

AUTOSTRADA (A14): BOLOGNA-BARI-TARANTO

TRATTO: BOLOGNA BORGO PANIGALE - BOLOGNA SAN LAZZARO

POTENZIAMENTO IN SEDE DEL SISTEMA AUTOSTRADALE E TANGENZIALE DI BOLOGNA

"PASSANTE DI BOLOGNA"

PROGETTO DEFINITIVO

A2 - TANGENZIALE NORD E SUD

OPERE D'ARTE MAGGIORI

132T-SOTTOVIA VIA CASELLE 21+488

Relazione di Calcolo Esistente

IL PROGETTISTA SPECIALISTICO

Ing. Umberto Mele Ord. Ingg. Milano n.18641 RESPONSABILE STRUTTURE IL RESPONSABILE INTEGRAZIONE PRESTAZIONI SPECIALISTICHE Ing. Raffaele Rinaldesi

Ord. Ingg. Macerata N. A1068

IL DIRETTORE TECNICO

Ing. Andrea Tanzi Ord. Ingg. Parma N. 1154

PROGETTAZIONE NUOVE OPERE AUTOSTRADALI

CODICE IDENTIFICATIVO							ORDINATORE				
RIFERIMENTO PROGETTO			RIFERIMENTO DIRETTORIO		RIFERIMENTO ELABORATO			1			
Codice Commessa	Lotto, Sub-Prog, Cod. Appalto	Fase	Capitolo	Paragrafo	WBS	Parte d'opera	Tip.	Disciplina	Progressivo	Rev.	ı
111465	0000	PD	A2	O22	ST132	00000	R	STR	1165	-2	SCALA -

	PROJECT MANAGER:		SUPPORTO SPECIALISTICO:			REVISIONE
spea					n.	data
		Ing. Raffaele Rinaldesi			0	DICEMBRE 2017
ENGINEERING	l O	d. Ingg. Macerata N. A1068			1	SETTEMBRE 2019
ENGINEERING					2	SETTEMBRE 2020
A 41 a 44 a	REDATTO:	<u>-</u>	VERIFICATO:	_	3	-
gruppo Atlantia	I LEBATTO.	-	TENTIONIO.	<u>-</u>	4	-

VISTO DEL COMMITTENTE

IL RESPONSABILE UNICO DEL PROCEDIMENTO Ing. Fabio Visintin VISTO DEL CONCEDENTE

Ministero delle Infrastrutture e dei Trasporti dipartimento per le infrastrutture, gli affari generali ed il personale struttura di viglianza sulle concessionarie autostradali

Sommario

1	INT	RODUZIONE	5
	1.1	CARATTERISTICHE GENERALI DELL'OPERA	6
	1.2	CARATTERISTICHE DELLE OPERE ESISTENTI	
	1.2.		
	1.2.		
	1.3	NORMATIVA DI RIFERIMENTO	
	1.4	CARATTERISTICHE DEI MATERIALI	17
	1.4.	1 Strutture di nuova realizzazione	
	1.4.	1 Struttura esistente	18
	1.5	CARATTERISTICHE DEL TERRENO	22
	1.5.		
	1.5.2	2 Terreno di fondazione	22
	1.6	CARATTERIZZAZIONE SISMICA	24
	1.7	SOFTWARE DI CALCOLO	
	1.8	CONVENZIONI GENERALI	
	1.8.	1 Unità di misura	26
2	IMP	POSTAZIONI GENERALI DELLE ANALISI STRUTTURALI	27
	2.1	ANALISI GLOBALE IMPALCATO	27
	2.1		
	2.1		
	2.2	ANALISI GLOBALE DELLE SOTTOSTRUTTURE ESISTENTI	
	2.3	COMBINAZIONI DELLE AZIONI	
	2.4	COEFFICIENTI PARZIALI DI SICUREZZA E COEFFICIENTI DI COMBINAZIONE	
_			
3	ANA	ALISI DEI CARICHI	33
	3.1	PREMESSA	
	3.2	CARICHI AGENTI SULL'IMPALCATO IN FASE 1	
	3.2.	r r r r r r r r r r r r r r r r r r r	
	3.2.2	r r	
	3.3	CARICHI AGENTI SULL'IMPALCATO IN FASE 2	
	3.3.		
	3.3.2		
	3.3.		
	3.4	CARICHI AGENTI SULL'IMPALCATO IN FASE 3	
	3.4.		
	3.4.2		
	3.4.3		
	3.4.4	4 Resistenze parassite dei vincoli	
	3.5 <i>3.5.</i> :		
	3.5.2	•	
	3.5.2 3.5.3		
	3.5.4	·	
	3.6	AZIONE SISMICA	
	3.7	CARICHI SU BARRIERE FOA	
_	_		
4	ANA	ALISI DELL'IMPALCATO	45
	4.1	Analisi del modello	45
	4.1.		
	4.2	SOLLECITAZIONI RISULTANTI: RAPPRESENTAZIONE GRAFICA	59

4.3	SOL	LLECITAZIONI IMPALCATO ORIGINALE	71
4.4	VEF	RIFICA TRAVE IN C.A.P IMPALCATO ORIGINALE	85
4.4	4.1	Geometria trave in c.a.p.	86
4.4	4.2	Cadute di tensione	89
4.4	4.3	Verifica agli SLU trave c.a.p.: sezione di mezzeria	90
4.4	4.4	Verifica a taglio della trave in c.a.p	91
5 AN	IALISI	DELLE SOTTOSTRUTTURE	94
5.1	DES	SCRIZIONE GENERALE	94
5.2	SPA	ALLE STRUTTURA ORIGINARIA	94
5.2	2.1	Geometria di verifica	95
5.2	2.2	Coefficienti sismici	97
5.2	2.3	Analisi delle sollecitazioni da impalcato	99
5.2	2.4	Analisi delle sollecitazioni in fondazione	104
5.2	2.5	Combinazioni di calcolo	106
5.2	2.6	Sollecitazioni risultanti nel baricentro della fondazione	
5.2	2.7	Verifica capacità portante del plinto di fondazione	
5.3	SPA	ALLE STRUTTURA I° ALLARGO	110
5.3	3.1	Geometria di verifica	110
5.3	3.2	Coefficienti sismici	112
5.3	3.3	Analisi delle sollecitazioni da impalcato	113
5.3	3.4	Analisi delle sollecitazioni in fondazione	119
5.3	3.5	Combinazioni di calcolo	121
5.3	3.6	Sollecitazioni risultanti nel baricentro della fondazione	122
5.3	3.7	Verifica capacità portante del plinto di fondazione	

Indice delle Tabelle e delle Figure

Figura 1-1. Localizzazione geografica dell'opera	
FIGURA 1-2. PIANTA FONDAZIONE E PIANTA IMPALCATO	7
FIGURA 1-3. SEZIONI TRASVERSALI SULLE SPALLE	8
Figura 1-4. Sezioni longitudinali su II allargo	9
FIGURA 1-6. SEZIONE TRASVERSALE SU SPALLA ORIGINARIA E SU MURI ANDATORI	11
FIGURA 1-6. PIANTA FONDAZIONE E PIANTA ELEVEZIONE SPALLE STRUTTURA ORIGINARIA	11
Figura 1-7. Sezione longitudinale su struttura originaria	11
FIGURA 1-8. PARTICOLARE TESTATA IMPALCATO ORIGINALE	12
FIGURA 1-9. PARTICOLARE ARMATURA E CARPENTERIA IMPALCATO ORIGINALE	12
FIGURA 1-10. PARTICOLARE RITEGNI SISMICI DELL'IMPALCATO ORIGINALE POSIZIONATI DURANTE I LAVORI DEL I° ALLARGO	13
FIGURA 1-11. SEZIONE TRASVERSALE TRAVE IN C.A.P DEL I° ALLARGO	
Figura 1-12. Sezione longitudinale struttura del I° allargo	15
Figura 1-13. Sezione trasversale trave del 1° allargo	15
Tabella 1-17. Caratterizzazione geotecnica	
FIGURA 2-1. VISTA 3D DEL MODELLO FEM UNIFILARE ANALIZZATO (I, II ALLARGO E IMPALCATO ORIGINALE)	
Figura 2-2. Vista 3D Modello	
TABELLA 2-5. COEFFICIENTI PARZIALI PER LE AZIONI O PER L'EFFETTO DELLE AZIONI NELLE VERIFICHE SLU (TAB.2.6.1 DELLE NTC2008)	
TABELLA 2-6. COEFFICIENTI PARZIALI DI SICUREZZA PER LE COMBINAIZONI DI CARICO AGLI SLU (TAB.5.1.V DELLE NTC2008)	
Tabella 2-7. Valori dei coefficienti di combinazione (Tab.2.5.1 delle NTC2008)	
Tabella 2-8. Coefficienti ψ per le azioni variabili per ponti stradali e pedonali (Tab.5.1.VI delle NTC2008)	
Figura 3-1. Schema di carico 1 (Fig.5.1.2 delle NTC2008)	
Figura 3-2. Intensità dei carichi Qik e qik per le diverse corsie (Fig.5.1.2 delle NTC2008)	
FIGURA 3-3 - DISPOSIZIONE I.I.	
Figura 3-4 - Disposizione I.II.	
FIGURA 3-5 - DISPOSIZIONE I.III	
FIGURA 3-6 - DISPOSIZIONE I.II	
FIGURA 3-7 - DISPOISIZIONE II.II	
FIGURA 3-8 - DISPOSIZIONE III.I	
Figura 3-9 - Disposizione III.II.	
FIGURA 3-10 - DISPOSIZIONE IV.I	
FIGURA 3-11 - DISPOSIÇIONE IV.II	
FIGURA 3-12. VALORI CARATTERISTICI.	
FIGURA 3-13. SCHEMA DI CARICO 2 (FIGURA 5.1.2 DELLE NTC2008)	
FIGURA 3-14. SCHEMA SISTEMA DI RIFERIMENTO AZIONI SU BARRIERA FOA	
FIGURA 3-14. SCHEMA SISTEMA DI RIFERIMENTO AZIONI SU BARRIERA FOA	
FIGURA 1-1. VISTA 2D DEL MODELLO FEMI CON INDICAZIONE UNICAMENTE DELLE TRAVI, E VISTA COMPLETA DEL MODELLO 3D FIGURA 1-2 – ANDAMENTO MOMENTI LEGATO AI CARICHI PERMANENTI PORTATII (MAX M3)	
FIGURA 1-3 – ANDAMENTO MOMENTI LEGATO AI CARICHI PERMANENTI PORTATI (MAX WS)	
FIGURA 1-3 – ANDAMENTO TAGLIO LEGATO AI PCARICHI PERMANENTI PORTATT (MAX V2) FIGURA 1-4 – ANDAMENTO MOMENTI DISPOSIZIONE I.I CARICHI MOBILI (MAX M3)	
FIGURA 1-4 – ANDAMENTO MOMENTI DISPOSIZIONE I.II CARICHI MOBILI (MAX M3)	
FIGURA 1-6 – ANDAMENTO MOMENTI DISPOSIZIONE I.III CARICHI MOBILI (MAX M3)	
FIGURA 1-7 – ANDAMENTO TAGLIO DISPOSIZIONE I.I CARICHI MOBILI (MAX V2)	
FIGURA 1-8 - ANDAMENTO TAGLIO DISPOSIZIONE I.II CARICHI MOBILI (MAX V2)	
FIGURA 1-9 - ANDAMENTO TAGLIO DISPOSIZIONE I.III CARICHI MOBILI (MAX V2)	
FIGURA 1-10 – ANDAMENTO MOMENTI DISPOSIZIONE II.I CARICHI MOBILI (MAX M3)	
FIGURA 1-11 – ANDAMENTO MOMENTI DISPOSIZIONE II.II CARICHI MOBILI (MAX M3)	
FIGURA 1-12 – ANDAMENTO TAGLIO DISPOSIZIONE II.I CARICHI MOBILI (MAX V2)	
FIGURA 1-13 - ANDAMENTO TAGLIO DISPOSIZIONE II.II CARICHI MOBILI (MAX V2)	
FIGURA 1-14 – ANDAMENTO MOMENTI DISPOSIZIONE III.I CARICHI MOBILI (MAX M3)	
FIGURA 1-15 – ANDAMENTO MOMENTI DISPOSIZIONE III.II CARICHI MOBILI (MAX M3)	
FIGURA 1-16 – ANDAMENTO TAGLIO DISPOSIZIONE III.I CARICHI MOBILI (MAX V2)	
FIGURA 1-17 - ANDAMENTO TAGLIO DISPOSIZIONE III.II CARICHI MOBILI (MAX V2)	
FIGURA 1-18 – ANDAMENTO MOMENTI DISPOSIZIONE IV.I CARICHI MOBILI (MAX M3)	
FIGURA 1-19 – ANDAMENTO MOMENTI DISPOSIZIONE IV.II CARICHI MOBILI (MAX M3)	68

Figura 1-20 – Andamento taglio disposizione IV.I carichi mobili (max V2)	68
FIGURA 1-21 - ANDAMENTO TAGLIO DISPOSIZIONE IV.II CARICHI MOBILI (MAX V2)	69
FIGURA 1-22 – ANDAMENTO MOMENTI LEGATO AL VENTO (MAX M3)	69
FIGURA 1-23 – ANDAMENTO TAGLIO LEGATO AL VENTO (MAX V2)	70
FIGURA 1-24. NUMERAZIONE DEGLI ELEMENTI FRAME COMPONENTI IL SOLETTONE ORIGINALE NEL MODELLO AD ELEMENTI FINITI	71
FIGURA 4-20 - SEZIONE DELLA SOLETTA CON ALLEGGERIMENTI (FIG.5 PAG.12 RELAZIONE DI CALCOLO OPERA ORIGINALE)	85
Figura 4-21 - Sezione trasversale della soletta con armature (Tavole di progetto opera originale)	85
Figura 4-22 - Gometria della sezione resistente analizzata	86
FIGURA 4-23 - QUOTA DEL CAVO LUNGO LA TRAVE E NOMENCLATURA DELLE SEZIONI (FIG. 1 PAGINA 2)	89
FIGURA 4-24 - SEZIONE TRASVERSALE DELLA SOLETTA CON ARMATURE (TAVOLE DI PROGETTO OPERA ORIGINALE)	93
Tabella 5-1. Caratterizzazione spalle	94
FIGURA 5-1. SCHEMA DIMENSIONI GEOMETRICHE SPALLA	97
FIGURA 5-3. SCHEMA DIMENSIONI GEOMETRICHE SPALLA	112

1 INTRODUZIONE

Nel presente elaborato si riporta una sintesi delle analisi svolte e dei principali risultati ottenuti relativamente ai calcoli statici del sottovia autostradale esistente dell'Autostrada A14 Bologna – Bari- Taranto nell'ambito dei lavori di ampliamento della tangenziale di Bologna, nel tratto Borgo Panigale – Caselle. L'opera è denominata 132T e ubicata indicativamente alla progressiva 21+786.

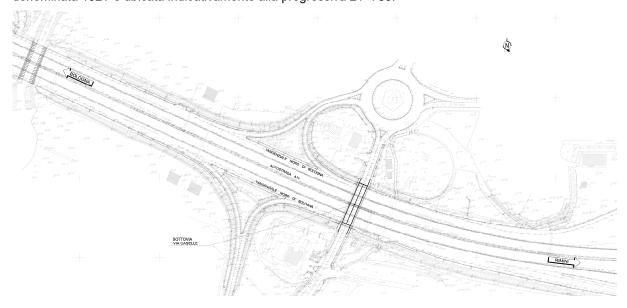


Figura 1-1. Localizzazione geografica dell'opera

1.1 CARATTERISTICHE GENERALI DELL'OPERA

La struttura originaria del ponte è stata realizzata negli anni '60 ed è costituita da un impalcato in c.a.p alleggerito gettato in opera con spessore pari a 75cm sostenuto da due spalle in c.a..

Le spalle sono dei muri di sostegno in cemento armato con fondazioni superficiali.

Nel 2004 è stato eseguito un primo allargamento del ponte esistente nell'ambito della realizzazione delle terze corsie, ampliando l'impalcato di 4.50 m sul lato nord e 4.00 m sul lato sud (misure riferite alla spalla lato Rimini).

L'intervento oggetto della presente relazione prevede l'allargamento ulteriore dell'impalcato Sud di 8.58-8.68m e dell'impalcato Nord di 7,55-7.57m per la realizzazione di una quarta corsia di marcia più una corsia di emergenza per parte. Su entrambi i lati viene realizzato anche un marciapiede di larghezza 2.50 m, sul bordo del quale viene installata una barriera fonoassorbente di altezza 6.50 m.

L'ampliamento sarà realizzato mediante travi in c.a.p. a "T" rovescio avente altezza pari a 70cm. E' inoltre prevista la sostituzione delle travi in c.a.p. di I allargo. Saranno quindi posizionate 24 nuove travi sull'impalcato della carreggiata direzione sud (I allargo + II allargo) e 26 nuove travi sull'impalcato della carreggiata direzione nord (I allargo + II allargo).

Il secondo allargo e il nuovo impalcato di I allargo saranno solidarizzati all'impalcato originale mediante l'inghisaggio di barre d'armatura necessarie a realizzare la continuità strutturale (previa parziale demolizione dell'impalcato originale).

Per l'impalcato, la spalla e le fondazioni si prevede un'estensione delle scelte architettoniche della struttura di I allargo.

La spalla dell'ampliamento è costituita da un fusto di spessore 1,20 m, con un paraghiaia da minimo 20cm, la fondazione ha altezza 1.20 m.

La fondazione della parte esistente è di tipo superficiale, mentre per la parte in allargamento sarà adeguata ai nuovi livelli di sollecitazione e anche per scongiurare cedimenti differenziali sarà fondata su micropali.

Ogni altro dettaglio relativo alle geometrie e alle scelte progettuali è deducibile dalle tavole di progetto.

Nelle figure seguenti si riporta una rappresentazione della spalla nella nuova configurazione allargata.

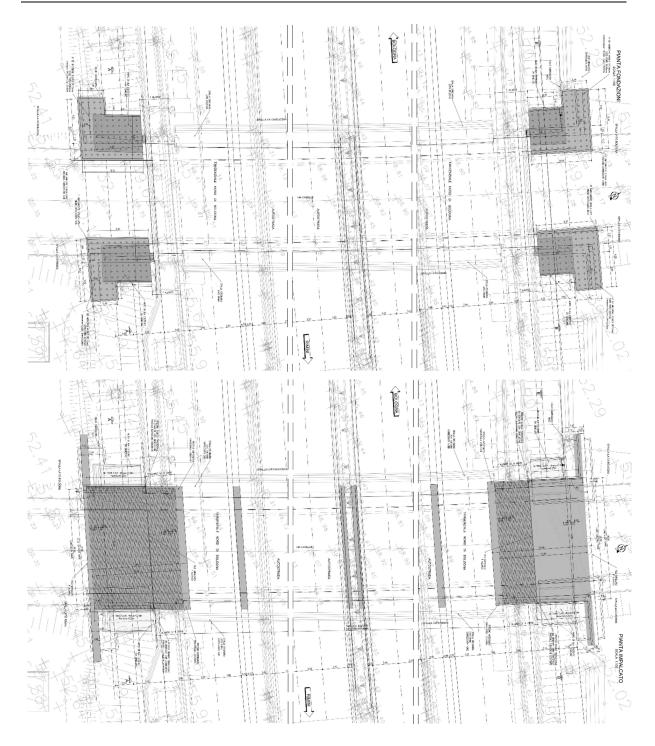


Figura 1-2. Pianta fondazione e pianta impalcato

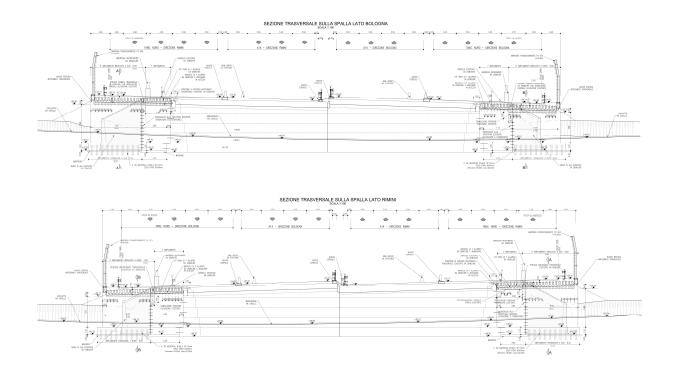
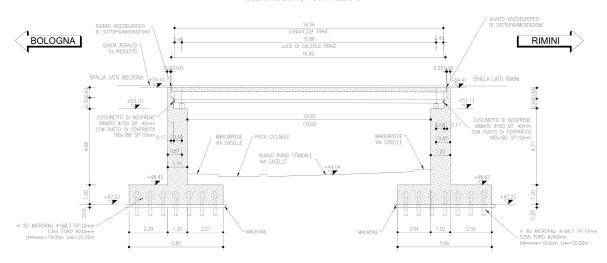



Figura 1-3. Sezioni trasversali sulle spalle

CARREGGIATA DIREZIONE NORD

SCALA 1:100 SEZIONE LONGITUDINALE B-B

CARREGGIATA DIREZIONE SUD SCALA 1:100 SEZIONE LONGITUDINALE A-A

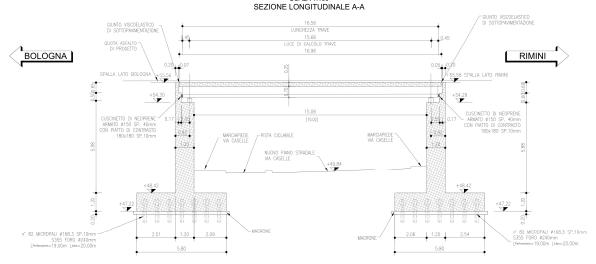


Figura 1-4. Sezioni longitudinali su II allargo

1.2 CARATTERISTICHE DELLE OPERE ESISTENTI

1.2.1 STRUTTURA ORIGINARIA

L'impalcato è composto da un solettone in c.a.p. con spessore pari a 75cm ed alleggerito con tubazioni in calcestruzzo. La precompressione è realizzata mediante 2 cavi del tipo BBRV da 32 Φ 6 disposti su ciascun anima. Gli appoggi sono realizzati mediante piattine continue di piombo bitumate sulle superfici a contatto con il calcestruzzo. Durante i lavori dell' 1° allargo l'impalcato è stato vincolato sismicamente, in direzione longitudinale e trasversale, alle spalle mediante dei ritegni in acciaio.

Le spalle sono realizzate in calcestruzzo debolmente armato con spessore del paramento variabile tra 1.50m e 2.4m e non è presente un paraghiaia a tergo dell'impalcato.

La fondazione, del tipo superficiale, è composta da un plinto con base pari a 3.2m ed altezza par a 1.50m.

Sono riportate nel seguito alcune immagini relative alla struttura, estratte dal progetto originale.

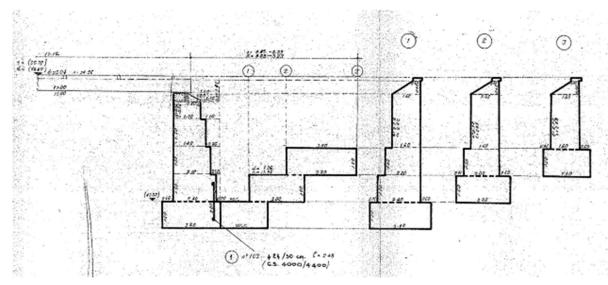


Figura 1-5. Sezione trasversale su spalla originaria e su muri andatori

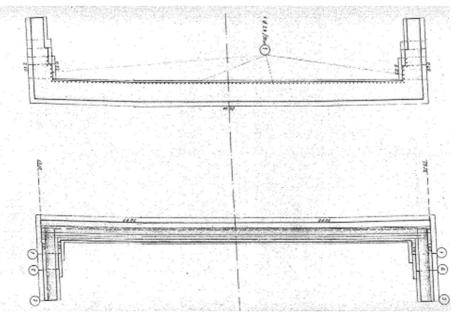


Figura 1-6. Pianta fondazione e pianta elevezione spalle struttura originaria

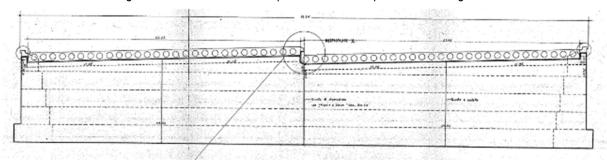


Figura 1-7. Sezione longitudinale su struttura originaria

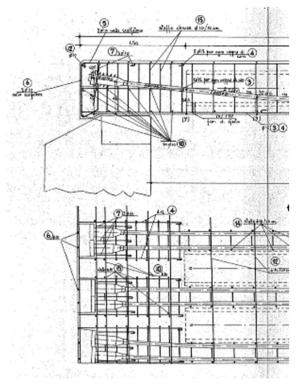


Figura 1-8. Particolare testata impalcato originale

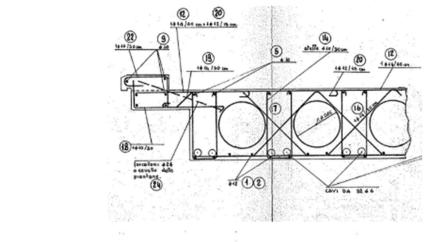


fig. **5**

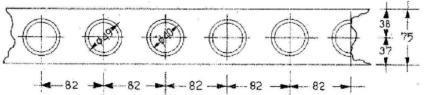


Figura 1-9. Particolare armatura e carpenteria impalcato originale

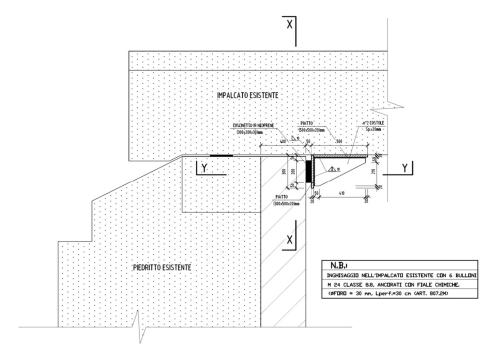


Figura 1-10. Particolare ritegni sismici dell'impalcato originale posizionati durante i lavori del l° allargo

1.2.2 STRUTTURA I° ALLARGO

L'impalcato del I° allargo è realizzato mediante travi in c.a.p. con sezione a T rovescio, con altezza pari a 0.50m e 0.70m, e da una soletta gettata in opera con spessore di 0.25m. Per tali travi è prevista la rimozione e sosituzione con nuove travi in c.a.p. con altezza pari a 0.70m.

Gli appoggi delle travi sono realizzati con cuscinetti in neoprene armato. Le azioni sismiche longitudinali dell'impalcato sono trasmesse, mediante un tampone in neoprene, all'elevazione della spalla.

Le spalle sono del tipo tradizionale in calcestruzzo armato e con spessore dell'elevazione pari a 1.20m. Le fondazioni sono superficiali con larghezza pari a circa 6.20m e altezza pari a 1.20m.

Sono riportate nel seguito alcune immagini relative alla struttura, estratte dal progetto del l° allargo.

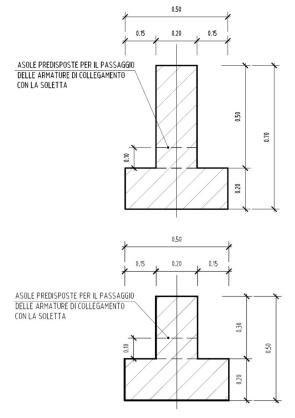


Figura 1-11. Sezione trasversale trave in c.a.p del I° allargo

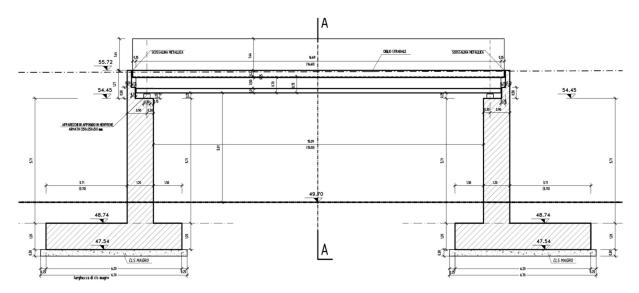


Figura 1-12. Sezione longitudinale struttura del I° allargo

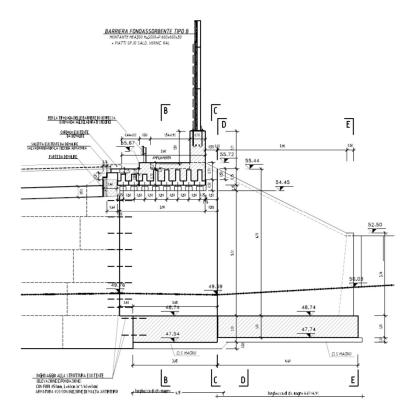


Figura 1-13. Sezione trasversale trave del I° allargo

1.3 NORMATIVA DI RIFERIMENTO

Le analisi e le verifiche sono eseguite secondo il metodo semi-probabilistico agli Stati Limite, in accordo alle disposizioni previste dalle vigenti Normative italiana ed europea (Eurocodici).

In particolare, si fa riferimento alle seguenti norme:

- [1] D.M. 17/01/2018: "Aggiornamento delle Norme Tecniche per le Costruzioni" GU n°8 del 17/2/2018.
- [2] Circolare 21 gennaio 2019 n.7: "Istruzioni per l'applicazione dell' Aggiornamento delle Norme Tecniche per le Costruzioni" di cui al Decreto Ministeriale 17 gennaio 2018.
- [3] D.M. 14 gennaio 2008: Nuove norme tecniche per le costruzioni.
- [4] Circolare 2 febbraio 2009, n.617 Istruzioni per l'applicazione delle "Nuove Norme Tecniche per le Costruzioni" di cui al Decreto Ministeriale 14 gennaio 2008.
- [5] UNI EN 1990: Basi della progettazione strutturale.
- [6] UNI EN 1991-1-4: Azioni sulle strutture Azione del vento.
- [7] UNI EN 1991-1-5: Azioni sulle strutture Azioni termiche.
- [8] UNI EN 1991-1-6: Azioni sulle strutture Azioni in generale Azioni durante la costruzione.
- [9] UNI EN 1991-2: Azioni sulle strutture Carichi da traffico sui ponti.
- [10] UNI EN 1992: Progettazione delle strutture di calcestruzzo.
- [11] UNI EN 1992-1-1: Progettazione delle strutture di calcestruzzo Regole generali e regole per gli edifici.
- [12] UNI EN 1992-2: Progettazione delle strutture di calcestruzzo Ponti di calcestruzzo.
- [13] UNI EN 1993: Progettazione delle strutture in acciaio.
- [14] UNI EN 1993-1-1: Progettazione delle strutture di acciaio Regole generali e regole per gli edifici.
- [15] UNI EN 1993-2: Progettazione delle strutture di acciaio Ponti di acciaio.
- [16] UNI EN 1993-1-5: Progettazione delle strutture di acciaio Elementi strutturali a lastra.
- [17] UNI EN 1993-1-8: Progettazione delle strutture di acciaio Progettazione dei collegamenti.
- [18] UNI EN 1993-1-9: Progettazione delle strutture di acciaio Fatica.
- [19] UNI EN 1993-1-10: Progettazione delle strutture di acciaio Resilienza del materiale e proprietà attraverso lo spessore.
- [20] UNI EN 1993-1-11: Progettazione delle strutture di acciaio Progettazione di strutture con elementi tesi.
- [21] UNI EN 1994: Progettazione delle strutture composte acciaio-calcestruzzo.
- [22] UNI EN 1994-2: Progettazione delle strutture composte acciaio-calcestruzzo Ponti.
- [23] UNI EN 1997: Progettazione geotecnica.
- [24] UNI EN 1998: Progettazione delle strutture per la resistenza sismica.
- [25] UNI EN 1998-2: Progettazione delle strutture per la resistenza sismica Ponti.
- [26] UNI EN 1998-5:2005 Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici.
- [27] Ministero delle Infrastrutture e dei Trasporti Consiglio Superiore dei Lavori Pubblici Linee guida per la classificazione e gestione del rischio, la valutazione della sicurezza ed il monitoraggio dei ponti esistenti -
- [28] Autostrade per l'Italia Direzione sviluppo rete per l'Italia Ingegneria, Ambiente e Sicurezza Linee Guida per la redazione e verifica dei progetti di installazione delle barriere integrate (LG 03/2020).

Resistenza di calcolo

Autostrada A14: Bologna - Bari - Taranto Tratto Borgo Panigale - Caselle Potenziamento del sistema autostradale e tangenziale di Bologna -Lotto 1 - Sottovia Via Caselle

 $f_{cd} = \alpha_{cc} f_{ck} / \gamma_c = 17.40 \text{ MPa}$

 $0.45 \text{ x f}_{ck} = 16.81 \text{MPa}$

1.4 CARATTERISTICHE DEI MATERIALI

1.4.1 Strutture di nuova realizzazione

Calcestruzzo p	or fondosion	م مالمصم نام ن	mai i mii C20/27
L.aicesinizzo r	ner ionoazior	II AI Shalle e	miin' (. 50/ 5 /

Tensione caratteristica cubica	$R_{ck} = 37MPa$
i elisione caratteristica cubica	1\ck - 3/1\till a

Tensione caratteristica cilindrica	$f_{ck} = 0.83 \text{ x R}_{ck} = 30.71 \text{ MPa}$
Tensione di compressione media	$f_{cm} = f_{ck} + 8 = 38.71 \text{ MPa}$
Tensione massima di compressione per combinazione rara	$0.6 \text{ x f}_{ck} = 18.43 \text{MPa}$
Tensione massima di compressione per combinazione frequente	0.45 x f _{ck} = 13.82 MPa

Tensione media a trazione	$f_{ctm} = 0.3 \text{ x } f_{ck}^{(2/3)} = 2.94 \text{ MPa}$
Tensione caratteristica a trazione	$f_{ctk} = 0.7 \text{ x } f_{ctm} = 2.06 \text{ MPa}$
Resistenza di calcolo a trazione	$f_{ctd} = f_{ctk} / v_c = 1.37 \text{ MPa}$

Calcestruzzo per elevazioni spalle: C35/45

Tensione caratteristica cilindrica	$f_{ck} = 0.83 \text{ x R}_{ck} = 37.35 \text{MPa}$
------------------------------------	---

Tensione di compressione media
$$f_{cm} = f_{ck} + 8 = 45.35MPa$$

Tensione massima di compressione per combinazione rara
$$0.6 \text{ x f}_{ck} = 22.41 \text{MPa}$$
Tensione massima di compressione per combinazione frequente $0.45 \text{ x f}_{ck} = 16.81 \text{MPa}$

Resistenza di calcolo
$$f_{cd} = \alpha_{cc} f_{ck} / \gamma_c = 21.17 MPa$$

Tensione media a trazione
$$f_{ctm} = 0.3 \text{ x } f_{ck}^{(2/3)} = 3.35 \text{MPa}$$

Tensione caratteristica a trazione
$$f_{ctk} = 0.7 x f_{ctm} = 2.34 MPa$$

Resistenza di calcolo a trazione
$$f_{ctd} = f_{ctk} / \gamma_c = 1.56 MPa$$

 $E_{cm} = 22000(f_{cm}/10)^{0.3} = 34625MPa$ Modulo elastico

alcestruzzo per solette in c.a., cordoli, baggioli e ritegni sismici: C35/45

Tensione caratteristica cubica R _{ck} = 45MPa	Tensione caratteristica cubica	$R_{ck} = 45MPa$
--	--------------------------------	------------------

Tensione caratteristica cilindrica	$f_{ck} = 0.83 \text{ x R}_{ck} = 37.35 \text{MPa}$

Tensione di compressione media
$$f_{cm} = f_{ck} + 8 = 45.35MPa$$

Tensione massima di compressione per combinazione rara	$0.6 x f_{ck} = 22.41MPa$

Tensione massima di compressione per combinazione frequente
$$0.45 \text{ x f}_{ck} = 16.81 \text{MPa}$$

Resistenza di calcolo
$$f_{cd} = \alpha_{cc} f_{ck} / \gamma_c = 21.17 MPa$$

Tensione media a trazione
$$f_{ctm} = 0.3 \text{ x } f_{ck}^{(2/3)} = 3.35 \text{MPa}$$

Tensione caratteristica a trazione
$$f_{ctk} = 0.7 \text{ x } f_{ctm} = 2.34 \text{MPa}$$

Resistenza di calcolo a trazione
$$f_{ctd} = f_{ctk} / \gamma_c = 1.56 MPa$$

Modulo elastico
$$E_{cm} = 22000(f_{cm}/10)^{0.3} = 34625MPa$$

Calcestruzzo per travi c.a.p.: C45/55

Tensione caratteristica cubica R_{ck} = 55MPa

Tensione caratteristica cilindrica $f_{ck} = 0.83 \text{ x R}_{ck} = 45.65 \text{MPa}$

Tensione di compressione media $f_{cm} = f_{ck} + 8 = 53.65MPa$

Tensione massima di compressione per combinazione rara 0.6 x f_{ck} = 27.39MPa

Tensione massima di compressione per combinazione frequente 0.45 x f_{ck} = 20.54MPa

Resistenza di calcolo $f_{cd} = \alpha_{cc} f_{ck} / \gamma_c = 25.87 MPa$

Tensione media a trazione f_{ctm} = $0.3 \times f_{ck}$ ^(2/3) = 3.83MPa

Tensione caratteristica a trazione $f_{ctk} = 0.7 x f_{ctm} = 2.68MPa$

Resistenza di calcolo a trazione $f_{ctd} = f_{ctk} / y_c = 1.79 MPa$

Modulo elastico $E_{cm} = 22000(f_{cm}/10)^{0.3} = 36416MPa$

Acciaio per armatura lenta: barre nervate tipo B450C, controllate in stabilimento

f_{yk} ≥ 450.0 MPa

f_{tk} ≥ 540.0 MPa

Es = 210000MPa

 $u_{\rm S} = 0.3$

Acciaio da precompressione aderente

f_{ptk} ≥ 1860.0 MPa

 $f_{p(1)k} \ge 1670.0 \text{ MPa}$

Es = 205000MPa

 $u_{\rm S} = 0.3$

Acciaio da carpenteria metallica: S355

 $f_{yk} = 355MPa$

 $f_{tk} = 510MPa$

Es = 210000MPa

 $u_{\rm S} = 0.3$

1.4.1 Struttura esistente

In base ai dati disponibili dai progetti originari, si ricavano i seguenti dati relativi ai materiali delle strutture esistenti. Nelle verifiche strutturali, qualora non fossero disponibili dati certi delle caratteristiche meccaniche dei materiali, le sezioni si verificheranno con materiali di caratteristiche analoghe.

1.4.1.1 Caratterizzazione dei materiali

Sulla base dei progetti originali e delle indagini condotte in sito si considerano dunque i seguenti materiali per le strutture esistenti.

