

Ministero della Transazione Ecologica Direzione Generale per la Crescita Sostenibile e la qualità dello Sviluppo (CreSS). Divisione IV - Qualità dello sviluppo Via C. Colombo, 44 00147 – Roma RM PEC - CRESS@Pec.minambiente.it

Brindisi, 29 luglio 2021

Oggetto:

Basell Poliolefine Italia S.r.l. - Stabilimento di Brindisi - AIA DVA-DEC-2010-

0000807 del 09/11/2010 (ID 122).

Relazione prevista dall' art. 271 comma 7-bis del D.Lgs. 152/2006 ss.mm.ii.

La scrivente Basell Poliolefine Italia stabilimento di Brindisi, operante per la "Fabbricazione di prodotti chimici organici, e in particolare: h) materie plastiche" (attività IPPC 4.1.h), con la presente invia la Relazione, prevista dall'Art. 271, comma 7-bis del D.Lgs. 152/2006 ss.mm.ii. (introdotto dalla lett. d), D.Lgs. 102/20 del 30 luglio 2020, Art 1, comma 1.

Le informazioni contenute nella relazione sono da considerarsi confidenziali e non divulgabili

Distinti saluti.

Basell Poliolefine Italia S.r.l. Stabilimento di Brindisi Il Direttore Ing. Gianpiero Manca

RELAZIONE TECNICA

(Art. 271, comma 7-bis del D.Lgs. 152/2006 ss.mm.ii.)

Basell Poliolefine Italia S.r.l.

Stabilimento di Brindisi

Relazione Tecnica

(Art. 271, comma 7-bis del D.Lgs. 152/2006 ss.mm.ii.)

Rev. 0 Luglio 2021

Basell Poliolefine Italia S.r.l.

Stabilimento di Brindisi

RELAZIONE TECNICA

(Art. 271, comma 7-bis del D.Lgs. 152/2006 ss.mm.ii.)

SOMMARIO

1	PREI	MESSA E SCOPO	3
2	NOR	RMATIVA DI RIFERIMENTO	4
3	DESC	CRIZIONE DELLE ATTIVITA'	5
	3.1	Basell Poliolefine Italia	5
	3.2	Autorizzazioni e certificazioni	5
	3.3	Descrizione sintetica delle attività	6
	3.3.1	Impianto PP2 (Fase 1)	
	3.3.2	Impianto P9T (Fase 2)	
	3.3.3	Attività comuni	
	3.4	Emissioni in atmosfera	8
	3.4.1	Emissioni convogliate	
	3.4.2	Emissioni in condizioni anomale e/o di emergenza	10
	3.4.3	Emissioni fuggitive	10
4	ANA	LISI DELLE SOSTANZE E/O MISCELE UTILIZZATE	11
	4.1	Materie prime e ausiliarie	11
	4.1.1	Catalizzatori (A)	
	4.1.2	Atmer 163	13
	4.2	Individuazione delle eventuali alternative	14
5	CON	ISIDERAZIONI CONCLUSIVE	15
	5.1.1	Catalizzatori (A)	15
	5.1.2	Atmer 163	15

RELAZIONE TECNICA

(Art. 271, comma 7-bis del D.Lgs. 152/2006 ss.mm.ii.)

1 PREMESSA E SCOPO

Allo scopo di ridurre nella maggior misura possibile, dal punto di vista tecnologico o dell'esercizio, le emissioni in atmosfera delle sostanze cancerogene, tossiche per la riproduzione, mutagene (H340, H350 e H360) e delle sostanze di tossicità e cumulabilità particolarmente elevata, nonché delle sostanze classificate come estremamente preoccupanti (in sigla SVHC) dal Regolamento (CE) n.1907/2006. L'art. 271 comma 7 bis del D.Lgs. 152/2006 (introdotto dal D.Lgs. 102/2020) stabilisce che il Gestore che utilizza le sostanze in oggetto nei cicli produttivi che danno origine ad emissioni in atmosfera debba valutare possibili alternative per la sostituzione di tali sostanze oppure ridurne o limitarne l'utilizzo.

