

Bordighera

OGGETTO: Relazione tecnica parziale ai sensi del DM 173/16.

RELAZIONE TECNICA BORDIGHERA

(Località Bordighera)

LUGLIO 2021

BIOSCIENCE RESEARCH CENTER (Responsabile scientifico) Dott.ssa Monia Renzi

All.4_IO-CONSU

Rev. 00 del 20/02/2019

Pag. 1 a 17

Numero protocollo: 2021_2094 **del**: 10/07/2021

SPECIFICHE DI	SPECIFICHE DI COMMESSA PER TRACCIABILITÀ INTERNA A BSRC			
Codice Commessa: CC_0610_102_2021				
Committente:	Porto Sant'Ampeglio			
Progetto:	Caratterizzazione dei Sedimenti "Bordighera"			
Tipologia dell'Elaborato:	Report Tecnico-Scientifico			
Motivo dell'invio:	⊠ Approvazione ⊠ Informazione			

	CODIFICA DELL'ELABORATO				
Classificazione di Sicurezza:	Classificazione di Sicurezza: Pubblico ⊠Privato				
Titolo dell'Elaborato:	Relazione Tecnico-Scientifica sulla caratterizzazione di sedimenti Bordighera				
Nome del file:	CC_0610_102_2021_Caratterizzazione Bordighera_Report_01_R00				

	ALLEGATI (compilare solo se presenti)				
Numero totale di Allegati:	DUE				
Lista degli Allegati:	Specifiche degli Allegati				
Allegato 1:	Rapporti di prova				
Allegato 2:	Report Sediqualsoft®				

STORIA DELLE REVISIONI					
n°	Data	Descrizione	Elaborato	Verificato	Approvato
00	10/07/2021	Prima Emissione	S. Anselmi	/ M. Renzi	M. Renzi
	·	•	CETTURE HUNCETIN	in Donal	All a Chan

All.4_IO-CONSU

Rev. 00 del 20/02/2019

Pag. 2 a 17

Numero protocollo: 2021_2094 **del:** 10/07/2021

Sommario

PRE	∃MESSA		3
GR	JPPO DI LA	AVORO	3
SPE	ECIFICHE A	GARANZIA DELLA QUALITÀ DEI DATI	4
1.	Introduzio	ne	4
	Caratteriza	zazione ecotossicologica	4
	Caratteriza	zazione chimica	4
	Caratteriza	zazione fisica	4
	Classificaz	zione dei sedimenti	5
	Campioni	analizzati	5
1	.1. Para	ametri oggetto di indagine	5
	Caratteriza	zazione ecotossicologica	5
	Caratteriza	zazione chimica	6
	Caratteriza	zazione fisica	6
1	.2. Meto	odi di analisi	7
	Analisi eco	otossicologiche	7
	Analisi chi	imiche	7
	Analisi fisi	iche	8
1	.3. Crite	eri per l'interpretazione dei dati	g
2.	Risultati		10
	2.1.1.	Caratteristiche ecotossicologiche	10
	2.1.2.	Caratteristiche Chimiche Standard	11
	2.1.3.	Caratteristiche fisiche	12
4.		zione del sedimento	
5.	Elaborazio	oni integrate	15
6.	Opzione d	di gestione	16
7	Considera	azioni conclusive	17

All.4_IO-CONSU

Rev. 00 del 20/02/2019

Pag. 3 a 17

Numero protocollo: 2021_2094 **del:** 10/07/2021

PREMESSA

La movimentazione dei sedimenti marini non interna a SIN è Disciplinata dal D.M. 173 del 15/07/2016 che abroga il precedente D.M. 24/01/1996 "Direttive inerenti le attività istruttorie per il rilascio delle autorizzazioni di cui all'art. 11 della Legge 10 maggio 1976, n. 319 e successive modifiche ed integrazioni, relative allo scarico nelle acque del mare o in ambienti ad esso contigui, di materiali provenienti da escavo di fondali di ambienti marini o salmastri o di terreni litoranei emersi, nonché da ogni altra movimentazione di sedimenti in ambito marino" e costituisce l'allegato tecnico all'art. 109 e ss.mm.ii., comma 5 del D. Lgs. 152/06. Tale decreto rappresenta il superamento anche delle precedenti linee guida APAT-ISPRA "Manuale per la movimentazione dei sedimenti marini" (2007) che costituivano in precedenza il riferimento per l'interpretazione delle risultanze analitiche. Il Sistema Nazionale per la Protezione dell'Ambiente (SNPA) ha deliberato con doc. n. 81/CF del 12 luglio 2016 di approvare la versione commentata dal SNPA con la collaborazione di CNR, ISS e CoNISMa del suddetto allegato tecnico. Tale versione, che evidenzia alcune notazioni con carattere di comune interpretazione di sistema e di chiarimento rispetto ai refusi del testo principale, rappresenta il riferimento utilizzato per la caratterizzazione presente.

Il presente report tecnico descrive le caratteristiche ecotossicologiche, chimiche e fisiche dei sedimenti provenienti da Porto S. Ampeglio (Bordighera), caratterizzati ai sensi della normativa vigente. Il report, inoltre, include tutto quanto previsto dalla normativa di riferimento in termini di restituzione tecnica degli esiti della caratterizzazione, inclusa la classificazione di qualità complessiva dei materiali nei siti di prelievo e di deposito per la valutazione della compatibilità dell'intervento.

BsRC, per la realizzazione delle caratterizzazioni chimiche, fisiche ed ecotossicologiche, necessarie per la classificazione dei sedimenti da movimentare, oltre che dei suoi dipendenti e diretti collaboratori, si è avvalso di laboratori privati accreditati, coordinati dallo stesso Centro Ricerche. In particolare, le analisi chimiche sono state affidate ad un laboratorio accreditato per i parametri oggetto di indagine mentre, le analisi fisiche ed ecotossicologiche sono state condotte, sempre in regime di accreditamento, da BsRC che ha inoltre effettuato le elaborazioni SediQualsoft® e la consulenza scientifica associata alla valutazione degli esiti di laboratorio.

GRUPPO DI LAVORO

Nome e Cognome	Funzione	Azienda
Monia Renzi, Dr., Ph.D.	Responsabile Scientifico	BsRC
Andrea Broccoli, Dr.	Ricercatore	BsRC
Serena Anselmi	Tecnico Laboratorio	BsRC
Francesca Provenza, Dr.	Ricercatore	BsRC

All.4_IO-CONSU

Rev. 00 del 20/02/2019

Pag. **4** a 17

Numero protocollo: 2021_2094 **del:** 10/07/2021

SPECIFICHE A GARANZIA DELLA QUALITÀ DEI DATI

BsRC opera in modo conforme a quanto previsto dalle norme volontarie UNI EN ISO 9001:2015 (Codice certificato n. 20100163000676) e UNI EN ISO 14001:2015 (Codice certificato n. 20104213011228) monitorando il processo produttivo di ogni singolo campione ed è certificata da TUV Austria per "Attività di consulenza, analisi e ricerca in ambito ambientale, agroalimentare, cosmetologico e della salute umana. Progettazione ed erogazione di servizi formativi". Inoltre, BsRC è Laboratorio accreditato ai sensi della UNI EN ISO 17025:2018 "Requisiti generali per la competenza dei laboratori di prova e taratura" (numero accreditamento 1715L) e, per le sue attività di ricerca e servizi, si avvale di una rete di laboratori ACCREDIA di sua fiducia. Effettua verifiche parallele dei dati ed intercalibrazioni dei suoi fornitori di fiducia a maggiore garanzia della qualità del dato fornito. Il controllo qualità sui dati è effettuato applicando un approccio di controllo "foureyes" per la riduzione degli errori di trascrizione.

- Per il Certificato di Accreditamento: http://pa.sinal.it/450753.pdf
- Per l'elenco completo delle prove accreditate:
 https://services.accredia.it/accredia-labsearch.jsp?ID_LINK=1734&area=310&dipartimento=L,S&desc=Laboratori&

1. Introduzione

Ai fini della classificazione dei sedimenti e, quindi, per valutare la compatibilità tra il sito di dragaggio ed il dito di deposito, il D.M. 173/2016 prevede la caratterizzazione ecotossicologica, la caratterizzazione chimica e la caratterizzazione fisica della matrice prelevata.

