COMMITTENTE:

ALTA SORVEGLIANZA:

SCALA

GENERAL CONTRACTOR:

IL PROGETTISTA INTEGRATORE

Giovenni MALAVENDA

GENERAL CONTRACTOR

Progetto cofinanziato dalla Unione Europea

Consorzio

Iricay Due

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N. 443/01
LINEA AV/AC TORINO – VENEZIA Tratta VERONA – PADOVA
Lotto funzionale Verona – Bivio Vicenza
PROGETTO ESECUTIVO
NV56 - NUOVO CALVACAVIA DI SVINCOLO CASELLO VERONA EST
CAVALCAVIA
RELAZIONE GEOTECNICA

Valido per costruzione ing. Luca ZACCARIA

DIRETTORE LAVORI

Cod. origine:

Data: Febbraio 2021 Data: Febbraio 2021 Data						to all'ordine de enna n. A1206 a: Febbraio 202	1				
COM	messa 'lòtt	O FAS	SE ENTE	TIPO D	OC. OPER	RA/DISCIPLINA	PROC	R. REV	. FOGLIO		
N 1 7 1 0 Y I 2 R B N V						5 6 0 0	0 0	2 A	Di		
								ISTO CONSC	DRZIO IRICAV DUE		
						Fi	rma		Data		
V	Co	nsorzi	io IricA1	/ Due		ing. Luca RANDOLFI			Febbraio 2021		
Proge	ettazione:										
Rev.	Descrizion	ie	Redatto	Data	Verificato	Data	Approvat	o Data	IL PROGETTISTA		
Α	Recepimento pres Del. CIPE n. 84/20		ing. Luca RANDOLFI	Febbraio 2021	ing. Luca RANDOLFI	Febbraio 2021	ing. Giovann MALAVENDA				
							1 1	_			
									-		
									Data: Febbraio 2021		
CIG. 8377957CD1 CUP: J41E91000000009 File: IN1710YI2RBNV5600002A											

Lotto

10

NV56 - NUOVO CALVACAVIA DI SVINCOLO CASELLO VERONA EST CAVALCAVIA RELAZIONE GEOTECNICA

Progetto IN17 Codifica Documento YI2 RB NV 56 0 0 002 Rev. Foglio A 2 di 51

INDICE

1	DO	CUMENTI DI RIFERIMENTO 4	
	1.1	DOCUMENTI PROGETTUALI	4
	1.2	NORMATIVA E STANDARD DI RIFERIMENTO	5
	1.3	BIBLIOGRAFIA TECNICA	5
2	BRE	EVE DESCRIZIONE DELL'OPERA	7
3	IND	AGINI DISPONIBILI	8
4	CAF	RATTERISTICHE GEOTECNICHE DELL'AREA	. 10
5	PAL	Ц	. 11
	5.1 PROF	DEFINIZIONE DELLA METODOLOGIA DI DIMENSIONAMENTO DELLE FONDAZIONI	1 1
	5.2	PROGETTAZIONE AGLI STATI LIMITE	. 11
	5.2.	1 VERIFICHE NEI CONFRONTI DEGLI STATI LIMITE ULTIMI (SLU)	11
	5.	.2.1.1 VERIFICHE DELLE FONDAZIONI PROFONDE	. 12
	5.2.	2 VERIFICHE NEI CONFRONTI DEGLI STATI LIMITE DI ESERCIZIO (SLE)	14
	5.3	TIPI DI PALO	. 15
	5.4	STRATIGRAFIE DI CALCOLO E CONDIZIONI DI FALDA	. 15
	5.5 CARIO	CALCOLO DELLA RESISTENZA DI PROGETTO DEL PALO SINGOLO SOGGETTO A CHI ASSIALI	
	5.6	PALO SINGOLO SOGGETTO A CARICO ORIZZONTALE	. 26
	5.6.	1 CARICO LIMITE ULTIMO PER CARICHI ORIZZONTALI	26
	5.6.	2 INTERAZIONE PALO TERRENO	26
	5.6.	3 AZIONI SUL PALO PER VERIFICHE STRUTTURALI SLU	27
	5.6.	4 SPOSTAMENTI A TESTA PALO PER VERIFICHE SLE	30
6	OPE	ERE PROVVISIONALI	. 31
	6.1	INTRODUZIONE	. 31
	6.2	CARATTERISTICHE DEI MATERIALI	. 31
	6.3	INQUADRAMENTO GEOTECNICO	. 33
	6.4	VERIFICHE NEI CONFRONTI DEGLI STATI LIMITE	. 34
	6.5	MODELLAZIONE DELLE FASI REALIZZATIVE	. 35
	6.6	VERIFICHE AGLI STATI LIMITE ULTIMI SLU	. 37
	6.6.	1 STABILITÀ GEOTECNICA DELL'OPERA DI SOSTEGNO (A2+M2+R1)	37
		.6.1.1 DETERMINAZIONE DELLE SOLLECITAZIONI DI DESIGN SUGLI ELEMENTI TRUTTURALI (A1+M1+R1 (R3 PER TIRANTI))	. 37
	6.6.	2 VERIFICHE STRUTTURALI AGLI STATI LIMITE ULTIMI (SLU)	39
	6.6.	3 VERIFICHE DEI TIRANTI	41
	6.6.	4 VERIFICHE AGLI STATI LIMITE DI ESERCIZIO SLE	43
ΑI	LLEGA	ATO A – TABULATI DI CALCOLO PALI	44
ΑI	LLEGA	ATO B – TABULATI DI CALCOLO PROGRAMMA PARATIE	. 51

GENERAL CONTRACTOR	ALTA SORVEGLIANZA
Consorzio IricAV Due	ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE
NV56 - NUOVO CALVACAVIA DI SVINCOLO CASELLO VERONA EST CAVALCAVIA RELAZIONE GEOTECNICA	ProgettoLottoCodifica DocumentoRev.FoglioIN1710YI2 RB NV 56 0 0 002A3 di 51

PREMESSA

Il presente documento è stato dapprima aggiornato in esito alle istruttorie e tavoli tecnici con il Committente, quindi a seguito delle specifiche richieste di integrazioni durante la fase di istruttoria e da ultimo per il recepimento del quadro prescrittivo a seguito dell'approvazione del Progetto Definitivo da parte del Cipe con Delibera n.84 del 22.12.2017, in particolare è stata recepita la Prescrizione n. 57 vedi allegato 1.

Il presente documento inoltre si riferisce all'intero 1° Lotto Funzionale Verona-Bivio Vicenza ricompreso tra le progressive pk. 0+000 e pk. 44+250.

Il suddetto Lotto Funzionale Verona-Bivio Vicenza, fino alla pk. 44+250, è costituito dall'unione dei sublotti: il primo (SL01) da Verona (pk. 0+000) a Montebello Vicentino (pk. 32+525) a Bivio Vicenza (pk. 44+250) al fine di consentire l'innesto della linea AV/AC sulla linea storica esistente.

GENERAL CONTRACTOR Consorzio IricAV Due		ITAL	FERR STATO ITALIANE		
NV56 - NUOVO CALVACAVIA DI SVINCOLO CASELLO VER CAVALCAVIA RELAZIONE GEOTECNICA	Progetto IN17	Lotto 10	Codifica Documento YI2 RB NV 56 0 0 002	Rev. A	Foglio 4 di 51

1 DOCUMENTI DI RIFERIMENTO

1.1 DOCUMENTI PROGETTUALI

- [1] Linea AV/AC VERONA PADOVA 1° Sub lotto VERONA MONTEBELLO VICENTINO Relazione idrogeologica Elaborato n° IN1710YI2RHGE0002003
- [2] Linea AV/AC VERONA PADOVA 1° Sub lotto VERONA MONTEBELLO VICENTINO Relazione geotecnica generale & addendum Parte 1 Elaborato n° IN1710YI2RBGE0005101
- [3] Linea AV/AC VERONA PADOVA 1° Sublotto VERONA MONTEBELLO VICENTINO Relazione geologica e geomorfologica Elaborato n° IN1710YI2RHGE0002009
- [4] Linea AV/AC VERONA PADOVA 1° Sublotto VERONA MONTEBELLO VICENTINO – Relazione idrogeologica. – Elaborato n° IN1710YI2RHGE0002003
- [5] Linea AV/AC VERONA PADOVA 1° Sublotto VERONA MONTEBELLO VICENTINO Carta geologica e geomorfologica e profilo geolitologico Elaborato n° IN1710YI2G5GE0003002
- [6] Linea AV/AC VERONA PADOVA 1° Sublotto VERONA MONTEBELLO VICENTINO – Carta Idrogeologica e profilo idrogeologico. – Elaborato n° IN1710YI2G4GE0002002
- [7] Linea AV/AC VERONA PADOVA 1° Sub lotto VERONA MONTEBELLO VICENTINO Relazione sismica Elaborato n° IN1710YI2RHXX0000003
- [8] Linea AV/AC VERONA PADOVA 1° Sub lotto VERONA MONTEBELLO VICENTINO – Planimetria con classificazione sismica del territorio – Tav.1– Elaborato n° IN1710YI2P4XX0000001
- [9] Linea AV/AC VERONA PADOVA 1° Sub lotto VERONA MONTEBELLO VICENTINO – Relazione sulle indagini geognostiche – Elaborato n° IN1710YI2IGGE0000101
- [10] Linea AV/AC VERONA PADOVA 1° Sub lotto VERONA MONTEBELLO VICENTINO – Relazione prove penetrometriche statiche – Elaborato n° IN1710YI2PRGE0000008

GENERAL CONTRACTOR Consorzio Iric/tV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE
NV56 - NUOVO CALVACAVIA DI SVINCOLO CASELLO VERONA EST CAVALCAVIA RELAZIONE GEOTECNICA	Progetto Lotto Codifica Documento Rev. Foglio IN17 10 YI2 RB NV 56 0 0 002 A 5 di 51

- [11] Linea AV/AC VERONA PADOVA 1° Sub lotto VERONA MONTEBELLO VICENTINO – Relazione prove di laboratorio – Elaborato n° IN1710YI2RHGE0000005
- [12] Linea AV/AC VERONA PADOVA 1° Sub lotto VERONA MONTEBELLO VICENTINO – Indagini geognostiche in sito e di laboratorio 2017 per CDS – Elaborato n° IN1710YI2IGGE0000106

1.2 NORMATIVA E STANDARD DI RIFERIMENTO

- [13] Decreto Ministeriale del 14 gennaio 2008: "Approvazione delle Nuove Norme Tecniche per le Costruzioni", G.U. n.29 del 04.2.2008, Supplemento Ordinario n.30.
- [14] Circolare 2 febbraio 2009, n. 617 Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni" di cui al D.M. 14 gennaio 2008
- [15] CEN [Comité Européen de Normalisation, 2003]. Eurocode 8: Design of Structures for earthquake resistance. Document EN 1998-1, Brussels.
- [16] RFI Manuale di progettazione Documento n° RFI-DINIC-MA-CS-00-001-C del 20 Settembre 2004
- [17] RFI Specifica per la progettazione geotecnica delle opere civili ferroviarie Documento n° RFI-DTC-INC-CS-SP-IFT-001-A del 21 Dicembre 2011
- [18] RFI. Capitolato generale tecnico di appalto delle opere civili. Parte II. Sezione5. Opere in terra e scavi. Rev. A del 30 Giugno 2014

1.3 BIBLIOGRAFIA TECNICA

- [19] Fleming. W.G.K., Weltman. A.J., Randolph. M.F., Elson, W.K. (1985). "Piling Engineering". Surrey University Press, Glasgow and London, Halsted Press, a division of John Wiley & Sons, New York.
- [20] Berezantsev W.HG. (1965), "Design of Deep Foundations", Proc. 6th ICSMFE, Montreal. Vol.II
- [21] Berezantsev W.HG. (1970), "Calculation of the Construction Basis", Leningrad.
- [22] Fioravante, V., Ghionna, V.N., Jamiolkowski, M.B. and Pedroni, S. (1995). "Load carrying capacity of large diameter bored piles in sand and gravel". Proc. 10th ARCSMFE, 2, 3-15.

GENERAL CONTRACTOR Consorzio IricAV Due		ITAL	FERR STATO ITALIANE		
NV56 - NUOVO CALVACAVIA DI SVINCOLO CASELLO VER CAVALCAVIA RELAZIONE GEOTECNICA	Progetto IN17	Lotto 10	Codifica Documento YI2 RB NV 56 0 0 002	Rev. A	Foglio 6 di 51

- [23] Ghionna, V.N., Jamiolkowski. M.B., Pedroni. S. and Salgado, R. et al (1994). "Tip displacement of drilled shafts in sands". In Vertical and Horizontal Deformations of Foundations and Embankments. Ed. A.T. Yeung and G.Y. Felio, ASCE, GSP40, New York, 2, 1039-1057.
- [24] Gwizdala K. (1984) "Large bored piles in non cohesive soils" Swedish Geotechnical Institute, Report n° 26+
- [25] Lancellotta R. Costanzo D. e Foti S. "Progettazione Geotecnica secondo l'Eurocodice 7 (UNI EN 1997) e le Norme Tecniche per le Costruzioni (NTC 2008)" Hoepli ed.
- [26] Reese L.C., Wright S.J. (1977) "Drilled shaft manual" U.S. Department of Transportation, Office of Research and Development, Div. HDV 2, Washington.
- [27] Reese L.C., O'Neill M.W. (1988) "Drilled shaft: construction procedures and design methods" Publication N.FHWA-HI-88-042, Federal Highway Administration, Washington, D.C..
- [28] Viggiani (1999), "Fondazioni" Hevelius Edizioni
- [29] Poulos H.G. and Davis E.H. (1980), "Pile foundation analysis and design", John Wiley and Sons, New York.

2 BREVE DESCRIZIONE DELL'OPERA

Il cavalcavia in oggetto verrà realizzato, in adiacenza al cavalcavia esistente, per permettere il transito del traffico sulle deviazioni provvisorie dell'Autostrada A4.

Il nuovo cavalcavia ha una lunghezza pari a L=63 m e si compone di due spalle fondate su pali di diametro 1200 mm. È prevista la realizzazione di un muro di sostegno, fondato anche esso su pali dello stesso diametro, nei tratti in cui i rilevati di approccio al cavalcavia interferiscono con la galleria GA01.

Data la stretta vicinanza con l'esistente, per gli scavi delle fondazioni delle spalle e dei muri sono previste delle paratie provvisionali costituite da micropali multitirantati di diametro 300 mm.

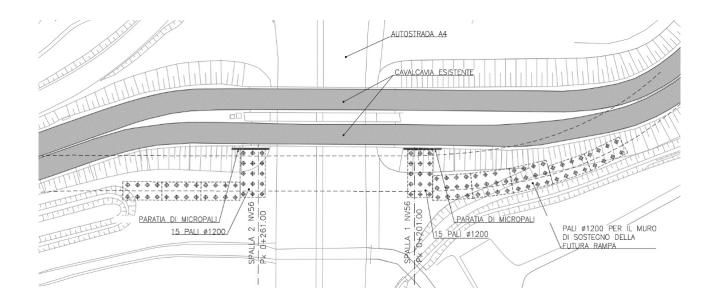


Figura 1 – Planimetria dell'opera

3 INDAGINI DISPONIBILI

La Figura riporta uno stralcio della planimetria ubicazione indagini eseguite nell'area dell'opera in oggetto.

Le indagini considerate sono elencate in Tabella 1.

Nel Doc.Rif.[11] sono riportati gli originali dei risultati delle indagini, nonché i risultati di dettaglio delle prove di laboratorio.

Tabella 1: Elenco delle indagini considerate per la progettazione geotecnica.

Progressiva (km ≈)	Sondaggio o prova CPTU (Denomin.)	Campagna d'indagine (anno)	Quota di Bocca foro (m s.l.m.m.)	Lunghezza sondaggio/CPTU (m)	Piezometro installato C=Casagrande (1) TA=Tubo Aperto (2)
6+175	VRE1	2018	46.0	50	TA (6m→ 50m)
6+250	VRE2	2018	46.0	40	-
6+500	SPA8	2014	43.86	30	TA (3m→ 30m)

^{(1) =} Tra parentesi la profondità della cella Casagrande

^{(2) =} Tra parentesi il tratto finestrato

GENERAL CONTRACTOR	ALTA SC	PRVEG	LIANZA		
Consorzio Iric/W Due	GRUPPO FERRO		FERR TATO ITALIANE		
NV56 - NUOVO CALVACAVIA DI SVINCOLO CASELLO VERONA EST CAVALCAVIA RELAZIONE GEOTECNICA	Progetto IN17	Lotto 10	Codifica Documento YI2 RB NV 56 0 0 002	Rev. A	Foglio 9 di 51

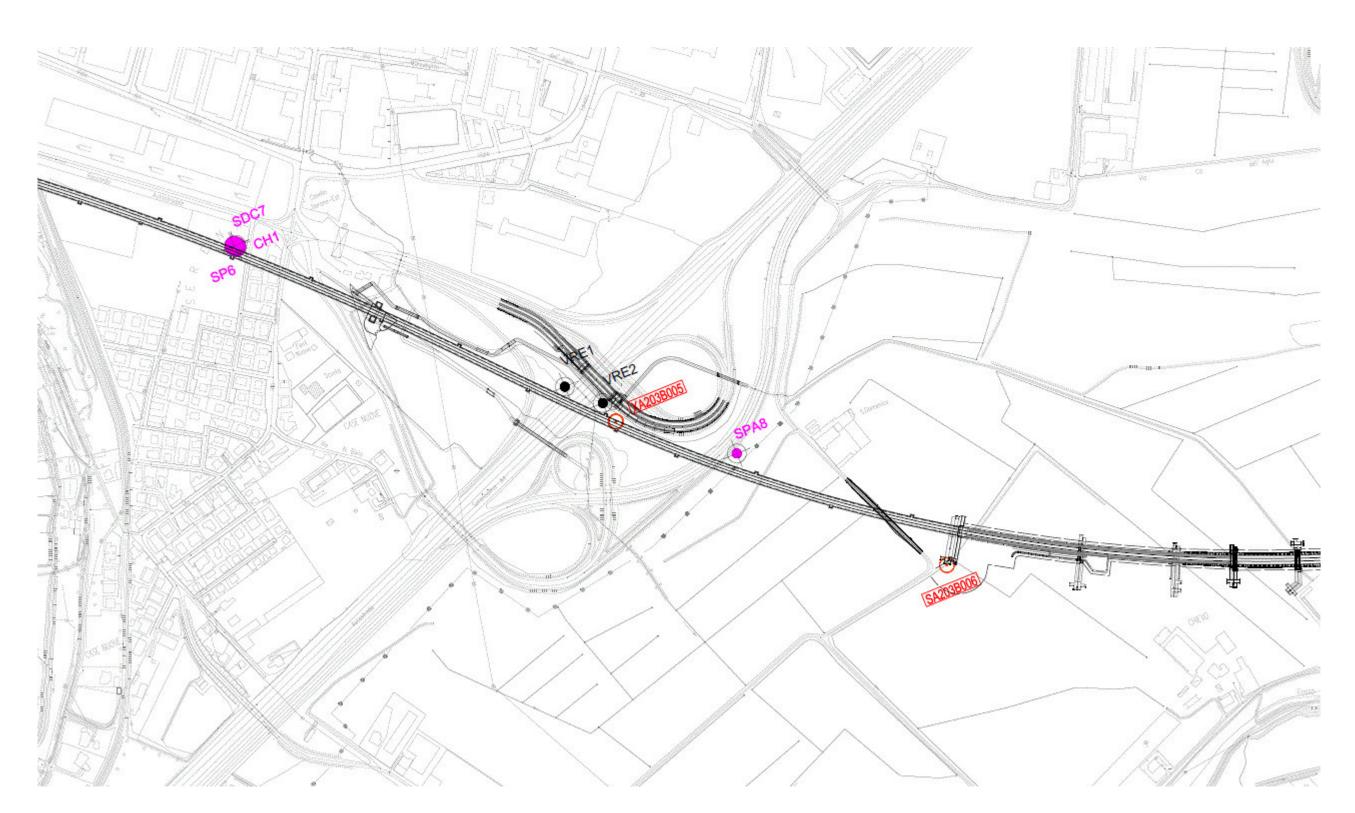


Figura 2 – Planimetria con ubicazione delle indagini

GENERAL CONTRACTOR	ALTA SO	ORVEG	LIANZA		
Consorzio IricAV Due	EDITOR OF THE PROPERTY OF		FERR ITATO ITALIANE		
NV56 - NUOVO CALVACAVIA DI SVINCOLO CASELLO VERONA EST		Lotto	Codifica Documento	Rev.	Foglio
CAVALCAVIA RELAZIONE GEOTECNICA		10	YI2 RB NV 56 0 0 002	Α	10 di 51

4 CARATTERISTICHE GEOTECNICHE DELL'AREA

Per la definizione delle caratteristiche geotecniche del sito ed in particolare per la definizione dei valori dei parametri geotecnici utilizzati per il dimensionamento dei pali di fondazione delle opere, si rimanda alla relazione di caratterizzazione geotecnica generale di cui al Doc. Rif.[2].

