

Regione Basilicata Provincia di Potenza Comuni di Cancellara e Vaglio Basilicata

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" sito nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Titolo:

RELAZIONE PRELIMINARE DELLE STRUTTURE

Numero documento:

2 1 4 3 0 1

D

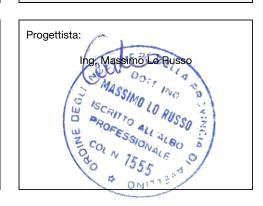
Tipo doc

Prog. doc.

Rev.

0 2

Proponente:


FRI-EL S.p.A.
Piazza della Rotonda 2
00186 Roma (RM)
<u>fri-elspa@legalmail.it</u>
P. Iva 01652230218
Cod. Fisc. 07321020153

PROGETTO DEFINITIVO

A.11.

Progettazione:

	Sul presente documento sussiste il DIRITTO di PROPRIETA'. Qualsiasi utilizzo non preventivamente autorizzato sarà perseguito ai sensi della normativa vigente								
	N.	Data	Descrizione revisione	Redatto	Controllato	Approvato			
=	00 28.06.2021		EMISSIONE	E. FICETOLA	D. LO RUSSO	M. LO RUSSO			
SION	01	12.07.2021	REVISIONE INDICE	E. FICETOLA	D. LO RUSSO	M. LO RUSSO			
$\stackrel{\cong}{\leq}$	02	15.07.2021	EMISSIONE PER AUTORIZZAZIONE	E. FICETOLA	D. LO RUSSO	M. LO RUSSO			
<u>~</u>									

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301_D_R_0120 Rev. 02

INDICE

1.	PREMESSA	5
2.	NORMATIVA DI RIFERIMENTO	5
3.	DOCUMENTI DI RIFERIMENTO	5
4.	DESCRIZIONE DELLE OPERE STRUTTURALI	6
4.1.	TIPOLOGIA OPERE	6
4.2.	CARATTERIZZAZIONE GEOTECNICA DELL'AREA	6
4.3.	CARATTERIZZAZIONE SISMICA DELL'AREA	6
4.4.	MATERIALI IMPIEGATI E RESISTENZE DI CALCOLO	8
5.	DIMENSIONAMENTO FONDAZIONI TORRI EOLICHE	11
5.1.	DESCRIZIONE GEOMETRICA	11
5.2.	METODI DI ANALISI	13
5.3.	CEDIMENTI	15
5.4.	AZIONI SULLA STRUTTURA	16
5.5.	VERIFICHE DI SICUREZZA	19
5.6.	COMBINAZIONE DI CARICO	20
5.7.	ANALISI DEI CARICHI	21
5.8.	SISTEMI DI RIFERIMENTO	22
5.9.	PLINTO DI FONDAZIONE	23
5.10.	PALI FONDAZIONE	26
6.	DIMENSIONAMENTO OPERE STAZIONE ELETTRICA DI UTENZA	27
6.1.	FONDAZIONE APPARECCHIATURE ELETTRICHE ED EDIFICIO QUADRI	27
6.2.	DEFINIZIONE DELLE AZIONI ELEMENTARI	27
6.2.1.	INDIVIDUAZIONE DELLE AZIONI	27
6.2.2.	CARICHI	28
6.2.2.	1. CONDIZIONI DI CARICO	28
6.3.	COMBINAZIONI DELLE AZIONI	28
6.3.1.	STATI LIMITE ULTIMI	28
6.3.1.	1. COMBINAZIONE FONDAMENTALE	28
6.3.2.	1. COMBINAZIONE DI AZIONI QUASI PERMANENTI - COEFFICIENTI	35
6.3.2.2	2. SLE: COMBINAZIONE DI AZIONI FREQUENTI – COEFFICIENTI	35
6.3.2.3	3. SLE: COMBINAZIONE DI AZIONI RARA - COEFFICIENTI	36
6.4.	INTERRUTTORE - FONDAZIONE N°02 e N°10 ;	37
6.4.1.	CARATTERISTICHE DELLA FONDAZIONE	37
6.4.2.	CARICHI	38
6.4.3.	PLATEE	38
6.5.	TRASFORMATORE DI CORRENTE – FONDAZIONE N°03 e N°12;	42
6.5.1.	CARATTERISTICHE DELLA FONDAZIONE	42
6.5.2.	CARICHI	43
6.5.3.	BATOLI	43
6.5.4.	PLATEA	44
6.6.	SEZIONATORE – FONDAZIONE N°04 e N°09;	
6.6.1.	CARATTERISTICHE DELLA FONDAZIONE	46

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

6.6.2.	CARICHI	.46
6.6.3.	BATOLO	.47
6.6.4.	PLATEE	.49
6.7.	TRASFORMATORE DI TENSIONE – FONDAZIONE N°06 e N°11	.51
6.7.1.	CARATTERISTICHE DELLA FONDAZIONE	.51
6.7.2.	CARICHI	.52
6.7.3.	BATOLO	.52
6.7.4.	PLATEA	.53
6.8.	SCARICATORE DI SOVRATENSIONI – FONDAZIONE N°07;	.55
6.8.1.	CARATTERISTICHE DELLA FONDAZIONE	.55
6.8.2.	CARICHI	.56
6.8.3.	BATOLO	.56
6.8.4.	PLATEE	.58
6.8.5.	CARATTERISTICHE DELLA FONDAZIONE	.60
6.8.6.	CARICHI	.60
6.8.7.	BATOLO	.61
6.8.8.	PLATEE	.62
6.9.	TRASFORMATORE DI POTENZA 150/30 kV - FONDAZIONE N°13;	.64
6.9.1.	CARATTERISTICHE DELLA FONDAZIONE	.64
6.9.2.	CARICHI	.65
	PARETI	
6.9.4.	PLATEE	.89
6.10.	PORTALE SBARRE - FONDAZIONE N°14	.94
	CARATTERISTICHE DELLA FONDAZIONE	
6.10.2.	CARICHI	.95
6.10.3.	BATOLO	.95
6.10.4.	PLATEE	.97
6.11.	EDIFICIO QUADRI	.99
6.11.1.	DESCRIZIONE	.99
6.11.2.	ANALISI DEI CARICHI	.99
6.11.3.	CONDIZIONI DI CARICO ELEMENTARE	.99
6.11.4.	COMBINAZIONI DELLE AZIONI1	00
6.11.4.	1. STATI LIMITE ULTIMI1	00
6.11.4.	1.1. COMBINAZIONE FONDAMENTALE1	00
6.11.4.	1.2. COMBINAZIONI DI AZIONI IN ASSENZA DI SISMA – SLU1	00
6.11.4.	1.3. COMBINAZIONI DI AZIONI IN PRESENZA DI SISMA – SLU	01
6.11.4.	2. STATI LIMITE DI ESERCIZIO1	01
6.11.4.	2.1. COMBINAZIONI DI AZIONI QUASI PERMANENTE – SLE1	02
6.11.4.	2.2. COMBINAZIONI DI AZIONI FREQUENTE – SLE1	02
6.11.4.		
6.11.5.	VERIFICA FONDAZIONE1	03
	MURO DI RECINZIONE1	
6.12.1.	CARATTERISTICHE GEOMETRICHE1	04

FRI-EL

RELAZIONE PRELIMINARE DELLE STRUTTURE

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

6.12.2	.CARICHI CONCENTRATI SUL PARAMENTO	104
6.12.3	.SPINTE SUL PARAMENTO ALLO SLU	104
	.SPINTE SUL CUNEO ALLO SLU	
6.12.5	.SPINTE SUL PARAMENTO ALLO SLE	105
6.12.6	.SPINTE SUL CUNEO ALLO SLE	105
6.12.7	SOLLECITAZIONI SUL PARAMENTO	106
	SOLLECITAZIONI SULLA FONDAZIONE	
6.12.9	.TENSIONI SUL TERRENO	111
6.12.1	0. VERIFICHE A SCORRIMENTO	112
6.12.1		
6.12.1		
6.12.1	3. VERIFICHE A PRESSOFLESSIONE RETTA ALLO SLU	113
6.12.1	4. VERIFICHE A PRESSOFLESSIONE RETTA ALLO SLE	113
6.12.1	5. VERIFICHE A TAGLIO PER PRESSOFLESSIONE RETTA ALLO SLU	114
6.12.1	6. VERIFICHE DEGLI SPOSTAMENTI	115
7.	DIMENSIONAMENTO OPERE DI RETE PER LA CONNESSIONE	116
7.1.	FONDAZIONE APPARECCHIATURE ELETTRICHE	116
7.2.	CALCOLO DI VERIFICA DELLA FONDAZIONE TERMINALE CAVO AT - FONDAZIONE N°08	
	CARATTERISTICHE DELLA FONDAZIONE	
7.2.2.	CARICHI	116
7.2.3.	BATOLO	117
7.2.4.	PLATEE	118

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301 D R 0120 Rev. 02

1. PREMESSA

FRI-EI

Scopo del presente documento è quello di fornire indicazioni sul dimensionamento delle strutture finalizzato all'ottenimento dei permessi necessari alla costruzione ed esercizio dell'impianto eolico costituito da n° 6 aerogeneratori per una potenza complessiva massima di 37,2 MW, denominato "Vento del Carpine" sito nel Comune di Cancellara (PZ), e delle relative opere connesse e delle infrastrutture indispensabili, collegato in antenna alla Rete Elettrica Nazionale mediante connessione con uno stallo a 150 kV su un futuro ampliamento della Stazione Elettrica (SE) di Smistamento a 150 kV della RTN "Vaglio" ubicata all'interno del Comune di Vaglio Basilicata(PZ).

Le strutture oggetto di intervento sono costituite da:

- n° 06 aerogeneratori, altezza massima 200 m;
- Stazione elettrica di utenza 150/30 kV ubicata nel territorio del Comune di Vaglio Basilicata(PZ);
- Impianto di rete per la connessione.

2. NORMATIVA DI RIFERIMENTO

Le fasi di analisi e verifica delle strutture saranno condotte in accordo alle seguenti disposizioni normative:

- Legge 5 novembre 1971 n. 1086 (G. U. 21 dicembre 1971 n. 321) "Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso ed a struttura metallica"
- Legge 2 febbraio 1974 n. 64 (G. U. 21 marzo 1974 n. 76) "Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche" Indicazioni progettive per le nuove costruzioni in zone sismiche a cura del Ministero per la Ricerca scientifica - Roma 1981
- D.M. Infrastrutture e Trasporti 17/01/2018 (G.U. 20/02/2018 n. 42 Suppl. Ord. n. 8) "Aggiornamento delle Norme tecniche per le Costruzioni"
- Circolare 21 gennaio 2019 n. 7 del Ministero delle Infrastrutture e dei Trasporti (G.U. 11 febbraio 2019 n. 35 –
 Suppl. Ord.) "Istruzioni per l'applicazione delle 'Norme Tecniche delle Costruzioni' di cui al D.M. 17/01/2018".
- CEI 0-13 "Protezione contri i contatti elettrici Aspetti comuni per gli impianti e le apparecchiature"
- CEI 0-16 "Regole tecniche di connessione (RTC) per utenti attivi ed utenti passivi alle reti AT ed MT delle imprese distributrici di energia elettrica"

3. DOCUMENTI DI RIFERIMENTO

Si riporta, di seguito, l'elenco documenti di riferimento per la presente relazione:

- A.1 Relazione generale;
- A.2 Relazione geologica;
- A.16.b.8.Disegni architettonici aerogeneratori e particolari sistemi di ancoraggio.

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301 D R 0120 Rev. 02

4. DESCRIZIONE DELLE OPERE STRUTTURALI

4.1. TIPOLOGIA OPERE

Nel presente elaborato verranno analizzate le seguenti opere:

- Impianto eolico:
 - Fondazioni torri.
- Stazione elettrica di utenza:
 - Fondazioni apparecchiature elettriche;
 - Edificio quadri;
 - Muro di Recinzione.
- Impianto di rete per la connessione:
 - Fondazioni apparecchiature elettriche.

4.2. CARATTERIZZAZIONE GEOTECNICA DELL'AREA

Di seguito si riporta la tabella con i parametri geotecnici medi rappresentativi:

	TABELLA PARAMETRI GEOTECNICI DEI TERRENI PRESENTI NEL SOTTOSUOLO DELL'AREA IN ESAME									
	Prof. della Falda -3.00 metri dal p.c.									
Profondità dal piano campagna Da (m) a (m)		Unità Litotecnica	Peso di volume naturale	Angolo di attrito di picco	Coesione drenata	Coesione non drenata	Modulo edometrico Kg/cm²			
	(m)	(Litologia)	g/cm ³	(°)	Kg/cm ²	Kg/cm ²	Kg/cm ²			
0.00	5.00	Materiale di colore beige avana a granulometria limoso argillosa con presenza di inclusi litici arenacei. Materiale poco consistente. (1)	1.80	20	0.20	0.60	30			
5.00	30.00	Materiale di colore grigiastro a granulometria argilloso limosa con inclusi litoidi calcarei. Materiale da consistente a molto consistente a tratti scaglioso. (2)	2.00	22	0.30	1.40	100			

4.3. CARATTERIZZAZIONE SISMICA DELL'AREA

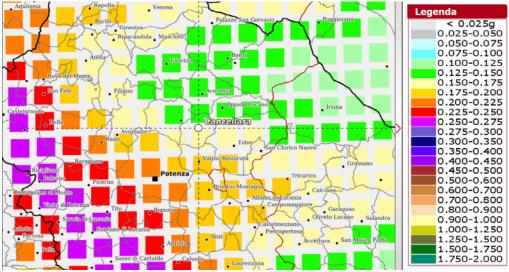
Le norme per le costruzioni in zona sismica (Ordinanza del O.P.C.M. 3274 e Decreto 14 settembre 2005), avevano suddiviso il territorio nazionale in zone sismiche, ciascuna contrassegnata da un diverso valore del parametro ag = accelerazione orizzontale massima convenzionale su suolo di categoria A. I valori convenzionali di ag, espressi come frazione dell'accelerazione di gravità g, da adottare in ciascuna delle zone sismiche del territorio nazionale erano riferiti ad una probabilità di superamento del 10% in 50 anni ed assumono i valori riportati nella Tabella che segue:

Zona	Valore di a _g
1	0.35 g
2	0.25 g
3	0.15 g
4	0.05 g

I comuni di Cancellara e Vaglio Basilicata, con D.G.R. n. 1626 del 15/09/2009 che approvò l'aggiornamento della classifica sismica, vennero classificati di **categoria 2.**

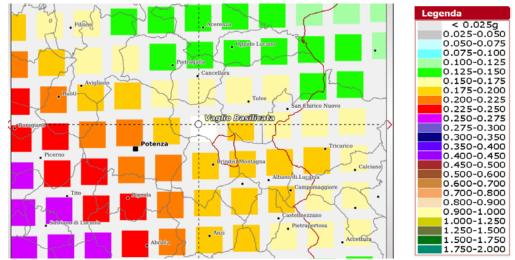
Con l'entrata in vigore del D.M. 17/01/2018 e ancor prima del D.M. 14/01/2008, la stima della pericolosità sismica viene definita mediante un approccio "sito dipendente" e non più tramite un criterio "zona dipendente". Quindi per la stima della

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)


Codifica Elaborato: 214301 D R 0120 Rev. 02

pericolosità sismica di base, si determinano le coordinate geografiche del sito di interesse, si sceglie la maglia di riferimento, e si ricavano i valori dei parametri spettrali come media pesata dei valori corrispondenti ai vertici della maglia (forniti in allegato al D.M. 17.01.2018), moltiplicati per le distanze dal punto.

Le nuove Norme Tecniche per le costruzioni del 2008 forniscono, per l'intero territorio nazionale, i parametri da utilizzare per il calcolo dell'azione sismica. Tali parametri sono forniti in corrispondenza dei nodi, posti ad una distanza massima di 10 km, all'interno di un reticolo che copre l'intero territorio nazionale. I valori forniti di ag, T_r, F_o e T_c da utilizzare per la risposta sismica del sito sono riferiti al substrato, inteso come litotipo con Vs > 800 m/sec.


Tale griglia è costituita da 10.751 nodi (distanziati di non più di 10 km) e copre l'intero territorio nazionale ad esclusione delle isole (tranne Sicilia, Ischia, Procida e Capri) dove, con metodologia e convenzioni analoghe vengono forniti parametri spettrali costanti per tutto il territorio (tabella 2 nell'allegato B del D.M. 14 gennaio 2008).

Di seguito si riporta la mappa di pericolosità sismica del territorio nazionale, per i vari siti interessati dall'impianto in progetto:

Comune di Cancellara Mappa di pericolosità sismica e relativa legenda e Grafico di disaggregazione del valore di a(g) con probabilità di eccedenza del 10% in 50 anni

(http://esse1-gis.mi.ingv.it/)

Comune di Vaglio Basilicata Mappa di pericolosità sismica e relativa legenda e Grafico di disaggregazione del valore di a(g) con probabilità di eccedenza del 10% in 50 anni

(http://esse1-gis.mi.ingv.it/)

Secondo le mappe di pericolosità sismica del territorio nazionale, per il sito in esame l'accelerazione orizzontale di ancoraggio dello spettro di risposta elastico ag varia tra 0.175 e 0.200 g (g espressa in termini di accelerazione massima

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301 D R 0120 Rev. 02

del suolo con probabilità di eccedenza del 10% in 50 anni, riferita a suoli rigidi) - (Vs30>800 m/s; cat. A, punto 3.2.1 del D.M. 14.09.2005).

La disaggregazione dei valori di ag con la medesima probabilità di eccedenza, mostra come il contributo percentualmente maggiore alla pericolosità sismica di base dell'impianto eolico e delle opere connesse sia determinato da sismi con magnitudo massima pari a 6.13 con epicentri individuati ad una distanza di 30.7 km per il territorio comunale di Cancellara, mentre per il territorio di comunale di Vaglio Basilicata all'interno del quale ricade la stazione RTN e la stazione Utente, il contributo percentualmente maggiore alla pericolosità sismica di base è determinato da sismi con magnitudo massima pari a 5.5 con epicentri individuati ad una distanza di 14.00 km

L'azione sismica sulle costruzioni viene dunque valutata a partire dalla "pericolosità sismica di base", in condizioni ideali di sito di riferimento rigido, con superficie topografica orizzontale (categoria A nelle NTC). La "pericolosità sismica di base" costituisce l'elemento di conoscenza primario per la determinazione delle azioni sismiche. Come anzi detto, essa, in un generico sito viene descritta in termini di valori di accelerazione orizzontale massima a_g e dei parametri che permettono di definire gli spettri di risposta ai sensi delle NTC, nelle condizioni di sito di riferimento rigido orizzontale, sopra definito, in corrispondenza dei punti di un reticolo (reticolo di riferimento) i cui nodi sono sufficientemente vicini fra loro, per diverse probabilità di superamento in 50 anni e/o diversi periodi di ritorno T_R ricadenti in un intervallo di riferimento compreso almeno tra 30 e 2475 anni, estremi inclusi.

L'azione sismica così individuata viene successivamente variata, nei modi precisati dalle NTC, per tener conto delle modifiche prodotte dalle condizioni locali stratigrafiche del sottosuolo effettivamente presente nel sito di costruzione e dalla morfologia della superficie.

In particolare, per la caratterizzazione sismica dell'area interessata dalle opere a farsi sono state prese in considerazione alcune indagini sismiche eseguite in aree prospicienti il sito in esame. Dall'analisi delle indagini è emerso che i terreni appartengono alle categorie di sottosuolo sismico:

B – Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s. Inoltre l'area sede del progetto in esame è caratterizzata da valori di inclinazione media ≤ di 15°.

C – Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.

Inoltre l'area sede del progetto in esame è caratterizzata da valori di inclinazione media ≤ di 15°.

Pertanto, il coefficiente topografico da adottare è quello relativo alla categoria T₁.

4.4. MATERIALI IMPIEGATI E RESISTENZE DI CALCOLO

4.4.1. CALCESTRUZZO

Il calcestruzzo della piastra di fondazione sarà in classe C32/40 ($R_{ck} \ge 40 \text{ N/mm}^2$) e, nella la zona centrale, in classe di resistenza C45/55 ($R_{ck} \ge 55 \text{ N/mm}^2$), mentre per i pali di fondazione si utilizzerà un calcestruzzo in classe C25/30 ($R_{ck} \ge 30 \text{ N/mm}^2$).

Per ciascuna tipologia di calcestruzzo si riportano, di seguito, le rispettive caratteristiche meccaniche:

Calcestruzzo classe C32/40 (R_{ck} ≥ 40 N/mm²)

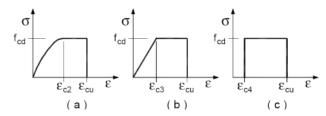
- Resistenza cilindrica a compressione R_{ck} = 400 daN/cm²;
- Coefficiente riduttivo per le resistenze di lunga durata α_{cc} = 0,85 ;
- Resistenza di calcolo a compressione \Box f_{ck} x \Box $\gamma_c = 188,10 \text{ daN/cm}^2$;
- Peso specifico √cl_s = 2500 daN/m³;
- Classe di consistenza S4 (UNI EN 206-1);

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301 D R 0120 Rev. 02

- Condizioni ambientali Ordinarie (tab. 4.1.III di [1]), per classi di esposizione ambientale XC2 UNI-EN 206;
- Copriferro c = 5,0 cm.

Calcestruzzo classe C45/55 (R_{ck} ≥ 55 N/mm²)


- Resistenza cilindrica a compressione R_{ck} = 550 daN/cm²;
- Coefficiente riduttivo per le resistenze di lunga durata α_{cc} = 0,85 ;
- Resistenza di calcolo a compressione f_{cd} = f_{ck} x Σ_{cd}/γ_c = 258,68 daN/cm²;
- Peso specifico γ_{cls} = 2500 daN/m³;
- Classe di consistenza S4 (UNI EN 206-1);
- Condizioni ambientali Ordinarie (tab. 4.1.III di [1]), per classi di esposizione ambientale XC2, XF1 UNI-EN 206;
- Copriferro c = 5,0 cm.

Calcestruzzo classe C25/30 (R_{ck} ≥ 30 N/mm²)

- Resistenza cilindrica a compressione R_{ck} = 300 daN/cm²;
- Coefficiente parziale di sicurezza relativo al calcestruzzo γ_c = 1,5
- Coefficiente riduttivo per le resistenze di lunga durata α_{cc} = 0,85 ;
- Resistenza di calcolo a compressione $f_{cd} = f_{ck} \times \square_c / \gamma_c = 141,10 \text{ daN/cm}^2$;
- Peso specifico $\gamma_{cls} = 2500 \text{ daN/m}^3$;
- Classe di consistenza S4 (UNI EN 206-1);
- Condizioni ambientali Ordinarie (tab. 4.1.III di [1]), per classi di esposizione ambientale XC2 UNI-EN 206;
- Copriferro c = 7,0 cm.

Il calcestruzzo magro usato per la sottofondazione è di classe $R_{ck} \ge 15 \text{ N/mm}^2$.

I diagrammi costitutivi del calcestruzzo sono stati adottati in conformità alle indicazioni riportate al punto 4.1.2.1.2.1 del D.M. 17 gennaio 2018; in particolare per le verifiche effettuate a pressoflessione retta e a pressoflessione deviata è adottato il modello riportato in fig.

Diagrammi di progetto tensione – deformazione del calcestruzzo.

4.4.2. ACCIAIO PER CALCESTRUZZO

L'acciaio utilizzato per le barre di armatura sarà in classe B450C, con le seguenti caratteristiche:

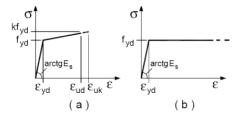
 $f_{v nom}$ = 450 N/mmq - Tensione nominale di snervamento;

f_{t nom} = 540 N/mmq - Tensione nominale di rottura

f_{vk} = 450 N/mmq - Tensione caratteristica di snervamento

 f_{tk} = 540 N/mmq - Tensione caratteristica di rottura

 τ_{a} = 2.6 N/mmq - Tensione caratteristica di aderenza



Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301_D_R_0120 Rev. 02

I diagrammi costitutivi dell'acciaio sono stati adottati in conformità alle indicazioni riportate al punto 4.1.2.1.2.2 del D.M. 17 gennaio 2018; in particolare è adottato il modello elastico perfettamente plastico rappresentato in figura

Diagrammi di calcolo tensione/deformazione dell'acciaio.

Tutti i materiali impiegati dovranno essere comunque verificati con opportune prove di laboratorio secondo le prescrizioni della vigente Normativa.

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301_D_R_0120 Rev. 02

5. DIMENSIONAMENTO FONDAZIONI TORRI EOLICHE

5.1. DESCRIZIONE GEOMETRICA

Il plinto di fondazione calcolato presenta una forma assimilabile a un tronco di cono con base maggiore avente diametro pari a 22,00 m e base minore avente diametro pari a 6,00 m. L'altezza massima della fondazione, misurata al centro della stessa è di 3,12 m mentre l'altezza minima misurata sull'estremità è di 1,10 m. Al centro della fondazione viene realizzato un accrescimento di 0,26 m al fine di consentire l'alloggio dell'anchor cage per l'installazione della torre eolica. Viste le caratteristiche geologiche e gli enti sollecitanti, la fondazione è del tipo indiretto fondata su n.14 pali di diametro 120cm e lunghezza pari a 27,00 m, disposti ad una distanza dal centro pari a 9,50 m.

Si riportano, di seguito la pianta e la sezione della suddetta fondazione:

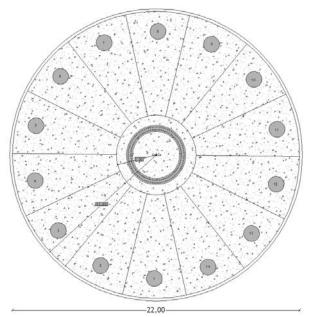


fig. Dettaglio pianta fondazione

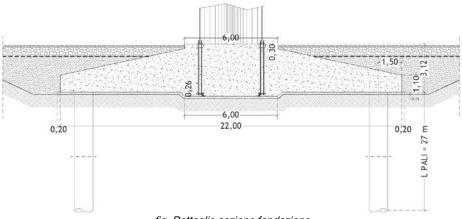


fig. Dettaglio sezione fondazione

Per il calcolo dei carichi permanenti (peso proprio della fondazione e terreno di ricoprimento viene utilizzato il seguente schema di calcolo:

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301_D_R_0120 Rev. 02

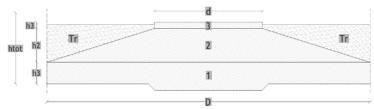


fig. Dettaglio modello per calcolo volumi

Il modello è diviso in tre solidi di cui il primo è un cilindro (1) con un diametro di 22,00 m e un'altezza di 1,10 m, il secondo (2) è un tronco di cono con diametro di base pari a 22,00 m, diametro superiore di 6,00m ed altezza pari a 1,72 m; il terzo corpo (3) è un cilindro con un diametro di 6,00m ed altezza di 0,30m. Per il terreno di ricoprimento si schematizza un parallelepipedo con peso pari a γ_{sat} del primo strato desunto dalla relazione geologica.

Di seguito si riporta una tabella con le caratteristiche dimensionali dell'opera:

Simbolo	Dim	U.m.
D	22,00	ml
d	6,00	ml
h1	1,10	ml
h2	1,72	ml
h3	0,30	ml
htot	3,12	ml
V1	417,13	mc
V2	293,44	mc
V3	8,48	mc
Vtot	720,06	mc
Peso specifico Cls	25,00	kN/mc
Peso fondazione	18.001,48	kN
Peso Terreno di Ricoprimento (Tr)	5.742,00	kN
Peso Totale	23.743,00	kN

L'interfaccia fondazione – torre è rappresentata da un inserto metallico, riportato in figura, che annegato nel calcestruzzo della fondazione, consente il collegamento con la torre per mezzo di una piastra superiore.

Di seguito si riporta, a titolo esemplificativo una vista del inserto metallico. Per ulteriori dettagli si rimanda agli elaborati tecnici della torre eolica.

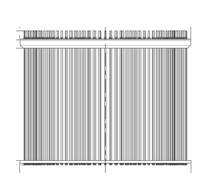


fig. Dettaglio anchor cage

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301 D R 0120 Rev. 02

5.2. METODI DI ANALISI

Per l'analisi platea si utilizza il metodo degli elementi finiti (FEM). La struttura viene suddivisa in elementi connessi fra di loro in corrispondenza dei nodi. Il campo di spostamenti interno all'elemento viene approssimato in funzione degli spostamenti nodali mediante le funzioni di forma. Il programma utilizza, per l'analisi tipo piastra, elementi quadrangolari e triangolari. Nel problema di tipo piastra gli spostamenti nodali sono lo spostamento verticale w e la rotazione intorno agli assi x e y, ϕ_x e ϕ_x , legati allo spostamento w tramite le relazioni

$$\phi_x = -dw/dy$$

$$\phi_v = dw/dx$$

Note le funzioni di forma che legano gli spostamenti nodali al campo di spostamenti sul singolo elemento è possibile costruire la matrice di rigidezza dell'elemento **ke** ed il vettore dei carichi nodali dell'elemento **pe**.

La fase di assemblaggio consente di ottenere la matrice di rigidezza globale della struttura **K** ed il vettore dei carichi nodali **p**. La soluzione del sistema

$$K \qquad \Box u = p$$

consente di ricavare il vettore degli spostamenti nodali u.

Dagli spostamenti nodali è possibile risalire per ogni elemento al campo di spostamenti ed alle sollecitazioni Mx, My ed Mxy.

Il terreno di fondazione se presente viene modellato con delle molle disposte in corrispondenza dei nodi. La rigidezza delle molle è proporzionale alla costante di sottofondo k ed all'area dell'elemento.

I pali di fondazione sono modellati con molle verticali aventi rigidezza pari alla rigidezza verticale del palo.

Per l'analisi tipo lastra (analisi della piastra soggetta a carichi nel piano) vengono utilizzati elementi triangolari a 6 nodi a deformazione quadratica. Gli spostamenti nodali sono gli spostamenti u e v nel piano XY. L'analisi fornisce in tal caso il campo di spostamenti orizzontali e le tensioni nel piano della lastra σ_x , σ_y e τ_{xy} . Dalle tensioni è possibile ricavare, noto lo spessore, gli sforzi normali N_x , N_v e N_{xy} .

Nell'analisi tipo lastra i pali di fondazione sono modellati con molle orizzontali in direzione X e Y aventi rigidezza pari alla rigidezza orizzontale del palo.

Nel caso di platea nervata le nervature sono modellate con elementi tipo trave (con eventuale rigidezza torsionale) connesse alla piastra in corrispondenza dei nodi degli elementi.

Analisi dei pali

Per l'analisi della capacità portante dei pali occorre determinare alcune caratteristiche del terreno in cui si va ad operare. In particolare bisogna conoscere l'angolo d'attrito ϕ e la coesione c. Per pali soggetti a carichi trasversali è necessario conoscere il modulo di reazione laterale o il modulo elastico laterale.

La capacità portante di un palo viene valutata come somma di due contributi: portata di base (o di punta) e portata per attrito laterale lungo il fusto. Cioè si assume valida l'espressione:

$$Q_T = Q_P + Q_L - W_P$$

dove:

Q_T portanza totale del palo

Q_P portanza di base del palo

Q_L portanza per attrito laterale del palo

W_P peso proprio del palo

e le due componenti Q_P e Q_L sono calcolate in modo indipendente fra loro.

Dalla capacità portante del palo si ricava il carico ammissibile del palo QA applicando il coefficiente di sicurezza della portanza alla punta \blacksquare di l'ocefficiente di sicurezza della portanza per attrito laterale η_l .

FRI-EL

RELAZIONE PRELIMINARE DELLE STRUTTURE

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301 D R 0120 Rev. 02

Palo compresso:

$$Q_A = Q_p / \eta_p + Q_i / \eta_i - W_p$$

Palo teso:

$$Q_A = Q_I / \eta_I + W_p$$

Capacità portante di punta

In generale la capacità portante di punta viene calcolata tramite l'espressione:

$$Q_P = A_P(cN'_c + qN'_q)$$

dove A_p è l'area portante efficace della punta del palo, c è la coesione, q è la pressione geostatica alla quota della punta del palo, γ è il peso di volume del terreno, D è il diametro del palo ed i coefficienti N'_c N'_q sono i coefficienti delle formule della capacità portante corretti per tener conto degli effetti di forma e di profondità. Possono essere utilizzati sia i coefficienti di Hansen che quelli di Vesic con i corrispondenti fattori correttivi per la profondità e la forma.

Il parametro

☐ che compare nell'espressione assume il valore:

$$\eta = \frac{1 + 2K_0}{3}$$

quando si usa la formula di Vesic e viene posto uguale ad 1 per le altre formule.

 K_0 rappresenta il coefficiente di spinta a riposo che può essere espresso come: $K_0 = 1 - \sin\phi$.

Capacità portante per resistenza laterale

La resistenza laterale è data dall'integrale esteso a tutta la superficie laterale del palo delle tensioni tangenziali palo-terreno in condizioni limite:

 Q_1 = integrale $S_{T_{adS}}$

dove τ_a è dato dalla relazione di Coulomb

$$\tau_a = c_a + \sigma_h tg\delta$$

dove c_a è l'adesione palo-terreno, δ è l'angolo di attrito palo-terreno, γ è il peso di volume del terreno, z è la generica quota a partire dalla testa del palo, L e P sono rispettivamente la lunghezza ed il perimetro del palo, K_s è il coefficiente di spinta che dipende dalle caratteristiche meccaniche e fisiche del terreno dal suo stato di addensamento e dalle modalità di realizzazione del palo.

Portanza trasversale dei pali - Analisi ad elementi finiti

Nel modello di terreno alla Winkler il terreno viene schematizzato come una serie di molle elastiche indipendenti fra di loro. Le molle che schematizzano il terreno vengono caratterizzate tramite una costante elastica K espressa in Kg/cm²/cm che rappresenta la pressione (in Kg/cm²) che bisogna applicare per ottenere lo spostamento di 1 cm.

Il palo viene suddiviso in un certo numero di elementi di eguale lunghezza. Ogni elemento è caratterizzato da una sezione avente area ed inerzia coincidente con quella del palo.

Il terreno viene schematizzato come una serie di molle orizzontali che reagiscono agli spostamenti nei due versi. La rigidezza assiale della singola molla è proporzionale alla costante di Winkler orizzontale del terreno, al diametro del palo ed alla lunghezza dell'elemento. La molla, però, non viene vista come un elemento infinitamente elastico ma come un elemento con comportamento del tipo elastoplastico perfetto (diagramma sforzi-deformazioni di tipo bilatero). Essa presenta una resistenza crescente al crescere degli spostamenti fino a che l'entità degli spostamenti si mantiene al di sotto di un certo spostamento limite, Xmax


Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301 D R 0120 Rev. 02

oppure fino a quando no si raggiunge il valore della pressione limite. Superato tale limite non si ha un incremento di resistenza. E' evidente che assumendo un comportamento di questo tipo ci si addentra in un tipico problema non lineare che viene risolto mediante una analisi al passo.

Qui di seguito è fornita una rappresentazione grafica della discretizzazione operata, relativa ad una fondazione tipo, con evidenziazione dei nodi e degli elementi.

Modello strutturale

5.3. CEDIMENTI

5.3.1. CALCOLO DEI CEDIMENTI

I cedimenti delle fondazioni assumono una certa importanza legata alla rilevanza dell'opera da realizzare. Nel calcolo, anche se la frazione elastica è molto piccola, il terreno, viene trattato come materiale pseudoelastico caratterizzato dai parametri E_s , G', v e ks. In generale i cedimenti vengono classificati come:

- immediati, cioè quelli che si sviluppano non appena il sovraccarico viene applicato;
- di consolidazione, cioè quelli che si sviluppano nel tempo e richiedono un periodo dell'ordine di mesi o anni per esaurirsi.

L'analisi dei cedimenti immediati viene eseguita per tutti i terreni a grana fina con grado di saturazione < 90% e per quelli a grana grossa con elevato coefficiente di permeabilità.

L'analisi dei cedimenti di consolidazione viene usata per tutti i terreni a grana fine saturi o quasi saturi.

5.3.2. METODO EDOMETRICO

Il metodo edometrico nel calcolo dei cedimenti, viene approcciato con metodo legato al modulo edometrico e viene implementato seguendo la seguente espressione:

$$\Delta \, \mathbf{H} \, = \, \sum_{\mathrm{i}=1}^{n} \frac{\Delta \, \sigma_{\mathrm{i}}}{\mathbf{E}_{\mathrm{edi}}} \, \, \Delta \, \mathbf{z}_{\mathrm{i}}$$

dove:

- $\Delta \sigma$ è la tensione indotta nel terreno, alla profondità z, dalla pressione di contatto della fondazione;

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301 D R 0120 Rev. 02

- E_{ed} è il modulo elastico determinato attraverso la prova edometrica e relativa allo strato i-esimo;
- ∆z rappresenta lo spessore dello strato i-esimo in cui è stato suddiviso lo strato compressibile e per il quale si conosce il modulo elastico.

Si ricorda che, l'ipotesi edometrica è verificata con approssimazione tanto migliore quanto più ridotto è il valore del rapporto tra lo spessore dello strato compressibile e la dimensione in pianta della fondazione.

5.3.3. CALCOLO CEDIMENTI PALI DI FONDAZIONE

I cedimenti dei pali di fondazione vengono calcolati una volta determinata la portanza laterale e di punta del palo lo stesso viene discretizzato in 100 elementi tipo trave aventi area ed inerzia corrispondenti alla sezione trasversale del palo e lunghezza pari ad I_e. Vengono disposte, inoltre, lungo il fusto del palo una serie di molle (una per ogni elemento), coassiali al palo stesso, aventi rigidezza opportuna. Una ulteriore molla viene disposta alla base del palo. Le suddette molle hanno un comportamento elastoplastico. In particolare le molle lungo il fusto saranno in grado di reagire linearmente fino a quando la pressione in corrispondenza di esse non raggiunge il valore limite dell'aderenza palo terreno.

Una volta raggiunto tale valore le molle non saranno più in grado di fornire ulteriore resistenza. La molla posta alla base del palo avrà invece una resistenza limite pari alla portanza di punta del palo stesso.

Per la determinazione delle rigidezze delle molle si considerano gli spostamenti limite Δ YI e Δ YP

La rigidezza della generica molla, posta a profondità z rispetto al piano campagna sarà data da:

$$R_{l} = \frac{(c_{a} + \sigma_{h} K_{s} \tan \delta) \pi D l_{e}}{\Delta Y_{l}}$$

In questa espressione c_a è l'aderenza palo terreno, σ_h è la pressione orizzontale alla profondità z, δ è l'angolo d'attrito palo terreno, Ks è il coefficiente di spinta e D è il diametro del palo.

Indicando con Qp la portanza alla punta del palo, la rigidezza della molla posta alla base dello stesso è data da:

$$R_p = \frac{Q_p}{\Delta Y_p}$$

Il processo di soluzione è, di tipo iterativo a partire da un carico iniziale N_0 si determinano gli spostamenti assiali e quindi le reazioni delle molle. La reazione della molla dovrà essere corretta per tenere conto di eventuali plasticizzazioni rispettando le equazioni di equilibrio per ogni passo di carico. Il carico iniziale verrà allora incrementato di un passo opportuno e si ripeterà il procedimento. Il processo iterativo termina quando tutte le molle risultano plasticizzate.

5.4. AZIONI SULLA STRUTTURA

I calcoli e le verifiche sono condotti con il metodo semiprobabilistico degli stati limite secondo le indicazioni del D.M. 17 gennaio 2018. Le azioni introdotte direttamente sono combinate con le altre (carichi permanenti, accidentali e sisma) mediante le combinazioni di carico di seguito descritte; da esse si ottengono i valori probabilistici da impiegare successivamente nelle verifiche.

5.4.1. STATO LIMITE DI SALVAGUARDIA DELLA VITA

Le azioni sulla costruzione sono state cumulate in modo da determinare condizioni di carico tali da risultare più sfavorevoli ai fini delle singole verifiche, tenendo conto della probabilità ridotta di intervento simultaneo di tutte le azioni con i rispettivi valori più sfavorevoli, come consentito dalle norme vigenti.

Per gli stati limite ultimi sono state adottate le combinazioni del tipo:

$$\gamma_{G_1} \cdot G_1 + \gamma_{G_2} \cdot G_2 + \gamma_P \cdot P + \gamma_{O_1} \cdot Q_{k_1} + \gamma_{O_2} \cdot \psi_{O_2} \cdot Q_{k_2} + \gamma_{O_3} \cdot \psi_{O_3} \cdot Q_{k_3} + \dots$$

dove:

FRI-EL

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301 D R 0120 Rev. 02

*G*_i sono le azioni che agiscono durante tutta la vita nominale di progetto della costruzione, la cui variazione di intensità nel tempo è molto lenta e di modesta entità:

- peso proprio di tutti gli elementi strutturali; peso proprio del terreno, quando pertinente; forze indotte dal terreno (esclusi
 gli effetti di carichi variabili applicati al terreno); forze risultanti dalla pressione dell'acqua (quando si configurino costanti
 nel tempo) (G₁);
- peso proprio di tutti gli elementi non strutturali (G_i);
- spostamenti e deformazioni impressi, incluso il ritiro;
- presollecitazione (*P*).

 Q_i sono le azioni variabili che agiscono con valori istantanei che possono risultare sensibilmente diversi fra loro nel corso della vita nominale della struttura:

- sovraccarichi;
- azioni del vento;
- azioni della neve;
- azioni della temperatura.

Le azioni variabili sono dette di lunga durata se agiscono con un'intensità significativa, anche non continuativamente, per un tempo non trascurabile rispetto alla vita nominale della struttura. Sono dette di breve durata se agiscono per un periodo di tempo breve rispetto alla vita nominale della struttura. A seconda del sito ove sorge la costruzione, una medesima azione climatica può essere di lunga o di breve durata.

 γ_{g} , γ_{q} , γ_{p} sono coefficienti parziali come definiti nella tabella 2.6.1 del DM 17 gennaio 2018;

 ψ_{0i} sono coefficienti di combinazione per tenere conto della ridotta probabilità di concomitanza delle azioni variabili con i rispettivi valori caratteristici. Essi sono riportati nella tabella 2.5.I della suddetta norma.

Le combinazioni risultanti sono state costruite a partire dalle sollecitazioni caratteristiche calcolate per ogni condizione di carico elementare.

I coefficienti relativi a tali combinazioni di carico sono riportati negli allegati fascicoli di calcolo.

In zona sismica, oltre alle sollecitazioni derivanti dalle condizioni di carico statiche, vengono considerate anche le sollecitazioni derivanti dal sisma. L'azione sismica è stata combinata con le altre azioni secondo la seguente relazione:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

dove:

- E: azione sismica per lo stato limite e per la classe di importanza in esame;
- G₁: peso proprio di tutti gli elementi strutturali;
- G₂: peso proprio di tutti gli elementi non strutturali;
- P: pretensione e precompressione;
- ψ_{2i}: coefficiente di combinazione delle azioni variabili Q_i
- Q_{ki}: valore caratteristico dell'azione variabile Q_i.

Gli effetti dell'azione sismica sono valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$G_1 + G_2 + \sum_{j} \psi_{2j} Q_{kj}$$
.

I valori dei coefficienti ψ_{0i} , sono riportati, assieme ai valori dei coefficienti ψ_{0i} , ψ_{1i} , nella tabella 2.5.I riportata di seguito:

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301 D R 0120 Rev. 02

Tab. 2.5.I - Valori dei coefficienti di combinazione

Categoria/Azione variabile	Ψοϳ	ψ_{1j}	ψ_{2j}	
Categoria A - Ambienti ad uso residenziale	0,7	0,5	0,3	
Categoria B - Uffici	0,7	0,5	0,3	
Categoria C - Ambienti suscettibili di affollamento	0,7	0,7	0,6	
Categoria D - Ambienti ad uso commerciale	0,7	0,7	0,6	
Categoria E – Aree per immagazzinamento, uso commerciale e uso industriale Biblioteche, archivi, magazzini e ambienti ad uso industriale	1,0	0,9	0,8	
Categoria F - Rimesse , parcheggi ed aree per il traffico di veicoli (per autoveicoli di peso \leq 30 kN)	0,7	0,7	0,6	
Categoria G – Rimesse, parcheggi ed aree per il traffico di veicoli (per autoveicoli di peso > 30 kN)	0,7	0,5	0,3	
Categoria H - Coperture accessibili per sola manutenzione	0,0	0,0	0,0	
Categoria I – Coperture praticabili	da valutarsi caso per			
Categoria K – Coperture per usi speciali (impianti, eliporti,)		caso		
Vento	0,6	0,2	0,0	
Neve (a quota ≤ 1000 m s.l.m.)	0,5	0,2	0,0	
Neve (a quota > 1000 m s.l.m.)	0,7	0,5	0,2	
Variazioni termiche	0,6	0,5	0,0	

5.4.2. STATO LIMITE DI DANNO

L'azione sismica, ottenuta dallo spettro di progetto per lo Stato Limite di Danno, è stata combinata con le altre azioni mediante una relazione del tutto analoga alla precedente:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

dove:

- E: azione sismica per lo stato limite e per la classe di importanza in esame;
- G₁: peso proprio di tutti gli elementi strutturali;
- G₂: peso proprio di tutti gli elementi non strutturali;
- P: pretensione e precompressione;
- ψ_{2i}: coefficiente di combinazione delle azioni variabili Q_i;
- Q_{ki}: valore caratteristico dell'azione variabile Q_i.

Gli effetti dell'azione sismica sono valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$G_1 + G_2 + \sum_{i} \psi_{2j} Q_{kj}$$
.

I valori dei coefficienti ψ_{2j} sono riportati nella tabella 2.5.I delle N.T.C. 2018 di cui al paragrafo precedente.

5.4.3. STATI LIMITE DI ESERCIZIO

Allo Stato Limite di Esercizio le sollecitazioni con cui sono stati progettati gli elementi in c.a. sono state ricavate applicando le combinazioni di carico riportate nel D.M. 17 gennaio 2018 – Norme tecniche per le costruzioni – al punto 2.5.3. Per le verifiche agli stati limite di esercizio, a seconda dei casi, si fa riferimento alle seguenti combinazioni di carico:

combinazione rara
$$F_d = \sum_{i=1}^m (G_{K_i}) + Q_{k1} + \sum_{i=2}^n (\psi_{0i} \cdot Q_{ki}) + \sum_{k=1}^l (P_{kk})$$

$$F_d = \sum_{j=1}^m \left(G_{\mathit{K}\!\mathit{j}}\right) + \psi_{11} \cdot Q_{k1} + \sum_{i=2}^n \left(\psi_{2i} \cdot Q_{ki}\right) + \sum_{h=1}^l \left(P_{kh}\right)$$

frequente

combinazione quasi
$$F_d = \sum_{j=1}^m \left(G_{kj}\right) + \psi_{21} \cdot Q_{k1} + \sum_{i=2}^n \left(\psi_{2i} \cdot Q_{ki}\right) + \sum_{h=1}^l \left(P_{kh}\right)$$
 permanente

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301_D_R_0120 Rev. 02

dove:

G_{kj} valore caratteristico della j-esima azione permanente;

Pkh valore caratteristico della h-esima deformazione impressa;

Qk1 valore caratteristico dell'azione variabile di base di ogni combinazione;

 $Q_{\mbox{\tiny ki}}$ valore caratteristico della i-esima azione variabile;

 ψ_{0i} coefficiente atto a definire i valori delle azioni ammissibili di durata breve ma ancora significativi nei riguardi della possibile concomitanza con altre azioni variabili;

ψ_{1i} coefficiente atto a definire i valori delle azioni ammissibili ai frattili di ordine 0,95 delle distribuzioni dei valori istantanei;

 ψ_{2i} coefficiente atto a definire i valori quasi permanenti delle azioni ammissibili ai valori medi delle distribuzioni dei valori istantanei.

Ai coefficienti ψ_{0i}, ψ_{1i}, ψ_{2i} sono attribuiti i i valori della tabella 2.5.I delle N.T.C. 2018 di cui al paragrafo 8.2.

In maniera analoga a quanto illustrato nel caso dello SLU le combinazioni risultanti sono state costruite a partire dalle sollecitazioni caratteristiche calcolate per ogni condizione di carico; a turno ogni condizione di carico accidentale è stata considerata sollecitazione di base (Q_{k1} nella formula (1)), con ciò dando origine a tanti valori combinati. Per ognuna delle combinazioni ottenute, in funzione dell'elemento sono state effettuate le verifiche allo SLE (tensioni, deformazioni e fessurazione). Negli allegati fascicoli di calcolo sono riportanti i coefficienti relativi alle combinazioni di calcolo generate relativamente alle combinazioni di azioni "Quasi Permanente", "Frequente" e "Rara".

Nelle sezioni relative alle verifiche allo SLE dei citati fascicoli, inoltre, sono riportati i valori delle sollecitazioni relativi alle combinazioni che hanno originato i risultati più gravosi.

5.5. VERIFICHE DI SICUREZZA

Nelle verifiche allo stato limite ultimo deve essere rispettata la condizione:

 $R_d \ge E_d$

dove:

E_d è il valore di progetto dell'azione o dell'effetto dell'azione;

R_d è il valore di progetto della resistenza del sistema geotecnico.

Le verifiche allo SLU di tipo geotecnico (GEO) della fondazioni vengono eseguite, in ottemperanza alle prescrizioni contenute nel par. 6.4.3.1 delle N.T.C. 17/01/2018, secondo la Combinazione (A1+M1+R3) dell'Approccio 2, tenendo conto dei coefficienti parziali riportati nelle tabelle che seguono.

La verifica di stabilità globale, invece, viene effettuata secondo la Combinazione 2 (A2+M2+R2) dell'Approccio 1.

Per quel che concerne le verifiche allo SLU di tipo strutturale (STR), il coefficiente γ_R non viene portato in conto.

Si riportano, di seguito, i coefficienti desunti dalle tabelle 6.2.I, 6.2.II, 6.4.II, 6.4.IV, 6.4.VI riportate nel cap. 6 delle N.T.C. 17/01/2018:

Coefficienti parziali per le azioni o per l'effetto delle azioni

CARICHI	EFFETTO	Coefficiente parziale	(A1) - STR
Permanenti	Favorevole	γ _{G1,fav}	1.00
Permanenti	Sfavorevole	γ _{G1,sfav}	1.30
Permanenti non strutturali	Favorevole	γ _{G2,fav}	0.80
Permanenti non strutturali	Sfavorevole	γ _{G2,sfav}	1.50
Variabili	Favorevole	γ _{Qi,fav}	0.00
Variabili	Sfavorevole	γQi,sfav	1.50
Variabili traffico	Favorevole	γ _{Q,fav}	0.00
Variabili traffico	Sfavorevole	γ _{Q,sfav}	1.35

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301_D_R_0120 Rev. 02

Coefficienti parziali per i parametri geotecnici del terreno

PARAMETRO	GRANDEZZA	Coefficiente parziale	(M1)
Tangente dell'angolo di resistenza al taglio	tan φ' _k	γ ₆ .	1.00
Coesione efficace	C' _k	γ _{c'}	1.00
Resistenza non drenata	Cuk	γ _{cu}	1.00

Coefficienti parziali YR da applicare alle resistenze caratteristiche (Pali trivellati)

Resistenza	Ϋ́R	(R1)	(R2)	(R3)
Base	γь	1.00	1.70	1.35
Laterale in compressione	γ _s	1.00	1.45	1.15
Totale	γt	1.00	1.60	1.30
Laterale in trazione	γ_{st}	1.00	1.60	1.25

Coefficienti parziali γ_{T} per le verifiche agli stati limite ultimi di pali soggetti a carichi trasversali

γт	(R1)	(R2)	(R3)
γ_{T}	1.00	1.60	1.30

Fattori di correlazione & per la determinazione della resistenza caratteristica in funzione del numero di verticali indagate

Numero di verticali indagate	ξε	ξ4
1	1.70	1.70

Coefficienti parziali γ_R per le verifiche agli stati limite ultimi di fondazioni superficiali

Verifica	(R1)	(R2)	(R3)
Capacità portante	1.00	1.80	2.30
Scorrimento	1.00	1.10	1.10

5.6. COMBINAZIONE DI CARICO

A partire dai carichi agenti sulla struttura di fondazione sono state analizzate le combinazioni di carico per gli stati limite.

Tali combinazioni, riportate nella tabella seguente, sono state effettuate tenendo presente quanto prescritto dalla normativa D.M. Infrastrutture Trasporti 17 gennaio 2018 (G.U. 20 febbraio 2018 n. 42 - Suppl. Ord. n. 8) "Norme tecniche per le Costruzioni".

Si riportano di seguito l'elenco combinazioni di calcolo per un totale di 12 combinazioni definite e dove il coefficiente CP identifica: **CP** = Coefficiente di partecipazione della condizione.

Combinazione nº 1 - A1-M1-R3

Condizione	СР
Peso proprio	1.30
RICOPRIMENTO FONDAZIONE	1.30
VENTO ESTREMO	1.50
NEVE	0.75

Combinazione n° 2 - A1-M1-R3

Condizione	CP
Peso proprio	1.30
RICOPRIMENTO FONDAZIONE	1.30
VENTO ESTREMO	0.90
NEVE	1.50

Combinazione n° 3 - A1-M1-R3

Condizione	СР
Peso proprio	1.30
RICOPRIMENTO FONDAZIONE	1.30
VENTO NORMALE FUNZIONAMENTO	1.50
NEVE	0.75

Combinazione nº 4 - A1-M1-R3

Condizione	CP
Peso proprio	1.30
RICOPRIMENTO FONDAZIONE	1.30

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301_D_R_0120 Rev. 02

Condizione	СР
VENTO NORMALE FUNZIONAMENTO	0.90
NEVE	1.50

Combinazione n° 5 - SLO

Condizione	СР
Peso proprio	1.00
RICOPRIMENTO FONDAZIONE	1.00
SLO	1.00

Combinazione nº 6 - SLD

Condizione	СР
Peso proprio	1.00
RICOPRIMENTO FONDAZIONE	1.00
SLD	1.00

Combinazione nº 7 - SLV

Condizione	СР
Peso proprio	1.00
RICOPRIMENTO FONDAZIONE	1.00
SLV	1.00

Combinazione nº 8 - SLE Rara

Condizione	СР
Peso proprio	1.00
RICOPRIMENTO FONDAZIONE	1.00
VENTO NORMALE FUNZIONAMENTO	1.00
NEVE	0.50

Combinazione nº 9 - SLE Rara

Condizione	СР
Peso proprio	1.00
RICOPRIMENTO FONDAZIONE	1.00
VENTO NORMALE FUNZIONAMENTO	0.60
NEVE	1.00

Combinazione nº 10 - SLE Frequente

Condizione	CP
Peso proprio	1.00
RICOPRIMENTO FONDAZIONE	1.00
VENTO NORMALE FUNZIONAMENTO	0.20
NEVE	0.00

Combinazione nº 11 - SLE Frequente

Condizione	CP
Peso proprio	1.00
RICOPRIMENTO FONDAZIONE	1.00
VENTO NORMALE FUNZIONAMENTO	0.00
NEVE	0.20

Combinazione nº 12 - SLE Quasi permanente

•	Pomianomo	
	Condizione	CP
	Peso proprio	1.00
	RICOPRIMENTO FONDAZIONE	1.00
	VENTO NORMALE FUNZIONAMENTO	0.00
	NEVE	0.00

5.7. ANALISI DEI CARICHI

Un'accurata valutazione dei carichi è un requisito imprescindibile di una corretta progettazione, in particolare per le costruzioni realizzate in zona sismica. La valutazione dei carichi e sovraccarichi agenti sulla fondazione e dei carichi e sovraccarichi derivanti dalla sovrastruttura, è stata effettuata in accordo con le disposizioni del Decreto del Ministero delle Infrastrutture e dei Trasporti del 17 gennaio 2018 "Norme tecniche per le Costruzioni".

Le condizioni di carico per le quali si effettuano le verifiche sono:

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301_D_R_0120 Rev. 02

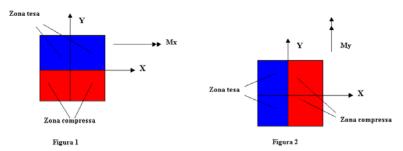
- Peso proprio fondazione;
- Peso torre eolica;
- Neve;
- Vento in condizioni di esercizio;
- Vento estremo;
- Sisma;

Le azioni sismiche sono combinate secondo quanto riportato nel par. 7.3.5 del DM del 17 gennaio 2018 "Norme tecniche per le Costruzioni"

5.8. SISTEMI DI RIFERIMENTO

5.8.1. CONVENZIONI ADOTTATE

Carichi e reazioni vincolari

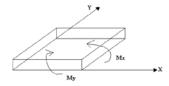

Fz Carico verticale positivo verso il basso

Fx Forza orizzontale in direzione X positiva nel verso delle X crescenti.

Fy Forza orizzontale in direzione Y positiva nel verso delle Y crescenti.

Mx Momento con asse vettore parallelo all'asse X positivo antiorario.

My Momento con asse vettore parallelo all'asse Y positivo antiorario.



Sollecitazioni


Mx Momento flettente X con asse vettore parallelo all'asse Y (positivo se tende le fibre inferiori).

My Momento flettente Y con asse vettore parallelo all'asse X (positivo se tende le fibre inferiori).

Mxy Momento flettente XY.

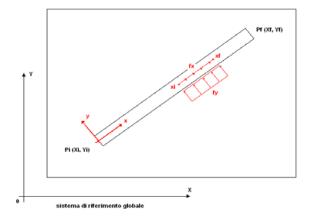
5.8.2. RIFERIMENTO GLOBALE

Il sistema di riferimento globale, rispetto al quale va riferita l'intera struttura, è costituito da una terna di assi cartesiani sinistrorsa OXYZ (X, Y, Z posizionati a 90° tra loro).

FRI-EL

RELAZIONE PRELIMINARE DELLE STRUTTURE

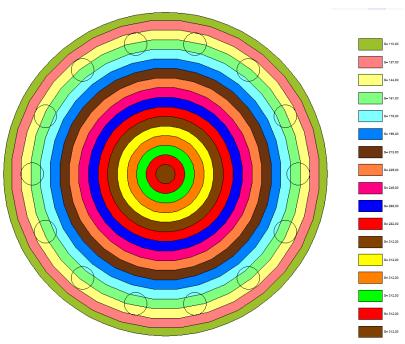
Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)



Codifica Elaborato: 214301_D_R_0120 Rev. 02

5.8.3. RIFERIMENTO LOCALE

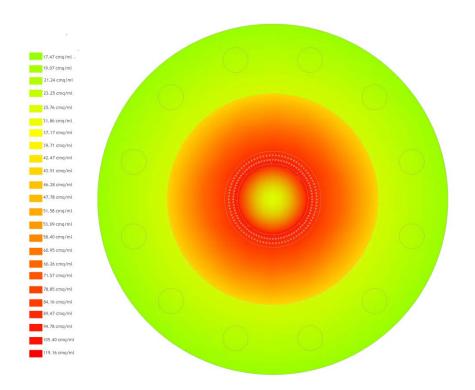
Definiti i e f come i due nodi iniziale e finale dell'elemento, viene individuato un sistema di assi cartesiani locale all'elemento, con origine nel Nodo i così composto:


- asse x orientato dal nodo i al nodo j;
- asse y perpendicolare all' asse x;
- asse z che completa la terna

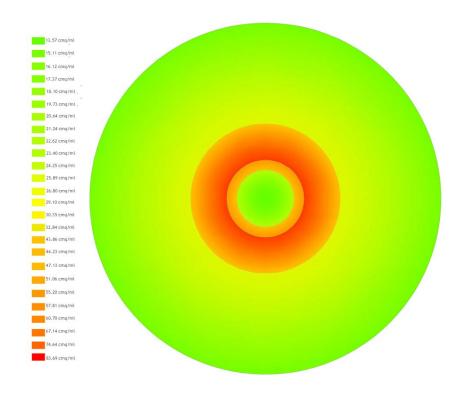
5.9. PLINTO DI FONDAZIONE

5.9.1. IDENTIFICAZIONE GEOMETRICA

Si riporta di seguito lo schema strutturale adottato in fase di calcolo. La struttura viene schematizzata come anelli concentrici con altezza variabile crescente verso il centro. L'incremento di altezza viene identificato con differnte colorazione:



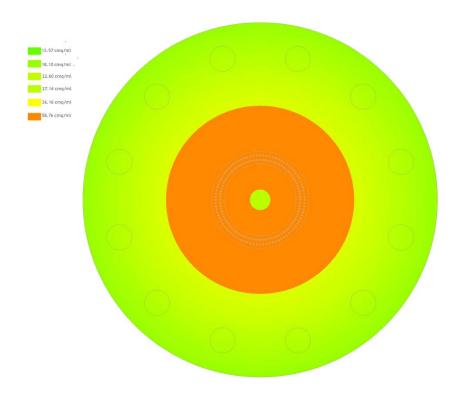
Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)



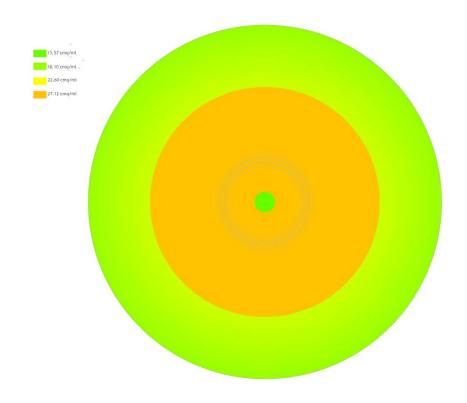
Codifica Elaborato: 214301_D_R_0120 Rev. 02

5.9.2. VERIFICHE STRUTTURALI 5.9.2.1.ARMATURA RADIALE INFERIORE

5.9.2.2.ARMATURA RADIALE SUPERIORE



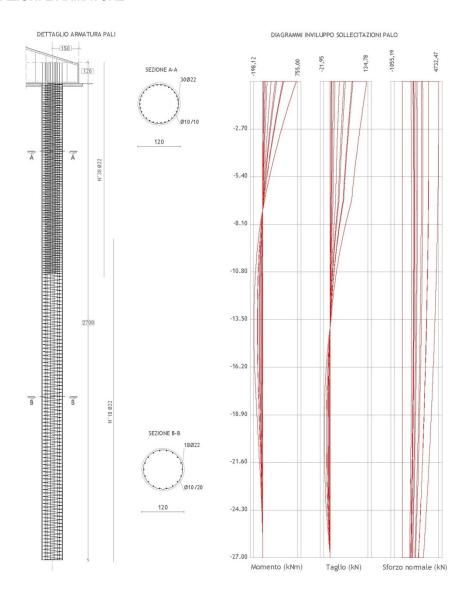
Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)



Codifica Elaborato: 214301_D_R_0120 Rev. 02

5.9.2.3.ARMATURA ANULARE INFERIORE

5.9.2.4.ARMATURA ANULARE SUPERIORE


Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301_D_R_0120 Rev. 02

5.10. PALI FONDAZIONE

5.10.1. SOLLECITAZIONI E ARMATURE

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301 D R 0120 Rev. 02

6. DIMENSIONAMENTO OPERE STAZIONE ELETTRICA DI UTENZA

6.1. FONDAZIONE APPARECCHIATURE ELETTRICHE ED EDIFICIO QUADRI

Nel presente elaborato verranno analizzate le fondazioni relative al reparto 150 kV e all'edificio quadri di seguito riportati:

- INTERRUTORE FONDAZIONE N°02 e N°10;
- TRASFORMATORE DI CORRENTE- FONDAZIONE N°03 e N°12;
- SEZIONATORE FONDAZIONE N°04 e N°09;
- TRASFORMATORE DI TENSIONE FONDAZIONE N°06 e N°11;
- SCARICATORE DI TERRA- FONDAZIONE N°07;
- TERMINALE ARIA-CAVO FONDAZIONE N°08;
- TRASFORMATORE DI POTENZA 150/30kV FONDAZIONE N°13;
- PORTALE SBARRE FONDAZIONE N°14;
- EDIFICIO QUADRI.

Si rimanda per ulteriori approfondimenti ai seguenti documenti:

- A.16.b.9.2 Disegni architettonici cabine elettriche e box punto di consegna Stazione elettrica di utenza Planimetria e Sezioni elettromeccaniche;
- A.16.b.9.4 Disegni architettonici cabine elettriche e box punto di consegna Stazione elettrica di utenza disegni architettonici edificio quadri

6.2. DEFINIZIONE DELLE AZIONI ELEMENTARI

6.2.1. INDIVIDUAZIONE DELLE AZIONI

Un'accurata valutazione dei carichi è un requisito imprescindibile di una corretta progettazione, in particolare per le costruzioni realizzate in zona sismica.

Essa, infatti, è fondamentale ai fini della determinazione delle forze sismiche, in quanto incide sulla valutazione delle masse e dei periodi propri della struttura dai quali dipendono i valori delle accelerazioni.

La valutazione dei carichi e dei sovraccarichi è stata effettuata in accordo con le disposizioni del **Decreto Ministero Infrastrutture Trasporti 17 gennaio 2018** (*G.U. 20/02/2018 n. 42 - Suppl. Ord. n. 8)*) "Aggiornamento delle Norme tecniche per le Costruzioni"

Le condizioni di carico per le quali si effettua la verifica sono:

- Peso proprio fondazione;
- Peso della sovrastruttura;
- Tiro conduttore:
- Manutenzione;
- Neve e Ghiaccio;
- Vento;
- Corto circuito;
- Sisma:
- Carichi dinamici.

L'illustrazione dettagliata dei criteri adottati per l'identificazione della condizione di carico sismica è riportata nella relazione di calcolo delle apparecchiature.

Per quanto riguarda la metodologia di calcolo per la determinazione delle sollecitazioni sismiche, essa si basa sulla considerazione che la fondazione è soggetta alle sollecitazioni derivanti dalla risposta dinamica del sovrastante assieme struttura-apparecchiature: tale assieme si configura come un sistema dinamico la cui frequenza fondamentale si colloca, in generale,

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301 D R 0120 Rev. 02

all'interno della banda di frequenze di massima amplificazione dello spettro di progetto. La massima accelerazione di risposta al sisma, costituisce perciò, moltiplicata per la massa complessiva dell'assieme concentrata nel suo baricentro, la forzante del sistema.

Le azioni sismiche sono combinate secondo quanto riportato nel par. 7.3.5 di [1].

I carichi da corto circuito non vengono considerati contestualmente al sisma, anche se potrebbero essere causati da quest'ultimo. Trattasi, in questa interpretazione, di due eventi eccezionali la cui probabilità combinata di accadimento può essere considerata scarsa.

6.2.2. CARICHI

I carichi considerati nella presente relazione fanno riferimento alle sollecitazioni determinate nella relazione di calcolo delle sovrastrutture, e applicati in corrispondenza della piastra di attacco fondazione-apparecchiatura.

Per ogni fondazione si riporterà la tabella carichi derivante dall'analisi e verifica della struttura metallica.

La struttura di sostegno scarica le sollecitazioni, indotte dalle azioni ad essa applicate, in fondazione in corrispondenza dei batoli.

6.2.2.1.CONDIZIONI DI CARICO

Le condizioni di carico sono:

						Tip	oologie di carico
N _{id}	Descrizione	F+E	+/- F	CDC	Ψο	Ψ1	Ψ2
0001	Carico Permanente	SI	NO	Permanente	1,00	1,00	1,00
0002	Permanenti NON Strutturali	SI	NO	Permanente	1,00	1,00	1,00
0003	Pressione del Vento (+X)	NO	NO	Istantanea	0,60	0,20	0,00
0004	Pressione del Vento (+Y)	NO	NO	Istantanea	0,60	0,20	0,00
0005	Manutenzione x	SI	NO	Media	1,00	0,50	0,00
0006	Manutenzione y	SI	NO	Media	1,00	0,50	0,00
0007	Corto circuito 31.5 kA	SI	NO	Istantanea	0,00	0,00	0,00
8000	Dinamico (compressione)	NO	NO	Breve	1,00	0,30	0,00
0009	Dinamico (trazione)	SI	NO	Breve	1,00	0,30	0,00
0010	Sisma X	-	-	-	_	-	-
0011	Sisma Y	-	-	-	_	-	-
0012	Sisma Z	-	-	-	_	-	-
0013	Sisma Ecc.X	-	-	-	_	-	-
0014	Sisma Ecc.Y	-	-	<u>-</u>	_	-	-

LEGENDA:

 $\mathbf{N}_{\mathbf{id}}$ Numero identificativo della Tipologia di Carico.

F+E Indica se la tipologia di carico considerata è AGENTE con il sisma.

+/- F Indica se la tipologia di carico è ALTERNATA (cioè considerata due volte con segno opposto) o meno.

CDC Indica la classe di durata del carico.

NOTA: dato significativo solo per elementi in materiale legnoso.

 ψ_0 Coefficiente riduttivo dei carichi allo SLU e SLE (carichi rari).

ψ₁ Coefficiente riduttivo dei carichi allo SLE (carichi frequenti).

 ψ_2 Coefficiente riduttivo dei carichi allo SLE (carichi frequenti e quasi permanenti).

6.3. COMBINAZIONI DELLE AZIONI

6.3.1. STATI LIMITE ULTIMI

Le combinazioni delle azioni assunte per le verifiche agli stati limite ultimi (SLV) delle fondazioni, in accordo a quanto previsto dall'attuale normativa (rif. [1]), sono elencate nei paragrafi che seguono.

6.3.1.1.COMBINAZIONE FONDAMENTALE

In accordo a [1] (Par. 2.5.3) vengono riportate le combinazioni fondamentali con i vari coefficienti

$$\gamma_{G1} \cdot G1 + \gamma_{G2} \cdot G2 + \gamma_{P} \cdot P + \gamma_{O1} \cdot Q_{K1} + \gamma_{O2} \cdot \Psi_{O2} \cdot Q_{k2} + \gamma_{O3} \cdot \Psi_{O3} \cdot Q_{k3} + \dots$$

con:

 γ_{G1} = coefficiente parziale per i carichi permanenti;

G1 = carichi permanenti;

 $\gamma_{\rm G2}$ = coefficiente parziale per i carichi permanenti non strutturali;

G2 = carichi permanenti non strutturali;

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301_D_R_0120 Rev. 02

 γ_P = coefficiente parziale per pretensione e precompressione;

P = pretensione e precompressione;

 γ_{O1} = coefficiente parziale per l'azione variabile dominante;

Q_{K1} = azione variabile dominante;

 γ_{Qi} = coefficienti parziali per le azioni variabili;

 Ψ_{0j} = coefficienti di combinazione;

Q_{Kj} = azioni variabili

sono state costruite considerando le azioni elementari definite al Paragrafo 3.1 e i coefficienti di combinazione relativi alle relative azioni variabili (Rif. [1] Par. 2.5.3) ed i coefficienti parziali delle azioni contemplati per i diversi carichi (Rif. [1] Par. 2.6.1) rispettivamente per gli:

- stati limite ultimi di resistenza della struttura (STR);
- stati limite ultimi di resistenza del terreno (GEO).

Il peso della fondazione, del terreno sovrastante e della sovra-struttura sono stati considerati carichi permanenti.