Caratterizzazione ecotossicologica

L'Allegato tecnico al D.M. 173/2016 prevede tre saggi biologici che devono essere eseguiti sui campioni destinati alle analisi, singoli o accorpati; la combinazione dei saggi previsti, deve essere la stessa per la totalità dei campioni e deve essere composta da almeno tre organismi appartenenti a gruppi tassonomici ben distinti.

Caratterizzazione chimica

Per la totalità dei campioni è prevista l'analisi dei parametri chimici standard:

- Metalli e metalloidi;
- Idrocarburi Policiclici Aromatici:
- Idrocarburi pesanti;
- Pestici organoclorurati;
- Policlorobifenili;
- Composti organostannici;
- Carbonio orgnico totale.

Caratterizzazione fisica

Deve essere effettuata per la totalità dei campioni la distribuzione granulometrica dei sedimenti con l'ausilio di setacci a ½Φ al fine di determinare:

- Ghiaia (> 2mm);
- Sabbia (2mm < x < 0,063mm);

All.4_IO-CONSU

Rev. 00 del 20/02/2019

Pag. **5** a 17

Numero protocollo: 2021_2094 **del:** 10/07/2021

Prelite (< 0,063mm).

Classificazione dei sedimenti

I dati sono stati elaborati mediante l'impiego del software di calcolo applicativo SediQualsoft® per ottenere la classificazione sintetica dei materiali da movimentare.

Il software di calcolo utilizzato è stato progettato sfruttando un applicativo per la gestione di dati di tipo relazionale ed è stato regolarmente rilasciato a BsRC con concessione della licenza n. 020 da ISPRA ed Università delle Marche.

Campioni analizzati

Il campionamento è stato organizzato ed effettuato dal Cliente che ha anche provveduto a trasportare le carote di sedimento prelevato presso il laboratorio BsRC. Le carote di sedimento, prese in carico da BsRC, sono state aperte per la preparazione delle aliquote oggetto di analisi.

ID BsRC	Data accettazione	ID Campione Esterno	Sito	Analisi da effettuare
2021_2029	28/06/2021	C1 0-50m	Dragaggio	Chimica, Fisica ed Ecotox
2021_2030	28/06/2021	C1 50-100m	Dragaggio	Chimica, Fisica ed Ecotox
2021_2031	28/06/2021	C1 100-200m	Dragaggio	Chimica (+ Furani-Diossine-Amianto), Fisica ed Ecotox
2021_2032	28/06/2021	C2 0-50m	Dragaggio	Chimica, Fisica (Colore) ed Ecotox
2021_2033	28/06/2021	C2 50-100m	Dragaggio	Chimica, Fisica (Colore) ed Ecotox
2021_2034	28/06/2021	C2 100-200m	Dragaggio	Chimica, Fisica (Colore) ed Ecotox
2021_2035	28/06/2021	Superficiale	Deposito	Chimica, Fisica (Colore) ed Ecotox

1.1. Parametri oggetto di indagine

Come da normativa di riferimento (D.M. 173/2016), i campioni prelevati il giorno 19/03/2021 sono stati sottoposti ad analisi chimiche, fisiche ed ecotossicologiche al fine di ottenere la classificazione dei sedimenti e, di conseguenza, le possibili opzioni di gestione degli stessi. Sull'aliquota profonda del carotaggio C1 si è effettuato la ricerca di parametri accessori come le diossine e furani, PCB diossina-simile e l'amianto.

Caratterizzazione ecotossicologica

I saggi biologici devono essere effettuati su tutti i campioni destinati alle analisi e, la batteria dei saggi deve essere composta almeno da tre organismi appartenenti a gruppi tassonomici ben distinti.

Tabella 1_Elenco dei parametri determinati nei campioni di sedimento e relativi elutriati: prove ecotossicologiche.

Tipologia	1ª Tipologia	2ª Tipologia	2ª Tipologia	3ª Tipologia
Specie		Vibrio fischeri	Phaeodactylum tricornutum	Paracentrotus lividus
Specie	Sostituito con ulteriore	(Saggio Acuto)	(Saggio Cronico)	(Saggio Cronico)
Gruppo	analisi di Tipologia 2 (frazione > 63 µm	Batteri	Alghe	Echinodermi
Matrice	superiore al 90%)	Fase Liquida	Fase Liquida	Fase Liquida
Endpoint	Superiore at 5070)	Bioluminescenza	Crescita Algale	Sviluppo Larvale

Come riportato nel par. 2.3 "Caratterizzazione e classificazione ecotossicologica", sottoparagrafo 2.3.1. "Batteria di saggi biologici", sulla base dei risultati relativi alle analisi granulometriche effettuate, data l'elevata percentuale di frazione

All.4_IO-CONSU

Rev. 00 del 20/02/2019

Pag. **6** a 17

Numero protocollo: 2021_2094 **del:** 10/07/2021

ghiaioso-sabbiosa (>90% del totale in peso), per evitare falsi positivi sulla specie di Tipologia 1 (fase solida), la prova è stata sostituita con un saggio in fase liquida di Tipologia 2.

Caratterizzazione chimica

La caratterizzazione chimica standard è prevista per la totalità dei campioni da sottoporre a caratterizzazione.

Tabella 2_Elenco dei parametri determinati nei campioni di sedimento: prove chimiche.

⊠Alluminio		totale ⊠Piombo	
	⊠Ferro		
Metalli e Metalloidi ⊠Arsenico		⊠Rame	
Metalli e Metalloldi ⊠Cadmio	⊠Mercurio	io ⊠Vanadio	
⊠Cromo \	'I ⊠Nichel	⊠Zinco	
⊠Acenafti	ene ⊠Benzo(b	b)fluorantene ⊠Pirene	
⊠Benzo(a)antracene ⊠Benzo(k	k)fluorantene Dibenzo(a,h)antracene	
Idrocarburi Policiclici Aromatici ⊠Fluorant	ene ⊠Benzo(g	g,h,i)perilene ⊠Crisene	
⊠Naftalen	e ⊠Acenafte	tene ⊠Indeno(1,2,3-c,d)pirene	
⊠Antracer	ie ⊠Fluorene	ne ⊠Σ IPA	
⊠Benzo(a)pirene ⊠Fenantro	rene	
Idrocarburi C>12 ⊠C>12			
⊠Clordand	⊠α-HCH	⊠Esaclorobenzene	
Recticidi Organicalerurati ⊠Aldrin	⊠β-НСН	⊠∑ DDD	
Pesticidi Organoclorurati ⊠Dieldrin	⊠γ-HCH	$oxtimes \Sigma$ DDT	
⊠Endrin	⊠Eptaclor	oro epossido ⊠∑ DDE	
⊠PCB 28	+ PCB 31 ⊠PCB 118	18 ⊠PCB 156	
⊠PCB 52	⊠PCB 120	26 ⊠PCB 169	
Policlorobifenili ⊠PCB 77	⊠PCB 128	28 + PCB 167 ⊠PCB 180	
⊠PCB 81	⊠PCB 138	BS ⊠Σ PCB	
⊠PCB 10°	⊠PCB 153	53	
Composti Organistannisi ⊠Monobu	ilstagno ⊠Dibutilst	stagno ⊠Tributilstagno	
Composti Organostannici ⊠∑BTs			
Carbonio Organico Totale ⊠TOC			
Altri mananti ⊠Amianto		⊠Σ PCDD, PCDF (conversione TEF)	
Altri parametri ⊠∑ T.E.Po	CB Diossina Simili	⊠Σ TE PCDD, PCDF e PCB Diossina Sin	nili

Caratterizzazione fisica

Le caratteristiche da valutare sono la descrizione macroscopica dei sedimenti (si rimanda ai rapporti di campionamento) e la granulometria ($\frac{1}{2}\Phi$).

All.4_IO-CONSU

Rev. 00 del 20/02/2019

Pag. **7** a 17

Numero protocollo: 2021_2094 del: 10/07/2021

1.2. Metodi di analisi

Nelle Tabelle di seguito si riportano le specifiche delle analisi effettuate sui campioni.

Analisi ecotossicologiche

Tabella 3_Analisi ecotossicologiche effettuate sul sedimento e relativi elutriati.

