

Direzione Progettazione e Realizzazione Lavor i

S.S 685 "DELLE TRE VALLI UMBRE"

TRATTO SPOLETO - ACQUASPARTA 1º stralcio: Madonna di Baiano-Fiorenzuola

SUPPORTO AGGIORNAMENTO PROG. DEFINITIVO

cod. **PG143**

ATI SINTAGMA - GDG - ICARIA PROGETTAZIONE: IL RESPONSABILE DELL'INTEGRAZIONE DELLE PRESTAZIONI SPECIALISTICHE: IL GRUPPO DI PROGETTAZIONE: MANDATARIA: MANDANTI: Dott. Ing. Nando Granieri Ordine degli Ingegneri della Prov. di Perugia n° A351 GEOTECHNICAL DESIGN GROUP **1** bintagma società di ingegneria Dott.Ing. N.Granieri D.Carlaccini Dott. Ing. V.Rotisciani II PROGETTISTA: S.Sacconi G.Cordua Dott.Arch. N.Kamenicky V.Truffini Dott. Ing. Dott. Ing. Geom. F.Macchioni C.Vischini Dott. Ing. David Carlaccini Dott.Ing. Dott.Arch. Dott. Ing. V.Piunno G.Pulli Ordine degli Ingegneri della Prov. di Terni n° A1245 A.Bracchini Dott. Ing. V.De Gori Dott. Ing. Dott.Ing. F Durastanti Dott. Ing. C.Consorti F.Dominici Dott. Ing. Dott.Ing. E.Bartolocci Geom. C.Sugaroni Dott. Ing. Dott.Geol. G.Cerquiglini Dott. Geol. Giorgio Cerquiglini Geom. S.Scopetta Ordine dei Geologi della Regione Umbria n°108 Dott.Ing. L.Sbrenna Dott.Ing. E.Sellari IL COORDINATORE PER LA SICUREZZA IN FASE DI PROGETTAZIONE: Dott.Ing. L.Dinelli Dott.Ing. L.Nani Dott. Ing. Filippo Pambianco Dott.Ing. F.Pambianco Ordine degli Ingegneri della Prov. di Perugia n° A1373 F.Berti Nulli Dott. Agr. INGEGNERI DELLA PROVINCIA Il Responsabile di Progetto Sezione A E ORDINE degli INGEGNERI Arch. Pianificatore Marco Colazza INGEGNERE Il Responsabile del Procedimento David DOTTORS INGEGNERE CARLACCION MANDO GRANIERI Alessandro Micheli SETTORE CIVILE E AMBIENTALE SETTORE INDUSTRIALE **PROTOCOLLO** DATA Provincia di TERNI SETTORE DELL'INFORMAZIONE

OPERE IN SOTTERRANEO: GALLERIE ARTIFICIALI GALLERIA COLLE DEL VENTO Galleria artificiale Colle del Vento - Relazione di calcolo

CODICE PROGET	TO LIV. PROG. N. PROG.	NOME FILE TOO-GNO2-OST-RE01				REVISIONE	SCALA:
LOPG1		CODICE TOOGNOZOSTREO1			A	-	
Α	Emissione			30/11/2020	G.Cordua	D.Carlaccini	N.Granieri
REV.	DESCRIZIONE			DATA	REDATTO	VERIFICATO	APPROVATO

GALLERIA ARTIFICIALE COLLE DEL VENTO: relazione di calcolo

STRADA DELLE TRE VALLI UMBRE Tratto Eggi-Acquasparta – I° Stralcio Baiano-Firenzuola PROGETTO DEFINITIVO

1	IN'	TRODUZIONE	5
1	1.1	PREMESSE	5
1	1.2	DESCRIZIONE DEGLI INTERVENTI	5
1	1.3	NORMATIVA DI RIFERIMENTO	6
1	1.4	CARATTERISTICHE DEI MATERIALI STRUTTURALI	6
2	M	ODELLO GEOTECNICO DI CALCOLO	9
3	DE	EFINIZIONE DELL'AZIONE SISMICA	10
3	3.1	INQUADRAMENTO SISMICO	10
3	3.2	METODO PSEUDO-STATICO	11
4	CF	RITERI DI ANALISI	11
4	I.1	METODO DI CALCOLO DELLA GALLERIA ARTIFICIALE	11
4	1.2	METODO DI CALCOLO DELLA PARATIA	12
5	CF	RITERI DI VERIFICA	14
5	5.1	CRITERI NORMATIVI DI PROGETTO	14
5	5.2	ELEMENTI IN C.A	15
	5.2		
	5.2	2.2 Criteri di verifica agli SLE	18
5	5.3	ELEMENTI IN ACCIAIO	19
5	5.4	VERIFICHE DEI TIRANTI DI ANCORAGGIO	20

Realizzazione Lavori

STRADA DELLE TRE VALLI UMBRE Tratto Eggi-Acquasparta – l° Stralcio Baiano-Firenzuola

PROGETTO DEFINITIVO

5.4.1	Verifica a trazione dell'armatura	20
5.4.2	Verifica a sfilamento del bulbo d'ancoraggio	20
.5 VE	RIFICHE DI STABILITÀ GLOBALE	21
PARA	ATIE	23
.1 DE	SCRIZIONE DELLE SEZIONI DI STUDIO	23
.2 AN	IALISI DELLA PARATIA TEMPORANEA	23
6.2.1	Caratteristiche geometriche	24
6.2.2	Parametri di calcolo e analisi dei carichi	25
.3 AN	IALISI DELLA PARATIA PERMANENTE	26
6.3.1	Caratteristiche geometriche	27
6.3.2	Parametri di calcolo e analisi dei carichi	28
.4 RIS	SULTATI DELLE ANALISI	29
6.4.1	Paratia temporanea	29
6.4.2	Paratia permanente	34
.5 VE	RIFICHE	38
6.5.1	Elementi in c.a	38
6.5.2	Verifiche dei tiranti di ancoraggio	41
6.5.3	Verifica delle travi di ancoraggio	43
6.5.4	Verifiche di stabilità globale	45
GALL	ERIA ARTIFICIALE	50
'.1 DE	SCRIZIONE DEL MODELLO DI CALCOLO	50
7.1 DE	Fasi di calcolo	
	5.4.2 5.4.2 FARA 6.1 DE 6.2.1 6.2.2 6.3 AN 6.3.1 6.3.2 6.4.1 6.4.2 6.5.1 6.5.2 6.5.1 6.5.2 6.5.3 6.5.4	5.4.2 Verifica a sfilamento del bulbo d'ancoraggio

anas Direzione Progettazione e Realizzazione Lavori

STRADA DELLE TRE VALLI UMBRE Tratto Eggi-Acquasparta – I° Stralcio Baiano-Firenzuola

PROGETTO DEFINITIVO

7.2	RIS	SULTATI DELLE ANALISI NUMERICHE	.52
7.3	VE	RIFICHE STRUTTURALI	.61
7.3	3.1	Descrizione degli elementi strutturali e indicazione delle sezioni di verifica	.61
7.3	3.2	Verifiche SLU	.62
7:3	3.3	Verifiche SI F	69

RELAZIONE DI CALCOLO

1 INTRODUZIONE

1.1 PREMESSE

Oggetto della presente relazione è l'analisi, ai sensi delle *Norme Tecniche per le Costruzioni 2018*, della galleria artificiale Colle del Vento e delle opere di sostegno poste a sostegno dello scavo. La galleria rientra nel lavoro della "Strada delle tre valli umbre", tratto Eggi - Acquasparta.

La presente relazione è emessa nell'ambito della variante di Progetto Definitivo a seguito della modifica imposta dal gestore sulle fasi realizzative che ha previsto l'eliminazione della carreggiata di raddoppio (direzione Acquasparta) e, pertanto, l'attuale progetto prevede la realizzazione di una canna singola.

1.2 DESCRIZIONE DEGLI INTERVENTI

La galleria artificiale, di cui si riporta una sezione tipo in Figura 1, sarà realizzata in c.a. gettato in opera e si svilupperà per una lunghezza di 247.6 m.

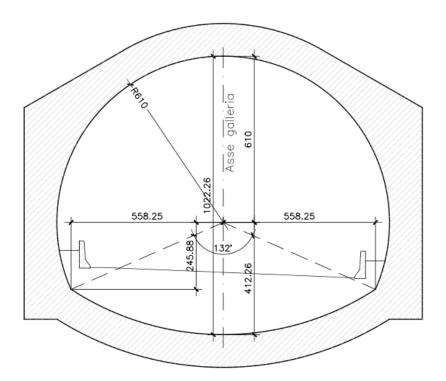


Figura 1: Sezione trasversale galleria artificiale.

Realizzazione Lavori

STRADA DELLE TRE VALLI UMBRE Tratto Eggi-Acquasparta – l° Stralcio Baiano-Firenzuola

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Per la realizzazione della galleria artificiale, sarà necessaria l'esecuzione di uno scavo che raggiunge una quota massima di circa 20 m. Nello specifico, le fasi di realizzazione prevedono un primo sbancamento e realizzazione di terrazzamenti, che raggiungono uno quota massima di circa 6 m. Il successivo sbancamento, di circa 14 m anch'esso, è supportato da una paratia di pali lungo la corsia in direzione Spoleto: in particolare si prevede la realizzazione di pali Ø800 trivellati in c.a, con due livelli di tiranti con 3 o 4 trefoli da 0.6", ad interasse 3.3 m. La lunghezza dei pali è di 18 m e sono disposti ad un interasse di 1.1 m. Per la corsia in direzione opposta si procederà, invece, con l'esecuzione di scavi a cielo aperto con scarpate di pendenza 1:1. All'imbocco della galleria si prevede la realizzazione di una paratia di pali Ø800, con interasse 1.1 m e lunghezza 14 m. La geometria delle paratie è studiata in modo tale da minimizzare gli sbancamenti necessari per inserire l'opera nel contesto ambientale e, nel contempo, permettere una sistemazione definitiva dei versanti rispettosa della morfologia originaria degli stessi.

Nel seguito sono illustrate le soluzioni progettuali e le verifiche di dimensionamento della struttura della galleria e delle opere di sostegno.

Le paratie hanno funzione temporanea per il tratto in corrispondenza della galleria artificiale, mentre hanno funzione permanente nei tratti di imbocco.

1.3 NORMATIVA DI RIFERIMENTO

I calcoli strutturali sono stati redatti nella piena osservanza delle normative vigenti, con particolare riferimento al Decreto Ministeriale 17 gennaio 2018 «Aggiornamento delle Norme tecniche per le costruzioni»" (in breve "NTC2018") e alla Circolare del Ministero delle infrastrutture e dei trasporti 21 gennaio 2019, n. 7.

1.4 CARATTERISTICHE DEI MATERIALI STRUTTURALI

CALCESTRUZZO PER ARCO ROVESCIO, PIEDRITTI E CALOTTA

Classe C25/30

$R_{ck} =$	resistenza caratteristica cubica	MPa	30
$f_{ck} =$	resistenza caratteristica cilindrica	MPa	25

RELAZIONE DI CALCOLO

$f_{cd} = f_{cfk} = f_{ctk} = E_{cm} =$	resistenza di progetto a compressione resistenza a trazione per flessione caratteristica resistenza a trazione caratteristica Modulo elastico	MPa MPa MPa MPa	14.2 2.15 1.80 31476
CALCESTRU	ZZO PALI E TRAVE DI CORONAMENTO		
	Classe C25/30		
$R_{ck} =$	resistenza caratteristica cubica	MPa	30
$f_{ck} =$	resistenza caratteristica cilindrica	MPa	25
$f_{cd} =$	resistenza di progetto a compressione	MPa	14.2
$f_{\text{cfk}} =$	resistenza a trazione per flessione caratteristica	MPa	2.15
$f_{ctk} =$	resistenza a trazione caratteristica	MPa	1.80
E _{cm} =	modulo elastico	MPa	31476
ACCIAIO PER	R TRAVI DI RIPARTIZIONE Tipo UNI EN 10025-5 S355 (ex Fe 510)		
$f_{yk} =$	tensione caratteristica di snervamento	MPa	355 1.05
f _{yd} =	fattore parziale globale resistenza di progetto per spessori fino a 40 mm	MPa	338
$f_{yd} =$	resistenza di progetto per spessori oltre 40 mm	MPa	319
E _s =	modulo elastico	MPa	210000
Tensioni in es	ercizio		
$\sigma_s = 0.8 \; f_{yk}$	tensione ammissibile nell'acciaio in esercizio	MPa	270
BARRE - ACC	CIAIO ARMATURA ORDINARIA		
		B450	_
f _{yk} =	tensione caratteristica di snervamento	MPa	450
f _{yd} =	resistenza di progetto	MPa	391
Es =	modulo elastico	MPa	206000

Tensioni in esercizio

STRADA DELLE TRE VALLI UMBRE Tratto Eggi-Acquasparta – I° Stralcio Baiano-Firenzuola

PROGETTO DEFINITIVO

$\sigma_s = 0.8 \; f_{yk}$	tensione limite nell'acciaio in esercizio	MPa	360
TREFOLI - AC	CIAIO ARMATURA TIRANTI		
Trefoli stabil	izzati da 0.6"		
$f_{ptk} =$	tensione caratteristica di rottura	MPa	1860
$f_{p(1)k} =$	tensione caratteristica all'1% di deformazione totale	MPa	1670
$f_{pyd} =$	resistenza di progetto	MPa	1452
E _s =	modulo elastico	MPa	195000
Tensioni iniz	riali		
$\sigma_{spi} = 0.8 \; f_{ptk}$	tensione limite nell'acciaio all'atto della precompressione	MPa	1488
Tensioni in e	esercizio		
$\sigma_{sp} = 0.8 f_{p(1)k}$	tensione limite nell'acciaio in esercizio	MPa	1336

Realizzazione Lavori

STRADA DELLE TRE VALLI UMBRE Tratto Eggi-Acquasparta – I° Stralcio Baiano-Firenzuola

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

2 MODELLO GEOTECNICO DI CALCOLO

Le opere descritte nella presente relazione ricadono nella formazione della marnoso arenacea, costituita da argille e argille marnose di colore grigio cenere e grigio marrone, alternate ad arenarie stratificate di vario grado granulometrico in strati o banchi. La caratterizzazione geotecnica è stata effettuata sulla base delle prove effettuate nel sondaggio S2/09, che include prove *Point Load*, una prova dilatometrica ad espansione cilindrica e una prova sismica in onde P in tecnica tomografica. Sulla base delle informazioni ottenute da tali prove e di quanto descritto nella relazione geotecnica sono stati assunti i parametri riportati in **Errore. L'origine riferimento non è stata trovata.**.

Il modello di *Hoek* e *Brown* è stato linearizzato in funzione della copertura media e sono stati estrapolati i rispettivi parametri di calcolo secondo il modello di *Mohr-Coulomb*. Nell'ambito di ciascuna parte d'opera saranno illustrate le scelte di dettaglio.

Tabella 1 Caratterizzazione geotecnica - Hoek e Brown.

Formazione	γ	γ ν		mi	GSI	E'
Formazione	[kN/m³]	[-]	[MPa]	[kPa]	[-]	[MPa]
Mar	23	0.3	3.3	12	36	100÷200

Non è stata riscontrata la presenza di circolazione idrica all'interno dell'ammasso.

RELAZIONE DI CALCOLO

3 DEFINIZIONE DELL'AZIONE SISMICA

3.1 INQUADRAMENTO SISMICO

In conformità al paragrafo 2.4.3 delle *NTC2018*, al fine di caratterizzare l'azione sismica, si assume una vita nominale $V_N = 10$ anni per le opere a carattere provvisorio e $V_N = 50$ anni per quelle a carattere definitivo. Le azioni sismiche sulle costruzioni vengono valutate in relazione ad un periodo di riferimento V_R , funzione del tipo di costruzione, che si ricava, moltiplicando la vita nominale di progetto V_N per il coefficiente d'uso C_U mediante l'espressione $V_R = V_N$ C_U , dove C_U rappresenta il coefficiente d'uso, il quale è definito al variare della classe d'uso, come mostrato in Figura 2 (cfr. Tab. 2.4.II).

