

Direzione Progettazione e Realizzazione Lavori

S.S.131 DI "CARLO FELICE"

Adeguamento e messa in sicurezza della S.S.131 Risoluzione dei nodi critici 2°stralcio dal km 108+300 al km 158+000

PROGETTO ESECUTIVO

CA284

R.T.I. di PROGETTAZIONE:

Mandataria

PRO Via G.B. Sammartini n'5 20125 – Milano Tel. 02 6787911 Progetto Progett

Mandante

Via Artemide n'3 92100 Agrigento Tel. 0922 421007 email: deltaingegneria@pec.it

PROGETTISTI:

Ing. Riccardo Formichi – Pro Iter srl (Integratore prestazioni specialistiche) Ordine Ing. di Milano n. 18045

Ing. Nicola D'Alessandro — Delta Ingegneria srl Ordine Ing. di Agrigento n. A995

IL GEOLOGO

Dott. Geol. Massimo Mezzanzanica — Pro Iter srl Albo Geol. Lambardia n. 4762

COORDINATORE PER LA SICUREZZA IN FASE DI PROGETTAZIONE

Ing. Diego Ceccherelli

Ordine Ing. di Milano n. 15813

VISTO: IL RESP. DEL PROCEDIMENTO

Dott. Ing. Salvatore Frasca

PROTOCOLLO

DATA

MONITORAGGIO AMBIENTALE

Relazione Valutazione ozono ante e post operam

CODICE PROG	ETTO LIV. PROG. N. PROG.	NOME FILE TOOMOOOMONREO2A.dwg			REVISIONE	SCALA
LOPL	CONST				A	
D						
С						
В						
А	REVISIONE PER ISTRUTTORIA,	VERIFICA E CONTROLLI D.LGS. 35/11	Aprile 2021	Ing.D. D'ALESSANDRO	Ing. M. CARLINO	Ing.N. D'ALESSANDRO
REV.	DESCRIZIONE		DATA	REDATTO	VERIFICATO	APPROVATO

Adeguamento e messa in sicurezza della S.S. 131 dal km 108+300 al km 209+500 Risoluzione dei nodi critici

2° stralcio dal km 108+300 al km 158+000

Progetto Esecutivo

INDICE

1	PRE	EMESSA	2
2	NOF	RMATIVA DI RIFERIMENTO	3
3	CAR	RATTERIZZAZIONE DELLO STATO ATTUALE	4
3	3.1 3.2 3.3	CARATTERISTICHE DELL'OZONO	.4
4	STIN	MA DELLE CONCENTRAZIONI DI OZONO	9
4	4.1 4.2	METODOLOGIA DI FORMAZIONE DELL'OZONO	
5	CON	NCLUSIONI1	8

Adeguamento e messa in sicurezza della S.S. 131 dal km 108+300 al km 209+500 Risoluzione dei nodi critici

2° stralcio dal km 108+300 al km 158+000

Progetto Esecutivo

1 Premessa

Il presente documento si pone come obiettivo quello di ottemperare a quanto richiesto nella Delibera CIPE 108/2015 in riferimento allo Studio sull'adeguamento e messa in sicurezza della S.S. 131 "CARLO FELICE", dal KM 108+300 al km 209+500.

In questo documento si risponderà a quanto attiene gli interventi dello Stralcio 2 dell'intero progetto di adeguamento e messa in sicurezza della S.S.131, limitatamente al tratto dal Km 108+300 al Km 158+000, con particolare riferimento ai due svincoli di nuova realizzazione sull'asse principale della SS131:

- Vo1 Nuovo svincolo di Paulilatino al km 120+000;
- Vo2 Nuovo svincolo di Mulargia Macomer al km 148+500.

Per quanto riguarda la prescrizioni relative agli aspetti ambientali, infatti, in riferimento alla componente Atmosfera, viene richiesto di "effettuare una ulteriore valutazione per le concentrazioni di ozono attraverso un modello di dispersione atmosferica che tenga conto delle possibili reazioni chimiche tra gli inquinanti emessi, così da poter includere in maniera criticizzata al contesto tale inquinante tra quelli oggetto di monitoraggio nella situazione ante-operam e in quella post-operam" (Punto 1.2.1).

A valle delle considerazioni sulle emissioni di ozono, viene prima effettuata una caratterizzazione dello stato attuale circa il livello di fondo dell'inquinante stesso, effettuata mediante informazioni bibliografiche disponibili sul sito dell'ARPA Sardegna.

Tali valutazioni complessive porteranno quindi a stimare i livelli di concentrazione di Ozono nella fase ante-operam e nella fase post-operam e forniranno, inoltre, un punto di riferimento quantitativo con il quale confrontare e valutare gli esiti dei monitoraggi che saranno effettuati in campo.

