

ASSE VIARIO MARCHE - UMBRIA E QUADRILATERO DI PENETRAZIONE INTERNA

Sublotto 2.2: Intervalliva Macerata - allaccio funzionale della SS77 alla città di Macerata alle località "La Pieve" e "Mattei"

PROGETTO DEFINITIVO

IL GEOLOGO

Dott. Geol. Salvatore Marino

Ordine dei geologi della Regione Lazio n. 1069

COORDINATORE PER LA SICUREZZA IN FASE DI PROGETTAZIONE

Ing. Valerio Guidobaldi

Ordine Ingegneri Provincia di Roma n. A30025

VISTO: IL RESPONSABILE
DEL PROCEDIMENTO

Ing. Iginio Farotti

I PROGETTISTI SPECIALISTICI

Ing. Ambrogio Signorelli

Ordine Ingegneri Provincia di Roma n. A35111

Ing. Moreno Panfili

Ordine Ingegneri Incia di Perugia n. A2657

ORDINE INGEGNER! CONTO Muller ROMA

> Ordine Insegneri Provincia di Roma n. 15754

> > Ing. Giuseppe Resta

Ordine Ingegneri Provincia di Roma n. 20629 PROGETTAZIONE ATI:

(Mandataria)

GPIngegneria

GESTIONE PROGETTI INGEGNERIA srl

(Mandante)

iitegorgooo ittegorgooo

(Mandante)

(Mandante)

IL PROGETTISTA E RESPONSABILE DELL'INTEGRAZIONE DELLE PRESTAZIONE SPECIALISTICHE. (DPR207/10 ART 15 COMMA 12):

Dott. Ing. GIORGIO GU DUCO ROMA
Ordine Ingegneri Provincia di Forna n. 110354035

OPERE D'ARTE MAGGIORI
TRATTO 2 – SOTTOPASSO VIA FONTESCODELLA

Relazione tecnica e di calcolo

CODICE PROG	ЕТТО	NOME FILE	L0703.MC.D.P	.ST502	2.00.STR.R	EL.001.B	REVISIONE	SCALA
OPERA	LOTTO STATO SETTORE		WBS	DISCIPLIN	IA TIPO DOC.	N° PROGRESS.		
LO703	MC D P	CODICE ELAB.	S T 5 0 2 0 0	STF	REL	0 0 1	В	_
В	Revisione a seguito	alle istrutt	torie Prot. QMU 00029	937	Ott. 2020		Muller	Guiducci
Α	Emissione				Marzo 2020		Muller	Guiducci
REV.	DESCRIZIONE				DATA	REDATTO	VERIFICATO	APPROVATO

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

INDICE

<u>1.</u>	<u>PF</u>	REMES	SA	4
<u>2.</u>	DE	ESCRIZ	ZIONE DELL'OPERA	<u>4</u>
<u>3.</u>	NO	ORMA [*]	TIVA E RIFERIMENTI	<u>5</u>
<u>4.</u>	<u>C/</u>	ARATT	ERISTICHE DEI MATERIALI	<u>5</u>
	4.1.	CAL	CESTRUZZO	5
	4.	.1.1.	Calcestruzzo per la realizzazione dello scatolare	5
	4.	.1.2.	calcestruzzo per muri di sostegno	6
	4.2.	ACC	CIAIO PER CEMENTO ARMATO	6
	4.3.	DUF	ABILITÀ, PRESCRIZIONI SUI MATERIALI, SCELTA DEGLI STATI LIMITE DI FESSURAZIONE E DEI	
		COP	RIFERRI	7
<u>5.</u>	<u>P/</u>	ARAME	TRI GEOTECNICI PER IL CALCOLO DELLE STRUTTURE	8
<u>6.</u>	<u>CF</u>	RITERI	DI CALCOLO E DEFINIZIONE DELLE AZIONI	9
	6.1.	CRIT	ERI DI CALCOLO	9
	6.2.		INIZIONE DELLE DELL'AZIONI	
	6.3.		TERI E DEFINIZIONE DELL'AZIONE SISMICA1	
<u>7.</u>	<u>C(</u>	<u>OMBIN</u>	AZIONI DI CARICO1	<u>2</u>
	7.1.	TIP	DLOGIA DI VERIFICHE1	4
<u>8.</u>	<u>M</u> (ODELL	O DI CALCOLO1	5
^				
<u>9.</u>	<u>A1</u>		DEI CARICHI1	
<u>9.</u>	<u>Al</u> 9.1.		ONI PERMANENTI1	7
<u>9.</u>	9.1.			7
<u>9.</u>	9.1. <i>9</i> .	AZI	ONI PERMANENTI1	7 7
<u>9.</u>	9.1. 9.	AZI .1.1.	ONI PERMANENTI	7 17 17
<u>y.</u>	9.1. 9.	AZI .1.1. .1.2. .1.3.	ONI PERMANENTI	7 17 17
<u>9.</u>	9.1. 9. 9. 9. 9.2.	AZI .1.1. .1.2. .1.3.	ONI PERMANENTI	7 7 7 8
<u>9.</u>	9.1. 9. 9. 9.2.	AZI .1.1. .1.2. .1.3. DEF	ONI PERMANENTI	17 17 17 18
<u>9.</u>	9.1. 9. 9. 9. 9.2.	AZIII.1.1.21.3. DEF .2.1.	ONI PERMANENTI 1 Peso proprio degli elementi strutturali (g1) 1 Carichi permanenti portati (g2) 1 Spinta del terreno (g3) 1 FORMAZIONI IMPRESSE 1 Ritiro ε 2 1	17 17 17 18 18
<u>9.</u>	9.1. 9.9. 9.2. 9.2. 9.3.	AZIII.1.1.21.3. DEF .2.1.	ONI PERMANENTI 1 Peso proprio degli elementi strutturali (g1) 1 Carichi permanenti portati (g2) 1 Spinta del terreno (g3) 1 FORMAZIONI IMPRESSE 1 Ritiro ε 2 1 Variazioni termiche (ε 3) 2	17 17 17 18 18 20
<u>9.</u>	9.1. 9. 9. 9.2. 9. 9.3.	AZI .1.1. .1.2. .1.3. DEF .2.1. .2.2.	ONI PERMANENTI 1 Peso proprio degli elementi strutturali (g1) 1 Carichi permanenti portati (g2) 1 Spinta del terreno (g3) 1 FORMAZIONI IMPRESSE 1 Ritiro ε 2 1 Variazioni termiche (ε 3) 2 ONI VARIABILI DA TRAFFICO 2	17 17 17 18 18 20 21
<u>9.</u>	9.1. 9. 9. 9.2. 9. 9.3.	AZII .1.1. .1.2. .1.3. DEF .2.1. .2.2. AZII	DNI PERMANENTI 1 Peso proprio degli elementi strutturali (g1) 1 Carichi permanenti portati (g2) 1 Spinta del terreno (g3) 1 CORMAZIONI IMPRESSE 1 Ritiro £2 1 Variazioni termiche (£3) 2 DNI VARIABILI DA TRAFFICO 2 Carichi mobili verticali sulla soletta superiore 2 Spinta del sovraccarico sul rilevato 2 Azione longitudinale di frenamento o di accelerazione 2	7 17 17 18 20 20 21 22 23
<u>9.</u>	9.1. 9. 9. 9.2. 9. 9.3. 9.	AZIII	DNI PERMANENTI 1 Peso proprio degli elementi strutturali (g1) 1 Carichi permanenti portati (g2) 1 Spinta del terreno (g3) 1 FORMAZIONI IMPRESSE 1 Ritiro ε 2 1 Variazioni termiche (ε 3) 2 DNI VARIABILI DA TRAFFICO 2 Carichi mobili verticali sulla soletta superiore 2 Spinta del sovraccarico sul rilevato 2 Azione longitudinale di frenamento o di accelerazione 2 Azione centrifuga 2	7 7 7 17 18 20 21 22 23 24
<u>9.</u>	9.1. 9. 9. 9.2. 9. 9.3. 9.	AZIII	DNI PERMANENTI 1 Peso proprio degli elementi strutturali (g1) 1 Carichi permanenti portati (g2) 1 Spinta del terreno (g3) 1 CORMAZIONI IMPRESSE 1 Ritiro £2 1 Variazioni termiche (£3) 2 DNI VARIABILI DA TRAFFICO 2 Carichi mobili verticali sulla soletta superiore 2 Spinta del sovraccarico sul rilevato 2 Azione longitudinale di frenamento o di accelerazione 2	7 17 17 18 18 20 21 22 23 24

	9.4.	2.	Forze sismiche verticali	25
	9.5.	СА	RICHI ELEMENTARI E LORO COMBINAZIONI	25
	9.5.	1.	Condizioni di carico elementari	25
	9.5.	2.	Combinazioni di carico	26
<u>10.</u>	<u>VER</u>	IFIC	CHE STRUTTURALI	41
			RIFICHE DELLE SEZIONI	
	10.1.	VE	RIFICHE DI ACCETTABILITÀ DEI RISULTATI	94
	10.1.	VE	RIFICHE DI DEFORMABILITÀ	95
<u>11.</u>	<u>VER</u>	IFIC	CA DEL MURO AD L SUL LATO SINISTRO DELLO SCATOLARE	95
	11.1.	РА	RAMETRI GEOTECNICI PER IL CALCOLO DELLE STRUTTURE	96
	11.2.	DE	FINIZIONE DELLE DELL'AZIONI	96
	11.2.1.	ΑZ	IONI PERMANENTI	96
	11.2.2.	ΑZ	IONI VARIABILI	97
	11.3.	VE	RIFICHE GEOTECNICHE	97
	11.3.1.	VE	RIFICHE STRUTTURALI	103
	11.3.2.	ST	RUMENTI DI CALCOLO	103
	11.4.	VE	RIFICHE DEL MURO CON ALTEZZA PARI A 7.0M	104
	11.5.	VE	RIFICHE DEL MURO CON ALTEZZA PARI A 4.0M	137
<u>12.</u>	<u>VER</u>	IFIC	CA DEL MURO AD U SUL LATO DESTRO DELLO SCATOLARE	156
	12.1.	MC	DDELLO DI CALCOLO E VERIFICHE MURO DI ALTEZZA 7.0M	156
	12.1.1.	AN	ALISI DEI CARICHI	157
	12.1	1.2.	Peso proprio degli elementi strutturali (g1)	158
	12.1	1.3.	Carichi permanenti portati (g2)	158
	12.1	1.4.	Spinta del terreno (g3)	158
	12.1	1.5.	Carichi mobili verticali sulla soletta di fondazione	159
	12.1	1.6.	Spinta del sovraccarico sul rilevato	160
	12.1	1.7.	Azione sismica	161
	12.1	1.8.	Forze sismiche orizzontali e verticali	161
	12.1	1.1.	VERIFICHE DELLE SEZIONI	162
	12.1	1.1.	VERIFICHE DI ACCETTABILITÀ DEI RISULTATI	189
	12.2.	MC	DELLO DI CALCOLO E VERIFICHE MURO DI ALTEZZA 4.0M	190
	12.2	2.1.	ANALISI DEI CARICHI	191
	12.2	2.2.	Peso proprio degli elementi strutturali (g1)	191
	12.2	2.3.	Carichi permanenti portati (g2)	191
	12.2	2.4.	Spinta del terreno (g3)	192

12.2.5.	Carichi mobili verticali sulla soletta di fondazione	192
12.2.6.	Spinta del sovraccarico sul rilevato	194
12.2.7.	Azione sismica	194
12.2.8.	Forze sismiche orizzontali e verticali	195
12.2.9.	VERIFICHE DELLE SEZIONI	195
12.2.10.	VERIFICHE DI ACCETTABILITÀ DEI RISULTATI	218

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

1. PREMESSA

L'opera d'arte in progetto è il sottopasso stradale localizzato alla contrada Fontescodella. Il sottovia sarà realizzato sul nuovo asse viario costituente l'Intervalliva di Macerata. Le soluzioni progettuali individuate per far fronte alle interferenze viarie sono delle opere di attraversamento che, in base alla loro importanza, si possono suddividere in opere d'arte maggiori (viadotti e ponti) e opere d'arte minori (ponticelli e scatolari). La struttura in progetto è costituita da uno scatolare, di dimensioni in retto pari a 12,56x7,90 m. La larghezza netta interna è pari a 8,00 m. A seguire vengono dimensionati i muri di sostegno in entrata ed uscita dal sottopasso.

2. <u>DESCRIZIONE DELL'OPERA</u>

La struttura in progetto è costituita da uno scatolare di dimensioni in retto pari a 12,56x7,90 m. Il ricoprimento, ovvero la distanza tra la quota del piano stradale e l'estradosso della soletta superiore, è pari in media a 0.90 m circa, in cui è incluso circa 0.50 m di massicciata e pavimentazione stradale. Le azioni considerate nel calcolo sono quelle tipiche di una struttura interrata e quelle di tipo stradale basate sula Normativa D. M. Min. II. TT. del 17 gennaio 2018 – Norme tecniche per le costruzioni. L'opera ricade in zona sismica, pertanto, saranno applicate le azioni di rito previste dalla norma cosi come riportato nei capitoli successivi.

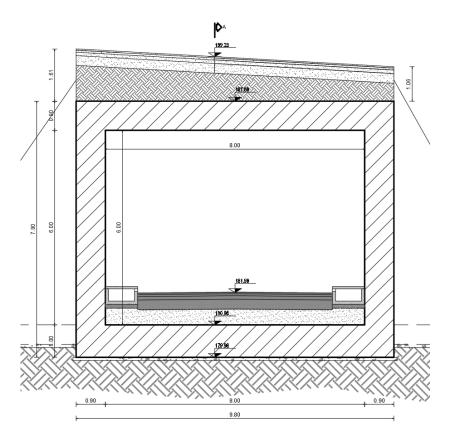


Figura 1: sezione trasversale del manufatto

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

3. NORMATIVA E RIFERIMENTI

Le analisi strutturali e le verifiche di sicurezza sono state effettuate in accordo con le prescrizioni contenute nelle seguenti normative.

- Legge 5/11/1971, n.1086 Norme per la disciplina delle opere di conglomerato cementizio armato normale e precompresso e a struttura metallica;
- D.M. Infrastrutture del 17.01.2018 Aggiornamento delle Norme tecniche per le costruzioni;
- Circolare 21 gennaio 2019 n.7 "Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"» di cui al decreto ministeriale 17 gennaio 2018";
- UNI EN 1990 (Eurocodice 0) Aprile 2006: "Criteri generali di progettazione strutturale";
- UNI EN 1991-1-1 (Eurocodice 1) Agosto 2004 Azioni in generale- Parte 1-1: "Pesi per unità di volume, pesi propri e sovraccarichi per gli edifici";
- UNI EN 1991-2 (Eurocodice 1) Marzo 2005 Azioni sulle strutture- Parte 2: "Carico da traffico sui ponti";
- UNI EN 1992-2 (Eurocodice 2) - Gennaio 2006: "Progettazione delle strutture di calcestruzzo – Parte 2: "Ponti in calcestruzzo - progettazione e dettagli costruttivi";
- UNI EN 1997-1 (Eurocodice 7) Febbraio 2005: "Progettazione geotecnica Parte 1: Regole generali";
- (Eurocodice 8) Marzo 2005: "Progettazione delle strutture per la UNI EN 1998-1 resistenza sismica – Parte 1: Regole generali – Azioni sismiche e regole per gli edifici";
- UNI EN 1998-2 (Eurocodice 8) - Febbraio 2006: "Progettazione delle strutture per la resistenza sismica - Parte 2: Ponti";
- UNI EN 1998-5 (Eurocodice 8) Gennaio 2005: "Progettazione delle strutture per la resistenza sismica – Parte 2: Fondazioni, strutture di contenimento ed aspetti geotecnici".
- UNI EN 197-1 giugno 2001 "Cemento: composizione, specificazioni e criteri di conformità per cementi comuni;
- UNI EN 206:2016 "Calcestruzzo: specificazione, prestazione, produzione e conformità", Istruzioni complementari per l'applicazione delle EN 206-1;

4. CARATTERISTICHE DEI MATERIALI

4.1. CALCESTRUZZO

4.1.1. CALCESTRUZZO PER LA REALIZZAZIONE DELLO SCATOLARE

Per la realizzazione dello scatolare, si utilizza un calcestruzzo in classe Rck ≥35MPa che presenta le seguenti caratteristiche:

Classe di resistenza C28/35 Modulo elastico E_{cm}= 32588 N/mm² Resistenza caratteristica a compressione cilindrica $f_{ck} =$ 29.05 N/mm² Resistenza media a compressione cilindrica $f_{cm} =$ 37.05 N/mm² Resistenza di calcolo a compressione $f_{cd} =$ 16.46 N/mm²

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Resistenza a trazione (valore medio) $f_{ctm} = 2.83$			N/mm ²
Resistenza caratteristica a trazione $f_{ctk} = 1$.			N/mm ²
Massima dimensione aggregati 16 mm			
Massimo rapporto A/C 0,50			
Minimo contenuto in cemento 320 kg/m			

4.1.2. CALCESTRUZZO PER MURI DI SOSTEGNO

Per la realizzazione delle strutture in elevazione dei muri, si utilizza un calcestruzzo in classe Rck ≥40MPa che presenta le seguenti caratteristiche:

Classe del calcestruzzo	C32/40)
Classe di esposizione	XC4	
Rapporto massimo acqua/cemento	0.50	-
Contenuto minimo di cemento	340	kg/m³
Classe di consistenza (Slump)	S4	-
Dimensione massima dell'aggregato	16	mm

4.2. ACCIAIO PER CEMENTO ARMATO

Per le armature metalliche si adottano tondini in acciaio saldabile del tipo B450C controllato in stabilimento caratterizzato dai seguenti valori nominali delle tensioni caratteristiche di snervamento e rottura da utilizzare nei calcoli:

$$f_{y \text{ nom}} = 450 \text{ N/mm}^2$$

 $f_{t \text{ nom}} = 540 \text{ N/mm}^2$

L'acciaio B450C deve rispettare le caratteristiche riportate nella seguente tabella.

Proprietà	Requisito	Frattile (%)
Tensione caratteristica di snervamento f _{yk}	≥ 450 MPa	5.0
Tensione caratteristica di rottura ftk	≥ 540 MPa	5.0
$(f_t/f_y)_k$	≥ 1.15 ≤ 1.35	10.0
$(f_t/f_{ynom})_k$	≤ 1.25	10.0
Allungamento totale al carico massimo (A _{gt})	≥ 7.5%	10.0
Diametro del mandrino per prove di piegamento a 90° e successivo raddrizzamento senza		
cricche: $\phi < 12$ $12 \le \phi \le 16$ $16 < \phi \le 25$ $25 < \phi \le 40$	4փ 5փ 8փ 10փ	

Caratteristiche dell'acciaio

La resistenza di calcolo dell'acciaio fyd è riferita alla tensione di snervamento ed il suo valore è pari a:

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

 $f_{yd} = f_{yk}/\gamma_s = 450/1.15 = 391.3MPa$

essendo:

 $y_s = 1.15$

il coefficiente parziale di sicurezza per l'acciaio.

4.3. DURABILITÀ, PRESCRIZIONI SUI MATERIALI, SCELTA DEGLI STATI LIMITE DI FESSURAZIONE E DEI COPRIFERRI

Il calcestruzzo deve essere in grado di resistere in maniera soddisfacente alle condizioni ambientali e di lavoro cui è sottoposto durante la vita dell'opera. Nella presente sezione si valutano pertanto le caratteristiche dei calcestruzzi (resistenza caratteristica, copriferri, ecc..) da impiegare per la realizzazione delle diverse parti dell'opera in oggetto tali da consequire il requisito di durabilità

Per lo scatolare in relazione alle classi di esposizione ambientale definite nella UNI EN 206-1 e nella UNI 11104, sono state attribuite ai diversi elementi strutturali le seguenti classi di esposizione:

strutture di fondazione XC2 strutture di elevazione XC3

Le condizioni ambientali (vedi Tabella 4.1.III delle NTC18) sono pertanto le seguenti:

strutture di fondazione ordinarie strutture di elevazione ordinarie

La scelta degli stati limite di fessurazione viene effettuata sulla base della Tabella 4.1.IV delle NTC2018 in funzione delle condizioni ambientali definite precedentemente e della tipologia di armatura, nel caso in esame definita poco sensibile, in quanto si tratta di acciai ordinari. Per le strutture di fondazione e di elevazione, il valore di calcolo di apertura delle fessure w_d deve soddisfare i seguenti requisiti:

- $w_d < w_3 = 0.4$ mm per combinazione frequente (c.a. ordinarie, armatura poco sensibile);
- w_d < w_2 = 0.3 mm per combinazione quasi permanente (c.a. ordinarie, armatura poco sensibile). L'armatura deve essere protetta da un adeguato ricoprimento di calcestruzzo (copriferro) che deve essere dimensionato in funzione dell'aggressività dell'ambiente e della sensibilità delle armature alla corrosione, tenendo anche conto della tolleranza di posa delle armature.

La distanza tra la parete interna del cassero e la generatrice dell'armatura metallica più vicina, individua il cosiddetto "copriferro nominale".

Il copriferro nominale c_{nom} è somma di due contributi, il copriferro minimo c_{min} e la tolleranza di posizionamento h, ovvero:

 $c_{nom} = c_{min} + h$.

La tolleranza di posizionamento delle armature h, per le strutture gettate in opera, è assunta pari a:

h = 5 mm.

Considerata la classe di esposizione ambientale dell'opera, la tipologia dell'opera e la classe del calcestruzzo impiegato C28/35, il copriferro minimo assunto è pari a:

 $c_{min} = 37 \text{ mm}.$

In definitiva il valore nominale del copri ferro risulta pari a:

ASSE VIARIO MARCHE - UMBRIA E QUADRILATERO DI PENETRAZIONE INTERNA SUBLOTTO 2.2: Intervalliva Macerata - allaccio funzionale della SS77 alla città di Macerata alle località "La Pieve" e "Mattei"

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

$$c_{nom} = c_{min} + h = 37+5 = 42 \text{ mm}$$

A vantaggio di sicurezza si adotta un copriferro pari a 45 mm.

Per i muri di sostegno esterni allo scatolare, in relazione alle classi di esposizione ambientale definite nella UNI EN 206-1 e nella UNI 11104, sono state attribuite ai diversi elementi strutturali le sequenti classi di esposizione:

strutture di fondazione XC2 strutture di elevazione XC4

	strutture di fondazione	strutture di elevazione
Classe di esposizione	XC2	XC4
Massimo rapporto a/c	0.55	0.50
Minima classe di resistenza	C28/35	C32/40
Minimo contenuto in cemento	320	340

Tabella 1: Valori limiti per la composizione del calcestruzzo dei muri

Pertanto si adotta un copriferro pari a 50 mm.

5. PARAMETRI GEOTECNICI PER IL CALCOLO DELLE STRUTTURE

Il terreno a tergo delle strutture in oggetto è costituito da terreno per rilevati stradali; si considerano prudenzialmente ai fini del calcolo i parametri geotecnici del terreno di fondazione dedotti dalla relazione geologica allegata al progetto:

 γ_t = **20** kN/m³ ϕ = **35**° per gli SL STR ϕ_d = arctan(tan ϕ_k/γ_ϕ) = **29.2**° per gli SL GEO

Lo scavo avviene a cielo aperto con pendenza 3:2.

Per la valutazione teorica del coefficiente di reazione verticale si ricorre al modulo elastico del terreno di sottofondo.

Considerando un numero fisso e pari a 9 di molle elastiche, la caratteristica elastica della generica molla viene calcolata attraverso la formulazione di Vogt:

$$k_s = \frac{1.33 \cdot E}{\sqrt[3]{bt^2 \cdot bl}}$$

- Ks = costante di sottofondo [F/L³]
- b_t = dimensione trasversale dell'opera
- b₁ = dimensione longitudinale dell'opera
- E = modulo di Young del terreno

E (MPa)	10.0
Numero di molle per unità di lunghezza	9
b _t (m)	8.90

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

b _i (m)	1.00
K _{verticale} (kN/m ³)	3096.88

Il modulo di Young è stato dedotto dalla relazione geotecnica. Lo strato a cui si fa riferimento è la formazione A. La categoria del sottosuolo di riferimento è la C.

6. CRITERI DI CALCOLO E DEFINIZIONE DELLE AZIONI

6.1. CRITERI DI CALCOLO

In ottemperanza al D.M. del 17.01.2018 (Norme tecniche per le costruzioni), i calcoli sono condotti con il metodo semiprobabilistico agli stati limite.

Per l'analisi strutturale, volta alla valutazione degli effetti delle azioni sia per gli SLE sia per gli SLU, si adotta il metodo dell'analisi elastica lineare.

Per la determinazione degli effetti delle azioni, le analisi vengono effettuate assumendo:

- sezioni interamente reagenti con rigidezze valutate riferendosi al solo calcestruzzo;
- relazioni tensioni deformazioni lineari;
- valori medi del modulo di elasticità.

Le unità di misura adottate sono i m per le lunghezze, kN e m per le forze e le Sollecitazioni, i N e mm per le tensioni (MPa=N/mm²).

6.2. DEFINIZIONE DELLE DELL'AZIONI

Le azioni da considerare nella progettazione dei ponti stradali sono:

- le azioni permanenti
- le distorsioni, ivi comprese quelle dovute a presollecitazioni di progetto e quelle di origine termica:
- le azioni variabili da traffico;
- le azioni variabili da vento e neve;
- le azioni eccezionali:
- le azioni sismiche.

La viscosità deve essere considerata associata a quelle azioni per le quali da effetto.

Nella seguente tabella sono riportate esplicitamente tutte le azioni da considerare nella progettazione dei ponti stradali.

Azioni permanenti	g_1 = peso proprio degli elementi strutturali e non strutturali; g_2 = carichi permanenti portati (pavimentazione stradale, marciapiedi, sicurvia, parapetti, attrezzature stradali, rinfianchi e simili); g_3 = altre azioni permanenti (spinta delle terre, spinte idrauliche, ecc).
Deformazioni impresse	ϵ_1 = distorsioni e presollecitazioni di progetto; ϵ_2 = effetti reologici: ritiro e viscosità; ϵ_3 = variazioni termiche; ϵ_4 = cedimenti vincolari.
Azioni variabili da	q ₁ = carichi mobili;

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

traffico	q_2 = incremento dinamico addizionale in presenza di discontinuità strutt.; q_3 = azione longitudinale di frenamento; q_4 = azione centrifuga.
Azioni dovute al vento e alla neve	q _{5,A} = azione dovuta al vento; q _{5,B} = azione dovuta alla neve.
Azioni sismiche	q ₆ = azioni sismiche.
Resistenze parassite dei vincoli	q ₇ = resistenze parassite dei vincoli.
Azioni sui parapetti. Urto di veicolo in svio	q ₈ = azioni sui parapetti. Urto di veicolo in svio.
Altre azioni variabili	$q_{9,A}$ = azioni idrauliche; $q_{9,B}$ = urto di un veicolo contro le strutture; $q_{9,C}$ = urto di ghiacci e natanti sulle pile.

Tabella 2: Azioni considerate nella progettazione

6.3. CRITERI E DEFINIZIONE DELL'AZIONE SISMICA

L'effetto dell'azione sismica di progetto sull'opera nel suo complesso, includendo il volume significativo di terreno, la struttura di fondazione, gli elementi strutturali e non, nonché gli impianti, deve rispettare gli stati limite ultimi e di esercizio definiti al § 3.2.1, i cui requisiti di sicurezza sono indicati nel § 7.1 della norma.

Il rispetto degli stati limite si considera conseguito quando:

- nei confronti degli stati limite di esercizio siano rispettate le verifiche relative al solo Stato Limite di Danno:
- nei confronti degli stati limite ultimi siano rispettate le indicazioni progettuali e costruttive riportate nel § 7 e siano soddisfatte le verifiche relative al solo Stato Limite di salvaguardia della Vita.

Per Stato Limite di Danno (SLD) s'intende che l'opera, nel suo complesso, a seguito del terremoto, includendo gli elementi strutturali, quelli non strutturali, le apparecchiature rilevanti alla sua funzione, subisce danni tali da non provocare rischi agli utenti e non compromette significativamente la capacità di resistenza e di rigidezza nei confronti delle azioni verticali e orizzontali. Lo stato limite di esercizio comporta la verifica delle tensioni di lavoro, in conformità al § 4.1.2.2.5 (NT).

Per Stato Limite di salvaguardia della Vita (SLV) si intende che l'opera a seguito del terremoto subisce rotture e crolli dei componenti non strutturali e impiantistici e significativi danni di componenti strutturali, cui si associa una perdita significativa di rigidezza nei confronti delle azioni orizzontali (creazione di cerniere plastiche secondo il criterio della gerarchia delle resistenze), mantenendo ancora un margine di sicurezza (resistenza e rigidezza) nei confronti delle azioni verticali.

In merito alle opere scatolari di cui trattasi, nel rispetto del punto § 7.9.2., assimilando l'opera scatolare alla categoria delle spalle da ponte, rientrando tra le opere che si muovono con il terreno (§ 7.9.2.1), si può ritenere che la struttura debba mantenere sotto l'azione sismica un

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

comportamento elastico; queste categorie di opere che si muovono con il terreno non subiscono le amplificazioni dell'accelerazione del suolo.

A riguardo del calcolo allo SLV, dovendo la struttura mantenere durante l'evento sismico un comportamento elastico, vengono eseguite le verifiche alle tensioni di esercizio (§ 4.1.2.2.5), assumendo come limite delle tensioni di esercizio quelle adottate per la combinazione caratteristica (rara) (EC2 § 7.2). Tale combinazione, in accordo al punto § 7.10.6.1. (NTC) e alla Circolare (nella quale si afferma che il sostanziale mantenimento in campo elastico della struttura nelle verifiche allo SLU, fornisce ampie garanzie rispetto alla sicurezza nei confronti dello SLD), consente di ritenere soddisfatte anche le verifiche nei confronti dello SLD.

Per la definizione dell'azione sismica, occorre definire il periodo di riferimento P_{VR} in funzione dello stato limite considerato.

La vita nominale (V_N) dell'opera è stata assunta pari a (cfr. par. 2.4.1. NTC): Vn = **50** anni.

La classe d'uso (cfr. par. 2.4.2. NTC) assunta è la IV, il coefficiente d'uso risulta pertanto pari a (cfr. tab. 2.4.II NTC): Cu = 2.0

Il periodo di riferimento (V_R) per l'azione sismica, data la vita nominale e la classe d'uso vale:

I valori di probabilità di superamento del periodo di riferimento PVR, cui riferirsi per individuare l'azione sismica agente è:

Il periodo di ritorno dell'azione sismica T_R espresso in anni, vale:

$$T_R(SLV) = -\frac{Vr}{\ln(1 - Pvr)} = 949 \text{ anni}$$

Dato il valore del periodo di ritorno suddetto, tramite le tabelle riportate nell'Allegato B della norma o tramite la mappatura messa a disposizione in rete dall'Istituto Nazionale di Geofisica e Vulcanologia (INGV), è possibile definire i valori di ag, F₀, T*_c.

- accelerazione orizzontale massima del terreno su suolo di categoria A, espressa come frazione dell'accelerazione di gravità;
- F_0 valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- periodo di inizio del tratto a velocità costante dello spettro in accelerazione T*c orizzontale;
- S coefficiente che comprende l'effetto dell'amplificazione stratigrafica (Ss) e dell'amplificazione topografica (St).

L'opera in esame è situata alle seguenti coordinate:

NORMATIVA

Vita nominale costruzione 50 anni Classe d'uso costruzione IV Vita di riferimento 100 anni

Luogo Macerata - Contrada Fontescodella Longitudine (WGS84) 13.4364

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Latitudine (WGS84) 43.2845 С Categoria del suolo

PARAMETRI SISMICI

	TR	ag/g	FO	TC*	СС	Ss	Pga (ag/g*S)
SLO	60	0.074	2.43	0.29	1.57	1.50	0.111
SLD	101	0.093	2.42	0.31	1.55	1.50	0.140
SLV	949	0.226	2.46	0.35	1.49	1.37	0.309
SLC	1950	0.286	2.51	0.35	1.48	1.27	0.363

Tabella 3: Parametri sismici di progetto

La risposta all'azione sismica viene valutata mediante analisi statica in campo lineare separatamente per ciascuna componente, x e z. Gli effetti delle diverse componenti dell'azione sismica sulla struttura (in termini di sollecitazioni, deformazioni, spostamenti ecc.) sono combinati successivamente mediante la seguente espressione:

$$1.00 \cdot E_x + 0.30 \cdot E_z$$

con rotazione dei coefficienti moltiplicativi e conseguente individuazione degli effetti più gravosi.

7. COMBINAZIONI DI CARICO

Nel presente capitolo vengono definite le combinazioni di carico utilizzate nei calcoli.

Ai fini delle verifiche agli stati limite, in accordo con le NTC2018 si definiscono le seguenti combinazioni di azioni:

- Combinazione FONDAMENTALE (FO), generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} G_1 + \gamma_{G2} G_2 + \gamma_{G3} G_3 + \gamma_{P} \cdot P + \gamma_{Q1} Q_{k1} + \Psi_{02} \cdot \gamma_{Q2} \cdot Q_{k2} + \Psi_{03} \cdot \gamma_{Q3} \cdot Q_{k3} + \dots$$

- Combinazione RARA (RA), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:

$$G_1 + G_2 + G_3 + P + Q_{k1} + \Psi_{02} \cdot Q_{k2} + \Psi_{03} \cdot Q_{k3} + \dots$$

- Combinazione FREQUENTE (FR), generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + G_3 + P + \Psi_{11} \cdot Q_{k1} + \Psi_{22} \cdot Q_{k2} + \Psi_{23} \cdot Q_{k3} + \dots$$

- Combinazione QUASI PERMANENTE (QP), generalmente impiegata per gli effetti a lungo termine:

$$G_1 + G_2 + G_3 + P + \Psi_{21} \cdot Q_{k1} + \Psi_{22} \cdot Q_{k2} + \Psi_{23} \cdot Q_{k3} + \dots$$

- Combinazione SISMICA (SIS), impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica:

$$E + G_1 + G_3 + P + \Psi_{21} \cdot Q_{k1} + \Psi_{22} \cdot Q_{k2} + \Psi_{23} \cdot Q_{k3} + \dots$$

ASSE VIARIO MARCHE - UMBRIA E QUADRILATERO DI PENETRAZIONE INTERNA SUBLOTTO 2.2: Intervalliva Macerata - allaccio funzionale della SS77 alla città di Macerata alle località "La Pieve" e "Mattei"

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

- Combinazione ECCEZIONALE (EC), impiegata per gli stati limite ultimi connessi alle azioni eccezionali di progetto:

$$G_1 + G_2 + G_3 + P + A_d + \Psi_{21} \cdot Q_{k1} + \Psi_{22} \cdot Q_{k2} + \Psi_{23} \cdot Q_{k3} + \dots$$

Nelle combinazioni per le verifiche allo stato limite di esercizio (SLE), ovvero quelle rare, frequenti e quasi permanenti, si intende che vengono omessi i carichi Q_{kj} che danno un contributo favorevole ai fini delle verifiche e, se del caso, i carichi G_2 .

Gli stati limite ultimi delle opere interrate si riferiscono allo sviluppo di meccanismi di collasso, determinati dalla mobilitazione della resistenza del terreno, e al raggiungimento della resistenza degli elementi strutturali che compongono l'opera.

Le verifiche agli stati limite ultimi sono eseguiti in riferimento ai seguenti stati limite:

- -SLU di tipo geotecnico (GEO) e di equilibrio di corpo rigido (EQU)
 - collasso per carico limite dell'insieme fondazione-terreno;
- -SLU di tipo strutturale (STR)
 - raggiungimento della resistenza negli elementi strutturali.

Le verifiche vengono condotte secondo l'approccio progettuale denominato "Approccio 1", nel quale sono previste due diverse combinazioni di gruppi di coefficienti: la prima combinazione è generalmente più severa nei confronti delle opere strutturali a contatto con il terreno e verrà pertanto utilizzata per la verifica degli elementi strutturali; mentre la seconda combinazione è generalmente più severa nei riguardi del dimensionamento geotecnico e verrà utilizzata per la determinazione dei carichi in fondazione.

Combinazione 1
$$\rightarrow$$
 (A1+M1+R1) \rightarrow STR
Combinazione 2 \rightarrow (A2+M2+R2) \rightarrow GEO

Vengono utilizzati i coefficienti parziali riportati nelle Tabelle 6.2.II e 5.1.V per i parametri geotecnici e le azioni. Nel caso in esame dai dati riportati in tabella consegue che per la determinazione dei carichi in fondazione (combinazione 2) agli SLU, la valutazione delle spinte sul manufatto devono essere valutate utilizzando un angolo di attrito ϕ_d ottenuto mediante la seguente relazione:

$$\varphi_d = \arctan(\tan\varphi_k/\gamma_\varphi)$$

Gli effetti dell'azione sismica saranno valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$G_1+G_2+\sum_i\psi_{2i}\cdot Q_{ki}$$

I valori del coefficiente ψ_{2i} sono quelli riportati nella tabella 5.1.VI e § 2.5.I della norma; la stessa propone nel caso di ponti, e più in generale per opere stradali, di assumere per i carichi dovuti al transito dei mezzi ψ_{2i} = 0÷0.2 (condizione cautelativa). Data la natura dell'opera in progetto, cosi come previsto dalla norma, si può assumere ψ_{2i} =0.

		γί				
Condizi	one di carico	A 1	A2	Ψ_{0i}	Ψ_{1i}	Ψ_{2i}

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

		STR	GEO			
G ₁	Peso proprio degli elementi strutturali e non strutturali	1.00-1.35	1.00-1.00	-	-	-
G ₂	Carichi permanenti portati (compiutamente definiti)	1.00-1.35	1.00-1.00	-	-	-
G_3	Spinta delle terre a riposo	1.00-1.30	1.00-1.00	-	-	-
ε1	Distorsioni e presollecitazioni di progetto	1.00-1.00	1.00-1.00	-	-	-
ε2	Ritiro e viscosità	0.00-1.20	0.00-1.00	-	-	-
£3	Variazioni termiche	0.00-1.20	0.00-1.00	0.6	0.6	0.5
84	Cedimenti vincolari	0.00-1.20	0.00-1.00	-	-	-
Q_1	Carichi mobili schema 1 (carichi tandem)	0.00-1.35	0.00-1.15	0.75	0.75	0.0
	schemi 1, 5 e 6 (carichi distrib.)	0.00-1.35	0.00-1.15	0.4	0.4	0.0
	schemi 3 e 4 (carichi conc.)	0.00-1.35	0.00-1.15	0.4	0.4	0.0
	schema 2	0.00-1.35	0.00-1.15	0.0	0.75	0.0
Q_2	Incremento dinamico addizionale in presenza di discontinuità strutturali	0.00-1.35	0.00-1.15	0.6	0.6	0.5
Q_3	Azione longitudinale di frenamento	0.00-1.35	0.00-1.15	1.0	0.5	0.3
Q_4	Azione centrifuga	0.00-1.35	0.00-1.15	1.0	0.0	0.0
$Q_{5,A}$	Azione del vento a ponte scarico SLU e SLE	0.00-1.50	0.00-1.30	0.6	0.2	0.0
	a ponte scarico esecuzione	0.00-1.50	0.00-1.30	0.8		0.0
	a ponte carico	0.00-1.50	0.00-1.30	0.6		
$Q_{5,B}$	Azione dovuta alla neve SLU e SLE	0.00-1.50	0.00-1.50	0.0	0.0	0.0
	esecuzione	0.00-1.50	0.00-1.50	0.8	0.6	0.5
Q_6	Azioni sismiche	0.30-1.00	0.30-1.00	-	-	-
Q ₇	Resistenze parassite dei vincoli	0.00-1.50	0.00-1.30	-	-	-
Q_8	Azioni sui parapetti. Urto di veicolo in svio	0.00-1.50	0.00-1.30	-	-	-
$Q_{9,A}$	Azioni idrauliche	0.00-1.50	0.00-1.30	ı	-	-
$Q_{9,B}$	Urto di un veicolo contro le strutture	0.00-1.50	0.00-1.30	-	-	-
$Q_{9,C}$	Urto di ghiacci e natanti sulle pile	0.00-1.50	0.00-1.30	-	-	-

Tabella 4: Carichi, coefficienti parziali di sicurezza e coefficienti di combinazione

7.1. TIPOLOGIA DI VERIFICHE

Verifiche agli stati limite ultimi su strutture di fondazione e di elevazione.

Si verifica che sia $E_d \le R_d$. Dove E_d è il valore di progetto delle azioni e R_d è la corrispondente resistenza di progetto.

Verifiche agli stati limite di esercizio

Verifiche a fessurazione - Stato limite di apertura delle fessure su strutture di fondazione ed elevazione

> $w_d < w_3 = 0.4$ mm per combinazione frequente (c.a. ordinarie, armatura poco sensibile);

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

 $w_d < w_2 = 0.3$ mm per combinazione quasi permanente (c.a. ordinarie, armatura poco sensibile);

Verifica delle tensioni di esercizio su strutture di fondazione ed elevazione

- $-\sigma_c$ < 0.6 · f_{ck} = 0.6 · 29.1 = 17.4 MPa per combinazione rara;
- σ_c < 0.45·f_{ck} = 0.45 29.1 = 13.1 MPa per combinazione quasi permanente;
- σ_s < 0.8·f_{vk} = 0.80 450 = 360 MPa per combinazione rara.

8. MODELLO DI CALCOLO

Come modello di calcolo (si vedano le figure successive) si è assunto lo schema statico di telaio chiuso analizzato attraverso un'analisi elastico-lineare attraverso il programma di calcolo agli elementi finiti Midas Gen.

La mesh (si vedano le figure seguenti) è composta da 39 beam elements. Tale telaio viene descritto attraverso le linee d'asse delle singole membrature e pertanto, le aste del modello avranno lunghezza pari alla dimensione netta interna maggiorate della metà degli spessori delle aste

L'analisi strutturale è condotta con il metodo degli spostamenti per la valutazione dello stato tensodeformativo indotto da carichi statici.

Il suolo viene modellato facendo ricorso all'usuale artificio delle molle elastiche alla Winkler. La soletta inferiore viene divisa in 8 elementi per poter schematizzare, tramite le molle applicate, l'interazione terreno-struttura.

Considerando un numero fisso e pari a 9 di molle elastiche, la caratteristica elastica della generica molla viene calcolata attraverso la formulazione di Vogt:

$$k_s = \frac{1.33 \cdot E}{\sqrt[3]{bt^2 \cdot bl}}$$

- Ks = costante di sottofondo [F/L³]
- b_t = dimensione trasversale dell'opera
- b₁ = dimensione longitudinale dell'opera
- E = modulo di Young del terreno

E (MPa)	10
Numero di molle per unità di lunghezza	9
b _t (m)	8.90
b _i (m)	1.00
K _{verticale} (kN/m³)	3096.88

Nella presente relazione si adotta un modulo di reazione verticale $Kv = 3096 \text{ kN/m}^3$

Con questo valore si ricavano i valori delle singole molle, ottenendo per le 3 molle centrali un valore

$$K_{centrale} = K_s * (L_p/2 + L_{int} + L_p/2) /9$$

K7, ...K9 = 3061.6 kN/m

ASSE VIARIO MARCHE - UMBRIA E QUADRILATERO DI PENETRAZIONE INTERNA SUBLOTTO 2.2: Intervalliva Macerata - allaccio funzionale della SS77 alla città di Macerata alle località "La Pieve" e "Mattei"

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

I valori delle molle di spigolo si ottengono con la seguente formulazione:

$$K1 = K2 = 2*K_s*[(L_p/2 + L_{int} + L_p/2)/9/2 + (L_p/2)] = 5848 \text{ kN/m}$$

ed infine in valori delle molle nei nodi 5,6,10 e 11 come da letteratura si assumono:

$$K5 = K6 = K10 = K11 = 1.5 * K_{centrale} = 4592.4 kN/m$$

Agli effetti delle caratteristiche geometriche delle varie aste si è quindi assunto:

- -una sezione rettangolare b x h = 1.00 x 0.9 0 m per la soletta superiore
- -una sezione rettangolare b x h = 1.00 x 1.00 m per la soletta di fondazione
- -una sezione rettangolare b x h = 1.00 x 0.90 m per i piedritti

Per le aste del reticolo si è assunto:

 E_{cm} = 22000·[f_{cm}/10]^{0.3} = 33643 MPa; modulo elastico del cls

Lo schema statico della struttura e la relativa numerazione dei nodi e delle aste sono riportati nella figura 2.

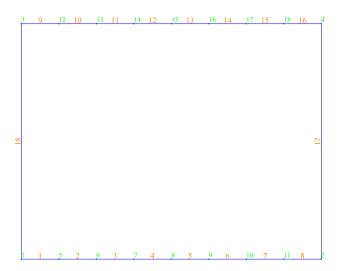


Figura 2: Modello di calcolo implementato

I	Name	Type	Standard	DB	Poisso	Thermal	(1/[C]	Density	(kN/m^3	Mass	Density	(kN/m^3/g
1	Calcestruzz	Concret	NTC18 (RC	C28/3	0.2	1.0000e-	005	2.5000e+	001	2.549	93e+000	

Tabella 5: Materiale da modello di calcolo

Node	Fixed	SDz	(kN/m)	SRz	(kN*m/[rad])
1	110011	5848.	0000	0.00	
2	110011	5848.	0000	0.00	
5	110011	4592.	4000	0.00	
6	110011	4592.	4000	0.00	
7	110011	3061.	6000	0.00	
8	110011	3061.	6000	0.00	
9	110011	3061.	6000	0.00	
10	110011	4592.	4000	0.00	
11	110011	4592.	4000	0.00	

ASSE VIARIO MARCHE - UMBRIA E QUADRILATERO DI PENETRAZIONE INTERNA SUBLOTTO 2.2: Intervalliva Macerata - allaccio funzionale della SS77 alla città di Macerata alle località "La Pieve" e "Mattei"

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Tabella 6: Molle alla Winkler applicate nel modello di calcolo

9. ANALISI DEI CARICHI

Nel seguente paragrafo, sulla base di quanto riportato al capitolo precedente, si descrivono i carichi elementari da assumere per le verifiche di resistenza in esercizio ed in presenza dell'evento sismico per la struttura in oggetto.

9.1. AZIONI PERMANENTI

Per i materiali si assumono i seguenti pesi specifici:

calcestruzzo armato: 25.0 kN/m³
 rilevato 20.0 kN/m³
 sovrastruttura stradale 22.0 kN/m³

9.1.1. PESO PROPRIO DEGLI ELEMENTI STRUTTURALI (G1)

I pesi propri degli elementi strutturali per metro lineare di struttura sono i seguenti:

- soletta superiore	$0.90 \cdot 25 = 22.50 \text{ kN/m}^2$
- soletta inferiore	1.00·25 = 25.00 kN/m ²
- piedritti	$0.90 \cdot 25 = 22.50 \text{ kN/m}^2$

9.1.2. CARICHI PERMANENTI PORTATI (G2)

I carichi permanenti portati (per metro lineare di struttura in obliquo) sono i seguenti:

- peso sovr. stradale soletta sup. 0.50·22 = 11.00 kN/m²

A vantaggio di sicurezza si considera uno spessore pari a 0.90 m, pari allo spessore massimo del rilevato.

- peso rilevato soletta sup. $0.90 \cdot 20 = 18.00 \text{ kN/m}^2$ - peso rilevato soletta inf. $0.50 \cdot 20 = 10.00 \text{ kN/m}^2$

Carico "2" nel modello di calcolo.

9.1.3. SPINTA DEL TERRENO (G3)

Il rinterro a ridosso dello scatolare verrà realizzato tramite materiale arido di buone caratteristiche meccaniche (cautelativamente si trascurano le caratteristiche del pacchetto di transizione in misto stabilizzato).

Si assumono per il terreno costituente il rilevato i seguenti parametri geotecnici:

 $\gamma_t = 20 \text{ kN/m}^3$

 ϕ = 35° per gli SL STR ϕ = 29.3° per gli SL GEO

I coefficienti di spinta a riposo e di spinta attiva valgono rispettivamente:

 $k_0 = 1$ -sen $\phi = 0.426$ per gli SL STR

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

$$k_0 = 1$$
-sen $\phi = 0.511$

Le pressioni del terreno relative alla spinta a riposo ed alla spinta attiva, in corrispondenza dell'estradosso e dell'intradosso dello scatolare risultano essere le seguenti:

$p_{z=1.60} = k_0 \cdot (q_0 + \gamma \cdot z) = 0.426 \cdot (19 + 20 \cdot 1.60)$	$\cong 21.73 \text{ kN/m}^2$	per gli SL STR
$p_{z=9.11} = k_0 \cdot (q_0 + \gamma \cdot z) = 0.426 \cdot (21.73 + 20.9.11)$	$\cong 86.87 \ kN/m^2$	per gli SL STR

(rappresenta il carico "3" nel modello di calcolo)

$$\begin{array}{ll} p_{z=1.60} = k_0 \cdot (q_0 + \gamma \cdot z) = 0.511 \cdot (19 + 20 \cdot 1.60) & \cong 26.07 \text{ kN/m}^2 & \text{per gli SL GEO} \\ p_{z=9.11} = k_0 \cdot (q_0 + \gamma \cdot z) = 0.511 \cdot (24.52 + 20 \cdot 9.11) & \cong 104.21 \text{ kN/m}^2 & \text{per gli SL GEO} \\ \end{array}$$

(rappresenta il carico "13" nel modello di calcolo)

Naturalmente queste spinte saranno opportunamente combinate, utilizzando i valori dei coefficienti parziali delle azioni da assumere nell'analisi per la determinazione degli effetti delle azioni nelle verifiche agli stati limite ultimi.

9.2. DEFORMAZIONI IMPRESSE

9.2.1. RITIRO ε2

Si considera soggetta a fenomeni di ritiro la sola soletta superiore. La deformazione totale da ritiro si può esprimere come: $\varepsilon_{cs} = \varepsilon_{cd} + \varepsilon_{ca}$ dove:

 ε_{cs} è la deformazione totale per ritiro

 ϵ_{cd} è la deformazione per ritiro da essiccamento

 ε_{ca} è la deformazione per ritiro autogeno.

Il valore medio a tempo infinito della deformazione per ritiro da essiccamento: $\varepsilon_{cd,\infty} = k_h \cdot \varepsilon_{c0}$ può essere valutato mediante i valori delle seguenti Tab. 11.2.Va-b (NTC) in funzione della resistenza caratteristica a compressione, dell'umidità relativa e del parametro h₀:

		Deformazio	ne da ritiro	per essicca	mento (in ‰	5)						
fck		Umidità relativa (in %)										
	20	40	60	80	90	100						
20	-0,62	-0,58	-0,49	-0,30	-0,17	+0,00						
40	-0,48	-0,46	-0,38	-0,24	-0,13	+0,00						
60	-0,38	-0,36	-0,30	-0,19	-0,10	+0,00						
80	-0,30	-0,28	-0,24	-0,15	-0,07	+0,00						

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Tabella 7:Valori di &0 (Tabella 11.2. NTC18)

h₀ (mm)	k _h
100	1,0
200	0,85
300	0,75
≥500	0,70

Tabella 8:Valori di kh (Tabella 11.2.Vab NTC18)

I valori intermedi dei parametri indicati in tabella si ottengono per l'interpolazione lineare. Lo sviluppo nel tempo della deformazione εcd può essere valutato come:

$$\varepsilon_{cd}(t) = \beta_{ds}(t-t_s) \cdot \varepsilon_{cd,\infty}$$

In cui la funzione di sviluppo temporale assume la forma:

$$\beta_{ds}(t-t_s) = (t-t_s)/[(t-t_s)+0.04h_0^{3/2}]$$

dove:

t è l'età in giorni del calcestruzzo nel momento considerato

t_s = 1 giorno, è l'età del calcestruzzo a partire dal quale si considera l'effetto del ritiro da essiccamento:

 h_0 = 2A/u è la dimensione fittizia in cui:

Ac è l'area della sezione in calcestruzzo;

U è il perimetro della sezione in calcestruzzo esposta all'aria.

Il valore medio a tempo infinito della deformazione per ritiro autogeno εca... può essere valutato mediante l'espressione:

$$\varepsilon_{\text{ca},\infty} = -2.5 \cdot (f_{\text{ck}} - 10) \cdot 10^{-6}$$
 (con f_{ck} in N/mm²)

L'andamento nel tempo del ritiro autogeno è dato dalla seguente relazione:

$$\beta_{as}(t) = 1-exp(-0.2 \cdot t^{0.5})$$

Per le componenti strutturali dell'elemento in esame, assumendo un'umidità relativa pari a 70% si ha:

Elemento	f _{ck} (MPa)	h₀ (mm)	k _h (-)	ε _{c0} (‰)	ε _{cd,∞} (‰)	β _{ds(t=180)} (-)	ε _{ca,∞} (‰)	β _{as(t=180)}	ε _{cs,∞} (‰)
Soletta superiore	29.05	900	0.70	-0.339	-0.250	0.11	-0.048	0.93	-0.295
Piedritti	29.05	900	0.70	-0.339	-0.250	0.11	-0.048	0.93	-0.295
Soletta inferiore	29.05	1000	0.70	-0.339	-0.250	0.10	-0.048	0.93	-0.298

Tabella 9:Valori medi a tempo infinito e a 180 giorni della deformazione per ritiro da essiccamento e ritiro autogeno

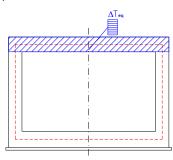
Trattandosi di un fenomeno lento si utilizza un modulo di elasticità pari a 1/3 Ec.

Si fa l'ipotesi che la soletta superiore venga realizzata sei mesi dopo la soletta inferiore (t=180 giorni), in tal caso, il ritiro che la soletta inferiore deve ancora scontare dal momento della realizzazione della soletta superiore è pari a:

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

$$\epsilon_{cs,t=\infty-180,inf} = \epsilon_{cs,t=\infty} - \epsilon_{cs,t=180} = \text{[-0.298]} - \text{[-0.250} \cdot \text{0.10} - \text{0.048} \cdot \text{0.93]} = \text{-0.228 \%}$$

Il ritiro totale della soletta superiore è pari a:

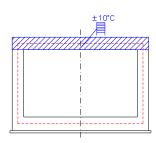

$$\varepsilon_{cs,t=\infty,sup}$$
 = - 0.293 %

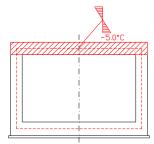
Il ritiro differenziale vale pertanto:

$$\epsilon_{cs,t=\infty,sup}$$
 - $\epsilon_{cs,t=\infty-180,inf}$ = -0.293-[-0.228] = -0.065%

Tale deformazione viene applicata alla soletta superiore per tener conto del ritiro differenziale che si genera tra i due elementi gettati in tempi diversi. Il valore della variazione termica equivalente applicata all'elemento è pari a:

$$\Delta T_{eq} = \epsilon/\alpha = (6.5 \cdot 10^{-5})/(1 \cdot 10^{-5}) \approx 6.5^{\circ}C$$




(condizione di carico "4" nel modello di calcolo)

9.2.2. VARIAZIONI TERMICHE (ϵ 3)

Si considerano i seguenti casi:

- variazione termica uniforme di ±10°C sulla soletta superiore
- gradiente termico tra l'intradosso e l'estradosso della soletta pari a 10° tra i suddetti estremi.

(condizione di carico "5" nel modello di calcolo).

9.3. AZIONI VARIABILI DA TRAFFICO

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

9.3.1. CARICHI MOBILI VERTICALI SULLA SOLETTA SUPERIORE

Ai fini della determinazione delle azioni variabili da traffico, l'opera in oggetto è considerata come un ponte stradale di 1° Categoria. Il calcolo dello scatolare viene eseguito per una striscia trasversale di 1m. Si considera la striscia maggiormente sollecitata al disotto della prima colonna di carico di larghezza 3.00m. La colonna è larga 3.00 m ed i carichi da considerare valgono (già dinamizzati):

- 1) Distribuito: $q_{1k} = 9.00 \text{ kN/mg}$
- 2) Concentrati : Q_{1k} = 300 kN, ovvero 150kN a impronta, per n° 4 posti alla distanza relativa di 1.20m (Tandem) x 2.00 m.

La ripartizione dei carichi si effettua considerando il carico isolato da 150 kN con impronta quadrata di lato 0.4 m.

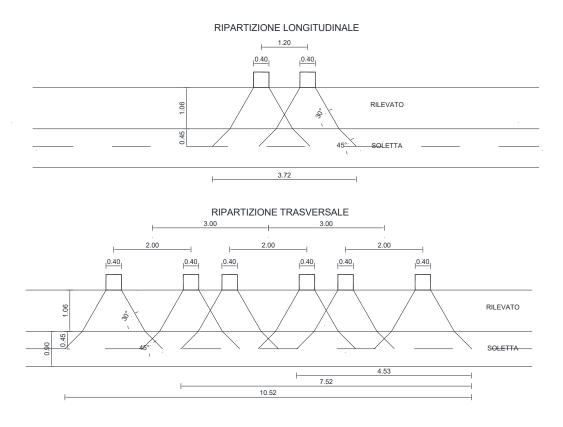


Figura 3: Schema di ripartizione dei carichi mobili

Il carico è schematizzato da due assi da 150 kN disposti ad interasse di 1.20m. per la determinazione delle lunghezze di diffusione a vantaggio di sicurezza è stato adottato lo spessore minimo di ricoprimento della struttura dello scatolare.

Si procede al calcolo dei carichi per metro lineare riferiti al baricentro della soletta per i diversi treni di carico. Si considera una larghezza di ripartizione trasversale massima pari alla larghezza della corsia di carico di 3.00 m pertanto:

 $q_{1k} = 600/(L_L \cdot L_{T1})$

 $q_{1k} = (600+400)/(L_L \cdot L_{T2})$

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

 $q_{1k} = (600+400+200)/(L_L \cdot L_{T3})$

LL	3.00 m	q _{2k}	9.00 kN/m ²
L _{T1}	4.53 m	q _{1k}	44.15 kN/m ²
L _{T2}	7.54 m	q _{1k}	44.20 kN/m ²
L _{T3}	10.54 m	q _{1k}	38.02 kN/m ²

Si applica il carico della condizione più sfavorevole pari a 44.20 kN/m² applicato su tutta la larghezza del sottovia.

9.3.2. SPINTA DEL SOVRACCARICO SUL RILEVATO

La spinta sul manufatto dovuto alla presenza del sovraccarico sul rilevato è definita applicando un carico pari a 20 kN/m alla quota della pavimentazione stradale.

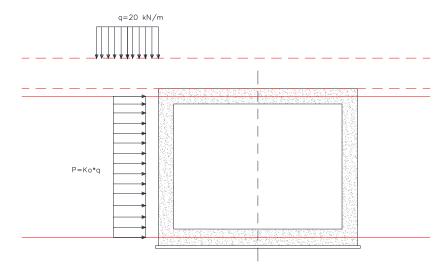


Figura 4: Spinta dovuta al sovraccarico sul rilevato

Si considera la spinta agente solo sulla parete sinistra:

 $q_s = 20.00 \text{ kN/m}$ p_s (STR) = $q_s K_0 = 9.12 \text{ kN/m}$ p_s (GEO) = $q_s K_0 = 10.22 \text{ kN/m}$

condizioni di carico "11" e "12" nel modello di calcolo.

Si considera un altro caso di carico con 10kN/m di sovraccarico variabile sul rilevato.

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

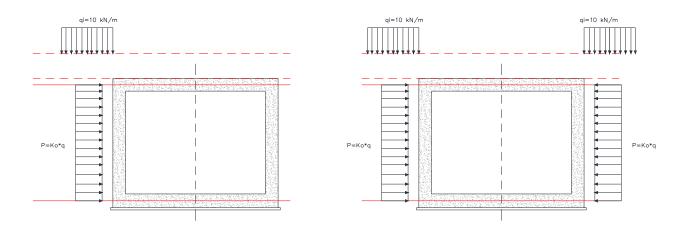


Figura 5: Secondo caso di Sovraccarico sul rilevato

La spinta del sovraccarico sul rilevato è definita in due condizioni di carico:

 $q_s = 10.00 \text{ kN/m}$ p_{s1} (str) = $q_s K_0 = 4.56$ kN/m (condizione di carico "9" su entrambi I piedritti); (condizione di carico "9.1" su entrambi I piedritti); p_{s1} (geo) = $q_s K_0 = 5.11 \text{ kN/m}$

il carico agisce contemporaneamente ai carichi mobili sulla struttura ed è applicato in due condizioni separate su un solo lato dello scatolare (condizione di carico "11_STR" e "12_GEO" nel modello di calcolo adottando coefficienti pari a 0.5 nelle combinazioni di carico) e su entrambi i piedritti contemporaneamente (condizioni di carico "9 STR" e "9.1 GEO" nel modello di calcolo).

9.3.3. AZIONE LONGITUDINALE DI FRENAMENTO O DI ACCELERAZIONE

L'azione di frenamento o di accelerazione q₃ è funzione del carico verticale totale agente sulla corsia convenzionale n.1 ed è uguale a:

$$q_3 = 0.6 \cdot (2 \cdot Q_{1k}) + 0.10 \cdot q_{1k} \cdot w_1 \cdot L = 0.6 \cdot (2 \cdot 300) + 0.10 \cdot 9 \cdot 3 \cdot 9.80 = 274.90 \text{ kN } (\leq 900 \text{kN } \text{e} \geq 180)$$

essendo wi la larghezza della corsia e L la lunghezza della zona caricata.

La forza applicata a livello della pavimentazione ed agente lungo l'asse della corsia è assunta uniformemente distribuita sulla lunghezza caricata e include gli effetti di interazione.

L'azione di cui sopra, viene distribuita sulla soletta superiore dello scatolare; il valore equivalente da applicare alla soletta, si ottiene distribuendo il valore del carico frenante, alla lunghezza della soletta e alla larghezza di diffusione del carico, con la seguente relazione:

 $q_{3,dis}$ =(274.90/9.80) = 28.05 kN/m²

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

9.3.4. AZIONE CENTRIFUGA

In relazione alla tipologia ed alla geometria dell'opera in oggetto non è prevista alcuna azione centrifuga essendo che il manufatto è posto in tratta rettilinea.

9.4. AZIONE SISMICA

Secondo quanto riportato al §6.3, il sostanziale mantenimento in campo elastico della struttura nelle verifiche allo SLU, consente di ritenere soddisfatte anche le verifiche nei confronti dello SLD; vengono pertanto prese in conto le sole azioni per lo SLU ovvero per lo SLV.

Il calcolo viene eseguito con il metodo pseudostatico (NTC § 7.11.6) di Wood data la configurazione dell'opera (scatolare interrato).

In queste condizioni l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.

Nelle verifiche allo Stato Limite Ultimo, nel caso in esame lo SLV, i valori dei coefficienti sismici orizzontali k_h e verticale k_v possono essere valutati mediante le espressioni:

 $k_h = \beta_m \cdot a_{max}/g = 1.0 \cdot 0.266 \cdot g = 0.309 g$

 $k_v = \pm 0.5 \cdot k_h = \pm 0.155 g$

dove:

 $a_{max} = 0.309 g$ accelerazione orizzontale massima attesa al sito (vedi § 6.3)

 $g = 9.81 \text{ m/s}^2$ accelerazione di gravità;

 $\beta_{\rm m} = 1.0$ coefficiente di riduzione dell'accelerazione massima attesa al sito funzione del tipo di sottosuolo, assunto pari ad 1 in quanto la struttura non ammette spostamenti relativi rispetto al terreno:

L'azione sismica è rappresentata da un insieme di forze statiche orizzontali e verticali, date dal prodotto delle forze di gravità per i coefficienti sismici in precedenza definiti, di cui la componente verticale è considerata agente verso l'alto o verso il basso, in modo da produrre gli effetti più sfavorevoli.

La risultante delle forze inerziali orizzontali indotte dal sisma viene valutata con la seguente espressione:

 $F_h = P \cdot k_h$

 $F_v = P \cdot k_v$

L'incremento dinamico di spinta del terreno, considerando lo scatolare come una struttura rigida completamente vincolata (NT par. 7.11.6.2.1 e EC8-5 par.7.3.2.1) in modo tale che non può svilupparsi nel terreno uno stato di spinta attiva, è calcolato mediante la sequente relazione:

 $\Delta P_d = k_h \cdot \gamma \cdot h_{tot} = 0.309 \cdot 20 \cdot 9.11 = 56.30 \text{ kN/ml allo SLV}$

Essendo "ΔP_d" la risultante globale, ed il diagramma di spinta di tipo rettangolare, è immediato ricavare la quota parte della spinta che agisce sul piedritto dello scatolare. Il punto di applicazione della spinta che interessa lo scatolare è posto h_{scat}/2, con "h_{tot}" altezza dal piano di progetto alla fondazione dello scatolare e h_{scat} l'altezza dello scatolare.

Oltre ai carichi suddetti viene aggiunta, come carico concentrato nei nodi 1 e 3, la parte di sovraspinta esercitata su 1/2 spessore della soletta sup. e su 1/2 spessore della soletta inferiore. Spinta semispessore sol. sup. allo SLV:

ASSE VIARIO MARCHE - UMBRIA E QUADRILATERO DI PENETRAZIONE INTERNA SUBLOTTO 2.2: Intervalliva Macerata - Allaccio funzionale della SS77 alla città di Macerata alle località "La Pieve" e "Mattei"

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

 $F_1 = 9.94 \text{ kN}$

Spinta semispessore sol. inf.

 $F_3 = 3.09 \text{ kN}$

9.4.1. FORZE SISMICHE ORIZZONTALI

L'azione sismica è rappresentata da un insieme di forze statiche orizzontali, date dal prodotto delle forze di gravità per i coefficienti sismici in precedenza definiti ed applicate nei rispettivi baricentri. Forze d'inerzia orizzontali sullo scatolare SLV.

 $F_{o, rilevato+ pavimentazione} = \pm 9.51 \text{ kN/m}^2;$ $F_{o, soletta} = \pm 6.94 \text{ kN/m}^2;$ $F_{o, piedritto} = \pm 6.94 \text{ kN/m}^2;$

9.4.2. FORZE SISMICHE VERTICALI

L'azione sismica è rappresentata da un insieme di forze statiche verticali, date dal prodotto delle forze di gravità per i coefficienti sismici in precedenza definiti, di cui la componente verticale è considerata agente verso l'alto o verso il basso, in modo da produrre gli effetti più sfavorevoli.

Forze d'inerzia verticali sullo scatolare SLV

 $F_{v, rilevato + pavimentazione} = \pm 4.77 \text{ kN/m}^2;$ $F_{v, soletta sup} = \pm 3.48 \text{ kN/m}^2;$ $F_{v, soletta inf} = \pm 3.86 \text{ kN/m}^2;$ $F_{v, soletta sup tot} = \pm 8.26 \text{ kN/m}^2;$ $F_{v, piedritto} = \pm 3.48 \text{ kN/m}^2;$

9.5. CARICHI ELEMENTARI E LORO COMBINAZIONI

9.5.1. CONDIZIONI DI CARICO ELEMENTARI

Le condizioni di carico elementari sono le seguenti:

1.	PP	PESO PROPRIO
2.	PERM	CARICHI PERMAMENTI PORTATI
3.	STSX	SPINTA DELLE TERRE CALCOLATA CON COEFFICIENTI A1+M1 (STR)
4.	RITIRO	RITIRO E VISCOSITA'

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

5.	TF-TU	VARIAZIONI TERMICHE (ΔTu , ΔTf)
6.	TANDEM-	GRUPPO DI CARICO CON VALORE CARATTERISTICO DEL CARICO
	Mmax	TANDEM PER Mmax
7.	GR-U	GRUPPO DI CARICO CON VALORE CARATTERISTICO DEL CARICO
	GK-U	UNIFORME
8.	TANDEM-	GRUPPO DI CARICO CON VALORE CARATTERISTICO DEL CARICO
	Tmax	TANDEM PER Tmax
9.	SP-10	SPINTA DOVUTA AL SOVRACCARICO ACCIDENTALE 10KN/M
	SF-10	AMBO LATI CALCOLATO CON I COEFFICIENTI A1+M1 (Q9STR10)
10.	F-AVV	FRENATURA - AVVIAMENTO
11.	ACC 1	SPINTA SU PARETE SX CALCOLATO CON COEFF A1+M1 (STR)
12.	ACC 2	SPINTA SU PARETE SX CALCOLATO CON COEFF A2+M2 (GEO)
13.	STSX GEO	SPINTA DELLE TERRE CALCOLATA CON COEFFICIENTI A2+M2
	S1SX_GEO	(GEO)
14	SISMA - H	SISMA ORIZZONTALE
15.	SISMA - V	SISMA VERTICALE

9.5.2. COMBINAZIONI DI CARICO

L'opera è stata dimensionata con le combinazioni tipiche dei ponti ai sensi del DM 17/01/2018 e s.m.i.

Tab. 5.1.IV - Valori caratteristici delle azioni dovute al traffico

		Carich	i sulla superfic	ie carrabile		Carichi su marciapiedi e piste ciclabili non sormontabili
		Carichi vertical	i	Carichi	orizzontali	Carichi verticali
Gruppo di azioni	Modello principale (schemi di carico 1, 2, 3, 4 e 6)	Veicoli spe- ciali	Folla (Sche- ma di carico 5)	Frenatura	Forza centrifuga	Carico uniformemente distribuito
1	Valore carat- teristico					Schema di carico 5 con valore di combinazione 2,5KN/m²
2a	Valore fre- quente			Valore carat- teristico		
2b	Valore fre- quente				Valore caratteri- stico	
3 (*)						Schema di carico 5 con valore caratteristico 5,0KN/m²
4 (**)			Schema di carico 5 con valore carat- teristico 5,0KN/m ²			Schema di carico 5 con valore caratteristico 5,0KN/m²
5 (***)	Da definirsi per il singo- lo progetto	Valore carat- teristico o nominale				

^(*) Ponti pedonali

Tabella 10: Combinazioni di carico dovute al traffico

La Tab. 5.1.V, con riferimento al § 2.6.1 delle NTC, fornisce i valori dei coefficienti parziali delle azioni da assumere nell'analisi per la determinazione degli effetti delle azioni nelle verifiche agli stati

^(**) Da considerare solo se richiesto dal particolare progetto (ad es. ponti in zona urbana)

^(***) Da considerare solo se si considerano veicoli speciali

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

limite ultimi. I valori dei coefficienti di combinazione $\Psi_{0j},\,\Psi_{1j}$ e Ψ_{2j} per le diverse categorie di azioni sono riportati nella Tab. 5.1.VI.

