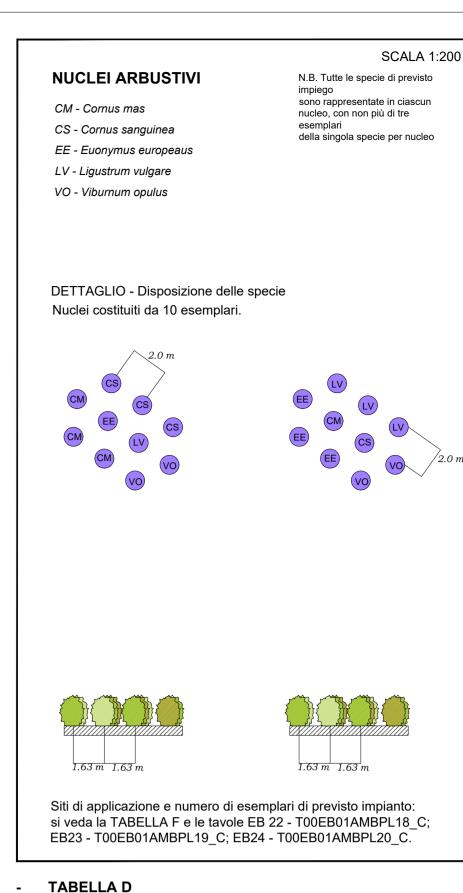


SP	ECIE DI PREVISTO IMPIEGO		ARBUSTI			
000	Nuclei arbustivi	CS	Cornus sanguinea			
	(CM, CS, EE, LV, VO)	СМ	Crataegus monogyna			
	Nuclei arbustivi igrofili (VO, SE, SP)	EE	Euonymus europaeus			
	, , ,	LV	Ligustrum vulgare			
9999	Siepi arbustive (CM, CS, EE, LV, SE, SP, VO)	PS	Prunus spinosa			
0000	(6, 66, 22, 21, 62, 61, 16)	PC	Pyracantha coccinea			
	Rimboschimenti:	RC	Rosa canina			
	Alberi a pronto effetto	SE	Salix eleagnos			
	(AC, CB, FE, PA, PAv, QR, TC)	SP	Salix purpurea			
	Alberi giovani	VO	Viburnum opulus			
	(AC, CB, FE, PA, PAv, QR, TC)	ALBERI				
	Arbusti	, ALBERT				
	(CM, CS, EE, LV, PC, PS, RC, VO)	AC	Acer campestre			
	Prato arborato	СВ	Carpinus betulus			
	(AC, CB, FE, PA, PAv, QR, TC)	FE	Fraxinus excelsior			
		PA	Populus alba			
		PAv	Prunus avium			
		QR	Quercus robur			
		TC	Tilia cordata			