Lo Studio riportato nelle pagine sequenti sarà articolato secondo i sequenti passaggi:

- Analisi della normativa di riferimento, in merito all'inquinante Ozono;
- Caratterizzazione dello stato attuale, mediante le informazioni bibliografiche disponibili sul sito di ARPA Sardegna;
- Analisi delle reazioni chimiche di formazione dell'ozono a partire dagli inquinanti precursori;
- Analisi dei fattori di emissione degli inquinanti;
- Analisi modellistiche mediante modello di simulazione matematica;
- Valutazioni conclusive in relazione alle concentrazioni di output.

Adeguamento e messa in sicurezza della S.S. 131 dal km 108+300 al km 209+500 Risoluzione dei nodi critici

2° stralcio dal km 108+300 al km 158+000

Progetto Esecutivo

2 Normativa di riferimento

L'inquinante Ozono viene trattato a livello normativo dal D.Lgs. 13 agosto 2010, n. 155 "Attuazione della direttiva 2008/50/CE relativa alla qualità dell'aria ambiente e per un'aria più pulita in Europa" (Suppl. Ord. alla G.U. n. 216 del 15 settembre 2010); con tale decreto il quadro normativo nazionale in materia di qualità dell'aria ha subito sostanziali modifiche, nel contempo allineandosi definitivamente alla legislazione europea.

Con questo decreto infatti vengono recepite le previsioni della Direttiva 2008/50/CE e abrogati tutti precedenti atti normativi in materia di valutazione e di gestione della qualità dell'aria ambiente.

Nel D.Lgs. 155/2010 vengono trattati tutti i principali inquinanti, tra cui ad esempio le Polveri sottili e il biossido di azoto, e per ognuno di questi viene definito il livello limite, la soglia di informazione, il margine di tolleranza, ecc. Per quanto riguarda la molecola dell'Ozono vengono definite la soglia di informazione e la soglia di allarme, riportate nella sequente tabella:

OZONO	Periodo di mediazione	Limite	Superamenti
Valore obiettivo	Media massima giornaliera calcolata su 8 ore	120 µg /mc	≤ 25 volte/anno come media su 3 anni
Soglia di informazione	1 ora	18ο μ g /mc	
Soglia di allarme	1 ora	240 μ g /mc	
obiettivo per la protezione della vegetazione	AOT4o, calcolato sulla base dei valori di 1 ora da maggio a luglio	18000 µg /mc come media su 5 anni	

Limiti di riferimento per l'Ozono (D.Lgs. 155/2010 – Allegato XII)

Per una migliore comprensione della tabella, si riportano le seguenti definizioni:

- "soglia di allarme": livello oltre il quale, anche con esposizioni di breve durata, si hanno rischi per la salute per tutta la popolazione e, di conseguenza, il suo raggiungimento impone di adottare provvedimenti immediati;
- "soglia di informazione": livello oltre il quale, anche con esposizioni di breve durata, si hanno rischi per la salute solo per alcuni gruppi sensibili di popolazione e, di conseguenza, il suo raggiungimento impone di assicurare informazioni tempestive;
- "valore obiettivo": livello di sicurezza da conseguire, ove possibile, entro una data prestabilita;
- "media su 8 ore": media mobile calcolata con slittamento su un intervallo di 8 ore consecutive appartenenti allo stesso giorno;
- "AOT40": parametro che si calcola come somma delle differenze tra le concentrazioni orarie superiori a 80 µg/m3, rilevate in un dato periodo di tempo, utilizzando solo i valori orari rilevati ogni giorno tra le 8:00 e le 20:00, ora dell'Europa centrale (come (µg/m3)ora).

Adeguamento e messa in sicurezza della S.S. 131 dal km 108+300 al km 209+500 $\,$

Risoluzione dei nodi critici

2° stralcio dal km 108+300 al km 158+000

Progetto Esecutivo

3 Caratterizzazione dello stato attuale

3.1 CARATTERISTICHE DELL'OZONO

L'ozono è un gas incolore ed inodore, fortemente instabile, dotato di un elevato potere ossidante, la cui formula è composta da tre atomi di ossigeno.

Si forma in atmosfera per effetto di reazioni favorite dalla radiazione solare, in presenza dei cosiddetti inquinanti precursori (soprattutto ossidi di azoto, NOx) che portano alla formazione di molecole costituite da tre atomi di ossigeno (O3).

La sua presenza al livello del suolo dipende fortemente dalle condizioni meteoclimatiche e pertanto è variabile sia nel corso della giornata che delle stagioni. Le concentrazioni di Ozono nei bassi strati dell'atmosfera sono di norma relativamente basse e tali da non creare problemi alla salute delle persone.

In alcune occasioni si hanno invece dei fenomeni che portano alla formazione del cosiddetto smog fotochimico, costituito da una miscela di più sostanze in cui l'Ozono è una delle più importanti.