Tipologia	1ª Tipologia	2ª Tipologia	2ª Tipologia	3ª Tipologia
Specie	Sostituito con ulteriore analisi di Tipologia 2 (frazione > 63 µm superiore al 90%)	Vibrio fischeri (Saggio Acuto)	Phaeodactylum tricornutum (Saggio Cronico)	Paracentrotus lividus (Saggio Cronico)
Metodo		UNI EN ISO 11348-3:2009	UNI EN ISO 10253:2017	EPA/600/R-95-136/sezione 15 + ISPRA Quaderni Ricerca marina 11/17
Endpoint		Inibizione bioluminescenza a 15' e 30'	Inibizione crescita algale a 72 h	Plutei anomali a 72 h
Unità di misura		%	%	%

Analisi chimiche

Tabella 4_Parametri chimici ricercati nel sedimento.

<u> </u>	Metalli e Metalloidi		
Parametro	Metodo	LOQ	Unità di misura
Arsenico	EPA 3051 A 2007 + EPA 6010 D 2018	0,5	mg/kg s.s.
Cadmio	UNI EN 16174-2012 +UNI EN 16171-2016	0,03	mg/kg s.s.
Cromo totale	EPA 3051 A 2007 + EPA 6010 D 2018	1	mg/kg s.s.
Cromo VI	CNR IRSA 16 Q 64 Vol 3 1986	0,1	mg/kg s.s.
Rame	EPA 3051 A 2007 + EPA 6010 D 2018	1	mg/kg s.s.
Mercurio	UNI EN 16174-2012 +UNI EN 16171-2016	0,03	mg/kg s.s.
Nichel	EPA 3051 A 2007 + EPA 6010 D 2018	1	mg/kg s.s.
Piombo	EPA 3051 A 2007 + EPA 6010 D 2018	1	mg/kg s.s.
Zinco	EPA 3051 A 2007 + EPA 6010 D 2018	1	mg/kg s.s.
Vanadio	EPA 3051 A 2007 + EPA 6010 D 2018	0,5	mg/kg s.s.
Alluminio	EPA 3051 A 2007 + EPA 6010 D 2018	1	mg/kg s.s.
Ferro	EPA 3051 A 2007 + EPA 6010 D 2018	1	mg/kg s.s.
	Idrocarburi Policiclici Aromati	ici	
Parametro	Metodo	LOQ	Unità di misura
Acenaftilene	EPA 3545 A 2007 + EPA 8270 E 2018	1	μg/kg s.s.
Benzo(a)antracene	EPA 3545 A 2007 + EPA 8270 E 2018	1	μg/kg s.s.
Fluorantene	EPA 3545 A 2007 + EPA 8270 E 2018	1	μg/kg s.s.
Naftalene	EPA 3545 A 2007 + EPA 8270 E 2018	1	μg/kg s.s.
Antracene	EPA 3545 A 2007 + EPA 8270 E 2018	1	μg/kg s.s.
Benzo(a)pirene	EPA 3545 A 2007 + EPA 8270 E 2018	1	μg/kg s.s.
Benzo(b)fluorantene	EPA 3545 A 2007 + EPA 8270 E 2018	1	μg/kg s.s.
Benzo(k)fluorantene	EPA 3545 A 2007 + EPA 8270 E 2018	1	μg/kg s.s.
Benzo(g,h,i)perilene	EPA 3545 A 2007 + EPA 8270 E 2018	1	μg/kg s.s.
Acenaftene	EPA 3545 A 2007 + EPA 8270 E 2018	1	μg/kg s.s.
Fluorene	EPA 3545 A 2007 + EPA 8270 E 2018	1	μg/kg s.s.
Fenantrene	EPA 3545 A 2007 + EPA 8270 E 2018	1	μg/kg s.s.
Pirene	EPA 3545 A 2007 + EPA 8270 E 2018	1	μg/kg s.s.
Dibenzo(a,h)antracene	EPA 3545 A 2007 + EPA 8270 E 2018	1	μg/kg s.s.
Crisene	EPA 3545 A 2007 + EPA 8270 E 2018	1	μg/kg s.s.
Indeno(1,2,3-c,d)pirene	EPA 3545 A 2007 + EPA 8270 E 2018	1	μg/kg s.s.
Irocarburi policiclici aromatici	EPA 3545 A 2007 + EPA 8270 E 2018	1	μg/kg s.s.

All.4_IO-CONSU

Rev. 00 del 20/02/2019

Pag. 8 a 17

Numero protocollo:	2021_2094	del:	10/07/2021
	Composti oganostannici		
Parametro	Metodo	LOQ	Unità di misura
Dibutilstagno (come Sn)	ICRAM Metodologie analitiche di riferimento (2001) - A		μg/kg s.s.
Monobutilstagno (come Sn)	ICRAM Metodologie analitiche di riferimento (2001) - A	App. 1 1	μg/kg s.s.
Tributilstagno (come Sn)	ICRAM Metodologie analitiche di riferimento (2001) - A		μg/kg s.s.
omma Organostannici (come Sn)	ICRAM Metodologie analitiche di riferimento (2001) - A		μg/kg s.s.
organiotalinio (como cir)	Pesticidi organoclorurati	, pp. 1	pg/ng c.c.
Parametro	Metodo	LOQ	Unità di misura
Aldrin	EPA 3545 A 2007 + EPA 8270 E 2018	0,1	μg/kg s.s.
Dieldrin	EPA 3545 A 2007 + EPA 8270 E 2018	0,1	μg/kg s.s.
Endrin	EPA 3545 A 2007 + EPA 8270 E 2018	0,1	μg/kg s.s.
BHC (alfa)	EPA 3545 A 2007 + EPA 8270 E 2018	0,1	μg/kg s.s.
BHC (beta)	EPA 3545 A 2007 + EPA 8270 E 2018	0,1	μg/kg s.s.
BHC (gamma)(Lindano)	EPA 3545 A 2007 + EPA 8270 E 2018	0,1	μg/kg s.s.
Clordano (cis+trans)	EPA 3545 A 2007 + EPA 8270 E 2018	0,1	μg/kg s.s.
DDD o,p'	EPA 3545 A 2007 + EPA 8270 E 2018	0,1	μg/kg s.s.
DDD p,p'	EPA 3545 A 2007 + EPA 8270 E 2018	0,1	μg/kg s.s.
DDD	EPA 3545 A 2007 + EPA 8270 E 2018	0,1	μg/kg s.s.
DDE	EPA 3545 A 2007 + EPA 8270 E 2018	0,1	μg/kg s.s.
DDE o,p'	EPA 3545 A 2007 + EPA 8270 E 2018	0,1	μg/kg s.s.
DDE p,p'	EPA 3545 A 2007 + EPA 8270 E 2018	0,1	μg/kg s.s.
DDT	EPA 3545 A 2007 + EPA 8270 E 2018	0,1	μg/kg s.s.
DDT o,p'	EPA 3545 A 2007 + EPA 8270 E 2018	0,1	μg/kg s.s.
DDT p,p'	EPA 3545 A 2007 + EPA 8270 E 2018	0,1	μg/kg s.s.
Esaclorobenzene	EPA 3545 A 2007 + EPA 8270 E 2018	0,1	μg/kg s.s.
Eptacloro epossido	EPA 3545 A 2007 + EPA 8270 E 2018	0,1	μg/kg s.s.
p p	Policlorobifenili		13.3
Parametro	Metodo	LOQ	Unità di misura
PCB 028 + PCB 031	EPA 3545A 2007 + EPA 8270E 2018	0,1	μg/kg s.s.
PCB 052	EPA 3545A 2007 + EPA 8270E 2018	0,1	μg/kg s.s.
PCB 077	EPA 3545A 2007 + EPA 8270E 2018	0,1	μg/kg s.s.
PCB 081	EPA 3545A 2007 + EPA 8270E 2018	0,1	μg/kg s.s.
PCB 101	EPA 3545A 2007 + EPA 8270E 2018	0,1	μg/kg s.s.
PCB 118	EPA 3545A 2007 + EPA 8270E 2018	0,1	μg/kg s.s.
PCB 126	EPA 3545A 2007 + EPA 8270E 2018	0,1	μg/kg s.s.
PCB 128	EPA 3545A 2007 + EPA 8270E 2018	0,1	μg/kg s.s.
PCB 138	EPA 3545A 2007 + EPA 8270E 2018	0,1	μg/kg s.s.
PCB 153	EPA 3545A 2007 + EPA 8270E 2018	0,1	μg/kg s.s.
PCB 156	EPA 3545A 2007 + EPA 8270E 2018	0,1	μg/kg s.s.
PCB 169	EPA 3545A 2007 + EPA 8270E 2018	0,1	μg/kg s.s.
PCB 180	EPA 3545A 2007 + EPA 8270E 2018	0,1	μg/kg s.s.
Sommatoria Policlorobifenili	EPA 3545A 2007 + EPA 8270E 2018	0,1	μg/kg s.s.
•	Carbonio Organico Totale		
Parametro	Metodo	LOQ	Unità di misura
Carbonio organico totale (TOC)	UNI EN 15936:2012	0,1	%
	Idrocarburi C>12	·	
Parametro	Metodo	LOQ	Unità di misura
Idrocarburi C>12	EPA 3550 C 2007 + EPA 8015 C 2007	5	mg/kg s.s.
	Altri parametri		
Parametro	Metodo	LOQ	Unità di misura
Amianto	DM 06/09/94 All. 1 Met. B	100	mg/kg s.s.
Sommatoria T.E.PCB Diossina S	Simili EPA 3545 A 2007 + EPA 8270 E	2018 0,6	ng/kg s.s.
Sommatoria PCDD, PCDF (conversion	one TEF) UNI EN 16190:2019 +NATO CCMS Repo	ort n°176 1988 0,6	ng/kg s.s.

