			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	OGI REGIO	
				MARZEI E	
			No.	Mat	Elv
			11/45	72 162 A.P. 52 9	
00	28/10/2020	PRIMA EMISSIONE	A. Mazzei	A. Ramundi	C. Bazzucchi
N.	DATA	DESCRIZIONE REVISIONI	ELABORATO	VERIFICATO	APPROVATO
		CODIFICA ELABORATO			
		RUFX19800B1831574		IIIII PR	OGER

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

_									
REVISION									
\ 									
RE				Team LIN-STZ DTCS-PRI	A. Limone DTCS-PRI				
	N.	DATA	DESCRIZIONE	ESAMINATO	ACCETTATO				
NU	MERO	E DATA ORDINE:	4000069461 del 02/10/2018						
МС	OVITO	DELL'INVIO:	✓ PER A CCETTA ZIONE	PER INFORM	MAZIONE				
	CODIFICA ELABORATO								
			RUFX19800B1831574	TERNA	erna ete Italia				

Questo documento contiene informazioni di proprietà Terna Rete Italia S.p.A. e deve essere utilizzato esclusivamente dal destinatario in relazione alle finalità per le quali è stato ricevuto. È vietata qualsiasi forma di riproduzione o di divulgazione senza l'esplicito consenso di Terna Rete Italia S.p.A.

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

RUFX19800B1831574

Rev.<00>

INDICE

Rev.<00 >

1	Ρ	REMESSA E SCOPO DEL LAVORO	3
2	R	ELAZIONE DEL PIANO DELLE INDAGINI GEOGNOSTICHE E GEOFISICHE	4
	2.1	Sondaggi	5
	2.2	Prelievo di campioni indisturbati e prove di laboratorio	6
	2.3	Prove penetrometriche dinamiche in foro di sondaggio S.P.T.	7
	2.4	Piezometri	9
	2.5	Prove penetrometriche dinamiche DPSH	9
	2.1	Prova sismica tipo MASW	11
3	R	ISULTATI DELLE INDAGINI	12
	3.1	Modello geologico e geotecnico in corrispondenza dell'area della futura SE	12
	3.2	Modello geologico e geotecnico in corrispondenza dei Sostegni 3-4	25
	3.3	Modello geologico e geotecnico in prossimità dei Sostegni 9-10	27
	3.4	Modellazione sismica	32
	3.	.4.1 Analisi della Risposta Sismica Locale con approccio semplificato	32
4	١N	NDAGINI INTEGRATIVE DI SUPPORTO ALLE SUCCESSIVE FASI DI PROGETTO	35
5	R	IEPILOGO RISULTATI E CONCLUSIONI	36
6		LLEGATI	
J	, ,		

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

1 PREMESSA E SCOPO DEL LAVORO

Il presente documento integra la Relazione geologica preliminare (doc. n. RUFX19800B1831574) a corredo del Piano Tecnico delle Opere (PTO) che TERNA intende presentare agli Enti preposti per i pareri autorizzativi riguardanti la realizzazione della nuova Stazione Elettrica (di seguito SE) a 150 kV di Bovino e nuovi raccordi "entra-esci" per il collegamento con la linea Terna150 kV "Orsara-Bovino" nella Provincia di Foggia.

Le integrazioni comprendono la Relazione del Piano di indagini e I Risultati delle indagini che comprendono le Modellazioni geologiche, geotecniche e sismiche relative all'area della SE e alle aree dove sono previsti alcuni dei sostegni dei raccordi aerei.

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

2 RELAZIONE DEL PIANO DELLE INDAGINI GEOGNOSTICHE E GEOFISICHE

Il programma delle indagini geognostiche e delle prospezioni geofisiche è stato stilato in accordo con la Committenza tenendo conto delle caratteristiche geologiche locali emerse dai dati di letteratura e con lo scopo di ottenere dati significativi per la ricostruzione delle modellazioni geologiche, geotecniche e sismiche nelle aree d'intervento.

In particolare, le indagini sono state eseguite nell'area della futura SE e lungo il tracciato dei raccordi, in corrispondenza dei sostegni 3-4 e in prossimità dei sostegni 9-10. Tali indagini hanno compreso le seguenti attività:

- n.2 sondaggi a carotaggio continuo della profondità di 20 m dal p.c.
- n.4 prove penetrometriche dinamiche in foro di sondaggio S.P.T.
- prelievo di n.4 campioni indisturbati e prove di laboratorio
- n.2 prove penetrometriche dinamiche continue DPSH
- n. 2 prospezioni sismiche condotte con il metodo MASW (Multichannel Analysis of Surface Waves).

Di seguito è riportata l'ubicazione delle indagini che ha tenuto conto delle difficoltà logistiche e dello stato dei luoghi al momento dei lavori, in parte impraticabili a causa delle avverse condizioni meteo. Inoltre, sono descritte le principali caratteristiche tecniche delle metodologie di analisi utilizzate e le modalità operative delle prove svolte.

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

Fig. 2.1 Ubicazione delle indagini

2.1 Sondaggi

Allo scopo di ricostruire la successione litostratigrafica nelle aree d'intervento sono stati eseguiti due sondaggi a carotaggio continuo spinti fino alla profondità di 20 dal p.c. In particolare, il sondaggio S1 è stato ubicato nell'area della futura SE mentre il sondaggio S2 nei pressi dei Sostegni 9-10, nei limiti della praticabilità del terreno.

I sondaggi sono stati realizzati dalla ditta G.I.A. Consulting S.r.I. di Napoli, attraverso le seguenti fasi operative:

- perforazione a rotazione e carotaggio continuo, utilizzando un "carotiere semplice" di diametro nominaleφ 101
 mm e lunghezza di 3 m;
- sistemazione delle "carote" nelle cassette catalogatrici con relativa documentazione fotografica;
- descrizione stratigrafica dei termini litologici rinvenuti;

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

- esecuzione di prove speditive di campagna (pocket penetrometer) ed annotazione di osservazioni per una prima caratterizzazione geotecnica del materiale di tipo coesivo.

La descrizione stratigrafica dei termini rinvenuti durante le operazioni di perforazione é stata effettuata in maniera tale da mettere in evidenza i seguenti caratteri:

- composizione granulometrica;
- colore dominante ed eventuali screziature di ciascun litotipo;
- consistenza dei terreni coesivi e semicoesivi;
- presenza di materiale di origine organica, riporti, etc;
- grado di alterazione.

Si rimanda alle stratigrafie riportate nei paragrafi 3.1 e 3.3 per la presa visione dettagliata dei risultati ottenuti, mentre nelle foto seguenti sono evidenziate le postazioni dei sondaggi.

Postazione Sondaggio S2

2.2 Prelievo di campioni indisturbati e prove di laboratorio

Nel corso dei sondaggi, in corrispondenza dei terreni coesivi sono stati prelevati n.4 campioni indisturbati con campionatori a pressione in acciaio tipo Shelby (v. foto seguente).

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

Le profondità di prelievo sono le seguenti:

	Profondità prelievo
	(m)
	2.5-3.0
Sondaggio 1	9.5-10.0
	14.5-15.0
Sondaggio 2	18.5-19.0

Su tutti i campioni sono state eseguite le analisi di classificazione (peso di volume, contenuto d'acqua, limiti di Atterberg, analisi granulometrica) mentre le prove meccaniche di resistenza drenate e non drenate (prova di taglio diretto con scatola di Casagrande, triassiale non consolidata-non drenata UU e ad espansione alterale libera ELL) e di compressibilità (prova edometrica) sono state ottimizzate in ragione della qualità e delle dimensioni del campione.

I campioni sono stati testati presso il *Laboratorio Geotecnico GEA* di Spoltore (PE) titolare della Concessione del Ministero delle Infrastrutture N.4536 per le Prove Geotecniche su Terre.

I risultati ottenuti sono riassunti nel paragrafi 3.1 e 3.3 mentre nell'Allegato 2 si riportano i certificati di laboratorio.

2.3 Prove penetrometriche dinamiche in foro di sondaggio S.P.T.

Negli strati incoerenti sono state eseguite a varie profondità 4prove penetrometriche dinamiche del tipo S.P.T. (*Standard Penetration Test*) allo scopo di ottenere indicazioni riguardanti il grado di addensamento dei granuli e per ricavare i valori dei principali parametri geotecnici.

	Profondità di prova
	(m)
Sondaggio 1	5.7
	3.0
Sondaggio 2	5.5
	11.5

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

La prova è stata eseguita a punta chiusa e condotta secondo le norme ASTM 1586/68: "Penetration Test and Split-Barrel Sampling of Soil" e l'attrezzatura impiegata, anch'essa conforme alla norma suddetta, è riassumibile come di seguito:

- punta conica φ = 50,8 mm e angolo di punta = 60°;
- massa battente del peso di 63,5 kg;
- batteria di aste collegabili al campionatore aventi un peso di 6,5 kg al metro lineare con un'oscillazione massima di 0,5 kg/ml;
- dispositivo di guida e di sganciamento automatico del maglio all'altezza di 75 cm;
- centratore di guida disposto tra la testa di battuta ed il piano campagna.

La determinazione di prova è stata preceduta dalla pulizia del fondo foro; la prova consiste nel far penetrare una punta chiusa posata in fondo al foro, per tre tratti successivi di 15 cm, registrando per ciascun tratto il numero dei colpi (N1,N2,N3) necessari all'infissione. Con il primo tratto detto "di avviamento" si intende superare la zona di terreno rimaneggiato in fase di perforazione. Nel caso di un terreno molto compatto con N1 = 50 ed avanzamento minore di 15 cm, l'infissione è sospesa: la prova è dichiarata conclusa, in base alle raccomandazioni AGI 1977, e si annota la relativa penetrazione. Se il tratto di avviamento è superato, si conteggiano N2 e N3 (da 0,15 a 0,30 e da 0,30 a0,45 m) fino ad un limite complessivo di 100 colpi (N2 + N3) raggiunto il quale si sospende la prova annotando l'avanzamento ottenuto. Pertanto il parametro caratteristico della prova, prescindendo dai casi particolari di rifiuto, è:

 $N_{SPT} = N2 + N3$

esprimente il numero di colpi per 30 cm utili di penetrazione.

Le foto seguenti documentano la fase operativa della prova.

Esecuzione prova S.P.T.

I risultati ottenuti sono riportati nel paragrafi 3.1 e 3.3, cui si rimanda.

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

2.4 Piezometri

Al termine della perforazione dei sondaggi sono stati installati fino a fondo foro piezometri a tubo aperto allo scopo di monitorare l'eventuale falda idrica presente nel sottosuolo.

Questo tipo di piezometro è costituito da una batteria di tubi del diametro di 2" in PVC, giuntati e parzialmente finestrati. La tubazione piezometrica è stata introdotta nel foro a perforazione ultimata e gettando nell'intercapedine tubo-parete materiale granulare pulito (\$\phi\$ 2÷4 mm) fino a risalire di 0,5 m dall'estremità superiore del tratto finestrato. Al di sopra del filtro in miscela calibrata è stata eseguita una sigillatura ed il rimanente tratto, attorno al tubo cieco, è stato ritombato con una miscela di cemento, bentonite ed acqua. Infine, il terminale piezometrico è stato protetto con un pozzetto carrabile, cementato al terreno.

La lettura eseguita con freatimetro elettrico in data 25/10/2018 ha evidenziato la presenza di acqua alle profondità di 5,7 m nel sondaggio S1 ed a 8,8 m nel sondaggio S2. Tali livelli sono suscettibili di oscillazioni nel corso dei vari periodi dell'anno.

Le foto seguenti documentano una fase operativa d'installazione del piezometro e il chiusino metallico posizionato a protezione della testa-tubo.

Installazione piezometro a tubo aperto

Chiusino di protezione

2.5 Prove penetrometriche dinamiche DPSH

Per verificare le caratteristiche di resistenza alla penetrazione dei terreni presenti nel sottosuolo, con caratteristiche prevalentemente incoerenti, sono state eseguite due prove penetrometriche dinamiche continue con penetrometro super-pesante DPSH spinte fino alle profondità di "rifiuto" avvenute a 4,4 m nella prova DPSH1, realizzata nell'area della futura SE, ed a 3,0 m nella prova DPSH2, in corrispondenza dei Sostegni 3-4 della linea aerea. L'ulteriore avanzamento della punta è stato impedito dell'elevato grado di addensamento degli strati ghiaiosi presenti.

La prova consiste nel determinare il numero di colpi necessari ad infiggere una punta conica nel terreno per successive profondità costanti, utilizzando metodologie ed attrezzature standardizzate. Infatti, un oggetto conico

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

infisso mediante battute successive incontra durante la penetrazione una resistenza che è funzione inversa della penetrazione per ciascun colpo ed è direttamente proporzionale al numero dei colpi (N) per una data penetrazione. Se il mezzo attraversato è il terreno, questa resistenza dipende dalle caratteristiche fisico-meccaniche nel quale esso si trova allo stato naturale e, pertanto, per terreni incoerenti dipende prevalentemente dallo stato di addensamento dei granuli, mentre, per i terreni coesivi dipende dal contenuto di umidità naturale.

L'attrezzatura usata ha le seguenti caratteristiche tecniche:
- Peso della massa battente M = 63.5 Kg;

Altezza di caduta libera
 H = 0,75 m (costante);

Peso del sistema di battuta Ms = 0.63 Kg;
 Diametro della punta conica D = 51.0 mm;
 Area base punta conica A = 20.43 cmg;

- Angolo di apertura della punta $\alpha = 60^{\circ}$;

Peso aste per metro
 Ma = 6.31 Kg/m.

- Avanzamento della punta δ = 0.20 m

Con questo tipo di prova quindi è possibile ricavare il valore della resistenza dinamica alla punta Rpd che è funzione diretta del numero dei colpi N e che può essere ottenuta dalla *Formula olandese*:

Rpd =
$$M^2 H / [A e (M + P)] = M^2 H N / [A \delta (M + P)]$$

Questo valore consente di ricavare indirettamente, con correlazioni empiriche, i principali parametri geotecnici degli strati incoerenti presenti nel sottosuolo.

Nelle foto seguenti sono evidenziate le postazioni delle prove DPSH, mentre i grafici e i valori ottenuti sono riportati nel paragrafi 3.1 e 3.2.

Postazione Prova DPSH1

Postazione Prova DPSH2

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

2.1 Prova sismica tipo MASW

Nell'area d'intervento sono state eseguite due prove sismiche con il metodo *MASW (Multichannel Analysis of Surface Waves)*nei pressi dei due sondaggi che consentono di determinare indirettamente la velocità media delle onde di taglio nei primi 30 m di profondità e che permettono di stabilire la Categoria di sottosuolo necessaria per l'analisi della Risposta Sismica Locale RSL con il metodo semplificato previsto dal D.M. 17/01/2018.

Le prove sono state eseguite dalla ditta G.I.A. Consulting s.r.l., i cui risultati e descrizioni delle attività d'indagine sono riportati integralmente nel Report che costituisce l'Allegato 1, cui si rimanda.

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00>

RUFX19800B1831574

Rev.<00>

3 RISULTATI DELLE INDAGINI

Considerato che le nuove installazioni elettriche sono per lo più a sviluppo lineare, si forniscono vari modelli che rappresentano gli assetti geologici e geotecnici di riferimento nell'area della SE e lungo la linea, come emersi dalle indagini in sito eseguite. Tali modellazioni puntuali potranno essere estese per analogia, con le dovute cautele, anche alle zone limitrofe non direttamente indagate in questa fase progettuale, rimandando le verifiche agli ulteriori approfondimenti necessari per la progettazione definitiva.

3.1 Modello geologico e geotecnico in corrispondenza dell'area della futura SE

La modellazione geologica e geotecnica nell'area della futura SE è ricostruita sulla base dei risultati del sondaggio S1, delle prove di laboratorio sui campioni prelevati nel corso della perforazione e della prova DPSH1. **Dal punto di vista stratigrafico**, i terreni presenti nel sottosuolo sono documentati fotograficamente e descritti nel prospetto stratigrafico seguente.

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

COMMITTENTE: Terna s.p.a.

CANTIERE: Nuova S/E Bovino e nuovi raccordi

SONDAGGIO Nº

		Щ	PR	OGER	LOCALI Perforaziona Tipo di ca	one:	a rota	zione,	senza	luid	i, di	amet	ro 10	01 mm	Data inizio: Data fine:	23.10.18 23.10.18
(m) 0.0	Profondità (m)	Spessore (m)	Stratigrafia	DESCRIZIONE STRATE	GRAFICA	Rivestimento	pe 1	Pock enetror (kg/cn	neter nq)	Profondità falda	Profondità S'I	Numero colpi T. 9	Campioni indisturbati	DOC	UMENTAZIONE FO	TOGRAFICA
	1.0	1.0	7	Terreno di riporto sabbios	o ghiaioso											
2.0_	3.0	2.0		Terreno di copertura o di limoso-argilloso di colore scuro con qualche clasto, consistente					•				2.5	1 1	1-4-4	4 25-7 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4.0_	4.8	1.8		Limo sabbioso debolment e argilloso avana moderat addensato alterato ed ossio	amente lato								3.0			
6.0	6.2	1.4		Ghiaia grossolana, cio trovanti centimetrici ir sabbiosa avana, molto addensata. Clasti etero	matrice metrici a					(24/10/2018) 44	5,7	42 50				
7.0_				litologia calcarea sub-a sub-arrotondati. Tracca alterazione ed ossidazi	e di					(24/10/						
8.0_				rossastre.		-										
9.0_	*1							-					9.5			54/62 9.5-40.
10.0 _								•					10.0			
12.0				Argilla limosa debolment	e											
13.0_		13.8		sabbiosa, con sottili livell di colore grigio, da consis molto consistente, plastic	i sabbiosi, stente a			-	•							
14.0				inalterata									14.5			c3 41.5-45.e
15.0_													15.0	7		71(3 4(3-15.6)
16.0									•							, viscos (
17.0																
18.0									-							. 6
	20.0								-							ag. 10 a 110

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

Fig. 3.1: Stratigrafia sondaggio S1 eseguito nell'area della futura SE

Il sondaggio ha evidenziato un modello geologico composto da tre Unità (tralasciando il primo metro di riporto ghiaioso)

- da 1 m a 3 m: Unità Geologica 1. Terreno di origine incerta costituito da limo-argilloso marrone scuro, consistente, con qualche clasto carbonatico sparso. Questo deposito assume le caratteristiche cromatiche e granulometriche del terreno superficiale di copertura che affiora diffusamente nelle aree circostanti; tuttavia, dall'analisi comparativa delle foto aeree, che evidenziano come il sito dove sorgerà la nuova SE sia stato interessato da trasformazioni antropiche nel periodo 2002-2017, esso potrebbe rappresentare anche del terreno di riporto che è stato posato durante i movimenti terra. A conferma di tale ipotesi ricostruita indirettamente comparando le ortofoto non vi sono però elementi oggettivi dedotti dall'analisi visiva delle carote estratte e del campione indisturbato prelevato per le analisi di laboratorio.

Di seguito si fornisce la sequenza fotografica in ordine cronologico che ripercorre alcune delle trasformazioni antropiche subite dall'area (fonte: Google Earth).

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

- da 3 m a 6,2 m: Unità Geologica 2. Depositi alluvionali costituiti da 3 m a 4,5 m da limo-sabbioso debolmente ghiaioso e argilloso di colore avana e da 4,5 m a 6,2 m da ghiaia medio-grossolana, ciottoli e trovanti con matrice sabbioso-limosa brunastra, molto addensata, con tracce di ossidazione ed alterazione rossastre. Clasti eterometrici per lo più a litologia calcarea, sub-angolari e sub-arrotondati. La facies di sedimentazione è fluviale ad altissima energia.
- da 6,2 a 20 m: Unita Geologica 3. Argilla limosa debolmente sabbiosa con sottili intercalazioni sabbiose, di colore grigio, consistente, inalterata. Si tratta del locale substrato geologico delle cosiddette Argille Subappennine. L'ambiente di sedimentazione è marino a bassa energia.

Il piezometro installato fino a fondo ha evidenziato la presenza di acqua a 5,7 m dal p.c, contenuta nelle ghiaie permeabili superficiali e sostenuta dalle argille di base impermeabili.

* * *

A differenza del modello geologico, il **modello geotecnico** può essere suddiviso in quattro Unità, tenendo conto del comportamento geotecnico e della natura di ciascun litotipo. In particolare, le Unità geotecniche posso essere così distinte:

- Unità geotecnica 1 (da 1 m a 3 m): coesiva e corrispondente al terreno di copertura o di riporto limoso argilloso marrone scuro. Il riporto ghiaioso superficiale non viene considerato in quanto sarà rimosso nella fase di scavo delle fondazioni
- Unità geotecnica 2 (da 3 m a 4,5 m):incoerente e corrispondente ailimi sabbiosi moderatamente addensati
- Unità geotecnica 3 (da 4,8 m a 6,2 m): incoerente e corrispondente alle ghiaie sabbiose ben addensate
- Unità geotecnica 4 (da 6,2 m a 20 m): coesiva e corrispondente alle argille di base.

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV
DI BOVINO E RELATIVI RACCORDI LINEE
REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

La parametrizzazione geotecnica delle Unità suddette trae origine dalle varie prove svolte in sito e in laboratorio. In particolare, dai parametri nominali ottenuti dalle varie prove si ricavano i valori caratteristici (k) necessari per il progetto geotecnicodelle opere da realizzare, secondo quanto richiesto dalla normativa vigente.

Parametri geotecnici nominali derivanti dalle prove penetrometriche dinamiche DPSH

La prova dinamica DPSH è generalmente utilizzata per definire le caratteristiche di resistenza alla penetrazione nei terreni prevalentemente incoerenti e da essa si possono ricavare con correlazioni empiriche (cfr. Specifiche tecniche Terna) i principali parametri geotecnici.

In particolare, dal numero di colpi ottenuti N durante l'avanzamento della punta è possibile ricavare l'equivalente valore di Nspt:

$Nspt = \beta tN$

dove βt è il rapporto tra l'energia specifica per colpo nella prova DPSH, che dipende dall'attrezzatura utilizzata (standard), con quella riferita alla prova SPT.

Ottenuto il valore di Nspt, i parametri geotecnici calcolabili attraverso correlazioni dirette sono i seguenti:

Parametro	Correlazione	Autori		
Angolo di resistenza al taglio φ'	$\varphi = \sqrt{15Nspt} + 15$	Shioi e Fukuni (1982)		
Densità relativa Dr	Dr =21 ×	Gibbs e Holtz (1957)		
Modulo di Young E	E = 2B N _{spt} dove B =6 per sabbia media	Schmertmann (1978)		

Ciò premesso, la prova DPSH1 eseguita nell'area della SE, che ha raggiunto la profondità di 4,4 m e si è interrotta al tetto delle ghiaie molto addensate, può essere utilizzata per caratterizzare le alluvioni limososabbiose dello spessore di circa 1,8 m(Unità geotecnica 2).

I risultati ottenuti sono rappresentati nella tabella e nel grafico Numero dei colpi/Profondità seguenti dove:

φ= angolo di attrito

Dr= densità relativa

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

E= modulo di elasticità o di Young

					PRC	VA DP	SH1 (A	rea r	ıuoı	⁄a S	E)								
Profondità (m)	Unità geol.	Unità geot.	n. colpi	N _{SPT}	ф (°)	Dr (%)	E MPa		lumero (azione 20	punta 25	30	35	40	45	50	
0.2			4						4										
0.4	Terre	eno di	7							7									
0.6	ripo	orto	8							8									
8.0	ghia	ioso	9							9									
1.0			11								11								
1.2	_		10					1 -		10)								- 1
1.4	Sivo		9							9									
1.6	Öe		8							8									
1.8	le c		8							8									
2.0	icia		8							8									
2.2	superficiale coesivo	1	7					2		7									2 -
2.4	lns		6							6									
2.6	Terreno (7							7									
2.8	erre		8							8									
3.0	-		10					3		10	0								
3.2			4	6	25	44.8	7.1	,	4	7									- 3
3.4	nal		5	8	26	49.4	8.8			5									
3.6	uvic		5	8	26	48.8	8.8			5									
3.8	<u>=</u>	2	7	11	28	56.9	12.4			7									
4.0	ositi		7	11	28	56.2	12.4	4		7									- 4
4.2	Depositi alluvionali		9	14	29	62.8	15.9			9									
4.4		3	50	75	49	100.0	88.4											50	

I risultati evidenziano discrete caratteristiche geotecniche dell'Unità geotecnica 2 di resistenza al taglio e di compressibilità.

Parametri geotecnici nominali derivanti dalle prove penetrometriche S.P.T.

Nel corso del sondaggio S1, alla profondità di 5,7 m, in corrispondenza delle ghiaie sabbiose molto addensate è stata eseguita la prova penetrometrica dinamica S.P.T.

Dalla prova S.P.T. si ricava il valore di Nspt che consente di ottenere per questo tipo di terreni, con opportune correlazioni, i seguenti parametri:

- Angolo di resistenza al taglio φ
- Densità relativa Dr
- Modulo di deformazione (o di Young) E50.

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00>

RUFX19800B1831574

Rev.<00>

Secondo le più recenti applicazioni, il valore Nspt sperimentale deve essere uniformato ad un'energia standardizzata. A tale scopo, *Skempton (1986)*, propose di applicare al valore misurato Nspt dei fattori di correzione in modo da ottenere un valore dell'energia standardizzato del 60% (N60).

La correlazione di Skempton è la seguente:

$$N_{60} = N_{spt} \cdot CE \cdot CB \cdot CS \cdot CR$$

I fattori correttivi CB, CS e CR dipendono rispettivamente dall'energia di battuta, dal diametro del sondaggio, dal campionatore e dalla lunghezza delle aste sotto la testa di battuta. I valori da adottare per le procedure esecutive sono indicati nella tabella seguente, come da ST Terna (cfr. doc. ST DT ING 08).

Fattore	Procedure-strumentazione	Termine	Valore
Dannarta di anargia	Safety hammer	C _{ER}	0.9
Rapporto di energia	Donut hammer	C _{ER}	0.75
	65÷115 mm	С _В	1.0
Diametro del foro	115÷150 mm	С _В	1.05
	150÷200 mm	С _В	1.15
Tipo di compionatore	Standard sampler	C _S	1.0
Tipo di campionatore	Sampler without liner	C _S	1.2
	>10	C _S	1.0
Lunghazza funa	6÷10 mm	C _R	0.95
Lunghezza fune	4÷6 mm	C _R	0.85
	3÷4 mm	C _R	0.75

Tab. 3.1: Fattori di correzione per le procedure esecutive della prova S.P.T. (fonte: Skempton, 1986)

Il valore N_{60} così ottenuto deve essere inoltre normalizzato per la pressione litostatica efficace nel punto di prova, al fine di poter comparare prove eseguite a profondità diverse. La resistenza normalizzata alla pressione litostatica $N_{1(60)}$ è data dalla seguente equazione

$$N_{1(60)} = CN \cdot N_{60}$$

dove:

$$CN = \sqrt{\frac{98,1}{\sigma_v}}$$

e dove σ_v è la tensione litostatica efficace alla profondità di prova espressa in kPa.