STUTTURA ORIGINARIA (ANNI 60):

Calcestruzzo (Tipo - Dosaggio)

Fondazioni Spalle	Tipo 600 - 200 kg/m³
Elevazione spalle Tipo	Tipo 600 - 250 kg/m³
Travate	Tipo 730. – 400 kg/m³ (σ > 450 kg/cm²)
Acciaio	
Spalle	Acciaio in barre
Travate:	
As, lenta	Acciaio Semiduro
As, precompr	Acciaio Armonico
Acciaio per c.a.p.	Acciaio armonico
	Limite rottura 165 kg/mm²
	Limite snervamento 130 kg/cm²

STRUTTURE AMPLIAMENTO 2004 (I° Allargo)

<u>Impalcato</u>

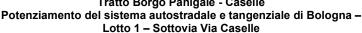
Calcestruzzo per cemento armato ordinario per getto integrativo impalcato R_{ck} ≥ 50 N/mm²

Resistenza caratteristica a compressione cubica Modulo elastico Resistenza a compressione cilindrica Coefficiente di riduzione della resistenza Resistenza a compressione allo SLU Resistenza a compressione allo SLE — ambiente moderatamente aggressivo - combinazioni di carico rare		= = =	$5700^*R_{ck}^{1/2}\\0.83^*R_{ck}\\0.83^*0.85^*R_{ck}/\gamma_c\\0.60^*f_{ck}$	= = = = =	50.00 40305 41.50 1.6 22.05 24.90	N/mm ² N/mm ² N/mm ² (-) N/mm ² N/mm ²
Resistenza a compressione allo SLE – ambiente moderatamente aggressivo - combinazioni di carico		=	0.45^*f_{ck}	=	18.68	N/mm ²
quasi permanenti						
Resistenza a trazione media	f ctm	=	0.27×R _{ck} ^{2/3}	=	3.66	N/mm ²
Resistenza a trazione caratteristica	f ctk	=	0.7*f _{ctm}	=	2.57	N/mm ²
Resistenza a trazione di calcolo allo SLU	f ctd	=	f_{ctk}/γ_c	=	1.60	N/mm ²

Calcestruzzo per cemento armato ordinario per i ritegni sismici $R_{\text{ck}} \geq 35 \; \text{N/mm}^2$

Resistenza caratteristica a compressione cubica Modulo elastico	R _{ck} E _c	=	5700* R _{ck} ^{1/2}	=	35.00 33721	N/mm ² N/mm ²
Resistenza a compressione cilindrica	fck	=	0.83*R _{ck}	=	29.05	N/mm ²
Coefficiente di riduzione della resistenza	Yc			=	1.6	(-)
Resistenza a compressione allo SLU	fcd	=	$0.83*0.85*R_{ck}/\gamma_c$	=	15.43	N/mm ²
Resistenza a compressione allo SLE – ambiente	71	=	0.60*f _{ck}	=	17.43	N/mm ²
moderatamente aggressivo - combinazioni di carico rare						_
Resistenza a compressione allo SLE – ambiente		=	0.45*f _{ck}	=	13.07	N/mm ²
moderatamente aggressivo - combinazioni di carico						
quasi permanenti						
Resistenza a trazione media	f ctm	=	$0.27 \times R_{ck}^{2/3}$	=	2.89	N/mm ²
Resistenza a trazione caratteristica	f ctk	=	0.7*f _{ctm}	=	2.02	N/mm ²
Resistenza a trazione di calcolo allo SLU	f ctd	=	f_{ctk}/γ_c	=	1.26	N/mm ²

Acciaio per cemento armato ordinario Fe B 44 k


Tensione caratteristica di rottura	f _{tk}			=	540	N/mm ²
Tensione caratteristica di snervamento	f _{yk}			=	430	N/mm ²
Modulo elastico	És			=	210000	N/mm ²
Coefficiente di riduzione della resistenza	Ys			=	1.15	(-)
Resistenza di calcolo a trazione/compressione allo SLU	f _{sd}	=	f_{vk}/γ_s	=	373.9	N/mm2
Tensione massima a trazione in esercizio per		=	0.70*f _{vk}	=	301	N/mm ²
combinazioni rare			,			

Calcestruzzo per travi prefabbricate in c.a.p. $R_{ck} \geq 55 \text{ N/mm}^2$ ($R_{ckj} \geq 45 \text{ N/mm}^2$):

Fase iniziale	limite a trazione senza armatura sussidiaria	σ _{ci} = σ _{ti} =	$\begin{array}{l} 0.83 \times R_{ckj} \\ f_{ckj} \times 0.60 \\ f_{ckj} \times 0.05 \\ f_{ckj} \times 0.10 \end{array}$	= = =	37.35 N/mm ² 22.41 N/mm ² 1.87 N/mm ² 3.74 N/mm ²
Fase finale	in combinazione di carico rara in combinazione di carico quasi permanente	σ _{cf} = =	$\begin{array}{l} 0.83 \times R_{ck} \\ f_{ck} \times 0.60 \\ f_{ck} \times 0.45 \end{array}$	= = =	45.65 N/mm ² 27.39 N/mm ² 20.54 N/mm ²
	limite e translana ann armantura avanigliaria	CI	$\begin{array}{l} f_{ck} \times 0.03 \\ f_{ck} \times 0.07 \end{array}$	=	1.37 N/mm ² 3.20 N/mm ²

Autostrada A14: Bologna - Bari - Taranto Tratto Borgo Panigale - Caselle

Acciaio armonico per trefoli aderenti

Trefoli aderenti da 0.6":

Diametro nominale 15.20 mm² Area del trefolo $= 139.00 \text{ mm}^2$ Peso a metro lineare

Resistenza caratteristica a trazione Resistenza a trazione allo 0.1%

Tensione iniziale Tensione max in esercizio

Spalle I allargo:

Calcestruzzo delle nuove spalle R_{ck} ≥ 35N/mm²:

Stati limite ultimi:

Resistenza a compressione cilindrica $f_{ck} = 0.83 \times R_{ck} = 29.05 \text{ N/mm}^2$ $\gamma_{c} = 1.60$ Fattore di sicurezza els $f_{cd}~=~f_{ck}~/~\gamma_c~~=~18.16~~N/mm^2$ Resistenza a compressione di calcolo $f_{ctm} = 0.27 \times R_{ck}^{2/3}$ $= 2.89 \text{ N/mm}^2$ Resistenza a trazione media $f_{ctk} = 0.7 \times f_{ctm} \qquad = 2.02 \ N/mm^2$ Resistenza trazione $= 1.26 \text{ N/mm}^2$ Resistenza a trazione di calcolo

Acciaio ordinario Fe B 44 k:

 $f_{tk} = 540.00 \text{ N/mm}^2$ Resistenza caratteristica a trazione $f_{vk} = 430.00 \text{ N/mm}^2$ Tensione di snervamento caratteristica

Acciaio per carpenterie metalliche F e 510:

Tensione di rottura a trazione Tensione di snervamento

1.4.1.2 Livello di conoscenza e fattore di confidenza

In considerazione che per l'opera in esame:

- 1. E 'stato eseguito un rilievo in sito della geometria dell'opera;
- Sono disponibili i progetti As Built delle strutture esistenti;
- 3. Sono state eseguite in sito delle indagini sui materiali

Si assumono i seguenti livelli di conoscenza e relativi fattori di confidenza:

- Impalcato: LC3 (FC=1), a meno di riscontro oggettivo di criticità o cattivo stato di conservazione nella relazione delle indagini sulla struttura esistente.
- Sottostrutture (spalle e pile): LC3 (FC=1)

1.5 CARATTERISTICHE DEL TERRENO

1.5.1 Terreno di rilevato

Per il terreno di rilevato a tergo delle spalle, si considerano i seguenti parametri geotecnici:

angolo d'attrito: $\phi' = 35^{\circ}$ coesione: c' = 0

peso proprio: $y = 20kN/m^3$

1.5.2 Terreno di fondazione

Per la caratterizzazione dei terreni interessati dalle opere si fa riferimento alle schede specifiche relative all'opera in oggetto. Riassumendo le ipotesi adottate sono:

Tabella II:Indagini geognostiche di riferimento

sigla sond./pozz./prova	campagna di indagine	progressiva (km)	quota p.c. (m s.l.m.)	lunghezza (m)	strumentazione installata
\$17	1984	21+910	52.00	25.50	1
P117	2000	21+720	52.50	4.00	10
PZ-PB13	2016	21+480	52.50	10.00	-

C (....) = cella piezometrica Casagrande (profondità cella);

TA (....) = piezometro a tubo aperto (tratto filtrante);

CH = tubo per misure Cross-hole; DH = tubo per misure Down-hole

<u>Tabella III:Caratterizzazione stratigrafico – geotecnica</u>

Quota p.c. (m s.l.m.m.)	<u>Profondità</u> (m da p.c.)	descrizione	<u>sigla</u>	<u>z</u> _w (m da p.c.)	Parametri medi caratteristici
<u>52.00</u>	0.00 ÷ 11.40	<u>Limo argilloso</u>	<u>A</u>	ŝ	Tabella IV
	11.40 ÷ 22.90	Ghiaia e Sabbia	<u>B</u>	ŝ	<u>Tabella VI</u>
	22.90 ÷ 35.00	<u>Limo argilloso</u>	<u>A'</u>	ŝ	<u>Tabella V</u>

Tabella IV: Parametri medi caratteristici dei materiali Limo argilloso (A)

<u>Descrizione</u>	Υ	<u>c'</u>	φ	<u>E'</u>	<u>σ'pre</u>	<u>CR</u>	RR	Cv	<u>C</u> u	<u>E</u> _v
	(KN/m³)	(KPa)	<u>(°)</u>	<u>(MPa)</u>	<u>(MPa)</u>	<u>(-)</u>	<u>(-)</u>	m/sec ²	(KPa)	<u>(MPa)</u>
<u>Limo argilloso</u>	<u>19</u>	0	<u>26</u>	<u>5</u>	0.4	0.18 ÷ 0.16	0.03÷0.04	<u>3E-07</u>	50 +3.3 z	<u>20</u>

Tabella V: Parametri medi caratteristici dei materiali Limo argilloso (A')

<u>Descrizione</u>	Υ	<u>c'</u>	<u>\$</u>	<u>E'</u>	σ' _{pre}	CR	RR	<u>C</u> _v	<u>C</u> u	<u>E</u> _u
	(KN/m³)	(KPa)	(°)	(MPa)	(MPa)	<u>(-)</u>	(-)	m/sec ²	(KPa)	(MPa)
<u>Limo argilloso</u>	<u>19</u>	0	<u>26</u>	<u>5</u>	0.4	0.18 ÷ 0.16	0.03÷0.04	<u>3E-07</u>	<u>60 + (z-3)</u>	<u>20</u>

Tabella VI: Parametri medi caratteristici dei materiali Ghiaia e Sabbia (B)

<u>Descrizione</u>	¥	<u>c'</u>	φ	<u>E'</u>	<u>G¹pre</u>	CR	RR	Cv	<u>C</u> u	<u>E</u> .
	(KN/m³)	(KPa)	<u>(°)</u>	(MPa)	(MPa)	<u>(-)</u>	<u>(-)</u>	m/sec²	(KPa)	(MPa)
Ghiaia e sabbia	<u>20</u>	0	<u>38</u>	<u>50</u>	=	=	=	=	=	П
γ _t =peso di volu c' =coesione eff φ' =angolo di re E' =modulo di e σ' _{pre} =tensione di p	<u>icace</u> sistenza al t lasticità	taglio	C RI C C	R =m v =co	odulo di peff. di c pesione r	elas onso non c	ticità lidaz dren	zione verti		<u>ate</u>

Tabella 1-14. Caratterizzazione geotecnica

1.6 CARATTERIZZAZIONE SISMICA

Come richiesto dalla Normativa vigente, la zona dove ricade l'opera in esame è stata considerata sismica con grado di sismicità calcolato sulla base di una caratterizzazione sismica riferita ai Comuni interessati dagli interventi di ampliamento.

10 %

Sito in esame.

Classe: IV (Funzioni pubbliche o strategiche importanti)

Vita nominale: 50

Siti di riferimento

Sito 1	ID: 17616	Lat: 44.312	Lon: 11.185
Sito 2	ID: 17617	Lat: 44.314	Lon: 11.255
Sito 3	ID: 17838	Lat: 44.262	Lon: 11.187
Sito 4	ID: 17839	Lat: 44.264	Lon: 11.257

Parametri sismici

Categoria sottosuolo: D
Categoria topografica: T1
Periodo di riferimento: 100 anni

Coefficiente Cu: 2

Probabilità di superamento:

Stato Limite di Salvaguardia della Vita (SLV):

· · · · · · · · · · · · · · · · · · ·	
T _R :	975 anni
ag:	0.216 g = 2.12m/s ²
F ₀ :	2.421
Tc*:	0.315 s
S _S : coefficiente di amplificazione stratigrafica	1.62
S _T : coefficiente di amplificazione topografica	1.00
$S = S_S \times S_T =$	1.62
$\beta_m\text{: coefficiente di riduzione }a_g$	1.00
a _{max}	3.423 m/s ²
k _h : coefficiente sismico orizzontale	0.349
k_{ν} : coefficiente sismico verticale	± 0.174

1.7 SOFTWARE DI CALCOLO

Si impiega il software **SAP2000 – v. 11.0.0**, fornito da *Computer and Structure Inc.* (U.S.A.) su piattaforma *Windows XP Professional*; il pacchetto software comprende pre-post processore grafico interattivo destinato all'input della geometria di base ed alla manipolazione dei risultati di output ed un risolutore ad elementi finiti in campo lineare e non lineare.

Per le verifiche delle sezioni in c.a. e c.a.p si utilizzano appositi fogli elettronici che effettuano le verifiche di resistenza in osservanza a quanto previsto da NTC-08 e dagli Eurocodici (EN 1992).

Per le verifiche tensionali delle sezioni in c.a. si impiega il software di calcolo *VcaSlu*, sviluppato dal Prof. Piero Gelfi. Il programma consente la verifica di sezioni in cemento armato normale e precompresso, soggette a presso-flessione o tenso-flessione retta o deviata, sia allo Stato Limite Ultimo che con il Metodo n e permette inoltre di tracciare il domino M-N.

Per l'elaborazione dei dati di input/output in generale e la creazione di tabelle riepilogative, si adottano procedure opportunamente implementate in fogli elettronici *Microsoft* [®] *Office Excel 2016*. La descrizione delle modalità operative dei singoli fogli di calcolo verranno presentate di volta in volta.

1.8 CONVENZIONI GENERALI

1.8.1 Unità di misura

Salvo ove diversamente specificato, le unità di misura sono quelle relative al Sistema Internazionale, ovvero:

Lunghezze: [m]
Forze: [kN]
Tensioni: [MPa]

Per quanto riguarda le convenzioni di segno, si considerano, in generale, positive le trazioni.

Convenzioni specifiche verranno riportate nel prosieguo della presente relazione.

Per quanto riguarda le azioni interne, salvo diversamente specificato, s'indicherà con:

X – direzione trasversale (ortogonale all'asse stradale)

Y – direzione longitudinale (parallela all'asse stradale)

Z – direzione verticale

2 IMPOSTAZIONI GENERALI DELLE ANALISI STRUTTURALI

2.1 ANALISI GLOBALE IMPALCATO

2.1.1 Modellazione strutturale

Per l'analisi strutturale è stato considerato in generale un modello ad elementi finiti che schematizza l'impalcato mediante un graticcio di travi dotate delle opportune inerzie in funzione della fase di carico.

In considerazione del giunto longitudinale presente in mezzeria della struttura originaria (spartitraffico autostradale) si è modellata metà dell'intero impalcato.

Come già evidenziato in progetto definitivo, le travi esistenti di primo allargo non sono in grado di resistere alle sollecitazioni indotte nella configurazione modificata dell'opera. E' emersa quindi la necessità di una loro demolizione, e della posa di nuove travi anche nella fascia esistente.

Il modello è quindi composto in generale da due porzioni tra loro connesse: una parte schematizza l'opera di nuova costruzione, formata dal primo e dal secondo allargamento, mediante complessivamente 24 travi a T rovescio di altezza 0.7 m; una parte, connessa alla precedente, modella invece l'impalcato originale, composto da un solettone di 0.75 m con 29 alleggerimenti (anch' esso modellato come graticcio di travi).

La struttura è complessivamente formata da 24 travi nuove + 29 travi che schematizzano l'esistente, a comporre un impalcato di larghezza complessiva 36.78 m (12.5 m + 24.28 m).

Si riportano di seguito le immagini del modello analizzato:

- La prima mostra la struttura del modello, evidenziando lo schema dell'impalcato come graticcio di elementi "frame";
- La seconda riporta invece una vista estrusa del modello con la rappresentazione in verde delle travi dell'impalcato nuovo e in rosa di quelle che formano ll'opera originale.

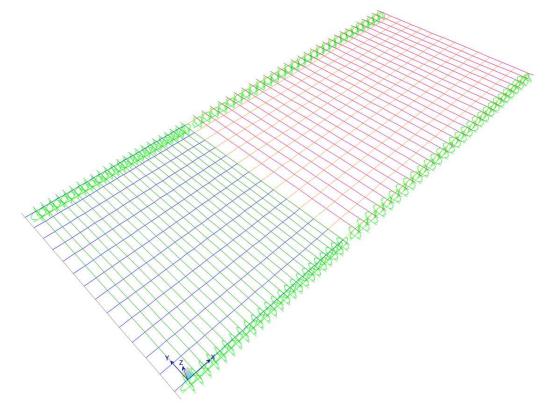


Figura 2-1. Vista 3D del modello FEM unifilare analizzato (I, II allargo e impalcato originale)

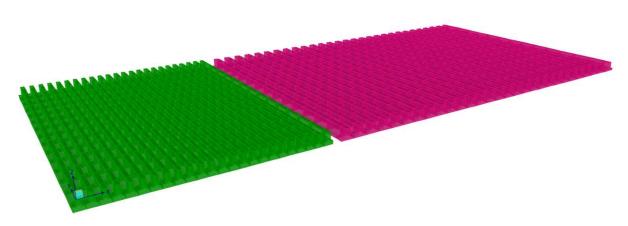


Figura 2-2. Vista 3D Modello

2.1.2 Fasi di analisi e di costruzione

L'intervento di ampliamento strutturale sarà scandito da fasi di realizzazione costruttiva alle quali corrisponderanno anche fasi di analisi strutturale.

Le prime vanno ad indicare le modalità di realizzazione della struttura in ampliamento, mentre le seconde (basandosi sulle prime) definiscono le caratteristiche strutturali ed i carichi strutturali agenti.

Le caratteristiche geometrico - statiche delle sezioni reagenti di impalcato si differenziano in funzione delle fasi di costruzione.

Per la parte nuova (struttura a travi in c.a.p. accostate e soletta collaborante in opera) si terrà conto del succedersi delle seguenti 3 fasi di vita della struttura:

Fase 1: posizionamento travi in c.a.p. accostata e getto della soletta collaborante in c.a.;

sezione reagente: solo travi in c.a.p.;

carichi agenti: peso proprio travi, peso proprio getto di completamento a fianco delle travi,

peso proprio soletta;

Fase 2: indurimento soletta gettata e solidarizzazione con le travi in c.a.p.; posa in

opera/esecuzione di manto stradale, cordoli/marciapiedi, guardrail, parapetti, barriere

fonoassorbenti (opere di arredo stradale);

sezione reagente: travi in c.a.p + soletta collaborante

carichi agenti: sovraccarichi permanenti portati.

Fase 3: vita in esercizio del ponte finito;

sezione reagente: travi in c.a.p + soletta collaborante

carichi agenti accidentali istantanei (mobili da traffico, vento).

2.2 ANALISI GLOBALE DELLE SOTTOSTRUTTURE ESISTENTI

Nei capitoli successivi si riportano l'analisi e le verifiche delle strutture in elevazione che riguardano l'ampliamento del sottovia oggetto della presente relazione di calcolo.

Sono altresì riportate l'analisi e le verifiche strutturali della porzione di struttura in elevazione originaria del sottovia e di quella che ha realizzato il primo ampliamento.

Le caratteristiche meccaniche dei materiali ed il fattore di confidenza, dati di input per l'analisi della porzione esistente, sono definite al capitolo precedente della relazione di calcolo.

Per quanto riguarda la sovrastruttura, l'analisi è condotta in riferimento agli stati limite ultimi. Si valuta se la capacità resistente delle sezioni dei principali elementi strutturali (travi longitudinali, traversi e soletta in cemento armato) è sufficiente nei confronti delle sollecitazioni derivanti dai carichi di normativa.

Per quanto riguarda le sottostrutture, l'analisi è condotta in riferimento agli stati limite ultimi ed a quanto effettuato per le strutture di nuova realizzazione. L'analisi è di tipo "bidimensionale" e riguarda ciascuna delle sezioni trasversali "tipiche" della spalla: struttura originaria e struttura del primo ampliamento. Si valuta se la capacità resistente delle sezioni dei principali elementi strutturali (paramento e plinto di fondazione) è sufficiente nei confronti delle sollecitazioni derivanti dai carichi di normativa. Le verifiche strutturali e geotecniche sulle opere fondazionali indirette e le verifiche geotecniche sulle opere fondazionali dirette sono contenute in uno specifico elaborato di calcolo.

Qualora le verifiche non risultano soddisfatte, è presentato il progetto strutturale o geotecnico dell'intervento da eseguire.

Le spalle esistenti sono considerate come opere di sostegno e perciò sarà applicato quanto previsto dal D.M. 14/01/2008 al paragrafo 6.5. In particolare per le verifiche a capacità portante delle fondazioni saranno inoltre presi a riferimento i coefficienti di sicurezza stabiliti dal D.M: 140/01/2008 in tabella. 6.5.I.

Per le spalle esistenti sarà applicato l'approccio 2.

2.3 COMBINAZIONI DELLE AZIONI

Ai fini delle verifiche degli stati limite si definiscono le seguenti combinazioni delle azioni (cap.2.5.3 delle NTC2008).

Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{O1} \cdot Q_{k1} + \gamma_{O2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{O3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$

- Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$

- Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

- Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica
 E:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali di progetto:

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + ...$$

2.4 COEFFICIENTI PARZIALI DI SICUREZZA E COEFFICIENTI DI COMBINAZIONE

I coefficienti parziali di sicurezza y_G e y_Q sono dati nelle tabelle 2.6.1 e 5.1.V delle NTC2008.

Tabella 2.6.I – Coefficienti parziali per le azioni o per l'effetto delle azioni nelle verifiche SLU

		Coefficiente γ_F	EQU	A1 STR	A2 GEO
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,9 1,1	1,0 1,3	1,0 1,0
Carichi permanenti non strutturali ⁽¹⁾	favorevoli sfavorevoli	γ _{G2}	0,0 1,5	0,0 1,5	0,0 1,3
Carichi variabili	favorevoli sfavorevoli	γ_{Qi}	0,0 1,5	0,0 1,5	0,0 1,3

⁽¹⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare per essi gli stessi coefficienti validi per le azioni permanenti.

Tabella 2-3. Coefficienti parziali per le azioni o per l'effetto delle azioni nelle verifiche SLU (Tab.2.6.1 delle NTC2008)

Tabella 5.1.V - Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30
Carichi variabili da traffico	favorevoli sfavorevoli	γQ	0,00 1,35	0,00 1,35	0,00 1,15
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecitazioni di progetto	favorevoli sfavorevoli	γ ε1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Variazioni termiche, Cedimenti vincolari	favorevoli sfavorevoli	$\gamma_{\epsilon 2}, \gamma_{\epsilon 3}, \gamma_{\epsilon 4}$	0,00 1,20	0,00 1,20	0,00

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.

Tabella 2-4. Coefficienti parziali di sicurezza per le combinaizoni di carico agli SLU (Tab.5.1.V delle NTC2008) I valori dei coefficienti di combinazione ψ_0 , ψ_1 e ψ_2 sono riportati nelle tabelle 2.5.I e 5.1.VI delle NTC2008.

Tabella 2.5.I - Valori dei coefficienti di combinazione

Categoria/Azione variabile	ψ_{0j}	ψ_{1j}	Ψ _{2j}
Categoria A Ambienti ad uso residenziale	0,7	0,5	0,3
Categoria B Uffici	0,7	0,5	0,3
Categoria C Ambienti suscettibili di affollamento	0,7	0,7	0,6
Categoria D Ambienti ad uso commerciale	0,7	0,7	0,6
Categoria E Biblioteche, archivi, magazzini e ambienti ad uso industriale	1,0	0,9	0,8
Categoria F Rimesse e parcheggi (per autoveicoli di peso ≤ 30 kN)	0,7	0,7	0,6
Categoria G Rimesse e parcheggi (per autoveicoli di peso > 30 kN)	0,7	0,5	0,3
Categoria H Coperture	0,0	0,0	0,0
Vento	0,6	0,2	0,0
Neve (a quota $\leq 1000 \text{ m s.l.m.}$)	0,5	0,2	0,0
Neve (a quota > 1000 m s.l.m.)	0,7	0,5	0,2
Variazioni termiche	0,6	0,5	0,0

Tabella 2-5. Valori dei coefficienti di combinazione (Tab.2.5.I delle NTC2008)

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

^{(3) 1,30} per instabilità in strutture con precompressione esterna

^{(4) 1,20} per effetti locali

Tabella 5.1.VI - Coefficienti ♥ per le azioni variabili per ponti stradali e pedonali

Azioni	Gruppo di azioni (Tabella 5.1.IV)	Coefficiente Ψ ₀ di combinazione	Coefficiente ψ ₁ (valori frequenti)	Coefficiente ψ ₂ (valori quasi permanenti)
	Schema 1 (Carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (Carichi distribuiti	0,40	0,40	0,0
	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
Azioni da traffico	Schema 2	0,0	0,75	0,0
(Tabella 5.1.IV)	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)	()	0,75	0,0
	5	0,0	0,0	0,0
Vento q ₅	Vento a ponte scarico SLU e SLE Esecuzione	0,6 0,8	0,2	0,0 0,0
	Vento a ponte carico	0,6		
N	SLU e SLE	0,0	0,0	0,0
Neve q_5	esecuzione	0,8	0,6	0,5
Temperatura	T _k	0,6	0,6	0,5

Tabella 2-6. Coefficienti ψ per le azioni variabili per ponti stradali e pedonali (Tab.5.1.VI delle NTC2008)

3 ANALISI DEI CARICHI

3.1 PREMESSA

Di seguito si riportano in dettaglio i vari contributi di carico considerati nell'analisi strutturale.

Per quanto riguarda i carichi agenti direttamente sull'impalcato, si specifica puntualmente il valore in riferimento alla fase di analisi trattata e della porzione di impalcato interessata (impalcato originario, porzione di impalcato relativa al primo allargamento, porzione di impalcato di nuova realizzazione).

3.2 CARICHI AGENTI SULL'IMPALCATO IN FASE 1

3.2.1 Peso proprio delle travi di impalcato

Il peso degli elementi strutturali è conteggiato in riferimento al loro peso specifico (vedi capitolo relativo alle "Caratteristiche dei materiali").

Esso è calcolo in modo automatico dal programma SAP200 come carico di tipo Dead Load.

La seguente tabella riporta il peso al metro lineare per i principali elementi strutturali: travi longitudinali e traversi.

- Peso singola trave impalcato di I e II allargo:

5kN/m

L'impalcato originale è composto da un solettone da 75cm alleggerito con un peso pari a circa 10.475 kN/m.

3.2.2 Peso proprio della soletta in c.a.

Il peso proprio della soletta in c.a. è funzione del peso specifico del calcestruzzo, pari a 25kN/m³, e dello spessore della soletta.

Esso è calcolo in modo automatico dal programma SAP200 come carico di tipo Dead Load.

La seguente tabella riporta il peso su unità di superficie della soletta in c.a. per le diverse porzioni di impalcato considerate.

- Peso Soletta impalcato I e II allargo:

0.25m x 25kN/m³:

6.25kN/m²

L'impalcato originale è composto da un solettone da 75cm alleggerito con un peso pari a circa 10.475 kN/m.

3.3 CARICHI AGENTI SULL'IMPALCATO IN FASE 2

3.3.1 Sovraccarichi permanenti

I sovraccarichi permanenti comprendono il peso proprio della pavimentazione stradale (γ = 22kN/m³) e quello del marciapiede, il peso proprio dei cordoli in c.a. porta sicurvia e reggi FOA. I carichi permanenti derivanti dall'installazione della barriera FOA sono trattati più nello specifico in un capitolo dedicato.

Pavimentazione

Il peso proprio della pavimentazione viene ripartito sulle travi secondo l'area di influenza delle stesse. Essendo le travi nuove interassate di 0.50m, il carico distribuito relativo risulta pari a $2.42 \text{ kN/mq} \times 0.50 \text{ m} = 1.21 \text{ kN/m}$. Per quanto riguarda invece la pavimentazione esistente, essa è caricata sulle travi che schematizzano l'impalcato disposte ad interasse 0.82m, mediante un carico distribuito pari a $7.70 \text{ kN/mq} \times 0.82 \text{ m} = 6.314 \text{ kN/m}$. Tale carico è stato applicato solo alle travi poste al di sotto della sede stradale.

Cordoli

Sono presenti sull'impalcato tre cordoli in calcestruzzo, il cui peso, di seguito calcolato, viene applicato come carico distribuito sulle travi in prossimità delle quali vengono a trovarsi.

Ourdold reggi / O/	0.48 m x 0.70 m x 25.00 Kn/m ³ = 8.40 kN/m
Si tratta di un elemento con sezione rettangolare 0.48 m necessari alle barriere FOA laterali. Tale carico è affidato ospitare i carichi trasmessi da tali componenti dell'arredo stra	alla trave fittizia appositamente modellata per
Cordolo centrale	0.90 m x 0.44 m x 25.00 Kn/m ³ = 9.90 kN/m
Centralmente alla carreggiata e al di sotto del new jersey, al di dimnsioni in sezione pari a $0.90\ m\ x\ 0.44\ m.$	posto della pavimentazione è inserito un cordolo
Cordolo laterale	0.70 m x 0.35 m x 25.00 Kn/m ³ = 6.125 kN/m
A sostegno del sicurvia laterale, lungo il lato dove è pavimentazione stradale è presente un cordolo le cui dimens	
Arredo stradale	
Ciarra da a marri iarrany	
Sicurvia e riew jersey	1.00kN/m
I sicurvia e il new jersey presenti sull'impalcato vengono direttamente alle travi in prossimità delle quali vengono dispo	o affidati, sotto forma di un carico distribuito,
I sicurvia e il new jersey presenti sull'impalcato vengono	o affidati, sotto forma di un carico distribuito, osti.
I sicurvia e il new jersey presenti sull'impalcato vengono direttamente alle travi in prossimità delle quali vengono dispo	o affidati, sotto forma di un carico distribuito, osti. N = 6.54 kN/m
I sicurvia e il new jersey presenti sull'impalcato vengono direttamente alle travi in prossimità delle quali vengono dispo Barriera fonoassorbente (h = 6.50 m)	o affidati, sotto forma di un carico distribuito, osti. N = 6.54 kN/m
I sicurvia e il new jersey presenti sull'impalcato vengono direttamente alle travi in prossimità delle quali vengono dispo Barriera fonoassorbente (h = 6.50 m)	o affidati, sotto forma di un carico distribuito, osti. N = 6.54 kN/m
I sicurvia e il new jersey presenti sull'impalcato vengono direttamente alle travi in prossimità delle quali vengono disposarriera fonoassorbente (h = 6.50 m)	o affidati, sotto forma di un carico distribuito, osti.

3.3.2 Cedimenti vincolari

sotto del marciapiede.

In considerazione dello schema di vincolo isostatico (appoggio-appoggio) dell'implacato non vengono considerate azioni indotte da cedimenti vincolari.

3.3.3 Reologia calcestruzzo

Gli effetti del ritiro e della viscosità del calcestruzzo sono stati considerati sia per il calcolo delle cadute di tensione sui trefoli delle travi in c.a.p., sia per il calcolo delle sollecitazioni derivanti dal ritiro differenziale trave-soletta e il conseguente dimensionamento del collegamento.

Per le calcolazioni relative agli effetti di ritiro e viscosità si è fatto riferimento alle indicazioni riportate sulle Norme tecniche per le Costruzioni (2008), sugli eurocodici (Appendice B EC 1992) e sulle normative CNR (10016-85).

Per le specifiche si rimanda ai paragrafi specifici riportati in seguito e relativi al dimensionamento dell'impalcato.

3.4 CARICHI AGENTI SULL'IMPALCATO IN FASE 3

3.4.1 Variazioni termiche

Si fa riferimento ai criteri contenuti in EN 1991-1-5 / NTC2008 – cap.3.5, sia per quanto riguarda il calcolo del range di temperatura, sia per quanto riguarda l'approccio di calcolo.

3.4.1.1 Variazioni termiche uniformi (Δt_N)

Lo schema statico isostatico dell'impalcato fa si che non si risenta degli effetti delle variazioni termiche. Unicamente al fine di determinare lo scorrimento che questo genera nei giunti, si considera una variazione termica uniforme pari a +/-20°C.

3.4.2 Azione del vento

L'azione del vento è trattata nel capitolo inerente alle reazioni al piede delle barriere FOA al quale si rimanda per le varie specifiche.

3.4.3 Azione variabili da traffico

3.4.3.1 Carichi mobili

Si seguono le disposizioni contenute in EN 1991-2 capp.4/5 / NTC2008 cap. 5.1.3.3.5, con riferimento a ponti di I categoria.

Per le verifiche globali e locali dell'impalcato, si considera lo Schema di Carico n.1 costituito da carichi concentrati su due assi in tandem (Q_{ik}) , applicati su impronte di pneumatico di forma quadrata di lato pari a 0.40m, e da carichi uniformemente distribuiti (q_{ik}) , come mostrato in figura.

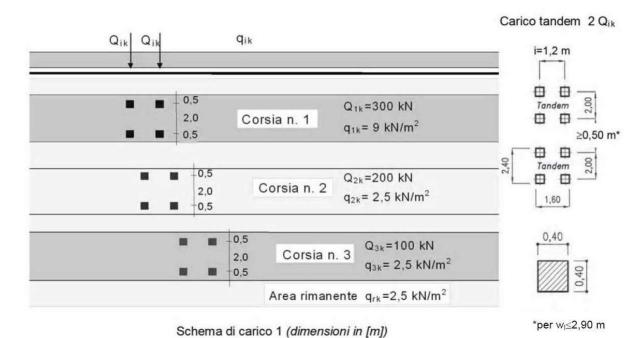


Figura 3-1. Schema di carico 1 (Fig.5.1.2 delle NTC2008)

Le intensità dei carichi Qik e qik per le diverse corsie vengono riassunti nella seguente tabella.

Tabella 5.1.II - Intensità dei carichi Qik e qik per le diverse corsie

Posizione	Carico asse Q _{ik} [kN]	$q_{ik} [kN/m^2]$
Corsia Numero 1	300	9,00
Corsia Numero 2	200	2,50
Corsia Numero 3	100	2,50
Altre corsie	0,00	2,50

Figura 3-2. Intensità dei carichi Qik e qik per le diverse corsie (Fig.5.1.2 delle NTC2008)

Lo studio delle superfici di influenza viene finalizzato all'ottenimento delle seguenti sollecitazioni:

- massima e minima azione verticale su ciascun sostegno;
- massimo e minimo momento flettente longitudinale su tutte le sezioni di inizio e fine concio, sulle sezioni di attacco dei traversi e sulle sezioni di mezzeria campata e asse appoggi.

Le disposizioni trasversali di carico sulla carreggiata dell'impalcato sono riconducibili, in funzione della larghezza effettiva della carreggiata, alle configurazioni riportate nella figura seguente.

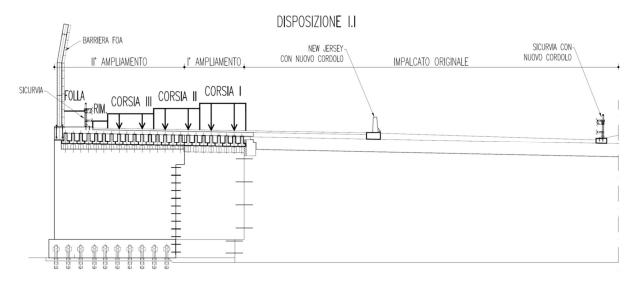


Figura 3-3 - Disposizione I.I

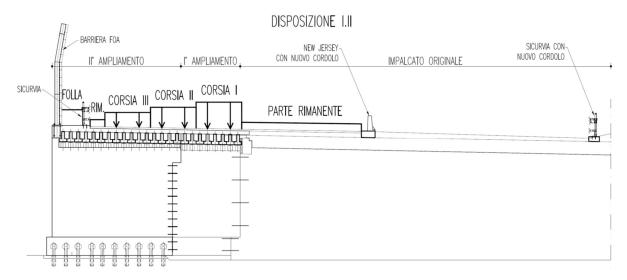


Figura 3-4 - Disposizione I.II

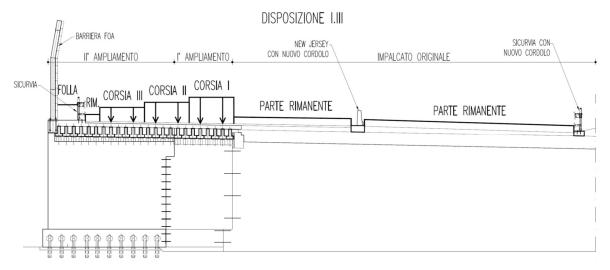


Figura 3-5 - Disposizione I.III

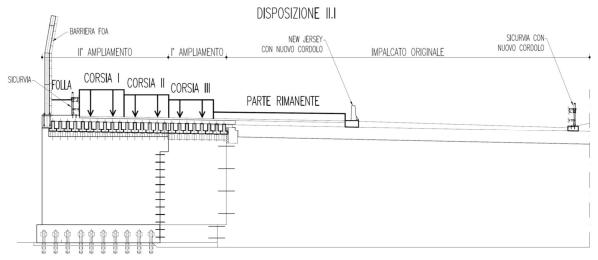


Figura 3-6 - Disposizione II.I

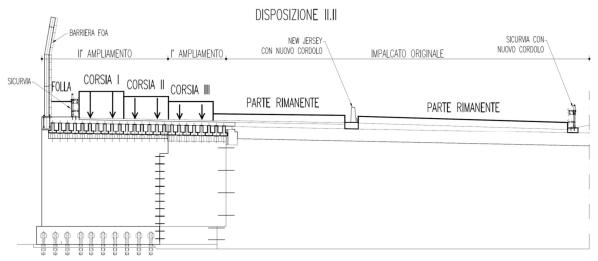


Figura 3-7 - Dispoisizione II.II

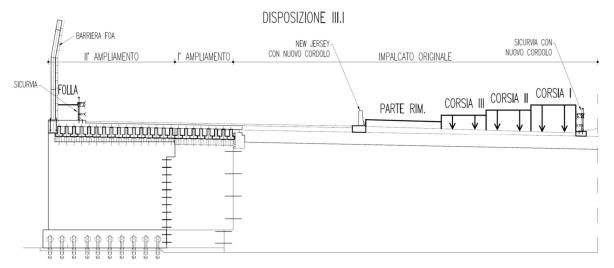


Figura 3-8 - Disposizione III.I

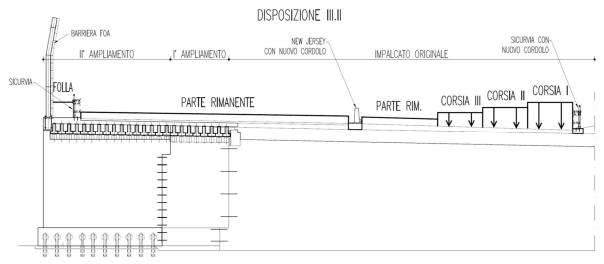


Figura 3-9 - Disposizione III.II

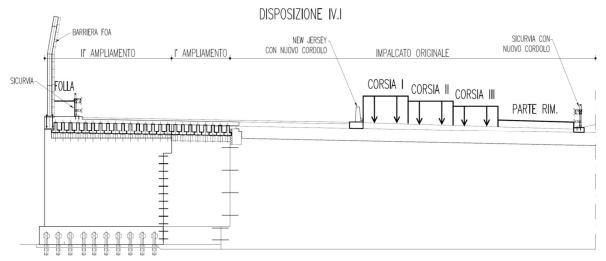


Figura 3-10 - Disposizione IV.I

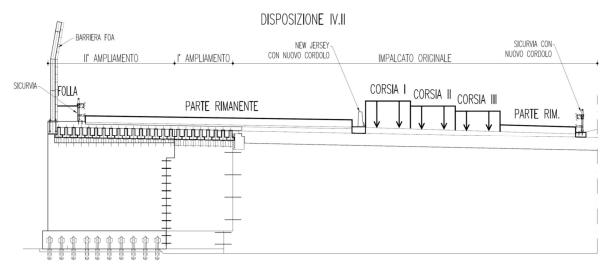


Figura 3-11 - Disposione IV.II

3.4.3.2 Azioni di frenatura

Per il calcolo delle azioni di frenatura, si fa riferimento a EN1991-2 cap.4.4.1(1) / NTC2008 cap.5.3.1.5.

La forza di frenamento o di accelerazione q₃ è funzione del carico verticale totale agente sulla corsia convenzionale n. 1, e per i ponti di 1^a categoria è uguale a:

$$180 \text{ kN} \leq [\text{ q3} = 0.6 \times (2Q_{1k}) + 0.10q_{1k} \times w_1 \times L \text{ }] \leq 900 \text{ kN}$$

$$w_1 = \text{ larghezza della corsia} = 3.00 \text{ m}$$

$$L = \text{ lunghezza zona caricata} = 16.70 \text{ m}$$

$$180 \leq q_3 \leq 900 \text{ VERO}$$

$$q_3 = 405.09 \text{ kN}$$
 % forza orizzontale assegnata alla spalla = 50 %
$$H_{\text{,frenam spalla}} = 202.55 \text{ kN}$$

Il contributo agente sulle corsie di marcia lente verrà in ogni caso distribuito uniformemente sulle travi di competenza.

3.4.3.3 Azione centrifuga

L'azione centrifuga non viene considerata presentando il tratto un raggio di curvatura prossimo a 1500m.

3.4.3.4 Gruppi di carico

Le azioni riconducibili ai carichi da traffico sono accorpate in gruppi di azioni sulla base di quanto riportato nella seguente tabella.

Tabella 5.1.IV - Valori caratteristici delle azioni dovute al traffico

		Carichi su marciapiedi e piste ciclabili				
	Carichi verticali			Carichi orizz	ontali	Carichi verticali
Gruppo di azioni	Modello principale (Schemi di carico 1, 2, 3, 4, 6)	Veicoli speciali	Folla (Schema di carico 5)	Frenatura q ₃	Forza centrifuga q4	Carico uniformemente distribuito
1	Valore caratteristico			26-		Schema di carico 5 con valore di combinazione 2,5 kN/m ²
2 a	Valore frequente			Valore caratteristico		
2 b	Valore frequente				Valore caratteristico	
3 (*)	3					Schema di carico 5 con valore caratteristico 5,0 kN/m ²
4 (**)			Schema di carico 5 con valore caratteristico 5,0 kN/m ²			Schema di carico 5 con valore caratteristico 5,0 kN/m ²
5 (***)	Da definirsi per il singolo progetto	Valore caratteristico o nominale				

Figura 3-12. Valori caratteristici

Nel caso in esame si fa riferimento unicamente ai seguenti gruppi di azioni:

- Gruppo di azioni 1: si considera lo Schema di Carico 1 con il suo valore caratteristico;
- Gruppo di azioni 2a: si considera lo Schema di Carico 1 con il suo valore frequente (0.75 Q_{k,TS} + 0.4 Q_{k,UDL}) insieme alla frenatura in valore caratteristico.

3.4.3.5 Schemi di carico per verifiche locali

Per verifiche locali sugli elementi strutturali costituenti l'impalcato, si adotta lo "Schema di carico 2" previsto al punto 5.1.3.3.3 delle NTC2008 ("Schema di carico 2") costituito da un singolo asse applicato su specifiche impronte di pneumatico di forma rettangolare, di larghezza 0,60 m ed altezza 0,35 m, come mostrato nella figura seguente.