Tab. 5.1.V - Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

		Coefficiente	EQU(t)	A1	A2
Azioni permanenti g ₁ e g ₃	favorevoli sfavorevoli	γ _{G1} e γ _{G3}	0,90 1,10	1,00 1,35	1,00 1,00
Azioni permanenti non strutturali ⁽²⁾ g ₂	favorevoli sfavorevoli	Ϋ́G2	0,00 1,50	0,00 1,50	0,00 1,30
Azioni variabili da traffico	favorevoli sfavorevoli	ΥQ	0,00 1,35	0,00 1,35	0,00 1,15
Azioni variabili	favorevoli sfavorevoli	ΥQi	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecita- zioni di progetto	favorevoli sfavorevoli	Υ ε1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Cedimenti vincolari	favorevoli sfavorevoli	Υε2· Υε3· Υε4	0,00 1,20	0,00 1,20	0,00 1,00

 ${\bf Tab.~5.1.VI \cdot Coefficienti~\psi~per~le~azioni~variabili~per~ponti~stradali~e~pedonali}$

Azioni	Gruppo di azioni (Tab. 5.1.IV)	Coefficiente Ψ ₀ di combi- nazione	Coefficiente $ \psi_1 $ (valori frequenti)	Coefficiente Ψ ₂ (valori quasi permanenti)
	Schema 1 (carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (carichi distribuiti	0,40	0,40	0,0
Azioni da traffico	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
(Tab. 5.1.IV)	Schema 2	0,0	0,75	0,0
	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)	1	0,75	0,0
	5	0,0	0,0	0,0
	a ponte scarico SLU e SLE	0,6	0,2	0,0
Vento	in esecuzione	0,8	0,0	0,0
	a ponte carico SLU e SLE	0,6	0,0	0,0
Neve	SLU e SLE	0,0	0,0	0,0
	in esecuzione	0,8	0,6	0,5
Temperatura	SLU e SLE	0,6	0,6	0,5

GESTIONE PROGETTI INGEGNERIA sri

							C	OMBINA	ZIONI SLU	J (FONDA	MENTAL	E)					
		SLU1	SLU2	SLU3	SLU4	SLU5	SLU6	SLU7	SLU8	SLU9	SLU10	SLU11	SLU12	SLU13	SLU14	SLU15	SLU16
	G1	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35
	G2	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35
	G3(STR)	1	1,35	1,35	1	1	1,35	1,35	1	1	1,35	1,35	1	1	1,35	1,35	1
	eps 2	0	0	0	0	1,2	1,2	1,2	1,2	0	0	0	0	0	0	0	0
0	eps 3	0	0	0	0	0	0	0	0	0,72	0,72	0,72	0,72	-0,72	-0,72	-0,72	-0,72
CARICO	GR-T Mmax	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DI C	GR-U	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GR-T Tmax	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CONDIZIONI	Q9 (STR10)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ONO	GR-FR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	Q9 (STR)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Q9 (GEO)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	G3 (GEO)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	SIS - X	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	SIS - V	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

							СОМВ	INAZION	I SLU (FO	NDAMEI	VTALE)							
SLU17	SLU18	SLU19	SLU20	SLU21	SLU22	SLU23	SLU24	SLU25	SLU26	SLU27	SLU28	SLU29	SLU30	SLU31	SLU32	SLU33	SLU34	SLU35
1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1
1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1
1	1,35	1,35	1	1	1,35	1,35	1	1	1,35	1,35	1	1	1,35	1,35	1	1	1,35	1,35
1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	0	0	0	0	1,2	1,2	1,2	1,2	0	0	0
0,72	0,72	0,72	0,72	-0,72	-0,72	-0,72	-0,72	0	0	0	0	0	0	0	0	0,72	0,72	0,72
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

							СОМВ	INAZION	I SLU (FO	NDAMEN	ITALE)							
SLU36	SLU37	SLU38	SLU39	SLU40	SLU41	SLU42	SLU43	SLU44	SLU45	SLU46	SLU47	SLU48	SLU49	SLU50	SLU51	SLU52	SLU53	SLU54
1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35
1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35
1	1	1,35	1,35	1	1	1,35	1,35	1	1	1,35	1,35	1	1	1,35	1,35	1	1	1,35
0	0	0	0	0	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	0	0	0	0	1,2	1,2
0,72	-0,72	-0,72	-0,72	-0,72	0,72	0,72	0,72	0,72	-0,72	-0,72	-0,72	-0,72	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	1,35	1,35	1,35	1,35	1,35	1,35
0	0	0	0	0	0	0	0	0	0	0	0	0	1,35	1,35	1,35	1,35	1,35	1,35
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

							сомв	INAZION	I SLU (FO	NDAMEN	ITALE)							
SLU55	SLU56	SLU57	SLU58	SLU59	SLU60	SLU61	SLU62	SLU63	SLU64	SLU65	SLU66	SLU67	SLU68	SLU69	SLU70	SLU71	SLU72	SLU73
1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1
1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1
1,35	1	1	1,35	1,35	1	1	1,35	1,35	1	1	1,35	1,35	1	1	1,35	1,35	1	1
1,2	1,2	0	0	0	0	0	0	0	0	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	0
0	0	0,72	0,72	0,72	0,72	-0,72	-0,72	-0,72	-0,72	0,72	0,72	0,72	0,72	-0,72	-0,72	-0,72	-0,72	0
1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35
1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,675
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

							СОМВ	INAZION	I SLU (FO	NDAMEN	ITALE)							
SLU74	SLU75	SLU76	SLU77	SLU78	SLU79	SLU80	SLU81	SLU82	SLU83	SLU84	SLU85	SLU86	SLU87	SLU88	SLU89	SLU90	SLU91	SLU92
1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35
1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35
1,35	1,35	1	1	1,35	1,35	1	1	1,35	1,35	1	1	1,35	1,35	1	1	1,35	1,35	1
0	0	0	1,2	1,2	1,2	1,2	0	0	0	0	0	0	0	0	1,2	1,2	1,2	1,2
0	0	0	0	0	0	0	0,72	0,72	0,72	0,72	-0,72	-0,72	-0,72	-0,72	0,72	0,72	0,72	0,72
1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35
1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0,675	0,675	0,675	0,675	0,675	0,675	0,675	0,675	0,675	0,675	0,675	0,675	0,675	0,675	0,675	0,675	0,675	0,675	0,675
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

							СОМВ	INAZION	I SLU (FO	NDAMEN	VTALE)							
SLU93	SLU94	SLU95	SLU96	SLU97	SLU98	SLU99	SLU100	SLU101	SLU102	SLU103	SLU104	SLU105	SLU106	SLU107	SLU108	SLU109	SLU110	SLU111
1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1
1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1
1	1,35	1,35	1	1	1,35	1,35	1,35	1	1,35	1,35	1	1	1,35	1,35	1	1	1,35	1,35
1,2	1,2	1,2	1,2	0	0	0	0	1,2	1,2	1,2	1,2	0	0	0	0	0	0	0
-0,72	-0,72	-0,72	-0,72	0	0	0	0	0	0	0	0	0,72	0,72	0,72	0,72	-0,72	-0,72	-0,72
1,35	1,35	1,35	1,35	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013
1,35	1,35	1,35	1,35	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35
0,675	0,675	0,675	0,675	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

							сомв	INAZION	I SLU (FO	NDAMEN	ITALE)							
SLU112	SLU113	SLU114	SLU115	SLU116	SLU117	SLU118	SLU119	SLU120	SLU121	SLU122	SLU123	SLU124	SLU125	SLU126	SLU127	SLU128	SLU129	SLU130
1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35
1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35
1	1	1,35	1,35	1	1	1,35	1,35	1	1	1,35	1,35	1	1	1,35	1,35	1	1	1,35
0	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	0	0	0	0	1,2	1,2	1,2	1,2	0	0
-0,72	0,72	0,72	0,72	0,72	-0,72	-0,72	-0,72	-0,72	0	0	0	0	0	0	0	0	0,72	0,72
1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013
0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35
0	0	0	0	0	0	0	0	0	0,675	0,675	0,675	0,675	0,675	0,675	0,675	0,675	0,675	0,675
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

							сомв	INAZION	SLU (FO	NDAMEN	VTALE)							
SLU131	SLU132	SLU133	SLU134	SLU135	SLU136	SLU137	SLU138	SLU139	SLU140	SLU141	SLU142	SLU143	SLU144	SLU145	SLU146	SLU147	SLU148	SLU149
1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1
1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1
1,35	1	1	1,35	1,35	1	1	1,35	1,35	1	1	1,35	1,35	1	1	1,35	1,35	1	1
0	0	0	0	0	0	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	0	0	0	0	1,2
0,72	0,72	-0,72	-0,72	-0,72	-0,72	0,72	0,72	0,72	0,72	-0,72	-0,72	-0,72	-0,72	0	0	0	0	0
1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	0	0	0	0	0
0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	1,35	1,35	1,35	1,35	1,35
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1,35	1,35	1,35	1,35	1,35
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	0	0	0	0	0
0,675	0,675	0,675	0,675	0,675	0,675	0,675	0,675	0,675	0,675	0,675	0,675	0,675	0,675	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

							СОМВ	INAZION	I SLU (FO	NDAMEN	ITALE)							
SLU150	SLU151	SLU152	SLU153	SLU154	SLU155	SLU156	SLU157	SLU158	SLU159	SLU160	SLU161	SLU162	SLU163	SLU164	SLU165	SLU166	SLU167	SLU168
1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35
1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35
1,35	1,35	1	1	1,35	1,35	1	1	1,35	1,35	1	1	1,35	1,35	1	1	1,35	1,35	1
1,2	1,2	1,2	0	0	0	0	0	0	0	0	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2
0	0	0	0,72	0,72	0,72	0,72	-0,72	-0,72	-0,72	-0,72	0,72	0,72	0,72	0,72	-0,72	-0,72	-0,72	-0,72
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35
1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

							СОМВ	INAZION	I SLU (FO	NDAMEN	ITALE)							
SLU169	SLU170	SLU171	SLU172	SLU173	SLU174	SLU175	SLU176	SLU177	SLU178	SLU179	SLU180	SLU181	SLU182	SLU183	SLU184	SLU185	SLU186	SLU187
1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1
1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1
1	1,35	1,35	1	1	1,35	1,35	1	1	1,35	1,35	1	1	1,35	1,35	1	1	1,35	1,35
0	0	0	0	1,2	1,2	1,2	1,2	0	0	0	0	0	0	0	0	1,2	1,2	1,2
0	0	0	0	0	0	0	0	0,72	0,72	0,72	0,72	-0,72	-0,72	-0,72	-0,72	0,72	0,72	0,72
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35
1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0,675	0,675	0,675	0,675	0,675	0,675	0,675	0,675	0,675	0,675	0,675	0,675	0,675	0,675	0,675	0,675	0,675	0,675	0,675
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

							СОМВ	INAZION	I SLU (FO	NDAMEN	VTALE)							
SLU188	SLU189	SLU190	SLU191	SLU192	SLU193	SLU194	SLU195	SLU196	SLU197	SLU198	SLU199	SLU200	SLU201	SLU202	SLU203	SLU204	SLU205	SLU206
1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35
1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35
1	1	1,35	1,35	1	1	1,35	1,35	1	1	1,35	1,35	1	1	1,35	1,35	1	1	1,35
1,2	1,2	1,2	1,2	1,2	0	0	0	0	1,2	1,2	1,2	1,2	0	0	0	0	0	0
0,72	-0,72	-0,72	-0,72	-0,72	0	0	0	0	0	0	0	0	0,72	0,72	0,72	0,72	-0,72	-0,72
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1,35	1,35	1,35	1,35	1,35	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54
1,35	1,35	1,35	1,35	1,35	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35
0,675	0,675	0,675	0,675	0,675	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

							СОМВ	INAZION	I SLU (FO	NDAMEN	VTALE)							
SLU207	SLU208	SLU209	SLU210	SLU211	SLU212	SLU213	SLU214	SLU215	SLU216	SLU217	SLU218	SLU219	SLU220	SLU221	SLU222	SLU223	SLU224	SLU225
1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1
1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1
1,35	1	1	1,35	1,35	1	1	1,35	1,35	1	1	1,35	1,35	1	1	1,35	1,35	1	1
0	0	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	0	0	0	0	1,2	1,2	1,2	1,2	0
-0,72	-0,72	0,72	0,72	0,72	0,72	-0,72	-0,72	-0,72	-0,72	0	0	0	0	0	0	0	0	0,72
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54
1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35
0	0	0	0	0	0	0	0	0	0	0,675	0,675	0,675	0,675	0,675	0,675	0,675	0,675	0,675
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

							сомв	INAZION	SLU (FO	NDAMEN	ITALE)							
SLU226	SLU227	SLU228	SLU229	SLU230	SLU231	SLU232	SLU233	SLU234	SLU235	SLU236	SLU237	SLU238	SLU239	SLU240	SLU241	SLU242	SLU243	SLU244
1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35
1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35
1,35	1,35	1	1	1,35	1,35	1	1	1,35	1,35	1	1	1,35	1,35	1	1	1,35	1,35	1
0	0	0	0	0	0	0	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	0	0	0	0
0,72	0,72	0,72	-0,72	-0,72	-0,72	-0,72	0,72	0,72	0,72	0,72	-0,72	-0,72	-0,72	-0,72	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1,35	1,35	1,35	1,35
0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	1,35	1,35	1,35	1,35
1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1,35	1,35	1,35	1,35
1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	0	0	0	0
0,675	0,675	0,675	0,675	0,675	0,675	0,675	0,675	0,675	0,675	0,675	0,675	0,675	0,675	0,675	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

							СОМВ	INAZION	I SLU (FO	NDAMEN	VTALE)							
SLU245	SLU246	SLU247	SLU248	SLU249	SLU250	SLU251	SLU252	SLU253	SLU254	SLU255	SLU256	SLU257	SLU258	SLU259	SLU260	SLU261	SLU262	SLU263
1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1
1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1
1	1,35	1,35	1	1	1,35	1,35	1	1	1,35	1,35	1	1	1,35	1,35	1	1	1,35	1,35
1,2	1,2	1,2	1,2	0	0	0	0	0	0	0	0	1,2	1,2	1,2	1,2	1,2	1,2	1,2
0	0	0	0	0,72	0,72	0,72	0,72	-0,72	-0,72	-0,72	-0,72	0,72	0,72	0,72	0,72	-0,72	-0,72	-0,72
1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35
1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

							СОМВ	INAZION	SLU (FO	NDAMEN	ITALE)							
SLU264	SLU265	SLU266	SLU267	SLU268	SLU269	SLU270	SLU271	SLU272	SLU273	SLU274	SLU275	SLU276	SLU277	SLU278	SLU279	SLU280	SLU281	SLU282
1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35
1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35
1	1	1,35	1,35	1	1	1,35	1,35	1	1	1,35	1,35	1	1	1,35	1,35	1	1	1,35
1,2	0	0	0	0	1,2	1,2	1,2	1,2	0	0	0	0	0	0	0	0	1,2	1,2
-0,72	0	0	0	0	0	0	0	0	0,72	0,72	0,72	0,72	-0,72	-0,72	-0,72	-0,72	0,72	0,72
1,35	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013
1,35	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35
0	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

							сомв	INAZION	I SLU (FO	NDAMEN	VTALE)							
SLU283	SLU284	SLU285	SLU286	SLU287	SLU288	SLU289	SLU290	SLU291	SLU292	SLU293	SLU294	SLU295	SLU296	SLU297	SLU298	SLU299	SLU300	SLU301
1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1
1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1
1,35	1	1	1,35	1,35	1	1	1,35	1,35	1	1	1,35	1,35	1	1	1,35	1,35	1	1
1,2	1,2	1,2	1,2	1,2	1,2	0	0	0	0	1,2	1,2	1,2	1,2	0	0	0	0	0
0,72	0,72	-0,72	-0,72	-0,72	-0,72	0	0	0	0	0	0	0	0	0,72	0,72	0,72	0,72	-0,72
1,013	1,013	1,013	1,013	1,013	1,013	0	0	0	0	0	0	0	0	0	0	0	0	0
0,54	0,54	0,54	0,54	0,54	0,54	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35
0	0	0	0	0	0	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35
1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35
1,35	1,35	1,35	1,35	1,35	1,35	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

							СОМВ	INAZION	I SLU (FO	NDAMEN	ITALE)							
SLU302	SLU303	SLU304	SLU305	SLU306	SLU307	SLU308	SLU309	SLU310	SLU311	SLU312	SLU313	SLU314	SLU315	SLU316	SLU317	SLU318	SLU319	SLU320
1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35
1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35
1,35	1,35	1	1	1,35	1,35	1	1	1,35	1,35	1	1	1,35	1,35	1	1	1,35	1,35	1
0	0	0	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	0	0	0	0	1,2	1,2	1,2	1,2
-0,72	-0,72	-0,72	0,72	0,72	0,72	0,72	-0,72	-0,72	-0,72	-0,72	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54
1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013
1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35
0	0	0	0	0	0	0	0	0	0	0	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

					C	OMBINAZ	ZIONI SLU	I (FONDA	MENTAL	.E)					
SLU321	SLU322	SLU323	SLU324	SLU325	SLU326	SLU327	SLU328	SLU329	SLU330	SLU331	SLU332	SLU333	SLU334	SLU335	SLU336
1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35
1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35	1	1,35
1	1,35	1,35	1	1	1,35	1,35	1	1	1,35	1,35	1	1	1,35	1,35	1
0	0	0	0	0	0	0	0	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2
0,72	0,72	0,72	0,72	-0,72	-0,72	-0,72	-0,72	0,72	0,72	0,72	0,72	-0,72	-0,72	-0,72	-0,72
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54
1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013	1,013
1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35
1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

							со	MBINAZI	ONI FON	DAMENT	ALE (SISI	ЛА)					
		SLU S1	SLU S2	SLU S3	SLU S4	SLU S5	SLU S6	SLU S7	SLU S8	SLU S9	SLU S10	SLU S11	SLU S12	SLU S13	SLU S14	SLU S15	SLU S16
	G1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	G2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	G3(STR)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	eps 2	0	0	1	1	0	0	0	0	0	0	1	1	0	0	0	0
0	eps 3	0	0	0	0	0,5	0,5	-0,5	-0,5	0	0	0	0	0,5	0,5	-0,5	-0,5
CARICO	GR-T Mmax	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
) [GR-U	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GR-T Tmax	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OIZI	Q9 (STR10)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CONDIZIONI	GR-FR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S	Q9 (STR)	0	0	0	0	0	0	0	0	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2
	Q9 (GEO)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	G3 (GEO)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	SIS - X	1	0	1	0	1	0	1	0	1	0,3	1	0,3	1	0,3	1	0,3
	SIS - V	0,3	1	0,3	1	0,3	1	0,3	1	0,3	1	0,3	1	0,3	1	0,3	1

							COMBIN	IAZIONI	FONDAN	IENTALE	(SISMA)							
SLU S17	SLU S18	SLU S19	SLU S20	SLU S21	SLU S22	SLU S23	SLU S24	SLU S25	SLU S26	SLU S27	SLU S28	SLU S29	SLU S30	SLU S31	SLU S32	SLU S33	SLU S34	SLU S35
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	1	1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	1
0	0	0	0	0,5	0,5	-0,5	-0,5	0	0	0	0	0,5	0,5	-0,5	-0,5	0	0	0
0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0	0	0
0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,2	0,2	0,2
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0,3	1	0,3	1	0,3	1	0,3	1	0,3	1	0,3	1	0,3	1	0,3	1	0,3	1
0,3	1	0,3	1	0,3	1	0,3	1	0,3	1	0,3	1	0,3	1	0,3	1	0,3	1	0,3

							сомви	NAZIONI	FONDAN	IENTALE	(SISMA)							
SLU S36	SLU S37	SLU S38	SLU S39	SLU S40	SLU S41	SLU S42	SLU S43	SLU S44	SLU S45	SLU S46	SLU S47	SLU S48	SLU S49	SLU S50	SLU S51	SLU S52	SLU S53	SLU S54
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	1	1	0	0
0	0,5	0,5	-0,5	-0,5	0	0	0	0	0,5	0,5	-0,5	-0,5	0	0	0	0	0,5	0,5
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2
0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0,2	0,2	0,2	0,2	0,2	0,2
0	0	0	0	0	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0,3	1	0,3	1	0,3	1	0,3	1	0,3	1	0,3	1	0,3	0,3	1	0,3	1	0,3	1
1	0,3	1	0,3	1	0,3	1	0,3	1	0,3	1	0,3	1	1	0,3	1	0,3	1	0,3

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

		со	MBINAZI	ONI FON	DAMENT	ALE (SISI	VIA)		
SLU S55	SLU S56	SLU S57	SLU S58	SLU S59	SLU S60	SLU S61	SLU S62	SLU S63	SLU S64
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
0	0	0	0	1	1	0	0	0	0
-0,5	-0,5	0	0	0	0	0,5	0,5	-0,5	-0,5
0	0	0	0	0	0	0	0	0	0
0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2
0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2
0	0	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2
0,2	0,2	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0,3	1	1	0,3	1	0,3	1	0,3	1	0,3
1	0,3	0,3	1	0,3	1	0,3	1	0,3	1

		COMBINAZIONI SLE (RARA)															
		SLE r1	SLE r2	SLE r3	SLE r4	SLE r5	SLE r6	SLE r7	SLE r8	SLE r9	SLE r10	SLE r11	SLE r12	SLE r13	SLE r14	SLE r15	SLE r16
	G1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	G2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	G3(STR)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	eps 2	1	1	1	0	0	1	1	1	0	0	0	0	0	0,6	0,6	0,6
0	eps 3	0	0,6	-0,6	1	-1	0	0,6	-0,6	1	-1	0	0,6	-0,6	0	0,6	-0,6
CARICO	GR-T Mmax	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	GR-U	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
□ Z	GR-T Tmax	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CONDIZIONI	Q9 (STR10)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ONO	GR-FR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	Q9 (STR)	0	0	0	0	0	0,6	0,6	0,6	0,6	0,6	1	1	1	1	1	0
	Q9 (GEO)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	G3 (GEO)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	SIS - X	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	SIS - V	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

								COMBINA	AZIONI SI	E (RARA)							
SLE r17	SLE r18	SLE r19	SLE r20	SLE r21	SLE r22	SLE r23	SLE r24	SLE r25	SLE r26	SLE r27	SLE r28	SLE r29	SLE r30	SLE r31	SLE r32	SLE r33	SLE r34	SLE r35
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	0	0	1	1	1	0	0	0	0	0	0,6	0,6	0,6	0	0	0
0	0,6	-0,6	1	-1	0	0,6	-0,6	1	-1	0	0,6	-0,6	0	0,6	-0,6	0	0,6	-0,6
0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75
0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
0	0	0	0	0	0,3	0,3	0,3	0,3	0,3	0,5	0,5	0,5	0,5	0,5	0,5	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

							(COMBINA	AZIONI SI	E (RARA)							
SLE r36	SLE r37	SLE r38	SLE r39	SLE r40	SLE r41	SLE r42	SLE r43	SLE r44	SLE r45	SLE r46	SLE r47	SLE r48	SLE r49	SLE r50	SLE r51	SLE r52	SLE r53	SLE r54
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0,6	0,6	0,6	0	0	0	0,6	0,6	0,6	0	0	0	0,6	0,6	0,6	0	0	0	0,6
0	0,6	-0,6	0	0,6	-0,6	0	0,6	-0,6	0	0,6	-0,6	0	0,6	-0,6	0	0,6	-0,6	0
0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	1	1	1	1	1	1	1	1	1	1
0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	1	1	1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
0	0	0	0,3	0,3	0,3	0,3	0,3	0,3	0	0	0	0	0	0	0,3	0,3	0,3	0,3
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

						-		COMBINA	AZIONI SI	E (RARA))							
SLE r55	SLE r56	SLE r57	SLE r58	SLE r59	SLE r60	SLE r61	SLE r62	SLE r63	SLE r64	SLE r65	SLE r66	SLE r67	SLE r68	SLE r69	SLE r70	SLE r71	SLE r72	SLE r73
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0,6	0,6	1	1	1	0	0	0	0	0	0,6	0,6	0,6	0	0	0	0,6	0,6	0,6
0,6	-0,6	0	0,6	-0,6	1	-1	0	0,6	-0,6	0	0,6	-0,6	0	0,6	-0,6	0	0,6	-0,6
1	1	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75
1	1	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0,6	0,6	0,6	0,6	0,6	1	1	1	1	1	1	0,6	0,6	0,6	0,6	0,6	0,6
0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
0,3	0,3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	сом	BINAZIO	NI SLE (R	ARA)	
SLE r74	SLE r75	SLE r76	SLE r77	SLE r78	SLE r79
1	1	1	1	1	1
1	1	1	1	1	1
1	1	1	1	1	1
0	0	0	0,6	0,6	0,6
0	0,6	-0,6	0	0,6	-0,6
1	1	1	1	1	1
1	1	1	1	1	1
0	0	0	0	0	0
0,6	0,6	0,6	0,6	0,6	0,6
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

								COMBIN	IAZIONI :	SLE (FREC	QUENTE)						
		SLE f1	SLE f2	SLE f3	SLE f4	SLE f5	SLE f6	SLE f7	SLE f8	SLE f9	SLE f10	SLE f11	SLE f12	SLE f13	SLE f14	SLE f15	SLE f16
	G1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	G2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	G3(STR)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	eps 2	0	0	0	0,6	0,6	0,6	0	0	0	0,6	0,6	0,6	0	0	0	0
0	eps 3	0	0,6	-0,6	0	0,6	-0,6	0	0,6	-0,6	0	0,6	0,6	0	0,6	-0,6	0
CARICO	GR-T Mmax	0	0	0	0	0	0	0	0	0	0	0	0	0,75	0,75	0,75	0,75
) [GR-U	0	0	0	0	0	0	0	0	0	0	0	0	0,4	0,4	0,4	0,4
	GR-T Tmax	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CONDIZIONI	Q9 (STR10)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
QNO	GR-FR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	Q9 (STR)	0	0	0	0	0	0	0,6	0,6	0,6	0,6	0,6	0,6	0	0	0	0
	Q9 (GEO)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	G3 (GEO)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	SIS - X	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	SIS - V	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

					COMBIN	IAZIONI	SLE (FREC	QUENTE)					
SLE f17	SLE f18	SLE f19	SLE f20	SLE f21	SLE f22	SLE f23	SLE f24	SLE f25	SLE f26	SLE f27	SLE f28	SLE f29	SLE f30
1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1
0,6	-0,6	0	0	0	0,6	0,6	0,6	0	0	0	0,6	0,6	0,6
0,6	-0,6	0	0,6	-0,6	0	0,6	-0,6	0	0,6	-0,6	0	0,6	-0,6
0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75
0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0,6	0,6	0,6	0,6	0,6	0,6
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0,3	0,3	0,3	0,3	0,3	0,3	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0

			coi	MBINAZI	ONI SLE (QP)	
		SLE qp1	SLE qp2	SLE qp3	SLE qp4	SLE qp5	SLE qp6
	G1	1	1	1	1	1	1
	G2	1	1	1	1	1	1
	G3(STR)	1	1	1	1	1	1
	eps 2	0	0	0	0,5	0,5	0,5
0	eps 3	0	0,5	-0,5	0	0,5	-0,5
CONDIZIONI DI CARICO	GR-T Mmax	0	0	0	0	0	0
/ C	GR-U	0	0	0	0	0	0
Σ	GR-T Tmax	0	0	0	0	0	0
OIZI	Q9 (STR10)	0	0	0	0	0	0
OND	GR-FR	0	0	0	0	0	0
8	Q9 (STR)	0	0	0	0	0	0
	Q9 (GEO)	0	0	0	0	0	0
	G3 (GEO)	0	0	0	0	0	0
	SIS - X	0	0	0	0	0	0
	SIS - V	0	0	0	0	0	0

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

							СОМЕ	BINAZION	II FONDA	MENTAL	E (GEO-S	ISMA)					
		SLU S1	SLU S2	SLU S3	SLU S4	SLU S5	SLU S6	SLU S7	SLU S8	SLU S9	SLU S10	SLU S11	SLU S12	SLU S13	SLU S14	SLU S15	SLU S16
	G1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	G2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	G3(STR)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	eps 2	0	0	1	1	0	0	0	0	0	0	1	1	0	0	0	0
0	eps 3	0	0	0	0	0,5	0,5	-0,5	-0,5	0	0	0	0	0,5	0,5	-0,5	-0,5
CARICO	GR-T Mmax	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<i>5</i> □	GR-U	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GR-T Tmax	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OIZI	Q9 (STR10)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CONDIZIONI	GR-FR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S	Q9 (STR)	0	0	0	0	0	0	0	0	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2
	Q9 (GEO)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	G3 (GEO)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	SIS - X	1	0	1	0	1	0	1	0	1	0,3	1	0,3	1	0,3	1	0,3
	SIS - V	0,3	1	0,3	1	0,3	1	0,3	1	0,3	1	0,3	1	0,3	1	0,3	1

						С	OMBINA.	ZIONI FO	NDAMEI	ITALE (GI	EO-SISMA	4)						
SLU S17	SLU S18	SLU S19	SLU S20	SLU 521	SLU S22	SLU S23	SLU S24	SLU S25	SLU S26	SLU S27	SLU S28	SLU S29	SLU S30	SLU S31	SLU S32	SLU S33	SLU S34	SLU S35
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	1	1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	1
0	0	0	0	0,5	0,5	-0,5	-0,5	0	0	0	0	0,5	0,5	-0,5	-0,5	0	0	0
0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0	0	0
0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,2	0,2	0,2
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0,3	1	0,3	1	0,3	1	0,3	1	0,3	1	0,3	1	0,3	1	0,3	1	0,3	1
0,3	1	0,3	1	0,3	1	0,3	1	0,3	1	0,3	1	0,3	1	0,3	1	0,3	1	0,3

						С	OMBINA	ZIONI FO	NDAMEI	ITALE (GI	EO-SISM/	4)						
SLU S36	SLU S37	SLU S38	SLU S39	SLU S40	SLU S41	SLU S42	SLU S43	SLU S44	SLU S45	SLU S46	SLU S47	SLU S48	SLU S49	SLU S50	SLU S51	SLU S52	SLU S53	SLU S54
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	1	1	0	0
0	0,5	0,5	-0,5	-0,5	0	0	0	0	0,5	0,5	-0,5	-0,5	0	0	0	0	0,5	0,5
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2
0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0,2	0,2	0,2	0,2	0,2	0,2
0	0	0	0	0	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0,3	1	0,3	1	0,3	1	0,3	1	0,3	1	0,3	1	0,3	0,3	1	0,3	1	0,3	1
1	0,3	1	0,3	1	0,3	1	0,3	1	0,3	1	0,3	1	1	0,3	1	0,3	1	0,3

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

		СОМЕ	BINAZION	II FONDA	MENTAL	E (GEO-S	ISMA)		
SLU S55	SLU S56	SLU S57	SLU S58	SLU S59	SLU S60	SLU S61	SLU S62	SLU S63	SLU 564
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
0	0	0	0	1	1	0	0	0	0
-0,5	-0,5	0	0	0	0	0,5	0,5	-0,5	-0,5
0	0	0	0	0	0	0	0	0	0
0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2
0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2
0	0	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2
0,2	0,2	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0,3	1	1	0,3	1	0,3	1	0,3	1	0,3
1	0,3	0,3	1	0,3	1	0,3	1	0,3	1

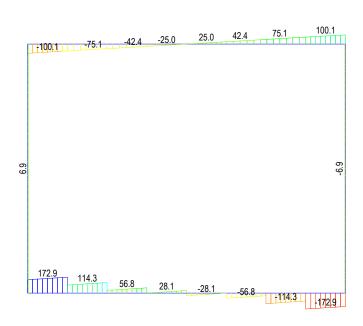
		ı															
								C	OMBINA2	ZIONI (GE	<u>(0)</u>						
		SLE r1	SLE r2	SLE r3	SLE r4	SLE r5	SLE r6	SLE r7	SLE r8	SLE r9	SLE r10	SLE r11	SLE r12	SLE r13	SLE r14	SLE r15	SLE r16
	G1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	G2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	G3(STR)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	eps 2	0	1	0	0	1	1	0	1	0	0	1	1	0	1	0	0
O.	eps 3	0	0	0,6	-0,6	0,6	-0,6	0	0	0,6	-0,6	0,6	-0,6	0	0	0,6	-0,6
CARICO	GR-T Mmax	0	0	0	0	0	0	0	0	0	0	0	0	1,15	1,15	1,15	1,15
	GR-U	0	0	0	0	0	0	0	0	0	0	0	0	1,15	1,15	1,15	1,15
Ξ	GR-T Tmax	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CONDIZIONI DI	Q9 (STR10)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
QN C	GR-FR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	Q9 (STR)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Q9 (GEO)	0	0	0	0	0	0	1,15	1,15	1,15	1,15	1,15	1,15	0	0	0	0
	G3 (GEO)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	SIS - X	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	SIS - V	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

								СОМВ	NAZION	(GEO)								
SLE r17	SLE r18	SLE r19	SLE r20	SLE r21	SLE r22	SLE r23	SLE r24	SLE r25	SLE r26	SLE r27	SLE r28	SLE r29	SLE r30	SLE r31	SLE r32	SLE r33	SLE r34	SLE r35
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	0	1	0	0	1	1	0	1	0	0	1	1	0	1	0	0	1
0,6	-0,6	0	0	0,6	-0,6	0,6	-0,6	0	0	0,6	-0,6	0,6	-0,6	0	0	0,6	-0,6	0,6
1,15	1,15	1,15	1,15	1,15	1,15	1,15	1,15	0,863	0,863	0,863	0,863	0,863	0,863	0,863	0,863	0,863	0,863	0,863
1,15	1,15	1,15	1,15	1,15	1,15	1,15	1,15	0,46	0,46	0,46	0,46	0,46	0,46	0,46	0,46	0,46	0,46	0,46
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1,15	1,15	1,15	1,15	1,15	1,15	1,15	1,15	1,15	1,15	1,15
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0,575	0,575	0,575	0,575	0,575	0,575	0	0	0	0	0	0	0,575	0,575	0,575	0,575	0,575
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	COMBINAZIONI (GEO)																	
SLE r36	SLE r37	SLE r38	SLE r39	SLE r40	SLE r41	SLE r42	SLE r43	SLE r44	SLE r45	SLE r46	SLE r47	SLE r48	SLE r49	SLE r50	SLE r51	SLE r52	SLE r53	SLE r54
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	0	0	1	1	0	1	0	0	1	1	0	1	0	0	1	1
-0,6	0	0	0,6	-0,6	0,6	-0,6	0	0	0,6	-0,6	0,6	-0,6	0	0	0,6	-0,6	0,6	-0,6
0,863	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0,46	1,15	1,15	1,15	1,15	1,15	1,15	1,15	1,15	1,15	1,15	1,15	1,15	0,46	0,46	0,46	0,46	0,46	0,46
0	1,15	1,15	1,15	1,15	1,15	1,15	1,15	1,15	1,15	1,15	1,15	1,15	0,863	0,863	0,863	0,863	0,863	0,863
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1,15	0	0	0	0	0	0	0	0	0	0	0	0	1,15	1,15	1,15	1,15	1,15	1,15
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0,575	0	0	0	0	0	0	0,575	0,575	0,575	0,575	0,575	0,575	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	COMBINAZIONI (GEO)																	
SLE r55	SLE r56	SLE r57	SLE r58	SLE r59	SLE r60	SLE r61	SLE r62	SLE r63	SLE r64	SLE r65	SLE r66	SLE r67	SLE r68	SLE r69	SLE r70	SLE r71	SLE r72	SLE r73
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	1	1	0	1	0	0	1	1	0	1	0	0	1	1	0
0	0	0,6	-0,6	0,6	-0,6	0	0	0,6	-0,6	0,6	-0,6	0	0	0,6	-0,6	0,6	-0,6	0
0	0	0	0	0	0	1,15	1,15	1,15	1,15	1,15	1,15	0,863	0,863	0,863	0,863	0,863	0,863	0
0,46	0,46	0,46	0,46	0,46	0,46	1,15	1,15	1,15	1,15	1,15	1,15	0,46	0,46	0,46	0,46	0,46	0,46	1,15
0,863	0,863	0,863	0,863	0,863	0,863	0	0	0	0	0	0	0	0	0	0	0	0	1,15
0	0	0	0	0	0	1,15	1,15	1,15	1,15	1,15	1,15	1,15	1,15	1,15	1,15	1,15	1,15	1,15
1,15	1,15	1,15	1,15	1,15	1,15	0	0	0	0	0	0	1,15	1,15	1,15	1,15	1,15	1,15	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0,575	0,575	0,575	0,575	0,575	0,575	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	COMBINAZIONI (GEO)									
SLE r74	SLE r75	SLE r76	SLE r77	SLE r78	SLE r79	SLE r80	SLE r81	SLE r82	SLE r83	SLE r84
1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0	0	0	0
1	0	0	1	1	0	1	0	0	1	1
0	0,6	-0,6	0,6	-0,6	0	0	0,6	-0,6	0,6	-0,6
0	0	0	0	0	0	0	0	0	0	0
1,15	1,15	1,15	1,15	1,15	0,46	0,46	0,46	0,46	0,46	0,46
1,15	1,15	1,15	1,15	1,15	0,863	0,863	0,863	0,863	0,863	0,863
1,15	1,15	1,15	1,15	1,15	1,15	1,15	1,15	1,15	1,15	1,15
0	0	0	0	0	1,15	1,15	1,15	1,15	1,15	1,15
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0


SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

10. VERIFICHE STRUTTURALI

10.1. **VERIFICHE DELLE SEZIONI**

Si riportano di seguito le verifiche nelle condizioni di SLE ed SLU eseguite con il software GeoStru RC-SEC v.20.8.1001.

Si riportano in forma grafica le caratteristiche delle sollecitazioni per singola condizione di carico:

1.72879e+002 1.41446e+002 1.10014e+002 7.85813e+001 4.71488e+001 0.00000e+000 -1.57163e+001 -4.71488e+001 --7.85813e+001 --1.10014e+002 -1.41446e+002 -1.72879e+002

Figura 6: taglio dir. z per peso proprio

GESTIONE PROGETTI INGEGNERIA sri

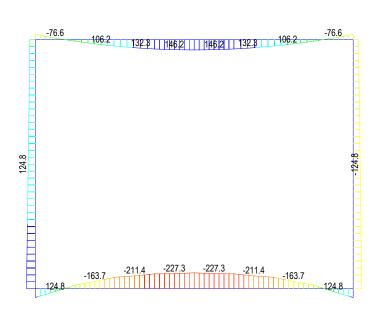


Figura 7: sollecitazione di flessione per peso prorpio

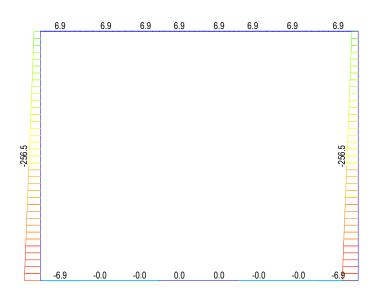
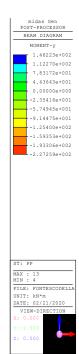
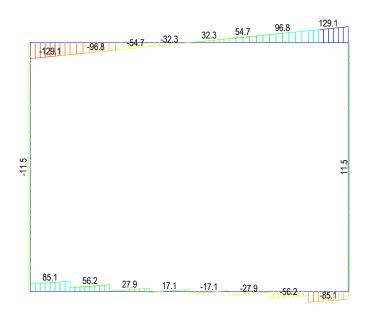
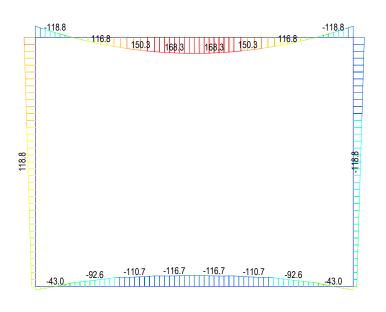



Figura 8: sollecitazione di S.N. per peso proprio



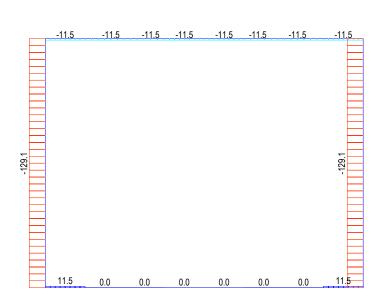


BEAM DIAGRAM SHEAR-z 1.29050e+002 1.05586e+002 8.21227e+001 3.51955e+001 0.00000e+000 -1.17318e+001 -3.51955e+001 -5.86591e+001 -8.21227e+001 -1.29050e+002 ST: PERM FILE: FONTESCODEI UNIT: kN DATE: 02/21/2020

Figura 9: sollecitazione di taglio per permanenti portati

1.42185e+002 1.16081e+002 8.99782e+001 6.38749e+001 3.77716e+001 0.00000e+000 -4.05383e+001 --6.66416e+001 --9.27449e+001 --1.18848e+002 ST: PERM FILE: FONTESCODELL UNIT: kn*m DATE: 02/21/2020 VIEW-DIRECTION

Figura 10: sollecitazione flessionale per permanenti portati

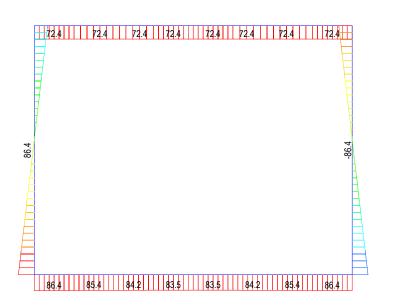


BEAM DIAGRAM AXIAL 1.15383e+001 0.00000e+000 -1.40232e+001 -3.95847e+001 -5.23655e+001 -6.51462e+001 -7.79270e+001 -9.07077e+001 -1.03488e+002 -1.29050e+002 ST: PERM MAX : 8 MIN : 17 UNIT: kN DATE: 02/21/2020 VIEW-DIRECTION

Figura 11: sollecitazione di sforzo normale per permanenti portati



Figura 12: sollecitazione di taglio per ritiro



SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

BEAM DIAGRAM MOMENT-y 8.63598e+001 7.06580e+001 5.49562e+001 2.35527e+001 7.85089e+000 0.00000e+000 -2.35527e+001 -3.92544e+001 -5.49562e+001 -8.63598e+001 UNIT: kN*m DATE: 02/21/2020

POST-PROCESSOR BEAM DIAGRAM 2.00318e+001

1.63896e+001 1.27475e+001 9.10534e+000 5.46320e+000 1.82107e+000 0.00000e+000 -5.46320e+000 -1.27475e+001 -1.63896e+001 -2.00318e+001

Figura 13: sollecitazione di flessione per ritiro

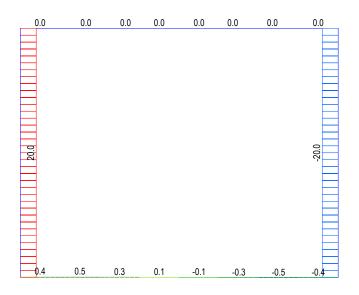


Figura 14: Sollecitazione di taglio per variazioni termiche

GESTIONE PROGETTI INGEGNERIA sri

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

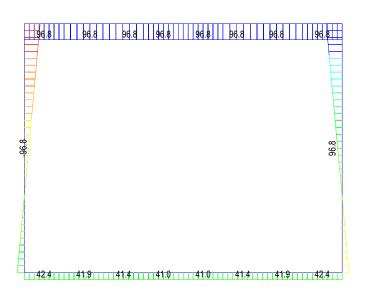


Figura 15: sollecitazione di flessione per variazione termiche

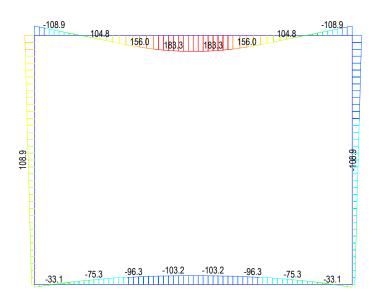
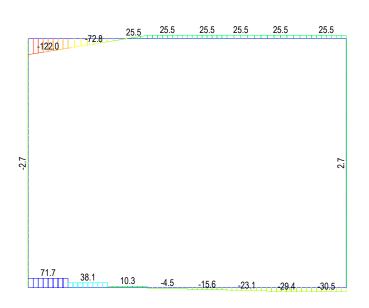


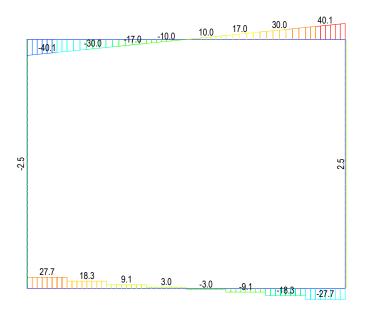
Figura 16: Sollecitazione flessionale carichi Tandem

BEAM DIAGRAM MOMENT-y

1.83334e+002

1.56767e+002 1.30200e+002 1.03634e+002 7.70669e+001 5.05001e+001 0.00000e+000 -2.92002e+001 -8.23337e+001 -1.08900e+002



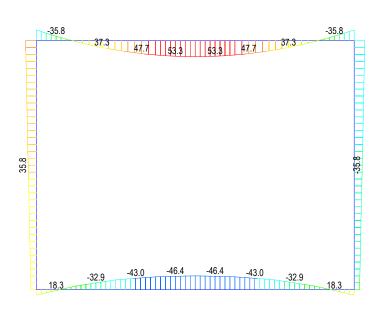


BEAM DIAGRAM SHEAR-z 7.16843e+001 5.40780e+001 3.64718e+001 0.00000e+000 -1.63468e+001 -3.39530e+001 -5.15592e+001 -6.91654e+001 -8.67716e+001 -1.21984e+002 ST: TANDEM-TMAX UNIT: kN DATE: 02/21/2020

Figura 17: sollecitazione di taglio per Tandem

POST-PROCESSO: BEAM DIAGRAM SHEAR-z 3.27682e+001 2.54864e+001 1.82045e+001 1.09227e+001 3.64091e+000 0.00000e+000 -1.09227e+001 -1.82045e+001 -2.54864e+001 -3.27682e+001 -4.00500e+001 ST: GR-II FILE: FONTESCODELL UNIT: kN DATE: 02/21/2020 VIEW-DIRECTION

Figura 18: sollecitazione di taglio per carichi mobili distribuiti



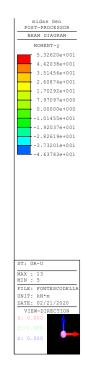
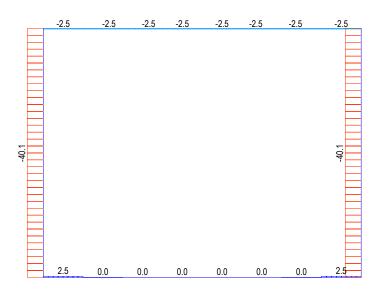



Figura 19: sollecitazione di flessione per carichi mobili distribuiti

AXIAL 0.00000e+000 -5.21183e+000 -9.08274e+000 -1.29536e+001 -1.68246e+001 -2.06955e+001 -2.45664e+001 -2.84373e+001 -3.23082e+001 -3.61791e+001 -4.00500e+001 FILE: FONTESCODELL UNIT: kN DATE: 02/21/2020 VIEW-DIRECTION

Figura 20: sollecitazione di SN per carichi mobili distribuiti

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

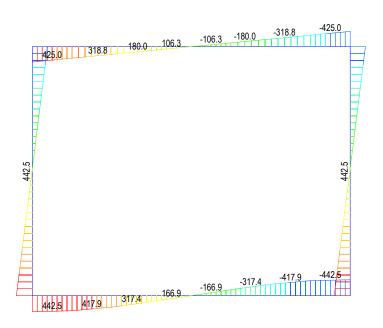


Figura 21: sollecitazione di flessione per frenatura

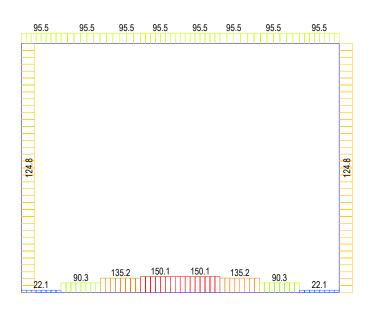
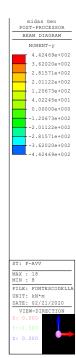



Figura 22: sollecitazione di taglio per frenatura

GESTIONE PROGETTI INGEGNERIA sri

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

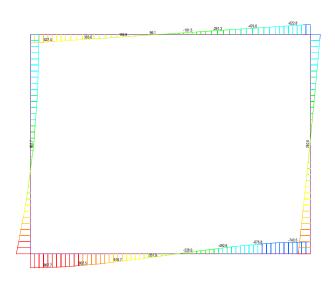


Figura 23: sollecitazione di flessione per sisma orizzontale

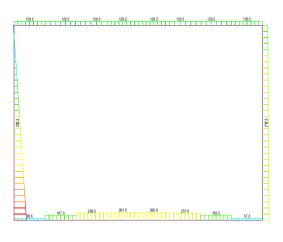
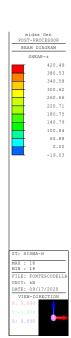
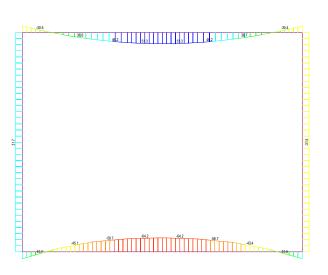



Figura 24: sollecitazione di taglio per sisma orizzontale

MOMENT-y 8.67694e+002 7.21495e+002 5.75296e+002

4.29097e+002

-3.01897e+002 -4.48096e+002 5.94295e+002



1.98296e+001 -3.26753e+001 -4.31762e+001

Figura 25: sollecitazione di flessione per sisma verticale

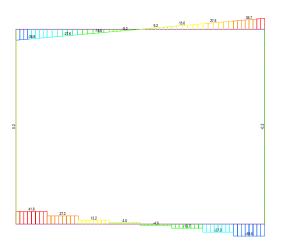
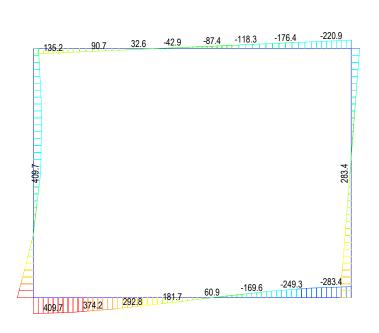
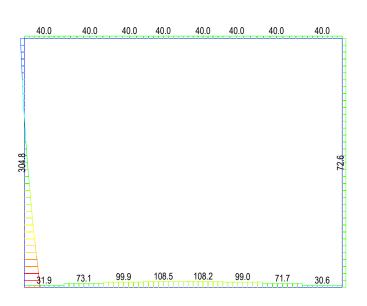


Figura 26: Sollegitazione di taglio per sisma Verticale





SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

MOMENT-y 4.09690e+002 3.46684e+002 2.83679e+002 1.57667e+002 9.46610e+001 3.16552e+001 0.00000e+000 -9.43564e+001 -1.57362e+002 -2.83374e+002 DATE: 02/21/2020

Figura 27: Sollecitazione flessionale per spinta laterale del silevato (STR)

POST-PROCESSOR BEAM DIAGRAM 3.04824e+002 2.70516e+002 2.36208e+002 2.01900e+002 1.67593e+002 1.33285e+002 9.89773e+001 6.46695e+001 0.00000e+000 -3.82536e+001 -7.25614e+001

Figura 28: Sollecitazione di taglio per spinta laterale del rilevato (STR)

Le sezioni di verifica sono riportate nella figura seguente.

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

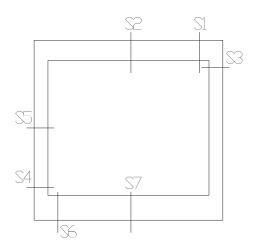


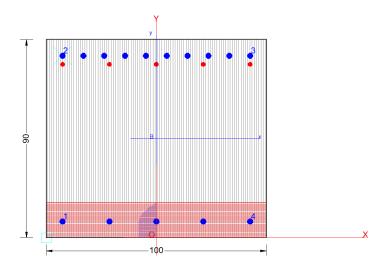
Figura 29: Sezioni di verifica

Verifica della sezione S1

Elem	Load	Axial (kN)	Shear-z (kN)	Moment-y (kN*m)
16	PP	6.95	100.13	-76.56
16	PERM	-11.54	129.05	-118.85
16	STSX	-72.56	40.02	-220.93
16	RITIRO	22.85	0	72.45
16	TU-TF	20.03	0	96.81
16	TANDEM-I	-11.21	83.32	-108.9
16	GR-U	-2.53	40.05	-35.85
16	TANDEM-	-2.66	25.53	-44.99
16	SP-10	-17.36	0	-8.55
16	F-AVV	-124.82	95.52	-425.05
16	ACC1	-15.49	9.15	-48.33
16	ACC2	-17.36	10.25	-54.16
16	STSX_GEO	-87.05	48.01	-265.04
16	SISMA-H	-157.07	129.23	-479.02
16	SISMA-V	0.17	27.55	5.39

Tabella 11: sollecitazione de modello di calcolo

Le sollecitazioni in tabella sono state combinate secondo le combinazioni di carico elencate nei paragrafi precedenti. I risultati derivanti dalle combinazioni di carico sono di seguito riportate.


ASSE VIARIO MARCHE - UMBRIA E QUADRILATERO DI PENETRAZIONE INTERNA SUBLOTTO 2.2: Intervalliva Macerata - allaccio funzionale della SS77 alla città di Macerata alle località "La Pieve" e "Mattei"

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

	SN (kN)	V(kN)	M(kNm)
Combinazione fondamentale SLU	-323.24	604.58	-1367.88
Combinazione SLU (sisma STR)	-270.19	438.92	-1043.33
Combinazione SLU (sisma GEO)	-270.19	438.92	-1043.33
Combinazione SLE Rara	-233.82	445.98	-1009.99
Combinazione SLE Frequente	-112.30	350.46	-613.91
Combinazione SLE QP	-87.17	269.20	-464.75

Tabella 12: Inviluppo sollecitazioni di verifica

DATI GENERALI SEZIONE IN C.A. NOME SEZIONE: S1

Descrizione Sezione:

Metodo di calcolo resistenza: Stati Limite Ultimi Tipologia sezione: Sezione generica

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Poco aggressive

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C28/35	
	Resis. compr. di calcolo fcd:	15.860	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	32308.0	MPa
	Resis. media a trazione fctm:	2.760	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Frequenti:	168.00	daN/cm ²
	Ap.Fessure limite S.L.E. comb. Freque	enti: 0.400	mm
	Sc limite S.L.E. comb. Q.Permanenti:	0.00	Мра
	Ap.Fessure limite S.L.E. comb. Q.Perr	nanenti: 0.300	mm
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.00	MPa
	Resist caratt rottura ftk:	450.00	MPa

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Resist. snerv. di calcolo fyd:	391.30	MPa
Resist. ultima di calcolo ftd:	391.30	MPa
Deform ultima di calcolo Enu:	0.068	

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza istantaneo ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50 360.00 MPa Sf limite S.L.E. Comb. Rare:

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo		Poligonale C28/35
N°vertice:	X [cm]	Y [cm]
1 2	-50.0 -50.0	0.0 90.0
3	50.0	90.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-42.6	7.4	26
2	-42.6	82.6	26
3	42.6	82.6	26
4	42.6	7.4	26

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.	Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.	Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.	Numero della barra finale cui si riferisce la generazione
N°Parro	Numero di barro gonorato aquidistanti qui si riforisco la gonoraz

Numero di barre generate equidistanti cui si riferisce la generazione

Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	3	26
2	2	3	8	26

DATI GENERAZIONI CIRCOLARI DI BARRE

N°Gen.	Numero assegnato alla singola generazione circolare di barre
Xcentro	Ascissa [cm] del centro della circonf. lungo cui sono disposte le barre generate
Ycentro	Ordinata [cm] del centro della circonf. lungo cui sono disposte le barre genrate
Raggio	Raggio [cm] della circonferenza lungo cui sono disposte le barre generate
N°Barre	Numero di barre generate equidist. disposte lungo la circonferenza
Ø	Diametro [mm] della singola barra generata

N°Gen.	Xcentro	Ycentro	Raggio	N°Barre	Ø
1	42.6	78.7	0.0	1	20
2	21.3	78.7	0.0	1	20
3	0.0	78.7	0.0	1	20
4	-21.3	78.7	0.0	1	20
5	-42.6	78.7	0.0	1	20

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx	Momento flettente [daNm] intorno all'asse x princ. d'inerzia
	con verso positivo se tale da comprimere il lembo sup. della sez.
My	Momento flettente [daNm] intorno all'asse y princ. d'inerzia
	con verso positivo se tale da comprimere il lembo destro della sez.
Vy	Componente del Taglio [kN] parallela all'asse princ.d'inerzia y
Vx	Componente del Taglio [kN] parallela all'asse princ.d'inerzia x

N°Comb.	N	Mx	Му	Vy	Vx
1	323.24	-1367.88	0.00	0.00	0.00
2	270.19	-1043.33	0.00	0.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom. Fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

Му Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx Μy 233.82 -1009.99 0.00 1

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

Му Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. Ν Mx My 1 112.30 -613.91 (-529.83) 0.00(0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) Mχ

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom. Fessurazione) My

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. 87.17 -464.75 (-530.23) 0.00(0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.1 cm

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

Ver S = combinazione verificata / N = combin. non verificata

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) Ν

Momento flettente assegnato [kNm] riferito all'asse x princ. d'inerzia Mχ

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Momento flettente assegnato [kNm] riferito all'asse y princ. d'inerzia Му

Nult Sforzo normale ultimo [kN] nel baricentro B sezione cls.(positivo se di compress.)

Momento flettente ultimo [kNm] riferito all'asse x princ. d'inerzia Momento flettente ultimo [kNm] riferito all'asse y princ. d'inerzia Mx ult My ult

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N ult,Mx ult,My ult) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature [cm²] in zona tesa (solo travi). Tra parentesi l'area minima di normativa

N°Comb	Ver	N	Mx	Му	N ult	Mx ult	My ult 1	Mis.Sic.	As Tesa
1	S	323.24	-1367.88	0.00	323.33	-2138.95	0.00	1.559	
2	S	270.19	-1043.33	0.00	262.71	-2118.49	0.00	2.097	

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

cace
sez.)
sez.)
sez.)
sez.)
sez.)
sez.)

N°Con	nb ec max	ec 3/7	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	-0.00505	-50.0	0.0	0.00186	-42.6	7.4	-0.01480	-42.6	82.6
2	0.00350	-0.00506	-50.0	0.0	0.00183	-42.6	7.4	-0.01519	-42.6	82.6

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità a rottura in presenza di sola fless.(travi) C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

C.Rid.	x/d	С	b	а	N°Comb
		0.003500000	-0.000221567	0.000000000	1
		0.003500000	-0.000226326	0.000000000	2

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

S = comb. verificata/ N = comb. non verificata Ver

Sc max Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione (negativa se di trazione) nell'acciaio [Mpa] Sf min Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure D barre Distanza tre le barre tese [cm] ai fini del calcolo dell'apertura fessure

Beta12 Prodotto dei coeff. di aderenza delle barre Beta1*Beta2

N°Comb Ver Sc max As eff. Xc max Yc max Sf min Xs min Ys min Ac eff. D barre Beta12 S 8.05 50.0 0.0 -191.7 33.1 82.6 2450 68.8 9.5 1.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

Sf min Xs min Ys min N°Comb Ver As eff. Beta12 Sc max Xc max Yc max Ac eff. D barre S 4.86 50.0 0.0 -118.4 33.1 82.6 2450 68.8 9.5 1.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§B.6.6 DM96]

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

S1 Massima tensione [Mpa] di trazione nel calcestruzzo valutata in sezione non fessurata S2 Minima tensione [Mpa] di trazione nel calcestruzzo valutata in sezione fessurata

k2 = 0.4 per barre ad aderenza migliorata

= 0.125 per flessione e presso-flessione; =(e1 + e2)/(2*e1) per trazione eccentrica k3

Diametro [mm] medio delle barre tese comprese nell'area efficace Ac eff Ø Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

Psi = 1-Beta12*(Ssr/Ss)² = 1-Beta12*(fctm/S2)² = 1-Beta12*(Mfess/M)² [B.6.6 DM96]

Deformazione unitaria media tra le fessure [4.3.1.7.1.3 DM96]. Il valore limite = 0.4*Ss/Es è tra parentesi e sm

Distanza media tra le fessure [mm] srm

Valore caratteristico [mm] dell'apertura fessure = 1.7 * e sm * srm . Valore limite tra parentesi wk

Componente momento di prima fessurazione intorno all'asse X [kNm] MX fess. MY fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

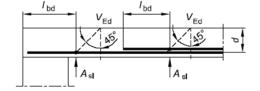
S1 S2 Ø Cf Psi Comb. Ver e sm srm wk Mx fess My fess S -3.2 0 0.125 61.0 0.255 0.00024 (0.00024) 184 0.074 (0.40) 0.00 24 -529.83

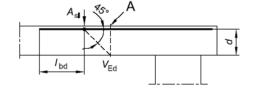
COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. D barre Beta12 S 3.68 -50.0 0.0 -89.5 33.1 82.6 2450 68.8 9.5 0.50

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§B.6.6 DM96]

Comb. Ver S1 S2 k3 Ø Cf Psi srm wk Mx fess My fess 0 0.125 61.0 0.349 0.00018 (0.00018) S -2.4 24 184 0.056 (0.30) -530.23 0.00




SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

DETERMINAZIONE DELLA RESISTENZA A TAGLIO DELLA SEZIONE						
§ 4.1.2.1.3.1 - ELEMENTI SENZA ARMATURE TRASVERSALI RESISTEN	TI A TAGLIO					
Azione di Taglio sollecitante a Stato Limite Ultimo	V_{Ed}	604,58	[kN]			
Considerare o meno il contributo dell'armatura tesa nel calcolo		si	[-]			
Coefficiente C _{Rd,c}	$C_{\text{Rd,c}}$	0,12	[-]			
Coefficiente k	k	1,49	[-]			
		1,49	[-]			
Rapporto geometrico d'armatura che si estende per non meno di l _{bd} + d	ρι	0,0083294	[-]			
		0,0083294	[-]			

Definizione di A_{si} nella espressione (6.2) figura Legenda

Sezione considerata

Resistenza a taglio offerta dal calcestruzzo teso	$V_{Rd,c}$	455,17	[kN]
Resistenza minima del calcestruzzo teso	$V_{Rd,min}$	311,72	[kN]
Resistenza a taglio offerta dal calcestruzzo teso	V _{Rd}	455,17	[kN]
§ 4.1.2.1.3.2 - ELEMENTI CON ARMATURE TRASVERSALI RESISTEN	TI A TAGLIO		
Diametro delle staffe	фъ	16	[mm]
Numero di braccia	n_b	4	[-]
Passo delle staffe	S	200	[mm]
Inclinazione tra il puntone compresso e l'asse della trave	θ	45	[°]
Inclinazione dell'armatura trasversale rispetto all'asse della trave	α	90	[°]
Area della sezione trasversale dell'armatura a taglio	A_{sw}	804	[mm ²]
Braccio della coppia interna	Z	743,4	[mm]
Cotangente di θ	cotθ	1,00	[-]
		1,00	[-]
Cotangente di α	$\cot \alpha$	0,00	[-]
Seno di α	$sin \alpha$	1,00	[-]
Resistenza offerta dall'armatura a taglio (meccanismo taglio - trazione)	V_{Rsd}	1169,76	[kN]
Resistenza a compressione ridotta del calcestruzzo d'anima	f'cd	9,92	[MPa]
Resistenza offerta dai puntoni (meccanismo taglio - compressione)	V_{Rcd}	3686,03	[kN]
Massima area efficace di armatura a taglio per $\cot\theta$ = 1	Asw,max	3041,11	[mm]
Resistenza a taglio della sezione armata trasversalmente	V_{Rd}	1169,76	[kN]
§ 4.1.2.1.3.3 - TAGLIO MASSIMO SOPPORTABILE DALLA TR	RAVE		
Resistenza massima a taglio della trave	V _{Rd}	4095,58	[kN]

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

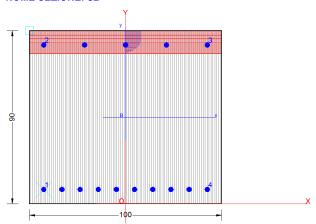
Mezzeria soletta superiore, S2

Elem	Load	Axial (kN)	Shear-z (kN)	Moment-y (kN*m)
13	PP	6.95	0	146.22
13	PERM	-11.54	0	168.29
13	STSX	-72.56	40.02	-42.85
13	RITIRO	22.85	0	72.45
13	TU-TF	20.03	0	96.81
13	TANDEM-I	-11.21	0	183.33
13	GR-U	-2.53	0	53.26
13	TANDEM-	-2.66	25.53	68.63
13	SP-10	-17.36	0	-8.55
13	F-AVV	0	95.52	0
13	ACC1	-15.49	9.15	-7.63
13	ACC2	-17.36	10.25	-8.55
13	STSX_GEO	-87.05	48.01	-51.41
13	SISMA-H	-102.17	129.23	-47.71
13	SISMA-V	0.17	-0.02	51.33

Tabella 13:sollecitazioni di output dal modello di calcolo

	SN (kN)	V(kN)	M(kNm)
Combinazione fondamentale SLU	-160.56	215.02	857.78
Combinazione SLU (sisma STR)	-193.79	193.45	428.45
Combinazione SLU (sisma GEO)	-193.79	193.45	428.45
Combinazione SLE Rara	-117.02	138.29	609.81
Combinazione SLE Frequente	-112.30	45.51	532.02
Combinazione SLE QP	-87.17	40.02	356.29

Tabella 14: Sollecitazioni di verifica



SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

DATI GENERALI SEZIONE IN C.A. NOME SEZIONE: S2

Descrizione Sezione:

Metodo di calcolo resistenza: Stati Limite Ultimi Tipologia sezione: Sezione generica

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Poco aggressive

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -C28/35 Classe: 15.860 Resis, compr. di calcolo fcd: MPa

Def.unit. max resistenza ec2: 0.0020 Def.unit. ultima ecu: 0.0035 Parabola-Rettangolo Diagramma tensione-deformaz.: Modulo Elastico Normale Ec: 32308.0 MPa Resis. media a trazione fctm: 2.760 MPa Coeff. Omogen. S.L.E.: 15.00 Coeff. Omogen. S.L.E.: 15.00

Sc limite S.L.E. comb. Frequenti: 168.00 daN/cm² 0.400 Ap.Fessure limite S.L.E. comb. Frequenti: mm Sc limite S.L.E. comb. Q.Permanenti: 0.00 Mpa Ap.Fessure limite S.L.E. comb. Q.Permanenti: 0.300 mm

ACCIAIO -B450C Tipo:

> Resist. caratt. snervam. fyk: 450.00 MPa Resist. caratt. rottura ftk: 450.00 MPa Resist, snerv, di calcolo fvd: MPa 391.30 Resist. ultima di calcolo ftd: 391.30 MPa Deform. ultima di calcolo Epu: 0.068

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza istantaneo ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50 Sf limite S.L.E. Comb. Rare: 360.00 MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Dominio: Poligonale

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Classe Congl	C28/35	
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	90.0
3	50.0	90.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-42.6	7.4	26
2	-42.6	82.6	26
3	42.6	82.6	26
4	42.6	7.4	26

DATI GENERAZIONI LINEARI DI BARRE

N°Gen. N°Barra Ini. N°Barra Fin. N°Barre Ø		Numero assegnato alla singola generazione lineare di barre Numero della barra iniziale cui si riferisce la generazione Numero della barra finale cui si riferisce la generazione Numero di barre generate equidistanti cui si riferisce la generazi Diametro in mm delle barre della generazione			
N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø	
1	1	4	8	26	
2	2	3	3	26	

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx		Momento flettent	e [daNm] intorno all	aric. (+ se di compre l'asse x princ. d'inera mere il lembo sup. d	zia
Му		Momento flettent	e [daNm] intorno all	l'asse y princ. d'inera mere il lembo destro	zia
Vy				a all'asse princ.d'ine	
Vx		Componente del Taglio [kN] parallela all'asse princ.d'inerzia x			
N°Comb.	N	Mx	Му	Vy	Vx
1	160.56	857.78	0.00	0.00	0.00
2	193.79	428.45	0.00	0.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale	[kN] applicato nel Baricentro (·	⊦ se di compressione)	
Mx	Momento fletten	te [kNm] intorno all'asse x prir	c. d'inerzia (tra parentesi Moi	m.Fessurazione)
	con verso positi	vo se tale da comprimere il ler	nbo superiore della sezione	
My		te [kNm] intorno all'asse y prir	` '	m.Fessurazione)
	con verso positi	vo se tale da comprimere il ler	nbo destro della sezione	
NOO	N.		.,	
N°Comb.	N	Mx	My	
1	117 01	609.81	0.00	

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) Мx

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. Ν Mx My

1 112.29 532.02 (507.98) 0.00(0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Ν

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom. Fessurazione) My

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.