Analisi fisiche

Tabella 5_Parametri fisici del sedimento.

Parametro	Metodo	LOQ	Unità di misura
Analisi granulometrica	ICRAM 2001 - Sedimenti - Scheda 3	0,1	%

All.4 IO-CONSU

Rev. 00 del 20/02/2019

Pag. **9** a 17

2021 2094 del: 10/07/2021 Numero protocollo:

1.3. Criteri per l'interpretazione dei dati

I dati sono stati elaborati mediante l'impiego del software di calcolo applicativo SediQualsoft® per ottenere la classificazione sintetica dei materiali da movimentare.

Il software di calcolo utilizzato è stato progettato sfruttando un applicativo per la gestione di dati di tipo relazionale ed è stato regolarmente rilasciato a BsRC con concessione della licenza n. 020 da ISPRA ed Università delle Marche.

Il software è organizzato in 3 moduli: i primi due sono relativi alla caratterizzazione ecotossicologica (tramite batterie di saggi ecotossicologici) e alla caratterizzazione chimica, il terzo alla loro integrazione e alla classificazione di qualità dei sedimenti. I dati analitici vengono importanti tramite foglio Excel ed elaborati attraverso specifici algoritmi e diagrammi di flusso che applicano criteri di integrazione ponderata. I moduli relativi alla caratterizzazione chimica ed ecotossicologica forniscono per ciascuna tipologia di dati, sia un indice quantitativo di pericolo (HQ, Hazard Quotient), che un giudizio sintetico del livello di pericolo (suddiviso in 5 classi, da assente a molto alto). Il terzo modulo di elaborazione finale integra la classificazione ecotossicologica e quella chimica ottenute attraverso l'applicazione degli indici sintetici, per l'attribuzione della classe di qualità dei materiali.

Si evidenzia che i parametri fisici (granulometria) ed i macronutrienti (TOC) non contribuiscono al calcolo di tali valori di rischio e sono considerati accessori nella valutazione complessiva. Struttura granulometrica e colorimetria sono acquisite per la valutazione specifica delle attività di movimentazione finalizzate al ripascimento.

Per i parametri chimici considerati nell'ambito della presente caratterizzazione, si riporta in Figura 1 una sintesi delle concentrazioni limite indicate dalla normativa come L1 e L2.

PARAMETRO	11	12
Elementi in tracce	[mg k	g'lps.
Ansenico	13	30
Cadmio	0,3	0,80
Crana	50	150
Cr Wi	2	2.
Rame	40	52
Mercurin	0.3	0.80
Nichel	30	75
Piombo	30	70
Zince	100	150
Contaminanti organici	fug kg	-1 p.s.
Composti organostannici	5(1)	72100
z yca ⁽¹⁾	1	60
£ 000 ^(A)	0,8	7,8
∑ 00€ ^{M)}	1,8	3,7
2 DDT ^(C)	1,0	4,6
Clordano	2,3	4,8
Aldrin	0,2	50"
Dieldrin	0,7	4,3
Endrin	2,7	30

PARAMETRO	u	12
n-HCH	0,2	10
BHICH	9,2	10
y-HCH (Lindano)	0.2	1,0
Epticiom eposicio	0,6	2,7
HCB	0.4	50"
idrocartsus C>12	Non disposible	50000
E IPA(16P ⁰¹	900	4000
Antracene	24	245
Benzo(a)ontracene	75	500
Bertzojajpitena	30	100
Denzo[b]fluorantene	40	5007
Benzolidfloorantene	20	500
Bennig hjiperlene	55	100
Ditiene	100	846
Indenoptrane	70	100
Ferantrene	87	544
Roomne	25	144
Ruorantene	110	1494
Naftalene	35	391
Please	153	1398
S.T.E. PCDD, PCDE ^{III} (Disostine è Fuzani) e PCB dispaine simili	2×10*	1 × 10 °

El nifecto al solo TBT

[&]quot;Triumto alla scenmatoria di <u>Mett. Det. Tet"</u>

Toome sommatoria del reguerió congeneri. 26, 52, 77, 81, 101, 118, 126, 128, 138, 153, 156, 196, 198).
Come sommatoria degli somed 2,5 4 4,6;
Come sommatoria del 15 PA di maggior rilexenza en llestale indicat disl'USEFA (Acendrilene, Entracene, Benzoja/ploene, Benzoja/fluorasterie, Acenafiana, Fluorana, Feriantiena, Rome, Benzojajantracene, Ricorantene, Naftaler Benzojkjiftuorantene, Benzojgit,/perilene, Haftslerie, Antracene,

Diberco(a,h)untracone, Crisene, indene) L.J.J., e diparenty.

**L'Elenco del congene) e relativi Fattor di Tocciotà Equipalenti (EPA, 1988) e Felenco

congeneri PCD Diassina simili (WHD, 2005) e quello riportato alle note della tabella 3/A di cui al D.1go.172/2015.

Concentratione valido solis per attività di ripascimenta emerso.
* relativa alla commutaria di PCDD » PCDF

All.4_IO-CONSU

Rev. 00 del 20/02/2019

Pag. **10** a 17

Numero protocollo: 2021_2094 del: 10/07/2021

2. Risultati

2.1.1. Caratteristiche ecotossicologiche

Tipologia 2: saggio su fase liquida (sostituzione ai sensi del D.M. 173/2016). Saggio Acuto.

Tabella 6_Risultati relativi ai saggi ecotossicologici effettuati con Vibrio fischeri.

Campione	Codice BsRC	Sito	Effetto	a 15 min	Effetto a 30 min		
Campione	Coulce DSRC	SILO	Media (%)	Dev. St (%)	Media (%)	Dev. St (%)	
C1 0-50m	2021_2029	Dragaggio	-10,7	0,2	-19,4	0,2	
C1 50-100m	2021_2030	Dragaggio	-26,7	0,9	-34,8	0,4	
C1 100-200m	2021_2031	Dragaggio	-13,0	2,6	-21,2	2,1	
C2 0-50m	2021_2032	Dragaggio	-5,1	1,5	-12,7	1,2	
C2 50-100m	2021_2033	Dragaggio	-7,9	2,6	-13,9	2,3	
C2 100-200m	2021_2034	Dragaggio	-9,5	0,5	-15,5	0,5	
Superficiale	2021_2035	Deposito	-9,8	1,5	-19,2	1,6	

Tipologia 2: saggio su fase liquida. Saggio Cronico.

Tabella 7_Risultati relativi ai saggi ecotossicologici effettuati con Phaeodactylum tricornutum.