Questi fenomeni si manifestano generalmente su aree geografiche ampie in periodi di forte irraggiamento solare e bassa umidità, prevalentemente in ore pomeridiane.

In ambienti interni la concentrazione di ozono è notevolmente inferiore per questa sua elevata reattività che ne consente la rapida distruzione.

È un inquinante molto tossico per l'uomo, irritante per tutte le membrane mucose ed una esposizione critica e prolungata può causare tosse, mal di testa e perfino edema polmonare.

L'ozono è, fra gli inquinanti atmosferici, quello che svolge una marcata azione fitotossica nei confronti degli organismi vegetali, con effetti immediatamente visibili di necrosi fogliare ed effetti meno visibili come alterazioni enzimatiche e riduzione dell'attività di fotosintesi. Pertanto in situazioni di "allarme" le persone più sensibili o a rischio è consigliabile rimangano in casa.

I soggetti sensibili possono essere individuati negli anziani, nei bambini, nelle donne in gravidanza, ed in generale in chi svolge attività lavorativa o fisica all'aperto. Tra i soggetti a rischio, invece, si possono includere le persone asmatiche, con patologie polmonari o cardiache.

3.2 PRINCIPI DI FORMAZIONE DELL'OZONO

L'ozono viene prodotto nel corso di varie reazioni chimiche in presenza della luce del sole a partire dagli inquinanti primari, in modo particolare dal biossido di azoto; le principali sorgenti antropogeniche risultano essere i processi di combustione in genere. In presenza di altri ossidanti fotochimici, di biossido di zolfo e di biossido di azoto, l'azione dell'ozono viene potenziata.

Nelle condizioni di temperatura e pressione che si riscontrano mediamente al suolo (ozono troposferico) l'ozono è un gas instabile e decade liberando una molecola di ossigeno, secondo la sequente reazione:

$$03 -> 02 + 0$$

L'ozono troposferico, inoltre, può essere generato tramite un meccanismo di "smog fotochimico": in genere, le condizioni che comportano il manifestarsi dello smog fotochimico si innescano durante il traffico di prima mattina (picco di traffico) che aumenta la presenza in atmosfera di idrocarburi e ossidi

Adeguamento e messa in sicurezza della S.S. 131 dal km 108+300 al km 209+500

Risoluzione dei nodi critici

2° stralcio dal km 108+300 al km 158+000

Progetto Esecutivo

di azoto (NO e NO2). L'azione della luce del sole causa la fotolisi del biossido di azoto in monossido di azoto e un radicale ossigeno:

$$NO_2$$
 +radiazione solare -> $NO+O$

Questa reazione avviene molto più velocemente man mano che aumenta l'irraggiamento solare. Gli atomi di ossigeno che si formano nel corso di questa reazione possono poi reagire con le molecole di ossigeno presenti nell'aria per produrre l'ozono, incrementando così i livelli di ozono a livello del suolo:

$$0+02 -> 02$$

L'ozono a sua volta può reagire con l'ossido nitrico per produrre biossido di azoto e ossigeno:

Queste tre reazioni costituiscono il cosiddetto ciclo fotostazionario dell'ozono e, di per sé, mantengono la concentrazione dell'ozono ad un livello stabile e non inquinante tramite un equilibrio dinamico. Se varia però il rapporto tra NO e NO2, si sposta l'equilibrio dell'ultima reazione (di notte c'è poca NO2 e quindi l'O3 prodotto rimane in atmosfera).

La produzione di ozono fotochimico è governata da un processo non lineare e dipende da diversi fattori esterni. Un aumento del traffico ad esempio aumenta la concentrazione di ossidi di azoto e di conseguenza abbassa la concentrazione di ozono; per questa ragione non è raro che i valori massimi di ozono si registrano fuori città.

3.3 LIVELLI DI CONCENTRAZIONE ALLO STATO ATTUALE

Di seguito si riportano i valori dell'ozono registrati dalle stazioni gestite dall'ARPA Sardegna (https://portal.sardegnasira.it). Tali valori hanno lo scopo di definire un inquinamento di fondo medio per l'inquinante, che sarà utile per effettuare le corrette considerazioni modellistiche che seguiranno.

È stata individuata come centralina di riferimento per la zona interessata dal progetto la centralina "CENMA1" proprio nel comune di Macomer.

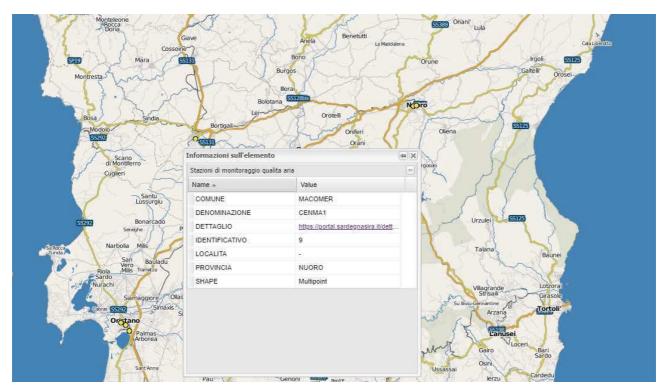


Tabella 1 Individuazione della centralina di riferimento per il monitoraggio dell'aria della rete ARPAS.

