TERRENO	
FIGURA 4-7. MASSIMA SOLLECITAZIONE ASSIALE DI COMPRESSIONE (COMBINAZIONE 9)	
FIGURA 4-8. MASSIMA SOLLECITAZIONE ASSIALE DI TRAZIONE (COMBINAZIONE 10)	
Figura 4-9. Riepilogo Stratigrafia per verifica carico limite	
FIGURA 4-10. VERIFICA A CAPACITÀ PORTANTE DEI PALI	
Figura 4-11. Massime sollecitazioni flessionali (Combinazione 9)	
FIGURA 4-12. MASSIME SOLLECITAZIONI DI TAGLIO (COMBINAZIONE 9)	
FIGURA 4-13. VERIFICA TENSO-FLESSIONALE_SLV	
FIGURA 4-14. METODO DI CLARKE E BIRJANDI - CALCOLO SEZIONE RETTANGOLARE EQUIVALENTE.	
FIGURA 4-15. VERIFICA A TAGLIO	
Figura 5-1. Curve caratteristiche tiranti passivi-Spalla	41

1 INTRODUZIONE

La presente relazione ha come obiettivo l'esposizione delle analisi svolte e dei principali risultati ottenuti relativamente al progetto del Sottovia Via Roberto Vighi dell'autostrada A14, Bologna – Taranto, nell'ambito dei lavori di ampliamento della tangenziale di Bologna, nel tratto Borgo Panigale – Caselle. L'opera è denominata 122T e ubicata alla progressiva 20+554.

In particolare, si riportano le verifiche strutturali e geotecniche delle opere fondazionali relative a:

Ampliamento 2: ampliamento di nuova realizzazione;
 Originaria: struttura esistente (di prima realizzazione).

La relazione di calcolo delle sovrastrutture e delle sottostrutture è il riferimento principale per:

- le caratteristiche generali dell'opera;
- le condizioni ambientali e le classi di esposizione dei materiali;
- le caratteristiche dei materiali, con particolare attenzione ai materiali delle strutture esistenti;
- la caratterizzazione sismica;
- i criteri generali e le metodologie di verifica;
- le combinazioni di calcolo e i coefficienti di combinazione;
- il calcolo delle sollecitazioni risultanti utilizzate per il progetto e la verifica dei sistemi fondazionali.

1.1 DESCRIZIONE DEI SISTEMI FONDAZIONALI

Le fondazioni delle spalle sono così realizzate.

SPALLE: AMPLIAMENTO

Fondazione indiretta

Lunghezza pali: 30m

Diametro del perforo: Ø1000mm

ORIGINARIA Fondazione diretta

MURI ANDATORI: AMPLIAMENTO

Fondazione diretta

1.2 NORMATIVA DI RIFERIMENTO

Le analisi e le verifiche sono eseguite secondo il metodo semi-probabilistico agli Stati Limite, in accordo alle disposizioni previste dalle vigenti Normative italiana ed europea (Eurocodici).

In particolare, si fa riferimento alle seguenti norme:

- [1] D.M. 17/01/2018: "Aggiornamento delle Norme Tecniche per le Costruzioni" GU n°8 del 17/2/2018.
- [2] Circolare 21 gennaio 2019 n.7: "Istruzioni per l'applicazione dell'Aggiornamento delle Norme Tecniche per le Costruzioni" di cui al Decreto Ministeriale 17 gennaio 2018.
- [3] UNI EN 1990: Basi della progettazione strutturale.
- [4] UNI EN 1991-1-4: Azioni sulle strutture Azione del vento.
- [5] UNI EN 1991-1-5: Azioni sulle strutture Azioni termiche.
- [6] UNI EN 1991-1-6: Azioni sulle strutture Azioni in generale Azioni durante la costruzione.
- [7] UNI EN 1991-2: Azioni sulle strutture Carichi da traffico sui ponti.
- [8] UNI EN 1992: Progettazione delle strutture di calcestruzzo.
- [9] UNI EN 1992-1-1: Progettazione delle strutture di calcestruzzo Regole generali e regole per gli edifici.
- [10] UNI EN 1992-2: Progettazione delle strutture di calcestruzzo Ponti di calcestruzzo.
- [11] UNI EN 1993: Progettazione delle strutture in acciaio.
- [12] UNI EN 1993-1-1: Progettazione delle strutture di acciaio Regole generali e regole per gli edifici.
- [13] UNI EN 1993-2: Progettazione delle strutture di acciaio Ponti di acciaio.
- [14] UNI EN 1993-1-5: Progettazione delle strutture di acciaio Elementi strutturali a lastra.
- [15] UNI EN 1993-1-8: Progettazione delle strutture di acciaio Progettazione dei collegamenti.
- [16] UNI EN 1993-1-9: Progettazione delle strutture di acciaio Fatica.
- [17] UNI EN 1993-1-10: Progettazione delle strutture di acciaio Resilienza del materiale e proprietà attraverso lo spessore.
- [18] UNI EN 1993-1-11: Progettazione delle strutture di acciaio Progettazione di strutture con elementi tesi.
- [19] UNI EN 1994: Progettazione delle strutture composte acciaio-calcestruzzo.
- [20] UNI EN 1994-2: Progettazione delle strutture composte acciaio-calcestruzzo Ponti.
- [21] UNI EN 1997: Progettazione geotecnica.
- [22] UNI EN 1998: Progettazione delle strutture per la resistenza sismica.
- [23] UNI EN 1998-2: Progettazione delle strutture per la resistenza sismica Ponti.
- [24] UNI EN 1998-5:2005 Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici.
- [25] Ministero delle Infrastrutture e dei Trasporti Consiglio Superiore dei Lavori Pubblici Linee guida per la classificazione e gestione del rischio, la valutazione della sicurezza ed il monitoraggio dei ponti esistenti.
- [26] Autostrade per l'Italia Direzione sviluppo rete per l'Italia Ingegneria, Ambiente e Sicurezza Linee Guida per la redazione e verifica dei progetti di installazione delle barriere integrate (LG 03/2020).

1.3 CARATTERISTICHE DEI MATERIALI

1.3.1 Strutture di nuova realizzazione

Calcestruzzo per micropali: C25/30

Tensione caratteristica cubica R_{ck} = 30MPa

Tensione caratteristica cilindrica $f_{ck} = 0.83 \text{ x } R_{ck} = 24.90 \text{MPa}$

Tensione di compressione media $f_{cm} = f_{ck} + 8 = 32.90MPa$

Tensione massima di compressione per combinazione rara $0.6 \text{ x f}_{ck} = 14.94 \text{MPa}$

Tensione massima di compressione per combinazione frequente 0.45 x fck = 11.20MPa

Resistenza di calcolo $f_{cd} = \alpha_{cc} \; f_{ck} / \; \gamma_c = 14.11 \text{MPa}$

Tensione media a trazione $f_{ctm} = 0.3 \text{ x } f_{ck}^{(2/3)} = 2.56 \text{MPa}$

Tensione caratteristica a trazione $f_{ctk} = 0.7 \text{ x } f_{ctm} = 1.79 \text{MPa}$ Resistenza di calcolo a trazione $f_{ctd} = f_{ctk} / \gamma_c = 1.19 \text{MPa}$

Modulo elastico $E_{cm} = 22000 (f_{cm}/10)^{0.3} = 31447 MPa$

Micropali / ancoraggi passivi: carpenteria metallica

Acciaio in profili a sezione aperta laminati a caldo saldati:

Tipo EN 10025-2 S355 J2+N (per spessori nominali t > 40 mm)

Tipo EN 10025-2 S355 K2+N (per spessori nominali t > 40 mm)

Acciaio in profili a sezione aperta laminati a caldo non saldati:

Tipo EN 10025-2 S355 J0+N

Acciaio in profili a sezione cava:

Tipo EN 10210-1 S355 J0H+N

Acciaio per armatura lenta: barre nervate tipo B450C, controllate in stabilimento

f_{yk} ≥ 450.0 MPa

f_{tk} ≥ 540.0 MPa

 $E_S = 210000MPa$

 $u_{\rm S} = 0.3$

1.4 SOFTWARE DI CALCOLO

Il software di calcolo utilizzato per la determinazione delle sollecitazioni agenti sui pali / micropali è *Group for Windows – Version 2016*, Ensoft Inc.

Per le verifiche delle sezioni in c.a. si impiega il software di calcolo *VcaSIu*, sviluppato dal Prof. Piero Gelfi. Il programma consente la verifica di sezioni in cemento armato normale e precompresso, soggette a pressoflessione o tenso-flessione retta o deviata, sia allo Stato Limite Ultimo che con il Metodo n e permette inoltre di tracciare il domino M-N.

Per l'elaborazione dei dati di input/output in generale e la creazione di tabelle riepilogative, si adottano procedure opportunamente implementate in fogli elettronici *Microsoft* [®] *Office Excel 2016*. La descrizione delle modalità operative dei singoli fogli di calcolo verrà presentate di volta in volta.

1.5 CONVENZIONI GENERALI

1.5.1 Unità di misura

Salvo ove diversamente specificato, le unità di misura sono quelle relative al Sistema Internazionale, ovvero:

Lunghezze: [m]
Forze: [kN]
Tensioni: [MPa]

1.5.2 Convenzioni di segno

Per quanto riguarda le convenzioni di segno, si fa riferimento alla seguente figura.

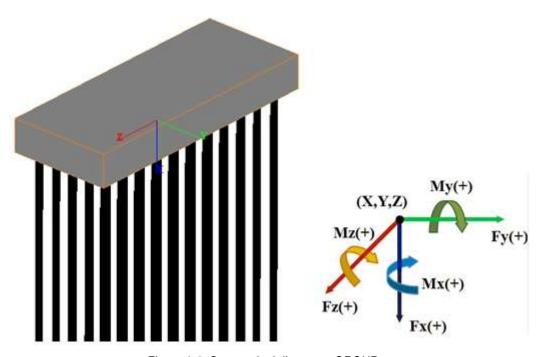


Figura 1-1. Convenzioni di segno - GROUP

2 CARATTERIZZAZIONE GEOTECNICA

Per quanto riguarda la caratterizzazione geotecnica completa del sito ove sorge l'opera in adeguamento, si rimanda alla specifica Relazione Geologica.

Si riporta nel seguito un breve richiamo alle indagini disponibili ed alla stratigrafia di riferimento.

Tabella 2-1. Indagini geognostiche di riferimento

Sigla sond./pozz./prova	Campagna di indagine	Progressiva (km)	Quota p.c. (m s.l.m.)	Lunghezza (m)	Strumentazione installata
S19	1984	20+580	53.80	35.00	-
CPT109	2000	20+440	54.00	10.00	-
PB26	2016	20+430	50.70	35.00	DH

C (....) = cella piezometrica Casagrande (profondità cella);

TA (....) = piezometro a tubo aperto (tratto filtrante);

CH = tubo per misure Cross-hole; DH = tubo per misure Down-hole

Tabella 2-2. Caratterizzazione stratigrafico – geotecnica

Quota p.c. (m s.l.m.m.)	Profondità (m da p.c.)	Descrizione	Sigla	z _w (m da p.c.)	Parametri medi caratteristici
54.00	0.00 ÷ 9.00	Limo argilloso	A	-	Errore. L'origine riferimento non è stata trovata.
	9.00 ÷ 20.00	Ghiaia e Sabbia	В	-	Errore. L'origine riferimento non è stata trovata.
	20.00 ÷ 35.00	Limo argilloso	A'	-	Errore. L'origine riferimento non è stata trovata.

Tabella 2-3. Parametri medi caratteristici dei materiali Limo argilloso (A)

Descrizione	γ	c'	ф	E'	σ'pre	CR	RR	Cv	Cu	Eu
Descrizione	(KN/m ³)	(KPa)	(°)	(MPa)	(MPa)	(-)	(-)	m/sec ²	(KPa)	(MPa)
Limo argilloso	19	0	26	5	0.4	0.18 ÷ 0.16	0.03÷0.04	3E-07	50 +3.3 z	20

Tabella 2-4. Parametri medi caratteristici dei materiali Limo argilloso (A')

Descrizione	γ	c'	ф	E'	σ'pre	CR	RR	C _v	Cu	Eu
	(KN/m³)	(KPa)	(°)	(MPa)	(MPa)	(-)	(-)	m/sec ²	(KPa)	(MPa)

Limo argilloso	19	0	26	5	0.4	0.18 ÷ 0.16	0.03÷0.04	3E-07	60 +(z-3)	20	
----------------	----	---	----	---	-----	-------------	-----------	-------	-----------	----	--

Tabella 2-5. Parametri medi caratteristici dei materiali Ghiaia e Sabbia (B)

Descrizione	γ	c'	ф	E'	σ'pre	CR	RR	Cv	Cu	Eu
Descrizione	(KN/m³)	(KPa)	(°)	(MPa)	(MPa)	(-)	(-)	m/sec ²	(KPa)	(MPa)
Ghiaia e sabbia	20	0	38	50						
γ =	peso di vol	ume de	l ter	reno	CF	₹ =	angolo di re	al taglio		
c' =	coesione e	fficace			RF	₹ =	modulo di e	lasticità		
φ =	angolo di r	esistenz	za a	l taglio	C_{v}	=	coeff. di con	ısolidazioı	ne verticale	
E' =	modulo di	elasticit	à		Cu		coesione no			
$\sigma'_{pre} =$	tensione di	precon	soli	d.	Eu	=	mod. di elas	sticità in co	ondiz. non (drenate

Come indicato nella Tabella 2-2, la stratigrafia è definita con riferimento ad un piano campagna posto a q.ta +54.00 m s.l.m.m..

Le fondazioni delle spalle e dei muri d'ala risultano impostate a q.ta +48.48 m s.l.m.m., circa 5 m al di sotto del piano campagna e, quindi, nell'ambito del primo strato limo argilloso (A). Ne consegue che nelle analisi lo spessore dello strato A viene congruentemente ridotto.

Come riportato nella Relazione Geotecnica Generale, i livelli di falda riportati nei profili geotecnici sono relativi ai valori massimi rilevati nel periodo di osservazione a disposizione, ovvero tra luglio e ottobre 2016. Il profilo stratigrafico-geotecnico mostra come i livelli di falda sono generalmente profondi, oltre 10 m da p.c., e solo tra la progr. km 13+500 e progr. km 15+500 la falda è prossima al piano campagna, a circa 5m da p.c.. Sulla base di questi dati:

- le verifiche geotecniche saranno condotte assumendo, cautelativamente, la quota di falda coincidente alla quota di imposta delle fondazioni;
- le verifiche a capacità portante per fondazioni dirette saranno condotte in condizioni drenate.

3 CRITERI DI VERIFICA E CALCOLO

3.1 PREMESSA

Le verifiche contenute nel presente documento fanno riferimento a quanto prescritto per i sistemi fondazionali nelle NTC2018 e successiva Circolare Esplicativa.

Le verifiche, sia per le condizioni di esercizio che per quelle in presenza di un evento sismico, sono eseguite nei confronti degli Stati Limite Ultimi (SLU) riferiti allo sviluppo di meccanismi di collasso determinati dalla mobilitazione della resistenza del terreno e al raggiungimento della resistenza degli elementi strutturali che compongono la fondazione.

Per ogni stato limite ultimo deve essere rispettata la condizione:

 $E_d \le R_d$ (eq. 6.2.1 delle NTC2018)

dove

E_d valore di progetto dell'azione o dell'effetto dell'azione;

R_d valore di progetto della resistenza del sistema geotecnico.

3.2 FONDAZIONI SUPERFICIALI

3.2.1 Verifiche agli stati limite ultimi (SLU)

Nel caso di fondazione superficiale, l'opera è assimilabile ad un muro di sostegno.

Secondo quanto specificato al punto 6.5.3.1 delle NTC2018, nelle verifiche di sicurezza devono essere presi in considerazione tutti i meccanismi di stato limite ultimo, sia a breve sia a lungo termine.

Gli stati limite ultimi delle opere di sostegno si riferiscono allo sviluppo di meccanismi di collasso determinati dalla mobilitazione della resistenza del terreno e al raggiungimento della resistenza degli elementi strutturali che compongono le opere stesse.

Per i muri di sostegno devono essere effettuate le verifiche con riferimento almeno ai seguenti stati limite:

- SLU di tipo geotecnico (GEO)
 - o scorrimento sul piano di posa;
 - o collasso per carico limite del complesso fondazione-terreno;
 - o ribaltamento;
- SLU di tipo strutturale (STR)
 - o raggiungimento della resistenza negli elementi strutturali;

accertando che la condizione E_d ≤ R_d sia soddisfatta per ogni stato limite considerato.

Le verifiche devono essere effettuate secondo l'Approccio 2, con la combinazione (A1+M1+R3), tenendo conto dei valori dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II e 6.5.I delle NTC2018.

Nella verifica a ribaltamento i coefficienti R3 della Tab.6.5.I delle NTC2018 si applicano agli effetti delle azioni stabilizzanti.