Di seguito si riporta una descrizione della situazione stratigrafica dell'area del cavalcavia in oggetto, mentre nel Capitolo 5 è riportata la stratigrafia di calcolo utilizzata insieme ai valori caratteristici dei parametri geotecnici:

- da p.c. fino ad una profondità compresa tra 25÷30 m, sono presenti ghiaie con sabbia, debolmente limose, con valori di SPT generalmente variabili fra i 11 e i 52 colpi/30 cm. La velocità delle onde di taglio, Vs, risulta dell'ordine di 500 m/s (misurata da prova Cross-Hole);
- al di sotto, per spessori attorno ai 9-10 m, sono presenti limi sabbio-argillosi con tracce di torba. I valori di SPT in tali livelli sono dell'ordine di 12÷37 colpi/30 cm;
- al di sotto di tale banco limoso e fino alle massime profondità indagate, si rinviene uno strato formato da sabbie e ghiaie caratterizzato da valori di SPT dell'ordine di 27÷46 colpi/30 cm.

Per quanto concerne la quota di falda, le letture piezometriche eseguite nel 2018 mostrano una profondità di 10 m da p.c. Quindi nel calcolo di capacità portante dei pali, e nelle verifiche condotte per la definizione delle opere di sostegno provvisionali per gli scavi delle spalle, la falda è stata assunta a -10 m dal p.c..

5 PALI

5.1 DEFINIZIONE DELLA METODOLOGIA DI DIMENSIONAMENTO DELLE FONDAZIONI PROFONDE

Per la definizione delle palificate di fondazione, in accordo con i progettisti strutturali, si è proceduto nel seguente modo:

- definizione delle resistenze del palo singolo, in accordo alle NTC 2008 (Doc. Rif. [13]). Il dettaglio di tale calcolo si riporta al punto 5.5;
- verifica della palificata, da parte del progettista strutturale utilizzando le combinazioni di carico di Normativa, e ricavando il carico sui pali della palificata facendo riferimento al programma PIGLET, GROUP, (o simile) tenendo quindi conto dell'effetto penalizzante del gruppo di pali.
- 3. Definizione della lunghezza del palo facendo riferimento al palo più caricato (usualmente il palo di spigolo), e verifiche strutturali delle armature, sempre con riferimento al palo più caricato.

Considerando anche le modalità di calcolo della resistenza del palo singolo qui riportate, si ritiene che tale approccio sia, nel suo complesso, da considerarsi cautelativo. Il progetto di dettaglio delle palificate verrà redatto in sede di Progetto Esecutivo, sulla base di una più dettagliata campagna di indagine.

5.2 PROGETTAZIONE AGLI STATI LIMITE

5.2.1 VERIFICHE NEI CONFRONTI DEGLI STATI LIMITE ULTIMI (SLU)

In accordo alla normativa nazionale NTC2008 (Doc. Rif. [13]) per ogni Stato Limite Ultimo (SLU) deve essere rispettata la condizione

 $E_d \le R_d$ (Eq. 6.2.1 del Doc. Rif. [13])

dove:

E_d = valore di progetto dell'azione o dell'effetto dell'azione;

R_d = valore di progetto della resistenza.

La verifica della condizione $E_d \le R_d$ deve essere effettuata impiegando diverse combinazioni di gruppi di coefficienti parziali, rispettivamente definiti per le azioni (A1 e

A2), per i parametri geotecnici (M1 e M2) e per le resistenze (R1, R2 e R3). I coefficienti da adottarsi nelle diverse combinazioni sono definiti in funzione del tipo di verifica da effettuare. Si sottolinea che per quanto concerne le azioni di progetto E_d tali forze possono essere determinate applicando i coefficienti parziali di cui sopra alle azioni caratteristiche, oppure, a posteriori, sulle sollecitazioni prodotte dalle azioni caratteristiche (Par. 6.2.3.1 del Doc. Rif. [13]).

5.2.1.1 VERIFICHE DELLE FONDAZIONI PROFONDE

In accordo a quanto definito nel Par. 6.4.3.1 delle NTC2008 (Doc. Rif. [13]), per fondazioni su pali, devono essere prese in considerazione le seguenti verifiche agli stati limite ultimi:

SLU di tipo Geotecnico (GEO), relative a condizioni di:

- stabilità globale;
- collasso per carico limite della palificata nei riguardi dei carichi assiali;
- collasso per carico limite della palificata nei riguardi dei carichi trasversali.

SLU di tipo strutturale (STRU), relative a condizioni di:

- raggiungimento della resistenza dei pali;
- raggiungimento della resistenza della struttura di collegamento dei pali.

<u>Tutte le verifiche</u> (GEO/STRU) di cui sopra, devono essere svolte considerando almeno uno dei seguenti approcci (Par. 6.4.3.1 delle NTC 2008):

Approccio 1 (DA1):

<u>Combinazione 1 (C1)</u>: A1 + M1 + R1 <u>Combinazione 2 (C2)</u>: A2 + M1 + R2

Approccio 2 (DA2):

Combinazione 1: A1 + M1 + R3

tenendo conto dei coefficienti parziali riportati in Tab. 6.2.I, e Tab. 6.4.II delle NTC 2008 (Doc. Rif. [13]) e per comodità riportati rispettivamente nella Tabella 2 e Tabella 3 del presente documento.

Il peso del palo, in accordo con quanto riportato al paragrafo 6.4.3 delle NTC2008, Doc.Rif.[13], deve essere incluso tra le azioni permanenti di cui alla Tabella 2.

GENERAL CONTRACTOR Consorzio Iric/AV Due Consorzio Iric/AV Due Consorzio Iric/AV Due Consorzio Iric/AV Due Rev. Foglio CAVALCAVIA CAVIACAVIA IN17 10 YI2 RB NV 56 0 0 002 A 13 di 51

In condizioni sismiche, in accordo a quanto riportato al paragrafo 7.11. delle NTC2008, Doc.Rif.[13], tutti i coefficienti sulle azioni A1 e A2 sono posti pari a 1 (par.7.11.1).

Le raccomandazioni per la progettazione delle fondazioni profonde riportante nel presente documento sono basate sull'Approccio 1 (DA1) delle NTC 2008.

Per le verifiche di stabilità geotecnica (GEO) si fa riferimento alla Combinazione 2 (DA1-C2). Per la determinazione delle azioni agenti sugli elementi strutturali da usare per le verifiche strutturali si fa riferimento alla Combinazione 1 (DA1-C1).

Tabella 2: Tab. 6.2.I, NTC 2008 (Doc.Rif.[13])

Tabella 6.2.I – Coefficienti parziali per le azioni o per l'effetto delle azioni.

CARICHI	EFFETTO	Coefficiente Parziale YF (0 YE)	EQU	(A1) STR	(A2) GEO
Damananti	Favorevole		0,9	1,0	1,0
Permanenti	Sfavorevole	γ _{G1}	1,1	1,3	1,0
Permanenti non strutturali (1)	Favorevole	~	0,0	0,0	0,0
Permanenti non sututuran	Sfavorevole	γ _{G2}	1,5	1,5	1,3
Variabili	Favorevole	24	0,0	0,0	0,0
v ariaom	Sfavorevole	γ _{Qi}	1,5	1,5	1,3

⁽¹⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. i carichi permanenti portati) siano compiutamente definiti, si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

Tabella 3: Tab. 6.4.II, NTC 2008 (Doc.Rif.[13])

Tabella 6.4.II – Coefficienti parziali γ_R da applicare alle resistenze caratteristiche.

Resistenza	Simbolo	Pali infissi			Pali trivellati			Pali ad elica continua		
	γR	(R1)	(R2)	(R3)	(R1)	(R2)	(R3)	(R1)	(R2)	(R3)
Base	γь	1,0	1,45	1,15	1,0	1,7	1,35	1,0	1,6	1,3
Laterale in	γ_s	1,0	1,45	1,15	1,0	1,45	1,15	1,0	1,45	1,15
compressione										
Totale (*)	γ_{t}	1,0	1,45	1,15	1,0	1,6	1,30	1,0	1,55	1,25
Laterale in	γst	1,0	1,6	1,25	1,0	1,6	1,25	1,0	1,6	1,25
trazione										

^(*) da applicare alle resistenze caratteristiche dedotte dai risultati di prove di carico di progetto.

GENERAL CONTRACTOR	ALTA SORVEGLIANZA
Consorzio IricAV Due	ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE
NV56 - NUOVO CALVACAVIA DI SVINCOLO CASELLO VERONA EST	Progetto Lotto Codifica Documento Rev. Foglio
CAVALCAVIA RELAZIONE GEOTECNICA	IN17 10 YI2 RB NV 56 0 0 002 A 14 di 51

5.2.2 VERIFICHE NEI CONFRONTI DEGLI STATI LIMITE DI ESERCIZIO (SLE)

Per quanto riguarda lo stato limite di esercizio (SLE), deve essere verificato che gli effetti attesi delle azioni caratteristiche (cedimenti, rotazioni, vibrazioni) sulle strutture proposte (o quelli indotti, se il caso, sulle strutture adiacenti) siano inferiori al massimo di quelli consentiti. Le analisi sono state effettuate considerando i valori caratteristici dei parametri geotecnici dei materiali, con riferimento sia alla resistenza che alla deformabilità.

5.3 TIPI DI PALO

Considerando i costi e la facilità di costruzione, le condizioni geologiche e idrogeologiche del sito, è stato considerato l'impiego di pali trivellati in calcestruzzo armato, gettati in opera.

In questa relazione, è stata determinata la capacità portante del singolo palo avente diametro D = 1000 mm, D = 1200 mm e D=1500 mm.

Nello schema di calcolo la testa palo è posta a 3 m dal piano finito.

5.4 STRATIGRAFIE DI CALCOLO E CONDIZIONI DI FALDA

Sulla base dei dati di indagine disponibili lungo lo sviluppo dell'opera e sulla base di quanto detto al Capitolo 4, di seguito si riportano le stratigrafie di calcolo ed i valori caratteristici dei parametri geotecnici dei terreni considerati. Si ribadisce che tali valori fanno riferimento ai valori minimi dei parametri geotecnici caratteristici ricavati dai risultati delle indagini disponibili.

Tabella 4: Stratigrafia e valori caratteristici dei parametri geotecnici di calcolo.

Tipo di terreno	Da	а	γ	φ'k	C'k	Cuk	δ	q _{b,ult}	kн
Tipo di torrono	(m p.c.)	(m p.c).	(kN/m³)	(°)	(kPa)	(kPa)	(°)	(kPa)	kN/m³
Ghiaia e sabbia	0.0	27.0	19	36	0	-	36	2325	12000
Limo sabbio argilloso	27.0	36.0	20	-	-	91	-	819	-
Sabbia e ghiaia	Da 36.	0 in poi	20	38	0	-	38	2700	15000

con:

 γ = peso di volume naturale

 ϕ_{k} ' = valore caratteristico dell'angolo di attrito

ck' = valore caratteristico della resistenza al taglio in condizioni drenate

cuk = valore caratteristico della coesione non drenata

 δ = valore caratteristico dell'angolo d'attrito tra palo e terreno;

q_{b,ult} = valore assunto per la resistenza ultima di base (si veda paragrafo 5.5)

k_H = valore assunto per l'incremento del modulo di reazione orizzontale con la profondità per i materiali sabbioso-ghiaiosi.

Per gli strati argillosi si è assunto un modulo di reazione orizzontale secante Es=400*

GENERAL CONTRACTOR	ALTA SORVEGLIANZA
Consorzio IricAV Due	GRUPPO FERROVIE DELLO STATO ITALIANE
NV56 - NUOVO CALVACAVIA DI SVINCOLO CASELLO VERONA EST	Progetto Lotto Codifica Documento Rev. Foglio
CAVALCAVIA RELAZIONE GEOTECNICA	IN17 10 YI2 RB NV 56 0 0 002 A 16 di 51

Nelle analisi l'altezza di falda è stata considerata a -10 m da p.c..

5.5 CALCOLO DELLA RESISTENZA DI PROGETTO DEL PALO SINGOLO SOGGETTO A CARICHI ASSIALI

In conformità con la normativa NTC2008 (Doc. Rif.[13]), la resistenza geotecnica di progetto del palo soggetto a carichi di compressione $R_{c,d}$ e di trazione $R_{t,d}$ è stata ottenuta partendo dal valore di resistenza caratteristico a compressione $R_{c,k}$ e a trazione $R_{t,k}$, applicando i coefficienti parziali indicati nella Tab. 6.4.II del Doc. Rif.[13] (Tabella 3 del presente documento).

$$R_{c,d} = \frac{R_{c,k}}{\gamma_{R2}}$$

$$R_{t,d} = \frac{R_{t,k}}{\gamma_{R2}}$$

In particolare, per i pali trivellati in calcestruzzo gettati opera:

 γ_{R2} = 1.45 per la resistenza laterale in compressione;

 γ_{R2} = 1.6 per la resistenza laterale in trazione;

 γ_{R2} = 1.7 per la resistenza di base.

I valori caratteristici a compressione del palo $\underline{R_{c,k}}$ e a trazione $\underline{R_{t,k}}$, sono ottenuti applicando i fattori di correlazioni ξ_3 e ξ_4 (si veda Tab. 6.4.IV del Doc. Rif.[13],

Tabella 5 nel presente documento) alla resistenza a compressione $R_{c,cal}$ e a trazione $R_{t,cal}$ calcolati partendo dai risultati delle indagini geotecniche. In particolare:

$$R_{c,k} = min \left\{ \frac{\left(R_{c;cal}\right)_{media}}{\xi_3}; \frac{\left(R_{c;cal}\right)_{min}}{\xi_4} \right\}$$

$$R_{t,k} = min \left\{ \frac{\left(R_{t;cal}\right)_{media}}{\xi_3}; \frac{\left(R_{t;cal}\right)_{min}}{\xi_4} \right\}$$

I valori di ξ_3 e ξ_4 da utilizzare nelle analisi sono funzione dal numero di sondaggi indipendenti che sono stati considerati per valutare la resistenza del palo per ogni area omogenea o struttura.

Per l'opera in questione si è scelto di considerate, come riportato al punto precedente, una stratigrafia di calcolo che fa riferimento ai valori minimi dei parametri geotecnici caratteristici, considerando inoltre una successione stratigrafica ragionevolmente cautelativa,. Si è quindi ritenuto che il valore di resistenza di calcolo così ottenuto

GENERAL CONTRACTOR Consorzio Iricato Due Consorzio Iricato Due Consorzio Iricato Due Consorzio Iricato Due NV56 - NUOVO CALVACAVIA DI SVINCOLO CASELLO VERONA EST CAVALCAVIA RELAZIONE GEOTECNICA Progetto Lotto Codifica Documento Rev. Foglio IN17 10 YI2 RB NV 56 0 0 002 A 17 di 51

rappresenti un minimo fra quelli possibili. Considerato inoltre il numero di verticali eseguite in relazione alla lunghezza del viadotto, si è optato per l'adozione del massimo coefficiente suggerito dalla normativa, e pari a ξ_4 =1.60.

Tabella 5: Tab. 6.4.IV, NTC 2008 (Doc.Rif.[13])

Tabella 6.4.IV – Fattori di correlazione ζ per la determinazione della resistenza caratteristica in funzione del numero di verticali indagate.

Numero di verticali indagate	1	2	3	4	5	7	≥ 10
ξ ₃	1,70	1,65	1,60	1,55	1,50	1,45	1,40
ξ4	1,70	1,55	1,48	1,42	1,34	1,28	1,21

Le resistenze di calcolo R_{c,cal} e R_{t,cal} sono state determinate sulla base delle seguenti relazioni:

$$R_{c,cal} = Q_{c,ult} = Q_{ult,lat} + Q_{ult,base}$$

$$R_{t,cal} = Q_{t,ult} = Q_{ult,lat}$$

con:

Q_{c,ult} = resistenza alla base ultima del singolo palo in compressione;

Q_{t,ult} = resistenza alla base ultima del singolo palo in trazione;

Q_{ult,shaft} = resistenza laterale ultima;

Q_{ult.base}= resistenza alla base ultima.