Arbusti (0.4 m all'impianto) - TABELLA B

mq

Intevento

Rimboschir	nenti	TABEL	LA A						_								_									Nuclei a
•			Alberi a	pronto effe	etto (2.0-2.	5 m all'imp	ianto)				Alb	eri giovani	(0.8-1.0 m	all'impiant	o)					Arbı	usti (0.4 m	all'impiant	o)			Arbusti (0.4
Intevento	mq	AC	CB	FE	PA	Pav	QR	TC	mq	AC	CB	FE	PA	Pav	QR	TC	mq	CM	CS	EE	LV	PC	PS	RC	VO	-
R 01	1550	14	28	14	14	14	28	14	1550	3	10	3	3	3	14	3	1550	24	17	24	17	24	17	17	24	
R 02	450	4	8	4	4	4	8	4	450	1	3	1	1	1	4	1	450	7	5	7	5	7	5	5	7	Nai 01
R 03	5375	48	96	48	48	48	96	48	5375	12	36	12	12	12	48	12	5375	84	60	84	60	84	60	60	84	Nai 02
R 04	2080	18	37	18	18	18	37	18	2080	5	14	5	5	5	18	5	2080	32	23	32	23	32	23	23	32	Nai 03
R 05	4920	44	87	44	44	44	87	44	4920	11	33	11	11	11	44	11	4920	77	55	77	55	77	55	55	77	Nai 04
R 06	3570	32	63	32	32	32	63	32	3570	8	24	8	8	8	32	8	3570	56	40	56	40	56	40	40	56	3
R 07	5270	47	94	47	47	47	94	47	5270	12	35	12	12	12	47	12	5270	82	59	82	59	82	59	59	82	2
R 07 BIS	1840	16	33	16	16	16	33	16	1840	4	12	4	4	4	16	4	1840	29	20	29	20	29	20	20	29	
R 08	760	7	14	7	7	7	14	7	760	2	5	2	2	2	7	2	760	12	8	12	8	12	8	8	12	2
R 09	880	8	16	8	8	8	16	8	880	2	6	2	2	2	8	2	880	14	10	14	10	14	10	10	14	ļ
R 10	935	8	17	8	8	8	17	8	935	2	6	2	2	2	8	2	935	15	10	15	10	15	10	10	15	5
R 11	980	9	17	9	9	9	17	9	980	2	7	2	2	2	9	2	980	15	11	15	11	15	11	11	15	5
R 11 BIS	3630	32	65	32	32	32	65	32	3630	8	24	8	8	8	32	8	3630	56	40	56	40	56	40	40	56	3
R 12	1060	9	19	9	9	9	19	9	1060	2	7	2	2	2	9	2	1060	16	12	16	12	16	12	12	16	3
	33300	296	592	296	296	296	592	296		74	222	74	74	74	296	74		518	370	518	370	518	370	370	518	3

Nuclei arbustivi (1 nucleo ogni 50 mg)

•	100	,	Ū	,	Ū	,	•	Ū	•						1 02	000 01 00	110	
12	5375	84	60	84	60	84	60	60	84	Nai 02	625	40	40	40	103	1650 Si 10	150	
5	2080	32	23	32	23	32	23	23	32	Nai 03	835	52	52	52	PA 01	430 Si 11	120	
11	4920	77	55	77	55	77	55	55	77	Nai 04	665	44	44	44	PA 02	480 Si 12	55	
8	3570	56	40	56	40	56	40	40	56		2660	168	168	168	PA 03	1020 Si 13	115	
12	5270	82	59	82	59	82	59	59	82						PA 04	865 Si 14	185	
4	1840	29	20	29	20	29	20	20	29						PA 05	580 Si 15	75	
2	760	12	8	12	8	12	8	8	12						PA 06	815 Si 16	140	Г
2	880	14	10	14	10	14	10	10	14						PA 07	1310 R 01	1550	L
2	935	15	10	15	10	15	10	10	15						PA 08	430 R 02	450	_
2	980	15	11	15	11	15	11	11	15						NA 01	120 R 03	5375	
8	3630	56	40	56	40	56	40	40	56						NA 02	400 R 04	2080	
2	1060	16	12	16	12	16	12	12	16						NA 03	155 R 05	4920	
74		518	370	518	370	518	370	370	518						NA 04	1730 R 06	3570	
															NA 05	500 R 07	5270	
L	Sistemazio	no orboro	a arbuat	ivo rotot	orio (1 o	lhara agu	ni 20 ma	1 orbi	ioto d	ani 6 ma)					NA 06	405 R 07 BIS	1840	
1,	Sistemazio	ne arbore	o-arbusi	iva rotat	one (1 a	ibero ogi	111 20 1110	i, i arbu	1510 (ogili o iliq)					NA 07	385 R 08	760	
															NA 08	165 R 09	880	
		ı	A IIs a sili a sassa			Λ Ι	4 :		٦.						NA 09	530 R 10	935	
	lata auto		Alberi a pro			Arbu		1/0	J						Nai 01	535 R 11	980	
Ļ	Intevento	mq	AC	Pav	CM	EE	LV	VO	-						Nai 02	625 R 11 BIS	3630	
	RO 01	565		14	24	24	24	24							Nai 03	835 R 12	1060	
	RO 02	345		9	14	14	14	14							Nai 04	665 RO 01	565	
	RO 03	575		14	24		24	24							Si 01	230 RO 02	345	
	RO 04	410		10	17	17	17	17							Si 02	55 RO 03	575	
	RO 05	315		8	13		13	13							Si 03	290 RO 04	410	
	RO 06	345		9	14		14	14							Si 04	290 RO 05	315	
	RO 07	415		10	17	17	17	17							Si 05	160 RO 06	345	
	RO 08	300	8	8	13	13	13	13	<u>-</u>						Si 06	135 RO 07	415	