				SLU	: Non Sism	ica - Strutt	turale senz	a azioni ge	otecniche
Id _{Comb}	CC 01	CC 02	CC 03	CC 04	CC 05	CC 06	CC 07	CC 08	CC 09
01	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
02	1,00	0,80	0,00	0,00	0,00	0,00	0,00	0,00	0,00
03	1,00	0,80	0,00	0,00	0,00	0,00	0,00	0,00	1,50
04	1,00	0,80	0,00	0,00	0,00	0,00	0,00	1,50	0,00
05	1,00	0,80	0,00	0,00	0,00	0,00	0,00	1,50	1,50
06	1,00	0,80	0,00	0,00	0,00	1,50	0,00	0,00	0,00
07	1,00	0,80	0,00	0,00	0,00	1,50	0,00	0,00	1,50
08	1,00	0,80	0,00	0,00	0,00	1,50	0,00	1,50	0,00
09	1,00	0,80	0,00	0,00	0,00	1,50	0,00	1,50	1,50
10	1,00	0,80	0,00	0,00	1,50	0,00	0,00	0,00	0,00
11	1,00	0,80	0,00	0,00	1,50	0,00	0,00	0,00	1,50
12	1,00	0,80	0,00	0,00	1,50	0,00	0,00	1,50	0,00
13	1,00	0,80	0,00	0,00	1,50	0,00	0,00	1,50	1,50
14	1,00	0,80	0,00	0,00	1,50	1,50	0,00	0,00	0,00
15	1,00	0,80	0,00	0,00	1,50	1,50	0,00	0,00	1,50
16	1,00	0,80	0,00	0,00	1,50	1,50	0,00	1,50	0,00
17	1,00	0,80	0,00	0,00	1,50	1,50	0,00	1,50	1,50
18	1,00	0,80	0,00	0,90	0,00	0,00	0,00	0,00	0,00
19	1,00	0,80	0,00	0,90	0,00	0,00	0,00	0,00	1,50
20	1,00	0,80	0,00	0,90	0,00	0,00	0,00	1,50	0,00
21	1,00	0,80	0,00	0,90	0,00	0,00	0,00	1,50	1,50
22	1,00	0,80	0,00	0,90	0,00	1,50	0,00	0,00	0,00
23	1,00	0,80	0,00	0,90	0,00	1,50	0,00	0,00	1,50
24	1,00	0,80	0,00	0,90	0,00	1,50	0,00	1,50	0,00
25	1,00	0,80	0,00	0,90	0,00	1,50	0,00	1,50	1,50
26	1,00	0,80	0,00	0,90	1,50	0,00	0,00	0,00	0,00
27	1,00	0,80	0,00	0,90	1,50	0,00	0,00	0,00	1,50
28	1,00	0,80	0,00	0,90	1,50	0,00	0,00	1,50	0,00
29	1,00	0,80	0,00	0,90	1,50	0,00	0,00	1,50	1,50
30	1,00	0,80	0,00	0,90	1,50	1,50	0,00	0,00	0,00
31	1,00	0,80	0,00	0,90	1,50	1,50	0,00	0,00	1,50
32	1,00	0,80	0,00	0,90	1,50	1,50	0,00	1,50	0,00
33	1,00	0,80	0,00	0,90	1,50	1,50	0,00	1,50	1,50
34 35	1,00 1,00	0,80 0,80	0,90 0,90	0,00 0,00	0,00 0,00	0,00 0,00	0,00 0,00	0,00 0,00	0,00 1,50
36	1,00	0,80	0,90	0,00	0,00	0,00	0,00	1,50	0,00
37	1,00	0,80	0,90	0,00	0,00	0,00	0,00	1,50	1,50
38	1,00	0,80	0,90	0,00	0,00	1,50	0,00	0,00	0,00
39	1,00	0,80	0,90	0,00	0,00	1,50	0,00	0,00	1,50
40	1,00	0,80	0,90	0,00	0,00	1,50	0,00	1,50	0,00
41	1,00	0,80	0,90	0,00	0,00	1,50	0,00	1,50	1,50
42	1,00	0,80	0,90	0,00	1,50	0,00	0,00	0,00	0,00
43	1,00	0,80	0,90	0,00	1,50	0,00	0,00	0,00	1,50
44	1,00	0,80	0,90	0,00	1,50	0,00	0,00	1,50	0,00
45	1,00	0,80	0,70	0,00	1,50	0,00	0,00	1,50	1,50
46	1,00	0,80	0,70	0,00	1,50	1,50	0,00	0,00	0,00
47	1,00	0,80	0,70	0,00	1,50	1,50	0,00	0,00	1,50
.,	1,00	0,00	5,70	0,00	.,50	1,50	3,00	3,00	.,50

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

				SLU	: Non Sism	ica - Struti	turale senz	a azioni ge	otecniche
Id _{Comb}	CC 01	CC 02	CC 03	CC 04	CC 05	CC 06	CC 07	CC 08	CC 09
48	1,00	0,80	0,90	0,00	1,50	1,50	0,00	1,50	0,00
49 50	1,00 1,00	0,80 1,50	0,90 0,00	0,00 0,00	1,50 0,00	1,50 0,00	0,00 0,00	1,50 0,00	1,50 0,00
51	1,00	1,50	0,00	0,00	0,00	0,00	0,00	0,00	1,50
52	1,00	1,50	0,00	0,00	0,00	0,00	0,00	1,50	0,00
53	1,00	1,50	0,00	0,00	0,00	0,00	0,00	1,50	1,50
54	1,00	1,50	0,00	0,00	0,00	1,50	0,00	0,00	0,00
55	1,00	1,50	0,00	0,00	0,00	1,50	0,00	0,00	1,50
56 57	1,00 1,00	1,50 1,50	0,00 0,00	0,00 0,00	0,00 0,00	1,50 1,50	0,00 0,00	1,50 1,50	0,00 1,50
58	1,00	1,50	0,00	0,00	1,50	0,00	0,00	0,00	0,00
59	1,00	1,50	0,00	0,00	1,50	0,00	0,00	0,00	1,50
60	1,00	1,50	0,00	0,00	1,50	0,00	0,00	1,50	0,00
61	1,00	1,50	0,00	0,00	1,50	0,00	0,00	1,50	1,50
62	1,00	1,50	0,00	0,00	1,50	1,50	0,00	0,00 0,00	0,00
63 64	1,00 1,00	1,50 1,50	0,00 0,00	0,00 0,00	1,50 1,50	1,50 1,50	0,00 0,00	1,50	1,50 0,00
65	1,00	1,50	0,00	0,00	1,50	1,50	0,00	1,50	1,50
66	1,00	1,50	0,00	0,90	0,00	0,00	0,00	0,00	0,00
67	1,00	1,50	0,00	0,90	0,00	0,00	0,00	0,00	1,50
68	1,00	1,50	0,00	0,90	0,00	0,00	0,00	1,50	0,00
69	1,00	1,50 1,50	0,00	0,90	0,00	0,00	0,00	1,50	1,50
70 71	1,00 1,00	1,50 1,50	0,00 0,00	0,90 0,90	0,00 0,00	1,50 1,50	0,00 0,00	0,00 0,00	0,00 1,50
72	1,00	1,50	0,00	0,90	0,00	1,50	0,00	1,50	0,00
73	1,00	1,50	0,00	0,90	0,00	1,50	0,00	1,50	1,50
74	1,00	1,50	0,00	0,90	1,50	0,00	0,00	0,00	0,00
75	1,00	1,50	0,00	0,90	1,50	0,00	0,00	0,00	1,50
76 77	1,00 1,00	1,50 1,50	0,00 0,00	0,90 0,90	1,50 1,50	0,00 0,00	0,00 0,00	1,50 1,50	0,00 1,50
78	1,00	1,50	0,00	0,90	1,50	1,50	0,00	0,00	0,00
79	1,00	1,50	0,00	0,90	1,50	1,50	0,00	0,00	1,50
80	1,00	1,50	0,00	0,90	1,50	1,50	0,00	1,50	0,00
81	1,00	1,50	0,00	0,90	1,50	1,50	0,00	1,50	1,50
82 83	1,00 1,00	1,50 1,50	0,90 0,90	0,00 0,00	0,00 0,00	0,00 0,00	0,00 0,00	0,00 0,00	0,00 1,50
84	1,00	1,50	0,90	0,00	0,00	0,00	0,00	1,50	0,00
85	1,00	1,50	0,90	0,00	0,00	0,00	0,00	1,50	1,50
86	1,00	1,50	0,90	0,00	0,00	1,50	0,00	0,00	0,00
87	1,00	1,50	0,90	0,00	0,00	1,50	0,00	0,00	1,50
88 89	1,00 1,00	1,50 1,50	0,90	0,00 0,00	0,00 0,00	1,50	0,00 0,00	1,50 1,50	0,00
90	1,00	1,50	0,90 0,90	0,00	1,50	1,50 0,00	0,00	0,00	1,50 0,00
91	1,00	1,50	0,90	0,00	1,50	0,00	0,00	0,00	1,50
92	1,00	1,50	0,90	0,00	1,50	0,00	0,00	1,50	0,00
93	1,00	1,50	0,90	0,00	1,50	0,00	0,00	1,50	1,50
94 95	1,00	1,50	0,90	0,00	1,50	1,50	0,00	0,00	0,00
95	1,00 1,00	1,50 1,50	0,90 0,90	0,00 0,00	1,50 1,50	1,50 1,50	0,00 0,00	0,00 1,50	1,50 0,00
97	1,00	1,50	0,90	0,00	1,50	1,50	0,00	1,50	1,50
98	1,00	0,80	1,50	0,00	0,00	0,00	0,00	0,00	0,00
99	1,00	0,80	1,50	0,00	0,00	0,00	0,00	0,00	1,50
100 101	1,00	0,80	1,50 1,50	0,00	0,00	0,00	0,00	1,50 1,50	0,00
101	1,00 1,00	0,80 0,80	1,50 1,50	0,00 0,00	0,00 0,00	0,00 1,50	0,00 0,00	1,50 0,00	1,50 0,00
103	1,00	0,80	1,50	0,00	0,00	1,50	0,00	0,00	1,50
104	1,00	0,80	1,50	0,00	0,00	1,50	0,00	1,50	0,00
105	1,00	0,80	1,50	0,00	0,00	1,50	0,00	1,50	1,50
106	1,00	0,80	1,50	0,00	1,50	0,00	0,00	0,00	0,00
107 108	1,00 1,00	0,80 0,80	1,50 1,50	0,00 0,00	1,50 1,50	0,00 0,00	0,00 0,00	0,00 1,50	1,50 0,00
109	1,00	0,80	1,50	0,00	1,50	0,00	0,00	1,50	1,50
110	1,00	0,80	1,50	0,00	1,50	1,50	0,00	0,00	0,00
111	1,00	0,80	1,50	0,00	1,50	1,50	0,00	0,00	1,50
112	1,00	0,80	1,50	0,00	1,50	1,50	0,00	1,50	0,00
113 114	1,00 1,00	0,80 1,50	1,50 1,50	0,00 0,00	1,50 0,00	1,50 0,00	0,00 0,00	1,50 0,00	1,50 0,00
115	1,00	1,50	1,50	0,00	0,00	0,00	0,00	0,00	1,50
	.,00	.,50	.,55	5,55	2,00	2,00	3,00	3,00	.,00

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

				SLU	: Non Sism	ica - Strut	turale senz	a azioni ge	otecniche
Id _{Comb}	CC 01	CC 02	CC 03	CC 04	CC 05	CC 06	CC 07	CC 08	CC 09
116	1,00	1,50	1,50	0,00	0,00	0,00	0,00	1,50	0,00
117	1,00	1,50	1,50	0,00	0,00	0,00	0,00	1,50 0,00	1,50
118 119	1,00 1,00	1,50 1,50	1,50 1,50	0,00 0,00	0,00 0,00	1,50 1,50	0,00 0,00	0,00	0,00 1,50
120	1,00	1,50	1,50	0,00	0,00	1,50	0,00	1,50	0,00
121	1,00	1,50	1,50	0,00	0,00	1,50	0,00	1,50	1,50
122	1,00	1,50	1,50	0,00	1,50	0,00	0,00	0,00	0,00
123	1,00	1,50	1,50	0,00	1,50	0,00	0,00	0,00	1,50
124	1,00	1,50	1,50	0,00	1,50	0,00	0,00	1,50	0,00
125 126	1,00 1,00	1,50 1,50	1,50 1,50	0,00 0,00	1,50 1,50	0,00 1,50	0,00 0,00	1,50 0,00	1,50 0,00
127	1,00	1,50	1,50	0,00	1,50	1,50	0,00	0,00	1,50
128	1,00	1,50	1,50	0,00	1,50	1,50	0,00	1,50	0,00
129	1,00	1,50	1,50	0,00	1,50	1,50	0,00	1,50	1,50
130	1,00	0,80	0,00	1,50	0,00	0,00	0,00	0,00	0,00
131 132	1,00 1,00	0,80 0,80	0,00 0,00	1,50 1,50	0,00 0,00	0,00 0,00	0,00 0,00	0,00 1,50	1,50 0,00
133	1,00	0,80	0,00	1,50	0,00	0,00	0,00	1,50	1,50
134	1,00	0,80	0,00	1,50	0,00	1,50	0,00	0,00	0,00
135	1,00	0,80	0,00	1,50	0,00	1,50	0,00	0,00	1,50
136	1,00	0,80	0,00	1,50	0,00	1,50	0,00	1,50	0,00
137	1,00	0,80	0,00	1,50 1,50	0,00	1,50	0,00	1,50	1,50
138 139	1,00 1,00	0,80 0,80	0,00 0,00	1,50 1,50	1,50 1,50	0,00 0,00	0,00 0,00	0,00 0,00	0,00 1,50
140	1,00	0,80	0,00	1,50	1,50	0,00	0,00	1,50	0,00
141	1,00	0,80	0,00	1,50	1,50	0,00	0,00	1,50	1,50
142	1,00	0,80	0,00	1,50	1,50	1,50	0,00	0,00	0,00
143	1,00	0,80	0,00	1,50	1,50 1,50	1,50	0,00	0,00 1,50	1,50
144 145	1,00 1,00	0,80 0,80	0,00 0,00	1,50 1,50	1,50	1,50 1,50	0,00 0,00	1,50	0,00 1,50
146	1,00	1,50	0,00	1,50	0,00	0,00	0,00	0,00	0,00
147	1,00	1,50	0,00	1,50	0,00	0,00	0,00	0,00	1,50
148	1,00	1,50	0,00	1,50	0,00	0,00	0,00	1,50	0,00
149	1,00	1,50	0,00	1,50	0,00	0,00	0,00	1,50	1,50
150 151	1,00 1,00	1,50 1,50	0,00 0,00	1,50 1,50	0,00 0,00	1,50 1,50	0,00 0,00	0,00 0,00	0,00 1,50
152	1,00	1,50	0,00	1,50	0,00	1,50	0,00	1,50	0,00
153	1,00	1,50	0,00	1,50	0,00	1,50	0,00	1,50	1,50
154	1,00	1,50	0,00	1,50	1,50	0,00	0,00	0,00	0,00
155	1,00	1,50	0,00	1,50	1,50	0,00	0,00	0,00	1,50
156 157	1,00 1,00	1,50 1,50	0,00 0,00	1,50 1,50	1,50 1,50	0,00 0,00	0,00 0,00	1,50 1,50	0,00 1,50
158	1,00	1,50	0,00	1,50	1,50	1,50	0,00	0,00	0,00
159	1,00	1,50	0,00	1,50	1,50	1,50	0,00	0,00	1,50
160	1,00	1,50	0,00	1,50	1,50	1,50	0,00	1,50	0,00
161	1,00	1,50	0,00	1,50	1,50	1,50	0,00	1,50	1,50
162 163	1,30 1,30	0,00 0,80	0,00 0,00						
164	1,30	0,80	0,00	0,00	0,00	0,00	0,00	0,00	1,50
165	1,30	0,80	0,00	0,00	0,00	0,00	0,00	1,50	0,00
166	1,30	0,80	0,00	0,00	0,00	0,00	0,00	1,50	1,50
167	1,30	0,80	0,00	0,00	0,00	1,50	0,00	0,00	0,00
168 169	1,30 1,30	0,80 0,80	0,00 0,00	0,00 0,00	0,00 0,00	1,50 1,50	0,00 0,00	0,00 1,50	1,50 0,00
170	1,30	0,80	0,00	0,00	0,00	1,50	0,00	1,50	1,50
171	1,30	0,80	0,00	0,00	1,50	0,00	0,00	0,00	0,00
172	1,30	0,80	0,00	0,00	1,50	0,00	0,00	0,00	1,50
173	1,30	0,80	0,00	0,00	1,50	0,00	0,00	1,50	0,00
174	1,30	0,80	0,00	0,00	1,50 1,50	0,00	0,00	1,50	1,50
175 176	1,30 1,30	0,80 0,80	0,00 0,00	0,00 0,00	1,50 1,50	1,50 1,50	0,00 0,00	0,00 0,00	0,00 1,50
177	1,30	0,80	0,00	0,00	1,50	1,50	0,00	1,50	0,00
178	1,30	0,80	0,00	0,00	1,50	1,50	0,00	1,50	1,50
179	1,30	0,80	0,00	0,90	0,00	0,00	0,00	0,00	0,00
180	1,30	0,80	0,00	0,90	0,00	0,00	0,00	0,00	1,50
181 182	1,30 1,30	0,80 0,80	0,00 0,00	0,90 0,90	0,00 0,00	0,00 0,00	0,00 0,00	1,50 1,50	0,00 1,50
183	1,30	0,80	0,00	0,90	0,00	1,50	0,00	0,00	0,00
	,	-,	-,	-,	-,	,	-,	-,	-,

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

SLU: Non Sismica - Strutturale senza azion Id _{Comb} CC 01 CC 02 CC 03 CC 04 CC 05 CC 06 CC 07 CC 0 184 1,30 0,80 0,00 0,90 0,00 1,50 0,00 0,00	
184 130 0.80 0.00 0.90 0.00 1.50 0.00 0.00	
185 1,30 0,80 0,00 0,90 0,00 1,50 0,00 1,50	
186 1,30 0,80 0,00 0,90 0,00 1,50 0,00 1,50 187 1,30 0,80 0,00 0,90 1,50 0,00 0,00 0,00	
188 1,30 0,80 0,00 0,90 1,50 0,00 0,00 0,00	
189 1,30 0,80 0,00 0,90 1,50 0,00 0,00 1,50	
190 1,30 0,80 0,00 0,90 1,50 0,00 0,00 1,50	
191 1,30 0,80 0,00 0,90 1,50 1,50 0,00 0,00	
192 1,30 0,80 0,00 0,90 1,50 1,50 0,00 0,00 193 1,30 0,80 0,00 0,90 1,50 1,50 0,00 1,50	
194 1,30 0,80 0,00 0,90 1,50 1,50 0,00 1,50	
195 1,30 0,80 0,90 0,00 0,00 0,00 0,00 0,00	
196 1,30 0,80 0,90 0,00 0,00 0,00 0,00 0,00	
197 1,30 0,80 0,90 0,00 0,00 0,00 0,00 1,50	
198 1,30 0,80 0,90 0,00 0,00 0,00 0,00 1,50 199 1,30 0,80 0,90 0,00 0,00 1,50 0,00 0,00	
199 1,30 0,80 0,90 0,00 0,00 1,50 0,00 0,00 200 1,30 0,80 0,90 0,00 0,00 1,50 0,00 0,00	
201 1,30 0,80 0,90 0,00 0,00 1,50 0,00 1,50	
202 1,30 0,80 0,90 0,00 0,00 1,50 0,00 1,50	1,50
203 1,30 0,80 0,90 0,00 1,50 0,00 0,00 0,00	
204 1,30 0,80 0,90 0,00 1,50 0,00 0,00 0,00	
205 1,30 0,80 0,90 0,00 1,50 0,00 0,00 1,50 206 1,30 0,80 0,90 0,00 1,50 0,00 0,00 1,50	
207 1,30 0,80 0,90 0,00 1,50 0,00 0,00 1,50 1,50	
208 1,30 0,80 0,90 0,00 1,50 1,50 0,00 0,00	
209 1,30 0,80 0,90 0,00 1,50 1,50 0,00 1,50	
210 1,30 0,80 0,90 0,00 1,50 1,50 0,00 1,50	
211 1,30 1,50 0,00 0,00 0,00 0,00 0,00 0,00 0,0	
213 1,30 1,50 0,00 0,00 0,00 0,00 0,00 0,00 1,50	
214 1,30 1,50 0,00 0,00 0,00 0,00 0,00 1,50	
215 1,30 1,50 0,00 0,00 0,00 1,50 0,00 0,00	
216 1,30 1,50 0,00 0,00 0,00 1,50 0,00 0,00	
217 1,30 1,50 0,00 0,00 0,00 1,50 0,00 1,50 218 1,30 1,50 0,00 0,00 0,00 1,50 0,00 1,50	
218 1,30 1,50 0,00 0,00 0,00 1,50 0,00 1,50 219 1,30 1,50 0,00 0,00 1,50 0,00 0,00	
220 1,30 1,50 0,00 0,00 1,50 0,00 0,00 0,00	
221 1,30 1,50 0,00 0,00 1,50 0,00 0,00 1,50	
222 1,30 1,50 0,00 0,00 1,50 0,00 0,00 1,50	
223 1,30 1,50 0,00 0,00 1,50 1,50 0,00 0,00 224 1,30 1,50 0,00 0,00 1,50 1,50 0,00 0,00	
224 1,30 1,50 0,00 0,00 1,50 1,50 0,00 0,00 225 1,30 1,50 0,00 0,00 1,50 1,50 0,00 1,50	
226 1,30 1,50 0,00 0,00 1,50 1,50 0,00 1,50	
227 1,30 1,50 0,00 0,90 0,00 0,00 0,00 0,00	0,00
228 1,30 1,50 0,00 0,90 0,00 0,00 0,00 0,00	
229 1,30 1,50 0,00 0,90 0,00 0,00 1,50	
230 1,30 1,50 0,00 0,90 0,00 0,00 0,00 1,50 231 1,30 1,50 0,00 0,90 0,00 1,50 0,00	
232 1,30 1,50 0,00 0,90 0,00 1,50 0,00 0,00	
233 1,30 1,50 0,00 0,90 0,00 1,50 0,00 1,50	0,00
234 1,30 1,50 0,00 0,90 0,00 1,50 0,00 1,50	
235 1,30 1,50 0,00 0,90 1,50 0,00 0,00 0,00 236 1,30 1,50 0,00 0,90 1,50 0,00 0,00 0,00	
236 1,30 1,50 0,00 0,90 1,50 0,00 0,00 0,00 237 1,30 1,50 0,00 0,90 1,50 0,00 0,00 1,50	
238 1,30 1,50 0,00 0,90 1,50 0,00 0,00 1,50	
239 1,30 1,50 0,00 0,90 1,50 1,50 0,00 0,00	0,00
240 1,30 1,50 0,00 0,90 1,50 1,50 0,00 0,00	
241 1,30 1,50 0,00 0,90 1,50 1,50 0,00 1,50 242 1,30 1,50 0,00 0,90 1,50 1,50 0,00 1,50	
242 1,30 1,50 0,00 0,90 1,50 1,50 0,00 1,50 243 1,30 1,50 0,90 0,00 0,00 0,00 0,00	
244 1,30 1,50 0,90 0,00 0,00 0,00 0,00 0,00	
245 1,30 1,50 0,90 0,00 0,00 0,00 0,00 1,50	0,00
246 1,30 1,50 0,90 0,00 0,00 0,00 1,50	
247 1,30 1,50 0,90 0,00 0,00 1,50 0,00 0,00 248 1,30 1,50 0,00 0,00 0,00 1,50 0,00 0,00	
248 1,30 1,50 0,90 0,00 0,00 1,50 0,00 0,00 249 1,30 1,50 0,90 0,00 0,00 1,50 0,00 1,50	
250 1,30 1,50 0,90 0,00 0,00 1,50 0,00 1,50	
251 1,30 1,50 0,90 0,00 1,50 0,00 0,00 0,00	

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

				SLU	: Non Sism	nica - Strut	turale senz	a azioni ge	otecniche
Id _{Comb}	CC 01	CC 02	CC 03	CC 04	CC 05	CC 06	CC 07	CC 08	CC 09
252	1,30	1,50	0,90	0,00	1,50	0,00	0,00	0,00	1,50
253	1,30	1,50	0,90	0,00	1,50	0,00	0,00	1,50	0,00
254 255	1,30 1,30	1,50 1,50	0,90 0,90	0,00 0,00	1,50 1,50	0,00 1,50	0,00 0,00	1,50 0,00	1,50 0,00
256	1,30	1,50	0,90	0,00	1,50	1,50	0,00	0,00	1,50
257	1,30	1,50	0,90	0,00	1,50	1,50	0,00	1,50	0,00
258	1,30	1,50	0,90	0,00	1,50	1,50	0,00	1,50	1,50
259	1,30	0,80	1,50	0,00	0,00	0,00	0,00	0,00	0,00
260	1,30	0,80	1,50	0,00	0,00	0,00	0,00	0,00	1,50
261 262	1,30 1,30	0,80 0,80	1,50	0,00 0,00	0,00 0,00	0,00 0,00	0,00 0,00	1,50 1,50	0,00 1,50
263	1,30	0,80	1,50 1,50	0,00	0,00	1,50	0,00	0,00	0,00
264	1,30	0,80	1,50	0,00	0,00	1,50	0,00	0,00	1,50
265	1,30	0,80	1,50	0,00	0,00	1,50	0,00	1,50	0,00
266	1,30	0,80	1,50	0,00	0,00	1,50	0,00	1,50	1,50
267	1,30	0,80	1,50	0,00	1,50	0,00	0,00	0,00	0,00
268	1,30	0,80	1,50	0,00	1,50	0,00	0,00	0,00	1,50
269 270	1,30 1,30	0,80 0,80	1,50 1,50	0,00 0,00	1,50 1,50	0,00 0,00	0,00 0,00	1,50 1,50	0,00 1,50
271	1,30	0,80	1,50	0,00	1,50	1,50	0,00	0,00	0,00
272	1,30	0,80	1,50	0,00	1,50	1,50	0,00	0,00	1,50
273	1,30	0,80	1,50	0,00	1,50	1,50	0,00	1,50	0,00
274	1,30	0,80	1,50	0,00	1,50	1,50	0,00	1,50	1,50
275 276	1,30 1,30	1,50	1,50	0,00 0,00	0,00 0,00	0,00	0,00 0,00	0,00	0,00
277	1,30	1,50 1,50	1,50 1,50	0,00	0,00	0,00 0,00	0,00	0,00 1,50	1,50 0,00
278	1,30	1,50	1,50	0,00	0,00	0,00	0,00	1,50	1,50
279	1,30	1,50	1,50	0,00	0,00	1,50	0,00	0,00	0,00
280	1,30	1,50	1,50	0,00	0,00	1,50	0,00	0,00	1,50
281	1,30	1,50	1,50	0,00	0,00	1,50	0,00	1,50	0,00
282	1,30	1,50	1,50	0,00	0,00	1,50	0,00	1,50	1,50
283 284	1,30 1,30	1,50 1,50	1,50 1,50	0,00 0,00	1,50 1,50	0,00 0,00	0,00 0,00	0,00 0,00	0,00 1,50
285	1,30	1,50	1,50	0,00	1,50	0,00	0,00	1,50	0,00
286	1,30	1,50	1,50	0,00	1,50	0,00	0,00	1,50	1,50
287	1,30	1,50	1,50	0,00	1,50	1,50	0,00	0,00	0,00
288	1,30	1,50	1,50	0,00	1,50	1,50	0,00	0,00	1,50
289 290	1,30 1,30	1,50 1,50	1,50 1,50	0,00 0,00	1,50 1,50	1,50 1,50	0,00 0,00	1,50 1,50	0,00 1,50
291	1,30	0,80	0,00	1,50	0,00	0,00	0,00	0,00	0,00
292	1,30	0,80	0,00	1,50	0,00	0,00	0,00	0,00	1,50
293	1,30	0,80	0,00	1,50	0,00	0,00	0,00	1,50	0,00
294	1,30	0,80	0,00	1,50	0,00	0,00	0,00	1,50	1,50
295	1,30	0,80	0,00	1,50	0,00	1,50	0,00	0,00	0,00
296 297	1,30 1,30	0,80 0,80	0,00 0,00	1,50 1,50	0,00 0,00	1,50 1,50	0,00 0,00	0,00 1,50	1,50 0,00
298	1,30	0,80	0,00	1,50	0,00	1,50	0,00	1,50	1,50
299	1,30	0,80	0,00	1,50	1,50	0,00	0,00	0,00	0,00
300	1,30	0,80	0,00	1,50	1,50	0,00	0,00	0,00	1,50
301	1,30	0,80	0,00	1,50	1,50	0,00	0,00	1,50	0,00
302 303	1,30 1,30	0,80 0,80	0,00 0,00	1,50 1,50	1,50 1,50	0,00 1,50	0,00 0,00	1,50 0,00	1,50 0,00
303	1,30	0,80	0,00	1,50	1,50	1,50	0,00	0,00	1,50
305	1,30	0,80	0,00	1,50	1,50	1,50	0,00	1,50	0,00
306	1,30	0,80	0,00	1,50	1,50	1,50	0,00	1,50	1,50
307	1,30	1,50	0,00	1,50	0,00	0,00	0,00	0,00	0,00
308	1,30	1,50 1,50	0,00	1,50 1,50	0,00	0,00	0,00	0,00	1,50
309 310	1,30 1,30	1,50 1,50	0,00 0,00	1,50 1,50	0,00 0,00	0,00 0,00	0,00 0,00	1,50 1,50	0,00 1,50
311	1,30	1,50	0,00	1,50	0,00	1,50	0,00	0,00	0,00
312	1,30	1,50	0,00	1,50	0,00	1,50	0,00	0,00	1,50
313	1,30	1,50	0,00	1,50	0,00	1,50	0,00	1,50	0,00
314	1,30	1,50	0,00	1,50	0,00	1,50	0,00	1,50	1,50
315	1,30	1,50 1,50	0,00	1,50 1,50	1,50 1,50	0,00	0,00	0,00	0,00
316 317	1,30 1,30	1,50 1,50	0,00 0,00	1,50 1,50	1,50 1,50	0,00 0,00	0,00 0,00	0,00 1,50	1,50 0,00
318	1,30	1,50	0,00	1,50	1,50	0,00	0,00	1,50	1,50
319	1,30	1,50	0,00	1,50	1,50	1,50	0,00	0,00	0,00

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301 D R 0120 Rev. 02

				SLU: Non Sismica - Strutturale senza azioni geotecniche							
Id _{Comb}	CC 01	CC 02	CC 03	CC 04	CC 05	CC 06	CC 07	CC 08	CC 09		
320	1,30	1,50	0,00	1,50	1,50	1,50	0,00	0,00	1,50		
321	1,30	1,50	0,00	1,50	1,50	1,50	0,00	1,50	0,00		
322	1,30	1,50	0,00	1,50	1,50	1,50	0,00	1,50	1,50		

LEGENDA:

Id_{Comb}

Numero identificativo della Combinazione di Carico.

Identificativo della tipologia di carico nella relativa tabella.

CC 01 = Carico Permanente

CC 02= Permanenti NON Strutturali

CC 03= Pressione del Vento (+X)

CC 04= Pressione del Vento (+Y)

CC 05= Manutenzione x

CC 06= Manutenzione y

CC 07= Corto circuito 31.5 kA

CC 08= Dinamico (compressione) CC 09= Dinamico (trazione)

6.3.1.2.: COMBINAZIONE DI CARICO IN PRESENZA DI SISMA

Si riportano di seguito per ogni condizione di carico elementare la relativa combinazione:

SLU: Sismica - Strutturale senza azioni geotecniche

Id _{Comb}	CC 01	CC 02	CC 03	CC 04	CC 05	CC 06	CC 07	CC 08	CC 09
01	1,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00

LEGENDA:

Id_{Comb} Numero identificativo della Combinazione di Carico.

CC Identificativo della tipologia di carico nella relativa tabella.

CC 01= Carico Permanente

CC 02= Permanenti NON Strutturali

CC 03= Pressione del Vento (+X)

CC 04= Pressione del Vento (+Y)

CC 05= Manutenzione x

CC 06= Manutenzione y

CC 07= Corto circuito 31.5 kA

CC 08= Dinamico (compressione)

CC 09= Dinamico (trazione)

6.3.1.3.COMBINAZIONI ECCEZIONALI

In accordo a [1] (Par. 2.5.3) le combinazioni derivanti da effetti di carico eccezionali quali corto circuito, vengono combinati come di seguito:

$$G_1 + G_2 + P + A_d + \square Q_{K1} + \square Q_{K2} + \dots$$

con:

G₁ = carichi permanenti;

G₂ = carichi permanenti non strutturali;

P = pretensione e precompressione;

A_d = azione eccezionale;

= coefficienti di combinazione;

Q_{Ki} = azioni variabili.

sono state costruite considerando le azioni elementari definite al Paragrafo 3.1 ed i coefficienti di combinazione relativi alle relative azioni variabili (Rif. [1] Par. 2.5.3).

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301 D R 0120 Rev. 02

6.3.2. STATI LIMITE DI ESERCIZIO

Le combinazioni delle azioni assunte per le verifiche agli stati limite di esercizio della fondazione, in accordo a quanto previsto dall'attuale normativa (rif. [1]), sono quelle relative alle combinazioni di carico menzionate in precedenza.

Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio(SLE) irreversibili

$$G_1 + G_2 + P + Q_{k1} + \square \square_{k2} Q \square_{k3} \square_{k3} Q \dots$$

Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE)reversibili:

$$G_1 + G_2 + P + \square \square_{k1} Q + \square_{k2} Q + \square_{k3} Q \dots$$

Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine:

$$G_1 + G_2 + P + \square \square_{k1} \bigcirc \square_{k2} \bigcirc \square_{k2} \bigcirc \square_{k3} \bigcirc \dots$$

dove:

 G_{kj} valore caratteristico della j-esima azione permanente;

valore caratteristico della h-esima deformazione impressa; P_{kh}

 Q_{kl} valore caratteristico dell'azione variabile di base di ogni combinazione;

 \boldsymbol{Q}_{ki} valore caratteristico della i-esima azione variabile;

coefficiente atto a definire i valori delle azioni ammissibili di durata breve ma ancora significativi nei riguardi della possibile concomitanza con altre azioni variabili;

coefficiente atto a definire i valori delle azioni ammissibili ai frattili di ordine 0,95 delle distribuzioni dei valori istantanei; ψ_{1i}

coefficiente atto a definire i valori quasi permanenti delle azioni ammissibili ai valori medi delle distribuzioni dei valori ψ_{2i} istantanei.

6.3.2.1.COMBINAZIONE DI AZIONI QUASI PERMANENTI - COEFFICIENTI

							SERVIZIO	SERVIZIO(SLE): Quasi permanent			
Id _{Comb}	CC 01	CC 02	CC 03	CC 04	CC 05	CC 06	CC 07	CC 08	CC 09		
01	1,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00		

LEGENDA:

 Id_{Comb} Numero identificativo della Combinazione di Carico.

Identificativo della tipologia di carico nella relativa tabella.

CC 01= Carico Permanente

CC 02= Permanenti NON Strutturali

CC 03= Pressione del Vento (+X)

CC 04= Pressione del Vento (+Y) CC 05= Manutenzione x

CC 06= Manutenzione y

CC 07= Corto circuito 31.5 kA

CC 08= Dinamico (compressione)

CC 09= Dinamico (trazione)

6.3.2.2.SLE: COMBINAZIONE DI AZIONI FREQUENTI – COEFFICIENTI

								SERVIZIO(SLE): Frequente		
I d _{Comb}	CC 01	CC 02	CC 03	CC 04	CC 05	CC 06	CC 07	CC 08	CC 09	
01	1,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
02	1,00	1,00	0,20	0,00	0,00	0,00	0,00	0,00	0,00	
03	1,00	1,00	0,00	0,20	0,00	0,00	0,00	0,00	0,00	
04	1,00	1,00	0,00	0,00	0,50	0,00	0,00	0,00	0,00	
05	1,00	1,00	0,00	0,00	0,00	0,50	0,00	0,00	0,00	
06	1,00	1,00	0,00	0,00	0,00	0,00	0,00	0,30	0,00	
07	1,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,30	

LEGENDA:

Numero identificativo della Combinazione di Carico.

Id_{Comb} Identificativo della tipologia di carico nella relativa tabella.

CC 01= Carico Permanente

CC 02= Permanenti NON Strutturali

CC 03= Pressione del Vento (+X)

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301_D_R_0120 Rev. 02

							9	SERVIZIO(SLE): Frequente		
I d _{Comb}	CC 01	CC 02	CC 03	CC 04	CC 05	CC 06	CC 07	CC 08	CC 09	

CC 04= Pressione del Vento (+Y)

CC 05= Manutenzione x CC 06= Manutenzione y

CC 07= Corto circuito 31.5 kA

CC 08= Dinamico (compressione) CC 09= Dinamico (trazione)

6.3.2.3.SLE: COMBINAZIONE DI AZIONI RARA - COEFFICIENTI

							SERVIZIO(SLE): Caratteristica(RARA)		
Id _{Comb}	CC 01	CC 02	CC 03	CC 04	CC 05	CC 06	CC 07	CC 08	CC 09
01	1,00	1,00	0,00	0,00	1,00	1,00	0,00	1,00	1,00
02	1,00	1,00	0,00	0,60	1,00	1,00	0,00	1,00	1,00
03	1,00	1,00	0,60	0,00	1,00	1,00	0,00	1,00	1,00
04	1,00	1,00	1,00	0,00	1,00	1,00	0,00	1,00	1,00
05	1,00	1,00	0,00	1,00	1,00	1,00	0,00	1,00	1,00

LEGENDA:

 Id_{Comb}

Numero identificativo della Combinazione di Carico. Identificativo della tipologia di carico nella relativa tabella.

CC 01= Carico Permanente

CC 02= Permanenti NON Strutturali

CC 03= Pressione del Vento (+X)

CC 04= Pressione del Vento (+Y)

CC 05= Manutenzione x

CC 06= Manutenzione y CC 07= Corto circuito 31.5 kA

CC 08= Dinamico (compressione) CC 09= Dinamico (trazione)

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301_D_R_0120 Rev. 02

6.4. INTERRUTTORE - FONDAZIONE N°02 e N°10;

6.4.1. CARATTERISTICHE DELLA FONDAZIONE

Trattasi di una piastra di base in c.a. a contatto con il terreno avente dimensioni di 2,00x6,20x0,50m è provvista di tre gruppi da quattro tirafondi disposti a maglia quadrata, per l'installazione dell'apparecchiatura.

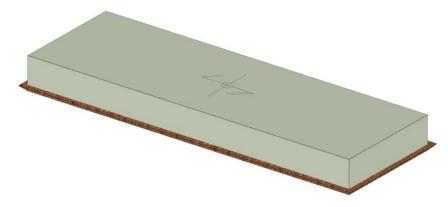


Fig. Vista assonometrica fondazione per interruttore tripolare

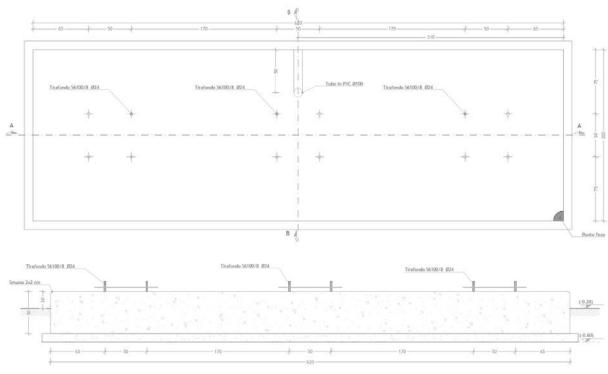


Fig. Pianta e sezione fondazione per interruttore tripolare

FRI-E Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301_D_R_0120 Rev. 02

6.4.2. CARICHI

Si riporta di seguito il riepilogo dei carichi determinati nelle verifiche della sovrastruttura (scarichi in fondazione).

APPO	OGGIO UNIPOL	ARE													
	PESI			TIRI CONDUTT	ORI		VENTO X				VENTO \	1	İ		
Fx=		daN	Fx=	0	daN	Fx=	200	daN	F	(=		daN			
Fy=		daN	Fy=	0	daN	Fy=		daN	Fy	/=	302	daN			
Fz=	854	daN	Fz=		daN	Fz=		daN	Fz	:=		daN			
Mx=		daNm	Mx=	0	daNm	Mx=		daNm	М	x=	1110	daNm			
Му=		daNm	My=	0	daNm	My=	645	daNm	М	y=		daNm			
Mz=		daNm	Mz=		daNm	Mz=		daNm	М	z=		daNm			
	MANUTENZIO	NE X		MANUTENZIO	NE Y		C.C. 31,5	kA		Dir	amico (tra	zione)	Dina	amico (comp	ressione)
Fx=	100	daN	Fx=		daN	Fx=	0	daN	Fx	=		daN	Fx=		daN
Fy=		daN	Fy=	100	daN	Fy=	200	daN	Fy	/=	150	daN	Fy=	400	daN
Fz=	100	daN	Fz=	100	daN	Fz=		daN	Fz	=	-1500	daN	Fz=	2000	daN
Мх=		daNm	Mx=	278	daNm	Mx=	1040	daNm	М	χ=	390	daNm	Mx=	1040	daNm
Му=	278	daNm	My=		daNm	My=		daNm	М	y=		daNm	My=		daNm
Mz=		daNm	Mz=		daNm	Mz=		daNm	М	z=		daNm	Mz=		daNm

I carichi permanenti strutturali e non strutturali derivanti dal peso proprio della fondazione e da quello del piazzale sono:

Carichi sugli eler	nenti
elemento	carico
Peso proprio platea	15.500 [daN]
Peso piazzale di riporto su platea	0 [daN/mq]

6.4.3. PLATEE

VERIFICHE PRESSOFLESSIONE RETTA ALLO STATO LIMITE ULTIMO

													F	Platee -	Verifi	che pres	soflession	ne retta al	lo SLU
Dir	Pos	Nodo	N_{Ed}	M _{Ed}	As	A_{df}	CS	Nodo	N_{Ed}	M _{Ed}	A_s	A_{df}	CS	Nodo	N _{Ed}	M _{Ed}	As	A_{df}	CS
			[N]	[N·m]	[cm ² /cm]	[cm ² /cm]			[N]	[N·m]	[cm ² /cm]	[cm ² /cm]			[N]	[N·m]	[cm ² /cm]	[cm ² /cm]	
Fond	dazio				Platea														
P	S	00001	0	2.697	0,04524	0,04524	31,25	00003	0	890	0,04524	0,04524	94,71	00005	0	3.018	0,04524	0,04524	27,93
	- 1		0	14.648	0,04524	0,04524	5,75		0	10.198	0,04524	0,04524	8,27		0	12.460	0,04524	0,04524	6,77
S	S		0	1.165	0,04524	0,04524	72,36		0	1.200	0,04524	0,04524	70,24		0	1.173	0,04524	0,04524	71,86
	- 1		0	18.974	0,04524	0,04524	4,44		0	14.731	0,04524	0,04524	5,72		0	18.948	0,04524	0,04524	4,45
P	S	00007	0	314	0,04524	0,04524	NS	80000	0	310	0,04524	0,04524	NS	00009	0	0	0,04524	0,04524	-
	ı		0	120	0,04524	0,04524	NS		0	224	0,04524	0,04524	NS		14	148	0,04524	0,04524	NS
S	S		0	0	0,04524	0,04524	-		0	0	0,04524	0,04524	-		0	77	0,04524	0,04524	NS
	ı		0	223	0,04524	0,04524	NS		0	221	0,04524	0,04524	NS		0	154	0,04524	0,04524	NS
Р	S	00010	0	0	0,04524	0,04524	-	00011	0	421	0,04524	0,04524	NS	00012	0	774	0,04524	0,04524	NS
	ı		0	241	0,04524	0,04524	NS		0	1.802	0,04524	0,04524	46,78		0	5.106	0,04524	0,04524	16,51
S	S		0	79	0,04524	0,04524	NS		0	51	0,04524	0,04524	NS		0	283	0,04524	0,04524	NS
	- 1		0	154	0,04524	0,04524	NS		0	919	0,04524	0,04524	91,72		0	1.199	0,04524	0,04524	70,30
Р	S	00013	1	1.521	0,04524	0,04524	55,42	00014	0	1.094	0,04524	0,04524	77,05	00015	0	1.679	0,04524	0,04524	50,20
	ı		0	4.062	0,04524	0,04524	20,75		0	2.886	0,04524	0,04524	29,21		0	1.745	0,04524	0,04524	48,31
S	S		0	13	0,04524	0,04524	NS		0	243	0,04524	0,04524	NS		0	0	0,04524	0,04524	-
	1		0	1.467	0,04524	0,04524	57,46		0	826	0,04524	0,04524	NS		0	1.534	0,04524	0,04524	54,95
Р	S	00016	0	932	0,04524	0,04524	90,44	00017	0	375	0,04524	0,04524	NS	00018	0	1.743	0,04524	0,04524	48,36
	ı		-1	1.015	0,04524	0,04524	83,05		0	1.740	0,04524	0,04524	48,44		0	1.576	0,04524	0,04524	53,49
S	S		0	385	0,04524	0,04524	NS		-2	186	0,04524	0,04524	NS		0	0	0,04524	0,04524	-
	ı		0	779	0,04524	0,04524	NS		0	756	0,04524	0,04524	NS		0	1.636	0,04524	0,04524	51,52
Р	S	00019	0	2.726	0,04524	0,04524	30,92	00020	0	4.084	0,04524	0,04524	20,64	00021	0	2.661	0,04524	0,04524	31,68
	1		0	1.664	0,04524	0,04524	50,66		-1	1.530	0,04524	0,04524	55,09		17	2.399	0,04524	0,04524	35,14
S	S		0	239	0,04524	0,04524	NS		0	0	0,04524	0,04524	-		0	581	0,04524	0,04524	NS
	1		0	821	0,04524	0,04524	NS		0	1.465	0,04524	0,04524	57,54		0	669	0,04524	0,04524	NS
Р	S	00022	0	391	0,04524	0,04524	NS	00023	0	0	0,04524	0,04524	-	00024	0	933	0,04524	0,04524	90,35
	1		0	1.584	0,04524	0,04524	53,22		0	967	0,04524	0,04524	87,17		26	153	0,04524	0,04524	NS
S	S		8	64	0.04524	0.04524	NS		0	1.214	0.04524	0,04524	69.43		0	1.820	0.04524	0.04524	46,32
'	ı		0	899	0,04524	0,04524	93,76		0	1.551	0,04524	0,04524	54,35		0	4.994	0,04524	0,04524	16,88
Р	S	00025	0	0	0.04524	0.04524	-	00026	0	1.342	0.04524	0.04524	62,81	00027	0	0	0.04524	0.04524	-
	li		0	642	0,04524	0,04524	NS		0	0	0,04524	0,04524	_		0	3.824	0.04524	0.04524	22,04
S	S		0	0	0,04524	0,04524	_		0	0	0,04524	0,04524	_		0	81	0,04524	0.04524	NS
	Ĭ		0	7.080	0,04524	0,04524	11,91		0	4.932	0,04524	0,04524	17,09		0	401	0,04524	0,04524	NS
Р	S	00028	0	1.786	0.04524	0.04524	47.20	00029	0	3.651	0.04524	0.04524	23,09	00030	0	6.391	0.04524	0,04524	13,19
'	Ĭ		0	4.613	0,04524	0,04524	18,27		-2	2.034	0,04524	0,04524	41,44		0	248	0,04524	0,04524	NS
S	S	1	0	0	0,04524	0,04524	-		0	1.657	0,04524	0,04524	50,87		0	0	0,04524	0,04524	-

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301_D_R_0120 Rev. 02

													F	Platee -	Verifi	che pres	soflession	ne retta al	llo SLU
Dir	Pos	Nodo	N _{Ed}	M _{Ed}	As	A _{df}	CS	Nodo	N _{Ed}	M _{Ed}	As	A _{df}	CS	Nodo	N _{Ed}	M _{Ed}	As	A_{df}	CS
			[N]	[N·m]	[cm ² /cm]	[cm ² /cm]			[N]	[N·m]	[cm ² /cm]	[cm ² /cm]			[N]	[N·m]	[cm ² /cm]	[cm ² /cm]	
	- 1		0	2.069	0,04524	0,04524	40,74		0	93	0,04524	0,04524	NS		0	1.931	0,04524	0,04524	43,65
Р	S	00031	0	3.063	0,04524	0,04524	27,52	00032	30	90	0,04524	0,04524	NS	00033	0	280	0,04524	0,04524	NS
	- 1		1	321	0,04524	0,04524	NS		0	2.861	0,04524	0,04524	29,46		0	2.710	0,04524	0,04524	31,10
S	S		0	1.412	0,04524	0,04524	59,70		0	0	0,04524	0,04524	-		0	0	0,04524	0,04524	-
	1		0	0	0,04524	0,04524	-		0	2.165	0,04524	0,04524	38,93		0	2.275	0,04524	0,04524	37,05
Р	S	00034	0	3.004	0,04524	0,04524	28,06	00035	0	5.442	0,04524	0,04524	15,49	00036	2	1.092	0,04524	0,04524	77,19
	1		-1	355	0,04524	0,04524	NS		0	2.227	0,04524	0,04524	37,85		0	4.183	0,04524	0,04524	20,15
S	S		0	1.407	0,04524	0,04524	59,91		0	0	0,04524	0,04524	-		0	1.610	0,04524	0,04524	52,36
	- 1		0	0	0,04524	0,04524	-		0	1.943	0,04524	0,04524	43,38		0	90	0,04524	0,04524	NS
Р	S	00037	12	41	0,04524	0,04524	NS	00038	0	0	0,04524	0,04524	-	00039	0	1.384	0,04524	0,04524	60,91
	- 1		0	6.127	0,04524	0,04524	13,76		0	3.958	0,04524	0,04524	21,30		0	0	0,04524	0,04524	-
S	S		0	15	0,04524	0,04524	NS		0	0	0,04524	0,04524	-		0	0	0,04524	0,04524	-
	1		0	1.643	0,04524	0,04524	51,30		0	646	0,04524	0,04524	NS		0	4.790	0,04524	0,04524	17,60
Р	S	00040	0	0	0,04524	0,04524	-	00041	0	780	0,04524	0,04524	NS	00042	0	42	0,04524	0,04524	NS
	- 1		0	649	0,04524	0,04524	NS		0	158	0,04524	0,04524	NS		0	928	0,04524	0,04524	90,83
S	S		0	516	0,04524	0,04524	NS		0	2.512	0,04524	0,04524	33,56		0	1.345	0,04524	0,04524	62,67
	1		0	6.693	0,04524	0,04524	12,59		0	3.029	0,04524	0,04524	27,83		24	1.172	0,04524	0,04524	71,92
Р	S	00043	0	157	0,04524	0,04524	NS	00044	0	0	0,04524	0,04524	-	00045	0	0	0,04524	0,04524	-
	- 1		0	815	0,04524	0,04524	NS		0	1.194	0,04524	0,04524	70,60		0	1.230	0,04524	0,04524	68,53
S	S		0	331	0,04524	0,04524	NS		0	0	0,04524	0,04524	-		0	0	0,04524	0,04524	-
	- 1		0	911	0,04524	0,04524	92,53		0	2.619	0,04524	0,04524	32,19		0	2.618	0,04524	0,04524	32,20
Р	S	00046	0	170	0,04524	0,04524	NS	00047	0	445	0,04524	0,04524	NS	00048	0	4.105	0,04524	0,04524	20,53
	- 1		0	837	0,04524	0,04524	NS		0	10.552	0,04524	0,04524	7,99		0	3.795	0,04524	0,04524	22,21
S	S		0	422	0,04524	0,04524	NS		0	0	0,04524	0,04524	-		0	0	0,04524	0,04524	-
	- 1		0	542	0,04524	0,04524	NS		0	12.700	0,04524	0,04524	6,64		0	7.393	0,04524	0,04524	11,40
Р	S	00049	0	5.597	0,04524	0,04524	15,06	00050	0	0	0,04524	0,04524	-	00051	0	5.724	0,04524	0,04524	14,73
	1		0	254	0,04524	0,04524	NS		0	14.330	0,04524	0,04524	5,88		0	211	0,04524	0,04524	NS
S	S		0	0	0,04524	0,04524	-		-1	93	0,04524	0,04524	NS		0	0	0,04524	0,04524	-
	- 1		0	6.061	0,04524	0,04524	13,91		0	13.068	0,04524	0,04524	6,45		0	5.917	0,04524	0,04524	14,25
Р	S	00052	0	6.590	0,04524	0,04524	12,79	00053	0	0	0,04524	0,04524	-	00054	0	0	0,04524	0,04524	-
	1		36	1.565	0,04524	0,04524	53,86		0	11.024	0,04524	0,04524	7,65		0	3.420	0,04524	0,04524	24,65
S	S		0	0	0,04524	0,04524	-		0	0	0,04524	0,04524	-		0	5.211	0,04524	0,04524	16,18
	- 1		0	7.125	0,04524	0,04524	11,83		0	12.465	0,04524	0,04524	6,76		109	2.705	0,04524	0,04524	31,15
Р	S	00055	0	1.806	0,04524	0,04524	46,67	00056	0	2.081	0,04524	0,04524	40,51	00057	0	3.634	0,04524	0,04524	23,20
	1		0	8.666	0,04524	0,04524	9,73		0	3.079	0,04524	0,04524	27,38		22	1.943	0,04524	0,04524	43,38
S	S		0	6.828	0,04524	0,04524	12,35		0	876	0,04524	0,04524	96,23		0	4.752	0,04524	0,04524	17,74
	1		252	3.204	0,04524	0,04524	26,29		0	2.345	0,04524	0,04524	35,95		198	2.431	0,04524	0,04524	34,66
Р	S	00058	0	1.082	0,04524	0,04524	77,91	00059	0	4.191	0,04524	0,04524	20,11	00060	0	6.478	0,04524	0,04524	13,01
	1		0	3.705	0,04524	0,04524	22,75		0	2.020	0,04524	0,04524	41,73		49	4.125	0,04524	0,04524	20,43
S	S		0	4.516	0,04524	0,04524	18,67		0	901	0,04524	0,04524	93,56		0	6.760	0,04524	0,04524	12,47
	1		168	2.436	0,04524	0,04524	34,59		0	2.172	0,04524	0,04524	38,81		254	3.207	0,04524	0,04524	26,27
Р	S	00061	0	0	0,04524	0,04524	-												
	- 1		0	3.545	0,04524	0,04524	23,78												
S	S		0	4.964	0,04524	0,04524	16,98												
	1		0	3.528	0,04524	0,04524	23,89												

LEGENDA:

Direzione [P] = principale (asse locale 1) - [S] = secondaria (asse locale 2). Posizione [S] = superiore - [I] = inferiore. Area delle armature esecutive per unità di lunghezza. Dir

Pos

 $\boldsymbol{A}_{\boldsymbol{s}}$

Armatura disponibile per la flessione

A_{df} CS CS Coefficiente di sicurezza ([NS] = Non Significativo se CS ≥ 100; [VNR]= Verifica Non Richiesta; Informazioni aggiuntive sulla condizione: [V] = statica; [E] = eccezionale; [S] = sismica; [N] = sismica non lineare).

N_{Ed}, M_{Ed} Sollecitazioni di progetto.

VERIFICHE PRESSOFLESSIONE RETTA ALLO STATO LIMITE DI DANNO

											P	latee - Ve	rifiche p	ressofles	sione retta	allo SLD
Dir	Pos	Nodo	N _{Ed}	M _{Ed}	As	CS	Nodo	N_{Ed}	M _{Ed}	As	CS	Nodo	N_{Ed}	M _{Ed}	As	CS
			[N]	[N·m]	[cm ² /cm]			[N]	[N·m]	[cm ²]			[N]	[N·m]	[cm ²]	
Fonda	zione			Pla	itea 1											
P	S	00001	0	0	0,04524	-	00003	0	0	0,04524	-	00005	0	0	0,04524	-
	I		46	8.044	0,04524	12,23		0	5.520	0,04524	17,83		46	8.045	0,04524	12,23
S	S		0	0	0,04524	-		0	0	0,04524	-		0	0	0,04524	-
	1		36	8.132	0,04524	12,10		-2	6.781	0,04524	14,51		36	8.122	0,04524	12,12
Р	S	00007	0	0	0,04524	-	80000	0	0	0,04524	-	00009	0	0	0,04524	-
	1		-5	95	0,04524	NS		5	97	0,04524	NS		18	149	0,04524	NS
S	S		0	0	0,04524	-		0	0	0,04524	-		0	0	0,04524	-
	1		3	118	0,04524	NS		-3	121	0,04524	NS		0	0	0,04524	-
Р	S	00010	0	0	0,04524	-	00011	0	0	0,04524	-	00012	0	0	0,04524	-
	1		18	149	0,04524	NS		48	891	0,04524	NS		72	1.733	0,04524	56,78
S	S		0	0	0,04524	-		0	0	0,04524	-		0	0	0,04524	-
	I		0	0	0,04524	-		11	124	0,04524	NS		38	546	0,04524	NS
Р	S	00013	5	650	0,04524	NS	00014	-1	583	0,04524	NS	00015	9	606	0,04524	NS
	1		5	658	0,04524	NS		-1	174	0,04524	NS		0	0	0,04524	-
S	S		0	0	0,04524	-		0	113	0,04524	NS		0	0	0,04524	-
	ı		-2	992	0,04524	99,21		0	0	0,04524	-		-3	985	0,04524	99,91

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301_D_R_0120 Rev. 02

											P	latee - Vei	rifiche p	ressofles	sione retta	allo SL
Dir	Pos	Nodo	N _{Ed}	M _{Ed}	As	CS	Nodo	N _{Ed}	M _{Ed}	As	CS	Nodo	N _{Ed}	M _{Ed}	A _s	CS
P	S	00016	[N] 0	[N·m] 0	[cm²/cm] 0,04524	-	00017	[N]	[N·m] O	[cm ²] 0,04524	-	00018	[N]	[N·m] 539	[cm ²] 0,04524	NS
•	Ī	000.0	-3	716	0,04524	NS	00017	-1	781	0,04524	NS	000.0	0	0	0,04524	-
S	S		0	0	0,04524	-		-3	71	0,04524	NS		0	0	0,04524	-
	I		6	581	0,04524	NS		0	0	0,04524	-		4	1.045	0,04524	94,17
Р	S	00019	1	568	0,04524	NS	00020	-5	643	0,04524	NS	00021	0	0	0,04524	-
	I		1	198	0,04524	NS		-5	661	0,04524	NS		73	1.715	0,04524	57,37
S	S		0	111	0,04524	NS		0	0	0,04524	-		0	0	0,04524	-
D.	I	00022	0	0	0,04524	-	00022	2	985	0,04524	99,91	00024	37	550	0,04524	NS
Р	S	00022	0 47	0 880	0,04524 0,04524	NS	00023	0 79	0 189	0,04524 0,04524	- NS	00024	34 34	36 68	0,04524 0,04524	NS NS
S	S		0	0	0,04524	-		0	0	0,04524	-		0	0	0,04524	-
Ū	Ī		11	126	0,04524	NS		30	916	0,04524	NS		11	1.816	0,04524	54,19
Р	S	00025	0	0	0,04524	-	00026	3	314	0,04524	NS	00027	0	0	0,04524	-
	I		47	308	0,04524	NS		0	0	0,04524	-		-4	926	0,04524	NS
S	S		0	0	0,04524	-		0	0	0,04524	-		0	0	0,04524	-
	I		47	2.068	0,04524	47,58		-2	1.040	0,04524	94,63		17	318	0,04524	NS
Р	S	00028	0	0	0,04524	-	00029	8	226	0,04524	NS	00030	25	1.140	0,04524	86,32
	I		50	1.520	0,04524	64,74		8	1.130	0,04524	87,09		0	0	0,04524	-
S	S		0 34	0 817	0,04524 0,04524	- NS		12 0	160 0	0,04524 0,04524	NS -		0 14	0 958	0,04524 0,04524	- NS
P	S	00031	4	287	0,04524	NS	00032	0	0	0,04524	-	00033	0	0	0,04524	-
'	i	00031	4	77	0,04524	NS	00032	39	475	0,04524	NS	00033	39	496	0,04524	NS
S	S		1	116	0,04524	NS		0	0	0,04524	-		0	0	0,04524	-
	ı		0	0	0,04524	-		13	810	0,04524	NS		13	806	0,04524	NS
Р	S	00034	-4	251	0,04524	NS	00035	26	1.123	0,04524	87,63	00036	8	202	0,04524	NS
	I		-4	111	0,04524	NS		0	0	0,04524	-		8	1.157	0,04524	85,06
S	S		-1	118	0,04524	NS		0	0	0,04524	-		12	165	0,04524	NS
	I	00007	0	0	0,04524	-	00000	15	968	0,04524	NS	00000	0	0	0,04524	-
Р	S	00037	0 51	0 1.533	0,04524 0,04524	- 64,19	00038	0 4	0 931	0,04524 0,04524	- NS	00039	-4 0	313 0	0,04524 0,04524	NS -
S	S		0	0	0,04524	- 04,19		0	0	0,04524	-		0	0	0,04524	-
3	i		34	824	0,04524	NS		17	321	0,04524	NS		2	1.037	0,04524	94,90
Р	S	00040	0	0	0,04524	-	00041	36	41	0,04524	NS	00042	0	0	0,04524	-
	I		47	307	0,04524	NS		36	62	0,04524	NS		78	193	0,04524	NS
S	S		0	0	0,04524	-		0	0	0,04524	-		0	0	0,04524	-
	I		47	2.062	0,04524	47,72		12	1.816	0,04524	54,19		31	915	0,04524	NS
Р	S	00043	0	0	0,04524	- NG	00044	0	0	0,04524	- NG	00045	0	0	0,04524	- NG
	S		31	431	0,04524	NS		12	480	0,04524	NS		13	480 0	0,04524	NS
S) 		0 9	0 522	0,04524 0,04524	- NS		0 3	0 577	0,04524 0,04524	- NS		-4	576	0,04524 0,04524	- NS
P	S	00046	0	0	0,04524	-	00047	0	0	0,04524	-	00048	154	1.120	0,04524	87,84
•	ĭ	00010	30	433	0,04524	NS	00017	291	2.574	0,04524	38,21	00010	154	808	0,04524	NS
S	S		0	0	0,04524	-		0	0	0,04524	-		0	0	0,04524	_
	I		9	524	0,04524	NS		192	2.338	0,04524	42,07		203	1.866	0,04524	52,71
Р	S	00049	78	972	0,04524	NS	00050	0	0	0,04524	-	00051	78	1.021	0,04524	96,37
	I		0	0	0,04524	-		0	2.334	0,04524	42,16		0	0	0,04524	-
S	S		0	0	0,04524	-		0	0	0,04524	- 47.50		0	0	0,04524	-
	ı	00050	140	1.636	0,04524	60,13	00053	-1	2.072	0,04524	47,50	00054	140	1.610	0,04524	61,11
Р	S	00052	154 154	1.127 792	0,04524 0,04524	87,29 NS	00053	0 292	0 2.567	0,04524 0,04524	- 38,31	00054	0 186	0 1.292	0,04524 0,04524	- 76,14
S	S		0	0	0,04524	-		0	0	0,04524	-		0	0	0,04524	- 70,14
0	Ĭ		202	1.835	0,04524	53,61		190	2.323	0,04524	42,35		141	2.289	0,04524	42,98
Р	S	00055	0	0	0,04524	-	00056	10	1.219	0,04524	80,73	00057	93	241	0,04524	NS
	Ī		216	2.647	0,04524	37,16		0	0	0,04524	-		93	1.136	0,04524	86,61
S	S		0	0	0,04524	-		0	0	0,04524	-		0	0	0,04524	-
	I		328	2.310	0,04524	42,57		9	1.388	0,04524	70,90		258	1.938	0,04524	50,75
Р	S	00058	81	149	0,04524	NS	00059	10	1.201	0,04524	81,94	00060	0	0	0,04524	-
	I		81	1.170	0,04524	84,10		0	0	0,04524	-		214	2.642	0,04524	37,23
S	S		0	1 002	0,04524			0	0	0,04524	7/14		0	0	0,04524	42.57
P	S	00061	218 0	1.883	0,04524 0,04524	52,24		9	1.327	0,04524	74,16		330	2.310	0,04524	42,57
F		00001	185	1.293	0,04524	76,08										
				1.470	U,U+U2+	, , ,,,,,,			1	1						
S	S		0	0	0,04524	-										

LEGENDA:

Dir Direzione [P] = principale (asse locale 1) - [S] = secondaria (asse locale 2).

Pos Posizione [S] = superiore - [I] = inferiore. Area delle armature esecutive per unità di lunghezza.

 $\begin{array}{c} \textbf{A}_{s} \\ \textbf{CS} \end{array}$ Coefficiente di sicurezza ([NS] = Non Significativo se CS ≥ 100; [VNR]= Verifica Non Richiesta; Informazioni aggiuntive sulla condizione: [V] = statica; [E]

= eccezionale; [S] = sismica; [N] = sismica non lineare).

 $N_{\text{Ed}},\,M_{\text{Ed}}$ Sollecitazioni di progetto.

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301 D R 0120 Rev. 02

Nodo/	Dir		Co	Compre mpressio		alcestruz struzzo r					Trazi Trazione acc	one acciai ciaio/FRP			
Tp _{rnf}		Id _{Cmb}	σ _{cc}	$\sigma_{cd,amm}$	N _{Ed}	M_{Ed}	CS	Verificato	Id _{Cmb}	σ_{at}	$\sigma_{td,amm}$	N_{Ed}	M_{Ed}	CS	Verificato
			[N/mm ²]	[N/mm ²]	[N]	[N·m]				[N/mm ²]	[N/mm ²]	[N]	[N·m]		
Fondazion	ne			Platea	1										
	D	RAR	0,218	18,43	0	-9.657	84,52	SI	RAR	2,878	360,00	0	-9.657	NS	SI
00050	P	QPR	0,038	13,82	0	-1.666	NS	SI	-	-	-	-	-	-	-
00050	c	RAR	0,201	18,43	0	-8.887	91,84	SI	RAR	2,648	360,00	0	-8.887	NS	SI
	3	QPR	0,032	13,82	0	-1.438	NS	SI	-	-	-	-	-	-	-

LEGENDA:

Rinf. Indica la presenza del rinforzo sulla sezione di verifica.

Dir Direzione [P] = principale (asse locale 1) - [S] = secondaria (asse locale 2).

Identificativo della Combinazione di Azione: [QPR] = Quasi Permanente - [FRQ] = Frequente - [RAR] = Rara.

 $\begin{array}{ll} \sigma_{cc} & \text{Tensione massima di compressione nel calcestruzzo della Trave/Rinforzo.} \\ \sigma_{cd,amm} & \text{Tensione ammissibile per la verifica a compressione del calcestruzzo.} \\ \sigma_{at} & \text{Tensione massima di trazione nell'acciaio della Trave/Rinforzo o nel FRP.} \\ \sigma_{td,amm} & \text{Tensione ammissibile per la verifica a trazione dell'acciaio/rinforzo.} \\ \end{array}$

N_{Ed}, M_{Ed} Sollecitazioni di progetto.

CS Coefficiente di Sicurezza (= $\sigma_{cd, amm}/\sigma_{cc}$; $\sigma_{td, amm}/\sigma_{at}$). [NS] = Non Significativo (CS \geq 100).

Verificato [S1] = La verifica è soddisfatta ($\sigma_{cc} \le \sigma_{cd,amm}$; $\sigma_{at} \le \sigma_{td,amm}$). [NO] = La verifica NON è soddisfatta ($\sigma_{cc} > \sigma_{cd,amm}$; $\sigma_{at} > \sigma_{td,amm}$). **Nota** Nella tabella, per ogni elemento, viene riportato il nodo della shell che ha il coefficiente di sicurezza (CS) più piccolo.

VERIFICA ALLO STATO LIMITE DI FESSURAZIONE

									Plat	tee - verific	a allo stato	limite o	li fessurazion
Nodo	Dir	Id _{Cmb}	N _{Ed}	M _{Ed}	$\sigma_{\mathrm{ct,f}}$	σ_{t}	€ _{sm}	$A_{\rm e}$	Δ_{sm}	W _d	W_{amm}	CS	Verificato
			[N]	[N·m]	[N/mm ²]	[N/mm ²]		[cm ²]	[mm]	[mm]	[mm]		
Fondazione			Platea 1			AA	= PCA						
NOTA: L'eler	mento NON	l è fessura	to. Di segu	ito si ripor	ta il nodo st	rutturale p	er la quale :	si riscont	ra la mas	ssima tensi	one di trazi	ione(ma	x σ _{ct.f})
00001	D	FRQ	-	-5.802	0,13	2,45	0 E+00	0	0	0,000	0,400	-	SI
	P	QPR	-	-4.575	0,10	2,45	0 E+00	0	0	0,000	0,300	-	SI
	C	FRQ	-	-7.405	0,17	2,45	0 E+00	0	0	0,000	0,400	-	SI
	3	QPR	-	-5.527	0,12	2,45	0 E+00	0	0	0,000	0,300	-	SI

LEGENDA:

Dir Direzione [P] = principale (asse locale 1) - [S] = secondaria (asse locale 2).

AA Identificativo dell'aggressività dell'ambiente: [PCA] = "Ordinario"; [MDA] = "Aggressivo"; [MLA] = "Molto aggressivo".

Identificativo dell'aggressività dell'ambiente: [PCA] = "Ordinario"; [MDA] = "Aggressivo"; [MLA] = "Molto aggressivo".

Identificativo dell'aggressività dell'ambiente: [PCA] = "Ordinario"; [MDA] = "Raggressivo".

Identificativo dell'aggressività dell'ambiente: [PCA] = "Ordinario"; [MDA] = "Raggressivo"; [MLA] = "Molto aggressivo".

Identificativo dell'aggressività dell'ambiente: [PCA] = "Ordinario"; [MDA] = "Raggressivo"; [MLA] = "Molto aggressivo".

 N_{Ed} , M_{Ed} Sollecitazioni di progetto.

σ_{ct,f} Tensione massima di trazione nel calcestruzzo per la fessurazione, calcolata nell'ipotesi di calcestruzzo resistente a trazione. Se tale valore è maggiore di

 σ_t la sezione è soggetta a fessurazione.

N.B. I valori negativi indicano una sezione interamente compressa. In tal caso le sollecitazioni forniscono il minimo valore di compressione.

Tensione massima di trazione nel calcestruzzo relativa allo stato limite di formazione delle fessure [relazione (4.1.13) del § 4.1.2.2.4 del DM 2018].

 $\mathbf{\epsilon}_{sm}$ Deformazione unitaria media delle barre di armatura.

 ${f A}_{f e}$ Area efficace del calcestruzzo teso.

Δ_{sm} Distanza media tra le fessure.

W_d Valore di calcolo di apertura massima delle fessure.
 W_{amm} Valore ammissibile di apertura delle fessure.

CS Coefficiente di Sicurezza (= W_d / W_{amm}). [NS] = Non Significativo (CS \geq 100). [-] = Fessurazioni nulle (W_d = 0).

 $\label{eq:Verificato} \textbf{Verificato} \hspace{0.5cm} [SI] \, = \, W_d \leq \, W_{amm} \, ; \, [NO] \, = \, W_d > \, W_{amm}$

RELAZIONE PRELIMINARE DELLE STRUTTURE

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301_D_R_0120 Rev. 02

6.5. TRASFORMATORE DI CORRENTE – FONDAZIONE N°03 e N°12;

6.5.1. CARATTERISTICHE DELLA FONDAZIONE

Trattasi di una piastra di base in c.a. a contatto con il terreno sulla quale viene impostato n.1 batolo per l'ancoraggio delle apparecchiature sovrastanti. La piastra summenzionata ha dimensioni di 1,90x1,90x0,30m, mentre, il batolo ha dimensione 0,70x0,70x0,50m ed è provvisto di quattro tirafondi disposti a maglia quadrata, per l'installazione dell'apparecchiatura.

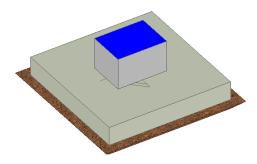


Fig. Vista assonometrica fondazione per trasformatore di corrente

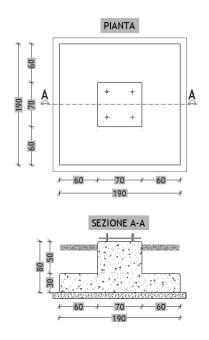


Fig. Pianta e sezione fondazione per trasformatore di corrente

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301 D R 0120 Rev. 02

6.5.2. CARICHI

Si riporta di seguito il riepilogo dei carichi agenti, determinati nelle verifiche della sovrastruttura (scarichi in fondazione). Sostegno TA 150 kV:

Carichi sulla fondazione di n°1 sostegno TA	FX	FY	FZ	MX	MY	MZ	$M = (MX^2 + MY^2)^{1/2}$
riferiti al piede della colonna	(N)	(N)	(N)	(Nmm)	(Nmm)	(Nmm)	(Nmm)
Node 3504: 10: SLU_1x [Combination 1]	883	1641	-11909	-5050151	2756319	0	5753374
Node 3504: 11: SLU_1y [Combination 2]	0	2524	-11909	-7806469	0	0	7806469
Node 3504: 12: SLU_2x [Combination 3]	883	1763	-11909	-5673506	2756319	0	6307612
Node 3504: 13: SLU_2y [Combination 4]	0	2645	-11909	-8429825	0	0	8429825
Node 3504: 14: SLU_3x [Combination 5]	1472	1641	-11909	-5050151	4593864	0	6826977
Node 3504: 15: SLU_3y [Combination 6]	0	3113	-11909	-9644015	0	0	9644015
Node 3504: 16: SLU_4x [Combination 7]	1472	1763	-11909	-5673506	4593864	0	7300155
Node 3504: 17: SLU_4y [Combination 8]	0	3234	-11909	-10267371	0	0	10267371
Node 3504: 24: Sismica_1 [Combination 15]	-3801	-276	-9864	-7374507	-15264508	-1	16952538
Node 3504: 25: Sismica_2 [Combination 16]	-1141	-2915	-9864	-18055904	-4579538	-1	18627610
Node 3504: 26: Sismica_3 [Combination 17]	-1140	-255	-12332	-7370793	-4579395	0	8677525
Node 3504: 27: Sismica_4 [Combination 18]	-3801	-195	-9864	-7790078	-15264508	-1	17137401
Node 3504: 28: Sismica_5 [Combination 19]	-1141	-2834	-9864	-18471475	-4579538	-1	19030700
Node 3504: 29: Sismica_6 [Combination 20]	-1140	-174	-12332	-7786363	-4579395	0	9033178
Node 3504: 30: EccezionalePTS [Combination 21]	0	800	-8807	-2307600	0	0	2307600
Node 3504: 31: EccezionalePTC [Combination 22]	0	800	-8807	-2307600	0	0	2307600
Node 3504: 32: EccezionaleCC [Combination 23]	2080	10819	-4720	-53710082	10671440	0	54759954

I carichi permanenti strutturali e non strutturali derivanti dal peso proprio della fondazione e da quello del piazzale sono:

	Carichi sugli elementi
elemento	carico
	[daN]
Peso proprio batolo	613 [daN]
Peso proprio platea	2.708 [daN]
Peso piazzale di riporto su platea	900 [daN/mq]

6.5.3. BATOLI

VERIFICHE PRESSOFLESSIONE DEVIATA ALLO STATO LIMITE ULTIMO

											Batol	i (CA)	- Veri	fiche	press	ofles	ssion	ie dev	/iata a	allo S	SLU
	N.	D.A	D.A	CC	N.4	R.A	NI.			_					Lato	1			Lato	2	
	N _{Ed}	M _{Ed,X}	$M_{Ed,Y}$	CS	$M_{Rd,X}$	IVI _{Rd,Y}	N _{Ed,max}	N _R	α	R _f	Φ Ve	Ψvi	φw	L	n _{req}	n _f	ф	L	n _{req}	n _f	ф
	[N]	[N·m]	[N·m]		[N·m]	[N·m]	[N]	[N]			mm	mm	mm	cm				cm			
Bato	lo: Batolo	1																			
	10.845	-11.711	-59.119	7.40[V]	178.180	178.180	0	7.905.892	1,86	NO	12	-	10	70	1	2	12	70	1	2	12

LEGENDA:

CS Coefficiente di sicurezza ([NS] = Non Significativo se CS ≥ 100; [VNR]= Verifica Non Richiesta; Informazioni aggiuntive sulla condizione: [V] =

statica; [E] = eccezionale; [S] = sismica; [N] = sismica non lineare).

 $egin{array}{ll} N_{Ed,max} & \mbox{Massimo sforzo di compressione.} \ N_R & \mbox{Sforzo Normale resistente.} \end{array}$

α Esponente per la valutazione del coefficiente di sicurezza.

 R_f [SI] = elemento con presenza di rinforzo; [NO] = elemento senza rinforzo.

 N_{Ed} , $M_{Ed,X}$, $M_{Ed,Y}$ Sollecitazioni di progetto ($N_{Ed} > 0$: compressione).

 $M_{Rd,X}$, $M_{Rd,Y}$ Momento Resistente intorno ad X e Y.

 ϕ_{Ve} , ϕ_{Vi} , ϕ_{St} Diametri, rispettivamente, delle barre di acciaio nei vertici esterni e nei vertici interni e delle staffe; $[\phi_{Vi}] = Significativo e valorizzato solo in caso di$

sezione cava.

L, n_{reg}, n_r, \$\phi\$ Per sezione del batolo rettangolare e armata simmetricamente, lunghezza, numero di registri, numero di barre e relativo diametro per il lato 1 e 2 della sezione. Se la sezione considerata non è rettangolare e/o simmetricamente armata, tali colonne sono vuote e le informazioni riguardanti

l'armatura sono riportate per ciascun lato in apposita casella di testo.

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301 D R 0120 Rev. 02

	V	V _{Ed,2}	CS	Vı	Rcd	V	Rsd,s		V_{fd}			Vi		V	^		D
	V _{Ed,3}		CS	Х	Υ	Х	Υ	Х		Υ	Х		Υ	V _{Rd,s}	A _{SW}	S _{Asw}	Kf
	[N]	[N]		[N]	[N]	[N]	[N]	[N]		[N]	[N]		[N]	[N]	[cm ² /cm]	[cm]	
Batolo: Batolo 1																	
	3.801	10.819	58,94	1357797	1357797	637709	637709	0		0	0		0	-	0,1091	14	NO

LEGENDA:

V_{Ed,3} Taglio di progetto in direzione 3.

V_{Ed,2} Taglio di progetto in direzione 2.

CS Coefficiente di sicurezza ([NS] = Non Significativo se $CS \ge 100$; [VNR] = Verifica Non Richiesta; Informazioni aggiuntive sulla condizione: [V] = statica; [E] =

eccezionale; [S] = sismica; [N] = sismica non lineare).

 $egin{array}{ll} egin{array}{ll} egi$

V_{fd} Resistenza a taglio dovuta al rinforzo FRP.

V_j Contributo acciaio al Taglio ultimo dovuto all'incamiciatura in acciaio.

V_{Rd,s} Resistenza a taglio per scorrimento.
 A_{sw} Area delle staffe per unità di lunghezza.
 S_{Asw} Passo massimo staffe da normativa.

 $\mathbf{R_f}$ [SI] = elemento con presenza di rinforzo; [NO] = elemento senza rinforzo.

VERIFICHE DELLE TENSIONI DI ESERCIZIO

Batoli - verifiche delle tensioni di esercizio Compressione calcestruzzo Trazione acciaio Trazione acciaio/FRP rinforzo Tp_{rnf} Compressione calcestruzzo rinforzo M_{Ed,3} $M_{\text{Ed,2}}$ CS Verificato $M_{\text{Ed,3}}$ CS Verificato N_{Ed} $M_{Ed,2}$ σat N/mm² [N/mm²] [N·m] [N·m] [N/mm²] [N/mm² [N·m] Batolo: Batolo 1 1,179 19,92 RAR 10.845 59.119 RAR 15.255 360.00 10.845 59.119 23.60 SI 11.711 16.90 SI 11.711 QPR 14,94 SI 0.012 6.125 NS

LEGENDA:

Rinf. Indica la presenza del rinforzo sulla sezione di verifica.

Identificativo della Combinazione di Azione: [QPR] = Quasi Permanente - [FRQ] = Frequente - [RAR] = Rara.

 σ_{cc} Tensione massima di compressione nel calcestruzzo.

 $\sigma_{\text{cd,amm}}$ Tensione ammissibile per la verifica a compressione del calcestruzzo.

N_{Ed}, M_{Ed.3}, M_{Ed.2} Sollecitazioni di progetto.

 σ_{at} Tensione massima di trazione nell'acciaio della Trave/Rinforzo o nel FRP.

σ_{td,amm} Tensione ammissibile per la verifica a trazione dell'acciaio.

CS Coefficiente di Sicurezza (= $\sigma_{cd,amm}/\sigma_{cc}$; $\sigma_{td,amm}/\sigma_{at}$). [NS] = Non Significativo (CS \geq 100).

 $\text{Verificato} \hspace{1cm} [Si] = \sigma_{cc} \leq \sigma_{cd,amm}; \; \sigma_{at} \leq \sigma_{td,amm}. \; [NO] = \sigma_{cc} > \sigma_{cd,amm}; \; \sigma_{at} > \sigma_{td,amm}$

VERIFICA ALLO STATO LIMITE DI FESSURAZIONE

									Batoli -	verifica al	lo stato lin	nite di f	essurazione		
	Id _{Cmb}	N _{Ed}	$M_{Ed,3}$	$M_{Ed,2}$	$\sigma_{\mathrm{ct,f}}$	σ_{t}	€ sm	A _e	Δ_{sm}	W_d	W _{amm}	CS	Verificato		
		[N]	[N·m]	[N·m]	[N/mm ²]	[N/mm ²]		[cm ²]	[mm]	[mm]	[mm]				
Batolo: Batolo															
				AA= PCA											
-	FRQ	7.541	3.513	17.736	0,33	2,58	0 E+00	0	0	0,000	0,400	-	SI		
-	QPR	6.125	-	-	-0,01	2,58	0 E+00	0	0	0,000	0,300	-	SI		

LEGENDA:

 σ_t

AA Identificativo dell'aggressività dell'ambiente: [PCA] = Ordinarie (Poco aggressivo) - [MDA] = Aggressive (Moderatamente aggressivo) - [MLA] =

Molto aggressive

Identificativo della Combinazione di Azione: [QPR] = Quasi Permanente - [FRQ] = Frequente - [RAR] = Rara.

 N_{Ed} , $M_{Ed,3}$, $M_{Ed,2}$ Sollecitazioni di progetto.

 $σ_{ct,f}$ Tensione massima di trazione nel calcestruzzo per la fessurazione, calcolata nell'ipotesi di calcestruzzo resistente a trazione. Se tale valore è maggiore di $σ_t$ la sezione è soggetta a fessurazione. N.B. I valori negativi indicano una sezione interamente compressa. In tal caso le

sollecitazioni forniscono il minimo valore di compressione.

Tensione massima di trazione nel calcestruzzo relativa allo stato limite di formazione delle fessure [relazione (4.1.37) del § 4.1.2.2.4.1 del DM

2018]

 $\begin{array}{lll} \epsilon_{sm} & & \text{Deformazione media nel calcestruzzo.} \\ A_e & & \text{Area efficace del calcestruzzo teso.} \\ \Delta_{sm} & & \text{Distanza media tra le fessure.} \end{array}$

 $\mathbf{W_d}$ Valore di calcolo di apertura massima delle fessure.

W_{amm} Valore ammissibile di apertura delle fessure

CS Coefficiente di Sicurezza (= W_d / W_{amm}). [NS] = Non Significativo (CS \geq 100). [-] = Fessurazioni nulle (W_d = 0).