La resistenza laterale ultima τ_{lim} è stata valutata come segue:

Terreni coesivi

$$\tau_{lim}$$
 (kPa) = $\alpha \cdot Cu_k \le 100$ kPa

dove:

 α = coefficiente ricavato sulla base di quanto riportato in Figura

C_{uk} = resistenza a taglio non drenata come riportato in Tabella 4

Terreni sabbiosi

$$\tau_{\text{lim}}$$
 (kPa) = k·tan $\delta \cdot \sigma'_{\text{v0}} \leq \tau_{\text{us,max}}$ kPa

dove:

k = coefficiente di spinta laterale, considerato pari a 0.7 per i pali trivellati;

 δ = angolo d'attrito tra palo e terreno come riportato in Tabella 4;

 σ'_{v0} = tensione verticale alla quota di riferimento;

GENERAL CONTRACTOR	ALTA SO	DRVEG	LIANZA		
Consorzio IricAV Due	GRUPPO FERRO		FERR TATO ITALIANE		
NV56 - NUOVO CALVACAVIA DI SVINCOLO CASELLO VERONA EST	Progetto	Lotto	Codifica Documento	Rev.	Foglio
CAVALCAVIA RELAZIONE GEOTECNICA	IN17	10	YI2 RB NV 56 0 0 002	Α	18 di 51

I valori massimi di $\tau_{us,max}$ sono stabiliti in accordo alle indicazioni di Reese & Wright [1977] (vedi anche Gwizdala [1984]) nel caso di pali trivellati a fango, sulla base delle seguenti espressioni:

 $au_{\text{us,max}}$ = 3.NSPT kPa per $N_{\text{SPT}} \leq 53$ colpi/30 cm

 $\tau_{\text{us,max}}$ = 142+ 0.32.NSPT kPa per N_{SPT} > 53 colpi/30 cm

Per comodità di calcolo, e laddove NSPT≥ 50 per il tratto di interesse, si porrà:

 $\tau_{us,max}$ = 150 kPa

La resistenza ultima di base q_{b,ult} è stata determinata come segue:

Terreni coesivi

 $q_{b,ult}$ (kPa) = 9 · Cu_k

Terreni sabbiosi

Il valore di q_{b,ult} è stato stabilito considerando un rapporto fra il cedimento della base del palo ed il diametro del palo pari al 10%.

Quando disponibili dati penetrometrici, si è considerato (Fioravante et al. (1995) e Ghionna et al. (1994) Lancellotta et al. (2011))

$$q_{bcr \ 0.1} \cong 0.15 \div 0.18 \ q_c$$

Quando disponibili dati SPT, si sono utilizzate le indicazioni di Reese e O'Neill, 1988, Fioravante et al., 1995:

$$q_{bcr, 0.1} = 75 \text{ NSPT} < 4000 \text{ kPa}$$

Tali dati sono in ottimo accordo con le indicazioni di Berezantzev (1965), riportate da AGI (1984).

I valori assunti nel calcolo per i diversi strati sono riportati nella Tabella 4.

Nei terreni stratificati, come quelli dell'area in oggetto, costituiti da alternanze di strati coesivi e di sabbie o ghiaie, la portata di base negli strati sabbioso-ghiaiosi è stata abbattuta rispetto a quella caratteristica dello strato supposto omogeneo in accordo allo schema riportato in Figura.

Le stime delle resistenze geotecniche di progetto dei pali soggetti a carichi verticali a compressione $R_{c,d}$ e trazione $R_{t,d}$ sono riportate in Figura e

Figura .

Nelle tabelle 6, 7, 8, per entrambe le combinazioni, sono riportati i valori numerici delle resistenze di progetto $R_{c,d}$ e $R_{t,d}$ per vari diametri dei pali. Nell' ALLEGATO A sono forniti i tabulati di calcolo che riportano i valori della portanza laterale ultima e della portata di

GENERAL CONTRACTOR	ALTA SORVEGLIANZA
Consorzio IricAV Due	TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE
NV56 - NUOVO CALVACAVIA DI SVINCOLO CASELLO VERONA EST	Progetto Lotto Codifica Documento Rev. Foglio
CAVALCAVIA RELAZIONE GEOTECNICA	IN17 10 YI2 RB NV 56 0 0 002 A 19 di 51

base, ricavati in accordo ai criteri esplicitati nei paragrafi precedenti, utilizzati per la determinazione delle resistenze di calcolo $R_{c,cal}$ e $R_{t,cal}$.

Si ricorda che, in accordo a quanto riportato al paragrafo 5.2.1.1, i valori rappresentati considerano anche il peso del palo. Nella condizione di resistenza a compressione è stato assunto come carico permanente sfavorevole, mentre nella condizione di calcolo di resistenza a trazione è stato assunto come azione permanente favorevole.

Si ricorda che le resistenze di progetto consigliate dovranno essere confrontate con i carichi di progetto a testa pali (considerando i coefficienti parziali γ_A sulle azioni caratteristiche).

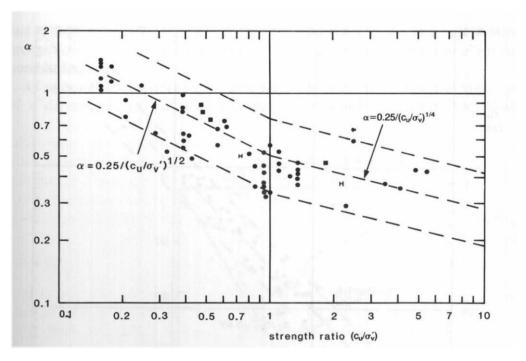


Figura 3 – Valore di α in funzione del rapporto c_u/σ'_v (da Fleming. W.G.K., Weltman. A.J., Randolph. M.F., Elson, W.K. (1985)

GENERAL CONTRACTOR	ALTA SO	DRVEG	LIANZA		
Consorzio Iric/AV Due	A STATE OF THE PARTY OF THE PAR		FERR TATO ITALIANE		
NV56 - NUOVO CALVACAVIA DI SVINCOLO CASELLO VERONA EST	Progetto	Lotto	Codifica Documento	Rev.	Foglio
CAVALCAVIA RELAZIONE GEOTECNICA	IN17	10	YI2 RB NV 56 0 0 002	Α	20 di 51

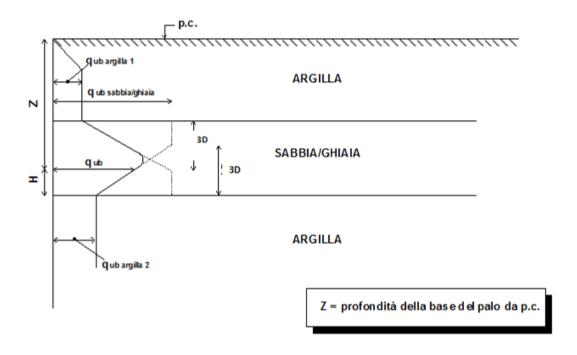


Figura 4 - Criterio di valutazione della pressione ultima di base (qub) in terreni stratificati

Tabella 6: Resistenza di progetto palo singolo Approccio 1 , Combinazione 1 (A1+M1+R1) e Combinazione 2 (A2+M1+R2) – Diametro palo D=1000 mm

Lpalo	Approccio 1 Com STRU (A1+N		Approccio 1 Combinazione GEO (A2+M1+R2)		
	R _{d, compressione}	R _{d, trazione}	R _d , compressione	R _{d, trazione}	
(m)	(kN)	(kN)	(kN)	(kN)	
10	2567	1520	1640	968	
11	2784	1746	1788	1111	
12	3009	1981	1942	1259	
13	3243	2225	2102	1413	
14	3487	2478	2269	1573	
15	3739	2739	2441	1739	
16	4001	3010	2620	1910	
17	4271	3290	2805	2086	
18	4551	3579	2996	2269	
19	4838	3876	3193	2456	
20	5128	4175	3392	2645	
21	5418	4474	3590	2834	
22	5708	4774	3788	3022	

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
NV56 - NUOVO CALVACAVIA DI SVINCOLO CASELLO VERONA EST CAVALCAVIA RELAZIONE GEOTECNICA	Progetto IN17	Lotto 10	Codifica Documento YI2 RB NV 56 0 0 002	Rev.	Foglio 21 di 51

23	5997	5073	3987	3211
24	6287	5372	4185	3400
25	5725	5569	3872	3525
26	5884	5735	3980	3630
27	6048	5906	4091	3739
28	6216	6082	4206	3850
29	6389	6262	4323	3965
30	6566	6445	4443	4081
31	6743	6629	4564	4198
32	6922	6815	4686	4316
33	7102	7002	4808	4434
34	8263	7258	5515	4597

Tabella 7 Resistenza di progetto palo singolo Approccio 1 , Combinazione 1 (A1+M1+R1) e Combinazione 2 (A2+M1+R2) – Diametro palo D=1200 mm

Lpalo	Approccio 1 Com STRU (A1+N		Approccio 1 Combinazio GEO (A2+M1+R2)		
	R _{d, compressione} R _{d, trazione}		R _d , compressione	R _{d, trazione}	
(m)	(kN)	(kN)	(kN)	(kN)	
10	3343	1835	2118	1173	
11	3602	2108	2294	1345	
12	3871	2391	2478	1525	
13	4151	2684	2669	1711	
14	4442	2989	2868	1904	
15	4744	3304	3074	2103	
16	5057	3630	3287	2310	
17	5380	3967	3508	2523	
18	5714	4315	3736	2743	
19	6058	4673	3971	2969	
20	6405	5033	4208	3196	
21	6751	5393	4445	3424	
22	7098	5753	4682	3652	
23	7445	6113	4919	3879	
24	7791	6474	5156	4107	
25	6935	6711	4673	4258	
26	7126	6912	4802	4386	

GENERAL CONTRACTOR	ALTA SORVEGLIANZA				
Consorzio Iric/HV Due	GRUPPO FERROVIE				
NV56 - NUOVO CALVACAVIA DI SVINCOLO CASELLO VERONA EST	Progetto	Lotto	Codifica Documento	Rev.	Foglio
CAVALCAVIA RELAZIONE GEOTECNICA	IN17	10	YI2 RB NV 56 0 0 002	Α	22 di 51

27	7322	7118	4935	4517
28	7524	7330	5071	4652
29	7731	7547	5212	4790
30	7942	7768	5355	4931
31	8154	7990	5499	5073
32	8368	8214	5644	5215
33	8583	8440	5790	5359
34	10196	8749	6766	5554

GENERAL CONTRACTOR	ALTA S	ORVEG	LIANZA		
Consorzio Iric/IV Due	ELITERATED PROFILED		FERR STATO ITALIANE		
NV56 - NUOVO CALVACAVIA DI SVINCOLO CASELLO VERONA EST CAVALCAVIA	Progetto	Lotto	Codifica Documento	Rev.	Foglio
RELAZIONE GEOTECNICA	IN17	10	YI2 RB NV 56 0 0 002	Α	23 di 51

Tabella 8: Resistenza di progetto palo singolo Approccio 1 , Combinazione 1 (A1+M1+R1) e Combinazione 2 (A2+M1+R2) – Diametro palo D=1500 mm

Lpalo	Approccio 1 Combinazione 1 STRU (A1+M1+R1)		Approccio 1 Com GEO (A2+N	
	R _{d, compressione}	R _{d, trazione}	R _{d, compressione}	R _{d, trazione}
(m)	(kN)	(kN)	(kN)	(kN)
10	4671	2315	2928	1487
11	4992	2658	3146	1705
12	5327	3014	3374	1931
13	5675	3383	3611	2166
14	6037	3766	3857	2409
15	6412	4162	4112	2661
16	6801	4572	4377	2921
17	7203	4995	4651	3190
18	7618	5432	4934	3467
19	8046	5881	5226	3751
20	8477	6333	5520	4038
21	8908	6786	5814	4325
22	9340	7238	6108	4611
23	9771	7691	6402	4898
24	10202	8143	6696	5185
25	8792	8442	5892	5375
26	9029	8695	6052	5538
27	9273	8955	6216	5704
28	9524	9221	6385	5875
29	9782	9495	6559	6050
30	10045	9773	6737	6228
31	10310	10054	6916	6407
32	10576	10336	7095	6587
33	10844	10619	7276	6768
34	13269	11008	8737	7015

GENERAL CONTRACTOR Consorzio Iric/1V Due		GRUPPO FERRO	TAL	FERR		
NV56 - NUOVO CALVACAVIA DI SVINCOLO CASELL CAVALCAVIA	O VERONA EST	Progetto IN17	Lotto 10	Codifica Documento YI2 RB NV 56 0 0 002	Rev.	Foglio 24 di 51
RELAZIONE GEOTECNICA		IIN I /	10	112 KD NV 30 0 0 002	Α	24 ul 3 l

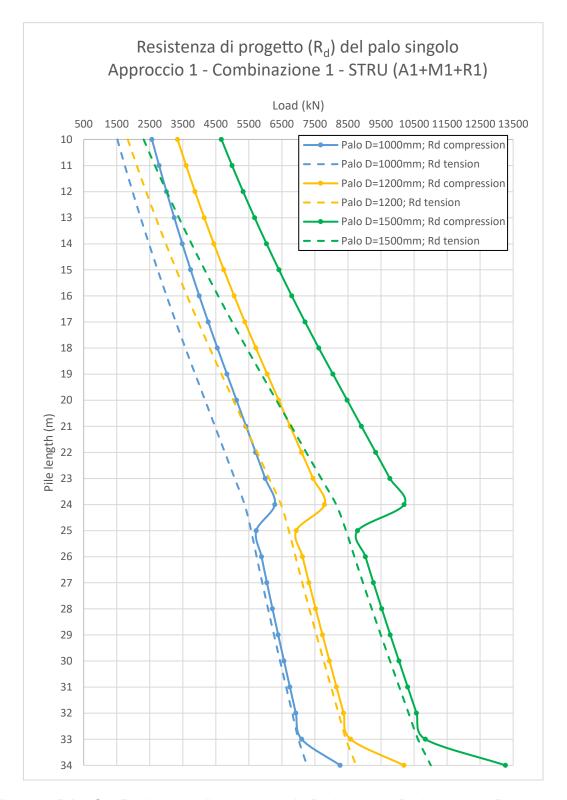


Figura 5: DA1-C1: Resistenza di progetto palo D=1000mm, D=1200mm e D=1500mm

GENERAL CONTRACTOR	ALTA SORVEGLIANZA		
Consorzio IricAV Due	GRUPPO FERROVIE DELLO STATO ITALIANE		
NV56 - NUOVO CALVACAVIA DI SVINCOLO CASELLO VERONA EST	Progetto Lotto Codifica Documento Rev. Foglio		
CAVALCAVIA RELAZIONE GEOTECNICA	IN17 10 YI2 RB NV 56 0 0 002 A 25 di 51		

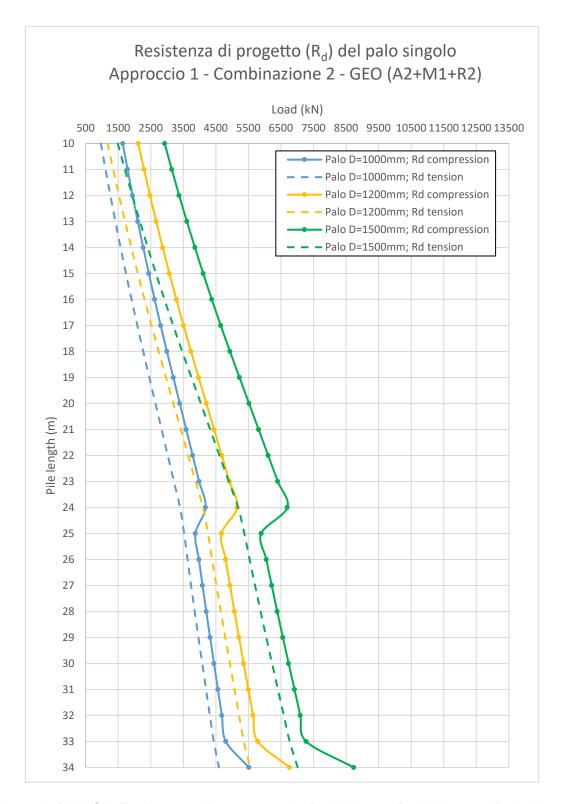


Figura 6: DA1-C2: Resistenza di progetto palo D=1000mm, D=1200mm e D=1500mm

5.6 PALO SINGOLO SOGGETTO A CARICO ORIZZONTALE

5.6.1 CARICO LIMITE ULTIMO PER CARICHI ORIZZONTALI

In accordo alle indicazioni di letteratura (si veda ad esempio Viggiani (1999)) un palo si comporta come rigido quando L/T<2, flessibile quando L/T>4, essendo L la lunghezza del palo e T la sua lunghezza elastica, definita come:

$$T = \left(\frac{E_p J}{n_h}\right)^{0.2}$$

Essendo

Ep modulo di Young del palo

J = momento di inerzia del palo

n_h = parametro che tiene conto della rigidezza orizzontale del terreno.

I valori di T sono calcolati nel paragrafo seguente.

Per la struttura in oggetto, i valori di T sono tipicamente, per pali del 1200, dell'ordine di 3 m.

Le lunghezze attese del palo sono tali quindi per cui il rapporto L/T è tipicamente dell'ordine di 10, e pertanto il palo si comporta come flessibile. Non sono quindi possibili traslazioni orizzontali rigide dell'intero corpo della palificata. Si segnala comunque che le traslazioni orizzontali calcolate della testa del palo sono dell'ordine di qualche millimetro, e quindi ben lontane (di circa tre ordini di grandezza) da quelle che mobilitano la resistenza ultima del terreno nelle condizioni in esame.

Pertanto, la rottura della palificata per carichi orizzontali può avvenire solo nel caso del raggiungimento della condizione di cerniera plastica in testa, ed è quindi limitata dalle verifiche strutturali.

Pertanto, in accordo a quanto previsto dalle NTC 2008, al punto 6.4.3.1, la verifica geotecnica non viene ritenuta pertinente al caso in questione, e quindi non è stata condotta.

5.6.2 INTERAZIONE PALO TERRENO

Lo studio dell'interazione palo-terreno sotto carichi orizzontali è stata condotta in accordo all'approccio proposto da Matlock e Reese (1960), basato sul modello di

Consorzio Iricav Due NV56 - NUOVO CALVACAVIA DI SVINCOLO CASELLO VERONA EST CAVALCAVIA RELAZIONE GEOTECNICA Progetto Lotto Codifica Documento Rev. Foglio IN17 10 YI2 RB NV 56 0 0 002 A 27 di 51

Winkler (elastico-lineare), caratterizzato da un modulo di reazione del terreno Es. Es non è un parametro del terreno e non può essere direttamente correlato con il modulo di Young, dato che è un parametro di interazione terreno-struttura.