Tab. 2.4.II - Valori del coefficiente d'uso C11

CLASSE D'USO	I	II	III	IV
COEFFICIENTE C _U	0,7	1,0	1,5	2,0

Figura 2: Valori del coefficiente d'uso Cu.

Con riferimento allo "stato limite di salvaguardia della vita" SLV, si assume un periodo di ritorno T_R =- V_R /In(1- P_{VR}), essendo P_{VR} la probabilità di superamento nel periodo di riferimento, fissata da norma pari al 10%.

In merito alle condizioni di sottosuolo e topografiche, nel caso in esame si assume una categoria di sottosuolo tipo *B* ed una classe topografica *T1*.

I parametri sismici sono stati determinati utilizzando il foglio di calcolo Spettri – *NTC ver. 1.0.3*, con riferimento al comune di Spoleto.

In Tabella 2 e Tabella 3 si riportano i valori delle grandezze necessarie per la definizione dell'azione sismica rispettivamente per le opere provvisionali e per quelle definitive.

Tabella 2: Riepilogo grandezze necessarie per la definizione dell'azione sismica per le opere provvisionali.

	V _N (anni)	Сυ	V _R (anni)	T _R (anni)	a _g /g	Cat. terreno	S⊤	Fo	Ss	a _{max} /g
Ī	10	2	35	332	0.186	В	1	2.393	1.2	0.223

Tabella 3: Riepilogo grandezze necessarie per la definizione dell'azione sismica per le opere definitive.

Direzione Progettazione e

Realizzazione Lavori

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

V _N (anni)	С	V _R (anni)	T _R (anni)	a _g /g	Cat. terreno	S _T	Fo	Ss	a _{max} /g
50	2	100	949	0.269	В	1	2.414	1.14	0.307

3.2 METODO PSEUDO-STATICO

La valutazione dell'azione sismica è avvenuta con riferimento al metodo pseudo-statico in conformità al § 7.11.6.2.1 delle *NTC2018.*

Nell'analisi pseudo-statica, l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.

Nelle verifiche, i valori dei coefficienti sismici orizzontale kh e verticale kv possono essere valutati mediante le espressioni:

$$F_h = k_h \cdot W$$

 $F_v = \pm k_v \cdot W$

dove k_h è il coefficiente legato all'accelerazione di picco dalla relazione:

$$k_h = \beta \cdot \frac{a_{max}}{a} = \beta \cdot \frac{S_S \cdot S_T \cdot a_g}{a}$$

con:

- β = coefficiente di riduzione dell'accelerazione massima attesa al sito;
- S_S = coefficiente che tiene conto dell'amplificazione stratigrafica;
- S_T = coefficiente di amplificazione topografica;
- a_q = accelerazione orizzontale massima attesa su sito di riferimento.

Il coefficiente k_v è pari a: $k_v = \pm 0.5 k_h$.

4 CRITERI DI ANALISI

4.1 METODO DI CALCOLO DELLA GALLERIA ARTIFICIALE

La valutazione del comportamento meccanico delle opere è stata eseguita mediante analisi numeriche in grado di cogliere l'interazione terreno-struttura. Le analisi sono state sviluppate impiegando modelli piani bidimensionali con il codice di calcolo agli elementi finiti *Plaxis 2D*

STRADA DELLE TRE VALLI UMBRE Tratto Eggi-Acquasparta – 1° Stralcio Baiano-Firenzuola

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

v. 9.0. Il software consente di simulare il terreno come mezzo continuo (elementi finiti triangolari a 18 nodi) e, attraverso l'aggiornamento delle porzioni di *mesh* attive, è possibile simulare le fasi costruttive delle opere.

4.2 METODO DI CALCOLO DELLA PARATIA

Le analisi per la valutazione delle sollecitazioni negli elementi strutturali (pali e tiranti) sono state condotte mediante il codice di calcolo *ParatiePlus*. In tale codice la schematizzazione dell'interazione tra paratia e terreno avviene considerando:

- la paratia come una serie di elementi il cui comportamento è caratterizzato dalla rigidezza flessionale EJ;
- il terreno come una serie di molle di tipo elasto plastico connesse ai nodi della paratia.

Il modello numerico consente una simulazione del comportamento del terreno adeguata agli scopi progettuali. In particolare, vengono superate le limitazioni dei più tradizionali metodi dell'equilibrio limite, non idonei a seguire il comportamento della struttura al variare delle configurazioni di carico, delle fasi esecutive e di esercizio. Nel caso in esame, in una generica fase di calcolo dell'analisi di interazione tra paratia e terreno, la soluzione viene a dipendere dal percorso tenso – deformativo seguito dagli elementi che schematizzano il terreno nelle fasi precedenti, dalle variazioni di spinta o reazione del terreno indotte dalla progressione degli scavi, dall'inserimento dei tiranti, dalle variazioni delle condizioni di sovraccarico.

La legge costitutiva, rappresentativa del comportamento elasto – plastico del terreno, è identificata dai parametri di spinta e di deformabilità del terreno.

I parametri di spinta del terreno sono:

- il coefficiente di spinta a riposo, k₀, corrispondente alla condizione litostatica iniziale;
- i coefficienti di spinta attiva, k_A , e passiva k_P , corrispondenti alle condizioni di equilibrio attivo e passivo; tali coefficienti sono calcolati mediante le espressioni di

RELAZIONE DI CALCOLO

Lancellotta, tenendo conto di un angolo di attrito tra terreno e paratia $\tan \delta = \frac{2}{3} \tan \varphi'$.

Per il calcolo dell'incremento sismico di spinta ΔS_E , è stata utilizzata la procedura automatica implementata nel codice di calcolo: secondo tale procedura l'incremento sismico di sollecitazione sulla paratia è valutato a partire da quello ottenuto con la teoria di *Wood* e modificato sulla base degli spostamenti incrementali, dipendenti dall'elasticità del sistema.

L'incremento sismico di spinta è simulato mediante l'applicazione di una pressione uniformemente distribuita applicata alla parte d'opera fuori terra. Il valore del carico sismico è ottenuto moltiplicando il valore del coefficiente pseudo-statico k_h per la tensione litostatica γ -H agente a fondo scavo mediante l'espressione $\Delta S_E = \frac{a_{max}}{g} \cdot \beta \cdot \gamma H = k_h \cdot \gamma H$. In Tabella 8 si riporta la valutazione del carico sismico pseudo-statico adoperato nella analisi, nel caso di paratia temporanea e permanente, avendo assunto il peso dell'unità di volume γ pari a 23 kN/m³.

Tabella 4: Valutazione dei coefficienti pseudo-statici e dei carichi sismici.

Tipologia di opera	a _{max} /g	β	k _h	H (m)	$\Delta S_E (kPa)$
Temporanea		-	0.223	13.5	69.3
Permanente	0.307	1	0.307	10.5	74.06

Nella tabella seguente è riportata la successione tipica delle fasi di modellazione eseguita per l'analisi delle strutture di sostegno:

FASE	DESCRIZIONE
1	Condizione iniziale geostatica
2	Realizzazione paratia
3	I fase di scavo
4	Applicazione del I ordine di tiranti/puntoni
5	II fase di scavo
6	Applicazione del II ordine di tiranti/puntoni
7	Ultima fase di scavo
8	Applicazione delle azioni sismiche

RELAZIONE DI CALCOLO

5 CRITERI DI VERIFICA

5.1 CRITERI NORMATIVI DI PROGETTO

Tutte le analisi sono state effettuate con riferimento alle prescrizioni contenute nelle Norme Tecniche delle costruzioni del 17/01/2018 (*NTC 2018*) e alle Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni" pubblicate il 21 gennaio 2019.

Le verifiche di sicurezza relative agli stati limite ultimi (*SLU*) consistono, in generale, nel verificare il rispetto della seguente condizione:

$$E_d < R_d$$

dove con E_d si indica il valore di progetto delle azioni, o degli effetti delle azioni, e con R_d il valore di progetto delle resistenze. La verifica di tale condizione deve essere effettuata impiegando diverse combinazioni di gruppi di coefficienti parziali definiti rispettivamente per le azioni (A1 e A2), per i parametri geotecnici (M1 e M2) e per le resistenze (R1, R2 e R3).

Le azioni di progetto, E_d , o, altresì, gli effetti delle azioni (sollecitazioni sui diaframmi e sugli elementi di contrasto, azioni sui pali di fondazione), sono valutabili a partire dalle azioni caratteristiche adottando per i coefficienti parziali γ_F i valori specificati nella sequente Figura 3 (Tabella 6.2.I delle *NTC 2018*).

CARICHI	EFFETTO	Coefficiente Parziale γ _E (ο γ _E)	EQU	(A1) STR	(A2) GEO
Permanenti	Favorevole	.,	0,9	1,0	1,0
Permanenu	Sfavorevole	γ_{G1}	1,1	1,3	1,0
Permanenti non strutturali (1)	Favorevole	.,	0,0	0,0	0,0
Permanenti non strutturan · ·	Sfavorevole	γ _{G2}	1,5	1,5	1,3
Variabili	Favorevole		0,0	0,0	0,0
variaom	Sfavorevole	γQi	1,5	1,5	1,3

Figura 3: Coefficienti parziali per le azioni o l'effetto delle azioni - Tabella 6.2.I.

Le resistenze di progetto, R_d , si determinano a partire dai valori caratteristici dei parametri geotecnici di resistenza, divisi per i coefficienti parziali γ_M specificati in Figura 4 (Tabella 6.2.II delle *NTC 2018*) e tenendo conto, ove necessario, dei coefficienti parziali γ_R , specifici per ciascun tipo di opera.

Direzione Progettazione e

Realizzazione Lavori

STRADA DELLE TRE VALLI UMBRE Tratto Eggi-Acquasparta – I° Stralcio Baiano-Firenzuola

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

PARAMETRO	GRANDEZZA ALLA QUALE	COEFFICIENTE	(M1)	(M2)
	APPLICARE IL	PARZIALE		
	COEFFICIENTE PARZIALE	$\gamma_{ m M}$		
Tangente dell'angolo di	$ an \phi'_k$	$\gamma_{\phi'}$	1,0	1,25
resistenza al taglio		·		
Coesione efficace	c'_k	$\gamma_{c'}$	1,0	1,25
Resistenza non drenata	c_{uk}	γ_{eu}	1,0	1,4
Peso dell'unità di volume	γ	γ_{γ}	1,0	1,0

Figura 4: Coefficienti parziali per i parametri geotecnici del terreno - Tabella 6.2.II.

I valori da applicare alle resistenze sono specifici in relazione alla tipologia di opera e quindi vengono precisati nell'ambito della descrizione delle verifiche relative a ciascuna di esse.

Per le verifiche allo stato limite ultimo delle opere di sostegno, si è seguito il primo approccio previsto dalle *NTC 2018*, in cui sono previste due diverse combinazioni di gruppi di coefficienti, conducendo separatamente 2 distinte analisi:

$$STR) A1 + M1 + R1$$

GEO) A2 + M2 + R1

I valori assunti dal coefficiente parziale R1 sono pari all'unità.

5.2 ELEMENTI IN C.A.

Le strutture in c.a. sono state oggetto di verifiche strutturali sia agli Stati Limite Ultimi (*SLU*), sia agli Stati Limite di Esercizio (*SLE*).

Le sollecitazioni agenti su tali strutture sono state considerate come azioni caratteristiche permanenti.

5.2.1 Criteri di verifica agli SLU

Per quanto concerne la valutazione della resistenza di progetto R_d , in maniera analoga a quanto previsto per elementi monodimensionali, si è distinto il comportamento per sforzi assiali-flessionali e sforzi taglianti.

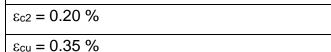
Verifiche a presso-flessione:

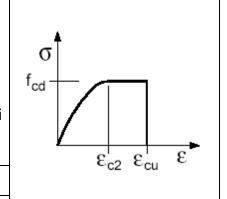
Di seguito sono richiamati i principali criteri di verifica agli SLU.

- Criterio di verifica: M_{Rd} (N_{Ed}) ≥ M_{Ed}
- Ipotesi di calcolo:

RELAZIONE DI CALCOLO

- conservazione delle sezioni piane;
- perfetta aderenza tra acciaio e calcestruzzo;
- resistenza a trazione del calcestruzzo nulla;
- rottura del calcestruzzo determinata dal raggiungimento della sua capacità deformativa ultima a compressione;
- rottura dell'armatura tesa determinata dal raggiungimento della sua capacità deformativa ultima.
- Caratteristiche di calcolo dei materiali:


1. Calcestruzzo:


- strutture in c.a. - C25/30:

$$f_{cd} = f_{ck,cyl} / \gamma_c = 16.60 \text{ N/mm}^2$$

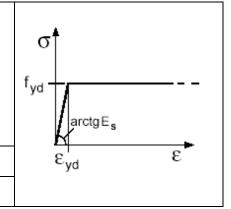
ove:

- $\gamma_c = 1.5$ (fattore di sicurezza)
- α_{cc} = 0.85 (coefficiente riduttivo per gli effetti di lunga durata)

2. Acciaio:

- B450C:

$$f_{yd} = f_{yk} / g_s = 391.30 \text{ N/mm}^2$$


 $E_s = 206000 \text{ N/mm}^2$

ove:

- $\gamma_s = 1.15$ (fattore di sicurezza)

$$\varepsilon_{yd} = f_{yd} / E_{sd} = 0.19 \%$$

$$\varepsilon_{ud} = 1.0 \%$$

Operativamente le verifiche sono state effettuate controllando che i punti di coordinate M_d - N_d , rappresentativi dei valori di progetto degli effetti delle azioni di calcolo, ricadessero tutti all'interno del dominio resistente ultimo della sezione, determinato con il *software VCA SLU*.

Direzione Progettazione e

Realizzazione Lavori

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Verifiche a taglio

La verifica allo SLU per taglio, è stata condotta nel caso di sezioni armate a taglio sulla base dei criteri e delle ipotesi seguenti:

- Criterio di verifica: V_{Rd} = min (V_{Rsd}; V_{Rcd}) ≥ V_{Ed}
- Ipotesi di calcolo: la resistenza viene valutata sulla base di una schematizzazione a traliccio. Gli elementi resistenti dell'ideale traliccio sono:
 - le armature trasversali (inclinate di un angolo "α")
 - le armature longitudinali
 - il corrente compresso di calcestruzzo
 - i puntoni d'anima inclinati di un angolo "θ".

La valutazione della capacità allo *SLU* per sforzi di taglio è eseguita, per queste sezioni, mediante espressioni che analizzano il meccanismo di rottura dell'armatura trasversale "V_{Rsd}" e quello dei puntoni compressi in calcestruzzo "V_{Rcd}"; il valore di resistenza è pari al valore minore tra:

$$V_{Rsd} = 0.9 \cdot d \cdot A_{sw} \cdot f_{yd} \cdot (ctg \alpha + ctg \theta) \cdot sin a / s$$

$$V_{Rcd} = 0.9 \cdot d \cdot b_w \cdot a_{cd} \cdot f'_{cd} \cdot (ctg \alpha + ctg \theta) / (1 + ctg^2 \theta)$$

ove:

- *d* = altezza utile della sezione:
- b_w = larghezza minima della sezione;
- A_{sw} è l'area dell'armatura trasversale;
- $f'_{cd} = 0.5 f_{cd}$ è la resistenza a compressione ridotta del calcestruzzo d'anima;
- α_{cd} è il fattore maggiorativo dipendente dallo sforzo di compressione medio agente nella sezione di verifica.