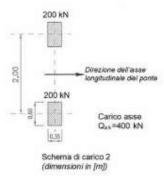


Figura 3-13. Schema di carico 2 (Figura 5.1.2 delle NTC2008)

Questo schema è considerato autonomamente con asse longitudinale nella posizione più gravosa. Qualora sia più gravoso si considererà il peso di una singola ruota di 200 kN.

Nel progetto dell'impalcato è considerata una condizione di carico eccezionale nella quale alla forza orizzontale d'urto su sicurvia si associa un carico verticale isolato sulla sede stradale costituito dallo Schema di Carico 2, posizionato in adiacenza al sicurvia stesso e disposto nella posizione più gravosa (cap.5.1.3.10 delle NTC2008).

3.4.4 Resistenze parassite dei vincoli

La resistenze passive dei vincoli sono assunte pari al 5% degli scarichi permanenti

3.5 CARICHI AGENTI SULLE SPALLE

3.5.1 Carichi permanenti strutturali

Il peso degli elementi strutturali è conteggiato in riferimento al peso specifico del calcestruzzo ($\gamma_c = 25kN/m^3$).

3.5.2 Carichi permanenti non strutturali

Si considera come carico permanente non strutturale il peso proprio del terreno di zavorra disposto sulla retrozattera.

3.5.3 Spinta del terreno

La spinta del terreno di rilevato agente a tergo delle spalle è valutata tramite:

- coefficiente di spinta a riposo: $k_0 = 1 - \sin \varphi'$ nel caso di fondazione indirette; - coefficiente di spinta attiva: $k_a = \tan^2(45 - \varphi'/2)$ nel caso di fondazione diretta.

Come meglio descritto nella relazione geotecnica, le verifiche di sicurezza della fondazione, strutturali e geotecniche, sono condotte mediante l'Approccio 2 di cui al punto 6.2.3 delle NTC2008. Tale approccio progettuale prevede un'unica combinazione di gruppi di coefficienti (A1+M1+R3) da adottare per azioni (A1), parametri geotecnici del terreno (M1) e fattori di sicurezza (R3). Nel prosieguo del presente elaborato, il valore dell'angolo d'attrito φ' è da intendersi, dunque, come caratteristico.

3.5.4 Sovraccarico accidentale

Si considera un sovraccarico accidentale agente a tergo delle spalle pari a:

 $a = 20kN/m^2$

Il sovraccarico spingente a tergo delle spalle è valutato tramite:

- coefficiente di spinta a riposo: $k_0 = 1 - \sin \varphi'$ nel caso di fondazione indirette; - coefficiente di spinta attiva: $k_a = \tan^2(45 - \varphi'/2)$ nel caso di fondazione diretta.

3.6 AZIONE SISMICA

Per la definizione dei parametri sismici, il calcolo dell'azione sismica e le modalità di analisi sui diversi elementi strutturali che costituiscono l'opera (impalcato, spalle e pile), si rimanda ai capitoli precedenti.

Ai fini delle verifiche strutturali, si considera lo Stato Limite di Salvaguardia della Vita (SLV). Si considera, invece, lo Stato Limite di Danno (SLD) per la valutazione degli spostamenti e per il calcolo delle escursioni massime ammissibili in corrispondenza dei giunti e dispositivi di appoggio.

La componente sismica verticale non è considerata non essendo presenti elementi sensibili a tale sollecitazione.

3.7 CARICHI SU BARRIERE FOA

I carichi trasmessi al piede delle barriere antirumore sono forniti dalla seguente tabella per il caso in esame, in cui la barriera presenta un'altezza pari a 6.50 m: si può notare come siano state riportate le reazioni concentrate alla base dei montanti sia per il tratto corrente della barriera, che per quello di bordo. Ad ogni modo, si tenga presente che, a favore di sicurezza, sono state adottate nelle analisi le reazioni fornite per i montanti di bordo.

FOA TIPO 4 - H=6.50m (sollecitazioni per montanti tratto di BORDO)	FX	FY	FZ	МХ	MY	MZ
	(kN)	(kN)	(kN)	(kNm)	(kNm)	(kNm)
1: Peso proprio strutturale		6.4				0.5
2: Peso proprio pannelli fonoassorbenti		19.8				5.9
3: Vento X+ (vento da ricettore verso fonte rumore)	-55.3	3.7				183.7
4: Vento X- (vento da fonte rumore verso ricettore)	51.0	-3.4				-169.4
5: Neve						
6: Pressione dinamica veicolare	21.2	-1.4				-70.4
7: Pressione dinamica da rimozione neve	15.0					-22.5
8: Sisma						
SLU STR 1 - VENTO X+	-82.9	39.5	0.0	0.0	0.0	283.8
SLU STR 2 - VENTO X-	76.4	28.9	0.0	0.0	0.0	-245.8
SLU STR 3 - PRESSIONE DINAMICA VEICOLARE SLU STR 4 - PRESSIONE DINAMICA DA RIMOZIONE	31.8	31.9	0.0	0.0	0.0	-97.3
NEVE	22.5	34.0	0.0	0.0	0.0	-25.5
SLU GEO 1 - VENTO X+	-71.9	30.9	0.0	0.0	0.0	245.2
SLU GEO 2 - VENTO X-	66.2	21.8	0.0	0.0	0.0	-213.8
SLU GEO 3 - PRESSIONE DINAMICA VEICOLARE	27.5	24.3	0.0	0.0	0.0	-85.1
SLU GEO 4 - PRESSIONE DINAMICA RIMOZIONE NEVE	19.5	26.2	0.0	0.0	0.0	-22.9
SLU SISMA	0.0	26.2	0.0	0.0	0.0	6.4
SLE RARA 1 - VENTO X+	-55.3	29.8	0.0	0.0	0.0	190.1
SLE RARA 2 - VENTO X-	51.0	22.8	0.0	0.0	0.0	-163.0
SLE RARA 3 - PRESSIONE DINAMICA VEICOLARE SLE RARA 4 - PRESSIONE DINAMICA DA RIMOZIONE	21.2	24.8	0.0	0.0	0.0	-64.0
NEVE	15.0	26.2	0.0	0.0	0.0	-16.1
FOA TIPO 4 - H=6.50m (sollecitazioni per montanti tratto CORRENTE)	FX	FY	FZ	MX	MY	MZ
unio comente	(kN)	(kN)	(kN)	(kNm)	(kNm)	(kNm)
1: Peso proprio strutturale	(11.17)	5.7	()	(1.1111)	(11.11.1)	0.5
2: Peso proprio pannelli fonoassorbenti		19.8				5.9
3: Vento X+ (vento da ricettore verso fonte rumore)	-31.8	2.1				105.6
4: Vento X- (vento da finettore verso ricettore)	29.1	-1.9				-96.8
5: Neve	_5.1	1.5				50.0
6: Pressione dinamica veicolare	21.2	-1.4				-70.4
7: Pressione dinamica da rimozione neve	15.0					-22.5

8: Sisma

-47.7	36.4	0.0	0.0	0.0	166.6
43.7	30.3	0.0	0.0	0.0	-137.0
31.8	31.1	0.0	0.0	0.0	-97.4
22.5	33.2	0.0	0.0	0.0	-25.5
-41.3	28.3	0.0	0.0	0.0	143.6
37.9	23.0	0.0	0.0	0.0	-119.5
27.5	23.7	0.0	0.0	0.0	-85.2
19.5	25.6	0.0	0.0	0.0	-22.9
0.0	25.6	0.0	0.0	0.0	6.3
-31.8	27.7	0.0	0.0	0.0	111.9
29.1	23.6	0.0	0.0	0.0	-90.5
21.2	24.1	0.0	0.0	0.0	-64.1
15.0	25.6	0.0	0.0	0.0	-16.2
	43.7 31.8 22.5 -41.3 37.9 27.5 19.5 0.0	43.7 30.3 31.8 31.1 22.5 33.2 -41.3 28.3 37.9 23.0 27.5 23.7 19.5 25.6 0.0 25.6 -31.8 27.7 29.1 23.6 21.2 24.1	43.7 30.3 0.0 31.8 31.1 0.0 22.5 33.2 0.0 -41.3 28.3 0.0 37.9 23.0 0.0 27.5 23.7 0.0 19.5 25.6 0.0 0.0 25.6 0.0 -31.8 27.7 0.0 29.1 23.6 0.0 21.2 24.1 0.0	43.7 30.3 0.0 0.0 31.8 31.1 0.0 0.0 22.5 33.2 0.0 0.0 -41.3 28.3 0.0 0.0 37.9 23.0 0.0 0.0 27.5 23.7 0.0 0.0 19.5 25.6 0.0 0.0 0.0 25.6 0.0 0.0 -31.8 27.7 0.0 0.0 29.1 23.6 0.0 0.0 21.2 24.1 0.0 0.0	43.7 30.3 0.0 0.0 0.0 31.8 31.1 0.0 0.0 0.0 22.5 33.2 0.0 0.0 0.0 -41.3 28.3 0.0 0.0 0.0 37.9 23.0 0.0 0.0 0.0 27.5 23.7 0.0 0.0 0.0 19.5 25.6 0.0 0.0 0.0 0.0 25.6 0.0 0.0 0.0 -31.8 27.7 0.0 0.0 0.0 29.1 23.6 0.0 0.0 0.0 21.2 24.1 0.0 0.0 0.0

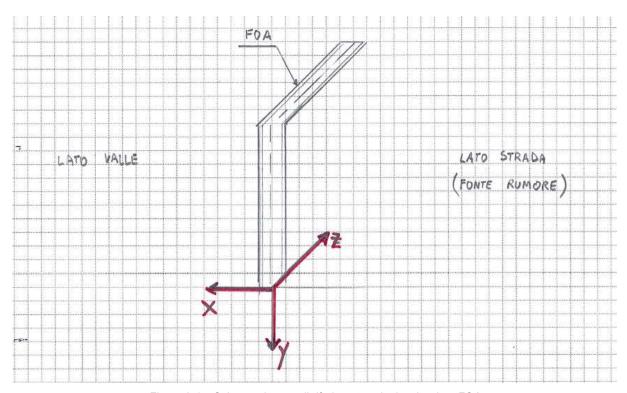


Figura 3-14. Schema sistema di riferimento azioni su barriera FOA

Sull'impalcato si considera, per semplicità, il vento agente perpendicolarmente all'asse tracciato, nella direzione di volta in volta più sfavorevole.

Ad ogni modo, si tenga presente che, a favore di sicurezza, sono state adottate nelle analisi le reazioni fornite per i montanti di bordo, e che, indipendentemente dalla direzione di azione del vento, si sono utilizzate le sollecitazioni massime.

Riassumendo le azioni significative si ha:

FOA TIPO 4 - H=6.50m

FX: Azione nel piano orizzontale che agisce perpendicolarmente allo sviluppo della barriera

FY: Azione diretta verticalmente che agisce perpendicolarmente al piano dell'impalcato

MZ: Momento che tende a torcere il cordolo reggiFOA

	<u>Tratto CORRENTE</u>			<u>Tratto DI BORDO</u>		
	FX	FY	MZ	FX	FY	MZ
	(kN)	(kN)	(kNm)	(kN)	(kN)	(kNm)
1: Peso proprio strutturale barriera		5,74	0,48		6,35	0,53
2: Peso proprio pannelli fonoassorbenti		19,81	5,85		19,81	5,85
3: Vento X+ (vento da ricettore verso fonte rumore)	-31,77	2,11	105,60	-55,27	3,67	183,69
4: Vento X- (vento da fonte rumore verso ricettore)	29,12	-1,93	-96,80	50,96	-3,38	-169,39
5: Neve						
6: Pressione dinamica veicolare	21,18	-1,41	-70,40	21,18	-1,41	-70,40
7: Pressione dinamica da rimozione neve	15,00	•	-22,50	15,00	•	-22,50

Si riportano in modulo le azioni adottate nel proseguio della relazione, ottenute mediante la distribuzione delle reazioni concentrate sull'interasse tra i montanti, pari a 4.00 m.

i_{montanti} 4,00 m

Azioni permanenti: G1 + G2					
q _y	6,54 kN/m				
m _z	1,60 kNm/m				

Azioni del VENTO						
q _y	0,92 kN/m					
f _x	13,82 kN/m					
m,	45.92 kNm/m					

Azioni RIMOZIONE NEVE					
f _x	3,75 kN/m				
m _z	5,63 kNm/m				

Azioni PRESSIONE VEICOLARE						
q _y	0,35 kN/m					
f _x	5,30 kN/m					
m _z	17,60 kNm/m					

Si sottolinea che il vento è considerato sempre presente, con adeguati coefficienti di combinazione, poiché le barriere fonoassorbenti sono parte dell'arredo stradale e quindi sono sempre presenti.

4 ANALISI DELL'IMPALCATO

Per l'analisi strutturale è stato considerato un modello ad elementi finiti che schematizza l'impalcato mediante un graticcio di travi dotate delle opportune inerzie in funzione della fase di carico.

In considerazione del giunto longitudinale presente in mezzeria della struttura originaria (spartitraffico autostradale) si è modellata metà dell'intero impalcato.

Il modello è composto in generale da due porzioni tra loro connesse:

- una parte schematizza l'opera di nuova costruzione, formata dal primo e dal secondo allargamento, mediante complessivamente 24 travi a T rovescio di altezza 0.7 m. Queste sono disposte ad interasse di 0.5 m in semplice appoggio con luce 15.70 m, a comporre un impalcato di larghezza 12.50 m. Le travi sono inoltre collegate trasversalmente dai frame che formano la soletta di spessore 0.25 m, interassati a 1.20 m.
- una parte, connessa alla precedente, modella invece l'impalcato originale, composto da un solettone di 0.75 m con 29 alleggerimenti di sezione circolare con diametro 0.49 m, disposti ad interasse 0.82 m. Tale porzione è stata schematizzata mediante travi a T rovescio di altezza 0.62 m, base 0.82 m e anima di spessore 0.33 m (0.82 m 0.49 m), disposte parallelamente a quelle di nuova costruzione, e connesse trasversalmente da elementi frame di spessore 0.13 m. Si tenga presente che, al fine di tenere conto dell'effettivo peso della sezione, è stato applicato un coefficiente maggiorativo alla massa della trave.

Il modello è quindi composto da 24 travi nuove + 29 travi che schematizzano l'esistente, a formare un impalcato di larghezza complessiva 36.78 m (12.5 m + 24.28 m).

Al fine di una migliore comprensione, si riportano di seguito due immagini della struttura descritta, dove gli elementi in verde compongono gli allargamenti mentre quelli in rosa formano la struttura originale.

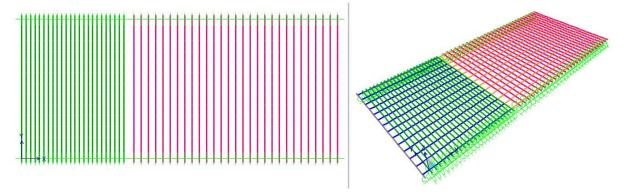


Figura 4-1. Vista 2D del modello FEM con indicazione unicamente delle travi, e vista completa del modello 3D

4.1 ANALISI DEL MODELLO

I carichi analizzati nei paragrafi precedenti sono stati assegnati al modello in SAP2000, attribuendoli opportunamente agli elementi "frame" che schematizzano travi, traversi e soletta.

L'analisi strutturale dell'impalcato viene effettuata con riferimento alle rigidezze elastiche "uncracked".

In SAP2000 sono state puntualmente definite le combinazioni di carico, utilizzando gli adeguati coefficienti γ e ψ . Sono state definite anche delle combinazioni inviluppo per ogni tipologia di combinazione, in modo da dare in output direttamente i valori massimi e minimi dell'azione tagliante V e del momento flettente M per ciascun elemento del modello.

4.1.1 Combinazioni di carico

Si premette, alle verifiche condotte sugli elementi, l'indicazione delle combinazioni di carico inserite nel modello SAP2000 e utilizzate nel corso delle analisi dell'impalcato, al fine di una piena comprensione del proseguio della relazione.

Si può notare come, a favore di sicurezza, le azioni prodotte dal vento e dai carichi mobili siano state sempre considerate contemporaneamente con coefficienti di combinazione massimi.

TABLE: Combination Definitions			
ComboName	ComboType	CaseName	ScaleFactor
Text	Text	Text	Unitless
Peso Proprio	Linear Add	DEAD	1
Peso Proprio		Getto	1
Perm Portati	Linear Add	Barriera_FOA	1
Perm Portati		Marciapiede	1
Perm Portati		Pavimentazione	1
Perm Portati		Sicurvia	1
Perm Portati		Cordolo	1
Perm Portati		Cordolo_reggiFOA	1
Mobili_Disp I_T1	Linear Add	Folla	1
Mobili_Disp I_T1		Distr_I_Disp I	1
Mobili_Disp I_T1		Distr_II_Disp I	1
Mobili_Disp I_T1		Distr_III_Disp I	1
Mobili_Disp I_T1		Distr_Rim_Disp I	1
Mobili_Disp I_T1		Tandem_I_T_Disp I	1
Mobili_Disp I_T1		Tandem_II_T_Disp I	1
Mobili_Disp I_T1		Tandem_III_T_Disp I	1
Mobili_Disp I_T2	Linear Add	Folla	1
Mobili_Disp I_T2		Distr_I_Disp I	1
Mobili_Disp I_T2		Distr_II_Disp I	1
Mobili_Disp I_T2		Distr_III_Disp I	1
Mobili_Disp I_T2		Distr_Rim_Disp I	1
Mobili_Disp I_T2		Distr_Rim_prenj_Disp I	1
Mobili_Disp I_T2		Tandem_I_T_Disp I	1
Mobili_Disp I_T2		Tandem_II_T_Disp I	1
Mobili_Disp I_T2		Tandem_III_T_Disp I	1
Mobili_Disp I_T3	Linear Add	Folla	1
Mobili_Disp I_T3		Distr_I_Disp I	1
Mobili_Disp I_T3		Distr_II_Disp I	1
Mobili_Disp I_T3		Distr_III_Disp I	1
Mobili_Disp I_T3		Distr_Rim_Disp I	1
Mobili_Disp I_T3		Distr_Rim_prenj_Disp I	1
Mobili_Disp I_T3		Distr_Rim_oltrenj_Disp I_II	1
Mobili_Disp I_T3		Tandem_I_T_Disp I	1
Mobili_Disp I_T3		Tandem_II_T_Disp I	1
Mobili_Disp I_T3		Tandem_III_T_Disp I	1
Mobili_Disp I_M1	Linear Add	Folla	1
Mobili_Disp I_M1		Distr_I_Disp I	1
Mobili_Disp I_M1		Distr_II_Disp I	1
Mobili_Disp I_M1		Distr_III_Disp I	1

Mobili_Disp I_M1		Distr_Rim_Disp I	1
Mobili_Disp I_M1		Tandem_I_M_Disp I	1
Mobili_Disp I_M1		Tandem_II_M_Disp I	1
Mobili_Disp I_M1		Tandem_III_M_Disp I	1
Mobili_Disp I_M2	Linear Add	Folla	1
Mobili_Disp I_M2		Distr_I_Disp I	1
Mobili_Disp I_M2		Distr_II_Disp I	1
Mobili_Disp I_M2		Distr_III_Disp I	1
Mobili_Disp I_M2		Distr_Rim_Disp I	1
Mobili_Disp I_M2		Distr_Rim_prenj_Disp I	1
Mobili_Disp I_M2		Tandem_I_M_Disp I	1
Mobili_Disp I_M2		Tandem_II_M_Disp I	1
Mobili_Disp I_M2		Tandem_III_M_Disp I	1
Mobili_Disp I_M3	Linear Add	Folla	1
Mobili_Disp I_M3		Distr_I_Disp I	1
Mobili_Disp I_M3		Distr_II_Disp I	1
Mobili_Disp I_M3		Distr_III_Disp I	1
Mobili_Disp I_M3		Distr_Rim_Disp I	1
Mobili_Disp I_M3		Distr_Rim_prenj_Disp I	1
Mobili_Disp I_M3		Distr_Rim_oltrenj_Disp I_II	1
Mobili_Disp I_M3		Tandem_I_M_Disp I	1
Mobili_Disp I_M3		Tandem_II_M_Disp I	1
Mobili_Disp I_M3		Tandem_III_M_Disp I	1
Mobili_Disp II_T1	Linear Add	Folla	1
Mobili_Disp II_T1		Distr_I_Disp II	1
Mobili_Disp II_T1		Distr_II_Disp II	1
Mobili_Disp II_T1		Distr_III_Disp II	1
Mobili_Disp II_T1		Distr_Rim_Disp II	1
Mobili_Disp II_T1		Tandem_I_T_Disp II	1
Mobili_Disp II_T1		Tandem_II_T_Disp II	1
Mobili_Disp II_T1		Tandem_III_T_Disp II	1
Mobili_Disp II_T2	Linear Add	Folla	1
Mobili_Disp II_T2		Distr_Rim_oltrenj_Disp I_II	1
Mobili_Disp II_T2		Distr_I_Disp II	1
Mobili_Disp II_T2		Distr_II_Disp II	1
Mobili_Disp II_T2		Distr_III_Disp II	1
Mobili_Disp II_T2		Distr_Rim_Disp II	1
Mobili_Disp II_T2		Tandem_I_T_Disp II	1
Mobili_Disp II_T2		Tandem_II_T_Disp II	1
Mobili_Disp II_T2		Tandem_III_T_Disp II	1
Mobili_Disp II_M1	Linear Add	Folla	1
Mobili_Disp II_M1		Distr_I_Disp II	1
Mobili_Disp II_M1		Distr_II_Disp II	1
Mobili_Disp II_M1		Distr_III_Disp II	1
Mobili_Disp II_M1		Distr_Rim_Disp II	1

Mobili Dian II M1		Tandom I M Dian II	1
Mobili_Disp II_M1 Mobili_Disp II_M1		Tandem_I_M_Disp II Tandem_II_M_Disp II	1
Mobili_Disp II_M1		Tandem_III_M_Disp II	1
Mobili Disp II M2	Linear Add	Folla	1
Mobili_Disp II_M2	Lilleal Add	Distr_Rim_oltrenj_Disp I_II	1
Mobili_Disp II_M2		Distr_I_Disp II	1
_ · _		:	1
Mobili_Disp II_M2		Distr_II_Disp II	
Mobili_Disp II_M2		Distr_III_Disp II	1
Mobili_Disp II_M2		Distr_Rim_Disp II	1
Mobili_Disp II_M2		Tandem_I_M_Disp II	1
Mobili_Disp II_M2		Tandem_II_M_Disp II	1
Mobili_Disp II_M2		Tandem_III_M_Disp II	1
Mobili_Disp III_T1	Linear Add	Folla	1
Mobili_Disp III_T1		Distr_I_Disp III	1
Mobili_Disp III_T1		Distr_II_Disp III	1
Mobili_Disp III_T1		Distr_III_Disp III	1
Mobili_Disp III_T1		Distr_Rim_Disp III	1
Mobili_Disp III_T1		Tandem_I_T_Disp III	1
Mobili_Disp III_T1		Tandem_II_T_Disp III	1
Mobili_Disp III_T1		Tandem_III_T_Disp III	1
Mobili_Disp III_T2	Linear Add	Folla	1
Mobili_Disp III_T2		Distr_I_Disp III	1
Mobili_Disp III_T2		Distr_II_Disp III	1
Mobili_Disp III_T2		Distr_III_Disp III	1
Mobili_Disp III_T2		Distr_Rim_Disp III	1
Mobili_Disp III_T2		Distr_Rim_prenj_Disp III_IV	1
Mobili_Disp III_T2		Tandem_I_T_Disp III	1
Mobili_Disp III_T2		Tandem_II_T_Disp III	1
Mobili_Disp III_T2		Tandem_III_T_Disp III	1
Mobili_Disp III_M1	Linear Add	Folla	1
Mobili_Disp III_M1		Distr_I_Disp III	1
Mobili_Disp III_M1		Distr_II_Disp III	1
Mobili_Disp III_M1		Distr_III_Disp III	1
Mobili_Disp III_M1		Distr_Rim_Disp III	1
Mobili_Disp III_M1		Tandem_I_M_Disp III	1
Mobili_Disp III_M1		Tandem_II_M_Disp III	1
Mobili_Disp III_M1		Tandem_III_M_Disp III	1
Mobili_Disp III_M2	Linear Add	Folla	1
Mobili_Disp III_M2		Distr_I_Disp III	1
Mobili_Disp III_M2		Distr_II_Disp III	1
Mobili_Disp III_M2		Distr_III_Disp III	1
Mobili_Disp III_M2		Distr_Rim_Disp III	1
Mobili_Disp III_M2		Distr_Rim_prenj_Disp III_IV	1
 Mobili_Disp III_M2		Tandem_I_M_Disp III	1
_ ' _ Mobili_Disp III_M2		Tandem_II_M_Disp III	1

Mobili_Disp III_M2		Tandem_III_M_Disp III	1
Mobili_Disp IV_T1	Linear Add	Folla	1
Mobili_Disp IV_T1		Distr_I_Disp IV	1
Mobili_Disp IV_T1		Distr_II_Disp IV	1
Mobili_Disp IV_T1		Distr_III_Disp IV	1
Mobili_Disp IV_T1		Distr_Rim_Disp IV	1
Mobili_Disp IV_T1		Tandem_I_T_Disp IV	1
Mobili_Disp IV_T1		Tandem_II_T_Disp IV	1
Mobili_Disp IV_T1		Tandem_III_T_Disp IV	1
Mobili_Disp IV_T2	Linear Add	Folla	1
Mobili_Disp IV_T2		Distr_Rim_prenj_Disp III_IV	1
Mobili_Disp IV_T2		Distr_I_Disp IV	1
Mobili_Disp IV_T2		Distr_II_Disp IV	1
Mobili_Disp IV_T2		Distr_III_Disp IV	1
Mobili_Disp IV_T2		Distr_Rim_Disp IV	1
Mobili_Disp IV_T2		Tandem_I_T_Disp IV	1
Mobili_Disp IV_T2		Tandem_II_T_Disp IV	1
Mobili_Disp IV_T2		Tandem_III_T_Disp IV	1
Mobili_Disp IV_M1	Linear Add	Folla	1
Mobili_Disp IV_M1		Distr_I_Disp IV	1
Mobili_Disp IV_M1		Distr_II_Disp IV	1
Mobili_Disp IV_M1		Distr_III_Disp IV	1
Mobili_Disp IV_M1		Distr_Rim_Disp IV	1
Mobili_Disp IV_M1		Tandem_I_M_Disp IV	1
Mobili_Disp IV_M1		Tandem_II_M_Disp IV	1
Mobili_Disp IV_M1		Tandem_III_M_Disp IV	1
Mobili_Disp IV_M2	Linear Add	Folla	1
Mobili_Disp IV_M2		Distr_Rim_prenj_Disp III_IV	1
Mobili_Disp IV_M2		Distr_I_Disp IV	1
Mobili_Disp IV_M2		Distr_II_Disp IV	1
Mobili_Disp IV_M2		Distr_III_Disp IV	1
Mobili_Disp IV_M2		Distr_Rim_Disp IV	1
Mobili_Disp IV_M2		Tandem_I_M_Disp IV	1
Mobili_Disp IV_M2		Tandem_II_M_Disp IV	1
Mobili_Disp IV_M2		Tandem_III_M_Disp IV	1
Mobili_Disp I_T1_Rara+	Linear Add	Vento	1
Mobili_Disp I_T1_Rara+		Mobili_Disp I_T1	1
Mobili_Disp I_T2_Rara+	Linear Add	Vento	1
Mobili_Disp I_T2_Rara+		Mobili_Disp I_T2	1
Mobili_Disp I_T3_Rara+	Linear Add	Vento	1
Mobili_Disp I_T3_Rara+		Mobili_Disp I_T3	1
Mobili_Disp I_T1_Rara-	Linear Add	Vento	-1
Mobili_Disp I_T1_Rara-		Mobili_Disp I_T1	1
Mobili_Disp I_T2_Rara-	Linear Add	Vento	-1
Mobili_Disp I_T2_Rara-		Mobili_Disp I_T2	1
		–	

Mobili Disp I T3 Rara-	Linear Add	Vento	-1
Mobili_Disp I_T3_Rara-		Mobili_Disp I_T3	1
Mobili_Disp II_T1_Rara+	Linear Add	Vento	1
Mobili Disp II T1 Rara+		Mobili_Disp II_T1	1
_ ' _ _ Mobili_Disp II_T2_Rara+	Linear Add	Mobili Disp II T2	1
_ · Mobili_Disp II_T2_Rara+		Vento	1
_ ' _ _ Mobili_Disp II_T1_Rara-	Linear Add	Vento	-1
_ · Mobili_Disp II_T1_Rara-		Mobili_Disp II_T1	1
_ · Mobili_Disp II_T2_Rara-	Linear Add	Vento	-1
_ ' _ _ Mobili_Disp II_T2_Rara-		Mobili Disp II T2	1
_ · Mobili_Disp III_T1_Rara+	Linear Add	Vento	1
_ · Mobili_Disp III_T1_Rara+		Mobili_Disp III_T1	1
_ · Mobili_Disp III_T2_Rara+	Linear Add	_ ' _ Mobili_Disp III_T2	1
_ · Mobili_Disp III_T2_Rara+		Vento	1
_ · Mobili_Disp III_T1_Rara-	Linear Add	Vento	-1
_ · Mobili_Disp III_T1_Rara-		Mobili_Disp III_T1	1
_ · Mobili_Disp III_T2_Rara-	Linear Add	Vento	-1
_ · Mobili_Disp III_T2_Rara-		Mobili_Disp III_T2	1
_ · Mobili_Disp IV_T1_Rara+	Linear Add	Vento	1
_ · Mobili_Disp IV_T1_Rara+		Mobili_Disp IV_T1	1
Mobili_Disp IV_T2_Rara+	Linear Add	Vento	1
Mobili_Disp IV_T2_Rara+		Mobili_Disp IV_T2	1
Mobili_Disp IV_T1_Rara-	Linear Add	Vento	-1
Mobili_Disp IV_T1_Rara-		Mobili_Disp IV_T1	1
Mobili_Disp IV_T2_Rara-	Linear Add	Vento	-1
Mobili_Disp IV_T2_Rara-		Mobili_Disp IV_T2	1
Mobili_Disp I_M1_Rara+	Linear Add	Vento	1
Mobili_Disp I_M1_Rara+		Mobili_Disp I_M1	1
Mobili_Disp I_M2_Rara+	Linear Add	Vento	1
Mobili_Disp I_M2_Rara+		Mobili_Disp I_M2	1
Mobili_Disp I_M3_Rara+	Linear Add	Vento	1
Mobili_Disp I_M3_Rara+		Mobili_Disp I_M3	1
Mobili_Disp I_M1_Rara-	Linear Add	Vento	-1
Mobili_Disp I_M1_Rara-		Mobili_Disp I_M1	1
Mobili_Disp I_M2_Rara-	Linear Add	Vento	-1
Mobili_Disp I_M2_Rara-		Mobili_Disp I_M2	1
Mobili_Disp I_M3_Rara-	Linear Add	Vento	-1
Mobili_Disp I_M3_Rara-		Mobili_Disp I_M3	1
Mobili_Disp II_M1_Rara+	Linear Add	Vento	1
Mobili_Disp II_M1_Rara+		Mobili_Disp II_M1	1
Mobili_Disp II_M2_Rara+	Linear Add	Mobili_Disp II_M2	1
Mobili_Disp II_M2_Rara+		Vento	1
Mobili_Disp II_M1_Rara-	Linear Add	Vento	-1
Mobili_Disp II_M1_Rara-		Mobili_Disp II_M1	1
Mobili_Disp II_M2_Rara-	Linear Add	Vento	-1

Mobili_Disp II_M2_Rara-		Mobili_Disp II_M2	1
Mobili_Disp III_M1_Rara+	Linear Add	Vento	1
Mobili_Disp III_M1_Rara+		Mobili_Disp III_M1	1
' Mobili_Disp III_M2_Rara+	Linear Add	Mobili_Disp III_M2	1
Mobili_Disp III_M2_Rara+		Vento	1
' Mobili_Disp III_M1_Rara-	Linear Add	Vento	-1
Mobili_Disp III_M1_Rara-		Mobili_Disp III_M1	1
Mobili_Disp III_M2_Rara-	Linear Add	Vento	-1
Mobili_Disp III_M2_Rara-		Mobili_Disp III_M2	1
Mobili_Disp IV_M1_Rara+	Linear Add	Vento	1
Mobili_Disp IV_M1_Rara+		Mobili_Disp IV_M1	1
Mobili_Disp IV_M2_Rara+	Linear Add	Vento	1
Mobili_Disp IV_M2_Rara+	Elliodi / tad	Mobili_Disp IV_M2	1
Mobili_Disp IV_M1_Rara-	Linear Add	Vento	-1
Mobili_Disp IV_M1_Rara-	Elliodi / tad	Mobili_Disp IV_M1	1
Mobili_Disp IV_M2_Rara-	Linear Add	Vento	-1
Mobili_Disp IV_M2_Rara-	Ellical Add	Mobili_Disp IV_M2	1
SLU_Disp I_M1_V+	Linear Add	Perm Portati	1,5
SLU Disp I M1 V+	Ellical Add	Vento	1,5
SLU_Disp I_M1_V+		Mobili_Disp I_M1	1,35
SLU_Disp I_M2_V+	Linear Add	Perm Portati	1,55
SLU_Disp I_M2_V+	Lilleal Add	Vento	1,5
SLU_Disp I_M2_V+		Mobili_Disp I_M2	1,35
SLU_Disp I_M3_V+	Linear Add	Perm Portati	1,55
SLU_Disp I_M3_V+	Lilleal Add	Vento	1,5
SLU_Disp I_M3_V+		Mobili_Disp I_M3	1,35
SLU_Disp II_M1_V+	Linear Add	Perm Portati	1,55
SLU_Disp II_M1_V+	Lilleal Add	Vento	1,5
SLU Disp II M1 V+		Mobili Disp II M1	1,35
SLU_Disp II_M2_V+	Linear Add	Perm Portati	1,55
SLU_Disp II_M2_V+	Lilleal Add	Vento	1,5
SLU_Disp II_M2_V+		Mobili_Disp II_M2	1,35
SLU_Disp III_M1_V+	Linear Add	Perm Portati	1,55
SLU_Disp III_M1_V+	Lilleal Add	Vento	1,5
SLU_Disp III_M1_V+		Mobili_Disp III_M1	1,35
SLU_Disp III_M2_V+	Linear Add	Perm Portati	1,55
SLU_Disp III_M2_V+	Lilleal Add	Vento	1,5
SLU_Disp III_M2_V+		Mobili_Disp III_M2	1,35
SLU_Disp IV_M1_V+	Linear Add	Perm Portati	1,55
SLU_Disp IV_M1_V+	Lineal Add	Vento	1,5
SLU Disp IV M1 V+		Mobili_Disp IV_M1	1,35
SLU_Disp IV_M1_V+ SLU_Disp IV_M2_V+	Linear Add	Perm Portati	1,55
	Lilical Auu	Vento	1,5 1,5
SLU_Disp IV_M2_V+			
SLU_Disp IV_M2_V+ SLU_Disp I_M1_V-	Linear Add	Mobili_Disp IV_M2 Perm Portati	1,35
2F0_019h 1_lil 1_k-	Lilical Auu	r Gilli Fullati	1,5

SLU_Disp I_M1_V-		Vento	-1,5
SLU_Disp I_M1_V-		Mobili_Disp I_M1	1,35
SLU_Disp I_M2_V-	Linear Add	Perm Portati	1,5
SLU Disp I M2 V-		Vento	-1,5
SLU_Disp I_M2_V-		Mobili_Disp I_M2	1,35
SLU_Disp I_M3_V-	Linear Add	Perm Portati	1,5
SLU_Disp I_M3_V-		Vento	-1,5
SLU Disp I M3 V-		Mobili_Disp I_M3	1,35
SLU_Disp II_M1_V-	Linear Add	Perm Portati	1,5
SLU_Disp II_M1_V-		Vento	-1,5
SLU_Disp II_M1_V-		Mobili_Disp II_M1	1,35
SLU_Disp II_M2_V-	Linear Add	Perm Portati	1,5
SLU_Disp II_M2_V-		Vento	-1,5
SLU_Disp II_M2_V-		Mobili_Disp II_M2	1,35
SLU_Disp III_M1_V-	Linear Add	Perm Portati	1,5
SLU_Disp III_M1_V-		Vento	-1,5
SLU_Disp III_M1_V-		Mobili_Disp III_M1	1,35
SLU_Disp III_M2_V-	Linear Add	Perm Portati	1,5
SLU_Disp III_M2_V-		Vento	-1,5
SLU_Disp III_M2_V-		Mobili_Disp III_M2	1,35
SLU_Disp IV_M1_V-	Linear Add	Perm Portati	1,5
SLU_Disp IV_M1_V-		Vento	-1,5
SLU_Disp IV_M1_V-		Mobili_Disp IV_M1	1,35
SLU_Disp IV_M2_V-	Linear Add	Perm Portati	1,5
SLU_Disp IV_M2_V-		Vento	-1,5
SLU_Disp IV_M2_V-		Mobili_Disp IV_M2	1,35
SLU_Disp I_T1_V+	Linear Add	Perm Portati	1,5
SLU_Disp I_T1_V+		Vento	1,5
SLU_Disp I_T1_V+		Mobili_Disp I_T1	1,35
SLU_Disp I_T2_V+	Linear Add	Perm Portati	1,5
SLU_Disp I_T2_V+		Vento	1,5
SLU_Disp I_T2_V+		Mobili_Disp I_T2	1,35
SLU_Disp I_T3_V+	Linear Add	Perm Portati	1,5
SLU_Disp I_T3_V+		Vento	1,5
SLU_Disp I_T3_V+		Mobili_Disp I_T3	1,35
SLU_Disp II_T1_V+	Linear Add	Perm Portati	1,5
SLU_Disp II_T1_V+		Vento	1,5
SLU_Disp II_T1_V+		Mobili_Disp II_T1	1,35
SLU_Disp II_T2_V+	Linear Add	Perm Portati	1,5
SLU_Disp II_T2_V+		Vento	1,5
SLU_Disp II_T2_V+		Mobili_Disp II_T2	1,35
SLU_Disp III_T1_V+	Linear Add	Perm Portati	1,5
SLU_Disp III_T1_V+		Vento	1,5
SLU_Disp III_T1_V+		Mobili_Disp III_T1	1,35
SLU_Disp III_T2_V+	Linear Add	Perm Portati	1,5

SLU_Disp III_T2_V+		Vento	1,5
SLU Disp III T2 V+		Mobili_Disp III_T2	1,35
SLU_Disp IV_T1_V+	Linear Add	Perm Portati	1,5
SLU_Disp IV_T1_V+		Vento	1,5
SLU_Disp IV_T1_V+		Mobili_Disp IV_T1	1,35
SLU_Disp IV_T2_V+	Linear Add	Perm Portati	1,5
SLU_Disp IV_T2_V+		Vento	1,5
SLU Disp IV T2 V+		Mobili_Disp IV_T2	1,35
SLU Disp I T1 V-	Linear Add	Perm Portati	1,5
SLU_Disp I_T1_V-		Vento	-1,5
SLU_Disp I_T1_V-		Mobili_Disp I_T1	1,35
SLU_Disp I_T2_V-	Linear Add	Perm Portati	1,5
SLU_Disp I_T2_V-		Vento	-1,5
SLU_Disp I_T2_V-		Mobili_Disp I_T2	1,35
SLU_Disp I_T3_V-	Linear Add	Perm Portati	1,5
SLU_Disp I_T3_V-		Vento	-1,5
SLU_Disp I_T3_V-		Mobili_Disp I_T3	1,35
SLU_Disp II_T1_V-	Linear Add	Perm Portati	1,5
SLU_Disp II_T1_V-		Vento	-1,5
SLU_Disp II_T1_V-		Mobili_Disp II_T1	1,35
SLU_Disp II_T2_V-	Linear Add	Perm Portati	1,5
SLU_Disp II_T2_V-		Vento	-1,5
SLU_Disp II_T2_V-		Mobili_Disp II_T2	1,35
SLU_Disp III_T1_V-	Linear Add	Perm Portati	1,5
SLU_Disp III_T1_V-		Vento	-1,5
SLU_Disp III_T1_V-		Mobili_Disp III_T1	1,35
SLU_Disp III_T2_V-	Linear Add	Perm Portati	1,5
SLU_Disp III_T2_V-		Vento	-1,5
SLU_Disp III_T2_V-		Mobili_Disp III_T2	1,35
SLU_Disp IV_T1_V-	Linear Add	Perm Portati	1,5
SLU_Disp IV_T1_V-		Vento	-1,5
SLU_Disp IV_T1_V-		Mobili_Disp IV_T1	1,35
SLU_Disp IV_T2_V-	Linear Add	Perm Portati	1,5
SLU_Disp IV_T2_V-		Vento	-1,5
SLU_Disp IV_T2_V-		Mobili_Disp IV_T2	1,35
SLU_Peso Proprio	Linear Add	Peso Proprio	1,35
SLU IIF_Disp I_M1_V+	Linear Add	SLU_Peso Proprio	1
SLU IIF_Disp I_M1_V+		SLU_Disp I_M1_V+	1
SLU IIF_Disp I_M2_V+	Linear Add	SLU_Peso Proprio	1
SLU IIF_Disp I_M2_V+		SLU_Disp I_M2_V+	1
SLU IIF_Disp I_M3_V+	Linear Add	SLU_Peso Proprio	1
SLU IIF_Disp I_M3_V+		SLU_Disp I_M3_V+	1
SLU IIF_Disp II_M1_V+	Linear Add	SLU_Peso Proprio	1
SLU IIF_Disp II_M1_V+		SLU_Disp II_M1_V+	1
SLU IIF_Disp II_M2_V+	Linear Add	SLU_Peso Proprio	1

