

REGIONE MOLISE

Provincia di Campobasso

COMUNE DI SANTA CROCE DI MAGLIANO

JGGETT

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO EOLICO NEL COMUNE DI SANTA CROCE DI MAGLIANO (CB)

COMMITTENTE

WIND ENERGY SANTACROCE SRL

Via Caravaggio, 125 - 65125 Pescara (PE)

P.IVA: 02265560686

Codice Commessa PHEEDRA: 19_33_EO_SCR PHEEDRA S.r.I. Via Lago di Nemi, 90 74121 - Taranto Tel. 099.7722302 - Fax 099.9870285 **PROGETTAZIONE 2HEEDR**V e-mail: info@pheedra.it - web: www.pheedra.it Dott. Ing. Angelo Micolucci ORDINE INGEGNERI PROVINCIA TARANTO Sezione A Dott. Ing. MICOLUCCI Civile Ambientale Industriale n° 1851 Informazione

2	Luglio 2021	RIMODULAZIONE LAYOUT	CD	АМ	VS
1	Febbraio 2020	PRIMA EMISSIONE	CD	АМ	VS
REV.	DATA	ATTIVITA'	REDATTO	VERIFICATO	APROVATO

OGGETTO DELL'ELABORATO

RELAZIONE DI CALCOLO DEGLI IMPIANTI ELETTRICI

FORMATO	SCALA	CODICE DOCUMENTO		NOME FILE	FOGLI			
Λ.4		SOC.	DISC.	TIPO DOC.	PROG.	REV.	SCR-CIV-REL-012 02	FOGLI -
A4	-	SCR	CIV	REL	012	02	SCR-CIV-REL-012_02	

PROGETTO PER LA REALIZZAZIONE DI UN PARCO NEL COMUNE DI SANTACROCE DI MAGLIANO (CB) LOCALITA' PIANO PALAZZO, PIANO MOSCATO, COLLE PASSONE E PIANO CIVOLLA Nome del file:

SCR-CIV-REL-012_02

Sommario

1.	PREMESSA	2
2.	DOCUMENTI E NORME DI RIFERIMENTO	2
3.	CONDIZIONI AMBIENTALI DI PROGETTO	2
4.	SISTEMA ELETTRICO	3
4.2.	DESCRIZIONE GENERALE	3
4.3.	Dati di impianto	4
5.	CARATTERISTICHE TECNICHE DEI CAVI	5
5.1.	Caratteristiche elettriche	5
5.2.	Tensione di isolamento del cavo	5
5.3.	Temperature massime di esercizio e di cortocircuito	5
5.4. 5.4 5.4 5.4	2. Collegamenti impianto eolico (interno ed esterno)	6 6
5.5.	Accessori	7
6.	DIMENSIONAMENTO ELETTRICO	8
6.1.	Portata dei Cavi	8
6.2.	Caduta di tensione	9
6.3.	Schema di impianto	11

PROGETTO PER LA REALIZZAZIONE DI UN PARCO NEL COMUNE DI SANTACROCE DI MAGLIANO (CB) LOCALITA' PIANO PALAZZO, PIANO MOSCATO, COLLE PASSONE E PIANO CIVOLLA

SCR-CIV-REL-012_02

Nome del file:

1. PREMESSA

Il progetto originario prevedeva la realizzazione di un impianto eolico composto da 10 aerogeneratori ognuno da 4,8 MW da installare nel comune di Santa Croce di Magliano (CB) ", con opere di connessione ricadenti oltre che nel comune di Santa Croce di Magliano (CB) anche nel Comune di Rotello (CB).

Nell'ambito della procedura di VIA è emersa la necessità di produrre documentazione integrativa sulla base delle osservazioni pervenute dai diversi Enti. Pertanto, a seguito delle osservazioni pervenute alla Società proponente, prese in considerazioni le richieste di integrazioni avanzate dai diversi Enti, si è ritenuto opportuno rivalutare il parco in progetto attuando sia una riduzione del numero di aerogeneratori, sia una delocalizzazione di alcuni di essi, al fine di minimizzare ulteriormente gli impatti e quindi rispondere adeguatamente alle richieste degli Enti.