87.17 356.29 (510.82) 0.00 (0.00) 1

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.1 cm Interferro netto minimo barre longitudinali: 6.9 cm

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

Ver S = combinazione verificata / N = combin. non verificata

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) Ν

Momento flettente assegnato [kNm] riferito all'asse x princ. d'inerzia Mx Momento flettente assegnato [kNm] riferito all'asse y princ. d'inerzia Μy

Nult Sforzo normale ultimo [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx ult Momento flettente ultimo [kNm] riferito all'asse x princ. d'inerzia Momento flettente ultimo [kNm] riferito all'asse y princ. d'inerzia Misura sicurezza = rapporto vettoriale tra (N ult,Mx ult,My ult) e (N,Mx,My) My ult

Mis.Sic.

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature [cm²] in zona tesa (solo travi). Tra parentesi l'area minima di normativa

N°Comb	Ver	N	Mx	My	N ult	Mx ult	My ult Mis.Sic.	As Tesa
1	S	160.56	857.78	0.00	160.45	1659.93	0.00 1.931	
2	S	193.79	428.45	0.00	178.04	1666.28	0.00 3.880	

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
ec 3/7	Deform. unit. del conglomerato nella fibra a 3/7 dell'altezza efficace
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Con	nb ec max	ec 3/7	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	-0.00781	-50.0	90.0	0.00133	-42.6	82.6	-0.02073	-42.6	7.4
2	0.00350	-0.00782	-50.0	90.0	0.00134	-42.6	82.6	-0.02057	-42.6	7.4

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. y/d

Rapp. di duttilità a rottura in presenza di sola fless (travi) C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb С x/d C.Rid. а

0.00000000 0.000293346 -0.022901168 0.000000000 2 0.000291443 -0.022729860

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

S = comb. verificata/ N = comb. non verificata

Sc max Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Sf min Minima tensione (negativa se di trazione) nell'acciaio [Mpa]

Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure As eff D barre Distanza tre le barre tese [cm] ai fini del calcolo dell'apertura fessure

Prodotto dei coeff. di aderenza delle barre Beta1*Beta2 Beta12

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. D barre Beta12 5.16 50.0 90.0 -33.1 2534 S -145.7 7.4 53.1 9.5 1.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. D barre Beta12 S 4.51 50.0 90.0 -126.3-23.77.4 2534 53.1 9.5 1.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§B.6.6 DM96]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

S1 Massima tensione [Mpa] di trazione nel calcestruzzo valutata in sezione non fessurata S2 Minima tensione [Mpa] di trazione nel calcestruzzo valutata in sezione fessurata

k2 = 0.4 per barre ad aderenza migliorata

k3 = 0.125 per flessione e presso-flessione; =(e1 + e2)/(2*e1) per trazione eccentrica Ø Diametro [mm] medio delle barre tese comprese nell'area efficace Ac eff C.f

Copriferro [mm] netto calcolato con riferimento alla barra più tesa Psi = 1-Beta12*(Ssr/Ss)² = 1-Beta12*(fctm/S2)² = 1-Beta12*(Mfess/M)² [B.6.6 DM96]

Deformazione unitaria media tra le fessure [4.3.1.7.1.3 DM96]. Il valore limite = 0.4*Ss/Es è tra parentesi e sm

Distanza media tra le fessure [mm] srm

Valore caratteristico [mm] dell'apertura fessure = 1.7 * e sm * srm . Valore limite tra parentesi wk

MX fess. Componente momento di prima fessurazione intorno all'asse X [kNm] MY fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

S1 S2 k3 Ø Comb. Ver Cf e sm srm wk Mx fess My fess S -2.9 0 0.125 26 61.0 0.088 0.00025 (0.00025) 203 0.087 (0.40) 507.98 0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. D barre Beta12 S 3.03 50.0 90.0 -83.6 -42.6 2534 53.1 1 74 95 0.50

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§B.6.6 DM96]

S1 S2 Cf Comb. Ver k3 Psi srm wk Mx fess My fess e sm 1 S -19 0 0.125 26 61.0 -0.028 0.00017 (0.00017) 203 0.058 (0.30) 510.82 0.00

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Incastro superiore piedritto, S3

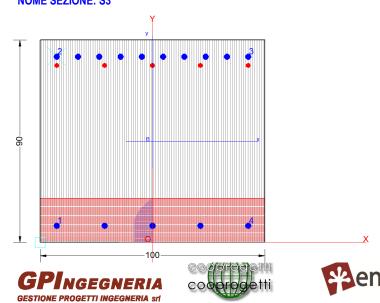

Elem	Load	Axial (kN)	Shear-z (kN)	Moment-y (kN*m)
17	PP	-256.5	-6.95	-124.84
17	PERM	-129.05	11.54	-38.66
17	STSX	-40.02	72.56	283.37
17	RITIRO	0	-22.85	-86.36
17	TU-TF	0	-20.03	-42.41
17	TANDEM-Mmax	-83.32	11.21	-31.03
17	GR-U	-40.05	2.53	-18.27
17	TANDEM-Tmax	-25.53	2.66	-26.53
17	SP-10	0	-18.15	-11.3
17	F-AVV	-95.52	124.82	442.47
17	ACC1	-9.15	15.49	59.34
17	ACC2	-10.25	17.36	66.5
17	STSX_GEO	-48.01	87.05	339.95
17	SISMA-H	-129.23	175.38	-622.79
17	SISMA-V	-36.74	-0.17	-30.37

Tabella 15:sollecitazioni di output dal modello di calcolo

	SN (kN)	V(kN)	M(kNm)
Combinazione fondamentale SLU	-815.68	310.26	850.23
Combinazione SLU (sisma STR)	-598.04	288.50	-609.61
Combinazione SLU (sisma GEO)	-598.04	288.50	-609.61
Combinazione SLE Rara	-602.35	228.05	575.01
Combinazione SLE Frequente	-506.83	112.30	180.92
Combinazione SLE QP	-425.57	87.17	141.08

Tabella 16: Sollecitazioni di verifica

DATI GENERALI SEZIONE IN C.A. NOME SEZIONE: S3

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Descrizione Sezione:

Stati Limite Ultimi Metodo di calcolo resistenza: Tipologia sezione: Sezione generica

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Poco aggressive

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -C28/35 Classe:

Resis, compr. di calcolo fcd: 15.860 MPa Def.unit. max resistenza ec2: 0.0020 Def.unit. ultima ecu: 0.0035 Diagramma tensione-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 32308.0 MPa 2.760 Resis. media a trazione fctm: MPa Coeff. Omogen. S.L.E.: 15.00 Coeff. Omogen. S.L.E.: 15.00

Sc limite S.L.E. comb. Frequenti: 168.00 daN/cm² Ap.Fessure limite S.L.E. comb. Frequenti: 0.400 mm Sc limite S.L.E. comb. Q.Permanenti: 0.00 Mpa Ap.Fessure limite S.L.E. comb. Q.Permanenti: 0.300 mm

ACCIAIO -B450C

> Resist. caratt. snervam. fyk: 450.00 MPa Resist. caratt. rottura ftk: 450.00 MPa Resist. snerv. di calcolo fyd: 391.30 MPa Resist. ultima di calcolo ftd: 391.30 MPa Deform. ultima di calcolo Epu: 0.068

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza istantaneo ß1*ß2: 1.00 Coeff. Aderenza differito \$1*\$2: 0.50 Sf limite S.L.E. Comb. Rare: 360.00 MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo		Poligonale C28/35
N°vertice:	X [cm]	Y [cm]
1	-50.0 -50.0	0.0 90.0
3	-50.0 50.0	90.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-42.6	7.4	26
2	-42.6	82.6	26
3	42.6	82.6	26
4	42.6	7.4	26

DATI GENERAZIONI LINEARI DI BARRE

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

N°Gen.	Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.	Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.	Numero della barra finale cui si riferisce la generazione

Numero di barre generate equidistanti cui si riferisce la generazione N°Barre

Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	3	26
2	2	3	8	26

DATI GENERAZIONI CIRCOLARI DI BARRE

N°Gen.	Numero assegnato alla singola generazione circolare di barre
Xcentro	Ascissa [cm] del centro della circonf. lungo cui sono disposte le barre generate
Ycentro	Ordinata [cm] del centro della circonf. lungo cui sono disposte le barre genrate
Raggio	Raggio [cm] della circonferenza lungo cui sono disposte le barre generate
N°Barre	Numero di barre generate equidist. disposte lungo la circonferenza
Ø	Diametro [mm] della singola barra generata

N°Gen.	Xcentro	Ycentro	Raggio	N°Barre	Ø
1	42.6	78.7	0.0	1	20
2	21.3	78.7	0.0	1	20
3	0.0	78.7	0.0	1	20
4	-21.3	78.7	0.0	1	20
5	-42.6	78.7	0.0	1	20

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

orzo normaie įk	Nj applicato nel Bar	ic. (+ se di compres	ssione)			
Momento flettente [daNm] intorno all'asse x princ. d'inerzia						
n verso positivo	se tale da comprim	iere il lembo sup. de	ella sez.			
mento flettente	[daNm] intorno all'a	asse y princ. d'inerzi	a			
n verso positivo	se tale da comprim	iere il lembo destro	della sez.			
mponente del	Taglio [kN] parallela	all'asse princ.d'inera	zia y			
Componente del Taglio [kN] parallela all'asse princ.d'inerzia x						
Mx	My	Vy	Vx			
	omento flettente n verso positivo omento flettente n verso positivo omponente del omponente del	omento flettente [daNm] intorno all'a n verso positivo se tale da comprim omento flettente [daNm] intorno all'a n verso positivo se tale da comprim omponente del Taglio [kN] parallela omponente del Taglio [kN] parallela	n verso positivo se tale da comprimere il lembo sup. de omento flettente [daNm] intorno all'asse y princ. d'inerzi n verso positivo se tale da comprimere il lembo destro omponente del Taglio [kN] parallela all'asse princ.d'iner omponente del Taglio [kN] parallela all'asse princ.d'iner			

N°Comb.	N	Mx	Му	Vy	Vx
1	851.68	-850.23	0.00	0.00	0.00
2	598.04	-609.61	0.00	0.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Мx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) My

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. Ν Mx Μy 602.35 1 -575.01 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Ν Mx

Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

con verso positivo se tale da comprimere il lembo destro della sezione

Ν N°Comb. Mx My 1 506.83 -180.92 (-917.78) 0.00(0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mχ Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom. Fessurazione) con verso positivo se tale da comprimere il lembo superiore della sezione Му Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. Ν My -141.80 (-972.09) 1 425.57 0.00(0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.1 cm

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

Ver S = combinazione verificata / N = combin. non verificata

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) Ν

Momento flettente assegnato [kNm] riferito all'asse x princ. d'inerzia Mχ Momento flettente assegnato [kNm] riferito all'asse y princ. d'inerzia Му

Nult Sforzo normale ultimo [kN] nel baricentro B sezione cls.(positivo se di compress.)

Momento flettente ultimo [kNm] riferito all'asse x princ. d'inerzia Mx ult Momento flettente ultimo [kNm] riferito all'asse y princ. d'inerzia My ult

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N ult,Mx ult,My ult) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature [cm²] in zona tesa (solo travi). Tra parentesi l'area minima di normativa

As Tesa	Mis.Sic.	My ult	Mx ult	N ult	Му	Mx	N	Ver	N°Comb
	2.654	0.00	-2302.85	851.83	0.00	-850.23	851.68	S	1
	3.641	0.00	-2223.95	585.52	0.00	-609.61	598.04	S	2

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

Deform. unit. massima del conglomerato a compressione
Deform. unit. del conglomerato nella fibra a 3/7 dell'altezza efficace
Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Deform. unit. minima nell'acciaio (negativa se di trazione)
Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Deform. unit. massima nell'acciaio (positiva se di compress.)
Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Con	nb ec max	ec 3/7	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	-0.00342	-50.0	0.0	0.00217	-42.6	7.4	-0.01132	-42.6	82.6
2	0.00350	-0.00289	-50.0	0.0	0.00201	-42.6	7.4	-0.01308	-42.6	82.6

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità a rottura in presenza di sola fless.(travi) C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

N°Comb	а	b	С	x/d	C.Rid.
1	0.000000000	-0.000179391	0.003500000		
2	0.000000000	-0.000200730	0.003500000		

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

Ver S = comb. verificata/ N = comb. non verificata

Sc max Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione (negativa se di trazione) nell'acciaio [Mpa] Sf min

Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Ac eff. As eff Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure Distanza tre le barre tese [cm] ai fini del calcolo dell'apertura fessure D barre

Beta12 Prodotto dei coeff. di aderenza delle barre Beta1*Beta2

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. D barre Beta12 S 4.98 -50.0 0.0 -81.0 33.1 82.6 2450 68.8 1.00 9.5

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. D barre Beta12 S 1.76 -50.0 0.0 -10.8 33.1 82.6 1550 68.8 9.5 1.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§B.6.6 DM96]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

Massima tensione [Mpa] di trazione nel calcestruzzo valutata in sezione non fessurata S1 Minima tensione [Mpa] di trazione nel calcestruzzo valutata in sezione fessurata S2

k2 = 0.4 per barre ad aderenza migliorata

k3 = 0.125 per flessione e presso-flessione; =(e1 + e2)/(2*e1) per trazione eccentrica Ø Diametro [mm] medio delle barre tese comprese nell'area efficace Ac eff

Copriferro [mm] netto calcolato con riferimento alla barra più tesa Cf

Psi = $1-Beta12*(Ssr/Ss)^2 = 1-Beta12*(fctm/S2)^2 = 1-Beta12*(Mfess/M)^2$ [B.6.6 DM96] e sm Deformazione unitaria media tra le fessure [4.3.1.7.1.3 DM96]. Il valore limite = 0.4*Ss/Es è tra parentesi

Distanza media tra le fessure [mm] srm

Valore caratteristico [mm] dell'apertura fessure = 1.7 * e sm * srm . Valore limite tra parentesi wk

MX fess. Componente momento di prima fessurazione intorno all'asse X [kNm] MY fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

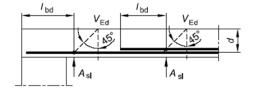
S1 Comb. Ver S2 k3 Ø Psi e sm srm wk Mx fess My fess S -0.5 0 0.125 61.0 -24.734 0.00002 (0.00002) 24 168 0.006 (0.40) -917.78 0.00

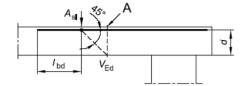
COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. D barre Beta12 33.1 68.8 S 1.40 -50.0 0.0 -7.5 82.6 1450 9.5 0.50

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§B.6.6 DM96]

Comb.	Ver	S1	S2	k3	Ø	Cf F	si	e sm	srm	wk	Mx fess	My fess
1	S	-0.4	0	0.125	24	61.0 -22.49	98 0.00001	(0.00001)	167	0.004 (0.30)	-972.09	0.00




SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

DETERMINAZIONE DELLA RESISTENZA A TAGLIO DELLA	SEZIONE		
§ 4.1.2.1.3.1 - ELEMENTI SENZA ARMATURE TRASVERSALI RESISTEN	ITI A TAGLIO		
Azione di Taglio sollecitante a Stato Limite Ultimo	V_{Ed}	310	[kN]
Considerare o meno il contributo dell'armatura tesa nel calcolo		si	[-]
Coefficiente C _{Rd,c}	$C_{Rd,c}$	0,12	[-]
Coefficiente k	k	1,49	[-]
		1,49	[-]
Rapporto geometrico d'armatura che si estende per non meno di l _{bd} + d	ρι	0,0083294	[-]
		0.0083294	[-1

Definizione di A_{si} nella espressione (6.2) figura Legenda

Sezione considerata

Resistenza a taglio offerta dal calcestruzzo teso	$V_{\text{Rd,c}}$	455,17 [kN]
Resistenza minima del calcestruzzo teso	$V_{Rd,min}$	311,72 [kN]
Resistenza a taglio offerta dal calcestruzzo teso	V _{Rd}	455,17 [kN]
§ 4.1.2.1.3.2 - ELEMENTI CON ARMATURE TRASVERSALI RESISTEN	TI A TAGLIO	
Diametro delle staffe	фъм	16 [mm]
Numero di braccia	n_b	2 [-]
Passo delle staffe	S	200 [mm]
Inclinazione tra il puntone compresso e l'asse della trave	θ	45 [°]
Inclinazione dell'armatura trasversale rispetto all'asse della trave	α	90 [°]
Area della sezione trasversale dell'armatura a taglio	A_{sw}	402 [mm²]
Braccio della coppia interna	Z	743,4 [mm]
Cotangente di θ	cotθ	1,00 [-]
		1,00 [-]
Cotangente di α	$\cot \alpha$	0,00 [-]
Seno di α	sinα	1,00 [-]
Resistenza offerta dall'armatura a taglio (meccanismo taglio - trazione)	V_{Rsd}	584,88 [kN]
Resistenza a compressione ridotta del calcestruzzo d'anima	f'cd	9,92 [MPa]
Resistenza offerta dai puntoni (meccanismo taglio - compressione)	V_{Rcd}	3686,03 [kN]
Massima area efficace di armatura a taglio per $\cot\theta$ = 1	$A_{sw,max}$	3041,11 [mm]
Resistenza a taglio della sezione armata trasversalmente	V_{Rd}	584,88 [kN]
§ 4.1.2.1.3.3 - TAGLIO MASSIMO SOPPORTABILE DALLA TR	RAVE	
Resistenza massima a taalio della trave	V _{Rd}	4095.58 [kN]

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

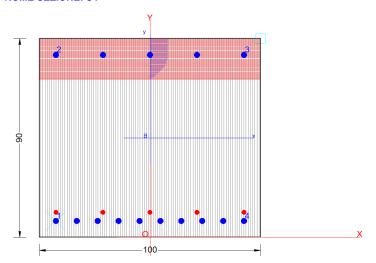
Incastro di base del piedritto, sezione S4

Elem	Load	Axial (kN)	Shear-z (kN)	Moment-y (kN*m)
18	PP	-256.5	6.95	124.84
18	PERM	-129.05	-11.54	38.66
18	STSX	40.02	304.82	409.69
18	RITIRO	0	22.85	86.36
18	TU-TF	0	20.03	42.41
18	TANDEM-Mmax	-83.32	-11.21	31.03
18	GR-U	-40.05	-2.53	18.27
18	TANDEM-Tmax	-121.98	-2.66	45.45
18	SP-10	0	18.15	11.3
18	F-AVV	95.52	124.82	442.47
18	ACC1	9.15	47.89	79.52
18	ACC2	10.25	53.67	89.11
18	STSX_GEO	48.01	365.67	491.48
18	SISMA-H	129.23	420.49	867.69
18	SISMA-V	-60.96	0.17	31.69

Tabella 17: Sollecitazioni di output del modello di calcolo

	SN (kN)	V(kN)	M(kNm)
Combinazione fondamentale SLU	-699.21	645.53	1614.89
Combinazione SLU (sisma STR)	-406.49	767.55	1637.99
Combinazione SLU (sisma GEO)	-406.49	767.55	1637.99
Combinazione SLE Rara	-468.90	455.73	1147.36
Combinazione SLE Frequente	-424.04	354.69	704.89
Combinazione SLE QP	-345.53	321.67	637.58

Tabella 18: Sollecitazioni di verifica



SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

DATI GENERALI SEZIONE IN C.A. NOME SEZIONE: S4

Descrizione Sezione:

Stati Limite Ultimi Metodo di calcolo resistenza: Tipologia sezione: Sezione generica

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Poco aggressive

Assi x,y principali d'inerzia Riferimento Sforzi assegnati:

Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C28/35	
	Resis. compr. di calcolo fcd:	15.860	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	32308.0	MPa
	Resis. media a trazione fctm:	2.760	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Frequenti:	168.00	daN/cm ²
	Ap.Fessure limite S.L.E. comb. Freque	enti: 0.400	mm
	Sc limite S.L.E. comb. Q.Permanenti:	0.00	Мра
	Ap.Fessure limite S.L.E. comb. Q.Pern	nanenti: 0.300	mm
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.00	MPa
	Resist. caratt. rottura ftk:	450.00	MPa
	Resist. snerv. di calcolo fyd:	391.30	MPa
	Resist. ultima di calcolo ftd:	391.30	MPa
	Deform. ultima di calcolo Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	

PROGETTAZIONE ATI:

Coeff. Aderenza differito ß1*ß2:

Sf limite S.L.E. Comb. Rare:

0.50

360.00 MPa

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

CARATTERISTICHE DOMINIO CONGLOMERATO

Poligonale C28/35	Forma del Dominio: Classe Conglomerato:				
Y [cm]	X [cm]	N°vertice:			
0.0	-50.0	1			
90.0	-50.0	2			
90.0	50.0 50.0	3 4			

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-42.6	7.4	26
2	-42.6	82.6	26
3	42.6	82.6	26
4	42.6	7.4	26

DATI GENERAZIONI LINEARI DI BARRE

N°Gen. N°Barra Ini. N°Barra Fin. N°Barre Ø		Numero assegnato alla singola generazione lineare di barre Numero della barra iniziale cui si riferisce la generazione Numero della barra finale cui si riferisce la generazione Numero di barre generate equidistanti cui si riferisce la generazio Diametro in mm delle barre della generazione					
N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø			
1	1	4	8	26			
2	2	3	3	26			

DATI GENERAZIONI CIRCOLARI DI BARRE

N°Gen. Xcentro Ycentro Raggio N°Barre Ø	razione circolare di bar lungo cui sono dispost f. lungo cui sono dispos o cui sono disposte le b lisposte lungo la circont enerata	e le barre generate te le barre genrate parre generate			
N°Gen.	Xcentro	Ycentro	Raggio	N°Barre	Ø
1 2 3 4	42.6 21.3 0.0 -21.3	11.3 11.3 11.3 11.3	0.0 0.0 0.0 0.0	1 1 1 1	20 20 20 20
5	-42.6	11.3	0.0	1	20

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx	Momento flettente [daNm] intorno all'asse x princ. d'inerzia
	con verso positivo se tale da comprimere il lembo sup. della sez.
My	Momento flettente [daNm] intorno all'asse y princ. d'inerzia
•	con verso positivo se tale da comprimere il lembo destro della sez.
Vy	Componente del Taglio [kN] parallela all'asse princ.d'inerzia y
Vx	Componente del Taglio [kN] parallela all'asse princ d'inerzia x

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

N°Comb.	N°Comb. N		Му	Vy	Vx	
1	699.21	1614.89	0.00	0.00	0.00	
2	406.49	1637.99	0.00	0.00	0.00	

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Ν

Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) Mχ

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom. Fessurazione) My

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. 1147.36 468.86 0.00 1

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) N

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) Μv

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. Ν Mx Mν 424.04 704.89 (568.23) 1 0.00(0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) Mx con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. Ν Mx Μv 1 345.53 637.58 (562.42) 0.00(0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.1 cm

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

Ver S = combinazione verificata / N = combin. non verificata

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) N

Mx Momento flettente assegnato [kNm] riferito all'asse x princ. d'inerzia Momento flettente assegnato [kNm] riferito all'asse y princ. d'inerzia Μv

Sforzo normale ultimo [kN] nel baricentro B sezione cls.(positivo se di compress.) N ult

Mx ult Momento flettente ultimo [kNm] riferito all'asse x princ. d'inerzia Momento flettente ultimo [kNm] riferito all'asse y princ. d'inerzia My ult Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N ult, Mx ult, My ult) e (N, Mx, My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature [cm²] in zona tesa (solo travi). Tra parentesi l'area minima di normativa

N°Comb My ult Mis.Sic. Ver My N ult Mx ult As Tesa

ASSE VIARIO MARCHE - UMBRIA E QUADRILATERO DI PENETRAZIONE INTERNA SUBLOTTO 2.2: Intervalliva Macerata - allaccio funzionale della SS77 alla città di Macerata alle località "La Pieve" e "Mattei"

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

1	S	699.21	1614.89	0.00	698.98	2258.14	0.00	1.393	
2	S	406.49	1637.99	0.00	398.04	2163.93	0.00	1.321	

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
ec 3/7	Deform. unit. del conglomerato nella fibra a 3/7 dell'altezza efficace
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Con	nb ec max	ec 3/7	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	-0.00387	50.0	90.0	0.00209	42.6	82.6	-0.01228	-42.6	7.4
2	0.00359	-0.00496	50.0	90.0	0.00223	42.6	82.6	-0.01434	-42.6	7.4

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità a rottura in presenza di sola fless.(travi)
C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

C.Rid.	x/d	С	b	а	N°Comb
		-0.013691112	0.000191012	0.000000000	1
		-0.015936147	0.000215957	0.000000000	2

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Xc max, Yc max
Sf min
Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Minima tensione (negativa se di trazione) nell'acciaio [Mpa]

As eff.

D barre

As min, Ys min
As eff.

D barre

Area barre [cm²] in zona tesa considerate adrente alle barre

Distanza tre le barre tese [cm] ai fini del calcolo dell'apertura fessure

Beta12 Prodotto dei coeff. di aderenza delle barre Beta1*Beta2

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. D barre Beta12

1 S 9.33 -50.0 90.0 -205.0 -23.7 7.4 2450 68.8 4.6 1.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

N°Comb	Ver	Sc max	Xc max Y	c max	Sf min	Xs min	Ys min	Ac eff.	As eff.	D barre	Beta12
1	S	5.86	-50.0	90.0	-117.7	-14.2	7.4	2450	68.8	8.1	1.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§B.6.6 DM96]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

S1 Massima tensione [Mpa] di trazione nel calcestruzzo valutata in sezione non fessurata S2 Minima tensione [Mpa] di trazione nel calcestruzzo valutata in sezione fessurata

k2 = 0.4 per barre ad aderenza migliorata

NS = 0.4 per barre au aderenza fringilorata
 S = 0.125 per flessione e presso-flessione; =(e1 + e2)/(2*e1) per trazione eccentrica
 Ø Diametro [mm] medio delle barre tese comprese nell'area efficace Ac eff
 Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

Psi = $1-\text{Beta} 12^*(\text{Ssr/Ss})^2 = 1-\text{Beta} 12^*(\text{fctm/S2})^2 = 1-\text{Beta} 12^*(\text{Mfess/M})^2$ [B.6.6 DM96]

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

e sm Deformazione unitaria media tra le fessure [4.3.1.7.1.3 DM96]. Il valore limite = 0.4*Ss/Es è tra parentesi

srm Distanza media tra le fessure [mm]

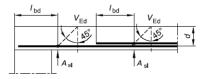
Valore caratteristico [mm] dell'apertura fessure = 1.7 * e sm * srm . Valore limite tra parentesi wk

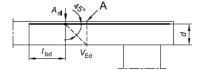
Componente momento di prima fessurazione intorno all'asse X [kNm] MX fess. MY fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

S1 S2 Cf Psi Comb. Ver k3 Ø My fess e sm srm wk Mx fess 1 S -3.4 0 0.125 24 61.0 0.350 0.00024 (0.00024) 182 0.073 (0.40) 568.23 0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. D barre Beta12 S 5.26 -50.0 90.0 -108.7 -33.1 2450 68.8 9.5 0.50


COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§B.6.6 DM96]


Ver S1 S2 Cf Psi Comb. k3 Ø srm wk Mx fess My fess S -3.1 0 0.125 0.611 0.00033 (0.00022) 0.00 1 24 61.0 184 0.104 (0.30) 562.42

DETERMINAZIONE DELLA RESISTENZA A TAGLIO DELLA	<u>SEZIONE</u>	
§ 4.1.2.1.3.1 - ELEMENTI SENZA ARMATURE TRASVERSALI RESISTEN	TI A TAGLIO	
Azione di Taglio sollecitante a Stato Limite Ultimo	V_{Ed}	767.55 [kN
Considerare o meno il contributo dell'armatura tesa nel calcolo		si [-]
Coefficiente C _{Rd,c}	$C_{Rd,c}$	0.12 [-]
Coefficiente k	k	1.46 [-]
		1.46 [-]
Rapporto geometrico d'armatura che si estende per non meno di I _{bd} + d	ρι	0.0074299 [-]
		0.0074299 [-]

Definizione di $A_{\rm si}$ nella espressione (6.2) 6.3 figura Legenda

Sezione considerata

Resistenza a taglio offerta dal calcestruzzo teso	$V_{Rd,c}$	482.21 [kN]
Resistenza minima del calcestruzzo teso	$V_{Rd,min}$	339.90 [kN]
Resistenza a taglio offerta dal calcestruzzo teso	V _{Rd}	482.21 [kN]
§ 4.1.2.1.3.2 - ELEMENTI CON ARMATURE TRASVERSALI RESISTENT	II A TAGLIO	
Diametro delle staffe	фъм	16 [mm]
Numero di braccia	n _b	4 [-]
Passo delle staffe	S	200 [mm]
Inclinazione tra il puntone compresso e l'asse della trave	θ	45 [°]
Inclinazione dell'armatura trasversale rispetto all'asse della trave	α	90 [°]
Area della sezione trasversale dell'armatura a taglio	Asw	804 [mm²]
Braccio della coppia interna	Z	833.4 [mm]
Cotangente di θ	cotθ	1.00 [-]
		1.00 [-]
Cotangente di α	$\cot \alpha$	0.00 [-]
Seno di α	sinα	1.00 [-]
Resistenza offerta dall'armatura a taglio (meccanismo taglio - trazione)	V_{Rsd}	1311.38 [kN]
Resistenza a compressione ridotta del calcestruzzo d'anima	f'cd	9.92 [MPa]
Resistenza offerta dai puntoni (meccanismo taglio - compressione)	V_{Rcd}	4132.28 [kN]
Massima area efficace di armatura a taglio per $\cot\theta$ = 1	$A_{sw,max}$	3041.11 [mm]
Resistenza a taglio della sezione armata trasversalmente	V _{Rd}	1311.38 [kN]
§ 4.1.2.1.3.3 - TAGLIO MASSIMO SOPPORTABILE DALLA TR	AVE	
Resistenza massima a taglio della trave	V_{Rd}	4591.42 [kN]

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

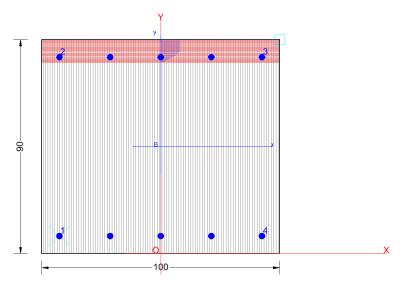
Sezione centrale del piedritto (S5)

Elem	Load	Axial (kN)	Shear-z (kN)	Moment-y (kN*m)
18	PP	-178.31	6.95	100.7
18	PERM	-129.05	-11.54	78.75
18	STSX	40.02	59.54	-190.62
18	RITIRO	0	22.85	6.96
18	TU-TF	0	20.03	-27.2
18	TANDEM-Mmax	-83.32	-11.21	69.96
18	GR-U	-40.05	-2.53	27.06
18	TANDEM-Tmax	-121.98	-2.66	54.68
18	SP-10	0	0.4	-20.92
18	F-AVV	95.52	124.82	8.71
18	ACC1	9.15	16.2	-31.84
18	ACC2	10.25	18.15	-35.68
18	STSX_GEO	48.01	71.43	-228.67
18	SISMA-H	129.23	200.73	-211.67
18	SISMA-V	-48.87	0.17	31.11

Tabella 19: sollecitazioni di output dal modello di calcolo

	SN (kN)	V(kN)	M(kNm)
Combinazione fondamentale SLU	-593.66	293.01	210.55
Combinazione SLU (sisma STR)	-316.21	302.51	-233.48
Combinazione SLU (sisma GEO)	-316.21	302.51	-233.48
Combinazione SLE Rara	-390.71	200.94	106.35
Combinazione SLE Frequente	-345.85	90.40	68.44
Combinazione SLE QP	-267.34	76.39	-24.77

Tabella 20: sollecitazioni di verifica



SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

DATI GENERALI SEZIONE IN C.A. NOME SEZIONE: S5

Descrizione Sezione:

Metodo di calcolo resistenza: Stati Limite Ultimi Tipologia sezione: Sezione generica

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Poco aggressive

Assi x,y principali d'inerzia Riferimento Sforzi assegnati:

Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C28/35	
	Resis. compr. di calcolo fcd:	15.860	MPa

Def.unit. max resistenza ec2: 0.0020 Def.unit. ultima ecu: 0.0035 Diagramma tensione-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 32308.0 MPa Resis. media a trazione fctm: 2.760 MPa Coeff. Omogen. S.L.E.: 15.00 Coeff. Omogen. S.L.E.: 15.00

Sc limite S.L.E. comb. Frequenti: 168.00 daN/cm² Ap.Fessure limite S.L.E. comb. Frequenti: 0.400 mm Sc limite S.L.E. comb. Q.Permanenti: 0.00 Mpa Ap.Fessure limite S.L.E. comb. Q.Permanenti: 0.300 mm

ACCIAIO -B450C Tipo:

Resist, caratt, snervam, fvk: 450.00 MPa Resist. caratt. rottura ftk: 450.00 MPa Resist. snerv. di calcolo fyd: 391.30 MPa Resist. ultima di calcolo ftd: 391.30 MPa Deform. ultima di calcolo Epu: 0.068

2000000 Modulo Elastico Ef daN/cm²

Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza istantaneo ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50 360.00 MPa Sf limite S.L.E. Comb. Rare:

CARATTERISTICHE DOMINIO CONGLOMERATO

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Forma del De Classe Congle		Poligonale C28/35
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	90.0
3	50.0	90.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-42.6	7.4	26
2	-42.6	82.6	26
3	42.6	82.6	26
4	42.6	7.4	26

DATI GENERAZIONI LINEARI DI BARRE

N°Gen. N°Barra Ini. N°Barra Fin. N°Barre Ø		Numero assegnato alla singola generazione lineare di barre Numero della barra iniziale cui si riferisce la generazione Numero della barra finale cui si riferisce la generazione Numero di barre generate equidistanti cui si riferisce la gener Diametro in mm delle barre della generazione				
N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø		
1	1	4	3	26		
2	2	3	3	26		

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx		Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Momento flettente [daNm] intorno all'asse x princ. d'inerzia con verso positivo se tale da comprimere il lembo sup. della sez.				
Му		Momento flettente [daNm] intorno all'asse y princ. d'inera con verso positivo se tale da comprimere il lembo destro				
Vy		•	•	a all'asse princ.d'ine		
Vx				a all'asse princ.d'ine		
N°Comb.	N	Mx	Му	Vy	Vx	
1	593.66	210.55	0.00	0.00	0.00	
2	316.21	-233.48	0.00	0.00	0.00	

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)				
Mx		nte [kNm] intorno all'asse x prir	\ '	om.Fessurazione)	
		ivo se tale da comprimere il ler	•		
Му	Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazio			om.Fessurazione)	
	con verso posit	ivo se tale da comprimere il ler	nbo destro della sezione		
N°Comb.	N	Mx	My		
1	390.71	-106.37	0.00		

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Ν

Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

Му Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. Mx

345.85 68.44 (2530.13) 0.00(0.00)1

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) Му

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. Ν Mx My

267.34 -24.77 (-972.09) 0.00(0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.1 cm Interferro netto minimo barre longitudinali: 18.7 cm

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

Ver S = combinazione verificata / N = combin. non verificata

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) N

Mx Momento flettente assegnato [kNm] riferito all'asse x princ. d'inerzia My Momento flettente assegnato [kNm] riferito all'asse y princ. d'inerzia

Nult

Sforzo normale ultimo [kN] nel baricentro B sezione cls.(positivo se di compress.)
Momento flettente ultimo [kNm] riferito all'asse x princ. d'inerzia Mx ult Momento flettente ultimo [kNm] riferito all'asse y princ. d'inerzia My ult

Misura sicurezza = rapporto vettoriale tra (N ult,Mx ult,My ult) e (N,Mx,My) Mis.Sic.

Verifica positiva se tale rapporto risulta >=1 000

As Tesa Area armature [cm²] in zona tesa (solo travi). Tra parentesi l'area minima di normativa

N°Comb	Ver	N	Mx	Му	N ult	Mx ult	My ult Mis.Sic.	As Tesa
1	S	593.66	210.55	0.00	593.71	1046.41	0.00 4.970	
2	S	316.21	-233.48	0.00	309.53	-939.70	0.00 4.026	

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
ec 3/7	Deform. unit. del conglomerato nella fibra a 3/7 dell'altezza efficace
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Con	nb ec max	ec 3/7	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	-0.01070	50.0	90.0	0.00078	42.6	82.6	-0.02692	-42.6	7.4
2	0.00350	-0.01234	-50.0	0.0	0.00049	-42.6	7.4	-0.03044	-42.6	82.6

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. a, b, c

x/d Rapp. di duttilità a rottura in presenza di sola fless.(travi) C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb b C.Rid. x/d

0.000000000 0.000368231 -0.029640783 2 0.000000000 -0.000409355 0.003500000

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

Ver S = comb. verificata/ N = comb. non verificata

Sc max Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Xc max, Yc max

Minima tensione (negativa se di trazione) nell'acciaio [Mpa] Sf min

Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Xs min, Ys min Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Ac eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure As eff. Distanza tre le barre tese [cm] ai fini del calcolo dell'apertura fessure D barre

Beta12 Prodotto dei coeff. di aderenza delle barre Beta1*Beta2

 $N^{\circ}Comb$ Sc max Sf min Xs min Ys min Ver Xc max Yc max Ac eff. As eff. D barre Beta12 1 S 1.14 -50.0 0.0 -5.0 42.6 82.6 1300 26.5 21.3 1.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

N°Comb Ver Beta12 Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. D barre S 0.79 -50.0 90.0 -0.3 -42.67.4

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§B.6.6 DM96]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

S1 Massima tensione [Mpa] di trazione nel calcestruzzo valutata in sezione non fessurata S2 Minima tensione [Mpa] di trazione nel calcestruzzo valutata in sezione fessurata

k2 = 0.4 per barre ad aderenza migliorata

k3 = 0.125 per flessione e presso-flessione; =(e1 + e2)/(2*e1) per trazione eccentrica

Ø Diametro [mm] medio delle barre tese comprese nell'area efficace Ac eff Copriferro [mm] netto calcolato con riferimento alla barra più tesa

Cf

= 1-Beta12*(Ssr/Ss)² = 1-Beta12*(fctm/S2)² = 1-Beta12*(Mfess/M)² [B.6.6 DM96] Psi

Deformazione unitaria media tra le fessure [4.3.1.7.1.3 DM96]. Il valore limite = 0.4*Ss/Es è tra parentesi e sm

srm Distanza media tra le fessure [mm]

Valore caratteristico [mm] dell'apertura fessure = 1.7 * e sm * srm . Valore limite tra parentesi wk

MX fess Componente momento di prima fessurazione intorno all'asse X [kNm] MY fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Psi S1 S2 k3 α Cf Comb. Ver e sm srm wk Mx fess My fess 1 S -0.1 0 2530.13 0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. D barre Beta12 S 0.43 -50.0 2.2 0.0 21.3

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§B.6.6 DM96]

Comb. Ver S1 S2 k3 Ø Cf Psi My fess e sm srm wk Mx fess S 0.1 N -972.09 0.00 PROGETTAZIONE ATI:

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

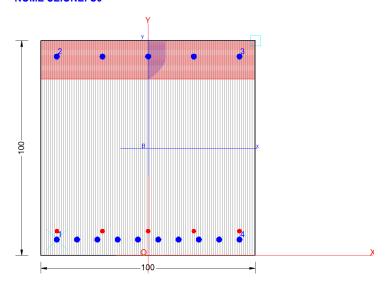
Sezione di incastro della soletta di base (S6)

Elem	Load	Axial (kN)	Shear-z (kN)	Moment-y (kN*m)
1	PP	-6.95	145.07	124.84
1	PERM	11.54	61.74	38.66
1	STSX	-304.82	31.91	409.69
1	RITIRO	-22.85	0.91	86.36
1	TU-TF	-20.03	0.45	42.41
1	TANDEM-Mmax	11.21	57.62	31.03
1	GR-U	2.53	27.73	18.27
1	TANDEM-Tmax	2.66	71.68	45.45
1	SP-10	-18.15	0.12	11.3
1	F-AVV	-124.82	22.12	442.47
1	ACC1	-47.89	5.92	79.52
1	ACC2	-53.67	6.63	89.11
1	STSX_GEO	-365.67	38.28	491.48
1	SISMA-H	-366.04	58.62	867.69
1	SISMA-V	-0.31	41.77	31.69

Tabella 21: sollecitazioni di output dal modello di calcolo

	SN (kN)	V(kN)	M(kNm)
Combinazione fondamentale SLU	-645.53	461.89	1614.89
Combinazione SLU (sisma STR)	-713.14	335.09	1637.99
Combinazione SLU (sisma GEO)	-713.14	335.09	1637.99
Combinazione SLE Rara	-455.73	326.66	1147.36
Combinazione SLE Frequente	-354.69	295.62	704.89
Combinazione SLE QP	-321.67	239.40	637.58

Tabella 22: Sollecitazioni di verifica



SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

DATI GENERALI SEZIONE IN C.A. NOME SEIONE: S6

Descrizione Sezione:

Metodo di calcolo resistenza: Stati Limite Ultimi Tipologia sezione: Sezione generica

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Poco aggressive

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia

Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C28/35	
	Resis. compr. di calcolo fcd:	15.860	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	32308.0	MPa
	Resis. media a trazione fctm:	2.760	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Frequenti:	168.00	daN/cm ²
	Ap.Fessure limite S.L.E. comb. Freque	nti: 0.400	mm
	Sc limite S.L.E. comb. Q.Permanenti:	0.00	Мра
	Ap.Fessure limite S.L.E. comb. Q.Perm	nanenti: 0.300	mm
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.00	MPa
	Resist. caratt. rottura ftk:	450.00	MPa
	Resist. snerv. di calcolo fyd:	391.30	MPa
	Resist. ultima di calcolo ftd:	391.30	MPa
	Deform. ultima di calcolo Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	
	Coeff. Aderenza differito ß1*ß2:	0.50	
	Sf limite S.L.E. Comb. Rare:	360.00	MPa

ASSE VIARIO MARCHE - UMBRIA E QUADRILATERO DI PENETRAZIONE INTERNA SUBLOTTO 2.2: Intervalliva Macerata - allaccio funzionale della SS77 alla città di Macerata alle località "La Pieve" e "Mattei"

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo		Poligonale C28/35
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	100.0
3	50.0	100.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-42.6	7.4	26
2	-42.6	92.6	26
3	42.6	92.6	26
4	42.6	7.4	26

DATI GENERAZIONI LINEARI DI BARRE

 N°Gen.
 Numero assegnato alla singola generazione lineare di barre

 N°Barra Ini.
 Numero della barra iniziale cui si riferisce la generazione

 N°Barra Fin.
 Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	26
2	2	3	3	26

DATI GENERAZIONI CIRCOLARI DI BARRE

 N°Gen.
 Numero assegnato alla singola generazione circolare di barre

 Xcentro
 Ascissa [cm] del centro della circonf. lungo cui sono disposte le barre generate

 Ycentro
 Ordinata [cm] del centro della circonf. lungo cui sono disposte le barre generate

 Raggio
 Raggio [cm] della circonferenza lungo cui sono disposte le barre generate

 N°Barre
 Numero di barre generate equidist. disposte lungo la circonferenza

 Ø
 Diametro [mm] della singola barra generata

N°Gen.	Xcentro	Ycentro	Raggio	N°Barre	Ø
1	42.6	11.3	0.0	1	20
2	21.3	11.3	0.0	1	20
3	0.0	11.3	0.0	1	20
4	-21.3	11.3	0.0	1	20
5	-42.6	11.3	0.0	1	20

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N		Sforzo normale [k	N] applicato nel Bar	ic (+ se di compre	ssione)
Mx		Momento flettente	e [daNm] intorno all'a o se tale da comprim	asse x princ. d'inerz	ia
Му		Momento flettente	e [daNm] intorno all'a o se tale da comprim	asse y princ. d'inerz	ia
Vy Vx		Componente del	Taglio [kN] parallela Taglio [kN] parallela	all'asse princ.d'iner	zia y
N°Comb.	N	Mx	Mv	Vv	Vx

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

1	645.53	1614.89	0.00	0.00	0.00
2	713.14	1637.99	0.00	0.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Ν Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. Mx 455.73 1147.36 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom. Fessurazione) Му

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. Mx 354.69 704.89 (684.68) 0.00 (0.00) 1

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Мx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) Μy

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mχ Μy 637.58 (684.85) 0.00 (0.00) 1 321.67

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.1 cm

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

S = combinazione verificata / N = combin. non verificata Ver

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) N

Mx Momento flettente assegnato [kNm] riferito all'asse x princ. d'inerzia Momento flettente assegnato [kNm] riferito all'asse y princ. d'inerzia Μv

Nult Sforzo normale ultimo [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx ult Momento flettente ultimo [kNm] riferito all'asse x princ. d'inerzia Momento flettente ultimo [kNm] riferito all'asse y princ. d'inerzia My ult

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N ult, Mx ult, My ult) e (N, Mx, My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature [cm²] in zona tesa (solo travi). Tra parentesi l'area minima di normativa

N°Comb	Ver	N	Mx	My	N ult	Mx ult	My ult Mis.Sic.	As Tesa
1	S	645.53	1614.89	0.00	645.68	2543.68	0.00 1.576	
2	S	713.14	1637.99	0.00	713.32	2567.28	0.00 1.567	

ASSE VIARIO MARCHE - UMBRIA E QUADRILATERO DI PENETRAZIONE INTERNA SUBLOTTO 2.2: Intervalliva Macerata - allaccio funzionale della SS77 alla città di Macerata alle località "La Pieve" e "Mattei"

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

rato a compressione
fibra a 3/7 dell'altezza efficace
c max (sistema rif. X,Y,O sez.)
c max (sistema rif. X,Y,O sez.)
gativa se di trazione)
es min (sistema rif. X,Y,O sez.)
es min (sistema rif. X,Y,O sez.)
ositiva se di compress.)
es max (sistema rif. X,Y,O sez.)
es max (sistema rif. X,Y,O sez.)

N°Con	nb ec max	ec 3/7	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	-0.00488	50.0	100.0	0.00205	42.6	92.6	-0.01460	-42.6	7.4
2	0.00350	-0.00482	50.0	100.0	0.00211	42.6	92.6	-0.01413	-42.6	7.4

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c x/d C.Rid.	Rapp. di	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=U nel rif. X,Y,O gen. Rapp. di duttilità a rottura in presenza di sola fless.(travi) Coeff. di riduz. momenti per sola flessione in travi continue									
N°Comb	a	b	С	x/d	C.Rid.						
1	0.000000000	0.000195470	-0.016046979								
2	0.000000000	0 000180887	_0 015/188707								

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Xc max, Yc max
Sf min
Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Minima tensione (negativa se di trazione) nell'acciaio [Mpa]

Xs min, Ys min
Ac eff.
As eff.
As eff.
D barre

Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)
Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure
Distanza tre le barre tese [cm] ai fini del calcolo dell'apertura fessure

Beta12 Prodotto dei coeff. di aderenza delle barre Beta1*Beta2

N°Comb	Ver	Sc max	Xc max Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.	D barre	Beta12
1	S	7 77	50.0 100.0	-178 8	-33 1	7 4	2450	68.8	9.5	1 00

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

N°Comb	Ver	Sc max	Xc max Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.	D barre	Beta12
1	S	4 83	50.0 100.0	-105.3	-47	7 4	2450	68.8	6.1	1 00

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§B.6.6 DM96]

	La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm
Ver.	Esito della verifica
S1	Massima tensione [Mpa] di trazione nel calcestruzzo valutata in sezione non fessurata
S2	Minima tensione [Mpa] di trazione nel calcestruzzo valutata in sezione fessurata
k2	= 0.4 per barre ad aderenza migliorata
k3	= 0.125 per flessione e presso-flessione; =(e1 + e2)/(2*e1) per trazione eccentrica
Ø	Diametro [mm] medio delle barre tese comprese nell'area efficace Ac eff
Cf	Copriferro [mm] netto calcolato con riferimento alla barra più tesa
Psi	= 1-Beta12*(Ssr/Ss) ² = 1-Beta12*(fctm/S2) ² = 1-Beta12*(Mfess/M) ² [B.6.6 DM96]
	D. () 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

e sm Deformazione unitaria media tra le fessure [4.3.1.7.1.3 DM96]. Il valore limite = 0.4*Ss/Es è tra parentesi

srm Distanza media tra le fessure [mm]

wk Valore caratteristico [mm] dell'apertura fessure = 1.7 * e sm * srm . Valore limite tra parentesi

1

S -2.6

0.125

ASSE VIARIO MARCHE - UMBRIA E QUADRILATERO DI PENETRAZIONE INTERNA SUBLOTTO 2.2: INTERVALLIVA MACERATA - ALLACCIO FUNZIONALE DELLA SS77 ALLA CITTÀ DI MACERATA ALLE LOCALITÀ "LA PIEVE" E "MATTEI"

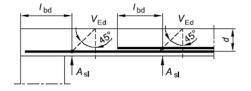
24 61.0 0.423 0.00020 (0.00019) 184 0.063 (0.30)

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

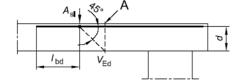
MX fe					ma fessurazi ma fessurazi								
Comb.	Ver	S1	S	S2	k3	Ø	Cf Psi		e sm	srm	wk	Mx fess	My fess
1	S	-2.8		0 0	.125	24 61	.0 0.057	0.00021	(0.00021)	178	0.064 (0.40)	684.68	0.00
COMBIN	AZION	QUASI PER	RMANENT	TI IN ESE	RCIZIO -	MASSIN	IE TENSIO	NI NORM	IALI ED API	ERTURA	FESSURE		
N°Comb	Ver	Sc max	Xc max \	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.	D barre	e Beta12		
1	S	4.37	50.0	100.0	-95.2	-33.1	7.4	2450	68.8	9.5	0.50		
COMBIN	AZION	QUASI PER	RMANENT	TI IN ESE	ERCIZIO - /	APERTUI	RA FESSU	RE [§B.6	.6 DM96]				
Comb.	Ver	S1	S	S2	k3	Ø	Cf Psi		e sm	srm	wk	Mx fess	My fess

684.85

0.00


SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

482,21 [kN]


DETERMINAZIONE DELLA RESISTENZA A TAGLIO DELLA SEZIONE							
§ 4.1.2.1.3.1 - ELEMENTI SENZA ARMATURE TRASVERSALI RESISTENTI A TAGLIO							
Azione di Taglio sollecitante a Stato Limite Ultimo	V_{Ed}	461,89	[kN				
Considerare o meno il contributo dell'armatura tesa nel calcolo		si	[-]				
Coefficiente C _{Rd,c}	$C_{Rd,c}$	0,12	[-]				
Coefficiente k	k	1,46	[-]				
		1,46	[-]				
Rapporto geometrico d'armatura che si estende per non meno di l _{bd} + d	ρι	0,0074299	[-]				
		0,0074299	[-]				

Definizione di A_{si} nella espressione (6.2) figura Legenda

Sezione considerata

Resistenza a taglio offerta dal calcestruzzo teso

 $V_{\text{Rd,c}}$

•			
Resistenza minima del calcestruzzo teso	$V_{Rd,min}$	339,90 [[kN]
Resistenza a taglio offerta dal calcestruzzo teso	V_{Rd}	482,21	kN]
§ 4.1.2.1.3.2 - ELEMENTI CON ARMATURE TRASVERSALI RESISTEN	TI A TAGLIO		
Diametro delle staffe	φsw	16 [[mm]
Numero di braccia	n _b	4 [[-]
Passo delle staffe	S	200 [[mm]
Inclinazione tra il puntone compresso e l'asse della trave	θ	45 [[°]
Inclinazione dell'armatura trasversale rispetto all'asse della trave	α	90	[°]
Area della sezione trasversale dell'armatura a taglio	A_{sw}	804 [[mm ²]
Braccio della coppia interna	Z	833,4 [[mm]
Cotangente di θ	cotθ	1,00 [
		1,00 [
Cotangente di $lpha$	$\cot \alpha$	0,00	[-]
Seno di α	sin_{lpha}	1,00 [[-]
Resistenza offerta dall'armatura a taglio (meccanismo taglio - trazione)	V_{Rsd}	1311,38 [kN]
Resistenza a compressione ridotta del calcestruzzo d'anima	f'cd	9,92 [[MPa]
Resistenza offerta dai puntoni (meccanismo taglio - compressione)	V_{Rcd}	4132,28 [kN]
Massima area efficace di armatura a taglio per $\cot\theta$ = 1	Asw,max	3041,11 [[mm]
Resistenza a taglio della sezione armata trasversalmente	V _{Rd}	1311,38	kN]
§ 4.1.2.1.3.3 - TAGLIO MASSIMO SOPPORTABILE DALLA TI	RAVE		
Resistenza massima a taglio della trave	V_{Rd}	4591,42	kN]

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

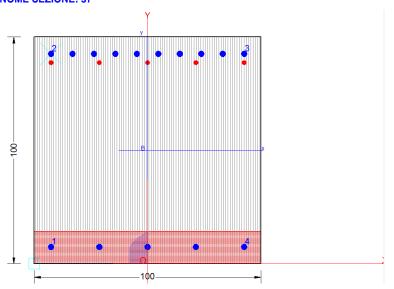
Sezione centrale della soletta di base (S7)

Elem	Load	Axial (kN)	Shear-z (kN)	Moment-y (kN*m)
5	PP	0	-28.14	-227.26
5	PERM	0	-17.07	-116.67
5	STSX	0	108.2	60.89
5	RITIRO	0	-0.23	83.26
5	TU-TF	0	-0.12	40.89
5	TANDEM-I	0	-6.25	-103.21
5	GR-U	0	-3.01	-46.38
5	TANDEM-	0	-15.57	-83.15
5	SP-10	0	-0.03	10.9
5	F-AVV	0	150.07	0
5	ACC1	0	21.98	9.73
5	ACC2	0	24.64	10.9
5	STSX_GEO	0	129.81	73.05
5	SISMA-H	0	261.22	206.62
5	SISMA-V	0	4.04	-61.93

Tabella 23: Sollecitazioni di output dal modello di calcolo

	SN (kN)	V(kN)	M(kNm)
Combinazione fondamentale SLU	-3256,64	317,72	-1140,76
Combinazione SLU (sisma STR)	-2713,87	262,22	-684,00
Combinazione SLU (sisma GEO)	-2713,87	262,22	-684,00
Combinazione SLE Rara	-2713,87	232,25	-827,14
Combinazione SLE Frequente	-1628,32	81,43	-731,16
Combinazione SLE QP	-1356,94	72,14	-559,72

Tabella 24: Sollecitazioni di verifica



SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

DATI GENERALI SEZIONE IN C.A. **NOME SEZIONE: s7**

Descrizione Sezione:

Metodo di calcolo resistenza: Stati Limite Ultimi Tipologia sezione: Sezione generica

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm, costante Condizioni Ambientali: Poco aggressive

Assi x,y principali d'inerzia Riferimento Sforzi assegnati:

Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -C28/35 Classe: Resis. compr. di calcolo fcd: 15.860

MPa Def.unit. max resistenza ec2: 0.0020 Def.unit. ultima ecu: 0.0035 Diagramma tensione-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 32308.0 MPa Resis. media a trazione fctm: 2.760 MPa Coeff. Omogen. S.L.E.: 15.00

Coeff. Omogen. S.L.E.: 15.00 Sc limite S.L.E. comb. Frequenti: 168.00

daN/cm² Ap.Fessure limite S.L.E. comb. Frequenti: 0.400 mm Sc limite S.L.E. comb. Q.Permanenti: 0.00 Mpa Ap.Fessure limite S.L.E. comb. Q.Permanenti: 0.300 mm

ACCIAIO -B450C Tipo:

> Resist. caratt. snervam. fyk: 450.00 MPa Resist. caratt. rottura ftk: 450.00 MPa Resist. snerv. di calcolo fyd: 391.30 MPa Resist. ultima di calcolo ftd: 391.30 MPa Deform. ultima di calcolo Epu: 0.068

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza istantaneo ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50

Sf limite S.L.E. Comb. Rare: 360.00 MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Dominio: Poligonale

ASSE VIARIO MARCHE - UMBRIA E QUADRILATERO DI PENETRAZIONE INTERNA SUBLOTTO 2.2: Intervalliva Macerata - Allaccio funzionale della SS77 alla città di Macerata alle località "La Pieve" e "Mattei"

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Classe Congl	C28/35	
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	100.0
3	50.0	100.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-42.6	7.4	26
2	-42.6	92.6	26
3	42.6	92.6	26
4	42.6	7.4	26

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.Numero assegnato alla singola generazione lineare di barreN°Barra Ini.Numero della barra iniziale cui si riferisce la generazioneN°Barra Fin.Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	3	26
2	2	3	8	26

DATI GENERAZIONI CIRCOLARI DI BARRE

 N°Gen.
 Numero assegnato alla singola generazione circolare di barre

 Xcentro
 Ascissa [cm] del centro della circonf. lungo cui sono disposte le barre generate

 Ycentro
 Ordinata [cm] del centro della circonf. lungo cui sono disposte le barre generate

 Raggio
 Raggio [cm] della circonferenza lungo cui sono disposte le barre generate

 N°Barre
 Numero di barre generate equidist. disposte lungo la circonferenza

 Ø
 Diametro [mm] della singola barra generata

N°Gen.	Xcentro	Ycentro	Raggio	N°Barre	Ø
1	42.6	88.7	0.0	1	20
2	21.3	88.7	0.0	1	20
3	0.0	88.7	0.0	1	20
4	-21.3	88.7	0.0	1	20
5	-42.6	88.7	0.0	1	20

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N		Sforzo normale [l	kN] applicato nel Ba	aric. (+ se di compre	essione)			
Mx		Momento flettente [daNm] intorno all'asse x princ. d'inerzia						
		•	•	mere il lembo sup. d				
My				[daNm] intorno all'asse y princ. d'inerzia				
		•		mere il lembo destro				
Vy			Componente del Taglio [kN] parallela all'asse princ.d'inerzia y					
Vx		Componente del	Taglio [kN] parallel	a all'asse princ.d'ine	rzia x			
N°Comb.	N	Mx	Му	Vy	Vx			
1	0.00	-634.80	0.00	0.00	0.00			

0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

-374.00

PROGETTAZIONE ATI:

2

0.00

0.00

0.00

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Ν

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) My

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. Mx

0.00 1 -457.160.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) Му

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. Ν Mx My

0.00 -453.49 (-624.36) 0.00(0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom. Fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. Ν Mx Μy

-303.49 (-624.36) 0.00 0.00 (0.00) 1

RISULTATI DEL CALCOLO

Му

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.1 cm

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

Ver S = combinazione verificata / N = combin. non verificata

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Momento flettente assegnato [kNm] riferito all'asse x princ. d'inerzia My My Momento flettente assegnato [kNm] riferito all'asse y princ. d'inerzia

Sforzo normale ultimo [kN] nel baricentro B sezione cls.(positivo se di compress.) Nult

Momento flettente ultimo [kNm] riferito all'asse x princ. d'inerzia Momento flettente ultimo [kNm] riferito all'asse y princ. d'inerzia Mx ult My ult

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N ult,Mx ult,My ult) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

Area armature [cm²] in zona tesa (solo travi). Tra parentesi l'area minima di normativa As Tesa

N°Comb	Ver	N	Mx	My	N ult	Mx ult	My ult Mis.Sic.	As Tesa
1	S	0.00	-634.80	0.00	0.00	-2297.55	0.00 3.619	68.8(14.8)
2	S	0.00	-374.00	0.00	0.00	-2297.55	0.00 6.143	68.8(14.8)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max Deform. unit. massima del conglomerato a compressione Deform. unit. del conglomerato nella fibra a 3/7 dell'altezza efficace ec 3/7 Xc max Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Yc max

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

)
)

N°Com	nb ec max	ec 3/7	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	-0.00714	-50.0	0.0	0.00166	-42.6	7.4	-0.01950	-42.6	92.6
2	0.00350	-0.00714	-50.0	0.0	0.00166	-42.6	7.4	-0.01950	-42.6	92.6

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità a rottura in presenza di sola fless.(travi)
C.Rid.	Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	а	b	С	x/d	C.Rid.
1	0.000000000	-0.000248349	0.003500000	0.152	0.700
2	0.000000000	-0.000248349	0.003500000	0.152	0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

Ver S = comb. verificata/ N = comb. non verificata

Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Sc max Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione (negativa se di trazione) nell'acciaio [Mpa] Sf min

Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure Distanza tre le barre tese [cm] ai fini del calcolo dell'apertura fessure D barre

Prodotto dei coeff. di aderenza delle barre Beta1*Beta2 Beta12

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. D barre Beta12 S 2.93 50.0 -82.7 -14.2 68.8 1 0.0 92.6 2450 8.1 1.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. Beta12 D barre S 2.91 50.0 -82.0 68.8 1 0.0 -4.7 92.6 2450 6 1 1.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§B.6.6 DM96]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm Esito della verifica

S1 Massima tensione [Mpa] di trazione nel calcestruzzo valutata in sezione non fessurata S2 Minima tensione [Mpa] di trazione nel calcestruzzo valutata in sezione fessurata

k2 = 0.4 per barre ad aderenza migliorata

= 0.125 per flessione e presso-flessione; =(e1 + e2)/(2*e1) per trazione eccentrica k3 Diametro [mm] medio delle barre tese comprese nell'area efficace Ac eff Ø

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

= $1-Beta12*(Ssr/Ss)^2 = 1-Beta12*(fctm/S2)^2 = 1-Beta12*(Mfess/M)^2$ [B.6.6 DM96] Psi

Deformazione unitaria media tra le fessure [4.3.1.7.1.3 DM96]. Il valore limite = 0.4*Ss/Es è tra parentesi e sm

srm Distanza media tra le fessure [mm]

Valore caratteristico [mm] dell'apertura fessure = 1.7 * e sm * srm . Valore limite tra parentesi wk

MX fess. Componente momento di prima fessurazione intorno all'asse X [kNm] MY fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Comb. Ver S1 S2 k3 Ø Cf Psi My fess e sm srm wk Mx fess 1 -2.00 0.125 61.0 -0.896 0.00016 (0.00016) 178 0.050 (0.40) 0.00 S 24 -624.36

PROGETTAZIONE ATI:

Ver.

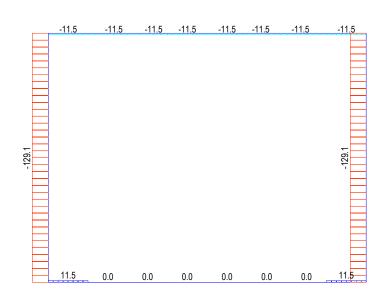
SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

N°Comb	Ver	Sc max	Xc max `	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.	D barre	Beta12
1	S	1.94	-50.0	0.0	-54.9	-14.2	92.6	2450	68.8	8.1	0.50

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE

Comb.	Ver	S1	S2	k3	Ø	Cf	Psi	e sm	srm	wk	Mx fess	My fess
1	S	-1.3	0	0.125	24	61.0	-1.116 0.00	0011 (0.00011)	182	0.034 (0.30)	-624.36	0.00


10.1. VERIFICHE DI ACCETTABILITÀ DEI RISULTATI

Al fine di determinare la congruenza dei dati ottenuti dal software utilizzato e la validazione del modello analitico implementato è stato effettuato un controllo dei valori di momento flettente ottenuti con gli schemi semplificati della Tecnica delle Costruzioni.

In particolare, con riferimento alla condizione di carico permanente, dovuto al solo peso del terreno presente sulla soletta superiore è stato effettuato una verifica di corrispondenza della sollecitazione di SN agente nel pietritto. I carichi permanenti portati considerati nella presente verifica, agenti sulla soletta superiore sono i seguenti:

- peso rilevato e pavimetazione

29.00 kN/m²

La sollecitazione di SN derivante dal modello di calcolo è pari a 129.1 kN.

Da calcolazioni manuali si ha:

ASSE VIARIO MARCHE - UMBRIA E QUADRILATERO DI PENETRAZIONE INTERNA SUBLOTTO 2.2: Intervalliva Macerata - allaccio funzionale della SS77 alla città di Macerata alle località "La Pieve" e "Mattei"

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

SN=QxL/2 = 29.0 x 8.90/2= 129.05 kN/m. Si è fatto riferimento ad una luce di calcolo considerata in asse al piedritto. I valori sono del tutto analoghi pertanto il modello implementato è da ritenersi rappresentativo e congruente con lo stato reale.

10.1. VERIFICHE DI DEFORMABILITÀ

La verifica di deformabilità del ponte è stata condotta per la condizione di esercizio di tipo frequente limitando la freccia massima a L/500 per l'effetto dei carichi variabili da traffico, nella condizione più sfavorevole. Nella fattispecie, utilizzando la combinazione caratteristica (rara) degli SLE (SLE RARA), si ottiene nella sezione di mezzeria della soletta superiore (nodo 15) uno spostamento:

Node	Load	DX (m)	DY (m)	DZ (m)	RX ([rad])	RY ([rad])	RZ ([rad])
15	rara	0,007179	0	-0,001596	0	-0,00023	0

Tale spostamento, risulta essere inferiore al limite L/500 che per una luce di 8.90 m (interasse appoggi) risulta pari a 1.17 cm, pertanto la verifica si ritiene soddisfatta.

11. VERIFICA DEL MURO AD L SUL LATO SINISTRO DELLO SCATOLARE

In ingresso allo scatolare percorrendo verso la rotatoria Mattei si realizzerà un muro di sostegno ad L che è giuntato rispetto allo scatolare, quindi parte con la medesima altezza e scende con pendenza 3/1 sino all'altezza di 1.0 m. Il muro di sostegno finisce con un risvolto verso l'esterno in modo da generare un angolo di circa 20° rispetto alla direttrice dell'asse stradale.

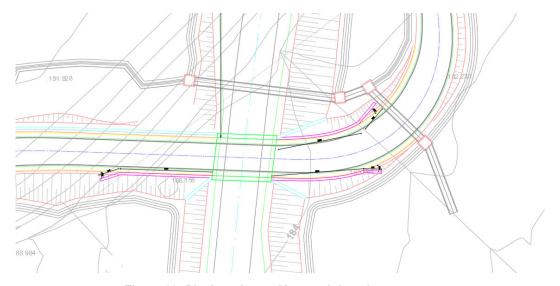


Figura 30: Planimetria con Muro a sinistra in progetto

GESTIONE PROGETTI INGEGNERIA sri

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Il muro si estende per una lunghezza di circa 19.43 m dove raggiunge la quota di 1.0 m dal livello di pavimentazione stradale. Il risvolto ha una lunghezza di crica 4.47 m in modo da finire con l'avvio annegato all'interno della scarpata che ha pendenza 3/2.

Il muro ha uno spessore alla base pari a 90 cm e si trova alla stessa quota di imposta della fondazione dello scatolare. Sino a 4.0 m dal livello superiore della soletta di fondazione ha lo stesso spessore di 90 cm, poi si rastrema a 50 cm. Tale struttura verticale del muro è attesa sino allo sviluppo in elevazione pari a 4.0 m. A seguire, dove il muro avrà altezza inferiore a 4.0 m avrà una sezione costante pari a 50 cm di spessore.

Il primo calcolo viene esquito considerando un'altezza massima di 7.0 m per il muro più alto e si estende sino al raggiungimento dell'altezza di 4.0 m. La seconda sezione adottata fa riferimento all'altezza di 4.0 m e viene adottata sino all'altezza di 1.0 m.

11.1. PARAMETRI GEOTECNICI PER IL CALCOLO DELLE STRUTTURE

Il terreno a tergo delle strutture in oggetto è costituito da terreno per rilevati stradali; si considerano prudenzialmente ai fini del calcolo i parametri geotecnici del terreno di fondazione dedotti dalla relazione geologica allegata al progetto:

 $\gamma_t = 20 \text{ kN/m}^3$ $\phi = 35^{\circ}$ c'=0

Lo scavo per la realizazione della fondazione dei muri avviene a cielo aperto con pendenza 3:2. Il terreno di base su cui fonda il muro di sostegno ha le seguenti caratteristiche meccaniche:

 $\gamma_t = 19 \text{ kN/m}^3$ c'= 15 kPa $\phi = 22^{\circ}$ E = 10 MPa

DEFINIZIONE DELLE DELL'AZIONI 11.2.

Le azioni da considerare nella progettazione dei ponti stradali sono:

- le azioni permanenti
- le azioni sismiche.
- le azioni variabili;
- le azioni eccezionali;

11.2.1. AZIONI PERMANENTI

Per i materiali si assumono i seguenti pesi specifici:

- calcestruzzo armato:

20.0 kN/m3 - rilevato

PROGETTAZIONE ATI:

25.0 kN/m3

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Peso proprio degli elementi strutturali (g1)

I pesi propri degli elementi strutturali per metro lineare di struttura sono i seguenti

Muri con spessore 90 cm:

- soletta di fondazione e paramento $0.90.25 = 22.50 \text{ kN/m}^2$

Muri con spessore 50 cm:

 $0.50 \cdot 25 = 12.50 \text{ kN/m}^2$ - soletta di fondazione e paramento

11.2.2. AZIONI VARIABILI

i carichi mobili su rilevato stradale vengono assunti con la seguente intensità:

 $P_{var} = 5.0 \text{ kN/m}^2$;

11.3. **VERIFICHE GEOTECNICHE**

Calcolo della spinta sul muro

Valori caratteristici e valori di calcolo

Effettuando il calcolo tramite gli Eurocodici è necessario fare la distinzione fra i parametri caratteristici ed i valodi di calcolo (o di progetto) sia delle azioni che delle resistenze.

I valori di calcolo si ottengono dai valori caratteristici mediante l'applicazione di opportuni coefficienti di sicurezza parziali γ. In particolare, si distinguono combinazioni di carico di tipo A1-M1 nelle quali vengono incrementati i carichi e lasciati inalterati i parametri di resistenza del terreno e combinazioni di carico di tipo A2-M2 nelle quali vengono ridotti i parametri di resistenza del terreno e incrementati i soli carichi variabili.

