

REGIONE BASILICATA PROVINCIA DI POTENZA COMUNE DI MONTEMILONE COMUNE DI VENOSA

AUTORIZZAZIONE UNICA ex. d.lgs. 387/03

Progetto Definitivo per la realizzazione del parco eolico "SERRA LONGA" e relative opere connesse nel comune di VENOSA e MONTEMILONE (Pz)

Titolo elaborato

A.7 - Analisi degli effetti della rottura degli organi rotanti

Codice elaborato

COMMESSA	FASE	ELABORATO	REV.
F0375	А	R07	Α

Riproduzione o consegna a terzi solo dietro specifica autorizzazione.

Scala

_

Giugno 2021	Prima emissione	FTR	GDS	GDS
DATA	DESCRIZIONE	REDATTO	VERIFICATO	APPROVATO

Proponente

Crono Rinnovabili s.r.l.

Largo Augusto 3 20122 Milano

Progettazione

F4 Ingegneria srl

Via Di Giura - Centro direzionale, 85100 Potenza Tel: +39 0971 1944797 - Fax: +39 0971 55452 www.f4ingegneria.it - f4ingegneria@pec.it

Il Direttore Tecnico
(ing. Giovanni DI SANTO)

Società certificata secondo la norma UNI-EN ISO 9001:2015 per l'erogazione di servizi di ingegneria nei settori: civile, idraulica, acustica, energia, ambiente (settore IAF: 34).

Analisi degli effetti della rottura degli organi rotanti

Sommario

1	Premessa	2
2	Geometria del problema e teoria di calcolo	3
3	Calcolo della gittata massima	5
4	Conclusioni	7

Crono Rinnovabili S.r.l.

Largo Augusto 3 -

20122 Milano

Analisi degli effetti della rottura degli organi rotanti

1 Premessa

La tecnologia costruttiva degli aerogeneratori è alquanto sofisticata e di chiara derivazione aeronautica, per cui, la valutazione della gittata massima degli elementi di un aerogeneratore, in caso di rottura accidentale, comporta lo sviluppo di modelli di calcolo articolati e complessi.

I modelli teorici che meglio possono caratterizzare il moto nello spazio dei frammenti di pala o dell'intera pala possono essere ricondotti ai casi seguenti:

- <u>1º caso</u>: traiettoria a giavellotto con minore resistenza aerodinamica. Calcolo della gittata massima del generico frammento di ala, in assenza di moto rotazionale intorno ad un asse qualsiasi, con traiettoria del frammento complanare al rotore.
- <u>2° caso</u>: traiettoria a giavellotto con maggiore resistenza aerodinamica. Calcolo della gittata massima del generico frammento di ala, sempre in assenza di moto rotazionale, intorno ad un asse qualsiasi, con traiettoria complanare al rotore e frammento ortogonale rispetto al piano del rotore.
- <u>3° caso</u>: calcolo della gittata massima in presenza di moti di rotazione intorno a ciascuno dei tre assi principali del frammento stesso. In caso di rottura, infatti, per il principio di conservazione del momento angolare, il generico spezzone di pala tende a ruotare intorno all'asse ortogonale al proprio piano; inoltre, a causa delle diverse pressioni cinetiche esercitate dal vento, lo spezzone di pala tende anche a ruotare intorno a ciascuno dei due assi principali appartenenti al proprio piano.

Le condizioni prese in considerazione nel 3°caso, permettono senza dubbio un calcolo più preciso e maggiormente corrispondente al reale moto di una pala staccatasi dal rotore per cause accidentali e forniscono, sperimentalmente, un valore di gittata di circa il 20% in meno di quella fornita dal caso 1.

Come già accennato precedentemente, la risoluzione del 3° caso è però più complessa e richiede la conoscenza di alcune caratteristiche degli aerogeneratori, non sempre fornite dai produttori, poiché oggetto di brevetto.

Pertanto si è deciso di utilizzare il 1°caso, di facile soluzione e che fornisce un risultato maggiorato di circa il 20%, garantendo così un ulteriore margine di sicurezza.

L'aerogeneratore preso come riferimento per la presente verifica e previsto in progetto è del tipo Vestas V162-5.6 MW-HH119.

Geometria del problema e teoria di calcolo

Le equazioni del moto di un punto materiale soggetto solo alla forza di gravità sono:

$$\ddot{x} = 0$$
 $\ddot{y} = -g$

dove g=9.81 m/s² è l'accelerazione di gravità. La legge del moto che costituisce soluzione di queste equazioni è:

$$x(t) = x_0 + v_x t$$

$$y(t) = y_0 + v_y t - \frac{1}{2}gt^2$$

dove (x_0,v_0) è la posizione iniziale del punto materiale, e (v_x,v_y) è la sua velocità. La traiettoria del punto materiale intercetta il suolo al tempo T tale che y(T)=0. Dalla legge del moto si ottiene:

$$T = \frac{v_y}{g} + \frac{1}{g}\sqrt{v_y^2 + 2y_0g}$$

in cui è stata scartata la soluzione corrispondente a tempi negativi.