Basell Poliolefine Italia S.r.l. stabilimento di Brindisi (di seguito Basell Brindisi) nella presente relazione ha valutato le sostanze e/o miscele impiegate nei cicli produttivi relativi alla produzione di polipropilene e riporta le proprie considerazioni sulla disponibilità di soluzioni alternative.

RELAZIONE TECNICA

(Art. 271, comma 7-bis del D.Lgs. 152/2006 ss.mm.ii.)

2 NORMATIVA DI RIFERIMENTO

D.Lgs. del 03/04/2006, n. 152	Norme in materia ambientale
Regolamento (CE) n. 1907/2006 del parlamento europeo e del consiglio del 18/12/2006	Regolamento concernente la registrazione, la valutazione, l'autorizzazione e la restrizione delle sostanze chimiche (REACH), che istituisce un'Agenzia europea per le sostanze chimiche, che modifica la direttiva 1999/45/CE e che abroga il regolamento (CEE) n. 793/93 del Consiglio e il regolamento (CE) n. 1488/94 della Commissione, nonché la direttiva 76/769/CEE del Consiglio e le direttive della Commissione 91/155/CEE, 93/67/CEE, 93/105/CEE e 2000/21/CE.
Regolamento (CE) n. 1272/2008 del Parlamento europeo e del Consiglio, del 16/12/2008	Regolamento relativo alla classificazione, all'etichettatura e all'imballaggio delle sostanze e delle miscele che modifica e abroga le direttive 67/548/CEE e 1999/45/CE e che reca modifica al regolamento (CE) n. 1907/2006.
D.Lgs. del 30/07/2020, n. 102	Disposizioni integrative e correttive al D.Lgs. 15/11/2017, n. 183, di attuazione della direttiva (UE) 2015/2193 del Parlamento europeo e del Consiglio, del 25 novembre 2015, relativa alla limitazione delle emissioni nell'atmosfera di taluni inquinanti originati da impianti di combustione medi, nonché' per il riordino del quadro normativo degli stabilimenti che producono emissioni nell'atmosfera, ai sensi dell'art. 17 della Legge 12 agosto 2016, n. 170.
Comunicazione della Direzione generale per il clima, l'energia e l'aria - MATTM del 08/02/2021	Articolo 271, comma 7bis, e articolo 272, comma 4, D.Lgs. 152/2006. Riscontro a quesito. Rif. mail della Regione Piemonte dell'8 febbraio 2021, acquisita con prot. MATTM/12388 dell'8 febbraio 2021.
Nota di chiarimento della Città Metropolitana di Torino	Avviso - disposizioni in materia di sostanze pericolose – prima scadenza del 28/08/2021
Circolare del Servizio valutazione impatto e promozione sostenibilità ambientale della Regione Emilia Romagna del 21/05/2021	Obbligo di presentazione relazione tecnica per installazioni/stabilimenti con emissioni di "sostanze classificate".
Deliberazione n° XI/4837 del 07/06/2021 della Regione Lombardia	Linea guida regionale per l'applicazione degli adempimenti previsti dall'art. 271 c. 7bis del D.Lgs. 152/06 ed ulteriori disposizioni per la limitazione delle emissioni in atmosfera delle sostanze pericolose.
Circolare Regione Friuli Venezia Giulia del 06/07/2021	Informazioni sull'applicazione delle prescrizioni di cui al D.Lgs. 102/2020 per aziende ed attività con emissioni delle sostanze classificate come cancerogene o tossiche per la riproduzione o mutagene (H340, H350, H360) e delle sostanze di tossicità e cumulabilità particolarmente elevata.

(Art. 271, comma 7-bis del D.Lgs. 152/2006 ss.mm.ii.)

3 DESCRIZIONE DELLE ATTIVITA'

3.1 Basell Poliolefine Italia

La società Basell Poliolefine Italia S.r.l. ha sede legale in Milano, Via Pontaccio 10 ed il suo capitale sociale è interamente posseduto dal Socio Unico LyondellBasell Industries Holdings B.V.. La struttura di BPI prevede, inoltre, più unità locali, presenti a:

- Brindisi (Uffici e Polymer Manufacturing);
- Ferrara (Uffici, Polymer Manufacturing, Catalyst Manufacturing e R&D);
- Sesto San Giovanni (uffici commerciali).