SLU IIF_Disp II_M2_V+		SLU_Disp II_M2_V+	1
SLU IIF_Disp III_M1_V+	Linear Add	SLU_Peso Proprio	1
SLU IIF_Disp III_M1_V+		SLU_Disp III_M1_V+	1
SLU IIF_Disp III_M2_V+	Linear Add	SLU_Peso Proprio	1
SLU IIF_Disp III_M2_V+		SLU_Disp III_M2_V+	1
SLU IIF_Disp IV_M1_V+	Linear Add	SLU_Peso Proprio	1
SLU IIF_Disp IV_M1_V+		SLU_Disp IV_M1_V+	1
SLU IIF_Disp IV_M2_V+	Linear Add	SLU_Peso Proprio	1
SLU IIF_Disp IV_M2_V+		SLU_Disp IV_M2_V+	1
SLU IIF_Disp I_M1_V-	Linear Add	SLU_Peso Proprio	1
SLU IIF_Disp I_M1_V-		SLU_Disp I_M1_V-	1
SLU IIF_Disp I_M2_V-	Linear Add	SLU_Peso Proprio	1
SLU IIF_Disp I_M2_V-		SLU_Disp I_M2_V-	1
SLU IIF_Disp I_M3_V-	Linear Add	SLU_Peso Proprio	1
SLU IIF_Disp I_M3_V-		SLU_Disp I_M3_V-	1
SLU IIF_Disp II_M1_V-	Linear Add	SLU_Peso Proprio	1
SLU IIF_Disp II_M1_V-		SLU_Disp II_M1_V-	1
SLU IIF_Disp II_M2_V-	Linear Add	SLU_Peso Proprio	1
SLU IIF_Disp II_M2_V-		SLU_Disp II_M2_V-	1
SLU IIF_Disp III_M1_V-	Linear Add	SLU_Peso Proprio	1
SLU IIF_Disp III_M1_V-		SLU_Disp III_M1_V-	1
SLU IIF_Disp III_M2_V-	Linear Add	SLU_Peso Proprio	1
SLU IIF_Disp III_M2_V-		SLU_Disp III_M2_V-	1
SLU IIF_Disp IV_M1_V-	Linear Add	SLU_Peso Proprio	1
SLU IIF_Disp IV_M1_V-		SLU_Disp IV_M1_V-	1
SLU IIF_Disp IV_M2_V-	Linear Add	SLU_Peso Proprio	1
SLU IIF_Disp IV_M2_V-		SLU_Disp IV_M2_V-	1
SLU IIF_Disp I_T1_V+	Linear Add	SLU_Peso Proprio	1
SLU IIF_Disp I_T1_V+		SLU_Disp I_T1_V+	1
SLU IIF_Disp I_T2_V+	Linear Add	SLU_Peso Proprio	1
SLU IIF_Disp I_T2_V+		SLU_Disp I_T2_V+	1
SLU IIF_Disp I_T3_V+	Linear Add	SLU_Peso Proprio	1
SLU IIF_Disp I_T3_V+		SLU_Disp I_T3_V+	1
SLU IIF_Disp II_T1_V+	Linear Add	SLU_Peso Proprio	1
SLU IIF_Disp II_T1_V+		SLU_Disp II_T1_V+	1
SLU IIF_Disp II_T2_V+	Linear Add	SLU_Peso Proprio	1
SLU IIF_Disp II_T2_V+		SLU_Disp II_T2_V+	1
SLU IIF_Disp III_T1_V+	Linear Add	SLU_Peso Proprio	1
SLU IIF_Disp III_T1_V+		SLU_Disp III_T1_V+	1
SLU IIF_Disp III_T2_V+	Linear Add	SLU_Peso Proprio	1
SLU IIF_Disp III_T2_V+		SLU_Disp III_T2_V+	1
SLU IIF_Disp IV_T1_V+	Linear Add	SLU_Peso Proprio	1
SLU IIF_Disp IV_T1_V+		SLU_Disp IV_T1_V+	1
SLU IIF_Disp IV_T2_V+	Linear Add	SLU_Peso Proprio	1
SLU IIF_Disp IV_T2_V+		SLU_Disp IV_T2_V+	1

SLU IIF_Disp I_T1_V-	Linear Add	SLU_Peso Proprio	1
SLU IIF_Disp I_T1_V-		SLU_Disp I_T1_V-	1
SLU IIF_Disp I_T2_V-	Linear Add	SLU_Peso Proprio	1
SLU IIF_Disp I_T2_V-		SLU_Disp I_T2_V-	1
SLU IIF_Disp I_T3_V-	Linear Add	SLU_Peso Proprio	1
SLU IIF_Disp I_T3_V-		SLU_Disp I_T3_V-	1
SLU IIF_Disp II_T1_V-	Linear Add	SLU_Peso Proprio	1
SLU IIF_Disp II_T1_V-		SLU_Disp II_T1_V-	1
SLU IIF_Disp II_T2_V-	Linear Add	SLU_Peso Proprio	1
SLU IIF_Disp II_T2_V-		SLU_Disp II_T2_V-	1
SLU IIF_Disp III_T1_V-	Linear Add	SLU_Peso Proprio	1
SLU IIF_Disp III_T1_V-		SLU_Disp III_T1_V-	1
SLU IIF_Disp III_T2_V-	Linear Add	SLU_Peso Proprio	1
SLU IIF_Disp III_T2_V-		SLU_Disp III_T2_V-	1
SLU IIF_Disp IV_T1_V-	Linear Add	SLU_Peso Proprio	1
SLU IIF_Disp IV_T1_V-		SLU_Disp IV_T1_V-	1
SLU IIF_Disp IV_T2_V-	Linear Add	SLU_Peso Proprio	1
SLU IIF_Disp IV_T2_V-		SLU_Disp IV_T2_V-	1
ENV_Mobili_Disp I_M	Envelope	Mobili_Disp I_M1	1
ENV_Mobili_Disp I_M		Mobili_Disp I_M2	1
ENV_Mobili_Disp I_M		Mobili_Disp I_M3	1
ENV_Mobili_Disp II_M	Envelope	Mobili_Disp II_M1	1
ENV_Mobili_Disp II_M		Mobili_Disp II_M2	1
ENV_Mobili_Disp III_M	Envelope	Mobili_Disp III_M1	1
ENV_Mobili_Disp III_M		Mobili_Disp III_M2	1
ENV_Mobili_Disp IV_M	Envelope	Mobili_Disp IV_M1	1
ENV_Mobili_Disp IV_M		Mobili_Disp IV_M2	1
ENV_Mobili_Disp I_T	Envelope	Mobili_Disp I_T1	1
ENV_Mobili_Disp I_T		Mobili_Disp I_T2	1
ENV_Mobili_Disp I_T		Mobili_Disp I_T3	1
ENV_Mobili_Disp II_T	Envelope	Mobili_Disp II_T1	1
ENV_Mobili_Disp II_T		Mobili_Disp II_T2	1
ENV_Mobili_Disp III_T	Envelope	Mobili_Disp III_T1	1
ENV_Mobili_Disp III_T		Mobili_Disp III_T2	1
ENV_Mobili_Disp IV_T	Envelope	Mobili_Disp IV_T1	1
ENV_Mobili_Disp IV_T		Mobili_Disp IV_T2	1
ENV_Mobili_Disp I_M_V	Envelope	Mobili_Disp I_M1_Rara+	1
ENV_Mobili_Disp I_M_V		Mobili_Disp I_M2_Rara+	1
ENV_Mobili_Disp I_M_V		Mobili_Disp I_M3_Rara+	1
ENV_Mobili_Disp I_M_V		Mobili_Disp I_M1_Rara-	1
ENV_Mobili_Disp I_M_V		Mobili_Disp I_M2_Rara-	1
ENV_Mobili_Disp I_M_V		Mobili_Disp I_M3_Rara-	1
ENV_Mobili_Disp II_M_V	Envelope	Mobili_Disp II_M1_Rara+	1
ENV_Mobili_Disp II_M_V		Mobili_Disp II_M2_Rara+	1
ENV_Mobili_Disp II_M_V		Mobili_Disp II_M1_Rara-	1

ENV_Mobili_Disp II_M_V		Mobili Disp II M2 Rara-	1
ENV_Mobili_Disp III_M_V	Envelope	_ · Mobili_Disp III_M1_Rara+	1
ENV_Mobili_Disp III_M_V	·	· Mobili_Disp III_M2_Rara+	1
ENV_Mobili_Disp III_M_V		Mobili_Disp III_M1_Rara-	1
ENV_Mobili_Disp III_M_V		Mobili_Disp III_M2_Rara-	1
ENV_Mobili_Disp IV_M_V	Envelope	Mobili_Disp IV_M1_Rara+	1
ENV_Mobili_Disp IV_M_V		Mobili_Disp IV_M2_Rara+	1
ENV_Mobili_Disp IV_M_V		Mobili_Disp IV_M1_Rara-	1
ENV_Mobili_Disp IV_M_V		Mobili_Disp IV_M2_Rara-	1
ENV_Mobili_Disp I_T_V	Envelope	Mobili_Disp I_T1_Rara+	1
ENV_Mobili_Disp I_T_V		Mobili_Disp I_T2_Rara+	1
ENV_Mobili_Disp I_T_V		Mobili_Disp I_T3_Rara+	1
ENV_Mobili_Disp I_T_V		Mobili_Disp I_T1_Rara-	1
ENV_Mobili_Disp I_T_V		Mobili_Disp I_T2_Rara-	1
ENV_Mobili_Disp I_T_V		Mobili_Disp I_T3_Rara-	1
ENV_Mobili_Disp II_T_V	Envelope	Mobili_Disp II_T1_Rara+	1
ENV_Mobili_Disp II_T_V		Mobili_Disp II_T2_Rara+	1
ENV_Mobili_Disp II_T_V		Mobili_Disp II_T1_Rara-	1
ENV_Mobili_Disp II_T_V		Mobili_Disp II_T2_Rara-	1
ENV_Mobili_Disp III_T_V	Envelope	Mobili_Disp III_T1_Rara+	1
ENV_Mobili_Disp III_T_V		Mobili_Disp III_T2_Rara+	1
ENV_Mobili_Disp III_T_V		Mobili_Disp III_T1_Rara-	1
ENV_Mobili_Disp III_T_V		Mobili_Disp III_T2_Rara-	1
ENV_Mobili_Disp IV_T_V	Envelope	Mobili_Disp IV_T1_Rara+	1
ENV_Mobili_Disp IV_T_V		Mobili_Disp IV_T2_Rara+	1
ENV_Mobili_Disp IV_T_V		Mobili_Disp IV_T1_Rara-	1
ENV_Mobili_Disp IV_T_V		Mobili_Disp IV_T2_Rara-	1
ENV_SLU_Disp I_M_V	Envelope	SLU_Disp I_M1_V+	1
ENV_SLU_Disp I_M_V		SLU_Disp I_M2_V+	1
ENV_SLU_Disp I_M_V		SLU_Disp I_M3_V+	1
ENV_SLU_Disp I_M_V		SLU_Disp I_M1_V-	1
ENV_SLU_Disp I_M_V		SLU_Disp I_M2_V-	1
ENV_SLU_Disp I_M_V		SLU_Disp I_M3_V-	1
ENV_SLU_Disp II_M_V	Envelope	SLU_Disp II_M1_V+	1
ENV_SLU_Disp II_M_V		SLU_Disp II_M2_V+	1
ENV_SLU_Disp II_M_V		SLU_Disp II_M1_V-	1
ENV_SLU_Disp II_M_V		SLU_Disp II_M2_V-	1
ENV_SLU_Disp III_M_V	Envelope	SLU_Disp III_M1_V+	1
ENV_SLU_Disp III_M_V		SLU_Disp III_M2_V+	1
ENV_SLU_Disp III_M_V		SLU_Disp III_M1_V-	1
ENV_SLU_Disp III_M_V		SLU_Disp III_M2_V-	1
ENV_SLU_Disp IV_M_V	Envelope	SLU_Disp IV_M1_V+	1
ENV_SLU_Disp IV_M_V		SLU_Disp IV_M2_V+	1
ENV_SLU_Disp IV_M_V		SLU_Disp IV_M1_V-	1
ENV_SLU_Disp IV_M_V		SLU_Disp IV_M2_V-	1

ENV_SLU_Disp I_T_V	Envelope	SLU_Disp I_T1_V+	1
ENV_SLU_Disp I_T_V		SLU_Disp I_T2_V+	1
ENV_SLU_Disp I_T_V		SLU_Disp I_T3_V+	1
ENV_SLU_Disp I_T_V		SLU_Disp I_T1_V-	1
ENV_SLU_Disp I_T_V		SLU_Disp I_T2_V-	1
ENV_SLU_Disp I_T_V		SLU_Disp I_T3_V-	1
ENV_SLU_Disp II_T_V	Envelope	SLU_Disp II_T1_V+	1
ENV_SLU_Disp II_T_V		SLU_Disp II_T2_V+	1
ENV_SLU_Disp II_T_V		SLU_Disp II_T1_V-	1
ENV_SLU_Disp II_T_V		SLU_Disp II_T2_V-	1
ENV_SLU_Disp III_T_V	Envelope	SLU_Disp III_T1_V+	1
ENV_SLU_Disp III_T_V		SLU_Disp III_T2_V+	1
ENV_SLU_Disp III_T_V		SLU_Disp III_T1_V-	1
ENV_SLU_Disp III_T_V		SLU_Disp III_T2_V-	1
ENV_SLU_Disp IV_T_V	Envelope	SLU_Disp IV_T1_V+	1
ENV_SLU_Disp IV_T_V		SLU_Disp IV_T2_V+	1
ENV_SLU_Disp IV_T_V		SLU_Disp IV_T1_V-	1
ENV_SLU_Disp IV_T_V		SLU_Disp IV_T2_V-	1
ENV_SLU IIF_Disp I_M_V	Envelope	SLU IIF_Disp I_M1_V+	1
ENV_SLU IIF_Disp I_M_V		SLU IIF_Disp I_M2_V+	1
ENV_SLU IIF_Disp I_M_V		SLU IIF_Disp I_M3_V+	1
ENV_SLU IIF_Disp I_M_V		SLU IIF_Disp I_M1_V-	1
ENV_SLU IIF_Disp I_M_V		SLU IIF_Disp I_M2_V-	1
ENV_SLU IIF_Disp I_M_V		SLU IIF_Disp I_M3_V-	1
ENV_SLU IIF_Disp II_M_V	Envelope	SLU IIF_Disp II_M1_V+	1
ENV_SLU IIF_Disp II_M_V		SLU IIF_Disp II_M2_V+	1
ENV_SLU IIF_Disp II_M_V		SLU IIF_Disp II_M1_V-	1
ENV_SLU IIF_Disp II_M_V		SLU IIF_Disp II_M2_V-	1
ENV_SLU IIF_Disp III_M_V	Envelope	SLU IIF_Disp III_M1_V+	1
ENV_SLU IIF_Disp III_M_V		SLU IIF_Disp III_M2_V+	1
ENV_SLU IIF_Disp III_M_V		SLU IIF_Disp III_M1_V-	1
ENV_SLU IIF_Disp III_M_V		SLU IIF_Disp III_M2_V-	1
ENV_SLU IIF_Disp IV_M_V	Envelope	SLU IIF_Disp IV_M1_V+	1
ENV_SLU IIF_Disp IV_M_V		SLU IIF_Disp IV_M2_V+	1
ENV_SLU IIF_Disp IV_M_V		SLU IIF_Disp IV_M1_V-	1
ENV_SLU IIF_Disp IV_M_V		SLU IIF_Disp IV_M2_V-	1
ENV_SLU IIF_Disp I_T_V	Envelope	SLU IIF_Disp I_T1_V+	1
ENV_SLU IIF_Disp I_T_V	·	SLU IIF_Disp I_T2_V+	1
ENV_SLU IIF_Disp I_T_V		SLU IIF_Disp I_T3_V+	1
ENV_SLU IIF_Disp I_T_V		SLU IIF_Disp I_T1_V-	1
ENV_SLU IIF_Disp I_T_V		SLU IIF_Disp I_T2_V-	1
ENV_SLU IIF_Disp I_T_V		SLU IIF_Disp I_T3_V-	1
ENV_SLU IIF_Disp II_T_V	Envelope	SLU IIF_Disp II_T1_V+	1
ENV_SLU IIF_Disp II_T_V	r -	SLU IIF_Disp II_T2_V+	1
ENV_SLU IIF_Disp II_T_V		SLU IIF_Disp II_T1_V-	1
			

ENV_SLU IIF_Disp II_T_V		SLU IIF_Disp II_T2_V-	1
ENV_SLU IIF_Disp III_T_V	Envelope	SLU IIF_Disp III_T1_V+	1
ENV_SLU IIF_Disp III_T_V		SLU IIF_Disp III_T2_V+	1
ENV_SLU IIF_Disp III_T_V		SLU IIF_Disp III_T1_V-	1
ENV_SLU IIF_Disp III_T_V		SLU IIF_Disp III_T2_V-	1
ENV_SLU IIF_Disp IV_T_V	Envelope	SLU IIF_Disp IV_T1_V+	1
ENV_SLU IIF_Disp IV_T_V		SLU IIF_Disp IV_T2_V+	1
ENV_SLU IIF_Disp IV_T_V		SLU IIF_Disp IV_T1_V-	1
ENV_SLU IIF_Disp IV_T_V		SLU IIF_Disp IV_T2_V-	1
ENV_SLU IIF	Envelope	SLU IIF_Disp I_M1_V-	1
ENV_SLU IIF		SLU IIF_Disp I_M1_V+	1
ENV_SLU IIF		SLU IIF_Disp I_M2_V-	1
ENV_SLU IIF		SLU IIF_Disp I_M2_V+	1
ENV_SLU IIF		SLU IIF_Disp I_M3_V-	1
ENV_SLU IIF		SLU IIF_Disp I_M3_V+	1
ENV_SLU IIF		SLU IIF_Disp II_M1_V-	1
ENV_SLU IIF		SLU IIF_Disp II_M1_V+	1
ENV_SLU IIF		SLU IIF_Disp II_M2_V-	1
ENV_SLU IIF		SLU IIF_Disp II_M2_V+	1
ENV_SLU IIF		SLU IIF_Disp III_M1_V-	1
ENV_SLU IIF		SLU IIF_Disp III_M1_V+	1
ENV_SLU IIF		SLU IIF_Disp III_M2_V-	1
ENV_SLU IIF		SLU IIF_Disp III_M2_V+	1
ENV_SLU IIF		SLU IIF_Disp IV_M1_V-	1
ENV_SLU IIF		SLU IIF_Disp IV_M1_V+	1
ENV_SLU IIF		SLU IIF_Disp IV_M2_V-	1
ENV_SLU IIF		SLU IIF_Disp IV_M2_V+	1
ENV_SLU IIF		SLU IIF_Disp I_T1_V-	1
ENV_SLU IIF		SLU IIF_Disp I_T1_V+	1
ENV_SLU IIF		SLU IIF_Disp I_T2_V-	1
ENV_SLU IIF		SLU IIF_Disp I_T2_V+	1
ENV_SLU IIF		SLU IIF_Disp I_T3_V-	1
ENV_SLU IIF		SLU IIF_Disp I_T3_V+	1
ENV_SLU IIF		SLU IIF_Disp II_T1_V-	1
ENV_SLU IIF		SLU IIF_Disp II_T1_V+	1
ENV_SLU IIF		SLU IIF_Disp II_T2_V-	1
ENV_SLU IIF		SLU IIF_Disp II_T2_V+	1
ENV_SLU IIF		SLU IIF_Disp III_T1_V-	1
ENV_SLU IIF		SLU IIF_Disp III_T1_V+	1
ENV_SLU IIF		SLU IIF_Disp III_T2_V-	1
ENV_SLU IIF		SLU IIF_Disp III_T2_V+	1
ENV_SLU IIF		SLU IIF_Disp IV_T1_V-	1
ENV_SLU IIF		SLU IIF_Disp IV_T1_V+	1
ENV_SLU IIF		SLU IIF_Disp IV_T2_V-	1
ENV_SLU IIF		SLU IIF_Disp IV_T2_V+	1

4.2 SOLLECITAZIONI RISULTANTI: RAPPRESENTAZIONE GRAFICA

Nel seguito si riportano i diagrammi inviluppo delle sollecitazioni di alcuni casi di carico significativi legati ai carichi variabili e a quelli permanenti portati.

A causa dell'orientamento degli elementi nella modellazione tridimensionale, per gli elementi "frame", le caratteristiche di sollecitazione riportate seguono la presente notazione:

P: sforzo assiale

V2: sforzo di taglio nel piano verticale (secondo l'asse 2≡Z)

V3: sforzo di taglio nel piano orizzontale (secondo l'asse 3≡Y)

T: momento torcente (ruota attorno all'asse 1≡X)

M2: momento flettente "orizzontale" (ruota attorno all'asse 2=Z)

M3: momento flettente "verticale" (ruota attorno all'asse 3≡Y)

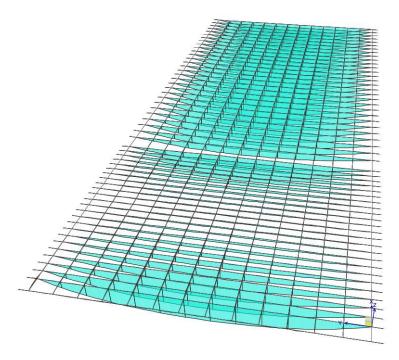


Figura 4-2 – Andamento momenti legato ai carichi permanenti portatii (max M3)

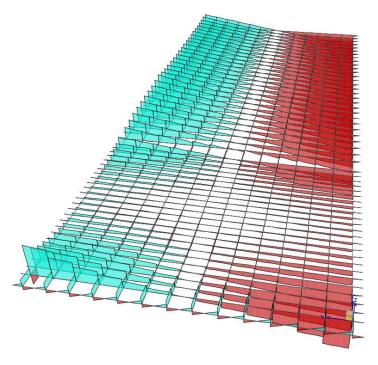


Figura 4-3 – Andamento taglio legato ai pcarichi permanenti portati (max V2)

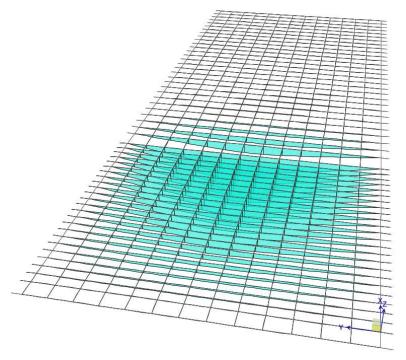


Figura 4-4 – Andamento momenti disposizione I.I carichi mobili (max M3)

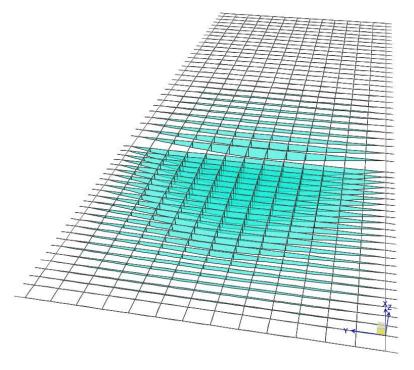


Figura 4-5 – Andamento momenti disposizione I.II carichi mobili (max M3)

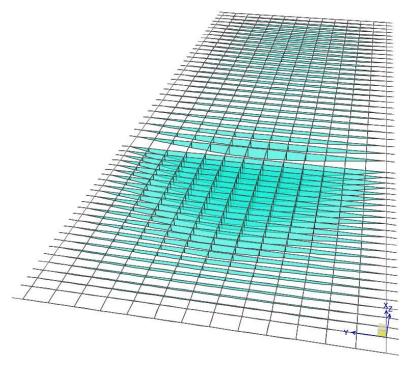


Figura 4-6 – Andamento momenti disposizione I.III carichi mobili (max M3)

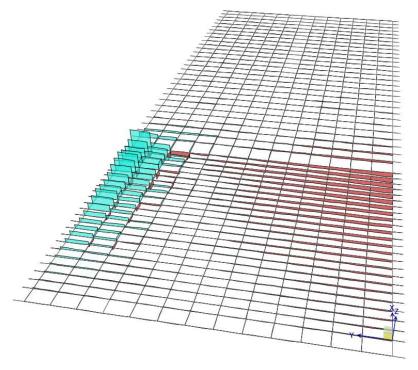


Figura 4-7 – Andamento taglio disposizione I.I carichi mobili (max V2)

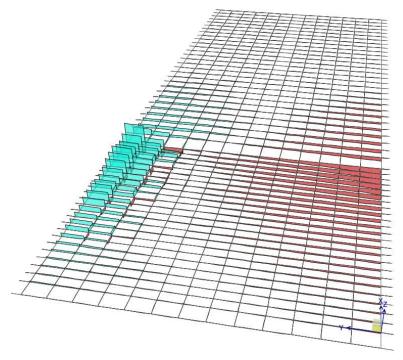


Figura 4-8 - Andamento taglio disposizione I.II carichi mobili (max V2)

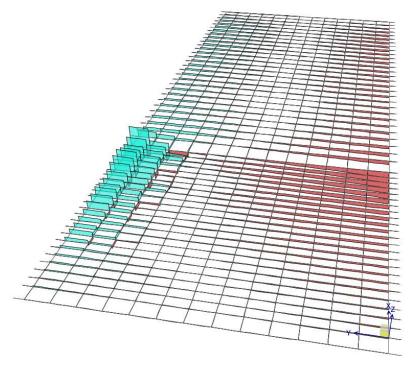


Figura 4-9 - Andamento taglio disposizione I.III carichi mobili (max V2)

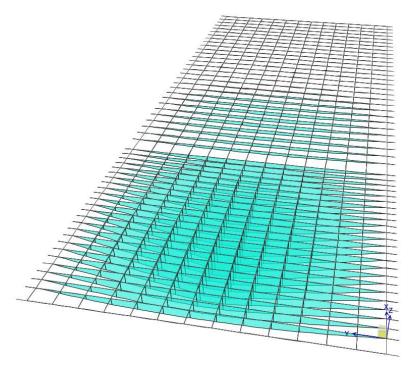


Figura 4-10 – Andamento momenti disposizione II.I carichi mobili (max M3)

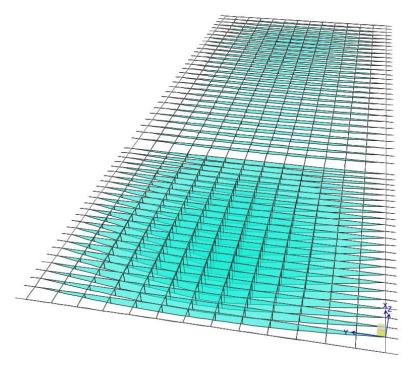


Figura 4-11 – Andamento momenti disposizione II.II carichi mobili (max M3)

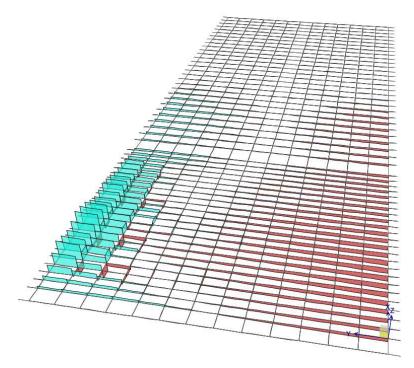


Figura 4-12 – Andamento taglio disposizione II.I carichi mobili (max V2)

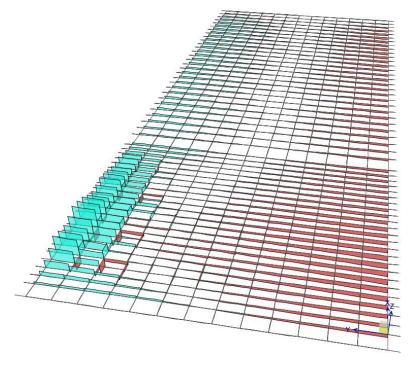


Figura 4-13 - Andamento taglio disposizione II.II carichi mobili (max V2)

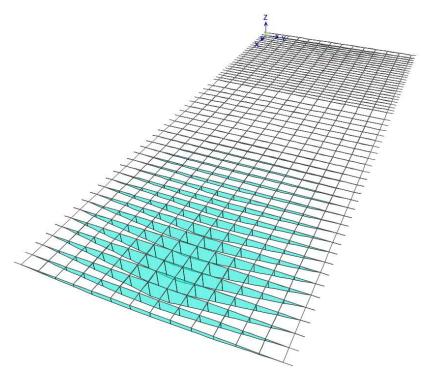


Figura 4-14 – Andamento momenti disposizione III.I carichi mobili (max M3)

Figura 4-15 – Andamento momenti disposizione III.II carichi mobili (max M3)

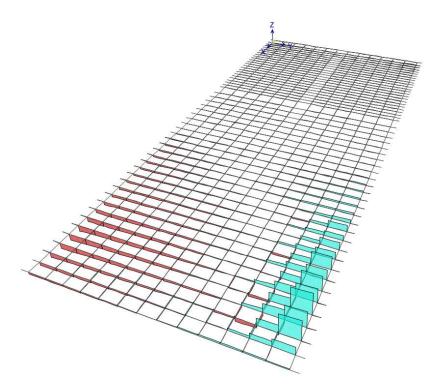


Figura 4-16 – Andamento taglio disposizione III.I carichi mobili (max V2)

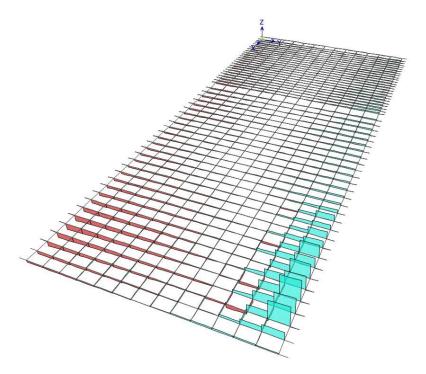


Figura 4-17 - Andamento taglio disposizione III.II carichi mobili (max V2)

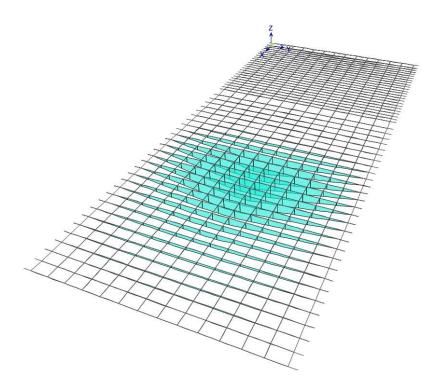


Figura 4-18 – Andamento momenti disposizione IV.I carichi mobili (max M3)

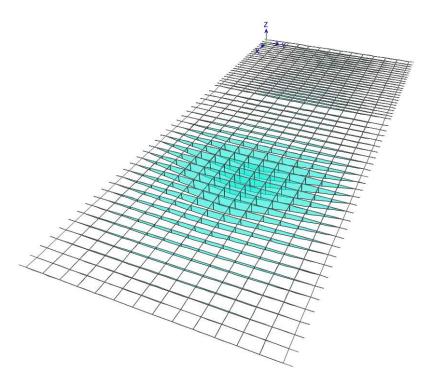


Figura 4-19 – Andamento momenti disposizione IV.II carichi mobili (max M3)

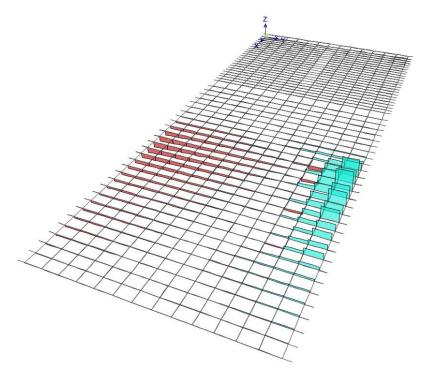


Figura 4-20 – Andamento taglio disposizione IV.I carichi mobili (max V2)

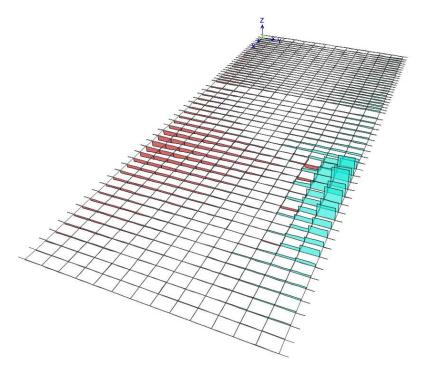


Figura 4-21 - Andamento taglio disposizione IV.II carichi mobili (max V2)

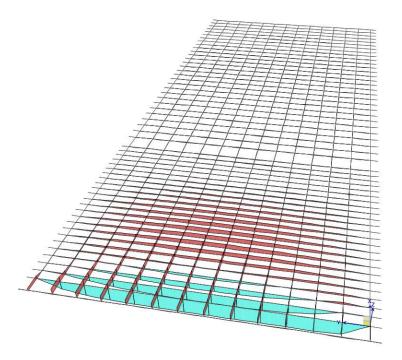


Figura 4-22 – Andamento momenti legato al vento (max M3)

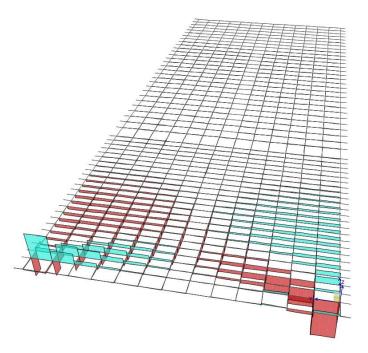


Figura 4-23 – Andamento taglio legato al vento (max V2)

4.3 SOLLECITAZIONI IMPALCATO ORIGINALE

Il solettone originale è composto da una sezione in c.a.p. con degli alleggerimenti centrali di sezione circolare. Come anticipato, tale sezione è stata schematizzata mediante travi a T rovescio, sormontate da una soletta.

Nel presente paragrafo si riportano, per snellezza di trattazione, unicamente le sollecitazioni utili alle verifiche, inerenti alle "travi fittizie" modellate. Si tenga presente che, nel seguito della relazione, queste vengono identificate mediante una numerazione che inizia dal limite del primo allargo (T1F) e prosegue verso l'interno della carreggiata.

Si riporta preventivamente un'immagine del modello FEM con la nomenclatura dei frame.

Figura 4-24. Numerazione degli elementi frame componenti il solettone originale nel modello ad elementi finiti

Sono indicate di seguito le sollecitazioni caratteristiche, necessarie alla comprensione dell'andamento dei carichi, e le azioni combinate a Stato Limite Ultimo, utili alle verifiche a taglio e a momento della sezione di impalcato. Sono inoltre messe in risalto le sollecitazioni massime rilevate.

Per semplicità di lettura vengono riportati solamente gli output relativi ai "frame" d'appoggio per quanto riguarda il taglio e relativi ai frame di mezzeria per quanto riguarda il momento flettente.