Per le analisi dell'andamento dei valori registrati si è fatto riferimento ai valori registrati nell'anno 2019. Tale scelta è stata condizionata dal non ritenere l'anno 2020 significativo dal punto di vista del traffico stradale, fortemente influenzato dalla particolare condizione storica intercorsa.

Si riporta, come dato fortemente esplicativo, il grafico con le medie mensili dell'intero anno 2019. Si evidenzia come i valori registrati per l'ozono siano fortemente influenzati dalla stagionalità.

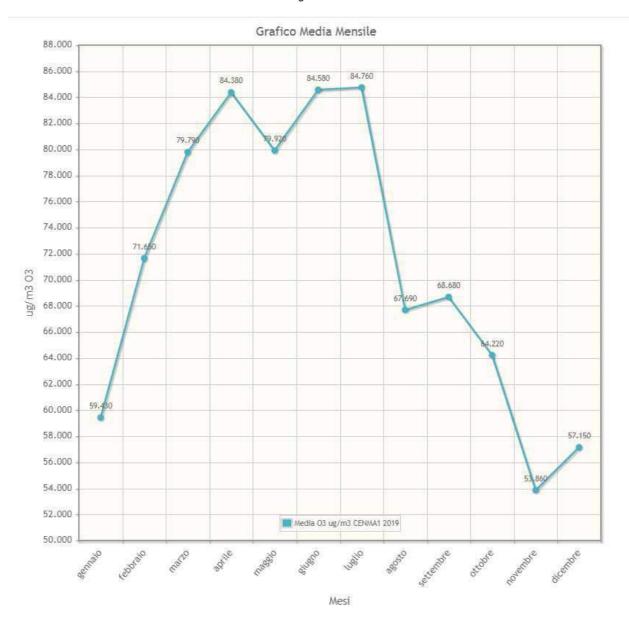


Figura 1 Grafico medie mensili livelli di 03 registrati presso la centralina di Macomer CENMA1

In relazione al valore obiettivo per la protezione della salute umana (120 μ g/mc sulla massima media mobile giornaliera di otto ore da non superare più di 25 volte in un anno civile come media sui tre anni) si riportano i risultati relativi ai valori massimi sulla media trascinata di 8 ore rilevati per l'inquinante O3 riferiti ad ogni giorno dell'anno 2019.

GG_Mese	gen	feb	mar	apr	mag	giu	lug	ago	set	ott	nov	dic
1	68,030	66,300	87,640	98,610	89,130	99,720	111,920	105,240	74,910	88,640	57,530	57,460
2	62,860	87,210	87,740	91,890	93,620	100,850	132,920	94,670	82,330	75,240	53,120	42,670
3	67,800	80,750	85,080	90,680	97,820	95,990	111,550	90,550	78,010	86,850	68,510	57,120
4	64,520	71,860	104,880	87,820	89,650	92,380	114,500	107,980	91,350	86,100	69,600	57,980
5	69,790	85,310	101,330	90,560	86,350	98,050	110,870	104,320	97,590	74,660	68,000	55,740
6	64,070	76,180	88,160	97,420	90,030	98,860	100,640	101,190	72,140	66,140	68,540	50,880

Adeguamento e messa in sicurezza della S.S. 131 dal km 108+300 al km 209+500 Risoluzione dei nodi critici