Metodo di Culmann

Il metodo di Culmann adotta le stesse ipotesi di base del metodo di Coulomb. La differenza sostanziale è che mentre Coulomb considera un terrapieno con superficie a pendenza costante e carico uniformemente distribuito (il che permette di ottenere una espressione in forma chiusa per il coefficiente di spinta) il metodo di Culmann consente di analizzare situazioni con profilo di forma generica e carichi sia concentrati che distribuiti comunque disposti. Inoltre, rispetto al metodo di Coulomb, risulta più immediato e lineare tener conto della coesione del masso spingente. Il metodo di Culmann, nato come metodo essenzialmente grafico, si è evoluto per essere trattato mediante analisi numerica (noto in questa forma come metodo del cuneo di tentativo). Come il metodo di Coulomb anche questo metodo considera una superficie di rottura rettilinea.

I passi del procedimento risolutivo sono i seguenti:

- si impone una superficie di rottura (angolo di inclinazione ρ rispetto all'orizzontale) e si considera il cuneo di spinta delimitato dalla superficie di rottura stessa, dalla parete su cui si calcola la spinta e dal profilo del terreno;
- si valutano tutte le forze agenti sul cuneo di spinta e cioè peso proprio (W), carichi sul terrapieno, resistenza per attrito e per coesione lungo la superficie di rottura (R e C) e resistenza per coesione lungo la parete (A);
- dalle equazioni di equilibrio si ricava il valore della spinta S sulla parete.

ASSE VIARIO MARCHE - UMBRIA E QUADRILATERO DI PENETRAZIONE INTERNA SUBLOTTO 2.2: Intervalliva Macerata - allaccio funzionale della SS77 alla città di Macerata alle località "La Pieve" e "Mattei"

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Questo processo viene iterato fino a trovare l'angolo di rottura per cui la spinta risulta massima. La convergenza non si raggiunge se il terrapieno risulta inclinato di un angolo maggiore dell'angolo d'attrito del terreno.

Nei casi in cui è applicabile il metodo di Coulomb (profilo a monte rettilineo e carico uniformemente distribuito) i risultati ottenuti col metodo di Culmann coincidono con quelli del metodo di Coulomb. Le pressioni sulla parete di spinta si ricavano derivando l'espressione della spinta S rispetto all'ordinata z. Noto il diagramma delle pressioni è possibile ricavare il punto di applicazione della spinta.

Spinta in presenza di falda

Nel caso in cui a monte del muro sia presente la falda il diagramma delle pressioni sul muro risulta modificato a causa della sottospinta che l'acqua esercita sul terreno. Il peso di volume del terreno al di sopra della linea di falda non subisce variazioni. Viceversa, al di sotto del livello di falda va considerato il peso di volume di galleggiamento

$$\gamma_a = \gamma_{sat} - \gamma_w$$

dove γ_{sat} è il peso di volume saturo del terreno (dipendente dall'indice dei pori) e γ_{w} è il peso specifico dell'acqua. Quindi il diagramma delle pressioni al di sotto della linea di falda ha una pendenza minore. Al diagramma così ottenuto va sommato il diagramma triangolare legato alla pressione idrostatica esercitata dall'acqua.

Spinta in presenza di sisma

Per tener conto dell'incremento di spinta dovuta al sisma si fa riferimento al metodo di Mononobe-Okabe (cui fa riferimento la Normativa Italiana).

La Normativa Italiana suggerisce di tener conto di un incremento di spinta dovuto al sisma nel modo seguente.

Detta ϵ l'inclinazione del terrapieno rispetto all'orizzontale e β l'inclinazione della parete rispetto alla verticale, si calcola la spinta S' considerando un'inclinazione del terrapieno e della parte pari a

$$\varepsilon' = \varepsilon + \theta$$

$$\beta' = \beta + \theta$$

dove $\theta = arctg(C)$ essendo C il coefficiente di intensità sismica.

Detta S la spinta calcolata in condizioni statiche l'incremento di spinta da applicare è espresso da

$$\Delta S = AS' - S$$

dove il coefficiente A vale

$$A = \frac{\cos^2(\beta + \theta)}{\cos^2\beta\cos\theta}$$

In presenza di falda a monte, nel coefficiente A si tiene conto dell'influenza dei pesi di volume nel calcolo di θ .

Adottando il metodo di Mononobe-Okabe per il calcolo della spinta, il coefficiente A viene posto pari a 1. Tale incremento di spinta è applicato a metà altezza della parete di spinta nel caso di forma rettangolare del diagramma di incremento sismico, allo stesso punto di applicazione della spinta

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

statica nel caso in cui la forma del diagramma di incremento sismico è uguale a quella del diagramma statico.

Oltre a questo incremento bisogna tener conto delle forze d'inerzia orizzontali e verticali che si destano per effetto del sisma. Tali forze vengono valutate come

$$F_{iH} = k_h W$$
 $F_{iV} = \pm k_v W$

dove W è il peso del muro, del terreno soprastante la mensola di monte ed i relativi sovraccarichi e va applicata nel baricentro dei pesi.

Il metodo di Culmann tiene conto automaticamente dell'incremento di spinta. Basta inserire nell'equazione risolutiva la forza d'inerzia del cuneo di spinta. La superficie di rottura nel caso di sisma risulta meno inclinata della corrispondente superficie in assenza di sisma.

Verifica a ribaltamento

La verifica a ribaltamento consiste nel determinare il momento risultante di tutte le forze che tendono a fare ribaltare il muro (momento ribaltante M_r) ed il momento risultante di tutte le forze che tendono a stabilizzare il muro (momento stabilizzante M_s) rispetto allo spigolo a valle della fondazione e verificare che il rapporto M_s/M_r sia maggiore di un determinato coefficiente di sicurezza nr.

Deve quindi essere verificata la seguente diseguaglianza

$$\frac{\mathsf{M}_{\mathsf{s}}}{\mathsf{M}_{\mathsf{r}}} >= \eta_{\mathsf{r}}$$

Il momento ribaltante M_r è dato dalla componente orizzontale della spinta S, dalle forze di inerzia del muro e del terreno gravante sulla fondazione di monte (caso di presenza di sisma) per i rispettivi bracci. Nel momento stabilizzante interviene il peso del muro (applicato nel baricentro) ed il peso del terreno gravante sulla fondazione di monte. Per quanto riguarda invece la componente verticale della spinta essa sarà stabilizzante se l'angolo d'attrito terra-muro δ è positivo, ribaltante se δ è negativo. δ è positivo quando è il terrapieno che scorre rispetto al muro, negativo quando è il muro che tende a scorrere rispetto al terrapieno (questo può essere il caso di una spalla da ponte gravata da carichi notevoli). Se sono presenti dei tiranti essi contribuiscono al momento stabilizzante. Questa verifica ha significato solo per fondazione superficiale e non per fondazione su pali.

Verifica a scorrimento

Per la verifica a scorrimento del muro lungo il piano di fondazione deve risultare che la somma di tutte le forze parallele al piano di posa che tendono a fare scorrere il muro deve essere minore di tutte le forze, parallele al piano di scorrimento, che si oppongono allo scivolamento, secondo un certo coefficiente di sicurezza. La verifica a scorrimento sisulta soddisfatta se il rapporto fra la risultante delle forze resistenti allo scivolamento F_r e la risultante delle forze che tendono a fare scorrere il muro F_s risulta maggiore di un determinato coefficiente di sicurezza η_s

Le forze che intervengono nella F_s sono: la componente della spinta parallela al piano di fondazione e la componente delle forze d'inerzia parallela al piano di fondazione.

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

La forza resistente è data dalla resistenza d'attrito e dalla resistenza per adesione lungo la base della fondazione. Detta N la componente normale al piano di fondazione del carico totale gravante in fondazione e indicando con δ_f l'angolo d'attrito terreno-fondazione, con c_a l'adesione terrenofondazione e con B_r la larghezza della fondazione reagente, la forza resistente può esprimersi come

$$F_r = N tq \delta_f + c_a B_r$$

La Normativa consente di computare, nelle forze resistenti, una aliquota dell'eventuale spinta dovuta al terreno posto a valle del muro. In tal caso, però, il coefficiente di sicurezza deve essere aumentato opportunamente. L'aliquota di spinta passiva che si può considerare ai fini della verifica a scorrimento non può comunque superare il 50 percento.

Per quanto riguarda l'angolo d'attrito terra-fondazione, δ_f, diversi autori suggeriscono di assumere un valore di δ_f pari all'angolo d'attrito del terreno di fondazione.

Verifica al carico limite

Il rapporto fra il carico limite in fondazione e la componente normale della risultante dei carichi trasmessi dal muro sul terreno di fondazione deve essere superiore a n_q. Cioè, detto Q_u, il carico limite ed R la risultante verticale dei carichi in fondazione, deve essere:

$$\frac{Q_u}{R} >= \eta_q$$

Si adotta per il calcolo del carico limite in fondazione il metodo di MEYERHOF.

L'espressione del carico ultimo è data dalla relazione:

$$Q_u = c N_c d_c i_c + q N_q d_q i_q + 0.5 \gamma B N_\gamma d_\gamma i_\gamma$$

In questa espressione

- С coesione del terreno in fondazione;
- angolo di attrito del terreno in fondazione; φ
- peso di volume del terreno in fondazione; γ
- larghezza della fondazione: В
- D profondità del piano di posa;
- pressione geostatica alla quota del piano di posa.

I vari fattori che compaiono nella formula sono dati da:

$$A = e^{\pi tg \phi}$$

$$N_q = A tg^2(45^{\circ} + \phi/2)$$

$$N_c = (N_a - 1) \operatorname{ctq} \phi$$

$$N_{y} = (N_{q} - 1) \text{ tg } (1.4\phi)$$

Indichiamo con K_p il coefficiente di spinta passiva espresso da:

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

$$K_p = tg^2(45^\circ + \phi/2)$$

I fattori d e i che compaiono nella formula sono rispettivamente i fattori di profondità ed i fattori di inclinazione del carico espressi dalle seguenti relazioni:

Fattori di profondità

$$d_q = d_y = 1$$

per
$$\phi = 0$$

Fattori di inclinazione

Indicando con θ l'angolo che la risultante dei carichi forma con la verticale (espresso in gradi) e con

$$i_c = i_q = (1 - \theta^{\circ}/90)^2$$

$$i_{\gamma} = (1 - \frac{\theta^{\circ}}{\phi^{\circ}})^2$$

per
$$\phi > 0$$

$$i_{v} = 0$$

Riduzione per eccentricità del carico

Nel caso in cui il carico al piano di posa della fondazione risulta eccentrico, Meyerhof propone di moltiplicare la capacità portante ultima per un fattore correttivo Re dove:

$$R_e = 1.0 - 2.0 e/B$$
 per terreni coesivi

$$R_e = 1.0 - (e/B)^{0.5}$$
 per terreni incoerenti

con e eccentricità del carico e B la dimensione minore della fondazione.

Riduzione per effetto piastra

Per valori elevati di B (dimensione minore della fondazione), Bowles propone di utilizzare un fattore correttivo r_{γ} del solo termine sul peso di volume (0.5 B γ N $_{\gamma}$) quando B supera i 2 m.

$$r_{\gamma} = 1.0 - 0.25 \log (B / 2.0)$$

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Il termine sul peso di volume diventa:

Verifica alla stabilità globale

La verifica alla stabilità globale del complesso muro+terreno deve fornire un coefficiente di sicurezza non inferiore a η_α.

Viene usata la tecnica della suddivisione a strisce della superficie di scorrimento da analizzare. La superficie di scorrimento viene supposta circolare e determinata in modo tale da non avere intersezione con il profilo del muro o con i pali di fondazione. Si determina il minimo coefficiente di sicurezza su una maglia di centri di dimensioni 10x10 posta in prossimità della sommità del muro. Il numero di strisce è pari a 50.

Si adotta per la verifica di stabilità globale il metodo di Bishop.

Il coefficiente di sicurezza nel metodo di Bishop si esprime secondo la seguente formula:

$$\Sigma_{i}$$
 ($\frac{c_{i}b_{i}+(W_{i}-u_{i}b_{i})tg\phi_{i}}{m}$) $\eta=\frac{\sum_{i}W_{i}sin\alpha_{i}}{m}$

dove il termine *m* è espresso da

$$m = (1 + \frac{tg\phi_i tg\alpha_i}{n})\cos\alpha_i$$

In questa espressione n è il numero delle strisce considerate, b_i e α_i sono la larghezza e l'inclinazione della base della striscia i $_{esima}$ rispetto all'orizzontale, W_i è il peso della striscia i $_{esima}$, c_i e ϕ_i sono le caratteristiche del terreno (coesione ed angolo di attrito) lungo la base della striscia ed u_i è la pressione neutra lungo la base della striscia.

L'espressione del coefficiente di sicurezza di Bishop contiene al secondo membro il termine m che è funzione di n. Quindi essa viene risolta per successive approsimazioni assumendo un valore iniziale per η da inserire nell'espressione di m ed iterare finquando il valore calcolato coincide con il valore assunto.

Cedimenti della fondazione

Metodo Edometrico

Il metodo edometrico è il classico procedimento per il calcolo dei cedimenti in terreni a grana fina, proposto da Terzaghi negli anni '20.

L'ipotesi edometrica è verificata con approssimazione tanto migliore quanto più ridotto è il valore del rapporto tra lo spessore dello strato compressibile e la dimensione in pianta della fondazione.

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Tuttavia il metodo risulta dotato di ottima approssimazione anche nei casi di strati deformabili di grande spessore.

L'implementazione del metodo è espressa secondo la seguente espressione:

$$\Delta H = \sum_{i=1}^{n} \frac{\Delta \sigma_{i}}{E_{\mathrm{ed},i}} \Delta z_{i}$$

è la tensione indotta nel terreno, alla profondità z, dalla pressione di contatto della Δσ fondazione;

è il modulo elastico determinato attraverso la prova edometrica e relativa allo strato i-esimo; E_{ed}

rappresenta lo spessore dello strato i-esimo in cui è stato suddiviso lo strato compressibile e per il quale si conosce il modulo elastico.

Lo spessore dello strato compressibile considerato nell'analisi dei cedimenti è stato determinato in funzione della percentuale della tensione di contatto.

11.3.1. VERIFICHE STRUTTURALI

Verifiche agli stati limite ultimi su strutture di fondazione e di elevazione.

Si verifica che sia E_d≤R_d. Dove E_d è il valore di progetto delle azioni e R_d è la corrispondente resistenza di progetto.

Verifiche agli stati limite di esercizio

Verifiche a fessurazione - Stato limite di apertura delle fessure su strutture di fondazione ed elevazione

- $w_d < w_3 = 0.4$ mm per combinazione frequente (c.a. ordinarie, armatura poco sensibile):
- $w_d < w_2 = 0.3$ mm per combinazione quasi permanente (c.a. ordinarie, armatura poco sensibile);

Verifica delle tensioni di esercizio su strutture di fondazione ed elevazione

- σ_c < 0.6·f_{ck} = 0.6 29.1 = 17.4 MPa per combinazione rara;
- σ_c < 0.45·f_{ck} = 0.45 29.1 = 13.1 MPa per combinazione quasi permanente;
- σ_s < 0.8 · f_{yk} = 0.80 450 = 360 MPa per combinazione rara.

11.3.2. STRUMENTI DI CALCOLO

Le verifiche di seguito riportate sono state sviluppate con software di calcolo Max 15 sviluppato dalla Aztec Informatica. Come previsto al punto 10.2 delle norme tecniche di cui al D.M. 17.01.2018 l'affidabilità dei codici utilizzati sono stati verificati sia effettuando il raffronto tra casi prova di cui si conoscono i risultati esatti sia esaminando le indicazioni, la documentazione ed i test forniti dai produttori stessi.

I software sono inoltre dotati di filtri e controlli di autodiagnostica che agiscono a vari livelli sia della definizione del modello che del calcolo vero e proprio.

ASSE VIARIO MARCHE - UMBRIA E QUADRILATERO DI PENETRAZIONE INTERNA SUBLOTTO 2.2: Intervalliva Macerata - allaccio funzionale della SS77 alla città di Macerata alle località "La Pieve" e "Mattei"

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

I controlli vengono visualizzati, sotto forma di tabulati, di videate a colori o finestre di messaggi.

Tipo di analisi svolta

L'analisi strutturale e le verifiche sono condotte con l'ausilio di un codice di calcolo automatico. La verifica della sicurezza degli elementi strutturali è stata valutata con i metodi della scienza delle costruzioni.

Il calcolo dei muri di sostegno viene eseguito secondo le seguenti fasi:

- Calcolo della spinta del terreno
- Verifica a ribaltamento
- Verifica a scorrimento del muro sul piano di posa
- Verifica della stabilità complesso fondazione terreno (carico limite)
- Verifica della stabilità globale
- Calcolo delle sollecitazioni sia del muro che della fondazione, progetto delle armature e relative verifiche dei materiali.

L'analisi strutturale sotto le azioni sismiche è condotta con il metodo dell'analisi statica equivalente secondo le disposizioni del capitolo 7 del D.M. 17/07/2018.

La verifica delle sezioni degli elementi strutturali è eseguita con il metodo degli Stati Limite. Le combinazioni di carico adottate sono esaustive relativamente agli scenari di carico più gravosi cui l'opera sarà soggetta.

11.4. VERIFICHE DEL MURO CON ALTEZZA PARI A 7.0M

Geometria muro

Geometria paramento e fondazione

Lunghezza muro	10.00	[m]
<u>Paramento</u>		
Materiale	C32/40	
Altezza paramento	7.00	[m]
Altezza paramento libero	7.00	[m]

Geometria gradoni

Simbologia adottata

n° indice gradone (a partire dall'alto)

Bs, Bi Base superiore ed inferiore del gradone, espressa in [m] H altezza del gradone, espressa in [m] Ae, Ai inclinazione esterna ed interna del gradone espressa in [°]

n°	X	Bs	Bi	Н	Ae	Ai
	[m]	[m]	[m]	[m]	[°]	[°]
1	0.00	0.50	0.50	3.00	0.00	0.00
2	0.40	0.90	0.90	4.00	0.00	0.00

<u>Fondazione</u>		
Materiale	C32/40	
Lunghezza mensola di valle	0.55	[m]
Lunghezza mensola di monte	4.80	[m]
Lunghezza totale	6.25	[m]
Inclinazione piano di posa	0.00	[°]
Spessore	0.90	[m]

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Spessore magrone 0.15 [m]

Sperone

Posizione Centrale Distanza dal tacco della fondazione 4.80 [m] Altezza 1.10 [m] 0.90 Spessore [m]

Descrizione terreni

Parametri di resistenza

Simbologia adottata

Indice del terreno Descr Descrizione terreno

Peso di volume del terreno espresso in [kN/mc] Peso di volume saturo del terreno espresso in [kN/mc] Angolo d'attrito interno espresso in [°]

Angolo d'attrito terra-muro espresso in [°] Coesione espressa in [MPa]
Adesione terra-muro espressa in [MPa] Per calcolo portanza con il metodo di Bustamante-Doix

Coeff. di espansione laterale (solo per il metodo di Bustamante-Doix) Tensione tangenziale limite, espressa in [MPa] Cesp

n°	Descr	γ	γsat	ф	δ	С	ca	Cesp	τΙ	
		[kN/mc]	[kN/mc]	[°]	[°]	[MPa]	[MPa]		[MPa]	
1	Rilevato	20.0000	20.0000	30.000	20.000	0.000	0.000			
2	Terreno di sito	19.0000	19.0000	22.000	14.670	0.015	0.000			

Parametri di deformabilità

Simbologia adottata

Indice del terreno Descr Descrizione terreno

Modulo elastico, espresso in [MPa] Coeff. di Poisson Ēd Modulo edometrico, espresso in [MPa] CR RR Rapporto di compressione Rapporto di ricompressione

Grado di Sovrac	ii sovracorisolidazione						
n°	n° Descr	E	ν	Ed	CR	RR	OCR
		[MPa]		[MPa]			
1	1 Rilevato	0.000	0.000	0.000	0.000	0.000	1.000

0.000

10.000

0.000

0.000

1.000

0.000

Stratigrafia

Terreno

Simbologia adottata

Indice dello strato

Н Spessore dello strato espresso in [m] Inclinazione espressa in [°] Terreno dello strato

Per calcolo pali (solo se presenti)

Kw Costante di Winkler orizzontale espressa in Kg/cm²/cm

Terreno di sito

Coefficiente di spinta Ks

Coefficiente di espansione laterale (per tutti i metodi tranne il metodo di Bustamante-Doix)

Per calcolo della spinta con coeff. di spinta definiti (usati solo se attiva l'opzione 'Usa coeff. di spinta da strato')

Kst_{sta}, Kst_{sis} Coeff. di spinta statico e sismico

n°	Н	α	Terreno	Kw	Ks	Cesp	Kst _{sta}	Kst _{sis}
	[m]	[°]		[Kg/cm³]				
1	3.00	0.000	Rilevato					
2	10.00	0.000	Terreno di sito					

Terreno di riempimento:

Rilevato

Inclinazione riempimento (rispetto alla verticale):

20.00 [°]

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

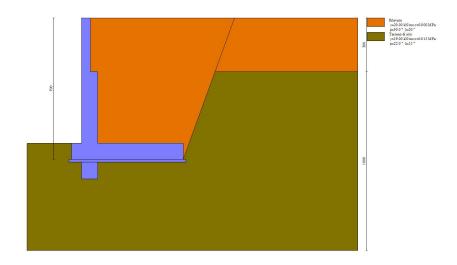


Figura 31: Stratigrafia

Condizioni di carico

Simbologia adottata

Carichi verticali positivi verso il basso. Carichi orizzontali positivi verso sinistra. Momento positivo senso antiorario.

Ascissa del punto di applicazione del carico concentrato espressa in [m]

Componente orizzontale del carico concentrato espressa in [kN] Componente verticale del carico concentrato espressa in [kN]

F_x F_y M X_i X_f Momento espresso in [kNm]

Ascissa del punto iniziale del carico ripartito espressa in [m]

Ascissa del punto finale del carico ripartito espressa in [m] Intensità del carico per $x=X_i$ espressa in [kN] Intensità del carico per $x=X_f$ espressa in [kN]

Q_i Q_f

Condizione nº 1 (Condizione 1) - VARIABILE TF

 $\Psi_0{=}0.70$ - $\Psi_1{=}0.50$ - $\Psi_2{=}0.30$ Coeff. di combinazione

Carichi sul terreno

n°	Tipo	х	Fx	Fy	М	Xi	Xf	Qi	Qf
		[m]	[kN]	[kN]	[kNm]	[m]	[m]	[kN]	[kN]
1	Distribuito					0.00	5.00	5.0000	5.0000

Normativa

Normativa usata: Norme Tecniche sulle Costruzioni 2018 (D.M. 17.01.2018) + Circolare C.S.LL.PP. 21/01/2019 n.7

Coeff. parziali per le azioni o per l'effetto delle azioni

Carichi	Effetto			Comb	inazioni sta		Combinazioni sismiche			
			HYD	UPL	EQU	A1	A2	EQU	A1	A2
Permanenti strutturali	Favorevoli	γG1,fav	1.00	0.90	1.00	1.00	1.00	1.00	1.00	1.00
Permanenti strutturali	Sfavorevoli	γG1,sfav	1.00	1.10	1.30	1.30	1.00	1.00	1.00	1.00
Permanenti non strutturali	Favorevoli	γG2,fav	0.00	0.80	0.80	0.80	0.80	0.00	0.00	0.00
Permanenti non strutturali	Sfavorevoli	γG2,sfav	1.00	1.50	1.50	1.50	1.30	1.00	1.00	1.00
Variabili	Favorevoli	γQ,fav	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Variabili	Sfavorevoli	γQ,sfav	1.00	1.50	1.50	1.50	1.30	1.00	1.00	1.00
Variabili da traffico	Favorevoli	γQT,fav	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Variabili da traffico	Sfavorevoli	γ̂QT,sfav	1.00	1.50	1.35	1.35	1.15	1.00	1.00	1.00

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Coeff. parziali per i parametri geotecnici del terreno

Parametro		Combinazio	ni statiche	Combinazioni sismiche		
		M1	M2	M1	M2	
Tangente dell'angolo di attrito	γtan(φ')	1.00	1.25	1.00	1.00	
Coesione efficace	ус'	1.00	1.25	1.00	1.00	
Resistenza non drenata	γcu	1.00	1.40	1.00	1.00	
Peso nell'unita di volume	γγ	1.00	1.00	1.00	1.00	

Coeff. parziali y_R per le verifiche agli stati limite ultimi STR e GEO

Verifica	Com	binazioni stat	iche	Combinazioni sismiche			
	R1	R2	R3	R1	R2	R3	
Capacità portante			1.40			1.20	
Scorrimento			1.10			1.00	
Resistenza terreno a valle			1.40			1.20	
Ribaltameno			1.15			1.00	
Stabilità fronte di scavo		1.10			1.20		

Descrizione combinazioni di carico

Con riferimento alle azioni elementari prima determinate, si sono considerate le seguenti combinazioni di carico:

- Combinazione fondamentale, impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} G_1 + \gamma_{G2} G_2 + \gamma_{Q1} Q_{k1} + \gamma_{Q2} Q_{k2} + \gamma_{Q3} Q_{k3} + ...$$

- Combinazione caratteristica, cosiddetta rara, impiegata per gli stati limite di esercizio (SLE) irreversibili:

$$G_1 + G_2 + Q_{k1} + \Psi_{0,2} Q_{k2} + \Psi_{0,3} Q_{k3} + ...$$

- Combinazione frequente, impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + \Psi_{1,1} Q_{k1} + \Psi_{2,2} Q_{k2} + \Psi_{2,3} Q_{k3} + ...$$

- Combinazione quasi permanente, impiegata per gli effetti di lungo periodo:

$$G_1 \, + \, G_2 \, + \, \Psi_{2,1} \, \, Q_{k1} \, + \, \Psi_{2,2} \, \, Q_{k2} \, + \, \Psi_{2,3} \, \, Q_{k3} \, + \, \dots$$

- Combinazione sismica, impiegata per gli stati limite ultimi connessi all'azione sismica E:

$$E \, + \, G_1 \, + \, G_2 \, + \, \Psi_{2,1} \, \, Q_{k1} \, + \, \Psi_{2,2} \, \, Q_{k2} \, + \, \Psi_{2,3} \, \, Q_{k3} \, + \, \dots$$

I valori dei coeff. $\Psi_{0,i}$, $\Psi_{1,i}$, $\Psi_{2,i}$ sono definiti nelle singole condizioni variabili.par I valori dei coeff. γ_G e γ_O , sono definiti nella tabella

In particolare si sono considerate le seguenti combinazioni:

Simbologia adottata

Coefficiente di partecipazione della condizione Coefficiente di combinazione della condizione

Combinazione nº 1 - STR (A1-M1-R3)

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.30		Sfavorevole
Condizione 1	1.35	1.00	Sfavorevole

Combinazione nº 2 - STR (A1-M1-R3) H + V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.00		Sfavorevole
Condizione 1	1.00	0.30	Sfavorevole

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Combinazione nº 3 - STR (A1-M1-R3) H - V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole
Condizione 1	1.00	0.30	Sfavorevole

Combinazione nº 4 - GEO (A2-M2-R2)

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole
Condizione 1	1.15	1.00	Sfavorevole

Combinazione nº 5 - GEO (A2-M2-R2) H + V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole
Condizione 1	1.00	0.30	Sfavorevole

Combinazione nº 6 - GEO (A2-M2-R2) H - V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole
Condizione 1	1.00	0.30	Sfavorevole

Combinazione nº 7 - EQU (A1-M1-R3)

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.30		Sfavorevole
Condizione 1	1.35	1.00	Sfavorevole

Combinazione nº 8 - EQU (A1-M1-R3) H + V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.00		Sfavorevole
Condizione 1	1.00	0.30	Sfavorevole

Combinazione nº 9 - EQU (A1-M1-R3) H - V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.00		Sfavorevole
Condizione 1	1.00	0.30	Sfavorevole

Combinazione nº 10 - SLER

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole
Condizione 1	1.00	1.00	Sfavorevole

Combinazione nº 11 - SLEF

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole
Condizione 1	1.00	0.50	Sfavorevole

Combinazione nº 12 - SLEQ

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole
Condizione 1	1.00	0.30	Sfavorevole

Combinazione nº 13 - SLEQ H + V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole
Condizione 1	1.00	0.30	Sfavorevole

Combinazione nº 14 - SLEQ H - V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole
Condizione 1	1.00	0.30	Sfavorevole

Dati sismici

	Simbolo	U.M.		SLU	SLE
Accelerazione al suolo	ag	[m/s ²]		2.250	0.903
Accelerazione al suolo	a _q /g	[%]		0.229	0.092
Massimo fattore amplificazione spettro orizzontale	F0			2.458	2.419
Periodo inizio tratto spettro a velocità costante	Tc*			0.345	0.311
Tipo di sottosuolo - Coefficiente stratigrafico	Ss		С	1.362	1.500
Categoria topografica - Coefficiente amplificazione topografica	St		T1	1.000	

Stato limite	Coeff. di riduzione β _m	kh	kv
Ultimo	0.380	11.871	5.935
Ultimo - Ribaltamento	0.570	17.806	8.903
Esercizio	0.470	6.489	3.245

Forma diagramma incremento sismico Stessa forma del diagramma statico

Opzioni di calcolo

Spinta

Metodo di calcolo della spinta Culmann Tipo di spinta Spinta attiva

Terreno a bassa permeabilità NO Superficie di spinta limitata NO

Capacità portante

Metodo di calcolo della portanza Meyerhof Criterio di media calcolo del terreno equivalente (terreni stratificati) Ponderata Criterio di riduzione per eccentricità della portanza Meyerhof Criterio di riduzione per rottura locale (punzonamento) Nessuna

Larghezza fondazione nel terzo termine della formula del carico limite ($0.5B\gamma N_{\gamma}$) Larghezza ridotta (B')

Fattori di forma e inclinazione del carico Solo i fattori di inclinazione

Se la fondazione ha larghezza superiore a 2.0 m viene applicato il fattore di riduzione per comportamento a piastra

Stabilità globale

Metodo di calcolo della stabilità globale **Bishop**

<u>Altro</u>

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Partecipazione spinta passiva terreno antistante Partecipazione resistenza passiva dente di fondazione 50.00 Componente verticale della spinta nel calcolo delle sollecitazioni NO Considera terreno sulla fondazione di valle SI Considera spinta e peso acqua fondazione di valle NO

<u>Spostamenti</u>

Non è stato richiesto il calcolo degli spostamenti

Cedimenti

Metodo di calcolo delle tensioni Boussinesq Metodo di calcolo dei cedimenti Edometrico Profondità calcolo cedimenti Automatica ΔH massimo suddivisione strati 1.00 [m]

Specifiche per le verifiche nelle combinazioni allo Stato Limite Ultimo (SLU)

	SLU	Eccezionale
Coefficiente di sicurezza calcestruzzo a compressione	1.50	1.00
Coefficiente di sicurezza acciaio	1.15	1.00
Fattore di riduzione da resistenza cubica a cilindrica	0.83	0.83
Fattore di riduzione per carichi di lungo periodo	0.85	0.85
Coefficiente di sicurezza per la sezione	1.00	1.00

Specifiche per le verifiche nelle combinazioni allo Stato Limite di Esercizio (SLE)

Paramento e fondazione muro

Verifiche strutturali nelle combinazioni SLD SI

Condizioni ambientali Ordinarie SI Armatura ad aderenza migliorata

Verifica a fessurazione

Sensibilità armatura Poco sensibile

Metodo di calcolo aperture delle fessure NTC 2018 - CIRCOLARE 21 gennaio 2019, n. 7 C.S.LL.PP.

Valori limite aperture delle fessure:

 $w_1 = 0.20$ $w_2 = 0.30$ $w_3 = 0.40$

Verifica delle tensioni

Valori limite delle tensioni nei materiali:

Combinazione	Calcestruzzo	Acciaio
Rara	0.60 f _{ck}	0.80 f _{yk}
Frequente	1.00 f _{ck}	1.00 fyk
Quasi permanente	0.45 f _{ck}	1.00 f _{yk}

Risultati per inviluppo

Spinta e forze

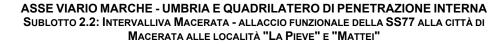
Simbologia adottata

Indice della combinazione Tipo azione

Inclinazione della spinta, espressa in [°]

Valore dell'azione, espressa in [kN] Componente in direzione X ed Y dell'azione, espressa in [kN] Cx, Cy

Coordinata X ed Y del punto di applicazione dell'azione, espressa in [m]


Ic	A	V	I	C _X	C _Y	Px	P _Y
		[kN]	[°]	[kN]	[kN]	[m]	[m]
1	Spinta statica	219.39	20.00	206.16	75.04	5.20	-5.13
	Peso/Inerzia muro			0.00	287.22/0.00	0.94	-6.02
	Peso/Inerzia terrapieno			0.00	723.00/0.00	2.71	-3.43

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Ic	A	V	I	C _x	C _Y	P _X	P _Y
		[kN]	[°]	[kN]	[kN]	[m]	[m]
	Resistenza passiva sperone			-62.27			
2	Spinta statica	155.27	20.00	145.90	53.10	5.20	-4.91
	Incremento di spinta sismica		60.85	57.18	20.81	5.20	-5.27
	Peso/Inerzia muro			34.09	287.22/17.05	0.94	-6.02
	Peso/Inerzia terrapieno			83.33	702.00/41.67	2.71	-3.43
	Resistenza passiva sperone			-77.84			

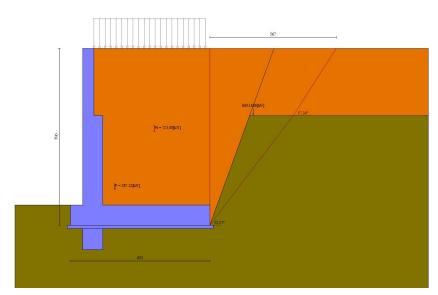


Figura 32:Cuneo di spinta (combinazione statica) (Combinazione n° 1)

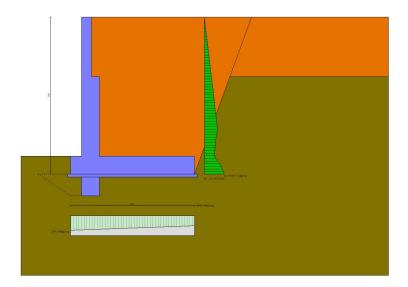


Figura 33: Diagramma delle pressioni (combinazione statica) (Combinazione nº 1)

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

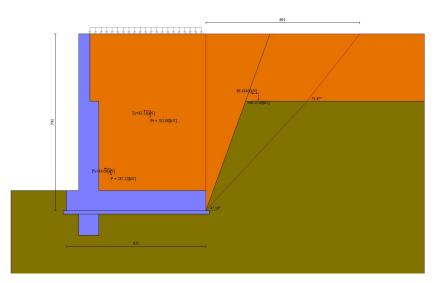


Figura 34: Cuneo di spinta (combinazione sismica) (Combinazione n° 2)

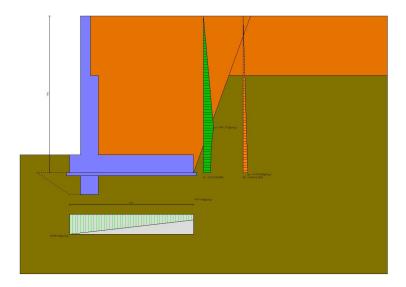


Figura 35: Diagramma delle pressioni (combinazione sismica) (Combinazione n° 2)

Risultanti globali

Simbologia adottata

Cmb

Indice/Tipo combinazione Componente normale al piano di posa, espressa in [kN] Componente parallela al piano di posa, espressa in [kN] Momento ribaltante, espresso in [kNm]

T M_r M_s Momento stabilizzante, espresso in [kNm] Eccentricità risultante, espressa in [m] ecc

Ic	N	N T		Ms	ecc
	[kN]	[kN]	[kNm]	[kNm]	[m]
1 - STR (A1-M1-R3)	1085.25	206.16	571.96	3757.43	0.190
2 - STR (A1-M1-R3)	1121.85	320.51	1023.16	3864.59	0.592

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Ic	N	T	Mr	Ms	ecc
	[kN]	[kN]	[kNm]	[kNm]	[m]
3 - STR (A1-M1-R3)	994.89	294.32	1144.83	3614.38	0.643
4 - GEO (A2-M2-R2)	1062.52	193.35	542.77	3625.76	0.223
5 - GEO (A2-M2-R2)	1121.85	320.51	1023.16	3864.59	0.592
6 - GEO (A2-M2-R2)	994.89	294.32	1144.83	3614.38	0.643
7 - EQU (A1-M1-R3)	1085.25	206.16	571.96	3757.43	0.190
8 - EQU (A1-M1-R3)	1164.65	416.16	1338.70	4043.93	0.802
9 - EQU (A1-M1-R3)	974.62	378.00	1524.17	3671.16	0.922
10 - SLER	1056.32	145.90	436.00	3594.86	0.135
11 - SLEF	1046.32	145.90	436.00	3558.44	0.141
12 - SLEQ	1042.32	145.90	436.00	3543.87	0.143
13 - SLEQ	1084.20	236.96	745.41	3709.20	0.391
14 - SLEQ	1014.85	222.81	812.36	3572.79	0.405

Verifiche geotecniche

Quadro riassuntivo coeff. di sicurezza calcolati

Simbologia adottata

Cmb Indice/Tipo combinazione

S FS_{SCO} Sisma (H: componente orizzontale, V: componente verticale)

Coeff. di sicurezza allo scorrimento Coeff. di sicurezza al ribaltamento FS_{RIB} Coeff. di sicurezza a carico limite Coeff. di sicurezza a stabilità globale $\mathsf{FS}_{\mathsf{QLIM}}$ **FS**STAB FS_{HYD} FS_{UPL} Coeff. di sicurezza a sifonamento Coeff. di sicurezza a sollevamento

Cmb	Sismica	FS _{sco}	FS _{RIB}	FS _{QLIM}	FS _{STAB}	FS _{HYD}	FS _{UPL}
1 - STR (A1-M1-R3)		1.539		1.905			
2 - STR (A1-M1-R3)	H + V	1.037		1.221			
3 - STR (A1-M1-R3)	H - V	1.010		1.321			
4 - GEO (A2-M2-R2)					1.491		
5 - GEO (A2-M2-R2)	H + V				1.479		
6 - GEO (A2-M2-R2)	H - V				1.493		
7 - EQU (A1-M1-R3)			6.569				
8 - EQU (A1-M1-R3)	H + V		3.021				
9 - EQU (A1-M1-R3)	H - V		2.409				

Verifica a scorrimento fondazione

Simbologia adottata

n° Rsa

Indice combinazione Resistenza allo scorrimento per attrito, espresso in [kN] Rpt Rps Resistenza passiva terreno antistante, espresso in [kN] Resistenza passiva sperone, espresso in [kN]

Resistenza a carichi orizzontali pali (solo per fondazione mista), espresso in [kN] Resistenza a carichi orizzontali tiranti (solo se presenti), espresso in [kN] Resistenza allo scorrimento (somma di Rsa+Rpt+Rps+Rp), espresso in [kN] Rp Rt

Carico parallelo al piano di posa, espresso in [kN] Fattore di sicurezza (rapporto R/T)

n°	Rsa	Rpt	Rps	Rp	Rt	R	Т	FS
	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	
1 - STR (A1-M1-R3)	254.95	0.00	62.27			317.22	206.16	1.539
3 - STR (A1-M1-R3) H - V	224.63	0.00	72.56			297.19	294.32	1.010

Dettagli verifica a scorrimento

Simbologia adottata

Indice combinazione Carico sul cuneo di spinta passiva, espresso in [kN] Ncss Angolo di rottura passivo, espresso in [°] Carico residuo sul piano di posa, espresso in [kN] $_{\text{Nrpp}}^{\varphi_{Rp}}$ Lunghezza base residua, espresso in [m]

n°	Ncss	Фпр	Nrpp	Lr
	[kN]		[kN]	[m]
1	111.37	34.000	973.88	5.70

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

n°	Ncss	фпр	Nrpp	Lr	
	[kN]		[kN]	[m]	
3	136.82	34.000	858.07	5.70	

Verifica a carico limite

Simbologia adottata

Indice combinazione

Carico normale totale al piano di posa, espresso in [kN] carico limite del terreno, espresso in [kN] N

Qu

Qd FS Portanza di progetto, espresso in [kN]

Fattore di sicurezza (rapporto tra il carico limie e carico agente al piano di posa)

n°	N	Qu	Qd	FS
	[kN]	[kN]	[kN]	
1 - STR (A1-M1-R3)	1085.25	2067.45	1476.75	1.905
2 - STR (A1-M1-R3) H + V	1121.85	1370.25	1141.88	1.221

Dettagli calcolo portanza

Simbologia adottata

Indice combinazione Nc, Nq, Nγ Fattori di capacità portante ic, iq, iγ Fattori di inclinazione del carico dc, dq, dγ gc, gq, gγ Fattori di profondità del piano di posa Fattori di inclinazione del profilo topografico bc, bq, bγ Fattori di inclinazione del piano di posa Fattori di forma della fondazione sc, sq, sγ pc, pq, pγ

Fattori di riduzione per punzonamento secondo Vesic

Re

Fattore di riduzione capacità portante per eccentricità secondo Meyerhof Indici di rigidezza per punzonamento secondo Vesic Ir, Irc

Fattori per tener conto dell'effetto piastra. Per fondazioni che hanno larghezza maggiore di 2 m, il terzo termine della formula trinomia 0.5ByN, viene moltiplicato per

questo fattore

Affondamento del piano di posa, espresso in [m] R' Larghezza fondazione ridotta, espresso in [m] Altezza del cuneo di rottura, espresso in [m] Peso di volume del terreno medio, espresso in [kN/mc] Angolo di attrito del terreno medio, espresso in [°] Coesione del terreno medio, espresso in [MPa]

Per i coeff. che in tabella sono indicati con il simbolo '--' sono coeff. non presenti nel metodo scelto (Meyerhof).

n°	Nc Nq Nγ	ic iq iy	dc dq dγ	gc gq gγ	bc bq bγ	sc sq sγ	pc pq Pγ	Ir	Irc	Re	гу
1	16.883	0.775	1.055							0.826	0.876
	7.821	0.775	1.027								
	4.066	0.261	1.027								
2	16.883	0.677	1.055							0.692	0.876
	7.821	0.677	1.027								
	4.066	0.076	1.027								

n°	D	B'	н	γ	ф	С
	[m]	[m]	[m]	[°]	[kN/mc]	[MPa]
1	1.16	6.25	4.63	19.00	22.00	0.015
2	1.16	6.25	4.63	19.00	22.00	0.015

Verifica a ribaltamento

Simbologia adottata

Indice combinazione

Momento stabilizzante, espresso in [kNm] Mr

Momento ribaltante, espresso in [kNm] Fattore di sicurezza (rapporto tra momento stabilizzante e momento ribaltante) FS

La verifica viene eseguita rispetto allo spigolo inferiore esterno della fondazione

n°	Ms	Mr	FS	
	[kNm]	[kNm]		
7 - EQU (A1-M1-R3)	3757.43	571.96	6.569	
9 - EQU (A1-M1-R3) H - V	3671.16	1524.17	2.409	

Verifica stabilità globale muro + terreno

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Simbologia adottata Ic Indice/Tipo combinazione

Centro superficie di scorrimento, espresso in [m]

Raggio, espresso in [m] Fattore di sicurezza

Ic	С	R	FS
	[m]	[m]	
4 - GEO (A2-M2-R2)	-1.00; 3.00	12.55	1.491
5 - GEO (A2-M2-R2) H + V	-1.00; 4.50	13.87	1.479

Dettagli strisce verifiche stabilità

Simbologia adottata

Le ascisse X sono considerate positive verso monte Le ordinate Y sono considerate positive verso l'alto Definition in testa al muro (spigolo contro terra)

W peso della striscia espresso in [kN]

Qy carico sulla striscia espresso in [kN]

α angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)

α φ c b

angolo d'attrito del terreno lungo la base della striscia coesione del terreno lungo la base della striscia espressa in [MPa] larghezza della striscia espressa in [m]

pressione neutra lungo la base della striscia espressa in [MPa] Resistenza al taglio fornita dai tiranti in direzione X ed Y espressa in [MPa] Tx; Ty

n°	W	Qy	b	α	ф	С	u	Tx; Ty
	[kN]	[kN]	[m]	[°]	[°]	[MPa]	[MPa]	[kN]
1	17.71	0.00	11.20 - 0.79	70.517	24.791	0.000	0.0000	
2	46.86	0.00	0.79	61.538	24.791	0.000	0.0000	
3	66.38	0.00	0.79	54.621	17.912	0.012	0.0000	
4	81.56	0.00	0.79	48.756	17.912	0.012	0.0000	
5	94.00	0.00	0.79	43.521	17.912	0.012	0.0000	
6	104.82	0.00	0.79	38.711	17.912	0.012	0.0000	
7	115.28	0.00	0.79	34.209	17.912	0.012	0.0000	
8	122.43	0.63	0.79	29.938	17.912	0.012	0.0000	
9	134.44	3.64	0.79	25.844	17.912	0.012	0.0000	
10	139.99	3.64	0.79	21.887	17.912	0.012	0.0000	
11	144.55	3.64	0.79	18.039	17.912	0.012	0.0000	
12	148.19	3.64	0.79	14.273	17.912	0.012	0.0000	
13	150.95	3.64	0.79	10.569	17.912	0.012	0.0000	
14	159.49	3.64	0.79	6.910	17.912	0.012	0.0000	
15	149.92	0.52	0.79	3.279	17.912	0.012	0.0000	
16	41.78	0.00	0.79	-0.339	17.912	0.012	0.0000	
17	39.80	0.00	0.79	-3.958	17.912	0.012	0.0000	
18	38.53	0.00	0.79	-7.593	17.912	0.012	0.0000	
19	36.45	0.00	0.79	-11.260	17.912	0.012	0.0000	
20	33.52	0.00	0.79	-14.974	17.912	0.012	0.0000	
21	29.72	0.00	0.79	-18.753	17.912	0.012	0.0000	
22	24.98	0.00	0.79	-22.620	17.912	0.012	0.0000	
23	19.23	0.00	0.79	-26.600	17.912	0.012	0.0000	
24	12.37	0.00	0.79	-30.724	17.912	0.012	0.0000	
25	4.25	0.00	-8.59 - 0.79	-34.590	17.912	0.012	0.0000	

n°	w	Qy	b	α	ф	С	u	Tx; Ty
	[kN]	[kN]	[m]	[°]	[°]	[MPa]	[MPa]	[kN]
1	16.07	0.00	12.13 - 0.84	66.484	30.000	0.000	0.0000	
2	43.79	0.00	0.84	59.065	30.000	0.000	0.0000	
3	63.99	0.00	0.84	52.843	22.000	0.015	0.0000	
4	79.99	0.00	0.84	47.430	22.000	0.015	0.0000	
5	93.32	0.00	0.84	42.532	22.000	0.015	0.0000	
6	104.60	0.00	0.84	37.996	22.000	0.015	0.0000	
7	114.91	0.00	0.84	33.727	22.000	0.015	0.0000	
8	125.03	0.00	0.84	29.663	22.000	0.015	0.0000	
9	132.47	0.47	0.84	25.757	22.000	0.015	0.0000	
10	143.21	1.00	0.84	21.977	22.000	0.015	0.0000	
11	148.34	1.00	0.84	18.295	22.000	0.015	0.0000	
12	152.49	1.00	0.84	14.690	22.000	0.015	0.0000	
13	155.70	1.00	0.84	11.144	22.000	0.015	0.0000	
14	158.02	1.00	0.84	7.641	22.000	0.015	0.0000	
15	183.70	0.51	0.84	4.167	22.000	0.015	0.0000	

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

n°	W	Qy	b	α	ф	С	u	Tx; Ty
	[kN]	[kN]	[m]	[°]	[°]	[MPa]	[MPa]	[kN]
16	52.10	0.00	0.84	0.708	22.000	0.015	0.0000	
17	39.33	0.00	0.84	-2.749	22.000	0.015	0.0000	
18	38.23	0.00	0.84	-6.215	22.000	0.015	0.0000	
19	36.27	0.00	0.84	-9.705	22.000	0.015	0.0000	
20	33.43	0.00	0.84	-13.231	22.000	0.015	0.0000	
21	29.68	0.00	0.84	-16.810	22.000	0.015	0.0000	
22	24.95	0.00	0.84	-20.458	22.000	0.015	0.0000	
23	19.20	0.00	0.84	-24.195	22.000	0.015	0.0000	
24	12.33	0.00	0.84	-28.045	22.000	0.015	0.0000	
25	4.23	0.00	-8.77 - 0.84	-31.606	22.000	0.015	0.0000	

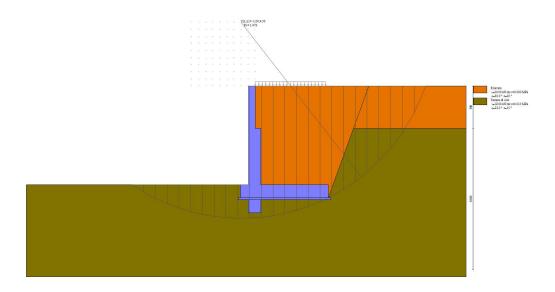


Figura 36: Stabilità fronte di scavo - Cerchio critico (Combinazione nº 5)

Cedimenti

Simbologia adottata

Indice combinazione
Punto di calcolo del cedimento, espressa in [m] Ic X, Y W Cedimento, espressa in [cm]
Cedimento differenziale, espressa in [cm] dw

Ic	X; Y	w	dw	
	[m]	[cm]	[cm]	
10	-1.05; -7.90	8.428	0.776	
10	2.08; -7.90	12.176	4.523	
10	5.20; -7.90	7.653	0.000	

Sollecitazioni

Elementi calcolati a trave

Simbologia adottata

Sforzo normale, espresso in [kN]. Positivo se di compressione.
Taglio, espresso in [kN]. Positivo se diretto da monte verso valle
Momento, espresso in [kNm]. Positivo se tende le fibre contro terra (a monte)

Paramento

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

nº	Х	N _{min}	N _{max}	T _{min}	T _{max}	M _{min}	M _{max}
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	-0.10	1.23	1.23	0.06	0.23	0.00	0.01
3	-0.20	2.45	2.45	0.18	0.54	0.01	0.05
4	-0.30	3.68	3.68	0.35	0.95	0.04	0.12
5	-0.40	4.90	4.90	0.58	1.46	0.09	0.24
6	-0.50	6.13	6.13	0.87	2.05	0.16	0.42
7 8	-0.60	7.35 8.58	7.35 8.58	1.21	2.74 3.52	0.26 0.40	0.66 0.97
9	-0.70 -0.80	9.80	9.80	1.61 2.06	4.39	0.40	1.36
10	-0.90	11.03	11.03	2.57	5.35	0.82	1.85
11	-1.00	12.25	12.25	3.13	6.41	1.10	2.43
12	-1.10	13.48	13.48	3.75	7.56	1.44	3.13
13	-1.20	14.71	14.71	4.43	8.80	1.85	3.95
14	-1.30	15.93	15.93	5.16	10.13	2.33	4.89
15	-1.40	17.16	17.16	5.94	11.56	2.88	5.98
16	-1.50	18.38	18.38	6.79	13.07	3.52	7.21
17	-1.60	19.61	19.61	7.69	14.68	4.24	8.59
18	-1.70	20.83	20.83	8.64	16.38	5.06	10.15
19	-1.80	22.06	22.06	9.65	18.18	5.97	11.87
20	-1.90	23.28	23.28	10.72	20.07	6.99	13.78
21	-2.00	24.51	24.51	11.84	22.04	8.12	15.89
22	-2.10	25.73	25.73	13.02	24.12	9.36	18.19
23	-2.20	26.96	26.96	14.25	26.28	10.72	20.71
24 25	-2.30 -2.40	28.19 29.41	28.19 29.41	15.54 16.89	28.54 30.88	12.21 13.83	23.45 26.42
26	-2.50	30.64	30.64	18.29	33.32	15.59	29.63
27	-2.60	31.86	31.86	19.75	35.86	17.49	33.09
28	-2.70	33.09	33.09	21.26	38.48	19.54	36.80
29	-2.80	34.31	34.31	22.83	41.20	21.74	40.78
30	-2.90	35.54	35.54	24.46	44.01	24.11	45.04
31	-3.00	36.76	36.76	26.14	46.91	26.63	49.59
32	-3.00	61.28	62.96	26.21	49.92	27.92	55.28
33	-3.10	63.48	65.16	30.71	55.79	30.78	60.58
34	-3.20	65.69	67.37	33.41	59.91	34.00	66.37
35	-3.30	67.90	69.58	35.26	63.20	37.43	72.53
36	-3.40	70.10	71.78	37.17	66.59	41.05	79.01
37	-3.50 -3.60	72.31 74.51	73.99 76.19	39.13 41.14	70.08 73.65	44.87 48.88	85.85 93.03
39	-3.70	76.72	78.40	43.22	77.32	53.10	100.57
40	-3.80	78.93	80.61	45.35	81.08	57.52	108.49
41	-3.90	81.13	82.81	47.53	84.93	62.17	116.79
42	-4.00	83.34	85.02	49.77	88.87	67.03	125.48
43	-4.10	85.54	87.22	52.07	92.91	72.12	134.56
44	-4.20	87.75	89.43	54.42	97.04	77.44	144.06
45	-4.30	89.96	91.64	56.83	101.26	83.00	153.97
46	-4.40	92.16	93.84	59.29	105.57	88.81	164.31
47	-4.50	94.37	96.05	61.81	109.98	94.86	175.08
48	-4.60	96.57	98.25	64.39	114.47	101.17	186.30
49	-4.70 4.90	98.78	100.46	67.02	119.06	107.74	197.97
50	-4.80 -4.90	100.99	102.67 104.87	69.71	123.75	114.57	210.11
51 52	-4.90 -5.00	103.19 105.40	104.87	72.45 75.25	128.52 133.39	121.67 129.06	235.81
53	-5.10	107.60	107.08	78.10	138.35	136.72	249.39
54	-5.20	109.81	111.49	81.01	143.40	144.68	263.48
55	-5.30	112.02	113.70	83.98	148.55	152.92	278.07
56	-5.40	114.22	115.90	87.00	153.78	161.47	293.18
57	-5.50	116.43	118.11	90.08	159.11	170.32	308.82
58	-5.60	118.63	120.31	93.21	164.53	179.48	325.00
59	-5.70	120.84	122.52	96.40	170.05	188.96	341.72
60	-5.80	123.05	124.73	99.65	175.65	198.76	359.00
61	-5.90	125.25	126.93	102.95	181.35	208.89	376.85
62	-6.00	127.46	129.14	106.31	187.14	219.35	395.27
63	-6.10	129.66	131.34	109.72	193.02	230.15	414.27
64	-6.20 -6.30	131.87	133.55	113.19	199.00	241.29	433.86
65 66	-6.30 -6.40	134.07 136.28	135.75 137.96	116.72 120.30	205.06	252.78 264.63	454.06 474.87
67	-6.50	138.49	140.17	123.93	217.48	276.84	496.30
68	-6.60	140.69	142.37	127.63	223.82	289.41	518.36
69	-6.70	142.90	144.58	131.37	230.26	302.36	541.05
70	-6.80	145.10	146.78	135.17	236.78	315.68	564.40

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

n°	X	N _{min}	N _{max}	T _{min}	T _{max}	M _{min}	M _{max}
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
71	-6.90	147.31	148.99	139.02	243.38	329.39	588.40
72	-7.00	149.52	151.20	142.91	250.08	343.48	613.07

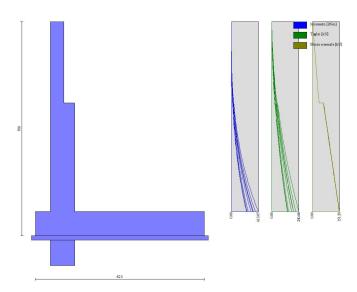


Figura 37: Paramento

Fondazione

n°	Х	N _{min}	N _{max}	T _{min}	T _{max}	M _{min}	M _{max}
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
1	-1.05	0.00	0.00	0.00	0.00	0.00	0.00
2	-0.96	0.00	0.00	15.34	23.65	0.70	1.09
3	-0.87	0.00	0.00	30.61	47.02	2.81	4.33
4	-0.78	0.00	0.00	45.83	70.12	6.31	9.70
5	-0.68	0.00	0.00	60.98	92.94	11.21	17.17
6	-0.59	0.00	0.00	76.07	115.50	17.49	26.73
7	-0.50	0.00	0.00	91.10	137.77	25.15	38.34
8	0.40	0.00	0.00	-206.11	-8.48	-598.65	-86.88
9	0.50	0.00	0.00	-204.17	-10.03	-585.53	-85.83
10	0.60	0.00	0.00	-202.13	-11.50	-571.95	-84.64
11	0.70	0.00	0.00	-199.99	-12.89	-557.95	-83.32
12	0.80	0.00	0.00	-197.75	-14.22	-543.56	-81.87
13	0.90	0.00	0.00	-195.41	-15.47	-528.81	-80.31
14	1.00	0.00	0.00	-192.96	-16.64	-513.73	-78.63
15	1.10	0.00	0.00	-190.42	-17.75	-498.35	-76.85
16	1.20	0.00	0.00	-187.77	-18.78	-482.71	-74.97
17	1.30	0.00	0.00	-185.02	-19.73	-466.83	-73.00
18	1.40	0.00	0.00	-182.18	-20.53	-450.75	-70.95
19	1.50	0.00	0.00	-179.23	-21.26	-434.50	-68.82
20	1.60	0.00	0.00	-176.17	-21.92	-418.11	-66.62
21	1.70	0.00	0.00	-173.02	-22.51	-401.61	-64.36
22	1.80	0.00	0.00	-169.77	-23.03	-385.03	-62.04
23	1.90	0.00	0.00	-166.41	-23.48	-368.41	-59.67
24	2.00	0.00	0.00	-166.21	-23.87	-351.77	-57.26
25	2.10	0.00	0.00	-165.88	-24.18	-335.15	-54.82
26	2.20	0.00	0.00	-165.24	-24.42	-318.58	-52.35
27	2.30	0.00	0.00	-164.28	-24.59	-302.09	-49.86
28	2.40	0.00	0.00	-163.01	-24.70	-285.71	-47.35
29	2.50	0.00	0.00	-161.42	-24.73	-269.47	-44.84
30	2.60	0.00	0.00	-159.52	-24.69	-253.41	-42.33
31	2.70	0.00	0.00	-157.30	-24.58	-237.56	-39.83

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

n°	X	N _{min}	N _{max}	T _{min}	T _{max}	M _{min}	M _{max}
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
32	2.80	0.00	0.00	-154.77	-24.41	-221.94	-37.34
33	2.90	0.00	0.00	-151.93	-24.16	-206.59	-34.87
34	3.00	0.00	0.00	-148.77	-23.84	-191.54	-32.43
35	3.10	0.00	0.00	-145.30	-23.46	-176.82	-30.02
36	3.20	0.00	0.00	-141.51	-23.00	-162.47	-27.66
37	3.30	0.00	0.00	-137.41	-22.47	-148.51	-25.34
38	3.40	0.00	0.00	-132.99	-21.88	-134.97	-23.09
39	3.50	0.00	0.00	-128.26	-21.21	-121.89	-20.89
40	3.60	0.00	0.00	-123.22	-20.48	-109.30	-18.77
41	3.70	0.00	0.00	-117.86	-19.67	-97.24	-16.72
42	3.80	0.00	0.00	-112.19	-18.79	-85.72	-14.75
43	3.90	0.00	0.00	-106.20	-17.85	-74.78	-12.88
44	4.00	0.00	0.00	-99.90	-16.83	-64.47	-11.11
45	4.10	0.00	0.00	-93.28	-15.75	-54.79	-9.44
46	4.20	0.00	0.00	-86.35	-14.59	-45.80	-7.88
47	4.30	0.00	0.00	-79.11	-13.37	-37.51	-6.44
48	4.40	0.00	0.00	-71.55	-12.07	-29.96	-5.13
49	4.50	0.00	0.00	-63.67	-10.71	-23.18	-3.95
50	4.60	0.00	0.00	-55.49	-9.27	-17.21	-2.91
51	4.70	0.00	0.00	-46.98	-7.77	-12.07	-2.02
52	4.80	0.00	0.00	-38.17	-6.20	-7.80	-1.28
53	4.90	0.00	0.00	-29.04	-4.55	-4.43	-0.70
54	5.00	0.00	0.00	-19.59	-2.84	-1.98	-0.29
55	5.10	0.00	0.00	-9.95	-1.45	-0.50	-0.07
56	5.20	0.00	0.00	0.00	0.00	0.00	0.00

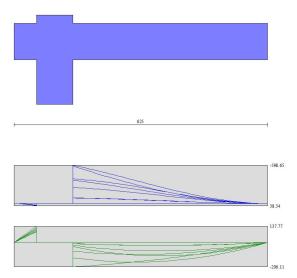


Figura 38: Fondazione

Verifiche strutturali

Verifiche a flessione

Elementi calcolati a trave Simbologia adottata

indice sezione

ordinata sezione espressa in [m] larghezza sezione espresso in [cm] H Afi altezza sezione espressa in [cm] area ferri inferiori espresso in [cmq] area ferri superiori espressa in [cmq]

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

momento agente espressa in [kNm] sforzo normale agente espressa in [kN] momento ultimi espresso in [kNm] sforzo normale ultimo espressa in [kN] M N Mu

Nu FS fattore di sicurezza (rapporto tra sollecitazione ultima e sollecitazione agente)

Paramento

n°	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	100	50	8.04	8.04	0.00	0.00	0.00	0.00	100000.000
2	100	50	8.04	8.04	0.01	1.23	68.49	8154.74	6654.533
3	100	50	8.04	8.04	0.04	2.45	132.90	8154.74	3327.266
4	100	50	8.04	8.04	0.10	3.68	223.74	8154.74	2218.178
5	100	50	8.04	8.04	0.24	4.90	389.00	7875.53	1606.670
6	100	50	8.04	8.04	0.42	6.13	489.43	7196.20	1174.466
7	100	50	8.04	8.04	0.66	7.35	574.60	6446.43	876.748
8	100	50	8.04	16.08	0.97	8.58	648.67	5752.61	670.616
9	100	50	8.04	16.08	1.36	9.80	702.97	5061.10	516.252
10	100	50	8.04	16.08	1.85	11.03	740.83	4421.84	400.929
11	100	50	8.04	16.08	2.43	12.25	753.12	3790.44	309.312
12	100	50	8.04	16.08	3.13	13.48	723.59	3114.20	231.026
13	100	50	8.04	16.08	3.95	14.71	677.85	2524.39	171.665
14	100	50	8.04	16.08	4.89	15.93	624.39	2032.49	127.583
15	100	50	8.04	16.08	5.98	17.16	571.66	1640.84	95.642
16	100	50	8.04	16.08	7.21	18.38	526.16	1341.92	73.004
17	100	50	8.04	16.08	8.59	19.61	486.20	1109.29	56.576
18	100	50	8.04	16.08	10.15	20.83	452.75	929.63	44.624
19	100	50	8.04	16.08	11.87	22.06	426.04	791.52	35.884
20	100	50	8.04	16.08	13.78	23.28	405.40	684.81	29.412
21	100	50	8.04	16.08	15.89	24.51	389.02	600.12	24.486
22	100	50	8.04	16.08	18.19	25.73	375.74	531.46	20.652
23	100	50	8.04	16.08	20.71	26.96	364.79	474.82	17.612
24	100	50	8.04	16.08	23.45	28.19	355.61	427.40	15.164
25	100	50	8.04	16.08	26.42	29.41	347.84	387.21	13.166
26	100	50	8.04	16.08	29.63	30.64	341.18	352.78	11.515
27	100	50	8.04	16.08	33.09	31.86	335.42	323.01	10.138
28	100	50	8.04	16.08	36.80	33.09	330.41	297.06	8.978
29	100	50	8.04	16.08	40.78	34.31	326.00	274.27	7.993
30	100	50	8.04	16.08	45.04	35.54	322.11	254.14	7.151
31	100	50	8.04	16.08	49.59	36.76	318.65	236.25	6.426
32	100	90	14.07	28.15	55.28	61.28	1510.15	1674.09	27.320
33	100	90	14.07	28.15	60.58	63.48	1457.90	1527.89	24.068
34	100	90	14.07	28.15	66.37	65.69	1410.89	1396.35	21.257
35	100	90	14.07	28.15	72.53	67.90	1370.32	1282.82	18.894
36	100	90	14.07	28.15	79.01	70.10	1335.23	1184.61	16.899
37	100	90	14.07	28.15	85.85	72.31	1304.58	1098.84	15.197
38	100	90	14.07	28.15	93.03	74.51	1277.58	1023.30	13.733
39	100	90	14.07	28.15	100.57	76.72	1253.63	956.28	12.465
40	100	90	14.07	28.15	108.49	78.93	1232.24	896.43	11.358
41	100	90	14.07	28.15	116.79	81.13	1213.03	842.67	10.386
42	100	90	14.07	28.15	125.48	83.34	1195.69	794.14	9.529
43	100	90	14.07	28.15	134.56	85.54	1179.95	750.12	8.769
44	100	90	14.07	28.15	144.06	87.75	1165.63	710.02	8.091
45	100	90	14.07	28.15	153.97	89.96	1152.52	673.36	7.485
46	100	90	14.07	28.15	164.31	92.16	1140.50	639.72	6.941
47	100	90	14.07	28.15	175.08	94.37	1129.44	608.76	6.451
48	100	90	14.07	28.15	186.30	96.57	1119.23	580.18	6.008
49	100	90	14.07	28.15	197.97	98.78	1109.77	553.73	5.606
50	100	90	14.07	28.15	210.11	100.99	1101.00	529.18	5.240
51	100	90	14.07	28.15	222.72	103.19	1092.18	506.03	4.904
52	100	90	14.07	28.15	235.81	105.40	1083.76	484.40	4.596
53	100	90	14.07	28.15	249.39	107.60	1075.92	464.22	4.314
54	100	90	14.07	28.15	263.48	109.81	1068.59	445.36	4.056
55	100	90	14.07	28.15	278.07	112.02	1061.72	427.70	3.818
56	100	90	14.07	28.15	293.18	114.22	1055.28	411.13	3.599
57	100	90	14.07	28.15	308.82	116.43	1049.23	395.57	3.398
58	100	90	14.07	28.15	325.00	118.63	1043.54	380.92	3.211
59	100	90	14.07	28.15	341.72	120.84	1038.17	367.12	3.038
60	100	90	14.07	28.15	359.00	123.05	1033.11	354.09	2.878

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

n°	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
61	100	90	14.07	28.15	376.85	125.25	1028.32	341.78	2.729
62	100	90	14.07	28.15	395.27	127.46	1023.79	330.13	2.590
63	100	90	14.07	28.15	414.27	129.66	1019.50	319.10	2.461
64	100	90	14.07	28.15	433.86	131.87	1015.44	308.63	2.340
65	100	90	14.07	28.15	454.06	134.07	1011.57	298.70	2.228
66	100	90	14.07	28.15	474.87	136.28	1007.90	289.25	2.122
67	100	90	14.07	28.15	496.30	138.49	1004.41	280.27	2.024
68	100	90	14.07	28.15	518.36	140.69	1001.08	271.71	1.931
69	100	90	14.07	28.15	541.05	142.90	997.91	263.56	1.844
70	100	90	14.07	28.15	564.40	145.10	994.89	255.78	1.763
71	100	90	14.07	28.15	588.40	147.31	992.00	248.36	1.686
72	100	90	14.07	28.15	613.07	149.52	989.24	241.26	1.614