Campiana	Codice BsRC	Cito	INIBIZIO	NE 72 h	Effetto a 30 min		
Campione C1 0-50m C1 50-100m C1 100-200m C2 0-50m C2 50-100m	Coulce BSRC	Sito	Media (%)	Dev. St (%)	lµ media (%)	Dev. St (%)	
C1 0-50m	2021_2029	Dragaggio	0,179	0,005	11,0	2,5	
C1 50-100m	2021_2030	Dragaggio	0,185	0,007	8,1	3,6	
C1 100-200m	2021_2031	Dragaggio	0,163	0,012	18,8	5,8	
C2 0-50m	2021_2032	Dragaggio	0,210	0,005	-4,7	2,3	
C2 50-100m	2021_2033	Dragaggio	0,216	0,005	-7,5	2,5	
C2 100-200m	2021_2034	Dragaggio	0,240	0,007	-19,5	3,3	
Superficiale	2021 2035	Deposito	0,232	0,011	-15,4	5,7	

Tipologia 3: saggio su fase liquida .Saggio con effetti cronici/sub-letali/a lungo termine e di comprovata sensibilità

Tabella 8_Risultati relativi ai saggi ecotossicologici di sviluppo larvale effettuati su Paracentrotus lividus. Valore medio di larve anomale a 72 ore di esposizione, deviazione standard e media corretta secondo Abbott (%). Dati riferiti alla massima concentrazione testata (50%).

Campione	Codice BsRC	Sito	Media (%)	Dev.St. (%)	Media Corretta (%)
C1 0-50m	2021_2029	Dragaggio	6,7	1,5	0,4
C1 50-100m	2021_2030	Dragaggio	7,7	1,5	1,4
C1 100-200m	2021_2031	Dragaggio	8,0	0,0	1,8
C2 0-50m	2021_2032	Dragaggio	5,7	1,5	0,0
C2 50-100m	2021_2033	Dragaggio	7,7	1,2	1,4
C2 100-200m	2021_2034	Dragaggio	12,0	2,0	6,0
Superficiale	2021_2035	Deposito	8,3	1,2	2,1

All.4_IO-CONSU

Rev. 00 del 20/02/2019

Pag. **11** a 17

Numero protocollo: 2021_2094 **del:** 10/07/2021

2.1.2. Caratteristiche Chimiche Standard

I risultati relativi alle analisi chimiche standard sui campioni di sedimento prelevati sono riportati nelle Tabelle seguenti; con "<LOD" si intende che il valore del parametro è inferiore al limite di quantificazione suggerito dall'Allegato Tecnico al D.M. n. 173/2016.

Tabella 9_Risultati relativi alle analisi di metalli e metalloidi (mg/kg p.s.).

	Arsenico	Cadmio	Cromo totale	Cromo VI	Rame	Mercurio	Nichel	Piombo	Zinco	Vanadio	Alluminio	Ferro
2021_2029	6,80	0,12	8,35	< LOD	6,02	< LOD	8,42	9,20	44,9	10,4	4860	8890
2021_2030	5,77	0,10	7,76	< LOD	5,66	< LOD	7,20	8,80	38,3	9,94	4890	7880
2021_2031	5,31	0,14	7,14	< LOD	6,30	< LOD	8,04	8,93	39,3	8,48	3620	8400
2021_2032	4,14	0,11	6,58	< LOD	5,05	< LOD	6,12	6,35	33,7	7,75	4230	7060
2021_2033	3,94	0,10	6,27	< LOD	4,74	< LOD	6,61	8,63	35,2	6,66	3290	6430
2021_2034	6,10	0,16	13,2	< LOD	9,63	< LOD	10,9	12,6	46,1	13,3	8100	13600
2021_2035	4,87	0,14	8,34	< LOD	4,59	< LOD	7,30	6,66	34,2	9,13	5070	7480

Tabella 10__Risultati relativi alle analisi dei Composti organostannici (BTs; μg/kg s.s.).

	Monobutilstagno (come Sn)	Dibutilstagno (come Sn)	Tributilstagno (come Sn)	Somma Organostannici (come Sn)
2021_2029	< LOD	< LOD	< LOD	< LOD
2021_2030	< LOD	< LOD	< LOD	< LOD
2021_2031	< LOD	< LOD	< LOD	< LOD
2021_2032	< LOD	< LOD	< LOD	< LOD
2021_2033	< LOD	< LOD	< LOD	< LOD
2021_2034	< LOD	< LOD	< LOD	< LOD
2021_2035	< LOD	< LOD	< LOD	< LOD

Tabella 11_Risultati relativi alle analisi dei Policlorobifenili (PCB; µg/kg s.s.).

	PCB028 + PCB031	PCB052	PCB077	PCB081	PCB101	PCB118	PCB126	PCB128	PCB138	PCB153	PCB156	PCB169	PCB180	PCB
2021_2029	< LOD	< LOD	0,667	< LOD	0,667									
2021_2030	< LOD	< LOD	0,632	< LOD	0,101	< LOD	< LOD	< LOD	< LOD	0,733				
2021_2031	< LOD	0,158	0,739	< LOD	0,694	0,288	< LOD	0,128	2,54	7,81	0,388	< LOD	13,2	25,9
2021_2032	< LOD	< LOD	0,641	< LOD	0,122	< LOD	< LOD	< LOD	< LOD	0,763				
2021_2033	< LOD	0,104	0,458	< LOD	0,146	< LOD	< LOD	< LOD	0,172	0,134	< LOD	< LOD	< LOD	1,01
2021_2034	< LOD	0,160	0,816	< LOD	0,166	< LOD	< LOD	< LOD	0,249	0,199	< LOD	< LOD	< LOD	1,59
2021_2035	< LOD	0,108	0,704	< LOD	0,119	< LOD	< LOD	< LOD	0,110	< LOD	< LOD	< LOD	< LOD	1,04

Tabella 12_Risultati relativi alle analisi dei Pesticidi organoclorurati (µg/kg s.s.).

