00	01/03/2021	PRIMA EMISSIONE	CG	СМ	СМ
REV.	DATA	DESCRIZIONE REVISIONE	REDATTO	VERIFICATO	APPROVATO

Volta Green Energy

REGIONE BASILICATA

Provincia di MATERA

COMUNI DI MONTESCAGLIOSO E BERNALDA

PROGETTO:

PARCO EOLICO LUMELLA PROGETTO DEFINITIVO

COMMITTENTE:

Piazza Manifattura, 1 – 38068 Rovereto (TN) Tel. +39 0464 625100 - Fax +39 0464 625101 - PEC volta-ge@legalmail.it

PROGETTISTA

Tecnogaia S.r.l. Sede Legale: Via Matteotti, 311 25063 - Gardone Val Trompia - (BS) C.F. / P.I. 13029730150 Iscrizione al registro imprese di Brescia – n. BS 496849

OGGETTO DELL'ELABORATO:

A5. Studio anemologico

N° ELABORATO	SCALA	FOGLIO	FORMATO	CODIFICA COMMITTENTE
05	-	1 di 18	A4	R05
ID ELABORATO:				

Questo elaborato è di proprietà di Volta Green Energy ed è protetto a termini di legge

Impianto eolico nel Comune di Montescaglioso (MT)

Valutazione preliminare della produzione attesa - Rev.01

Rap. TG027/2021-VPE

Impianto eolico nel Comune di Montescaglioso (MT)

Valutazione preliminare della produzione attesa

REVISIONE 01

CLIENTE	REVISIONE				REDAZIONE
	N°	MESE	ANNO	LUOGO	C. Gaioni
Volta g.e.	01	MARZO	2021	GARDONE VAL TROMPIA	C. Mazzarella
ORDINE RIF.	Accettazione ns. Offerta nr. 014_BS_2021 del 23/03/2021				

Sedi operative:

- Via Matteotti, 311 – SCALA P – Int.10 – 25063 **Gardone Val Trompia (BS)**

Tel. 030 2056980 – Fax 030 831100

E-mail: info@tecnogaia.it E-mail PEC: info@pec.tecnogaia.com Sede Legale

Via Matteotti, 311 – 25063 Gardone Val Trompia (BS)

Impianto eolico nel Comune di Montescaglioso (MT)

Valutazione preliminare della produzione attesa - Rev.01

IL PRESENTE DOCUMENTO È DESTINATO AD USO ESCLUSIVO DEL **C**OMMITTENTE.

L'USO IMPROPRIO DA PARTE DI TERZI DI INFORMAZIONI, DATI, ELABORATI, IMMAGINI IVI CONTENUTI È SANZIONABILE NEI TERMINI DI LEGGE.

SISTEMA QUALITA' CERTIFICATO **UNI EN ISO 9001:2015**

Sedi operative:- Via Matteotti, 311 – SCALA P – Int.10 – 25063 **Gardone Val Trompia (BS)**Tel. 030 2056980 – Fax 030 831100

E-mail: info@tecnogaia.it E-mail PEC: info@pec.tecnogaia.com

Sede Legale: Via Matteotti, 311 – 25063 Gardone Val Trompia (BS)

Impianto eolico nel Comune di Montescaglioso (MT)

Valutazione preliminare della produzione attesa - Rev.01

SOMMARIO

PRE	MESSA		4
1	DATI DI	VENTO	5
2	LAYOUT	D'IMPIANTO	6
3	AEROGE	NERATORI	8
4	ELABORA	AZIONE DATI DI VENTO	9
5	MODELLO	O DI CALCOLO	10
6	AREA DI	APPLICAZIONE DEL MODELLO	10
7	VERIFIC	HE SUL MODELLO	11
	7.1	Verifica dell'approssimazione della curva di Weibull	11
	7.2	Verifica del gradiente al suolo della velocità del vento	13
8		IBILITÀ LORDA DELL'IMPIANTO	
9	PRODUZ	IONE ATTESA AL NETTO DELLE PERDITE D'IMPIANTO	15
10	CONCLUS	SIONI	17

E-mail: info@tecnogaia.it E-mail PEC: info@pec.tecnogaia.com

Impianto eolico nel Comune di Montescaglioso (MT)

Valutazione preliminare della produzione attesa - Rev.01

PREMESSA

La possibilità di utilizzare la fonte eolica per la produzione di energia elettrica è subordinata alla disponibilità di siti con caratteristiche idonee alla realizzazione di impianti: disponibilità di spazio idoneo ad ospitare gli aerogeneratori, accessibilità adeguata al trasporto degli stessi, presenza di una rete elettrica capace di assorbire la nuova immissione di energia, assenza di valori ambientali tali da comprometterne l'accettabilità pubblica e, *soprattutto*, un sufficiente livello di ventosità.