 $\label{eq:Wamm} \textbf{Verificato} \qquad \qquad [SI] \, = \, W_d \leq \, W_{amm} \, ; \, [NO] \, = \, W_d > \, W_{amm} \,$

6.5.4. PLATEA

VERIFICHE PRESSOFLESSIONE RETTA ALLO STATO LIMITE ULTIMO

															Plate	ee - Veri	fiche presso	oflessione re	etta allo SLU
Dir	Pos	Nodo	N _{Ed}	M _{Ed}	As	A _{df}	CS	Nodo	N _{Ed}	M _{Ed}	As	A _{df}	CS	Nodo	N_{Ed}	M _{Ed}	As	A _{df}	CS
			[N]	[N·m]	[cm ² /cm]	[cm ² /cm]			[N]	[N·m]	[cm ² /cm]	[cm ² /cm]			[N]	[N·m]	[cm ² /cm]	[cm ² /cm]	
Fond	Fondazione Platea 1																		
P	S	00002	0	0	0,04524	0,04524	-	00003	0	2.408	0,04524	0,04524	20,42	00004	0	850	0,04524	0,04524	57,85
	1		0	7.446	0,04524	0,04524	6,60		0	4.700	0,04524	0,04524	10,46		0	3.894	0,04524	0,04524	12,63
S	S		0	0	0,04524	0,04524	-		0	0	0,04524	0,04524	-		0	0	0,04524	0,04524	-
	1		0	7.424	0,04524	0,04524	6,62		0	8.858	0,04524	0,04524	5,55		0	6.985	0,04524	0,04524	7,04

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301 D R 0120 Rev. 02

															Plate	ee - Veri	fiche presso	oflessione re	tta allo SLU
Dir	Pos	Nodo	N_{Ed}	M _{Ed}	As	A _{df}	CS	Nodo	N _{Ed}	M _{Ed}	As	A _{df}	CS	Nodo	N _{Ed}	M _{Ed}	As	A _{df}	CS
			[N]	[N·m]	[cm ² /cm]	[cm ² /cm]			[N]	[N·m]	[cm ² /cm]	[cm ² /cm]			[N]	[N·m]	[cm ² /cm]	[cm ² /cm]	
Р	S	00005	0	0	0,04524	0,04524	-	00006	0	0	0,04524	0,04524	-						
	1		0	9.611	0,04524	0,04524	5,12		0	8.031	0,04524	0,04524	6,12						
S	S		0	1.855	0,04524	0,04524	26,51		0	0	0,04524	0,04524	-						
	1		0	5.100	0,04524	0,04524	9,64		0	3.955	0,04524	0,04524	12,43						

LEGENDA:

Dir Direzione [P] = principale (asse locale 1) - [S] = secondaria (asse locale 2).

Pos Posizione [S] = superiore - [I] = inferiore.

As Area delle armature esecutive per unità di lunghezza.

Adf Armatura disponibile per la flessione

CS Coefficiente di sicurezza ([NS] = Non Significativo se CS ≥ 100; [VNR]= Verifica Non Richiesta; Informazioni aggiuntive sulla condizione: [V] = statica; [E]

= eccezionale; [S] = sismica; [N] = sismica non lineare).

N_{Ed}, M_{Ed} Sollecitazioni di progetto.

VERIFICHE DELLE TENSIONI ALLO STATO LIMITE DI ESERCIZIO

											Plate	e - verifich	ne delle te	nsioni d	di esercizio
Nodo/	Dir		Co		ssione cald ne calcestr		rzo					azione acci acciaio/FR			
Tp _{rnf}	I U _{Cmb} G _{cc} [N/mm ²]			σ _{cd,amm}	N _{Ed}	M _{Ed}	CS	Verificato	Id _{Cmb}	σ_{at}	σ _{td,amm}	N _{Ed}	M _{Ed}	CS	Verificato
			[N/mm ²]	[N/mm ²]	[N]	[N·m]				[N/mm ²]	[N/mm ²]	[N]	[N·m]		
Fondazione				Platea 1											
	D	RAR	0,530	19,92	0	-8.704	37,56	SI	RAR	6,629	360,00	0	-8.704	54,31	SI
00005	Р	QPR	0,184	14,94	0	-3.023	81,12	SI	-	-	-	-	-	-	-
00005	S	RAR	0,255	19,92	0	-4.183	78,16	SI	RAR	3,186	360,00	0	-4.183	NS	SI
	S	QPR	0,186	14,94	0	-3.057	80,22	SI	-	-	-	-	-	-	-

LEGENDA:

Rinf. Indica la presenza del rinforzo sulla sezione di verifica.

Direzione [P] = principale (asse locale 1) - [S] = secondaria (asse locale 2).

Identificativo della Combinazione di Azione: [QPR] = Quasi Permanente - [FRQ] = Frequente - [RAR] = Rara.

 $\begin{array}{ll} \sigma_{cc} & \text{Tensione massima di compressione nel calcestruzzo della Trave/Rinforzo.} \\ \sigma_{cd,amm} & \text{Tensione ammissibile per la verifica a compressione del calcestruzzo.} \\ \sigma_{at} & \text{Tensione massima di trazione nell'acciaio della Trave/Rinforzo o nel FRP.} \\ \sigma_{td,amm} & \text{Tensione ammissibile per la verifica a trazione dell'acciaio/rinforzo.} \\ \end{array}$

N_{Ed}, M_{Ed} Sollecitazioni di progetto.

CS Coefficiente di Sicurezza (= $\sigma_{cd, amm}/\sigma_{cc}$; $\sigma_{td, amm}/\sigma_{at}$). [NS] = Non Significativo (CS \geq 100).

 $\textbf{Verificato} \quad [SI] = La \ \text{verifica} \ \text{è soddisfatta} \ (\sigma_{cc} \leq \sigma_{cd,amm} \ ; \ \sigma_{at} \leq \sigma_{td,amm}). \ [NO] = La \ \text{verifica} \ \text{NON} \ \text{è soddisfatta} \ (\sigma_{cc} > \sigma_{cd,amm}; \ \sigma_{at} > \sigma_{td,amm}).$

Nota Nella tabella, per ogni elemento, viene riportato il nodo della shell che ha il coefficiente di sicurezza (CS) più piccolo.

VERIFICA ALLO STATO LIMITE DI FESSURAZIONE

									Platee - ۱	erifica allo	stato limi	te di fe	essurazione		
Nodo	Dir	I d _{Cmb}	N _{Ed}	M _{Ed}	$\sigma_{\mathrm{ct,f}}$	σ_{t}	ε _{sm}	A_{e}	Δ_{sm}	W _d	W_{amm}	CS	Verificato		
			[N]	[N·m]	[N/mm ²]	[N/mm ²]		[cm ²]	[mm]	[mm]	[mm]				
Fondazione	•		Platea 1			AA	A= PCA								
NOTA: L'elem	OTA: L'elemento NON è fessurato. Di seguito si riporta il nodo strutturale per la quale si riscontra la massima tensione di trazione(max $\sigma_{ct,f}$)														
00005	D	FRQ	-	-4.728	0,29	2,58	0 E+00	0	0	0,000	0,400	-	SI		
	Р	QPR	-	-3.023	0,18	2,58	0 E+00	0	0	0,000	0,300	-	SI		
	c	FRQ	-	-3.394	0,21	2,58	0 E+00	0	0	0,000	0,400	-	SI		
	3	QPR	-	-3.057	0,19	2,58	0 E+00	0	0	0,000	0,300	-	SI		

LEGENDA:

Dir Direzione [P] = principale (asse locale 1) - [S] = secondaria (asse locale 2).

AA Identificativo dell'aggressività dell'ambiente: [PCA] = Ordinarie (Poco aggressivo) - [MDA] = Aggressive (Moderatamente aggressivo) - [MLA] = Molto

aggressive.

Identificativo della Combinazione di Azione: [QPR] = Quasi Permanente - [FRQ] = Frequente - [RAR] = Rara.

N_{Ed}, M_{Ed} Sollecitazioni di progetto.

 $\sigma_{ct,f}$ Tensione massima di trazione nel calcestruzzo per la fessurazione, calcolata nell'ipotesi di calcestruzzo resistente a trazione. Se tale valore è maggiore di σ_t la sezione è soggetta a fessurazione. N.B. I valori negativi indicano una sezione interamente compressa. In tal caso le sollecitazioni forniscono il minimo

valore di compressione.

σ_t Tensione massima di trazione nel calcestruzzo relativa allo stato limite di formazione delle fessure [relazione (4.1.37) del § 4.1.2.2.4.1 del DM 2018].

Deformazione media nel calcestruzzo.

Ae Area efficace del calcestruzzo teso.

Distanza media tra le fessure.

 $\begin{array}{ll} \Delta_{sm} & \text{Distanza media tra le fessure.} \\ W_d & \text{Valore di calcolo di apertura massima delle fessure.} \end{array}$

W_{amm} Valore ammissibile di apertura delle fessure

CS Coefficiente di Sicurezza (= W_d / W_{amm}). [NS] = Non Significativo (CS \geq 100). [-] = Fessurazioni nulle (W_d = 0).

 $\label{eq:Verificato} \textbf{Verificato} \quad [SI] = W_d \leq W_{amm} \; ; \; [NO] = W_d > W_{amm}$

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301_D_R_0120 Rev. 02

6.6. SEZIONATORE - FONDAZIONE N°04 e N°09;

6.6.1. CARATTERISTICHE DELLA FONDAZIONE

Trattasi di una piastra di base in c.a. a contatto con il terreno avente dimensioni di 1,40x4,80x0,50m ed è provvista di dodici tirafondi disposti a maglia quadrata, per l'installazione dell'apparecchiatura.

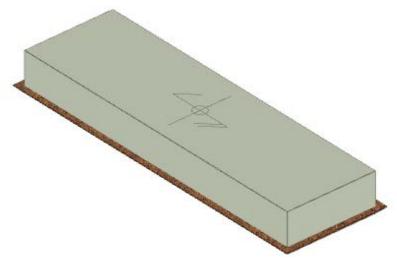


Fig. Vista assonometrica fondazione per sezionatore tripolare orizzontale

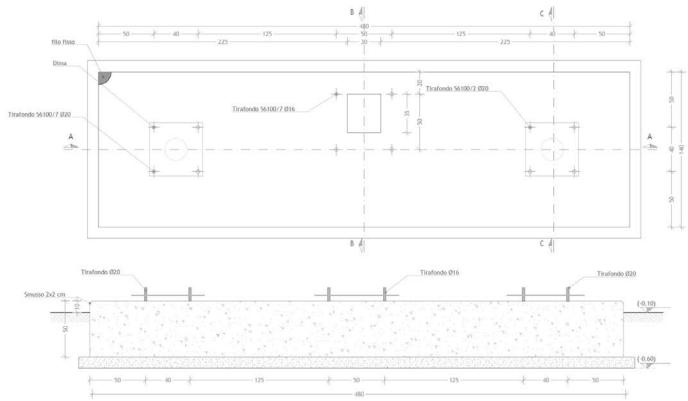


Fig. Pianta e sezione fondazione per sezionatore tripolare orizzontale

6.6.2. CARICHI

Si riporta di seguito il riepilogo dei carichi determinati nelle verifiche della sovrastruttura (scarichi in fondazione).

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301 D R 0120 Rev. 02

	PESI		TIR	CONDUT	TORI		VENTO X	(VENTO Y	•
Fx=		daN	Fx=	0	daN	Fx=	121	daN	Fx=		daN
Fy=		daN	Fy=		daN	Fy=		daN	Fy=	141	daN
Fz=	804	daN	Fz=		daN	Fz=		daN	Fz=	127	daN
Mx=		daNm	Mx=		daNm	Mx=		daNm	Mx=	249	daNm
My=		daNm	My=	0	daNm	My=	336	daNm	My=		daNm
Mz=		daNm	Mz=		daNm	Mz=		daNm	Mz=		daNm
Ν	/ANUTENZIO	NE X	MA	NUTENZIO	NE Y		C.C. 31,5	kA			
Fx=	100	daN	Fx=		daN	Fx=		daN			
Fy=		daN	Fy=	100	daN	Fy=	200	daN			
Fz=	100	daN	Fz=	100	daN	Fz=		daN			
Mx=		daNm	Mx=	272	daNm	Mx=	904	daNm			
Му=	272	daNm	My=		daNm	My=		daNm			
Mz=		daNm	Mz=		daNm	Mz=		daNm			

I carichi permanenti strutturali e non strutturali derivanti dal peso proprio della fondazione e da quello del piazzale sono:

Carichi sugli eler	menti
elemento	carico
Peso proprio platea	8.400 [daN]
Peso piazzale di riporto su platea	0 [daN/mq]

6.6.3. BATOLO

VERIFICHE PRESSOFLESSIONE DEVIATA ALLO STATO LIMITE ULTIMO

											Bat	oli (C	:A) - \	/erific	he pro	esso	flessi	one d	eviata	allo	SLU
1	N.	D.A	B.4	CC	D.A	D.A.	N.	N.		_					Lato	1			Lato	2	
LV	N _{Ed}	$M_{Ed,X}$	$M_{Ed,Y}$	CS	$M_{Rd,X}$	$M_{Rd,Y}$	N _{Ed,max}	N _R	α	R _f	ΨVe	Φvi	φw	L	n _{req}	n _f	ф	L	n _{req}	n _f	ф
	[N]	[N·m]	[N·m]		[N·m]	[N·m]	[N]	[N]			[mm]	[mm]	[mm]	[cm]			[mm]	[cm]			[mm]
Batolo	1																				
	11.650	28.331	-	5.19[V]	147.038	147.038	10.150	3.445.662	1,00	NO	12	-	12	60	1	2	12	60	1	2	12

LEGENDA:

Livello o piano di appartenenza dell'elemento strutturale.

CS Coefficiente di sicurezza ([NS] = Non Significativo se CS ≥ 100; [VNR] = Verifica Non Richiesta; Informazioni aggiuntive sulla condizione: [V] = statica; [E] =

eccezionale; [S] = sismica; [N] = sismica non lineare).

 $N_{\text{Ed,max}}$ Massimo sforzo di compressione.

Sforzo Normale resistente. N_R

Esponente per la valutazione del coefficiente di sicurezza. α

 R_{f} [SI] = elemento con presenza di rinforzo; [NO] = elemento senza rinforzo.

 N_{Ed} , Sollecitazioni di progetto (N_{Ed} > 0: compressione).

 $M_{Ed,X}$

 $M_{Ed,Y}$

 $M_{Rd,X_{\ell}}$ Momento Resistente intorno ad X e Y. $M_{Rd,Y}$

φν_e, **φ**ν_i,

n_f, ϕ

Diametri, rispettivamente, delle barre di acciaio nei vertici esterni e nei vertici interni e delle staffe; $[\phi_{VI}] = Significativo e valorizzato solo in caso di sezione$

фst L, n_{req}, Per sezione del pilastro rettangolare e armata simmetricamente, lunghezza, numero di registri, numero di barre e relativo diametro per il lato 1 e 2 della

sezione. Se la sezione considerata non è rettangolare e/o simmetricamente armata, tali colonne sono vuote e le informazioni riguardanti l'armatura sono riportate per ciascun lato in apposita casella di testo.

VERIFICHE A TAGLIO PER PRESSOFLESSIONE DEVIATA ALLO STATO LIMITE ULTIMO

									Batoli ((CA) - Verit	fiche a ta	glio per	pressofle	ssione dev	viata all	o SLU
Lv	v	V	CS	V	Rcd	V _R	sd,s	١	I _{Rd,f}	V	Rd,i	v	A	sw		В
Lv	V _{Ed,3}	V _{Ed,2}	CS	Х	Υ	Х	Υ	Х	Υ	Х	Υ	V _{Rd,s}	Х	Υ	S _{Asw}	κ _f
	[N]	[N]		[N]	[N]	[N]	[N]	[N]	[N]	[N]	[N]	[N]	[cm ² /cm]	[cm ² /cm]	[cm]	
Batolo 1																
	6.525	3.210	NS	1275392	1275392	1439184	1439184	0	0	0	0	-	0,75398	0,75398	6	NO

LEGENDA:

Livello o piano di appartenenza dell'elemento strutturale. Lv

 $V_{Ed.3}$ Taglio di progetto in direzione 3.

 $\mathbf{V}_{\text{Ed,2}}$ Taglio di progetto in direzione 2.

CS Coefficiente di sicurezza ([NS] = Non Significativo se CS ≥ 100; [VNR]= Verifica Non Richiesta; Informazioni aggiuntive sulla condizione: [V] = statica; [E] = eccezionale; [S] = sismica; [N] = sismica non lineare).

 V_{Rcd} Resistenza a taglio compressione del calcestruzzo. Resistenza a taglio trazione delle staffe.

 $V_{\text{Rsd,s}}$ Resistenza a taglio dovuta al rinforzo FRP $V_{Rd,f}$

Contributo acciaio al Taglio ultimo dovuto all'incamiciatura in acciaio. $V_{Rd,j}$

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301 D R 0120 Rev. 02

										Batoli (0	CA) - Verifiche	e a taglio pei	r pressofle:	ssione dev	viata allo	o SLU
	Lv	V	V	CS	V	Rcd	V	Rsd,s	V _R	d,f	$V_{Rd,i}$	v	Α	sw		В
- 1	LV	V _{Ed,3}	V _{Ed,2}	CS	Х	Υ	Х	Υ	Х	Υ	X	Y V _{Rd,s}	Х	Υ	SASW	κ _f
		[N]	[N]		[N]	[N]	[N]	[N]	[N]	[N]	[N]	[N] [N]	[cm ² /cm]	[cm ² /cm]	[cm]	

 $\textbf{V}_{\text{Rd,s}}$ Resistenza a taglio per scorrimento. \mathbf{A}_{sw} Area delle staffe per unità di lunghezza. Passo massimo staffe da normativa. SAsw

 R_f [SI] = elemento con presenza di rinforzo; [NO] = elemento senza rinforzo.

VERIFICHE A PRESSOFLESSIONE DEVIATA ALLO STATO LIMITE DI DANNO

										Bat	ioli (C	;Α) - \	/erific	he pr	esso	flessi	one d	eviata	allo	SLD
Lv	NI NI	D.A	D.A	CC	R.A	D.A	NI.	N	_					Lato	1			Late	2	
LV	N _{Ed}	$M_{Ed,X}$	M _{Ed,Y}	CS	$M_{Rd,X}$	$M_{Rd,Y}$	N _{Ed,max}	N _R	α	ΨVe	Φvi	φw	L	n _{req}	n _f	ф	L	n _{req}	n _f	ф
	[N]	[N·m]	[N·m]		[N·m]	[N·m]	[N]	[N]		[mm]	[mm]	[mm]	[cm]			[mm]	[cm]			[mm]
Batolo 1																				
	11.650	28.331	-	6.08[S]	172.360	172.360	10.150	5.168.493	1,00	12	12	12	60	1	2	12	60	1	2	12

LEGENDA:

Livello o piano di appartenenza dell'elemento strutturale. Lν

CS Coefficiente di sicurezza ([NS] = Non Significativo se CS ≥ 100; [VNR] = Verifica Non Richiesta; Informazioni aggiuntive sulla condizione: [V] = statica; [E]

= eccezionale; [S] = sismica; [N] = sismica non lineare).

Massimo sforzo di compressione. $N_{\text{Ed,max}}$

Sforzo Normale resistente. N_R

Esponente per la valutazione del coefficiente di sicurezza. N_{Ed} , Sollecitazioni di progetto (N_{Ed} > 0: compressione).

 $M_{Ed,X}$ $M_{\text{Ed},Y}$

Momento Resistente intorno ad X e Y. $M_{Rd,X}$

 $M_{Rd,Y}$ Diametri, rispettivamente, delle barre di acciaio nei vertici esterni e nei vertici interni e delle staffe; $[\phi_W]$ = Significativo e valorizzato solo in caso di sezione φνε, φνι,

φst

Per sezione del pilastro rettangolare e armata simmetricamente, lunghezza, numero di registri, numero di barre e relativo diametro per il lato 1 e 2 della L, n_{reg} sezione. Se la sezione considerata non è rettangolare e/o simmetricamente armata, tali colonne sono vuote e le informazioni riguardanti l'armatura sono n_f, ϕ

riportate per ciascun lato in apposita casella di testo.

VERIFICHE A TAGLIO PER PRESSOFLESSIONE DEVIATA ALLO STATO LIMITE DI DANNO

									Batoli (C	A) -	verifich	ie a tag	no per pres	soriession	e deviata a	IIIO SLD
1.0	v	v	CC	Vı	Rcd	V _R	!sd,s		$V_{Rd,f}$		V	/ _{Rd,i}	.,	A	l _{sw}	
Lv	V _{Ed,3}	V _{Ed,2}	CS	Х	Υ	Х	Υ	Х	Υ		Х	Υ	$V_{Rd,s}$	Х	Υ	S _{Asw}
	[N]	[N]		[N]	[N]	[N]	[N]	[N]	[N]		[N]	[N]	[N]	[cm ² /cm]	[cm ² /cm]	[cm]
Batolo 1																
	6.525	3.210	NS	1913088	1913088	689611	689611	0	0		0	0	-	0,75398	0,75398	6

LEGENDA:

Lv Livello o piano di appartenenza dell'elemento strutturale.

 $V_{Ed,3}$ Taglio di progetto in direzione 3. Taglio di progetto in direzione 2. $V_{Ed.2}$

Coefficiente di sicurezza ([NS] = Non Significativo se CS ≥ 100; [VNR] = Verifica Non Richiesta; Informazioni aggiuntive sulla condizione: [V] = statica; [E] CS

= eccezionale; [S] = sismica; [N] = sismica non lineare).

 V_{Rcd} Resistenza a taglio compressione del calcestruzzo. Resistenza a taglio trazione delle staffe. $V_{Rsd,s}$

Resistenza a taglio dovuta al rinforzo FRP. $V_{\text{Rd,f}}$ $V_{Rd,i}$ Contributo acciaio al Taglio ultimo dovuto all'incamiciatura in acciaio.

Resistenza a taglio per scorrimento. $V_{Rd,s}$ Area delle staffe per unità di lunghezza. Asw Passo massimo staffe da normativa.

VERIFICHE DELLE TENSIONI DI ESERCIZIO

											Batoli -	verifiche	delle t	ensioni	di esercizio	
1.,,			Co	mpressio	ne calces	truzzo						Trazior	ne acciaio)		
Lv			Compr	essione c	alcestruz	zo rinforz	0				Trazi	one accia	aio/FRP r	inforzo		
Tp _{rnf}	Id _{Cmb}	σ _{cc}	σ _{cd,amm}	N_{Ed}	$M_{Ed,3}$	$M_{Ed,2}$	I d _{Cmb}	σ_{at}	$\sigma_{td,amm}$	N_{Ed}	$M_{Ed,3}$	$M_{Ed,2}$	CS	Verificato		
		[N/mm ²]	[N/mm ²]	[N]	[N·m]	[N·m]		[N/mm ²]	[N/mm ²]	[N]	[N·m]	[N·m]				
Batolo 1																
	RAR	0,595	18,43	12.150	-18.887	2.950	30.97	SI	RAR	6,331	360,00	12.150	-18.887	2.950	56.85	SI
	QPR	0,027	13,82	10.150	-	-	NS	SI								

LEGENDA:

Livello o piano di appartenenza dell'elemento strutturale. L'eventuale lettera tra parentesi distingue i diversi tratti del pilastro al livello considerato.

Rinf. Indica la presenza del rinforzo sulla sezione di verifica.

 Id_{Cmb} Identificativo della Combinazione di Azione: [QPR] = Quasi Permanente - [FRQ] = Frequente - [RAR] = Rara.

Tensione massima di compressione nel calcestruzzo. σ_{cc}

Tensione ammissibile per la verifica a compressione del calcestruzzo. σ_{cd.amm}

 N_{Ed} , $M_{Ed,3}$, $M_{Ed,2}$

Sollecitazioni di progetto.

Tensione massima di trazione nell'acciaio della Trave/Rinforzo o nel FRP. σ_{at}

Tensione ammissibile per la verifica a trazione dell'acciaio. Otd.amm

Coefficiente di Sicurezza (= $\sigma_{cd,amm}/\sigma_{cc}$; $\sigma_{td,amm}/\sigma_{at}$). [NS] = Non Significativo (CS \geq 100). CS

Verificato $[Si] = \sigma_{cc} \leq \sigma_{cd,amm}; \ \sigma_{at} \leq \sigma_{td,amm}. \ [NO] = \sigma_{cc} > \sigma_{cd,amm}; \ \sigma_{at} > \sigma_{td,amm}.$

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301 D R 0120 Rev. 02

Diatos Verifieho proceefleccione rette alla CIII

VERIFICA ALLO STATO LIMITE DI FESSURAZIONE

									Batoli - v	verifica all	o stato limi	ite di fe	ssurazione		
Lv	I d _{Cmb}	N _{Ed}	$M_{Ed,3}$	M _{Ed,2}	$\sigma_{\text{ct,f}}$	σ_{t}	€ _{sm}	Ae	Δ_{sm}	Wd	W _{amm}	CS	Verificato		
		[N]	[N·m]	[cm ²]	[mm]	[mm]	[mm]								
Batolo 1															
	AA= PCA														
-	FRQ	6.100	-3.126	-	0,06	2,45	0 E+00	0	0	0,000	0,400	-	SI		
-	QPR	6.100	-	-	-0,02	2,45	0 E+00	0	0	0,000	0,300	-	SI		

LEGENDA:

Lv Livello o piano di appartenenza dell'elemento strutturale. L'eventuale lettera tra parentesi distingue i diversi tratti del pilastro al livello considerato.

Identificativo dell'aggressività dell'ambiente: [PCA] = "Ordinario"; [MDA] = "Aggressivo"; [MLA] = "Molto aggressivo" Identificativo della Combinazione di Azione: [QPR] = Quasi Permanente - [FRQ] = Frequente - [RAR] = Rara. AΑ

 Id_{Cmb}

 N_{Ed} , $M_{Ed,3}$, Sollecitazioni di progetto. $M_{\text{Ed},2}$

 $\sigma_{\text{ct,f}}$ Tensione massima di trazione nel calcestruzzo per la fessurazione, calcolata nell'ipotesi di calcestruzzo resistente a trazione. Se tale valore è maggiore di

 σ_t la sezione è soggetta a fessurazione.

N.B. I valori negativi indicano una sezione interamente compressa. In tal caso le sollecitazioni forniscono il minimo valore di compressione Tensione massima di trazione nel calcestruzzo relativa allo stato limite di formazione delle fessure [relazione (4.1.13) del § 4.1.2.2.4 del DM 2018].

 σ_{t} Deformazione unitaria media delle barre di armatura.

Area efficace del calcestruzzo teso. Distanza media tra le fessure. Δ_{sm}

Valore di calcolo di apertura massima delle fessure.

Valore ammissibile di apertura delle fessure.

Coefficiente di Sicurezza (= W_d/W_{amm}). [NS] = Non Significativo (CS \geq 100). [-] = Fessurazioni nulle ($W_d = 0$).

Verificato $[SI] = W_d \le W_{amm}$; $[NO] = W_d > W_{amm}$

6.6.4. PLATEE

VERIFICHE PRESSOFLESSIONE RETTA ALLO STATO LIMITE ULTIMO

													Р	iatee -	vermo	ne pres	sonessio	ne retta a	IIO SLU
Dir	Pos	Nodo	N_{Ed}	M_{Ed}	As	A_{df}	CS	Nodo	N_{Ed}	M _{Ed}	A_s	A_{df}	CS	Nodo	N_{Ed}	M_{Ed}	A_s	A_{df}	CS
			[N]	[N·m]	[cm ² /cm]	[cm ² /cm]			[N]	[N·m]	[cm ² /cm]	[cm ² /cm]			[N]	[N·m]	[cm ² /cm]	[cm ² /cm]	
Fon	dazion	ie			Plate	a 1													
P	S	00003	0	0	0,04524	0,04524	-	00004	0	2.091	0,04524	0,04524	49,03	00005	0	0	0,04524	0,04524	-
	I		0	5.643	0,04524	0,04524	18,17		0	3.931	0,04524	0,04524	26,08		0	7.012	0,04524	0,04524	14,62
S	S		0	0	0,04524	0,04524	-		0	0	0,04524	0,04524	-		0	0	0,04524	0,04524	-
	I		0	4.797	0,04524	0,04524	21,37		0	4.288	0,04524	0,04524	23,91		0	3.092	0,04524	0,04524	33,15
Р	S	00006	0	2.551	0,04524	0,04524	40,18	00007	0	0	0,04524	0,04524	-	80000	0	962	0,04524	0,04524	NS
	I		0	2.749	0,04524	0,04524	37,29		0	7.530	0,04524	0,04524	13,61		0	3.365	0,04524	0,04524	30,46
S	S		0	0	0,04524	0,04524	-		0	121	0,04524	0,04524	NS		0	48	0,04524	0,04524	NS
	I		0	4.527	0,04524	0,04524	22,64		0	2.407	0,04524	0,04524	42,59		0	3.974	0,04524	0,04524	25,80
Р	S	00009	0	0	0,04524	0,04524	-												
	I		0	7.040	0,04524	0,04524	14,56												
S	S		0	0	0,04524	0,04524	-												
	I		0	7.311	0,04524	0,04524	14,02												

LEGENDA:

Dir Direzione [P] = principale (asse locale 1) - [S] = secondaria (asse locale 2).

Posizione [S] = superiore - [I] = inferiore. Pos

Area delle armature esecutive per unità di lunghezza. \mathbf{A}_{s}

 A_{df} Armatura disponibile per la flessione

Coefficiente di sicurezza ([NS] = Non Significativo se CS ≥ 100; [VNR] = Verifica Non Richiesta; Informazioni aggiuntive sulla condizione: [V] = statica; [E]

= eccezionale; [S] = sismica; [N] = sismica non lineare).

Sollecitazioni di progetto. N_{Ed} , M_{Ed}

VERIFICHE PRESSOFLESSIONE RETTA ALLO STATO LIMITE DI DANNO

											Pla	tee - Verif	iche pre	ssoflessi	one retta a	IIO SLD
Dir	Pos	Nodo	N _{Ed}	M _{Ed}	As	CS	Nodo	N_{Ed}	M _{Ed}	As	CS	Nodo	N _{Ed}	M _{Ed}	As	CS
			[N]	[N·m]	[cm ² /cm]			[N]	[N·m]	[cm ²]			[N]	[N·m]	[cm ²]	
Fondaz	ione			Pla	itea 1											
P	S	00003	0	0	0,04524	-	00004	0	0	0,04524	-	00005	0	0	0,04524	-
	1		0	4.376	0,04524	27,17		0	2.272	0,04524	52,32		0	2.272	0,04524	52,32
S	S		0	0	0,04524	-		0	0	0,04524	-		0	0	0,04524	-
	I		0	3.666	0,04524	32,43		0	1.966	0,04524	60,47		0	1.966	0,04524	60,47
Р	S	00006	0	0	0,04524	-	00007	0	0	0,04524	-	80000	0	0	0,04524	-
	l I		0	2.272	0,04524	52,32		0	2.272	0,04524	52,32		0	2.831	0,04524	41,99
S	S		0	0	0,04524	-		0	0	0,04524	-		0	0	0,04524	-
	1		0	1.966	0,04524	60,47		0	1.966	0,04524	60,47		0	3.201	0,04524	37,14
Р	S	00009	0	0	0,04524	-										
	I		0	2.831	0,04524	41,99										
S	S		0	0	0,04524	-										
	1		0	3.201	0,04524	37,14										

LEGENDA:

Dir Direzione [P] = principale (asse locale 1) - [S] = secondaria (asse locale 2).

Pos

Posizione [S] = superiore - [I] = inferiore.

Area delle armature esecutive per unità di lunghezza. A_s

CS Coefficiente di sicurezza ([NS] = Non Significativo se CS ≥ 100; [VNR] = Verifica Non Richiesta; Informazioni aggiuntive sulla condizione: [V] = statica; [E]

= eccezionale; [S] = sismica; [N] = sismica non lineare).

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301 D R 0120 Rev. 02

											Pla	tee - Verif	iche pre	ssoflessic	ne retta a	allo SLD
Dir																
			[N]	[N·m]	[cm ² /cm]			[N]	[N·m]	[cm ²]			[N]	[N·m]	[cm ²]	

 N_{Ed} , M_{Ed} Sollecitazioni di progetto.

<u>VERIFICHE DELLE TENSIONI DI ESERCIZIO</u>

											Pla	atee - verifi	iche delle t	ensioni	di esercizio
NI-d-				Compre	ssione c	alcestruzz	20				Tr	azione acc	iaio		
Nodo/	Dir		Co	ompression	ne calce	struzzo rir	nforzo				Trazione	acciaio/FR	P rinforzo		
Tp _{rnf}		Id _{Cmb}	σ _{cc}	σ _{cd,amm}	N_{Ed}	M _{Ed}	CS	Verificato	Id _{Cmb}	σ_{at}	σ _{td,amm}	N _{Ed}	M _{Ed}	CS	Verificato
			[N/mm ²]	[N/mm ²]	[N]	[N·m]				[N/mm ²]	[N/mm ²]	[N]	[N·m]		
Fondazior	[N/mm²]			Platea 1											
	D	RAR	0,084	18,43	0	-5.302	NS	SI	RAR	1,093	360,00	0	-5.302	NS	SI
00007	F	QPR	0,034	13,82	0	-2.115	NS	SI	-	-	-	-	-	-	-
00007	C	RAR	0,012	18,43	0	-785	NS	SI	RAR	0,162	360,00	0	-785	NS	SI
	3	QPR	0,029	13,82	0	-1.852	NS	SI	-	-	-	-	-	-	-

LEGENDA:

Rinf. Indica la presenza del rinforzo sulla sezione di verifica.

Dir

Direzione [P] = principale (asse locale 1) - [S] = secondaria (asse locale 2).

Identificativo della Combinazione di Azione: [QPR] = Quasi Permanente - [FRQ] = Frequente - [RAR] = Rara. Id_{Cmb}

Tensione massima di compressione nel calcestruzzo della Trave/Rinforzo. σ_{cc} Tensione ammissibile per la verifica a compressione del calcestruzzo. $\sigma_{cd,amm}$ Tensione massima di trazione nell'acciaio della Trave/Rinforzo o nel FRP. σ_{at} Tensione ammissibile per la verifica a trazione dell'acciaio/rinforzo. $\sigma_{td,a}$

Sollecitazioni di progetto. N_{Ed} , M_{Ed}

Coefficiente di Sicurezza (= $\sigma_{cd, amm}/\sigma_{cc}$; $\sigma_{td, amm}/\sigma_{at}$). [NS] = Non Significativo (CS \geq 100). CS

[SI] = La verifica è soddisfatta ($\sigma_{cc} \le \sigma_{cd,amm}$; $\sigma_{at} \le \sigma_{td,amm}$). [NO] = La verifica NON è soddisfatta ($\sigma_{cc} > \sigma_{cd,amm}$; $\sigma_{at} > \sigma_{td,amm}$). Verificato Nota Nella tabella, per ogni elemento, viene riportato il nodo della shell che ha il coefficiente di sicurezza (CS) più piccolo.

VERIFICA ALLO STATO LIMITE DI FESSURAZIONE

	[N] [N/mm²] [N/mm²] [mm] [mm] [mm] ndazione Platea 1 TA: L'elemento NON è fessurato. Di seguito si riporta il nodo strutturale per la quale si riscontra la massima tensione di trazione(max σ _{ct,f})												
									Platee - v	verifica allo	stato limi	te di fe	ssurazione
Nodo	Dir	Id _{Cmb}	N _{Ed}	M _{Ed}	$\sigma_{\rm ct,f}$	σ_{t}	€ _{sm}	$A_{\rm e}$	Δ_{sm}	W_d	W _{amm}	CS	Verificato
			[N]	[N·m]	[N/mm ²]	[N/mm ²]		[cm ²]	[mm]	[mm]	[mm]		
Fondazione	•		Platea 1			AA	N= PCA						
NOTA: L'ele	emento NON	è fessurato	. Di seguito	si riporta	il nodo str	utturale pe	er la quale s	si riscontra	la massima	tensione o	di trazione	(max σ _c	.t,f)
00003	D.	FRQ	-	-3.977	0,06	2,45	0 E+00	0	0	0,000	0,400	-	SI
	F	QPR	-	-3.877	0,06	2,45	0 E+00	0	0	0,000	0,300	-	SI
		FRQ	-	-3.381	0,05	2,45	0 E+00	0	0	0,000	0,400	-	SI
	3	QPR	-	-3.295	0,05	2,45	0 E+00	0	0	0,000	0,300	-	SI

LEGENDA:

Dir

Direzione [P] = principale (asse locale 1) - [S] = secondaria (asse locale 2).
Identificativo dell'aggressività dell'ambiente: [PCA] = "Ordinario"; [MDA] = "Aggressivo"; [MLA] = "Molto aggressivo". AΑ Id_{Cmb} N_{Ed}, M_{Ed} Identificativo della Combinazione di Azione: [QPR] = Quasi Permanente - [FRQ] = Frequente - [RAR] = Rara.

Sollecitazioni di progetto.

Tensione massima di trazione nel calcestruzzo per la fessurazione, calcolata nell'ipotesi di calcestruzzo resistente a trazione. Se tale valore è maggiore di σ_1 $\sigma_{\text{ct,f}}$

la sezione è soggetta a fessurazione.

N.B. I valori negativi indicano una sezione interamente compressa. In tal caso le sollecitazioni forniscono il minimo valore di compressione Tensione massima di trazione nel calcestruzzo relativa allo stato limite di formazione delle fessure [relazione (4.1.13) del § 4.1.2.2.4 del DM 2018].

 σ_{t} Deformazione unitaria media delle barre di armatura.

Area efficace del calcestruzzo teso Distanza media tra le fessure.

 Δ_{sm} Valore di calcolo di apertura massima delle fessure. Wamm Valore ammissibile di apertura delle fessure

Coefficiente di Sicurezza (= W_d/W_{amm}). [NS] = Non Significativo (CS \geq 100). [-] = Fessurazioni nulle ($W_d = 0$). CS

 $[SI] = W_d \le W_{amm}$; $[NO] = W_d > W_{amm}$

RELAZIONE PRELIMINARE DELLE STRUTTURE

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301_D_R_0120 Rev. 02

6.7. TRASFORMATORE DI TENSIONE - FONDAZIONE N°06 e N°11

6.7.1. CARATTERISTICHE DELLA FONDAZIONE

Trattasi di una piastra di base in c.a. a contatto con il terreno sulla quale viene impostato n.1 batolo per l'ancoraggio delle apparecchiature. La piastra summenzionata ha dimensioni di 1,60x1,60x0,30m, mentre, il batolo ha dimensione 0,70x0,70x0,50m ed è provvisto di quattro tirafondi disposti a maglia quadrata, per l'installazione dell'apparecchiatura.

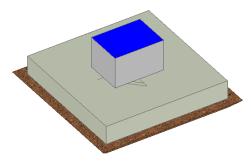


Fig. Vista assonometrica fondazione per trasformatore di tensione capacitivo

Fig. Pianta e sezione fondazione per trasformatore di tensione capacitivo

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301 D R 0120 Rev. 02

6.7.2. CARICHI

Si riporta di seguito il riepilogo dei carichi agenti, determinati nelle verifiche della sovrastruttura (scarichi in fondazione). Sostegno TVC-TVI 150 kV:

Carichi sulla fondazione di n°1 sostegno TV	FX	FY	FZ	MX	MY	MZ	$M = (MX^2 + MY^2)^{1/2}$
riferiti al piede della colonna	(N)	(N)	(N)	(Nmm)	(Nmm)	(Nmm)	(Nmm)
Node 3504: 10: SLU_1x [Combination 1]	1410	2102	-15351	-8389582	5643063	0	10110848
Node 3504: 11: SLU_1y [Combination 2]	0	3512	-15351	-14032645	0	0	14032645
Node 3504: 12: SLU_2x [Combination 3]	1410	2625	-15351	-11925563	5643063	0	13193302
Node 3504: 13: SLU_2y [Combination 4]	0	4035	-15351	-17568626	0	0	17568626
Node 3504: 14: SLU_3x [Combination 5]	2351	2102	-15351	-8389582	9405105	0	12603218
Node 3504: 15: SLU_3y [Combination 6]	0	4452	-15351	-17794687	0	0	17794687
Node 3504: 16: SLU_4x [Combination 7]	2351	2625	-15351	-11925563	9405105	0	15187991
Node 3504: 17: SLU_4y [Combination 8]	0	4976	-15351	-21330668	0	0	21330668
Node 3504: 24: Sismica_1 [Combination 15]	-4956	-286	-12919	-12541369	-25083194	0	28043761
Node 3504: 25: Sismica_2 [Combination 16]	-1487	-3756	-12919	-30099420	-7524967	0	31025799
Node 3504: 26: Sismica_3 [Combination17]	-1487	-286	-16337	-12541189	-7524960	0	14625541
Node 3504: 27: Sismica_4 [Combination18]	-4956	63	-12919	-14898690	-25083194	0	29174262
Node 3504: 28: Sismica_5 [Combination 19]	-1487	-3407	-12919	-32456741	-7524967	0	33317640
Node 3504: 29: Sismica_6 [Combination 20]	-1487	63	-16337	-14898510	-7524960	0	16691034
Node 3504: 30: EccezionalePTS [Combination 21]	0	800	-11454	-2307600	0	0	2307600
Node 3504: 31: EccezionalePTC [Combination 22]	0	800	-11454	-2307600	0	0	2307600
Node 3504: 32: EccezionaleCC [Combination23]	460	5643	-9479	-35019645	3107070	0	35157210

I carichi permanenti strutturali e non strutturali derivanti dal peso proprio della fondazione e da quello del piazzale sono:

	Carichi sugli elementi
elemento	carico
	[daN]
Peso proprio batolo	613 [daN]
Peso proprio platea	1.920 [daN]
Peso piazzale di riporto su platea	900 daN/mq]

6.7.3. BATOLO

VERIFICHE PRESSOFLESSIONE DEVIATA ALLO STATO LIMITE ULTIMO

	,, ,O,,_	TILCOO	'I LLOU	OIVE DE	/// 1// 1/ 12		I C LIIVII	IL OLITIVI													
											Batol	i (CA)	- Veri	ifiche	press	ofle	ssio	ne de	viata a	allo s	SLU
				00											Lato	1			Lato	2	
	N _{Ed}	$M_{Ed,X}$	$M_{Ed,Y}$	CS	$M_{Rd,X}$	$M_{Rd,Y}$	N _{Ed,max}	N _R	α	R _f	ФVе	Φvi	Φw	L	n _{rea}	n _f	ф	L	n _{rea}	n_f	ф
	[N]	[N·m]	[N·m]		[N·m]	[N·m]	[N]	[N]			[mm]	[mm]	[mm]	[cm]				[cm]			
Bato	lo: Batolo	1																			
	15.604	-3.337	-37.841	17.81[V]	179.671	179.671	0	7.905.892	1,86	NO	12	-	10	70	1	2	12	70	1	2	12

LEGENDA:

CS Coefficiente di sicurezza ([NS] = Non Significativo se CS ≥ 100; [VNR]= Verifica Non Richiesta; Informazioni aggiuntive sulla condizione: [V] =

statica; [E] = eccezionale; [S] = sismica; [N] = sismica non lineare).

 $\begin{array}{ll} \textbf{N}_{\text{Ed,max}} & \text{Massimo sforzo di compressione.} \\ \textbf{N}_{\text{R}} & \text{Sforzo Normale resistente.} \end{array}$

α Esponente per la valutazione del coefficiente di sicurezza.

R_f [SI] = elemento con presenza di rinforzo; [NO] = elemento senza rinforzo.

 \mathbf{N}_{Ed} , $\mathbf{M}_{\text{Ed},X}$, $\mathbf{M}_{\text{Ed},Y}$ Sollecitazioni di progetto ($N_{\text{Ed}} > 0$: compressione).

 $\mathbf{M}_{\mathbf{Rd},\mathbf{X}}$, $\mathbf{M}_{\mathbf{Rd},\mathbf{Y}}$ Momento Resistente intorno ad X e Y.

 ϕ_{Ve} , ϕ_{Vi} , ϕ_{St} Diametri, rispettivamente, delle barre di acciaio nei vertici esterni e nei vertici interni e delle staffe; $[\phi_{Vi}]$ = Significativo e valorizzato solo in caso di sozione cava

sezione cava.

L, n_{reg}, n_f, φ Per sezione del batolo rettangolare e armata simmetricamente, lunghezza, numero di registri, numero di barre e relativo diametro per il lato 1 e 2

della sezione. Se la sezione considerata non è rettangolare e/o simmetricamente armata, tali colonne sono vuote e le informazioni riguardanti l'armatura sono riportate per ciascun lato in apposita casella di testo.

VERIFICHE A TAGLIO PER PRESSOFLESSIONE DEVIATA ALLO STATO LIMITE ULTIMO

								Batoli	(CA) - Veri	fiche a ta	glio per ¡	pressofle	ssione de	viata all	o SLU
	$V_{Ed,3}$ $V_{Ed,2}$ CS V_{Rcd} $V_{Rcd,s}$ V_{rd} V_{rd} V_{i} $V_{Rd,s}$ $V_$														
	V Ed,3	V Ed,2	CS	Х	Υ	Х	Υ	Х	Υ	Х	Υ	V Rd,s	A _{SW}	SASW	κ _f
	[N]	[N]		[N]	[N]	[N]	[N]	[N]	[N]	[N]	[N]	[N]	[cm ² /cm]	[cm]	
Batolo: Batolo 1															
	4.956	5.643	NS	1357797	1357797	637709	637709	0	0	0	0	-	0,1091	14	NO

LEGENDA:

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301 D R 0120 Rev. 02

Datali varifiaha dalla tanaiani di assersiria

							Batoli (0	CA) - Veri	fiche a ta	glio per p	oressofle	ssione de	viata alle	o SLU
V	V	CC	Vı	Rcd	V _R	sd,s	\	/ _{fd}	1	/ _i	v			
V _{Ed,3}	V _{Ed,2}	CS	Х	Υ	Х	Υ	Х	Υ	Х	Υ	V _{Rd,s}	A _{SW}	S _{Asw}	Rf
[N]	[N]		[N]	[N]	[N]	[N]	[N]	[N]	[N]	[N]	[N]	[cm ² /cm]	[cm]	

 $V_{\text{Ed,3}}$ Taglio di progetto in direzione 3. Taglio di progetto in direzione 2.

V_{Ed,2} CS Coefficiente \bar{d}_i sicurezza ([NS] = Non Significativo se CS \geq 100; [VNR] = Verifica Non Richiesta; Informazioni aggiuntive sulla condizione: [V] = statica; [E] = eccezionale; [S] = sismica; [N] = sismica non lineare)

 V_{Rcd} Resistenza a taglio compressione del calcestruzzo. $V_{\text{Rsd,s}}$ Resistenza a taglio trazione delle staffe.

 \mathbf{V}_{fd} Resistenza a taglio dovuta al rinforzo FRP. V_i Contributo acciaio al Taglio ultimo dovuto all'incamiciatura in acciaio.

 $V_{\text{Rd,s}}$ Resistenza a taglio per scorrimento. \mathbf{A}_{sw} Area delle staffe per unità di lunghezza. S_{Asw} Passo massimo staffe da normativa.

 R_{f} [SI] = elemento con presenza di rinforzo; [NO] = elemento senza rinforzo.

VERIFICHE DELLE TENSIONI ALLO STATO LIMITE DI ESERCIZIO

												Baton	- verifich	e aene te	nsioni ai	esercizio
_			Con		sione calcestre e calcestruzzo						Tra		ne acciaio iaio/FRP ri	nforzo		
Tp _{rnf}	Id _{Cm}	σ_{cc}	$\sigma_{cd,amm}$	N_{Ed}	M _{Ed,3}	$M_{Ed,2}$	cs	Verificato	Id _{Cmb}	σ_{at}	$\sigma_{td,amm}$	N _{Ed}	$M_{Ed,3}$	M _{Ed,2}	cs	Verifica to
		[N/mm ²]	[N/mm ²]	[N]	[N·m]	[N·m]				[N/mm ²]	[N/mm ²]	[N]	[N·m]	[N·m]		
Bato	lo: Bate	olo 1														
	RAR	0,732	19,92	19.044	-27.561	14.930	27.23	SI	RAR	8,783	360,00	19.044	-27.561	14.930	40.99	SI
	QPR	0,012	14,94	6.125	-	-	NS	SI								

LEGENDA:

Rinf. Indica la presenza del rinforzo sulla sezione di verifica.

 Id_{Cmb} Identificativo della Combinazione di Azione: [QPR] = Quasi Permanente - [FRQ] = Frequente - [RAR] = Rara.

Tensione massima di compressione nel calcestruzzo. σcc

Tensione ammissibile per la verifica a compressione del calcestruzzo. σ_{cd,amm}

 $N_{Ed},\,M_{Ed.3},\,M_{Ed.2}$ Sollecitazioni di progetto.

Tensione massima di trazione nell'acciaio della Trave/Rinforzo o nel FRP. σ_{at}

Tensione ammissibile per la verifica a trazione dell'acciaio. $\sigma_{td,amm}$

CS Coefficiente di Sicurezza (= $\sigma_{cd,amm}/\sigma_{cc}$; $\sigma_{td,amm}/\sigma_{at}$). [NS] = Non Significativo (CS \geq 100).

Verificato [Si] = $\sigma_{cc} \le \sigma_{cd,amm}$; $\sigma_{at} \le \sigma_{td,amm}$. [NO] = $\sigma_{cc} > \sigma_{cd,amm}$; $\sigma_{at} > \sigma_{td,amm}$.

<u>VERIFICA ALLO STATO LIMITE DI FESSURAZIONE</u>

									Batoli -	verifica al	lo stato lin	nite di 1	essurazione
	I d _{Cmb}	N _{Ed}	M _{Ed,3}	$M_{Ed,2}$	$\sigma_{ct,f}$	σ_{t}	€ _{sm}	A _e	Δ_{sm}	W _d	W _{amm}	CS	Verificato
		[N]	[N·m]	[N·m]	[N/mm ²]	[N/mm ²]		[cm ²]	[mm]	[mm]	[mm]		
Batolo: Batolo	1												
				AA= PCA									
-	FRQ	10.001	-8.268	4.479	0,19	2,58	0 E+00	0	0	0,000	0,400	-	SI
-	QPR	6.125	-	-	-0,01	2,58	0 E+00	0	0	0,000	0,300	-	SI

LEGENDA:

Identificativo dell'aggressività dell'ambiente: [PCA] = Ordinarie (Poco aggressivo) - [MDA] = Aggressive (Moderatamente aggressivo) - [MLA] = AA

Molto aggressive.

Id_{Cmb} Identificativo della Combinazione di Azione: [QPR] = Quasi Permanente - [FRQ] = Frequente - [RAR] = Rara.

 $N_{Ed},\,M_{Ed,3},\,M_{Ed,2}$ Sollecitazioni di progetto.

Tensione massima di trazione nel calcestruzzo per la fessurazione, calcolata nell'ipotesi di calcestruzzo resistente a trazione. Se tale valore è $\sigma_{ct,f}$

maggiore di σ_t la sezione è soggetta a fessurazione. N.B. I valori negativi indicano una sezione interamente compressa. In tal caso le sollecitazioni forniscono il minimo valore di compressione.

Tensione massima di trazione nel calcestruzzo relativa allo stato limite di formazione delle fessure

Deformazione media nel calcestruzzo. Area efficace del calcestruzzo teso. Distanza media tra le fessure. Δ_{sm}

Valore di calcolo di apertura massima delle fessure. Valore ammissibile di apertura delle fessure

Coefficiente di Sicurezza (=W_d / W_{amm}). [NS] = Non Significativo (CS ≥ 100). [-] = Fessurazioni nulle (W_d = 0).

Verificato [SI] = $W_d \le W_{amm}$; [NO] = $W_d > W_{amm}$

6.7.4. PLATEA

VERIFICHE PRESSOFLESSIONE RETTA ALLO STATO LIMITE ULTIMO

															Plat	ee - Veri	fiche presso	flessione re	tta allo SLU
Dir	Pos	Nodo	N_{Ed}	M _{Ed}	As	A _{df}	CS	Nodo	N_{Ed}	M _{Ed}	As	A _{df}	CS	Nodo	N _{Ed}	M _{Ed}	As	A _{df}	CS
			[N]	[N·m]	[cm ² /cm]	[cm ² /cm]			[N]	[N·m]	[cm ² /cm]	[cm ² /cm]			[N]	[N·m]	[cm ² /cm]	[cm ² /cm]	
Fond	lazione				Platea	a 1													
P	S	00002	0	0	0,04524	0,04524	-	00003	0	3.200	0,04524	0,04524	15,37	00004	0	2.452	0,04524	0,04524	20,06
	1		0	7.029	0,04524	0,04524	7,00		0	3.412	0,04524	0,04524	14,41		0	2.488	0,04524	0,04524	19,77
S	S		0	0	0,04524	0,04524	-		0	0	0,04524	0,04524	-		0	0	0,04524	0,04524	-
	1		0	5.959	0,04524	0,04524	8,25		0	4.691	0,04524	0,04524	10,48		0	4.791	0,04524	0,04524	10,26
P	S	00005	0	0	0,04524	0,04524	-	00006	0	0	0,04524	0,04524	-	00007	0	0	0,04524	0,04524	-
	1		0	7.946	0,04524	0,04524	6,19		0	7.362	0,04524	0,04524	6,68		0	11.861	0,04524	0,04524	4,15
S	S		0	482	0,04524	0,04524	NS		0	393	0,04524	0,04524	NS		0	0	0,04524	0,04524	-

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301 D R 0120 Rev. 02

															Plat	ee - Verif	iche presso	flessione re	tta allo SLU
Dir	Pos	Nodo	N _{Ed}	M _{Ed}	As	A _{df}	CS	Nodo	N _{Ed}	M _{Ed}	As	A_{df}	CS	Nodo	N_{Ed}	M _{Ed}	As	A_{df}	CS
			[N]	[N·m]	[cm ² /cm]	[cm ² /cm]			[N]	[N·m]	[cm ² /cm]	[cm ² /cm]			[N]	[N·m]	[cm ² /cm]	[cm ² /cm]	
	1		0	3.101	0,04524	0,04524	15,86		0	2.147	0,04524	0,04524	22,90		0	11.818	0,04524	0,04524	4,16
Р	S	80000	0	5.270	0,04524	0,04524	9,33												
	1		0	4.392	0,04524	0,04524	11,20												
S	S		0	3.410	0,04524	0,04524	14,42												
	1		0	4.961	0,04524	0,04524	9,91												

LEGENDA:

Dir Direzione [P] = principale (asse locale 1) - [S] = secondaria (asse locale 2).

Pos Posizione [S] = superiore - [I] = inferiore.

As Area delle armature esecutive per unità di lunghezza.

Adf Armatura disponibile per la flessione

CS Coefficiente di sicurezza ([NS] = Non Significativo se CS ≥ 100; [VNR] = Verifica Non Richiesta; Informazioni aggiuntive sulla condizione: [V] = statica; [E]

= eccezionale; [S] = sismica; [N] = sismica non lineare).

N_{Ed}, M_{Ed} Sollecitazioni di progetto.

VERIFICHE DELLE TENSIONI ALLO STATO LIMITE DI ESERCIZIO

											Plate	e - verifich	ne delle te	nsioni d	di esercizio
Nodo/	Dir				essione calc	estruzzo uzzo rinforz	0					razione accia e acciaio/FRI			
Tp _{rnf}		I d _{Cmb}	σ _{cc}	σ _{cd,amm}	N _{Ed}	M _{Ed}	CS	Verificato	Id _{Cmb}	σ_{at}	σ _{td,amm}	N _{Ed}	M _{Ed}	CS	Verificato
			[N/mm ²]	[N/mm ²]	[N]	[N·m]				[N/mm ²]	[N/mm ²]	[N]	[N·m]		
Fondazion	e			Platea 1											
	D	RAR	0,684	19,92	0	-11.232	29,11	SI	RAR	8,554	360,00	0	-11.232	42,09	SI
00007	Г	QPR	0,128	14,94	0	-2.096	NS	SI	-	-	-	-	-	-	-
00007	c	RAR	0,679	19,92	0	-11.137	29,36	SI	RAR	8,481	360,00	0	-11.137	42,45	SI
	3	QPR	0.138	14.94	0	-2.269	NS	SI	_	_	-	_	_	-	_

LEGENDA:

Rinf. Indica la presenza del rinforzo sulla sezione di verifica.

Direzione [P] = principale (asse locale 1) - [S] = secondaria (asse locale 2).

Id_{Cmb} Identificativo della Combinazione di Azione: [QPR] = Quasi Permanente - [FRQ] = Frequente - [RAR] = Rara.

 $\begin{array}{ll} \sigma_{cc} & \text{Tensione massima di compressione nel calcestruzzo della Trave/Rinforzo.} \\ \sigma_{cd,amm} & \text{Tensione ammissibile per la verifica a compressione del calcestruzzo.} \\ \sigma_{at} & \text{Tensione massima di trazione nell'acciaio della Trave/Rinforzo o nel FRP.} \end{array}$

 $\sigma_{td,amm}$ Tensione ammissibile per la verifica a trazione dell'acciaio/rinforzo.

 N_{Ed} , M_{Ed} Sollecitazioni di progetto.

CS Coefficiente di Sicurezza (= $\sigma_{cd, amm}/\sigma_{cc}$; $\sigma_{td, amm}/\sigma_{at}$). [NS] = Non Significativo (CS \geq 100).

Verificato [SI] = La verifica è soddisfatta ($\sigma_{cc} \le \sigma_{cd,amm}$), $\sigma_{ad} \le \sigma_{td,amm}$). [NO] = La verifica NON è soddisfatta ($\sigma_{cc} > \sigma_{cd,amm}$), $\sigma_{ad} > \sigma_{td,amm}$).

Nota Nella tabella, per ogni elemento, viene riportato il nodo della shell che ha il coefficiente di sicurezza (CS) più piccolo.

VERIFICA ALLO STATO LIMITE DI FESSURAZIONE

									Platee -	verifica al	lo stato lin	nite di 1	fessurazione
Nodo	Dir	Id _{Cmb}	N_{Ed}	M _{Ed}	$\sigma_{ct,f}$	σ_{t}	€ _{sm}	$A_{\rm e}$	Δ_{sm}	W_d	W _{amm}	CS	Verificato
			[N]	[N·m]	[N/mm ²]	[N/mm ²]		[cm ²]	[mm]	[mm]	[mm]		
Fondazione			Platea 1			AA	= PCA						
NOTA: L'elem	ento NON è fe	essurato. Di se	eguito si ripo	rta il nodo s	trutturale p	er la quale s	i riscontra la	massima te	nsione di traz	ione(max σ	ct,f)		
00007	D	FRQ	-	-4.837	0,29	2,58	0 E+00	0	0	0,000	0,400	-	SI
	P	QPR	-	-2.096	0,13	2,58	0 E+00	0	0	0,000	0,300	-	SI
		FRQ	-	-4.930	0,30	2,58	0 E+00	0	0	0,000	0,400	-	SI
	3	QPR	-	-2.269	0,14	2,58	0 E+00	0	0	0,000	0,300	-	SI

LEGENDA:

Dir Direzione [P] = principale (asse locale 1) - [S] = secondaria (asse locale 2).

AA Id. 'aggressività ambiente: [PCA] = Ordinarie (Poco aggressivo) - [MDA] = Aggressive (Moderatamente aggressivo) - [MLA] = Molto aggressive.

Identificativo della Combinazione di Azione: [QPR] = Quasi Permanente - [FRQ] = Frequente - [RAR] = Rara.

 N_{Ed} , M_{Ed} Sollecitazioni di progetto.

σ_{ct,f}
Tensione massima di trazione nel calcestruzzo per la fessurazione, calcolata nell'ipotesi di calcestruzzo resistente a trazione. Se tale valore è maggiore di σ_t la sezione è soggetta a fessurazione. N.B. I valori negativi indicano una sezione interamente compressa. In tal caso le sollecitazioni forniscono il minimo

valore di compressione.

σ_t Tensione massima di trazione nel calcestruzzo relativa allo stato limite di formazione delle fessure

 ϵ_{sm} Deformazione media nel calcestruzzo. A_e Area efficace del calcestruzzo teso. Δ_{sm} Distanza media tra le fessure.

W_d Valore di calcolo di apertura massima delle fessure.
 W_{amm} Valore ammissibile di apertura delle fessure.

CS Coefficiente di Sicurezza (= W_d / W_{amm}). [NS] = Non Significativo (CS \geq 100). [-] = Fessurazioni nulle (W_d = 0).

Verificato [SI] = $W_d \le W_{amm}$; [NO] = $W_d > W_{amm}$

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301_D_R_0120 Rev. 02

6.8. SCARICATORE DI SOVRATENSIONI – FONDAZIONE N°07;

6.8.1. CARATTERISTICHE DELLA FONDAZIONE

Trattasi di una piastra di base in c.a. a contatto con il terreno sulla quale viene impostato n.1 batolo per l'ancoraggio delle apparecchiature sovrastanti.

La piastra summenzionata ha dimensioni di 1,60x1,60x0,30m, mentre, il batolo ha dimensione 0,70x0,70x0,50m ed è provvisto di quattro tirafondi disposti a maglia quadrata, per l'installazione dell'apparecchiatura.

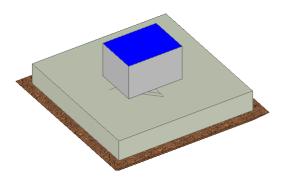


Fig. Vista assonometrica fondazione per scaricatore AT

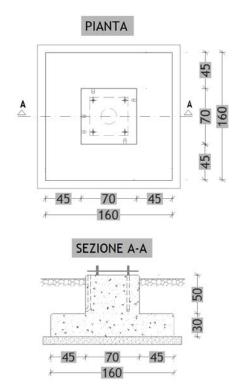


Fig. Pianta e sezione fondazione per scaricatore AT

RELAZIONE PRELIMINARE DELLE STRUTTURE

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301_D_R_0120 Rev. 02

6.8.2. CARICHI

Si riporta di seguito il riepilogo dei carichi determinati nelle verifiche della sovrastruttura (scarichi in fondazione).

	PESI		TIR	I CONDUT	TORI		GHIACCI	0		NEVE	
X=		daN	Fx=	0	daN	Fx=		daN	Fx=		daN
y=		daN	Fy=	0	daN	Fy=		daN	Fy=		daN
Z=	220	daN	Fz=		daN	Fz=	6	daN	Fz=	12	daN
Λx=		daNm	Mx=	0	daNm	Mx=		daNm	Mx=		daNm
Лу=		daNm	My=	0	daNm	My=		daNm	My=		daNm
Λz=		daNm	Mz=		daNm	Mz=		daNm	Mz=		daNm
MA	NUTENZIO	ONE X	MA	NUTENZIO	ONE Y		VENTO >	(VENTO Y	1
X=	100	daN	Fx=		daN	Fx=	64	daN	Fx=		daN
y=		daN	Fy=	100	daN	Fy=		daN	Fy=	78	daN
Z=	100	daN	Fz=	100	daN	Fz=		daN	Fz=		daN
Лx=		daNm	Mx=	335	daNm	Mx=		daNm	Mx=	237	daNm
Лу=	335	daNm	My=		daNm	My=	166	daNm	Му=		daNm
Λz=		daNm	Mz=		daNm	Mz=		daNm	Mz=		daNm
	SISMA X	(SISMA Y	*		C.C. 31,5	kA			
X=	61	daN	Fx=		daN	Fx=		daN			
y=		daN	Fy=	61	daN	Fy=	200	daN		·	
Z=		daN	Fz=		daN	Fz=		daN			
Λx=		daNm	Mx=	260	daNm	Mx=	1030	daNm			
Лy=	260	daNm	My=		daNm	Му=		daNm			
Λz=		daNm	Mz=		daNm	Mz=		daNm			

I carichi permanenti strutturali e non strutturali derivanti dal peso proprio della fondazione e da quello del piazzale sono:

Carichi sugli elei	menti
elemento	carico
Peso proprio batolo	613 [daN]
Peso proprio platea	1.920 [daN]
Peso piazzale di riporto su platea	800 [daN/mq]

6.8.3. BATOLO

<u>VERIFICHE PRESSOFLESSIONE DEVIATA ALLO STATO LIMITE ULTIMO</u>

											Batoli	(CA)	- Veri	fiche	press	ofles	sior	e dev	/iata a	allo S	SLU
	NI.	B.4	B.4	CC	NA.	N.A	NI.	N.		_					Lato	1			Lato	2	
	N _{Ed}	M _{Ed,X}	M _{Ed,Y}	CS	$M_{Rd,X}$	$M_{Rd,Y}$	N _{Ed,max}	N _R	α	R _f	Q Ve	Φvi	φw	L	n _{req}	n	ф	L	n _{req}	n_f	ф
	[N]	[N·m]	[N·m]		[N·m]	[N·m]	[N]	[N]			[mm]	[mm]	[mm]	[cm]				[cm]			
Batolo1																					
	10.405	26.865	-	6,63	178.035	178.035	8.905	5.070.193	1,00	NO	12	-	10	70	1	2	12	70	1	2	12

LEGENDA:

CS Coefficiente di sicurezza ([NS] = Non Significativo per valori di CS >= 100; [VNR] = Verifica Non Richiesta).

 $egin{array}{ll} egin{array}{ll} egin{array}{ll} egin{array}{ll} egin{array}{ll} egin{array}{ll} egin{array}{ll} Assimo sforzo di compressione. \\ egin{array}{ll} egin{array}{ll} Assimo sforzo di compressione. \\ \end{array} \end{array}$

α Esponente per la valutazione del coefficiente di sicurezza.

 R_f [SI] = elemento con presenza di rinforzo; [NO] = elemento senza rinforzo.

 N_{Ed} , $M_{Ed,X}$, $M_{Ed,Y}$ Sollecitazioni di progetto ($N_{Ed} > 0$: compressione).

 $\mathbf{M}_{\mathbf{Rd},\mathbf{X}}$, $\mathbf{M}_{\mathbf{Rd},\mathbf{Y}}$ Momento Resistente intorno ad X e Y.

 ϕ_{Ve} , ϕ_{Vi} , ϕ_{St} Diametri, rispettivamente, delle barre di acciaio nei vertici esterni e nei vertici interni e delle staffe; $[\phi_{Vi}]$ = Significativo e valorizzato solo in caso

di sezione cava.

L, n_{reg}, n_f, φ Per sezione del batolo rettangolare e armata simmetricamente, lunghezza, numero di registri, numero di barre e relativo diametro per il lato 1 e 2 della sezione. Se la sezione considerata non è rettangolare e/o simmetricamente armata, tali colonne sono vuote e le informazioni riguardanti

l'armatura sono riportate per ciascun lato in apposita casella di testo.

VERIFICHE A TAGLIO PER PRESSOFLESSIONE DEVIATA ALLO STATO LIMITE ULTIMO

								Batoli (CA)	- Veri	fiche a t	aglio per	pressofle	ssione de	viata allo	SLU
	v	v	cs	V	Rcd	V_R	sd,s		V_{fd}			V_i	v	^	_	В
	V _{Ed,3}	V _{Ed,2}	CS	Х	Υ	Х	Υ	Х		Υ	Х	Υ	$V_{Rd,s}$	A _{sw}	S _{Asw}	κ _f
	[N]	[N]		[N]	[N]	[N]	[N]	[N]		[N]	[N]	[N]	[N]	[cm ² /cm]	[cm]	
Batolo1																
	926.518	926.518	1,00	1969399	1969399	926518	926518	0		0	0	0	-	0,5236	3	NO

LEGENDA:

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301 D R 0120 Rev. 02

							Batoli (C	A) - Veri	fiche a ta	glio per p	ressofle	ssione de	viata allo	sLU
V	V	CC	V	Rcd	V _R	sd,s	V	fd	,	V _i	W	_		_
V _{Ed,3}	V _{Ed,2}	CS	Х	Υ	Х	Υ	Х	Υ	Х	Υ	V _{Rd,s}	A _{SW}	S _{Asw}	Rf
[N]	[N]		[N]	[N]	[N]	[N]	[N]	[N]	[N]	[N]	[N]	[cm ² /cm]	[cm]	

V_{Ed,3} Taglio di progetto in direzione 3.V_{Ed,2} Taglio di progetto in direzione 2.

CS Coefficiente di sicurezza ([NS] = Non Significativo per valori di CS >= 100; [VNR]= Verifica Non Richiesta).

 $\begin{array}{ll} \textbf{V}_{\textbf{Rcd}} & \text{Resistenza a taglio compressione del calcestruzzo.} \\ \textbf{V}_{\textbf{Rsd,s}} & \text{Resistenza a taglio trazione delle staffe.} \\ \textbf{V}_{\textbf{fd}} & \text{Resistenza a taglio dovuta al rinforzo FRP.} \end{array}$

V_i Contributo acciaio al Taglio ultimo dovuto all'incamiciatura in acciaio.

V_{Rd,s} Resistenza a taglio per scorrimento.
 A_{sw} Area delle staffe per unità di lunghezza.
 S_{Asw} Passo massimo staffe da normativa.

 R_f [SI] = elemento con presenza di rinforzo; [NO] = elemento senza rinforzo.

VERIFICHE A PRESSOFLESSIONE DEVIATA ALLO STATO LIMITE DI DANNO

Batoli (CA) - Verifiche pressoflessione deviata allo SLD Lato 1 $M_{Ed,Y}$ $M_{Rd,Y}$ $M_{Ed.X}$ $N_{Ed.max}$ [N] [N·m] [N·m] [N·m] [N·m] [N] [N] [mm] [mm] [cm] [mm] [cm] [mm] Batolo1 10.405 7,68 206.334 206.334 8.905 7.605.290 1,00 12 12 10 70 1 2 12 70 1 2 12 26.865

LEGENDA:

CS Coefficiente di sicurezza ([NS] = Non Significativo per valori di CS >= 100; [VNR]= Verifica Non Richiesta).

N_{Ed,max} Massimo sforzo di compressione.N_R Sforzo Normale resistente.

 $\begin{array}{ll} \alpha & \text{Esponente per la valutazione del coefficiente di sicurezza.} \\ N_{Ed},\, M_{Ed,X},\, M_{Ed,Y} & \text{Sollecitazioni di progetto } (N_{Ed}>0 : compressione). \end{array}$

M_{Rd,X}, M_{Rd,Y} Momento Resistente intorno ad X e Y.

φ_{Ve}, φ_{VI}, φ_{St} Diametri, rispettivamente, delle barre di acciaio nei vertici esterni e nei vertici interni e delle staffe; [φ_{VI}] = Significativo e valorizzato solo in caso

di sezione cava.

L, n_{reg}, n_r, φ Per sezione del batolo rettangolare e armata simmetricamente, lunghezza, numero di registri, numero di barre e relativo diametro per il lato 1 e

2 della sezione. Se la sezione considerata non è rettangolare e/o simmetricamente armata, tali colonne sono vuote e le informazioni riguardanti

l'armatura sono riportate per ciascun lato in apposita casella di testo.

VERIFICHE A TAGLIO PER PRESSOFLESSIONE DEVIATA ALLO STATO LIMITE DI DANNO

						Bat	oli (CA) - Ve	rifiche a tagli	io per press	oflession	e deviata	allo SLD
	v	V	cs	V	VR	Rsd,s	V _i	fd	V			
	$V_{Ed,3}$	V _{Ed,2}	CS	Х	Υ	Х	Υ	Х	Υ	$V_{Rd,s}$	A _{SW}	S _{Asw}
	[N]	[N]		[N]	[N]	[N]	[N]	[N]	[N]	[N]	[cm ² /cm]	[cm]
Batolo1												
	5.670	2.460	NS	2954098	2954098	586692	586692	0	0	-	0,5236	3

LEGENDA:

V_{Ed,3} Taglio di progetto in direzione 3.
 V_{Ed,2} Taglio di progetto in direzione 2.

CS Coefficiente di sicurezza ([NS] = Non Significativo per valori di CS >= 100; [VNR] = Verifica Non Richiesta).

V_{Rcd} Resistenza a taglio compressione del calcestruzzo.

V_{Rsd,s}
V_{rad,s}
Resistenza a taglio trazione delle staffe.
V_{rd}
Resistenza a taglio dovuta al rinforzo FRP.
V_{Rd,s}
Resistenza a taglio per scorrimento.
A_{sw}
Area delle staffe per unità di lunghezza.
S_{Asw}
Passo massimo staffe da normativa.

VERIFICHE PRESSOFLESSIONE DEVIATA ALLO STATO LIMITE DI ESERCIZIO

										Batoli (C	A) - Veri	ifiche pres	soflession	e deviata a	allo SLE
Tp _{rnf}			ione calce calcestru	estruzzo Izzo rinforz	.o	C			lcestruzzo ruzzo rinf				azione acc acciaio/FF		
	Id _{Cmb}	σct	N_{Ed}	M _{Ed,3}	$M_{Ed,2}$	Id _{Cmb}	σ _{cc}	N _{Ed}	$M_{Ed,3}$	$M_{Ed,2}$	I d _{Cmb}	σ _{at}	N _{Ed}	$M_{Ed,3}$	$M_{Ed,2}$
		[N/mm ²]	[N]	[N·m]	[N·m]		[N/mm ²]	[N]	[N·m]	[N·m]		[N/mm ²]	[N]	[N·m]	[N·m]
Batolo1															
				AA= PCA											
CA=FRQ	ε _{sm} =0E	+00		A _e =0,0 cn	n ²		S _m =0 mn	า		$W_k = 0.00$	mm ($\sigma_{ct,f}=0.00$	N/mm ²	
CA=QPR	ε _{sm} =0E	+00		A _e =0,0 cn	n ²		S _m =0 mn	า		$W_k = 0.00$) mm		$\sigma_{ct,f}=0.00$	N/mm²	
	RAR	0,334	10.995	-17.910	3.850	RAR	-0,377	10.995	-17.910	3.850	RAR	4,461	10.995	-17.910	3.850
. = 0 = 1															

LEGENDA:

Identificativo della Combinazione di Azione: [QPR] = Quasi Permanente - [FRQ] = Frequente - [RAR] = Rara.

 σ_{ct} Tensione massima di trazione nel calcestruzzo della Trave/Rinforzo. σ_{cc} Tensione massima di compressione nel calcestruzzo della Trave/Rinforzo.

σ_{ct,f} Tensione massima di trazione nel calcestruzzo per la fessurazione, calcolata nell'ipotesi di calcestruzzo resistente a trazione.

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301 D R 0120 Rev. 02

Batoli (CA) - Verifiche	pressoflessione	deviata	allo SLE
-------------------------	-----------------	---------	----------

		Trazi	one calc	estruzzo			Compre	ssione ca	lcestruzzo	ì		Tra	azione acci	iaio	
Tp _{rnf}		Trazione	calcestru	uzzo rinfor	zo	Co	mpressio	ne calces	truzzo rinfo	rzo		Trazione:	acciaio/FR	P rinforzo)
	Id _{Cmb}	$\sigma_{\rm ct}$	N_{Ed}	$M_{Ed,3}$	$M_{Ed,2}$	Id _{Cmb}	σ_{cc}	N_{Ed}	$M_{Ed,3}$	$M_{Ed,2}$	Id _{Cmb}	σ_{at}	N _{Ed}	$M_{Ed,3}$	$M_{Ed,2}$
		[N/mm ²]	[N]	[N·m]	[N·m]		[N/mm ²]	[N]	[N·m]	[N·m]		[N/mm ²]	[N]	[N·m]	[N·m]

Livello o piano di appartenenza dell'elemento strutturale.

Indica il tipo di rinforzo presente nella sezione di verifica: [Cls] = rinforzo in Calcestruzzo; [FRP] = rinforzo in FRP. Tp_{rnf}

AΑ Identificativo dell'aggressività dell'ambiente: [PCA] = Poco aggressivo-[MDA] = Moderatamente aggressivo-[MLA] = Molto aggressivo

Deformazione media nel calcestruzzo. ε_{sm} \mathbf{A}_{e} Area efficace del calcestruzzo teso Distanza media tra le fessure. Sm Apertura massima delle fessure

Sollecitazioni di progetto (N_{Ed} > 0: compressione). N_{Ed} , $M_{Ed,3}$, $M_{Ed,2}$

6.8.4. PLATEE

VERIFICHE PRESSOFLESSIONE RETTA ALLO STATO LIMITE ULTIMO

											Pla	itee - ver	ificne pro	essoriess	ione retta	alio SLU
Dir	Pos	Nodo	N _{Ed}	M _{Ed}	As	CS	Nodo	N_{Ed}	M _{Ed}	As	CS	Nodo	N_{Ed}	M _{Ed}	As	CS
			[N]	[N·m]	[cm ² /cm]			[N]	[N·m]	[cm ² /cm]			[N]	[N·m]	[cm ² /cm]	
Fonda	zione					Platea1										
P	S	00003	0	2.091	0,04524	23,52	00004	0	1.565	0,04524	31,42	00005	0	0	0,04524	-
	I		0	2.499	0,04524	19,68		0	3.362	0,04524	14,63		0	6.617	0,04524	7,43
S	S		0	0	0,04524	-		0	0	0,04524	-		0	28	0,04524	NS
	I		0	3.965	0,04524	12,40		0	3.620	0,04524	13,58		0	2.151	0,04524	22,86
Р	S	00006	0	0	0,04524	-	00007	0	0	0,04524	-	80000	0	445	0,04524	NS
	I		0	6.038	0,04524	8,14		0	4.567	0,04524	10,77		0	2.749	0,04524	17,89
S	S		0	0	0,04524	-		0	0	0,04524	-		0	0	0,04524	-
	I		0	2.598	0,04524	18,93		0	3.751	0,04524	13,11		0	3.064	0,04524	16,05
Р	S	00009	0	0	0,04524	-										
	I		0	5.302	0,04524	9,27										
S	S		0	0	0,04524	-										
	I		0	5.493	0,04524	8,95										

LEGENDA:

Dir Direzione [P] = principale - [S] = secondaria. Pos Posizione [S] = superiore - [I] = inferiore.