Fondazione

n°	В	н	Afi	Afs	М	N	Mu	Nu	FS
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	100	90	18.10	20.11	0.00	0.00	0.00	0.00	
									100000.000
2	100	90	18.10	20.11	1.09	0.00	580.11	0.00	534.195
3	100	90	18.10	20.11	4.33	0.00	580.11	0.00	134.066
4	100	90	18.10	20.11	9.70	0.00	580.11	0.00	59.817
5	100	90	18.10	20.11	17.17	0.00	580.11	0.00	33.778
6	100	90	18.10	20.11	26.73	0.00	580.11	0.00	21.703
7	100	90	18.10	20.11	38.34	0.00	580.11	0.00	15.131
8	100	90	18.10	20.11	-598.65	0.00	-643.57	0.00	1.075
9	100	90	18.10	20.11	-585.53	0.00	-643.57	0.00	1.099
10	100	90	18.10	20.11	-571.95	0.00	-643.57	0.00	1.125
11	100	90	18.10	20.11	-557.95	0.00	-643.57	0.00	1.153
12	100	90	18.10	20.11	-543.56	0.00	-643.57	0.00	1.184
13	100	90	18.10	20.11	-528.81	0.00	-643.57	0.00	1.217
14	100	90	18.10	20.11	-513.73	0.00	-643.57	0.00	1.253
15	100	90	18.10	20.11	-498.35	0.00	-643.57	0.00	1.291
16	100	90	18.10	20.11	-482.71	0.00	-643.57	0.00	1.333
17	100	90	18.10	20.11	-466.83	0.00	-643.57	0.00	1.379
18	100	90	18.10	20.11	-450.75	0.00	-643.57	0.00	1.428
19	100	90	18.10	20.11	-434.50	0.00	-643.57	0.00	1.481
20	100	90	18.10	20.11	-418.11	0.00	-643.57	0.00	1.539
21	100	90	18.10	20.11	-401.61	0.00	-643.57	0.00	1.602
22	100	90	18.10	20.11	-385.03	0.00	-643.57	0.00	1.671
23	100	90	18.10	20.11	-368.41	0.00	-643.57	0.00	1.747
24	100	90	18.10	20.11	-351.77	0.00	-643.57	0.00	1.830
25	100	90	18.10	20.11	-335.15	0.00	-643.57	0.00	1.920
26	100	90	18.10	20.11	-318.58	0.00	-643.57	0.00	2.020
27	100	90	18.10	20.11	-302.09	0.00	-643.57	0.00	2.130
28	100	90	18.10	20.11	-285.71	0.00	-643.57	0.00	2.253
29	100	90	18.10	20.11	-269.47	0.00	-643.57	0.00	2.388
30	100	90	18.10	20.11	-253.41	0.00	-643.57	0.00	2.540
31	100	90	18.10	20.11	-237.56	0.00	-643.57	0.00	2.709
32	100	90	18.10	20.11	-221.94	0.00	-643.57	0.00	2.900
33	100	90	18.10	20.11	-206.59	0.00	-643.57	0.00	3.115
34	100	90	18.10	20.11	-191.54	0.00	-643.57	0.00	3.360
35	100	90	18.10	20.11	-176.82	0.00	-643.57	0.00	3.640
36	100	90	18.10	20.11	-162.47	0.00	-643.57	0.00	3.961
37	100	90	18.10	20.11	-148.51	0.00	-643.57	0.00	4.334
38	100	90	18.10	20.11	-134.97	0.00	-643.57	0.00	4.768
39	100	90	18.10	20.11	-121.89	0.00	-643.57	0.00	5.280
40	100	90	18.10	20.11	-109.30	0.00	-643.57	0.00	5.888
41	100	90	18.10	20.11	-97.24	0.00	-643.57	0.00	6.619
42	100	90	18.10	20.11	-85.72	0.00	-643.57	0.00	7.508
43	100	90	18.10	20.11	-74.78	0.00	-643.57	0.00	8.606
44	100	90	18.10	20.11	-64.47	0.00	-643.57	0.00	9.983
45	100	90	18.10	20.11	-54.79	0.00	-643.57	0.00	11.746
46	100	90	18.10	20.11	-45.80	0.00	-643.57	0.00	14.053
47	100	90	18.10	20.11	-37.51	0.00	-643.57	0.00	17.158
48	100	90	18.10	20.11	-29.96	0.00	-643.57	0.00	21.481
49	100	90	18.10	20.11	-23.18	0.00	-643.57	0.00	27.759
50	100	90	18.10	20.11	-17.21	0.00	-643.57	0.00	37.391

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

n°	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
51	100	90	18.10	20.11	-12.07	0.00	-643.57	0.00	53.304
52	100	90	18.10	20.11	-7.80	0.00	-643.57	0.00	82.495
53	100	90	18.10	20.11	-4.43	0.00	-643.57	0.00	145.394
54	100	90	18.10	20.11	-1.98	0.00	-643.57	0.00	324.996
55	100	90	18.10	20.11	-0.50	0.00	-643.57	0.00	1286.373
56	100	90	0.00	0.00	0.00	0.00	0.00	0.00	
									100000.000

Sperone

n°	В	Н	Afi	Afs	M	N	Mu	Nu	FS
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	100	90	14 07	8 04	235 16	0.00	453 53	0.00	1 929

Verifiche a taglio

Simbologia adottata

indice sezione

Is Y B H ordinata sezione espressa in [m] larghezza sezione espresso in [cm] altezza sezione espressa in [cm]

artezza sezione espressa in [cm]
area ferri a taglio espresso in [cmq]
inclinazione delle bielle compresse, \(\theta\) inclinazione dei puntoni di calcestruzzo
resistenza di progetto a 'taglio compressione' espressa in [kN]
resistenza di progetto a 'taglio trazione' espressa in [kN]

A_{sw} cotgθ V_{Rcd} V_{Rsd}

 V_{Rd} resistenza di progetto a taglio espresso in [kN]. Per elementi con armature trasversali resistenti al taglio (Asw>0.0) VRd=min(VRcd, VRsd).

taglio agente espressa in [kN] fattore di sicurezza (rapporto tra sollecitazione resistente e sollecitazione agente)

Paramento

n°	В	Н	Asw	cotθ	V _{Rcd}	V_{Rsd}	V _{Rd}	Т	FS
	[cm]	[cm]	[cmq]		[kN]	[kN]	[kN]	[kN]	
1	100	50	0.00		0.00	0.00	206.77	0.00	100.000
2	100	50	0.00		0.00	0.00	206.93	0.23	917.824
3	100	50	0.00		0.00	0.00	207.10	0.54	380.732
4	100	50	0.00		0.00	0.00	207.26	0.95	217.085
5	100	50	0.00		0.00	0.00	207.43	1.46	142.350
6	100	50	0.00		0.00	0.00	207.60	2.05	101.188
7	100	50	0.00		0.00	0.00	207.76	2.74	75.873
8	100	50	0.00		0.00	0.00	237.85	3.52	67.623
9	100	50	0.00		0.00	0.00	238.01	4.39	54.234
10	100	50	0.00		0.00	0.00	238.18	5.35	44.501
11	100	50	0.00		0.00	0.00	238.34	6.41	37.194
12	100	50	0.00		0.00	0.00	238.51	7.56	31.564
13	100	50	0.00		0.00	0.00	238.68	8.80	27.131
14	100	50	0.00		0.00	0.00	238.84	10.13	23.578
15	100	50	0.00		0.00	0.00	239.01	11.56	20.684
16	100	50	0.00		0.00	0.00	239.17	13.07	18.296
17	100	50	0.00		0.00	0.00	239.34	14.68	16.301
18	100	50	0.00		0.00	0.00	239.50	16.38	14.618
19	100	50	0.00		0.00	0.00	239.67	18.18	13.184
20	100	50	0.00		0.00	0.00	239.83	20.07	11.952
21	100	50	0.00		0.00	0.00	240.00	22.04	10.887
22	100	50	0.00		0.00	0.00	240.16	24.12	9.959
23	100	50	0.00		0.00	0.00	240.33	26.28	9.145
24	100	50	0.00		0.00	0.00	240.50	28.54	8.428
25	100	50	0.00		0.00	0.00	240.66	30.88	7.792
26	100	50	0.00		0.00	0.00	240.83	33.32	7.227
27	100	50	0.00		0.00	0.00	240.99	35.86	6.721
28	100	50	0.00		0.00	0.00	241.16	38.48	6.267
29	100	50	0.00		0.00	0.00	241.32	41.20	5.857
30	100	50	0.00		0.00	0.00	241.49	44.01	5.487
31	100	50	0.00		0.00	0.00	241.65	46.91	5.151
32	100	90	0.00		0.00	0.00	397.04	49.92	7.954
33	100	90	0.00		0.00	0.00	397.35	55.79	7.122
34	100	90	0.00		0.00	0.00	397.66	59.91	6.638

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

n°	В	н	A _{sw}	cotθ	V _{Rcd}	V _{Rsd}	V _{Rd}	Т	FS
	[cm]	[cm]	[cmq]		[kN]	[kN]	[kN]	[kN]	
35	100	90	0.00		0.00	0.00	397.97	63.20	6.297
36	100	90	0.00		0.00	0.00	398.29	66.59	5.981
37	100	90	0.00		0.00	0.00	398.60	70.08	5.688
38	100	90	0.00		0.00	0.00	398.91	73.65	5.416
39	100	90	0.00		0.00	0.00	399.22	77.32	5.163
40	100	90	0.00		0.00	0.00	399.54	81.08	4.928
41	100	90	0.00		0.00	0.00	399.85	84.93	4.708
42	100	90	0.00		0.00	0.00	400.16	88.87	4.503
43	100	90	0.00		0.00	0.00	400.47	92.91	4.310
44	100	90	0.00		0.00	0.00	400.79	97.04	4.130
45	100	90	0.00		0.00	0.00	401.10	101.26	3.961
46	100	90	0.00		0.00	0.00	401.41	105.57	3.802
47	100	90	0.00		0.00	0.00	401.72	109.98	3.653
48	100	90	0.00		0.00	0.00	402.04	114.47	3.512
49	100	90	0.00		0.00	0.00	402.35	119.06	3.379
50	100	90	0.00		0.00	0.00	402.66	123.75	3.254
51	100	90	0.00		0.00	0.00	402.97	128.52	3.135
52	100	90	0.00		0.00	0.00	403.29	133.39	3.023
53	100	90	0.00		0.00	0.00	403.60	138.35	2.917
54	100	90	0.00		0.00	0.00	403.91	143.40	2.817
55	100	90	0.00		0.00	0.00	404.22	148.55	2.721
56	100	90	0.00		0.00	0.00	404.54	153.78	2.631
57	100	90	0.00		0.00	0.00	404.85	159.11	2.544
58	100	90	0.00		0.00	0.00	405.16	164.53	2.463
59	100	90	0.00		0.00	0.00	405.47	170.05	2.385
60	100	90	0.00		0.00	0.00	405.79	175.65	2.310
61	100	90	0.00		0.00	0.00	406.10	181.35	2.239
62	100	90	0.00		0.00	0.00	406.41	187.14	2.172
63	100	90	0.00		0.00	0.00	406.72	193.02	2.107
64	100	90	0.00		0.00	0.00	407.04	199.00	2.045
65	100	90	0.00		0.00	0.00	407.35	205.06	1.986
66	100	90	0.00		0.00	0.00	407.66	211.22	1.930
67	100	90	0.00		0.00	0.00	407.97	217.48	1.876
68	100	90	0.00		0.00	0.00	408.29	223.82	1.824
69	100	90	0.00		0.00	0.00	408.60	230.26	1.775
70	100	90	0.00		0.00	0.00	408.91	236.78	1.727
71	100	90	0.00		0.00	0.00	409.22	243.38	1.681
72	100	90	0.00		0.00	0.00	409.54	250.08	1.638

Fondazione

n°	В	Н	Asw	cotθ	V _{Rcd}	V _{Rsd}	V_{Rd}	Т	FS
	[cm]	[cm]	[cmq]		[kN]	[kN]	[kN]	[kN]	
1	100	90	0.00		0.00	0.00	375.61	0.00	100.000
2	100	90	0.00		0.00	0.00	375.61	-23.65	15.884
3	100	90	0.00		0.00	0.00	375.61	-47.02	7.988
4	100	90	0.00		0.00	0.00	375.61	-70.12	5.357
5	100	90	0.00		0.00	0.00	375.61	-92.94	4.041
6	100	90	0.00		0.00	0.00	375.61	-115.50	3.252
7	100	90	0.00		0.00	0.00	375.61	-137.77	2.726
8	100	90	0.00		0.00	0.00	375.61	-206.11	1.822
9	100	90	0.00		0.00	0.00	375.61	-204.17	1.840
10	100	90	0.00		0.00	0.00	375.61	-202.13	1.858
11	100	90	0.00		0.00	0.00	375.61	-199.99	1.878
12	100	90	0.00		0.00	0.00	375.61	-197.75	1.899
13	100	90	0.00		0.00	0.00	375.61	-195.41	1.922
14	100	90	0.00		0.00	0.00	375.61	-192.96	1.947
15	100	90	0.00		0.00	0.00	375.61	-190.42	1.973
16	100	90	0.00		0.00	0.00	375.61	-187.77	2.000
17	100	90	0.00		0.00	0.00	375.61	-185.02	2.030
18	100	90	0.00		0.00	0.00	375.61	-182.18	2.062
19	100	90	0.00		0.00	0.00	375.61	-179.23	2.096
20	100	90	0.00		0.00	0.00	375.61	-176.17	2.132
21	100	90	0.00		0.00	0.00	375.61	-173.02	2.171
22	100	90	0.00		0.00	0.00	375.61	-169.77	2.212
23	100	90	0.00		0.00	0.00	375.61	-166.41	2.257
24	100	90	0.00		0.00	0.00	375.61	-166.21	2.260
25	100	90	0.00		0.00	0.00	375.61	-165.88	2.264

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

n°	В	Н	A _{sw}	cotθ	V _{Rcd}	V_{Rsd}	V_{Rd}	Т	FS
	[cm]	[cm]	[cmq]		[kN]	[kN]	[kN]	[kN]	
26	100	90	0.00		0.00	0.00	375.61	-165.24	2.273
27	100	90	0.00		0.00	0.00	375.61	-164.28	2.286
28	100	90	0.00		0.00	0.00	375.61	-163.01	2.304
29	100	90	0.00		0.00	0.00	375.61	-161.42	2.327
30	100	90	0.00		0.00	0.00	375.61	-159.52	2.355
31	100	90	0.00		0.00	0.00	375.61	-157.30	2.388
32	100	90	0.00		0.00	0.00	375.61	-154.77	2.427
33	100	90	0.00		0.00	0.00	375.61	-151.93	2.472
34	100	90	0.00		0.00	0.00	375.61	-148.77	2.525
35	100	90	0.00		0.00	0.00	375.61	-145.30	2.585
36	100	90	0.00		0.00	0.00	375.61	-141.51	2.654
37	100	90	0.00		0.00	0.00	375.61	-137.41	2.734
38	100	90	0.00		0.00	0.00	375.61	-132.99	2.824
39	100	90	0.00		0.00	0.00	375.61	-128.26	2.928
40	100	90	0.00		0.00	0.00	375.61	-123.22	3.048
41	100	90	0.00		0.00	0.00	375.61	-117.86	3.187
42	100	90	0.00		0.00	0.00	375.61	-112.19	3.348
43	100	90	0.00		0.00	0.00	375.61	-106.20	3.537
44	100	90	0.00		0.00	0.00	375.61	-99.90	3.760
45	100	90	0.00		0.00	0.00	375.61	-93.28	4.027
46	100	90	0.00		0.00	0.00	375.61	-86.35	4.350
47	100	90	0.00		0.00	0.00	375.61	-79.11	4.748
48	100	90	0.00		0.00	0.00	375.61	-71.55	5.250
49	100	90	0.00		0.00	0.00	375.61	-63.67	5.899
50	100	90	0.00		0.00	0.00	375.61	-55.49	6.769
51	100	90	0.00		0.00	0.00	375.61	-46.98	7.994
52	100	90	0.00		0.00	0.00	375.61	-38.17	9.841
53	100	90	0.00		0.00	0.00	375.61	-29.04	12.935
54	100	90	0.00		0.00	0.00	375.61	-19.59	19.171
55	100	90	0.00		0.00	0.00	375.61	-9.95	37.736
56	100	90	0.00		0.00	0.00	313.48	0.00	100.000

Verifica delle tensioni

Simbologia adottata

n° Y B H Afi indice sezione ordinata sezione, espressa in [m] larghezza sezione, espresso in [cm] altezza sezione, espresso in [cm] area ferri inferiori, espresso in [cmq] area ferri superiori, espressa in [crinq]
area ferri superiori, espressa in [cmq]
momento agente, espressa in [kNm]
sforzo normale agente, espressa in [kN]
tensione di compressione nel cls, espressa in [MPa] Afs M N σc tensione nei ferri inferiori, espressa in [MPa] tensione nei ferri superiori, espressa in [MPa]

Combinazioni SLER

Paramento

Tensione massima di compressione nel calcestruzzo 19.920 [MPa] Tensione massima di trazione dell'acciaio 360.000 [MPa]

n°	В	н	Afi	Afs	М	N	σC	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[MPa]	[MPa]	[MPa]
1	100	50	8.04	8.04	0.00	0.00	0.000 (10)	0.000 (10)	0.000 (10)
2	100	50	8.04	8.04	0.01	1.23	0.002 (10)	0.033 (10)	0.037 (10)
3	100	50	8.04	8.04	0.03	2.45	0.005 (10)	0.062 (10)	0.078 (10)
4	100	50	8.04	8.04	0.08	3.68	0.009 (10)	0.085 (10)	0.125 (10)
5	100	50	8.04	8.04	0.15	4.90	0.013 (10)	0.101 (10)	0.180 (10)
6	100	50	8.04	8.04	0.26	6.13	0.017 (10)	0.108 (10)	0.243 (10)
7	100	50	8.04	8.04	0.40	7.35	0.023 (10)	0.104 (10)	0.317 (10)
8	100	50	8.04	16.08	0.59	8.58	0.030 (10)	0.083 (10)	0.404 (10)
9	100	50	8.04	16.08	0.84	9.80	0.037 (10)	0.057 (10)	0.502 (10)

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

n°	В	Н	Afi	Afs	М	N	σс	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[MPa]	[MPa]	[MPa]
10	100	50	8.04	16.08	1.13	11.03	0.046 (10)	0.007 (10)	0.618 (10)
11	100	50	8.04	16.08	1.49	12.25	0.058 (10)	0.087 (10)	0.759 (10)
12	100	50	8.04	16.08	1.92	13.48	0.072 (10)	0.251 (10)	0.932 (10)
13	100	50	8.04	16.08	2.41	14.71	0.090 (10)	0.513 (10)	1.139 (10)
14	100	50	8.04	16.08	2.99	15.93	0.111 (10)	0.897 (10)	1.383 (10)
15	100	50	8.04	16.08	3.65	17.16	0.136 (10)	1.424 (10)	1.661 (10)
16	100	50	8.04	16.08	4.40	18.38	0.166 (10)	2.104 (10)	1.975 (10)
17	100	50	8.04	16.08	5.24	19.61	0.199 (10)	2.944 (10)	2.321 (10)
18	100	50	8.04	16.08	6.19	20.83	0.236 (10)	3.952 (10)	2.701 (10)
19	100	50	8.04	16.08	7.24	22.06	0.276 (10)	5.132 (10)	3.116 (10)
20	100	50	8.04	16.08	8.40	23.28	0.322 (10)	6.490 (10)	3.567 (10)
21	100	50	8.04	16.08	9.68	24.51	0.371 (10)	8.034 (10)	4.055 (10)
22	100	50	8.04	16.08	11.08	25.73	0.425 (10)	9.769 (10)	4.582 (10)
23	100	50	8.04	16.08	12.61	26.96	0.484 (10)	11.705 (10)	5.149 (10)
24	100	50	8.04	16.08	14.28	28.19	0.547 (10)	13.847 (10)	5.758 (10)
25	100	50	8.04	16.08	16.08	29.41	0.616 (10)	16.205 (10)	6.412 (10)
26	100	50	8.04	16.08	18.03	30.64	0.690 (10)	18.786 (10)	7.111 (10)
27 28	100	50	8.04	16.08 16.08	20.13	31.86 33.09	0.769 (10)	21.597 (10)	7.858 (10)
28	100 100	50 50	8.04 8.04	16.08	24.81		0.854 (10)	24.648 (10)	8.654 (10)
30	100	50	8.04	16.08	27.39	34.31 35.54	0.946 (10) 1.043 (10)	27.947 (10) 31.502 (10)	9.502 (10) 10.403 (10)
31	100	50	8.04	16.08	30.15	36.76	1.146 (10)		11.359 (10)
32	100	90	14.07	28.15	31.16	62.40	0.347 (10)	35.320 (10) 5.531 (10)	4.575 (10)
33	100	90	14.07	28.15	34.47	64.60	0.347 (10)	6.602 (10)	5.036 (10)
34	100	90	14.07	28.15	38.37	66.81	0.428 (10)	7.940 (10)	5.575 (10)
35	100	90	14.07	28.15	42.53	69.02	0.474 (10)	9.407 (10)	6.145 (10)
36	100	90	14.07	28.15	46.89	71.22	0.523 (10)	10.974 (10)	6.737 (10)
37	100	90	14.07	28.15	51.45	73.43	0.573 (10)	12.641 (10)	7.351 (10)
38	100	90	14.07	28.15	56.22	75.63	0.626 (10)	14.410 (10)	7.989 (10)
39	100	90	14.07	28.15	61.20	77.84	0.681 (10)	16.281 (10)	8.652 (10)
40	100	90	14.07	28.15	66.39	80.05	0.738 (10)	18.255 (10)	9.339 (10)
41	100	90	14.07	28.15	71.81	82.25	0.797 (10)	20.335 (10)	10.052 (10)
42	100	90	14.07	28.15	77.46	84.46	0.858 (10)	22.523 (10)	10.792 (10)
43	100	90	14.07	28.15	83.35	86.66	0.922 (10)	24.820 (10)	11.559 (10)
44	100	90	14.07	28.15	89.47	88.87	0.989 (10)	27.228 (10)	12.354 (10)
45	100	90	14.07	28.15	95.84	91.08	1.057 (10)	29.750 (10)	13.178 (10)
46	100	90	14.07	28.15	102.46	93.28	1.129 (10)	32.388 (10)	14.031 (10)
47	100	90	14.07	28.15	109.34	95.49	1.203 (10)	35.145 (10)	14.914 (10)
48	100	90	14.07	28.15	116.48	97.69	1.280 (10)	38.022 (10)	15.829 (10)
49	100	90	14.07	28.15	123.89	99.90	1.359 (10)	41.023 (10)	16.775 (10)
50	100	90	14.07	28.15	131.57	102.11	1.441 (10)	44.148 (10)	17.753 (10)
51	100	90	14.07	28.15	139.53	104.31	1.527 (10)	47.402 (10)	18.764 (10)
52	100	90	14.07	28.15	147.78	106.52	1.615 (10)	50.787 (10)	19.808 (10)
53	100	90	14.07	28.15	156.32	108.72	1.706 (10)	54.304 (10)	20.887 (10)
54	100	90	14.07	28.15	165.15	110.93	1.800 (10)	57.956 (10)	22.001 (10)
55	100	90	14.07	28.15	174.28	113.14	1.897 (10)	61.746 (10)	23.151 (10)
56	100	90	14.07	28.15	183.72	115.34	1.997 (10)	65.677 (10)	24.337 (10)
57	100	90	14.07	28.15	193.48	117.55	2.101 (10)	69.750 (10)	25.560 (10)
58	100	90	14.07	28.15	203.55	119.75	2.208 (10)	73.969 (10)	26.820 (10)
59	100	90	14.07	28.15	213.95	121.96	2.318 (10)	78.335 (10)	28.119 (10)
60	100	90	14.07	28.15	224.67	124.17	2.432 (10)	82.852 (10)	29.457 (10)
61	100	90	14.07	28.15	235.73	126.37	2.549 (10)	87.521 (10)	30.835 (10)
62	100	90	14.07	28.15	247.14	128.58	2.669 (10)	92.346 (10)	32.253 (10)
63 64	100 100	90 90	14.07	28.15	258.88 270.98	130.78	2.793 (10)	97.329 (10)	33.712 (10) 35.213 (10)
65	100	90	14.07 14.07	28.15 28.15	283.44	132.99 135.19	2.921 (10) 3.053 (10)	102.472 (10) 107.778 (10)	36.756 (10)
66	100	90	14.07	28.15	296.26	135.19	3.188 (10)	113.249 (10)	38.343 (10)
67	100	90	14.07	28.15	309.45	137.40	3.188 (10)	113.249 (10)	39.973 (10)
68	100	90	14.07	28.15	323.01	141.81	3.470 (10)	124.698 (10)	41.647 (10)
69	100	90	14.07	28.15	336.96	144.02	3.616 (10)	130.680 (10)	43.367 (10)
70	100	90	14.07	28.15	351.29	146.22	3.767 (10)	136.838 (10)	45.132 (10)
71	100	90	14.07	28.15	366.00	148.43	3.922 (10)	143.173 (10)	46.943 (10)
72	100	90	14.07	28.15	381.12	150.64	4.080 (10)	149.688 (10)	48.801 (10)

Fondazione

Tensione massima di compressione nel calcestruzzo Tensione massima di trazione dell'acciaio

19.920 [MPa] 360.000 [MPa]

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

nº	В	н	Afi	Afs	М	N	σс	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[MPa]	[MPa]	[MPa]
1	100	90	18.10	20.11	0.00	0.00	0.000 (10)	0.000 (10)	0.000 (10)
2	100	90	18.10	20.11	0.71	0.00	0.008 (10)	0.493 (10)	0.088 (10)
3	100	90	18.10	20.11	2.83	0.00	0.033 (10)	1.969 (10)	0.353 (10)
4	100	90	18.10	20.11	6.36	0.00	0.075 (10)	4.424 (10)	0.794 (10)
5	100	90	18.10	20.11	11.29	0.00	0.133 (10)	7.855 (10)	1.409 (10)
6	100	90	18.10	20.11	17.62	0.00	0.207 (10)	12.257 (10)	2.199 (10)
7	100	90	18.10	20.11	25.33	0.00	0.297 (10)	17.628 (10)	3.163 (10)
8	100	90	18.10	20.11	-86.88	0.00	0.992 (10)	10.792 (10)	54.611 (10)
9	100	90	18.10	20.11	-85.83	0.00	0.980 (10)	10.662 (10)	53.952 (10)
10	100	90	18.10	20.11	-84.64	0.00	0.966 (10)	10.514 (10)	53.205 (10)
11	100	90	18.10	20.11	-83.32	0.00	0.951 (10)	10.350 (10)	52.374 (10)
12	100	90	18.10	20.11	-81.87	0.00	0.935 (10)	10.170 (10)	51.465 (10)
13	100	90	18.10	20.11	-80.31	0.00	0.917 (10)	9.976 (10)	50.481 (10)
14	100	90	18.10	20.11	-78.63	0.00	0.898 (10)	9.767 (10)	49.427 (10)
15	100	90	18.10	20.11	-76.85	0.00	0.877 (10)	9.546 (10)	48.307 (10)
16	100	90	18.10	20.11	-74.97	0.00	0.856 (10)	9.313 (10)	47.126 (10)
17	100	90	18.10	20.11	-73.00	0.00	0.834 (10)	9.068 (10)	45.888 (10)
18	100	90	18.10	20.11	-70.95	0.00	0.810 (10)	8.813 (10)	44.597 (10)
19	100	90	18.10	20.11	-68.82	0.00	0.786 (10)	8.549 (10)	43.258 (10)
20	100	90	18.10	20.11	-66.62	0.00	0.761 (10)	8.275 (10)	41.876 (10)
21	100	90	18.10	20.11	-64.36	0.00	0.735 (10)	7.994 (10)	40.454 (10)
22	100	90	18.10	20.11	-62.04	0.00	0.708 (10)	7.706 (10)	38.997 (10)
23	100	90	18.10	20.11	-59.67	0.00	0.681 (10)	7.412 (10)	37.509 (10)
24	100	90	18.10	20.11	-57.26	0.00	0.654 (10)	7.113 (10)	35.996 (10)
25	100	90	18.10	20.11	-54.82	0.00	0.626 (10)	6.810 (10)	34.460 (10)
26	100	90	18.10	20.11	-52.35	0.00	0.598 (10)	6.503 (10)	32.907 (10)
27	100	90	18.10	20.11	-49.86	0.00	0.569 (10)	6.194 (10)	31.341 (10)
28	100	90	18.10	20.11	-47.35	0.00	0.541 (10)	5.882 (10)	29.766 (10)
29	100	90	18.10	20.11	-44.84	0.00	0.512 (10)	5.570 (10)	28.188 (10)
30	100	90	18.10	20.11	-42.33	0.00	0.483 (10)	5.258 (10)	26.609 (10)
31	100	90	18.10	20.11	-39.83	0.00	0.455 (10)	4.947 (10)	25.035 (10)
32	100	90	18.10	20.11	-37.34	0.00	0.426 (10)	4.638 (10)	23.469 (10)
33	100	90	18.10	20.11	-34.87	0.00	0.398 (10)	4.331 (10)	21.917 (10)
34	100	90	18.10	20.11	-32.43	0.00	0.370 (10)	4.028 (10)	20.383 (10)
35	100	90	18.10	20.11	-30.02	0.00	0.343 (10)	3.729 (10)	18.871 (10)
36	100	90	18.10	20.11	-27.66	0.00	0.316 (10)	3.436 (10)	17.385 (10)
37	100	90	18.10	20.11	-25.34	0.00	0.289 (10)	3.148 (10)	15.931 (10)
38	100	90	18.10	20.11	-23.09	0.00	0.264 (10)	2.868 (10)	14.511 (10)
39	100	90	18.10	20.11	-20.89	0.00	0.239 (10)	2.595 (10)	13.131 (10)
40	100	90	18.10	20.11	-18.77	0.00	0.214 (10)	2.331 (10)	11.796 (10)
41	100	90	18.10	20.11	-16.72	0.00	0.191 (10)	2.077 (10)	10.508 (10)
42	100	90	18.10	20.11	-14.75	0.00	0.168 (10)	1.833 (10)	9.274 (10)
43	100	90	18.10	20.11	-12.88	0.00	0.147 (10)	1.600 (10)	8.097 (10)
44	100	90	18.10	20.11	-11.11	0.00	0.127 (10)	1.380 (10)	6.981 (10)
45	100	90	18.10	20.11	-9.44	0.00	0.108 (10)	1.172 (10)	5.932 (10)
46	100	90	18.10	20.11	-7.88	0.00	0.090 (10)	0.979 (10)	4.953 (10)
47	100	90	18.10	20.11	-6.44	0.00	0.074 (10)	0.800 (10)	4.048 (10)
48	100	90	18.10	20.11	-5.13	0.00	0.059 (10)	0.637 (10)	3.223 (10)
49	100	90	18.10	20.11	-3.95	0.00	0.045 (10)	0.490 (10)	2.482 (10)
50	100	90	18.10	20.11	-2.91	0.00	0.033 (10)	0.361 (10)	1.828 (10)
51	100	90	18.10	20.11	-2.02	0.00	0.023 (10)	0.250 (10)	1.267 (10)
52	100	90	18.10	20.11	-1.28	0.00	0.015 (10)	0.159 (10)	0.802 (10)
53	100	90	18.10	20.11	-0.70	0.00	0.008 (10)	0.087 (10)	0.439 (10)
54	100	90	18.10	20.11	-0.29	0.00	0.003 (10)	0.036 (10)	0.181 (10)
55	100	90	18.10	20.11	-0.07	0.00	0.003 (10)	0.009 (10)	0.046 (10)
56	100	90	0.00	0.00	0.00	0.00	0.000 (10)	0.000 (10)	0.000 (10)
50	100	30	0.00	0.00	0.00	0.00	0.000 (10)	0.000 (10)	0.000 (10)

Sperone

Tensione massima di compressione nel calcestruzzo 19.920 Tensione massima di trazione dell'acciaio 360.000

n°	В	Н	Afi	Afs	М	N	σC	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[MPa]	[MPa]	[MPa]
1	100	90	14.07	8.04	107.05	0.00	1.502 (10)	95.517 (10)	15,592 (10)

PROGETTAZIONE ATI:

[MPa]

[MPa]

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Combinazioni SLEF

<u>Paramento</u>

Tensione massima di compressione nel calcestruzzo 33.200 [MPa] Tensione massima di trazione dell'acciaio 450.000 [MPa]

n°	В	Н	Afi	Afs	М	N	σC	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[MPa]	[MPa]	[MPa]
1	100	50	8.04	8.04	0.00	0.00	0.000 (11)	0.000 (11)	0.000 (11)
2	100	50	8.04	8.04	0.00	1.23	0.002 (11)	0.034 (11)	0.036 (11)
3	100	50	8.04	8.04	0.02	2.45	0.005 (11)	0.065 (11)	0.075 (11)
4	100	50	8.04	8.04	0.05	3.68	0.003 (11)	0.003 (11)	0.119 (11)
5	100	50	8.04	8.04	0.10	4.90	0.012 (11)	0.113 (11)	0.168 (11)
6	100	50	8.04	8.04	0.19	6.13	0.012 (11)	0.126 (11)	0.225 (11)
7	100	50	8.04	8.04	0.30	7.35	0.021 (11)	0.131 (11)	0.290 (11)
8	100	50	8.04	16.08	0.46	8.58	0.027 (11)	0.117 (11)	0.368 (11)
9	100	50	8.04	16.08	0.66	9.80	0.027 (11)	0.101 (11)	0.456 (11)
10	100	50	8.04	16.08	0.91	11.03	0.041 (11)	0.072 (11)	0.556 (11)
11	100	50	8.04	16.08	1.21	12.25	0.050 (11)	0.024 (11)	0.673 (11)
12	100	50	8.04	16.08	1.58	13.48	0.062 (11)	0.068 (11)	0.815 (11)
13	100	50	8.04	16.08	2.01	14.71	0.076 (11)	0.226 (11)	0.988 (11)
14	100	50	8.04	16.08	2.52	15.93	0.094 (11)	0.478 (11)	1.197 (11)
15	100	50	8.04	16.08	3.10	17.16	0.115 (11)	0.853 (11)	1.442 (11)
16	100	50	8.04	16.08	3.77	18.38	0.113 (11)	1.370 (11)	1.724 (11)
17	100	50	8.04	16.08	4.53	19.61	0.170 (11)	2.044 (11)	2.041 (11)
18	100	50	8.04	16.08	5.38	20.83	0.203 (11)	2.882 (11)	2.393 (11)
19	100	50	8.04	16.08	6.33	22.06	0.241 (11)	3.890 (11)	
20	100	50	8.04	16.08	7.39	23.28	0.241 (11)	5.072 (11)	2.778 (11) 3.198 (11)
21	100	50	8.04	16.08	8.56	24.51	0.282 (11)		3.653 (11)
22	100	50	8.04	16.08	9.85	25.73		6.435 (11)	
	100	50					0.377 (11)	7.984 (11)	4.146 (11)
23	100	50	8.04	16.08	11.26	26.96	0.432 (11)	9.727 (11)	4.677 (11)
24 25	100	50	8.04 8.04	16.08 16.08	12.80 14.48	28.19 29.41	0.491 (11)	11.670 (11)	5.249 (11)
26	100	50	8.04	16.08	16.29	30.64	0.555 (11)	13.821 (11)	5.863 (11)
	100	50			18.25	31.86	0.624 (11)	16.188 (11)	6.521 (11)
27		50	8.04	16.08			0.698 (11)	18.779 (11)	7.224 (11)
28 29	100	50	8.04 8.04	16.08 16.08	20.35	33.09 34.31	0.778 (11)	21.601 (11)	7.975 (11)
							0.864 (11)	24.662 (11)	8.775 (11)
30	100	50	8.04	16.08	25.05	35.54	0.955 (11)	27.972 (11)	9.627 (11)
31	100	50	8.04	16.08	27.64	36.76	1.053 (11)	31.537 (11)	10.531 (11)
32	100	90	14.07	28.15	28.85	61.60	0.321 (11)	4.717 (11)	4.253 (11)
33	100	90	14.07	28.15	31.83	63.80	0.355 (11)	5.643 (11)	4.674 (11)
34	100	90	14.07	28.15	35.25	66.01	0.393 (11)	6.760 (11)	5.150 (11)
35	100	90	14.07	28.15	38.89	68.22	0.434 (11)	7.988 (11)	5.654 (11)
36	100	90	14.07	28.15	42.72	70.42	0.477 (11)	9.314 (11)	6.180 (11)
37	100	90	14.07	28.15	46.75	72.63	0.521 (11)	10.736 (11)	6.729 (11)
38	100	90	14.07	28.15	50.97	74.83	0.568 (11)	12.256 (11)	7.301 (11)
39 40	100	90	14.07	28.15	55.41	77.04	0.617 (11)	13.876 (11)	7.898 (11)
		90	14.07	28.15	60.05	79.25	0.668 (11)	15.597 (11)	8.519 (11)
41	100	90	14.07	28.15	64.92	81.45	0.722 (11)	17.420 (11)	9.166 (11)
42			14.07	28.15	70.01	83.66	0.778 (11)	19.348 (11)	9.839 (11)
43	100	90	14.07	28.15	75.32	85.86	0.836 (11)	21.384 (11)	10.538 (11)
44	100	90	14.07	28.15	80.87	88.07	0.896 (11)	23.528 (11)	11.265 (11)
45	100	90	14.07	28.15	86.66	90.28	0.959 (11)	25.784 (11)	12.021 (11)
46	100	90	14.07	28.15	92.70	92.48	1.024 (11)	28.154 (11)	12.805 (11)
47	100	90	14.07	28.15	98.99	94.69	1.092 (11)	30.639 (11)	13.619 (11)
48	100	90	14.07	28.15	105.53	96.89	1.163 (11)	33.243 (11)	14.463 (11)
49	100	90	14.07	28.15	112.34	99.10	1.236 (11)	35.967 (11)	15.338 (11)
50	100	90	14.07	28.15	119.42	101.31	1.312 (11)	38.815 (11)	16.245 (11)
51	100	90	14.07	28.15	126.77	103.51	1.391 (11)	41.788 (11)	17.184 (11)
52	100	90	14.07	28.15	134.40	105.72	1.473 (11)	44.889 (11)	18.156 (11)
53	100	90	14.07	28.15	142.31	107.92	1.558 (11)	48.121 (11)	19.162 (11)
54	100	90	14.07	28.15	150.51	110.13	1.645 (11)	51.485 (11)	20.202 (11)
55	100	90	14.07	28.15	159.01	112.34	1.736 (11)	54.985 (11)	21.277 (11)
56	100	90	14.07	28.15	167.82	114.54	1.830 (11)	58.622 (11)	22.387 (11)
57	100	90	14.07	28.15	176.92	116.75	1.927 (11)	62.400 (11)	23.534 (11)
58	100	90	14.07	28.15	186.35	118.95	2.027 (11)	66.321 (11)	24.718 (11)

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

n°	В	Н	Afi	Afs	М	N	σС	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[MPa]	[MPa]	[MPa]
59	100	90	14.07	28.15	196.09	121.16	2.131 (11)	70.387 (11)	25.940 (11)
60	100	90	14.07	28.15	206.15	123.37	2.238 (11)	74.601 (11)	27.200 (11)
61	100	90	14.07	28.15	216.54	125.57	2.348 (11)	78.965 (11)	28.499 (11)
62	100	90	14.07	28.15	227.27	127.78	2.461 (11)	83.482 (11)	29.838 (11)
63	100	90	14.07	28.15	238.34	129.98	2.579 (11)	88.154 (11)	31.217 (11)
64	100	90	14.07	28.15	249.76	132.19	2.699 (11)	92.985 (11)	32.637 (11)
65	100	90	14.07	28.15	261.52	134.39	2.824 (11)	97.975 (11)	34.099 (11)
66	100	90	14.07	28.15	273.65	136.60	2.952 (11)	103.129 (11)	35.604 (11)
67	100	90	14.07	28.15	286.14	138.81	3.083 (11)	108.448 (11)	37.151 (11)
68	100	90	14.07	28.15	298.99	141.01	3.219 (11)	113.935 (11)	38.742 (11)
69	100	90	14.07	28.15	312.22	143.22	3.358 (11)	119.593 (11)	40.377 (11)
70	100	90	14.07	28.15	325.83	145.42	3.502 (11)	125.423 (11)	42.058 (11)
71	100	90	14.07	28.15	339.83	147.63	3.649 (11)	131.428 (11)	43.784 (11)
72	100	90	14.07	28.15	354.21	149.84	3.800 (11)	137.610 (11)	45.556 (11)

Fondazione

Tensione massima di compressione nel calcestruzzo Tensione massima di trazione dell'acciaio

33.200 450.000 [MPa] [MPa]

nº	В	н	Afi	Afs	М	N	σC	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[MPa]	[MPa]	[MPa]
1	100	90	18.10	20.11	0.00	0.00	0.000 (11)	0.000 (11)	0.000 (11)
2	100	90	18.10	20.11	0.70	0.00	0.008 (11)	0.490 (11)	0.088 (11)
3	100	90	18.10	20.11	2.82	0.00	0.033 (11)	1.959 (11)	0.351 (11)
4	100	90	18.10	20.11	6.33	0.00	0.074 (11)	4.402 (11)	0.790 (11)
5	100	90	18.10	20.11	11.23	0.00	0.132 (11)	7.815 (11)	1.402 (11)
6	100	90	18.10	20.11	17.53	0.00	0.206 (11)	12.195 (11)	2.188 (11)
7	100	90	18.10	20.11	25.21	0.00	0.296 (11)	17.538 (11)	3.147 (11)
8	100	90	18.10	20.11	-87.70	0.00	1.001 (11)	10.893 (11)	55.125 (11)
9	100	90	18.10	20.11	-86.73	0.00	0.990 (11)	10.773 (11)	54.515 (11)
10	100	90	18.10	20.11	-85.61	0.00	0.977 (11)	10.634 (11)	53.813 (11)
11	100	90	18.10	20.11	-84.35	0.00	0.963 (11)	10.478 (11)	53.022 (11)
12	100	90	18.10	20.11	-82.96	0.00	0.947 (11)	10.305 (11)	52.148 (11)
13	100	90	18.10	20.11	-81.44	0.00	0.930 (11)	10.117 (11)	51.195 (11)
14	100	90	18.10	20.11	-79.81	0.00	0.911 (11)	9.914 (11)	50.167 (11)
15	100	90	18.10	20.11	-78.06	0.00	0.891 (11)	9.697 (11)	49.070 (11)
16	100	90	18.10	20.11	-76.21	0.00	0.870 (11)	9.467 (11)	47.907 (11)
17	100	90	18.10	20.11	-74.27	0.00	0.848 (11)	9.225 (11)	46.683 (11)
18	100	90	18.10	20.11	-72.23	0.00	0.825 (11)	8.972 (11)	45.403 (11)
19	100	90	18.10	20.11	-70.11	0.00	0.801 (11)	8.709 (11)	44.071 (11)
20	100	90	18.10	20.11	-67.92	0.00	0.775 (11)	8.437 (11)	42.692 (11)
21	100	90	18.10	20.11	-65.65	0.00	0.750 (11)	8.156 (11)	41.270 (11)
22	100	90	18.10	20.11	-63.33	0.00	0.723 (11)	7.867 (11)	39.810 (11)
23	100	90	18.10	20.11	-60.96	0.00	0.696 (11)	7.572 (11)	38.316 (11)
24	100	90	18.10	20.11	-58.53	0.00	0.668 (11)	7.271 (11)	36.794 (11)
25	100	90	18.10	20.11	-56.07	0.00	0.640 (11)	6.965 (11)	35.247 (11)
26	100	90	18.10	20.11	-53.58	0.00	0.612 (11)	6.656 (11)	33.680 (11)
27	100	90	18.10	20.11	-51.06	0.00	0.583 (11)	6.343 (11)	32.098 (11)
28 29	100 100	90	18.10 18.10	20.11	-48.53 -45.99	0.00	0.554 (11)	6.028 (11) 5.712 (11)	30.505 (11)
30	100	90	18.10	20.11	-43.44	0.00	0.525 (11) 0.496 (11)	5.712 (11)	28.906 (11) 27.305 (11)
31	100	90	18.10	20.11	-40.90	0.00	0.467 (11)	5.080 (11)	25.707 (11)
32	100	90	18.10	20.11	-38.37	0.00	0.438 (11)	4.766 (11)	24.117 (11)
33	100	90	18.10	20.11	-35.85	0.00	0.409 (11)	4.454 (11)	22.538 (11)
34	100	90	18.10	20.11	-33.37	0.00	0.381 (11)	4.145 (11)	20.976 (11)
35	100	90	18.10	20.11	-30.92	0.00	0.353 (11)	3.841 (11)	19.435 (11)
36	100	90	18.10	20.11	-28.51	0.00	0.325 (11)	3.541 (11)	17.919 (11)
37	100	90	18.10	20.11	-26.14	0.00	0.299 (11)	3.248 (11)	16.434 (11)
38	100	90	18.10	20.11	-23.84	0.00	0.272 (11)	2.961 (11)	14.984 (11)
39	100	90	18.10	20.11	-21.59	0.00	0.247 (11)	2.682 (11)	13.572 (11)
40	100	90	18.10	20.11	-19.42	0.00	0.222 (11)	2.412 (11)	12.205 (11)
41	100	90	18.10	20.11	-17.32	0.00	0.198 (11)	2.151 (11)	10.886 (11)
42	100	90	18.10	20.11	-15.30	0.00	0.175 (11)	1.901 (11)	9.620 (11)
43	100	90	18.10	20.11	-13.38	0.00	0.153 (11)	1.662 (11)	8.411 (11)
44	100	90	18.10	20.11	-11.56	0.00	0.132 (11)	1.436 (11)	7.265 (11)
45	100	90	18.10	20.11	-9.84	0.00	0.112 (11)	1.222 (11)	6.184 (11)

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

n°	В	Н	Afi	Afs	М	N	σс	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[MPa]	[MPa]	[MPa]
46	100	90	18.10	20.11	-8.23	0.00	0.094 (11)	1.023 (11)	5.176 (11)
47	100	90	18.10	20.11	-6.75	0.00	0.077 (11)	0.838 (11)	4.242 (11)
48	100	90	18.10	20.11	-5.39	0.00	0.062 (11)	0.670 (11)	3.389 (11)
49	100	90	18.10	20.11	-4.17	0.00	0.048 (11)	0.518 (11)	2.621 (11)
50	100	90	18.10	20.11	-3.09	0.00	0.035 (11)	0.384 (11)	1.942 (11)
51	100	90	18.10	20.11	-2.16	0.00	0.025 (11)	0.268 (11)	1.357 (11)
52	100	90	18.10	20.11	-1.39	0.00	0.016 (11)	0.172 (11)	0.871 (11)
53	100	90	18.10	20.11	-0.78	0.00	0.009 (11)	0.096 (11)	0.487 (11)
54	100	90	18.10	20.11	-0.34	0.00	0.004 (11)	0.042 (11)	0.211 (11)
55	100	90	18.10	20.11	-0.09	0.00	0.001 (11)	0.011 (11)	0.054 (11)
56	100	90	0.00	0.00	0.00	0.00	0.000 (11)	0.000 (11)	0.000 (11)

Sperone

Tensione massima di compressione nel calcestruzzo 33.200 [MPa] Tensione massima di trazione dell'acciaio 450.000 [MPa]

n°	В	Н	Afi	Afs	М	N	σC	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[MPa]	[MPa]	[MPa]
1	100	90	14.07	8.04	107.05	0.00	1.502 (11)	95.517 (11)	15.592 (11)

Combinazioni SLEQ

Paramento

Tensione massima di compressione nel calcestruzzo 14.940 [MPa] Tensione massima di trazione dell'acciaio 450.000 [MPa]

n°	В	Н	Afi	Afs	М	N	σC	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[MPa]	[MPa]	[MPa]
1	100	50	8.04	8.04	0.00	0.00	0.000 (12)	0.000 (12)	0.000 (12)
2	100	50	8.04	8.04	0.01	1.23	0.002 (13)	0.034 (12)	0.037 (13)
3	100	50	8.04	8.04	0.03	2.45	0.005 (13)	0.066 (12)	0.079 (13)
4	100	50	8.04	8.04	0.08	3.68	0.009 (13)	0.095 (12)	0.128 (13)
5	100	50	8.04	8.04	0.17	4.90	0.013 (13)	0.117 (12)	0.185 (13)
6	100	50	8.04	8.04	0.30	6.13	0.018 (13)	0.133 (12)	0.254 (13)
7	100	50	8.04	8.04	0.47	7.35	0.024 (13)	0.141 (12)	0.335 (13)
8	100	50	8.04	16.08	0.71	8.58	0.032 (13)	0.131 (12)	0.433 (13)
9	100	50	8.04	16.08	1.00	9.80	0.041 (13)	0.119 (12)	0.548 (13)
10	100	50	8.04	16.08	1.37	11.03	0.053 (13)	0.094 (12)	0.692 (13)
11	100	50	8.04	16.08	1.81	12.25	0.068 (13)	0.277 (13)	0.874 (13)
12	100	50	8.04	16.08	2.35	13.48	0.087 (13)	0.584 (13)	1.096 (13)
13	100	50	8.04	16.08	2.97	14.71	0.111 (13)	1.046 (13)	1.361 (13)
14	100	50	8.04	16.08	3.70	15.93	0.139 (13)	1.682 (13)	1.665 (13)
15	100	50	8.04	16.08	4.53	17.16	0.172 (13)	2.503 (13)	2.009 (13)
16	100	50	8.04	16.08	5.48	18.38	0.209 (13)	3.518 (13)	2.392 (13)
17	100	50	8.04	16.08	6.56	19.61	0.251 (13)	4.733 (13)	2.815 (13)
18	100	50	8.04	16.08	7.76	20.83	0.297 (13)	6.158 (13)	3.280 (13)
19	100	50	8.04	16.08	9.11	22.06	0.349 (13)	7.801 (13)	3.789 (13)
20	100	50	8.04	16.08	10.60	23.28	0.406 (13)	9.671 (13)	4.343 (13)
21	100	50	8.04	16.08	12.24	24.51	0.469 (13)	11.780 (13)	4.947 (13)
22	100	50	8.04	16.08	14.04	25.73	0.538 (13)	14.137 (13)	5.600 (13)
23	100	50	8.04	16.08	16.02	26.96	0.613 (13)	16.752 (13)	6.307 (13)
24	100	50	8.04	16.08	18.17	28.19	0.694 (13)	19.638 (13)	7.070 (13)
25	100	50	8.04	16.08	20.50	29.41	0.782 (13)	22.804 (13)	7.891 (13)
26	100	50	8.04	16.08	23.02	30.64	0.877 (13)	26.261 (13)	8.772 (13)
27	100	50	8.04	16.08	25.74	31.86	0.979 (13)	30.022 (13)	9.716 (13)
28	100	50	8.04	16.08	28.67	33.09	1.089 (13)	34.097 (13)	10.725 (13)
29	100	50	8.04	16.08	31.81	34.31	1.206 (13)	38.496 (13)	11.802 (13)
30	100	50	8.04	16.08	35.17	35.54	1.331 (13)	43.233 (13)	12.949 (13)
31	100	50	8.04	16.08	38.76	36.76	1.465 (13)	48.317 (13)	14.169 (13)
32	100	90	14.07	28.15	42.45	61.28	0.473 (13)	10.341 (13)	6.071 (13)

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

n°	В	Н	Afi	Afs	М	N	σε	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[MPa]	[MPa]	[MPa]
33	100	90	14.07	28.15	46.60	63.48	0.519 (13)	11.842 (13)	6.630 (13)
34	100	90	14.07	28.15	51.19	65.69	0.569 (13)	13.539 (13)	7.242 (13)
35	100	90	14.07	28.15	56.06	67.90	0.623 (13)	15.370 (13)	7.888 (13)
36	100	90	14.07	28.15	61.19	70.10	0.679 (13)	17.324 (13)	8.565 (13)
37	100	90	14.07	28.15	66.60	72.31	0.738 (13)	19.405 (13)	9.274 (13)
38	100	90	14.07	28.15	72.28	74.51	0.800 (13)	21.615 (13)	10.016 (13)
39	100	90	14.07	28.15	78.26	76.72	0.864 (13)	23.958 (13)	10.792 (13)
40	100	90	14.07	28.15	84.53	78.93	0.932 (13)	26.437 (13)	11.603 (13)
41	100	90	14.07	28.15	91.10	81.13	1.003 (13)	29.054 (13)	12.449 (13)
42	100	90	14.07	28.15	97.98	83.34	1.077 (13)	31.814 (13)	13.332 (13)
43	100	90	14.07	28.15	105.17	85.54	1.154 (13)	34.719 (13)	14.252 (13)
44	100	90	14.07	28.15	112.70	87.75	1.235 (13)	37.773 (13)	15.211 (13)
45	100	90	14.07	28.15	120.55	89.96	1.319 (13)	40.978 (13)	16.209 (13)
46	100	90	14.07	28.15	128.74	92.16	1.406 (13)	44.339 (13)	17.247 (13)
47	100	90	14.07	28.15	137.29	94.37	1.497 (13)	47.859 (13)	18.326 (13)
48	100	90	14.07	28.15	146.18	96.57	1.592 (13)	51.540 (13)	19.447 (13)
49	100	90	14.07	28.15	155.44	98.78	1.691 (13)	55.387 (13)	20.611 (13)
50	100	90	14.07	28.15	165.07	100.99	1.793 (13)	59.402 (13)	21.819 (13)
51	100	90	14.07	28.15	175.07	103.19	1.899 (13)	63.590 (13)	23.071 (13)
52	100	90	14.07	28.15	185.46	105.40	2.009 (13)	67.952 (13)	24.369 (13)
53	100	90	14.07	28.15	196.24	107.60	2.123 (13)	72.494 (13)	25.713 (13)
54	100	90	14.07	28.15	207.42	109.81	2.242 (13)	77.217 (13)	27.105 (13)
55	100	90	14.07	28.15	219.00	112.02	2.364 (13)	82.126 (13)	28.545 (13)
56	100	90	14.07	28.15	231.01	114.22	2.491 (13)	87.224 (13)	30.034 (13)
57	100	90	14.07	28.15	243.43	116.43	2.622 (13)	92.514 (13)	31.574 (13)
58	100	90	14.07	28.15	256.28	118.63	2.757 (13)	98.000 (13)	33.164 (13)
59	100	90	14.07	28.15	269.57	120.84	2.897 (13)	103.684 (13)	34.806 (13)
60	100	90	14.07	28.15	283.30	123.05	3.042 (13)	109.571 (13)	36.500 (13)
61	100	90	14.07	28.15	297.49	125.25	3.191 (13)	115.664 (13)	38.249 (13)
62	100	90	14.07	28.15	312.13	127.46	3.345 (13)	121.966 (13)	40.052 (13)
63	100	90	14.07	28.15	327.24	129.66	3.504 (13)	128.481 (13)	41.910 (13)
64	100	90	14.07	28.15	342.83	131.87	3.668 (13)	135.211 (13)	43.824 (13)
65	100	90	14.07	28.15	358.90	134.07	3.836 (13)	142.161 (13)	45.796 (13)
66	100	90	14.07	28.15	375.45	136.28	4.010 (13)	149.334 (13)	47.826 (13)
67	100	90	14.07	28.15	392.51	138.49	4.189 (13)	156.733 (13)	49.915 (13)
68	100	90	14.07	28.15	410.07	140.69	4.373 (13)	164.361 (13)	52.063 (13)
69	100	90	14.07	28.15	428.13	142.90	4.562 (13)	172.222 (13)	54.273 (13)
70	100	90	14.07	28.15	446.72	145.10	4.757 (13)	180.319 (13)	56.544 (13)
71	100	90	14.07	28.15	465.84	147.31	4.957 (13)	188.656 (13)	58.877 (13)
72	100	90	14.07	28.15	485.48	149.52	5.162 (13)	197.235 (13)	61.274 (13)

Fondazione

Tensione massima di compressione nel calcestruzzo 14.940 [MPa] Tensione massima di trazione dell'acciaio 450.000 [MPa]

n°	В	н	Afi	Afs	М	N	σс	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[MPa]	[MPa]	[MPa]
1	100	90	18.10	20.11	0.00	0.00	0.000 (12)	0.000 (12)	0.000 (12)
2	100	90	18.10	20.11	0.91	0.00	0.011 (13)	0.631 (13)	0.113 (13)
3	100	90	18.10	20.11	3.62	0.00	0.042 (13)	2.518 (13)	0.452 (13)
4	100	90	18.10	20.11	8.12	0.00	0.095 (13)	5.648 (13)	1.013 (13)
5	100	90	18.10	20.11	14.39	0.00	0.169 (13)	10.011 (13)	1.796 (13)
6	100	90	18.10	20.11	22.41	0.00	0.263 (13)	15.596 (13)	2.798 (13)
7	100	90	18.10	20.11	32.18	0.00	0.378 (13)	22.391 (13)	4.017 (13)
8	100	90	18.10	20.11	-364.55	0.00	4.162 (14)	45.284 (14)	229.152 (14)
9	100	90	18.10	20.11	-356.94	0.00	4.076 (14)	44.339 (14)	224.371 (14)
10	100	90	18.10	20.11	-349.03	0.00	3.985 (14)	43.356 (14)	219.396 (14)
11	100	90	18.10	20.11	-340.82	0.00	3.892 (14)	42.337 (14)	214.238 (14)
12	100	90	18.10	20.11	-332.35	0.00	3.795 (14)	41.284 (14)	208.912 (14)
13	100	90	18.10	20.11	-323.63	0.00	3.695 (14)	40.201 (14)	203.430 (14)
14	100	90	18.10	20.11	-314.68	0.00	3.593 (14)	39.089 (14)	197.804 (14)
15	100	90	18.10	20.11	-305.52	0.00	3.488 (14)	37.952 (14)	192.047 (14)
16	100	90	18.10	20.11	-296.17	0.00	3.382 (14)	36.791 (14)	186.172 (14)
17	100	90	18.10	20.11	-286.66	0.00	3.273 (14)	35.609 (14)	180.191 (14)
18	100	90	18.10	20.11	-277.00	0.00	3.163 (14)	34.408 (14)	174.118 (14)
19	100	90	18.10	20.11	-267.21	0.00	3.051 (14)	33.192 (14)	167.964 (14)

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

n°	В	н	Afi	Afs	М	N	σε	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[MPa]	[MPa]	[MPa]
20	100	90	18.10	20.11	-257.31	0.00	2.938 (14)	31.963 (14)	161.743 (14)
21	100	90	18.10	20.11	-247.33	0.00	2.824 (14)	30.723 (14)	155.467 (14)
22	100	90	18.10	20.11	-237.28	0.00	2.709 (14)	29.474 (14)	149.149 (14)
23	100	90	18.10	20.11	-227.18	0.00	2.594 (14)	28.220 (14)	142.802 (14)
24	100	90	18.10	20.11	-217.05	0.00	2.478 (14)	26.962 (14)	136.438 (14)
25	100	90	18.10	20.11	-206.92	0.00	2.363 (14)	25.704 (14)	130.071 (14)
26	100	90	18.10	20.11	-196.81	0.00	2.247 (14)	24.447 (14)	123.712 (14)
27	100	90	18.10	20.11	-186.73	0.00	2.132 (14)	23.195 (14)	117.374 (14)
28	100	90	18.10	20.11	-176.70	0.00	2.018 (14)	21.949 (14)	111.071 (14)
29	100	90	18.10	20.11	-166.75	0.00	1.904 (14)	20.713 (14)	104.815 (14)
30	100	90	18.10	20.11	-156.89	0.00	1.791 (14)	19.488 (14)	98.618 (14)
31	100	90	18.10	20.11	-147.14	0.00	1.680 (14)	18.278 (14)	92.493 (14)
32	100	90	18.10	20.11	-137.54	0.00	1.570 (14)	17.085 (14)	86.453 (14)
33	100	90	18.10	20.11	-128.08	0.00	1.462 (14)	15.910 (14)	80.511 (14)
34	100	90	18.10	20.11	-118.80	0.00	1.357 (14)	14.758 (14)	74.680 (14)
35	100	90	18.10	20.11	-109.72	0.00	1.253 (14)	13.630 (14)	68.971 (14)
36	100	90	18.10	20.11	-100.86	0.00	1.152 (14)	12.528 (14)	63.398 (14)
37	100	90	18.10	20.11	-92.23	0.00	1.053 (14)	11.456 (14)	57.973 (14)
38	100	90	18.10	20.11	-83.85	0.00	0.957 (14)	10.416 (14)	52.710 (14)
39	100	90	18.10	20.11	-75.76	0.00	0.865 (14)	9.411 (14)	47.621 (14)
40	100	90	18.10	20.11	-67.96	0.00	0.776 (14)	8.442 (14)	42.718 (14)
41	100	90	18.10	20.11	-60.47	0.00	0.691 (14)	7.512 (14)	38.014 (14)
42	100	90	18.10	20.11	-53.33	0.00	0.609 (14)	6.624 (14)	33.522 (14)
43	100	90	18.10	20.11	-46.54	0.00	0.531 (14)	5.781 (14)	29.255 (14)
44	100	90	18.10	20.11	-40.13	0.00	0.458 (14)	4.985 (14)	25.225 (14)
45	100	90	18.10	20.11	-34.12	0.00	0.390 (14)	4.238 (14)	21.445 (14)
46	100	90	18.10	20.11	-28.52	0.00	0.326 (14)	3.543 (14)	17.928 (14)
47	100	90	18.10	20.11	-23.36	0.00	0.267 (14)	2.902 (14)	14.686 (14)
48	100	90	18.10	20.11	-18.67	0.00	0.213 (14)	2.319 (14)	11.733 (14)
49	100	90	18.10	20.11	-14.45	0.00	0.165 (14)	1.794 (14)	9.080 (14)
50	100	90	18.10	20.11	-10.72	0.00	0.122 (14)	1.332 (14)	6.741 (14)
51	100	90	18.10	20.11	-7.52	0.00	0.086 (14)	0.934 (14)	4.728 (14)
52	100	90	18.10	20.11	-4.86	0.00	0.055 (14)	0.603 (14)	3.054 (14)
53	100	90	18.10	20.11	-2.75	0.00	0.031 (14)	0.342 (14)	1.731 (14)
54	100	90	18.10	20.11	-1.23	0.00	0.014 (14)	0.153 (14)	0.773 (14)
55	100	90	18.10	20.11	-0.31	0.00	0.004 (14)	0.039 (14)	0.195 (14)
56	100	90	0.00	0.00	0.00	0.00	0.000 (12)	0.000 (12)	0.000 (12)

Sperone

Tensione massima di compressione nel calcestruzzo 14.940 [MPa] Tensione massima di trazione dell'acciaio [MPa] 450.000

n°	В	Н	Afi	Afs	М	N	σC	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[MPa]	[MPa]	[MPa]
1	100	90	14.07	8.04	173.86	0.00	2.440 (13)	155.131 (13)	25.323 (13)

Verifica a fessurazione

Simbologia adottata

n° Y B H Af ordinata sezione espressa in [m] larghezza sezione espresso in [cm] altezza sezione espresso in [cm] area ferri zona tesa espresso in [cmq] Aeff M area efficace espressa in [cmq] momento agente espressa in [kNm]

Mpf momento di prima fessurazione espressa in [kNm]

deformazione espresso in % spaziatura tra le fessure espressa in [mm] $^\epsilon_{\text{Sm}}$

apertura delle fessure espressa in [mm]

Combinazioni SLEF

Paramento

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Apertura limite fessure w_{lim}=0.40

n°	В	Н	Af	Aeff	М	Mpf	ε	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
1	100	50	0.00	0.00	0.00	0.00			0.000 (11
2	100	50	0.00	0.00	0.00	5.18	0.000000	0.00	0.000 (11
3	100	50	0.00	0.00	0.02	13.71	0.000000	0.00	0.000 (11
4	100	50	0.00	0.00	0.05	26.77	0.000000	0.00	0.000 (11
5	100	50	0.00	0.00	0.10	46.48	0.000000	0.00	0.000 (11
6	100	50	0.00	0.00	0.19	77.09	0.000000	0.00	0.000 (11
7	100	50	0.00	0.00	0.30	128.21	0.000000	0.00	0.000 (11
8	100	50	0.00	0.00	0.46	249.76	0.000000	0.00	0.000 (11
9	100	50	0.00	0.00	0.66	544.98	0.000000	0.00	0.000 (11
10	100	50	0.00	0.00	0.91	3678.91	0.000000	0.00	0.000 (11
11	100	50	0.00	0.00	1.21	1120.09	0.000000	0.00	0.000 (11
12	100	50	16.08	1250.00	1.58	560.47	0.000000	0.00	0.000 (11
13	100	50	16.08	1250.00	2.01	402.91	0.000000	0.00	0.000 (11
14	100	50	16.08	1250.00	2.52	329.11	0.000000	0.00	0.000 (11
15	100	50	16.08	1250.00	3.10	286.57	0.000000	0.00	0.000 (11
16	100	50	16.08	1250.00	3.77	259.05	0.000000	0.00	0.000 (11
17	100	50	16.08	1250.00	4.53	239.88	0.000000	0.00	0.000 (11
18	100	50	16.08	1250.00	5.38	225.83	0.000000	0.00	0.000 (11
19	100	50	16.08	1250.00	6.33	215.13	0.000000	0.00	0.000 (11
20	100	50	16.08	1250.00	7.39	206.74	0.000000	0.00	0.000 (11
21	100	50	16.08	1250.00	8.56	200.74	0.000000	0.00	0.000 (11
22	100	50	16.08	1250.00	9.85	194.51	0.000000	0.00	
23		50							0.000 (11
	100	50	16.08	1250.00	11.26	189.94	0.000000	0.00	0.000 (11
24	100		16.08	1250.00	12.80	186.09	0.000000	0.00	0.000 (11
25	100	50	16.08	1250.00	14.48	182.82	0.000000	0.00	0.000 (11
26	100	50	16.08	1250.00	16.29	180.01	0.000000	0.00	0.000 (11
27	100	50	16.08	1250.00	18.25	177.57	0.000000	0.00	0.000 (11
28	100	50	16.08	1250.00	20.35	175.44	0.000000	0.00	0.000 (11
29	100	50	16.08	1250.00	22.62	173.57	0.000000	0.00	0.000 (11
30	100	50	16.08	1250.00	25.05	171.91	0.000000	0.00	0.000 (11
31	100	50	16.08	1250.00	27.64	170.44	0.000000	0.00	0.000 (11
32	100	90	28.15	1250.00	28.85	757.20	0.000000	0.00	0.000 (11
33	100	90	28.15	1250.00	31.83	734.30	0.000000	0.00	0.000 (11
34	100	90	28.15	1250.00	35.25	712.65	0.000000	0.00	0.000 (11
35	100	90	28.15	1250.00	38.89	694.21	0.000000	0.00	0.000 (11
36	100	90	28.15	1250.00	42.72	678.57	0.000000	0.00	0.000 (11
37	100	90	28.15	1250.00	46.75	665.12	0.000000	0.00	0.000 (11
38	100	90	28.15	1250.00	50.97	653.43	0.000000	0.00	0.000 (11
39	100	90	28.15	1250.00	55.41	643.17	0.000000	0.00	0.000 (11
40	100	90	28.15	1250.00	60.05	634.09	0.000000	0.00	0.000 (11
41	100	90	28.15	1250.00	64.92	625.99	0.000000	0.00	0.000 (11
42	100	90	28.15	1250.00	70.01	618.73	0.000000	0.00	0.000 (11
43	100	90	28.15	1250.00	75.32	612.17	0.000000	0.00	0.000 (11
44	100	90	28.15	1250.00	80.87	606.22	0.000000	0.00	0.000 (11
45	100	90	28.15	1250.00	86.66	600.81	0.000000	0.00	0.000 (11
46	100	90	28.15	1250.00	92.70	595.85	0.000000	0.00	0.000 (11
47	100	90	28.15	1250.00	98.99	591.30	0.000000	0.00	0.000 (11
48	100	90	28.15	1250.00	105.53	587.11	0.000000	0.00	0.000 (11
49	100	90	28.15	1250.00	112.34	583.23	0.000000	0.00	0.000 (1:
50	100	90	28.15	1250.00	119.42	579.64	0.000000	0.00	0.000 (1
51	100	90	28.15	1250.00	126.77	576.30	0.000000	0.00	0.000 (1
52	100	90	28.15	1250.00	134.40	573.19	0.000000	0.00	0.000 (1:
53	100	90	28.15	1250.00	142.31	570.29	0.000000	0.00	0.000 (1
54	100	90	28.15	1250.00	150.51	567.58	0.000000	0.00	0.000 (1
55	100	90	28.15	1250.00	159.01	565.03	0.000000	0.00	0.000 (1
56	100	90	28.15	1250.00	167.82	562.64	0.000000	0.00	0.000 (1
57	100	90	28.15	1250.00	176.92	560.39	0.000000	0.00	0.000 (1
58	100	90	28.15	1250.00	186.35	558.28	0.000000	0.00	0.000 (1
59	100	90	28.15	1250.00	196.09	556.28	0.000000	0.00	0.000 (1
_									
60	100	90	28.15	1250.00	206.15	554.39	0.000000	0.00	0.000 (1
61	100	90	28.15	1250.00	216.54	552.61	0.000000	0.00	0.000 (1
62	100	90	28.15	1250.00	227.27	550.92	0.000000	0.00	0.000 (1
63	100	90	28.15	1250.00	238.34	549.31	0.000000	0.00	0.000 (11
64	100	90	28.15	1250.00	249.76	547.79	0.000000	0.00	0.000 (11
65	100	90	28.15	1250.00	261.52	546.34	0.000000	0.00	0.000 (11
66	100	90	28.15	1250.00	273.65	544.97	0.000000	0.00	0.000 (11

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

n°	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
67	100	90	28.15	1250.00	286.14	543.66	0.000000	0.00	0.000 (11)
68	100	90	28.15	1250.00	298.99	542.41	0.000000	0.00	0.000 (11)
69	100	90	28.15	1250.00	312.22	541.21	0.000000	0.00	0.000 (11)
70	100	90	28.15	1250.00	325.83	540.08	0.000000	0.00	0.000 (11)
71	100	90	28.15	1250.00	339.83	538.99	0.000000	0.00	0.000 (11)
72	100	90	28.15	1250.00	354.21	537.95	0.000000	0.00	0.000 (11)