Oggetto del presente studio, realizzato da Tecnogaia per conto di **Volta Green Energy S.r.l.**, è la caratterizzazione anemologica di un sito e la conseguente valutazione di producibilità (o della produzione attesa) di un impianto eolico in progetto nel territorio comunale di **Montescaglioso**, nella Provincia di Matera, Regione Basilicata.

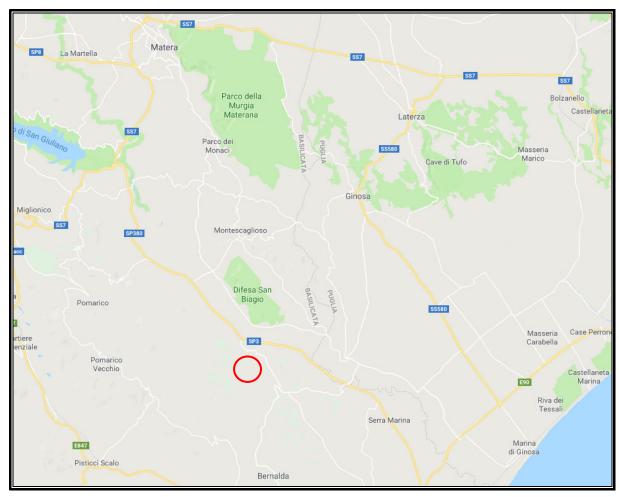


Fig. 1 Inquadramento del sito nel contesto geografico

Sedi operative:

- Via Matteotti, 311 – SCALA P – Int.10 – 25063 Gardone Val Trompia (BS)

Tel. 030 2056980 – Fax 030 831100

E-mail: <u>info@tecnogaia.it</u> E-mail PEC: <u>info@pec.tecnogaia.com</u> Sede Legale: Via Matteotti, 311 – 25063 Gardone Val Trompia (BS)

Impianto eolico nel Comune di Montescaglioso (MT)

Valutazione preliminare della produzione attesa - Rev.01

In sintesi, l'attività svolta può essere suddivisa nei seguenti processi unitari:

- 1. Analisi, validazione ed elaborazione dei dati anemometrici disponibili
- 2. Valutazione della ventosità di lungo periodo
- 3. Predisposizione della mappa territoriale in ingresso al modello con curve di livello e rugosità
- 4. Simulazione del campo di vento mediante modello WAsP
- 5. Valutazioni della produzione annua di lungo periodo attesa dall'impianto lorda ed al netto delle perdite stimate (P_{50%})

Tutta l'attività è stata svolta con approccio e strumenti professionali, secondo quanto previsto dalla metodologia definita all'interno del sistema di certificazione ISO 9001:2015 con cui è accreditata la nostra società. L'applicazione del modello di calcolo WASP è stata effettuata da personale esperto coordinato da figure certificate dal Risoe National Laboratory di Danimarca, produttore del modello stesso.

Questo studio rappresenta una Revisione della precedente relazione **TG011/2019-VPE** e scaturisce dall'utilizzo di un diverso modello di turbina e di un differente layout.

1 DATI DI VENTO

I dati di vento utilizzati nella stima sono nella disponibilità ad uso interno di Tecnogaia S.r.l. e appartengono a una stazione anemometrica che ha misurato per più di due anni ad una distanza di circa 3 km dal sito di progetto.

Le due tabelle sottostanti riassumono il contenuto del monitoraggio anemometrico:

Nome Codice		H Torre	Coordinate UTM	Altitudine	
Stazione	Stazione	s.l.s.	Longitudine E	Latitudine N	m s.l.m.
Riferimento 1	RIF1	15	637,980	4,482,182	310

Nome Codice		Periodo di	N°	
Stazione	Stazione	Data inizio	Data fine	mesi
Riferimento 1	RIF1	04/09/1996	25/11/1998	26.7

Impianto eolico nel Comune di Montescaglioso (MT)

Valutazione preliminare della produzione attesa - Rev.01

2 LAYOUT D'IMPIANTO

Il layout d'impianto fornito è composto da n° 7 posizioni per aerogeneratori di grande taglia. Nella Tabella sottostante sono riportate le coordinate nel sistema UTM ED50.