In particolare, per le analisi sono stati adottati i seguenti parametri e la seguente relazione (Elson, 1984):

Terreni a grana fine

$$E_h = 400 \cdot c_u \tag{FL}^{-2}$$

c_u = coesione non drenata,

Terreni a grana grossa

$$E_h = k_h \cdot z \qquad (FL^{-2})$$

dove:

E_h = modulo di reazione orizzontale del terreno a specifiche profondità;

z = profondità da piano finito;

k_h = incremento del modulo di reazione orizzontale con la profondità

La rigidezza del palo è stata tenuta in conto considerando un modulo del calcestruzzo del palo pari a 25000 MPa.

Il calcolo è stato eseguito considerando una lunghezza di palo pari a 34 m. Tuttavia considerato che il comportamento del palo soggetto a carichi orizzontali dipende solamente dalle caratteristiche degli strati di terreno fino a profondità pari a 10÷12 volte il diametro del palo stesso, i risultati possono essere estesi a lunghezze di palo maggiori di quelle analizzate.

Nelle analisi la connessione della testa palo alla fondazione è stata considerata a "testa incastrata".

5.6.3 AZIONI SUL PALO PER VERIFICHE STRUTTURALI SLU

Per la condizione, "testa incastrata", sono stati calcolati lungo il fusto del palo il momento adimensionale M_{ad} ed il taglio adimensionale F_{ad} .

Le relazioni utilizzate sono le seguenti

$$F = A_{\scriptscriptstyle V} * F_{\scriptscriptstyle 0,d} + \frac{B_{\scriptscriptstyle V} * M_{\scriptscriptstyle 0,d}}{T}$$
 azione di taglio:

Consorzio Iricav Due Talferr Gruppo Ferrovie Dello Stato Italiane NV56 - NUOVO CALVACAVIA DI SVINCOLO CASELLO VERONA EST CAVALCAVIA RELAZIONE GEOTECNICA Progetto Lotto Codifica Documento Rev. Foglio IN17 10 YI2 RB NV 56 0 0 002 A 28 di 51

momento flettente $M = A_m * F_{0,d} * T + B_m M_{0,d}$ essendo:

 $M_{0,d}$, $F_{0,d}$ = momento flettente e taglio a testa palo α = rapporto tra momento e taglio a testa palo

T = lunghezza elastica del palo, legata alla rigidezza flessionale del palo e al modulo di reazione orizzontale del palo secondo la seguente relazione

$$T = \left(\frac{E_p J}{n_h}\right)^{0.2} = 3.035 \text{ m}$$

Ay, By, As, Bs, Av, Bv, Am, Bm coefficienti adimensionali legati alle caratteristiche del terreno, del palo;

EJ = rigidezza flessionale del palo;.

Sulla base di quanto riportato in precedenza, i calcoli sono stati eseguiti considerando la stratigrafia di cui al punto 5.4.

Per sommita' palo impedita di ruotare:

$$Mo = - (T As/Bs) * Fo = - alfa * Fo$$
 alfa = 2.1405

In tabella 9 si riportano i valori del momento adimensionale M_{ad} = M_d / $M_{0,d}$ per condizioni di "testa incastrata".

Tabella 9 - Momento adimensionale $M_{ad} = M_d / M_{0,d}$

Z	Mad
m	_
.000	1.0000
1.063	.5646
2.125	.2453
3.188	.0271
4.250	1084
5.313	1807
6.375	2075
7.438	2041
8.500	1826
10.200	1316
11.900	0808
13.600	0406
15.300	0138
17.000	.0014
19.833	.0091

22.667	.0070
25.500	.0033
29.750	.0003
34.000	.0000

Nella seguente tabella si riportano i coefficienti adimensionali legati alle caratteristiche del terreno, del palo e la lunghezza elastica T.

Tabella 10 - Coefficienti adimensionali di Matlock e Reese

Il momento flettente di progetto sulla sezione del palo a specifiche profondità dovrà essere valutato come segue:

$$\boldsymbol{M}_{\!d} = \! \boldsymbol{M}_{\!ad} \cdot \! \boldsymbol{M}_{\!0,d}$$

dove:

 $M_{0,d}$ = momento flettente di progetto a testa palo, opportunamente fattorizzato in accordo alla combinazione DA1-C1 per verifiche strutturali SLU.

Inoltre, per la condizione "testa incastrata", il momento flettente a testa palo può essere calcolato come segue:

$$M_{0,d} = -\alpha \cdot F_{0,d}$$

dove:

GENERAL CONTRACTOR	ALTA SO	ORVEG	LIANZA		
Consorzio Iric/IV Due	GRUPPO FERROVIE DELLO STATO ITALIANE				
NV56 - NUOVO CALVACAVIA DI SVINCOLO CASELLO VERONA EST	Progetto	Lotto	Codifica Documento	Rev.	Foglio
CAVALCAVIA RELAZIONE GEOTECNICA	IN17	10	YI2 RB NV 56 0 0 002	Α	30 di 51

 $F_{0,d}$ = azione di taglio di progetto, opportunamente fattorizzata in accordo alla combinazione DA1-C1 per verifiche strutturali SLU.

5.6.4 SPOSTAMENTI A TESTA PALO PER VERIFICHE SLE

Lo spostamento orizzontale a testa palo può essere calcolato come segue:

$$d = A_v F_{0,k} T^3/EJ + B_v M_{0,k} T^2/EJ$$

dove:

Ay, By = coefficienti adimensionali di flessibilità a testa palo

EJ = rigidezza flessionale del palo;

T = lunghezza elastica del palo, legata alla rigidezza flessionale del palo e al modulo di reazione orizzontale del palo

 $F_{0,k}$ = valore di progetto dell'azione di taglio a testa palo (per verifiche SLE);

 $M_{0,k}$ = valore di progetto del momento flettente a testa palo (per verifiche SLE).

6 OPERE PROVVISIONALI

6.1 INTRODUZIONE

Nel presente capitolo si riportano le verifiche svolte sulle opere provvisionali necessarie alla realizzazione delle fondazioni del nuovo cavalcavia e del muro di sostegno in adiacenza all'opera esistente. E' prevista la realizzazione di paratie di micropali multitirantate per contenere il rilevato esistente e permette la realizzazione degli scavi di fondazione. La tipologia di paratia è stata scelta in funzione delle altezze di scavo. Nella seguente tabella viene riportata una sintesi delle tipologie scelte:

TIPO	H scavo max [m]	H paratia [m]	D micropalo [mm]	Ordini di tiranti
1	9.5	20	300	3
2	4.5	10	300	1
3	6	13	300	2
4	7	15	300	2

Per i dettagli sulle opere provvisionali vedere l'elaborato IN1710YI2DZNV5600002A. In particolare, di seguito vengono descritte le verifiche svolte sulla paratia tipo 1, con altezza complessiva di 20 m e tre ordini di tiranti (riportata in Figura 7), prevista per la realizzazione delle fondazioni delle spalle del nuovo cavalcavia.

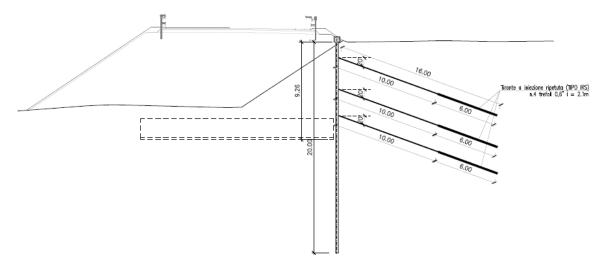


Figura 7 - Sezione trasversale della paratia

6.2 CARATTERISTICHE DEI MATERIALI

Acciaio per armatura micropali:

S 275 JR - EN 10025-2 (Fe430 B)

Consorzio Iricato Due Consorzio Iricato Due Consorzio Iricato Due Consorzio Iricato Due NV56 - NUOVO CALVACAVIA DI SVINCOLO CASELLO VERONA EST CAVALCAVIA RELAZIONE GEOTECNICA Progetto Lotto Codifica Documento Rev. Foglio IN17 10 YI2 RB NV 56 0 0 002 A 32 di 51

 $Es = 206000 \text{ N/mm}^2$

-Tensione caratteristica di snervamento fyd = 275 N/mm²

Calcestruzzo:

C20/25

Rck = 25 N/mm^2

fck = $0.83 \text{ Rck} = 20.75 \text{ N/mm}^2$

fcd = 0.85 fck / 1.5 = 11.76 N/mm²

fcm = $fck + 8 = 28.75 \text{ N/mm}^2$

Ec = $22.000 \text{ (fcm }/10)^{\circ}0,3 = 30.2 \text{ N/mm}^{2}$

fbd = $2,25\cdot1,0\cdot0,7\cdot0,30\cdot\text{fck}^{(2/3)}/1,5 = 2.38 \text{ N/mm}^2$

-Sollecitazioni massime in condizioni di esercizio:

+Combinazione rara: $\sigma_{cmax} = 0,60 \cdot fck = 12.45 \text{ N/mm}^2$

+Comb. quasi perm: $\sigma_{cmax} = 0.45 \cdot fck = 9.34 \text{ N/mm}^2$

Acciaio per carpenteria metallica per strutture saldate:

S 355 JR - EN 10025-2 (Fe510 B)

 $Es = 206000 \text{ N/mm}^2$

-Tensione caratteristica di

snervamento fyd = 355 N/mm²

6.3 INQUADRAMENTO GEOTECNICO

Con riferimento ai risultati delle indagini effettuate, è stata individuata la seguente stratigrafia di progetto:

RILEVATO

 γ = 19 kN/m³ peso di volume

φ' = 35° angolo di resistenza al taglio

E = 20 MPa modulo di deformabilità di Young

SABBIE E GHIAIE

 γ = 19 kN/m³ peso di volume

φ' = 36° angolo di resistenza al taglio

E = 30 MPa modulo di deformabilità di Young

La quota della falda è stata posta, in accordo a quanto riportato dalle misure piezometriche, a 16.2 m dal piano stradale (10 m da p.c.).

Nella tabella seguente si riporta la stratigrafia di progetto considerata per le verifiche geotecniche:

Strato	profondità da	profondità a	Descrizione
Otrato	[m da piano stradale]	[m da piano stradale]	200011210110
1	0.00	6.20	Rilevato
2	6.20	-	Sabbie e ghiaie

Tabella 11 – Stratigrafia di progetto

6.4 VERIFICHE NEI CONFRONTI DEGLI STATI LIMITE

Le verifiche mirano a garantire la sicurezza e le prestazioni attese nei confronti degli:

- Stati Limite di Esercizio (SLE)
- Stati Limite Ultimi (SLU)

Come prescritto dalle NTC2008 per le verifiche agli SLU è stato adottato l'Approccio Progettuale 1 con le due combinazioni di coefficienti parziali:

- Combinazione 1: A1 + M1 + R1
- Combinazione 2: A2 + M2 + R1

In particolare, in condizioni statiche sono stati adottati i coefficienti parziali prescritti dalla normativa (tabelle 6.2.I, 6.2.II e 6.5.I). Il dimensionamento geotecnico dell'opera è stato condotto con la verifica di stati limite ultimi GEO, applicando la Combinazione 2 (A2+M2+R1).

Per le verifiche agli stati limite ultimi STR l'analisi è stata condotta con i parametri previsti per la combinazione 1 (A1+M1+R1), applicando i coefficienti parziali A1 all'effetto delle azioni, incrementando, quindi, le sollecitazioni sugli elementi strutturali derivanti dall'analisi con il coefficiente γ = 1.3.

Le verifiche agli stati limite di esercizio (SLE) hanno riguardato la valutazione di spostamenti compatibili con la funzionalità dell'opera e la verifica delle tensioni in esercizio.

La verifica di stabilità al sollevamento del fondo scavo e la verifica di stabilità globale non risultano significative in considerazione della profondità della falda e della conformazione pianeggiante dei luoghi.

In accordo con le NTC2008, le verifiche sismiche sono state omesse per le opere provvisionali progettate per durare meno di 2 anni.

6.5 MODELLAZIONE DELLE FASI REALIZZATIVE

L'analisi dell'interazione terreno-struttura è stata svolta con il codice di calcolo PARATIE PLUS 2016. Tale software considera l'interazione terreno-struttura attraverso il metodo semplificato della trave su letto di molle alla Winkler. In dettaglio, il codice di calcolo Paratie schematizza il terreno con molle le cui rigidezze sono caratterizzate da leggi costitutive non lineari, del tipo elasto-plastico o elastico non lineare-plastico, con valori iniziali delle tensioni orizzontali efficaci pari a quelle geostatiche e valori limite pari a quelli attivi e passivi. Il software permette di verificare il comportamento della struttura in tutte le fasi costruttive, descritte in dettaglio di seguito.

L'intero processo costruttivo previsto per la paratia in esame si articola nelle seguenti fasi salienti:

1. CONDIZIONI INIZIALI (GEOSTATICHE)

Si prevede uno step di carico iniziale in cui tutti gli elementi terreno siano presenti e bilanciati tra monte e valle; la quota di scavo coincide inoltre con la quota di estradosso del cordolo della paratia e la falda freatica a monte e a valle sono alla stessa quota

2. PRIMA FASE DI SCAVO

Viene effettuata una prima fase di scavo fino a quota -2.00 m per la realizzazione del primo ordine di tiranti

3. REALIZZAZIONE DEL PRIMO ORDINE DI TIRANTI

Esecuzione e tesatura del primo ordine di tiranti

4. SECONDA FASE DI SCAVO

Viene effettuata una seconda fase di scavo fino a quota -5.00 m per la realizzazione del secondo ordine di tiranti

5. REALIZZAZIONE DEL SECONDO ORDINE DI TIRANTI

Esecuzione e tesatura del secondo ordine di tiranti

TERZA FASE DI SCAVO

Viene effettuata una seconda fase di scavo fino a quota -7.50 m per la realizzazione del secondo ordine di tiranti

REALIZZAZIONE DEL TERZO ORDINE DI TIRANTI

Esecuzione e tesatura del terzo ordine di tiranti

8. RAGGIUNGIMENTO DEL FONDO SCAVO

L'ultima fase corrisponde al raggiungimento del fondo scavo

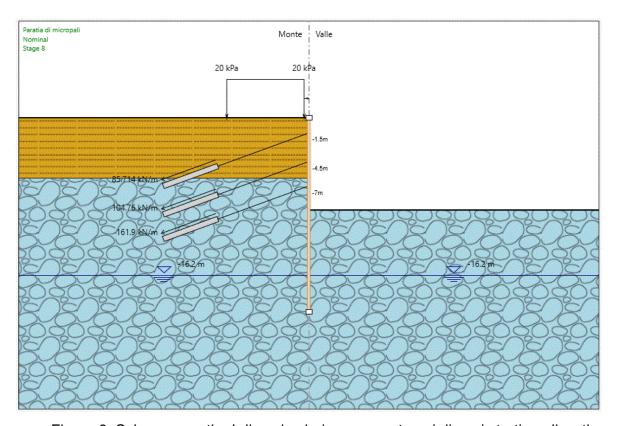


Figura 8: Schema paratia. I diversi colori rappresentano i diversi strati analizzati.

Nel seguito si riassumono i principali risultati ottenuti, mentre in allegato B si riportano i relativi tabulati di calcolo con esplicitati i dati di input e output delle verifiche condotte.

6.6 VERIFICHE AGLI STATI LIMITE ULTIMI SLU

6.6.1 STABILITÀ GEOTECNICA DELL'OPERA DI SOSTEGNO (A2+M2+R1)

La verifica è stata condotta, in accordo alla normativa NTC 2008 secondo l'Approccio 1 – Combinazione 2.

La convergenza raggiunta dal programma PARATIE con limitati spostamenti, assicura l'equilibrio dell'opera anche in presenza di parametri di resistenza al taglio dei terreni fattorizzati.

Nella seguente figura si riporta il riepilogo delle risultanti delle spinte sulle paratie con riferimento alla condizione di carico nominale (SLE).

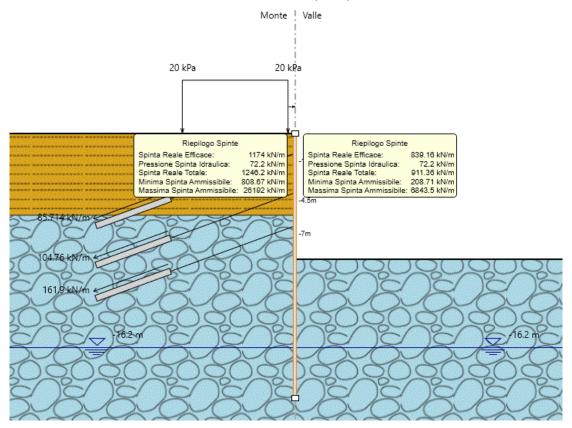


Figura 9: Riepilogo spinte (SLE)

Dal loro esame si evince che con riferimento alla condizione di carico nominale (SLE) la massima spinta resistente è convenientemente superiore alla massima spinta agente.

6.6.1.1 DETERMINAZIONE DELLE SOLLECITAZIONI DI DESIGN SUGLI ELEMENTI STRUTTURALI (A1+M1+R1 (R3 PER TIRANTI))

Per quanto concerne le verifiche strutturali, in accordo all'Approccio 1.

Per la combinazione 1 (A1+M2+R1 (R3 per tiranti)) i valori di progetto delle sollecitazioni negli elementi strutturali (E_d) sono stati determinati applicando i coefficienti parziali per le azioni γ_{A_i} agli effetti delle azioni valutati dalle analisi di interazione condotte con i parametri caratteristici.

In particolare:

- γ_{A1} = 1.3 è stato applicato agli effetti indotti dai carichi permanenti ($E_{k,PL}$)
- $\gamma_{A1} = 1.5$ è stato applicato agli incrementi degli effetti indotti dai carichi variabili ($E_{k,VL}$)

Conseguentemente, i valori di progetto degli effetti delle azioni agenti sugli elementi strutturali, che devono essere confrontati con le relative resistenze di progetto, sono pari a:

$$E_d = 1.3 E_{k,PL} + 1.5 (E_{k,TOT} - E_{k,PL}).$$

Nelle seguenti figure si riportano le sollecitazioni di design lungo i pali.