Fatte queste premesse, le correlazioni utilizzate per ricavare i valori dei principali parametri geotecnici sono le seguenti:

Parametro	Correlazione	Autori
Angolo di resistenza al taglio φ'	$\varphi = 15 + \sqrt{15 \text{ N spt}}$	Shioi & Fukuni (1982)
Densità relativa Dr	$Dr = 21 \times \sqrt{\frac{Nspt}{\sigma (kg/cmq) + 0.7)}}$	Gibbs & Holtz (1957)
Modulo di i Young E	E = 2B N _{spt} dove B =10 per sabbia grossolana	Schmertmann (1978)

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

 Codifica Elaborato Terna:
 Codifica Elaborato Proger:

 RUFX19800B1831574
 Rev.<00>

 RUFX19800B1831574
 Rev.<00>

Dall'elaborazione dei dati sperimentali si ottengono quindi i seguenti parametri geotecnici nominalidell'Unità geotecnica 3:

Sondaggio	Profondità prova	Numero di colpi	N _{SPT}	N ₆₀	N ₁₍₆₀₎	φ'	Dr %	E MPa
S1	5,7 m	42/50	100	77	73	54	100	196

Tab. 3-2: Risultati della prova S.P.T nel sondaggio S1

I valori così ottenuti sono molto elevati a conferma dell'ottimo stato di addensamento dei clasti, ma sono certamente sovrastimati. Per questo motivo, a scopo cautelativo, per la definizione dei parametri geotecnici dello strato ghiaioso-sabbioso si farà riferimento ai dati presenti in letteratura, validi per terreni analoghi e riportati nella tabella seguente:

	Angolo di resistenza al taglio	Coesione efficace c'	Coesione non drenata	Peso di volume	Modulo di elasticità
	φ'	[kPa]	cu	γ	E
	[°]		[kPa]	[kN/mc]	[MPa]
40		0	n.d.	20	135

Tab. 3-3: Parametri geotecnici dello strato ghiaioso-sabbioso dell'Unità 3 da dati di letteratura (*fonte: Prove geotecniche in sito, A. Bruschi – 2010*)

Parametri geotecnici nominali derivanti dalle prove di laboratorio

Nel corso del sondaggio, in corrispondenza delle Unità geotecniche 1 e 4, con caratteristiche coesive, sono stati prelevati tre campioni indisturbati a varie profondità e sono stati sottoposti ad analisi di classificazione e a prove meccaniche in laboratorio. I certificati di laboratorio sono riportati in Allegato 2, mentre nella tabella seguente sono riepilogati i risultati ottenuti.

			Unità geotecnica 1	Unità geo	tecnica 4
SONDAGGIO:			S1	S1	S1
CAMPIONE :			C1	C2	C3
PROFONDITA' m. :		1 1	2,5-3,0	9,5-10,0	14,5-15,0
PROPRIETA' INDICI					
Contenuto naturale d'acqua :	W	[%]	23,2	21,5	20,5
Peso di volume naturale :	γ	[KN/mc]	17,43	20,0	20,8
LIMITI DI ATTERBERG					
Limite Liquido :	LL	[%]	43,51	51,4	49,08
Limite Plastico:	IP	[%]	23,16	21,6	22,12
ANALISI GRANULOMETRICA					
Argilla :		[%]	35,8	53,3	53,5
Limo :		[%]	39,6	44,9	42,9
Sabbia :		[%]	24,4	1,8	3,6
Ghiaia :		[%]	0,2	0,0	0,0
PROVA DI TAGLIO DIRETTO (Scatola di Casagrande)					
Angolo d'attrito di picco :	ϕ'	[°]	26,6	24,1	25,3
Coesione intercetta :	c'	[kPa]	2,15	38,6	28,5
PROVA TRIAX UU					
Coesione non drenata:	Cu	[kPa]		278,4	335,3

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

 Codifica Elaborato Terna:
 Codifica Elaborato Proger:

 RUFX19800B1831574
 Rev.<00 >

 Rev.<00 >
 RUFX19800B1831574
 Rev.<00 >

PROVA ESPANSIONE LATERALE LIE					
Coesione non drenata:	Cu	[kPa]	96,2		
PROVA DI COMPRESSIBILITA' EDOMETRICA					
Modulo edometrico: (nell'intervallo 100÷200 kPa)	Мо	[MPa]	3	18,2	
Modulo edometrico: (nell'intervallo 122÷195 kPa)	Мо	[MPa]			17,2

I risultati evidenziano che il campione superficiale dell'Unità 1 ha discrete proprietà di resistenza al taglio sia in condizioni drenate che non drenate, ma modeste caratteristiche di compressibilità. Tali valori sono compatibili con quelli tipici di una coltre superficiale, ma la parametrizzazione geotecnica di questa Unità ai fini progettuali non può essere basata su un unico dato e necessitanelle successive fasi di progetto di ulteriori verifiche.

Le proprietà fisico-meccaniche del substrato peitico dell'Unità 4 sono buone sia in termini di resistenza al taglio sia in termini di compressibilità.

Parametri geotecnici caratteristici

Al fine della progettazione geotecnica degli interventi, si forniscono di seguito i valori caratteristici (k) dei terreni presenti nel sottosuolo.

Secondo la definizione dell'EC7, il valore caratteristico di un parametro del terreno è una stima cautelativa del valore che influenza l'insorgere dello stato limite. Esso può essere calcolato applicando metodi statistici in cui il valore caratteristico è ricavato in maniera tale che la probabilità calcolata di valori più sfavorevoli, che determinano la manifestazione dello stato limite, non sia maggiore del 5%.

Nella trattazione seguente, pertanto, la stima dei parametri caratteristici è eseguita secondo un approccio probabilistico. I valori caratteristici rappresentano la soglia al di sotto della quale si colloca non più del 5% dei valori desumibili da una serie teoricamente illimitata di prove. I parametri geotecnici sono trattati come variabili casuali e l'insieme dei valori assunti dai parametri come una popolazione statistica. Si assume che tutte le grandezze indagate varino in modo casuale all'interno del volume di terreno significativo che risente degli interventi in progetto. La derivazione del valore caratteristico deve essere tale che la probabilità calcolata del valore più sfavorevole che governa l'insorgere dello stato limite in considerazione non sia maggiore del 5%. Il valore caratteristico può essere scelto in riferimento al volume di terreno coinvolto (presenza o meno di compensazione "spaziale") e/o alla rigidezza della struttura a contatto con il terreno (presenza o meno di compensazione "strutturale").

Nel caso di fondazioni superficiali collegate (platee o travi) o in riferimento alla portata laterale di pali di fondazione, in cui sono coinvolti grandi volumi di terreno che inducono variazioni tensionali all'interno di una porzione sufficientemente elevata di sottosuolo, si avranno delle Resistenze compensate, ossia le zone di terreno a resistenza minima e massima sono sollecitate contemporaneamente e quello che emerge è un comportamento meccanico intermedio fra i due estremi. In presenza di compensazione i valori caratteristici saranno ubicati in prossimità dei valori medi (Xk(comp)) (5° percentile della media, ossia valore medio con grado di attendibilità del 95%).

Nel caso di fondazioni superficiali non collegate (plinti) o in riferimento alla portata di punta di pali di fondazione, in cui sono coinvolti modesti volumi di terreno che inducono sollecitazioni su piccole porzioni di

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

sottosuolo in cui prevalgono le resistenze locali, si avranno delle Resistenze non compensate ed i valori caratteristici saranno prossimi ai valori minimi (Xk(no-comp)) (5° frattile o 5° percentile della popolazione). Nella figura seguente è illustrato il significato statistico di valore caratteristico.

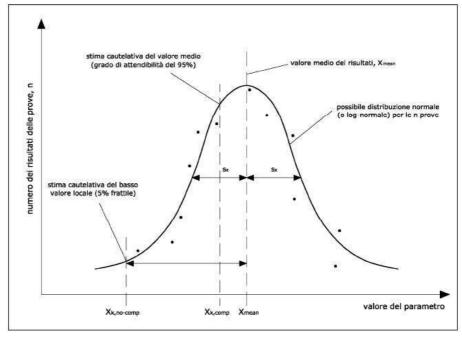


Fig. 3.2: Stima cautelativa del valore medio $X_{k,\ comp}$ e del basso valore locale $X_{k,\ no\text{-}comp}$ sulla base dei valori medi $X_{\ mean}$ e della deviazione standard s_{x} di una serie di n risultati

Nel caso specifico, il numero di dati disponibili per caratterizzare le quattro Unità geotecnichenon consentono di applicare il metodo statistico classico (distribuzione normale) caratterizzato da media e deviazione standard:

$$X_k = X_m \pm t_{n-1}^{0.95} \left(\frac{s}{\sqrt{n-1}} \right)$$

dove:

 X_k = valore caratteristico

X_m = valore medio (ignoto) della popolazione, ipotizzando uguale al valore medio del campione

t = valore della distribuzione di Studenti a n-1 gradi di libertà con probabilità u = 95%

s = deviazione standard del campione

n = numero di dati.

Pertanto, si applica l'Approccio Bayesiano ed in particolare l'espressione di *Cherubini e Orr (1999)* facendo riferimento anche ai valori tipici dei litotipi

$$X_k = X_m \left(1 - \frac{\text{COV}}{2} \right)$$

dove:

Xm = (a+4b+c)/6

COV = (c-a)/(a+4b+c); deviazione standard definita dal rapporto tra lo scarto quadratico medio e la media dei valori

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00 >

a = valore minimo

b = valore più probabile

c = valore massimo

Assumendo

nel caso dell'Unita geotecnica 1i seguenti parametri:

per l'angolo di attrito di picco ϕ ': a = 23° (valore stimato); b = 26,6° (da prova di laboratorio); c = 27° (valore stimato) per la coesione efficace di picco c': a = 0 kPa (valore stimato); b = 2,15 kPa (da prova di laboratorio); c = 5 kPa (valore stimato)

per la coesione non drenata Cu: a = 50 kPa (valore stimato); b = 96,24 kPa (da prova di laboratorio); c = 100 kPa (valore stimato)

per il modulo edometrico Mo (nell'intervallo 100÷200 kPa): a = 2 MPa (valore stimato); b = 3 MPa (da prova di laboratorio); c = 7 MPa (valore stimato)

per il peso di volume γ : a = 17 KN/mc (valore stimato); b = 17,4 KN/mc (da prova di laboratorio); c = 18 KN/mc (valore stimato)

si ottiene:

	Angolo di attrito ف′ی	Coesione efficace	Coesione non drenata	Modulo edometrico Mo ⊾	Peso di volume
ı	Ψk	o K	O a K	•K	γk
	25,7°	1,9 kPa	85 kPa	3 MPa	17,4 KN/mc

> nel caso dell'Unità geotecnica 2:

per l'angolo di attrito di picco ϕ ': a = 25° (da prova DPSH1); b = 27° (da prova DPSH1); c = 29° (da prova DPSH1); per la densità relativa Dr: a = 45% (da prova DPSH1); b = 53% (da prova DPSH1); c = 63% (da prova DPSH1) per il modulo di deformazione E: a= 7,1 MPa (da prova DPSH1); b = 10,9 MPa (da prova DPSH1); c = 15,9 MPa (da prova DPSH1)

si ottiene:

Angolo di attrito	Densità relativa	Modulo di Yong
Φ´k	Dr _k	⊏ _k
26,6°	51,8 %	10,4MPa

Per la coesione efficace c' e il peso di volume γ si assumono rispettivamente i valori di 0 kPa e 19 KN/mc

nel caso dell'Unità geotecnica 3 si considerano, come anticipato, i valori di letteratura della Tabella 10-3:

Angolo di attrito	Coesione efficace	Peso di volume	Modulo di Yong
φ' _k	c' _k	γk	E _k
40°	0 kPa	20 kPa	135 MPa

La densità relativa Dr si assume pari a 100%

nel caso dell'Unita geotecnica 4:

per l'angolo di attrito di picco ϕ ': a = 24° (da letteratura); b = 24,7° (media delle prove di laboratorio); c = 27° (da letteratura)

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

per la coesione efficace di picco c': a = 20 kPa (da letteratura); b = 33,5 kPa (media delle prove di laboratorio); c = 40 kPa (da letteratura)

per la coesione non drenata Cu: a = 250 kPa (da letteratura); b = 306,8 kPa (media delle prove di laboratorio); c = 400 kPa (da letteratura)

per il modulo edometrico Mo (nell'intervallo 100÷200 kPa): a = 15 MPa (da letteratura); b = 17,7 MPa (media delle prove di laboratorio); c =20 MPa (da letteratura)

per il peso di volume γ : a = 20 KN/mc (da letteratura); b = 20,4 KN/mc (media delle prove di laboratorio); c = 21 KN/mc (da letteratura)

si ottiene:

Angolo di attrito	Coesione efficace	Coesione non drenata	Modulo edometrico	Peso di volume
φ' _k	c' _k	Cu _k	Mo _k	γk
24,7 °	30,7 kPa	300,4 kPa	17,2 MPa	20,4 KN/mc

Sintesi della modellazione geologica e geotecnica nell'area della nuova SE

Nella tabella seguente si riassume la modellazione geologica e geotecnica compresa nel volume significativo riferita all'area dove è prevista la nuova SE.

MODELLAZIONE GEOLOGICA E GEOTECNICA RIFERITA ALL'AREA DELLA NUOVA SE		
Modello geologico	Modello geotecnico	

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

Unità geologica	Profondità (m)	Descrizione	Unità geotecnica	Profondità (m)	Parametri geotecnici c	aratteristici k		
	da 0 m a 1 m	Terreno di riporto ghiaioso		da 0 m a 1 m	Il riporto ghiaioso superfic assume significato dal pu geotecnico in quanto sarà scavi delle fondazioni	nto di vista		
					Peso di volume γ	= 17,4 KN/mc		
1		Terreno di copertura o di			Angolo di attrito y	= 25,7°		
	da 1 m a 3 m	riporto (?) limoso-argilloso marrone scuro, consistente,	1	da 1 a 3 m	Coesione efficace c'	= 1,9 kPa		
		con qualche clasto			Coesione non drenata cu	= 85 kPa		
					Modulo edometrico Mo	= 3 MPa		
					Peso di volume γ	= 19 KN/mc		
		Depositi alluvionali imoso- sabbiosi debolmente ghiaiosi avana, moderatamente	Depositi alluvionali imoso-	Depositi alluvionali imoso-			Angolo di attritoφ'	= 26,6°
	da 3 m a 4,5 m		2	da 3 a 4,5 m	Coesione efficace c'	= 0 kPa		
	addensati, alterati ed ossidati			Densità relativa Dr	= 51,8 %			
2					Modulo di Young E	= 10,4 MPa		
2					Peso di volume γ	= 20 KN/mc		
		Depositi alluvionali ghiaiosi medio-grossolani, ciottoli e			Angolo di attritoφ'	= 40°		
	da 4,5 a 6,2 m	trovanti con matrice sabbioso- limosa brunastra, molto	3	da 4,5 a 6,2 m	Coesione efficace c'	= 0 kPa		
		addensata.			Densità relativa Dr	= 100 %		
					Modulo di Young E	= 135 MPa		
					Peso di volume γ	= 20,4 KN/mc		
		Substrato argilloso-limoso debolmente sabbioso con			Angolo di attritoφ'	= 24,7°		
3	da 6,2 a 20 m	sottili intercalazioni sabbiose	4	da 6,2 a 20 m	Coesione efficace c'	= 30,7 kPa		
					Coesione non drenata cu	= 300,4 kPa		
					Modulo edometrico Mo	= 17,2 MPa		

Analizzando quanto sopra espresso numericamente, si evince che l'Unità geologica e geotecnica 1, riferita al terreno di copertura superficiale o di riporto, ha, come detto, discrete proprietà di resistenza al taglio sia in condizioni drenate che non drenate, ma modeste caratteristiche di compressibilità. Tali valori sono compatibili con quelli tipici di una coltre superficiale, ma la parametrizzazione geotecnica di questa Unità ai fini progettuali non può essere basata su un unico dato e necessita nelle successive fasi di progetto di ulteriori verifiche. Le proprietà fisico-meccaniche dei depositi alluvionali incoerenti e del substrato pelitico sono buone sia in termini di resistenza al taglio sia in termini di compressibilità anche se il comportamento geotecnico è molto diverso: le Unità 2 e 3sono incoerenti e ciò determina per carichi indotti un decorso tensionale in termini di pressioni efficaci ed in condizioni drenate (Cu=0; φ'≠0) sia nel breve sia nel lungo periodo; viceversa nell'Unità 4, spiccatamente coesiva, il decorso tensionale avverrà in condizioni non drenate nel breve periodo (Cu≠0; φ'=0) e drenate a lungo termine.

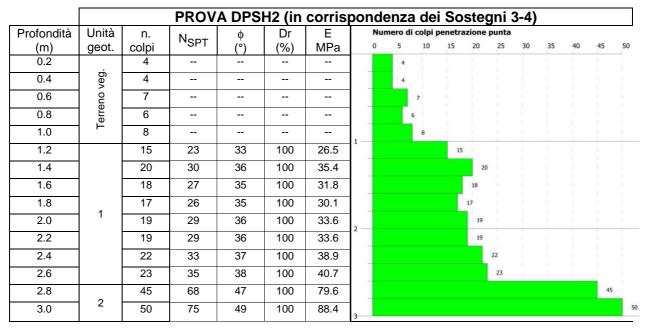
REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00>


RUFX19800B1831574

Rev.<00>

3.2 Modello geologico e geotecnico in corrispondenza dei Sostegni 3-4

La modellazione geologica e geotecnica in corrispondenza dei Sostegni 3-4 può essere ricostruita con i dati della prova DPSH2 e con le correlazioni stratigrafiche dedotte dalla vicina area della futura SE.

I risultati della prova DPSH2 sono i seguenti:

La prova, dopo alcune ripetizioni di conferma, si è interrotta in superficie a causa del forte grado di addensamento dei depositi alluvionali ghiaioso-sabbiosi, presenti a partire da 2,6 m, che ha impedito l'ulteriore discesa della punta.

Al disotto quindi del terreno di copertura vegetale dello spessore di 1 m ca. e fino alla profondità di 2,6 m è presente uno strato di sedimenti alluvionali a granulometria media, addensati, che costituiscono l'Unità geologico-geotecnica 1. A seguire, si trovano le ghiaie grossolane, ciottoli e trovanti in matrice sabbioso-limosa molto addensati (Unità geologico-geotecnica 2) con potenza stimata di 3 m. Infatti, anche se non si hanno dati diretti, lo spessore di quest'ultima Unità può essere stimato, con margini di errore, correlando il letto dello strato ghiaioso rinvenutoa ca. 6 m nell'area della vicina SE. Trattandosi di aree distanti solo circa 400 m che insistono sulla stessa pianura e nello stesso contesto geologico, tale stima può essere attendibile anche se le incertezze derivano dall'ambiente di sedimentazione fluviale che può determinare eteropie di facies anche significative sia verticali sia areali.L'Unità 2 è in contatto stratigrafico con il substrato pelitico (Unità 3).

Applicando le correlazioni indicate precedentemente e assumendo per l'**Unità 1** nella formula di *Cherubini & Orri* sequenti valori derivanti dalla prova DPSH2:

per l'angolo di attrito di picco ϕ ': a = 33° (da prova DPSH2); b = 36° (valore medio dalla DPSH2); c = 38° (da prova DPSH2)

per la densità relativa Dr: a, b, c = 100% (da prova DPSH2)

per il modulo di deformazione E: a= 26,5 MPa (da prova DPSH2); b = 33,8 MPa (valore medio da prova DPSH2); c = 40,7 MPa (da prova DPSH2)

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

si ottiene:

Angolo di attrito	Densità relativa	Modulo di Yong
	Dr _k	E _k
35°	100 %	32,5 MPa

Per la coesione efficace c' e il peso di volume γ si assumono rispettivamente i valori di 0 kPa e 18 KN/mc Per le Unità 2 e 3si assumono i parametri caratteristici corrispondenti alle Unità 3 e 4 già indicati nella modellazione della SE. La copertura vegetale di 1 m non viene considerata.

Tale modello, considerando la vicinanza dei luoghi, può essere indicativo anche per i Sostegni 1-2 e 5-6, rimandando per ulteriori approfondimenti alle successive fasi di progetto.

MODELLAZIONE GEOLOGICA E GEOTECNICA RIFERITA AI SOSTEGNI 3-4						
Modello geologico			Modello geotecnico			
Unità geologica	Profondità (m)	Descrizione	Unità geotecnica	Profondità (m)	Parametri geotecnici c	aratteristici k
	da 0 a 1 m	Terreno di copertura vegetale		da 0 a 1 m	Il terreno vegetale non assume significato dal punto di vista geologico geotecnico e sarà rimosso	
					Peso di volume γ	= 18 KN/mc
		Depositi alluvionali a			Angolo di attrito y	= 35°
1	da 1 a 3 m		1	da 1 a 3 m	Coesione efficace c'	= 0 kPa
			addensati.		Densità relativa Dr	= 100 %
				Modulo di Young E	= 32,5 MPa	
				da 3 a 6 m	Peso di volume γ	= 20 KN/mc
	da 3 a 6 m	Depositi alluvianali ahiojosi			Angolo di attritoφ'	= 40°
2	(valori stimati	(valori stimati per correlazioni stratigrafiche) Depositi alluvionali ghiaiosi molto addensati 2	2		Coesione efficace c'	= 0 kPa
	•				Densità relativa Dr	= 100 %
					Modulo di Young E	= 135 MPa
					Peso di volume γ	= 20,4 KN/mc
	da 6 m in poi				Angolo di attritoφ'	= 24,7°
3	(valori stimati per	Argilla limosa debolmente sabbiosa	3	da 6 m in poi	Coesione efficace c'	= 30,7 kPa
	correlazioni stratigrafiche)	Jappiosa			Coesione non drenata cu	= 300,4 kPa
	Stratigranione)				Modulo edometrico Mo	= 17,2 MPa

Le tre Unità geologiche hanno buone caratteristiche fisico-meccaniche di resistenza al taglio e compressibilità, ma comportamenti geotecnici differenti: le Unità 1 e 2 hanno una composizione granulometrica incoerente che determina per carichi indotti un decorso tensionale in termini di pressioni efficaci ed in condizioni drenate (Cu=0; $\phi'\neq 0$) sia nel breve sia nel lungo periodo; viceversa nell'Unità 3, spiccatamente coesiva, il decorso tensionale avverrà in condizioni non drenate nel breve periodo (Cu $\neq 0$; $\phi'=0$) e drenate a lungo termine.

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

3.3 Modello geologico e geotecnico in prossimità dei Sostegni 9-10

La modellazione geologica e geotecnica relativa ai Sostegni 9-10 fa riferimento al sondaggio S2 eseguito nelle vicinanze, alle prove penetrometriche S.P.T. effettuate nel corso della perforazione e ai dati di laboratorio. Il prospetto stratigrafico del sondaggio S2 è il seguente:

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

 Codifica Elaborato Terna:
 Codifica Elaborato Proger:

 RUFX19800B1831574
 Rev.<00 >
 RUFX19800B1831574
 Rev.<00 >

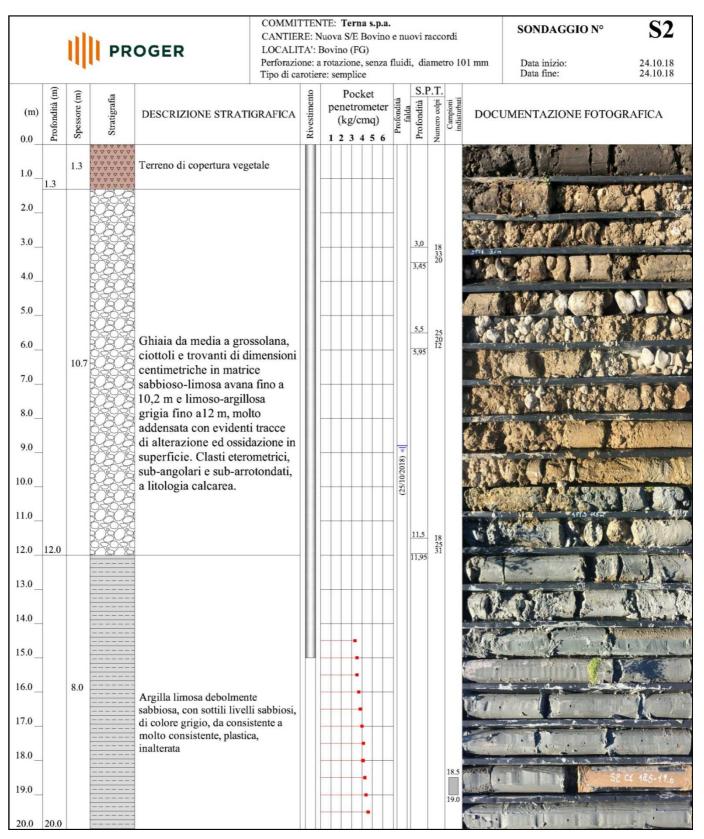


Fig. 3.3: Stratigrafia sondaggio S2 eseguito nei pressi dei sostegni 9-10

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

Se si esclude il primo metro di copertura vegetale, la modellazione geologica è composta da due Unità:

- Unità geologica 1 (da 1 m a 12 m): Ghiaia da media a grossolana, ciottoli e trovanti di dimensioni anche centimetriche in matrice sabbioso-limosa di colore avana fino a 10,2 m e limoso-argillosa grigio-avana fino a 12 m, molto addensata, con evidenti tracce di alterazione ed ossidazione rossastre soprattutto in superficie. I clasti sono a litologia calcarea di forma sub-angolare e sub-arrotondata. Si tratta dei depositi alluvionali di ambiente deposizionale fluviale ad alta energia.
- Unità geologica 2 (da 12 m a 20 m): Argilla limosa debolmente sabbiosa con sottili intercalazioni sabbiose, di colore grigio, consistente, inalterata. Si tratta del locale substrato geologico delle cosiddette Argille Subappennine. L'ambiente di sedimentazione è marino a bassa energia.

Il piezometro installato fino a fondo ha evidenziato la presenza di acqua a 8,8 m dal p.c, contenuta nelle ghiaie permeabili superficiali e sostenuta dalle argille di base impermeabili.

* * *

Il **modello geotecnico** trova in questo caso giusta corrispondenza con quello geologico. Si distinguono infatti due Unità con comportamenti geotecnici molto diversi:

- Unità geotecnica 1 (da 1 m a 12 m): incoerente e corrispondente alle ghiaie sabbiose ben addensate
- Unità geotecnica 2 (da 12 m a 20 m):coesiva e corrispondente alle argille di base.

La parametrizzazione geotecnica delle Unità suddette trae origine dalle prove S.P.T. per l'Unità 1 e da quelle di laboratorio per l'Unità 2.

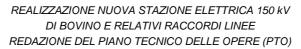
Parametri geotecnici nominali e caratteristici dell'Unità 1 derivanti dalle prove penetrometriche S.P.T.