Nel caso di sezioni non armate a taglio, invece, la sollecitazione di taglio V_{Ed} è stata confrontata con la resistenza a taglio V_{Rd} valutata tramite la seguente relazione:

$$V_{Rd} = \{0.18 \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck})^{1/3} / \gamma_c + 0.15 \cdot \sigma_{cp}\} \cdot b_w \cdot d$$

dove:

• $\rho_1 = \frac{A_{sl}}{b_{md}}$ è il rapporto geometrico di armatura longitudinale;

RELAZIONE DI CALCOLO

- $\sigma_{cp} = \frac{N_{Ed}}{A_c}$ è la tensione media di compressione della sezione;
- $k = 1 + (200/d)^{1/2}$

5.2.2 Criteri di verifica agli SLE

Le verifiche agli *SLE* effettuate sulle strutture definitive riguardano la tensione massima di compressione nel calcestruzzo σ_c (cfr. p.to 4.1.2.2.5 delle *NTC2018*) e la fessurazione nelle condizioni di lungo termine.

La verifica riguardante la tensione massima di compressione nel calcestruzzo, come previsto al punto 4.1.2.2.5.1 delle *NTC2018*, è stata effettuata controllando la seguente condizione:

$$\sigma_c \le 0.45 \cdot f_{ck} = 11.5 \text{ MPa}$$

Lo stato limite di fessurazione è stato scelto seguendo le indicazioni riportate in Tabella 5 (cfr. Tab. 4.1.IV, NTC2018) e facendo riferimento alle condizioni ambientali ordinarie (classe di esposizione XC2). Tenuto conto che nel caso in oggetto di studio prevalgono le condizioni permanenti, si è fatto riferimento al limite di apertura delle fessure pari a: $w \le w_2 = 0.30$ mm (armature poco sensibili).

Tabella 5: Criteri di scelta dello stato limite di fessurazione.

Cruppi di	Condizioni	Combinazione		Armatui	а	
Gruppi di esigenze	ambientali	di azioni	Sensibile		Poco sensi	bile
esigerize	arribierilaii	ui azioni	Stato limite	Wd	Stato limite	Wd
Α	Ordinarie	Frequente	ap. fessure	≤ W2	ap. fessure	≤ W 3
A	Orumane	quasi permanente	ap. fessure	≤ W 1	ap. fessure	≤ w ₂
В	Aggressive	Frequente	ap. fessure	≤ W 1	ap. fessure	≤ w ₂
ь	Aggressive	quasi permanente	decompressione	-	ap. fessure	≤ w ₁
С	Molto	Frequente	formazione fessure	-	ap. fessure	≤ W ₁
C	aggressive	quasi permanente	decompressione	-	ap. fessure	≤ W ₁

Le verifiche a fessurazione sono state condotte utilizzando la procedura semplificata illustrata al punto C4 della Circolare 21 gennaio 2019, n. 7.

La proceduta semplificata consente di effettuare le verifiche calcolando la tensione massima nella fibra di acciaio più sollecitata σ_s e controllando che siano rispettati i limiti indicati nella Tabella 6 e nella Tabella 7 (cfr. Tab. C4.1.II e C4.1.III, Circ. 21/01/19 n. 7),

RELAZIONE DI CALCOLO

riguardanti rispettivamente il diametro massimo e la distanza massima delle barre di armature in funzione del tasso di lavoro.

Tabella 6: Diametri massimi delle barre per il controllo della fessurazione.

Tensione nell'acciaio $\sigma_{\rm s}$ (MPa)	Diametro i	massimo φ delle b	arre (mm)
Os (IVII a)	w₃=0.4 mm	w ₂ =0.3 mm	w₁=0.2 mm
160	40	32	25
200	32	25	16
240	20	16	12
280	16	12	8
320	12	10	6
360	10	8	-

Tabella 7: Spaziatura massima delle barre per il controllo della fessurazione.

Tensione nell'acciaio	Spaziatura	massima s delle l	barre (mm)
σ _s (MPa) _	w₃=0.4 mm	w ₂ =0.3 mm	w ₁ =0.2 mm
160	300	300	200
200	300	250	150
240	250	200	100
280	200	150	50
320	150	100	-
360	100	50	-

La tensione limite di riferimento per combinazioni permanenti sarà valutata nel rispetto della condizione $w_2 = 0.3$ mm.

La massima tensione di compressione nel calcestruzzo e la massima tensione di trazione nell'acciaio sono state determinate utilizzando il *software VCA SLU*.

5.3 ELEMENTI IN ACCIAIO

Le verifiche di capacità degli elementi metallici seguono i criteri delle normative vigenti di cui ai p.ti 4.2.3 e 4.2.4 delle *NTC2018*. In particolare, nel caso specifico, è stato utilizzato il metodo elastico che, per elementi semplicemente inflessi, si basa nella verifica della seguente espressione:

$$\sigma^2 + 3 \tau^2 = \sigma_{id}^2 \le f_{yk} / \gamma_{M0}$$

STRADA DELLE TRE VALLI UMBRE Tratto Eggi-Acquasparta – I° Stralcio Baiano-Firenzuola

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

ove $\sigma = M_{Ed}$ / W_{el} la tensione normale agente in direzione parallela all'asse della membratura, $\tau = V_{Ed}$ / A_{V} è la tensione tangenziale agente nel piano della sezione considerata, $\gamma_{M0} = 1.05$ il fattore di sicurezza dei materiali per la verifica di resistenza delle membrature, f_{yk} la resistenza caratteristica a snervamento dell'acciaio, A_{V} l'area di resistenza a taglio e W_{el} il modulo di resistenza elastico della sezione.

5.4 VERIFICHE DEI TIRANTI DI ANCORAGGIO

5.4.1 Verifica a trazione dell'armatura

La resistenza caratteristica della sezione in acciaio è calcolata secondo la relazione:

$$R_{a,k} = f_{p(1)k} \cdot A_s$$

dove:

- A_S=n·A_t area della sezione di armatura;
- At area del singolo trefolo;
- n numero di trefoli;
- f_{p(1)k} tensione caratteristica all'1% di deformazione totale.

La resistenza di progetto risulterà quindi:

$$R_{a,d} = R_{a,k}/\gamma_s$$

con γ_s = 1.15, coefficiente parziale di sicurezza per l'acciaio.

5.4.2 Verifica a sfilamento del bulbo d'ancoraggio

La resistenza di calcolo allo sfilamento dell'ancoraggio è stata valutata attraverso la formulazione di *Bustamante* e *Doix* (1985):

$$R_{cal} = \pi D_s L_s t$$

in cui:

- D_s=αD dove D è il diametro di perforazione e α un coefficiente maggiorativo che tiene conto della tipologia di terreno e del metodo di iniezione;
- L_s è la lunghezza del bulbo;
- τ è la resistenza tangenziale.

RELAZIONE DI CALCOLO

Dalle tabelle e grafici riportati nel testo di *Bustamante* e *Doix*, considerando iniezioni ripetute selettive (IRS), si assume un valore di α pari a 1.8 e un valore di τ pari a 150 kPa per tutte le unità geotecniche.

Il valore caratteristico della resistenza $R_{a,k}$ è dato dal minore dei valori ottenuti applicando alla resistenza calcolata R_{cal} i fattori di correlazione ξ_a riportati nella Tabella 6.6. Il delle *NTC2018* (Figura 5), in funzione del numero n di verticali di indagine. Cautelativamente è stato assunto un fattore ξ_{a3} pari a 1.8:

$$R_{a,k}=\min\left[\left(R_{a,c}\right)_{media}/\xi_{a3};\left(R_{a,c}\right)_{min}/\xi_{a4}\right]$$

numero di	1	2	3	4	≥ 5
verticali indagate					
ξ _{a3}	1.80	1.75	1.70	1.65	1.60
<u>ξ</u> a4	1.80	1.70	1.65	1.60	1.55

Figura 5: Fattori di correlazione per la determinazione della resistenza caratteristica in funzione del numero di verticali indagate - Tabella 6.6.II.

Il valore di progetto $R_{a,d}$ della resistenza si ottiene a partire dal valore caratteristico applicando il coefficiente parziale γ_{Ra} della Tabella 6.6.I delle *NTC2018* (Figura 6).

	simbolo γ _R	coefficiente parziale
temporanei	γ _{Ra,t}	1.1
permanenti	γRa,p	1.2

Figura 6: Coefficienti parziali per la resistenza di ancoraggi - Tabella 6.6.l.

5.5 VERIFICHE DI STABILITÀ GLOBALE

In condizioni statiche, le verifiche sono state effettuate secondo la Combinazione 2 (A2+M2+R2) dell'Approccio 1, tenendo conto dei valori dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II (Figura 3 e Figura 4) e 6.8.I (Figura 7).

Tab. 6.8.I - Coefficienti parziali per le verifiche di sicurezza di opere di materiali sciolti e di fronti di scavo

COEFFICIENTE	R2
$\gamma_{ exttt{R}}$	1,1

Figura 7: Coefficienti parziali γ_R.

STRADA DELLE TRE VALLI UMBRE Tratto Eggi-Acquasparta – I° Stralcio Baiano-Firenzuola

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

In condizioni sismiche, le analisi sono state condotte ponendo pari all'unità i coefficienti parziali sulle azioni e sui parametri geotecnici (§ 7.11.1) e impiegando le resistenze di progetto calcolate con un coefficiente parziale R2 pari a 1.2.

Per ciò che concerne, la valutazione dei coefficienti pseudo-statici applicati nelle verifiche di stabilità globale in condizioni sismiche, in conformità al § 7.11.6.2.1 delle *NTC2018*, il coefficiente di riduzione sismica β è stato assunto pari a 0.38; in Tabella 8 si riporta una sintesi dei coefficienti pseudo-statici utilizzati.

Tabella 8: Valutazione dei coefficienti pseudo-statici.

Tipologia di opera	a _{max} /g	β	\mathbf{k}_{h}	k _v
Temporanea	0.223	0.38	0.085	± 0.043
Permanente	0.307	0.38	0.116	± 0.058

STRADA DELLE TRE VALLI UMBRE Tratto Eggi-Acquasparta – I° Stralcio Baiano-Firenzuola PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

6 PARATIE

6.1 DESCRIZIONE DELLE SEZIONI DI STUDIO

Nei capitoli successivi sono studiate la paratia temporanea nella sezione denominata Sez. PT 2 della galleria di linea e la paratia permanente agli imbocchi, denominata Sez. PP 2, considerate rappresentative dell'intera opera. Entrambe le paratie sono costituite da pali Ø800, disposti ad un interasse di 1.1 m e ancorati tramite due ordini di tiranti, disposti ad un passo di 3.3 m. Sono di seguito fornite le principali caratteristiche delle sezioni, quindi, i risultati del modello di calcolo e le verifiche. Si precisa che, nei modelli di calcolo, gli ordini di tiranti sono numerati progressivamente indicando con ordine 1 quello più prossimo al p.c. della sezione in esame.

Inoltre, in ogni sezione di calcolo è stato considerato, per semplicità, piano campagna lato monte orizzontale schematizzando la restante parte di terreno, presente all'interno del cuneo di spinta attiva con un carico. Nelle analisi di stabilità globali invece il piano campagna è stato simulato con il reale profilo per tenere conto delle azioni in gioco anche a notevole distanza dall'opera di presidio degli scavi.

6.2 ANALISI DELLA PARATIA TEMPORANEA

In Figura 8 Errore. L'origine riferimento non è stata trovata. è riportata uno stralcio della sviluppata della paratia provvisionale.

RELAZIONE DI CALCOLO

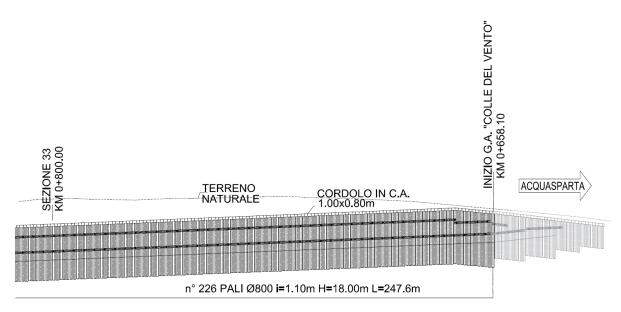


Figura 8: Stralcio sviluppata paratia temporanea (PT2).

6.2.1 Caratteristiche geometriche

Nel tratto in esame la paratia è costituita da pali Ø800 a interasse 1.10 m, di lunghezza pari a 18 m e da due livelli di tiranti, le cui caratteristiche sono riportate in Tabella 9Errore. L'origine riferimento non è stata trovata.. Si precisa che la lunghezza del tratto libero dei tiranti è stata definita in modo tale che il bulbo di ancoraggio non interferisca con la superficie di scorrimento potenziale, ossia esterno al cuneo di spinta attiva.

Tabella 9: Caratteristiche dei tiranti, PT2.

Ordine	z (m)	Diam. Perforaz. (mm)	n° trefoli	Pretiro (kN)	Lungh. libera (m)	Lungh. bulbo (m)	Lungh. totale (m)	Inclinazione (°)	Passo (m)
1	-3	160	4	396	9	8	17	15	3.3
2	-9	160	4	396	7	11	18	15	3.3

Sez. PT 2

In Tabella 10Errore. L'origine riferimento non è stata trovata, sono fornite le principali caratteristiche geometriche e stratigrafiche utilizzate nell'analisi per la sezione oggetto di studio, mentre in Figura 9Errore. L'origine riferimento non è stata trovata. si riporta il modello di calcolo adottato.

RELAZIONE DI CALCOLO

Si precisa che la quota del fondo scavo considerata nelle analisi include, cautelativamente, anche il ribasso per lo scavo dell'arcorovescio.

Tabella 10: Riepilogo caratteristiche geometriche della sezione Sez. PT2.

Sezione di calcolo	Progr. km ~ 0+800
Opera di sostegno	Paratia di pali Ø800 – interasse 1.10 m
Altezza paratia	H = 18 m
Sovraccarichi equivalenti al terreno a monte dell'opera	q= 124 kPa
Stratigrafia di calcolo	Marnosa arenacea (Mar)
Fondo scavo	–13.5 m da t.p.
Ordini di tiranti	2
Passo orizzontale tiranti	3.3 m
Falda	Assente

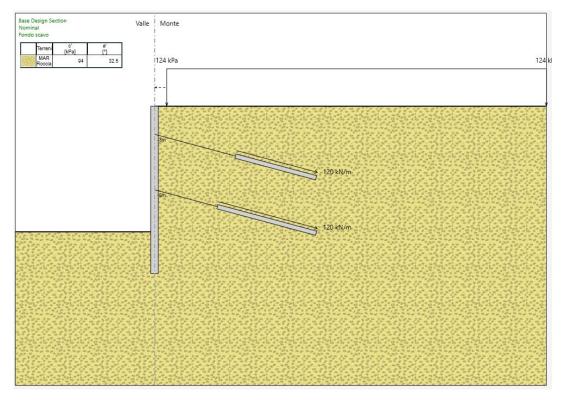


Figura 9: Modello di calcolo paratia temporanea: raggiungimento del fondo scavo, PT 2.

RELAZIONE DI CALCOLO

6.2.2 Parametri di calcolo e analisi dei carichi

In Tabella 11**Errore. L'origine riferimento non è stata trovata.** si riportano i parametri geotecnici con riferimento allo strato Mar2, utilizzati nell'analisi delle paratie. Lo strato superficiale è stato modellato come sovraccarico di altezza variabile e peso dell'unità di volume γ pari a 21 kN/m³.

Tabella 11: Parametri geotecnici utilizzati nell'analisi, PT2.

Terreno	γ	c'	φ′	E′ _{vc}	E′ _{ur}
	[kN/m³]	[kPa]	[°]	[MPa]	[MPa]
Mar	23	94	32.5	200	200

 $[\]gamma$ = peso di volume naturale del terreno

c'= coesione

 φ' = angolo di resistenza al taglio

 E'_{vc} = modulo elastico in compressione vergine

E' ur = modulo elastico in condizioni di scarico-ricarico

In Tabella 12**Errore. L'origine riferimento non è stata trovata.** vengono riportati i valori dei coefficienti di spinta a riposo K₀, di spinta attiva K_A e di spinta passiva K_P utilizzati nelle analisi.