As Area delle armature esecutive per unità di lunghezza.

cs Coefficiente di sicurezza ([NS] = Non Significativo per valori di CS >= 100; [VNR]= Verifica Non Richiesta).

 $N_{Ed},\,M_{Ed}$

VERIFICHE PRESSOFLESSIONE RETTA ALLO STATO LIMITE DI DANNO

											Pla	itee - Ver	ifiche pre	essoflessi	ione retta	allo SLD
Dir	Pos	Nodo	N_{Ed}	M _{Ed}	As	CS	Nodo	N_{Ed}	M _{Ed}	As	CS	Nodo	N _{Ed}	M _{Ed}	As	CS
			[N]	[N·m]	[cm ² /cm]			[N]	[N·m]	[cm ²]			[N]	[N·m]	[cm ²]	
Fonda	zione					Platea1										
P	S	00003	0	0	0,04524	-	00004	0	0	0,04524	-	00005	0	0	0,04524	-
	I		0	1.463	0,04524	39,45		0	1.463	0,04524	39,45		0	1.463	0,04524	39,45
S	S		0	0	0,04524	-		0	0	0,04524	-		0	0	0,04524	-
	1		0	1.204	0,04524	47,94		0	1.204	0,04524	47,94		0	1.143	0,04524	50,50
Р	S	00006	0	0	0,04524	-	00007	0	0	0,04524	-	80000	0	0	0,04524	-
	I		0	1.463	0,04524	39,45		0	2.515	0,04524	22,95		0	1.951	0,04524	29,58
S	S		0	0	0,04524	-		0	0	0,04524	-		0	0	0,04524	-
	I		0	1.143	0,04524	50,50		0	2.070	0,04524	27,88		0	2.189	0,04524	26,37
Р	S	00009	0	0	0,04524	-										
	1	J	0	1.951	0,04524	29,58										
S	S		0	0	0,04524	-										
	1		0	2.189	0,04524	26,37										

LEGENDA:

Dir $\label{eq:definition} \mbox{Direzione [P] = principale - [S] = secondaria.}$ Posizione [S] = superiore - [I] = inferiore. Pos A_s CS Area delle armature esecutive per unità di lunghezza.

Coefficiente di sicurezza ([NS] = Non Significativo per valori di CS >= 100; [VNR]= Verifica Non Richiesta).

 $N_{\text{Ed}},\,M_{\text{Ed}}$ Sollecitazioni di progetto.

VERIFICHE PRESSOFLESSIONE RETTA ALLO STATO LIMITE DI ESERCIZIO

										P	latee - Ver	ifiche pr	essofless	ione retta	allo SLE
Dir Nodo	σ _{ct}	σ _{cc}	σat	Nodo	σct	σcc	σat	Nodo	$\sigma_{\rm ct}$	σ_{cc}	σat	Nodo	σ_{ct}	σcc	σ _{at}
	[N/mm ²]	[N/mm ²]	[N/mm ²]		[N/mm ²]	[N/mm ²]	[N/mm ²]		[N/mm ²]	[N/mm ²]	[N/mm ²]		[N/mm ²]	[N/mm ²]	[N/mm ²]
Platea 1	AA= PCA														
CA=FRQ ε _{si}	Platea 1 AA = PCA CA = FRQ ϵ_{sm} = 0E + 00 A_e = 0,0 cm ² S_m = 0 mm W_k = 0,00 mm $\sigma_{ct,f}$ = 0,00 N/mm ² CA = QPR ϵ_{sm} = 0E + 00 A_e = 0,0 cm ² S_m = 0 mm W_k = 0,00 mm														
σ _{ct,f} =0,00 N	/mm²				·	,-									
Fondazione					Platea1										
SHELL: [000	005-00004	-00009]	AA= PC	Α											

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301_D_R_0120 Rev. 02

											DI	stoo Voi	rifiaha pr	occofloco	iono rotto	alla CI E
D:-	Nada	_	_	_	Nede	_	_	_	Nada	_			Nodo		ione retta	
Dir	Nodo	σ _{ct}	σ _{cc} [N/mm ²]	σ _{at} [N/mm ²]	Nodo	σ _{ct} [N/mm ²]	σ _{cc} [N/mm ²]	σ _{at}	Nodo	σ _{ct}	σ _{cc} [N/mm ²]	σ _{at}	NOGO	σ _{ct} [N/mm ²]	σ _{cc} [N/mm ²]	σ _{at}
CA=F	RO Ecm				m W _k =0		$\sigma_{ct,f}=0.00$				QPR ε _{sm} =		\₀=0.0 cn			
	0,00 N/ı		0,0 0	O,,,, O		.,	001,1 0,00				osiii		0,0 0			,00
		5-00009	-000071	AA= PC	A											
-				_		0.00 mm	$\sigma_{ct,f}=0.00$	N/mm ²		CA=	QPR ε _{sm} =	0E+00 A	0.0 cnء=	n ² S _m =0 r	nm W₁=0	.00 mm
	0,00 N/ı		,		K	-,	-01,1 -7						,			,
,-		5-00007	-000061	AA= PC	A											
				² S _m =0 m	m W _k =0	0,00 mm	$\sigma_{ct,f}=0.00$	N/mm ²		CA=	QPR ε _{sm} =	0E+00 A	l _e =0,0 cn	n ² S _m =0 r	nm W _k =0	,00 mm
	0,00 N/ı					•	,-									
SHEL	L: [0000	8-00003	-00006]	AA= PC	Α											
CA=F	RQ ε _{sm} =	=0E+00	$A_e = 0.0 \text{ cm}$	² S _m =0 m	m W _k =0	0,00 mm	$\sigma_{ct,f}=0.00$	N/mm ²		CA=	QPR ε _{sm} =	0E+00 A	\ _e =0,0 cn	n ² S _m =0 r	nm W _k =0	,00 mm
$\sigma_{ct,f} =$	0,00 N/ı	mm²														
SHEL	L: [0000	7-00008	-00006]	AA= PC	Α											
			$A_e=0.0$ cm	² S _m =0 m	m W _k =0	0,00 mm	$\sigma_{ct,f}=0,00$	N/mm ²		CA=	QPR ε_{sm} =	0E+00 A	$l_e=0,0$ cn	$n^2 S_m = 0 r$	nm W _k =0	,00 mm
$\sigma_{ct,f} =$	0,00 N∕ı	mm²														
-		7-00003		AA= PC												
			$A_{\rm e}$ =0,0 cm	² S _m =0 m	$m W_k = 0$	0,00 mm	$\sigma_{ct,f}=0.00$	N/mm ²		CA=	QPR ε_{sm} =	0E+00 A	$l_e=0,0$ cn	$n^2 S_m = 0 r$	nm $W_k=0$,00 mm
,-	0,00 N∕ı															
		4-00003		AA = PC				•						•		
			$A_{ m e}$ =0,0 cm	² S _m =0 m	$m W_k = 0$	0,00 mm	$\sigma_{ct,f}=0,00$	N/mm²		CA=	QPR ε_{sm} =	0E+00 A	$l_e=0,0$ cn	n² S _m =0 r	nm W _k =0	,00 mm
	0,00 N/ı							1								1
P	00003	0,117	-0,117	1,464	00004	0,129	-0,129	1,611	00005	0,284	-0,284	3,556	00006	0,240	-0,240	2,994
S		0,178	-0,178	2,231		0,153	-0,153	1,913		0,101	-0,101	1,260		0,108	-0,108	1,347
P	00007	0,213	-0,213	2,658	00008	0,126	-0,126	1,573	00009	0,236	-0,236	2,946				
S		0,175	-0,175	2,183		0,139	-0,139	1,741		0,242	-0,242	3,023				

LEGENDA:

Dir Direzione [P] = principale - [S] = secondaria. Tensione massima di trazione nel calcestruzzo. σ_{ct} Tensione massima di compressione nel calcestruzzo. σ_{cc} σ_{at} Tensione massima di trazione nell'acciaio.

Shell Shell in cui risulta suddiviso l'elemento. FRC Spostamento massimo (freccia) dell'elemento.

Identificativo dell'aggressività dell'ambiente: [PCA] = Poco aggressivo - [MDA] = Moderatamente aggressivo - [MLA] = Molto aggressivo. Identificativo della Combinazione di Azione: [QPR] = Quasi Permanente - [FRQ] = Frequente - [RAR] = Rara. AA

Id_{Cmb}

Deformazione media nel calcestruzzo. Area efficace del calcestruzzo teso. Distanza media tra le fessure. Apertura massima delle fessure.

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301_D_R_0120 Rev. 02

CALCOLO DI VERIFICA DELLA FONDAZIONE TERMINALE CAVO AT - FONDAZIONE N°08 6.8.5. CARATTERISTICHE DELLA FONDAZIONE

Trattasi di una piastra di base in c.a. a contatto con il terreno sulla quale viene impostato n.1 batolo per l'ancoraggio delle apparecchiature. La piastra summenzionata ha dimensioni di 1,60x1,60x0,30m, mentre, il batolo ha dimensione 0,70x0,70x0,50m ed è provvisto di quattro tirafondi disposti a maglia quadrata, per l'installazione dell'apparecchiatura.

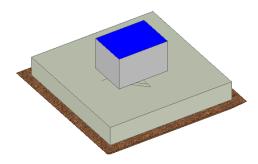


Fig. Vista assonometrica fondazione per terminale cavo AT

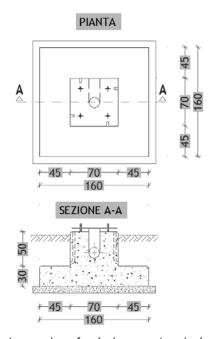


Fig. Pianta e sezione fondazione per terminale cavo AT

6.8.6. CARICHI

Si riporta di seguito il riepilogo dei carichi agenti, determinati nelle verifiche della sovrastruttura (scarichi in fondazione). Sostegno sostegno terminale cavo lato utente 150 kV:

Carichi sulla fondazione	FX	FY	FZ	MX	MY	MZ	$M = (MX^2 + MY^2)^{1/2}$
riferiti al piede della colonna	(N)	(N)	(N)	(Nmm)	(Nmm)	(Nmm)	(Nmm)
Node 3500: 10: SLU_1x [Combination 1]	1907	1500	-8521	-3841899	4943852	0	6261139
Node 3500: 11: SLU_1y [Combination 2]	0	2422	-8521	-6499809	0	0	6499809
Node 3500: 12: SLU_2x [Combination 3]	1907	1500	-9724	-3841899	4943852	0	6261139
Node 3500: 13: SLU_2y [Combination 4]	0	2422	-9724	-6499809	0	0	6499809
Node 3500: 14: SLU_3x [Combination 5]	3179	1500	-8521	-3841899	8239754	0	9091410

RELAZIONE PRELIMINARE DELLE STRUTTURE

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301 D R 0120 Rev. 02

Node 3500: 15: SLU_3y [Combination 6]	0	3037	-8521	-8271749	0	0	8271749
Node 3500: 16: SLU_4x [Combination 7]	3179	1500	-9724	-3841899	8239754	0	9091410
Node 3500: 17: SLU_4y [Combination 8]	0	3037	-9724	-8271749	0	0	8271749
Node 3500: 24: Sismica_1 [Combination 15]	-2330	89	-6863	-4344438	-7083370	-290738	8309529
Node 3500: 25: Sismica_2 [Combination 16]	-699	-1475	-6954	-9237948	-2125045	-87223	9479214
Node 3500: 26: Sismica_3 [Combination 17]	-699	-8	-8313	-4541528	-2125022	-87223	5014100
Node 3500: 27: Sismica_4 [Combination 18]	-2330	89	-7665	-4344438	-7083370	-290738	8309529
Node 3500: 28: Sismica_5 [Combination 19]	-699	-1475	-7756	-9237948	-2125045	-87223	9479214
Node 3500: 29: Sismica_6 [Combination 20]	-699	-8	-9115	-4541528	-2125022	-87223	5014100
Node 3500: 30: EccezionalePTS [Combination 21]	0	974	-6201	-2947779	0	0	2947779
Node 3500: 31: EccezionalePTC [Combination 22]	0	964	-6602	-3143259	0	0	3143259
Node 3500: 32: EccezionaleCC [Combination 23]	3100	800	-875	-2162691	13987200	0	14153409

I carichi permanenti strutturali e non strutturali derivanti dal peso proprio della fondazione e da quello del piazzale sono:

	Carichi sugli elementi
elemento	carico
	[daN]
Peso proprio batolo	613 [daN]
Peso proprio platea	1.920 [daN]
Peso piazzale di riporto su platea	900 [daN/mq]

6.8.7. BATOLO

BATOLO- VERIFICHE PRESSOFLESSIONE DEVIATA ALLO STATO LIMITE ULTIMO

											Bate	oli (CA	۱) - Ve	rifich	e pres	ssofl	essic	ne de	eviata	allo	SLU
	NI.	B.A	R.A	CC	N.4	D.4	NI.	N.		_					Lato	1			Late	2	
	N _{Ed}	M _{Ed,X}	$M_{Ed,Y}$	CS	$M_{Rd,X}$	$M_{Rd,Y}$	$N_{Ed,max}$	N _R	α	R _f	ΨVe	Φvi	φw	L	n _{req}	n _f	ф	L	n _{req}	n _f	ф
	[N]	[N·m]	[N·m]		[N·m]	[N·m]	[N]	[N]			[mm]	[mm]	[mm]	[cm]				[cm]			
Bato	lo: Batolo	1																			
	15.849	-	-9.790	18.36[V]	179.767	179.767	0	7.905.892	1,00	NO	12	-	10	70	1	2	12	70	1	2	12

LEGENDA:

CS Coefficiente di sicurezza ([NS] = Non Significativo se CS ≥ 100; [VNR]= Verifica Non Richiesta; Informazioni aggiuntive sulla condizione: [V] =

statica; [E] = eccezionale; [S] = sismica; [N] = sismica non lineare). Massimo sforzo di compressione.

N_{Ed,max} Massimo sforzo di compression

 N_R Sforzo Normale resistente.

Esponente per la valutazione del coefficiente di sicurezza.

 $\mathbf{R_f}$ [SI] = elemento con presenza di rinforzo; [NO] = elemento senza rinforzo.

 N_{Ed} , $M_{Ed,X}$, $M_{Ed,Y}$ Sollecitazioni di progetto ($N_{Ed} > 0$: compressione).

 $\mathbf{M}_{\mathsf{Rd},\mathsf{X}}$, $\mathbf{M}_{\mathsf{Rd},\mathsf{Y}}$ Momento Resistente intorno ad X e Y.

φν, φν, φς, φνι, φst Diametri, rispettivamente, delle barre di acciaio nei vertici esterni e nei vertici interni e delle staffe; [φν] = Significativo e valorizzato solo in caso di

sezione cava

L, n_{reg}, n_f, • Per sezione del batolo rettangolare e armata simmetricamente, lunghezza, numero di registri, numero di barre e relativo diametro per il lato 1 e 2

della sezione. Se la sezione considerata non è rettangolare e/o simmetricamente armata, tali colonne sono vuote e le informazioni riguardanti

l'armatura sono riportate per ciascun lato in apposita casella di testo.

BATOLO- VERIFICHE A TAGLIO PER PRESSOFLESSIONE DEVIATA ALLO STATO LIMITE ULTIMO

								Batoli (C	A) - Veriti	iche a ta	glio per j	pressofie	ssione de	∕iata alle	o SLU
	V	V	cs	V	Rcd	V _R	sd,s	V	fd	١	'i	V	_		B
	V _{Ed,3}	V _{Ed,2}	CS	Х	Υ	Х	Υ	Х	Υ	Х	Υ	$V_{Rd,s}$	A _{sw}	S _{Asw}	R _f
	[N]	[N]		[N]	[N]	[N]	[N]	[N]	[N]	[N]	[N]	[N]	[cm ² /cm]	[cm]	
Batolo: Batolo 1															
	3.179	3.037	NS	1357797	1357797	637709	637709	0	0	0	0	-	0,1309	12	NO

LEGENDA:

 $V_{Ed,3}$ Taglio di progetto in direzione 3.

 $V_{Ed,2}$ Taglio di progetto in direzione 2.

CS Coefficiente sicurezza ([NS]= Non Significativo se CS \geq 100; Info condizione: [V]=statica; [E]=eccezionale; [S]=sismica; [N]=sismica non lineare)

V_{Rcd} Resistenza a taglio compressione del calcestruzzo.

 $V_{Rsd,s}$ Resistenza a taglio trazione delle staffe.

V_{fd} Resistenza a taglio dovuta al rinforzo FRP

Passo massimo staffe da normativa.

Vi Contributo acciaio al Taglio ultimo dovuto all'incamiciatura in acciaio.

V_{Rd,s} Resistenza a taglio per scorrimento.
A_{sw} Area delle staffe per unità di lunghezza.

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301 D R 0120 Rev. 02

								Batoli (C	A) - Veri	fiche a ta	glio per p	ressofle	ssione de	viata all	o SLU
v		v	CC	V	Rcd	V _R	sd,s	V	f _d	\	/ _i	V			В
V	Ed,3	V _{Ed,2}	CS	Χ	Υ	Х	Υ	Х	Υ	Х	Υ	$V_{Rd,s}$	A _{SW}	SASW	κ _f
]	N]	[N]		[N]	[N]	[N]	[N]	[N]	[N]	[N]	[N]	[N]	[cm ² /cm]	[cm]	

R_f [SI] = elemento con presenza di rinforzo; [NO] = elemento senza rinforzo.

BATOLO- VERIFICHE DELLE TENSIONI ALLO STATO LIMITE DI ESERCIZIO

												Batoli	 verific 	he delle	tensioni	di esercizio
			Con	npressio	ne calce	struzzo						Trazio	ne accia	io		
Tp _{rnf}			Compre	ssione c	alcestru	zzo rinfo	orzo				Trazi	ione acc	iaio/FRP	rinforzo)	
	I d _{Cmb}	σ_{cc}	$\sigma_{cd,amm}$	N _{Ed}	$M_{Ed,3}$	$M_{Ed,2}$	CS	Verificato	Id _{Cmb}	σ_{at}	$\sigma_{td,amm}$	N _{Ed}	$M_{Ed,3}$	$M_{Ed,2}$	CS	Verificato
		[N/mm ²]	[N/mm ²]	[N]	[N·m]	[N·m]				[N/mm ²]	[N/mm ²]	[N]	[N·m]	[N·m]		
Batolo: Ba	tolo 1															
	RAR	0,309	19,92	7.000	15.537	2.563	64.37	SI	RAR	3,774	360,00	7.000	15.537	2.563	95.39	SI
	QPR	0,012	14,94	6.125	-	-	NS	SI								

LEGENDA:

Rinf. Indica la presenza del rinforzo sulla sezione di verifica.

Identificativo della Combinazione di Azione: [QPR] = Quasi Permanente - [FRQ] = Frequente - [RAR] = Rara.

 σ_{cc} Tensione massima di compressione nel calcestruzzo.

 $\sigma_{cd,amm}$ Tensione ammissibile per la verifica a compressione del calcestruzzo.

 $N_{\text{Ed}},\,M_{\text{Ed},3},\,M_{\text{Ed},2}$ Sollecitazioni di progetto.

σ_{at} Tensione massima di trazione nell'acciaio della Trave/Rinforzo o nel FRP.

σ_{td.amm} Tensione ammissibile per la verifica a trazione dell'acciaio.

CS Coefficiente di Sicurezza (= $\sigma_{cd,amm}/\sigma_{cc}$; $\sigma_{td,amm}/\sigma_{at}$). [NS] = Non Significativo (CS \geq 100).

 $\text{Verificato} \hspace{1cm} [Si] = \sigma_{cc} \leq \sigma_{cd,amm}; \ \sigma_{at} \leq \sigma_{td,amm}. \ [NO] = \sigma_{cc} > \sigma_{cd,amm}; \ \sigma_{at} > \sigma_{td,amm}$

BATOLO- VERIFICA ALLO STATO LIMITE DI FESSURAZIONE

									Batoli -	verifica al	lo stato lin	nite di f	fessurazione	
	I d _{Cmb}	N _{Ed}	$M_{Ed,3}$	$M_{Ed,2}$	$\sigma_{ct,f}$	σ_{t}	€ _{sm}	A _e	Δ_{sm}	W _d	W _{amm}	CS	Verificato	
		[N]	[N·m]	[N·m]	[N/mm ²]	[N/mm ²]		[cm ²]	[mm]	[mm]	[mm]			
Batolo: Batolo	Batolo: Batolo 1													
				AA= PCA										
-	FRQ	263	4.196	649	0,08	2,58	0 E+00	0	0	0,000	0,400	-	SI	
_	OPR	6.125	-	_	-0.01	2.58	0 E+00	0	0	0.000	0.300	-	SI	

LEGENDA:

AA Aggressività 'ambiente: [PCA]=Ordinarie (Poco aggressivo)-[MDA]=Aggressive(Moderatamente aggressivo)-[MLA]=Molto aggressive

Identificativo della Combinazione di Azione: [QPR] = Quasi Permanente - [FRQ] = Frequente - [RAR] = Rara.

N_{Ed}, M_{Ed,3}, M_{Ed,2} Sollecitazioni di progetto

σ_{ct,f} Tensione massima di trazione nel calcestruzzo per la fessurazione, calcolata nell'ipotesi di calcestruzzo resistente a trazione. Se tale valore è maggiore

 $\label{eq:total_section} \mbox{di } \sigma_t \mbox{ la sezione è soggetta a fessurazione. N.B. I valori negativi indicano una sezione interamente compressa. In tal caso le sollecitazioni forniscono il$

minimo valore di compressione.

σ_t Tensione massima di trazione nel cls relativa allo stato limite di formazione delle fessure [(4.1.37) del § 4.1.2.2.4.1 del DM 2008].

 $egin{array}{lll} egin{array}{lll} egin{arra$

W_d Valore di calcolo di apertura massima delle fessure.

W_{amm} Valore ammissibile di apertura delle fessure.

CS Coefficiente di Sicurezza (= W_d / W_{amm}). [NS] = Non Significativo (CS \geq 100). [-] = Fessurazioni nulle (W_d = 0).

Verificato $[SI] = W_d \le W_{amm}$; $[NO] = W_d > W_{amm}$

6.8.8. PLATEE

PLATEA- VERIFICHE PRESSOFLESSIONE RETTA ALLO STATO LIMITE ULTIMO

															Plat	ee - Veri	fiche presso	oflessione re	etta allo SLU
Dir	Pos	Nodo	N _{Ed}	M _{Ed}	A _s	A _{df}	CS	Nodo	N _{Ed}	M _{Ed}	A _s	A _{df}	CS	Nodo	N _{Ed}	M _{Ed}	A _s	A _{df}	CS
			[N]	[N·m]	[cm ² /cm]	[cm ² /cm]			[N]	[N·m]	[cm ² /cm]	[cm ² /cm]			[N]	[N·m]	[cm ² /cm]	[cm ² /cm]	
Fond	lazione	,			Platea	a 1													
P	S	00002	0	0	0,04524	0,04524	-	00003	0	0	0,04524	0,04524	-	00004	0	0	0,04524	0,04524	-
	1		0	5.708	0,04524	0,04524	8,62		86	2.832	0,04524	0,04524	17,36		0	3.652	0,04524	0,04524	13,47
S	S		0	0	0,04524	0,04524	-		0	0	0,04524	0,04524	-		0	0	0,04524	0,04524	-
	1		0	4.874	0,04524	0,04524	10,09		0	3.196	0,04524	0,04524	15,39		65	3.045	0,04524	0,04524	16,15
Р	S	00005	0	0	0,04524	0,04524	-	00006	0	0	0,04524	0,04524	-	00007	0	2.528	0,04524	0,04524	19,45
	1		0	4.302	0,04524	0,04524	11,43		-85	3.968	0,04524	0,04524	12,40		0	5.693	0,04524	0,04524	8,64
S	S		0	0	0,04524	0,04524	-		0	0	0,04524	0,04524	-		0	1.726	0,04524	0,04524	28,49
	1		-65	2.515	0,04524	0,04524	19,56		0	2.847	0,04524	0,04524	17,27		0	6.104	0,04524	0,04524	8,06
Р	S	00008	0	0	0,04524	0,04524	-												
	1		0	7.415	0,04524	0,04524	6,63												
S	S		0	0	0,04524	0,04524	-												
	1		0	7.173	0,04524	0,04524	6,86												

LEGENDA:

Dir Direzione [P] = principale (asse locale 1) - [S] = secondaria (asse locale 2).

Pos Posizione [S] = superiore - [I] = inferiore.

 ${f A}_{s}$ Area delle armature esecutive per unità di lunghezza.

Adf Armatura disponibile per la flessione

CS Coefficiente di sicurezza ([NS] = Non Significativo se CS ≥ 100; [VNR]= Verifica Non Richiesta; Informazioni aggiuntive sulla condizione: [V] = statica; [E]

= eccezionale; [S] = sismica; [N] = sismica non lineare).

 N_{Ed} , M_{Ed} Sollecitazioni di progetto.

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301 D R 0120 Rev. 02

PLATEA- VERIFICHE DELLE TENSIONI ALLO STATO LIMITE DI ESERCIZIO

											Plate	e - verifich	ne delle tei	nsioni d	di esercizio
Nodo/	Dir				essione calce one calcestru		0					razione accia acciaio/FRI			
Tp _{rnf}		Id _{Cmb}	σ_{cc}	σ _{cd,amm}	N _{Ed}	M _{Ed}	CS	Verificato	Id _{Cmb}	σ_{at}	σ _{td,amm}	N_{Ed}	M _{Ed}	CS	Verificato
			[N/mm ²]	[N/mm ²]	[N]	[N·m]				[N/mm ²]	[N/mm ²]	[N]	[N·m]		
Fondazione				Platea 1											
	-ondazione	RAR	0,414	19,92	0	-6.790	48,15	SI	RAR	5,171	360,00	0	-6.790	69,62	SI
00000	00008	QPR	0,127	14,94	0	-2.082	NS	SI	-	-	-	-	-	-	-
00006		RAR	0,396	19,92	0	-6.492	50,36	SI	RAR	4,944	360,00	0	-6.492	72,81	SI
	3	QPR	0,138	14,94	0	-2.271	NS	SI	-	-	-	-	-	-	-

LEGENDA:

Rinf. Indica la presenza del rinforzo sulla sezione di verifica.

Dir Direzione [P] = principale (asse locale 1) - [S] = secondaria (asse locale 2).

 Id_{Cmb} Identificativo della Combinazione di Azione: [QPR] = Quasi Permanente - [FRQ] = Frequente - [RAR] = Rara.

Tensione massima di compressione nel calcestruzzo della Trave/Rinforzo. σ_{cc} Tensione ammissibile per la verifica a compressione del calcestruzzo. $\sigma_{cd.amm}$ Tensione massima di trazione nell'acciaio della Trave/Rinforzo o nel FRP. σ_{at} Tensione ammissibile per la verifica a trazione dell'acciaio/rinforzo. σtd.am

 $N_{Ed},\,M_{Ed}$ Sollecitazioni di progetto.

CS Coefficiente di Sicurezza (= $\sigma_{cd, amm}/\sigma_{cc}$; $\sigma_{td, amm}/\sigma_{at}$). [NS] = Non Significativo (CS \geq 100).

[SI] = La verifica è soddisfatta ($\sigma_{cc} \le \sigma_{cd,amm}$; $\sigma_{at} \le \sigma_{td,amm}$). [NO] = La verifica NON è soddisfatta ($\sigma_{cc} \ge \sigma_{cd,amm}$; $\sigma_{at} \ge \sigma_{td,amm}$). Nella tabella, per ogni elemento, viene riportato il nodo della shell che ha il coefficiente di sicurezza (CS) più piccolo. Verificato Nota

PLATEA- VERIFICA ALLO STATO LIMITE DI FESSURAZIONE

									Platee -	verifica al	lo stato lin	nite di 1	fessurazione
Nodo	Dir	I d _{Cmb}	N _{Ed}	M _{Ed}	$\sigma_{\text{ct,f}}$	σ_{t}	€ _{sm}	Ae	Δ_{sm}	W_d	W _{amm}	CS	Verificato
			[N]	[N·m]	[N/mm ²]	[N/mm ²]		[cm ²]	[mm]	[mm]	[mm]		
Fondazione			Platea 1			A/	A= PCA						
NOTA: L'eleme	ento NON è fe	ssurato. Di se	guito si ripo	rta il nodo st	rutturale pe	r la quale si	riscontra la	massima ter	nsione di trazio	one(max σ _{ct}	_f)		
80000		FRQ	-	-3.495	0,21	2,58	0 E+00	0	0	0,000	0,400	-	SI
	P	QPR	-	-2.082	0,13	2,58	0 E+00	0	0	0,000	0,300	-	SI
	c	FRQ	-	-3.537	0,22	2,58	0 E+00	0	0	0,000	0,400	-	SI
	3	QPR	-	-2.271	0,14	2,58	0 E+00	0	0	0,000	0,300	-	SI

LEGENDA:

Dir Direzione [P] = principale (asse locale 1) - [S] = secondaria (asse locale 2).

AAAggressività 'ambiente: [PCA] = Ordinarie (Poco aggressivo) - [MDA] = Aggressive (Moderatamente aggressivo) - [MLA] = Molto aggressive.

 Id_{Cmb} Identificativo della Combinazione di Azione: [QPR] = Quasi Permanente - [FRQ] = Frequente - [RAR] = Rara.

N_{Ed}, M_{Ed} Sollecitazioni di progetto.

Tensione massima di trazione nel calcestruzzo per la fessurazione, calcolata nell'ipotesi di calcestruzzo resistente a trazione. Se tale valore è maggiore di σ₁ $\sigma_{ct,f}$

la sezione è soggetta a fessurazione.

Tensione massima di trazione nel calcestruzzo relativa allo stato limite di formazione delle fessure. σ_{t}

ε_{sm} Α_e Deformazione media nel calcestruzzo. Area efficace del calcestruzzo teso Δ_{sm} W_d Distanza media tra le fessure.

Valore di calcolo di apertura massima delle fessure.

Valore ammissibile di apertura delle fessure. Wa

Coefficiente di Sicurezza (= W_d/W_{amm}). [NS] = Non Significativo (CS \geq 100). [-] = Fessurazioni nulle ($W_d = 0$). CS

Verificato $[SI] = W_d \le W_{amm}; [NO] = W_d > W_{amm}$

RELAZIONE PRELIMINARE DELLE STRUTTURE

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301_D_R_0120 Rev. 02

6.9. TRASFORMATORE DI POTENZA 150/30 kV - FONDAZIONE N°13;

6.9.1. CARATTERISTICHE DELLA FONDAZIONE

La fondazione del trasformatore trifase AT/MT è riportata nel disegno di riferimento. Trattasi di una piastra in c.a. a contatto con il terreno sulla quale è impostate delle pareti per l'appoggio dei componenti del trasformatore. Il perimetro è realizzato da paretine in c.a. in modo da formare una vasca di raccolta olio. Tale fondazione ha un' area di impronta di circa 54 mq con dimensioni 9,00x6,00x0,42m. Le pareti hanno dimensioni 6,00x0,80x1,78m, su cui sono ancorate piastre metalliche per l'appoggio del trasformatore.

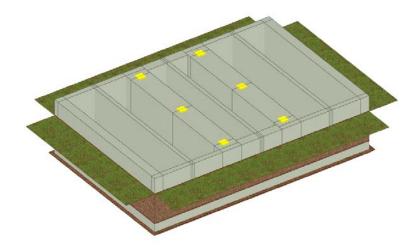
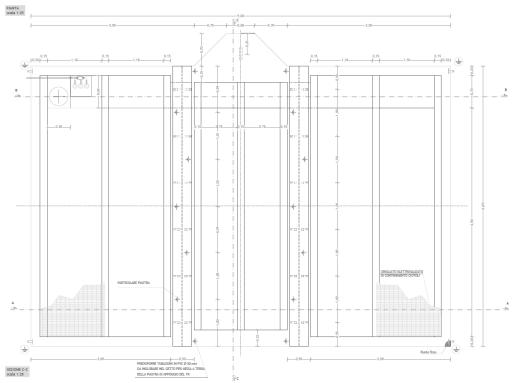



Fig. Vista assonometrica fondazione per trasformatore di potenza 150kV

RELAZIONE PRELIMINARE DELLE STRUTTURE

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301_D_R_0120 Rev. 02

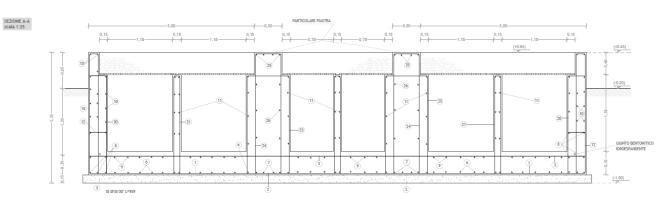


Fig. Pianta e sezione Trasformatore di potenza 150 kV

6.9.2. CARICHI

Si riporta di seguito il riepilogo dei carichi permanenti strutturali e non strutturali derivanti dal peso proprio del trasformatore, della platea, delle pareti e del grigliato.

	Carichi sugli elementi
elemento	carico
	[daN]
Peso proprio trasformatore + olio	80.000 [daN]
Peso proprio pareti	82.559 [daN]
Peso proprio platea	56.700 [daN]
Peso olio e grigliato	1.100 [daN/mq]

6.9.3. PARETI

VERIFICHE PRESSOFLESSIONE RETTA ALLO STATO LIMITE ULTIMO

<u> </u>	./ 1// /(<i>)</i>	TILOGO	1 LLOC	HOIVE III		<u>LU 3</u>	IAIC	LIIVIIIE	OLTIIV	<u>10</u>			Pareti	- Verifich	e presso	oflessione	retta all	o SI U
Di r	Pos	Nod o	N _{Ed}	M _{Ed}	As	\mathbf{A}_{df}	cs	Nod o	N _{Ed}	M _{Ed}	As	A _{df}	cs	Nod	N _{Ed}	M _{Ed}	A _s	A _{df}	cs
			[N]	[N·m]	[cm ² /cm]	[cm ² /cm]			[N]	[N·m]	[cm ² /cm]	[cm ² /cm]			[N]	[N·m]	[cm ² /cm]	[cm ² /cm]	
Piar	o Ter				Par	ete P1-P2	2								Paret	te P1-P2			
Р	Α	0000 5	0	0	0,10053	0,10053	-	0000	0	0	0,10053	0,10053	-	0000 7	992	1.988	0,10053	0,10053	59,6 8
	Р		-19.449	1.376	0,10053	0,10053	88,2 9		-14.768	1.067	0,10053	0,10053	NS		0	0	0,10053	0,10053	-
S	Α		0	0	0,05655	0,05655	-		0	0	0,05655	0,05655	-		20.810	444	0,05655	0,05655	NS
	Р		-15.873	685	0,05655	0,05655	NS		-10.860	751	0,05655	0,05655	96,5 4		29.278	577	0,05655	0,05655	NS
Р	Α	0000	1.710	2.114	0,10053	0,10053	56,0 8	0005 5	-69.970	2.463	0,10053	0,10053	52,1 7	0005 6	-41.939	2.364	0,10053	0,10053	52,7 1
	Р		0	0	0,10053	0,10053	-		0	0	0,10053	0,10053	-		0	0	0,10053	0,10053	-
S	Α		21.049	458	0,05655	0,05655	NS		-14.376	1.029	0,05655	0,05655	70,9 4		-3.613	941	0,05655	0,05655	75,9 5
	Р		28.710	518	0,05655	0,05655	NS		0	0	0,05655	0,05655	-		0	0	0,05655	0,05655	-
Р	Α	0005 7	-847	23	0,10053	0,10053	NS	0005	0	0	0,10053	0,10053	-	0010 1	-3.389	363	0,10053	0,10053	NS
	Р		-393	41	0,10053	0,10053	NS		2.997	186	0,10053	0,10053	NS		-1.640	145	0,10053	0,10053	NS
S	Α		62.091	535	0,05655	0,05655	NS		68.129	455	0,05655	0,05655	NS		20.780	173	0,05655	0,05655	NS
	Р		47.542	402	0,05655	0,05655	NS		53.639	669	0,05655	0,05655	94,7 1		14.087	482	0,05655	0,05655	NS
Р	Α	0010 2	-24.766	302	0,10053	0,10053	NS	0010	-7.730	445	0,10053	0,10053	NS	0010 4	-26.206	584	0,10053	0,10053	NS
	Р		-19.367	741	0,10053	0,10053	NS		-6.329	572	0,10053	0,10053	NS		-22.192	79	0,10053	0,10053	NS
S	Α		6.154	110	0,05655	0,05655	NS		0	0	0,05655	0,05655	-		0	0	0,05655	0,05655	-
	Р		2.775	667	0,05655	0,05655	NS		14.664	982	0,05655	0,05655	70,1 5		21.885	546	0,05655	0,05655	NS
Р	Α	0010 5	-24.537	1.016	0,10053	0,10053	NS	0010 6	-9.485	173	0,10053	0,10053	NS	0010 7	-13.546	509	0,10053	0,10053	NS
	Р		-20.251	217	0,10053	0,10053	NS		-7.885	380	0,10053	0,10053	NS		-10.166	559	0,10053	0,10053	NS
S	Α		12.750	601	0,05655	0,05655	NS		49.390	451	0,05655	0,05655	NS		26.913	521	0,05655	0,05655	NS
	Р		0	0	0,05655	0,05655	-		37.945	588	0,05655	0,05655	NS		19.726	48	0,05655	0,05655	NS
Piar	o Ter				Par	ete P3-P4									Paret	te P3-P4			
Р	Α	0002 5	0	0	0,05655	0,05655	-	0002 6	5.711	591	0,05655	0,05655	44,7 9	0002 7	0	0	0,05655	0,05655	-
	Р		-2.108	321	0,05655	0,05655	83,4 7		0	0	0,05655	0,05655	_		-4.585	343	0,05655	0,05655	78,4 2
S	Α		0	0	0,05655	0,05655	-		18.941	651	0,05655	0,05655	39,8		0	0	0,05655	0,05655	-

RELAZIONE PRELIMINARE DELLE STRUTTURE

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

															- Verifich	e presso	oflessione	retta all	o SLU
Di r	Pos	Nod	N_{Ed}	M_{Ed}	\mathbf{A}_{s}	\mathbf{A}_{df}	cs	Nod o	N_{Ed}	M_{Ed}	\mathbf{A}_{s}	A_{df}	cs	Nod o	N _{Ed}	M_{Ed}	As	A_{df}	cs
•			[N]	[N·m]	[cm²/cm]	[cm ² /cm]			[N]	[N·m]	[cm ² /cm]	[cm²/cm]			[N]	[N·m]	[cm²/cm]	[cm ² /cm]	
	P		0	0	0.05655	0,05655	_		0	0	0,05655	0,05655	1 -		-12.395	59	0,05655	0,05655	NS
P	A	0002	5.747	578	0,05655	0,05655	45,7	8000	0	0	0,05655	0,05655		0009	0	0	0,05655	0,05655	- 10
		8	3.747	370	0,03033	0,03033	9	9	O		0,03033	0,03033	44,1	0				0,03033	67,8
	Р		0	0	0,05655	0,05655	-		-38.720	641	0,05655	0,05655	8		-40.131	418	0,05655	0,05655	9
S	Α		19.643	632	0,05655	0,05655	40,9		0	0	0,05655	0,05655	_		0	0	0,05655	0,05655	_
	P		0	0	0,05655	0,05655	6		-8.728	192	0,05655	0,05655	NS		-3.667	112	0,05655	0,05655	NS
P	Α	0009	0	0	0,05655	0,05655	_	0009	0	0	0,05655	0,05655	_	0018	0	0	0,05655	0,05655	_
	P	1	1.881	34	0,05655	0,05655	NS	2	2.039	61	0,05655	0,05655	NS	7	-12.719	21	0,05655	0,05655	NS
S	Α		0	0	0,05655	0,05655	-		0	0	0,05655	0,05655	-		0	0	0,05655	0,05655	-
	Р	0010	56.133	157	0,05655	0,05655	NS	0010	47.796	227	0,05655	0,05655	NS	0010	20.565	31	0,05655	0,05655	NS
Р	Α	0018 8	0	0	0,05655	0,05655	-	0018 9	0	0	0,05655	0,05655	-	0019	0	0	0,05655	0,05655	-
	Р		-2.983	118	0,05655	0,05655	NS		-19.412	153	0,05655	0,05655	NS		0	0	0,05655	0,05655	-
S	A P		10.363 0	29 0	0,05655	0,05655 0,05655	NS		892 0	24 0	0,05655	0,05655	NS -		0 15.122	0 10	0,05655	0,05655	- NS
P	·	0019	0	0	,		_	0019	0	0		0.05655	_	0019	0	0	0,05655		INS
r	A	1	U	U	0,05655	0,05655	75.5	2	U	U	0,05655	0,03633	-	3	0	0	0,03033	0,05655	-
	Р		-13.399	361	0,05655	0,05655	75,5 2		-5.031	125	0,05655	0,05655	NS		-11.331	154	0,05655	0,05655	NS
S	Α		0	0	0,05655	0,05655	-		0	0	0,05655	0,05655	-		0	0	0,05655	0,05655	-
Diar	P 10 Teri		8.772	196	0,05655	0,05655 ete P5-G 1	NS C2 C	2 D4	35.125	203	0,05655	0,05655	NS		26.057	120 t e P5-G 1	0,05655	0,05655	NS
PIAI P		0001	0	_			-62-0	0001	F2 2F0	22.07	0.10053	0.10053	14,2	0004				0.10053	
Р	Α	3	0	0	0,10053	0,10053	-	6	-53.350	4	0,10053	0,10053	8	4	0	0	0,10053	0,10053	-
	Р		-9.251	13.11 8	0,10053	0,10053	22,8		0	0	0,10053	0,10053	-		-85.974	10.02 7	0,10053	0,10053	32,6
S	Α		0	0	0,10053	0,10053			-40.902	20.41	0,10053	0,10053	15,2		0	0	0,10053	0,10053	
J			J		0,10000	0,10000			10.702	6	0,10000	0,10000	2					0,10000	91,8
	P		-22.916	2.936	0,10053	0,10053	NS		0	0	0,10053	0,10053	-		19.633	3.142	0,10053	0,10053	7
Р	Α	0004	-47.935	22.36	0,10053	0,10053	14,0	0010	-29.283	734	0,10053	0,10053	NS	0010	-40.869	14.03	0,10053	0,10053	22,1
	_	5		9 14.28			0 21,9	8					47,1	9		6			3
	Р		-47.935	6	0,10053	0,10053	3		-29.283	6.507	0,10053	0,10053	0		-40.869	1.301	0,10053	0,10053	NS
S	Α		36.232	5.259	0,10053	0,10053	53,7 4		45.613	1.266	0,10053	0,10053	NS		-27.375	9.476	0,10053	0,10053	32,2
	Р		36.232	266	0,10053	0,10053	NS		45.613	2.357	0,10053	0,10053	NS		-27.375	1.243	0,10053	0,10053	NS
Piar	no Teri				Par	ete P5-G1									Paret	e G1-G	2		
Р	Α	0004	-66.455	4.373	0,10053	0,10053	73,1	0004	-63.721	9.109	0,10053	0,10053	35,0 2	0004	0	0	0,10053	0,10053	-
	P		-66.455	9.531	0,10053	0.10053	33,5	_	-63.721	9.723	0,10053	0,10053	32,8		-85.974	10.02	0,10053	0,10053	32,6
						.,	7			10.28			29.9		03.774	7			2
S	Α		-17.377	1.337	0,10053	0,10053	NS		-33.531	0	0,10053	0,10053	6		0	0	0,10053	0,10053	-
	P		-17.377	2.778	0,10053	0,10053	NS		-33.531	12.95	0,10053	0,10053	23,7		19.633	3.142	0,10053	0,10053	91,8
_		0004		22.36			14,0	0005		5			7	0005					7
Р	Α	5	-47.935	9	0,10053	0,10053	0	1	-28.296	298	0,10053	0,10053	NS	2	67.671	738	0,10053	0,10053	NS
	Р		-47.935	14.28 6	0,10053	0,10053	21,9		-28.296	5.583	0,10053	0,10053	54,8 3		67.671	1.741	0,10053	0,10053	NS
	_		27, 222		0.10053	0.10053	53,7		0		0.10052	0.10053			27 120	144	0.10053	0.10053	NC
S	A		36.232	5.259	0,10053	0,10053	4			0	0,10053		-		-27.129	144		0,10053	NS
	Р	0009	36.232	266	0,10053		NS 54,6	0009	-7.706	1.110	0,10053		NS 60,5	0009	-44.243	1.367		0,10053	NS
Р	Α	3	-61.325	5.821	0,10053	0,10053	5	4	-57.974	5.235	0,10053	0,10053	3	5	-56.822	2.602	0,10053	0,10053	NS
	Р		-61.325	8.033	0,10053	0,10053	39,6 0		-57.974	6.131	0,10053	0,10053	51,6 9		-56.822	6.286	0,10053	0,10053	50,3
S	Α		-34.749	1.908	0,10053	0,10053	NS		-29.396	1.977	0,10053	0,10053	NS		-20.034	693	0,10053	0,10053	NS
	P		-34.749	3.142	0,10053	0,10053	98,1		-29.396	2.369	0,10053	0,10053	NS		-20.034	1.550	0,10053	0,10053	NS
_		0009					7 53,8					,	_				1		<u> </u>
Р	Α	6	-57.741	5.883	0,10053	0,10053	5												
	Р		-57.741	5.786	0,10053	0,10053	54,7												
S	Α		-29.808	2.449	0,10053	0,10053	5 NS												
-	P		-29.808	3.978		0,10053	77,0												
Dia-	no Teri	ra	27.000	5.770			9	2_D4							Doros	te G2-G	2		
		0003				ete P5-G1	-62-6	0003	40.444	17.43	0.10053	0.10050	18,0	0004				0.10050	73,1
Р	Α	8	0	0	0,10053	0,10053	-	9	-49.416	6		0,10053	0	1	-66.455	4.373	0,10053		7
	P		-74.136						-49.416			0,10053			-66.455		0,10053		

RELAZIONE PRELIMINARE DELLE STRUTTURE

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

р.															- Verifich	e presso	oflessione	retta all	o SLU
Di r	Pos	Nod o	N _{Ed}	M_{Ed}	\mathbf{A}_{s}	A_{df}	cs	Nod o	N _{Ed}	M_{Ed}	A_s	\mathbf{A}_{df}	cs	Nod o	N _{Ed}	M_{Ed}	A_s	A_{df}	cs
•			[N]	[N·m]	[cm ² /cm]	[cm ² /cm]			[N]	[N·m]	[cm ² /cm]	[cm ² /cm]			[N]	[N·m]	[cm ² /cm]	[cm ² /cm]	
							2						0						7
S	Α		0	0	0,10053	0,10053	-		1.952	6.686	0,10053	0,10053	44,1		-17.377	1.337	0,10053	0,10053	NS
	Р		-18.770	1.275	0,10053	0,10053	NS		1.952	1.427	0,10053	0,10053	NS.		-17.377	2.778	0,10053	0,10053	NS
Р	Α	0004	-63.721	9.109	0,10053	0,10053	35,0	0005	0	0	0,10053	0,10053	_	0005	68.074	789	0,10053	0,10053	NS
		2					2 32,8	3					44,8	4					
	Р		-63.721	9.723	0,10053	0,10053	1		-35.173	6.889	0,10053	0,10053	0		68.074	1.697	0,10053	0,10053	NS
S	Α		-33.531	10.28	0,10053	0,10053	29,9		0	0	0,10053	0,10053	_		0	0	0,10053	0,10053	_
				0 12.95			6 23,7				', '								
	Р		-33.531	5	0,10053	0,10053	7		-8.255	1.388	0,10053	0,10053	NS		-45.166	1.709	0,10053	0,10053	NS
Р	Α	0009	-57.390	4.756	0,10053	0,10053	66,5	0009	-60.596	5.567	0,10053	0,10053	57,1	0009	-55.963	2.231	0,10053	0,10053	NS
		7	07.070	11700	0,1000	0,.000	9 48,5	8	00.070	0.007	0,1000	0,1000	0 40,4	9	00.700	2.20.	0,10000	0,1000	47,2
	Р		-57.390	6.519	0,10053	0,10053	8		-60.596	7.850	0,10053	0,10053	9		-55.963	6.696	0,10053	0,10053	2
S	Α		-26.611	1.315	0,10053	0,10053	NS		-35.482	2.116	0,10053	0,10053	NS		-20.602	214	0,10053	0,10053	NS
	Р		-26.611	2.103	0,10053	0,10053	NS		-35.482	4.124	0,10053	0,10053	74,8		-20.602	1.884	0,10053	0,10053	NS
		0010					54,5						6						-
Р	Α	0	-59.280	5.819	0,10053	0,10053	4												
	Р		-59.280	5.973	0,10053	0,10053	53,1												
S	Α		-29.837	2.206	0,10053	0,10053	NS					-				}			
3							72,0												
	Р		-29.837	4.257	0,10053	0,10053	4												
Piar	no Teri	1			Par	ete P5-G1	-G2-0			22.04			144	0000	Paret	e G3-P6	5		
Р	Α	0001	0	0	0,10053	0,10053	-	0001	-59.334	22.04	0,10053	0,10053	14,4	0003	0	0	0,10053	0,10053	-
	Р		-12.310	13.46	0,10053	0,10053	22,3		0	0	0,10053	0,10053			-74.136	6.099	0,10053	0,10053	52,9
	Г		-12.310	8	0,10033	0,10033	0		- 0		0,10033	0,10033	-		-74.130	0.077	0,10033	0,10033	2
S	Α		0	0	0,10053	0,10053	-		-49.924	20.04	0,10053	0,10053	15,6 7		0	0	0,10053	0,10053	-
	Р		-17.546	2.761	0,10053	0,10053	NS		0	o	0,10053	0,10053	_		-18.770	1.275	0,10053	0,10053	NS
Р	Α	0003	-49.416	17.43	0,10053	0,10053	18,0	0014	-22.434	754	0,10053	0,10053	NS	0014	-53.257	13.91	0,10053	0,10053	22,6
'		9	77.410	6	0,10033	0,10033	0	5	22.454	754	0,10033	0,10033		6	33.237	5	0,10033	0,10033	5
	Р		-49.416	9.568	0,10053	0,10053	32,8		-22.434	8.226	0,10053	0,10053	36,9 5		-53.257	1.814	0,10053	0,10053	NS
S	Α		1.952	6.686	0,10053	0,10053	44,1		9.573	2.299	0,10053	0,10053	NS		-22.164	9.654	0,10053	0,10053	31,4
3	A		1.732	0.000	0,10033	0,10033	4		7.573	2.277	0,10033	0,10033			-22.104	7.034	0,10033	0,10033	8
	Р		1.952	1.427	0,10053	0,10053	NS		9.573	4.749	0,10053	0,10053	61,5		-22.164	1.125	0,10053	0,10053	NS
Piar	no Teri	ra	I		Par	ete P7-P8	}						_ J		Paret	te P7-P8	3		
Р	Α	0002	1.434	35	0,05655	0.05655	NS	0002	1.227	36	0,05655	0.05655	NS	0002	-6.649	44	0,05655	0,05655	NS
'	P	1				','''	143	2				',		3					143
S	A		0	0	0,05655	0,05655	-		1.804	11 0	0,05655	0,05655	NS -		-8.603	0 42	0,05655	0,05655	NS
	P		Ö	0	0,05655	0,05655	-		0	0	0,05655		-		-8.238	11	0,05655		NS
Р	Α	0002	-6.921	41	0,05655	0,05655	NS	0008	-27.429	27	0,05655	0,05655	NS	8000	-23.695	29	0,05655	0,05655	NS
	Р	4	-7.107	11	0,05655	0,05655	NS	5	-25.558	14	0,05655	0,05655	NS	6	0	0	0,05655	0,05655	
S	A		-8.643	74	0.05655	0,05655	NS		0	0	0,05655	0,05655	-		0	0	0.05655	0,05655	_
	Р		-8.643	51	0,05655	0,05655	NS		0	0	0,05655	0,05655	-		0	0	0,05655	0,05655	-
Р	Α	0008	0	0	0,05655	0,05655	_	8000	0	0	0,05655	0,05655	_	0017	0	0	0,05655	0,05655	_
	Р	7	0	0	0,05655	0,05655	_	8	0	0	0,05655	0,05655	_	2	0	0	0,05655	0,05655	_
S	A		6.586	16	0,05655	0,05655	NS		7.870	15	0,05655	0,05655	NS		-6.929	16	0,05655	0,05655	NS
	Р		0	0	0,05655	0,05655	-		0	0	0,05655	0,05655	-		0	0	0,05655	0,05655	-
Р	Α	0017	0	0	0,05655	0,05655	_	0017	0	0	0,05655	0,05655	_	0017	0	0	0,05655	0,05655	_
	Р	3	0	0	0,05655	0,05655	_	4	0	0	0,05655	0,05655	_	5	0	0	0,05655	0,05655	_
S	Α		-3.430	14	0,05655	0,05655	NS		-2.241	21	0,05655	0,05655	NS		-8.535	15	0,05655	0,05655	NS
	P		0	0	0,05655	0,05655	-		0	0	0,05655	0,05655	-		0	0	0,05655	0,05655	-
Р	Α	0017	-11.547	15	0,05655	0,05655	NS	0017 7	0	0	0,05655	0,05655	-	0017	0	0	0,05655	0,05655	-
	Р	0	0	0	0,05655	0,05655	_	'	0	0	0,05655	0,05655	_	0	0	0	0,05655	0,05655	_
S	Α		0	0	0,05655	0,05655	-		5.725	16	0,05655	0,05655	NS		1.302	14	0,05655	0,05655	NS
	P		0	0		0,05655	-		0	0	0,05655	0,05655	-		0	0		0,05655	_
	no Teri	r a 0000		19.39		ete P9-G4	1- G5-G 15,8	6 -P10 0001						0002		te P9-G 4			26,0
Р	Α	9	-29.720	19.39	0,10053	0,10053	15,6	2	0	0	0,10053	0,10053	-	9	-38.231	9	0,10053	0,10053	20,0
	Р		0	0	0,10053	0,10053	_		-77.479	20.79	0,10053	0,10053	15,5		0	0	0,10053	0,10053	_
	•		, , , , , , , , , , , , , , , , , , ,		0,10000	5,10000	04.0		,,,,,,	6	5,15055	0,10000	8				3,13033	3,13033	01
S	Α		-58.725	3.766	0,10053	0,10053	84,2 2		0	0	0,10053	0,10053	-		118.325	9.483	0,10053	0,10053	26,6 5

RELAZIONE PRELIMINARE DELLE STRUTTURE

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

															- Verifich	e presso	oflessione	e retta all	o SLU
Di r	Pos	Nod o	N _{Ed}	M_{Ed}	As	\mathbf{A}_{df}	cs	Nod o	N_{Ed}	M_{Ed}	As	A _{df}	cs	Nod o	N_{Ed}	M_{Ed}	As	A _{df}	cs
			[N]	[N·m]	[cm²/cm]	[cm²/cm]			[N]	[N·m] 16.17	[cm ² /cm]	[cm²/cm]	20,1		[N]	[N·m]	[cm²/cm]	[cm ² /cm]	
	Р		0	0	0,10053	0,10053	-		-80.699	5	0,10053	0,10053	0		0	0	0,10053	0,10053	-
Р	Α	0003	-62.649	16.01 6	0,10053	0,10053	19,8 9												
	Р		-62.649	23.86	0,10053	0,10053	13,3 5												
S	Α	-	-6.091	3.859	0,10053	0,10053	77,2												
3				14.82			3 20,1												
	P		-6.091	6	0,10053	0,10053	0												
	no Teri	ra 0002		11.90		ete P9-G4	26,0	1		16.01			19,8	0003	· ·	e G4-G!			33,4
Р	Α	9	-38.231	9	0,10053	0,10053	1	0	-62.649	6	0,10053	0,10053	9	2	-67.064	9.585	0,10053	0,10053	1
	Р		0	0	0,10053	0,10053	-		-62.649	23.86	0,10053	0,10053	13,3 5		-67.064	4.495	0,10053	0,10053	71,2 4
S	Α		118.325	9.483	0,10053	0,10053	26,6 5		-6.091	3.859	0,10053	0,10053	77,2 3		-17.304	2.760	0,10053	0,10053	NS
	Р		0	0	0,10053	0,10053	-		-6.091	14.82 6	0,10053	0,10053	20,1		-17.304	1.357	0,10053	0,10053	NS
P	Α	0003	-64.099	9.905	0,10053	0,10053	32,2 2	0006	-29.569	5.541	0,10053	0,10053	55,3 3	0006	67.253	1.703	0,10053	0,10053	NS
	Р	3	-64.099	9.229	0,10053	0,10053	34,5	'	-29.569	190	0,10053	0,10053	NS	2	67.253	1.124	0,10053	0,10053	NS
S	Α	-	-33.500	13.03	0,10053	0,10053	8 23,6		-7.774	1.209	0,10053	0,10053	NS		-48.776	1.608	0,10053	0,10053	NS
3				8 10.41			2 29,5						INS						
	Р		-33.500	6	0,10053	0,10053	7	2011	0	0	0,10053	0,10053	-		0	0	0,10053	0,10053	-
Р	Α	0011	-61.409	8.205	0,10053	0,10053	38,7 7	0011 7	-53.700	7.095	0,10053	0,10053	44,4 5	0011	-55.041	6.444	0,10053	0,10053	49,0 1
	Р		-61.409	5.896	0,10053	0,10053	53,9 6		-53.700	5.723	0,10053	0,10053	55,1 0		-55.041	2.773	0,10053	0,10053	NS
S	Α		-33.411	3.210	0,10053	0,10053	95,9 4		-28.404	2.680	0,10053	0,10053	NS		-19.770	1.726	0,10053	0,10053	NS
	Р		-33.411	1.916	0,10053	0,10053	NS		-28.404	2.149	0,10053	0,10053	NS		-19.770	698	0,10053	0,10053	NS
Р	Α	0011	-57.140	6.506	0,10053	0,10053	48,6 6												
	Р		-57.140	6.170	0,10053	0,10053	51,3 1												
S	Α		-30.698	4.268	0,10053	0,10053	71,9 2												
	Р		-30.698	2.836		0,10053	NS												
	o Ter	ra 0003				ete P9-G4	33,4						32,2	0003		te G5-G			49,0
Р	Α	2	-67.064	9.585	0,10053	0,10053	1	3	-64.099	9.905	0,10053	0,10053	2	5	-56.409	6.451	0,10053	0,10053	4
	Р		-67.064	4.495	0,10053	0,10053	71,2 4		-64.099	9.229	0,10053	0,10053	34,5 8		0	0	0,10053	0,10053	-
S	Α		-17.304	2.760	0,10053	0,10053	NS		-33.500	13.03 8	0,10053	0,10053	23,6		-16.762	1.555	0,10053	0,10053	NS
	Р		-17.304	1.357	0,10053	0,10053	NS		-33.500	10.41	0,10053	0,10053	29,5 7		0	0	0,10053	0,10053	_
P	A	0003	-50.114	9.107	0,10053	0,10053	34,4	0005	-33.328	6.789	0,10053	0,10053	45,3	0006	67.763	1.709	0,10053	0,10053	NS
'		6		17.42			8 18,0	9					6	0					
_	P		-50.114	7	0,10053	0,10053	2		0	0	0,10053	0,10053	-		67.763	715	0,10053	0,10053	NS
S	A		-882	621	0,10053	0,10053	NS 45,1		-8.340	1.336	0,10053	0,10053	NS		-42.601	1.648	0,10053	0,10053	NS
	Р	0011	-882	6.554	0,10053	0,10053	8 48,2	0011	0	0	0,10053	0,10053	40,2	0011	0	0	0,10053	0,10053	46,7
Р	Α	2	-59.193	6.573	0,10053	0,10053	8	3	-60.855	7.902	0,10053	0,10053	4	4	-57.473	6.772	0,10053	0,10053	7
	Р		-59.193	4.664	0,10053	0,10053	68,0 4		-60.855	5.595	0,10053	0,10053	56,8 3		-57.473	2.211	0,10053	0,10053	NS
S	Α		-27.961	2.031	0,10053	0,10053	NS		-35.482	4.099	0,10053	0,10053	75,3 1		-20.372	1.834	0,10053	0,10053	NS
	Р		-27.961	1.366	0,10053	0,10053	NS		-35.482	2.169	0,10053	0,10053	NS		-20.372	325	0,10053	0,10053	NS
Р	Α	0011	-58.442	5.979	0,10053	0,10053	53,0												
	Р		-58.442	5.803	0,10053	0,10053	54,6 4												
S	Α	1	-30.250	4.220	0,10053	0,10053	72,7									ĺ			
	Р		-30.250	2.245		0,10053	0 NS												
	no Teri	ra 0001	0.040	13.82		ete P9-G4	21,6				0.10053	0.10050		0003	· ·	e G6-P 1		0.10053	49,0
Р	Α	0	-9.842	0		0,10053	6	1	0	0 22.69	0,10053		13,9	5	-56.409	6.451		0,10053	4
	Р		0	0	0,10053	0,10053	-		-55.062	1	0,10053	0,10053	2		0	0	0,10053	0,10053	-

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

															- Verifich	e presso	oflessione	retta all	o SLU
Di r	Pos	Nod o	N _{Ed}	M_{Ed}	As	\mathbf{A}_{df}	cs	Nod o	N_{Ed}	M _{Ed}	As	A _{df}	cs	Nod o	N_{Ed}	M_{Ed}	As	A _{df}	cs
			[N]	[N·m]	[cm²/cm]	[cm²/cm]	98,0		[N]	[N·m]	[cm ² /cm]	[cm ² /cm]			[N]	[N·m]	[cm²/cm]	[cm²/cm]	
S	Α		-23.321	3.103	0,10053	0,10053	98,0		0	0	0,10053	0,10053	-		-16.762	1.555	0,10053	0,10053	NS
	Р		0	0	0,10053	0,10053	_		-39.719	20.49	0,10053	0,10053	15,1 4		0	0	0,10053	0,10053	_
P	^	0003	-50.114	9.107	0,10053	0,10053	34,4	0012	-29.739	6.951	0.10052	0,10053	44,1	0012	-41.438	1.189	0,10053	0.10053	NS
r	Α	6	-50.114		0,10055	0,10055	8 18,0	4	-29.739	0.931	0,10053	0,10033	1	5	-41.430		0,10055	0,10053	22,3
	Р		-50.114	17.42 7	0,10053	0,10053	2		-29.739	242	0,10053	0,10053	NS		-41.438	13.91 8	0,10053	0,10053	4
S	Α		-882	621	0,10053	0,10053	NS 4F 1		45.729	2.527	0,10053	0,10053	NS		-24.845	1.231	0,10053	0,10053	NS
	P		-882	6.554	0,10053	0,10053	45,1 8		45.729	944	0,10053	0,10053	NS		-24.845	9.200	0,10053	0,10053	33,1
Piai	no Teri				Par	ete P11-F		0004						0004	Paret	e P11-F	12	I	77.0
Р	Α	0001 7	-3.145	351	0,05655	0,05655	76,4 6	0001	0	0	0,05655	0,05655	-	0001 9	-4.666	345	0,05655	0,05655	77,9
	P		0	0	0,05655	0,05655	_		4.600	603	0,05655	0,05655	43,9		0	0	0,05655	0,05655	_
S	Α		-6.831	44	0,05655	0,05655	NS		0	0	0,05655	0,05655	7		-12.451	60	0,05655	0,05655	NS
	P		0	0	0,05655	0,05655	_		15.468	655	0,05655	0,05655	39,7		0	0	0.05655	0,05655	-
		0002	-			-,		0007			-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		43,9	0007		_	.,	-,	67,8
Р	Α	0	0	0	0,05655	0,05655	-	7	-37.866	643	0,05655	0,05655	9	8	-39.742	418	0,05655	0,05655	5
	Р		5.687	579	0,05655	0,05655	45,7 2		0	0	0,05655	0,05655	-		0	0	0,05655	0,05655	-
S	Α		0	0	0,05655	0,05655	-		-8.062	204	0,05655	0,05655	NS		-3.610	112	0,05655	0,05655	NS
	Р		19.543	638	0,05655	0,05655	40,5 8		0	0	0,05655	0,05655	_		0	0	0,05655	0,05655	-
		0007	1 2/4	24	0.05/55	0.05/55	-	0008	1 (00	F0	0.05/55	0.05/55	NC	0013	0.011	21	0.05/55	0.05/55	NC
Р	A	9	1.364	34	0,05655	0,05655	NS	0	1.680	59	0,05655	0,05655	NS	8	-9.211	21	0,05655	0,05655	NS
S	P A		0 55.925	0 156	0,05655	0,05655	- NS		0 47.369	236	0,05655	0,05655	NS		0 14.521	0 35	0,05655	0,05655	NS
	P		0	0	0,05655	0,05655	-		0	0	0,05655	0,05655	-		0	0	0,05655	0,05655	-
Р	Α	0013	-3.028	118	0,05655	0,05655	NS	0014	2.988	162	0,05655	0,05655	NS	0014	-16.572	59	0,05655	0,05655	NS
	Р	,	0	0	0,05655	0,05655	-		0	0	0,05655	0,05655	-	L.	0	0	0,05655	0,05655	-
S	A P		0 12.019	0 19	0,05655	0,05655	- NS		8.504 0	14 0	0,05655 0,05655	0,05655 0,05655	NS		9.741 0	24 0	0,05655	0,05655	NS -
_	-	0014					82,1	0014					NC.	0014					
Р	A	2	-13.299	332	0,05655	0,05655	1	3	-4.666	98	0,05655	0,05655	NS	4	-11.287	153	0,05655	0,05655	NS
S	P A		9.751	207	0,05655	0,05655	NS		0 37.554	203	0,05655	0,05655	NS		0 25.942	0 120	0,05655	0,05655	NS
	Р		0	0	0,05655	0,05655	-		0	0	0,05655	0,05655	-		0	0	0,05655	0,05655	
	no Teri	ra 0000				ete P13-F	88,8	0000						0000	· ·	te P13-F			
Р	Α	1	-19.487	1.368	0,10053	0,10053	1	2	-18.601	1.172	0,10053	0,10053	NS	3	0	0	0,10053	0,10053	-
	Р		0	0	0,10053	0,10053	-		0	0	0,10053	0,10053	-		-797	1.876	0,10053	0,10053	63,3
S	Α		-15.867	686	0,05655	0,05655	NS		-13.753	647	0,05655	0,05655	NS		24.091	541	0,05655	0,05655	
	Р	0000	0	0	0,05655	0,05655	-	0000	0	0	0,05655	0,05655	-	0000	16.044	416	0,05655	0,05655	NS
Р	Α	0000	0	0	0,10053	0,10053	-	0008	0	0	0,10053	0,10053	-	0008	0	0	0,10053	0,10053	-
	P		1.631	2.088	0,10053	0,10053	56,7		-69.879	2.474	0,10053	0,10053	51,9		-42.232	2.306	0,10053	0,10053	54,0
S	Α		28.620	544	0,05655	0,05655	8 NS		0	0	0,05655	0,05655	3		0	0	0,05655	0,05655	5
	P		20.966	439	0,05655	0,05655	NS		-14.377	1.032	0,05655		70,7		-3.740	937	0,05655	0,05655	76,3
		0008						0008					3	0014					0
Р	Α	3	495	51	0,10053	0,10053	NS	4	3.057	185	0,10053		NS	7	0	0	0,10053		
	Р		-229	17	0,10053		NS		0	0	0,10053		- OF 0		-15.623	561	0,10053	0,10053	NS
S	Α		47.556	383	0,05655	0,05655	NS		53.470	667	0,05655	0,05655	95,0 3		21.929	490	0,05655	0,05655	NS
	Р	0014	62.147	541	0,05655	0,05655	NS	0014	67.935	463	0,05655	0,05655	NS	0015	23.275	14	0,05655	0,05655	NS
Р	Α	0014	-6.797	548	0,10053	0,10053	NS	9	-6.364	571	0,10053	0,10053	NS	0015	-22.127	78	0,10053	0,10053	NS
	Р		-9.551	468	0,10053	0,10053	NS		-7.766	447	0,10053	0,10053	NS	_	-26.128	586	0,10053	0,10053	NS
S	Α		12.238	721	0,05655	0,05655	96,0 2		14.589	983	0,05655	0,05655	70,0		21.818	548	0,05655	0,05655	NS
	P		0	0	0,05655	0,05655	-		0	0	0,05655	0,05655	-		0	0	0,05655	0,05655	<u> </u>
Р	Α	0015	-19.998	211	0,10053	0,10053	NS	0015	-8.057	371	0,10053	0,10053	NS	0015	-10.271	459	0,10053	0,10053	NS
	Р	'	-24.259	1.027	0,10053	0,10053	NS		-9.716	184	0,10053	0,10053	NS		-13.881	637	0,10053	0,10053	NS
S	A P		0	0 601	0,05655	0,05655	- NIC		37.786	591 452	0,05655	0,05655	NS NS		19.579	74 492	0,05655	0,05655	
Pia	no Teri	ra	12.682	001		0,05655 ete P1-P3	NS - P5		49.209	452	0,05655	0,05655	INS		26.889 Paret	492 te P1-P 3		0,05655	NS
		0000						0000					81,2	0002					

RELAZIONE PRELIMINARE DELLE STRUTTURE

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

														Pareti	- Verifiche pressoflessione retta allo S				
Di r	Pos	Nod	N _{Ed}	M_{Ed}	As	A_{df}	cs	Nod	N _{Ed}	M _{Ed}	As	A_{df}	cs	Nod	N _{Ed}	M _{Ed}	As	A_{df}	cs
		O	[N]	[N·m]	[cm ² /cm]	[cm ² /cm]		O	[N]	[N·m]	[cm ² /cm]	[cm²/cm]		O	[N]	[N·m]	[cm ² /cm]	[cm ² /cm]	
	Р		-14.300	444	0,10053	0,10053	NS		0	0	0,10053	0,10053	-		-14.310	535	0,10053	0,10053	NS
S	Α		-351	34	0,05655	0,05655	NS		-12.623	1.063	0,05655	0,05655	36,3 2		0	0	0,05655	0,05655	-
	Р		-2.703	428	0,05655	0,05655	88,6 7		-17.600	177	0,05655	0,05655	NS		-1.412	534	0,05655	0,05655	70, ⁹
Р	Α	0002	-2.498	93	0,10053	0,10053	NS	0016 4	-17.975	332	0,10053	0,10053	NS	0016 5	-8.775	365	0,10053	0,10053	NS
	Р	0	-3.418	123	0,10053	0,10053	NS	4	0	0	0,10053	0,10053	_) 	0	0	0,10053	0,10053	-
S	Α		0	0	0,05655	0,05655	-		-20.863	226	0,05655	0,05655	NS		-21.248	105	0,05655	0,05655	NS
	Р		-43.305	773	0,05655	0,05655	52,5 9		0	0	0,05655	0,05655	-		-20.440	122	0,05655	0,05655	NS
Р	Α	0016	-9.495	422	0,10053	0,10053	NS	0016 7	-8.291	263	0,10053	0,10053	NS						
	Р		-12.075	63	0,10053	0,10053	NS		0	0	0,10053	0,10053	-						
S	Α		-6.312	408	0,05655	0,05655	93,6		-24.084	44	0,05655	0,05655	NS						
	Р		0	0	0,05655	0,05655	- '		-21.053	111	0,05655	0,05655	NS						
iar	no Teri		ı		Par	ete P1-P3	8-P5								Paret	e P3-P5	5		
Р	Α	0001	16.392	10	0,10053	0,10053	NS	0001	-60.499	456	0,10053	0,10053	NS	0002	0	0	0,10053	0,10053	-
	Р		17.138	390	0,10053	0,10053	NS		-35.051	171	0,10053	0,10053	NS		-14.310	535	0,10053	0,10053	NS
S	Α		-28.447	92	0,05655	0,05655	NS		-98.645	1.246	0,05655	0,05655	35,5 8		0	0	0,05655	0,05655	-
	Р		-23.239	416	0,05655	0,05655	94,5		0	0	0,05655	0,05655	-		-1.412	534	0,05655	0,05655	70,
P	Α	0002	-2.498	93	0,10053	0,10053	NS	0013	-26.631	317	0,10053	0,10053	NS	0013	-17.191	264	0,10053	0,10053	NS
-	P	6	-3.418	123	0,10053	0,10053	NS	0	0	0	0,10053	0,10053	_	1	-20.677	86	0,10053	0,10053	NS
 S	A		0	0	0,05655	0,05655	-		-53.219	174	0,05655	0,05655	NS		-53.800	467	0,05655	0,05655	88,
	Р		-43.305	773	0,05655	0,05655	52,5		-75.528	193	0,05655	0,05655	NS		0	0	0,05655	0,05655	5
— Р		0013	-13.298	20/	0.10053	0.10053	-	0013	-35.186	105	0.10053	0.10053	NS						
r	A P	2	0	396 0	0,10053 0,10053	0,10053	NS	3	-33.100	105 0	0,10053 0,10053	0,10053	- 1113						
_							73,6					1							
S	A		-28.578	539	0,05655	0,05655	1		-85.675	226	0,05655	0,05655	NS						
Piar	P no Teri	ra	0	0	0,05655 Par	0,05655 ete P2-P4	- L-P6		-85.675	30	0,05655	0,05655	NS		Paret	e P2-P4	1		
P.	A	0000	-14.238	426	0,10053	0.10053	NS	0000	-12.939	49	0,10053	0,10053	NS	0002	-16.148	549	0,10053	0,10053	NS
	P	6	0	0	0,10053	0,10053	-	7	-11.761	712	0,10053	0,10053	85,0 1	7	0	0	0,10053	0,10053	-
S	Α		-3.126	424	0,05655	0,05655	89,5 7		-14.162	214	0,05655	0,05655	NS		97	541	0,05655	0,05655	69, 0
	Р		-461	37	0,05655	0,05655	NS		-10.052	1.038	0,05655	0,05655	37,0 3		0	0	0,05655	0,05655	-
P	Α	0002 8	-3.185	77	0,10053	0,10053	NS	0018	0	0	0,10053	0,10053	-	0018	0	0	0,10053	0,10053	-
	Р	8	-2.279	141	0,10053	0,10053	NS	3	-17.050	332	0,10053	0,10053	NS	4	-9.430	374	0,10053	0,10053	NS
S	Α		-39.838	779	0,05655	0,05655	51,8		0	0	0,05655	0,05655	_		-18.461	130	0,05655	0,05655	NS
-	P		0	0	0,05655	0,05655	9		-18.781	214	0,05655		NS		-18.837	97		0,05655	NS
P	A	0018	-12.346	59	0,10053	0,10053	NS	0018	0	0	0,10053	0,10053	-		10.037	//	0,03033	0,03033	140
Г		5						6											
S	P A		9.835 0	424 0	0,10053	0,10053 0,05655	NS -		-7.887 -18.632	268 126	0,10053 0,05655	0,10053 0,05655	NS NS						
	Р		-5.464	404	0,05655	0,05655	94,3		-21.401	31	0,05655	0,05655	NS						
iar	no Teri	ra			Par	ete P2-P4	-P6								Paret	e P4-P6	5	,	
Р	Α	0001	14.424	481	0,10053	0,10053	NS	0001	-34.412	70	0,10053	0,10053	NS	0015	0	0	0,10053	0,10053	-
	Р	4	0	0	0,10053	0,10053	_	5	-60.607	576	0,10053	0,10053	NS	4	-34.126	359	0,10053	0,10053	NS
S	Α		-22.673	450	0,05655	0,05655	87,2 9		0	0	0,05655	0,05655	-		-72.197	186	0,05655	0,05655	NS
	Р		-28.023	49	0,05655	0,05655	NS		-90.135	1.320	0,05655	0,05655	33,1 6		-62.589	195	0,05655	0,05655	NS
P	Α	0015 5	-22.095	82	0,10053	0,10053	NS	0015 6	-25.403	31	0,10053	0,10053	NS	0015 7	0	0	0,10053	0,10053	-
	Р	L .	-18.153	269	0,10053	0,10053	NS		-15.826	347	0,10053	0,10053	NS		-35.552	162	0,10053	0,10053	NS
S	Α		0	0	0,05655	0,05655	- 84,7		0	0	0,05655	0,05655	- 72,3		0	0	0,05655	0,05655	-
	Р	0020	-49.883	485	0,05655	0,05655	3	0020	-27.312	547	0,05655	0,05655	8		-78.975	247	0,05655	0,05655	NS
Р	Α	0020	-5.286	518	0,10053	0,10053	NS	0020 7	-39.290	353	0,10053	0,10053	NS						