COORDINATE UTM-ED50 - FUSO 33							
AG	Longitudine X	Latitudine Y					
T1	644,704	4,482,641					
T2	644,188	4,482,141					
T3	644,436	4,481,279					
T4	642,865	4,481,459					
T5	642,355	4,480,989					
T6	641,725	4,480,671					
T7	640,584	4,481,508					

Nella tabella sottostante sono riportate le inter-distanze tra gli aerogeneratori d'impianto in metri (in alto a destra) e in diametri di un rotore da 170 m (in basso a sinistra). Come si può notare dalla tabella tutte le posizioni sono distanziate di almeno 4 diametri di rotore.

Inter-D	T1	T2	T3	T4	T5	T6	T7
T1		719	1388	2186	2872	3571	4273
T2	4.2		897	1488	2165	2868	3659
T3	8.2	5.3		1581	2101	2778	3859
T4	12.9	8.8	9.3		694	1386	2282
T5	16.9	12.7	12.4	4.1		706	1845
T6	21.0	16.9	16.3	8.2	4.2		1415
T7	25.1	21.5	22.7	13.4	10.9	8.3	

Nell'area dell'impianto di progetto sono in esercizio n. 4 aerogeneratori LEITWIND LTW77 con diametro di rotore pari a 76.7 m e altezza del mozzo pari a 65 m. Nelle tabelle seguenti sono riportate le coordinate delle turbine e le inter-distanze in diametri di rotore da 170 m con gli aerogeneratori in progetto.

Sedi operative:

- Via Matteotti, 311 – SCALA P – Int.10 – 25063 Gardone Val Trompia (BS)

Tel. 030 2056980 – Fax 030 831100

E-mail: <u>info@tecnogaia.it</u> E-mail PEC: <u>info@pec.tecnogaia.com</u> Sede Legale: Via Matteotti, 311 – 25063 Gardone Val Trompia (BS)

Impianto eolico nel Comune di Montescaglioso (MT)

Valutazione preliminare della produzione attesa - Rev.01

COORDINATE UTM-ED50 – FUSO 33						
AG	Longitudine X	Latitudine Y				
LTW1	642,875	4,482,920				
LTW2	642,424	4,482,524				
LTW3	642,909	4,482,112				
LTW4	643,512	4,482,339				

	a LTW1	a LTW2	a LTW3	a LTW4
da T1	10.9	13.4	11.0	7.2
da T2	9.0	10.6	7.5	4.1
da T3	13.3	13.9	10.2	8.3
da T4	8.6	6.8	3.8	6.4
da T5	11.8	9.0	7.4	10.5
da T6	14.9	11.6	11.0	14.4
da T7	15.8	12.4	14.1	17.9

Nella stima di produzione dell'impianto di progetto sarà incluso l'impianto in esercizio al fine di tener conto anche delle perdite subite per tale interferenza. Non rientra tra gli scopi della presente analisi, invece, la valutazione dell'interferenza dell'impianto di progetto su quello in esercizio.

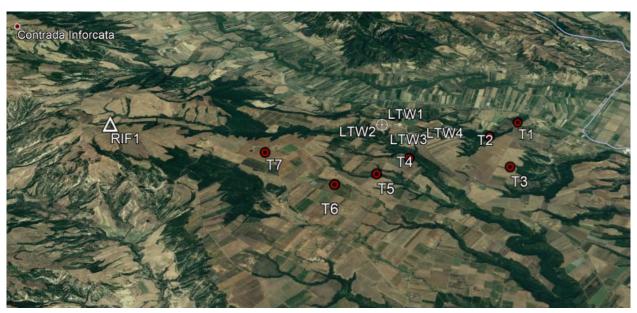


Fig. 2 Dati anemometrici, Impianto di progetto e Impianto in esercizio

Sedi operative: - Via Matteotti, 311 – SCALA P – Int.10 – 25063 Gardone Val Trompia (BS)

Tel. 030 2056980 - Fax 030 831100

E-mail: info@tecnogaia.it E-mail PEC: info@pec.tecnogaia.com

Sede Legale: Via Matteotti, 311 – 25063 Gardone Val Trompia (BS)

Impianto eolico nel Comune di Montescaglioso (MT)

Valutazione preliminare della produzione attesa - Rev.01

3 **AEROGENERATORI**

Per la valutazione di producibilità è stato indicato l'aerogeneratore Siemens Gamesa SG 6.0-170 da 5.8 MW.