	Aldrin	Dieldrin	Endrin	BHC (alfa)	BHC (beta)	BHC (gamma) (Lindano)	Clordano (cis+trans)	'q,o ddd	'q,q OOO	ggg	DDE	DDE o,p'	DDE p,p'	TOO	DDT o,p'	оот р,р'	Esacloro benzene	Eptacloro epossido
2021_2029	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>0,51</th><th><lod< th=""><th>0,51</th><th>0,11</th><th>0,11</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>0,51</th><th><lod< th=""><th>0,51</th><th>0,11</th><th>0,11</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>0,51</th><th><lod< th=""><th>0,51</th><th>0,11</th><th>0,11</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>0,51</th><th><lod< th=""><th>0,51</th><th>0,11</th><th>0,11</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>0,51</th><th><lod< th=""><th>0,51</th><th>0,11</th><th>0,11</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>0,51</th><th><lod< th=""><th>0,51</th><th>0,11</th><th>0,11</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>0,51</th><th><lod< th=""><th>0,51</th><th>0,11</th><th>0,11</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th>0,51</th><th><lod< th=""><th>0,51</th><th>0,11</th><th>0,11</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>0,51</th><th><lod< th=""><th>0,51</th><th>0,11</th><th>0,11</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>0,51</th><th><lod< th=""><th>0,51</th><th>0,11</th><th>0,11</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	0,51	<lod< th=""><th>0,51</th><th>0,11</th><th>0,11</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	0,51	0,11	0,11	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
2021_2030	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>0,12</th><th>0,12</th><th>0,24</th><th>1,4</th><th><lod< th=""><th>1,4</th><th>0,4</th><th>0,2</th><th>0,2</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>0,12</th><th>0,12</th><th>0,24</th><th>1,4</th><th><lod< th=""><th>1,4</th><th>0,4</th><th>0,2</th><th>0,2</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>0,12</th><th>0,12</th><th>0,24</th><th>1,4</th><th><lod< th=""><th>1,4</th><th>0,4</th><th>0,2</th><th>0,2</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>0,12</th><th>0,12</th><th>0,24</th><th>1,4</th><th><lod< th=""><th>1,4</th><th>0,4</th><th>0,2</th><th>0,2</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th>0,12</th><th>0,12</th><th>0,24</th><th>1,4</th><th><lod< th=""><th>1,4</th><th>0,4</th><th>0,2</th><th>0,2</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>0,12</th><th>0,12</th><th>0,24</th><th>1,4</th><th><lod< th=""><th>1,4</th><th>0,4</th><th>0,2</th><th>0,2</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>0,12</th><th>0,12</th><th>0,24</th><th>1,4</th><th><lod< th=""><th>1,4</th><th>0,4</th><th>0,2</th><th>0,2</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	0,12	0,12	0,24	1,4	<lod< th=""><th>1,4</th><th>0,4</th><th>0,2</th><th>0,2</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	1,4	0,4	0,2	0,2	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
2021_2031	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>0,22</th><th>0,23</th><th>0,45</th><th>2,4</th><th><lod< th=""><th>2,4</th><th>0,49</th><th>0,24</th><th>0,25</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>0,22</th><th>0,23</th><th>0,45</th><th>2,4</th><th><lod< th=""><th>2,4</th><th>0,49</th><th>0,24</th><th>0,25</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>0,22</th><th>0,23</th><th>0,45</th><th>2,4</th><th><lod< th=""><th>2,4</th><th>0,49</th><th>0,24</th><th>0,25</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>0,22</th><th>0,23</th><th>0,45</th><th>2,4</th><th><lod< th=""><th>2,4</th><th>0,49</th><th>0,24</th><th>0,25</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th>0,22</th><th>0,23</th><th>0,45</th><th>2,4</th><th><lod< th=""><th>2,4</th><th>0,49</th><th>0,24</th><th>0,25</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>0,22</th><th>0,23</th><th>0,45</th><th>2,4</th><th><lod< th=""><th>2,4</th><th>0,49</th><th>0,24</th><th>0,25</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>0,22</th><th>0,23</th><th>0,45</th><th>2,4</th><th><lod< th=""><th>2,4</th><th>0,49</th><th>0,24</th><th>0,25</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	0,22	0,23	0,45	2,4	<lod< th=""><th>2,4</th><th>0,49</th><th>0,24</th><th>0,25</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	2,4	0,49	0,24	0,25	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
2021_2032	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>0,15</th><th>0,23</th><th>0,38</th><th>1,9</th><th><lod< th=""><th>1,9</th><th>0,76</th><th>0,30</th><th>0,46</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>0,15</th><th>0,23</th><th>0,38</th><th>1,9</th><th><lod< th=""><th>1,9</th><th>0,76</th><th>0,30</th><th>0,46</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>0,15</th><th>0,23</th><th>0,38</th><th>1,9</th><th><lod< th=""><th>1,9</th><th>0,76</th><th>0,30</th><th>0,46</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>0,15</th><th>0,23</th><th>0,38</th><th>1,9</th><th><lod< th=""><th>1,9</th><th>0,76</th><th>0,30</th><th>0,46</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th>0,15</th><th>0,23</th><th>0,38</th><th>1,9</th><th><lod< th=""><th>1,9</th><th>0,76</th><th>0,30</th><th>0,46</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>0,15</th><th>0,23</th><th>0,38</th><th>1,9</th><th><lod< th=""><th>1,9</th><th>0,76</th><th>0,30</th><th>0,46</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>0,15</th><th>0,23</th><th>0,38</th><th>1,9</th><th><lod< th=""><th>1,9</th><th>0,76</th><th>0,30</th><th>0,46</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	0,15	0,23	0,38	1,9	<lod< th=""><th>1,9</th><th>0,76</th><th>0,30</th><th>0,46</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	1,9	0,76	0,30	0,46	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
2021_2033	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0,25</td><td>0,66</td><td>0,90</td><td>5,1</td><td><lod< td=""><td>5,1</td><td>4,4</td><td>0,75</td><td>3,6</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0,25</td><td>0,66</td><td>0,90</td><td>5,1</td><td><lod< td=""><td>5,1</td><td>4,4</td><td>0,75</td><td>3,6</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0,25</td><td>0,66</td><td>0,90</td><td>5,1</td><td><lod< td=""><td>5,1</td><td>4,4</td><td>0,75</td><td>3,6</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0,25</td><td>0,66</td><td>0,90</td><td>5,1</td><td><lod< td=""><td>5,1</td><td>4,4</td><td>0,75</td><td>3,6</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>0,25</td><td>0,66</td><td>0,90</td><td>5,1</td><td><lod< td=""><td>5,1</td><td>4,4</td><td>0,75</td><td>3,6</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0,25</td><td>0,66</td><td>0,90</td><td>5,1</td><td><lod< td=""><td>5,1</td><td>4,4</td><td>0,75</td><td>3,6</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>0,25</td><td>0,66</td><td>0,90</td><td>5,1</td><td><lod< td=""><td>5,1</td><td>4,4</td><td>0,75</td><td>3,6</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	0,25	0,66	0,90	5,1	<lod< td=""><td>5,1</td><td>4,4</td><td>0,75</td><td>3,6</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	5,1	4,4	0,75	3,6	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
2021_2034	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0,61</td><td>0,70</td><td>1,3</td><td>4,2</td><td><lod< td=""><td>4,2</td><td>2,2</td><td>0,78</td><td>1,4</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0,61</td><td>0,70</td><td>1,3</td><td>4,2</td><td><lod< td=""><td>4,2</td><td>2,2</td><td>0,78</td><td>1,4</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0,61</td><td>0,70</td><td>1,3</td><td>4,2</td><td><lod< td=""><td>4,2</td><td>2,2</td><td>0,78</td><td>1,4</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0,61</td><td>0,70</td><td>1,3</td><td>4,2</td><td><lod< td=""><td>4,2</td><td>2,2</td><td>0,78</td><td>1,4</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>0,61</td><td>0,70</td><td>1,3</td><td>4,2</td><td><lod< td=""><td>4,2</td><td>2,2</td><td>0,78</td><td>1,4</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0,61</td><td>0,70</td><td>1,3</td><td>4,2</td><td><lod< td=""><td>4,2</td><td>2,2</td><td>0,78</td><td>1,4</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>0,61</td><td>0,70</td><td>1,3</td><td>4,2</td><td><lod< td=""><td>4,2</td><td>2,2</td><td>0,78</td><td>1,4</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	0,61	0,70	1,3	4,2	<lod< td=""><td>4,2</td><td>2,2</td><td>0,78</td><td>1,4</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	4,2	2,2	0,78	1,4	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
2021_2035	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>0,10</th><th>0,11</th><th>0,21</th><th>0,87</th><th><lod< th=""><th>0,87</th><th>0,36</th><th>0,14</th><th>0,22</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>0,10</th><th>0,11</th><th>0,21</th><th>0,87</th><th><lod< th=""><th>0,87</th><th>0,36</th><th>0,14</th><th>0,22</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>0,10</th><th>0,11</th><th>0,21</th><th>0,87</th><th><lod< th=""><th>0,87</th><th>0,36</th><th>0,14</th><th>0,22</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>0,10</th><th>0,11</th><th>0,21</th><th>0,87</th><th><lod< th=""><th>0,87</th><th>0,36</th><th>0,14</th><th>0,22</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th>0,10</th><th>0,11</th><th>0,21</th><th>0,87</th><th><lod< th=""><th>0,87</th><th>0,36</th><th>0,14</th><th>0,22</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>0,10</th><th>0,11</th><th>0,21</th><th>0,87</th><th><lod< th=""><th>0,87</th><th>0,36</th><th>0,14</th><th>0,22</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>0,10</th><th>0,11</th><th>0,21</th><th>0,87</th><th><lod< th=""><th>0,87</th><th>0,36</th><th>0,14</th><th>0,22</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	0,10	0,11	0,21	0,87	<lod< th=""><th>0,87</th><th>0,36</th><th>0,14</th><th>0,22</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	0,87	0,36	0,14	0,22	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>

All.4_IO-CONSU

Rev. 00 del 20/02/2019

Pag. **12** a 17

Numero protocollo: 2021_2094 **del**: 10/07/2021

Tabella 13_Risultati relativi alle analisi degli Idrocarburi Policiclici Aromatici (IPA; µg/kg s.s.).