In fine il nuovo layout ha tenuto conto di quanto emerso della Regione Molise settore industria circa la proposta di miglioramento del Layout nonché la richiesta di integrazioni da parte della soprintendenza e dal Comune di Santa Croce di Magliano. Il progetto, così come proposto in questa revisione, prevede un impianto eolico composto da 4 aerogeneratori ognuno da 5,8 MW, per una potenza totale di 23,2 MW da installare nel Comune di Santa Croce di Magliano in località "Civolla", con opere di connessione ricadenti oltre che nel comune di Santa Croce di Magliano (CB) anche nel Comune di Rotello (CB).

Nella presente relazione si riportano i calcoli di verifica dei cavi MT, nell'ambito della progettazione definitiva dell'impianto eolico proposto.

2. DOCUMENTI E NORME DI RIFERIMENTO

Le norme tecniche e i documenti di riferimento utilizzate per la stesura del progetto esecutivo sono:

- IEC 60502-2: Power cables with extruded insulation and theri accessories for rated voltages from 1 kV (Um=1.2 kV) up to 30 kV (Um=36 kV) Part 2: Cables for rated voltages from 6 kV (Um=7.2 kV) up to 30 kV (Um=36 kV) (03/2005);
- CEI EN 60909 (11-25) Calcolo di cortocircuito nei sistemi trifasi in corrente alternata (12/2001);
- IEC 60287: Electric cables Calculation of the current rating (12/2006);

CEI 11-17: Impianti di produzione, trasmissione e distribuzione pubblica di energia elettrica – Linee in cavo (07/2006).

3. CONDIZIONI AMBIENTALI DI PROGETTO

•	Altezza sul livello del mare	< 1000 m;
•	Temperatura ambiente	-25 +40°C;
•	Temperatura media	25°C;
•	Umidità relativa	90%;
•	Inquinamento	leggero;
•	Tipo di atmosfera	non aggressiva.

PROGETTO PER LA REALIZZAZIONE DI UN PARCO NEL COMUNE DI SANTACROCE DI MAGLIANO (CB) LOCALITA' PIANO PALAZZO, PIANO MOSCATO, COLLE PASSONE E PIANO CIVOLLA Nome del file:

SCR-CIV-REL-012_02

4. SISTEMA ELETTRICO

4.2. DESCRIZIONE GENERALE

L'impianto eolico è costituito da 4 aerogeneratori da 5800 kW di potenza nominale per una potenza complessiva di 23,2 MW.

In dettaglio l'impianto presenta

- 4 aerogeneratori ad asse orizzontale;
- 4 cabine di trasformazione poste all'interno della torre;
- Cavidotto interrato in media tensione (30 kV) per il collegamento tra gli aerogeneratori, tra questi e la stazione elettrica di trasformazione;
- Una linea in fibra ottica che collega tra di loro gli aerogeneratori e la stazione elettrica di trasformazione per il telecontrollo del parco eolico
- N.1 stazione elettrica di trasformazione a 150/30 kV nel Comune di Rotello (CB);

L'energia elettrica viene prodotta da ogni singolo aerogeneratore in bassa tensione (690 V), trasmessa attraverso una linea in cavo al trasformatore MT/BT posto internamente alla base della torre dell'aerogeneratore, dove viene trasformata ed innalzata al valore di 30 kV. Diverse linee in cavo interrato collegano fra loro gli aerogeneratori e la cabina di raccolta da quest'ultima mediante una linee in cavo interrato partono i collegamenti alla sezione in media tensione della stazione di trasformazione.

Gli aerogeneratori del parco eolico in oggetto, ciascuno di potenza attiva pari a 5,8 MW, sono collegati elettricamente tra loro a formare una rete radiale, le lunghezze di ciascuna linea, comprensive di scorta cabina e macchina, relative al collegamento interno ed esterno, sono riportate in tabella 1.

Le ragioni di questa suddivisione sono legate alla topologia della rete elettrica, alla potenza complessiva trasmessa su ciascuna linea in cavo, alle perdite connesse al trasporto dell'energia elettrica prodotta.

Il collegamento alla RTN del parco eolico appena descritto sarà eseguito mediante la realizzazione di una stazione elettrica di trasformazione 30/150 kV da collegare alla stazione elettrica 150/380 kV Terna di Rotello (CB).