Tab. 6.2.I – Coefficienti parziali per le azioni o per l'effetto delle azioni

	Effetto	Coefficiente Parziale $\gamma_F \ (o \ \gamma_E)$	EQU	(A1)	(A2)
Carichi permanenti G1	Favorevole	γ _{G1}	0,9	1,0	1,0
	Sfavorevole		1,1	1,3	1,0
Carichi permanenti G2(1)	Favorevole	Ϋ́c2	0,8	0,8	0,8
	Sfavorevole	*	1,5	1,5	1,3
Azioni variabili Q	Favorevole	γα	0,0	0,0	0,0
	Sfavorevole		1,5	1,5	1,3
	- k	L.	. 100	10 10 M	1

[🕮] Per i carichi permanenti G2 si applica quanto indicato alla Tabella 2.6.I. Per la spinta delle terre si fa riferimento ai coefficienti γci

Figura 3-1. Coefficienti parziali per le azioni o l'effetto delle azioni (Tab.6.2.I delle NTC2018)

Tab. 6.2.II - Coefficienti parziali per i parametri geotecnici del terreno

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale γ_{M}	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	$ an {f \phi}'_k$	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c′ _k	Υc	1,0	1,25
Resistenza non drenata	c _{uk}	γ _{cu}	1,0	1,4
Peso dell'unità di volume	γγ	γ_{γ}	1,0	1,0

Figura 3-2. Coefficienti parziali per i parametri geotecnici del terreno (Tab.6.2.II delle NTC2018)

Tab. 6.5.I - Coefficienti parziali γ_R per le verifiche agli stati limite ultimi di muri di sostegno

Verifica	Coefficiente parziale (R3)
Capacità portante della fondazione	$\gamma_R = 1.4$
Scorrimento	$\gamma_R = 1.1$
Riba <mark>ltamento</mark>	$\gamma_R = 1.15$
Resistenza del terreno a valle	$\gamma_R = 1.4$

Figura 3-3. Coefficienti parziali γ_R per le verifiche agli stati limite ultimi STR e GEO di muri di sostegno (Tab.6.5.I delle NTC2018)

3.2.2 Stima della capacità portante

In condizioni "drenate" (sforzi efficaci), la valutazione della capacità portante delle fondazioni superficiali viene condotta in accordo all'equazione:

$$\mathbf{q}_{\mathsf{lim}} = 0.5 \cdot \gamma_c \cdot B^{'} \cdot N_r \cdot s_r \cdot i_r \cdot b_r \cdot g_r + c^{'} \cdot N_c \cdot s_c \cdot d_c \cdot i_c \cdot b_c \cdot g_c + q^{'} \cdot N_q \cdot s_q \cdot d_q \cdot i_q \cdot b_q \cdot g_q$$

Le espressioni che forniscono i valori dei fattori di capacità portante (N) e dei fattori correttivi (s, i, b, g) sono riportate di seguito:

• Fattori di capacità portante:

$$N_{c} = (N_{q} - 1) \cdot \cot g(\varphi')$$

$$N\gamma = 2 \cdot (N_{q} + 1) \cdot tg(\varphi')$$

$$N_{q} = tg^{2} \left(45 + \frac{\varphi'}{2}\right) \cdot e^{\pi g(\varphi')}$$

Fattori correttivi di forma:

$$S_c = 1 + \frac{N_q}{Nc} \cdot \frac{B'}{L'}$$

$$S_r = 1 - 0.4 \cdot \frac{B'}{L'}$$

$$S_q = 1 + \frac{B'}{L'} \cdot tg(\varphi')$$

• Fattori correttivi di profondità:

$$\begin{split} d_c &= d_q - \frac{(1 - d_q)}{Nc \ tg(\phi')} \\ d_q &= 1 + \left[2 \ (D/B') \ tg(\phi') (1 - \sin(\phi')^2 \right] per \ D/B' < 1 \\ d_q &= 1 + \left[2 \ tg(\phi') \ (1 - \sin(\phi')^2 \ tg(D/B')^{-1} \right] per \ D/B' > 1 \end{split}$$

• Fattori correttivi di inclinazione del carico:

$$\begin{split} & i_{c} = i_{q} - \left(\frac{(1 - i_{q})}{(N_{c} t g(\phi'))}\right) \\ & i_{y} = \left[1 - \frac{H}{(N + B'L'c' \cot g(\phi'))}\right]^{(m+1)} \\ & i_{q} = \left[1 - \frac{H}{(N + B'L'c' \cot g(\phi'))}\right]^{m} \\ & \text{dove} : m = \frac{[2 + (B'/L')]}{[1 + (B'/L')]} \end{split}$$

• Fattori correttivi di inclinazione fondazione:

$$\begin{split} b_{q} &= (1 - \alpha t g(\phi'))^{2} \\ b_{\gamma} &= (1 - \alpha t g(\phi'))^{2} \\ b_{e} &= b_{o} - [(1 - b_{o})/(N_{e} t g(\phi'))] \end{split}$$

• Fattori correttivi di inclinazione piano campagna:

$$g_q = (1-tg(\omega))^2$$

 $g_+ = (1-tg(\omega))^2$
 $g_c = g_q - [(1-g_q)/(N_c tg(\phi'))]$

Le formule utilizzate si riferiscono alla fondazione efficace equivalente ovvero quella fondazione rispetto alla quale il carico verticale N risulta centrato. La fondazione equivalente è caratterizzata dalle dimensioni B' e L', valutate mediante i criteri riportati in Figura 3-4.

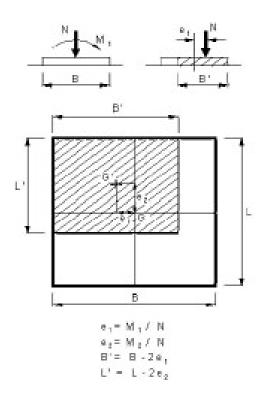


Figura 3-4. Fondazione efficace equivalente nel caso di fondazione rettangolare

Nelle analisi di capacità portante in termini di tensioni totali (condizioni "non drenate"), la resistenza del terreno è definita convenzionalmente mediante il parametro c_u. In questo caso, i fattori di capacità portante valgono:

- $N_Y = 0.00$
- $N_c = 5.14$
- $N_q = 1.00$

e il carico limite è dato da:

 $q_{lim} = 5.14 \times c_u \times s_{c0} \times d_{c0} \times i_{c0} \times b_{c0} \times g_{c0} + q \times g_{q0}$

essendo q = γ x D la pressione totale agente sul piano di posa della fondazione, e avendo indicato con il pedice 0 i fattori correttivi per ϕ = 0 per i quali valgono le formulazioni sotto riportate.

- Fattori correttivi di forma:
 Valgono le stesse formulazioni utilizzate per le condizioni drenate
- Fattori correttivi di profondità (Vesic, 1975):

Valore di ø	de	d_q	d_{r}
φ = 0 argilla satura in	$\frac{D}{B'} \le 1 \qquad 1 + 0.4 \cdot \frac{D}{B'}$	1	1
condizioni non dre- nate	$\frac{D}{B'} > 1$ $1 + 0.4 \cdot \arctan\left(\frac{D}{B'}\right)$		3.4.1

• Fattori correttivi di inclinazione del carico (Vesic, 1975):

Terreno	Ĭ,c	i_q	i_{γ}
φ = 0 argilla satura in condizioni non drenate	$1 - \frac{m \cdot H}{B' \cdot L \cdot c_u \cdot N_c}$	1	1

- Fattori correttivi di inclinazione fondazione:
 Date le condizioni al contorno delle opere, vengono considerati unitari.
- Fattori correttivi di inclinazione piano campagna:
 Date le condizioni al contorno delle opere, vengono considerati unitari.

3.2.3 Verifica a scorrimento

La verifica allo scorrimento viene condotta confrontando l'azione di taglio trasmessa in fondazione con l'azione di taglio resistente del terreno. Quest'ultima è valutata come:

 $T_{lim} = N x tg \phi + c' x B' x L'$ in condizioni drenate

 $T_{lim} = c_u \times B' \times L'$ in condizioni non drenate

dove N è il carico assiale applicato nel baricentro della fondazione e ϕ l'angolo di attrito terreno – fondazione.

3.3 FONDAZIONI SU PALI

3.3.1 Verifiche agli stati limite ultimi (SLU)

Secondo quanto specificato al punto 6.4.3.1 delle NTC2018, nelle verifiche di sicurezza devono essere presi in considerazione tutti i meccanismi di stato limite ultimo, sia a breve sia a lungo termine.

Gli stati limite ultimi delle fondazioni su pali si riferiscono allo sviluppo di meccanismi di collasso determinati dalla mobilitazione della resistenza del terreno e al raggiungimento della resistenza degli elementi strutturali che compongono la fondazione stessa.

Le verifiche delle fondazioni su pali sono effettuate con riferimento ai seguenti stati limite, quando pertinenti:

- SLU di tipo geotecnico (GEO)
 - o collasso per carico limite della palificata nei riguardi dei carichi assiali;
 - o collasso per carico limite della palificata nei riguardi dei carichi trasversali;
 - o collasso per carico limite di sfilamento nei riguardi dei carichi assiali di trazione;
- SLU di tipo strutturale (STR)
 - o raggiungimento della resistenza dei pali;
 - o raggiungimento della resistenza della struttura di collegamento dei pali;

accertando che la condizione E_d ≤ R_d sia soddisfatta per ogni stato limite considerato.

Le verifiche devono essere effettuate, tenendo conto dei valori dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II e 6.4.II delle NTC2018, seguendo l'Approccio 2 (A1+M1+R3) previsto al punto 6.4.3.1 delle NTC2018.

Nelle verifiche effettuate con l'approccio 2 che siano finalizzate al dimensionamento strutturale, il coefficiente y_R non deve essere portato in conto.

Tab. 6.4.II – Coefficienti parziali γ_R da applicare alle resistenze caratteristiche a carico verticale dei pali

Resistenza	Simbolo	Pali infissi	Pali trivellati	Pali ad elica continua
	γ_{R}	(R3)	(R3)	(R3)
Base	γь	1,15	1,35	1,3
Laterale in compressione	γ _s	1,15	1,15	1,15
Totale (*)	γ	1,15	1,30	1,25
Laterale in trazione	γ _{st}	1,25	1,25	1,25

[&]quot; da applicare alle resistenze caratteristiche dedotte dai risultati di prove di carico di progetto.

Figura 3-5. Coefficienti parziali γR da applicare alle resistenze caratteristiche a carico verticale dei pali (Tab.6.4.II delle NTC2018)

3.3.2 Resistenza di pali soggetti a carichi assiali

La resistenza dei pali soggetti a carichi assiali è calcolata come prescritto al punto 6.4.3.1.1 delle NTC2018.

La resistenza caratteristica (Rk) del palo singolo può essere dedotta da:

- a) risultati di prove di carico statico di progetto su pali pilota;
- b) metodi di calcolo analitici, dove R_k è calcolata a partire dai valori caratteristici dei parametri geotecnici oppure con l'impiego di relazioni empiriche che utilizzino direttamente i risultati di prove in sito (prove penetrometriche, pressiometriche, ecc.);
- c) risultati da prove dinamiche di progetto, ad alto livello di deformazione, eseguite su pali pilota.

Nelle analisi condotte si è proceduto considerando l'approccio di tipo (b) e come di seguito descritto.

Con riferimento alle procedure analitiche che prevedano l'utilizzo dei parametri geotecnici o dei risultati di prove in sito, il valore caratteristico della resistenza a compressione e a trazione (R_{c,k} ovvero R_{t,k}) è ottenuto come:

$$R_k = min \left\{ \frac{R_{MEDIA}}{\xi_3}; \frac{R_{MIN}}{\xi_4} \right\}$$

con

RMEDIA e RMIN le resistenze calcolate;

 ξ_3 e ξ_4 i fattori di correlazione funzione del numero n di verticali indagate riportati alla Tab.6.4.IV delle NTC2018.

Tab. 6.4.IV - Fattori di correlazione ξ per la determinazione della resistenza caratteristica in funzione del numero di verticali indagate

Numero di verticali indagate	1	2	3	4	5	7	≥ 10
ξ3	1,70	1,65	1,60	1,55	1,50	1,45	1,40
ξ_4	1,70	1,55	1,48	1,42	1,34	1,28	1,21

Figura 3-6. Fattori di correlazione ξ per la determinazione della resistenza caratteristica in funzione del numero di verticali indagate (Tab.6.4.IV delle NTC2018)

Il valore di progetto R_d della resistenza si ottiene a partire dal valore caratteristico R_k applicando i coefficienti parziali γ_R della Tabella 6.4.Il delle NTC2018 (vedi Figura 3-5).

I criteri utilizzati per la stima delle curve di capacità portante a compressione e trazione sono illustrati nel successivo paragrafo.

3.3.2.1 Stima della resistenza dei pali e micropali soggetti a carichi assiali

La portata limite (Q_{LIM}) è calcolata in riferimento alla seguente espressione:

$$Q_{LIM} = Q_{B,LIM} + Q_{L,LIM} = q_b \cdot A_B + \sum_i \pi \cdot D_i \cdot \Delta H_i \cdot \tau_{LIM,i}$$

compressione

$$Q_{LIM} = W + Q_{L,LIM} = \gamma'_{cls} \left(\sum_{i} \Delta H_{i} \right) \cdot A_{B} + \sum_{i} \pi \cdot D_{i} \cdot \Delta H_{i} \cdot \tau_{LIM,i}$$

trazione

dove:

Q_{B,LIM} = portata limite di base;

Q_{L,LIM} = portata limite laterale;

W = peso proprio del palo;

q_b = portata unitaria di base;

γ'_{cls} = peso di volume sommerso del calcestruzzo armato;

 A_B = area di base;

 D_i = diametro del concio i^{mo} di palo;

 ΔH_i = altezza del concio i^{mo} di palo;

TLIM,i = attrito laterale unitario limite del concio i^{mo} di palo.

Portata di base

• Per terreni granulari:

 $q_b = 0.667 \times N_{SPT} \le 4MPa$

• Per terreni coesivi:

$$q_{lim} = 9 \times c_u + \sigma_{v0}$$

dove:

c_u = coesione non drenata

 σ_{v0} = pressione geostatica verticale totale alla quota della base del palo

Portata laterale

• Per terreni granulari si ha:

 $T_{LIM} = min [k \times \sigma'_{v} \times tg\phi; T = f(N_{SPT})] < 150kPa$

dove:

k = 0.70 nel caso di compressione e k = 0.50 nel caso di trazione

 σ'_{v} = pressione geostatica verticale efficace

φ = angolo di attrito

N_{SPT} = numero di colpi/piede in prova SPT

I valori di $\tau = f(N_{SPT})$ si possono desumere dalla Figura 3-7:

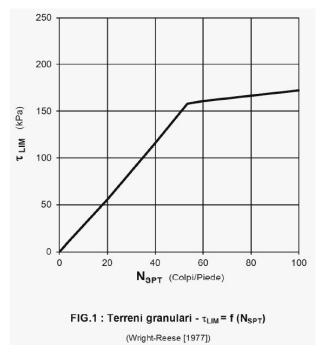


Figura 3-7. Terreni granulari – Tlim = f(NSPT) (Wright-Reese – 1977)

Per terreni coesivi si ha:

 $T_{lim} = \alpha \times c_u < 150 \text{kPa}$

dove:

 α = coefficiente empirico di aderenza che dipende dal tipo di terreno, dalla resistenza al taglio non drenata del terreno indisturbato, dal metodo di costruzione del palo, dal tempo, dalla profondità, dal cedimento del palo.

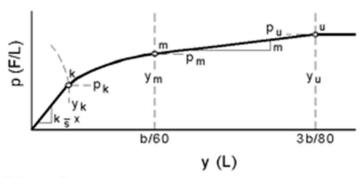
```
coefficiente riduttivo (= 0.9 per cu<=25 kPa; 0.8 per 25<cu<=50 kPa; 0.6 per 50<cu<=75 kPa; 0.4 per cu>75 kPa; AGI [1984]) cu coesione non drenata
```

3.3.3 Comportamento di pali in gruppo soggetti a carichi trasversali

Il comportamento di pali in gruppo soggetti a carichi trasversali è indagato mediante il programma di calcolo GROUP.

Il programma di calcolo permette di analizzare il comportamento di una palificata sottoposta a carichi orizzontali e verticali modellando l'interazione terreno struttura mediante curve p-y.

Le curve p-y che esprimono la resistenza del terreno in funzione della profondità e dello spostamento del palo, possono essere ricavate in relazione alla tipologia di terreni e alle proprietà meccaniche che li caratterizzano, in accordo alle procedure proposte da:


•	Reese, Cox e Koop (1975)	per sabbie
•	Welch e Reese (1975)	per argille tenere sotto falda
•	Reese, Cox e Koop (1975)	per argille dure sotto falda
•	Reese-Welch (1972)	per argille dure sopra falda

Il programma permette di scegliere tra uno dei modelli sopra esposti.

I metodi di calcolo sono descritti sinteticamente nelle pagine seguenti con riferimento sia a carichi statici sia a carichi ciclici.

Modello per sabbie Cox e Reese (1975)

1- calcolo di p = min(pu1;pu2)

$$\begin{aligned} \text{pu}_1 &= \gamma \cdot z \cdot \frac{\mathsf{K}_0 \cdot z \cdot \tan \phi \cdot \sin \beta}{\tan (\beta - \phi) \cdot \cos \alpha} \cdot \mathsf{A}_1 + \frac{\tan \beta}{\tan (\beta - \phi)} \cdot \left(\mathsf{D} \cdot \mathsf{A}_3 + z \cdot \tan \beta \cdot \tan \alpha \cdot \mathsf{A}_3^2 \right) + \\ &+ \gamma \cdot z \cdot \left[+ \mathsf{K}_0 \cdot z \cdot \tan \beta \cdot \left(\tan \phi \cdot \sin \beta - \tan \alpha \right) \cdot \mathsf{A}_1 - \mathsf{K}_3 \cdot \mathsf{D} \right] \\ \mathsf{pu}_2 &= \mathsf{K}_3 \cdot \mathsf{D} \cdot \gamma \cdot z \cdot \left(\tan^3 \beta - 1 \right) + \mathsf{K}_0 \cdot \mathsf{D} \cdot \tan \phi \cdot \tan^4 \beta \\ &= \mathsf{A}_1 \cdot \left(4 \cdot \mathsf{A}_2^3 - 3 \cdot \mathsf{A}_2^2 + 1 \right) \end{aligned}$$

$$A_2 = (\tan \beta \cdot \tan \delta) I(\tan \beta \cdot \tan \delta + 1)$$

dove:

pu resistenza laterale unitaria ultima

y spostamento orizzontale

y peso di volume efficace

z profondità da p.c.