Nel corso del sondaggio S2 sono state eseguite 3 prove S.P.T. i cui risultati, applicando le correlazioni viste precedentemente, sono i seguenti:

Sondaggio	Profondità prova	Numero di colpi	N _{SPT}	N ₆₀	N ₁₍₆₀₎	φ'	Dr %	E MPa
S2	3,0 m	18/33/20	53	36	47	43	100	103.8
S2	5,5 m	25/20/12	32	24	24	37	90	62.7
S2	11,5 m	18/25/31	56	50	34	44	93	109.7

Tab. 3.4: Risultati delle prove S.P.T nel sondaggio S2

I valori suddetti sono congrui con quelli di letteratura e consentono di ricavare quelli caratteristici con la già citata espressione di *Cherubini e Orr*dove: il valore a è il minimo, b il più probabile e c è il valore massimo:


Angolo di attrito	Densità relativa	Modulo di Yong
φ' _k	Dr _k	E _k
40°	93,5 %	

Anche in questo caso la coesione efficace c' è nulla e il peso di volume γ è pari a 20 KN/mc

Parametri geotecnici nominali e caratteristici dell'Unità 2 derivanti dalle prove di laboratorio

Nel corso del sondaggio S2 è stato prelevato nel substrato pelitico un solo campione tra 18,5 m e 19 m su cui sono state eseguite le analisi di classificazione e le prove meccaniche. I risultati ottenuti sono i seguenti:

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

			Unità geotecnica 2	
SONDAGGIO:		_	S2	
CAMPIONE :			C1	
PROFONDITA' m. :		1 1	18,5-19,0	
PROPRIETA' INDICI				
Contenuto naturale d'acqua :	W	[%]	20,4	
Peso di volume naturale :	γ	[KN/mc]	20,6	
LIMITI DI ATTERBERG				
Limite Liquido :	LL	[%]	47,84	
Limite Plastico :	IP	[%]	22,10	
ANALISI GRANULOMETRICA	A			
Argilla :		[%]	45,6	
Limo :		[%]	49,7	
Sabbia:		[%]	4,6	
Ghiaia :		[%]	0,0	
PROVA DI TAGLIO DIRETTO)			
(Scatola di Casagrande)				
Angolo d'attrito di picco :	ϕ'	[°]	23,1	
Coesione intercetta :	c'	[kPa]	14,14	
PROVA TRIAX UU				
Coesione non drenata:	Cu	[kPa]		
PROVA ESPANSIONE LATERALE LIE	BERA ELL			
Coesione non drenata:	Cu	[kPa]		
PROVA DI COMPRESSIBILITA' EDOMETRICA				
Modulo edometrico: (nell'intervallo 100÷200 kPa)	Мо	[MPa]		

Le scarsequantità e qualità del campione non hanno consentito di eseguire le prove di resistenza non drenate e di compressibilità edometrica. I valori delle caratteristiche fisiche e quelli della resistenza al taglio di picco sono compatibili con quelli ricavati sui campioni prelevati nel sondaggio S1.

Si riepiloga di seguito la modellazione geologica e geotecnica in prossimità dei Sostegni 9-10.

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

MODELLAZIONE GEOLOGICA E GEOTECNICA IN PROSSIMITA' DEI SOSTEGNI 9-10						
Modello geologico				Мо	dello geotecnico	
Unità geologica	Profondità (m)	Descrizione	Unità geotecnica	Profondità (m)	Parametri geotecnici caratteristici k	
	da 0 a 1 m	Terreno di copertura vegetale		da 0 a 1 m	Il terreno vegetale non assume significato dal punto di vista geologico e geotecnico e sarà rimosso	
1	da 1 a 12 m	Ghiaia medio-grossolana, ciottoli e trovanti con matrice sabbioso-limosa avana, molto addensata.	1	da 1 a 12 m	Peso di volume γ Angolo di attrito¢' Coesione efficace c' Densità relativa Dr Modulo di Young E	= 20 KN/mc = 40° = 0 kPa = 93,5 % = 86,2 MPa
2	da 12 a 20 m	Argilla limosa debolmente sabbiosa con sottili intercalazioni sabbiose, di colore grigio, consistente, inalterata.	2	da 12 a 20 m	Peso di volume γ Angolo di attritoφ' Coesione efficace c' Coesione non drenata cu Modulo edometrico Mo	= 20,6 KN/mc = 23,1° = 14,14 kPa = 300 kPa = 17 MPa

Le due Unità hanno ottime proprietà fisico-meccaniche di resistenza al taglio e compressibilità, ma comportamenti geotecnici diversi per la differente composizione granulometrica, come indicato precedentemente.

Tale modello, considerando la vicinanza dei luoghi e l'analogo contesto geologico e morfologico, può essere indicativo anche per i Sostegni 7-8, 11-12 e 13-14, ma tale ipotesi andrà verificata nelle successive fasi di progetto.

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00 >

3.4 Modellazione sismica

Nella Relazione geologica preliminare si è fatto cenno alla sismicità storica del territorio e ai dati rappresentativi che definiscono la pericolosità sismica di base. In questo capitolo si analizzerà la Risposta Sismica Locale RSL con i metodi indicati nella normativa di riferimento, come emersa dalle indagini geofisiche eseguite in sito.

3.4.1 Analisi della Risposta Sismica Locale con approccio semplificato

Per definire l'azione sismica di progetto si valuta l'effetto della RSL mediante specifiche analisi (cfr. § C7.11.3.1 della Circ. feb. 2009). In assenza di tali analisi, le norme prevedono che si può fare riferimento ad un approccio semplificato che si basa sull'individuazione di Categorie di sottosuolo di riferimento (Tab. 3.2.II NTC18) e sulle Condizioni topografiche (Tab. 3.2.III NTC18).

A tale scopo sono state eseguite due prove sismiche con il metodo MASW,in corrispondenza dei due sondaggi,con le seguenti specifiche tecniche:

Area indagata	Linea sismica	Energizzazione	Geofoni	Distanza intergeofonica	Lunghezza linea
Stazione elettrica	1	Onde P	24	2 m	48 m
Sostegni 9-10	2	Onde P	24	2 m	48 m

Le prove hanno permesso di definire la velocità media di propagazione delle onde di taglio Vs,₃₀, e conseguentemente stabilire la Categoria di sottosuolo.

La descrizione degli aspetti teorici del metodo e le specifiche tecniche sono riportate integralmente nell'Allegato 1, cui si rimanda.

Si sintetizzano di seguito i risultati ottenuti:

MASW 1			MASW 2		
Profondità sismostrato (m)	Spessore sismostrato (m)	V _S (m/s)	Profondità sismostrato (m)	Spessore sismostrato (m)	V _S (m/s)
3,75	3,75	157,87	1	1	266,67
∞	∞	333,33	26,6	25,6	333,33
	Vs ₃₀	293	∞	∞	400,00
				Vs ₃₀	337

Tab.3.5: Risultati delle prove sismiche MASW

I risultati evidenziano che applicando la formula per il calcolo della Vs, 30 seguente:

$$Vs_{30} = \frac{30}{\sum \frac{hi}{Vsi}}$$

dove:

hi= spessore (in metri) dello strato i-esimo (fino alla profondità di 30 m)

Vsi= velocità (in m/s) dello strato i-esimo (fino alla profondità di 30 m)

i valori delle velocità medie di propagazione entro 30 m di profondità delle onde di taglio $Vs_{,30}$ registrate sono pari **293 m/s** ed a **337 m/s** rispettivamente nelle prove 1 e 2.

Sulla base dei valori di velocità ottenuti, la Categoria di sottosuolo è la C, così come definita nelle NTC18, ossia:

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV
DI BOVINO E RELATIVI RACCORDI LINEE
REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

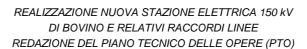
RUFX19800B1831574

Rev.<00>

Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 n/s e 360 m/s.

Per quanto riguarda l'incidenza della condizione topografica sulla RSL, le norme prevedono che per configurazioni superficiali semplici, come nel caso in esame, il pendio esaminato rientra nella **Categoria topografica T1**: superficie pianeggiante, pendii e rilievi isolati con inclinazione $i \le 15^{\circ}$.

Pertanto, i parametri strutturali che influenzano l'azione sismica di progetto per ogni Stato limite andranno considerati nel caso di una costruzione strategica di Classe d'uso IV, Vita nominale dell'opera VN 100, Coefficiente d'uso 2, i Tempi di ritorno (Tr) di 120, 201, 1898 e 2475 anni con una probabilità di superamento del 81%, 63%, 10% e 5%.


Sulla base dei dati sopra indicati, nelle tabelle seguenti si riportano i parametri sismici significativi ai vari SL riferiti alle aree della SE e dei sostegni 9-10.

	PARAMETRI SISMICI RELATIVI ALL'AREA DELLA SE				
	SLO	SLD	SLV	SLC	
Tr [anni]	120	201	1898	2475	
ag [g]	0,086	0,111	0,283	0,315	
Fo	2,578	2,495	2,485	2,466	
Tc* [s]	0,362	0,421	0,447	0,449	
Ss	1,500	1,500	1,279	1,233	
St	1,000	1,000	1,000	1,000	
S	1,500	1,500	1,279	1,233	
Cc	1,468	1,397	1,370	1,368	
TB [s]	0,177	0,196	0,204	0,205	
TC [s]	0,531	0,588	0,612	0,614	
TD [s]	1,950	2,042	2,730	2,862	
Se(0) [g]	0,131	0,166	0,361	0,389	
Se(TB) [g]	0,339	0,414	0,898	0,960	
Kh	0,027	0,040	0,103	0,110	
Kv	0,013	0,020	0,051	0,055	
Beta	0,200	0,240	0,280	0,280	

Tab. 3.6: Parametri significati degli Spettri di Normativa per i vari SL relativi all'area della SE

	PAF	PARAMETRI SISMICI RELATIVI AI SOSTEGNI 9-10				
	SLO	SLD	SLV	SLC		
Tr [anni]	120	201	1898	2475		
ag [g]	0,086	0,109	0,272	0,303		
Fo	2,592	2,501	2,506	2,489		
Tc* [s]	0,364	0,424	0,449	0,450		
Ss	1,500	1,500	1,291	1,247		
St	1,000	1,000	1,000	1,000		
S	1,500	1,500	1,291	1,247		
Сс	1,466	1,394	1,368	1,366		
TB [s]	0,178	0,197	0,205	0,205		
TC [s]	0,533	0,591	0,614	0,615		
TD [s]	1,945	2,036	2,689	2,831		
Se(0) [g]	0,129	0,164	0,351	0,378		
Se(TB) [g]	0,335	0,409	0,881	0,941		

 Codifica Elaborato Terna:
 Codifica Elaborato Proger:

 RUFX19800B1831574
 Rev.<00 >

 Rev.<00 >
 RUFX19800B1831574
 Rev.<00 >

Kh	0,026	0,040	0,102	0,110
Kv	0,013	0,020	0,051	0,055
Beta	0,200	0,240	0,280	0,280

Tab. 3.7: Parametri significati degli Spettri di Normativa per i vari SL relativi all'area dei sostegni 9-10

dove, oltre alle già note grandezze a_{Q} , F_{Q} e T_{C}^{*} , si ha:

Ss = coefficiente di amplificazione stratigrafica

St = coefficiente di amplificazione topografica

S = SsxSt

Cc = coefficiente funzione della Categoria di sottosuolo

TB, TC, TD = grandezze che corrispondono ai vari periodi che definiscono lo spettro di risposta elastico

 $Se(0) = ag \times S al tempo T(0)$

Se(TB)= ag al tempo (TB)

Kh= coefficiente sismico orizzontale

Kv= coefficiente sismico verticale

Beta= coefficiente di riduzione dell'accelerazione massima attesa al sito

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00 >

4 INDAGINI INTEGRATIVE DI SUPPORTO ALLE SUCCESSIVE FASI DI PROGETTO

Le indagini geognostiche e geofisiche realizzate in questa fase di progettazione preliminare potranno essere integrate nelle successive fasi progettuali.

In particolare, è consigliabile approfondire lo spessore, l'estensione e le proprietà geotecniche del terreno di copertura o di riporto presente nell'area della SE con ulteriori indagini dirette, quali sondaggi e prove in sito e di laboratorio, in quanto il terreno superficiale può presentare una notevole variabilità fisico-meccanica areale e verticale che dipende sia dal grado di degradazione fisico-chimica subita dal sedimento da parte degli agenti esogeni, in caso trattasi di terreno in posto, sia dalla composizione granulometrica e dalle modalità di posa in opera nel caso trattasi di riporto.

Particolare attenzione dovrà essere posta in corrispondenza dei Sostegni 7-8 ricadenti in area a pericolosità idraulica media M.P. In questo caso, andranno previste fondazioni profonde atte a prevenire i possibili fenomeni di scalzamento ed erosione alla base della fondazione in caso di piene.

I risultati delle indagini geognostiche in corrispondenza del Sostegno 5 consentiranno di determinare la compatibilità di fondazioni dirette visto che il sostegno è compreso in area a pericolosità da frana media e moderata P.G.1

Per gli altri sostegni sarà sufficiente stabilire con almeno una prova penetrometrica le proprietà geotecniche dei depositi alluvionali più superficiali e la profondità del tetto dello strato ghiaioso-sabbioso con ottime caratteristiche di resistenza al taglio e compressibilità.

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00>

RUFX19800B1831574

Rev.<00>

5 RIEPILOGO RISULTATI E CONCLUSIONI

Si riepilogano di seguito i risultati delle indagini e degli studi geologici realizzati nell'area della futura SE e lungo il tracciato dei nuovi raccordi.

• I modelli geologici e geotecnici riferiti alle aree indagate, compresi nel volume significativo di terreno, sono sintetizzati negli schemiriepilogativi seguenti:

MODELLAZIONE GEOLOGICA E GEOTECNICA RIFERITA ALL'AREA DELLA NUOVA SE						
Modello geologico		Modello geotecnico				
Unità geologica	Profondità (m)	Descrizione	Unità geotecnica	Profondità (m)	Parametri geotecnici caratteristici k	
	da 0 m a 1 m	Terreno di riporto ghiaioso		da 0 m a 1 m	Il riporto ghiaioso superficiale non assume significato dal punto di vista geotecnico in quanto sarà rimosso per scavi delle fondazioni	
					Peso di volume γ	= 17,4 KN/mc
1		Terreno di copertura o di riporto (?) limoso-argilloso			Angolo di attritoo'	= 25,7°
	da 1 m a 3 m	marrone scuro, consistente,	1	da 1 a 3 m	Coesione efficace c'	= 1,9 kPa
		con qualche clasto carbonatico sparso			Coesione non drenata cu	= 85 kPa
		·			Modulo edometrico Mo	= 3 MPa
		Depositi alluvionali imoso- sabbiosi debolmente ghiaiosi avana, moderatamente			Peso di volume γ	= 19 KN/mc
	da 3 m a 4,5 m		2	da 3 a 4,5 m	Angolo di attritoo'	= 26,6°
					Coesione efficace c'	= 0 kPa
		addensati, alterati ed ossidati			Densità relativa Dr	= 51,8 %
					Modulo di Young E	= 10,4 MPa
2		Depositi alluvionali ghiaiosi medio-grossolani, ciottoli e trovanti con matrice sabbiosolimosa brunastra, molto			Peso di volume γ	= 20 KN/mc
					Angolo di attritoφ'	= 40°
	da 4,5 a 6,2 m		3	da 4,5 a 6,2 m	Coesione efficace c'	= 0 kPa
		addensata.			Densità relativa Dr	= 100 %
					Modulo di Young E	= 135 MPa
					Peso di volume γ	= 20,4 KN/mc
3	da 6,2 a 20 m	da 6,2 a 20 m Substrato argilloso-limoso debolmente sabbioso con sottili intercalazioni sabbiose, di colore grigio, consistente, inalterato.	4	da 6,2 a 20 m	Angolo di attritoφ'	= 24,7°
					Coesione efficace c'	= 30,7 kPa
					Coesione non drenata cu	= 300,4 kPa
					Modulo edometrico Mo	= 17,2 MPa

L'Unità geologica e geotecnica 1, riferita al terreno di copertura superficiale o di riporto, ha discrete proprietà di resistenza al taglio sia in condizioni drenate che non drenate, ma modeste caratteristiche di compressibilità. Tali valori sono compatibili con quelli tipici di una coltre superficiale, ma la parametrizzazione geotecnica di questa Unità ai fini progettuali non può essere basata su un unico dato e necessita nelle successive fasi di progetto di ulteriori verifiche. Le proprietà fisicomeccaniche dei depositi alluvionali incoerenti e del substrato pelitico sono buone sia in termini di resistenza al taglio sia in termini di compressibilità anche se il comportamento geotecnico è molto diverso: le Unità 2 e 3 sono infatti incoerenti e ciò determina per carichi indotti un decorso tensionale in termini di pressioni efficaci ed in condizioni drenate (Cu=0; ¢'≠0) sia

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00 >

	MODELLAZIONE GEOLOGICA E GEOTECNICA RIFERITA ALL'AREA DELLA NUOVA SE										
	Modello	geologico		Мо	dello geotecnico						
Unità geologica	Profondità (m)	Descrizione	Unità geotecnica	Profondità (m)	Parametri geotecnici caratteristici k						
1	da 0 m a 1 m	Terreno di riporto ghiaioso		da 0 m a 1 m	Il riporto ghiaioso superficiale non assume significato dal punto di vista geotecnico in quanto sarà rimosso per gli scavi delle fondazioni						

nel breve sia nel lungo periodo; viceversa nell'Unità 4, spiccatamente coesiva, il decorso tensionale avverrà in condizioni non drenate nel breve periodo (Cu≠0; φ'=0) e drenate a lungo termine.

La falda idrica è stata rinvenuta nel piezometro installato nel foro di sondaggio alla profondità di 5,7 m anche se tale livello può subire oscillazioni nel corso dell'anno.

	MODELLAZIONE GEOLOGICA E GEOTECNICA RIFERITA AI SOSTEGNI 3-4										
	Modello	geologico		Мо	dello geotecnico						
Unità geologica	Descrizione			Profondità (m)	Parametri geotecnici c	caratteristici k					
	da 0 a 1 m	Terreno di copertura vegetale		da 0 a 1 m	Il terreno vegetale non as significato dal punto di vis geotecnico e sarà rimosso	ta geologico e					
					Peso di volume γ	= 18 KN/mc					
		Depositi alluvionali a			Angolo di attritoφ'	= 35°					
1	da 1 a 3 m	granulometria media,	1	da 1 a 3 m	Coesione efficace c'	= 0 kPa					
		addensati.			Densità relativa Dr	= 100 %					
					Modulo di Young E	= 32,5 MPa					
					Peso di volume γ	= 20 KN/mc					
	da 3 a 6 m	Depositi alluvionali ghiaiosi molto addensati		Denociti allunionali ahioissi			Angolo di attritoφ'	= 40°			
2	(valori stimati per correlazioni			2	da 3 a 6 m	Coesione efficace c'	= 0 kPa				
	stratigrafiche)				Densità relativa Dr	= 100 %					
					Modulo di Young E	= 135 MPa					
					Peso di volume γ	= 20,4 KN/mc					
	da 6 m in poi				Angolo di attritoφ'	= 24,7°					
3	(valori stimati per	Argilla limosa debolmente sabbiosa	3	da 6 m in poi	Coesione efficace c'	= 30,7 kPa					
	correlazioni stratigrafiche)	Sabbiosa			Coesione non drenata cu	= 300,4 kPa					
stratigrafiche)					Modulo edometrico Mo	= 17,2 MPa					

Le tre Unità geologico-geotecniche hanno buone caratteristiche di resistenza al taglio e compressibilità. Le prime due Unità hanno un comportamento geotecnico spiccatamente attrivo, le argille di base sono prettamente coesive.

Non è stata rinvenuta la presenza di acqua fino alla profondità di 3 m raggiunta dalla prova penetrometrica

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

	MOD	ELLAZIONE GEOLOGICA E GE	OTECNICA IN	PROSSIMITA' [DEI SOSTEGNI 9-10	
	Modello	geologico		Мо	dello geotecnico	
Unità Profondità Descrizione (m)			Unità geotecnica	Profondità (m)	Parametri geotecnici c	aratteristici k
	da 0 a 1 m	Terreno di copertura vegetale		da 0 a 1 m	Il terreno vegetale non as significato dal punto di vis geotecnico e sarà rimosso	ta geologico e
1	da 1 a 12 m	Ghiaia medio-grossolana, ciottoli e trovanti con matrice sabbioso-limosa avana, molto addensata.	1	da 1 a 12 m	Peso di volume γ Angolo di attritoφ' Coesione efficace c' Densità relativa Dr Modulo di Young E	= 20 KN/mc = 40° = 0 kPa = 93,5 % = 86,2 MPa
2	da 12 a 20 m	Argilla limosa debolmente sabbiosa con sottili intercalazioni sabbiose, di colore grigio, consistente, inalterata.	2	da 12 a 20 m	Peso di volume γ Angolo di attritoφ' Coesione efficace c' Coesione non drenata cu Modulo edometrico Mo	= 20,6 KN/mc = 23,1° = 14,14 kPa = 300 kPa = 17 MPa

Le due Unità geologico-geotecniche hanno buone caratteristiche di resistenza al taglio e compressibilità. La prima Unità ha un comportamento geotecnico spiccatamente attrivo, la seconda prettamente coesivo.

Nel piezometro installato nel foro di sondaggio è stata rinvenuta la presenza di acqua alla profondità di 8,8 m dal p.c. Tale livello può oscillare nei vari periodi dell'anno.

L'azione sismica è stata definita con l'approccio semplificato della RSL previsto dalla normativa, nel caso di costruzioni strategiche di Classe d'uso IV. La velocità media delle onde di taglio entro 30 m di profondità V_{s30}, ricavata con due prove MASW eseguite nell'area della SE e in corrispondenza dei sostegni 9-10,rientra in entrambi i casi nell'intervallo rappresentativo della *Categoria di sottosuolo C*. Non vi sono fenomeni di amplificazione per effetti topografici, essendo l'area pianeggiante, e la *Categoria topografica* è *la T1*, mentre l'assetto stratigrafico locale rende tutta la zona d'interventostabile ma suscettibile di amplificazione del segnale

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

sismico per effetti litologici. Ilcoefficiente di amplificazione in accelerazione Sallo SLV è pari a 1,279nell'area della SE (nel territorio di Bovino in Zona sismica 1) ed a 1,291 in corrispondenza dei sostegni 9-10 (nel territorio di Orsara in Zona sismica 2); ne consegue che l'accelerazione massima attesa al suolo a_{gmax} allo SLV è pari a 0,361g nell'area della SE ed a 0,351g nei sostegni 9-10-

Si riepilogano di seguito i parametri sismici significativi che definiscono l'azione sismica ai vari SL nelle due aree indagate.

	PARA	METRI SISMICI RELA	ATIVI ALL'AREA DEL	LA SE
	SLO	SLD	SLV	SLC
Tr [anni]	120	201	1898	2475
ag [g]	0,086	0,111	0,283	0,315
Fo	2,578	2,495	2,485	2,466
Tc* [s]	0,362	0,421	0,447	0,449
Ss	1,500	1,500	1,279	1,233
St	1,000	1,000	1,000	1,000
S	1,500	1,500	1,279	1,233
Сс	1,468	1,397	1,370	1,368
TB [s]	0,177	0,196	0,204	0,205
TC [s]	0,531	0,588	0,612	0,614
TD [s]	1,950	2,042	2,730	2,862
Se(0) [g]	0,131	0,166	0,361	0,389
Se(TB) [g]	0,339	0,414	0,898	0,960
Kh	0,027	0,040	0,103	0,110
Kv	0,013	0,020	0,051	0,055
Beta	0,200	0,240	0,280	0,280

	PAR	AMETRI SISMICI REL	ATIVI AI SOSTEGNI	9-10
	SLO	SLD	SLV	SLC
Tr [anni]	120	201	1898	2475
ag [g]	0,086	0,109	0,272	0,303
Fo	2,592	2,501	2,506	2,489
Tc* [s]	0,364	0,424	0,449	0,450
Ss	1,500	1,500	1,291	1,247
St	1,000	1,000	1,000	1,000
S	1,500	1,500	1,291	1,247
Cc	1,466	1,394	1,368	1,366
TB [s]	0,178	0,197	0,205	0,205
TC [s]	0,533	0,591	0,614	0,615
TD [s]	1,945	2,036	2,689	2,831
Se(0) [g]	0,129	0,164	0,351	0,378
Se(TB) [g]	0,335	0,409	0,881	0,941
Kh	0,026	0,040	0,102	0,110
Kv	0,013	0,020	0,051	0,055
Beta	0,200	0,240	0,280	0,280

• Si escludono nell'area esaminata scenari di pericolosità per la presenza di frane, per esondazione, per erosione, per crollo massi, per cavità, per la vicinanza di faglie attive, per fenomeni d'instabilità sismo-indotti su pendii e su versanti rocciosi, per riattivazione di frane e per fenomeni di liquefazione.

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

In conclusione gli studi preliminari condotti hanno accertato la compatibilità degli interventi con le condizioni idrogeomorfologiche locali e con le caratteristiche geotecniche dei terreni compresi nel volume significativo. Resta inteso che le scelte progettuali dovranno tener conto delle prestazioni attese delle opere e delle modellazioni geologiche e geotecniche locali. A tal fine saranno necessari ulteriori approfondimenti puntuali nelle aree non indagate lungo il tracciato dei raccordi e nell'area della SE dove vi è la possibilità di rinvenire del terreno di riporto considerato che la zona è stata modificata da attività antropiche.

Particolare attenzione dovrà essere posta in corrispondenza dei Sostegni 7-8 ricadenti in area a pericolosità idraulica media M.P. In questo caso, la modellazione geologica e geotecnica dovrà essere di supporto alla progettazione di fondazioni profonde atte a prevenire i possibili fenomeni di scalzamento ed erosione alla base della fondazione in caso di piene.

I risultati delle indagini geognostiche in corrispondenza del Sostegno 5 consentiranno di determinare la compatibilità di fondazioni dirette visto che il sostegno è compreso in area a pericolosità da frana media e moderata P.G.1

Geol. Armando MAZZEI

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

6 ALLEGATI

Costituiscono parte integrante del presente documento i seguenti allegati:

Allegato 1: Prove sismiche MASW

Allegato 2: Certificati delle prove geotecniche di laboratorio

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

ALLEGATO 1: Prove sismiche MASW

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

Comune di Bovino

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 KV DI BOVINO E RELATIVI RACCORDI LINEE

Indagine sismica di tipo MASW

Relazione Tecnica

Committenza

Progers.p.a. Via Po San Giovanni Teatino 66020 Chieti Il Geologo Ph.D. Geol. Roberto Buccione

G.I.A. Consulting Srl

Viale degli Astronauti, 8 - 80131 Napoli P.IVA: 07456341218 - REA: NA-885359 TEL/FAX: +39 081 038 3761 EMAIL: info@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it www.giaconsulting.it Sistema di gestione a norma UNI EN ISO 9001:2008 Certificato n° 1358

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

1. PREMESSA

Nell'ambito dell'esecuzione di sondaggi geologici e indagini geofisiche, su affidamento di Progers.p.a., si è proceduto alla redazione della seguente relazione tecnica relativa ad un indagine sismica di tipo MASW.

