
Regione Umbria

Provincia di Temi

Comune di Castel Giorgio

Comune di Orvieto

Committente:

RWE RENEWABLES ITALIA S.R.L.

via Andrea Doria, 41/G - 00192 Roma P.IVA/C.F. 06400370968

PEC: rwerenewablesitaliasrl@legalmail.it

Titolo del Progetto:

PARCO EOLICO "PHOBOS"

- Comune di Castel Giorgio ed Orvieto (TR) -

Documento: PRO	GETTO DEFIN	ITIVO OPERE C	IVILI	N° Documento:	PEOS_OC_	04_0	
ID PROGETTO:	PEOS	DISCIPLINA:	PD	TIPOLOGIA:	R	FORMATO:	A4

Elaborato:

Relazione geotecnica preliminare

FOGLIO:	-	SCALA:	-	Nome file:	PEOS_OC_04_0_preliminare_geotecnica.pdf
---------	---	--------	---	------------	---

Progettazione:

NEW DEVELOPMENTS S.r.I.

piazza Europa, 14 87100 Cosenza (CS) Progettista:

dott. ing. Giovanni Guzzo Foliaro dott. ing. Amedeo Costabile dott. ing. Francesco Meringolo

Rev:	Data Revisione	Descrizione Revisione	Redatto	Controllato	Approvato
00	18/05/2021	PRIMA EMISSIONE	New Developments	RWE	RWE

Parco eolico Phobos

Indice

Prem	nessa e inquadramento normativo	2
1.	Caratterizzazione Geologica	2
1.1 Are	ea impianto eolico e SET	3
2.	Caratterizzazione geotecnica	4
2.1 Inc	dagini eseguite	4
2.1.1	Indagini di sismica passiva a stazione singola (Tromografia)	4
2.2 Pa	rametri geotecnici	6
3.	Verifiche geotecniche	8
3.1 Art	ticolazione del progetto	8
3.2 Ve	rifica di sicurezza	8
3.3 Az	ioni	9
3.3.1	Azioni Statiche	9
3.3.2	Azioni sismiche	10
3.4 Re	sistenza	11
3.5 Fo	ndazioni superficiali	12
3.5.1	Verifiche agli stati limite ultimi (SLU)	12
3.5.2	Verifiche agli stati limite di esercizio (SLE)	13
3.6 Fo	ndazioni profonde	14
3.7 Ve	rifiche di stabilità globale pendii	17
3.7.1	Verifica di stabilità in condizioni sismiche	18
Conc	lusioni	18

Premessa e inquadramento normativo

La presente relazione definisce i metodi e le norme da utilizzarsi in fase di progettazione esecutiva per il dimensionamento e le verifiche delle opere geotecniche presenti nel progetto per la realizzazione e l'esercizio di un impianto eolico denominato "Phobos" ubicato nel territorio dei comuni di Castel Giorgio (TR) e Orvieto (TR), proposto dalla società RWE Renewables Italia S.R.L..

La presente relazione riassume inoltre i risultati rinvenienti dalla campagna d'indagine svolta, che hanno consentito di ricostruire gli spessori, le giaciture ed i rapporti stratigrafici delle formazioni geolitologiche presenti nel sottosuolo delle aree in esame, per come riportati nella relazione geologica allegata al progetto definitivo.

Il quadro normativo di riferimento è il seguente:

- D.M. 17.01.2018 Aggiornamento alle "Nuove norme tecniche per le costruzioni";
- Circolare del Ministero delle Infrastrutture e dei Trasporti del 21 gennaio 2019 n. 7;
- Decreto Ministeriale 14.01.2008 (G.U. 4 febbraio 2009 n. 29 Suppl. Ord.) "Norme tecniche per le costruzioni";
- Consiglio Superiore dei Lavori Pubblici, Istruzioni per l'applicazione delle "Norme Tecniche per le Costruzioni" di cui al D.M. 14 gennaio 2008, Circolare 2 febbraio 2009;
- Consiglio Superiore dei Lavori Pubblici, Pericolosità sismica e Criteri generali per la classificazione sismica del territorio nazionale, Allegato al voto n. 36 del 27.07.2007;
- Circolare del Ministero delle Infrastrutture e dei Trasporti del 2 febbraio 2009, n. 617 (G.U. del 26 febbraio 2009, n. 47);
- "Istruzioni per l'applicazione delle Norme Tecniche delle Costruzioni di cui al D.M. 14 gennaio 2008".
- Eurocodice 7 "Progettazione geotecnica" ENV 1997 1;

1. Caratterizzazione Geologica

Dall'analisi della carta geologica e dai rilievi eseguiti in campagna, nonché dalle indagini sismiche eseguite in corrispondenza di ciascun aerogeneratore, così come definito nella relazione geologica allegata al presente progetto, l'aria oggetto di studio è caratterizzata dai seguenti tipi litologici affioranti:

UNITÀ PODERE SAMBUCO (*Pleistocene medio*): successione piroclastica stratificata con alternanza di tufi fini e lapilli tuff costituiti da pomici o scorie.