Ko coefficiente di spinta a riposo

angolo di attrito

β 45+ φ/2

α 6/2

D diametro del palo

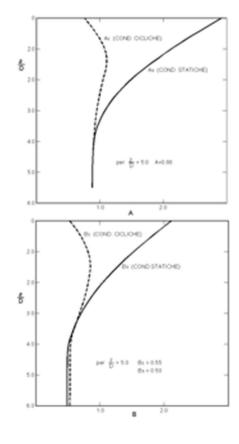
Ka tan2(45+6/2)

 δ inclinazione del piano campagna rispetto all'orizzontale

2- calcolo di p.= A. p.

3- calcolo di g_m= B_i. p

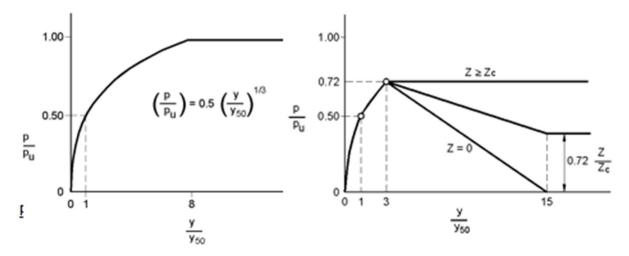
4- definizione del tratto iniziale della curva p-y


5- definizione del tratto parabolico della curva p-y

p=Cy1/n

dove:

n=pm/mym


 $C=p_m/(y_m)^{1/n}$

Modello Welch e Reese (1975) per argille tenere sotto falda

$$p_{u2} = 9 c_u D \alpha$$

$$\alpha = 1/(1+\tan\delta)$$

$$p_u = min (p_{u1}; p_{u2})$$

$$p/p_u = 0.5 (y/y_{50})^{1/3}$$

$$y_{50} = 2.5 \epsilon_{50} D$$

dove:

pu resistenza laterale unitaria ultima

σ' pressione geostatica verticale efficace alla quota z

c_u coesione non drenata

z profondità da p.c.

D diametro del palo

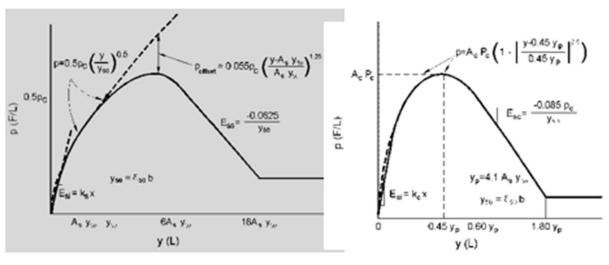
δ inclinazione del piano campagna rispetto all'orizzontale

y spostamento orizzontale

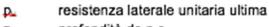
y₅₀ spostamento orizzontale per p=0.5 p_u

deformazione unitaria corrispondente ad una mobilitazione delle tensioni tangenziali pari al 50% della resistenza al taglio

per carichi ciclici


$$z_{\alpha} = [6 c_u D] / [\gamma' D + 0.5 c_u] \alpha$$

γ' = peso di volume efficace


Modello Reese, Cox e Koop (1975) per argille dure sotto falda

Carichi statici

Carichi ciclici

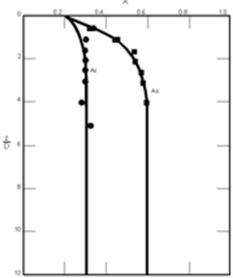
$$p_{u1} = (3 c_u D + \sigma' D + 2.83 c_u z)$$

 $p_{u2} = 11 c_u D \alpha$
 $\alpha = 1/(1+tan\delta)$
 $p_u = min (p_{u1}; p_{u2})$
 $p_u = min (p_{u2}; p_{u2})$

profondità da p.c. z

σ' pressione geostatica verticale efficace a lla profondità z

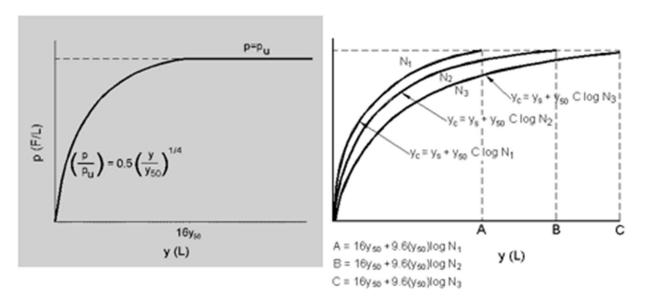
coesione non drenata Cu


D diametro del palo

spostamento orizzontale ν = 2.5 ε₅₀ D = spostamento orizzontale per p=0 **y**50

deformazione unitaria corrispondente ad una n 650 pari al 50% della resistenza al taglio

Ks pendenza del tratto iniziale della curva carichi statici K_o pendenza del tratto iniziale della curva carichi ciclici


A٠ parametro empirico

Modello Welch-Reese (1972) e Reese-Welch () per argille dure sopra falda

Carichi statici Carichi ciclici

 $p_{u1} = [3c_u D + \gamma' D z + 2.83c_u z] \alpha$ $p_{u2} = 9 c_u D \alpha$

 $\alpha = 1/(1+\tan\delta)$

 $p_u = min (p_{u1}; p_{u2})$

dove:

pu resistenza laterale unitaria ultima

γ' peso di volume unitario

c_o coesione non drenata

z profondità da p.c.

D diametro del palo

δ inclinazione del piano campagna rispetto all'orizzontale

y spostamento orizzontale

y₅₀ spostamento orizzontale per p=0.5 p_ω (= 2.5 ε₅₀ D)

650 deformazione unitaria corrispondente ad una mobilitazione delle tensioni

tangenziali pari al 50% della resistenza al taglio

pendenza del tratto iniziale della curva

3.4 VALUTAZIONE DEL TIRO SUI TIRANTI PASSIVII

La valutazione del tiro agente sui tiranti passivi nelle varie combinazioni di carico viene eseguita applicando un metodo del tipo "a curve caratteristiche", tenendo conto dell'effettiva interazione tra spalla e tiranti, assicurando la congruenza degli spostamenti previsti.

Più nel dettaglio, ipotizzando di intervenire sul paramento della spalla con una tirantatura passiva realizzata con micropali, note:

- la tipologia e la tecnica di esecuzione dell'intervento di consolidamento;
- la natura e la caratterizzazione geotecnica dei terreni;

è possibile tracciare una curva di rigidezza della tirantatura sul piano δ_h-T, dove:

 δ_h = spostamento orizzontale della testa del micropalo (considerato "assiale" per micropali suborizzontali con deviazione fino a 15°÷20°);

T = tiro nei micropali di ancoraggio, al m di paramento.

Il massimo tiro disponibile per ciascun tirante è pari a:

$$T_{max} = R_{ad}$$

dove

Rad è la resistenza di progetto calcolata al paragrafo precedente

Per ottenere il valore massimo del tiro disponibile per ciascun metro di paramento è sufficiente dividere T_{max} per l'interasse dei micropali.

Successivamente, note le sollecitazioni agenti in fondazione per ogni combinazione di carico, è possibile determinare una curva di rigidezza della struttura nel modo di seguito descritto.

La spalla esistente, per effetto dei soli carichi permanenti, subisce una traslazione rigida orizzontale (δ_o) ed una rotazione rigida (θ_o) ; in questo caso, indicando con h_{tir} la distanza verticale tra l'intradosso della fondazione e la testa dei micropali, lo spostamento orizzontale della spalla in corrispondenza del punto di applicazione dei tiranti risulta:

$$\delta_{o,htir} = \delta_o + h_{tir} \tan (\theta_o)$$

Ipotizzando di realizzare i tiranti quando sulla struttura agiscono i soli carichi permanenti, per diverse combinazioni di carico di progetto (stato limite di esercizio, stato limite ultimo o sisma), è possibile costruire per punti le curve di rigidezza della fondazione in presenza di una generica tirantatura di consolidamento, disposta ad una specificata altezza da intradosso fondazione (h_{tir}).

Considerando infatti il caso in cui la spalla sia soggetta, ad esempio, alle sollecitazioni derivanti dal sisma, si possono calcolare i valori di sollecitazioni di taglio e momento agenti in fondazione, per ciascun i-esimo ipotetico valore T_i dell'azione agente nei tiranti disposti ad altezza h_{tir}.

Si avrà infatti:

$$\begin{split} N_i &= N \\ H_i &= H - T_i \\ M_i &= M - (h_{tir}T_i) \end{split}$$

dove N_i, H_i, M_i sono, per la condizione di carico in esame, i carichi effettivi per ogni metro di fondazione nella i-esima ipotesi di efficacia della tirantatura, mentre N, H ed M sono, per la condizione di carico in esame, i carichi effettivi per ogni metro di fondazione in assenza di tirantatura.

Tali sollecitazioni (N_i , H_i , M_i) danno luogo ad uno spostamento orizzontale (δ_i) e ad una rotazione della fondazione (θ_i). Per effetto di tali spostamenti, in corrispondenza del punto di applicazione dei tiranti, lo spostamento orizzontale della spalla risulterà pari a:

$$\delta_{i,htir} = \delta_i + h_{tir} \tan (\theta_i)$$

Sottraendo a tale valore dello spostamento il valore corrispondente alle condizioni di carico permanente, si ottiene:

 $\Delta \delta_{h,i} = \delta_{o,htir} - \delta_{i,h} tir$

La coppia di valori avente coordinate $(T_i, \Delta \delta_{h,i})$ rappresenta un punto della curva di rigidezza della fondazione.

Il punto di incontro tra le curve di rigidezza della tirantatura, costituita da tiranti specificati ad interasse specificato, e la curva di rigidezza della fondazione, determinata come descritto sopra, verifica la congruenza degli spostamenti e indica il tiro a cui è soggetta la tirantatura nella specifica condizioni di carico analizzata.

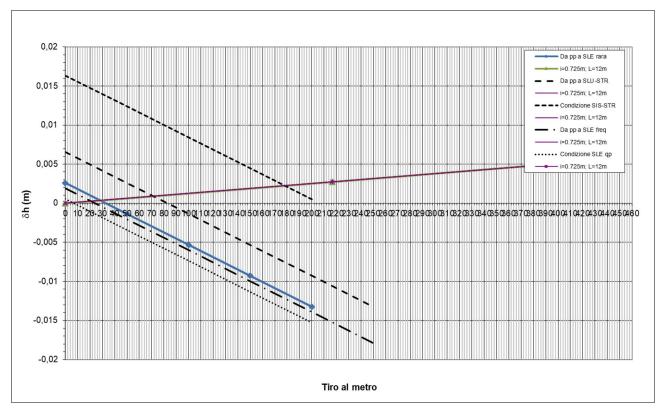


Figura 3-8. Curve caratteristiche tiranti passivi

3.5 PORTATA LIMITE PER GLI ANCORAGGI DELLE SPALLE

La verifica a sfilamento del tirante viene svolta in accordo a quanto riportato nel Paragrafo C6.6.2 delle Istruzioni per l'applicazione delle "Norme Tecniche per le costruzioni" di cui al D.M. 17 Gennaio 2018.

Il valore di calcolo della resistenza allo sfilamento dell'ancoraggio ($R_{\rm a,c}$) nel caso specifico, è stato dedotto con metodi analitici, a partire dai valori caratteristici dei parametri geotecnici (risultati di prove in sito e/o di laboratorio):

$$R_{\text{a.c}} = \pi \cdot D \cdot L \cdot \tau$$

dove:

 $D = \alpha \cdot \emptyset_{perf}$ diametro efficace ottenuto a seguito dell'iniezione (nel caso in esame è stato considerato un

valore di α pari a 1.0);

φ_{perf} diametro nominale della perforazione;

L lunghezza del bulbo di ancoraggio;

τ aderenza limite bulbo-terreno.

In base al § 6.6.2 della NTC la resistenza caratteristica allo sfilamento dell'ancoraggio è pari a:

$$R_{ak} = \frac{R_{a,c}}{\max(\xi_{a3}; \xi_{a4})}$$

dove:

ξa3 e ξa4 sono desunti dalla tabella 6.6.III al § 6.6.2 della NTC.

Al valore caratteristico così ottenuto è stato quindi applicato il coefficiente γ_{Rap} =1.2 come da Tab.6.6.I del D.M. 17/01/2018, al fine di ottenere la resistenza a sfilamento di progetto con cui condurre le verifiche:

$$R_{ad} = \frac{R_{ak}}{\gamma_{Rap}}$$

Si sottolinea quanto già prescritto in sede di progetto definitivo e nella norma vigente ovvero la <u>necessità di conferma sperimentale con prove di trazione in sito nelle fasi di progetto (campo prove) e di collaudo</u>.

4 FONDAZIONE SPALLA - AMPLIAMENTO 2 (NUOVA REALIZZAZIONE)

4.1 AZIONI DI CALCOLO

La seguente tabella riporta le sollecitazioni di calcolo agenti nel baricentro della palificata.

Il sistema di riferimento utilizzato coincide le convenzioni del software GROUP.

	DESCRIZIONE	COMBINAZIONE	Rx [kN]	Ry [kN]	Mz [kNm]
e u	no traffico	1	11360	4478	-5688
zzazio	traffico 1	2	13397	4478	-5891
Massimizzazione compressione	traffico 2a	3	12692	4563	-6390
Ma Ma	traffico 2a config 2	4	11588	4563	-6280
ne	no traffico	5	9170	4478	-5841
Massimizzazione trazione	traffico 1	6	11207	4478	-6045
ıssimi trazi	traffico 2a	7	10502	4563	-6544
Σ	traffico 2a config 2	8	9399	4563	-6434
sisma	Traffico +	9	10881	7582	-19147
sis	Traffico -	10	8038	7217	-19963
	no traffico	11	9166	3317	-2370
Rara	traffico 1	12	10675	3317	-2520
Ra	traffico 2a	13	10153	3380	-2890
	neve dominante	14	9335	3380	-2809
ente	no traffico	15	9158	3153	-1723
frequente	traffico 1	16	10145	3153	-1822
ısi nente	no traffico	17	9158	2794	-301
quasi permanente	traffico 1	18	9459	2794	-331

Tabella 4-1. Sollecitazioni di calcolo risultanti nel baricentro della palificata

4.2 MODELLO DI CALCOLO

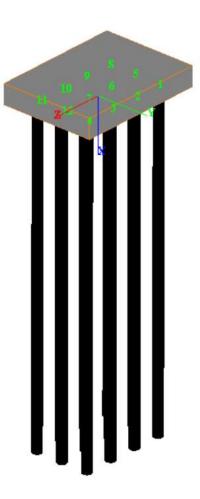


Figura 4-1. Modello di calcolo palificata: vista tridimensionale

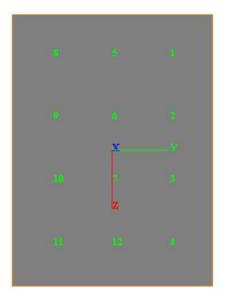


Figura 4-2. Modello di calcolo palificata: piano y-z

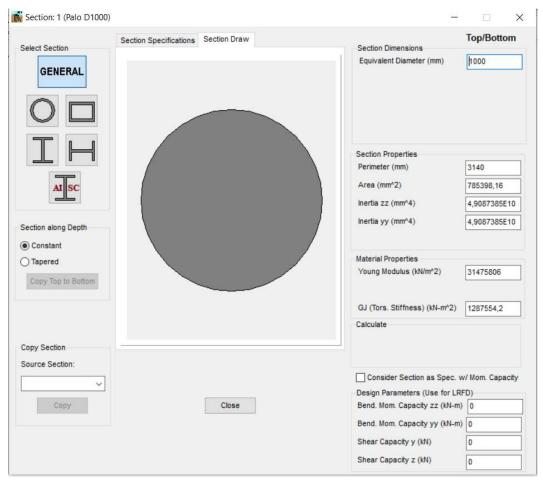
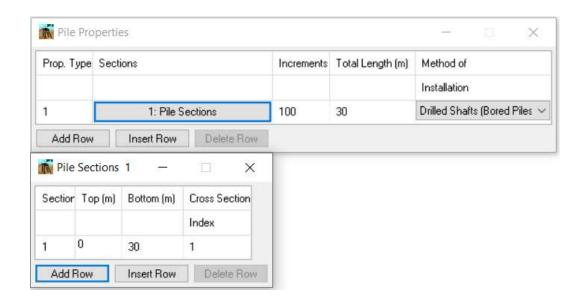



Figura 4-3. Caratteristiche geometriche e meccaniche sezione trasversale pali

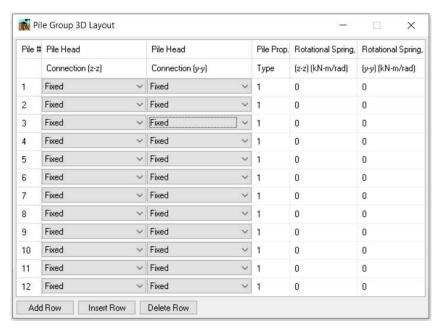


Figura 4-4. Parametri dei pali in GROUP

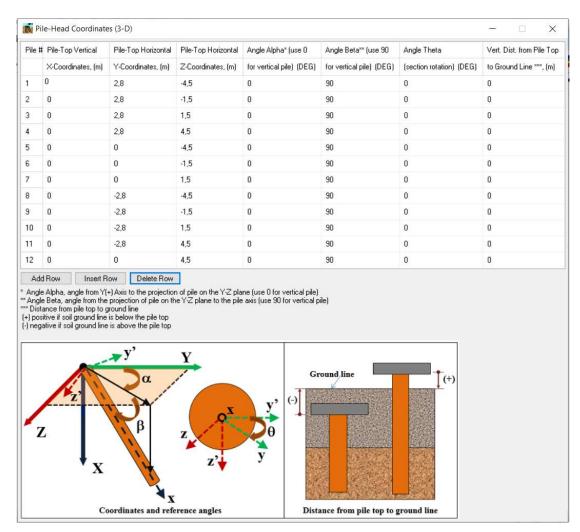



Figura 4-5. Disposizione dei pali in GROUP

Cemented c-p	ohi Soil 1						-		×
1=Top, 2=Bottom	Effective Unit Weight	Undrained Cohesion, c	Friction Angle	p-y Modulus, k	Strain Factor E50	Ultimate Unit Side Friction	Ultimate Ur	nit Tip Re	esistance
	(kN/m^3)	(kN/m^2)	(DEG.)	(kN/m^3)		(kN/m^2)	(kN/m^2)		
1	8	50	26	20000	0,007	30	490		
2	9	61,6	26	20000	0,007	37	660		

This p-y model requires non-zero values for both cohesion and friction angle.