MOMENTO IN CAMPATA

М3	[kNm

		T1F	T2F	T3F	T4F	T5F	T6F	T7F	T8F
		(FR403)	(FR435)	(FR450)	(FR465)	(FR480)	(FR495)	(FR510)	(FR525)
	Peso Proprio	314.27	336.61	355.53	368.40	375.69	378.90	379.62	379.07
	Perm Portati	129.64	156.33	176.80	189.99	198.09	203.86	209.47	215.64
	ENV_Mobili_Disp I_M	237.93	182.23	137.94	102.93	78.25	62.11	51.96	47.33
	ENV_Mobili_Disp II_M	48.25	47.84	51.71	56.21	59.34	59.77	57.45	55.03
	ENV_Mobili_Disp III_M	49.70	55.78	60.27	62.61	62.88	61.21	57.75	52.97
<u>#</u>	ENV_Mobili_Disp IV_M	43.26	45.22	44.37	42.74	44.83	57.30	88.22	146.02
AZIONI CARATTERISTICHE	ENV_Mobili_Disp I_T	125.81	118.24	101.20	84.16	71.68	62.64	55.52	51.42
RIS	ENV_Mobili_Disp II_T	46.55	50.51	55.82	60.17	62.37	61.70	58.46	55.41
I E	ENV_Mobili_Disp III_T	49.61	55.65	60.10	62.45	62.84	61.47	58.57	54.64
AR/	ENV_Mobili_Disp IV_T	46.41	50.40	52.17	52.47	53.56	58.94	73.56	103.11
N	ENV_Mobili_Disp I_M_V	240.51	184.49	139.54	103.89	78.72	62.25	51.99	47.43
Z10	ENV_Mobili_Disp II_M_V	50.84	50.09	53.32	57.17	59.80	59.91	57.48	55.13
4	ENV_Mobili_Disp III_M_V	52.28	58.03	61.88	63.57	63.34	61.35	57.79	53.08
	ENV_Mobili_Disp IV_M_V	45.84	47.48	45.98	43.70	45.29	57.44	88.25	146.12
	ENV_Mobili_Disp I_T_V	128.39	120.50	102.81	85.12	72.14	62.78	55.56	51.52
	ENV_Mobili_Disp II_T_V	49.14	52.76	57.42	61.13	62.83	61.84	58.49	55.51
	ENV_Mobili_Disp III_T_V	52.19	57.90	61.71	63.41	63.30	61.61	58.60	54.74
	ENV_Mobili_Disp IV_T_V	49.00	52.66	53.78	53.43	54.02	59.08	73.59	103.21
	ENV_SLU IIF_Disp I_M_V	943.80	938.31	933.79	922.73	910.65	901.36	896.89	899.27
N.	ENV_SLU IIF_Disp II_M_V	687.74	756.88	817.39	859.66	885.11	898.20	904.30	909.66
STATO LIMITE ULTIMO	ENV_SLU IIF_Disp III_M_V	689.70	767.60	828.94	868.30	889.89	900.15	904.71	906.88
ITE	ENV_SLU IIF_Disp IV_M_V	681.00	753.35	807.48	841.47	865.53	894.86	945.84	1032.49
Z	ENV_SLU IIF_Disp I_T_V	792.45	851.92	884.20	897.39	901.77	902.07	901.70	904.79
170	ENV_SLU IIF_Disp II_T_V	685.45	760.48	822.93	865.00	889.20	900.81	905.66	910.17
57,	ENV_SLU IIF_Disp III_T_V	689.57	767.42	828.72	868.09	889.84	900.50	905.81	909.13
	ENV_SLU IIF_Disp IV_T_V	685.26	760.34	818.01	854.61	877.31	897.07	926.05	974.57
		T9F	T10F	T11F	T12F	T13F	T14F	T15F	T16F
	T	(FR540)	(FR555)	(FR570)	(FR585)	(FR600)	(FR615)	(FR630)	(FR962)
3		378.10	377.15	376.42	375.95	375.69	375.58	375.56	375.58
<u> </u>	Perm Portati	220.79	222.42	218.98	212.11	204.61	198.74	195.03	193.08
AZIONI	ENV_Mobili_Disp I_M	45.49	46.13	49.12	53.34	57.46	60.49	62.33	63.28
A	1	52.42	51.17	52.20	54.88	57.96	60.44	62.04	62.95
95	ENV_Mobili_Disp III_M	48.17	45.08	45.30	49.51	58.42	74.94	99.86	142.13
<u> </u>	ENV_Mobili_Disp IV_M	238.90	385.07	574.18	606.80	677.89	601.53	570.97	476.02

	_								
	ENV_Mobili_Disp I_T	48.88	48.45	50.45	53.95	57.60	60.40	62.16	63.11
	ENV_Mobili_Disp II_T	52.44	51.03	52.02	54.72	57.85	60.37	62.01	62.94
	ENV_Mobili_Disp III_T	50.92	48.89	49.55	52.62	57.67	66.32	75.56	82.37
	ENV_Mobili_Disp IV_T	147.14	192.28	234.43	275.22	286.13	278.49	247.37	208.81
	ENV_Mobili_Disp I_M_V	45.60	46.22	49.18	53.38	57.47	60.50	62.34	63.28
	ENV_Mobili_Disp II_M_V	52.53	51.26	52.26	54.91	57.98	60.44	62.04	62.95
	ENV_Mobili_Disp III_M_V	48.28	45.17	45.36	49.54	58.43	74.95	99.86	142.14
	ENV_Mobili_Disp IV_M_V	239.01	385.16	574.24	606.83	677.90	601.53	570.97	476.02
	ENV_Mobili_Disp I_T_V	48.99	48.54	50.51	53.98	57.62	60.41	62.17	63.11
	ENV_Mobili_Disp II_T_V	52.55	51.12	52.08	54.75	57.87	60.37	62.01	62.94
	ENV_Mobili_Disp III_T_V	51.03	48.98	49.61	52.65	57.69	66.33	75.56	82.38
	ENV_Mobili_Disp IV_T_V	147.25	192.37	234.49	275.25	286.15	278.49	247.38	208.81
	ENV_SLU IIF_Disp I_M_V	903.19	905.18	903.04	897.77	891.69	886.81	883.70	882.09
STATO LIMITE ULTIMO	ENV_SLU IIF_Disp II_M_V	912.55	912.00	907.20	899.84	892.37	886.74	883.30	881.65
ULT	ENV_SLU IIF_Disp III_M_V	906.82	903.77	897.88	892.59	892.98	906.32	934.36	988.54
ITE	ENV_SLU IIF_Disp IV_M_V	1164.30	1362.76	1611.87	1644.93	1729.27	1617.21	1570.36	1439.29
IIM	ENV_SLU IIF_Disp I_T_V	907.77	908.32	904.84	898.58	891.88	886.70	883.47	881.86
170	ENV_SLU IIF_Disp II_T_V	912.58	911.80	906.95	899.62	892.22	886.65	883.26	881.63
STA	ENV_SLU IIF_Disp III_T_V	910.53	908.92	903.62	896.79	891.98	894.69	901.55	907.87
	ENV_SLU IIF_Disp IV_T_V	1040.43	1102.49	1153.20	1197.29	1200.40	1181.11	1133.50	1078.55
		T17F	T18F	T19F	T20F	T21F	T22F	T23F	T24F
						1			
	ı	(FR977)	(FR992)	(FR1007)	(FR1022)	(FR1037)	(FR1052)	(FR1067)	(FR1082)
	Peso Proprio	(FR977) 375.65	375.77	(FR1007) 375.98	(FR1022) 376.29	(FR1037) 376.71	(FR1052) 377.18	(FR1067) 377.55	(FR1082) 377.48
	Peso Proprio Perm Portati	375.65 192.32	375.77 192.22	375.98 192.41	376.29 192.66	376.71 192.90	377.18 193.15	377.55 193.52	377.48 194.18
	i i	375.65	375.77	375.98	376.29	376.71	377.18	377.55	377.48 194.18 63.59
	Perm Portati	375.65 192.32	375.77 192.22	375.98 192.41	376.29 192.66	376.71 192.90	377.18 193.15	377.55 193.52	377.48 194.18
	Perm Portati ENV_Mobili_Disp I_M	375.65 192.32 63.71	375.77 192.22 63.96 63.77 229.40	375.98 192.41 64.25	376.29 192.66 64.71 64.66 339.38	376.71 192.90 65.28	377.18 193.15 65.70 65.70 479.92	377.55 193.52 65.42	377.48 194.18 63.59
HE	Perm Portati ENV_Mobili_Disp I_M ENV_Mobili_Disp II_M	375.65 192.32 63.71 63.44	375.77 192.22 63.96 63.77 229.40 339.69	375.98 192.41 64.25 64.15 290.46 291.34	376.29 192.66 64.71 64.66 339.38 230.42	376.71 192.90 65.28 65.27 442.73 205.71	377.18 193.15 65.70 65.70 479.92 143.37	377.55 193.52 65.42 65.43	377.48 194.18 63.59 63.61 615.28 76.85
STICHE	Perm Portati ENV_Mobili_Disp I_M ENV_Mobili_Disp II_M ENV_Mobili_Disp III_M	375.65 192.32 63.71 63.44 204.65	375.77 192.22 63.96 63.77 229.40 339.69 63.87	375.98 192.41 64.25 64.15 290.46 291.34 64.21	376.29 192.66 64.71 64.66 339.38	376.71 192.90 65.28 65.27 442.73 205.71 65.28	377.18 193.15 65.70 65.70 479.92 143.37 65.70	377.55 193.52 65.42 65.43 579.14 101.39 65.43	377.48 194.18 63.59 63.61 615.28 76.85 63.60
ERISTICHE	Perm Portati ENV_Mobili_Disp I_M ENV_Mobili_Disp II_M ENV_Mobili_Disp III_M ENV_Mobili_Disp IV_M	375.65 192.32 63.71 63.44 204.65 441.59 63.58 63.44	375.77 192.22 63.96 63.77 229.40 339.69 63.87 63.78	375.98 192.41 64.25 64.15 290.46 291.34 64.21 64.15	376.29 192.66 64.71 64.66 339.38 230.42 64.69 64.67	376.71 192.90 65.28 65.27 442.73 205.71 65.28 65.27	377.18 193.15 65.70 65.70 479.92 143.37 65.70 65.71	377.55 193.52 65.42 65.43 579.14 101.39 65.43 65.44	377.48 194.18 63.59 63.61 615.28 76.85 63.60 63.61
ATTERISTICHE	Perm Portati ENV_Mobili_Disp I_M ENV_Mobili_Disp II_M ENV_Mobili_Disp III_M ENV_Mobili_Disp IV_M ENV_Mobili_Disp I_T ENV_Mobili_Disp II_T ENV_Mobili_Disp III_T	375.65 192.32 63.71 63.44 204.65 441.59 63.58 63.44 90.00	375.77 192.22 63.96 63.77 229.40 339.69 63.87 63.78 105.45	375.98 192.41 64.25 64.15 290.46 291.34 64.21 64.15 123.05	376.29 192.66 64.71 64.66 339.38 230.42 64.69 64.67 144.16	376.71 192.90 65.28 65.27 442.73 205.71 65.28 65.27 170.31	377.18 193.15 65.70 65.70 479.92 143.37 65.70 65.71 211.19	377.55 193.52 65.42 65.43 579.14 101.39 65.43 65.44 252.17	377.48 194.18 63.59 63.61 615.28 76.85 63.60 63.61 286.42
CARATTERISTICHE	Perm Portati ENV_Mobili_Disp I_M ENV_Mobili_Disp II_M ENV_Mobili_Disp III_M ENV_Mobili_Disp IV_M ENV_Mobili_Disp I_T ENV_Mobili_Disp II_T ENV_Mobili_Disp III_T ENV_Mobili_Disp IV_T	375.65 192.32 63.71 63.44 204.65 441.59 63.58 63.44 90.00 169.54	375.77 192.22 63.96 63.77 229.40 339.69 63.87 63.78	375.98 192.41 64.25 64.15 290.46 291.34 64.21 64.15	376.29 192.66 64.71 64.66 339.38 230.42 64.69 64.67	376.71 192.90 65.28 65.27 442.73 205.71 65.28 65.27	377.18 193.15 65.70 65.70 479.92 143.37 65.70 65.71	377.55 193.52 65.42 65.43 579.14 101.39 65.43 65.44	377.48 194.18 63.59 63.61 615.28 76.85 63.60 63.61 286.42 68.14
ONI CARATTERISTICHE	Perm Portati ENV_Mobili_Disp I_M ENV_Mobili_Disp II_M ENV_Mobili_Disp III_M ENV_Mobili_Disp IV_M ENV_Mobili_Disp I_T ENV_Mobili_Disp II_T ENV_Mobili_Disp III_T ENV_Mobili_Disp IV_T ENV_Mobili_Disp IV_T ENV_Mobili_Disp I_M_V	375.65 192.32 63.71 63.44 204.65 441.59 63.58 63.44 90.00 169.54 63.71	375.77 192.22 63.96 63.77 229.40 339.69 63.87 63.78 105.45 144.23 63.96	375.98 192.41 64.25 64.15 290.46 291.34 64.21 64.15 123.05 123.48 64.25	376.29 192.66 64.71 64.66 339.38 230.42 64.69 64.67 144.16 106.02 64.71	376.71 192.90 65.28 65.27 442.73 205.71 65.28 65.27 170.31 90.69 65.28	377.18 193.15 65.70 65.70 479.92 143.37 65.70 65.71 211.19 83.35 65.70	377.55 193.52 65.42 65.43 579.14 101.39 65.43 65.44 252.17 76.91 65.42	377.48 194.18 63.59 63.61 615.28 76.85 63.60 63.61 286.42 68.14 63.59
AZIONI CARATTERISTICHE	Perm Portati ENV_Mobili_Disp I_M ENV_Mobili_Disp II_M ENV_Mobili_Disp III_M ENV_Mobili_Disp IV_M ENV_Mobili_Disp I_T ENV_Mobili_Disp III_T ENV_Mobili_Disp III_T ENV_Mobili_Disp IV_T ENV_Mobili_Disp IV_T ENV_Mobili_Disp I_M_V ENV_Mobili_Disp II_M_V	375.65 192.32 63.71 63.44 204.65 441.59 63.58 63.44 90.00 169.54 63.71 63.44	375.77 192.22 63.96 63.77 229.40 339.69 63.87 63.78 105.45 144.23 63.96 63.77	375.98 192.41 64.25 64.15 290.46 291.34 64.21 64.15 123.05 123.48 64.25 64.15	376.29 192.66 64.71 64.66 339.38 230.42 64.69 64.67 144.16 106.02 64.71 64.66	376.71 192.90 65.28 65.27 442.73 205.71 65.28 65.27 170.31 90.69 65.28 65.27	377.18 193.15 65.70 65.70 479.92 143.37 65.70 65.71 211.19 83.35 65.70 65.70	377.55 193.52 65.42 65.43 579.14 101.39 65.43 65.44 252.17 76.91 65.42 65.43	377.48 194.18 63.59 63.61 615.28 76.85 63.60 63.61 286.42 68.14 63.59 63.61
AZIONI CARATTERISTICHE	Perm Portati ENV_Mobili_Disp I_M ENV_Mobili_Disp II_M ENV_Mobili_Disp III_M ENV_Mobili_Disp IV_M ENV_Mobili_Disp I_T ENV_Mobili_Disp II_T ENV_Mobili_Disp III_T ENV_Mobili_Disp IV_T ENV_Mobili_Disp IV_T ENV_Mobili_Disp I_M_V ENV_Mobili_Disp II_M_V ENV_Mobili_Disp III_M_V	375.65 192.32 63.71 63.44 204.65 441.59 63.58 63.44 90.00 169.54 63.71 63.44 204.65	375.77 192.22 63.96 63.77 229.40 339.69 63.87 63.78 105.45 144.23 63.96 63.77 229.40	375.98 192.41 64.25 64.15 290.46 291.34 64.21 64.15 123.05 123.48 64.25 64.15 290.46	376.29 192.66 64.71 64.66 339.38 230.42 64.69 64.67 144.16 106.02 64.71 64.66 339.38	376.71 192.90 65.28 65.27 442.73 205.71 65.28 65.27 170.31 90.69 65.28 65.27 442.73	377.18 193.15 65.70 65.70 479.92 143.37 65.70 65.71 211.19 83.35 65.70 65.70 479.92	377.55 193.52 65.42 65.43 579.14 101.39 65.43 65.44 252.17 76.91 65.42 65.43 579.14	377.48 194.18 63.59 63.61 615.28 76.85 63.60 63.61 286.42 68.14 63.59 63.61 615.28
AZIONI CARATTERISTICHE	Perm Portati ENV_Mobili_Disp I_M ENV_Mobili_Disp II_M ENV_Mobili_Disp III_M ENV_Mobili_Disp IV_M ENV_Mobili_Disp I_T ENV_Mobili_Disp III_T ENV_Mobili_Disp III_T ENV_Mobili_Disp IV_T ENV_Mobili_Disp IV_T ENV_Mobili_Disp II_M_V ENV_Mobili_Disp III_M_V ENV_Mobili_Disp IV_M_V ENV_Mobili_Disp IV_M_V	375.65 192.32 63.71 63.44 204.65 441.59 63.58 63.44 90.00 169.54 63.71 63.44 204.65 441.60	375.77 192.22 63.96 63.77 229.40 339.69 63.87 63.78 105.45 144.23 63.96 63.77 229.40 339.69	375.98 192.41 64.25 64.15 290.46 291.34 64.21 64.15 123.05 123.48 64.25 64.15 290.46 291.34	376.29 192.66 64.71 64.66 339.38 230.42 64.69 64.67 144.16 106.02 64.71 64.66 339.38 230.42	376.71 192.90 65.28 65.27 442.73 205.71 65.28 65.27 170.31 90.69 65.28 65.27 442.73 205.71	377.18 193.15 65.70 65.70 479.92 143.37 65.70 65.71 211.19 83.35 65.70 65.70 479.92 143.37	377.55 193.52 65.42 65.43 579.14 101.39 65.43 65.44 252.17 76.91 65.42 65.43 579.14 101.39	377.48 194.18 63.59 63.61 615.28 76.85 63.60 63.61 286.42 68.14 63.59 63.61 615.28 76.85
AZIONI CARATTERISTICHE	Perm Portati ENV_Mobili_Disp I_M ENV_Mobili_Disp II_M ENV_Mobili_Disp III_M ENV_Mobili_Disp IV_M ENV_Mobili_Disp IV_T ENV_Mobili_Disp III_T ENV_Mobili_Disp IV_T ENV_Mobili_Disp IV_T ENV_Mobili_Disp I_M_V ENV_Mobili_Disp III_M_V ENV_Mobili_Disp IV_M_V ENV_Mobili_Disp IV_M_V ENV_Mobili_Disp IV_M_V ENV_Mobili_Disp IV_M_V	375.65 192.32 63.71 63.44 204.65 441.59 63.58 63.44 90.00 169.54 63.71 63.44 204.65 441.60 63.58	375.77 192.22 63.96 63.77 229.40 339.69 63.87 63.78 105.45 144.23 63.96 63.77 229.40 339.69 63.87	375.98 192.41 64.25 64.15 290.46 291.34 64.21 64.15 123.05 123.48 64.25 64.15 290.46 291.34 64.21	376.29 192.66 64.71 64.66 339.38 230.42 64.69 64.67 144.16 106.02 64.71 64.66 339.38 230.42 64.69	376.71 192.90 65.28 65.27 442.73 205.71 65.28 65.27 170.31 90.69 65.28 65.27 442.73 205.71 65.28	377.18 193.15 65.70 65.70 479.92 143.37 65.70 65.71 211.19 83.35 65.70 65.70 479.92 143.37 65.70	377.55 193.52 65.42 65.43 579.14 101.39 65.43 65.44 252.17 76.91 65.42 65.43 579.14 101.39 65.43	377.48 194.18 63.59 63.61 615.28 76.85 63.60 63.61 286.42 68.14 63.59 63.61 615.28 76.85 63.60
AZIONI CARATTERISTICHE	Perm Portati ENV_Mobili_Disp I_M ENV_Mobili_Disp II_M ENV_Mobili_Disp III_M ENV_Mobili_Disp IV_M ENV_Mobili_Disp IV_T ENV_Mobili_Disp III_T ENV_Mobili_Disp IV_T ENV_Mobili_Disp IV_T ENV_Mobili_Disp II_M_V ENV_Mobili_Disp III_M_V ENV_Mobili_Disp IV_M_V ENV_Mobili_Disp IV_M_V ENV_Mobili_Disp I_T_V ENV_Mobili_Disp I_T_V ENV_Mobili_Disp II_T_V ENV_Mobili_Disp II_T_V	375.65 192.32 63.71 63.44 204.65 441.59 63.58 63.44 90.00 169.54 63.71 63.44 204.65 441.60 63.58 63.44	375.77 192.22 63.96 63.77 229.40 339.69 63.87 63.78 105.45 144.23 63.96 63.77 229.40 339.69 63.87 63.78	375.98 192.41 64.25 64.15 290.46 291.34 64.21 64.15 123.05 123.48 64.25 64.15 290.46 291.34 64.21 64.16	376.29 192.66 64.71 64.66 339.38 230.42 64.69 64.67 144.16 106.02 64.71 64.66 339.38 230.42 64.69 64.67	376.71 192.90 65.28 65.27 442.73 205.71 65.28 65.27 170.31 90.69 65.28 65.27 442.73 205.71 65.28 65.27	377.18 193.15 65.70 65.70 479.92 143.37 65.70 65.71 211.19 83.35 65.70 65.70 479.92 143.37 65.70 65.71	377.55 193.52 65.42 65.43 579.14 101.39 65.43 65.44 252.17 76.91 65.42 65.43 579.14 101.39 65.43 65.44	377.48 194.18 63.59 63.61 615.28 76.85 63.60 63.61 286.42 68.14 63.59 63.61 615.28 76.85 63.60 63.61
AZIONI CARATTERISTICHE	Perm Portati ENV_Mobili_Disp I_M ENV_Mobili_Disp II_M ENV_Mobili_Disp III_M ENV_Mobili_Disp IV_M ENV_Mobili_Disp IV_T ENV_Mobili_Disp III_T ENV_Mobili_Disp IV_T ENV_Mobili_Disp IV_T ENV_Mobili_Disp II_M_V ENV_Mobili_Disp III_M_V ENV_Mobili_Disp IV_M_V ENV_Mobili_Disp IV_T ENV_Mobili_Disp IV_T ENV_Mobili_Disp III_M_V ENV_Mobili_Disp III_M_V ENV_Mobili_Disp IV_M_V ENV_Mobili_Disp II_T_V ENV_Mobili_Disp III_T_V ENV_Mobili_Disp III_T_V	375.65 192.32 63.71 63.44 204.65 441.59 63.58 63.44 90.00 169.54 63.71 63.44 204.65 441.60 63.58 63.44 90.01	375.77 192.22 63.96 63.77 229.40 339.69 63.87 63.78 105.45 144.23 63.96 63.77 229.40 339.69 63.87 63.78 105.45	375.98 192.41 64.25 64.15 290.46 291.34 64.21 64.15 123.05 123.48 64.25 64.15 290.46 291.34 64.21 64.16 123.05	376.29 192.66 64.71 64.66 339.38 230.42 64.69 64.67 144.16 106.02 64.71 64.66 339.38 230.42 64.69 64.67 144.16	376.71 192.90 65.28 65.27 442.73 205.71 65.28 65.27 170.31 90.69 65.28 65.27 442.73 205.71 65.28 65.27	377.18 193.15 65.70 65.70 479.92 143.37 65.70 65.71 211.19 83.35 65.70 65.70 479.92 143.37 65.70 65.71 211.19	377.55 193.52 65.42 65.43 579.14 101.39 65.43 65.44 252.17 76.91 65.42 65.43 579.14 101.39 65.43 65.44 252.17	377.48 194.18 63.59 63.61 615.28 76.85 63.60 63.61 286.42 68.14 63.59 63.61 615.28 76.85 63.60 63.61 286.42
AZIONI CARATTE	Perm Portati ENV_Mobili_Disp I_M ENV_Mobili_Disp II_M ENV_Mobili_Disp III_M ENV_Mobili_Disp IV_M ENV_Mobili_Disp IV_T ENV_Mobili_Disp III_T ENV_Mobili_Disp IV_T ENV_Mobili_Disp IV_T ENV_Mobili_Disp II_M_V ENV_Mobili_Disp III_M_V ENV_Mobili_Disp IV_M_V ENV_Mobili_Disp IV_T_V ENV_Mobili_Disp II_T_V ENV_Mobili_Disp III_T_V ENV_Mobili_Disp III_T_V ENV_Mobili_Disp IV_T_V ENV_Mobili_Disp IV_T_V	375.65 192.32 63.71 63.44 204.65 441.59 63.58 63.44 90.00 169.54 63.71 63.44 204.65 441.60 63.58 63.44 90.01 169.54	375.77 192.22 63.96 63.77 229.40 339.69 63.87 63.78 105.45 144.23 63.96 63.77 229.40 339.69 63.87 63.78 105.45 144.24	375.98 192.41 64.25 64.15 290.46 291.34 64.21 64.15 123.05 123.48 64.25 64.15 290.46 291.34 64.21 64.16 123.05 123.49	376.29 192.66 64.71 64.66 339.38 230.42 64.69 64.67 144.16 106.02 64.71 64.66 339.38 230.42 64.69 64.67 144.16 106.02	376.71 192.90 65.28 65.27 442.73 205.71 65.28 65.27 170.31 90.69 65.28 65.27 442.73 205.71 65.28 65.27 170.31 90.69	377.18 193.15 65.70 65.70 479.92 143.37 65.70 65.71 211.19 83.35 65.70 65.70 479.92 143.37 65.70 65.71 211.19 83.35	377.55 193.52 65.42 65.43 579.14 101.39 65.43 65.44 252.17 76.91 65.42 65.43 579.14 101.39 65.43 65.44 252.17 76.91	377.48 194.18 63.59 63.61 615.28 76.85 63.60 63.61 286.42 68.14 63.59 63.61 615.28 76.85 63.60 63.61 286.42 68.14
AZIONI CARATTE	Perm Portati ENV_Mobili_Disp I_M ENV_Mobili_Disp II_M ENV_Mobili_Disp III_M ENV_Mobili_Disp IV_M ENV_Mobili_Disp IV_T ENV_Mobili_Disp III_T ENV_Mobili_Disp IV_T ENV_Mobili_Disp II_M_V ENV_Mobili_Disp III_M_V ENV_Mobili_Disp IV_M_V ENV_Mobili_Disp IV_T_V ENV_Mobili_Disp II_T_V ENV_Mobili_Disp III_T_V ENV_Mobili_Disp III_T_V ENV_Mobili_Disp IV_T_V ENV_Mobili_Disp IV_T_V ENV_Mobili_Disp IV_T_V ENV_SLU IIF_Disp I_M_V	375.65 192.32 63.71 63.44 204.65 441.59 63.58 63.44 90.00 169.54 63.71 63.44 204.65 441.60 63.58 63.44 90.01 169.54 881.62	375.77 192.22 63.96 63.77 229.40 339.69 63.87 63.78 105.45 144.23 63.96 63.77 229.40 339.69 63.87 63.78 105.45 144.24	375.98 192.41 64.25 64.15 290.46 291.34 64.21 64.15 123.05 123.48 64.25 64.15 290.46 291.34 64.21 64.16 123.05 123.49 882.92	376.29 192.66 64.71 64.66 339.38 230.42 64.69 64.67 144.16 106.02 64.71 64.66 339.38 230.42 64.69 64.67 144.16 106.02 884.34	376.71 192.90 65.28 65.27 442.73 205.71 65.28 65.27 170.31 90.69 65.28 65.27 442.73 205.71 65.28 65.27 170.31 90.69 886.04	377.18 193.15 65.70 65.70 479.92 143.37 65.70 65.71 211.19 83.35 65.70 479.92 143.37 65.70 65.71 211.19 83.35	377.55 193.52 65.42 65.43 579.14 101.39 65.43 65.44 252.17 76.91 65.42 65.43 579.14 101.39 65.43 65.44 252.17 76.91 888.29	377.48 194.18 63.59 63.61 615.28 76.85 63.60 63.61 286.42 68.14 63.59 63.61 615.28 76.85 63.60 63.61 286.42 68.14
LIMITE AZIONI CARATTERISTICHE	Perm Portati ENV_Mobili_Disp I_M ENV_Mobili_Disp II_M ENV_Mobili_Disp III_M ENV_Mobili_Disp IV_M ENV_Mobili_Disp IV_T ENV_Mobili_Disp III_T ENV_Mobili_Disp IV_T ENV_Mobili_Disp IV_T ENV_Mobili_Disp II_M_V ENV_Mobili_Disp III_M_V ENV_Mobili_Disp IV_M_V ENV_Mobili_Disp IV_T_V ENV_Mobili_Disp II_T_V ENV_Mobili_Disp III_T_V ENV_Mobili_Disp III_T_V ENV_Mobili_Disp IV_T_V ENV_Mobili_Disp IV_T_V	375.65 192.32 63.71 63.44 204.65 441.59 63.58 63.44 90.00 169.54 63.71 63.44 204.65 441.60 63.58 63.44 90.01 169.54	375.77 192.22 63.96 63.77 229.40 339.69 63.87 63.78 105.45 144.23 63.96 63.77 229.40 339.69 63.87 63.78 105.45 144.24	375.98 192.41 64.25 64.15 290.46 291.34 64.21 64.15 123.05 123.48 64.25 64.15 290.46 291.34 64.21 64.16 123.05 123.49	376.29 192.66 64.71 64.66 339.38 230.42 64.69 64.67 144.16 106.02 64.71 64.66 339.38 230.42 64.69 64.67 144.16 106.02	376.71 192.90 65.28 65.27 442.73 205.71 65.28 65.27 170.31 90.69 65.28 65.27 442.73 205.71 65.28 65.27 170.31 90.69	377.18 193.15 65.70 65.70 479.92 143.37 65.70 65.71 211.19 83.35 65.70 65.70 479.92 143.37 65.70 65.71 211.19 83.35	377.55 193.52 65.42 65.43 579.14 101.39 65.43 65.44 252.17 76.91 65.42 65.43 579.14 101.39 65.43 65.44 252.17 76.91	377.48 194.18 63.59 63.61 615.28 76.85 63.60 63.61 286.42 68.14 63.59 63.61 615.28 76.85 63.60 63.61 286.42 68.14

ENV_SLU IIF_Disp IV_M_V	1391.77	1254.20	1189.49	1108.05	1075.61	992.47	936.84	904.62
ENV_SLU IIF_Disp I_T_V	881.44	881.85	882.86	884.32	886.03	887.62	888.30	886.73
ENV_SLU IIF_Disp II_T_V	881.26	881.72	882.79	884.29	886.03	887.62	888.31	886.74
ENV_SLU IIF_Disp III_T_V	917.12	937.98	962.30	991.60	1027.82	1084.03	1140.40	1187.54
ENV_SLU IIF_Disp IV_T_V	1024.49	990.34	962.89	940.11	920.34	911.44	903.80	892.86

	ENV_SLU IIF_DISP IV_I_V	1024.43	330.34	302.03	340.11	320.34
		T25F	T26F	T27F	T28F	T29F
		(FR1097)	(FR1112)	(FR1127)	(FR1142)	(FR1157)
	Peso Proprio	376.47	373.79	368.69	361.04	351.91
	Perm Portati	195.30	196.92	198.82	200.66	202.31
	ENV_Mobili_Disp I_M	59.07	50.81	38.55	23.15	6.26
	ENV_Mobili_Disp II_M	59.09	50.82	38.56	23.15	6.26
	ENV_Mobili_Disp III_M	696.55	623.85	579.42	360.63	154.74
1 E	ENV_Mobili_Disp IV_M	59.71	45.51	31.48	16.47	0.75
AZIONI CARATTERISTICHE	ENV_Mobili_Disp I_T	59.08	50.81	38.55	23.15	6.26
RIS	ENV_Mobili_Disp II_T	59.09	50.81	38.55	23.15	6.26
NTTE	ENV_Mobili_Disp III_T	296.40	282.07	229.69	164.16	85.64
AR/	ENV_Mobili_Disp IV_T	58.98	48.77	36.12	20.99	4.59
NI C	ENV_Mobili_Disp I_M_V	59.08	50.81	38.55	23.15	6.26
Z10	ENV_Mobili_Disp II_M_V	59.09	50.82	38.56	23.15	6.26
٧ı	ENV_Mobili_Disp III_M_V	696.55	623.85	579.42	360.63	154.74
	ENV_Mobili_Disp IV_M_V	59.71	45.51	31.48	16.47	0.75
	ENV_Mobili_Disp I_T_V	59.08	50.81	38.55	23.15	6.26
	ENV_Mobili_Disp II_T_V	59.09	50.82	38.55	23.15	6.26
	ENV_Mobili_Disp III_T_V	296.40	282.07	229.69	164.16	85.64
	ENV_Mobili_Disp IV_T_V	58.98	48.77	36.12	20.99	4.59
	ENV_SLU IIF_Disp I_M_V	880.94	868.59	848.00	819.66	787.01
STATO LIMITE ULTIMO	ENV_SLU IIF_Disp II_M_V	880.95	868.60	848.01	819.66	787.01
ULT	ENV_SLU IIF_Disp III_M_V	1741.53	1642.20	1578.17	1275.26	987.45
ITE	ENV_SLU IIF_Disp IV_M_V	881.80	861.44	838.46	810.64	779.57
TIM	ENV_SLU IIF_Disp I_T_V	880.94	868.60	848.00	819.66	787.01
70	ENV_SLU IIF_Disp II_T_V	880.95	868.60	848.01	819.66	787.00
STA	ENV_SLU IIF_Disp III_T_V	1201.32	1180.79	1106.04	1010.02	894.17
	ENV_SLU IIF_Disp IV_T_V	880.80	865.85	844.72	816.74	784.75

TAGLIO ALL'APPOGGIO X=0.00m

V2 [kN]

					V2	[kN]			
		T1F	T2F	T3F	T4F	T5F	T6F	T7F	T8F
		(FR397)	(FR429)	(FR444)	(FR459)	(FR474)	(FR489)	(FR504)	(FR519)
	Peso Proprio	-82.09	-86.92	-90.63	-93.14	-94.59	-95.23	-95.38	-95.27
	Perm Portati	-38.00	-42.58	-46.28	-48.82	-50.45	-51.59	-52.65	-53.92
	ENV_Mobili_Disp I_M M	-31.45	-25.59	-16.82	-8.32	-2.69	0.31	1.54	1.74
	ENV_Mobili_Disp I_M M	n -42.75	-38.90	-31.77	-24.34	-19.15	-15.92	-13.95	-13.01
	ENV_Mobili_Disp II_M M	-13.94	-13.25	-13.61	-14.36	-14.96	-15.20	-14.87	-13.41
	ENV_Mobili_Disp II_M M	n -14.04	-13.42	-13.88	-14.74	-15.38	-15.48	-15.05	-14.55
	ENV_Mobili_Disp III_M M	0.05	0.10	0.20	0.32	0.40	0.35	0.05	-0.65
	ENV_Mobili_Disp III_M M	n -13.92	-14.81	-15.59	-16.03	-16.09	-15.77	-15.11	-14.14
	ENV_Mobili_Disp IV_M M	1.34	2.21	3.37	4.29	4.04	1.20	-6.33	-20.65
	ENV_Mobili_Disp IV_M M	n -12.63	-12.70	-12.42	-12.06	-12.45	-14.92	-21.49	-34.13
	ENV_Mobili_Disp I_T M	-15.56	-11.73	-8.05	-4.56	-1.73	0.04	0.82	0.95
	ENV_Mobili_Disp I_T M	n -26.86	-25.04	-22.99	-20.59	-18.19	-16.19	-14.67	-13.81
	ENV_Mobili_Disp II_T M	-13.45	-13.91	-14.57	-15.18	-15.54	-15.57	-15.07	-13.49
ш	ENV_Mobili_Disp II_T M	n -13.54	-14.07	-14.85	-15.56	-15.96	-15.85	-15.25	-14.62
ICH.	ENV_Mobili_Disp III_T M	0.07	0.13	0.23	0.35	0.40	0.30	-0.11	-0.98
RIST	ENV_Mobili_Disp III_T M	n -13.90	-14.78	-15.56	-16.00	-16.08	-15.82	-15.27	-14.46
ATT.	ENV_Mobili_Disp IV_T M	0.71	1.20	1.87	2.38	2.10	0.18	-4.00	-10.27
AZIONI CARATTERISTICHE	ENV_Mobili_Disp IV_T M	n -13.26	-13.72	-13.92	-13.97	-14.38	-15.94	-19.16	-23.75
INC	ENV_Mobili_Disp I_M_V M	-30.93	-25.14	-16.50	-8.13	-2.59	0.34	1.55	1.76
AZIC	ENV_Mobili_Disp I_M_V M	n -43.26	-39.35	-32.09	-24.53	-19.24	-15.95	-13.96	-13.03
	ENV_Mobili_Disp II_M_V M	-13.43	-12.80	-13.29	-14.16	-14.87	-15.17	-14.86	-13.39
	ENV_Mobili_Disp II_M_V M	n -14.55	-13.87	-14.20	-14.93	-15.47	-15.51	-15.06	-14.57
	ENV_Mobili_Disp III_M_V M	0.57	0.55	0.52	0.51	0.49	0.38	0.06	-0.63
	ENV_Mobili_Disp III_M_V M	n -14.44	-15.26	-15.91	-16.23	-16.18	-15.80	-15.12	-14.16
	ENV_Mobili_Disp IV_M_V M	1.85	2.66	3.69	4.48	4.13	1.23	-6.33	-20.63
	ENV_Mobili_Disp IV_M_V M	n -13.15	-13.15	-12.74	-12.26	-12.54	-14.95	-21.50	-34.15
	ENV_Mobili_Disp I_T_V M	-15.05	-11.28	-7.72	-4.37	-1.64	0.07	0.83	0.97
	ENV_Mobili_Disp I_T_V M	n -27.38	-25.49	-23.31	-20.78	-18.29	-16.22	-14.68	-13.83
	ENV_Mobili_Disp II_T_V M	-12.93	-13.46	-14.25	-14.99	-15.45	-15.54	-15.06	-13.47
	ENV_Mobili_Disp II_T_V M		-14.52	-15.17	-15.75	-16.06	-15.88	-15.25	-14.64
	ENV_Mobili_Disp III_T_V M		0.58	0.55	0.54	0.49	0.32	-0.10	-0.96
	ENV_Mobili_Disp III_T_V M		-15.23	-15.88	-16.19	-16.18	-15.85	-15.28	-14.48
	ENV_Mobili_Disp IV_T_V M		1.65	2.19	2.57	2.20	0.20	-3.99	-10.25
	ENV_Mobili_Disp IV_T_V M	n -13.78	-14.17	-14.24	-14.16	-14.48	-15.97	-19.16	-23.77
MO	ENV_SLU IIF_Disp I_M_V M		-215.08	-213.99	-209.91	-206.85	-205.49	-205.64	-207.11
STATO LIMITE ULTIMO	ENV_SLU IIF_Disp I_M_V M		-234.40	-235.12	-232.12	-229.35	-227.48	-226.57	-227.09
11TE	ENV_SLU IIF_Disp II_M_V M		-198.43	-209.65	-218.07	-223.42	-226.42	-227.79	-227.57
TIV.	ENV_SLU IIF_Disp II_M_V M		-200.00	-210.98	-219.16	-224.26	-226.89	-228.05	-229.16
ATO	ENV_SLU IIF_Disp III_M_V M		-180.40	-191.01	-198.26	-202.69	-205.43	-207.65	-210.34
ST	ENV_SLU IIF_Disp III_M_V M	n -187.39	-201.88	-213.29	-220.90	-225.22	-227.28	-228.13	-228.60

	ENV_SLU IIF_Disp IV_M_V	Max	-165.24	-177.56	-186.73	-192.90	-197.77	-204.28	-216.27	-237.33
	ENV_SLU IIF_Disp IV_M_V	Min	-185.65	-199.04	-209.00	-215.55	-220.31	-226.13	-236.75	-255.60
	ENV_SLU IIF_Disp I_T_V	Max	-188.06	-196.37	-202.14	-204.85	-205.57	-205.85	-206.61	-208.18
	ENV_SLU IIF_Disp I_T_V	Min	-204.86	-215.70	-223.28	-227.05	-228.06	-227.84	-227.54	-228.16
	ENV_SLU IIF_Disp II_T_V	Max	-185.20	-199.31	-210.95	-219.18	-224.21	-226.92	-228.06	-227.67
	ENV_SLU IIF_Disp II_T_V	Min	-186.88	-200.89	-212.29	-220.27	-225.05	-227.38	-228.32	-229.26
	ENV_SLU IIF_Disp III_T_V	Max	-166.95	-180.36	-190.96	-198.22	-202.68	-205.51	-207.87	-210.78
	ENV_SLU IIF_Disp III_T_V	Min	-187.36	-201.85	-213.24	-220.86	-225.21	-227.35	-228.35	-229.04
	ENV_SLU IIF_Disp IV_T_V	Max	-166.09	-178.92	-188.76	-195.47	-200.39	-205.67	-213.11	-223.32
	ENV_SLU IIF_Disp IV_T_V	Min	-186.50	-200.40	-211.03	-218.12	-222.92	-227.51	-233.60	-241.59
			T9F	T10F	T11F	T12F	T13F	T14F	T15F	T16F
			(FR534)	(FR549)	(FR564)	(FR579)	(FR594)	(FR609)	(FR624)	(FR956)
	Peso Proprio		-95.07	-94.88	-94.74	-94.64	-94.59	-94.57	-94.57	-94.57
	Perm Portati		-56.01	-61.47	-55.65	-53.21	-51.68	-50.57	-49.85	-49.46
	ENV_Mobili_Disp I_M	Max	1.44	0.99	0.56	0.25	0.06	0.27	0.38	0.34
	ENV_Mobili_Disp I_M	Min	-12.17	-10.00	-12.89	-14.21	-15.05	-15.63	-15.99	-16.17
	ENV_Mobili_Disp II_M	Max	-10.79	-5.57	-2.86	-1.20	-0.21	0.28	0.43	0.41
	ENV_Mobili_Disp II_M	Min	-13.55	-11.00	-13.51	-14.52	-15.15	-15.62	-15.93	-16.11
	ENV_Mobili_Disp III_M	Max	-1.95	-4.30	-9.34	-12.29	-15.18	-18.72	-23.05	-26.70
	ENV_Mobili_Disp III_M	Min	-12.71	-9.79	-12.12	-13.42	-15.35	-19.02	-23.49	-27.11
	ENV_Mobili_Disp IV_M	Max	-39.96	-58.87	-84.64	-102.32	-109.59	-107.73	-92.53	-78.88
	ENV_Mobili_Disp IV_M	Min	-50.72	-64.36	-87.42	-103.46	-109.76	-108.03	-92.97	-79.29
	ENV_Mobili_Disp I_T	Max	0.78	0.53	0.30	0.13	0.03	0.29	0.41	0.37
	ENV_Mobili_Disp I_T	Min	-12.83	-10.46	-13.16	-14.33	-15.08	-15.61	-15.95	-16.14
Lui	ENV_Mobili_Disp II_T	Max	-10.80	-5.54	-2.82	-1.16	-0.19	0.29	0.44	0.41
L)CH	ENV_Mobili_Disp II_T	Min	-13.56	-10.98	-13.47	-14.49	-15.13	-15.60	-15.92	-16.11
RIST	ENV_Mobili_Disp III_T	Max	-2.48	-5.05	-10.25	-13.13	-15.21	-16.38	-17.17	-17.99
NTTE	ENV_Mobili_Disp III_T	Min	-13.24	-10.54	-13.03	-14.26	-15.37	-16.68	-17.61	-18.39
CARATTERISTICHE	ENV_Mobili_Disp IV_T	Max	-18.31	-29.13	-47.94	-56.50	-59.87	-57.27	-45.16	-37.54
INO	ENV_Mobili_Disp IV_T	Min	-29.07	-34.62	-50.72	-57.64	-60.04	-57.57	-45.61	-37.95
AZIC	ENV_Mobili_Disp I_M_V	Max	1.46	1.00	0.58	0.26	0.06	0.27	0.38	0.34
	ENV_Mobili_Disp I_M_V	Min	-12.19	-10.02	-12.90	-14.22	-15.05	-15.63	-15.99	-16.18
	ENV_Mobili_Disp II_M_V	Max	-10.77	-5.55	-2.85	-1.19	-0.21	0.28	0.43	0.41
	ENV_Mobili_Disp II_M_V	Min	-13.57	-11.02	-13.52	-14.52	-15.15	-15.62	-15.93	-16.11
	ENV_Mobili_Disp III_M_V	Max	-1.93	-4.28	-9.32	-12.28	-15.18	-18.72	-23.05	-26.70
	ENV_Mobili_Disp III_M_V	Min	-12.73	-9.81	-12.13	-13.43	-15.35	-19.02	-23.49	-27.11
	ENV_Mobili_Disp IV_M_V	Max	-39.94	-58.86	-84.63	-102.31	-109.58	-107.73	-92.53	-78.88
	ENV_Mobili_Disp IV_M_V	Min	-50.74	-64.38	-87.43	-103.46	-109.76	-108.03	-92.97	-79.29
	ENV_Mobili_Disp I_T_V	Max	0.80	0.54	0.31	0.14	0.03	0.29	0.41	0.37
	ENV_Mobili_Disp I_T_V	Min	-12.85	-10.48	-13.17	-14.34	-15.08	-15.61	-15.95	-16.14
	ENV_Mobili_Disp II_T_V	Max	-10.78	-5.52	-2.81	-1.16	-0.18	0.29	0.44	0.41
	ENV_Mobili_Disp II_T_V	Min	-13.58	-10.99	-13.48	-14.49	-15.13	-15.60	-15.92	-16.11
	ENV_Mobili_Disp III_T_V	Max	-2.46	-5.03	-10.24	-13.12	-15.20	-16.38	-17.17	-17.98
	ENV_Mobili_Disp III_T_V	Min	-13.26	-10.55	-13.04	-14.27	-15.38	-16.68	-17.61	-18.39