PROGETTO PER LA REALIZZAZIONE DI UN Committente: Nome del file: Wind Energy Santacroce Srl

PARCO NEL COMUNE DI SANTACROCE DI MAGLIANO (CB) LOCALITA' PIANO PALAZZO, PIANO MOSCATO, COLLE PASSONE E PIANO **CIVOLLA**

SCR-CIV-REL-012_02

4.3. DATI DI IMPIANTO

Di seguito si riportano i dati relativi ai vari componenti dell'impianto.

RETE MT - AT

•	Sistema	trifase
•	Frequenza	50 Hz
•	Tensione nominale (lato MT)	30 kV
•	Tensione nominale (lato AT)	150 kV
•	Corrente massima di corto circuito trifase (lato AT-RTN) ¹	31.5 kA

Corrente massima di corto circuito monofase (lato AT-RTN) 1 40 kΑ

GENERATORI ASINCRONI

•	Tensione nominale	0.69 kV
•	Potenza nominale	5800 kW
•	Corrente rotore bloccato	1.22 In

TRASFORMATORI MT/BT

•	Potenza nominale	6000 kVA
•	Rapporto trasformazione	30/0.69 kV
•	Tensione di c.to c.to	9 %
•	Perdite nel ferro	4 kW
•	Collegamento	Dyn 5
•	Regolazione	±2x2.5 %

TRASFORMATORE MT/AT

•	Potenza nominale	50 MVA
•	Rapporto nominale	150 ± 10x1.25% / 31 kV
	- · · · · · · · ·	45.07

Tensione di c.to c.to 15 % Perdite nel ferro 29.5 kW Collegamento YNd11

Isolamento olio minerale ONAN-ONAF Raffreddamento

TRASFORMATORE SA

•	Potenza nominale	100 kVA
•	rulenza numnale	IOUKVA

•	Rapporto nominale	$30 \pm 2x2.5\% / 0.4 \text{ kV}$
---	-------------------	-----------------------------------

Tensione di c.to c.to 4 % Collegamento Dyn11

Isolamento olio minerale

Raffreddamento **ONAN**

PHEEDRA Srl

PIANO MOSCATO, COLLE PASSONE E PIANO **CIVOLLA**

SCR-CIV-REL-012_02

Nome del file:

COLLEGAMENTI MT

Nella tabella seguente si riportano le caratteristiche geometriche dei collegamenti dei cavi MT oggetto del calcolo.

Tabella 1 - collegamenti MT, sezione e materiale dei conduttori

	Lunghezza L[m]	Materiale Conduttore	Sezione [mm²]
WTG02 – WTG09	1.100	Al	3*185
WTG09- WTG10	1.550	Al	3*1*400
WTG10 - WTG01	3.700	Al	3*1*630
WTG01 – SE	9.850	Al	2*(3*1*630)

5. CARATTERISTICHE TECNICHE DEI CAVI

Scopo del presente paragrafo è quello di fornire le caratteristiche tecniche ed elettriche dei cavi che verranno utilizzati per il collegamento in media tensione.

5.1. CARATTERISTICHE ELETTRICHE

Le caratteristiche elettriche principali del sistema elettrico in media tensione sono:

•	Sistema elettrico	3 fasi – c.a.
•	Frequenza	50 Hz
•	Tensione nominale	30 kV
•	Tensione massima	36 kV
•	Categoria sistema	В

5.2. TENSIONE DI ISOLAMENTO DEL CAVO

Dalla tab. 4.1.4 della norma CEI 11-17 in base a tensione nominale e massima del sistema la tensione di isolamento U₀ corrispondente è 18 kV.

5.3. TEMPERATURE MASSIME DI ESERCIZIO E DI CORTOCIRCUITO

Dalla tab. 4.2.2.a della norma CEI 11-17 per cavi con isolamento estruso in polietilene reticolato ed in gomma ad alto modulo la massima temperatura di esercizio è di 90°C mentre quella di cortocircuito è di 250°C.