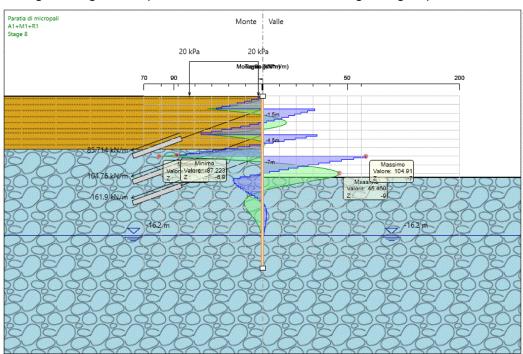


Figura 10: Taglio e momento lungo il palo Verifica SLU (A1+M1+R1) – kN*m/ml e kN/ml

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE
NV56 - NUOVO CALVACAVIA DI SVINCOLO CASELLO VERONA EST CAVALCAVIA RELAZIONE GEOTECNICA	Progetto Lotto Codifica Documento Rev. Foglio IN17 10 YI2 RB NV 56 0 0 002 A 39 di 51

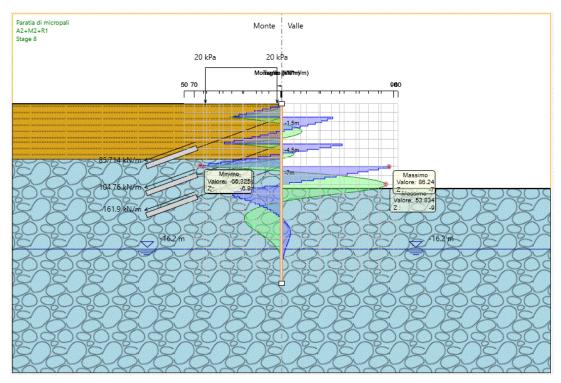


Figura 11: Taglio e momento lungo il palo Verifica SLU (A2+M2+R1) – kN*m/ml e kN/ml

6.6.2 VERIFICHE STRUTTURALI AGLI STATI LIMITE ULTIMI (SLU)

Si adottano per i micropali le seguenti armature:

Armatura tubolare di diametro φ244.5 mm e spessore 7.1 mm.

Nelle seguenti figure si riporta, diagrammati per le differenti combinazioni di carico, il coefficiente di sfruttamento della sezione resistente in c.a. (E_d/R_d) . Si osserva che il coefficiente di sfruttamento è sempre inferiore all'unità e pertanto le verifiche sono soddisfatte.

GENERAL CONTRACTOR	ALTA SORVEGLIANZA
Consorzio IricAV Due	GRUPPO FERROVIE DELLO STATO ITALIANE
NV56 - NUOVO CALVACAVIA DI SVINCOLO CASELLO VERONA EST	Progetto Lotto Codifica Documento Rev. Foglio
CAVALCAVIA RELAZIONE GEOTECNICA	IN17 10 YI2 RB NV 56 0 0 002 A 40 di 51

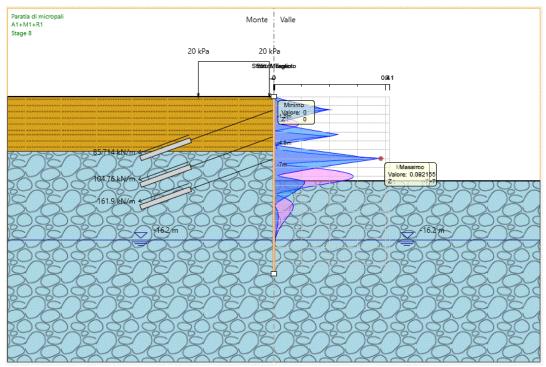


Figura 12: Coefficiente di sfruttamento sugli elementi strutturali Verifica SLU (A1+M1+R1)

Figura 13: Coefficiente di sfruttamento sugli elementi strutturali Verifica SLU (A2+M2+R1)

6.6.3 VERIFICHE DEI TIRANTI

Per limitare gli spostamenti e le sollecitazioni della paratia si adottano tiranti costituiti da 4 trefoli $\phi 0.6$ " in acciaio armonico aventi le seguenti caratteristiche:

	Distanza dal testa	L _{libera}	L _{bulbo}	Inclinazione	Metodo	Passo	Precarico
	paratia [m]	[m]	[m]	[°]	iniezione	[m]	[kN]
Tirante 1	1.5	10	6	20	IRS	2.1	180
Tirante 2	4.5	10	6	20	IRS	2.1	220
Tirante 3	7	10	6	20	IRS	2.1	340

Le massime sollecitazioni in kN/m sui tiranti sono pari a:

	Tirante 1	Tirante 2	Tirante 3
Cond. A1+M1+R3	238.78	298.23	451.2
Cond. A2+M2+R1	189.17	242.07	339.99

I tiranti risulteranno verificati se le azioni derivanti dalle due combinazioni a SLU risulteranno inferiori o uguali alla resistenza di progetto GEO (capacità portante a sfilamento del bulbo lato terreno) ed alla resistenza di progetto STR (resistenza dei trefoli di acciaio).

La resistenza di progetto lato acciaio (resistenza STR) è definita come:

$$R_d = A \cdot f_{vd}$$

dove A è l'area dei trefoli;

$$f_{yd} = \frac{f_y}{\gamma_M}$$

 γ_M è la tensione di snervamento di progetto dell'acciaio armonico dei trefoli, pari alla tensione caratteristica di snervamento dell'acciaio fy, del valore di 1670 N/mm2 per il tipo di acciaio utilizzato, ridotta del coefficiente Υ_M pari a 1.15.

La resistenza di progetto a sfilamento del bulbo (resistenza GEO) è definita come:

$$Rd = R / (\zeta * \gamma_R)$$

con γ_R coefficiente parziale della resistenza, pari a 1.1 (tiranti provvisori);

 ζ fattori di correlazione pari a 1.7;

R resistenza allo sfilamento, che può essere valutata secondo un'usuale espressione del tipo di quelle proposte da Bustamante e Doix (1985):

$$R = \alpha * \pi * D * L * q_s$$

dove:

α è un coefficiente di iniezione;

D è il diametro nominale della perforazione;

L è la lunghezza del bulbo di ancoraggio;

q_s è la resistenza tangenziale all'interfaccia fra zona iniettata e terreno.

Nel caso in esame si sono assunti i seguenti parametri:

Rilevato

 $\alpha = 1.5$

qs = 180 kPa

Ghiaia e sabbia

 $\alpha = 1.7$

qs = 200 kPa

Nelle seguenti tabelle si riportano i risultati delle verifiche lato acciaio (STR) e lato terreno (GEO) dei tiranti.

Dal loro esame si evince che le verifiche sono soddisfatte risultando sempre le resistenze di progetto superiori alle azioni.

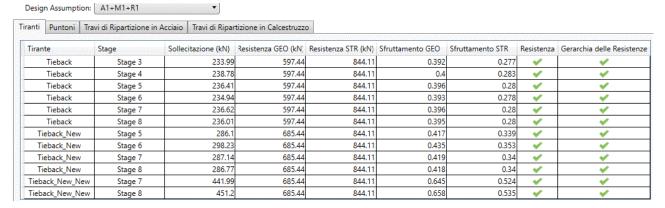


Figura 14: Tiranti - Verifica SLU (A1+M1+R3)

iranti	Puntoni	Travi di Ripartizione in	Acciaio Travi di Rip	artizione in Calcestruzz	0		000000000000000000000000000000000000000		
Tirant	te	Stage	Sollecitazione (kN)	Resistenza GEO (kN)	Resistenza STR (kN)	Sfruttamento GEO	Sfruttamento STR	Resistenza	Gerarchia delle Resistenze
	Tieback	Stage 3	179.9	9 597.44	844.11	0.301	0.213	4	✓
	Tieback	Stage 4	189.1	7 597.44	844.11	0.317	0.224	*	✓
	Tieback	Stage 5	186.5	1 597.44	844.11	0.312	0.221	*	✓
	Tieback	Stage 6	184.2	1 597,44	844.11	0.308	0.218	*	₩
	Tieback	Stage 7	185.7	6 597.44	844.11	0.311	0.22	460	₩
	Tieback	Stage 8	184.7	3 597.44	844.11	0.309	0.219	*	₩
Tie	eback_New	Stage 5	220.0	8 685.44	844.11	0.321	0.261	460	₩
Tie	eback_New	Stage 6	242.0	7 685.44	844.11	0.353	0.287	~	₩
Tie	eback_New	Stage 7	230.5	8 685.44	844.11	0.336	0.273	4,000	₩
Tie	eback_New	Stage 8	229.9	8 685.44	844.11	0.336	0.272	~	₩
Tieba	ack_New_N	ew Stage 7	339.9	9 685.44	844.11	0.496	0.403	400	4
Tieba	ack_New_N	ew Stage 8	353.9	685.44	844.11	0.516	0.419	**	₩

Figura 15: Tiranti - Verifica SLU (A2+M2+R1)

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA
Constitution of the state of th	GRUPPO FERROVIE DELLO STATO ITALIANE
NV56 - NUOVO CALVACAVIA DI SVINCOLO CASELLO VERONA EST	Progetto Lotto Codifica Documento Rev. Foglio
CAVALCAVIA RELAZIONE GEOTECNICA	IN17 10 YI2 RB NV 56 0 0 002 A 43 di 51

6.6.4 VERIFICHE AGLI STATI LIMITE DI ESERCIZIO SLE

Come si evince dalle figure riportate di seguito gli spostamenti orizzontali lungo le opere di sostegno risultano contenuti e compatibili con gli elementi al contorno.

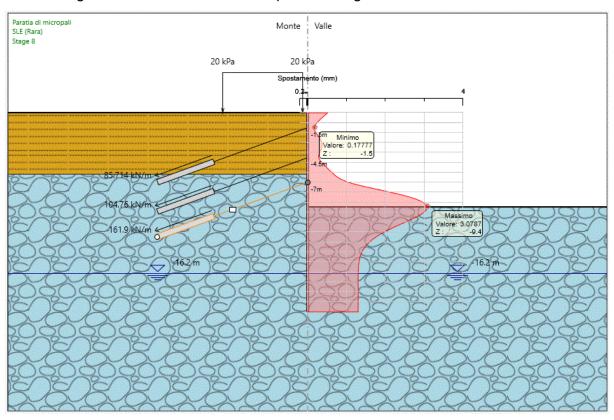


Figura 16: Spostamenti orizzontali lungo i pali

GENERAL CONTRACTOR	ALTA SORVEGLIANZA				
Consorzio IricAV Due	GRUPPO FERROVIE DELLO STATO ITALIANE				
NV56 - NUOVO CALVACAVIA DI SVINCOLO CASELLO VERONA EST	Progetto	Lotto	Codifica Documento	Rev.	Foglio
CAVALCAVIA RELAZIONE GEOTECNICA	IN17	10	YI2 RB NV 56 0 0 002	Α	44 di 51

ALLEGATO A – TABULATI DI CALCOLO PALI

GENERAL CONTRACTOR Consorzio IricAt/ Due Consorzio IricAt/ Due Consorzio IricAt/ Due NV56 - NUOVO CALVACAVIA DI SVINCOLO CASELLO VERONA EST CAVALCAVIA RELAZIONE GEOTECNICA ALTA SORVEGLIANZA GRUPPO FERROVIE DELLO STATO ITALIANE Progetto IN17 Lotto VI2 RB NV 56 0 0 002 A 45 di 51

NV56 fi1200

DATI DI INPUT

Diametro del palo	(m)	1.2 10
Lunghezza minima del palo	(m)	-
Lunghezza massima del palo	(m)	
Incremento lunghezza palo	(m)	1
Quota testa palo da piano campagna	(m)	3
FS Portata laterale	(-)	1
FS Portata di base	(-)	1
Tensione massima nel calcestruzzo	(MPa)	15
Peso specifico del palo	(kN/m3)	6
Numero degli strati di terreno	(-)	3
Numero delle falde	(-)	1
Quota 1 ^ falda da p.c.	(m)	10

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due Consorzio IricAV Due Rev. Foglio

IN17

fi1200 / 2

46 di 51

YI2 RB NV 56 0 0 002

PARAMETRI GEOTECNICI DEL TERRENO

RELAZIONE GEOTECNICA

______ Gnat. Geff. Z,w Fi Delta (kN/m3) (kN/m3) (m) (o) (o)Strato Z,str Gnat. Cu,i Cu,f (-)(m) (kPa) (kPa) ______ 1 27.00 19.00 9.00 10.00 36.0 36.0 0.0 0.0 36.00 20.00 10.00 10.00 0.0 ___ 88.0 93.0 2 0.0 3 60.00 20.00 10.00 10.00 38.0 38.0 0.0

Z,str = Quota fine strato da piano campagna
Gnat. = Peso specifico del terreno naturale
Geff. = Peso specifico del terreno immerso
Z,w = Quota della falda da piano campagna
Fi = Angolo di resistenza al taglio (per terreni incoerenti)
Delta = Angolo d'attrito palo-terreno (per terreni incoerenti)
Cu,i = Coesione non drenata, inizio strato (per terreni coesivi)
Cu,f = Coesione non drenata, fine strato (per terreni coesivi)

Strato	Terreno tipo	TAU,max	Qbase,i	Qbase,f	Qb,1/Qb,c
(-)	()	(kPa)	(kPa)	(kPa)	(-)
1	INCOERENTE	150.0	2325.0	2325.0	3.00
2	COESIVO	100.0	792.0	837.0	1.00
3	INCOERENTE	140.0	2700.0	2700.0	3.00

TAU, max = Limite superiore dell'adesione laterale palo-terreno

Qbase,i = Portata di base unitaria, inizio strato
Qbase,f = Portata di base unitaria, fine strato

Qb, 1/Qb, c = Rapporto tra portata di base limite e critica

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE NV56 - NUOVO CALVACAVIA DI SVINCOLO CASELLO VERONA EST CAVALCAVIA RELAZIONE GEOTECNICA Progetto Lotto Codifica Documento Rev. Foglio

IN17

fi1200 / 3

47 di 51

YI2 RB NV 56 0 0 002

NV56 fi1200

====== Quota	======= Sigma,v	======== Sigma,v	====== Alfa	Beta	======= Tau,lim	qb,cr
da p.c.	totale	efficace				
(m) =====	(kPa)	(kPa)	()	()	(kPa)	(kPa)
3.0	57.0	======================================		0.51	 29.0	
4.0	76.0	76.0		0.51	38.7	
5.0	95.0	95.0		0.51	48.3	
6.0	114.0	114.0		0.51	58.0	2325.0
7.0	133.0	133.0		0.51	67.6	2325.0
8.0	152.0	152.0		0.51	77.3	2325.0
9.0	171.0	171.0		0.51	87.0	2325.0
10.0	190.0	190.0		0.51	96.6	2325.0
11.0	209.0	199.0		0.51	101.2	2325.0
12.0	228.0	208.0		0.51	105.8	2325.0
13.0	247.0	217.0		0.51	110.4	2325.0
14.0	266.0	226.0		0.51	114.9	2325.0
15.0	285.0	235.0		0.51	119.5	2325.0
16.0	304.0	244.0		0.51	124.1	2325.0
17.0	323.0	253.0		0.51	128.7	2325.0
18.0	342.0	262.0		0.51	133.2	2325.0
19.0	361.0	271.0		0.51	137.8	2325.0
20.0	380.0	280.0		0.51	142.4	2325.0
21.0	399.0	289.0		0.51	147.0	2325.0
22.0	418.0	298.0		0.50	150.0	2325.0
23.0	437.0	307.0		0.49	150.0	2325.0
24.0	456.0	316.0		0.47	150.0	2325.0
25.0	475.0	325.0		0.46 0.45	150.0	2325.0
26.0 27.0	494.0 513.0	334.0 343.0		0.43	150.0 150.0	2325.0 2325.0
28.0	533.0	353.0	0.92	0.44	81.2	797.0
29.0	553.0	363.0	0.94	0.23	83.5	802.0
30.0	573.0	373.0	0.94	0.23	85.8	807.0
31.0	593.0	383.0	0.98	0.23	88.1	812.0
32.0	613.0	393.0	1.00	0.23	90.4	817.0
33.0	633.0	403.0	1.00	0.23	91.3	822.0
34.0	653.0	413.0	1.00	0.22	91.9	827.0
35.0	673.0	423.0	1.00	0.22	92.4	832.0
36.0	693.0	433.0	1.00	0.21	93.0	837.0
37.0	713.0	443.0		0.32	140.0	2700.0
38.0	733.0	453.0		0.31	140.0	2700.0
39.0	753.0	463.0		0.30	140.0	2700.0
40.0	773.0	473.0		0.30	140.0	2700.0
41.0	793.0	483.0		0.29	140.0	2700.0
42.0	813.0	493.0		0.28	140.0	2700.0
43.0	833.0	503.0		0.28	140.0	2700.0
44.0	853.0	513.0		0.27	140.0	2700.0
45.0	873.0	523.0		0.27	140.0	2700.0
46.0	893.0	533.0		0.26	140.0	2700.0
47.0	913.0	543.0		0.26	140.0	2700.0

ALTA SORVEGLIANZA				
5		Codifica Documento	Rev.	Foglio 48 di 51
P	O FERROVIE	getto Lotto	getto Lotto Codifica Documento	petto Lotto Codifica Documento Rev.