Tabella 12: Valutazione dei coefficienti di spinta.

Terreno	K _o (-)	K _{ah} (-)	K _{ph} (-)
marnosa arenacea 2	1	0.26	5.47

K_o = coefficiente di spinta a riposo

K_{ah} = coefficiente di spinta attiva (componente orizzontale)

K_{ph} = coefficiente di spinta passiva (componente orizzontale)

6.3 ANALISI DELLA PARATIA PERMANENTE

In Figura 10**Errore. L'origine riferimento non è stata trovata.** è riportata uno stralcio della sviluppata della paratia permanente, all'imbocco della galleria Colle del Vento.

RELAZIONE DI CALCOLO

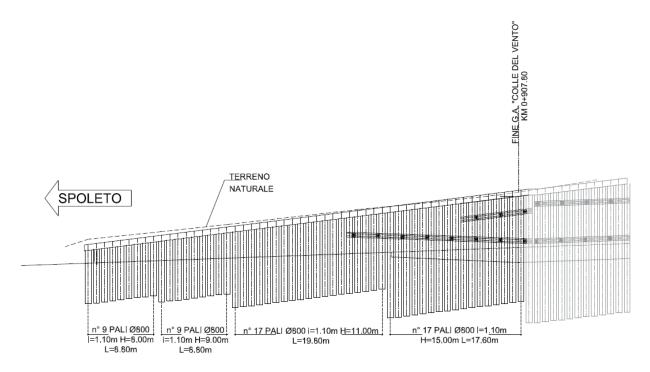


Figura 10: Stralcio sviluppata paratia permanente.

6.3.1 Caratteristiche geometriche

Nel tratto in esame la paratia è costituita da pali Ø800 a interasse 1.10 m, di lunghezza pari a 14 m e da due livelli di tiranti, le cui caratteristiche sono riportate in Tabella 13**Errore.** L'origine riferimento non è stata trovata. Si precisa che la lunghezza del tratto libero dei tiranti è stata definita in modo tale che il bulbo di ancoraggio non interferisca con la superficie di scorrimento potenziale, ossia esterno al cuneo di spinta attiva.

Tabella 13: Caratteristiche dei tiranti, PP2.

Ordine	z (m)	Diam. Perforaz. (mm)	n° trefoli	Pretiro (kN)	Lungh. libera (m)	Lungh. bulbo (m)	Lungh. totale (m)	Inclinazione (°)	Passo (m)
1	-3	160	3	297	9	8	17	15	3.3
2	-7	160	4	396	7	11	18	15	3.3

Sez. PP2

In Tabella 14Errore. L'origine riferimento non è stata trovata, sono fornite le principali caratteristiche geometriche e stratigrafiche utilizzate nell'analisi per la sezione oggetto di

STRADA DELLE TRE VALLI UMBRE Tratto Eggi-Acquasparta – I° Stralcio Baiano-Firenzuola

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

studio, mentre in Figura 11Errore. L'origine riferimento non è stata trovata. si riporta il modello di calcolo adottato. È stato simulato un carico accidentale a monte, pari a 10 kPa, al fine di simulare la presenza di eventuali mezzi di cantiere.

Si precisa che la quota del fondo scavo considerata nelle analisi include, cautelativamente, anche il ribasso per lo scavo dell'arcorovescio.

Tabella 14: Riepilogo caratteristiche geometriche della sezione Sez. PP2.

Sezione di calcolo	Progr. km ~ 0+907.8	
Opera di sostegno	Paratia di pali Ø800 – interasse 1.10 m	
Altezza paratia	H = 15 m	
Sovraccarichi equivalenti al terreno a monte dell'opera		
Stratigrafia di calcolo	Marnosa arenacea 2 (Mar2)	
Fondo scavo	–10.5 m da t.p.	
Ordini di tiranti	2	
Passo orizzontale tiranti 3.3 m		
Falda	Assente	

RELAZIONE DI CALCOLO

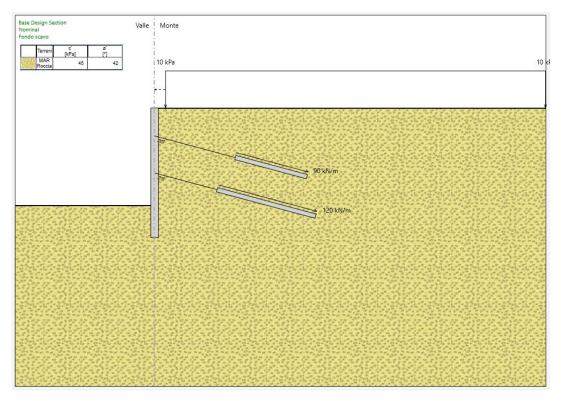


Figura 11: Modello di calcolo paratia definitiva: raggiungimento del fondo scavo, PP2.

6.3.2 Parametri di calcolo e analisi dei carichi

In Tabella 15Errore. L'origine riferimento non è stata trovata. si riportano i parametri geotecnici con riferimento allo strato Mar2, utilizzati nell'analisi delle paratie. Lo strato superficiale è stato modellato come sovraccarico di altezza variabile e peso dell'unità di volume γ pari a 21 kN/m³.

Tabella 15: Parametri geotecnici utilizzati nell'analisi, PP2.

Terreno	γ	c'	φ'	E′vc	E′ _{ur}
	[kN/m³]	[kPa]	[°]	[MPa]	[MPa]
Mar2	23	45	42	100	100

 $[\]gamma$ = peso di volume naturale del terreno

c'= coesione

 ϕ' = angolo di resistenza al taglio

E'_{vc} = modulo elastico in compressione vergine

E' ur = modulo elastico in condizioni di scarico-ricarico

In Tabella 16Errore. L'origine riferimento non è stata trovata, vengono riportati i valori dei coefficienti di spinta a riposo K₀, di spinta attiva K_A e di spinta passiva K_P utilizzati nelle analisi.

RELAZIONE DI CALCOLO

Tabella 16: Valutazione dei coefficienti di spinta.

Terreno	K _o	K _{ah}	K _{ph}
	(-)	(-)	(-)
marnosa arenacea 2	1	0.16	11.4

K_o = coefficiente di spinta a riposo

K_{ah} = coefficiente di spinta attiva (componente orizzontale)

6.4 RISULTATI DELLE ANALISI

6.4.1 Paratia temporanea

6.4.1.1 Sollecitazioni di calcolo

Nella Tabella 17**Errore. L'origine riferimento non è stata trovata.** sono riportati alcuni risultati significativi in termini di sollecitazioni massime sulla paratia, nella combinazione di carico più gravosa, allo *Stato Limite Ultimo*.

Tabella 17: Sollecitazioni massime, paratia temporanea, PT2.

Co		statiche (A1+M (kNm/m)	1+R1)
z (m)	Lato valle	Lato monte	T _{max} (kN/m)
-	-		
-11.6	436.9		
-13.4			392.5

	Cond	lizioni sismiche	
	M _{max}	(kNm/m)	T _{max}
z (m)	Lato valle	Lato monte	(kN/m)
-	-		
-11.6	392.2		
-13.4			337.4

LaErrore. L'origine riferimento non è stata trovata. Figura 12 e la Figura 13 Errore. L'origine riferimento non è stata trovata. riportano, rispettivamente, gli andamenti del momento e del taglio nell'ultima fase di analisi con riferimento alla combinazione A1+M1+R1.

K_{ph} = coefficiente di spinta passiva (componente orizzontale)

Direzione Progettazione e

Realizzazione Lavori

PROGETTO DEFINITIVO

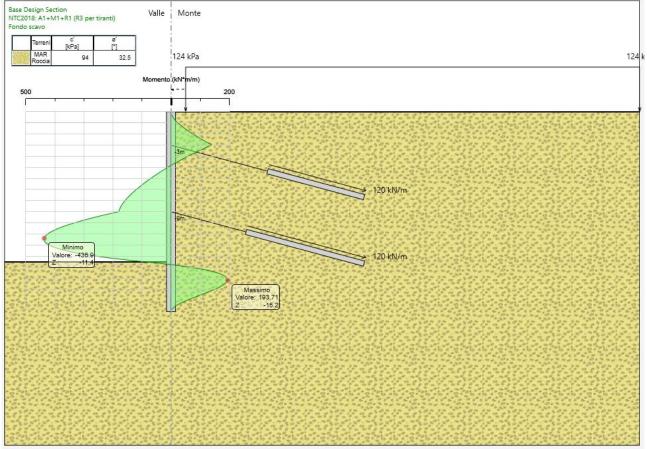


Figura 12: Momento flettente nell'ultima fase di analisi in combinazione A1+M1+R1, PT2.

RELAZIONE DI CALCOLO

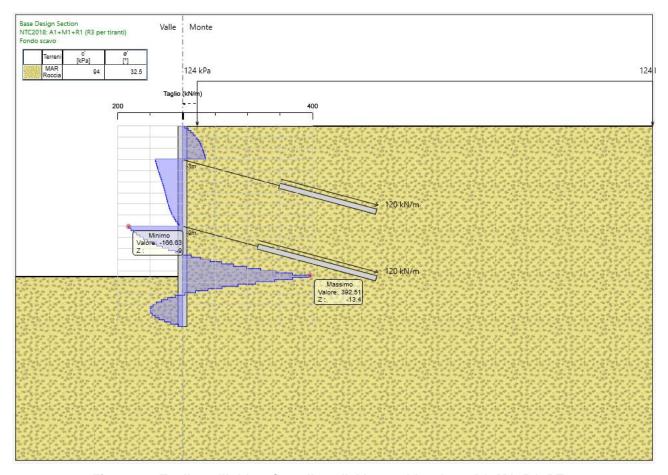


Figura 13: Taglio nell'ultima fase di analisi in combinazione A1+M1+R1, PT2.

La Figura 14Errore. L'origine riferimento non è stata trovata. e la Figura 15Errore. L'origine riferimento non è stata trovata. riportano, rispettivamente, gli andamenti del momento e del taglio nell'ultima fase di analisi con riferimento alla combinazione sismica.

Direzione Progettazione e

Realizzazione Lavori

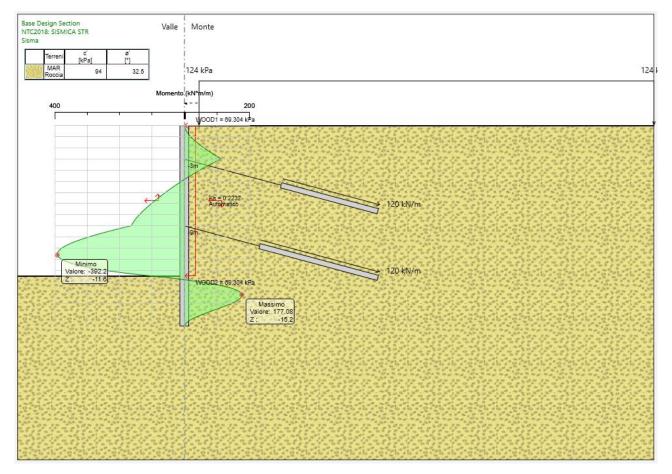


Figura 14: Momento flettente nell'ultima fase di analisi in combinazione sismica, PT2.

Direzione Progettazione e

Realizzazione Lavori

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

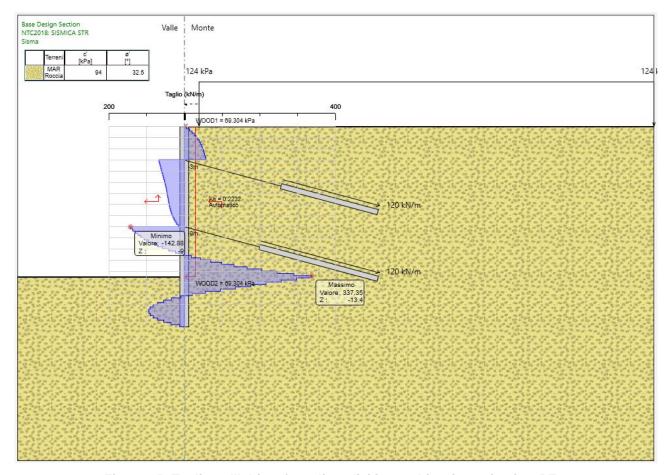


Figura 15: Taglio nell'ultima fase di analisi in combinazione sismica, PT2.

6.4.1.2 Spostamenti della paratia

In Figura 16**Errore. L'origine riferimento non è stata trovata.** è riportato l'andamento dello spostamento della paratia in combinazione *SLE* a scavo ultimato. Lo spostamento massimo si ha ad una profondità di 10 m da testa palo ed è pari a circa 0.8 cm.

RELAZIONE DI CALCOLO

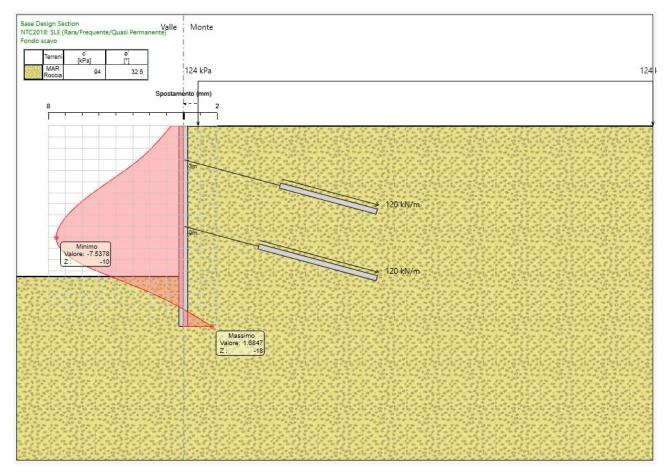


Figura 16: Spostamenti nell'ultima fase di analisi in combinazione SLE, PT2.

6.4.2 Paratia permanente

6.4.2.1 Sollecitazioni di calcolo

Nella Tabella 18**Errore. L'origine riferimento non è stata trovata.** sono riportati alcuni risultati significativi in termini di sollecitazioni massime sulla paratia, nella combinazione di carico più gravosa, allo *Stato Limite Ultimo*.

Tabella 18: Sollecitazioni massime, PP2.

Co	ondizioni :	statiche (A1+M	1+R1)
	M _{max}	(kNm/m)	T _{max}
z (m)	Lato	Lato Lato monte valle	(kN/m)
	valle		(10.4/111)
-	-		
-9	364.8		
-10.4			250.2

RELAZIONE DI CALCOLO

Condizioni sismiche							
	T _{max}						
z (m)	Lato valle	Lato monte	(kN/m)				
-	-						
-10.4	351						
-13.8			241.5				

La Figura 17**Errore.** L'origine riferimento non è stata trovata. e la Figura 18**Errore.** L'origine riferimento non è stata trovata. riportano, rispettivamente, gli andamenti del momento e del taglio nell'ultima fase di analisi con riferimento alla combinazione *A1+M1+R1*.

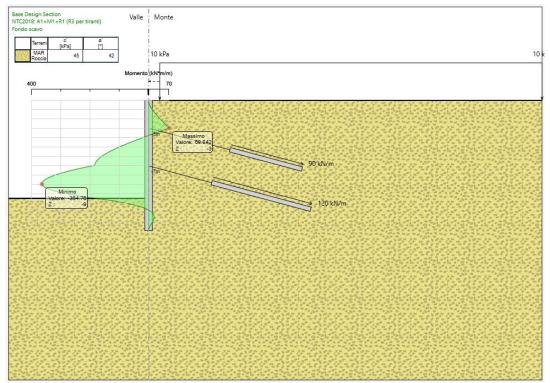


Figura 17 Momento flettente nell'ultima fase di analisi in combinazione A1+M1+R1, PP2.