	Acenaftilene	Benzo(a) antracene	Fluorantene	Naftalene	Antracene	Benzo(a)pirene	Benzo(b) fluorantene	Benzo(k) fluorantene	Benzo(g,h,i) perilene	Acenaftene	Fluorene	Fenantrene	Pirene	Dibenzo(a,h) antrace ne	Crisene	Indeno(1,2,3-c,d)pirene	IPA
2021_2029	<lod< td=""><td>2,9</td><td>4,6</td><td>1,1</td><td><lod< td=""><td>3,7</td><td>3,5</td><td>1,4</td><td>2,4</td><td><lod< td=""><td><lod< td=""><td>2,5</td><td>4,5</td><td><lod< td=""><td>3,7</td><td>2</td><td>32,3</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	2,9	4,6	1,1	<lod< td=""><td>3,7</td><td>3,5</td><td>1,4</td><td>2,4</td><td><lod< td=""><td><lod< td=""><td>2,5</td><td>4,5</td><td><lod< td=""><td>3,7</td><td>2</td><td>32,3</td></lod<></td></lod<></td></lod<></td></lod<>	3,7	3,5	1,4	2,4	<lod< td=""><td><lod< td=""><td>2,5</td><td>4,5</td><td><lod< td=""><td>3,7</td><td>2</td><td>32,3</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>2,5</td><td>4,5</td><td><lod< td=""><td>3,7</td><td>2</td><td>32,3</td></lod<></td></lod<>	2,5	4,5	<lod< td=""><td>3,7</td><td>2</td><td>32,3</td></lod<>	3,7	2	32,3
2021_2030	<lod< td=""><td>11</td><td>14</td><td>2,3</td><td>1,3</td><td>15</td><td>14</td><td>7,5</td><td>11</td><td><lod< td=""><td><lod< td=""><td>5,3</td><td>13</td><td>2,5</td><td>12</td><td>9</td><td>118</td></lod<></td></lod<></td></lod<>	11	14	2,3	1,3	15	14	7,5	11	<lod< td=""><td><lod< td=""><td>5,3</td><td>13</td><td>2,5</td><td>12</td><td>9</td><td>118</td></lod<></td></lod<>	<lod< td=""><td>5,3</td><td>13</td><td>2,5</td><td>12</td><td>9</td><td>118</td></lod<>	5,3	13	2,5	12	9	118
2021_2031	<lod< td=""><td>14</td><td>21</td><td>1,4</td><td>1,8</td><td>17</td><td>14</td><td>6,3</td><td>12</td><td><lod< td=""><td><lod< td=""><td>7,2</td><td>18</td><td>2,7</td><td>13</td><td>9,9</td><td>139</td></lod<></td></lod<></td></lod<>	14	21	1,4	1,8	17	14	6,3	12	<lod< td=""><td><lod< td=""><td>7,2</td><td>18</td><td>2,7</td><td>13</td><td>9,9</td><td>139</td></lod<></td></lod<>	<lod< td=""><td>7,2</td><td>18</td><td>2,7</td><td>13</td><td>9,9</td><td>139</td></lod<>	7,2	18	2,7	13	9,9	139
2021_2032	<lod< td=""><td>16</td><td>24</td><td>1,4</td><td>1,3</td><td>18</td><td>15</td><td>7,1</td><td>10</td><td><lod< td=""><td><lod< td=""><td>7,5</td><td>19</td><td>2,3</td><td>16</td><td>9,8</td><td>148</td></lod<></td></lod<></td></lod<>	16	24	1,4	1,3	18	15	7,1	10	<lod< td=""><td><lod< td=""><td>7,5</td><td>19</td><td>2,3</td><td>16</td><td>9,8</td><td>148</td></lod<></td></lod<>	<lod< td=""><td>7,5</td><td>19</td><td>2,3</td><td>16</td><td>9,8</td><td>148</td></lod<>	7,5	19	2,3	16	9,8	148
2021_2033	<lod< td=""><td>8,8</td><td>19</td><td>2,6</td><td>2,7</td><td>9,4</td><td>7,9</td><td>4,3</td><td>7,6</td><td><lod< td=""><td><lod< td=""><td>14</td><td>16</td><td>1,8</td><td>8,9</td><td>5,5</td><td>108</td></lod<></td></lod<></td></lod<>	8,8	19	2,6	2,7	9,4	7,9	4,3	7,6	<lod< td=""><td><lod< td=""><td>14</td><td>16</td><td>1,8</td><td>8,9</td><td>5,5</td><td>108</td></lod<></td></lod<>	<lod< td=""><td>14</td><td>16</td><td>1,8</td><td>8,9</td><td>5,5</td><td>108</td></lod<>	14	16	1,8	8,9	5,5	108
2021_2034	3,2	34	50	2	4,6	48	42	18	27	<lod< td=""><td><lod< td=""><td>22</td><td>42</td><td>7,7</td><td>33</td><td>26</td><td>360</td></lod<></td></lod<>	<lod< td=""><td>22</td><td>42</td><td>7,7</td><td>33</td><td>26</td><td>360</td></lod<>	22	42	7,7	33	26	360
2021 2035	<lod< td=""><td>5,5</td><td>9,4</td><td>1</td><td><lod< td=""><td>7</td><td>5,8</td><td>2,7</td><td>5</td><td><lod< td=""><td><lod< td=""><td>4</td><td>8,5</td><td><lod< td=""><td>5,8</td><td>4,1</td><td>58,8</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	5,5	9,4	1	<lod< td=""><td>7</td><td>5,8</td><td>2,7</td><td>5</td><td><lod< td=""><td><lod< td=""><td>4</td><td>8,5</td><td><lod< td=""><td>5,8</td><td>4,1</td><td>58,8</td></lod<></td></lod<></td></lod<></td></lod<>	7	5,8	2,7	5	<lod< td=""><td><lod< td=""><td>4</td><td>8,5</td><td><lod< td=""><td>5,8</td><td>4,1</td><td>58,8</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>4</td><td>8,5</td><td><lod< td=""><td>5,8</td><td>4,1</td><td>58,8</td></lod<></td></lod<>	4	8,5	<lod< td=""><td>5,8</td><td>4,1</td><td>58,8</td></lod<>	5,8	4,1	58,8

Tabella 14_Risultati relativi alle analisi di carbonio organico totale (TOC; %) e idrocarburi C>12 (mg/kg); amianto (mg/kg p.s.); PCB-dioxin like (μg/kg); Diossine e furani sommatoria (ng/kg p.s.).

	Carbonio organico totale (TOC)	ldrocarburi C>12	Amianto	2,3,3',4,4'. Pentaclorobif enile (PCB 105)	Sommatoria T.E.PCB Diossina	Sommatoria PCDD, PCDF (TEF)	Sommatoria TE PCDD, PCDF e PCB Diossina Simili
2021_2029	0,59	< LOD					
2021_2030	0,61	< LOD					
2021_2031	0,32	< LOD	< LOD	< LOD	< LOD	1,7	1,9
2021_2032	0,65	< LOD					
2021_2033	0,30	6,38					
2021_2034	1,20	< LOD					
2021_2035	< LOD	< LOD					

2.1.3. Caratteristiche fisiche

Si riportano le caratteristiche fisiche del sedimento. I dati sono riportati in modo sintetico; per la curva di distribuzione granulometrica e per il dettaglio delle frazioni passanti il ½ phi si rimanda ai rapporti di prova. La pelite è espressa come sommatoria silt+argilla in quanto rilevante per la valutazione dei dati chimici secondo le soglie definite dal Decreto Ministeriale e per la valutazione della opzione gestionale del ripascimento emerso. In grassetto è riportata la frazione granulometrica dominante.

Tabella 15_Caratteristiche granulometriche.

		C1 0-50m	C1 50-100m	C1 100-200m	C2 0-50m	C2 50-100m	C2 100-200m	Superficiale
		2021_2029	2021_2030	2021_2031	2021_2032	2021_2033	2021_2034	2021_2035
Ghiaia	x > 2 mm	0,8	0,0	0,9	0,4	0,4	0,1	0,3
Sabbia	0,063 < x < 2 mm	95,0	96,4	93,4	97,7	97,5	97,2	96,1
Pelite	x < 0,063 mm	4,2	3,6	5,8	1,8	2,1	2,7	3,6

All.4_IO-CONSU

Rev. 00 del 20/02/2019

Pag. 13 a 17

Numero protocollo: 2021_2094 del: 10/07/2021

Tabella 16_Caratteristiche colorimetriche.

	Superficiale	C1 0-50m	C1 50-100m	C1 100-200m	C2 0-50m	C2 50-100m	C2 100-200m
	2021_2035	2021_2029	2021_2030	2021_2031	2021_2032	2021_2033	2021_2034
L*a*b*	53,70*0,46*11,63*	52,83*0,22*10,36*	50,99*0,06*9,20*	50,27*-0,16*8,22*	52,67*0,87*11,63*	51,68*0,75*11,18*	48,98*0,86*11,49*
ΔE*ab¹	-	1,55	3,66	4,87	1,11	2,09	4,74

¹ Differenza di colore tra Misura e Riferimento (come riferimento è stato definito il campione superficiale del sito di Deposito).