ALTA SORVEGLIANZA GENERAL CONTRACTOR Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE NV56 - NUOVO CALVACAVIA DI SVINCOLO CASELLO VERONA EST CAVALCAVIA RELAZIONE GEOTECNICA Progetto Lotto Codifica Documento Rev. Foglio

IN17

fi1200 / 4

49 di 51

YI2 RB NV 56 0 0 002

NV56 fi1200

Quota da p.c.	Sigma,v totale	Sigma,v efficace	Alfa	Beta	Tau , lim	qb,cr
(m)	(kPa)	(kPa)	()	()	(kPa)	(kPa)
49.0	953.0	563.0		0.25	140.0	2700.0
50.0	973.0	573.0		0.24	140.0	2700.0
51.0	993.0	583.0		0.24	140.0	2700.0
52.0	1013.0	593.0		0.24	140.0	2700.0
53.0	1033.0	603.0		0.23	140.0	2700.0
54.0	1053.0	613.0		0.23	140.0	2700.0
55.0	1073.0	623.0		0.22	140.0	2700.0
56.0	1093.0	633.0		0.22	140.0	2700.0
57.0	1113.0	643.0		0.22	140.0	2700.0
58.0	1133.0	653.0		0.21	140.0	2700.0
59.0	1153.0	663.0		0.21	140.0	2700.0
60.0	1173.0	673.0	 	0.21	140.0	2700.0

Alfa = Tau, lim / Cu

Beta = Tau,lim / Sigma,v efficace Tau, lim = Adesione limite palo-terreno = Portata unitaria di base critica

GENERAL CONTRACTOR Consorzio Iric/AV Due Consorzio Iric/AV Due Consorzio Iric/AV Due Consorzio Iric/AV Due REV. Foglio

IN17

fi1200 / 5

50 di 51

YI2 RB NV 56 0 0 002

NV56 fi1200

CAPACITA' PORTANTE A COMPRESSIONE - PALO TRIVELLATO D = 1200 mm

======						
Lpalo (m)	Qamm (kN)	Ql,u (kN)	Qb,cr (kN)	Wpalo (kN)	Qt,lim (kN)	S,cls (MPa)
10.00	5389.7	2828.0	2629.5	67.9	10716.6	4.77
11.00	5807.6	3252.7	2629.5	74.6	11141.2	5.14
12.00	6242.7	3694.6	2629.5	81.4	11583.2	5.52
13.00	6695.1	4153.8	2629.5	88.2	12042.4	5.92
14.00	7164.8	4630.3	2629.5	95.0	12518.8	6.34
15.00	7651.7	5124.0	2629.5	101.8	13012.5	6.77
16.00	8155.9	5634.9	2629.5	108.6	13523.5	7.21
17.00	8677.3	6163.2	2629.5	115.4	14051.7	7.67
18.00	9216.0	6708.6	2629.5	122.1	14597.2	8.15
19.00	9770.5	7269.9	2629.5	128.9	15158.4	8.64
20.00	10329.2	7835.4	2629.5	135.7	15723.9	9.13
21.00	10887.9	8400.9	2629.5	142.5	16289.4	9.63
22.00	11446.6	8966.4	2629.5	149.3	16854.9	10.12
23.00	12005.3	9531.8	2629.5	156.1	17420.4	10.61
24.00	12564.0	10097.3	2629.5	162.9	17985.9	11.11
25.00	11197.8	10466.1	901.4	169.6	11367.5	9.90
26.00	11507.1	10776.5	907.0	176.4	11683.6	10.17
27.00	11825.1	11095.6	912.7	183.2	12008.3	10.46
28.00	12151.7	11423.4	918.4	190.0	12341.7	10.74
29.00	12487.0	11759.8	924.0	196.8	12683.8	11.04
30.00	12828.8	12102.7	929.7	203.6	13032.3	11.34
31.00	13173.0	12448.0	935.3	210.4	13383.4	11.65
32.00	13519.3	12795.5	941.0	217.1	13736.5	11.95
33.00	13867.8	13145.1	946.6	223.9	14091.7	12.26
34.00	16451.5	13628.6	3053.6	230.7	22789.4	14.55
35.00	16972.5	14156.3	3053.6	237.5	23317.2	15.01

Lpalo = Lunghezza del palo da quota sottoplinto

Qamm = Portata ammissibile del palo

Ql,u = Portata laterale ultima Qb,cr = Portata di base critica Wpalo = Peso proprio del palo

Qt, lim = Carico limite ultimo totale del palo

S,cls = Tensione media di compressione sul calcestruzzo

Qamm = Ql, u/FSL + Qb, cr/FSB - Wpalo

GENERAL CONTRACTOR	ALTA SORVEGLIANZA						
Consorzio Iric/IV Due	CENTRAL PROPERTY OF		FERR ITATO ITALIANE				
NV56 - NUOVO CALVACAVIA DI SVINCOLO CASELLO VERONA EST	Progetto	Lotto	Codifica Documento	Rev.	Foglio		
CAVALCAVIA RELAZIONE GEOTECNICA	IN17	10	YI2 RB NV 56 0 0 002	Α	51 di 51		

ALLEGATO B – TABULATI DI CALCOLO PROGRAMMA PARATIE

Report di Calcolo

Nome Progetto: NV56 - Paratia di micropali

Autore:

Jobname: \\fileserver\CAD\60155D1\PRODPD\GEOLOGIA GEOTECNICA\1. VERONA MONTEBELLO VICENTINO\CIPE\NV56-Nuovo Cavalcavia VR EST\Opere provvisionali\Micropali_3 tiranti.pplus

Data: 29/05/2018 09:58:43

Design Section: Paratia di micropali

Sommario Contenuto Sommario

1. Descrizione del Software

ParatiePlus è un codice agli elementi finiti che simula il problema di uno scavo sostenuto da diaframmi flessibili e permette di valutare il comportamento della parete di sostegno durante tutte le fasi intermedie e nella configurazione finale.

2. Descrizione della Stratigrafia e degli Strati di Terreno

Tipo: HORIZONTAL

Quota: 0 m OCR: 1

Tipo : HORIZONTAL Quota : -6.2 m

OCR:1

Strato di Terreno	Terreno	γ dry	γ sat	ø'ø	icvøp c' Su M	lodulo Elastico Eu	Evc	Eur	Ah Av exp Pa Rur/Rvo	Rvc Ku	Kvc	Kur
		kN/m³	kN/m	3 •	°° kPa kPa		kPa	kPa	kPa	kPa kN/m	³kN/m³	kN/m³
1	Rilevato	17.5	19	35	0	Constant	20000	60000)			
2	Ghiaia e sabbia	19	19	36	0	Constant	30000	90000)			

3. Descrizione Pareti

X:0 m

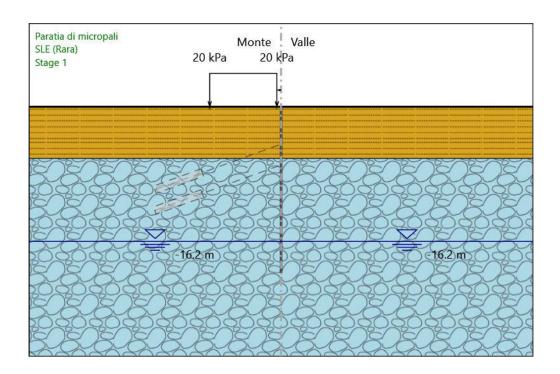
Quota in alto : 0 m Quota di fondo : -20 m Muro di sinistra

Sezione: Micropali fi300

Area equivalente : 0.0366686601689732 m

Inerzia equivalente : 0.0002 m⁴/m
Materiale calcestruzzo : C20/25
Tipo sezione : Tangent
Spaziatura : 0.35 m

Diametro : 0.3 m Efficacia : 1


Materiale acciaio: S355

Sezione: 0.2445x0.0071

Tipo sezione : O Spaziatura : 0.35 m Spessore : 0.0071 m Diametro : 0.2445 m

4. Fasi di Calcolo

4.1. Stage 1

Stage 1

Scavo

Muro di sinistra

Lato monte : 0 m Lato valle : 0 m

Linea di scavo di sinistra (Orizzontale)

0 m

Linea di scavo di destra (Orizzontale)

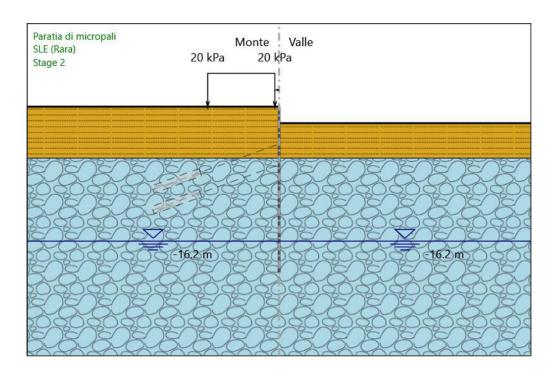
0 m

Falda acquifera

Falda di sinistra : -16.2 m Falda di destra : -16.2 m

Carichi

Carico lineare in superficie: SurfaceSurcharge


X iniziale : -8.5 m X finale : -0.5 m

Paratia: PaliD1000accostati

X:0 m

Quota in alto : 0 m Quota di fondo : -20 m Sezione : Micropali fi300

4.2. Stage 2

Stage 2

Scavo

Muro di sinistra

Lato monte : 0 m Lato valle : -2 m

Linea di scavo di sinistra (Orizzontale)

0 m

Linea di scavo di destra (Orizzontale)

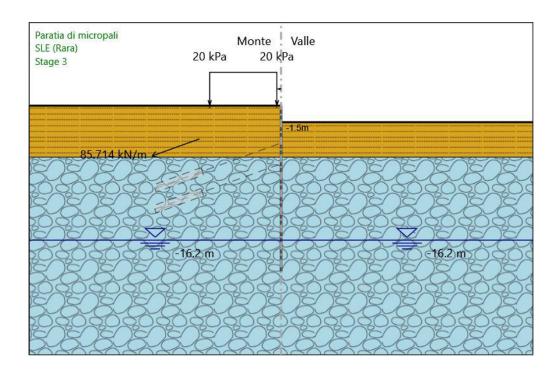
-2 m

Falda acquifera

Falda di sinistra : -16.2 m Falda di destra : -16.2 m

Carichi

 ${\it Carico\ lineare\ in\ superficie: Surface Surcharge}$


X iniziale : -8.5 m X finale : -0.5 m

Paratia: PaliD1000accostati

X:0 m

Quota in alto : 0 m Quota di fondo : -20 m Sezione : Micropali fi300

4.3. Stage 3

Stage 3

Scavo

Muro di sinistra

Lato monte : 0 m Lato valle : -2 m

Linea di scavo di sinistra (Orizzontale)

0 m

Linea di scavo di destra (Orizzontale)

-2 m

Falda acquifera

Falda di sinistra : -16.2 m Falda di destra : -16.2 m

Carichi

Carico lineare in superficie: SurfaceSurcharge

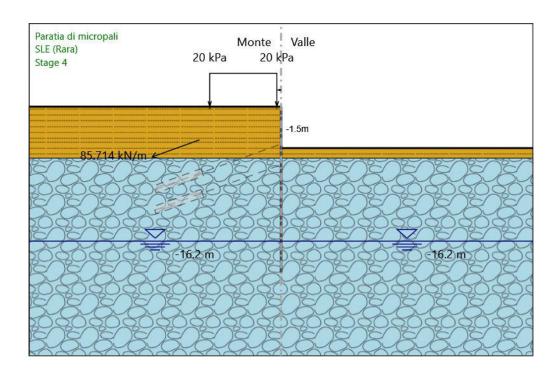
X iniziale : -8.5 m X finale : -0.5 m

Paratia: PaliD1000accostati

X:0 m

Quota in alto : 0 m Quota di fondo : -20 m Sezione : Micropali fi300

Tirante : Tieback
X : 0 m
Z : -1.5 m


Lunghezza bulbo : 6 m Diametro bulbo : 0.2 m Lunghezza libera : 10 m Precarico : 180 kN

Angolo : 20 ° Sezione : 4 trefoli

Tipo di barre : Barre trefoli

Numero di barre : 4 Diametro : 0.01331 m Area : 0.000556 m^2

4.4. Stage 4

Stage 4

Scavo

Muro di sinistra

Lato monte : 0 m Lato valle : -5 m

Linea di scavo di sinistra (Orizzontale)

0 m

Linea di scavo di destra (Orizzontale)

-5 m

Falda acquifera

Falda di sinistra : -16.2 m Falda di destra : -16.2 m

Carichi

Carico lineare in superficie: SurfaceSurcharge

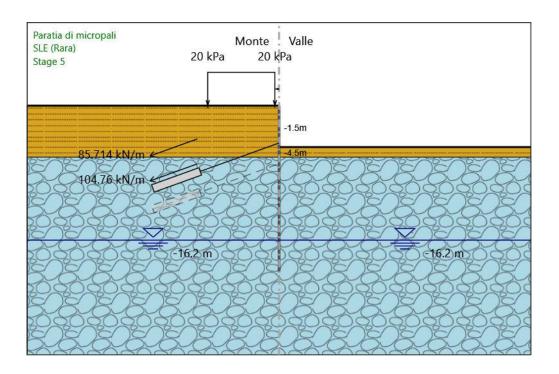
X iniziale : -8.5 m X finale : -0.5 m

Paratia: PaliD1000accostati

X:0 m

Quota in alto : 0 m Quota di fondo : -20 m Sezione : Micropali fi300

Tirante : Tieback
X : 0 m
Z : -1.5 m


Lunghezza bulbo : 6 m Diametro bulbo : 0.2 m Lunghezza libera : 10 m Precarico : 180 kN

Angolo : 20 ° Sezione : 4 trefoli

Tipo di barre : Barre trefoli

Numero di barre : 4 Diametro : 0.01331 m Area : 0.000556 m^2

4.5. Stage 5

Stage 5

Scavo

Muro di sinistra

Lato monte : 0 m Lato valle : -5 m

Linea di scavo di sinistra (Orizzontale)

0 m

Linea di scavo di destra (Orizzontale)

-5 m

Falda acquifera

Falda di sinistra : -16.2 m Falda di destra : -16.2 m

Carichi

Carico lineare in superficie : SurfaceSurcharge

X iniziale : -8.5 m X finale : -0.5 m

Paratia: PaliD1000accostati

X:0 m

Quota in alto : 0 m Quota di fondo : -20 m Sezione : Micropali fi300

Tirante : Tieback
X : 0 m
Z : -1.5 m

Lunghezza bulbo : 6 m Diametro bulbo : 0.2 m Lunghezza libera : 10 m Precarico : 180 kN

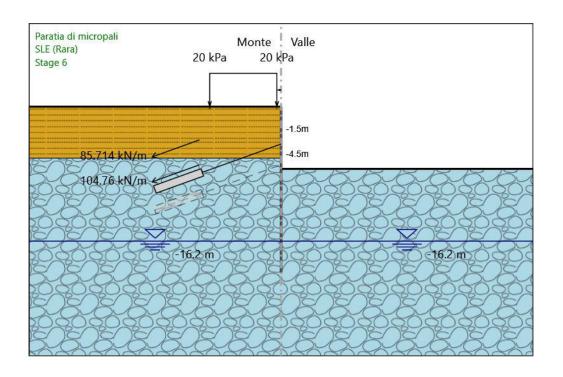
Angolo : 20 ° Sezione : 4 trefoli

> Tipo di barre : Barre trefoli Numero di barre : 4

Diametro : 0.01331 m Area : 0.000556 m^2

Tirante : Tieback_New

X:0 m Z:-4.5 m


Lunghezza bulbo : 6 m Diametro bulbo : 0.2 m Lunghezza libera : 10 m Precarico : 220 kN

Angolo : 20 °

Sezione : 4 trefoli

Tipo di barre : Barre trefoli Numero di barre : 4 Diametro : 0.01331 m Area : 0.000556 m^2

4.6. Stage 6

Stage 6

Scavo

Muro di sinistra

Lato monte : 0 m Lato valle : -7.5 m

Linea di scavo di sinistra (Orizzontale)

0 m

Linea di scavo di destra (Orizzontale)

-7.5 m

Falda acquifera

Falda di sinistra : -16.2 m Falda di destra : -16.2 m

Carichi

 ${\it Carico\ lineare\ in\ superficie: Surface Surcharge}$

X iniziale : -8.5 m X finale : -0.5 m

Paratia: PaliD1000accostati

X:0 m

Quota in alto : 0 m Quota di fondo : -20 m Sezione : Micropali fi300

Tirante : Tieback
X : 0 m
Z : -1.5 m

Lunghezza bulbo : 6 m Diametro bulbo : 0.2 m Lunghezza libera : 10 m Precarico : 180 kN

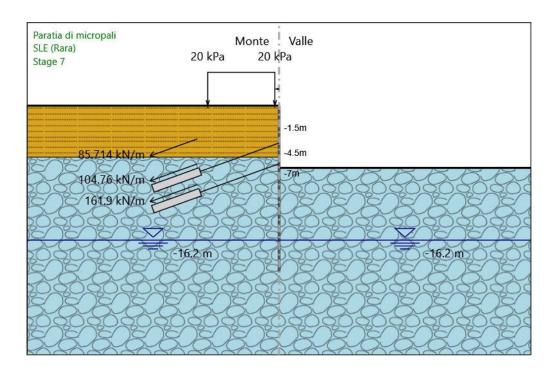
Angolo : 20 ° Sezione : 4 trefoli

> Tipo di barre : Barre trefoli Numero di barre : 4

Diametro : 0.01331 m Area : 0.000556 m^2

Tirante : Tieback_New

X : 0 m Z : -4.5 m


Lunghezza bulbo : 6 m Diametro bulbo : 0.2 m Lunghezza libera : 10 m Precarico : 220 kN

Angolo : 20 °

Sezione : 4 trefoli

Tipo di barre : Barre trefoli Numero di barre : 4 Diametro : 0.01331 m Area : 0.000556 m^2

4.7. Stage 7

Stage 7

Scavo

Muro di sinistra

Lato monte : 0 m Lato valle : -7.5 m

Linea di scavo di sinistra (Orizzontale)

0 m

Linea di scavo di destra (Orizzontale)

-7.5 m

Falda acquifera

Falda di sinistra : -16.2 m Falda di destra : -16.2 m

Carichi

Carico lineare in superficie : SurfaceSurcharge

X iniziale : -8.5 m X finale : -0.5 m

Paratia: PaliD1000accostati

X:0 m

Quota in alto : 0 m Quota di fondo : -20 m Sezione : Micropali fi300

Tirante : Tieback
X : 0 m
Z : -1.5 m

Lunghezza bulbo : 6 m Diametro bulbo : 0.2 m Lunghezza libera : 10 m Precarico : 180 kN

Angolo : 20 ° Sezione : 4 trefoli

> Tipo di barre : Barre trefoli Numero di barre : 4 Diametro : 0.01331 m Area : 0.000556 m^2

Tirante: Tieback_New

X:0 m Z:-4.5 m

Lunghezza bulbo : 6 m Diametro bulbo : 0.2 m Lunghezza libera : 10 m Precarico : 220 kN

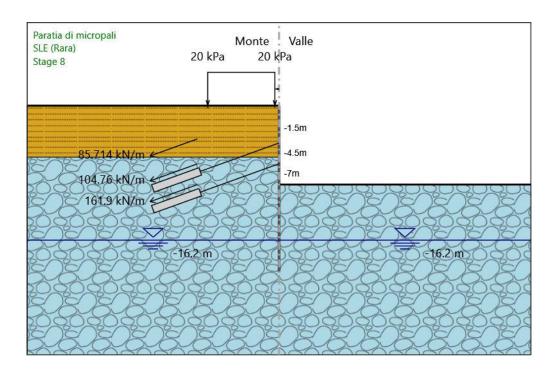
Angolo : 20 ° Sezione : 4 trefoli

> Tipo di barre : Barre trefoli Numero di barre : 4 Diametro : 0.01331 m

Area: 0.000556 m^2

Tirante: Tieback_New_New

X:0 m Z:-7 m


Lunghezza bulbo : 6 m Diametro bulbo : 0.2 m Lunghezza libera : 10 m Precarico : 340 kN Angolo : 20 °