Relazione geotecnica preliminare	2 a 18

SCORIE POGGIO DEL TORRONE (*Pleistocene medio*): scorie varicolori caratterizzate da strutture porfiriche con diverse quantità di leucite, plagioclasio, clinopirosseno e K-feldspato, e da composizione da leucite, tefrite a fonolite e trachite.

1.1 Area impianto eolico e SET

Aerogeneratori: WTG.01 - WTG.03 - WTG.04 -WTG.05 -WTG.06-WTG.07

I litotipi che affiorano nell'area in cui verranno realizzati gli aerogeneratori denominati WTG.01, WTG.03, WTG.04, WTG.05, WTG.06 e WTG.07, sono riferibili all'*Unità di Podere Sambuco* costituita da una successione piroclastica stratificata con alternanza di tufi fini e lapilli di pomici o scorie, da mediamente a scarsamente addensate. Presentano spessori variabili tra 5 m e 15 m e ricoprono le scorie varicolori caratterizzate da strutture porfiriche con diverse quantità di leucite, plagioclasio, clinopirosseno e K-feldspato, e da composizione da leucite, tefrite a fonolite e trachite (Scorie Poggio del Torrone).

Aerogeneratore: WTG.02

L'aerogeneratore WTG.02 è ubicato, invece, in un'area dove affiorano le *Scorie Poggio del Torrone* che presentano spessori variabili tra 6 m e 14 m e che poggiano sulle lave caratterizzate da strutture porfiriche con diverse quantità di leucite, plagioclasio, clinopirosseno e K-feldspato, e da composizione da leucite, tefrite a fonolite e trachite (Colate Poggio del Torrone). In particolare si tratta di basalti, intensamente fratturati con intercalazioni piroclastitiche sciolte.

Area SET

I litotipi che costituiscono il terreno di sedime della sottostazione elettrica sono costituiti da depositi alluvionali composti da rocce prevalentemente sciolte costituite da ghiaie, sabbie limose e limi sabbiosi. Si presentano generalmente scarsamente addensate e sature. Hanno spessore variabile intorno a 6 metri e poggiano sui Tufi del Pleistocene medio).

Tutti i suddetti terreni sono ricoperti da uno spessore variabile tra 1.00 e 2.00 m di terreno vegetale con inclusi elementi lapidei eterometrici.

Relazione geotecnica preliminare	3 a 18

2. Caratterizzazione geotecnica

2.1 Indagini eseguite

AREE PARCO EOLICO E SET

Nell'area in esame sono state eseguite dei sondaggi di sismica passiva a stazione singola che hanno permesso di stimare la velocità delle onde S e la categoria di suolo ai sensi delle NTC 2018. La sismica passiva è una tecnica che permette di definire la serie stratigrafica locale basandosi sul concetto di contrasto di impedenza dove per strato si intende un'unità distinta in relazione al rapporto tra i prodotti di velocità delle onde sismiche nel mezzo e densità del mezzo stesso. In particolare sono state eseguite n. 8 misure di microtremore ambientale, con un tromografo digitale progettato specificatamente per l'acquisizione del rumore sismico.

2.1.1 Indagini di sismica passiva a stazione singola (Tromografia)

Qui di seguito si sintetizzano gli esiti delle indagini compiute e le interpretazioni dei dati sperimentali ottenuti.

Sondaggio tromografico T1

Profondità (m)	Vs (m/s)	Categoria sismica ai sensi del D.M. del 17/01/2008		
0.00 – 4.00	220	С	C	
4.00 – 12.00	330	С	(Vs,eq=352 m/s)	
12.00 – 30.00	420	В		

Sondaggio tromografico T2

Profondità (m)	Vs (m/s)	Categoria sismica ai sensi del D.M. del 17/01/2008	
0.00 – 3.00	220	С	C
3.00 – 14.00	320	С	(Vs eq=352 m/s)
19.00 – 30.00	430	В	- (Vs,eq=352 m/s)

Sondaggio tromografico T3

Profondità (m)	Vs (m/s)	Categoria sismica ai sensi del D.M. del 17/01/2008	
0.00 – 4.00	220	С	•
4.00 – 13.00	320	С	(Vs,eq=353 m/s)
13.00 – 30.00	440	В	

Sondaggio tromografico T4

Profondità (m)	Vs (m/s)	Categoria sismica ai sensi del D.M. del 17/01/2008	
0.00 - 6.00	240	С	C
6.00 – 18.00	350	С	(Vs og=3/1 m/s)
18.00 – 30.00	420	В	- (Vs,eq=341 m/s)