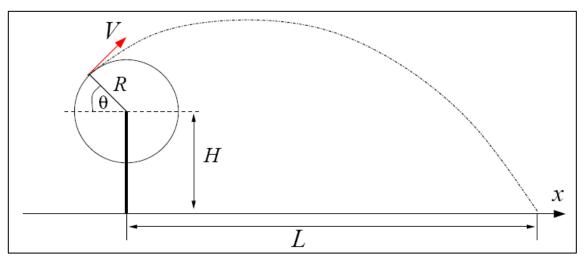


Figura 1: geometria del problema

La posizione e la velocità iniziale sono determinate dall'angolo θ e dalla velocità iniziale V del frammento di pala al momento del distacco. Esse sono legate alla posizione ed alla velocità iniziale dalle relazioni:

Crono Rinnovabili S.r.l.

Largo Augusto 3 -20122 Milano

Analisi degli effetti della rottura degli organi rotanti

$$x_0 = -R \cos(\theta)$$

 $y_0 = H + R \sin(\theta)$
 $v_x = V \sin(\theta)$
 $v_y = V \cos(\theta)$

La gittata L è la distanza dal palo del punto di impatto al suolo del frammento di pala. Dalla legge del moto si ottiene:

$$L = x(T)$$

Sostituendo l'espressione per T ricavato sopra, si ricava la gittata L in funzione di V e di θ:

$$L = \frac{V \sin(\theta)}{g} \left[V \cos(\theta) + \sqrt{V^2 \cos^2(\theta) + 2(H + R \sin(\theta))g} \right] - R \cos(\theta)$$

Si noti che, fissato un generico angolo θ , la gittata aumenta quadraticamente con V, salvo i casi particolari θ =±90°, 0°, 180°, nei quali quest'ultima aumenta linearmente con V oppure è pari ad R.

Calcolo della gittata massima

Come già precedentemente indicato, il calcolo della gittata massima richiede la conoscenza dei valori H (altezza del mozzo), R (distanza dal mozzo del baricentro del frammento staccatosi dal rotore) e V (velocità di distacco del frammento di pala).

Nel caso in esame, i valori di H ed R sono rispettivamente H=119 m ed R=81 m, e per il calcolo della velocità di distacco del frammento di pala si ricorre alla seguente formula:

$$V = \frac{2 \times \pi \times R \times rpm}{60}$$

Il massimo numero di giri per minuto che l'aerogeneratore compie è pari 11.5, quindi supponendo che la rottura della pala avvenga vicino al mozzo e considerando R=27 m (lunghezza pala/3), si ottiene una velocità di distacco di 32 m/s nel baricentro della pala.

Di seguito si riporta il grafico della gittata in funzione dell'angolo e della velocità di distacco.

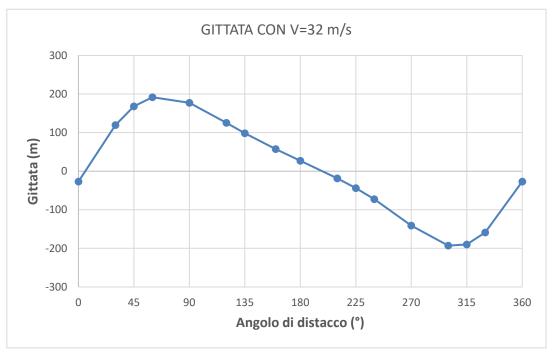


Figura 2: andamento della gittata in funzione dell'angolo e della velocità di distacco

Nel grafico si propone la gittata massima nel caso in cui si distacchi l'intera pala dal mozzo con una velocità di 32 m/s, che costituisce la massima velocità raggiunta dal baricentro della pala allorquando il rotore compie 11.5 rivoluzioni per minuto.

La gittata massima è di circa 192 m.

Il valore ricavato è sicuramente compatibile con quello degli studi forniti dalle ditte

Si sottolinea che il valore precedentemente calcolato sovrastima quello reale della gittata massima; infatti la presenza dell'aria genera delle forze di resistenza viscose che agendo sulla superficie del frammento ne riducono tempo di volo e distanza.

Analisi degli effetti della rottura degli organi rotanti

A questa azione vanno aggiunte le forze aerodinamiche di portanza che possono innescarsi sul frammento di pala in virtù del profilo aerodinamico secondo il quale vengono modellate le sezioni trasversali della pala stessa; tale portanza potrebbe addirittura prolungare il volo e allungare la distanza percorsa.

Questa possibilità è correlata, tra l'altro, al rollio, all'imbardata ed all'impennarsi della pala durante il volo. L'azione della portanza può essere ricondotta e schematizzata nei calcoli con una riduzione percentuale della forza peso.

F4 Ingegneria srl

www.f4ingegneria.it - f4ingegneria@pec.it

Analisi degli effetti della rottura degli organi rotanti

4 Conclusioni

Avendo ottenuto la lunghezza di 192 m e considerando tutte le condizioni più gravose al momento dell'ipotetica rottura (massimo numero di giri del rotore, inclinazione della pala corrispondente alla massima velocità, esclusione degli effetti dovuti alla resistenza dell'aria che la pala incontra durante la sua traiettoria), si conclude che l'ubicazione prescelta per gli aerogeneratori del Parco Eolico in oggetto, con distanza superiore ai 500 m dalle abitazioni, garantisce, in caso di rottura accidentale, che non si possano determinare condizioni di pericolo per cose o persone.