	,									
	ENV_Mobili_Disp IV_T_V	Max	-18.29	-29.11	-47.93	-56.50	-59.87	-57.27	-45.16	-37.54
	ENV_Mobili_Disp IV_T_V	Min	-29.09	-34.63	-50.73	-57.64	-60.04	-57.57	-45.61	-37.95
	ENV_SLU IIF_Disp I_M_V	Max	-210.38	-218.95	-210.59	-207.24	-205.13	-203.16	-201.93	-201.40
	ENV_SLU IIF_Disp I_M_V	Min	-228.82	-233.83	-228.79	-226.78	-225.53	-224.62	-224.02	-223.69
	ENV_SLU IIF_Disp II_M_V	Max	-226.90	-227.80	-215.21	-209.19	-205.49	-203.15	-201.85	-201.31
	ENV_SLU IIF_Disp II_M_V	Min	-230.69	-235.19	-229.62	-227.20	-225.67	-224.60	-223.94	-223.61
	ENV_SLU IIF_Disp III_M_V	Max	-214.96	-226.08	-223.95	-224.16	-225.70	-228.79	-233.55	-237.91
<i>8</i> 0	ENV_SLU IIF_Disp III_M_V	Min	-229.54	-233.54	-227.74	-225.72	-225.94	-229.20	-234.15	-238.46
ULTIMO	ENV_SLU IIF_Disp IV_M_V	Max	-266.27	-299.76	-325.61	-345.71	-353.15	-348.96	-327.35	-308.35
ITE (ENV_SLU IIF_Disp IV_M_V	Min	-280.86	-307.22	-329.40	-347.26	-353.38	-349.37	-327.95	-308.90
STATO LIMITE	ENV_SLU IIF_Disp I_T_V	Max	-211.28	-219.57	-210.95	-207.40	-205.17	-203.14	-201.88	-201.35
470	ENV_SLU IIF_Disp I_T_V	Min	-229.71	-234.45	-229.15	-226.95	-225.57	-224.60	-223.97	-223.65
ST	ENV_SLU IIF_Disp II_T_V	Max	-226.90	-227.76	-215.16	-209.15	-205.46	-203.13	-201.84	-201.31
	ENV_SLU IIF_Disp II_T_V	Min	-230.69	-235.15	-229.57	-227.15	-225.64	-224.59	-223.93	-223.60
	ENV_SLU IIF_Disp III_T_V	Max	-215.68	-227.09	-225.18	-225.30	-225.73	-225.63	-225.61	-226.14
	ENV_SLU IIF_Disp III_T_V	Min	-230.26	-234.55	-228.97	-226.86	-225.97	-226.04	-226.21	-226.69
	ENV_SLU IIF_Disp IV_T_V	Max	-237.05	-259.60	-276.07	-283.86	-286.03	-280.83	-263.41	-252.54
	ENV_SLU IIF_Disp IV_T_V	Min	-251.63	-267.06	-279.86	-285.41	-286.26	-281.24	-264.01	-253.09
			T17F	T18F	T19F	T20F	T21F	T22F	T23F	T24F
	ı		(FR971)	(FR986)	(FR1001)	(FR1016)	(FR1031)	(FR1046)	(FR1061)	(FR1076)
	Peso Proprio		-94.58	-94.61	-94.65	-94.71	-94.80	-94.89	-94.96	-94.95
	Perm Portati		-49.30	-49.28	-49.32	-49.37	-49.42	-49.47	-49.55	-49.67
	ENV_Mobili_Disp I_M	Max	0.25	0.15	0.08	0.03	0.00	0.00	0.00	0.00
	ENV_Mobili_Disp I_M	Min	-16.26	-16.31	-16.37	-16.46	-16.57	-16.66	-16.60	-16.24
	ENV_Mobili_Disp II_M	Max	0.30	0.19	0.10	0.03	0.00	-0.02	-0.02	-0.02
	ENV_Mobili_Disp II_M	Min	-16.21	-16.27	-16.35	-16.45	-16.57	-16.66	-16.60	-16.25
	ENV_Mobili_Disp III_M	Max	-31.41	-39.60	-48.58	-56.91	-66.37	-80.05	-94.58	-110.77
	ENV_Mobili_Disp III_M	Min	-31.71	-39.78	-48.68	-56.94	-66.37	-80.07	-94.60	-110.79
ы	ENV_Mobili_Disp IV_M	Max	-65.84	-56.82	-48.76	-39.95	-31.92	-27.34	-23.77	-19.38
TICHE	ENV_Mobili_Disp IV_M	Min	-66.14	-57.00	-48.85	-39.98	-31.92	-27.36	-23.79	-19.40
FRIS	ENV_Mobili_Disp I_T	Max	0.27	0.17	0.08	0.03	0.00	0.00	0.00	0.00
AZIONI CARATTERIS	ENV_Mobili_Disp I_T	Min	-16.24	-16.29	-16.36	-16.46	-16.57	-16.66	-16.60	-16.24
CAR	ENV_Mobili_Disp II_T	Max	0.30	0.19	0.09	0.03	0.00	-0.02	-0.02	-0.02
NO	ENV_Mobili_Disp II_T	Min	-16.21	-16.27	-16.35	-16.45	-16.57	-16.66	-16.60	-16.25
AZI	ENV_Mobili_Disp III_T	Max	-19.13	-20.81	-23.29	-26.92	-31.95	-38.43	-46.60	-59.15
	ENV_Mobili_Disp III_T	Min	-19.43	-21.00	-23.38	-26.95	-31.95	-38.45	-46.61	-59.17
	ENV_Mobili_Disp IV_T	Max	-31.49	-26.78	-23.38	-21.08	-19.56	-18.57	-17.86	-17.02
	ENV_Mobili_Disp IV_T	Min	-31.79	-26.97	-23.47	-21.11	-19.56	-18.58	-17.88	-17.04
	ENV_Mobili_Disp I_M_V	Max	0.25	0.15	0.08	0.03	0.00	0.00	0.00	0.00
	ENV_Mobili_Disp I_M_V	Min	-16.26	-16.31	-16.37	-16.46	-16.58	-16.66	-16.60	-16.24
	ENV_Mobili_Disp II_M_V	Max	0.30	0.19	0.10	0.03	0.00	-0.02	-0.02	-0.02
	ENV_Mobili_Disp II_M_V	Min	-16.21	-16.27	-16.35	-16.45	-16.57	-16.66	-16.60	-16.25
	ENV_Mobili_Disp III_M_V	Max	-31.41	-39.60	-48.58	-56.91	-66.37	-80.05	-94.58	-110.77
			-31.71	-39.78		-56.94	-66.37	-80.07		

	1									
	ENV_Mobili_Disp IV_M_V	Max	-65.84	-56.82	-48.76	-39.95	-31.92	-27.34	-23.77	-19.38
	ENV_Mobili_Disp IV_M_V	Min	-66.14	-57.00	-48.85	-39.98	-31.92	-27.36	-23.79	-19.40
	ENV_Mobili_Disp I_T_V	Max	0.27	0.17	0.08	0.03	0.00	0.00	0.00	0.00
	ENV_Mobili_Disp I_T_V	Min	-16.24	-16.29	-16.36	-16.46	-16.57	-16.66	-16.60	-16.24
	ENV_Mobili_Disp II_T_V	Max	0.30	0.19	0.10	0.03	0.00	-0.02	-0.02	-0.02
	ENV_Mobili_Disp II_T_V	Min	-16.21	-16.28	-16.35	-16.45	-16.57	-16.66	-16.60	-16.25
	ENV_Mobili_Disp III_T_V	Max	-19.13	-20.81	-23.29	-26.92	-31.95	-38.43	-46.60	-59.15
	ENV_Mobili_Disp III_T_V	Min	-19.43	-21.00	-23.39	-26.95	-31.95	-38.45	-46.61	-59.17
	ENV_Mobili_Disp IV_T_V	Max	-31.49	-26.78	-23.38	-21.08	-19.56	-18.57	-17.86	-17.02
	ENV_Mobili_Disp IV_T_V	Min	-31.79	-26.97	-23.47	-21.11	-19.56	-18.58	-17.88	-17.04
	ENV_SLU IIF_Disp I_M_V	Max	-201.31	-201.44	-201.66	-201.89	-202.11	-202.30	-202.51	-202.68
	ENV_SLU IIF_Disp I_M_V	Min	-223.60	-223.67	-223.86	-224.14	-224.48	-224.79	-224.93	-224.61
	ENV_SLU IIF_Disp II_M_V	Max	-201.24	-201.39	-201.63	-201.87	-202.11	-202.33	-202.54	-202.71
	ENV_SLU IIF_Disp II_M_V	Min	-223.52	-223.62	-223.83	-224.13	-224.48	-224.80	-224.93	-224.62
	ENV_SLU IIF_Disp III_M_V	Max	-244.05	-255.10	-267.34	-278.74	-291.70	-310.38	-330.20	-352.23
NO	ENV_SLU IIF_Disp III_M_V	Min	-244.45	-255.35	-267.47	-278.79	-291.70	-310.40	-330.23	-352.25
STATO LIMITE ULTIMO	ENV_SLU IIF_Disp IV_M_V	Max	-290.53	-278.35	-267.58	-255.85	-245.19	-239.22	-234.61	-228.85
ITE (ENV_SLU IIF_Disp IV_M_V	Min	-290.94	-278.60	-267.71	-255.90	-245.20	-239.24	-234.64	-228.88
רוש	ENV_SLU IIF_Disp I_T_V	Max	-201.28	-201.42	-201.65	-201.88	-202.10	-202.31	-202.51	-202.68
470	ENV_SLU IIF_Disp I_T_V	Min	-223.56	-223.64	-223.85	-224.14	-224.48	-224.80	-224.93	-224.62
ST	ENV_SLU IIF_Disp II_T_V	Max	-201.24	-201.39	-201.63	-201.87	-202.11	-202.33	-202.54	-202.71
	ENV_SLU IIF_Disp II_T_V	Min	-223.53	-223.62	-223.83	-224.13	-224.48	-224.80	-224.93	-224.62
	ENV_SLU IIF_Disp III_T_V	Max	-227.47	-229.74	-233.20	-238.26	-245.23	-254.19	-265.42	-282.54
	ENV_SLU IIF_Disp III_T_V	Min	-227.87	-229.99	-233.33	-238.30	-245.24	-254.21	-265.45	-282.57
	ENV_SLU IIF_Disp IV_T_V	Max	-244.16	-237.80	-233.32	-230.37	-228.51	-227.37	-226.63	-225.67
	ENV_SLU IIF_Disp IV_T_V	Min	-244.56	-238.05	-233.45	-230.42	-228.52	-227.40	-226.66	-225.69
			T25F	T26F	T27F	T28F	T29F			
			(FR1091)	(FR1106)	(FR1121)	(FR1136)	(FR1151)			
	Peso Proprio		-94.75	-94.24	-93.29	-91.68	-88.21			
	Perm Portati		-49.88	-50.22	-50.79	-52.09	-51.42			
	ENV_Mobili_Disp I_M	Max	0.00	0.00	0.00	0.00	0.00			
	ENV_Mobili_Disp I_M	Min	-15.38	-13.75	-10.86	-5.04	-1.11			
Lui	ENV_Mobili_Disp II_M	Max	-0.01	-0.01	0.00	0.00	0.00			
ICH F	ENV_Mobili_Disp II_M	Min	-15.38	-13.75	-10.86	-5.04	-1.11			
RIST	ENV_Mobili_Disp III_M	Max	-113.51	-106.88	-88.08	-58.24	-33.61			
TTE	ENV_Mobili_Disp III_M	Min	-113.52	-106.88	-88.08	-58.24	-33.61			
ARA	ENV_Mobili_Disp IV_M	Max	-15.60	-12.66	-9.43	-3.70	-0.01			
AZIONI CARATTERISTICHE	ENV_Mobili_Disp IV_M	Min	-15.61	-12.66	-9.43	-3.70	-0.02			
AZIC	ENV_Mobili_Disp I_T	Max	0.00	0.00	0.00	0.00	0.00			
	ENV_Mobili_Disp I_T	Min	-15.38	-13.75	-10.86	-5.04	-1.11			
	ENV_Mobili_Disp II_T	Max	-0.01	-0.01	0.00	0.00	0.00			
	ENV_Mobili_Disp II_T	Min	-15.38	-13.75	-10.86	-5.04	-1.11			
	ENV_Mobili_Disp III_T	Max	-61.88	-58.42	-49.10	-28.97	-15.86			
	ENV_Mobili_Disp III_T	Min	-61.89	-58.43	-49.10	-28.97	-15.87			

	ENV_Mobili_Disp IV_T	Max	-15.63	-13.53	-10.42	-4.59	-0.75
	ENV_Mobili_Disp IV_T	Min	-15.64	-13.54	-10.42	-4.59	-0.76
	ENV_Mobili_Disp I_M_V	Max	0.00	0.00	0.00	0.00	0.00
	ENV_Mobili_Disp I_M_V	Min	-15.38	-13.75	-10.86	-5.04	-1.11
	ENV_Mobili_Disp II_M_V	Max	-0.01	-0.01	0.00	0.00	0.00
	ENV_Mobili_Disp II_M_V	Min	-15.38	-13.75	-10.86	-5.04	-1.11
	ENV_Mobili_Disp III_M_V	Max	-113.51	-106.88	-88.08	-58.24	-33.61
	ENV_Mobili_Disp III_M_V	Min	-113.52	-106.88	-88.08	-58.24	-33.61
	ENV_Mobili_Disp IV_M_V	Max	-15.60	-12.66	-9.43	-3.70	-0.01
	ENV_Mobili_Disp IV_M_V	Min	-15.61	-12.66	-9.43	-3.70	-0.02
	ENV_Mobili_Disp I_T_V	Max	0.00	0.00	0.00	0.00	0.00
	ENV_Mobili_Disp I_T_V	Min	-15.38	-13.75	-10.86	-5.04	-1.11
	ENV_Mobili_Disp II_T_V	Max	-0.01	-0.01	0.00	0.00	0.00
	ENV_Mobili_Disp II_T_V	Min	-15.38	-13.75	-10.86	-5.04	-1.11
	ENV_Mobili_Disp III_T_V	Max	-61.88	-58.42	-49.10	-28.97	-15.86
	ENV_Mobili_Disp III_T_V	Min	-61.89	-58.43	-49.10	-28.97	-15.87
	ENV_Mobili_Disp IV_T_V	Мах	-15.63	-13.53	-10.42	-4.59	-0.75
	ENV_Mobili_Disp IV_T_V	Min	-15.64	-13.54	-10.42	-4.59	-0.76
	ENV_SLU IIF_Disp I_M_V	Max	-202.73	-202.54	-202.13	-201.90	-196.21
	ENV_SLU IIF_Disp I_M_V	Min	-223.49	-221.11	-216.78	-208.70	-197.72
	ENV_SLU IIF_Disp II_M_V	Max	-202.75	-202.56	-202.13	-201.90	-196.21
	ENV_SLU IIF_Disp II_M_V	Min	-223.49	-221.11	-216.78	-208.70	-197.72
	ENV_SLU IIF_Disp III_M_V	Max	-355.97	-346.83	-321.03	-280.53	-241.58
NO	ENV_SLU IIF_Disp III_M_V	Min	-355.98	-346.84	-321.03	-280.53	-241.59
STATO LIMITE ULTIMO	ENV_SLU IIF_Disp IV_M_V	Max	-223.79	-219.63	-214.85	-206.90	-196.23
ITE (ENV_SLU IIF_Disp IV_M_V	Min	-223.81	-219.64	-214.86	-206.90	-196.24
IIM	ENV_SLU IIF_Disp I_T_V	Max	-202.73	-202.55	-202.13	-201.90	-196.21
470	ENV_SLU IIF_Disp I_T_V	Min	-223.49	-221.11	-216.78	-208.70	-197.72
57.	ENV_SLU IIF_Disp II_T_V	Max	-202.75	-202.56	-202.13	-201.90	-196.21
	ENV_SLU IIF_Disp II_T_V	Min	-223.49	-221.11	-216.78	-208.70	-197.72
	ENV_SLU IIF_Disp III_T_V	Max	-286.27	-281.42	-268.41	-241.01	-217.63
	ENV_SLU IIF_Disp III_T_V	Min	-286.29	-281.42	-268.41	-241.01	-217.63
	ENV_SLU IIF_Disp IV_T_V	Max	-223.83	-220.82	-216.19	-208.10	-197.23
	ENV_SLU IIF_Disp IV_T_V	Min	-223.84	-220.83	-216.19	-208.10	-197.24

TAGLIO ALL'APPOGGIO X=15.70m

V2	ľκΝ
----	-----

		_				V2	[kN]			
			T1F	T2F	T3F	T4F	T5F	T6F	T7F	T8F
			(FR409)	(FR441)	(FR456)	(FR471)	(FR486)	(FR501)	(FR516)	(FR531)
	Peso Proprio		82.09	86.92	90.63	93.14	94.59	95.23	95.38	95.27
	Perm Portati		38.00	42.58	46.28	48.82	50.45	51.59	52.65	53.92
	ENV_Mobili_Disp I_M N	1ax	42.75	38.90	31.77	24.34	19.15	15.92	13.95	13.01
	ENV_Mobili_Disp I_M N	1in	31.45	25.59	16.82	8.32	2.69	-0.31	-1.54	-1.74
	ENV_Mobili_Disp II_M N	1ax	14.04	13.42	13.88	14.74	15.38	15.48	15.05	14.55
	ENV_Mobili_Disp II_M N	1in	13.94	13.25	13.61	14.36	14.96	15.20	14.87	13.41
	ENV_Mobili_Disp III_M N	lax	13.92	14.81	15.59	16.03	16.09	15.77	15.11	14.14
	ENV_Mobili_Disp III_M N	1in	-0.05	-0.10	-0.20	-0.32	-0.40	-0.35	-0.05	0.65
	ENV_Mobili_Disp IV_M N	lax	12.63	12.70	12.42	12.06	12.45	14.92	21.49	34.13
	ENV_Mobili_Disp IV_M N	1in	-1.34	-2.21	-3.37	-4.29	-4.04	-1.20	6.33	20.65
	ENV_Mobili_Disp I_T N	1ax	56.26	29.59	23.07	19.69	17.56	15.97	14.67	13.85
	ENV_Mobili_Disp I_T N	1in	44.96	16.28	8.12	3.67	1.10	-0.26	-0.82	-0.91
	ENV_Mobili_Disp II_T N	1ax	12.25	13.30	14.60	15.55	16.01	15.88	15.25	14.62
Щ	ENV_Mobili_Disp II_T N	1in	12.16	13.14	14.32	15.17	15.59	15.60	15.07	13.49
AZIONI CARATTERISTICHE	ENV_Mobili_Disp III_T N	1ax	13.90	14.78	15.56	16.00	16.08	15.82	15.27	14.48
ERIS	ENV_Mobili_Disp III_T N	1in	-0.07	-0.13	-0.23	-0.35	-0.40	-0.30	0.11	0.99
A TT	ENV_Mobili_Disp IV_T N	1ax	13.27	13.75	14.01	14.05	14.17	14.88	16.95	21.67
CAR	ENV_Mobili_Disp IV_T N	1in	-0.70	-1.16	-1.78	-2.30	-2.32	-1.24	1.79	8.18
NO	ENV_Mobili_Disp I_M_V N	1ax	43.26	39.35	32.09	24.53	19.24	15.95	13.96	13.03
AZIO	ENV_Mobili_Disp I_M_V N	1in	30.93	25.14	16.50	8.13	2.59	-0.34	-1.55	-1.76
	ENV_Mobili_Disp II_M_V N	lax	14.55	13.87	14.20	14.93	15.47	15.51	15.06	14.57
	ENV_Mobili_Disp II_M_V N	1in	13.43	12.80	13.29	14.16	14.87	15.17	14.86	13.39
	ENV_Mobili_Disp III_M_V N	lax	14.44	15.26	15.91	16.23	16.18	15.80	15.12	14.16
	ENV_Mobili_Disp III_M_V N	1in	-0.57	-0.55	-0.52	-0.51	-0.49	-0.38	-0.06	0.63
	ENV_Mobili_Disp IV_M_V N	1ax	13.15	13.15	12.74	12.26	12.54	14.95	21.50	34.15
	ENV_Mobili_Disp IV_M_V N	1in	-1.86	-2.66	-3.69	-4.48	-4.13	-1.23	6.33	20.63
	ENV_Mobili_Disp I_T_V N	lax	56.77	30.04	23.39	19.88	17.65	16.00	14.67	13.87
	ENV_Mobili_Disp I_T_V N	1in	44.44	15.83	7.80	3.47	1.01	-0.29	-0.83	-0.93
	ENV_Mobili_Disp II_T_V N	lax	12.77	13.75	14.92	15.75	16.10	15.91	15.26	14.64
	ENV_Mobili_Disp II_T_V N	1in	11.64	12.69	14.00	14.98	15.50	15.57	15.07	13.47
	ENV_Mobili_Disp III_T_V N	1ax	14.42	15.23	15.88	16.19	16.17	15.85	15.28	14.50
	ENV_Mobili_Disp III_T_V N	1in	-0.59	-0.58	-0.55	-0.54	-0.50	-0.33	0.11	0.97
	ENV_Mobili_Disp IV_T_V N	1ax	13.78	14.20	14.33	14.24	14.26	14.91	16.95	21.69
	ENV_Mobili_Disp IV_T_V N	1in	-1.22	-1.61	-2.10	-2.49	-2.41	-1.27	1.78	8.16
MO	ENV_SLU IIF_Disp I_M_V N	lax	226.30	234.40	235.12	232.12	229.35	227.48	226.57	227.09
STATO LIMITE ULTIMO	ENV_SLU IIF_Disp I_M_V N	1in	209.51	215.08	213.99	209.91	206.85	205.49	205.64	207.11
TE.	ENV_SLU IIF_Disp II_M_V N	lax	187.55	200.00	210.98	219.16	224.26	226.89	228.05	229.16
II.	ENV_SLU IIF_Disp II_M_V N	1in	185.87	198.43	209.65	218.07	223.42	226.42	227.79	227.57
ATO	ENV_SLU IIF_Disp III_M_V N	lax	187.39	201.88	213.28	220.90	225.22	227.28	228.13	228.60
ST	ENV_SLU IIF_Disp III_M_V N	1in	166.98	180.40	191.01	198.26	202.69	205.43	207.65	210.34

1	ı									
	ENV_SLU IIF_Disp IV_M_V	Max	185.65	199.04	209.00	215.55	220.31	226.13	236.75	255.60
	ENV_SLU IIF_Disp IV_M_V	Min	165.24	177.56	186.73	192.90	197.77	204.28	216.27	237.33
	ENV_SLU IIF_Disp I_T_V	Max	244.54	221.84	223.38	225.84	227.20	227.55	227.54	228.21
	ENV_SLU IIF_Disp I_T_V	Min	227.74	202.52	202.25	203.63	204.71	205.55	206.61	208.23
	ENV_SLU IIF_Disp II_T_V	Max	185.13	199.85	211.94	220.26	225.12	227.42	228.33	229.26
	ENV_SLU IIF_Disp II_T_V	Min	183.46	198.27	210.61	219.17	224.27	226.96	228.07	227.67
	ENV_SLU IIF_Disp III_T_V	Max	187.36	201.85	213.24	220.86	225.21	227.35	228.36	229.06
	ENV_SLU IIF_Disp III_T_V	Min	166.95	180.36	190.96	198.22	202.68	205.50	207.87	210.79
	ENV_SLU IIF_Disp IV_T_V	Max	186.51	200.46	211.16	218.23	222.63	226.08	230.61	238.77
	ENV_SLU IIF_Disp IV_T_V	Min	166.10	178.97	188.88	195.58	200.10	204.23	210.13	220.50
			T9F	T10F	T11F	T12F	T13F	T14F	T15F	T16F
			(FR546)	(FR561)	(FR576)	(FR591)	(FR606)	(FR621)	(FR910)	(FR968)
	Peso Proprio		95.07	94.88	94.74	94.64	94.59	94.57	94.57	94.57
	Perm Portati		56.01	61.47	55.65	53.21	51.68	50.57	49.85	49.46
	ENV_Mobili_Disp I_M	Max	12.17	10.00	12.89	14.21	15.05	15.63	15.99	16.17
	ENV_Mobili_Disp I_M	Min	-1.44	-0.99	-0.56	-0.25	-0.06	-0.27	-0.38	-0.34
	ENV_Mobili_Disp II_M	Max	13.55	11.00	13.51	14.52	15.15	15.62	15.93	16.11
	ENV_Mobili_Disp II_M	Min	10.79	5.57	2.86	1.20	0.21	-0.28	-0.43	-0.41
	ENV_Mobili_Disp III_M	Max	12.71	9.79	12.12	13.42	15.35	19.02	23.49	27.11
	ENV_Mobili_Disp III_M	Min	1.95	4.30	9.34	12.29	15.18	18.72	23.05	26.70
	ENV_Mobili_Disp IV_M	Max	50.72	64.36	87.42	103.46	109.76	108.03	92.97	79.29
·	ENV_Mobili_Disp IV_M	Min	39.96	58.87	84.64	102.32	109.59	107.73	92.53	78.88
	ENV_Mobili_Disp I_T	Max	12.86	10.47	13.16	14.33	15.08	15.61	15.95	16.14
	ENV_Mobili_Disp I_T	Min	-0.75	-0.52	-0.30	-0.13	-0.03	-0.29	-0.41	-0.37
<u> </u>	ENV_Mobili_Disp II_T	Max	13.56	10.98	13.47	14.49	15.13	15.60	15.92	16.11
17.	ENV_Mobili_Disp II_T	Min	10.80	5.54	2.82	1.16	0.19	-0.29	-0.44	-0.41
CARATTERISTICHE	ENV_Mobili_Disp III_T	Max	13.27	10.56	12.96	13.93	14.68	16.02	18.70	32.76
ATT	ENV_Mobili_Disp III_T	Min	2.51	5.07	10.18	12.79	14.51	15.72	18.26	32.36
CAR	ENV_Mobili_Disp IV_T	Max	32.62	79.08	190.46	148.60	203.65	132.50	142.69	96.67
ION	ENV_Mobili_Disp IV_T	Min	21.86	73.59	187.68	147.47	203.48	132.20	142.25	96.26
AZI	ENV_Mobili_Disp I_M_V	Max	12.19	10.02	12.90	14.22	15.05	15.63	15.99	16.18
	ENV_Mobili_Disp I_M_V	Min	-1.46	-1.00	-0.58	-0.26	-0.06	-0.27	-0.38	-0.34
	ENV_Mobili_Disp II_M_V	Max	13.57	11.02	13.52	14.52	15.15	15.62	15.93	16.11
	ENV_Mobili_Disp II_M_V	Min	10.77	5.55	2.85	1.19	0.21	-0.28	-0.43	-0.41
	ENV_Mobili_Disp III_M_V	Max	12.73	9.81	12.13	13.43	15.35	19.02	23.49	27.11
	ENV_Mobili_Disp III_M_V	Min	1.93	4.28	9.32	12.28	15.18	18.72	23.05	26.70
	ENV_Mobili_Disp IV_M_V	Max	50.74	64.38	87.43	103.46	109.76	108.03	92.97	79.29
	ENV_Mobili_Disp IV_M_V	Min	39.94	58.86	84.63	102.31	109.58	107.73	92.53	78.88
	ENV_Mobili_Disp I_T_V	Max	12.88	10.48	13.17	14.34	15.08	15.61	15.95	16.14
	ENV_Mobili_Disp I_T_V	Min	-0.77	-0.54	-0.31	-0.14	-0.03	-0.29	-0.41	-0.37
	ENV_Mobili_Disp II_T_V	Max	13.58	10.99	13.48	14.49	15.13	15.60	15.92	16.11
	ENV_Mobili_Disp II_T_V	Min	10.77	5.52	2.81	1.16	0.18	-0.29	-0.44	-0.41
	ENV_Mobili_Disp III_T_V	Max	13.29	10.58	12.97	13.93	14.68	16.02	18.70	32.76
	ENV_Mobili_Disp III_T_V	Min	2.49	5.06	10.17	12.79	14.50	15.72	18.26	32.36

	ENV_Mobili_Disp IV_T_V	Max	32.64	79.10	190.47	148.61	203.65	132.50	142.69	96.67
	ENV_Mobili_Disp IV_T_V	Min	21.84	73.57	187.67	147.46	203.48	132.20	142.25	96.26
	ENV_SLU IIF_Disp I_M_V	Max	228.82	233.83	228.79	226.78	225.53	224.62	224.02	223.69
	ENV_SLU IIF_Disp I_M_V	Min	210.38	218.95	210.59	207.24	205.13	203.16	201.93	201.40
	ENV_SLU IIF_Disp II_M_V	Max	230.69	235.19	229.62	227.20	225.67	224.60	223.94	223.61
	ENV_SLU IIF_Disp II_M_V	Min Max	226.90	227.80	215.21	209.19	205.49	203.15	201.85	201.31
	ENV_SLU IIF_Disp III_M_V ENV_SLU IIF_Disp III_M_V	Min	229.54 214.96	233.54 226.08	227.74 223.95	225.72 224.16	225.94 225.70	229.20 228.79	234.15 233.55	238.46 237.91
IMC	ENV_SLU IIF_Disp IV_M_V	Max	280.86	307.22	329.40	347.26	353.38	349.37	327.95	308.90
STATO LIMITE ULTIMO	ENV SLU IIF Disp IV M V	Min	266.27	299.76	325.61	345.71	353.15	348.96	327.35	308.35
AITE	 ENV_SLU	Max	229.75	234.46	229.15	226.94	225.57	224.60	223.97	223.65
V 7 C	, ENV_SLU	Min	211.31	219.58	210.94	207.40	205.17	203.14	201.88	201.35
IAT	ENV_SLU IIF_Disp II_T_V	Max	230.69	235.15	229.57	227.15	225.64	224.59	223.93	223.60
S	ENV_SLU IIF_Disp II_T_V	Min	226.90	227.76	215.16	209.15	205.46	203.13	201.84	201.31
	ENV SLU IIF Disp III T V	Мах	230.30	234.59	228.88	226.40	225.03	225.15	227.69	246.09
	ENV SLU IIF Disp III T V	Min	215.72	227.13	225.09	224.85	224.79	224.74	227.09	245.54
	ENV SLU IIF Disp IV T V	Max	256.43	327.08	468.50	408.21	480.14	382.39	395.07	332.36
	ENV SLU IIF Disp IV T V	Min	241.84	319.62	464.71	406.66	479.91	381.99	394.47	331.81
			T17F	T18F	T19F	T20F	T21F	T22F	T23F	T24F
			(FR983)	(FR998)	(FR1013)	(FR1028)	(FR1043)	(FR1058)	(FR1073)	(FR1088)
	Peso Proprio		94.58	94.61	94.65	94.71	94.80	94.89	94.96	94.95
	Perm Portati		49.30	49.28	49.32	49.37	49.42	49.47	49.55	49.67
	ENV_Mobili_Disp I_M	Max	16.26	16.31	16.37	16.46	16.57	16.66	16.60	16.24
	ENV_Mobili_Disp I_M	Min	-0.25	-0.15	-0.08	-0.03	0.00	0.00	0.00	0.00
	ENV_Mobili_Disp II_M	Max	16.21	16.27	16.35	16.45	16.57	16.66	16.60	16.25
	ENV_Mobili_Disp II_M	Min	-0.30	-0.19	-0.10	-0.03	0.00	0.02	0.02	0.02
	ENV_Mobili_Disp III_M	Max	31.71	39.78	48.68	56.94	66.37	80.07	94.60	110.79
	ENV_Mobili_Disp III_M	Min	31.41	39.60	48.58	56.91	66.37	80.05	94.58	110.77
	ENV_Mobili_Disp IV_M	Max	66.14	57.00	48.85	39.98	31.92	27.36	23.79	19.40
#	ENV_Mobili_Disp IV_M	Min	65.84	56.82	48.76	39.95	31.92	27.34	23.77	19.38
ISTICHE	ENV_Mobili_Disp I_T	Мах	16.24	16.29	16.36	16.46	16.57	16.66	16.60	16.24
	ENV_Mobili_Disp I_T	Min	-0.27	-0.17	-0.08	-0.03	0.00	0.00	0.00	0.00
AZIONI CARATTEI	ENV_Mobili_Disp II_T	Мах	16.21	16.27	16.35	16.45	16.57	16.66	16.60	16.25
2	ENV_Mobili_Disp II_T	Min	-0.30	-0.19	-0.09	-0.03	0.00	0.02	0.02	0.02
NO.	ENV_Mobili_Disp III_T	Max	65.08	50.44	72.71	71.04	125.05	97.12	143.61	134.04
AZ	ENV_Mobili_Disp III_T	Min	64.78	50.26	72.61	71.01	125.04	97.11	143.59	134.03
	ENV_Mobili_Disp IV_T	Max	124.90	71.05	72.79	50.56	65.22	32.96	18.97	16.38
	ENV_Mobili_Disp IV_T	Min	124.60	70.87	72.70	50.53	65.22	32.94	18.95	16.36
	ENV_Mobili_Disp I_M_V	Max	16.26	16.31	16.37	16.46	16.58	16.66	16.60	16.24
	ENV_Mobili_Disp I_M_V	Min	-0.25	-0.15	-0.08	-0.03	0.00	0.00	0.00	0.00
	ENV_Mobili_Disp II_M_V	Max	16.21	16.27	16.35	16.45	16.57	16.66	16.60	16.25
	ENV_Mobili_Disp II_M_V	Min	-0.30	-0.19	-0.10	-0.03	0.00	0.02	0.02	0.02
	ENV_Mobili_Disp III_M_V	Мах	31.71	39.78	48.68	56.94	66.37	80.07	94.60	110.79
	ENV_Mobili_Disp III_M_V	Min	31.41	39.60	48.58	56.91	66.37	80.05	94.58	110.77
	ENV_Mobili_Disp IV_M_V	Max	66.14	57.00	48.85	39.98	31.92	27.36	23.79	19.40
			00.17							

		ENV_Mobili_Disp IV_M_V	Min	65.84	56.82	48.76	39.95	31.92	27.34	23.77	19.38
		ENV_Mobili_Disp I_T_V	Max	16.24	16.29	16.36	16.46	16.57	16.66	16.60	16.24
		ENV_Mobili_Disp I_T_V	Min	-0.27	-0.17	-0.08	-0.03	0.00	0.00	0.00	0.00
		ENV_Mobili_Disp II_T_V	Max	16.21	16.28	16.35	16.45	16.57	16.66	16.60	16.25
		ENV_Mobili_Disp II_T_V	Min	-0.30	-0.19	-0.10	-0.03	0.00	0.02	0.02	0.02
		ENV_Mobili_Disp III_T_V	Max	65.08	50.44	72.71	71.04	125.05	97.12	143.61	134.04
		ENV_Mobili_Disp III_T_V	Min	64.78	50.26	72.61	71.01	125.04	97.11	143.59	134.03
		ENV_Mobili_Disp IV_T_V	Max	124.90	71.05	72.79	50.56	65.22	32.96	18.97	16.38
		ENV_Mobili_Disp IV_T_V	Min	124.60	70.87	72.70	50.53	65.22	32.94	18.95	16.36
		ENV_SLU IIF_Disp I_M_V	Max	223.60	223.67	223.86	224.14	224.48	224.79	224.93	224.61
		ENV_SLU IIF_Disp I_M_V	Min	201.31	201.44	201.66	201.89	202.11	202.30	202.51	202.68
		ENV_SLU IIF_Disp II_M_V	Max	223.52	223.62	223.83	224.13	224.48	224.80	224.93	224.62
		ENV_SLU IIF_Disp II_M_V	Min	201.24	201.39	201.63	201.87	202.11	202.33	202.54	202.71
		ENV_SLU IIF_Disp III_M_V	Max	244.45	255.35	267.47	278.79	291.70	310.40	330.23	352.25
	MO	ENV_SLU IIF_Disp III_M_V	Min	244.05	255.10	267.34	278.74	291.70	310.38	330.20	352.23
	LIMITE ULTIMO	ENV_SLU IIF_Disp IV_M_V	Max	290.94	278.60	267.71	255.90	245.20	239.24	234.64	228.88
	JTE (ENV_SLU IIF_Disp IV_M_V	Min	290.53	278.35	267.58	255.85	245.19	239.22	234.61	228.85
	Π	ENV_SLU IIF_Disp I_T_V	Max	223.56	223.64	223.85	224.14	224.48	224.80	224.93	224.62
	STATO	ENV_SLU IIF_Disp I_T_V	Min	201.28	201.42	201.65	201.88	202.10	202.31	202.51	202.68
	ST	ENV_SLU IIF_Disp II_T_V	Max	223.53	223.62	223.83	224.13	224.48	224.80	224.93	224.62
		ENV_SLU IIF_Disp II_T_V	Min	201.24	201.39	201.63	201.87	202.11	202.33	202.54	202.71
		ENV_SLU IIF_Disp III_T_V	Max	289.50	269.75	299.91	297.82	370.92	333.42	396.38	383.64
		ENV_SLU IIF_Disp III_T_V	Min	289.10	269.50	299.79	297.78	370.91	333.40	396.36	383.62
		ENV_SLU IIF_Disp IV_T_V	Max	370.26	297.57	300.03	270.17	290.15	246.80	228.13	224.80
		ENV_SLU IIF_Disp IV_T_V	Min	369.85	297.32	299.90	270.13	290.14	246.78	228.10	224.78
				T25F	T26F	T27F	T28F	T29F			
_				(FR1103)	(FR1118)	(FR1133)	(FR1148)	(FR1163)			
		Peso Proprio		94.75	94.24	93.29	91.68	88.21			
		Perm Portati		49.88	50.22	50.79	52.09	51.42			
		ENV_Mobili_Disp I_M	Max	15.38	13.75	10.86	5.04	1.11			
		ENV_Mobili_Disp I_M	Min	0.00	0.00	0.00	0.00	0.00			
		ENV_Mobili_Disp II_M	Max	15.38	13.75	10.86	5.04	1.11			
	H	ENV_Mobili_Disp II_M	Min	0.01	0.01	0.00	0.00	0.00			
	ISTI	ENV_Mobili_Disp III_M	Max	113.52	106.88	88.08	58.24	33.61			
	TER	ENV_Mobili_Disp III_M	Min	113.51	106.88	88.08	58.24	33.61			
	IRAI	ENV_Mobili_Disp IV_M	Max	1 5 6 1			2 70	0.02			
	2		IVIUX	15.61	12.66	9.43	3.70	0.02			
	>	ENV_Mobili_Disp IV_M	Min	15.60	12.66 12.66	9.43 9.43	3.70	0.01			
	ZIONI	ENV_Mobili_Disp IV_M ENV_Mobili_Disp I_T		15.60 15.38	12.66 13.75	9.43 10.86	3.70 5.04	0.01 1.11			
	AZIONI CARATTERISTICHE		Min	15.60	12.66	9.43	3.70	0.01			
	AZIONI	ENV_Mobili_Disp I_T	Min Max	15.60 15.38 0.00 15.38	12.66 13.75 0.00 13.75	9.43 10.86 0.00 10.86	3.70 5.04 0.00 5.04	0.01 1.11 0.00 1.11			
	AZIONI	ENV_Mobili_Disp I_T ENV_Mobili_Disp I_T	Min Max Min	15.60 15.38 0.00 15.38 0.01	12.66 13.75 0.00 13.75 0.01	9.43 10.86 0.00 10.86 0.00	3.70 5.04 0.00 5.04 0.00	0.01 1.11 0.00 1.11 0.00			
	AZIONI	ENV_Mobili_Disp I_T ENV_Mobili_Disp I_T ENV_Mobili_Disp II_T	Min Max Min Max	15.60 15.38 0.00 15.38 0.01 205.81	12.66 13.75 0.00 13.75 0.01 150.63	9.43 10.86 0.00 10.86 0.00 191.17	3.70 5.04 0.00 5.04 0.00 74.32	0.01 1.11 0.00 1.11 0.00 9.49			
	AZIONI	ENV_Mobili_Disp I_T ENV_Mobili_Disp I_T ENV_Mobili_Disp II_T ENV_Mobili_Disp II_T	Min Max Min Max Min	15.60 15.38 0.00 15.38 0.01	12.66 13.75 0.00 13.75 0.01	9.43 10.86 0.00 10.86 0.00	3.70 5.04 0.00 5.04 0.00	0.01 1.11 0.00 1.11 0.00			

	ENV_Mobili_Disp IV_T	Min	14.93	13.19	10.35	4.62	0.80
	ENV_Mobili_Disp I_M_V	Max	15.38	13.75	10.86	5.04	1.11
	ENV_Mobili_Disp I_M_V	Min	0.00	0.00	0.00	0.00	0.00
	ENV_Mobili_Disp II_M_V	Max	15.38	13.75	10.86	5.04	1.11
	ENV_Mobili_Disp II_M_V	Min	0.01	0.01	0.00	0.00	0.00
	ENV_Mobili_Disp III_M_V	Max	113.52	106.88	88.08	58.24	33.61
	ENV_Mobili_Disp III_M_V	Min	113.51	106.88	88.08	58.24	33.61
	ENV_Mobili_Disp IV_M_V	Max	15.61	12.66	9.43	3.70	0.02
	ENV_Mobili_Disp IV_M_V	Min	15.60	12.66	9.43	3.70	0.01
	ENV_Mobili_Disp I_T_V	Max	15.38	13.75	10.86	5.04	1.11
	ENV_Mobili_Disp I_T_V	Min	0.00	0.00	0.00	0.00	0.00
	ENV_Mobili_Disp II_T_V	Max	15.38	13.75	10.86	5.04	1.11
	ENV_Mobili_Disp II_T_V	Min	0.01	0.01	0.00	0.00	0.00
	ENV_Mobili_Disp III_T_V	Max	205.81	150.63	191.17	74.32	9.49
	ENV_Mobili_Disp III_T_V	Min	205.80	150.62	191.17	74.32	9.48
	ENV_Mobili_Disp IV_T_V	Max	14.94	13.20	10.35	4.62	0.80
	ENV_Mobili_Disp IV_T_V	Min	14.93	13.19	10.35	4.62	0.80
	ENV_SLU IIF_Disp I_M_V	Max	223.49	221.11	216.78	208.70	197.72
	ENV_SLU IIF_Disp I_M_V	Min	202.73	202.54	202.13	201.90	196.21
	ENV_SLU IIF_Disp II_M_V	Max	223.49	221.11	216.78	208.70	197.72
	ENV_SLU IIF_Disp II_M_V	Min	202.75	202.56	202.13	201.90	196.21
	ENV_SLU IIF_Disp III_M_V	Max	355.98	346.84	321.03	280.53	241.59
МО	ENV_SLU IIF_Disp III_M_V	Min	355.97	346.83	321.03	280.53	241.58
STATO LIMITE ULTIMO	ENV_SLU IIF_Disp IV_M_V	Max	223.81	219.64	214.86	206.90	196.24
ITE	ENV_SLU IIF_Disp IV_M_V	Min	223.79	219.63	214.85	206.90	196.23
TIW	ENV_SLU IIF_Disp I_T_V	Max	223.49	221.11	216.78	208.70	197.72
	ENV_SLU IIF_Disp I_T_V	Min	202.73	202.55	202.13	201.90	196.21
57	ENV_SLU IIF_Disp II_T_V	Max	223.49	221.11	216.78	208.70	197.72
	ENV_SLU IIF_Disp II_T_V	Min	202.75	202.56	202.13	201.90	196.21
	ENV_SLU IIF_Disp III_T_V	Max	480.58	405.89	460.21	302.23	209.02
	ENV_SLU IIF_Disp III_T_V	Min	480.56	405.88	460.21	302.23	209.02
	ENV_SLU IIF_Disp IV_T_V	Max	222.90	220.37	216.10	208.13	197.29
	ENV_SLU IIF_Disp IV_T_V	Min	222.88	220.36	216.10	208.13	197.29

4.4 VERIFICA TRAVE IN C.A.P IMPALCATO ORIGINALE

Nel capitolo di seguito riportato si esegue la verifica del solettone originale mediante le sollecitazioni ottenute nella configurazione finale dell'opera, comprensiva del primo e del secondo allargamento: come già spiegato, l'impalcato è stato schematizzato mediante una serie di travi acoostate, di cui si riporta la verifica nel seguito.