2° stralcio dal km 108+300 al km 158+000

					Progett	o Esecuti	vo					
7	53,470	81,140	90,010	83, 240	96,820	85,840	82,860	89,570	78,410	68,920	61,160	65,670
8	61,030	82,410	77,310	89,790	106,360	85,610	96,880	71,290	73,580	83,710	60,640	61,950
9	69,020	73,500	82,460	85,440	97,710	80,780	87,360	85,210	66,380	88,080	60,020	72,990
10	69,390	98,270	95,950	87,820	93,010	80,850	104,160	80,180	79,840	71,860	59,430	69,940
11	46,830	89,820	88,530	88,380	67,580	86,300	100,310	86,330	72,900	58,190	55,730	66,180
12	69,360	79,150	94,460	87,710	94,770	89,820	105,670	86,710	81,560	77,150	61,020	76,400
13	62,070	81,130	85,330	102,950	84,770	93,330	109,740	78,450	91,660	75,310	62,490	78,280
14	68,090	79,250	82,000	107,090	80,440	89,510	89,970	75,420	105,780	68,180	61,080	80,150
15	64, 280	76,430	82,680	95,400	81,750	81,690	93,500	79,950	95,880	75,150	69,300	65,610
16	63,500	87,160	79,770	91,640	96,830	89,070	92,240	66,790	94,230	77,890	63,650	55,160
17	63,470	84,190	86,990	100,160	96,860	100,450	98,240	75,180	90,070	90,190	60,120	51,820
18	69,240	80,790	86,150	101,880	94,490	101,670	107,680	85,770	77,320	85,710	73,420	68,480
19	68,250	80,780	90,700	109,440	93,250	99,610	106,570	92,110	81,840	100,540	66,920	70,050
20	65,620	83,090	89,590	114,650	85,240	101,150	110,730	88,230	83,380	92,590	62,420	56,000
21	68,780	81,430	94,860	111,980	87,890	96,390	100,400	79,310	74,020	85,740	62,120	58,230
22	74,240	89,420	96,170	101,090	100,200	82,270	99,840	77,400	69,380	83,530	45,370	72,240
23	76,050	90,170	98,520	83,340	101,060	88,950	93,720	69,720	68,390	82,710	60,790	74,170
24	68,500	83,170	102,620	86,700	105,240	95,110	102,280	87,460	66,840	80,040	64,010	71,400
2.5	74,680	86,000	112,770	86,500	107,640	99,120	101,780	84,320	79,190	75,250	56,430	62,110
26	78,890	92,250	102,040	87,540	86,670	107,140	99,050	84,450	71,740	75,160	54,010	60,990
27	71,360	94,360	87,320	86,660	87,310	107,120	77,540	79,190	73,010	66,840	55,090	61,060
28	74,750	102,130	89,640	90,800	81, 290	105,810	60,990	56,780	76,620	71,250	58,040	61,090
29	72,320	*	97,270	88,520	68,700	113,250	64,760	86,580	95,050	72,490	58,550	66,690
30	79,360	*	99,110	90,510	79,860	113,510	84,700	85,560	80,800	67,550	58,410	66,780
31	79,510	*	97,780	*	90,390	*	89,510	70,040	*	58,770	*	68,180

Si è registrata la violazione del valore obiettivo di 120 μ g/m3 solo una volta nei primi giorni del mese di luglio.

Dai dati reperiti nella "Relazione annuale sulla qualità dell'aria in Sardegna" redatta da ARPA Sardegna, per l'anno 2018, l'ultimo disponibile, si registrano 3 superamenti triennali per il valore obiettivo per l'ozono (120 da non superare più di 25 volte in un anno civile come media sui tre anni).

Volendo riferirsi ad un valore medio annuo per l'inquinamento di O3 questo si attesterebbe su un valore di 82 μ g/m3 (analisi anno 2019). Tale valore medio sarà implementato nel modello di simulazione durante il calcolo delle concentrazioni di Ozono prodotte dall'opera in oggetto di studio come concentrazione di fondo.

4 Stima delle concentrazioni di Ozono

4.1 METODOLOGIA DI FORMAZIONE DELL'OZONO

L'ozono è un inquinante secondario, vale a dire un inquinante che si forma in atmosfera tramite delle reazioni chimiche tra diverse sostanze presenti, ed è quindi possibile stimarne la formazione in atmosfera solo valutando la presenza dei suoi precursori.

Questo comporta il calcolo delle stime di tali inquinanti precursori, quali gli ossidi di azoto (NOx), il monossido di carbonio (CO), il metano (CH4) ed i composti organici non-metanici (NMVOC). Elaborando tali inquinanti attraverso opportuni coefficienti (TOFP - Tropospheric Ozone-Forming Potentials dell'Agenzia Europea per l'Ambiente), che tengono conto del potenziale contributo di ogni inquinante alla formazione dell'ozono, risulta possibile sia valutare in termini percentuali il contributo di ogni precursore alla formazione dell'ozono sia individuare le principali fonti di produzione dei suoi precursori (presi nel loro insieme). Nella tabella seguente si riposta il contributo potenziale alla formazione dell'ozono dei principali precursori considerati nello studio di impatto ambientale:

Inquinante	Fattore Peso
NOx	1,22
CO	0,11

Fattori Peso (TOFP) attribuiti ai precursori dell'Ozono (Fonte: ARPA Piemonte)

Mediante i coefficienti sopra riportati, è possibile stimare i quantitativi di Ozono derivanti dalle diverse reazioni chimiche che coinvolgono gli inquinanti individuati come precursori.