Lo Stabilimento Basell Brindisi è ubicato nel Comune di Brindisi, all'interno del Polo Chimico, situato nell'agglomerato industriale a sud-est di Brindisi, lungo la costa adriatica.

Lo stabilimento Basell Brindisi produce polipropilene:

- con processo ad alta resa, denominato "Spheripol", nell'impianto PP2;
- con processo ad alta resa denominato "Spherizone" nell'impianto P9T.

La capacità produttiva del PP2 è di 260.000 t/anno, mentre quella del P9T è di 210.000 t/anno.

3.2 Autorizzazioni e certificazioni

Nella tabella seguente è riportato l'elenco delle autorizzazioni ambientali relative alle attività di Basell Brindisi.

Tabella 1 Attuale stato autorizzativo

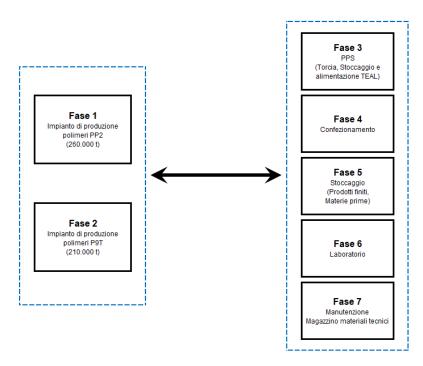
Titolo	Autorità competente	Atto	Descrizione	Scadenza
Autorizzazione Integrata Ambientale	Ministero per la Transizione Ecologica (MiTE)	DVA-DEC-2010- 0000807 del 09/11/2010	Autorizzazione Integrata Ambientale	24/11/2022

Inoltre, la Basell Poliolefine Italia è in possesso della certificazione ambientale, i cui estremi sono riportati nella tabella seguente.

Tabella 2 Certificazione ambientale

Titolo	Ente di Certificazione	Numero	Data emissione
Ambiente (ISO 14001:2015)	DNV GL	10000407362-MSC-RvA-DEU	18/06/2021

(Art. 271, comma 7-bis del D.Lgs. 152/2006 ss.mm.ii.)



3.3 Descrizione sintetica delle attività

Lo stabilimento Basell Brindisi produce polipropilene:

- con processo ad alta resa, denominato "Spheripol", nell'impianto PP2;
- con processo ad alta resa denominato "Spherizone" nell'impianto P9T.

Basell Poliolefine Italia S.r.l. - Stabilimento di Brindisi

Come si evince dalla figura, le attività dello stabilimento Basell Brindisi sono suddivise nelle seguenti fasi:

- Fase 1: Impianto PP2;
- Fase 2: Impianto P9T;
- Fase 3 -7: attività comuni.

Nei paragrafi seguenti sono descritte brevemente le fasi produttive.

3.3.1 Impianto PP2 (Fase 1)

La tecnologia di base utilizzata dall'impianto (tecnologia Spheripol) è costituita dalla polimerizzazione ad alta resa del propilene, in fase liquida, effettuata mediante una serie di operazioni unitarie tipiche dell'industria chimica.

Il basso impiego specifico di catalizzatore per unità di polimero prodotto conferisce carattere di "alta resa" al processo. Le ridottissime quantità di catalizzatore presenti e la sua completa inertizzazione, operata durante il ciclo produttivo, consentono di inglobarlo permanentemente

Basell Poliolefine Italia S.r.l.

Stabilimento di Brindisi

RELAZIONE TECNICA

(Art. 271, comma 7-bis del D.Lgs. 152/2006 ss.mm.ii.)

all'interno del polimero, senza alterarne minimamente le caratteristiche per le successive applicazioni (sia in campo alimentare che non), evitando, nel contempo, tutte le operazioni necessarie per il suo recupero.