Sezione : 4 trefoli

Tipo di barre : Barre trefoli Numero di barre : 4 Diametro : 0.01331 m

Area: 0.000556 m^2

4.8. Stage 8

Stage 8

Scavo

Muro di sinistra

Lato monte : 0 m Lato valle : -9.5 m

Linea di scavo di sinistra (Orizzontale)

0 m

Linea di scavo di destra (Orizzontale)

-9.5 m

Falda acquifera

Falda di sinistra : -16.2 m Falda di destra : -16.2 m

Carichi

Carico lineare in superficie: SurfaceSurcharge

X iniziale : -8.5 m X finale : -0.5 m

Paratia: PaliD1000accostati

X:0 m

Quota in alto : 0 m Quota di fondo : -20 m Sezione : Micropali fi300

Tirante : Tieback
X : 0 m
Z : -1.5 m

Lunghezza bulbo : 6 m Diametro bulbo : 0.2 m Lunghezza libera : 10 m Precarico : 180 kN

Angolo : 20 ° Sezione : 4 trefoli

> Tipo di barre : Barre trefoli Numero di barre : 4 Diametro : 0.01331 m Area : 0.000556 m^2

Tirante: Tieback_New

X:0 m Z:-4.5 m

Lunghezza bulbo : 6 m Diametro bulbo : 0.2 m Lunghezza libera : 10 m Precarico : 220 kN Angolo : 20 °

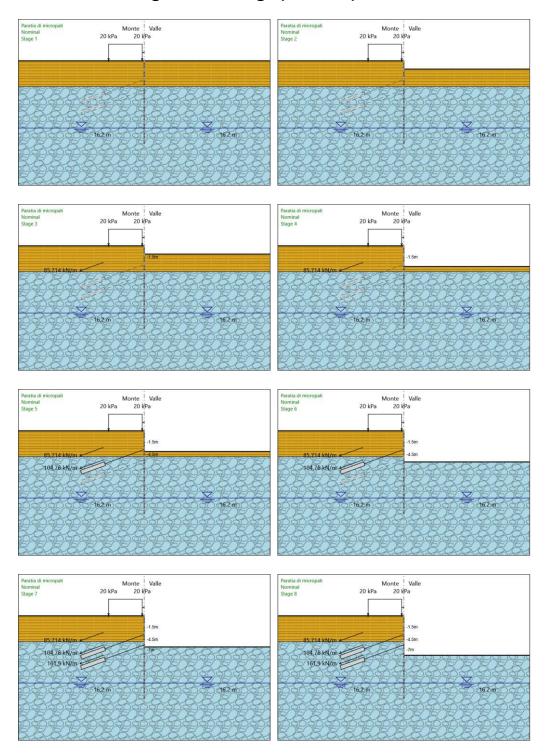
Sezione : 4 trefoli

Tipo di barre : Barre trefoli Numero di barre : 4 Diametro : 0.01331 m

Area: 0.000556 m^2

Tirante: Tieback_New_New

X:0 m Z:-7 m


Lunghezza bulbo : 6 m Diametro bulbo : 0.2 m Lunghezza libera : 10 m Precarico : 340 kN Angolo : 20 °

Sezione : 4 trefoli

Tipo di barre : Barre trefoli Numero di barre : 4 Diametro : 0.01331 m

Area: 0.000556 m^2

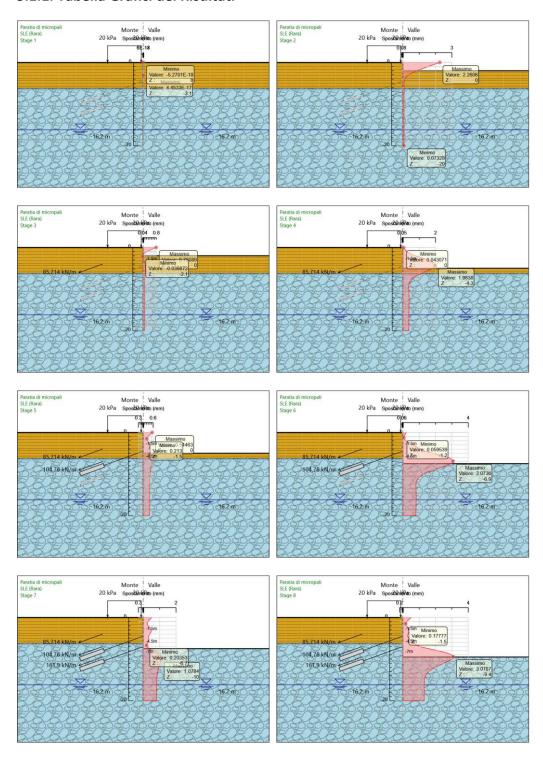
4.9. Tabella Configurazione Stage (Nominal)

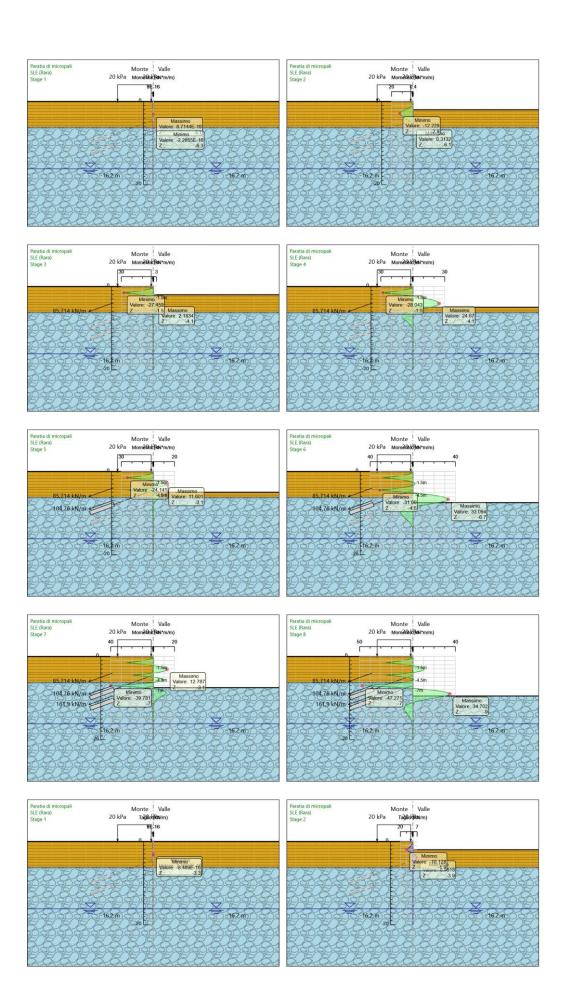
5. Descrizione Coefficienti Design Assumption

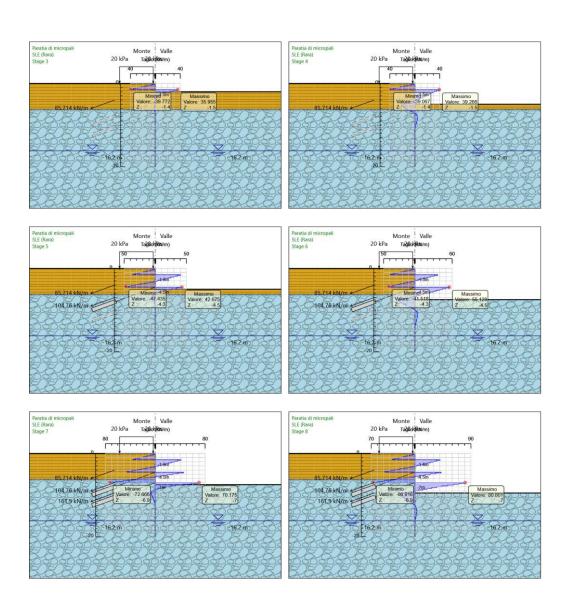
Coefficienti A

	Carichi Per- manenti Sfavorevoli (F_dead_loa d_unfavour)	manenti Fa- vorevoli (F_dead_lo	riabili Sfa- vorevoli (F_live_loa	riabili Fa- vorevoli (F_live_loa	smico (F_seism_ load)	sioni Ac- qua Lato Mon te (F_ Wa- terD	sioni Ac- qua Lato Vall e (F_ Wa-	Perma- nenti De- stabiliz-	. – –	Carichi Va- riabili De- stabiliz- zanti (F_UPL_QD Stab)	manenti Destabiliz- zanti	Perma- nenti Sta- bilizzanti	Carichi Va- riabili De- stabiliz- zanti (F_HYD_Q DStab)
Sim-	γG	γG	γQ	γQ	γQE	γG	γG	γGdst	γGstb	γQdst	γGdst	γGstb	γQdst
bolo													
Nomi-	1	1	1	1	1	1	1	1	1	1	1	1	1
nal													
SLE	1	1	1	1	0	1	1	1	1	1	1	1	1
(Rara)					_								
A1+M1 +R1	1.3	1	1.5	1	0	1.3	1	1	1	1	1.3	0.9	1
A2+M2 +R1	1	1	1.3	1	0	1	1	1	1	1	1.3	0.9	1

Coefficienti M


Nome	Parziale su tan(ø') (F_Fr) Parziale su c' (F_eff_cohe)	Parziale su Su (F_Su)	Parziale su qu (F_qu) P	arziale su peso specifico (F_gamma)
Simbolo	γф	γс	γcu	γqu	γγ
Nominal	1	1	1	1	1
SLE (Rara)	1	1	1	1	1
A1+M1+R1	. 1	1	1	1	1
A2+M2+R1	. 1.25	1.25	1.4	1	1


Coefficienti R


Nome	Parziale resistenza terreno (es. Kp)	Parziale resistenza Tiranti perma-	Parziale resistenza Tiranti tempo-	Parziale elementi strut-
	(F_Soil_Res_walls)	nenti (F_Anch_P)	ranei (F_Anch_T)	turali (F_wall)
Simbolo	γRe	үар	γat	
Nominal	1	1	1	1
SLE (Rara)	1	1	1	1
A1+M1+R1	1	1.2	1.1	1
A2+M2+R1	1	1.2	1.1	1

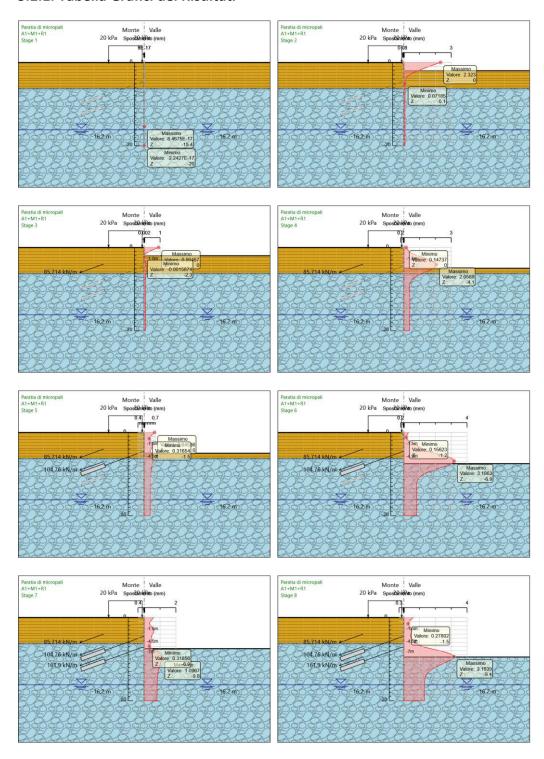
5.1. Risultati SLE (Rara)

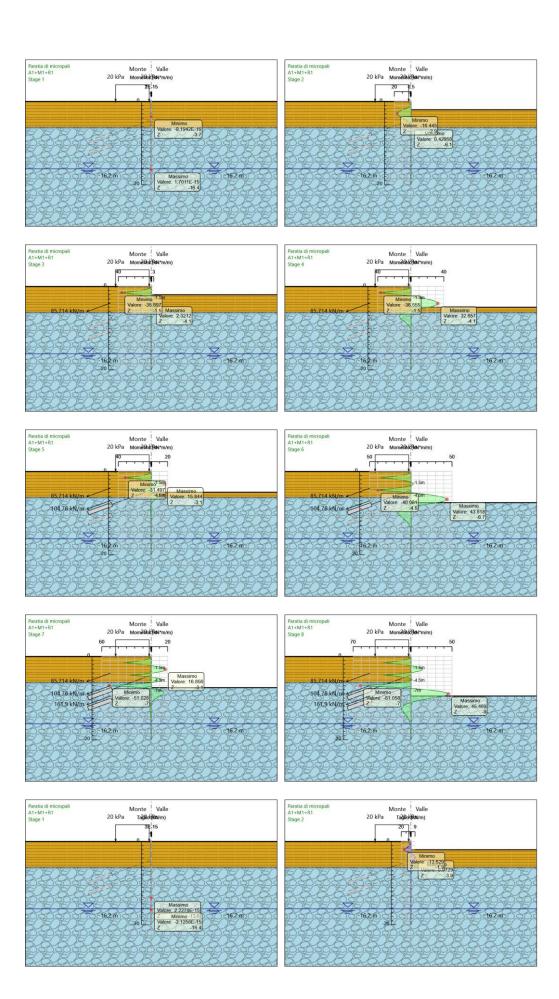
5.1.1. Tabella Grafici dei Risultati

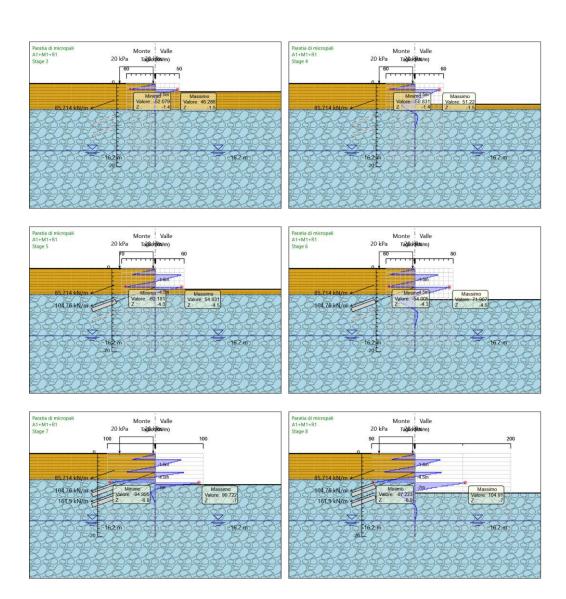
5.1.2. Risultati Elementi strutturali - SLE (Rara)

Design Assumption: SLE (Rara) Sollecitazione Tieback		
Stage	Forza (kN/m)	
Stage 3	85.71	
Stage 4	87.32167	
Stage 5	86.43816	
Stage 6	85.9136	
Stage 7	86.52714	
Stage 8	86.30325	

Design Assumption: SLE (Rara) Sollecitazione Tieback_New


Stage	Forza (kN/m)
Stage 5	104.8
Stage 6	109.0398
Stage 7	104.9713
Stage 8	104.8302


Design Assumption: SLE (Rara) Sollecitazione Tieback_New_New


Stage	Forza (kN/m)
Stage 7	161.9
Stage 8	165.1822

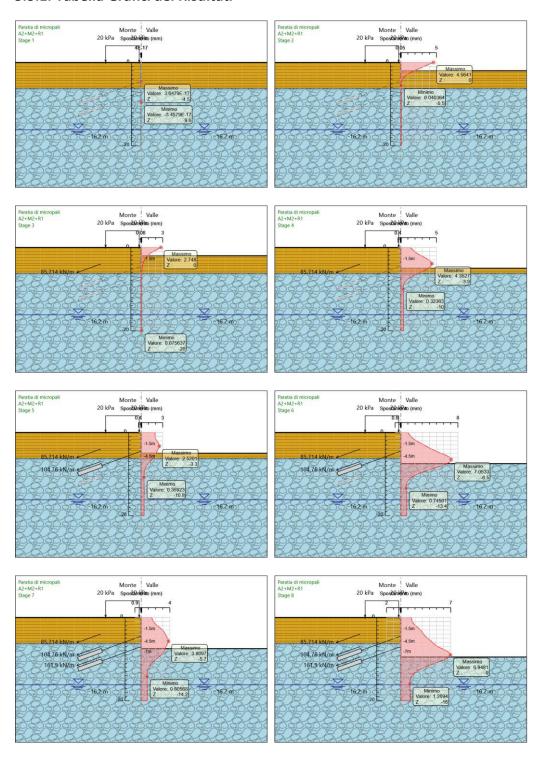
5.2. Risultati A1+M1+R1

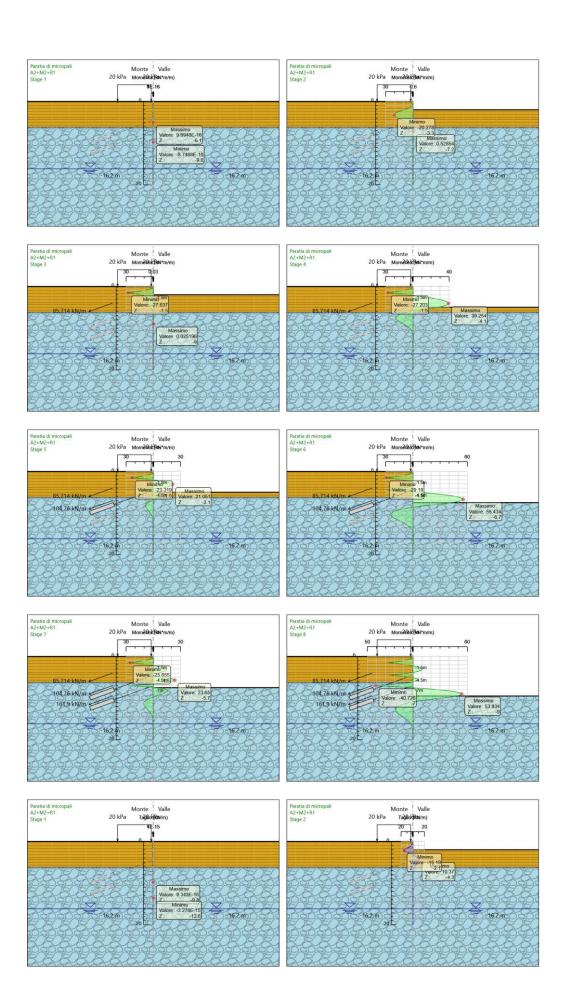
5.2.1. Tabella Grafici dei Risultati

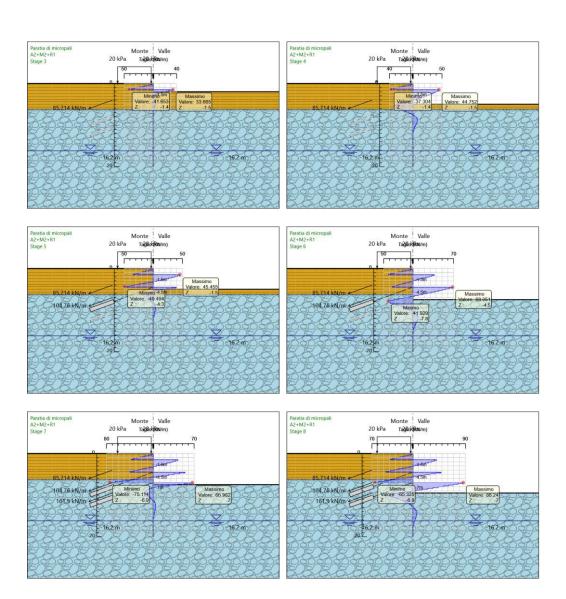
5.2.2. Risultati Elementi strutturali - A1+M1+R1