Fondazione

Apertura limite fessure w_{lim}=0.40

n°	В	н	Af	Aeff	М	Mpf	8	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
1	100	90	0.00	0.00	0.00	0.00			0.000 (11)
2	100	90	18.10	1250.00	0.70	484.69	0.000000	0.00	0.000 (11)
3	100	90	18.10	1250.00	2.82	484.69	0.000000	0.00	0.000 (11)
4	100	90	18.10	1250.00	6.33	484.69	0.000000	0.00	0.000 (11)
5	100	90	18.10	1250.00	11.23	484.69	0.000000	0.00	0.000 (11)
6	100	90	18.10	1250.00	17.53	484.69	0.000000	0.00	0.000 (11)
7	100	90	18.10	1250.00	25.21	484.69	0.000000	0.00	0.000 (11)
8	100	90	20.11	1250.00	-87.70	-487.41	0.000000	0.00	0.000 (11)
9	100	90	20.11	1250.00	-86.73	-487.41	0.000000	0.00	0.000 (11
10	100	90	20.11	1250.00	-85.61	-487.41	0.000000	0.00	0.000 (11
11	100	90	20.11	1250.00	-84.35	-487.41	0.000000	0.00	0.000 (11
12	100	90	20.11	1250.00	-82.96	-487.41	0.000000	0.00	0.000 (11
13	100	90	20.11	1250.00	-82.90	-487.41	0.000000	0.00	
_									0.000 (11)
14	100	90	20.11	1250.00	-79.81	-487.41	0.000000	0.00	0.000 (11
15	100	90	20.11	1250.00	-78.06	-487.41	0.000000	0.00	0.000 (11
16	100	90	20.11	1250.00	-76.21	-487.41	0.000000	0.00	0.000 (11
17	100	90	20.11	1250.00	-74.27	-487.41	0.000000	0.00	0.000 (11
18	100	90	20.11	1250.00	-72.23	-487.41	0.000000	0.00	0.000 (11
19	100	90	20.11	1250.00	-70.11	-487.41	0.000000	0.00	0.000 (11
20	100	90	20.11	1250.00	-67.92	-487.41	0.000000	0.00	0.000 (11
21	100	90	20.11	1250.00	-65.65	-487.41	0.000000	0.00	0.000 (11
22	100	90	20.11	1250.00	-63.33	-487.41	0.000000	0.00	0.000 (11
23	100	90	20.11	1250.00	-60.96	-487.41	0.000000	0.00	0.000 (11
24	100	90	20.11	1250.00	-58.53	-487.41	0.000000	0.00	0.000 (11
25	100	90	20.11	1250.00	-56.07	-487.41	0.000000	0.00	0.000 (11
26	100	90	20.11	1250.00	-53.58	-487.41	0.000000	0.00	0.000 (11
27	100	90	20.11	1250.00	-51.06	-487.41	0.000000	0.00	0.000 (11
28	100	90	20.11	1250.00	-48.53	-487.41	0.000000	0.00	0.000 (11
29	100	90	20.11	1250.00	-45.99	-487.41	0.000000	0.00	0.000 (11
30	100	90	20.11	1250.00	-43.44	-487.41	0.000000	0.00	0.000 (11
31	100	90	20.11	1250.00	-40.90	-487.41	0.000000	0.00	0.000 (11
32	100	90	20.11	1250.00	-38.37	-487.41	0.000000	0.00	0.000 (11
33	100	90	20.11	1250.00	-35.85	-487.41	0.000000	0.00	0.000 (11
34	100	90	20.11	1250.00	-33.37	-487.41	0.000000	0.00	0.000 (11
35	100	90	20.11	1250.00	-30.92	-487.41	0.000000	0.00	0.000 (11
36	100	90	20.11	1250.00	-28.51	-487.41	0.000000	0.00	
37	100	90		1250.00	-26.14	-487.41	0.000000	0.00	0.000 (11
_			20.11						0.000 (11
38	100	90	20.11	1250.00	-23.84	-487.41	0.000000	0.00	0.000 (11
39	100	90	20.11	1250.00	-21.59	-487.41	0.000000	0.00	0.000 (11
40	100	90	20.11	1250.00	-19.42	-487.41	0.000000	0.00	0.000 (11
41	100	90	20.11	1250.00	-17.32	-487.41	0.000000	0.00	0.000 (11
42	100	90	20.11	1250.00	-15.30	-487.41	0.000000	0.00	0.000 (11
43	100	90	20.11	1250.00	-13.38	-487.41	0.000000	0.00	0.000 (11
44	100	90	20.11	1250.00	-11.56	-487.41	0.000000	0.00	0.000 (11
45	100	90	20.11	1250.00	-9.84	-487.41	0.000000	0.00	0.000 (11
46	100	90	20.11	1250.00	-8.23	-487.41	0.000000	0.00	0.000 (11
47	100	90	20.11	1250.00	-6.75	-487.41	0.000000	0.00	0.000 (11
48	100	90	20.11	1250.00	-5.39	-487.41	0.000000	0.00	0.000 (11
49	100	90	20.11	1250.00	-4.17	-487.41	0.000000	0.00	0.000 (11
50	100	90	20.11	1250.00	-3.09	-487.41	0.000000	0.00	0.000 (11
51	100	90	20.11	1250.00	-2.16	-487.41	0.000000	0.00	0.000 (11
52	100	90	20.11	1250.00	-1.39	-487.41	0.000000	0.00	0.000 (11
53	100	90	20.11	1250.00	-0.78	-487.41	0.000000	0.00	0.000 (11
54	100	90	20.11	1250.00	-0.34	-487.41	0.000000	0.00	0.000 (11
55	100	90	20.11	1250.00	-0.09	-487.41	0.000000	0.00	0.000 (11
JJ	100	3 U	20.11	1230.00	-0.03	107.11	0.000000	0.00	0.000 (11

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

n°	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
56	100	90	0.00	0.00	0.00	0.00			0.000 (11)

Sperone

Apertura limite fessure w_{lim} =0.40

n°	В	н	Af	Aeff	М	Mpf	ε	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
1	100	90	14.07	1250.00	107.05	463.12	0.000000	0.00	0.000 (11)

Combinazioni SLEQ

<u>Paramento</u>

Apertura limite fessure w_{lim}=0.30

n°	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
1	100	50	0.00	0.00	0.00	0.00			0.000 (12)
2	100	50	0.00	0.00	0.00	3.59	0.000000	0.00	0.000 (12)
3	100	50	0.00	0.00	0.01	10.20	0.000000	0.00	0.000 (12)
4	100	50	0.00	0.00	0.04	20.67	0.000000	0.00	0.000 (12)
5	100	50	0.00	0.00	0.09	36.52	0.000000	0.00	0.000 (12)
6	100	50	0.00	0.00	0.16	60.67	0.000000	0.00	0.000 (12)
7	100	50	0.00	0.00	0.26	99.30	0.000000	0.00	0.000 (12)
8	100	50	0.00	0.00	0.40	183.55	0.000000	0.00	0.000 (12)
9	100	50	0.00	0.00	0.59	348.72	0.000000	0.00	0.000 (12)
10	100	50	0.00	0.00	0.82	965.21	0.000000	0.00	0.000 (12)
11	100	50	0.00	0.00	1.10	3212.37	0.000000	0.00	0.000 (12)
12	100	50	16.08	1250.00	1.44	751.07	0.000000	0.00	0.000 (12)
13	100	50	16.08	1250.00	1.85	471.15	0.000000	0.00	0.000 (12)
14	100	50	16.08	1250.00	2.33	363.86	0.000000	0.00	0.000 (12)
15	100	50	16.08	1250.00	2.88	307.51	0.000000	0.00	0.000 (12)
16	100	50	16.08	1250.00	3.52	272.98	0.000000	0.00	0.000 (12)
17	100	50	16.08	1250.00	4.24	249.78	0.000000	0.00	0.000 (12)
18	100	50	16.08	1250.00	5.06	233.19	0.000000	0.00	0.000 (12)
19	100	50	16.08	1250.00	5.97	220.80	0.000000	0.00	0.000 (12)
20	100	50	16.08	1250.00	6.99	211.23	0.000000	0.00	0.000 (12)
21	100	50	16.08	1250.00	8.12	203.64	0.000000	0.00	0.000 (12)
22	100	50	16.08	1250.00	9.36	197.50	0.000000	0.00	0.000 (12)
23	100	50	16.08	1250.00	10.72	192.44	0.000000	0.00	0.000 (12)
24	100	50	16.08	1250.00	12.21	188.21	0.000000	0.00	0.000 (12)
25	100	50	16.08	1250.00	13.83	184.63	0.000000	0.00	0.000 (12)
26	100	50	16.08	1250.00	15.59	181.57	0.000000	0.00	0.000 (12)
27	100	50	16.08	1250.00	17.49	178.93	0.000000	0.00	0.000 (12)
28	100	50	16.08	1250.00	19.54	176.63	0.000000	0.00	0.000 (12)
29	100	50	16.08	1250.00	21.74	174.62	0.000000	0.00	0.000 (12)
30	100	50	16.08	1250.00	24.11	172.84	0.000000	0.00	0.000 (12)
31	100	50	16.08	1250.00	26.63	171.27	0.000000	0.00	0.000 (12)
32	100	90	28.15	1250.00	27.92	768.05	0.000000	0.00	0.000 (12)
33	100	90	28.15	1250.00	30.78	744.29	0.000000	0.00	0.000 (12)
34	100	90	28.15	1250.00	34.00	722.25	0.000000	0.00	0.000 (12)
35	100	90	28.15	1250.00	37.43	703.37	0.000000	0.00	0.000 (12)
36	100	90	28.15	1250.00	41.05	687.23	0.000000	0.00	0.000 (12)
37	100	90	28.15	1250.00	44.87	673.28	0.000000	0.00	0.000 (12)
38	100	90	28.15	1250.00	48.88	661.08	0.000000	0.00	0.000 (12)
39	100	90	28.15	1250.00	53.10	650.34	0.000000	0.00	0.000 (12)
40	100	90	28.15	1250.00	57.52	640.79	0.000000	0.00	0.000 (12)
41	100	90	28.15	1250.00	62.17	632.26	0.000000	0.00	0.000 (12)
42	100	90	28.15	1250.00	67.03	624.59	0.000000	0.00	0.000 (12)
43	100	90	28.15	1250.00	72.12	617.66	0.000000	0.00	0.000 (12)
44	100	90	28.15	1250.00	77.44	611.36	0.000000	0.00	0.000 (12)
45	100	90	28.15	1250.00	83.00	605.62	0.000000	0.00	0.000 (12)
46	100	90	28.15	1250.00	88.81	600.36	0.000000	0.00	0.000 (12)
47	100	90	28.15	1250.00	94.86	595.54	0.000000	0.00	0.000 (12)

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

n°	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
48	100	90	28.15	1250.00	101.17	591.08	0.000000	0.00	0.000 (12)
49	100	90	28.15	1250.00	107.74	586.97	0.000000	0.00	0.000 (12)
50	100	90	28.15	1250.00	114.57	583.16	0.000000	0.00	0.000 (12)
51	100	90	28.15	1250.00	121.67	579.61	0.000000	0.00	0.000 (12)
52	100	90	28.15	1250.00	129.06	576.31	0.000000	0.00	0.000 (12)
53	100	90	28.15	1250.00	136.72	573.24	0.000000	0.00	0.000 (12)
54	100	90	28.15	1250.00	144.68	570.36	0.000000	0.00	0.000 (12)
55	100	90	28.15	1250.00	152.92	567.66	0.000000	0.00	0.000 (12)
56	100	90	28.15	1250.00	161.47	565.13	0.000000	0.00	0.000 (12)
57	100	90	28.15	1250.00	170.32	562.74	0.000000	0.00	0.000 (12)
58	100	90	28.15	1250.00	179.48	560.50	0.000000	0.00	0.000 (12)
59	100	90	28.15	1250.00	188.96	558.39	0.000000	0.00	0.000 (12)
60	100	90	28.15	1250.00	198.76	556.39	0.000000	0.00	0.000 (12)
61	100	90	28.15	1250.00	208.89	554.51	0.000000	0.00	0.000 (12)
62	100	90	28.15	1250.00	219.35	552.72	0.000000	0.00	0.000 (12)
63	100	90	28.15	1250.00	230.15	551.03	0.000000	0.00	0.000 (12)
64	100	90	28.15	1250.00	241.29	549.42	0.000000	0.00	0.000 (12)
65	100	90	28.15	1250.00	252.78	547.90	0.000000	0.00	0.000 (12)
66	100	90	28.15	1250.00	264.63	546.45	0.000000	0.00	0.000 (12)
67	100	90	28.15	1250.00	276.84	545.07	0.000000	0.00	0.000 (12)
68	100	90	28.15	1250.00	289.41	543.75	0.000000	0.00	0.000 (12)
69	100	90	28.15	1250.00	302.36	542.50	0.000000	0.00	0.000 (12)
70	100	90	28.15	1250.00	315.68	541.30	0.000000	0.00	0.000 (12)
71	100	90	28.15	1250.00	329.39	540.16	0.000000	0.00	0.000 (12)
72	100	90	28.15	1250.00	343.48	539.07	0.000000	0.00	0.000 (12)

Fondazione

Apertura limite fessure w_{lim}=0.30

n°	В	н	Af	Aeff	М	Mpf	8	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
1	100	90	0.00	0.00	0.00	0.00			0.000 (12)
2	100	90	18.10	1250.00	0.70	484.69	0.000000	0.00	0.000 (12)
3	100	90	18.10	1250.00	2.81	484.69	0.000000	0.00	0.000 (12)
4	100	90	18.10	1250.00	6.31	484.69	0.000000	0.00	0.000 (12)
5	100	90	18.10	1250.00	11.21	484.69	0.000000	0.00	0.000 (12)
6	100	90	18.10	1250.00	17.49	484.69	0.000000	0.00	0.000 (12)
7	100	90	18.10	1250.00	25.15	484.69	0.000000	0.00	0.000 (12)
8	100	90	20.11	1250.00	-88.02	-487.41	0.000000	0.00	0.000 (12)
9	100	90	20.11	1250.00	-87.08	-487.41	0.000000	0.00	0.000 (12)
10	100	90	20.11	1250.00	-86.00	-487.41	0.000000	0.00	0.000 (12)
11	100	90	20.11	1250.00	-84.76	-487.41	0.000000	0.00	0.000 (12)
12	100	90	20.11	1250.00	-83.40	-487.41	0.000000	0.00	0.000 (12)
13	100	90	20.11	1250.00	-81.90	-487.41	0.000000	0.00	0.000 (12)
14	100	90	20.11	1250.00	-80.28	-487.41	0.000000	0.00	0.000 (12)
15	100	90	20.11	1250.00	-78.55	-487.41	0.000000	0.00	0.000 (12)
16	100	90	20.11	1250.00	-76.71	-487.41	0.000000	0.00	0.000 (12)
17	100	90	20.11	1250.00	-74.77	-487.41	0.000000	0.00	0.000 (12)
18	100	90	20.11	1250.00	-72.74	-487.41	0.000000	0.00	0.000 (12)
19	100	90	20.11	1250.00	-70.63	-487.41	0.000000	0.00	0.000 (12)
20	100	90	20.11	1250.00	-68.44	-487.41	0.000000	0.00	0.000 (12)
21	100	90	20.11	1250.00	-66.17	-487.41	0.000000	0.00	0.000 (12)
22	100	90	20.11	1250.00	-63.85	-487.41	0.000000	0.00	0.000 (12)
23	100	90	20.11	1250.00	-61.47	-487.41	0.000000	0.00	0.000 (12)
24	100	90	20.11	1250.00	-59.04	-487.41	0.000000	0.00	0.000 (12)
25	100	90	20.11	1250.00	-56.57	-487.41	0.000000	0.00	0.000 (12)
26	100	90	20.11	1250.00	-54.07	-487.41	0.000000	0.00	0.000 (12)
27	100	90	20.11	1250.00	-51.55	-487.41	0.000000	0.00	0.000 (12)
28	100	90	20.11	1250.00	-49.00	-487.41	0.000000	0.00	0.000 (12)
29	100	90	20.11	1250.00	-46.44	-487.41	0.000000	0.00	0.000 (12)
30	100	90	20.11	1250.00	-43.88	-487.41	0.000000	0.00	0.000 (12)
31	100	90	20.11	1250.00	-41.32	-487.41	0.000000	0.00	0.000 (12)
32	100	90	20.11	1250.00	-38.78	-487.41	0.000000	0.00	0.000 (12)
33	100	90	20.11	1250.00	-36.25	-487.41	0.000000	0.00	0.000 (12)
34	100	90	20.11	1250.00	-33.75	-487.41	0.000000	0.00	0.000 (12)
35	100	90	20.11	1250.00	-31.28	-487.41	0.000000	0.00	0.000 (12)
36	100	90	20.11	1250.00	-28.85	-487.41	0.000000	0.00	0.000 (12)

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

n°	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
37	100	90	20.11	1250.00	-26.46	-487.41	0.000000	0.00	0.000 (12)
38	100	90	20.11	1250.00	-24.14	-487.41	0.000000	0.00	0.000 (12)
39	100	90	20.11	1250.00	-21.87	-487.41	0.000000	0.00	0.000 (12)
40	100	90	20.11	1250.00	-19.68	-487.41	0.000000	0.00	0.000 (12)
41	100	90	20.11	1250.00	-17.56	-487.41	0.000000	0.00	0.000 (12)
42	100	90	20.11	1250.00	-15.52	-487.41	0.000000	0.00	0.000 (12)
43	100	90	20.11	1250.00	-13.58	-487.41	0.000000	0.00	0.000 (12)
44	100	90	20.11	1250.00	-11.74	-487.41	0.000000	0.00	0.000 (12)
45	100	90	20.11	1250.00	-10.00	-487.41	0.000000	0.00	0.000 (12)
46	100	90	20.11	1250.00	-8.38	-487.41	0.000000	0.00	0.000 (12)
47	100	90	20.11	1250.00	-6.87	-487.41	0.000000	0.00	0.000 (12)
48	100	90	20.11	1250.00	-5.50	-487.41	0.000000	0.00	0.000 (12)
49	100	90	20.11	1250.00	-4.26	-487.41	0.000000	0.00	0.000 (12)
50	100	90	20.11	1250.00	-3.16	-487.41	0.000000	0.00	0.000 (12)
51	100	90	20.11	1250.00	-2.22	-487.41	0.000000	0.00	0.000 (12)
52	100	90	20.11	1250.00	-1.43	-487.41	0.000000	0.00	0.000 (12)
53	100	90	20.11	1250.00	-0.81	-487.41	0.000000	0.00	0.000 (12)
54	100	90	20.11	1250.00	-0.35	-487.41	0.000000	0.00	0.000 (12)
55	100	90	20.11	1250.00	-0.09	-487.41	0.000000	0.00	0.000 (12)
56	100	90	0.00	0.00	0.00	0.00			0.000 (12)

Sperone

Apertura limite fessure w_{lim}=0.30

n°	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
1	100	90	14.07	1250.00	107.05	463.12	0.000000	0.00	0.000 (12)

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

VERIFICHE DEL MURO CON ALTEZZA PARI A 4.0M 11.5.

Geometria muro

Geometria paramento e fondazione

<u>Paramento</u>	
Materiale C32/40	
Altezza paramento 4,00	[m]
Altezza paramento libero 4,00	[m]
Spessore in sommità 0,50	[m]
Spessore all'attacco con la fondazione 0,50	[m]
Inclinazione paramento esterno 0,00	[°]
Inclinazione paramento interno 0,00	[°]
Fondazione	
Materiale C28/35	
Lunghezza mensola di valle 0,50	[m]
Lunghezza mensola di monte 2,50	[m]
Lunghezza totale 3,50	[m]
Inclinazione piano di posa 0,00	[°]
Spessore 0,50	[m]
Spessore magrone 0,10	[m]
Sperone	
Posizione Centrale	
Distanza dal tacco della fondazione 2,50	[m]
Altezza 0,50	[m]
Spessore 0,50	[m]

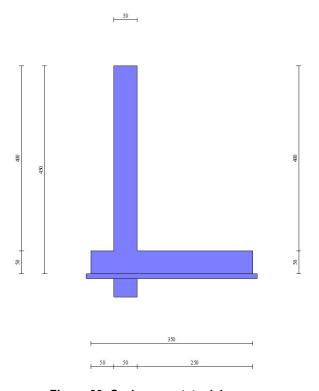


Figura 39: Sezione quotata del muro

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Descrizione terreni

Parametri di resistenza

Simbologia adottata

Indice del terreno Descr Descrizione terreno

Peso di volume del terreno espresso in [kN/mc]
Peso di volume saturo del terreno espresso in [kN/mc]

Angolo d'attrito interno espresso in [°] $_{\delta}^{\varphi}$

Angolo d'attrito terra-muro espresso in [°]
Coesione espressa in [MPa]

ca Adesione terra-muro espressa in [MPa]
Per calcolo portanza con il metodo di Bustamante-Doix

Coeff. di espansione laterale (solo per il metodo di Bustamante-Doix) Tensione tangenziale limite, espressa in [MPa] Cesp

n°	Descr	γ	γsat	ф	δ	С	ca	Cesp	τΙ	
		[kN/mc]	[kN/mc]	[°]	[°]	[MPa]	[MPa]		[MPa]	
1	Rilevato	20,0000	20,0000	30.000	20.000	0,000	0,000			
2	Terreno di sito	19.0000	19.0000	22,000	14.670	0.015	0.000			

Parametri di deformabilità

Simbologia adottata

Indice del terreno Descrizione terreno Descr

Modulo elastico, espresso in [MPa]

Coeff. di Poisson

Ed CR Modulo edometrico, espresso in [MPa]

Rapporto di compressione Rapporto di ricompressione OCR Grado di sovraconsolidazione

n°	Descr	E	ν	Ed	CR	RR	OCR
		[MPa]		[MPa]			
1	Rilevato	0,000	0.000	0,000	0.000	0.000	1.000
2	Terreno di sito	0,000	0.000	10,000	0.000	0.000	1.000

Stratigrafia

Simbologia adottata

Indice dello strato Н

Spessore dello strato espresso in [m] Inclinazione espressa in [°] Terreno Terreno dello strato

Per calcolo pali (solo se presenti)
Kw Costante di Winkler orizzontale espressa in Kg/cm²/cm

Coefficiente di spinta

Coefficiente di espansione laterale (per tutti i metodi tranne il metodo di Bustamante-Doix)

Per calcolo della spinta con coeff. di spinta definiti (usati solo se attiva l'opzione 'Usa coeff. di spinta da strato') Kst_{sta}, Kst_{sis} Coeff. di spinta statico e sismico

n°	Н	α	Terreno	Kw	Ks	Cesp	Kst _{sta}	Kstsis
	[m]	[°]		[Kg/cm³]				
1	3,00	0.000	Rilevato					
2	10,00	0.000	Terreno di sito					

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

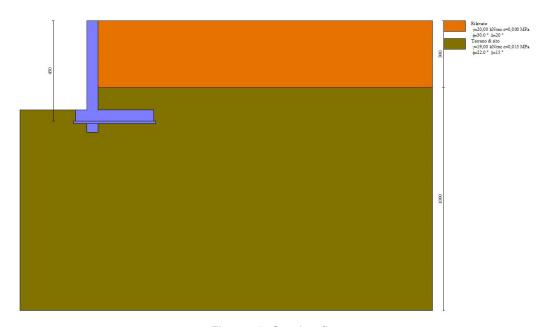


Figura 40: Stratigrafia

Condizioni di carico

Simbologia adottata

Carichi verticali positivi verso il basso. Carichi orizzontali positivi verso sinistra. Momento positivo senso antiorario.

Ascissa del punto di applicazione del carico concentrato espressa in [m]

Componente orizzontale del carico concentrato espressa in [kN] Componente verticale del carico concentrato espressa in [kN]

Momento espresso in [kNm]

Fy M Xi Xf Ascissa del punto iniziale del carico ripartito espressa in [m]

Ascissa del punto finale del carico ripartito espressa in [m]

Intensità del carico per $x=X_i$ espressa in [kN] Intensità del carico per $x=X_f$ espressa in [kN]

Condizione nº 1 (Condizione 1) - VARIABILE TF

Coeff. di combinazione Ψ_0 =0.75 - Ψ_1 =0.75 - Ψ_2 =0.00

Carichi sul terreno

n°	Tipo	X	Fx	Fy	М	Xi	Xf	Qi	Qf
		[m]	[kN]	[kN]	[kNm]	[m]	[m]	[kN]	[kN]
1	Distribuito					0,00	5,00	5,0000	5,0000

Normativa

Normativa usata: Norme Tecniche sulle Costruzioni 2018 (D.M. 17.01.2018) + Circolare C.S.LL.PP. 21/01/2019 n.7

Coeff. parziali per le azioni o per l'effetto delle azioni

Carichi	Effetto			Combinazioni statiche					Combinazioni sismiche		
			HYD	UPL	EQU	A1	A2	EQU	A1	A2	
Permanenti strutturali	Favorevoli	γG1,fav	1.00	0.90	1.00	1.00	1.00	1.00	1.00	1.00	
Permanenti strutturali	Sfavorevoli	γG1,sfav	1.00	1.10	1.30	1.30	1.00	1.00	1.00	1.00	
Permanenti non strutturali	Favorevoli	γG2,fav	0.00	0.80	0.80	0.80	0.80	0.00	0.00	0.00	
Permanenti non strutturali	Sfavorevoli	γG2,sfav	1.00	1.50	1.50	1.50	1.30	1.00	1.00	1.00	
Variabili	Favorevoli	γQ,fav	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Variabili	Sfavorevoli	γQ,sfav	1.00	1.50	1.50	1.50	1.30	1.00	1.00	1.00	
Variabili da traffico	Favorevoli	γQT,fav	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Variabili da traffico	Sfavorevoli	γ̂QT,sfav	1.00	1.50	1.35	1.35	1.15	1.00	1.00	1.00	

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Coeff. parziali per i parametri geotecnici del terreno

Parametro		Combinazio	oni statiche	Combinazioni sismiche		
		M1		M1	M2	
Tangente dell'angolo di attrito	γtan(φ')	1.00	1.25	1.00	1.00	
Coesione efficace	γc'	1.00	1.25	1.00	1.00	
Resistenza non drenata	γcu	1.00	1.40	1.00	1.00	
Peso nell'unita di volume	γγ	1.00	1.00	1.00	1.00	

Coeff. parziali y_R per le verifiche agli stati limite ultimi STR e GEO

Verifica	Combinazioni statiche			Combinazioni sismiche			
	R1 R2 R3			R1	R2	R3	
Capacità portante			1.40			1.20	
Scorrimento			1.10			1.00	
Resistenza terreno a valle			1.40			1.20	
Ribaltameno			1.15			1.00	
Stabilità fronte di scavo		1.10			1.20		

Descrizione combinazioni di carico

Con riferimento alle azioni elementari prima determinate, si sono considerate le seguenti combinazioni di carico:

- Combinazione fondamentale, impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} G_1 + \gamma_{G2} G_2 + \gamma_{Q1} Q_{k1} + \gamma_{Q2} Q_{k2} + \gamma_{Q3} Q_{k3} + ...$$

- Combinazione caratteristica, cosiddetta rara, impiegata per gli stati limite di esercizio (SLE) irreversibili:

$$G_1 + G_2 + Q_{k1} + \Psi_{0,2} Q_{k2} + \Psi_{0,3} Q_{k3} + ...$$

- Combinazione frequente, impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + \Psi_{1,1} Q_{k1} + \Psi_{2,2} Q_{k2} + \Psi_{2,3} Q_{k3} + ...$$

- Combinazione quasi permanente, impiegata per gli effetti di lungo periodo:

$$G_1 \, + \, G_2 \, + \, \Psi_{2,1} \, \, Q_{k1} \, + \, \Psi_{2,2} \, \, Q_{k2} \, + \, \Psi_{2,3} \, \, Q_{k3} \, + \, \dots$$

- Combinazione sismica, impiegata per gli stati limite ultimi connessi all'azione sismica E:

$$E\,+\,G_{1}\,+\,G_{2}\,+\,\Psi_{2,1}\;Q_{k1}\,+\,\Psi_{2,2}\;Q_{k2}\,+\,\Psi_{2,3}\;Q_{k3}\,+\,...$$

I valori dei coeff. $\Psi_{0,i}$, $\Psi_{1,i}$, $\Psi_{2,i}$ sono definiti nelle singole condizioni variabili.par I valori dei coeff. γ_G e γ_O , sono definiti nella tabella

In particolare si sono considerate le seguenti combinazioni:

Simbologia adottata

Coefficiente di partecipazione della condizione Coefficiente di combinazione della condizione

Combinazione nº 1 - STR (A1-M1-R3)

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.30		Sfavorevole
Condizione 1	1.35	1.00	Sfavorevole

Combinazione nº 2 - STR (A1-M1-R3) H + V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.00		Sfavorevole

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Combinazione nº 3 - STR (A1-M1-R3) H - V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole

Combinazione nº 4 - STR (A1-M1-R3)

Condizione	γ	Ψ	Effetto
Peso muro	1.30		Sfavorevole
Peso terrapieno	1.30		Sfavorevole
Spinta terreno	1.30		Sfavorevole
Condizione 1	1.35	1.00	Sfavorevole

Combinazione nº 5 - STR (A1-M1-R3)

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.30		Sfavorevole
Spinta terreno	1.30		Sfavorevole
Condizione 1	1.35	1.00	Sfavorevole

Combinazione nº 6 - STR (A1-M1-R3)

Condizione	γ	Ψ	Effetto
Peso muro	1.30		Sfavorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.30		Sfavorevole
Condizione 1	1.35	1.00	Sfavorevole

Combinazione nº 7 - GEO (A2-M2-R2)

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole
Condizione 1	1.15	1.00	Sfavorevole

Combinazione nº 8 - GEO (A2-M2-R2) H + V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole

Combinazione nº 9 - GEO (A2-M2-R2) H - V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole

Combinazione nº 10 - EQU (A1-M1-R3)

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.30		Sfavorevole
Condizione 1	1.35	1.00	Sfavorevole

Combinazione nº 11 - EQU (A1-M1-R3) H + V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.00		Sfavorevole

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Combinazione nº 12 - EQU (A1-M1-R3) H - V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.00		Sfavorevole

Combinazione nº 13 - SLER

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole
Condizione 1	1.00	1.00	Sfavorevole

Combinazione nº 14 - SLEF

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole
Condizione 1	1.00	0.75	Sfavorevole

Combinazione nº 15 - SLEQ

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole

Combinazione nº 16 - SLEQ H + V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole

Combinazione nº 17 - SLEQ H - V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole

Dati sismici

	Simbolo	U.M.		SLU	SLE
Accelerazione al suolo	a _q	[m/s ²]		2,250	0.903
Accelerazione al suolo	a₀/g	[%]		0.229	0.092
Massimo fattore amplificazione spettro orizzontale	F0			2.458	2.419
Periodo inizio tratto spettro a velocità costante	Tc*			0.345	0.311
Tipo di sottosuolo - Coefficiente stratigrafico	Ss		С	1.362	1.500
Categoria topografica - Coefficiente amplificazione topografica	St		T1	1.000	

Stato limite	Coeff. di riduzione β _m	kh	kv
Ultimo	0.380	11.871	5.935
Ultimo - Ribaltamento	0.570	17.806	8.903
Esercizio	0.470	6.489	3.245

Forma diagramma incremento sismico **Stessa forma del diagramma statico**

Opzioni di calcolo

<u>Spinta</u>

Metodo di calcolo della spinta Tipo di spinta

Culmann Spinta attiva

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Terreno a bassa permeabilità Superficie di spinta limitata NO

Capacità portante

Metodo di calcolo della portanza Meyerhof Criterio di media calcolo del terreno equivalente (terreni stratificati) Ponderata Criterio di riduzione per eccentricità della portanza Meyerhof Criterio di riduzione per rottura locale (punzonamento) Nessuna

Larghezza fondazione nel terzo termine della formula del carico limite ($0.5B\gamma N_{\gamma}$) Larghezza ridotta (B')

Fattori di forma e inclinazione del carico Solo i fattori di inclinazione

Se la fondazione ha larghezza superiore a 2.0 m viene applicato il fattore di riduzione per comportamento a piastra

Stabilità globale

Metodo di calcolo della stabilità globale **Bishop**

Altro

Partecipazione spinta passiva terreno antistante 0.00 Partecipazione resistenza passiva dente di fondazione 50.00 Componente verticale della spinta nel calcolo delle sollecitazioni NO Considera terreno sulla fondazione di valle Considera spinta e peso acqua fondazione di valle NO

Spostamenti

Non è stato richiesto il calcolo degli spostamenti

Cedimenti

Metodo di calcolo delle tensioni Boussinesq Metodo di calcolo dei cedimenti Edometrico Profondità calcolo cedimenti Automatica ΔH massimo suddivisione strati 1.00 [m]

Specifiche per le verifiche nelle combinazioni allo Stato Limite Ultimo (SLU)

me compiliazioni ano otato zinine citati (ezo)				
	SLU	Eccezionale		
Coefficiente di sicurezza calcestruzzo a compressione	1.50	1.00		
Coefficiente di sicurezza acciaio	1.15	1.00		
Fattore di riduzione da resistenza cubica a cilindrica	0.83	0.83		
Fattore di riduzione per carichi di lungo periodo	0.85	0.85		
Coefficiente di sicurezza per la sezione	1.00	1.00		

Specifiche per le verifiche nelle combinazioni allo Stato Limite di Esercizio (SLE)

Paramento e fondazione muro

Verifiche strutturali nelle combinazioni SLD SI

Condizioni ambientali Ordinarie Armatura ad aderenza migliorata ST

Verifica a fessurazione

Sensibilità armatura Poco sensibile

Metodo di calcolo aperture delle fessure NTC 2018 - CIRCOLARE 21 gennaio 2019, n. 7 C.S.LL.PP.

Valori limite aperture delle fessure:

 $w_1 = 0.20$ $w_2 = 0.30$ $w_3 = 0.40$

Verifica delle tensioni

Valori limite delle tensioni nei materiali:

Combinazione	Calcestruzzo	Acciaio
Rara	0.60 f _{ck}	0.80 f _{yk}
Frequente	1.00 f _{ck}	1.00 f _{yk}
Quasi permanente	0.45 f _{ck}	1.00 f _{yk}

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Risultati per inviluppo

Risultanti globali

Simbologia adottata

Indice/Tipo combinazione

Componente normale al piano di posa, espressa in [kN] Componente parallela al piano di posa, espressa in [kN]

Momento ribaltante, espresso in [kNm] Momento stabilizzante, espresso in [kNm] Eccentricità risultante, espressa in [m] M_{r} Мs

Ic	N	Т	Mr	Ms	ecc
	[kN]	[kN]	[kNm]	[kNm]	[m]
1 - STR (A1-M1-R3)	334.99	71.16	122.24	677.72	0.092
2 - STR (A1-M1-R3)	332.92	97.62	178.79	663.44	0.294
3 - STR (A1-M1-R3)	295.44	89.60	200.04	621.79	0.322
4 - STR (A1-M1-R3)	423.66	71.16	122.24	845.97	0.042
5 - STR (A1-M1-R3)	394.24	71.16	122.24	811.03	0.003
6 - STR (A1-M1-R3)	364.41	71.16	122.24	712.65	0.130
7 - GEO (A2-M2-R2)	327.22	67.84	118.34	653.63	0.114
8 - GEO (A2-M2-R2)	332.92	97.62	178.79	663.44	0.294
9 - GEO (A2-M2-R2)	295.44	89.60	200.04	621.79	0.322
10 - EQU (A1-M1-R3)	334.99	71.16	122.24	677.72	0.092
11 - EQU (A1-M1-R3)	345.22	126.69	233.22	692.43	0.420
12 - EQU (A1-M1-R3)	289.13	115.05	265.68	630.41	0.489
13 - SLER	323.77	48.54	88.93	643.92	0.036
14 - SLEF	320.13	46.99	85.28	635.09	0.033
15 - SLEQ	309.26	42.48	74.44	608.75	0.022
16 - SLEQ	322.05	72.17	130.80	638.15	0.175
17 - SLEQ	301.54	67.73	142.34	615.31	0.182

Verifiche geotecniche

Quadro riassuntivo coeff. di sicurezza calcolati

Simbologia adottata

Cmb Indice/Tipo combinazione

Sisma (H: componente orizzontale, V: componente verticale)

FS_{SCO} FS_{RIB} Coeff. di sicurezza allo scorrimento Coeff. di sicurezza al ribaltamento Coeff. di sicurezza a carico limite Coeff. di sicurezza a stabilità globale FS_{QLIM} FS_{STAB} FS_{HYD} Coeff. di sicurezza a sifonamento Coeff. di sicurezza a sollevamento

Cmb	Sismica	FS _{sco}	FS _{RIB}	FSQLIM	FS _{STAB}	FS _{HYD}	FSUPL
1 - STR (A1-M1-R3)		1.405		2.638			
2 - STR (A1-M1-R3)	H + V	1.038		1.890			
3 - STR (A1-M1-R3)	H - V	1.012		2.048			
4 - STR (A1-M1-R3)		1.751		2.456			
5 - STR (A1-M1-R3)		1.627		2.796			
6 - STR (A1-M1-R3)		1.528		2.430			
7 - GEO (A2-M2-R2)					1.644		
8 - GEO (A2-M2-R2)	H + V				1.713		
9 - GEO (A2-M2-R2)	H - V				1.746		
10 - EQU (A1-M1-R3)			5.544				
11 - EQU (A1-M1-R3)	H + V		2.969				
12 - EQU (A1-M1-R3)	H - V		2.373				

Verifica a scorrimento fondazione

Simbologia adottata

Indice combinazione

Rsa Resistenza allo scorrimento per attrito, espresso in [kN] Resistenza passiva terreno antistante, espresso in [kN] Resistenza passiva sperone, espresso in [kN] Rpt Rps

Resistenza a carichi orizzontali pali (solo per fondazione mista), espresso in [kN] Resistenza a carichi orizzontali tiranti (solo se presenti), espresso in [kN]

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Resistenza allo scorrimento (somma di Rsa+Rpt+Rps+Rp), espresso in [kN] Carico parallelo al piano di posa, espresso in [kN]

Fattore di sicurezza (rapporto R/T)

n°	Rsa	Rpt	Rps	Rp	Rt	R	T	FS
	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	
1 - STR (A1-M1-R3)	73.48	0.00	26.47			99.95	71.16	1.405
3 - STR (A1-M1-R3) H - V	61.06	0.00	29.66			90.72	89.60	1.012

Dettagli verifica a scorrimento

Simbologia adottata

Indice combinazione

n° Ncss Carico sul cuneo di spinta passiva, espresso in [kN] Angolo di rottura passivo, espresso in [°] Nrpp Carico residuo sul piano di posa, espresso in [kN] Lunghezza base residua, espresso in [m]

n°	Ncss	фпр	Nrpp	Lr
	[kN]		[kN]	[m]
1	54.31	34.000	280.68	3.00
3	62.21	34.000	233.24	3.00

Verifica a carico limite

Simbologia adottata

Indice combinazione

Carico normale totale al piano di posa, espresso in [kN] carico limite del terreno, espresso in [kN] N

Qu Qd FS Portanza di progetto, espresso in [kN]

Fattore di sicurezza (rapporto tra il carico limie e carico agente al piano di posa)

n°	N	Qu	Qd	FS
	[kN]	[kN]	[kN]	
6 - STR (A1-M1-R3)	364.41	885.43	632.45	2.430
2 - STR (A1-M1-R3) H + V	332.92	629.29	524.41	1.890

Dettagli calcolo portanza

Simbologia adottata

Indice combinazione Fattori di capacità portante n° Nc, Nq, Nγ ic, iq, iγ dc, dq, dγ gc, gq, gγ Fattori di inclinazione del carico Fattori di profondità del piano di posa Fattori di inclinazione del profilo topografico Fattori di inclinazione del piano di posa Fattori di forma della fondazione bc, bq, by SC, SQ, SY

pc, pq, pγ Re Fattori di riduzione per punzonamento secondo Vesic

Fattore di riduzione capacità portante per eccentricità secondo Meyerhof Indici di rigidezza per punzonamento secondo Vesic

Ir, Irc

Fattori per tener conto dell'effetto piastra. Per fondazioni che hanno larghezza maggiore di 2 m, il terzo termine della formula trinomia 0.5ByN, viene moltiplicato per questo fattore

Affondamento del piano di posa, espresso in [m] Larghezza fondazione ridotta, espresso in [m]
Altezza del cuneo di rottura, espresso in [m] B' Peso di volume del terreno medio, espresso in [kN/mc] Angolo di attrito del terreno medio, espresso in [°]

Coesione del terreno medio, espresso in [MPa] Per i coeff. che in tabella sono indicati con il simbolo '--' sono coeff. non presenti nel metodo scelto (Meyerhof).

n°	Nc Nq Ny	ic iq iy	dc dq dγ	gc gq gy	bc bq by	sc sq sγ	pc pq pγ	Ir	Irc	Re	ľγ
6	16.883 7.821 4.066	0.770 0.770 0.248	1.054 1.027 1.027	 	 	 				0.807	0.939
2	16.883 7.821 4.066	0.670 0.670 0.066	1.054 1.027 1.027	 	 	 	 			0.710	0.939

n°	D	B'	Н	γ	ф	С
	[m]	[m]	[m]	[°]	[kN/mc]	[MPa]
6	0.64	3.50	2.59	19.00	22.00	0.015

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

n°	D	B'	Н	γ	ф	С
	[m]	[m]	[m]	[°]	[kN/mc]	[MPa]
2	0.64	3.50	2.59	19.00	22.00	0.015

Verifica a ribaltamento

Simbologia adottata

n° Ms Indice combinazione

Momento stabilizzante, espresso in [kNm] Momento ribaltante, espresso in [kNm]

FS Fattore di sicurezza (rapporto tra momento stabilizzante e momento ribaltante)
La verifica viene eseguita rispetto allo spigolo inferiore esterno della fondazione

nº	Ms	Mr	FS	
	[kNm]	[kNm]		
10 - EQU (A1-M1-R3)	677.72	122.24	5.544	
12 - EQU (A1-M1-R3) H - V	630.41	265.68	2.373	

Verifica stabilità globale muro + terreno

Simbologia adottata

Indice/Tipo combinazione

Centro superficie di scorrimento, espresso in [m] Raggio, espresso in [m]

FS Fattore di sicurezza

Ic	С	R	FS
	[m]	[m]	
7 - GEO (A2-M2-R2)	-0.50; 0.50	5.84	1.644
8 - GEO (A2-M2-R2) H + V	-0.50; 3.00	8.09	1.713

Dettagli strisce verifiche stabilità

Simbologia adottata

Le ascisse X sono considerate positive verso monte Le ordinate Y sono considerate positive verso l'alto Origine in testa al muro (spigolo contro terra) peso della striscia espresso in [kN] carico sulla striscia espresso in [kN] W Qy

angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)

α angolo d'attrito del terreno lungo la base della striscia coesione del terreno lungo la base della striscia espressa in [MPa]

b

larghezza della striscia espressa in [m] pressione neutra lungo la base della striscia espressa in [MPa] Resistenza al taglio fornita dai tiranti in direzione X ed Y espressa in [MPa] Tx; Ty

n°	W	Qy	b	α	ф	С	u	Tx; Ty
	[kN]	[kN]	[m]	[°]	[°]	[MPa]	[MPa]	[kN]
1	6.17	0.31	5.33 - 0.38	76.645	24.791	0.000	0.0000	
2	15.40	2.20	0.38	64.446	24.791	0.000	0.0000	
3	20.69	2.20	0.38	56.672	24.791	0.000	0.0000	
4	24.60	2.20	0.38	50.313	17.912	0.012	0.0000	
5	27.65	2.20	0.38	44.729	17.912	0.012	0.0000	
6	30.19	2.20	0.38	39.647	17.912	0.012	0.0000	
7	32.31	2.20	0.38	34.919	17.912	0.012	0.0000	
8	34.74	2.20	0.38	30.451	17.912	0.012	0.0000	
9	36.66	2.20	0.38	26.181	17.912	0.012	0.0000	
10	37.91	2.20	0.38	22.063	17.912	0.012	0.0000	
11	38.92	2.20	0.38	18.062	17.912	0.012	0.0000	
12	39.73	2.20	0.38	14.151	17.912	0.012	0.0000	
13	40.33	2.20	0.38	10.307	17.912	0.012	0.0000	
14	39.69	2.03	0.38	6.509	17.912	0.012	0.0000	
15	49.32	0.00	0.38	2.740	17.912	0.012	0.0000	
16	16.65	0.00	0.38	-1.017	17.912	0.012	0.0000	
17	10.15	0.00	0.38	-4.779	17.912	0.012	0.0000	
18	9.25	0.00	0.38	-8.562	17.912	0.012	0.0000	
19	8.74	0.00	0.38	-12.382	17.912	0.012	0.0000	
20	8.03	0.00	0.38	-16.260	17.912	0.012	0.0000	
21	7.11	0.00	0.38	-20.217	17.912	0.012	0.0000	
22	5.97	0.00	0.38	-24.277	17.912	0.012	0.0000	

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

n°	w	Qy	b	α	ф	С	u	Tx; Ty
	[kN]	[kN]	[m]	[°]	[°]	[MPa]	[MPa]	[kN]
23	4.59	0.00	0.38	-28.473	17.912	0.012	0.0000	
24	2.93	0.00	0.38	-32.843	17.912	0.012	0.0000	
25	0.97	0.00	-4.24 - 0.38	-36.195	17.912	0.012	0.0000	

n°	W	Qy	b	α	ф	С	u	Tx; Ty
	[kN]	[kN]	[m]	[°]	[°]	[MPa]	[MPa]	[kN]
1	4.40	0.00	7.02 - 0.46	63.972	30.000	0.000	0.0000	
2	12.20	0.00	0.46	57.697	30.000	0.000	0.0000	
3	18.35	0.00	0.46	51.957	30.000	0.000	0.0000	
4	23.39	0.00	0.46	46.888	30.000	0.000	0.0000	
5	27.62	0.00	0.46	42.265	30.000	0.000	0.0000	
6	31.09	0.00	0.46	37.963	22.000	0.015	0.0000	
7	34.06	0.00	0.46	33.901	22.000	0.015	0.0000	
8	36.61	0.00	0.46	30.025	22.000	0.015	0.0000	
9	38.80	0.00	0.46	26.297	22.000	0.015	0.0000	
10	40.98	0.00	0.46	22.685	22.000	0.015	0.0000	
11	43.50	0.00	0.46	19.166	22.000	0.015	0.0000	
12	44.79	0.00	0.46	15.721	22.000	0.015	0.0000	
13	45.81	0.00	0.46	12.334	22.000	0.015	0.0000	
14	46.58	0.00	0.46	8.990	22.000	0.015	0.0000	
15	47.10	0.00	0.46	5.677	22.000	0.015	0.0000	
16	56.41	0.00	0.46	2.383	22.000	0.015	0.0000	
17	17.79	0.00	0.46	-0.903	22.000	0.015	0.0000	
18	9.75	0.00	0.46	-4.192	22.000	0.015	0.0000	
19	8.94	0.00	0.46	-7.495	22.000	0.015	0.0000	
20	8.28	0.00	0.46	-10.824	22.000	0.015	0.0000	
21	7.38	0.00	0.46	-14.189	22.000	0.015	0.0000	
22	6.21	0.00	0.46	-17.606	22.000	0.015	0.0000	
23	4.78	0.00	0.46	-21.090	22.000	0.015	0.0000	
24	3.05	0.00	0.46	-24.657	22.000	0.015	0.0000	
25	1.02	0.00	-4.57 - 0.46	-27.398	22.000	0.015	0.0000	



Figura 41: Stabilità fronte di scavo - Cerchio critico (Combinazione n° 7)

Cedimenti

Simbologia adottata

Ic X, Y

Indice combinazione
Punto di calcolo del cedimento, espressa in [m] w dw Cedimento, espressa in [cm]
Cedimento differenziale, espressa in [cm]

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Ic	X; Y	w	dw
	[m]	[cm]	[cm]
13	-1.00; -4.50	2.935	0.115
13	0.75; -4.50	4.172	1.351
13	2.50; -4.50	2.821	0.000

Sollecitazioni

Elementi calcolati a trave

Simbologia adottata

Sforzo normale, espresso in [kN]. Positivo se di compressione.
Taglio, espresso in [kN]. Positivo se diretto da monte verso valle
Momento, espresso in [kNm]. Positivo se tende le fibre contro terra (a monte) Ν

T M

Paramento

n°	Х	N _{min}	N _{max}	T _{min}	T _{max}	M _{min}	M _{max}
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	-0.10	1.23	1.59	0.03	0.23	0.00	0.01
3	-0.20	2.45	3.19	0.11	0.52	0.01	0.05
4	-0.30	3.68	4.78	0.25	0.90	0.03	0.12
5	-0.40	4.90	6.37	0.45	1.34	0.06	0.23
6	-0.50	6.13	7.97	0.70	1.85	0.12	0.39
7	-0.60	7.36	9.56	1.01	2.44	0.20	0.60
8	-0.70	8.58	11.16	1.37	3.10	0.32	0.88
9	-0.80	9.81	12.75	1.79	3.84	0.48	1.23
10	-0.90	11.03	14.34	2.27	4.64	0.68	1.65
11	-1.00	12.26	15.94	2.80	5.52	0.93	2.16
12	-1.10	13.48	17.53	3.38	6.47	1.24	2.76
13	-1.20	14.71	19.12	4.03	7.50	1.61	3.45
14	-1.30	15.94	20.72	4.72	8.59	2.05	4.26
15	-1.40	17.16	22.31	5.48	9.76	2.56	5.17
16	-1.50	18.39	23.90	6.29	11.00	3.15	6.21
17	-1.60	19.61	25.50	7.16	12.32	3.82	7.38
18	-1.70	20.84	27.09	8.08	13.71	4.58	8.68
19	-1.80	22.07	28.68	9.05	15.17	5.44	10.12
20	-1.90	23.29	30.28	10.09	16.70	6.39	11.71
21	-2.00	24.52	31.87	11.18	18.30	7.46	13.46
22	-2.10	25.74	33.47	12.32	19.98	8.63	15.38
23	-2.20	26.97	35.06	13.52	21.73	9.92	17.46
24	-2.30	28.19	36.65	14.78	23.55	11.34	19.73
25	-2.40	29.42	38.25	16.10	25.45	12.88	22.18
26	-2.50	30.65	39.84	17.46	27.42	14.56	24.82
27	-2.60	31.87	41.43	18.89	29.46	16.37	27.66
28	-2.70	33.10	43.03	20.37	31.57	18.34	30.71
29	-2.80	34.32	44.62	21.91	33.76	20.45	33.98
30	-2.90	35.55	46.21	23.50	36.02	22.72	37.47
31	-3.00	36.78	47.81	25.15	38.35	25.15	41.18
32	-3.10	38.00	49.40	25.89	40.03	27.71	45.11
33	-3.20	39.23	51.00	26.60	41.73	30.33	49.19
34	-3.30	40.45	52.59	27.38	43.53	33.03	53.46
35	-3.40	41.68	54.18	28.23	45.42	35.81	57.90
36	-3.50	42.90	55.78	29.16	47.41	38.68	62.54
37	-3.60	44.13	57.37	30.16	49.49	41.64	67.39
38	-3.70	45.36	58.96	31.23	51.67	44.71	72.44
39	-3.80	46.58	60.56	32.38	53.94	47.89	77.72
40	-3.90	47.81	62.15	33.60	56.31	51.19	83.24
41	-4.00	49.03	63.74	34.89	58.78	54.61	88.99

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

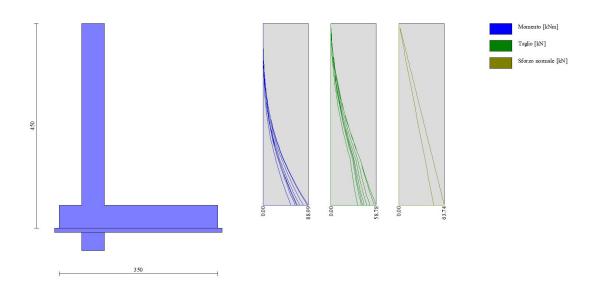


Figura 42: Paramento

Verifiche strutturali

Verifiche a flessione

Elementi calcolati a trave Simbologia adottata

indice sezione

ordinata sezione espressa in [m] larghezza sezione espresso in [cm] H Afi altezza sezione espressa in [cm] area ferri inferiori espresso in [cmq] Afs M N area ferri superiori espressa in [cmq] momento agente espressa in [kNm] sforzo normale agente espressa in [kNm] momento ultimi espresso in [kNm] sforzo normale ultimo espressa in [kN] Mu

Nu FS fattore di sicurezza (rapporto tra sollecitazione ultima e sollecitazione agente)

Paramento

n°	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	100	50	8.04	16.08	0.00	0.00	0.00	0.00	100000.000
2	100	50	8.04	16.08	0.01	1.59	56.62	8469.45	5314.645
3	100	50	8.04	16.08	0.05	3.19	126.27	8469.45	2657.323
4	100	50	8.04	16.08	0.12	4.78	208.90	8469.45	1771.548
5	100	50	8.04	16.08	0.23	6.37	301.35	8386.27	1315.612
6	100	50	8.04	16.08	0.39	7.97	384.44	7892.15	990.477
7	100	50	8.04	16.08	0.60	9.56	464.17	7367.75	770.554
8	100	50	8.04	16.08	0.88	11.16	537.16	6816.47	611.055
9	100	50	8.04	16.08	1.23	12.75	600.87	6250.95	490.315
10	100	50	8.04	16.08	1.65	14.34	654.04	5689.13	396.664
11	100	50	8.04	16.08	2.16	15.94	696.91	5150.11	323.173
12	100	50	8.04	16.08	2.76	17.53	730.95	4650.03	265.266
13	100	50	8.04	16.08	3.45	14.71	721.24	3072.23	208.850
14	100	50	8.04	16.08	4.26	15.94	679.43	2543.28	159.593
15	100	50	8.04	16.08	5.17	17.16	631.16	2093.34	121.976
16	100	50	8.04	16.08	6.21	18.39	583.77	1727.91	93.971
17	100	50	8.04	16.08	7.38	19.61	544.13	1446.55	73.752
18	100	50	8.04	16.08	8.68	20.84	503.22	1208.39	57.986

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

n°	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
19	100	50	8.04	16.08	10.12	22.07	471.94	1028.86	46.628
20	100	50	8.04	16.08	11.71	23.29	443.50	881.83	37.861
21	100	50	8.04	16.08	13.46	24.52	421.35	767.28	31.296
22	100	50	8.04	16.08	15.38	25.74	403.65	675.75	26.250
23	100	50	8.04	16.08	17.46	26.97	389.21	601.10	22.289
24	100	50	8.04	16.08	19.73	28.19	377.24	539.20	19.124
25	100	50	8.04	16.08	22.18	29.42	367.17	487.13	16.557
26	100	50	8.04	16.08	24.82	30.65	358.59	442.81	14.449
27	100	50	8.04	16.08	27.66	31.87	351.22	404.69	12.697
28	100	50	8.04	16.08	30.71	33.10	344.83	371.61	11.228
29	100	50	8.04	16.08	33.98	34.32	339.23	342.68	9.984
30	100	50	8.04	16.08	37.47	35.55	334.30	317.20	8.923
31	100	50	8.04	16.08	41.18	36.78	329.93	294.62	8.011
32	100	50	8.04	16.08	45.11	38.00	326.09	274.72	7.229
33	100	50	8.04	16.08	49.19	39.23	322.73	257.34	6.560
34	100	50	8.04	16.08	53.46	40.45	319.75	241.97	5.982
35	100	50	8.04	16.08	57.90	41.68	317.10	228.25	5.476
36	100	50	8.04	16.08	62.54	42.90	314.68	215.87	5.031
37	100	50	8.04	16.08	67.39	44.13	312.30	204.52	4.634
38	100	50	8.04	16.08	72.44	45.36	310.12	194.16	4.281
39	100	50	8.04	16.08	77.72	46.58	308.12	184.67	3.964
40	100	50	8.04	16.08	83.24	47.81	306.28	175.92	3.680
41	100	50	8.04	16.08	88.99	49.03	304.58	167.83	3.423

Verifiche a taglio

Simbologia adottata

indice sezione

Is Y B H A_{sw} cotgθ indice sezione
ordinata sezione espressa in [m]
larghezza sezione espresso in [cm]
altezza sezione espresso in [cm]
area ferri a taglio espresso in [cmq]
inclinazione delle bielle compresse, θ inclinazione dei puntoni di calcestruzzo
resistenza di progetto a 'taglio compressione' espressa in [kN]
resistenza di progetto a 'taglio trazione' espressa in [kN]

 V_{Rcd} V_{Rsd}

resistenza di progetto a taglio espresso in [kN]. Per elementi con armature trasversali resistenti al taglio $(A_{SW}>0.0)$ $V_{Rd}=min(V_{Rcd}, V_{Rsd})$. taglio agente espressa in [kN] fattore di sicurezza (rapporto tra sollecitazione resistente e sollecitazione agente)

Paramento

n°	В	Н	Asw	cotθ	V _{Rcd}	V _{Rsd}	V_{Rd}	Т	FS
	[cm]	[cm]	[cmq]		[kN]	[kN]	[kN]	[kN]	
1	100	50	0.00		0.00	0.00	236.69	0.00	100.000
2	100	50	0.00		0.00	0.00	236.86	0.23	1051.184
3	100	50	0.00		0.00	0.00	237.02	0.52	452.144
4	100	50	0.00		0.00	0.00	237.19	0.90	264.788
5	100	50	0.00		0.00	0.00	237.35	1.34	177.256
6	100	50	0.00		0.00	0.00	237.52	1.85	128.076
7	100	50	0.00		0.00	0.00	237.68	2.44	97.307
8	100	50	0.00		0.00	0.00	237.85	3.10	76.643
9	100	50	0.00		0.00	0.00	238.01	3.84	62.036
10	100	50	0.00		0.00	0.00	238.18	4.64	51.301
11	100	50	0.00		0.00	0.00	238.35	5.52	43.167
12	100	50	0.00		0.00	0.00	238.51	6.47	36.849
13	100	50	0.00		0.00	0.00	238.68	7.50	31.838
14	100	50	0.00		0.00	0.00	238.84	8.59	27.794
15	100	50	0.00		0.00	0.00	239.01	9.76	24.482
16	100	50	0.00		0.00	0.00	239.17	11.00	21.734
17	100	50	0.00		0.00	0.00	239.34	12.32	19.429
18	100	50	0.00		0.00	0.00	239.50	13.71	17.474
19	100	50	0.00		0.00	0.00	239.67	15.17	15.803
20	100	50	0.00		0.00	0.00	239.83	16.70	14.363
21	100	50	0.00		0.00	0.00	240.00	18.30	13.112
22	100	50	0.00		0.00	0.00	240.17	19.98	12.020
23	100	50	0.00		0.00	0.00	240.33	21.73	11.059
24	100	50	0.00		0.00	0.00	240.50	23.55	10.210
25	100	50	0.00		0.00	0.00	240.66	25.45	9.456
26	100	50	0.00		0.00	0.00	240.83	27.42	8.784

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

n°	В	Н	A _{sw}	cotθ	V_{Rcd}	V_{Rsd}	V_{Rd}	Т	FS
	[cm]	[cm]	[cmq]		[kN]	[kN]	[kN]	[kN]	
27	100	50	0.00		0.00	0.00	240.99	29.46	8.181
28	100	50	0.00		0.00	0.00	241.16	31.57	7.638
29	100	50	0.00		0.00	0.00	241.32	33.76	7.148
30	100	50	0.00		0.00	0.00	241.49	36.02	6.705
31	100	50	0.00		0.00	0.00	241.65	38.35	6.301
32	100	50	0.00		0.00	0.00	241.82	40.03	6.040
33	100	50	0.00		0.00	0.00	241.99	41.73	5.798
34	100	50	0.00		0.00	0.00	242.15	43.53	5.563
35	100	50	0.00		0.00	0.00	242.32	45.42	5.335
36	100	50	0.00		0.00	0.00	242.48	47.41	5.115
37	100	50	0.00		0.00	0.00	242.65	49.49	4.903
38	100	50	0.00		0.00	0.00	242.81	51.67	4.700
39	100	50	0.00		0.00	0.00	242.98	53.94	4.504
40	100	50	0.00		0.00	0.00	243.14	56.31	4.318
41	100	50	0.00		0.00	0.00	243.31	58.78	4.139

Verifica delle tensioni

Simbologia adottata

indice sezione

n° Y B H Afi Afs M ordinata sezione, espressa in [m] larghezza sezione, espresso in [cm] altezza sezione, espressa in [cm] area ferri inferiori, espresso in [cmq] area ferri superiori, espressa in [cmq] momento agente, espressa in [kNm] sforzo normale agente, espressa in [kN] tensione di compressione nel cls, espressa in [MPa] tensione nei ferri inferiori, espressa in [MPa] tensione nei ferri superiori, espressa in [MPa] σfi

Combinazioni SLER

Paramento

Tensione massima di compressione nel calcestruzzo 19.920 [MPa] Tensione massima di trazione dell'acciaio 360.000 [MPa]

n°	В	н	Afi	Afs	М	N	σс	ofi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[MPa]	[MPa]	[MPa]
1	100	50	8.04	16.08	0.00	0.00	0.000 (13)	0.000 (13)	0.000 (13)
2	100	50	8.04	16.08	0.01	1.23	0.003 (13)	0.031 (13)	0.038 (13)
3	100	50	8.04	16.08	0.04	2.45	0.006 (13)	0.057 (13)	0.081 (13)
4	100	50	8.04	16.08	0.09	3.68	0.009 (13)	0.077 (13)	0.130 (13)
5	100	50	8.04	16.08	0.17	4.90	0.013 (13)	0.089 (13)	0.187 (13)
6	100	50	8.04	16.08	0.29	6.13	0.018 (13)	0.092 (13)	0.254 (13)
7	100	50	8.04	16.08	0.45	7.36	0.024 (13)	0.085 (13)	0.332 (13)
8	100	50	8.04	16.08	0.66	8.58	0.031 (13)	0.066 (13)	0.422 (13)
9	100	50	8.04	16.08	0.93	9.81	0.039 (13)	0.032 (13)	0.526 (13)
10	100	50	8.04	16.08	1.25	11.03	0.049 (13)	0.036 (13)	0.653 (13)
11	100	50	8.04	16.08	1.63	12.26	0.062 (13)	0.161 (13)	0.808 (13)
12	100	50	8.04	16.08	2.09	13.48	0.078 (13)	0.370 (13)	0.996 (13)
13	100	50	8.04	16.08	2.62	14.71	0.097 (13)	0.691 (13)	1.219 (13)
14	100	50	8.04	16.08	3.23	15.94	0.120 (13)	1.144 (13)	1.478 (13)
15	100	50	8.04	16.08	3.93	17.16	0.147 (13)	1.745 (13)	1.772 (13)
16	100	50	8.04	16.08	4.72	18.39	0.178 (13)	2.503 (13)	2.099 (13)
17	100	50	8.04	16.08	5.61	19.61	0.213 (13)	3.423 (13)	2.460 (13)
18	100	50	8.04	16.08	6.60	20.84	0.252 (13)	4.512 (13)	2.855 (13)
19	100	50	8.04	16.08	7.70	22.07	0.294 (13)	5.776 (13)	3.285 (13)
20	100	50	8.04	16.08	8.91	23.29	0.342 (13)	7.221 (13)	3.751 (13)
21	100	50	8.04	16.08	10.25	24.52	0.393 (13)	8.855 (13)	4.256 (13)
22	100	50	8.04	16.08	11.71	25.74	0.449 (13)	10.684 (13)	4.800 (13)
23	100	50	8.04	16.08	13.30	26.97	0.510 (13)	12.716 (13)	5.386 (13)
24	100	50	8.04	16.08	15.03	28.19	0.576 (13)	14.960 (13)	6.015 (13)
25	100	50	8.04	16.08	16.90	29.42	0.647 (13)	17.422 (13)	6.689 (13)
26	100	50	8.04	16.08	18.92	30.65	0.723 (13)	20.112 (13)	7.410 (13)

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

n°	В	Н	Afi	Afs	М	N	σε	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[MPa]	[MPa]	[MPa]
27	100	50	8.04	16.08	21.10	31.87	0.805 (13)	23.037 (13)	8.180 (13)
28	100	50	8.04	16.08	23.43	33.10	0.893 (13)	26.206 (13)	9.000 (13)
29	100	50	8.04	16.08	25.93	34.32	0.987 (13)	29.626 (13)	9.872 (13)
30	100	50	8.04	16.08	28.59	35.55	1.087 (13)	33.306 (13)	10.799 (13)
31	100	50	8.04	16.08	31.44	36.78	1.194 (13)	37.255 (13)	11.781 (13)
32	100	50	8.04	16.08	34.42	38.00	1.306 (13)	41.419 (13)	12.808 (13)
33	100	50	8.04	16.08	37.49	39.23	1.421 (13)	45.716 (13)	13.861 (13)
34	100	50	8.04	16.08	40.66	40.45	1.539 (13)	50.157 (13)	14.944 (13)
35	100	50	8.04	16.08	43.93	41.68	1.661 (13)	54.753 (13)	16.058 (13)
36	100	50	8.04	16.08	47.30	42.90	1.786 (13)	59.514 (13)	17.207 (13)
37	100	50	8.04	16.08	50.79	44.13	1.917 (13)	64.452 (13)	18.392 (13)
38	100	50	8.04	16.08	54.40	45.36	2.051 (13)	69.577 (13)	19.617 (13)
39	100	50	8.04	16.08	58.15	46.58	2.190 (13)	74.901 (13)	20.882 (13)
40	100	50	8.04	16.08	62.03	47.81	2.335 (13)	80.435 (13)	22.192 (13)
41	100	50	8.04	16.08	66.06	49.03	2.484 (13)	86.189 (13)	23.548 (13)

Combinazioni SLEF

Paramento

Tensione massima di compressione nel calcestruzzo 33.200 [MPa] Tensione massima di trazione dell'acciaio 450.000 [MPa]

n°	В	Н	Afi	Afs	М	N	σc	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[MPa]	[MPa]	[MPa]
1	100	50	8.04	16.08	0.00	0.00	0.000 (14)	0.000 (14)	0.000 (14)
2	100	50	8.04	16.08	0.01	1.23	0.003 (14)	0.031 (14)	0.037 (14)
3	100	50	8.04	16.08	0.03	2.45	0.005 (14)	0.059 (14)	0.079 (14)
4	100	50	8.04	16.08	0.07	3.68	0.009 (14)	0.081 (14)	0.126 (14)
5	100	50	8.04	16.08	0.14	4.90	0.013 (14)	0.096 (14)	0.180 (14)
6	100	50	8.04	16.08	0.25	6.13	0.017 (14)	0.103 (14)	0.243 (14)
7	100	50	8.04	16.08	0.39	7.36	0.023 (14)	0.101 (14)	0.315 (14)
8	100	50	8.04	16.08	0.58	8.58	0.029 (14)	0.088 (14)	0.399 (14)
9	100	50	8.04	16.08	0.81	9.81	0.037 (14)	0.062 (14)	0.496 (14)
10	100	50	8.04	16.08	1.11	11.03	0.046 (14)	0.017 (14)	0.610 (14)
11	100	50	8.04	16.08	1.46	12.26	0.057 (14)	0.071 (14)	0.748 (14)
12	100	50	8.04	16.08	1.88	13.48	0.071 (14)	0.225 (14)	0.917 (14)
13	100	50	8.04	16.08	2.37	14.71	0.088 (14)	0.473 (14)	1.120 (14)
14	100	50	8.04	16.08	2.93	15.94	0.109 (14)	0.841 (14)	1.360 (14)
15	100	50	8.04	16.08	3.59	17.16	0.134 (14)	1.350 (14)	1.635 (14)
16	100	50	8.04	16.08	4.33	18.39	0.163 (14)	2.011 (14)	1.945 (14)
17	100	50	8.04	16.08	5.16	19.61	0.195 (14)	2.833 (14)	2.289 (14)
18	100	50	8.04	16.08	6.09	20.84	0.232 (14)	3.821 (14)	2.666 (14)
19	100	50	8.04	16.08	7.13	22.07	0.272 (14)	4.981 (14)	3.077 (14)
20	100	50	8.04	16.08	8.28	23.29	0.317 (14)	6.320 (14)	3.524 (14)
21	100	50	8.04	16.08	9.55	24.52	0.366 (14)	7.843 (14)	4.009 (14)
22	100	50	8.04	16.08	10.94	25.74	0.419 (14)	9.557 (14)	4.531 (14)
23	100	50	8.04	16.08	12.46	26.97	0.478 (14)	11.471 (14)	5.094 (14)
24	100	50	8.04	16.08	14.11	28.19	0.541 (14)	13.591 (14)	5.700 (14)
25	100	50	8.04	16.08	15.90	29.42	0.609 (14)	15.926 (14)	6.349 (14)
26	100	50	8.04	16.08	17.83	30.65	0.682 (14)	18.482 (14)	7.044 (14)
27	100	50	8.04	16.08	19.92	31.87	0.761 (14)	21.270 (14)	7.786 (14)
28	100	50	8.04	16.08	22.16	33.10	0.846 (14)	24.295 (14)	8.577 (14)
29	100	50	8.04	16.08	24.56	34.32	0.936 (14)	27.568 (14)	9.420 (14)
30	100	50	8.04	16.08	27.13	35.55	1.033 (14)	31.095 (14)	10.315 (14)
31	100	50	8.04	16.08	29.87	36.78	1.136 (14)	34.886 (14)	11.265 (14)
32	100	50	8.04	16.08	32.74	38.00	1.243 (14)	38.886 (14)	12.258 (14)
33	100	50	8.04	16.08	35.70	39.23	1.354 (14)	43.012 (14)	13.276 (14)
34	100	50	8.04	16.08	38.75	40.45	1.468 (14)	47.275 (14)	14.322 (14)
35	100	50	8.04	16.08	41.90	41.68	1.586 (14)	51.685 (14)	15.398 (14)
36	100	50	8.04	16.08	45.14	42.90	1.707 (14)	56.254 (14)	16.507 (14)
37	100	50	8.04	16.08	48.50	44.13	1.832 (14)	60.991 (14)	17.651 (14)
38	100	50	8.04	16.08	51.98	45.36	1.962 (14)	65.909 (14)	18.832 (14)
39	100	50	8.04	16.08	55.58	46.58	2.096 (14)	71.018 (14)	20.053 (14)
40	100	50	8.04	16.08	59.32	47.81	2.235 (14)	76.329 (14)	21.316 (14)

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

n°	В	Н	Afi	Afs	М	N	σc	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[MPa]	[MPa]	[MPa]
41	100	50	8.04	16.08	63.20	49.03	2.379 (14)	81.855 (14)	22.624 (14)