RELAZIONE DI CALCOLO

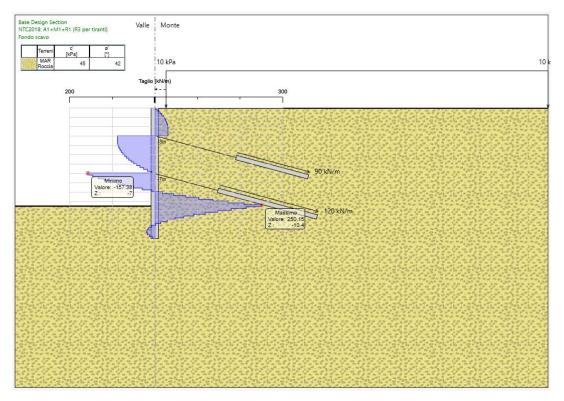


Figura 18 Taglio nell'ultima fase di analisi in combinazione A1+M1+R1, PP2.

La Figura 19Errore. L'origine riferimento non è stata trovata. e la Figura 20Errore. L'origine riferimento non è stata trovata. riportano, rispettivamente, gli andamenti del momento e del taglio nell'ultima fase di analisi con riferimento alla combinazione sismica.

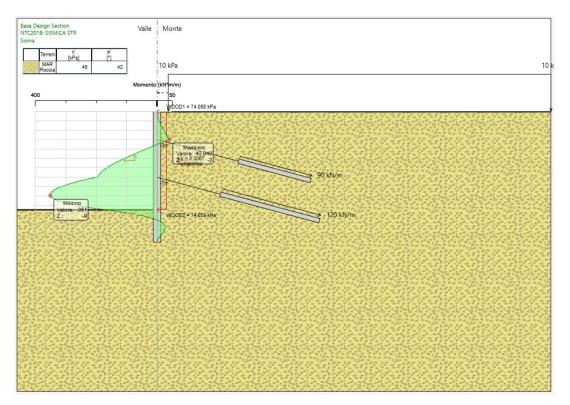


Figura 19: Momento flettente nell'ultima fase di analisi in combinazione sismica, PP2.

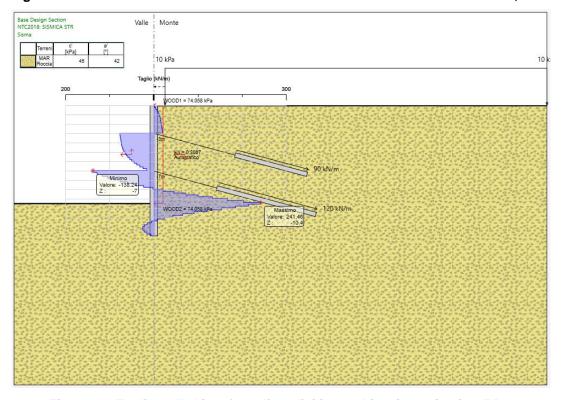


Figura 20: Taglio nell'ultima fase di analisi in combinazione sismica, PP2.

RELAZIONE DI CALCOLO

6.4.2.2 Spostamenti della paratia

In Figura 21**Errore. L'origine riferimento non è stata trovata.** è riportato l'andamento dello spostamento della paratia in combinazione *SLE* a scavo ultimato. Lo spostamento massimo si ha ad una profondità di 9 m ed è pari a circa 5 mm.

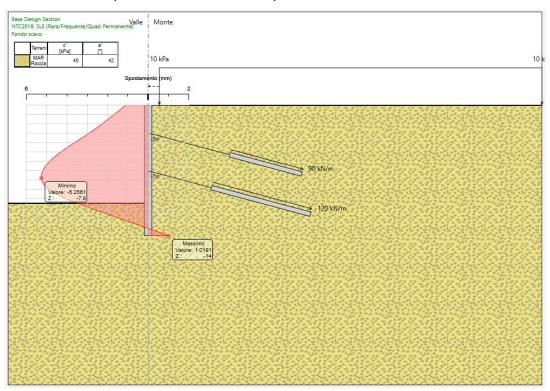


Figura 21: Spostamenti nell'ultima fase di analisi in combinazione SLE, PP2.

6.5 VERIFICHE

6.5.1 Elementi in c.a.

6.5.1.1 Verifiche SLU

Di seguito sono riportate le verifiche agli SLU, in accordo con quanto descritto nel § 5.2.1, per entrambe le sezioni analizzate, nella configurazione peggiore.

Paratia temporanea (PT2)

La paratia è costituita da pali in c.a. di diametro 0.8 m ad interasse 1.10 m. Le verifiche sono state effettuate considerando, per ciascun palo, un'armatura costituita da 16 barre Ø24. L'armatura trasversale è costituita da una spirale Ø12 passo 20 cm con due bracci.

RELAZIONE DI CALCOLO

Verifica pressoflessione

Armatura	D (mm)	C _d (mm)	As	M _d (kNm)	x _n (mm)	M _{Rd} (kNm)
	800	80	16 Φ24	480.7	210.2	780.4

- Verifiche a taglio (SLU)

Resistenza delle staffe:

φ w =	12.0	mm	diametro staffa
n=	2.00		numero braccia
Asw=	2.26	cmq	
z=	0.57	m	=0.9*d
senα=	1		α angolo tra le staffe e l'asse della trave (α =90° per staffe verticali)
ρ w =	0.16	%	$=Asw/(s*bw*sin\alpha)*100>=$
s=	0.2	m	=passo staffe <= 0.47 m =0.75*d*(1+cot α)
θ=	21.8	0	=arcsen(radq(Asw*fyd)/(bw*s*acw*n*fcd))
			inclinazione puntone compresso, variabile tra 45° to 21.8°
tanθ=	0.40		valore tra 1 (for θ =45°) e 0.4
cotθ=	2.50		valore tra 1 (for θ =45°) and 2.5
ρw,max=	0.62	=	$A_{sw,max}$ *fyd/(bw*s)<=1/2* α_{cw} *v*fcd = 3.81 verifica soddisfatta
$V_{Rd,s}$ =	626	kN	=Asw/s*z* fywd *cotθ

Resistenza del puntone compresso:

 $V_{Ed} = 432$ minore o uguale di $V_{Rd} = 626$ verifica soddisfatta

Paratia permanente (PP2)

La paratia è costituita da pali in c.a. di diametro 0.8 m ad interasse 1.10 m. Le verifiche sono state effettuate considerando, per ciascun palo, un'armatura costituita da 16 Ø 24. L'armatura trasversale è costituita da una spirale Ø12 passo 20 cm con due bracci.

· Verifiche a pressoflessione

STRADA DELLE TRE VALLI UMBRE Tratto Eggi-Acquasparta – I° Stralcio Baiano-Firenzuola

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

<u>SLU</u>

	D	C _d	As	M _d	Xn	M_{Rd}
Armatura	(mm)	(mm)		(kNm)	(mm)	(kNm)
	800	80	16 Ø24	401.3	210.2	780.4

SLE

Le verifiche agli SLE sono state condotte come illustrato nel § 5.2.2; la massima tensione di compressione nel calcestruzzo σ_c è stata confrontata con il valore limite di normativa ($\sigma_{c,lim}=0.45 \cdot f_{ck}$), mentre la massima tensione di trazione nelle armature σ_s è stata confrontata con la tensione limite $\sigma_{s,lim}$ pari a 204.4 MPa per barre Ø24.

Armatura	D (mm)	C _d (mm)	As	M _d (kNm)	x _n (mm)	σc (MPa)	σs (MPa)
	800	80	16 Ø24	308	260.2	213	-8.03

Le verifiche risultano soddisfatte.

RELAZIONE DI CALCOLO

• Verifiche a taglio (SLU)

Resistenza delle staffe:

φ w =	12.0	mm	diametro staffa
n=	2.00		numero braccia
Asw=	2.26	cmq	
z=	0.57	m	=0.9*d
senα=	1		α angolo tra le staffe e l'asse della trave (α =90° per staffe verticali)
ρ w=	0.16	%	$=Asw/(s*bw*sin\alpha)*100>=$
s=	0.2	m	=passo staffe <= 0.47 m =0.75*d*(1+cot α)
θ =	21.8	0	=arcsen(radq(Asw*fyd)/(bw*s*acw*n*fcd))
			inclinazione puntone compresso, variabile tra 45° to 21.8°
tanθ=	0.40		valore tra 1 (for θ =45°) e 0.4
cotθ=	2.50		valore tra 1 (for θ =45°) and 2.5
ρw,max=	0.62	=	$A_{sw,max}$ *fyd/(bw*s)<=1/2* α_{cw} *v*fcd = 3.81 verifica soddisfatta
$V_{Rd,s}$ =	626	kN	=Asw/s*z* fywd *cotθ

Resistenza del puntone compresso:

ν=	0.540		=0.6*(1-fck/250) (from EN 6.6N)
σcp =	0.00		=Nsd/Ac
$\alpha_{\text{cw}}\!\!=\!$	1.00		
$V_{Rd,max} =$	1055	_kN	$=\alpha_{cw}^*bw^*z^*v^*fcd/(cot\theta+tan\theta)$
γ Bd1	1.00		coefficiente di sicurezza (EN1998-2-5.6.2.b)
V _{Rd} =	626	kN	=min($V_{Rd,s}$; $V_{Rd,max}$)/ γ_{Bd1}

 $V_{Ed} = 275$ minore o uguale di $V_{Rd} = 626$ verifica soddisfatta

6.5.2 Verifiche dei tiranti di ancoraggio

6.5.2.1 Paratia temporanea

Per quanto concerne le verifiche dei tiranti, il tiro massimo di calcolo proveniente dall'analisi è confrontato, per ciascun ordine di tiranti, con quello limite per i trefoli (verifica dell'armatura dei tiranti) e con quello limite della fondazione (verifica del bulbo di ancoraggio).

La Tabella 19**Errore. L'origine riferimento non è stata trovata.** riporta la verifica a trazione dei tiranti.

Tabella 19: Verifica a trazione dei tiranti, PT2.

Condizioni statiche (A1+M1+R3)									
Ordine	z (m)	passo (m)	n° trefoli	A _s (cm ²)	Pretiro (kN)	E _d (kN)	R _d (kN)		

RELAZIONE DI CALCOLO

1	-3	3.3	4	5.56	396	539	807.4
2	-9	3.3	4	5.56	396	553	807.4

Condizioni sismiche

Ordine	z (m)	passo (m)	n° trefoli	A _s (cm ²)	Pretiro (kN)	E _d (kN)	R _d (kN)
1	-3	3.3	3	4.17	297	431	807.4
2	-	3.3	4	5.56	396	446	807.4

La Tabella 20**Errore. L'origine riferimento non è stata trovata.** riporta i risultati della verifica a sfilamento.

Tabella 20: Verifica a sfilamento dei tiranti, PT2.

Condizioni statiche (A1+M1+R3)

Ordine	E _d (kN)	L _s (m)	R _d (kN)
1	539	8	616.9
2	548	11	753.9

Condizioni sismiche

Ordine	E _d (kN)	L _s (m)	R _d (kN)
1	431	8	616.9
2	434.9	11	753.9

6.5.2.2 Paratia permanente

Per quanto concerne le verifiche dei tiranti, il tiro massimo di calcolo proveniente dall'analisi è confrontato, per ciascun ordine di tiranti, con quello limite per i trefoli (verifica dell'armatura dei tiranti) e con quello limite della fondazione (verifica del bulbo di ancoraggio).

La Tabella 21Errore. L'origine riferimento non è stata trovata. riporta la verifica a trazione dei tiranti.

Tabella 21: Verifica a trazione dei tiranti, PP2.

Condizioni statiche (A1+M1+R3)

Ordine	z (m)	passo (m)	n° trefoli	A _s (cm ²)	Pretiro (kN)	E _d (kN)	R _d (kN)
1	-3	3.3	3	4.17	297	406	605.6

Realizzazione Lavori

STRADA DELLE TRE VALLI UMBRE Tratto Eggi-Acquasparta – I° Stralcio Baiano-Firenzuola

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

2	-8	3.3	4	5.56	396	550	807.4

Condi	zioni	sismi	che

Ordine	z (m)	passo (m)	n° trefoli	A _s (cm ²)	Pretiro (kN)	E _d (kN)	R _d (kN)
1	-3	3.3	3	4.17	297	333.4	605.6
2	-9	3.3	4	5.56	396	449.3	807.4

La Tabella 22**Errore. L'origine riferimento non è stata trovata.** riporta i risultati della verifica a sfilamento.

Tabella 22: Verifica a sfilamento dei tiranti, PP2.

Condizioni statiche (A1+M1+R3)

Ordine	E _d (kN)	L _s (m)	R _d (kN)
1	406	8	502.7
2	550	11	691.2

Condizioni sismiche

Ordine	,		R _d (kN)	
1	333.4	8	502.7	
2	449.3	11	691.2	

6.5.3 Verifica delle travi di ancoraggio

Per quanto riguarda il comportamento della trave di correa in carpenteria metallica di ripartizione del tiro dei tiranti, l'effetto dell'azione di calcolo agente sulla paratia di pali è stato valutato assumendo un modello di calcolo a trave su appoggi multipli, posizionanti ad interasse "l" pari a quello dei tiranti, considerando che gli elementi metallici fungono da trave di ripartizione delle azioni trasmesse dai tiranti stessi. Gli sforzi flessionali M_{Ed} e di taglio V_{Ed} sono stati ricavati applicando alla trave un'azione media " $p=T_d/l$ " (vedi Figura 22**Errore. L'origine riferimento non è stata trovata.**), con T_d pari all'azione agente sul tirante. Si precisa che tali valori sono stati divisi per 2 in quanto l'azione si ripartisce tra i 2 profilati HEB 180.

RELAZIONE DI CALCOLO

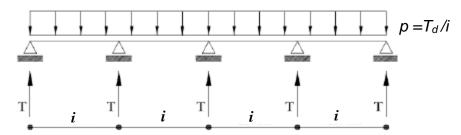


Figura 22: Schema statico correa metallica.

Di seguito si riportano le caratteristiche geometriche e di resistenza dei profilati adoperati, le caratteristiche meccaniche dell'acciaio utilizzato e sinteticamente le verifiche di sicurezza che risultano soddisfatte.

Numero profili n.°	2		
Modulo di resistenza	а <i>W_y</i>	425.7	cm ³
Altezza profilo	h	180	mm
Larghezza profilo	b	180	mm
Spessore anima	$t_{\scriptscriptstyle W}$	8.5	mm

Spessore delle ali t_f 14 mm Raggio raccordo r 15 mm

Raggio raccordo r 15 mm Area di taglio A_{ν} 20.2 cm²

Acciaio S 355

Profili metallici HEB 180

Coeff. di sicurezza γ_M 1,05

Resistenza di prog. fyd 338.1 N/mm²

Paratia temporanea

Azione sul tirante	T_d	548	kN
Interasse tirante	i	3.3	m
Azione equivalente	p	166	kN/m
Sforzo di taglio	V_{Ed}	296	kN
Momento Flettente	M_{Ed}	194	kNm

STRADA DELLE TRE VALLI UMBRE Tratto Eggi-Acquasparta – I° Stralcio Baiano-Firenzuola

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Verifiche di sicurezza

Tensione normale σ 227 N/mm²

Tensione tangenziale τ 73 N/mm²

Tensione ideale σ_{id} 260 N/mm² < 338.1 N/mm²

Paratia permanente

Azione sul tirante T_d 532 kN

Interasse tirante i 3.3 m

Azione equivalente p 161 kN/m

Sforzo di taglio V_{Ed} 287 kN

Momento Flettente M_{Fd} 188 kNm

Verifiche di sicurezza

Tensione normale σ 221 N/mm²

Tensione tangenziale τ 71 N/mm²

Tensione ideale σ_{id} 253 N/mm² < 338.1 N/mm²

6.5.4 Verifiche di stabilità globale

Tutte le analisi di stabilità sono state eseguite nell'ipotesi di problema piano con i tradizionali metodi dell'equilibrio limite globale, schematizzando il terreno come un mezzo rigido plastico e adottando il criterio di rottura di *Mohr - Coulomb*. In particolare, è stato utilizzato il metodo delle strisce, nel quale la porzione di terreno delimitato dalla generica superficie S e dalla superficie topografica è suddivisa in settori verticali in modo da valutare, seppur in modo approssimato e discreto, la distribuzione della tensione efficace normale e della corrispondente resistenza a taglio lungo la superficie di scorrimento; in dettaglio, si è utilizzato il metodo di *Bishop (Bishop, 1955)*. Tutte le analisi sono state effettuate con il codice di calcolo *SLIDE*.