A linear interpolation with depth will be used to compute values between the top and bottom of the layer. Ultimate Unit Side Friction and Ultimate Unit Tip Resistance:

The program uses Ultimate Unit Side Friction to generate t-z curves.
The program uses Ultimate Unit Tip Resistance to generate q-w curves.
Always check recommended values in Geotechnical Investigation Reports.

Program will help to estimate values for Ultimate Unit Side Friction and Ultimate Unit Tip Resistance

if zero input values are entered.

📉 Sand (Reese,	et al.) 2				-		×
1=Top, 2=Bottom	Effective Unit Weight	Friction Angle,	p-y Modulus, k	Ultimate Unit Side Friction	Ultimate Ur	nit Tip R	esistance
	(kN/m^3)	(DEG.)	(kN/m^3)	(kN/m^2)	(kN/m^2)		
1	10	38	50000	42	4000		
2	10	38	50000	99	4000		

A linear interpolation with depth will be used to compute values between the top and bottom of the layer.

p-y Modulus, k:

- Always check recommended value in Geotechnical Investigation Reports.
- Program will help to estimate value for p-y Modulus, k, if zero input value is entered.

Ultimate Unit Side Friction and Ultimate Unit Tip Resistance:

- The program uses Ultimate Unit Side Friction to generate t-z curves.
- The program uses Ultimate Unit Tip Resistance to generate q-w curves.
- Always check recommended values in Geotechnical Investigation Reports.
- Program will help to estimate values for Ultimate Unit Side Friction and Ultimate Unit Tip Resistance

if zero input values are entered.

Cemented c-	ohi Soil 3						-		×
1=Top, 2=Bottom	Effective Unit Weight	Undrained Cohesion, c	Friction Angle	p-y Modulus, k	Strain Factor E50	Ultimate Unit Side Friction	Ultimate Ur	nit Tip Re	sistance
	(kN/m^3)	(kN/m^2)	(DEG.)	(kN/m^3)		(kN/m^2)	(kN/m^2)		
1	9	72	26	20000	0,007	43	984		
2	9	75	26	20000	0,007	45	1068		

This p-y model requires non-zero values for both cohesion and friction angle.

A linear interpolation with depth will be used to compute values between the top and bottom of the layer.

- Ultimate Unit Side Friction and Ultimate Unit Tip Resistance:

 The program uses Ultimate Unit Side Friction to generate t-z curves.

 The program uses Ultimate Unit Tip Resistance to generate q-w curves.
- Always check recommended values in Geotechnical Investigation Reports.

 Program will help to estimate values for Ultimate Unit Side Friction and Ultimate Unit Tip Resistance

if zero input values are entered.

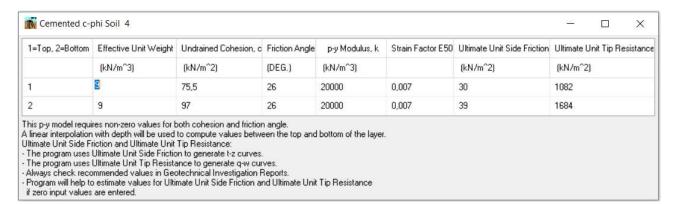


Figura 4-6. Caratteristiche meccaniche terreno

4.3 ANALISI GEOTECNICA

4.3.1 Sollecitazioni di calcolo

I seguenti grafici riportano le massime azioni assiali, compressione e trazione, agenti per le combinazioni di calcolo significative.

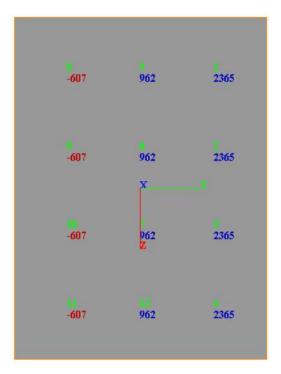


Figura 4-7. Massima sollecitazione assiale di compressione (Combinazione 9)

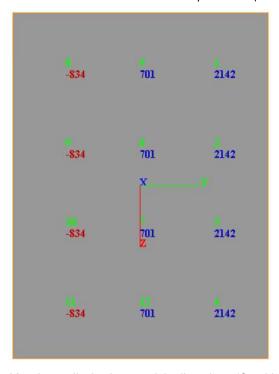


Figura 4-8. Massima sollecitazione assiale di trazione (Combinazione 10)

4.3.2 Verifica geotecnica

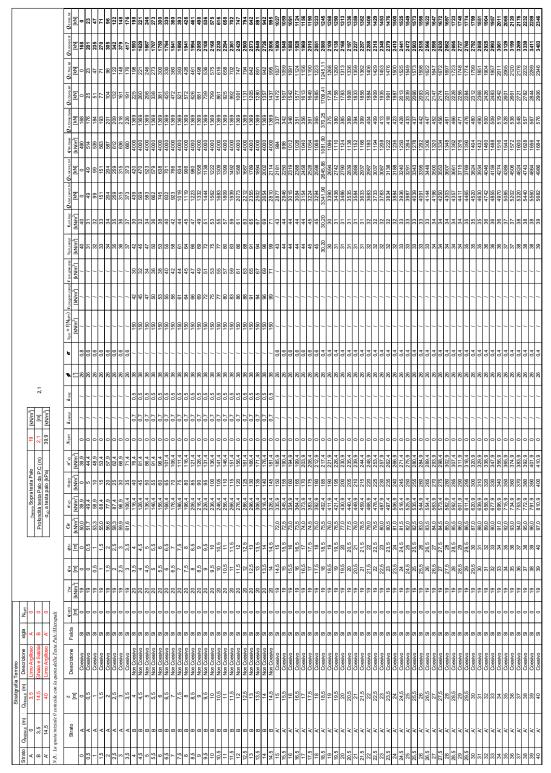


Figura 4-9. Riepilogo Stratigrafia per verifica carico limite

Ver	rifica Cario	o Limite I	 Pali/M	icropal	i		
APPROOCCIO 1	D !! T ! !! !!			n°Indagini	ξ3	ξ4	
Combinazione 1	Pali Trivellati			1	1,7	1,7	
A1 + M1 + R3	R3			2	1,65	1,55	
Base	1,35			3	1,60	1,48	
Laterale Compressione	1,15			4	1,55	1,42	
Totale	1,30			5	1,50	1,34	
Laterale Trazione	1,25			7	1,45	1,28	
				≥10	1,40	1,21	
	Caratter	istichePali/ M	icronali				
D Perforazione =	1,00	m		Numero d	i Verticali	Indagate	
L Perforazione =	30,0	m		, tarrior u		maagate	
L Bulbo =	30,0	m			1		
2 2 3 1 2 3	20,0		<u> </u>	<u> </u>			
	Cara	tteristiche Ter	reno				
γ =	19,0	kN/m³	LIM	O ARGILLO		Λ' Λ"	
φ =	26,0	0	LIIVI	O ANGILLI	700 A, F	Λ, Λ	
γ =	20,0	kN/m³		GHIAIA E SABBIA B			
ϕ =	38	0					
			-				
		zioni di Calcol	0	1			
N _{Ed} Compressione =	2365	kN					
N _{Ed} Trazione =	834	kN					
	Resi	istenza di Calc	colo				
N _{Rd} Compressione =	2792	kN					
N _{Rd} Trazione =	1799	kN					
	•			•			
	Esi	to della Verifi	ica				
	T	$N_{Rd} > N_{Ed}$	Γ	 			
N _{Rd}	N _{Ed}						
2792 >	2718						
1799 >	834						
	La Verifica	a Risulta S	oddisfa	tta			

Figura 4-10. Verifica a Capacità portante dei Pali

4.4 ANALISI STRUTTURALE

4.4.1 Sollecitazioni di calcolo

I seguenti grafici riportano le massime azioni di taglio e flettenti sulla testa del palo.

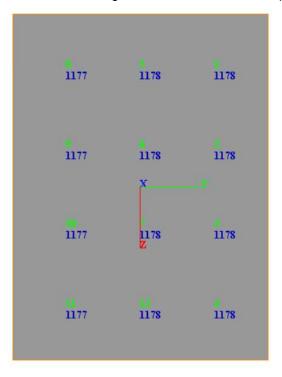


Figura 4-11. Massime sollecitazioni flessionali (Combinazione 9)

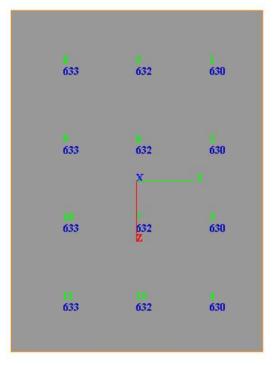


Figura 4-12. Massime sollecitazioni di taglio (Combinazione 9)

4.4.2 Verifica strutturale

- Verifica a flessione

I pali hanno un diametro pari a 100cm e sono armati con 28 barre Φ26.

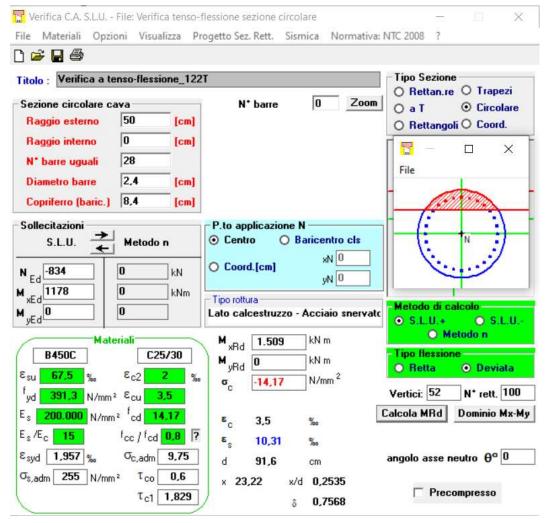


Figura 4-13. Verifica Tenso-flessionale_SLV

- Verifica a taglio

L'armatura trasversale del palo è: Φ12/15cm.

			METODO DI CLARKE & BIRJANDI
r	500	mm	raggio sezione circolare
С	84	mm	copriferro
$r_s = r - c$	416	mm	raggio sezione circolare confinata
sen α	0,530	-	$\operatorname{sen}\alpha = (2r_s)/(\pi r)$
α	0,558	rad	
A _{tot}	785398,2	mm2	Area totale della sezione circolare
Α	644568	mm2	area della sezione rettangolare equivalente A = $r^2(\pi/2+a+sen\alpha\cos\alpha)$
		PARAM	ÆTRI DELLA SEZIONE RETTANGOLARE EQUIVALENTE
b	843	mm	larghezza equivalente b=A/d
h	932	mm	altezza equivalente h=A _{tot} /b
d	765	mm	altezza utile equivalente d=r(1+sen $lpha$)

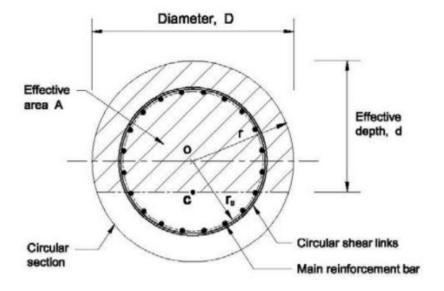


Figura 4-14. Metodo di Clarke e Birjandi - calcolo sezione rettangolare equivalente.

NTC 2018					
4.1.2.3.5.2 - Elementi con arma	ature trasvers	ali resistenti a	a taglio		
R _{ck} [MPa] =	30		f _{ck} [MPa] =	25	
f _{cd} [MPa] =	14,17	(c.a. γ _c =1.5)			
f _{ctk} [MPa] =	1,80				
f _{ctd} [MPa] =	1,20	(c.a. γ _c =1.5)			
f _{ywd} [MPa] =	391,30	(B450C γ _s =1.	15)		
Verifica del conglomerato					
H [mm] =	932	Altezza della s	sezione		
d [mm] =	765	Altezza utille o	della sezione		
b _w [mm] =	843	Larghezza de	lla membratura	resistente a ta	aglio
α_{c} =	1	1 per N=0			
α=	90	inclinazione a	irmatura	1,57079633	
θ=	21,8	inclinazione fe	essura	0,38048178	
cotgα =	6,1257E-17				
cotgθ =	2,50	tra 1 e 2.5			
V _{Rcd} [kN] =	1416,87	Resistenza a	compressione	bielle	
		=0.9 bw d α c	f'cd (cotgα+ctg	ιθ) / (1+cotg2θ)
Verifica dell'acciaio					
A _{sw} [mmq] =	226,19	Ø12 2br	area staffe		
s [mm] =	150		passo staffe		
V_{Rsd} [kN] =	1015,52	Resistenza ar	mature = 0.9 d	f _{ywd} A _{sw} /s (ct	α +ctg θ) sin α
V_{Rd} [kN] =	1015,52	Min. tra V _{Rcd} 6	eV _{Rsd}		
$V_{Sdu}[kN] =$	633,00	Sollecitazione	di progetto SL	.U	
	Verificato				

Figura 4-15. Verifica a Taglio

La tabella seguente riepiloga i risultati delle verifiche sezionali condotte sul palo.

		Pali (di fondazi	one			
Caratteristiche me	ccaniche dei	materiali materiali					
Calcestruzzo	C25/30	R _{ck} =	30	N/mm²	f _{ck} =	25	N/mm²
γ _c =	1,5	α _{cc} =	0,85		f _{cd} =	14,17	N/mm²
		E _c =	31476	N/mm²	f _{ctm} =	2,56	N/mm²
Acciaio	B450C	E _s =	200000	N/mm²	f _{yk} =	450	N/mm²
γ _s =	1,15	ε'se	1,96		f _{yd} =	391,30	N/mm²
					, i		
Caratteristiche ged	ometriche dei	lla sezione					
R =	500	mm		n.	ø(mm)	A _s (mm²)	
c =	60	mm coprifer.		28	24	12667	
						-	
N _{Ed} positivo di comp	oressione				Σ	12667	mm²
M _{Ed} positivo se tend		riori della sezione					
y distanza dell'armat	ura dal lembo	superiore					
Verifiche agli Stati	Limite Ultimi						
Flessione							
C		posizione rispetto	N _{Ed}	M _{Ed}	VEd	M _{Rd}	M _{Rd}
Combinazi	ione	testa palo	[kN]	[kNm]	[kN]	[kNm]	M _{Ed}
SLU-9		0m	-834,00	1178,00	633,00	1509,00	1,28
			,			-,	-,
Taglio							
φ _{staffe} =	12	mm	α =	90	° inclinazione	e staffa	
n _b =	2	n° braccia	s =		mm passo		
		posizione rispetto	$V_{Rd,0}$	V _{Rd.s}	V _{Rd.c}	V_{Rd}	V _{Rd}
Combinazi	ione	testa palo	[kN]	[kN]	[kN]	[kN]	V _{Ed}
SLU-9		0m	339,83	1015,52	1416,87	1015,52	1,60
020 0		OIII	000,00	1010,02	1110,01	1010,02	1,00
Verifiche agli Stati	Limite Eserc	izio					
-							
Comb. Rara		σ _{c,max} =	15,00	N/mm²			
		σ _{s,max} =	360,00	N/mm²			
Comb. Quasi Pern	nanente	σ _{c,max} =	11,25	N/mm²			
		Oc,max -	11,20	. wiidii			
		posizione rispetto	N _{Ed}	M _{Ed}	σ _c	$\sigma_{\rm s}$	
Combinazi	ione	testa palo	[kN]	[kNm]	ြMPa]	[MPa]	
ENV-RARA		0m	351,00	558,00		145,00	
ENV-RAPA ENV-QP		Om Om	497,00	472,00	-6,79 -5,78	106,20	
-14V-XI		UIII	1 31,00	712,00	-5,70	100,20	
Verifiche adli Stati	I imite Eserc	izio - Fessurazione					
				l = = = = = = = = = = = = = = = = = = =			-1
•		surazione è condottta Si fa riferimento a qu			•	•	
cap.4.1.2.2.4.5 dei Esplicativa.	IO IVI OZU10.	ъ та птенниенко а qu	ano prescii	nene labe	110 O.4.11 C O.	T.III UCIIA Uli	Julait
·		0 " .				1.	
Condizio	ni ambientali	Ordinarie		armatura	poco sensibi	e	
Comb Francis							
Comb. Frequente		W _{lim} =	0,4	mm			
		σ _s =	227	N/mm²			
		posizione rispetto	N _{Ed}	M _{Ed}	σ_{c}	σ_{s}	
Combinazi	ione		[kN]	[kNm]	[MPa]	[MPa]	
Combinazi	ione	testa palo	[KI 4]	[ra arri			
ENV-FREQ		testa palo 0m	403,00	525,00	-6,41	130,40	
ENV-FREQ		·			-6,41	130,40	
ENV-FREQ		0m	403,00	525,00	-6,41	130,40	
ENV-FREQ Comb. Quasi perm	nanente	Om W _{lim} =	403,00	525,00 mm	-6,41	130,40 σ _s	
Combinazi ENV-FREQ Comb. Quasi perm Combinazi	nanente	$\begin{array}{c} 0 \\ \text{Om} \\ \text{W}_{\text{lim}} = \\ \sigma_{\text{S}} = \end{array}$	403,00 0,3 204	525,00 mm N/mm²			

5 ELEVAZIONE SPALLA – STRUTTURA ORIGINARIA (ESISTENTE)

Nel seguito si presentano le verifiche di resistenza e di ancoraggio dei tiranti passivi previsti come intervento di consolidamento delle spalle esistenti.