Sondaggio tromografico T5

Profondità (m)	Vs (m/s)	Categoria sismica ai sensi del D.M. del 17/01/2008	
0.00 – 3.00	220	С	C
3.00 – 10.00	330	С	(\/s ag=354 m/s)
10.00 – 30.00	400	В	(Vs,eq=354 m/s)

Sondaggio tromografico T6

Profondità (m)	Vs (m/s)	Categoria sismica ai sensi del D.M. del 17/01/2008	
0.00 – 3.00	230	С	C
3.00 – 11.00	340	С	(\/s ag=357 m/s)
11.00 – 30.00	400	В	- (Vs,eq=357 m/s)

Sondaggio tromografico T7

Profondità (m)	Vs (m/s)	Categoria sismica ai sensi del D.M. del 17/01/2008	
0.00 – 3.00	220	С	
3.00 - 8.00	320	С	(Vs,eq=356 m/s)
8.00 – 30.00	400	В	(vs,eq-330111/s)

Relazione geotecnica preliminare	5 a 18

Sondaggio tromografico T8

Profondità (m)	Vs (m/s)	Categoria sismica ai sensi del D.M. del 17/01/2008		
0.00-0.50	100	D		
0.50-6.00	250	С	С	
6.00-21.00	410	В	(Vs,eq=357 m/s)	
21.00-30.00	520	В		

Ai sensi del D.M. 17/01/2018, dai dati delle indagini sismiche eseguite i terreni presenti appartengono alla **Categoria C** - "Depositi di terreni a grana grossa mediamente addensati o terreni a grana fine mediamente consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di Vs30 compresi tra 180 m/s e 360 m/s".

2.2 Parametri geotecnici

Da quanto desumibile dai dati acquisiti durante i sopralluoghi effettuati e dalle indagini geofisiche eseguite in questa prima fase, i terreni che costituiscono il volume geotecnicamente significativo delle opere in progetto sono costituiti da:

a) <u>Terreno vegetale</u>: si tratta di arenarie bruno-chiare con intercalazioni di limi argillosi e limi sabbiosi di colore bruno o rossastro e presentano uno spessore medio pari a circa 2 m.

φ'[°]	c' [t/mq]	γ [t/mc]
18	0,0	1,7

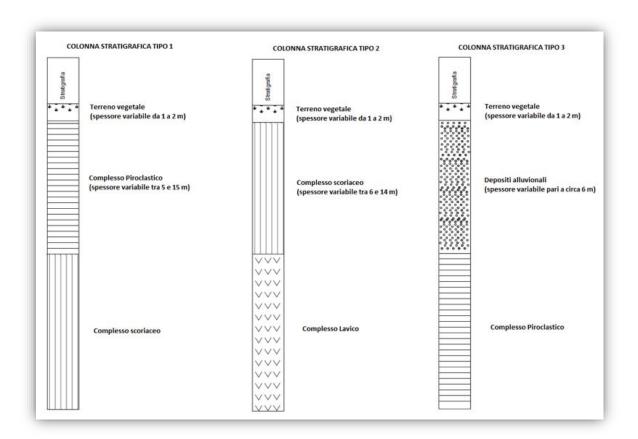
b) <u>Complesso alluvionale</u>: sono rocce prevalentemente sciolte costituite da ghiaie, sabbie limose e limi sabbiosi e limi palustri. Generalmente si presentano scarsamente addensate e sature.

φ'[°]	c' [t/mq]	γ [t/mc]
20-30	0,0	1,7-1,9

c) <u>Complesso piroclastico</u>: si tratta di terreni costituiti da una successione piroclastica stratificata con alternanza di tufi fini e lapilli di pomici o scorie, da mediamente a scarsamente addensate e presentano spessori variabili tra 5 m e 15 m.

Relazione geotecnica preliminare	6 a 18

φ'[°]	c' [kN/mq]	γ [kN/mc]
25-35	0,0	18,0-20,0


d) <u>Complesso scoriaceo</u>: si tratta di scorie varicolori riferibili granulometricamente a sabbie grossolane e fini con livelli saldati.

φ'[°]	c' [kN/mq]	γ [kN/mc]
30-38	0,01	21,0-22,0

e) <u>Complesso lavico</u>: si tratta litotipi a consistenza lapidea, fratturati, di colore grigio-neratstro con sporadiche intercalazioni di priroclastiti sabbiose fini.

φ'[°]	c' [kN/mq]	γ [kN/mc]
35-38	0,01	21,0-22,0

Di seguito si riportano i 3 modelli geologico-tecnici definiti in base ai dati acquisiti dalle indagini.