Nel programma di calcolo è tracciata la geometria del terreno a monte e a valle della paratia, sono assegnate le proprietà geotecniche ai vari strati e le relative superfici piezometriche, se presenti. In automatico vengono generate delle superfici circolari a partire dalla superficie del terreno lungo le quali è calcolato il fattore di sicurezza. Si

RELAZIONE DI CALCOLO

impone che tali superfici non possano intersecare la paratia e che passino al di sotto del piede della stessa.

Di seguito si riportano i risultati delle analisi di stabilità globale eseguite sulle sezioni oggetto di studio, al raggiungimento della quota di fondo scavo.

6.5.4.1 Verifica di stabilità globale, paratia temporanea.

Per la sezione PT1, la Figura 23**Errore. L'origine riferimento non è stata trovata.**, la**Errore. L'origine riferimento non è stata trovata.** Figura 24 e la Figura 25**Errore. L'origine riferimento non è stata trovata.** mostrano i risultati delle analisi di stabilità globale eseguita nell'ultima fase di scavo rispettivamente in condizioni statiche e sismiche. I fattori di sicurezza risultano pari a 2.195, 2.394 e 2.457 rispettivamente in condizioni statiche e sismiche, queste ultime svolte con coefficiente pseudo-statico positivo k_V^+ e negativo k_V^- .

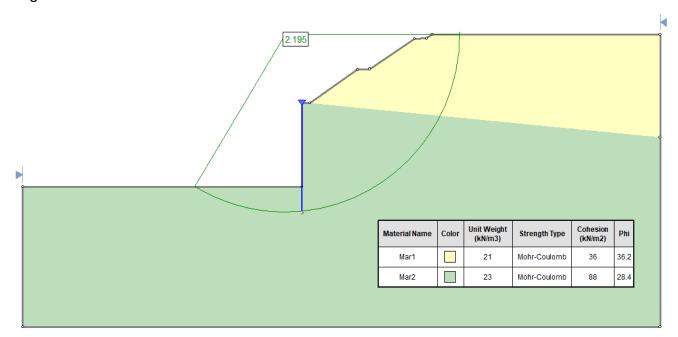


Figura 23: Verifica di stabilità globale nell'ultima fase di analisi in condizioni statiche, paratia temporanea (Sez. PT1).

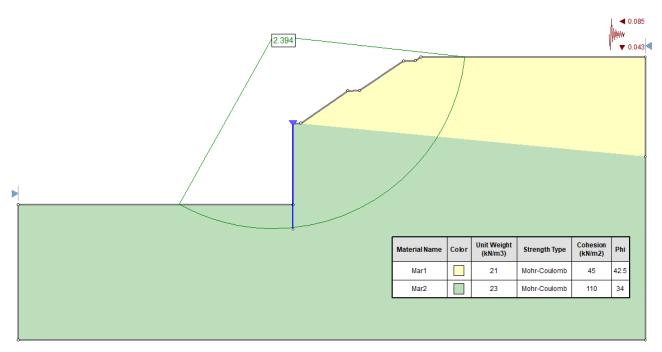


Figura 24: Verifica di stabilità globale nell'ultima fase di analisi in condizioni sismiche (k_v+), paratia temporanea (Sez. PT1).

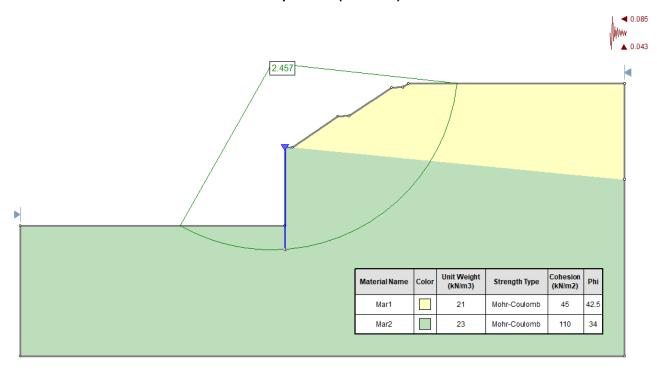


Figura 25: Verifica di stabilità globale nell'ultima fase di analisi in condizioni sismiche (k_v·), paratia temporanea (Sez. PT1).

RELAZIONE DI CALCOLO

6.5.4.2 Verifica di stabilità globale, paratia permanente

Per la sezione PP1, la Figura 26**Errore. L'origine riferimento non è stata trovata.**, la Figura 27**Errore. L'origine riferimento non è stata trovata.** e la Figura 28**Errore.** L'origine riferimento non è stata trovata. mostrano i risultati delle analisi di stabilità globale eseguita nell'ultima fase di scavo rispettivamente in condizioni statiche e sismiche. I fattori di sicurezza risultano pari a 2.415, 2.516 e 2.553 rispettivamente in condizioni statiche e sismiche, queste ultime svolte con coefficiente pseudo-statico positivo k_V⁺ e negativo k_V⁻.

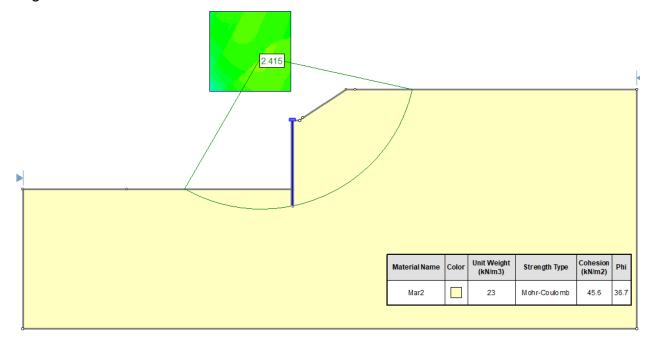


Figura 26: Verifica di stabilità globale nell'ultima fase di analisi in condizioni statiche, paratia permanente (Sez. PP1).

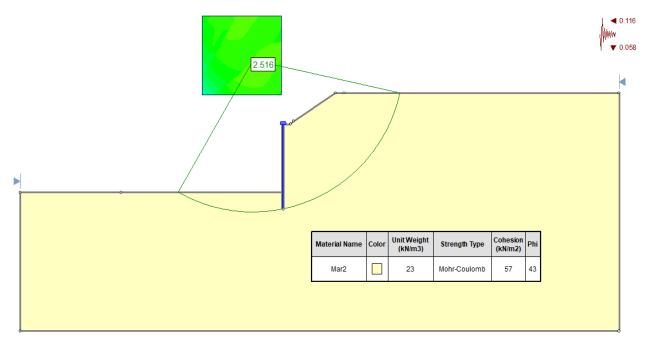


Figura 27: Verifica di stabilità globale nell'ultima fase di analisi in condizioni sismiche (k_v+), paratia permanente (Sez. PP1).

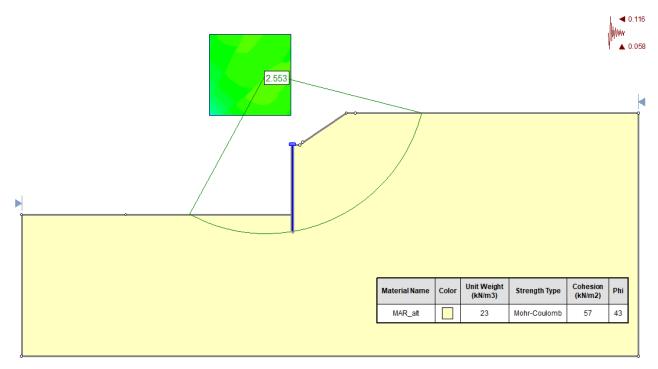


Figura 28: Verifica di stabilità globale nell'ultima fase di analisi in condizioni sismiche (k,), paratia permanente (Sez. PP1).

RELAZIONE DI CALCOLO

7 GALLERIA ARTIFICIALE

7.1 DESCRIZIONE DEL MODELLO DI CALCOLO

Le dimensioni del dominio di calcolo dell'analisi numerica sono state opportunamente calibrate tramite analisi di sensibilità della *mesh*; la larghezza del dominio di calcolo è stata fissata in modo tale che le variazioni del campo tensionale e deformativo nelle zone più periferiche fossero trascurabili. L'analisi numerica è stata svolta considerando la sezione PT2, di massima copertura, per la cui stratigrafia si rimanda alla **Errore. L'origine riferimento non è stata trovata.**. In Figura 29 si riporta il dominio di calcolo adottato per la simulazione svolta.

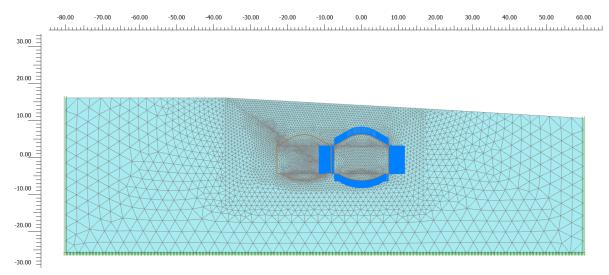


Figura 29: Mesh di calcolo.

L'analisi è stata condotta schematizzando il terreno come un mezzo elasto-plastico perfetto e adottando il criterio di rottura di *Mohr Coulomb*. Agli elementi di continuo di terreno sono stati assegnati i parametri geotecnici indicati in **Errore. L'origine** riferimento non è stata trovata.

La galleria artificiale è stata modellata con elementi di continuo ai quali è stato assegnato un legame costitutivo elastico-lineare; il peso dell'unità di volume γ è stato assunto pari a 25 kN/m³, mentre il valore del modulo di rigidezza assegnato è pari a 31.4 GPa.

Su tutti gli elementi strutturali costituenti la galleria a contatto con il terreno sono stati applicati elementi denominati interface, la cui funzione è quella di simulare il

RELAZIONE DI CALCOLO

comportamento dell'interfaccia struttura/terreno; in particolare la superficie di contatto è modellata mediante un opportuno valore del fattore di riduzione (R_{inter}) pari a 2/3 delle caratteristiche di resistenza e rigidezza del terreno al contatto con l'elemento strutturale.

7.1.1 Fasi di calcolo

Le fasi di calcolo adottate per l'analisi sono:

- TIME 0 Litostatico: è stata ricostruita in termini di tensioni la situazione attuale;
- TIME 1÷5 Scavo: sono stati simulati sbancamenti per il raggiungimento della quota di fondazione della galleria artificiale;
- TIME 6 Realizzazione della galleria artificiale;
- TIME 7 Rinterro dell'opera fino al ripristino del piano campagna attuale.

Vista la particolare configurazione asimmetrica che a seguito del ritombamento della galleria artificiale viene a figurarsi, considerando le differenze di rigidezza dei terreni circostanti la struttura stessa, è stato ritenuto opportuno applicare differenti combinazioni del carico sismico pseudo-statico, per valutare il differente comportamento della galleria:

- TIME 8 Applicazione dell'azione sismica con componente orizzontale diretta verso sinistra e componente verticale diretta verso il basso;
- TIME 9 Applicazione dell'azione sismica con componente orizzontale diretta verso sinistra e componente verticale diretta verso l'alto;
- TIME 10 Applicazione dell'azione sismica con componente orizzontale diretta verso destra e componente verticale diretta verso il basso;
- TIME 11 Applicazione dell'azione sismica con componente orizzontale diretta verso destra e componente verticale diretta verso l'alto.

7.1.2 Definizione dell'azione sismica

In Tabella 23 Errore. L'origine riferimento non è stata trovata. si riportano i valori delle grandezze necessarie per la valutazione dei coefficienti pseudo-statici.

Tabella 23: Valutazione dei coefficienti pseudo-statici.

a _{max} /g	β	k _h	k _v
0.307	1	0.307	±0.153

STRADA DELLE TRE VALLI UMBRE Tratto Eggi-Acquasparta – l° Stralcio Baiano-Firenzuola

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

L'incremento di spinta delle terre in fase sismica, tenuto conto che la galleria non subisce spostamenti laterali significativi, viene considerata applicando una distribuzione di azioni statiche equivalenti agenti sul rivestimento della galleria artificiale, assunta uniformemente distribuita e calcolata attraverso le seguenti espressioni:

- $\Delta S_{E,h} = k_h \cdot \gamma \cdot h_G = 120 \text{ kN/m}^2$, agente sul piedritto in direzione orizzontale;
- $\Delta S_{E,v} = k_v \cdot \gamma \cdot h'_G = 40 \text{ kN/m}^2$, agente su reni/calotta in direzione verticale,

dove h_G è la quota di imposta della galleria artificiale valutata a partire da piano campagna, mentre h'_G è pari alla quota baricentrica della galleria artificiale.

Si è considerata, inoltre, la componente dell'azione generata dall'accelerazione sismica indotta sulla massa propria della galleria; tale contributo è pari a $k_h/_v$ ($\gamma_{cls} \cdot s$), avendo indicato con s lo spessore dell'elemento strutturale. Sulla galleria è stata quindi applicata un'ulteriore azione di intensità pari a 11.5 kN/m^2 , agente sul piedritto in direzione orizzontale, e pari a 4.6 kN/m^2 , agente sulla calotta in direzione verticale.

7.2 RISULTATI DELLE ANALISI NUMERICHE

In questo capitolo saranno illustrati i risultati delle analisi numeriche espressi in termini di sollecitazioni agenti sui rivestimenti definitivi della galleria artificiale.

Le sollecitazioni sono state ottenute mediante una funzione implementata nel codice di calcolo che consente l'integrazione automatica delle tensioni negli elementi di continuo, lungo l'asse baricentrico all'elemento stesso; tale applicazione, dunque, restituisce gli andamenti delle sollecitazioni tenendo conto delle variazioni sezionali della struttura nel piano.

Da Figura 30 a Figura 32 si riportano le distribuzioni degli sforzi assiali, del taglio e del momento flettente per la fase di calcolo TIME 7, da Figura 33 a Figura 35 quelle relative al TIME 8, da Figura 36 a Figura 38 quelle riferite al TIME 9, da Figura 39 a Figura 41 quelle afferenti la fase di calcolo corrispondente al TIME 10 e da Figura 42 a Figura 44 quelle afferenti la fase di calcolo corrispondente al TIME 11, agenti sui rivestimenti della galleria artificiale.

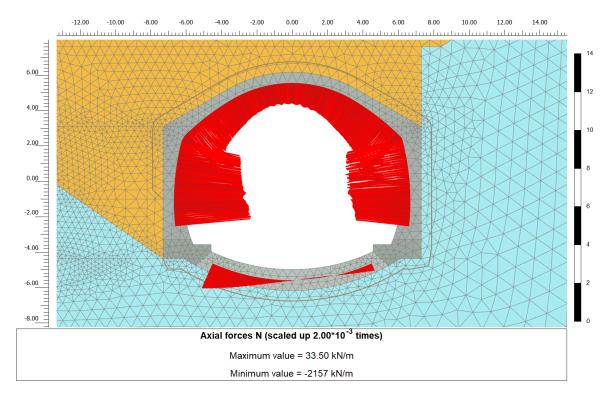


Figura 30: Distribuzione dello sforzo assiale - TIME 7.

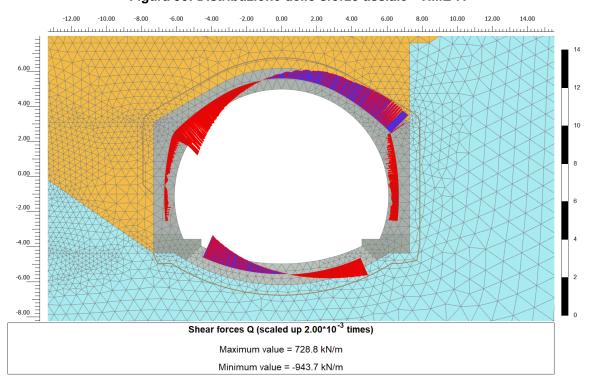


Figura 31: Distribuzione dell'azione di taglio - TIME 7.