RELAZIONE PRELIMINARE DELLE STRUTTURE

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

														Pareti	- Verifich	e presso	oflessione	e retta all	o SLU
Di	Pos	Nod	N _{Ed}	M _{Ed}	As	A_{df}	cs	Nod	N _{Ed}	M _{Ed}	As	A_{df}	cs	Nod	N _{Ed}	M _{Ed}	As	A _{df}	cs
r		0	[N]	[N·m]	[cm ² /cm]	[cm²/cm]		0	[N]	[N·m]	[cm²/cm]	[cm²/cm]		0	[N]	[N·m]	[cm²/cm]	[cm²/cm]	
	Р		0	0	0,10053	0,10053	- 62,1		0	0	0,10053	0,10053	35,5						
S	Α		-745	587	0,05655	0,05395	3		144.008	1.332	0,05655	0,05655	4						
Diar	P no Terr	ra	0	0		0,05395 ete P5-P7	- D0		0	0	0,05655	0,05655	-		Darot	te P5-P7			
P	A	0002	4.162	25	0.10053	0,10053	NS	0002	0	0	0.10053	0.10053		0017	-22.203	562	0.10053	0.10053	NS
'	P	1	224	330	0,10053	0,10053	NS	4	-50.423	1.166	0,10053	0,10053	NS	0	-22.203	18	0,10053	0,10053	NS
S	A		0	0	0,05655	0,05655	-		0	0	0,05655	0,05655	-		-55.032	1.284	0,05655	0,05655	61,3
3									_		l .		19,9						4
	P		-14.308	490	0,05655	0,05655	NS		165.162	4.735	0,05655	0,05655	2		-55.032	772	0,05655	0,05655	NS
Р	Α	0017 1	-41.511	847	0,10053	0,10053	NS	0020	-4.647	1.348	0,10053	0,10053	88,6	0020 3	-44.018	2.931	0,10053	0,10053	42,6 1 52,0
	Р		-41.511	1.158	0,10053	0,10053	NS		-4.647	566	0,10053	0,10053	NS		-44.018	2.399	0,10053	0,10053	6
S	Α		- 162.012	2.557	0,05655	0,05655	36,7 1		-46.167	542	0,05655	0,05655	NS		- 146.923	9.088	0,05655	0,05655	10,0 9
	Р		- 162.012	2.465	0,05655	0,05655	38,0 8		0	0	0,05655	0,05655	-		- 146.923	1.814	0,05655	0,05655	50,5 7
Piar	no Terr	ra	102.012		Par	ete P5-P7										e P7-P9	,		,
Р	Α	0002	4.162	25	0,10053	0,10053	NS	0002	0	0	0,10053	0,10053	-	0016	-25.393	540	0,10053	0,10053	NS
	Р	'	224	330	0,10053	0,10053	NS	4	-50.423	1.166	0,10053	0,10053	NS	2	-25.393	148	0,10053	0,10053	NS
S	Α		0	0	0,05655	0,05655	-		0	0	0,05655	0,05655	-		-53.893	1.410	0,05655	0,05655	55,7 4
	Р		-14.308	490	0,05655	0,05655	NS		- 165.162	4.735	0,05655	0,05655	19,9 2		-53.893	795	0,05655	0,05655	98,8 6
Р	Α	0016 3	-44.917	1.015	0,10053	0,10053	NS	0019 4	-11.179	1.239	0,10053	0,10053	97,1 2	0019 8	-48.924	3.458	0,10053	0,10053	36,3 1
	Р		-44.917	1.244	0,10053	0,10053	NS		-11.179	970	0,10053	0,10053	NS		-48.924	2.655	0,10053	0,10053	47,3 0
S	Α		- 162.117	2.965	0,05655	0,05655	31,6 6		-47.446	334	0,05655	0,05655	NS		- 144.519	10.12 4	0,05655	0,05655	9,03
	Р		- 162.117	2.521	0,05655	0,05655	37,2 4		-31.711	69	0,05655	0,05655	NS		- 144.519	2.064	0,05655	0,05655	44,2 8
Piar	no Terr		1021117		Par	ete P6-P8	-P10									e P6-P8	3		, J
Р	Α	0002	-709	317	0,10053	0,10053	NS	0002	-49.838	1.070	0,10053	0,10053	NS	0011	-23.697	87	0,10053	0,10053	NS
	Р		2.577	66	0,10053	0,10053	NS		0	0	0,10053	0,10053	-		-23.697	486	0,10053	0,10053	NS
S	Α		-14.460	357	0,05655	0,05655	NS		160.197	4.636	0,05655	0,05655	20,1		-53.852	743	0,05655	0,05655	NS
	Р		0	0	0,05655	0,05655	-		0	0	0,05655	0,05655	-		-53.852	1.230	0,05655	0,05655	63,8 6
Р	Α	0011 1	-41.201	982	0,10053	0,10053	NS	0020 1	-7.510	952	0,10053	0,10053	NS	0020	-43.527	1.979	0,10053	0,10053	63,0 4
	Р		-41.201	979	0,10053	0,10053	NS		-7.510	913	0,10053	0,10053	NS		-43.527	3.271	0,10053	0,10053	38,1 4
S	Α		- 153.666	2.278	0,05655	0,05655	40,6 7		-28.569	67	0,05655	0,05655	NS		- 139.331	1.514	0,05655	0,05655	59,8 5
	Р		- 153.666	2.567	0,05655	0,05655	36,0 9		-45.477	294	0,05655	0,05655	NS		- 139.331	9.149	0,05655	0,05655	9,90
Piar	no Terr				Par	ete P6-P8	-P10									e P8-P1	0		
Р	Α	0002	-709	317	0,10053	0,10053	NS	0002	-49.838	1.070	0,10053	0,10053	NS	0016	-19.424	142	0,10053	0,10053	NS
	Р		2.577	66	0,10053	0,10053	NS		0	0	0,10053	0,10053	-		-19.424	678	0,10053	0,10053	NS
S	Α		-14.460	357	0,05655	0,05655	NS		- 160.197	4.636	0,05655	0,05655	20,1 8		-32.890	109	0,05655	0,05655	NS
	Р		0	0	0,05655	0,05655	-		0	0	0,05655	0,05655	-		-32.890	1.647	0,05655	0,05655	45,9 1
Р	Α	0016 9	-34.056	806	0,10053	0,10053	NS	0019 6	-6.211	406	0,10053	0,10053	NS	0019 7	-43.094	2.281	0,10053	0,10053	54,7
	Р		-34.056	884	0,10053	0,10053	NS		-6.211	1.436	0,10053	0,10053	83,3		-43.094	2.886	0,10053	0,10053	43,2
S	Α		- 128.815	1.723	0,05655	0,05655	51,7 6		0	0	0,05655	0,05655	-		140.510	1.796	0,05655	0,05655	50,5 8
	Р		- 128.815	1.567	0,05655	0,05655	56,9 2		-45.331	521	0,05655	0,05655	NS		140.510	8.827	0,05655	0,05655	10,2 9
Piar	no Terr				Par	ete P9-P1	1-P13							0017		e P9-P1	1		
Р	Α	0001 7	0	0	0,10053	0,10053	-	0001	0	0	0,10053	0,10053	-	9	-21.298	267	0,10053	0,10053	NS
	Р		-2.341	506	0,10053	0,10053	NS		-38.689	414	0,10053	0,10053	NS		-25.585	11	0,10053	0,10053	NS 79.0
S	Α		0	0	0,05655		- 63 B		0	0	0,05655	0,05655	39,9		-58.804	528	0,05655	0,05655	78,9 5
	Р		271	570	0,05655	0,05392	63,8 4		-93.944	1.101	0,05655	0,05655	8		0	0	0,05655	0,05655	-

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301_D_R_0120 Rev. 02

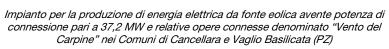
														Pareti	- Verifich	e press	oflessione	retta all	o SLU
Di	Pos	Nod	N _{Ed}	M_{Ed}	As	A _{df}	cs	Nod	N _{Ed}	M _{Ed}	As	A _{df}	cs	Nod	N _{Ed}	M _{Ed}	As	A _{df}	cs
r		0	[N]	[N·m]	[cm²/cm]	[cm²/cm]		0	[N]	[N·m]	[cm²/cm]	[cm²/cm]		0	[N]	[N·m]	[cm²/cm]	[cm²/cm]	
Р	Α	0018	-34.255	404	0,10053	0,10053	NS	0018	-12.454	360	0,10053	0.10053	NS	0018	-21.369	29	0,10053	0,10053	NS
	P	0	0	0	0,10053	0.10053	_	1	-24.519	79	0,10053	0,10053	NS	2	-31.699	28	0,10053	0,10053	NS
s	A		-62.399	190	0,05655	0,05655	NS		-23.402	531	0,05655	0,05655	74,0		-86.908	276	0,05655	0,05655	NS
٥	P								-23.402				7						
		0019	-70.933	167	0,05655	0,05655	NS	0019		0	0,05655	0,05655	-		-86.908	32	0,05655	0,05655	NS
P	Α	5	0	0	0,10053	0,10053	-	9	-65.797	467	0,10053	0,10053	NS						
	Р		10.644	414	0,10053	0,10053	NS		-38.279	209	0,10053	0,10053	NS 32,1						
S	Α		-29.341	94	0,05655	0,05655	NS		-98.008	1.378	0,05655	0,05655	4						
	Р		-24.033	403	0,05655	0,05655	97,7		0	0	0,05655	0,05655	_						
Piar	no Teri	ra				ete P9-P1	0 1-P13				.,	.,			Paret	e P11-F	213		
P	Α	0000	0	0	0,10053	0,10053		0000	-13.530	756	0,10053	0,10053	80,2	0001	0	0	0,10053	0,10053	_
.	P	1		445			NC	4	0	0			0	7					NC
	-		-14.418		0,10053	0,10053	NS				0,10053	0,10053	35,4		-2.341	506	0,10053	0,10053	NS
S	Α		-389	35	0,05655	0,05655	NS		-12.851	1.089	0,05655	0,05655	6		0	0	0,05655	0,05392	-
	Р		-2.730	427	0,05655	0,05655	88,8 7		-17.788	159	0,05655	0,05655	NS		271	570	0,05655	0,05392	63,8
_		0001	0		0.10053	0.10053		0012	0.010	2/0	0.10053	0.10052	NC	0012	17.0/5	222	0.10053	0.10052	
Р	A	8	0	0	0,10053	0,10053	-	6	-8.818	368	0,10053	0,10053	NS	7	-17.965	332	0,10053	0,10053	NS
S	P A		-38.689 0	414 0	0,10053	0,10053	NS		-20.881	103	0,10053	0,10053	- NS		-20.428	232	0,10053	0,10053	- NS
٠	P		-93.944	1.101	0.05655	0,05655	39,9		-19.987	126	0.05655	0,05655	NS		0	0	.,		INS
	Р	2040	-93.944	1.101	0,05655	0,03033	8		-19.907	120	0,03633	0,03633	IVS		U	U	0,05655	0,05655	-
Р	Α	0012 8	-9.575	422	0,10053	0,10053	NS	0012	-8.490	264	0,10053	0,10053	NS						
	Р		-12.190	60	0,10053	0,10053	NS		0	0	0,10053	0,10053	-						
s	Α		-7.404	412	0,05655	0,05655	92,8		-24.081	45	0,05655	0,05655	NS						
	Р		0	0	0,05655	0,05655	6		-21.026	110	0,05655	0,05655	NS						
Piar	no Teri				Par	ete P10-P	12-P1								Paret	e P10-F	12		
Р	Α	0001	14.040	384	0,10053	0,10053	4,72	0001	-33.477	134	0,10053	0,10053	4,89	0001	-4.257	543	0,10053	0,10053	4,91
	Р		0	0	0,05655	0,05655	-	L.	-59.521	507	0,05655	0,05655	4,75		0	0	0,05655	0,05655	-
S	A P		-23.706	398	0,10053	0,10053	4,96		0	0	0,10053	0,10053	-		1.125	591	0,10053	0,09792	4,77
_		0002	-29.140	105	0,05655	0,05655	4,76	0013	-89.527	1.337	0,05655	0,05655	4,58	0013	0	0	0,05655	0,05394	-
Р	Α	0	-37.885	342	0,10053	0,10053	5,02	4	0	0	0,10053	0,10053	-	5	0	0	0,10053	0,10053	-
	Р		0	0	0,05655	0,05655	-		-17.819	290	0,05655	0,05655	4,61		-33.262	430	0,05655	0,05655	4,64
S	Α		139.300	1.283	0,10053	0,10053	6,20		0	0	0,10053	0,10053	-		-67.911	155	0,10053	0,10053	5,11
	Р		0	0	0,05655	0,05655	-		-55.326	524	0,05655	0,05655	4,72		-58.763	205	0,05655	0,05655	4,88
Р	Α	0013	-22.140	71	0,10053	0,10053	4,79	0013	-18.796	17	0,10053	0,10053	4,75						
	Р		-13.135	323	0,05655	0,05655	4,57		-35.262	66	0,05655	0,05655	4,81						
S	A P		0	0	0,10053	0,09848	-		0 -80.399	0	0,10053	0,10053	-						
Piar	no Teri	ra	-21.848	541		0,05449 ete P10-P		4	-80.399	278	0,05655	0,05655	4,97		Paret	e P12-F	P14		
Р	Α	0000	-14.463	426	0.10053	0,10053		0000	-12.925	47	0,10053	0,10053	4,73	0015	0	0	0,10053	0,10053	_
.	P	2	0	0	0,05655	0,05655	.,,,_	3	-11.960	706	0,05655	0,05655	4,41	8	-9.683	375	0,05655	0,05655	4,53
S	A		-3.174	425	0,10053	0,10053	4,85		-14.502	215	0,10053		4,82		-18.345	134	0,10053	0,10053	4,80
	Р	001-	-678	36	0,05655	0,05655	4,62	001:	-10.201	1.019	0,05655	0,05655	4,28	001:	-18.784	97	0,05655	0,05655	4,70
Р	Α	0015 9	0	0	0,10053	0,10053	-	0016	-12.554	56	0,10053	0,10053	4,73	0016	0	0	0,10053	0,10053	-
	Р		-17.128	333	0,05655	0,05655	4,59		-9.964	425	0,05655	0,05655	4,51		-8.142	267	0,05655	0,05655	4,57
S	A		0	0	0,10053	0,10053	-		0	0	0,10053	0,10053	-		-18.741	127	0,10053	0,10053	
	P	0020	-18.740	213	0,05655	0,05655		0020	-5.435	404	0,05655		4,49		-21.481	23	0,05655	0,05655	4,75
Р	Α	4	-16.408	547	0,10053	0,10053	4,99	5	-3.320	77	0,10053	0,10053	4,69						
	Р		0 222	0	0,05655	0,05655	- 4,88		-2.506 -39.663	140 779	0,05655	0,05655	4,59 5,25						
S	Α			541															

LEGENDA:

Direzione [P] = principale (asse locale 1) - [S] = secondaria (asse locale 2). Dir

Pos Posizione [A] = anteriore - [P] = posteriore.

Area delle armature esecutive per unità di lunghezza.


A_{df} CS Armatura disponibile per la flessione

Coefficiente di sicurezza ([NS] = Non Significativo se CS ≥ 100; [VNR]= Verifica Non Richiesta; Informazioni aggiuntive sulla condizione: [V] = statica; [E] = eccezionale; [S] = sismica; [N] = sismica non lineare).

 $N_{Ed},\,M_{Ed}$ Sollecitazioni di progetto (N_{Ed} < 0: compressione).

FRI-EL

RELAZIONE PRELIMINARE DELLE STRUTTURE

Codifica Elaborato: 214301_D_R_0120 Rev. 02

VERIFICHE A TAGLIO PER PRESSOFLESSIONE RETTA ALLO STATO LIMITE DI ULTIMO

Id _{Nd}	$V_{Ed,2}$	cs	V_{Rcd}	$V_{Rsd,s}$	N _{Ed}	$V_{Rsd,p}$	Pareti - Ve	rifiche a tag V _{Rd.f}	lio per presso Ctg@	oflessione re A _{sw}	etta allo SLU A _{dw}
	VEd,2 [N]	- 55	[N]	[N]	[N]	Rsd,p [N]	[N]	[N]		[cm ² /cm]	[cm²/cm]
Piano Terra			Parete P1-P2						Parete P1-P2		
00005	48.541	3,32	161.252	0	20.130	0	0	0	0,00	0,05655	0,00000
00006	35.129	4,57	160.364	0	14.212	0	0	0	0,00	0,05655	0,00000
00007 00008	13.733 19.755	11,52 8,01	158.233 158.233	0	-29.278 -27.693	0	0	0	0,00	0,05655 0,05655	0,00000
00055	18.039	8,89	160.455	0	14.816	0	0	0	0,00	0,05655	0,00000
00056	18.120	8,76	158.775	0	3.613	0	0	0	0,00	0,05655	0,00000
00057	2.156	73,39	158.233	0	-50.790	0	0	0	0,00	0,05655	0,00000
00058	2.233	70,86	158.233	0	-57.616	0	0	0	0,00	0,05655	0,00000
00101	21.466	7,37	158.233	0	-18.883	0	0	0	0,00	0,05655	0,00000
00102	24.902	6,35	158.233	0	-4.195	0	0	0	0,00	0,05655	0,00000
00103	23.855	6,63	158.233	0	-14.664	0	0	0	0,00	0,05655	0,00000
00104 00105	15.181 12.107	10,42 13,07	158.233 158.233	0	-21.885 -12.209	0	0	0	0,00	0,05655 0,05655	0,00000
00105	4.653	34,01	158.233	0	-49.390	0	0	0	0,00	0,05655	0,00000
00107	11.392	13,89	158.233	0	-25.937	0	0	0	0,00	0,05655	0,00000
Piano Terra	111072	10,07	Parete P3-P4		20.707				Parete P3-P4		0,0000
00025	29.613	2,53	74.952	0	4.691	0	0	0	0,00	0,05655	0,00000
00026	16.354	4,54	74.248	0	-24.368	0	0	0	0,00	0,05655	0,00000
00027	37.857	2,00	75.555	0	8.712	0	0	0	0,00	0,05655	0,00000
00028	20.392	3,64	74.248	0	-24.751	0	0	0	0,00	0,05655	0,00000
00089	14.988	5,04	75.557	0	8.728	0	0	0	0,00	0,05655	0,00000
00090	15.063	4,97	74.798	0	3.667	0	0	0	0,00	0,05655	0,00000
00091 00092	1.401 1.340	53,00 55,41	74.248 74.248	0	-40.381 -34.123	0	0	0	0,00	0,05655 0,05655	0,00000
00092	18.705	3,97	74.248	0	-34.123	0	0	0	0,00	0,05655	0,00000
00187	20.669	3,59	74.248	0	-14.755	0	0	0	0,00	0,05655	0,00000
00189	25.907	2,87	74.248	0	-3.976	0	0	0	0,00	0,05655	0,00000
00190	15.471	4,80	74.248	0	-19.883	0	0	0	0,00	0,05655	0,00000
00191	12.926	5,74	74.248	0	-11.112	0	0	0	0,00	0,05655	0,00000
00192	8.153	9,11	74.248	0	-40.620	0	0	0	0,00	0,05655	0,00000
00193	9.321	7,97	74.248	0	-26.057	0	0	0	0,00	0,05655	0,00000
Piano Terra	07.454	7.44	Parete P5-G1		24.705				Parete P5-G1		0.00000
00013	36.451 105.883	7,66 2,69	279.332	0	31.785 69.985	0	0	0	0,00	0,10053	0,00000
00016 00044	25.746	10,66	285.062 274.564	0	-24.637	0	0	0	0,00	0,10053 0,10053	0,00000
00044	93.283	2,94	274.564	0	-36.048	0	0	0	0,00	0,10053	0,00000
00108	57.714	4,76	274.564	0	-44.777	0	0	0	0,00	0,10053	0,00000
00109	124.045	2,28	282.392	0	52.187	0	0	0	0,00	0,10053	0,00000
Piano Terra			Parete P5-G1	-G2-G3-P6					Parete G1-G2	2	
00041	9.563	28,98	277.134	0	17.133	0	0	0	0,00	0,10053	0,00000
00042	42.521	6,59	280.104	0	36.933	0	0	0	0,00	0,10053	0,00000
00044	38.713	7,17	277.453	0	19.258	0	0	0	0,00	0,10053	0,00000
00045	22.792	12,30	280.341	0	38.511	0	0	0	0,00	0,10053	0,00000
00051 00052	28.622 29.579	9,63 9,41	275.693 278.408	0	7.523 25.626	0	0	0	0,00	0,10053 0,10053	0,00000
00032	34.107	8,21	280.152	0	37.253	0	0	0	0,00	0,10053	0,00000
00094	34.354	8,12	278.828	0	28.425	0	0	0	0,00	0,10053	0,00000
00095	29.406	9,44	277.600	0	20.240	0	0	0	0,00	0,10053	0,00000
00096	30.358	9,19	279.125	0	30.407	0	0	0	0,00	0,10053	0,00000
Piano Terra		_	Parete P5-G1						Parete G2-G		
00038	38.966	7,14	278.142	0	23.851	0	0	0	0,00	0,10053	0,00000
00039	20.252	13,56	274.564	0	-8.989 21.728	0	0	0	0,00	0,10053	0,00000
00041 00042	11.416 44.117	24,34 6,38	277.823 281.653	0	47.256	0	0	0	0,00	0,10053 0,10053	0,00000
00042	28.281	9,76	276.034	0	9.801	0	0	0	0,00	0,10053	0,00000
00053	29.277	9,68	283.513	0	59.662	0	0	0	0,00	0,10053	0,00000
00097	35.227	7,96	280.353	0	38.592	0	0	0	0,00	0,10053	0,00000
00098	34.260	8,20	280.930	0	42.438	0	0	0	0,00	0,10053	0,00000
00099	29.184	9,53	278.012	0	22.985	0	0	0	0,00	0,10053	0,00000
00100	30.385	9,27	281.639	0	47.168	0	0	0	0,00	0,10053	0,00000
Piano Terra	20.442	0.05	Parete P5-G1		04.765	_			Parete G3-P6		0.00000
00014	30.113	9,25	278.570	0	26.705	0	0	0	0,00	0,10053	0,00000
00015 00038	76.970 49.634	3,73 5,53	286.806 274.564	0	81.613 -87.418	0	0	0	0,00	0,10053 0,10053	0,00000
00038	100.673	2,73	274.564	0	-14.605	0	0	0	0,00	0,10053	0,00000
00037	37.727	7,28	274.564	0	-9.244	0	0	0	0,00	0,10053	0,00000
00146	92.547	3,03	280.372	0	38.718	0	0	0	0,00	0,10053	0,00000
Piano Terra			Parete P7-P8						Parete P7-P8		
00021	20.980	3,60	75.625	0	9.183	0	0	0	0,00	0,05655	0,00000
00022	20.905	3,62	75.632	0	9.228	0	0	0	0,00	0,05655	0,00000
00023	12.126	6,22	75.484	0	8.238	0	0	0	0,00	0,05655	0,00000
00024	12.857	5,88	75.550	0	8.683	0	0	0	0,00	0,05655	0,00000

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

							Pareti - Ve	rifiche a tag	lio per press	oflessione re	tta allo SLU
I d _{Nd}	$V_{Ed,2}$	CS	V _{Rcd}	$V_{Rsd,s}$	N _{Ed}	$V_{Rsd,p}$	V_{R1}	V _{Rd,f}	Ctg@	A _{sw}	A _{dw}
22225	[N]	F 40	[N]	[N]	[N]	[N]	[N]	[N]	0.00	[cm²/cm]	[cm²/cm]
00085 00086	14.581 13.483	5,19 5,57	75.740 75.054	0	9.945 5.370	0	0	0	0,00	0,05655 0,05655	0,00000
00087	4.723	15,72	74.248	0	-7.701	0	0	0	0,00	0,05655	0,00000
00087	4.723	17,89	74.248	0	-8.951	0	0	0	0,00	0,05655	0,00000
00172	14.225	5,32	75.717	0	9.794	0	0	0	0,00	0,05655	0,00000
00173	16.415	4,57	74.980	0	4.882	0	0	0	0,00	0,05655	0,00000
00174	18.909	3,95	74.778	0	3.536	0	0	0	0,00	0,05655	0,00000
00175	11.815	6,44	76.100	0	12.349	0	0	0	0,00	0,05655	0,00000
00176	12.637	5,90	74.501	0	1.686	0	0	0	0,00	0,05655	0,00000
00177	6.939	10,70	74.248	0	-6.790	0	0	0	0,00	0,05655	0,00000
00178	9.771	7,60	74.248	0	-1.396	0	0	0	0,00	0,05655	0,00000
Piano Terra 00009	44 204	1 14	Parete P9-G4- 287.190	• G5-G6-P10 0	04 170	0	0	0	Parete P9-G4		0,00000
00009	64.396 87.231	4,46 3,29	286.614	0	84.170 80.334	0	0	0	0,00	0,10053 0,10053	0,00000
00012	51.499	5,33	274.564	0	-135.662	0	0	0	0,00	0,10053	0,00000
00030	74.334	3,75	279.110	0	30.308	0	0	0	0,00	0,10053	0,00000
Piano Terra			Parete P9-G4-	-					Parete G4-G		1 2/2222
00029	40.287	6,88	277.226	0	17.749	0	0	0	0,00	0,10053	0,00000
00030	23.955	11,68	279.798	0	34.892	0	0	0	0,00	0,10053	0,00000
00032	10.198	27,18	277.140	0	17.174	0	0	0	0,00	0,10053	0,00000
00033	42.282	6,63	280.193	0	37.524	0	0	0	0,00	0,10053	0,00000
00061	27.040	10,20	275.717	0	7.685	0	0	0	0,00	0,10053	0,00000
00062	29.573	9,43	278.770	0	28.038	0	0	0	0,00	0,10053	0,00000
00116	34.275	8,17	280.046	0	36.547	0	0	0	0,00	0,10053	0,00000
00117 00118	35.244 28.314	7,91 9,80	278.671 277.604	0	27.378 20.267	0	0	0	0,00	0,10053	0,00000
00118	30.442	9,80	277.604	0	30.187	0	0	0	0,00	0,10053 0,10053	0,00000
Piano Terra	30.442	7,17	Parete P9-G4	-	30.107	U	- 0		Parete G5-G		0,00000
00032	10.854	25,60	277.809	0	21.632	0	0	0	0,00	0,10053	0,00000
00033	44.356	6,37	282.573	0	53.390	0	0	0	0,00	0,10053	0,00000
00035	37.144	7,48	277.786	0	21.477	0	0	0	0,00	0,10053	0,00000
00036	21.855	12,56	274.564	0	-6.905	0	0	0	0,00	0,10053	0,00000
00059	28.503	9,69	276.054	0	9.933	0	0	0	0,00	0,10053	0,00000
00060	30.306	9,35	283.500	0	59.575	0	0	0	0,00	0,10053	0,00000
00112	34.525	8,12	280.402	0	38.917	0	0	0	0,00	0,10053	0,00000
00113	34.306	8,19	280.947	0	42.552	0	0	0	0,00	0,10053	0,00000
00114	29.811	9,32	277.978	0	22.759	0	0	0	0,00	0,10053	0,00000
00115	31.309	9,00	281.677	0 CF C/ D10	47.418	0	0	0	0,00	0,10053	0,00000
Piano Terra 00010	34.970	7,99	279.339	0	31.835	0	0	0	Parete G6-P' 0,00	0,10053	0,00000
00010	104.340	2,73	285.159	0	70.634	0	0	0	0,00	0,10053	0,00000
00035	24.714	11,11	274.564	0	-9.505	0	0	0	0,00	0,10053	0,00000
00036	91.417	3,00	274.564	0	-35.982	0	0	0	0,00	0,10053	0,00000
00124	55.983	4,90	274.564	0	-45.763	0	0	0	0,00	0,10053	0,00000
00125	122.145	2,31	282.534	0	53.131	0	0	0	0,00	0,10053	0,00000
Piano Terra			Parete P11-P1	12					Parete P11-F		
00017	32.526	2,31	75.273	0	6.831	0	0	0	0,00		0,00000
00018	18.387	4,04	74.248	0	-21.517	0	0	0	0,00	0,05655	0,00000
00019	37.810	2,00	75.563	0	8.764	0	0	0	0,00	0,05655	0,00000
00020	20.334 15.481	3,65	74.248	0	-24.681	0	0	0	0,00	0,05655	0,00000
00077 00078	14.943	4,87 5,00	75.457 74.790	0	8.062 3.610	0	0	0	0,00	0,05655 0,05655	0,00000
00078	1.332	55,74	74.790	0	-40.223	0	0	0	0,00	0,05655	0,00000
00080	1.615	45,97	74.248	0	-33.754	0	0	0	0,00	0,05655	0,00000
00138	18.655	3,98	74.248	0	-20.520	0	0	0	0,00	0,05655	0,00000
00139	20.610	3,60	74.248	0	-14.699	0	0	0	0,00	0,05655	0,00000
00140	21.268	3,49	74.248	0	-12.719	0	0	0	0,00	0,05655	0,00000
00141	14.297	5,19	74.248	0	-15.527	0	0	0	0,00	0,05655	0,00000
00142	13.618	5,45	74.248	0	-12.025	0	0	0	0,00	0,05655	0,00000
00143	7.566	9,81	74.248	0	-43.214	0	0	0	0,00	0,05655	0,00000
00144	9.274	8,01	74.248	0	-25.942	0	0	0	0,00	0,05655	0,00000
Piano Terra	40.270	2.22	Parete P13-P1		20.122	^			Parete P13-F		0.00000
00001	48.378	3,33	161.251	0	20.122	0	0	0	0,00	0,05655	0,00000
00002 00003	39.404 15.735	4,08 10,06	160.802 158.233	0	17.129 -24.091	0	0	0	0,00	0,05655 0,05655	0,00000
00003	19.655	8,05	158.233	0	-24.091	0	0	0	0,00	0,05655	0,00000
00004	17.902	8,96	160.456	0	14.820	0	0	0	0,00	0,05655	0,00000
00081	18.230	8,71	158.794	0	3.740	0	0	0	0,00	0,05655	0,00000
00083	2.160	73,26	158.233	0	-50.820	0	0	0	0,00	0,05655	0,00000
00084	2.270	69,71	158.233	0	-57.445	0	0	0	0,00	0,05655	0,00000
00147	17.488	9,05	158.233	0	-21.929	0	0	0	0,00	0,05655	0,00000
00148	19.726	8,02	158.233	0	-12.238	0	0	0	0,00	0,05655	0,00000
00149	23.737	6,67	158.233	0	-14.589	0	0	0	0,00	0,05655	0,00000
00150	15.106	10,47	158.233	0	-21.818	0	0	0	0,00	0,05655	0,00000

FRI-EL

RELAZIONE PRELIMINARE DELLE STRUTTURE

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

										oflessione re	
I d _{Nd}	V _{Ed,2}	CS	V _{Rcd}	V _{Rsd,s}	N _{Ed}	V _{Rsd,p}	V _{R1}	V _{Rd,f}	CtgΘ	A _{sw}	A _{dw}
00151	[N] 12.044	13,14	[N] 158.233	[N] 0	[N] -12.129	[N] O	[N] 0	[N] 0	0,00	[cm²/cm] 0,05655	[cm²/cm] 0,00000
00151	4.629	34,18	158.233	0	-49.209	0	0	0	0,00	0,05655	0,00000
00153	11.530	13,72	158.233	0	-25.784	0	0	0	0,00	0,05655	0,00000
Piano Terra			Parete P1-P3	-P5					Parete P1-P	3	·
00005	37.748	2,90	109.378	0	2.784	0	0	0	0,00	0,05655	0,00000
80000	18.344	6,11	112.038	0	20.513	0	0	0	0,00	0,05655	0,00000
00025	46.213	2,36	109.184	0	1.487	0	0	0	0,00	0,05655	0,00000
00026	27.776	4,21	116.820	0	52.397	0	0	0	0,00	0,05655	0,00000
00164	34.233	3,28	112.314	0	22.356	0	0	0	0,00	0,05655	0,00000
00165	35.036	3,22	112.856	0	25.965	0	0	0	0,00	0,05655	0,00000
00166	38.764	2,84	110.225	0	8.427	0	0	0	0,00	0,05655	0,00000
00167 Piano Terra	24.032	4,73	113.771 Parete P1-P3	0	32.067	0	0	0	0,00 Parete P3-P!	0,05655	0,00000
00013	54.437	2,08	113.228	0	28.447	0	0	0	0,00	0,05655	0,00000
00016	34.615	3,58	123.758	0	98.645	0	0	0	0,00	0,05655	0,00000
00025	94.184	1,16	109.157	0	1.311	0	0	0	2,50	0,05655	0,03655
00026	72.610	1,70	123.738	0	98.513	0	0	0	0,00	0,05655	0,00000
00130	67.711	1,79	121.479	0	83.455	0	0	0	0,00	0,05655	0,00000
00131	58.999	2,05	121.214	0	81.687	0	0	0	0,00	0,05655	0,00000
00132	73.014	1,57	114.569	0	37.387	0	0	0	0,00	0,05655	0,00000
00133	56.653	2,15	121.812	0	85.675	0	0	0	0,00	0,05655	0,00000
Piano Terra			Parete P2-P4						Parete P2-P4	1	
00006	32.132	3,41	109.446	0	3.233	0	0	0	0,00	0,05655	0,00000
00007	14.953	7,45	111.433	0	16.481	0	0	0	0,00	0,05655	0,00000
00027	41.890	2,60	108.961	0	-262	0	0	0	0,00	0,05655	0,00000
00028 00183	25.686 30.358	4,52 3,69	116.056 111.953	0	47.304 19.950	0	0	0	0,00	0,05655 0,05655	0,00000
00183	31.333	3,59	112.426	0	23.098	0	0	0	0,00	0,05655	0,00000
00185	33.939	3,24	110.043	0	7.217	0	0	0	0,00	0,05655	0,00000
00186	21.066	5,37	113.168	0	28.051	0	0	0	0,00	0,05655	0,00000
Piano Terra	211000	575.	Parete P2-P4		20.00				Parete P4-P		0,00000
00014	54.147	2,09	113.164	0	28.023	0	0	0	0,00	0,05655	0,00000
00015	35.463	3,46	122.711	0	91.666	0	0	0	0,00	0,05655	0,00000
00154	66.807	1,81	120.755	0	78.625	0	0	0	0,00	0,05655	0,00000
00155	58.450	2,06	120.487	0	76.838	0	0	0	0,00	0,05655	0,00000
00156	71.689	1,59	114.300	0	35.593	0	0	0	0,00	0,05655	0,00000
00157	56.573	2,14	120.979	0	80.124	0	0	0	0,00	0,05655	0,00000
00206	91.636	1,19	109.156	0	1.303	0	0	0	2,50	0,05655	0,03655
00207	71.830	1,71	122.811	0	92.334	0	0	0	0,00	0,05655	0,00000
Piano Terra	17 202	0.07	Parete P5-P7 160.327		12.0/0	0	0		Parete P5-P		0.00000
00021 00024	17.302 37.616	9,27 5,01	188.586	0	13.960 202.359	0	0	0	0,00	0,05655 0,05655	0,00000
00024	14.727	11,46	168.817	0	70.563	0	0	0	0,00	0,05655	0,00000
00170	30.338	6,23	188.920	0	204.583	0	0	0	0,00	0,05655	0,00000
00200	14.884	10,92	162.597	0	29.098	0	0	0	0,00	0,05655	0,00000
00203	17.664	10,33	182.548	0	162.106	0	0	0	0,00	0,05655	0,00000
Piano Terra			Parete P5-P7	-P9					Parete P7-P		
00021	15.816	10,07	159.317	0	7.233	0	0	0	0,00	0,05655	0,00000
00024	37.354	4,90	183.208	0	166.506	0	0	0	0,00	0,05655	0,00000
00162	13.386	12,42	166.316	0	53.893	0	0	0	0,00	0,05655	0,00000
00163	30.550	5,98	182.550	0	162.117	0	0	0	0,00	0,05655	0,00000
00194	17.598	9,36	164.795	0	43.747	0	0	0	0,00	0,05655	0,00000
00198	16.464	10,93	179.910	0	144.519	0	0	0	0,00	0,05655	0,00000
Piano Terra 00022	15.660	10,25	Parete P6-P8 160.477	-P10 0	15.320	0	0	0	Parete P6-P8 0,00	0,05655	0,00000
00022	37.013	5,07	187.763	0	197.225	0	0	0	0,00	0,05655	0,00000
00023	13.925	12,11	168.608	0	69.529	0	0	0	0,00	0,05655	0,00000
00110	30.361	6,18	187.780	0	197.338	0	0	0	0,00	0,05655	0,00000
00201	15.719	10,34	162.502	0	28.817	0	0	0	0,00	0,05655	0,00000
00201	17.810	10,19	181.499	0	155.468	0	0	0	0,00	0,05655	0,00000
Piano Terra			Parete P6-P8		1227.00				Parete P8-P		2,20000
00022	18.371	8,91	163.650	0	36.115	0	0	0	0,00	0,05655	0,00000
00023	39.393	4,72	185.873	0	184.268	0	0	0	0,00	0,05655	0,00000
00168	14.162	11,52	163.185	0	33.013	0	0	0	0,00	0,05655	0,00000
00169	25.699	6,91	177.657	0	129.499	0	0	0	0,00	0,05655	0,00000
00196	14.794	11,13	164.695	0	43.085	0	0	0	0,00	0,05655	0,00000
00197	15.803	11,35	179.435	0	141.349	0	0	0	0,00	0,05655	0,00000
Piano Terra	00 (-:		Parete P9-P1			_	-		Parete P9-P	1	
00017	92.696	1,18	109.000	0	261	0	0	0	2,50	0,05655	0,03655
00018	76.388	1,74	132.779	0	158.790	0	0	0	0,00	0,05655	0,00000
00179	59.206	2,07	122.504	0	90.286	0	0	0	0,00	0,05655	0,00000
00180	67.380	1,79	120.690	0	78.193	0	0	0	0,00	0,05655	0,00000
00181 00182	72.068	1,58	113.558	0	30.647	0	0	0	0,00	0,05655	0,00000
	59.137	2,20	130.062	0	140.677	0	0	0	0,00	0,05655	0,00000

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301_D_R_0120 Rev. 02

							Pareti - Ve	rifiche a tag	lio per press	oflessione re	tta allo SLU
Id _{Nd}	$V_{Ed,2}$	CS	V _{Rcd}	$V_{Rsd,s}$	N _{Ed}	$V_{Rsd,p}$	V_{R1}	$V_{Rd,f}$	Ctg⊛	A_{sw}	A_{dw}
	[N]		[N]	[N]	[N]	[N]	[N]	[N]		[cm ² /cm]	[cm²/cm]
00195	53.320	2,13	113.362	0	29.341	0	0	0	0,00	0,05655	0,00000
00199	36.444	3,58	130.613	0	144.350	0	0	0	0,00	0,05655	0,00000
Piano Terra			Parete P9-P1	1-P13					Parete P11-l	P13	
00001	37.304	2,93	109.374	0	2.819	0	0	0	0,00	0,05655	0,00000
00004	18.507	6,06	112.064	0	20.754	0	0	0	0,00	0,05655	0,00000
00017	45.778	2,38	109.115	0	1.093	0	0	0	0,00	0,05655	0,00000
00018	27.858	4,19	116.762	0	52.072	0	0	0	0,00	0,05655	0,00000
00126	34.868	3,23	112.775	0	25.493	0	0	0	0,00	0,05655	0,00000
00127	34.064	3,29	112.238	0	21.912	0	0	0	0,00	0,05655	0,00000
00128	38.419	2,87	110.176	0	8.169	0	0	0	0,00	0,05655	0,00000
00129	24.077	4,72	113.762	0	32.070	0	0	0	0,00	0,05655	0,00000
Piano Terra			Parete P10-P	12-P14					Parete P10-l	P12	
00010	54.251	1,93	104.725	0	29.140	0	0	0	0,00	0,10053	0,00000
00011	36.108	3,35	121.026	0	137.815	0	0	0	0,00	0,10053	0,00000
00019	92.000	1,09	100.354	0	-603	0	0	0	2,50	0,10053	0,03655
00020	74.359	1,65	122.846	0	149.949	0	0	0	0,00	0,10053	0,00000
00134	58.755	1,93	113.236	0	85.882	0	0	0	0,00	0,10053	0,00000
00135	66.544	1,67	111.434	0	73.865	0	0	0	0,00	0,10053	0,00000
00136	72.338	1,45	104.658	0	28.696	0	0	0	2,50	0,10053	0,00411
00137	57.853	2,08	120.297	0	132.956	0	0	0	0,00	0,10053	0,00000
Piano Terra			Parete P10-P	12-P14					Parete P12-	P14	
00002	31.703	3,18	100.853	0	3.331	0	0	0	0,00	0,10053	0,00000
00003	15.042	6,84	102.882	0	16.856	0	0	0	0,00	0,10053	0,00000
00158	31.233	3,32	103.806	0	23.017	0	0	0	0,00	0,10053	0,00000
00159	30.222	3,42	103.339	0	19.901	0	0	0	0,00	0,10053	0,00000
00160	33.668	3,01	101.430	0	7.177	0	0	0	0,00	0,10053	0,00000
00161	21.171	4,94	104.587	0	28.221	0	0	0	0,00	0,10053	0,00000
00204	41.628	2,41	100.354	0	-388	0	0	0	0,00	0,10053	0,00000
00205	25.886	4,15	107.424	0	47.134	0	0	0	0,00	0,10053	0,00000

LEGENDA:

 Id_{Nd} Identificativo del nodo.

V_{Ed,2} Taglio di progetto in direzione 2.

Coefficienti di sicurezza relativi alle sollecitazioni " $V_{Ed,2}$ " ([NS] = Non Significativo per valori di CS >= 100).

 V_{Rcd} Resistenza a taglio compressione del calcestruzzo.

Resistenza a taglio trazione delle staffe. $V_{Rsd,s}$ N_{Ed} Sforzo Normale utilizzato per il calcolo di $\alpha_{\mathbb{C}}$. $\textbf{V}_{\text{Rsd,p}}$ Resistenza a taglio trazione dei ferri piegati. V_{R1} Resistenza a taglio in assenza di armatura incrociata.

Resistenza a taglio dovuta al rinforzo FRP. $V_{Rd,f}$ Ctg⊛ Cotangente dell'angolo Θ utilizzata nella verifica. Area delle staffe per unità di lunghezza.

Armatura disponibile per il taglio \textbf{A}_{dw}

VERIFICHE PRESSOFLESSIONE RETTA ALLO STATO LIMITE DI DANNO

											Pa	areti - Vei	ifiche pre	essoflessi	ione retta	allo SLD
Dir	Pos	Nodo	N _{Ed}	M _{Ed}	As	CS	Nodo	N _{Ed}	M_{Ed}	As	CS	Nodo	N _{Ed}	M _{Ed}	As	CS
			[N]	[N·m]	[cm ² /cm]			[N]	[N·m]	[cm ² /cm]			[N]	[N·m]	[cm ² /cm]	
Piano '	Terra			Par	ete P1-P2								Parete P1	-P2		
P	Α	00005	0	0	0,10053	-	00006	0	0	0,10053	-	00007	1.899	1.698	0,10053	82,27
	P		-13.916	1.084	0,10053	NS		-10.700	823	0,10053	NS		0	0	0,10053	-
S	Α		0	0	0,05655	-		0	0	0,05655	-		22.328	328	0,05655	NS
	P		-14.947	246	0,05655	NS		-10.521	143	0,05655	NS		0	0	0,05655	-
P	Α	80000	2.267	1.732	0,10053	80,63	00055	-52.823	1.684	0,10053	87,53	00056	-30.857	1.746	0,10053	82,65
	P		0	0	0,10053	-		0	0	0,10053	-		0	0	0,10053	-
S	Α		22.302	272	0,05655	NS		-10.617	735	0,05655	NS		-2.599	729	0,05655	NS
	Р		0	0	0,05655	-		0	0	0,05655	-		0	0	0,05655	-
Р	Α	00057	0	0	0,10053	-	00058	0	0	0,10053	-	00101	0	0	0,10053	-
	P		-416	40	0,10053	NS		2.450	140	0,10053	NS		-995	37	0,10053	NS
S	Α		0	0	0,05655	-		0	0	0,05655	-		0	0	0,05655	-
	P		51.266	196	0,05655	NS		53.689	404	0,05655	NS		14.764	346	0,05655	NS
Р	Α	00102	0	0	0,10053	-	00103	0	0	0,10053	-	00104	-20.400	74	0,10053	NS
	P		-19.116	525	0,10053	NS		-5.663	335	0,10053	NS		0	0	0,10053	-
S	Α		0	0	0,05655	-		0	0	0,05655	-		0	0	0,05655	-
	P		4.023	516	0,05655	NS		11.393	771	0,05655	NS		16.756	421	0,05655	NS
Р	Α	00105	-18.740	84	0,10053	NS	00106	0	0	0,10053	-	00107	0	0	0,10053	-
	P		0	0	0,10053	-		-7.619	261	0,10053	NS		-10.252	337	0,10053	NS
S	Α		9.754	341	0,05655	NS		0	0	0,05655	-		20.663	82	0,05655	NS
	P		0	0	0,05655	-		38.619	347	0,05655	NS		0	0	0,05655	-
Piano	Terra			Par	ete P3-P4								Parete P3	-P4		
Р	Α	00025	0	0	0,05655	-	00026	5.303	470	0,05655	69,74	00027	0	0	0,05655	-
	P		-1.649	236	0,05655	NS		0	0	0,05655	-		-3.501	261	0,05655	NS
S	Α	1	0	0	0,05655	-		15.614	511	0,05655	63,03	[0	0	0,05655	-
	P		0	0	0,05655	-		0	0	0,05655	-		-9.099	44	0,05655	NS
Р	Α	00028	5.165	479	0,05655	68,45	00089	0	0	0,05655	-	00090	0	0	0,05655	-

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

											Pa	reti - Vei	rifiche pre	essoflessi	one retta	allo SLD
Dir	Pos	Nodo	N _{Ed}	M _{Ed}	As	CS	Nodo	N _{Ed}	M_{Ed}	As	CS	Nodo	N _{Ed}	M _{Ed}	As	CS
			[N]	[N·m]	[cm ² /cm]			[N]	[N·m]	[cm²/cm]			[N]	[N·m]	[cm ² /cm]	
	Р		0	0	0,05655	-		-28.495	482	0,05655	71,54		-30.181	326	0,05655	NS
S	A		16.158	535	0,05655	60,15		0	0	0,05655	-		0	0	0,05655	- NG
	P	00004	0	0	0,05655	-	00000	-6.251	144	0,05655	NS	00407	-2.646	87	0,05655	NS
Р	A P	00091	0	0	0,05655	- NC	00092	0	0	0,05655	- NC	00187	0	0	0,05655	- NC
	-		1.487	25 0	0,05655	NS -	-	1.712	46 0	0,05655	NS -		-9.645 0	16 0	0,05655	NS -
S	A P		38.233	125	0,05655 0,05655	NS		36.663	170	0,05655	NS		13.895	17	0,05655 0,05655	NS
P	A	00188	0	0	0,05655	-	00189	0	0	0,05655	-	00190	0	0	0,05655	-
•	P	00100	-2.207	87	0.05655	NS	00107	-14.591	114	0,05655	NS	00170	0	0	0,05655	_
S	Α		9.838	23	0,05655	NS		919	16	0,05655	NS		0	0	0,05655	-
	Р		0	0	0,05655	_		0	0	0,05655	_		0	0	0,05655	-
Р	Α	00191	0	0	0,05655	-	00192	0	0	0,05655	-	00193	0	0	0,05655	-
	P		-10.201	274	0,05655	NS	Į	-3.661	94	0,05655	NS		-8.466	119	0,05655	NS
S	Α		0	0	0,05655	-		0	0	0,05655	-		0	0	0,05655	-
	Р		6.906	147	0,05655	NS		26.980	151	0,05655	NS		17.128	93	0,05655	NS
Piano '		00012	0		ete P5-G1			25.205	17 (00	0.10052	20.24		Parete P5		0.10053	
Р	A P	00013	0 -15.577	11 000	0,10053	21 52	00016	-35.305 0	17.609 0	0,10053	20,24	00044	0 -61.326	0 7.172	0,10053	- E1 02
S	A		0	11.080	0,10053	31,52		-45.574	20.784	0,10053	17,33		0	0	0,10053	51,03
3	P		-22.961	2.375	0,10053	NS		0	0	0,10053	-		20.411	1.497	0,10053	NS
P	A	00045	-49.151	10.775	0,10053	33,55	00108	0	0	0,10053	-	00109	-44.769	8.895	0,10053	40,46
•	P	55045	-49.151	2.692	0,10053	NS	30100	-32.106	4.891	0,10053	72,64	55107	0	0.073	0,10053	-
S	A	1	37.117	11.030	0,10053	29,92	ĺ	40.988	1.022	0,10053	NS		-9.479	6.876	0,10053	50,47
Ü	P		37.117	6.037	0,10053	54,66		40.988	2.113	0,10053	NS		0	0	0,10053	-
Piano [*]	Terra				ete P5-G1		26						Parete G1			
Р	Α	00041	-66.846	829	0,10053	NS	00042	-67.260	2.890	0,10053	NS	00044	0	0	0,10053	-
	P		-66.846	5.987	0,10053	61,46		-67.260	3.504	0,10053	NS		-56.701	5.017	0,10053	72,61
S	Α		-17.725	270	0,10053	NS		-38.863	3.013	0,10053	NS		0	0	0,10053	-
	Р		-17.725	1.710	0,10053	NS		-38.863	5.689	0,10053	62,89		-13.066	1.567	0,10053	NS
Р	A	00045	-53.544	11.190	0,10053	32,45	00051	0	0	0,10053	-	00052	68.116	34	0,10053	NS
	P		-53.544	2.786	0,10053	NS 20.72	-	-30.153	3.986	0,10053	88,95		68.116	1.037	0,10053	NS
S	A P		-7.292 -7.292	8.715 2.467	0,10053 0,10053	39,73 NS		-8.068	0 814	0,10053 0,10053	- NS		0 -31.264	0 904	0,10053 0,10053	- NS
P	A	00093	-63.387	2.407	0,10053	NS	00094	-59.394	2.109	0,10053	NS	00095	-56.306	161	0,10053	NS
г	P	00073	-63.387	4.320	0,10053	84,89	00074	-59.394	3.005	0,10053	NS	00073	-56.306	3.844	0,10053	94,73
S	A		-37.702	44	0,10053	NS		-32.691	1.110	0,10053	NS		-20.818	128	0,10053	NS
Ü	P		-37.702	1.279	0,10053	NS		-32.691	1.502	0,10053	NS		-20.818	984	0,10053	NS
Р	Α	00096	-55.858	2.634	0,10053	NS				.,					.,	
	Р		-55.858	2.537	0,10053	NS										
S	Α		-34.324	762	0,10053	NS										
	P		-34.324	2.291	0,10053	NS										
Piano 7					ete P5-G1	-G2-G3-F							Parete G2			
Р	A	00038	0	0	0,10053	-	00039	-53.328	8.046	0,10053	45,12	00041	-68.254	12	0,10053	NS
	P		-53.377	5.837	0,10053	62,20	-	-53.328	177	0,10053	NS		-68.254	5.228	0,10053	70,49
S	A P		-16.846	41	0,10053	NS NS		-2.592 -2.592	6.304 1.045	0,10053	54,65		-17.104	250	0,10053	NS NS
P	A	00042	-16.846 -67.787	1.430 5.909	0,10053	NS 62,33	00053	-2.392	0	0,10053	NS	00054	-17.104 69.242	1.426 132	0,10053	NS NS
г	P	00042	-67.787	6.455	0,10053	57,06	00055	-37.175	5.246	0,10053	68,08	00034	69.242	1.041	0,10053	NS
S	A		-38.356	6.100	0,10053	58,62		0	0	0,10053	-		0	0	0,10053	-
J	P		-38.356	8.836	0,10053	40,47		-8.628	1.076	0,10053	NS		-32.792	1.128	0,10053	NS
Р	Α	00097	-59.021	1.770	0,10053	NS	00098	-63.036	1.912	0,10053	NS	00099	0	0	0,10053	-
	Р		-59.021	3.532	0,10053	NS		-63.036	4.195	0,10053	87,39		-55.699	4.210	0,10053	86,44
S	Α		-30.764	218	0,10053	NS		-37.654	641	0,10053	NS		0	0	0,10053	-
	P		-30.764	1.006	0,10053	NS		-37.654	2.649	0,10053	NS		-21.223	1.381	0,10053	NS
Р	A	00100	-57.772	2.614	0,10053	NS										
	P		-57.772	2.768	0,10053	NS									-	
S	A P		-35.429	374	0,10053	NS										
Diama '			-35.429	2.424	0,10053	NS RS GS I	04						Darota Ca	D4		
Piano P	erra A	00014	0	0 Par	ete P5-G1 0,10053	-G2-G3-I	00015	-40.708	18.435	0,10053	19,44	00038	Parete G3	- P6	0,10053	_
11	P	00014	-18.496	10.007	0,10053	35,01	00013	0	0	0,10053	17,44	00030	-39.751	7.507	0,10053	47,70
S	A		0	0	0,10053	-		-56.811	21.984	0,10053	16,57		0	0	0,10053	-
-	P		-18.905	2.087	0,10053	NS		-56.811	227	0,10053	NS		73.604	2.956	0,10053	NS
Р	Α	00039	-62.818	12.192	0,10053	30,06	00145	0	0	0,10053	-	00146	-57.110	9.972	0,10053	36,55
	P		-62.818	5.595	0,10053	65,51	[-26.718	5.570	0,10053	63,43		0	0	0,10053	-
S	Α		18.309	21.378	0,10053	15,76		12.241	847	0,10053	NS		-23.748	9.141	0,10053	38,53
	Р		18.309	11.773	0,10053	28,61		12.241	3.297	0,10053	NS	L	-23.748	612	0,10053	NS
Piano '					ete P7-P8								Parete P7			
Р	A	00021	1.210	21	0,05655	NS	00022	0	0	0,05655	-	00023	-6.622	31	0,05655	NS
c	P		0	0	0,05655	-	-	0	0	0,05655	-		0 0 0 0 1	0	0,05655	- NC
S	A P		0	0	0,05655	-		0	0	0,05655 0,05655	-		-8.851 0	37 0	0,05655 0,05655	NS
P	A	00024	0	0	0,05655	-	00085	-27.910	16	0,05655	NS	00086	0	0	0,05655	-
г	P	00024	-6.796	15	0,05655	NS	00000	0	0	0,05655	-	00000	0	0	0,05655	-
S	A	1	0	0	0,05655	-	1	0	0	0,05655	-		0	0	0,05655	-
3	P		-8.887	26	0,05655	NS		0	0	0,05655	-		0	0	0,05655	-

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

											D-	areti - Vo	rifiche pre	ssoflessi	one retta	allo SI D
Dir	Pos	Nodo	N _{Ed}	M _{Ed}	As	cs	Nodo	N _{Ed}	M _{Ed}	As	CS	Nodo	N _{Ed}	M _{Ed}	As	CS
			[N]	[N·m]	[cm ² /cm]			[N]	[N·m]	[cm ² /cm]			[N]	[N·m]	[cm ² /cm]	
Р	A P	00087	0	0	0,05655 0,05655	-	00088	0	0	0,05655 0,05655	-	00172	0	0	0,05655 0,05655	-
S	A	1	0	0	0,05655	-		0	0	0,05655	-		0	0	0,05655	
	P		0	0	0,05655	-		0	0	0,05655	-		0	0	0,05655	-
Р	A P	00173	0	0	0,05655	-	00174	0	0	0,05655	-	00175	0	0	0,05655	-
S	A		0	0	0,05655	-		0	0	0,05655	-		0	0	0,05655	-
	P		0	0	0,05655	_		0	0	0,05655	-		0	0	0,05655	_
Р	Α	00176	0	0	0,05655	-	00177	0	0	0,05655	-	00178	0	0	0,05655	-
	P		0	0	0,05655	-		0	0	0,05655	-		0	0	0,05655	-
S	A P		0	0	0,05655 0,05655	-		0	0	0,05655 0,05655	-		0	0	0,05655 0,05655	-
Piano	-				ete P9-G 4		P10		U	0,03033			Parete P9		0,00000	
Р	Α	00009	-36.766	15.345	0,10053	23,26	00012	0	0	0,10053	-	00029	-24.809	10.443	0,10053	33,77
	P		0	0	0,10053	-		-54.156	17.233	0,10053	21,08		0	0	0,10053	-
S	A P		-61.654 0	2.953 0	0,10053 0,10053	NS -		0 -55.191	0 14.942	0,10053 0,10053	- 24,34		125.591 0	6.296 0	0,10053	47,27
P	A	00030	-65.513	3.535	0,10053	NS		-33.171	14.742	0,10033	24,34		0	- 0	0,10033	_
	P		-65.513	11.378	0,10053	32,30										
S	Α		0	0	0,10053	-										
	P -		-23.118	8.964	0,10053	39,27										
Piano	Terra A	00029	-49.335	4.593	ete P9-G4	78,73	00030	-49.848	4.899	0,10053	73,85	00032	Parete G4 -67.468	-G5 5.991	0,10053	61,46
L	P	33027	0	0	0,10053	-	00000	-49.848	10.462	0,10053	34,58	00002	-67.468	901	0,10053	NS
S	Α		-11.346	1.278	0,10053	NS		-8.084	3.679	0,10053	94,18		-17.590	1.694	0,10053	NS
	Р	0	-11.346	407	0,10053	NS	05-	-8.084	8.336	0,10053	41,57	0	-17.590	290	0,10053	NS
Р	A P	00033	-67.768 -67.768	3.505 2.830	0,10053 0,10053	NS NS	00061	-31.801 0	3.967 0	0,10053 0,10053	89,53	00062	67.886 67.886	935 356	0,10053	NS NS
S	A	-	-39.847	5.658	0,10053	63,29		-8.096	873	0,10053	NS	}	-35.511	1.068	0,10053	NS NS
	P		-39.847	3.035	0,10053	NS		0.070	0	0,10053	-		0	0	0,10053	-
Р	Α	00116	-63.371	4.420	0,10053	82,97	00117	-55.578	3.516	0,10053	NS	00118	-55.224	3.902	0,10053	93,22
	P		-63.371	2.110	0,10053	NS		-55.578	2.144	0,10053	NS		-55.224	231	0,10053	NS
S	A P		-35.802 -35.802	1.331 37	0,10053 0,10053	NS NS		-31.706 -31.706	1.677 1.146	0,10053 0,10053	NS NS		-20.498 -20.498	1.092 65	0,10053 0,10053	NS NS
P	A	00119	-56.315	2.944	0,10053	NS		-31.700	1.140	0,10033	113		-20.470	03	0,10033	INS
,	P	00117	-56.315	2.607	0,10053	NS										
S	Α		-35.726	2.399	0,10053	NS										
	P		-35.726	968	0,10053	NS										
Piano P	Terra A	00032	-67.988	5.260	ete P9-G4	- G5-G6-I 70,04	00033	-67.776	6.527	0,10053	56,43	00035	Parete G5 -58.167	-G6 6.263	0,10053	58,25
'	P	00032	-67.988	3.200	0,10053	NS	00033	-67.776	5.903	0,10053	62,40	00033	0	0.203	0,10053	- 30,23
S	Α		-17.050	1.428	0,10053	NS		-37.931	8.872	0,10053	40,29	ĺ	-15.023	1.663	0,10053	NS
	Р		-17.050	267	0,10053	NS		-37.931	6.118	0,10053	58,42		0	0	0,10053	-
P	A P	00036	0	0 177	0,10053	-	00059	-35.207	5.150	0,10053 0,10053	69,21	00060	68.599	1.069	0,10053	NS
S	A	-	-53.237 -1.844	8.177 692	0,10053	44,39 NS		-8.715	1.035	0,10053	- NS	}	68.599	75 1.072	0,10053	NS NS
	P		-1.844	6.626	0,10053	51,95		0.710	0	0,10053	-		0	0	0,10053	-
Р	Α	00112	-60.750	3.599	0,10053	NS	00113	-62.966	4.224	0,10053	86,78	00114	-56.839	4.271	0,10053	85,30
	P		-60.750	1.690	0,10053	NS		-62.966	1.916	0,10053	NS		0	0	0,10053	-
S	A P		-30.762 -30.762	943 278	0,10053	NS NS		-37.560 -37.560	2.615 685	0,10053 0,10053	NS NS		-20.710 0	1.298 0	0,10053 0,10053	NS -
P	A	00115	-56.803	2.778	0,10053	NS		-37.300	000	0,10033	IVO		J	U	0,10033	-
Ŀ	P		-56.803	2.601	0,10053	NS]				
S	Α		-34.324	2.386	0,10053	NS										
Dione	P		-34.324	411 Par	0,10053	NS GE G6 I	210						Pareta Cr	D10		
Piano	I erra A	00010	-16.979	10.425	ete P9-G4	33,55	00011	0	0	0,10053	_	00035	Parete G6 -62.359	-P10 7.728	0,10053	47,41
'	P	30010	0	0	0,10053	-	55011	-36.774	19.193	0,10053	18,60	50033	0	0	0,10053	- 47,41
S	Α		-22.941	2.266	0,10053	NS		0	0	0,10053	-		18.821	1.970	0,10053	NS
	Р	00000	0	0	0,10053	-	0015:	-46.030	22.378	0,10053	16,10	00155	0	0	0,10053	-
Р	A P	00036	-50.178 -50.178	4.893 13.069	0,10053 0,10053	73,96 27,69	00124	-33.140 0	5.140 0	0,10053 0,10053	69,20 -	00125	0 -46.036	0 10.222	0,10053 0,10053	35,26
S	A	-	37.008	11.743	0,10053	28,10		41.841	3.898	0,10053	84,21	-	-46.036	2.167	0,10053	35,26 NS
-	P		37.008	16.583	0,10053	19,90		41.841	2.315	0,10053	NS		-26.939	10.135	0,10053	34,87
					ete P11-P		_						Parete P1			
Piano				291	0,05655	NS	00018	0	0 465	0,05655 0,05655	- 70.40	00019	-3.626 0	279 0	0,05655	NS
Piano	Α	00017	-2.547		0.05/55					⊥ U Uつわうう	70,68	I				-
Р	A P	00017	0	0	0,05655	- NS		3.726				i			0,05655	NIC
	Α	00017			0,05655	NS -		0	0 493	0,05655	-		-9.107 0	48 0	0,05655	NS -
Р	A P A	00017	-7.197	0 37		NS	00077		0			00078	-9.107	48		
P S P	A P A P A	-	0 -7.197 0 0 4.529	0 37 0 0 430	0,05655 0,05655 0,05655 0,05655	NS -	00077	0 12.391 -28.976 0	0 493 511 0	0,05655 0,05655 0,05655 0,05655	- 65,69 67,52 -	00078	-9.107 0 -29.253 0	48 0 337 0	0,05655 0,05655 0,05655 0,05655	NS -
P S	A P A P A	-	0 -7.197 0 0 4.529	0 37 0 0 430	0,05655 0,05655 0,05655 0,05655 0,05655	NS - - 76,33	00077	0 12.391 -28.976 0 -5.960	0 493 511 0 163	0,05655 0,05655 0,05655 0,05655 0,05655	- 65,69 67,52 - NS	00078	-9.107 0 -29.253 0 -2.670	48 0 337 0 90	0,05655 0,05655 0,05655 0,05655 0,05655	NS - NS
P S P S	A P A P A P	00020	0 -7.197 0 0 4.529 0 16.050	0 37 0 0 430 0 540	0,05655 0,05655 0,05655 0,05655 0,05655 0,05655	NS - - 76,33 - 59,60		0 12.391 -28.976 0 -5.960 0	0 493 511 0 163 0	0,05655 0,05655 0,05655 0,05655 0,05655 0,05655	- 65,69 67,52 - NS		-9.107 0 -29.253 0 -2.670 0	48 0 337 0 90 0	0,05655 0,05655 0,05655 0,05655 0,05655 0,05655	NS - NS -
P S P	A P A P A	-	0 -7.197 0 0 4.529	0 37 0 0 430	0,05655 0,05655 0,05655 0,05655 0,05655	NS - - 76,33	00077	0 12.391 -28.976 0 -5.960	0 493 511 0 163	0,05655 0,05655 0,05655 0,05655 0,05655	- 65,69 67,52 - NS	00078	-9.107 0 -29.253 0 -2.670	48 0 337 0 90	0,05655 0,05655 0,05655 0,05655 0,05655	NS - NS

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

											P:	areti - Ve	rifiche pre	ssoflessi	one retta	allo SI D
Dir	Pos	Nodo	N _{Ed}	M _{Ed}	As	CS	Nodo	N _{Ed}	M _{Ed}	As	CS	Nodo	N _{Ed}	M _{Ed}	A _s	CS
			[N]	[N·m]	[cm ² /cm]			[N]	[N·m]	[cm ² /cm]			[N]	[N·m]	[cm ² /cm]	
	P		0	0	0,05655	-		0	0	0,05655	-		0	0	0,05655	-
Р	Α	00139	-1.918	97	0,05655	NS	00140	2.523	131	0,05655	NS	00141	-12.389	48	0,05655	NS
	Р		0	0	0,05655	-		0	0	0,05655	-		0	0	0,05655	-
S	A		0	0	0,05655	- NC		0	0	0,05655	-		9.013	17	0,05655	NS
P	P A	00142	9.858	11 265	0,05655	NS NS	00143	-3.260	0 79	0,05655	- NS	00144	-8.202	0 123	0,05655	- NS
Р	P	00142	-9.943	205	0,05655	-	00143	-3.260	0	0,05655	11/3	00144	-8.202	0	0,05655	INS -
S	A	-	7.964	165	0,05655	NS		30.246	163	0,05655	NS		17.918	98	0,05655	NS
J	P		0	0	0,05655	-		0	0	0,05655	-		0	0	0,05655	-
Piano 1	Terra			Par	ete P13-P	14						ı	Parete P1		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Р	Α	00001	-14.047	1.078	0,10053	NS	00002	-13.340	897	0,10053	NS	00003	0	0	0,10053	-
	P		0	0	0,10053	-		0	0	0,10053	-		303	1.603	0,10053	87,29
S	Α		-14.413	301	0,05655	NS		-12.203	266	0,05655	NS		0	0	0,05655	-
	Р		0	0	0,05655	-		0	0	0,05655	-		17.626	315	0,05655	NS
Р	A	00004	0	0	0,10053	-	00081	0	0	0,10053	-	00082	0	0	0,10053	- 07.45
	P	-	2.179	1.712	0,10053	81,58		-52.807	1.634	0,10053	90,21		-30.707	1.650	0,10053	87,45
S	A P		0 22.873	0 225	0,05655	- NS		0 -10.736	0 721	0,05655 0,05655	- NS		0 -2.755	0 709	0,05655	- NS
P	A	00083	238	47	0,10053	NS	00084	2.737	157	0,03653	NS	00147	0	0	0,03653	-
г	P	00000	0	0	0,10053	-	00004	0	0	0,10053	-	00147	-12.205	160	0,10053	NS
S	A	1	51.574	212	0,05655	NS		57.419	426	0,05655	NS	1	18.487	406	0,05655	NS
-	P		0	0	0,05655	-		0	0	0,05655	-		0	0	0,05655	-
Р	A	00148	-6.366	370	0,10053	NS	00149	-5.673	376	0,10053	NS	00150	0	0	0,10053	-
	P		0	0	0,10053	-		0	0	0,10053	-		-21.465	44	0,10053	NS
S	Α		10.504	607	0,05655	NS		12.272	796	0,05655	NS		18.289	443	0,05655	NS
	P		0	0	0,05655	-		0	0	0,05655	-		0	0	0,05655	-
Р	A	00151	0	0	0,10053	-	00152	-7.103	259	0,10053	NS	00153	-9.914	258	0,10053	NS
	Р		-19.570	66	0,10053	NS		0	0	0,10053	-		0	0	0,10053	-
S	A		0	0	0,05655	-		40.888	360	0,05655	NS		0	0	0,05655	-
D:	P		10.229	321	0,05655	NS		0	0	0,05655	-		21.659	33	0,05655	NS
Piano 1	erra A	00005	0	0 Par	ete P1-P3	-P5 -	00008	-12.595	180	0,10053	NS	00025	Parete P1	. P3 0	0,10053	_
Р	P	00005	-10.581	340	0,10053	NS	00006	0	0	0,10053	-	00023	-10.396	382	0,10053	NS
S	A	-	0	0	0,05655	-		-14.525	175	0,05655	NS		0	0	0,05655	-
J	P		-1.756	332	0,05655	NS		-14.525	43	0,05655	NS		-957	407	0,05655	NS
Р	Α	00026	0	0	0,10053	-	00164	-12.894	276	0,10053	NS	00165	-6.595	300	0,10053	NS
	P		-3.107	49	0,10053	NS		0	0	0,10053	-		0	0	0,10053	-
S	Α		0	0	0,05655	-		-15.895	188	0,05655	NS		-18.432	85	0,05655	NS
	P		-39.873	484	0,05655	NS		0	0	0,05655	-		0	0	0,05655	-
Р	Α	00166	-9.017	333	0,10053	NS	00167	-7.332	145	0,10053	NS					
	P		0	0	0,10053	-		0	0	0,10053	-					
S	Α		-5.950	344	0,05655	NS		0	0	0,05655	-					
	P		0	0	0,05655			-22.337	33	0,05655	NS					
Piano 1		00013	0		ete P1-P3		00016	-42.993	115	0.10052	NS	00025	Parete P3	. P5 0	0.10052	
Р	A P	00013	15.022	0 270	0,10053	- NS	00016	-42.993	115 0	0,10053 0,10053	11/3	00025	0 -1.750	344	0,10053	- NS
		-				INO										INS
S	Α		0	0	0,05655	-		110.375	868	0,05655	61,67		0	0	0,05655	-
	Р		-21.726	320	0,05655	NS		0	0	0,05655	-		-816	445	0,05655	NS
Р	Α	00026	0	0	0,10053	-	00130	-23.749	274	0,10053	NS	00131	-13.371	232	0,10053	NS
	P		-48.073	294	0,10053	NS		0	0	0,10053	-		0	0	0,10053	-
S	Α		0	0	0,05655	-		-58.686	137	0,05655	NS		-58.242	383	0,05655	NS
	Р		-	1.029	0,05655	52,16		0	0	0,05655	_		0	0	0,05655	_
		00100	112.529				00400						-	-	.,	
Р	A P	00132	-16.026	387	0,10053	NS	00133	-23.942	45	0,10053	NS					
S	A	-	-27.021	0 455	0,10053	- NS		-97.035	0 134	0,10053	- NS	-				
3	P		-27.021	455	0,05655	- 1/15		-97.035	0	0,05655	-					
Piano 1			U		ete P2-P4					0,00000			Parete P2	-P4		
P	A	00006	-10.351	341	0,10053	NS NS	00007	0	0	0,10053	-	00027	-12.053	420	0,10053	NS
•	P		0	0	0,10053	-	55507	-11.297	146	0,10053	NS	00027	0	0	0,10053	-
S	A	1	-2.125	352	0,05655	NS		-11.995	87	0,05655	NS		362	422	0,05655	NS
	P		0	0	0,05655	-		-11.995	154	0,05655	NS		0	0	0,05655	-
Р	Α	00028	-3.170	24	0,10053	NS	00183	0	0	0,10053	-	00184	0	0	0,10053	-
	P		-2.906	12	0,10053	NS		-12.469	262	0,10053	NS		-7.350	296	0,10053	NS
S	A		-33.636	513	0,05655	94,09		0	0	0,05655	-		0	0	0,05655	-
	P	00405	0	0	0,05655	-	00101	-14.324	140	0,05655	NS		-16.558	50	0,05655	NS
Р	A	00185	0 549	0	0,10053	- NC	00186	7.047	0	0,10053	- NC					
	P	-	-9.568	328	0,10053	NS		-7.067	115	0,10053	NS	-				
S	A P		0 -5.175	0 325	0,05655 0,05655	- NS		-20.299 0	97 0	0,05655 0,05655	NS -					
Piano 1			-0.1/5		ete P2-P4			U	U	0,00000	-		Parete P4	.P6		
P	A	00014	12.509	431	0,10053	NS NS	00015	0	0	0,10053	-	00154	0	0	0,10053	_
		50017	0	0	0,10053	-	33013	-42.598	213	0,10053	NS	30104	-25.136	289	0,10053	NS
	P						,							,		
S	A	-	-21.219	385	0,05655	NS		0	0	0,05655	-		0	0	0,05655	-

FRI-EL

RELAZIONE PRELIMINARE DELLE STRUTTURE

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

											P	areti - Ve	rifiche pre	essoflessi	one retta	allo SLD
Dir	Pos	Nodo	N _{Ed}	M _{Ed}	As	CS	Nodo	N _{Ed}	M _{Ed}	As	CS	Nodo	N _{Ed}	M _{Ed}	As	CS
			[N]	[N·m]	[cm²/cm]			[N] 104.734	[N·m]	[cm²/cm]			[N]	[N·m]	[cm²/cm]	
P	A	00155	0	0	0,10053	-	00156	0	0	0,10053	-	00157	0	0	0,10053	-
	P		-16.125	195	0,10053	NS		-18.604	342	0,10053	NS		-27.196	95	0,10053	NS
S	Α		0	0	0,05655	-		0	0	0,05655	-		0	0	0,05655	-
	P		-57.907	377	0,05655	NS		-26.501	454	0,05655	NS		100.392	128	0,05655	NS
P	Α	00206	-3.166	411	0,10053	NS	00207	-45.212	309	0,10053	NS		100.372			
	P		0	0	0,10053	-		0	0	0,10053	-					
S	Α		-372	471	0,05655	97,29		-	1.015	0,05655	52,54					
	Р		0	0	0,05655	_		107.484 0	0	0,05655	_					
iano ⁻			U		ete P5-P7	-P9		U	U	0,03033	_		Parete P5	-P7		
Р	Α	00021	0	0	0,10053	-	00024	0	0	0,10053	-	00170	-25.338	400	0,10053	NS
	P		2.393	222	0,10053	NS		-57.350	1.213	0,10053	NS		0	0	0,10053	-
S	Α		0	0	0,05655	-		0	0	0,05655	-		-58.024	813	0,05655	NS
	P		-9.314	428	0,05655	NS		175.721	4.263	0,05655	25,65		-58.024	301	0,05655	NS
Р	Α	00171	-47.035	376	0,10053	NS	00200	-8.080	696	0,10053	NS	00203	-50.097	1.685	0,10053	87,25
	P		-47.035	687	0,10053	NS		0	0	0,10053	-	-	-50.097	1.153	0,10053	NS
S	Α		173.657	1.394	0,05655	78,23		-32.813	331	0,05655	NS		146.133	6.588	0,05655	15,95
			-	4 000	0.05/55	00.75				0.05/55					0.05/55	
	Р		173.657	1.302	0,05655	83,75		0	0	0,05655	-		0	0	0,05655	-
	Terra				ete P5-P7					0.40050			Parete P7		0.40050	
Р	A P	00021	2.217 2.217	46 254	0,10053 0,10053	NS NS	00024	0 -58.781	0 1.330	0,10053 0,10053	- NS	00162	-28.217 -28.217	404 12	0,10053 0,10053	NS NS
S	A		0	0	0.05655	-		0	0	0,05655	-		-56.951	602	0,05655	NS NS
Ū	P		-9.464	327	0,05655	NS		-	4.645	0,05655	23,55		0	0	0,05655	-
	·							175.979						-		
Р	A P	00163	-49.846	214	0,10053	NS	00194	-14.428	698	0,10053	NS	00198	-54.459	1.279	0,10053	NS
			-49.846	443	0,10053	NS		-14.428	430	0,10053	NS	-	-54.459	476	0,10053	NS
S	Α		172.501	966	0,05655	NS		-35.018	185	0,05655	NS		144.094	5.688	0,05655	18,43
	Р		-	521	0,05655	NS		0	0	0,05655	_		0	0	0,05655	_
			172.501							0,00000				_	0,00000	
i ano i P	erra A	00022	1.418	191	ete P6-P8	-P10 NS	00023	-56.258	1.109	0,10053	NS	00110	Parete P6	- P8	0,10053	_
г	P	00022	0	0	0,10053	-	00023	0	0	0,10053	-	00110	-26.175	322	0,10053	NS
S	Α		-9.219	316	0,05655	NS		-	4.131	0,05655	26,25		-56.976	294	0,05655	NS
3								169.706								
P	P A	00111	-46.520	0 521	0,05655	- NS	00201	-10.475	0 316	0,05655	- NS	00202	-56.976 -49.456	781 752	0,05655	NS NS
Р	P	00111	-46.520	521	0,10053	NS NS	00201	-10.475	277	0,10053	NS NS	00202	-49.456	2.044	0,10053	71,84
_			-									1				
S	A		165.199	1.159	0,05655	92,99		0	0	0,05655	-		0	0	0,05655	-
	Р		1/5 100	1.448	0,05655	74,43		-32.530	135	0,05655	NS		120 (02	6.711	0,05655	15,49
iano ⁻	Terra		165.199	Par	ete P6-P8	-P10							138.682 Parete P8	-P10		
P	A	00022	-10.535	182	0,10053	NS	00023	-66.821	2.003	0,10053	74,57	00168	0	0	0,10053	-
	P		-10.535	173	0,10053	NS		0	0	0,10053	-		-23.551	500	0,10053	NS
S	Α		-34.069	598	0,05655	NS		107.5.5	5.483	0,05655	20,49		0	0	0,05655	_
	P		0	0	0,05655	-		196.547 0	0	0,05655	-		-34.534	987	0,05655	90,27
P	A	00169	-37.858	196	0,03653	NS	00196	0	0	0,03653	-	00197	-49.486	408	0,03653	90,27 NS
•	P	00.07	-37.858	274	0,10053	NS	00170	-9.419	989	0,10053	NS	00.77	-49.486	1.013	0,10053	NS
S	Α		-	514	0,05655	NS		0	0	0,05655	_		0	0	0,05655	_
5	_ ^		134.572	314	0,03033	145			0	0,03033					0,03033	
	Р		134.572	358	0,05655	NS		-33.868	225	0,05655	NS		140.639	4.902	0,05655	21,28
ano	Гегга		1011072	Par	ete P9-P1	1-P13							Parete P9	-P11		
Р	Α	00017	0	0	0,10053	-	00018	0	0	0,10053	-	00179	-17.195	251	0,10053	NS
	P		-1.000	378	0,10053	NS		-48.732	302	0,10053	NS	-	0	0	0,10053	-
S	Α		0	0	0,05655	-		0	0	0,05655	-		-64.828	451	0,05655	NS
	Р		-63	449	0,05655	NS		114.037	916	0,05655	58,71		0	0	0,05655	-
Р	Α	00180	-24.003	341	0,10053	NS	00181	-16.248	337	0,10053	NS	00182	0	0	0,10053	-
_	P		0	0	0,10053	-		0	0	0,10053	-		-29.335	10	0,10053	NS
S	A P		-55.690	152	0,05655	NS		-21.735	459	0,05655	NS		-98.976	203	0,05655	NS
P	A	00195	0	0	0,05655	-	00199	-46.956	200	0,05655	- NS		0	0	0,05655	-
•	P	00170	9.615	313	0,10053	NS	00177	-46.956	87	0,10053	NS NS					
S	Α	1	0	0	0,05655	_	1	-	1.093	0,05655	49,05	1				
5								111.680								
iano ⁻	P		-22.345	311 Par	0,05655 ete P9-P1	NS 1 D12		0	0	0,05655	-		Parete P1	1 D12		
P P	erra A	00001	0	0 Par	0,10053	1-P13 -	00004	-12.886	159	0,10053	NS	00017	0	0	0,10053	
•	- ^	00001			0,10000		00004	12.000	137	0,10000	143	30017	, 0		0,10000	

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301_D_R_0120 Rev. 02

											Pa	areti - Vei	rifiche pre	ssofless	ione retta	allo SLD
Dir	Pos	Nodo	N_{Ed}	M_{Ed}	As	CS	Nodo	N_{Ed}	M_{Ed}	As	CS	Nodo	N_{Ed}	M _{Ed}	As	CS
			[N]	[N·m]	[cm ² /cm]			[N]	[N·m]	[cm ² /cm]			[N]	[N·m]	[cm ² /cm]	
	Р		-10.743	334	0,10053	NS		0	0	0,10053	-		-10.413	375	0,10053	NS
S	Α		0	0	0,05655	-		-15.019	125	0,05655	NS		0	0	0,05655	-
	P	00010	-1.758	333	0,05655	NS	20101	0	0	0,05655	-	00407	-674	405	0,05655	NS
Р	A	00018	0	0	0,10053	-	00126	-6.662	297	0,10053	NS	00127	-13.024	274	0,10053	NS
-	P		-3.212	50	0,10053	NS		0	0	0,10053	-		0	0	0,10053	- NC
S	A P		0 -37.014	0 541	0,05655 0,05655	- 89,64		-17.857 0	75 0	0,05655 0,05655	NS -		-15.805 0	171 0	0,05655 0,05655	NS -
P	A	00128	-9.180	337	0,10053	NS	00129	-7.588	138	0,03653	NS		U	U	0,03633	
Р	P	00126	-9.160	0	0,10053	-	00129	0	0	0,10053	-					
S	A	-	-5.841	337	0,05655	NS	-	0	0	0,05655		1				
3	P		0	0	0,05655	-		-22.752	53	0,05655	NS					
Piano '					ete P10-P			22.702	00	0,00000	140		Parete P1	0-P12		
P	A	00010	12.285	334	0.10053	4,98	00011	-41.650	30	0.10053	5,13	00019	-2.566	422	0.10053	5,09
	P		0	0	0,05655	-		-41.650	216	0,05655	5,02		0	0	0,05655	-
S	Α		-21.899	329	0,10053	5,15		0	0	0,10053	-		1.106	466	0,10053	5,09
	Р		0	0	0,05655	-		- 102.806	1.099	0,05655	4,98		0	0	0,05655	-
Р	Α	00020	-43.215	279	0,10053	5,24	00134	0	0	0,10053	-	00135	0	0	0,10053	-
	P		0	0	0,05655	-		-15.734	229	0,05655	4,89		-24.284	340	0,05655	4,89
S	Α		- 102.707	935	0,10053	5,87		0	0	0,10053	-		0	0	0,10053	-
	P		0	0	0,05655	-		-61.044	459	0,05655	5,02		-54.987	141	0,05655	5,12
Р	Α	00136	0	0	0,10053	-	00137	0	0	0,10053	-					
	P		-15.353	326	0,05655	4,85		-26.798	14	0,05655	5,03					
S	Α		0	0	0,10053	-		0	0	0,10053	-					
	P		-20.984	438	0,05655	4,83		-92.072	216	0,05655	5,28					
Piano '	Terra				ete P10-P								Parete P1	2-P14		
Р	Α	00002	-10.450	347	0,10053	5,10	00003	0	0	0,10053	-	00158	0	0	0,10053	-
	P		0	0	0,05655	-		-10.910	107	0,05655	4,91		-7.508	301	0,05655	4,82
S	Α		-2.224	350	0,10053	5,06		-11.963	24	0,10053	4,97		0	0	0,10053	-
	P		0	0	0,05655	-		-11.963	83	0,05655	4,93		-16.240	58	0,05655	4,96
Р	A	00159	0	0	0,10053	-	00160	0	0	0,10053	-	00161	0	0	0,10053	
	P		-12.413	264	0,05655	4,86		-9.660	326	0,05655	4,82		-7.125	125	0,05655	4,89
S	A		0	0	0,10053	-		0	0	0,10053	-		-20.025	76	0,10053	5,03
	P	00004	-14.072	159	0,05655	4,91	00205	-5.082	332	0,05655	4,80		0	0	0,05655	-
Р	A P	00204	-12.224	424 0	0,10053 0,05655	5,14	00205	-3.273 0	28 0	0,10053 0,05655	4,93					
c		-	480	424	0,05655		{	-32.867	520	0,05655		{			+	
S	A P		480	424 0	0,10053	5,08		-32.867	0	0,10053	5,30					
	_ r		U	U	0,03033			U	U	0,03033						

LEGENDA:

Direzione [P] = principale (asse locale 1) - [S] = secondaria (asse locale 2). Posizione [A] = anteriore - [P] = posteriore. Area delle armature esecutive per unità di lunghezza. Dir

Pos

 $\begin{array}{c} \textbf{A}_s \\ \textbf{CS} \end{array}$

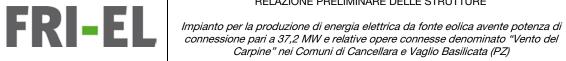
Coefficiente di sicurezza ([NS] = Non Significativo se $CS \ge 100$; [VNR]= Verifica Non Richiesta; Informazioni aggiuntive sulla condizione: [V] = statica; [E] = eccezionale; [S] = sismica; [N] = sismica non lineare).