Costruttore	Modello	MOD	Potenza [MW]	Diametro Rotore [m]	H mozzo [m]	Classe IEC
Siemens Gamesa	SG 6.0-170	AM-4	5.8	170	115	IIIA

La curva di potenza utilizzata è quella calcolata alla densità dell'aria di 1.225 kg/m³, corrispondente al livello del mare (0 m s.l.s.). Di seguito, sono rappresentate nel loro sviluppo sia la curva di potenza (P) che la curva di spinta (Ct) per la determinazione delle perdite per effetto scia.

Turbin	a		mens Gamesa 6.0-170 (AM-4)	Diametro 170 m
Altezza di n	nozzo		115 m	
Vento	Pote	enza	Thrust	Classe IEC IIIA
(m/s)	(k\	N)	Coefficient	
0	-	•	-	
1	-	=	-	
2	-	=	-	
3	8	9	0.953	
4	32	28	0.847	
5	75	58	0.824	
6	13	76	0.833	7000
7	22	30	0.837	
8	33	48	0.824	6000
9	45	56	0.747	5000
10	53	73	0.591	Thrust Coefficient - 0.4 In the coefficient -
11	56	94	0.436	0.6 o o o o o o o o o o o o o o o o o o o
12	57	79	0.323	0.6 0.6
13	57	96	0.247	<u> </u>
14	57	99	0.195	Q 2000
15	58	00	0.158	2000
16	58	00	0.130	1000 - 0.2
17	58	00	0.109	
18	58	00	0.094	0.0
19	58	00	0.082	0 5 10 15 20 25 30
20	58	00	0.073	Vento [m/s]
21	58	00	0.059	Power curve — Thrust coefficient
22	57	08	0.051	
23	54	60	0.043	
24	52	12	0.037	
25	49	64	0.032	
26	-		-	
27	-		-	

Sedi operative:

Seul operative:
- Via Matteotti, 311 – SCALA P – Int.10 – 25063 **Gardone Val Trompia (BS)**- Tel. 030 2056980 – Fax 030 831100

E-mail: info@tecnogaia.it E-mail PEC: info@pec.tecnogaia.com

Sede Legale: Via Matteotti, 311 – 25063 Gardone Val Trompia (BS)

Impianto eolico nel Comune di Montescaglioso (MT)

Valutazione preliminare della produzione attesa - Rev.01

4 ELABORAZIONE DATI DI VENTO

I risultati conseguiti dalla lettura, validazione ed elaborazione dei dati del sensore di velocità installato sulla stazione anemometrica sono sintetizzati nella tabella sottostante.

Stazione anemometrica	H torre		Disponibilità dati validati	Velocità media	Energia	Parametri distribuzione di Weibull		
codice	m	mesi	%	m/s	W/m ²	Vc (m/s)	K	
RIF1	15	26.7	94.2	4.74	146	5.46	1.84	

I dati non possono essere considerati 'storici' e di conseguenza sono stati sottoposti a una verifica di lungo periodo allo scopo di confermare l'allineamento della ventosità rilevata a quella attesa in sito nel lungo periodo.

La verifica è stata svolta utilizzando una serie di dati di reanalisi MERRA2 per il periodo 1996-2019, con nodo 40.5 N – 16.875 E, a circa 21 km di distanza dalla stazione anemometrica. Di seguito si riporta la tabella finale a seguito dell'allineamento sul lungo termine.