Tale tecnologia, nata nel 1983, rappresenta una piattaforma di produzione ampiamente sperimentata tecnologia ed applicata in oltre 100 impianti nel mondo.

Il processo avviene in ciclo continuo.

L'impianto di produzione si articola nelle seguenti sezioni:

- Preparazione e dosaggio catalizzatori;
- Reazione fase liquida;
- Degasaggio e riciclo monomero;
- Steaming ed essiccamento polimero;
- Additivazione ed estrusione;
- Blow-down;
- Sileria.

3.3.2 Impianto P9T (Fase 2)

La tecnologia che è alla base dell'attuale assetto impiantistico del P9T (tecnologia Spherizone), in particolare quella legata al reattore MZCR, è stata interamente sviluppata dalla Basell.

Il reattore denominato MZCR (Multi Zone Circulating Reactor) rappresenta un tipo di reattore di polimerizzazione tecnologicamente molto evoluto, con reazione in fase gas.

Questa tecnologia ha sostituito il processo di polimerizzazione del propilene in fase liquida, attualmente utilizzato nell'impianto PP2. Il reattore MZCR, mediante una circolazione continua attraverso differenti zone di reazione, consente di ottenere polimeri con caratteristiche molto migliori rispetto a quelli ottenibili con la tradizionale e già sperimentata tecnologia Spheripol (fase liquida).

Tale tecnologia rappresenta una nuova piattaforma di produzione rispetto alla già sperimentata tecnologia Spheripol. Il basso impiego specifico di catalizzatore per unità di polimero prodotto conferisce carattere di "alta resa" al processo. Le ridottissime quantità di catalizzatore presenti e la sua completa inertizzazione, operata durante il ciclo produttivo, consentono di inglobarlo permanentemente all'interno del polimero, senza alterarne minimamente le caratteristiche per le successive applicazioni (sia in campo alimentare che non), evitando, nel contempo, tutte le operazioni necessarie per il suo recupero.

Il processo avviene in ciclo continuo.

(Art. 271, comma 7-bis del D.Lgs. 152/2006 ss.mm.ii.)

L'impianto di produzione si articola nelle seguenti sezioni:

- Preparazione e dosaggio catalizzatori;
- Reazione fase gas (MZCR);
- Reazione fase gas (Reattori COPO);
- Degasaggio e riciclo monomero;
- Steaming ed essiccamento polimero;
- Additivazione ed estrusione;
- Blow-down;
- Sileria.

3.3.3 Attività comuni

Le attività comuni ad entrambi gli impianti sono:

- Fase 3: sezione PPS costituita da: Torcia (tipo ground flare) e stoccaggio e alimentazione TEAL;
- Fase 4: Confezionamento prodotto finito;
- Fase 5: Stoccaggio prodotti finiti e materie prime;
- Fase 6: Laboratorio Controllo Qualità;
- Fase 7: Manutenzione e magazzino materiali tecnici.

3.4 Emissioni in atmosfera

3.4.1 Emissioni convogliate

Nella tabella seguente è riportato il quadro riepilogativo delle emissioni in atmosfera convogliate.

Tabella 3 Quadro riepilogativo emissioni in atmosfera convogliate

Camino	Descrizione	Portata (Nm³/h)	Inquinanti emessi	Concentrazione limite autorizzata (mg/Nm³)	Sistemi abbattimento
1/P9T	D402/D428 (Azoto di polmonazione)	50	COV	Sotto soglia di rilevanza	
2/P9T	D403/430 (Azoto di polmonazione)	50	COV	Sotto soglia di rilevanza	
3/P9T	D404 (Azoto di polmonazione)	50	COV	Sotto soglia di rilevanza	
6/P9T	Gas cromatografi	60	COV	Sotto soglia di rilevanza	
7/P9T	PF 805 (Additivo solido) - Filtro a calze	1.300	Polveri	8	Filtro a calze
9/P9T	PF 802 (Additivo solido) - Filtro a calze	1.500	Polveri	5	Filtro a calze
10/P9T	PF 901 (Confezionamento) Filtro a calze	1.700	Polveri	5	Filtro a calze
11/P9T	PF 831 (Riempimento IBC) - Filtro a calze	1.800	Polveri	5	Filtro a calze

RELAZIONE TECNICA

(Art. 271, comma 7-bis del D.Lgs. 152/2006 ss.mm.ii.)