 N_{Ed} , M_{Ed} Sollecitazioni di progetto (N_{Ed} < 0: compressione).

VERIFICHE A TAGLIO PER PRESSOFLESSIONE RETTA ALLO STATO LIMITE DI DANNO

						Pareti - Verific	che a taglio per	pressoflession	e retta allo SLD
Nodo	$V_{Ed,2}$	CS	V_{Rcd}	$V_{Rsd,s}$	N _{Ed}	$V_{Rsd,p}$	V _{R1}	$V_{Rd,f}$	CtgΘ
	[N]		[N]	[N]	[N]	[N]	[N]	[N]	
Piano Terra		Parete	P1-P2				Parete	P1-P2	
00005	39.815	4,03	160.614	0	15.874	0	0	0	0,00
00006	29.357	5,44	159.757	0	10.161	0	0	0	0,00
00007	11.162	14,18	158.233	0	-23.350	0	0	0	0,00
80000	16.722	9,46	158.233	0	-19.238	0	0	0	0,00
00055	14.762	10,84	160.068	0	12.233	0	0	0	0,00
00056	14.997	10,58	158.635	0	2.680	0	0	0	0,00
00057	1.769	89,45	158.233	0	-49.215	0	0	0	0,00
00058	1.906	83,02	158.233	0	-55.149	0	0	0	0,00
00101	17.917	8,83	158.233	0	-16.079	0	0	0	0,00
00102	20.761	7,62	158.233	0	-4.090	0	0	0	0,00
00103	19.790	8,00	158.233	0	-10.193	0	0	0	0,00
00104	12.807	12,36	158.233	0	-15.186	0	0	0	0,00
00105	10.110	15,65	158.233	0	-8.487	0	0	0	0,00
00106	3.877	40,81	158.233	0	-34.788	0	0	0	0,00
00107	9.451	16,74	158.233	0	-21.815	0	0	0	0,00
Piano Terra		Parete	P3-P4				Parete	P3-P4	
00025	21.354	3,52	75.156	0	6.053	0	0	0	0,00
00026	10.216	7,27	74.248	0	-13.570	0	0	0	0,00
00027	29.331	2,58	75.610	0	9.083	0	0	0	0,00
00028	13.919	5,33	74.248	0	-16.485	0	0	0	0,00
00089	12.246	6,15	75.336	0	7.253	0	0	0	0,00
00090	12.147	6,14	74.643	0	2.630	0	0	0	0,00

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)


							he a taglio per		
Nodo	V _{Ed,2} [N]	cs	V _{Rcd}	V _{Rsd,s} [N]	N _{Ed}	V _{Rsd,p}	V _{R1}	V _{Rd,f}	Ctg⊕
00091	1.063	69,85	[N] 74.248	[N]	[N] -39.202	[N] O	[N] 0	0	0,00
00071	1.033	71,88	74.248	0	-35.422	0	0	0	0,00
00187	13.860	5,36	74.248	0	-14.124	0	0	0	0,00
00188	15.678	4,74	74.248	0	-10.084	0	0	0	0,00
00189	19.675	3,77	74.248	0	-128	0	0	0	0,00
00190	11.543	6,43	74.248	0	-10.618	0	0	0	0,00
00191	10.129	7,33	74.248	0	-6.637	0	0	0	0,00
00192	6.541	11,35	74.248	0	-26.164	0	0	0	0,00
00193	7.099	10,46	74.248	0	-17.495	0	0	0	0,00
Piano Terra			P5-G1-G2-G3-P			-	Parete	P5-G1	
00013	28.268	9,83	278.008	0	22.961	0	0	0	0,00
00016	88.806	3,15	280.119	0	37.031	0	0	0	0,00
00044	20.715	13,25	274.564	0	-20.934	0	0	0	0,00
00045	79.295	3,46	274.564	0	-48.918	0	0	0	0,00
00108	46.422	5,91	274.564	0	-49.499	0	0	0	0,00
00109	100.894	2,73	275.700	0	7.574	0	0	0	0,00
iano Terra		Parete	P5-G1-G2-G3-P	6		<u>'</u>	Parete	G1-G2	
00041	8.917	31,07	277.070	0	16.703	0	0	0	0,00
00042	34.737	8,06	279.982	0	36.117	0	0	0	0,00
00044	34.970	7,90	276.157	0	10.616	0	0	0	0,00
00045	15.543	17,96	279.102	0	30.253	0	0	0	0,00
00051	22.456	12,28	275.759	0	7.965	0	0	0	0,00
00052	17.520	15,84	277.580	0	20.107	0	0	0	0,00
00093	24.075	11,63	280.030	0	36.437	0	0	0	0,00
00094	24.750	11,29	279.353	0	31.925	0	0	0	0,00
00095	22.820	12,17	277.606	0	20.278	0	0	0	0,00
00096	18.271	15,28	279.268	0	31.359	0	0	0	0,00
Piano Terra		Parete	P5-G1-G2-G3-P	6		<u>'</u>	Parete	G2-G3	
00038	34.443	8,06	277.642	0	20.517	0	0	0	0,00
00039	12.514	21,95	274.630	0	437	0	0	0	0,00
00041	11.167	24,87	277.765	0	21.339	0	0	0	0,00
00042	36.345	7,78	282.663	0	53.994	0	0	0	0,00
00053	22.198	12,43	275.969	0	9.363	0	0	0	0,00
00054	17.560	16,19	284.358	0	65.293	0	0	0	0,00
00097	25.576	10,94	279.876	0	35.411	0	0	0	0,00
00098	24.416	11,51	281.086	0	43.480	0	0	0	0,00
00099	22.662	12,27	278.123	0	23.728	0	0	0	0,00
00100	18.646	15,13	282.144	0	50.532	0	0	0	0,00
Piano Terra			P5-G1-G2-G3-P	6			Parete	G3-P6	
00014	23.839	11,66	277.954	0	22.598	0	0	0	0,00
00015	64.574	4,43	285.998	0	76.225	0	0	0	0,00
00038	42.633	6,44	274.564	0	-48.044	0	0	0	0,00
00039	80.999	3,40	275.583	0	6.791	0	0	0	0,00
00145	30.488	9,01	274.733	0	1.125	0	0	0	0,00
00146	74.776	3,77	281.966	0	49.345	0	0	0	0,00
Piano Terra		Parete	P7-P8				Parete	P7-P8	
00021	16.468	4,59	75.579	0	8.872	0	0	0	0,00
00022	16.277	4,64	75.447	0	7.994	0	0	0	0,00
00023	8.622	8,76	75.501	0	8.356	0	0	0	0,00
00024	9.353	8,10	75.760	0	10.083	0	0	0	0,00
00085	11.780	6,41	75.468	0	8.131	0	0	0	0,00
00086	10.885	6,87	74.830	0	3.881	0	0	0	0,00
00087	3.982	18,65	74.248	0	-6.726	0	0	0	0,00
00088	3.543	20,96	74.248	0	-5.936	0	0	0	0,00
00172	10.997	6,84	75.263	0	6.764	0	0	0	0,00
00173	12.695	5,89	74.748	0	3.336	0	0	0	0,00
00174	14.617	5,11	74.680	0	2.883	0	0	0	0,00
00175	9.172	8,25	75.697	0	9.660	0	0	0	0,00
00176	10.058	7,40	74.449	0	1.340	0	0	0	0,00
00177	5.681	13,07	74.248	0	-4.976	0	0	0	0,00
00178	7.830	9,48	74.248	0	-1.354	0	0	0	0,00
iano Terra		Parete	P9-G4-G5-G6-P	10			Parete	P9-G4	
00009	49.502	5,73	283.812	0	61.654	0	0	0	0,00
00012	69.070	4,07	281.062	0	43.316	0	0	0	0,00
00029	41.701	6,58	274.564	0	-126.438	0	0	0	0,00
00030	56.932	4,87	277.464	0	19.334	0	0	0	0,00
Piano Terra		Parete	P9-G4-G5-G6-P	10			Parete	G4-G5	
00029	34.207	8,06	275.845	0	8.538	0	0	0	0,00
00030	13.959	19,98	278.843	0	28.525	0	0	0	0,00
00032	8.940	30,99	277.047	0	16.554	0	0	0	0,00
00033	34.154	8,20	280.119	0	37.031	0	0	0	0,00
00061	21.333	12,93	275.768	0	8.023	0	0	0	0,00
00062	17.078	16,29	278.227	0	24.420	0	0	0	0,00
00116	23.540	11,89	279.927	0	35.753	0	0	0	0,00

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

								pressoflession	
Nodo	V _{Ed,2}	cs	V _{Rcd}	V _{Rsd,s}	N _{Ed}	V _{Rsd,p}	V _{R1}	V _{Rd,f}	Ctg⊛
00117	[N] 24.594	11,35	[N] 279.224	[N] O	[N] 31.063	[N] O	[N] 0	[N]	0,00
00117	21.717	12,78	277.598	0	20.228	0	0	0	0,00
00119	17.875	15,63	279.475	0	32.737	0	0	0	0,00
iano Terra	17.075		P9-G4-G5-G6-P		32.737	U	-	G5-G6	0,00
00032	10.107	27,48	277.744	0	21.198	0	0	0	0,00
00032	36.144	7,82	282.706	0	54.280	0	0	0	0,00
00035	33.177	8,36	277.397	0	18.883	0	0	0	0,00
00035	14.740		274.564	0	-325	0	0	0	
		18,63		0			0	0	0,00
00059	22.165	12,45	275.984		9.465	0		-	0,00
00060	17.892	15,89	284.388	0	65.490	0	0	0	0,00
00112	24.271	11,54	280.088	0	36.828	0	0	0	0,00
00113	23.780	11,82	281.187	0	44.151	0	0	0	0,00
00114	22.614	12,30	278.120	0	23.704	0	0	0	0,00
00115	18.859	14,97	282.276	0	51.413	0	0	0	0,00
ano Terra			P9-G4-G5-G6-P					G6-P10	
00010	26.902	10,35	278.428	0	25.758	0	0	0	0,00
00011	87.233	3,27	285.241	0	71.180	0	0	0	0,00
00035	18.719	14,67	274.564	0	-13.395	0	0	0	0,00
00036	77.173	3,56	274.564	0	-5.525	0	0	0	0,00
00124	44.578	6,16	274.564	0	-20.415	0	0	0	0,00
00125	99.000	2,89	285.683	0	74.128	0	0	0	0,00
ano Terra		Parete	P11-P12				Parete	P11-P12	
00017	23.682	3,18	75.372	0	7.494	0	0	0	0,00
00018	11.865	6,26	74.248	0	-10.967	0	0	0	0,00
00019	29.223	2,59	75.614	0	9.107	0	0	0	0,00
00020	13.818	5,37	74.248	0	-16.377	0	0	0	0,00
00077	12.657	5,94	75.246	0	6.650	0	0	0	0,00
00078	12.078	6,18	74.634	0	2.571	0	0	0	0,00
00079	1.009	73,59	74.248	0	-39.007	0	0	0	0,00
08000	1.314	56,51	74.248	0	-35.049	0	0	0	0,00
00138	13.790	5,38	74.248	0	-14.066	0	0	0	0,00
00139	15.599	4,76	74.248	0	-10.014	0	0	0	0,00
								0	
00140	16.245	4,57	74.248	0	-6.941	0	0	0	0,00
00141	10.146	7,32	74.248		-7.558	0	-	-	0,00
00142	10.835	6,85	74.248	0	-7.218	0	0	0	0,00
00143	6.094	12,18	74.248	0	-28.046	0	0	0	0,00
00144	7.086	10,48	74.248	0	-17.392	0	0	0	0,00
iano Terra	00.554		P13-P14		45.044			P13-P14	
00001	39.554	4,06	160.604	0	15.811	0	0	0	0,00
00002	32.713	4,89	160.063	0	12.203	0	0	0	0,00
00003	12.921	12,25	158.233	0	-18.536	0	0	0	0,00
00004	16.572	9,55	158.233	0	-19.152	0	0	0	0,00
00081	14.657	10,92	160.058	0	12.169	0	0	0	0,00
00082	15.102	10,50	158.646	0	2.755	0	0	0	0,00
00083	1.793	88,25	158.233	0	-49.221	0	0	0	0,00
00084	1.968	80,40	158.233	0	-55.063	0	0	0	0,00
00147	14.670	10,79	158.233	0	-18.487	0	0	0	0,00
00148	16.462	9,61	158.233	0	-10.504	0	0	0	0,00
00149	19.648	8,05	158.233	0	-10.134	0	0	0	0,00
00150	12.699	12,46	158.233	0	-15.120	0	0	0	0,00
00151	10.073	15,71	158.233	0	-8.428	0	0	0	0,00
00152	3.879	40,79	158.233	0	-34.620	0	0	0	0,00
00153	9.585	16,51	158.233	0	-21.738	0	0	0	0,00
ano Terra	7.505		P1-P3-P5	<u> </u>	21.750		Parete		0,00
00005	31.733	3,44	109.224	0	1.756	0	0	0	0,00
00003	15.382	7,22	111.007	0	13.639	0	0	0	0,00
00008	38.798	2,81	109.088	0	850	0	0	0	0,00
00025	23.171			0	36.627	0	0	0	0,00
00026		4,94 3,89	114.455 111.285	0		0	0	0	· · · · · · · · · · · · · · · · · · ·
	28.572				15.492		-	0	0,00
00165	29.363	3,80	111.652	0	17.940	0	0	-	0,00
00166	32.604	3,37	109.836	0	5.833	0	0	0	0,00
00167	20.124	5,58	112.236	0	21.835	0	0	0	0,00
ano Terra	44.40:		P1-P3-P5		64.6:=		Parete		
00013	44.186	2,54	112.241	0	21.865	0	0	0	0,00
00016	29.763	4,22	125.517	0	110.375	0	0	0	0,00
00025	76.819	1,42	109.011	0	335	0	0	0	2,50
00026	64.654	1,95	125.840	0	112.529	0	0	0	0,00
00130	56.163	2,10	117.764	0	58.686	0	0	0	0,00
00131	49.157	2,39	117.697	0	58.242	0	0	0	0,00
00132	59.729	1,89	113.014	0	27.021	0	0	0	0,00
00132	50.186	2,46	123.516	0	97.035	0	0	0	0,00
iano Terra	55.156		P2-P4-P6		77.000	, <u> </u>	Parete		5,00
00006	27.787	3,93	109.271	0	2.065	0	0	0	0,00
				•					0,00

						Pareti - Verifi	che a taglio per	pressoflession	e retta allo SLD
Nodo	V _{Ed.2}	cs	V _{Rcd}	$V_{Rsd,s}$	N _{Ed}	V _{Rsd.p}	V _{R1}	V _{Rd.f}	CtgΘ
	[N]		[N]	[N]	[N]	[N]	[N]	[N]	9*
00027	35.889	3,04	108.961	0	-402	0	0	0	0,00
00028	21.735	5,25	114.006	0	33.636	0	0	0	0,00
00183	25.873	4,29	111.061	0	13.998	0	0	0	0,00
00184	26.818	4,15	111.384	0	16.156	0	0	0	0,00
00185	29.255	3,75	109.716	0	5.036	0	0	0	0,00
00186	18.020	6,21	111.867	0	19.377	0	0	0	0,00
Piano Terra		Parete	e P2-P4-P6				Parete	P4-P6	
00014	44.465	2,52	112.144	0	21.219	0	0	0	0,00
00015	31.192	4,00	124.671	0	104.734	0	0	0	0,00
00154	56.036	2,09	117.358	0	55.980	0	0	0	0,00
00155	49.323	2,38	117.278	0	55.451	0	0	0	0,00
00156	59.306	1,90	112.843	0	25.879	0	0	0	0,00
00157	50.651	2,43	122.836	0	92.503	0	0	0	0,00
00206	75.455	1,44	109.017	0	372	0	0	0	2,50
00207	64.397	1.94	125.083	0	107.484	0	0	0	0,00
Piano Terra	01.077		e P5-P7-P9		1071101		-	P5-P7	0,00
00021	11.398	14,05	160.163	0	12.872	0	0	0	0,00
00024	26.913	6,95	187.003	0	191.800	0	0	0	0,00
00170	8.131	20,71	168.368	0	67.571	0	0	0	0,00
00170	20.669	9,05	187.021	0	191.921	0	0	0	0,00
00171	10.161		163.154	0	32.813	0	0	0	0,00
		16,06						-	· ·
00203	9.186	19,87	182.540	0	162.047	0	0 Donate	0	0,00
Piano Terra	0.455		P5-P7-P9	0	0.4/4			P7-P9	0.00
00021	9.655	16,54	159.652	0	9.464	0	0	0	0,00
00024	26.763	6,90	184.629	0	175.979	0	0	0	0,00
00162	6.657	25,05	166.775	0	56.951	0	0	0	0,00
00163	20.991	8,77	184.108	0	172.501	0	0	0	0,00
00194	12.718	12,91	164.221	0	39.924	0	0	0	0,00
00198	8.186	21,97	179.847	0	144.094	0	0	0	0,00
Piano Terra		Parete	e P6-P8-P10				Parete	P6-P8	
00022	10.990	14,57	160.146	0	13.111	0	0	0	0,00
00023	27.613	6,75	186.257	0	187.189	0	0	0	0,00
00110	8.477	19,83	168.140	0	66.405	0	0	0	0,00
00111	21.894	8,50	186.050	0	185.806	0	0	0	0,00
00201	12.247	13,31	163.058	0	32.530	0	0	0	0,00
00202	10.550	17,21	181.597	0	156.117	0	0	0	0,00
Piano Terra		Parete	e P6-P8-P10				Parete	P8-P10	
00022	12.972	12,59	163.343	0	34.069	0	0	0	0,00
00023	29.768	6,31	187.715	0	196.547	0	0	0	0,00
00168	9.090	17,98	163.413	0	34.534	0	0	0	0,00
00169	17.591	10,14	178.418	0	134.572	0	0	0	0,00
00196	10.984	14,94	164.067	0	38.898	0	0	0	0,00
00197	8.502	21,09	179.328	0	140.639	0	0	0	0,00
Piano Terra	0.302		P9-P11-P13	0	140.037	0		P9-P11	0,00
	75.010		109.046	0	E71	0	0	0	2.50
00017	75.818	1,44			571	0			2,50
00018	64.711	1,99	129.085	0	134.160	0	0	0	0,00
00179	49.231	2,44	120.081	0	74.134	0	0	0	0,00
00180	55.962	2,12	118.656	0	64.637	0	0	0	0,00
00181	58.990	1,91	112.764	0	25.354	0	0	0	0,00
00182	50.002	2,53	126.605	0	117.628	0	0	0	0,00
00195	43.126	2,61	112.674	0	24.755	0	0	0	0,00
00199	31.002	4,16	128.840	0	132.529	0	0	0	0,00
Piano Terra			P9-P11-P13				1	P11-P13	
00001	31.381	3,48	109.282	0	2.206	0	0	0	0,00
00004	15.501	7,20	111.551	0	17.335	0	0	0	0,00
00017	38.464	2,84	109.118	0	1.115	0	0	0	0,00
00018	23.240	4,97	115.552	0	44.003	0	0	0	0,00
00126	29.234	3,83	112.089	0	20.917	0	0	0	0,00
00127	28.439	3,93	111.633	0	17.877	0	0	0	0,00
00128	32.334	3,40	109.942	0	6.603	0	0	0	0,00
00129	20.159	5,60	112.936	0	26.566	0	0	0	0,00
Piano Terra	20.107		e P10-P12-P14		23.000			P10-P12	5,00
00010	44.465	2,34	104.065	0	24.739	0	0	0	0,00
00011	31.399	3,80	119.407	0	127.024	0	0	0	0,00
00019	75.759	1,32	100.354	0	-26	0	0	0	2,50
00019	63.517	1,88	119.670	0	128.776	0	0	0	0,00
00020	49.562	2,24	111.068	0	71.430	0	0	0	0,00
							-		
00135	55.906	1,96	109.630	0	61.841	0	0	0	0,00
00136	59.810	1,74	103.921	0	23.779	0	0	0	0,00
	49.487	2,37	117.329	0	113.170	0	0	0	0,00
00137									
Piano Terra	07.101		P10-P12-P14	•	0.510			P12-P14	0.00
Piano Terra 00002	27.431	3,67	100.738	0	2.562	0	0	0	0,00
Piano Terra	27.431 12.983 26.750			0 0 0	2.562 14.690 19.294	0 0 0		1	0,00 0,00 0,00

FRI-EL

RELAZIONE PRELIMINARE DELLE STRUTTURE

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301_D_R_0120 Rev. 02

						Pareti - Verific	he a taglio per	pressoflessione	retta allo SLD
Nodo	$V_{Ed,2}$	CS	V _{Rcd}	$V_{Rsd,s}$	N _{Ed}	$V_{Rsd,p}$	V_{R1}	$V_{Rd,f}$	Ctg⊛
	[N]		[N]	[N]	[N]	[N]	[N]	[N]	
00159	25.768	3,99	102.839	0	16.568	0	0	0	0,00
00160	29.040	3,49	101.242	0	5.923	0	0	0	0,00
00161	18.111	5,74	103.959	0	24.037	0	0	0	0,00
00204	35.697	2,81	100.359	0	33	0	0	0	0,00
00205	21.930	4,86	106.483	0	40.863	0	0	0	0,00

LEGENDA:

V_{Ed,2} Taglio di progetto in direzione 2. CS Coefficiente di sicurezza ([NS] =

Coefficiente di sicurezza ([NS] = Non Significativo se CS ≥ 100; [VNR]= Verifica Non Richiesta; Informazioni aggiuntive sulla condizione: [V] = statica; [E] =

eccezionale; [S] = sismica; [N] = sismica non lineare).

 $\begin{array}{lll} \textbf{V}_{Rcd} & \text{Resistenza a taglio compressione del calcestruzzo.} \\ \textbf{V}_{Rsd,s} & \text{Resistenza a taglio trazione delle staffe.} \\ \textbf{N}_{Ed} & \text{Sforzo Normale utilizzato per il calcolo di α_{C}}. \\ \textbf{V}_{Rsd,p} & \text{Resistenza a taglio trazione dei ferri piegati.} \\ \textbf{V}_{R1} & \text{Resistenza a taglio in assenza di armatura incrociata.} \\ \textbf{V}_{Rd,f} & \text{Resistenza a taglio dovuta al rinforzo FRP.} \\ \textbf{Ctg} & \text{Cotangente dell'angolo} \odot \text{ utilizzata nella verifica.} \\ \end{array}$

VERIFICHE DELLE TENSIONI D'ESERCIZIO (Elevazione)

				Compress	ione calce	struzzo					Tra	zione acciai	0		
Nodo/	Di-		Co	mpressione			0					cciaio/FRP			
Tp _{rnf}	Dir	Id _{Cmb}	σ _{cc}	σ _{cd,amm}	N_{Ed}	M _{Ed}	cs	Verific ato	Id _{Cmb}	σ_{at}	$\sigma_{td,amm}$	N _{Ed}	M_{Ed}	cs	Verific ato
			[N/mm ²]	[N/mm ²]	[N]	[N·m]				[N/mm ²]	[N/mm ²]	[N]	[N·m]		
Piano Teri	ra		1	Parete P								Parete P1-			
	Р	RAR	0,211	18,43	54.948	1.566	87,32	SI	RAR	0,000	360,00	54.948	1.566	-	SI
00055		QPR	0,211	13,82	54.948	1.566	65,49	SI	-	-	-	-	- (00	-	-
	S	RAR QPR	0,062	18,43	11.301	689	NS	SI	RAR	0,000	360,00	11.301	689	-	SI
Piano Teri		QPR	0,062	13,82 Parete P3	11.301	689	NS	SI	-	-	-	Parete P3-	- D4	-	-
Piano ren		RAR	0,299	18,43	29.926	-483	61,59	SI	RAR	0,000	360,00	29.926	-483	_	SI
	Р	QPR	0,299	13,82	29.926	-483	46,19	SI	-	-	300,00	27.720	-403	_	- 31
00089		RAR	0.076	18.43	6.706	-144	NS	SI	RAR	0.000	360.00	6.706	-144	_	SI
	S	QPR	0,076	13,82	6.706	-144	NS	SI	-	-	-	- 0.700	- 177	_	-
Piano Teri	ra		-,		-G1-G2-G							Parete P5-	G1		
	_	RAR	0,193	18,43	40.939	16.689	95,65	SI	RAR	1,195	360,00	40.939	16.689	NS	SI
00017	P	QPR	0,193	13,82	40.939	16.689	71,74	SI	-	-	-	-	-	-	-
00016	S	RAR	0,160	18,43	53.627	11.156	NS	SI	RAR	0,324	360,00	53.627	11.156	NS	SI
	3	QPR	0,160	13,82	53.627	11.156	86,15	SI	-	-	-	-	-	-	-
Piano Teri	ra			Parete P	-G1-G2-G	3-P6						Parete G1-	G2		
	P	RAR	0,000	18,43	-65.756	-500	-	SI	RAR	1,246	360,00	-65.756	-500	NS	SI
00052	<u> </u>	QPR	0,000	13,82	-65.756	-500	-	SI	-	-	-	-	-	-	-
00002	S	RAR	0,057	18,43	43.429	-502	NS	SI	RAR	0,000	360,00	43.429	-502	-	SI
		QPR	0,057	13,82	43.429	-502	NS	SI	-	-	-	-	-	-	-
Piano Teri	ra	DAD	0.000		-G1-G2-G			61	DAD	4.057	2/0.00	Parete G2-		NIC	01
	Р	RAR QPR	0,000	18,43	-66.581	-453	-	SI	RAR	1,256	360,00	-66.581	-453	NS -	SI
00054		RAR	0,000	13,82	-66.581	-453		SI SI	- DAD	- 0.000	2/0.00	42.400	-850		SI
	S	QPR	0,060 0,060	18,43 13,82	43.488 43.488	-850 -850	NS NS	SI	RAR	0,000	360,00	43.488	-850	-	31
Piano Teri	ra	QFK	0,000		5-G1-G2-G		IVS	31	-	-	-	Parete G3-	- D6	-	
rialio leli		RAR	0.198	18,43	46.214	16.608	92.92	SI	RAR	1,091	360.00	46.214	16.608	NS	SI
	P	QPR	0,198	13,82	46.214	16.608	69,69	SI	-	-	-	-	-	-	
00015		RAR	0,169	18,43	62.505	10.867	NS	SI	RAR	0,131	360,00	62.505	10.867	NS	SI
	S	QPR	0,169	13,82	62.505	10.867	81,96	SI	-	-	-	-	-	-	-
Piano Teri	ra			Parete P								Parete P7-	P8		
	Р	RAR	0,170	18,43	28.328	-3	NS	SI	RAR	0,000	360,00	28.328	-3	-	SI
00085	Р	QPR	0,170	13,82	28.328	-3	81,10	SI	-	-	-	-	-	-	-
00085	S	RAR	0,046	18,43	7.621	-1	NS	SI	RAR	0,000	360,00	7.621	-1	-	SI
	3	QPR	0,046	13,82	7.621	-1	NS	SI	-	-	-	-	-	-	-
Piano Teri	ra				9-G4-G5-G							Parete P9-			
	P	RAR	0,206	18,43	59.054	-15.659	89,61	SI	RAR	0,748	360,00	59.054	-15.659	NS	SI
00012	<u> </u>	QPR	0,206	13,82	59.054	-15.659	67,21	SI	-	-	-	-	-	-	-
000.2	S	RAR	0,175	18,43	62.188	-11.665	NS	SI	RAR	0,229	360,00	62.188	-11.665	NS	SI
		QPR	0,175	13,82	62.188	-11.665	78,93	SI	-	-	-	-	-	-	-
Piano Teri	ra	DAD	0.000		9-G4-G5-G			CI	DAD	1 200	2/0.00	Parete G4-		NIC	CI
	Р	RAR QPR	0,000	18,43 13,82	-65.061 -65.061	288 288	-	SI SI	RAR	1,209	360,00	-65.061	288	NS -	SI
00062									DAD.	- 0.000	240.00	44 402	- 442		- CI
	S	RAR QPR	0,062 0,062	18,43 13,82	46.682 46.682	662 662	NS NS	SI SI	RAR	0,000	360,00	46.682	662	-	SI
Piano Teri	ra	QPR	0,002		40.082 9-G4-G5-G		INO	31	-	-	-	Parete G5-			
riano ren		RAR	0.074	18.43	60.800	89	NS	SI	RAR	0.000	360.00	60.800	89	_	SI
	P	QPR	0,074	13,82	60.800	89	NS	SI	-	-	-	- 55.550	_	_	
00115		RAR	0,058	18,43	41.139	990	NS	SI	RAR	0,000	360,00	41.139	990	_	SI
	S	QPR	0,058	13,82	41.139	990	NS	SI		-	-		- ,,3	_	-
Piano Teri			-,		-G4-G5-G							Parete G6-	D4.0		

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

				Compress	sione calces	truzzo						i - verifiche zione acciai		ioni ai	esercizio
Nodo/	Dir		Coi		e calcestruz)					cciaio/FRP			
Tp _{rnf}	DIF	Id _{Cmb}	σ_{cc}	σ _{cd,amm}	N _{Ed}	M_{Ed}	cs	Verific ato	Id _{Cmb}	σ_{at}	σ _{td,amm}	N _{Ed}	M_{Ed}	cs	Verific ato
		DAD	[N/mm²]	[N/mm²]	[N]	[N·m]	02.07	CI	DAD	[N/mm²]	[N/mm²]	[N]	[N·m]	NC	CI
	P	RAR QPR	0,198 0,198	18,43 13,82	42.700 42.700	-17.089 -17.089	92,97 69,72	SI SI	RAR -	1,210	360,00	42.700	-17.089 -	NS -	SI -
00011	S	RAR	0,163	18,43	54.118	-11.378	NS	SI	RAR	0,341	360,00	54.118	-11.378	NS	SI
		QPR	0,163	13,82	54.118	-11.378	84,83	SI	-	-	-		-	-	-
Piano Ter		RAR	0,295	Parete P 18,43	11-P12 29.236	484	62,40	SI	RAR	0,000	360,00	Parete P11 29.236	-P12 484	_	SI
00077	Р	QPR	0,295	13,82	29.236	484	46,80	SI	-	-	-	-	-	-	-
00077	S	RAR	0,075	18,43	6.190	154	NS	SI	RAR	0,000	360,00	6.190	154	-	SI
D: T		QPR	0,075	13,82	6.190	154	NS	SI	-	-	-	- Dt- D42	- D4.4	-	-
Piano Ter		RAR	0,211	Parete P	54.881	-1.574	87,25	SI	RAR	0,000	360,00	Parete P13 54.881	-1.574	_	SI
00081	Р	QPR	0,211	13,82	54.881	-1.574	65,44	SI	-	-	-	-	-	-	-
00061	S	RAR	0,062	18,43	11.303	-691	NS	SI	RAR	0,000	360,00	11.303	-691	-	SI
Piano Ter		QPR	0,062	13,82 Parete P	11.303	-691	NS	SI	-	-	-	Parete P1-	- D2	-	-
rialio lei		RAR	0,020	18,43	3.440	-38	NS	SI	RAR	0,000	360,00	3.440	-38	-	SI
00026	Р	QPR	0,020	13,82	3.440	-38	NS	SI	-	-	-	-	-	-	-
00020	S	RAR	0,252	18,43	40.541	-471	73,24	SI	RAR	0,000	360,00	40.541	-471	-	SI
Piano Ter	ra	QPR	0,252	13,82 Parete P	40.541	-471	54,93	SI	-	-	-	Parete P3-	- DE	-	-
rialio i eli		RAR	0,266	18,43	51.775	-315	69,38	SI	RAR	0,000	360,00	51.775	-315	-	SI
00026	Р	QPR	0,266	13,82	51.775	-315	52,03	SI	-	-	- '	-	-	-	-
00020	S	RAR	0,711	18,43	125.944	-947	25,93	SI	RAR	0,000	360,00	125.944	-947	-	SI
Piano Ter	ra	QPR	0,711	13,82 Parete P	125.944 2-P4-P6	-947	19,45	SI	-	-	-	Parete P2-	- D4	-	-
riano ren	P	RAR	0,016	18,43	3.191	-13	NS	SI	RAR	0,000	360,00	3.191	-13	-	SI
00028	Р	QPR	0,016	13,82	3.191	-13	NS	SI	-	-	-	-	-	-	-
00020	S	RAR QPR	0,234 0,234	18,43 13,82	36.780 36.780	467 467	78,85 59,14	SI SI	RAR -	0,000	360,00	36.780	467	-	SI
Piano Ter	ra	QPR	0,234	Parete P		407	59,14	31	-	-	-	Parete P4-	- P6	-	-
	Р	RAR	0,249	18,43	49.859	253	73,92	SI	RAR	0,000	360,00	49.859	253	-	SI
00207	P	QPR	0,249	13,82	49.859	253	55,44	SI	-	-	-	-	-	-	-
	S	RAR QPR	0,678 0,678	18,43 13,82	119.162 119.162	934 934	27,19 20,40	SI SI	RAR	0,000	360,00	119.162	934	-	SI -
Piano Ter	ra	QPR	0,076	Parete P		934	20,40	31	-	-	-	Parete P5-	- P7	-	-
	P	RAR	0,201	18,43	62.012	-881	91,89	SI	RAR	0,000	360,00	62.012	-881	-	SI
00024		QPR	0,201	13,82	62.012	-881	68,92	SI	-	-	-	-		-	-
	S	RAR QPR	0,675 0,675	18,43 13,82	183.541 183.541	-3.871 -3.871	27,31 20,48	SI SI	RAR	0,000	360,00	183.541	-3.871	-	SI
Piano Ter	ra	QIII	0,073	Parete P		3.071	20,40	31				Parete P7-			
	Р	RAR	0,205	18,43	63.701	-879	89,94	SI	RAR	0,000	360,00	63.701	-879	-	SI
00024		QPR	0,205	13,82	63.701	-879	67,45	SI	-	-	-	-	- 0.000	-	-
	S	RAR QPR	0,679 0,679	18,43 13,82	184.439 184.439	-3.920 -3.920	27,12 20,34	SI SI	RAR -	0,000	360,00	184.439	-3.920	-	SI
Piano Ter	ra	QIII	0,017		6-P8-P10	0.720	20,01	- 31				Parete P6-	P8		
	P	RAR	0,194	18,43	61.084	782	94,99	SI	RAR	0,000	360,00	61.084	782	-	SI
00023		QPR	0,194	13,82	61.084	782	71,24	SI	- DAD	- 0.000	- 240.00	170 220	2 727	-	- 01
	S	RAR QPR	0,655 0,655	18,43 13,82	178.230 178.230	3.737 3.737	28,15 21,11	SI SI	RAR -	0,000	360,00	178.230	3.737	-	SI -
Piano Ter	ra		5,000		6-P8-P10							Parete P8-	P10		
	Р	RAR	0,256	18,43	71.967	1.568	72,01	SI	RAR	0,000	360,00	71.967	1.568	-	SI
00023		QPR RAR	0,256 0,781	13,82 18,43	71.967 206.110	1.568 4.870	54,01 23,59	SI SI	- RAR	0,000	360,00	206.110	4.870	-	- SI
	S	QPR	0,781	13,82	206.110	4.870	17,69	SI	-	-	-	-	-	-	-
Piano Ter	ra				9-P11-P13							Parete P9-	P11		
	Р	RAR	0,255	18,43	49.666	-305	72,22	SI	RAR	0,000	360,00	49.666	-305	-	SI
00018		QPR RAR	0,255 0,690	13,82 18,43	49.666 122.017	-305 -930	54,17 26,70	SI SI	- RAR	0,000	360,00	- 122.017	-930	-	SI
	S	QPR	0,690	13,82	122.017	-930	20,02	SI	-	-	-	-	-	-	-
Piano Ter	ra				9-P11-P13							Parete P11			
	Р	RAR	0,021	18,43	3.467	-44	NS NS	SI	RAR	0,000	360,00	3.467	-44	-	SI
00018		QPR RAR	0,021 0,252	13,82 18,43	3.467 40.289	-44 -485	NS 73,01	SI SI	- RAR	0,000	360,00	40.289	-485	-	- SI
	S	QPR	0,252	13,82	40.289	-485	54,76	SI	-	-	-			-	-
Piano Ter	ra				10-P12-P14			6:	5.5		0.4	Parete P10			
	Р	RAR QPR	0,259	18,43	48.237	243	71,22 53 //1	SI	RAR	0,000	360,00	48.237	243	-	SI
00020		RAR	0,259 0,662	13,82 18,43	48.237 115.506	243 904	53,41 27,85	SI SI	- RAR	0,000	360,00	115.506	904	-	- SI
	S	QPR	0,662	13,82	115.506	904	20,89	SI	-	-	-	-	-	-	-
Piano Ter	ra				10-P12-P14			0.	D.5	0.5	0.00	Parete P12			0:
00205	P	RAR QPR	0,016 0,016	18,43 13,82	3.352 3.352	-14 -14	NS NS	SI SI	RAR -	0,000	360,00	3.352	-14	-	SI
		(0,010	10,02	0.002	-14	1113	JI	-	-	-	- 1	-	-	

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301_D_R_0120 Rev. 02

											Paret	i - verifich	e delle tens	sioni di	esercizio
Nodo/	D:-		Co	Compress mpressione	sione calces e calcestruz		0				Tra Trazione a	zione accia cciaio/FRF			
Tp _{rnf}	Dir	Id _{Cmb}	σ_{cc}	σ _{cd,amm}	N_{Ed}	M_{Ed}	cs	Verific ato	Id _{Cmb}	σ_{at}	$\sigma_{td,amm}$	N _{Ed}	M_{Ed}	cs	Verific ato
			[N/mm ²]	[N/mm ²]	[N]	[N·m]				[N/mm ²]	[N/mm ²]	[N]	[N·m]		
		QPR	0,234	13,82	36.647	467	59,18	SI	-	-	-	-	-	-	-

LEGENDA:

Rinf. Indica la presenza del rinforzo sulla sezione di verifica.

Dir

Direzione [P] = principale (asse locale 1) - [S] = secondaria (asse locale 2). Identificativo della Combinazione di Azione: [QPR] = Quasi Permanente - [FRQ] = Frequente - [RAR] = Rara. Id_{Cmb}

 σ_{cc} Tensione massima di compressione nel calcestruzzo della Trave/Rinforzo. Tensione ammissibile per la verifica a compressione del calcestruzzo. $\sigma_{\text{cd,amm}}$ Tensione massima di trazione nell'acciaio della Trave/Rinforzo o nel FRP. σ_{at} Tensione ammissibile per la verifica a trazione dell'acciaio/rinforzo. $\sigma_{td,amm}$

 N_{Ed} Sollecitazioni di progetto.

 M_{Ed} CS

Coefficiente di Sicurezza (= $\sigma_{cd, amm}/\sigma_{cc}$; $\sigma_{td, amm}/\sigma_{at}$). [NS] = Non Significativo (CS \geq 100).

Verific $[SI] = La \ verifica \ \grave{e} \ soddisfatta \ (\sigma_{cc} \leq \sigma_{cd,amm}, \ \sigma_{at} \leq \sigma_{td,amm}). \ [NO] = La \ verifica \ NON \ \grave{e} \ soddisfatta \ (\sigma_{cc} > \sigma_{cd,amm}, \ \sigma_{at} > \sigma_{td,amm}).$

ato

Nota Nella tabella, per ogni elemento, viene riportato il nodo della shell che ha il coefficiente di sicurezza (CS) più piccolo.

VERIFICA ALLO STATO LIMITE DI FESSURAZIONE (Flevazione)

Nodo	Dir	1.4	NI NI	N.4	_	_	_	^		10/	10/	cs	Verifica
NOGO	DII	I d _{Cmb}	N _{Ed}	M _{Ed}	σ _{ct,f}	σt	€ sm	A _e	Δ_{sm}	W _d	W _{amm}	CS	О
			[N]	[re m]	[N/mm ²]	[N/mm²]	D01	[cm ²]	[mm]	[mm]	[mm]		
Piano Terra	manta NON	à faccumete	Parete P1				N= PCA		i - -	Parete P		- · ·	
	nento NON	è fessurato.	-2.276	-139	0,01	2,45	0 E+00	0	massima te		0,400	ax oct,f)	SI
00058	Р	FRQ OPR	-2.276	-139	0,01	2,45	0 E+00	0	0	0,000	0,400	-	SI
-						,	0 E+00	0	0		- 7	-	
	S	FRQ QPR	-53.193	-383	0,16	2,45		0	0	0,000	0,400	-	SI SI
D: T		UPR	-53.193	-383	0,16	2,45	0 E+00	U	U	0,000	0,300	-	31
Piano Terra	NION	> 6	Parete P3				N= PCA			Parete P			
	nento NON	è fessurato.										ax σ _{ct,f})	
00092	Р	FRQ QPR	-1.551	-47 -47	0,02	2,45	0 E+00	0	0	0,000	0,400	-	SI SI
-			-1.551		0,02	2,45	0 E+00			0,000	0,300	-	
	S	FRQ	-36.715	-172	0,26	2,45	0 E+00	0	0	0,000	0,400	-	SI
		QPR	-36.715	-172	0,26	2,45	0 E+00	0	0	0,000	0,300	-	SI
Piano Terra				-G1-G2-G			N= PCA			Parete P			
	nento NON	è fessurato.										ax σ _{ct,f})	
00016	Р	FRQ	40.939	16.689	0,09	2,45	0 E+00	0	0	0,000	0,400	-	SI
		QPR	40.939	16.689	0,09	2,45	0 E+00	0	0	0,000	0,300	-	SI
	S	FRQ	53.627	11.156	0,03	2,45	0 E+00	0	0	0,000	0,400	-	SI
		QPR	53.627	11.156	0,03	2,45	0 E+00	0	0	0,000	0,300	-	SI
Piano Terra				-G1-G2-G			N= PCA			Parete G			
	mento NON	è fessurato.										ax σ _{ct,f})	
00052	Р	FRQ	-65.756	-500	0,08	2,45	0 E+00	0	0	0,000	0,400	-	SI
	<u> </u>	QPR	-65.756	-500	0,08	2,45	0 E+00	0	0	0,000	0,300	-	SI
	S	FRQ	43.429	-502	-0,05	2,45	0 E+00	0	0	0,000	0,400	-	SI
		QPR	43.429	-502	-0,05	2,45	0 E+00	0	0	0,000	0,300	-	SI
Piano Terra				-G1-G2-G			A= PCA			Parete G			
NOTA: L'elei	nento NON	è fessurato.	Di seguito s	i riporta il	nodo strut	turale per	la quale si	riscontra la	massima te	nsione di ț	razione(m	ax σ _{ct,f})	
00054	Р	FRQ	-66.581	-453	0,08	2,45	0 E+00	0	0	0,000	0,400	-	SI
	Г	QPR	-66.581	-453	0,08	2,45	0 E+00	0	0	0,000	0,300	-	SI
	S	FRQ	43.488	-850	-0,05	2,45	0 E+00	0	0	0,000	0,400	-	SI
	3	QPR	43.488	-850	-0,05	2,45	0 E+00	0	0	0,000	0,300	-	SI
Piano Terra			Parete P5	-G1-G2-G	3-P6	AA	N= PCA			Parete G	3-P6		
NOTA: L'elei	mento NON	è fessurato.	Di seguito s	i riporta il	nodo strut	turale per	la quale si	riscontra la	massima te	nsione di t	razione(ma	ax σ _{ct.f})	
00038	Р	FRQ	42.609	-6.467	0,00	2,45	0 E+00	0	0	0,000	0,400	-	SI
	Р	QPR	42.609	-6.467	0,00	2,45	0 E+00	0	0	0,000	0,300	-	SI
	S	FRQ	-67.009	-2.151	0,10	2,45	0 E+00	0	0	0,000	0,400	-	SI
	3	QPR	-67.009	-2.151	0,10	2,45	0 E+00	0	0	0,000	0,300	-	SI
Piano Terra			Parete P7	'-P8		AA	= PCA			Parete P	7-P8		
NOTA: L'elei	mento NON	è fessurato.	Di seguito s	i riporta il	nodo strut	turale per	la quale si	riscontra la	massima te	nsione di t	razione(ma	ax σ _{ct.f})	
00088		FRQ	-3.173	-1	0,02	2,45	0 E+00	0	0	0,000	0,400	-	SI
	Р	QPR	-3.173	-1	0,02	2,45	0 E+00	0	0	0,000	0,300	-	SI
		FRQ	-6.912	-	0,04	2,45	0 E+00	0	0	0,000	0,400	-	SI
	S	QPR	-6.912	_	0,04	2,45	0 E+00	0	0	0,000	0,300	_	SI
Piano Terra				-G4-G5-G			N= PCA	-	_	Parete P			
	nento NON	è fessurato.						riscontra la	massima te			ax σ()	
00029		FRQ	28.403	7.692	0,03	2,45	0 E+00	0	0	0.000	0.400	-	SI
	Р	QPR	28.403	7.692	0,03	2,45	0 E+00	ő	ő	0,000	0,300	_	SI
-		FRQ	-104.358	5.289	0,17	2,45	0 E+00	0	0	0.000	0,400		SI
	S	QPR	-104.358	5.289	0,17	2,45	0 E+00	0	0	0,000	0,300	_	SI
Piano Terra		QIII		9.209 9-G4-G5-G			N= PCA	0	0	Parete G		-	- 31
			Parete P	-64-65-6	0-P IU	AA	I-PUA			Parete G	4-00		

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Nodo									Pareti - v	erifica allo	stato limit	e di fes	
	Dir	Id _{Cmb}	N _{Ed}	M_{Ed}	$\sigma_{\text{ct,f}}$	σ_{t}	€ sm	\mathbf{A}_{e}	Δ_{sm}	W_d	W_{amm}	cs	Verifica o
		ODD	[N]	[N·m]	[N/mm²]	[N/mm²]	0.5.00	[cm ²]	[mm]	[mm]	[mm]		
-		QPR FRQ	-65.061 46.682	288 662	-0,05	2,45 2,45	0 E+00 0 E+00	0	0	0,000	0,300	-	SI SI
	S	QPR	46.682	662	-0,05	2,45	0 E+00	0	0	0,000	0,300	-	SI
iano Terra		<u> </u>		9-G4-G5-G			= PCA		, ,	Parete G			<u> </u>
IOTA: L'eler	mento NON	è fessurato.	Di seguito	si riporta il	nodo strutt	turale per	la quale si	riscontra la i	massima te	nsione di t	razione(ma	ax σ _{ct,f})	
00060	Р	FRQ	-66.252	495	0,08	2,45	0 E+00	0	0	0,000	0,400	-	SI
-		QPR	-66.252	495	0,08	2,45	0 E+00	0	0	0,000	0,300	-	SI
	S	FRQ QPR	41.704 41.704	802 802	-0,04 -0,04	2,45 2,45	0 E+00 0 E+00	0	0	0,000	0,400 0,300	-	SI SI
Piano Terra		QPR		9-G4-G5-G			= PCA	U	0	Parete G		-	31
	mento NON	è fessurato.						riscontra la i	massima te			ax σα ε)	
00011		FRQ	42.700	-17.089	0,10	2,45	0 E+00	0	0	0,000	0,400	-	SI
	Р	QPR	42.700	-17.089	0,10	2,45	0 E+00	0	0	0,000	0,300	-	SI
	S	FRQ	54.118	-11.378	0,03	2,45	0 E+00	0	0	0,000	0,400	-	SI
	3	QPR	54.118	-11.378	0,03	2,45	0 E+00	0	0	0,000	0,300	-	SI
iano Terra			Parete P				= PCA			Parete P			
00080		e tessurato. FRQ	-1.323	si riporta ii 44	0,02	2,45	0 E+00	riscontra la i	massima te	0,000	0,400	ax σ _{ct,f})	SI
00080	Р	QPR	-1.323	44	0,02	2,45	0 E+00	0	0	0,000	0,400	-	SI
-	_	FRQ	-36.394	179	0,26	2,45	0 E+00	0	0	0,000	0,400	-	SI
	S	QPR	-36.394	179	0,26	2,45	0 E+00	0	0	0,000	0,300	-	SI
iano Terra			Parete P		., .		= PCA			Parete P	.,		
IOTA: L'eler	mento NON	è fessurato.	Di seguito	si riporta il	nodo strutt	turale per	la quale si	riscontra la i	massima te	nsione di t	razione(ma	ax σ _{ct,f})	
00084	Р	FRQ	-2.323	138	0,01	2,45	0 E+00	0	0	0,000	0,400	-	SI
-		QPR	-2.323	138	0,01	2,45	0 E+00	0	0	0,000	0,300	-	SI
	S	FRQ	-53.028	381	0,16	2,45	0 E+00	0	0	0,000	0,400	-	SI
Piano Terra		QPR	-53.028 Parete P	381	0,16	2,45	0 E+00	0	0	0,000 Parete P	0,300	-	SI
	mento NON	è fessurato			nodo strutt			riscontra la i	massima te			ax a()	
00025		FRQ	10.880	-373	0,00	2,45	0 E+00	0	0	0,000	0,400	- Ct,1)	SI
	Р	QPR	10.880	-373	0,00	2,45	0 E+00	0	0	0,000	0,300	-	SI
	S	FRQ	1.127	-390	0,05	2,45	0 E+00	0	0	0,000	0,400	-	SI
	3	QPR	1.127	-390	0,05	2,45	0 E+00	0	0	0,000	0,300	-	SI
Piano Terra			Parete P				= PCA			Parete P			
	mento NON							riscontra la i				ax σ _{ct,f})	CI
00013	Р	FRQ QPR	-13.996 -13.996	-281 -281	0,10 0,10	2,45 2,45	0 E+00 0 E+00	0	0	0,000	0,400 0,300	-	SI SI
-		FRQ	22.809	-303	-0,06	2,45	0 E+00	0	0	0,000	0,400		SI
	S	QPR	22.809	-303	-0,06	2,45	0 E+00	0	0	0,000	0,300	-	SI
Piano Terra			Parete P	2-P4-P6		AA	= PCA			Parete Pa	2-P4		
	mento NON							riscontra la i				ax σ _{ct,f})	
00027	Р	FRQ	12.443	387	0,00	2,45	0 E+00	0	0	0,000	0,400	-	SI
-	-	QPR	12.443	387	0,00	2,45	0 E+00	0	0	0,000	0,300	-	SI
	S	FRQ QPR	-165 -165	397 397	0,06	2,45 2,45	0 E+00 0 E+00	0	0	0,000	0,400 0,300	-	SI SI
iano Terra		QPR	Parete P		0,06		= PCA	U	U	Parete P4		-	31
	mento NON	è fessurato.			nodo strutt			riscontra la i	massima te			ax σ()	
00014		FRQ	-11.351	362	0,10	2,45	0 E+00	0	0	0,000	0,400	-	SI
	Р	QPR	-11.351	362	0,10	2,45	0 E+00	0	0	0,000	0,300	-	SI
	S	FRQ	22.322	337	-0,06	2,45	0 E+00	0	0	0,000	0,400	-	SI
		QPR	22.322	337	-0,06	2,45	0 E+00	0	0	0,000	0,300	-	SI
	3	QPR				ΑΛ.				Parete P	5-P7		
			Parete P				= PCA						
NOTA: L'eler		è fessurato.	Di seguito	si riporta il		turale per	la quale si				-	ax σ _{ct,f})	CI
		è fessurato. FRQ	Di seguito -538	si riporta il -134	0,01	turale per 2,45	la quale si 0 E+00	0	0	0,000	0,400	ax σ _{ct,f})	SI
IOTA: L'eler	mento NON	è fessurato. FRQ QPR	-538 -538	si riporta il -134 -134	0,01 0,01	turale per 2,45 2,45	0 E+00 0 E+00	0	0	0,000 0,000	0,400 0,300	αχ σ _{ct,f}) - -	SI
IOTA: L'eler	mento NON	è fessurato. FRQ QPR FRQ	-538 -538 -11.079	si riporta il -134 -134 -336	0,01 0,01 -0,02	2,45 2,45 2,45 2,45	0 E+00 0 E+00 0 E+00	0 0	0 0 0	0,000 0,000 0,000	0,400 0,300 0,400	αχ σ _{ct,f}) - - -	SI SI
IOTA: L'eler 00021	mento NON	è fessurato. FRQ QPR	-538 -538 -538 11.079 11.079	si riporta il -134 -134 -336 -336	0,01 0,01	2,45 2,45 2,45 2,45 2,45	0 E+00 0 E+00	0	0	0,000 0,000	0,400 0,300 0,400 0,300		SI
O0021 Piano Terra	P S	è fessurato. FRQ QPR FRQ QPR	-538 -538 -538 11.079 11.079 Parete P	-134 -134 -134 -336 -336 -37-P9	0,01 0,01 -0,02 -0,02	2,45 2,45 2,45 2,45 2,45 AA	0 E+00 0 E+00 0 E+00 0 E+00 0 E+00	0 0	0 0 0 0	0,000 0,000 0,000 0,000 Parete P	0,400 0,300 0,400 0,300 7-P9	- - - -	SI SI
O0021 Piano Terra	P S	è fessurato. FRQ QPR FRQ QPR è fessurato. FRQ	-538 -538 -538 11.079 11.079 Parete P Di seguito -458	-134 -134 -134 -336 -336 -37-P9	0,01 0,01 -0,02 -0,02	2,45 2,45 2,45 2,45 2,45 AA	0 E+00 0 E+00 0 E+00 0 E+00 0 E+00	0 0 0 0	0 0 0 0	0,000 0,000 0,000 0,000 Parete P	0,400 0,300 0,400 0,300 7-P9	- - - -	SI SI
OTA: L'eler 00021 viano Terra IOTA: L'eler	P S	è fessurato. FRQ QPR FRQ QPR è fessurato. FRQ QPR	-538 -538 -538 11.079 11.079 Parete P Di seguito -458 -458	si riporta il -134 -134 -336 -336 -376 5-P7-P9 si riporta il -96 -96	0,01 0,01 -0,02 -0,02 -0,02 nodo strutt 0,01 0,01	turale per 2,45 2,45 2,45 2,45 AA turale per 2,45 2,45	la quale si 0 E+00 0 E+00 0 E+00 0 E+00 1 = PCA la quale si 0 E+00 0 E+00	0 0 0 0 riscontra la 1	0 0 0 0 0 massima te	0,000 0,000 0,000 0,000 Parete P ensione di t 0,000 0,000	0,400 0,300 0,400 0,300 7-P9 razione(ma 0,400 0,300	- - - -	SI SI SI
OTA: L'eler 00021 iano Terra OTA: L'eler	P S	è fessurato. FRQ QPR FRQ QPR è fessurato. FRQ QPR FRQ R	Di seguito -538 -538 11.079 11.079 Parete P Di seguito -458 -458 11.576	si riporta il -134 -134 -336 -336 -336 5-P7-P9 si riporta il -96 -96 -239	0,01 0,01 -0,02 -0,02 nodo strutt 0,01 0,01 -0,02	turale per 2,45 2,45 2,45 2,45 AA turale per 2,45 2,45 2,45	la quale si 0 E+00 0 E+00 0 E+00 0 E+00 1 E PCA la quale si 0 E+00 0 E+00 0 E+00	0 0 0 0 0 riscontra la 1 0 0	0 0 0 0 0 massima te	0,000 0,000 0,000 0,000 Parete Parsione di t 0,000 0,000 0,000	0,400 0,300 0,400 0,300 7-P9 razione(ma 0,400 0,300 0,400	- - - -	SI SI SI SI SI
iano Terra 00021 00021 iano Terra 00021	P S mento NON	è fessurato. FRQ QPR FRQ QPR è fessurato. FRQ QPR	Di seguito -538 -538 11.079 11.079 Parete P Di seguito -458 -458 11.576 11.576	si riporta il -134 -134 -336 -336 5-P7-P9 si riporta il -96 -96 -239 -239	0,01 0,01 -0,02 -0,02 -0,02 nodo strutt 0,01 0,01	2,45 2,45 2,45 2,45 2,45 AA turale per 2,45 2,45 2,45	la quale si 0 E+00 0 E+00 0 E+00 0 E+00 1 = PCA la quale si 0 E+00 0 E+00 0 E+00 0 E+00	0 0 0 0 riscontra la 1	0 0 0 0 0 massima te	0,000 0,000 0,000 0,000 Parete Prinsione di t 0,000 0,000 0,000 0,000	0,400 0,300 0,400 0,300 7-P9 razione (ma 0,400 0,300 0,400 0,300	- - - -	SI SI SI
one de la composition della co	nento NON P S mento NON P S	è fessurato. FRQ QPR FRQ QPR è fessurato. FRQ QPR FRQ QPR FRQ	-538 -538 -538 11.079 11.079 Parete P Di seguito -458 -458 11.576 11.576	si riporta il -134 -134 -336 -336 -336 5-P7-P9 si riporta il -96 -96 -239 -239 -239	0,01 0,01 -0,02 -0,02 nodo strutt 0,01 0,01 -0,02 -0,02	2,45 2,45 2,45 2,45 2,45 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	la quale si 0 E+00 0 E+00 0 E+00 1 E+00 1 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 1	0 0 0 0 0 riscontra la 1 0 0 0	0 0 0 0 0 massima te	0,000 0,000 0,000 Parete Prinsione di t 0,000 0,000 0,000 0,000 Parete Po	0,400 0,300 0,400 0,300 7-P9 razione (ma 0,400 0,300 0,400 0,300	- - - - - - - -	SI SI SI SI SI
NOTA: L'eler 00021 Piano Terra NOTA: L'eler 00021 Piano Terra NOTA: L'eler	mento NON P S mento NON P S	è fessurato. FRQ QPR FRQ QPR è fessurato. FRQ QPR FRQ QPR FRQ QPR FRQ QPR	Di seguito	si riporta il -134 -134 -336 -336 5-P7-P9 si riporta il -96 -96 -239 -239 -239	0,01 0,01 -0,02 -0,02 nodo strutt 0,01 -0,02 -0,02 nodo strutt	turale per 2,45 2,45 2,45 2,45 A turale per 2,45 2,45 2,45 2,45 A turale per	la quale si 0 E+00 0 E+00 0 E+00 1 E PCA la quale si 0 E+00 0 E+00 0 E+00 1 E PCA la quale si	riscontra la 1	massima te	0,000 0,000 0,000 Parete P. nsione di t 0,000 0,000 0,000 0,000 Parete Ponsione di t	0,400 0,300 0,400 0,300 7-P9 razione(ma 0,400 0,300 0,400 0,300 6-P8 razione(ma	- - - - - - - -	SI SI SI SI SI SI
Piano Terra NOTA: L'eler 00021 Piano Terra	nento NON P S mento NON P S	è fessurato. FRQ OPR FRQ OPR è fessurato. FRQ OPR FRQ OPR FRQ OPR FRQ FRQ FRQ FRQ FRQ	-538 -538 -538 11.079 11.079 Parete P Di seguito -458 -458 11.576 11.576	si riporta il -134 -134 -336 -336 -336 5-P7-P9 si riporta il -96 -96 -239 -239 -239	0,01 0,01 -0,02 -0,02 nodo strutt 0,01 -0,02 -0,02 nodo strutt	turale per 2,45 2,45 2,45 AA turale per 2,45 2,45 2,45 2,45 AA turale per 2,45 2,45 2,45 AA turale per 2,45	la quale si 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 I = PCA la quale si 0 E+00 0 E+00 0 E+00 0 E+00 1 = PCA la quale si 0 E+00 0 E+00 0 E+00	0 0 0 0 0 riscontra la 1 0 0 0	0 0 0 0 0 massima te	0,000 0,000 0,000 Parete P'nsione di t 0,000 0,000 0,000 0,000 Parete Pensione di t 0,000	0,400 0,300 0,400 0,300 7-P9 razione (ma 0,400 0,300 0,400 0,300	- - - - - - - -	SI SI SI SI SI
NOTA: L'eler 00021 Piano Terra NOTA: L'eler 00021 Piano Terra NOTA: L'eler	mento NON P S mento NON P S mento NON	è fessurato. FRQ QPR FRQ QPR è fessurato. FRQ QPR FRQ QPR FRQ QPR FRQ QPR	Di seguito	si riporta il -134 -134 -336 -336 5-P7-P9 si riporta il -96 -96 -239 -239 -239 5-P8-P10 si riporta il	0,01 0,01 -0,02 -0,02 nodo strutt 0,01 -0,02 -0,02 nodo strutt	turale per 2,45 2,45 2,45 2,45 A turale per 2,45 2,45 2,45 2,45 A turale per	la quale si 0 E+00 0 E+00 0 E+00 1 E PCA la quale si 0 E+00 0 E+00 0 E+00 1 E PCA la quale si	riscontra la l	massima te	0,000 0,000 0,000 Parete P. nsione di t 0,000 0,000 0,000 0,000 Parete Ponsione di t	0,400 0,300 0,400 0,300 7-P9 razione(ma 0,400 0,300 0,400 0,300 6-P8 razione(ma 0,400	- - - - - - - -	\$I \$I \$I \$I \$I \$I \$I
iona: L'eler 00021 viano Terra IOTA: L'eler 00021 viano Terra IOTA: L'eler	mento NON P S mento NON P S	è fessurato. FRQ QPR FRQ QPR è fessurato. FRQ QPR FRQ QPR FRQ QPR è fessurato.	Di seguito	si riporta il -134 -134 -336 -336 -336 -35-P7-P9 si riporta il -96 -96 -239 -239 -239 -239 -108 108	0,01 0,01 -0,02 -0,02 nodo strutt 0,01 0,01 -0,02 -0,02 nodo strutt 0,00 0,00	turale per 2,45 2,45 2,45 AA turale per 2,45 2,45 2,45 2,45 2,45 2,45 2,45 2,45	la quale si 0 E+00	riscontra la I	0 0 0 0 massima te 0 0 0	0,000 0,000 0,000 0,000 Parete Prinsione di t 0,000 0,000 0,000 Parete Porisione di t 0,000 0,000	0,400 0,300 0,400 0,300 7-P9 razione(ma 0,400 0,300 0,400 0,300 6-P8 razione(ma 0,400 0,300	- - - - - - - -	SI SI SI SI SI SI SI SI
olota: L'eler 00021 Diano Terra 10TA: L'eler 00021 Diano Terra 10TA: L'eler 00022	mento NON P S mento NON P S mento NON P S	è fessurato. FRQ QPR FRQ QPR è fessurato. FRQ QPR FRQ QPR FRQ QPR è fessurato. FRQ QPR QPR QPR PRQ QPR FRQ QPR	Di seguito	si riporta il -134 -134 -336 -336 5-P7-P9 si riporta il -96 -96 -239 -239 -239 -31 108 108 108 232 232 6-P8-P10	0,01 0,01 -0,02 -0,02 nodo strutt 0,01 -0,02 -0,02 nodo strutt 0,00 0,00 -0,00 -0,02	2,45 2,45 2,45 2,45 2,45 4 turale per 2,45 2,45 2,45 2,45 2,45 2,45 2,45 2,45	la quale si	riscontra la 1 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,000 0,000 0,000 Parete Pinsione di t 0,000 0,000 0,000 Parete Pinsione di t 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,400 0,300 0,400 0,300 7-P9 razione(ma 0,400 0,300 6-P8 razione(ma 0,400 0,300 0,400 0,300 0,400 0,300		SI SI SI SI SI SI SI SI
Piano Terra 100021 Piano Terra 100021 Piano Terra 100021 Piano Terra 100022 Piano Terra 100022	mento NON P S mento NON P S mento NON P S	è fessurato. FRQ QPR FRQ QPR è fessurato. FRQ QPR FRQ QPR FRQ QPR è fessurato. FRQ QPR è fessurato.	Di seguito	si riporta il -134 -134 -336 -336 5-P7-P9 si riporta il -96 -96 -239 -239 6-P8-P10 si riporta il 108 108 232 232 6-P8-P10 si riporta il	0,01 0,01 -0,02 -0,02 nodo strutt 0,01 -0,02 -0,02 nodo strutt 0,00 0,00 -0,02 -0,02	turale per 2,45 2,45 AA turale per 2,45 2,45 AA turale per 2,45 2,45 AA turale per 2,45 2,45 2,45 2,45 2,45 AA turale per 4,45 2,45 AA turale per 4,45 2,45 AA turale per	la quale si	riscontra la	massima te	0,000 0,000 0,000 Parete Pinsione di t 0,000 0,000 0,000 Parete Pinsione di t 0,000 0,000 Parete Pinsione di t 0,000 0,000 0,000 Parete Pinsione di t	0,400 0,300 0,400 0,300 7-P9 razione (ma 0,400 0,300 6-P8 razione (ma 0,400 0,300 0,400 0,300 0,400 0,300		SI SI SI SI SI SI SI SI
Piano Terra 100021 Piano Terra 100021 Piano Terra 100021 Piano Terra 100022	mento NON P S mento NON P S mento NON P S	è fessurato. FRQ QPR FRQ QPR è fessurato. FRQ QPR FRQ RO	Di seguito	si riporta il -134 -134 -336 -336 -336 5-P7-P9 si riporta il -96 -96 -239 -239 6-P8-P10 si riporta il 108 108 232 232 6-P8-P10 si riporta il -526	0,01 0,01 -0,02 -0,02 nodo strutt 0,01 -0,02 -0,02 nodo strutt 0,00 0,00 -0,02 -0,02 nodo strutt	turale per 2,45 2,45 AA turale per 2,45 2,45 2,45 2,45 2,45 2,45 2,45 2,45	la quale si 0 E+00	riscontra la	massima te 0 0 0 0 massima te 0 0 0 massima te	0,000 0,000 0,000 Parete P'nsione di t 0,000 0,000 0,000 Parete Ponsione di t 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,400 0,300 0,400 0,300 7-P9 razione(ma 0,400 0,300 6-P8 razione(ma 0,400 0,300 0,400 0,300 8-P10 razione(ma		SI SI SI SI SI SI SI SI
Piano Terra NOTA: L'eler 00021 Piano Terra NOTA: L'eler 00021 Piano Terra NOTA: L'eler 00022	mento NON P S mento NON P S mento NON P S	è fessurato. FRQ QPR FRQ QPR è fessurato. FRQ QPR FRQ QPR FRQ QPR è fessurato. FRQ QPR è fessurato.	Di seguito	si riporta il -134 -134 -336 -336 5-P7-P9 si riporta il -96 -96 -239 -239 6-P8-P10 si riporta il 108 108 232 232 6-P8-P10 si riporta il	0,01 0,01 -0,02 -0,02 nodo strutt 0,01 -0,02 -0,02 nodo strutt 0,00 0,00 -0,02 -0,02	turale per 2,45 2,45 AA turale per 2,45 2,45 AA turale per 2,45 2,45 AA turale per 2,45 2,45 2,45 2,45 2,45 AA turale per 4,45 2,45 AA turale per 4,45 2,45 AA turale per	la quale si	riscontra la	massima te	0,000 0,000 0,000 Parete Pinsione di t 0,000 0,000 0,000 Parete Pinsione di t 0,000 0,000 Parete Pinsione di t 0,000 0,000 0,000 Parete Pinsione di t	0,400 0,300 0,400 0,300 7-P9 razione (ma 0,400 0,300 6-P8 razione (ma 0,400 0,300 0,400 0,300 0,400 0,300		SI SI SI SI SI SI SI SI

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301 D R 0120 Rev. 02

									Pareti - v	erifica allo	stato limit	e di fes	surazione
Nodo	Dir	I d _{Cmb}	N _{Ed}	M_{Ed}	$\sigma_{\text{ct,f}}$	σ_{t}	€ sm	A _e	Δ_{sm}	W _d	W _{amm}	cs	Verificat o
			[N]	[N·m]	[N/mm ²]	[N/mm ²]		[cm ²]	[mm]	[mm]	[mm]		
Piano Terra			Parete P9				= PCA			Parete P			
NOTA: L'ele	mento NON	è fessurato.	Di seguito s	i riporta il	nodo strut	turale per	la quale si	riscontra la	massima te	nsione di t	razione(ma	$ax \sigma_{ct,f}$	
00195	Р	FRQ	-7.875	-299	0,07	2,45	0 E+00	0	0	0,000	0,400	-	SI
	Г	QPR	-7.875	-299	0,07	2,45	0 E+00	0	0	0,000	0,300	-	SI
	S	FRQ	23.577	-292	-0,07	2,45	0 E+00	0	0	0,000	0,400	-	SI
	5	QPR	23.577	-292	-0,07	2,45	0 E+00	0	0	0,000	0,300	-	SI
Piano Terra			Parete P9	-P11-P13		AA	= PCA			Parete P	11-P13		
NOTA: L'ele	mento NON	è fessurato.	Di seguito s	i riporta il	nodo strut	turale per	la quale si	riscontra la	massima te	nsione di t	razione(ma	ax σ _{ct.f})	
00017	Р	FRQ	10.839	-372	0,00	2,45	0 E+00	0	0	0,000	0,400	-	SI
	Р	QPR	10.839	-372	0,00	2,45	0 E+00	0	0	0,000	0,300	-	SI
		FRQ	826	-391	0,05	2,45	0 E+00	0	0	0,000	0,400	-	SI
	S	QPR	826	-391	0,05	2,45	0 E+00	0	0	0,000	0,300	-	SI
Piano Terra			Parete P1	0-P12-P1	4	AA	= PCA			Parete P	10-P12		
NOTA: L'ele	mento NON	è fessurato.	Di seguito s	i riporta il	nodo strut	turale per	la quale si	riscontra la	massima te	nsione di t	razione(ma	ax σ _{ct.f})	
00010		FRQ	-11.036	288	0,09	2,45	0 E+00	0	0	0,000	0,400	-	SI
	Р	QPR	-11.036	288	0,09	2,45	0 E+00	0	0	0,000	0,300	-	SI
	S	FRQ	23.305	287	-0,06	2,45	0 E+00	0	0	0,000	0,400	-	SI
	5	QPR	23.305	287	-0,06	2,45	0 E+00	0	0	0,000	0,300	-	SI
Piano Terra			Parete P1	0-P12-P1	4	AA	= PCA			Parete P	12-P14		
NOTA: L'ele	mento NON	è fessurato.	Di seguito s	i riporta il	nodo strut	turale per	la quale si	riscontra la	massima te	nsione di t	razione(ma	ax σ _{ct.f})	
00204	Р	FRQ	12.645	385	0,00	2,45	0 E+00	0	0	0,000	0,400	-	SI
	Р	QPR	12.645	385	0,00	2,45	0 E+00	0	0	0,000	0,300	-	SI
	C	FRQ	-262	396	0,05	2,45	0 E+00	0	0	0,000	0,400	-	SI
	S	QPR	-262	396	0,05	2,45	0 E+00	0	0	0,000	0,300	-	SI

LEGENDA:

Dir Direzione [P] = principale (asse locale 1) - [S] = secondaria (asse locale 2).