3. Verifiche geotecniche

3.1 Articolazione del progetto

Il progetto delle opere e degli interventi si articola nelle seguenti fasi:

- 1. caratterizzazione e modellazione geologica del sito;
- 2. scelta del tipo di opera o di intervento e programmazione delle indagini geotecniche;
- 3. caratterizzazione fisico-meccanica dei terreni e delle rocce presenti nel volume significativo e definizione dei modelli geotecnici di sottosuolo;
- 4. definizione delle fasi e delle modalità costruttive;
- 5. verifiche della sicurezza e delle prestazioni;
- 6. programmazione delle attività di controllo e monitoraggio

3.2 Verifica di sicurezza

Le verifiche di sicurezza relative agli stati limite ultimi (SLU) e le analisi relative alle condizioni di esercizio (SLE) devono essere effettuate nel rispetto dei principi e delle procedure indicate nelle NTC'18 al § 2.6. 6.2.4.1.

VERIFICHE NEI CONFRONTI DEGLI STATI LIMITE ULTIMI (SLU)

Per ogni stato limite per perdita di equilibrio (EQU), come definito al §2.6.1, deve essere rispettata la condizione:

$$E_{inst,d} < E_{stb,d}$$

dove E_{inst,d} è il valore di progetto dell'azione instabilizzante, E_{stb,d} è il valore di progetto dell'azione stabilizzante. La verifica della suddetta condizione deve essere eseguita impiegando come fattori parziali per le azioni i valori JF riportati nella colonna EQU della tabella 6.2.I. Per ogni stato limite ultimo che preveda il raggiungimento della resistenza di un elemento strutturale (STR) o del terreno (GEO), come definiti al § 2.6.1, deve essere rispettata la condizione:

$$Ed \le Rd [6.2.1]$$

essendo Ed il valore di progetto dell'azione o dell'effetto dell'azione, definito dalle relazioni

Relazione geotecnica preliminare	8 a 18

$$E_{d} = E\left[\gamma_{F}F_{k}; \frac{X_{k}}{\gamma_{M}}; a_{d}\right]$$
[6.2.2a]

$$\mathbf{E}_{d} = \mathbf{\gamma}_{E} \cdot \mathbf{E} \left[\mathbf{F}_{k}; \frac{\mathbf{X}_{k}}{\mathbf{\gamma}_{M}}; \mathbf{a}_{d} \right]$$
[6.2.2b]

e Rd è il valore di progetto della resistenza del sistema geotecnico definito dalla relazione

$$R_{d} = \frac{1}{\gamma_{R}} R \left[\gamma_{F} F_{k}; \frac{X_{k}}{\gamma_{M}}; a_{d} \right]$$
 [6.2.3]

Effetto delle azioni e resistenza di progetto sono espresse nelle [6.2.2a] e [6.2.3] rispettivamente in unzione delle azioni di progetto $\gamma_{\text{F}} F_{\text{k}}$, dei parametri geotecnici di progetto $X_{\text{k}}/\gamma_{\text{M}}$ e dei parametri geometrici di progetto a_d. Il coefficiente parziale di sicurezza opera direttamente sulla resistenza del sistema. L'effetto delle azioni di progetto γ_R può anche essere valutato direttamente con i valori caratteristici delle azioni come indicato dalla [6.2.2b] con $\gamma_E = \gamma_F$. In accordo a quanto stabilito al §2.6.1, la verifica della condizione [6.2.1] deve essere effettuata impiegando diverse combinazioni di gruppi di coefficienti parziali, rispettivamente definiti per le azioni (A1 e A2), per i parametri geotecnici (M1 e M2) e per le resistenze (R1, R2 e R3). I diversi gruppi di coefficienti di sicurezza parziali sono scelti nell'ambito di due approcci progettuali distinti e alternativi. Nel primo approccio progettuale (Approccio 1) le verifiche si eseguono con due diverse combinazioni di gruppi di coefficienti ognuna delle quali può essere critica per differenti aspetti dello stesso progetto. Nel secondo approccio progettuale (Approccio 2) le verifiche si eseguono con un'unica combinazione di gruppi di coefficienti. Per le verifiche nei confronti di stati limite ultimi non espressamente trattati nei successivi paragrafi, da 6.3 a 6.11, si utilizza l'Approccio 1 con le due combinazioni (A1+M1+R1) e (A2+M2+R2). I fattori parziali per il gruppo R1 sono sempre unitari; quelli del gruppo R2 possono essere maggiori o uguali all'unità e, in assenza di indicazioni specifiche per lo stato limite ultimo considerato, devono essere scelti dal progettista in relazione alle incertezze connesse con i procedimenti adottati.