Camino	Descrizione	Portata (Nm³/h)	Inquinanti emessi	Concentrazione limite autorizzata (mg/Nm³)	Sistemi abbattimento
12/ P9T	PF 830 (talco) Filtro a calze	1.000	Polveri	5	Filtro a calze
13/P9T	P832 (T.P. PB a W&P)	500	Polveri	Sotto soglia di rilevanza	
14/PPS	D9104 (Azoto di polmonazione)	1.000	Nebbie oleose	Sotto soglia di rilevanza	
15/PPS	D9103 (Azoto di polmonazione)	200	Nebbie oleose	Sotto soglia di rilevanza	
16/PPS	D9106 (Azoto di polmonazione)	300	Nebbie oleose	Sotto soglia di rilevanza	
17/PP2	D103-D112 (Azoto di polmonazione)	50	COV	Sotto soglia di rilevanza	
18/PP2	D109/ D105/ D104/D111 (Azoto di polmonazione)	100	COV	Sotto soglia di rilevanza	
19/PP2	Gas cromatografi	60	COV	Sotto soglia di rilevanza	
20/PP2	F908C (additivo solido) - Filtro a calze	1.300	Polveri	5	Filtro a calze
21/PP2	F908D (additivo solido) - Filtro a calze	1.300	Polveri	5	Filtro a calze
22/PP2	F909 (additivo solido) - Filtro a calze	1.600	Polveri	5	Filtro a calze
23/PP2	C961 (T.P. PB a JSW)	500	Polveri	Sotto soglia di rilevanza	
24/P9T	D420/D405/D413 (Azoto di polmonazione)	50	Nebbie oleose	Sotto soglia di rilevanza	
25/P9T	D429/D431 (Azoto di polmonazione)	50	Nebbie oleose	Sotto soglia di rilevanza	
26/P9T	D607/D832 (Azoto di polmonazione)	50	Nebbie oleose	Sotto soglia di rilevanza	
27/PP2	D806 (Azoto di polmonazione)	50	Nebbie oleose	Sotto soglia di rilevanza	
28/P9T	Scarico pompa pneumatica P809	1.500	Polveri	Sotto soglia di rilevanza	
29/P9T	PF811 (Recupero Off Size W&P) - Filtro a calze	800	Polveri	5	Filtro a calze
30/PP2	F910 (Recupero Off Size JSW) - Filtro a calze	1.200	Polveri	5	Filtro a calze
31/P9T	Scarico aria filtro a calze captazione polveri C1541	500	Polveri	5	Filtro a calze
34/P9T	F921 (additivo solido) - Filtro a calze	1.000	Polveri	5	Filtro a calze
37A/PP2	D961A (T.P. additivo F908A) - Filtro a calze	1.300	Polveri	5	Filtro a calze
40/P9T	BE 802 (Scarico aria essiccatore)	12.750	COV	Sotto soglia di rilevanza	
41/PP2	FB901 (Scarico aria essiccatore)	10.000	COV	Sotto soglia di rilevanza	
42/P9T	D1540/41 (Azoto di polmonazione)	50	Nebbie oleose	Sotto soglia di rilevanza	
43A/P9T	F920A (additivo solido) - Pacco filtrante	1.500	Polveri	5	Pacco filtrante
43B/P9T	F920B (additivo solido) - Pacco filtrante	1.500	Polveri	5	Pacco filtrante

RELAZIONE TECNICA

(Art. 271, comma 7-bis del D.Lgs. 152/2006 ss.mm.ii.)

3.4.2 Emissioni in condizioni anomale e/o di emergenza

Le emissioni in condizioni anomale e/o di emergenza possono derivare dal funzionamento del sistema torcia. La torcia è stata progettata per portare a combustione completa i gas inviati, che consistono essenzialmente in una miscela di monomeri in composizione variabile (propilene, propano, etilene, butene, etano, esene ed esano) con tracce di idrogeno ed una percentuale variabile di azoto.