Identificativo dell'aggressività dell'ambiente: [PCA] = "Ordinario"; [MDA] = "Aggressivo"; [MLA] = "Molto aggressivo". Identificativo della Combinazione di Azione: [QPR] = Quasi Permanente - [FRQ] = Frequente - [RAR] = Rara. AΑ

 Id_{Cmb}

 N_{Ed} , M_{Ed} Sollecitazioni di progetto.

Tensione massima di trazione nel calcestruzzo per la fessurazione, calcolata nell'ipotesi di calcestruzzo resistente a trazione. Se tale valore è maggiore di σ_t la $\sigma_{\text{ct,f}}$ sezione è soggetta a fessurazione.

N.B. I valori negativi indicano una sezione interamente compressa. In tal caso le sollecitazioni forniscono il minimo valore di compressione. Tensione massima di trazione nel calcestruzzo relativa allo stato limite di formazione delle fessure [relazione (4.1.13) del § 4.1.2.2.4 del DM 2018].

 ϵ_{sm} A_e Δ_{sm} W_d Deformazione unitaria media delle barre di armatura.

Area efficace del calcestruzzo teso. Distanza media tra le fessure.

Valore di calcolo di apertura massima delle fessure.

Wa Valore ammissibile di apertura delle fessure.

Coefficiente di Sicurezza (= W_d/W_{amm}). [NS] = Non Significativo (CS \geq 100). [-] = Fessurazioni nulle ($W_d = 0$). CS

Verificato $[SI] = W_d \le W_{amm}$; $[NO] = W_d > W_{amm}$

6.9.4. PLATEE

VERIFICHE PRESSOFLESSIONE RETTA ALLO STATO LIMITE ULTIMO

														Plat	ee - Ver	ifiche p	ressofle	ssione r	etta allo SLU
Dir	Pos	Nodo	N _{Ed}	M _{Ed}	As	A _{df}	CS	Nodo	N _{Ed}	M _{Ed}	As	A _{df}	CS	Nodo	N_{Ed}	M _{Ed}	As	A_{df}	CS
			[N]	[N·m]		[cm ² /cm]			[N]	[N·m]	[cm ² /cm]	[cm ² /cm]			[N]	[N·m]	[cm ² /cm]	[cm ² /cm]	
Fond	azione					tea 1													
Р	S	00001	0	0	0,100 53	0,100 53	-	00002	0	0	0,100 53	0,100 53	-	00005	0	0	0,100 53	0,100 53	-
	I		-111	3.164	0,100 53	0,100 53	37,5 5		-190	3.011	0,100 53	0,100 53	39,4 6		-137	3.165	0,100 53	0,100 53	37,54
S	S		0	0	0,100 53	0,100 53	-		0	0	0,100 53	0,100 53	-		0	0	0,100 53	0,100 53	-
	I		105	1.341	0,100 53	0,100 53	88,5 7		-28	1.385	0,100 53	0,100 53	85,7 7		49	1.328	0,100 53	0,100 53	89,44
Р	S	00006	0	0	0,100 53	0,100 53	-	00010	0	0	0,100 53	0,100 53	-	00013	0	0	0,100 53	0,100 53	-
	ı		-194	3.001	0,100 53	0,100 53	39,5 9		39	1.985	0,100 53	0,100 53	59,8 4		-16	2.014	0,100 53	0,100 53	58,98
S	S		0	0	0,100 53	0,100 53	-		0	0	0,100 53	0,100 53	-		0	0	0,100 53	0,100 53	-
	I		-29	1.367	0,100 53	0,100 53	86,8 9		14	5.711	0,100 53	0,100 53	20,8 0		2	5.862	0,100 53	0,100 53	20,26
Р	S	00014	0	0	0,100 53	0,100 53	-	00017	0	0	0,100 53	0,100 53	-	00021	0	0	0,100 53	0,100 53	-
	I		71	1.084	0,100 53	0,100 53	NS		-748	1.620	0,100 53	0,100 53	73,3 9		149	2.993	0,100 53	0,100 53	39,68
S	S		0	0	0,100 53	0,100 53	-		-66	386	0,100 53	0,100 53	NS		0	0	0,100 53	0,100 53	-
	I		27	5.514	0,100 53	0,100 53	21,5 4		-33	97	0,100 53	0,100 53	NS		-148	1.933	0,100 53	0,100 53	61,46
Р	S	00022	0	0	0,100 53	0,100 53	-	00025	0	0	0,100 53	0,100 53	-	00027	0	0	0,100 53	0,100 53	-

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

														Plat	ee - Vei	ifiche n	ressofle	ssione	retta allo SLU
Dir	Pos	Nodo	N _{Ed}	M _{Ed}	As	A _{df}	CS	Nodo	N _{Ed}	M _{Ed}	As	A _{df}	CS	Nodo	N_{Ed}	M _{Ed}	As	A_{df}	CS CS
	I		[N]	[N·m]	[cm²/cm] 0,100	[cm ² /cm]	41,9		[N]	[N·m]	[cm ² /cm]	[cm ² /cm]	73,4		[N]	[N·m]	[cm²/cm] 0,100	[cm ² /cm]	
			-80	2.831	53	53	6		229	1.616	53	53	8		129	1.663	53	53	71,41
S	S		0	0	0,100 53	0,100 53	-		89	448	0,100 53	0,100 53	NS		90	654	0,100 53	0,100 53	NS
	I		-157	1.685	0,100	0,100	70,5		69	46	0,100	0,100	NS		0	0	0,100	0,100	_
Р	S	00029	0		53 0,100	53 0,100	1	00032	0		53 0,100	53 0,100		00005		_	53 0,100	53 0,100	
	ı		0	0	53	53	21.7		0	0	53 0,100	53	19,6	00035	0	0	53	53	-
	'		155	3.737	0,100 53	0,100 53	31,7 8		0	6.055	53	0,100	2		169	1.898	0,100 53	0,100	62,57
S	S		0	0	0,100 53	0,100 53	-		0	0	0,100 53	0,100 53	-		0	0	0,100 53	0,100 53	-
	I		17	6.399	0,100	0,100	18,5		0	13.85	0,100	0,100	8,58		29	5.895	0,100	0,100	20,15
P	S	00038			0,100	53 0,100	6	00041		1	53 0,100	53 0,100		00044			53 0,100	53 0,100	
			0	0	53	53	45.4		0	0	53	53	10 /	00044	0	0	53	53	-
	I		273	2.612	0,100 53	0,100 53	45,4		2	6.060	0,100 53	0,100 53	19,6 0		161	1.779	0,100 53	0,100	66,76
S	S		0	0	0,100 53	0,100 53	-		0	0	0,100 53	0,100 53	-		0	0	0,100 53	0,100 53	_
	ı		48	6.145	0,100	0,100	19,3		0	13.88	0,100	0,100	8,56		21	5.763	0,100	0,100	20,61
P	S	00047			53 0,100	53 0,100	3	00048		1	53 0,100	53 0,100	0,50				53 0,100	53 0,100	20,01
·		00017	0	0	53	53	-	00010	0	0	53	53	-	00049	0	0	53	53	-
	I		722	481	0,100 53	0,100 53	NS		-171	633	0,100 53	0,100 53	NS		39	589	0,100 53	0,100 53	NS
S	S		85	859	0,100	0,100	NS		60	614	0,100	0,100	NS		60	649	0,100	0,100	NS
	ı		0	0	53 0,100	53 0,100			-102	124	53 0,100	53 0,100	NS		-93	107	53 0,100	53 0,100	NS
P	S	00050	U	U	53 0,100	53 0,100	-	00051	-102	124	53 0,100	53 0,100	IVS		-93	107	53 0,100	53 0,100	INS
г		00030	0	0	53	53	-	00031	0	0	53	53	-	00053	0	0	53	53	-
	I		-28	479	0,100 53	0,100 53	NS		-12	3.537	0,100 53	0,100 53	33,5		-18	3.639	0,100 53	0,100 53	32,64
S	S		57	861	0,100	0,100	NS		0	0	0,100	0,100	_		0	0	0,100	0,100	_
	ı				53 0,100	53 0,100			11	15.00	53 0,100	53 0,100	7.01			15.84	53 0,100	53 0,100	7.40
P	S	00055	0	0	53	53	-	00057	-11	8	53	53	7,91		-16	9	53	53	7,49
Р	3	00055	0	0	0,100 53	0,100 53	-	00056	0	0	0,100 53	0,100 53	-	00059	0	0	0,100 53	0,100 53	-
	I		9	1.048	0,100 53	0,100 53	NS		-8	838	0,100 53	0,100 53	NS		-11	3.658	0,100 53	0,100 53	32,47
S	S		0	0	0,100	0,100	_		0	0	0,100	0,100	_		0	0	0,100	0,100	_
	ı				53 0,100	53 0,100	25,9				53 0,100	53 0,100	23,8			15.81	53 0,100	53 0,100	7.54
		000/4	61	4.576	53	53	6	000/0	-71	4.985	53	53	3		-9	5	53	53	7,51
Р	S	00061	0	0	0,100 53	0,100 53	-	00063	60	2.082	0,100 53	0,100 53	57,0 5	00064	-14	1.164	0,100 53	0,100 53	NS
	I		-44	3.491	0,100 53	0,100 53	34,0		0	0	0,100 53	0,100 53	-		0	0	0,100 53	0,100 53	-
S	S		0	0	0,100	0,100	3		322	1.403	0,100	0,100	84,6		-78	946	0,100	0,100	NS
				14.97	53 0,100	53 0,100	-				53 0,100	53 0,100	3				53 0,100	53 0,100	INS
			-40	9	53	53	7,93		0	0	53	53	-		0	0	53	53	-
Р	S	00065	50	1.687	0,100 53	0,100 53	70,4	00066	-2.132	3.694	0,100 53	0,100 53	32,2 4	00067	0	0	0,100 53	0,100 53	-
	I		0	0	0,100 53	0,100 53	-		0	0	0,100 53	0,100 53	-		867	934	0,100 53	0,100 53	NS
S	S		-134	1.211	0,100	0,100	98,1		-418	2.524	0,100	0,100	47,0		0	0	0,100	0,100	
	ı				53 0,100	53 0,100	0				53 0,100	53 0,100	8			U	53 0,100	53 0,100	-
			0	0	53	53	-		0	0	53	53	-		193	2.701	53	53	43,97
Р	S	00068	0	0	0,100 53	0,100 53	-	00069	-1.711	3.733	0,100 53	0,100 53	31,8	00070	46	1.691	0,100 53	0,100 53	70,24
	I		1.158	1.068	0,100	0,100	NS		0	0	0,100	0,100	_		0	0	0,100	0,100	_
S	S				53 0,100	53 0,100			225		53 0,100	53 0,100	46,5		140	1 242	53 0,100	53 0,100	
	1		0	0	53 0,100	53 0,100	41,6		-335	2.553	53 0,100	53 0,100	4		-143	1.212	53 0,100	53 0,100	98,02
			245	2.854	53	53	1		0	0	53	53	-		0	0	53	53	-
Р	S	00071	-9	1.153	0,100 53	0,100 53	NS	00072	64	2.075	0,100 53	0,100 53	57,2 4	00073	3.207	3.563	0,100 53	0,100 53	33,21
	ı		0	0	0,100	0,100	_		0	0	0,100	0,100	-		0	0	0,100	0,100	_
S	S				53 0,100	53 0,100					53 0,100	53 0,100	84,7				53 0,100	53 0,100	
-			-32	937	53	53	NS		356	1.401	53	53	5		619	2.259	53	53	52,54
	I		0	0	0,100	0,100	-		0	0	0,100	0,100	-		0	0	0,100	0,100	-

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301_D_R_0120 Rev. 02

														Plat	ee - Ver	ifiche p	ressofle	ssione r	etta allo SLU
Dir	Pos	Nodo	N _{Ed}	M _{Ed}	As	A _{df}	CS	Nodo	N _{Ed}	M _{Ed}	As	A _{df}	CS	Nodo	N_{Ed}	M _{Ed}	As	A _{df}	cs
			[N]	[N·m]	[cm ² /cm]	[cm ² /cm]			[N]	[N·m]		[cm ² /cm]			[N]	[N·m]	[cm ² /cm]		
					53	53					53	53					53	53	
Р	S	00074	0	0	0,100	0,100	_	00075	0	0	0,100	0,100	_	00076	-2.078	3.706	0,100	0,100	32,13
					53	53				_	53	53					53	53	,
	I		-2.933	903	0,100 53	0,100 53	NS		1.965	1.032	0,100 53	0,100 53	NS		0	0	0,100	0,100	-
S	S				0,100	0,100					0,100	0,100					53 0,100	53 0,100	
3	3		0	0	53	53	-		0	0	53	53	-		-406	2.409	53	53	49,33
	1				0,100	0,100	45,1				0,100	0,100	41,6				0,100	0,100	
	'		-471	2.634	53	53	2		440	2.851	53	53	4		0	0	53	53	-
Р	S	00077	4.45	F 000	0,100	0,100	20,3	00078	-00		0,100	0,100	17,3	00004	_	_	0,100	0,100	
			145	5.828	53	53	8		29	6.830	53	53	9	00081	0	0	53	53	-
	I		0	0	0,100	0,100	_		0	0	0,100	0,100	_		9	1.052	0,100	0,100	NS
			0	0	53	53	-		0	U	53	53			7	1.032	53	53	INS
S	S		-114	9.736	0,100	0,100	12,2		-35	10.81	0,100	0,100	10,9		0	0	0,100	0,100	_
				7.700	53	53	0		00	4	53	53	8				53	53	
	I		0	0	0,100	0,100	_		0	0	0,100	0,100	_		74	4.576	0,100	0,100	25,96
n .		00000			53	53		00005			53	53	22.2				53	53	
Р	S	00082	0	0	0,100	0,100	-	00085	-105	5.080	0,100	0,100	23,3	00086	-54	5.212	0,100	0,100	22,79
	ı				53 0,100	53 0,100					53 0,100	53 0,100	8				53 0,100	53 0,100	
	'		-8	828	53	53	NS		0	0	53	53	-		0	0	53	53	-
S	S				0,100	0,100	ĺ				0,100	0,100	14,1				0,100	0,100	
			0	0	53	53	-		186	8.418	53	53	1		91	8.570	53	53	13,86
	1			4.050	0,100	0,100	23,9				0,100	0,100			_	_	0,100	0,100	
			-69	4.958	53	53	6		0	0	53	53	-		0	0	53	53	-
Р	S	00089	36	5.801	0,100	0,100	20,4	00090	48	6.847	0,100	0,100	17,3	00120	-11	6.604	0,100	0,100	17,99
			30	3.601	53	53	8		40	0.047	53	53	5	00120	-11	0.004	53	53	17,99
	I		0	0	0,100	0,100	_		0	0	0,100	0,100	_		0	0	0,100	0,100	_
				0	53	53			0		53	53					53	53	
S	S		-32	9.711	0,100	0,100	12,2		-45	10.83	0,100	0,100	10,9		11	8.503	0,100	0,100	13,97
					53	53	3			8	53	53	6				53	53	
	I		0	0	0,100	0,100	-		0	0	0,100	0,100	-		0	0	0,100	0,100	-
P	S	00121			53	53	10.0	00122			53	53	10.0				53 0,100	53	
Р	3	00121	-10	6.596	0,100 53	0,100 53	18,0 1	00122	-3	6.573	0,100 53	0,100 53	18,0 7	00123	-14	6.591	53	0,100 53	18,02
	1				0,100	0,100					0,100	0,100	′				0,100	0,100	
	·		0	0	53	53	-		0	0	53	53	-		0	0	53	53	-
S	S		_		0,100	0,100	13,9				0,100	0,100	13,7				0,100	0,100	
			9	8.496	53	53	8		12	8.633	53	53	6		20	8.650	53	53	13,73
	- 1		0	0	0,100	0,100	_		0	0	0,100	0,100	_		0	0	0,100	0,100	
			U	U	53	53	_		U	U	53	53	_		U	U	53	53	-
Р	S	00194	0	0	0,100	0,100	_	00195	758	363	0,100	0,100	NS	00196	0	0	0,100	0,100	_
			0		53	53			750	303	53	53	145	00170	0	0	53	53	
	I		-97	1.158	0,100	0,100	NS		758	177	0,100	0,100	NS		341	2.811	0,100	0,100	42,24
_	-				53	53					53	53			-		53	53	
S	S		0	0	0,100	0,100	-		0	0	0,100	0,100	-		0	0	0,100	0,100	-
	ı				53 0,100	53 0,100	00.7				53 0,100	53 0,100	22.4				53 0,100	53 0,100	
	'		-95	1.309	53	53	90,7 5		187	5.289	53	53	22,4		82	2.112	53	53	56,24
P	S	00200			0,100	0,100	3	00201			0,100	0,100					0,100	0,100	
•	١	00200	0	0	53	53	-	00201	0	0	53	53	-	00204	0	0	53	53	-
	ı		0.5-		0,100	0,100	44,0				0,100	0,100	62,9				0,100	0,100	
	'		388	2.696	53	53	4		340	1.886	53	53	6		148	1.735	53	53	68,45
S	S		_		0,100	0,100					0,100	0,100			7.5	,,,	0,100	0,100	NG
			0	0	53	53	-		0	0	53	53	-		75	665	53	53	NS
	I		93	1.991	0,100	0,100	59,6		101	1.575	0,100	0,100	75,4		0	0	0,100	0,100	
			73	1.771	53	53	5		101	1.373	53	53	1		U	U	53	53	_

LEGENDA:

Direzione [P] = principale (asse locale 1) - [S] = secondaria (asse locale 2).
Posizione [S] = superiore - [I] = inferiore.
Area delle armature esecutive per unità di lunghezza.
Armatura disponibile per la flessione Dir

Pos

 $\begin{array}{c} \textbf{A}_{\text{s}} \\ \textbf{A}_{\text{df}} \\ \textbf{CS} \end{array}$

Coefficiente di sicurezza ([NS] = Non Significativo se CS ≥ 100; [VNR]= Verifica Non Richiesta; Informazioni aggiuntive sulla condizione: [V] = statica; [E] = eccezionale; [S] = sismica; [N] = sismica non lineare).

Sollecitazioni di progetto.

 $N_{Ed},\,M_{Ed}$

VERIFICHE PRESSOFLESSIONE RETTA ALLO STATO LIMITE DI DANNO

											Pl	atee - Ver	ifiche pre	essoflessi	one retta	allo SLE
Dir	Pos	Nodo	N_{Ed}	M_{Ed}	A_s	CS	Nodo	N_{Ed}	M _{Ed}	As	CS	Nodo	N_{Ed}	M_{Ed}	A_s	CS
			[N]	[N·m]	[cm ² /cm]			[N]	[N·m]	[cm ²]			[N]	[N·m]	[cm ²]	
Fondaz	zione			Pla	tea 1											
P	S	00001	0	0	0,10053	-	00002	0	0	0,10053	-	00005	0	0	0,10053	-
	- 1		-90	2.496	0,10053	56,08		-155	2.394	0,10053	58,48		-109	2.509	0,10053	55,79
S	S		0	0	0,10053	-		0	0	0,10053	-		0	0	0,10053	-
	1		88	1.136	0,10053	NS		-9	1.185	0,10053	NS		54	1.124	0,10053	NS

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

							-								one retta	
Dir	Pos	Nodo	N _{Ed}	M _{Ed}	A _s [cm²/cm]	CS	Nodo	N _{Ed}	M _{Ed}	A _s	CS	Nodo	N _{Ed}	M _{Ed}	A _s [cm ²]	CS
P	S	00006	[N]	[N·m] 0	0,10053	-	00010	[N]	[N·m] 0	[cm ²]	-	00013	[N] O	[N·m] 0	0,10053	_
	I		-158	2.374	0,10053	58,97		29	1.750	0,10053	79,98		-13	1.780	0,10053	78,64
S	S		0	0	0,10053	-		0	0	0,10053	-		0	0	0,10053	-
P	S	00014	-13 0	1.175 0	0,10053	NS -	00017	24 0	4.728 0	0,10053	29,60	00021	14 0	4.867 0	0,10053	28,76
F	I	00014	169	935	0,10053	NS	00017	-470	1.465	0,10053	95,59	00021	313	2.407	0,10053	58,13
S	S		0	0	0,10053	-	ĺ	-16	418	0,10053	NS	ĺ	0	0	0,10053	-
	I		53	4.546	0,10053	30,79		-16	204	0,10053	NS		-6	1.662	0,10053	84,22
Р	S	00022	0 41	0 2.285	0,10053 0,10053	- 61,25	00025	0 368	0 1.487	0,10053 0,10053	- 94,09	00027	0 103	0 1.507	0,10053 0,10053	- 92,87
S	S	-	0	0	0,10053	-		106	487	0,10053	NS		76	610	0,10053	NS
	I		-60	1.494	0,10053	93,69		106	178	0,10053	NS		0	0	0,10053	-
Р	S	00029	0	0 3.003	0,10053	-	00032	0 19	0 4.973	0,10053	- 20.15	00035	0 342	0 1.659	0,10053	
S	S	-	270	0	0,10053	46,60		0	0	0,10053	28,15		0	0	0,10053	84,34
J	I		77	5.244	0,10053	26,69		13	11.556	0,10053	12,11		99	4.988	0,10053	28,06
Р	S	00038	0	0	0,10053	-	00041	0	0	0,10053	-	00044	0	0	0,10053	-
	I		411	2.184	0,10053	64,06	-	23	4.974	0,10053	28,14		357	1.511	0,10053	92,60
S	S		0 88	0 5.147	0,10053 0,10053	- 27,19		0 16	0 11.573	0,10053 0,10053	- 12,09		0 102	0 4.834	0,10053 0,10053	- 28,95
Р	S	00047	0	0	0,10053	-	00048	0	0	0,10053	-	00049	0	0	0,10053	-
	I		639	464	0,10053	NS		28	600	0,10053	NS		7	523	0,10053	NS
S	S		-62	663	0,10053	NS		-122	378	0,10053	NS		-90	354	0,10053	NS
P	S	00050	0	0	0,10053	-	00051	0	0	0,10053	-	00053	0	0	0,10053	-
	I	00030	-86	453	0,10053	NS	00031	31	2.905	0,10053	48,18	00033	15	3.014	0,10053	46,44
S	S		-103	648	0,10053	NS		0	0	0,10053	-		0	0	0,10053	-
	I	00055	0	0	0,10053	-	00057	26	12.210	0,10053	11,46	00050	-2	13.111	0,10053	10,68
Р	S	00055	0 12	0 888	0,10053 0,10053	- NS	00056	0 -9	0 762	0,10053 0,10053	- NS	00059	0 42	0 3.037	0,10053 0,10053	- 46,09
S	S	-	0	0	0,10053	-		0	0	0,10053	-		0	0	0,10053	-
	I		56	3.508	0,10053	39,90		-51	3.867	0,10053	36,20		27	13.108	0,10053	10,68
Р	S	00061	0	0 2.859	0,10053	-	00063	53 0	1.727	0,10053	81,04	00064	-8 0	839 0	0,10053	NS
S	S	-	15 0	0	0,10053	48,96		283	1.135	0,10053	- NS		-51	769	0,10053	- NS
	Ī		2	12.172	0,10053	11,50		0	0	0,10053	-		0	0	0,10053	-
Р	S	00065	41	1.374	0,10053	NS	00066	-2.011	2.865	0,10053	48,95	00067	0	0	0,10053	-
	I		203	963	0,10053	- NC	-	-392	1.929	0,10053	72.50	-	943	809	0,10053	NS -
S	S		0	963	0,10053 0,10053	NS -		-392	0	0,10053 0,10053	72,59 -		0 162	0 2.199	0,10053 0,10053	63,64
Р	S	00068	0	0	0,10053	-	00069	-1.703	2.861	0,10053	49,01	00070	40	1.370	0,10053	NS
	I		1.271	918	0,10053	NS		0	0	0,10053	-		0	0	0,10053	-
S	S		0 229	0 2.309	0,10053 0,10053	- 60,61		-339 0	1.938 0	0,10053 0,10053	72,25		216 0	936 0	0,10053 0,10053	NS -
P	S	00071	-1	830	0,10053	NS	00072	55	1.730	0,10053	80,90	00073	2.766	2.745	0,10053	50,85
•	Ī		0	0	0,10053	-	000.2	0	0	0,10053	-	00070	0	0	0,10053	-
S	S		-17	762	0,10053	NS		288	1.168	0,10053	NS		533	1.700	0,10053	82,29
P	I	00074	0	0	0,10053	-	00075	0	0	0,10053	-	00074	0	0	0,10053	- 40.4E
Р	S	00074	-1.848	0 775	0,10053	- NS	00075	0 1.934	0 878	0,10053 0,10053	- NS	00076	-2.010 0	2.836	0,10053 0,10053	49,45
S	S		0	0	0,10053	-		0	0	0,10053	-		-400	1.795	0,10053	78,01
	I		-265	2.165	0,10053	64,67		366	2.317	0,10053	60,39		0	0	0,10053	-
Р	S	00077	111 0	4.395 0	0,10053	31,84	00078	70 0	5.405 0	0,10053 0,10053	25,89	00081	0 11	0 892	0,10053 0,10053	- NS
S	S	-	-42	7.435	0,10053	18,83	}	18	8.379	0,10053	16,70		0	0	0,10053	- 113
	Ī		0	0	0,10053	-		0	0	0,10053	-		68	3.505	0,10053	39,93
Р	S	00082	0	0	0,10053	-	00085	-22	4.064	0,10053	34,44	00086	-14	4.166	0,10053	33,60
c		-	-8 0	755	0,10053	NS		105	0	0,10053	71 71		1/1	6 601	0,10053	20.02
S	S		-49	0 3.849	0,10053	- 36,37		185 0	6.568	0,10053 0,10053	21,31		141 0	6.691 0	0,10053	20,92
Р	S	00089	97	4.372	0,10053	32,01	00090	69	5.426	0,10053	25,79	00120	7	5.230	0,10053	26,76
	I		0	0	0,10053	-		0	0	0,10053	-		0	0	0,10053	-
S	S		-1 0	7.416	0,10053	18,87		-4	8.404	0,10053	16,66		-9 0	6.428	0,10053	21,78
P	S	00121	9	0 5.188	0,10053	26,98	00122	20	5.205	0,10053	26,89	00123	0 12	5.180	0,10053	27,02
	Ī		Ó	0	0,10053	-		0	0	0,10053			0	0	0,10053	
S	S		-4	6.387	0,10053	21,91		-31	6.573	0,10053	21,30		-21	6.547	0,10053	21,38
n	 c	00104	0	0	0,10053	-	00105	705	0	0,10053	- NIC	00107	0	0	0,10053	-
Р	S	00194	0	0 963	0,10053	- NS	00195	785 785	233 47	0,10053 0,10053	NS NS	00196	0 328	0 2.396	0,10053 0,10053	- 58,40
S	S		0	0	0,10053	-		0	0	0,10053	-		0	0	0,10053	-
	I		-39	1.089	0,10053	NS		183	4.318	0,10053	32,41		65	1.629	0,10053	85,92
Р	S	00200	0	0	0,10053	- 60.22	00201	0	1 579	0,10053	- 00 67	00204	0	0 1 570	0,10053	- 00 47
S	S	-	402 0	2.323	0,10053	60,23		380	1.578	0,10053	88,67		298 83	1.578 685	0,10053	88,67 NS
	I		70	1.543	0,10053	90,71		67	1.299	0,10053	NS		0	0	0,10053	-

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301 D R 0120 Rev. 02

											Pl	latee - Ver	ifiche pre	essoflessi	one retta	allo SLD
Dir	Pos	Nodo	N_{Ed}	M _{Ed}	As	CS	Nodo	N_{Ed}	M _{Ed}	As	CS	Nodo	N _{Ed}	M _{Ed}	As	CS
			[N]	[N·m]	[cm ² /cm]			[N]	[N·m]	[cm ²]			[N]	[N·m]	[cm ²]	

LEGENDA:

Dir Direzione [P] = principale (asse locale 1) - [S] = secondaria (asse locale 2).

Pos Posizione [S] = superiore - [I] = inferiore.

As Area delle armature esecutive per unità di lunghezza.

CS Coefficiente di sicurezza ([NS] = Non Significativo se CS ≥ 100; [VNR]= Verifica Non Richiesta; Informazioni aggiuntive sulla condizione: [V] = statica; [E] =

eccezionale; [S] = sismica; [N] = sismica non lineare).

N_{Ed}, M_{Ed} Sollecitazioni di progetto.

VERIFICHE DELLE TENSIONI D'ESERCIZIO

										Plate	e - verifiche	e delle tens	ioni di e	esercizio	
Nodo/	Dir		Co	Compress mpressione	sione calces e calcestruz						zione accia cciaio/FRP				
Tp _{rnf}	DII	Id _{Cmb}	σ_{cc}	σ _{cd,amm}	N_{Ed}	M_{Ed}	cs	Verific ato	Id _{Cmb}	σ_{at}	$\sigma_{td,amm}$	N _{Ed}	M _{Ed}	cs	Verific ato
			[N/mm ²]	[N/mm ²]	[N]	[N·m]				[N/mm ²]	[N/mm ²]	[N]	[N·m]		
Fondazion	ne			Platea 1											
	D	RAR	0,118	18,43	16	-2.768	NS	SI	RAR	1,359	360,00	16	-2.768	NS	SI
00053	P	QPR	0,118	13,82	16	-2.768	NS	SI	-	-	-	-	-	-	-
00053		RAR	0,509	18,43	15	-11.986	36,21	SI	RAR	5,887	360,00	15	-11.986	61,15	SI
	3	QPR	0,509	13,82	15	-11.986	27,16	SI	-	-	-	-	-	-	-

LEGENDA:

Rinf. Indica la presenza del rinforzo sulla sezione di verifica.

Dir Direzione [P] = principale (asse locale 1) - [S] = secondaria (asse locale 2).

Identificativo della Combinazione di Azione: [QPR] = Quasi Permanente - [FRQ] = Frequente - [RAR] = Rara.

 $\begin{array}{ll} \sigma_{cc} & \text{Tensione massima di compressione nel calcestruzzo della Trave/Rinforzo.} \\ \sigma_{cd,amm} & \text{Tensione ammissibile per la verifica a compressione del calcestruzzo.} \\ \sigma_{at} & \text{Tensione massima di trazione nell'acciaio della Trave/Rinforzo o nel FRP.} \\ \sigma_{td,amm} & \text{Tensione ammissibile per la verifica a trazione dell'acciaio/rinforzo.} \\ \end{array}$

N_{Ed}, Sollecitazioni di progetto.

 M_{Ed}

CS Coefficiente di Sicurezza (= $\sigma_{cd, amm}/\sigma_{cc}$; $\sigma_{td, amm}/\sigma_{at}$). [NS] = Non Significativo (CS \geq 100).

 $\textbf{Verific} \hspace{0.5cm} [S1] = La \hspace{0.1cm} \text{verifica} \hspace{0.1cm} \text{è soddisfatta} \hspace{0.1cm} (\sigma_{cc} \leq \sigma_{cd,amm}; \hspace{0.1cm} \sigma_{at} \leq \sigma_{td,amm}). \hspace{0.1cm} [NO] = La \hspace{0.1cm} \text{verifica} \hspace{0.1cm} \text{NON} \hspace{0.1cm} \text{è soddisfatta} \hspace{0.1cm} (\sigma_{cc} > \sigma_{cd,amm}; \hspace{0.1cm} \sigma_{at} > \sigma_{td,amm}). \hspace{0.1cm} [NO] = La \hspace{0.1cm} \text{verifica} \hspace{0.1cm} \text{NON} \hspace{0.1cm} \text{è soddisfatta} \hspace{0.1cm} (\sigma_{cc} > \sigma_{cd,amm}; \hspace{0.1cm} \sigma_{at} > \sigma_{td,amm}). \hspace{0.1cm} [NO] = La \hspace{0.1cm} \text{verifica} \hspace{0.1cm} \text{NON} \hspace{0.1cm} \text{è soddisfatta} \hspace{0.1cm} (\sigma_{cc} > \sigma_{cd,amm}; \hspace{0.1cm} \sigma_{at} > \sigma_{td,amm}). \hspace{0.1cm} [NO] = La \hspace{0.1cm} \text{verifica} \hspace{0.1cm} \text{NON} \hspace{0.1cm} \text{è soddisfatta} \hspace{0.1cm} (\sigma_{cc} > \sigma_{cd,amm}; \hspace{0.1cm} \sigma_{at} > \sigma_{td,amm}). \hspace{0.1cm} [NO] = La \hspace{0.1cm} \text{verifica} \hspace{0.1cm} \text{NON} \hspace{0.1cm} \text{è soddisfatta} \hspace{0.1cm} (\sigma_{cc} > \sigma_{cd,amm}; \hspace{0.1cm} \sigma_{at} > \sigma_{td,amm}). \hspace{0.1cm} [NO] = La \hspace{0.1cm} \text{verifica} \hspace{0.1cm} \text{NON} \hspace{0.1cm} \text{è soddisfatta} \hspace{0.1cm} (\sigma_{cc} > \sigma_{cd,amm}; \hspace{0.1cm} \sigma_{at} > \sigma_{td,amm}). \hspace{0.1cm} [NO] = La \hspace{0.1cm} \text{verifica} \hspace{0.1cm} \text{verifica} \hspace{0.1cm} \text{occ} \hspace{0$

ato
Nota Nella tabella, per ogni elemento, viene riportato il nodo della shell che ha il coefficiente di sicurezza (CS) più piccolo.

<u>VERIFICHE ALLO STATO LIMITE DI FESSURA</u>ZIONE

									Platee - v	verifica allo	stato limi	te di fes	surazione
Nodo	Dir	I d _{Cmb}	N _{Ed}	M_{Ed}	$\sigma_{\text{ct,f}}$	σ_{t}	8 _{sm}	$A_{\rm e}$	Δ_{sm}	W_d	W _{amm}	cs	Verificat o
			[N]	[N·m]	[N/mm ²]	[N/mm ²]		[cm ²]	[mm]	[mm]	[mm]		
Fondazione			Platea 1			AA	= PCA						
NOTA: L'ele	mento NON	è fessurato.	Di seguito	si riporta il	l nodo stru	tturale per	la quale si	riscontra la	a massima te	ensione di f	trazione(m	ax σ _{ct,f})	
00053	D	FRQ	16	-2.768	0,12	2,45	0 E+00	0	0	0,000	0,400	-	SI
	Р	QPR	16	-2.768	0,12	2,45	0 E+00	0	0	0,000	0,300	-	SI
	C	FRQ	15	-11.986	0,51	2,45	0 E+00	0	0	0,000	0,400	-	SI
	5	QPR	15	-11.986	0,51	2,45	0 E+00	0	0	0,000	0,300	-	SI

LEGENDA:

Dir Direzione [P] = principale (asse locale 1) - [S] = secondaria (asse locale 2).

AA Identificativo dell'aggressività dell'ambiente: [PCA] = "Ordinario"; [MDA] = "Aggressivo"; [MLA] = "Molto aggressivo".

Identificativo della Combinazione di Azione: [QPR] = Quasi Permanente - [FRQ] = Frequente - [RAR] = Rara.

 $\mathbf{N}_{\mathsf{Ed}},\,\mathbf{M}_{\mathsf{Ed}}$ Sollecitazioni di progetto.

 $\sigma_{ct,f}$ Tensione massima di trazione nel calcestruzzo per la fessurazione, calcolata nell'ipotesi di calcestruzzo resistente a trazione. Se tale valore è maggiore di σ_t la sezione è soggetta a fessurazione.

N.B. I valori negativi indicano una sezione interamente compressa. In tal caso le sollecitazioni forniscono il minimo valore di compressione.

Tensione massima di trazione nel calcestruzzo relativa allo stato limite di formazione delle fessure [relazione (4.1.13) del § 4.1.2.2.4 del DM 2018].

Sism Deformazione unitaria media delle barre di armatura.

Ae Area efficace del calcestruzzo teso.

 $oldsymbol{A_e}$ Area efficace del calcestruzzo teso. $oldsymbol{A_{sm}}$ Distanza media tra le fessure.

 $\begin{array}{ll} \textbf{W}_{\textbf{d}} & \text{Valore di calcolo di apertura massima delle fessure.} \\ \textbf{W}_{\textbf{amm}} & \text{Valore ammissibile di apertura delle fessure.} \end{array}$

CS Coefficiente di Sicurezza (= W_d / W_{amm}). [NS] = Non Significativo (CS \geq 100). [-] = Fessurazioni nulle (W_d = 0).

Verificato [SI] = $W_d \le W_{amm}$; [NO] = $W_d > W_{amm}$

Pag. 93 di 119

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301_D_R_0120 Rev. 02

6.10. PORTALE SBARRE - FONDAZIONE N°14

6.10.1. CARATTERISTICHE DELLA FONDAZIONE

Trattasi di una piastra di base in c.a. a contatto con il terreno sulla quale viene impostato n.1 batolo per l'ancoraggio delle apparecchiature sovrastanti.

La piastra summenzionata ha dimensioni di 1,60x1,60x0,60m, mentre, il batolo ha dimensione 0,60x0,60x0,45m ed è provvisto di quattro tirafondi disposti a maglia quadrata, per l'installazione dell'apparecchiatura.

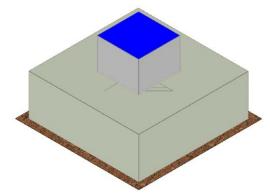


Fig. Vista assonometrica fondazione per sostegno tripolare

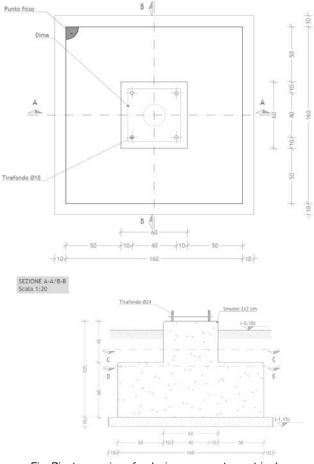


Fig. Pianta e sezione fondazione per sostegno tripolare

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301 D R 0120 Rev. 02

6.10.2. CARICHI

Si riporta di seguito il riepilogo dei carichi determinati nelle verifiche della sovrastruttura (scarichi in fondazione).

	PESI			TIRI CONDUT	TORI		VENTO X			VENTO \	′
Fx=		daN	Fx=	0	daN	Fx=	392	daN	Fx=		daN
Fy=	28	daN	Fy=		daN	Fy=		daN	Fy=	545	daN
Fz=	435	daN	Fz=		daN	Fz=		daN	Fz=	1220	daN
Mx=	55	daNm	Mx=		daNm	Mx=		daNm	Mx=	1510	daNm
My=		daNm	My=	0	daNm	My=	1653	daNm	My=		daNm
Mz=		daNm	Mz=		daNm	Mz=		daNm	Mz=		daNm
	MANUTENZIO	ONE X	ľ	MANUTENZIO	ONE Y		C.C. 31,5	5 kA			
Fx=	65	daN	Fx=		daN	Fx=		daN			
Fy=	40	daN	Fy=	50	daN	Fy=	115	daN			
Fz=	252	daN	Fz=	120	daN	Fz=	140	daN			
Mx=		daNm	Mx=	254	daNm	Mx=	341	daNm			
			My=		daNm	My=	0	daNm	1		
Му=	335	daNm	iviy=		uaiviii	,	Ü				

I carichi permanenti strutturali e non strutturali derivanti dal peso proprio della fondazione e da quello del piazzale sono:

Carichi sugli elei	menti
elemento	carico
Peso proprio batolo	405 [daN]
Peso proprio platea	3.840 [daN]
Peso piazzale di riporto su platea	900 [daN/mq]

6.10.3. BATOLO

VERIFICHE PRESSOFLESSIONE DEVIATA ALLO STATO LIMITE ULTIMO

											Batol	i (CA)) - V e	rifiche	e pres	sofl	essio	ne de	viata	allo :	SLU
1				00	D.4										Late	1			Lato	2	
Lv	N _{Ed}	IVI _{Ed,X}	$M_{Ed,Y}$	CS	$M_{Rd,X}$	$M_{Rd,Y}$	N _{Ed,max}	N _R	α	R _f	ΨVe	φvi	Φw	L	n _{rea}	n_f	ф	L	n _{rea}	n _f	ф
	[N]	[N·m]	[N·m]		[N·m]	[N·m]	[N]	[N]			[mm]	[mm]	[mm]				[mm]	[cm]			[mm]
Batolo 1																					
	33.750	36.366	-	4.19[V]	152.571	152.571	11.550	3.445.662	1,00	NO	12	-	12	60	1	2	12	60	1	2	12

LEGENDA:

Livello o piano di appartenenza dell'elemento strutturale. Lν

CS Coefficiente di sicurezza ([NS] = Non Significativo se CS ≥ 100; [VNR]= Verifica Non Richiesta; Informazioni aggiuntive sulla condizione: [V] = statica; [E] =

eccezionale; [S] = sismica; [N] = sismica non lineare).

 $N_{Ed,max}$ Massimo sforzo di compressione. Sforzo Normale resistente. N_R

Esponente per la valutazione del coefficiente di sicurezza. α

 R_f [SI] = elemento con presenza di rinforzo; [NO] = elemento senza rinforzo.

Sollecitazioni di progetto ($N_{Ed} > 0$: compressione). N_{Ed}

 $M_{\text{Ed},X}$, $M_{\text{Ed},Y}$

 $M_{Rd,X}$ Momento Resistente intorno ad X e Y. $M_{Rd,Y}$

фve, **ф**vi,

Diametri, rispettivamente, delle barre di acciaio nei vertici esterni e nei vertici interni e delle staffe; $[\phi_{Vi}]$ = Significativo e valorizzato solo in caso di sezione

L, n_{req}, Per sezione del pilastro rettangolare e armata simmetricamente, lunghezza, numero di registri, numero di barre e relativo diametro per il lato 1 e 2 della sezione. Se la sezione considerata non è rettangolare e/o simmetricamente armata, tali colonne sono vuote e le informazioni riguardanti l'armatura sono n_f, φ

riportate per ciascun lato in apposita casella di testo.

VERIFICHE A TAGLIO PER PRESSOFLESSIONE DEVIATA ALLO STATO LIMITE ULTIMO

									Batoli	(CA)	- Verifi	che a tag	lio per pr	essofless	ione devi	ata allo	SLU
1	\ \	v	00	V	Rcd	V _R	!sd,s		$V_{Rd,f}$		V	Rd,i	V	Α	sw		_
Lv	V _{Ed,3}	$V_{Ed,2}$	CS	Х	Υ	Х	Υ	Х		Υ	Х	Υ	V _{Rd,s}	Х	Υ	S _{Asw}	Rf
	[N]	[N]		[N]	[N]	[N]	[N]	[N]		[N]	[N]	[N]	[N]	[cm ² /cm]	[cm²/cm]	[cm]	
Batolo 1																	
	11.250	6.855	NS	1275676	1275676	1439184	1439184	0		0	0	0	-	0,75398	0,75398	6	NO

LEGENDA:

Livello o piano di appartenenza dell'elemento strutturale. Lv

 $V_{Ed,3}$ Taglio di progetto in direzione 3. Taglio di progetto in direzione 2. $V_{Ed,2}$

Coefficiente di sicurezza ([NS] = Non Significativo se CS ≥ 100; [VNR]= Verifica Non Richiesta; Informazioni aggiuntive sulla condizione: [V] = statica; [E] = eccezionale; [S] = sismica; [N] = sismica non lineare). CS

 V_{Rcd} Resistenza a taglio compressione del calcestruzzo.

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301 D R 0120 Rev. 02

								Ва	atoli (CA)) - Verific	he a tagl	lio per pr	essoflession	ne devi	ata allo	SLU
Lv	v	v	CS	V	Rcd	V	Rsd,s	V	Rd,f	V	Rd,i	V	Asw		_	В
LV	V Ed,3	V _{Ed,2}	CS	Х	Υ	Х	Υ	Х	Υ	Х	Υ	V _{Rd,s}	Х	Υ	S _{Asw}	Rf
	[N]	[N]		[N]	[N]	[N]	[N]	[N]	[N]	[N]	[N]	[N]	[cm ² /cm] [cm²/cm]	[cm]	

 $V_{Rsd,s}$ Resistenza a taglio trazione delle staffe $\boldsymbol{V}_{\text{Rd,f}}$ Resistenza a taglio dovuta al rinforzo FRP.

 $V_{\text{Rd,i}}$ Contributo acciaio al Taglio ultimo dovuto all'incamiciatura in acciaio.

 $V_{\text{Rd,s}}$ Resistenza a taglio per scorrimento. Area delle staffe per unità di lunghezza. \mathbf{A}_{sw} S_{Asw} Passo massimo staffe da normativa.

 $R_{\rm f}$ [SI] = elemento con presenza di rinforzo; [NO] = elemento senza rinforzo.

VERIFICHE A PRESSOFLESSIONE DEVIATA ALLO STATO LIMITE DI DANNO

										Bato	li (CA) - Ve	rifich	e pre	ssof	lessio	ne de	viata	allo	SLD
1	N.	D.4	D.A	CC	N.A	N.4	NI.	N.						Late	o 1			Late	2	
LV	N _{Ed}	$M_{Ed,X}$	$M_{Ed,Y}$	CS	$M_{Rd,X}$	$M_{Rd,Y}$	N _{Ed,max}	N _R	α	ΨVe	Ψvi	φw	L	n _{rea}	n_f	ф	L	n _{rea}	n_f	ф
	[N]	[N·m]	[N·m]		[N·m]	[N·m]	[N]	[N]		[mm]	[mm]	[mm]	[cm]			[mm]	[cm]			[mm]
Batolo 1																				
	33.750	36.366	-	4.89[S]	177.981	177.981	11.550	5.168.493	1,00	12	12	12	60	1	2	12	60	1	2	12

LEGENDA:

Livello o piano di appartenenza dell'elemento strutturale Lν

CS Coefficiente di sicurezza ([NS] = Non Significativo se CS ≥ 100; [VNR]= Verifica Non Richiesta; Informazioni aggiuntive sulla condizione: [V] = statica; [E] =

eccezionale; [S] = sismica; [N] = sismica non lineare).

 $N_{\text{Ed,max}}$ Massimo sforzo di compressione. \textbf{N}_{R} Sforzo Normale resistente.

Esponente per la valutazione del coefficiente di sicurezza.

 N_{Ed} , Sollecitazioni di progetto (N_{Ed} > 0: compressione).

 $M_{Ed,X}$ $M_{\text{Ed},Y}$

Momento Resistente intorno ad X e Y. $M_{Rd,X}$

 $M_{Rd,Y}$

Diametri, rispettivamente, delle barre di acciaio nei vertici esterni e nei vertici interni e delle staffe; $[\phi_{ij}]$ = Significativo e valorizzato solo in caso di sezione φ_{Ve}, φ_{Vi},

φst

Per sezione del pilastro rettangolare e armata simmetricamente, lunghezza, numero di registri, numero di barre e relativo diametro per il lato 1 e 2 della L, n_{req}, n_f, ϕ

sezione. Se la sezione considerata non è rettangolare e/o simmetricamente armata, tali colonne sono vuote e le informazioni riguardanti l'armatura sono

riportate per ciascun lato in apposita casella di testo.

VERIFICHE A TAGLIO PER PRESSOFLESSIONE DEVIATA ALLO STATO LIMITE DI DANNO

								Bato	III (CA) -	verificne	a tagiio	per press	oriession	e deviata a	IIIO SLD
1	v	v	cs	V	Rcd	V _R	rsd,s	V_R	d,f	V	Rd,i	v	А	sw	
LV	V _{Ed,3}	V _{Ed,2}	CS	Х	Υ	Х	Υ	Х	Υ	Х	Υ	V _{Rd,s}	Х	Υ	S _{Asw}
	[N]	[N]		[N]	[N]	[N]	[N]	[N]	[N]	[N]	[N]	[N]	[cm ² /cm]	[cm ² /cm]	[cm]
Batolo 1															
	11.250	6.855	61.30	1913514	1913514	689611	689611	0	0	0	0	-	0.75398	0.75398	6

LEGENDA:

Livello o piano di appartenenza dell'elemento strutturale Lv

 $V_{Ed,3}$ Taglio di progetto in direzione 3. $V_{\text{Ed,2}}$ Taglio di progetto in direzione 2.

Coefficiente di sicurezza ([NS] = Non Significativo se CS ≥ 100; [VNR]= Verifica Non Richiesta; Informazioni aggiuntive sulla condizione: [V] = statica; [E] =

eccezionale; [S] = sismica; [N] = sismica non lineare).

 V_{Rcd} Resistenza a taglio compressione del calcestruzzo. $V_{Rsd,s}$ Resistenza a taglio trazione delle staffe.

 $V_{Rd,f}$ Resistenza a taglio dovuta al rinforzo FRP Contributo acciaio al Taglio ultimo dovuto all'incamiciatura in acciaio. $V_{Rd.i}$

 $V_{\text{Rd,s}}$ Resistenza a taglio per scorrimento. Area delle staffe per unità di lunghezza. A_{sw} Passo massimo staffe da normativa. SASW

VERIFICHE DELLE TENSIONI DI ESERCIZIO

												Batoli	- verific	he delle t	ensioni (di esercizio
Lv				ompressione of			rzo				Tra	Trazio zione acc	one accia ciaio/FRF			
Tp _{rnf}	I d _{Cmb}	σ_{cc}	$\sigma_{cd,amm}$	N_{Ed}	$M_{Ed,3}$	$M_{Ed,2}$	CS	Verificato	I d _{Cmb}	σ_{at}	$\sigma_{td,amm}$	N _{Ed}	$M_{Ed,3}$	$M_{Ed,2}$	CS	Verificato
		[N/mm ²]	[N/mm ²]	[N]	[N·m]	[N·m]				[N/mm ²]	[N/mm ²]	[N]	[N·m]	[N·m]		
Batolo 1																
	RAR	0,799	18,43	28.870	-24.424	3.642	23.05	SI	RAR	8,327	360,00	16.670	-6.872	21.936	43.23	SI
	QPR	0,030	13,82	11.550	-	-	NS	SI								

LEGENDA:

Livello o piano di appartenenza dell'elemento strutturale. L'eventuale lettera tra parentesi distingue i diversi tratti del pilastro al livello considerato. Lν

Rinf. Indica la presenza del rinforzo sulla sezione di verifica.

Identificativo della Combinazione di Azione: [QPR] = Quasi Permanente - [FRQ] = Frequente - [RAR] = Rara. Id_{Cmb}

 σ_{cc} Tensione massima di compressione nel calcestruzzo.

Tensione ammissibile per la verifica a compressione del calcestruzzo. $\sigma_{cd,amm}$ Sollecitazioni di progetto.

N_{Ed}, M_{Ed,3},

 $M_{Ed,2}$

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301 D R 0120 Rev. 02

													Bato	li - verific	he delle t	ensioni	di esercizio
ı	Lv					ione calce	estruzzo Izzo rinfoi	zo				Tra		ione accia			
ı	Tp _{rnf}	Id _{Cmb}	σ _{cc} [N/mm ²]	σ _{cd,amm} [N/mm ²]	N _{Ed}	M _{Ed,3}	M _{Ed,2}	CS	Verificato	Id _{Cmb}	σ _{at}	σ _{td,amm} [N/mm ²]	N _{Ed}	M _{Ed,3}	M _{Ed,2}	CS	Verificato

 σ_{at} Tensione massima di trazione nell'acciaio della Trave/Rinforzo o nel FRP.

Tensione ammissibile per la verifica a trazione dell'acciaio. $\sigma_{td,a}$

CS Coefficiente di Sicurezza (= $\sigma_{cd,amm}/\sigma_{cc}$; $\sigma_{td,amm}/\sigma_{at}$). [NS] = Non Significativo (CS \geq 100).

Verificato [Si] = $\sigma_{cc} \le \sigma_{cd,amm}$; $\sigma_{at} \le \sigma_{td,amm}$. [NO] = $\sigma_{cc} > \sigma_{cd,amm}$; $\sigma_{at} > \sigma_{td,amm}$

VERIFICA ALLO STATO LIMITE DI FESSURAZIONE

									Batoli -	verifica allo	o stato limi	ite di fe	ssurazione
Lv	Id _{Cmb}	N _{Ed}	$M_{Ed,3}$	$M_{Ed,2}$	$\sigma_{\text{ct,f}}$	σt	€ _{sm}	$A_{\rm e}$	Δ_{sm}	W_d	W _{amm}	CS	Verificato
		[N]	[N·m]	[N·m]	[N/mm ²]	[N/mm ²]		[cm ²]	[mm]	[mm]	[mm]		
Batolo 1													
				AA= PCA									
-	FRQ	7.500	-	3.306	0,07	2,45	0 E+00	0	0	0,000	0,400	-	SI
-	QPR	7.500	-	-	-0,02	2,45	0 E+00	0	0	0,000	0,300	-	SI

LEGENDA:

Lv Livello o piano di appartenenza dell'elemento strutturale. L'eventuale lettera tra parentesi distingue i diversi tratti del pilastro al livello considerato.

Identificativo dell'aggressività dell'ambiente: [PCA] = "Ordinario"; [MDA] = "Aggressivo"; [MLA] = "Molto aggressivo". Identificativo della Combinazione di Azione: [QPR] = Quasi Permanente - [FRQ] = Frequente - [RAR] = Rara. AΑ Id_{Cmb}

N_{Ed}, M_{Ed,3}, Sollecitazioni di progetto.

 $M_{\text{Ed,2}}$

Tensione massima di trazione nel calcestruzzo per la fessurazione, calcolata nell'ipotesi di calcestruzzo resistente a trazione. Se tale valore è maggiore di $\sigma_{ct,f}$

σt la sezione è soggetta a fessurazione.

N.B. I valori negativi indicano una sezione interamente compressa. In tal caso le sollecitazioni forniscono il minimo valore di compressione.

Tensione massima di trazione nel calcestruzzo relativa allo stato limite di formazione delle fessure [relazione (4.1.13) del § 4.1.2.2.4 del DM 2018]. σ_t

ε_{sm} Α_e Deformazione unitaria media delle barre di armatura.

Area efficace del calcestruzzo teso. Distanza media tra le fessure.

 Δ_{sm} Valore di calcolo di apertura massima delle fessure

Wamm Valore ammissibile di apertura delle fessure.

 $\label{eq:coefficiented} \mbox{Coefficiente di Sicurezza (=W_d / W_{amm}). [NS] = Non Significativo (CS ≥ 100). [-] = Fessurazioni nulle ($W_d = 0$). [-] = Fessurazioni nulle ($ CS

Verificato $[SI] \,=\, W_d \leq\, W_{amm} \,; \, [NO] \,=\, W_d >\, W_{amm} \,$

6.10.4. PLATEE

VERIFICHE PRESSOFLESSIONE RETTA ALLO STATO LIMITE ULTIMO

														Plate	e - Ve	rifiche	pressofle	essione re	tta allo SLU
Dir	Pos	Nodo	N_{Ed}	M_{Ed}	A_s	A_{df}	CS	Nodo	N_{Ed}	M_{Ed}	A_s	A_{df}	CS	Nodo	N_{Ed}	M_{Ed}	A_s	A_{df}	CS
			[N]	[N·m]	[cm²/cm]	[cm ² /cm]			[N]	[N·m]	[cm ² /cm]	[cm ² /cm]			[N]	[N·m]	[cm ² /cm]	[cm ² /cm]	
Fond	dazior	ne			Plate	ea 1													
P	S	00003	0	364	0,04524	0,04524	NS	00004	0	0	0,04524	0,04524	-	00005	0	0	0,04524	0,04524	-
	I		0	4.040	0,04524	0,04524	25,37		0	6.783	0,04524	0,04524	15,11		0	8.649	0,04524	0,04524	11,85
S	S		0	0	0,04524	0,04524	-		0	0	0,04524	0,04524	-		0	733	0,04524	0,04524	NS
	1		0	8.172	0,04524	0,04524	12,54		0	7.432	0,04524	0,04524	13,79		0	4.006	0,04524	0,04524	25,59
Р	S	00006	0	0	0,04524	0,04524	-	00007	0	0	0,04524	0,04524	-						
	I		0	8.092	0,04524	0,04524	12,67		0	11.862	0,04524	0,04524	8,64						
S	S		0	0	0,04524	0,04524	-		0	0	0,04524	0,04524	-						
	1		0	7.248	0,04524	0,04524	14,14		0	11.784	0,04524	0,04524	8,70						

LEGENDA:

Dir Direzione [P] = principale (asse locale 1) - [S] = secondaria (asse locale 2).

Posizione [S] = superiore - [I] = inferiore. Pos

 $\boldsymbol{A}_{\boldsymbol{s}}$ Area delle armature esecutive per unità di lunghezza.

Armatura disponibile per la flessione $\begin{array}{c} \textbf{A}_{df} \\ \textbf{CS} \end{array}$

Coefficiente di sicurezza ([NS] = Non Significativo se $CS \ge 100$; [VNR]= Verifica Non Richiesta; Informazioni aggiuntive sulla condizione: [V] = statica; [E] = eccezionale; [S] = sismica; [N] = sismica non lineare).

 N_{Ed} Sollecitazioni di progetto.

 M_{Ed}

VERIFICHE PRESSOFLESSIONE RETTA ALLO STATO LIMITE DI DANNO

											Pla	tee - Veri	fiche pre	ssoflessi	one retta	allo SLD
Dir	Pos	Nodo	N_{Ed}	M _{Ed}	A_s	CS	Nodo	N_{Ed}	M _{Ed}	A_s	CS	Nodo	N_{Ed}	M_{Ed}	A_s	CS
			[N]	[N·m]	[cm ² /cm]			[N]	[N·m]	[cm ²]			[N]	[N·m]	[cm ²]	
Fondaz	zione			Pla	tea 1											
P	S	00003	0	0	0,04524	-	00004	0	0	0,04524	-	00005	0	0	0,04524	-
	I		0	3.184	0,04524	37,34		0	3.187	0,04524	37,30		0	3.188	0,04524	37,29
S	S		0	0	0,04524	-		0	0	0,04524	-		0	0	0,04524	-
	I		0	3.173	0,04524	37,47		0	3.179	0,04524	37,40		0	3.184	0,04524	37,34
P	S	00006	0	0	0,04524	-	00007	0	0	0,04524	-					
	I		0	3.187	0,04524	37,30		0	5.361	0,04524	22,18					
S	S		0	0	0,04524	-		0	0	0,04524	-					
	I		0	3.180	0,04524	37,38		0	5.278	0,04524	22,52					

LEGENDA:

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301 D R 0120 Rev. 02

											Pla	atee - Ver	ifiche pre	essoflessi	one retta	allo SLD
Dir	Pos	Nodo	N_{Ed}	M _{Ed}	As	CS	Nodo	N _{Ed}	M _{Ed}	As	CS	Nodo	N _{Ed}	M _{Ed}	As	CS
			[N]	[N·m]	[cm ² /cm]			[N]	[N·m]	[cm ²]			[N]	[N·m]	[cm ²]	

Dir Direzione [P] = principale (asse locale 1) - [S] = secondaria (asse locale 2).

Posizione [S] = superiore - [I] = inferiore.

Area delle armature esecutive per unità di lunghezza. Pos

A_s CS Coefficiente di sicurezza ([NS] = Non Significativo se CS ≥ 100; [VNR]= Verifica Non Richiesta; Informazioni aggiuntive sulla condizione: [V] = statica; [E] =

eccezionale; [S] = sismica; [N] = sismica non lineare).

Sollecitazioni di progetto. N_{Ed} , M_{Ed}

VERIFICHE DELLE TENSIONI DI ESERCIZIO

											Plate	e - verifich	ne delle tei	nsioni (di esercizio
Nodo/	Dir		Co	Compres mpression	ssione cald e calcestr		rzo					azione acci acciaio/FR			
Tp _{rnf}		I d _{Cmb}	σ_{cc}	σ _{cd,amm}	N _{Ed}	M _{Ed}	CS	Verificato	Id _{Cmb}	σ_{at}	σ _{td,amm}	N_{Ed}	M _{Ed}	CS	Verificato
			[N/mm ²]	[N/mm ²]	[N]	[N·m]				[N/mm ²]	[N/mm ²]	[N]	[N·m]		
Fondazione				Platea 1											
	D	RAR	0,136	18,43	0	-8.590	NS	SI	RAR	1,771	360,00	0	-8.590	NS	SI
00007	Р	QPR	0,081	13,82	0	-5.121	NS	SI	-	-	-	-	-	-	-
00007	c	RAR	0,135	18,43	0	-8.534	NS	SI	RAR	1,759	360,00	0	-8.534	NS	SI
	3	QPR	0,081	13,82	0	-5.087	NS	SI	-	-	-	-	-	-	-

LEGENDA:

Rinf. Indica la presenza del rinforzo sulla sezione di verifica.

Direzione [P] = principale (asse locale 1) - [S] = secondaria (asse locale 2). Dir

Identificativo della Combinazione di Azione: [QPR] = Quasi Permanente - [FRQ] = Frequente - [RAR] = Rara. Id_{Cmt}

Tensione massima di compressione nel calcestruzzo della Trave/Rinforzo. σ_{cc} Tensione ammissibile per la verifica a compressione del calcestruzzo $\sigma_{cd,amm}$ Tensione massima di trazione nell'acciaio della Trave/Rinforzo o nel FRP σ_{at} Tensione ammissibile per la verifica a trazione dell'acciaio/rinforzo. $\sigma_{td,am}$

 N_{Ed} , M_{Ed} Sollecitazioni di progetto.

Coefficiente di Sicurezza (= $\sigma_{cd, amm}/\sigma_{cc}$; $\sigma_{td, amm}/\sigma_{at}$). [NS] = Non Significativo (CS \geq 100). CS

Verificato $[SI] = \text{La verifica è soddisfatta } (\sigma_{\text{cc}} \leq \sigma_{\text{cd,amm}}; \ \sigma_{\text{at}} \leq \sigma_{\text{td,amm}}). \ [NO] = \text{La verifica NON è soddisfatta } (\sigma_{\text{cc}} > \sigma_{\text{cd,amm}}; \ \sigma_{\text{at}} > \sigma_{\text{td,amm}}).$ Nota Nella tabella, per ogni elemento, viene riportato il nodo della shell che ha il coefficiente di sicurezza (CS) più piccolo.

VERIFICA ALLO STATO LIMITE DI FESSURAZIONE

									Platee - v	erifica allo	stato limi	te di fe	ssurazione
Nodo	Dir	I d _{Cmb}	N _{Ed}	M _{Ed}	σ _{ct,f}	σ_{t}	€ _{sm}	Ae	Δ_{sm}	W_d	W _{amm}	CS	Verificato
			[N]	[N·m]	[N/mm ²]	[N/mm ²]		[cm ²]	[mm]	[mm]	[mm]		
Fondazione	•		Platea 1			AA	A= PCA						
NOTA: L'ele	emento NON	è fessurato	Di seguito	si riporta	il nodo str	utturale pe	er la quale :	si riscontra	la massima	tensione o	li trazione	(max σ	et,f)
00007	D.	FRQ	-	-5.610	0,09	2,45	0 E+00	0	0	0,000	0,400	-	SI
	P	QPR	-	-5.121	0,08	2,45	0 E+00	0	0	0,000	0,300	-	SI
		FRQ	-	-5.572	0,09	2,45	0 E+00	0	0	0,000	0,400	-	SI
	5	QPR	-	-5.087	0,08	2,45	0 E+00	0	0	0,000	0,300	-	SI

LEGENDA:

Dir Direzione [P] = principale (asse locale 1) - [S] = secondaria (asse locale 2).

AΑ Identificativo dell'aggressività dell'ambiente: [PCA] = "Ordinario"; [MDA] = "Aggressivo"; [MLA] = "Molto aggressivo". Identificativo della Combinazione di Azione: [QPR] = Quasi Permanente - [FRQ] = Frequente - [RAR] = Rara. Id_{Cmb}

 N_{Ed} , M_{Ed} Sollecitazioni di progetto.

Tensione massima di trazione nel calcestruzzo per la fessurazione, calcolata nell'ipotesi di calcestruzzo resistente a trazione. Se tale valore è maggiore di σ₁ σ_{ct.f}

la sezione è soggetta a fessurazione. N.B. I valori negativi indicano una sezione interamente compressa. In tal caso le sollecitazioni forniscono il minimo valore di compressione

 σ_t Tensione massima di trazione nel calcestruzzo relativa allo stato limite di formazione delle fessure [relazione (4.1.13) del § 4.1.2.2.4 del DM 2018].

ε_{sm} Α_e Deformazione unitaria media delle barre di armatura.

Area efficace del calcestruzzo teso. Δ_{sm} Distanza media tra le fessure.

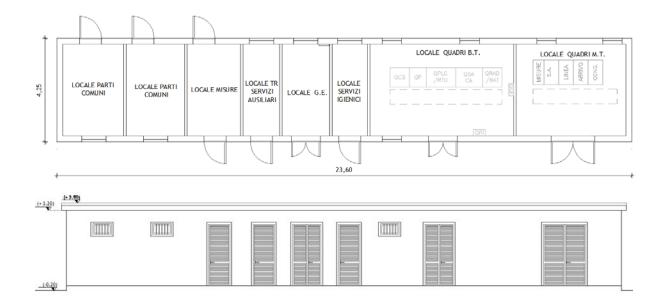
Valore di calcolo di apertura massima delle fessure.

War Valore ammissibile di apertura delle fessure.

Coefficiente di Sicurezza (= W_d / W_{amm}). [NS] = Non Significativo (CS \geq 100). [-] = Fessurazioni nulle (W_d = 0). CS

 $[SI] = W_d \le W_{amm}$; $[NO] = W_d > W_{amm}$

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)


Codifica Elaborato: 214301 D R 0120 Rev. 02

6.11. EDIFICIO QUADRI

6.11.1. DESCRIZIONE

L'edificio quadri sarà del tipo prefabbricato in cemento armato vibrato o messe in opera con pannelli prefabbricati, comprensive di vasca di fondazione prefabbricata in c.a.v., con porta di accesso e griglie di aereazione in vetroresina, impianto elettrico di illuminazione, copertura impermeabilizzata con guaina bituminosa e rete di messa a terra interna ed esterna.

Si riporta di seguito pianta e prospetto:

Si rimanda per ulteriori approfondimenti al documento A.16.b.9.4 Disegni architettonici cabine elettriche e box punto di consegna - Stazione elettrica di utenza - disegni architettonici edificio quadri.

6.11.2. ANALISI DEI CARICHI

Un'accurata valutazione dei carichi è un requisito imprescindibile di una corretta progettazione, in particolare per le costruzioni realizzate in zona sismica. Essa, infatti, è fondamentale ai fini della determinazione delle forze sismiche, in quanto incide sulla valutazione delle masse e dei periodi propri della struttura dai quali dipendono i valori delle accelerazioni (ordinate degli spettri di progetto).

La valutazione dei carichi e dei sovraccarichi è stata effettuata in accordo con le disposizioni del **D.M. Infrastrutture Trasporti** 17/01/2018 (G.U. 20/02/2018 n. 42 - Suppl. Ord. n. 8) "Aggiornamento delle Norme tecniche per le Costruzioni".

6.11.3. CONDIZIONI DI CARICO ELEMENTARE

Le condizioni di carico utilizzate per il calcolo risultano le seguenti:

						Tij	pologie di carico
N _{id}	Descrizione	F+E	+/- F	CDC	Ψο	Ψ1	Ψ2
0001	Carico Permanente	SI	NO	Permanente	1,00	1,00	1,00
0002	Permanenti NON Strutturali	SI	NO	Permanente	1,00	1,00	1,00
0003	Magazzini	SI	NO	Lunga	1,00	0,90	0,80
0004	Coperture	SI	NO	Media	0,00	0,00	0,00
0005	Carico da Neve <= 1000 m s.l.m.	SI	NO	Breve	0,50	0,20	0,00
0006	Sisma X	-	-	-	-	-	-
0007	Sisma Y	-	-	-	_	-	-
8000	Sisma Z	-	-	-	-	-	-
0009	Sisma Ecc.X	-	-	-	-	-	-
0010	Sisma Ecc.Y	_	-	-	_	_	<u>-</u>

LEGENDA:

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301 D R 0120 Rev. 02

						Ti	pologie di carico					
N _{id}	Descrizione	F+E	+/- F	CDC	Ψο	Ψ1	Ψ2					
N_{id}	Numero identificativo della Tipologia di Carico.											
F+E	Indica se la tipologia di carico considerata è AGENTE con il sisma.											
+/- F	E Indica se la tipologia di carico considerata è AGENTE con il sisma. F Indica se la tipologia di carico è ALTERNATA (cioè considerata due volte con segno opposto) o meno.											

CDC Indica la classe di durata del carico.

NOTA: dato significativo solo per elementi in materiale legnoso.

 ψ_0 Coefficiente riduttivo dei carichi allo SLU e SLE (carichi rari).

 ψ_0 Coefficiente riduttivo dei carichi allo SLE (carichi frequenti).

ψ₂ Coefficiente riduttivo dei carichi allo SLE (carichi frequenti e quasi permanenti).

6.11.4. COMBINAZIONI DELLE AZIONI

6.11.4.1. STATI LIMITE ULTIMI

Le combinazioni delle azioni assunte per le verifiche agli stati limite ultimi (SLV) delle fondazioni, in accordo a quanto previsto dall'attuale normativa, sono elencate nei paragrafi che seguono.

6.11.4.1.1. COMBINAZIONE FONDAMENTALE

Vengono riportate, di seguito, le combinazioni fondamentali con i vari coefficienti

$$\gamma_{\mathsf{G1}} \cdot \mathsf{G}_1 + \gamma_{\mathsf{G2}} \cdot \mathsf{G}_2 + \gamma_{\mathsf{P}} \cdot \mathsf{P} + \gamma_{\mathsf{Q1}} \cdot \mathsf{Q}_{\mathsf{K1}} + \gamma_{\mathsf{Q2}} \cdot \Psi_{\mathsf{02}} \cdot \mathsf{Q}_{\mathsf{k2}} + \gamma_{\mathsf{Q3}} \cdot \Psi_{\mathsf{03}} \cdot \mathsf{Q}_{\mathsf{k3}} + \dots$$

con:

 γ_{G1} = coefficiente parziale per i carichi permanenti;

 G_1 = carichi permanenti;

 γ_{G2} = coefficiente parziale per i carichi permanenti non strutturali;

G₂ = carichi permanenti non strutturali;

 γ_P = coefficiente parziale per pretensione e precompressione;

P = pretensione e precompressione;

 γ_{O1} = coefficiente parziale per l'azione variabile dominante;

 Q_{K1} = azione variabile dominante;

γ_{Oi} = coefficienti parziali per le azioni variabili;

 Ψ_{0i} = coefficienti di combinazione;

 Q_{Kj} = azioni variabili.

sono state costruite considerando le azioni elementari, i coefficienti di combinazione relativi alle relative azioni variabili ed i coefficienti parziali delle azioni contemplati per i diversi carichi, rispettivamente per gli:

- stati limite ultimi di resistenza della struttura (STR);
- stati limite ultimi di resistenza del terreno (GEO).

Il peso della fondazione, del terreno sovrastante e della sovra-struttura sono stati considerati carichi permanenti.

6.11.4.1.2. COMBINAZIONI DI AZIONI IN ASSENZA DI SISMA – SLU

Le combinazioni delle azioni in assenza di sisma allo SLU utilizzate per il calcolo risultano le seguenti:

			SLU: Non S	ismica - Strutturale s	enza azioni geotecniche
	CC 01	CC 02	CC 03	CC 04	CC 05
I d _{Comb}	Carico Permanente	Permanenti NON Strutturali	Magazzini	Coperture	Carico da Neve <= 1000 m s.l.m.
01	1,00	0,00	0,00	0,00	0,00
02	1,00	0,00	0,00	0,00	0,75
03	1,00	0,00	1,50	0,00	0,00
04	1,00	0,00	1,50	0,00	0,75
05	1,00	1,50	0,00	0,00	0,00
06	1,00	1,50	0,00	0,00	0,75
07	1,00	1,50	1,50	0,00	0,00

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301_D_R_0120 Rev. 02

			SLU: Non S	ismica - Strutturale se	enza azioni geotecniche
	CC 01	CC 02	CC 03	CC 04	CC 05
I d _{Comb}	Carico Permanente	Permanenti NON	Magazzini	Coperture	Carico da Neve <=
		Strutturali			1000 m s.l.m.
08	1,00	1,50	1,50	0,00	0,75
09	1,00	0,00	0,00	1,50	0,00
10	1,00	0,00	0,00	1,50	0,75
11	1,00	0,00	1,50	1,50	0,00
12	1,00	0,00	1,50	1,50	0,75
13	1,00	1,50	0,00	1,50	0,00
14	1,00	1,50	0,00	1,50	0,75
15	1,00	1,50	1,50	1,50	0,00
16	1,00	1,50	1,50	1,50	0,75
17	1,00	0,00	0,00	0,00	1,50
18	1,00	0,00	1,50	0,00	1,50
19	1,00	1,50	0,00	0,00	1,50
20	1,00	1,50	1,50	0,00	1,50
21	1,30	0,00	0,00	0,00	0,00
22	1,30	0,00	0,00	0,00	0,75
23	1,30	0,00	1,50	0,00	0,00
24	1,30	0,00	1,50	0,00	0,75
25	1,30	1,50	0,00	0,00	0,00
26	1,30	1,50	0,00	0,00	0,75
27	1,30	1,50	1,50	0,00	0,00
28	1,30	1,50	1,50	0,00	0,75
29	1,30	0,00	0,00	1,50	0,00
30	1,30	0,00	0,00	1,50	0,75
31	1,30	0,00	1,50	1,50	0,00
32	1,30	0,00	1,50	1,50	0,75
33	1,30	1,50	0,00	1,50	0,00
34	1,30	1,50	0,00	1,50	0,75
35	1,30	1,50	1,50	1,50	0,00
36	1,30	1,50	1,50	1,50	0,75
37	1,30	0,00	0,00	0,00	1,50
38	1,30	0,00	1,50	0,00	1,50
39	1,30	1,50	0,00	0,00	1,50
40	1,30	1,50	1,50	0,00	1,50

LEGENDA:

Id_{Comb}

Numero identificativo della Combinazione di Carico. Identificativo della tipologia di carico nella relativa tabella.

CC 01= Carico Permanente

CC 02= Permanenti NON Strutturali

CC 03= Magazzini

CC 04= Coperture

CC 05= Carico da Neve <= 1000 m s.l.m.

6.11.4.1.3. COMBINAZIONI DI AZIONI IN PRESENZA DI SISMA – SLU

Le combinazioni delle azioni in presenza di sisma allo SLU utilizzate per il calcolo risultano le seguenti:

			SLU: S	ismica - Strutturale s	enza azioni geotecniche
	CC 01	CC 02	CC 03	CC 04	CC 05
Id _{Comb}	Carico Permanente	Permanenti NON	Magazzini	Coperture	Carico da Neve <=
		Strutturali			1000 m s.l.m.
01	1,00	1.00	0.80	0.00	0.00

LEGENDA:

CC

Id_{Comb} Numero identificativo della Combinazione di Carico.

Identificativo della tipologia di carico nella relativa tabella.

CC 01= Carico Permanente

CC 02= Permanenti NON Strutturali

CC 03= Magazzini CC 04= Coperture

CC 05= Carico da Neve <= 1000 m s.l.m.

6.11.4.2. STATI LIMITE DI ESERCIZIO

Le combinazioni delle azioni assunte per le verifiche agli stati limite di esercizio della fondazione, in accordo a quanto previsto dall'attuale normativa D.M. 2018 al §2.5.3, sono quelle relative alle combinazioni di carico menzionate in precedenza.

Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio(SLE) irreversibili

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301 D R 0120 Rev. 02

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE)reversibili:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

dove:

valore caratteristico della j-esima azione permanente; G_{ki}

 P_{kh} valore caratteristico della h-esima deformazione impressa;

 Q_{kl} valore caratteristico dell'azione variabile di base di ogni combinazione;

 Q_{ki} valore caratteristico della i-esima azione variabile;

coefficiente atto a definire i valori delle azioni ammissibili di durata breve ma ancora significativi nei riguardi della ψ_{0i} possibile concomitanza con altre azioni variabili;

 ψ_{1i} coefficiente atto a definire i valori delle azioni ammissibili ai frattili di ordine 0,95 delle distribuzioni dei valori istantanei;

coefficiente atto a definire i valori quasi permanenti delle azioni ammissibili ai valori medi delle distribuzioni dei valori ψ_{2i} istantanei.

6.11.4.2.1. COMBINAZIONI DI AZIONI QUASI PERMANENTE - SLE

Le combinazioni delle azioni quasi permanenti allo SLE utilizzate per il calcolo risultano le seguenti:

				SERVIZIO(SLE): Quasi permanente				
	CC 01	CC 02	CC 03	CC 04	CC 05				
Id _{Comb}	Carico Permanente	Permanenti NON Strutturali	Magazzini	Coperture	Carico da Neve <= 1000 m s.l.m.				
01	1,00	1,00	0,80	0,00	0,00				
LEGENDA:									
Id _{Comb}	Numero identificativo della Combinazione di Carico.								
CC		Identificativo della tipologia di carico nella relativa tabella.							
	CC 01= C	arico Permanente							

CC 03= Magazzini

CC 02= Permanenti NON Strutturali

CC 04= Coperture

CC 05= Carico da Neve <= 1000 m s.l.m.

6.11.4.2.2. COMBINAZIONI DI AZIONI FREQUENTE - SLE

Le combinazioni delle azioni frequenti allo SLE utilizzate per il calcolo risultano le seguenti:

				SEF	RVIZIO(SLE): Frequente
	CC 01	CC 02	CC 03	CC 04	CC 05
Id _{Comb}	Carico Permanente	Permanenti NON Strutturali	Magazzini	Coperture	Carico da Neve <= 1000 m s.l.m.
01	1,00	1,00	0,80	0,00	0,00
02	1,00	1,00	0,90	0,00	0,00
03	1,00	1,00	0,80	0,00	0,20

LEGENDA:

 Id_{Comb} CC

Numero identificativo della Combinazione di Carico. Identificativo della tipologia di carico nella relativa tabella.