PROGETTO PER LA REALIZZAZIONE DI UN PARCO NEL COMUNE DI SANTACROCE DI MAGLIANO (CB) LOCALITA' PIANO PALAZZO, PIANO MOSCATO, COLLE PASSONE E PIANO CIVOLLA Nome del file:

SCR-CIV-REL-012_02

5.4. CARATTERISTICHE FUNZIONALI E COSTRUTTIVE

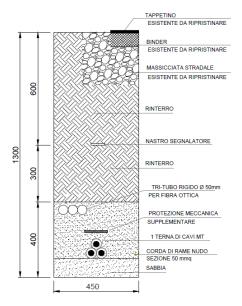
5.4.1. Collegamenti MT impianto eolico (interno ed esterno)

I cavi MT utilizzati per le linee elettriche interrate, per il collegamento tra gli aerogeneratori e la cabina di raccolta e tra quest'ultima e la stazione elettrica, saranno del tipo pre-cordato ad elica visibile o "trifoglio", adatti a posa interrata, con conduttore in Al, isolamento XLPE, schermo in tubo Al, guaina in PE.

I cavi previsti sono destinati a sistemi elettrici di distribuzione con U₀/U=18/30 kV e tensione massima Um=36 kV, sigla di designazione ARE4H5E(X).

La stessa tipologia di cavi sarà utilizzata per i collegamenti MT tra quadri e trafo all'interno dell'aerogeneratore e tra quadri e trasformatore AT/MT all'interno della stazione elettrica di trasformazione della RTN.

5.4.2. Collegamenti impianto eolico (interno ed esterno)


Il cavidotto MT che interessa il collegamento tra gli aerogeneratori e la stazione elettrica seguirà le modalità di posa riportate nella norma CEI 11-17, sarà costituito da cavi unipolari (ad elica visibile) direttamente interrati, ad eccezione degli attraversamenti di opere stradali e o fluviali richieste dagli enti concessori, per i quali sarà utilizzata una tipologia di posa che prevede i cavi unipolari in tubo interrato, mediante l'uso della tecnica con trivellazione orizzontale controllata (TOC). La posa verrà eseguita ad una profondità di 1.20 m in uno scavo di profondità 1.30-1.50 m (la seconda profondità è da considerarsi in terreno agricolo) e larghezza alla base variabile in base al numero di conduttori presenti. La sequenza di posa dei vari materiali, partendo dal fondo dello scavo, sarà la seguente.

- Strato di sabbia di 10 cm;
- Cavi posati a trifoglio di sezione 185, 400, 630 direttamente sullo strato di sabbia;
- Ricopertura dei cavi con sabbia;
- Posa della lastra di protezione supplementare;
- Ulteriore strato di sabbia per complessivi 30 cm;
- Posa del tri-tubo in PEHD del diametro esterno di 50 mm per inserimento di una linea in cavo di telecomunicazione (Fibra Ottica);
- Riempimento con il materiale di risulta dello scavo di 60÷90 cm;
- Nastro segnalatore (a non meno di 20 cm dai cavi);
- Riempimento finale con il materiale di risulta dello scavo e ripristino del manto stradale ove necessario, secondo le indicazioni riportate nelle concessioni degli enti proprietari.

Email: info@pheedra.it - web: www.pheedra.it

PROGETTO PER LA REALIZZAZIONE DI UN PARCO NEL COMUNE DI SANTACROCE DI MAGLIANO (CB) LOCALITA' PIANO PALAZZO, PIANO MOSCATO, COLLE PASSONE E PIANO CIVOLLA

SCR-CIV-REL-012_02

Lungo tutto lo scavo dei collegamenti tra gli aerogeneratori sarà posata una corda in rame nudo di sezione 50 mm² per la messa a terra dell'impianto.

5.4.3. Collegamenti MT interni alla stazione elettrica

Le linee in media tensione che interessano il collegamento tra il quadro MT ed il trasformatore di potenza MT/AT seguiranno le modalità di posa riportate nella norma CEI 11-17, saranno costituite da 3 terne di cavi unipolari (ad elica visibile) posate ciascuna in tubo di polietilene ad alta densità, inglobati in calcestruzzo. La posa verrà eseguita ad una profondità di 0.50 m in uno scavo di profondità 0.60 m e larghezza alla base variabile in base al numero di tubi presenti.

La linea in media tensione che interessa il collegamento tra il quadro MT ed il trasformatore dei servizi ausiliari di stazione seguirà la modalità di posa riportate nella norma CEI 11-17, costituita da una terna di cavi unipolari (ad elica visibile) posate su passerella porta-cavi o in cunicolo areato/chiuso, all'interno del locale utente della stazione elettrica di trasformazione.