Nella seguente tabella si riportano i passaggi matematici con cui si giunge a calcolare il fattore di emissione dell'inquinante ozono, per entrambi gli scenari considerati:

SCENARIO ATTUALE - PAULILATINO								
Inquinanti precursori	Kg/ora	g/sec	g/sec O ₃					
NOx	1,880	0,522	0,63684					
CO	1,568	0,435	0,04785					
	Totale	g/s O3:	0,6847					

SCENARIO ATTUALE - MACOMER								
Inquinanti precursori	Kg/ora	g/sec	g/sec O ₃					
NOx	1,847	0,513	0,62586					
СО	1,550	0,430	0,04736					
	Totale	g/s O3:	0,6732					

Calcolo del Fattore di Emissione dell'Ozono – Scenario attuale

SCENARIO FUTURO - PAULILATINO								
Inquinanti precursori Kg/ora g/sec g/sec O3								
NOx	2,242	0,622	0,7588					
CO	1,859	0,516	0,0568					
Totale g/s	O3:		0,816					

SCENARIO FUTURO - MACOMER									
Inquinanti precursori Kg/ora g/sec g/sec Og									
NOx	2,262	0,628	0,766						
CO	1,892	0,526	0,0578						
	Totale	g/s O3:	0,824						

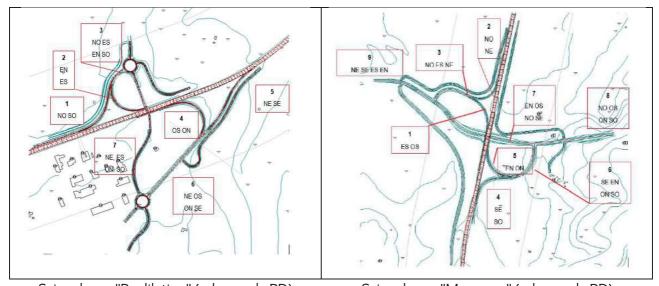
Calcolo del Fattore di Emissione dell'Ozono – Scenario futuro

I dati di traffico riportati di seguito sono estrapolati dallo Studio di Impatto Ambientale già redatto per l'Opera in esame, e di cui il presente documento risulta essere una integrazione.

Si riportano quindi le caratteristiche territoriali e tecniche estrapolate nel suddetto SIA ed utili al proseguimento del presente studio.

Gli interventi oggetto del presente servizio sono i sequenti:

- Nuovo svincolo di Paulilatino al km 120+000: in questo tratto è presente un'intersezione a raso in carreggiata nord (direzione Cagliari Sassari). L'intervento prevede di realizzare uno svincolo completo realizzando una connessione anche in carreggiata sud (da Sassari verso Cagliari), sfruttando l'opera di scavalco presente. E' prevista anche una riorganizzazione della viabilità locale limitrofa.
- Nuovo svincolo di Macomer-Mulargia al km 148+600: in sostituzione di una doppia intersezione a raso, sia in carreggiata nord che sud, occorre realizzare uno svincolo tramite rami di uscita ed immissione diretti, che si innestano in due rotatorie collegate da un ramo di scavalco. E' prevista anche una riorganizzazione della viabilità locale limitrofa.


Estratto cartografico dell'area di intervento. Oggetto dello studio sono gli svincoli nº1 e nº2

Nelle figure seguenti si riporta un ingrandimento degli svincoli oggetto di analisi con i relativi rami numerati. Tale numerazione è utile nelle tabella successive i cui vengono riportati i relativi dati di traffico veicolare. Tali informazioni sono state estrapolate dallo Studio di Impatto Ambientale redatto.

Svincolo n.1 "Paulilatino" (stato attuale)

Svincolo n.2 "Macomer" (stato attuale)

Svincolo n.1 "Paulilatino" (schema da PD)

Svincolo n.2 "Macomer" (schema da PD)

Adeguamento e messa in sicurezza della S.S. 131 dal km 108+300 al km 209+500 $\,$

Risoluzione dei nodi critici

2° stralcio dal km 108+300 al km 158+000

Progetto Esecutivo

Nelle tabelle seguenti si riportano i flussi di traffico per ciascuna tratta individuata, nei due scenari attuale e futuro.

2014			(6-22) fico (veic/h)		Notturno (22-6) Flussi di traffico (veic/h)			
2014	LEGGERI	PESANTI	TOTALI	% PES	LEGGERI	PESANTI	TOTALI	% PES
ramo 1	90	11	101	10%	20	5	25	20%

2028			(6-22) fico (veic/h)		Notturno (22-6) Flussi di traffico (veic/h)			
2020	LEGGERI	PESANTI	TOTALI	% PES	LEGGERI	PESANTI	TOTALI	% PES
ramo 1	12	2	14	10%	3	1	3	20%
ramo 2	10	1	11	10%	2	1	3	20%
ramo 3	22	3	25	10%	5	1	6	20%
ramo 4	12	2	14	10%	3	1	3	20%
ramo 5	10	1	11	10%	2	1	3	20%
ramo 6	22	3	25	10%	5	1	6	20%
ramo 7	22	3	25	10%	5	1	6	20%

Tabella 2 Flussi di traffico relativi allo svincolo Paulilatino, scenario attuale e scenario futuro