Al fine di caratterizzare la risposta sismica del sito in esame è stata effettuata una serie di acquisizioni MASW (Multi-channel Analysis of SurfaceWaves), analisi della dispersione delle onde di Rayleigh da misure di sismica attiva (Park et al., 1999) utili a definire il profilo verticale della $V_{\rm S}$ (velocità di propagazione delle onde di taglio).

Nel loro insieme, le procedure adottate sono state eseguite in accordo alle Norme tecniche per le costruzioni del DM 17 gennaio 2018 (ex DM 14/01/2008), che, in buona misura, fanno risalire la stima dell'effetto di sito alle caratteristiche del profilo di velocità delle onde di taglio (V_S) .

La classificazione dei terreni è stata svolta sulla base del valore della $V_{\rm S30}$ (il valore medio della $V_{\rm S}$ nei primi 30 m di profondità) è stata eseguita una campagna di prospezione sismica di tipo "MASW", volta alla caratterizzazione sismica del sito oggetto di intervento.

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

2. UBICAZIONE DEL SITO DI INDAGINE

Le aree indagata sono ubicate all'interno del Comune di Bovino e precisamente si trovano lungo la SS90. La posizione degli stendimenti per la prova sismica MASW è stata definita dalla Committenza (Fig. 1).

Figura 1 – Ortofoto (Google Maps 2018) dell'area investigata. Nei riquadri vengono evidenziate le 2 aree investigate.

3. PROSPEZIONE SISMICA DI TIPO "MASW" (MULTICHANNEL ANALYSIS OF SURFACE WAVES)

Al fine di fornire una caratterizzazione sismica dei depositi costituenti il sottosuolo nell'area di indagine è stata effettuata una prospezione sismica di tipo MASW (Multichannel Analysis of SurfaceWaves). Tale tipologia di indagine si propone di individuare il profilo di

G.I.A. Consulting SrI
Viale degli Astronauti, 8 - 80131 Napoli
P.IVA: 07456341218 - REA: NA-885359
TEL/FAX: +39 081 038 3761
EMAIL: info@giaconsulting.it
PEC: giaconsulting@pec.giaconsulting.it
www.giaconsulting.it

Sistema di gestione a norma UNI EN ISO 9001:2008 Certificato n° 1358

Sistema di gestione a norma UNI EN ISO 14001:2008 Certificato n. IT1702601

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

velocità delle onde di taglio verticali Vs, basandosi sulla misura delle onde superficiali (onde di Rayleigh), che viaggiano con una velocità correlata alla rigidezza della porzione di terreno interessata dalla propagazione delle onde stesse. In un mezzo stratificato le onde di Rayleigh sono dispersive, cioè sono onde con diverse lunghezze d'onda che si propagano con diverse velocità di fase e velocità di gruppo (Achenbach, J.D., 1999, Aki, K. and Richards, P.G., 1980) o detto in maniera equivalente la velocità di fase (o di gruppo) apparente delle onde di Rayleigh dipende dalla frequenza di propagazione (da "Caratterizzazione sismica dei suoli con il metodo MASW - Multichannel Analysis of SurfaceWaves – Ing. Vitantonio Roma).

Le onde di Rayleigh presentano una velocità del 90% circa rispetto a quella delle onde di taglio; in presenza di un semispazio omogeneo, la velocità di tali onde non varia in funzione della frequenza, non si ha cioè dispersione, la deformazione di un treno di onde dovuta alla variazione della velocità di propagazione in funzione della frequenza.

Questa deformazione si manifesta invece quando il terreno presenta una stratificazione; la velocità di propagazione per una certa lunghezza d'onda viene influenzata dalle proprietà che il mezzo possiede fino a una profondità dell'ordine di $\lambda/2$ circa.

Le componenti a bassa frequenza (lunghezze d'onda maggiori), sono caratterizzate da forte energia e grande capacità di penetrazione, mentre le componenti ad alta frequenza (lunghezze d'onda corte), hanno meno energia e una penetrazione superficiale.

Quindi una metodologia che utilizzi le onde superficiali è in grado di rilevare variazioni delle proprietà elastiche dei materiali prossimi alla superficie al variare della profondità.

Nel caso che l'obiettivo sia di verificare le caratteristiche delle velocità delle onde S nel terreno, questo tipo di indagine è molto utile, in quanto la Vs è il fattore che governa le caratteristiche della dispersione; inoltre il metodo non è limitato dalla presenza di inversioni di velocità, e presenta una buona risoluzione.

La natura dispersiva delle onde superficiali è correlabile al fatto che onde ad alta frequenza con lunghezza d'onda corta si propagano negli strati più superficiali e quindi danno informazioni sulla parte più superficiale del suolo, invece onde a bassa frequenza si propagano e quindi interessano e caratterizzano gli strati più profondi del suolo (Fig.2).

G.I.A. Consulting SrI
Viale degli Astronauti, 8 - 80131 Napoli
P.IVA: 07456341218 - REA: NA-885359
TEL/FAX: +39 081 038 3761
EMAIL: info@giaconsulting.it
PEC: giaconsulting@pec.giaconsulting.it

www.giaconsulting.it

Sistema di gestione a norma UNI EN ISO 9001:2008 Certificato n° 1358

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

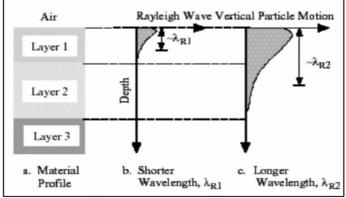


Figura 2 - La profondità investigata dalle onde di Rayleigh dipende dalla lunghezza d'onda, dalla velocità delle onde di taglio Vs e dalla frequenza. (Stokoe II and Santamarina, 2000).

L'indagine secondo la tecnica MASW (Multi-channel Analysis of SurfaceWaves) prevede l'energizzazione mediante sorgente attiva, con registrazione simultanea su 12 o più canali; vengono utilizzati geofoni a componente verticale sensibili alle basse frequenze (un valore tipico sono 4.5 Hz).

La distanza dalla sorgente di energizzazione e il primo ricevitore condiziona lmax e quindi la profondità di indagine; anche la lunghezza dello stendimento geofonico è in relazione alla profondità di indagine, mentre la distanza intergeofonica condiziona lo spessore dello strato più sottile rilevabile.

È importante osservare che nel sismogramma possono comparire diversi tipi di onde: onde di corpo, onde superficiali non piane, onde riverberate dalle disomogeneità superficiali, oltre al rumore ambientale e quello imputabile alle attività umane.

Questo comporta una difficoltà aggiuntiva nella "lettura" dello spettro di velocità e quindi nella successiva individuazione della curva di dispersione.

Nella figura seguente (Fig.3) è riportato lo schema tipo della procedura di campagna seguito per la realizzazione della prospezione MASW attiva.

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

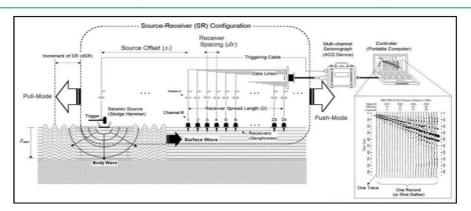


Figura 3 – Schema della tecnica di indagine eseguita

Le onde di corpo sono di solito riconoscibili; le onde superficiali riverberate (back scattered) possono risultare prevalenti in un sismogramma quando siano presenti discontinuità orizzontali; le ampiezze relative di ciascuna tipologia di rumore generalmente cambiano con la frequenza e la distanza dalla sorgente.

Ciascun rumore, inoltre, ha diverse velocità e proprietà di attenuazione che possono essere identificate sulla registrazione multicanale grazie all'utilizzo di modelli di coerenza e in base ai tempi di arrivo e all'ampiezza di ciascuno.

In sintesi l'indagine comporta:

- l'acquisizione delle onde superficiali (groundroll);
- la determinazione di uno spettro di velocità, con velocità di fase in funzione della frequenza;
- l'identificazione della curva di dispersione, cioè la determinazione dei punti che, sullo spettro di velocità, appartengono a un certo modo di propagazione dell'onda superficiale di Rayleigh;
- l'inversione della curva di dispersione, al fine di ottenere il profilo verticale delle Vs.

L'inversione della curva di dispersione viene realizzata iterativamente, utilizzando come riferimento la curva di dispersione precedentemente ottenuta; per ottenere il profilo verticale Vs dalla curva di dispersione è necessaria l'assunzione di valori approssimati per il rapporto di Poisson e per la densità.

Viale degli Astronauti, 8 - 80131 Napoli P.IVA: 07456341218 - REA: NA-885359 TEL/FAX: +39 081 038 3761 EMAIL: info@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it www.giaconsulting.it Sistema di gestione a norma UNI EN ISO 9001:2008 Certificato n° 1358

Sistema di gestione a norma UNI EN ISO 14001:2008 Certificato n. IT1702601

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

La procedura di inversione utilizzata dal software Easy MASW della GeoStru è legata agli "algoritmi genetici", il quale approccio consente di ottenere risultati più affidabili rispetto ai metodi di inversione basati sulla matrice Jacobiana.

È estremamente utile, per una interpretazione affidabile, poter disporre di dati di riferimento, sia per fornire uno spazio di ricerca iniziale al processo di inversione, sia per effettuare una "modellazione diretta" di ausilio a un corretto "picking" della curva di dispersione.

Nel dettaglio del caso in esame, sono state richieste 2 indagini MASW sviluppate su stendimenti geofonici ubicati ove indicato dalla Committenza.

4. ACQUISIZIONE

4.1. Attrezzature e metodologie impiegate

Per l'acquisizione è stato impiegato il sismografo digitale Echo 48/2014 della Ambrogeo, che permette di misurare con estrema precisione ed accuratezza le vibrazioni del terreno in modo completamente automatico, memorizzando le misure su file SEG-Y o Ascii. Inoltre tutte le misure che vengono effettuate sono visibili sul touch screen dotato di grafica comprensibile ed intuitiva. Di seguito vengono elencate le caratteristiche tecniche:

a) Numero di canali: 48

b) Range dinamico: 130db@1ms PG = 0dB; 120db@1ms PG = 18dB

c) Gain di pre-amplificazione: 0,6,12,18,24,30,36,42,48,54,60,66,72 dB

d) Intervallo di campionamento: 32, 64, 128, 256, 478, 956 s

e) Registrazione: 16000 campioni

f) Accuratezza stacking del trigger: 1/32 dell'intervallo di campionamento

g) Distorsione (THD): 0,0004%

h) Segnale massimo in imput: 5Vpp, 0dB

i) CMR: 110 dB (fCM=60Hz fDATA = 30kSPS)

j) Convertitore: 24 bit

k) Noise: 0,25uV, 2ms 36dB

1) Reiezione modo comune: >90dB

m) Delay: 0-15 sec @1kSPS (max 1600 campioni)

G.I.A. Consulting Srl

Viale degli Astronauti, 8 - 80131 Napoli P.IVA: 07456341218 - REA: NA-885359 TEL/FAX: +39 081 038 3761 EMAIL: info@giaconsulting.it

PEC: giaconsulting@pec.giaconsulting.it www.giaconsulting.it

Sistema di gestione a norma UNI EN ISO 9001:2008 Certificato n° 1358

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV
DI BOVINO E RELATIVI RACCORDI LINEE
REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

n) Potenza: 12 Volt

o) Formato di output: SEGY/SAF (SESAME ASCII)

Inoltre, l'attrezzatura è completata da 24 geofoni verticali con frequenza propria di 4,5 Hz per la ricezione delle onde R (Rayleigh) e come sorgente energizzante delle onde R (Rayleigh) è stata utilizzata una mazza da 8 kg battente su piastra energizzante in metallo.

4.2 CONFIGURAZIONE DELLA LINEA SISMICA

Nell'area oggetto di studio, sono state eseguite 2 prospezione sismica MASW utilizzando una configurazione a 24 geofoni verticali da 4.5 Hz (interasse tra i geofoni pari a 2.0 m) per una lunghezza complessiva di 48.00 m.

L'indagine è consistita nell'acquisizione del segnale prodotto percuotendo con una mazza del peso di circa 8 kg una piastra metallica posta a diretto contatto con il terreno. L'avvio dell'acquisizione è stato realizzato mediante la posa in prossimità della piastra metallica di battuta di un geofono detto "di trigger" o "starter", collegato a sua volta all'apparecchiatura per la registrazione del segnale, a una distanza di 3 m dal primo geofono.

Le registrazioni avvenute in campagna sono state ottenute, in fase di acquisizione, utilizzando la medesima sensibilità per ciascun geofono e senza l'utilizzo di filtraggio delle frequenze.

Poiché l'area oggetto di indagine è ubicata in un contesto semi-urbano, al fine di limitare l'effetto del rumore sismico di fondo e di conseguenza aumentare il Rapporto S/N (Segnale/Rumore), è stata attivata la procedura di "verticalstacking" in corrispondenza di ciascun punto sorgente di onde, che consiste nell'eseguire più scoppi reiterando la misura e sommando i valori registrati di volta in volta.

A partire dai dati registrati in sito il programma ricostruisce l'immagine di dispersione, detta anche "Overtone", che indica la distribuzione della velocità di fase (asse delle ordinate) delle onde sismiche rispetto alla frequenza d'onda.

www.giaconsulting.it

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

4.3 ELABORAZIONE DATI

L'elaborazione dei dati e l'inversione della curva di dispersione della velocità di fase delle onde superficiali di Rayleigh, per entrambi i profili, sono state effettuate con il programma EASY MASW della GeoStru, che ha permesso di eseguire l'intero processo di elaborazione di una sezione sismostratigrafica delle V_S . Gli elaborati relativi alle prospezioni sismiche MASW effettuate nel sito di specifico interesse sono di seguito riportati in dettaglio.

Di seguito sono riportati gli elaborati relativi all'indagine sismica effettuata nei 2 siti indicati dalla committenza.

4.3.1 SITO 1 - INDAGINE MASW

 $\textbf{\textit{Figura 4}} - Posizione \ dello \ stendimento \ geofonico \ per \ l'indagine \ MASW.$

G.I.A. Consulting SrI
Viale degli Astronauti, 8 - 80131 Napoli
P.IVA: 07456341218 - REA: NA-885359
TEL/FAX: +39 081 038 3761
EMAIL: info@giaconsulting.it
PEC: giaconsulting@pec.giaconsulting.it
www.giaconsulting.it

Sistema di gestione a norma UNI EN ISO 9001:2008 Certificato n° 1358

Sistema di gestione a norma UNI EN ISO 14001:2008 Certificato n. IT1702601

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00>

RUFX19800B1831574

Rev.<00>

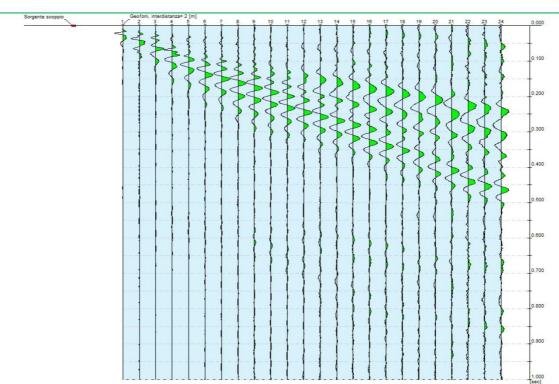
Figura 5 – Stendimento geofonico per la prova MASW (Sondaggio 1).

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

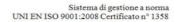
Codifica Elaborato Proger:

RUFX19800B1831574


Rev.<00>

RUFX19800B1831574

Rev.<00>



 $\textbf{\textit{Figura 6}-S} is mogramma\ relativo\ all'indagine\ Sismica\ MASW\ lungo\ il\ profilo\ sismico.$

EMAIL: info@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it www.giaconsulting.it

Sistema di gestione a norma UNI EN ISO 14001:2008 Certificato n. IT1702601

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00>

RUFX19800B1831574

Rev.<00>

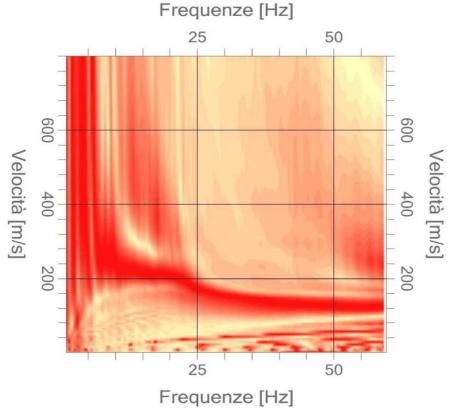


Figura 7 – Analisi spettrale relativa all'indagine Sismica MASW lungo il profilo sismico.

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

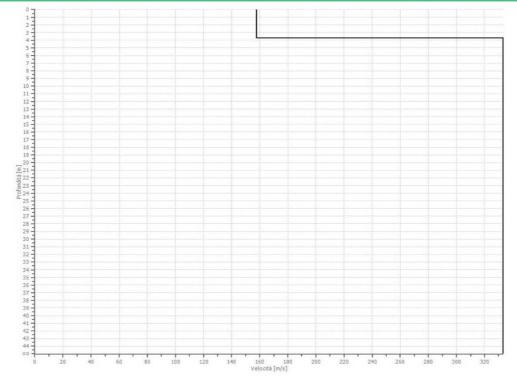


Figura 8 - Modello di velocità delle onde di taglio (V_S) .

La velocità equivalente delle onde di taglio $V_{\rm S30}$ è definita dall'espressione:

$$V_{s,30} = \frac{30}{\sum_{i=1,N} \frac{h_i}{V_{s,i}}} (m/s)$$

Utilizzando tale formula, il software EASY MASW restituisce il profilo stratigrafico con i principali sismostrati e i relativi parametri sismici (Fig. 9).

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV
DI BOVINO E RELATIVI RACCORDI LINEE
REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

Vs.	30			2	92.67 [m/s]					
Ca	tegoria del s	uolo			C					
	Sito susce	ttibile di lique	fazione o cos	stituito da a	rgilla sensitiva.					
	Dealerhile a	uolo di tipo E								
_	Probabile Si	noio ai abo E								
	_ Probablie si	uolo di apo E								
	Profondità	Spessore [m]	Vs [m/s]	Vp [m/s]	Densità [kg/mc]	Coefficiente Poisson	G0 [MPa]	Ed [MPa]	M0 [MPa]	Ey [MPa]
1	Profondità	Spessore								

Figura 9 - Prospetto delle determinazioni dei principali parametri sismici per i sismostrati riscontrati nel Sito 1.

Dunque, sulla base dei valori di velocità delle onde di taglio entro i 30,00 m ($V_{s\,30}$) di circa 292,67 m/s, si procede all'assegnazione della categoria di sottosuolo. In questo caso, i valori ottenuti permettono di attribuire al sito indagato la <u>categoria di sottosuolo C</u> (Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s) (Tab.1).

Classe	Descrizione
	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle
Α	onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di
	caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.
	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina
В	molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la
	profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.
	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina
C	mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati
	da un miglioramento delle proprietà meccaniche con la profondità e da valori di
	velocità equivalente compresi tra 180 m/s e 360 m/s.
	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina
	scarsamente consistenti, con profondità del substrato superiori a 30 m, caratterizzati da
D	un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità
	equivalente compresi tra 100 m/s e 180 m/s.
E	Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite
	per le categorie C o D, con profondità del substrato non superiore a 30m.

Tabella 1 – Classi delle categorie di sottosuolo ai sensi delle NTC/18.

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00>

RUFX19800B1831574

Rev.<00>

4.3.1 SITO 2 - INDAGINE MASW

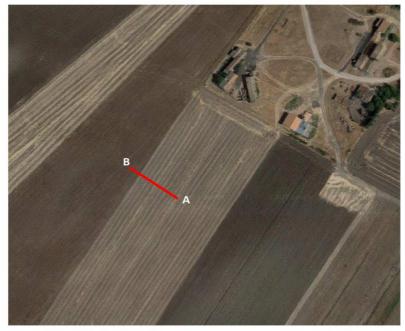


Figura 10 – Posizione dello stendimento geofonico per l'indagine MASW.

G.I.A. Consulting Srl

www.giaconsulting.it

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

Figura 11 – Stendimento geofonico per la prova MASW.

Viale degli Astronauti, 8 - 80131 Napoli P.IVA: 07456341218 - REA: NA-885359 TEL/FAX: +39 081 038 3761 EMAIL: info@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it www.giaconsulting.it

Sistema di gestione a norma
UNI EN ISO 14001:2008 Certificato n. IT1702601

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

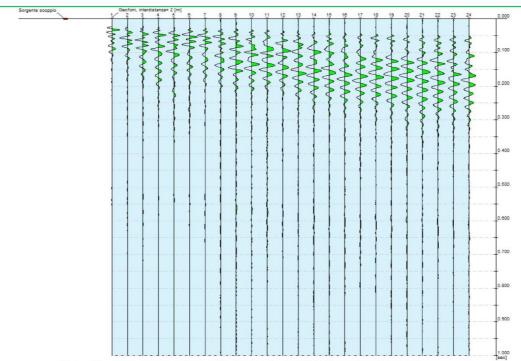


Figura 12 – Sismogramma relativo all'indagine Sismica MASW lungo il profilo sismico.

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

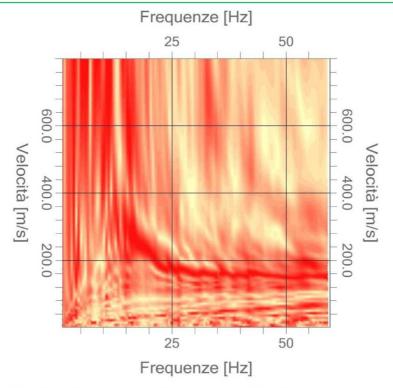


Figura 13 – Analisi spettrale relativa all'indagine Sismica MASW lungo il profilo sismico.

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

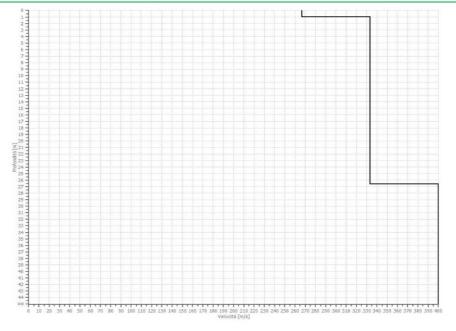


Figura 14 - Modello di velocità delle onde di taglio (V_S) della MASW lungo il profilo sismico.

La velocità equivalente delle onde di taglio V_{S30} è definita dall'espressione:

$$V_{S,30} = \frac{30}{\sum_{i=1,N} \frac{h_i}{V_{s,i}}} (m/s)$$

Utilizzando tale formula, il software EASY MASW restituisce il profilo stratigrafico con i principali sismostrati e i relativi parametri sismici (Fig. 9).

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV
DI BOVINO E RELATIVI RACCORDI LINEE
REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

Vs	:30			3	36.89 [m/s]					
Categoria del suolo					C					
	Sito susce	ettibile di lique	fazione o co	stituito da a	rgilla sensitiva.					
	Probabile s	suolo di tipo E								
	Profondità [m]	Spessore [m]	Vs [m/s]	Vp [m/s]	Densità [kg/mc]	Coefficiente Poisson	G0 [MPa]	Ed [MPa]	M0 [MPa]	Ey [MPa]
1	1.00	1.00	266.67	498.89	1800.00	0.30	128.00	448.00	277,33	332,80
2	26.60	25,60	333.33	623.61	1800.00	0.30	200.00	700.00	433.33	520.00
						0.30	288.00	1008.00		

Figura 15 - Prospetto delle determinazioni dei principali parametri sismici per i sismostrati riscontrati nel Sito 1.

Dunque, sulla base dei valori di velocità delle onde di taglio entro i 30,00 m ($V_{s\,30}$) di circa 336,89 m/s, si procede all'assegnazione della categoria di sottosuolo. In questo caso, i valori ottenuti permettono di attribuire al sito indagato la <u>categoria di sottosuolo</u> $\underline{\mathbf{C}}(Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti, con spessori superiori ai 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di <math>Vs_{30}$ compresi fra 180 e 360 m/s) (Tab.2).

Classe	Descrizione
А	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.
С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 m/s e 180 m/s.
E	Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le categorie C o D, con profondità del substrato non superiore a 30m.

Tabella 2 – Classi delle categorie di sottosuolo ai sensi delle NTC/18.

G.I.A. Consulting SrI
Viale degli Astronauti, 8 - 80131 Napoli
P.IVA: 07456341218 - REA: NA-885359
TEL/FAX: +39 081 038 3761
EMAIL: info@giaconsulting.it
PEC: giaconsulting@pec.giaconsulting.it
www.giaconsulting.it

Sistema di gestione a norma UNI EN ISO 9001:2008 Certificato n° 1358

Sistema di gestione a norma UNI EN ISO 14001:2008 Certificato n. IT1702601

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

ALLEGATO 2: Prove geotecniche di laboratorio

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

Data: 21/11/2018 Certificato: 2671118

RIFERIMENTI COMMESSA										
II Richiedente: PROG	SER S	рА								
Verbale di Accettazione	N°:	491118	Data:	06/11/2018						
Riferimento Ordine	N°:	32/17	Data:	08/09/17						

INFORMAZ	INFORMAZIONI GENERALI SUL CAMPIONE IN INGRESSO									
Alterazioni Tipologia Campionatore Data Preliev Esterne: SHELBY N.P.										
Ditta che ha e	ffettuate	o il prelievo Non Dichiarato								

	INTESTAZIONE	CERTIFICATO ED	IDENTIFICAZIONE CAMPION	IE		
Committente:	PROGER SpA					
Cantiere:	Nuova S/E Bovino - Foggia					
Sondaggio: 1	Campione:	1	Profondità da m:	2,50	a m:	3,00

TRACCIABILITA'								
Codice Campione:	PRB11							
Consegna Campione:	06/11/2018							
Apertura:	08/11/2018							
Inizio Prove:	08/11/2018							
Fine Prove:	21/11/2018							

ESCLUSIONI / ANOMALIE / DIFFORMITA' / NOTE

Prova TRXUU sostituita con ELL causa intensa fratturazione campione Provini del taglio parzialmente ricostruiti causa diametro campione.

PROVE ESEGUITE	ID PROVA	PAG.	NORMATIVE DI RIFERIMENTO
Descrizione Macroscopica e Caratteristiche Fisiche	PRB11DeMaCaFi	2	Raccomandazioni sulle prove geotecniche di laboratorio - AGI,1994 Classificazione delle terre: ASTM D 2487-85 D3282-83
Contenuto d'Acqua	PRB11W	3	ASTM D2166
Granulometria Secca+Umida	PRB11Aeo	4	Raccomandazioni AGI 1997
Limiti di Atterberg	PRB11LL/LP	5	ASTM D4318-00
Taglio Diretto	PRB11TD	6-7	Raccomandazioni AGI 1997
Espansione Laterale Libera	PRB11ELL	8-9	ASTM D2166
Edometrica	PRB11Edo	10-13	Raccomandazioni AGI 1997
	Totale Pag.	13	

Il Direttore Dott. Geol. Luca Di Matteo

File Name: 2671118.pdf 1/13 Data Creazione: 22/11/2018

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

N° Certiicato:	Committente: PROGER SpA	Consegna:	06/11/2018	Sondaggio:	1
2671118		Apertura:	08/11/2018	Campione:	1
Data:	Cantiere: Nuova S/E Bovino - Foggia	Inizio Prova:	08/11/2018	da mt:	2,50
21/11/2018		Fine Prova:	21/11/2018	a mt:	3,00

	DESCRIZIONE CAMPIONE											
Lunghezza:	30	cm.	Diametro: 8,5 cm. Classe di Qualità: Non Dichia	rata								
Descrizione M	Descrizione Macroscopica: Limo argilloso sabbioso marrone scuro - grigiastro. Presenta diffusi lineamenti biancastri e concrezioni carbonatiche, primi 19 cm intensamente fratturato.											