5.1 CURVE CARATTERISTICHE TIRANTI-SPOSTAMENTI

Come descritto nel paragrafo 3.4, sono state costruite, sulla base dei dati di input riportati nella relazione di calcolo delle sovrastrutture e delle sottostrutture, le curve tiro-spostamenti di seguito rappresentate.

Dim. fonda	azione	Dimensione Tr	rasversale	L =	24,10	m		
		Dimensione Lo	ongitudinale	B =	4,00	m		
Modulo de	l terreno	E =	75000	kPa	(modulo elastico da adottare per terreno con			
					caratteristiche m	igliorate da pre	esenza pali tipo	FRANKI)
Solleci	tazioni Sta	itica solo per	manenti		N (kN)	H (kN)	M (kNm)	
N	=	929	KN/m		22389	4001	7688	
Н	=	166	KN/m					
M	=	319	KN m/m		δv	δh	θ	δh _{tot,sta, pp}
В	=	24,10	m			4,99E-03	7,35E-04	8,66E-03
90	llecitazioni	(al m) SLE	rara	1	N (kN)	H (kN)	M (kNm)	
N	=	·	KN/m		25160	4892	10773	
H	=		KN/m		25100	7032	10773	
M	=		KN m/m		δv	δh	θ	δh _{tot,sta,pp+acc}
В	=	24,1				6,10E-03	1,03E-03	1,13E-02
		•		_				1,102 02
	llecitazioni	i (al m) SLE			N (kN)	H (kN)	M (kNm)	
N	=		KN/m		24172	4675	9905	
Н	=	194	KN/m					
М	=	411	KN m/m		δv	δh	θ	$\delta h_{\text{tot,sta,pp+acc}}$
В	=	24,1	m			5,83E-03	9,46E-04	1,06E-02
9	ollocitazion	ni (al m) SLE	an	1	N (kN)	H (kN)	M (kNm)	
					22943	, ,		
N H	=		KN/m		22943	4193	8315	
M			KN/m		δν	δh	θ	Sh
	=		KN m/m		ΟV			δh _{tot,sis}
В	=	24,1	m	J		5,23E-03	7,94E-04	9,20E-03

Da pp a SLE rara										
Tiro/m	Tiro (kN)	N (kN)	H (kN)	M (kNm)	δh	θ	Δh_{θ}	δh_{tot}	$\Delta\delta h_{tot,(sis\text{-sta,pp+acc})}$	$\Delta\delta h_{tot,(sis-sta,pp)}$
0	0	25160,40	4892,30	10772,70	6,10E-03	1,03E-03	5,15E-03	1,13E-02	0,00E+00	0,00259
50	1087,5	25160,40	3804,80	5335,20	4,75E-03	5,10E-04	2,55E-03	7,30E-03	-3,95E-03	-0,00137
100	2175	25160,40	2717,30	-102,30	3,39E-03	-9,77E-06	-4,89E-05	3,34E-03	-7,91E-03	-0,00532
150	3262,5	25160,40	1629,80	-5539,80	2,03E-03	-5,29E-04	-2,65E-03	-6,13E-04	-1,19E-02	-0,00928
200	4350	25160,40	542,30	-10977,30	6,77E-04	-1,05E-03	-5,24E-03	-4,57E-03	-1,58E-02	-0,01323
Da pp a SLE freq										
Tiro/m	Tiro (kN)	N (kN)	H (kN)	M (kNm)	δh	θ	Δh_{θ}	δh_{tot}	$\Delta\delta h_{tot,(sis\text{-sta,pp+acc})}$	$\Delta\delta h_{tot,(sis-sta,pp)}$
	_		4075		E 02E 02		4 705 00	4.000.00		0.00190
0	0	24172,30	4675	9905,10	5,83E-03	9,46E-04	4,73E-03	1,06E-02	-6,85E-04	0,00190
0 50	0 1087,5	24172,30 24172,30	3588	9905,10 4467,60	5,83E-03 4,48E-03	9,46E-04 4,27E-04	4,73E-03 2,13E-03	6,61E-03	-6,85E-04 -4,64E-03	-0,00205
		, , , ,		, .	-,	-,		,	-,	-,
50	1087,5	24172,30	3588	4467,60	4,48E-03	4,27E-04	2,13E-03	6,61E-03	-4,64E-03	-0,00205

Condizione SLE o	lb									
Tiro/m	Tiro (kN)	N (kN)	H (kN)	M (kNm)	δh	θ	Δh_{θ}	δh_{tot}	$\Delta\delta h_{\text{tot,(sis-sta,pp+acc)}}$	$\Delta\delta h_{tot,(sis\text{-}sta,pp)}$
0	0	22943,20	4193,40	8314,50	5,23E-03	7,94E-04	3,97E-03	9,20E-03	-2,05E-03	0,00054
50	1087,5	22943,20	3105,90	2877,00	3,87E-03	2,75E-04	1,37E-03	5,25E-03	-6,00E-03	-0,00341
100	2175	22943,20	2018,40	-2560,50	2,52E-03	-2,45E-04	-1,22E-03	1,29E-03	-9,96E-03	-0,00737
150	3262,5	22943,20	930,90	-7998,00	1,16E-03	-7,64E-04	-3,82E-03	-2,66E-03	-1,39E-02	-0,01132
200	4350	22943,20	-156,60	-13435,50	-1,95E-04	-1,28E-03	-6,42E-03	-6,61E-03	-1,79E-02	-0,01528

	Sollecitaz	zioni (al m) SLU	STR	N (kN)	H (kN)	M (kNm)	
Ν	=	1410	KN/m	33981	6628	14532	
Н	=	275	KN/m				
M	=	603	KN m/m	δν	δh	θ	$\delta h_{\text{tot,sta,pp+acc}}$
В	=	24,1	m		8,27E-03	1,39E-03	1,52E-02
_	01110			•			

Da pp a SLU-STR										
Tiro/m	Tiro (kN)	N (kN)	H (kN)	M (kNm)	δh	θ	Δh_{θ}	δh_{tot}	$\Delta\delta h_{tot,(sis-sta,pp+acc)}$	$\Delta\delta h_{tot,(sis\text{-sta,pp})}$
0	0	33981,00	6627,5	14532,30	8,27E-03	1,39E-03	6,94E-03	1,52E-02	3,96E-03	0,00655
50	1087,5	33981,00	5540	9094,80	6,91E-03	8,69E-04	4,35E-03	1,13E-02	6,42E-06	0,00259
100	2175	33981,00	4452,5	3657,30	5,55E-03	3,49E-04	1,75E-03	7,30E-03	-3,95E-03	-0,00136
150	3262,5	33981,00	3365	-1780,20	4,20E-03	-1,70E-04	-8,50E-04	3,35E-03	-7,90E-03	-0,00532
200	4350	33981,00	2277,5	-7217,70	2,84E-03	-6,90E-04	-3,45E-03	-6,07E-04	-1,19E-02	-0,00927

S	Sollecitazioni (al m) SIS STR				N (kN)	H (kN)	M (kNm)	
N	=	1002	KN/m		24148	8604	29884	
Н	=	357	KN/m					
M	=	1240	KN m/m		δν	δh	θ	$\delta h_{\text{tot,sis}}$
В	=	24,1	m			1,07E-02	2,86E-03	2,50E-02

Condizione SIS-S	TR									
Tiro/m	Tiro (kN)	N (kN)	H (kN)	M (kNm)	δh	θ	Δh_{θ}	δh_{tot}	$\Delta\delta h_{tot,(sis\text{-sta,pp+acc})}$	$\Delta\delta h_{\text{tot,(sis-sta,pp)}}$
0	0	24148,20	8603,70	29884,00	1,07E-02	2,86E-03	1,43E-02	2,50E-02	1,38E-02	0,01635
50	1087,5	24148,20	7516,20	24446,50	9,38E-03	2,34E-03	1,17E-02	2,11E-02	9,81E-03	0,01239
100	2175	24148,20	6428,70	19009,00	8,02E-03	1,82E-03	9,08E-03	1,71E-02	5,85E-03	0,00844
150	3262,5	24148,20	5341,20	13571,50	6,66E-03	1,30E-03	6,48E-03	1,31E-02	1,90E-03	0,00448
200	4350	24148,20	4253,70	8134,00	5,31E-03	7,77E-04	3,89E-03	9,19E-03	-2,06E-03	0,00053

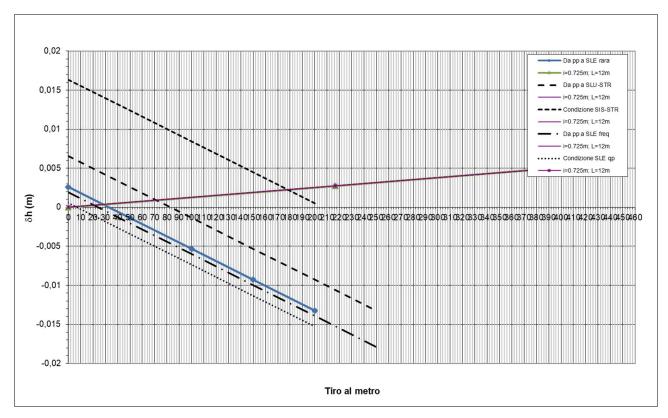


Figura 5-1. Curve caratteristiche tiranti passivi-Spalla

5.1.1 Azioni agenti sui tiranti e in fondazione

Le azioni agenti nei tiranti e in fondazione, ridotte per effetto degli stessi tiranti, sono le seguenti:

Comb.	Tiro (kN/m)
SLE - RARA	41
SLE -FREQ.	21
SLE - Q-P	6
SLV	178
SLU	91

5.1.2 Verifica dei micropali di ancoraggio passivo delle spalle

Si riportano nel presente paragrafo le verifiche geotecniche e strutturali dei tiranti di ancoraggio della spalla esistente.

La verifica a sfilamento del tirante viene svolta in accordo a quanto riportato nel par. 3.5 con riferimento alla combinazione A1+M1+R3.

Il valore caratteristico della resistenza allo sfilamento dell'ancoraggio (R_{ak}) , nel caso specifico, è stato dedotto con metodi analitici a partire dai valori caratteristici dei parametri geotecnici.

In particolare, in accordo con quanto proposto da *Bustamante e Doix*, la resistenza di calcolo è stata valutata mediante la formula:

$$R_{ac} = \pi \cdot D \cdot L_A \cdot q_s$$

avendo assunto:

D = $\alpha \cdot \Phi_{perf}$ (diametro efficace ottenuto a seguito della perforazione);

 α = 1.0;

 Φ_{perf} = 0.18 m (diametro nominale di perforazione);

L_A = lunghezza del bulbo di ancoraggio del tirante;

q = 100 kPa (fattore di aderenza valutato cautelativamente sulla base della caratterizzazione geotecnica).

Per il caso in esame i coefficienti ξ_{a3} e ξ_{a4} sono stati assunti pari a 1.80 (numero di profili di indagine = 1).

Calcolata la resistenza caratteristica R_{ak} , la resistenza di progetto R_{ad} si ottiene fattorizzando i valori di R_{ak} mediante il coefficiente γ_{Rad} = 1.2 riportato in Tab.6.6.I del D.M. 17/01/2018 nell'ipotesi di tiranti permanenti.

La verifica strutturale del tirante viene svolta confrontando l'azione assiale con la massima azione assiale resistente offerta dalla sezione.

Capacità portante di un tirante (Bustamante e Doix)

$T_{eq,max}$	178	[tiro/m]	massima azione assiale al metro lineare su tirante equivalente								
i	0,725	[m]	interasse tiranti	nterasse tiranti							
α	15	[°]	inclinazione tiranti ne	inclinazione tiranti nel piano verticale							
β	0	[°]	inclinazione tiranti ris	inclinazione tiranti rispetto piano orizzontale							
T_{max}	134	[kN]	massima azione assia	massima azione assiale su tirante							
d_perf	0,180	[m]	f_{yk}	355	[N/mm²]						
d_{a}	114,3	[mm]	γs	1,15							
Sa	10	[mm]									
A_a	3277	[mm ²]	T_{Rd_STR}	1011	[kN]						
α_{d}	1,00		ξ_{a3}	1,80							
L_{fond}	12,00	[m]	$\gamma_{Ra,p}$	1,20							
τ_{lim}	100	kN/m ²									
T_{Rcal_GEO}	679	[kN]	T _{Rd}	314	[kN]						
T_{Rk_GEO}	377	[kN]	FS	2,35	(>1)						
T_{Rd_GEO}	314	[kN]			_						

6 FONDAZIONE SPALLA – STRUTTURA ORIGINARIA (ESISTENTE)

Nel seguito si presentano le verifiche di capacità portante della fondazione diretta delle spalle esistenti (struttura originaria).

6.1 VERIFICA DI CAPACITÀ PORTANTE

								B. STR								a - STR	
Azioni di calcolo	solo perm (STR)	no traffico (a)	no traffico (b)	Traffico 1 (a)	Traffico 1 (b)	Traffico 2a (a)	Traffico 2a (b)	Traffico 2a config 2 (a)	Traffico 2a config 2 (b)	no traffico	Traffico 1	Traffico 2a	Traffico 2a config 2	Traffico +kv (max comp)	Traffico +kv (max traz)	Traffico -kv (max comp)	Traffico -kı (max traz)
Comb.	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
N _{Ed} [kN/m]	929	1246	1293	1381	1410	1334	1363	1284	1313	974	1091	1044	994	1002	982	902	882
V _{Ed} [kN/m]	166	275	275	275	275	286	286	286	286	275	275	286	286	357	357	336	336
M _{Ed} [kNm/m]	-319	-646	-568	-652	-603	-726	-677	-711	-662	-620	-655	-729	-714	-1240	-1240	-1158	-1157
e [m]	-0,34	-0,52	-0,44	-0,47	-0,43	-0,54	-0,50	-0,55	-0,50	-0,64	-0,60	-0,70	-0,72	-1,24	-1,26	-1,28	-1,31
erne di sollecitazione agenti nel punto (
se non è previsto l'intervento di rinforzo	mediante tira	nti, inserire nel	lla tabella sott	ostante le tern	e di sollecitazio	ni calcolate n	ella tabella so	orastante)									
h_tiranti [m]	5,00	da intradosso	fondazione														
i _{tiranti} [m]	0,73																
n _{tionti}	30	i															
Comb.	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
T _{Ed} [tiro/m]	-	77	67	78	71	90	84	89	82	74	78	91	89	178	178	161	161
V_TEd [kN/m]	-	69	60	70	64	81	76	80	74	67	70	82	80	161	161	145	145
M_TEd [kNm/m]	-	347	302	352	320	406	379	402	370	334	352	411	402	803	803	727	727
							COM	B. STR							Siemie	a - STR	
Azioni di calcolo	solo perm	no traffico	no traffico	Traffico 1 (a)	Traffico 1 (b)	Traffico 2a	Traffico 2a	Traffico 2a	Traffico 2a	no traffico	Traffico 1	Traffico 2a	Traffico 2a	Traffico +kv	Traffico +kv	Traffico -kv	Traffico -k
AZIONI AI CAICOIO	(STR)	<u>(a)</u>	<u>(b)</u>			<u>(a)</u>	<u>(b)</u>	config 2 (a)	config 2 (b)				config 2	(max comp)	(max traz)	(max comp)	(max traz)
N [[-1/1	0	1246	1202	1201	1/10	1224	1262	1794	1212	9 974	1001	1044	12	1002	14	15	16
N _{Ed} [kN/m]	-	1246	1293	1381	1410	1334	1363	1284	1313	974	1091	1044	994	1002	982	902	882
V _{Ed} [kN/m]	-	205 -299	214	204	211 -283	205	211	206	212	208	204 -303	204	206	196	196	190	190 -430
M _{Ed} [kNm/m]	-	-299	-266	-300	-283	-320	-298	-309	-292	-286	-503	-318	-312	-437	-436	-431	-430
Verifica di capacità portante in condizion	i (DRENATE / N	ON DRENATE	1	DRENATE													
	D			2,20	2.20	2,20	2,20	2,20	2,20	2,20	2,20	2,20	2,20	2,20	2,20	2,20	2,20
Dimensioni geometriche fondazione	l I	2,20 24,10	2,20 24,10	2,20	2,20 24,10	2,20	2,20	2,20	2,20	2,20	2,20	2,20	2,20	2,20	2,20	2,20	2,20
	B	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00
	e _L	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	e _L	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,30	0,31	0,44	0,44	0,48	0,49
	I'	24,10	24,10	24,10	24,10	24,10	24,10	24,10	24,10	24,10	24,10	24,10	24,10	24,10	24,10	24,10	24,10
	B'	3,52	3,59	3,57	3,60	3,52	3,56	3,52	3,56	3,41	3,45	3,39	3,37	3,13	3,11	3,04	3,02
Parametri geotecnici terreno di fondazio		3,32	3,33	3,31	3,00	3,32	3,50	3,32	3,50	3,41	5,45	3,33	3,31	5,15	5,11	3,04	3,02
Peso proprio dell'acqua	γw	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Peso proprio terreno di riporto	γı	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
Peso proprio terreno di fondazione	γ ₁ γ ₂	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19
Angolo d'attrito	φ	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26
Coesione efficace	c'	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coesione non drenata	Cu	70,196	70,196	70,196	70,196	70,196	70,196	70,196	70,196	70,196	70,196	70,196	70,196	70,196	70,196	70,196	70,196
Set di coefficienti parziali	-	M1	M1	M1	M1	M1	M1	M1	M1	M1	M1	M1	M1	M1	M1	M1	M1
Peso proprio terreno di riporto	γ' _{1,Mi}	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
Peso proprio terreno di fondazione	γ' _{2 Mi}	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
Angolo d'attrito fattorizzato	φ_м	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26
U	φм	0,45	0,45	0,45	0,45	0,45	0,45	0,45	0,45	0,45	0,45	0,45	0,45	0,45	0,45	0,45	0,45
Coesione efficace fattorizzata	c'_m	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coesione non drenata fattorizzata	C _{u Mi}	70,196	70,196	70,196	70,196	70,196	70,196	70,196	70,196	70,196	70,196	70,196	70,196	70,196	70,196	70,196	70,196
Fattori di capacità portante																	
	N _y	12.54	12.54	12.54	12.54	12.54	12.54	12.54	12.54	12.54	12.54	12.54	12.54	12.54	12.54	12.54	12.54
	N _c	22,25	22,25	22,25	22.25	22.25	22,25	22.25	22.25	22,25	22.25	22.25	22,25	22.25	22.25	22.25	22.25
	N _q	11,85	11,85	11,85	11,85	11,85	11,85	11,85	11,85	11,85	11,85	11,85	11,85	11,85	11,85	11,85	11,85
Fattori di forma		,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,00
(per forma rettangolare)	S _v	0,94	0,94	0,94	0,94	0,94	0,94	0,94	0,94	0,94	0,94	0,94	0,94	0,95	0,95	0,95	0,95
	Sc	1,08	1,08	1,08	1,08	1,08	1,08	1,08	1,08	1,08	1,08	1,07	1,07	1,07	1,07	1,07	1,07
	Sq	1,07	1,07	1,07	1,07	1,07	1,07	1,07	1,07	1,07	1,07	1,07	1,07	1,06	1,06	1,06	1,06
Fattori di profondità																	
	d,	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
	d _c	1,21	1,21	1,21	1,21	1,21	1,21	1,21	1,21	1,22	1,21	1,22	1,22	1,24	1,24	1,24	1,24
	dq	1,19	1,19	1,19	1,19	1,19	1,19	1,19	1,19	1,20	1,20	1,20	1,20	1,22	1,22	1,22	1,22
Fattori di inclinazione del carico																	
	m _B	1,87	1,87	1,87	1,87	1,87	1,87	1,87	1,87	1,88	1,87	1,88	1,88	1,89	1,89	1,89	1,89
	m _L	1,13	1,13	1,13	1,13	1,13	1,13	1,13	1,13	1,12	1,13	1,12	1,12	1,11	1,11	1,11	1,11
	θ [*]	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90
	m	1,87	1,87	1,87	1,87	1,87	1,87	1,87	1,87	1,88	1,87	1,88	1,88	1,89	1,89	1,89	1,89
	i _v	0,60	0,59	0,63	0,63	0,62	0,62	0,61	0,60	0,50	0,55	0,53	0,51	0,53	0,53	0,50	0,50
	ic	0,69	0,69	0,72	0,72	0,71	0,71	0,69	0,69	0,60	0,65	0,63	0,61	0,63	0,63	0,61	0,60
	iq	0,71	0,71	0,74	0,74	0,73	0,73	0,72	0,72	0,64	0,68	0,66	0,65	0,66	0,66	0,64	0,63
Fattori di inclinazione del piano di posa																	
	b _v	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
	b _c	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
managed the design of the second	b _q	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Fattori di inclinazione del piano campagi		1.00	1.00	1.00	1.00	1.00	100	100	100	1.00	1.00	1.00	1.00	1.00	1.00	1.00	4.00
	g _y	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
	g _c	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Calcala della sanasità a constanti di il	g _q	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Calcolo della capacità portante della fon	uuzione superj		E07	612	611	603	602	502	502	E47	554	541	E2F	E27	E24	E4F	508
Set di coefficienti parziali	Ylim	587 R3	587 R3	613 R3	611 R3	603 R3	603 R3	593 R3	592 R3	517 R3	554 R3	541 R3	525 R3	537 R3	531 R3	515 R3	508 R3
sec or coerricienti parziali						1,40			1,40	1,40		1,40		1,20	1,20	1,20	1,20
n=0 /v	Y _R	1,40	1,40	1,40	1,40		1,40	1,40			1,40		1,40				
q = q _{lim} / γ _R O = α × Β' × Ι'	q O	420 35595	419 36281	438 37612	437 37878	431 36550	431 36979	424 35930	423 36241	369	395 32832	386	375	447 33708	443	429 31483	424 30879
Q = q x B' x L'	Q	35595	36281	37612	37878	36550	36979	35930	36241	30381	34034	31573	30455	33708	33183	31483	300/3
										4.20							
FS = Q / (N _{Ed} x L') (>1)	FS	1,19	1,16	1,13	1,11	1,14	1,13	1,16	1,15	1,29	1,25	1,25	1,27	1,40	1,40	1,45	1,45