Combinazioni SLEQ

Paramento

Tensione massima di compressione nel calcestruzzo 14.940 [MPa] Tensione massima di trazione dell'acciaio 450.000 [MPa]

n°	В	Н	Afi	Afs	M	N	σС	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[MPa]	[MPa]	[MPa]
1	100	50	8.04	16.08	0.00	0.00	0.000 (15)	0.000 (15)	0.000 (15)
2	100	50	8.04	16.08	0.01	1.23	0.003 (16)	0.033 (15)	0.037 (16)
3	100	50	8.04	16.08	0.02	2.45	0.005 (16)	0.064 (15)	0.078 (16)
4	100	50	8.04	16.08	0.07	3.68	0.009 (16)	0.092 (15)	0.124 (16)
5	100	50	8.04	16.08	0.13	4.90	0.013 (16)	0.117 (15)	0.178 (16)
6	100	50	8.04	16.08	0.24	6.13	0.017 (16)	0.136 (15)	0.240 (16)
7	100	50	8.04	16.08	0.38	7.36	0.023 (16)	0.148 (15)	0.313 (16)
8	100	50	8.04	16.08	0.57	8.58	0.029 (16)	0.151 (15)	0.398 (16)
9	100	50	8.04	16.08	0.82	9.81	0.037 (16)	0.145 (15)	0.498 (16)
10	100	50	8.04	16.08	1.13	11.03	0.046 (16)	0.128 (15)	0.616 (16)
11	100	50	8.04	16.08	1.50	12.26	0.058 (16)	0.098 (15)	0.762 (16)
12	100	50	8.04	16.08	1.95	13.48	0.073 (16)	0.271 (16)	0.943 (16)
13	100	50	8.04	16.08	2.48	14.71	0.092 (16)	0.564 (16)	1.163 (16)
14	100	50	8.04	16.08	3.09	15.94	0.115 (16)	0.998 (16)	1.423 (16)
15	100	50	8.04	16.08	3.80	17.16	0.142 (16)	1.594 (16)	1.721 (16)
16	100	50	8.04	16.08	4.61	18.39	0.174 (16)	2.364 (16)	2.057 (16)
17	100	50	8.04	16.08	5.53	19.61	0.210 (16)	3.315 (16)	2.429 (16)
18	100	50	8.04	16.08	6.56	20.84	0.250 (16)	4.453 (16)	2.839 (16)
19	100	50	8.04	16.08	7.71	22.07	0.295 (16)	5.786 (16)	3.287 (16)
20	100	50	8.04	16.08	8.98	23.29	0.344 (16)	7.320 (16)	3.776 (16)
21	100	50	8.04	16.08	10.39	24.52	0.398 (16)	9.063 (16)	4.306 (16)
22	100	50	8.04	16.08	11.94	25.74	0.458 (16)	11.024 (16)	4.881 (16)
23	100	50	8.04	16.08	13.64	26.97	0.523 (16)	13.213 (16)	5.501 (16)
24	100	50	8.04	16.08	15.49	28.19	0.593 (16)	15.637 (16)	6.170 (16)
25	100	50	8.04	16.08	17.50	29.42	0.669 (16)	18.308 (16)	6.889 (16)
26	100	50	8.04	16.08	19.67	30.65	0.752 (16)	21.233 (16)	7.661 (16)
27	100	50	8.04	16.08	22.02	31.87	0.840 (16)	24.423 (16)	8.487 (16)
28	100	50	8.04	16.08	24.55	33.10	0.935 (16)	27.887 (16)	9.370 (16)
29	100	50	8.04	16.08	27.26	34.32	1.037 (16)	31.636 (16)	10.312 (16)
30	100	50	8.04	16.08	30.17	35.55	1.146 (16)	35.678 (16)	11.316 (16)
31	100	50	8.04	16.08	33.27	36.78	1.262 (16)	40.025 (16)	12.382 (16)
32	100	50	8.04	16.08	36.58	38.00	1.386 (16)	44.670 (16)	13.510 (16)
33	100	50	8.04	16.08	39.99	39.23	1.513 (16)	49.484 (16)	14.673 (16)
34	100	50	8.04	16.08	43.51	40.45	1.644 (16)	54.473 (16)	15.872 (16)
35	100	50	8.04	16.08	47.16	41.68	1.780 (16)	59.648 (16)	17.108 (16)
36	100	50	8.04	16.08	50.94	42.90	1.921 (16)	65.021 (16)	18.386 (16)
37	100	50	8.04	16.08	54.85	44.13	2.066 (16)	70.605 (16)	19.708 (16)
38	100	50	8.04	16.08	58.92	45.36	2.217 (16)	76.412 (16)	21.076 (16)
39	100	50	8.04	16.08	63.13	46.58	2.374 (16)	82.455 (16)	22.493 (16)
40	100	50	8.04	16.08	67.52	47.81	2.537 (16)	88.747 (16)	23.963 (16)
41	100	50	8.04	16.08	72.07	49.03	2.706 (16)	95.301 (16)	25.487 (16)

Verifica a fessurazione

Simbologia adottata

indice sezione ordinata sezione espressa in [m] n° Y B H Af Aeff M larghezza sezione espresso in [cm] altezza sezione espresso in [cm] area ferri zona tesa espresso in [cmq] area efficace espressa in [cmq] momento agente espressa in [kNm]

momento di prima fessurazione espressa in [kNm] deformazione espresso in % Mpf

spaziatura tra le fessure espressa in [mm]

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

apertura delle fessure espressa in [mm]

Combinazioni SLEF

<u>Paramento</u>

Apertura limite fessure w_{lim} =0.40

n°	В	н	Af	Aeff	М	Mpf	8	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
1	100	50	0.00	0.00	0.00	0.00			0.000 (14)
2	100	50	0.00	0.00	0.01	9.46	0.000000	0.00	0.000 (14)
3	100	50	0.00	0.00	0.03	23.74	0.000000	0.00	0.000 (14)
4	100	50	0.00	0.00	0.07	45.29	0.000000	0.00	0.000 (14)
5	100	50	0.00	0.00	0.14	78.93	0.000000	0.00	0.000 (14)
6	100	50	0.00	0.00	0.25	135.75	0.000000	0.00	0.000 (14)
7	100	50	0.00	0.00	0.39	247.65	0.000000	0.00	0.000 (14)
8	100	50	0.00	0.00	0.58	557.01	0.000000	0.00	0.000 (14)
9	100	50	0.00	0.00	0.81	4871.83	0.000000	0.00	0.000 (14)
10	100	50	0.00	0.00	1.11	1034.75	0.000000	0.00	0.000 (14)
11	100	50	16.08	1250.00	1.46	538.67	0.000000	0.00	0.000 (14)
12	100	50	16.08	1250.00	1.88	392.27	0.000000	0.00	0.000 (14)
13	100	50	16.08	1250.00	2.37	322.61	0.000000	0.00	0.000 (14)
14	100	50	16.08	1250.00	2.93	282.11	0.000000	0.00	0.000 (14)
15	100	50	16.08	1250.00	3.59	255.78	0.000000	0.00	0.000 (14)
16	100	50	16.08	1250.00	4.33	237.37	0.000000	0.00	0.000 (14)
17	100	50	16.08	1250.00	5.16	223.84	0.000000	0.00	0.000 (14)
18	100	50	16.08	1250.00	6.09	213.51	0.000000	0.00	0.000 (14)
19	100	50	16.08	1250.00	7.13	205.40	0.000000	0.00	0.000 (14)
20	100	50	16.08	1250.00	8.28	198.88	0.000000	0.00	0.000 (14)
21	100	50	16.08	1250.00	9.55	193.55	0.000000	0.00	0.000 (14)
22	100	50	16.08	1250.00	10.94	189.11	0.000000	0.00	0.000 (14)
23	100	50	16.08	1250.00	12.46	185.38	0.000000	0.00	0.000 (14)
24	100	50	16.08	1250.00	14.11	182.19	0.000000	0.00	0.000 (14)
25	100	50	16.08	1250.00	15.90	179.46	0.000000	0.00	0.000 (14)
26	100	50	16.08	1250.00	17.83	177.08	0.000000	0.00	0.000 (14)
27	100	50	16.08	1250.00	19.92	175.00	0.000000	0.00	0.000 (14)
28	100	50	16.08	1250.00	22.16	173.18	0.000000	0.00	0.000 (14)
29	100	50	16.08	1250.00	24.56	171.56	0.000000	0.00	0.000 (14)
30	100	50	16.08	1250.00	27.13	170.12	0.000000	0.00	0.000 (14)
31	100	50	16.08	1250.00	29.87	168.83	0.000000	0.00	0.000 (14)
32	100	50	16.08	1250.00	32.74	167.69	0.000000	0.00	0.000 (14)
33	100	50	16.08	1250.00	35.70	166.71	0.000000	0.00	0.000 (14)
34	100	50	16.08	1250.00	38.75	165.86	0.000000	0.00	0.000 (14)
35	100	50	16.08	1250.00	41.90	165.09	0.000000	0.00	0.000 (14)
36	100	50	16.08	1250.00	45.14	164.41	0.000000	0.00	0.000 (14)
37	100	50	16.08	1250.00	48.50	163.79	0.000000	0.00	0.000 (14)
38	100	50	16.08	1250.00	51.98	163.23	0.000000	0.00	0.000 (14)
39	100	50	16.08	1250.00	55.58	162.71	0.000000	0.00	0.000 (14)
40	100	50	16.08	1250.00	59.32	162.23	0.000000	0.00	0.000 (14)
41	100	50	16.08	1250.00	63.20	161.78	0.000000	0.00	0.000 (14)

Combinazioni SLEQ

Paramento

Apertura limite fessure w_{lim} =0.30

n°	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
1	100	50	0.00	0.00	0.00	0.00			0.000 (15)
2	100	50	0.00	0.00	0.00	1.37	0.000000	0.00	0.000 (15)
3	100	50	0.00	0.00	0.01	5.64	0.000000	0.00	0.000 (15)
4	100	50	0.00	0.00	0.03	13.29	0.000000	0.00	0.000 (15)
5	100	50	0.00	0.00	0.06	25.29	0.000000	0.00	0.000 (15)
6	100	50	0.00	0.00	0.12	43.50	0.000000	0.00	0.000 (15)

n°	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
7	100	50	0.00	0.00	0.20	71.56	0.000000	0.00	0.000 (15)
8	100	50	0.00	0.00	0.32	117.26	0.000000	0.00	0.000 (15)
9	100	50	0.00	0.00	0.48	200.50	0.000000	0.00	0.000 (15)
10	100	50	0.00	0.00	0.68	391.08	0.000000	0.00	0.000 (15)
11	100	50	0.00	0.00	0.93	1224.21	0.000000	0.00	0.000 (15)
12	100	50	0.00	0.00	1.24	2120.17	0.000000	0.00	0.000 (15)
13	100	50	16.08	1250.00	1.61	688.58	0.000000	0.00	0.000 (15)
14	100	50	16.08	1250.00	2.05	451.31	0.000000	0.00	0.000 (15)
15	100	50	16.08	1250.00	2.56	354.38	0.000000	0.00	0.000 (15)
16	100	50	16.08	1250.00	3.15	302.03	0.000000	0.00	0.000 (15)
17	100	50	16.08	1250.00	3.82	269.44	0.000000	0.00	0.000 (15)
18	100	50	16.08	1250.00	4.58	247.33	0.000000	0.00	0.000 (15)
19	100	50	16.08	1250.00	5.44	231.40	0.000000	0.00	0.000 (15)
20	100	50	16.08	1250.00	6.39	219.45	0.000000	0.00	0.000 (15)
21	100	50	16.08	1250.00	7.46	210.17	0.000000	0.00	0.000 (15)
22	100	50	16.08	1250.00	8.63	202.80	0.000000	0.00	0.000 (15)
23	100	50	16.08	1250.00	9.92	196.81	0.000000	0.00	0.000 (15)
24	100	50	16.08	1250.00	11.34	191.87	0.000000	0.00	0.000 (15)
25	100	50	16.08	1250.00	12.88	187.73	0.000000	0.00	0.000 (15)
26	100	50	16.08	1250.00	14.56	184.22	0.000000	0.00	0.000 (15)
27	100	50	16.08	1250.00	16.37	181.22	0.000000	0.00	0.000 (15)
28	100	50	16.08	1250.00	18.34	178.63	0.000000	0.00	0.000 (15)
29	100	50	16.08	1250.00	20.45	176.37	0.000000	0.00	0.000 (15)
30	100	50	16.08	1250.00	22.72	174.39	0.000000	0.00	0.000 (15)
31	100	50	16.08	1250.00	25.15	172.64	0.000000	0.00	0.000 (15)
32	100	50	16.08	1250.00	27.71	171.12	0.000000	0.00	0.000 (15)
33	100	50	16.08	1250.00	30.33	169.83	0.000000	0.00	0.000 (15)
34	100	50	16.08	1250.00	33.03	168.72	0.000000	0.00	0.000 (15)
35	100	50	16.08	1250.00	35.81	167.75	0.000000	0.00	0.000 (15)
36	100	50	16.08	1250.00	38.68	166.88	0.000000	0.00	0.000 (15)
37	100	50	16.08	1250.00	41.64	166.10	0.000000	0.00	0.000 (15)
38	100	50	16.08	1250.00	44.71	165.40	0.000000	0.00	0.000 (15)
39	100	50	16.08	1250.00	47.89	164.75	0.000000	0.00	0.000 (15)
40	100	50	16.08	1250.00	51.19	164.16	0.000000	0.00	0.000 (15)
41	100	50	16.08	1250.00	54.61	163.61	0.000000	0.00	0.000 (15)

ASSE VIARIO MARCHE - UMBRIA E QUADRILATERO DI PENETRAZIONE INTERNA SUBLOTTO 2.2: Intervalliva Macerata - allaccio funzionale della SS77 alla città di Macerata alle località "La Pieve" e "Mattei"

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

12. VERIFICA DEL MURO AD U SUL LATO DESTRO DELLO SCATOLARE

Sul lato destro dello scatolare si realizzeranno dei muri di sstegno ad U giuntati rispetto allo scatolare, quindi partono con la medesima altezza e scendono con pendenza 3/1 sino all'altezza di 1.0 m. I muri di sostegno finiscono con un risvolto verso l'esterno in modo da generare un angolo di circa 20° rispetto alla direttrice dell'asse stradale.

Il muro accostato allo scatolare ha la stessa quota di imposta della fondazione che avrà uno spessore di 90 cm. I paramenti avranno lo stesso spessore (90cm) sino all'altezza di 4.0 m. Oltre l'altezza di 4.0 m il paramento avrà uno spessore pari a 50 cm.

12.1. MODELLO DI CALCOLO E VERIFICHE MURO DI ALTEZZA 7.0M

Come modello di calcolo (si vedano le figure successive) si è assunto lo schema statico di telaio chiuso analizzato attraverso un'analisi elastico-lineare attraverso il programma di calcolo agli elementi finiti Midas Gen.

La mesh (si vedano le figure seguenti) è composta da 20 beam elements. Tale telaio viene descritto attraverso le linee d'asse delle singole membrature e pertanto, le aste del modello avranno lunghezza pari alla dimensione netta interna maggiorate della metà degli spessori delle aste adiacenti.

L'analisi strutturale è condotta con il metodo degli spostamenti per la valutazione dello stato tensodeformativo indotto da carichi statici.

Il suolo viene modellato facendo ricorso all'usuale artificio delle molle elastiche alla Winkler. La soletta inferiore viene divisa in 8 elementi per poter schematizzare, tramite le molle applicate, l'interazione terreno-struttura.

Considerando un numero fisso e pari a 9 di molle elastiche, la caratteristica elastica della generica molla viene calcolata attraverso la formulazione di Vogt:

$$k_s = \frac{1.33 \cdot E}{\sqrt[3]{ht^2 \cdot hl}}$$

- Ks = costante di sottofondo [F/L³]
- b_t = dimensione trasversale dell'opera
- b₁ = dimensione longitudinale dell'opera
- E = modulo di Young del terreno

E (MPa)	10
Numero di molle per unità di lunghezza	9
b _t (m)	8.90
b ₁ (m)	1.00
K _{verticale} (kN/m ³)	3096.88

Nella presente relazione si adotta un modulo di reazione verticale $Kv = 3096 \text{ kN/m}^3$

ASSE VIARIO MARCHE - UMBRIA E QUADRILATERO DI PENETRAZIONE INTERNA SUBLOTTO 2.2: Intervalliva Macerata - allaccio funzionale della SS77 alla città di Macerata alle località "La Pieve" e "Mattei"

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Con questo valore si ricavano i valori delle singole molle, ottenendo per le 3 molle centrali un valore di:

$$K_{centrale} = K_s * (L_p/2 + L_{int} + L_p/2) /9$$

$$K7, ...K9 = 3061.6 \text{ kN/m}$$

I valori delle molle di spigolo si ottengono con la seguente formulazione:

$$K1 = K2 = 2*K_s*[(L_p/2 + L_{int} + L_p/2)/9/2 + (L_p/2)] = 5848 \text{ kN/m}$$

ed infine in valori delle molle nei nodi 5,6,10 e 11 come da letteratura si assumono:

$$K5 = K6 = K10 = K11 = 1.5 * K_{centrale} = 4592.4 kN/m$$

Agli effetti delle caratteristiche geometriche delle varie aste si è quindi assunto:

- -una sezione rettangolare b x h = 1.00×0.90 m per la soletta di fondazione
- -una sezione rettangolare b x h = 1.00 x 0.90 m per i piedritti

Per le aste del reticolo si è assunto:

 $E_{cm} = 22000 \cdot [f_{cm}/10]^{0.3} = 33643 \text{ MPa}$; modulo elastico del cls

Lo schema statico della struttura e la relativa numerazione dei nodi e delle aste sono riportati nella figura 45.

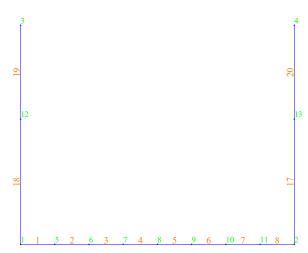


Figura 43: Modello di calcolo implementato

I	Name	Type	Standard	DB	Poisso	Thermal	(1/[C]	Density	(kN/m^3	Mass	Density	$(kN/m^3/g$
1	Calcestruzz	Concret	NTC18 (RC	C28/3	0.2	1.0000e-	005	2.5000e+	001	2.549	3e+000	

Tabella 25: Materiale da modello di calcolo

12.1.1. ANALISI DEI CARICHI

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Nel seguente paragrafo, sulla base di quanto riportato al capitolo precedente, si descrivono i carichi elementari da assumere per le verifiche di resistenza in esercizio ed in presenza dell'evento sismico per la struttura in oggetto.

Per i materiali si assumono i seguenti pesi specifici:

- calcestruzzo armato: 25.0 kN/m3 - rilevato 20.0 kN/m3 - sovrastruttura stradale 22.0 kN/m3

12.1.2. PESO PROPRIO DEGLI ELEMENTI STRUTTURALI (G1)

I pesi propri degli elementi strutturali per metro lineare di struttura sono i seguenti:

 $0.90.25 = 22.50 \text{ kN/m}^2$ - soletta inferiore $0.90.25 = 22.50 \text{ kN/m}^2$ - piedritti

12.1.3. CARICHI PERMANENTI PORTATI (G2)

I carichi permanenti portati (per metro lineare di struttura in obliquo) sono i seguenti:

 $0.50 \cdot 22 = 11.00 \text{ kN/m}^2$ - peso sovr. stradale soletta inf. $0.50 \cdot 20 = 10.00 \text{ kN/m}^2$ - peso rilevato soletta inf.

Carico "2" nel modello di calcolo.

12.1.4. SPINTA DEL TERRENO (G3)

Si assumono per il terreno costituente il rinfianco del muro i seguenti parametri geotecnici (terreno LS4:

 $\gamma_t = 19 \text{ kN/m}^3$ $\phi = 22^{\circ}$ per gli SL STR $\phi = 17.9^{\circ}$ per gli SL GEO

I coefficienti di spinta a riposo e di spinta attiva valgono rispettivamente:

 $k_0 = 1-sen_{\phi} = 0.625$ per gli SL STR $k_0 = 1-sen\phi = 0.695$ per gli SL GEO

Le pressioni del terreno relative alla spinta a riposo ed alla spinta attiva, in corrispondenza dell'estradosso e dell'intradosso dello scatolare risultano essere le seguenti:

 $p_{z=7.00} = k_0 \cdot (q_0 + \gamma \cdot z) = 0.625 \cdot 19 \cdot 7.00$ \approx 83.12 kN/m² per gli SL STR

(rappresenta il carico "3" nel modello di calcolo)

 $p_{z=7.00} = k_0 \cdot (q_0 + \gamma \cdot z) = 0.695 \cdot 19 \cdot 7.00$ \approx 92.43 kN/m² per gli SL STR

(rappresenta il carico "13" nel modello di calcolo)

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Naturalmente queste spinte saranno opportunamente combinate, utilizzando i valori dei coefficienti parziali delle azioni da assumere nell'analisi per la determinazione degli effetti delle azioni nelle verifiche agli stati limite ultimi.

12.1.5. CARICHI MOBILI VERTICALI SULLA SOLETTA DI FONDAZIONE

Ai fini della determinazione delle azioni variabili da traffico, l'opera in oggetto è considerata come un ponte stradale di 1º Categoria. Il calcolo dello scatolare viene eseguito per una striscia trasversale di 1m. Si considera la striscia maggiormente sollecitata al disotto della prima colonna di carico di larghezza 3.00m. La colonna è larga 3.00 m ed i carichi da considerare valgono (già dinamizzati):

- 1) Distribuito: $q_{1k} = 9.00 \text{ kN/mg}$
- 2) Concentrati : Q_{1k} = 300 kN, ovvero 150kN a impronta, per n° 4 posti alla distanza relativa di 1.20m (Tandem) x 2.00 m.

La ripartizione dei carichi si effettua considerando il carico isolato da 150 kN con impronta quadrata di lato 0.4 m.

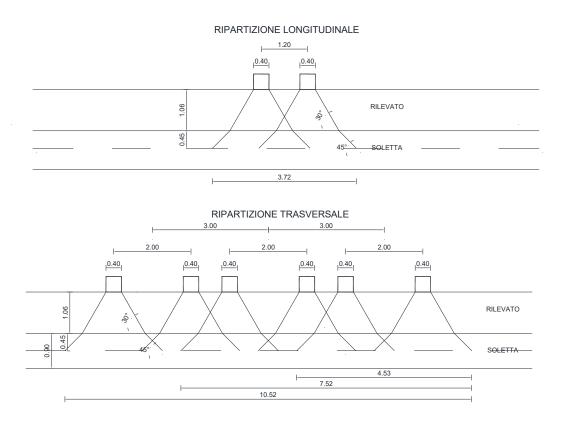


Figura 44: Schema di ripartizione dei carichi mobili

Il carico è schematizzato da due assi da 150 kN disposti ad interasse di 1.20m. per la determinazione delle lunghezze di diffusione a vantaggio di sicurezza è stato adottato lo spessore minimo di ricoprimento della struttura dello scatolare.

Pingegneria **GESTIONE PROGETTI INGEGNERIA sri**

ASSE VIARIO MARCHE - UMBRIA E QUADRILATERO DI PENETRAZIONE INTERNA SUBLOTTO 2.2: Intervalliva Macerata - allaccio funzionale della SS77 alla città di Macerata alle località "La Pieve" e "Mattei"

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Si procede al calcolo dei carichi per metro lineare riferiti al baricentro della soletta per i diversi treni di carico. Si considera una larghezza di ripartizione trasversale massima pari alla larghezza della corsia di carico di 3.00 m pertanto:

$$q_{1k} = 600/(L_L \cdot L_{T1})$$

$$q_{1k} = (600+400)/(L_L \cdot L_{T2})$$

$$q_{1k} = (600+400+200)/(L_L \cdot L_{T3})$$

L _L	3.00 m	q _{2k}	9.00 kN/m ²
L _{T1}	4.53 m	q _{1k}	44.15 kN/m ²
L _{T2}	7.54 m	Q _{1k}	44.20 kN/m ²
L _{T3}	10.54 m	q _{1k}	38.02 kN/m ²

Si applica il carico della condizione più sfavorevole pari a 44.20 kN/m² applicato su tutta la larghezza del sottovia.

12.1.6. SPINTA DEL SOVRACCARICO SUL RILEVATO

La spinta sul manufatto dovuto alla presenza del sovraccarico sul rilevato è definita applicando un carico pari a 20 kN/m alla quota della pavimentazione stradale.

Si considera la spinta agente solo sulla parete sinistra:

$$q_s = 20.00 \text{ kN/m}$$

$$p_s$$
 (STR) = $q_s K_0$ = 12.50 kN/m

$$p_s$$
 (GEO) = $q_s K_0 = 13.90 \text{ kN/m}$

condizioni di carico "11" e "12" nel modello di calcolo.

Si considera un altro caso di carico con 10kN/m di sovraccarico variabile sul rilevato. La spinta del sovraccarico sul rilevato è definita in due condizioni di carico:

$$q_s = 10.00 \text{ kN/m}$$

$$p_{s1}$$
 (str) = q_sK_0 = 6.25 kN/m (condizione di carico "9" su entrambi I piedritti);
 p_{s1} (geo) = q_sK_0 = 6.95 kN/m (condizione di carico "9.1" su entrambi I piedritti);

il carico agisce contemporaneamente ai carichi mobili sulla struttura ed è applicato in due condizioni separate su un solo lato dello scatolare (condizione di carico "11_STR" e "12_GEO" nel modello di calcolo adottando coefficienti pari a 0.5 nelle combinazioni di carico) e su entrambi i piedritti contemporaneamente (condizioni di carico "9 STR" e "9.1 GEO" nel modello di calcolo).

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

12.1.7. AZIONE SISMICA

Nelle verifiche allo Stato Limite Ultimo, nel caso in esame lo SLV, i valori dei coefficienti sismici orizzontali k_h e verticale k_v possono essere valutati mediante le espressioni:

$$k_h = \beta_m \cdot a_{max}/g = 1.0 \cdot 0.309 \cdot g = 0.309 g$$

 $k_v = \pm 0.5 \cdot k_h = \pm 0.155 g$

dove:

accelerazione orizzontale massima attesa al sito (vedi § 6.3) $a_{max} = 0.309 g$

 $g = 9.81 \text{ m/s}^2$ accelerazione di gravità;

coefficiente di riduzione dell'accelerazione massima attesa al sito funzione del $\beta_{\rm m} = 1.0$ tipo di sottosuolo, assunto pari ad 1 in quanto la struttura non ammette spostamenti relativi rispetto

L'azione sismica è rappresentata da un insieme di forze statiche orizzontali e verticali, date dal prodotto delle forze di gravità per i coefficienti sismici in precedenza definiti, di cui la componente verticale è considerata agente verso l'alto o verso il basso, in modo da produrre gli effetti più sfavorevoli. La risultante delle forze inerziali orizzontali indotte dal sisma viene valutata con la seguente espressione:

 $F_h = P \cdot k_h$

 $F_v = P \cdot k_v$

L'incremento dinamico di spinta del terreno, considerando lo scatolare come una struttura rigida completamente vincolata (NT par. 7.11.6.2.1 e EC8-5 par.7.3.2.1) in modo tale che non può svilupparsi nel terreno uno stato di spinta attiva, è calcolato mediante la seguente relazione:

$$\Delta P_d = k_h \cdot \gamma \cdot h_{tot} = 0.309 \cdot 19 \cdot 7.0 = 41.09 \text{ kN/ml allo SLV}$$

Essendo "ΔP_d" la risultante globale, ed il diagramma di spinta di tipo rettangolare, è immediato ricavare la quota parte della spinta che agisce sul piedritto dello scatolare. Il punto di applicazione della spinta che interessa il muro è posto h_{mt}/2, con "h_{tot}" altezza dal piano di progetto alla fondazione del muro e h_m l'altezza del muro.

Oltre ai carichi suddetti viene aggiunta, come carico concentrato nel nodo 1, la parte di sovraspinta esercitata su 1/2 spessore della soletta inferiore.

Spinta semispessore sol. inf.

 $F_3 = 2.77 \text{ kN}$

12.1.8. FORZE SISMICHE ORIZZONTALI E VERTICALI

L'azione sismica è rappresentata da un insieme di forze statiche orizzontali, date dal prodotto delle forze di gravità per i coefficienti sismici in precedenza definiti ed applicate nei rispettivi baricentri. Forze d'inerzia orizzontali sul muro SLV.

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

 $F_{o, piedritto sp90} = \pm 6.94 \text{ kN/m}^2$;

 $F_{o, piedritto sp50} = \pm 3.85 \text{ kN/m}^2$;

Forze d'inerzia verticali sul muro SLV.

 $F_{v, piedritto sp90} = \pm 3.48 \text{ kN/m}^2$;

 $F_{v, piedritto sp50} = \pm 1.93 \text{ kN/m}^2$;

 $F_{v, \text{ soletta base}} = \pm 3.48 \text{ kN/m}^2;$

 $F_{v. paviment} = \pm 3.25 \text{ kN/m}^2$;

 $F_{v, \text{ tot soletta di base}} = \pm 6.73 \text{ kN/m}^2;$

12.1.1. VERIFICHE DELLE SEZIONI

Si riportano di seguito le verifiche nelle condizioni di SLE ed SLU eseguite con il software GeoStru RC-SEC v.20.8.1001.

Si riportano in forma grafica le caratteristiche delle sollecitazioni per singola condizione di carico:

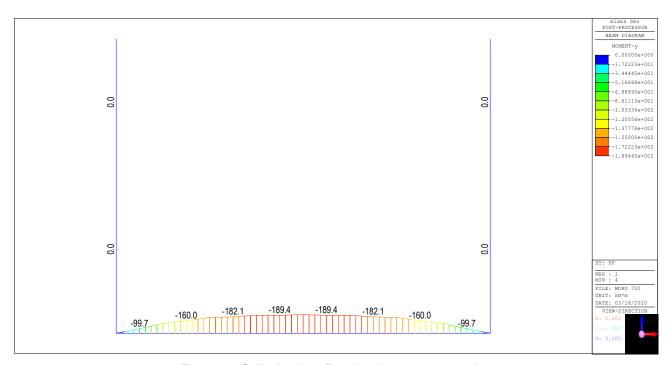


Figura 45: Sollecitazione flessionale per peso proprio

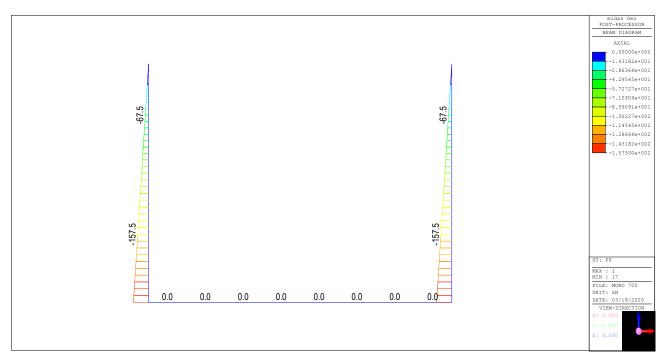


Figura 46: Sforzo normale per peso proprio

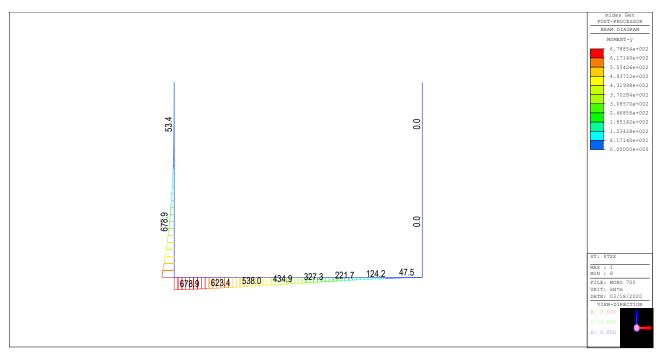


Figura 47: Sollecitazione di flessione per spinta del rilevato

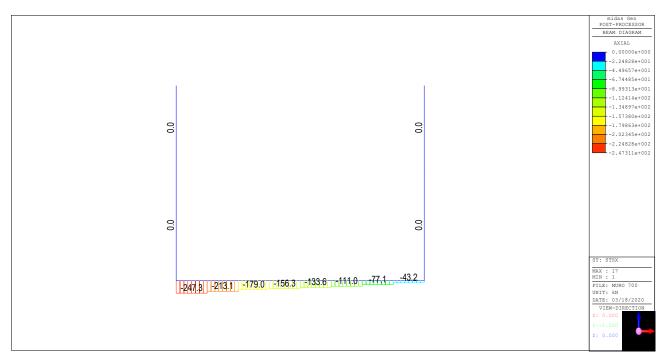


Figura 48: sollecitazione di sforzo normale per spinta del rilevato

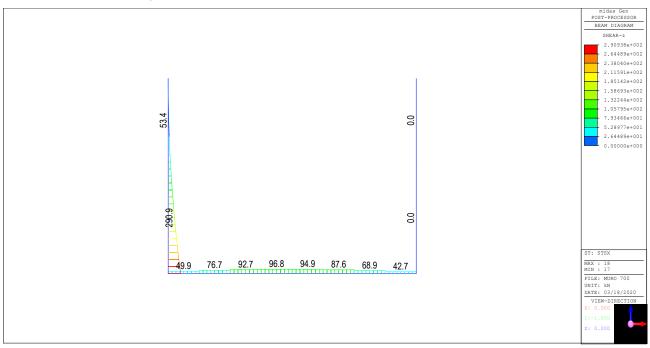


Figura 49: sollecitazione di taglio per spinta del rilevato

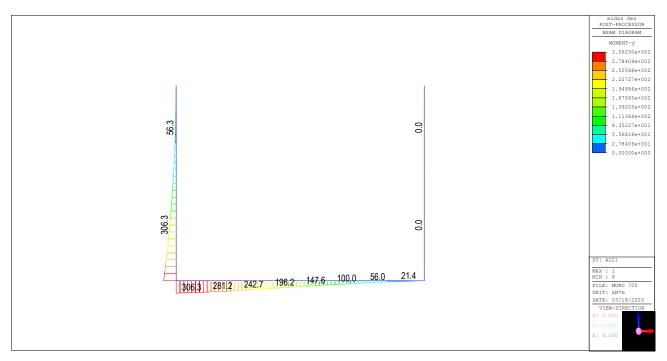


Figura 50: sollecitazione di flessione per sovraccarico sul rilevato

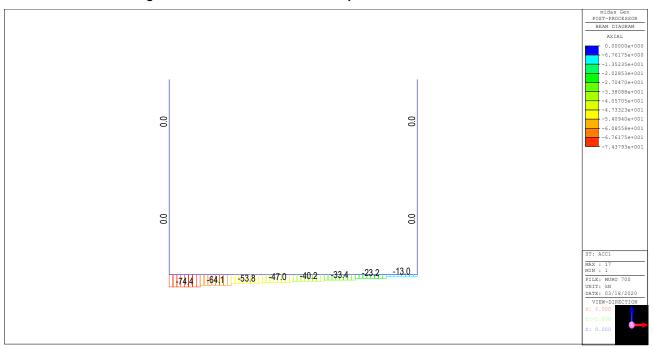


Figura 51: sforzo normale per sovraccarico sul rilevato

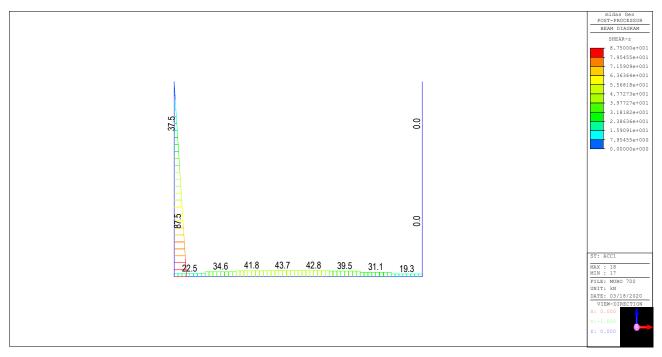


Figura 52: sollecitazione di taglio per sovraccarico sul rilevato

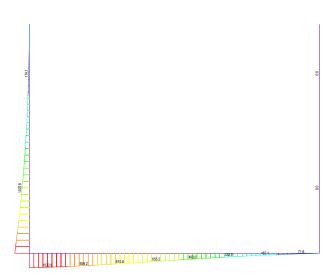


Figura 53: sollecitazione di flessione per sisma orizzontale

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

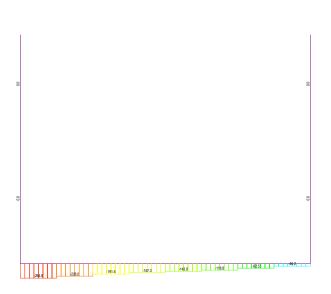


Figura 54: sforzo normale per sisma orizzontale

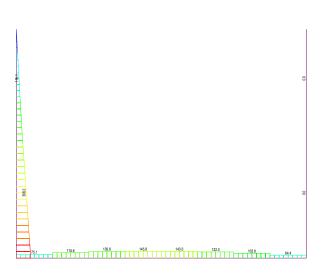


Figura 55: sollecitazione di taglio per sisma orizzontale

Si riportano di seguito le verifiche strutturali per le sezioni significative:

S1: Incastro tra piedritto e fondazione;

S2: Incastro tra fondazione e piedritto;

S3: Centro platea di fondazione;

S4: Sezione muro sp.50cm;

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Le sezioni di verifica sono riportate nella figura seguente.

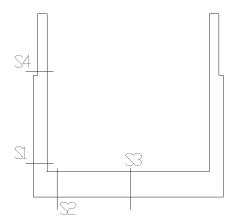


Figura 56: Sezioni di verifica

Sezione S1

Le sollecitazioni nella sezione di verifica per singola condizione di carico sono riportate in tabella seguente:

Elem	Load	Axial (kN)	Shear-z (kN)	Moment-y (kN*m)
40	PP	-166.25	0	0
40	PERM	0	0	0
40	STSX	0	-292.11	-710.8
40	RITIRO	0	0	0
40	TU-TF	0	0	0
40	TANDEM-I	0	0	0
40	GR-U	0	0	0
40	TANDEM-	0	0	0
40	SP-10	0	0	0
40	F-AVV	0	0	0
40	ACC1	0	-112.13	-409.27
40	ACC2	0	-88.11	-321.61
40	STSX_GEO	0	-329.6	-802.01
40	SISMA-H	0	-313.51	-1223.56

Le sollecitazioni nella sezione di verifica combinate secondo le combinazioni innanzi riportate sono:

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

	SN (kN)	V(kN)	M(kNm)
Combinazione fondamentale SLU	-224.44	-545.72	-1512.09
Combinazione SLU (sisma STR)	-166.25	-628.05	-2016.21
Combinazione SLU (sisma GEO)	-166.25	-628.05	-2016.21
Combinazione SLE Rara	-166.25	-404.24	-1120.07
Combinazione SLE Frequente	-166.25	-359.39	-956.36
Combinazione SLE QP	-166.25	-292.11	-710.80

DATI GENERALI SEZIONE IN C.A. NOME SEZIONE: S1_7m

Descrizione Sezione:

Metodo di calcolo resistenza: Stati Limite Ultimi Sezione generica Tipologia sezione:

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Poco aggressive Riferimento Sforzi assegnati: Assi x,y principali d'inerzia

Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -C32/40 Classe:

Resis, compr. di calcolo fcd: 18.810 MPa Def.unit. max resistenza ec2: 0.0020 Def.unit. ultima ecu: 0.0035 Diagramma tensione-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 33643.0 MPa Resis. media a trazione fctm: 3.100 MPa Coeff. Omogen. S.L.E.: 15.00 Coeff. Omogen. S.L.E.: 15.00

Sc limite S.L.E. comb. Frequenti: 199.20 daN/cm² Ap.Fessure limite S.L.E. comb. Frequenti: 0.400 mm Sc limite S.L.E. comb. Q.Permanenti: 0.00 Mpa Ap.Fessure limite S.L.E. comb. Q.Permanenti: 0.300 mm

ACCIAIO -Tipo: B450C

Resist. caratt. snervam. fyk: 450.00 MPa Resist. caratt. rottura ftk: 450.00 MPa Resist. snerv. di calcolo fyd: 391.30 MPa Resist. ultima di calcolo ftd: 391.30 MPa Deform. ultima di calcolo Epu: 0.068

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza istantaneo ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50 360.00 MPa Sf limite S.L.E. Comb. Rare:

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Dominio: Poligonale Classe Conglomerato: C32/40 N°vertice: X [cm] Y [cm] -50.0 0.0 2 -50.0 90.0

ASSE VIARIO MARCHE - UMBRIA E QUADRILATERO DI PENETRAZIONE INTERNA SUBLOTTO 2.2: Intervalliva Macerata - Allaccio funzionale della SS77 alla città di Macerata alle località "La Pieve" e "Mattei"

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

3	50.0	90.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-42.6	7.4	26
2	-42.6	82.6	26
3	42.6	82.6	26
4	42 6	7 4	26

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.	Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.	Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.	Numero della barra finale cui si riferisce la generazione
N°Barre	Numero di barre generate equidistanti cui si riferisce la generaz
Ø	Diametro in mm delle harre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	3	26
2	2	2	0	26

DATI GENERAZIONI CIRCOLARI DI BARRE

N°Gen. Xcentro Ycentro Raggio N°Barre Ø		Numero assegnato alla singola generazione circolare di barre Ascissa [cm] del centro della circonf. lungo cui sono disposte le barre genera Ordinata [cm] del centro della circonf. lungo cui sono disposte le barre genera Raggio [cm] della circonferenza lungo cui sono disposte le barre generate Numero di barre generate equidist. disposte lungo la circonferenza Diametro [mm] della singola barra generata							
N°Gen.	Xcentro	Ycentro	Raggio	N°Barre	Ø				
1	42.6	76.8	0.0	1	20				
2	21.3	76.8	0.0	1	20				
3	0.0	76.8	0.0	1	20				
4	-21.3	76.8	0.0	1	20				
5	-42.6	76.8	0.0	1	20				

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx		Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Momento flettente [daNm] intorno all'asse x princ. d'inerzia con verso positivo se tale da comprimere il lembo sup. della sez.							
Му		Momento flettente [daNm] intorno all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro della se:							
Vy		Componente del Taglio [kN] parallela all'asse princ.d'inerzia y							
Vx		Componente del Taglio [kN] parallela all'asse princ.d'inerzia x							
N°Comb.	N	Mx	Му	Vy	Vx				
1	224.44	-1512.09	0.00	0.00	0.00				
2	166.25	-2016.21	0.00	0.00					

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)
Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

Му

ASSE VIARIO MARCHE - UMBRIA E QUADRILATERO DI PENETRAZIONE INTERNA SUBLOTTO 2.2: INTERVALLIVA MACERATA - ALLACCIO FUNZIONALE DELLA SS77 ALLA CITTÀ DI MACERATA ALLE LOCALITÀ "LA PIEVE" E "MATTEI"

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.

166.25 -1120.07 0.00 1

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) My

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx Μv

1 166.25 -956.36 (-591.56) 0.00(0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. Mx

166.25 -710.80 (-597.32) 0.00(0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

166.25

Copriferro netto minimo barre longitudinali: 6 1 cm Interferro netto minimo barre longitudinali:

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

Ver S = combinazione verificata / N = combin. non verificata

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) Ν

Mx Momento flettente assegnato [kNm] riferito all'asse x princ. d'inerzia Momento flettente assegnato [kNm] riferito all'asse y princ. d'inerzia Μv

Nult Sforzo normale ultimo [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx ult Momento flettente ultimo [kNm] riferito all'asse x princ. d'inerzia Momento flettente ultimo [kNm] riferito all'asse y princ. d'inerzia My ult Mis.Sic.

-2016.21

Misura sicurezza = rapporto vettoriale tra (N ult,Mx ult,My ult) e (N,Mx,My) Verifica positiva se tale rapporto risulta >=1.000

Area armature [cm²] in zona tesa (solo travi). Tra parentesi l'area minima di normativa As Tesa

N°Comb My ult Mis.Sic. Ver N Mx My N ult Mx ult As Tesa S -1512.09 0.00 224.60 -2109.41 0.00 1 224 44 1 393 2 166 19

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

0.00

Deform. unit. massima del conglomerato a compressione ec max ec 3/7 Deform. unit. del conglomerato nella fibra a 3/7 dell'altezza efficace Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Xc max Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Yc max es min Deform. unit. minima nell'acciaio (negativa se di trazione) Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) Xs min

PROGETTAZIONE ATI:

-2088 95

0.00

1.036

ASSE VIARIO MARCHE - UMBRIA E QUADRILATERO DI PENETRAZIONE INTERNA SUBLOTTO 2.2: Intervalliva Macerata - Allaccio funzionale della SS77 alla città di Macerata alle località "La Pieve" e "Mattei"

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Deform. unit. massima nell'acciaio (positiva se di compress.)
Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Com	nb ec max	ec 3/7	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	-0.00643	-50.0	0.0	0.00159	-42.6	7.4	-0.01777	-42.6	82.6
2	0.00350	-0.00673	-50.0	0.0	0.00156	-42.6	7.4	-0.01849	-42.6	82.6

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità a rottura in presenza di sola fless.(travi)
C Rid	Coeff di riduz momenti per sola flessione in travi continue

C.Rid.	x/d	С	b	а	N°Comb
		0.003500000	-0.000257482	0.000000000	1
		0.003500000	-0.000262391	0.000000000	2

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Xc max, Yc max
Sf min
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Minima tensione (negativa se di trazione) nell'acciaio [Mpa]
Xs min, Ys min
Ac eff.
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)
Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
As eff.
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure
D barre
Distanza tre le barre tese [cm] ai fini del calcolo dell'apertura fessure

Beta12 Prodotto dei coeff. di aderenza delle barre Beta1*Beta2

N°Comb	Ver	Sc max	Xc max Y	c max	Sf min	Xs min	Ys min	Ac eff.	As eff.	D barre	Beta12
1	S	8.89	-50.0	0.0	-221.4	33.1	82.6	2450	68.8	9.5	1.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

N°Comb	Ver	Sc max	Xc max Y	c max	Sf min	Xs min	Ys min	Ac eff.	As eff.	D barre	Beta12
1	S	7.62	-50.0	0.0	-187.5	-4.7	82.6	2450	68.8	7.5	1.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§B.6.6 DM96]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica
S1 Massima tensione [Mpa] di trazione nel calcestruzzo valutata in sezione non fessurata
S2 Minima tensione [Mpa] di trazione nel calcestruzzo valutata in sezione fessurata

k2 = 0.4 per barre ad aderenza migliorata

k3 = 0.125 per flessione e presso-flessione; =(e1 + e2)/(2*e1) per trazione eccentrica Ø Diametro [mm] medio delle barre tese comprese nell'area efficace Ac eff

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

Psi = 1-Beta12*(Ssr/Ss)² = 1-Beta12*(fctm/S2)² = 1-Beta12*(Mfess/M)² [B.6.6 DM96]

e sm Deformazione unitaria media tra le fessure [4.3.1.7.1.3 DM96]. Il valore limite = 0.4*Ss/Es è tra parentesi

srm Distanza media tra le fessure [mm]

wk Valore caratteristico [mm] dell'apertura fessure = 1.7 * e sm * srm . Valore limite tra parentesi

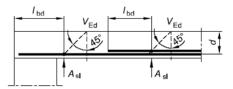
MX fess. Componente momento di prima fessurazione intorno all'asse X [kNm] MY fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

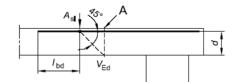
S2 Comb. Ver S1 k3 Ø e sm srm Mx fess My fess -5.0 0.125 24 61.0 0.617 0.00058 (0.00037) 180 0.177 (0.40) -591.56 0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

N°Comb	Ver	Sc max	Xc max Y	c max	Sf min	Xs min	Ys min	Ac eff.	As eff.	D barre	Beta12
1	S	5.70	50.0	0.0	-136.6	33.1	82.6	2450	68.8	9.5	0.50


COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§B.6.6 DM96]


Comb.	Ver	S1	S2	k3	Ø	Cf	Psi	e sm	srm	wk	Mx fess	My fess
1	S	-3.7	0	0.125	24	61.0	0.647 0.00	0044 (0.00027)	184	0.138 (0.30)	-597.32	0.00

DETERMINAZIONE DELLA RESISTENZA A TAGLIO DELLA SEZIONE								
§ 4.1.2.1.3.1 - ELEMENTI SENZA ARMATURE TRASVERSALI RESISTENTI A TAGLIO								
Azione di Taglio sollecitante a Stato Limite Ultimo	V_{Ed}	628.05	[kN]					
Considerare o meno il contributo dell'armatura tesa nel calcolo		si	[-]					
Coefficiente C _{Rd,c}	$C_{Rd,c}$	0.12	[-]					
Coefficiente k	k	1.49	[-]					
		1.49	[-]					
Rapporto geometrico d'armatura che si estende per non meno di l _{bd} + d	ρι	0.0083294	[-]					
		0.0083294	[-]					

figura Definizione di A_{si} nella espressione (6.2) Legenda

Sezione considerata

Resistenza a taglio offerta dal calcestruzzo teso	$V_{Rd,c}$	447.23 [kN]
Resistenza minima del calcestruzzo teso	$V_{Rd,min}$	303.60 [kN]
Resistenza a taglio offerta dal calcestruzzo teso	V_{Rd}	447.23 [kN]
§ 4.1.2.1.3.2 - ELEMENTI CON ARMATURE TRASVERSALI RESISTEN	TI A TAGLIO	
Diametro delle staffe	φsw	12 [mm]
Numero di braccia	nь	4 [-]
Passo delle staffe	S	200 [mm]
Inclinazione tra il puntone compresso e l'asse della trave	θ	45 [°]
Inclinazione dell'armatura trasversale rispetto all'asse della trave	α	90 [°]
Area della sezione trasversale dell'armatura a taglio	A_{sw}	452 [mm ²]
Braccio della coppia interna	Z	743.4 [mm]
Cotangente di θ	cote	1.00 [-]
		1.00 [-]
Cotangente di α	$\cot \alpha$	0.00 [-]
Seno di α	$sin \alpha$	1.00 [-]
Resistenza offerta dall'armatura a taglio (meccanismo taglio - trazione)	V_{Rsd}	657.99 [kN]
Resistenza a compressione ridotta del calcestruzzo d'anima	f'cd	9.41 [MPa]
Resistenza offerta dai puntoni (meccanismo taglio - compressione)	V_{Rcd}	3496.46 [kN]
Massima area efficace di armatura a taglio per $\cot \theta = 1$	$A_{sw,max}$	2884.71 [mm]
Resistenza a taglio della sezione armata trasversalmente	V_{Rd}	657.99 [kN]
§ 4.1.2.1.3.3 - TAGLIO MASSIMO SOPPORTABILE DALLA TI	RAVE	
Resistenza massima a taglio della trave	V_{Rd}	3884.95 [kN]

ASSE VIARIO MARCHE - UMBRIA E QUADRILATERO DI PENETRAZIONE INTERNA SUBLOTTO 2.2: Intervalliva Macerata - Allaccio funzionale della SS77 alla città di Macerata alle località "La Pieve" e "Mattei"

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Sezione S2

Le sollecitazioni nella sezione di verifica per singola condizione di carico sono riportate in tabella seguente:

Load	Axial (kN)	Shear-z (kN)	Moment-y (kN*m)
PP	0	72.64	0
PERM	0	-25.76	0
STSX	-257.18	47.67	710.8
RITIRO	-18.78	0	0
TU-TF	0	0	0
TANDEM-I	0	-59.94	0
GR-U	0	-12.2	0
TANDEM-	0	0	0
SP-10	0	0	0
F-AVV	0	0	0
ACC1	-98.72	27.45	409.27
ACC2	-81.75	19.44	321.61
STSX_GEO	-290.19	53.79	802.01
SISMA-H	-264.62	75.11	1223.56
SISMA-V	0	-8.78	0

Le sollecitazioni nella sezione di verifica combinate secondo le combinazioni innanzi riportate sono:

	SN (kN)	V(kN)	M(kNm)
Combinazione fondamentale SLU	-503.00	164.70	1512.09
Combinazione SLU (sisma STR)	-560.32	172.52	2016.21
Combinazione SLU (sisma GEO)	-560.32	172.52	2016.21
Combinazione SLE Rara	-367.17	122.00	1120.07
Combinazione SLE Frequente	-327.68	111.02	956.36
Combinazione SLE QP	-266.57	94.55	710.80

DATI GENERALI SEZIONE IN C.A. NOME SEZIONE: S2

Descrizione Sezione:

Metodo di calcolo resistenza: Stati Limite Ultimi Tipologia sezione: Sezione generica

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Poco aggressive

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C28/35
Resis. compr. di calcolo fcd: 15.860 MPa

ACCIAIO -

ASSE VIARIO MARCHE - UMBRIA E QUADRILATERO DI PENETRAZIONE INTERNA SUBLOTTO 2.2: Intervalliva Macerata - allaccio funzionale della SS77 alla città di Macerata alle località "La Pieve" e "Mattei"

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Def.unit. max resistenza ec2:	0.0020	
Def.unit. ultima ecu:	0.0035	
Diagramma tensione-deformaz.:	Parabola-Rettangolo	
Modulo Elastico Normale Ec:	32308.0	MPa
Resis. media a trazione fctm:	2.760	MPa
Coeff. Omogen. S.L.E.:	15.00	
Coeff. Omogen. S.L.E.:	15.00	
Sc limite S.L.E. comb. Frequenti:	168.00	daN/cm ²
Ap.Fessure limite S.L.E. comb. Freque	enti: 0.400	mm
Sc limite S.L.E. comb. Q.Permanenti:	0.00	Мра
Ap.Fessure limite S.L.E. comb. Q.Perr	nanenti: 0.300	mm
Tipo:	B450C	
Resist. caratt. snervam. fyk:	450.00	MPa
Resist. caratt. rottura ftk:	450.00	MPa
Resist. snerv. di calcolo fyd:	391.30	MPa
Resist. ultima di calcolo ftd:	391.30	MPa
Deform. ultima di calcolo Epu:	0.068	

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.:

Coeff. Aderenza istantaneo ß1*ß2:

Coeff. Aderenza differito ß1*ß2:

0.50

Sf limite S.L.E. Comb. Rare: 360.00 MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo		Poligonale C28/35
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	90.0
3	50.0	90.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-42.6	7.4	26
2	-42.6	82.6	26
3	42.6	82.6	26
4	42.6	7.4	26

DATI GENERAZIONI LINEARI DI BARRE

 N°Gen.
 Numero assegnato alla singola generazione lineare di barre

 N°Barra Ini.
 Numero della barra iniziale cui si riferisce la generazione

 N°Barra Fin.
 Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	26
2	2	3	3	26

DATI GENERAZIONI CIRCOLARI DI BARRE

N°Gen. Numero assegnato alla singola generazione circolare di barre

Xcentro Ascissa [cm] del centro della circonf. lungo cui sono disposte le barre generate

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Ycentro Raggio N°Barre Ø		Raggio [cm] del Numero di barre	Ordinata [cm] del centro della circonf. lungo cui sono disposte le barre ge Raggio [cm] della circonferenza lungo cui sono disposte le barre generate Numero di barre generate equidist. disposte lungo la circonferenza Diametro [mm] della singola barra generata				
N°Gen.	Xcentro	Ycentro	Raggio	N°Barre	Ø		
1	42.6	11.3	0.0	1	20		
2	21.3	11.3	0.0	1	20		
3	0.0	11.3	0.0	1	20		
4	-21.3	11.3	0.0	1	20		
5	-42.6	11.3	0.0	1	20		

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx		Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Momento flettente [daNm] intorno all'asse x princ. d'inerzia con verso positivo se tale da comprimere il lembo sup. della sez. Momento flettente [daNm] intorno all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro della sez.				
Му						
Vy Vx		Componente del	Taglio [kN] parallela	a all'asse princ.d'ine a all'asse princ.d'ine	erzia y	
VX		Componente dei	ragilo [kiv] parallela	a all asse princ.u ine	11 Z I	
N°Comb.	N	Mx	My	Vy	Vx	
1	503.00	1512.09	0.00	0.00	0.00	
2	560.32	2016.21	0.00	0.00	0.00	

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom. Fessurazione) Mx con verso positivo se tale da comprimere il lembo superiore della sezione Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) My con verso positivo se tale da comprimere il lembo destro della sezione N°Comb. Ν Mx 367.17 1120.07 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) My con verso positivo se tale da comprimere il lembo superiore della sezione Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) Μy con verso positivo se tale da comprimere il lembo destro della sezione N°Comb. 327.68 956.36 (543.85) 0.00 (0.00) 1

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) Му

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. Ν Mx My

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

266.57 710.80 (546.79) 0.00(0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.1 cm

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

Ver S = combinazione verificata / N = combin. non verificata

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Momento flettente assegnato [kNm] riferito all'asse x princ. d'inerzia Mx Momento flettente assegnato [kNm] riferito all'asse y princ. d'inerzia Μv

Nult Sforzo normale ultimo [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx ult Momento flettente ultimo [kNm] riferito all'asse x princ. d'inerzia Momento flettente ultimo [kNm] riferito all'asse y princ. d'inerzia Misura sicurezza = rapporto vettoriale tra (N ult,Mx ult,My ult) e (N,Mx,My) My ult

Mis.Sic.

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature [cm²] in zona tesa (solo travi). Tra parentesi l'area minima di normativa

N°Comb	Ver	N	Mx	Му	N ult	Mx ult	My ult Mis.Sic.	As Tesa
1	S	503.00	1512.09	0.00	503.12	2198.62	0.00 1.449	
2	S	560.32	2016.21	0.00	574.68	2220.65	0.00 1.101	

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
ec 3/7	Deform. unit. del conglomerato nella fibra a 3/7 dell'altezza efficace
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Con	nb ec max	ec 3/7	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	-0.00454	50.0	90.0	0.00196	42.6	82.6	-0.01371	-42.6	7.4
2	0.00350	-0.00439	50.0	90.0	0.00256	42.6	82.6	-0.01326	-42.6	7.4

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. a. b. c Rapp. di duttilità a rottura in presenza di sola fless.(travi) x/d C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

C.RIG.	X/Q	С	D	a	N Comb
		-0.015250916	0.000208344	0.000000000	1
		-0.014651338	0.000201682	0.000000000	2

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

Ver S = comb. verificata/ N = comb. non verificata

Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Sc max Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione (negativa se di trazione) nell'acciaio [Mpa] Sf min Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Xs min. Ys min

Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Ac eff. As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure D barre Distanza tre le barre tese [cm] ai fini del calcolo dell'apertura fessure

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

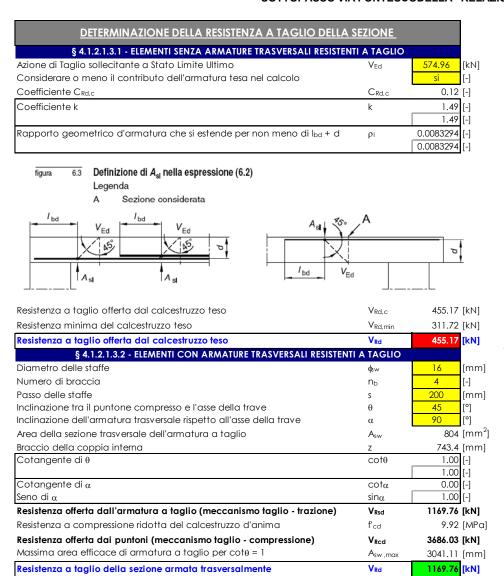
Beta12		Prodotto dei coeff. di aderenza delle barre Beta1*Beta2												
N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.	D barre	Beta12			
1	S	9.03	-50.0	90.0	-205.8	-23.7	7.4	2450	68.8	4.6	1.00			
COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE														
N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.	D barre	Beta12			
1	S	7.72	-50.0	90.0	-174.8	-42.6	7.4	2450	68.8	3.9	1.00			
COMBINA	COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§B.6.6 DM96]													
La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm Ver. Esito della verifica S1 Massima tensione [Mpa] di trazione nel calcestruzzo valutata in sezione non fessurata S2 Minima tensione [Mpa] di trazione nel calcestruzzo valutata in sezione fessurata k2 = 0.4 per barre ad aderenza migliorata k3 = 0.125 per flessione e presso-flessione; = (e1 + e2)/(2*e1) per trazione eccentrica Ø Diametro [mm] medio delle barre tese comprese nell'area efficace Ac eff Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa Psi = 1-Beta12*(Ssr/Ss)² = 1-Beta12*(fctm/S2)² = 1-Beta12*((Mfess/M)² [B.6.6 DM96] e sm Deformazione unitaria media tra le fessure [4.3.1.7.1.3 DM96]. Il valore limite = 0.4*Ss/Es è tra parentesi srm Distanza media tra le fessure [mm] wk Valore caratteristico [mm] dell'apertura fessure = 1.7 * e sm * srm . Valore limite tra parentesi Componente momento di prima fessurazione intorno all'asse X [kNm] MY fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]														
Comb.	Ver	S1		S2	k3	Ø	Cf Ps	si	e sm	srm	wk	Mx fess	My fess	
1	S	-4.9)	0 0	.125	24 61	.0 0.67	7 0.00059	(0.00035)	173 (0.174 (0.40)	543.85	0.00	
COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE														
N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.	D barre	Beta12			
1	S	5.76	-50.0	90.0	-128.5	-42.6	7.4	2450	68.8	3.9	0.50			
COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§B.6.6 DM96]														
Comb.	Ver	S1		S2	k3	Ø	Cf Ps	si	e sm	srm	wk	Mx fess	My fess	

GPIngegneria **GESTIONE PROGETTI INGEGNERIA** sri

0.125

24 61.0 0.704 0.00045 (0.00026) 173 0.133 (0.30)

546.79


0.00

S

-3.6

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Sezione S3

Le sollecitazioni nella sezione di verifica per singola condizione di carico sono riportate in tabella sequente:

ASSE VIARIO MARCHE - UMBRIA E QUADRILATERO DI PENETRAZIONE INTERNA SUBLOTTO 2.2: Intervalliva Macerata - Allaccio funzionale della SS77 alla città di Macerata alle località "La Pieve" e "Mattei"

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Elem	Load	Axial (kN)	Shear-z (kN)	Moment-y (kN*m)
33	PP	0	0	-207.18
33	PERM	0	0	74.77
33	STSX	-143.11	62.72	242.07
33	RITIRO	-50.15	0	0
33	TU-TF	0	0	0
33	TANDEM-I	0	0	173.97
33	GR-U	0	0	35.42
33	TANDEM-	0	0	0
33	SP-10	0	0	0
33	F-AVV	0	0	0
33	ACC1	-54.93	36.11	139.38
33	ACC2	-61.44	16.36	155.89
33	STSX_GEO	-161.48	70.77	273.13
33	SISMA-H	-167.25	145.79	493.04
33	SISMA-V	0	0	-20.24

Le sollecitazioni nella sezione di verifica combinate secondo le combinazioni innanzi riportate sono:

	SN (kN)	V(kN)	M(kNm)
Combinazione fondamentale SLU	-327.53	133.42	571.14
Combinazione SLU (sisma STR)	-371.50	215.73	652.44
Combinazione SLU (sisma GEO)	-371.50	215.73	652.44
Combinazione SLE Rara	-228.13	98.83	360.86
Combinazione SLE Frequente	-206.16	84.39	296.12
Combinazione SLE QP	-168.185	62.72	109.66

DATI GENERALI SEZIONE IN C.A. NOME SEZIONE: S3_7m

Descrizione Sezione:

Metodo di calcolo resistenza: Stati Limite Ultimi Tipologia sezione: Sezione generica

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante
Condizioni Ambientali: Poco aggressive
Riferimento Sforzi assegnati: Assi x,y principali d'inerzia

Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C28/35
Resis. compr. di calcolo fcd: 15.860 MPa

Resis. compr. di calcolo fcd: 15.860 MPa

Def.unit. max resistenza ec2: 0.0020

Def.unit. ultima ecu: 0.0035

Diagramma tensione-deformaz.: Parabola-Rettangolo

Modulo Elastico Normale Ec: 32308.0 MPa

Resis. media a trazione fctm: 2.760 MPa

ASSE VIARIO MARCHE - UMBRIA E QUADRILATERO DI PENETRAZIONE INTERNA SUBLOTTO 2.2: Intervalliva Macerata - Allaccio funzionale della SS77 alla città di Macerata alle località "La Pieve" e "Mattei"

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Coeff. Omogen. S.L.E.:	15.00	
Coeff. Omogen. S.L.E.:	15.00	
Sc limite S.L.F. comb. Frequenti:	168.00	daN

Sc limite S.L.E. comb. Frequenti:

Ap.Fessure limite S.L.E. comb. Frequenti:

Sc limite S.L.E. comb. Q.Permanenti:

0.400 mm

0.400 mm

Ap.Fessure limite S.L.E. comb. Q.Permanenti:

0.300 mm

ACCIAIO - Tipo: B450C

Resist. caratt. snervam. fyk:450.00MPaResist. caratt. rottura ftk:450.00MPaResist. snerv. di calcolo fyd:391.30MPaResist. ultima di calcolo ftd:391.30MPaDeform. ultima di calcolo Epu:0.068

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.:

Coeff. Aderenza istantaneo ß1*ß2:

Coeff. Aderenza differito ß1*ß2:

Sf limite S.L.E. Comb. Rare:

Bilineare finito

1.00

0.50

MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo		Poligonale C28/35
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	90.0
3	50.0	90.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-42.6	7.4	26
2	-42.6	82.6	26
3	42.6	82.6	26
4	42 6	7 4	26

DATI GENERAZIONI LINEARI DI BARRE

 N°Gen.
 Numero assegnato alla singola generazione lineare di barre

 N°Barra Ini.
 Numero della barra iniziale cui si riferisce la generazione

 N°Barra Fin.
 Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

 N°Gen.
 N°Barra Ini.
 N°Barra Fin.
 N°Barre
 Ø

 1
 1
 4
 3
 26

 2
 2
 3
 3
 26

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baric. (+ se di compressione)

Mx Momento flettente [daNm] intorno all'asse x princ. d'inerzia
con verso positivo se tale da comprimere il lembo sup. della sez.

My Momento flettente [daNm] intorno all'asse y princ. d'inerzia
con verso positivo se tale da comprimere il lembo destro della sez.

Vy Componente del Taglio [kN] parallela all'asse princ. d'inerzia y

Vx Componente del Taglio [kN] parallela all'asse princ. d'inerzia x

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

N°Comb.	N	Mx	My	Vy	Vx
1	327.53	-571.14	0.00	0.00	0.00
2	371.50	-652.44	0.00	0.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom. Fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom. Fessurazione) Му

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx Μy 1 228.13 -360.86 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Ν Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb Mx 206.16 296.12 (479.92) 0.00 (0.00) 1

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom. Fessurazione) My

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. 168.19 -168.19 (-519.52) 0.00 (0.00) 1

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.1 cm Interferro netto minimo barre longitudinali: 18.7 cm

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

Ver S = combinazione verificata / N = combin. non verificata

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) Ν

Мx Momento flettente assegnato [kNm] riferito all'asse x princ. d'inerzia Momento flettente assegnato [kNm] riferito all'asse y princ. d'inerzia Μy

Sforzo normale ultimo [kN] nel baricentro B sezione cls.(positivo se di compress.) N ult

Momento flettente ultimo [kNm] riferito all'asse x princ. d'inerzia Mx ult Momento flettente ultimo [kNm] riferito all'asse y princ. d'inerzia My ult

Misura sicurezza = rapporto vettoriale tra (N ult, Mx ult, My ult) e (N, Mx, My) Mis.Sic.

Verifica positiva se tale rapporto risulta >=1.000

Area armature [cm²] in zona tesa (solo travi). Tra parentesi l'area minima di normativa As Tesa

N°Comb Ver N Mx My N ult Mx ult My ult Mis.Sic. As Tesa

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

1	S	327.53	-571.14	0.00	239.25	-913.18	0.00	1.598	
2	S	371.50	-652.44	0.00	242.60	-914.44	0.00	1.401	

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
ec 3/7	Deform. unit. del conglomerato nella fibra a 3/7 dell'altezza efficace
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Con	nb ec max	ec 3/7	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	-0.01170	-50.0	0.0	0.00039	-42.6	7.4	-0.03119	-42.6	82.6
2	0.00350	-0.01286	-50.0	0.0	0.00040	-42.6	7.4	-0.03115	-42.6	82.6

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c x/d C.Rid.	Rapp. di	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. Rapp. di duttilità a rottura in presenza di sola fless.(travi) Coeff. di riduz. momenti per sola flessione in travi continue								
N°Comb	a	b	С	x/d	C.Rid.					
1	0.000000000	-0.000419974	0.003500000							
2	0.000000000	-0.000419473	0.003500000							

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

S = comb. verificata/ N = comb. non verificata Ver

Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Sc max Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione (negativa se di trazione) nell'acciaio [Mpa] Sf min

Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Xs min, Ys min Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Ac eff. As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure Distanza tre le barre tese [cm] ai fini del calcolo dell'apertura fessure D barre

Beta12 Prodotto dei coeff. di aderenza delle barre Beta1*Beta2

N°Comb	Ver	Sc max	Xc max Y	c max	Sf min	Xs min	Ys min	Ac eff.	As eff.	D barre	Beta12
1	S	4.21	50.0	0.0	-161.1	0.0	82.6	2459	26.5	21.3	1.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

N°Comb	Ver	Sc max	Xc max \	c max	Sf min	Xs min	Ys min	Ac eff.	As eff.	D barre	Beta12
1	S	3.57	-50.0	90.0	-134.8	-21.3	7.4	2459	26.5	21.3	1.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§B.6.6 DM96]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Esito della verifica Ver.