3.3 Azioni

3.3.1 Azioni Statiche

I coefficienti parziali $\gamma_{\rm F}$ relativi alle azioni sono indicati nella Tab. 6.2.I. NTC2018.

Relazione geotecnica preliminare	9 a 18

Ad essi deve essere fatto riferimento con le precisazioni riportate nel § 2.6.1. Si deve comunque intendere che il terreno e l'acqua costituiscono carichi permanenti (strutturali) quando, nella modellazione utilizzata, contribuiscono al comportamento dell'opera con le loro caratteristiche di peso, resistenza e rigidezza. Nella valutazione della combinazione delle azioni i coefficienti di combinazione ψ_{ij} devono essere assunti come specificato nel Capitolo 2. Si fa salvo, comunque, quanto previsto nel Decreto del Ministro delle Infrastrutture e dei Trasporti del 26 giugno 2014 recante "Norme tecniche per la progettazione e la costruzione degli sbarramenti di ritenuta (dighe e traverse)", ove applicabile

Tab. 6.2.I - Coefficienti parziali per le azioni o per l'effetto delle azioni

	Effetto	Coefficiente Parziale γ_F (o γ_E)	EQU	(A1)	(A2)
Carichi permanenti G1	Favorevole	γ_{G1}	0,9	1,0	1,0
	Sfavorevole		1,1	1,3	1,0
Carichi permanenti G2(1)	Favorevole	Υ _{G2}	0,8	0,8	0,8
	Sfavorevole		1,5	1,5	1,3
Azioni variabili Q	Favorevole	Υo	0,0	0,0	0,0
	Sfavorevole		1,5	1,5	1,3

⁽¹⁾ Per i carichi permanenti G2 si applica quanto indicato alla Tabella 2.6.I. Per la spinta delle terre si fa riferimento ai coefficienti γG1

3.3.2 Azioni sismiche

Le azioni sismiche di progetto, in base alle quali valutare il rispetto dei diversi stati limite considerati, si definiscono a partire dalla "pericolosità sismica di base" del sito di costruzione e sono in funzione delle caratteristiche morfologiche e stratigrafiche che determinano la risposta sismica locale. La pericolosità sismica è definita in termini di accelerazione orizzontale massima attesa ag in condizioni di campo libero su sito di riferimento rigido con superficie topografica orizzontale (di categoria A come definita al § 3.2.2), nonché di ordinate dello spettro di risposta elastico in accelerazione ad essa corrispondente Se(T), con riferimento a prefissate probabilità di eccedenza PVR come definite nel § 3.2.1, nel periodo di riferimento VR, come definito nel § 2.4. In alternativa è ammesso l'uso di accelerogrammi, purché correttamente commisurati alla pericolosità sismica locale dell'area della costruzione.

Relazione geotecnica preliminare	10 a 18

Ai fini della presente normativa le forme spettrali sono definite, per ciascuna delle probabilità di superamento PVR nel periodo di riferimento VR, a partire dai valori dei seguenti parametri su sito di riferimento rigido orizzontale:

- ag: accelerazione orizzontale massima al sito;
- F0: valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- T*C: valore di riferimento per la determinazione del periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

Per i valori di ag, F0 e T*C, necessari per la determinazione delle azioni sismiche, si fa riferimento agli Allegati A e B al Decreto del Ministro delle Infrastrutture 14 gennaio 2008, pubblicato nel S.O. alla Gazzetta Ufficiale del 4 febbraio 2008, n.29, ed eventuali successivi aggiornamenti.

Le verifiche agli stati limite ultimi di opere e sistemi geotecnici si riferiscono al solo stato limite di salvaguardia della vita (SLV) di cui al § 3.2.1; quelle agli stati limite di esercizio si riferiscono al solo stato limite di danno (SLD) di cui allo stesso § 3.2.1.

Le verifiche degli stati limite ultimi in presenza di azioni sismiche devono essere eseguite ponendo pari a 1 i coefficienti parziali γ_F sulle azioni e γ_M sui parametri geotecnici e impiegando le resistenze di progetto, con i coefficienti parziali γ_R indicati nel presente Capitolo 7, oppure con i γ_R indicati nel Capitolo 6 laddove non espressamente specificato.

3.4 Resistenza

Il valore di progetto della resistenza Rd può essere determinato:

- a) in modo analitico, con riferimento al valore caratteristico dei parametri geotecnici del terreno, diviso per il valore del coefficiente parziale $\gamma_{\rm M}$ specificato nella successiva Tab. 6.2. Il e tenendo conto, ove necessario, dei coefficienti parziali $\gamma_{\rm R}$ specificati nei paragrafi relativi a ciascun tipo di opera;
- b) in modo analitico, con riferimento a correlazioni con i risultati di prove in sito, tenendo conto dei coefficienti parziali γ_R riportati nelle tabelle contenute nei paragrafi relativi a ciascun tipo di opera;
- c) sulla base di misure dirette su prototipi, tenendo conto dei coefficienti parziali γ_R riportati nelle tabelle contenute nei paragrafi relativi a ciascun tipo di opera.