5.5. ACCESSORI

Le terminazioni e le giunzioni per i cavi di energia devono risultare idonee a sopportare le sollecitazioni elettriche, termiche e meccaniche previste durante l'esercizio dei cavi in condizioni ordinarie ed anomale (sovracorrenti e sovratensioni).

La tensione di designazione U degli accessori deve essere almeno uguale alla tensione nominale del sistema al quale sono destinati, ovvero 30 kV. I componenti e i manufatti adottati per la protezione meccanica supplementare devono essere progettati per sopportare, in relazione alla profondità di posa, le prevedibili sollecitazioni determinate dai carichi statici, dal traffico veicolare o da attrezzi manuali di scavo, secondo quanto previsto nella norma CEI 11-17: 2006-07.

PROGETTO PER LA REALIZZAZIONE DI UN PARCO NEL COMUNE DI SANTACROCE DI MAGLIANO (CB) LOCALITA' PIANO PALAZZO, PIANO MOSCATO, COLLE PASSONE E PIANO CIVOLLA Nome del file:

SCR-CIV-REL-012_02

I percorsi interrati dei cavi devono essere segnalati, in modo tale da rendere evidente la loro presenza in caso di ulteriori scavi, mediante l'utilizzo di nastri monitori posati nel terreno a non meno di 0.2 m al si sopra dei cavi, secondo quanto prescritto dalla norma CEI 11-17: 2006-07. I nastri monitori dovranno riportare la dicitura "Attenzione Cavi Energia in Media Tensione".

6. DIMENSIONAMENTO ELETTRICO

6.1. Portata dei Cavi

La portata dei cavi in regime permanente viene determinata in accordo alla norma IEC 60502-2, tenendo conto del declassamento dovuto alla temperatura, profondità e tipologia di posa.

In particolare è utilizzata la formula seguente:

$$I_z = I_0 . k_1 . k_2 . k_3 . k_4$$

dove:

l₀ = portata in condizioni nominali dei conduttori con isolante polimerico, E4 e G7, ed è ricavata dai datasheet del costruttore;

k₁ = coefficiente di correzione che tiene conto del numero di circuiti affiancati (più cavi o più tubi);

k₂ = coefficiente di correzione per temperatura del terreno diversa da quella di riferimento;

k₃ = coefficiente di correzione per profondità di posa diversa da quella di riferimento;

k₄ = coefficiente di correzione per resistività termica del terreno diversa da quella di riferimento: Il valore di lo ricavato dalle tabelle è riferito alle seguenti condizioni:

- Temperatura del terreno 20°C;
- Profondità di posa 1.20 m;
- Resistività termica del terreno 2 K*m/W;

In assenza di informazioni specifiche sulle caratteristiche termiche del terreno, variabili sulla base di diversi fattori (composizione, umidità, ecc...), è stato considerato una resistività termica pari a 2 K*m/W. Tale valore risulta essere cautelativo e rappresenta una media tra i valori di resistività dei materiali costituenti il letto di posa (sabbia, materiale di riporto, ecc...).

Per la temperatura è mantenuto il valore di riferimento di 20 °C.

Per i circuiti affiancati, la distanza tra le terne considerata è 7 cm, le tabelle del costruttore prevedono i seguenti coefficienti di abbattimento della portata:

PROGETTO PER LA REALIZZAZIONE DI UN PARCO NEL COMUNE DI SANTACROCE DI MAGLIANO (CB) LOCALITA' PIANO PALAZZO, PIANO MOSCATO, COLLE PASSONE E PIANO **CIVOLLA**

Nome del file:

SCR-CIV-REL-012_02

Tabella 2 - Coefficienti di derating della portata per più circuiti affiancati

Distanza tra i cavi	Numero di cavi o terne (in orizzontale)						
o terne	2	3	4	6	9		
7	0.84	0.74	0.67	0.60	0.55		