3.4.3 Emissioni fuggitive

Per la misura e la quantificazione delle emissioni fuggitive prodotte nello Stabilimento Basell Brindisi è stato implementato un piano di monitoraggio, manutenzione e riparazione delle perdite di tipo LDAR, Leak Detection And Repair, e finalizzato a ridurre le emissioni di composti organici volatili (COV).

(Art. 271, comma 7-bis del D.Lgs. 152/2006 ss.mm.ii.)

4 ANALISI DELLE SOSTANZE E/O MISCELE UTILIZZATE

Come previsto dal comma 7-bis, dell'art. 271, D.Lgs. 152/2006 ss.mm.ii., nel presente capitolo sono analizzate tutte le sostanze e miscele utilizzate negli impianti Basell Brindisi, al fine di individuare quali di esse hanno le seguenti caratteristiche:

- mutagene (H340);
- cancerogene (H350);
- tossiche per la riproduzione (H360);
- tossicità e cumulabilità particolarmente elevata (PBT o vPvB);
- estremamente preoccupanti (SVHC).

L'analisi è stata effettuata sulla base delle informazioni reperite tramite:

- Scheda di dati di Sicurezza;
- Banca dati ECHA (https://echa.europa.eu/).

L'analisi ha riguardato le materie prime e ausiliarie pericolose in ingresso al ciclo produttivo.

Prendendo a riferimento le varie circolari emanate, tra le quali la Deliberazione n° XI/4837 del 07/06/2021 della Regione Lombardia, non sono state analizzate le sostanze e/o miscele delle attività di laboratorio, in quanto ricadenti nel campo di applicazione del comma 1, art. 272, D.Lgs. 152/2006 ss.mm.ii. (emissioni scarsamente rilevanti).

4.1 Materie prime e ausiliarie

Nella tabella seguente sono individuate e analizzate le materie prime e le materie ausiliarie pericolose utilizzate presso gli impianti Basell Brindisi.

Tabella 4 Materie prime e ausiliarie utilizzate

n°	Descrizione	Tipologia	Impiant 0	Stato fisico	Indicazioni di pericolo	PBT o vPvB	SVHC	Quantità utilizzata (anno 2020) (t/anno)
1	ATMER 163	MA	PP2 P9T	L	H302, H314, H318, H360D, H400, H410	NO	NO	23.45
2	Butene-1	MP	РЭТ	GPL	H220,H280	NO	NO	93,30
3	Propilene	MP	PP2 P9T	GPL	H220,H280	NO	NO	295.603
4	Etilene	MP	PP2 P9T	G	H220, H280	NO	NO	5.321,30
5	Esene	MP	P9T	L	H225, H304	NO	NO	671,90
6	Idrogeno	MA	PP2 P9T	G	H220, H280	NO	NO	477.895 Sm ³
7	TEAL	MP	PP2 P9T	L	H250, H260, H314	NO	NO	46,10

(Art. 271, comma 7-bis del D.Lgs. 152/2006 ss.mm.ii.)