6.2 VERIFICA A SCORRIMENTO

		A1+M1+R3	
Carico	1	2	3
C1	1,00	1,00	1,00
C2	1,00	1,00	1,00
C3	1,35	1,00	1,00
C4a	0,00	0,00	0,00
C4b	1,35	0,20	0,20
C4c	0,00	0,00	0,00
C4d	0,00	0,00	0,00
C4e	0,00	0,00	0,00
C5	1,35	0,00	0,00
C6	1,35	1,00	1,00
С7	0,00	0,00	0,00
C8	-0,90	0,00	0,00
CS1 (-kv)	0,00	1,00	0,00
CS1 (+kv)	0,00	0,00	1,00
CS2 (-kv)	0,00	1,00	0,00
CS2 (+kv)	0,00	0,00	1,00
N _{Ed} [kN/m]	974	882	982
V _{Ed} [kN/m]	286	336	357
M _{Ed} [kN/m]	-708	-1157	-1240
Comb.	M1	M1	M1

Verifica in presenza d	li tiranti passivi			
Azioni di calcolo decur	•	ito resistente ofj	erto dal tiran	te passivo
h_tiranti [m]	5	da intradosso f	ondazione	
i_tiranti [m]	0,725			
n_tiranti	30			
	1	2	3	
T _{Ed} [tiro/m]	88	161	178	
V_ _{TEd} [kN/m]	79	145	161	
M_ _{TEd} [kNm/m]	397	727	803	
A. F.A./ 1	074	000	000	
N _{Ed} [kN/m]	974	882	982	Azioni di calcolo decurtate del
V _{Ed} [kN/m]	207	190	196	contributo resistente offerto dal
$M_{Ed}[kN/m]$	-310	-430	-436	tirante passivo
Comb.	M1	M1	M1	
	CONDIZIONI D	RENATE		
φ' [°]	26	26	26	
tanφ'	0,49	0,49	0,49	
R_{Ed} [kN/m]	475	430	479	
γ _R	1,10	1,00	1,00	
FS (≥1)	2,09	2,26	2,44	

7 ANALISI GEOTECNICA MURI ANDATORI - (NUOVA REALIZZAZIONE)

I tabulati che seguono, riportano i risultati delle analisi e verifiche geotecniche condotte sul muro andatore a sostegno del rilevato di approccio al sottovia.

Per maggiori informazioni, si rimanda alla relazione di calcolo strutturale.

Cliente: Potenziamento sistema autostradale e tangenziale di Bologna

Commessa: Lotto 1 - Sottovia Via Roberto Vighi I - Tang. Nord 20+554 (sottovia 122T)

Argomento Allegato 1: Calcoli - Opere di sostegno

Sezione analizzata: Muri andatori

VERIFICHE GEOTECNICHE E DI RESISTENZA STRUTTURALE

I seguenti paragrafi riportano le verifiche delle opere di sostegno su fondazione diretta.

CARATTERISTICHE DEI MATERIALI

Si riportano di seguito le caratteristiche dei materiali che compongono il muro di sostegno.

Fondazione/Dente di taglio

Calcestruzzo	R _{ck}	f _{ck}	Copriferro	Acciaio	f _{yk}	Classe di	Condizioni ambientali	
Calcestrazzo	[N/mm²]	[N/mm²]	[mm]	Accidio	[N/mm²]	esposizione	Condizioni ambientan	
C28/35	35	28	40	B450C	450	XC2	Ordinarie	

Paramento

Calcestruzzo	R _{ck}	f _{ck}	Copriferro	Acciaio	f _{yk}	Classe di	Condizioni ambientali	
Calcesti uzzo	[N/mm²]	[N/mm²] [mm]		[mm]		esposizione	Condizioni ambientali	
C28/35	35	28	35	B450C	450	XF2	Aggressive	

CARATTERISTICHE GEOMETRICHE

Si riportano di seguito le principali caratteristiche geometriche dei muro di sostegno.

	B1 _{medio} [m]	B2 _{medio} [m]	B3 [m]			
B [m]	(lato monte)	(paramento)	(lato valle)	H _{tot} [m]	H1 [m]	H2 [m]
6,00	4,10	1,00	0,90	7,89	1,00	6,89

Hzav [m]	Hzav [m]	B4 [m]	porzione di terreno		Dente di taglio	1	NO
(lato monte)	(lato valle)	(lato monte)	di rilevato ad andamento	H _{dente} [m]	B _{dente} [m]	H _{zav valle} [m]	Xg _{dente} [m]
6,89	0,20	0,00	costante	0,00	0,00	0,00	0,00
							(rispetto O)

	D [m]	a [m]	L [m]	e _L [m]	θ [°]	w [°]	
H_sicurvia [m]	(capacità	(capacità	(capacità	(capacità	(capacità	(capacità	Falda
	portante)	portante)	portante)	portante)	portante)	portante)	
1,00	1,20	0,00	7,00	0,00	90,00	0,00	SI

Azioni delle FOA - TIPO 4 - H=6.50m (sollecitazioni per montante di bordo)

Descrizione	N _k [kN/m]	H _k [kN/m]	M _k [kNm/m]
p.p. strut. + p.p. pannelli	8,72	0,00	2,13
Pressione dinamica veicolare	-0,47	-7,06	-23,47
Vento	-1,13	-16,99	-56,46

Figura 1 - Convenzione dei segni carichi FOA

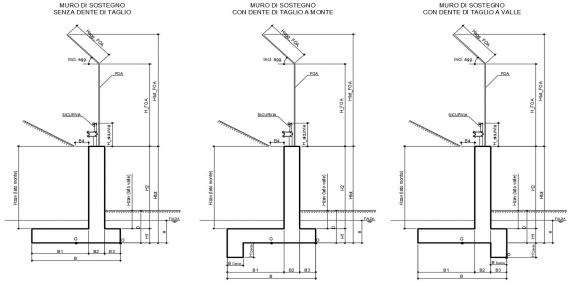


Figura 2 - Caratteristiche geotecniche del muro di sostegno per i diversi casi

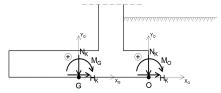


Figura 3 - Convenzione dei segni

Cliente: Potenziamento sistema autostradale e tangenziale di Bologna

Commessa: Lotto 1 - Sottovia Via Roberto Vighi I - Tang. Nord 20+554 (sottovia 122T)

Argomento Allegato 1: Calcoli - Opere di sostegno

Sezione analizzata: Muri andatori

ANALISI DEI CARICHI

(C1): Pesi propri - strutturali e non

Descrizione	γ [kN/m3]	N _k [kN/m]	х _о [m]	y _o [m]	M _o [kNm/m]	x _G [m]	y _G [m]	M _G [kNm/m]
Fondazione c.a.	25	150,00	-3,00	0,50	-450,00	0,00	0,50	0,00
Paramento c.a.	25	172,25	-1,40	4,45	-241,15	1,60	4,45	275,60
FOA		8,72	-1,40	7,89	-14,33	1,60	7,89	11,83
Zavorra lato monte (costante)	20	564,98	-3,95	4,45	-2231,67	-0,95	4,45	-536,73
Zavorra lato monte (inclinato)	20	0,00	-4,63	7,89	0,00	-1,63	7,89	0,00
Zavorra lato valle	20	3,60	-0,45	1,10	-1,62	2,55	1,10	9,18
Dente di fondazione	25	0,00	0,00	0,00	0,00	3,00	0,00	0,00
Sicurvia		0,00	-1,40	8,89	0,00	1,60	8,89	0,00
- · ·	_						•	

Totale 900 -2939 -240

(C2a): Spinta delle terre per verifiche geotecniche

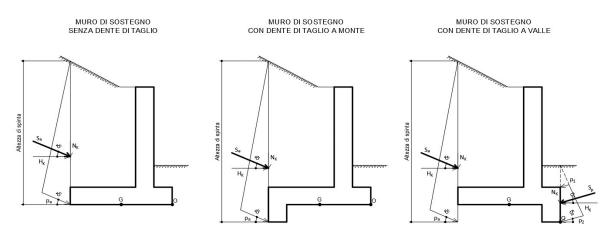


Figura 4 - Spinta attiva delle terre in condizioni statiche per i diversi casi

		, ,	guru 4 - Spiritu t	attiva aene ten	C III CONUIZIONI	statione per re	aiversi edsi		
				Rib	altamento				
- Componente attiva			H _{SPINTA_ATT} [m]	7,89]				
Comb.	k _a	S _{ta} [kN/m]	N _k [kN/m]	H _k [kN/m]	x _o [m]	y _o [m]	M _o [kNm/m]		
M1	0,244	152,15	60,26	139,71	-6,00	2,63	5,85		
- Componente passiva			H _{SPINTA_PASS} [m]	0,00]				
Comb.	k _p	p1 [kN/mq]	p2 [kN/mq]	S _P [kN/m]	N _k [kN/m]	H _k [kN/m]	x _o [m]	y _o [m]	M _k [kN/m]
M1	1,89	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

- Totale (componente attiva + passiva)

Comb.

M1

S_t [kN/m] 152,15

Comb.	S _t [kN/m]	N _k [kN/m]	H _k [kN/m]	M _o [kNm/m]
M1	152,15	60,26	139,71	5,85

				Sco	orrimento				
- Componente attiva			H _{SPINTA_ATT} [m]	7,89]				
Comb.	S _{ta} [kN/m]	N _k [kN/m]	H _k [kN/m]	x _G [m]	y _G [m]	M _G [kNm/m]			
M1	152,15	60,26	139,71	-3,00	2,63	186,64			
- Componente passiva [H_SPINTA_PASS [M]] 0,00 (valutata unicamente per le verifiche a scorrimento)									
Comb.	k _p	S1 [kN/mq]	S2 [kN/mq]	S _P [kN/m]	N _k [kN/m]	H _k [kN/m]	x _G [m]	y _G [m]	M _k [kN/m]
M1	1,89	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

- Totale (componente attiva + passiva)				

186,64

60,26

 $N_k [kN/m]$ $H_k [kN/m]$ $M_G [kNm/m]$

139,71

Cliente:

Potenziamento sistema autostradale e tangenziale di Bologna

Commessa: Lotto

Lotto 1 - Sottovia Via Roberto Vighi I - Tang. Nord 20+554 (sottovia 122T)

Argomento Sezione analizzata:

Allegato 1: Calcoli - Opere di sostegno Muri andatori

Capacità portante

- Componente attiva

H _{SPINTA_ATT} [m]	7,89
-----------------------------	------

Comb.	S _{ta} [kN/m]	N _k [kN/m]	H _k [kN/m]	x _G [m]	y _G [m]	M _G [kNm/m]
M1	152,15	60,26	139,71	-3,00	2,63	186,64

- Componente passiva

H_{SPINTA_PASS} [m] 0,00

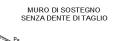
(valutata unicamente per le verifiche a scorrimento)

Comb.		S1 [kN/mq]	S2 [kN/mq]	S _P [kN/m]	N _k [kN/m]	H _k [kN/m]	x _G [m]	y _G [m]	M _k [kN/m]
M1	1,89	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

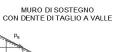
- Totale (componente attiva + passiva)

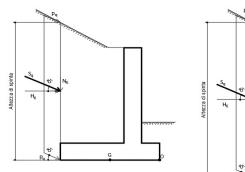
Comb.	S _t [kN/m]	N _k [kN/m]	H _k [kN/m]	M _o [kNm/m]
M1	152,15	60,26	139,71	186,64

(C2b): Spinta delle terre per verifiche strutturali


A favore di sicurezza, non si considera la componente verticale nelle verifiche strutturali della soletta di fondazione - Attenzione: è stato posto un coefficiente pari a 0 nel calcolo di Nk

H _{SPINTA} [m]	7,89


Comb.	k _o	S _{to} [kN/m]	N _k [kN/m]	H _k [kN/m]	x _G [m]	y _G [m]	M _G [kNm/m]
M1	0,426	265,46	0,00	265,46	-3,00	2,63	698,15


(C3): Sovraccarico accidentale

q [kN/m²] 20

MURO DI SOSTEGNO CON DENTE DI TAGLIO A MONTE

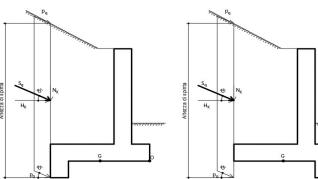


Figura 5 - Spinta dovuta al sovraccarico accidentale per i diversi casi

Componente verticale

componente verticule				
N _k [kN/m]	х _о [m]	M _o [kNm/m]	x _G [m]	M _G [kNm/m]
82.00	-3 05	-323 90	-n as	-77 90

Ribaltamento

- Componente orizzontale per verifiche geotecniche (a)

H _{SPINTA} [m]	7,89

Comb.	k _a	S _{qa} [kN/m]	N _k [kN/m]	H _k [kN/m]	x ₀ [m]	y _o [m]	M _o [kNm/m]
M1	0,244	38,57	15,28	35,41	-6,00	3,95	48,05

Scorrimento / Capacità portante

- Componente orizzontale per verifiche geotecniche (a)

H _{SDINITA} [m]	7 89
I ISPINITA [III]	7,09

Comb.	S _{qa} [kN/m]	N _k [kN/m]	H _k [kN/m]	x _G [m]	y _G [m]	M _G [kNm/m]
M1	38,57	15,28	35,41	-3,00	3,95	93,88

Verifiche strutturali

Componente orizzontale per verifiche strutturali (b)

H _{SPINTA} [m]	7,89

Comb.	k _o	S _{q0} [kN/m]	N _k [kN/m]	H _k [kN/m]	x _G [m]	y _G [m]	M _G [kNm/m]
M1	0,426	67,29	0,00	67,29	-3,00	3,95	265,46