S1 Massima tensione [Mpa] di trazione nel calcestruzzo valutata in sezione non fessurata S2 Minima tensione [Mpa] di trazione nel calcestruzzo valutata in sezione fessurata

k2 = 0.4 per barre ad aderenza migliorata

= 0.125 per flessione e presso-flessione; =(e1 + e2)/(2*e1) per trazione eccentrica k3 Ø Diametro [mm] medio delle barre tese comprese nell'area efficace Ac eff Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Psi = $1-Beta12*(Ssr/Ss)^2 = 1-Beta12*(fctm/S2)^2 = 1-Beta12*(Mfess/M)^2$ [B.6.6 DM96]

Deformazione unitaria media tra le fessure [4.3.1.7.1.3 DM96]. Il valore limite = 0.4*Ss/Es è tra parentesi e sm

Distanza media tra le fessure [mm] srm

Valore caratteristico [mm] dell'apertura fessure = 1.7 * e sm * srm . Valore limite tra parentesi wk

MX fess. Componente momento di prima fessurazione intorno all'asse X [kNm] MY fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

S1 S2 Comb. Ver k3 Ø Cf Psi e sm srm Mx fess My fess 61.0 -1.149 0.00027 (0.00027) S -1.9 0 0.125 26 285 0.131 (0.40) 479.92 0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. D barre Beta12 1 S 1.61 50.0 0.0 -49.6 82.6 2459 26.5 21.3 0.50 21.3

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§B.6.6 DM96]

Comb.	Ver	S1	S2	k3	Ø	Cf	Psi	e sm	srm	wk	Mx fess	My fess
1	S	-0.8	0	0.125	26	61.0	-5.361 0.000	010 (0.00010)	285	0.048 (0.30)	-519.52	0.00

Sezione S4

Le sollecitazioni nella sezione di verifica per singola condizione di carico sono riportate in tabella sequente:

Elem	Load	Axial (kN)	Shear-z (kN)	Moment-y (kN*m)
19	PP	-67,5	0	0
19	PERM	0	0	0
19	STSX	0	53,44	53,44
19	RITIRO	0	0	0
19	TU-TF	0	0	0
19	TANDEM-Mmax	0	0	0
19	GR-U	0	0	0
19	TANDEM-Tmax	0	0	0
19	SP-10	0	18,75	28,13
19	F-AVV	0	0	0
19	ACC1	0	37,5	56,25
19	ACC2	0	41,7	62,55
19	STSX_GEO	0	59,42	59,42
19	SISMA-H	0	116,09	174,14
19	SISMA-V	0	0	0

Le sollecitazioni nella sezione di verifica combinate secondo le combinazioni innanzi riportate sono:

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

	SN (kN)	V(kN)	M(kNm)
Combinazione fondamentale SLU	-91.13	122.77	148.08
Combinazione SLU (sisma STR)	-67.50	197.33	269.46
Combinazione SLU (sisma GEO)	-67.50	197.33	269.46
Combinazione SLE Rara	-67.50	90.94	109.69
Combinazione SLE Frequente	-67.50	75.94	87.19
Combinazione SLE QP	-67.50	53.44	53.44

DATI GENERALI SEZIONE IN C.A. NOME SEZIONE: S4_7m

Descrizione Sezione:

Metodo di calcolo resistenza: Stati Limite Ultimi Tipologia sezione: Sezione generica

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Poco aggressive Riferimento Sforzi assegnati: Assi x,y principali d'inerzia

Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

Resis. compr. di calcolo fcd: 18.810 MPa Def.unit. max resistenza ec2: 0.0020 Def.unit. ultima ecu: 0.0035 Diagramma tensione-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 33643.0 MPa Resis. media a trazione fctm: 3.100 MPa Coeff. Omogen. S.L.E.: 15.00 Coeff. Omogen. S.L.E.: 15.00

Sc limite S.L.E. comb. Frequenti: 199.20 daN/cm² Ap.Fessure limite S.L.E. comb. Frequenti: 0.400 mm Sc limite S.L.E. comb. Q.Permanenti: 0.00 Mpa Ap.Fessure limite S.L.E. comb. Q.Permanenti: 0.300 mm

ACCIAIO -B450C

> Resist. caratt. snervam. fyk: 450.00 MPa Resist. caratt. rottura ftk: 450.00 MPa Resist. snerv. di calcolo fyd: 391.30 MPa Resist. ultima di calcolo ftd: 391.30 MPa Deform. ultima di calcolo Epu: 0.068

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza istantaneo ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50 Sf limite S.L.E. Comb. Rare: 360.00 MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo		Poligonale C32/40
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	50.0
3	50.0	50.0

ASSE VIARIO MARCHE - UMBRIA E QUADRILATERO DI PENETRAZIONE INTERNA SUBLOTTO 2.2: Intervalliva Macerata - allaccio funzionale della SS77 alla città di Macerata alle località "La Pieve" e "Mattei"

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-42.6	7.4	20
2	-42.6	42.6	20
3	42.6	42.6	20
4	42 6	7 4	20

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.	Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.	Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.	Numero della barra finale cui si riferisce la generazione
NODama	Nome and the sure and a socialist and and all affects as the sure and

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	3	20
2	2	3	3	20

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx		Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Momento flettente [daNm] intorno all'asse x princ. d'inerzia con verso positivo se tale da comprimere il lembo sup. della sez.							
Му		Momento flettent	con verso positivo se tale da comprimere il lembo sup. della sez. Momento flettente [daNm] intorno all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro della sez.						
Vy				a all'asse princ.d'ine					
Vx		Componente del Taglio [kN] parallela all'asse princ.d'inerzia x							
N°Comb.	N	Mx	Му	Vy	Vx				
1	91.13	140.08	0.00	0.00	0.00				
2	67.50	269.46	0.00	0.00	0.00				

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Storzo normale	[kN] applicato nel Baricentro (·	r se di compressione)	
Mx		te [kNm] intorno all'asse x prir	\ '	om.Fessurazione)
	con verso positi	vo se tale da comprimere il ler	nbo superiore della sezione	
My	Momento fletten	te [kNm] intorno all'asse y prir	c. d'inerzia (tra parentesi M	om.Fessurazione)
·	con verso positi	vo se tale da comprimere il ler	nbo destro della sezione	
	•	•		
N°Comb.	N	Mx	Mv	
			,	
1	67.50	109.69	0.00	
I	67.50	109.09	0.00	

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx M

PROGETTAZIONE ATI:

Му

ASSE VIARIO MARCHE - UMBRIA E QUADRILATERO DI PENETRAZIONE INTERNA SUBLOTTO 2.2: Intervalliva Macerata - allaccio funzionale della SS77 alla città di Macerata alle località "La Pieve" e "Mattei"

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

1 67.50 87.19 (157.88) 0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My

1 67.50 53.44 (165.41) 0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.4 cm Interferro netto minimo barre longitudinali: 19.3 cm

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Momento flettente assegnato [kNm] riferito all'asse x princ. d'inerzia My Momento flettente assegnato [kNm] riferito all'asse y princ. d'inerzia

N ult Sforzo normale ultimo [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx ult Momento flettente ultimo [kNm] riferito all'asse x princ. d'inerzia
My ult Momento flettente ultimo [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N ult,Mx ult,My ult) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature [cm²] in zona tesa (solo travi). Tra parentesi l'area minima di normativa

As Tesa	Mis.Sic.	My ult 1	Mx ult	N ult	Му	Mx	N	Ver	N°Comb
	1.982	0.00	277.70	91.39	0.00	140.08	91.13	S	1
	1.014	0.00	273.27	67.51	0.00	269.46	67.50	S	2

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform, unit, massima del conglomerato a compressione
ec 3/7	Deform. unit. del conglomerato nella fibra a 3/7 dell'altezza efficace
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Con	nb ec max	ec 3/7	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	-0.00873	50.0	50.0	-0.00072	42.6	42.6	-0.02082	-42.6	7.4
2	0.00350	-0 00887	50.0	50.0	_0 00077	12.6	126	_0 02100	-126	7 /

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità a rottura in presenza di sola fless.(travi) C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

 $N^{\circ}Comb$ a b c x/d C.Rid.

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

0.000000000 0.000570907 -0.025045369 2 0.000000000 0.000577144 -0.025357218

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

Ver S = comb. verificata/ N = comb. non verificata

Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Sc max Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Sf min Minima tensione (negativa se di trazione) nell'acciaio [Mpa] Xs min. Ys min Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure As eff. D barre Distanza tre le barre tese [cm] ai fini del calcolo dell'apertura fessure

Prodotto dei coeff. di aderenza delle barre Beta1*Beta2 Beta12

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. D barre Beta12 S 4.44 -50.0 50.0 -160.7 -42.6 7.4 1874 15.7 21.3 1.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. D barre Beta12 1 S 3.53 -50.0 50.0 -123.4-42.67.4 1834 15.7 21.3 1.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§B.6.6 DM96]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

S1 Massima tensione [Mpa] di trazione nel calcestruzzo valutata in sezione non fessurata Minima tensione [Mpa] di trazione nel calcestruzzo valutata in sezione fessurata S2 k2 = 0.4 per barre ad aderenza migliorata

= 0.125 per flessione e presso-flessione; =(e1 + e2)/(2*e1) per trazione eccentrica k3 Ø Diametro [mm] medio delle barre tese comprese nell'area efficace Ac eff

Copriferro [mm] netto calcolato con riferimento alla barra più tesa Cf Psi = $1-Beta12*(Ssr/Ss)^2 = 1-Beta12*(fctm/S2)^2 = 1-Beta12*(Mfess/M)^2$ [B.6.6 DM96]

Deformazione unitaria media tra le fessure [4.3.1.7.1.3 DM96]. Il valore limite = 0.4*Ss/Es è tra parentesi e sm

Distanza media tra le fessure [mm] srm

Valore caratteristico [mm] dell'apertura fessure = 1.7 * e sm * srm . Valore limite tra parentesi

MX fess. Componente momento di prima fessurazione intorno all'asse X [kNm] MY fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Comb. Ver S1 S2 Cf Psi e sm srm wk Mx fess My fess 1 S -1.7 0 0.125 20 64.0 -2.279 0.00025 (0.00025) 287 0.121 (0.40) 0.00 157.88

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

N°Comb Sf min Xs min Ys min Ver Sc max Xc max Yc max Ac eff. As eff. D barre Beta12 S 1 2.17 -50.0 50.0 -67.6 -42.6 7.4 1791 15.7 21.3 0.50

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§B.6.6 DM96]

Comb. Ver S1 S2 k3 Cf Psi Mx fess My fess srm wk e sm 1 S -10 0 0.125 20 64.0 -3.790 0.00014 (0.00014) 285 0.065 (0.30) 165.41 0.00

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

per gli SL STR

12.1.1. VERIFICHE DI ACCETTABILITÀ DEI RISULTATI

Al fine di determinare la congruenza dei dati ottenuti dal software utilizzato e la validazione del modello analitico implementato è stato effettuato un controllo dei valori di momento flettente ottenuti con gli schemi semplificati della Tecnica delle Costruzioni.

In particolare, con riferimento alla condizione di spinta del rilevato, è stata effettuata una verifica di corrispondenza della sollecitazione di flessione agente nel paramento. La spinta sul paramento ha forma triangolare ed è pari a:

$$p_{z=7.00} = k_0 \cdot \gamma \cdot z = 0.625 \cdot 19 \cdot 7.00$$
 $\approx 83.12 \text{ kN/m}^2$

quindi la spinta S applicata ad 1/3 dell'altezza del paramento è pari a:

$$S = p_{z=7.00} \cdot H/2 = 83.12 \cdot 7.0/2 = 290.92 \text{ kN/m}$$

Il momento alla base del paramento è pari a =S·H/3 = 290.92·7.0/3 = 678.81 kNm La sollecitazione di flessione derivante dal modello di calcolo è pari a 678.9 kN come riportato in figura 59.

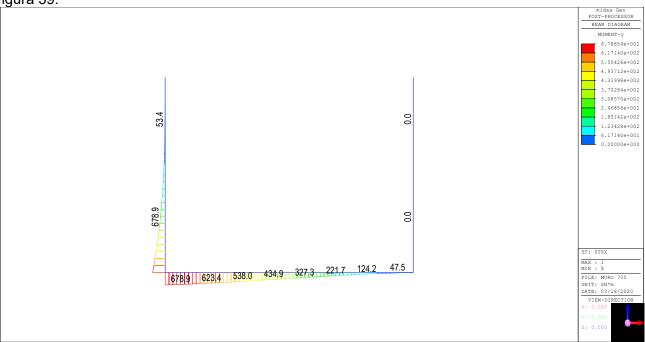


Figura 57: sollecitazione di flessione per sovraccarico sul rilevato

I valori sono del tutto analoghi pertanto il modello implementato è da ritenersi rappresentativo e congruente con lo stato reale.

*GPI*ngegneria **GESTIONE PROGETTI INGEGNERIA sri**

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

12.2. MODELLO DI CALCOLO E VERIFICHE MURO DI ALTEZZA 4.0M

Come modello di calcolo (si vedano le figure successive) si è assunto lo schema statico di telaio chiuso analizzato attraverso un'analisi elastico-lineare attraverso il programma di calcolo agli elementi finiti Midas Gen. Tale muro ha uno spessore di 50 cm sia per quanto riguardo i paramenti che la fondazione.

La mesh (si vedano le figure seguenti) è composta da 13 beam elements. Tale telaio viene descritto attraverso le linee d'asse delle singole membrature e pertanto, le aste del modello avranno lunghezza pari alla dimensione netta interna maggiorate della metà degli spessori delle aste adiacenti.

L'analisi strutturale è condotta con il metodo degli spostamenti per la valutazione dello stato tensodeformativo indotto da carichi statici.

Il suolo viene modellato facendo ricorso all'usuale artificio delle molle elastiche alla Winkler. La soletta inferiore viene divisa in 8 elementi per poter schematizzare, tramite le molle applicate, l'interazione terreno-struttura.

Considerando un numero fisso e pari a 9 di molle elastiche, la caratteristica elastica della generica molla viene calcolata attraverso la formulazione di Vogt:

$$k_s = \frac{1.33 \cdot E}{\sqrt[3]{bt^2 \cdot bl}}$$

- Ks = costante di sottofondo [F/L³]
- b_t = dimensione trasversale dell'opera
- b₁ = dimensione longitudinale dell'opera
- E = modulo di Young del terreno

E (MPa)	10
Numero di molle per unità di lunghezza	9
b _t (m)	8.90
b _l (m)	1.00
K _{verticale} (kN/m ³)	3096.88

Nella presente relazione si adotta un modulo di reazione verticale $Kv = 3096 \text{ kN/m}^3$

Con questo valore si ricavano i valori delle singole molle, ottenendo per le 3 molle centrali un valore

$$K_{centrale} = K_s * (L_p/2 + L_{int} + L_p/2) /9$$

$$K7, ...K9 = 3061.6 \text{ kN/m}$$

I valori delle molle di spigolo si ottengono con la seguente formulazione:

$$K1 = K2 = 2*K_s*[(L_p/2 + L_{int} + L_p/2)/9/2 + (L_p/2)] = 5848 \text{ kN/m}$$

ed infine in valori delle molle nei nodi 5,6,10 e 11 come da letteratura si assumono:

$$K5 = K6 = K10 = K11 = 1.5 * K_{centrale} = 4592.4 kN/m$$

ASSE VIARIO MARCHE - UMBRIA E QUADRILATERO DI PENETRAZIONE INTERNA SUBLOTTO 2.2: Intervalliva Macerata - allaccio funzionale della SS77 alla città di Macerata alle località "La Pieve" e "Mattei"

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Agli effetti delle caratteristiche geometriche delle varie aste si è quindi assunto:

- -una sezione rettangolare b x h = 1.00×0.90 m per la soletta di fondazione
- -una sezione rettangolare b x h = 1.00 x 0.90 m per i piedritti

Per le aste del reticolo si è assunto:

 E_{cm} = 22000·[f_{cm}/10]^{0.3} = 33643 MPa; modulo elastico del cls

Lo schema statico della struttura e la relativa numerazione dei nodi e delle aste sono riportati nella figura 45.

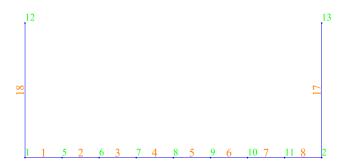


Figura 58: Modello di calcolo implementato

1	Name	Type	Standard	DB	Poisso	Thermal	(1/[C]	Density	(kN/m^3	Mass	Density	$(kN/m^3/g$
1	Calcestruzz	Concret	NTC18 (RC	C28/3	0.2	1.0000e-	005	2.5000e+	001	2.54	93e+000	

Tabella 26: Materiale da modello di calcolo

12.2.1. ANALISI DEI CARICHI

Nel seguente paragrafo, sulla base di quanto riportato al capitolo precedente, si descrivono i carichi elementari da assumere per le verifiche di resistenza in esercizio ed in presenza dell'evento sismico per la struttura in oggetto.

Per i materiali si assumono i seguenti pesi specifici:

calcestruzzo armato: 25.0 kN/m³
 rilevato 20.0 kN/m³
 sovrastruttura stradale 22.0 kN/m³

12.2.2. PESO PROPRIO DEGLI ELEMENTI STRUTTURALI (G1)

I pesi propri degli elementi strutturali per metro lineare di struttura sono i seguenti:

- soletta inferiore $0.50.25 = 12.50 \text{ kN/m}^2$ - piedritti $0.50.25 = 12.50 \text{ kN/m}^2$

12.2.3. CARICHI PERMANENTI PORTATI (G2)

I carichi permanenti portati (per metro lineare di struttura in obliquo) sono i seguenti:

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

- peso sovr. stradale soletta inf. $0.50 \cdot 22 = 11.00 \text{ kN/m}^2$ $0.50 \cdot 20 = 10.00 \text{ kN/m}^2$ - peso rilevato soletta inf.

Carico "2" nel modello di calcolo.

12.2.4. SPINTA DEL TERRENO (G3)

Si assumono per il terreno costituente il rinfianco del muro i seguenti parametri geotecnici (terreno LS4:

 $\gamma_t = 19 \text{ kN/m}^3$

 $\phi = 22^{\circ}$ per gli SL STR $\phi = 17.9^{\circ}$ per gli SL GEO

I coefficienti di spinta a riposo e di spinta attiva valgono rispettivamente:

 $k_0 = 1-sen\phi = 0.625$ per gli SL STR $k_0 = 1-sen\phi = 0.695$ per gli SL GEO

Le pressioni del terreno relative alla spinta a riposo ed alla spinta attiva, in corrispondenza dell'estradosso e dell'intradosso dello scatolare risultano essere le seguenti:

 $p_{z=4.00} = k_0 \cdot (q_0 + \gamma \cdot z) = 0.625 \cdot 19 \cdot 4.00$ per gli SL STR $\approx 47.50 \text{ kN/m}^2$

(rappresenta il carico "3" nel modello di calcolo)

 $p_{z=7.00} = k_0 \cdot (q_0 + \gamma \cdot z) = 0.695 \cdot 19 \cdot 4.00$ \cong 52.82 kN/m² per gli SL STR

(rappresenta il carico "13" nel modello di calcolo)

Naturalmente queste spinte saranno opportunamente combinate, utilizzando i valori dei coefficienti parziali delle azioni da assumere nell'analisi per la determinazione degli effetti delle azioni nelle verifiche agli stati limite ultimi.

12.2.5. CARICHI MOBILI VERTICALI SULLA SOLETTA DI FONDAZIONE

Ai fini della determinazione delle azioni variabili da traffico, l'opera in oggetto è considerata come un ponte stradale di 1º Categoria. Il calcolo dello scatolare viene eseguito per una striscia trasversale di 1m. Si considera la striscia maggiormente sollecitata al disotto della prima colonna di carico di larghezza 3.00m. La colonna è larga 3.00 m ed i carichi da considerare valgono (già dinamizzati):

- 1) Distribuito: $q_{1k} = 9.00 \text{ kN/mg}$
- 2) Concentrati : Q_{1k} = 300 kN, ovvero 150kN a impronta, per n° 4 posti alla distanza relativa di 1.20m (Tandem) x 2.00 m.

La ripartizione dei carichi si effettua considerando il carico isolato da 150 kN con impronta quadrata di lato 0.4 m.

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

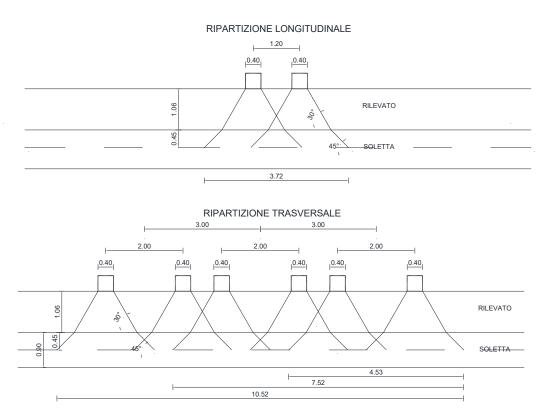


Figura 59: Schema di ripartizione dei carichi mobili

Il carico è schematizzato da due assi da 150 kN disposti ad interasse di 1.20m. per la determinazione delle lunghezze di diffusione a vantaggio di sicurezza è stato adottato lo spessore minimo di ricoprimento della struttura dello scatolare.

Si procede al calcolo dei carichi per metro lineare riferiti al baricentro della soletta per i diversi treni di carico. Si considera una larghezza di ripartizione trasversale massima pari alla larghezza della corsia di carico di 3.00 m pertanto:

$$q_{1k} = 600/(L_L \cdot L_{T1})$$

$$q_{1k} = (600+400)/(L_L \cdot L_{T2})$$

$$q_{1k} = (600+400+200)/(L_L \cdot L_{T3})$$

L _L	3.00 m	q _{2k}	9.00 kN/m ²
L _{T1}	4.53 m	q _{1k}	44.15 kN/m ²
L _{T2}	7.54 m	q _{1k}	44.20 kN/m ²
L _{T3}	10.54 m	q _{1k}	38.02 kN/m ²

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Si applica il carico della condizione più sfavorevole pari a 44.20 kN/m² applicato su tutta la larghezza del sottovia.

12.2.6. SPINTA DEL SOVRACCARICO SUL RILEVATO

La spinta sul manufatto dovuto alla presenza del sovraccarico sul rilevato è definita applicando un carico pari a 20 kN/m alla quota della pavimentazione stradale.

Si considera la spinta agente solo sulla parete sinistra:

 $q_s = 20.00 \text{ kN/m}$ p_s (STR) = $q_s K_0 = 12.50 \text{ kN/m}$ p_s (GEO) = $q_s K_0$ = 13.90 kN/m

condizioni di carico "11" e "12" nel modello di calcolo.

Si considera un altro caso di carico con 10kN/m di sovraccarico variabile sul rilevato. La spinta del sovraccarico sul rilevato è definita in due condizioni di carico:

 $q_s = 10.00 \text{ kN/m}$ p_{s1} (str) = $q_s K_0 = 6.25 \text{ kN/m}$ (condizione di carico "9" su entrambi I piedritti); p_{s1} (geo) = q_sK_0 = 6.95 kN/m (condizione di carico "9.1" su entrambi I piedritti);

il carico agisce contemporaneamente ai carichi mobili sulla struttura ed è applicato in due condizioni separate su un solo lato dello scatolare (condizione di carico "11 STR" e "12 GEO" nel modello di calcolo adottando coefficienti pari a 0.5 nelle combinazioni di carico) e su entrambi i piedritti contemporaneamente (condizioni di carico "9 STR" e "9.1 GEO" nel modello di calcolo).

12.2.7. AZIONE SISMICA

Nelle verifiche allo Stato Limite Ultimo, nel caso in esame lo SLV, i valori dei coefficienti sismici orizzontali k_h e verticale k_v possono essere valutati mediante le espressioni:

 $k_h = \beta_m \cdot a_{max}/g = 1.0 \cdot 0.309 \cdot g = 0.309 g$

 $k_v = \pm 0.5 \cdot k_h = \pm 0.155 g$

dove:

 $a_{max} = 0.309 g$ accelerazione orizzontale massima attesa al sito (vedi § 6.3)

 $g = 9.81 \text{ m/s}^2$ accelerazione di gravità;

 $\beta_{\rm m} = 1.0$ coefficiente di riduzione dell'accelerazione massima attesa al sito funzione del tipo di sottosuolo, assunto pari ad 1 in quanto la struttura non ammette spostamenti relativi rispetto al terreno:

L'azione sismica è rappresentata da un insieme di forze statiche orizzontali e verticali, date dal prodotto delle forze di gravità per i coefficienti sismici in precedenza definiti, di cui la componente verticale è considerata agente verso l'alto o verso il basso, in modo da produrre gli effetti più sfavorevoli. La risultante delle forze inerziali orizzontali indotte dal sisma viene valutata con la sequente espressione:

ASSE VIARIO MARCHE - UMBRIA E QUADRILATERO DI PENETRAZIONE INTERNA SUBLOTTO 2.2: Intervalliva Macerata - Allaccio funzionale della SS77 alla città di Macerata alle località "La Pieve" e "Mattei"

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

 $F_h = P \cdot k_h$

 $F_v = P \cdot k_v$

L'incremento dinamico di spinta del terreno, considerando lo scatolare come una struttura rigida completamente vincolata (NT par. 7.11.6.2.1 e EC8-5 par.7.3.2.1) in modo tale che non può svilupparsi nel terreno uno stato di spinta attiva, è calcolato mediante la seguente relazione:

$$\Delta P_d = k_h \cdot \gamma \cdot h_{tot} = 0.309 \cdot 19 \cdot 4.0 = 23.48 \text{ kN/ml allo SLV}$$

Essendo " ΔP_d " la risultante globale, ed il diagramma di spinta di tipo rettangolare, è immediato ricavare la quota parte della spinta che agisce sul piedritto dello scatolare. Il punto di applicazione della spinta che interessa il muro è posto $h_{mt}/2$, con " h_{tot} " altezza dal piano di progetto alla fondazione del muro e h_m l'altezza del muro.

Oltre ai carichi suddetti viene aggiunta, come carico concentrato nel nodo 1, la parte di sovraspinta esercitata su 1/2 spessore della soletta inferiore.

Spinta semispessore sol. inf.

 $F_3 = 1.53 \text{ kN}$

12.2.8. FORZE SISMICHE ORIZZONTALI E VERTICALI

L'azione sismica è rappresentata da un insieme di forze statiche orizzontali, date dal prodotto delle forze di gravità per i coefficienti sismici in precedenza definiti ed applicate nei rispettivi baricentri. Forze d'inerzia orizzontali sul muro SLV.

 $F_{o, piedritto sp50} = \pm 3.86 \text{ kN/m}^2$;

Forze d'inerzia verticali sul muro SLV.

 $F_{v, piedritto sp50} = \pm 1.93 \text{ kN/m}^2$;

 $F_{v. \text{ soletta base}} = \pm 1.92 \text{ kN/m}^2$;

 $F_{v, paviment} = \pm 3.24 \text{ kN/m}^2$;

 $F_{v. tot soletta di base} = \pm 5.16 \text{ kN/m}^2$;

12.2.9. VERIFICHE DELLE SEZIONI

Si riportano di seguito le verifiche nelle condizioni di SLE ed SLU eseguite con il software GeoStru RC-SEC v.20.8.1001.

Si riportano in forma grafica le caratteristiche delle sollecitazioni per singola condizione di carico:

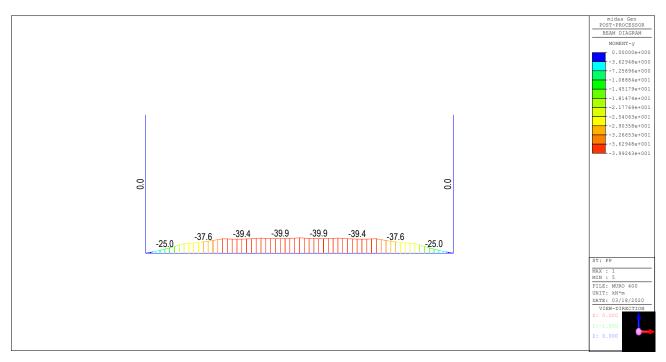


Figura 60: Sollecitazione flessionale per peso proprio

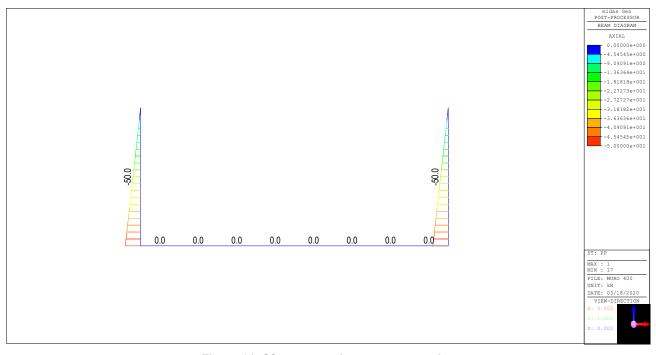


Figura 61: Sforzo normale per peso proprio

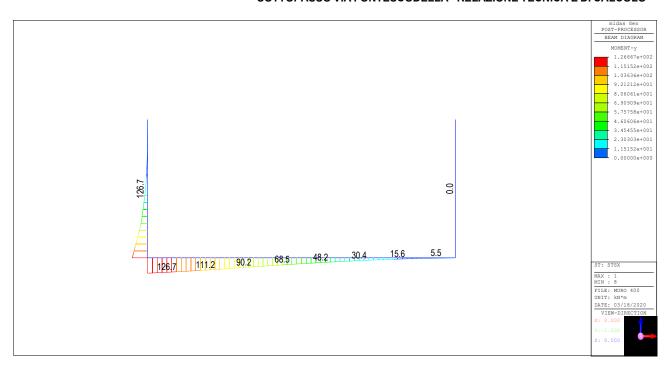


Figura 62: Sollecitazione di flessione per spinta del rilevato

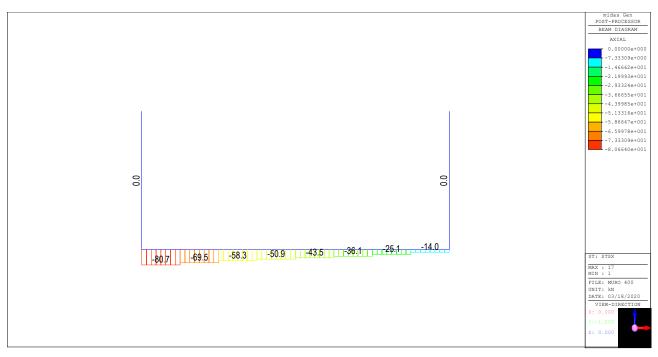


Figura 63: sollecitazione di sforzo normale per spinta del rilevato

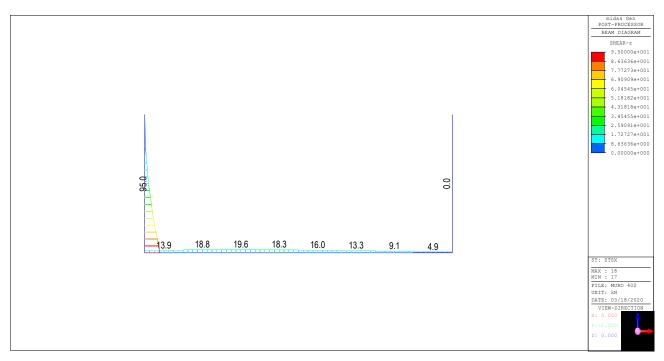


Figura 64: sollecitazione di taglio per spinta del rilevato

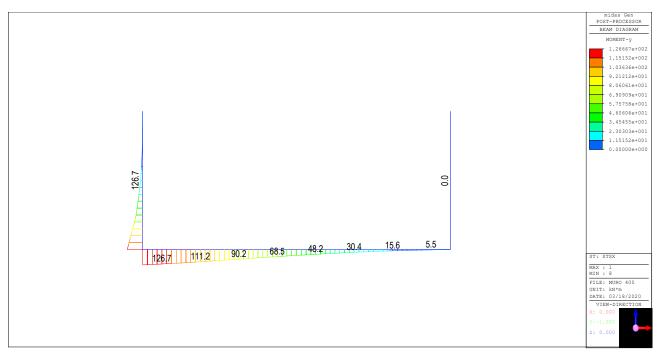


Figura 65: sollecitazione di flessione per sovraccarico sul rilevato



Figura 66: sforzo normale per sovraccarico sul rilevato

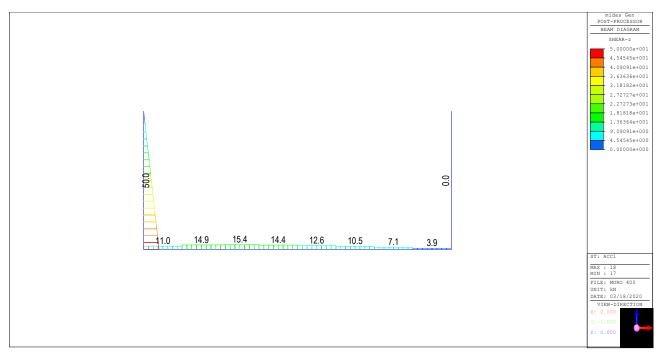
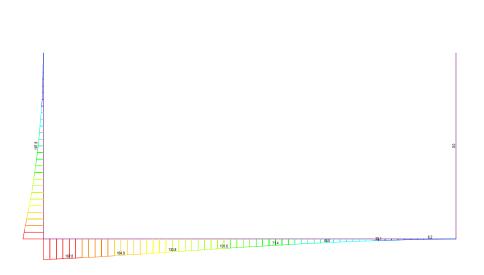
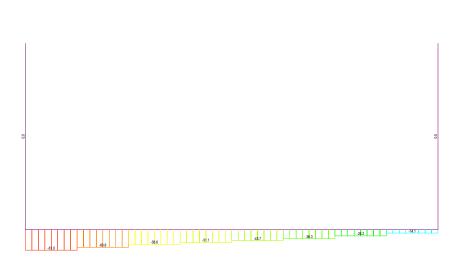


Figura 67: sollecitazione di taglio per sovraccarico sul rilevato





MOMENT-y 187.84 170.76 153.69

Figura 68: sollecitazione di flessione per sisma orizzontale

-36.84 -44.21 -51.57 -58.94 -66.31 -73.68 -81.05

Figura 69: sforzo normale per sisma orizzontale

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

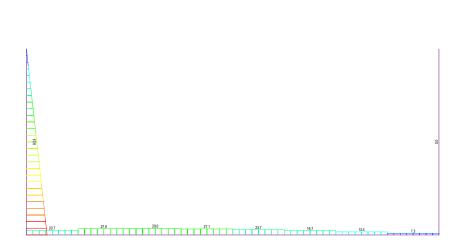


Figura 70: sollecitazione di taglio per sisma orizzontale

Si riportano di seguito le verifiche strutturali per le sezioni significative:

S1: Incastro tra piedritto e fondazione;

S2: Incastro tra fondazione e piedritto;

S3: Centro platea di fondazione;

Le sezioni di verifica sono riportate nella figura seguente.

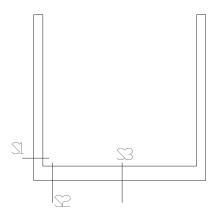


Figura 71: Sezioni di verifica

GESTIONE PROGETTI INGEGNERIA sri

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Sezione S1

Le sollecitazioni nella sezione di verifica per singola condizione di carico sono riportate in tabella seguente:

Elem	Load	Axial (kN)	Shear-z (kN)	Moment-y (kN*m)
18	PP	-50	0	0
18	PERM	0	0	0
18	STSX	0	95	126.67
18	RITIRO	0	0	0
18	TU-TF	0	0	0
18	TANDEM-I	0	0	0
18	GR-U	0	0	0
18	TANDEM-	0	0	0
18	SP-10	0	25	50
18	F-AVV	0	0	0
18	ACC1	0	50	100
18	ACC2	0	55.6	111.2
18	STSX_GEO	0	105.64	140.85
18	SISMA-H	0	93.92	187.84
18	SISMA-V	0	0	0

Le sollecitazioni nella sezione di verifica combinate secondo le combinazioni innanzi riportate sono:

	SN (kN)	V(kN)	M(kNm)
Combinazione fondamentale SLU	-67.50	195.75	306.00
Combinazione SLU (sisma STR)	-50.00	198.92	334.51
Combinazione SLU (sisma GEO)	-50.00	198.92	334.51
Combinazione SLE Rara	-50.00	145.00	226.67
Combinazione SLE Frequente	-50.00	125.00	186.67
Combinazione SLE QP	-50.00	95.00	126.67

DATI GENERALI SEZIONE IN C.A. NOME SEZIONE: S1

Descrizione Sezione:

Stati Limite Ultimi Metodo di calcolo resistenza: Tipologia sezione: Sezione generica

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Poco aggressive Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

/40
/

Resis. compr. di calcolo fcd: 18.810 MPa Def.unit. max resistenza ec2: 0.0020 Def.unit. ultima ecu: 0.0035 Diagramma tensione-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 33643.0 MPa

Resis. media a trazione fctm: 3.100 MPa Coeff. Omogen. S.L.E.: 15.00

Coeff. Omogen. S.L.E.: 15.00

Sc limite S.L.E. comb. Frequenti: 199.20 daN/cm² Ap.Fessure limite S.L.E. comb. Frequenti: 0.400 mm Sc limite S.L.E. comb. Q.Permanenti: 0.00 Mpa Ap.Fessure limite S.L.E. comb. Q.Permanenti: 0.300 mm

ACCIAIO -B450C Tipo:

Resist. caratt. snervam. fyk: 450.00 MPa Resist. caratt. rottura ftk: 450.00 MPa Resist. snerv. di calcolo fyd: 391.30 MPa Resist. ultima di calcolo ftd: 391.30 MPa Deform. ultima di calcolo Epu: 0.068

2000000 Modulo Elastico Ef daN/cm²

Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza istantaneo ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50 Sf limite S.L.E. Comb. Rare: 360.00 MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo		Poligonale C32/40
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	50.0
3	50.0	50.0
4	50.0	0.0

DATI BARRE ISOLATE

X [cm]	Y [cm]	DiamØ[mm]
-42.6	7.4	20
-42.6	42.6	20
42.6	42.6	20
42.6	7.4	20
	-42.6 -42.6 42.6	-42.6 7.4 -42.6 42.6 42.6 42.6

DATI GENERAZIONI LINEARI DI BARRE

N°Gen. Numero assegnato alla singola generazione lineare di barre N°Barra Ini. Numero della barra iniziale cui si riferisce la generazione Numero della barra finale cui si riferisce la generazione N°Barra Fin.

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	20
2	2	3	3	20

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

N	Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx	Momento flettente [daNm] intorno all'asse x princ. d'inerzia
	con verso positivo se tale da comprimere il lembo sup. della sez.
Му	Momento flettente [daNm] intorno all'asse y princ. d'inerzia
	con verso positivo se tale da comprimere il lembo destro della sez.
Vy	Componente del Taglio [kN] parallela all'asse princ.d'inerzia y
Vx	Componente del Taglio [kN] parallela all'asse princ.d'inerzia x

N°Comb.	N	Mx	Му	Vy	Vx
1	67.50	306.00	0.00	0.00	0.00
2	50.00	334 51	0.00	0.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom. Fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

Му Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. Mx 1 50.00 226.67 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom. Fessurazione) My

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. Ν Mx Μv 50.00 186.67 (164.29) 0.00 (0.00) 1

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) My

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. Ν Mx 50.00 126.67 (166.09) 0.00(0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: cm Interferro netto minimo barre longitudinali: 7.5 cm

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

S = combinazione verificata / N = combin. non verificata Ver

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) N

Mx Momento flettente assegnato [kNm] riferito all'asse x princ. d'inerzia Momento flettente assegnato [kNm] riferito all'asse y princ. d'inerzia My

Sforzo normale ultimo [kN] nel baricentro B sezione cls.(positivo se di compress.) Nult

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Mx ult Momento flettente ultimo [kNm] riferito all'asse x princ. d'inerzia Momento flettente ultimo [kNm] riferito all'asse y princ. d'inerzia My ult

Misura sicurezza = rapporto vettoriale tra (N ult,Mx ult,My ult) e (N,Mx,My) Mis.Sic.

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature [cm²] in zona tesa (solo travi). Tra parentesi l'area minima di normativa

N°Comb	Ver	N	Mx	Му	N ult	Mx ult	My ult Mis.Sic.	As Tesa
1	S	67.50	306.00	0.00	67.72	494.20	0.00 1.614	
2	S	50.00	334.51	0.00	50.18	491.04	0.00 1.467	

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
ec 3/7	Deform. unit. del conglomerato nella fibra a 3/7 dell'altezza efficace
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Con	nb ec max	ec 3/7	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	-0.00589	50.0	50.0	0.00026	42.6	42.6	-0.01517	-42.6	7.4
2	0.00350	-0.00602	50.0	50.0	0.00025	42.6	42.6	-0.01566	-42.6	7.4

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità a rottura in presenza di sola fless.(travi) C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

C.Rid.	x/d	С	b	а	N°Comb
		-0.018418579	0.000438372	0.000000000	1
		-0.018589122	0.000441782	0.000000000	2

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

S = comb. verificata/ N = comb. non verificata Ver

Sc max Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Sf min Minima tensione (negativa se di trazione) nell'acciaio [Mpa] Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Ac eff. As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure D barre Distanza tre le barre tese [cm] ai fini del calcolo dell'apertura fessure Prodotto dei coeff. di aderenza delle barre Beta1*Beta2 Beta12

N°Comb Ver Sf min Xs min Ys min Beta12 Sc max Xc max Yc max Ac eff. As eff. D barre 1 S 7.07 50.0 50.0 -185.9 -33.1 7.4 1750 31.4 9.5 1.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. D barre Beta12 31.4 1 S 5.84 -50.0 50.0 -151.8 -42.6 7 4 1700 95 1.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§B.6.6 DM96]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Ver. Esito della verifica

S1 Massima tensione [Mpa] di trazione nel calcestruzzo valutata in sezione non fessurata S2 Minima tensione [Mpa] di trazione nel calcestruzzo valutata in sezione fessurata

k2 = 0.4 per barre ad aderenza migliorata

k3 = 0.125 per flessione e presso-flessione; =(e1 + e2)/(2*e1) per trazione eccentrica

Ø Diametro [mm] medio delle barre tese comprese nell'area efficace Ac eff

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

= 1-Beta12*(Ssr/Ss)² = 1-Beta12*(fctm/S2)² = 1-Beta12*(Mfess/M)² [B.6.6 DM96] Psi

e sm Deformazione unitaria media tra le fessure [4.3.1.7.1.3 DM96]. Il valore limite = 0.4*Ss/Es è tra parentesi

Distanza media tra le fessure [mm] srm

Valore caratteristico [mm] dell'apertura fessure = 1.7 * e sm * srm . Valore limite tra parentesi wk

MX fess. Componente momento di prima fessurazione intorno all'asse X [kNm] MY fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

S1 S2 Comb. Ver k3 Ø Psi e sm srm wk Mx fess My fess 0.225 0.00030 (0.00030) 1 S -3.5 0 0.125 20 64.0 201 0.104 (0.40) 164.29 0.00

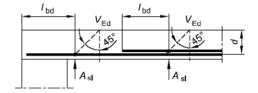
COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. D barre Beta12 S 3.98 -100.6 -42.6 1700 31.4 1 -50.0 50.0 7.4 9.5 0.50

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§B.6.6 DM96]

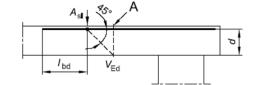
Comb. Ver S1 S2 k3 Ø Cf Psi e sm srm wk Mx fess My fess 1 S -2.4 0 0.125 20 64.0 0.140 0.00020 (0.00020) 201 0.069 (0.30) 166.09 0.00

GESTIONE PROGETTI INGEGNERIA sri



SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

DETERMINAZIONE DELLA RESISTENZA A TAGLIO DELLA SEZIONE				
§ 4.1.2.1.3.1 - ELEMENTI SENZA ARMATURE TRASVERSALI RESISTEN	ITI A TAGLIO			
Azione di Taglio sollecitante a Stato Limite Ultimo	V _{Ed}	195,75	[kN]	
Considerare o meno il contributo dell'armatura tesa nel calcolo		si	[-]	
Coefficiente C _{Rd,c}	$C_{Rd,c}$	0,12	[-]	
Coefficiente k	k	1,69	[-]	
		1,69	[-]	
Rapporto geometrico d'armatura che si estende per non meno di l _{bd} + d	ρι	0,016265	[-]	
		0,016265	[-]	


Definizione di A_{si} nella espressione (6.2) figura Legenda

Sezione considerata

Massima area efficace di armatura a taglio per $\cot\theta$ = 1

Resistenza a taglio della sezione armata trasversalmente

Resistenza a taglio offerta dal calcestruzzo teso	$V_{Rd,c}$	323,79	[kN]
Resistenza minima del calcestruzzo teso	$V_{Rd,min}$	187,02	[kN]
Resistenza a taglio offerta dal calcestruzzo teso	V_{Rd}	323,79	[kN]
§ 4.1.2.1.3.2 - ELEMENTI CON ARMATURE TRASVERSALI RESISTEN	TI A TAGLIO		
Diametro delle staffe	фsw	12	[mm]
Numero di braccia	n _b	4	[-]
Passo delle staffe	S	200	[mm]
Inclinazione tra il puntone compresso e l'asse della trave	θ	45	[°]
Inclinazione dell'armatura trasversale rispetto all'asse della trave	α	90	[°]
Area della sezione trasversale dell'armatura a taglio	A_{sw}	452	$[mm^2]$
Braccio della coppia interna	Z	380,7	[mm]
Cotangente di θ	cotθ	1,00	[-]
		1,00	[-]
Cotangente di α	cotα	0,00	[-]
Seno di α	$sin \alpha$	1,00	[-]
Resistenza offerta dall'armatura a taglio (meccanismo taglio - trazione)	V_{Rsd}	336,96	[kN]
Resistenza a compressione ridotta del calcestruzzo d'anima	f'cd	9,41	[MPa]
Resistenza offerta dai puntoni (meccanismo taglio - compressione)	Vecd	1790.56	[kN]

PROGETTAZIONE ATI:

2884,71 [mm]

336,96 [kN]

A_{sw},max V_{Rd}

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Sezione S2

Le sollecitazioni nella sezione di verifica per singola condizione di carico sono riportate in tabella seguente:

Elem	Load	Axial (kN)	Shear-z (kN)	Moment-y (kN*m)
1	PP	0	15.55	0
1	PERM	0	-24.92	0
1	STSX	-80.66	13.93	126.67
1	RITIRO	0	0	0
1	TU-TF	0	0	0
1	TANDEM-I	0	-52.46	0
1	GR-U	0	-10.68	0
1	TANDEM-	0	0	0
1	SP-10	-24.92	3.54	50
1	F-AVV	0	0	0
1	ACC1	-42.45	10.99	100
1	ACC2	-47.21	12.22	111.2
1	STSX_GEO	-89.7	15.48	140.85
1	SISMA-H	-81.05	20.65	187.84
1	SISMA-V	0	-5.28	0

Le sollecitazioni nella sezione di verifica combinate secondo le combinazioni innanzi riportate sono:

	SN (kN)	V(kN)	M(kNm)
Combinazione fondamentale SLU	-166.20	24.27	306.00
Combinazione SLU (sisma STR)	-170.20	25.82	334.51
Combinazione SLU (sisma GEO)	-170.20	25.82	334.51
Combinazione SLE Rara	-123.11	15.55	226.67
Combinazione SLE Frequente	-106.13	11.15	186.67
Combinazione SLE QP	-80.66	4.56	126.67

DATI GENERALI SEZIONE IN C.A. NOME SEZIONE: S2

Descrizione Sezione:

Metodo di calcolo resistenza: Stati Limite Ultimi Tipologia sezione: Sezione generica Normativa di riferimento:

N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Poco aggressive Riferimento Sforzi assegnati: Assi x,y principali d'inerzia

Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -C28/35 Classe: Resis. compr. di calcolo fcd: 15.860 MPa

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Def.unit. max resistenza ec2:	0.0020	
Def.unit. ultima ecu:	0.0035	
Diagramma tensione-deformaz.:	Parabola-Rettangolo	
Modulo Elastico Normale Ec:	32308.0	MPa
Resis. media a trazione fctm:	2.760	MPa
Coeff. Omogen. S.L.E.:	15.00	
Coeff. Omogen. S.L.E.:	15.00	
Sc limite S.L.E. comb. Frequenti:	168.00	daN/cn
An Fassura limita S.I. F. comb. Fraguer	oti: 0.400	mm

:m² Ap.Fessure limite S.L.E. comb. Frequenti: mm Sc limite S.L.E. comb. Q.Permanenti: 0.00 Mpa Ap.Fessure limite S.L.E. comb. Q.Permanenti: 0.300 mm

ACCIAIO -B450C Tipo:

Resist. caratt. snervam. fyk: MPa 450.00 Resist. caratt. rottura ftk: 450.00 MPa Resist. snerv. di calcolo fyd: 391.30 MPa Resist. ultima di calcolo ftd: 391.30 MPa Deform. ultima di calcolo Epu: 0.068

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza istantaneo ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50 Sf limite S.L.E. Comb. Rare: 360.00 MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del De Classe Congle	Poligonale C28/35	
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	50.0
3	50.0	50.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-42.6	7.4	20
2	-42.6	42.6	20
3	42.6	42.6	20
4	42.6	7.4	20

DATI GENERAZIONI LINEARI DI BARRE

Numero assegnato alla singola generazione lineare di barre N°Gen. N°Barra Ini. Numero della barra iniziale cui si riferisce la generazione N°Barra Fin. Numero della barra finale cui si riferisce la generazione

Numero di barre generate equidistanti cui si riferisce la generazione N°Barre

Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø	
1	1	4	8	20	
2	2	3	3	20	

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Ν Sforzo normale [kN] applicato nel Baric. (+ se di compressione)

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Vy Vx	Componente del	Taglio [kN] parallela Taglio [kN] parallela	all'asse princ.d'iner	zia y						
,	Componente del	Taglio [kN] parallela	all'asse princ.d'iner	zia y						
Му	Momento flettente [daNm] intorno all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro della sez.									
M		o se tale da comprin								
Mx	Momento flettente	e [daNm] intorno all'a	asse x princ. d'inerzi	ia						

N°Comb.	N	Mx	Му	Vy	Vx
1	166.20	306.00	0.00	0.00	0.00
2	170.20	334.51	0.00	0.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mχ Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. Mx 123.11 226.67 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Ν

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

Μv Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. 1 106.13 186.67 (150.13) 0.00(0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. Ν Mx My 1 80.66 126.67 (151.03) 0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.4 cm Interferro netto minimo barre longitudinali: 7.5 cm

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

S = combinazione verificata / N = combin. non verificata Ver

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) N

Mx Momento flettente assegnato [kNm] riferito all'asse x princ. d'inerzia Momento flettente assegnato [kNm] riferito all'asse y princ. d'inerzia My

Sforzo normale ultimo [kN] nel baricentro B sezione cls.(positivo se di compress.) Nult

Mx ult Momento flettente ultimo [kNm] riferito all'asse x princ. d'inerzia Momento flettente ultimo [kNm] riferito all'asse y princ. d'inerzia My ult

ASSE VIARIO MARCHE - UMBRIA E QUADRILATERO DI PENETRAZIONE INTERNA SUBLOTTO 2.2: Intervalliva Macerata - Allaccio funzionale della SS77 alla città di Macerata alle località "La Pieve" e "Mattei"

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Mis.Sic.	Misura sicurezza = rap	porto vettoriale tra (N	Nult,Mxult,Myult) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature [cm²] in zona tesa (solo travi). Tra parentesi l'area minima di normativa

N°Comb	Ver	N	Mx	Му	N ult	Mx ult	My ult Mis.Sic.	As Tesa
1	S	166.20	306.00	0.00	166.17	504.16	0.00 1.644	
2	S	170.20	308.40	0.00	334.51	502.93	0.00 1.503	

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
ec 3/7	Deform. unit. del conglomerato nella fibra a 3/7 dell'altezza efficace
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Con	nb ec max	ec 3/7	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	-0.00465	-50.0	50.0	0.00068	42.6	42.6	-0.01271	-42.6	7.4
2	0.00350	-0.00468	-50.0	50.0	0.00067	42.6	42.6	-0.01277	-42.6	7.4

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità a rottura in presenza di sola fless.(travi)

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	а	b	С	x/d	C.Rid.
1	0.000000000	0.000380485	-0.015524231		
2	0.000000000	0.000381849	-0.015592448		

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Xc max, Yc max
Sf min

Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Minima tensione (negativa se di trazione) nell'acciaio [Mpa]

Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)
Ac eff.
As eff.
Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure
D barre
Distanza tre le barre tese [cm] ai fini del calcolo dell'apertura fessure

Beta12 Prodotto dei coeff. di aderenza delle barre Beta1*Beta2

N°Comb	Ver	Sc max	Xc max \	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.	D barre	Beta12
1	S	7.16	-50.0	50.0	-174.9	-42.6	7.4	1700	31.4	9.5	1.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

N°Comb	Ver	Sc max	Xc max Y	c max	Sf min	Xs min	Ys min	Ac eff.	As eff.	D barre	Beta12
1	S	5 91	-50.0	50.0	-143 3	-23.7	7.4	1700	31 ⊿	9.5	1.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§B.6.6 DM96]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

S1 Massima tensione [Mpa] di trazione nel calcestruzzo valutata in sezione non fessurata

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

S2 Minima tensione [Mpa] di trazione nel calcestruzzo valutata in sezione fessurata

k2 = 0.4 per barre ad aderenza migliorata

k3 = 0.125 per flessione e presso-flessione; =(e1 + e2)/(2*e1) per trazione eccentrica

Ø Diametro [mm] medio delle barre tese comprese nell'area efficace Ac eff Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

Psi $= 1-Beta12*(Ssr/Ss)^2 = 1-Beta12*(fctm/S2)^2 = 1-Beta12*(Mfess/M)^2$ [B.6.6 DM96]

Deformazione unitaria media tra le fessure [4.3.1.7.1.3 DM96]. Il valore limite = 0.4*Ss/Es è tra parentesi e sm

Distanza media tra le fessure [mm] srm

wk Valore caratteristico [mm] dell'apertura fessure = 1.7 * e sm * srm . Valore limite tra parentesi

Componente momento di prima fessurazione intorno all'asse X [kNm] MX fess. MY fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

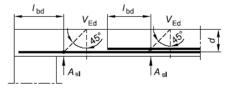
S1 Comb. Ver S2 k3 e sm srm wk Mx fess My fess 0 0.125 1 S -3.4 20 64.0 0.353 0.00029 (0.00029) 201 0.098 (0.40) 0.00 150.13

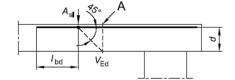
COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. D barre Beta12 1 S 4.02 -50.0 50.0 -96.0 -33.1 7.4 1700 31.4 9.5 0.50

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§B.6.6 DM96]

Comb.	Ver	S1	S2	k3	Ø	Cf	Psi	e sm	srm	wk	Mx fess	My fess
1	S	-2.3	0	0.125	20	64.0	0.289 0.00	019 (0.00019)	201	0.066 (0.30)	151.03	0.00




SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

DETERMINAZIONE DELLA RESISTENZA A TAGLIO DELLA SEZIONE § 4.1.2.1.3.1 - ELEMENTI SENZA ARMATURE TRASVERSALI RESISTENTI A TAGLIO Azione di Taglio sollecitante a Stato Limite Ultimo [kN] Considerare o meno il contributo dell'armatura tesa nel calcolo [-] 0.12 [-] Coefficiente C_{Rd,c} $C_{\text{Rd,c}}$ Coefficiente k 1.69 [-] 1.69 [-] 0.0161504 [-] Rapporto geometrico d'armatura che si estende per non meno di l_{bd} + d ρι 0.0161504 [-]

Definizione di A_{sl} nella espressione (6.2) Legenda

Sezione considerata

Resistenza a taglio offerta dal calcestruzzo teso	$V_{Rd,c}$	330.62	[kN]
Resistenza minima del calcestruzzo teso	$V_{Rd,min}$	192.97	[kN]
Resistenza a taglio offerta dal calcestruzzo teso	V _{Rd}	330.62	[kN]
§ 4.1.2.1.3.2 - ELEMENTI CON ARMATURE TRASVERSALI RESISTEN	TI A TAGLIO		
Diametro delle staffe	φsw	12	[mm]
Numero di braccia	n _b	4	[-]
Passo delle staffe	S	200	[mm]
Inclinazione tra il puntone compresso e l'asse della trave	θ	45	[°]
Inclinazione dell'armatura trasversale rispetto all'asse della trave	α	90	[°]
Area della sezione trasversale dell'armatura a taglio	A_{sw}	452	[mm ²]
Braccio della coppia interna	Z	383.4	[mm]
Cotangente di θ	cotθ	1.00	[-]
		1.00	[-]
Cotangente di α	$\cot \alpha$	0.00	[-]
Seno di $lpha$	sin_{lpha}	1.00	[-]
Resistenza offerta dall'armatura a taglio (meccanismo taglio - trazione)	V_{Rsd}	339.35	[kN]
Resistenza a compressione ridotta del calcestruzzo d'anima	f'cd	9.92	[MPa]
Resistenza offerta dai puntoni (meccanismo taglio - compressione)	V_{Rcd}	1901.03	[kN]
Massima area efficace di armatura a taglio per $\cot\theta$ = 1	$A_{sw,max}$	3041.11	[mm]
Resistenza a taglio della sezione armata trasversalmente	V_{Rd}	339.35	[kN]

ASSE VIARIO MARCHE - UMBRIA E QUADRILATERO DI PENETRAZIONE INTERNA SUBLOTTO 2.2: Intervalliva Macerata - Allaccio funzionale della SS77 alla città di Macerata alle località "La Pieve" e "Mattei"

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Sezione S3

Le sollecitazioni nella sezione di verifica per singola condizione di carico sono riportate in tabella seguente:

Elem	Load	Axial	Shear-z	Moment-y (kN*m)
		(kN)	(kN)	,
5	PP	0	-0.47	-37.73
5	PERM	0	3.55	44.62
5	STSX	-43.48	16	39.25
5	RITIRO	0	0	0
5	TU-TF	0	0	0
5	TANDEM-I	0	7.47	93.93
5	GR-U	0	1.52	19.12
5	TANDEM-	0	0	0
5	SP-10	-24.83	-0.9	38.51
5	F-AVV	0	0	0
5	ACC1	-22.88	12.63	30.99
5	ACC2	-25.45	14.05	34.46
5	STSX_GEO	-48.35	17.79	43.65
5	SISMA-H	-51.12	27.1	71.41
5	SISMA-V	0	-1.2	9.45

Le sollecitazioni nella sezione di verifica combinate secondo le combinazioni innanzi riportate sono:

	SN (kN)	V(kN)	M(kNm)
Combinazione fondamentale SLU	-92.22	46.42	266.90
Combinazione SLU (sisma STR)	-99.57	48.88	146.09
Combinazione SLU (sisma GEO)	-99.57	48.88	146.09
Combinazione SLE Rara	-68.31	31.86	182.30
Combinazione SLE Frequente	-58.38	29.08	147.34
Combinazione SLE QP	-43.48	19.08	46.14

DATI GENERALI SEZIONE IN C.A. NOME SEZIONE: S3

Descrizione Sezione:

Metodo di calcolo resistenza: Stati Limite Ultimi Tipologia sezione: Sezione generica

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante
Condizioni Ambientali: Poco aggressive
Riferimento Sforzi assegnati: Assi x,y principali d'inerzia

Riferimento Sforzi assegnati: Assi x,y principali d'inerz Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C28/35

Resis. compr. di calcolo fcd: 15.860 MPa
Def.unit. max resistenza ec2: 0.0020

ACCIAIO -

ASSE VIARIO MARCHE - UMBRIA E QUADRILATERO DI PENETRAZIONE INTERNA SUBLOTTO 2.2: INTERVALLIVA MACERATA - ALLACCIO FUNZIONALE DELLA SS77 ALLA CITTÀ DI MACERATA ALLE LOCALITÀ "LA PIEVE" E "MATTEI"

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Def.unit. ultima ecu: Diagramma tensione-deformaz.:	0.0035 Parabola-Rettangolo	
Modulo Elastico Normale Ec:	32308.0	MPa
Resis. media a trazione fctm:	2.760	MPa
Coeff. Omogen. S.L.E.:	15.00	
Coeff. Omogen. S.L.E.:	15.00	
Sc limite S.L.E. comb. Frequenti:	168.00	daN/cm ²
Ap.Fessure limite S.L.E. comb. Frequent	i: 0.400	mm
Sc limite S.L.E. comb. Q.Permanenti:	0.00	Мра
Ap.Fessure limite S.L.E. comb. Q.Perma	nenti: 0.300	mm
Tipo:	B450C	
Resist. caratt. snervam. fyk:	450.00	MPa
Resist. caratt. rottura ftk:	450.00	MPa
Resist. snerv. di calcolo fyd:	391.30	MPa
Resist. ultima di calcolo ftd:	391.30	MPa
Deform. ultima di calcolo Epu:	0.068	
Modulo Elastico Ef	2000000	daN/cm²
Diagramma tensione-deformaz.:	Bilineare finito	

Coeff. Aderenza istantaneo ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50 Sf limite S.L.E. Comb. Rare: 360.00 MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo		Poligonale C28/35
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	50.0
3	50.0	50.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-42.6	7.4	20
2	-42.6	42.6	20
3	42.6	42.6	20
4	42.6	7.4	20

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.	Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.	Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.	Numero della barra finale cui si riferisce la generazione
N°Barre	Numero di barre generate equidistanti cui si riferisce la generaz

zione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	3	20
2	2	3	3	20

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Ν Momento flettente [daNm] intorno all'asse x princ. d'inerzia Mx

2

Му

My

1

ASSE VIARIO MARCHE - UMBRIA E QUADRILATERO DI PENETRAZIONE INTERNA SUBLOTTO 2.2: INTERVALLIVA MACERATA - ALLACCIO FUNZIONALE DELLA SS77 ALLA CITTÀ DI MACERATA ALLE LOCALITÀ "LA PIEVE" E "MATTEI"

0.00

0.00

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

N°Comb.	N	Mx	Му	Vy	Vx
Vx			0	all'asse princ.d'iner	•
Vy				nere il lembo destro I all'asse princ.d'iner	
Му				asse y princ. d'inerz	
		con verso positivo	o se tale da comprin	nere il lembo sup. de	ella sez.

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

266.90

146.09

92.22

99.57

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom. Fessurazione)

0.00

0.00

con verso positivo se tale da comprimere il lembo superiore della sezione

0.00

0.00

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) My

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. Ν Mx My 68.31 182.30 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Ν

Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom. Fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

0.00 (0.00)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. Ν Mx Μy

58.38

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) N

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

174.34 (135.04)

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. Ν Mx 1 43.48 46.14 (142.80) 0.00(0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.4 cm Interferro netto minimo barre longitudinali: 19.3 cm

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

S = combinazione verificata / N = combin. non verificata Ver

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) Ν

Momento flettente assegnato [kNm] riferito all'asse x princ. d'inerzia Mx Momento flettente assegnato [kNm] riferito all'asse y princ. d'inerzia Му

Sforzo normale ultimo [kN] nel baricentro B sezione cls.(positivo se di compress.) Nult

Momento flettente ultimo [kNm] riferito all'asse x princ. d'inerzia Mx ult Momento flettente ultimo [kNm] riferito all'asse y princ. d'inerzia My ult

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N ult,Mx ult,My ult) e (N,Mx,My)

As Tesa

ASSE VIARIO MARCHE - UMBRIA E QUADRILATERO DI PENETRAZIONE INTERNA SUBLOTTO 2.2: INTERVALLIVA MACERATA - ALLACCIO FUNZIONALE DELLA SS77 ALLA CITTÀ DI MACERATA ALLE LOCALITÀ "LA PIEVE" E "MATTEI"

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

Verifica positiva se	tale rapporto risulta >=1.000	
Area armature [cm ²	l in zona tesa (solo travi). Tra parentesi l'area minima di normati	iva

Ver	N°Comb	N	Mx	Му	N ult	Mx ult	My ult Mis.Sic.	As Tesa
S	1	92.22	266.90	0.00	92.17	271.95	0.00 1.019	
S	2	99.57	146.09	0.00	86.19	270.85	0.00 1.854	

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
ec 3/7	Deform. unit. del conglomerato nella fibra a 3/7 dell'altezza efficace
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Con	nb ec max	ec 3/7	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	-0.00791	50.0	50.0	-0.00044	42.6	42.6	-0.01918	-42.6	7.4
2	0.00350	-0.00794	50.0	50.0	-0.00045	42.6	42.6	-0.01924	-42.6	7.4

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c x/d C.Rid.	Rapp. di d	o, c nell'eq. dell'asse ne duttilità a rottura in prese iduz. momenti per sola	enza di sola fless.(travi)	
N°Comb	а	b	С	x/d	C.Rid.
1	0.000000000	0.000532316	-0.023115804		

0.000533875

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

S = comb. verificata/ N = comb. non verificata Ver

Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Sc max Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione (negativa se di trazione) nell'acciaio [Mpa] Sf min Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Xs min, Ys min

Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Ac eff. As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure D barre Distanza tre le barre tese [cm] ai fini del calcolo dell'apertura fessure

Prodotto dei coeff. di aderenza delle barre Beta1*Beta2 Beta12

N°Comb	Ver	Sc max	Xc max \	c max	Sf min	Xs min	Ys min	Ac eff.	As eff.	D barre	Beta12
1	S	7.36	-50.0	50.0	-280.8	-42.6	7.4	1874	15.7	21.3	1.00

-0.023193766

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

N°Comb	Ver	Sc max	Xc max Y	c max	Sf min	Xs min	Ys min	Ac eff.	As eff.	D barre	Beta12
1	S	7 04	-50.0	50.0	-270 7	-42 6	7 4	1874	15.7	21.3	1.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§B.6.6 DM96]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver Esito della verifica

Massima tensione [Mpa] di trazione nel calcestruzzo valutata in sezione non fessurata S1 S2 Minima tensione [Mpa] di trazione nel calcestruzzo valutata in sezione fessurata

PROGETTAZIONE ATI:

2

0.000000000

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

K2	= 0.4 per barre ad aderenza migliorata
k3	= 0.125 per flessione e presso-flessione; =(e1 + e2)/(2*e1) per trazione eccentrica
Ø	Diametro [mm] medio delle barre tese comprese nell'area efficace Ac eff
Cf	Copriferro [mm] netto calcolato con riferimento alla barra più tesa

= 1-Beta12*(Ssr/Ss)² = 1-Beta12*(fctm/S2)² = 1-Beta12*(Mfess/M)² [B.6.6 DM96]

Deformazione unitaria media tra le fessure [4.3.1.7.1.3 DM96]. Il valore limite = 0.4*Ss/Es è tra parentesi e sm

Distanza media tra le fessure [mm] srm

Valore caratteristico [mm] dell'apertura fessure = 1.7 * e sm * srm . Valore limite tra parentesi wk

MX fess. Componente momento di prima fessurazione intorno all'asse X [kNm] MY fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Comb.	Ver	S1	S2	k3	Ø	Cf	Psi	e sm	srm	wk	Mx fess	My fess
1	S	-3.6	0	0.125	20	64.0	0.400 0.00	0054 (0.00054)	290	0.267 (0.40)	135.04	0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

N°Comb	Ver	Sc max	Xc max \	rc max	Sf min	Xs min	Ys min	Ac eff.	As eff.	D barre	Beta12
1	S	1.87	-50.0	50.0	-62.9	-42.6	7.4	1834	15.7	21.3	0.50

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§B.6.6 DM96]

Comb.	Ver	S1	S2	k3	Ø	Cf	Psi	e sm	srm	wk	Mx fess	My fess
1	S	-0.9	0	0.125	20	64.0	-3.789 0.000	13 (0.00013)	287	0.061 (0.30)	142.80	0.00

12.2.10. VERIFICHE DI ACCETTABILITÀ DEI RISULTATI

Al fine di determinare la congruenza dei dati ottenuti dal software utilizzato e la validazione del modello analitico implementato è stato effettuato un controllo dei valori di momento flettente ottenuti con gli schemi semplificati della Tecnica delle Costruzioni.

In particolare, con riferimento alla condizione di spinta del rilevato, è stata effettuata una verifica di corrispondenza della sollecitazione di flessione agente nel paramento. La spinta sul paramento ha forma triangolare ed è pari a:

$$p_{z=4.00} = k_0 \cdot \gamma \cdot z = 0.625 \cdot 19 \cdot 4.00 \qquad \qquad \cong 47.50 \text{ kN/m}^2 \qquad \qquad \text{per gli SL STR}$$

quindi la spinta S applicata ad 1/3 dell'altezza del paramento è pari a:

$$S = p_{z=4.00} \cdot H/2 = 47.50 \cdot 4.0/2 = 95.0 \text{ kN/m}$$

Il momento alla base del paramento è pari a =S·H/3 = 95.0·4.0/3 = 126.66 kNm La sollecitazione di flessione derivante dal modello di calcolo è pari a 126.7 kN come riportato in figura 59.

SOTTOPASSO VIA FONTESCODELLA - RELAZIONE TECNICA E DI CALCOLO

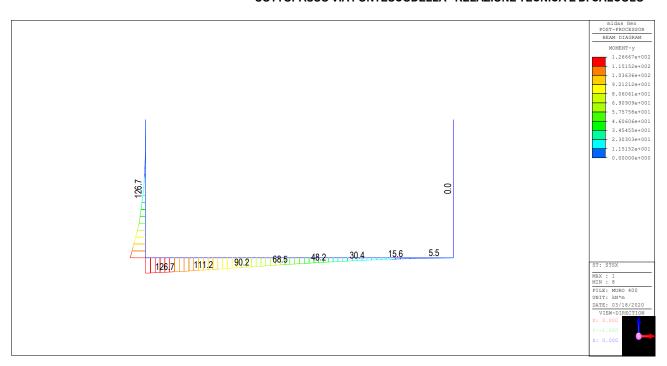


Figura 72: sollecitazione di flessione per sovraccarico sul rilevato

I valori sono del tutto analoghi pertanto il modello implementato è da ritenersi rappresentativo e congruente con lo stato reale.