	CARATTERISTICHE FISICHE DEL CAMPIONE										
Peso Specifico (*):	2,7	g/cm³	Limite del ritiro:		%	Contenuto Naturale Acqua:	23,16	%			
Densità Naturale:	1,743	g/cm³	Limite Liquido:	43,51	%	Grado di Saturazione:	68,86	%			
Densità secca:	1,415	g/cm³	Limite Plastico:	23,16	%	Indice di Attività:	0,568				
Densità satura:	1,891	g/cm³	Porosità:	0,48	%	Indice dei Vuoti:	0,908				

Indice di Plasticità IP:	20,35
Indice di Consistenza IC	: 1
Grado di Plasticità:	Plastico
Stato:	Solido
Class. Granulometrica (Limo con Argilla	The second of
Class. Granulometrica (CL	USCS):

cm.	Resistenza Pocket Kg/cm²	Resist. Vanetest Kg/cm²	Consistenza	Collocazione Prove Meccaniche
10	3,3-3,4		MOLTO CONSISTENTE	Edometrica
20	5,5-5,6		ESTREMAMENTE CONSISTENTE	Taglio Diretto
30	6-6,2		ESTREMAMENTE CONSISTENTE	Espansione Laterale Libera
40	-:			
50	-			
60	-			

(*)Ove non specificatamente richiesto, viene assegnato un peso specifico di 2,7 g/cm³

File Name: 2671118.pdf 2/13 Data Creazione: 22/11/2018

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00>

RUFX19800B1831574

Rev.<00>

N° Certiicato:	Committente: PROGER SpA	Consegna:	06/11/2018	Sondaggio:	1
2671118		Apertura:	08/11/2018	Campione:	1
Data:	Cantiere: Nuova S/E Bovino - Foggia	Inizio Prova:	08/11/2018	da mt:	2,50
21/11/2018	And the second s	Fine Prova:	21/11/2018	a mt:	3,00

CONTENUTO NATURALE D'ACQUA

ASTM D2166

Contenuto d'Acqua Medio (%): 19,34

Passo N°	Contenitore N°	Tara (g)	Peso Lordo Umido (g)	Peso Lordo Secco (g)	Contenuto Acqua (%)
1	19	12,63	28,95	26,32	19,21
2	54	13,17	34,33	30,88	19,48

ID Prova: W

3/13 Data Stampa: 22/11/2018

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00>

RUFX19800B1831574

Rev.<00>

N° Certiicato:	Committente: PROGER SpA	Consegna:	06/11/2018	Sondaggio:	1
2671118		Apertura:	08/11/2018	Campione:	1
Data:	Cantiere: Nuova S/E Bovino - Foggia	Inizio Prova:	08/11/2018	da mt:	2,50
21/11/2018		Fine Prova:	21/11/2018	a mt:	3,00

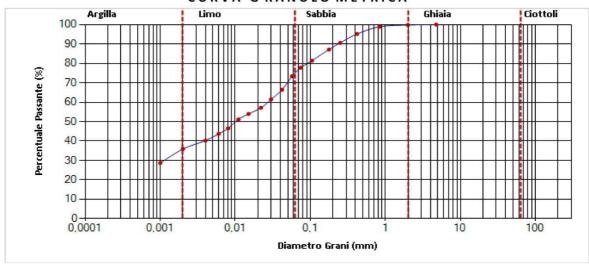
ANALISI GRANULOMETRICA

Raccomandazioni AGI 1997

CARATTERISTICHE GRANULOMETRICHE

Passante Setaccio 200 (%):			77,820	Peso Netto T	otale (g):		50	Diametro Max (mm)	2
D10 (mm)	-	D30 (mm)	0,0012	D50 (mm)	0,0103	D60 (mm)	0,0273	Coeffic. di Uniformita	-
Ciottoli %	0	Ghiaia %	0,2	Sabbia %	24,4	Limo %	39,6	Argilla % 35,8	

CLASSIFICAZIONE


USCS: CL - Argille inorganiche di media plasticità.

AGI / ASTM: Limo con Argilla Sabbiosa

VAGLIATURA SEDIMENTAZIONE

Setac.	Diam.	Peso	Parz. P/S	Passante	Setac.	Diam.	Peso	Parz. P/S	Passante	Diametro	Passante	Diametro	Passante
ASTM	(mm)	(g)	(%)	(%)	ASTM	(mm)	(g)	(%)	(%)	(mm)	(%)	(mm)	(%)
4"	101,5				20	0,84	0,44	0,88	98,9	0,057	73,35	0,008	46,54
2"	50,5				35	0,5				0,042	66,41	0,006	43,64
1"	25,4				40	0,42	1,87	3,74	95,16	0,03	61,45	0,004	40,21
1/2"	12,7				60	0,25	2,3	4,6	90,56	0,022	57,1	0,002	35,85
3/8"	9,5				80	0,177	1,71	3,42	87,14	0,015	53,93	0,001	28,7
4	4,76				140	0,105	2,88	5,76	81,38	0,011	51,15		
10	2	0,11	0,22	99,78	200	0,075	1,78	3,56	77,82				
18	1				230	0.063							

CURVA GRANULO METRICA

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00>

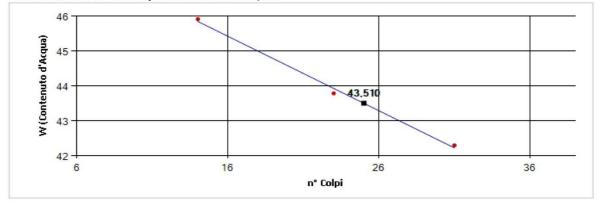
RUFX19800B1831574

Rev.<00>

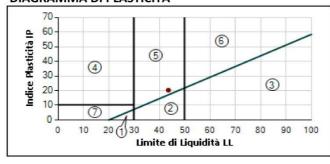
N° Certiicato:	Committente: PROGER SpA	Consegna:	06/11/2018	Sondaggio:	1
2671118		Apertura:	08/11/2018	Campione:	1
Data:	Cantiere: Nuova S/E Bovino - Foggia	Inizio Prova:	08/11/2018	da mt:	2,50
21/11/2018		Fine Prova:	21/11/2018	a mt:	3,00

LIMITI DI ATTERBERG

ASTM D4318-00


DATI SPERIMENTALI E RISULTATI (Limite Liquido)

	PLU (g)	PLS (g)	TARA (g)	UMIDITA' (%)	N.COLPI
	59,15	47,89	23,37	45,92	14
	56,8	46,33	22,42	43,79	23
_	59,04	48,47	23,48	42,3	31


DATI SPERIMENTALI E RISULTATI (Limite Plastico)

PLU (g)	PLS (g)	TARA (g)	UMIDITA' (%)
37,23	36,31	32,52	24,27
39,66	38,93	35,62	22,05

DIAGRAMMA N° COLPI / CONTENUTO ACQUA

DIAGRAMMA DI PLASTICITA'

- 1. Limi Inorganici di Bassa Compressibilità
- 2. Limi Inorganici di Media Compressibilità
- 3. Limi Inorganici di Alta Compressibilità e Argille Organiche
- 4. Argille Inorganiche di Bassa Plasticità
- 5. Argille Inorganiche di Media Plasticità
- 6. Argille Inorganiche di Alta Plasticità
- 7. Terreni Incoerenti

Limite di Liquidità (LL)		43,51	%	Indice di Plasticità	(IP)	20,35
Limite di Plasticità	(LP)	23,16	%	Indice di Consistenza	(IC)	1
Limite di Ritiro (LR)		-	%	Attività [IP / (% Peso Argilla)]		-
Carta di Plasticità di Casagrand	le:	Argille Inc	organi	che di Media Plasticità.		

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

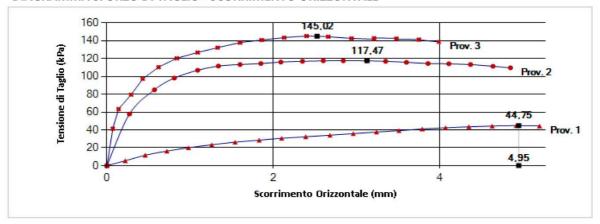
RUFX19800B1831574

Rev.<00 >

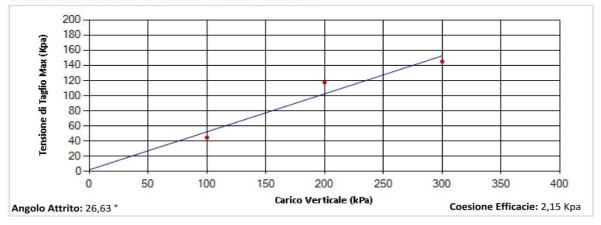
RUFX19800B1831574

Rev.<00>

N° Certiicato:	Committente: PROGER SpA	Consegna:	06/11/2018	Sondaggio:	1
2671118		Apertura:	08/11/2018	Campione:	1
Data:	Cantiere: Nuova S/E Bovino - Foggia	Inizio Prova:	08/11/2018	da mt:	2,50
21/11/2018		Fine Prova:	21/11/2018	a mt:	3,00


PROVA DI TAGLIO DIRETTO

Raccomandazioni AGI 1997


CONDIZIONI INIZIALI E DATI RELATIVI ALLA CONSOLIDAZIONE ED ALLA FASE DI ROTTURA

Prov.	Altezza	Sezione	Cont. Acq.	Densita Nat.	CONSOLIDAZIONE 24H		Velocità Def.	CARA	CARATTERISTICHE A ROTTURA		
N.	H (cm)	A (cm ²)	W (%)	Yn (g/cm³)	σ ν (Kpa)	δh (mm)	(micron/min)	σ ν (Kpa)	ε (mm)	τ (Kpa)	δT (h)
1	1,78	36,06	0,00	1,636	100,00	2,12	4,00	100,00	4,95	44,75	20,62
2	1,78	36,06	0,00	1,849	200,00	0,68	4,00	200,00	3,13	117,47	13,03
3	1,78	36,06	0,00	1,569	300,00	1,23	4,00	300,00	2,53	145,02	10,52

DIAGRAMMA SFORZO DI TAGLIO - SCORRIMENTO ORIZZONTALE

DIAGRAMMA SFORZO DI TAGLIO - CARICO VERTICALE

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

N° Certiicato:	Committente: PROGER SpA	Consegna:	06/11/2018	Sondaggio:	1
2671118		Apertura:	08/11/2018	Campione:	1
Data:	Cantiere: Nuova S/E Bovino - Foggia	Inizio Prova:	08/11/2018	da mt:	2,50
21/11/2018		Fine Prova:	21/11/2018	a mt:	3,00

PROVA DI TAGLIO DIRETTO

Raccomandazioni AGI 1997

DATI SPERIMENTALI

PROVINO 1				PROVINO 2				PROVINO 3			
Tempo	Deformaz. Verticale	Deformaz. Orizzont.	Sforzo di Taglio	Tempo	Deformaz. Verticale	Deformaz. Orizzont.	Sforzo di Taglio	Tempo	Deformaz. Verticale	Deformaz. Orizzont.	Sforzo di Taglio
δT (h)	δh (mm)	ε (mm)	τ (Kpa)	δT (h)	δh (mm)	ε (mm)	τ (Kpa)	δT (h)	δh (mm)	ε (mm)	τ (Kpa)
0,00	2,12	0	0,000	0,00	0,68	0	0,000	2,00	-	0,07	41,320
1,00		0,22	5,427	1,00	- :	0,27	57,765	3,00	380	0,14	63,358
2,00		0,46	11,664	2,00	=	0,57	84,933	4,00	12	0,29	79,412
3,00	-	0,72	16,251	3,00	- 1	0,81	98,100	5,00	(-)	0,43	97,121
4,00	-	0,98	20,031	4,00	-	1,09	106,783	6,00	-	0,62	110,266
5,00	-	1,26	23,389	5,00		1,34	111,545	7,00	-	0,84	120,227
6,00	125	1,54	26,237	6,00	5 0	1,6	113,225	8,00	4 = 6	1,09	126,747
7,00	-	1,83	28,533	7,00	-	1,85	114,346	9,00	-	1,33	132,088
8,00	1.0	2,1	30,635	8,00	-	2,09	116,026	10,00	-	1,6	137,806
9,00		2,39	32,335	9,00	-	2,35	116,866	11,00	141	1,86	140,715
10,00	-	2,68	34,035	10,00		2,6	117,427	12,00	-	2,13	143,389
11,00	-	2,96	35,835	11,00	-	2,84	117,427	13,00	=	2,4	145,150
12,00	-	3,24	37,537	12,00	-	3,12	117,427	14,00	-	2,66	144,542
13,00	0.75	3,51	39,138	13,00	= 1	3,35	116,866	15,00	A-70	2,94	142,543
14,00	-	3,79	41,037	14,00	-	3,6	115,746	16,00	1-1	3,21	142,942
15,00		4,07	42,438	15,00	-	3,86	114,346	17,00	-	3,48	142,543
16,00	-	4,35	43,439	16,00	-	4,11	114,065	18,00	12	3,75	141,342
17,00	-	4,63	44,337	17,00		4,37	113,225	0,00	1,23	0	0,000
18,00	-	4,92	44,739	18,00	¥:	4,64	111,265	0,00	1,23	0	0,000
19,00	-	5,2	44,376	18,87		4,85	109,584	2,00	-	0,07	41,320
								3,00	i=1	0,14	63,358
								4,00	-	0,29	79,412
								5,00		0,43	97,121
								6,00	160	0,62	110,266
								7,00	1-1	0,84	120,227
								8,00	-	1,09	126,747
								9,00		1,33	132,088
								10,00	-	1,6	137,806

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

11,00

12,00

13,00

14,00

15,00

16,00

17,00

18,00

18,96

0,00

1,23

Rev.<00>

141,742

141,742

140,943 138,541

0,000

3,21

3,48

3,75

3,99

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

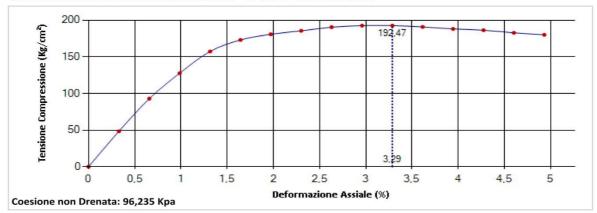
Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>


	Committente: PROGER SpA	Consegna:	06/11/2018	Sondaggio:	1
2671118	9	Apertura:	08/11/2018	Campione:	1
Data:	Cantiere: Nuova S/E Bovino - Foggia	Inizio Prova:	08/11/2018	da mt:	2,50
21/11/2018		Fine Prova:	21/11/2018	a mt:	3,00

PROVA DI ESPANSIONE LATERALE LIBERA

ASTM D2166

	CAR	ATTERIST	ICHE INIZ	IALI DEL P	ROVING)	VALORI A COMPRESSIONE MASSIMA				
Provino	Altezza	Sezione	Umidità Naturale	Densità Naturale	Indice Vuoti	Saturazione	Carico Assiale	Velocita Deformazione	Deformazione a Rotura	Tensione a Rottura	
N.	H (cm)	A (cm²)	W n (%)	Yn (g/cm³)	e (-)	Sr (%)	$\delta f (mm)$	(mm/min)	(%)	(kPa)	
1	7,605	11,46	27,81	1,882	0,834	90,01	3,287	1,5	3,287	192,471	

DIAGRAMMA DEFORMAZIONE ASSIALE - SFORZO TANGENZIALE

ID Prova: PRB11ELL 8/13 Data Stampa: 22/11/2018

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

PROVINO 2

(%)

Deform. Tensione

(kPa)

N° Certiicato:	Committente: PROGER SpA	Consegna:	06/11/2018	Sondaggio:	1
2671118		Apertura:	08/11/2018	Campione:	1
Data:	Cantiere: Nuova S/E Bovino - Foggia	Inizio Prova:	08/11/2018	da mt:	2,50
21/11/2018		Fine Prova:	21/11/2018	a mt:	3,00

PROVA DI ESPANSIONE LATERALE LIBERA

Deform. Tensione

(kPa)

(%)

PROVINO 1

Deform. (%)	Tensione (kPa)	Deform. (%)	Tensione (kPa)
0	0	2,63	190,407
0,329	48,366	2,959	192,471
0,657	92,815	3,287	192,471
0,986	127,647	3,616	190,697
1,315	157,242	3,945	188,037
1,644	172,96	4,274	186,263
1,972	180,721	4,602	182,715
2,301	185,389	4,931	180,054

PROVINO 3

Deform.	Tensione	Deform.	Tensione	
(%)	(kPa)	(%)	(kPa)	

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

N° Certiicato:	Committente: PROGER SpA	Consegna:	06/11/2018	Sondaggio:	1
2671118		Apertura:	08/11/2018	Campione:	1
Data:	Cantiere: Nuova S/E Bovino - Foggia	Inizio Prova:	08/11/2018	da mt:	2,50
21/11/2018		Fine Prova:	21/11/2018	a mt:	3,00

PROVA DI COMPRESSIONE EDOMETRICA

Raccomandazioni AGI 1997

CARATTERISTICHE DEL PROVINO

Sezione	Α	19,86	(cm²)	Peso di Volume	Yn	1,662	(g/cm^3)
Altezza Iniziale	н	2,00	(cm)	Peso Specifico	Ys	2,7	(g/cm^3)
Umidità Naturale Iniz.	Wn	22,33	(%)	Umidita Naturale Fin.	Wf	23,42	(%)
Indice Vuoti Iniziale	e o	0,987	(-)	Grado di Saturazione	Sr	61,10	(%)

DATI SPERIMENTALI E RISULTATI

Passo	Pressione Imposta	Tempo	Deformazione Assiale	Indice Vuoti	Modulo Edometrico	Coefficiente Compressibilità	Coefficiente Consolidazione	Coefficiente Permeabilità	Consolidaz. Secondaria
N.	σ 1 (kPa)	t (h)	δ (mm)	e (-)	Eed (MPa)	m v (1/MPa)	Cv (cm²/sec)	k (cm/sec)	Ca (%)
1	12,34	24	0,42	0,979	2,938	0,340	167	=	-
2	24,68	24	0,675	0,974	4,839	0,207	-	-	-
3	49,36	24	1,195	0,963	4,746	0,211	-	-	_
4	98,72	24	3,325	0,921	2,317	0,432		-	
5	197,45	24	6,615	0,856	3,001	0,333	-	-	-
6	394,90	24	10,22	0,784	5,477	0,183	-	-	-
7	789,80	24	14,135	0,706	10,087	0,099	-	-	-
8	1.579,59	24	18,89	0,612	16,610	0,060	-	-	+
9	394,90	24	18,09	0,628	-	-	-	-	-
10	98,72	24	17,035	0,649	-	-	-	-	-
11	24,68	24	15,635	0,676	-	-	141	-	

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

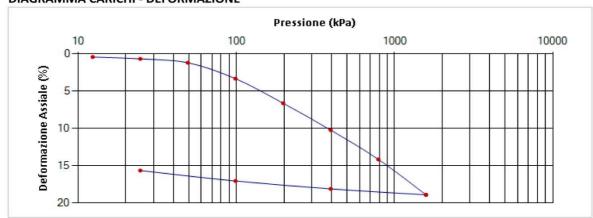
Codifica Elaborato Proger:

RUFX19800B1831574

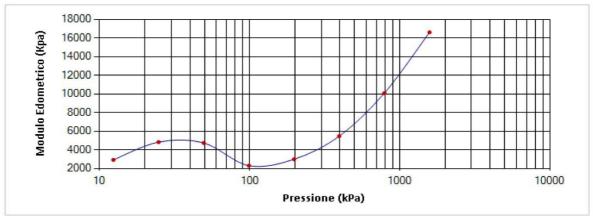
Rev.<00>

RUFX19800B1831574

Rev.<00>



N° Certiicato:	Committente: PROGER SpA	Consegna:	06/11/2018	Sondaggio:	1
2671118		Apertura:	08/11/2018	Campione:	1
Data:	Cantiere: Nuova S/E Bovino - Foggia	Inizio Prova:	08/11/2018	da mt:	2,50
21/11/2018		Fine Prova:	21/11/2018	a mt:	3,00


PROVA DI COMPRESSIONE EDOMETRICA

Raccomandazioni AGI 1997

DIAGRAMMA CARICHI - DEFORMAZIONE

DIAGRAMMA CARICHI - MODULO EDOMETRICO

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

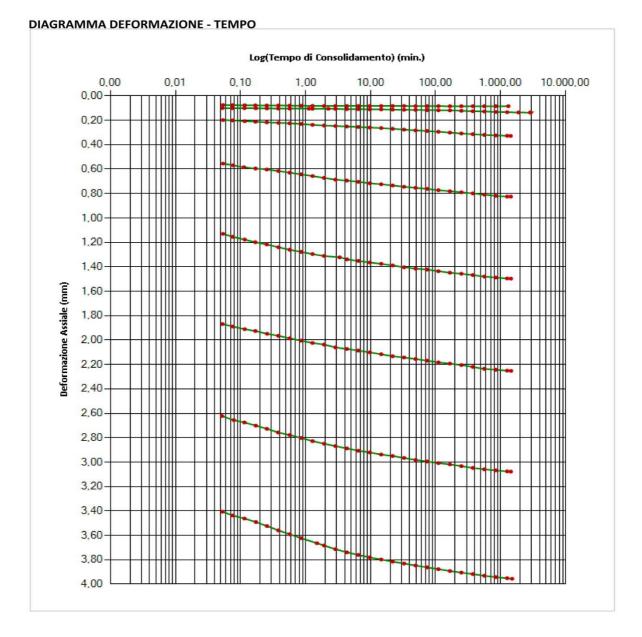
Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00>

RUFX19800B1831574

Rev.<00>



N° Certiicato:	Committente: PROGER SpA	Consegna:	06/11/2018	Sondaggio:	1
2671118		Apertura:	08/11/2018	Campione:	1
Data:	Cantiere: Nuova S/E Bovino - Foggia	Inizio Prova:	08/11/2018	da mt:	2,50
21/11/2018		Fine Prova:	21/11/2018	a mt:	3,00

PROVA DI COMPRESSIONE EDOMETRICA

Raccomandazioni AGI 1997

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

N° Certiicato:	Committente: PROGER SpA	Consegna:	06/11/2018	Sondaggio:	1
2671118		Apertura:	08/11/2018	Campione:	1
Data:	Cantiere: Nuova S/E Bovino - Foggia	Inizio Prova:	08/11/2018	da mt:	2,50
21/11/2018		Fine Prova:	21/11/2018	a mt:	3,00

PROVA DI COMPRESSIONE EDOMETRICA

Raccomandazioni AGI 1997

PASSO: 1		Metodo Usato:							
Tempo (min)	Cedimento(mm)	Tempo (min)	Cedimento	Tempo (min)	Cedimento	Tempo (min)	Cedimento	Tempo (min)	Cedimento
0,054	0,075	0,57	0,08	6,488	0,083	73,895	0,084	841,707	0,085
0,076	0,076	0,858	0,081	9,733	0,083	110,842	0,084	1319,352	0,085
0,116	0,077	1,284	0,082	14,597	0,083	166,266	0,085		
0,169	0,078	1,927	0,083	21,897	0,083	249,397	0,085		
0,254	0,079	2,883	0.083	32,845	0,083	374,094	0,085		
0,383	0,079	4,327	0,083	49,267	0,084	561,141	0,085		
	0,073			43,207	0,004	301,141	0,003		
PASSO: 2		Metodo Usato:	5. T. S.						
Tempo (min)	Cedimento(mm)	Tempo (min)	Cedimento	Tempo (min)	Cedimento	Tempo (min)	Cedimento	Tempo (min)	Cedimento
0,053	0,1	0,572	0,105	6,491	0,109	73,895	0,117	841,708	0,132
0,075	0,101	1,128	0,105	9,731	0,111	110,843	0,118	1262,563	0,134
0,115	0,101	1,282	0,106	14,597	0,111	166,267	0,119	1893,841	0,136
0,172	0,102	2,241	0,106	21,898	0,113	249,397	0,122	2840,757	0,137
0,255	0,103	2,887	0,107	32,845	0,114	374,093	0,126	2909,018	0,137
0,382	0,104	4,326	0,109	49,263	0,115	561,138	0,128		
PASSO: 3		Metodo Usato:	Taylor						
Tempo (min)	Cedimento(mm)	Tempo (min)	Cedimento	Tempo (min)	Cedimento	Tempo (min)	Cedimento	Tempo (min)	Cedimento
0,054	0,198	0,57	0,225	6,489	0,255	73,899	0,288	841,707	0,324
0,076	0,201	0,858	0,23	9,731	0,26	110,845	0,294	1262,563	0,327
0,116	0,207	1,284	0,238	14,6	0,264	166,263	0,301	1429,857	0,328
0,17	0,217	1,925	0,243	21,895	0,204	249,396	0,301	1423,037	0,320
0,17	0,212	2,883	0,243	32,843	0,27	374,093	0,314		
0,384	0,217	4,326	0,251	49,267	0,283	561,139	0,314		
	0,221			49,267	0,263	501,139	0,32	l.	
PASSO: 4		Metodo Usato:							
Tempo (min)	Cedimento(mm)	Tempo (min)	Cedimento	Tempo (min)	Cedimento	Tempo (min)	Cedimento	Tempo (min)	Cedimento
0,054	0,555	0,571	0,629	6,491	0,704	73,896	0,762	841,706	0,819
0,077	0,569	0,856	0,643	9,733	0,716	110,843	0,773	1262,559	0,825
0,113	0,585	1,286	0,657	14,597	0,724	166,266	0,781	1438,383	0,825
0,17	0,595	1,923	0,672	21,898	0,734	249,398	0,79	100	
0,254	0,603	2,885	0,686	32,843	0,745	374,096	0,799		
0,384	0,616	4,326	0,694	49,266	0,753	561,142	0,809		
PASSO: 5		Metodo Usato:	Tavlor						
Tempo (min)	Cedimento(mm)	Tempo (min)	Cedimento	Tempo (min)	Cedimento	Tempo (min)	Cedimento	Tempo (min)	Cedimento
0,054	1,13	0,571	1,26	6,491	1,352	73,898	1,423	841,709	1,488
0,076	1,154	0,857	1,278	9,735	1,365	110,844	1,436	1262,562	1,496
0,116	1,177	1,283	1,296	14,601	1,376	166,266	1,449	1445,958	1,497
								1445,956	1,497
0,169	1,199	1,923	1,311	21,896	1,389	249,396	1,457		
0,253	1,217	3,354	1,323	32,843	1,404	374,094	1,468		
0,384	1,24	4,345	1,339	49,266	1,415	561,14	1,48	l	
PASSO: 6		Metodo Usato:							
Tempo (min)	Cedimento(mm)	Tempo (min)	Cedimento	Tempo (min)	Cedimento	Tempo (min)	Cedimento	Tempo (min)	Cedimento
0,053	1,869	0,571	1,986	6,488	2,086	73,896	2,169	841,707	2,243
0,076	1,889	0,855	2,005	9,733	2,101	110,846	2,183	1262,56	2,251
0,116	1,911	1,285	2,024	14,597	2,116	166,266	2,193	1453,942	2,253
0,169	1,926	1,926	2,037	21,895	2,133	249,396	2,205		
0,257	1,949	2,884	2,06	32,842	2,143	374,093	2,22		
0,382	1,965	4,329	2,073	49,266	2,156	561,138	2,236		
PASSO: 7		Metodo Usato:	Taylor						
Tempo (min)	Cedimento(mm)	Tempo (min)	Cedimento	Tempo (min)	Cedimento	Tempo (min)	Cedimento	Tempo (min)	Cedimento
0,052	2,622	0,571	2,778	6,492	2,907	73,895	2,995	841,71	3,068
0,079	2,656	0,857	2,802	9,733	2,921	110,842	3,008	1262,562	3,076
0,115	2,675	1,285	2,828	14,596	2,938	166,264	3,019	1440,459	3,078
0,172	2,701	1,929	2,849	21,899	2,95	249,398	3,033		-,0
0,255	2,727	2,885	2,869	32,846	2,966	374,093	3,048		
0,38	2,757	4,329	2,888	49,266	2,982	561,139	3,059		
**	2,737			13,200	2,302	302,233	3,033		
PASSO: 8	Cedimento(mm)	Metodo Usato: Tempo (min)	Cedimento	Tompo (mir)	Cedimento	Tompo (min)	Cedimento	Tompo (mir)	Cedimento
Tomne (min)		0,57	3,591	Tempo (min) 6,489	3,76	73,895	3,862	Tempo (min) 841,706	3,942
Tempo (min)		0,57	3,331						
0,053	3,406	0.000	2 622						
0,053 0,076	3,437	0,859	3,623	9,732	3,781	110,845	3,877	1262,561	3,951
0,053 0,076 0,115	3,437 3,462	1,498	3,664	14,598	3,798	166,266	3,892	1262,561 1505,658	3,951 3,956
0,053 0,076 0,115 0,173	3,437 3,462 3,491	1,498 1,923	3,664 3,683	14,598 21,898	3,798 3,815	166,266 249,397	3,892 3,905		
0,053 0,076 0,115 0,173 0,256	3,437 3,462 3,491 3,524	1,498 1,923 2,887	3,664 3,683 3,713	14,598 21,898 32,844	3,798 3,815 3,831	166,266 249,397 374,094	3,892 3,905 3,917		
0,053 0,076 0,115 0,173	3,437 3,462 3,491	1,498 1,923	3,664 3,683	14,598 21,898	3,798 3,815	166,266 249,397	3,892 3,905		