n°	Descrizione	Tipologia	Impiant 0	Stato fisico	Indicazioni di pericolo		SVHC	Quantità utilizzata (anno 2020) (t/anno)
8	C DONOR	MP	PP2 P9T	L	H315, H411	NO	NO	1,32
9	Catylen D400 (Donor D)	MP	PP2 P9T	L	H315, H318, H410	NO	NO	4,68
10	Catalizzatori (A) (1)	MP	Р9Т	S	H228, H314, H317, H332, H360, H373, H412, EUH014	NO	NO	3,20
11	Catalizzatori (B) (2)	MP	PP2 P9T	S	H228, H314, H317, H332, H335+H336, H372, H412, EUH014	NO	NO	5,22
12	PEROXAN HX-80 W	MA	PP2 P9T	L	H242, H315	NO	NO	7,05
13	MARLOTHERM (Olio diatermico)	MA	PP2 P9T	L	H304, H413	NO	NO	0
14	Oli lubrificanti	MA	PP2 P9T	L	H304, H317, H319, H412	NO	NO	0,044
15	NALCO 77352	MA	Circuito raffred.	L	H314, H317, H318, H412	NO	NO	0,02
16	NALCO TRAC114 PLUS	MA	Circuito raffred.	L	H290, H314, H318	NO	NO	2,36
Lege	nda							
L	Liquido							
S	Solido							
G	Gassoso							
GPL	Gas di Petrolio Liquefatto							
MP	Materia Prima							
MA	Materia Ausiliaria							
(1)	Famiglia di Catalizza				, ,			
(2)					ri al Di Iso Butil Ftalato (DIBF)			
(3)	Famiglia di stabilizza riportata nella tabe		di processo	o: sono di	verse tipologie di prodotti, la cui	composizior	ne generale	e è quella
	Sostanze e/o misce	le ricadenti n	el campo di	applicaz	ione del comma 7-bis, Art. 271, 🏻).Lgs. 152/20	006 ss.mm.	ii

Da quanto si evince nella tabella, le uniche sostanze e/o miscele ricadenti nel campo di applicazione del comma 7-bis, art. 271, D.Lgs. 152/2006 ss.mm.ii., sono:

- ATMER 163;
- Catalizzatori (A);

Nella tabella seguente, per dette sostanze, sono riportate le quantità utilizzate negli ultimi anni e il punto di emissione collegato all'attività dove queste sono utilizzate.

Tabella 5 Quantità utilizzate delle sostanze ricadenti nel comma 7-bis

n°	Descrizione	Impianto		Punto di emissione			
			2017	2018	2019	2020	emissione
1	ATMER 163	PP2 P9T	27,31	35,93	25,76	22,76	26/P9T
10	Catalizzatori (A)	P9T	3,06	2,92	2,58	3,20	2/P9T

RELAZIONE TECNICA

(Art. 271, comma 7-bis del D.Lgs. 152/2006 ss.mm.ii.)

4.1.1 Catalizzatori (A)

I catalizzatori (A) sono utilizzati presso l'impianto P9T e sono una famiglia di Catalizzatori "Avant" con Di Isol Butil Ftalato (DIBF).

La sezione di preparazione e dosaggio catalizzatore dell'impianto P9T, è costituita da un serbatoio dotato di un agitatore, detto "dispersore", in cui è preparata e conservata la Pasta catalitica.

La preparazione del catalizzatore è effettuata nel dispersore, miscelando il catalizzatore in polvere, alimentato da fusti scaricati direttamente nel serbatoio di preparazione, con l'olio e il grasso di vaselina, alimentati dai relativi serbatoi, fino ad ottenere una miscela, la "pasta catalitica", facilmente dosabile. Durante la procedura di preparazione del catalizzatore i serbatoi subiscono vari cicli termici di riscaldamento e raffreddamento.

Non si prevedono emissioni in atmosfera di catalizzatore (A).

4.1.2 Atmer 163

L'Atmer da utilizzare sull'impianto P9T viene stoccato in un serbatoio centralizzato (il D832) da cui viene poi alimentato ai serbatoi di "Dosaggio antistatico" costituito da serbatoi eserciti in atmosfera di azoto a pressione atmosferica e a temperatura ambiente. Le pompe di dosaggio alimentano l'antistatico alla Sezione Reazione dell'impianto P9T.

L'Atmer sull'impianto PP2 viene solo utilizzato quale complessante nella colonna di abbattimento Teal (T302). L'Atmer non viene utilizzato nel normale processo di polimerizzazione.

Basell monitora l'eventuale presenza di tracce di nebbie oleose dal camino 26/P9T.

(Art. 271, comma 7-bis del D.Lgs. 152/2006 ss.mm.ii.)

4.2 Individuazione delle eventuali alternative

Come previsto dal comma 7-bis, dell'art. 271, D.Lgs. 152/2006 ss.mm.ii., in questo capitolo vengono analizzate eventuali alternative alle sostanze e/o miscele aventi le caratteristiche di pericolosità individuate.