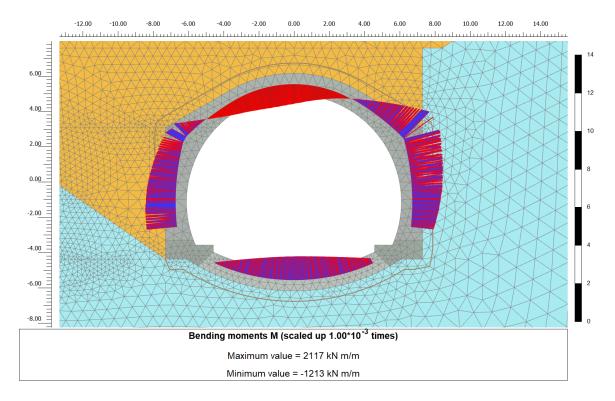


Figura 32: Distribuzione del momento flettente - TIME 7.

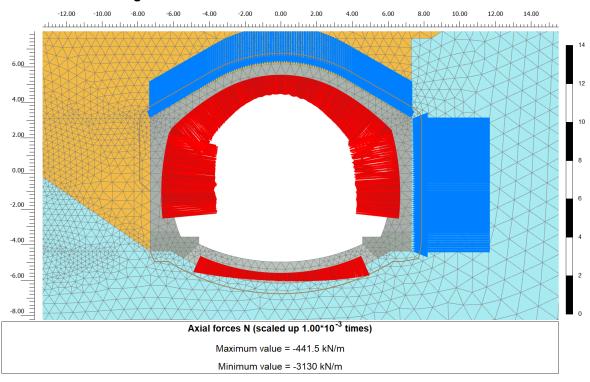


Figura 33: Distribuzione dello sforzo assiale - TIME 8.

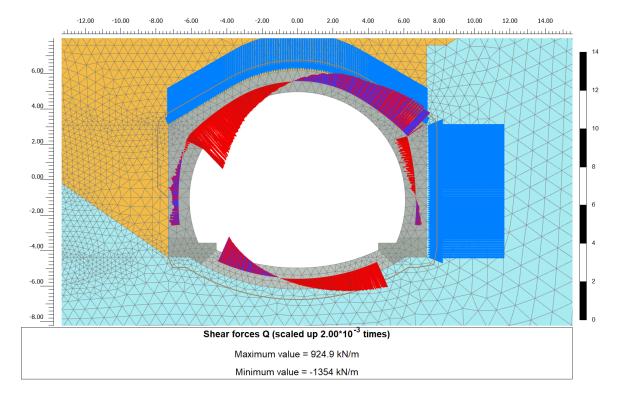


Figura 34: Distribuzione dell'azione di taglio - TIME 8.

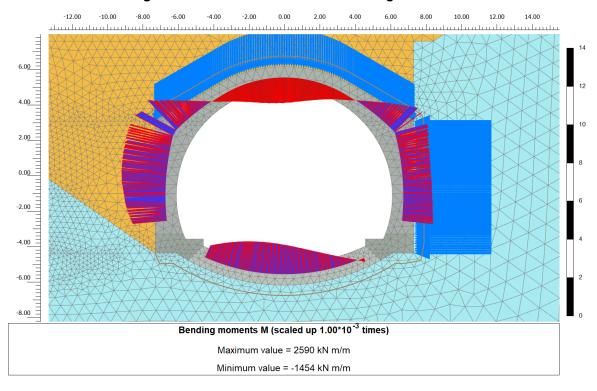


Figura 35: Distribuzione del momento flettente - TIME 8.

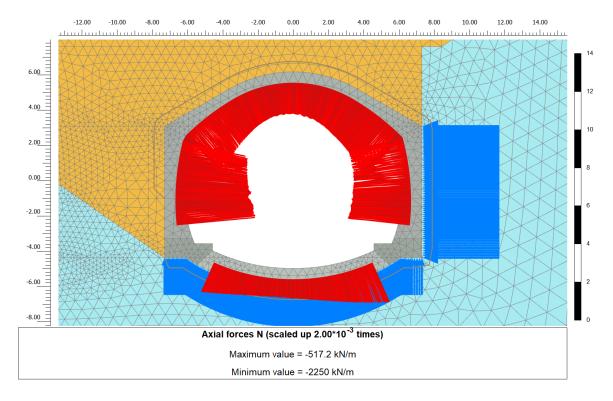


Figura 36: Distribuzione dello sforzo assiale - TIME 9.

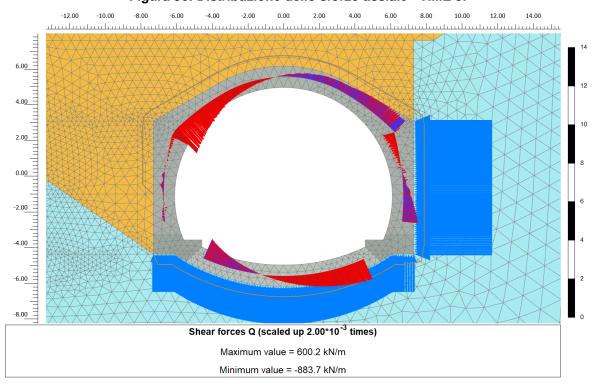


Figura 37: Distribuzione dell'azione di taglio - TIME 9.

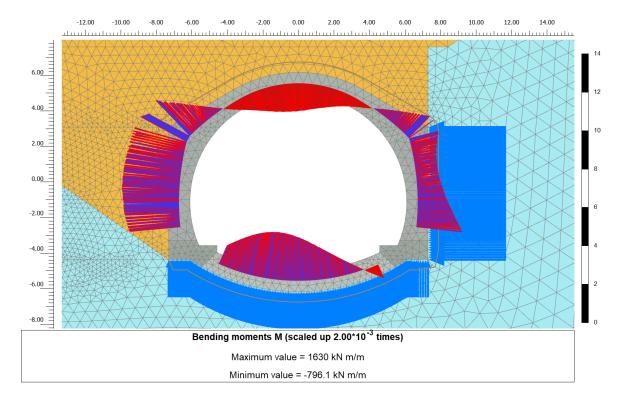


Figura 38: Distribuzione del momento flettente - TIME 9.

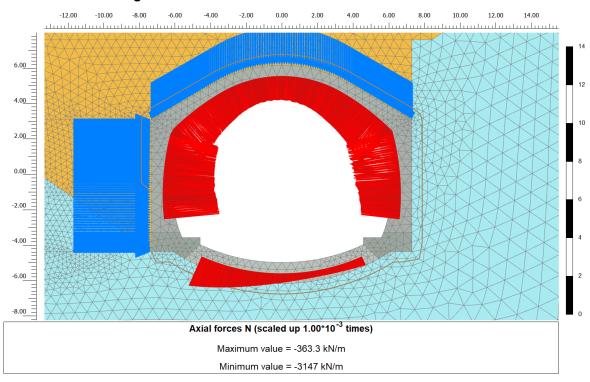


Figura 39: Distribuzione dello sforzo assiale - TIME 10.

Direzione Progettazione e

Realizzazione Lavori

PROGETTO DEFINITIVO

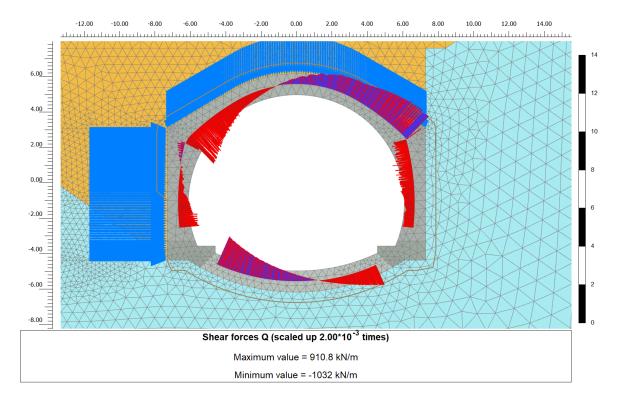


Figura 40: Distribuzione dell'azione di taglio - TIME 10.

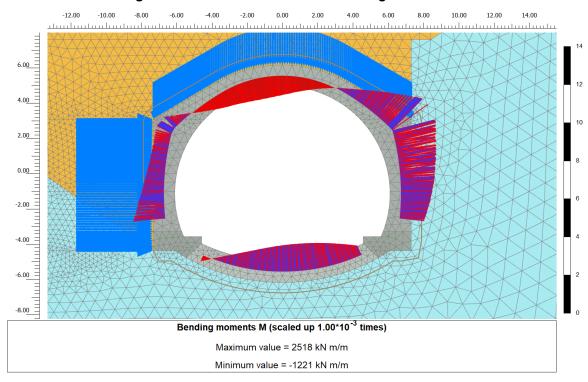


Figura 41: Distribuzione del momento flettente - TIME 10.

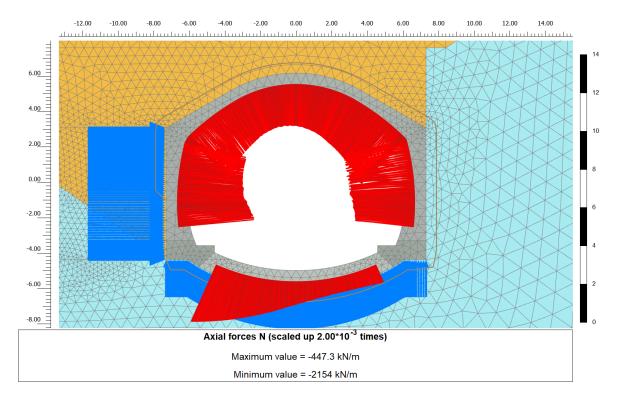


Figura 42: Distribuzione dello sforzo assiale - TIME 11.

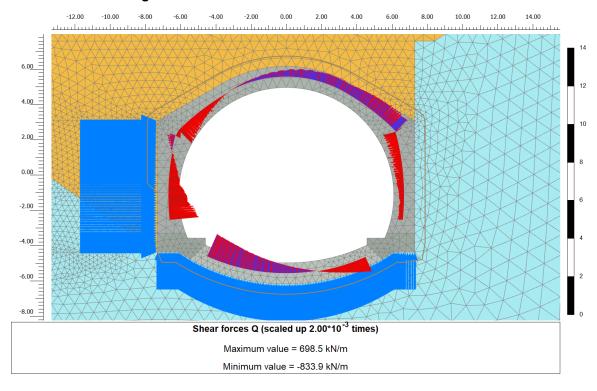


Figura 43: Distribuzione dell'azione di taglio - TIME 11.

RELAZIONE DI CALCOLO

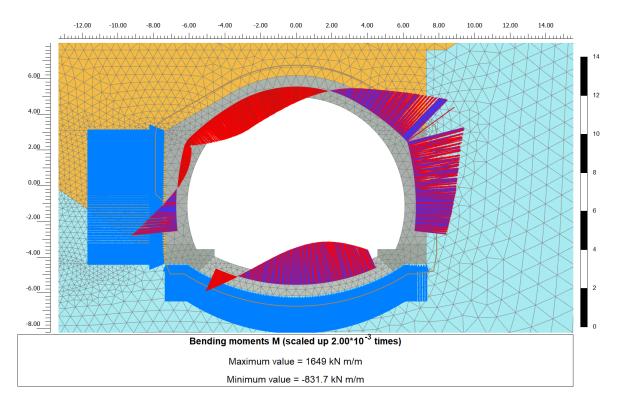


Figura 44: Distribuzione del momento flettente - TIME 11.

In Tabella 24 si riportano i valori massimi e minimi delle sollecitazioni valutate al metro lineare per calotta, reni, piedritti e arco rovescio.

Tabella 24: Valori massimi e minimi delle sollecitazioni.

FASE DI	Elemento	N _{min}	N _{max}	T _{min}	T _{max}	M_{min}	M_{max}
CALCOL O	Strutturale	(kN/m)	(kN/m)	(kN/m)	(kN/m)	(kNm/m)	(kNm/m)
	Calotta	562.1	1344.8	-830.6	718.4	-1213.4	1665.0
TIME 7	Reni	1117.1	1788.9	-943.7	728.8	594.2	2117.4
I IIVIE 7	Piedritti	218.4	2157.3	-540.4	692.4	76.9	1983.7
	Arco Rov.	-33.5	762.5	-536.4	690.2	96.2	1354.9
	Calotta	1071.9	2229.8	-1239.5	899.4	-1453.5	1709.0
TIME 8	Reni	1988.2	2893.3	-1354.0	924.9	1361.3	2569.7
I IIVIE O	Piedritti	985.0	3130.2	-772.3	770.1	-234.9	2590.0
	Arco Rov.	441.5	1180.9	-769.4	763.5	-1761.7	203.5
	Calotta	870.3	1482.8	-781.0	436.6	-796.1	985.7
TIME 9	Reni	1339.6	1939.4	-883.7	449.4	586.3	1560.8
I IIVIE 9	Piedritti	916.9	2249.5	-620.9	600.2	-1437.1	1629.9
	Arco Rov.	517.2	1222.5	-620.0	594.8	-1337.2	394.1
TIME 10	Calotta	1332.8	2430.6	-923.2	893.7	-1221.4	1972.8

STRADA DELLE TRE VALLI UMBRE Tratto Eggi-Acquasparta – I° Stralcio Baiano-Firenzuola

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

	Reni	2236.4	2822.6	-1031.7	910.8	456.1	2517.8
	Piedritti	538.0	3146.8	-617.7	867.5	-351.3	2301.2
	Arco Rov.	363.3	1797.8	-609.9	866.0	-1554.8	327.9
	Calotta	1153.0	1746.3	-432.5	463.7	-831.7	1372.4
TIME 11	Reni	1568.6	1901.2	-525.2	472.0	-422.5	1649.5
TIME 11	Piedritti	554.7	2154.0	-833.9	697.1	-1290.0	1422.0
	Arco Rov.	447.3	1764.0	-441.8	698.5	-1159.9	682.3

7.3 VERIFICHE STRUTTURALI

7.3.1 Descrizione degli elementi strutturali e indicazione delle sezioni di verifica

In Figura 45 si riporta una schematizzazione della struttura che mostra la simmetria rispetto all'asse galleria e l'altezza variabile degli elementi lungo il suo sviluppo.

La calotta ha uno spessore pari a 120 cm ed è armata con barre \varnothing 26/12.5 all'estradosso e con 2 barre \varnothing 26/12.5 all'intradosso. L'armatura trasversale è costituita da spilli \varnothing 12/20 a 2 braccia.

Le reni hanno uno spessore variabile compreso tra $150 \div 200$ cm e sono armate con barre \emptyset 26/12.5 all'estradosso e con 2 barre \emptyset 26/12.5 all'intradosso. L'armatura trasversale è costituita da spilli \emptyset 12/20 a 2 braccia.

I piedritti hanno uno spessore variabile compreso tra $120 \div 150$ cm, sono armati con barre Ø 26/12.5 all'estradosso e con 2 barre Ø26/12.5 all'intradosso. Non è presente armatura a taglio.

L'arco rovescio ha spessore pari a 120 cm ed è armato con barre \varnothing 26/12.5 all'estradosso e 2 file di barre \varnothing 26/12.5 all'intradosso. L'armatura trasversale è costituita da spilli \varnothing 14/25 a 2 braccia.

Il copriferro considerato nelle verifiche è pari a 6 cm e a 6+6 cm laddove siano presenti 2 file di armature.

Ai fini delle verifiche strutturali, sono state individuate 8 sezioni rappresentative della struttura in oggetto, e per le quali le sollecitazioni valutate sono risultate le più gravose.