Stazione anemometrica	H torre	Periodo rilevazione	Disponibilità dati validati	Velocità media	Energia	Parametri distribuzione di Weibull		
codice	m	mesi	%	m/s	W/m²	Vc (m/s)	K	
RIF1	15	Storico	94.2	4.58	132	5.32	1.87	

Impianto eolico nel Comune di Montescaglioso (MT)

Valutazione preliminare della produzione attesa - Rev.01

5 MODELLO DI CALCOLO

Il campo di velocità del vento su un sito eolico, che consente di stabilire il potenziale energetico disponibile sulla sua superficie, può essere dedotto con diverse metodologie. Quella più evoluta e diffusa è realizzata per mezzo di un modello virtuale dell'ambiente dove, all'interno della modellazione statica del territorio, agiscono delle grandezze fisiche dinamiche (il vento) nel tempo osservate. Con l'ausilio di specifici modelli matematici di calcolo è possibile proiettare con buona approssimazione su intere aree geografiche la ventosità scaturita da rilevazioni effettuate anche in punti differenti.

Tutte le elaborazioni, le stime e le valutazioni in seguito descritte sono state effettuate con il codice (o modello) di calcolo WASP (Wind Atlas Analysis and Application Program) messo a punto dal Risoe National Laboratory di Danimarca e basato su un modello matematico del flusso del vento.

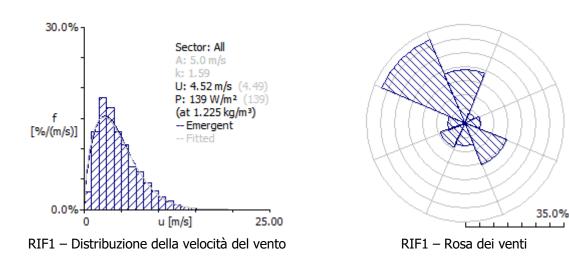
A partire dalla posizione spaziale di origine, i dati forniti al modello vengono utilizzati per costruire su tutta l'area di interesse il vento indisturbato in quota, detto anche vento geostrofico o Atlas, che si ritiene costante per diversi km dal suo punto di origine e che consente di rilevare in punti arbitrari dello spazio tutti i parametri utili alla stima della ventosità. Il campo di velocità del vento fornito dal modello è tridimensionale e ciò consente di disporre in modo naturale anche del profilo della velocità media a varie altezze dal suolo.

6 AREA DI APPLICAZIONE DEL MODELLO

Per conferire sufficiente stabilità al calcolo è necessario disporre di un modello territoriale tridimensionale con superficie più vasta di quella propriamente destinata all'impianto.

In questo caso si è utilizzata una mappa di 20x15 km. Le curve di livello che descrivono l'orografia sono derivate dal database Tinitaly (modello digitale senza soluzione di continuità [DEM] dell'intero territorio italiano) con passo di quota di 10 m, mentre la rugosità del terreno è derivata dal database Corine land cover 2018. Il modello è stato verificato prima dell'utilizzo sulla base della cartografia IGM e delle ortofoto satellitari disponibili.

Impianto eolico nel Comune di Montescaglioso (MT)


Valutazione preliminare della produzione attesa - Rev.01

7 **VERIFICHE SUL MODELLO**

Dovendo agire all'interno di un modello virtuale e volendo disporre di risultati analizzabili criticamente, prima di intraprendere qualunque attività di calcolo occorre verificare che i dati offerti al modello abbiano prodotto un ambiente virtuale congruo con la realtà del sito, entro cui poi calare ogni simulazione.

7.1 Verifica dell'approssimazione della curva di Weibull

Il codice di calcolo WAsP utilizza la distribuzione di Weibull per rappresentare i dati di vento e definisce il campo di vento indisturbato sull'area (Atlas) con i parametri derivati da tale distribuzione.

Per la stazione, la distribuzione di Weibull dedotta dal modello di calcolo dai dati di input è riportata nella tabella sequente, dove:

- (A) velocità caratteristica Vc (m/s) della distribuzione di Weibull calcolata dal modello WAsP nel settore;
- (k) fattore di forma k di tale distribuzione di Weibull;
- (U) valore medio della velocità del vento in m/s per ciascun settore di direzione;
- (P) potenza specifica in W/m² della vena fluida nel settore di direzione;
- (f) frequenza percentuale di occorrenze nel settore (per mille and per cent).