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

Data: 21/11/2018 Certificato: 2681118

RIFERIMENTI COMMESSA						
Il Richiedente: PROG	ER S	ρΑ				
Verbale di Accettazione	N°:	491118	Data: 06/11/2018			
Riferimento Ordine	N°:	32/17	Data: 08/09/17			

INFORMAZIO	NI GI	ENERALI SUL CAMPIONE IN	INGRESSO
Alterazioni Esterne:		Tipologia Campionatore SHELBY	Data Prelievo N.P.
Ditta che ha effe	ettuato	o il prelievo Non Dichiarato	
		14011 Dicinarato	

	INTE	STAZIONE	CERTIFICATO ED	IDENTIFICA	ZIONE CAMPIONE			
Committente:	PROGER SpA							
Cantiere:	Nuova S/E Bovir	no - Foggia						
Sondaggio: 1		Campione:	2	P	rofondità da m:	9,50	a m:	10,00

TRACCIABILITA'							
Codice Campione:	PRB12						
Consegna Campione:	06/11/2018						
Apertura:	08/11/2018						
Inizio Prove:	08/11/2018						
Fine Prove:	21/11/2018						

ESCLUSIONI / ANOMALIE / DIFFORMITA' / NOTE

Prova TRXUU eseguita su n°2 provini per mancanza di materiale analizzabile. Provini del taglio parzialmente ricostruiti causa diametro campione.

PROVE ESEGUITE	ID PROVA	PAG.	NORMATIVE DI RIFERIMENTO
Descrizione Macroscopica e Caratteristiche Fisiche	PRB12DeMaCaFi	2	Raccomandazioni sulle prove geotecniche di laboratorio - AGI,1994 Classificazione delle terre: ASTM D 2487-85 D3282-83
Contenuto d'Acqua	PRB12W	3	ASTM D2166
Granulometria Secca+Umida	PRB12Aeo	4	Raccomandazioni AGI 1997
Limiti di Atterberg	PRB12LL/LP	5	ASTM D4318-00
Taglio Diretto	PRB12TD	6-7	Raccomandazioni AGI 1997
TriassialeUU	PRB12TRXUU	8-9	Raccomandazioni AGI 1997
Edometrica	PRB12Edo	10-13	Raccomandazioni AGI 1997
	Totale Pag.	13	

Lo Sperimentatore Dott.Geol. Legnini Manila Il Direttore Dott. Geol. Luca Di Matteo

File Name: 2681118.pdf 1/13 Data Creazione: 22/11/2018

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

N° Certiicato:	Committente: PROGER SpA	Consegna:	06/11/2018	Sondaggio:	1
2681118		Apertura:	08/11/2018	Campione:	2
Data:	Cantiere: Nuova S/E Bovino - Foggia	Inizio Prova:	08/11/2018	da mt:	9,50
21/11/2018		Fine Prova:	21/11/2018	a mt:	10,00

	DESCRIZIONE CAMPIONE								
Lunghezza:	unghezza: 34 cm. Diametro: 8,5 cm. Classe di Qualità: Non Dichiarata								
Descrizione M	lacrosc	opica:	Argilla limosa grigio	azzurr	ra con ve	nature bluastre.			

	CARATTERISTICHE FISICHE DEL CAMPIONE										
Peso Specifico (*):	2,7	g/cm³	Limite del ritiro:	-	%	Contenuto Naturale Acqua:	21,53	%			
Densità Naturale:	2,001	g/cm³	Limite Liquido:	51,40	%	Grado di Saturazione:	90,92	%			
Densità secca:	1,647	g/cm³	Limite Plastico:	21,57	%	Indice di Attività:	0,56				
Densità satura:	2,037	g/cm³	Porosità:	0,39	%	Indice dei Vuoti:	0,639				

Indice di Plasticità IP:	29,83
Indice di Consistenza IC	: 1,001
Grado di Plasticità:	Plastico
Stato:	Solido
Class. Granulometrica (Argilla cor	
Class. Granulometrica (USCS):

cm.	Resistenza Pocket Kg/cm²	Resist. Vanetest Kg/cm²	Consistenza	Collocazione Prove Meccaniche
10	6-6,2		ESTREMAMENTE CONSISTENTE	Edometrica
20	6,3-6,5		ESTREMAMENTE CONSISTENTE	Taglio Diretto
30	6,2-6,3		ESTREMAMENTE CONSISTENTE	TriassialeUU
40				
50	-			
60	-			

(*)Ove non specificatamente richiesto, viene assegnato un peso specifico di 2,7 g/cm³

File Name: 2681118.pdf 2/13 Data Creazione: 22/11/2018

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

	Committente: PROGER SpA	Consegna:	06/11/2018	Sondaggio:	1
2681118		Apertura:	08/11/2018	Campione:	2
Data:	Cantiere: Nuova S/E Bovino - Foggia	Inizio Prova:	08/11/2018	da mt:	9,50
21/11/2018	2008	Fine Prova:	21/11/2018	a mt:	10,00

CONTENUTO NATURALE D'ACQUA

ASTM D2166

Contenuto d'Acqua Medio (%): 17,67

Passo N°	Contenitore N°	Tara (g)	Peso Lordo Umido (g)	Peso Lordo Secco (g)	Contenuto Acqua (%)
1	43	13,37	28,95	26,59	17,85
2	57	13,16	26,53	24,54	17,49

ID Prova: W

3/13 Data Stampa: 22/11/2018

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

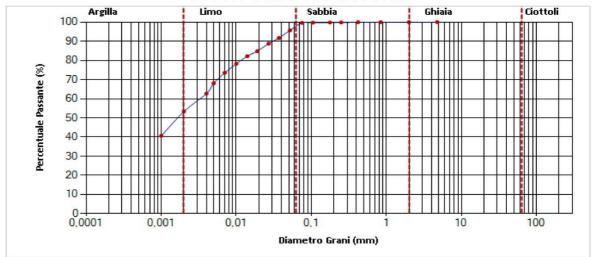
	Committente: PROGER SpA	Consegna:	06/11/2018	Sondaggio:	1
2681118	· ·	Apertura:	08/11/2018	Campione:	2
Data:	Cantiere: Nuova S/E Bovino - Foggia	Inizio Prova:	08/11/2018	da mt:	9,50
21/11/2018		Fine Prova:	21/11/2018	a mt:	10,00

ANALISI GRANULOMETRICA

Raccomandazioni AGI 1997

CARATTERISTICHE GRANULOMETRICHE

Passante Seta	ccio 200	(%):	99,580	Peso Netto T	otale (g):	,	50	Diametro Max (m	nm)	2
D10 (mm)	-	D30 (mm)	0,0002	D50 (mm)	0,0017	D60 (mm)	0,0034	Coeffic. di Unifori	mita	_
Ciottoli %	0	Ghiaia %	0	Sabbia %	1,8	Limo %	44,9	Argilla % 5	3,3	


CLASSIFICAZIONE

USCS: - Argille inorganiche di alta plasticità.

AGI / ASTM: Argilla con Limo

				VAGLI	ATURA	k:				SEDIMENTAZIONE				
Setac. ASTM	Diam. (mm)	Peso (g)	Parz. P/S (%)	Passante (%)	Setac. ASTM	Diam. (mm)	Peso (g)	Parz. P/S (%)	Passante (%)	Diametro (mm)	Passante (%)	Diametro (mm)	Passante (%)	
4"	101,5				20	0,84	0,01	0,02	99,96	0,052	95,68	0,007	73,48	
2"	50,5				35	0,5				0,037	91,72	0,005	68,07	
1"	25,4				40	0,42	0,02	0,04	99,92	0,027	88,75	0,004	62,67	
1/2"	12,7				60	0,25	0,04	0,08	99,84	0,019	84,78	0,002	53,28	
3/8"	9,5				80	0,177	0,03	0,06	99,78	0,014	82,2	0,001	40,59	
4	4,76				140	0,105	0,04	0,08	99,7	0,01	78,24			
10	2	0,01	0,02	99,98	200	0,075	0,06	0,12	99,58					
18	1				230	0.063								

CURVA G RANULO METRICA

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00>

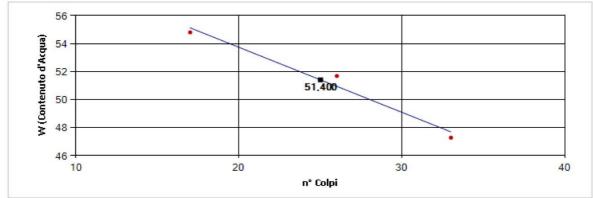
RUFX19800B1831574

Rev.<00>

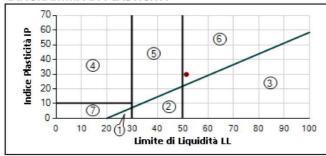
N° Certiicato:	Committente: PROGER SpA	Consegna:	06/11/2018	Sondaggio:	1
2681118	**	Apertura:	08/11/2018	Campione:	2
Data:	Cantiere: Nuova S/E Bovino - Foggia	Inizio Prova:	08/11/2018	da mt:	9,50
21/11/2018	****	Fine Prova:	21/11/2018	a mt:	10,00

LIMITI DI ATTERBERG

ASTM D4318-00


DATI SPERIMENTALI E RISULTATI (Limite Liquido)

PLU (g)	PLS (g)	TARA (g)	UMIDITA' (%)	N.COLPI
83,26	62,93	25,83	54,8	17
69,42	50,19	12,98	51,68	26
71,66	60,32	36,33	47,27	33


DATI SPERIMENTALI E RISULTATI (Limite Plastico)

PLU (g)	PLS (g)	TARA (g)	UMIDITA' (%)
43,19	39,86	23,63	20,52
45,69	39,63	12,84	22,62

DIAGRAMMA N° COLPI / CONTENUTO ACQUA

DIAGRAMMA DI PLASTICITA'

- 1. Limi Inorganici di Bassa Compressibilità
- 2. Limi Inorganici di Media Compressibilità
- 3. Limi Inorganici di Alta Compressibilità e Argille Organiche
- 4. Argille Inorganiche di Bassa Plasticità
- 5. Argille Inorganiche di Media Plasticità
- 6. Argille Inorganiche di Alta Plasticità
- 7. Terreni Incoerenti

Limite di Liquidità	(LL)	51,4	%	Indice di Plasticità	(IP)	29,83
Limite di Plasticità	(LP)	21,57	%	Indice di Consistenza	(IC)	1,001
Limite di Ritiro	(LR)	-	%	Attività [IP / (% Peso Argilla)]		-
Carta di Plasticità di Casagran	de:	Argille Inc	organi	che di Alta Plasticità.		

Codice Prova: PRB12LL/LP 5/13 Data Creazione: 22/11/2018

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

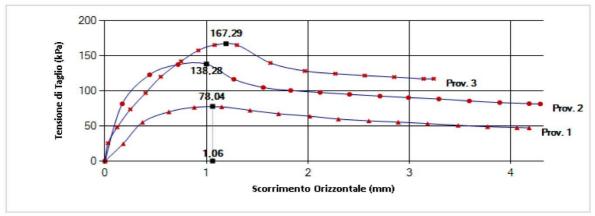
RUFX19800B1831574

Rev.<00>

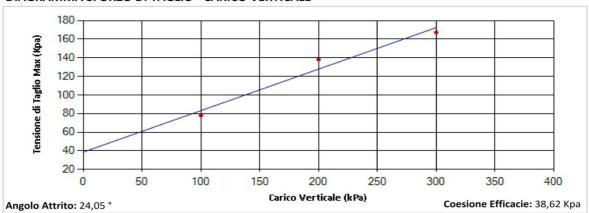
RUFX19800B1831574

Rev.<00>

N° Certiicato:	Committente: PROGER SpA	Consegna:	06/11/2018	Sondaggio:	1
2681118	*	Apertura:	08/11/2018	Campione:	2
Data:	Cantiere: Nuova S/E Bovino - Foggia	Inizio Prova:	08/11/2018	da mt:	9,50
21/11/2018		Fine Prova:	21/11/2018	a mt:	10,00


PROVA DI TAGLIO DIRETTO

Raccomandazioni AGI 1997


CONDIZIONI INIZIALI E DATI RELATIVI ALLA CONSOLIDAZIONE ED ALLA FASE DI ROTTURA

Prov.	Altezza	Sezione	Cont. Acq.	Densita Nat.	CONSOLIDA	AZIONE 24H	Velocità Def.	CARA	ATTERISTIC	CHE A ROTT	URA
N.	H (cm)	A (cm ²)	W (%)	Yn (g/cm³)	σ ν (Kpa)	δh (mm)	(micron/min)	σ ν (Kpa)	ε (mm)	τ (Kpa)	δT (h)
1	2,00	36,45	0,00	1,988	100,00	0,14	4,00	100,00	1,06	78,04	4,42
2	2,00	36,45	0,00	1,988	200,00	0,33	4,00	200,00	1,00	138,28	4,17
3	2,00	36,45	0,00	1,983	300,00	0,45	4,00	300,00	1,19	167,29	4,97

DIAGRAMMA SFORZO DI TAGLIO - SCORRIMENTO ORIZZONTALE

DIAGRAMMA SFORZO DI TAGLIO - CARICO VERTICALE

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

N° Certiicato:	Committente: PROGER SpA	Consegna:	06/11/2018	Sondaggio:	1
2681118		Apertura:	08/11/2018	Campione:	2
Data:	Cantiere: Nuova S/E Bovino - Foggia	Inizio Prova:	08/11/2018	da mt:	9,50
21/11/2018		Fine Prova:	21/11/2018	a mt:	10,00

PROVA DI TAGLIO DIRETTO

Raccomandazioni AGI 1997

DATI SPERIMENTALI

PROVI	NO 1			PROVI	NO 2			PROVI	10 3		
Tempo	Deformaz. Verticale	Deformaz. Orizzont.	Sforzo di Taglio	Tempo	Deformaz. Verticale	Deformaz. Orizzont.	Sforzo di Taglio	Tempo	Deformaz. Verticale	Deformaz. Orizzont.	Sforzo di Taglio
δT (h)	δh (mm)	ε (mm)	τ (Kpa)	δT (h)	δh (mm)	ε (mm)	τ (Kpa)	δT (h)	δh (mm)	ε (mm)	τ (Kpa)
0,00	0,14	0	0,000	0,00	0,33	0	0,000	0,00	0,45	0	0,000
1,00	· =	0,18	24,768	1,00	-	0,17	81,556	1,00	3 = ,	0,03	25,446
2,00	-	0,37	55,322	2,00	2	0,44	123,053	2,00	-	0,12	47,934
3,00	-	0,63	70,093	3,00	- 1	0,72	137,610	3,00		0,25	73,720
4,00	-	0,88	76,672	4,00	-	1	138,283	4,00	-	0,4	96,927
5,00	-	1,15	77,273	5,00	-	1,27	116,604	5,00	-	0,55	120,134
6,00	100	1,43	72,272	6,00	5.0	1,56	104,870	6,00	180	0,75	142,143
7,00	-	1,71	67,471	7,00	-	1,83	100,620	7,00	(<u>-</u>	0,92	157,748
8,00	:=:	2,02	63,923	8,00		2,12	97,772	8,00	-	1,08	165,350
9,00	1/2	2,3	59,800	9,00	_	2,41	95,078	9,00	100	1,3	165,350
10,00	8≡.	2,6	57,278	10,00	- 1	2,71	92,565	10,00	-	1,63	139,819
11,00	-	2,89	55,501	11,00	*:	2,99	90,442	11,00	-	1,97	128,403
12,00	-	3,18	53,333	12,00	-	3,29	88,499	12,00		2,27	124,466
13,00	25	3,48	50,933	13,00	F-1	3,59	85,649	13,00	(2)	2,56	121,849
14,00	12	3,77	48,944	14,00	-	3,89	83,344	14,00	-	2,85	119,654
15,00	X 0 .	4,06	47,698	15,00		4,18	81,841	15,00	: = :	3,14	117,224
15,43	72	4,18	47,311	15,35	21	4,29	81,374	15,32	-	3,24	117,331

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

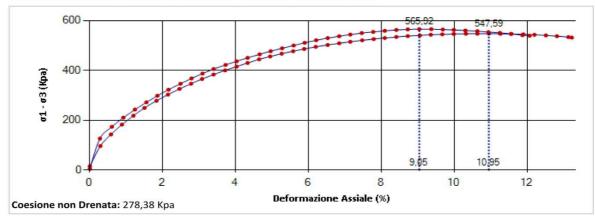
Codifica Elaborato Proger:

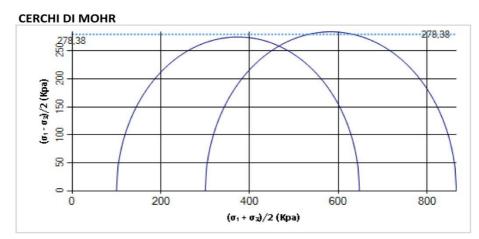
RUFX19800B1831574

Rev.<00>

RUFX19800B1831574

Rev.<00>


N° Certiicato:	Committente: PROGER SpA	Consegna:	06/11/2018	Sondaggio:	1
2681118	M. M. Mariana and M.	Apertura:	08/11/2018	Campione:	2
Data:	Cantiere: Nuova S/E Bovino - Foggia	Inizio Prova:	08/11/2018	da mt:	9,50
21/11/2018		Fine Prova:	21/11/2018	a mt:	10,00


PROVA DI COMPRESSIONE TRIASSIALE UU

Raccomandazioni AGI 1997

	CA	ARATTERI	STICHE IN	IZIALI DEL	FASE	ROTTURA				
Prov.	Altezza	Sezione	Umidità Naturale	Densità Naturale	Indice Vuoti	Saturazione	Coefficiente "B"	Pressione di Cella	Wf	σ ₁ - σ ₃
N.	H (cm)	A (cm²)	Wn (%)	$Y_n (kN/m^3)$	e (-)	Sr (%)	SKEMPTON	(Kpa)	(%)	(kPa)
1	7,605	11,46	22,62	2,052	0,614	99,49		100	0	547,592
2	7,605	11,46	23,02	2,039	0,629	98,74		300	0	565,924

DIAGRAMMA DEFORMAZIONE ASSIALE - SFORZO TANGENZIALE

ID Prova: PRB12TRXUU 8/13 Data Stampa: 22/11/2018

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

			Protoritz delotic 1 illi	naccinate it 1330 3	accord ton
N° Certiicato:	Committente: PROGER SpA	Consegna:	06/11/2018	Sondaggio:	1
2681118		Apertura:	08/11/2018	Campione:	2
Data:	Cantiere: Nuova S/E Bovino - Foggia	Inizio Prova:	08/11/2018	da mt:	9,50
21/11/2018		Fine Prova:	21/11/2018	a mt:	10,00

PROVA DI COMPRESSIONE TRIASSIALE UU

PROVINO 1 PLU = 277,92; PLS = 209,81

(%) (kPa)		01 03			
0,013	14,876	0	6,851	508,629	0
0,302	96,601	0	7,153	514,985	0
0,592	142,971	0	7,482	520,595	0
0,894	182,507	0	7,798	525,753	0
1,21	218,26	0	8,1	530,093	0
1,512	249,486	0	8,416	534,232	0
1,841	278,203	0	8,731	537,723	0
2,156	302,958	0	9,06	540,315	0
2,472	325,893	0	9,362	543,124	0
2,788	346,536	0	9,678	544,667	0
3,09	365,611	0	9,993	546,113	0
3,406	383,367	0	10,322	547,075	0
3,721	400,272	0	10,638	547,19	0
4,037	415,429	0	10,953	547,592	0
4,339	429,732	0	11,269	546,849	0
4,655	444,361	0	11,558	546,565	0
4,957	455,966	0	11,9	544,752	0
5,273	467,031	0	12,202	542,884	0

12,518 540,411

13.136 533.509

13,228 531,55

0

0

5,588 477,209

5,891 485,942 6.206 494.465

6,535 502,215

PROVINO 2 PLU = 276,79; PLS = 195,11

Def. (%)	σ ₁ - σ ₃ (kPa)	Sovrap. (Kpa)	Def. (%)	σ ₁ - σ ₃ (kPa)	Sovrap (Kpa)
0,013	4,903	0	6,22	520,88	0
0,289	126,292	0	6,535	529,872	0
0,618	173,945	0	6,851	537,216	0
0,934	210,58	0	7,153	543,56	0
1,249	242,888	0	7,469	549,849	0
1,565	271,907	0	7,784	554,527	0
1,867	298,535	0	8,1	558,689	0
2,17	322,762	0	8,416	562,339	0
2,498	346,251	0	8,731	564,729	0
2,801	367,855	0	9,047	565,924	0
3,103	387,36	0	9,375	565,576	0
3,406	405,425	0	9,691	564,132	0
3,734	421,874	0	9,993	562,473	0
4,037	436,447	0	10,309	559,974	0
4,339	450,441	0	10,638	557,468	0
4,668	464,531	0	10,94	553,921	0
4,97	477,198	0	11,256	550,979	0
5,286	488,744	0	11,571	546,408	0
5,602	499,889	0	11,874	541,406	0
5,904	510,779	0	12,071	539,006	0

ID Prova: PRB12TRXUU 9/13 Data Stampa: 22/11/2018

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

N° Certiicato:	Committente: PROGER SpA	Consegna:	06/11/2018	Sondaggio:	1
2681118		Apertura:	08/11/2018	Campione:	2
Data:	Cantiere: Nuova S/E Bovino - Foggia	Inizio Prova:	08/11/2018	da mt:	9,50
21/11/2018		Fine Prova:	21/11/2018	a mt:	10,00

PROVA DI COMPRESSIONE EDOMETRICA

Raccomandazioni AGI 1997

CARATTERISTICHE DEL PROVINO

Sezione	Α	19,94	(cm²)	Peso di Volume	Yn	2,015	(g/cm³)
Altezza Iniziale	н	2,00	(cm)	Peso Specifico	Ys	2,7	(g/cm^3)
Umidità Naturale Iniz.	Wn	24,09	(%)	Umidita Naturale Fin.	Wf	25,22	(%)
Indice Vuoti Iniziale	eo	0,663	(-)	Grado di Saturazione	Sr	98,17	(%)

DATI SPERIMENTALI E RISULTATI

Passo	Pressione Imposta	Tempo	Deformazione Assiale	Indice Vuoti	Modulo Edometrico	Coefficiente Compressibilità	Coefficiente Consolidazione	Coefficiente Permeabilità	Consolidaz. Secondaria
N.	σ 1 (kPa)	t (h)	δ (mm)	e (-)	Eed (MPa)	m v (1/MPa)	Cv (cm²/sec)	k (cm/sec)	Ca (%)
1	98,33	24	0,42	0,656	23,413	0,043	(#)	-	-
2	196,67	24	0,96	0,647	18,210	0,055	-	-	-
3	393,33	24	2,83	0,616	10,517	0,095	-	-	_
4	786,67	24	5,205	0,576	16,561	0,060	i.e.	-	-
5	1.573,33	24	7,925	0,531	28,922	0,035	-	-	-
6	393,33	24	5,995	0,563	-	-	-	-	: +
_ 7	98,33	24	3,07	0,612	-	.=.	.=:	1=1	

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

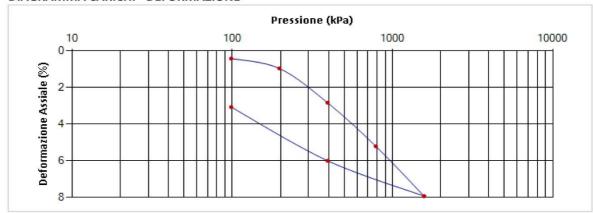
Codifica Elaborato Proger:

RUFX19800B1831574

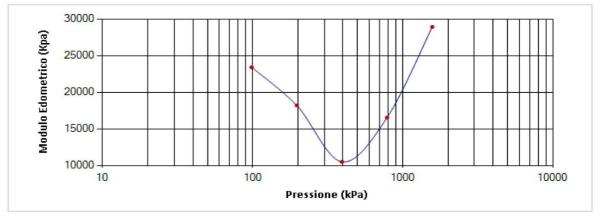
Rev.<00>

RUFX19800B1831574

Rev.<00>



N° Certiicato:	Committente: PROGER SpA	Consegna:	06/11/2018	Sondaggio:	1
2681118		Apertura:	08/11/2018	Campione:	2
Data:	Cantiere: Nuova S/E Bovino - Foggia	Inizio Prova:	08/11/2018	da mt:	9,50
21/11/2018		Fine Prova:	21/11/2018	a mt:	10,00