CC 01= Carico Permanente

CC 02= Permanenti NON Strutturali

CC 03= Magazzini

CC 04= Coperture

CC 05= Carico da Neve <= 1000 m s.l.m.

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301_D_R_0120 Rev. 02

6.11.4.2.3. COMBINAZIONI DI AZIONI RARA – SLE

Le combinazioni delle azioni rara allo SLE utilizzate per il calcolo risultano le seguenti:

				SERVIZIO(SLI	E): Caratteristica(RARA)
	CC 01	CC 02	CC 03	CC 04	CC 05
Id _{Comb}	Carico Permanente	Permanenti NON	Magazzini	Coperture	Carico da Neve <=
		Strutturali			1000 m s.l.m.
01	1,00	1,00	1,00	0,00	0,50
02	1,00	1,00	1,00	1,00	0,50
03	1,00	1,00	1,00	0,00	1,00

LEGENDA: Id_{Comb}

CC

Numero identificativo della Combinazione di Carico. Identificativo della tipologia di carico nella relativa tabella.

CC 01= Carico Permanente

CC 02= Permanenti NON Strutturali

CC 03= Magazzini CC 04= Coperture

CC 05= Carico da Neve <= 1000 m s.l.m.

6.11.5. VERIFICA FONDAZIONE

Le verifiche preliminare risultano soddisfatte.

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301_D_R_0120 Rev. 02

6.12. MURO DI RECINZIONE

6.12.1. CARATTERISTICHE GEOMETRICHE

La stazione elettrica di utenza sarà delimitata da recinzioni costituita da muri a mensola in cemento armato con base rettangolare di 0,90m ed un'altezza di1,60m.

Su tali elementi strutturali verranno inseriti degli elementi prefabbricati in c.a. di dimensione 10x15 cm che completano la recinzione della sottostazione.

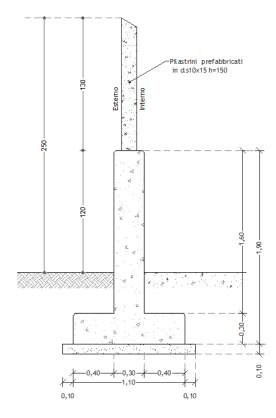


Fig. Sezione muro recinzione

6.12.2. CARICHI CONCENTRATI SUL PARAMENTO

					Cario	chi concentrati sul paramento
Carico	CC	S.R	Dis	Fx	Fz	My
			[m]	[N]	[N]	[Nm]
Muro di Recir	nzione					
Paramento						
	Carico permanente	L	1.25	0	320	0
	(Carico permanente)					
	Vento (Vento)	L	1.25	1.040	0	-1.100
	Vento (Vento)	i l	0.90	470	0	0

LEGENDA Carichi concentrati sul paramento

Carico Descrizione del carico:

CC Identificativo della condizione di carico, nella relativa tabella.

S.R Identificativo del sistema di riferimento considerato: [G] = Sistema di riferimento Globale X, Y, Z; [L] = Sistema di riferimento Locale 1, 2, 3

Dis Distanza del punto dalla base del paramento.

Fx, Fz
 Forza riferita agli assi del sistema di riferimento indicato nella colonna "S.R".
 My
 Momento riferito agli assi del sistema di riferimento indicato nella colonna "S.R".

6.12.3. SPINTE SUL PARAMENTO ALLO SLU

SPINTE SUL PARAMENTO ALLO SLU - Approccio 2, Combinazione (A1+M1							
Stato limite	Sisma	Fx	Fz	Angolo	PtApp		
		[N]	[N]	[gradi]	[m]		
Muro di Recinzione							
SLU	NO	709	298	58	X: 0.30; Z: 0.19		
SLU	NO	709	298	58	X: 0.30; Z: 0.19		

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301_D_R_0120 Rev. 02

		SPI	NTE SUL PARAMENTO A	LLO SLU - Approccio 2,	Combinazione (A1+M1+R3)
Stato limite	Sisma	Fx	Fz	Angolo	PtApp
		[N]	[N]	[gradi]	[m]
SLU	NO	709	298	58	X: 0.30; Z: 0.19
SLU	NO	922	387	58	X: 0.30; Z: 0.19
SLU	NO	922	387	58	X: 0.30; Z: 0.19
SLU	NO	922	387	58	X: 0.30; Z: 0.19
SLV	SI	874	367	54	X: 0.30; Z: 0.19
SLV	SI	818	343	54	X: 0.30; Z: 0.19

LEGENDA Spinte sul paramento allo SLU

Stato limite Tipo di Stato Limite.

Sisma Sisma agente nella Combinazione.
Fx Spinta Orizzontale [N].

Fz Spinta Offizzofitale [N].

Angolo della retta delimitante il cuneo di Spinta [gradi].

PtApp Punto di applicazione della Spinta [m].

6.12.4. SPINTE SUL CUNEO ALLO SLU

			SPINTE SUL CUNEO A	LLO SLU - Approccio 2,	Combinazione (A1+M1+R3)
Stato limite	Sisma	Fx	Fz	Angolo	PtApp
		[N]	[N]	[gradi]	[m]
Muro di Recinzione					
SLU	NO	1.694	711	58	X: 0.70; Z: -0.01
SLU	NO	1.694	711	58	X: 0.70; Z: -0.01
SLU	NO	1.694	711	58	X: 0.70; Z: -0.01
SLU	NO	2.202	925	58	X: 0.70; Z: -0.01
SLU	NO	2.202	925	58	X: 0.70; Z: -0.01
SLU	NO	2.202	925	58	X: 0.70; Z: -0.01
SLV	SI	2.087	876	54	X: 0.70; Z: -0.01
SLV	SI	1.955	820	54	X: 0.70; Z: -0.01

LEGENDA Spinte sul cuneo allo SLU

Stato limite Tipo di Stato Limite.

Sisma agente nella Combinazione.

Fx Spinta Orizzontale [N].
Fz Spinta Verticale [N].

Angolo Angolo della retta delimitante il cuneo di Spinta [gradi].

PtApp Punto di applicazione della Spinta [m].

6.12.5. SPINTE SUL PARAMENTO ALLO SLE

				SPINTE SU	JL PARAMENTO ALLO SLE
Combinazione	Sisma	Fx	Fz	Angolo	PtApp
		[N]	[N]	[gradi]	[m]
Muro di Recinzione					
RARA	NO	709	298	58	X: 0.30; Z: 0.19
RARA	NO	709	298	58	X: 0.30; Z: 0.19
FREQUENTE	NO	709	298	58	X: 0.30; Z: 0.19
FREQUENTE	NO	709	298	58	X: 0.30; Z: 0.19
QUASI PERMANENTE	NO	709	298	58	X: 0.30; Z: 0.19

LEGENDA Spinte sul paramento allo SLE

CombinazioneCombinazione di Carico allo SLE.SismaSisma agente nella Combinazione.

Fx Spinta Orizzontale [N].
Fz Spinta Verticale [N].

Angolo Angolo della retta delimitante il cuneo di Spinta [gradi].

PtApp Punto di applicazione della Spinta [m].

6.12.6. SPINTE SUL CUNEO ALLO SLE

				Si	PINTE SUL CUNEO ALLO SLE
Combinazione	Sisma	Fx	Fz	Angolo	PtApp
		[N]	[N]	[gradi]	[m]
Muro di Recinzione					
RARA	NO	1.694	711	58	X: 0.70; Z: -0.01
RARA	NO	1.694	711	58	X: 0.70; Z: -0.01
FREQUENTE	NO	1.694	711	58	X: 0.70; Z: -0.01
FREQUENTE	NO	1.694	711	58	X: 0.70; Z: -0.01
QUASI PERMANENTE	NO	1.694	711	58	X: 0.70; Z: -0.01

LEGENDA Spinte sul cuneo allo SLE

CombinazioneCombinazione di Carico allo SLE.SismaSisma agente nella Combinazione.FxSpinta Orizzontale [N].

Fz Spinta Orizzontale [N].

FRI-EL

RELAZIONE PRELIMINARE DELLE STRUTTURE

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301_D_R_0120 Rev. 02

SPINTE SUL CUNEO ALLO SLE									
Combinazione	Sisma	Fx	Fz	Angolo	PtApp				
		[N]	[N]	[gradi]	[m]				
			. F 113						

Angolo della retta delimitante il cuneo di Spinta [gradi]. Punto di applicazione della Spinta [m]. Angolo PtApp

6.12.7. SOLLECITAZIONI SUL PARAMENTO

Annressia	Ctata limita	Sioma	N		AZIONI SUL PARAMENTO
Approccio	Stato limite	Sisma	N [N]	My [Nm]	Tx [N]
Muro di Recinzione Sez. calcolo n.1 - Dis: 0.00					
Approccio 2, Combinazione	SLU	NO	9693	-59.00	-709.00
(A1+M1+R3) Approccio 2, Combinazione	SLU	NO	9693	-4203.00	-2974.00
(A1+M1+R3)		NO		-4203.00	-2774.00
Approccio 2, Combinazione (A1+M1+R3)	SLU	NO	9693	4084.00	1556.00
Approccio 2, Combinazione (A1+M1+R3)	SLU	NO	12599	-78.00	-922.00
Approccio 2, Combinazione (A1+M1+R3)	SLU	NO	12599	-4222.00	-3187.00
Approccio 2, Combinazione (A1+M1+R3)	SLU	NO	12599	4066.00	1343.00
Approccio 2, Combinazione (A1+M1+R3)	SLV	SI	10068	-554.00	-1636.00
Approccio 2, Combinazione (A1+M1+R3)	SLV	SI	9318	-545.00	-1576.00
-	SLE: Combinazione RARA	NO	9693	-2822.00	-2219.00
-	SLE: Combinazione RARA	NO	9693	2703.00	801.00
-	SLE: Combinazione FREQUENTE	NO	9693	-612.00	-1011.00
-	SLE: Combinazione FREQUENTE	NO	9693	493.00	-407.00
-	SLE: Combinazione QUASI PERMANENTE	NO	9693	-59.00	-709.00
Sez. calcolo n.2 - Dis: 0.15					
Approccio 2, Combinazione (A1+M1+R3)	SLU	NO	8407	-22.00	-255.00
Approccio 2, Combinazione (A1+M1+R3)	SLU	NO	8407	-3835.00	-2520.00
Approccio 2, Combinazione (A1+M1+R3)	SLU	NO	8407	3791.00	2010.00
Approccio 2, Combinazione (A1+M1+R3)	SLU	NO	10926	-29.00	-332.00
Approccio 2, Combinazione (A1+M1+R3)	SLU	NO	10926	-3842.00	-2597.00
Approccio 2, Combinazione (A1+M1+R3)	SLU	NO	10926	3784.00	1933.00
Approccio 2, Combinazione (A1+M1+R3)	SLV	SI	8738	-397.00	-981.00
Approccio 2, Combinazione (A1+M1+R3)	SLV	SI	8076	-393.00	-959.00
-	SLE: Combinazione RARA	NO	8407	-2564.00	-1765.00
-	SLE: Combinazione RARA	NO	8407	2520.00	1255.00
-	SLE: Combinazione FREQUENTE	NO	8407	-530.00	-557.00
-	SLE: Combinazione FREQUENTE	NO	8407	486.00	47.00
-	SLE: Combinazione QUASI PERMANENTE	NO	8407	-22.00	-255.00
Sez. calcolo n.3 - Dis: 0.29					
Approccio 2, Combinazione (A1+M1+R3)	SLU	NO	7249	-2.00	-113.00
Approccio 2, Combinazione (A1+M1+R3)	SLU	NO	7249	-3483.00	-2378.00
Approccio 2, Combinazione (A1+M1+R3)	SLU	NO	7249	3480.00	2152.00
Approccio 2, Combinazione (A1+M1+R3)	SLU	NO	9423	-3.00	-148.00
Approccio 2, Combinazione (A1+M1+R3)	SLU	NO	9423	-3484.00	-2413.00
Approccio 2, Combinazione (A1+M1+R3)	SLU	NO	9423	3479.00	2117.00
Approccio 2, Combinazione	SLV	SI	7536	-278.00	-715.00

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

	01 1 1 1	0.		SOLLECITAZIONI SUL PARAMENTO		
Approccio	Stato limite	Sisma	N [N]	My [Nm]	Tx [N]	
(A1+M1+R3) Approccio 2, Combinazione (A1+M1+R3)	SLV	SI	6962	-278.00	-705.00	
-	SLE: Combinazione	NO	7249	-2323.00	-1623.00	
-	RARA SLE: Combinazione RARA	NO	7249	2319.00	1397.00	
-	SLE: Combinazione FREQUENTE	NO	7249	-466.00	-415.00	
-	SLE: Combinazione FREQUENTE	NO	7249	462.00	189.00	
-	SLE: Combinazione QUASI PERMANENTE	NO	7249	-2.00	-113.00	
Sez. calcolo n.4 - Dis: 0.44 Approccio 2, Combinazione	SLU	NO	6117	1.00	-28.00	
(A1+M1+R3)						
Approccio 2, Combinazione (A1+M1+R3)	SLU	NO	6117	-3149.00	-2293.00	
Approccio 2, Combinazione (A1+M1+R3)	SLU	NO	6117	3152.00	2237.00	
Approccio 2, Combinazione (A1+M1+R3)	SLU	NO	7951	2.00	-37.00	
Approccio 2, Combinazione	SLU	NO	7951	-3149.00	-2302.00	
(A1+M1+R3) Approccio 2, Combinazione (A1+M1+R3)	SLU	NO	7951	3152.00	2228.00	
Approccio 2, Combinazione	SLV	SI	6360	-196.00	-521.00	
(A1+M1+R3) Approccio 2, Combinazione	SLV	SI	5874	-196.00	-519.00	
(A1+M1+R3) -	SLE: Combinazione RARA	NO	6117	-2099.00	-1538.00	
-	SLE: Combinazione RARA	NO	6117	2102.00	1482.00	
-	SLE: Combinazione	NO	6117	-419.00	-330.00	
-	FREQUENTE SLE: Combinazione	NO	6117	421.00	274.00	
-	FREQUENTE SLE: Combinazione QUASI PERMANENTE	NO	6117	1.00	-28.00	
Sez. calcolo n.5 - Dis: 0.59						
Approccio 2, Combinazione (A1+M1+R3)	SLU	NO	5008	0.00	0.00	
Approccio 2, Combinazione (A1+M1+R3)	SLU	NO	5008	-2819.00	-2265.00	
Approccio 2, Combinazione (A1+M1+R3)	SLU	NO	5008	2819.00	2265.00	
Approccio 2, Combinazione (A1+M1+R3)	SLU	NO	6510	0.00	0.00	
Approccio 2, Combinazione (A1+M1+R3)	SLU	NO	6510	-2819.00	-2265.00	
Approccio 2, Combinazione (A1+M1+R3)	SLU	NO	6510	2819.00	2265.00	
Approccio 2, Combinazione (A1+M1+R3)	SLV	SI	5208	-132.00	-398.00	
Approccio 2, Combinazione (A1+M1+R3)	SLV	SI	4808	-132.00	-398.00	
-	SLE: Combinazione RARA	NO	5008	-1879.00	-1510.00	
-	SLE: Combinazione RARA	NO	5008	1879.00	1510.00	
-	SLE: Combinazione FREQUENTE	NO	5008	-376.00	-302.00	
-	SLE: Combinazione FREQUENTE	NO	5008	376.00	302.00	
-	SLE: Combinazione QUASI PERMANENTE	NO	5008	0.00	0.00	
Sez. calcolo n.6 - Dis: 0.73 Approccio 2, Combinazione	SLU	NO	3911	0.00	0.00	
(A1+M1+R3) Approccio 2, Combinazione	SLU	NO	3911	-2488.00	-2265.00	
(A1+M1+R3) Approccio 2, Combinazione	SLU	NO	3911	2488.00	2265.00	
(A1+M1+R3) Approccio 2, Combinazione	SLU	NO	5084	0.00	0.00	
(A1+M1+R3)						
Approccio 2, Combinazione (A1+M1+R3)	SLU	NO	5084	-2488.00	-2265.00	

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

SOLLECITAZIONI SUL					
Approccio	Stato limite	Sisma	N [N]	My [Nm]	Tx [N]
Approccio 2, Combinazione	SLU	NO	5084	2488.00	2265.00
(A1+M1+R3) Approccio 2, Combinazione (A1+M1+R3)	SLV	SI	4067	-80.00	-311.00
Approccio 2, Combinazione (A1+M1+R3)	SLV	SI	3755	-80.00	-311.00
-	SLE: Combinazione RARA	NO	3911	-1658.00	-1510.00
-	SLE: Combinazione RARA	NO	3911	1658.00	1510.00
-	SLE: Combinazione FREQUENTE	NO	3911	-332.00	-302.00
-	SLE: Combinazione FREQUENTE	NO	3911	332.00	302.00
-	SLE: Combinazione QUASI PERMANENTE	NO	3911	0.00	0.00
Sez. calcolo n.7 - Dis: 0.88 Approccio 2, Combinazione	SLU	NO	2814	0.00	0.00
(A1+M1+R3) Approccio 2, Combinazione	SLU	NO	2814	-2169.00	-1560.00
(A1+M1+R3) Approccio 2, Combinazione	SLU	NO	2814	2169.00	1560.00
(A1+M1+R3) Approccio 2, Combinazione (A1+M1+R3)	SLU	NO	3658	0.00	0.00
Approccio 2, Combinazione (A1+M1+R3)	SLU	NO	3658	-2169.00	-1560.00
Approccio 2, Combinazione (A1+M1+R3)	SLU	NO	3658	2169.00	1560.00
Approccio 2, Combinazione (A1+M1+R3)	SLV	SI	2926	-41.00	-224.00
Approccio 2, Combinazione (A1+M1+R3)	SLV	SI	2702	-41.00	-224.00
-	SLE: Combinazione RARA	NO	2814	-1446.00	-1040.00
-	SLE: Combinazione RARA	NO	2814	1446.00	1040.00
-	SLE: Combinazione FREQUENTE	NO	2814	-289.00	-208.00
-	SLE: Combinazione FREQUENTE	NO	2814	289.00	208.00
-	SLE: Combinazione QUASI PERMANENTE	NO	2814	0.00	0.00
Sez. calcolo n.8 - Dis: 1.02 Approccio 2, Combinazione	SLU	NO	1717	0.00	0.00
(A1+M1+R3) Approccio 2, Combinazione	SLU	NO	1717	-1941.00	-1560.00
(A1+M1+R3) Approccio 2, Combinazione	SLU	NO	1717	1941.00	1560.00
(A1+M1+R3) Approccio 2, Combinazione	SLU	NO	2232	0.00	0.00
(A1+M1+R3) Approccio 2, Combinazione	SLU	NO	2232	-1941.00	-1560.00
(A1+M1+R3) Approccio 2, Combinazione	SLU	NO	2232	1941.00	1560.00
(A1+M1+R3) Approccio 2, Combinazione (A1+M1+R3)	SLV	SI	1786	-15.00	-136.00
Approccio 2, Combinazione (A1+M1+R3)	SLV	SI	1648	-15.00	-136.00
-	SLE: Combinazione RARA	NO	1717	-1294.00	-1040.00
-	SLE: Combinazione RARA	NO	1717	1294.00	1040.00
-	SLE: Combinazione FREQUENTE	NO	1717	-259.00	-208.00
-	SLE: Combinazione FREQUENTE	NO	1717	259.00	208.00
-	SLE: Combinazione QUASI PERMANENTE	NO	1717	0.00	0.00
Sez. calcolo n.9 - Dis: 1.17 Approccio 2, Combinazione	SLU	NO	620	0.00	0.00
(A1+M1+R3) Approccio 2, Combinazione (A1+M1+R3)	SLU	NO	620	-1712.00	-1560.00
Approccio 2, Combinazione (A1+M1+R3)	SLU	NO	620	1712.00	1560.00
Approccio 2, Combinazione	SLU	NO	806	0.00	0.00

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301_D_R_0120 Rev. 02

				SOLLECITA	AZIONI SUL PARAMENTO
Approccio	Stato limite	Sisma	N	My	Tx
			[N]	[Nm]	[N]
(A1+M1+R3)					
Approccio 2, Combinazione	SLU	NO	806	-1712.00	-1560.00
(A1+M1+R3)					
Approccio 2, Combinazione	SLU	NO	806	1712.00	1560.00
(A1+M1+R3)					
Approccio 2, Combinazione	SLV	SI	645	-1.00	-49.00
(A1+M1+R3)					
Approccio 2, Combinazione	SLV	SI	595	-1.00	-49.00
(A1+M1+R3)					
	SLE: Combinazione	NO	620	-1142.00	-1040.00
	RARA				
-	SLE: Combinazione	NO	620	1142.00	1040.00
	RARA				
-	SLE: Combinazione	NO	620	-228.00	-208.00
	FREQUENTE				
-	SLE: Combinazione	NO	620	228.00	208.00
	FREQUENTE				
-	SLE: Combinazione	NO	620	0.00	0.00
	QUASI PERMANENTE				

LEGENDA Sollecitazioni sul Paramento Approccio Tipo di Approccio seguito. Stato limite Tipo di Stato Limite.

Sisma Sisma agente nella Combinazione.

Sforzo Normale [N].

Vettore Momento ortogonale al piano dell'elemento [Nm]. Taglio orizzontale nel piano dell'elemento [N]. My Tx

6.12.8. SOLLECITAZIONI SULLA FONDAZIONE

SOLLECITAZIONI SULLA FONDAZIO								
Approccio	Stato limite	Sisma	N	Му	Тх			
Marine di Desirettere			[N]	[Nm]	[N]			
Muro di Recinzione Sez. calcolo n.10 - Dis: 0.00()	Vallo)							
Approccio 2, Combinazione	SLU	NO	0	-15.00	-729.00			
(A1+M1+R3)	SEO	INO	U	-13.00	-727.00			
Approccio 2, Combinazione	SLU	NO	0	-34.00	-1669.00			
(A1+M1+R3)	320	110	· ·	31.00	1007.00			
Approccio 2, Combinazione	SLU	NO	0	4.00	210.00			
(A1+M1+R3)	320	110	· ·	1.00	210.00			
Approccio 2, Combinazione	SLU	NO	0	-19.00	-948.00			
(A1+M1+R3)	320	110	O	17.00	740.00			
Approccio 2, Combinazione	SLU	NO	0	-38.00	-1887.00			
(A1+M1+R3)	310	INO	U	-30.00	-1007.00			
Approccio 2, Combinazione	SLU	NO	0	0.00	-9.00			
(A1+M1+R3)	3LU	INO	U	0.00	-9.00			
Approccio 2, Combinazione	SLV	SI	0	-19.00	-924.00			
(A1+M1+R3)	3LV	31	U	-17.00	-924.00			
Approccio 2, Combinazione	SLV	SI	0	-18.00	-889.00			
(A1+M1+R3)	SLV	31	U	-18.00	-889.00			
(AI+WII+R3)	SLE: Combinazione	NO	0	-27.00	-1356.00			
-		NO	U	-27.00	-1350.00			
	RARA	NO	0	2.00	102.00			
-	SLE: Combinazione	NO	0	-2.00	-103.00			
	RARA	NO	•	47.00	055.00			
-	SLE: Combinazione	NO	0	-17.00	-855.00			
	FREQUENTE	NO	•	10.00	(04.00			
-	SLE: Combinazione	NO	0	-12.00	-604.00			
	FREQUENTE			45.00	700.00			
-	SLE: Combinazione	NO	0	-15.00	-729.00			
	QUASI PERMANENTE							
Sez. calcolo n.11 - Dis: 0.16(140.00	4444.00			
Approccio 2, Combinazione	SLU	NO	0	-143.00	-1416.00			
(A1+M1+R3)				574.00	5.405.00			
Approccio 2, Combinazione	SLU	NO	0	-571.00	-5405.00			
(A1+M1+R3)				225.22	0574.00			
Approccio 2, Combinazione	SLU	NO	0	285.00	2571.00			
(A1+M1+R3)			_					
Approccio 2, Combinazione	SLU	NO	0	-186.00	-1841.00			
(A1+M1+R3)			_					
Approccio 2, Combinazione	SLU	NO	0	-614.00	-5828.00			
(A1+M1+R3)			_					
Approccio 2, Combinazione	SLU	NO	0	243.00	2147.00			
(A1+M1+R3)			_		005			
Approccio 2, Combinazione	SLV	SI	0	-232.00	-2252.00			
(A1+M1+R3)			_					
Approccio 2, Combinazione	SLV	SI	0	-215.00	-2082.00			
(A1+M1+R3)								

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

					ONI SULLA FONDAZION
Approccio	Stato limite	Sisma	N	My [Nm]	Tx
-	SLE: Combinazione	NO	[N] O	-428.00	[N] -4074.00
-	RARA SLE: Combinazione	NO	0	143.00	1242.00
-	RARA SLE: Combinazione	NO	0	-200.00	-1948.00
-	FREQUENTE SLE: Combinazione	NO	0	-86.00	-884.00
-	FREQUENTE SLE: Combinazione	NO	0	-143.00	-1416.00
	QUASI PERMANENTE				
Sez. calcolo n.12 - Dis: 0.32(Approccio 2, Combinazione	(Valle) SLU	NO	0	-465.00	-2053.00
(A1+M1+R3) Approccio 2, Combinazione	SLU	NO	0	-1700.00	-7956.00
(A1+M1+R3) Approccio 2, Combinazione	SLU	NO NO	0	769.00	3848.00
(A1+M1+R3)	SLU				
Approccio 2, Combinazione (A1+M1+R3)		NO	0	-605.00	-2668.00
Approccio 2, Combinazione (A1+M1+R3)	SLU	NO	0	-1839.00	-8570.00
Approccio 2, Combinazione (A1+M1+R3)	SLU	NO	0	630.00	3233.00
Approccio 2, Combinazione (A1+M1+R3)	SLV	SI	0	-725.00	-3312.00
Approccio 2, Combinazione (A1+M1+R3)	SLV	SI	0	-670.00	-3016.00
-	SLE: Combinazione RARA	NO	0	-1288.00	-5987.00
-	SLE: Combinazione RARA	NO	0	358.00	1881.00
-	SLE: Combinazione FREQUENTE	NO	0	-630.00	-2840.00
-	SLE: Combinazione FREQUENTE	NO	0	-300.00	-1266.00
-	SLE: Combinazione QUASI PERMANENTE	NO	0	-465.00	-2053.00
Sez. calcolo n.13 - Dis: 0.00(_		
Approccio 2, Combinazione (A1+M1+R3)	SLU	NO	0	-199.00	-1102.00
Approccio 2, Combinazione (A1+M1+R3)	SLU	NO	0	1034.00	4799.00
Approccio 2, Combinazione (A1+M1+R3)	SLU	NO	0	-1434.00	-7003.00
Approccio 2, Combinazione	SLU	NO	0	-259.00	-1431.00
(A1+M1+R3) Approccio 2, Combinazione	SLU	NO	0	976.00	4470.00
(A1+M1+R3) Approccio 2, Combinazione	SLU	NO	0	-1493.00	-7333.00
(A1+M1+R3) Approccio 2, Combinazione	SLV	SI	0	17.00	-88.00
(A1+M1+R3) Approccio 2, Combinazione	SLV	SI	0	50.00	106.00
(A1+M1+R3) -	SLE: Combinazione	NO	0	624.00	2832.00
-	RARA SLE: Combinazione	NO	0	-1022.00	-5036.00
-	RARA SLE: Combinazione	NO	0	-35.00	-315.00
-	FREQUENTE SLE: Combinazione	NO	0	-364.00	-1889.00
-	FREQUENTE SLE: Combinazione	NO	0	-199.00	-1102.00
on colonia = 44 D' 0.111	QUASI PERMANENTE				
ez. calcolo n.14 - Dis: 0.16(Approccio 2, Combinazione	(Monte) SLU	NO	0	-17.00	-633.00
(A1+M1+R3) Approccio 2, Combinazione	SLU	NO	0	410.00	3352.00
(A1+M1+R3) Approccio 2, Combinazione	SLU	NO	0	-445.00	-4621.00
(A1+M1+R3) Approccio 2, Combinazione	SLU	NO	0	-22.00	-822.00
(A1+M1+R3) Approccio 2, Combinazione	SLU	NO	0	406.00	3165.00
(A1+M1+R3) Approccio 2, Combinazione	SLU	NO	0	-450.00	-4809.00
(A1+M1+R3) Approccio 2, Combinazione	SLV	SI	0	59.00	67.00

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301_D_R_0120 Rev. 02

SOLLECITAZIONI SULLA FONDAZIO							
Approccio	Stato limite	Sisma	N	My	Tx		
(44, 444, 50)			[N]	[Nm]	[N]		
(A1+M1+R3)	CLV			40.00	1/0.00		
Approccio 2, Combinazione	SLV	SI	0	69.00	169.00		
(A1+M1+R3)	SLE: Combinazione	NO	0	268.00	2025.00		
-	RARA	NO	0	268.00	2025.00		
	SLE: Combinazione	NO	0	-303.00	-3291.00		
-	RARA	NO	U	-303.00	-3291.00		
	SLE: Combinazione	NO	0	40.00	-102.00		
-	FREQUENTE	NO	O	40.00	-102.00		
	SLE: Combinazione	NO	0	-74.00	-1165.00		
	FREQUENTE	140	Ŭ	74.00	1103.00		
_	SLE: Combinazione	NO	0	-17.00	-633.00		
	QUASI PERMANENTE	140	ŭ	17.00	000.00		
Sez. calcolo n.15 - Dis: 0.32(
Approccio 2, Combinazione	SLU	NO	0	6.00	-214.00		
(A1+M1+R3)							
Approccio 2, Combinazione	SLU	NO	0	25.00	720.00		
(A1+M1+R3)							
Approccio 2, Combinazione	SLU	NO	0	-13.00	-1153.00		
(A1+M1+R3)							
Approccio 2, Combinazione	SLU	NO	0	8.00	-277.00		
(A1+M1+R3)							
Approccio 2, Combinazione	SLU	NO	0	27.00	662.00		
(A1+M1+R3)							
Approccio 2, Combinazione	SLU	NO	0	-11.00	-1216.00		
(A1+M1+R3)	0111	0.		10.00	47.00		
Approccio 2, Combinazione	SLV	SI	0	10.00	-47.00		
(A1+M1+R3)	SLV	SI	0	10.00	20.00		
Approccio 2, Combinazione (A1+M1+R3)	SLV	31	0	10.00	-28.00		
(A1+W11+R3)	SLE: Combinazione	NO	0	19.00	412.00		
-	RARA	NO	O	17.00	412.00		
	SLE: Combinazione	NO	0	-7.00	-840.00		
	RARA	140	Ŭ	7.00	040.00		
_	SLE: Combinazione	NO	0	9.00	-89.00		
	FREQUENTE	110	Ŭ	1.55	000		
_	SLE: Combinazione	NO	0	3.00	-339.00		
	FREQUENTE		-				
_	SLE: Combinazione	NO	0	6.00	-214.00		
	QUASI PERMANENTE						

LEGENDA Sollecitazioni sulla fondazione Tipo di Approccio seguito. Tipo di Stato Limite. Approccio Stato limite

Sisma agente nella Combinazione. Sforzo Normale [N]. Sisma

N

Vettore Momento ortogonale al piano dell'elemento [Nm]. Му

Taglio orizzontale nel piano dell'elemento [N].

6.12.9. TENSIONI SUL TERRENO

			TENSIONI SUL	TERRENO - Approccio 2	, Combinazione (A1+M1+R3)
Stato Limite	Sisma	Pt[i]	Pr[i]	Pt[f]	Pr[f]
		[m]	[N/mm ²]	[m]	[N/mm ²]
Muro di Recinzione					
SLU	NO	X: -0.40; Y: -0.30	0.026	X: 0.70; Y: -0.30	0.024
SLU	NO	X: -0.40; Y: -0.30	0.050	X: 0.68; Y: -0.30	0.000
SLU	NO	X: -0.40; Y: -0.30	0.001	X: 0.70; Y: -0.30	0.048
SLU	NO	X: -0.40; Y: -0.30	0.034	X: 0.70; Y: -0.30	0.031
SLU	NO	X: -0.40; Y: -0.30	0.058	X: 0.70; Y: -0.30	0.006
SLU	NO	X: -0.40; Y: -0.30	0.009	X: 0.70; Y: -0.30	0.055
SLV	SI	X: -0.40; Y: -0.30	0.031	X: 0.70; Y: -0.30	0.020
SLV	SI	X: -0.40; Y: -0.30	0.030	X: 0.70; Y: -0.30	0.019

LEGENDA Tensioni sul terreno

Stato limite Stato limite di riferimento.

Sisma Sisma agente nella Combinazione.

Pt[i]/Pt[f] Pr[i]/Pr[f] Coordinate del punto iniziale e finale del tratto di terreno di fondazione su cui sono esercitate le tensioni sul terreno [m].

Pressione iniziale e finale in corrispondenza dei relativi punti [N/mm²].

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301_D_R_0120 Rev. 02

6.12.10. VERIFICHE A SCORRIMENTO

	VERIFICHE A SCORRIMENTO - Approccio 2, Combinazione					
Stato limite	Sisma	cs	FrzP	FrzR		
			[N]	[N]		
Muro di Recinzione						
Verifica 1						
SL	U NO	20.49	1.694	34.717		
Verifica 2						
SL	U NO	8.77	3.959	34.717		
Verifica 3						
SL	U NO	-	0	34.717		
Verifica 4						
SL	U NO	20.50	2.202	45.134		
Verifica 5						
SL	U NO	10.10	4.467	45.134		
Verifica 6						
SL	U NO	-	0	45.134		
Verifica 7						
SL	V SI	10.08	3.842	38.720		
Verifica 8						
SL	V SI	10.19	3.710	37.798		

LEGENDA Verifiche a scorrimento

Stato limite Tipo di Stato Limite.

 Sisma
 Sisma agente nella Combinazione.

 CS
 Coefficiente di sicurezza.

 FrzP
 Forza di scorrimento di Progetto [N].

 FrzR
 Forza Resistente a scorrimento [N].

Nelle verifiche di scorrimento viene trascurata l'aliquota di spinta passiva derivante dal terreno a valle che entra in gioco con il solo peso proprio.

6.12.11. VERIFICHE A RIBALTAMENTO

		VER	IFICHE A RIBALTAMENTO - Appr	roccio 2, Combinazione (A1+M1+R3)
Stato limite	Sisma	CS	MrbIt	Mstbl
			[Nm]	[Nm]
Muro di Recinzione				
Verifica 1				
SLU	NO	27.83	484	13.471
Verifica 2				
SLU	NO	3.98	3.748	14.906
Verifica 3				
SLU	NO	-	0	12.037
Verifica 4				
SLU	NO	27.84	629	17.513
Verifica 5				
SLU	NO	4.87	3.893	18.948
Verifica 6				
SLU	NO	-	0	16.078
Verifica 7				
SLV	SI	8.50	1.943	16.511
Verifica 8	ŭ.	0.00	11710	10.011
SLV	SI	7.92	1.888	14.947

LEGENDA Verifiche a ribaltamento

Stato limite Tipo di Stato Limite.

SismaSisma agente nella Combinazione.CSCoefficiente di sicurezza.MrbItMomento ribaltante di Progetto [Nm].MstblMomento Stabilizzante [Nm].

Nelle verifiche a ribaltamento viene trascurata l'aliquota di spinta passiva derivante dal terreno a valle che entra in gioco con il solo peso proprio.

6.12.12. VERIFICHE A CARICO LIMITE

	proccio 2, Combina	zione (A1+M1+R3)		
Stato limite	Sisma	CS	QMedP	QLim
			[N/mm ²]	[N/mm ²]
Muro di Recinzione				
Verifica 1				
SI	U NC	7.12	0.02	0.18
Verifica 2				
SI	U NO	7.25	0.02	0.18

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301_D_R_0120 Rev. 02

	VERIFICHE A C	VERIFICHE A CARICO LIMITE - Approccio 2, Combinazione (A1+M1+R3)						
Stato limite	Sisma	CS	QMedP	QLim				
			[N/mm ²]	[N/mm²]				
Verifica 3								
SLU	NO	7.26	0.02	0.18				
Verifica 4								
SLU	NO	5.48	0.03	0.18				
Verifica 5								
SLU	NO	5.55	0.03	0.18				
Verifica 6								
SLU	NO	5.55	0.03	0.18				
Verifica 7								
SLV	SI	8.21	0.03	0.21				
Verifica 8								
SLV	SI	8.65	0.02	0.21				

LEGENDA Verifiche a Carico Limite

Stato limite Tipo di Stato Limite.

Sisma Sisma agente nella Combinazione. Coefficiente di sicurezza. cs QMedP Tensione media di Progetto [N/mm²]. QLim Carico Limite [N/mm²].

6.12.13. VERIFICHE A PRESSOFLESSIONE RETTA ALLO SLU

					VERIFICHE A P	RESSOFLESSIONE RI	TTA ALLO SLU
CC	CS _{Inf}		Solled	itazioni		Af _{Sup}	Λ.ε
CS _{Sup}	CS _{Inf}	N _{Sup}	My _{Sup}	N _{Inf}	My _{Inf}		Af _{Inf}
		[N]	[Nm]	[N]	[Nm]	[cm ²]	[cm ²]
Muro di Recinzio	one						
Paramento							
Sez. calcolo n.1 -							
15.63		9.693	4.084.00	9.693	-4.203.00	6.16	6.16
Sez. calcolo n.2 -							
16.80		8.407	3.791.00	8.407	-3.835.00	6.16	6.16
Sez. calcolo n.3 -							
18.26		7.249	3.480.00	7.249	-3.483.00	6.16	6.16
Sez. calcolo n.4 -							
20.12		6.117	3.152.00	6.117	-3.149.00	6.16	6.16
Sez. calcolo n.5 -							
22.51		6.510	2.819.00	6.510	-2.819.00	6.16	6.16
Sez. calcolo n.6 -							
25.44		5.084	2.488.00	5.084	-2.488.00	6.16	6.16
Sez. calcolo n.7 -							
29.10		3.658	2.169.00	3.658	-2.169.00	6.16	6.16
Sez. calcolo n.8 -							
32.44		2.232	1.941.00	2.232	-1.941.00	6.16	6.16
Sez. calcolo n.9 -							
36.68	36.68	806	1.712.00	806	-1.712.00	6.16	6.16
Fondazione mure	0						
Sez. calcolo n.10) - Dis: 0.00(Valle)						
-	-	0	0.00	0	0.00	6.16	6.16
	- Dis: 0.16(Valle)						
NS		0	285.00	0	-614.00	6.16	6.16
Sez. calcolo n.12	2 - Dis: 0.32(Valle)						
81.54		0	769.00	0	-1.839.00	6.16	6.16
Sez. calcolo n.13	3 - Dis: 0.00(Monte)						
60.64		0	1.034.00	0	-1.493.00	6.16	6.16
	- Dis: 0.16(Monte)						
NS		0	410.00	0	-450.00	6.16	6.16
	- Dis: 0.32(Monte)						
NS	NS	0	27.00	0	-13.00	6.16	6.16

LEGENDA Verifiche a pressoflessione retta allo SLU

CS N Coefficiente di sicurezza per l'armatura superiore ed inferiore. Sforzo normale per l'armatura superiore ed inferiore [N]. Vettore Momento intorno a Y per l'armatura superiore ed inferiore [Nm].

Му

 $\mathbf{Af}_{\mathsf{Sup}}$ Armatura Superiore Esecutiva [cm²]. Af_{Inf} Armatura Inferiore Esecutiva [cm²].

NOTE Per il paramento: sup=armatura a valle; inf=armatura a monte

 $Per\ la\ fondazione:\ sup=armatura\ superiore;\ inf=armatura\ inferiore$

6.12.14. VERIFICHE A PRESSOFLESSIONE RETTA ALLO SLE

					,	VERIFICHE A PRE	SSOFLESSIONE I	RETTA ALLO SLE							
Tra	zione calcestruz	zzo	Compr	essione calces	truzzo		Trazione acciaio								
σct	N	My	σ cc	My	σat	N	My								
[N/mm ²]															
Muro di Recinzio	uro di Recinzione														
Paramento															
Sez. calcolo n.1	- Dis: 0.00														

FRI-EL

RELAZIONE PRELIMINARE DELLE STRUTTURE

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301_D_R_0120 Rev. 02

	Tr	azione calo	estruzzo		Con	npressione calcest	ruzzo			Trazione acciaio	RETTA ALLO SLE
	σct	N		Λv	σcc	N	My	σα	nt	N	Mv
	[N/mm ²]	[N]	1]	l·m]	[N/mm ²]	[N]	[N·m		m²]	[N]	[N·m]
AA=	PCA	CA=FQR	ε sm=0.00000	Ae=0.0	cm ² sm=0 mn	n wk=0.00 mm	CA=QPR	ε sm=0.00000	Ae=0.0	cm ² sm=0 mm	wk=0.00 mm
	0.135		9.693	-2.822	-0.19	9.693		-2.822	1.691	9.693	-2.82
Sez.	calcolo n.2	- Dis: 0.15									
AA=	PCA	CA=FOR	e sm=0.00000) Ae=0.0	cm ² sm=0 mn	n wk=0.00 mm	CA=OPR	e sm=0.00000	Ae=0.0) cm ² sm=0 mm	wk=0.00 mm
	0.124		8.407	-2.564	-0.17			-2.564	1.555	8.407	-2.56
Se7	calcolo n.3			2.001	0.17	0.107		2.001	1.000	0.107	2.00
	PCA) Aa-0 (cm² sm=0 mn	n wk=0.00 mm	CA-OPP	c sm=0.00000	Λο-0 (cm ² sm=0 mm	wk-0.00 mm
1H-	0.113			-2.323				-2.323	1.427	7.249	
			7.249	-2.323	-0.15	7 7.249		-2.323	1.427	7.249	-2.32
	calcolo n.4				. 2 .		0.000			. 2 .	
AA=	PCA					n wk=0.00 mm					
	0.104		6.117	2.102	-0.14	2 6.117		2.102	1.312	6.117	2.10
	calcolo n.5										
AA=	PCA	CA=FQR	$\varepsilon \text{sm} = 0.00000$	Ae=0.0	cm ² sm=0 mn	n_wk=0.00 mm	CA=QPR	$\varepsilon \text{sm} = 0.00000$	Ae=0.0		
	0.094		5.008	-1.879	-0.12	5.008		1.879	1.194	5.008	1.87
ez.	calcolo n.6	- Dis: 0.73	3								
AA=	PCA	CA=FQR	ε sm=0.00000	Ae=0.0	cm ² sm=0 mn	n wk=0.00 mm	CA=QPR	ε sm=0.00000	Ae=0.0	cm ² sm=0 mm	wk=0.00 mm
	0.085		3.911	-1.658				1.658	1.078	3.911	1.65
Se7	calcolo n.7			1.000	0.10	7 0.711	ı	1.000	1.070	0.711	1.00
	PCA			۸۵-0	0 cm ² cm = 0 mn	n wk=0.00 mm	CA-ODD	a cm_0 00000	۸۵-0	0 am² cm _ 0 mm	wk-0.00 mm
4A=											
	0.076		2.814	-1.446	-0.09	3 2.814		1.446	0.968	2.814	1.44
	calcolo n.8			_	2				_	2	
AA=	PCA	-				n wk=0.00 mm				cm ² sm=0 mm	
	0.070		1.717	-1.294	-0.08	1 1.717		1.294	0.904	1.717	-1.29
Sez.	calcolo n.9	- Dis: 1.17	7								
AA=	PCA	CA=FQR	ε sm=0.00000) Ae=0.0	cm ² sm=0 mn	n wk=0.00 mm	CA=QPR	ε sm=0.00000	Ae=0.0	$0 \text{ cm}^2 \text{ sm} = 0 \text{ mm}$	wk=0.00 mm
	0.065		620	1.142	-0.06	9 620		-1.142	0.840	620	-1.14
Fond	lazione mu	ro									
Se7	calcolo n.1	0 - Dist 0 (nn(Valle)								
	PCA			۸۵-۸ ۱	cm² sm=0 mn	n wk=0.00 mm	CA-OPP	c sm=0.00000	۸۵-0 (cm ² sm=0 mm	wk-0.00 mm
-	0.002		0	-27				-27	0.021		
			- 1	-21	-0.00	2 0		-21	0.021	U	-2
	calcolo n.1				. 2 .		0.000	0.0000		. 2 .	
4A=	PCA					n_wk=0.00 mm					
	0.025		0	-428	-0.02	5 0		-428	0.326	0	-42
	calcolo n.1	2 - Dis: 0.3	32(Valle)								
4Α =	PCA	CA=FQR	$\epsilon sm = 0.00000$) Ae=0.0	cm ² sm=0 mn	n_wk=0.00 mm	CA=QPR	ε sm=0.00000	Ae=0.0	$cm^2 sm = 0 mm$	wk=0.00 mm
	0.075		0	-1.288	-0.07	5 0		-1.288	0.980	0	-1.28
Sez.	calcolo n.1	3 - Dis: 0.0	00(Monte)								
	PCA			Ae=0.0	cm ² sm=0 mn	n wk=0.00 mm	CA=QPR	ε sm=0.00000	Ae=0.0	cm ² sm=0 mm	wk=0.00 mm
	0.060		0	-1.022				-1.022	0.778	0	-1.02
S07	calcolo n.1		-	1.022	0.00	0		1.022	0.770	J	1.02
	PCA) Ao-O) cm ² cm = 0 m-	n wk=0.00 mm	CA-ODD	a cm=0 00000	A0-0.0) cm ² cm = 0 m==	wk=0.00 mm
4A=											
_	0.018		0	-303	-0.01	8 0		-303	0.231	0	-30
	calcolo n.1				•					•	
4A=			$\varepsilon \text{sm} = 0.00000$			n wk=0.00 mm				cm² sm=0 mm	
	0.001		0	19	-0.00	1 0		19	0.014	0	1
EGI	ENDA Verifi	iche a pres	soflessione re	tta allo S	LE						
AA						biente: [PCA] = P	oco addres	sivo - [MDA] =	Moderat:	amente aggressivo	o - [MLA] = Molt
			aggressivo.	5.	gressivita dell'all	ibicitic. [i o/i] = i	oco aggico	SIVO [IVIDITI] —	Moderati	amente aggressive	incri – mon
٠.					ambinaziona di A	riana, [ODD] Oua	: Dormonon	+o [[OD]	onto [DADI Doro	
Α						zione: [QPR] = Quas	i reimanen	ite - [FUK] = Freq	uente - [какј = кага.	
sm					nel calcestruzzo.						
lе					estruzzo teso.						
sm			Distanza m	edia tra le	fessure.						
vk			Apertura m	assima de	lle fessure.						
	N, My		•			massima di trazione	nel calcest	ruzzo e delle com	ponenti	della sollecitazione	agenti che l'hann
	·, ····					della sezione trasver					
T CC	N, My		-			massima di compr			_		
,	IN, IVIY										
						entrico della sezione					
at,	N, My					massima di trazio					
			mor 1 -	iforito all'o	seen haricantrica	della sezione trasver	colo(NI) od	al cictoma harican	trico v v	dolla caziona traci	rorealo

6.12.15. VERIFICHE A TAGLIO PER PRESSOFLESSIONE RETTA ALLO SLU

									VEDIEL	NIE A TACI	10 DED D	DECCOEL	CCLONE	DETTA A	
									VERIFIC	CHE A TAGL	IO PER P	KE22OFLI	:2210INE	REITAA	TEO 2EO
CS+	CS-	Tx+	Tx-	Vcc+	Vcc-	Vwd+	Vwd-	Nd+	Nd-	Vwp+	Vwp-	ctg⊕+	ctg⊛	AfTe+	AfTe-
		[N]	[N]	[N]	[N]	[N]	[N]	[N]	[N]	[N]	[N]			[cm ² /cm]	[cm ² /cm]
Muro di I	Recinzior	ne													
Paramen	nto														
Sez. calc	olo n.1 -	Dis: 0.00													
75.86	37.16	1.556	-3.187	118.037	118.415	0	0	9.693	12.599	0	0	0.00	0.00	0.0000	0.0000
Sez. calc	olo n.2 -	Dis: 0.15													
58.64	45.51	2.010	-2.597	117.870	118.197	0	0	8.407	10.926	0	0	0.00	0.00	0.0000	0.0000
Sez. calc	olo n.3 -	Dis: 0.29													
54.70	48.90	2.152	-2.413	117.719	118.002	0	0	7.249	9.423	0	0	0.00	0.00	0.0000	0.0000
Sez. calc	olo n.4 -	Dis: 0.44													

generata, riferite all'asse baricentrico della sezione trasversale(N) ed al sistema baricentrico x, y della sezione trasversale.

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301_D_R_0120 Rev. 02

									VERIFIC	CHE A TAGL	IO PER PI	RESSOFLE	SSIONE	RETTA AI	LO SLU
CS+	CS-	Tx+	Tx-	Vcc+	Vcc-	Vwd+	Vwd-	Nd+	Nd-	Vwp+	Vwp-	ctg⊕+	ctgΘ	AfTe+	AfTe-
		[N]	[N]	[N]	[N]	[N]	[N]	[N]	[N]	[N]	[N]			[cm ² /cm]	[cm ² /cm]
52.56	51.18	2.237	-2.302	117.572	117.811	0	0	6.117	7.951	0	0	0.00	0.00	0.0000	0.0000
Sez. calc	olo n.5 -	Dis: 0.59													
51.84	51.84	2.265	-2.265	117.428	117.428	0	0	5.008	5.008	0	0	0.00	0.00	0.0000	0.0000
Sez. calc	colo n.6 -	Dis: 0.73													
51.78	51.78	2.265	-2.265	117.286	117.286	0	0	3.911	3.911	0	0	0.00	0.00	0.0000	0.0000
Sez. calc	colo n.7 -	Dis: 0.88													
75.09	75.09	1.560	-1.560	117.143	117.143	0	0	2.814	2.814	0	0	0.00	0.00	0.0000	0.0000
Sez. calc	colo n.8 -	Dis: 1.02													
75.00	75.00	1.560	-1.560	117.000	117.000	0	0	1.717	1.717	0	0	0.00	0.00	0.0000	0.0000
Sez. calc	colo n.9 -	Dis: 1.17													
74.91	74.91	1.560	-1.560	116.858	116.858	0	0	620	620	0	0	0.00	0.00	0.0000	0.0000
Fondazio	one muro														
Sez. calc	colo n.10	- Dis: 0.0	O(Valle)												
NS	61.89	210	-1.887	116.777	116.777	0	0	0	0	0	0	0.00	0.00	0.0000	0.0000
Sez. calc	colo n.11	- Dis: 0.1	6(Valle)												
45.42	20.04	2.571	-5.828	116.777	116.777	0	0	0	0	0	0	0.00	0.00	0.0000	0.0000
Sez. calc	colo n.12	- Dis: 0.3	2(Valle)												
30.35	13.63	3.848	-8.570	116.777	116.777	0	0	0	0	0	0	0.00	0.00	0.0000	0.0000
Sez. calc	colo n.13	- Dis: 0.0	O(Monte))											
24.33	15.92	4.799	-7.333	116.777	116.777	0	0	0	0	0	0	0.00	0.00	0.0000	0.0000
Sez. calc	colo n.14	- Dis: 0.1	6(Monte))											
34.84	24.28	3.352	-4.809	116.777	116.777	0	0	0	0	0	0	0.00	0.00	0.0000	0.0000
Sez. calc	colo n.15	- Dis: 0.3	2(Monte))											
NS	96.03	720	-1.216	116.777	116.777	0	0	0	0	0	0	0.00	0.00	0.0000	0.0000

LEGENDA Verifiche a taglio per pressoflessione retta allo SLU

CS+, CS-Coefficienti di sicurezza relativi alle sollecitazioni "Tx+" e "Tx-" : [NS] = Non Significativo - Per valori di CS maggiori o uguali a 100.

Valori massimo e minimo della sollecitazione di taglio.

Tx+, Tx-Vcc+, Vcc-Vwd+, Vwd-Nd+, Nd-Valori massimo e minimo del taglio ultimo, per conglomerato compresso.

Contributi dell'acciaio al taglio ultimo dovuto alle staffe, relativi alle sollecitazioni "Tx+" e "Tx-".

Sforzo normale.

Contributo acciaio al Taglio ultimo dovuto ai ferri piegati, relativi alle sollecitazioni "Tx+" e "Tx-".

Vwp+, Vwp-ctg⊕+, ctg⊕ ctg(⊕) utilizzato nel calcolo di Vcc, Vwd e Vwp.

Aree di ferro per il taglio in un centimetro, relativi alle sollecitazioni "Tx+" e "Tx-". AfTe+, AfTe-

6.12.16. VERIFICHE DEGLI SPOSTAMENTI

		V	ERIFICHE DEGLI SPOSTAMEN	NTI DELLA TESTA DEL MURO
SL	Cmb	CS	δ_{Cd}	δ_{Ed}
			[cm]	[cm]
Muro di Recinzione				
SLE	RAR	30.74	1.0000	0.0325
SLE	FRQ	NS	1.0000	0.0081
SLE	QPR	NS	1.0000	0.0020
SLD	-	NS	2.0000	0.0069

LEGENDA Verifiche degli spostamenti della testa del muro

Stato Limite considerato: [SLE] = Stato Limite di Esercizio; [SLD] = Stato Limite di Danno.

Cmb Identificativo della Combinazione di Carico: [QPR] = Quasi Permanente - [FQR] = Frequente - [RAR] = Rara.

cs Coefficiente di sicurezza.

Spostamento limite di progetto della testa del muro [cm]. δ_{Cd} Spostamento di progetto della testa del muro [cm]. δ_{Ed}

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301_D_R_0120 Rev. 02

7. DIMENSIONAMENTO OPERE DI RETE PER LA CONNESSIONE

7.1. FONDAZIONE APPARECCHIATURE ELETTRICHE

Nel presente elaborato verranno analizzate le fondazioni relative al reparto 150 Kv all'interno della Stazione Terna di seguito riportati:

TERMINALE ARIA-CAVO;

7.2. CALCOLO DI VERIFICA DELLA FONDAZIONE TERMINALE CAVO AT - FONDAZIONE N°08

7.2.1. CARATTERISTICHE DELLA FONDAZIONE

Trattasi di una piastra di base in c.a. a contatto con il terreno sulla quale viene impostato n.1 batolo per l'ancoraggio delle apparecchiature. La piastra summenzionata ha dimensioni di 1,60x1,60x0,30m, mentre, il batolo ha dimensione 0,70x0,70x0,50m ed è provvisto di quattro tirafondi disposti a maglia quadrata, per l'installazione dell'apparecchiatura.

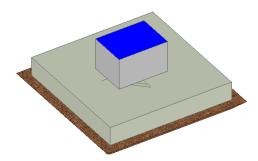


Fig. Vista assonometrica fondazione per terminale cavo AT

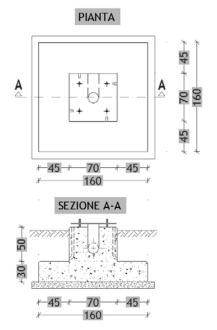


Fig. Pianta e sezione fondazione per terminale cavo AT

7.2.2. CARICHI

Si riporta di seguito il riepilogo dei carichi agenti, determinati nelle verifiche della sovrastruttura (scarichi in fondazione). Sostegno sostegno terminale cavo lato utente 150 kV:

FRI-EL

RELAZIONE PRELIMINARE DELLE STRUTTURE

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301_D_R_0120 Rev. 02

Carichi sulla fondazione	FX	FY	FZ	MX	MY	MZ	$M = (MX^2 + MY^2)^1$
riferiti al piede della colonna	(N)	(N)	(N)	(Nmm)	(Nmm)	(Nmm)	(Nmm)
Node 3500: 10: SLU_1x [Combination 1]	1907	1500	-8521	-3841899	4943852	0	6261139
Node 3500: 11: SLU_1y [Combination 2]	0	2422	-8521	-6499809	0	0	6499809
Node 3500: 12: SLU_2x [Combination 3]	1907	1500	-9724	-3841899	4943852	0	6261139
Node 3500: 13: SLU_2y [Combination 4]	0	2422	-9724	-6499809	0	0	6499809
Node 3500: 14: SLU_3x [Combination 5]	3179	1500	-8521	-3841899	8239754	0	9091410
Node 3500: 15: SLU_3y [Combination 6]	0	3037	-8521	-8271749	0	0	8271749
Node 3500: 16: SLU_4x [Combination 7]	3179	1500	-9724	-3841899	8239754	0	9091410
Node 3500: 17: SLU_4y [Combination 8]	0	3037	-9724	-8271749	0	0	8271749
Node 3500: 24: Sismica_1 [Combination 15]	-2330	89	-6863	-4344438	-7083370	-290738	8309529
Node 3500: 25: Sismica_2 [Combination 16]	-699	-1475	-6954	-9237948	-2125045	-87223	9479214
Node 3500: 26: Sismica_3 [Combination 17]	-699	-8	-8313	-4541528	-2125022	-87223	5014100
Node 3500: 27: Sismica_4 [Combination 18]	-2330	89	-7665	-4344438	-7083370	-290738	8309529
Node 3500: 28: Sismica_5 [Combination 19]	-699	-1475	-7756	-9237948	-2125045	-87223	9479214
Node 3500: 29: Sismica_6 [Combination 20]	-699	-8	-9115	-4541528	-2125022	-87223	5014100
Node 3500: 30: EccezionalePTS [Combination 21]	0	974	-6201	-2947779	0	0	2947779
Node 3500: 31: EccezionalePTC [Combination 22]	0	964	-6602	-3143259	0	0	3143259
Node 3500: 32: EccezionaleCC [Combination 23]	3100	800	-875	-2162691	13987200	0	14153409

I carichi permanenti strutturali e non strutturali derivanti dal peso proprio della fondazione e da quello del piazzale sono:

	Carichi sugli elementi
elemento	carico
	[daN]
Peso proprio batolo	613 [daN]
Peso proprio platea	1.920 [daN]
Peso piazzale di riporto su platea	900 [daN/mq]

7.2.3. BATOLO

BATOLO- VERIFICHE PRESSOFLESSIONE DEVIATA ALLO STATO LIMITE ULTIMO

											Bate	oli (CA) - Ve	rifich	e pres	ssofl	essic	ne de	eviata	allo	SLU
	NI NI	N.4	N/I	CC	D.4	N.4	NI.	N.		_					Lato	1			Late	2	
	N _{Ed}	M _{Ed,X}	$M_{Ed,Y}$	CS	$M_{Rd,X}$	$M_{Rd,Y}$	N _{Ed,max}	N _R	α	R _f	ΨVe	Φvi	φw	L	n _{req}	n_f	ф	L	n _{req}	n _f	ф
	[N]	[N·m]	[N·m]		[N·m]	[N·m]	[N]	[N]			[mm]	[mm]	[mm]	[cm]				[cm]			
Bato	lo: Batolo	1																			
	15.849	-	-9.790	18.36[V]	179.767	179.767	0	7.905.892	1,00	NO	12	-	10	70	1	2	12	70	1	2	12

LEGENDA:

CS Coefficiente di sicurezza ([NS] = Non Significativo se CS ≥ 100; [VNR]= Verifica Non Richiesta; Informazioni aggiuntive sulla condizione: [V] =

statica; [E] = eccezionale; [S] = sismica; [N] = sismica non lineare). Massimo sforzo di compressione.

N_{Ed,max} Massimo sforzo di compressione

N_R Sforzo Normale resistente.

Esponente per la valutazione del coefficiente di sicurezza.

 R_f [SI] = elemento con presenza di rinforzo; [NO] = elemento senza rinforzo.

 $\mathbf{N}_{\mathsf{Ed}},\,\mathbf{M}_{\mathsf{Ed},\mathsf{X}},\,\mathbf{M}_{\mathsf{Ed},\mathsf{Y}}$ Sollecitazioni di progetto ($\mathsf{N}_{\mathsf{Ed}}>0$: compressione).

 $\mathbf{M}_{Rd,X}$, $\mathbf{M}_{Rd,Y}$ Momento Resistente intorno ad X e Y.

 ϕ_{Ve} , ϕ_{Vi} , ϕ_{St} Diametri, rispettivamente, delle barre di acciaio nei vertici esterni e nei vertici interni e delle staffe; $[\phi_{Vi}]$ = Significativo e valorizzato solo in caso di

sezione cava.

L, n_{reg}, n_r, \$\phi\$ Per sezione del batolo rettangolare e armata simmetricamente, lunghezza, numero di registri, numero di barre e relativo diametro per il lato 1 e 2 della sezione. Se la sezione considerata non è rettangolare e/o simmetricamente armata, tali colonne sono vuote e le informazioni riguardanti

l'armatura sono riportate per ciascun lato in apposita casella di testo.

BATOLO- VERIFICHE A TAGLIO PER PRESSOFLESSIONE DEVIATA ALLO STATO LIMITE ULTIMO

								Batoli (CA) - Veri	fiche a ta	glio per	oressofle	ssione de	viata all	o SLU
	v		CC	V	Rcd	V _R	sd,s	,	V fd	١	/ _i	v			_
	V _{Ed,3}	V _{Ed,2}	CS	Х	Υ	Х	Υ	Х	Υ	Х	Υ	$V_{Rd,s}$	A _{SW}	S _{Asw}	R _f
	[N]	[N]		[N]	[N]	[N]	[N]	[N]	[N]	[N]	[N]	[N]	[cm ² /cm]	[cm]	
Batolo: Batolo 1															
	3.179	3.037	NS	1357797	1357797	637709	637709	0	0	0	0	-	0,1309	12	NO

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301 D R 0120 Rev. 02

							Batoli (C	A) - Veri	fiche a ta	glio per p	oressofle	ssione de	viata allo	ว SLU
v	V	CE	Vı	Rcd	V _R	sd,s	V	f _d	1	/ _i	v	_		В
V _{Ed,3}	V _{Ed,2}	CS	Х	Υ	Х	Υ	Х	Υ	Х	Υ	$V_{Rd,s}$	A _{SW}	S _{Asw}	Rf
[M]	[M]		[N]	[M]	[M]	[M]	LNJ	[M]	LNJ	[M]	[N]	[cm ² /cm]	[cm]	

V_{Ed,3} Taglio di progetto in direzione 3

V_{Ed,2} Taglio di progetto in direzione 2.

CS Coefficiente sicurezza ([NS]= Non Significativo se CS ≥ 100; Info condizione: [V]=statica; [E]=eccezionale; [S]=sismica; [N]=sismica non lineare)

 V_{Rcd} Resistenza a taglio compressione del calcestruzzo.

V_{Rsd,s} Resistenza a taglio trazione delle staffe. V_{fd} Resistenza a taglio dovuta al rinforzo FRP

V_i Contributo acciaio al Taglio ultimo dovuto all'incamiciatura in acciaio.

V_{Rd,s} Resistenza a taglio per scorrimento.
A_{sw} Area delle staffe per unità di lunghezza

s_{Asw} Passo massimo staffe da normativa.

 $\mathbf{R}_{\mathbf{f}}$ [SI] = elemento con presenza di rinforzo; [NO] = elemento senza rinforzo.

BATOLO- VERIFICHE DELLE TENSIONI ALLO STATO LIMITE DI ESERCIZIO

												Batoli	 verific 	he delle	tensioni	di esercizio
Tp _{rnf}				•	ne calce		orzo				Trazi		ne accia iaio/FRP)	
	Id _{Cmb}	σ_{cc}	$\sigma_{cd,amm}$	N_{Ed}	$M_{Ed,3}$	$M_{Ed,2}$	CS	Verificato	Id _{Cmb}	σ_{at}	$\sigma_{td,amm}$	N _{Ed}	$M_{Ed,3}$	$M_{Ed,2}$	CS	Verificato
		[N/mm ²]	[N/mm ²]	[N]	[N·m]	[N·m]				[N/mm ²]	[N/mm ²]	[N]	[N·m]	[N·m]		
Batolo: Ba	tolo 1															
	RAR	0,309	19,92	7.000	15.537	2.563	64.37	SI	RAR	3,774	360,00	7.000	15.537	2.563	95.39	SI
	QPR	0,012	14,94	6.125	-	-	NS	SI								

LEGENDA:

Rinf. Indica la presenza del rinforzo sulla sezione di verifica.

Identificativo della Combinazione di Azione: [QPR] = Quasi Permanente - [FRQ] = Frequente - [RAR] = Rara.

 σ_{cc} Tensione massima di compressione nel calcestruzzo.

 $\sigma_{\text{cd,amm}}$ Tensione ammissibile per la verifica a compressione del calcestruzzo.

 N_{Ed} , $M_{\text{Ed.3}}$, $M_{\text{Ed.2}}$ Sollecitazioni di progetto.

 σ_{at} Tensione massima di trazione nell'acciaio della Trave/Rinforzo o nel FRP

 $\sigma_{\text{td,amm}}$ Tensione ammissibile per la verifica a trazione dell'acciaio.

CS Coefficiente di Sicurezza (= $\sigma_{cd,amm}/\sigma_{cc}$; $\sigma_{td,amm}/\sigma_{at}$). [NS] = Non Significativo (CS \geq 100).

 $\text{Verificato} \hspace{1cm} [\text{Si}] = \sigma_{\text{cc}} \leq \sigma_{\text{cd,amm}}; \; \sigma_{\text{at}} \leq \sigma_{\text{td,amm}}. \; [\text{NO}] = \sigma_{\text{cc}} > \sigma_{\text{cd,amm}}; \; \sigma_{\text{at}} > \sigma_{\text{td,amm}}. \; \sigma_{\text{td,amm}}; \; \sigma_{\text{cd,amm}}; \; \sigma_{\text{at}} > \sigma_{\text{td,amm}}; \; \sigma_{\text{cd,amm}}; \; \sigma_{\text$

BATOLO- VERIFICA ALLO STATO LIMITE DI FESSURAZIONE

									Batoli -	Batoli - verifica allo stato limite di fessurazione														
	I d _{Cmb}	N _{Ed}	M _{Ed,3}	M _{Ed,2}	$\sigma_{\mathrm{ct,f}}$	$\sigma_{\rm t}$	€ _{sm}	$A_{\rm e}$	Δ_{sm}	W _d	W _{amm}	CS	Verificato											
		[N]	[N·m]	[N·m]	[N/mm ²]	[N/mm ²]		[cm ²]	[mm]	[mm]	[mm]													
Batolo: Batolo	atolo: Batolo 1																							
				AA= PCA																				
-	FRQ	263	4.196	649	0,08	2,58	0 E+00	0	0	0,000	0,400	-	SI											
-	QPR	6.125	-	-	-0,01	2,58	0 E+00	0	0	0,000	0,300	-	SI											

LEGENDA:

AA Aggressività 'ambiente: [PCA]=Ordinarie (Poco aggressivo)-[MDA]=Aggressive(Moderatamente aggressivo)-[MLA]=Molto aggressive

Identificativo della Combinazione di Azione: [QPR] = Quasi Permanente - [FRQ] = Frequente - [RAR] = Rara.

N_{Ed}, M_{Ed,3}, M_{Ed,2} Sollecitazioni di progett

σ_{ct,f} Tensione massima di trazione nel calcestruzzo per la fessurazione, calcolata nell'ipotesi di calcestruzzo resistente a trazione. Se tale valore è maggiore

di σ_t la sezione è soggetta a fessurazione. N.B. I valori negativi indicano una sezione interamente compressa. In tal caso le sollecitazioni forniscono il

minimo valore di compressione.

σ_t Tensione massima di trazione nel cls relativa allo stato limite di formazione delle fessure [(4.1.37) del § 4.1.2.2.4.1 del DM 2008].

ε_{sm} Deformazione media nel calcestruzzo.
 A_e Area efficace del calcestruzzo teso.
 Δ_{sm} Distanza media tra le fessure.

W_d Valore di calcolo di apertura massima delle fessure.
W_{amm} Valore ammissibile di apertura delle fessure.

CS Coefficiente di Sicurezza (= W_d / W_{amm}). [NS] = Non Significativo (CS \geq 100). [-] = Fessurazioni nulle (W_d = 0).

Verificato $[SI] = W_d \le W_{amm}$; $[NO] = W_d > W_{amm}$

7.2.4. PLATEE

PLATEA- VERIFICHE PRESSOFLESSIONE RETTA ALLO STATO LIMITE ULTIMO

															Platee - Verifiche pressoflessione retta allo SLI							
Dir	Pos	Nodo	N _{Ed}	M _{Ed}	As	A _{df}	CS	Nodo	N _{Ed}	M _{Ed}	As	A_{df}	CS	Nodo	N _{Ed}	M _{Ed}	As	A_{df}	CS			
			[N]	[N·m]	[cm ² /cm]	[cm ² /cm]			[N]	[N·m]	[cm ² /cm]	[cm ² /cm]			[N]	[N·m]	[cm ² /cm]	[cm ² /cm]				
Fond	Fondazione Platea 1																					
P	S	00002	0	0	0,04524	0,04524	-	00003	0	0	0,04524	0,04524	-	00004	0	0	0,04524	0,04524	-			
	- 1		0	5.708	0,04524	0,04524	8,62		86	2.832	0,04524	0,04524	17,36		0	3.652	0,04524	0,04524	13,47			
S	S		0	0	0,04524	0,04524	-		0	0	0,04524	0,04524	-		0	0	0,04524	0,04524	-			
	- 1		0	4.874	0,04524	0,04524	10,09		0	3.196	0,04524	0,04524	15,39		65	3.045	0,04524	0,04524	16,15			
P	S	00005	0	0	0,04524	0,04524	-	00006	0	0	0,04524	0,04524	-	00007	0	2.528	0,04524	0,04524	19,45			
	- 1		0	4.302	0,04524	0,04524	11,43		-85	3.968	0,04524	0,04524	12,40		0	5.693	0,04524	0,04524	8,64			
S	S		0	0	0,04524	0,04524	-		0	0	0,04524	0,04524	-		0	1.726	0,04524	0,04524	28,49			
	- 1		-65	2.515	0,04524	0,04524	19,56		0	2.847	0,04524	0,04524	17,27		0	6.104	0,04524	0,04524	8,06			
P	S	80000	0	0	0,04524	0,04524	-															
	- 1		0	7.415	0,04524	0,04524	6,63															
S	S		0	0	0,04524	0,04524	-															

Impianto per la produzione di energia elettrica da fonte eolica avente potenza di connessione pari a 37,2 MW e relative opere connesse denominato "Vento del Carpine" nei Comuni di Cancellara e Vaglio Basilicata (PZ)

Codifica Elaborato: 214301 D R 0120 Rev. 02

Platee - Verifiche pressoflessione rett														etta allo SLU					
Dir	Pos	Nodo	N_{Ed}	M _{Ed}	As	A _{df}	CS	Nodo	N _{Ed}	M _{Ed}	As	A _{df}	CS	Nodo	N _{Ed}	M _{Ed}	As	A _{df}	CS
			[N]	[N·m]	[cm ² /cm]	[cm ² /cm]			[N]	[N·m]	[cm ² /cm]	[cm ² /cm]			[N]	[N·m]	[cm ² /cm]	[cm ² /cm]	
	1		0	7.173	0,04524	0,04524	6,86												

LEGENDA:

Dir Direzione [P] = principale (asse locale 1) - [S] = secondaria (asse locale 2).

Pos Posizione [S] = superiore - [I] = inferiore.

As Area delle armature esecutive per unità di lunghezza.

A_{df} Armatura disponibile per la flessione

CS Coefficiente di sicurezza ([NS] = Non Significativo se CS ≥ 100; [VNR] = Verifica Non Richiesta; Informazioni aggiuntive sulla condizione: [V] = statica; [E]

= eccezionale; [S] = sismica; [N] = sismica non lineare).

N_{Ed}, M_{Ed} Sollecitazioni di progetto.

PLATEA- VERIFICHE DELLE TENSIONI ALLO STATO LIMITE DI ESERCIZIO

											Plate	e - verifich	ne delle te	nsioni d	di esercizio	
Nodo/	Dir				essione calce one calcestru		o		Trazione acciaio Trazione acciaio/FRP rinforzo							
Tp _{rnf}		I d _{Cmb}	σ_{cc}	σ _{cd,amm}	N _{Ed}	M_{Ed}	CS	Verificato	I d _{Cmb}	σ_{at}	$\sigma_{td,amm}$	N_{Ed}	M _{Ed}	CS	Verificato	
			[N/mm ²]	[N/mm ²]	[N]	[N·m]				[N/mm ²]	[N/mm ²]	[N]	[N·m]			
Fondazione				Platea 1												
	D	RAR	0,414	19,92	0	-6.790	48,15	SI	RAR	5,171	360,00	0	-6.790	69,62	SI	
00008	Р	QPR	0,127	14,94	0	-2.082	NS	SI	-	-	-	-	-	-	-	
00006	c	RAR	0,396	19,92	0	-6.492	50,36	SI	RAR	4,944	360,00	0	-6.492	72,81	SI	
	3	QPR	0,138	14,94	0	-2.271	NS	SI	-	-	-	-	-	-	-	

LEGENDA:

Rinf. Indica la presenza del rinforzo sulla sezione di verifica.

Dir Direzione [P] = principale (asse locale 1) - [S] = secondaria (asse locale 2).

Identificativo della Combinazione di Azione: [QPR] = Quasi Permanente - [FRQ] = Frequente - [RAR] = Rara.

 $\begin{array}{ll} \sigma_{cc} & \text{Tensione massima di compressione nel calcestruzzo della Trave/Rinforzo.} \\ \sigma_{cd,amm} & \text{Tensione ammissibile per la verifica a compressione del calcestruzzo.} \\ \sigma_{at} & \text{Tensione massima di trazione nell'acciaio della Trave/Rinforzo o nel FRP.} \\ \sigma_{td,amm} & \text{Tensione ammissibile per la verifica a trazione dell'acciaio/rinforzo.} \\ \end{array}$

 N_{Ed} , M_{Ed} Sollecitazioni di progetto.

 $\text{CS} \qquad \qquad \text{Coefficiente di Sicurezza (= $\sigma_{\text{cd, amm}}/\sigma_{\text{cc}}$; $\sigma_{\text{td, amm}}/\sigma_{\text{at}}$). [NS] = Non Significativo (CS $\geq 100). }$

Verificato [S1] = La verifica è soddisfatta ($\sigma_{cc} \le \sigma_{cd,amm}$; $\sigma_{at} \le \sigma_{td,amm}$). [NO] = La verifica NON è soddisfatta ($\sigma_{cc} > \sigma_{cd,amm}$; $\sigma_{at} > \sigma_{td,amm}$). Nota Nella tabella, per ogni elemento, viene riportato il nodo della shell che ha il coefficiente di sicurezza (CS) più piccolo.

PLATEA- VERIFICA ALLO STATO LIMITE DI FESSURAZIONE

									Platee -	verifica al	lo stato lin	nite di 1	essurazione
Nodo	Dir	I d _{Cmb}	N _{Ed}	M _{Ed}	$\sigma_{ct,f}$	σ_{t}	€ _{sm}	A _e	Δ_{sm}	W_d	W _{amm}	CS	Verificato
			[N]	[N·m]	[N/mm ²]	[N/mm ²]		[cm ²]	[mm]	[mm]	[mm]		
Fondazione			Platea 1			A/	N= PCA						
NOTA: L'elem	NOTA: L'elemento NON è fessurato. Di seguito si riporta il nodo strutturale per la quale si riscontra la massima tensione di trazione (max o _{ct.1})												
80000		FRQ	-	-3.495	0,21	2,58	0 E+00	0	0	0,000	0,400	-	SI
	Р	QPR	-	-2.082	0,13	2,58	0 E+00	0	0	0,000	0,300	-	SI
	c	FRQ	-	-3.537	0,22	2,58	0 E+00	0	0	0,000	0,400	-	SI
	3	QPR	-	-2.271	0,14	2,58	0 E+00	0	0	0,000	0,300	-	SI

LEGENDA:

Dir Direzione [P] = principale (asse locale 1) - [S] = secondaria (asse locale 2).

AA Aggressività 'ambiente: [PCA] = Ordinarie (Poco aggressivo) - [MDA] = Aggressive (Moderatamente aggressivo) - [MLA] = Molto aggressive.

Identificativo della Combinazione di Azione: [QPR] = Quasi Permanente - [FRQ] = Frequente - [RAR] = Rara.

N_{Ed}, **M**_{Ed} Sollecitazioni di progetto.

σ_{ct,f} Tensione massima di trazione nel calcestruzzo per la fessurazione, calcolata nell'ipotesi di calcestruzzo resistente a trazione. Se tale valore è maggiore di σ_t

la sezione è soggetta a fessurazione.

Tensione massima di trazione nel calcestruzzo relativa allo stato limite di formazione delle fessure.

 $\mathbf{\epsilon}_{sm}$ Deformazione media nel calcestruzzo. \mathbf{A}_{e} Area efficace del calcestruzzo teso. $\mathbf{\Delta}_{sm}$ Distanza media tra le fessure.

 $\mathbf{W_d}$ Valore di calcolo di apertura massima delle fessure.

V_{amm} Valore ammissibile di apertura delle fessure.

CS Coefficiente di Sicurezza (= W_d/W_{amm}). [NS] = Non Significativo (CS \geq 100). [-] = Fessurazioni nulle ($W_d = 0$).

 $\label{eq:Verificato} \textbf{Verificato} \hspace{0.5cm} [SI] = W_d \leq W_{amm} \, ; \, [NO] = W_d > W_{amm}$