Cliente: Potenziamento sistema autostradale e tangenziale di Bologna

Commessa: Lotto 1 - Sottovia Via Roberto Vighi I - Tang. Nord 20+554 (sottovia 122T)

Argomento Allegato 1: Calcoli - Opere di sostegno

Sezione analizzata: Muri andatori

Verifiche geotecniche e strutturali

Componente FOA - pressione dinamica traffico veicolare

N _k [kN/m]	H _k [kN/m]	х _о [m]	y _o [m]	M _o [kNm/m]	x _G [m]	y _G [m]	M _G [kNm/m]
-0,47	7,06	-1,40	7,89	79,83	1,60	7,89	78,42

(C4): Urto veicolo in svio

	((da piano stradale,)
H _k [kN]		H _{URTO} [m]	
0	come da Linee Guida ASPI	1,00	come da NTC2018

n° montanti	i _{mont.} [m]	L _{diff_muro} [m]	L _{concio} [m]	L _{diff} [m]	H _k [kN/m]	y _o [m]	M _o [kNm/m]
3,00	1,50	10,99	7,00	7,00	0,00	8,89	0,00
n° montanti	L _{diff_concio} [m]	L _{diff_parete} [m]	L _{concio} [m]	L _{diff} [m]	H _k [kN/m]	y _G [m]	M _G [kNm/m]
3,00	1,50	10,99	7,00	7,00	0,00	8,89	0,00

(C5): Azione del vento

H _{FOA} [m]	H _{FOA agg.} [m]	Incl. agg. [°]	Verso	H _{VENTO} [m]	p [kN/m²]
6,50	0,00	0	da strada	6,50	2,24

N _k [kN/m]	H _k [kN/m]	x _G [m]	y _G [m]	M _G [kNm/m]	х _о [m]	y _o [m]	M _o [kNm/m]
-1,13	16.99	1.60	7.89	188.69	-1.40	7.89	192.07

(CS1): Forze inerzia legate a carichi strutturali e non

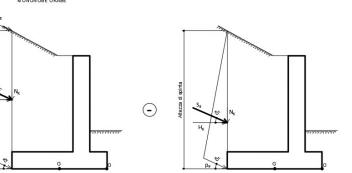
(dente di taglio: si considera unicamente il contributo verticale)

|--|

k_v 0,057

Sisma diretto verso l'alto: - kv

Descrizione	N _k [kN/m]	H _k [kN/m]	х _о [m]	y _o [m]	M _o [kNm/m]	x _G [m]	y _G [m]	M _G [kNm/m]
Fondazione c.a.	-8,56	17,13	-3,00	0,50	34,25	0,00	0,50	8,56
Paramento c.a.	-9,83	19,67	-1,40	4,45	101,19	1,60	4,45	71,69
FOA	-0,50	1,00	-1,40	7,89	8,55	1,60	7,89	7,06
Zavorra lato monte (costante)	-32,25	64,51	-3,95	4,45	414,15	-0,95	4,45	317,38
Zavorra lato monte (inclinato)	0,00	0,00	-4,63	7,89	0,00	-1,63	7,89	0,00
Zavorra lato valle	-0,21	0,00	-0,45	1,10	0,09	2,55	1,10	-0,52
Dente di fondazione	0,00	0,00	0,00	0,00	0,00	3,00	0,00	0,00
Sicurvia	0,00	0,00	-1,40	8,89	0,00	1,60	8,89	0,00
Totale	-51	102			558			404


Sisma diretto verso il basso: + kv

Descrizione	N _k [kN/m]	H _k [kN/m]	х _о [m]	y _o [m]	M _o [kNm/m]	x _G [m]	y _G [m]	M _G [kNm/m]
Fondazione c.a.	8,56	17,13	-3,00	0,50	-17,13	0,00	0,50	8,56
Paramento c.a.	9,83	19,67	-1,40	4,45	73,65	1,60	4,45	103,15
FOA	0,50	1,00	-1,40	7,89	7,16	1,60	7,89	8,65
Zavorra lato monte (costante)	32,25	64,51	-3,95	4,45	159,34	-0,95	4,45	256,10
Zavorra lato monte (inclinato)	0,00	0,00	-4,63	7,89	0,00	-1,63	7,89	0,00
Zavorra lato valle	0,21	0,00	-0,45	1,10	-0,09	2,55	1,10	0,52
Dente di fondazione	0,00	0,00	0,00	0,00	0,00	3,00	0,00	0,00
Sicurvia	0,00	0,00	-1,40	8,89	0,00	1,60	8,89	0,00
Totale	51	102			223			377

(CS2): Spinta (dinamica) delle terre

La componente dinamica della spinta delle terre è calcolata in riferimento alla componente statica valutata, a favore di sicurezza, in regime di spinta attiva.

SPINTA TOTALE DELLE TERRE IN CONDIZIONI DINAMICHE REGIME DI SPINTA ATTIVA- METODO PSEUDO-STATICO DI MONONOBE OKABE

SPINTA DINAMICA DELLE TERRE REGIME DI SPINTA ATTIVA

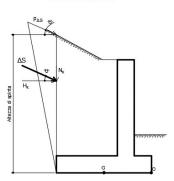


Figura 6 - Spinta attiva delle terre in condizioni dinamiche - Metodo pseudo-statico di Mononobe Okabe

SPINTA DELLE TERRE IN CONDIZIONI STATICHE REGIME DI SPINTA ATTIVA

Cliente: Potenziamento sistema autostradale e tangenziale di Bologna

Commessa: Lotto 1 - Sottovia Via Roberto Vighi I - Tang. Nord 20+554 (sottovia 122T)

Argomento Allegato 1: Calcoli - Opere di sostegno

Sezione analizzata: Muri andatori

Ribaltamento

Sisma diretto verso l'alto: - kv

Comb.	\mathbf{k}_{a_sism}	S _a [kN/m] k _{AE}		S _{AE} [kN/m]	ΔS [kN/m]
M1	0,24	152,15	0,373	212,45	60,30
Comb.	Comb. N _k [kN/m]		х _о [m]	y _o [m]	M _o [kNm/m]
M1	23,88	55,36	-6,00	3,95	75,12

Sisma diretto verso il basso: + kv

Comb.	k _{a_sism}	S _a [kN/m]	k _{AE}	S _{AE} [kN/m]	ΔS [kN/m]
M1	0,24	152,15	0,349	235,79	83,64
Comb.	N _k [kN/m]	H _k [kN/m]	х _о [m]	y _o [m]	M _o [kNm/m]
M1	33,13	76,80	-6,00	3,95	104,20

Scorrimento

Sisma diretto verso l'alto: - kv

SISTING WITCEED VEIDO I WIT					
Comb.	k _{a_sism}	S _a [kN/m]	k _{AE}	S _{AE} [kN/m]	ΔS [kN/m]
M1	0,24	152,15	0,321	188,45	36,30
Comb.	N _k [kN/m]	H _k [kN/m]	x _G [m]	y _G [m]	M _G [kNm/m]
M1	14.38	33.33	-3.00	3.95	88.35

Sisma diretto verso il basso: + kv

Comb.	k _{a_sism}	S _a [kN/m]	k _{AE}	S _{AE} [kN/m]	ΔS [kN/m]
M1	0,24	152,15	0,312	205,11	52,96
Comb.	N _k [kN/m]	H _k [kN/m]	x _G [m]	y _G [m]	M _G [kNm/m]
M1	20,98	48,63	-3,00	3,95	128,92

Capacità portante

Sisma diretto verso l'alto: - kv

Comb.	\mathbf{k}_{a_sism}	S _a [kN/m]	k _{AE}	S _{AE} [kN/m]	ΔS [kN/m]
M1	0,24	152,15	0,321	188,45	36,30
Comb.	N _k [kN/m]	H _k [kN/m]	x _G [m]	y _G [m]	M _G [kNm/m]
M1	14,38	33,33	-3,00	3,95	88,35

Sisma diretto verso il basso: + kv

Comb.	k _{a_sism}	S _a [kN/m]	k _{AE}	S _{AE} [kN/m]	ΔS [kN/m]
M1	0,24	152,15	0,312	205,11	52,96
Comb.	N _k [kN/m]	H _k [kN/m]	x _G [m]	y _G [m]	M _G [kNm/m]
M1	20,98	48,63	-3,00	3,95	128,92

Verifiche strutturali

Sisma diretto verso l'alto: - kv

Comb.	k _{a_sism}	S _a [kN/m]	k _{AE}	S _{AE} [kN/m]	ΔS [kN/m]
M1	0,24	152,15	0,321	188,45	36,30
Comb.	N _k [kN/m]	H _k [kN/m]	x _G [m]	y _G [m]	M _G [kNm/m]
M1	0,00	36,30	-3,00	3,95	143,19

Sisma diretto verso il basso: + kv

Comb.	k _{a_sism}	S _a [kN/m]	k _{AE}	S _{AE} [kN/m]	ΔS [kN/m]
M1	0,24	152,15	0,312	205,11	52,96
Comb.	N _k [kN/m]	H _k [kN/m]	x _G [m]	y _G [m]	M _G [kNm/m]
M1	0,00	52,96	-3,00	3,95	208,95

Pagina 5

Potenziamento sistema autostradale e tangenziale di Bologna Lotto 1 - Sottovia Via Roberto Vighi I - Tang. Nord 20+554 (sottovia 122T) Cliente:

Commessa:

Argomento Allegato 1: Calcoli - Opere di sostegno

Sezione analizzata: Muri andatori

PARAMETRI GEOTECNICI DEL TERRENO

Terreno sp	ingente	7
Parametro	M1	
γ [kN/m³]	20	peso specifico
φ' [°]	35,00	angolo d'attrito interno
φ' [rad]	0,61	
δ _{es} [°]	23,33	angolo d'attrito terreno-muro in condizioni di esercizio (=2/3ф')
δ_{es} [rad]	0,41	
δ _{sism} [°]	23,33	angolo d'attrito terreno-muro in condizioni sismiche (=2/3φ')
δ _{sism} [rad]	0,41	
β [°]	0,00	angolo che la parete forma con la verticale
β [rad]	0,00	
i [°]	0,00	inclinazione del terrapieno rispetto all'orizzontale
i [rad]	0,00	
k ₀	0,426	
k _{a_es}	0,244	condizioni di esercizio
k _{a_sism}	0,244	condizioni sismiche

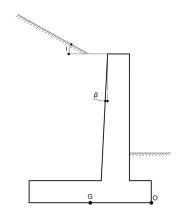


Figura 7 - Inclinazione del terreno e del paramento

Terreno di fondazione		(terreno di riporto con caratteristiche migliorate - sarà da prevedersi la rimozione dello
Parametro	M1	strato più superficiale relativo al deposito b _{nN}
γ' [kN/m3]	9	peso specifico sommerso
φ' [°]	26,00	angolo d'attrito interno
φ' [rad]	0,45	<u> </u>
δ_{es} [°]	13,00	angolo d'attrito terreno-muro in condizioni di esercizio (=1/2φ')
δ _{es} [rad]	0,23	
δ _{sism} [°]	13,00	angolo d'attrito terreno-muro in condizioni sismiche (=1/2φ')
δ_{sism} [rad]	0,23	
c' [kN/m ²]	0,00	coesione efficace
c _u [kN/m ²]	68,22	resistenza non drenata
β [°]	0,00	
β [rad]	0,00	
i [°]	0,00	
i [rad]	0,00	
k _{p_es}	3,787	condizioni di esercizio
k _{n es} (*)	1,893	si considera aliquota 50% della resistenza passiva del terreno antistante il muro

Cliente: Potenziamento sistema autostradale e tangenziale di Bologna

Commessa: Lotto 1 - Sottovia Via Roberto Vighi I - Tang. Nord 20+554 (sottovia 122T)

Allegato 1: Calcoli - Opere di sostegno Argomento

Sezione analizzata: Muri andatori

COEFFICIENTI SISMICI

Opera 122T (Via Roberto Vighi I) Località:

VN 50 anni Vita nominale: Classe d'uso: IV

CU 2

Periodo di riferimento per azione

VR 100 anni sismica:

Parametri sismici: Stato limite Pv_R [anni] T_R [anni] a_g [g] T_C* [sec] SLV 0.1 949 0.217

Categoria di sottosuolo: С T1 Categoria topografica:

Accelerazione massima attesa al

sito

Stato limite	T _R [anni]	S _S	S _T	a _{max} [g]	a _g [m/s2]
SLV	949	1,38	1,00	0,300	2,948

Coefficiente di riduzione dell'accelerazione massima attesa al

	STR/GEO	RIB
β	0,38	0,57

β incrementato del 50% per verifica a ribaltamento (NTC2018 7.11.6.2.1)

Coefficiente sismico orizzontale Coefficiente sismico verticale

k _h	0,114	0,171
k _v	0,057	0,086

Calcolo coefficiente sismico con teoria Mononobe-Okabe:

Sisma diretto verso l'alto: - kv

	[°]	[rad]	[°]	[rad]
θ	6,90	0,12	10,61	0,19
$\delta_{\text{sism_M1}}$	23,33	0,41	23,33	0,41
β	0,00	0,00	0,00	0,00
ψ	90,00	1,57	90,00	1,57

b' _d - M1 35,00 0,61 35,00 0,61
--

β ≤ (φ' _d - θ)) k _{AE} - M1	0,321	0,373
$\beta > (\phi'_d - \theta)$) k _{AE} - M1	0,91	1,017

k, - M1	0.321	0.373

Sisma diretto verso il basso: + kv

	[°]	[rad]	[°]	[rad]
θ	6,16	0,11	8,97	0,16
$\delta_{\text{sism_M1}}$	23,33	0,41	23,33	0,41
β	0,00	0,00	0,00	0,00
ψ	90,00	1,57	90,00	1,57
φ' _d - M1	35,00	0,61	35,00	0,61

$\beta \leq (\phi'_d - \theta)$	k _{AE} - M1	0,31	0,349
$\beta > (\phi'_d - \theta)$	k _{AE} - M1	0,89	0,967
	-		

k _{AE} - M1	0,312		0,349
		-	

Cliente: Potenziamento sistema autostradale e tangenziale di Bologna

Commessa: Lotto 1 - Sottovia Via Roberto Vighi I - Tang. Nord 20+554 (sottovia 122T)

Allegato 1: Calcoli - Opere di sostegno Argomento

Sezione analizzata: Muri andatori

VERIFICHE GEOTECNICHE

Calcolo delle sollecitazioni caratteristiche nel punto O

A1+M	1+R3

A1+M1+R3

C1 C2a N [kN/m] M [kNm/m] N [kN/m] M [kNm/m] N [kN/m] H [kN/m] H [kN/m] 900 -2939 60 140 C3 - componente orizzontale (a) C3 - FOA H [kN/m] M [kNm/m] N [kN/m] H [kN/m] M [kNm/m] N [kN/m] N [kN/m] 80 48 15 35 0 CS1 (-kV) C5 N [kN/m] M [kNm/m] N [kN/m] H [kN/m] M [kNm/m] N [kN/m] H [kN/m] 17 192 -51 102 837 CS2 (-kV) CS2 (+kV) M [kNm/m] N [kN/m] M [kNm/m] N [kN/m] H [kN/m] H [kN/m] 24 55 33 77

A1+M1+R3 A1+M1+R3

VERIFICA A RIBALTAMENTO (A1 + M1 + R3)

Carico	SLU-1	SLU-2	SISM-1	SISM-2	ECC
C1	1,00	1,00	1,00	1,00	1,00
C2a	1,30	1,30	1,00	1,00	1,00
C3 - vert.	0,00	0,00	0,20	0,20	0,00
C3 - oriz. (a)	1,50	1,13	0,20	0,20	0,20
C3 - FOA	1,50	1,13	0,20	0,20	0,20
C4	0,00	0,00	0,00	0,00	1,00
C5	0,90	1,50	0,00	0,00	0,00
CS1 (-kV)	0,00	0,00	1,00	0,00	0,00
CS1 (+kV)	0,00	0,00	0,00	1,00	0,00
CS2 (-kV)	0,00	0,00	1,00	0,00	0,00
CS2 (+kV)	0,00	0,00	0,00	1,00	0,00

M _{stab} [kNm/m]	-2939	-2939	-3004	-3004	-2939
M _{rib} [kNm/m]	372	440	944	470	31
γ _R	1,15	1,15	1,00	1,00	1,15
FS (≥1)	6,86	5,81	3,18	6,39	81,32

(C1): Pesi propri - strutturali e non

C3 - componente verticale

0

C4

0

CS1 (+kV)

H [kN/m]

102

82

0

H [kN/m] M [kNm/m]

H [kN/m] M [kNm/m]

0

M [kNm/m]

334

(C2a): Spinta delle terre per verifiche geotecniche

(C3): Sovraccarico accidentale

(C4): Urto veicolo in svio (C5): Azione del vento

(CS1): Forze inerzia legate a carichi strutturali e non

(CS2): Spinta (dinamica) delle terre

Cliente: Potenziamento sistema autostradale e tangenziale di Bologna

Commessa: Lotto 1 - Sottovia Via Roberto Vighi I - Tang. Nord 20+554 (sottovia 122T)

Allegato 1: Calcoli - Opere di sostegno Argomento

Sezione analizzata: Muri andatori

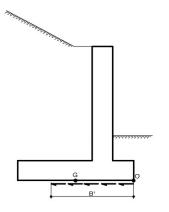
Calcolo delle sollecitazioni caratteristiche nel punto O