PROVA DI COMPRESSIONE EDOMETRICA

Raccomandazioni AGI 1997

DIAGRAMMA CARICHI - DEFORMAZIONE

DIAGRAMMA CARICHI - MODULO EDOMETRICO

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

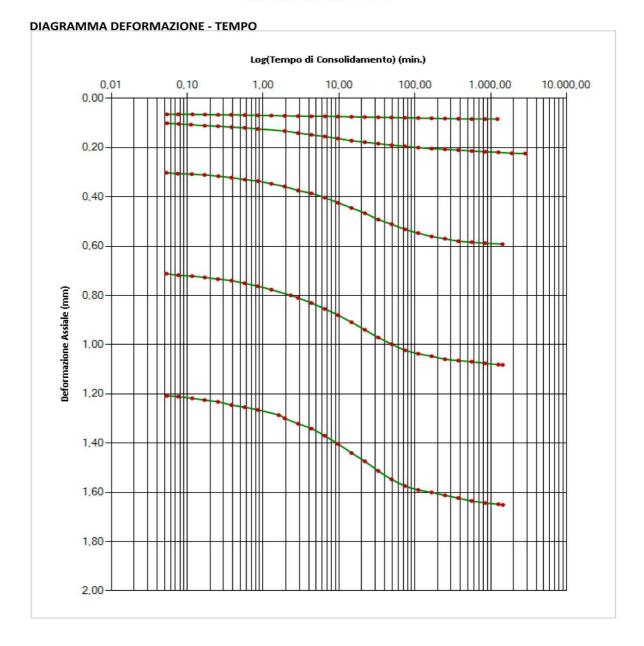
Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>



	Committente: PROGER SpA	Consegna:	06/11/2018	Sondaggio:	1
2681118		Apertura:	08/11/2018	Campione:	2
Data:	Cantiere: Nuova S/E Bovino - Foggia	Inizio Prova:	08/11/2018	da mt:	9,50
21/11/2018	The state of the s	Fine Prova:	21/11/2018	a mt:	10,00

PROVA DI COMPRESSIONE EDOMETRICA

Raccomandazioni AGI 1997

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

N° Certiicato:	Committente: PROGER SpA	Consegna:	06/11/2018	Sondaggio:	1
2681118		Apertura:	08/11/2018	Campione:	2
Data:	Cantiere: Nuova S/E Bovino - Foggia	Inizio Prova:	08/11/2018	da mt:	9,50
21/11/2018		Fine Prova:	21/11/2018	a mt:	10,00

PROVA DI COMPRESSIONE EDOMETRICA

Raccomandazioni AGI 1997

ASSO: 1	- 0 - 7 - 7	Metodo Usato:		T	- 4				- "
Tempo (min)	Cedimento(mm)	Tempo (min)	Cedimento	Tempo (min)	Cedimento	Tempo (min)	Cedimento	Tempo (min)	Cedimento
0,054	0,065	0,571	0,068	6,488	0,073	73,898	0,079	841,71	0,084
0,076	0,065	0,855	0,069	9,733	0,074	110,843	0,08	1224,973	0,084
0,117	0,065	1,285	0,07	14,599	0,075	166,265	0,081		
0,171	0,066	1,924	0,071	21,895	0,076	249,397	0,082		
0,255	0,067	2,885	0,072	32,845	0,077	374,094	0,083		
0,38	0,067	4,328	0,073	49,267	0,078	561,138	0,084		
ASSO: 2		Metodo Usato:	Casagrande						
Tempo (min)	Cedimento(mm)	Tempo (min)	Cedimento	Tempo (min)	Cedimento	Tempo (min)	Cedimento	Tempo (min)	Cedimento
0,054	0,101	0,571	0,12	9,734	0,163	110,842	0,2	1262,56	0,219
0,077	0,104	0,855	0,124	14,6	0,172	166,264	0,204	1893,839	0,223
0,112	0,107	1,928	0,133	21,896	0,178	249,396	0,207	2840,759	0,224
0,17	0,111	2,888	0,141	32,843	0,184	374,091	0,21	16	
0,254	0,113	4,325	0,148	49,267	0,19	561,14	0,214		
0,383	0,117	6,492	0,155	73,895	0,195	841,706	0,217		
ASSO: 3		Metodo Usato:	Casagrande						
Tempo (min)	Cedimento(mm)	Tempo (min)	Cedimento	Tempo (min)	Cedimento	Tempo (min)	Cedimento	Tempo (min)	Cedimento
0,053	0,302	0,574	0,33	6,492	0,403	73,895	0,532	841,706	0,588
0,075	0,306	0,86	0,336	9,732	0,424	110,845	0,547	1430,554	0,592
0,115	0,308	1,284	0,347	14,601	0,445	166,265	0,561		
0,169	0,311	1,924	0,358	21,895	0,466	249,396	0,57		
0,257	0,316	2,885	0,374	32,843	0,492	374,096	0,58		
0,382	0,322	4,326	0,386	49,264	0,511	561,138	0,584		
ASSO: 4		Metodo Usato:	Casagrande						
Tempo (min)	Cedimento(mm)	Tempo (min)	Cedimento	Tempo (min)	Cedimento	Tempo (min)	Cedimento	Tempo (min)	Cedimento
0,053	0,712	0,57	0,751	6,488	0,855	73,897	1,023	841,709	1,076
0,076	0,718	0,858	0,763	9,733	0,88	110,844	1,037	1262,562	1,081
0,116	0,722	1,283	0,777	14,597	0,909	166,265	1,047	1437,936	1,082
0,17	0,727	2,304	0,8	21,897	0,94	249,396	1,059		
0,253	0,734	2,886	0,81	32,842	0,971	374,095	1,065		
0,383	0,74	4,328	0,831	49,267	0,998	561,14	1,069		
ASSO: 5		Metodo Usato:	Casagrande						
Tempo (min)	Cedimento(mm)	Tempo (min)	Cedimento	Tempo (min)	Cedimento	Tempo (min)	Cedimento	Tempo (min)	Cedimento
0,054	1,208	0,57	1,254	6,489	1,37	73,899	1,574	841,709	1,643
0,076	1,211	0,858	1,265	9,732	1,403	110,846	1,59	1262,561	1,648
0,116	1,218	1,605	1,286	14,597	1,44	166,266	1,6	1447,516	1,651
0,169	1,225	1,927	1,299	21,896	1,474	249,395	1,612	The state of the s	
0,254	1,232	2,886	1,321	32,843	1,513	374,094	1,623		
0,381	1,245	4,329	1,341	49,267	1,547	561,138	1,635	1	

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00>

RUFX19800B1831574

Rev.<00>

Data: 21/11/2018 Certificato: 2691118

RIFERIMENTI COMMESSA						
Il Richiedente: PRO	GER S	рА				
Verbale di Accettazione	N°:	491118	Data:	06/11/2018		
Riferimento Ordine	N°:	32/17	Data:	08/09/17		

INFORMAZ	IONI GE	NERALI SUL CAMPIONE IN	INGRESSO
lterazioni sterne:		Tipologia Campionatore SHELBY	Data Prelievo N.P.
itta che ha el	ffettuato	il prelievo	
		Non Dichiarato	

	INTE	STAZIONE	CERTIFICATO ED	IDENTIFIC	AZIONE CAMPIONE			
Committente:	PROGER SpA							
Cantiere:	Nuova S/E Bovi	no - Foggia						
Sondaggio: 1		Campione:	3		Profondità da m:	14,50	a m:	15,00

TRACCIABILITA'					
Codice Campione:	PRB13				
Consegna Campione:	06/11/2018				
Apertura:	08/11/2018				
Inizio Prove:	08/11/2018				
Fine Prove:	21/11/2018				

ESCLUSIONI / ANOMALIE / DIFFORMITA' / NOTE
Provini del taglio parzialmente ricostruiti causa diametro campione.

PROVE ESEGUITE	ID PROVA	PAG.	NORMATIVE DI RIFERIMENTO
Descrizione Macroscopica e Caratteristiche Fisiche	PRB13DeMaCaFi	2	Raccomandazioni sulle prove geotecniche di laboratorio - AGI,1994 Classificazione delle terre: ASTM D 2487-85 D3282-83
Contenuto d'Acqua	PRB13W	3	ASTM D2166
Granulometria Secca+Umida	PRB13Aeo	4	Raccomandazioni AGI 1997
Limiti di Atterberg	PRB13LL/LP	5	ASTM D4318-00
Taglio Diretto	PRB13TD	6-7	Raccomandazioni AGI 1997
TriassialeUU	PRB13TRXUU	8-9	Raccomandazioni AGI 1997
Edometrica	PRB13Edo	10-13	Raccomandazioni AGI 1997
	Totale Pag.	13	

Lo Sperimentatore Dott.Geof. Legnihi Manila Il Direttore Dott. Geol. Luca Di Matteo

File Name: 2691118.pdf 1/13 Data Creazione: 21/11/2018

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

N° Certiicato:	Committente: PROGER SpA	Consegna:	06/11/2018	Sondaggio:	1
2691118		Apertura:	08/11/2018	Campione:	3
Data:	Cantiere: Nuova S/E Bovino - Foggia	Inizio Prova:	08/11/2018	da mt:	14,50
21/11/2018		Fine Prova:	21/11/2018	a mt:	15,00

	DESCRIZIONE CAMPIONE						
Lunghezza:	40	cm.	Diametro:	8,5	cm.	Classe di Qualità:	Non Dichiarata
Doscriziono M	1acrosc	onica: Ar	rilla limosa grigio	azzurr	a con ve	nature e grumi nerastr	i

CARATTERISTICHE FISICHE DEL CAMPIONE								
Peso Specifico (*):	2,7	g/cm³	Limite del ritiro:		%	Contenuto Naturale Acqua:	20,48	%
Densità Naturale:	2,080	g/cm³	Limite Liquido:	49,08	%	Grado di Saturazione:	97,99	%
Densità secca:	1,726	g/cm³	Limite Plastico:	22,12	%	Indice di Attività:	0,504	
Densità satura:	2,087	g/cm³	Porosità:	0,36	%	Indice dei Vuoti:	0,564	

Indice di Plasticità IP:	26,96
Indice di Consistenza I	C: 1,061
Grado di Plasticità:	Plastico
Stato:	Solido
Class. Granulometrica Argilla co	
Class. Granulometrica	(USCS):

cm.	Resistenza Pocket Kg/cm²	Resist. Vanetest Kg/cm²	Consistenza	Collocazione Prove Meccaniche
10	6-6,3		ESTREMAMENTE CONSISTENTE	TriassialeUU
20	6,2-6,5		ESTREMAMENTE CONSISTENTE	TriassialeUU
30	6,4-6,6		ESTREMAMENTE CONSISTENTE	Taglio Diretto
40	5,5-5,7		ESTREMAMENTE CONSISTENTE	Edometrica
50	-			
60	-			

(*)Ove non specificatamente richiesto, viene assegnato un peso specifico di 2,7 g/cm3

File Name: 2691118.pdf 2/13 Data Creazione: 21/11/2018

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

N° Certiicato:	Committente: PROGER SpA	Consegna:	06/11/2018	Sondaggio:	1
2691118	70	Apertura:	08/11/2018	Campione:	3
Data:	Cantiere: Nuova S/E Bovino - Foggia	Inizio Prova:	08/11/2018	da mt:	14,50
21/11/2018		Fine Prova:	21/11/2018	a mt:	15,00

CONTENUTO NATURALE D'ACQUA

ASTM D2166

Contenuto d'Acqua Medio (%): 18,65

Passo N°	Contenitore N°	Tara (g)	Peso Lordo Umido (g)	Peso Lordo Secco (g)	Contenuto Acqua (%)
1	9	34,3	52,61	49,85	17,75
2	12	22,73	47,63	43,56	19,54

ID Prova: W

3/13 Data Stampa: 21/11/2018

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00>

RUFX19800B1831574

Rev.<00>

N° Certiicato:	Committente: PROGER SpA	Consegna:	06/11/2018	Sondaggio:	1
2691118		Apertura:	08/11/2018	Campione:	3
Data:	Cantiere: Nuova S/E Bovino - Foggia	Inizio Prova:	08/11/2018	da mt:	14,50
21/11/2018		Fine Prova:	21/11/2018	a mt:	15,00

ANALISI GRANULOMETRICA

Raccomandazioni AGI 1997

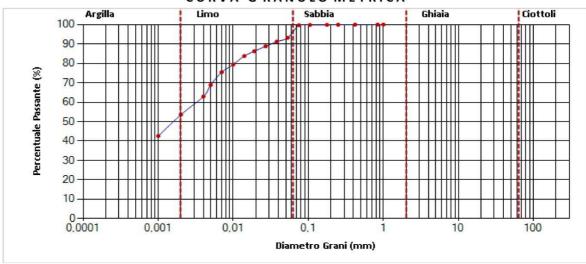
CARATTERISTICHE GRANULOMETRICHE

Passante Setaccio 200 (%): 99		99,660	Peso Netto T	otale (g):		50	Diametro Max (mm)	0,84	
D10 (mm)	-	D30 (mm)	-	D50 (mm)	0,0017	D60 (mm)	0,0034	Coeffic. di Uniformita	=
Ciottoli %	0	Ghiaia %	0	Sabbia %	3,6	Limo %	42,9	Argilla % 53,5	

CLASSIFICAZIONE

USCS: CL - Argille inorganiche di media plasticità.

AGI / ASTM: Argilla con Limo


18

VAGLIATURA SEDIMENTAZIONE Peso Parz. P/S Passante Setac. Diam. Setac. Diam. Peso Parz. P/S Passante Diametro Passante Diametro Passante **ASTM** (%) **ASTM** (mm) (g) (%) (mm) (g) (%) (%) (mm) (%) (mm) (%) 4" 101,5 20 0,84 0,01 0,02 99,98 0,053 93,17 0,007 75,46 2" 50,5 35 0,5 0,038 91,19 0,005 68,86 1" 25,4 40 0,42 0,01 0,02 99,96 0,027 88,81 0,004 62,92 1/2" 12,7 60 0,25 0,03 0,06 99,9 0,019 86,24 0,002 53,55 3/8" 9,5 80 0,177 0,02 0,04 99,86 0,014 83,79 0,001 42,56 4 4,76 140 0,105 0,03 0,06 99,8 0,01 79,43 10 2 200 0,075 0,07 0,14 99,66

CURVA GRANULO METRICA

230

0,063

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00>

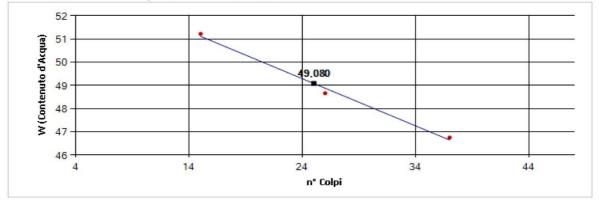
RUFX19800B1831574

Rev.<00>

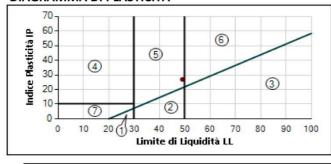
N° Certiicato:	Committente: PROGER SpA	Consegna:	06/11/2018	Sondaggio:	1
2691118	35	Apertura:	08/11/2018	Campione:	3
Data:	Cantiere: Nuova S/E Bovino - Foggia	Inizio Prova:	08/11/2018	da mt:	14,50
21/11/2018		Fine Prova:	21/11/2018	a mt:	15,00

LIMITI DI ATTERBERG

ASTM D4318-00


DATI SPERIMENTALI E RISULTATI (Limite Liquido)

PLU (g)	PLS (g)	TARA (g)	UMIDITA' (%)	N.COLPI
63,64	54,39	36,33	51,22	15
56,03	46,07	25,6	48,66	26
61,57	52,01	31,56	46,75	37


DATI SPERIMENTALI E RISULTATI (Limite Plastico)

PLU (g)	PLS (g)	TARA (g)	UMIDITA' (%)
42,77	42,05	38,8	22,15
26,78	26,21	23,63	22,09

DIAGRAMMA N° COLPI / CONTENUTO ACQUA

DIAGRAMMA DI PLASTICITA'

- 1. Limi Inorganici di Bassa Compressibilità
- 2. Limi Inorganici di Media Compressibilità
- 3. Limi Inorganici di Alta Compressibilità e Argille Organiche
- 4. Argille Inorganiche di Bassa Plasticità
- 5. Argille Inorganiche di Media Plasticità
- 6. Argille Inorganiche di Alta Plasticità
- 7. Terreni Incoerenti

Limite di Liquidità	(LL)	49,08	%	Indice di Plasticità	(IP)	26,96	
Limite di Plasticità	(LP)	22,12	%	Indice di Consistenza	(IC)	1,061	
Limite di Ritiro	(LR)	-	%	Attività [IP / (% Peso Argilla)]		re	
Carta di Plasticità di Casagrand	e:	Argille Inorganiche di Media Plasticità.					

Codice Prova: PRB13LL/LP 5/13 Data Creazione: 21/11/2018

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

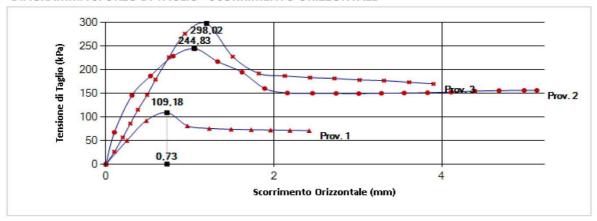
RUFX19800B1831574

Rev.<00>

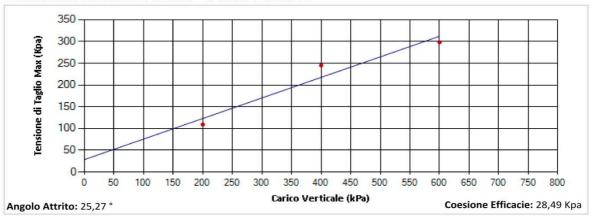
RUFX19800B1831574

Rev.<00>

N° Certiicato:	Committente: PROGER SpA	Consegna:	06/11/2018	Sondaggio:	1
2691118	×	Apertura:	08/11/2018	Campione:	3
Data: Cantiere: Nuova S/E Bovino - Foggia		Inizio Prova:	08/11/2018	da mt:	14,50
21/11/2018		Fine Prova:	21/11/2018	a mt:	15,00


PROVA DI TAGLIO DIRETTO

Raccomandazioni AGI 1997


CONDIZIONI INIZIALI E DATI RELATIVI ALLA CONSOLIDAZIONE ED ALLA FASE DI ROTTURA

Prov.	Altezza	Sezione	Cont. Acq.	Densita Nat.	CONSOLIDA	AZIONE 24H	Velocità Def.	CARA	ATTERISTIC	HE A ROTT	URA
N.	H (cm)	A (cm²)	W (%)	Yn (g/cm³)	σ ν (Kpa)	δh (mm)	(micron/min)	σ ν (Kpa)	ε (mm)	τ (Kpa)	δT (h)
1	2,00	36,45	0,00	2,062	200,00	0,38	4,00	200,00	0,73	109,18	3,03
2	2,00	36,45	0,00	2,179	400,00	0,63	4,00	400,00	1,05	244,83	4,37
3	2,00	36,45	0,00	2,137	600,00	0,74	4,00	600,00	1,20	298,02	4,99

DIAGRAMMA SFORZO DI TAGLIO - SCORRIMENTO ORIZZONTALE

DIAGRAMMA SFORZO DI TAGLIO - CARICO VERTICALE

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

N° Certiicato:	Committente: PROGER SpA	Consegna:	06/11/2018	Sondaggio:	1
2691118		Apertura:	08/11/2018	Campione:	3
Data:	Cantiere: Nuova S/E Bovino - Foggia	Inizio Prova:	08/11/2018	da mt:	14,50
21/11/2018	9807	Fine Prova:	21/11/2018	a mt:	15,00

PROVA DI TAGLIO DIRETTO

Raccomandazioni AGI 1997

DATI SPERIMENTALI

PROVIN	PROVINO 1				PROVINO 2				PROVINO 3			
Tempo	Deformaz. Verticale	Deformaz. Orizzont.	Sforzo di Taglio	Tempo	Deformaz. Verticale	Deformaz. Orizzont.	Sforzo di Taglio	Tempo	Deformaz. Verticale	Deformaz. Orizzont.	Sforzo di Taglio	
δT (h)	δh (mm)	ε (mm)	τ (Kpa)	δT (h)	δh (mm)	ε (mm)	τ (Kpa)	δT (h)	δh (mm)	ε (mm)	τ (Kpa)	
0,00	0,38	0	0,000	0,00	0,63	0	0,000	0,00	0,74	0	0,000	
1,00	n=.	0,25	49,929	1,00		0,1	67,246	2,00	300	0,1	26,022	
2,00	71 <u>2</u>	0,48	92,247	2,00	27	0,31	145,668	3,00	\ <u>-</u>	0,2	56,560	
3,00	-	0,73	109,053	3,00		0,53	186,680	4,00	-	0,29	85,750	
4,00	-	0,97	81,026	4,00	20	0,8	228,694	5,00	-	0,38	115,215	
5,00	-	1,23	75,572	5,00	-	1,06	244,200	6,00	1-	0,49	146,398	
6,00	-	1,49	73,863	6,00		1,33	217,191	7,00	180	0,59	179,001	
7,00	-	1,73	72,905	7,00	-	1,62	194,683	8,00	-	0,75	226,417	
8,00	/ -	1,96	72,283	8,00	-	1,89	160,173	9,00	-	0,94	276,236	
9,00	7-2	2,19	71,534	9,00	=	2,16	150,628	10,00	6 <u>-</u>	1,2	297,841	
9,95	-	2,42	70,988	10,00		2,46	150,184	11,00	-	1,51	227,619	
72			3	11,00	÷.	2,74	149,827	12,00	-	1,82	192,036	
				12,00	-	3,01	149,501	13,00	-	2,13	186,724	
				13,00	=	3,28	150,126	14,00	(5)	2,43	183,237	
				14,00	-	3,55	150,689	15,00	-	2,72	181,492	
				15,00	-	3,83	151,163	16,00	: = :	3,02	178,269	
				16,00	-	4,11	152,675	17,00	121	3,31	176,842	
				17,00	-	4,39	154,722	18,00	-	3,61	173,405	
				18,00	÷:	4,68	155,731	19,00	-	3,9	169,838	
				19,00	-:	4,98	156,236					
				19,61		5,13	156,206					

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

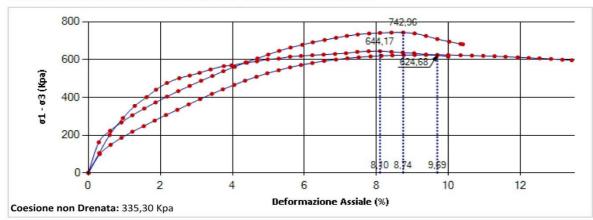
Codifica Elaborato Proger:

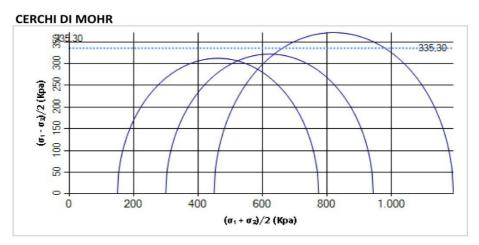
RUFX19800B1831574

Rev.<00>

RUFX19800B1831574

Rev.<00>


N° Certiicato:	Committente: PROGER SpA	Consegna:	06/11/2018	Sondaggio:	1
2691118		Apertura:	08/11/2018	Campione:	3
Data:	Cantiere: Nuova S/E Bovino - Foggia	Inizio Prova:	08/11/2018	da mt:	14,50
21/11/2018		Fine Prova:	21/11/2018	a mt:	15,00


PROVA DI COMPRESSIONE TRIASSIALE UU

Raccomandazioni AGI 1997

	CARATTERISTICHE INIZIALI DEL PROVINO						FASE	ROTTURA		
Prov.	Altezza	Sezione	Umidità Naturale	Densità Naturale	Indice Vuoti	Saturazione	Coefficiente "B"	Pressione di Cella	Wf	σ ₁ - σ ₃
N.	H (cm)	A (cm ²)	Wn (%)	$Y_n (kN/m^3)$	e (-)	Sr (%)	SKEMPTON	(Kpa)	(%)	(kPa)
1	7,605	11,46	21,2	2,073	0,579	98,87		150	0	624,685
2	7,605	11,46	20,35	2,098	0,549	100,07		300	0	644,169
3	7,605	11,46	20,95	2,081	0,569	99,44		450	0	742,964

DIAGRAMMA DEFORMAZIONE ASSIALE - SFORZO TANGENZIALE

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

N° Certiicato:	Committente: PROGER SpA	Consegna:	06/11/2018	Sondaggio:	1
2691118		Apertura:	08/11/2018	Campione:	3
Data:	Cantiere: Nuova S/E Bovino - Foggia	Inizio Prova:	08/11/2018	da mt:	14,50
21/11/2018		Fine Prova:	21/11/2018	a mt:	15,00

PROVA DI COMPRESSIONE TRIASSIALE UU

PROVINO 1	PLU = 279,76;	PLS = 213,03

Def. (%)		Sovrap. (Kpa)	Def. (%)	σ ₁ - σ ₃	Sovrap.
(70)	(kPa)	(Kpa)	(70)	(kPa)	(Kpa)
	1,606	0	6,877	600,213	0
0,316	99,962	0	7,193	606,574	0
0,618	148,813	0	7,508	612,102	0
0,92	185,892	0	7,837	616,784	0
1,223	218,068	0	8,139	619,885	0
1,538	248,011	0	8,442	622,027	0
1,841	277,372	0	8,757	623,589	0
2,156	306,843	0	9,06	624,05	0
2,472	334,14	0	9,375	624,577	0
2,788	363,222	0	9,691	624,685	0
3,103	390,801	0	9,993	623,891	0
3,432	418,293	0	10,335	622,812	0
3,734	442,303	0	10,651	621,069	0
4,05	466,161	0	10,966	619,633	0
4,352	488,147	0	11,282	617,806	0
4,668	508,945	0	11,584	615,108	0
4,97	527,499	0	11,926	611,761	0
5,286	543,283	0	12,229	608,76	0
5,602	558,867	0	12,531	606,444	0
5,904	571,087	0	12,847	603,371	0
6,22	581,935	0	13,162	599,356	0
6,548	592,54	0	13,425	596,589	0