Tabella 6 Disponibilità alternative

n°	Descrizione Impianto Individuazione alternativa			Opzione					
1	Catalizzatori (A)	РЭТ	Basell Poliolefine Italia è impegnata da anni alla ricerca e realizzazione di catalizzatori con ridotte classificazioni di pericolo. I catalizzatori (B) rispondono a tali caratteristiche, non contenendo Di Iso Butil Ftalato (DIBF).	1					
2 Atmer 163		P9T PP2	Basell Poliolefine Italia ha individuato un'alternativa all'Atmer 163, che è attualmente in fase di sviluppo anche presso il sito di Brindisi. Le alternative attualmente individuate sono una miscela il LYB 7PAG e il LYB 20PAG. Tale alternativa è utilizzata al 100% sull'impianto PP2 nella polimerizzazione.	1 □ 2 ⊠ 3 □ 4 □ 5 □ 6 ⊠ 7 □ 8					
Lege									
		Il preparato è sostituibile.							
	2	Il preparato è potenzialmente sostituibile con tempi e modi da definire a seguito di prove industriali.							
	3	Il preparato è parzialmente sostituibile, ma l'uso del preparato alternativo non permette di mantenere le							
		caratteristiche tecniche e/o qualitative di alcune tipologie di prodotti finali.							
	1	Il preparato non è sostituibile in quanto il preparato alternativo è di difficile reperimento sul mercato (inteso anche come stagionalità).							
□ 5		Il preparato non è sostituibile in quanto il preparato alternativo comporta un maggiore costo di produzione (inteso come maggior costo per unità di prodotto).							
☐ 6		Il preparato non è sostituibile in quanto l'uso del preparato alternativo richiede significative modifiche tecniche al ciclo produttivo (compresi maggiori costi una tantum).							
	7		non è sostituibile in quanto l'uso del preparato alternativ	vo non permette di mantenere le					
			he tecniche e/o qualitative del prodotto finale.						
	3	Il preparato non è sostituibile per un altro motivo.							

RELAZIONE TECNICA

(Art. 271, comma 7-bis del D.Lgs. 152/2006 ss.mm.ii.)

5 CONSIDERAZIONI CONCLUSIVE

5.1.1 Catalizzatori (A)

La famiglia di catalizzatori (A) contengono il Di Iso Butil Ftalato (DIBF) e sono molto richiesti dal mercato in quanto versatili, efficienti e con caratteristiche finali del polimero che soddisfano le applicazioni a cui è destinato.

L'utilizzo di catalizzatori (A) con DIBF rimane ancora la migliore soluzione tecnica per alcune applicazioni specifiche.

La produzione di alcune tipologie di polimero, contenenti catalizzatori (A), segue le Product Specification del Gruppo Lyondell Basell.

Basell Poliolefine Italia da anni ha studiato e individuato catalizzatori alternativi (identificati come catalizzatori (B)) che negli ultimi anni, hanno avuto un notevole aumento di impiego in sostituzione dei catalizzatori (A).

Tuttavia la sostituzione dei catalizzatori (A) è dettata dalle specifiche richieste di mercato. Pertanto la Basell Poliolefine Italia attualmente non può sostituire completamente i catalizzatori (A).

5.1.2 Atmer 163

Basell Poliolefine Italia, come comunicato al MATTM in data 10/01/2020, sta sviluppando l'utilizzo di un prodotto alternativo all'Atmer 163, identificato nelle miscele LYB 7PAG / LYB 20PAG.

Le miscele alternative all'Atmer 163 non presentato indicazioni di pericolo.

L'utilizzo dell'alternativa individuata richiede un'analisi attenta delle condizioni di processo (eventuali modifiche impiantistiche) e della qualità del prodotto finito (es. durabilità).

Basell Brindisi, coadiuvata dal gruppo di ricerca dello stabilimento Basell di Ferrara, continua nello sviluppo dell'alternativa individuata e nella ricerca di eventuali nuove sostanze potenzialmente utilizzabili in sostituzione all'Atmer 163.