Tab. 6.2.II - Coefficienti parziali per i parametri geotecnici del terreno

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale γ_M	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	$tan {\phi'}_k$	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c′ _k	γe	1,0	1,25
Resistenza non drenata	c_{uk}	γ_{cu}	1,0	1,4
Peso dell'unità di volume	γγ	γ_{γ}	1,0	1,0

Per gli ammassi rocciosi e per i terreni a struttura complessa, nella valutazione della resistenza caratteristica occorre tener conto della natura e delle caratteristiche geometriche e di resistenza delle discontinuità strutturali. Il valore di progetto della resistenza si ottiene, per il caso (a), applicando al valore caratteristico della resistenza unitaria al taglio τ_R un coefficiente parziale $\gamma \tau_R = 1,0$ (M1) e $\gamma \tau_R = 1,25$ (M2) oppure procedendo come previsto ai punti b) e c) di cui sopra.

3.5 Fondazioni superficiali

La profondità del piano di posa della fondazione deve essere scelta e giustificata in relazione alle caratteristiche e alle prestazioni della struttura in elevazione, alle caratteristiche del sottosuolo e alle condizioni ambientali. Il piano di fondazione deve essere situato sotto la coltre di terreno vegetale nonché sotto lo strato interessato dal gelo e da significative variazioni stagionali del contenuto d'acqua. In situazioni nelle quali sono possibili fenomeni di erosione o di scalzamento da parte di acque di scorrimento superficiale, le fondazioni devono essere poste a profondità tale da non risentire di questi fenomeni o devono essere adeguatamente difese. In presenza di azioni sismiche, oltre a quanto previsto nel presente paragrafo, le fondazioni superficiali devono rispettare i criteri di verifica di cui alle NTC'18 § 7.11.5.3.1.

3.5.1 Verifiche agli stati limite ultimi (SLU)

Nelle verifiche di sicurezza devono essere presi in considerazione tutti i meccanismi di stato limite ultimo, sia a breve sia a lungo termine. Gli stati limite ultimi delle fondazioni superficiali si riferiscono allo sviluppo di meccanismi di collasso determinati dalla mobilitazione della resistenza del terreno e al raggiungimento della resistenza degli elementi strutturali che compongono la fondazione stessa. Nel caso di fondazioni posizionate

Relazione geotecnica preliminare	12 a 18

su o in prossimità di pendii naturali o artificiali deve essere effettuata la verifica anche con riferimento alle condizioni di stabilità globale del pendio includendo nelle verifiche le azioni trasmesse dalle fondazioni. Le verifiche devono essere effettuate almeno nei confronti dei seguenti stati limite, accertando che la condizione [6.2.1] sia soddisfatta per ogni stato limite considerato:

- SLU di tipo geotecnico (GEO)
 - o collasso per carico limite dell'insieme fondazione-terreno;
 - o collasso per scorrimento sul piano di posa;
 - o stabilità globale.
- SLU di tipo strutturale (STR)
 - o raggiungimento della resistenza negli elementi strutturali.

La verifica di stabilità globale deve essere effettuata, analogamente a quanto previsto nel § 6.8, secondo la Combinazione 2 (A2+M2+R2) dell'Approccio 1, tenendo conto dei coefficienti parziali riportati nelle Tabelle 6.2.I e 6.2.II per le azioni e i parametri geotecnici e nella Tab. 6.8.I per le resistenze globali. Le rimanenti verifiche devono essere effettuate applicando la combinazione (A1+M1+R3) di coefficienti parziali prevista dall'Approccio 2, tenendo conto dei valori dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II e 6.4.I. Nelle verifiche nei confronti di SLU di tipo strutturale (STR), il coefficiente γ_R non deve essere portato in conto.

Tab. 6.4.I – Coefficienti parziali γ_R per le verifiche agli stati limite ultimi di fondazioni superficiali

Verifica	Coefficiente
	parziale
	(R3)
Carico limite	$\gamma_R = 2.3$
Scorrimento	$\gamma_R = 1,1$

3.5.2 Verifiche agli stati limite di esercizio (SLE)

Al fine di assicurare che le fondazioni risultino compatibili con i requisiti prestazionali della struttura in elevazione (§§ 2.2.2 e 2.6.2), si deve verificare il rispetto della condizione [6.2.7], calcolando i valori degli spostamenti e delle distorsioni nelle combinazioni di carico per gli SLE specificate al §2.5.3, tenendo conto anche dell'effetto della durata delle azioni. Forma, dimensioni e rigidezza della struttura di fondazione

Relazione geotecnica preliminare	13 a 18

devono essere stabilite nel rispetto dei summenzionati requisiti prestazionali, tenendo presente che le verifiche agli stati limite di esercizio possono risultare più restrittive di quelle agli stati limite ultimi.