PROVINO 2	PLU = 281,95;	PLS = 205,29

Def. (%)	σ ₁ - σ ₃ (kPa)	Sovrap. (Kpa)	Def. (%)	σ ₁ - σ ₃ (kPa)	Sovrap (Kpa)
		0	5,286	604,865	0
0,302	105,265	0	5,602	615,584	0
0,592	201,097	0	5,904	619,157	0
0,96	290,427	0	6,22	622,73	0
1,289	354,743	0	6,535	626,304	0
1,617	401,194	0	6,851	629,877	0
1,88	440,499	0	7,153	633,45	0
2,183	476,231	0	7,469	640,596	0
2,525	501,243	0	7,784	644,169	0
2,814	515,535	0	8,1	644,169	0
3,09	529,828	0	8,416	640,596	0
3,393	547,694	0	8,731	637,023	0
3,761	565,56	0	9,047	633,45	0
3,971	569,133	0	9,375	626,303	0
4,405	583,426	0	9,691	622,73	0
4,681	590,572	0	9,993	615,583	0
4,984	601,291	0			0

PROVINO 3 PLU = 280,42; PLS = 209,5

Def. (%)	σ ₁ - σ ₃ (kPa)	Sovrap. (Kpa)	Def. (%)	σ ₁ - σ ₃ (kPa)	Sovrap. (Kpa)
	0,34	0	5,615	663,734	0
0,289	162,374	0	5,943	678,048	0
0,605	223,292	0	6,233	691,258	0
0,92	267,153	0	6,561	703,695	0
1,223	305,088	0	6,877	715,406	0
1,552	340,951	0	7,179	725,178	0
1,867	373,137	0	7,482	732,741	0
2,183	403,935	0	7,798	737,648	0
2,498	433,22	0	8,1	740,982	0
2,814	460,828	0	8,416	742,614	0
3,13	487,748	0	8,744	742,964	0
3,445	513,427	0	9,06	738,161	0
3,748	538,272	0	9,375	724,873	0
4,063	561,407	0	9,691	708,603	0
4,366	584,703	0	10,02	694,84	0
4,694	605,825	0	10,335	682,855	0
4,997	626,39	0	10,401	680,991	0
5,299	646,256	0			0

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

N° Certiicato:	Committente: PROGER SpA	Consegna:	06/11/2018	Sondaggio:	1
2691118		Apertura:	08/11/2018	Campione:	3
Data:	Cantiere: Nuova S/E Bovino - Foggia	Inizio Prova:	08/11/2018	da mt:	14,50
21/11/2018	Total II	Fine Prova:	21/11/2018	a mt:	15,00

PROVA DI COMPRESSIONE EDOMETRICA

Raccomandazioni AGI 1997

CARATTERISTICHE DEL PROVINO

Sezione	Α	20,10	(cm²)	Peso di Volume	Yn	2,034	(g/cm³)
Altezza Iniziale	Н	2,00	(cm)	Peso Specifico	Ys	2,7	(g/cm^3)
Umidità Naturale Iniz.	Wn	21,95	(%)	Umidita Naturale Fin.	Wf	23,04	(%)
Indice Vuoti Iniziale	eo	0,619	(-)	Grado di Saturazione	Sr	95,79	(%)

DATI SPERIMENTALI E RISULTATI

Passo	Pressione Imposta	Tempo	Deformazione Assiale	Indice Vuoti	Modulo Edometrico	Coefficiente Compressibilità	Coefficiente Consolidazione	Coefficiente Permeabilità	Consolidaz. Secondaria
N.	σ 1 (kPa)	t (h)	δ (mm)	e (-)	Eed (MPa)	mv (1/MPa)	Cv (cm²/sec)	k (cm/sec)	Ca (%)
1	121,95	24	0,155	0,616	78,675	0,013	(=)	-	: -
2	195,12	24	0,58	0,61	17,216	0,058	-	-	-
3	390,23	24	2,315	0,582	11,246	0,089	-	-	
4	780,46	24	4,785	0,542	15,799	0,063		-	
5	1.560,92	24	7,65	0,495	27,241	0,037	-	-	-
6	390,23	24	5,66	0,527	-	-	-	-	: -
7	121,95	24	3,085	0,569	-	 à	.=	177	ı

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

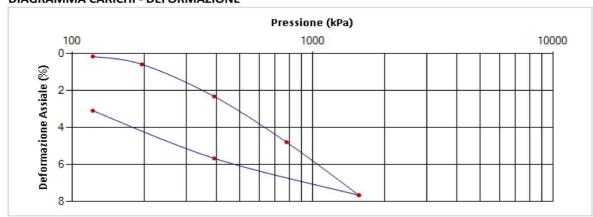
Codifica Elaborato Proger:

RUFX19800B1831574

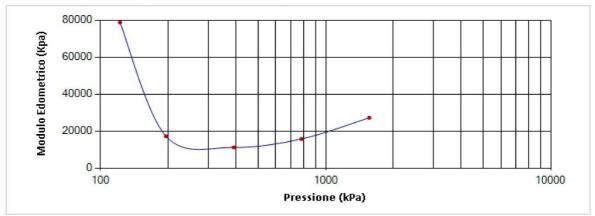
Rev.<00>

RUFX19800B1831574

Rev.<00>



N° Certiicato:	Committente: PROGER SpA	Consegna:	06/11/2018	Sondaggio:	1
2691118		Apertura:	08/11/2018	Campione:	3
Data:	Cantiere: Nuova S/E Bovino - Foggia	Inizio Prova:	08/11/2018	da mt:	14,50
21/11/2018		Fine Prova:	21/11/2018	a mt:	15,00


PROVA DI COMPRESSIONE EDOMETRICA

Raccomandazioni AGI 1997

DIAGRAMMA CARICHI - DEFORMAZIONE

DIAGRAMMA CARICHI - MODULO EDOMETRICO

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

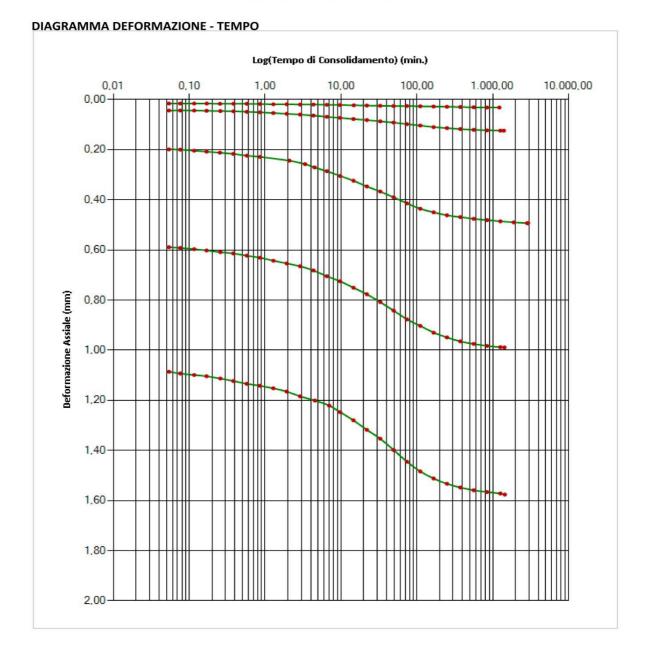
Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00>

RUFX19800B1831574

Rev.<00>



N° Certiicato:	Committente: PROGER SpA	Consegna:	06/11/2018	Sondaggio:	1
2691118		Apertura:	08/11/2018	Campione:	3
Data:	Cantiere: Nuova S/E Bovino - Foggia	Inizio Prova:	08/11/2018	da mt:	14,50
21/11/2018		Fine Prova:	21/11/2018	a mt:	15,00

PROVA DI COMPRESSIONE EDOMETRICA

Raccomandazioni AGI 1997

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

N° Certiicato:	Committente: PROGER SpA	Consegna:	06/11/2018	Sondaggio:	1
2691118		Apertura:	08/11/2018	Campione:	3
Data:	Cantiere: Nuova S/E Bovino - Foggia	Inizio Prova:	08/11/2018	da mt:	14,50
21/11/2018		Fine Prova:	21/11/2018	a mt:	15,00

PROVA DI COMPRESSIONE EDOMETRICA

Raccomandazioni AGI 1997

Tempo (min)	Cedimento(mm)	Tempo (min)	Cedimento	Tempo (min)	Cedimento	Tempo (min)	Cedimento	Tempo (min)	Cedimento
0,054	0,016	0,573	0,017	6,489	0,021	73,899	0,026	841,706	0,032
0,076	0,016	0,857	0,018	9,735	0,022	110,845	0,027	1224,131	0,032
0,116	0,016	1,284	0,019	14,74	0,023	166,263	0,028		
0,17	0,016	1,925	0,019	21,897	0,024	249,396	0,029		
0,254	0,017	2,885	0,02	32,846	0,025	374,093	0,03		
0,382	0,017	4,325	0,02	49,265	0,026	561,141	0,031		
PASSO: 2		Metodo Usato:	Casagrande						
Tempo (min)	Cedimento(mm)	Tempo (min)	Cedimento	Tempo (min)	Cedimento	Tempo (min)	Cedimento	Tempo (min)	Cedimento
0,054	0,044	0,572	0,049	6,488	0,069	73,896	0,098	841,708	0,123
0,076	0,044	0,858	0,051	9,735	0,073	110,844	0,104	1262,561	0,124
0,116	0,044	1,282	0,054	14,598	0,078	166,265	0,11	1401,446	0,124
0,169	0,045	1,925	0,057	21,897	0,082	249,397	0,114	(2)	
0,257	0,046	2,886	0,06	32,846	0,087	374,092	0,118		
0,382	0,047	4,329	0,064	49,265	0,092	561,141	0,121		
ASSO: 3		Metodo Usato:	Casagrande						
Tempo (min)	Cedimento(mm)	Tempo (min)	Cedimento	Tempo (min)	Cedimento	Tempo (min)	Cedimento	Tempo (min)	Cedimento
0,054	0,199	0,572	0,224	9,733	0,305	110,844	0,436	1262,561	0,486
0,076	0,2	0,856	0,229	14,597	0,324	166,264	0,45	1893,839	0,49
0,116	0,204	2,079	0,244	21,897	0,347	249,395	0,462	2840,759	0,493
0,169	0,208	3,363	0,258	32,844	0,367	374,096	0,469	2909,045	0,493
0,253	0,212	4,476	0,271	49,266	0,39	561,14	0,476		
0,381	0,217	6,502	0,286	73,896	0,414	841,706	0,481		
PASSO: 4		Metodo Usato:	Casagrande						
Tempo (min)	Cedimento(mm)	Tempo (min)	Cedimento	Tempo (min)	Cedimento	Tempo (min)	Cedimento	Tempo (min)	Cedimento
0,054	0,589	0,573	0,623	6,493	0,705	73,895	0,877	841,707	0,983
0,076	0,592	0,857	0,631	9,731	0,725	110,846	0,903	1262,563	0,988
0,116	0,597	1,286	0,643	14,601	0,751	166,264	0,93	1428,88	0,989
0,169	0,602	1,925	0,654	21,897	0,777	249,398	0,949		
0,257	0,609	2,887	0,665	32,846	0,808	374,092	0,965		
0,38	0,614	4,329	0,682	49,266	0,842	561,138	0,975		
ASSO: 5		Metodo Usato:	Casagrande						
Tempo (min)	Cedimento(mm)	Tempo (min)	Cedimento	Tempo (min)	Cedimento	Tempo (min)	Cedimento	Tempo (min)	Cedimento
0,054	1,086	0,571	1,134	6,997	1,221	73,897	1,445	841,707	1,566
0,076	1,093	0,855	1,142	9,732	1,247	110,844	1,484	1262,56	1,572
0,116	1,099	1,283	1,152	14,598	1,28	166,266	1,512	1444,552	1,576
0,169	1,104	1,923	1,165	21,897	1,318	249,395	1,533		
						■ 100 to		1	
0,257	1,113	2,885	1,184	32,846	1,353	374,094	1,548	1	

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00>

RUFX19800B1831574

Rev.<00>

Data: 21/11/2018 Certificato: 2701118

RIFERIMENTI COMMESSA								
Il Richiedente: PROC	SER S	рА						
Verbale di Accettazione	N°:	491118	Data: 06/11/2018					
Riferimento Ordine	N°:	32/17	Data: 08/09/17					

INFORMAZ	IONI GE	NERALI SUL CAMPIONE IN	INGRESSO
Alterazioni Esterne:		Tipologia Campionatore SHELBY	Data Prelievo N.P.
Ditta che ha e	ffettuato	il prelievo	
		Non Dichiarato	

	INTESTAZIONE	CERTIFICATO ED	IDENTIFICAZIONE (CAMPIONE		
Committente:	PROGER SpA					
Cantiere:	Nuova S/E Bovino - Foggia					
Sondaggio: 2	Campione:	1	Profondità	da m: 18,50	a m:	19,00

TRACCIABILITA'				
Codice Campione:	PRB21			
Consegna Campione:	06/11/2018			
Apertura:	08/11/2018			
Inizio Prove:	08/11/2018			
Fine Prove:	21/11/2018			

ESCLUSIONI / ANOMALIE / DIFFORMITA' / NOTE

Provini del taglio parzialmente ricostruiti causa diametro del campione. Le scarse quantità e qualità del campione non hanno consentito di eseguire le prove di resistenza non drenate (UU o ELL) e di compressibilità edometrica. La porzione integra è stata utilizzata per la prova di taglio quella rimaneggiata per le analisi di classificazione

PROVE ESEGUITE	ID PROVA	PAG.	NORMATIVE DI RIFERIMENTO
Descrizione Macroscopica e Caratteristiche Fisiche	PRB21DeMaCaFi	2	Raccomandazioni sulle prove geotecniche di laboratorio - AGI,1994 Classificazione delle terre: ASTM D 2487-85 D3282-83
Contenuto d'Acqua	PRB21W	3	ASTM D2166
Granulometria Secca+Umida	PRB21Aeo	4	Raccomandazioni AGI 1997
Limiti di Atterberg	PRB21LL/LP	5	ASTM D4318-00
Taglio Diretto	PRB21TD	6-7	Raccomandazioni AGI 1997
	Totale Pag.	7	

Lo Sperimentatore Dott.Geol. Legnini Manila Il Direttore Dott. Geol. Luca Di Matteo

File Name: 2701118.pdf 1/7 Data Creazione: 22/11/2018

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

N° Certiicato:	Committente: PROGER SpA	Consegna:	06/11/2018	Sondaggio:	2
2701118		Apertura:	08/11/2018	Campione:	1
Data:	Cantiere: Nuova S/E Bovino - Foggia	Inizio Prova:	08/11/2018	da mt:	18,50
21/11/2018		Fine Prova:	21/11/2018	a mt:	19,00

	DESCRIZIONE CAMPIONE							
Lunghezza:	Lunghezza: 40 cm. Diametro: 8,5 cm. Classe di Qualità: Non Dichiarata							
Descrizione M	lacrosc	opica: Argil	la limosa grigio a	azzurra				

	CARATTERISTICHE FISICHE DEL CAMPIONE							
Peso Specifico (*):	2,7	g/cm³	Limite del ritiro:		%	Contenuto Naturale Acqua:	20,35	%
Densità Naturale:	2,059	g/cm³	Limite Liquido:	47,84	%	Grado di Saturazione:	95,06	%
Densità secca:	1,711	g/cm³	Limite Plastico:	22,10	%	Indice di Attività:	0,564	
Densità satura:	2,077	g/cm³	Porosità:	0,37	%	Indice dei Vuoti:	0,578	

Indice di Plasticità IP:	25,74
Indice di Consistenza IC	: 1,068
Grado di Plasticità:	Plastico
Stato:	Solido
Class. Granulometrica (Limo con A	123
Class. Granulometrica (USCS):

cm.	Resistenza Pocket Kg/cm²	Resist. Vanetest Kg/cm²	Consistenza	Collocazione Prove Meccaniche
10				
20				
30	-			
40	4,2-4,4		ESTREMAMENTE CONSISTENTE	Taglio Diretto
50	-			
60				

(*)Ove non specificatamente richiesto, viene assegnato un peso specifico di 2,7 g/cm 3

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00>

RUFX19800B1831574

Rev.<00>

N° Certilicato: Committente: PROGER SpA 2701118	Committente: PROGER SpA	Consegna:	06/11/2018	Sondaggio:	2
	Apertura:	08/11/2018	Campione:	1	
Data: Cantiere: Nuova S/E Bovino - Foggia		Inizio Prova:	08/11/2018	da mt:	18,50
21/11/2018	2000	Fine Prova:	21/11/2018	a mt:	19,00

CONTENUTO NATURALE D'ACQUA

ASTM D2166

Contenuto d'Acqua Medio (%): 20,35

Passo N°	Contenitore N°	Tara (g)	Peso Lordo Umido (g)	Peso Lordo Secco (g)	Contenuto Acqua (%)
1	11	35,16	48,3	46,07	20,44
2	31	26,45	38,14	36,17	20,27

ID Prova: W

3/7 Data Stampa: 22/11/2018

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00>

RUFX19800B1831574

Rev.<00>

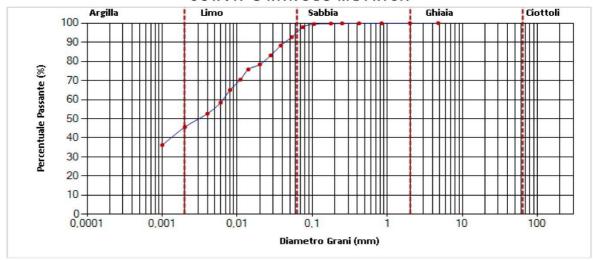
N° Certiicato: Committente: PROGER SpA	Committente: PROGER SpA	Consegna:	06/11/2018	Sondaggio:	2
	Apertura:	08/11/2018	Campione:	1	
Data: Cantiere: Nuova S/E Bovino - Foggia		Inizio Prova:	08/11/2018	da mt:	18,50
21/11/2018		Fine Prova:	21/11/2018	a mt:	19,00

ANALISI GRANULOMETRICA

Raccomandazioni AGI 1997

CARATTERISTICHE GRANULOMETRICHE

Ciottoli %	0	Ghiaia %	0	Sabbia %	4,6	Limo %	49,7	Argilla % 45,6	
D10 (mm)	-	D30 (mm)	0,0003	D50 (mm)	0,0033	D60 (mm)	0,0065	Coeffic. di Uniformita	-
Passante Seta	accio 200	(%):	97,860	Peso Netto	Totale (g):		50	Diametro Max (mm)	2


CLASSIFICAZIONE

USCS: CL - Argille inorganiche di media plasticità.

AGI / ASTM: Limo con Argilla

	VAGLIATURA										SEDIMENTAZIONE			
Setac. ASTM	Diam. (mm)	Peso (g)	Parz. P/S (%)	Passante (%)	Setac. ASTM	Diam. (mm)	Peso (g)	Parz. P/S (%)	Passante (%)	Diametro (mm)	Passante (%)	Diametro (mm)	Passante (%)	
4"	101,5				20	0,84	0,01	0,02	99,94	0,053	92,63	0,008	65,03	
2"	50,5				35	0,5				0,038	88,27	0,006	58,42	
1"	25,4				40	0,42	0,03	0,06	99,88	0,028	83,12	0,004	52,62	
1/2"	12,7				60	0,25	0,01	0,02	99,86	0,02	78,37	0,002	45,62	
3/8"	9,5				80	0,177	0,04	0,08	99,78	0,014	75,78	0,001	36,23	
4	4,76				140	0,105	0,15	0,3	99,48	0,011	70,44			
10	2	0,02	0,04	99,96	200	0,075	0,81	1,62	97,86					
	727													

CURVA GRANULO METRICA

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00>

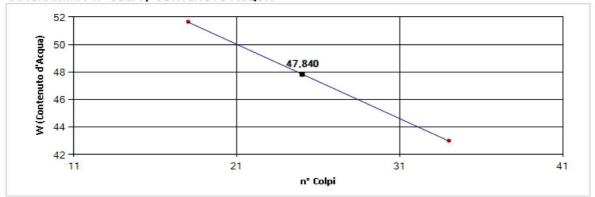
RUFX19800B1831574

Rev.<00>

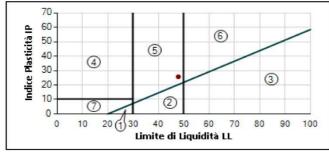
N° Certiicato:	Committente: PROGER SpA	Consegna:	06/11/2018	Sondaggio:	2
2701118		Apertura:	08/11/2018	Campione:	1
Data:	Cantiere: Nuova S/E Bovino - Foggia	Inizio Prova:	08/11/2018	da mt:	18,50
21/11/2018		Fine Prova:	21/11/2018	a mt:	19,00

LIMITI DI ATTERBERG

ASTM D4318-00


DATI SPERIMENTALI E RISULTATI (Limite Liquido)

PLU (g)	PLS (g)	TARA (g)	UMIDITA' (%)	N.COLPI
64,32	51,13	25,6	51,66	18
74,69	61,44	33,71	47,78	25
48,32	43,93	33,72	43	34


DATI SPERIMENTALI E RISULTATI (Limite Plastico)

PLU (g)	PLS (g)	TARA (g)	UMIDITA' (%)
41,03	37,98	23,48	21,03
44,09	42,41	35,16	23,17

DIAGRAMMA DI PLASTICITA'

- 1. Limi Inorganici di Bassa Compressibilità
- 2. Limi Inorganici di Media Compressibilità
- 3. Limi Inorganici di Alta Compressibilità e Argille Organiche
- 4. Argille Inorganiche di Bassa Plasticità
- 5. Argille Inorganiche di Media Plasticità
- 6. Argille Inorganiche di Alta Plasticità
- 7. Terreni Incoerenti

Limite di Liquidità	(LL)	47,84	%	Indice di Plasticità	(IP)	25,74		
Limite di Plasticità	(LP)	22,1	%	Indice di Consistenza	(IC)	1,068		
Limite di Ritiro (LR)		-	%	Attività [IP / (% Peso Argilla)]		0,564		
Carta di Plasticità di Casagrande	e:	Argille Inorganiche di Media Plasticità.						

Codice Prova: PRB21LL/LP 5/7 Data Creazione: 22/11/2018

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

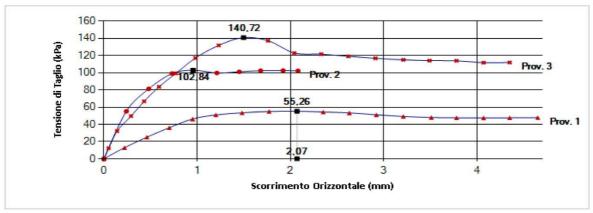
RUFX19800B1831574

Rev.<00>

RUFX19800B1831574

Rev.<00>

N° Certiicato:	Committente: PROGER SpA	Consegna:	06/11/2018	Sondaggio:	2
2701118	X.	Apertura:	08/11/2018	Campione:	1
Data:	Cantiere: Nuova S/E Bovino - Foggia	Inizio Prova:	08/11/2018	da mt:	18,50
21/11/2018		Fine Prova:	21/11/2018	a mt:	19,00


PROVA DI TAGLIO DIRETTO

Raccomandazioni AGI 1997

CONDIZIONI INIZIALI E DATI RELATIVI ALLA CONSOLIDAZIONE ED ALLA FASE DI ROTTURA

Prov.	Altezza	Sezione	Cont. Acq.	Densita Nat.	CONSOLIDAZIONE 24H		Velocità Def.	CARA	CARATTERISTICHE A ROTTURA			
N.	H (cm)	A (cm²)	W (%)	Yn (g/cm³)	σ ν (Кра)	δh (mm)	(micron/min)	σν (Kpa)	ε (mm)	τ (Kpa)	δT (h)	
1	1,78	36,06	0,00	2,049	100,00	0,55	4,00	100,00	2,07	55,26	8,62	
2	1,78	36,06	0,00	2,066	200,00	0,66	4,00	200,00	0,95	102,84	3,98	
3	1,78	36,06	0,00	2,061	300,00	1,16	4,00	300,00	1,50	140,72	6,24	

DIAGRAMMA SFORZO DI TAGLIO - SCORRIMENTO ORIZZONTALE

DIAGRAMMA SFORZO DI TAGLIO - CARICO VERTICALE

REALIZZAZIONE NUOVA STAZIONE ELETTRICA 150 kV DI BOVINO E RELATIVI RACCORDI LINEE REDAZIONE DEL PIANO TECNICO DELLE OPERE (PTO)

Codifica Elaborato Terna:

Codifica Elaborato Proger:

RUFX19800B1831574

Rev.<00 >

RUFX19800B1831574

Rev.<00>

N° Certiicato:	Committente: PROGER SpA	Consegna:	06/11/2018	Sondaggio:	2
2701118		Apertura:	08/11/2018	Campione:	1
Data:	Cantiere: Nuova S/E Bovino - Foggia	Inizio Prova:	08/11/2018	da mt:	18,50
21/11/2018		Fine Prova:	21/11/2018	a mt:	19,00

PROVA DI TAGLIO DIRETTO

Raccomandazioni AGI 1997

DATI SPERIMENTALI

PROVI	NO 1			PROVI	NO 2			PROVI	1O 3				
Tempo	Deformaz. Verticale	Deformaz. Orizzont.	Sforzo di Taglio	Tempo	Deformaz. Verticale	Deformaz. Orizzont.	Sforzo di Taglio	Tempo	Deformaz. Verticale	Deformaz. Orizzont.	Sforzo di Taglio		
δT (h)	δh (mm)	ε (mm)	τ (Kpa)	δT (h)	δh (mm)	ε (mm)	τ (Kpa)	δT (h)	δh (mm)	ε (mm)	τ (Kpa)		
0,00	0,55	0	0,000	0,00	0,66	0	0,025	8,00	(-)	1,23	131,639		
1,00	0=	0,22	12,923	1,00	- :	0,24	55,130	9,00	370	1,49	140,674		
2,00	12	0,46	25,067	2,00	21	0,48	81,204	10,00	12	1,76	137,083		
3,00	11=1	0,7	36,070	3,00	- 1	0,73	98,971	11,00	-	2,04	122,793		
4,00	-	0,95	46,206	4,00	-	0,96	102,812	12,00	-	2,33	121,456		
5,00	-	1,2	50,935	5,00	-	1,21	99,590	13,00	-	2,62	118,971		
6,00	105	1,48	53,336	6,00	-	1,45	100,976	14,00	4 5 3	2,91	116,647		
7,00	-	1,77	54,936	7,00	-1	1,68	102,285	15,00	(<u>*</u>	3,21	114,886		
8,00	3: = :	2,07	55,255	8,00		1,92	102,415	16,00	:=:	3,49	113,896		
9,00	10	2,35	54,287	8,68	_	2,08	102,127	17,00		3,78	113,763		
10,00	0.00	2,63	53,325					18,00	-	4,07	111,600		
11,00	-	2,92	51,045					19,00	-	4,35	111,814		
12,00	19	3,21	49,124					0,00	1,16	0	0,000		
13,00	-	3,51	47,926					0,00	1,16	0	0,000		
14,00	12	3,78	47,565					1,00	-	0,05	12,241		
15,00	Xe.	4,07	47,443					2,00	:=:	0,14	32,085		
16,00	72	4,35	47,565					3,00	12	0,29	49,548		
17,00	-	4,65	47,804					4,00	-	0,43	66,697		
2								5,00	-	0,59	83,552		
								6,00	-	0,77	99,126		
								7,00	-	0,98	116,916		