Design Assumption: A1+M1+	R1Sollecitazione Tieback
Stage	Forza (kN/m)
Stage 3	111.423
Stage 4	113.702888
Stage 5	112.575645
Stage 6	111.874542
Stage 7	112.675121
Stage 8	112.383882

Design Assumption: A1+M1+R1Sollecitazione Tieback_New


Stage	Forza (kN/m)
Stage 5	136.24
Stage 6	142.01343
Stage 7	136.73452
Stage 8	136.5559


Design Assumption: A1+M1+R1Sollecitazione Tieback_New_New


Stage	Forza (kN/m)
Stage 7	210.47
Stage 8	214.85529

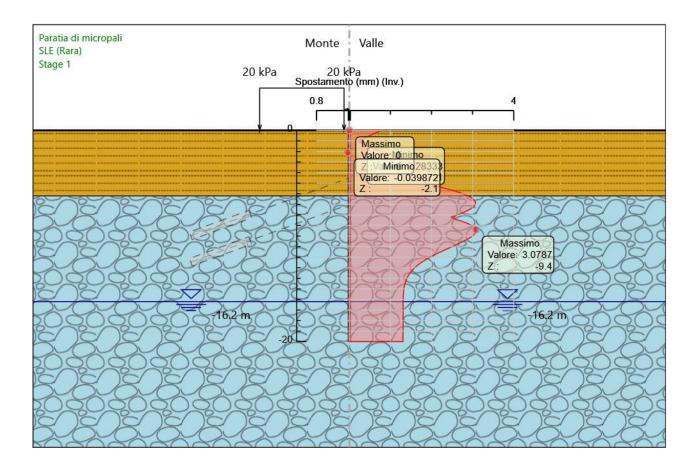
5.3. Risultati A2+M2+R1

5.3.1. Tabella Grafici dei Risultati

5.3.2. Risultati Elementi strutturali - A2+M2+R1

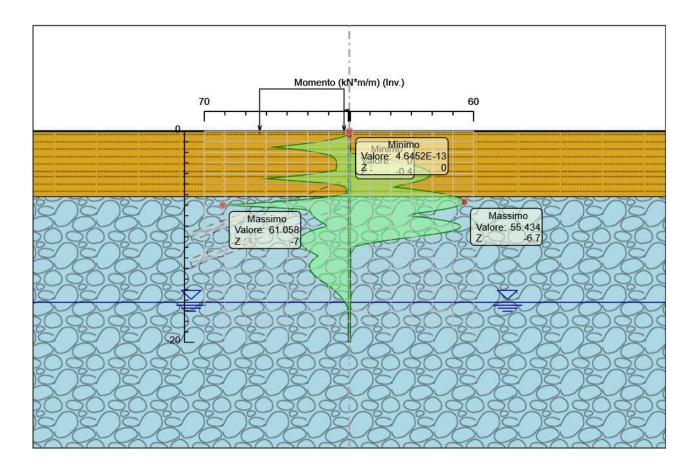
Design Assumption: A2+M2+	R1 Sollecitazione Tieback
Stage	Forza (kN/m)
Stage 3	85.71
Stage 4	90.08165
Stage 5	88.81372
Stage 6	87.71807
Stage 7	88.45658
Stage 8	87.96824

Design Assumption: A2+M2+R1Sollecitazione Tieback_New

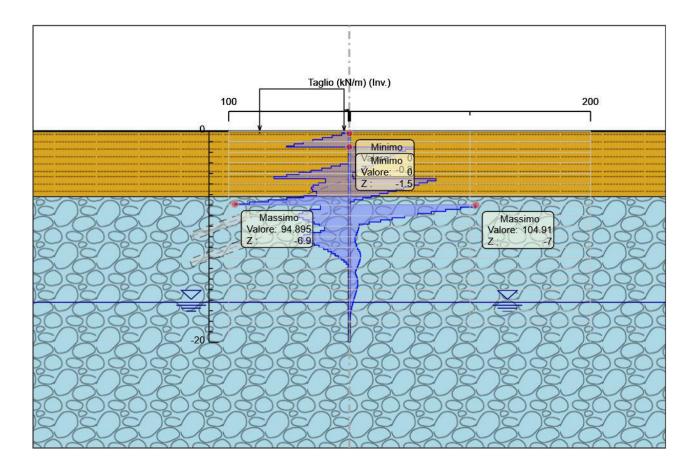

Stage	Forza (kN/m)
Stage 5	104.8
Stage 6	115.2717
Stage 7	109.8021
Stage 8	109.5162

Design Assumption: A2+M2+R1 Sollecitazione Tieback_New_New

Stage	Forza (kN/m)
Stage 7	161.9
Stage 8	168.5531


6. Descrizione sintetica dei risultati delle Design Assumption (Inviluppi)

6.1. Grafico Inviluppi Spostamento


Spostamento

6.2. Grafico Inviluppi Momento

Momento

6.3. Grafico Inviluppi Taglio

Taglio

6.4. Inviluppo Spinta Reale Efficace / Spinta Passiva

Design Assumption	n Stage Mu	iro Lato	Inviluppo Spinta Reale Efficace / Spinta Passiva
			%
A2+M2+R1	Stage 3 Left	Wall LEFT	8.37
A2+M2+R1	Stage 8 Left	Wall RIGHT	19.77

6.5. Inviluppo Spinta Reale Efficace / Spinta Attiva

Design Assumption	Stage Muro	Lato	Inviluppo Spinta Reale Efficace / Spinta Attiva
			%
A2+M2+R1	Stage 8 Left Wall	LEFT	117.52
A2+M2+R1	Stage 3 Left Wall	RIGHT	174.57

7. Normative adottate per le verifiche degli Elementi Strutturali

Normative Verifiche

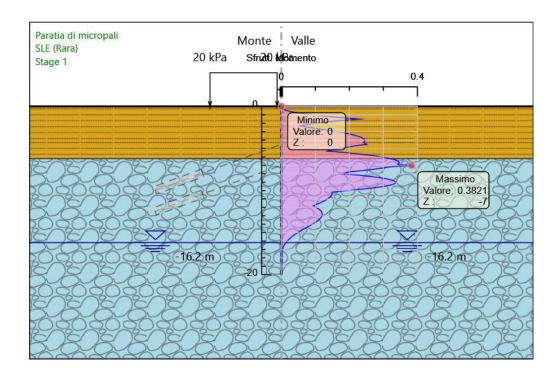
Calcestruzzo NTC Acciaio NTC Tirante NTC

Coefficienti per Verifica Tiranti

GEO FS	1
ξa3	1.7
γs	1.1

7.1. Riepilogo Stage / Design Assumption per Inviluppo

Design Assumption Stage 15	Stage 2 Stage 3	Stage 4	Stage 5	Stage 6	Stage 7	Stage 8
SLE (Rara)	V	V	V	V	V	V
A1+M1+R1	V	V	V	V	V	V
A2+M2+R1	V	V	V	V	V	V


7.2. Risultati SteelWorld

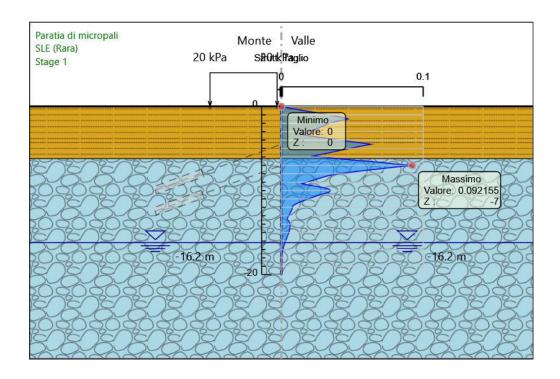
7.2.1. Tabella Inviluppi Tasso di Sfruttamento a Momento - SteelWorld: LEFT

Z (m)	
	Tasso di Sfruttamento a Momento - SteelWorld
0	0
-0.2	0
-0.4 -0.6	0.008 0.026
-0.8	0.054
-1	0.092
-1.2	0.14
-1.4	0.197
-1.5	0.229
-1.7	0.167
-1.9	0.119
-2.1	0.082
-2.3	0.056
-2.5	0.083
-2.7 -2.9	0.116 0.149
-2.9 -3.1	0.149
-3.3	0.203
-3.5	0.222
-3.7	0.236
-3.9	0.244
-4.1	0.246
-4.3	0.241
-4.5	0.251
-4.7	0.213
-4.9	0.188
-5.1	0.156
-5.3 -5.5	0.136
-5.5 -5.7	0.192 0.239
-5.7 -5.9	0.278
-6.1	0.309
-6.3	0.33
-6.5	0.343
-6.7	0.347
-6.9	0.341
-7	0.382
-7.2	0.315
-7.4	0.285
-7.6	0.245
-7.8	0.197
-8 -8.2	0.179 0.234
-8.4	0.254
-8.6	0.309
-8.8	0.329
-9	0.337
-9.2	0.332
-9.4	0.315
-9.6	0.286
-9.8	0.245
-10	0.198
-10.2	0.149
-10.4	0.149
-10.6	0.147
-10.8 -11	0.143 0.136
-11 -11.2	0.136
-11.2 -11.4	0.117
-11.6	0.106
-11.8	0.095
	0.102
-12	0.102
-12 -12.2 -12.4	0.102

Inviluppi Tasso di Sfruttamento a Momento - SteelWor	ld LEFT
Z (m)	Tasso di Sfruttamento a Momento - SteelWorld
-12.6	0.119
-12.8	0.12
-13	0.119
-13.2	0.117
-13.4	0.112
-13.6	0.107
-13.8	0.099
-14	0.091
-14.2	0.082
-14.4	0.074
-14.6	0.065
-14.8	0.056
-15	0.048
-15.2	0.041
-15.4	0.034
-15.6	0.028
-15.8	0.022
-16	0.018
-16.2	0.013
-16.4	0.01
-16.6	0.007
-16.8	0.004
-17	0.003
-17.2	0.002
-17.4	0.002
-17.6	0.002
-17.8	0.002
-18	0.002
-18.2	0.002
-18.4	0.002
-18.6	0.002
-18.8	0.002
-19	0.001
-19.2	0.001
-19.4	0.001
-19.6	0
-19.8	0
-20	0
-	-

7.2.2. Grafico Inviluppi Tasso di Sfruttamento a Momento - SteelWorld

Inviluppi


Tasso di Sfruttamento a Momento - SteelWorld

7.2.1. Tabella Inviluppi Tasso di Sfruttamento a Taglio - SteelWorld : LEFT

• •	
Inviluppi Tasso di Sfruttamento a Taglio - SteelWorl	
Z (m)	Tasso di Sfruttamento a Taglio - SteelWorld
0 -0.2	0 0.006
-0.4	0.012
-0.6	0.02
-0.8	0.027
-1	0.034
-1.2	0.04
-1.4	0.046
-1.5 -1.7	0.047 0.041
-1.9	0.036
-2.1	0.033
-2.3	0.03
-2.5	0.027
-2.7	0.024
-2.9 -3.1	0.021 0.017
-3.3	0.017
-3.5	0.02
-3.7	0.028
-3.9	0.037
-4.1	0.046
-4.3 -4.5	0.055 0.063
-4.5 -4.7	0.065
-4.9	0.051
-5.1	0.045
-5.3	0.04
-5.5 	0.034
-5.7 -5.9	0.028
-5.9 -6.1	0.022 0.033
-6.3	0.045
-6.5	0.059
-6.7	0.073
-6.9	0.083
-7 -7.2	0.092 0.081
-7.2 -7.4	0.07
-7.6	0.06
-7.8	0.05
-8	0.04
-8.2	0.034
-8.4 -8.6	0.03 0.026
-8.8	0.022
-9	0.018
-9.2	0.014
-9.4	0.021
-9.6	0.028
-9.8 -10	0.033 0.035
-10.2	0.033
-10.4	0.03
-10.6	0.026
-10.8	0.022
-11	0.019
-11.2 -11.4	0.016 0.013
-11.4 -11.6	0.013
-11.8	0.008
-12	0.008
-12.2	0.008
-12.4	0.007
-12.6 -13.8	0.006
-12.8 -13	0.006 0.005
-13	0.003

Inviluppi Tasso di Sfruttamento a Taglio - SteelWorld	LEFT
Z (m)	Tasso di Sfruttamento a Taglio - SteelWorld
-13.2	0.004
-13.4	0.004
-13.6	0.005
-13.8	0.006
-14	0.006
-14.2	0.006
-14.4	0.006
-14.6	0.006
-14.8	0.006
-15	0.005
-15.2	0.005
-15.4	0.004
-15.6	0.004
-15.8	0.003
-16	0.003
-16.2	0.003
-16.4	0.002
-16.6	0.002
-16.8	0.001
-17	0.001
-17.2	0.001
-17.4	0.001
-17.6	0
-17.8	0
-18	0
-18.2	0
-18.4	0
-18.6	0
-18.8	0
-19	0
-19.2	0
-19.4	0
-19.6	0
-19.8	0
-20	0

7.2.2. Grafico Inviluppi Tasso di Sfruttamento a Taglio - SteelWorld

Inviluppi Tasso di Sfruttamento a Taglio - SteelWorld

7.2.3. Verifiche Tiranti SLE (Rara)

Design Assumption: SLE	•				NTC2008			
(Rara)	che Tiranti				(ITA)			
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR			Resi-	Gerarchia delle Re-
		(kN)	(kN)	(kN)			stenza	sistenze
Tieback	Stage 3	179.991	1117.206	844.109	0.161	0.213		NO
Tieback	Stage 4	183.376	1117.206	844.109	0.164	0.217		NO
Tieback	Stage 5	181.52	1117.206	844.109	0.162	0.215		NO
Tieback	Stage 6	180.419	1117.206	844.109	0.161	0.214		NO
Tieback	Stage 7	181.707	1117.206	844.109	0.163	0.215		NO
Tieback	Stage 8	181.237	1117.206	844.109	0.162	0.215		NO
Tieback_New	Stage 5	220.08	1281.781	844.109	0.172	0.261		NO
Tieback_New	Stage 6	228.984	1281.781	844.109	0.179	0.271		NO
Tieback_New	Stage 7	220.44	1281.781	844.109	0.172	0.261		NO
Tieback_New	Stage 8	220.143	1281.781	844.109	0.172	0.261		NO
Tieback_New_New	Stage 7	339.99	1281.781	844.109	0.265	0.403		NO
Tieback_New_New	Stage 8	346.883	1281.781	844.109	0.271	0.411		NO

7.2.4. Verifiche Tiranti A1+M1+R1

Design Assumption: A1+M1+R1	Tipo Risultato: Verifi- che Tiranti				NTC2008 (ITA)			l
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR			Resi-	Gerarchia delle Re-
		(kN)	(kN)	(kN)			stenza	sistenze
Tieback	Stage 3	233.988	597.436	844.109	0.392	0.277		
Tieback	Stage 4	238.776	597.436	844.109	0.4	0.283		
Tieback	Stage 5	236.409	597.436	844.109	0.396	0.28		
Tieback	Stage 6	234.937	597.436	844.109	0.393	0.278		
Tieback	Stage 7	236.618	597.436	844.109	0.396	0.28		
Tieback	Stage 8	236.006	597.436	844.109	0.395	0.28		
Tieback_New	Stage 5	286.104	685.444	844.109	0.417	0.339		
Tieback_New	Stage 6	298.228	685.444	844.109	0.435	0.353		
Tieback_New	Stage 7	287.142	685.444	844.109	0.419	0.34		
Tieback_New	Stage 8	286.767	685.444	844.109	0.418	0.34		
Tieback_New_New	Stage 7	441.987	685.444	844.109	0.645	0.524		
Tieback_New_New	Stage 8	451.196	685.444	844.109	0.658	0.535		

7.2.5. Verifiche Tiranti A2+M2+R1

Design Assumption:	Tipo Risultato: Verifi-				NTC2008			
A2+M2+R1	che Tiranti				(ITA)			
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR			Resi-	Gerarchia delle Re-
		(kN)	(kN)	(kN)			stenza	sistenze
Tieback	Stage 3	179.991	597.436	844.109	0.301	0.213		
Tieback	Stage 4	189.171	597.436	844.109	0.317	0.224		
Tieback	Stage 5	186.509	597.436	844.109	0.312	0.221		
Tieback	Stage 6	184.208	597.436	844.109	0.308	0.218		
Tieback	Stage 7	185.759	597.436	844.109	0.311	0.22		
Tieback	Stage 8	184.733	597.436	844.109	0.309	0.219		
Tieback_New	Stage 5	220.08	685.444	844.109	0.321	0.261		
Tieback_New	Stage 6	242.071	685.444	844.109	0.353	0.287		
Tieback_New	Stage 7	230.584	685.444	844.109	0.336	0.273		
Tieback_New	Stage 8	229.984	685.444	844.109	0.336	0.272		
Tieback_New_New	Stage 7	339.99	685.444	844.109	0.496	0.403		
Tieback_New_New	Stage 8	353.962	685.444	844.109	0.516	0.419		

7.2.6. Inviluppo Verifiche Tiranti (su tutte le D.A. attive)

	Tipo Risultato: Verifi-							
	che Tiranti							
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR	ł	Resi-	Gerarchia delle Re	e- Design Assump-
		(kN)	(kN)	(kN)		stenza	sistenze	tion
Tieback	Stage 4	238.776	597.436	844.109	0.4 0.283			A1+M1+R1
Tieback_New	Stage 6	298.228	685.444	844.109	0.4350.353			A1+M1+R1
Tie-	Stage 8	451.196	685.444	844.109	0.6580.535			A1+M1+R1
back_New_New								