All.4_IO-CONSU

Rev. 00 del 20/02/2019

Pag. **14** a 17

Numero protocollo: 2021_2094 **del:** 10/07/2021

4. Classificazione del sedimento

Si riportano di seguito i risultati relativi alla classificazione dei sedimenti ottenuti mediante l'applicazione del software di calcolo previsto dal Decreto Ministeriale n. 173/2016. In particolare, è indicata la classificazione del pericolo ecotossicologico, la classificazione del pericolo chimico e la classificazione integrata per i sedimenti del sito di dragaggio e per i sedimenti del sito di deposito. Di seguito sono riportati gli stralci dei risultati di output del programma di classificazione del sedimento relativi al pericolo ecotossicologico.

Tabella 17_Risultati relativi alla classificazione del pericolo ecotossicologico (estratto, per il risultato di SediQualsoft® v. 109.

Codice_campione	Sito	HQ_batteria	Classe_ecotox	Specie	HQ_specifico
				Vibrio_fischeri	0,0
C1 0-50m	Dragaggio	0,31	ASSENTE	Phaeodactylum_tricornutum	1,1
				Paracentrotus_lividus	0,0
				Vibrio_fischeri	0,0
C1 100-200m	Dragaggio	0,54	ASSENTE	Phaeodactylum_tricornutum	1,9
				Paracentrotus_lividus	0,0
				Phaeodactylum_tricornutum	0,8
C1 50-100m	Dragaggio	0,24	ASSENTE	Vibrio_fischeri	0,0
				Paracentrotus_lividus	0,0
	Dragaggio	0,00	ASSENTE	Vibrio_fischeri	0,0
C2 0-50m				Phaeodactylum_tricornutum	0,0
				Paracentrotus_lividus	0,0
	Dragaggio		ASSENTE	Vibrio_fischeri	0,0
C2 100-200m		0,10		Phaeodactylum_tricornutum	0,0
				Paracentrotus_lividus	0,4
				Phaeodactylum_tricornutum	0,0
C2 50-100m	Dragaggio	0,01	ASSENTE	Vibrio_fischeri	0,0
				Paracentrotus_lividus	0,0
				Phaeodactylum_tricornutum	0,0
Superficiale	e Deposito	0,01	ASSENTE	Vibrio_fischeri	0,0
				Paracentrotus_lividus	0,1

Si riporta a seguito lo stralcio dei risultati di output del programma di classificazione del sedimento relativi al pericolo chimico per il sito di dragaggio.

Tabella 18_Risultati relativi alla classificazione del pericolo chimico (estratto, per il risultato di SediQualsoft® v. 109).

Codice_campione	Sito	L1	L2
C1 0-50m	Dragaggio	ASSENTE	ASSENTE
C1 100-200m	Dragaggio	MOLTO ALTO	ASSENTE
C1 50-100m	Dragaggio	ASSENTE	ASSENTE
C2 0-50m	Dragaggio	BASSO	ASSENTE
C2 100-200m	Dragaggio	ALTO	BASSO
C2 50-100m	Dragaggio	ALTO	BASSO
Superficiale	Deposito	ASSENTE	ASSENTE

All.4_IO-CONSU

Rev. 00 del 20/02/2019

Pag. **15** a 17

Numero protocollo: 2021_2094 **del**: 10/07/2021

5. Elaborazioni integrate

Si riportano i criteri integrati di classificazione del sedimento previsti dal D.M. n. 173/2016 (**Figura 2**). Si riportano, in **Tabella 19**, la classe di qualità del materiale individuata, dall'applicazione dei suddetti criteri, delle aree interessate.

Classe di pericolo ecotossicologico elaborato per l'intera batteria (HQ _{Betteria})	Classificazione chimica	Classe di qualità del materiale
	HQ _c (L2) ≤ Trascurabile	A
Assente	Basso ≤ HQ _c (L2) ≤ Medio	В
Assente	HQ _c (L2) = Alto	E
	HQc(L2) > Alto	D
	HQ _c (L1) ≤ Basso	A
82305	$HQ_c(L1) \ge Medio \ e \ HQ_c(L2) \le Basso$	8
Basso	Medio \leq HQ _C (L2) \leq Alto	· c
9	HQ _c (L2) > Alto	D
1220325	HQ _c (L2) ≤ Basso	-
Medio	HQ _c (L2) ≥ Medio	
74.W65	HQ _c (L2) ≤ Basso	D
≥ Alto	HQ _c (L2) ≥ Medio	E

Figura 2_Criteri di integrazione.

Tabella 19_Classificazione integrata.

Codice_campione	Sito	Classificazione_ecotox	%_elutriato	Classificazione_chimica	%_pelite	classe_qualita
C1 0-50m	Dragaggio	ASSENTE	100	HQc(L2) <= Trascurabile	4,2	Α
C1 100-200m	Dragaggio	ASSENTE	100	HQc(L2) <= Trascurabile	3,6	Α
C1 50-100m	Dragaggio	ASSENTE	100	HQc(L2) <= Trascurabile	5,8	Α
C2 0-50m	Dragaggio	ASSENTE	0	HQc(L2) <= Trascurabile	1,8	Α
C2 100-200m	Dragaggio	ASSENTE	100	HQc(L2) >= Basso e HQc(L2) <= Medio	2,1	В
C2 50-100m	Dragaggio	ASSENTE	100	HQc(L2) >= Basso e HQc(L2) <= Medio	2,7	В
Superficiale	Deposito	ASSENTE	100	HQc(L2) <= Trascurabile	3,6	А

All.4_IO-CONSU

Rev. 00 del 20/02/2019

Pag. **16** a 17

Numero protocollo: 2021_2094 **del:** 10/07/2021

6. Opzione di gestione

In riferimento a quanto previsto dal Decreto Ministeriale n. 173 del 15 luglio 2016 (**Figura 3**), le classi di qualità del sedimento ottenute dalla classificazione ecotossicologica e chimica integrate secondo quanto restituito dal software SediQualsoft® v. 109, permettono le opzioni di gestione riportate in **Classe A** e **Classe B** per i campioni prelevati nelle stazioni dell'area di dragaggio. Tra le possibili opzioni della Classe A, l'opzione di gestione individuata in accordo con l'Autorità Competente è il ripascimento della spiaggia emersa.

Il sito di deposizione individuato risulta classificabile in **Classe A**. Si ricorda che il DM 173/2016 prevede il criterio di intervento "non peggiorativo" della qualità ambientale.

Figura 3_Opzioni di gestione previste dal D.M. n. 173 del 15 luglio 2016.

All.4_IO-CONSU

Rev. 00 del 20/02/2019

Pag. **17** a 17

Numero protocollo: 2021_2094 **del:** 10/07/2021

7. Considerazioni conclusive

I risultati acquisiti nell'ambito della presente caratterizzazione ambientale condotta ai sensi dell'art. 109 del D.lgs. 152/2006 e ss.mm.ii. in conformità alle disposizioni previste dal Decreto 15 luglio 2016, n. 173, permette di definire il pericolo chimico ed ecotossicologico associato alla movimentazione dei sedimenti dell'area di studio e la classe di qualità dei sedimenti stessi.

I risultati integrati con il software previsto dal Decreto 15 luglio 2016, n. 173 permettono le opzioni di gestione della Classe A e Classe B per i sedimenti prelevati nell'area di escavo.

Tra le opzioni previste per i sedimenti in Classe A è incluso il ripascimento della spiaggia sommersa. Il sito di destinazione individuato risulta essere in Classe A. Le caratteristiche granulometriche e colorimetriche dei campioni provenienti dall'area di escavo e dal sito di destinazione sono comparabili.

Si ricorda che il DM 173/2016 prevede il criterio di intervento "non peggiorativo" della qualità ambientale escludendo, in questo caso specifico, la possibilità di deposito per quei sedimenti risultati in Classe B sul sito individuato che risulta di qualità migliore (Classe A).

SPECIFICHE DI REPORT BsRC							
Tipo	ologia elaborato:	Report Finale	Progres	00			
REV	DATA	DESCRIZIONE	ELABORATO	VERIFICATO	APPROVATO		
00	10/07/2021	Prima emissione	S. Anselmi	M. Renzi	M. Renzi		

Documento in originale informatico. Il presente documento è firmato digitalmente ai sensi del testo unico D.P.R. 28 dicembre 2000, n.445, del D.Lgs. 7 marzo 2005 n. 82. Codice dell'amministrazione digitale e norme collegate e sostituisce il testo cartaceo e la firma autografa.