E-mail: info@tecnogaia.it E-mail PEC: info@pec.tecnogaia.com

Sede Legale: Via Matteotti. 311 - 25063 Gardone Val Trompia (BS)

Impianto eolico nel Comune di Montescaglioso (MT)

Valutazione preliminare della produzione attesa - Rev.01

Site description: RIFERIMENTO 1

	Uni	it	М	easured		Eme	ergent	Discrepancy %			
ı	Mean wind speed			s		4.58		4.52		-1	.4
M	ean power d	lensity	W/m	12		132	132		.33	+0.8	
								'		1	
-	0°	45°	90	0°	1	35°	1	80°	225°	270°	315°
A [m/s]	4.8	3.1	3	.7	5	5.2	4	4.3	4.6	3.5	6.2
k	1.51	1.49	1.	83	1	.97	1	.81	1.51	1.59	1.82
U [m/s]	4.35	2.84	1 3.	27	4	.60	3	3.82	4.16	3.10	5.53
P [W/m ²]	136	38	4	.5	1	16		73	119	46	219
f [%]	18.8	3.7	5	.6	1	5.9		7.8	9.5	6.4	32.2
U [m/s]	0°	45°	90°	135		180°	4	225°	270°	315°	All
1.0	31	75	47	18		35		45	53	15	29
2.0	165	273	171	81		122		149	205	84	128
3.0	191	261	266	159		224		200	290	133	184
4.0	148	161	245	18		207		168	191	142	167
5.0	118	90	129	169		142		106	111	122	127
6.0	110	73	65	140	-	113		83	65	110	107
7.0	67	30	31	93		70		62	35	83	71
8.0	58	15	24	67		51		69	25	84	63
9.0	39	11	11	35		21		48	14	69	43
10.0	26	7	7	18		8		32	9	57	31
11.0	17	2	3	11		3		21	3	43	21
12.0 13.0	8	0	0	9		2		9 5	0	27 15	13 7
14.0	5	0	0	2		1		2	0	7	4
15.0	3	0	0	2		0		1	0	3	2
16.0	2	0	0	1		0		0	0	2	1
17.0	1	0	0	0		0		0	0	1	1
18.0	1	0	0	0		0		0	0	1	0
19.0	1	0	0	0		0		0	0	1	0
20.0	0	0	0	0		0		0	0	0	0
21.0	0	0	0	0		0		0	0	0	0

In alto, nella prima parte della tabella precedente, vengono messi a confronto i parametri sperimentali (Measured) con la distribuzione di ventosità (Emergent) dedotta dal modello di calcolo.

Di seguito i parametri sperimentali vengono invece messi a confronto con quelli stimati dal modello, comprensivi delle informazioni territoriali, nel punto spaziale dell'anemometro (self prediction), partendo dal campo di vento (Atlas).

Sedi operative:

Tel. 030 2056980 – Fax 030 831100

E-mail: info@tecnogaia.it
E-mail PEC: info@pec.tecnogaia.com

Sede Legale: Via Matteotti, 311 – 25063 Gardone Val Trompia (BS)

⁻ Via Matteotti, 311 – SCALA P – Int.10 – 25063 Gardone Val Trompia (BS)

Impianto eolico nel Comune di Montescaglioso (MT)

Valutazione preliminare della produzione attesa - Rev.01

Codice stazione	-	- Unit		Self Prediction	Discrepancy %
DIE1	Mean wind speed	m/s	4.58	4.53	-1.2
RIF1	Mean power density	W/m²	132	134	+1.5

Le discrepanze riscontrate in questa verifica denotano la tendenza del modello a sottostimare leggermente i parametri di ventosità nel punto spaziale dell'anemometro. Viceversa, per i parametri relativi all'energia, influenti in misura maggiore sulla stima di produzione, c'è una leggera sovrastima, comunque nei limiti dell'incertezza insita nella stessa risorsa misurata.

7.2 Verifica del gradiente al suolo della velocità del vento

Il gradiente al suolo della velocità del vento (alfa) è il parametro che consente di estrapolare la velocità del vento alle varie altezze dal suolo. La verifica consiste nel determinare l'entità delle approssimazioni che il modello introduce nella stima di tale parametro rispetto a quello sperimentale registrato sulla verticale della stazione.

Nel caso specifico, non disponendo di un valore di gradiente misurato per la stazione RIF1, il confronto deve necessariamente essere svolto tra i valori di alfa stimati da WASP e quelli normalmente attesi in relazione alla morfologia del sito che circonda la stazione anemometrica. In questo caso, in un territorio collinare, con bassa complessità, è lecito attendersi un gradiente al suolo medio con valori intorno allo 0.15.