2014			rno (6-22) traffico (veic/h)		Notturno (22-6) Flussi di traffico (veic/h)			
	LEGGERI	PESANTI	TOTALI	% PES	LEGGERI	PESANTI	TOTALI	% PES
ramo 1	26	2	29	10%	6	1	7	20%
ramo 2	6	1	7	10%	1	0	2	20%

2028	Diurno (6-22) Flussi di traffico (veic/h)				Notturno (22-6) Flussi di traffico (veic/h)				
	LEGGERI	PESANTI	TOTALI	% PES	LEGGERI	PESANTI	TOTALI	% PES	
ramo 1	12	1	13	10%	3	1	3	20%	
ramo 2	8	1	9	10%	2	0	2	20%	
ramo 3	20	2	22	10%	4	1	5	20%	
ramo 4	11	1	12	10%	2	0	3	20%	
ramo 5	8	1	8	10%	2	0	2	20%	
ramo 6	19	2	21	10%	4	1	5	20%	
ramo 7	20	2	22	10%	4	1	5	20%	
ramo 8	32	3	35	10%	7	1	8	20%	
ramo 9	7	1	8	10%	2	0	2	20%	

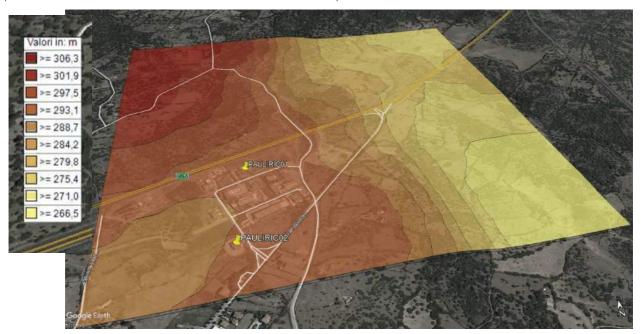
Tabella 3 Flussi di traffico relativi allo svincolo Macomer, scenario attuale e scenario futuro

A valle di quanto riportato, si esplicita come le simulazioni relative all'inquinante ozono, oggetto del presente documento integrativo, sono state effettuate secondo la metodologia già utilizzata nelle simulazioni già effettuate nello Studio di Impatto Ambientale, di cui il presente documento risulta essere un'integrazione.

Al fine di calcolare le concentrazioni di Ozono, che nel precedente studio non erano state oggetto di simulazione, si sono ricreate le medesime condizioni modellistiche, simulando sia lo scenario attuale che lo scenario futuro, al fine di ottenere dal modello matematico le concentrazioni stimate al livello del suolo per l'inquinante Ozono.

La simulazione è eseguita con il software MMS WinDimula, che utilizza un modello per il calcolo della diffusione e deposizione di inquinanti in atmosfera.

Parimenti al software AERMOD, MMS WinDimula è un modello gaussiano adatto per scala locale come quella riferita alle aree considerate (nello specifico per scala spaziale locale < ~15 km).


Al fine di dettagliare l'analisi, è utilizzato il preprocessore MMS LandUse per preparare per l'area di calcolo e le condizioni al contorno per la propagazione, con dati orografici.

Infine, il postprocessore MMS RunAnalyzer consente di aggregare in dati in uscita da WinDimula e di renderli disponibili per il confronto con i limiti normativi.

4.2 OUTPUT DEL MODELLO

Il primo passo è stato quello di ricostruire le aree relative ai due svincoli, introducendo le quote relative e la specifica rugosità superficiale.

Per quanto riguarda lo svincolo di Paulilatino sono individuati due punti di calcolo delle concentrazioni in prossimità dei ricettori della zona (edifici a carattere prevalentemente industriale).

Orografia presso lo svincolo "Paulilatino" e ricettori per il calcolo delle concentrazioni

Parimenti per lo svincolo di Macomer, per il quale la presenza di ricettori è sporadica e a carattere prevalentemente agricolo.

Orografia presso lo svincolo "Macomer" e ricettori per il calcolo delle concentrazioni

È stato quindi implementato un set di ricettori sui tratti stradali nelle configurazioni dello stato di fatto e di progetto.

Set di ricettori caratteristici per lo Stato Di Fatto - svincolo "Paulilatino"

Set di ricettori caratteristici per lo Stato Di Progetto - svincolo "Paulilatino"

Set di ricettori caratteristici per lo Stato Di Fatto - svincolo "Macomer"

Set di ricettori caratteristici per lo Stato Di Progetto - svincolo "Macomer"

Sia per la fase ante operam che per la fase post operam le concentrazioni sono state calcolate su tutti i punti individuati, siano essi rappresentativi dei ricettori dell'area (-RIC), siano essi di riferimento per lo stato di fatto (ANTE-) o di progetto (POST-).