RELAZIONE DI CALCOLO

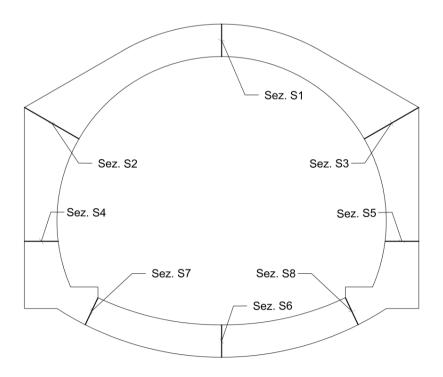


Figura 45: Indicazione delle sezioni di verifica.

7.3.2 Verifiche SLU

7.3.2.1 Verifiche a pressoflessione

Le verifiche allo *SLU* per presso-flessione sono state eseguite secondo le disposizioni riportate nel § 5.2.1 per ciascuna fase di calcolo di interesse. In Tabella 25 si riporta, una sintesi dei valori delle sollecitazioni in termini di sforzo normale e momento flettente; sono inoltre indicate le quantità e la disposizione delle armature longitudinali, nonché l'altezza delle sezioni di studio.

Tabella 25: Sintesi delle coppie di valori N-M agenti sulle sezioni di verifica a pressoflessione.

Sezioni	Azio	ni SLU	Armature				
di verifica	N (kN/m)	M (kNm/m)	estradosso	c (cm)	intradosso	c (cm)	h (cm)
S1	581.67	-1475.85	8Ø26	6	8Ø26	6	120
S2	1628.36	1321.44	8Ø26	6	8Ø26	6	200
S3	1403.96	2752.58	8Ø26	6	8Ø26	6	200
S4	1957.60	2077.37	8Ø26	6	8Ø26	6	130
S5	1687.59	2315.11	8Ø26	6	8Ø26	6	130
S6	23.17	-1753.02	8Ø26	6	8+8Ø26	6+6	120

RELAZIONE DI CALCOLO

Da Figura 46 a Figura 49 sono riportate le verifiche a presso-flessione.

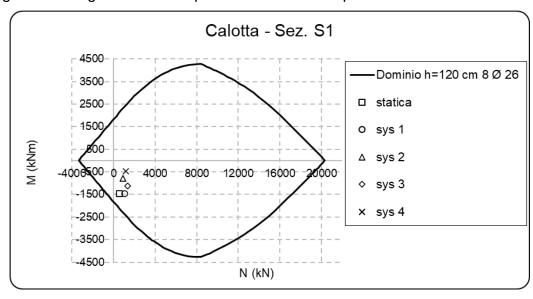


Figura 46: Verifica a presso-flessione_Calotta - Sez. S1.

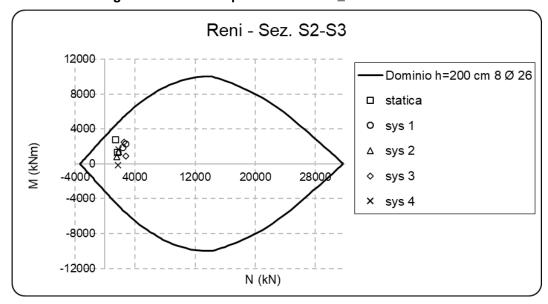


Figura 47: Verifica a presso-flessione_Reni - Sez. S2-S3.

RELAZIONE DI CALCOLO

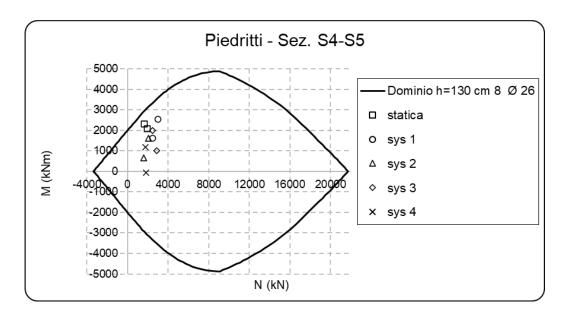


Figura 48: Verifica a presso-flessione_Piedritti - Sez. S4-S5.

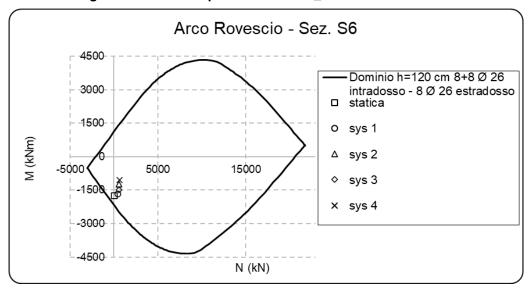


Figura 49: Verifica a presso-flessione_Arco Rovescio - Sez. S6.

Le verifiche risultano soddisfatte.

7.3.2.2 Verifiche a taglio

Nel seguito si riportano le verifiche allo *SLU* per taglio, le quali sono state effettuate con riferimento alle sezioni più sollecitate (tra quelle al di fuori delle zone nodali) ed in particolare, con riferimento alla Figura 45, sono state effettuate per le sezioni S2, S3, S6 e S7.

RELAZIONE DI CALCOLO

<u>Cls</u>		
Rck=	30	MPa
fck=	25	MPa
γc=	1.50	
fcm=	33	MPa
αcc=	0.85	
fcd=	14	MPa
fctm=	2.56	MPa
fctk _{0.05} =	1.79	MPa
fctk _{0.95} =	3.33	MPa
αct=	1.00	
fctd=	1.19	MPa
Acciaio c.a.		
fyk=	450	MPa
γs=	1.15	
fyd=	391	MPa

7.3.2.2.1 Sezione S2

Azioni di taglio		γ	
Gk	0	x1.00=	0 kN
Pk	0	x1.00=	0 kN
Qk	0	x1.00=	0 kN
Aed	1354	x1.00=	1354 kN
		V _{Ed} =	1354 kN
Nsd=	1281	\ KN	sforzo normale
bw =	1.000	m	larghezza (6.16)
h=	2.000	m	altezza totale
C=	0.060	m	copriferro
d =	1.940	m	altezza utile
Ac=	2.00	mq	area

RELAZIONE DI CALCOLO

Resistenza delle staffe:

φ w =	12.0	mm	diametro staffa
n=	2.00		numero braccia
Asw=	2.26	cmq	
z=	1.75	m	=0.9*d
senα=	1		α angolo tra le staffe e l'asse della trave (α =90° per staffe verticali)
ρ w=	0.11	%	$=Asw/(s*bw*sin\alpha)*100>=$
s=	0.2	m	=passo staffe <= 1.46 m = 0.75 *d*(1+cot α)
θ=	21.8	0	=arcsen(radq(Asw*fyd)/(bw*s*acw*n*fcd))
			inclinazione puntone compresso, variabile tra 45° to 21.8°
tanθ=	0.40		valore tra 1 (for θ =45°) e 0.4
cotθ=	2.50		valore tra 1 (for θ =45°) and 2.5
ρ w,max=	0.44	=	$A_{sw,max}$ *fyd/(bw*s)<=1/2* α_{cw} *v*fcd = 3.98 verifica soddisfatta
$V_{Rd,s}=$	1932	kN	=Asw/s*z* fywd *cotθ

Resistenza del puntone compresso:

```
0.540
                                     =0.6*(1-fck/250) (from EN 6.6N)
                                     =Nsd/Ac
                0.64
   ⊙cp =
                1.05
     \alpha_{\text{cw}}\!\!=\!
                                     =\alpha_{cw}*bw*z*v*fcd/(cot\theta+tan\theta)
               4798
                          kΝ
V_{Rd,max}=
     \gamma_{\text{Bd1}}
                1.25
                                     coefficiente di sicurezza (EN1998-2-5.6.2.b)
    V_{Rd}=
               1546
                           kΝ
                                     =min(V_{Rd,s};V_{Rd,max})/\gamma_{Bd1}
```

 $V_{Ed} = 1354$ minore o uguale di $V_{Rd} = 1546$ verifica soddisfatta

7.3.2.2.2 Sezione S3

Azioni di taglio		γ	
Gk	0	x1.00=	0 kN
Pk	0	x1.00=	0 kN
Qk	0	x1.00=	0 kN
Aed	971	x1.00=	971 kN
		$V_{Ed} =$	971 kN
Nsd=	1168	KN	sforzo normale
bw =	1.000	m	larghezza (6.16)
h=	2.000	m	altezza totale
C=	0.060	m	copriferro
d =	1.940	m	altezza utile
Ac=	2.00	mq	area

RELAZIONE DI CALCOLO

Resistenza delle staffe:

φ w =	12.0	mm	diametro staffa
n=	2.00		numero braccia
Asw=	2.26	cmq	
z=	1.75	m	=0.9*d
senα=	1		α angolo tra le staffe e l'asse della trave (α =90° per staffe verticali)
ρW=	0.11	%	$=Asw/(s*bw*sin\alpha)*100>=$
s=	0.2	m	=passo staffe <= 1.46 m = 0.75 *d*(1+ $\cot \alpha$)
θ=	21.8	0	=arcsen(radq(Asw*fyd)/(bw*s*acw*n*fcd))
			inclinazione puntone compresso, variabile tra 45° to 21.8°
tanθ=	0.40		valore tra 1 (for θ =45°) e 0.4
cotθ=	2.50		valore tra 1 (for θ =45°) and 2.5
ρ w,max=	0.44	=	$A_{sw,max}$ *fyd/(bw*s)<=1/2* α_{cw} *v*fcd = 3.97 verifica soddisfatta
$V_{Rd,s}=$	1932	kN	=Asw/s*z* fywd *cotθ

Resistenza del puntone compresso:

```
0.540
                                     =0.6*(1-fck/250) (from EN 6.6N)
                                     =Nsd/Ac
                0.58
   ⊙cp =
                1.04
     \alpha_{\text{cw}}\!\!=\!
                4779
                                     =\alpha_{cw}*bw*z*v*fcd/(cot\theta+tan\theta)
                           kΝ
V_{Rd,max}=
     \gamma_{\text{Bd1}}
                1.25
                                      coefficiente di sicurezza (EN1998-2-5.6.2.b)
    V_{Rd}=
                1546
                           kΝ
                                      =min(V_{Rd,s}; V_{Rd,max})/\gamma_{Bd1}
```

 $V_{Ed} = 971$ minore o uguale di $V_{Rd} = 1546$ verifica soddisfatta

7.3.2.2.3 Sezione S7

Azioni di taglio		γ	
Gk	0	x1.00=	0 kN
Pk	0	x1.00=	0 kN
Qk	0	x1.00=	0 kN
Aed	900	x1.00=	900 kN
		V _{Ed} =	900 kN
Nsd=	270	\ KN	sforzo normale
bw =	1.000	m	larghezza (6.16)
h=	1.200	m	altezza totale
C=	0.080	m	copriferro
d =	1.120	m	altezza utile
Ac=	1.20	ma	area

RELAZIONE DI CALCOLO

Resistenza delle staffe:

φ w =	14.0	mm	diametro staffa
n=	2.00		numero braccia
Asw=	3.08	cmq	
z=	1.01	m	=0.9*d
senα=	1		α angolo tra le staffe e l'asse della trave (α =90° per staffe verticali)
ρ w =	0.12	%	$=Asw/(s*bw*sin\alpha)*100>=$
s=	0.25	m	=passo staffe <= 0.84 m = $0.75 \text{*d*}(1+\cot\alpha)$
θ =	21.8	0	=arcsen(radq(Asw*fyd)/(bw*s*acw*n*fcd))
			inclinazione puntone compresso, variabile tra 45° to 21.8°
tanθ=	0.40		valore tra 1 (for θ =45°) e 0.4
cotθ=	2.50		valore tra 1 (for θ =45°) and 2.5
ρ w,max=	0.48	=	$A_{sw,max}$ *fyd/(bw*s)<=1/2* α_{cw} *v*fcd = 3.87 verifica soddisfatta
$V_{Rd,s}=$	1214	kN	=Asw/s*z* fywd *cotθ

Resistenza del puntone compresso:

```
0.540
                                      =0.6*(1-fck/250) (from EN 6.6N)
                                     =Nsd/Ac
                0.23
   ⊙cp =
                1.02
     \alpha_{\text{cw}}\!\!=\!
                                      =\alpha_{cw}*bw*z*v*fcd/(cot\theta+tan\theta)
                2692
                           kΝ
V_{Rd,max}=
     \gamma_{\text{Bd1}}
                1.25
                                      coefficiente di sicurezza (EN1998-2-5.6.2.b)
    V_{Rd}=
                972
                           kΝ
                                      =min(V_{Rd,s}; V_{Rd,max})/\gamma_{Bd1}
```

 $V_{Ed} = 900$ minore o uguale di $V_{Rd} = 972$ verifica soddisfatta

7.3.2.2.4 Sezione S8

	γ	
0	x1.00=	0 kN
0	x1.00=	0 kN
0	x1.00=	0 kN
772	x1.00=	772 kN
	$V_{Ed} =$	772 kN
218	KN	sforzo normale
1.000	m	larghezza (6.16)
1.200	m	altezza totale
0.080	m	copriferro
1.120	m	altezza utile
1.20	mq	area
	0 0 772 218 1.000 1.200 0.080 1.120	0 x1.00= 0 x1.00= 772 x1.00= V _{Ed} = 218 KN 1.000 m 1.200 m 0.080 m 1.120 m

RELAZIONE DI CALCOLO

Resistenza delle staffe:

φ w =	14.0	mm	diametro staffa
n=	2.00		numero braccia
Asw=	3.08	cmq	
z=	1.01	m	=0.9*d
senα=	1		α angolo tra le staffe e l'asse della trave (α =90° per staffe verticali)
ρ w =	0.12	%	$=Asw/(s*bw*sin\alpha)*100>=$
s=	0.25	m	=passo staffe <= 0.84 m =0.75*d*(1+cot α)
θ=	21.8	0	=arcsen(radq(Asw*fyd)/(bw*s*acw*n*fcd))
			inclinazione puntone compresso, variabile tra 45° to 21.8°
tanθ=	0.40		valore tra 1 (for θ =45°) e 0.4
cotθ=	2.50		valore tra 1 (for θ =45°) and 2.5
ρw,max=	0.48	=	$A_{sw,max}$ *fyd/(bw*s)<=1/2* α_{cw} *v*fcd = 3.86 verifica soddisfatta
$V_{Rd,s}=$	1214	kN	=Asw/s*z* fywd *cotθ

Resistenza del puntone compresso:

 $V_{Ed} = 772$ minore o uguale di $V_{Rd} = 972$ verifica soddisfatta

Le verifiche risultano soddisfatte.

7.3.3 Verifiche SLE

Le verifiche agli SLE sono state condotte come illustrato nel § 5.2.2; la massima tensione di compressione nel calcestruzzo σ_c è stata confrontata con il valore limite di normativa $(\sigma_{c,lim}=0.45 \cdot f_{ck})$, mentre la massima tensione di trazione nelle armature σ_s è stata confrontata con la tensione limite $\sigma_{s,lim}$ pari a 194.3 MPa per barre Ø26. In Tabella 26 sono riportate le tensioni σ_c e σ_s ottenute a partire dalle sollecitazioni agenti sulle sezioni di studio, con riferimento alla Tabella 25, nella quale sono indicate la quantità e la disposizione delle armature longitudinali e l'altezza delle sezioni per le quali sono state effettuate le verifiche stesse.

Realizzazione Lavori

STRADA DELLE TRE VALLI UMBRE Tratto Eggi-Acquasparta – I° Stralcio Baiano-Firenzuola

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Tabella 26: Verifiche a SLE.

Sezioni	Azio	ni SLE	σ_{c}	σ_{s}	Esito
di verifica		M (kNm/m)	N/mm ²	N/mm ²	verifiche SLE
S1	581.67	-1135.27	5.99	193.4	soddisfatta
S2	1628.36	1016.489	2.24	13.5	soddisfatta
S3		2117.368	4.94	135.6	soddisfatta
S4			7.65	191.4	soddisfatta
S5	1687.59	1720.2	8.48	194.1	soddisfatta
S6	23.17	-1348.47	5.48	160.6	soddisfatta

Le verifiche risultano soddisfatte.