La verifica viene effettuata sull'altezza di mozzo di 115 m.

	Dati misura	ti dall'anemor suo		altezza dal	Dati stimat moz	Scarto sulla velocità		
Codice stazione	Altezza	Velocità media	Gradiente al suolo atteso	Velocità al mozzo	Altezza mozzo			media del vento
	(m)	(m/s)	alfa	(m/s)	(m)	(m/s)	alfa	%
RIF1	15	4.58	0.150	6.22	115	6.42	0.171	+3.2

Sebbene il gradiente al suolo stimato dal modello di calcolo sia più elevato rispetto a quanto atteso, si può comunque ritenere plausibile per le caratteristiche orografiche del punto di installazione. In assenza di una misura in sito ad altezza di almeno 2/3 del mozzo previsto per le turbine, l'applicazione di un gradiente al suolo diverso da quello stimato dal modello di calcolo rappresenterebbe una scelta cautelativa, ma arbitraria. Considerata la natura preliminare della presente valutazione, si ritiene di

Sedi operative:

- Via Matteotti, 311 – SCALA P – Int.10 – 25063 Gardone Val Trompia (BS)

Tel. 030 2056980 – Fax 030 831100

E-mail: <u>info@tecnogaia.it</u> E-mail PEC: <u>info@pec.tecnogaia.com</u> Sede Legale: Via Matteotti, 311 – 25063 Gardone Val Trompia (BS)

Impianto eolico nel Comune di Montescaglioso (MT)

Valutazione preliminare della produzione attesa - Rev.01

procedere con l'estrapolazione della velocità del vento ad altezza mozzo adottando il gradiente al suolo stimato dal modello di calcolo.

8 PRODUCIBILITÀ LORDA DELL'IMPIANTO

La producibilità lorda dell'impianto è stata valutata in rapporto al modello di aerogeneratore indicato dal Committente e raffigurato al Capitolo 3.

I risultati ottenuti con il modello di calcolo, macchina per macchina e per l'insieme dell'impianto, sono riportati nella tabella sottostante. I risultati di producibilità sono al netto delle perdite per scia indotta tra le macchine e della densità dell'aria.

IMPIANTO EOLICO DI MONTESCAGLIOSO - 40.6 MW
N. 7 AEROGENERATORI SIEMENS GAMESA SG 6.0-170 (AM-4) DA 5.8 MW

Site	Coordinate UTM ED50 Fuso 33		El	Ht	U	Gross	Net.	Wk	Ore
ID	X [m]	Y [m]	[m]	[m]	[m/s]	[GWh]	[GWh]	[%]	[anno]
T1	644,704	4,482,641	136	115	6.28	17.562	17.263	1.70	2976
T2	644,188	4,482,141	161	115	6.15	17.030	16.571	2.69	2857
T3	644,436	4,481,279	143	115	5.74	15.253	14.511	4.87	2502
T4	642,865	4,481,459	179	115	5.90	15.923	15.406	3.24	2656
T5	642,355	4,480,989	186	115	5.84	15.675	15.340	2.14	2645
T6	641,725	4,480,671	196	115	5.85	15.681	15.270	2.62	2633
T7	640,584	4,481,508	217	115	5.84	15.654	15.437	1.39	2662
		Medie	174	115	5.94	16.111	15.685	2.66	2704
					Totali	112.778	109.798		

Sedi operative:

- Via Matteotti, 311 – SCALA P – Int.10 – 25063 Gardone Val Trompia (BS)

Tel. 030 2056980 – Fax 030 831100

E-mail: <u>info@tecnogaia.it</u> E-mail PEC: <u>info@pec.tecnogaia.com</u> Sede Legale: Via Matteotti, 311 – 25063 Gardone Val Trompia (BS)

Impianto eolico nel Comune di Montescaglioso (MT)

Valutazione preliminare della produzione attesa - Rev.01

9 PRODUZIONE ATTESA AL NETTO DELLE PERDITE D'IMPIANTO

La tabella sottostante riporta in sintesi la producibilità lorda. I valori di produzione lorda attesa ottenuti dal processo di calcolo tengono conto unicamente delle perdite dovute alla scia degli aerogeneratori e alla densità dell'aria alla quota del sito.