Considerando le emissioni riferite alle due aree si ottengono le seguenti concentrazioni di ozono:

PUNTO DI	X (m)	Y (m)	STATO DI FATTO	STATO DI PROGETTO	CONFRONTO	
CALCOLO			Valore [μg/mc]	Valore [µg/mc]	Δ [μg/mc]	Aumento %
PAULIRIC01	480316	4438116	44,6	53,2	8,6	19%
PAULIRIC02	480271	4437833	55,0	65,5	10,5	19%
ANTEPAULI1	480998	4438518	25,6	30,5	4,9	19%
ANTEPAULI2	480522	4437980	46,3	55,2	8,9	19%
ANTEPAULI3	480277	4438190	42,7	50,9	8,2	19%
POSTPAULI1	480319	4438234	40,5	48,3	7,8	19%
POSTPAULI2	480421	4438303	37,4	44,6	7,2	19%

2° stralcio dal km 108+300 al km 158+000

Progetto Esecutivo

PUNTO DI	X (m)	W()	STATO DI FATTO	STATO DI PROGETTO	CONFRONTO	
CALCOLO		Y (m)	Valore [µg/mc]	Valore [μg/mc]	Δ [μg/mc]	Aumento %
POSTPAULI3	480487	4438364	37,9	45,1	7,2	19%
POSTPAULI4	480710	4438280	47,8	56,9	9,1	19%
POSTPAULI5	480815	4438342	20,6	24,5	3,9	19%
POSTPAULI6	480661	4438095	45,4	54,1	8,7	19%
POSTPAULI7	480508	4438158	40,4	48,2	7,8	19%

Tabella di output per lo svincolo "Paulilatino" – Livelli di concentrazione di Ozono

PUNTO DI	X (m)	Y (m)	STATO DI FATTO	STATO DI PROGETTO	CONFRONTO		
CALCOLO			Valore [µg/mc]	Valore [μg/mc]	Δ [μg/mc]	Aumento %	
MACORIC01	481524	4460968	55,3	67,6	12,3	22%	
MACORIC02	481510	4461175	54,5	66,7	12,2	22%	
ANTEMACO1	481285	4461509	48,5	59,4	10,9	22%	
ANTEMACO2	481369	4461124	45,7	55,9	10,2	22%	
ANTEMACO3	480977	4461313	41,0	50,2	9,2	22%	
POSTMACO1	481191	4461289	39,1	47,9	8,8	23%	
POSTMACO2	481249	4461390	43,8	53,6	9,8	22%	
POSTMACO3	481114	4461370	40,1	49,1	9,0	22%	
POSTMACO4	481192	4460945	43,0	52,7	9,7	23%	
POSTMACO5	481219	4461036	39,6	48,5	8,9	22%	
POSTMACO6	481410	4461024	48,5	59,4	10,9	22%	
POSTMACO7	481309	4461143	42,6	52,1	9,5	22%	
POSTMACO8	481627	4461143	35,1	42,9	7,8	22%	
POSTMACO9	480833	4461417	48,7	59,6	10,9	22%	

Tabella di output per lo svincolo "Macomer" – Livelli di concentrazione di Ozono

Adeguamento e messa in sicurezza della S.S. 131 dal km 108+300 al km 209+500 Risoluzione dei nodi critici

2° stralcio dal km 108+300 al km 158+000

Progetto Esecutivo

5 Conclusioni

I valori di ozono calcolati rappresentano i valori massimi in relazione alle possibili situazioni meteorologiche di un anno solare e non superano il livello di 70 μ g/mc nello scenario di progetto (il calcolo rappresenta la massima media mobile giornaliera di otto ore): si evince pertanto che non sussiste alcun superamento del limite di 120 μ g/mc sia per lo stato di fatto che per lo stato di progetto.

Si fa presente che i valori dello stato di fatto, calcolati dal modello attraverso fattori di emissione specificatamente adottati, sono in linea con le concentrazioni attese nelle aree dei due svincoli in relazione alle sorgenti effettivamente presenti: si tenga infatti conto che la centralina di Macomer precedentemente riportata presenta valori di concentrazione di ozono superiori a 100 μ g/mc nel mese di luglio, ma si trova ubicata a sud del centro abitato di Macomer e in prossimità della zona industriale Tossilo e di un termovalorizzatore, pertanto con pressioni antropiche diverse.

In riferimento al passaggio dallo stato di fatto allo stato di progetto è possibile rilevare un incremento complessivamente stimabile intorno al 20% sui punti di calcolo individuati, mantenendo comunque il valore complessivo di tale inquinante ben al di sotto dei limiti fissati dalla normativa.

Il Piano di Monitoraggio Ambientale, in particolare per le fasi di Ante e Post Operam, consentirà di controllare le concentrazioni realmente presenti nelle due aree specifiche e di verificare quanto previsionalmente calcolato.