Si premette un'immagine della soletta, come riportata nel progetto dell'opera originale, seguita dalla geometria della trave analizzata.

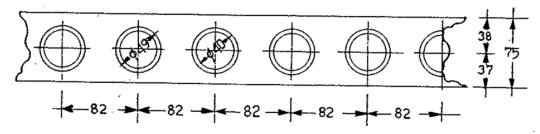


Figura 4-25 - Sezione della soletta con alleggerimenti (fig.5 pag.12 Relazione di calcolo opera originale)

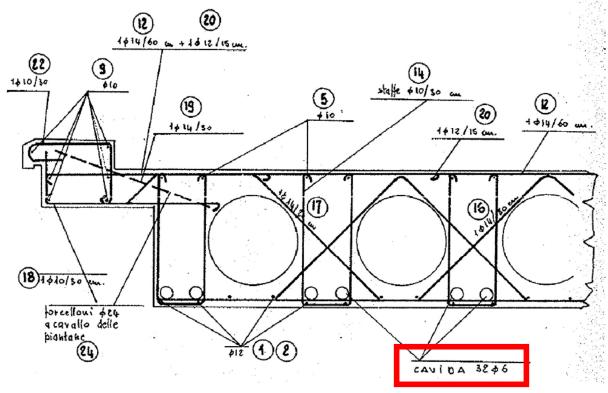


Figura 4-26 - Sezione trasversale della soletta con armature (Tavole di progetto opera originale)

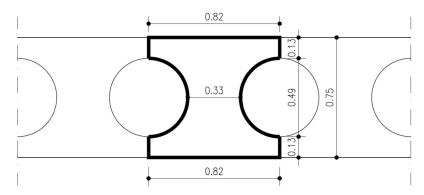


Figura 4-27 - Gometria della sezione resistente analizzata

Come specificato al paragrafo 8.3 delle NTC08, nel capitolo che tratta delle strutture esistenti, la valutazione della sicurezza e la conseguente progettazione degli interventi possono essere eseguiti ai soli SLU. Alla luce di tale prescrizione si riportano, a seguito dei dati geometrici e meccanici inerenti all'impalcato, le verifiche a flessione e taglio eseguite allo Stato Limite Ultimo.

4.4.1 Geometria trave in c.a.p.

Nel presente capitolo vengono riportate le caratteristiche dei materiali e quelle geometriche della trave in c.a.p. analizzata.

Materiali

Calcestruzzo trave c.a.p.	C35/45		
Resistenza cubica caratteristica	R _{ck} =	45	MPa
Resistenza cilindrica caratteristica	f _{ck} =	35	MPa
γ_{c} è il coefficiente parziale di sicurezza relativo al calcestruzzo	γ_{c} =	1.50	
$lpha_{cc}$ è il coefficiente riduttivo per le resistenze di lunga durata	α cc=	0.85	
Resistenza media a compressione f _{cm} = f _{ck} +8 (11.2.2)	f _{cm} =	43.00	MPa
Resistenza media a traz. semplice f _{ctm} =0,30f _{ck} ^{2/3} (11.2.10.2)	f _{ctm} =	3.21	MPa
Resistenza caratt. a traz. semplice f _{ctk} =0,7 f _{ctm} (11.2.10.2)	f _{ctk} =	2.25	MPa
Resistenza di progetto a traz. semplice f_{ctk}/γ_c (4.1.2.1.2)	f _{ctd} =	1.50	MPa
Resistenza media a traz. per flessione f _{cfm} =1,2f _{ctm} (11.2.10.2)	f _{cfm} =	3.85	MPa
Resistenza caratt. a traz. per flessione f _{cfk} =0,7 f _{cfm} (11.2.10.2)	f _{cfk} =	2.70	MPa
Resistenza di calcolo a comp. f_{cd} = α_{cc} f_{ck} / γ_{c} (4.1.2.1.1)	$f_{cd} =$	19.83	MPa
η = 1 per barre di diametro minore uguale a 32mm		1.00	
Tensione tangenziale caratt. di aderenza acciaio-cls (4.1.8)	f_{bk} =2,25 η f_{ctk} =	5.06	MPa
Tensione tangenziale di calcolo di aderenza acciaio-cls (4.1.7)	f_{bd} = f_{bk} / γ_c =	3.37	MPa
Tensione tangenziale di calcolo in zona tesa o in presenza di barre molto addensate	$f_{bd,red} = f_{bd} / 1,5 =$	2.25	MPa
Modulo elastico E _{cm} =22000 [f _{cm} /10] ^{0,3} (11.2.10.3)	E _{cm} =	34077	MPa
Acciaio ordinario		B450C	
Tensione di snervamento caratteristica	$f_{y,k} =$	450	MPa

Tensione di rottura caratteristica	$f_{t,k}=$	540	MPa
γs è il coefficiente parziale di sicurezza relativo all'acciaio	γ_{s} =	1,15	
Tensione di snervamento di progetto $f_{yd} = f_{yk}/\gamma_s$ (4.1.6)	$f_{y,d} =$	391,3	MPa
Modulo elastico	E _s =	210000	MPa
Coefficiente di dilatazione termica lineare	α_s =	1,2E-05	1/C°

Acciaio da precompresso

$\tau_{\text{ptk}} =$	1650.00	Mpa	tensione caratteristica di rottura
f =	1200 00	1400	tanaiana di anamananta alla 0.00/ di daf ta

 $f_{py(0.2)k}$ = 1300.00 Mpa tensione di snervamento allo 0.2% di def. totale

Resistenza di calcolo (4.1.2.1.1.3)

fyd = $f_{py(0.2)k}$ / 1,15 = 1130.43 Mpa

Tensioni di esercizio nel cls a cadute avvenute (NTC2008 4.1.8.1.3)

 σc < 0,60 fck per combinazione caratteristica (rara) σc < 0,45 fck per combinazione quasi permanente

Travi in precompresso C35/45 $\sigma c = 21.00$ Mpa comb. caratt. $\sigma c = 15.75$ Mpa comb. quasi perm.

Caratteristiche geometriche trave in cap

Trave

$B_{inf} =$	0.82	m	base ala inferiore
H _{inf} =	0.13	m	altezza ala inferiore
H _{anima} =	0.49	m	altezza anima (diametro alleggerimento)
B sup =	0.82	m	base anima superiore
H sup =	0.13	m	altezza anima superiore
$H_{tot} =$	0.75	m	altezza totale trave
A trave =	0.43	mq	area trave
yG _{trave} =	0.38	m	baricentro da intradosso trave
JG _{trave} =	0.026	m4	momento di inerzia
p =	12.23	kN/m	peso a metro della trave in c.a.p
L calcolo =	16.00	m	luce di calcolo trave

Si tenga presente che il peso della trave tiene conto anche del tubo in calcestruzzo interno alla soletta, di spessore 4.5mm e diametro interno 0.4m.

Trefoli

Ap = area singolo trefolo
Al = area singolo livello di tefoli
y = posizione livelli trefoli da intradosso trave
t = tensione di precompressione

T = carico di precompressione

Livello	n° trefoli	y [m]	Ap [mmq]	Al[mmq]	t [MPa]	T [kN]
1	2	0.08	904.78	1809.56	_ 1100	1990.51
тот	2	80.0		1809.56		1990.51
yG _{trefoli} =	0.080	m	baricentro	da intradosso	trave	
JG _{trefoli} =	0.00000000	m4	momento d	di inerzia		

Armatura lenta su trave c.a.p.

Livello 1 2	n° barre 4 2	y [m] 0.050 0.700	As [mmq] 113 79	Al[mmq] 452 157	J [m4] 0.000013 0.000037	φ 12 10
ТОТ	6	0.218		609	0.000049	
yG _{barre} = JG _{barre} =	0.218 0.000049	m m4	baricentro momento d	da intradosso di inerzia	trave	

Trave c.a.p + trefoli + barre c.a.

A trave =	0.426	area trave c.a.p
A trefoli =	0.001810	area trefoli
A _{barre ca} =	0.000609	area barre c.a.
yG _{trave} =	0.375	baricentro trave da intradosso sezione
yG _{trefoli} =	0.080	baricentro trefoli da intradosso sezione
yG _{barre ca} =	0.218	baricentro barre c.a. da intradosso trave
n trefoli =	6	coeff. di omogenizzazione trefoli-cls
n ca =	0	coeff. di omogenizzazione armature-cls
A _{trav+tref+ca} =	0.437	area trave + trefoli omogenizzati + barre omogenizzate
yG _{trav+tref+ca} =	0.368	baricentro trave + trefoli omogenizzati + barre omogenizzate
JG _{trav} =	0.026	momento di inerzia trave
JG _{tref} =	0.00000	momento di inerzia trefoli
JG ca =	0.00005	momento di inerzia barre
JG _{trav+tref+ca} =	0.027	momento di inerzia trave + trefoli omogenizzati + barre om.
ys _{trav+tref+ca} =	0.382	distanza baricentro - fibra superiore
yi trav+tref =	0.368	distanza baricentro - fibra inferiore
y _{trefoli} =	0.288	distanza baricentro - trefoli primo livello
Ws trav+tref =	0.070	momento resistente superiore
Wi trav+tref =	0.073	momento resistente inferiore
W _{trefoli} =	0.094	momento resistente trefoli primo livello
e trefoli =	-0.288	eccentricità trefoli rispetto baricentro trave

4.4.2 Cadute di tensione

Nel seguente paragrafo si riportano le perdite di tensione che si verificano nell'acciaio armonico presente in sezione: queste sono infatti necessarie alla valutazione del momento sollecitante in configurazione finale, nel seguito verificato.

Per il calcolo delle cadute di tensione si è fatto specifico riferimento alla relazione di calcolo dell'impalcato roiginale, che prevede quanto segue:

CADUTA DI TENSIONE PER ATTRITO ALL'ATTO DEL TIRO: SEZIONE DI MEZZERIA

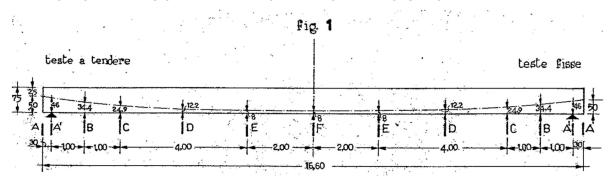


Figura 4-28 - Quota del cavo lungo la trave e nomenclatura delle sezioni (Fig. 1 pagina 2)

 $\sigma_F = 0.945 \, \sigma_A = 0.945 \, \text{x} 1100 = 1039.50 \, \text{MPa (pag. 3)}$

1100 - 1039.50 = 60.5 MPa pari ad una caduta del 5.5% del tiro

- CADUTA DI TENSIONE PER RILASSAMENTO DELL'ACCIAIO E RITIRO E VISCOSITA' DEL CALCESTRUZZO: SEZIONE DI MEZZERIA

La relazione di calcolo dell'impalcato originale prevede, a pagina 13, una caduta del 17.6% del tiro già depurato delle perdite per attrito.

 $17.6\% (0.945 \,_{GA}) = 17.6\% (0.945x1100) = 182.95$ MPa pari ad una caduta del **17.6% del tiro (con attrito scontato)**

Riepilogo cadute

Tot. perdite istantanee	60.50	MPa	5.5%	Attrito dei cavi
Tot. perdite differite	182.95	_ MPa	17.6%	Rilassamento, Ritiro e Viscosità
	243.45	MPa		
Corrispondenti al	22.13	% del tiro iniziale		

Si ipotizza l'applicazione delle cadute di tensione in tre step successivi come dallo schema seguente:

Caduta	%	e [m]	N [kN]	M [kNm]	
1	60	-0.288	-264.32	76.04	trave
II	30	-0.288	-132.16	38.02	trave
III	10	-0.288	-44.05	12.67	trave
	100	_	-440.54	126.73	

4.4.3 Verifica agli SLU trave c.a.p.: sezione di mezzeria

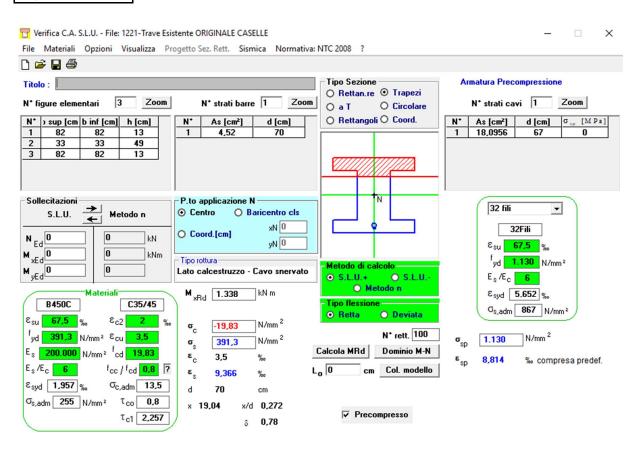
Nel presente paragrafo si riportano le verifiche flessionali a SLU relative alla trave in c.a.p, effettuate nella sezione di mezzeria, a seguito della nuova configurazione geometrica e di carico dovuta al secondo allargo.

Come è evidente dal form sotto riportato, il momento resistente risulta essere maggiore del momento sollecitante.

Per la verifica si è adottato il valore di momento flettente massimo ottenuto dal modello ad elementi finiti per la combinazione a SLU, depurato del momento dato dalla precompressione una volta scontate tutte le cadute di tensione. La sollecitazione verificata è stata in particolare rilevata dal modello FEM sulla trave T25F per la combinazione ENV_SLU IIF_Disp III_M_V.

Si riporta il calcolo dell'azione sollecitante:

 MSLU IIF
 1741.53
 kNm
 Momento massimo a SLU rilevato nel modello FEM


 Npp
 1990.51
 kN
 N data dalla precompressione

 Ncadute
 440.54
 kN
 N data dalle cadute di tensione

 Npp-Ncadute
 1549.97
 kN
 N di precompressione depurata delle perdite finali

 Mpp
 -445.89
 kNm
 Momento generato dalla precompressione (con le perdite scontate)

M_{Ed} 1295.64 kNm Momento sollecitante

Come si può notare, il momento resistente della sezione risulta essere maggiore del momento sollecitante M_{Ed} = 1295.64 kNm: la verifica è quindi soddisfatta.

4.4.4 Verifica a taglio della trave in c.a.p.

Nel presente paragrafo si riportano le verifiche a taglio della sezione dell'impalcato originale, per la sollecitazione massima a Stato Limite Ultimo, rilevata nel modello FEM.

A favore di sicurezza, è stata considerata reagente una sezione rettangolare con base pari allo spessore presente tra due alleggerimenti, pari a 33cm.

Dato che la verifica è stata eseguita all'appoggio, ossia in una zona in cui la precompressione non è ancora attiva, è stata utilizzata la formulazione valida per elementi in c.a. non precompressi. Per la verifica della staffatura si è poi fatto riferimento al metodo del "traliccio variabile".

Per tutte le specifiche si vedano comunque i calcoli di seguito riportati.

Materiali

Calcestruzzo		C35/45	
Resistenza cubica caratteristica	R _{ck} =	45	MPa
Resistenza cilindrica caratteristica	f _{ck} =	35	MPa
γ _c è il coefficiente parziale di sicurezza relativo al calcestruzzo	γ_{c} =	1.50	IVII G
	α _{cc} =	0.85	
α_{cc} è il coefficiente riduttivo per le resistenze di lunga durata Resistenza media a compressione $f_{cm} = f_{ck} + 8$ (11.2.2)	f _{cm} =	43.00	MPa
Resistenza media a traz. semplice f _{ctm} =0,30f _{ck} ^{2/3} (11.2.10.2)	f _{ctm} =	3.21	MPa
Resistenza caratt. a traz. semplice f _{ctk} =0,7 f _{ctm} (11.2.10.2)	f _{ctk} =	2.25	MPa
Resistenza di progetto a traz. semplice f _{ctk} / _{Vc} (4.1.2.1.2)	f _{ctd} =	1.50	MPa
	f _{cfm} =	3.85	MPa
Resistenza media a traz. per flessione f _{cfm} =1,2f _{ctm} (11.2.10.2) Resistenza caratt. a traz. per flessione f _{cfk} =0,7 f _{cfm} (11.2.10.2)		2.70	MPa
Resistenza di calcolo a comp. $f_{cd} = \alpha_{cc} f_{ck} / \gamma_c$ (4.1.2.1.1)	f _{cfk} =		
η = 1 per barre di diametro minore uguale a 32mm	f _{cd} =	19.83 1.00	MPa
Tensione tangenziale caratt. di aderenza acciaio-cls (4.1.8)	f_{bk} =2,25 γ f_{ctk} =	5.06	MPa
Tensione tangenziale di calcolo di aderenza acciaio-cls (4.1.7)	$f_{bd} = f_{bk} / \gamma_c =$	3.37	MPa
Tensione tangenziale di calcolo in zona tesa o in presenza	$f_{bd,red} = f_{bd} / 1,5 =$	2.25	MPa
di barre molto addensate			
Modulo elastico E _{cm} =22000 [f _{cm} /10] ^{0,3} (11.2.10.3)	E _{cm} =	34077	MPa
(11.2.10.3)	∟cm−	34077	IVII a
Acciaio:		B450C	
<u>-</u>	_		
Tensione di snervamento caratteristica	f _{y,k} =	450	MPa
Tensione di rottura caratteristica	f _{t,k} =	540	MPa
γs è il coefficiente parziale di sicurezza relativo all'acciaio	γ_{s} =	1.15	
Tensione di snervamento di progetto $f_{yd} = f_{yk}/\gamma_s$ (4.1.6)	$f_{y,d} =$	391.3	MPa
Modulo elastico	E _s =	210000	MPa
Coefficiente di dilatazione termica lineare		1.2E-05	1/C°
Verifica a taglio			
	-	_	-
V _{Sd} = 480.58 kN/m Taglio sollecitante massimo			

	-		-		=
	_	n° barre	Φ	As	¬-
Communication	ordine inferiore	0	0	0	mm²
Compressa	ordine superiore	0	0	0	mm²
Tesa	ordine inferiore	0	0	0	mm²
	ordine superiore	0	0	0	mm²

Si riporta di seguito la verifica a taglio

d=	700.00	mm	Altezza utile della sezione		
b _w =	330.00	mm	Base sezione		
A _{sl} =	0.00	mm ²	Area armatura tesa		
ρι =	0.00000		Rapporto geometrico acciaio-cls		
N_{ed} =	0.00	kN	Azione assiale di progetto		
σ_{cp} =	0.00	MPa	Compressione di progetto		
f _{ck} =	35.00	MPa	Resistenza cilindrica caratteristica		
f _{cd} = k=	19.83 1.53	MPa	Resistenza di calcolo a compressione		
v _{min} =	0.39	MPa			
$V_{Rd} =$	90.92	kN/m	Resistenza al taglio senza armatura		
			_		
$V_{Rd} =$	90.92	<	480.58 kN		

VERIFICA NON SODDISFATTA: E' NECESSARIA ARMATURA A TAGLIO

Si dispone la seguente armatura (a metro):

er disperie la seguerite armatara (a metro).									
Staffe	φ [mm]	Nbracci	s [mm]	A _{sw} [mm ²]	A _{sw} / s [mm ² /mm]				
	24	2	300	904.78	3.02				

Nel modello a traliccio si assume un'inclinazione del puntone compresso pari a 45°.

ν =	0.50					
αc=	1.00		Coefficien	te maggiorativo	(4.1.2.1.3.2)	
V_{Rcd} =	1030.84	kN/m	Resistenza	a di calcolo a "ta	glio compression	e", per θ = 45°
V _{Sd} =	480.58	kN/m	<	1030.84	kN/m	= V _{Rcd}
$\alpha =$	90.00	٥	Angolo di	inclinazione delle	e armature a tagli	io (45° < α < 90°)
$\theta =$	21.80	0	Angolo d'ii	nclinazione delle	bielle compresse	е
$\cot \theta =$	2.50					
$A_{sw, nec}/s =$	0.78	mm²/mm	Area d'arn	natura trasversa	le necessaria	
$A_{sw, nec}/s =$	0.78	mm²/mm	<	3.02	mm²/mm	$= A_{sw} / s$
Verifica di dut	tilità	3.58	<	4.96		

Calcolo dell'inclinazione delle bielle compresse per l'armatura adottata

 $\alpha = 90.00 \quad ^{\circ}$ $\theta_{\text{reale}} = 36.91 \quad ^{\circ}$

 $\cot g\theta_{\text{reale}} = 1.33$

Calcolo della resistenza a taglio per diversi valori della cotgθ

cotgθ	V _{Rsd} [kN/m]	V _{Rcd} [kN/m]	V _{Rd} [kN/m]
2.50	1858.73	710.92	710.92
1.33	989.98	989.98	989.98

La resistenza a taglio è pari a:

 $cotg\theta_{calcolo} = 1.33$

 $V_{Rsd} =$

989.98 kN/m

Verifica:

 $V_{Rd} = 989.98 \text{ kN/m}$

480.58 kN/m

La verifica risulta quindi soddisfatta con l'inserimento delle armature presenti nella trave, previste nelle tavole del progetto oriinale che corrispondono, a staffe ϕ 10 a 2 bracci, e barre inclinate collaboranti ϕ 14, entrambe disposte a passo 300mm.

Si riporta nuovamente una sezione della trave con l'indicazione delle armature, così come riportata nella tavola di progetto.

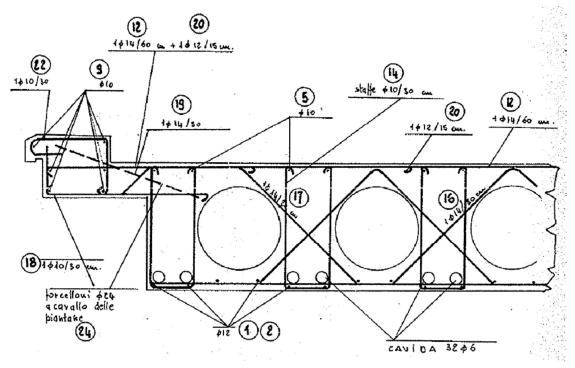
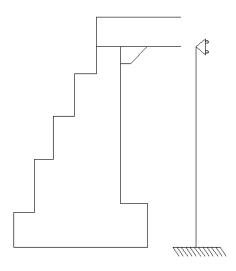


Figura 4-29 - Sezione trasversale della soletta con armature (Tavole di progetto opera originale)

5 ANALISI DELLE SOTTOSTRUTTURE

5.1 DESCRIZIONE GENERALE

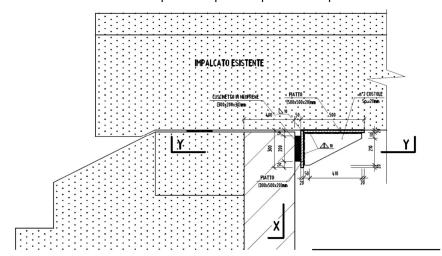
Le spalle del viadotto esistenti (appartenenti al blocco "ORIGINARIO" e all' "AMPLIAMENTO 1") e di nuova realizzazione ("AMPLIAMENTO 2") sono calcolate indipendentemente e in base alle sollecitazioni agenti sull'impalcato e direttamente sulle spalle stesse (in particolare, la spinta del terreno ed il sovraccarico accidentale spingente, in condizioni statiche e sismiche).


Tabella 5-1. Caratterizzazione spalle

Spalla	Tipologia
ORIGINARIA	a gravità
AMPLIAMENTO 1	mensola in c.a.
AMPLIAMENTO 2	mensola in c.a.

Le spalle presentano rigidezza nella direzione trasversale molto superiore rispetto a quella nella direzione longitudinale. A fronte di quanto appena esposto, si conducono le verifiche solo per le azioni agenti nella direzione longitudinale e per metro di lunghezza considerando il paramento frontale e il muro d'ala come indipendenti.

5.2 SPALLE STRUTTURA ORIGINARIA


Nonostante le spalle della struttura originaria siano dotate di sistema di tiranti di ancoraggio (inseriti durante la realizzazione del primo allargo) la verifica in oggetto è condotta trascurandone la presenza e quindi le verifiche sono condotte secondo l'Approccio 2 (A1+M1+R3). La verifica è condotta assumendo uno schema statico di incastro - puntone, come rappresentato nella figura seguente:

Il puntone in sommità alla spalla è rappresentato dalla struttura dell'impalcato.

In corrispondenza dell'impalcato originale sono già stati disposti durante i lavori di l° allargo dei ritegni longitudinali che realizzano il vincolo testa spalla – impalcato ipotizzato in precedenza.

Per le verifiche a capacità portante delle fondazioni saranno presi a riferimento i coefficienti di sicurezza stabiliti dal D.M: 14/01/2008 in tabella. 6.5.I a cui corrisponde un coefficiente γ_R a capacità portante pari a 1.4. Le verifiche sono condotte in regime di spinta attiva con β pari a 0.31.

5.2.1 Geometria di verifica

Si riportano di seguito le dimensioni di calcolo adottate per le spalle della struttura originaria.

SPALLA ANALIZZATA CARREGGIATA DIREZIONE	SUD RIMI NI		FONDAZIONE CARICHI DA IMPALCATO	DIRETTA SCHEMA SEMPLIFICATO
		Geo	metrie delle sottos	strutture originaria
L1		24,95	[m]	Larghezza zattera
L2		24,35	[m]	Larghezza paramento
L3		0,00	[m]	Risega su zattera esistente
L4		0,60	[m]	Sbalzo zattera
В		3,20	[m]	Lunghezza zattera
b1		0,20	[m]	Lunghezza retrozattera
b2		2,40	[m]	Spessore paramento
b3		0,60	[m]	Lunghezza avanzattera
b4		0,00	[m]	Lunghezza cordolo in c.a.
b5		0,00	[m]	Spessore paraghiaia
b6		0,35	[m]	Distanza asse appoggi da filo paramento (lato strada)
H _{TOT}		8,17	[m]	Altezza totale

H1	1,50	[m]	Spessore zattera
H2	5,92	[m]	Altezza paramento - a meno del paraghiaia
Н3	0,00	[m]	Spessore cordolo in c.a.
H4	0,75	[m]	Altezza paraghiaia
Н5	0,00	[m]	Altezza baggiolo (valore medio)
H_{zav_M}	6,67	[m]	Altezza zavorra a tergo della spalla (lato monte)
H_{zav_V}	0,90	[m]	Altezza zavorra a fronte della spalla (lato valle = strada)
	Ge	eometrie dell'im	palcato originario
Tipologia impalcato	SEZIONE N	MISTA: TRAVI IN	C.A.P. + SOLETTA C.A.
B _{tot}	24,35	[m]	Larghezza Totale Impalcato
B _{imp}	24,35	[m]	Larghezza Impalcato oggetto di Analisi
L _{imp}	17,00	[m]	Lunghezza impalcato
n_T	30		Numero travi principali
i_{T}	0,82	[m]	Interasse travi principali
A_T	0,38	$[m^2]$	Sezione trave principale
L _{tr}	0,00	[m]	Lunghezza traversi
n_{tr}	0,00		numero traversi compresi quelli di testata
A_{tr}	0,00	[m²]	sezione traverso
H _{sol}	0,135	[m]	spessore soletta in c.a.
H_pav	0,265 0	[m]	spessore pavimentazione da confermarsi
H_{cord_sic}	0,35	[m]	altezza cordolo sicurvia
B_{cord_sic}	2,20	[m]	larghezza cordolo sicurvia
H_{cord_FOA}	0,00	[m]	altezza cordolo FOA
B_{cord_FOA}	0,00	[m]	larghezza cordolo FOA
H _{FOA}	0,00	[m]	altezza FOA
Sb _{FOA}	0,00	[m]	aggetto FOA
		Caratteristich	e dei materiali
Ycls	25	[kN/m³]	
γsteel	78,5	[kN/m³]	
γ _{pav}	22	$[kN/m^3]$	
q	20	[kN/m2]	sovraccarico accidentale da traffico

Parametri geotecnici del terreno di rilevato						
γterreno	20	[kN/m³]				
φ' (M1)	35,00	[°]	δ			
φ' (M2)	29,26	[°]	B			
β	9,03	[°]				
i	0,00	[°]				
Paramet	Parametri geotecnici del terreno di fondazione (solo per verifiche su fondazione diretta)					
Yterreno	19	[kN/m ³]				
c'	0	[kPa]				

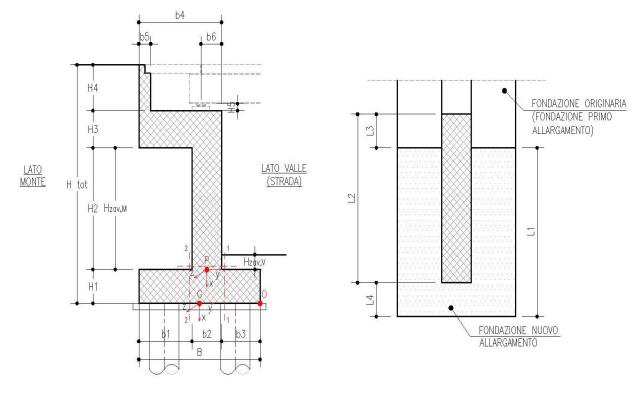


Figura 5-1. Schema dimensioni geometriche spalla

5.2.2 Coefficienti sismici

Località:	Opera 132T (Via Caselle			
Vita nominale: Classe d'uso:	VN	50 IV	anni	
0.0000 0 0000	CU	2		

Periodo di riferimento per azione

sismica:

VR

100

anni

Parametri sismici:

Stato limite	T _R [anni]	$a_g[g]$ $T_C^*[sec]$		F_0
SLV	949	0,216	0,315	2,421

Categoria di sottosuolo:

Catgoria topografica:

D

T1

Accelerazione massima attesa al sito

Stato limite	T _R [anni]	S _s	S _T	a _{max} [g]
SLV	949	1,62	1,00	0,349

Coefficiente di riduzione dell'accelerazione

massima attesa al sito

β

0,31

Coefficiente sismico orizzontale

 k_{h}

0,108

Coefficiente sismico orizzontale

 k_v

0,054

Calcolo coefficiente sismico con teoria Mononobe-Okabe:

Sisma diretto verso l'alto: - kv

	[°]	[rad]
θ	9,03	0,16
δ	0,00	0,00
β	0,00	0,00
ψ	6,52	0,11
φ - M1	35,00	0,61
φ - M2	29,26	0,51
k _{AE} - M1	0,40	
k _{AE} - M2	0,48	
Sisma diretto verso il basso: + kv		
	[°]	[rad]
θ	9,03	0,16
δ	0,00	0,00
β	0,00	0,00
ψ	5,86	0,10

35,00

0,61

φ - M1

φ - M2 29,26 0,51 $k_{AE} - M1$ 0,40

k_{AE} - M2 0,48

5.2.3 Analisi delle sollecitazioni da impalcato

Si riportano di seguito gli scarichi trasmessi dall'impalcato in sommità della spalla.

Peso proprio impalcato - totale

Peso proprio travi longitudinali - totale	4828	[kN]
Peso proprio traversi - totale	0	[kN]
Incremento 20% per controventi e bulloneria	0	[kN]
Peso proprio soletta	1397	[kN]
Totale	6225	[kN]
Su spalla	3112	[kN]
Peso proprio cordolo - totale		
Peso proprio cordolo sicurvia	327	[kN]
Peso proprio cordolo FOA	0	[kN]
Totale	327	[kN]
Su spalla	164	[kN]
Peso proprio FOA - totale		
Peso proprio FOA	0	[kN]
Totale	0	[kN]
Su spalla	0	[kN]
Peso proprio guardrail - totale		
Peso proprio guardrail	51	[kN]
Totale	51	[kN]
Su spalla	26	[kN]
Peso proprio pavimentazione - totale		
Peso proprio pavimentazione	2195	[kN]
Totale	2195	[kN]
Su spalla	1098	[kN]
Azione del vento - totale		

	0	[kN]
Totale	0	[kN]
Su spalla	0	[kN]
Carico da neve - totale		
Carico da neve	0	[kN]
Totale	0	[kN]
Su spalla	0	[kN]
Retrorave = 0,50 [m]		
Luce calcolo trave = 16 [m]		
Tandem 1 corrisponde alla condizione con carico tandem in p	rossimità appog	gio
(massimo taglio su impalcato e massima reazione vincolare su	ı spalla)	
Carico da tandem - totale	1200	[kN]
Reazione su spalla	1192,50	[kN]
Tandem 2 corrisponde alla condizione con carico tandem in p opposto	rossimità appog	gio
(minimo taglio su impalcato e minima reazione vincolare su s	palla)	
Carico da tandem - totale	1200	[kN]
	1200 7,50	
Carico da tandem - totale Reazione su spalla Carico distribuito - totale		[kN]
Reazione su spalla	7,50	[kN] [kN]
Reazione su spalla Carico distribuito - totale	7,50 1273	[kN] [kN]
Reazione su spalla Carico distribuito - totale Reazione su spalla	7,50 1273 636	[kN] [kN]
Reazione su spalla Carico distribuito - totale Reazione su spalla Frenatura	7,50 1273 636 Fy	[kN] [kN] [kN]

Si riportano di seguito le sollecitazioni dell'impalcato calcolate nel baricentro della fondazione della spalla.

	COORDINATE APPO SISTEMA DI RIF <u>FONDAZ</u>	ERIMENTO IN	SOLLECITAZIONI PER GROUP - Verifica <u>FONDAZIONE</u>			
	X _G	Уg	R _x	R _y	Mz	
Peso Proprio	[m]	[m]	[KN]	[KN]	[KNm]	
	-7,42	0,65	3112	0	-2023	
	X _G	Уg	R _x	R _y	Mz	
Cordolo	[m]	[m]	[KN]	[KN]	[KNm]	
	-7,42	0,65	164	0	-106	
	X _G	Уg	R _x	R _y	Mz	
FOA	[m]	[m]	[KN]	[KN]	[KNm]	
	-7,42	0,65	0	0	0	
	X _G	Уg	R _x	R _y	Mz	
Guardrail	[m]	[m]	[KN]	[KN]	[KNm]	
	-7,42	0,65	26	0	-17	
	X _G	Уg	R _x	R _y	Mz	
Pavimentazione	[m]	[m]	[KN]	[KN]	[KNm]	
	-7,42	0,65	1098	0	-713	
	X _G	Уg	R _x	R _y	M _z	
Vento	[m]	[m]	[KN]	[KN]	[KNm]	
	-7,42	0,65	0	0	0	
	X _G	Уg	R _x	R _y	Mz	
Neve	[m]	[m]	[KN]	[KN]	[KNm]	
	-7,42	0,65	0	0	0	
	X _G	У G	R _x	R _y	Mz	
Tandem 1	[m]	[m]	[KN]	[KN]	[KNm]	
	-7,42	0,65	1193	0	-775	
T l. 0	X _G	Уg	R _x	R _y	Mz	
Tandem 2						

	1	1	1	1	
	-7,42	0,65	7	0	-5
	X _G	y g	R _x	R _y	Mz
Distribuito	[m]	[m]	[KN]	[KN]	[KNm]
	-7,42	0,65	636	0	-414
	X _G	Уg	R _x	R _y	Mz
Frenatura	[m]	[m]	[KN]	[KN]	[KNm]
	-7,42	0,65	0	406	-3012
valutata come 5% dei c	arichi permanent	i			
Resistenza passiva dei vincoli	Χ _G	y G	R _x	R _y	M_z
	[m]	[m]	[KN]	[KN]	[KNm]
der villeen	-7,42	0,65	0	220	-1632
considerato anche il 20	% dei carichi stra	dali accidentali			
	Χ _G	Уg	R _x	R _y	Mz
Sisma dir. oriz.	[m]	[m]	[KN]	[KN]	[KNm]
	-7,42	0,65	0	1005	-7459
considerato anche il 20	% dei carichi stra	dali accidentali			
	Χ _G	Уg	R _x	R _y	M _z
Sisma dir. vert.	[m]	[m]	[KN]	[KN]	[KNm]

	COORDINATE APPOGGIO RISPETTO SISTEMA DI RIFERIMENTO IN FONDAZIONE		SOLLECITAZ	SOLLECITAZIONI VERIFICA <u>FONDAZIONE</u>		
	Χ _G	y G	R_x	R_{y}	Mz	
	[m]	[m]	[KN/m]	[KN/m]	[KNm/m]	
Peso Proprio	-7,42	0,65	128	0	-83	
Cordolo	-7,42	0,65	7	0	-4	
FOA	OA -7,42 0,65		0	0	0	
Guardrail	-7,42	0,65	1	0	-1	
Pavimentazione	-7,42	0,65	45	0	-29	
Vento	-7,42	0,65	0	0	0	
Neve	-7,42	0,65	0	0	0	
Tandem 1	-7,42	0,65	49	0	-32	
Tandem 2	-7,42	0,65	0	0	0	
Distribuito	-7,42	0,65	26	0	-17	
Frenatura	-7,42	0,65	0	17	-124	
Resistenza passiva dei vincoli	-7,42	0,65	0	9	-67	
Sisma dir. oriz.	-7,42	0,65	0	0	0	
Sisma dir. vert.	-7,42	0,65	0	0	0	

Il sistema di ritegni sismici presenti sull'opera fa si che l'impalcato trasmetta trasversalmente le azioni relative alla massa di metà campata afferente, così come per la componente verticale, mentre in direzione longitudinale è tale che l'azione sismica dell'impalcato agisca in direzione opposta a quella delle spinte delle terre. Nel calcolo della spalla risulta quindi dimensionate la condizione di sisma agente con verso concorde alle spinte delle terre. In tale situazione l'azione longitudinale del sisma da impalcato è posta pari a 0, poiché andrà a scaricarsi, mediante i ritegni posizionati con i lavori del l° allargo, sulla spalla opposta.

Non è inoltre considerato il sisma verticale poiché la spalla non rientra in uno dei casi in cui la normativa ne richiede la valutazione.