PROGETTAZIONE: ANAS DPRL

EMISSIONE

DESCRIZIONE

REV.

mq

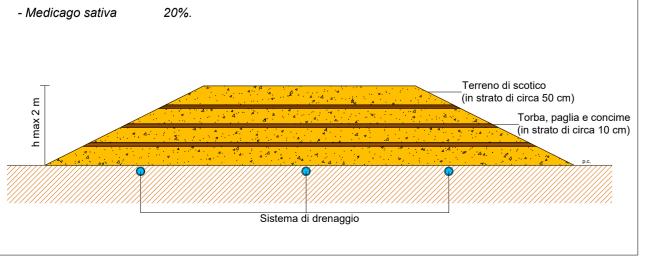
Intevento	ml	CM	CS	EE	LV	SE	SP	VO
Si 01	230	35	35	35	35	23	23	3
Si 02	55	8	8	8	8	6	6	;
Si 03	290	44	44	44	44	29	29	4
Si 04	290	44	44	44	44	29	29	4
Si 05	160	24	24	24	24	16	16	24
Si 06	135	20	20	20	20	14	14	2
Si 07	580	87	87	87	87	58	58	8
Si 08	165	25	25	25	25	17	17	2
Si 09	115	17	17	17	17	12	12	1
Si 10	150	23	23	23	23	15	15	2
Si 11	120	18	18	18	18	12	12	18
Si 12	55	8	8	8	8	6	6	;
Si 13	115	17	17	17	17	12	12	1
Si 14	185	28	28	28	28	19	19	28
Si 15	75	11	11	11	11	8	8	1
Si 16	140	21	21	21	21	14	14	2
	2860	429	429	429	429	286	286	429