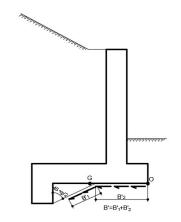
A1+M1+R3

A1+M1+R3

A1+M1+R3

A1+M1+R3


	C1			C2a		C3 - c	omponente ve	rticale
N [kN/m]	H [kN/m]	M [kNm/m]	N [kN/m]	H [kN/m]	M [kNm/m]	N [kN/m]	H [kN/m]	M [kNm/m]
900	0	-240	60	140	187	82	0	-78
C3 - com	ponente orizzo	ontale (a)		C3 - FOA	•		C4	•
N [kN/m]	H [kN/m]	M [kNm/m]	N [kN/m]	H [kN/m]	M [kNm/m]	N [kN/m]	H [kN/m]	M [kNm/m]
15	35	94	0	7	80	0	0	0
	C5	-		CS1 (-kV)			CS1 (+kV)	-
N [kN/m]	H [kN/m]	M [kNm/m]	N [kN/m]	H [kN/m]	M [kNm/m]	N [kN/m]	H [kN/m]	M [kNm/m]
-1	17	189	-51	102	404	51	102	377
	CS2 (-kV)			CS2 (+kV)			-	
N [kN/m]	H [kN/m]	M [kNm/m]	N [kN/m]	H [kN/m]	M [kNm/m]			
14	33	88	21	49	129			


VERIFICA A SCORRIMENTO

MURO DI SOSTEGNO SENZA DENTE DI TAGLIO

MURO DI SOSTEGNO CON DENTE DI TAGLIO A MONTE

MURO DI SOSTEGNO CON DENTE DI TAGLIO A VALLE

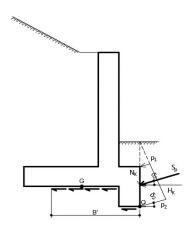


Figura 8 - Resistenza a scorrimento considerata per i diversi casi

Carico	SLU-1-A1	SLU-2-A1	SISM-1-A1	SISM-2-A1	ECC-A1
C1	1,00	1,00	1,00	1,00	1,00
C2a	1,30	1,30	1,00	1,00	1,00
C3 - vert.	0,00	0,00	0,20	0,20	0,00
C3 - oriz. (a)	1,50	1,13	0,20	0,20	0,20
C3 - FOA	1,50	1,13	0,20	0,20	0,20
C4	0,00	0,00	0,00	0,00	1,00
C5	0,90	1,50	0,00	0,00	0,00
CS1 (-kV)	0,00	0,00	1,00	0,00	0,00
CS1 (+kV)	0,00	0,00	0,00	1,00	0,00
CS2 (-kV)	0,00	0,00	1,00	0,00	0,00
CS2 (+kV)	0,00	0,00	0,00	1,00	0,00
	SLU-1-A1	SLU-2-A1	SISM-1-A1	SISM-2-A1	ECC-A1
N _{Ed} [kN/m]	999	993	942	1052	963
H _{Ed} [kN/m]	261	255	284	299	148
M _{Ed} [kNm/m]	433	481	458	472	-19
Comb.	M1	M1	M1	M1	M1
φ' [°]	26	26	26	26	26
tanφ'	0,49	0,49	0,49	0,49	0,49
c' [kN/m²]	0,00	0,00	0,00	0,00	0,00
c _u [kN/m ²]	68,22	68,22	68,22	68,22	68,22
B' [m]	5,13	5,03	5,03	5,10	5,96
R _{Ed} [kN/m]	350	343	343	348	407
Ϋ́R	1,10	1,10	1,00	1,00	1,10
FS (≥1)	1,22	1,22	1,21	1,16	2,49

(C1): Pesi propri - strutturali e non

(C2a): Spinta delle terre per verifiche geotecniche

(C3): Sovraccarico accidentale

(C4): Urto veicolo in svio

(C5): Azione del vento

(CS1): Forze inerzia legate a carichi strutturali e non

(CS2): Spinta (dinamica) delle terre

Potenziamento sistema autostradale e tangenziale di Bologna Lotto 1 - Sottovia Via Roberto Vighi I - Tang. Nord 20+554 (sottovia 122T) Allegato 1: Calcoli - Opere di sostegno Muri andatori Cliente:

Commessa:

Argomento

Sezione analizzata:

		VERIFICA CA							
	Carico	SLU-1-A1	SLU-2-A1	SLU-3-A1	SLU-4-A1	SISM-1-A1	SISM-2-A1	ECC-1-A1	ECC-2-A1
(C1): Pesi propri - strutturali e non	C1	1,00	1,30	1,00	1,30	1,00	1,00	1,00	1,00
C2a): Spinta terre - verifiche geo	C2a	1,30	1,30	1,30	1,30	1,00	1,00	1,00	1,00
(62). Common de contidentelo	C3 - vert.	0,00	1,50	0,00	1,13	0,20	0,20	0,00	0,20
(C3): Sovraccarico accidentale	C3 - oriz. (a)	1,50 1,50	1,50 1,50	1,13 1,13	1,13 1,13	0,20 0,20	0,20 0,20	0,20 0,20	0,20 0,20
(C4): Urto veicolo in svio	C3 - FOA	0,00	0,00	0,00	0,00	0,20	0,20	1,00	1,00
(C5): Azione del vento	C5	0,90	0,90	1,50	1,50	0,00	0,00	0,00	0,00
(CS1): Forze inerzia legate a carichi	CS1 (-kV)	0,00	0,00	0,00	0.00	1,00	0,00	0.00	0,00
strutturali e non	CS1 (+kV)	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00
(CC2). Swinte (dinamina) della tanna	CS2 (-kV)	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00
(CS2): Spinta (dinamica) delle terre	CS2 (+kV)	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00
Azioni di calcolo									
	Comb. N _{Ed} [kN/m]	SLU-1-A1 999	SLU-2-A1 1392	SLU-3-A1 993	SLU-4-A1 1355	SISM-1-A1 942	SISM-2-A1 1052	ECC-1-A1 963	ECC-2-A1 979
	M _{Ed} [kNm/m]	431	242	479	320	458	471	-19	-35
	V _{Ed} [kN/m]	261	261	255	255	284	299	148	148
Discount of a second of the foundation			-						
Dimensioni geometriche fondazione	D [m]	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20
	a [m]	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	L [m]	7,00	7,00	7,00	7,00	7,00	7,00	7,00	7,00
	B [m]	6,00	6,00	6,00	6,00	6,00	6,00	6,00	6,00
	e _L [m]	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	e _B [m]	0,43	0,17	0,48	0,24	0,49	0,45	0,02	0,04
	L' [m]	7,00	7,00	7,00	7,00	7,00	7,00	7,00	7,00
	B' [m]	5,14	5,65	5,03	5,53	5,03	5,10	5,96	5,93
Parametri geotecnici terreno di fond							<u> </u>		
Peso proprio del terreno di riporto	$\gamma_1[kN/m^3]$	20	20	20	20	20	20	20	20
Peso proprio dell'acqua	$\gamma_w [kN/m^3]$	9,81	9,81	9,81	9,81	9,81	9,81	9,81	9,81
Peso som Terreno di riporto	γ' ₁ [kN/m ³]	10,19	10,19	10,19	10,19	10,19	10,19	10,19	10,19
Peso som Terreno di fondazione	γ'2 [kN/m3]	9	9	9	9	9	9	9	9
Angolo d'attrito	φ' [°]	26	26	26	26	26	26	26	26
Coesione efficace	c' [kN/m²]	0	0	0	0	0	0	0	0
Set di coefficienti parziali	51(37	M1	M1	M1	M1	M1	M1	M1	M1
Peso proprio - Terreno di riporto	γ _{1 Mi} [kN/m³]	20	20	20	20	20	20	20	20
Peso som Terreno di fondazione	γ _{2_Mi} [kN/m³]	9	9	9	9	9	9	9	9
Angolo d'attrito fattorizzato	φ'_мі [°]	26	26	26	26	26	26	26	26
0	φ'_Mi [rad]	0,45	0,45	0,45	0,45	0,45	0,45	0,45	0,45
Coesione efficace fattorizzata	c'_ _{Mi} [kN/m²]	0	0	0	0	0	0	0	0
Fattori di capacità portante						l			
	N _γ	12,54	12,54	12,54	12,54	12,54	12,54	12,54	12,54
	N _c	22,25	22,25	22,25	22,25	22,25	22,25	22,25	22,25
	N _q	11,85	11,85	11,85	11,85	11,85	11,85	11,85	11,85
Fattori di forma		0.71	0.55		0.55	0.75	0.74	0.55	0.77
per forma rettangolare)	Sγ	0,71	0,68	0,71	0,68	0,71	0,71	0,66	0,66
	S _c	1,39	1,43	1,38	1,42	1,38	1,39	1,45	1,45
	Sq	1,36	1,39	1,35	1,39	1,35	1,36	1,42	1,41
Fattori di profondità						I			
per φ'>0)	dγ	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
	d _c	1,08	1,07	1,08	1,07	1,08	1,08	1,07	1,07
	d _q	1,07	1,07	1,07	1,07	1,07	1,07	1,06	1,06
attori di inclinazione del carico									
per c'>0 e φ'>0)	m _B	1,58	1,55	1,58	1,56	1,58	1,58	1,54	1,54
	m _L	1,42	1,45	1,42	1,44	1,42	1,42	1,46	1,46
	θ [°]	90,00	90	90	90	90	90	90	90
	m	1,58	1,55	1,58	1,56	1,58	1,58	1,54	1,54
	iγ	0,46	0,59	0,46	0,59	0,40	0,42	0,65	0,66
	i _c	0,59	0,70	0,59	0,70	0,53	0,55	0,75	0,76
	iq	0,62	0,72	0,63	0,72	0,57	0,59	0,77	0,78

Pagina 10

Potenziamento sistema autostradale e tangenziale di Bologna Lotto 1 - Sottovia Via Roberto Vighi I - Tang. Nord 20+554 (sottovia 122T) Allegato 1: Calcoli - Opere di sostegno Cliente:

Commessa:

Argomento

Sezione analizzata: Muri andatori

Fattori di inclinazione del piano di posa

	b _γ	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
ſ	b _c	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Γ	b _q	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00

Fattori di inclinazione del piano campagna

w [°]	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
gγ	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
g _c	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
gq	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00

Calcolo della capacità portante della fondazione superficiale

	q _{lim} [kN/m²]	351	433	352	429	314	330	476	477
Set di coefficienti parziali		R3	R3	R3	R3	R3	R3	R3	R3
	γ_{R}	1,40	1,40	1,40	1,40	1,20	1,20	1,40	1,40
$q = q_{lim} / \gamma_R$	q [kN/m²]	251	310	251	306	262	275	340	341
Q = q x B' x L'	Q [kN]	9019	12247	8862	11858	9211	9821	14174	14153

FS = Q / (N _{Ed} x L') (>1)	FS	1,29	1,26	1,28	1,25	1,40	1,33	2,10	2,06
		(>1)	(>1)	(>1)	(>1)	(>1)	(>1)	(>1)	(>1)
	Comb.	SLU-1-A1	SLU-2-A1	SLU-3-A1	SLU-4-A1	SISM-1-A1	SISM-2-A1	FCC-1-A1	FCC-2-A1

Cliente:

Potenziamento sistema autostradale e tangenziale di Bologna Lotto 1 - Sottovia Via Roberto Vighi I - Tang. Nord 20+554 (sottovia 122T) Allegato 1: Calcoli - Opere di sostegno Commessa:

Argomento

Sezione analizzata: Muri andatori

					IZIONI NON				
	Carico	SLU-1-A1	SLU-2-A1	SLU-3-A1	SLU-4-A1	SISM-1-A1	SISM-2-A1	ECC-1-A1	ECC-2-A1
(C1): Pesi propri - strutturali e non	C1	1,00	1,30	1,00	1,30	1,00	1,00	1,00	1,00
(C2a): Spinta terre - verifiche geo	C2a	1,30	1,30	1,30	1,30	1,00	1,00	1,00	1,00
	C3 - vert.	0,00	1,50	0,00	1,13	0,20	0,20	0,00	0,20
(C3): Sovraccarico accidentale	C3 - oriz. (a)	1,50	1,50	1,13	1,13	0,20	0,20	0,20	0,20
	C3 - FOA	1,50	1,50	1,13	1,13	0,20	0,20	0,20	0,20
(C4): Urto veicolo in svio	C4	0,00	0,00	0,00	0,00	0,00	0,00	1,00	1,00
C5): Azione del vento	C5	0,90	0,90	1,50	1,50	0,00	0,00	0,00	0,00
(CS1): Forze inerzia legate a carichi strutturali e non	CS1 (-kV)	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00
strutturali e non	CS1 (+kV)	0,00	0,00	0,00	0,00	0,00 1,00	1,00 0,00	0,00	0,00
CS2): Spinta (dinamica) delle terre	CS2 (-kV) CS2 (+kV)	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00
Azioni di calcolo	Comb.	SLU-1-A1	SLU-2-A1	SLU-3-A1	SLU-4-A1	SISM-1-A1	SISM-2-A1	ECC-1-A1	ECC-2-A1
	N _{Ed} [kN/m]	999	1392	993	1355	942	1052	963	979
	M _{Ed} [kNm/m]	431	242	479	320	458	471	-19	-35
	V _{Ed} [kN/m]	261	261	255	255	284	299	148	148
D'						•	•		
Dimensioni geometriche fondazione	D [m]	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20
	L [m]	7,00	7,00	7,00	7,00	7,00	7,00	7,00	7,00
	B [m]	6,00	6,00	6,00	6,00	6,00	6,00	6,00	6,00
	e _L [m]	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	e _B [m]	0,43	0,17	0,48	0,24	0,49	0,45	0,02	0,04
	L' [m]	7,00	7,00	7,00	7,00	7,00	7,00	7,00	7,00
	B' [m]	5,14	5,65	5,03	5,53	5,03	5,10	5,96	5,93
Parametri geotecnici terreno di fond	aziono								
Peso proprio del terreno di riporto	$\gamma_1[kN/m^3]$	20	20	20	20	20	20	20	20
Peso som Terreno di fondazione	γ ₁ [kN/m3]	9	9	9	9	9	9	9	9
Angolo d'attrito	φ'[°]	26	26	26	26	26	26	26	26
Coesione efficace	c' [kN/m ²]	0	0	0	0	0	0	0	0
Coesione enicace	c ₁₁ [kN/m ²]	68	68	68	68	68	68	68	68
Set di coefficienti parziali	C _u [KIV/III]	M1	M1	M1	M1	M1	M1	M1	M1
Peso proprio del terreno di riporto	[lab1/ma ³]	20	20	20	20	20	20	20	20
Peso som Terreno di fondazione	γ _{1_Mi} [kN/m ³]	9	9	9	9	9	9	9	9
reso som Terreno di Tondazione	γ _{2_Mi} [kN/m³]								
Angolo d'attrito fattorizzato	φ'_Μί [°]	26	26	26	26	26	26	26	26
	φ'_Mi [rad]	0,45	0,45	0,45	0,45	0,45	0,45	0,45	0,45
Coesione efficace fattorizzata	c'_Mi [kN/m²]	0	0	0	0	0	0	0	0
Coesione non drenata fattorizzata	c _{u_Mi} [kN/m²]	68	68	68	68	68	68	68	68
attori di capacità portante									
	N _ν	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	N _c	5,14	5,14	5,14	5,14	5,14	5,14	5,14	5,14
	N _q	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Fattori di forma									
per forma rettangolare)	Sγ	0,71	0,68	0,71	0,68	0,71	0,71	0,66	0,66
g ,	S _c	1,14	1,16	1,14	1,15	1,14	1,14	1,17	1,16
	S _q	1,36	1,39	1,35	1,39	1,35	1,36	1,42	1,41
	- '		-		•	•	•	•	•
Fattori di profondità per φ'=0)	d _γ	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
μει ψ −υ <i>)</i>		1,00	1,00	1,10	1,00	1,10	1,00	1,00	1,00
	d _c	1,09	1,08	1,10	1,09	1,10	1,09	1,08	1,08
		_,50	_,00	_,00	_,=,	_,	_,55	_,55	1,00
attori di inclinazione del carico						1			Г
per φ'=0)	m _B	1,58	1,55	1,58	1,56	1,58	1,58	1,54	1,54
	m _L	1,42	1,45	1,42	1,44	1,42	1,42	1,46	1,46
	θ [°]	90	90	90	90	90	90	90	90
	m	1,58	1,55	1,58	1,56	1,58	1,58	1,54	1,54
	iγ	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
	i _c	0,97	0,97	0,97	0,97	0,96	0,96	0,98	0,98
	i _q	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00

Cliente:

Potenziamento sistema autostradale e tangenziale di Bologna Lotto 1 - Sottovia Via Roberto Vighi I - Tang. Nord 20+554 (sottovia 122T) Allegato 1: Calcoli - Opere di sostegno Muri andatori Commessa:

Argomento

Sezione analizzata: Muri and	latori								
Fattori di inclinazione del piano	di posa								
	b _γ	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
	b _c	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
	b _q	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Fattori di inclinazione del piano	campagna								
	w [°]	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	gγ	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
	g _c	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
	g _q	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
			-	-	-	-			
Calcolo della capacità portante (della <u>fondazione su</u> p	perficiale							
	q _{lim} [kN/m ²]	456	461	456	460	454	454	469	468
Set di coefficienti parziali		R3	R3	R3	R3	R3	R3	R3	R3
	γ_{R}	1,4	1,4	1,4	1,4	1,2	1,2	1,4	1,4
$q = q_{lim} / \gamma_R$	q [kN/m²]	326	329	326	329	379	378	335	335
Q = q x B' x L'	Q [kN]	11725	13023	11477	12715	13323	13517	13969	13888
FG 0 //N 1 // d)	FC	1.50	4.24	4.55	4.24	2.02	4.04	2.07	2.02
$FS = Q / (N_{Ed} \times L') (>1)$	FS	1,68	1,34	1,65	1,34	2,02	1,84	2,07	2,03
	Comb	(>1)	(>1)	(>1)	(>1)	(>1)	(>1)	(>1)	(>1)
	Comb.	SLU-1-A1	SLU-2-A1	SLU-3-A1	SLU-4-A1	SISM-1-A1	SISM-2-A1	ECC-1-A1	ECC-2-A1