Producibilità lorde										
Impianto	H Mozzo [m]	Potenza nominale [MW]	N° AG	Potenza impianto [MW]	Producibilità [GWh/anno]	Ore [Ore/anno]				
MONTESCAGLIOSO	115	5.8	7	40.6	109.798	2704				

A tali producibilità lorde devono essere sottratte le perdite d'impianto. Nella tabella seguente sono riportati i valori di perdita applicati: si raccomanda la revisione degli stessi una volta sottoscritti tutti i contratti di fornitura delle turbine e O&M, nonché una volta disponibile il progetto elettrico esecutivo dell'impianto.

Perdite considerate	%
Disponibilità aerogeneratori	-3.0%
Disponibilità B.O.P.	-1.0%
Disponibilità rete	-0.2%
Perdite elettriche dell'impianto	-2.0%
Prestazione aerogeneratori	-1.5%
Limitazioni	-
Totale perdite	-7.5%

Disponibilità Contrattuale degli Aerogeneratori: è stato assunto un valore di mercato pari al 97%.

Disponibilità B.O.P.: questa perdita considera i fuori servizio del Balance of Plant, ovvero il valore di disponibilità garantita dal provider dei servizi O&M per il B.O.P. Il valore assunto dovrà essere rivisto alla chiusura delle negoziazioni del contratto O&M per il B.O.P.

Disponibilità Rete: tale perdita rappresenta gli eventuali fuori servizio della Rete Elettrica Nazionale a cui si collegherà l'impianto eolico. In tale analisi, è stato adottato un valore standard corrispondente a n. 3 eventi all'anno della durata media di 6 ore.

Sedi operative:

- Via Matteotti, 311 – SCALA P – Int.10 – 25063 Gardone Val Trompia (BS)

Tel. 030 2056980 – Fax 030 831100

E-mail: <u>info@tecnogaia.it</u> E-mail PEC: <u>info@pec.tecnogaia.com</u> Sede Legale: Via Matteotti, 311 – 25063 Gardone Val Trompia (BS)

Impianto eolico nel Comune di Montescaglioso (MT)

Valutazione preliminare della produzione attesa - Rev.01

Perdite Elettriche: le perdite elettriche sono state assunte in assenza di informazioni sul progetto elettrico. Il valore dovrà eventualmente essere rivisto una volta disponibile il progetto esecutivo del Progetto.

Prestazione aerogeneratori: tale perdita tiene conto della degradazione pale, isteresi e prestazione non ottimale delle turbine, nonché di alcuni parametri ambientali (ghiaccio, shutdown per temperatura, ecc.).

Limitazioni: la voce non tiene invece conto di alcun wind sector management/sector-wise curtailment e/o limitazioni dovute all'impatto acustico e/o limitazioni di rete particolari, in quanto non sono disponibili o risultanti informazioni a riguardo.

Ne risultano, pertanto, le seguenti producibilità nette:

Producibilità nette P _{50%}										
Impianto	H Mozzo [m]	Potenza nominale [MW]	N° AG	Potenza impianto [MW]	Producibilità [GWh/anno]	Ore [Ore/anno]				
MONTESCAGLIOSO	115	5.8	7	40.6	101.577	2502				

Impianto eolico nel Comune di Montescaglioso (MT)

Valutazione preliminare della produzione attesa - Rev.01

10 CONCLUSIONI

Il presente rapporto contiene i risultati di valutazione della produzione attesa dell'impianto eolico in progetto nel Comune di Montescaglioso (MT).

La valutazione della producibilità è stata ottenuta mediante applicazione di un modello fluidodinamico del vento utilizzando in ingresso una serie di dati anemometrici appartenente ad una stazione di rilevamento le cui misure ben caratterizzano un ampio territorio circostante.

In generale, la messa a punto del modello di calcolo si rende necessaria per valutare, attraverso una serie di verifiche e di controlli successivi, la sua capacità ad interpretare i dati di ventosità ed in particolare gli effetti dell'orografia e della rugosità del terreno sulla corretta estrapolazione della velocità del vento al mozzo delle macchine. Le verifiche sul modello, in via preliminare hanno consentito di trovare le soluzioni per diminuire il grado di incertezza introdotto dallo stesso nel calcolo in ogni fase del processo.