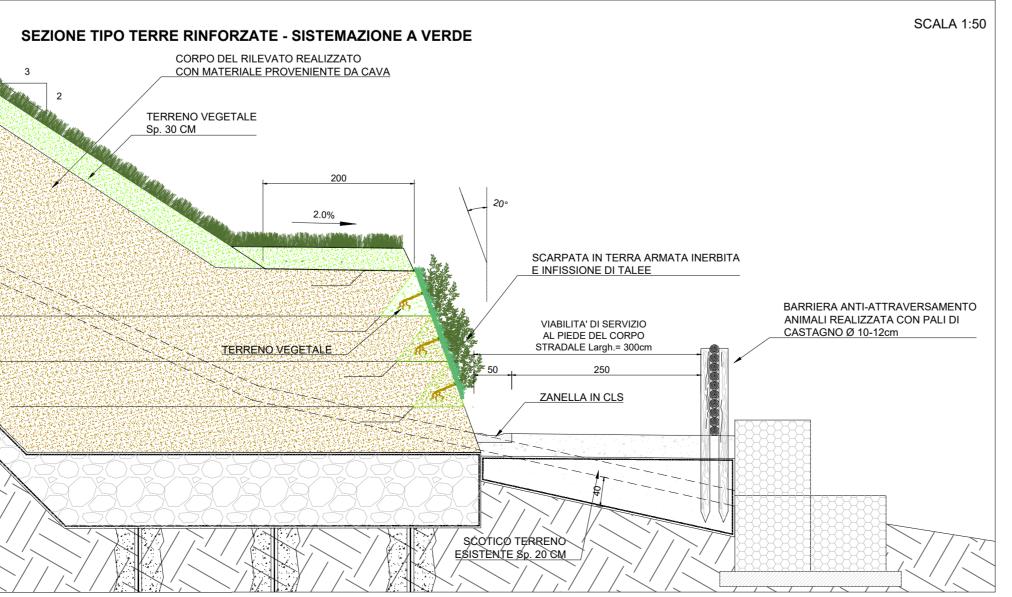
INDICAZIONI PER LA PREDISPOSIZIONE DEI CUMULI DI SCOTICO

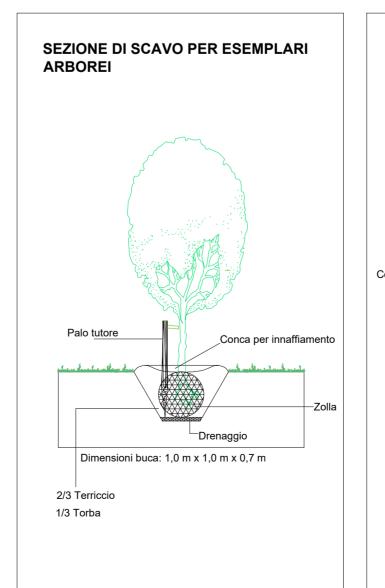
0	Intevento	mq	CM	CS	EE	LV	VO		7	Alberi a pror	nto effetto		Arbu	sti	
35	NA 01	120	4	4	4	4	4	Intevento	mq	AC	Pav	CM	EE	LV	VO
8	NA 02	400	16	16	16	16	16	RO 01	565	14	14	24	24	24	24
44	NA 03	155	7	7	5	5	6	RO 02	345	9	9	14	14	14	14
44	NA 04	1730	68	68	68	68	68	RO 03	575	14	14	24	24	24	24
24	NA 05	500	20	20	20	20	20	RO 04	410	10	10	17	17	17	17
20	NA 06	405	16	16	16	16	16	RO 05	315	8	8	13	13	13	13
87	NA 07	385	15	15	13	13	14	RO 06	345	9	9	14	14	14	14
25	NA 08	165	7	7	5	5	6	RO 07	415	10	10	17	17	17	17
17	NA 09	530	21	21	21	21	21	RO 08	300	8	8	13	13	13	13
23		4390	174	174	168	168	171		3270	82	82	136	136	136	136

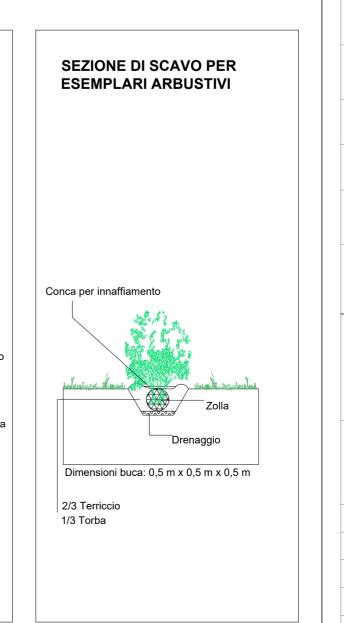
TABELLA F

Recupero area agricola Cod. intervento mq


Si 07


(escluse scarpate stradali)


Cod. intervento mq Cod. intervento mq


2510 Si 08 365 Si 09

Formazione di cumuli d	Formazione di cumuli di scotico con altezza massima pari a 2,0 m, costituiti da strati di terreno fertile di								
circa 50 cm di spessore	circa 50 cm di spessore, alternati a strati di torba, paglia e concime di circa 10 cm.								
Alla base dei cumuli è p	Alla base dei cumuli è prevista la predisposizione di adeguate tubazioni per la raccolta e l'allontanamento								
del percolato.	del percolato.								
Stoccaggio in cumuli se	Stoccaggio in cumuli separati dei differenti orizzonti pedologici.								
Qualora i cumuli siano	Qualora i cumuli siano destinati a permanere oltre la successiva stagione vegetativa, essi sranno protetti da								
inerbimento, da realizza	inerbimento, da realizzarsi mediante le seguenti specie da sovescio (25 g di semente per mq, di seguito le								
relative percentuali in p	eso delle diverse specie rispetto al totale della semente):								
- Vicia faba minor	30%;								
- Trifolium incarnatum	10%;								
- Lupinus albus	25%;								
- Vicia sativa	15%;								
1 1									

580 RO 08

TOTALE

300

56935

S.S.45 DELLA VAL DI TREBBIA

AMMODERNAMENTO DELLA STRADA STATALE N. 45 DELLA VAL TREBBIA NEL TRATTO CERNUSCA-RIVERGARO

SUPPORTO ALLA PROGETTAZIONE:

PROGETTO DEFINITIVO

MARZO 2021

DATA

REDATTO

VERIFICATO APPROVATO