3.6 Fondazioni profonde

Per la verifica a carico limite si adotta l'approccio 2 con una unica combinazione di carico A1+M1+R3, secondo le modalità esposte al p.to 6.4.3 NTC 2018.

MODELLO DI CALCOLO DEL PALO

CARICO LIMITE VERTICALE

La valutazione del carico limite verticale del palo è effettuato attraverso le formule statiche. Ai fini del calcolo, il carico limite di un palo Qlim viene convenzionalmente suddiviso in due aliquote, la resistenza alla punta P e la resistenza laterale S:

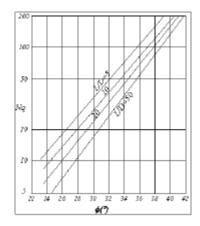
$$Q_{\text{lim}} = P + S = \frac{\pi d^2}{4} p + \int_0^L s(z) dz$$

dove con 'p' si indica la resistenza unitaria alla punta, con 's' la resistenza allo scorrimento all'interfaccia laterale palo-terreno, con 'd' il diametro e con 'L' la lunghezza del palo. La suddivisione è convenzionale in quanto gli sforzi laterali ed alla punta vengono mobilitati con il cedimento secondo leggi alquanto diverse e non necessariamente mono tonicamente crescenti; pertanto non è detto che, a rottura, siano contemporaneamente agenti le resistenze massime P ed S. Nel calcolo di 'p' ed 's' si prescinde dall'interazione dei due fenomeni di rottura.

RESISTENZA ALLA PUNTA

Come per le fondazioni dirette si pone:

$$p = N_a \sigma_{vl} + N_c c$$


dove σ_{vl} rappresenta la tensione litostatica verticale alla profondità L, e cioè quella che agisce sul piano orizzontale passante per la punta del palo. Per Nc vale la formula di trasformazione:

$$N_c = (N_q - 1)\cot(\phi)$$

Il valore di Nq è dato dall' abaco di Berentzantzev:

Esso è valido per pali di piccolo diametro.

RESISTENZA LATERALE

Detta σh=kσ'vz la tensione normale orizzontale agente alla profondità z si pone:

$$s = \alpha + k\mu\sigma'_{vz}$$

nella quale 'a' è un termine coesivo, μ un coefficiente di attrito tra palo e terreno, 'k' un coefficiente di spinta e $\sigma'vz$ la tensione effettiva litostatica alla profondità z.

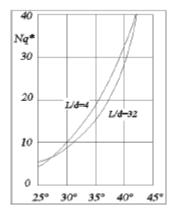
Il coefficiente μ dipende dalla scabrezza dell'interfaccia tra palo e terreno ed ha come limite superiore tan(ϕ), I valori di 'k' adottati sono individuati nella tabella seguente:

Tipo di palo	Valori di k per stato Sciolto	di addensamento denso	Valori di μ
Prefabbricato	1	2	tan(3¢/4)
Gettato in opera	1	3	tan(\phi)
Trivellato	0,5	0,4	$tan(\phi)$
Trivellato - pressato con elica continua	0,7	0,9	tan(\$\phi\$)

Per il termine coesivo si assume:

 $s = \alpha c \cos \alpha dato da$:

Tipo di palo	Valori di c (kPa)	Valori di α
Battuto	c<=25 25 <c<70 c>70</c<70 	1,0 1-0,011 (c-25) 0,5
Trivellato	C<=25 25 <c<70 c>70</c<70 	0,7 0,7-0,008(c-25) 0.35


Relazione geotecnica preliminare	15 a 18

CARICO LIMITE DI PALI TRIVELLATI DI GRANDE DIAMETRO

Per pali trivellati di grande diametro si adotta l'abaco ridotto delle norme AGI. Si è osservato che la resistenza laterale dei pali raggiunge il suo valore limite in corrispondenza di cedimenti del palo relativamente ridotti dell'ordine di 1-2 cm ed indipendenti dal diametro del palo. La resistenza alla punta al contrario si mobilita per spostamenti proporzionali al diametro pari a circa il 10% di questo per pali battuti ed al 25% per i pali trivellati. Nel caso di pali trivellati di grande diametro, pertanto, la resistenza alla punta si mobilita per spostamenti dell'ordine di 15-20 cm. In corrispondenza di spostamenti così elevati la resistenza laterale potrebbe addirittura assumere valori minori di quelli massimi, nel caso di andamento instabile. In ogni caso, applicando gli usuali valori dei coefficienti di sicurezza al carico limite calcolato come somma di P + S sotto i carichi di esercizio il palo avrebbe dei cedimenti troppo elevati. Per questi motivi il progetto dei pali di grande diametro è basato sulla considerazione di uno stato limite di servizio e non di rottura, pertanto, il carico limite del palo di grande diametro non è tanto quel carico che produrrebbe la rottura del terreno, ma quello che produrrebbe cedimenti troppo elevati incompatibili con la stabilità della struttura.