5.2.4 Analisi delle sollecitazioni in fondazione

ANALISI DEI CARICHI SOTTOSTRUTTURA - CONDIZIONI DI ESERCIZIO / SISMICHE

(C1): Pesi propri - strutturali e non

Descrizione		x _G [m]	y _G [m]	R _x [kN/m]	R _y [kN/m]	M _z [kNm/m]
Fondazione		-0,75	0,00	0,00	0,00	0,00
Paramento		-4,46	-0,20	468,70	0,00	93,74
Cordolo in c.a.		-7,42	1,00	0,00	0,00	0,00
Paraghiaia		-7,80	1,00	0,00	0,00	0,00
Zavorra lato valle		-1,95	1,30	10,80	0,00	-14,04
	•		•			

TOTALE 480 0 80

(C2): Zavorra stabilizzante

Descrizione	x _G [m]	y _G [m]	R _x [kN/m]	R _y [kN/m]	M _z [kNm/m]
Zavorra a tergo	-4,84	-1,50	26,68	0	40

(C3): Spinta delle terre - attiva

H _{SPINTA}	[m]	8,17

Comb.	ka	x _G [m]	y _G [m]	R _x [kN/m]	R _y [kN/m]	M _z [kNm/m]
M1	0,3149	-2,47	-1,21	112	135,67	-37,69
M2	0,3856	-2,47	-1,21	126	171,15	-65,74

(C4): Sovraccarico accidentale

a [kN/m²]	20
U ININ/III I	20

Componente verticale	x _G [m]	y _G [m]	R_x [kN/m]	R_y [kN/m]	M _z [kNm/m]
Sovraccarico accidentale (4a)	0,00	-1,50	4,00	0	6,00

Componente orizzontale	x _G [m]	y _G [m]	R _x [kN/m]	R _y [kN/m]	M _z [kNm/m]
Sovr. accidentale (4b) M1	-3,71	-1,01	25	25	-11
Sovr. accidentale (4b) M2	-3,71	-0,95	28	31	-20

(CS1): Forze inerzia legate a carichi strutturali e non	k _h	0,108
	k_{v}	0,054

Sisma diretto verso l'alto: - kv

Descrizione	x _G [m]	y _G [m]	R _x [kN/m]	R _y [kN/m]	M _z [kNm/m]
Fondazione	-0,75	0,00	0,00	0,00	0,00
Paramento	-4,46	-0,20	-25,35	50,70	-68,17
Cordolo in c.a.	-7,42	1,00	0,00	0,00	0,00
Paraghiaia	-7,80	1,00	0,00	0,00	0,00
Zavorra a tergo	-4,84	-1,50	-1,44	2,89	-5,44
Zavorra lato valle	-1,95	1,30	-0,58	1,17	-0,70
TOTALE	•		-27	55	-74

Sisma diretto verso il basso: + kv

Descrizione	x _G [m]	y _G [m]	R _x [kN/m]	R _y [kN/m]	M _z [kNm/m]
Fondazione c.a.	-0,75	0,00	0,00	0,00	0,00
Paramento c.a.	-4,46	-0,20	25,35	50,70	-58,03
Trave in c.a.	-7,42	1,00	0,00	0,00	0,00
Paraghiaia in c.a.	-7,80	1,00	0,00	0,00	0,00
Zavorra a tergo	-4,84	-1,50	1,44	2,89	-1,11
Zavorra lato valle	-1,95	1,30	0,58	1,17	-2,22
TOTALE	·		27	55	-61

(CS2): Spinta (dinamica) delle terre - attiva

Sisma diretto verso l'alto: - kv

Comb.	k a	k _{AE}	S _a [kN/m]	S _{AE} [kN/m]	ΔS [kN/m]	x _G [m]	M _z [kNm/m]
M1	0,27	0,40	179,36	210,21	31	-3,71	-43
M2	0,34	0,48	227,31	252,00	25	-3,71	-34

Sisma diretto verso il basso: + kv

Comb.	ka	k _{AE}	S _a [kN/m]	S _{AE} [kN/m]	ΔS [kN/m]	x _G [m]	M _z [kNm/m]
M1	0,27	0,40	179,36	229,83	50	-3,71	-70
M2	0,34	0,48	227,31	275,90	49	-3,71	-68

5.2.5 Combinazioni di calcolo

5.2.5.1 Approccio 2 (A1+M1+R3)

Nome	Descrizione	-		¥	<u>ψ 0</u>	<u>ψ1</u>	<u>ψ2</u>	ψ sis
C1	Carichi permanenti - strutturali e non	G1	fav/sfav	1/1.35	1	1	١	1
C2	Zavorra stabilizzante a tergo spalla	G1	fav	1	١	١	١	1
C3	Spinta delle terre - riposo	G1	Sfav	1,35	1	1	1	1
C4a	Carichi variabili da traffico - Sovr. accidentale verticale su spalla	Qk	fav	0	0,75	0,75	0,2	0,2
C4b	Carichi variabili da traffico - Sovraccarico spingente su spalla	Qk	sfav	1,35	0,75	0,75	0,2	0,2
C4c	Carichi variabili da traffico - Carico tandem su impalcato - conf.1	Qk	fav/sfav	0/1.35	0,75	0,75	0,2	0,2
C4d	Carichi variabili da traffico - Carico tandem su impalcato - conf.2	Qk	0	0/1.35	0,75	0,75	0,2	0,2
C4e	Carichi variabili da traffico - Carico distribuito su impalcato	Qk	fav/sfav	0/1.35	0,4	0,4	0,2	0,2
C5	Frenatura	Qk	sfav	1,35	0	0	0	0
C6	Resistenza passiva dei vincoli	Qk	sfav	1,35	1	1	1	1
C7	<u>Neve</u>	Qk	sfav	1,5	0	0	0	0
C8	<u>Vento</u>	Qk	sfav	1,5	0,6	0	0	0
CS1 (-kv)	Forze inerzia legate a carichi strutturali e non (+kh / -kv)	G1sis	sfav	1	١	١	١	1
CS1 (+kv)	Forze inerzia legate a carichi strutturali e non (+kh / +kv)	G1sis	sfav	1	1	١	١	1
CS2 (-kv)	Spinta (dinamica) delle terre - attiva (-kv)	G1sis terre	sfav	1	١	1	١	١
CS2 (+kv)	Spinta (dinamica) delle terre - attiva (-+v)	G1sis terre	sfav	1	1	١	١	١

	Mass	imizzazio	ne compr	essione	Ma	ssimizzazi	ione trazio	one	sisr	nica		Ra	ira		frequente	
DESCRIZIONE	pp	traffico 1	traffico 2a	traffico 2a config 2	no traffico	traffico 1	traffico 2a	traffico 2a config 2	Traffico ±	Traffico =	no traffico	traffico 1	traffico 2a	traffico 2a config 2	no traffico	traffico 1
COMBINAZIONE	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
C1	1,00	1,35	1,35	1,35	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
C2	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
C3	1,00	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
C4a	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
C4b	0,00	1,35	1,35	1,35	1,35	1,35	1,35	1,35	0,20	0,20	1,00	1,00	1,00	1,00	0,75	0,75
C4c	0,00	1,35	1,01	0,00	0,00	1,35	1,01	0,00	0,20	0,20	0,00	1,00	0,75	0,00	0,00	0,75
C4d	0,00	0,00	0,00	1,01	0,00	0,00	0,00	1,01	0,00	0,00	0,00	0,00	0,00	0,75	0,00	0,00
C4e	0,00	1,35	0,54	0,54	0,00	1,35	0,54	0,54	0,20	0,20	0,00	1,00	0,40	0,40	0,00	0,40
C5	0,00	0,00	1,35	1,35	0,00	0,00	1,35	1,35	0,00	0,00	0,00	0,00	1,00	1,00	0,00	0,00
C6	1,00	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
C7	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
C8	0,00	0,90	0,90	0,90	0,90	0,90	0,90	0,90	0,00	0,00	0,60	0,60	0,60	0,60	0,00	0,00
CS1 (-kv)	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00
CS1 (+kv)	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
CS2 (-kv)	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00
CS2 (+kv)	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

5.2.6 Sollecitazioni risultanti nel baricentro della fondazione

5.2.6.1 Approccio 2 (A1+M1+R3)

RISULT ANTI	C1			C2			СЗ			C4a			C4b			C4c		
	R _x [kN/ m]	R _y [kN/ m]	M _z [kNm /m]	R _x [kN/ m]	R _y [kN/ m]	M _z [kNm /m]	R _x [kN/ m]	R _y [kN/ m]	M _z [kNm /m]	R _x [kN/ m]	R _y [kN/ m]	M _z [kNm /m]	R _x [kN/ m]	R _y [kN/ m]	M _z [kNm /m]	R _x [kN/ m]	R _y [kN/ m]	M _z [kNm /m]
Impalc ato	181	0	-117	0	0	0	0	0	0	0	0	0	0	0	0	49	0	-32
Sottost ruttura	480	0	80	27	0	40	112	136	-38	4	0	6	25	25	-11	0	0	0
Totale	660	0	-38	27	0	40	112	136	-38	4	0	6	25	25	-11	49	0	-32

RISULT ANTI	C4d						C5			C6			С7			C8		
	R _x [kN/ m]	R _y [kN/ m]	M₂ [kNm /m]	R _x [kN/ m]	R _y [kN/ m]	M _z [kNm /m]	R _x [kN/ m]	R _y [kN/ m]	Mz [kNm /m]	R _x [kN/ m]	R _y [kN/ m]	M _z [kNm /m]	R _x [kN/ m]	R _y [kN/ m]	Mz [kNm /m]	R _x [kN/ m]	R _y [kN/ m]	M _z [kNm /m]
Impalc ato	0	0	0	26	0	-17	0	17	-124	0	9	-67	0	0	0	0	0	0
Sottost ruttura	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Totale	0	0	0	26	0	-17	0	17	-124	0	9	-67	0	0	0	0	0	0

RISULT ANTI	CS1 (-kv)			CS1 (+kv)				CS2 (-kı	/)	CS2 (+kv)			
	R _x [kN/ m]	R _y [kN/ m]	Mz [kNm /m]	R _x [kN/ m]	R _y [kN/ m]	Mz [kNm /m]	R _x [kN/ m]	R _y [kN/ m]	Mz [kNm /m]	R _x [kN/ m]	R _y [kN/ m]	M₂ [kNm /m]	
Impalc ato	0	0	0	0	0	0	0	0	0	0	0	0	
Sottost ruttura	-27	55	-74	27	55	-61	0	31	-43	0	50	-70	
Totale	-27	55	-74	27	55	-61	0	31	-43	0	50	-70	

Riepilogo azioni combinate (a metro):

	Mass	imizzazio	ne comp	ressione	Massimizzazione trazione				sismica		Rara				frequente	
DESCRIZIONE	pp	traffic o 1	traffico 2a	traffico 2a config 2	no traffic o	traffic o 1	traffico 2a	traffi co 2a confi g 2	Traffic o+	Traff ico -	no traffi co	traffic o 1	traffic o 2a	traffic o 2a config 2	no traffic o	traffic o 1
COMBINAZION E	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
N _{Ed}	798	1204	1166	1117	871	973	935	886	846	791	823	899	871	834	817	864
V _{Ed}	145	229	251	251	229	229	251	251	255	235	169	169	186	186	163	163
M_{Ed}	-102	-233	-376	-344	-154	-220	-363	-331	-246	-232	-114	-163	-268	-244	-111	-142

5.2.7 Verifica capacità portante del plinto di fondazione

Si riportano di seguito le verifica a capacità portante del plinto di fondazione. Le verifiche sono relative alle sole condizioni più gravose.

Per la verifica a capacità portante delle spalle esistenti si è ipotizzato che il piano di posa delle fonedazioni superficiali sia stato impostato sullo strato A limo-argilloso.

Dove non espressamente indicato le unità di misura sono kN m Calcolo del carico limite secondo il metodo di Vesic

CARATTERISTICHE GEOMETRICHE DELLA FONDAZIONE			
B _x =	3,20	3,20	
B _y =	1,00	1,00	
H =	0,00	0,00	
p.p. _{fond} =	0,00	0,00	

Comb	STR-D	SISSTR-ND
Sollecitazioni di verifica:		
$\gamma_{ m G}$ =	1,00	1,00
$\gamma_Q =$	1,00	1,00
N _{Ed} =	1204,00	846,00
H _{Ed;x} =	251,00	255,00
M _{Ed;x} =	376,00	246,00
e _x =	0,31	0,29
B'x =	2,58	2,62
H _{Ed;y} =	0,00	0,00
M _{Ed;y} =	0,00	0,00
e _y =	0,00	0,00
B'y =	1,00	1,00

CARATTERISTICHE GEOTECNICHE

Comb	STR-D	SISSTR-ND
$\gamma_{c'} =$	1,00	1,00
$\gamma_{\phi'} =$	1,00	1,00
$\gamma_{R;v} =$	1,00	1,00
$\gamma_{\gamma} =$	1,40	1,40
c' _k =	0,00	130,00
$arphi_{\mathbf{k}}$ =	26,00	0,00
γ_{ak} =	10,00	10,00
$\gamma_{1\mathbf{k}}$ =	19,00	19,00
γ_{2k} =	19,00	19,00
c' _d =	0,00	130,00
$arphi_{ m d}$ =	26°	0°
γ_{ad} =	7,14	7,14
$\gamma_{1 ext{d}} =$	13,57	13,57
γ_{2d} =	13,57	13,57
z =	2,60	2,60

Df =	2,60	2,60
q' = q ₀ =	35,29	35,29
B' =	1,00	1,00
L' =	2,58	2,62

VERIFICHE GEOTECNICHE

/erifica in direzione x		
Comb	STR-D	SISSTR-ND
N _{Ed} =	1204,00	846,00
V _{Ed} =	251,00	255,00
N_q =	11,85	1,00
N_{γ} =	12,54	0,00
N _c =	22,25	5,14
s _q =	1,19	1,00
s _γ =	0,84	0,85
$s_c = s_c^0 =$	1,21	0,92
m=m ⁰ =	1,28	1,28
i _q =	0,74	1,00
i_{γ} =	0,59	1,00
i _c =	0,00	0,51
d_q =	1,24	1,00
d_{γ} =	1,00	1,00
$d_c=d_c^0=$	1,32	1,40
ε =	0,00	0,00
b _q =	1,00	1,00
b_{γ} =	1,00	1,00
b _c =	1,00	1,00
ω =	0,00	0,00
g_q =	1,00	1,00
g_{γ} =	1,00	1,00
g _c =	1,00	1,00
Q _{lim} =	1313,44	1251,17
R _d =	1313,44	1251,17
N _{Ed} =	1204,00	846,00
Verifica	ok	ok
CS =	1,09	1,48

5.3 SPALLE STRUTTURA I° ALLARGO

Le spalle della struttura di I allargo sono opere di sostegno per le quali le verifiche a capacità portante delle fondazioni saranno condotte prendendo a riferimento i coefficienti di sicurezza stabiliti dal D.M: 14/01/2008 in tabella. 6.5.I.

Per le verifiche sarà inoltre utilizzato l'approccio 2: A1+M1+R3

La geometria della spalla realizzata con il I allargo ha una larghezza limitata. In considerazione della recente costruzione dell'allargo non si ritiene necessario condurre ulteriori analisi strutturali sul plinto di fondazione e sull'elevazione. L'analisi a metro della spalla di I allargo sarà perciò utilizzata per condurre solamente verifiche di capacità portante.

5.3.1 Geometria di verifica

Si riportano di seguito le dimensioni di calcolo adottate per le spalle del l° allargo.

SPALLA ANALIZZATA CARREGGIATA DIREZIONE	SUD RIMINI		FONDAZIONE CARICHI DA	DIRETTA SCHEMA SEMPLIFICATO
			IMPALCATO	
		Geo	metrie delle sotto	strutture originaria
L1		3,85	[m]	Larghezza zattera
L2		4,45	[m]	Larghezza paramento
L3		0,60	[m]	Risega su zattera esistente
L4		0,00	[m]	Sbalzo zattera
		c 20	[]	Lucebassa
В		6,20	[m]	Lunghezza zattera
b1 b2		3,70	[m]	Lunghezza retrozattera
		1,20	[m]	Spessore paramento
b3		1,30	[m]	Lunghezza avanzattera
b4		0,00	[m]	Lunghezza cordolo in c.a.
b5		0,285	[m]	Spessore paraghiaia
b6		0,30	[m]	Distanza asse appoggi da filo paramento (lato strada)
H _{TOT}		8,25	[m]	Altezza totale
H1		1,20	[m]	Spessore zattera
H2		5,68	[m]	Altezza paramento - a meno del paraghiaia
Н3		0,00	[m]	Spessore cordolo in c.a.
H4		1,37	[m]	Altezza paraghiaia
Н5		0,30	[m]	Altezza baggiolo (valore medio)
H _{zav_M}		7,05	[m]	Altezza zavorra a tergo della spalla (lato monte)
H _{zav_V}		1,26	[m]	Altezza zavorra a fronte della spalla (lato valle = strada)

	G	eometrie dell'in	npalcato originario
Tipologia impalcato	SEZIONE N	ΛΙSTA: TRAVI IN	C.A.P. + SOLETTA C.A.
B _{tot}	4,45	[m]	Larghezza Totale Impalcato
B _{imp}	4,45	[m]	Larghezza Impalcato oggetto di Analisi
L _{imp}	16,60	[m]	Lunghezza impalcato
n _T	9		Numero travi principali
i _T	0,50	[m]	Interasse travi principali
A_T	0,20	[m²]	Sezione trave principale
L _{tr}	2,70	[m]	Lunghezza traversi
n _{tr}	100,0 0		numero traversi compresi quelli di testata
A_{tr}	0,08	[m²]	sezione traverso
H_{sol}	0,250	[m]	spessore soletta in c.a.
H_{pav}	0,11	[m]	spessore pavimentazione da confermarsi
H_{cord_sic}	0,00	[m]	altezza cordolo sicurvia
B_{cord_sic}	0,00	[m]	larghezza cordolo sicurvia
H_{cord_FOA}	0,00	[m]	altezza cordolo FOA
B _{cord_FOA}	0,00	[m]	larghezza cordolo FOA
H _{FOA}	0,00	[m]	altezza FOA
sb _{FOA}	0,00	[m]	aggetto FOA
		Caratteristich	ne dei materiali
Y cls	25	[kN/m³]	
γsteel	78,5	[kN/m³]	
$oldsymbol{\gamma}_{pav}$	22	$[kN/m^3]$	
q	20	[kN/m2]	sovraccarico accidentale da traffico
	Parai	metri geotecnici	del terreno di rilevato
γterreno	20	[kN/m³]	X
φ' (M1)	35	[°]	
φ (M2)	29,26	[°]	
φ (1 v 12) δ	23,33	[°]	Pa
β	0,00	[°]	
r	0,00	[°]	

Paramet	ri geotecnici del te	rreno di fondazi	one (solo per verifiche su fondazione diretta)
γterreno	19	[kN/m³]	
φ	26	[°]	
c'	0	[kPa]	

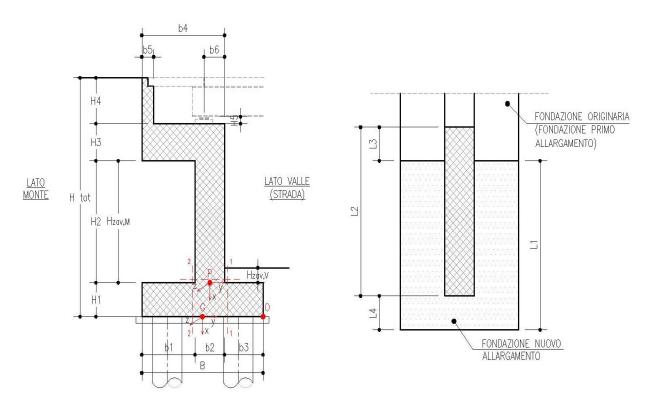


Figura 5-2. Schema dimensioni geometriche spalla

5.3.2 Coefficienti sismici

Località:			Opera 132T (Via Caselle)		
Vita nominale:		VN	50	anni	
Classe d'uso:			IV		
		CU	2		
Periodo di riferimento per azione sismica:		VR	100	anni	
Parametri sismici:	Stato limite	T _R [anni]	a _g [g]	T _C * [sec]	F ₀
	SLV	949	0,216	0,315	2,421

Categoria di sottosuolo: D
Catgoria topografica: T1

Accelerazione massima attesa al sito	Stato limite	T _R [anni]	Ss	S⊤	a _{max} [g]
	SLV	949	1.62	1.00	0.349

Coefficiente di riduzione dell'accelerazione massima attesa al sito	β	0,31
Coefficiente sismico orizzontale	\mathbf{k}_{h}	0,108
Coefficiente sismico orizzontale	k _v	0.054

Calcolo coefficiente sismico con teoria Mononobe-Okabe:

Sisma diretto verso l'alto: - kv		
	[°]	[rad]
θ	0,00	0,00
δ	0,00	0,00
β	0,00	0,00
ψ	6,52	0,11
φ - M1	35,00	0,61
φ - M2	29,26	0,51
k _{AE} - M1	0,34	
k _{AE} - M2	0,42	
Sisma diretto verso il basso: + kv		
	[°]	[rad]
θ	0,00	0,00
δ	0,00	0,00
β	0,00	0,00
ψ	5,86	0,10
φ - M1	35,00	0,61
φ - M2	29,26	0,51
k _{AE} - M1	0,33	
k _{AE} - M2	0,41	

5.3.3 Analisi delle sollecitazioni da impalcato

Si riportano di seguito gli scarichi trasmessi dall'impalcato in sommità della spalla.

Peso proprio impalcato - totale

Peso proprio travi longitudinali - totale	747,00	[kN]
Peso proprio traversi - totale	560,25	[kN]
Incremento 20% per controventi e bulloneria	0,00	[kN]
Peso proprio soletta	461,69	[kN]
Totale	1768,94	[kN]
Su spalla	884,47	[kN]
Peso proprio cordolo - totale		
Peso proprio cordolo sicurvia	0	[kN]
Peso proprio cordolo FOA	0	[kN]
Totale	0	[kN]
Su spalla	0	[kN]
Peso proprio FOA - totale		
Peso proprio FOA	0	[kN]
Totale	0	[kN]
Su spalla	0	[kN]
Peso proprio guardrail - totale		
Peso proprio guardrail	0	[kN]
Totale	0	[kN]
Su spalla	0	[kN]
Peso proprio pavimentazione - totale		
Peso proprio pavimentazione	178,77	[kN]
Totale	178,77	[kN]
Su spalla	89,38	[kN]
Azione del vento - totale		
Azione del Vento	0	[kN]
Totale	0	[kN]
Su spalla	0	[kN]
Carico da neve - totale		
Carico da neve	0	[kN]
Totale	0	[kN]

Su spalla	0	[kN]
Retrorave = 0,50 [m]		
Luce calcolo trave = 15,6 [m]		
Tandem 1 corrisponde alla condizione con carico tandem in p	orossimità appog	ggio
(massimo taglio su impalcato e massima reazione vincolare s	u spalla)	
Carico da tandem - totale	600	[kN]
Reazione su spalla	596,15	[kN]
Tandem 2 corrisponde alla condizione con carico tandem in popposto	orossimità appog	ggio
(minimo taglio su impalcato e minima reazione vincolare su s	spalla)	
Carico da tandem - totale	600	[kN]
Reazione su spalla	3,85	[kN]
Carico distribuito - totale	508	[kN]
Reazione su spalla	254	[kN]
Frenatura	Fy	
Azione dovuto alla Frenatura	405	[kN]
Totale	405	[kN]
Su Spalla	202	[kN]

Si riportano di seguito le sollecitazioni dell'impalcato calcolate nel baricentro della fondazione della spalla.

	COORDINATE APPOGGIO RISPETTO SISTEMA DI RIFERIMENTO IN FONDAZIONE		SOLLECITAZIONI PER GROUP - Verifica <u>FONDAZIONE</u>			
	X _G	Уg	R _x	R _y	Mz	
Peso Proprio	[m]	[m]	[KN]	[KN]	[KNm]	
	-7,18	1,5	884	0	-1327	
			D	D	Mz	
Cordolo	X _G	y _G	R _x	Ry		
Cordolo	[m]	[m]	[KN]	[KN]	[KNm]	
	-7,18	1,5	0	0	0	
	X _G	Уg	R _x	R _y	Mz	
FOA	[m]	[m]	[KN]	[KN]	[KNm]	
	-7,18	1,5	0	0	0	
	1					
	Χ _G	Уg	R_x	R _y	Mz	
Guardrail	[m]	[m]	[KN]	[KN]	[KNm]	
	-7,18	1,5	0	0	0	
			_			
	X _G	Уg	R _x	R _y	Mz	
Pavimentazione	[m]	[m]	[KN]	[KN]	[KNm]	
	-7,18	1,5	89	0	-134	
	X _G	Уg	R _x	R _y	Mz	
Vento	[m]	[m]	[KN]	[KN]	[KNm]	
	-7,18	1,5	0	0	0	
	·	1 1				
	X _G	Уg	R _x	R _y	Mz	
Neve	[m]	[m]	[KN]	[KN]	[KNm]	
	-7,18	1,5	0	0	0	
-	X _G	Уg	R _x	R _y	M _z	
Tandem 1	[m]	[m]	[KN]	[KN]	[KNm]	
	-7,18	1,5	596	0	-894	
Tandem 2	X _G	Уg	R _x	R _y	Mz	

	1	1	1		
	[m]	[m]	[KN]	[KN]	[KNm]
	-7,18	1,5	4	0	-6
	Χ _G	y g	R _x	R _y	Mz
Distribuito	[m]	[m]	[KN]	[KN]	[KNm]
	-7,18	1,5	254	0	-381
	X _G	y G	R _x	R _y	Mz
Frenatura	[m]	[m]	[KN]	[KN]	[KNm]
	-7,18	1,5	0	202	-1453
valutata come 5% dei o	carichi permanenti				
	X _G	y G	R _x	R _y	Mz
Resistenza passiva dei vincoli	[m]	[m]	[KN]	[KN]	[KNm]
uci vilicoli	-7,18	1,5	0	49	-350
considerato anche il 20)% dei carichi strada	li accidentali			
	X _G	y _G	R _x	R _y	Mz
Sisma dir. oriz.	[m]	[m]	[KN]	[KN]	[KNm]
	-7,18	1,5	0	235	-1685
considerato anche il 20)% dei carichi strada	li accidentali		·	
	X _G	y G	R _x	R _y	Mz
Sisma dir. vert.	[m]	[m]	[KN]	[KN]	[KNm]
	-7,18	1,5	62	0	-93

	COORDINATE APPOGGIO RISPETTO SISTEMA DI RIFERIMENTO IN FONDAZIONE		SOLLECITAZIONI VERIFICA <u>FONDAZION</u>			
	X _G	y G	R _x	R_y	Mz	
	[m]	[m]	[KN/m]	[KN/m]	[KNm/m]	
Peso Proprio	-7,18	1,5	199	0	-298	
Cordolo	-7,18	1,5	0	0	0	
FOA	-7,18	1,5	0	0	0	
Guardrail	-7,18	1,5	0	0	0	
Pavimentazione	-7,18	1,5	20	0	-30	
Vento	-7,18	1,5	0	0	0	
Neve	-7,18	1,5	0	0	0	
Tandem 1	-7,18	1,5	134	0	-201	
Tandem 2	-7,18	1,5	1	0	-1	
Distribuito	-7,18	1,5	57	0	-86	
Frenatura	-7,18	1,5	0	45	-327	
Resistenza passiva	-7,18	1,5	0	11	-79	
Sisma dir. oriz.	-7,18	1,5	0	0	0	
Sisma dir. vert.	-7,18	1,5	0	0	0	

Il sistema di ritegni sismici presenti sull'opera fa si che l'impalcato trasmetta trasversalmente le azioni relative alla massa di metà campata afferente, così come per la componente verticale, mentre in direzione longitudinale è tale che l'azione sismica dell'impalcato agisca in direzione opposta a quella delle spinte delle terre. Nel calcolo della spalla risulta quindi dimensionate la condizione di sisma agente con verso concorde alle spinte delle terre. In tale situazione l'azione longitudinale del sisma da impalcato è posta pari a 0, poiché andrà a scaricarsi, facendo contrasto contro il paraghiaia, sulla spalla opposta. Non è inoltre considerato il sisma verticale poiché la spalla non rientra in uno dei casi in cui la normativa ne richiede la valutazione.

5.3.4 Analisi delle sollecitazioni in fondazione

ANALISI DEI CARICHI SOTTOSTRUTTURA - CONDIZIONI DI ESERCIZIO / SISMICHE

(C1): Pesi propri - strutturali e non

Descrizione	x _G [m]	y _G [m]	R _x [kN/m]	R _y [kN/m]	M _z [kNm/m]
Fondazione	-0,60	0,00	186,00	0,00	0,00
Paramento	-4,04	1,20	170,40	0,00	-204,48
Cordolo in c.a.	-6,88	1,80	0,00	0,00	0,00
Paraghiaia	-7,57	1,94	9,76	0,00	-18,96
Zavorra lato valle	-1,83	2,45	32,63	0,00	-79,94
TOTALE			399	0	-303

(C2): Zavorra stabilizzante

Descrizione	x _G [m]	y _G [m]	R _x [kN/m]	R _y [kN/m]	M _z [kNm/m]
Zavorra a tergo	-4,73	-1,25	521,70	0	652

(C3): Spinta delle terre - attiva

H _{SPINTA} [m]	8,25
-------------------------	------

Comb.	ka	x _G [m]	y _G [m]	R _x [kN/m]	R _y [kN/m]	M _z [kNm/m]
M1	0,2444	-2,75	-3,10	66	152,75	-215,80

(C4): Sovraccarico accidentale

q [kN/m²]	20
-----------	----

Componente verticale	x _G [m]	y _G [m]	R _x [kN/m]	R _y [kN/m]	M _z [kNm/m]
Sovraccarico accidentale (4a)	0,00	-1,25	74,00	0	92,50

Componente orizzontale	x _G [m]	y _G [m]	R _x [kN/m]	R _y [kN/m]	M _z [kNm/m]
Sovr. accidentale (4b) M1	-4,13	-3,10	16	37	-103

(CS1): Forze inerzia legate a carichi strutturali e non	k_h	0,108
	k_{v}	0,054

Sisma diretto verso l'alto: - kv

Descrizione	x _G [m]	y _G [m]	R _x [kN/m]	R _y [kN/m]	M _z [kNm/m]
Fondazione	-0,60	0,00	-10,06	20,12	-12,07
Paramento	-4,04	1,20	-9,22	18,43	-63,41
Cordolo in c.a.	-6,88	1,80	0,00	0,00	0,00
Paraghiaia	-7,57	1,94	-0,53	1,06	-6,96
Zavorra a tergo	-4,73	-1,25	-28,22	56,44	-301,94
Zavorra lato valle	-1,83	2,45	-1,76	3,53	-2,13

TOTALE -50 100 -387

Sisma diretto verso il basso: + kv

Descrizione	x _G [m]	y _G [m]	R _x [kN/m]	R _y [kN/m]	M _z [kNm/m]
Fondazione c.a.	-0,60	0,00	10,06	20,12	-12,07
Paramento c.a.	-4,04	1,20	9,22	18,43	-85,53
Trave in c.a.	-6,88	1,80	0,00	0,00	0,00
Paraghiaia in c.a.	-7,57	1,94	0,53	1,06	-9,01
Zavorra a tergo	-4,73	-1,25	28,22	56,44	-231,39
Zavorra lato valle	-1,83	2,45	1,76	3,53	-10,78

TOTALE 50 100 -349

(CS2): Spinta (dinamica) delle terre - attiva

Sisma diretto verso l'alto: - kv

Comb.	k _a	k _{AE}	S _a [kN/m]	S _{AE} [kN/m]	ΔS [kN/m]	$x_{G}[m]$	M _z [kNm/m]
M1	0,27	0,34	184,44	216,80	32	-4,13	-133

Sisma diretto verso il basso: + kv

Comb.	ka	k _{AE}	S _a [kN/m]	S _{AE} [kN/m]	ΔS [kN/m]	x _G [m]	M _z [kNm/m]
M1	0,27	0,33	184,44	236,31	52	-4,13	-214

5.3.5 Combinazioni di calcolo

Nome	<u>Descrizione</u>	_		¥	<u>ψ0</u>	<u>ψ1</u>	<u>ψ2</u>	ψ sis
C1	Carichi permanenti - strutturali e non	G1	fav/sfav	1/1.35	1	١	١	١
C2	Zavorra stabilizzante a tergo spalla	G1	fav	1	١	١	١	1
СЗ	Spinta delle terre - riposo	G1	Sfav	1,35	١	١	١	1
C4a	Carichi variabili da traffico - Sovr. accidentale verticale su spalla	Qk	fav	0	0,75	0,75	0,2	0,2
C4b	Carichi variabili da traffico - Sovraccarico spingente su spalla	Qk	sfav	1,35	0,75	0,75	0,2	0,2
C4c	Carichi variabili da traffico - Carico tandem su impalcato - conf.1	Qk	fav/sfav	0/1.35	0,75	0,75	0,2	0,2
C4d	Carichi variabili da traffico - Carico tandem su impalcato - conf.2	Qk	o	0/1.35	0,75	0,75	0,2	0,2
C4e	Carichi variabili da traffico - Carico distribuito su impalcato	Qk	fav/sfav	0/1.35	0,4	0,4	0,2	0,2
C5	Frenatura	Qk	sfav	1,35	0	0	0	0
C6	Resistenza passiva dei vincoli	Qk	sfav	1,35	1	١	١	1
C7	<u>Neve</u>	Qk	sfav	1,5	0	0	0	0
C8	<u>Vento</u>	Qk	sfav	1,5	0,6	0	0	0
CS1 (-kv)	Forze inerzia legate a carichi strutturali e non (+kh / -kv)	G1sis	sfav	1	1	١	١	1
CS1 (+kv)	Forze inerzia legate a carichi strutturali e non (+kh / +kv)	G1sis	sfav	1	1	١	1	\
CS2 (-kv)	Spinta (dinamica) delle terre - attiva (-kv)	G1sis terre	sfav	1	1	١	١	١
CS2 (+kv)	Spinta (dinamica) delle terre - attiva (-+v)	G1sis terre	sfav	1	١	١	١	١

		Massimi compre	zzazione essione		Mas	simizzaz	ione traz	ione	sisn	nica	Rara				frequ	iente
DESCRIZIONE	no traffic o	traffic o 1	traffic o 2a	traffic o 2a config 2	no traffic o	traffic o 1	traffic o 2a	traffic o 2a config 2	Traffic o+	<u>Traffic</u> <u>o -</u>	no traffic o	traffic o 1	traffic o 2a	traffic o 2a config 2	no traffic o	traffic o 1
COMBINAZIO NE	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
C1	1,35	1,35	1,35	1,35	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
C2	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
С3	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
C4a	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
C4b	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	0,20	0,20	1,00	1,00	1,00	1,00	0,75	0,75
C4c	0,00	1,35	1,01	0,00	0,00	1,35	1,01	0,00	0,20	0,20	0,00	1,00	0,75	0,00	0,00	0,75
C4d	0,00	0,00	0,00	1,01	0,00	0,00	0,00	1,01	0,00	0,00	0,00	0,00	0,00	0,75	0,00	0,00
C4e	0,00	1,35	0,54	0,54	0,00	1,35	0,54	0,54	0,20	0,20	0,00	1,00	0,40	0,40	0,00	0,40
C5	0,00	0,00	1,35	1,35	0,00	0,00	1,35	1,35	0,00	0,00	0,00	0,00	1,00	1,00	0,00	0,00
C6	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
С7	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
C8	0,90	0,90	0,90	0,90	0,90	0,90	0,90	0,90	0,00	0,00	0,60	0,60	0,60	0,60	0,00	0,00
CS1 (-kv)	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00
CS1 (+kv)	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
CS2 (-kv)	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00
CS2 (+kv)	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

5.3.6 Sollecitazioni risultanti nel baricentro della fondazione

Riepilogo azioni caratteristiche (a metro):

RISULT ANTI		C1			C2			С3			C4a			C4b			C4c	
	R _x [kN/ m]	R _y [kN/ m]	Mz [kNm /m]	R _x [kN/ m]	R _y [kN/ m]	M _z [kNm /m]	R _x [kN/ m]	R _y [kN/ m]	Mz [kNm /m]	R _x [kN/ m]	R _y [kN/ m]	M _z [kNm /m]	R _x [kN/ m]	R _y [kN/ m]	Mz [kNm /m]	R _x [kN/ m]	R _y [kN/ m]	M _z [kNm /m]
Impalc ato	219	0	-328	0	0	0	0	0	0	0	0	0	0	0	0	134	0	-201
Sottost ruttura	399	0	-303	522	0	652	66	153	-216	74	0	93	16	37	-103	0	0	0
Totale	618	0	-632	522	0	652	66	153	-216	74	0	93	16	37	-103	134	0	-201

RISULT ANTI		C4d			C4e			C5			C6			С7			C8	
	R _x [kN/ m]	R _y [kN/ m]	M _z [kNm /m]	R _x [kN/ m]	R _y [kN/ m]	M _z [kNm /m]	R _x [kN/ m]	R _y [kN/ m]	M _z [kNm /m]	R _x [kN/ m]	R _y [kN/ m]	Mz [kNm /m]	R _x [kN/ m]	R _y [kN/ m]	M _z [kNm /m]	R _x [kN/ m]	R _y [kN/ m]	M _z [kNm /m]
Impalc ato	1	0	-1	57	0	-86	0	45	-327	0	11	-79	0	0	0	0	0	0
Sottost ruttura	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Totale	1	0	-1	57	0	-86	0	45	-327	0	11	-79	0	0	0	0	0	0

RISULT ANTI		CS1 (-k	<i>ı</i>)		CS1 (+kv) CS2 (-kv)			(CS2 (+kv)				
	R _x [kN/ m]	R _y [kN/ m]	M _z [kNm /m]	R _x [kN/ m]	R _y [kN/ m]	M _z [kNm /m]	R _x [kN/ m]	R _y [kN/ m]	M _z [kNm /m]	R _× [kN/ m]	R _y [kN/ m]	M _z [kNm /m]	
Impalc ato	0	0	0	0	0	0	0	0	0	0	0	0	
Sottost ruttura	-50	100	-387	50	100	-349	0	32	-133	0	52	-214	
Totale	-50	100	-387	50	100	-349	0	32	-133	0	52	-214	

Riepilogo azioni combinate (a metro):

	Massim	nizzazion	e compr	essione	Mas	simizzaz	ione traz	ione	sisr	nica		Ra	ara		frequente		
DESCRIZIONE	no traffic o	traffic o 1	traffic o 2a	traffic o 2a config 2	no traffic o	traffic o 1	traffic o 2a	traffic o 2a config 2	Traffic o+	Traffic o -	no traffic o	traffic o 1	traffic o 2a	traffic o 2a config 2	no traffic o	traffic o 1	
COMBINAZIO NE	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
N _{Ed}	1466	1724	1633	1498	1250	1508	1416	1282	1296	1197	1221	1412	1345	1245	1217	1341	
V _{Ed}	271	271	332	332	271	271	332	332	323	303	201	201	246	246	191	191	
M _{Ed}	-737	-1124	-1428	-1226	-516	-903	-1207	-1005	-915	-872	-377	-664	-889	-739	-351	-536	

5.3.7 Verifica capacità portante del plinto di fondazione

Si riportano di seguito le verifiche a capacità portante del plinto di fondazione. Le verifiche sono relativi alle sole condizioni più gravose.

Si riportano di seguito le verifiche a capacità portante del plinto di fondazione.

Dove non espressamente indicato le unità di misura sono kN m Calcolo del carico limite secondo il metodo di Vesic

CARATTERISTICHE GEOMETRICHE DELLA FONDAZIONE

B _x =	6,20	6,20	6,20	6,20
B _y =	1,00	1,00	1,00	1,00
H =	0,00	0,00	0,00	0,00
p.p. _{fond} =	0,00	0,00	0,00	0,00
Comb	PP	SLE	SLU	SLV
Sollecitazioni di verifi	ica:			
$\gamma_{ m G}$ =	1,00	1,00	1,00	1,00
$\gamma_{\mathrm{Q}} =$	1,00	1,00	1,00	1,00
N _{Ed} =	1205,00	1412,00	1724,00	1296,00
H _{Ed;x} =	164,00	246,00	332,00	323,00
M _{Ed;x} =	274,00	889,00	1428,00	915,00
e _x =	0,23	0,63	0,83	0,71
B'x =	5,75	4,94	4,54	4,79
H _{Ed;y} =	0,00	0,00	0,00	0,00
M _{Ed;y} =	0,00	0,00	0,00	0,00
e _y =	0,00	0,00	0,00	0,00
B'y =	1,00	1,00	1,00	1,00
CARATTERISTICHE	CEOTECNICHE			
Comb	PP	SLE	SLU	SLV
$\gamma_{c'} =$	1,00	1,00	1,00	1,00
$\gamma_{\phi'} = \gamma_{\phi'}$	1,00	1,00	1,00	1,00
$\gamma^{\psi} = \gamma_{R;v} = 0$	1,40	1,40	1,40	1,40
$\gamma_{\kappa,v} = \gamma_{\gamma} = 0$	1,00	1,00	1,00	1,00
c' _k =	0,00	0,00	0,00	130,00
$\varphi_{\mathbf{k}} =$	26,0	26,00	26,00	0,00
$\gamma_{\sf ak}$ =	10,00	10,00	10,00	10,00
, γ _{1k} =	19,00	19,00	19,00	19,00
$\gamma_{2k} =$	19,00	19,00	19,00	19,00
c' _d =	0,00	0,00	0,00	130,00
$\varphi_{\mathbf{d}} =$	26°	26°	26°	0°
$\gamma_{\sf ad}$ =	10,00	10,00	10,00	10,00
γ _{1d} =	19,00	19,00	19,00	19,00
$\gamma_{2d} =$	19,00	19,00	19,00	19,00
z =	2,50	2,50	2,50	2,50
Df =	2,50	2,50	2,50	2,50
q' = q ₀ =	47,50	47,50	47,50	47,50
B' =	1,00	1,00	1,00	1,00
L' =	5,75	4,94	4,54	4,79

VERIFICHE GEOTECNICHE

Verifica in direzione x

N _{Ed} =		SLE	SLU	SLV
	1205,00	1412,00	1724,00	1296,00
V _{Ed} =	164,00	246,00	332,00	323,00
N _q =	11,85	11,85	11,85	1,00
Ν _γ =	12,54	12,54	12,54	0,00
N _c =	22,25	22,25	22,25	5,14
s _q =	1,08	1,10	1,11	1,00
s _γ =	0,93	0,92	0,91	0,92
sc=sc0=	1,09	1,11	1,12	0,96
m=m ⁰ =	1,15	1,17	1,18	1,17
i _q =	0,85	0,80	0,78	1,00
i _γ =	0,73	0,66	0,63	1,00
i _c =	0,00	0,00	0,00	0,43
d _q =	1,13	1,16	1,17	1,00
$d_{\gamma}=$	1,00	1,00	1,00	1,00
$d_c=d_c^0=$	1,17	1,20	1,22	1,21
ε =	0,00	0,00	0,00	0,00
b _q =	1,00	1,00	1,00	1,00
b _γ =	1,00	1,00	1,00	1,00
b _c =	1,00	1,00	1,00	1,00
ω =	0,00	0,00	0,00	0,00
g _q =	1,00	1,00	1,00	1,00
g _Y =	1,00	1,00	1,00	1,00
g _c =	1,00	1,00	1,00	1,00
Q _{lim} =	4629,61	3660,46	3239,64	1833,61
R _d =	3306,87	2614,62	2314,03	1309,72
N _{Ed} =	1205,00	1412,00	1724,00	1296,00
Verifica	ok	ok	ok	ok