Tabella 3 - Verifica della portata dei cavi

	Lunghezza L[m]	Materiale Conduttore	Sezione [mm²]	I _o [A]	Terne in parallelo [n.]	_	Posa in opera	Potenza P [MW]	Corrente di linea I _b [A]	l _b <l<sub>z</l<sub>
WTG02 – WTG09	1.100	Al	3*185	283	2	237,72	Direttamente interrati	5,8	111,8	VERIFICATO
WTG09- WTG10	1.550	Al	3*1*400	422	2	354,48	Direttamente interrati	11,6	223,5	VERIFICATO
WTG10 - WTG01	3.700	Al	3*1*630	545	3	403,3	Direttamente interrati	17,4	335,3	VERIFICATO
WTG01 – SE	9.850	Al	2*(3*1*630)	1090	3	806,6	Direttamente interrati	23,2	447,0	VERIFICATO

6.2. CADUTA DI TENSIONE

Di seguito riportata la formula per il calcolo della caduta di tensione percentuale:

$$\Delta V\% = \frac{\Delta v \times L \times I}{V} \times 100$$

Dove:

V = tensione di linea [V]

 $\Delta v = \text{caduta di tensione specifica}, \sqrt{3} \times (r \cos \phi + x \sin \phi) \text{ [V/A km]}$

L = lunghezza della linea [km]

I = corrente di carico [A]

r = resistenza specifica $[\Omega/km]$

x = reattanza specifica [Ω/km]

Committente: PROGETTO PER LA REALIZZAZIONE DI UN Nome del file: PARCO NEL COMUNE DI SANTACROCE DI Wind Energy Santacroce Srl

MAGLIANO (CB) LOCALITA' PIANO PALAZZO, PIANO MOSCATO, COLLE PASSONE E PIANO **CIVOLLA**

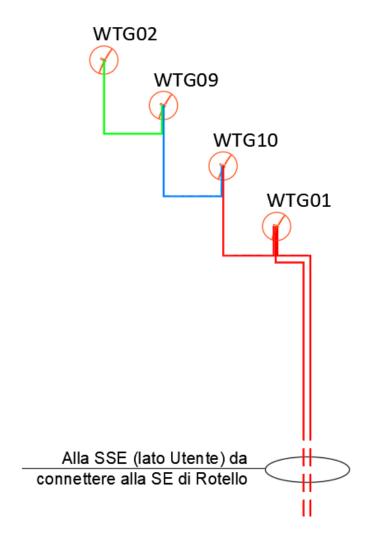
SCR-CIV-REL-012_02

Tabella 4 - Resistenza specifica dei cavi

FORMAZIONE	RESISTENZA a 20°C $[\Omega/\mathrm{km}]$
3x1x185	0.217
3x1x240	0.168
3x1x300	0.134
3x1x400	0.109
3x1x630	0.07

Nella tabella seguente sono riportati i risultati di calcolo relativi alla portata effettiva ed alla caduta di tensione di ciascuna tratta in media tensione costituente la rete dell'impianto eolico.

Tabella 5 - Calcolo della caduta di tensione


	Lunghezza L[m]	Sezione [mm²]	Posa in opera	Potenza P [MW]	Corrente di linea I _b [A]	Caduta di Tensione ΔVi [V]	Caduta di Tensione ΔVi [%]	Caduta di Tensione complessiva ΔVi [%]
WTG02 – WTG09	1.100	3*185	Direttamente interrati	5,8	111,8	46,2	0,154	0,154
WTG09- WTG10	1.550	3*1*400	Direttamente interrati	11,6	223,5	65,4	0,218	0,372
WTG10 - WTG01	3.700	3*1*630	Direttamente interrati	17,4	335,3	150,4	0,501	0,873
WTG01 – SE	9.850	2*(3*1*630)	Direttamente interrati	23,2	447,0	266,9	0,890	1,763

PROGETTO PER LA REALIZZAZIONE DI UN PARCO NEL COMUNE DI SANTACROCE DI MAGLIANO (CB) LOCALITA' PIANO PALAZZO, PIANO MOSCATO, COLLE PASSONE E PIANO CIVOLLA Nome del file:

SCR-CIV-REL-012_02

6.3. SCHEMA DI IMPIANTO

Di seguito si riporta lo schema logico-dimensionale del cavidotto di connessione.

ARE4H5E - 3*1*185 mm²

ARE4H5E - 3*1*400 mm²

ARE4H5E - 3*1*630 mm²