Analogamente ai pali di piccolo diametro il valore di 'p' è dato dalla relazione:

$$p = N_q^* \sigma_{vl} + N_c \varepsilon$$

In entrambi i casi, in condizioni non drenate, si porrà $c = cu e \phi = 0$.

Per pali trivellati il valore dell'angolo ϕ da introdurre nei calcoli sarà $\phi = \phi'$ -3°, dove ϕ' rappresenta l'angolo di attrito del terreno.

CARICHI ORIZZONTALI

Il calcolo del carico limite orizzontale del palo è condotto attraverso la teoria di Broms, essa assume che il comportamento dell'interfaccia palo terreno sia di tipo rigido perfettamente plastico, inoltre il valore della

Relazione geotecnica preliminare	16 a 18

pressione mobilitata sia indipendente dalla forma della sezione ma dipenda solo dalla dimensione trasversale 'd' (diametro del palo, lato di una sezione quadrata ecc.). Immaginando di imprimere una traslazione orizzontale al palo per effetto della resistenza mobilitata nel terreno, lungo il fusto del palo si destano momenti flettenti e la rottura del complesso terreno palo può presentare diverse caratteristiche anche in funzione del vincolo che si ha in testa al palo.

Se il momento di plasticizzazione del palo è talmente grande che in nessun punto del fusto viene superato dal valore massimo del momento flettente, il comportamento è di ' Palo Corto ' ; se il palo è libero di ruotare in testa e se il momento massimo supera il momento di plasticizzazione della sezione del palo, lungo il fusto si forma una cerniera plastica ed il comportamento del palo è quello di ' Palo Lungo ' ; per i pali impediti di ruotare in testa, invece, se si forma una sola cerniera plastica in testa, il palo ha comportamento di ' Palo Intermedio', mentre se si formano due cerniere plastiche una in testa e l'altra lungo il fusto si ha il comportamento di ' Palo lungo '.

La valutazione della pressione di contatto palo-terreno è valutata secondo la relazione:

$$p = 9cd + 3k_p yzd$$

il primo termine, costante, è esteso tra le profondità 1,5d ed L; il secondo variabile linearmente è esteso tra 0 ed L. Il valore di kp (coefficiente di spinta passiva) è dato dalla relazione kp=tan(45+ ϕ /2). In condizioni non drenate si porrà c=cu e ϕ =0, quando si individua che ϕ =0 si trascura automaticamente il secondo termine (esso potrebbe essere trascurato imponendo γ =0, ma il calcolo automatico condurrebbe ad una errata valutazione del carico limite verticale), per terreni incoerenti si porrà c=0.

3.7 Verifiche di stabilità globale pendii

In riferimento alle verifiche di stabilità globale dei pendii si rimanda alla progettazione esecutiva delle opere, avendo preventivamente valutato già in questa fase il soddisfacimento della stabilità sia nello stato ante operam che post operam con l'introduzione degli scarichi teorici derivanti dalle strutture di elevazione e per come riportate nella relazione geologica allegata al presente progetto.

Nella fase di progettazione esecutiva, supportata dalla caratterizzazione geotecnica dei terreni risultante dalla futura campagna di più specifiche prove in sito (carotaggi puntuali), nonché a seguito della definizione delle forzanti e degli scarichi desumibili dalle analisi strutturali e conseguente dimensionamento definitivo delle opere di fondazioni (plinto e palificata), si procederà alla dettagliata verifica post operam.

Relazione geotecnica preliminare	17 a 18

3.7.1 Verifica di stabilità in condizioni sismiche

Le analisi di stabilità dei pendii in condizioni sismiche si rimandano alla progettazione esecutiva delle opere. Al fine di determinare le azioni sismiche di progetto si è effettuata una caratterizzazione sismica del sito che individua la pericolosità sismica locale, riportata nella relazione geologica allegata al presente progetto.

Conclusioni

Alla luce di quanto esposto nella successiva fase di progettazione esecutiva, per il dimensionamento e le verifiche di sicurezza delle opere geotecniche necessarie al progetto per la realizzazione dell'esercizio del parco eolico "Phobos", saranno utilizzati i metodi e le norme elencate nella presente relazione preliminare.

